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INTRODUCTION

1 Preface
For the time being, the range of cryptography applications have been expanded a lot with the fast chang-

ing world of information and communications technology; cryptography is essentially required to ensure
that data are protected. The purpose of information security is to preserve: confidentiality, integrity and
availability known as the CIA triad. In this context, confidentiality is a set of rules that restricts the infor-
mation access, integrity is the assurance that the information is trustworthy and accurate, and availability
ensures that reliable access to the information is performed by authorized people [3, 4].
In the following we provide the basic terminology of cryptography [5]:

1. Cryptography refers exactly to the methodology of concealing the content of messages. The in-
formation that we need to hide is called plaintext. It is the original text, it could be in a form of
characters, numerical data, executable programs, pictures, or any other kind of information. The
data that will be transmitted is called ciphertext. It is the term refers to the string of "meaningless"
data, or unclear text that nobody can understand, except the recipients. It corresponds to the data that
will be transmitted through the network. Cipher is the algorithm that is used to transform plaintext
to ciphertext. This transformation is called encryption. It is a mechanism of converting readable and
understandable data to something that appears to be random and senseless. In contrary the decipher
is the process of converting the random and senseless data into readable one.

2. Secret Key: In cryptography, a secret Key (private key) is a variable that is used with an encryp-
tion/decryption algorithm. The algorithm doesn’t need to be kept secret, but the key does. The
secret key plays important roles in both symmetric and asymmetric cryptography.

3. Symmetric encryption refers to the process of converting plaintext into ciphertext and vice versa,
using the same secret key. On the other hand, asymmetric encryption refers to the process of con-
verting plaintext into ciphertext and vice versa, with different secret keys.

4. Internet security is a catch-all term for a very broad issue covering security for transactions made
over the Internet. Generally, Internet security encompasses browser security, the security of data
entered through a Web form, and overall authentication and protection of data sent via Internet
Protocol.

5. Types of Attacks: It is crucial to know the major difference between two dominant types of threats,
active and passive. An active threat is one that actively tries to damage or destroy your information.
On the other hand, passive attackers want to keep tracking and monitoring what you are doing and
when something interesting, like a credit card number or personal information, comes into view,
they stealthily take a snapshot and send it back to their home server without being observed.

6. Cryptanalysis comprises the principles and methods of deciphering ciphertext without knowing the
key, typically this includes finding and guessing the secrete key, it’s a complex process involving
statistical analysis, analytical reasoning, math tools and pattern-finding. Usually a cryptanalyst tries
to break the cipher without knowing the secret key, and this with several levels of difficulties based
on the available resources. Chosen plain-text attack is the easiest one for the attacker: the attacker
has access to the system without knowing the secret keys. Then, he has the possibility to choose
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a set of plain-text messages and to encrypt them. If a cryptosystem can resist to chosen plain-text
attack, then it can resist to all other attacks such as cipher text only, known plain-text and chosen
cipher attacks. The chosen plain-text attack can be realized by the plain-text sensitivity attack or
differential attacks introduced by Eli Biham and Adi Shamir [6]. Brute force is the attacker who is
trying all of the possible keys that may be used in either decryption or encryption processes [7].

7. Authentication is a process in which the credentials presented by user are match those stored in the
system database.

2 Context
In the ever changing world of huge data communications, low cost of internet connections, and very

fast emerging in software development, security is becoming more and more challenge. Security is now a
crucial requirement since global computing is inherently insecure. As the data goes from sender to receiver
on the internet, for example, it may pass through several points along the way, giving other users the chance
to intercept, and even modify it.

Technological advances in digital content processing, production and delivery have risen up into new
signal processing applications in which security threats can no longer be handled in traditional mode. These
applications range from multimedia content (image, video, audio, etc.), production and distribution to ad-
vanced biometric signal processing for access control, identity verification and authentication. In many
of these cases, security and privacy risks may prevent the adoption of new image and video processing
services.

Encryption is important because it allows to securely preserve data that you don’t want anyone else to
have access to. Governments, organization, individuals use it not only to protect classified, personal infor-
mation to guard against attacks, but also, to securely protect folder contents, which could contain emails
archives, chat histories, credentials information, credit card numbers, or any other sensitive information [8].

Security in real-time and embedded systems is a subject that has received an increasing amount of
attention from industry and academic point of view in recent years. These systems are being deployed in a
wide range of application areas [9, 10]. Embedded and real-time systems are facing more and more security
problems. Malicious attacks on the system from suspicious or malicious code lead to system exception and
security degradation.

3 Objectives and motivations
The use of cryptographic techniques in image and video processing applications is becoming increas-

ingly common. The cryptographic techniques used in these applications must be able to protect the mul-
timedia data against attacks. The confidentiality of images and videos contents is a hot topic and should
be considered with a particular attention to both compression and encryption requirements. Chaos-based
systems are more suitable to protect these huge data (images and videos). Indeed, there exists a good in-
teresting relationship between chaos and cryptographic systems. The chaotic properties can be found in the
classic Shannon’s paper on cryptography [11], for example, the ergodicity, the sensitivity to initial condition
or control parameters, deterministic dynamics, and structure complexity.

The performance of chaos-based crypto and crypto-compression systems consists in a trade-off between
robustness against cryptanalysis and computational cost. For instance, in paid-for video services, the con-
tent must be protected against outsiders (non-authorized viewers) with a cryptographic end-to-end access
control solution (encryption system). But at the same time the content must be protected against the valid
customer to avoid them from broadcasting the video content illegally.

Many cipher algorithms are used nowadays to ensure system privacy and protection. Among them let
us cite stream and block ciphers. Stream ciphers are based on producing an "infinite" random keystream,
and using that to encrypt one bit or byte at a time (e.g. AES in counter mode, Rabbit, RC4), whereas block
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ciphers work on larger chunks of data (i.e. blocks) at a time, often combining modes for additional security
(e.g. AES in Cipher Block Chaining (CBC) mode).

The extremely rapid development of the Internet of Things (IoT) brings growing attention to the in-
formation security issue. Realization of cryptographically strong Pseudo Random Number Generators
(PRNGs), is crucial in securing sensitive data. They play an important role in cryptography and in network
security applications. For data protection, Pseudo Chaotic Number Generators (PCNGs) are the central
element of any strongly secure chaos-based block and stream ciphers [12, 13].

High Efficiency Video Coding (HEVC) is the latest video coding standard which has been jointly stan-
dardized by the International Telecommunication Union (ITU), the International Organization for Stan-
dardization (ISO) and the International Electrotechnical Commission (IEC), under the Joint Collaborative
Team on Video Coding (JCT-VC). This team is composed of experts from the Video Coding Experts Group
(VCEG) and the Moving Picture Experts Group (MPEG) which represent the ITU and the ISO/IEC, re-
spectively. HEVC was designed to replace the successful Advanced Video Coding (AVC) standard, with
the target of reducing the bitrate by 50% for the same visual quality [2].

A huge work has been devoted for video protection and access control. The most used methods allow to
process the whole video as a unique data without taking into account the structure of the compressed video.
However, these methods are not suitable for applications with real-time requirements.

This thesis aims at designing new solutions that answer these challenges. The work of this thesis will
focus on designing very efficient i.e robust and fast PCNGs, chaos-based stream ciphers for securing images,
and chaos-based crypto-compression systems for protecting video.

4 Thesis outline and contributions

Chapter 1 is dedicated to the state-of-the-art, including the fundamental techniques of classical and
chaos-based cryptography and the HEVC standard. First, a related work on chaos-based generators is intro-
duced. After that the standard and the chaos-based encryption schemes (block and stream) are presented.
Finally, an overview of High Efficiency Video Coding with a brief state-of-the-art of the selective encryption
is provided.

Chapter 2 provides a complete review of some existing parallel programming methods and tools. We
point out those used in our thesis. Both the basic fundamentals of OpenMP and the Pthread libraries and
their usage are described. OpenMP directives and clauses are summarized. In addition the pthread-based
multi-threaded programming is detailed. Furthermore, a Linux pseudo-random generator is also described
in this chapter. Finally, dynamic and static software security analysis tools are presented.

Chapter 3 develops our first contribution. It consists of designing and implementing in an efficient
and secure manner a chaos-based generator. The chaotic system uses two non-linear recursive filters, a
technique of disturbance and a chaotic multiplexing. The non-linearity is achieved by using chaotic maps.
Based on the previous chaotic generators, two principal applications are implemented and tested. The
first application concerns the generation of a Random Number Generator (RNG) using a Pseudo-Chaotic
Number Generator (PCNG). The algorithm is refreshed many times by using entropy source from Linux
kernel. The second application is the realization of a chaos-based stream cipher. The parallel version of the
proposed chaos-based stream cipher is provided, and a comparison with other known chaos-based stream
cipher is performed. The security performance of the two applications is analyzed using cryptanalytic
attacks and statistical tests such as: Histogram, Chi-square test, correlation and the NIST. Experimental
results highlight the robustness of the proposed systems. Also, the obtained generation and encryption
speeds demonstrate their suitable use in real-time applications.

Chapter 4 describes our second contribution on a selective encryption solution for protecting HEVC
video. The selective encryption is performed over a set of HEVC syntax elements in a format compliant with
the standard. Thus, the bit-stream can be decoded with a standard HEVC decoder and only the secret key
is needed for decryption. An encryption system of Region of Interest (ROI) makes use of the independent
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tile concept of HEVC that splits the video frame into separable rectangular areas is also proposed. Tiles
are used to extract the ROI from the background and only the tiles forming the ROI are encrypted. In
Inter coding, tiles in-dependency is guaranteed by restricting the motion vectors of non-ROI to use only the
unencrypted tiles in the reference frames.

Chapter 5 concludes this work and a summary of achieved goals is provided. The future work perspec-
tives and potential improvements are finally addressed.
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1
State-of-the-art

1.1 Introduction

Cryptography is needful tool for protecting information in computer systems. Modern cryptography
has strong relation with various disciplines like mathematics, computer science and electrical engineering
along with data security. There are massive applications of cryptography in recent times, like passwords,
e-commerce, smart cards etc. Chaos in cryptography was discovered by Matthews in 1990s. Nowadays
Chaos has been a hot research topic due to its interactive and interesting properties that depend on parame-
ters and standard. This research has been attracting many researchers in the last decade. Chaos’ properties,
like randomness and ergodicity, have been proved to be convenient for developing the means for data pro-
tection. It is used in many system and applications like biological, biochemical, meteorology and reaction
systems. Furthermore, Chaos has potential applications in several functional blocks of a digital communi-
cation system: compression, encryption and modulation. Chaos-based cryptography is a research domain
across two fields, i.e., chaos (nonlinear dynamic system) and cryptography (computer and data security)
[14, 15] .

With the development of internet technology, there is a growing demand for cryptographic techniques
to secure transmitted multimedia contents (audios, images, videos) over the internet and mobile-phone
networks. In all chaos-based cryptosystems, the chaotic generator is an important component of the system
and so, a part of the effectiveness of the cryptographic system depends significantly on it [16].

It is difficult to imagine a fully-designed cryptographic application that doesn’t use random number
generators. Session keys, initialization vectors, salts to be hashed with passwords, unique parameters in
digital signature operations, and nonces in protocols are all assumed to be random by system designers.
Regrettably, many cryptographic applications don’t have a reliable source of real random bits, such as
thermal noise in electrical circuits. PRNG is used by real-world secure systems to generate cryptographic
keys, initialization vectors, random nonces, and other values presumed to be random [17].

Generally, encryption can effectively protect sensitive information transmitted through insecure chan-
nels. As mentioned previously chaos has favourable properties that are suitable for encryption such as high
sensitivity to initial values and system parameters, unpredictability, pseudo-randomness and ergodicity [18].
In addition, chaos-based cryptography is more modular than traditional cryptography. It is also more secure
when stream ciphers are involved, and this is due to the strong non-linearity in such systems.

A huge work has been directed for image and video privacy. Video encryption is a hot research topic in
the last decades. Very recently, an increasing attention has been devoted to the usage of chaotic system to
implement the encryption process of videos. The main advantage of such encryption lies in the observation
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that a chaotic signal looks like noise for non-authorized users ignoring the mechanism for generating it.
Secondly, time evolution of the chaotic signal strongly depends in the initial conditions and the control
parameters of the generating functions. Slight variations in these quantum produce quite different time
evolutions [19, 20, 21, 22].

In this chapter we review some related works in the literature that associated with our thesis. First,
we introduce the chaos based generators and their related works. After that we present some chaos-based
(block and stream), and standard ciphers of the literature. Finally, an overview of High efficiency video
coding with a brief state-of-the-art of the Selective Encryption (SE) is given.

1.2 Chaos-based generator related works

Random sequences can be generated by using any non-linear dynamical systems. This generation is
governed by a set of differential equations, iterative equations or simply chaotic maps [23, 24]. Many
chaotic maps and chaotic generators have been proposed in the literature.

El Assad et al. [25] surveyed and analysed some digital chaotic generators in finite precision:
the Logistic map, the piecewise linear chaotic map (PWLCM) and the Frey map. They demonstrated that
these chaotic maps have a limited cycle length and do not exhibit very good statistical properties when used
alone. Thus, to improve the properties of these maps, they integrate these maps with a recursive structure
and implement a technique of disturbance of the pseudo-chaotic orbit [26].

Rene'Lozi [27], presented a new model of a weakly coupled logistic and symmetric tent maps, based
on a matrix of coupling and using single or double precision numbers. He showed that the 3-coupled
tent maps with small value of perturbation can be used as a generator of pseudo-chaotic numbers. The
generated sequences have uniform distribution and their orbits have a very long period which are greater
than 109 but less than 1012. He demonstrated that the 3-coupled symmetric tent maps model seems a sterling
model of generator of chaotic numbers with a uniform distribution over the interval [-1,1]. In [28], Lozi
used a double threshold chaotic sampling and mixing in a weakly coupled tent maps in order to increase
the randomness of the generated sequences. However, the double threshold chaotic sampling technique
decreases the bit rate performance.

Li et al. [29, 30, 31] demonstrated the statistical properties of digital piecewise linear chaotic
maps. They indicated their roles in cryptography and pseudo-random coding. They proposed a pseudo-
random number generator (PRNG) with very good cryptographic properties based on a system of two
chaotic maps.

Kurganskyy et al. presented a one-dimensional piecewise affine maps which is comparable to
pseudo-billiard or so-called strange billiard systems. They showed that the one-dimensional Piecewise
Affine Maps (PAMs) are equivalent to planar Pseudo-Billiard Systems (PBSs). The reachability problem
for PAMs is still open, however the more general model of rational one-dimensional maps is shown to be
universal with undecidable reachability problem [32].

Thomas et.al [33], proposed a hardware random number generator based on a Linear Feedback
Shift Register (LFSR) and a Cellular Automata Shift Register (CASR). The output of the generator is resulted
from the xor operation between the LFSR and the CASR.

Other well-known bi-dimensional chaotic maps such as 2D-Standard map, 2D-Cat map, 2D-Baker map
were discussed and used in symmetric ciphers [27, 34, 35, 36].

Lian et al.[24] elaborated the performance of the 2D Standard, Cat and Baker maps. They demon-
strated that the Cat map has the smallest key space. In this work the key space is enlarged and the key
sensitivity is increased. The key spaces for Standard map and Baker map are both larger than that of the Cat
map. However to keep high key sensitivity, the number of iterations should be larger than 4 for the Standard
map and bigger than 12 for the Baker map. These maps are more suitable for cryptosystems in which the
same key is used in different iterations. However, to achieve a good confusion property, the average distance
change in the whole image must be greater than 40%.
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Most of the previous chaos-based generators operate with floating-point data operations. This
raises a problem when the computer’s resolution of the sender and receiver are slightly different. Indeed, in
this case, the chaotic sequences generated by the emitter in a cryptographic system will be different from
the one generated by the receiver. To overcome this problem a fixed finite precision of N bits is
used. However, the chaotic dynamics are degraded with a finite precision N and short cycles may occurred
[23, 26].

Shannon clarifies [11], that the fundamental techniques to encrypt a block of bytes are substitution
and permutation. A chaos-based encryption algorithm relies on chaotic maps. Indeed, the substitution and
permutation operations are performed according to a chaotic sequence. In the following section we report
some of them.

1.3 Encryption schemes
Symmetric ciphers can be divided into block ciphers and stream ciphers. Block ciphers encrypt a par-

ticular block of plaintext bits at a time with the same key. In this method the encryption of any plaintext
bit in a given block depends on every other plaintext bit in the same block. For example, the Advanced
Encryption Standard (AES) which is a block cipher uses a block length of 128 bits (16 bytes). Stream
ciphers encrypt bits individually. This is performed by adding a bit from a key stream to a plaintext bit.
There are synchronous stream ciphers in which the key stream depends only on the key, and asynchronous
ones where the key stream also depends on the ciphertext. In the following we discuss some of the existing
block/stream chaos-based image encryption schemes.

1.3.1 Chaos-based block cipher cryptosystems
Recently, many chaos-based cryptosystems, more efficient in terms of time consuming and of resis-

tance against cryptanalysis, than the previous ones have been investigated [1, 7, 34, 37, 38, 39, 40, 41].
These cryptosystems have a very high security level and they are based on dependent confusion-diffusion
layers, generally achieved by substitution-diffusion processes that use dynamic keys supplied by a chaotic
sequence. The chaotic sequence is produced by a chaotic generator which is the heart of any chaos-based
cryptosystem and so a big part of the efficiency of the system depends on it. Compared to the conven-
tional cryptographic algorithms (3DES, AES), chaos-based cryptosystems have several advantages such as:
more flexibility, more modularity, a low power consuming, and easily implemented, which make them more
suitable for large scale-data encryption, such as images and videos.

All chaos-based and non chaos cryptosystems must achieve the confusion and diffusion effects.
The confusion effect is measured by how much a change in the secret key affects the ciphered message. The
diffusion effects is measured by how much a change in the plain message affect the ciphered message.
In the literature, there are mainly two types of chaos-based cryptosystems. The structure of the first type
is composed of two layers: a confusion layer followed by a diffusion layer that work separately
(see in Figure 1.1). The confusion process is applied rc times on the block (or on the whole image),
then the diffusion process is applied rd times on the output of the confusion process, and finally, the
two processes are repeated r times. Both layers required image-scanning (for rc = rd = r =1). Most of
chaos-based cryptosystems of first type are considered insecure upon chosen/known plain text attacks. El
Assad et al. [42] gave in their paper an overview of main chaos-based cryptosystems of first type.
The structure of the second type of cryptosystems is similar to the structure of the first type of cryptosys-
tems, but the confusion and diffusion processes are performed sequentially on each pixel of the plain block
or plain image as shown in Figure 1.2. This type of cryptosystems are more efficient, in terms of security
and speed performance, than the first type of cryptosystems. Indeed, first, the diffusion process at the
pixel level is governed by the confusion process, second, a single scan of plain image pixels is needed to
perform the confusion and diffusion effects.
In the following we will recall the main chaos-based cryptosystems of the second type.
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Figure 1.1 – General structure of chaos-based cryptosystems

Yang et al. [38], used a permutation operation, as a confusion layer, achieved by a modified

Figure 1.2 – Dependent diffusion structure of chaos-based cryptosystems

standard map to avoid the problem of permutation of the corner pixel (s = 0, t = 0), while using a logistic
map as a diffusion layer. In addition a keyed hash function is used to generate a 128− bit hash value from
both the plain image and the secret hash keys. The hash value plays the role of the key for encryption
and decryption while the secret hash keys are used to authenticate the decrypted image. In their paper,
Wang et al.[40] introduced the idea of mixing the two layers of permutation and diffusion into
a single layer of dependent permutation-diffusion. As a result, one image scanning is required in-
stead of two scanning stages, to accelerate the encryption algorithm.

In Zhang’s model [41], two cryptosystems were designed based on the architecture of Figure 1.2. The
first one consists of a dependent diffusion layer based on the reverse 2-D cat map. The second
algorithm presents new conversion from a pseudo-random position to another pseudo-random one for
the confusion effect. The diffusion layer in the cryptosystems is based on the logistic map. In these
versions, Zhang tried to achieve the confusion and the diffusion effects sequentially. Farajallah [1, 39]
proposed an efficient cryptosystem with a very high speed compared to the main chaos-based cryptosystem
of the literature.

1.3.2 Stream ciphers
A typical stream cipher encrypts plaintext one byte at a time, although a stream cipher can be designed

to encrypt one bit at a time or on units larger than a byte at a time. Figure 1.3 represents a stream cipher
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Figure 1.3 – Stream cipher diagram.

structure diagram. In this structure, a key is an input to a pseudo-random bit generator that produces a
stream of specified bit numbers that are apparently random. The output of the generator, called a keystream
sequences, combines one byte at a time with the plaintext stream using the bitwise exclusive-OR (XOR)
operation to produce a ciphertext. Three design considerations must be taken into account when we design
a stream cipher algorithm [43]:

1. The keystream sequence should have a large period. A pseudo-random number generator uses a
function that produces a deterministic stream of bits that may repeat. The longer the period of repeat
the more difficult it will be to do cryptanalysis.

2. The more random the keystream is, the more randomized the ciphertext is, making cryptanalysis
more difficult.

3. The key needs to be sufficiently long in order to guard against brute-force attacks.

In the following we recall the main related works in standard and chaos-based stream ciphers.

1.3.2.1 AES-CTR and eSTREAM software

AES-CTR Mode

Counter mode, a standard introduced by Diffie and Hellman in 1979, is one of the best known modes
used for stream ciphers. Counter mode switches a block cipher into a stream one. It generates the next
keystream block by encrypting successive values of a counter. After each block encryption, the counter
must be different and this can be done simply by incrementation of the counter by some constant, typically
one. CTR mode has significant efficiency advantages over the Cipher Feedback (CFB) and Output Feed-
back (OFB) modes without weakening the security. In particular its tight security has been proven. On the
other hand most of the perceived disadvantages of CTR mode are not valid criticisms, but rather caused by
a lack of knowledge [44].
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Rabbit

Rabbit is a stream cipher algorithm developed in 2004 as a fast software encryption method. It is one
of the most effective algorithm proposed in the eSTREAM project. Rabbit is directed to be used in both
software and hardware applications. The Rabbit algorithm takes a 128-bit key and a 64-bit IV vector as
input. At each iteration, it generates a 128-bit output. The output is pseudo-random in its nature. The heart
of this cipher consists of 513 internal state bits. clearly the output generated in each iteration is some com-
bination of these state-bits. The 513 bits are divided into eight 32-bit state variables, eight 32-bit counters
and one counter carry bit. The state functions which update these state variables are non-linear and thus
build the basis of the security provided by this cipher [45, 46]. The designers provided the security analysis
considering several possible attacks: algebraic, correlation, and statistical attacks. They conclude that no
huge weakness of Rabbit has been found. However in 2009, Kircanski and Youssef in their paper [47]
provide a differential fault analysis attack on Rabbit algorithm. The fault model in which they analyse
the cipher is the one in which the attacker is assumed to be able to fault a random bit of the internal state.
The attack requires around 128-256 faults, a precomputed table of size around 241.6 bytes, and enables to
recover the complete internal state of Rabbit in about 238 steps.

Salsa20/r

Salsa20/r is one of the eSTREAM finalist algorithms for software implementation, where r = 8, 12,
20 represents the number of iterations of the round function. The algorithm is constructed on a pseudo-
random function based on a 32-bit addition, bitwise XOR and rotation operations, which maps a 256-bit
key, a 64-bit nonce (IV initial vector), and a 64-bit stream position to a 512-bit output [46, 48]. The
Salsa20/8 version is very fast but not secure enough. Its weakness comes from a differential cryptanalysis
performed by Tsunoo et al. [49]. Salsa20/12 and Salsa20/20 algorithms seem to be secure
so far, because no better attack than the brute-force attack has been reported.

HC-128 and HC-256

HC-128 is an efficient software stream cipher, which consists of two secret tables, each one with 512
32-bit elements. At each step they update one element from one of the two tables using a non-linear feed-
back function. All the elements of the two tables are updated every 1024 steps. At each step, one 32-bit
output is generated from the non-linear output function. HC-256 is a new version that differs from HC-128
by the size of secret tables which is 1024 32-bit elements instead of 512 32-bit ones. All the elements of
the two tables are updated every 2048 steps. At each step, HC-256 produces one 32-bit output [46, 50, 51].
However, in 2010, the authors in [52] provide a differential fault analysis attack on HC-128. The attack
is based on the fact that, some of the inner state words of HC-128 may be exploited several times without
being updated. Consequently, the complete internal state is recovered using about 7968 faults.

SOSEMANUK

SOSEMANUK is a software stream cipher that has a key length ranging from 128 to 256 bits. It takes
an initial value IV vector of 128 bits, and has two main components: a linear feedback register (LFSR) and
a finite state machine (FSM). The LFSR operates on 32-bit words and at every clock a new 32-bit word
is computed. The FSM has two 32-bit memory registers: at each step the FSM takes an input word from
the LFSR, updates the memory registers and produces a 32-bit output [46, 53]. In 2011 the authors in [54]
made a differential attack on SOSEMANUK. The attack needed around 6144 faults to recover the secret inner
state of the cipher.
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1.3.2.2 Chaos-based stream ciphers related work

Abderrahim et al.[55] in their paper proposed a chaos-based stream cipher based on symbolic
dynamic description and synchronization. Their main contribution concerns a pseudo-random number gen-
erator (PRNG) based on an appropriate mixture of perturbed chaotic maps. The synchronization of the
emitter/receiver is performed by a symbolic dynamic-based method. One of the characteristics of their pro-
posed stream cipher is that the chaotic symbolic dynamic sequences are easy to produce. The obtained bit
rate, with an Intel Core i7 processor clocked at 3.5 GHz, and 8Gb of RAM is 10 Mbps.

Lu et al.[56], proposed a one-way-coupled chaotic map lattice for cryptography of a self-synchronizing
stream cipher. The system performs the computation into real numbers, and incorporates some algebraic
operations on integer numbers. The encryption/decryption operations is done in parallel using multiple
chaotic maps. The authors claim that the system has a good security level, and good reliability against
strong channel noise. They provide an encryption speed (around 914 Mbps on a 2 GHz CPU).

In 2007 li et al. [57] published a stream cipher also based on a spatiotemporal chaotic system as
done previously in [56]. The chaotic system uses coupled logistic maps, and simple algebraic computations.
The system produces parallel keystreams for encrypting plaintexts via bitwise XOR. The encryption speed
is 700 Mbits in a computer with a 1.8 GHz CPU and 1.5 GB RAM. Security analysis is performed to prove
the robustness of the system. However, the cryptosystem displays weakness in the keystream generation
[57]. The encryption is made by generating a keystream mixed with blocks generated from the plaintext.
The obtained keystream remains identical for every encryption procedure. Moreover, its generation does
neither depend on the plaintext nor on the ciphertext, that’s to say, the keystream remains unmodified for
every plaintext with the same length. Knowing the keystream leads to guessing the key. These drawbacks
are detailed in [58].

Shubo et al. [59] presented an improved chaos-based stream cipher algorithm based on discrete
chaotic maps. In this algorithm, one logistic chaotic system generates the random changing parameter to
control the parameter of the other. The algorithm only disturbs the control parameter of the chaotic system.
The VLSI architecture with low hardware cost and fast speed is designed, and the FPGA realization is
shown. The encryption speed is 571.429 Mbps with an AMD Athlon(tm) 64 X2 Dual Core processor.

In 2007, Fu et al. [60] designed a chaotic stream cipher relies on logistic map. They claimed that
this cipher could resist various common attack methods. In [61], the security of Fu’s chaotic cipher is
analysed and the information leak of chaotic map is indicated. They succeeded to guess the initial state
and obtained two sampling quantified sequences which are generated by other two chaos initial states. A
compression attack is proposed to recover the chaos initial state from sampling quantified sequence.

Yin et al. [62] published a new stream cipher with the discretized coupled map lattices (CML)
which operates on binary numbers. CML have been recently used to construct ciphers. However, the
complicated operations on real numbers make these CML-based ciphers difficult to analyze.

In 2016, Jalloulli et al. [63] part of our research team members in IETR laboratory, proposed
a Pseudo random chaotic generator (PCNG). In the following subsections we will provide in detail the
structure and the computation performance of this PCNG.

1.3.2.3 Jallouli et al. PCNG

The structure of the PCNG is presented in Figure 1.4. It uses four coupled chaotic maps (two PWLCM
maps, STmap and Logistic map) and includes a multiplexing chaotic technique [63]. The secret key of the
system is formed by:

— The initial conditions Xp1, Xs, Xp2 and Xl of the four chaotic maps: (PWLCmap1, STmap,
PWLCmap2 and Logistic respectively), ranging from 1 to 2N -1,

— The control parameter Pp1, Ps and Pp2 of PWLCmap1, STmap and PWLCmap2, in the range
[1, 2N−1 − 1], [1, 2N − 1] and [1, 2N−1 − 1] respectively.

The internal state function consists of two main steps.
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Figure 1.4 – The architecture of the PCNG2.

— First, the initial values Xp1(0), Xs(0), Xp2(0) and Xl(0) of the four chaotic maps (PWLCmap1,
STmap, PWLCmap2 and Logistic respectively) are calculated by:

Xp1(0) = Xp⊕ IV p1
Xs(0) = Xs⊕ IV s
Xp2(0) = Xp⊕ IV p2
Xl(0) = Xl ⊕ IV l

(1.1)

where 
IV p1 = lsb(IV )

IV s = Lcir[lsb(IV ), 3]

IV p2 = Lcir[IV s, 3]

IV l = Lcir[lsb(IV ), 2]

(1.2)

with ⊕ denotes the XOR operator, lsb(IV ) is the 32 least significant bits of IV and Lcir[S, q]
performs the q-bits left circular shift on the binary sequence S.

— Second, the four chaotic maps are coupled by a binary diffusion matrix to produce the future samples
Xp1(n), Xs(n), Xp2(n) and Xl(n) from which the output function produces the output sequence
X(n), by using a chaotic switching technique.

The equation of the system is given by:
Xp1(n)
Xs(n)
Xp2(n)
Xl(n)

 = D�


Fp[Xp1(n− 1)]
Fs[Xs(n− 1)]
Fp[Xp2(n− 1)]
Fl[Xl(n− 1)]

 . (1.3)

where D is the binary diffusion matrix:

D =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 . (1.4)

and � is the operator defined as we can see in the following equation :
Xp1(n)
Xs(n)
Xp2(n)
Xl(n)

 =


Fp[Xp1(n− 1)]⊕ Fs[Xs(n− 1)]⊕ Fp[Xp2(n− 1)]
Fp[Xp1(n− 1)]⊕ Fs[Xs(n− 1)]⊕ Fl[Xl(n− 1)]
Fp[Xp1(n− 1)]⊕ Fp[Xp2(n− 1)]⊕ Fl[Xl(n− 1)]
Fs[Xs(n− 1)]⊕ Fp[Xp2(n− 1)]⊕ Fl[Xl(n− 1)]

 . (1.5)
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The obtained samples of the sequence X(n) are controlled by the chaotic switching technique, using the
obtained sample Xl(n) and two threshold Th1 and Th2, defined as follows:

X(n) =


Xp1(n), if 0 < Xl(n) < Th1
Xs(n), if Th1 ≤ Xl(n) < Th2
Xp2(n), otherwise

(1.6)

where Th1 = 0.8× 2N and Th2 = 0.9× 2N .

Computing performance

The experiment is made using a two 32-bit multicore Intel Core(TM) i5 processors running at 2.60 GHz
with 16 Gb of main memory. This hardware platform was used on top of an Ubuntu 14.04 Trusty Linux
distribution, and the programming is performed in C code. Authors provide, for different sizes of data
bytes, the average generation time in micro second GT(µs), the average bit rate en Mega bit par second
BR(Mbit/s), and the average of the needed number of cycles to generate one byte, NCpB(Cycles/B).
The average is calculated by using 100 different secret keys. The results obtained in Table 1.1 has a little bit
better computing performance than our proposed generator of Chapter 3 since our PCNG uses a recursive
cell structure with one order (delay 1).

Table 1.1 – Computation performance.

Data (Bytes) GT(µs) BR(Mbit/s) NCpB(Cycles/B)

64 2 171.81 121.06
128 4 212.44 97.91
256 8 255.36 81.45
512 13 306.12 67.9

1024 23 348.445 59.69
2048 46 349.11 59.58
4096 52 621.07 33.49

16384 196 666.35 31.21
32768 338 774.13 26.87
65536 654 801.61 25.95

125000 1179 804.68 25.95
196608 1600 982.54 21.17
393216 2801 1122.67 18.53
786432 4237 1484.75 14.01
3145728 16727 1504.48 13.83

12582912 66666 1509.95 13.78

Structure of the Jallouli et al. PCNG

We first present the structure of the Jallouli et al. PCNG, then we discuss its computing performance and
finally present its security analysis. We report below the security analysis in terms of key size, keystream
attack and key sensitivity attack.

The Key size of the PCNG composed of all initial conditions and parameters is large enough to resist
the brute force attack. |K| = 4× 32 + 32 + 2× 31 = 222 bits.
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In order to verify key sensitivity, they calculate the Hamming Distance (HD) of two sequences gen-
erated with only one bit change (lsb bit) in the parameter X_p. The calculation is performed between two
sequences over 100 random secret keys.
The obtained average value of Hamming distance is equal to 0.499887. This value is close to the optimal
value of 50%, which indicated the high sensitivity on one bit change in the secret key.

Mapping and Histogram

The Mapping indicates the dynamic attitude of the system. The resulting mapping of a given produced
sequence appears random in comparison with a mapping nature of a known map (see Figure 1.5).
A practical PCNG must produce sequences that have uniform distribution in the whole phase space. Visu-
ally, the obtained histogram in Figure 1.5 for a given generated sequence is uniform. To confirm this result
they applied the Chi-Square and they obtained 1030.832 as an experimental value, which is smaller than
the theoretical value 1073.642651, then the histogram is uniform. Notice that, the uniformity of a sequence
generated by our proposed PCNG of Chapter 3, is better than one produced by Jalloulli et al. PCNG. Indeed,
when the experimental value of Chi-Square is smaller than the theoretical one; this means that the uni-
formity of the generated sequence is better.

Auto and Cross-correlation

One of good property of a PCNG is that, the generated sequences must be uncorrelated. Thus, the cross-
correlation of two sequences x and y (generated with slightly different keys) must be close to zero (addi-
tional details are reported in Chapter 3). Figure 1.5 shows that the sequences produced by Jalloulli et al.
PCNG are not correlated.

NIST Test

The National Institute of Standards and Technology (NIST) test is a statistical package that consists of
188 tests and sub-tests that were proposed in order to confirm the randomness of an arbitrarily long binary
sequences (more details regarding NIST test are clarified in Chapter 3). Figure 1.5 gives the results for
sequences generated by Jalloulli et al. PCNG. As we can see only one sub-test is not passed. In contrast,
sequences in our proposed PCNG of Chapter 3 have successfully passed all the NIST tests. Therefore,
the proposed chaotic generator PCNGs of Chapter 3 is robust against statistical attacks and its security
performance are better than the Jallulli et al. PCNG.

1.4 Real time applications

A real-time application (RTA) is an application software that works within a time frame
that the user senses as immediate or current. Thus, time expressed as a resource of fundamental concern in
real-time systems, and tasks must be scheduled and executed to meet their timeliness concerns. Examples
of such RTA resources are IP-telephony, XoIP, video conferencing, Video on Demand (VOD) and Audio
Video on Demand(AVOD). Real-time system software’s are more and more often. In this case, one of the
crucial challenges is to synchronize multiple concurrent tasks. Additionally, many real-time systems
play a high impact role in their environments and failure to perform correctly may result in significant costs
or human risks. Thus, real-time systems must also be highly reliable (i.e., they must be deployed correctly),
and available (i.e., they must work continuously) [64, 65, 66].
Furthermore, many real-time systems is that they are belong to embedded systems, i.e., they are ingredients
of a larger system that contacts with the physical world. This is often the main source of complexity in
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Figure 1.5 – Statistical tests of Jalloulli et al. PCNG.
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real-time systems.
An embedded system is an integration between electronic and computer system designed to serve a par-

ticular purpose, like microwave ovens, washing machines, dishwashers, pacemakers and digital cameras.
The most important hardware components are the processing elements that are responsible both for control-
ling and driving the embedded system, and for performing its computation. For complicated and intensive
systems, like audio and video Digital Signal Processing (DSP) systems, specialized processors with a high
computational power for a limited cost are used. The first embedded systems were composed of differ-
ent hardware components, and were used only for military and space exploration projects. Progressively,
the miniaturization of integrated circuits led to the integration of more and more hardware components
within a single chip called a System-on-Chip (SoC). Nowadays, embedded systems are often based on het-
erogeneous Multiprocessor Systems-on-Chips (MPSoCs). An heterogeneous MPSoC interconnect all the
elements of an embedded system. In RTA the system must perform its function within specified time limits.
Moreover, it should be reactive. The system is continuously responding to events from the external environ-
ment. Multi-threading approach aims to increase utilization of a single core by using thread-level as well as
instruction-level parallelism. For that reason we will use parallel and efficient implementation techniques
to develop new cryptosystems for image/video encryption that are suitable for RTA [67, 68, 69, 70, 71].

1.5 High efficiency video coding (HEVC)

High Efficiency Video Coding (HEVC) is the last video coding standard issued by the ITU-T Video Cod-
ing Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) [2, 72]. The main
objective of the HEVC standardization efforts is to enable 50% bitrate reduction for similar video quality
[73], compared to its predecessor H.264/AVC [74]. In the upcoming years, HEVC is expected to replace the
previous video coding standards in the emerging applications, such as High Dynamic Range (HDR), Virtual
Reality (VR), High Frame Rate (HFR), High Resolutions (4K, 8K), etc. In such applications, multimedia
contents security and confidentiality are of paramount importance for copyright and privacy protection.
Thus, a huge work has been devoted for these purposes in the last decade [19, 20, 21, 75, 76, 77, 78, 79,
80, 81]. In this section we provide a brief overview on HEVC encoder and we recall some work directed to
encrypt video in HEVC codec.

1.5.1 HEVC tools

Several tools defined in the HEVC standard enable a bit-rate saving of 50%-60% with respect to the
H.264/AVC. These new tools provide larger coding blocks, quad-tree block partitioning, more accurate
Intra and Inter predictions, optimized entropy coding and the new in-loop Sample Adaptive Offset (SAO)
filter. Video compression consists in removing spatial and temporal redundancies in the video and thus, it
considerably decreases the required data to represent the video. The video compression processes in HEVC
is shown in Figure 1.6. The HEVC frame is split into coding tree units (CTUs) of fixed sizes, from 16x16
up to 64x64. Each CTU can be recursively split in a quad-tree structure to Coding Units (CU)s. CUs are
the basic unit of the prediction in HEVC. These CUs are composed of three Coding Blocks CBs (one luma,
and two chroma) in 4:2:0 colour format representation. Figure 1.7 demonstrates the partitioning process in
HEVC. The decision to use intra or inter prediction is performed at the CU level. CUs are predicted in intra
mode from reconstructed neighbouring samples in the same slice. For I slices, only intra prediction mode
is used, while in P and B slices CUs can be in intra or inter prediction mode [2, 82]. In our thesis work,
we focus on three used tools in HEVC, including entropy coding, Intra prediction mode and parallel tools
in HEVC (tiling concept). In Chapter 4 we will use these three tools to provide a selective encryption for
video contents.
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Figure 1.6 – HEVC video encoder [2].

1.5.1.1 Intra prediction

HEVC encoder enables higher compression efficiency partly by offering 35 intra prediction modes
(IPM). As illustrated in Figure 1.8, these modes are composed of 33 Intra_Angular prediction modes
(from 2 → 34), the Intra_Planer mode (mode 0) and the Intra_DC prediction mode
(mode 1). For an efficient coding of the 35 IPMs, a list of the Most Probable Mode (MPM) is
defined in HEVC. This list of three modes is derived from the Intra prediction modes of the neighbouring
blocks. Three syntax elements are used to signal the Intra prediction mode for luma prediction block in the
bitstream. The first flag is signalled to determine if one of the MPM is used. In this case, the second flag
(one bit for the first MPM and two bits for the two last MPMs) is signalled to indicated which of the last
MPM is selected. The 32 remaining modes outside the MPM list are coded by a fixed-length 5-bin value
that are bypass coded. Table 1.2 provides the coded scheme for the luma IPMs, MPM0, MPM1 and MPM2
coded by 2, 3, and 3 bits respectively, the first bit in red color is codded using a CABAC context and other
bins are bypassed.

Figure 1.9 indicates the neighboring intra prediction mode of left and top prediction unit (PU), the two
MPM are X and Y in case of X equal to Y, and the third MPM is planar in case of neither of X or Y is
planar, otherwise is set to DC in case of neither X and Y is DC, otherwise is set to intra angular 26. In case
that X equal to Y and X,Y greater than 2 (not angular), the three MPM are set to Planar, DC, 26 [2]. An
adaptive scanning method is applied in the HEVC for transform coefficients, which is used with the
block sizes of 4 × 4 and 8 × 8 to benefit from the statistical distribution of the active coefficients in 2-D
transform blocks. Angular (6-14) modes use vertical scan, Angular (22-30) modes use Horizontal scan, and
the other modes refer to diagonal scanning (see Figure 1.10). The derivation process of chroma IPMs may
come from the luma one, as clarified in Table 1.3 [2, 83].

1.5.1.2 Inter prediction

Inter prediction uses available reconstructed pictures before as an indicator for motion compen-
sation which is the key tool to represent the video contents. Using the block-wise displacements between



36 CHAPTER 1. STATE-OF-THE-ART

Figure 1.7 – HEVC partitioning [2].
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A

B

Figure 1.8 – Intra prediction modes on HEVC.

Table 1.2 – Used coding scheme for IPMs in HEVC. The first bit is coded using a CABAC context.

Number of bits Code Coded Mode
2 10 MPM0
3 110 MPM1
3 111 MPM2

000000

6
... 32 remaining IPMs

011111

positions in the current picture and previously encoded one we can determine the changes between suc-
cessive pictures. Motion estimation is the process of finding the best match choices between the current
Prediction Block (PB) and an area in previous or following frames. The encoder may choose to do this in
order to predict the same picture with different weights (weighted prediction). HEVC uses candidate list
indexing. Motion Vector MV is a vector which specifies the moving direction of the predicted block,
by calculating the difference between the current PB and the reference one. There are two Motion Vector
(MV prediction modes): Merge and AMVP (advanced motion vector prediction) [2].

1.5.1.3 Transformation and Quantization

Transformation and quantization on HEVC are determined using fixed-point integer oper-
ations with output and intermediate values not being more than 16-bit word length. HEVC have four
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Figure 1.9 – Derivation process of the three most probable modes.

Table 1.3 – Derivation process of the chroma intra prediction mode

Intra_chroma_pred_mode
Luma Intra Pred Mode

0 26 10 1

Planar (i.e., mode-0) 34 0 0 0

Angular (i.e., mode-26) 26 34 26 26

Angular(i.e., mode-10) 10 10 34 10

DC (i.e., mode-1) 1 1 1 34

Derived (i.e., use the luma mode) 0 26 10 1

transform sizes: 4x4, 8x8, 16x16 and 32x32. Like AVC, the transforms are integer transforms based on the
Discrete Cosine Transform (DCT). The derivation process of the 4 × 4 luma intra-prediction is
based on the Discrete Sine Transform (DST). The basis matrix uses coefficients requiring seven
bits storage, so it is more accurate than AVC. HEVC introduces several new features and tools for the trans-
form coefficient coding to help improve upon H.264/AVC: dependent coefficient scanning, last significant
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(a) Vertical scanning (b) Horizontal scanning (c) Diagonal scanning

Figure 1.10 – Scanning mode on the HEVC .

coefficient coding, multilevel significance maps, improved significance flag context modeling, and sign data
hiding. HEVC followed a development process in which it was iteratively refined to improve coding effi-
ciency and suitability for hardware and software implementation. The quantization process in the HEVC
uses the same scheme as the one used in the AVC: Uniform Reconstruction Quantization
(URQ) scheme. This scheme is controlled by the Quantization Parameter (QP) [2].

1.5.1.4 HEVC entropy coding

HEVC performs entropy coding using Context based adaptive binary arithmetic (CABAC). The CABAC
mechanism consists of three main functions: binarization, context modeling and arithmetic coding [84].
The binarization function in first step converts syntax elements to binary symbols (bin). Subsequently, the
context modeling updates the probabilities of bins, and finally the arithmetic coding compresses the bins
into bits according to the estimated probabilities. Five binarization methods are used in HEVC: Unary
(U), Truncated Unary (TU), Fixed Length (FL), Truncated Rice code with an adap-
tive context p (TRp) and the kth-order Exp-Golomb(EGk) codes. The arithmetic coder can be
performed either by a context coded which is the estimated probability of a syntax element or by bypass
coded that considers equal probability of 0.5 for each bin.
The three main functions of the CABAC are shown in Figure 1.11. As illustrated in this figure, the for-
mat compliant selective encryption (encrypt the sensitive information of the video contents), is performed
between binarization and arithmetic coding.

Binarization

Context 

Modeling

Context 

Bypass

Arithmetic  coding

Syntax

elements bins

Bitstream

Figure 1.11 – Main functions of CABAC engine.
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1.5.1.5 Parallel tools in HEVC

HEVC defines two new tools, enabling parallel encoding/decoding of a single picture, namely Tiles
and Wavefront [84, 85, 86]. In the HEVC standard, the picture can be split into different tiles where each
consists of an integer number of separately decodable Code Tree Blocks (CTBs). This concept constraints
Motion Vectors (MVs) and intra prediction inside the tile boundaries. The CABAC context is initialized at
the beginning of each tile. This new feature, introduced in HEVC standard, offers a flexible classification
of CTUs, a preferable correlation of pixels compared to slice and a superior coding efficiency as tiles do
not contain header information. Tiles provide better rate distortion performance in case of high parallelism
levels. HEVC supports wavefront parallel processing (WPP) which enables parallelization of arithmetic
entropy encode/decode within a frame. With WPP, each CTB row can be decoded in parallel. Figure 1.12
depicts the methodology that used by WPP.
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Figure 1.12 – Wavefront parallel processing (WPP).

1.6 Selective video encryption related works
For the time being, a couple of encryption algorithms have been proposed for HEVC video. Shahid

et al. [19] proposed a selective encryption scheme by joint encryption and compression system lies on
Context Adaptive Binary Arithmetic Coding (CABAC) bin string. Hamidouche et.al [75] proposed
a fast and secure selective chaos-based crypto-compression system for HEVC and the scalable version of
HEVC (SHVC).

Boyadjis et al. [76] proposed an extended selective encryption method for H.264/AVC and
HEVC streams. Their approach tackles the main security challenges of selective encryption.The contri-
bution in [76] is the improvement of visual distortion induced by selective encryption.
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Schwarzcite et al. [88] handled an overview of the Scalable Video Coding (SVC) Extension
of the H.264/AVC Standard and its functionalities that provide enhancements to transmission and storage
applications. SVC has achieved significant improvements in coding efficiency with an increased degree of
supported scalability relative to the scalable profiles of prior video coding standards.

Lui et al. [89] presented a chaos-based selective encryption scheme implemented on the H.264/AVC
standard. The scheme deploys two Rényi chaotic maps to generate a pseudorandom key sequence which
is used to hide the selected H.264/AVC syntax elements. It provides sufficient protection against full re-
construction while keeping the format compliance property so as not to cause decoding error without the
key.

Lei et al. [22] have introduced a selective encryption scheme to encrypt the CABAC bit stream us-
ing a chaotic stream cipher based on the discrete Piece-Wise Linear Chaotic Map (PWLCM). For encryption
scheme, each binarization process has a specific encryption and decryption operation. It is a format com-
pliant, but it affects the compression ratio and the bit rate since it encrypts the Unary Code (UC), Truncated
Unary code (TU), and Fixed Length Code (FLC). As a result, not all parameters during the binarization
process can be encrypted while preserving the format compliance property.

Xu et.al [91] proposed an encryption selection control module to encrypt video syntax elements
dynamically which is controlled by the chaotic pseudo-random sequence. A novel spatiotemporal chaos
system and binarization method are used to generate a key stream for encrypting the chosen syntax elements.

Several works proposed the encryption of ROI in the video. Peng et al. [77] presented an encryp-
tion scheme for ROI of H.264 video based on flexible macroblock ordering (FMO) and chaos, where the
ROI was the human face areas. Dufaux et al. [20] proposed an effective approach to encrypt ROI
based on code stream-domain encryption. Work in [21] enables rectangular region privacy by de-identifying
faces. This solution guarantees that face recognition software cannot reliably recognize de-identified faces
even though part of the facial details are preserved. In [78] the authors investigated the privacy protection
in the H.264/SVC (Scalable Video Coding). This solution detects face regions (ROI) first and then encrypts
these ROI in the transform domain by scrambling the sign of the non-zero TCs at all SVC layers.

1.7 Conclusion
In this chapter an overview of existing chaos-based generator and chaos based block/stream cipher

algorithms in the literature has been presented. A concise description of real-time applications (RTA)
and embedded systems was reported. A brief description of HEVC video coding has been also provided.
Intra/Inter prediction tools on HEVC with entropy coding using CABAC was described. A state-of-the-
art of selective encryption and ROI encryption on HEVC was reported. In next chapter, we handle the
programming techniques and the software security tools that were used in our thesis work.





2
Parallel Programming and Software Security
Tools

2.1 Introduction
The need for high quality and high speed systems is one of the most demanding aspects when using

the Internet, mainly for Real-Time Applications (RTA). Real-Time Applications services like IPTelephony,
XoIP, Videoconferencing, Video on Demand (VOD), Audio Video on Demand (AVOD) and others have
become a successful business on the Internet; several business organizations provide RTA services and make
big business out of it. At the same time, the security of the software produced must be assured since the
number of threats specifically targeting software is increasing. At the hardware level, the new proliferation
of ever more powerful computers at an increasing rate is undeniably challenging. In this context, many-
core processors offer new possibilities to high performance computing. To exploit all the potential of these
processors, new programming techniques are needed to spread tasks onto as many processors as possible,
to increase the speedup of applications. Among them, parallel programming techniques have been drawing
much attention during the past few years.
In this chapter we review some of the existing parallel programming methods and tools pointing out those
used in our thesis. Software security elements are also presented. We review both static and dynamic tools
designed to reduce software vulnerabilities.

2.2 Parallel programming models
Processors’ speeds cannot be significantly increased anymore (the higher the clock speed the more heat

is generated) because processors manufacturers can no longer cool the processors fast enough. Hence, mul-
ticore systems have become more popular. In order to benefit from these systems, programmers turned to
parallel programming. Parallelism is achieved thanks to multiple processes running at the same time on
multiple processors [92]. It explicitly breaks the task down into small units of execution, where each unit
can be executed in parallel on a single processor. Thus, multiple parts of the same task can run in paral-
lel [93]. Parallel programming can be implemented using several different software interfaces, or parallel
programming models. The programming model used in any application depends on the underlying hard-
ware architecture of the system on which the application is expected to run: shared memory or distributed
memory architecture. In shared-memory multiprocessor architectures, threads can be used to implement
parallelism. Threads are lightweight processes, that exist within a single operating system process. The
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threads share the same memory address space and state information of the process that contains them. Par-
allel programming can be implemented for shared memory systems using automatic parallelization [94],
POSIX threads [95], Solaris threads [95], or OpenMP [96]. Among the distributed memory programming
models, the Message Passing Interface (MPI) model [97] is commonly used to parallelize applications.
With the emergence of multi-core systems, hybrid programming models have also been developed. Within
a single node, fast communication through shared memory can be exploited, and a networking protocol can
be used to communicate across the nodes. Programs can then take advantage of both the shared-memory
and the distributed-memory modes. Figure 2.1 and Figure 2.2 illustrate the shared and distributed mem-
ory systems [98] respectively. The former is the most widely used. Typically, the cores have special L1
caches, while other caches, of higher levels (i.e. L2 and L3) may or may not be shared between the cores.
The adopted distributed-memory systems are called clusters [99]. They consist of a collection of systems

CPU CPUCPUCPU ……….

Interconnect

Memory

Figure 2.1 – Shared memory system

for example, PCs interconnected by a commodity interconnection network such as the Ethernet. A shared
memory program achieves its parallelism through threading. A process is an executing instance of an appli-
cation that can contain one or more thread. A thread is defined as an independent stream of instructions that
can be scheduled to run on a given processor. In UNIX environment [100], as shown in Figure 2.3, a thread
exists within a process and uses the process resources. The thread has its own independent flow of control
as long as its parent process exists and the operating system supports it. Threads within the same process
share resources, therefore modifications made by one thread to the shared system resources (such as data
variables or files) will be seen by all other threads. In the following three sub sections, we outline three
existing methods that are used to make a program parallel: MPI, OpenMP and Pthread. Note that the last
two have been considered in this thesis to parallel the sequential version of the proposed chaotic generator.

2.2.1 MPI

MPI stands for Message-Passing Interface [101]. It is a very explicit programming model. The pro-
grammer implements the distribution of the tasks, the communication between them, and decides how the
work is to be allocated between the various threads. MPI is not a new programming language, but defines a
library of functions that can be called from the C, C++, and Fortran programs. MPI is a robust and flexible
application programming interface (API) for developing parallel programs. All of the programs that are
executed on the most powerful computers use message-passing. MPI is a low-level language. Thus, there is
a large amount of details that the programmer needs to know. In message-passing programs, a program run-
ning on one core is usually called a process, and two processes can communicate by calling functions: one
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process performs a send operation while the other performs a receive operation. The details of com-
piling and running the program depend on the system. For compiling and linking MPI programs mpicc
command is used. Indeed, mpicc is a shell script that is associated with the C compiler, namely a wrapper.
It simplifies the running of the compiler by telling it where to find the necessary header files and which
libraries to link with the object file [97, 102, 103].

2.2.2 OpenMP

OpenMP is an API for writing multithreaded applications [96]. It is designed for multi-processor or
muti-core, shared memory machines. It is made of a set of compiler directives, library routines and envi-
ronment variables for parallel application programmers. OpenMP provides the capabilities to incrementally
parallelize a sequential program, unlike message-passing libraries which typically require an all-or-nothing
approach (the user can specify the number of processes that should be started). Most major platforms have
been implemented including Unix/Linux platforms and Windows. They currently support programs in For-
tran, C and C++. In order to use the OpenMP function prototypes and types, one must include the following
header file: #include < omp.h >. For compiling and linking a program using OpenMP, the additional
flag fopenmp must be included in the gcc [98, 104, 105].

2.2.3 Pthread

Pthread is a library of functions that programmers can use to implement parallel programs [106]. Un-
like the MPI, Pthread is used to implement shared-memory parallelism. Pthread is not a programming
language (such as C or Java). It is a library that can be linked with C programs. For UNIX systems, a
standardized C language threads programming interface has been specified by the IEEE POSIX 1003.1c
standard. Implementations that comply with this standard are referred to as POSIX threads, or Pthreads
[98, 106, 107, 108, 109]. Programs must be compiled with the -lpthread directive.
In the following sections we will comprehensively study the fundamentals of the OpenMP and Pthread-
based multi-threading programming approaches.

2.3 A brief introduction to OpenMP

2.3.1 OpenMP parallel principles

OpenMP programs accomplish parallelism exclusively through the use of threads. OpenMP uses the
fork-join model of parallel execution (see Figure 2.4): Programs begin as a single process called the Master
thread. The Master thread executes in sequential mode until the parallel region construct is encountered.
The Master thread then creates a team of parallel threads (fork) that simultaneously execute statements
in the parallel region. After executing the statements in the parallel region, the team threads synchronize
and terminate (join) and the Master thread can continue its execution.

2.3.2 OpenMP memory architecture

As depicted in Figure 2.5, the different threads can manipulate two kinds of data: shared data and/or
private ones.

1. shared data: All threads can access data in shared memory. Shared variables exist in only one
memory location and all threads can read or write to that address.

2. private data: The data can only be accessed by threads that own it.
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2.3.3 OpenMP syntax

It is the responsibility of the developer to introduce OpenMP directives in his code. OpenMP directives
are comments in source code that specify parallelism for shared memory machines. An OpenMP directive
has the following general form :

sentinel directive-name [clause [clause]...]

The sentinel is a string of characters whose value depends on the used language. Clauses control
the behavior of an OpenMP directive (e.g. data scoping, schedule, initialization, number of threads used,
etc.). The following sample shows how to set the number of threads and define a parallel region. By default,
the number of threads is equal to the number of logical processors on the machine. For example, if you have
a machine with one physical processor that has hyperthreading enabled, it will have two logical processors
and, therefore, two threads.

# i n c l u d e < s t d i o . h>
# i n c l u d e <omp . h>

i n t main ( ) {
# pragma omp p a r a l l e l num_th reads ( 4 )
{

i n t i = omp_get_thread_num ( ) ;
p r i n t f ( " H e l l o from t h r e a d %d \ n " , i ) ;

}
}

2.3.4 OpenMP parallel constructs

2.3.4.1 Parallel regions

A parallel region is a block of code that will be executed simultaneously by multiple threads. When a
thread reaches a parallel directive, it creates a team of threads and becomes the master of the team. The
master is a member of that team and has thread number 0 within that team. Starting from the beginning of
this parallel region, the code is duplicated and all threads will execute that code. There is an implicit barrier
at the end of a parallel section. Only the master thread continues execution past this point.
Example :

# pragma omp p a r a l l e l
{
/ / code b l o c k
}

2.3.4.2 Iterative work-sharing constructs (the loop for)

A work-sharing construct divides the execution of the enclosed code region among the members of the
team that encounter it. A team of threads is formed (i.e. a parallel region). Loop iterations are split among
threads with an implicit barrier. Each loop iteration must be independent of other iterations. The DO /
for directive specifies that the iterations of the loop immediately following must be executed in parallel by
the team. This assumes that a parallel region has already been initiated, otherwise it executes in serial on a
single processor.
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# pragma p a r a l l e l f o r
f o r ( i =0 ; i <N; i ++)
{
/ / code b l o c k
}

2.3.4.3 Non-iterative work-sharing constructs (the sections)

A non-iterative work-sharing construct divides the execution of the enclosed code region among several
threads. One thread is working on each section. Each section is executed once by a thread in the team. There
is an implicit barrier at the end of a section’s directive. Independent section directives are nested within
a sections directive. An example of this code is given in the following piece of code.

# pragma omp s e c t i o n s
{
# pragma omp s e c t i o n
{
code_1 ( ) ;
}
# pragma omp s e c t i o n
{
code_2 ( ) ;
}
}

2.3.5 OpenMP data environment
2.3.5.1 The basic data scoping

Several directives accept clauses that allow a user to control the scope attributes of variables. If no data
scope clauses are specified for a directive, the default scope for variables affected by the directive is shared
except for-loop indexes that are private.
The basic data scoping controls in OpenMP consist of the shared and the private clauses.
The shared clause:
The shared clause specifies that variables will be shared by all the threads in a team, meaning that all
threads access the same storage area for shared data.
The private clause:
The variables specified in a private list are private to each thread. When an assignment to a private
variable occurs, each thread assigns it to its local copy of the variable. Variables declared private in a
parallel region are undefined upon entry to the parallel region. If the first use of a private variable within the
parallel region is in a right-hand-side expression, the results of the expression will be undefined (i.e. this is
probably a coding error, see in Section 2.3.5.2 how the firstprivate clause can solve this problem).
Likewise, variables declared private in a parallel region are undefined when serial execution resumes at the
end of the parallel region. In this case the lastprivate clause can solve this problem.
Let us consider the following example :

# pragma omp p a r a l l e l f o r s h a r e d ( a , b , c , n ) p r i v a t e ( temp , i )
f o r ( i =0 ; i <n ; i ++){
temp = a [ i ] / b [ i ] ;
c [ i ] = temp + cos ( temp ) ;
}
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The defined variables a, b, c and n are shared among all threads, while temp and i are private
variables locally used by each thread.

2.3.5.2 Advanced data scoping clauses

Advanced data scoping clauses can be used to more accurately control the sharing behavior of variables
within a parallel construct. These include firstprivate, lastprivate, reduction, threadprivate,
and copyin clauses.
The firstprivate clause:
Considering a variable var, a firstprivate(var) would initialize var with the value the variable had before
entering the parallel construct.
In the following example, without using the firstprivate clause, two different runs will give two dif-
ferent results for all threads. This clearly demonstrates that the value of i is random (not initialized) inside
the parallel region and that any modifications to it are not visible after the parallel region (i.e. the variable
keeps its value from before entering the region). If i is made firstprivate, then it is initialized with
the value that it has before the parallel region.

# i n c l u d e < s t d i o . h>
# i n c l u d e <omp . h>
i n t main ( vo id )
{ i n t i = 1 0 ;

# pragma omp p a r a l l e l p r i v a t e ( i )
{ p r i n t f ( " t h r e a d %d : i = %d \ n " , omp_get_thread_num ( ) , i ) ;

i = 1000 + omp_get_thread_num ( ) ;
}

p r i n t f ( " i = %d \ n " , i ) ;
r e t u r n 0 ;

}

The lastprivate clause: Considering a variable var, a lastprivate(var) clause will copy the last
thread loop (stack) value of var to the (global) var storage when the parallel loop is completed. In other
words, the thread that executes the last iteration on section, updates the clause of the variable. In the
example provided below the lastprivate clause allows to transfer the i value from the parallel region
to the outside context.

pragma omp p a r a l l e l
{ # pragma omp f o r l a s t p r i v a t e ( i )

f o r ( i =0 ; i <n−1; i ++)
a [ i ] = b [ i ] + b [ i + 1 ] ;

}
a [ i ]= b [ i ] ;

The reduction clause:
A variable that accumulates the result is called a reduction variable. In parallel loops reduction
operators and variables must be declared. Here is an example:

f l o a t sum , prod ;
sum = 0 ; prod = 1 ;
# pragma omp p a r a l l e l f o r r e d u c t i o n ( + : sum ) r e d u c t i o n ( * : prod )
f o r ( i =0 ; i <n ; i ++){
sum = sum + a [ i ] ;
p rod = prod * a [ i ] ;
}
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Each thread has a private sum and prod, initialized to operators identity.

Copyin clause:
The most common way to initialize threadprivate variables on entry to a parallel region is by using
the copyin clause. This copies the value in the master thread’s copy of the thread private variable to the
copies in all the other threads in the team. In the following example the value of the variable i within the
parallel area will be 1.

i n t i ;
# pragma omp t h r e a d p r i v a t e ( i )
i =1 ;
# pragma omp p a r a l l e l cop y i n ( i )
{
p r i n t f ( " P a r a l l e l v a l u e%i \ n " , i ) ;
}

2.3.6 Critical sections

Synchronization methods are usually used to impose order constraints as well as to protect access to
shared data. To address these two issues implicit barriers and non-implicit barriers are supported by
OpenMP.

2.3.6.1 Implicit and non-implicit barriers

By default, there is an implicit barrier at the end of a parallel region. When all threads have completed
the execution of the parallel region, a single thread continues the statements that follow. This implicit barrier
can be removed with the nowait clause. Depending upon situations, this behaviour may be beneficial,
because it can make full use of available resources and reduce the amount of time that threads are idle.
The barrier directive
This directive synchronizes all the threads in a team. When encountered, each thread waits until all the
others of that team have reached this point.
An example concerning implicit and non-implicit barriers is given in Table 2.1.

2.3.6.2 The critical directive

The critical directive restricts access to the enclosed code to only one thread at a time. A thread
waits at the beginning of a critical region until no other thread is executing the critical region. In Figure 2.6,
a critical directive restricts access to the enclosed code to only one thread at a time. When a thread enters a
critical section, it is guaranteed to see all modifications made by all the threads that had entered the critical
section earlier. Mutual Exclusion is a property of concurrency control, which is instituted for the purpose of
preventing race conditions; it is the requirement that one thread of execution never enters its critical section
at the same time that another concurrent thread of execution enters its own critical section.

i n t x =0;
# pragma omp p a r a l l e l
# pragma omp c r i t i c a l
{

x=x +1;
}
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Table 2.1 – OpenMP synchronization barriers

Code

# pragma omp p a r a l l e l s h a r e d (A, B , C) p r i v a t e ( i d )
{
i d =omp_get_thread_num ( ) ;
A[ i d ] = f u n c t 1 ( i d ) ;
# pragma omp b a r r i e r

/ / Each t h r e a d w a i t s u n t i l a l l t h r e a d s a r r i v e
# pragma omp f o r

f o r ( i =0 ; i <N; i ++){
C[ i ]= f u n c t 3 ( i ,A ) ;
} / / I m p l i c i t b a r r i e r

# pragma omp f o r now a i t
f o r ( i =0 ; i <N; i ++){

B[ i ]= f u n c t 2 (C , i ) ;
} / / No i m p l i c i t b a r r i e r due t o now a i t

A[ i d ] = f u n c t 4 ( i d ) ;
}

2.3.7 Clauses/directives summary
In Table 2.2 we reported a summary for Clauses/Directives in OpenMP. It summarizes which clauses

are accepted by which OpenMP directives. For example the private clause works with all OpenMP
directives, while the NOWAIT clause works only with DO/FOR and SECTIONS directives.

2.3.8 OpenMP problems
Users choosing to implement a parallel operation with OpenMP must really understand how threading

works. In particular, the question of how global and local memory spaces are handled by the language is
difficult for unexperienced people to understand. More generally, OpenMP is difficult to program, deploy,
modify and maintain [111].
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Figure 2.6 – A critical region over time
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Table 2.2 – Clauses/Directives Summary

Clause Directive

PARALLEL DO/for SECTIONS PARALLEL
DO/for

PARALLEL
SECTIONS

IF X X
PRIVATE X X X X X
SHARED X X X X
DEFAULT X X X

FIRSTPRIVATE X X X X X
LASTPRIVATE X X X X
REDUCTION X X X X X

COPYIN X X X
NOWAIT X X

Table 2.3 – Pthread Types

Type Description
pthread_t Thread ID
pthread_attr_t Thread attributes
pthread_cond_t Condition Variable
pthread_condattr_t Condition Variable attributes
pthread_barrier_t Thread barrier
pthread_barrierattr_t Thread barrier attributes
pthread_mutex_t Mutex (Mutual exclusion) variable
pthread_mutexattr_t Mutex attributes
PTHREAD_MUTEX_INITIALIZER Constant used to initialize a mutex
PTHREAD_COND_INITIALIZER Constant used to initialize a condition variable

2.4 Pthread-based multi-threaded programming
In this section, we present the details of using the POSIX thread library that allows one to spawn a new

concurrent process flow.

2.4.1 Pthread data types
The header file <pthread.h> must be included into a Pthread-based program. It contains the data

types, the interface definitions and the macros of the Pthread library. The data types and functions of the
Pthread are defined according to the following naming conventions:
pthread[_object]_<operation>()
where object represents the type of object (if it is not a thread) and operation, the operation performed
in the object. Pthread main data types are outlined in Table 2.3. They will be described in more detail
subsequently.

2.4.2 Creating Pthread
The main() function of a Pthread program is executed by a single, main thread. All other threads

must be explicitly created by the main thread by calling the pthread_create() function which creates
a new thread.

i n t p t h r e a d _ c r e a t e ( p t h r e a d _ t * r e s t r i c t t h r e a d ,
c o n s t p t h r e a d _ a t t r _ t * r e s t r i c t a t t r ,
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Figure 2.7 – Pthread creation and joining

vo id *(* s t a r t _ r o u t i n e ) ( vo id * ) , vo id * r e s t r i c t a r g ) ;

This function can be called any number of times from anywhere within the code. In the following instance
we provide the description of the function arguments:
thread: A pointer to an object of type pthread_t which is also a unique identifier for the new thread
returned by the subroutine;
attr: A pointer to a previously allocated and initialized attribute object of type pthread_attr_t that
may be used to set more desired thread attributes. NULL can be passed as a default value ;
start_routine(): The function that the using thread will execute once it is created;
arg: A single argument that may be passed to start_routine(). It must be passed by reference as a pointer
cast of type void. NULL may be used if no argument is to be passed. In Table 2.4 we provide a simple
pthread example. First, from the main() function, the pthread_create() function starts a new thread
in the calling process. The new thread starts its execution by invoking threadFunc(); arg is passed
as the sole argument of threadFunc(). pthread_join() function waits for the thread specified
by an idthread to terminate. If that thread has already terminated, then pthread_join() returns
immediately.

2.4.3 Waiting for Pthreads to finish
Waiting for threads to finish is performed by calling the pthread_join() function. Joining ensures

that when the program exits, all threads have completed their execution. This is quite similar to the wait()
call used for child processes. The definition of this function is:

i n t p t h r e a d _ j o i n ( p t h r e a d _ t id , vo id ** s t a t u s ) ;

where id is the id of the master thread wishes to join. status will hold the value returned by the thread wait-
ing it. pthread_join() subroutine blocks the calling thread until the specified thread id terminates.
Figure 2.7 shows how the pthread creation and joining process are organized.

2.4.4 Pthreads mutexes
Mutex is an abbreviation for "mutual exclusion". Mutex variables are one of the important ways of

implementing thread synchronization to ensure the coherence of shared data when concurrent thread read-
/write operations occur. A mutex variable works like a "lock" protecting access to a shared data resource.
The main concept of a mutex as used in Pthreads is that only one thread can own (i.e lock) a mutex variable
at any specified time. Thus, even if several threads try to lock a mutex, only one thread will be successful.
No other thread can own a mutex until the owning thread unlocks that mutex. Threads must "take turns"
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Table 2.4 – Pthread simple code example

Simple example

/ * Simple P t h r e a d s example . * /
1 . # i n c l u d e < s t d l i b . h>
2 . # i n c l u d e < s t d i o . h>
3 . # i n c l u d e < p t h r e a d . h>
4 . vo id * t h r e a d F u n c ( vo id * a r g )
5 . {
6 . i n t i , n ;
7 . / * Get t h e v a l u e o f t h e argument p a s s e d i n . * /
8 . n = ( i n t ) a r g ;
9 . f o r ( i = 0 ; i < n ; i ++)
1 0 . p r i n t f ( " Loop %d : Mohammed ! \ n " , i + 1 ) ;
1 1 . p t h r e a d _ e x i t (NULL) ;
1 2 . }
1 3 . i n t main ( i n t a rgc , c h a r a rgv [ ] )
1 4 . {
1 5 . t h r e a d _ t * i d T h r e a d ;
1 6 . p u t s ( " L e t s c r e a t e a t h r e a d ! " ) ;
1 7 . p t h r e a d _ c r e a t e (& idThread , NULL, th r eadFun c , ( vo id * ) 5 ) ;
1 8 . p t h r e a d _ j o i n ( idThread , NULL ) ;
1 9 . r e t u r n 0 ;
2 0 . }
Th i s w i l l p roduce t h e f o l l o w i n g o u t p u t :

L e t s c r e a t e a t h r e a d !
Loop 1 : Mohammed !
Loop 2 : Mohammed !
Loop 3 : Mohammed !
Loop 4 : Mohammed !
Loop 5 : Mohammed !

accessing the protected data. Critical sections are parts of the code where threads access one or several
shared resources. If two or more threads try to access the same resource or set of resources, they must
therefore be treated atomically. Any other threads attempting to execute a critical section will be blocked
until the lock on that critical section is released. Mutexes are the simplest and most primitive way of delim-
iting critical sections so that threads behave nicely to one another and Pthreads supply a family of calls for
using them. The two most important calls are pthread_mutex_lock(), that locks a mutex, and the
cryptically titled pthread_mutex_unlock().

2.4.5 Pthread conditions variables

While a mutex allows threads to synchronize by controlling their access to data, a condition variable
lets threads synchronize on the value of a data. Cooperating threads wait until the data reaches a particular
state or until a certain event occurs. Condition variables provide a kind of system notification for threads.
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Table 2.5 – Pthread Mutex and conditional variable code example

1 . # i n c l u d e < s t d i o . h>
2 . # i n c l u d e < p t h r e a d . h>
3 . # i n c l u d e < s t d l i b . h>
4 . p t h r e a d _ m u t e x _ t f i l l _ m u t e x ;
5 . i n t a r r [ 1 0 ] ;
6 . i n t f l a g =0;
7 . p t h r e a d _ c o n d _ t cond_var =PTHREAD_COND_INITIALIZER ;

8 . vo id * f i l l ( ) {
9 . i n t i =0 ;
1 0 . p r i n t f ( " \ n E n t e r v a l u e s \ n " ) ;
1 1 . f o r ( i =0 ; i <4 ; i ++) {
1 2 . s c a n f ("%d" ,& a r r [ i ] ) ;
13 }
1 4 . p t h r e a d _ m u t e x _ l o c k (& f i l l _ m u t e x ) ;
1 5 . p t h r e a d _ c o n d _ s i g n a l (& cond_var ) ;
1 6 . p t h r e a d _ m u t e x _ u n l o c k (& f i l l _ m u t e x ) ;
1 7 . p t h r e a d _ e x i t (NULL ) ;
1 8 . }

1 9 . vo id * r e a d ( ) {
2 0 . i n t i =0 ;
2 1 . p t h r e a d _ m u t e x _ l o c k (& f i l l _ m u t e x ) ;
2 2 . p t h r e a d _ c o n d _ w a i t (& cond_var ,& f i l l _ m u t e x ) ;
2 3 . p t h r e a d _ m u t e x _ u n l o c k (& f i l l _ m u t e x ) ;
2 4 . p r i n t f ( " Va lues f i l l e d i n a r r a y a r e " ) ;
2 5 . f o r ( i =0 ; i <4 ; i ++) {
2 6 . p r i n t f ( " \ n %d \ n " , a r r [ i ] ) ;
2 7 . }
2 8 . p t h r e a d _ e x i t (NULL ) ;
2 9 . }

3 0 . main ( ) {

3 1 . p t h r e a d _ t t h r e a d _ i d , t h r e a d _ i d 1 ;
3 2 . p t h r e a d _ a t t r _ t a t t r ;
3 3 . i n t r e t ;
3 4 . vo id * r e s ;
3 5 . r e t = p t h r e a d _ c r e a t e (& t h r e a d _ i d , NULL,& f i l l ,NULL ) ;
3 6 . r e t = p t h r e a d _ c r e a t e (& t h r e a d _ i d 1 , NULL,& read ,NULL ) ;
3 7 . p r i n t f ( " \ n C r e a t e d t h r e a d s " ) ;
3 8 . p t h r e a d _ j o i n ( t h r e a d _ i d ,& r e s ) ;
3 9 . p t h r e a d _ j o i n ( t h r e a d _ i d 1 ,& r e s ) ;
4 0 . }
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Table 2.6 – Pthread barrier functions

Function Description

pthread_barrierattr_init() Initializes a barrier’s attributes object

pthread_barrier_init() Initializes a barrier

pthread_barrier_destroy() Destroys a barrier

pthread_barrier_wait() Synchronizes participating threads at the barrier

As mentioned earlier, if Pthreads did not offer condition variables, but only provided mutexes, the threads
would need to poll the variable to determine when it reached a certain state. A pthread condition variable
has a data type of pthread_cond_t. One can initialize it statically as it is done in the example provided
in Table 2.5, or can initialize it dynamically by calling pthread_cond_init(), which is defined as
follows:

i n t p t h r e a d _ c o n d _ i n i t ( p t h r e a d _ c o n d _ t *cv ,
c o n s t p t h r e a d _ c o n d a t t r _ t * c a t t r ) ;

After the condition variable initialization, a thread can use it in one of the following two ways: the thread can
either wait on the condition variable or can call pthread_cond_wait() or pthread_cond_timedwait()
functions. Both of these functions suspend the caller until another thread signals on the condition variable.
In addition, the pthread_cond_timedwait() call lets you specify a time-out argument. If the con-
dition is not signaled in a specified time, the thread is released from its waiting state. The example provided
in Table 2.5 illustrates the use of both the mutex and the condition variables. We create two threads:
- the first one named "fill" is in charge of filling values into the array "arr",
- the second one named "read" whose role is to read the values of the array.
Both threads lock the mutex using pthread_mutex_lock() function. The "fill" thread fills the ar-
ray with 4 values and then locks the mutex using pthread_mutex_lock(). Once obtained, it "sig-
nals" the condition variable. The "read" thread on the other hand tries first to access the lock. The
pthread_cond_wait() function then atomically releases the mutex and causes the calling thread to
block on the condition variable cond_var and go into wait state, thus preventing any potential blocking. In-
terblocking can’t occur because the lock is automatically unlocked by the system when pthread_cond_wait()
is called and locked again when returning from the function.

2.4.6 Pthread barriers

A barrier is a mechanism of synchronization that forces several threads to wait at a specific point of the
code until all of them have finished.

# i n c l u d e < p t h r e a d . h>
i n t p t h r e a d _ b a r r i e r _ i n i t ( p t h r e a d _ b a r r i e r _ t * b a r r i e r ,

c o n s t p t h r e a d _ b a r r i e r a t t r _ t * a t t r , u n s i g n e d i n t c o u n t ) ;

where a barrier is a pointer to an object of type pthread_barrier_t, its attributes being determined
by attr. The count parameter holds the number of threads that must be synchronized, each thread having
to perform a call to the pthread_barrier_wait() function. The main thread creates the barrier
object and initializes it with a count representing the total number of threads that must be synchronized to
the barrier before the threads may carry on. The pthread barrier functions are summarized in Table 2.6.

In the example shown in Table 2.7, we used a count of 3: one for the main() thread, one for
thread1(), and one for thread2(). To simplify this example, we have the threads sleep to cause
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a delay, as if computations were occurring. To synchronize, the main thread simply blocks itself on the
barrier, knowing that the barrier will unblock only after the two worker threads have joined it as well.

2.5 Generating random numbers
Generating random numbers is essential in many cryptographic applications like key generation, proto-

cols, nonce as well as in the Internet; for example, for choosing TCP sequence numbers. For these issues,
we need generators which are able to construct large amounts of secure random numbers [112], [113]. To
this end, True Random Number Generators (TRNGs) which extract randomness from physical processes
are usually used. The sequences generated by TRNGs cannot be reproduced. However, generating random
numbers by this way is time-consuming and expensive. Another way to generate random numbers is to use
deterministic random number generators in which the seed is reseeded many times during the generation
of the sequence. In this section, we will describe the Linux PRNG that we used in our work. The Entropy
source of the proposed RNG comes from Linux PRNG [114]. The process of entropy extraction includes
three steps: 1) updating the pools contents, 2) extracting random bits to be output, and 3) decrementing
the entropy counter of the pool. This process involves hashing the pool contents using Secure Hashing
Algorithm (SHA-1), and adding the results to the pool [114]. Within the kernel, the interface for receiving
random values from the PRNG is the function get_random_bytes(*buf, nbytes) which relies
on two device drivers named /dev/random and /dev/urandom. /dev/random will block after the
entropy pool is exhausted. It will remain blocked until additional data has been collected from the sources
of entropy that are available. This can slow down random data generation. /dev/urandomwill not block.
Instead it will reuse the internal pool to produce more pseudo-random bits. This step will increase the uni-
formity and the randomness of the generated sequence. As an illustration, we give below a sample of code
that allows to exploit the /dev/urandom entropy source. This device is a special file that can be read just
like any file:

i n t b y t e _ c o u n t = 6 4 ;
c h a r d a t a [ 6 4 ] ;
FILE * fp ;
fp = fopen ( " / dev / urandom " , " r " ) ;
f r e a d (& da ta , 1 , b y t e _ c o u n t , fp ) ;
f c l o s e ( fp ) ;

The Linux RNG internal architecture is depicted in Figure 2.8. Random bits are extracted from one of the
three pools: they are extracted from the urandom pool when the user uses /dev/urandom and when
the kernel calls getchar_random_byte(). The secondary pool will be accessed when the user
handles /dev/random. Finally the primary pool is accessed when one of the two other pools does not
have enough entropy and needs re-filling.

2.6 Software security analysis
Software security analysis is another unavoidable factor to ensure the quality at the code source level

and to eliminate every security gap [115]. Since it is still possible to read data out of memory even if the
application no longer has pointers to it, it is necessary to incorporate data security within the source code.
In cryptographic applications, secret information (e.g., encryption keys) must be kept in memory for the
minimum amount of time possible and should be written over, not just released, when no longer needed.
One first step consists in wiping such sensitive data from memory once it is no longer needed in order to
prevent any malicious attacks. The idea is to zero-fill buffers which contained sensitive information. In
practice, we used the following instructions to scrub (i.e., zero) a buffer and guarantee that the compiler
will not optimize it away:
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Table 2.7 – Pthread barriers code example

# i n c l u d e < s t d i o . h>
# i n c l u d e < t ime . h>
# i n c l u d e < p t h r e a d . h>
p t h r e a d _ b a r r i e r _ t b a r r i e r ; / / b a r r i e r s y n c h r o n i z a t i o n o b j e c t
vo id * t h r e a d 1 ( vo id * n o t _ u s e d )
{

t i m e _ t now ;
t ime (&now ) ;
p r i n t f ( " t h r e a d 1 s t a r t i n g a t %s " , c t i m e (&now ) ) ;
/ / do t h e c o m p u t a t i o n
/ / l e t ’ s j u s t do a s l e e p h e r e . . .
s l e e p ( 2 0 ) ;
p t h r e a d _ b a r r i e r _ w a i t (& b a r r i e r ) ;
/ / a f t e r t h i s p o i n t , a l l t h r e e t h r e a d s have comple t ed .
t ime (&now ) ;
p r i n t f ( " b a r r i e r i n t h r e a d 1 ( ) done a t %s " , c t i m e (&now ) ) ;

}
vo id * t h r e a d 2 ( vo id * n o t _ u s e d )
{ t i m e _ t now ;

t ime (&now ) ;
p r i n t f ( " t h r e a d 2 s t a r t i n g a t %s " , c t i m e (&now ) ) ;
/ / do t h e c o m p u t a t i o n
/ / l e t ’ s j u s t do a s l e e p h e r e . . .
s l e e p ( 4 0 ) ;
p t h r e a d _ b a r r i e r _ w a i t (& b a r r i e r ) ;
t ime (&now ) ;
p r i n t f ( " b a r r i e r i n t h r e a d 2 ( ) done a t %s " , c t i m e (&now ) ) ;

}
i n t main ( ) / / i g n o r e a rgumen t s
{ t i m e _ t now ;

t h r e a d t * i d t h r e a d 1 , i d t h r e a d 2 ;
/ / c r e a t e a b a r r i e r o b j e c t w i th a c o u n t o f 3
p t h r e a d _ b a r r i e r _ i n i t (& b a r r i e r , NULL, 3 ) ;
p t h r e a d _ c r e a t e (& i d t h r e a d 1 , NULL, t h r e a d 1 , NULL ) ;
p t h r e a d _ c r e a t e (& i d t h r e a d 2 , NULL, t h r e a d 2 , NULL ) ;
t ime (&now ) ;
p r i n t f ( " main ( ) w a i t i n g f o r b a r r i e r a t %s " , c t i m e (&now ) ) ;
p t h r e a d _ b a r r i e r _ w a i t (& b a r r i e r ) ;
/ / a f t e r t h i s p o i n t , a l l t h r e e t h r e a d s have comple t ed .
t ime (&now ) ;
p r i n t f ( " b a r r i e r i n main ( ) done a t %s " , c t i m e (&now ) ) ;
p t h r e a d _ e x i t ( NULL ) ;
r e t u r n ( EXIT_SUCCESS ) ;

}
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Figure 2.8 – Linux RNG

s t a t i c vo id * (* c o n s t v o l a t i l e memse t_p t r ) ( vo id * , i n t , s i z e _ t ) = memset ;
s t a t i c vo id secure_memzero ( vo id * p , s i z e _ t l e n )
{

( memse t_p t r ) ( p , 0 , l e n ) ;
}

/ * Zero s e n s i t i v e i n f o r m a t i o n . * /
secure_memzero ( key , s i z e o f ( key ) ) ;

The secure_memzero() function relies on a function pointer memset_ptr that points itself to
the memset() function. It exploits the key and the key size and will put zero value on the allocated
memory related to the key by invoking memset(). The function memset() is used to write a specific
value in a buffer that was allocated before. We used this function to write a zero value in the buffer. Some
compilers optimize away the call to memset() function. To work around this, we declared memset_ptr
as a volatile pointer. Since a volatile pointer can be manipulated outside the scope of the application, the
code is not optimized by the compiler, thus keeping the program unchanged. Furthermore, the data in main
memory may leak to the disk through virtual memory, thus representing another source of the most serious
leaks (leaks to physical mediums). One solution, which is easy enough to apply, is to deactivate the swap
space altogether, thus preventing data from being written to the page file by locking it in memory. In our
implementation, we used the mlock() function that locks pages in the address range starting at address
and continuing for length bytes. All pages that contain a part of the specified address range are guaranteed
to be resident in main memory when the call returns successfully. Thereafter, the pages are guaranteed to
stay in main memory until later unlocked.
In order to validate the correctness of our solution, we conducted a security code review using several static
and dynamic techniques: Clang, Gdb, Valgrind, DRD, Callgrind and Leak-analysis
tools.

2.6.1 Static software security tools
Static analysis is a software analysis performed without actually executing, or running, the software.

Static analysis tools look at applications in a non-runtime environment. In our work we applied the follow-
ing static software security tools to check vulnerability and threats.
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Clang Static Analyzer:

The Clang Static Analyzer is a source code analysis tool that finds threats in C, C++, and Objective-
C programs. Currently it can be run as a standalone tool invoked from the command line. The analyzer is
open-source and is part of the Clang project. Like the rest of Clang, the analyzer is implemented as a C++
library that can be used by other tools and applications. The Clang Static Analyzer runs in a reasonable
amount of time by both bounding the amount of checking work it will do as well as using "intelligent"
algorithms to reduce the amount of work it must do in order to find bugs [116, 117].

Cppcheck:

Cppcheck is a C and C++ programming languages static code analysis tool [118]. It has been designed
and developed by Daniel Marjamäki. Cppcheck is a free software available under the GNU General Pub-
lic License. Cppcheck supports a wide variety of static checks that may not be covered by the compiler
itself. These checks are static analysis checks that can be performed at a source code level. The program is
directed towards static analysis checks that are strict, rather than heuristic in nature.

Coverity:

Coverity is a trademark of software development products from Synopsys [119], consisting primar-
ily of static code analysis and dynamic code analysis tools. The tools enable the developer to find threats
and security vulnerabilities in source code written in C, C++, Java, and JavaScript. Coverity was an
organization founded in the Computer Systems Laboratory at Stanford University in Palo Alto, California
and with headquarters in San Francisco it is now owned by Synopsys. In June 2008, Coverity acquired
Solidware Technologies. In February 2014, Coverity announced a convention to be gained by Synopsys, an
electronic design automation company. The tool was used to examine over 150 open source applications for
bugs; 6000 bugs found by the scan were fixed across 53 projects. This was prior to the launch of the current
"Coverity Scan" service. Coverity helps decrease risk and lower overall project cost by identifying criti-
cal quality threats and potential security vulnerabilities during development, with accurate and actionable
treatment guidance, based on patented techniques and a decade of research and development and analysis
of over 10 billion lines of proprietary and open source code. One disadvantage that it is not open source.

Frama-C:

Frama-C stands for Framework for Modular Analysis of C programs. Frama-C is a set of in-
teroperable program analyzers for C programs. Frama-C has been developed by Commissariat à l’Énergie
Atomique et aux Énergies Alternatives (CEA-List) [120], and Inria. Frama-C, as a static analyzer, inspects
programs without executing them. Frama-C is Open Source software. It works on Windows and Unix
(Linux, Mac OS X,. . . ), prove formal properties on the code. Using specifications written in ANSI/ISO C
Specification Language enables it to ensure properties of the code for any possible behaviour. Frama-C is
an extensible and collaborative platform dedicated to source-code analysis.

2.6.2 Dynamic software security tools

Dynamic analysis is a software analysis performed at run time. In the following sections we review
some of the dynamic software security tools that we applied in all our source code.
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Valgrind

Valgrind is a framework for building dynamic analysis tools [121]. There are Valgrind tools that can
automatically detect many memory management and threading bugs, and profile the programs in detail.
Valgrind can also be used to build new tools. The Valgrind distribution currently includes six production-
quality tools: a memory error detector, two thread error detectors, a cache and branch-prediction profiler, a
call-graph generating cache and branch-prediction profiler, and a heap profiler. It also includes three exper-
imental tools: a stack/global array overrun detector, a second heap profiler that examines how heap blocks
are used, and a SimPoint basic block vector generator.

Callgrind

Callgrind is a profiling tool that records the call history among functions in a program’s run as a call-
graph [122]. By default, the collected data consists of the number of instructions executed, their relationship
to source lines, the caller/callee relationship between functions, and the numbers of such calls. Optionally,
cache simulation and/or branch prediction (similar to Cachegrind) can produce further information about
the runtime behaviour of an application. The profile data is written out to a file at program termination. It
collects flat profile data: event counts (data reads, cache misses, etc.) are attributed directly to the function
they occurred in. This cost attribution mechanism is called self or exclusive attribution. Callgrind extends
this functionality by propagating costs across function call boundaries. For presentation of the data, and
interactive control of the profiling, two command line tools are provided:

1. callgrind_annotate: This command reads in the profile data, and prints assorted lists of
functions, optionally with source annotation.

2. callgrind_control: This command enables you to interactively observe and control the sta-
tus of a program currently running under Callgrind’s control, without stopping the program. You can
get statistical information as well as the current stack trace, and you can request zeroing of counters
or dumping of profile data.

For graphical visualization of the data, KCachegrind, must be used. It is a KDE/Qt based GUI that
makes it easy to navigate the large amount of data that Callgrind produces.

DRD: A thread error detector

DRD is a Valgrind tool for finding errors in multithreaded C and C++ programs [123]. It is the tool
specified for any program that uses the POSIX threading primitives or that uses threading concepts built on
top of the POSIX threading primitives. It can detect data races when one or more threads access the same
memory location without sufficient locking. Most but not all data races are programming errors and are the
cause of subtle and hard-to-find bugs. Also DRD can detect Deadlock that occurs when two or more threads
wait for each other indefinitely. DRD supports any combination of multi-threaded programming paradigms
as long as the implementation of these paradigms is based on the POSIX threads primitives. However, DRD
does not support programs that use e.g. Linux’ futexes directly. Attempts to analyze such programs with
DRD will cause DRD to report many false positives.

2.7 Conclusions

In this chapter, we made a review for some parallel programming methods that are used in our ap-
plications. Both the basic fundamentals of OpenMP and the Pthread libraries and their usage have been
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presented. OpenMP directives and clauses have been summarized. In addition the pthread-based multi-
threaded programming has been detailed. Furthermore, a Linux pseudo-random generator was also de-
scribed in this chapter. This model can be used to generate a random numbers by integrating /dev/urandom
in the system. This step will increase the uniformity and the randomness of the generated sequence. In this
chapter we pointed out how to protect the sensitive information at the code source level and to eliminate
every security threats, sensitive information must be kept in memory for the minimum amount of time pos-
sible and should be written over, not just released, when no longer needed. One solution relies on wiping
such sensitive data from memory once it is no longer needed in order to prevent any malicious attacks.
Finally, dynamic and static software security analysis tools were presented. Static analysis is a software
analysis performed without actually executing, or running the system. In this chapter we demonstrate a set
of static analysis tools like Clang Static Analyzer, Cppcheck, Coverity. In other hand we also described a
set of dynamic analysis tools (performed with system running) used in our thesis to test our code (Valgrind,
Callgrind and DRD). In the next chapter, we will present the first contribution of our thesis work.
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3
First contribution: Design and Efficient
Implementation of Chaos-based Generators
and a Stream Cipher

3.1 Introduction

Cryptography was used in the past to keep military information and diplomatic correspondence se-
cure and to protect national security. In recent times, the range of cryptography applications has been
widely expanded, following the development of new communication means. Cryptography is used to en-
sure that the contents of a message are confidentially transmitted and will not be altered. Chaos is one
interesting field of research dealing with nonlinear, deterministic, and dynamic systems. It is applied to
many different domains such as physics, robotics, biology, finance and encryption. The most important
chaos properties are the high dependency on initial conditions and parameter variation, ergodicity and the
random-like behavior. These properties enticed researchers into developing chaotic secure communication
systems [13, 39, 124, 125, 126, 127, 128, 129, 130]. Under certain conditions, chaos can be generated by
any non-linear dynamic system [131]. For public channels including network communication and for com-
puter communication, most data transactions (valuable information) need to be protected from malicious
attacks and threats [132, 133, 134]. A block symmetric cipher is one of the classical encryption techniques
which is widely used in the literature. The Advanced Encryption Standard (AES) is one of the most famous
symmetric encryption methods for block ciphers. The stream cipher is used to secure useful information
that must be transmitted continuously over the network communication, for example. Generally, stream
ciphers are more efficient than block ciphers in two situations: 1) in software applications requiring a very
high encryption or decryption rate, and 2) in hardware applications where physical resources (e.g., chip
area, power, etc) are restricted. Handling a stream cipher encryption with block ciphers is possible by using
counter and output feedback modes (CTR, OFB). Because the AES is very secure and widely adopted, its
two modes, namely CTR and OFB are used as stream ciphers. However, to benefit from both advantages
of stream ciphers compared to block ciphers, several stream cipher designs such as RC4 and eSTREAM
algorithms have been produced. RC4 is one of the widely known stream ciphers, and its efficient hardware
implementation was performed by Gupta et al. [135]. However, RC4 has now been broken. The eSTREAM
project was a multi-year effort, running from 2004 to 2008, to promote the design of efficient and compact
stream ciphers suitable for the widespread adoption of eSTREAM [46]. Nevertheless, until now most of
the eSTREAM ciphers are still not definitely secure [136]. Chaos-based stream ciphers are used to enhance

67
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the security issue [137].
In this chapter we design and implement in an efficient and secure manner a chaos-based generator. The
proposed chaotic system uses two non-linear recursive filters, a technique of disturbance and a chaotic mul-
tiplexing. The non-linearity is achieved by using chaotic maps. Then, based on the previous chaotic gen-
erator, we implement and test two applications. The first application concerns the generation of a Random
Number Generator (RNG) using a Pseudo-Chaotic Number Generator (PCNG). The second application is
the realization of a chaos-based stream cipher. The remainder of the chapter is structured as follows. In
the next section, the description of the proposed chaotic generator is detailed. In section 3.3 the parallel
implementation technique is described. In section 3.4, the first application is presented and analysed. In
section 3.5 we present the chaos based stream cipher and we set out its performance in terms of compu-
tation performance and security using known cryptographic and statistical attacks. Software security tools
are handled in section 3.6. Finally, in section 3.7 the conclusions are presented.

3.2 Proposed chaotic generator
The architecture of the proposed chaotic generator is composed of several black-boxes, as presented

in Figure 3.1 [138]. The detailed description of the internal state and the output functions are given in
Figure 3.2 and 3.3. The secret key K, the initial vector Nonce IVg and Parameters are the inputs
of the chaotic generator. In case of parallel implementation, from these inputs, the IV-setup computes
another three IVs values and the Key-setup creates another three keys. Then, four IVs and four keys will
be used by four threads in the system. Because chaos is sensitive to any small changes in the secret key, the
creation of each new key in the Key-setup entity is achieved by the circular shift rotation of the three-bit
value of K1_s,K1_p parameters (see Equation 3.5). Also, the creation of each new IV in the IV-setup
entity is achieved by the circular shift rotation of the three bit value of U_s, U_p (see Equation 3.6). Before
the execution of the program is completed, a new IV value is generated and stored in the Non-Volatile
Memory box. The generation of this new value comes from /dev/urandom Linux PRNG [114]. The
internal state, which contains the main cryptographic complexity of the system, is formed by two recursive
filters of order three (delay 1, 2 and 3) [26]. The first recursive cell contains a discrete Skew tent map
(STmap) and the second one contains a discrete piecewise linear chaotic map (PWLC). These maps are
used as non-linear functions. We give below the outputs of the recursive cell containing the STmap and of

Figure 3.1 – Architecture of the proposed generator with internal feedback mode
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Figure 3.2 – Detailed description of the internal state and the output function
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Figure 3.3 – Detailed description of the internal state and the output function using Xor.

the recursive cell containing the PWLC map respectively. Hence the output equation of the recursive cell
STmap is:

X_s = STmap{F1[n− 1], P1} ⊕Q1 (3.1)

with

F1[n− 1] = mod[U_s+X_s(0)
3∑
i=1

[K(i)_s×X(n− i)_s], 2N ] (3.2)

And the output equation of the recursive cell PWLC is:

X_p = PWLCmap{F2[n− 1], P2} ⊕Q2 (3.3)

with

F2[n− 1] = mod[U_p+X_p(0)
3∑
i=1

[K(i)_p×X(n− i)_p], 2N ] (3.4)
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In the equations above, P1 and P2 are control parameters in the range [1, 2N − 1] and [1, 2N−1− 1] respec-
tively. Q1 and Q2 are perturbing signals produced by the linear feedback shift registers (LFSRs). K1_s,
K2_s, K3_s, K1_p,K2_p,K3_p are the coefficients of the recursive cells in the interval [1; 2N −1 ]. U_s
and U_p, each of 32 bits are deduced from IVg of 64 bits as shown in Equation 3.6.
In parallel implementation we fix the number of threads to four, and each created thread needs to have its
own secret key to generate samples. Thus, we create three others secret keys from the initial one, and then
others initial values from original IV as follows:

K11_s = K1_s
K12_s = Lcir[K11_s, 3]

K13_s = Lcir[K12_s, 3]

K14_s = Lcir[K13_s, 3]

K11_p = K1_p
K12_p = Lcir[K11_p, 3]

K13_p = Lcir[K12_p, 3]

K14_p = Lcir[K13_p, 3]

(3.5)



U_s = lsb(IV )

U1_s = U_s
U2_s = Lcir[U1_s, 3]

U3_s = Lcir[U2_s, 3]

U4_s = Lcir[U3_s, 3]

U_p = msb(IV )

U1_p = U_p
U2_p = Lcir[U1_p, 3]

U3_p = Lcir[U2_p, 3]

U4_p = Lcir[U3_p, 3]

(3.6)

lsb(IV ) is the 32 least significant bits of IV , msb(IV ) is the 32 most significant bits of IV and Lcir[S, r]
performs the r-bits left circular shift on the binary sequence S, as follows in C code:

f o r ( i =1 ; i < n b _ c o r e s ; i ++){
/ / 3 b i t c i r c u l a r s h i f t f o r K_s , K_p , U_s and U_p

s h i f t = K[ i −1 ] [ 0 ] . k_s [ 1 ] >> (32−3) ;
K[ i ] [ 0 ] . k_s [ 1 ] = K[ i −1 ] [ 0 ] . k_s [ 1 ] < <3;
K[ i ] [ 0 ] . k_s [ 1 ] = K[ i ] [ 0 ] . k_s [ 1 ] | s h i f t ;

s h i f t = K[ i −1 ] [ 0 ] . _k_p [ 1 ] >> (32−3) ;
K[ i ] [ 0 ] . k_p [ 1 ] = K[ i −1 ] [ 0 ] . k_p [ 1 ] < <3;
K[ i ] [ 0 ] . k_p [ 1 ] = K[ i ] [ 0 ] . k_p [ 1 ] | s h i f t ;

s h i f t = K[ i −1 ] [ 0 ] . U_s >> (32−3) ;
K[ i ] [ 0 ] . U_s = K[ i−1 ] [ 0 ] . U_s < <3;
K[ i ] [ 0 ] . U_s = K[ i ] [ 0 ] . U_s | s h i f t ;

s h i f t = K[ i −1 ] [ 0 ] . U_p >> (32−3) ;
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K[ i ] [ 0 ] . U_p = K[ i −1 ] [ 0 ] . U_p < <3;
K[ i ] [ 0 ] . U_p = K[ i ] [ 0 ] . U_p | s h i f t ;

}

The equations of the Discrete Skew Tent and Discrete PWLCM maps are respectively given by [23, 90,
139, 140]:
Discrete Skew Tent Map:

Xs[n] =



⌈
2N × Xs[n−1]

P1

⌉
if 0 < Xs[n− 1] < P1

2N − 1 if Xs[n− 1] = P1

⌈
2N × 2N−Xs[n−1]

2N−P1

⌉
if P1 < Xs[n− 1] < 2N

(3.7)

Discrete PWLCM map:

Xp[n] =



⌈
2N × Xp[n−1]

P2

⌉
if 0 < Xp[n− 1] ≤ P2

⌈
2N × Xp[n−1]−P2

2N−1−P2

⌉
if P2 < Xp[n− 1] ≤ 2N−1

⌈
2N × 2N−P2−Xp[n−1]

2N−1−P2

⌉
if 2N−1 < Xp[n− 1] ≤ 2N − P2

⌈
2N × 2N−Xp[n−1]

P2

⌉
if 2N − P2 < Xp[n− 1] ≤ 2N − 1

2N − 1− P2 otherwise

(3.8)

The values produced Xs[n], Xp[n] by the recursive cells in the internal state are entered to the
output function. Then, the output sequence Xg(n) is obtained using a chaotic multiplexing con-
trolled by the chaotic sequence Xth = X1_s(n − 1) ⊕ X1_p(n − 1) and by a threshold Th = 2N−1, as
shown in Figure 3.2, and Equation 3.9, or by xoring X1_s and X1_p as clarified in Figure 3.3 and Equation
3.10.

Xg(n) =

{
X_s(n), if 0 < Xth ≤ Th
X_p(n), otherwise (3.9)

Xg(n) = Xs(n)⊕Xp(n) (3.10)

The primitive polynomials used to generate the perturbing signals Q1 and Q2 are:

G12(x) = x21 + x13 + x5 + x2 + 1 (3.11)

G18(x) = x23 + x12 + x5 + x4 + 1 (3.12)

Notice that any other primitive polynomials (of the same degree) can be used.

Secret key and parameters components

In Tables 3.1 and 3.2 we give the structure of the secret key and the parameters used in our thesis ap-
plications.
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Table 3.1 – Structure of the secret key.

Variable Secret key Description
reg_s Initial value of LFSR used to perturb the skew tent map
reg_p Iinitial value of LFSR used to perturb the PWLC map

P1 Parameter of the skewtent map
P2 Parameter of the PWLC map

X_s(0) Initial value of the skewtent map
X_p(0) Initial value of the PWLC map
X1_s Initial value for the recursive cell with delay=1 using skew tent map
X1_p Initial value for the recursive cell with delay=1 using PWLC map
X2_s Initial value for the recursive cell with delay=2 using skew tent map
X2_p Initial value for the recursive cell with delay=2 using PWLC map
X3_s Initial value for the recursive cell with delay=3 using skew tent map
X3_p Initial value for the recursive cell with delay=3 using PWLC map
K1_s Parameter for the recursive cell with delay=1 using skew tent map
K1_p Parameter for the recursive cell with delay=1 using PWLC map
K2_s Parameter for the recursive cell with delay=2 using skew tent map
K2_p Parameter for the recursive cell with delay=2 using PWLC map
K3_s Parameter for the recursive cell with delay=3 using skew tent map
K3_p Parameter for the recursive cell with delay=3 using PWLC map

tr Transition value to reach the chaotic region; then the first useful generated sample is from the tr+1

Table 3.2 – Structure of parameters.

Variable Parameters Description
N Is the number of bits used as quantization

Delay(1,2,3) Is the delay used in each recursive cell
Delta_s Is the average orbit of the skewtent map without perturbation
Delta_p Is the average orbit of the PWLC map without perturbation

g_s Is the primitive polynomial used as perturbation for skewtent map
g_p Is the primitive polynomial used as perturbation for skewtent map
IV Is the initial vector

Byte conversion

Each sequence produced by the sequential generator is in 32-bit form. A conversion function is that pro-
vided in Algorithm 1 and Figure 3.4a is used to convert this sample to 4-byte. As the parallel chaotic
generator produces 4 sequences 32-bit long in each call, the same conversion function is used to reform
each produced sample to a 4-byte sequence. Figure 3.4b and 3.5 depict the byte conversion scheme and the
storing of samples of different threads in the parallel implemented version.
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Figure 3.4 – Byte conversion.

Figure 3.5 – Storing of samples generated by different threads.

Algorithm 1 Conversion to byte.
for ( s = 1; s < NS; s+ +) do

sequence[s]= generator(s)
byte_sequence[0+s×4] = (sequence[s]>>24) &0xFF .
byte_sequence[1+s×4] = (sequence[s]>>16)&0xFF .
byte_sequence[2+s×4] = (sequence[s]>>8) &0xFF .
byte_sequence[3+s×4] = (sequence[s] &0xFF ).

end for

Note: Y = X >>24 & 0xFF is a bitwise right shift by 24 of X and then takes its least significant byte.
The generator() is a function that used to produce chaotic samples.
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3.3 Parallel implementation
Parallel programming can be implemented using several different software interfaces, or parallel pro-

gramming models. The programming model used in any application depends on the underlying hardware
architecture of the system on which the application is expected to run: shared memory architecture or
distributed memory environment. In Chapter 2 we detailed the parallel programming tools that were
used in this thesis mainly, OpenMP and Pthread. The following subsections handle the usage of these
techniques in implementation of the chaos-based generator.

3.3.1 Parallel implementation of the chaotic generator using OpenMP
As we mentioned in Chapter 2, OpenMP is an API for writing multithreaded applications. It is designed

for multi-processor/core, shared memory machines. It is made of a set of compiler directives, library rou-
tines and environment variables for parallel application programmers. OpenMP provides capability to incre-
mentally parallelize a serial program. Most major platforms have been implemented including Unix/Linux
platforms and Windows. In order to convert the sequential version of the chaos based generator
to a parallel one using the OpenMP, we accomplish parallelism exclusively through the use of the fork-join
model of parallel execution. A master thread creates a team of parallel threads (fork) that simultaneously
execute statements in the parallel region. After executing the statements in the parallel region, team threads
synchronize and terminate (join) but master continues. We start by dividing the generation of key stream
sequences among 4 threads by using the following OpenMP directive:

# pragma omp p a r a l l e l num_th reads ( 4 )
{
/ / G e n e r a t i o n o f Key_st ream s e q u e n c e s
}

This implementation doesn’t achieves any enhancements according to time performance due to a big over-
head incurred by the threads’ work. Thus, we decided to use the pthread programming approach. With
pthreads we can achieve much better parallelism. This need a lot of code rewriting.

3.3.2 Parallel implementation of the chaotic generator using Pthread
Usually, a multi-thread process launches several threads that run concurrently. In our implementation,

we parallelized the sequential version of our chaotic generator using the standard API used for implement-
ing multithreaded application, namely POSIX Threads or pthread [98]. pthread is a library of
functions that programmers can use to implement parallel programs. Unlike MPI, pthread is used to
implement shared-memory parallelism. It is not a programming language (such as C or Java). It is a library
that can be linked with C programs. The source code is compiled with gcc and using the -lpthread op-
tion. In our multithreaded approach, data sequences are partitioned among several threads. Threads execute
the same instructions on different data sets. The number of samples to be processed and the starting point
of the samples’ subset data are different for each thread. The different threads are created and launched via
a call to pthread_create().

i n t p t h r e a d _ c r e a t e ( p t h r e a d _ t * r e s t r i c t t h r e a d ,
c o n s t p t h r e a d _ a t t r _ t * r e s t r i c t a t t r ,
vo id *(* c o m p u t a t i o n ) ( vo id * ) , vo id * r e s t r i c t a r g ) ;

In our case, we create a number of threads equal to the number of cores chosen by the user. The func-
tion pthread_create() takes the thread as a parameter. Each thread will call the computation
function. This function ensures the generation of the samples and the conversion to bytes. Then the com-
puted sequences from threads will be stored in a buffer in a systematic manner to gain a maximum per-
formance. Each sequence from each thread is then stored consecutively as illustrated in Figure 3.5. In the
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main() function, we wait for the termination of all threads by calling the pthread_join() function.
The main() function of Pthread program is executed by a single, main thread. All other threads must
be explicitly created by the main thread by calling the, pthread_create() function which creates a
new thread. Algorithm 2 shows the decomposition of the samples among the threads. Ns is the number of
samples to generate, nb_cores is the number of cores in the system, nbTh is the thread number (Th0, Th1,
Th2 and Th4) and max/min are the sequence indexes.

Algorithm 2 Distribution of the samples among the threads.
input imin.
input imax.
input nb_cores.
input Ns.
remainder_seq = Ns mod nb_cores .
imin = nbTh× (Ns/nb_cores).
if nbTh = nb_cores -1 then

imax = (nbTh+ 1)× (Ns/nb_cores) + remainder_seq
else

imax = (nbTh+ 1)× (Ns/nb_cores)
end if

To describe the decomposition of the sequences among the threads, we give the following example: con-
sider that 4 cores are available on the platform and that the sequence length is seq_length=3125000 sam-
ples; 4 threads will then be created. The first thread computes samples from index imin = 0∗3125000/4 =
0 to index imax=(0 + 1) ∗ (3125000/4) − 1 = 781249. The second thread computes samples from index
imin = 1 ∗ 3125000/4 = 781250 to index imax=(1 + 1) ∗ (3125000/4)− 1 = 1562499 and so on until the
last thread that will compute the rest of samples. The remainder of samples that resulted from the division
of number of sequences by number of threads, if it exists, will also be computed by the last thread. Samples
from each thread are stored in a shared result array, each thread filling specific index values.

Table 3.3 gives the number of computed samples by each thread in case of four threads and Ns = 10
samples.

Table 3.3 – Number of samples computed by each thread (Ns = 10).

Thread imin imax Actual number of computed samples
Th0 0 2 2
Th1 2 4 2
Th2 4 6 2
Th3 6 10 4

3.3.3 OpenMP vs Pthread
Pthreads and OpenMP represent two totally different multiprocessing paradigms. Pthreads is a very

low-level API for working with threads. Thus, you have an extremely fine-grained control over thread
management (create/join/etc), mutexes, and so on. It’s fairly bare-bones. On the other hand,
OpenMP is much higher level, is more portable and doesn’t limit you to using C. It’s also much more easily
scaled than pthreads. One specific example of this is OpenMP’s work-sharing constructs, which let you
divide work across multiple threads with relative ease. But as usual, we get more flexibility and parallelism
with pthreads. Finally, the nature of the programming problem will specify which API technique can
be used in the application. Basically, the choice of an API technique depends on what the application is,
the degree of parallelism required or how much the tasks need to react with each other, and how much
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synchronization is required. In our applications we prefer to use pthread to gain maximum speed up and
parallelism (see Table 3.4).

Table 3.4 – NCpB for Pthread and OpenMP implementation.

Data (Bytes) NCpB-Pthread(Cycles/B) NCpB-OpenMP(Cycles/B)
1024 1847 2118
16384 126 512

125000 26 211
196608 23 206

3.3.4 Computing performance of the chaotic generator
To evaluate the computing performance of the proposed chaotic generator using pthread, we performed

some experiments using a two 32-bit multi-core Intel Core (TM) i5 processors running at 2.60 GHz with 16
G of memory. This hardware platform was used on top of an Ubuntu 14.04 Trusty Linux distribution. Here
after, for different sizes of data bytes, we give the average generation time in micro second GT(µs), the
average bit rate in Mega bit per second BR(Mbit/s), and the average of the required number of cycles
to generate one byte, NCpB(Cycles/B). The average is determined by using 100 different secret keys
for each data size. For parallel implementation we use 4 threads in parallel running on a 4-core platform.
The results obtained for GT(µs), BR(Mbit/s) and NCpB(Cycles/B) are given in Tables 3.5, 3.6 and 3.7 with
three delays and also are depicted in Figures 3.6, 3.7 and 3.8 for sequential and parallel implementation,
only for delay 1. The average bit rate BR(Mbit/s) and the number of cycles required to generate one byte
NCpB are given by:

BR =
Data_Size(Mbit)

GT(µs)
(3.13)

NCpB =
CPU Speed(Hertz)

BR(Mbit/s)

(3.14)

As we can see from these results, the parallel implementation is only better for data size equal to or
bigger than 393216 bytes. This is due to the overhead time caused by the synchronization between threads
and the overhead related to run the different threads. In Table 3.8 we compare our obtained results in terms
of NCpB with some known chaos-based generators, for data size equal to 786432 bytes that correspond
to an image size of 512 ∗ 512 ∗ 3. As we can see, the obtained performance by our generator is better than
the others.

3.3.5 Statistical tests of proposed chaos based generator
In this section we report the results of several statistical tests that were carried out in order to quantify

the statistical cryptographic properties of the proposed generator. They concern Mapping, Histogram, Chi-
square, Approximated invariant measures, Auto and Cross Correlation, and NIST test.

3.3.5.1 Mapping, Histogram, Chi-square test and Approximated invariant measures.

Mapping

The phase space trajectory is one of the characteristics of the generated sequence that reflects the dynamic
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Table 3.5 – Generation time for sequential and parallel implementation with three delays.

Data (Bytes) GT-Seq/Parl d1 (µs) GT-Seq/Parl d2(µs) GT-Seq/Parl d3(µs)
64 6 /705 8/709 11 /725

128 8 /726 9/731 13/733
256 11 / 743 13/755 16/761
512 19 /753 22/766 24/779

1024 32 /763 36/777 36/786
2048 57 /801 62/816 67/831
4096 109 /810 114/823 121/839

16384 332/835 341/849 351/855
32768 520 /847 534/861 551/873
65536 712 /764 728/781 734/792

125000 1282 /1325 1291/1334 1299/1348
196608 1830 /1869 1844/1881 1859/1893
393216 2902 /2436 2929/2451 2949/2467
786432 5502 /4835 5528/4877 5539/4889
3145728 21723 /19539 21739/19570 21761/19587

12582912 85009 /49154 85066/49169 85091/49181

Table 3.6 – Bit rate for sequential and parallel implementation with three delays.

Data (Bytes) BR-Seq/parl d1 (Mbit/s) BR-Seq/parl d2 (Mbit/s) BR-Seq/parl d3 (Mbit/s)
64 85.33/0.73 83.61/0.68 81.31/0.61
128 128/1.41 126/1.21 125/1.01
256 186.18/ 2.76 185.02/ 2.23 184.78/2.04
512 215.58/ 5.44 214.17/4.87 213.14/3.96
1024 256/10.74 255/9.31 254/8.88
2048 287.44/ 20.45 286.14/19.58 285.22/18.91
4096 300.62/40.45 298.51/39.35 297.56/38.18

16384 394.8/156.97 392.12/155.16 391.01/154.38
32768 504.12/ 309.5 503.44/307.01 500.13/302.66
65536 736.36/ 686.24 733.78/684.98 731.12/682.75
125000 780.03/ 754.72 777.89/750.70 771.05/748.84
196608 859.49/ 841.55 857.48/839.68 853.80/837.18
393216 1083.99 /1291.35 1079.47/1288.25 1075.47/1286.74
786432 1143.49/1301.23 1140.03/1295.87 1137.60/1291.37
3145728 1158.49/1287.98 1154.12/1283.77 1151.12/1280.67
12582912 1184.15/2047.92 1178.38/2043.52 1173.77/2040.22

behaviour of the system. The resulting mapping in Figure 3.9 for delay 1,2 and 3 seems to be random com-
pared to the known mapping (a signature) of a Skewtent and a PWLC map. This is due to the recursion
of the structure, the perturbation and the chaotic multiplexing technique or xoring operation. In this case, it
is impossible from the generated sequences to know which type of map is used. Therefore, the security of
the system is improved.
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Figure 3.6 – Generation time for parallel and sequential implementation.
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Figure 3.7 – Bit Rate for parallel and sequential implementation.

Histogram

Another key property of any robust pseudo chaotic number generator is to provide a uniform
distribution in the whole phase space. We present in Figure 3.10 the histograms for three generated
sequences corresponding to delay 1, 2 and 3 respectively. We can visually observed that the histograms
have uniform distribution for the three delays.
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Table 3.7 – NCpB for sequential and parallel implementation with three delays.

Data (Bytes) NCpB-S/P(Cycles/B)-d1 NCpB-S/P(Cycles/B)-d2 NCpB-S/P(Cycles/B)-d3
64 232.5/27173.2 234.9/27178.1 236.5/27181.7
128 155/14068.4 159/14071.9 161/14073.4
256 106.5/7187.1 108.3/7189.4 111.7/7194.1
512 92/3646.4 96/3651.3 98/3655.7
1024 77.5/1847 81.3/1851.3 85.7/1856.1
2048 69/970 75/973 77/976
4096 66/490.4 69/494.1 71/498.3
16384 50.2/126.4 53.7/129.4 55.1/133.7
32768 39.3/64.1 34.7/67.6 39.2/69.3
65536 26.9/28.9 28.1/30.4 30.3/31.6

125000 25.4/26.3 27.1/28.1 29.2/29.5
196608 23.1/23.6 25.6/26.1 27.1/27.0
393216 18.3/15.4 20.7/17.7 22.1/19.6
786432 17.3/15.2 19.6/16.3 19.1/17.1
3145728 17.1/15.4 18.7/16.8 18.1/17.3
12582912 16.8/9.7 17.1/10.3 18.1/11.9

Table 3.8 – NCpB performance of some PRNG

PRNG NCpB (Cycles/B)
Wang et al. [141] 160

Akhshani et al. [142] 45
Ons et al. [143] 24.68

Proposed algorithm 17.3
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(a) mapping for delay 1
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(b) zoom of the mapping for delay 1
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(c) mapping for delay 2
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(d) zoom of the mapping for delay 2
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(e) mapping for delay 3
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(f) zoom of the mapping for delay 3

Figure 3.9 – Mapping of three generated sequences for delays 1, 2 and 3.

Chi-square test and Approximated invariant measures

We apply the Chi-Square test in order to assert the uniformity of generated sequences. The statisti-
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(a) Histogram for delay 1
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(b) Histogram for delay 2
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(c) Histogram for delay 3

Figure 3.10 – Histograms of three generated sequences for delays 1, 2 and 3.

cal Chi-Square test χ2 is calculated by the following formula:

χ2
exp =

K−1∑
i=0

(Oi − Ei)2

Ei
. (3.15)

with K being the number of classes (sub-intervals) equal to 1000, Oi being the number of observed (cal-
culated) samples in the i-th class and Ei being the expected number of samples of a uniform distribution,
Ei = 107/K. We compare the experimental value calculated above with a theoretical value obtained for a
threshold α=0.05 and a degree of freedom K-1=999. To prove the uniformity of a generated sequence, the
experimental value of chi2 must be lower than the theoretical one χ2

exp < χ2
th. More the experimental

value of chi2 is smaller than the theoretical one, better is the uniformity of the generated sequence.
Experimental and theoretical values of the Chi-Square test for sequences are presented in Table
3.9.

Table 3.9 – Experimental and theoretical values of the Chi-Square test for the proposed generator.

Test delay=1 delay=2 delay=3
theoretical 1073.642651 1073.642651 1073.64265

experimental 1044.52000 1017.450800 980.710400

As we can see from Table 3.9, all histograms are uniform.
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To prove the uniformity of the histogram, Lozi [28] uses the "approximated invariant measures".
This function was computed with floating numbers and based on the partition of the mapping space to M2

small squares (boxes). In finite precision N, the approximated invariant measures PdN(si, tj) are defined
in the same manner, as follows [143]. First, the space mapping is divided into M2 boxes rij as shown in
Figure 3.11 with:
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Figure 3.11 – Space mapping division.

si = Xmin + i× l, i = 0, ...,M. (3.16)

tj = Xmin + j × l, j = 0, ...,M. (3.17)

Where

l =
Xmax −Xmin

M
. (3.18)

with Xmin = min(Xi(Ns)) , Xmax = max(Xi(Ns)) and Ns is the number of samples under test.
The box rij is given by :

rij = [si, si+1[×[tj, tj+1[, i, j = 0, ...,M − 1. (3.19)

So, the approximated probability distribution function PdN(si, tj) is :

PdN(si, tj) =
#rij

Ns/M2
. (3.20)

with #rij being the number of samples inside the box rij .
The cumulative relative error (CRE) is calculated as follows:

CRE =
M∑
i,j=1

|Ns/M
2 −#rij

Ns/M2
|. (3.21)

Values of CRE for sequence X are given in Table 3.10. For this experiment, we take two different values
for Ns : Ns= 31250, Ns = 31250× 100. And for each Ns, we consider four values of M : M = 10, 32, 50
and 100.



3.3. PARALLEL IMPLEMENTATION 83

Table 3.10 – CRE with delay=1.

Samples M=10 M=32 M=50 M=100
31250 4.8265 146.1248 562.9231 4.4708e+03

31250× 100 0.4485 14.8226 58.8994 453.9785

The CRE decreases when Ns increases. Also, the CRE increases when M increases for a given size
of Ns. We notice that, for each M, the CRE of the proposed generator decreases by a factor approximately
equal to

√
Ns.

Auto and cross correlation

The properties of a random sequence are that the values in the sequences are not repeated or correlated,
and the cross-correlation of two sequences x and y (generated with slightly different keys) is close to zero.
The correlation coefficient ρxy of the two sequences x and y is calculated by the following
mathematical equations [144]:

ρxy =
cov(x, y)√
D(x)

√
D(y)

(3.22)

where

cov(x, y) =
1

N

N∑
i=1

([xi − E(x)][yi − E(y)]) (3.23)

D(x) =
1

N

N∑
i=1

(xi − E(x))2 (3.24)

E(x) =
1

N

N∑
i=1

(xi) (3.25)

In the previous equations, xi and yi are the values of x and y respectively.
In Figure 3.12, we give the obtained results of the auto cross-correlation of 320 sequences; each contains

31250 samples; also, a zooming of these results is presented. As we can see, the correlation between the
generated sequences is near zero, and the auto correlation is at its maximum.

3.3.5.2 NIST

To evaluate the statistical performances of the keystream produced, we also use one of the most popular
test for investigating the randomness of binary data, namely the NIST statistical test [145]. This test is a
statistical package that consists of 188 tests and sub-tests that were proposed to assess the randomness of
arbitrarily long binary sequences. These tests focus on a variety of different types of non-randomness that
could exist in a sequence. We generated 100 different binary sequences, each with a different secret key, and
31250 samples (corresponding to 1 million bits); we used the NIST test on all of these entities. For each test,
a set of 100 P_value is produced and a sequence passes a test whenever the P_value ≥ α = 0.01, where α
is the level of significance of the test. A value of α = 0.01 means that 1% of the 100 sequences are expected
to fail. The proportion of sequences passing a test is equal to the number of P_value ≥ α divided by 100.
In Figure 3.13 we present the obtained proportion versus test for delay 1, 2 and 3 . As we can see, all the
188 tests and sub-tests pass the Nist, except one sub-test with delay 1. Notice that the minimum pass rate
for each statistical test with the exception of the random excursion variant test is approximately= 0.960150
for 100 binary sequences. The minimum pass rate for the random excursion variant test is approximately
0.952091 for a sample size =62 binary sequences. In Tables 3.11, 3.12, 3.13, we give the P_value and the
proportion with delays 1, 2 and 3 respectively for the 15 NIST tests.
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Figure 3.12 – Auto and cross correlation for generated sequences, with delay 1.

All statistical results indicate the strength of the generated keystream.
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Figure 3.13 – Nist test results for generated sequences.

Table 3.11 – Nist Test values with delay 1

Test P_value proportion
frequency test 0.637 100.000

Block-frequency test 0.956 98.000
Cumulative-sums test 0.715 99.500

Runs test 0.720 98.000
Longest-run test 0.055 98.000

Rank test 0.554 99.000
FFT test 0.109 100.000

nonperiodic-templates 0.546 98.973
overlapping-templates 0.2256 99.000

universal 0.994 99.000
approximty entropie 0.575 99.000
random-excursions 0.428 97.581

random-excursions-variant 0.428 98.925
serial test 0.519 99.000

linear-complexity 0.740 98.000
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Table 3.12 – Nist Test values with delay 2

Test P_value proportion
frequency test 0.494 97.000

Block-frequency test 0.760 100.000
Cumulative-sums test 0.797 97.000

Runs test 0.596 99.000
Longest-run test 0.699 98.000

Rank test 0.029 100.000
FFT test 0.834 98.0000

nonperiodic-templates 0.479 99.000
overlapping-templates 0.237 96.000

universal 0.494 98.000
approximty entropie 0.740 99.000
random-excursions 0.223 99.375

random-excursions-variant 0.428 98.925
serial test 0.828 99.500

linear-complexity 0.834 100.000

Table 3.13 – Nist Test values with delay 3

Test P_value proportion
frequency testS 0.851 100.000

Block-frequency test 0.172 99.000
Cumulative-sums test 0.382 99.500

Runs test 0.679 99.000
Longest-run test 0.0.883 97.000

Rank test 0.367 100.000
FFT test 0.367 100.000

nonperiodic-templates 0.482 98.905
overlapping-templates 0.964 100.000

universal 0.437 98.000
approximty entropie 0.679 98.000
random-excursions 0.336 99.632

random-excursions-variant 0.339 99.918
serial test 0.557 98.500

linear-complexity 0.475 99.000

3.4 First Application: Design of a pseudo-chaotic number generator
as a random number generator

Random numbers are best obtained using physical True Random Number Generators(TRNG),
which operate by measuring a well controlled and specially prepared physical process [146]. However,
TRNGs based on physical processes are inefficient (slow and costly). Alternatively, random number gener-
ation can be realized by using a structure based on deterministic random number generators (DRNGs), usu-
ally called pseudo-random number generators (PRNGs). A random number generator
(RNG) is a computer program intended to behave like a random variable. More specifically, PRNGs have
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always attracted attention from both computer science and mathematics communities. A PRNG takes as
input a fixed value, called the seed, and produces a sequence of output numbers or bits using a deterministic
algorithm [43]. The seed value is often generated by a TRNG or an entropy source. Algorithms based on
RNGs such as Blum Blum Shub or Blum-Micali [147] have a security proof, but they are very inefficient
(slow) and therefore impractical unless extreme security is needed. There are a number of practical schemes
for PRNGs, based on either number theoretical designs, hash function, or block cipher algorithms such as
AES-CTR [145], that can be used in practical applications for both software and VLSI chips testing. The
security provided by RNG that uses a Deterministic PRNG mechanism is a system implementation issue;
both the Deterministic PRNG mechanism and its source of entropy input must be considered when de-
termining whether the RNG is appropriate for use the consuming applications [145]. Generating random
numbers is an important task in cryptography. RNGs are necessary not only for generating cryptographic
keys, but are also needed in the steps of cryptographic algorithms or protocols, like password generation,
nonce generation, the initialization vectors for symmetric encryption [148]. Also, random number gen-
erators have applications in statistical sampling, computer simulation, Monte Carlo-method simulations,
cryptography, gambling, completely randomized design, and other areas where producing an unpredictable
result is desirable [114].
In this contribution, we propose a new RNG based on a pseudo-chaotic number generator (PCNG) that uses
the Linux random number generator /dev/urandom.

3.4.1 Scheme of the proposed Pseudo-chaotic Number Generator as a RNG

The architecture of the proposed Pseudo Chaotic Number Generator (PCNG) is presented in Figure 3.14.
It is formed by two recursive filters of order one. Figure 3.14 describes the whole structure of the generator
with xoring operation mode and a finite computing precision of N = 32. The first recursive cell contains a
discrete Skew tent map and the second recursive cell contains a discrete piecewise linear chaotic (PWLC)
map [149]. These maps are used as non-linear functions [23]. In order to produce the final Xg random
sequence, this version of the generator implements an xoring operation on STmap and PWLC map outputs
(see Equation 3.26). The Equations of the recursive cells are based on the previous Equations 3.1, 3.2, 3.3,
3.4, 3.7, 3.8.

F [n− 1] = F1[n− 1]⊕ F2[n− 1] (3.26)

As detailed before in Chapter 2, the entropy source of the proposed RNG comes from Linux RNG [114].
The process of entropy extraction includes three steps: 1) updating the pool’s contents, 2) extracting random
bits as output, and 3) decrementing the entropy counter of the pool. This process involves hashing the
pool contents using SHA-1, and adding the results to the pool [114]. Within the kernel, the interface for
receiving random values from the RNG is the function get_random_bytes(*buf, nbytes) which
relies on two device drivers named /dev/random and /dev/urandom. /dev/random will block
after the entropy pool is exhausted. It will remain blocked until additional data has been collected from
the sources of entropy that are available. This can slow down random data generation. /dev/urandom
will not block. Instead it will reuse the internal pool to produce more pseudo-random bits. We fed all
the necessary initial conditions and needed parameters for the generator shown in Figure 3.14. This step
will increase the uniformity and the randomness of the generated sequence. As an illustration, we gave in
Chapter 2 the structure of Linux RNG illustrated in Figure 2.8 and a sample of code that allows to exploit
the /dev/urandom entropy source. We seeded our generator several times to produce a random number
from the proposed deterministic PCNG. The obtained results in terms of statistical properties in Figure 3.15
and Table 3.14 indicate that the proposed PCNG can be used reliably for applications that need random
numbers.
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Figure 3.14 – The architecture of the proposed PCNG.

Table 3.14 – Nist Test values for proposed PCNG.

Test P_value proportion
frequency test 0.237 100.000

Block-frequency test 0.367 100.000
Cumulative-sums test 0.321 100.000

Runs test 0.384 100.000
Longest-run test 0.679 100.000

Rank test 0.514 98.000
FFT test 0.335 97.000

nonperiodic-templates 0.498 98.919
overlapping-templates 0.554 98.000

universal 0.994 99.000
approximty entropie 0.679 99.000
random-excursions 0.392 97.645

random-excursions-variant 0.435 98.712
serial test 0.564 98.500

linear-complexity 0.052 100.000

3.4.1.1 Computing Performance of the proposed PCNG

The experiment is conducted using a two 32-bit multicore Intel Core(TM) i5 processors running at 2.60
GHz with 16 Gb of main memory. This hardware platform was used on top of an Ubuntu 14.04 Trusty
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Figure 3.15 – Statistical tests of the proposed PCNG.
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Linux distribution, and the programming is performed in code C. We provide below, for different sizes of
data bytes, the average generation time in micro second GT(µs), the average bit rate in Mega bit per second
BR(Mbit/s), and the average of the needed number of cycles to generate one byte, NCpB(Cycles/B).
The average is calculated by using 100 different secret keys. The obtained results are listed in Table 3.15.
The computing performance is very close to Jallouli et al. [150] PCNG that was detailed previously Chapter
1.

Table 3.15 – Computing Performance of the proposed PCNG

Data (Bytes) PCNG GT(µs) PCNG BR(Mbit/s) PCNG NCpB(Cycles/B)

64 6 101.33 132.2
128 8 190 110
256 11 201.17 98.5
512 19 255.18 78

1024 32 287 65.3
2048 57 301.42 62
4096 70 500.62 45

16384 232 584.32 40.2
32768 420 604.12 33.2
65536 712 736.36 26.9
125000 1182 790.03 25.4
196608 1730 959.49 23.1
393216 2902 1083.99 18.6
786432 4502 1243.15 16.3

3145728 17723 1357.49 14.1
12582912 75009 1481.15 14.8

3.4.1.2 Security analysis and statistical attacks

We report below first the security analysis in terms of key size, keystream attack and key sensitivity
attack. Then, we give the obtained results of several statistical tests that were carried out in order to quantify
the good statistical properties of the proposed PCNG.

Key size, Keystream attack and Key Sensitivity of the PCNG

The key size |K1| of the proposed PCNG consists of all initial conditions and parameters of the proposed
system and they are large enough to resist the brute force attack. Indeed, |K1| = 4 × 32 + 23 + 21 +
32 + 31 + 32 + 32 = 299 bits. Also, as for each new execution, the produced keystream is totally different
from the others due to the IVg value; so, the system can resist a keystream attack. Besides, key sensitivity
is an essential property. This means, a small change in the secret key must cause a very big change in the
output keystream. In order to verify this characteristic, we calculated the Hamming Distance (HD) of two
sequences generated with only one bit change (lsb bit) in the parameter X_p. We calculate the average
Hamming Distance HD between two sequences S1 and S2, over 100 random secret keys. The HD(S1, S2)
is defined by the following equation:

HD(S1, S2) =
1

Nb
×

Nb∑
K=1

(S1(K)⊕ S2(K)) (3.27)

Where Nb is the number of bits in a sequence. The obtained average value of Hamming distance is equal
to 0.499999 of the proposed PCNG. This value is close to the optimal value of 50%, which indicates its
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criticality to the secret key.

Mapping and Histogram

The Mapping (X(n + 1) = f(X(n))) reflects the dynamic behavior of the system. As we can see in
Figure 3.15, the resulting mapping of a given produced sequence by the PCNG seems to be random in com-
parison with a mapping (a signature) of a given known map. A good PCNG must produce sequences that
have uniform distribution in the whole phase space. Visually, the obtained histogram in Figure 3.15 for a
given generated sequence is uniform. To confirm this result we applied the Chi-Square and we obtained
991.962210 as an experimental value, which is smaller than the theoretical value of 1073.642651; then the
histogram is uniform. Indeed, more the experimental value of Chi-Square is smaller than the theoretical
one, better is the uniformity of the generated sequence.

Auto and Cross-correlation

Another good property of a PCNG is that, the generated sequences must be uncorrelated. Thus, the
cross-correlation of two sequences x and y (generated with slightly different keys) must be close
to zero. Figure 3.15 points out that the sequences from the PCNG are not correlated or repeated.

NIST Test

This test is a statistical package that consists of 188 tests and sub-tests that were proposed by NIST in
order to assess the randomness of an arbitrarily long binary sequence. Figure 3.15 gives the results for se-
quences X1 generated by PCNG. We observe that, sequence X1 has successfully passed all the NIST tests.
Therefore, the proposed PCNG is robust against statistical attacks. The security performance is better than
Jallouli et al. [150] PCNG that was detailed previously Chapter 1.

3.5 Second Application: Proposed chaos-based stream cipher
In this section we present two versions (namely V2 and V3) of a synchronous stream cipher based

on the previous proposed chaotic generator. Each version is implemented in sequential and parallel:
— V2 1. sequential implementation: After storing the plaintext data (in bytes), we call the generator r

times (with r = Size_of_the_plaintext_data/4) and the generated samples are first converted to
bytes and then xored with the plaintext data bytes for producing the ciphertext.

— V2 parallel implementation: In this version, after storing the plaintext data (in bytes), we create 4
threads (in parallel), each of the first 3 threads calls the generator r times and the 4th-thread calls
the generator rm times (with rm is the remainder samples to produce). Then, after the worker
threads waited each other for achieving thread synchronization by using the pthread_join()
function, the generated samples are converted to bytes and then xored with the plaintext data bytes
for producing the ciphertext (see Table 3.16).

— V3 sequential implementation: After storing the plaintext data (in bytes), we take each time 16 bytes
and then we call the generator 4 times for producing 4 samples (each of 32 bits) that are converted
immediately to 16 bytes, in order to be xored with the 16 bytes of the plaintext data, and so on.

— V3 parallel implementation: Here on each 16 plaintext data bytes, we create 4 threads that call (in
parallel) the generator to produce 4 samples (one sample by a thread). Then, after the waiting process
(synchronization between the 4 threads), the 4 samples are converted to 16 bytes and then xored with
the 16 plaintext data bytes, and so on. In this version, the generator is called approximately r times,

1. Version 1 is the generator version
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Figure 3.16 – Stream cipher encryption/decryption structure

each including one pthread_join() process. Consequently, the computing performance is very
bad compared to the other versions, as indicated in Table 3.17.

As depicted in Algorithm 3, the encryption process starts by reading the secret key and IV value. Subse-
quently a creation of another three keys and IVs is achieved by a circular shift operation. After that, four
threads are created using pthread in order to perform keystream generation in a parallel manner. The de-
cryption process is performed by using the same secret key and IV in order to generate the same keystream
that used before in encryption. A xoring operation is done between the ciphertext and the keystream to
obtain the original plaintext. The encryption/decryption processes ensure the synchronization between
sender and receiver because we use the same secret key and IV values in generator initial-
ization. The general structure of the stream encryption and decryption processes is shown in Figure 3.16.
As with any encryption system, the secret key K and the initial IV vector must be shared between the
sender and the receiver. The key must be kept secret while the IV vector is not necessarily kept secret but
must be a nonce. The common method to share the secret Key between the two parties is a symmetric
key distribution based on either symmetric encryption using a key distribution center (KDC)
or asymmetric encryption using the RSA (Rivest, Adi Shamir and Leonard Adleman) algorithm [43]. The
IVg is changed every new session as a key session.

3.5.1 Encryption computation performance and security analysis of the proposed
stream cipher

3.5.1.1 Computation performance

The computation performance is determined by: the average encryption time Enc_T (µs), the average
encryption throughput ET(Mbit/s) defined in Equation 3.28, and the average number of cycles to encrypt
one byte NCpB(Cycles/B) defined previously in Equation 3.14.

ET =
ImageSize(Mbit)

EncryptionT ime(mus)
(3.28)

We report in Table 3.16 and in Figures 3.17, 3.18, 3.19 the obtained results of the computation performance
for sequential and parallel implementation of the proposed stream cipher (V2). The decryption time is ap-
proximatively equal to the encryption time.
For data size, from 196608 bytes upwards, the parallel implementation becomes better than the sequential
one and on average the NCpB of the stream cipher takes approximatively 8 cycles more compared to
the NCpB of the chaotic generator.
In Table 3.18, we report a comparison of computation performance for the proposed algorithm (for differ-
ent data size images of Lena) with three chaos-based algorithms and the most Known stream ciphers of
eStream project [151]. For big data, the proposed algorithm has better results than [55, 56]. We also
observed that the computation performance of eStream’s algorithms is better than the proposed system
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Algorithm 3 Chaos based stream cipher, main steps.
Data: Key,I
Data: IV
Data: Plain_text
Result: X result
Result: Cipher_text
Key← Compute recursive cell for nb_cores do

Key1← circular-shift(Key,3-bit)
Key2← circular-shift(Key1,3-bit)
Key3← circular-shift(Key2,3-bit)

IV1← circular-shift(IV,3)
IV2← circular-shift(IV1,3)
IV3← circular-shift(IV2,3)

end
US ← 32bit-IV
UP ← 32bit-IV

Function Generation
Xskewtent← SkewTent function with X−1skewtent if I%∆skewtent AND 6= 0 then

perturbskewtent← LFSR if X−1skewtent ⊕ perturbskewtent 6= 0 then
X−1skewtent← X−1skewtent ⊕ perturbskewtent

end
end
XPWLC ← PWLC function with X−1PWLC

if I%∆PWLC AND 6= 0 then
perturbPWLC ← LFSR if X−1PWLC ⊕ perturbPWLC 6= 0 then

X−1PWLC ← X−1PWLC ⊕ perturbPWLC

end
end
X ← Xskewtent ⊕XPWLC X_4byte← X Shift Recursive cell IV ← (Div/Urandom)
End Generation

Function Threading
for nb_cores do

pthread_create(th[i], NULL,Generation, (void∗)(intptr_t)i)
end
for nb_cores do

pthread_join(th[i], NULL)
end
Cipher_text = Plain_text⊕ X_4byte
return Cipher_text

End Threading



94 CHAPTER 3. EFFICIENT IMPLEMENTATION OF CHAOS-BASED GENERATORS

until we reach the big data size, for which, our system will be faster. For very big data size (201326592)
such as videos, the obtained NCpB is around 9. In addition, the proposed chaotic system has a strong
non-linearity compared to the other systems; thus, its robustness against cryptographic attacks is higher.

Table 3.16 – Performance results of proposed Stream Cipher (V2) with different data sizes

Data in Bytes Enc-T (µs) Seq/Parl ET (Mbit/s) Seq/Parl NCpB (Cycles/B) Seq/ Parl
512 21/ 778 213.01/ 5.31 92.9/ 3650.7

1024 33/ 792 259.1/ 11.1 78.2/ 1889
2048 60/ 806 286.5/ 19.9 70.2/ 973
4096 116/ 822 299.3/ 39.3 67.0/ 491.3

49152 659/ 1619 569.0/ 231.6 34.8/ 85.6
196608 2455/ 2419 610.9/ 620.0 31.9/ 31.2
786432 9088/ 8099 660.2/ 740.8 30.0/ 26.7

3145728 35560/ 24190 674.9/ 978.8 29.3/ 20.2
12582912 121899/ 88597 787.5/ 1083.5 25.1/ 18.3
50331648 398089/ 319785 964.6/ 1200.8 20.5/ 16.5

Table 3.17 – Performance results of proposed Stream Cipher (V3) with different data sizes

Data in Bytes Enc-T (µs) Seq/Parl ET (Mbit/s) Seq/Parl NCpB (Cycles/B) Seq/ Parl
512 18/ 1477.6 218.17/ 2.64 86.3/ 7503.5
1024 34.06/ 2830.4 229.37/ 2.76 86.5/ 7186.7
2048 41.27/ 5595.03 399.68/ 2.79 62.7/ 7103.
4096 120.78/ 11398.94 627.76/ 2.74 37.6/ 7235.7

49152 365.4/ 128031.5 826.13/ 2.93 24.3/ 6772.5
196608 1436.9/ 519951.48 1043.88/ 2.88 23.3/ 6876.0
786432 5339.4/ 2061207.47 1123.72/ 2.91 17.7/ 6814.5

3145728 21351.6/ 8366680.62 1124.03/ 2.87 17.6/ 6915.2

3.5.2 Security analysis of proposed chaos-based stream cipher
In this section we evaluated the security of the proposed chaotic system against cryptanalytic and statis-

tic attacks.

3.5.2.1 Cryptanalytic attacks

The proposed chaotic system has the ability to resist common attacks such as ciphertext only [152],
chosen plaintext attack and key sensitivity attack. Indeed, first, encrypting an image several
times using the same secrete key produces totally different ciphered images. This is due to the IV-setup
block. Second, the chaotic generator is in one way a hash function.

Key Space

The size of the secret key, formed by all the initial conditions and by all the parameters of the system,
varies from 299 bits, with delay = 1, to 555 bits, with delay =3. This means that the brute force
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Table 3.18 – Performance results comparison of some stream ciphers

Stream cipher-Alg Image size(B) Enc-Time(µs) ET(Mbit/s) NCpB(cycles/B)
Abderrahim et al. - - 10 2800

Hauping et al. - - 914 17
Ping et al. - - 700 20

Rappit 256x256x3 811.3 1848.8 9.5
512x512x3 3256 1842.6 9.5

1024x1024x3 12950 1853.9 9.5

HC-128 256x256x3 1221 1228.1 14.4
512x512x3 4895 1225.6 14.4

1024x1024x3 19647 1221.5 14.4

Salsa20/12 256x256x3 836.4 1793.4 9.8
512x512x3 3389 1770 9.9

1024x1024x3 13483 1779.9 9.9

SOSEMANUK 256x256x3 880.3 1704 10.3
512x512x3 3570 1680 10.5

1024x1024x3 14134 1698 10.4
AES-CTR - - - 21.2

Proposed chaos stream cipher (Seq) 256x256x3 2455 610.9 31.9
512x512x3 9088 660.2 30.0

1024x1024x3 35560 674.9 29.3
Proposed chaos stream cipher (Parl) 256x256x3 2419 620 31.2

512x512x3 8099 740.8 26.7
1024x1024x3 24190 978.8 20.2

201326592 1200178 1881 8.8
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Figure 3.17 – Encryption time for parallel and sequential stream cipher.
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Table 3.19 – The NPCR, UACI and HD

Cryptosystem NPCR UACI HD
Proposed Cipher Cryptosystem 99.665 33.459 0.499999

attack is impracticable.

Key security and sensitivity attack

From the generated sequences, it is impossible to find the secret key; this is because of the structure of
the chaotic generator which also includes a chaotic switching. The knowledge of part of the se-
cret key is not very useful for an attacker because of the intrinsic property of the chaotic signal, which is
extremely sensitive to the secret key. Besides, we computed the average Hamming distance (of 100
secret keys) of two Keystreams generated each time with two secret keys that differ only by one bit and the
result obtained is equal to 0.499993, therefore very close to 50%. In conclusion, the produced keystreams
are highly secure.
A cryptosystem must be sensitive to one bit change per key used. This property is important in order to re-
sist many attacks [24]. To test the key sensitivity of the proposed chaos stream cipher, we encrypted "Lena"
image 100 times using 100 secret keys that differ only by the LSB bit. Then we computed the following pa-
rameters: the Number of Pixel Change Rate (NPCR), the Unified Average Changing
Intensity (UACI) and the Hamming Distance (HD). The parameters (NPCR, UACI) are nec-
essary but not sufficient to ensure that the proposed cryptosystem is resistant against the key sensitivity
attack. For this reason, we added the Hamming Distance measurement [153].
The NPCR and UACI, introduced by Eli Biham and Adi Shamir [6] are given by the following equations:

NPCR = 1
L×C×P ×

∑P
p=1

∑L
i=1

∑C
j=1D(i, j, p)× 100% (3.29)

where

D(i, j, p) =

{
0, if C1(i, j, p) = C2(i, j, p)

1, if C1(i, j, p) 6= C2(i, j, p)
(3.30)

UACI = 1
L×C×P×255 ×

∑P
p=1

∑L
i=1

∑C
j=1 |C1(i, j, p)− C2(i, j, p)| × 100% (3.31)

In the previous equations, i, j and p are the row, column, and plane indexes of the image, respectively. L,
C and P are, the length, width, and plane sizes of the image respectively. The optimal NPCR and UACI
values are 99.61% and 33.46% respectively [154].

The HD is defined in Equation 3.27, in which Nb represents the size of the image in bits that equal to
L×C×P × 8. The optimum HD value is 50%. A good stream cipher should produce an HD close to 50%
[155]. Table 3.19 indicates that the NPCR, UACI and HD values of the proposed stream cipher are very
close to the optimal values.

3.5.3 Statistical analysis of the proposed chaos stream cipher
3.5.3.1 NIST Test

To evaluate the statistical performances of the cipher-image produced, the NIST statistical test was also
used [145]. We applied the NIST test to many ciphered texts; all the NIST results obtained, are as expected
(good NIST values). In Figure 3.20 we present one of the NIST results obtained. This means that the
ciphered texts have a high randomness.



98 CHAPTER 3. EFFICIENT IMPLEMENTATION OF CHAOS-BASED GENERATORS

(a) Lena plain image (b) Lena cipher image
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Figure 3.21 – Histogram of the lena plain image and its ciphered image

0 50 100 150 200
50

60

70

80

90

100
Prop vs Test

Figure 3.20 – NIST test cipher-image results.
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3.5.3.2 Histogram and Chi-square test

A cryptosystem is considered to be strong against statistical attacks, if the histogram of the ci-
phered text is uniformly distributed. Visually, the uniformity test is necessary, but it is not sufficient. The
chi-square test is applied to statistically confirm the uniformity of the histogram:

Table 3.20 – Chi-square value of histograms for different ciphered/plain images with different sizes

Image Experimental value Theoretical value
Lena 256x256x3 261.085938 293.247835
Lena 512x512x3 263.013852 293.247835

Lena 1024x1024x3 270.300127 293.247835
Boat 256x256x3 260.186354 293.247835
Boat 512x512x3 266.465369 293.247835

Boat 1024x1024x3 272.669811 293.247835
C-man 256x256x3 259.339680 293.247835
C-man 512x512x3 267.317852 293.247835

C-man 1024x1024x3 274.397541 293.247835
Peppers 256x256x3 259.963257 293.247835
Peppers 512x512x3 266.357961 293.247835

Peppers 1024x1024x3 273.386931 293.247835

The Equation 3.15 is used to perform the Chi test with the following parameters: K is the number
of levels (here K = 256), Oi is the observed occurrence frequency of each color level (0-255) on the
histogram of the ciphered image, and Ei is the expected occurrence frequency of the uniform distribution,
given here by Ei = L×C×P

K
. For a secure cryptosystem, the experimental chi-square value must be less than

the theoretical chi-square one, which is 293 in case of α = 0.05 and K = 256. In Figures 3.21, 3.22,
3.23 and 3.24 we give the histograms for the plain/cipher images for Lena, Boat, Camera man and
Peppers in size 512*512*3. As we can see, the histogram of the ciphered image seems to be uniform.
To assess the uniformity, we performed the chi square test. Experimental value obtained is less than the
theoretical one at 293. This means that the histograms are uniform (see Table 3.20).

3.5.3.3 Correlation analysis

Correlation analysis is also one of the statistical attacks that are used to cryptanalyze the cryptosystem.
The attacker should not have any information of the used secret key or any partial information about the
original plain image. This means that the encrypted image should be extremely different from its original
version. Correlation analysis is one of the common and standard methods to measure this property.
Indeed, it is well-known that adjacent pixels in the plain images are very redundant and correlated. Thus, in
the encrypted images, adjacent pixels should have a redundancy and a correlation as low as possible. The
Equations 3.22, 3.23, 3.24 and 3.25 are used to calculate image correlation.
To test the security of our proposed stream cipher algorithm, in relation to this type of attack, first N =
10000 pairs of adjacent pixels in vertical, horizontal, and diagonal directions are selected
from the plain image and its ciphered version. Figure 3.25 shows the correlation curves of the adjacent
pixels in the horizontal, vertical and diagonal direction for the Boat plain image and its ciphered one. The
correlation coefficient values for all previous tested plain/cipher images are given in Table 3.21. As we can
expected, these results conform to those found in the literature.
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(a) Boat plain image (b) Boat cipher image
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(d) Histogram for the cipher image

Figure 3.22 – Histogram of the Boat plain image and its ciphered image

Table 3.21 – Correlation coefficient values for the previous plain/cipher images.

Plain/cipher image Horizontal Vertical Diagonal
Lena 0.96606/0.035 0.96613/0.026 0.96619/0.027
Boat 0.99605/0.022 0.99703/0.019 0.99671/0.020

Camera man 0.96618/0.036 0.96771/0.028 0.96767/0.022
Peppers 0.96608/0.019 0.96612/0.031 0.96647/0.011

3.6 Software security implementation
In cryptographic applications, sensitive data (e.g., secret keys) must be stored in memory for the mini-

mum amount of time possible and should be written over/deleted, not just released, when no longer needed.
In order to assess the security of our implemented code a Software security analysis is used, to attempt to
evaluate the security of the system by safely trying to exploit vulnerabilities. These vulnerabilities may
exist in memory buffer storage, threads calling and joining or all of the code instructions. Such assessments
are also useful in validating the efficacy of defensive mechanisms, as well as, end-user adherence to security
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(a) Camera man plain image (b) Camera man cipher image
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(d) Histogram for the cipher image

Figure 3.23 – Histogram of the Camera man plain image and its ciphered image
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(a) Peppers plain image (b) Peppers cipher image
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Figure 3.24 – Histogram of the Peppers plain image and its ciphered image
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(a) Plain image horizontal correlation of adjacent
pixels

(b) ciphered image horizontal correlation of adjacent
pixels

(c) Plain image vertical correlation of adjacent pix-
els

(d) ciphered image vertical correlation of adjacent
pixels

(e) Plain image diagonal correlation of adjacent pix-
els

(f) ciphered image diagonal correlation of adjacent
pixels

Figure 3.25 – Horizontal, Vertical and Diagonal correlation of the Boat plain image and its ciphered image

policies. In order to guarantee the validity of our solution, we carried out a security code review using sev-
eral static and dynamic techniques: Clang, Gdb, Valgrind, DRD, Callgrind and Leak-analysis tools. Results
match up well with the security level requested by our chaos-based stream cipher [149]. Because it is still
possible to access data out of memory even if the application no longer has pointers to it, it is important to
deploy data security within the source code. In practice, we used the following functions to decontaminate
(i.e., zero) a buffer and guarantee that the compiler will not optimize it away: The secure_memzero()
function depends on a function pointer memset_ptr that itself points to the memset() function. It
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uses the key and the key size and will put zero value on the allocated memory related to the key by call
memset(). The function memset() is invoked to write a specific value in a buffer that was allocated
previously. We used this function to write a zero value in the buffer. While some compilers optimize away
the call to memset() function, to overcome this, we declared memset_ptr as a volatile pointer. Since
a volatile pointer can be manipulated outside the scope of the application, the code is not optimized by the
compiler, thus keeping the program unchanged. Furthermore, the data in main memory may leak to the
disk through virtual memory, thus representing another source of the most serious leaks (leaks to physical
mediums). One solution, which is sufficient to include, is to deactivate the swap space altogether, thus
preventing data from being written to the page file by locking it in memory. In our code, we used the
mlock() function that locks pages in the address range starting at the address and continuing for byte
lengths. All pages that contain a part of the specified address range are secured in the main memory when
the call returns successfully. This way, the pages are secured in the main memory until they are unlocked
later.
In Chapter 2, mainly in section 2.6.1 we elaborated the software security tools used to review the code in
our applications. The usage of this tools to check our C code are described in Appendix B.

3.7 Conclusion
We designed and implemented, in an efficient and secure way a chaos-based generator. Its structure is

modular, generic, and allows the production of highly secure sequences. Based on the chaotic generator
(PCNG), two application were designed, implemented and analysed. The first application deals with the
realization of a RNG based PCNG, and the obtained results are very satisfactory. The second application
concerns the realization of a chaos-based stream cipher. The computation performance for the proposed
generator is better than other known PRNG. Also, for very big data size, the obtained performance results
are better than other known stream ciphers. The proposed chaotic system is robust against known crypto-
graphic attacks. Furthermore, it has strong non-linearity compared to the other systems. Indeed, the results
obtained from the cryptographic analysis and of common statistical tests indicate the robustness of the pro-
posed stream cipher.
In the next chapter we focus on the design of real-time chaos-based joint crypto-compression systems to
secure videos: an HEVC bitstream.



4
Second Contribution: Real Time Selective
Encryption in the HEVC Standard

4.1 Introduction

HEVC is currently the newest video coding standard issued by the ITU-T Video Coding Experts Group
and the ISO/IEC Moving Picture Experts Group. The main important object of the HEVC standardization
effort is to permit appreciably improved compression performance relative to existing standards. Nowadays
Video encryption is a hot research topic [2]. In the up-coming years, HEVC standard is expected to be
increasingly adopted with the perspective to replace the previous video compression standard. Security and
confidentiality of multimedia contents become a challenging research topic, which was widely investigated
in the last decade. [19, 20, 21, 75, 76, 77, 78, 79, 80, 81].

The most straightforward method for content security is to encrypt the whole bit-stream or the most
informative part, called Region of Interest (ROI). This approach [75], treats the video bit-stream as a simple
text data without taking account the structure of the compressed video. Bit-streams encrypted with this
method are decodable only after a correct decryption event, when only parts of the video are encrypted.
This process limits the usage of the content to only users who have the right permission on the encrypted
parts. Moreover, these algorithms are time and energy consuming and not suitable for real-time video
applications. Consequently, Selective Encryption (SE) has emerged as an effective solution to overcome
these full encryption drawbacks [156, 157].

The aim of SE is to reduce the amount of data to encrypt while preserving a sufficient level of security.
Thus, only the most sensitive information in the bitstream is encrypted. In this chapter also, we focus on
SE that hides only the ROI in the video (human faces, personal data, etc.) and keeps the rest of the video
(background) clear. In our approach, the HEVC video is first split into independent rectangular regions
called tiles [79] and then only the tiles belonging to the ROI are encrypted.

The proposed solution encrypt a set of HEVC parameters including Motion Vector (MV) differences,
MV-signs, Transform coefficients (TCs), TC-signs, as given in [80]. Besides, we propose format compliant
encryption solution of the luma and chroma Intra Prediction Modes (IPMs). The selective encryption is
performed using the chaos-based stream cipher, introduced in Chapter 3 [138, 149]. The proposed solution
of ROI allows to prevent the encryption propagation outside the ROI in Intra and Inter coding configurations.
Finally, for real-time character, the encryption and decryption processes are implemented in the real-time
Kvazaar HEVC [158] encoder and the openHEVC decoder [159], respectively.

The rest of this chapter is organized as follows. The proposed selective encryption of IPM and ROI
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encryption in HEVC are investigated in Sections 4.3 and 4.4, respectively. Performance evaluations and
associated results analysis are given in Section 4.5. Finally, Section 5 concludes the chapter and gives some
perspectives about future works.

4.2 Real time encoder: Kvazaar
Kvazaar is an video encoder for the newest video coding standard the(HEVC/H.265) standard. It gives

the users a free, cross-platform HEVC encoder for x86, x64, PowerPC, and ARM processors on Win-
dows, Linux, and Mac. Kvazaar is being construct from scratch in C and optimized in Assembly under the
LGPLv2.1 license. The development is being organized by Ultra Video Group at Tampere University of
Technology (TUT) and the implementation work is performed by an active community on GitHub. Devel-
oper friendly source code of Kvazaar makes simple joining for new developers. Indeed, Kvazaar includes
all fundamental coding tools of HEVC and its modular source code facilitates parallelization on multi and
manycore processors as well as algorithm acceleration on hardware. Kvazaar is able to accomplish real-
time HEVC coding speed up to 4K video on an Intel 14-core Xeon processor. Kvazaar is also supported
by FFmpeg and Libav. These standard of multimedia frameworks boost Kvazaar popularity and enable its
joint usage with other well-known multimedia processing tools. Kvazaar has got a key role in three Eureka
Celtic-Plus projects in the fields of 4K TV broadcasting, virtual advertising, Video on Demand, and video
surveillance [158].

4.3 Proposed video encryption system

4.3.1 Encryption of intra prediction parameters
To the best of our knowledge, this is the first work encrypting luma and chroma IPMs of HEVC pre-

diction parameters. In HEVC, there are three scanning orders of the quantized TCs and the scanning
order is derived for Intra coded blocks from the IPM. The proposed algorithm encrypts the IPM with-
out changing the original scanning order of the modes (the order before encryption). This enables the
IPM encryption to be format compliant with HEVC and can be decoded wilt any standard HEVC de-
coder. The proposed encryption solution of IPMs is performed as shown by Algorithm 4. First, the
IPM elements of HEVC are classified into three sets of modes: Set_V ER ∈ {6, 7, 8, 9, 11, 12, 13, 14},
Set_HOR ∈ {22, 23, 24, 25, 27, 28, 29, 30} and Set_DIA ∈ {0, 1, 2, , 3, 4, 5, 15, 16, 17, 18, 19,
, 20, 21, 31, 32, 33, 34}. Each set contains the prediction modes that share the same scanning direction (hor-
izontal, vertical or diagonal). The encryption process is carried out using a circular shift operation. Each
IPM, in a particular set, is shifted according to a key stream bits. The stream values, required to the encryp-
tion process, are produced by a chaos based generator. Then, a new IPM position is deduced inside the same
set. The derivation process of the chroma mode must rely on the encrypted luma mode to ensure format
compliant encryption. The luma and chroma IPMs are encrypted in the same manner. Table 4.1 shows the
encryptable bits of chroma IPMs (the red color bins are context coded in CABAC). The encryption process
is fully format compliant, since we keep the scanning directions unchanged. Unlike the encryption of other
syntax elements, the encryption of the IPMs is performed before the entropy coding and, thus, may decrease
the coding rate-distortion (RD) performance. Figure 4.1 shows the IPMs in HEVC standard.

4.3.2 CABAC level encryption
A fast and secure selective chaos-based crypto-compression system is realized to encrypt the most sen-

sitive information in the video contents. Selectively encrypted HEVC bitstream will fulfill real-time con-
straints (format compliant, fast, secure and constant bit rate). A group of sensitive HEVC parameters is
selected to be used as input for this selective encryption solution including: MVs, MV signs, (TCs), TC



4.3. PROPOSED VIDEO ENCRYPTION SYSTEM 107

(a) Directions of (IPM) (b) An example of intra prediction with
the direction 29.

Figure 4.1 – Intra Prediction Modes (IPMs) in the HEVC standard.

Algorithm 4 IPMs encryption.
Input: Intra Prediction Mode IPM
Output: Encrypted Intra Prediction Mode E_IPM

1: Set_V ER ∈ {6, 7, 8, 9, 10, 11, 12, 13, 14}
2: Set_HOR ∈ {22, 23, 24, 25, 26, 27, 28, 29, 30}
3: Set_DIA ∈ {0, 1, 2, 3, 4, 5, 15, 6, 17, 18, 9, 20, 21, 31, 32, 33, 34}
4: Call chaotic generator to produce bit steam K
5: if IPM > 5 And IPM < 15 then
6: E_IPM=Circular shift(Set_V ER, IPM, K)
7: else if M > 21 And IPM < 31 then
8: E_IPM=Circular shift(Set_HOR, IPM, K)
9: else

10: E_IPM=Circular shift(Set_DIA, IPM, K)
11: end if

Table 4.1 – Encrypted bit of the chroma intra prediction mode.

Intra_chroma_pred_mode Encrypted Bin value

Intra_Derived 0

Planar 100

Angular(mode-26) 101

Angular(mode-10) 110

DC 111

signs. As illustrated in Figure 4.2, the format compliant selective encryption is performed for the particular
syntax elements between binarization and arithmetic coding. The image-based encryption/decryption algo-
rithms (all frame) are integrated in the HEVC reference software (HM) version 16.7 [160] encoder/decoder
respectively. Table 4.2 shows the encrypted syntax elements that performed in this work.
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Figure 4.2 – Selective encryption in HEVC at CABAC level.

Table 4.2 – Encrypted syntax elements.

Syntax elements Encrypted Part

MV differences Suffix

MV-sign 1 bin

TCS Algorithm 3.1 in [75]

TC-sign suffix

Luma Algorithm 4

Chroma Algorithm 4

4.3.3 Chaos-based encryption system

For a given syntax element, the chaotic generator produces the necessary key-streams to obtain the
ciphering data. The applied key-stream generator proposed in our previous work [138, 149] is used. The
internal state, which contains the main cryptographic complexity of the system, is formed by two recursive
filters of three-order. The first recursive cell contains a discrete Skew tent map and the second one contains
a discrete piecewise linear chaotic map. These maps are used as non-linear functions. A new IV value
is generated in each generator call, this value enables to produce different bits key-stream sequence on
each generator call. The cryptographic security analysis of the key stream generator is detailed in Chapter
3 [138].
The encryption of syntax elements at the CABAC level, including MV differences, MV-signs, TCs, TC-signs,
is given by the the following formula:

Ci = Pi⊕Xi (4.1)

where P(i) denotes the syntax elements, C(i) the ciphered syntax elements and X(i) the key stream bits.
Furthermore, the luma and chroma IPMs encryption is performed as follows:
Let N be the number of IPMs modes elements in the set vector V = [1, 2, · · · , N ], V ∈ RN , nb the number
of bits produced by chaotic generator and i the IPM index. The new value, Vs[i], produced at the ith position
of IPM is given by Equation 4.2.

Vs[i] = V [(i+ nb) mod N ] (4.2)

The decryption algorithm is performed by inverse operations of Equations 4.1 and 4.2. Finally, the encoder
and the decoder must share the same secret key K, used to initialize the chaotic generator.
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4.4 ROI encryption in HEVC

In this section we propose a new encryption solution of ROI based on the tile concept in the HEVC
video to protect privacy.

4.4.1 Tile-based encryption system

The proposed ROI encryption is based on the tile concept introduced in HEVC. This mechanism splits
the video frame into different rectangles with integer number of blocks, where Intra prediction and entropy
coding dependencies are broken at the tile boundaries. Tiles are used also to get more parallel processing
or to prevent from error transmissions. The proposed solution performs a selective encryption of ROI tiles
at the CABAC bin-string level. The most sensitive HEVC syntax elements are encrypted in order to reduce
the visual quality of the involved ROI. The selective process encrypts only the tiles containing the ROI,
whereas the non ROI tiles remain clear (not encrypted). A set of HEVC parameters, including MVs, MV
signs, (TCs), and TC signs, are then encrypted as stated above. This is done in HEVC format compliant
without increasing the bitrate of the encrypted video. In addition to these four parameters, we integrated
the HEVC compliant encryption of IPMs, which may introduce a slight increase in bit rate, as clarified in
section 4.3.

4.4.2 Encryption propagation in inter video coding

The merge mode in HEVC derives the MVs information from a list of spatial neighbouring and temporal
candidates. Therefore, these two decoding operations can propagate the encryption from the encrypted tiles
to the background, when the ROI is not correctly decrypted. Thus, we restrict the temporal candidates of the
background tiles to be inside the background zone in the reference frame. In this case, in order to prevent
the propagation of encryption outside the ROI tile, two non-normative encoding constraints are enforced by
the Kvazaar encoder (as shown in Figure 4.3):

1. The MVs in the reference frame are restricted to point only to the co-located tile of the predicted
block.

2. The in-loop filters are disabled across the tile boundaries.

These constraints tend to have a negative impact on the rate distortion performance, depending on the reso-
lution, tiling configuration and the video content. In the contrary, they enable to perform a safe interpolation
process at the tile boundaries.

Mv restriction

Tiles

In loop filters 

disabled 

Figure 4.3 – MVs and in-loop filter restrictions.
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Table 4.3 – The set of benchmark video sequences used in the experiment.

Sequence Class Resolution Frame Rate

PeopleOnStreet A 2560× 1600 30

Kimono B 1920× 1080 24

BasketballDrive B 1920× 1080 50

ParkScene B 1920× 1080 24

Cactus B 1920× 1080 50

BQSquare B 1920× 1080 60

Vidyo1 E 1280× 720 60

Vidyo3 E 1280× 720 60

Vidyo4 E 1280× 720 60

FourPeople E 1280x720 60

BQSquare D 416x240 60

4.5 Results and discussions

4.5.1 Experimental setup

The frame-based selective encryption scheme is implemented with HM version 16.7 [160], in Main
Intra and Random Access configurations. In other hand, the ROI-based encryption and decryption al-
gorithms are implemented in the real time Kvazaar HEVC encoder and OpenHEVC decoder, respectively.
Eleven video sequences, from different classes and categories are used in this experiment; as given in Ta-
ble 4.3. These videos, of 10 seconds duration each, are mainly taken from HEVC common test conditions
[83]. They are simultaneously encoded and encrypted, in both Intra and Inter coding configurations,
at four Quantization Parameter (QP) values ∈ {22, 27, 32, 37}. The encrypted videos are encoded with
two uniform tiling configurations: 4 × 3 (i.e. four horizontal by three vertical repartition) and 4 × 4. The
same encoder configuration, without tiles and encryption, is used as an anchor. The processor used in these
evaluations has 32-bit multi-core Intel Core (TM) i5 processor, running at 2.60 GHz with 16GB of main
memory. The operating system is Ubuntu 14.04 Trusty Linux distribution.
It is important to note here that two HEVC plat-forms are used in this study (HM and Kvazaar/Open-
HEVC). Firstly, the selective encryption (all frame) and subjective experiment are performed under the HM
encoder/decoder. Several measures have then used (PSNR, SSIM, IPMs BD-rate evaluations, Edge De-
tection Ratio and Encryption Quality). Secondly, the ROI-based encryption is implemented with Kvazaar
encoder/OpenHevc decoder and other encryption metrics have been used (BD-rate, complexity evaluations)
with PSNR and SSIM.
In the following sections, we describe in detail the proposed solution performance based on two main cri-
teria: objective measurements and subjective evaluations.
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Table 4.4 – PSNR and SSIM values between original and encrypted videos (QP = 22).

Sequence Original Encrypted ROI

PSNR SSIM PSNR SSIM

PeopleOnStreet 42.8 0.93 11.2 0.23

Kimono 42.2 0.96 9.9 0.22

ParkScene 43.3 0.91 10.7 0.20

Cactus 42.5 0.94 10.4 0.23

BQTerrace 41.8 0.90 10.8 0.24

BasketballDrive 41.5 0.96 10.1 0.23

Vidyo1 45.2 0.92 11.3 0.21

Vidyo3 44.6 0.94 10.9 0.20

Vidyo4 44.7 0.90 11.1 0.22

Table 4.5 – PSNR and SSIM values for three video sequences with different QP.

Sequence QP Original-PSNR SE-PSNR Original-SSIM SE-SSIM

Y U V Y U V Y U V Y U V

BasketballDrive (B) 22 42.1 43.5 44.9 10.2 10.8 11.1 0.92 0.94 0.94 0.21 0.22 0.24

27 41.3 42.2 43.6 10.1 10.7 11.0 0.89 0.91 0.93 0.2 0.21 0.21

32 37.5 38.8 39.1 9.8 10.5 10.9 0.76 0.72 0.88 0.16 0.18 0.22

37 36.7 37.9 38.1 8.1 8.9 10.1 0.74 0.78 0.81 012 0.16 0.18

Kimono (B) 22 43.7 44.1 45.1 9.5 10.1 10.3 0.96 0.96 0.99 0.17 0.18 0.19

27 42.3 42.9 43.1 9.1 10.0 10.1 0.95 0.98 0.98 0.17 0.17 0.19

32 38.8 38.9 39.9 8.5 9.9 10.3 0.82 0.83 0.88 0.14 0.16 0.18

37 37.8 38.6 38.9 7.5 8.4 9.9 0.77 0.78 0.80 0.12 0.14 0.17

PeopleOnStreet (A) 22 38.6 41.4 43.4 10.2 10.6 11.3 0.95 0.95 0.97 0.19 0.19 0.22

27 38.3 39.8 41.2 9.5 9.9 10.3 0.91 0.93 0.94 0.17 0.20 0.22

32 37.0 38.1 40.6 8.9 9.3 10.1 0.88 0.90 0.92 0.18 0.19 0.21

37 35.4 37.6 38.9 8.1 9.0 9.8 0.78 0.83 0.88 0.15 0.15 0.19
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4.5.2 Objective measurements

4.5.2.1 Video quality metrics

Peak Signal to Noise Ratio (PSNR) and the Structural Similarity (SSIM) are used to assess the quality
of the encrypted videos. In other words, the quality of the encrypted video reflects the degree of the visual
content and, thus, the encryption solution consistency. Results of these two metrics, using original and
encrypted ROI schemes are given in Tables 4.4 and 4.5. The average PSNR inside the ROI, for all encrypted
sequences, remains below 11.4 dB and the SSIM values are below 0.24. In terms of quality, these results
indicate that the quality of video content is very degraded. Moreover, at different bit-rates, video qualities
are very poor whatever the used QP. The proposed solutions reduce considerably the visual content quality
and, thus, making the known plain-text attack inapplicable.

Table 4.6 presents a brief comparison, in terms of PSNR and SSIM objective metrics, between the pro-
posed encryption method and a state-of-the-art encryption solution examples. The proposed SE solution
enables lower PSNR value compared to [157] with less SSIM values than ones given in [157] and [76].
In addition, we performed PSNR and SSIM measures of two different encryption stages: (TC, TC signs,
MV, MV signs) and (TC, TC signs, MV, MV signs, IPMs), with Random access and Main Intra
configuration. The obtained results indicate the robustness of all encryption stages together, especially the
quality degradation that IPMs encryption has impacted on the video sequences (Tables 4.7, 4.8).

Table 4.6 – Comparative evaluation, using weighted PSNR and SSIM for three sequences encoded by HM
at (QP = 32).

Sequence Wallendael et al. [157] Boyadjis et al. [76] Proposed SE

PSNR SSIM PSNR SSIM PSNR SSIM

BasketballDrive 11.4 0.40 10.4 0.43 9.9 0.17

Kimono1 10.1 0.32 6.6 0.27 8.9 0.14

Vidyo1 12.9 0.61 11.2 0.55 10.1 0.18

Table 4.7 – Mean PSNR (Y) values in dB of the three video classes encoded by HM (QP = 22).

Class Main Intra Random Access
TC, TCs, MV and MVs All TC, TCs, MV and MVs All

B 11.1 10.2 10.4 10.2
D 9.3 8.9 8.7 8.4
E 10.2 9.6 9.7 9.1

Table 4.8 – Mean SSIM values of the three video classes encoded by HM used (QP = 22).

Class Main Intra Random Access
TC, TCs, MV and MVs All TC, TCs, MV and MVs All

B 0.33 0.25 0.30 0.21
D 0.26 0.20 0.23 0.18
E 0.22 0.19 0.20 0.17
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4.5.2.2 BD rate evaluation

We consider the Bjøntegaard-Delta Bit-Rate (BD-BR) metric [161], which refer to the average bit-rate
differences between two bit-rate-PSNR curves.
The encoding process is performed using Inter and Intra coding for the 4×4 and 4×3 tile repartitions,
with MVs limitations and disabling the in-loop filters across the tile edges. The RD losses with Intra and
Inter coding configurations of the two tiles configurations are provided in Table 4.9 and Table 4.10, re-
spectively. The bit-rate overhead caused by the MVs restriction varies between 2%-18.23% depending on
the coding configuration (Inter and Intra), video content and number of tiles within the frame.
The BD-BR loss for 4× 4 tiles repartition in Inter coding is more than the loss in Intra coding config-
uration and reaches 12.33% and 5.36%, respectively. The BD-BR loss for 4 × 3 tiles repartition is less
than the loss for 4 × 4 tiles in both coding configurations. For example, the loss in BD-BR of Kimono1
(1920 × 1080) video sequence with 4 × 3 and 4 × 4 tiles using Inter coding configuration is around
11.65% and 13.19%, respectively. This difference in loss is mainly caused by the mores restrictions
related to tile coding, disabling the in-loop filtering across tiles and MVs restriction in the higher number
of tiles configuration (4 × 4). However, in Intra coding it remains low and does not exceed 4.13% and
5.16%, respectively. The RD loss for PeopleOnStreet (2560×1600) video sequence is 5.13% and 3.42%
in inter coding and 3.67%, 2.14% in intra coding configuration. In general, the proposed encryption
solution decreases the RD performances and this is depending slightly of the video sequence content and
resolution.
Table 4.11 shows the increase, in terms of BD-BR, introduced by IPMs encryption in two coding config-
urations: Main Intra and Random Access. In all Intra configuration, where all blocks are Intra
coded, the encryption decreases the coding efficiency by +2% to +4%. In Random Access configura-
tion that uses both Intra and Inter predictions, the bit-rate increase remains below +2.6%. Therefore,
the encryption of the IPMs comes at the expense of slight bit-rate increase, especially in Inter coding
configurations. Figure 4.4 shows the RD-performance using the average bit-rate difference between two
bit-rate-wPSNR (weighted PSNR) curves for BasketballDrive video sequence with and without encryption.
As depicted the IPMs encryption conduct a diminutive BD-BR loss.

Table 4.9 – BD-rate and complexity increase of the proposed encryption scheme in Intra and Inter coding (4× 4 tile
configuration).

Sequence
Intra coding (4× 4 tiles) Inter coding (4× 4 tiles)

Bit rate
loss (%)

Complexity
increase (%)

Bit rate
loss (%)

Complexity
increase (%)

BD-rate Encoding Decoding BD-rate Encoding Decoding
PeopleOnStreet 3.67 3.05 1.87 5.13 3.27 2.88

Kimono 5.16 3.16 1.21 13.19 3.87 1.96
ParkScene 4.09 2.34 1.13 9.81 3.08 1.89

Cactus 5.43 2.82 2.02 7.65 3.96 2.19
BQTerrace 7.18 2.19 1.67 18.23 3.54 1.93

BasketballDrive 6.34 3.16 2.15 17.11 3.78 2.44
Vidyo1 4.21 2.13 1.32 13.87 2.60 1.91
Vidyo3 6.17 2.31 1.41 10.08 2.98 2.07
Vidyo4 6.01 2.25 1.48 15.91 2.71 1.88
Average 5.36 2.60 1.58 12.33 3.31 2.12

4.5.2.3 Encryption quality

Encryption Quality (EQ) measure is the difference between the frequency of occurrence for each byte
with and without encryption. The maximum EQ value is calculated using the following two equations, as
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Table 4.10 – BD-rate and complexity increase of the proposed encryption scheme in Intra and Inter coding(4x3 tile
configuration).

Sequence
Intra coding (4× 3 tiles) Inter coding (4× 3 tiles)

Bit rate
loss (%)

Complexity
increase (%)

Bit rate
loss (%)

Complexity
increase (%)

BD-rate Encoding Decoding BD-rate Encoding Decoding
PeopleOnStreet 2.14 2.11 1.12 3.42 2.16 1.71

Kimono 4.13 2.13 1.01 11.65 2.48 1.63
ParkScene 3.68 1.98 1.06 8.55 2.18 1.12

Cactus 3.14 1.68 1.22 5.12 2.56 1.67
BQTerrace 4.32 1.67 1.10 12.56 2.14 1.73

BasketballDrive 4.74 1.36 1.17 13.49 2.68 1.41
Vidyo1 2.08 1.43 1.15 9.19 1.93 1.43
Vidyo3 4.65 1.21 1.08 7.81 1.68 1.47
Vidyo4 4.79 1.64 1.33 11.02 1.98 1.39
Average 3.74 1.69 1.13 9.20 2.19 1.50

Table 4.11 – Bjontegaard’s difference for three video sequences with IPM Encryption.

Schemes Main Intra Random Access

Kimono +4.21% +2.58%

BasketballDrive +3.3% +2.51%

BQSquare +2.56% +1.96%

Bit Rate (Kbps) #104
1.55 1.6 1.65 1.7 1.75 1.8 1.85
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Figure 4.4 – Rate distortion for proposed IPMs encryption for BasketballDrive video sequence.

given in [162]:

EQ =

∑255
i=0 |oi(P )− oi(C)|

256
(4.3)

where oi(C) are the observed occurrence for the byte level i in the encrypted frame C, and oi(P ) are the
observed occurrences of the same byte level i in the plain frame P .
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EQmax =
510× L× C

2562
(4.4)

where L and C are the hight and the width of the gray frame.
The larger the EQ value, the better the encryption security is. The maximum EQ value of a given video
frame of Kimono1, PeopleOnStreet and Vidyo1 sequences are equal to 16136 31875 and 7171 respec-
tively [1]. Table 4.12 indicates that the EQ values of our proposal with two video sequences (Kimono1 and
PeopleOnStreet) are higher compared to results given by [1].

Table 4.12 – The EQ for proposed SE and the state of the art [1] (QP = 22) encoded by HM.

Sequence EQ in [1] EQ of proposed SE

Kimono1 8996 10192

PeopleOnStreet 14884 18965

Vidyo1 − 4288

4.5.2.4 Visual analysis

Visual security analysis is used to measure the unidentifiable degree of encrypted videos. Encrypted
video is regarded as of high visual security if the distortion of encrypted video is too chaotic to be under-
stood. The Edge Differential Ratio (EDR) that evaluates the edges differences between the original and the
encrypted frame has been applied, with Random Access encoding configuration (Intra and Inter
predictions) [163], using the Laplacian of Gaussian method [164]. The proposed solution is more efficient
when the edges of the encrypted frames are not noticeable. The EDR is calculated as:

EDR =

∑h−1
i=0

∑w−1
j=0 |PE(i, j)− CE(i, j)|∑h−1

i=0

∑w−1
j=0 |PE(i, j) + CE(i, j)|

(4.5)

Where PE and CE are the edge detected binary matrix for the plain and cipher frame, respectively. Figures
4.5, 4.6 and 4.7 clarify the visual impact of the proposed scheme on the frame content. Figures 4.5b, 4.6b
and 4.7b show the distortion on visual content quality of the frame. Edges in the encrypted frames (Figures
4.5d, 4.6d and 4.7d) are completely affected compared to edges in the original frames (Figures 4.5c, 4.6c
and 4.5c).
The common step to identify and track the ROI in the video is to split the HEVC frame into tiles where
all ROI are included in ROI tiles and the background in separated non ROI tiles [165]. In Figure 4.8 the
tiles that including human face represent the ROI tiles and the other tiles represent the background tiles.
The proposed encryption solution, performs a selective encryption of ROI tiles at the CABAC bin-string
level encrypting only the most sensitive HEVC syntax elements to decrease the visual quality of the ROI as
described in Section 4.3 and 4.4. Based on this figure we can observe that, the proposed encryption method
conceals the objective quality of the ROI zone while the background remains clean even in inter coding
configuration. Videos decoded and decrypted with the correct key on the left side and decoded without
decryption (or decryption with incorrect key) on the right side.

4.5.2.5 Histogram analysis

Another objective measurement that widely used in encryption evaluations is the Histogram Analysis
(HA). Figure 4.9 and 4.10 depicted an examples of histogram frame with and without encryption, for
the BasketballDrive Kimono video sequences. Obtained results show that, for the encrypted frame, the
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(a) Original frame without encrption (b) Encrypted frame

(c) EDR of original frame (d) EDR for encrypted frame

Figure 4.5 – The EDR for frame # 169 in BasketballDrive video sequence.

(a) Original frame without encrption (b) Encrypted frame

(c) EDR of original frame (d) EDR for encrypted frame

Figure 4.6 – The EDR for frame # 184 in Kimono video sequence.

histogram is close to the pseudo-random distribution (uniformity) and completely different to that for the



4.5. RESULTS AND DISCUSSIONS 117

(a) Original Frame without encrption (b) Encrypted frame

(c) EDR of Original frame (d) EDR for Encrypted frame

Figure 4.7 – The EDR for frame # 37 in PeopleOnstreet video sequence .

original frame. These results, together with previous objective results, lead to the robustness of the proposed
solution against visual attacks.

4.5.2.6 NIST test

To evaluate the statistical performance of the Keystream produced, we also use one of the most popular
standards for investigating the randomness of binary data, namely the (NIST) statistical test [145] that
detailed in chapter 3. This test is a statistical package that consists of 188 tests that are proposed to assess
the randomness of arbitrarily long binary sequences. In Table 4.13, we give the P_value and the proportion
for 15 NIST tests. These results indicate the strength of the generated keystream.

4.5.2.7 Security attacks

In this section we provide analysis of resistance of our proposed encryption solutuions against some
known attacks. Mainly Brute force attack, Key sensitivity attack, known-plaintext attack and chosen-
plaintext attack.

Brute force attack

It breaks the cryptosystem by trying a large number of possible keys until the correct one is found. In
the worst case, all possible keys in key space are tested [166]. In addition, The size of the secret key,
formed by one recursive cell delay is 222 bits. Thus the brute-force attack will be inapplicable. Encryption
of motion vector differences and residual signs was classified by [167] to be secure selective encryption
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(a) (b)

Figure 4.8 – Frame #9 of HEVC videos encrypted with the proposed ROI encryption: (a) Correctly de-
crypted videos. (b) Encrypted videos.



4.5. RESULTS AND DISCUSSIONS 119

0 50 100 150 200 250 300

×10 4

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Histogram of original frame

0 50 100 150 200 250 300

×10 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Histogram encrypted frame

Figure 4.9 – Histogram for frame # 300 BasketballDrive video sequence.

algorithms. In our proposed encryption solution extra parameters such as the MVs, TCs, IPMs together
increase the complexity of brute force attack.

Key sensitivity attack

A key stream must be sensitive to one bit change in the secret key used. This property is important in
order to resist many attacks [24]. To test the key sensitivity of the key stream cipher, we applied selective
encryption on BasketballDrive, Kimono, Four people and BQSquare video sequences two times with a se-
crete key that differ only by the LSB bit. Then we computed the following parameters: the Number of Pixel
Change Rate (NPCR), the Unified Average Changing Intensity (UACI) and the Hamming Distance (HD).
The parameters (NPCR, UACI) are necessary but not sufficient to guarantee that the key stream cipher is
resistant against the key sensitivity attack. For this cause, Hamming Distance measurement has been added
[153].
The optimal NPCR, UACI values is 99.61%, 33.46% respectively [154]. The size of the secret key, formed
by one recursive cell delay is 222 bits. Thus the brute-force attack will be inapplicable.
The optimal HD value is 50% (Avalanche criterion) [155]. Table 4.14 indicates that the NPCR, UACI and
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Figure 4.10 – Histogram for frame # 8 Kimono video sequence.

HD values are close to optimal values.

Known-plaintext attack and Chosen-plaintext attack

We did the same experiment as done in section 3.5.2.1 on encrypt-able bits of frames.

4.5.3 Subjective evaluations
The subjective evaluations were carried out, in IETR laboratory psychovisual room complying with the

ITU-R BT.500-13Recommendation [168]. A display screen Full HD 32 inches Samsung UN32J5003
was used to visualise the video sequences. Fifteen observers, 10 men and 5 women their age between 20 to
40 years, have participated in this experiment. All the subjects were screened for color blindness and visual
acuity using Ishihara and Snellen charts, respectively, and have a visual acuity of 10/10 in both eyes with
or without correction, as detailed in [81]. We consider five video sequences from Table 4.3 (FourPeople,
Kimono, BasketballDrive, BQSquare, Cactus). Both the encoding and selective encryption of two encryp-
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Table 4.13 – NIST test of chaos based Key stream sequences.

Test P_value Proportion %
Frequency test 0.851 100.000

Block-frequency test 0.172 99.000
Cumulative-sums test 0.382 99.500

Runs test 0.679 99.000
Longest-run test 0.883 97.000

Rank test 0.367 100.000
FFT test 0.367 100.000

Nonperiodic-templates 0.482 98.905
Overlapping-templates 0.964 100.000

Universal 0.437 98.000
Approximty entropie 0.679 98.000
Random-excursions 0.336 99.632

Random-excursions-variant 0.339 99.918
Serial test 0.557 98.500

Linear-complexity 0.475 99.000

Table 4.14 – The NPCR, UACI and HD

Sequence NPCR UACI HD

Kimono 97.9 32.4 0.4999

BasketballDrive 97.1 32.7 0.4997

Four people 97.2 32.9 0.4997

BQSquare 98.2 32.8 0.4999

tion schemes: (TC, TCs, MV, MVs) and All (TC,TCs, MV, MVs, IPMs) with Random Access encoding,
performed by the HM(16.7) encoder. Finally, these coding configurations, results in 40 encrypted video
sequences, with different QP and resolutions.

4.5.3.1 Design and procedure

In our subjective quality experiment, we used the Double Stimulus Continuous Quality Scale (DSCQS)
method [168]. Each encrypted video was presented twice to observer along with its original version. Par-
ticipants were asked to judge on the degree of content visibility of the encrypted videos numerically. Thus,
each participant must assign a visibility score to each of the 40 test videos, according to a rating scale,
Varies from 1: video content is Completely Invisible to 5:video content is Clearly Visible as shown in Ta-
ble 4.15. At the end of each test condition, a dedicated Graphical User Interface (GUI) is displayed on
the screen for about 10 seconds during which the observer gives and then confirms its judgement. video
sequences were jumble in such a way that two consecutive sequences must be from different categories,
configuration and quality levels, this will eliminate participants memory effects.

4.5.3.2 Data processing

The first step in the results analysis is to calculate the average score of Mean Opinion Score (MOS) for
each video used in the experience. This average is given by Equation (4.6).
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Table 4.15 – Ranking scale used in our subjective evaluation experiment.

Visibility Degree Score

Clearly Visible 5

Visible 4

Slightly Visible 3

Barely Visible 2

Completely Invisible 1

MOSjk =
1

N

N∑
i=1

sijk (4.6)

where sijk is the score of participant i for degree of visibility j of the sequence k and N is the number
of observers.
In order to better evaluate the reliability of the obtained results, it is advisable to associate for each MOS
score a confidence interval, usually at 95%. This is given by Equation (4.7). Scores respecting the experi-
ment conditions must be contained in the interval [MOSjk − ICjk,MOSjk + ICjk].

ICjk = 1.95
δjk√
N
, δjk =

√√√√ N∑
i=1

(sijk −MOSjk)

N
(4.7)

4.5.3.3 Subjective scores

The subjective results scores of all participants, collected through the dedicated GUI, have been used
for the perceptual encryption measurement. Subjects scores range generally between (barely visible) and
(completely invisible) for first encryption scheme. This implies that the human visibility is very significantly
reduced by using the proposed SE solution. Indeed, the results imply that the video content is invisible.
Otherwise, subjects can only try to guess the context type without seeing any detail of the shown video. A
slight MOS variation, depending on the video content and the used QP , can be noticed. In fact, the main
subjects scores directed to ’Completely Invisible’ when we added the IPM encryption to the first encryption
scheme. The subjects can hardly see a little things of the video (without being able to know the global
context of the presented video). Results depend strongly of the video classes and video contents. BQSquare
(Classe D) and Cactus are completely invisible by the whole subjects, with MOS ' 1, and very few
variations depending on the used QP . In addition, BasketballDrive shows low visibility scores due to its
strong movement character. Curves of this video are dramatically decreased when encrypting the IPMs
(Figure 4.11).

4.5.3.4 ANOVA statistical test

A statistical study was performed using the Analyse of Variance (ANOVA) [169]. Indeed, ANOVA
allows studying whether the variation in visibility scores is a result of the intended variation of experimental
variables (i.e. QP, Class, Encrypted Scheme and Content), or simply due to chance. Table 4.16 indicates
that only ‘Encryption Scheme’ parameter has a significant influence on the subjects scores with p-value
< 0.0001 1.

1. a factor is considered influencing if p-value < 0.05
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Figure 4.11 – Subjects visibility scores including 95% confidence intervals for (QP = 22).

Table 4.16 – ANOVA on the whole dataset, Df: number of degree-of-freedom and F-value: Fisher test

Source DF F-value P-value

Class 2 1.0133 0.4312

Content 4 0.9981 0.5631

QP 3 0.1381 0.133

SE Scheme 1 97.855 < 0.0001

4.5.4 Complexity evaluations

The small computational overhead is crucial especially for embedded/mobile devices having restricted
processing power. It can be calculated through analysis of the additional time required for encoding and
decoding encrypted bitstreams. The characteristics of the computer used for this simulation are described
in section 4.5. The encoding and decoding complexities of 4 x 4 and 4 x 3 tile configurations are reported
over the anchor configuration in Table 4.9 and Table 4.10, respectively.
With considered video sequences, the additional time for encoding and decoding is negligible. For 4 x 4 tile
configuration, the encoding time increases by 2.6% in Intra coding and 3.3% in Inter coding. The
respective decoding times are 1.6% and 2.1% higher. Changing the tile configuration to 4 x 3 narrows
complexity overhead further so that the respective complexity increases are 2.2% and 1.6% for encoding
and 1.5% and 1.1% for decoding. This low complexity overhead at the encoder/decoder sides is mainly
introduced by the encryption/decryption processes as well as the specific processing and bitrate increase
related to the tiling repartitions.
These results confirm that the proposed selective encryption model can be performed without noticeable
performance compromises.
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4.6 Conclusion
This chapter proposed a new selective encryption solution to protect privacy in the HEVC video con-

tent. A robust scheme to encrypts the ROI in the video is proposed. The selective encryption is based
on chaos-based generator. The ROI is extracted through independent HEVC tile concept. The encryption
is performed at the CABAC bin-string level so that the encrypted bit-stream is decodable with a standard
HEVC decoder and a privacy key is only needed in decryption. However, some bit rate overhead is in-
troduced in the HEVC encoding process in order to prevent the propagation of the encryption outside the
ROI. Selective encryption of luma and chroma IPMs is proposed in addition to the MV, TC syntax elements
encryption in order to significantly improve the structural deterioration of the video content. The proposed
end-to-end encryption/decryption is integrated into three open-source software projects: HEVC Kvazaar,
HM encoders and OpenHEVC decoder. Subjective evaluation and experimental tests showed that the pro-
posed solution performs a secure protection of privacy in the HEVC video content with a small overhead in
bit rate and coding complexity. It also prevents unexpected behaviour of the decoder.
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Conclusions and Future work Perspectives

5.1 Conclusions and future work

In this thesis we designed and implemented chaos-based crypto and crypto -compression systems for
protecting image and video contents. For this purpose, chaos-based pseudo-random number generators
have been designed, implemented and analyzed. Based on these chaotic generators, two applications were
proposed. The first one consisting of realizing a random numbers generator based on a pseudo chaotic
numbers generator. The second application relies on the realization of a chaos based stream cipher used for
the multimedia contents protecting. Then, a selective video encryption system has been proposed to secure
video bitstream in the HEVC standard. In what follows we briefly summarize the state-of-the-arts given in
Chapters 1 and 2. Then we highlight our contributions established in Chapters 3 and 4.

Chapter 1 and 2 introduced the thesis state-of-the-art around the classical and chaos-based cryptography,
a review of the parallel programming tools and the description of some static and dynamic tools used to
validate the security of the codes’ implementation.

In Chapter 3, we designed and implemented in an efficient and secure manner pseudo chaotic number
generators (PCNGs). These PCNGs are based on a modular structure containing an IV-setup, a Key-setup,
a non-volatile memory, an output function and a strong cryptographic internal state with internal feedback
mode. Based on the previous PCNGs, two applications were designed, implemented and analysed. The
former application deals with the realization of a random number generator (RNG) based to the PCNG.
The entropy source of the RNG comes from Linux RNG /dev/urandom, and the obtained results are
promising. The latter application concerns the realization of a chaos-based stream cipher. The proposed
chaotic stream encryption system is very robust against known cryptographic and statistical attacks. Indeed,
the results obtained from both the cryptographic analysis and of the common statistical tests demonstrated
the robustness of the proposed chaotic system. This is also due to its strong non-linearity compared to the
other classical stream cipher systems. The computation performance for the proposed chaos-based stream
cipher is comparable to classical stream ciphers and is even better when a very big data size is treated.

In Chapter 4, we have proposed a new selective encryption solution to protect privacy in the HEVC video
content. A robust scheme to encrypt the ROI in the video has been presented. The selective encryption is
based on the chaos-based generator realized in Chapter 3. The ROI is extracted through independent HEVC
tile concept. The encryption is done at the CABAC bin-string level so that the encrypted bit-stream is
decodable with a standard HEVC decoder and the secret key is only needed in decryption. However, some
bit rate overhead is introduced in the HEVC encoding process in order to prevent the propagation of the
encryption outside the ROI. Selective encryption of luma and chroma IPMs is proposed in addition to
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the MV, and TC syntax elements. This allows to significantly improve the structural retro-gradations of
the video content. The proposed end-to-end encryption/decryption is implemented into three open-source
software projects: HEVC Kvazaar, HM encoders and OpenHEVC decoder. Subjective evaluation and
experimental tests showed that the proposed solution ensures a protection of privacy in the HEVC video
content with a diminutive overhead in bit rate and coding complexity.

In future work we will address the following issues:

1. A parallel implementation of our chaotic system using MPI.

2. A parallel encryption system using parallel chaos-based generator with parallel multi-threading tool
in HEVC.

3. A selective encryption of IPMs HEVC syntax element using a lookup table to save the number of
coded coefficients to deduce the scanning mode.
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A
Synthèse des travaux réalisés: Systèmes de
Crypto-Compression basés Chaos en Temps
Réel et Portables pour Architectures
embarquées Efficaces

A.1 Contexte et objectifs:

Le développement extrêmement rapide des technologies de l’information et de la communication et
de l’Internet des objets « Internet of Things » (IoT) a soulevé la problématique cruciale de la sécurité de
données sensibles (bancaires, industrielles, militaires, médicales) et des données de l’IoT utilisées dans la
vie de tous les jours, transitant sur des canaux publiques non protégés. La cryptographie est alors utilisée
pour protéger le contenu de ces données sensibles, de différentes applications citées plus haut, contre les
attaques cryptographiques passives et actives. Parmi les données sensibles, celles du multimédia (images et
vidéo) sont de plus en plus répondues et très utilisées.

De nombreux algorithmes de chiffrement par bloc et par flux sont déjà développés et utilisés pour assurer
la sécurité des données. Dans le chiffrement par bloc, tel que par exemple celui réalisé par l’algorithme
standard AES, les données sont chiffrées bloc par bloc de taille déterminée (128 bits dans ce cas), et des
opérations de confusion et de diffusion assez complexes sont réalisées sur les blocs en clair (plaintext). Des
modes cryptographiques sont possibles et utilisés tel que le mode CBC (AES-CBC) permettant de rendre
l’algorithme plus sécurisé et les modes CTR (AES-CTR) et OFB (AES-OFB) pour utiliser l’algorithme
en tant que générateur de séquences pseudo-aléatoires. Le chiffrement par flux effectue le cryptage des
données transmises en continu, bit par bit, octet par octet ou échantillon (de quelques octets) par échantillon.
Le chiffrement proprement dit est une opération de confusion assez simple, réalisée par l’opérateur XOR
entre les données en clair (plaintext) et le flux en sortie du générateur de nombres pseudo-aléatoires utilisé
(keystream).

De nos jours, le développement de plus en plus accru de la cryptographie basée chaos, démontre son ef-
ficacité dans la protection des images et vidéos. En effet, les propriétés des systèmes chaotiques et détermin-
istes telles que: ergodicité, sensibilité aux conditions initiales et paramètres de contrôle, nombre important
de trajectoires très longues (apériodiques), etc., sont très recherchées pour tout système cryptographique
dédié à la sécurité des données. Dans cette thèse, nous nous sommes intéressés au chiffrement par flux qui
est plus adéquat pour assurer la protection des images transmises en continu et des vidéo. Dans ce contexte,
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la conception et la réalisation de générateurs de nombres pseudo-chaotiques (PCNGs) sécurisés de point
de vue cryptographique, jouent un rôle central dans la protection des données sensibles. Par ailleurs, les
méthodes de crypto-compression qui traitent le flux vidéo comme des données uniques, sans prendre en
compte la structure même de la vidéo compressée, ne sont pas appropriées pour des applications temps
réel. Dernièrement, plusieurs travaux de la littérature ont été consacrés à la protection de flux vidéo de la
récente norme HEVC «High Efficiency Video Coding ».

Les objectifs de cette thèse consistent à concevoir, réaliser et analyser de nouvelles solutions tech-
nologiques basées chaos permettant de répondre à la problématique et aux défis soulevés par la sécurité des
données sensibles. Pour atteindre les objectifs visés, nous concevrons d’abords des PCNGs très efficaces
(robustes et rapides), puis des systèmes chaotiques de chiffrement par flux pour les images, et enfin des
systèmes de crypto-compression à base de chaos pour protéger les flux vidéo HEVC.

A.2 Résumé des travaux:
La protection des images et vidéos est une problématique cruciale. Dans ce travail nous avons d’abord,

conçu et réalisé d’une façon efficace et sécurisée un générateur de nombre pseudo-chaotique (PCNG) mis
en œuvre en séquentielle et en parallèle par P-threads. Basé sur ces PCNGs, deux applications centrales
ont été conçues, mises en œuvre et analysées. La première traite la réalisation d’un générateur de nombre
aléatoire et les résultats obtenus sont très prometteurs. La deuxième concerne la réalisation d’un système de
chiffrement/déchiffrement par flux. L’analyse cryptographique des systèmes chaotiques réalisés montre leur
robustesse contre des attaques connues. Ce résultat est dû à la structure récursive proposée qui intègre une
forte non-linéarité, une technique de perturbation et un multiplexage chaotique. La performance obtenue en
complexité de calcul autorise leur utilisation dans des applications temps réel. Ensuite, basé sur le système
chaotique précédent, nous avons conçu et mis en œuvre efficacement un système de crypto-compression
pour des applications temps réel et portable pour architectures embarquées. Une solution de chiffrement
par flux sélectif des contenus vidéo HEVC est réalisée. Puis, un chiffrement d’une région d’intérêt est ef-
fectué au niveau CABAC pour les paramètres les plus sensibles incluant des vecteurs de mouvement et des
coefficients transformés. Le format le chiffrage conforme de Modes de Prédiction Intra a été aussi vérifié.
L’évaluation subjective et des tests de complexité d’altération de taux objectifs ont montré que la solution
proposée sécurise le contenu vidéo avec un débit binaire et une complexité de codage légèrement augmen-
tés.
Mots clés :
Générateur de nombres pseudo-chaotiques, RNG, Chiffrement par flux basé chaos, P-threads, Systèmes
de Crypto-Compression basés Chaos, Chiffrement sélectif, HEVC, Analyse de la sécurité, Complexité de
calcul.

Contributions:
Dans la suite, nous décrivons l’essentiel des contributions réalisées dans cette thèse.

Première contribution : Réalisation des générateurs de nombres pseudo-chaotiques (PCNGs)
L’architecture proposée dans la Figure A.1, pour la réalisation des PCNGs est composé de:

1. un bloc état interne de forte complexité cryptographique ;

2. une fonction de sortie;

3. un bloc de traitement "IV-Setup" (Initialisation Vector) ;

4. un bloc de traitement "Key-setup" (permettant de faire un calcul en parallèle utilisant P-thread);

5. une mémoire non-volatile.

Basé sur cette architecture, nous avons proposé un premier PCNG1 décrit par la Figure A.2 et un
deuxième PCNG2 qui diffère du premier uniquement par la fonction de sorite, qui est en l’occurrence
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Figure A.1 – Architecture des PCNGs

une opération de multiplexage chaotique entre Xs(n) et Xp(n) pour le PCNG1 ou une opération XOR
entre Xs(n) et Xp(n) pour le PCNG2. Les entrées U_s et U_p du générateur de base prennent leurs
valeurs à partir du vecteur initial du générateur IV _g, supposé un Nonce : U_s = LSB_32(IV _g) et
U_p = MSB_32(IV _g) L’état interne du générateur chaotique comprend deux filtres récursifs discrets,
contenant chacun une fonction non linéaire : une carte chaotique Skew tent pour le premier filtre récursif et
une carte PWLC pour le deuxième filtre récursif. Chaque filtre récursif utilise aussi une technique de per-
turbation basée LFSR et génère à sa sortie une séquence pseudo-chaotique de valeurs entières : X_s pour
la cellule récursive utilisant la carte Skew tent et X_p pour la cellule récursive utilisant la carte PWLC.
Le générateur peut travailler avec un retard variable entre 1 et 3 correspondant à d’éventuelles opérations
supplémentaires des filtres. Ces retards sont choisis selon le degré de sécurité nécessaire et la vitesse de
génération de séquences requise de l’application envisagée. La méthode de perturbation trouve son fonde-
ment sur le fait qu’aucun cycle stable n’existe, c.-à-d. si le système chaotique décrit, à un moment donné,
un cycle donné, il peut, par application d’une perturbation, quitter ce cycle immédiatement pour aller vers
un autre cycle. Le choix de la séquence perturbatrice est effectué selon les règles suivantes : elle devrait
avoir une longue longueur de cycle contrôlable et une distribution uniforme; elle ne devrait pas dégrader
les bonnes propriétés statistiques de la dynamique chaotique, donc l’amplitude du signal perturbateur doit
être nettement plus petite que celle du signal chaotique, de sorte que le rapport R entre les deux amplitudes
maximales, soit supérieur ou égal à 40 dB :

R = 20× log

[
Amplitude max imale de signal chaotique

Amplitude max imale de signal perturbateur

]
>= 40 db (A.1)

Un bon candidat pour la génération de séquences perturbatrices est le registre à décalage à réaction à
longueur maximale. En effet, ce dernier est caractérisé par : une bonne fonction d’autocorrélation, par
une distribution presque uniforme, par un cycle de longueur maximale égale à 2k − 1 (k est le degré du
polynôme primitif utilisé) et une implémentation logicielle ou matérielle facile.

L’implémentation logicielle en code C du générateur est effectuée en séquentielle et en parallèle util-
isant P-thread. Cette implémentation est sécurisée comme suit: avant tout appel au générateur, une allo-
cation d’un espace mémoire par appel à la fonction malloc() est réalisée. Cet espace mémoire est ensuite
verrouillé par la fonction mlock() afin d’éviter, dans le cas de surcharge du système, que certaines données
sensibles ne soient copiées dans l’espace d’échange (swap). Une fois la séquence chaotique produite puis
sauvegardée dans un fichier, la mémoire est déverrouillée par la fonction munlock() puis effacée par la
fonction memset() associée au pointeur const volatile memset_ptr.
En informatique, un processus multi-thread est un processus qui contient plusieurs fils d’exécution ap-
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Figure A.2 – Description du PCNG1 proposé

pelés threads qui s’exécutent de manière concurrente. Au sein de notre implémentation, nous avons par-
allélisé la version séquentielle du générateur chaotique en utilisant l’API standard Pthread définie dans
la norme POSIX (Pthread) qui est une bibliothèque de fonctions mise à disposition des programmeurs
souhaitant implémenter des programmes parallèles. Contrairement à MPI, Pthread est utilisé pour implé-
menter du parallélisme sur des machines à mémoire partagée. Il ne s’agit pas d’un langage de program-
mation tels que le C ou le Java mais d’une librairie devant être liée à la compilation avec les programmes
sources. Ainsi, le code source écrit en langage C est compilé à l’aide de gcc en rajoutant l’option -lpthread.
Dans notre approche multi-thread, les séquences de données sont partitionnées et réparties entre plusieurs
threads. Les threads exécutent les mêmes instructions mais sur des ensembles de données différents. Le
nombre d’échantillons à traiter, plus précisément le sous-ensemble de données associées aux échantillons
traités par chacun des threads, est différent. Les différents threads sont créés et lancés via l’appel système
pthread_create(). Dans notre cas, nous créons un nombre de threads égal au nombre de cœurs disponibles
sur la plate-forme d’exécution. La fonction pthread_create() prend notamment en paramètres d’entrée un
descripteur de thread. Chaque thread fait appel à la fonction de traitement computation auquel il est associé.
Cette fonction assure la génération des échantillons et la conversion en octets. Par la suite, les séquences
calculées par les différents threads sont stockées dans un buffer de manière systématique afin d’obtenir un
gain de performance maximal. Chaque séquence issue de chaque thread est stockée consécutivement. Dans
la fonction main(), le fil d’exécution principal qui au préalable a explicitement créé les différents threads,
attend la terminaison de tous les threads qu’il a créés via des appels successifs à la fonction pthread_join().

i n t p t h r e a d _ c r e a t e ( p t h r e a d _ t * r e s t r i c t t h r e a d ,
c o n s t p t h r e a d _ a t t r _ t * r e s t r i c t a t t r ,
vo id *(* c o m p u t a t i o n ) ( vo id * ) , vo id * r e s t r i c t a r g ) ;

Deuxième contribution : Réalisation de système de chiffrement par flux base PCNG1.
Basé sur le PCNG1, nous avons réalisé et analysé le système de chiffrement/déchiffrement par flux donné
par la Figure A.3. On voit clairement que toute la complexité cryptographique et la sécurité réside dans le
générateur de nombres pseudo-chaotiques utilisé.

L’analyse de la sécurité des systèmes réalisée et les résultats obtenus lors des différents tests expéri-
mentaux appliqués montrent leur robustesse contre les attaques cryptographiques et statistiques connues.
Par ailleurs, les performances obtenues en termes de nombre de cycles nécessaires pour chiffrer un octet
(NCpB) indiquent leur intérêt pour des applications temps réel. Ci-dessous, nous donnons quelques résul-
tats obtenus pour le système de chiffrement par flux. Le test statistique chi2, appliqué sur l’histogramme
de l’image chiffrée prouve l’uniformité de l’histogramme sous test. Aussi, le test statistique de NIST ap-
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Figure A.3 – Système de chiffrement/déchiffrement par flux

(a) Camera man plain image (b) Camera man cipher image
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Figure A.4 – a) Image en clair de Caméraman, b) Image chiffrée correspondante, c) Histogramme de l’image
en clair, d) Histogramme de l’image chiffrée.
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Figure A.5 – Proportion des tests de NIST.
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Figure A.6 – Nombre de cycles nécessaires pour chiffrer un octet en fonction de la taille des données.

pliqué sur les séquences générées indique la propriété de quasi-aléatoire de ces séquences. Ci-dessous sur
la Figure A.5, nous montrons un exemple de résultat obtenu de test de NIST sur 100 séquences produites,
chacune contenant 1 million de bits. Toutes les séquences passent le test de NIST composé de 188 tests
et sous tests. Enfin, nous donnons ci-dessous sur la Figure A.6, les performances obtenues du système de
chiffrement par flux en termes de nombre de cycles nécessaires pour chiffrer un octet (NCpB) en fonction
de la taille des données chiffrées dans les deux cas de figures de l’implémentation séquentielle et parallèle.
Ces résultats montrent que, pour des tailles des données à partir de 196608 Octets, le NCpB du système
proposé est comparable à celui obtenu par les algorithmes du projet eStream (Rabbit, HC-128, Salsa20/12,
SOSEMANNUK, etc.,) et est meilleur pour les très grandes données (à partir de 503316482).

Troisième contribution : réalisation d’un système de crypto-compression basé chaos pour le
chiffrement sélectif des flux vidéo HEVC.

Le système proposé de crypto-compression basé chaos pour le chiffrement sélectif des flux vidéo HEVC
au niveau CABAC est décrit par la Figure A.7. La solution proposée crypte un ensemble de paramètres
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HEVC les plus sensibles incluant le vecteur de mouvement (MV), les signes des différences des MV, les
coefficients transformés (TCs), ainsi que leur signe. La solution de chiffrement sélectif proposée conserve
la conformité des paramètres « Intra Prediction Modes » (IPMs) de la luminance et de la chrominance au
format HEVC. Basé sur le concept de tuile, le système de crypto-compression permet aussi une protection
de la vidéo au niveau d’une Région d’Intérêt (ROI) définie dans le standard HEVC. Il permet d’éviter la
propagation du chiffrement à l’extérieur des frontières ROI.
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Figure A.7 – Selective encryption in HEVC at CABAC level.





B
Static and dynamic analysis tools

B.1 Software security analysis tools
In order to validate the correctness of our solution, we conducted a security code review using several

static and dynamic techniques: Clang, Gdb, Valgrind, DRD, Callgrind and Leak-analysis
tools.

B.1.1 Static Software security analysis tools
B.1.1.1 Clang Static Analyzer

Installation:First we install the clang package from the Ubuntu software center, then we use tool to
check our code by writing the following command in the terminal:

c l a n g −−a n a l y z e main . c −p t h r e a d −lm −o t e s t

The clang tool give us some warnings, in the following we provide the warnings and the solutions:

In f i l e i n c l u d e d from main . c : 2 6 :
. / c a r t e s . c : 2 5 9 : 1 6 : warn ing : ^ has lower p r e c e d e n c e t h a n <=; <= w i l l be
e v a l u a t e d f i r s t [−Wparen theses ] i f ( K−>X_1s−1 ^ K−>X_1p−1 <= 2147483648)

S o l u t i o n : i f ( (K−>X_1s−1 ^ K−>X_1p−1)<= 2147483648)

. / c a r t e s . c : 2 5 9 : 1 6 : n o t e : p l a c e p a r e n t h e s e s a round t h e ’ <= ’ e x p r e s s i o n t o s i l e n c e
t h i s warn ing i f ( K−>X_1s−1 ^ K−>X_1p−1 <= 2147483648)

S o l u t i o n : i f ( (K−>X_1s−1 ^ K−>X_1p−1)<= 2147483648)

. / c a r t e s . c : 2 5 9 : 1 6 : n o t e : p l a c e p a r e n t h e s e s a round t h e ^ e x p r e s s i o n t o e v a l u a t e
i t f i r s t i f ( K−>X_1s−1 ^ K−>X_1p−1 <= 2147483648)

S o l u t i o n : i f ( (K−>X_1s−1 ^ K−>X_1p−1)<= 2147483648)

. / c a r t e s . c : 3 1 2 : 1 6 : warn ing : ^ has lower p r e c e d e n c e t h a n <=; <= w i l l be e v a l u a t e d
f i r s t [−Wparen theses ] i f ( K−>X_1s−1 ^ K−>X_1p−1 <= 2147483648)

149



150 APPENDIX B. STATIC AND DYNAMIC ANALYSIS TOOLS

s o l u t i o n : i f ( (K−>X_1s−1 ^ K−>X_1p−1) <= 2147483648)

. / c a r t e s . c : 3 1 2 : 1 6 : n o t e : p l a c e p a r e n t h e s e s a round t h e ’ <= ’ e x p r e s s i o n t o
s i l e n c e t h i s warn ing i f ( K−>X_1s−1 ^ K−>X_1p−1 <= 2147483648)

S o l u t i o n : i f ( (K−>X_1s−1 ^ K−>X_1p−1)<= 2147483648)

. / c a r t e s . c : 3 1 2 : 1 6 : n o t e : p l a c e p a r e n t h e s e s a round t h e ^ e x p r e s s i o n t o
e v a l u a t e i t f i r s t i f ( K−>X_1s−1 ^ K−>X_1p−1 <= 2147483648)

^
S o l u t i o n : i f ( (K−>X_1s−1 ^ K−>X_1p−1)<= 2147483648)

main . c : 1 8 5 : 8 : warn ing : i m p l i c i t d e c l a r a t i o n o f f u n c t i o n ’ mlock ’ i s i n v a l i d i n
C99 [−Wimpl i c i t−f u n c t i o n−d e c l a r a t i o n ] mlock (K, s i z e o f (*K ) ) ;

S o l u t i o n we add t h e h e a d e r # i n c l u d e < s y s / mman . h>
^

main . c : 2 2 5 : 5 : warn ing : i m p l i c i t d e c l a r a t i o n o f f u n c t i o n ’ g e t t i m e o f d a y ’ i s
i n v a l i d i n C99 [−Wimpl i c i t−f u n c t i o n−d e c l a r a t i o n ] g e t t i m e o f d a y (& s t a r t , NULL ) ;

S o l u t i o n : we add t h e h e a d e r # i n c l u d e < s y s / t ime . h>

main . c : 2 3 0 : 5 1 : warn ing : c a s t t o ’ vo id * ’ from s m a l l e r i n t e g e r t y p e ’ i n t ’
[−Wint−to−void−p o i n t e r−c a s t ] i f ( p t h r e a d _ c r e a t e (& t h [ i ] ,NULL, compu ta t i on , ( vo id * ) i ) <0)

S o l u t i o n : we r e w r o t e t h e P t h r e a d f u n c t i o n as f o l l o w s :
# i n c l u d e < p t h r e a d . h>
# i n c l u d e < s t d i o . h>
# i n c l u d e < s t d i n t . h>

vo id * f c t ( vo id * a r g ) {
i n t i d = ( i n t p t r _ t ) ( a r g ) ;
p r i n t f ("%d \ n " , i d ) ;
p t h r e a d _ e x i t (NULL ) ;

}

i n t main ( ) {
p t h r e a d _ t t h r e a d s [ 8 ] ;
u n s i g n e d i n t i ;
f o r ( i = 0 ; i < 8 ; ++ i ) {

p t h r e a d _ c r e a t e (& t h r e a d s [ i ] , NULL, f c t , ( vo id * ) ( i n t p t r _ t ) i ) ;
}

f o r ( i = 0 ; i < 8 ; ++ i ) {
p t h r e a d _ j o i n ( t h r e a d s [ i ] , NULL) ;

}
r e t u r n 0 ;

}

main . c : 3 3 0 : 6 : warn ing : i m p l i c i t d e c l a r a t i o n o f f u n c t i o n ’ munlock ’ i s
i n v a l i d i n C99 [−Wimpl i c i t−f u n c t i o n−d e c l a r a t i o n ] munlock (K ) ;

S o l u t i o n : we add t h e h e a d e r # i n c l u d e < s y s / mman . h>
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B.1.1.2 Frama-c

It is a set of tools dedicated to the analysis of source code written in C. It gathers several static analysis
techniques in a single collaborative framework. Frama-C is Open Source software.
Installation: from Ubuntu software center.
Results:as we can see in the snapshot below no errors were found in our code, all processes are valid.

Figure B.1 – Frama-c analysis report.

B.1.1.3 Cppcheck

First we download the cppcheck tool from: cppcheck.sourceforge.net, then we apply the following
commands on the terminal:

cd g u i
qmake
make
cppceck main . c −p t h r e a d −lm −o t e s t

Cppcheck 1 . 7 6 r e s u l t s :
[ main . cpp : 3 ] : ( s t y l e ) V a r i a b l e ’p ’ i s n o t a s s i g n e d a v a l u e .
[ main . cpp : 4 ] : ( e r r o r ) U n i n i t i a l i z e d v a r i a b l e : p

S o l u t i o n : we a s s i g n e d i n i t i a l v a l u e f o r p .

B.1.2 Dynamic Software security analysis tools
B.1.2.1 Efficient memory-leak tracer for C/C++ programs (open source)

A memory leak is a type of resource leak (particular type of resource consumption by a computer pro-
gram where the program does not release resources it has acquired), that occurs when a computer program
incorrectly manages memory allocations in such a way that memory which is no longer needed is not re-
leased. leak tracer tool for C/C++ programs. It shows if your program have a memory leak , together with
leak count and size.
Installation: we can install from Ubuntu software center. Then we type the following commands in the
terminal.

gcc main . c −p t h r e a d −lm −o t e s t
LeakCheck . / t e s t

The results of using this tool in our code is provided hereafter. As we can see the memory leak in our code
is zero.

####################################################################
# memory o v e r r u n p r o t e c t i o n o f 4 Bytes
# i n i t i a l i z i n g new memory wi th 0xAA
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# sweeping d e l e t e d memory wi th 0xEE
# a b o r t s on OVERWRITE_MEMORY
# t h r e a d save
# l e a k 0 Bytes :−)
####################################################################

B.1.2.2 Leak-analyzer (open source)

This tool is the same as previous one, but its work with the gdb debugger to analysis the code, that
means we must add the option -g in the command line as follows:

gcc −g main . c −p t h r e a d −lm −o t e s t
l eak−a n a l y z e . / t e s t

The result of this tool in our code indicates that it is free from memory errors (see Figure B.2)

Figure B.2 – Leak analyzer report.

B.1.2.3 Valgrind

The Valgrind provides a number of debugging and profiling tools that help you make your programs
faster and more correct. The most popular of these tools is called Memcheck. It can detect many memory-
related errors that are common in C and C++ programs and that can lead to crashes and unpredictable
behavior.
Installation: we can download valgrind with all its package(memchek,drd,callgrind,gdb)from the Ubuntu
software center, its require about 30 minutes to complete our program checking. We can run it using the
following commands:

gcc main . c −p t h r e a d −lm −o t e s t
v a l g r i n d −− t o o l =memcheck −−l e ak−check = yes . / t e s t

The results obtained from the Valgrind give us a strong indication that our program haven’t any memory
leaks, as we see in the results of valgrind checker in Figure B.3 that all heap blocks were freed and no leaks
are possible.

B.1.2.4 Callgrind

We use this tool in order to check the cashe memory, by typing the following command in the terminal:

v a l g r i n d −− t o o l = c a l l g r i n d −−s i m u l a t e−cache = yes . / t e s t

Our code is free from cache error, as we can see in Figure B.4 that represents the analysis report of Callgrind
.

B.1.2.5 Thread error detector (DRD)

DRD is a tool that used to check the thread errors in the program. DRD is a Valgrind tool for detecting
errors in multithreaded C and C++ programs. The tool works for any program that uses the POSIX threading
primitives or that uses threading concepts built on top of the POSIX (Pthread) threading primitives. The
command for running this tool provided in the following:
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Figure B.3 – Valgrind analysis report.

Figure B.4 – Callgrind analysis report.

v a l g r i n d −− t o o l = drd . / t e s t

The results of applying this tool in our program give zero errors (see Figure B.5 ).

B.2 Some of tools and limitations
In the following we display some tools that we cannot use them in our program.

B.2.1 Csur tool
csur is a generic C code analyzer. Csur is distributed freely provided you don’t use it for any com-

mercial purpose. Nevertheless, concerning its limitations, the most problematic is that it does not support
applications build on various .c files (as it is our case with main.c, cartes.c, util.c...).
http://www.lsv.ens-cachan.fr/ goubault/Csur/csur.html
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Figure B.5 – DRD analysis report.

B.2.2 Boon tool
This tool applies integer range analysis to determine whether a C program can index an array outside

its bounds. While capable of finding many errors that lexical analysis tools would miss, this tool checker
is still imprecise: it ignores statement order, it can’t model inter-procedural dependencies, and it ignores
pointer aliasing.

https://www.cigital.com/blog/static-analysis-for-security/

B.2.3 Cqual tool
CQual uses type qualifiers to perform a taint analysis, which detects format string vulnerabilities in

C programs. CQual requires a programmer to annotate a few variables as either tainted or untainted
and then uses type inference rules (along with pre-annotated system libraries) to propagate the qualifiers.
https://www.cigital.com/blog/static-analysis-for-security/

B.2.4 Parfai tool and coverity tool
Parfait is similar to the Coverity analysis tool that has been used on the kernel as well as other free

software. In both cases, at least for now, the analysis can only be run by the company who owns the tool,
or those who have licensed it in the case of Coverity. https://lwn.net/Articles/344003/

B.2.5 Blast tool
The big problem in this tool after many years of service, they do not actively maintain BLAST anymore.

Another problem it is need the program to satisfy behavioral properties of the interfaces it use.
http://mtc.epfl.ch/software-tools/blast/index-epfl.php
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Code Documentation

C.1 Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
key

Parameters of key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.2 File List
Here is a list of all files with brief descriptions:
cartes.c

Map program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
cartes.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
main.c

Main program. stream version v3: created by Mohammad Abutaha . . . . . . . . . . . 166
util.c

key and parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
util.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.3 key Struct Reference
parameters of key.
#include <util.h>

Public Attributes
— int N
— uint64_t Q
— uint64_t g_s
— uint64_t g_p
— uint64_t reg_s
— uint64_t reg_p
— uint64_t mask
— int delay

155
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— uint64_t P_s
— uint64_t P_p
— uint64_t X_s
— uint64_t X_p
— uint64_t X_1s
— uint64_t tab_Xdelay_s [4]
— uint64_t tab_k_s [4]
— uint64_t U_s
— uint64_t X_1p
— uint64_t tab_Xdelay_p [4]
— uint64_t tab_k_p [4]
— uint64_t U_p
— int maxdegree_p
— int maxdegree_s
— int delta_s
— int delta_p
— int tr
— uint64_t IV

C.3.1 Detailed Description

parameters of key.
This structure contain all the parameters of they key.

C.3.2 Member Data Documentation

C.3.2.1 delay

int key::delay

C.3.2.2 delta_p

int key::delta_p

C.3.2.3 delta_s

int key::delta_s

C.3.2.4 g_p

uint64_t key::g_p

C.3.2.5 g_s

uint64_t key::g_s
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C.3.2.6 IV

uint64_t key::IV

C.3.2.7 mask

uint64_t key::mask

C.3.2.8 maxdegree_p

int key::maxdegree_p

Maximal polynome degree for PWLC map.

C.3.2.9 maxdegree_s

int key::maxdegree_s

Maximal polynome degree for skewtent map.

C.3.2.10 N

int key::N

C.3.2.11 P_p

uint64_t key::P_p

C.3.2.12 P_s

uint64_t key::P_s

0<P<2∧N for skewtent and 0<P<2∧(N-1) for skewtent.

C.3.2.13 Q

uint64_t key::Q

C.3.2.14 reg_p

uint64_t key::reg_p

C.3.2.15 reg_s

uint64_t key::reg_s
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C.3.2.16 tab_k_p

uint64_t key::tab_k_p[4]

C.3.2.17 tab_k_s

uint64_t key::tab_k_s[4]

Constant value for the first delay 0<k1<2∧N

C.3.2.18 tab_Xdelay_p

uint64_t key::tab_Xdelay_p[4]

In the recursive cell, X1 value correspond to the first delay 0<X1<2∧N

C.3.2.19 tab_Xdelay_s

uint64_t key::tab_Xdelay_s[4]

In the recursive cell, X1 value correspond to the first delay 0<X1<2∧N

C.3.2.20 tr

int key::tr

C.3.2.21 U_p

uint64_t key::U_p

Constant value for the first delay 0<k1<2∧N Constant value 0<U<2∧N

C.3.2.22 U_s

uint64_t key::U_s

Constant value 0<U<2∧N

C.3.2.23 X_1p

uint64_t key::X_1p

Called X-1 to understand that it is the precedent result X re-injected in the map in the future loop.

C.3.2.24 X_1s

uint64_t key::X_1s

Called X-1 to understand that it is the precedent result X re-injected in the map in the future loop.

C.3.2.25 X_p

uint64_t key::X_p
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C.3.2.26 X_s

uint64_t key::X_s

Result of the map 0<X<2∧N
The documentation for this struct was generated from the following file:
— util.h

C.4 cartes.c File Reference
Map program.
#include "cartes.h"

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <stdint.h>
#include <assert.h>
#include <omp.h>

Macros
— #define BIT(n, x) ( ( (x) >> (n) ) & 1 )

Shift a value from n bits.

Functions
— uint64_t PWLCmap (uint64_t X_1, uint64_t P, int N, double ratio3, double ratio4, uint64_t m1,

uint64_t m2)
— uint64_t STmap (uint64_t X_1, int N, uint64_t P, double ratio1, double ratio2, uint64_t m1,

uint64_t m2)
— void write_dec (uint64_t ∗V, int L, FILE ∗FIC)

Writes in the file FIC the L elements of the sequence V.
— int maximal_degree_of_polynome (uint64_t polynome)
— uint64_t LFSR (int maxdegree, int G, uint64_t Q)

Create a linear shift in the register.
— uint64_t generator ( key ∗K, int iter_sec, double ratio1, double ratio2, double ratio3, double ratio4,

uint64_t m1, uint64_t m2)
Create a chaotic sample.

— uint64_t generator_no_perturbation ( key ∗K, int iter_sec, double ratio1, double ratio2, double
ratio3, double ratio4, uint64_t m1, uint64_t m2)

— void iv_setup (FILE ∗∗Fic_parametre, key ∗K)
— void write_bin (uint64_t ∗V, int L, FILE ∗FIC, int N)

C.4.1 Detailed Description

Map program.

Author

mohammad Abutaha Copyright
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Version

gseqch_v1_

Date

Functions file concerning the map.

C.4.2 Macro Definition Documentation

C.4.2.1 BIT

BIT(

n,

x ) ( ( (x) >> (n) ) & 1 )

Shift a value from n bits.

Parameters

n The number of bits to shift.
x The value to shift.

C.4.3 Function Documentation

C.4.3.1 generator()

uint64_t generator (

key ∗ K,

int iter_sec,

double ratio1,

double ratio2,

double ratio3,

double ratio4,

uint64_t m1,

uint64_t m2 )

Create a chaotic sample.

Parameters

∗K a secret key.
iter_sec loop counter
ratio1 calculated value depend on control parameter p.
ratio2 calculated value depend on control parameter p.
ratio3calculated value depend on control parameter p.
ratio4 calculated value depend on control parameter p.
m1 equal POWER(K[0].N)
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Parameters

m2 equal POWER(K[0].N-1)

Returns

Xresult

C.4.3.2 generator_no_perturbation()

uint64_t generator_no_perturbation (

key ∗ K,

int iter_sec,

double ratio1,

double ratio2,

double ratio3,

double ratio4,

uint64_t m1,

uint64_t m2 )

C.4.3.3 iv_setup()

void iv_setup (

FILE ∗∗ Fic_parametre,

key ∗ K )

C.4.3.4 LFSR()

uint64_t LFSR (

int maxdegree,

int G,

uint64_t Q )

Create a linear shift in the register.

Parameters

maxdegree is the maximal degree of the polynome choosen.
G is the decimal value for the choosen polynome
Q is the maximal value.

Returns

reg is the new register state.

C.4.3.5 maximal_degree_of_polynome()

int maximal_degree_of_polynome (

uint64_t polynome )
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C.4.3.6 PWLCmap()

uint64_t PWLCmap (

uint64_t X_1,

uint64_t P,

int N,

double ratio3,

double ratio4,

uint64_t m1,

uint64_t m2 )

C.4.3.7 STmap()

uint64_t STmap (

uint64_t X_1,

int N,

uint64_t P,

double ratio1,

double ratio2,

uint64_t m1,

uint64_t m2 )

C.4.3.8 write_bin()

void write_bin (

uint64_t ∗ V,

int L,

FILE ∗ FIC,

int N )

C.4.3.9 write_dec()

void write_dec (

uint64_t ∗ V,

int L,

FILE ∗ FIC )

Writes in the file FIC the L elements of the sequence V.

Parameters

V is a table wich contain all decimal results.
L is the table's lenght
FIC is the file were results will be writes.
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C.5 cartes.h File Reference

#include "util.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <inttypes.h>

Macros

— #define BIT(n, x) ( ( (x) >> (n) ) & 1 )
— #define POWER(n) ( 1LL << (n) )
— #define _ERROR -1

Functions

— void write_dec (uint64_t ∗V, int L, FILE ∗FIC)
Writes in the file FIC the L elements of the sequence V.

— void write_bin (uint64_t ∗V, int L, FILE ∗FIC, int N)
— int maximal_degree_of_polynome (uint64_t polynome)
— uint64_t STmap (uint64_t X_1, int N, uint64_t P, double ratio1, double ratio2, uint64_t m1,

uint64_t m2)
— uint64_t PWLCmap (uint64_t X_1, uint64_t P, int N, double ratio3, double ratio4, uint64_t m1,

uint64_t m2)
— uint64_t LFSR (int maxdegree, int G, uint64_t Q)

Create a linear shift in the register.
— uint64_t generator ( key ∗K, int iter_sec, double ratio1, double ratio2, double ratio3, double ratio4,

uint64_t m1, uint64_t m2)
Create a chaotic sample.

— uint64_t generator_no_perturbation ( key ∗K, int iter_sec, double ratio1, double ratio2, double
ratio3, double ratio4, uint64_t m1, uint64_t m2)

— void iv_setup (FILE ∗∗Fic_parametre, key ∗K)

C.5.1 Macro Definition Documentation

C.5.1.1 _ERROR

#define _ERROR -1

C.5.1.2 BIT

#define BIT(

n,

x ) ( ( (x) >> (n) ) & 1 )
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C.5.1.3 POWER

#define POWER(

n ) ( 1LL << (n) )

C.5.2 Function Documentation

C.5.2.1 generator()

uint64_t generator (

key ∗ K,

int iter_sec,

double ratio1,

double ratio2,

double ratio3,

double ratio4,

uint64_t m1,

uint64_t m2 )

Create a chaotic sample.

Parameters

∗K a secret key.
iter_sec loop counter
ratio1 calculated value depend on control parameter p.
ratio2 calculated value depend on control parameter p.
ratio3calculated value depend on control parameter p.
ratio4 calculated value depend on control parameter p.
m1 equal POWER(K[0].N)
m2 equal POWER(K[0].N-1)

Returns

Xresult

C.5.2.2 generator_no_perturbation()

uint64_t generator_no_perturbation (

key ∗ K,

int iter_sec,

double ratio1,

double ratio2,

double ratio3,

double ratio4,

uint64_t m1,

uint64_t m2 )
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C.5.2.3 iv_setup()

void iv_setup (

FILE ∗∗ Fic_parametre,

key ∗ K )

C.5.2.4 LFSR()

uint64_t LFSR (

int maxdegree,

int G,

uint64_t Q )

Create a linear shift in the register.

Parameters

maxdegree is the maximal degree of the polynome choosen.
G is the decimal value for the choosen polynome
Q is the maximal value.

Returns

reg is the new register state.

C.5.2.5 maximal_degree_of_polynome()

int maximal_degree_of_polynome (

uint64_t polynome )

C.5.2.6 PWLCmap()

uint64_t PWLCmap (

uint64_t X_1,

uint64_t P,

int N,

double ratio3,

double ratio4,

uint64_t m1,

uint64_t m2 )

C.5.2.7 STmap()

uint64_t STmap (

uint64_t X_1,

int N,

uint64_t P,

double ratio1,

double ratio2,
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uint64_t m1,

uint64_t m2 )

C.5.2.8 write_bin()

void write_bin (

uint64_t ∗ V,

int L,

FILE ∗ FIC,

int N )

C.5.2.9 write_dec()

void write_dec (

uint64_t ∗ V,

int L,

FILE ∗ FIC )

Writes in the file FIC the L elements of the sequence V.

Parameters

V is a table wich contain all decimal results.
L is the table's lenght
FIC is the file were results will be writes.

C.6 main.c File Reference
Main program. version v3 Stream: created by Mohammad Abutaha
#include <stdio.h>

#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <sys/time.h>
#include "cartes.h"
#include <stdint.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <sys/mman.h>
#include "cv.h"
#include "highgui.h"

Functions
— int main ()

start main program.
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C.6.1 Detailed Description
Main program. version v1: created by Mohammad Abutaha.

Version

Stream cipher_v3

Date

Main program for the chaotic sequence generator using the basic map.

C.6.2 Function Documentation

C.6.2.1 main()

int main (

void )

start main program.
generator calling
encryption

Returns

EXIT_SUCCESS.

C.7 util.c File Reference
#include "util.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdint.h>
#include <assert.h>

Functions
— key InitializeStructureToZero ()
— uint64_t get_numOFsample (int N)

Let the user to choose the number of sample in each sequences.
— key InitializeStruct (FILE ∗∗Fic_parametre)
— key filling_structure ( key ∗K, FILE ∗∗Fic_keys, int j)
— void secure_memzero (void ∗K, size_t len)

C.7.1 Detailed Description
Version

stream _v3_
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Date

25 septemper 2016

C.7.2 Function Documentation

C.7.2.1 filling_structure()

key filling_structure (

key ∗ K,

FILE ∗∗ Fic_keys,

int j )

C.7.2.2 get_numOFsample()

int get_numOFsample (

int N )

Let the user to choose the number of sample in each sequences.

Parameters

N The number of bits.

Returns

The number of samples in each sequences: numofsample.

C.7.2.3 InitializeStruct()

key InitializeStruct (

FILE ∗∗ Fic_parametre )

C.7.2.4 InitializeStructureToZero()

key InitializeStructureToZero ( )

C.7.2.5 secure_memzero()

void secure_memzero (

void ∗ K,

size_t len )

C.8 util.h File Reference
#include <stdio.h>

#include <stdlib.h>
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#include <stdint.h>
#include <sys/types.h>
#include <inttypes.h>

Classes
— struct key

parameters of key.

Typedefs
— typedef struct key key

Functions
— uint64_t get_numOFsample (int N)

Let the user to choose the number of sample in each sequences.
— key InitializeStructureToZero ()
— key InitializeStruct (FILE ∗∗fic)
— key filling_structure ( key ∗K, FILE ∗∗fic, int j)

C.8.1 Typedef Documentation

C.8.1.1 key

typedef struct key key

C.8.2 Function Documentation

C.8.2.1 filling_structure()

key filling_structure (

key ∗ K,

FILE ∗∗ fic,

int j )

C.8.2.2 get_numOFsample()

uint64_t get_numOFsample (

int N )

Let the user to choose the number of sample in each sequences.

Parameters

N The number of bits.
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Figure C.1 – Code scheme parallel version.

Returns

The number of samples in each sequences: numofsample.

C.8.2.3 InitializeStruct()

key InitializeStruct (

FILE ∗∗ fic )

C.8.2.4 InitializeStructureToZero()

key InitializeStructureToZero ( )
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Résumé
La protection des images et vidéos est une problématique cruciale.
Dans ce travail nous avons d’abord, conçu et réalisé d’une façon
efficace et sécurisée un générateur de nombre pseudo-chaotique
(PCNG) mis en œuvre en séquentielle et en parallèle par P-threads.
Basé sur ces PCNGs, deux applications centrales ont été conçues,
mises en œuvre et analysées. La première traite la réalisation d’un
générateur de nombre aléatoire et les résultats obtenus sont très
prometteurs. La deuxième concerne la réalisation d’un système de
chiffrement/déchiffrement par flux. L’analyse cryptographique des
systèmes chaotiques réalisés montrent leur robustesse contre des
attaques connues. Ce résultat est dû à la structure récursive
proposée qui intègre une forte non-linéarité, une technique de
perturbation et un multiplexage chaotique. La performance obtenue
en complexité de calcul indique leurs utilisations dans des
applications temps réel. Ensuite, basé sur le système chaotique
précédent, nous avons conçu et mis en œuvre efficacement un
système de crypto-compression pour des applications temps réel et
portable pour architectures embarquées. Une solution de
chiffrement par flux sélectif des contenus vidéo HEVC est réalisée.
Puis, un chiffrement d’une région d’intérêt est effectué au niveau
CABAC pour les paramètres les plus sensibles incluant des
vecteurs de mouvement et des coefficients transformés. Le format
le chiffrage conforme de Modes de Prédiction Intra a été aussi
vérifié. L’évaluation subjective et des tests de complexité d’altération
de taux objectifs ont montré que la solution proposée sécurise le
contenu vidéo avec un débit binaire et une complexité de codage
légèrement augmentés.

Abstract
Image and video protection have gained a lot of momentum over the
last decades. In this work, first we designed and realized in an
efficient and secure way a pseudo-chaotic number generator
(PCNG) implemented in sequential and parallel (with P-threads)
versions. Based on these PCNGs, two central applications were
designed, implemented and analyzed. The former application deals
with the realization of a random number generator (RNG) based
PCNG, and the obtained results are very promising. The latter
application concerns the realization of a chaos-based stream cipher.
The cryptographic analysis and the statistical study of the realized
chaotic systems show their robustness against known attacks. This
result is due to the proposed recursive architecture which has a
strong non-linearity a technique of disturbance, and a chaotic
multiplexing. The computation performance indicate their use in real
time applications. Second, based on the previous chaotic system,
we designed and implemented in effective manner a real time joint
crypto-compression system for embedded architecture. An
end-to-end selective encryption solution that protects privacy in the
HEVC video content is realized. Then, a ROI encryption is
performed at the CABAC bin string level for the most sensitive
HEVC parameters including motion vectors and transform
coefficients. The format compliant encryption of Intra Prediction
Modes has been also investigated. It increases a little bit the bit
rate. Subjective evaluation and objective rate-distortion-complexity
tests showed that the proposed solution performs a protection of
privacy in the HEVC video content with a small overhead in bit rate
and coding complexity.

Mots clés
Générateur de nombres pseudo-chaotiques, RNG, Chiffrement par
flux basé chaos, Systèmes de Crypto-Compression basés Chaos,
Chiffrement sélectif, HEVC, Analyse de la sécurité, Complexité de
calcul.

Key Words
Pseudo-chaotic number generator, RNG, Chaos-based stream
cipher, Chaos-based crypto-compression system, Selective
encryption, HEVC, Security analysis, Computing performance.
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