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Résumé

Soit T un sous-groupe fini de SUs. F. Klein a publié [Klein84] en 1884 dans lequel
il démontre que le quotient C?/T" est isomorphe & une surface dans C* définie par une
équation polynomiale. Cette surface possede une unique singularité isolée et est appelée
singularité de Klein, ou singularité simple. Ces singularités ont par la suite été étudiées
par de nombreux auteurs. En 1934, P. Du Val a démontré dans [DuVa34| que la préimage
du point singulier de la singularité de Klein par sa résolution minimale est une union de
droites projectives dont la matrice d’intersection est 'opposée de la matrice de Cartan
d’une algebre de Lie simplement lacée de type A,, D,, Eg, E7 ou Eg. Cette relation
entre la théorie de Lie et les singularités simples a depuis été exploitée par, entre autres,
E. Brieskorn qui a montré dans [Bries71] que la déformation semiuniverselle d’une singu-
larité simple C? /T peut étre obtenue par le quotient adjoint de I’algébre de Lie de méme
type que C2/I". 1l a aussi démontré une conjecture d’A. Grothendieck portant sur une
résolution simultanée de ce méme quotient adjoint. En 1978, P. Slodowy a donné une de-
scription en termes de systemes de racines des singularités présentes dans les fibres d’une
déformation d’une singularité de Klein différentes de la fibre spéciale. Puis en 1998, P.
Slodowy et H. Cassens publiérent [CaSlo98] dans lequel ils construisent les déformations
semiuniverselles des singularités simples dans un contexte algébro-géométrique en util-
isant la théorie des représentations de carquois ainsi que des travaux de P.B. Kronheimer
en géométrie différentielle. A la base de cette construction, on trouve la correspondance
de McKay, découverte en 1980 par J. McKay ([McK80]), et qui établit un lien entre les
représentations irréductibles des sous-groupes finis de SU; et les diagrammes de Dynkin
étendus de types Z;, D:, E&, F7 et Es.

En théorie de Lie, la classification des algebres de Lie simples permet leur séparation
en deux catégories: d’un coté les algebres de Lie simplement lacées de types A,, D,
Eg, E7 et Eg, de lautre les algebres de Lie non simplement lacées (ou inhomogenes)
de types B, C,, Fy et Go. P. Slodowy a étendu la notion de singularité simple aux
types inhomogenes en 1978 et a défini des singularités simples de types B,, C,, Fj
et G3. Une singularité simple inhomogene est alors un couple (Xg,) ot Xy = C2/T"
est une singularité simple homogene et €2 est un groupe de symétrie du diagramme de
Dynkin associé a la singularité. Il a ensuite montré que l'on peut trouver un sous-
groupe fini I de SUs qui contient I' comme sous-groupe distingué et tel que le quotient
I'/T' = Q agit sur la singularité C?/T". Cette action peut étre relevée sur la résolution
minimale de C? /T et induit une action sur les diviseurs exceptionnels qui correspond au
groupe d’automorphismes du diagramme de Dynkin associé¢ & C?/T". P. Slodowy a par
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Résumé

la suite démontré des résultats généralisant ceux obtenus pour les singularités simples
homogenes. Il a notamment construit la déformation semiuniverselle d’une singularité
de Klein inhomogene a partir du quotient adjoint d’une algebre de Lie homogene et d'un
groupe de symétrie du diagramme de Dynkin associé.

La correspondance de McKay se généralise également aux cas inhomogenes. En effet, il
est possible d’établir un lien entre les diagrammes de Dynkin de types B,., C;., Fy et Ga
et certains couples (', T') de sous-groupes finis de SU3 avec I < T” et ce de deux maniéres
différentes. La premieére, dite par induction, consiste a induire des représentations de
IV & partir des représentations irréductibles de I'.  On peut a partir de 1a retrouver
la matrice de Cartan transposée du diagramme de Dynkin étendu AV (T, T") associé a
la singularité simple inhomogene (C2/I',T'/T") de type A(T',I'). La seconde méthode
restreint les représentations irréductibles de I'' en des représentations de I' et obtient la
matrice de Cartan de type AV (T, "), transposée de celle obtenue par induction.

L’objectif de cette these est de généraliser la construction de H. Cassens et P. Slodowy
d’une déformation semiuniverselle aux singularités de types B,., C;., Fy et G3. On va com-
mencer par rappeler les définitions et propriétés de base des algebres de Lie semisimples
sur un corps algébriquement clos de caractéristique nulle, et on donnera les résultats
de E. Brieskorn et P. Slodowy sur le lien entre le quotient adjoint et les singularités
simples. On établira également un lien entre les diagrammes de Dynkin homogenes et
inhomogenes a travers un procédé appelé pliage. Dans un second temps, on présen-
tera les définitions et théoreémes nécessaires a la compréhension des résultats de P.B.
Kronheimer en géométrie différentielle et symplectique, ainsi que d’un résultat de G.
Kempf et L. Ness ([KemNes79]) reliant les quotients hyperkéhlériens et les quotients
GIT. Le troisieme chapitre sera l'occasion d’introduire la notion de représentation de
carquois ainsi que son lien avec les systemes de racines d’algebres de Lie. On don-
nera également une interprétation du pliage en termes de carquois. Le chapitre 4 sera
consacré a la généralisation des travaux de H. Cassens et P. Slodowy. Pour ce faire,
on étudiera 'espace des représentations d’un carquois appelé carquois de McKay défini
& partir du diagramme de Dynkin associé & C?/T", ainsi que d'un groupe de symétrie
Q =T'/T' de ce méme diagramme de Dynkin en se basant sur la correspondance de
McKay inhomogene. L’orientation de ce carquois, présente dans la construction de H.
Cassens et P. Slodowy mais jusqu’ici arbitraire, jouera ici un role bien plus important.
En effet, la déformation semiuniverselle est construite a partir d’une application mo-
ment dépendant de l'orientation du carquois. Si 'action du groupe de symétrie €2 est
symplectique, alors I'application moment devient naturellement -équivariante. La dé-
formation semiuniverselle devient elle aussi {2-équivariante et grace a des travaux de P.
Slodowy on obtient la déformation semiuniverselle d’une singularité inhomogene. On
déterminera tout d’abord dans quelles conditions I'action de €2 est symplectique ainsi
que la compatibilité de cette action avec la symétrie du diagramme de Dynkin. On
calculera ensuite explicitement la déformation semiuniverselle des singularités de types
Agr—1 (r quelconque), C3, Fy et Go. Ces calculs vont nécessiter I'utilisation d’un systéme
de coordonnées particulier sur ’espace de base de la déformation: les coordonnées plates
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de K. Saito. Apres avoir rappelé leur définition ainsi que la raison pour laquelle on les a
sélectionnées, des formules explicites en seront données. La déformation semiuniverselle
inhomogene obtenue vérifie que chacune de ces fibres est munie d’une action de 2. En
passant chaque fibre et donc la déformation au quotient, on obtient une nouvelle dé-
formation mais cette fois d’une singularité simple homogene. On verra que le caractere
semiuniverselle est perdu par passage au quotient. On terminera par une étude de la
régularité des fibres de cette déformation sur certains exemples.
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Introduction

In [Klein84], F. Klein studied the polynomial equations of degree 5. For this he looked
at the rotation groups of the five Platonic solids and at the finite subgroups of SLo(C),
which are (up to conjugacy) the cyclic group C,, the binary dihedral group D,, and the
binary polyhedral groups 7, O and Z. They are exactly the finite subgroups of SUs.
F. Klein proved that for such a group T, the quotient C?/T is a surface S in C* defined
by a polynomial equation R(X,Y,Z) = 0. The surface has an isolated singularity and is
called a Kleinian (or simple) singularity. It was proved that a minimal resolution exists
for all surface singularities and thus for all Kleinian singularities, and P. Du Val showed
in [DuVa34| that, if 7 : S — S is the minimal resolution of the simple singularity S and s
is the isolated singular point, then the exceptional divisor 77!(s) is a union of projective
lines P1(C) whose intersection matrix is the opposite of the Cartan matrix of a root
system of type A,, D,, FEg, E7 or Eg that we note A(I"). This result is summarized in
the following table:

r R A(T)
Cn X"+YZ Ay
D, | X(Y2-X")+Z%| Dpio
T X4 4+Y3+ 272 Eg
O | X3+XY3+22 | E
T X°+Y3+ 22 Eg

This connection between Lie theory and Kleinian singularities has since been exten-
sively studied. Let I' be a finite subgroup of SUy, A(T") the associated Dynkin diagram
and g a simple Lie algebra of type A(T"). E. Brieskorn proved in 1971 ([Bries71]) that the
semiuniversal deformation of the simple singularity C?/I" can be obtained by restricting
the adjoint quotient x : g — h/W to a particular subspace of g called a slice and linked
to subregular nilpotent elements of g. He also proved a conjecture by A. Grothendieck
relative to the construction of a simultaneous resolution of the adjoint quotient. P.
Slodowy showed in his thesis in 1978 (cf. the enlarged version [Slo80]) how to describe
the singularities that appear in the fibers of a deformation of a simple singularity C?/T
other than the special fiber containing C?/T" in terms of subdiagrams of A(T'). Let us
also mention T.A. Springer’s resolution of the nilpotent variety of g ([Sprin69]).
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In [McK80] J. McKay discovered a connection between the finite subgroups of SUy and
the simply-laced Lie algebras without using a resolution. He exhibited a way of con-
structing the Cartan matrix of the extended Dynkin diagram Z(F) from the irreducible
representations of I'. From this correspondence one can construct the representation
space M (T") of a quiver obtained from A(T") and called a McKay quiver. The dimension
vector of the said quiver is composed of the dimensions of the irreducible representations
of I'. It happens that M (I") can be equipped with a symplectic structure based on the
orientation of the McKay quiver. P.B. Kronheimer took advantage of such a structure
and constructed in [Kron89] a semiuniversal deformation of C?/T" using hyperkihler re-
duction. Then in [CaSlo98] H. Cassens and P. Slodowy worked on P.B. Kronheimer’s
results to obtain the semiuniversal deformation of C?/T" and its minimal resolution in an
algebraic-geometric context.

Dynkin diagrams can be separated in two classes: the simply-laced (or homogeneous)
ones, namely A,, D,, Es, E7 and Eg and the non simply-laced (or inhomogeneous) ones
B, Cp, Fy and G2. In 1978 P. Slodowy extended the definition of a simple singularity
to the inhomogeneous types in the following way: a simple singularity of type B,., C,,
Fy or G5 is a pair (Xp, Q) where X is a simple singularity of type A, D,, Fg, E7 or Eg
and € is a group of automorphisms of the Dynkin diagram associated to Xy as indicated
in the table below:

type (Xo,Q) | type Xo | Q r I’
B, A1 | Z]2Z2 ] Coy D,
C: Dyi1 | Z[2Z | Dro1 | Dygroy)
Fy Es |zpz| T | o
Go Dy G} Do O

Let T be a finite subgroup of SUy and Xy = C2/I'. Then it is possible to find a finite
subgroup I of SUy such that I' < TV and I'"/T" = Q acts on X. This action can then
be lifted to the minimal resolution of the singularity and induces an action on the ex-
ceptional divisors that corresponds to a group of automorphisms of the Dynkin diagram
of Xy. P. Slodowy generalized the McKay correspondence to the inhomogeneous types.
Let (T',T') be a pair as in the table above and A(T,T”) the associated inhomogeneous
Dynkin diagram. By restricting the irreducible representations of I'V to I', one can con-
struct the extended Cartan matrix of type AV (T,T"). The correspondence can also be
obtained by inducing representations of I from representations of I, in which case we
obtain the Cartan matrix of the dual diagram.

In this thesis we aim to generalize the construction by H. Cassens and P. Slodowy to
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the inhomogeneous cases. Starting from the representation M (I") of a McKay quiver
and a symmetry group €2 of the Dynkin diagram A(T") associated to I" and based on the
inhomogeneous McKay correspondence, we will construct the semiuniversal deformations
of the simple singularities of types B, C,, F4 and G2. In order to do so, we study the
representation space of a quiver called McKay quiver, that is defined by using the Dynkin
diagram associated to the simple singularity C2/I" as well as a symmetry group € of the
same diagram based on the inhomogeneous McKay correspondence. The action of the
group 2 on M (T") is obtained by lifting its action on the underlying graph. The choice of
the orientation of the quiver, which did not play any particular role in the homogeneous
case, will now have to be carefully made (Subsection 4.3.3). Indeed the representation
space of the McKay quiver can be equipped with a symplectic structure depending on
the orientation of the McKay quiver. This symplectic structure induces a moment map
from which the semiuniversal deformation is obtained. If the action of 2 is symplectic,
then the semiuniversal deformation becomes 2-equivariant. We will need to determine
the conditions in which the action is symplectic as well as their compatibility with the
action of 2 on the special fiber of the deformation. In fact we will prove the following
theorem (cf. Theorems 4.3.2 and 4.3.4)

Theorem. 1. The action of Q=T"'/T on M(T") is symplectic when
(i) For (Ag—1,2/27), Q reverses the orientation of the McKay quiver.
(i) For the other cases, Q preserves the orientation of the McKay quiver.

2. For any inhomogeneous singularity (C%/T,Q), there exists an action of Q on M (T)
such that

(i) Q acts symplectically on M(T").
(i) The action of @ on M(T) induces the natural action on the singularity C*/T.

With the semiuniversal deformation now (-equivariant, results by P. Slodowy will
lead to the semiuniversal deformation of a simple singularity of inhomogeneous type.
This semiuniversal deformation is such that the group {2 induces an action on each of
its fibers. In order to analyze the family to which the quotient of the fibers will lead
we need to obtain explicit expressions for the semiuniversal deformation. In that sense
we will compute explicitly the semiuniversal deformations of the inhomogeneous simple
singularities of types Ag,_1 (r arbitrary), Cs, Fy and G5. After quotient, we obtain a
new deformation, but this time of the simple homogeneous singularity C?/T’. We will
see that the semiuniversal nature of the deformation is lost in the process. We will also
prove results regarding the regularity of the fibers of the new deformation. For example,
when T is of type Az or Dy (and  is either Z/2Z or G3), we will see that every single
fiber is singular after quotient by € (cf. Propositions 4.4.1, 4.4.2 and 4.4.3).

In the first chapter in Part I, we recall the main definitions and properties of semisim-
ple Lie algebras over an algebraically closed field of characteristic zero (Section 1.1).
Then a relation between the simply-laced and non-simply laced cases will be exhibited
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through a process called folding in Section 1.2, after which known results on homo-
geneous simple singularities from E. Brieskorn and P. Slodowy will be presented and
explained in Section 1.4. Following P. Slodowy’s definition of the inhomogeneous simple
singularities, we will provide in Subsection 1.4.2 some of his results generalizing those
already obtained on the simple homogeneous ones. The chapter will end with an ex-
planation as well as computations of the McKay correspondence (Section 1.5), in both
homogeneous and inhomogeneous settings.

The second chapter will be devoted to the symplectic reduction. In particular, we will
present a theorem by G. Kempf and L. Ness linking hyperkédhler quotients and GIT
quotients (Section 2.3) that will be of use later on.

In the third chapter we define quivers, representation spaces as well as basic notions re-
lated to them (Section 3.1). We will then present results by T. Tanisaki ([Tani80]) that
explain the folding process using quivers representation spaces (Section 3.4), although
it will not be used in our construction, but is related nonetheless.

The construction by H. Cassens and P. Slodowy as well as its generalization to the

inhomogeneous cases will occupy Part II and the final chapter of this thesis. At first
we recall the work of P.B. Kronheimer on which the original construction is based (Sec-
tion 4.1), present the construction itself (Section 4.2.1), and then study the case Aa,—_1
as an example (Section 4.2.2). The work on a generalization of the construction to the
inhomogeneous cases will occupy the rest of this thesis.
We study the orientation of the McKay quiver as well as the action of © from Sub-
section 4.3.1 to Subsection 4.3.4. Then we will compute explicitly the semiuniversal
deformations of the inhomogeneous simple singularities of types Ag,_1 (r arbitrary), Cs,
F, and GG9. These computations require the use of a particular set of coordinates on
the base space of the deformation: K. Saito’s flat coordinates. After defining them and
explaining why they can be of use for our construction, explicit formulae will be given
(Subsection 4.3.5). The computations of the semiuniversal deformations of the simple
inhomogeneous singularities will be presented in Subsections 4.3.6 through 4.3.9. The
quotient of the semiuniversal deformation by the action of €2 will then be done in Sub-
sections 4.4.2 through 4.4.5. The thesis will be concluded with computations on the
regularity of the fibers of this deformation in some special cases.
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1. Lie Theory

1.1. Definitions and basic properties

In this section we give basic definitions on Lie algebras as well as some elementary
properties. Many of the proofs will be omitted. If not stated otherwise, the reader may
consult the book [Hum?78] by J.E. Humphreys for the proofs.

We fix an algebraically closed field k of characteristic 0.

1.1.1. Generalities on Lie algebras

Definition 1.1.1. A vector space £ over a field k, with an operation £x £ — £

(z,y) = [z,y]
called bracket, is called a Lie algebra if the three following properties are verified:

(i) The bracket is bilinear.
(ii) [z,x] =0 for all z € £.
(i) [, [y, 2]] + [0, (=] + [= [, )] = O for all 2,7 € £,

The second axiom is equivalent to the bracket being skew-symmetric and the third one
is commonly called Jacobi’s identity. The notion of subalgebra of a Lie algebra £ is
defined naturally as a subspace of £ that is a Lie algebra with respect to the restriction
of the Lie structure on £.

In what follows all the Lie algebras will have finite dimension (i.e. the underlying vector
space of the Lie algebra is finite dimensional). The study of infinite dimensional Lie
algebras requires other tools that we will not present in this thesis. A detailed account
on this subject can be found in [Kac90].

Examples 1.1.2. e [fV is a k-vector space of dimension n, let us write gl(V') = End(V)
for the set of endomorphisms of the vector space V. By choosing a base of V', one can
identify gl(V') with the set of matrices of size n xn. It is a Lie algebra with bracket
[z,y] = 2y — yx and is called the general linear algebra. All the Lie algebras in
these examples will be equipped with the same bracket. sl(V') is the subalgebra of gl(V)
composed of all the traceless matrices of gl(V'). It is called the special linear algebra.
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The structure of sI(V') when n = 2 will be seen in details later on. Any subalgebra of
gl(V') is called a linear Lie algebra.

0 I,
-I, O
identity matriz of size n x n. One writes sp(V) = {M e gl(V) | 'AJ + JA =0}, a space
that will be referred to as the symplectic algebra. One can check that it is indeed a
Lie algebra.

o Let V' be k-vector space of dimension 2n. Set J = with I, the

e The orthogonal algebra is defined in the same way as the symplectic one.

0 I,

If dim V' = 2n, set J = (In 0

1 0 O
) and if dim V =2n + 1, set J = (0 0 In). The
0 I, O
orthogonal algebra is defined as o(V) = {M e gl(V) | "AJ + JA = 0}. It is yet again a
Lie algebra.
Usually, when it is clear what vector space is chosen, (V') is omitted and the dimension
of V is put as index. The preceding examples are thus gl,,(k), sl,(k),spy, (k), 02, (k) and

02n+1(k).

A morphism of Lie algebras ¢ : £ — £’ is a linear transformation such that ¢([z,y]) =
[p(x),o(y)] for all z,y € £. A representation (or module) of a Lie algebra £ is a
morphism ¢ : £ — gl(V') where V is a vector space. When the context is clear, we will
write h.x for p(h)(x). If V is a representation of £ and W C V is stable by £, then
W is an £-sub-representation (or submodule). A representation ¢ : £ — gl(V) is said to
be irreducible if the only £-submodules of V' are {0} and itself. One important kind
of representation is the adjoint representation. It is the morphism ad : £ — gl(£)
such that ad(z)(y) = [x,y] for all 2,y € £. One can check explicitly that ad preserves
the Lie bracket and is linear. It is then a morphism of Lie algebras. An interesting fact
is that Ker ad = 3(£), the center of the Lie algebra. So if £ is simple, i.e. if £ has
no non-trivial ideal for the Lie bracket and £ is not abelian, then Ker ad = {0} and £
injects into gl(£). Therefore any simple Lie algebra can be seen as a linear Lie algebra.

It will be shown at the end of this section that the algebras s, (k) (n > 2), spy, (k)
(n >2), 09,(k) (n >3), and 02,+1(k) (n > 2) in the preceding examples are in fact simple
Lie algebras.

Example 1.1.3. One can check that sly(C) has a basis consisting of e = (8 é),f =

10 0
infinite dimensional representation of sla(C) noted ¢ : slo(C) - gl(C[X,Y]) is defined
as follows:

(0 O) and h = (1 _01) with the relations [e, f] = h, [h,e] = 2e and [h, f] = -2f. An



1.1. Definitions and basic properties

0 0

0 0
w(e) _Xa_Y’ o(f) _Ya_X and p(h) _Xa_X_Ya_Y'

It can be seen that ¢ verifies the requirements for making C[ X, Y] into an sly(C)-module.
The action is given by the following formulas:

e XMY" = pXmHlyn-l f Xmyn -y Xmolyntl p XYM = (m-n) XY™,

The action preserves the degree of the monomials, so C[X,Y] splits as a direct sum
C[X,Y]ooC[X,Y]1 ®C[X,Y]o®... as an sla(C)-module, where C[X,Y |y is the sub-
module of homogeneous polynomials of degree k. The monomials of degree k form a base
for C[X,Y ]k, so C[X,Y ] is a C-vector space of dimension k + 1.

We claim that C[X,Y |y, is irreducible. Let x # 0 in an sla(C)-submodule of C[X,Y |i.
Then x = Zf:o a; XYk with the a;’s being complex numbers. Let kg = min{0 < i <
k| a; #0}. Therefore p(e)* %0 (z) = ag,(k — ko)!X* and X* belongs to the submodule.
Because o(f)(X*) = k(k-1)...(k-j+1)X*JY7, it follows that all the elements of
the base of C[X,Y | are in the submodule, so the submodule is all of C[X,Y ]p. This
proves that C[X,Y |y is irreducible, for all k € Zso. Since dim C[X,Y |x =k + 1, all the
C[X,Y ] are non-isomorphic.

Proposition 1.1.4. Let V be a k-vector space of finite dimension and let € End(V').

(i) There exists xs,x, € End(V') such that: © = xs+xy,, x4 is semisimple, x,, is nilpotent
and [xs,xy] = 0. Furthermore, x5 and x, are unique.

(ii) There exists two polynomials p(t) and q(t) of one variable such that: p(0) = ¢(0) =
0, zs = p(x) and x, = q(z). In particular, xs and x, commute with every endo-
morphism commuting with x.

(iii) If A C B C V are subspaces such that x maps B into A, then xs and x,, also map
B into A.

The decomposition = = x4 + x,, is called the Jordan-Chevalley decomposition.
We call zs and x,, the semisimple and nilpotent parts of = respectively.

Lemma 1.1.5. Let z € End(V) (dim V < +o0) and x = x5 + x,, its Jordan-Chevalley
decomposition. Then ad x = ad xs+ad z, is the Jordan-Chevalley decomposition of ad x
in End(End(V)).

Let £ be a Lie algebra over k. Its derived series is a sequence of ideals of £ defined
by £© =g e =g ¢0)] ¢ - ¢ 2¢M] . The Lie algebra £ is solvable if
there exists n € Z5q such that £ = {0}.

Example 1.1.6. Let £ be the Lie algebra of upper triangular matrices of size n xn
with coefficients in k and the Lie bracket [A,B] = AB — BA. It is indeed a Lie algebra.
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One computes that [ £, £] is the set of upper triangular matrices with a zero diagonal.
FEach time a new bracket is computed the first non-zero diagonal goes up one place above.
Therefore, £ = {0} and £ is solvable.

The maximal solvable ideal of a Lie algebra £ is called the radical of £. If the radical
is zero, then £ is called a semisimple Lie algebra. For a semisimple Lie algebra £,
it can be proved that the space Der £ of derivations of £ coincides with the space ad £
and that £ — ad £ is a bijection. So if x € £, then there exists s,n € £ such that
ad = = ad s+ad n is the usual Jordan-Chevalley decomposition of ad = in End(£). This
means that x = s + n, with commuting s and n, ad s being semisimple and ad n being
nilpotent. We call s and n the semisimple and nilpotent part of x, respectively. This
decomposition is called the abstract Jordan-Chevalley decomposition. It is linked
to the usual decomposition thanks to the following theorem and corollary.

Theorem 1.1.7. Let £ C gl(V') be a semisimple linear Lie algebra over k (V finite
dimensional). Then £ contains the semisimple and nilpotent parts in gl(V') of all its el-
ements. In particular, the abstract and usual Jordan-Chevalley decompositions coincide.

Corollary 1.1.8. Let £ be a semisimple Lie algebra over k and ¢ : £ - gl(V') a finite
dimensional representation of £. If x = s +n is the abstract Jordan-Chevalley decompo-
sition of x € £, then ¢(x) = ¢(s) + ¢p(n) is the usual Jordan-Chevalley decomposition of

o(x).

Example 1.1.9. Let V' be a finite dimensional slo(C)-module. As h is semisimple, h
acts diagonally on V. Thus one can write V = @ec Vs where Vy ={z € V | h.x = \z}.
V' is decomposed with respect to the eigenvalues of h. If X\ € C is such that V # {0}, A
is called a weight of h and V) is a weight space. A quick calculation shows that if
veVy, then ev € Vy,o and fveVy_o.

As V' is of finite dimension, there is only a finite number of A such that V) is not zero.
So there exists A such that Vy # {0} and Vy,2 = {0}. An element from this V) is a
highest weight vector of weight A (cf. Section 1.1.4).

Let V' be an irreducible and finite dimensional sla(C)-module. Fix vy € V) a highest
weight vector. We note v_1 =0 and v; = %fi.vo (i>0). We then compute that

(l) h.’Ui = ()\ - 2i)vi,
(ZZ) f.v,- = (Z + 1)1)Z'+1,

(ZZZ) €.V; = ()\ -+ 1)1/2‘,1.

The v;’s turn out to be eigenvectors of h for distinct eigenvalues and thus are linearly
independent. As V' is finite dimensional, there exists a smaller m € Zsy such that
Um # 0 and vy = 0. By taking into account the preceding formulas, one deduces that

10
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(v0,V1, ..., Um) 8 a base of a non-zero sla(C)-submodule of V. By the irreducibility of
V, (vo,v1,...,0m) s a base of V. If in (iii) one sets i =m+1, we obtain 0 = (XA—m)vy,.
As v, # 0, it implies that X\ = m € Z5g. We say that m is the highest weight of V. One
also notices that all the weight spaces are unidimensional and appear only once in the
decomposition of V. The following theorem summarises our conclusions:

Theorem 1.1.10. Let V' be an irreducible finite dimensional sla(C)-module.

(i) With respect to h, V is the direct sum of weight spaces V,, where p = m,m —
2,...,-m+2,-m with dim V =m+1 and dim V,, = 1 for all u. We then write
V =L(m).

(ii) V has a unique mazximal vector (up to multiplication by a scalar) of weight m.

(iii) The action of sla(C) on V is explicitly given by the previous formulas. In par-
ticular, there exists (up to isomorphism) at most one irreducible sla(C)-module of
dimension m + 1 for all m > 0.

We can illustrate this theorem in the following manner.

h h
w e Q e e e
e\ N\
0 v, Vi eV
~— " ~__ M ™

f f f f

Because of the previous example, one sees that for all n € Zsg, C[X,Y], 2 L(n) as
5ly(C)-modules.

The next theorem gives a hint on the structure of the representation space for a certain
kind of algebra and will be of use later.

Theorem 1.1.11. (Lie). Let £ be a solvable Lie subalgebra of gl(V') with V' a finite
dimensional k-vector space. Then £ stabilizes a complete flag in V', i.e. there is a
sequence of proper subspaces {0} =Vy € V3 € ... C V,, =V such that dim V; =i and V;
is an L£-module for all 0 < i< n.

1.1.2. Structure of semisimple Lie algebras

A semisimple Lie algebra can be described in a unique manner as a sum of simple Lie
subalgebras:

11
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Theorem 1.1.12. Let £ be a semisimple Lie algebra over k. Then there exists ideals
Ly,..., Ly of £ which are simple (as Lie algebras), such that £=£,&...® L. Every
simple ideal of £ coincides with one of the £;.

A semisimple Lie algebra also has the property, proved by H. Weyl, that any finite
dimensional module is completely reducible.

Theorem 1.1.13. (Weyl). Let £ be a semisimple Lie algebra over k and V be a
finite dimensional £-module. Then V is completely reducible, i.e. V can be uniquely
decomposed as a direct sum of simple £-modules.

Let £ be a non-zero semisimple Lie algebra over k. If every element of £ was nilpotent,
then by a theorem of F. Engel, £ would be nilpotent and so solvable. But then {0} =
Rad £ = £ because £ is semisimple. It contradicts £ being non-zero. So £ contains an
element x € £ such that its semisimple part x, is not zero. Hence there exists non-zero
subalgebras of £ composed of semisimple elements. Such a subalgebra is said to be
toral. It can be proved that a toral subalgebra is abelian. A maximal (for the inclusion)
toral subalgebra is called a Cartan subalgebra.

Theorem 1.1.14. Let $1 and H9 be two Cartan subalgebras of a semisimple Lie algebra
£ over k. Then $1 and $Ho are conjugated under the group generated by the elements of
the form exp(ad z) for x € £ nilpotent. This implies that all Cartan subalgebras have
same dimension, called the rank of £.

Let $ denote a Cartan subalgebra of £. As § is abelian, ade($) is a family of
commuting semisimple elements. It is therefore possible to simultaneously diagonalize
ade($). £ becomes the direct sum of subspaces £, = {z € £ | [h,z] = a(h)x Vh € H}
with a € $*. We write ® for the set of « # 0 such that £, # {0}. If & = 0, we have
£o=Ce(9), the centralizer in £ of ). The decomposition is then

£= Cﬂ(ﬁ) ® @ Lo

aed

The a’s in this decomposition are called the roots of £ relative to $ (and they are in
finite number), ® is the root system of £ and the preceding equality is called the root
space decomposition of £. Since the Cartan subalgebras are all conjugated, the root
system of £ does not depend on the choice of a Cartan subalgebra .

Proposition 1.1.15. Let $) be a Cartan subalgebra of a semisimple Lie algebra £ over k.
Then Ce($9) = $ and the restriction of the Killing form k: £x£ - Kk

(z,y) = Tr(ad(z)ad(y))

to § is non-degenerate.

12
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The previous proposition enables us to write £ = $ ® @, Lo and to identify $ with
$H* via the Killing form x. To any element ¢ € $* one associates an element ¢4 € £
by ¢(h) = k(ty,h), Yh € $. We define a bilinear form (.,.) on $H* by (0,v) = k(ts,t).
Because the root system generates $*, one can choose a base {«a1,...,q,} consisting
of roots. If 8 € ®, then 5 = i ; c;ay, where ¢; € k. Furthermore, one can show that
¢; € Q for all i. Therefore the Q-sub-vector space Fq of $* generated by the roots has
Q-dimension r = dim . $*. Additionally it is known that (a, 8) € Q for all a, f € ®. This
implies that the restriction of (.,.) to Eq is a non-degenerate form on Eq. By definition,
for A, e H*,

(A ) = k(tr, ty) = Z a(ty)a(t,) = Z (a, N) (e, ).

aed aed

In particular (A, A) = Saea(a, A)?, so that if A € Eq, then (\,\) is a sum of squares of
rational numbers and is hence positive (unless A = 0). Therefore the form (.,.) is positive
definite on Eq.

We extend Egq to the field of real numbers by setting I = R ®q Eq. The bilinear form
extends to E and is positive definite, which makes E a Euclidean space. We have that
® contains a base of E and dimg E =r. The properties of £ and ® are summarized in
the following theorem:

Theorem 1.1.16. Let £,9,P and E be as above. Then:

(i) ® generates E and 0 does not belong to ®.

(ii) If a e @, then kaN® = {xa}.

2
(iii) If o, B € @, then B - M@ €.
(o, )

2(67 OZ) c Z
(o, )

(iv) If o, B € ®, then

Set (a, ) = 208 " If € E, one defines the reflection oo € GL(E) by 04(B) =
B —(B,a)a. If a € @, the preceding theorem shows that o, leaves ® invariant, and one
can prove that it preserves the bracket (.,.). Let us write W for the subgroup of GL(E)
generated by the o,, a € ¢, and call it the Weyl group of £. As W permutes the
elements of @, it can be seen as a subgroup of the symmetric group of ®, and is thus
finite.

A subset II of a root system @ is called a base if:
e Il is a base of E. This implies that |II| = rank(£).
e Every 8 € ® can be written [ = Y 11 ko With integer coefficients all nonnegative
(B is a positive root) or all nonpositive (§ is a negative root).
An element of II is called simple. One can show that a base exists for ® but is not

13
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unique. We shall see that the classification of simple Lie algebras can be achieved by
studying the simple roots of a Lie algebra.

For aw € ®, set Hy, = {f € E | (f,) =0 }. The hyperplanes H, partition E in a
finite number of regions. The connected components of F \ Uqyeq Ho are called Weyl
chambers. The Weyl chambers are in bijection with the bases of ®, because the walls
of a Weyl chamber define the elements of a base. If II is a base of ®, the Weyl chamber
¢(IT) defined by

C(I)={BeF|(B,a)>0, Vacell}

is called the fundamental Weyl chamber. The Weyl chambers are permuted by the
Weyl group, and so are the bases of the root system.

Let II = {a1,...,a,} be a base of a root system ®. The matrix ((o,a;))1<ij<r is

called the Cartan matrix of ®. The Cartan matrix does not depend on the choice of
a base of the root system ® because the Weyl group permutes the bases and preserves
the bracket (.,.).
If «, 8 are two distinct non-proportional roots, it can be shown that («, 5){(8,«) =0,1,2
or 3. One defines the Coxeter graph of ® as the graph with r vertices, and such that
i-th and the j-th vertices (i # j) are linked by (a;, oj){a;, ;) edges. If all simple roots
have the same length (the length of a root is its norm), the Coxeter graph determines
the (v, a;) because then (a;, o) = (o, ;) and between two distinct vertices there is at
most one edge. If simple roots have different lengths, there can be double or triple edges.
In that situation, on a multiple edge, one adds an arrow pointing to the shortest root.
With this complementary information, one can reconstruct the Cartan matrix from the
graph. The graph is then called a Dynkin diagram and is noted A. The Dynkin
diagram determines entirely the root system and their classification is given below.

A root system @ is irreducible if it cannot be partitioned in two subsets such that
each root of one subset is orthogonal to each root of the other subset. ® is irreducible
if and only if a base II cannot be partitioned in the aforementioned manner. This is
equivalent to saying that the Dynkin diagram of ® is connected. In general, a Dynkin
diagram is composed of several connected components and each one has a base II.
We write 1I = II;U...UIl; the corresponding decomposition of the base. We then
get a decomposition ® = &1 J...UUP; of & as a union of sub-root systems and this
decomposition is unique. Each of these irreducible sub-root systems is the root system
of an irreducible component of the semisimple Lie algebra. Thus a semisimple Lie algebra
is simple if and only if its root system is irreducible.

Theorem 1.1.17. Let £ be a simple Lie algebra over C of rank r with an irreducible
root system ®. Then the Dynkin diagram A of ® is one of the following (each diagram
has r vertices):

14
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Type of A
A (r>1)
2
B, (r>2) ®
2
C, (r>3) ®
1
D, (r>4) ®
1
@
Eg
2
3 4 5] 6 7
@ @ @ L
Er
2
3 4 5 b 7 8
@ @ @ @ @
Es
2
1 2 3 4
Fy ® *——0 ®
1 2
Gy (==

Remark 1.1.18. The previous table contains exceptions for small ranks in the A, B, C, D
types. This is done to avoid overlaps of isomorphic classes and obtain only non-isomorphic

simple Lie algebras.
phisms. They are as follows:

A1 B 01,
By = Cs,
A3 = Dg.

In small ranks, these overlaps are called exceptional isomor-

15



1. Lie Theory

The classification of simple Lie algebras over the complex number field was first
achieved by W. Killing in [Kill88]. The proof was revised by E. Cartan in his Ph.D
thesis [Car94] and he added the classification over the real number field but did not
make use of simple roots whose existence was unknown at the time. In [Weyl25], H.
Weyl introduced the notion of positive root. B.L. Van der Waerden simplified the proof
of the classification in [VAW33], and then E.B. Dynkin used the diagrams bearing his
name and simplified the proof still further in [Dyn46] and [Dyn47]. Dynkin diagrams
are instances of Coxeter graphs ([Cox34]), and E. Witt used these graphs in [Witt41] in
the context of complex semisimple Lie algebras.

By means of Theorem 1.1.17, any Dynkin diagram of a semisimple Lie algebra is
a disjoint union of some of the previous simple diagrams. Omne can find the Cartan
matrices associated to the diagrams in the table as well as explicit realizations of their
root systems in e.g. [Bou68].

Examples 1.1.19. Let us go back to the previous examples:

e The special linear algebra sl.,1(C) is of type A,.
e The orthogonal algebra 09,.1(C) is of type B,.

e The symplectic algebra sp,,.(C) is of type C,.

e The orthogonal algebra 02,(C) is of type D..

The Lie algebras of type A, B,C and D are called classical and the others excep-
tional. Contrary to the classical algebras seen in the preceding example, the exceptional
Lie algebras do not have such simple realizations. It requires more sophisticated tools
like the octonion algebra for Gy or isometries of projective spaces for Fy and the types
E. The reader can find in [Ada96] more information on the exceptional Lie algebras.

From a simple Lie algebra one can construct an associated Dynkin diagram. The
reverse process is possible. Omne can construct a simple Lie algebra from a Dynkin
diagram. Because the Cartan matrix of ® determines ® up to isomorphism, one can
construct ® from the knowledge of the Cartan matrix, and thus from the Dynkin diagram
(cf. [Hum?78]). The following theorem is due to J.P. Serre and describes a simple Lie
algebra in terms of generators and relations.

Theorem 1.1.20. (Serre). Let A be a Dynkin diagram, ® the corresponding root
system and 11 = {a1,...,a,} a base of ®. Let £ be the Lie algebra generated by 3r
elements {ei, fi,hi | 1 <i<r}, subject to the relations

16
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(S1) [hi,hj]=0 (1<i,j<r).

(52) e, fil =hi, [es, fj]=0ifi+3j.

(53)  [hirej] = {aj,ai)ej,  [hi, f3] = —(ey, i) f.
(S5) (ad &) (e;) =0 (i#7).

(S5) (ad fi) et i(f) =0 (i#})).

Then £ is a finite dimensional semisimple Lie algebra, with Cartan subalgebra spanned
by the h;, and with corresponding root system ®. The e;, f;, h;’s are called the Chevalley
generators of £.

1.1.3. Weyl group invariants

Let £ be a semisimple Lie algebra over k with root system ®, £ a Cartan subalgebra
of £ and W the associated Weyl group. As a set of simple roots of ¢ is a base of H*
and the Weyl group W permutes the elements of the root system @, there is an action
of W on $H*. But $ and $H* are identified by means of the Killing form thus W acts on
the Cartan subalgebra §). It is known that W is finite and generated by reflections. The
next theorem was proved by C. Chevalley in [Cheb5].

Theorem 1.1.21. (Chevalley). Let £, $ and W be as above. The algebra of polyno-
mial invariants kK[$]W is generated by rank(£) algebraically independent homogeneous
elements.

We now define several notions associated to the Weyl group which will be of use later
on.

Definition 1.1.22. Let £ be a Lie algebra over k, W its Weyl group, {a1,...,a,} a set
of simple roots and {s1,...,s,} the simple reflections of the Weyl group associated to the
simple roots. Then s =51...5s, is called a Coxeter element.

Proposition 1.1.23. All Coxeter elements are conjugated in W.

Because of the previous proposition, all Coxeter elements have the same order h. It is
called the Coxeter number of W. As all Coxeter elements are conjugated, they have
the same characteristic polynomial and therefore the same eigenvalues. If { a primitive
h-th root of unity in C, these eigenvalues are of the form (™ with 0 < m < h. The
exponents of W are the various m involved, written as

17
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The following theorem gives a practical way to compute the exponents of a Weyl
group.

Theorem 1.1.24. Let £ be a Lie algebra over k of rank r, $ a Cartan subalgebra and
W the Weyl group. We set fi,...,fr invariant homogeneous polynomials (cf. Theo-
rem 1.1.21) such that S(H)W = K[f1,... f] and deg(f1) < ... < deg(f.). Then the
exponents of W are deg(f1) —1,...,deg(f,) — 1 and the Coxeter number is h = deg(f,).

Proof. We can find a proof of this theorem in [Bou68]. O

Examples 1.1.25. We are going to compute the Cozeter number as well as the exponents
for the Lie algebras of types A and D.

e Case Ay: £=5l.,1(C), H={diag(x1,...,Tps1) |21+ ...+ 2051 =0} and W = &,,1.

We have S($) =C[X1,..., Xpr1]/(X1+ ...+ Xyi1) with X; being the dual of

€ = ((€i)kj)ick,jere1 with (€;)g; = | 1 ifk=7=1, The family (€; —€+1)1<i<r s a base of
0 otherwise.

$) embedded in gl,.,(C).

It is known that C[X1,...,X,41]" = C[o1,...,0041] with o; the i-th elementary sym-

metric polynomial. But in S($), o1 = 0 so S($)W = C[oo,...,0041]. The degrees of

the generators are 2,3,...,r + 1 so the exponents of W are 1,2,...,r and the Coxeter

number is h =1+ 1.

One can also compute directly the eigenvalues of the Coxeter element. The Weyl group
is .41 which acts as the permutation group of the base (€;)1<i<r+1 (Bourbaki’s notations).
A base of the root system of type A, is given by (o = €; — €;41)1<i<r- Let s be the Coxeter
element corresponding to the permutation (123 ---r+1). Then s(ay) = — Y4 o and
s(ey) = a1 if i > 2. One can express s as a matriz in the base (aq,...,a;) and compute
its characteristic polynomial xs. By induction one obtains xs(z) = (=1)" Xj_g z*. So
the eigenvalues of s are exp(isz) for 1 <k <r, and we find the same result as before
for the exponents.

A;

e Case D,: £=09,.(C), $ is generated by h; = ( 0 -A

) with A; = €ii—€i+l,i+1, 1<i<r,

r o
and h, = (0 r
and (Z)22)"" acts by h; —> (£1);h; such that [1;(£1); = 1.
We have a group homomorphism ¢:  (Z]2Z)" —  Z[2Z . The action of the

(a1, 0p) — aj...qp

(Z/2Z)"" part of W on $) corresponds to the kernel of @ which is of index 2: it is then
(z)22)" 1.
Because S($) = C[X1,...,X,] and (Z/2Z)""! is normal in W, one finds
SEW = (C[Xy,... X, JZPD"YS  Let P e C[Xy,... X, ]%?D™ be a homogeneous

) with ' = e,_1p-1 + €pp, and W = (2)22)" ' % &S,.. &, permutes the h;

18



1.1. Definitions and basic properties

polynomial. Let X; be a wvariable in a monomial factor of P. If X; is alone, it has
to have an even power. Otherwise it must be multiplied by T1;.; X;. Therefore P €
C[XZ,..., X2 Xy...X,].

Let P e S(9)W. One sees that P € Clo1(X?),...,001(X?),0.(X)]. Here o;(X?) :=
oi(X2,...,X2) forall1<i<r—1. So S(HW c Clo1(X?),...,00-1(X?),0,(X)] and
the other inclusion follows immediately.

We thus have S(9)V = Clo1(X?),...,0,1(X?),0.(X)]. The degrees of the polynomials
are 2,4, ...,2r —2,r, hence the exponents of W are 1,3,...,2r —3,r —1 and the Coxeter
number is h = 2r — 2.

The next proposition ([Hum90]) will give a connection between the Coxeter number
of a simple Lie algebra and its dimension.

Proposition 1.1.26. Let £ be a simple Lie algebra over k of rank r and dimension n.
Then its Coxeter number h satisfies the following relation

rh=2N

with N the number of positive roots of £. Because of the root space decomposition of £,
the previous relation implies

n=r(h+1).

In the next table, we give some numerical values regarding the Coxeter numbers and
the dimensions of the simple Lie algebras. These values can be found in [Bou68].

type of Lie algebra £ | rank of £ exponents of W Coxeter number h of £
A, r 1,2,..,r r+1
B, T 1,3,5,...,2r-1 2r
C, r 1,3,5,...,2r—-1 2r
D, r 1,3,5,...,2r-3,r-1 2r -2
Eg 6 1,4,5,7,8,11 12
E7 7 1,5,7,9,11,13,17 18
Eg 8 1,7,11,13,17,19,23,29 30
Fy 4 1,5,7,11 12
Go 2 1,5 6
Table 1.1.
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1. Lie Theory

Using the formula in Proposition 1.1.26 and the values of the ranks and the Coxeter
numbers in Table 1.1, one can compute the dimensions of the simple Lie algebras.

1.1.4. Highest weight modules

If not specified otherwise, the proofs of the results in this subsection can be found in
[HumO8].

Let £ be a finite dimensional Lie algebra over k. We write T'(£) for the tensor algebra
of £ and I for the two-sided ideal of T'(£) generated by z® y —y ® x — [x,y], for all
z,y € £. We define U(L) =T(£)/I and call it the universal enveloping algebra of £.
Let A be an associative k-algebra with unit. A filtration on A is an increasing sequence
{0} g Ay g Alg ... such that A = UZ’GZZ() A; and A; - Aj c Ai+j for all 1,7 € Z5p. The
associated graded algebra to the filtration {A;};cz., is the direct sum

Gr A= @ Ai/Ai—h A_1 = {0},

iGZzO

where the algebra structure on A induces the one on Gr A.

One can define a filtration on U(L). For m € Zsg, set T (L) = @, £%%. Then
{T.(£) }mezs, is a filtration on T'(£). It induces the one on U(£) by setting Uy, (L) =
(T, (L)) where m: T(L£) - U(L) is the canonical projection. This filtration on U (L)
is called the standard filtration of U(£). Because Gr T'(£) = T'(£), the canonical
projection induces a surjective morphism of algebras ¢ : T(£) - Gr U(£). Let J be the
ideal of T'(£) generated by z@y-y®x, for all x,y € £ We have mr(z®@y-y®z) € Uz(£)
by definition (z,y € £). But in fact, 7(z @y -y ® x) = 7([z,y]) € U1(£). Therefore
in Gr U(£), one finds p(z ® y—y®x) = 0 and thus J C Ker . Hence ¢ induces a
surjective morphism of algebras w : S(£) - Gr U(£). The next theorem is called the
Poincaré-Birkhoff-Witt theorem, often shortened as PBW:

Theorem 1.1.27. (PBW). The morphism w: S(£) —» Gr U(£) is an isomorphism of
algebras.

Corollary 1.1.28. Let (x1,x2,...) be an ordered base of £. Then the elements
Ti(1) -+ Tigm) = T(Ti(1) ® -+ ® Ti(my), M € Lo, i(1) < ... <i(m), along with the unit,
form a base of U(L).

We fix £ a finite dimensional semisimple Lie algebra over k, $) a Cartan subalgebra
of £ ® the root system with base II = {a1,...,a,} and £ = $ & Pyep Lo the root
space decomposition. A Borel subalgebra of £ is a maximal solvable subalgebra of £.
Just like Cartan subalgebras, all Borel subalgebras are conjugated in £. One can show
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that $ @ @yep+ Lo, with ®* the set of positive roots relative to the base II, is a Borel
subalgebra. For example, in the case of sl,(C), the diagonal matrices form a Cartan
subalgebra and the upper triangular matrices form a Borel subalgebra.

Let V' be a finite dimensional £-module. Because the elements of $ are semisimple, V'
can be decomposed as V' = @ e+ Vi with

W=4{veV |hv=XAh)v, Vhe$f}.

Whenever V) # {0} it is called a weight space and A is called a weight of V. An
L-module V is called a highest weight module of highest weight A if there exists
v eV~ {0}, called a highest weight vector, such that

e Lov=0, aed?,
e h.v=A(h)v, Vhe$,

e v generates V as a £-module.

Let A e $H* and Cp := Cvp be the by = $H @ n,-module, with n, := @ e+ Lo, defined by
ny.wp =0 and h.wp = A(h)vy, for any h € $.

Set

M(A) =U(L) ®y(s,) Ca-

M(A) is a highest weight module of infinite dimension by construction, and because
of the PBW theorem (Theorem 1.1.27) it is also U(n_)-free, with n_ := @,cqp+ £-o. The
module M (A) is called the Verma module of highest weight A and 1®v, is a highest
weight vector.

Theorem 1.1.29. Let A € H* and E a highest weight £-module of highest weight A with
a highest weight vector vg. Then there exists a surjection

M(A) —» E

l®vy ~ wvg

It implies that any highest weight £-module of highest weight A is a quotient of the Verma
module M (A).
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1. Lie Theory

It can be proved that if A € §*, then there exists a unique irreducible highest weight
£-module (not necessarily finite dimensional) of highest weight \. We write L(\) for this
module. Furthermore, one can show that any sum of proper submodules of M(\) is a
proper submodule of M (). This implies that there exists a unique maximal proper sub-
module of M () noted N(X). It is a known result that L(\) is the quotient M (A)/N(N).

Any finite dimensional irreducible £-module is a highest weight module. Indeed, if V'
is such a module, then the Borel subalgebra $ ® @, co+ £, has a common eigenvector
v €V of weight A\ by Theorem 1.1.11, and v is annihilated by all the £4, o € ®*. Thus
the submodule generated by v is a highest weight module of weight A\. However V is
supposed to be irreducible and hence V = L(\). Furthermore, it can be shown that
(A, @) € Zso for all 1 <i <r. On the other hand, any L(\) for A € §* is not necessarily
finite dimensional. It requires an additional condition on A. A € ) is called a dominant
integral weight if (\, ;) € Z5¢ for all 1 <i <r. We have just seen that if L(\) is finite
dimensional, then A is dominant integral. It turns out that the converse is true.

Theorem 1.1.30. Let A € H*. Then
L(\) is finite dimensional <= X is a dominant integral weight.

Furthermore, if A is dominant integral, then the Weyl group W permutes the weights
appearing in L(\) and preserves the dimensions of the weight spaces.

The next theorem gives a presentation of the submodule N(\).

Theorem 1.1.31. Let A € H* be a dominant integral weight. The submodule N(A)

of the Verma module M (A) with a highest weight vector vy is generated by the vectors
A(hz‘)+1
f< VA -

)

Corollary 1.1.32. Any finite dimensional highest weight module is irreducible.

Proof. Let V be a finite dimensional highest weight £-module of highest weight A and
highest weight vector v. By Serre’s theorem (Theorem 1.1.20), £ is generated by the
Chevalley generators e;, fi, h;, for all 1 <i <r. Let s; (1 <4 <r) be the Lie algebra
generated by e;, f; and h;. It is isomorphic to sla(k). By restriction one can look at
V as an s;-module, for all 1 < ¢ < r. Let V; be the s;-submodule of V' generated by
v. V; is finite dimensional because V is. So according to Example 1.1.9, the highest
weight of V; as an s;-module is a positive integer and so A(h;) € Zso. This result is
true for any i € {1,...,7} and thus A is a dominant integral weight. Furthermore, it

was shown in Example 1.1.9 that f;‘(hi)ﬂ.

to Theorem 1.1.31, N(\) is contained in the kernel of the morphism M(\) - V

v =0, for all 1 <7 <r. Therefore, according

T = .V
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This kernel is a proper submodule of M (\) and N()) is the unique maximal one, so
N () is the kernel. By the isomorphism theorem, one finds V' = M(A)/N(X) = L(\) and
V' is irreducible. O

Later on, we will compute some irreducible highest weight modules for some particular

kind of weights, which we define now. Let {aq,...,a,} be a base of the root system
of a semisimple Lie algebra £. Let {A1,...,\.} be the dual set of the simple roots
{o,..., o}, ie. (N, a;) = 045, for all 1 <4, <r. The elements of this dual base are

called the fundamental weights of the root system and they are dominant integral
weights.

When X is a dominant integral weight, the dimension of the associated irreducible
highest weight module can be computed by means of a formula proved by H. Weyl.

Theorem 1.1.33. (Weyl). Let A € H* be a dominant integral weight. Then

o 7 (A+p.B)
dm L= 11705

with p the half-sum of the positive roots of the root system ®.

1.1.5. Lie groups, algebraic groups and Lie algebras

We finish this section by a link between Lie groups, algebraic groups and Lie algebras
as well as some notations. The references used here are [DuiKol00] and [OV90].

Definition 1.1.34. A Lie group is a group G with a smooth manifold structure over
R or C, and such that the multiplication m : G x G - G and the inversion i : G - G are
smooth maps.

Remark 1.1.35. A Lie group can also be defined over a p-adic field, but being smooth
is replaced by being locally analytic (cf. [Schneill]). However, in this thesis, we will not
work over p-adic fields.

Let G be a Lie group. Because of its smooth manifold structure, one can define the
tangent space to G at a point 2 € G by T,G = {7'(0) | v: [~¢,¢] = G is a C! curve
on G and y(0) = z}. A vector field on G is a derivation X : C*(G) - C*(G), i.e. a
linear map such that on a product of functions f and ¢

X(fg)=f(Xg)+(X[)g.
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1. Lie Theory

Locally one can choose coordinates so that such a derivation is a linear combination of
the derivatives with respect to the coordinates

0
axi ’

n
X =Y ai(z1,...,zp)
i=1

and with respect to this choice of coordinates, a vector field is given at each point by
the n-vector (ai,...,a,). If X is a vector field on G and g € G, then the value of X at
gis Xg: C®(G) - k defined by X,(f) = X(f)(g) for any f e C*°(G). The set of all
values at a point g € G of all vector fields on G is the tangent space at g noted T,G. It
can be thought of in terms of derivations acting on germs of functions at g. We have a
diffeomorphism of G defined by the left multiplication by an element g € G and noted
Ly. It induces the map dpLg : T),G — Ty, G for any h € G. A vector field X is called
left-invariant if

(dnLg)(Xp) = Xgn,

The set ™X(Q) of all left-invariant vector fields is called the Lie algebra of the Lie
group G and is isomorphic to T.G as a G-module. The Lie bracket for this Lie algebra is
[X,Y](f) =X (f)-Y(X(f)) for any X,Y left-invariant vector fields and f € C*(G).

Definition 1.1.36. An algebraic group is an algebraic variety G over k which is also a
group and such that the maps defining the group structure p: GxG - G with p(z,y) = xy
and vz~ x~' are morphisms of varieties.

The following definition of the tangent space to an algebraic group comes from [Sprin09].

Definition 1.1.37. Let G be an algebraic group over a field k. The tangent space to
G at x € G is defined by T,G = Dery(k[G],k;), i.e. the set of k-derivations from k[G]
to ky, with k, the field k seen as k[G]-module by the morphism f — f(x). An element
X €T, G is thus a map X : k[G] = k such that X (fg) = X(f)g(z) + f(x)X(g) for any

f 9 €k[G].

The tangent space of an algebraic group G can also be expressed using the regular
functions on G. If x € G, we write M, = {f e k[G] | f(z) =0}. It can be proved that the
tangent space to G at x is isomorphic to (M,/M2)* (cf. [Sprin09]).

The Lie algebra of an algebraic group G is the tangent space at the unit element

T.G and is usually noted g. We can check that g is a Lie algebra in the sense given at
the beginning of Section 1.1.1. Indeed, there are two maps
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1.1. Definitions and basic properties

inv <£
X(G) = Den(K[G].k) =g

defined by: '
e for any X € "™X(G), p(X)(f) = X(f)(e) for e the unit in G and any f € k[G].

e for any x € Dery(k[G], ke), ¥(z)(f)(g) = 2(Ly1f) for any feC*(G) and g€ G.
The maps ¢ and 1 are both well defined isomorphisms and inverse to each other (cf.
[Hum?75] Sections 9.1 and 9.2). Thus the Lie bracket on g is given by the one for the
left-invariant vector fields. From now on we will write h C b C g for a Cartan subalgebra,
a Borel subalgebra and a Lie algebra respectively.

An algebraic group over a field k is defined using polynomials. So if k = R or C, an
algebraic group is always a Lie group. But the converse is not always true. The easiest
example is D! = {z € C | 0 < |2| < 1}, the pointed unit disc without its border in R?, the
group action being the product. The metaplectic group Mp,(R), which is the connected
double cover of SLa(R), as well as the subgroup of GL3(R) given by

10 0
z t 0| zyeRteR"

y 0 ¢

with « irrational, are non-trivial examples. But there are particular situations in which
the converse is true. The next theorem is proved in [OV90].

Theorem 1.1.38. Let G be a connected, complex, semisimple Lie group. Then G admits
a unique structure of complex algebraic group.

Under these conditions, the classification of simple Lie groups over C and the classifi-
cation of simple algebraic groups over C lead to the same results. In what follows, the
base field will be the complex number field, hence we will identify Lie groups and alge-
braic groups. If GG is an algebraic group, then its tangent space as Lie group coincides
with its tangent space as algebraic group. In a similar fashion, the two definitions of the
Lie algebra of G coincide.

If g € G, we define

Ad(g):g—g

as the derived map at the unit element e of the conjugation = — gzg™' from G to G.
This is the Adjoint action of G on g. Also we define
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1. Lie Theory

ad: g — End(g)

as the differential at e of Ad: G — End(g). It coincides with the adjoint representation
of g on itself and thus one finds ad(X)(Y) = [X, Y], VX,Y €g.

1.2. Folding of Dynkin diagrams

We fix an algebraically closed field k of characteristic 0.

1.2.1. Definition of the folding of a Dynkin diagram

Let g be a simple Lie algebra of finite dimension over k with root system ® and x € g.
If ad « is nilpotent of order (say) n+1, then exp(ad ) = 1+ad =+ M oot (adn—f)n €
Aut(g) is well defined. Any automorphism of g that can be written exp(ad z) with x
nilpotent is called inner and the group generated by inner automorphisms is denoted by
Inn(g). It is a connected and normal subgroup of Aut(g), the group of automorphisms of
g. An outer automorphism is an element of Out(g) := Aut(g)/Inn(g). One can find the
proof of the next proposition in [FulHar91] (or [Bou68| chapter VI, §1, n°5, Proposition

16).

Proposition 1.2.1. Out(g) is isomorphic to the automorphism group of the Dynkin
diagram A of g.

One can verify that the irreducible Dynkin diagrams that have a non-trivial outer
automorphism group are those of type A, (r > 2), D, (r > 3) and Eg. Let o be an
automorphism of one of these Dynkin diagrams. Then ¢ induces an automorphism of
the corresponding Lie algebra. This is achieved by taking a section s of the morphism
7+ Aut(g) — Aut(g)/Inn(g) and get s(o). It has been seen that every vertex of the
Dynkin diagram corresponds to an element of a base II of ®. With this identification, o
induces a permutation of II. From Serre’s theorem (Theorem 1.1.20), it is known that the
Lie algebra is generated by the Chevalley generators ey, fo, ha, Wwith o running through
I1. Define s(o) by s(0)(2a) = Zy(a) for any a e Il, z = ¢, f or h. It can be verified that
s(o) is an automorphism of g and 7o s(o) = 0. One can see that s(o) preserves the
Cartan subalgebra h and is thus, by definition, an automorphism of the root system. But
s(o) preserves also the Borel subalgebra b @ @acp+ go. This implies that s(o) induces
a permutation, which we call p, of the positive roots through s(c)(ga) = gp(a)- Hence
the permutation p is induced by an automorphism of the root system ® and preserves
®*, thus it preserves the base II. As it also preserves the bracket (.,.), one sees that the
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Cartan matrix is unchanged by p, and so is the Dynkin diagram. Therefore p induces
an automorphism of the Dynkin diagram which is equal to o.

In order to simplify the notations, we will write & for the automorphism s(o). By
definition of o, ¢ has finite order. Assuming the order is r € Z5¢, ¢ induces a gradation
on g such that g = @jcz/,70: with g; = {z € g | 5(x) = w'z}, w being a primitive 7-th
root of unity. Indeed, because ¢ is of finite order, it is semisimple. Hence there exists
a base of g composed of eigenvectors of ¢ and the eigenspaces are the summands of the
gradation.

In the next subsections we are going to compute explicitly the gradation of the Lie
algebra by a case by case analysis of the Dynkin diagrams. Furthermore we will also com-
pute the invariants of the root lattice by the action of ¢ and the corresponding Dynkin
diagram. The folding of a Dynkin diagram consists in computing the invariants of
the automorphism ¢. The reader may consult [Kac90] for more results on Lie algebras
automorphisms.

1.2.2. A2T71 and Br

Let g be a Lie algebra over k of type As,—1, A its Dynkin diagram and {ay, ..., a1}
a base of the root system. We identify the simple roots of g with their respective vertices
in A, so that an automorphism of A can be seen as a permutation of the simple roots.
We define o the automorphism of A by o(a;) = agy—;.

H
[N
7
o
:
7
x
|3
7
[N
(S
7
ol

a) Folding of the Lie algebra: o is lifted to an automorphism & of g defined by & (x;) =
Ty(;), with x = e, f or h, the Chevalley generators.

¢ is of order 2 so g =go @ g1. We are going to compute gg and g;.
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g is generated by e;, fi, h;, 1 <i < 2r —1, with Serre’s relations (Theorem 1.1.20). The
simple roots are aji,...az,-1 and the positives ones are } ;. jag, 1 <i<j <2r. The
root space decomposition gives g =h ® Dpeap+ (ga @ g-o) With g, = Ceq.

In the following computations, we are going to use that if ¢ is of finite order r and

r_l . .
z €g, then y = ) (7'6'(x) with ¢" =1 is an eigenvector of ¢ for the eigenvalue (.
i=0
® go: set

E, = €i+é'(6i),1§i§7’—1, F;, = fi+d'(fi),1SiST—1 and

=
Il
>
+
Q-
~~
s
~
—_
IN
-~
7a\
<
|
\t—‘

We have the following relations

Ej] = ¢ Ej,
HZ,F] —ci; Fj,
(ad E))7 9 E; =0 (i#})),
(ad )6 F; =0 (i # 7).

[Ei
[Hi, a]— s Vi,
[H
[

2 -1 0 O
-1 2 -1
0o -1 2
where the matrix (¢; j)1<i j<r 18 00 A )
2 -1 0
-1 2 -1
0 O 0o -2 2
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According to Serre’s theorem (Theorem 1.1.20), the E;, F;, H; are the Chevalley gener-
ators of a simple Lie algebra a C gy whose corresponding Dynkin diagram is

which is of type C,.

e g1: we have [go, g1] C g1, 50 [a,91] C g1. g1 is then a representation of a. Let (\;)1<i<r
be the fundamental weights of a. Set | 71 = o +...+ag-2, and v=¢, —e,,. One
N2 = aQo+...+aQo 1,
can see that v € gy and v # 0 because n; # 12. Let V be the a-module generated by
v. By direct computations one finds | [H;,v] = Ao(H;)v, Vi, Therefore V is a highest
[Ei,v] =0, Vi.

weight module of highest weight Ao and is finite dimensional. By Corollary 1.1.32, V is
irreducible and so V' 2 L(\2).

By Weyl’s formula (Theorem 1.1.33), we obtain dim V = 2r% — 7 — 1. Furthermore
g= go @® g1 anddima+dim V=r2r+1)+2r>-r-1=4r2-1=dim g, with dim a

U U

a V
given in Table 1.1. The simple Lie algebra a c go which is of type C). is therefore equal
to go- We conclude that gg = a is the simple Lie algebra of type C,. and g; = V is an
irreducible highest weight a-module of highest weight As.

2r—1

b) Folding of the root lattice Q: let Q = € Za; be the root lattice of a root system
i=1

of type As,_1. We have defined o by o(a;) = ae,—; and extend it to @ by linearity. Let

us compute the invariants Q7.

2r-1

Oé=zki04i€Qa < ki=ko, 1<i<r—1,
i=1
' r—1
= a= Z ki(ai+a2r—i) +k‘rOér.
i=1

Set
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67‘ = Ol

Bi=o;+aqo_;, 1<i<r-1,

The f;’s generate the lattice Q7. From direct computation, one has

((627 ﬂj))lsi,jgr =

The corresponding diagram is

-1 0 O
2 -1
-1 2
0 -1
-1
2 -1 0
-1 2 -2
0 0 -1 2
r-2 r-1 r

It is a Dynkin diagram of type B,. We deduce that Q? is the root lattice of a Lie

algebra of type B,.

1.2.3. A, and C,

Let g be a Lie algebra over k of type Ag., A its Dynkin diagram and {aq,..., a9} a
base of the root system. We identify the simple roots of g with their respective vertices
in A, so that an automorphism of A can be seen as a permutation of the simple roots.
We define o the automorphism of A by o(a;) = aori1-.
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1.2. Folding of Dynkin diagrams

1 2 r r+1 2r-1 2r
.—. ..................... .—' ..................... .—.
o

a) Folding of the Lie algebra: o is lifted to an automorphism & of g defined by
0(xi) = To(;), with z = e, f or h, the Chevalley generators.

¢ is of order 2 so g = go P g1. We are going to compute gg and gi.

g is generated by e;, fi,h;, 1 < i < 2r, with Serre’s relations (Theorem 1.1.20). The
simple roots are aq,...ag, and the positives ones are 3, ;..; g, 1 <1 <j < 2r. The root
space decomposition gives g = h ® @Dpco+ (o ® §-o) With g, = Ce,.

o%set

Ei=e;+0d(e), 1<i<r,
Fi=fi+o(fi),1<i<r,
HiZhi-i-O"(hi), 1<e<r.

We have the following relations

Ei, Fy]=6; jH;, 1<i<r,

Ej] = ¢ Ej,
H;, F}] = —ci; F;,
(ad E;)' "9 E; =0 (i#j),
(ad B F; =0 (i 7).

[
[Hi, Hj] =0, Vi3,
[Hi
[
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2 -1 0 0
-1 2 -1
0o -1 2
where the matrix (¢; j)1<i j<r 18 00 ,
2 -1 0
-1 2 =2
0 O 0o -1 2

According to Serre’s theorem (Theorem 1.1.20), the E;, F;, H; are the Chevalley gener-
ators of a simple Lie algebra a C gy whose corresponding Dynkin diagram is

which is of type B,.

e g1: we have [go, g1] C g1, s0 [a,91] C g1. g1 is then a representation of a. Let (\;)1<i<r
be the fundamental weights of a. Set 6 = a1 +. ..+ a9, and v = eg. One can see that v € gy
and v # 0. Let V be the a-module generated by v. By direct computations one finds

[H;,v] =2\ (H;)v, Vi, Therefore V is a highest weight module of highest weight 2
[E;,v] =0, Vi.
and is finite dimensional. By Corollary 1.1.32, V' is irreducible and so V' = L(2)\).

By Weyl’s formula (Theorem 1.1.33), we obtain dim V = r(2r + 3). Furthermore
g= g0 ® ¢1 anddima+dim V =r(2r+1)+r(2r+3)=4r(r+1) = dim g, with dim a

U U

a Vv
given in Table 1.1. We conclude that gg = a is the simple Lie algebra of type B, and
g1 =V is an irreducible highest weight a-module of highest weight 2);.

2r
b) Folding of the root lattice Q: let Q = @ Za; be the root lattice of a root system of
i=1
type Az,. We have defined o by o(a;) = agr41-; and extend it to @ by linearity. Let us
compute the invariants Q°.
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1.2. Folding of Dynkin diagrams

2r
o= Z kil'Oéi € QU
i=1

Set

Bi = o + a1,

< ki=kopp1-, 1<i <y

IS
< a=)Y k(o +ag).
i

1<i<r.

The S;’s generate the lattice Q7. From direct computation, one has

2
-1
0
0
((ﬁin@j))lsi,gg =
0
The corresponding diagram is
1 2 3
@ @ @

It is a Dynkin diagram of type C,.

algebra of type C,.

1.2.4. D,.; and C,

Let g be a Lie algebra over k of type D,,1, A its Dynkin diagram and {a, .

base of the root system. We define o an automorphism of A by

-1 0 0
2 -1
-1 2
0 -1
-1
2 -1 0
-1 2 -1
0 0 -2 2
r-2 r-1 T

We deduce that Q7 is the root lattice of a Lie

) a

o(a;)=a; ifi#rr+1,
o(ar) = e,

o(ars1) = ap.
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1. Lie Theory

r+1

a)Folding of the Lie algebra: o is lifted to an automorphism ¢ of g defined by
0(x;) = T,(;), With x = e, f or h, the Chevalley generators.

As previously one sees that g = go @D g1.

e gop contains

E;, = e,1<i<r-1, aswellas | F; = f;, 1<i<r-1,
By = ertilern), Fo= foro(f),
and | H; = h;, 1<i<r-1,
H. = h,+0d(h,).

Let a be the subalgebra of gy generated by the F;, F; and H;’s. As in the previous
subsection, by means of Serre’s theorem (Theorem 1.1.20), one sees that the E;, F;, H;’s
are the Chevalley generators of the simple Lie algebra a C go whose Dynkin diagram is

1 2 3 r-2 r-1 T

® ® ® PS o——o

which is of type B,.

e g1: as in the previous subsection, we find that g is a representation of a. Let (\;)1<i<r
be the fundamental weights of a. Let | 1 = a1 +...+ a1+, and v = e, —ep,.
M2 = Qp+...+0r1+ Q]
One can see that v € g; and v # 0 because 11 # 172. Let V' be the a-module generated by
v. By direct computations we find | [H;,v] = A1 (H;)v, Vi, Therefore V is a highest
[Ei,'l)] = 0, Vi.

weight module of highest weight \; and is finite dimensional. By Corollary 1.1.32, V is
irreducible and so V = L(A;).
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1.2. Folding of Dynkin diagrams

By means of Weyl’s formula (Theorem 1.1.33), we obtain dim V' = 2r+1. Furthermore

g= g0 ® g1 anddima+dim V=2r+1)r+2r+1=(2r+1)(r+1)=dim g, with

U U

a %4

dim a given in Table 1.1. We conclude that gg = a is the simple Lie algebra of type B,
and g; =V is an irreducible highest weight a-module of highest weight A;.

r+1

b) Folding of the root lattice Q: let @ = @ Za; be the root lattice of a root system
i=1

of type D;,1. We have defined o by | o(a;) =« if i #r,7+1, and extend it to () by
U(ar) = Qpy1,

O'(Oér+1) = a’l‘u
linearity. We compute the invariants Q7.

r+1
a = Zkiai €eQ’ e ky =k,
i=1
r—1
= a= Z ki + kr(Qp + Qpi).
=1

Set

Gi=a;,1<i<r-1,

Br = + Qi1

The (;’s generate the lattice Q7. From direct computation, one has
g

2 -1 0 0
-1 2 -1
0o -1 2
((Bi: Bi)1s<ijsr = oo '
2 -1 0
-1 2 -1
0 0 0o -2 2
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1. Lie Theory

The corresponding diagram is

It is a Dynkin diagram of type C,.. We deduce that Q7 is the root lattice of a Lie algebra
of type C,.

1.2.5. EG and F4

Let g be a Lie algebra over k of type Fg, A its Dynkin diagram and {a1,..., a6} a

base of the root system. We define o an automorphism of A by o) = ag,
o(ag) = as,
o(as) = as,
0(056) =g,
o(a;) = a; otherwise.

(o
® ® ® ®
1 3 4 5 6
2

a) Folding of the Lie algebra: o is lifted to an automorphism & of g defined by
(i) = T,(;), With x = e, f or h, the Chevalley generators.

As previously we prove that g =go @D g1.
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1.2. Folding of Dynkin diagrams

e go contains | F; = eo, | FPo= S, aswell as | Hy = ho,
Ey = e Fy = fa Hy = Iy
E3 = e3+es, Fs = f3+[5, Hs = hg+hs,
Ey = e +eg, Fy = fi+fs, Hy = hy+hs.

Let a be the subalgebra of gg generated by the F;, F; and H;’s. From direct compu-
tations and by Serre’s theorem (Theorem 1.1.20), one sees that the FE;, F;, H;’s are the
Chevalley generators of the simple Lie algebra a C gg whose Dynkin diagram is

which is of type Fj.

e gi: as in the previous subsection, we find that g; is a representation of a. Let
(Ai)1<i<a be the fundamental weights of a. Let | 71 = ag +ag +2a3 + 204 + a5 + ag,
N2 = Qa1 +a2+a3+2a4+2a5+a6,
and v = e, —ep,. One can see that v € g1 and v # 0 because 71 # n2. Let V be the
a-module generated by v. By direct computations we find | [H;,v] = \(H;)v, Vi,
[E;,v] =0, Vi.

Therefore V is a highest weight module of highest weight A4 and is finite dimensional.
By Corollary 1.1.32, V is irreducible and so V' = L(\4).

By Weyl’s formula (Theorem 1.1.33), we obtain dim V' = 26. Furthermore
g= g0 D g1 anddim a+dim V =52+26 =78 =dim g, with dim a given in Table 1.1.
U U

a Vv

We conclude that gg = a is the simple Lie algebra of type Fy and g; = V is an irreducible
highest weight a-module of highest weight \4.

6
b) Folding of the root lattice Q: let Q = @ Za; be the root lattice of a root system of
i=1
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1. Lie Theory

type Eg. We have defined o by o(a1) = ag,
U(O‘?)) = Qs,
0’(0{5) =Qs3,
o(ag) = aq,
o(a;) = a; otherwise,

Let us compute the invariants Q°.

6
= EkiaieQ” <~ k‘l =k6 and k3:k5,
i=1

and extend it to @) by linearity.

< o= kl(al + a6) + kg(ozg + Oé5) + k:4a4 + k:gozg.

Set

B1 = a1 + o,
Ba = ag + as,

B3 = oy,

Ba = .

The f;’s generate the lattice Q7. From direct computation, one has

2 -1 0 0
-1 2 -2 0
({8, Bi)si,j<a =
-1 2 -1
0o 0 -1 2
The corresponding diagram is
1 2 3 4

It is a Dynkin diagram of type Fy. We deduce that Q7 is the root lattice of a Lie algebra

of type Fj.
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1.2. Folding of Dynkin diagrams

1.2.6. D, and G-

Let g be a Lie algebra of type Dy, A its Dynkin diagram and {1, a9, a3, a4} a base

of the root system. We define o an automorphism of A by o(ar) = as,
o(ag) = ay,
o(ay) = a1,
o(ag) = ao.

a) Folding of the Lie algebra: o is lifted to an automorphism & of g defined by
() = Ty(;), With x = e, f or h, the Chevalley generators.

As before we can prove that g = go @ g1 ® g2 because ¢ is of order 3.

® (o contains E1=€1+63+64, F1=f1+f3+f4, and H1 =h1+h3+h4,

Es = e, Fy = fo, Hj = hs.

Let a be the subalgebra of go generated by the E;, F; and H;’s. As in the previ-
ous subsection, by means of Serre’s theorem (Theorem 1.1.20), one concludes that the
FE;, F;, Hy’s are the Chevalley generators of the simple Lie algebra a C gg whose Dynkin
diagram is

which is of type Ga.
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1. Lie Theory

e g1: as in the previous subsection, we find that g; is a representation of a. Let (A1, A2)

be the fundamental weights of a. Let | 1, = o +as+as and v = e, + j2e,, + jep,.
2 = a3+tag+a;
N3 = agtazt+ag

One can see that v € g; and v # 0 because 71,79 and n3 are distinct. Let V be the a-
module generated by v. Through direct computations one finds | [H;,v] = A1 (H;)v, Vi,
[EZ', ’U] = O, V1.

Therefore V is a highest weight module of highest weight A4 and is finite dimensional.
By Corollary 1.1.32, V' is irreducible and so V' 2 L(\y).

With Weyl’s formula (Theorem 1.1.33), we obtain dim V = 7.

e go: we have [go,g2] C g2, 50 [a,g2] C g2. Thus g2 is a representation of a. Set
W = ey +jep, + j2€n3. One can see that w € go and w # 0 because 71,12 and 73 are
distinct. Let W be the a-module generated by w. From direct computations we find

[H;,w] = 1 (H;)w, Vi, Therefore W is a highest weight module of highest weight
[Ei,w] =0, Vi.

A1 and is finite dimensional. By Corollary 1.1.32, W is irreducible and so W = L(\;).
Therefore V2 W = L(\1).

Wehaveg= go @ g1 @ go anddim a+dim V+dim W =14+7+7 = 28 = dim g,

U U U

a |4 U

with dim a given in Table 1.1. We conclude that gg = a is the simple Lie algebra of type
Gs and g1 =V 2 W =gy is an irreducible highest weight a-module of highest weight ;.

4
b) Folding of the root lattice Q: let @ = @ Za; be the root lattice of a root system
i=1
of type Dy. We defined o by | o(a;)=a3, and extend it to @ by linearity. Let us
o(ag) = ay,
0'(044) =Q1,
0(052) = 9,

compute the invariants Q°.
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1.2. Folding of Dynkin diagrams

4
a:ZkiaieQ” <~ ki1=k‘3:]€4,
i=1
= a:kl(a1+a3+a4)+k2a2.

Set

B1 =01 + o3+ g,

B2 = az.

The (;’s generate the lattice Q7. From direct computation, one has

2 -3
({Bi, Bi))1<ij<a = .
-1 2
The corresponding diagram is
1 2
o———0

This is a Dynkin diagram of type Ga. We deduce that Q7 is the root lattice of a Lie
algebra of type Ga.

1.2.7. Conclusions

We summarize the results we obtained in the previous subsections in the following
table:

type of g || A2r—1 | A2y | Dys1 | Es | Dy

type of dJo Cr Br Br F4 G2

type of Q¢ B, C, C, | Fu | Gy

order of o 2 2 2 2 3

Table 1.2.
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1. Lie Theory

One notices that, in all five cases, the types of go and Q° are dual to each other. This
is due to the fact that the short roots and the long roots are switched when we go from
the Lie algebra to the root lattice. For example, with the case As._1, go is of type C.
with simple roots (%(al FQ2-1)s -, %(ar_l +Qrs1), 0y ) SO we have r—1 short roots and
one long. Q7 is of type B, with base (a1 + a9,-1,...,0p-1 + Q11,04 ) SO we have r — 1
long roots and one short. The Coxeter graphs will then be identical but the Dynkin
diagrams will differ by the direction of the arrow on the multiple edge.

1.3. Adjoint quotient

1.3.1. Definition of the affine quotient

In this subsection we follow the presentation of the affine quotient given in [Muk03].

Let X = Spm k[ X ] be an affine variety on which acts an algebraic group G. We want to
define a quotient “X /G ” which would characterize the action of G on X. A most natural

way is to look at a map of the following form ¢: X — A" with the

o= (fi(x),. . fa(2)

fi being G-invariant regular functions. This map is then constant on each G-orbit. We
say that G is linearly reductive if for any surjective map f: V — W of representations
of G, the induced map f¢: V% - W& on the G-invariants is surjective. It is equivalent
to the assertion that every finite dimensional representation of G is completely reducible
(cf. [Pro07] Chapter 7, Section 3.1, Lemma). Furthermore, in characteristic 0, a linear
algebraic group is linearly reductive if and only if it is reductive (cf. [Pro07] Chapter
7, Section 3.6, Theorem 2). One can show that SL,,(C), as well as compact Lie groups
(which include the exceptional Lie groups), are linearly reductive. D. Hilbert proved the
following theorem in [Hilb90]:

Theorem 1.3.1. (Hilbert). Let G be a linearly reductive algebraic group, which acts
on a polynomial ring S, preserving the grading. Then the ring of invariant polynomials
S is finitely generated.

Hilbert’s theorem states that k[X]“ has a finite number of generators. So we take
the above f;’s to be a set of generators of the invariants. One wonders if this map can
separate the orbits, or what does the image of ¢ looks like.

Example 1.3.2. Let us look at the action of the multiplicative group G,, on the affine

plane X = A? given by t.(x,y) = (tx,t ™ y), t € G, (x,y) € A%. The orbits of this action
are of three kinds:
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1.3. Adjoint quotient

(i) the origin (0,0),
(ii) every hyperbola xy = a with a not zero,

(iii) the x — axis without the origin and the y — axis without the origin.

On the other hand G acts on the coordinate ring of X, which is k[X] = k[z,y]. It is
easy to see that K[ X1 = k[zy] and so there is a map

0: A -k

(z,y) = wy

This map separates the orbits of type (ii), but makes no difference between the types (i)
and (iii).

According to the previous example, the invariant functions are not sufficient to sep-
arate orbits. This is due to topology. The map ¢ is polynomial so continuous. This
implies that each fiber is closed, so if one G-orbit is not closed, ¢ cannot separate the
orbits. We are going to see that ¢ does not separate orbits but certain equivalence
classes of orbits.

Definition 1.3.3. Two G-orbits O and O’ ¢ X are said to be closure-equivalent if
there exists a sequence of orbits

OZOO? Ola"'a OT—1> OT':OI

such that O;N Oyy1 # @, for alli=0,...,7 1.

Theorem 1.3.4. (Mumford-Nagata). Let G be a linearly reductive group acting on
an affine variety X and O, O' ¢ X two orbits in X. The following assertions are
equivalent:

(i) ONO' .
(i1) O and O" are closure-equivalent.

(iii) O and O are not separated by the G-invariants k[ X]9.

According to the theorem, ¢(X) parametrizes the closure-equivalence classes of G-
orbits in X.
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Corollary 1.3.5. Let G be a linearly reductive group acting on an affine variety X. Then
the distinct closed G-orbits are separated by . Furthermore, each closure-equivalence
class contains one unique closed orbit.

The corollary implies that the image of ¢ parametrizes the closed G-orbits. Now we
can define our quotient variety.

Definition 1.3.6. We note X//G for the affine variety Spm(k[X]%). The inclusion
k[X]% c k[X] defines a map

:X - X//G,

which is called the affine quotient map. The variety X /|G is called the affine GIT
quotient.

It is possible to show (cf. [Muk03] Theorem 5.9) that if G is linearly reductive and
acts on an affine variety X, then ® is surjective and there is a bijective correspondence
between the points of X//G and the closure-equivalence classes of G-orbits in X.

Assuming that G is a finite group, the affine quotient has an interesting property.
Indeed, as G is finite, every orbit G.z, x € X, is of finite cardinal and is thus closed.
Therefore X//G characterizes all the orbits of G. This turns X//G into a geometric
quotient, and as such, is noted X /G. By definition, a geometric quotient of a G-
variety X by an algebraic group G is a morphism 7: X — Y such that:

(i) 7 is surjective, and its fibers are exactly the G-orbits in X.
(ii) The topology of Y is the quotient topology: a subset U C Y is open if and only if
7 1(U) is open.
(iii) For any open subset U C Y, the comorphism 77 yields an isomorphism
k[U] = k[=1(U)]°.
The reader may consult [Mum94] for properties of a geometric quotient. In particular, if
X is irreducible, then so is Y, and there is an equality of function fields k(Y") = k(X)¢.

From conditions (i) and (ii), as a set, the geometric quotient is the set of all orbits.
However, the geometric quotient and the set theoric quotient are not always the same,
because the geometric quotient does not always exists.

Examples 1.3.7. (1) Consider the action of G = G, on X = A" by scalar multiplica-
tion. The orbits are the lines through O minus the origin, and the origin. But there
is no geometric quotient, since 0 lies in every orbit closure.

(2) Let G = G, act on A2~ {0} via t- (z,y) := (tz,t71y), as in Evample 1.8.2. Recall
that the orbits are the hyperbolae {xy = a}, with a € k*, the x-axis minus the origin
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1.3. Adjoint quotient

and the y-axis minus the origin. All the orbits are closed in A% ~ {0}, but there is
no geometric quotient. Indeed, k(X)® = k(zy) and thus, the G-orbits (z = 0) ~ {0}
and (y =0) \ {0} are not separated by G-invariant rational functions.

One may add that if the geometric quotient and the affine GIT quotient both exist,
then they are identical.

1.3.2. Adjoint quotient

We return to Lie theory. Let G be a semisimple algebraic group over k and g its Lie
algebra. The adjoint action of G on g has already been defined. Let us look at the
morphism g - g//G.

Let h C g be a Cartan subalgebra and W the corresponding Weyl group. We write
S(h) c S(g) for the symmetric algebras of h and g respectively. C. Chevalley proved
the following theorem:

Theorem 1.3.8. (Chevalley). Let G be a semisimple algebraic group over k, g its Lie
algebra, h C g a Cartan subalgebra and W the corresponding Weyl group. There is an
isomorphism

S(g)¢ = S(m)".

Proof. A proof due to R. Steinberg can be found in [Hum78]. O

Examples 1.3.9. In Examples 1.1.25 we computed the exponents for the Lie algebras
of types A and D in the complex settings, and for this we obtained a set of generators
for the algebra S(H)W.

For the type A,, we found S(h)V = Cloa(X),...,0,41(X)] with o; the i-th elementary
symmetric polynomial. According to Theorem 1.3.8, the algebra S(g)G of G-invariants
is generated by 02(X),...,0041(X).

For the type D,, we had S(h)"V = Clo1(X?),...,0,1(X?),0,(X)] = S(g)°.

For the cases B, et C, one finds that S(g)% = S(h)W = Co1(X?),...,0.(X?)].

In the settings of Chevalley’s theorem, g is semisimple and therefore the Killing form
k of g is non-degenerate. Thus it determines an isomorphism = : g — g* defined by

E(z)(y) = K(z,y), Vz,yeg.
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This isomorphism enables us to identify S(g)¢ (respectively S(H)") with k[g]® (re-
spectively [k[b]W). Looking at the spectrum in Chevalley’s theorem, one obtains the
isomorphism g//G = h/W.

One can write h/W because W is a finite group and so the quotient h//W is geometric
(cf. Subsection 1.3.1). So there is a surjective morphism x : g - h/W that we call the
adjoint quotient of g. This morphism will be described in more details.

The next two lemmas can be found in [ColMcG93].

Lemma 1.3.10. Let g be a semisimple Lie algebra over k, G its corresponding group
acting by the Adjoint action, and b a Cartan subalgebra. We define a map

i: b — {G-orbits of semisimple elements} .

h — O, =G.h

Then 1t is surjective.

Remark 1.3.11. The closed orbits of GG in its Lie algebra g are exactly the orbits of
semisimple elements (cf. [ColMcG93] Theorem 2.3.1).

Lemma 1.3.12. Let g be a semisimple Lie algebra over k, G its corresponding group
acting by the Adjoint action, b a Cartan subalgebra and W the associated Weyl group.
Then we have a natural isomorphism

W= Na(h)/Ca(b),

with Ng(h) ={ge G | g.b=b} and Cq(h) ={ge G | g.h =h Yheb} the normalizer and
the centralizer of b in G, respectively.

Proposition 1.3.13. Let g be a semisimple Lie algebra over k, b a Cartan subalgebra
and W the associated Weyl group. Then the set of conjugacy classes of semisimple
elements of g is in bijection with h/W.

Proof. Consider the map

p: bW — {O; | x is semisimple}
h > Oy
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1.3. Adjoint quotient

with A being the image of h € b by the natural projection h — h/W. Say h and hy are
two distinct representatives of the conjugacy class h. Then by Lemma 1.3.12 , h and h;
are G-conjugated and so Op, = Op,. Therefore p is well defined. Lemma 1.3.10 implies
that u is surjective.

We now prove that p is injective. Assume p(hy) = u(h2). Then Oy, = Oy, and so there
exists g € G such that g.h; = ha. One notices that fh and g.h are two Cartan subalgebras
containing ho. Since Cartan subalgebras are abelian, h and g.h centralize hs, i.e.

b, g.h C gh.

These are both Cartan subalgebras of g2, which is reductive. Therefore there exists ¢o
an element of the adjoint group of g’ such that gs.g.h = h and ¢2.¢.h1 = ho. This implies
that go.g is in Ng(h) and sends hy to hy. By Lemma 1.3.12; there exists w € W such
that w.hq = he. In other words, hy = ho and 1 is injective. O

We have the following diagram:

T=Ts+Tp €Y
(G.x C g/|G) \X

G.xs < g/|G — h/W

with x5 and x,, the semisimple and nilpotent parts of x and y the adjoint quotient.

Example 1.3.14. If g = sl,(k), A € g, we have x(A) = (Tr(A2),...,Tr(A")) € h/W =
kL

Let g be a simple Lie algebra over k of rank r, h a Cartan subalgebra and W the Weyl
group. We have k[h]" = k[g]® = k[x1,...,x,] where the y; are the homogeneous gener-
ators from Chevalley’s theorem (Theorem 1.1.21). One can then realize the morphism

X:g—b/W by

X: g — h/W =k
z — (@), x (@)
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More details on the adjoint quotient can be found in [Hum95].

We conclude this section with a theorem on the structure of the orbits of the Adjoint
action.
Let g be a semisimple Lie algebra over k with adjoint Lie group G acting via the Adjoint
action on g and O an orbit for this action. Let (.,.) be a G-invariant inner product on
g, for instance the opposite of the Killing form. Each element U of the Lie algebra g
induces a vector field Xy on O defined by

Xu(2) =[U,Z] = -ad(2)(U), VZeO.

Xy is called the fundamental vector field attached to U.

Since G acts transitively on O, at any point Z € O, the values of the fundamental vector
fields Xy generate the whole tangent space 77O of O at Z. We deduce that Tz O is the
affine sub-space of g at Z associated with the (vector) subspace Im(ad Z), the image of
the endomorphism ad Z in g.

The next theorem is proved in [Bes87].

Theorem 1.3.15. Let g be a semisimple Lie algebra over k with adjoint algebraic group
G acting via the Adjoint action on g. Let O be an orbit in g. Then O possesses a
symplectic structure (cf. Definition 2.1.1) given by the symplectic form F defined by

Fz(X,Y):(Z,[U,V]), VXayeTZO7Z€O7

where U and V' are any elements of g whose image by ad Z are X and Y respectively
(here Tz O is viewed as a vector space and not as an affine space). The symplectic form
F' is called the Kostant-Kirillov-Souriau form.

Remark 1.3.16. The Kostant-Kirillov-Souriau form is initially a symplectic form on
the co-Adjoint orbits. However, as g is semisimple, the Killing form enables us to identify
g and its dual, thus giving the orbits of the Adjoint action a symplectic structure.

1.3.3. Nilpotent cone

From now on, the base field k will always be the complex number field C. Because of
Theorem 1.1.38, we can now use indifferently the terms Lie group and algebraic group
in our setting of semisimple groups.

Let g be a semisimple Lie algebra over C, h a Cartan subalgebra, W the associated

Weyl group and x : g — h/W the adjoint quotient. The next theorem is due to R.
Steinberg and proved in [Stein74]:
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1.3. Adjoint quotient

Theorem 1.3.17. The adjoint quotient x is a flat morphism. As a consequence, all
fibers have the same dimension dim g —rank g. Furthermore, any fiber is a union of a
finite number of conjugacy classes.

We call M'(g) = x"*(x(0)) the nilpotent cone of g. It was explained in the previous
section that if x = x5 + x,, € g is the Jordan-Chevalley decomposition of an element of
g, then x(z) = x(zs). It follows that = € N(g) if and only if x5 = 0, which means x
nilpotent. N (g) is indeed a cone because it is stable by scalar multiplication. It is clear
that the algebraic group G associated to g acts by the Adjoint action on N (g). Because
the nilpotent cone is a fiber of the adjoint quotient, we have the following corollary:

Corollary 1.3.18. Let g be a simple Lie algebra with Weyl group W and nilpotent cone
N(g) = {x € g | x is nilpotent}. Let ® be the set of roots of g. Then dim N (g) = |®| =
dim g -rank g.

It is also possible to find more information on A (g) as it is done in [Sprin66]:

Proposition 1.3.19. N(g) is an irreducible variety as well as a Zariski-closed subset
of the affine space modelled on g.

An element x € g is called regular if dim Zg(z) = rank(g), where Zg(x) is the
centralizer of x in G under the adjoint action. B. Kostant proved the following in
[Kos63]:

Proposition 1.3.20. Let F' be a fiber of the adjoint quotient. Then F contains a unique
regular orbit. Furthermore this orbit is dense in F.

It is proved in [Kos59] that for all = € g, the centralizer j4(x) of x in g contains

a commutative subalgebra of dimension rank(g). So dim 34(z) > rank(g). It is also
known that exp : g — G is a local homeomorphism. We compute %‘ 1o On each side of
ad(exp(tX))(xz) =  with X € g, and find [X,z] = 0 so X € 34(z). One deduces that
Te(Za(x)) = 3g(x), implying dim Zg(z) = dim 34(x) > rank(g). So an element is regular
if and only if its centralizer is of minimal dimension, or equivalently if its orbit is of
maximal dimension.
One can explain this in another fashion. Let y : g — h/W = A” be the adjoint quotient.
Then x = (x1,---,Xr), the x; are algebraically independent and each fiber has dimension
dim g —r, because of the flatness of xy. Each fiber of x is G-invariant and is a union of a
finite number of G-orbits. Moreover, as the dimension of an orbit is dim G —dim Zg(z),
where x is a point in the orbit, we have dim Zg(z) > r for any x € g.

In [Stein74], R. Steinberg defined an element x € g as being subregular if dim Zg(x) =
rank(g) + 2. It was stated in Theorem 1.3.15 that all orbits have a symplectic struc-
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1. Lie Theory

ture and because of Remark 2.1.2, their dimensions are even. Therefore the orbits of
subregular elements are those of maximal size right after the regular ones.
We have the following propositions regarding the orbits in the nilpotent cone.

Proposition 1.3.21. There exists a unique reqular orbit Oreg in N'(g). If x is regular
nilpotent, then dim O, = dim G - dim Zg(z) = dim g - rank(g) = dim N (g).

The existence of the regular orbit is due to the fact that A(g) is a finite union of
orbits and a finite union of subspaces of dimensions strictly inferior than n cannot be a
space of dimension n. The unicity is due to Proposition 1.3.20. There is a similar result
for the subregular nilpotent elements due to R. Steinberg ([Stein74]):

Proposition 1.3.22. There exists a unique subreqular orbit Ogypreg in N(g). It is
open and dense in N(g) \ Oreg. If x is subregular nilpotent, then dim O, = dim G -
dim Zg(x) =dim g -rank(g) -2 = dim N (g) - 2.

1.4. Simple singularities and Dynkin diagrams

1.4.1. Simple singularities of type ADE
1.4.1.1. Definition of simple singularities

F. Klein studied the finite subgroups of SLo(C) in terms of transformations of C? and
classified them in [Klein84|. Later H.S.M. Coxeter and W. Moser gave a presentation
for each one in [CoxMos57]. Let I' be a finite subgroup of SLa(C). Then I' is conjugate
to a unique subgroup of the form:

e C,=(al]a”=1)(n>1), the cyclic group of order n,

e D, ={a,b,c|a?=b>=c"=abc)(n>2), the binary dihedral group of order 4n,
o T =(a,b,c|a®=0b3=c®=abc), the binary tetrahedral group of order 24,

e O={a,b,c|a®=0>=c'=abc), the binary octahedral group of order 48,

e T={(a,b,c|a®=b%=c’=abc), the binary icosahedral group of order 120.

The natural action of I' on C? induces an action of I" on the ring C[C?] of polynomial
functions on C2. The ring C[C?]" of T-invariant polynomials is then generated by three
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1.4. Simple singularities and Dynkin diagrams

elements X, Y, Z satisfying a unique relation R(X,Y,Z) = 0. Indeed, such relations were
determined by F. Klein in [Klein84].

Theorem 1.4.1. Let T be a finite subgroup of SLao(C). Then C%/T' injects into C* as
the zeros of a polynomial R € C[X,Y, Z], which is given in the following table:

r R

Cn X"+YZ

D, | X(Y2-X")+2?
T X44y3 4 72
O | X3+XY3+22
T X54+Y3 4+ 72

Proof. Let T' be a finite subgroup of SLy(C). As I' is conjugated to a subgroup of SU,,
without loss of generality, we can assume that I' is a finite subgroup of SUs.

w 0 9 w 0 9
eletI'=C,=2Z/nZ =< > where w = exp(="). Set g = . C* has a

0 w! 0 wt
base (e1,ez) with e; = and ey = . So (€C?)* has a base (21, 22) with z;(z) = 21
0 1
x
and zo(x) = x9, for x = e e Cn acts on (C?)* by (o.f)(x) = f(o L), for
T2

0 €Cp, fe(CH* and x € C2 Thus (9.21)(x) = z1(¢g7 2) = w ™ty = w iz (z), ¥ 2 e C2
Hence g.21 = w’lzl, and in a similar manner, g.z = wzs.

The polynomial ring on C? is C[z1,22]. Let k,l € Zsg. The element g acts on the

monomial 2fz} by g.(2F24) = w!"F2k 2. Hence T acts diagonally on each monomial, and
it follows that C[z1, 22]%" = C[2}, 21 29, 25].
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1. Lie Theory

There is a surjection ¢: C[X,Y,Z] - C[z],z122,25] .

X —> Z129
Y — 21
Z — 2y

We show that (X" -Y Z) = Ker(¢). As the inclusion C follows immediately, we show the
other inclusion. Let P € Ker(¢). The division of P by X" —Y Z seen as a polynomial in
the X variable gives P(X,Y,Z) = Q(X,Y,Z)(X"-YZ)+T(X,Y,Z) with T(X,Y, Z) =
an1(Y,Z)X" L+ . +a1(Y,2)X +ao(Y, Z). By using the relation T(z;22,27,2%) = 0
and then looking at the degrees of z; and zo modulo n, one sees that ag=...=a,-1 =0.
Hence P is divisible by X" — Y Z, which implies that Ker(¢) Cc (X" -Y 7). Therefore
Ker(p) =(X"-YZ).

It has been proved that C[z1, 22]" = C[20, 2129, 28] = C[X, Y, Z] /(X" - Y Z). So C?/C,
injects into C? as the solutions of the equation X" -Y Z = 0. By a linear transformation,
the equation becomes X" +Y Z = 0.

X A

Representations of R*M(C?/C,,) for n =2 and 3.

The cases where I' = D,,,7 and O are solved in a similar manner. The realizations of
the groups can be found in [Co76] or in Chapter 4 of [Sprin77].

2i , 4 2 .3
e et ' =7 =< exp(g ! 0 o >, where n =
- - . b . 7\/5 ) -
0 exp(-37)) \i 0 n”?-n* n-n
exp(25).

02



1.4. Simple singularities and Dynkin diagrams

This case cannot be solved easily through direct computations as the previous ones.
Another approach is needed. Here are some preliminary definitions.

Let (21, 22) be the coordinate system of C? on which Z acts by matrix multiplication.

Definition 1.4.2. Let G be a group acting on C2. A homogeneous polynomial F €
Clz1,22] is a relative invariant of G if for all g € G, g.F = N\gF with Ay € C*. The
map xXp:G — C*,g— Ay is called the character of F'.

Definition 1.4.3. A Grundform is a relative invariant ® whose divisor of zeros is an
exceptional orbit (i.e. an orbit with a non-trivial stabilizer).

The Grundformen will form a basis of the invariant polynomials. The following theo-
rem gives the necessary conditions for it to happen (cf. [Dolg07]).

Theorem 1.4.4. Assume that G is finite and there exist two Grundformen ®1 and o
whose orbits have cardinalities |G|/e1 and |G|[e2 such that the characters satisfy

ez _ el
Xo, = Xo, -
Then every relative invariant is a polynomial in Grundformen.

Our aim is to apply the previous theorem to Z.

The group Z acts on C[z1,22] and preserves the degree. Let F' € C[z1,22] be a ho-
mogeneous polynomial of degree d. Note that if (z,y) is a zero of F, then F(\x,\y) =
MNF(z,y) = 0, so (x,y) defines a line of zeros passing through the origin. It defines
therefore a point in P1(C). If g € Z, then g.F(z,y) = F(g7'.(z,y)) = 0 because (z,y)
is a zero of F. Hence T permutes the zeros of F' and the lines they define in P!(C).
Therefore there is an action of Z on P(C).

Let an icosahedron J be centered at the origin and included in the unit sphere. Choose
two diametrically opposite vertices and set them on the north and south poles of the
sphere. Let &, p,¢ denote the coordinates of the unit sphere {2 + p? + ¢% = 1}. The
stereographic projection from the north pole to the plane {{ = 0} of the icosahedron
sends a vertex of coordinates (&, i, () to a point (x,y) of the plane {¢ = 0} with

__& -t
x_l_C7 y_].—C.

The point (x,y) will be given an affine coordinate z = x +1iy. Hence the projection sends

(&, 11,¢) to z = itzé‘ The north pole and the south pole are sent to oo and 0, respectively.
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1. Lie Theory

Let I be the group of rotations of the icosahedron J. Then Z is the preimage of I
under the projection SLo(C) - PGLy(C). With the stereographic projection previously
mentioned, a point on the sphere is given an affine coordinate and can thus be seen as
a point in P'(C). A point of affix z can be seen as (21 : z3) € P}(C) with z = L. The
point (21, 22) corresponds to the affine coordinate 2z = 2t. The action of 7 preserves the
icosahedron J because the action of I does so. If (21,22) is fixed by Z, then z = L €
PL(C) = S? is fixed by I. However, the only points of J that are fixed by an element
of I are the vertices, the centers of the faces and the midpoints of the edges. Under
the action of I, the vertices, the faces and the edges form three orbits. This property
is naturally transferred to Z. Hence the exceptional orbits are the one of the vertices,
the one of the centers of the faces and the one of the midpoints of the edges. More
details on the binary icosahedral group as well as the other finite subgroups of SUy can
be found in [Sprin77]. By applying all elements of Z to the south pole, one obtains the
affine coordinates of all the vertices:

z=0, oo, n’(n+n*), n”(n* +n*), for v=0,1,2,3,4.
Set

4 4
f(z1,22) = 2122 [[ (21 =" (n+ ") z2) [T (21 = 0" (0* + 1) 22).

v=0 v=0

The zeros of f correspond to the vertices of the icosahedron J and thus form an excep-
tional orbit. Because the zeros are permuted by Z, if g € Z, then ¢.f and f have the
same degree and the same roots for all g € Z. Hence there exists x;:Z — C* such that
g.f =xs(g)f for any g € Z, implying that f is a Grundform. One can prove that xy is
in fact trivial.

Set
o’fr  f af of
_ L1022 Omzm and  To 1| 0n 0z
R ) 20| 0H 0H
02129 82’% 0z1 02z

From explicit computations, one finds g.H = (det(g))?H and ¢.T = (det(g))T for g € T.
But Z is a subgroup of SUs, hence det(g) =1 for any g € Z. One deduces that H and T
are Z-invariants, and thus their zeros are unions of Z-orbits.
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1.4. Simple singularities and Dynkin diagrams

The reader is reminded that

f(z1,20) = z122(21% + 112925 — 239),
H(z1,22) —(239 + 230) + 288(21525 — 2723°) — 494210210,

T(Zl, 22)

(230 + 239) + 522(23525 — 2923°) = 10005(229210 - 2{0220).

H is an I-invariant of degree 20, which implies that the set of his zeros in P!(C) = S?
is a union of I-orbits and is of cardinal < 20. However, the orbits of the group I are of
cardinal either 12, 20, 30 or 60 and H is not proportional to a power of f. The only
possibility is that the zeros of H are the 20 centers of the faces of J. Hence they form an
exceptional orbit and H is a Grundform. In a similar manner one shows that 1" is the
Grundform corresponding to the midpoints of the edges. All Grundformen have thus
been found.

It was shown above that yg = x7 = 1. Therefore H and T satisfy the condition

of Theorem 1.4.4. Tt follows that the ring of invariants C[z1, 23] is generated by the
Grundformen f, H and T

There is a surjection ¢: C[X,Y,Z] - C[f,HT].

X — f
Y —> H
A — T

Let P e Ker(y). The division of P by 1728X5 -~ Y3 — Z? seen as a polynomial in the Z
variable gives P(X,Y,Z) = Q(X,Y, Z)[1728X°-Y3 - Z%]+S(X,Y, Z) with S(X,Y, Z) =
a1 (X, Y)Z + ap(X,Y). We have a1(f,H)T + ao(f,H) = 0. The first member of the
expression is of homogeneous degree 2 modulo 4 in z1,z2, whereas the second is of
homogeneous degree 0 modulo 4 in 21,29. Thus a; = ap = 0 and 1728X° - Y3 - 72
divides P. This implies Ker(y) c (1728X° - Y3 - Z2) and the other inclusion follows
immediately, proving Ker(y) = (1728X° - Y3 - Z7?2).

One finally obtains C[z1, 20]% = C[X,Y, Z]/(1728X° - Y - Z?). So C2/T injects into

C? as the solutions of the equation 1728X° - Y3 - Z2 = 0. By a linear transformation,
the equation becomes X° + Y3 + Z2 = 0.

95



1. Lie Theory

Representation of R3N(C?/Z).

O]

According to the above theorem, C?/T' can be seen as a hypersurface in C3. T' acts
freely and properly on C? \ {0} and as C? \ {0} is smooth, so is (C%/T") \ {0}. Hence
C2/T has at most one singularity at the origin. Using the polynomial equation R = 0,
one can verify that C?/T" has a unique singularity at the origin in all cases. The quotient
C2/T is called a simple singularity or a Kleinian singularity.

Remark 1.4.5. In [Durf79], A.H. Durfee gave many different names for these types
of singularities like rational double points, quotient singularities or absolutely isolated
double points among others. In this thesis, the chosen denomination will be simple or
Kleinian singularities.

Singularities are usually defined as germs (see below) of analytic spaces. However we
will see that with simple singularities one can work with the algebraic settings given by
the polynomials equations of the previous theorem.

Definition 1.4.6. Let A be the set of pairs (X,x) consisting of an analytic space X
and a point x € X. On the set A we define the relation ~ as follows:

(X,x)~(Y,y) < there exists a neighborhood U C X of x (for the complex
topology), a neighborhood V- C'Y of y, and an isomorphism
f:U =V such that f(z) =y.
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1.4. Simple singularities and Dynkin diagrams

The relation ~ is an equivalence relation on A. Let G denote the quotient A/ ~. An ele-

ment of G is called a germ of the analytic space and we denote it by a representative
(X, z).

The next theorem is due to M. Artin and allows us to switch from the analytic setting
to the algebraic one (cf. [Ishiil4] Theorem 4.2.4).

Theorem 1.4.7. (Artin’s Algebraization Theorem). For a germ (X, z) of analytic
space, if x is an isolated singularity, there exists an algebraic variety X over C and a
point p of X such that

(X, ) = (X,p).

This theorem allows us to see isolated singularities as algebraic varieties. Furthermore,
when it comes to simple singularities, the following proposition (proved in [Lamo86]
Chapter 4) tells us that one can work globally using the polynomial equations R of
Theorem 1.4.1:

Proposition 1.4.8. Let 30 denote the germs of holomorphic functions (C3,0) - C and
let f € 30 be a germ without multiple factors. If Z(f) = {x e C3 | f(x) = 0} is isomorphic
to the simple singularity C*/T defined from a finite subgroup T' of SUs , then there is a
biholomorphic germ ¢ : (C3,0) = (C3,0) such that R = f o o is the polynomial associated
to I’ by Theorem 1.4.1.

The proof of this proposition is based on the fact that every polynomial of Theo-
rem 1.4.1 is a weighted homogeneous polynomial. The reader may want to consult
[Lamo86] for more details on weighted homogeneous functions.

Let p € Zyo and choose T1,...,T, among A, (r > 1), D, (r > 4), Es, E7 and Es.
A singular configuration of type 77 + ... + T}, is a complex algebraic surface with p
isolated singularities s1, ..., s,, such that, for each 1 <i < p, locally around s; the surface
is a simple singularity of type T;.

Example 1.4.9. Let f: ct - c? . The fiber

(z,y,2,t) — (22-23+32y? +t(2? +9?),1)

£71(0,0) is a simple singularity of type Dy. Let us look at the other singular fibers. One
computes that, except from the origin, the singular fibers are of two types: f~1(0,t) and
f_l(%tS,t), t+0. The former has a single singularity of type A1 at the origin, whereas
the latter has three singular points, namely (%t,0,0), (—%, %,0) and (—%, —%,0), each
of type Ay. Therefore f71(0,t) is a simple singularity of type A1 and f‘l(%t:g,t) is a
singular configuration of type Ay + A1+ Ay. Below is an illustration in the plane {z =0}
of both fibers fort=1:
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Red=Al+Al+Al Blue=Al
1.5
1
0.5

y 0 -

-0.5
-1
-15

-1 -0.5 0 0.5 1 1.5

1.4.1.2. Resolutions of simple singularities

The study of singularities requires an essential tool:

Definition 1.4.10. Let X be a complex algebraic variety and X% its set of reqular
points. A proper morphism w: X — X is called a resolution of X if:
e X is a smooth complex algebraic variety.

o 71 (X™8) is dense in X and the restriction 7r|7r_1(Xreg) s (XT8) - X8 s an

isomorphism.

The subvariety F = X \ 77 1(X"8) is called the exceptional locus of .

A resolution 7 : Xo — X is said minimal if any other resolution 7 : X - X can be
factorized through mg:

Minimal resolutions exist for singularities of curves (proved by I. Newton) and surfaces
(proved algebraically by O. Zariski in [Zari39]) and are unique up to isomorphism.
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1.4. Simple singularities and Dynkin diagrams

Examples 1.4.11. In case of the groups Ca and Ds, the real part Xo NR> of the minimal
resolution Xg gives a quite faithful idea of the complex situation.

o We know that Cy is associated with the surface S = {X?+Y Z =0}. The restriction

ToR = Tolgs of the minimal resolution my of the singularity C2%/Cy can be obtained by
blowing up the origin. We obtain

~
SnR3 SnR?

> <
\‘_‘_‘_‘_-___-_._._'_._‘/
0

o5 '(0)

The circle mop(0) is contracted on the origin.

e Dy is associated with the surface S = {X(Y?-X?)+Z?=0}. Again, TR is obtained
by blowing up the origin several times:

SNR3

<
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This time, myg(0) is composed of four circles:

In the case when S = C?/I is a simple singularity, P. Du Val proved in [DuVa34] that
if s is the singular point and 7 : S — S is the minimal resolution of S, then the preimage

of s is a union of projective lines

Each projective line has self-intersection —2 and intersects with others transversally in at
most one point. We associate to every line C; a vertex e in a graph, and two vertices are
linked by an edge if the corresponding lines intersect. We obtain the following diagrams

7761(3) =C1U...UC,,

CZ' = PI(C).

A(T):
r A(T) Name of A(T")
2 3 n-2 n-1
CTL . .. .................. .—. ATL—I
n+1
Dn ._;_; ......... o Dn+2
n+2
3 4 5 6
@ @ o
T Eg
2
4 5 [
@ @
@) E;
2
1 4 5 6 7
® @ @ @
T jo
2
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Examples 1.4.12. Let us rework the preceding examples with the illustrations of the
real resolutions.

o We have seen that with Ca, myp(0) is a circle, which is P1(R). The corresponding
diagram is then Aj.

e In the case of Ds, the diagram corresponding to W[;D%(O) 18 , which

is called Dy.

The diagrams A(I") are the Dynkin diagrams of the homogeneous root systems of the
simple Lie algebras. We will see another connection between the simple singularities and
the homogeneous Dynkin diagrams in the next section.

Remark 1.4.13. D. Kirby in [Kirby57] has characterized the Kleinian singularities as
being the only double points whose minimal resolution can be obtained by successive

blowups. Kleinian singularities have many characterisations which have been summa-
rized by A.H. Durfee in [Durf79].

1.4.1.3. Semiuniversal deformation

We start this section by defining a deformation of a singularity based on [Ishiil4].

Definition 1.4.14. Let Xy be a complex integral algebraic variety with an isolated sin-
gularity x. A deformation of (Xo,z) is a flat morphism of germs of algebraic varieties

¢ (X,z) > (U,u) with an isomorphism i: (Xo,z) = (¢ (u), ).

(X,5)
X

¢

(U, l

61
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The space (U, u) is called the base of the deformation (p,7).

An isomorphism § : (p,i) — (¢',i') of two deformations ¢ : (X,z) — (U,u) and
o (X', x) » (U,u) of (Xp,z) is an isomorphism § : (X,x) - (X',z) such that the
following diagram commutes:

(X07 ﬂ?)
)
(X, 2) (X',)
@ 4
(U, u)

If o: (X,z) - (U,u) is a deformation of (Xo,x) and ¢ : (T,t) — (U, ) is any morphism,
then the pullback @7 : (X, x) x (. (T,t) = (T,t) of ¢ by 1 is a deformation of (Xo, )
over (T,t) called the induced deformation by ¢ from ¢.

(X, ) X (U (T,t) — (X, 2)

$T ¥

(7,1)

(U,u)

A deformation ¢ : (X,z) - (U,u) of (Xp,z) is called semiuniversal if any other
deformation ¢’ : (X', z) — (T,t) of (Xo,x) is isomorphic to a deformation induced from
¢ by a base change ¢ : (T,t) - (U,u) whose differential at ¢ € T is uniquely determined.

More details on deformations of singularities can be found in M. Artin’s lecture notes
[Artin76].

We are now able to give one of the important theorems of this section.

Theorem 1.4.15. (Brieskorn). Let g be a simple Lie algebra over C of type A,, D,
or E, and x a subregular nilpotent element of g. Let S C g be a transversal slice (notion
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defined below) at x to the G-orbit of x in g. Then the restriction x|g: (S,z) - (§/W,0) of
the adjoint quotient x : g - h/W is a semiuniversal deformation of the simple singularity
(X|§1 (0), ), which is of the same type as g.

Proof. The theorem was first proved in [Bries71] in the setting of deformations of germs
of complex spaces, and then in [Slo80] Section 8.7 in an algebraic setting. O

According to the theorem, (SNN(g),z) = (SNx *(x(0)),z) is a simple singularity
of the same type as g.

A transversal slice S at z to the orbit of x is a locally closed subvariety S C g, x € .5,
such that the morphism G xS - g is smooth and dim S = codim G.zx.
(g,5) = (Adg)s

In our context, a transversal slice is easily obtained by choosing an affine subspace in g
complementary to the tangent space of G.z at x and passing through z.

T, (Gx)

Brieskorn’s theorem gives us the possibility to study singularities linked to subregular
nilpotent elements of g. In order to use this theorem, a more precise description of the
transversal slice S is necessary. One will be constructed explicitly, but before, here are
some definitions and preliminary results (cf. [Huse94] Chapter 4, Section 5).

Definition 1.4.16. Let G be an algebraic group, H C G an algebraic subgroup of G
and X a variety on which H acts. The associated bundle G x1 X over G/H is the
quotient of G x X by the action of H defined by

h.(g,z)=(g.h7  ha), Vhe Hge G,z e X.
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We write g * x for the class of (g,x) in G x% X. The morphism Gx* X - G/H

g+x +~ gH
gives a fiber bundle structure of fiber X.

When G and H are linear and X is an affine algebraic variety, the associated bundle
G x X exists as a variety.

Example 1.4.17. Let G = S* be the unit circle, H = {+1} and X =R. The action of H
on X is the multiplication. Then the associated bundle G x™ X is the Mdbius strip. The
effect of the quotient is illustrated on the following representation:

GxX
| | ﬁ

GxHX

o
>
I

The following lemma will be of use later on.

Lemma 1.4.18. Let X be a G-variety and © : X - G/H a G-equivariant morphism.
Then  is G-isomorphic to the bundle G x F - G/H, where F is the fiber 7' (e.H).
We have the following diagram:

12

X;’GXHF

G/H

Corollary 1.3.5 tells us that every fiber of the adjoint quotient x : g — h/W contains
a unique closed orbit. This orbit is composed of the semisimple elements of the fiber.
In fact, the closed orbits are the orbits of semisimple elements, as stated in the next
theorem (cf. [Warn72] Proposition 1.3.5.5).
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Theorem 1.4.19. (Borel, Harish-Chandra). Let g be a reductive Lie algebra, i.e.
the representation ad : g — End(g) is semisimple, and G its associated adjoint Lie group.
Then x € g is semisimple if and only if its orbit Ad(G)(z) is closed.

Moreover one can prove (cf. [Stein74] 3.4, Corollary 1) that if « = x5+, is the Jordan
decomposition of an element x € g, then y(z) = x(zs). Let h € h with h the class of h in
h/W. One can identify the closed orbit contained in x ™ (h) with G/Zg(h), where Zg(h)
is the stabilizer of h in G. If x € g is such that () = h, then z, is conjugated to h. So by
sending z on its semisimple part, one obtains a G-morphism o : "' (h) - G/Zg(h). o is
indeed a morphism because for any x € g, there exists a polynomial P, without contant
term and depending only on the characteristic polynomial of x such that P,(z) = x5, and
all the elements of () have the same characteristic polynomial for any faithful linear
representation of g (cf. [Slo80] 3.10, proof of the lemma). Because of Lemma 1.4.18,
one sees that x~'(h) is isomorphic to the associated bundle G xZa(h) [ where F is
the fiber of o over e.Zg(h). Furthermore F = o7 '(e.Zg(h)) = {x = x5+ 2, | x5 €
Za(h) and x4 conjugated to h}. As G.h 2 G/Zg(h), an element contained in the orbit
of h as well as in Zg(h) can only be h. Hence F = h+ N (34(h)), with N(34(h)) being
the set of nilpotent elements of 34(h) = Lie Zg(h). One can identify F' and N (34(h)),
therefore x 1 (h) = G xZ¢(M) N (34(h)).

The following theorem is a key result about nilpotent elements in a Lie algebra.

Theorem 1.4.20. (Jacobson-Morozov). Let g be a semisimple Lie algebra and let
f €@ be a nilpotent element. Then there exists e, h € g such that (e, f,h) is a sla-triple.
This means that the Lie algebra generated by e, f and h is isomorphic to sla(C) equipped
with its standard basis.

Proof. The proof of this theorem is quite long. Only the main steps will be given below.
A detailed version can be found in [Kos59).

1. Let us take E a C-vector space of finite dimension and A, B € End¢(FE). One shows
that if A is nilpotent and [A,[A, B]] =0 then AB is also nilpotent.

2. Let e € g be nilpotent. Then e € Im(ad e)?. One deduces that there exists f € g such
that [[f,e],e] =e. We set x =[f,e].

3. Let m be the smallest positive integer such that (ad e = 0. One proves that
[Tyo(ad x- %pid) is zero on Ker(ad e). It implies that ad x+id is invertible on Ker(ad e).
4. If [z, f] = —f then the subalgebra generated by e,x, f is isomorphic to slo(C). If
[x, f] # —f, one can show that there exists a unique g € Ker(ad e) such that [z, f]+ f =
[x,g]+ g. It follows that the subalgebra generated by e, z, f — g is isomorphic to sl (C).
Thus for all f € g nilpotent, there exists a subalgebra a C g containing f such that
azs [2(@) OJ

)m+1
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It is possible to prove that Brieskorn’s theorem does not depend on the choice of the
transversal slice. It is thus possible to choose one that is convenient. The following
construction is due to P. Slodowy.

Let e be a nilpotent element in a semisimple Lie algebra g. Because of the discussion
right before Theorem 1.3.15, it is known that T.(G.e) = e+[g,e]. A transversal slice can
then be written

S=e+3,

where 3 is a complementary of [g,e] in g.

According to Jacobson-Morozov theorem (Theorem 1.4.20), there exists f nilpotent and
h semisimple, two elements of g such that [e, f] = h, [h,e] = 2e¢, [h,f] = -2f and
< e, f,h >2 sl3(C). The inclusion gives us a morphism sly(C) - g. By composing this
morphism with the adjoint representation of g, one can see g as an sl (C)-module. Then
Theorem 1.1.13 implies that there is a decomposition

g=@DE
7
of g in a direct sum of irreducible submodules E;, and

[9,¢] = (ad €)(g) = P(ad ) (E;).

In each Ej, isomorphic to an irreducible representation V,,; of sla(C), one chooses as
complementary of (ad e)(FE;) the space of smallest weight of weight —(n; — 1) for the
action of ad h, which is 35,(f) = {z € E; | [f, ] = 0}. It follows that 34(f) = ®; 3, (f) is
the complementary of [g,e] in g and thus

S=e+3(f)

is a transversal slice to the orbit of e at e. We will denote it by S, and call it the
Slodowy slice at e (cf. [Slo80(2)]).

Now that we know a transversal slice, explicit computations can be made.

01 0 0
00 1 0
Example 1.4.21. Let g = sl4(C) and Se the Slodowy slice for e = .
00 0 O
00 0 O
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1.4. Simple singularities and Dynkin diagrams

01 00 0000 20 0 O
0010 2 0 00 00 0 O
One can check that e = L f= and h = form an
0000 0200 00 -2 0
0000 0000 00 0 O
x 0 0 0
y z 0 O
sly-triple. We then compute 34 (C)(f) = z,y,z,t,weCr. Finally
4 z oy x w
t 0 0 -3z
x 1 0 0
y 1 0
one obtains S, = x,y,z,t,weCrp.

Let A € S,. Then det(A — A) = M — p(A)A2 + g(A)\ + 7(A) with p(A) = 622 + 2y,
q(A) = 823 — 4ay — z and r(A) = 62%y — 3xz — tw - 32*. The adjoint quotient is then

X|se: Se — h/W
A — (p(A),q(A4),7(A))

(i) Let us compute (X|Se)’1(a,b, ¢) for a,b,ceC. It is equivalent to solving the system

622 + 2y = a,
823 — 4y — 2 = b,
6%y - 3xz —tw-3z* = ¢

By replacing the expressions of y and z depending on x in the last equation one gets
812t - 9ax? - 3bx +tw +c = 0.
So (X|Se)_1(a7 b,c) is defined by the equation F(z,t,w) = 81x* — 9ax? - 3bx + tw + ¢ = 0.

(i) We now compute the discriminant D ¢ h/W of x|g . (x|s,) " (a,b,¢) has a singu-

larity if and only if there exists x,t,w such that F(z,t,w) = 0, F(x,t,w) = O.F (z,t,w) =
OwF (x,t,w) =0, which is equivalent to
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F(z,t,w) = 8lz* -9az? -3bx+tw+c = 0,
0. F(z,t,w) = 32423 — 18ax — 3b = 0,
O F (z,t,w) = w = 0,
OwF(x,t,w) = t = 0.

Set P(x) = 81x* — 9ax® - 3bx + c. Then (X|SE)_1(a,b,c) has a singularity if and only
if P(x) = P'(z) = 0. So P has a multiple root. The resultant of P and P' is R =
43046721 (4a3b? - 27b* + 16a*c - 144ab’c - 128a?c? + 256¢3). Hence (X|Se)_1(av b,c) has a
singularity if and only if 4a3b — 27b* + 16a*c — 144ab®c — 128a%c? + 256¢3 = 0. Therefore
the discriminant is

D ={(a,b,c) e C® | 4a3b* - 270" + 16a*c — 144ab’c — 128a°c? + 256¢ = 0}.

(#ii) Let w: b — b/W be the natural projection. Let us find m1(D). It is known that

z 0 0 0
0y 0 0
h= (2,y,2) €eC3}. Ifheb thenw(h) = (2?2 +y? + 22 vy +a2+
0 0 = 0
0 00 -z-y-=z

yz, (z+y)(z+2)(y+ 2), —zyz(z +y + 2)). Wanting (x,y,z) e 7 (D) is equivalent to
(x-9)%(x-2)%(y-2)2Qr+y+2)2(x+2y+2)*(x +y +22)2 = 0.

Thus w1(D) is the union of six surfaces: {y = x}U{z = 2} U{z = y}U{2x +y + 2 =
0y U{z+2y+2z=0}U{z+y+2z=0}.

1 0 00 00 0 O
0 -1 00 01 0
It is known that b is generated by hy = , ho = and hs =
0 0 00 00 -1 0
0 0 00 00 0 O

o O
o O

. Moreover a1,y and as form a base of the root system of sly(C).

o o o O
o o o O
—
o
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z 0 0 0
0 =z O 0
The surface {x =y} corresponds to and is generated by
0 0 =z 0
0 0 0 2z-z
1 0 0 O 00 0 O
0 1 0 0 0
= h1+2ha+2h3 and = hs. The Cartan matriz of sl4(C) is
00 0 O 001 O
00 0 -2 0 0 0 -1
2 -1 0
-1 2 =1 so aj(hy+2hs+2hs) =ai(hs)=0. As aq is a linear form on b which is
0o -1 2

of dimension 3, Ker(ay) is of dimension 2. Hence Ker(ay) = Vecte(hy +2ha +2hs, hs) =

{z=y}.

In a similar fashion one can show that {z=x} = Ker(a + ag),
{z=y} = Ker(a),
{20 +y+2=0} = Ker(aq+as+a3),

{r+2y+2=0} = Ker(ag+ag),

{z+y+22=0} = Ker(as).
However sly(C) is of dimension 15 and Y of dimension 3. There are six positive Toots.
As all the roots previously given are clearly positive, one obtains ®* = {aq, a9, a3, 1 +
ag, a9 + s, o +ag +as}. Therefore n71(D) = U, c o+ Ker(a).

We remind the reader of an interesting fact:

Let g be a semisimple Lie algebra, h a Cartan subalgebra, W the Weyl group, ® the
root system and S, a Slodowy slice. We have the following diagram

Se

Vo Xls,
R VAL
U H, -» D

aedt
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with H, the kernel of « and D the discriminant of x.

In the case of A, let p € Upep Ho. Then pe Hy, N (Hoy UHa 10,), OF
pe€HpyN(Hoy UHp 405), 0t D€ Hyyvao~N(Hoy UHp, ), 0r pe Hyy NHay, N Hayva,- 1t can
be showed that if p belongs to only one H, (a = a1, or oy + a2, then X|§i (m(p)) is
a singularity of type A;. However if p € Hy, N Ha, N Hay o, X|§1 (w(p)) is a singularity
of type As. An illustration of this property is shown below

H,
\tl
H{t1+llz
X Bl
_
H
{tz

Example 1.4.22. We go back to our previous example with g = sl4(C) and S. the
computed Slodowy slice. Let p € Upep+ Ho and set ®, ={ae ® | pe Hy}. For every @,
we are going to compute X|§i (m(p)).

z 0 0 0
0y O 0 3
The Cartan subalgebra is ) = (x,y,2) € C°}. The simple roots
0 0 =z 0
000 —z-y-=z

are ] = €1 — €3, g = €9 — €3 and a3 = €3 — €4, with (€1,€2,€3,€4) an orthonormal base
4N\ * _ 27 _ 27 _ T
of (C*)*. One can check that (a1, a2) = 5, (,a3) = 5 and (a1,a3) = 5. In order

to picture them in R3, we take oy = (1,0,0), ao = (—%,%,—%) and as = (0,0,1). The

following picture with the associated color-coding follows:
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1.4. Simple singularities and Dynkin diagrams

o Blue
a9 Red
Qs Green
o1 + o Yellow
o+ ag Purple
a1+ as + ag | Brown

We can then represent the Hy'’s, keeping the same colors:

1010

The <I>;; are determined by looking at the intersections. We regroup them depending on

their number of elements and arrange them in the next table:
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@] P o

1 | {aa},{ae},{as},{a1 + azs}, {ag + a3}, {an + ag + a3} Aq

2 {ar, a3}, {ag,a1 + ag + a3z}, {ag + ag, a0 + az} A+ Ay

{ag, a0, a1 + ag}, {ag, a0 + ag, a1 + ag + as},

{ag, a3, as + as}, {as, a1 + ae, a1 + ag + az}

6 {Oél,Ckg,Oég,Oél+Oé2,042+043,0(1+0(2+0(3} A3

One can see that, by adding the negative roots, the ®,’s are root systems extracted from
As. They are written in the last column.

We are now going to compute XE (m(p)) for pe @, with |®,;]=1,2,3 and 6 and check
that the singularities obtained are of the same types as the ®,.

z 0 0 0

0 =z O
o0 ={ai}: p= . with © # z because p ¢ H,, and z #+ —x because
- z

0 0 0 2z-=2
p ¢ Hy,. Subsequently m(p) = (32% + 2xz + 2%, 22(x + 2)?,-222(2 + 22)). By taking
x =2 and z = -1, one gets w(p) = (9,4,12). X|:q1 (9,4,12) is given by the equation
fz,t,w) = 81a* — 8122 — 122 + tw + 12 = 0. The singular point is (—%,0,0). In order
to see what happens near the singularity, in the equation f we make the substitution
T —>T-— % After an analytic change of variables, we find a singularity of type Aj.

z 0 0 O
N 0 = . 2 4 ;
0] ={aj,a3}: p = - . with x # 0. So m(p) = (22°,0,2%). By taking
E— -z
00 0 -z

z =1, one finds w(p) = (2,0,1). Xléi (2,0,1) is given by the equation f(z,t,w) =
81a* — 1822 +tw+1=0. There are two singular points: (%,0,0) and (—%,0,0). In order
to see what happens near the singularity, in the equation f we make the substitution
T —> T+ % After an analytic change of variables, we find a singularity of type Ay. The
same result is obtained for the substitution r — x — % Therefore the fiber is a singular
configuration of type Ay + Aj.
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z 0 0 0
0 y O
0®;:{a1,a2,a1 tag}: p = with x =y, y =z and x = z. So
0 z 0
0 00 —xz-y-=z
z 0 0 O
0w ~ 2 g3 _o 4 ~
D= with x # 0. Then w(p) = (62°,8z>,-3z"). By taking x = 1, one
00 2« O
0 0 0 -3z

gets w(p) = (6,8,-3). X|§i (6,8,-3) is given by the equation f(x,t,w) = 81a* - 5422 -
24x +tw — 3 = 0. The singular point is (—%,0,0). In order to see what happens near
the singularity, in the equation f we make the substitution x — x — % After an analytic
change of variables, we find an As-type of singularity.

o|®]|=6: p=(0,0,0). Then n(p) = (0,0,0) and X|§i (0,0,0) is given by the equation
f(z,t,w) = 81z* + tw = 0, which is a singularity of type As.

The preceding example is a nice illustration of the following proposition. The proof
can be found in [Slo80].

Proposition 1.4.23. Let x : X — U be a deformation of a simple singularity Xo with
associated Dynkin diagram A. Let X, # Xo be a non-special fibre of x. Then there is
a proper subdiagram A’ € A and a type-preserving bijection of the components of A’
onto the singular points of X.. This means that each connected component of A is
sent to a singular point of X, which is a simple singularity of the corresponding type.
Furthermore, if x is semiuniversal, then all subdiagrams of A are realized as singular
configurations in mon-special fibers.

Since the beginning of our study, all the singularities have been isolated. The fact
that a singularity is isolated or not can be algebraically characterized (cf. [Loo84]).

Theorem 1.4.24. Let A be the ring of convergent series C{x1,...,xn}. Let f € A
such that f(0,...,0) =0 and let J(f) be the ideal of A generated by f and the

8Ii’
1 <i<n. Assuming that (f71(0),0) is a singular point, it is isolated if and only if
dim(A/J(f)) < oo.

Proof. One can show that the ring A is Noetherian and local with m = (z1, ..., 2,,) as its
unique maximal ideal. The proof of the theorem is based on the following proposition:
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Proposition 1.4.25. Leta c A be an ideal of A. The following assertions are equivalent:
(i) dim Aja < oco.
(i) Ik € Zq such that m* c a.

(iii) Z(a):={(a1,...,an) €C" | g(ai,...,a,) =0 Vg ea} ={0}.

Proof. (i) = (i) Assume there exists k € Zsq such that m* c a. There is a surjection

Afmk - Ala

xmod m* — 2z moda

It follows that dim A/a < dim A/m*. Furthermore the elements of A/m* are polynomials
whose degree is at most k—1. Thus A/m” has a finite base, which implies dim A/m* < co
and dim A/a < .

(i1) = (iii) Assume there exists k € Z.g such that m* c a. If 2 € Z(a), then z is a
common zero to all elements in m*. But A is an integral domain, implying that z cancels
all elements in m. As the only common zero of the elements of m is 0, it follows that
x=0and Z(a)={0}.

(i) = (i7) Assume that dim A/a < co. There is a sequence of vector spaces:
Alas (m+a)/a>s (m?+a)/a>...

According to the hypothesis, there exists k € Zsq such that (m**! +a)/a = (m* + a)/a,
hence m.(m* + a)/a = (m* + a)/a. Then Nakayama’s lemma (cf. [Eis95] Corollary 4.8)
implies that (m* + a)/a = 0, which means m* c a.

(i17) = (i7) The analytic version of Hilbert’s Nullstellenstaz (cf. [GinKhen90] First
Part, Chapter 2, Theorem 2.3) tells us that I(Z(a)) ={f e A| f(z)=0Vz e Z(a)} = /a.
If one assume that Z(a) = {0}, then Va={feA| f(0)=0} =m.

Set k € Zso. m is generated by z1, ..., %, so an element in m* can be written

Yag, g, (21, ...,xn)ajll...xgn with f1 +...+ B, =k and ag, g, € A.
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1.4. Simple singularities and Dynkin diagrams

For any partition of k£ in n elements, there exists one part higher or equal to % Indeed,
if the partition (S, ..., 5,) is such that g; < % for any 1 <i<mn, then k=051 +...+ 0, <
n% = k, which is impossible.

As m = \/a, for any 1 < i < n, there exists a; € Zsg such that x?’ €a. Set ke Zsy such
that % > max(aq, ..., &, ). Then for any partition (S1,...,5,) of k in n elements, there

exists 1 <7 <n such that g; > % > «y. Thus xfz € a and because a is an ideal, one finds
ag,..p. (21, ...,xn)xll...xﬁ" € a. Hence any element of mF is a sum of elements of a and

so is in a. It follows that m* c a. O

The singularity (f71(0),0) is isolated if and only if 0 is the only solution of the system

[ =0
gxfl = 0, 1<i<n.
Hence {0} = Z(J(f)). According to Proposition 1.4.25, this is equivalent to
dim(A/J(f)) < oo, which proves the theorem. O

The number dim(A/J(f)) is called the Tjurina number of the singularity (cf. [Loo84]).

The next theorem gives us a way of computing the semiuniversal deformation of any
simple singularity. It was proved by A. Kas and M. Schlessinger in [KasSchle72].

Theorem 1.4.26. (Kas-Schlessinger). Let Xy be a Kleinian singularity defined in
C3 by the polynomial equation f(X,Y,Z) =0. Because of the previous proposition (or by
explicit computation), the vector space V- = C[X,Y, Z]/(f, g—)f(, g—{i, g—é) is finite dimen-
sional. Let (b;(X,Y, Z))1<i<k be a base of V.. Then the semiuniversal deformation of the

simple singularity Xg is given by the map

@ C3 x C* - C

k .
(X,Y,Z,al,.. . ,ak) = f(X,Y, Z) + Zakbk(X,Y, Z)
i=1

1.4.1.4. Springer’s resolution

The theorem that will be proved shortly is about the nilpotent variety. Its proof
requires some reminders on regular nilpotent elements. The following theorem is proved
in [Stein65].

Theorem 1.4.27. Let x be a nilpotent element of a reductive Lie algebra g. The fol-
lowing properties are equivalent:
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(i) x is reqular.
(ii) = is contained in a unique Borel subalgebra of g.

(iii) If b = h Bpeap+ 9o is the decomposition in root spaces of a Borel subalgebra b of g
and x € b, then the projection of x on go is not zero for all the simple roots.

Let B be a Borel subgroup of G, T" a maximal torus contained in B, b = Lie B and
h = Lie T. It is known that b decomposes as b = h @ n with n the nilradical of b. As n is
stable under the Adjoint action of B, one can define the associated bundle G x” n. The
next proposition can be found in [Sprin09].

Proposition 1.4.28. With the same notations as before, the quotient G|B is a projective
variety called the flag variety for G, and is in bijection with the set of Borel subalgebras
of g.

The flag variety contains interesting information and will be studied in the following
example.

Example 1.4.29. Let G =SL,,(C), B a Borel subgroup of G and g,b the respective Lie
algebras. We have the following morphism

GIBE> ({0} =Vo EVi G ... § V, =C" | dim Vj =1}

sending a Borel subalgebra of g to the flag it stabilizes. Indeed, let (e1,...,e,) be the
canonical base of C™ on which G acts, and for any 1 <i <n, let V; = Vectc(eq,...,e;).
Then the stabilizer of the flag {V;}1<i<n s the space of upper triangular matrices in G and
is a Borel subalgebra. But as all Borel subalgebras are conjugated, any Borel subalgebra
b appears as the stabilizer of a unique flag we call p(b). This defines the morphism .
There are also the following morphisms

gz~ Ad(g)(x)

g*x GxBn > g
I $
gB G/B

76
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00 0 . 00
0 0 1 00
Setx=|. . . . . . .|egandlet us find the flags stabilized by x.
000 . .10
000 . .01
000 . .00

Let (v1,...v,) be the canonical base of C". Because x is nilpotent, its only eigenvalue is
0. Set U1 = aqv1 + aove an eigenvector.

e The aim is to find Vo such that the vector space generated by U7 and vy is stable
by x and of dimension 2. This will imply a relation xVy = vy + \va. On (01,02) the

matriz of x will be : . But x is nilpotent so A = 0 and so x0y = pvy. By writing
0 A

Ty = Yivq Bivi and applying x, one obtains Psva + ...+ BpUp_1 = poyvy + pogva.  Thus

B3 = paa, Ba=...=Pp =0 and pay = 0.

If a1 #0, set Uy =vy. This implies that Vi = Co1 & Vo =< wvy,v2 > are stable by x.

If a1 =0, set Uy =v3. Therefore Vi = Cva & Vo =< wa,v3 > are stable by x.

e We now aim to construct a vector U3 such that the C-vector space V3 = (01,02,73) is
stable by x and of dimension 3. The computation leads to:
If a1 =0, 203 = avo+ Bvs. By setting U3 = Brv1 +Pavg, one finds V3 =< vg,v3, frv1+ 8404 >.
If ay #0, one obtains U3 = B1v1 + Bove + [3vs thus Vi =< vy, v9,v3 >.

If one keeps on computing the case ay # 0, therefore V; =< wvi,va,...,v; >, forall 1 <i<mn,
is a C-vector space stable by x.

Let us go back to the case aq = 0. One eventually finds that every flag stabilized by x is
indexed by an 1<i<n—1 and an element (\: p) € P(C) such that

<U2,...,U541 > lfj<2,

V‘iy()‘:ﬂ) _

j <U27"'7Ui7)\vl+uvi+1> /Lfl:jv

<V1,...05 > if §> .

The previously mentioned flag will be denoted as V>N and the family of flags indexed
by PY(C) as V' = {V>O) | (X:p) e PY(C)}.
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) one point if k=1+1
Let 1 <i <k <n-1. It can be verified that V'OV = P / . We
@ otherwise.

therefore have the following configuration:

Assuming that the self-intersection is =2 for each V', the intersection matriz of the flag
configuration is the opposite of the Cartan matriz of A,-1, which is the Cartan matriz

of SL,,(C).

One can also look at the Borel subalgebras containing x and notice that they are in
bijection with the flags stable by x.

The next theorem is due to T.A. Springer and can be found in [Sprin69].

Theorem 1.4.30. (Springer). The morphism vo: GxBn -  N(g) isa reso-

gen o Ad(g)n
lution of singularities for the nilpotent variety N'(g).

Proof. The associated bundle G' xZ n is smooth and has the same dimension as N (g).
Indeed, ¢ : G xPn - G/B is a vector bundle and a surjective map. Hence, for any point
p € G/B, the dimension of the fiber $~!(p) = n is dim(G xZ n) —dim G/B. So

@l 1%

2 2’
:|(I)|’

=dim N (g),

dim(G xBn) =dim G/B +dim n =
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with ® the root system of the Lie algebra g, as previously seen. We have the morphism

a: GxPn —» {(Ax)eBxN(g)|zeA)
grn (b7, Ad(g)n)

with b9 = Ad(g)b and B = G/B the set of Borel subalgebras of g. Because N (g) is
G-stable and the action of B on N (g) is the restriction of the G-action, one has an
isomorphism ¢ : G x% N (g) > G/B x N(g) given by (g * z) = (9B, Ad(g)(z)) (cf.
[S1080] 3.7, Lemma 1). Hence the inclusion G' xZ n < G x® N (g) composed with ¢ is a
closed embedding of G x® n in B x N'(g) and is exactly the morphism a. We conclude
that G'x® n can be embedded onto the closed subvariety {(A,z) € Bx N (g) | z € A} of
B x N (g). Under this identification, the morphism 1)y corresponds to the projection on
N (g). One deduces that 1) is proper. Moreover, 1 is surjective because every nilpotent
element is contained in the nilradical of some Borel subalgebra. As 1y is G-equivariant
and the orbit of a regular element is dense in N (g), it is enough to prove that the
preimage under 1y of any regular element of N'(g) contains only one point. According
to the identification, one sees 15! (z) with x € N'(g) as B, = {A € B| v € A}. Then
because of Theorem 1.4.27, B, is a point if x is regular. The theorem is thus proved.

O]

1.4.1.5. Simultaneous resolutions

Definition 1.4.31. Let x : X — U be a flat morphism of complex algebraic integral
varieties. A simultaneous resolution of x is a commutative diagram of morphisms of
algebraic varieties

such that:
e 0 is smooth,
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e Y and  are proper and surjective,
e ¢ induces 1, : 071 (v) = x(¢(v)), which is a resolution of singularities for
X (), for allveV,
We will speak of simultaneous resolution of x over .

Let x : (C3,0) - (C,0) be a flat morphism whose only singular fiber x~1(0) has a
unique isolated singularity. The next theorem was obtained by E. Brieskorn in [Bries66]
in the setting of holomorphic maps of complex manifolds, and later algebraized by M.
Artin in [Artin74] .

Theorem 1.4.32. There exists a simultaneous resolution of x if and only if x~1(0) has
a simple singularity.

This theorem provides us a means of proving the existence of a simultaneous resolution.

We say that two simultaneous resolutions of

v (1 (25}

01 X 02 X

are isomorphic if there exists an isomorphism ¢ : Y7 — Y5 such that 9 ot =91 and
92 ol = 91.

Set x as in the previous theorem and let ¢ : (C,0) — (C,0) be a base change such that
x has a simultaneous resolution over . As x~1(0) is a simple singularity one can assign
it a Dynkin diagram as well as a Weyl group W. The next result comes from [Bries68§]
(analytically) and [Artin74] (algebraically).

Theorem 1.4.33. The number of non-isomorphic simultaneous resolutions of x over ¢
is exactly the order of W.

Let g be a reductive Lie algebra and h € b C g a Cartan and a Borel subalgebras of
g. The triangular decomposition of g gives b = h @n with n the subalgebra composed of
the nilpotent elements of b. Let W be the Weyl group of g associated to h as well as G
and B the Lie groups corresponding to g and b. We have the following diagram:
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G xBp

h/W

with x the adjoint quotient map, ¢ the canonical projection of h on h/W and 6 and
¢ defined by (g *b) = Ad(g)b and (g * (h+n))=hfor ge G,b=h+neb=HDn.

The next theorem was conjectured by A. Grothendieck and then proved by E. Brieskorn.

Theorem 1.4.34. (Grothendieck). The aforementioned diagram is a simultaneous
resolution of the adjoint quotient x.

Proof. Several points need to be verified:

(1) The diagram is commutative. Indeed, if g * z € G xZ b, then y o 9(g * ) = G.zs N b
with x5 the semisimple part of x and po8(g*x) = W.h with = = h+n the decomposition
of x in b. But as W = N(H)/H, W.h is the set of elements of h conjugated to h. On
the other hand G.xsNb is the set of elements of h conjugated to x;. However we know
that x5 and h are conjugated so y o (g*x) =@ of(g*x).

(2) The action of B on h = b/[b,b] is trivial because the action of its Lie algebra b on

h is trivial by definition. There is therefore an isomorphism G x? 5 G/B x bh. The
morphism 6 is smooth because it can be factorized as

GxBb > GxBp S G/Bxh - p
g*(h+n) = gxh = (gBh) » h
and each morphism of the factorization is smooth.

(3) The morphism ¢ is clearly proper and surjective, and so is 1) because every element
of g is contained in a Borel subalgebra and Borel subalgebras are conjugated.

(4) Let h denote the conjugacy class of h in h/W. We aim to show that vy, : 071 (h) —
x"(h) is a resolution of singularities for all h € .
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It has been seen before that x~1(h) 2 G xZ" N (3(h)). By composing the G-equivariant
morphism 1, with the projection on G/Z(h), one can see =1 (h) as an associated bundle:

o'y~ xT'(h) Gx"MN(3(h) - GZ(h)
g*(h+n) ~ ad(g)(h+n) ~ gx((h+n)) = gZ(h)

112

According to Lemma 1.4.18, we need to find the Z(h)-stable fiber of this composition
above eZ(h) € G/Z(h). One can see that h + N(3(h)) is the set of elements whose
semisimple part is b and G.(h+ N (3(h))) 2 G x*™ N(3(h)). The preimage of eZ(h)
by the projection on G/Z(h) is e * N(3(h)), which corresponds to the set h + N (3(h)).
The preimage of the composition above eZ(h) is thus the set of elements g * (h +n) €
G xB (h+n) such that the semisimple part of Ad(g)(h+n) is h. One can replace g* (h+n)
by an equivalent gb~* » Ad(b)(h +n) with a b€ B chosen such that (Ad(b)(h+n))s = h.
As (Ad(gb Y (Ad(b)(h +n)))s = h, we get Ad(gb™*)(Ad(b)(h +n))s = h, which means
that Ad(gb~')h = h. We deduce that gb! € Z(h). Hence the fiber above eZ(h) is
{g*(h+n) e GxBn|ge Z(h) and n en(h)} with n(h) =nN3(h). But this is isomorphic
to Z(h) xB" n(h), where B(h) = BN Z(h) is a Borel subgroup of Z(h) whose Lie
algebra has n(h) for nilradical.

Finally, writing ¥o(h) : Z(h) xB") n(h) - N (3(h)) for the restriction of the Springer
resolution, one sees that 1y, is induced by 1g(h). Therefore 9, is isomorphic to

G xZM g (h) : G xZ M) (Z(h) xBW n(h)) - G xZM N (3(h)).

As 1g(h) is a resolution by Springer’s theorem (Theorem 1.4.30), so is . O

Let us consider the diagram of the previous theorem. Let S be a transversal slice to
a nilpotent orbit (not necessarily subregular) in g and S =171(S) the preimage of S by
b in G xBb.

Corollary 1.4.35. The restriction of the Grothendieck resolution is a simultaneous
resolution.
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EDRVLY

" N

9
g

X
h/W

¥

Proof. One sees that S = (G x” b) x g 5. We know that S is transversal to an orbit at x
in g. As 9 is surjective, let y € G xB b such that ¢(y) = z. Then S is a transversal slice
to the orbit at y in G x? b. Indeed, one can see that:

°* yes,

e the morphism G x § - G xZ b is smooth (cf. [Slo80] Section 5.1, Lemma 2),

e codim S = dim G.y. Indeed, because dim Gx®b-dim G = dim G/B+dim b—dim G =
0, any fiber of v is discrete. The restriction ¢|G.y : G.y - G.x is surjective and
the dimension of any fiber is dim G.y — dim G.z = 0 because it is discrete. So

dim S =dim G xBb+dim S-dim g =dim G x®b-dim G.z because S is transversal,
= dim G xB b -dim G.y,
= codim G.y.

Then it follows that S is transversal to the G-orbit at y in G xZ b.
One concludes that the composition

Gx§ - GxPbp > b

(9,8) = gxs = 0(gxs)
is smooth. As it factorizes in

5 T2 ~ 9|§
>

GxS 3 25,

then 6 = 6| g is smooth. Therefore 7. .S is well defined for all s € S so S is smooth. One
can easily check that the other properties of a simultaneous resolution are verified as
well. O
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Let S be a transversal slice to a nilpotent subregular orbit of a simple Lie algebra of
type A, D, or E,. Using Theorem 1.4.15 and Corollary 1.4.35, one obtains a simultane-
ous resolution of the semiuniversal deformation of the corresponding simple singularity.

1.4.2. Simple singularities of type BCFG

The simple singularities have been defined and some of their properties proved. These
singularities are linked to the homogeneous (or simply-laced) Dynkin diagrams of simple
Lie algebras. However in Section 1.1.2 it was shown that there are other kinds of simple
Lie algebras, and as such Dynkin diagrams, which are the inhomogeneous (or non-simply-
laced) types B, (r > 2), C; (r > 3), Fy and G2. P. Slodowy gave a definition of simple
singularities of inhomogeneous types. This definition requires some preparation.

1.4.2.1. Group action on a simple singularity

Let T' c T’ be finite subgroups of SUs. We would like T’ to act on C?/T". T acts on C?
and, if I' <« I, this action induces an action of the group I'//T" on C?/T". It is thus natural
to require that I' be normal in I. In the following table are all normal subgroups I" of
the finite subgroups I' of SUs (cf. [Cox91]).

I’ r order of T'
C,, Cr,Vr/n r
D% if n even 2n
D, C%,Vq/n and o odd o
C2n,Yq/n 2n
. q
T Doy 8
{£1} 2
T 24
@) Do 8
{£1} 2
z {£1} 2

The symmetry groups of the simply-laced Dynkin diagrams have been determined in
Section 1.2. For type Ag,_1, the symmetry group is Q = Z/2Z and T’ = Cy,. We are
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1.4. Simple singularities and Dynkin diagrams

looking for I in SUs such that I' < I'" and I'" acts on C?/T". The action of I/ can be
lifted through the minimal resolution of C?/T". As the minimal resolution restricts to an
isomorphism on a dense open subset and I' acts trivially on C?/T, it follows that I' acts
trivially on the minimal resolution. So the action of I on the whole minimal resolution
factors through an action of I/T. As the origin is a fixed point of T in C2?/T', I'/T
acts on the exceptional locus, which is composed of a union of projective lines whose
intersection pattern corresponds to the Dynkin diagram Ag,_;. Therefore we want I''/T
to act on the exceptional locus the same way {2 acts on the Dynkin diagram. This can
be achieved by requiring I'V/T 2 Q and T < T".

e Type Ag,.—1: T' = Co and 2 = Z/27. Based on the previous table, the possibilities
are IV = Cy, or D,.
The singularity C?/T is defined by {X?" - Y Z = 0} with X = 2129, Y = 2J", Z = 23",
where (21, 22) is the dual of the canonical base of C? (cf. Theorem 1.4.1).

0 A
- Cyy is generated by g = ¢ ) with ¢ = exp(%‘f—;r). The action is g.z1 = ("2 and
0 ¢

g.z9 = (2z9. Then

g X = X,
gY = -Y,
9.4 = -Z
0 i
- D, is generated by ¢ and h = . g? fixes C?/T" and h.zy = —izg, h.zg = —iz].
i 0
Then

hX = -X,

LY = (-1)"Z, .

h.Z = (-1)"Y.

In order to determine which group is the appropriate one, it is necessary to extend
the action of I’ to the minimal resolution of C?/T" and check that I permutes the
components of the exceptional locus the same way () acts on the Dynkin diagram. In
the next subsection, it will be explicitly proved that IV = D,..

e Type Ag,: ' =Coryq1 and Q = Z/27. Based on the previous table, the only possibility
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is FI = C4r+2.
The singularity C?/T" is defined by {X?"*1 Y Z = 0} with X = 2129, Y = 27" Z = 227+,
where (21, 22) is the dual of the canonical base of C? (cf. Theorem 1.4.1).

0 .
Cyri2 is generated by g = 0 with ¢ = eXp(f?fo). The action is g.z; = ("2 and
g.zo = (z9. Then
g X = X,
gY = -Y,
9.z = -Z

It is necessary to extend the action of I to the minimal resolution of C2/T" and check
that T permutes the components of the exceptional locus the same way €2 acts on the
Dynkin diagram. In the next subsection, it will be shown that is does not. Therefore a
group I satisfying our conditions does not exist.

e Type D,,1: I'=D,_1 and Q = Z/2Z. The only possibility is I = Do(r-1)-
If r is odd, the singularity C?/T is defined by {X (Y2-X""1)+22% = 0} with X = 4r (2122)?,
Y = 47$(z?(r_1) + zg(r_l)), Z = izle(z%(r_l) - zg(r_l)), where (21, 22) is the dual of the
canonical base of C? (cf. Theorem 1.4.1).
If r is even, the singularity C?/T is defined by {X(Y?+ X"!) + Z2? = 0} with X =
4%(2122)2, Y = 4’$(zf(7”_1) - zg(r_l)), Z = izle(zf(T_l) + z;(r_l)), where (z1,29) is
defined similarly as when r is odd.

0 , 0 =2
Dy(r-1) is generated by g = : with € = exp(4(2r’—f1)) and h = . Then

0 &1t i 0
g X = X, hX = X,
gy = -Y, and LY =Y,
9.7 = -Z, hZz = Z.

e Type Eg: I' =T and Q = Z/2Z. According to the previous table, I'' = O.

The singularity C?/T is defined by {X* +Y?® + 2% = 0} with X = 1081 21 29(24 - 28),
Y = exp(%)(zf + 28+ 14(2122)1), Z = (2 + 25)% = 36(2120)* (2] + 23), with (21,22) the
dual of the canonical base of C? (cf. Theorem 1.4.1).
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e 0 .
O =<g,T > with g = ; and € = exp(Z). It is know that 7 fixes C?/I'" and
0 €

g X = -X,
gY =Y,
9.7z = -Z

e Type Dy: I' =Dy and Q = &3. The only possibility is I = O.
The singularity C2/T is defined by {X (Y2 - X2) + Z2 = 0} with X = 43(2122)% Y =
4_é(zi1 +23), Z = iz120(2] — 23), with (z1,22) the dual of the canonical base of C? (cf.
Theorem 1.4.1).

1 (e e e 0 .
O =<Dy,g,h > with g = % : and h = ; with € = exp(7). It is known
€ € 0 €

that Dy fixes C?/T, and

9X = L(¥-X), hX = X,
g.Y = -3(Y+3X), and RY = -Y,
g.Z = Z, h.Z = -Z.
We summarize the results we obtained in the following table:
Homogeneous | Inhomogeneous r I’ Q

Aoy B, Cor D, Z7]27
A2r Cr C2r+1 X Z/QZ
Dy Cr Dy DQ(T—I) Z/2Z

Eg Fy T O Z]27

T Z7]37
D4 G2 DQ
O G3
Table 1.3.
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The "inhomogeneous" column corresponds to the foldings of the root lattices whose
types compose the first column. They were computed in Section 1.2. We add that if we
chose Q to be Z/3Z in the case I' = Dy, it can be proved that IV = T.

Remark 1.4.36. One may wonder why the Dynkin diagram Ao, was disregarded. Let
g be a Lie algebra over k of type Ay, A its Dynkin diagram and {«;,...,as,} a base of
the root system. We identify the simple roots of g with their respective vertices in A,
so that an automorphism of A can be seen as a permutation of the simple roots. We
define o the automorphism of A by o(a;) = agrs1-;-

1 2 r r+1 2r-1 2r
o——@ Q@—@ e o—©
N S

The folding of the Lie algebra g gives a Lie algebra gg of type B, and the folding of the
root lattice gives a root lattice Q7 of type C,. This case should a priori be included
in Table 1.3. However, it will be shown in Section 1.4.2.2 that for any I' such that
/T2 Q=27/27, T'|T fails to permute the components of the exceptional locus of the
minimal resolution of Ag, like the symmetry group 2 of the Dynkin diagram permutes
its vertices.

1.4.2.2. Computation with A5, and B,

Let o be the automorphism of the Dynkin diagram of type As,_1 defined, as in Sec-
tion 1.2.2, by
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1.4. Simple singularities and Dynkin diagrams

The group corresponding to As._q is I' = Cy.. Set I'Y = D,. Let us check that I
permutes the components of the exceptional locus of As._1 the same way o permutes
the vertices of the Dynkin diagram.

The singularity of type Ao, 1 is Xo, = {(2,9,2) € C* | 2%" —yz = 0} and its minimal
resolution is given by (cf. [Lamo86])

1/} : XQ’I’ - Xop

((z,y,2),{(ai b)) }1<ic2r-1) = (2,9,2)

with Xy, the surface in C? x (P1)?~! defined by | ag,12 = bar1v,
aibis1x = ajib;, 1<1<2r-2,
airz = Dbix.
exp(% 0 0 ¢
It is known that D, = (g,h) with g = ‘ and h = . It was
0 exp(-4~ i 0

shown in Subsection 1.4.2.1 that D, acts on Xo, by | g¢.(z,y,2) = (x,y, 2),

h.(z,y,2) = (=2, (=1)"2,(=-1)"y).

Let a = ((x,y,2), (a1 :b1),...,(agr-1:bar_1)) € Xo,. Our goal is to define g.cv and h.«
and make v a I'-equivariant morphism.

By definition I' = (g) fixes every point in Xo, so g.a = ((x,y,2), (a] : b)),...,(ah,_; :
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4 7
a9,_1% = b, 1y, a2r—17 = bar_1Yy,

’ v . .
br-1)) € Xop thus{ alb! w=al b, 1<i<2r-2, and{ a;bj12 = a1, 1<i<2r -2,

alz = bz, ajz =bix.

One deduces from these systems that (a} : b]) = (a; : b;) for all i, hence g.a = a, Vo € Xo,.

Furthermore, h.c € X, with ah,_1(-x) = bh._1(-1)"z, . But a ¢

aib, (-z) = a;, b}, 1<i<2r-2,
aj(-)"y = bi(-2).

_ bo.._ / -1 r+1 bo._ bl -1 r+1

Xor s0 r_ D and T ﬂ. One deduces that o ,) = 21 and 2’"71,( ) =

Yy azr-1 z 1 b1 a2r-1 Ay, 1
! ! !/ !
N Then a—,l = (—1)”1—1)27“_1 and —a,zr_l = (—1)”11)—1. Thus —GIQT_Q = i—a,zr_l = (—1)”21)—l =
b b a2r-1 by ay byg  —x by ayxr

/

b : - boy_
(-1)"*2=2. The computation finally gives % = (~1)r+2ri220 ] < i < 29 — 1. Therefore
a ; a2r—i

the action of h is given by h.a = (=2, (~1)" 2, (=1)"), {((~1)™*# oy : ar—) hrcicar1) €
Xop.

2r-1

Let £ = ¢71(0) be the exceptional locus. One sees that E = |J E; with E; =
i=1
{(0,0,0),(1:0),...,(1:0), (a;:b;) ,(0:1),...,(0:1)} € Xy,. The action of g on the

—
i-th position

components of E is g.E; = E; for any 1 <i<2r -1, and h.E; = {(0,0,0),(1:0),...,(1:
0), ((-1)™*2=C=Dp, 2 4;),(0:1),...,(0:1)}. Thus h.E; = Fa,_; for any 1<i<2r —1.

(2r-i)-th position

Finally T permutes the components of the exceptional locus the same way I''/T" per-
mutes the vertices of the Dynkin diagram.

We go back to the case Ag,. for I = Co-41 and explain why it differs from the others.
For A, one cannot find a finite subgroup I'" of SU; such that I' <« TV and I'" permutes the
components of the exceptional locus of the minimal resolution of C2/I" the same way the
symmetry group of the Dynkin diagram permutes the vertices of the Dynkin diagram.
Indeed, let us take I' = Co,y1. The singularity C?/T is of type As,.. The symmetry group
of the Dynkin diagram of type Asg, is Q2 = Z/27Z and permutes the vertices ¢ and 2r+1—1,
1 <4 < 2r. Based on the table in Section 1.4.2.1, if one wants I'" such that I' <« T and
IV/T = Q, then the only possibility is TV = Cy1o.

The singularity C?/T is defined by {X?"*!1 Y Z = 0} with X = 2120, Y = 277" Z = 227+,
where (21, 27) is the dual of the canonical base of C? (cf. Theorem 1.4.1).
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0 .
Cyr+2 is generated by g = ¢ . with ¢ = exp(fT’fQ). The action is g.z; = "'z and
0 ¢
g.z2 = (z9. Then
g X = X,
9Y = -Y,
9.2 = -Z

If one lifts this action to the minimal resolution of Ao, like we did previously for As,._1,
then I' stabilizes every component of the exceptional locus. However the action of €2 on
the Dynkin diagram is not the identity, so I''/T" acts differently on the exceptional locus
than Q acts on the Dynkin diagram of type As,. Therefore a finite subgroup I'" of SUs
that fits our requirements does not exist.

1.4.2.3. Definition and deformations of BCFG singularities

Let us begin with the definition the inhomogeneous Kleinian singularities given by P.
Slodowy in [Slo80].

Definition 1.4.37. A simple singularity of type B, (r > 2), C, (r > 3), Fy or
Go is a pair (Xo,Q2) of a simple singularity (in the former sense) and a group Q of
automorphisms of Xq according to the following list:

Type of (X0,Q) | Type of Xo| T I’ Q
By, r>2 Ay | Cow | D |Z)2Z
Cr, 723 Dy iq Dy-1 | Doy | 2/22

Fy Es T | o |z)212
Go Dy Do O S3

A simple singularity of inhomogeneous type is then a simple homogeneous singularity
with a symmetry of the Dynkin diagram. One notices from the Section 1.2 that the type
of (Xo,) is the same as the type of the folding of the root lattice of type Xj.

Remark 1.4.38. One notices that the case where X is of type As,. does not appear
in the preceding table. Although the Dynkin diagram of type As, has a non-trivial
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symmetry group, it was proved in Subsection 1.4.2.2 that the action of this symmetry
group fails to lift to the exceptional locus of the minimal resolution of Xj.

The notion of symmetry has been added to simple singularities, therefore it is necessary
to include this symmetry in the definition of deformations of singularities of type B,
C,, Fy and G5. P. Slodowy gave the following definition.

Definition 1.4.39. A deformation of a simple singularity (Xo,2) is a deformation
x: X = U of Xq together with a trivial action of Q on U and with an action of Q on X
which induces the given one on Xo and such that x is Q-invariant.

An isomorphism of two deformations of (X, {2) is an isomorphism in the previous
sense which is in addition 2-equivariant. A semiuniversal deformation is then defined
in an analogous way as done in Subsection 1.4.1.3.

In [S1o80], P. Slodowy constructs a semiuniversal deformation of (Xo,(2) in the case of
Xo a hypersurface with an isolated singularity and €2 a reductive group. More precisely,
he shows the existence of a semiuniversal deformation x : X — U of Xg in the original
sense with the following additional property: there are 2-actions on X and U such that
X is Q-equivariant and the restriction of 2 on X is the given one. Furthermore, if Y - T
is any (-equivariant deformation of Xy, it can be induced from x by a Q-equivariant
morphism. From here, a semiuniversal deformation yqo of (Xy,2) is obtained by the
deformation induced from x by the base change U — U, with U being the fixed point
set of Qin U.

X xpy U% X
XQ X
U U

1.4.2.4. Inhomogeneous singularities from Lie algebras of type B,, C,, F; and G5

Let g be a simple Lie algebra over C with adjoint group G and let e € g be a nilpotent
element. It is known that there exist f,h € g such that (e, f,h) is an slo-triple. In
[S1o80] Section 7.5, P. Slodowy defines C(e) := Zg(e) N Zg(h) and calls it the reductive
centralizer of e with respect to h.
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Lemma 1.4.40. The reductive centralizer of e centralizes the sly-Lie subalgebra of g
generated by e, f and h. As a consequence, the Slodowy slice Se = e+ 34(f) is C(e)-
stable.

Proof. Let ¢ € C(e). Then (ce,ch,cf) = (e, h,cf) is an sly-triple for e. Based on the
representation theory of the Lie algebra sly(C), the map ad x : g(-2) — g(0) is injective
and h = [e, f] = [e,cf]. Tt follows that c¢f = f and the sly-Lie subalgebra of g is stable.
It implies naturally that S, = e + 34(f) is C(e)-stable. O

Remark 1.4.41. In fact, the reductive centralizer C(e) is exactly the centralizer of the
sla-Lie subalgebra.

Proposition 1.4.42. If e € g is reqular nilpotent then C(e) = {1}, and in particular
Za(e) is connected. If e is subregular nilpotent, then according to type we have

Type ofg AT, r>1 B, Cr D, | Eg E; | Eg Fy G2
C(e) Gm | GmxZ/2Z |Z/2z | {1} | {1} | {1} | {1} | Z/2Z | &3

In the semidirect product G,, x Z/2Z, Z/2Z acts on G, by =+ 2™ 1.

Proof. The case e regular was done in [SprinStein70]. The rest was done by various
authors with case by case analysis. All the references can be found in [Slo80] Section
7.5. O

In Subsection 1.4.1.3 we stated a theorem due to E. Brieskorn (Theorem 1.4.15) which
gives the semiuniversal deformation of a Kleinian singularity of type A, D,., or E, from
the adjoint quotient of a simple Lie algebra of the same type. This theorem can be
extended to the inhomogeneous case.

Theorem 1.4.43. Let g be a simple Lie algebra over C of type B,., C., Fy or Gy and e
a subregular nilpotent element of g. Then there exists a finite subgroup Z of the reductive
centralizer C(e) of e and a E-stable transversal slice S at e to the G-orbit of e such that
the (Z-invariant) restriction of the adjoint quotient map x : g - h/W to S realizes a
semiuniversal deformation of a simple singularity of the same type as g.

The proof can be found in [Slo80].
As a special case, the theorem states that the intersection Xo = SNN(g) of S with

the nilpotent variety of g plus the induced action of = on X is a simple singularity
(X0, =) of the same type B,, Cy, Fy or G3 as g.
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It was mentioned in Proposition 1.4.23 that for a simple singularity whose Dynkin
diagram A is of type A, D,, or I, singularities whose types correspond to subdiagrams
of A can be found in the fibers of the semiuniversal deformation near the singular point.
There is a similar result for the inhomogeneous singularities.

If A is an inhomogeneous Dynkin diagram, it was shown in Section 1.2 that it can be
obtained from a simply-laced Dynkin diagram , A as a quotient by the action of a group
= of diagram isometries. The preimages of this quotient map in , A of subdiagrams of
A are the Z-stable subdiagrams of , A. The following corollary is also proved in [Slo80].

Corollary 1.4.44. Let x : X — U be a deformation of a simple singularity (Xo,Z) of
inhomogeneous type A, and let X, # Xy be a non-special fiber. Then there is an Z-stable
subdiagram , A" of ,A and a Z-equivariant type-preserving bijection of the connected
components of ,A’ onto the singular points of X..

Example 1.4.45. For the Lie algebra Gs, one obtains a semiuniversal deformation of
type (Dy, &3). Consider the projection of ,A onto A:

There are only two non-trivial subdiagrams of A:

(1) Omit the red vertexr ®===® and it gives : ® = Aj+ Ay + Ay plus a permutation

®
by 63.

(2) Omit the blue verter ®==® and it gives : ® = Ay which is invariant under S3.

1.4.2.5. A stable Slodowy slice for A5, 1, D, and Ejg

Let A be a Dynkin diagram of type As,_1, D,, or Fg and let g be a simple Lie algebra
of type A with adjoint simple group G. Take (e, f,h) an sly-triple with e a nilpotent
element of g. In [Slo80] Section 7.6, C'A(e) := {0 € Aut(g) | o(e) = e and o(h) = h} is
called the outer reductive centralizer of e with respect to h. The group C A(e) can
be described with the following proposition:

Proposition 1.4.46. If e € g is reqular nilpotent, then C A(e) is isomorphic to Aut(A).
If e € g is subregular nilpotent, then C' A(e) has the following form depending on the type
of A:
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Type of A Agrq Dy | D, r>4| Eg
CA(e) E(2/27,G,,) | 63 Z7]27 7/27

Here E(Z/27,G,,) is an extension of Z|2Z by G,, with non-trivial action of Z |27 on G,,.
For r odd this extension is the semi-direct product, for r even it is the unique non-trivial
extension.

Proof. Let o € Aut(g) be an automorphism of g. Then (o(e),o(f),o(h)) is an sly-triple
for o(e), which is again regular resp. subregular. By the uniqueness of the regular resp.
subregular G-orbit, there exists g € G such that g.o(e, f,h) = (e, f,h). This implies that
g.o € CA(e). From the surjectivity of Aut(g) — Aut(A), it follows that the composition
CA(e) - Aut(g) - Aut(A) is surjective and its kernel is C(e) = CA(e)NG. For e
regular as well as for A = D, or Eg and e subregular, the kernel is trivial and thus
CA(e) 2 Aut(A). For A = Ay,_; and e subregular we have C(e) = G,, and Aut(A) =
Z]2Z. Thus CA(e) is an extension of Z/2Z by G,,. Let s € CA(e) ~ C(e). To prove the
remaining statements, we need to show that s induces the non-trivial automorphism of
C(e) = G,, and that s? = 1, respectively s? = —1, for r odd, respectively even. We verify
this on an example.

Let e be the subregular element of sly,.(C) given by the matrix

and let o € Aut(sla,-(C)) be the outer automorphism o(m) =' (-m). Let
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0 10
0 0

g=lo 0 1 . . . .]eGLy(C)
0 -1 0. .0
1 0 0 . 0
0 0 0 . 1

and ® := (Inn g) o 0 € Aut(sly,(C)). A computation gives ®(e) = e and ®? = 1. With
respect to a suitable choice of an sly-triple (e, f, h), the Lie algebra c(e) of C'(e) is

t 0 0
0t 0 0
e)={m@t)y=|" ' teCl.
000.0 0
000 .t 0
000 —(2r - 1)t

Then @ transforms c(e) into itself by sending m(t) to m(—t). The lemma is hence proved
in this special case. [

Take (e, f, h) an sly-triple with e a subregular nilpotent element of g and S = e+ 34(f)
a Slodowy slice at e. With the same arguments as for the proof of Lemma 1.4.40, C' A(e)
stabilizes the slice S. Let § : S — h/W denote the restriction of the adjoint quotient of g
to the Slodowy slice. The group Aut(A) = Aut(g)/G acts naturally on g//G = h/W and
can be considered as a subgroup of C'A(e).

Corollary 1.4.47. Aut(A) is a finite subgroup of C A(e) and stabilizes the Slodowy slice
S.

1.4.2.6. Inhomogeneous singularities from Lie algebras of type A,, D, and Fj

Like in the previous section, A is a Dynkin diagram of type Ao._1, D,, or Eg, g is a
simple Lie algebra of type A with adjoint simple group G, e € g a subregular nilpotent
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element of g, (e, f, h) an sly-triple of g and S = e +34(f) a Slodowy slice at e. Because of
Corollary 1.4.47, Aut(A) acts on S and on h/W and makes § equivariant. As a result,
there is an action of Aut(A) on the special fiber X = §71(0). Now let Ag be the unique
inhomogeneous Dynkin diagram such that ,Ag = A and AS(Ap) = Aut(A) with AS(Ap)
being the associated symmetry group of Ag defined by

&3 if Ag = Ga,
727 otherwise.

AS (Do) =

The following two theorems are proved in Section 8.8 of [Slo80]:

Theorem 1.4.48. (X, AS(Ay)) is a simple singularity of type Ay.

Let Gy denote the simple adjoint group of type Ag with Lie algebra go. Let (eq, fo, ho)
be an slp-triple with eg a subregular nilpotent element of gy and Sy = eg + 34,(f0). Let
00 : So = ho/Wy denote the restriction to Sy of the adjoint quotient map of go.

Theorem 1.4.49. The AS(Ay)-equivariant deformation 6 : S — /W of X is AS(Ay)-
semiuniversal, and the restriction 6520 of § over the fized point space (/W )A5(80)
s isomorphic to dg.

Remark 1.4.50. The theorem above allows an identification of ho/Wp with (/W )A5(%0),
However another identification is possible. The group AS(Ag) acts on the Dynkin
diagram A and its action can be naturally extended to h. Set h; = hA9(20) and
Wi ={weW | wy=n~wVye AS(Ag)}. Then the natural map h; — (h/W)A5(20)
induces a G,,-equivariant morphism b1 /Wy — (h/W)A9(20) The G,,-weights of this
morphism are the same on by /Wi and (h/W)A5(20) and are strictly positive. Hence
using [Slo80] Section 8.1, Lemma 3, one finds that it is an isomorphism.

1.5. McKay correspondence

1.5.1. Homogeneous correspondence

In 1980, J. McKay noticed in [McK80] a link between the irreducible representations
of the finite subgroups of SUy and the extended Dynkin diagrams of types A,, D, and
E,.
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1.5.1.1. Statement of the correspondence

Let " be a finite subgroup of SUs. As such I' acts naturally on Vi, := C2. For every
irreducible representation V;, 0 <i < r, of I' (V) being the trivial representation), one
can define the representation Vy,t ® V;. Using representation theory of finite groups (cf.
[Ser78]), these tensor products decompose as:

»
Vnat®‘/;=@mijvj‘, 0<et<r,
7=0

with m;; € Zso, for all 0 < 4,5 < r. m;; is the multiplicity of V; in Via ® Vi Set
M = (mij)o<i,j<r the corresponding matrix and I the (r+1) x (r + 1) identity matrix. J.
McKay observed the following:

McKay correspondence: The matrix 21 — M is the Cartan matrix of the extended
Dynkin diagram A(I') associated to I'. We write A(I) for the Dynkin diagram associated
to I’ through the resolution of C?/T'. The extended Dynkin diagram A(T') is obtained
by adding -6 to A(T"), with 6 being the highest root of the root system of A(T"). The
obtained diagrams are listed in the table below:

r A(D) Name of A(T)
-9
Cn An—l
Dn Dn+2
1 3 4 5 6
[ @ @
T 2 Eg
-9
-0 1 3 4 5 6 7
* @ @ @ @ L)
@) Er
2
1 3 4 5 6 7 8 -0
[ @ @ @ @ @ %
7 Eg
2
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1.5. McKay correspondence

McKay correspondence can be interpreted directly from the diagram Z(F) To each
vertex of Z(F) one associates an irreducible representation of I', the trivial one V}
corresponding to the vertex of the highest root. Recall that the tensor product Vi ® V;
decomposes as a direct sum of irreducible representations. Draw an edge between the
vertices V; and Vj if V; appears in the decomposition of V,,,;®V;. The process is illustrated
with this example:

Vaat ® Vi = Vi@V, @V and my = my = my; = 1.

One can also interpret McKay’s result using the eigenvectors and eigenvalues of the

Cartan matrix of A(T). Let ynat: I — C (respectively x;) the character

v = Tr(pnat(7))
associated to the representation ppay : I' > GL(Vpat) of T on Vi (respectively p; on Vj).
Let v = 1,71,...,7 be representatives of the conjugacy classes of I'. As characters are
central functions, they are defined by their values on 7;, 0 < j <r. By putting all these
values in a table one finds the character table of I':

M| M Ve r
Yo |l 1 1 1 1
Xt || di | x1(71) x1(7r)
X; || 45 X5 (k) x5 ()
Xr || dr Xr(')/k) Xr('Yr)

T T
The formula Viar ® Vi = @ mi;V; gives us xnat (V%) Xi (k) = Z mi;X; (k) for all 0 <
j=0 J=0
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Xo(7k) xo(7k)
i,k <r, which can be written M : = Xnat (V%) : . This can be interpreted
Xr (k) Xr (k)
as:
The k-th column of the character table is an eigenvector of M (respec-
tively 21 — M) of eigenvalue ynat (V%) (respectively 2 — xpat (Vk))-
In particular, as Vy,¢ is of dimension 2, for k = 0, one finds that the column (dy, ..., d,)

is annihilated by 21 — M, with d; = dim V;, for 0 <4 < r. This is due to the fact that
this column corresponds to the coefficients in the decomposition of the highest root 6

in terms of the simple roots {aq,...,a,} of the root system associated to A(T"). Indeed
21 - M = ((a;, )i = ((ei, )i j because we work on A,, D, or E, hence all the roots
do
dq r
have the same length. Therefore (27 - M) =0 < Y dj(a;a5)=0,VYi.
: =0
dr

.,
< (a; Y. dja;)=0,Vi.
7=0
T

<~ Z djOéj =0.
7=0

g 9:—040 = Zdjaj.

J=1

This correspondence was obtained by J. McKay through explicit computation. R.
Steinberg has since proved the result in a more abstract way in [Stein85].

1.5.1.2. Example

Let I' =Z, A(T") = Es. As T is the preimage of 25 by the morphism f : SU3(C) —
SO3(R), we first need to compute the character table of 2s.

s is the rotation group of the dodecahedron, which is composed of 12 faces, 30 edges
and 20 vertices. Each vertex of the dodecahedron has a stabilizer containing 3 elements:
id, a rotation of angle %’T and a rotation of angle —2?”. There are 1 element of order 1
and 2 elements of order 3. Furthermore, two opposite vertices have the same stabilizer.
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1.5. McKay correspondence

Hence there are 10 x 2 = 20 elements of order 3.

In a similar fashion, each face has a stabilizer composed of 5 elements: id and rotations
of angles %’T, %’r, %ﬂ, %”. We have 1 element of order 1 and 4 elements of order 5. Fur-
thermore, two opposite faces have the same stabilizer. We thus have 6 x 4 = 24 elements
of order 5.

Each edge has a stabilizer composed of 2 elements: id and a rotation of angle 7. We
have 1 element of order 1 and 1 element of order 2. But two opposite edges have the
same stabilizer so we have 15 x 1 = 15 elements of order 2.

This far, 25 contains 1+20+24+15 = 60 = [25| elements. Hence we have all the elements

of the group.

It is an obvious fact that two elements in the same orbit will have conjugated stabiliz-
ers. As the subgroups of order 2 are stabilizers of elements in the same orbit (the action
of A5 on the edges is transitive), these groups are conjugated. The same goes for the
subgroups of order 3 (vertices) and of order 5 (faces).

Let us find the conjugacy classes of 5.

1. As the subgroups of order 2 are conjugated, we deduce that all the elements of
order 2 form one unique conjugacy class of order 15.

2. Let x be the rotation of angle 2% and of vertex v. x is conjugated to any rotation
of angle %’r of another vertex. Let 2’ be the rotation of angle 2% and of vertex v’,
the opposite of v. ' is conjugated to = and z’ = 2. Thus all elements of order 3
are conjugated. They form a unique conjugacy class of order 20.

3. In a similar manner, rotations of angle %" and —%’r form a conjugacy class of order
12.

4. Furthermore, rotations of angle 4?“ and —%’r form a conjugacy class of order 12.
These last two classes cannot be conjugated because that would mean there exists

a class of order 24 + 60 = |A5|.

The class equation of s is thus 60 =1+ 15+ 20+ 12+ 12. There are 5 conjugacy classes.
One can check that 60 = 12 + 32 + 32 + 42 + 52,

The conjugacy classes are:
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Let pg be the trivial representation and p; the representation of dimension 3 as a

subgroup of SO3(R). Denote po,ps3, ps the other irreducible representations and g,

Class Order
o ={1} 1
co = {x rotation of 7} 15
c3 = {y rotation of %’r, _2% 20
¢4 = {2z rotation of 2?”, —2?” 12
cs = {2 rotation of %ﬂ, —4?” 12

0 <i <4, the character of p;.

with | «

25 acts on the set {1,2,3,4,5}. Hence there exists a representation p’ of dimension 5.
One can see from the dimensions that there is a decomposition p’ = pg + p3. p’ realizes
x as an even element of order 2. It is a product of transpositions and thus fixes one
element. So x'(z) =1 and y3(z) = 0. In a similar manner, one finds the values of x3 on

1+2cos 2L

4
1+2(:os—7T =
5

the other conjugacy classes and obtains

s permutes the six axes linking the opposite faces of the dodecahedron, so there is a
representation p” of dimension 6. It follows that p” = pg+ ps. p”'(x) fixes two diagonals,
implying x”(z) = 2 and x4(z) = 1. The other values of y4 are obtained in a similar

vsll4lo|1]-1

fashion. Eventually one finds
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1.5. McKay correspondence

xall5]1]-1]0]0

s is a normal subgroup of &5 so we can define the conjugation o by an element in
G5 N\ 5. o is an automorphism of 2As and o permutes ¢4 and c¢5. Thus p; o o is an
irreducible representation of dimension 3 but is not p;. It has then to be ps.

The action of ¢ permutes z and z2. Hence x2(2) = x1(z?) = B,
x2(2*) = xi(z) = «q,
x2(z) = xi(z) = -1,
x2(y) = xa(y) = O

The character table of 25 is now entirely determined:

yolll|1]1]1]1

X1

X2

X3

ot =~ w w
es}
—_
|
—_
|
—_

X4

Because the morphism f is a double cover of SO3(R), the preimage of a conjugacy class
from A5 by the morphism f is one conjugacy class in I' with order doubled or two classes
of same order. 1 lifts to two classes: 1 and —1. ¢3, ¢4 and ¢5 each transform in two classes
and ¢y turns into one class twice its original size. There are 60 new elements divided as
follows: 60 = 1+15+20+12+12. There are 4 additional classes hence 60 = 22 +22 + 42 + 62,
Therefore I' has 9 conjugacy classes.

4 _ 2_,3 _ _
Fisgene]ratedbyglz%?72 77377 774 andg2=%77 o , with n =
nt-=non-n
247

e 5 , and its conjugacy classes are:
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Number of
1 1 30 20 20 12 12 12 12

elements

Order of
1| 2 4 6 3 10 5 5 10

the elements

Name of
Cy | Cy| Cy Cy Cs Cs Cr Cy Cy

the class
Representative | 1 | -1 | g7g3 | 6193 | —g393 | 9192 | (9192)" | (9192)* | (9192)°

Representative

in As

We remind the reader that a rotation of angle 6 around the axis O, can be written

in SUs.

Let po, p1, p2, p3, p4 denote the lifts of the characters of 25 and psg the representation
of I' as a subgroup of SUsy. The corresponding characters are noted ;.

1. One finds vg = [2,-2,0,1,-1,a, -, -3, 8] and (¢g,7%s) = 1 implying that g is
irreducible.

2. Ome can check that igis = [6,-6,0,0,0,a8,-af,—af,af] thus pg ® py is irre-
ducible of dimension 6. Let us call it pg.

3. A computation gives 1g¢1 = [6,-6,0,0,0,a2, -a? -2, 3%]. The only possible de-
compositions are then pg ® p1 = p5 + p7 or pg ® p1 = p7 + pg. If it is p7 + pg, then
7 =1[4,-4,0,-1,1,1,-1,-1,1] which is irreducible. Hence we found p7.

4. 15 is obtained using the orthogonality of the columns of the character table.

The character table of I is:
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1| -1 gig5 | 6795 | 9195 | 9192 | (9192)" | (9192)° | (9192)°
Yo || 1] 1 1 1 1 1 1 1 1
o33 -1] 0] 0 | a a 3 3
P || 3] 3 -1 0 0 « «
P3| 4] 4 0 1 1 -1 -1 -1 -1
Pg || D] D 1 -1 -1 0 0 0
Ps (12121 0 1 -1 I} - e Q
g || 6| —6 0 0 0 -1 1 1 -1
Pr || 4| -4 0 -1 1 1 -1 -1 1
Yg||2]-2] O 1 -1 a —o -8 3

Let us look at the tensor products pg ® p;, 0 <7 < 8.
e ps ® po = pg because py is trivial.

e Y1) = [6,-6,0,0,0,02, —a?, -2, 3?]. By inversing the character table, we get
ps ® p1 = p7 + pg. With the same method it follows that | ps ® p2 = pg,
P8 ® p3 = ps+ pe,
P8 ® P4 = pe + pr,
P8 ® ps = p3,
P8 ® pg = P2+ p3 + P4,

P8 ® p7 = p1+ P4,

P8 ® pg = po+ p1.

The corresponding diagram is

P2

which is indeed the Dynkin diagram of Eg.
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1.5.2. Inhomogeneous correspondence by restriction
1.5.2.1. Statement of the correspondence

In Subsection 1.4.2.1 we associated some finite subgroups I' < I of SU; to inhomoge-
neous Dynkin diagrams in the following way:

Inhomogeneous A(T',T) | Homogeneous A(T') | T’ r’ Q
By, r>2 Aoy Co | D | 7/22
Cr,r>3 D,y Dy-1 | Doy | Z/22

Fy Eg T | o |72z
Gs Dy D, @) S3

(In the case of Dy the group O can be replaced with the smaller group 7 and what
follows remains valid. The difference will be €2 = Z/37)

This association can be explained using group-theoretic arguments. The next theorem
is proved in [Slo80] Appendix III.

Theorem 1.5.1. Let I' < T be a pair of finite subgroups of SUs as in the previous table.
By restriction, the irreducible representations of I'' may be regarded as representations
of I'. Let S1,...,S, denote the equivalence classes (with respect to I') of these represen-
tations and let N be the natural representation of I' as a subgroup of SUs, which can
be seen as the restriction of the natural representation of I, It follows that the tensor
product N ® S; decomposes as:

r
N®S¢=@bﬂSj, 1<i<r,
=1

which defines an r x r matriz B = (b;j)1<ij<r. One verifies explicitly that the matric
C=2I-B

is the Cartan matriz of the extended Dynkin diagram E\’/(I’,I") of the dual of A(T,T).
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The diagrams obtained in this correspondence are given in the table below:

Type of —
rpr ” AV(D,T)
A(T,T)
0 1 2 3 r-2 r-1 r
Cor D, B, .@}:. @ @ e .—.:@.
0
2 3 r-2 r-1 r
Dot | Doy | Cr | @ ° o—-o
1
0 1 2 3 4
T @ Fy ® @ *——00 0
0 1 2
DZ T G2 @

In the following subsection the case A(T",T") = G5 will be explicitly computed.

1.5.2.2. Computations for A(T',T") = G,

Set T =Dy, I =T, Q=27/3Z and A(T,I") = Gs.

i 0 0 i et et
I' =<a,b> with a = , b= andF'=<F,c>Withc=ﬁ and
0 -2 1 0 —-€ €

ezexp(%).

The irreducible characters of T are
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vollt] 1|11 1|11

Xllllwww2w

oll1] 1] 1 |w?| w? | w | w

x3|l2(-210 | 1] -1/ -1 1

xall2]-2]10|w| —w|-w?|w

5121210 |w?|-w?| —w | w

x6||3|3|-1]01| 0 | 0 | O

with w = exp(%). For any 0 <i < 6, one denotes by X; the restriction of x; to Dsy. It
leads to

Clp,(1) | Clp,(-1) | Clp,(b)
Yo 1 1 1
e 1 1 1
X2 1 1 1
s P ) 0
oo P -2 0
s P ) 0
Yo 3 3 1

Set | 19 =%0=%1=X2 - The v; are the equivalence classes of the restrictions of the
Y1 =X3=X4=X5

Y2 = X6
irreducible characters of 7 to Ds. The restricted character table is thus
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ClDz (1) CZDQ (_1) Cl'Dz (b)

o 1 1 1
" P ) 0
o 3 3 -1

Let 1nat be the restriction to Ds of xnat, the character of the representation of 7 as
a subgroup of SUsy. The character table of 1,4 is

CZDQ (1) CZDQ (_1) CZDQ (b)

wnat 2 -2 0

Therefore | na1100 = [2,-2,0] . By inversing the character table one obtains
¢nat¢1 = [47 47 O]
¢na‘c¢2 = [67 _67 0]

YnatPo = 1
YnatP1 = Yo+ P2 |
wnatd]? = 31/)1

The matrix C' = 21 — B introduced in Subsection 1.5.2.1 is then C'=| -1 2 -3],
and the corresponding diagram is

0 1 2

o—0——0

It is an extended Dynkin diagram of type Gg = CT; = Z’V(I‘, ).
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If we take I'" = O and € = &3, the restriction of the irreducible characters of IV to Dy
are

Clp,(1) | Clp,(-1) | Clp,(b)
o 1 1 1
X1 1 1 1
X2 2 -2 0
% 2 ) 0
X4 2 2 2
X5 3 3 -1
e 3 3 -1
X7 4 -4 0

Set | 19 =7Xo - The 1); are the equivalence classes of the restrictions of the irreducible
Y1 =Xz

2 = X5
characters of @ to Dy. The restricted character table is then

Clp,(1) | Clp,(-1) | Clp,(b)

o 1 1 1
U 2 -2 0
o 3 3 -1

It is the exact same table as in the case IV = T. As the restriction of xpaz of O to Do
is the same as the restriction of ypnat OL T to Ds, one obtains the same result as before:
the matrix C' is the Cartan matrix of AV(T',TV).
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1.5.3. Inhomogeneous correspondence by induction
1.5.3.1. Statement of the correspondence

In the Subsection 1.5.2.1 a connection between pairs I' < I of finite subgroups SU,
and inhomogeneous Dynkin diagrams using a restriction approach on the representations
of TV was presented. A similar argument can be made using induction. The following
result appears in [Slo80] Appendix III.

Theorem 1.5.2. Let I' < IV be a pair of finite subgroups of SUy as in the table in
Subsection 1.5.2.1. By induction, one can study the I''-equivalence classes Q1,...,Q; of
the representations of I induced from the irreducible representations of I'. Then I =r,
r being the number of I'-equivalence classes of the restrictions to I' of the irreducible
representations of I''. Furthermore, with a convenient ordering of the Q;, there is the
following decomposition formula:

r
N®Qi=@szQ]‘, 1<i<r,
j=1

with N the natural representation of T as a subgroup of SUy. This decomposition leads
to an r xr matriz 'B = (bji)i<i j<r, which is the transpose of the matriz found in Subsec-
tion 1.5.2.1. Therefore the matriz

C=2I-'B,

is the Cartan matriz of (AV(I,T7)), the dual of the type obtained with the restriction
argument.

The diagrams obtained in this correspondence are given in the table below:
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Type of _
r T’ (AV(T,T"))Y
A(T,T)
0 1 2 3 -2 -1 T
Cor D, B, —=0 o @ *—o——o
0
2 3 r-2 r-1 T
D,_1 ,D2(r71) Cr | @ .—.#.
1
0 1 2 3 4
T O Fy [ | o ——0—0
0 1 2
Dy T Ga [ @ ®

In the following subsection the case A(T',T") = G5 will be explicitly computed.

1.5.3.2. Computations for type A(I',T") = Go

Set ' =Dy, I =T, Q=7/3Z and A(T',I") = Ga.

i 0 0 i L et et
I =<r,b,c>and I' =< r,s > with r = , b= ¢ 5 with
0 - 1 0 —-€ €

, 0 1
e=exp(T) and s = ( ) The natural representation of 7 as a subgroup of SUs is
-1 0

denoted N.

Set

(1);); the irreducible characters of T,
(xj); the irreducible characters of Ds,
(1/13)Z the restrictions of the (1;); to Da,

(X})j the inductions of the (x;); to T,

and (.,.)7 (respectively (.,.)p,) the scalar product of characters on T (respectively Ds).
Frobenius reciprocity formula (cf. [Ser78]) states
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7

X) = Z(wz‘,X})T% = > (7. x3) Do

The computations of the (wf)z will lead us to the decomposition in irreducible compo-
nents of the induced representations.

The irreducible characters of T are given by

Clr(1) | Clr(=1) | Clr(b) | Clr(e) | Clr(c?) | Clr(=¢) | Clr(=c?)
Yo 1 1 1 1 1 1 1
|| 1 1 1 j j° j j°
Go || 1 1 1 j? j 72 j
W3 2 =) 0 1 -1 -1 1
o 2 -2 0 j -5° -J 5
Vs 2 -2 0 j? -j -5 j
e 3 3 -1 0 0 0 0

with j = exp(%).

It is known that Dy is the quaternion group and is generated by I, J, K with [ =r,J =
s, K =rs. The conjugacy classes of Dy are {1},{-1},{I,-I},{J,-J},{K,-K}.

If one looks at the restrictions of the conjugacy classes of 7 to Dy, then the classes
Clr(c), Clyr(c?), Cly(~c) and Cly(~c?) disappear and Cly(b) splits into {I, -1}, {J,~J},
{K,~K}. The character table of the ¢} is then

Clp,(1) | Clp,(-1) | Clp,(I) | Clp,(J) | Clp,(K)
bo=vi=vs| 1 ! ! ! !
vy =y =1 2 -2 0 0 0

v 3 3 -1 -1 -1

The character table of Dy is
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1. Lie Theory

Clp,(1) | Clp,(=1) | Clp,(I) | Clp,(J) | Clp,(K)
X0 1 1 1 1 1
1 1 1 1 -1 -1
X2 1 1 -1 -1 1
X3 1 1 1 1 1
x4 2 ) 0 0 0

The scalar product on the character space of Dy is defined by
(o, X))y = ﬁ Ytep, P(t)x(t) and the values of (wj, X;j)p, are put in the following table:

wo =)= b | )= ol = b | o
X0 1 0 0
X1 0 0 1
X2 0 0 1
X3 0 0 1
X4 0 1 0

Therefore Xb & o + 1 + 1, S5O Xo2Yy+Y, +Y,,  where the Y are the irre-
X3 = b = xd = o, X1 =Xy=X52Ys,

X13¢3+¢4+¢5, X12Y3+ Y +Ys,

ducible representations of 7 and the X; are the irreducible representations of Ds.
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One can verify that Y3 = N and the character table of T gives [ Yy ® N = V3,

Yi® N 2 Yy,
Yo ® N = Vs,
Ys@ N 2Y,®Ys,
YN 2Y &Y,

Ys 9N 2Ys Y,

YeNz2Ys0Y 0Ys5,

which implies | Xo@ N = (Yo+Yi+Y2)®N =  Ys+Y,+Ys = X
XN = Y N ~ Y3+ Yy +Y; > Xy,
Xo®N = Ye® N > Ya+Y+Ys o= Xy
X390 N = Y N = Y3+ Yy +Y; > Xy,
X,0oN = (Y3+Y,+Y5)9N = Yy+Y +Y+3Ys = Xo+3X,.

The non-equivalent induced representations are Xg, X; and X4. We reorder the indices
via the permutation 1 -2, 4 - 1, 0 - 0. The system then becomes

XO(X)NEX],

X\1®N§X\0+3X\2,

XQ QN = X\l.
2 -1 0
The matrix introduced in Subsection 1.5.3.1isthen C' =] -1 2 -1 | whose diagram
0 -3 2
is
X() yl XQ

It is the extended Dynkin diagram of type (G2)¥ = (Gy)" = (AV(T,T"))".
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2. Symplectic geometry and moment map

2.1. Reminders on symplectic geometry and group actions

Let X be a smooth manifold.

Definition 2.1.1. X is a symplectic manifold if it is equipped with a symplectic form
w, i.e. a non-degenerate, closed differential 2-form. This translates as:
e Vre X, wy: T, X xT, X — C is skew-symmetric and bilinear,

e dw =0,

o Vx e X, if there exists ue T, X such that w,(u,v) =0 for all veT, X, then u=0.
The symplectic manifold will be referred to as (X,w).

Remark 2.1.2. The non-degeneracy of the symplectic form implies that any symplectic
manifold is even-dimensional.

Let (X,w) be a symplectic manifold and let f:Y — X be a morphism of manifolds.
The pullback of w by f, noted f*w, is the 2-form on Y defined by

(f*w)y(vl, 1)2) = wf(y) (dyf(vl), dyf(vg)), Vy € Y, Vvl, V9 € TyY.

Example 2.1.3. Equip R*™ with a coordinate system (x1,...,2Zn,Y1,...,Yn). The form
wr2n defined by

n
WR2n = Z dxi A dy;
i=1

is a symplectic form and thus R*" is a symplectic variety. The reader is reminded that
the dx;,dy;’s form the dual base of (8%’ aiy)lsign, base of the tangent space. One can

also see R*™ as C" and thus as a complex variety. An elementary computation shows
that the form becomes
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2.1. Reminders on symplectic geometry and group actions

P
wen = = Zde /\Clz
2]:1

A theorem due to G. Darboux states that any symplectic form is locally of the form of
WRQn.

It was stated in Remark 2.1.2 that a symplectic manifold is necessary even-dimensional.
However the converse is not true, i.e. any variety of even dimension does not necessarily
have a symplectic structure. An example is given below.

Example 2.1.4. We are going to show that the sphere S*™ is not a symplectic manifold
ifn>1. Let (X,w) be a compact symplectic variety without boundary and of dimension
2n. The 2-form w is closed by definition and it defines a mon-zero element in HL?R(X),
the second de Rahm cohomology group of X. Indeed, assume that there exists a 1-form
a on X such that w =da. Then

fw"z/d(a/\w"_l)zf anw" =0
X X X

using Stokes’ theorem and the fact that 0X = @. But this is impossible because w™ is a
volume form and therefore not zero (it follows from the non-degeneracy of w). Hence w
is not exact and its class [w] is not zero in Hip(X). This implies that H3p(X) # {0}.

However a computation of the de Rahm cohomology of the sphere gives HCZIR(SZ") ={0}
if n > 1. Therefore, if n > 1, the sphere S*™ cannot be a symplectic manifold.

Definition 2.1.5. Let (X,w) be a symplectic variety and G a Lie group. An action of
G on X is defined by a smooth map ® : G x X - X such that ®(g.h,z) = ®(g,®(h,x))
and ®(e,z) =x for g,h e G,z € X and e the unit in G. Let ®,(x) := ®(g,z). The action
of G is symplectic if w is invariant by the pullback of the action, i.e.

w(d®y(.),dPy(.)) =w(.,.), VgeG.

Definition 2.1.6. A wvector field on X is a section of the tangent bundle TX — X. If
a Lie group G acts on X, any £ € g (the Lie algebra of G) induces a vector field Ve on
X called infinitesimal action defined by

Vew)= o] exp(i€)

where exp : g - G is the exponential map of G defined using one-parameter subgroups of
G (cf. [Helga01]).
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2. Symplectic geometry and moment map

Remarks 2.1.7. 1. The exponential map exp : g — G corresponds to the classical
matrix exponential when G is a linear algebraic group.

2. When X is a Lie group acting on itself by left multiplication, this definition of a
vector field on X coincides with the one given in Section 1.1.5.

The Adjoint action Ad of G on g is defined as follows (as in Section 1.1.5):

d _
Ady() = at g.exp(tf).g”", forfeg,geG.
t=0
For g € G, the coAdjoint action Ady :g* — g* is given by
<Adg(1),€>=<l,Adg1(§) >, Vieg".

where < .,. > is the dual pairing.

All necessary elements have been given in order to define a crucial notion for later
reasonings: the moment map.

Definition 2.1.8. Let (X,w) be a symplectic variety with a symplectic G-action. A
moment map is a morphism p: X — g* such that

(i) dug =w(V, ),
(ii) pu(g.wr) = Adg(u(x)), Vo e X,g€G (equivariance of ),

where pe: X — C for all € € g.

r o= <p(z),€>

One notices that pe = i¢ o p with ig(l) =< [,§ > for all [ € g*, and that i¢ is lin-
ear. Therefore dype = dy(i¢ o ) = i¢ o dypr. Hence for any v, € T, X, one obtains

depre(vz) = dgodypu(vg),  according to the (i) condition.

< dep(v), € >,
wm(Vg(iﬁ),Ux),

Example 2.1.9. Let M be the vector space C" equipped with the Hermitian product H
given by

H(Z, C) = Z Zi@;
i=1
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2.1. Reminders on symplectic geometry and group actions

for any z,{ € C". Set w=Im(H). Then w is a symplectic form on C". By identifying
every tangent space of M to C", one identifies w with a symplectic form on M. A system
of real coordinates (x;,Yy;)1<i<n on M is given by

2k = T + 1Yk,

n
and the symplectic form can be written w = Z dxy A dyp.
k=1
Let K := U,(C) act on M naturally. By definition, K preserves H which means

H(u.v1,u.v3) = H(vi,v9) for any vi,vo € M,u € K. The Lie algebra of K will be
referred to as €. One computes

= 1,(C) = {X € My(C) | X = X}

Let us verify that the following map

w: M - ¢

m = p(m)

with px(m) =< p(m), X >= —%H(X.m,m), VX et is a moment map.

The map is equivariant because K preserves H: set g e K,m e M and X e€t. Then
<p(gm), X >=-tH(X.g.m,g.m) =-5H (g Xg.m,m) =< p(m),Adj1 X >

=< Adgpu(m), X > and therefore p(g.m) = Adgpu(m).

Set X et,meM and £ €T, M = C". By definition,

Furthermore it is known that if X € €, then its adjoint for H is X = -X. Hence

H(ngm) —H(ﬁ,Xm),

-H(Xm,¢§).

It follows that

~L(-H(Xm, &) + H(Xm,€))

-5 (2iw(Xm, €)),
w(Xm,§).
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2. Symplectic geometry and moment map

Therefore dp,(pux)(§) = w(Xm,§&), which is the condition (i) in the definition of a mo-
ment map.

The next example gives a hindsight on why a moment map is thus called.
Example 2.1.10. The tangent bundle T*R™ of R™ is identified with R™ x R™ through the

inner product. The group SO, (R) = {Ae M,(R) | ‘A= A"} acts on T*R by

A.(p,q) = (Ap, Aq) for any (p,q) € R" x R".

This action preserves the symplectic form w = Y11 dp; Adq;. The Lie algebra of SO, (R)
is 50,(R) = {A e M,(R) | A= -A}. A moment map

p:T*R" - soy

for the action of SO, (R) on T*R™ is then given by

pa(p,q) =< u(p,q), A >=(p, Aq)

with (.,.) the inner product in R, A € so0,, and (p,q) € T*R".
When n = 3 there is a bijective correspondence

s03 — R3

A = «
given by

Av=axv

for v e R3 (x is the cross product). This correspondence identifies pa with the angular
momentum about the axis directed by c.

The next lemma gives a condition on the action of a group €2 on a symplectic manifold
(M,w) equipped with an action of a Lie group G so that the associated moment map
M — g* is Q-equivariant.
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Lemma 2.1.11. Let u: M — g* be a moment map on a symplectic manifold (M,w)
with an action of a semisimple Lie group G. Assume a group Q acts on M by symplecto-
morphisms and that € is a subgroup of the outer automorphism group of G. Furthermore
assume that the action of G lifts to an action of G x Q. Then u is Q-equivariant.

Proof. The action of Q on G induces an action on the Lie algebra g as well as on its
dual g*. If weQ, let o : M - M and o4 : g* — g* denote the action of @ on M and
g*. The g* x g pairing is denoted by (.,.). By definition of the moment map, it is known
that for any x € M,ve T, M and £ € g,

(d$u(v)7£> = wiv(‘/ﬁ(x)v U)'

Hence

(daw(:p)u(daw(v))a €> Woo () (V%(O’w(ﬂf)), dO’w(’U)),

wy((dow) Ve (om(x)),v) because o4 preserves the symplectic form.

But (dow) ' Ve(ow(2) = (dow) ™ ],y exp(t)-(0=(2)) = G, o1 ex0(t6) (0 (),
= %hzoexp(tawq(f))-(x)a

= Vo_e@).
So

(do,()(dos(0)),€) = wal(Vo__y(e)(2),0),
<diﬂu(v)70—w’1 (§)>>
(0w o dyu(v),€) by the definition of the action on the dual space.

Thus d,_ (z)p0dom = 05 odyp. 1t follows that p(w.z) = @w.u(r) + fm, with f an element
of g* (we replaced o4 by w. in order to lighten the notation). Let us prove that f = 0.
For any g € G, we have
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2. Symplectic geometry and moment map

fo = wWw(9.2)) - w.(u(g-2)),
= w(w.(9.7)) - w.(g.u(x)) because p is G-equivariant,
= u((w.9).(w.2)) - w.(g.u(x)) because as the action lifts to the semi-direct product
one finds that for any z € M and (g,w) € G x Q, w.(g.2) = (w.g).(w.z),
= (w.9).u(w.x) - w.(g.u(x)) because y is G-equivariant,
= (@w.9)(@w.u(z) + fz) - =.(9.0(2)),
= (@.9).(w.pu(2)) + (@.9). f= — @w.(9.1(x)),
= @.(9.u(2)) + (@.9).f= - @.(9.u(z)),
= (w.9).f=-

Hence for any g € G, we have g.f, = fw, implying that f, is a G-invariant element of g*.
But as G is semisimple, Theorems 1.1.21, 1.1.24 and 1.3.8 state that the ring S(g*) is
generated by r = rank(G) homogeneous polynomials fi,..., f, such that the exponents
mi,...,m, of g verify m; = degf; — 1 for all i. But as m; > 1 for all 7 (cf. [Hum90]
Section 3.16, Lemma), it follows that the non-constant G-invariant elements of S(g*)
are of degree at least 2. As f is of degree 1, f = 0. We thus found u(w.z) = w.u(z)
for any z € M, w € (2, and so p is Q-equivariant. OJ

2.2. Symplectic reduction

In this section we study the Marsden-Weinstein quotient, which is the quotient of a
symplectic manifold by a symplectic action.

Let (X,w) be a symplectic manifold and G' a compact Lie group acting symplectically
on X. Let u: X - g* be a moment map for this action. If [ € g*, let G; be the isotropy
subgroup of G relative to [ for the Ad*-action defined by

Gr={geG|Ad;(l) =1},

The group G; acts on p~1(1) because if z € p~1(1) and g € G; then pu(g.z) = Adg(u(x)) =
Ady (1) = 1. The orbit space

Xy = p N (1)/Gy

is called symplectic reduction. In what follows it will be shown that, under suitable
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2.2. Symplectic reduction

assumptions, X; is in fact a symplectic manifold. Before we can state this result, some
notions remain to be defined.

Let f: X =Y be a morphism between two manifolds X and Y. A point y € Y is said
to be a regular value of f if for any x € f~(y), the derivative d, f : T, X — Tr)Y is
surjective.

An action of a Lie group G on X is free if for any = € X, its stabilizer G, = {g € G | g.x =

x} is trivial. Furthermore, the action of G is proper if the map GxX - X xX

(g,2) ~ (9.7,2)
is proper, i.e. the preimage of any compact is compact. One can show that the action
of a compact group is always proper (cf. [Bou71] Chapter III, §4, Proposition 2).

Lemma 2.2.1. Let M be a smooth manifold and G a Lie group acting smoothly, freely
and properly on M. Then the orbit space M |G has a natural structure of manifold such
that the quotient map m: M — M |G is smooth. Furthermore, for any m € M, there is
an isomorphism

Tﬂ'(m) (M/G) = (TmM)/Tm(Gm) :

Proof. The first assertion comes from the quotient manifold theorem which can be
found in [Leel3] Theorem 21.10. According to the quotient manifold theorem,  is
a smooth submersion and thus, for any m € M, dy,7 : T, M — Ty (M/G) is sur-
jective. One can prove ([Leel3] Proposition 5.38) that Ker d,,m = T,,,(G.m). It follows
from the isomorphism theorem that (7,,M)/T,,(G.m) = (T,,M)/(Ker d,,7) = Im d,,, 7 =

The next theorem is proved in [MaWein74].

Theorem 2.2.2. (Marsden-Weinstein). Let (X,w) be a symplectic manifold, G a
Lie group acting symplectically on X and p: X — g* a moment map. Assume thatl € g*
is a regqular value of p and that the isotropy group G; under the Ad* action on g* acts
freely and properly on p=*(1). Then the following assertions are verified:

(i) The symplectic reduction X; = p~*(1)/Gy is a smooth manifold of dimension dim X —
dim G —dim Gj.

(ii) There exists a unique symplectic form w™ on X such that ﬂfwred = 1w where
iy (1) = X s the inclusion and 7 : =1 (1) - p~(1)/G) is the quotient map.

The proof of this theorem will require the following lemma:

Lemma 2.2.3. Let x € u~'(1). Then
(i) To(Grw) = Tu(G-2) NTa (™ (1)), and
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2. Symplectic geometry and moment map

(ii) Tp(u~ (1)) is the w-orthogonal complement of T,(G.x).

Proof. (i) Viewing the tangent space to Y in y as T,Y = {7/(0) | y:]—¢,¢[= Y is C! and
~v(0) =y}, one sees

Tp(G.x) ={Ve(z) | § e g},
T (Gra) ={Ve(z) | £ € qi},

where g; is the Lie algebra of GG;. Hence the desired equality is equivalent to

Ve(z) € To(p' (1) == € c .

It is known that the moment map 1 is Ad"-equivariant so dypu(Ve(z)) = V" (u(x)) where
VE* is the vector field on g* induced by {. Indeed, let ¢4 : M — M denote the action
of g€ G on M. Then the equivariance of p implies 110 Pexp(re) = Ad;xp(tg) o p for any
t € R. By differentiating with respect to t at ¢ = 0, one obtains the desired equality (cf.
[AbMar78] Proposition 4.1.28). Hence

Ve(z) € To (' (1)) = Ker dop <= Vi (1) = 0.

Then V¢ (1) =0 <V (), z>=0for all z € X,

Adg ey (D),z>=0for all z € X,

<l, Adeypigyr >=0 for all z € X,

< ileco

l
dt1t=0
<l,[&x]>=0 for all z € X,

R A

adg (1) = 0 because <.,.> is non-degenerate,

< feg.
(ii) By definition it is known that

we(Ve(x),vz) =< dppi(vy),& >
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Therefore v, € Tp(u (1)) = Ker (dgpu) dgp(vg) =0,

<
— <dyu(vy),£>=0, VEeg,
<~ wx(‘/&'(l'),vx) :07 v£€g7

— v, e (T,(G.x))”,
according to the equality verified by T,(G.z) at the beginning of this proof. O

Proof. (Marsden-Weinstein Theorem)

(i) The preimage theorem (cf. [Leel3] Corollary 5.14) implies that x~1(I) is a smooth
manifold. As the action of G, is free and proper, Lemma 2.2.1 states that X; is a
smooth manifold. Furthermore, as [ € g* is regular, the map d,u is surjective for any
x € (1) hence dim p~ (1) = dim Ker(dyu) = dim 7, X —dim Im(d,p) = dim X —dim g =
dim X —dim G. Finally dim X; = dim p (1) - dim G; = dim X —dim G - dim G.

(ii) For vy € T (11 (1)) let [v,] denote the equivalence class of v, in T, (=1 (1)) /T (G).x) =
T, (u~1(1)/G)). The relation we aim to prove is

mrwed = irw <= wed([v], [w]) = w(v,w), Yov,weTy(u (1))

Because of Lemma 2.2.3 (ii), w™? is a well defined 2-form. Additionally, 7 is a surjective

submersion thus admits locally a smooth section o; at every point of its image. There-
fore, by definition of w9, one verifies that w™? = o/w. Hence w'd is a composition of
smooth maps and is thus smooth.

Let us show that w™? is closed. By definition w is symplectic and so d(7;w™?) = d(ifw) =
if (dw) = 0. Hence 7/ (dw™?) = 0. As m is a submersion, dm is surjective and one con-
cludes that dw' = 0.

For the non-degeneracy of w™d, assume that there exists v € T,(u "' (1)) such that
Wl ([v],[w]) = 0 for any w € Tp(p~'(1)). It implies that w(v,w) = 0 for any w e
T.(p (1)) and thus v € (T (1 (1)))* = T.(G.z) according to Lemma 2.2.3. So [v] =0

and w™? is non-degenerate. O

Example 2.2.4. Let us rework the example of C" equipped with a Hermitian form H.
The group U, (C) acts naturally on C™ and it has been seen before that there is a moment
map i : C" - u, (C)* given by

px(v) = _%H(Xv’v);

forveC™ and X €u,(C).

Consider the circle S* = {z1d,, € U,,(C) | z € C and |z| = 1}. As it is a subgroup of U,(C),
it can be shown that its action on C™ leads to a moment map which is the compose of
the moment map p with the transpose of the inclusion Lie(S*) = 2inR < u,(C). Define
1* € Lie(SY)* such that
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<17, 2iw >=1.

It follows that

/11_1(1*) {U eC” ’ M?iﬂ(v) = 1}7
{veC™ | wH(v,v) =1},

{veC™ |l =2}

Hence p~1(1%) is a sphere of radius \/; in C", and is thus homeomorphic to S?" 1.
If A e S fizes v € S?™1, it means that \ = €*™* with k € Z. One deduces that the
stabilizer of v is discrete (in fact, finite) and so 1* is a reqular value of p. One applies
Theorem 2.2.2 and obtains that p~t(1*)/S* = §?7=1/S = P(C") is a symplectic manifold.
The symplectic form obtained by reduction on P(C™) is called the Fubini-Study form.
One notices that for n =2, the result is S3/S* = P, which is the Hopf fibration.

It was shown that a symplectic reduction has a symplectic structure. In the next
section, a particular symplectic reduction will be investigated, namely the one coming
from p~1(0).

2.3. Kempf-Ness theorem

The aim of this section is to present a result of G. Kempf and L. Ness that will prove
the existence of an isomorphism between a symplectic reduction and a GIT quotient.
Some preliminary definitions are necessary.

2.3.1. Kahler quotients

Definition 2.3.1. Let M be a smooth manifold.

1. The Lie bracket [X,Y] of two vector fields X and Y on M is defined as the
vector field on M such that

(X, Y](f) = X(Y(f)) - Y(X(f)) for any feC=(M).
2. An almost complex structure J on M is a linear map J : TM — TM on the
tangent bundle of M such that

J? = —id.
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2.3. Kempf-Ness theorem

Locally, this implies that for any p € M there is an endomorphism J, : T, M — T),M
which satisfies Jf, =- id|TpM and which depends smoothly on pe M.

3. Assume M is endowed with an almost complex structure. A complex vector field
Z on M is holomorphic if J(Z) =iZ.

4. Assume M is equipped with an almost complex structure J. The almost complex
structure is integrable if the Lie bracket of any two holomorphic vector fields is
again a holomorphic vector field.

We can now define the main object of this part.

Definition 2.3.2. A Kdahler manifold X is a symplectic manifold (X,w) with an
integrable almost complex structure J which is compatible with the complex structure in
the sense that the bilinear form w(.,J.) is symmetric and positive definite.

More information on Kéhler manifolds can be found in [McD99].

Let (X,w,J) be a compact Kdhler manifold and G a reductive complex Lie group
acting symplectically on X. Because G is reductive, it can be seen as the complexification
of G, a maximal compact subgroup. Assume that the action of Gg on X preserves the
symplectic form w (one can eventually replace w by /G[R w) and assume there exists
p: X - gg a moment map associated to the action of Gr on X. gg is a vector space on
which a Gg-invariant inner product and thus a norm ||.|| is fixed. Set

fr X - R

v oo @)

For any = € X, the path of steepest descent of f from z is the trajectory {x;, ¢ > 0} of
—grad(f) and let

((z) = {y € X | every neighbourhood of y € X contains points z; for ¢ arbitrarily large}

be the set of limit points of the trajectory starting from x. Let X,,;, denote the subspace
of X composed of the = € X such that ¢(z) Np 1(0) # @. Xynin will play a preponderant
role in this section.

Lemma 2.3.3. G = Grexp(igr).

Proof. The proof is based on the polar decomposition of G and on the universal com-
plexification of Gg. The details can be found in [HiNel2]. O
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Remark 2.3.4. The universal complexification G¢ of a real Lie group Gp is a pair
(nGg, Ge) of a complex Lie group G¢ and a morphism ng, : Gr = Gg¢ such that, for
every homomorphism « : Gg - H to a complex Lie group H, there exists a unique
holomorphic homomorphism a¢ : G¢ - H with acong, = o. This is called the universal
property of G¢.

Lemma 2.3.5. If z € 1 1(0) then G.xNp ' (0) = Gg.x.

Proof. Let g € G such that g.z € p=1(0). We aim to show that there exists k € Gg such
that g.x = k.x. Because u is Gg-equivariant, it follows that Gg acts on x~1(0). By
Lemma 2.3.3 one can assume that g = exp(iz) with z € ggr. Let h: R - R be defined by
h(t) =< p(exp(izt).x),z >. Then h(0) = h(1) =0 because x and exp(iz).z = g.x both lie
in 171(0). As h is a non-zero continuous function, it follows that there exists ¢ € [0,1]
such that

0="n'(t) =<dyu(iV=(y)), 2 >= ~w, (V2 (y), V2 (y)) = ~(V2(y), V2(v))

where y = exp(izt).z and (.,.) := w(i.,.) is the metric induced by the Kéhler structure.
Hence V,(y) = 0 so that exp(izR) fixes y and also x. Therefore g.x = exp(iz).z = x € Grx
and the proof is complete. O

The proof of the following lemma can be found in [Kir84].

Lemma 2.3.6. Set x and y in p 2(0) such that x ¢ Gr.y. Then there exists disjoint
G-stable neighbourhoods of © and y in X.

The theorem we were aiming for can now be proved. It was first proved in [KemNes79].

Theorem 2.3.7. (Kempf-Ness). Let X be a compact Kihler manifold on which acts
G, the complexification of a maximal compact subgroup Gr. Assume that Gr preserves
the Kdhler form w (in this context, the symplectic form is taken to be the Kdhler form)
and write i+ X — gg for a moment map associated to this action. Suppose that for
any = € p1(0), the stabiliser (GR), is finite. Then Xpin = G.u2(0) and there is a
homeomorphism 11~ 1(0)/Gr —> Xpmin/G between both orbit spaces.

Proof. The minimal value that the function ||u||? can take is 0 implying that any point of
©~1(0) is in X5, Furthermore, it is shown in [Kir84] that X, is G-stable. It follows
that G.ut(0) € X,nin. Conversely if € X, then there exists y € £~1(0) lying in the
closure of the path of steepest descent for ||u||* from 2. Following [Kir84], this path is
included in G.z, hence y € G.z. One deduces that G.y € G.x and so either y € G.z or
dim G.y <dim G.z. However (GR), is supposed to be finite, and as G = Grexp(igr), it
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2.3. Kempf-Ness theorem

follows that dim G, = 0, because Gy, is the complexification of (Gr)y (cf. [Szel4] Lemma
5.24). Therefore dim G.y = dim G > dim G.z. One sees that y € G.z and so z € G.~1(0).
This proves the first assertion.

There is an injection p~1(0) = X,in as well as a surjection X,nin = Xpmin/G. The com-
position of both these maps and the quotient of =1 (0) by Gg gives a map p~1(0)/Gr —
Xmin/G. Additionally, according to the first assertion and the structure of G, the map
is surjective. Lemma 2.3.5 implies that this map is injective and Lemma 2.3.6 that the
space X,nin/G is Hausdorff. Thus the map is a continuous bijection from a compact
space to a Hausdorfl space and therefore it is a homeomorphism. ]

The preceding theorem establishes a link between Kahler quotients and algebraic
quotients and will help to show the existence of a link between the symplectic reduction
1~ 1(0)/Gg and the GIT quotient X//G, assuming that X has an algebraic structure.
We first need to define the notion of stability for the manifold X.

Until the end of this subsection the Kéahler manifold X is a non-singular complex
projective variety in P and G is a connected reductive complex group acting linearly
on X, i.e. via a morphism G - GL,,41(C).

Definition 2.3.8. Let X C P" be a complex non-singular projective variety equipped
with a G-action (i.e. G acts on P" and stabilizes X ) and x a point in X. z is semi-
stable if there exists a polynomial function F € C[ Xy, ..., X, ] on X that is homogeneous,
non-constant, G-invariant and such that F(xz) # 0. x is stable if it is semi-stable, i.e.
there exists F' a homogeneous G-invariant polynomial such that F(x) # 0, all orbits of
G contained in

Xp={yeX | F(y)+0}

are closed in Xp and G4 is finite.
Let X° € X*° denote respectively the sets of stable and semi-stable elements of X.

The following theorem can be found in various references, like [Kir84] or [Mum94].

Theorem 2.3.9. Set X C P"™ a complex non-singular projective variety and G a complex
reductive algebraic group acting on X via a morphism ¢ : G - GLy11(C). Assume that
G has a maximal compact subgroup Ggr such that o(Gr) C Up41(C). Then the set X*°
coincides with the set X for the function ||u||* where p: X — g is a moment map
for the action of G and || . || is the norm associated to any Ggr-invariant inner product
on gr-

Let us place ourselves in the context of the previous theorem. The inclusion C[X]¢ <
C[X] induces a rational map X — X//G = Proj C[X]%. Its domain of definition is X**
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2. Symplectic geometry and moment map

and it gives a G-invariant surjective morphism v : X*° - X//G.

Assume now that G, is finite for any x € X semi-stable. Then if x € X®% there exists
F ¢ C[X]% such that F(x) # 0. As all elements in X are semi-stable, the stabilizer
of each one of these elements is finite and so its orbit is of same dimension as G. This
implies that all orbits in Xy are closed. Indeed, it is known that G.z \ G.z is a union of
orbits of dimension strictly smaller that dim G.x (cf. Proposition 3.3.3). As all orbits
have the same dimension, G.z ~ G.z = @ and G.z is closed. Therefore z is stable and
one finds X*® = X°. However according to [Mum94] Theorem 1.10, every fiber of ¢ that
meets X° = X*° is a unique G-orbit. It follows that there exists a continuous bijection
Y X%|G - X//G. Because X**/G and X//G are compact and Hausdorff, one deduces
that ¢ is a homeomorphism. By means of Theorem 2.3.9 and Theorem 2.3.7, one obtains
the following proposition:

Proposition 2.3.10. With the hypotheses of the last paragraph, there exists a homeo-
morphism

p(0)/Gr — X//G

between the symplectic reduction and the GIT quotient.

Remark 2.3.11. A theorem due to W.L. Chow states that an analytic subspace of
complex projective space that is closed (in the ordinary topological sense) is an algebraic
subvariety. Thus if we suppose our manifold X to be analytic, non-singular and closed
in some P", then it is algebraic and non-singular and Proposition 2.3.10 remains valid.

2.3.2. Hyperkahler quotients

The last proposition of the previous subsection can be extended to another class of
manifold, namely hyperkéhler manifolds.

Definition 2.3.12. Let M be a Riemanniann manifold with a metric g. M is a hyper-
kahler manifold if M is equipped with three complex structures I,J, K such that

e g is Kihler for I,J and K.
e I.J and K wverify the quaternionic relations, i.e. I* = J*> = K? = IJK = -1.

More information on hyperkéhler manifolds can be found in [Dan99].
Let M be a simply-connected hyperkédhler manifold on which a compact Lie group

GRr acts freely. Assume that the action of Gr preserves the symplectic forms induced
be the complex structures I,J and K. Because M is simply-connected, there exist
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2.3. Kempf-Ness theorem

three moment maps gy, puy, puic + M — gg. One can regroup these maps to construct a
hyperkahler moment map

pe: Mo - gr®Ho
r = pr(x)®Tl+pus(r)®J+ug(r)® K.
with Hyg = RI + RJ + RK the set of pure imaginaries.

Proposition 2.3.13. The quotient ug'(0)/GRr is a hyperkihler manifold.

This proposition is proved in [Hi87]. It can also be extended to a whole family of
quotients. Let Z = 3(gr)* denote the dual of the center of gg.

Theorem 2.3.14. Assume GR acts freely on m € pg (¢), with ¢ = (¢1,¢y,Cx) € Z ® H.
Then the quotient ug(¢)/Gr is non-singular in w(m) and is a hyperkihler manifold of
dimension dim M - 4dim Gg, with 7 : g (¢) = pg (¢)/Gr the canonical projection.

Proof. cf. [Hi87] Sections 3.B, 3.C, 3.D. O

Assume that M has a complex vector space structure and let IV be an affine algebraic
subvariety of M stable by the action of G, the complexification of Gg. The next theorem
links hyperkéahler quotient and GIT quotient.

Theorem 2.3.15. The composition u}l(O)ﬂN — N with the affine algebraic quotient
m: N - N/|G induces a homeomorphism

(7" (0)NN)/Gr > NG
Proof. cf. [RS90] Theorem 7.7. O

One can also construct the following moment map:

pc: M - g'eC

z e pg(z) +ipk ().
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2. Symplectic geometry and moment map

with g the Lie algebra of the complexification G of Gg. It is shown in [Hi87] that uc is
a moment map for the action of G on M equipped with the form w¢ = wy + iwg.

Corollary 2.3.16. By setting N = ug!(Z®C) in Theorem 2.3.15, there is a homeomor-
phism

(L7 (0) N (Z® €))/Gr = 1 (Z © €)]/G.

Hyperkédhler manifolds and simple singularities are linked. Indeed, using Hilbert
schemes of points one can prove that the minimal resolutions of the simple singular-
ities have a hyperkahler structure (cf. [Naka99]). Furthermore, in the next chapter, a
construction by P.B. Kronheimer will be presented in which he constructs the semiuni-
versal deformations of the simple singularities with aid of hyperkahler quotients.
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3. Quivers

The first three sections of this chapter are largely based on the lecture notes by M.
Brion [Brion00] and the ones by W. Crawley-Boevey [Crawley].

3.1. Definitions and basic properties

Let k be an algebraically closed field.

Definition 3.1.1. A quiver is a quadruplet Q = (Qo,Q1,s,t) with Qo a set of vertices,
Q1 a set of arrows between the vertices and s,t : Q1 - Qo two maps that give to each
arrow a source and a target respectively. We shall denote the vertices by letters i, j,. ...
The arrow o such that s(a) =i and t(a) = j will be written o : i - j. There can be
several arrows between two vertices. An edge loop in the quiver Q) is an edge o with
s(a) = t(a). An oriented cycle in Q is a succession of edges aq,...,ar such that
t(ar) = s(ag),t(a2) = s(az),...,t(ar) = s(a1). Edges loops and oriented cycles are
allowed as well.

Example 3.1.2. The reader will find below an example of a quiver:

[ ]
A

6(1

b

@ N 2 b 3 5 4 0
o—0 = o—© U

€
@6

All through this chapter it will be assume that for a quiver @Q, the sets of vertices Qg
and edges ()1 are finite.

Definition 3.1.3. A representation V = ((V;)icq,, (fa)aeq,) of a quiver Q is given by
a family of k-vector spaces V; indexed by the vertices i € Qo as well as a family of linear
maps fo : Vsa) = Vi(a) indexed by the arrows o € Q1.
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3. Quivers

Example 3.1.4. A representation of the quiver in FExample 3.1.2 will have the form

V3

a
fsa
5o
fo gyttt
‘/14a>V2f—>V44ﬂ;>V5 fn
50.
Ve

with the V;’s being vector spaces and the f,.’s linear maps.

Definition 3.1.5. Let M = ((Vi)icqo: (fa)aecq,) and N = (Wi)ieQo, (9a)acq,) be two
representations of a quiver Q. A morphism u: M — N between two quiver represen-
tations is a collection of maps u; : V; — W; indexed by i € Qo such that the following
diagram commutes:

Vi(a) ta, Vi)
Us (o) Ut(a)

W) 5> Wite)

for all a e Q.

The composition of two morphisms between quiver representations is defined naturally
and thus the category Rep(Q) of the representations of the quiver ) can be defined.
One can verify that this category is abelian.

Definition 3.1.6. The dimension vector of a representation M = ((V;)icQo: (fa)ae,)
of a quiver Q) is

dim M := (dim g V;)ieq,-

The next example shows that the classification of the representations of a given quiver
can be linked to the classification of other objects.
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Example 3.1.7. The quiver with r+1 vertices iy, ..., i, J, equipped with arrows .y, .. ., oy
whose sources are the iy, ..., i, and whose target is j is commonly noted as S,. Below is
an example of Sy (it is also known as Dy):

12
a2
ai

11 J 13
as

e

ig

Hence a representation M of S, is given by k-vector spaces Vi,..., V., W whose di-
mensions are miy, ..., m,,n,respectively, and linear maps fo; : V; > W for 1 < j <r.
By sending M to the images of the fa,;’s, one obtains a bijection between the isomor-
phism classes of representations of dimension vector (my,...,m,,n) and the orbits of
the general linear group GLy (k) acting on r-uplets (En, ..., E.) of subspaces of k™ such
that dim E; < m; for any i, the action being g.(F1,...,Ey) = (9.E1,...,9.E,) for any
g € GL,, (k). Therefore there is an equivalence between the classification of the represen-
tations of the quiver S, for a given dimension vector and the classification of r-uplets of
subspaces of prescribed dimensions of a given k-vector space.

Definition 3.1.8. A quiver Q is of finite orbit type if QQ has only finitely many
isomorphism classes of representations of any prescribed dimension vector.

Example 3.1.9. One may check that the quivers S1,Ss and S3 of FExample 3.1.7 are of
finite orbit type, but Sy = Dy is not.

The next important theorem is due to P. Gabriel who proved it in [Gab72].

Theorem 3.1.10. (Gabriel). A quiver is of finite orbit type if and only if every
connected component of its underlying graph is a simply-laced Dynkin diagram, i.e. it is
one of the following:
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Ap (n>1)
D,, (n>4)
Es
2
1 3 4 5 6 7
@ @ @ @  J
Er7
2
1 3 4 5 6 7 8
® @ @ L @
Exg
2

3.2. The path algebra

Let k be an algebraically closed field and @ = (Qo, Q1,s,t) a quiver. For a represen-
tation ((V;)ieQos (fa)ae@,) of @, one defines the k-vector space

V=V

1€Qo

as well as two families of linear maps:
e The projections

fi: Vv g |4 s iEQo.
(v, 0. y0p) = (0,...,0,0;,0,...,0)

e The maps
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3.2. The path algebra

fa: 4 - V ) ate-
(Ulu--~7vs(a)7--'7v7’) ind (07"'707 f&(vs(a)) 707-“70)
—_—

t(a)-th position

One notices that these maps verify the relations

fE=Fis fifi=0(i#35), frayfa = fafs) = fas

and all other compositions are zero. This leads us to the next definition.

Definition 3.2.1. The path algebra kQ of Q is the k-associative algebra defined by
the generators e;, i € Qq, and a, « € Q1, satisfying the following identities:

e = e €iej =0 (%)), eya)@ = ey = @,

One notices that the e;’s are idempotent and pairwise orthogonal in kQ. An important
relation is ¥ ;cq, €i = 1.
The k-vector space V' defined above can be seen as a left-k@-module. Indeed, by defining

injections ¢;: V; — Vv and projections T : Vv -V

Uy = (07”'7077)1'707”’70) (Ul,"',U|QO‘) )
naturally, the action of k@ on V is given by:

Qjy oo, U= Lt(ail)fail ...fainﬂs(ain)(v) and e;.v = 1;m;(v),

for any path o, ...y, of kQ, veV and i€ Q.

n

The next proposition establishes a link between the representations of a quiver ) and
the k@-modules.

Proposition 3.2.2. The category of representations of a quiver Q is equivalent to the
category of kQ-left-modules.

Proof. We have previously seen how, from a representation M of a quiver () one can
construct a k@-module V. Let us do the converse. Let V be a k@-module. Define
Vi =e;.V for any i € Qo. As Y, € =1, one finds V' = @;eq, Vi. Furthermore, for any
arrow « : 7 — j, there is a map f, : V; = Vj given by the multiplication by «, which has its
image in Vj; because a = eja . One can verify that both constructions extend to functors
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3. Quivers

between the category of representations of ) and the category of kQ-left-modules, and
each one is the inverse of the other. The details of the computations can be found in
[AuRe97] Chapter III, Theorem 1.5. O

Remark 3.2.3. One notices that as a k-vector space, k@ is finite dimensional if and
only if () does not contain any edge loops nor oriented cycles.

We will now define the notion of a quiver with relations.

Definition 3.2.4. A relation on a quiver Q) is a subspace of kQ) generated by linear
combinations of paths with same source and same target, and with a length of at least 2.
A quiver with relations is a pair (Q,I) with Q a quiver and I an ideal of kQ generated
by relations. The quotient kQ/I is called the path algebra of (Q,I).

Example 3.2.5. Consider the quiver Q with one vertex and n edge loops aq,...,qp:

Its path algebra is kQ = k(X1,....,X,), the ring over k generated by n independent
elements. kQ is clearly infinite dimensional due to the edge loops. For example, if one
wants the order in which the edge loops are browsed not to matter, one defines I the
ideal of kQ generated by the relations X;X; — X;X;, for any i # j. The path algebra
then becomes k(X1,...., X1)/(X;X; - X;X;,1 <i,j <n) =k[Xq,...,X,] the polynomial
algebra in n variables.

Remark 3.2.6. We mention that the representations of a finite dimensional algebra can
be described in terms of quivers. Starting from an algebra A, one can define a quiver
with relations (Q, ) such that the category of representations Rep(A) is equivalent to
the category Rep(Q,I). More details on this procedure can be found in the fourth
chapter of [Ben98|.

Let @ be a quiver without oriented cycles. We are going to classify the simple
representations of (), i.e. those which do not contain non-trivial subrepresentations.
First let S(i) (i € Qo) be the representation of @ given by
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3.2. The path algebra

S(i)i =k, S(i); ={0} (j €Qo,j #1), fa=0 (aeQr).

S(1) is clearly simple and its dimension vector is €; = (0,...,0, 1 ,0,...,0).

i-th I:C;_s/ition
Proposition 3.2.7. Let QQ be a quiver without oriented cycles nor edge loops. Any
simple representation of Q is isomorphic to some S(i) with i € Qo. Furthermore, any
finite dimensional semisimple representation, i.e. a direct sum of its simple submodules,
is completely determined by its dimension vector.

Proof. Let M be a non-trivial simple k@Q-module. One sees that M + kQ,»1 M with
k@, >1 the ideal of k@) generated by the non-trivial arrows of Q). Indeed, if M =kQ,»1 M,
then M = (kQ,»1)"M for any n > 1. But (kQ,»1)™ is a k-vector space generated by the
paths whose length is at least n. As () does not contain any oriented cycle nor edge loop,
it follows that there exists n € Zyy such that (k@,»1)™ = {0}, which implies M = {0}
and contradicting the non-triviality of M. Because M is simple and kQ,>1 M is a proper
submodule of M, one deduces that kQ,>1 M = {0}. Hence M can be seen as a module
over

D<Q/I]<Qr21 o EB ke; = H k.
i€Qo i€Qo

Therefore any subspace e;M is a k@Q-submodule de M. Thus e;M = {0} or M for any
i € Qo. It is known that ¥,.o, e; = 1, implying that e;M = {0} cannot happen for all
1 € Qo. Consequently there exists i € Qg such that e;M = M. Assume that there exists
j # i such that e;M = M. Then {0} = e;e; M = e;M = M because e;ej = 0. It follows that
there exists a unique i € Qg such that e;M = M and then M = S(i).

Let M be a semisimple k@-module of finite dimension. According to the first statement
of the proposition,

i€Qo

with m; € Zso for any 7 € Qp. Thus

dim M = ) m; dim S(i) = ) mie;
€Qo 1€Qo

with ¢; being the i-th basis vector of Zgoo. O
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We finish this section by introducing an object which will give us a numerical criterion
for the classification of quivers.

Definition 3.2.8. The Euler form of a quiver Q is the bilinear form on R?° denoted
by (.,.)o and defined by

(m,n)q =Y, mimni— Y, Mya)y(a)
1€Qo ae@y

for any m = (m;)ieqy: 1 = (N3)icq, € RY.
The quadratic form associated to the Euler form is denoted by qq and is called the Tits
form. Explicitly,

go(n) = (n,n)g = " ni = 3 Nya)Mu(a)-
i€Qo acQ1

for any n= (ni)ieqq € R

Using a result called the standard resolution (cf. [Crawley]), one can prove the next
formula:

qo(dim M) = dim Endg(M) - dim Exté (M, M).

Therefore the Tits form gives us information on self-extensions of a finite dimensional
representation of a quiver. But it is not its only use. Some of its properties give conditions

on whether or not a quiver is of finite orbit type. The next theorem can be found in
[Ben9s].

Theorem 3.2.9. Let Q be a quiver. The following assertions are equivalent:
(i) The Tits form qq is positive definite.
(71) qo(n) > 1 for any n € ZZQ(;) ~{0}.

(iii) The underlying non-oriented graph of Q is a union of simply-laced Dynkin dia-
grams.

This theorem enables us to reformulate Gabriel’s theorem in the following manner:

(@ is of finite orbit type <= qq is positive definite.
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3.3. Orbits and indecomposable representations

3.3. Orbits and indecomposable representations

In this section we define and study a structure of module on the representation space.
Let @ = (Qo,Q1,s,t) be a quiver and n = (n;)eQ, € Zgoo a dimension vector.
Definition 3.3.1. The representation space of a quiver () with dimension vector

n = (ni)ieq, 5

Rep(Q,n) := @ Hom(k", k").

eRE]

It is a k-vector space of dimension Z M.
aii—j

Let n be a dimension vector of a quiver ). The group

GLﬂ(lk) = H GLni([k)
i€Qo

acts naturally on each Hom (k™ k") by

(9i)ieQo-Ta = GjTag; '

and hence acts on Rep(Q,n) by preserving the decomposition.

Any point z € Rep(Q, n) defines a representation M, of Q. Furthermore, two represen-
tations M, and M, are isomorphic if and only if  and y are in the same GL, (k)-orbit.
The next lemma follows naturally.

Lemma 3.3.2. The map which associates to any x € Rep(Q,n) a representation M, of
Q defines a bijection between the set of GLy,(k)-orbits in Rep(Q,n) and the isomorphism
classes of representations of QQ with dimension vector n. Additionally, the isotropy group

of z,
GLy(K)e = {g € GLn(k) | g2 = x}

is isomorphic to the group Autg(M,) of automorphisms of M.
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For a quiver @ let us write Oy for the orbit in Rep(Q, n) associated to the representa-
tion M. Then Oy = GL,,(k).z where z is any element of Rep(Q, n) such that M, = M.
In particular one may notice that a quiver is of finite orbit type if and only if the number
of GLy,(k)-orbits in Rep(Q,n) is finite for any dimension vector n.

The following proposition is stated in a setting broader than that of quivers but can
be easily adapted.

Proposition 3.3.3. Let X be a variety with an algebraic action of an algebraic group
G and x a point in X. The following assertions are true:

(i) The isotropy group G is closed in G.

(ii) The orbit G.x is a non-singular subvariety of X and locally closed in X. The
connected components of G.x all have the same dimension: dim G —dim G,.

(iii) The closure G.x of the orbit is the union of G.x and of orbits of strictly smaller
dimensions. An orbit with the smallest dimension is then closed.

(iv) The variety G is connected if and only if it is irreducible. If so the orbit G.x as
well as its closure G.x are irreducible.

Proof. (i) Consider the map ¢,: G — X . This map is continuous and every fiber

g = gz
is a set gG,, for some g € G. As all points are closed, it follows that ¢gG, is closed and
so is Gy

(ii) The orbit G.z is the image of the morphism ¢, and is thus a constructible subset
of X (cf. Corollary 14.7 in [Eis95]). Hence G.z contains an open subset U dense in its
closure (cf. [Bo91] page 2). One deduces that G.z = Uy gU implying that G.x is open
in its closure. In a similar manner, G.x is non-singular and all its connected components
have the same dimension.

(iii) According to (ii), G.z \ G.z is of dimension strictly inferior to dim G.x. As it is G-
stable, one deduces that it is a union of orbits of dimensions strictly inferior to dim G.z.
Let us denote by O, an orbit with the smallest dimension in G.z. Tt follows that
Omin N Opmin is empty and thus Oy, is closed.

(iv) The group G can be seen as the orbit of the action of G on itself. According to (ii),
G is non-singular. Because it is an algebraic group, GG is connected if and only if it is
irreducible. Hence if G is irreducible, G.z is the image of G by the morphism ¢, and so
G.z and G.z are irreducible. O

Proposition 3.3.4. Let x = (4)a:i—; € Rep(Q,n) and M be the corresponding repre-
sentation.

(i) The following sequence is exact:

0 - Endg(M) - End(n) <> Rep(Q,n) > Exty,(M, M) - 0
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with End(n) = [] End(k™) and cu((fi)icqo) = (fiZa — Tafi)asioj-
1€Qo
(ii) The map c, can be identified with the differential at the identity of the map

vz GL(n) - Rep(Q,n)
g g.x

(iii) The image of ¢, is the tangent space T,(GL(n).x) seen as a subspace of T,(Rep(Q,n))
Rep(Q,n).

Proof. cf. [Brion00] Theorem 2.2.3. O

The next proposition gives us some details on the structure of the orbits of GL(n) in
Rep(Q,n). Its proof can be found in [Brion00] Theorem 2.3.1.

Proposition 3.3.5. Let
0O-M —->M->M"-0

be an exact sequence of finite dimensional representations of a quiver Q. Then Oy
contains Oppgarr. Furthermore, the exact sequence splits if and only if O = Opprgnrr -

We can now give a more precise version of Gabriel’s theorem (cf. [Gab72]).

Definition 3.3.6. A representation M of a quiver Q is a Schur representation if
Endg(M) = kidpy.

Theorem 3.3.7. Let Q be a quiver with |Qo| = r. Assume that the Tits form qq of Q is
positive definite. Then:

1. Any indecomposable representation M (i.e. M cannot be decomposed as a direct
sum of non-zero submodules) is a Schur representation and has no non-zero self-
extension.

2. The dimension vectors of the indecomposable representations are exactly then € 7%,
such that qo(n) = 1.

3. Any indecomposable representation is uniquely determined (up to isomorphism) by
its dimension vector.
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4. If the underlying graph of Q is connected, then it is a Dynkin diagram A of type
Ay, D, or E,. Let {ai,...,a,} and Lg = ¥j_y Zoy be a base of the root system of
type A and the associated root lattice. Identify the vertices of the Dynkin diagram
with their respective roots. Then the map

Rep(Q) - Lg
M = (Mi)lgigr = Zdlm(Mal)Oéz
i=1

gives a bijection from the set of all isomorphism classes of indecomposable repre-
sentations onto the set of all positive roots of the root system of type A.

All quivers are not of finite orbit type. Let @ be a quiver. If there exists a full
embedding of the category of representations of the quiver

(o)

into the category of representations of @), @) is called wild. If @) is neither wild nor of
finite orbit type then it is tame.

In [Gab75], P. Gabriel presented the different types of quivers and stated that the rep-
resentations of a wild quiver are not classifiable. Indeed, let ) be the previous quiver
with one vertex and two edge loops. The path algebra of @ is the free algebra k(X,Y)
generated by two indeterminates X and Y. One can show that for any k-algebra of finite
type A there is a fully faithful functor F': Modf4 — Modfy y yy from the category of
finite dimensional A-modules to the category of finite dimensional k(X,Y)-modules. If
A is generated by n elements a1, ..., a,, and M € Modf 4, then F(M) = M™% and X and
Y act on F(M) by

0 1 0 0 0

0 01 0 1 0 0
and a1 1

0 00 10 0 0 0

0 00 0 1 0 0 0 0

000 0 0 00 a, 1 0O
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3.3. Orbits and indecomposable representations

A complete classification of the finite dimensional representations of the quiver @) would
imply a complete classification of all finite dimensional modules for all finite type k-
algebras, which is not practical.

When the underlying graph of the quiver @ is not a Dynkin diagram, the root system
(in the sense of Section 1.1.2) of the Lie algebra g¢ (defined below) whose Coxeter graph

is @ is different than what has been previously described. Let ) be a quiver whose
underlying graph is connected and simply-laced without edge loops. The Cartan matrix

Cog=2I-A
with A the adjacent matrix of Q:
A; j = number of edges between vertices 7 and j € Qo.

This matrix can be used to define a Kac-Moody Lie algebra gg (cf. [Kiril6]). In
particular it defines a root lattice and a Weyl group.

The root lattice Lg of @ is defined by

Lo= Y Za;=7%,
iGQO

where the «o;’s are the simple roots. «; can be seen as the vector dimension of a
representation S(i) of @ with 1 at the i-th vertex and 0 elsewhere. The Cartan matrix
defines an integral symmetric bilinear form on Lg, called the symmetrized Euler
form:

(i, ) = (CQ)ij = 20i5 — Aij.

For every i € QQg, the corresponding simple reflection s; is defined as

S; - LQ g LQ

a = a-(a)q

The subgroup of GL(Lg ®z R) generated by the simple reflections is the Weyl group
WQ of 90Q-
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3. Quivers

By looking at the adjoint action of gg on itself, one finds the root system ®¢ of gq.
In the special case where @) is a Dynkin diagram or an extended Dynkin diagram, the
root system is given by

Qo ={aeLg {0} | (o,a)<2}.

Like in Section 1.1.2, one can show that ®¢g = <I>22 LI ®g with <I>2r2 1= (Tieqy Z200:) NP
being the set of positive roots of ®¢ and @y, = (Lieq, Z<oai) N Pq the set of negative
roots of @q.

A root o € @ is called real if there exists w € Wg and 7 € Qg such that o = w.ci;. All
the other roots are called imaginary, so that

D = 5 LIPY

When the underlying graph of @ is a Dynkin diagram or an extended Dynkin diagram,
the next proposition (cf. [Kac90]) characterizes ®¢; and ®" more precisely.

Proposition 3.3.8. 1. Let Q be a quiver such that its underlying graph is a Dynkin
diagram. Then ®g = CDTE.

2. Let QQ be a quiver such that its underlying graph is an extended Dynkin diagram

A. Let <I>Q and HQ denote the root system and a basis of type A. Let ag € @ be

the simple root associated to the extended vertex of Q. Then Ilg = HQ u{ap} is a
base of ®q,

QI =26 and O = {a+nd | a e dg, nez}

with § = ag + 6 and 0 being the highest root of i)Q with respect to ﬁQ.

Remark 3.3.9. Let Q be a quiver such that its underlying graph is a simply-laced
extended Dynkin diagram A. The dimension vector of the imaginary root 4 is the vector
(do, .. .,d,) from Subsection 1.5.1.1 as well as the dimension vector of the McKay quiver
which will be used in Section 4.2.

The tame quivers were classified by L.A. Nazarova [Nazar73] and by P. Donovan and
M.R. Freislich [DonFrei73].

Theorem 3.3.10. (Donovan-Freislich-Nazarova). A finite connected quiver @Q is
tame if and only if its underlying graph is Ay or a simply-laced extended Dynkin diagram,
i.e. it is one of the following:
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3.3. Orbits and indecomposable representations

Ay @ ®
Ap (n>2)
D, (n>4)
1 3 4 5 6
@ @ @ @
Eg
2
0
0 1 3 4 5 6 7
~ @ @ @ @ @ @
Er
2
1 3 4 5 6 7 8 0
~ @ @ @ @ @ @ @
Eg

Assume Q is tame of type A. Let {ao,...,ar} and Lg = Yj_qZa; be a base of the root
system of type A and the associated root lattice. Identify the vertices of the extended
Dynkin diagram with their respective roots. Then the map

f: Rep(Q) - Lq
M = (M;)ocier = . dim(My,)oy
=0

gives a surjection from the set of all isomorphism classes of indecomposable representa-
tions onto the set of all positive roots of the root system of type . Furthermore,

1. If a is a positive real root then f~1(a) is a singleton.

2. If a is a positive imaginary root, then there exists a finite subset D = {py, ..., pp} C P!
and a collection of positive integers l, > 1, p € D, such that the set of isomorphism
classes of indecomposable representations of Q) of dimension « is in bijection with
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3. Quivers

(P'~D)u U 2/1,2.
peD

Finally, in [Kac80] and [Kac83] V. Kac generalized the previous results to an arbitrary
connected quiver without edge loops.

Theorem 3.3.11. (Kac). Let Q be a connected quiver without edge loops. Let o =
YieQo i € 290 be positive, i.e. n; >0 for all i€ Qy, o #0. Then:

1. An indecomposable representation M of Q of dimension « exists if and only if «
1S a positive root.

2. If a is a positive real Toot, then the indecomposable representation M, with dim M, =
« 18 unique up to isomorphism.

3. If a is a positive imaginary root, then there are infinitely many non-isomorphic
indecomposable representations of dimension «. The set of isomorphism classes
of indecomposable representations of dimension « can be parametrized by a finite
union of algebraic varieties Zy, ..., Zy, such that max{dim Z;}; =1 - %

In Subsection 1.1.2, a root system ® was defined as a finite subset of a k-vector space

FE coming from a semisimple Lie algebra. It was then equipped with a non-degenerate
_ 208,
T ()"
The definition of (.,.) can be extended to equip affine root systems corresponding to

infinite-dimensional Kac-Moody algebras (cf. [Kac90]).

Definition 3.3.12. A root system ® (in the sense axioms (R1), (R2) and (R3) of
[Hum75] Appendiz) is crystallographic if for any o, € ®, then (a, 5) € Z.

bilinear form (.,.) coming from the Killing form and if o, 5 € ®, we defined (3, o)

It was said in Theorem 1.1.16 that finite root systems are crystallographic. It can be
shown that extended root systems are crystallographic as well.

The notion of folding of a root system via automorphism was presented in Section 1.2
for the finite root systems. However the notion can be generalized to a larger class of
root systems. The next proposition comes from [Stem08].

Proposition 3.3.13. Any crystallographic root system may be realized as a folding of a
simply-laced root system by some diagram automorphism.

3.4. Folding of root systems and quivers

In the following subsection we present a construction by T. Tanisaki of some kind of
folding of the representation space of a quiver whose underlying graph is a simply-laced
Dynkin diagram. In the subsequent subsection observations on the different types of
folding will be given.
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3.4.1. Foldings and quivers representations

It has been stated in the previous part that a connected quiver ) has only finitely
many isomorphism classes of finite dimensional indecomposable representations if and
only if @) is a Dynkin diagram A of type A,, D, or E,. If Q is of such type, then there
is a bijection from the set of all isomorphism classes of indecomposable representations
onto the set of all positive roots of a root system of type A given by the function dim (cf.
Theorems 3.1.10 and 3.3.7). This result has been extended by T. Tanisaki in [Tani80]
to the non-simply-laced Dynkin diagrams using an approach based on foldings of root
systems. In what follows we present his results.

Let Q = (Qo,Q1,s,t) be a simply-laced quiver. An automorphism of @) is a permu-
tation o of the set Qo = {e}ier such that a pair (o(;),0(c;)) forms an edge of @ if
and only if the pair (o, ;) is an edge of Q). The set of automorphisms of @ is a group
Aut(Q) given by

Aut(Q) = {0 = (00,01) € &, x & | s(01()) = 30(s(a)), t(o1()) =
oo(t(a)) for all e Q1}.

For any o € Aut(Q), one defines the functor F7 : Rep(Q) — Rep(Q) in the following
way:
e For any (V;?fa)ier,aEle then FU((%7fa)iEQ0,OéEQ1) = (Wiv.goé)iGQo,OtEQ1 with W; =
Vagl(i) for any i € Qq, and g, = fgil(a) for any a € Q.
e For any ¢ : (‘/;7fa)i€Q0,Oé€Q1 - (Wiaga)iEQo,OéEQu then FU(“P) : FU(Vsza) -
F (Wi, ga) is given by (F7(¢)); = Posl (i) for all i € Q.

Definition 3.4.1. Let G be a subgroup of Aut(Q). Define the category Rep(Q)Y,
which is a full subcategory of Rep(Q), as follows: if (Vi, fa)iecQo,ac@, € Rep(Q), then
(W?fa)ier,ate € Rep(Q)G Zf fO’f’ any g € G: Fg((%»fa)ier,ate) is isomorphic to
(Vis fa)ieQo,aeQ, in the category Rep(Q).

One can see Rep(Q)% as the invariants up to isomorphism of Rep(Q) by the action
of G through the functor F.

We are now able to state Tanisaki’s theorem (cf. [Tani80]).

Theorem 3.4.2. (Tanisaki). Let Q be a connected quiver and G a subgroup of Aut(Q)
which preserves the orientation of Q. Then the following assertions are verified:

(i) In the category Rep(Q)Y, the theorem of Krull-Remak-Schmidt (which states the
unicity of the decomposition of a module into a direct sum of indecomposable sub-
modules) is valid.
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(ii) There are only finitely many isomorphism classes of indecomposable objects in

Rep(Q)Y if and only if Q and G are in the following table:

A(Q,G) Graph of Q G
1 2 3 r-1 r
A, (r > 1) o @ Q@ o—©o {1}
1 2 3 2r-2 2r-1
Br (,,. > 2) . . . .................... .—. {177_} with T(Oéi) = Qop_;
_ {1,7} with
¢ 1 2 3 r-1 T(ar) = Qryl,
Cr (r=3) Y ® ® T(rs1) =
r+1 (o) =aq ifitr,r+1.
D, (r>4) é ; {1}
1 3
@ @
Eg {1}
2
4 5 6 7
@  J
Er {1}
2
3 4 5 6 7 8
L L @ @
Ex {1}
2
1 3 4 5 6 {I,7} with
r . . . 7’(041)=046,7'(042)=0427
4
7(a3) = a5, 7(4) = ag,
2 7(as) = a3, 7(ag) = 1.
G acts transitively
G on {aq, 3,04} and
fizes as.
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3.4. Folding of root systems and quivers

(iii) Let (Q,G,A(Q,Q)) be a triple as in the previous table. Then there exists a natural
one-to-one correspondence between the set of all isomorphism classes of indecom-
posable objects of Rep(Q)G and the set of positive roots of the root system of type

A(Q,G).
Remarks 3.4.3. 1. One notices that A(Q,G) is the type obtained by folding the
root system associated with the graph of @) by the action of G.

2. The reader might wonder why T. Tanisaki did not work on the Dynkin diagram
Ay, with the Z/27 =< o > symmetry given by o(a;) = agri1-:

1 2 r r+1 2r-1 2r
o— o o—— @ o—©
N S

Theorem 3.4.2 is based upon choosing an orientation of the quiver ) and a sub-
group G of Aut(Q) which preserves the orientation. However the non-trivial sym-
metry group of Ay, is Z/27 and the action of o would send the arrow r - r +1 to
r+1 — r, thus reversing the orientation of this edge. It is the same if we choose to
orient the edge by r + 1 — r. Therefore there cannot be a subgroup G of Aut(Q)
which preserves the orientation and so Tanisaki’s result is not valid anymore.

3.4.2. Observations on foldings

Throughout the several previous sections we have obtained connections between the
simply-laced Dynkin diagrams and the non-simply-laced ones. In this subsection the
different results will be compared.

In Section 1.2, we realized foldings on:
1. simply-laced Lie algebras.
2. root systems of simply-laced Lie algebras.

These foldings give results dual to each others.
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3. Quivers

Typeof g || A1 | Dry1 | Eg | Dy

Q 7/27 | 7/27 | 2/27 | &4

Type of go Cr Br F4 G2

Type of Q° B, C Fy | Gy

Table 3.1. — Foldings of root systems and Lie algebras

Remark 3.4.4. The case of type As. had to be left out because of the absence of a
group I acting on the singularity with the required properties (cf. Remark 1.4.38).

P. Slodowy defined the inhomogeneous simple singularities based on the symmetries
of the Dynkin diagrams in [Slo80] and [Slo80(2)]:

r I’ Q=T'/T | Type of Xq | Type of (X, )
Co | D | 7/22 Aoy By, r>?2
Doy | Doory | 2/22 Dyi Cyp, 723

T @) 7/27 Eg Fy

Do o S; D, Go

Remark 3.4.5. When (X, Q) is of type Gg, the possibility I = T was disregarded
because the quotient 7 /Dy leads to the same invariants as O/Ds.

He also computed two variants of the McKay correspondence: one by induction and
one by restriction. The results are as follows:
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3.4. Folding of root systems and quivers

Type of

!/ IV !
r r A(T) A(T,T) AV(T,T7)
1 2 3 r-2 r-1 .
C2r Dr AQr—l Br .@:‘ o @ e .—.:@.
2 3 -2 r-1 r
Dr—l D2(r—1) D'r+1 Cr .................. .—.ﬁz.
T B | A -~ o oo
D, Dy G ° ° °
Table 3.2. — McKay’s correspondence by restriction
and
Type of | Type of —~
/ v "\ \V
1 2 3 -2 -1
C2r Dr A2r—1 Br .#. @ @ e .—.ﬁz.
2 3 -2 r-1 r
Dr—l D2(r—1) Dr+1 Cr .................. .—.:é.
T B | A — o oo
D, o | G s

Table 3.3. — McKay’s correspondence by induction

Finally the foldings by T. Tanisaki using quiver representations gave:
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A(Q) A(Q,G) Graph of Q) G
3 2r-2 2r-1
A2r71 Br (7" 2 2) @ o—©O Z/QZ
T
3 r-1
Dyiq (r23) | Cp (r>3) ® - Z7]27
r+1
4 ) 6
L o
Eg Fy Z/27
2
3
2
Dy G2 63
4

Remark 3.4.6. In the case of (Dy, G3) (cf. Remark 3.4.5), the group &3 can be replaced
by the smaller group Z/3Z and the results of Theorem 3.4.2 remain valid.

We notice that the way P. Slodowy defined the inhomogeneous singularities is in
adequacy with the foldings of the root systems as well as the foldings using quiver rep-
Furthermore, the McKay correspondences by induction and restriction
establish a similar link between the homogeneous and the inhomogeneous Dynkin dia-
grams, however less direct because of the extension of the Dynkin diagrams as well as

resentations.

their duals.

The connections between the different foldings are summarized in the following dia-

grams:
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Figure 3.1. — Foldings and McKay correspondences

In the next chapter we are going to present a construction by H. Cassens and P.

Slodowy of the semiuniversal deformations of the simple singularities using quiver rep-
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resentations and symplectic geometry. Their method will then be generalized to obtain

the semiuniversal deformations of the inhomogeneous simple singularities. The process
is based on the affinization of the Dynkin diagram associated to the singularity through

its minimal resolution, as illustrated below:

T YD Mg
ad£y jo (ssexgoxd
ur) SUoIIN{osol
pu® SUOIYEULIOf
0P [eSIATUNIUIOG

(v)my +)
Surproy

oty ed4Ay
JO suornjosor
pue SUOIYRULIO)

-Op [BSIDATUNIIIDG

€' TOT109g

(V)my +'q “q “"v=v

(V)my+*q “q “v=v

(V)my+'q “q “v=v

HYa Y =V

¢'7 uo1adg

SIOATND T[)1M STOTIN[OSaT
puR SUOT)RULIOJA(]

)Mw>mﬂv %\ﬁ(&u?k

TOT)RZTUTJ®

adAy jo 1eamb =
& N YD g

(wa)sAs 1001)
surproy

oHoYa v = v

uoryeZIuIje
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pue s1oAm)

odAy jo 1AM

Figure 3.2. — Quivers, symmetries and simple singularities
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4. Deformations and quiver representations

Throughout this chapter the base field will be the complex number field C.

4.1. Kronheimer’s construction

P.B. Kronheimer gave in [Kron89] a new approach regarding the deformations and the
resolutions of Kleinian singularities. His work is based on finite subgroups of SUs and
hyperkéhler quotients. Some of his ideas will be recalled in this section.

4.1.1. Definition of a hyperkahler manifold M (I")

Let T" be a finite subgroup of SUy, NV its natural representation as a matrix group and
R its regular representation. Set

M =End(R) ® N

where End(R) = Homg (R, R). There is a linear action of I' on M with the action on
End(R) being the conjugation and the action on N the natural one. Let us focus on the
space

M(T) = (End(R) ® N)¥

of I'-invariants of M.

By providing N with an orthonormal base, as dim ¢ N = 2, any element of M can be
seen as a pair («, ) with «, 8 elements of End(R).

Let H=R+ RI + RJ + RK be the field of quaternions. It is known that I, J, K satisfy

the relations
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4. Deformations and quiver representations

P=J?=K?=1JK =-1.

Fix a I'-invariant Hermitian form on R and, if a € End(R), let a* denote the adjoint of
a relative to the Hermitian form.

Let us give M an H-module structure by defining the action of H with the following
formulae:

I.(a, B) = (ic,if3),
J(a, B) = (=B*,a"),
K.(a,8) = (=if*,ia*).

Hence I, J and K can be seen as elements of End(T'M), where every tangent space of
M is identified with M.

Let U(R) be the subgroup of unitary transformations of End(R) with respect to the
I'-invariant Hermitian form on R, and set

UT)={geU(R) | gy=~g Vyel'}

the subgroup of U(R) composed of elements commuting with the action of I'. U(T") acts
naturally on M (I") by conjugation:

u.(a, B) = (o™ upu™t), VYueU(T),V(a,B) e M(T).

It is a classical result of finite group theory that R can be decomposed as a sum of the
irreducible representations of I'. Let Ry, R1,..., R, denote the irreducible representations
of I' with Ry being the trivial one and set d; = dim R;. Then

R=@R;®C%.
1=0

One can also decompose U(I"). The elements of End(R) commuting with I' are

Homp(R, R) = Homp (®7_, R; ® C%, @"_, R; ® C%) = @, ; Homr (R;, R;) ® Hom(C%, C%).
However Schur’s lemma implies that the elements of Homp(R;, R;) are scalars if ¢ = j or
are invertible or zero if ¢ # j. But by definition R; ¢ R;, therefore Homp(R;, R;) = {0}
if i # j and Homr(R;, R;) = C. It follows that Homp(R, R) = @_, Hom(C%,C%) and

looking at the unitary elements one finds
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4.1. Kronheimer’s construction

U(r) = fgudi(a:).

Hence any element of U(T") can be seen as an (r+1)-uplet (ug,u1, ..., u,) with u; € Ug, (C)
for any 0 <7 <r. Furthermore, one sees that

M(D)

(End(R)® N)' = (R*® Re N)',

= Homp(R,R® N) =Homr(PR; @ C% B R;® N ®C%),
i=0 j=0

@ Homr(R;, R; ® N) ® Hom(C%,C%).
i,j=0

T
Any element of M(T") can be written as Z rij ® fi; with r;; €e Homp(R;, R; ® N') and
i.5=0
fi; € Hom(C%,C%). The action of U(T') on M (T") is given by

r r
(uo,ul,...,ur).( Z 7“@j®fij)= Z rl-j@ujfiju;l.
1,j=0 ,=0

It can be verified that the action of U(T") on M (T") preserves the quaternionic structure,
i.e. the induced action of U(I") on End(7"M (I')) preserves the real vector space generated
by I,J and K. One can thus obtain three real U(T")-invariant symplectic structures on
M (T). More specifically, one can choose a U(T")-invariant scalar product (.,.) on M (T")
such that the quaternionic operators I,J and K are anti-self-adjoint with respect to
(.,.). One finds three real symplectic forms given by

wr(v,w) = (v, Tw),
wy(v,w) = (v, Jw),

wi (v, w) = (v, Kw),

for any v,w e TM(T"). As M(T') is a vector space, for any x € M(T"), one has T, M (T") =
M (T"). Hence the symplectic forms I, J and K can be seen as elements of End(M (T")).

One also notices that the group of scalars T = {(Aldg,, ..., dg,) € [Ti_g Ug, (C) | X €
Ui(C) =2 81} c U(T) acts trivially on M(I') and so U(I')/T acts on M(T'). Let su(I")
denote the Lie algebra of U(T")/T. Three moment maps py, g, i : M(I') - su(T)* can
be obtained, each relative to one symplectic structure. They are given by
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pr(a, B) = 5([a, a1+ B, 67]),
p(a, B) = ([, 1+ [a*, 57]),
prc (e, B) = 5(=[, B] + [, B7]).

[,

With these maps one defines two new moment maps pp and pc on M (I') by

pp: M(T) - su(T)*®Hp
(aaﬁ) e Mf(aaﬂ)®]+MJ(O[7/B)®J+:U’K(QMB)®K

We =g + iy M(F) - 5u(F)*®C
(.f) = [of]

with Hp = R/ + RJ + RK the set of pure imaginaries.

4.1.2. Hyperkahler quotients and simple singularities

Let u(I") be the Lie algebra of U(I') and define the following form

<o uw@)xu() - C .
(A,B) ~ Tr(AB*)=-Tr(AB)

It is bilinear, symmetric, non-degenerate and invariant under the adjoint action of U(T").
Set t = Lie(T) = {(Adg,, ..., dg,) € [Ti-; ug,(C)) | A e u1(C)} and t+ = {u e u(T") | <
u,t >=0,Vt € t} = {u e uw(T") | Tr(u) = 0}. The restriction of the bilinear form < .,. >
to t* x u(T"), induces the bilinear form < .,. >: t* x u(T")/t - C, which is symmetric and

non-degenerate. Therefore

- (u)/H”
u = <u,.>

is an isomorphism. But it is known that t* = su(T"), hence su(T") = (w(T")/t)*. This
isomorphism turns (u(I')/t)* into a Lie algebra. Let ¢ be the center of (u(I")/t)*. Then

the isomorphism gives
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¢ 2 {(20ldgy, - .., 2 1dg,) €su(T) | z; €us(C) and )’ zd; = 0},
i=0

Let mj: R > R; ® C% denote the canonical projection, 0 < j < r. The im; (here i is the
square root of —1, not an index) generate the center of u(T") . Set

p: 3(w() - by

Z7Tj = djOlj

with (a;)1<j<r a set of simple roots of the Lie algebra g of type A(T') relative to a

Cartan subalgebra b, by = {¥i_; aja; | a; € R,Vi} the R-span of the roots of g, and

ag = — Y51 djaj. The root system of g is denoted by ®. p is surjective and its kernel is t

thus p induces an isomorphism p: 3(u(I'))/t = hg . However, we know that ¢ =
’iﬂ'j +t i djOéj

3((w(M)/0)*) = (w(T))/t)* = 3(su(T")), therefore the transpose of p gives an isomorphism

luz

1 bR

h = zwith 2(7m;) = ho p(n;) = dja;(h)

¢

with hg ={h e bh | a(h) e R, Ya e @} = {}]_ a;a) | a; € R, Vi}. By definition, o is the
only element of [ga,, 8q, | such that a;(;) =2 and is called the coroot associated to «;.
As mj e w(I')/t and z € su(T") = (u(I")/t)*, it implies that z(m;) =< z,7; >= =Tr(7;2) =
—dej.

Finally we obtain an isomorphism

L

br
(z0ldgy, ..., 2/1dg,) = hwith a;(h)=-2;, VO0<j<r

T C

There is a natural identification of c® C = c¢® J + ¢ ® K with the Cartan subalgebra h of
type A(T).

If v is a root, set D, = Ker(ao7) Cc. If £ € cxU, Do, € is called generic. It is known
that ¢ = su(T)V™) . Hence U(T) acts on every fiber Pt (€), with & = & T+&J+63 K € c@Hy.
Let X¢ denote the quotient pg!(€)/U(T). It was explained in Section 2.2 that, upon
some hypotheses, X¢ can have a symplectic structure. This result can be strengthened.
First let us define the good set (¢ ®g Hp)° (denomination due to P.B. Kronheimer) by
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4. Deformations and quiver representations

(C ®R [H(])O = (C ®R [H(]) N\ U(Da ®R [Ho).

[0}

where a runs through the roots of the root system of type A(T"). The next proposition
is proved in [Kron89].

Proposition 4.1.1. If £ € (¢ ®r Ho)°, then X¢ is a non-singular hyperkdhler manifold
of dimension 4 over R.
The main theorem of this section can now be stated. Its proof may be found in

[Kron89].
Theorem 4.1.2. (Kronheimer). We have

ui(0)/U(T) = CYT.
Furthermore, the complex r-parameter family
pit(c®C)/UT) — c®C

is the pullback (via b — h/W with W the Weyl group) of the semiuniversal deformation
of C%T.

For & € ¢ generic, one obtains a simultaneous resolution of the previous family by the
following diagram:

p (6l + ¢ ©)JU(T) — pii (e © €)/U(T)

§1I+C®C;>c®([:

Finally, all resolutions obtained in this way are minimal.

We conclude this section by mentioning that P.B. Kronheimer gave in [Kron89] an
interpretation of M(T") in terms of quivers. This interpretation will be presented in
the next section and is the base of a construction by H. Cassens and P. Slodowy of the
semiuniversal deformations of Kleinian singularities using geometric invariant theory and
quiver theory.
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4.2. Deformations of homogeneous simple singularities

4.2. Deformations of homogeneous simple singularities

In [CaSlo98] H. Cassens and P. Slodowy gave a construction of the semiuniversal
deformations of the simple singularities based on quiver theory and P.B. Kronheimer’s
work as well as H. Cassens’ Ph.D thesis [Cas95]. This construction is presented in the
following subsection.

4.2.1. Presentation of the construction

Let I" be a finite subgroup of SUy and A(I') the associated Dynkin diagram (cf.
Subsection 1.4.1.2). We write Ry,..., R, for the irreducible representations of I', Ry
being the trivial one, and N for the natural representation obtained through the inclusion
I' € SU3. The regular representation is R = @]_, d; R; with d; = dim R;. The space M (I")
of the previous section can be interpreted in terms of quivers in the following way:

M(T) = (End(R)e N)'=(R*® Re N)',
= Homr(R,R® N) = Homp(@ R;® Cdi,é%Rj ® N ®C%h),
i= j=
_ @0 Homr(Ri, R; ® N) ® Hom(C%, %),
ij=
- 6 Hom((Ddi, c4 ) by McKay’s correspondence,
= Rep(Q.d),

for a quiver Q whose vertices are the vertices of the extended Dynkin diagram A(T),
with two arrows (one in each direction) for any edge in A(T'), and whose dimension
vector is d = (dp,dq, .. ..,d,). It is called a McKay quiver. For every arrow a:i — j of
Q, the opposite arrow j — ¢ is denoted a.

Remark 4.2.1. The dimension vector d associated to the McKay quiver ) based on
é(I‘) is the same as the minimal imaginary root of the extended root system of type
A(T) (cf. [Kac90]).

Example 4.2.2. Take I' = O. Then A(T") = E7 and the quiver Q is

=
~
[

6 7
@ ® (

3
@ ® ®

v @T—2@ -~
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4. Deformations and quiver representations

with dimension vector d ={1,2,2,3,4,3,2,1}.

The group [T;_, GLg, (C) acts on M (I') by simultaneous conjugation and C* = {(zIdy,,
...,2zIdg,) | z € C*} acts trivially. Therefore an action of G(I') = (ITj—y GL4,(C))/C* on
M(T") is induced. We are going to define a G(I')-invariant symplectic form on M (T").
An orientation of @ is a function € : @1 — C*, such that e(a) = —e(a) = -1 for every
arrow

i a j

*——0

belonging to a fixed orientation of the edges of () and its opposite arrow

i@ ]

o—<o
For every pair ¢ = (¢q,a € Q1),% = (1q,a € Q1) of elements of M (T'), set

(o, 9) = ZQ: c(a)Tr(pata)-

Then one can verify that (.,.) is a non-degenerate G(I')-invariant symplectic form on
M(T") and induces a moment map

pes : M(T') - (Lie G(I))* € @ Mq,(C)
i=0
given by

pes(e) = (..., Z e(a)patpa ,--.).

.
i-th entry

Here Lie G(T") is identified with its dual (Lie G(I'))* using the bilinear form < .,. >
defined at the beginning of Subsection 4.1.2.

Example 4.2.3. For I' = Dy, the associated Dynkin diagram is A(I') = Dy. A repre-
sentation of the quiver Q is denoted by ¢ = (p]) with i =0,1,3 or4 and j=a orb. The
complete notation can be found on the following diagram
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4.2. Deformations of homogeneous simple singularities

0@ [ B!

vy
/

/\

[

For the orientation, take the ©*’s to be positive. The moment map is then
pes(p) = (~obel, —ot et w5t + 91t + 03¢l + vieh, —P3es, —plel).

It can be verified through explicit computations that pcg is equal to the map puc
defined in the previous section.

Let Z be the dual of the center of Lie G(I'). As previously seen, by means of the
bilinear form from Subsection 4.1.2, Z is identified with

¢® C = {(poldo, p11dy, ..., prld,) € [T My, (C) | pi € C, )" dipsi = 0}.
1=0 i=0

As the moment map is G(I')-equivariant, for all z € Z, G(T') acts on the fiber pgis(2)
and we can form the quotient ps(2)//G(T). Moreover Kempf-Ness’ Theorem (Theo-
rem 2.3.7) and Proposition 2.3.10 can be adapted to work on a symplectic vector space
instead of a compact symplectic manifold (cf. [Kiril6] Sections 9.9 and 9.10). It follows
that there exists an isomorphism

pos(2)/1G(T) = pe (2)//G(T) 2 i (0,62, G3) /U(T)
with z =& +i&3 € c® C = Z. Furthermore, because of Theorem 4.1.2, one obtains that
Ui Z) () — 2

is the pullback of the semiuniversal deformation of the Kleinian singularity C2/I". We
hence have a construction of the pullback of the semiuniversal deformation of C?/T'
purely in terms of invariant theory:
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4. Deformations and quiver representations

Hes(2)]]G(T) —=> X xgpw b

~

7 —— b

Remark 4.2.4. H. Cassens and P. Slodowy also used the space M (I") in [CaSlo98] to
work on resolutions of the Kleinian singularities. Indeed, by linearizing the quotient
pcis(Z)]]G(T) with a well suited character y : G(I') - C* (cf. [CaSlo98] Section 7),
they obtain the following diagram:

nos(2)]XG(T) —— ugs(2)//G(T)

112

A c®C

which is a simultaneous minimal resolution of the simple singularity C?/T.

4.2.2. Example: Xgr_l

Start with the McKay quiver of type As,_; with dimension vector (1,....,1):
b1 by
L ) @ i @ ()
a Q-2
bo brfl
ap QAr-1
o ®
azr-1 ar
bar—1 by
a2r-2 Qr+1
o @ i@ o
2r-2 r+1
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4.2. Deformations of homogeneous simple singularities

The representation space of this quiver is M(I') = {(ao,...a2,-1,bg,...,bar_1) € C*" &
C?'}. The orientation of the quiver is fixed by e(a;) = —e(b;) = 1, 0 <i < 2r—1.
Moreover G(T") = (C*)?"/C* = (C*)?> ! and the action of any g € G(I') on an element of
M (T") is done by conjugation:

g-(ao, ... az—1,bo,...,bar—1) = (919" a0, - - - G092 12715 G0G71 "b0s - - - s G2r—190 b2r-1).

T=ag...a2-1,

The fundamental invariants are then { zi =a;b;, 0<i<2r -1, with the relation
y=bo...bo1,

20”21 ---R2r-1 =Y.
Therefore M (T")//G(T") is the hypersurface
{(z0, 21, -, 22r-1,@,y) € C¥*2 | 2021 ... 29,01 = 2y}

The moment map for the action of G(I') on M(T") is

2r-1
w: M) — H C
i=0
® > (Y e(a)papas )
By quotient of the previous map one gets
T 2r-1 2r—1
MG B 2= (o) e [1C] Y =0} .
i=0 i=0
(205 -+, 22r-1,7,y) = (22r-1 = 20,20 = 21, -, 227-2 = 227-1)
1 2r-1
We change the variables by setting | 7 = > Z 2 Furthermore, Z is
=0
)\l-:z—lzi, 0<i<2r-1.
2r—1
identified with the Cartan subalgebra b = {diag(Xo,...,A2r-1) | >, Ai = 0} C sl (C)
i=0

b Z .
(A07"‘7A2T'*1) = ()\1—)\0,...,)\0—)\27,,1)

Jm

through the isomorphism
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4. Deformations and quiver representations

The computations in this example are fairly simple because pu(M(T')) = Z. For the
types D, and Fjg it is not the case anymore.

In the new coordinate system, one finds

2r-1 —~
a

{[([)(z—ki)::cth(F)//G(F) - b
- ()\0,...,)\27«,1,1',:1/,2) = ()\0,...,)\%,1)

which is the pullback of the semiuniversal deformation of the hypersurface Xo = & 1(0) =
{(x,y,2) e C® | 22" = zy}, i.e. a simple singularity of type Aa,_1.

The following diagram

Xxh/WfJLX

a O o

is the pullback of the semiuniversal deformation X 2 h/W of Xy. W is the Weyl group
of type Ag,_1, i.e. Gg,.

It is known that C[h] = C[zo, . .., 2zor1]/(X¥ " z;) and C[H/W] = C[p]",
=Clea(x),...,e2:(2)],

with ¢; the i-th elementary symmetric polynomial with 27 variables. There is a natural
injection C[h/W] < C[h] which induces

e b - h/W )
(AO,...,AQT_I) = (62()\),...,627«()\))

2r-1 2r ) )
A polynomial expansion gives [] (z-\;) = 22 4 Z(—l)zei()\)z%_’. Set
i=0 i=2

2r ) )
X ={(z,y,2,ta,... t2;) e C3x /W | 2" + Z(—l)’tiz%*Z =zy}.
i=2
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4.3. Deformations of inhomogeneous simple singularities

There are two natural maps

a: X - h/W and
(xayvzatQa"'at2T) Ld (t27"'7t27“)

e h — h/W .
()\0,...,)\2«,«_1) g (62()\),...,627«()\))

The pullback of these maps gives

= {((x7y727t27'°'atQT)v()\O)'”a)\QT—l)) eX Xb | a(xvyvzatQ)"'thT) :W()\O,...,)\Qr_]_)},
= {((x,y,z,tg,.. .,tgr), (/\0,...,/\27«_1)) e X x h ’ (tg, R ,tgr) = (62()\),.. . ,627«()\)},

2r ) )
= {(2,9,2,X0,...,Aop_1) €C3x b | 22y Z(—l)lw()\)ZQT_l =xy},
i=2
2r—1

= {(x7yvza)‘07"~a)\2r—l)ECSX[) | H(Z_)\i):l‘y}v
=0

= M(T)//G(T),

and o 1(0) = {(z,y,2) e C3 | 2?" = xy}. It is a simple singularity of type As,_; and « is
its semiuniversal deformation.

4.3. Deformations of inhomogeneous simple singularities

The aim of this section is to extend the results of H. Cassens and P. Slodowy to the
inhomogeneous simple singularities. This means that we aim to construct the semiuni-
versal deformations of the simple singularities of type B,, C,, F4 and G using McKay
quivers. First we will lay out the objectives of the task. Then computations will be made
in order to ensure that the objectives are validated. The semiuniversal deformations will
then be explicitly constructed. However, as the semiuniversal deformation of a simple
inhomogeneous singularity is a Q2-equivariant morphism for €2 a symmetry group of the
simply-laced Dynkin diagram associated to the singularity, the fibers above the fixed
points are all acted upon. We will then compute the quotients of these fibers and look
at some of their properties.
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4. Deformations and quiver representations

4.3.1. Objectives

This section aims to extend the construction of Section 4.2 to the inhomogeneous
simple singularities of type B, C;, Fy and Gb.

Let us start with a Dynkin diagram A(T') of type Agy_1, Dyy1 or Eg with T' being

the associated finite group of SU;. The notations and results of Section 4.2 give the
following diagram:

pcis(Z)c M(T)

BN (2)])G(D) = X <y by — %
a ©) Q
Z=h - h/W

with « the semiuniversal deformation of the singularity C?/T" of type A(T). Let IV be
the finite subgroup of SUs such that there exists an inhomogeneous simple singularity
of type A(T,T) (cf. Definition 1.4.37 and the first table in Subsection 1.5.2.1). Then
Q = T'/T acts on the singularity Xy = a~1(0). Our aim is to define natural actions of
Q on X and h/W such that a becomes Q-equivariant. The next theorem is a direct
consequence of Theorem 1.4.49.

Theorem 4.3.1. With the previously defined notations, the restriction a|a71((h/w)g)

over the fized points (h/W) of a semiuniversal deformation of the singularity C2/T is
a semiuniversal deformation of the inhomogeneous singularity of type A(T,T").

A natural way to accomplish this, is to render & Q-equivariant. By Lemma 2.1.11, it
suffices to analyze when the action of Q on M (T") is symplectic.

We need to define actions of {2 on every object in the preceding diagram such that:

1. The restriction of the action on X to the singularity X coincides with the natural
action computed with matrices in Subsection 1.4.2.1.

2. The action on M (T") is symplectic.
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4.3. Deformations of inhomogeneous simple singularities

3. The action on G(T") is induced from the one on M(T").

4. The action on Lie(G(I')) stabilizes Z. Hence the isomorphism 7 : Z — b (cf.
Subsection 4.1.2) becomes Q-equivariant, with the action on h coming from the
action on the Dynkin diagram A(T").

In Subsection 4.3.2, we will compute the conditions required on the action of € so
that it restricts to the natural action on the singularity C2/I" seen in Subsection 1.4.2.1.
In order for Q to act symplectically on M(T"), it has to preserve the symplectic form
(.,.). However, by definition, this form depends on an orientation of the McKay quiver
based on A(T"). The orientation will then have to be chosen accordingly, which will be
done in Subsection 4.3.3. The questions regarding the action of 2 on G(I') as well as
the Q-equivariance of 7: Z — h will be handled in Subsection 4.3.4.

Because of Theorem 4.3.1, ala—l((h/w)ﬂ) is an Q-invariant morphism, and as such
the group € acts on every fiber of o] a1((b/W)2)- In order to analyse the quotients of
the fibers, an explicit description of the semiuniversal deformation is required. We will
introduce in Subsection 4.3.5 a system of coordinates on the base space h/W of the semi-
universal deformation called flat coordinates. It will simplify the computations because
with this system the action of © on h/W becomes linear. The remaining subsections
will be devoted to the explicit computations of the semiuniversal deformations of simple
singularities of inhomogeneous types. The study of the quotients of the fibers will be
conducted in Section 4.4.

4.3.2. Action of IV/T" on C?/T’

The action of  =T"/T" on M(I') induces an action on ug'(Z)//G(T') and it is known
that C/T' € ug'(Z)//G(T). However it has been seen in Subsection 1.4.2.1 that /T acts
on the singularity C?/T" in a natural way. We therefore want to impose that the action
of I"/T on M(T') that is to be defined shall induce the right action on the singularity
C?/T.

4.3.2.1. Computations for C?/T" of type Ay, _;

The McKay quiver when A(T) = Ay, is
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4. Deformations and quiver representations

b1 by
L ) @ i @ o
a Q-2
bo br—l
ao Ar-1
@ ®
(7] Qr
b2r—1 br
a2r-2 Api
o @ i @ [ )
bar—2 il

It is known that I" = Cy,, IV = D,, and /T = Z/27Z =< o >. The action of 2 on the
Dynkin diagram exchanges the vertices ¢ and 2r -4, 1 <7 <2r-1. We extend this action
to the extended Dynkin diagram of type E(F) by making €2 fix the additional vertex
labelled 0. The action of €2 on M (I') arises naturally from its action on the extended
Dynkin diagram. Hence the action of 2 on M (T") needs to verify

0.(ao,...,a20-1,b0,...,bar—1) = (A2p-1b2r—1, ..., Xobo, d2r-1a2,-1, . .., doap).

with \;, 6 € C.

The action of Z/27 needs to be consistent with the action on the singularity computed
with matrices. Recall that the singularity C?/T" is defined by {Z*" - XY =0} with Z =

2129, X = 23" Y = 23" (cf. Theorem 1.4.1 for the notation), and that | ¢.X = (-1)"Y,
oY = (-1)"X,
0/ =-7.

After computation of the special fiber of the moment map, we find that C?/I" = {2%" -
xy =0} with | z = H?_T‘l a;, which implies

HQT’ 1 b“

2r-1
E'LTO a‘l iy

o.r = (HQT ! Al)ya
oy = (1—[27“ 1 )
=9 ZZT ! )\zézazbl
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4.3. Deformations of inhomogeneous simple singularities

For the action to satisfy our conditions, it needs to verify | \;0; = -1, 0<¢<2r-1,

1—[27“ 1/\ _H2r1 ( 1)r

4.3.2.2. Computations for C?/T" of type D,

The McKay quiver when A(T') = D, is

0
®

It is known that T' = D, 1, I = Dy(,_qy and I/T' = Z/27 =< o >. The action of Q2 on the
Dynkin diagram exchanges the vertices r and 7 + 1 and fixes the others. We extend this
action to the extended Dynkin diagram of type A(I') by making € fix the additional
vertex labelled 0. The action of  on M(I") arises naturally from its action on the
extended Dynkin diagram. Hence the action of © on M (I') needs to verify

a b a b a b  _a
05(9007 L IEEE fr—l’ Pr-1>Prs Prs SOZ+1’ SDr+1) =
a a a
(8007 ¢07 .. 7g0r—17 907”—17 >\T’+1§07-+17 (57‘+1S0r+17 Tgprv T(pr)

with \;, 8 e C.

Assume 7 odd. The action of o has to induce the correct action on the singularity C?/T.
From Theorem 1.4.1 we know that the singularity C?/T" is defined by {X(Y? - X""1) +

220} with X = 47 (212)%, ¥ = 472 (5707 + 2507D), Z = izza(2]07) - 507V,
Furthermore, I is generated by g = (g 591) with & = exp(4(21ff1)) and h = ((z) 6) h
fixes X,Y and Z and

N
TRTINT
|
=

—
NSENSIIS]
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4. Deformations and quiver representations

After computation of the special fiber of the moment map, we get that C? /T = {a" +
y?r+ 22 =0} with [ 2= 4_%pr,r+1, and
r—1
y =i (qo,.r - 3P0201)s
2 =50,..,r,r+1,
Pros = Tr(@ot 1000 67), which implies
G0,....r = Tr(h - Ph_oprpl gt 5 .. f),

80,41 = T0(QF -+ P01 PP OF PR Pr o - F),

0.2 = M\e0pApp 10741,

L r=1
0.y =142 ((_>\r+15r+1)qo,...,r + ()\r+15r+1 - %)\rér)\r+15r+1)p7«3+1)7
0.2 = =NeOpApy10p112.

In order for the action to satisfy our conditions, we need A0, = A\py10741 = 1.
The conditions when r is even are also .0, = A\;410,-41 = 1.
4.3.2.3. Computations for C?/T of type Ej

The McKay quiver when A(T") = Ej is

o o ([ ] o o
o} o8 o} o
o || ¥4
[ W
@ || ot
Q!

It is known that I'= 7, I = O and I'//T" = Z /27 =< o >. The action of 2 on the Dynkin
diagram permutes the vertices 1 <> 2, 4 <> 5 and fixes the others. We extend this action
to the extended Dynkin diagram of type Z(F) by making Q) fix the additional vertex
labelled 0. The action of £ on M (T') arises naturally from its action on the extended
Dynkin diagram. Hence the action of Q on M (I") needs to verify

bU-(@DS,wﬁ,f‘f,wl{m@%,wg,wg,wf,,wimi,w%@g)= .
(5, 0, A205, 0205, AM1pT, 0107, 03, 03, As0§, 0505, Aapd, 647 )
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4.3. Deformations of inhomogeneous simple singularities

with \;, 8 e C.

The action of Z/2Z needs to be consistent with the action on the singularity computed
with matrices. It is known that the singularity C?/T" is defined by {X*+Y3+ 22 = 0} with
1 .
X = 108121 29(21-23),Y = exp(%)(z§+z§+14(zlzg)4), 7 = (21+25)3-36(2120) (21 +23),
(cf. Theorem 1.4.1 for the notation), and that

X = -X,
oY =Y,
o.Z = -Z

We adopt the following notation: ®(iyiz...ix) = Tr(pf gpflgpgzgog . ..gp?kgpi-’k). After
computation of the special fiber of the moment map, we find that C?/T" = {z*+¢%+2% = 0}

with [ 2 = e"%?”)@@%) which implies
Y= @(4252)7

z = ®(3%425%) + 10(4%5)?,

0.2 = —(\505)? \dsr,
g.y = ()\4(54/\5(55)2];,
o.z2 = —(>\454>\555)2(I)(324252) + (—(/\454)\555)2 + %()\454()\555)2)2)(1)(425)2.

For the action to satisfy our conditions, it needs to verify A\gd4 = 1 and A505 = +1.

4.3.2.4. Computations for C%/T of type D, and I'"/I" = &3

The McKay quiver of type Dy is

0@ o
X.\%
©5 9 ce

o
AN
ot o4
1@ Q:
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4. Deformations and quiver representations

1 1 ) —
% (e—e 6e )> with e = exp(‘]). Then I'/T' = {1,2,¢%,a,ac,ac’} = (¢,a) = &5 with & = 1

and @? = 1, the symbol ~ meaning the class modulo Ds.

The action of 2 on the Dynkin diagram permutes the vertices with ¢ acting as (143)
and @ as (34). We extend this action to the extended Dynkin diagram of type Z(F) by
making €2 fix the additional vertex labelled 0. The action of Q on M(I") arises naturally
from its action on the extended Dynkin diagram. Hence the action of 2 on M (T") needs
to verify

2, P P12 05, 05, 2L 2) = (16, 0. Aapf, 0305, Meell, Saeh, Auet duph).

z.(
a-(%"ga @07 ()0(117 901{7 9037 9037 9027 SOZ) = (@87 @Ov 906117 QOIL a4§027 ﬁ490?p04380§7 6390%)

with )\i,éi,ai,ﬁi e C.

It was proved in Theorem 1.4.1 that C?/T' = {X3 +Y?X + Z? = 0} with
X = (2122)2, . We can then compute

Y = él(zf + 234), \

Z = 5 z122(2] — 23),

eX = = a.X = X,
ey = 33X and ay = -Y,
tZ = Z, az = -Z

After computation of the special fiber of the moment map, we get that C2/T" = {3 + 32z +

2% = 0} with | 2 =275 exp(2% )pay, and | po3 = Tr(4e405¢6), which
y =25 exp(“) (pos + Lpss), P31 = Tr(3005¢5),
2 = qoss, qo3a = Tr(phetehosbet),
implies
ex = A0 0y 5, and
cy=23 exp(Z) (~Aadapsa + Aabs (2L — 1)po),
c.z=2z,

178



4.3. Deformations of inhomogeneous simple singularities

a.x = agfzay Py,
_ 1 i
a.y =25 exp(Z) (po3(—aafa) + paa(3asPsaufs — aufs)),

a.z = —01353014642.

In order for the action of IV/T" on M (T') to induce the natural action of &3 on C2/T
we need )\151 = )\353 = )\454 = 17

a3fz = aufy = -1.

If /T = Z/3Z, the results are similar.

4.3.2.5. Conclusions

In the last four subsections, conditions have been found in order to ensure that the
restriction of the action of Q on M(T") to the singularity C2/I" corresponds to the action
we computed using matrices in Theorem 1.4.1. The results are summarized in the
following table:

Type of singularity Conditions on the action

ANbi=-1, 0<i<2r-1,
T2 N =TT 6 = (1)
Cr = (Dry1,2/27) ArOr = Apy10p41 = 1

Fy = (Es,2/27) Aibs=1 and A5 = £1
A1O1 = Aads = Aady = 1,

B, = (As,_1,2/27)

G2 = (D4, G3)

agfz = ayfy = -1

4.3.3. Choice of an orientation

Let M(T') be the representation space of the McKay quiver @) defined in Subsec-
tion 4.2.1. By definition, we have M(I") = @aeq, Hom(Vy(,), Vi(a)). It is known that
between two connected vertices there are two arrows, one in each direction. For every
such pair of arrows, let us choose one. All the selected arrows form a subset Q7 of Q;.
Hence one can write
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4. Deformations and quiver representations

M(T) = ®qucq: (Hom(Vi(a), Vi(a)) ® Hom(Viay, Vica))):
= @ucqr Hom(V(a), Vi(a)) @ @ucqr Hom(Vi(a), Vi(a)):
= @ucqr Hom(V(a), Vi(a)) ® @acqr Hom(Vy(a), Via)) ™
= @ucqr Hom(V(a), Vi(a)) ® (Bacqr Hom(Vi(ay, Via)))™

Therefore M (I") can be seen as the cotangent space on the vector space

Ducqr Hom(Vj(4), Vi(a))- The choice of Q7, which is the equivalent to the choice of
an orientation of @), determines the space on which the cotangent fiber is constructed.
Conversely, the choice of the base space of the cotangent fiber will define a subset Q7 of
@1 and so an orientation of Q).

Theorem 4.3.2. The action of Q =T"/T on M(T) is symplectic when:
o for (Ag,_1,2/27), Q2 reverses the orientation of the McKay quiver.
e for the other cases, §) preserves the orientation of the McKay quiver.

4.3.3.1. Proof of Theorem 4.3.2 for the type (A, 1,7/27)

The McKay quiver of type Avgr,l is

by by
@ @ i@
al Qr-2
bo
ap
[
a2r-1
boy—
et a2r-2 Qr+1
L ) @ i@
2r—2 r+1

It was showed in Subsection 4.3.2 that the action of I'V/T" = Z/2Z =< o > needs to verify

o.(ag,...,az-1,b0,...,b2,-1) = (A2r_1b2r_1, ..., Aobo, b2r_1a2,1, . .., 00a0).

with A;, d; € C.

Let ¢ = (ag,...,a2,-1,b0,...,b2,—1) and ¥ = (cg,...,c2r-1,do,--.,dor—1) be two ele-
ments of M (I"). We are going to compute (¢, ) and (o.p,0.1) with (.,.) the symplectic
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4.3. Deformations of inhomogeneous simple singularities

form defined in Subsection 4.2.1. M (T') is a vector space so it is identified with its
tangent space. Furthermore, o acts linearly thus o = do. Then

2r-1 2r-1
(g, 1) = Z(:) (€(ai)(aid;) + €(bi)(bici)) = Z(:) e(a;)(aid; - bic;)
and
2r—1
<O‘.<p, O'w) = Z E(bzrflfi)ki&'(aidi - blcl)
=0

For Q) to act symplectically it requires that e(a;) = €(bar—1-;)Ai0; < \;id; = €(a;)e(bar—1-;)
for all i. However, for o to induce the right action on C2/T, it is necessary that \;8; = —1
for all 7 (cf. Subsection 4.3.2). Then we get €(a;)e(ba,—1-;) = —1. But the arrow a; is sent
to the arrow bg,_1_; by o, thus the equality €(a;)e(b2,—1-;) = —1 means that o reverses
the orientation of Q.

From now on the McKay quiver of type As,_; will be equipped with the clockwise
orientation:

by by
L ) @ i@
ay Q-2
bo
agp
® O,
2pr-1
boy—
et a2r-2 Qr+1
[ ) @ i@
2r—2 r+1

Then all a;’s are positive and all b;’s are negative.

4.3.3.2. Proof of Theorem 4.3.2 for the type (D,,,7/27)

The McKay quiver of type D, is
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4. Deformations and quiver representations

0 r
[
b
©5 2 P2 3< 777777777
e o
s ©3
¥1
@
1

It was showed in Subsection 4.3.2 that the action of I'V/T" = Z/2Z =< o > needs to verify

U;)(SO87 @87 s 7357(}—17 902—17 90?7 (10?7 @Z-;-lv @2-!—1) = b
(908’ Por-- s Or_1yPr—1s Ar+1Pp415 57“+190r+1a Arls 67“907‘)'

with \;, 6 € C.

Let P = ((1087 9087 MR ‘P?a Qplr)a 90?+1a 902+1) and zzz) = (@03, 7/)8? ce ﬂl}ga lr)aw(rl+1a w£+1) be two
elements of M (I'). We are going to compute (¢, ) and (o.¢,0.1) with (.,.) the sym-
plectic form defined in Subsection 4.2.1. M (I") is a vector space so it is identified with
its tangent space. Furthermore, o acts linearly thus o = do. Then

r=2 r+1
(o) = ZE)(E(@?)TY(@?%) + e(0)) Tr(plf)) + Z(E(@?)Tr(@?lbf) + e(0)) Tr (b)),
Ti2 r+1 =
= Z(:) e(f) (Tr(pfv)) - Tr(plyf)) + Z e(0f) (Tr(gf)) = Tr(eiei)),
and
r—2
(o.0.000) = Y (@) (Tr(pfe)) = Tr(hf)) + (00 Ars1 a1 (Tr( 01 0004 1) -

=0
Tr( 7 tn)) + €(@ra)Ade (Tr(ppey) = Te(@fyy).

For €2 to act symplectically it requires that e(pf)Ar110r41 = €(0%,1) and e(@?, 1) A0y =
e(¢$), which is equivalent to the system

6(@?)6(@?+1) = Ar410r41,
e(@rig)e(or) = Aoy
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4.3. Deformations of inhomogeneous simple singularities

However, for o to induce the right action on C?/T, it is necessary that A0, = Ap416,41 = 1
(cf. Subsection 4.3.2). Then we get e(¢?)e(¢?,1) = 1. But the arrow ¢? is sent to
the arrow ¢f,; by o, thus the equality e(¢?)e(¢?, ;) = 1 means that o preserves the
orientation of Q).

From now on, the orientation of the McKay quiver of type ETH will be all a;’s are
positive and all b;’s are negative.

4.3.3.3. Proof of Theorem 4.3.2 for the type (Eg,Z/27)

The McKay quiver of type Eg is

o () ([ ] () o
b o4 b b
o || ¥4
Qo
o || ¥t
Q!

It was showed in Subsection 4.3.2 that the action of I'V/T" = Z/2Z =< o > needs to verify

bU'(sOS,sog,st‘f,soliwp&sobg,sog,sobga@Z,@Z,wggs@?)= .
(055 ©0s A2, 0205, MY, 0107, 03, 03, As§, 0505, Aapd, 647 )

with )\i, 6@ e C.

Let ¢ = (08,5, ..., 0%, %) and ¢ = (3,48, ... 18, 18) be two elements of M(T).
We are going to compute (p,) and (o.¢,0.1)) with (.,.) the symplectic form defined
in Subsection 4.2.1. M(I") is a vector space so it is identified with its tangent space.
Furthermore, o acts linearly thus o = do. Then

5

(. 0) = 3 el (Tr(pf9)) = Te(fyf))

=0

and
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4. Deformations and quiver representations

(0.p,00) = e(p8)(Tr(pdul) - Tr(whws)) + e(9$) Aada (Tr(p§h) — Tr(5e3))
+e(p M1 (Tr(pivh) - Tr(@he)) + e(0§) (Tr(pgwh) — Tr(p599))
+e(0§) 505 (Tr(2t) - Tr(p2ypd)) + e(2) Aaba(Tr(p§eh) - Tr(Lhvf)).

For © to act symplectically it requires that

e(01)e(93) = A61 = A2da,
e(p])e(95) = Agds = A505.

However, for o to induce the right action on C%/T, it is necessary that A\4d4 = 1 (cf.

Subsection 4.3.2). Then we get A\505 = €(¢])e(pf) = 1. But the arrow ¢f is sent to

the arrow g by o, thus the equality means that o preserves the orientation between

6 i 4 6 5 5

.—>Eb. and .;b.. One notices that there are no conditions on the orientation
P4 ¥s

of the arrows indexed by 1 and 2.

From now on, the orientation of the McKay quiver of type FEs will be all a;’s are
positive and all b;’s are negative.

4.3.3.4. Proof of Theorem 4.3.2 for the type (D4, S3)

The McKay quiver of type Dy is

0@ ®:
20 993
b
a’
®o 9 ¥3
[
o4 o4
o} A
1@ ®:

It was showed in Subsection 4.3.2 that the action of I'V/T" = Z/3Z =< o > needs to verify

a.(0%, @b, 0%, 08, 0% 08, 0%, 05) = (08, 08, A3, 83l Aad, ah, Mt 3160

with \;, ; € C.
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4.3. Deformations of inhomogeneous simple singularities

Let ¢ = (‘1087 Soga s 79027 90?1) and ¢ = (?/)37?/)8, s 7'¢}27 ¢Z) be two elements of M(F)
We are going to compute (¢, 1) and (0., 0.¢) with (.,.) the symplectic form defined
in Subsection 4.2.1. M(T") is a vector space so it is identified with its tangent space.
Furthermore, o acts linearly thus ¢ = do. Then

(o) = > 4(6(%0?)Tr(¢?¢§)+6(¢?)Tr(<ﬁ?¢?))=' >, el (Te(fe?) = Te(pivy))

i=0,1,3, i=0,1,3,4

and

(0.0, 00) = (@) (Tr(pgd) — Tr(phg)) + e(9]) Asd3(Tr(piuh) - Tr(huws)) +
e(93) Maba(Tr(§vh) — Tr(Lhv)) + e(0§) A1d1 (Tr(pfe?) — Tr(hef)).

For € to act symplectically it requires that

e(¢f) M1 = e(o7), A101 = (@ )e(w]),
e(pf)A303 = €(9%), <= | A3d3 = e(p])e(¢}),
() Aads = e(f). Ady = e(03)e(ef).

However, for o to induce the right action on C?/T', it is necessary that A\;d; = A3d3 =
Agd4 =1 (cf. Subsection 4.3.2). Then we get e(¢])e(¢]) = e(p])e(s) = e(¢5)e(¢]) = 1.
But o permutes circularly the triple (¢, %, ¢{), thus o preserves the orientation of Q.
Remark 4.3.3. One can replace Z/3Z by &3 and the result remains the same.

From now on, the orientation of the McKay quiver of type D4 will be all a;’s are
positive and all b;’s are negative.

4.3.3.5. Conclusions

During the last four subsections, conditions have been found in order to ensure that
the action of Q on M(T') is symplectic. The results are summarized in the following
table:
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4. Deformations and quiver representations

Type of singularity Conditions on the action

B, =(A-1,2/27) | e(a;)e(bar-1-i) = Nid;, 0<i<2r—1

Cy = (Dys1,2]2Z) e(op)e(wrg) = Arp = Ars10p41

e(p1)e(ps) = A1d1 = Aad2,

e(pf)e(p5) = Aada = A50s.
A1d1 = (1) e(f),

G2 = (D4, S3) A3d3 = e(p1)e(ps),

Aadg = e(p5)e(p])-

Fy=(FEs,2]27)

One can see that by setting constants A;,d; such that they verify the conditions in
Subsection 4.3.2.5, and an orientation like in Theorem 4.3.2, the action of 2 on M(T") is
both symplectic and induces the natural action on the singularity C2/I". It follows that
we proved the following result:

Theorem 4.3.4. For any McKay quiver built on a Dynkin diagram of type Asy_1, Dyyi1
or Eg, there exists an action of Q =T'/T" on M(T) that is both symplectic and induces
the natural action on the singularity C2/T.

4.3.4. Compatibility of the action of I'"/T" on G(I")

In the preceding section we saw how to define a natural action of Q =TI"/T" on M (T")
such that the action is symplectic and induces the right action on the singularity C?/T.
We now want to define an action of I'V/T' on G(I") such that 7.(g.¢) = (7.9).(7.¢) for
all v e TV/T', g € G(T") and ¢ € M(T'). Furthermore the morphism 7 : Z — h has to be
I'"/T-equivariant. The action will be found by a case by case analysis.

4.3.4.1. Case A(T") = Ay1

The orientation of the quiver is all a;’s are positive. Let g = (go,...,92--1) be a
representative of an element in G(I') and let ¢ = (ao,...,a2,-1,b0,...,b2r—1) € M(T).
We have I'/T' = Z /27 =< o >. Set

0.0 = (_b27‘717' "7_b7‘ab7‘717' B 7b07a27'717' cos Qpy =Qp-1, .. .,—(IO).

It can be verified that this action abides by the conditions of the previous section and is
then symplectic, induces the natural action on the singularity C?/T" and verifies o2 = Id.
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4.3. Deformations of inhomogeneous simple singularities

Let © act on G(I") by

0.9 =(90,92r-1,---,g1), for any g e G(I").

One may check explicitly that the desired relation o.(g.¢) = (0.9).(0.¢) is satisfied.

Proposition 4.3.5. The action of Q on G(T') induces the correct action on the Cartan
subalgebra § of type As,_1.

Proof. By definition G(T') = [T GLg, (C)/C* with d; = 1 for all i. T/T acts on G(T") by
permuting the i-th and (2r —7)-th coordinates for all 7 > 1 and fixing the 0-th coordinate.
As the action is linear, it stays the same on g(I') = Lie(G(T)) = @75 'gl, (C)/C. Z is
defined as the dual of the center of g(I'). Let z € Z. Then there exists zg,...,22,-1 € C
such that 212:61 dizi =0 and z = (20ldg,, . - -, 22r-11dg,, , ). Then the action of I''/T" on Z
is given by

0.2 = (20, 227-15 -+ -, 21)-

Thus I'’/T" acts on Z by permuting the coordinates 7 and 2r — 1.

Let (af,...,a3,_1) be a base of a Cartan subalgebra b of the Lie algebra of type As,_1,
with (aq,...,a9.-1) being a base of the root system of type Ag,_1. I''/T" acts naturally
on h by permuting the i-th and (2r —4)-th coordinates. The isomorphism 7 : Z 5 h was
computed in Section 4.1.2 and is given by

T: Z —> b

z = h
with a;(h) = —z;, for all 1 < < 2r —1. Using the fundamental root system and its
coroot system, it can be verified that 7(0.2) = 0.7(2) for all z € Z. Hence 7 is I''/T-
equivariant. O

4.3.4.2. Case A(T") = Dy41

Let g = (go,---,9r+1) be a representative of an element in G(I") and let
0= (08,02 ocicrir € M(T). By definition I'/T = Z/2Z =< & >. Set

iETr—1

g.p = (808’ 908’ o1, 901{3 e P 90£+17 ©Ors SDI;)
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4. Deformations and quiver representations

It can be checked that this action abides by the conditions of the previous section (an
analysis has to be made depending on the parity of r) and is then symplectic and induces
the natural action on the singularity C2/T.

Let Q act on G(I') by

0.9 = (90791) s agr—lygr+lag’r‘))

Then the desired relation 0.(g.¢) = (0.9).(0.¢) is verified.

Proposition 4.3.6. The action of Q on G(T') induces the correct action on the Cartan
subalgebra by of type Dyyq.

Proof. G(T) = [T72) GL4,(C)/C* with d; = 1 for i = 0,1,7,7 + 1, and d; = 2 otherwise.
I''/T acts on G(T") by permuting the r-th and (r + 1)-th coordinates. As the action is
linear, it stays the same on g(I') = Lie(G(T")) = @%}gly,(C)/C. Z is defined as the dual
of the center of g(I"). Let z € Z. Then there exists 2, ..., z.+1 € C such that ZZT:OI d;zi =0
and z = (20ldg,,- .., 2r+11dg,,, ). The action of I''/T" on Z is given by

0.z = (Z()yzla" : 72T—172T+19ZT)'

Hence I'"/T" acts on Z by permuting the coordinates r and r + 1.
Let (of,...,a),;) be a base of a Cartan subalgebra b of the Lie algebra of type D,.1,
with (a1, ...,a,4+1) being a base of the root system of type D,,1. I''/T" acts naturally on

f by permuting the r-th and (r + 1)-th coordinates. The isomorphism 7:Z = § is

T Z - b
z +— h
with a;(h) = —z;, for all 1 <4 < r+ 1. Using the fundamental root system and its

coroot system, one may verify that 7(0.2) = 0.7(2) for all z € Z. Therefore 7 is T'/T-
equivariant. O

The cases for Eg as well as (D4, S3) are dealt with in a similar fashion.

4.3.5. Flat coordinates

The field on which we work is the complex number field C.
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4.3. Deformations of inhomogeneous simple singularities

4.3.5.1. Definition of flat coordinates

Flat coordinates were defined by K. Saito in [Saito79] and [Saito83] in the context
of flat structures of tangent bundles of parameter spaces of universal unfoldings. This
setting goes beyond the scope of this thesis, so the definition will be given only for the
simple singularities.

Let h be a Cartan subalgebra of a simple Lie algebra g of rank r with simply-laced
Dynkin diagram, and W the associated Weyl group. According to Chevalley’s Theorem
(Theorem 1.1.21), the ring S(h*)" of W-invariant polynomials on b is generated by
r algebraically independent homogeneous polynomials P, ..., P, of degrees my +1 =
2<...<mp+1=nh, h being the Coxeter number of g. Let A be the product of all
the linear functions defining reflection hyperplanes of reflections in W (A? is called the
discriminant of h). Then A is a fundamental anti-invariant of W and is a homogeneous
element in S (f))% The polynomial A? is W-invariant and can thus be written as
A% = ap P’ +a1P[’1 +...+a,, with a; a polynomial in Py, ..., P._1 of degree hi. Let s be
a Coxeter element (cf. Definition 1.1.22). The eigenvalues of s are h-th roots of unity.
Let & € h be an eigenvector of s associated to the eigenvalue exp(%). Because degP; < h
for 1 <i < r, one has P;(§) =0 for 1 < i < r. Therefore a;(§) =0 for 1 < i < r and
A(€)? = agPr(€)". One can show (cf. Proposition 3, §6, V in [Bou68]) that A(¢) # 0,
hence ag % 0.

Let k be the Killing form on h. It induces an inner product

I(dP;,dP}) = S 92 000 (2, 1)

0Ty Oxy

on the cotangent vectors dP; (i = 1,...,7) on h/W. The following proposition can be
found in [SekYanT79].

Proposition 4.3.7. There exists a constant ¢ such that
det([(dB, de)lgi’jgr) = CAQ.

The proposition implies that the inner product degenerates along the discriminant.
Set D := aiPT. Because the degree of P, is maximal among the generators of S(h*)"V,
D is unique up to scalar multiplication. We define a new inner product J(dP;,dP;) =
DI(dP;,dPj) on h/W. The next theorem comes from [SYS80].

Theorem 4.3.8. The following assertions are verified:
1. J is a non-degenerate bilinear form and det(J(dP;,dPj)i<i j<r) = ao-
2. The inner product J does not depend on the coordinates Py, ..., P,.
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4. Deformations and quiver representations

3. There exists affine linear coordinates, say Q1,...,Qr, on h/W, such that, for any
1<i,j<r, J(dQi,dQ;) is a constant. These coordinates are called flat coordi-
nates.

The next proposition is proved in [Yano80] and explains why we take interest in flat
coordinates.

Proposition 4.3.9. Let b be a Cartan subalgebra of a simply-laced simple Lie algebra g,
and W the associated Weyl group. Then the action of any automorphism of the Dynkin
diagram of g on h/W is linear relative to flat coordinates.

In the next subsections flat coordinates for g of type Ao,_1, D,+1 and FEg will be
explicitly given for later purposes. For more details on flat coordinates, the reader may
consult [Saito93] and [Saito01].

4.3.5.2. Flat coordinates for Ay, _;

Set g a simple Lie algebra of type Ag,_1, h a Cartan subalgebra and W the associated
Weyl group. Let &1,...,&, be an orthonormal basis of a Euclidian space V = R?". §
is isomorphic to the subspace of V defined by {¥% x;& € V | ¥#, 2; = 0}. The set of
roots of Ag,._q consists of & —&; (1 <4,j <2r and i # j). The Weyl group of type Ag,_1
is G4, and permutes the &. Hence the ring of W-invariant polynomials is generated
by €2, €3,... € with €;(§) the i-th elementary symmetric polynomial in 2r variables

€=(&,...,69). Set I=1{2,3,...,2r}.

According to [SYS80], flat coordinates for As,_; are 1,13, ..., 19, with

(-1 (F(h-i+1),d- D) ya

Yi= ),

3
d>1 d!
where
d
X = Z €iy -+ - €iy-
t...+ig=1
ijEI

and (a,n) =a(a+1)...(a+n-1). For any i € I, 1); is a homogeneous polynomial of
degree 1.
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4.3. Deformations of inhomogeneous simple singularities

4.3.5.3. Flat coordinates for D,

Set g a simple Lie algebra of type D,.1, h a Cartan subalgebra and W the associated
Weyl group. Let &;,...,&41 be an orthonormal basis of a Euclidian space V = R™!,
The set of roots of D,,; consists of £ £&; (1 <4 < j < r+1). The Weyl group
of type D1 is the semi-direct product (Z/2Z)" x &,,1. &,+1 permutes the & and
(Z]2Z)" acts by & — (£1);& such that [];(x1); = 1. Hence the ring of W-invariant
polynomials is generated by 9,24, ..., Tor, 1 with xo; = €(£2) with € = (&1,...,641),
€; the i-th elementary symmetric polynomlal in r + 1 variables, and ¢ = HT+11 i Set
I={2,4,...,2r}.

According to [SYS80], flat coordinates for D,.1 are 99,4, ..., Y2y, with

(1) (g (h-i+1),d- D) 1

EEDY

A
d>1 d!
where
d
x4 = Z Tiy - Ty
+...+0g=1
1j el

and (a,n) =a(a+1)...(a+n-1) (the formulas are similar to the case Ag,_1, except
for Xid who is now a function of the z;’s rather than the ¢;’s). For any i € I, v; is a
homogeneous polynomial of degree 1.

According to the preceding formulae, flat coordinates for Dy are 19,4, ¢ and 1) with

4
1#2:%2:2512,

Ya=za-gai= Y &6 ——(Z&)

1<i<j<4

Yo = 16— srams+ gt = %@——(Za)( g8+ (251)3

1<i<j<k<4 1<i<j<4 216

Y =§1628384.

They will be used in Subsections 4.3.7 and 4.3.8.
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4.3.5.4. Flat coordinates for Fj

The computation of flat coordinates for type Eg requires a more delicate approach
than the previous cases. In [Frame51], J.S. Frame studied the Weyl group W of type
FEg as the group of automorphisms of the 27 lines on a non-singular cubic surface. He
described the 27 lines as 27 complex triples:

(0,w?,w") with A\, u=1,2,3,

(~w",0,wM) with A\, 0 =1,2,3,

(W, —w",0) with A\, =1,2,3,

with w = exp(%). By taking x1,y1, 22,92, 3, ys3 the real and imaginary parts of the
complex triples, Frame identified the 27 lines with the 27 vertices of a polyhedron in RS
and W as its group of symmetries. The polyhedron has 36 hyperplanes of symmetries,
each given by its normal vector which is one of the following:

D= %(CH,SH,C)\,S)\,CM,SM)T with k,\,u=1,2 or 3,
D400 = (=54, ¢4,0,0,0,0)T with s =1,2 or 3,

Doo = (0,0,-5y,¢x,0,0)7 with A =1,2 or 3,

Do, =(0,0,0,0,-s,,¢c,)T with u=1,2 or 3,

with ¢, = cos(QGT“) and s, = sin(Q‘IT”). Let s, = Id — 2D, DI, with k a triple, denote
the reflection in R% of hyperplane whose normal vector is Dj. Frame proved that W is
generated by s1,0,0,50,1,0,50,0,1, 53,0,0, 50,0,3 and 533 3.

Let a,...,ag be a basis of the root system of type Fg, and index the Dynkin diagram
in the following way (it is the indexation that will be used for the computation of the
semiuniversal deformation):

1 4 6 5 2
® @ ® ®
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4.3. Deformations of inhomogeneous simple singularities

Remark 4.3.10. The indexation used here is not the standard one used in reference
books like [Bou68], which is

1 3 4 5 6
® @ @ ®

If sq, denote the simple reflection in W associated to «;, then so, (o) = a; — ¢jicy,
2 0 0 -1 0 O
0 2 0 0 -1 0

with (¢ij)1<i<6 = _01 8 (2] g 8 :i the Cartan matrix of Fg. With the Cartan

o -1 0 0 2 -1

0O 0 -1 -1 -1 2
matrix, one can identify the s,,’s with their corresponding s, and as such identify the
«;’s with the Dy’s. The correspondence is as follows:

a1 < V/2Ds500 =v2(0,1,0,0,0,0)7,
as < /2Dg 03 = v/2(0,0,0,0,0,1)7,
a3 < /2Dg 1,0 = v2(0,0 __7__ 0,0)",
a4<—>\/_D100—\/_(——,— ,0,0,0,0)7,
a5 < V2Dog1 = V2(0,0,0,0,—4, -1)T,

g > /2Ds335 = \/g(l,o, 1,0,1,0)7,

S0 ¢i; = 2 = ||ay||?, for any 1< <6.

Set p; = xlz + yiz, g = %xf’ - fzjzyl2 for 1 <i <3, and define two differential operators ©

and A by

0 = 31 (3ai(pj — pr) — 20145 — a1) g + (507 0y~ Pr) = 36 (a5 — 1)) o
for (ijk) = (123), (231), (312),
2 9*

A= 12¢; -2
S 455 Pigy; + 2igpan + Pl
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4. Deformations and quiver representations

Set A=pi+py+ps, B=1OA, H=0B,C=:AH, J=§(0C-3A?B), K = 20.J. Then
it is proved in [SYS80] that flat coordinates of type Eg are given by

P2 = A,
¢5:B,
¢6=C_%A37

_ 1 5 4
’ng—H—ZAC‘F@A,

¢9:Ja

Pro=K - L1A2H - 1C%+ ZA3C - AB? - 1 AS.

4.3.6. Semiuniversal deformation of type B, = (As,._1,2/27)

We have T = Cy, and I = D,.. The McKay quiver Ay,_; is

by by_
L ) @ i @ o
aj Ay-2
bo b1
Qg Qr-1
@ ®
2r-1 ar
b2T—1 b'r‘
a9y—92 Arsl
o @ i @ [ ]
2r-2 r+1

The orientation has been chosen as €(a;) = —€(b;) = 1, for any 0 < <2r —1. M (D) is
the space of representation of this quiver with dimension vector (1,...,1):

M) =C*eC?* :
{(ao,-..,a2r-1,b0,...,b2r-1) | ai,b; € C}

Furthermore G(I") = (C*)?"/C* = C?"! and the action of g € G(I') on M(T") is done by

conjugation:
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4.3. Deformations of inhomogeneous simple singularities

g-(ag,...az—1,b0,...,b2r-1) = (9195 a0, - - - G0G2p—102r-1, G0 g7 "b0s - - - » G2r—195 b2r—1).

It was computed in Subsection 4.2.2 that the procedure by H. Cassens and P. Slodowy

leads to

2r-1 &
b

{ 1—!) (z=Xi) =ay} = M(T)//G(T) —
- (AO,...,Agr_l,x,y,z) = ()\07‘-'7)\27’—1)

which, according to Section 4.2.1, is the pullback of the semiuniversal deformation of
Xo=a1(0) = {(z,y,2) e C3 | 2" = zy}, a singularity of type Ag,_1.

The following diagram:

M(T)//G(T)=Xr %y b L X
a O Q

b ——— b/W

is the pullback of the semiuniversal deformation X 4 h/W of Xj.

It is known that C[h] = C[zo,...,zor_1]/(z0 + ... + 22,_1) and C[h/W] = C[p]V =
Clva(z),. .. ,Y9-(x)] with the 1;’s being the flat coordinates from Subsection 4.3.5.2.

Because W is finite and C[h/W] = C[h], there is a surjection

(AO7-~-7A27‘—1) = (wQ(A)aaw%’(A))

If A € b, then one computes [T75 (2~ \i) = 22 + 2275 (~1)%€e;(N\) 22"~ with ¢; being the
i-th elementary symmetric polynomial in 2r variables. It is proved in [SYS80] that

2r-i+ld-1) 4
di(2r)d-1

_

d>1

where
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4. Deformations and quiver representations

Y= > Viy - - - Pig-
N+...+00=1
ijE{Q,...,QT}
and (a,n) =a(a+1)...(a+n-1). Hence for any i € {2,...,2r}, there exists a polynomial

fi such that ¢; = f;(v), with ¢ = (12, ...,12,). Set
2r . .
Xr={(z,y,2,ta,...,tay) € C3x h/W | 22 Z(—l)lfi(tg, .. ,tzr)z%_z =zy}.
=2

There are two maps

a: Xr - h/W and
($7y7z7t27"'7t27,) = (t27"'7t27’)
T h/W

b —> .
()\07---7)\21"—1) = (ng()\),,wgr()\))

Then the pullback of these maps (or fibered product of these two maps) is
Xt xpw b
{((fE,y,Z,tQ,... at2r),()‘0a' . 7)‘27“—1)) € X x [) | a(x,y,z,tg,... 7t27“) = 7T(>‘07"-7>‘27‘—1)}7
{(('r7y727t27" . 7t27")7()‘07 st 7)‘27“—1)) € X X h | (t27‘ : '7t27‘) = (¢2()\)7 7¢27‘()‘))}7
2r ) )
{(%977«’7/\07 .- -7A2r—1) € C3 X b | Z(_l)lfz(wQ()\)7 ce 7¢2r()\))22r_2 = UC?JL
i=0
2r—1

{(x’ywza)‘(),"'a)‘?r'—l) € Cg X h | H (Z—)\i) = .fL'y},
=0

M(I)/[G(T),
and Xrg:=a 1(0) = {(z,y,2) € C3 | 22" = xy}. It is indeed an As,_;1-type singularity.

We now need to verify that all the maps in the pullback diagram are (2-equivariant,
with Q:=T"/T' = 7/2Z =< o >.

One sees that

v X1 xpw b - Xr .
(xayuz))‘()u"'))\%”—l) = (x7yaz)¢2()\)7"'71/}27‘(A))

U is surjective if and only if for all (z,y,2,ta,...,t2,) € C3 x h/W with
22N (<1) fi(ta, . . ., tar) 227 = wy, there exists A € b such that () = ta,..., Y9, (N) =
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4.3. Deformations of inhomogeneous simple singularities

to,. It is a system of 2r — 1 polynomial equations in 27 variables with the relation
Z2T L)\ = 0 because g = sly,.(C). As the field C is algebraically closed and the v;’s are

algebraically independent, there exists a solution. Hence W is surjective.

o Let (z,y,2,X0,...,A20-1) € M(I")//G(T"). With the action of Q on M(I') from
Subsection 4.3.4.1 and the change of variables we did in Subsection 4.2.2, we obtain

U-($7Z/72a)\07 .. -7)\27‘—1) = ((_1)Ty7 (—1)r$,—Z,—A2T_1, .. -7_)‘0) € XF ><h/VV h

Therefore &(o.(x,y, 2, A0y - -y, A2r-1)) = (=A2p_1, ..., =A0) =20.(Agy .-+ Aoro1),
= 0.&()\0, ey )\27«_1),
and @ is Q-equivariant.

o If (z,y,2,0,...,A2p-1) € M(T")//G(T"), then

qj(g'(xayvza)\()a'"7)‘27"—1)) :\I;(((_l)ry,(_l)fx’_zj_)\% P ))7
((_1)Ty7 (_1)rx7_z7¢2(_)‘) )w2r(_)\))’
U'(:Evy>z7w2()‘)?"'777Z)27'(>\))
O-'\Ij(xayazv)‘oa"'v)‘ZT‘—l))

Hence the action of € on Xt makes ¥ an 2-equivariant map.

o If (Ao,...,A2p-1) €b, then 7(0.(Ao,...,A2p1)) =7(=A2_1,...,=Ao),
= (P2(=A),- - ,¢2r( A),
= (¢2()‘) ¢3()‘) "7¢2T()\))7
= 0.(P2(N), V3(A), - -+, 2r (),

= O'.7T()\(], ey )\zr_l).
Hence the action of 2 on h/W makes 7 an Q-equivariant map.

We have just defined the action of {2 on Xr. It needs to induce the natural action on
the special fiber Xr o =a 1(0) C X, i.e. the one obtained in Subsection 1.4.2.1. Xr

is defined by {z*" = zy} and Q acts on Xrg by | .z =(-1)"y, The action of Q on
0.y = (_1)T$7
0.z =-z.

XF = {(w7yvzat27 s 7t27') € ([:3 x h/W | Z2T + Z?:Q(_l)lfl(t27 . '7t2'r)z2r7i = :I}y} is

U'(x7y727t27 ERR 7t27‘) = ((_I)Ty? (_l)r‘x? _Z7t27_t37t47 _t57 s 7t27’)'

Then on Xr, t; =0 for i > 2 and o0.(z,y, 2,0,..,0) = ((-1)"y, (-1)"z,-%,0,...,0), which
is the expected action on C?/T.
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4. Deformations and quiver representations

e Let us check the equivariance of a.. For any (z,y, z,t2,...,t2,) € Xp,

alo(x,y,z,te, ... tar)) =a((-1)"y,(-1)"x,—2z,ta, —t3, tg, —ts5, ..., t2),
= (t27 _t37t47 _t57 cee 7t27");

and O‘.Oé(l‘,y,z,tg,...,tzr) = U.(tQ,...,th) = (t2,—t3,t4,—t5,...,t2r). Hence « is Q-
equivariant.

Finally the diagram

Xp xpw b Y, xr

is commutative and Q-equivariant.

Let us place ourselves above (h/W)2. If (z,y, 2, to,...,t2.) € a~ ((§/W)?), then
toi+1 =0 for any 1 <i <r—1. Furthermore a(o.(z,y, z,t2,0,...,t2.)) = 0.(t2,0, ..., t2) =
a(x,y, z,t2,0, ... ta).

Set Xrq = {(7,y,2,t2,0,...,ts) € X}. Then the restriction af* : Xr.o — (h/W)® of a
is Q-invariant and

(@®)71(0) =a"1(0)NXrq because 0 € (h/W)*,
= XroNXro,
= Xr,0 because Xy C Xt q.

Therefore o is a semiuniversal deformation of type (Agy-1,2/27) = B,, result we ex-

pected from Theorem 4.3.1.

Remark 4.3.11. As the elementary symmetric polynomials ¢; appear naturally in
the expression of M(I")//G(T), instead of the flat coordinates we could have chosen
(e2,...,€2,) as a system of coordinates for h/W.
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4.3. Deformations of inhomogeneous simple singularities

4.3.7. Semiuniversal deformation of type C5 = (Dy,7Z/27)

Set T'= Dy and I’ = D;. The McKay quiver of type Dy is

0@ @3

The dimension vector of this quiver is (1,1,2,1,1), which corresponds to the coordi-
nates of the highest root of the root system D,. The orientation is all a’s are positive
and all b’s are negative.

We have Z = {(po, 11, 2lda, pg, ) | o + p1 + 22 + pg + g = 0}.

In [LeBryPro90], it is proved that the ring of invariants of the representation space of
a quiver by the product of general linear groups associated with vertices is generated by
the traces of the oriented cycles of the said quiver.

We have uc (i) = (—0508, P 0%, ploph + 0T + ek + 0505, —05p%, —ip) and com-
pUte N(]E (MO) M1, M?IQ) M3, M4)//G(F)

o Cycles of degree 2: Tr(p?¢?) = plp? = —p;, i=0,1,3,4.

i

i 2 J
e Cycles of degree 4: p;; = ®——@——=®. For example, po1 = Tr(ppipd) =
Tr(pfehete})-
We have pi+pij +pi+pa = Tr(plpl (0ol + 0508 + ofoh + o ep))
with {i,j,k, 1} = {0,1,3,4},
= Tr(uagiel),
= TH2M.
So ( Po1+po3+poa = —po(po+ p2),
po1 +p13+pia = —pa(pn + p2),
po3 +p13+p3a = —p3(ps+p2),
Poa+pia+p3a = —pa(pa + p2).

There are 4 linear equations with 6 unknowns. The matrix of the system is of rank 4.
There are then 2 independent elements and we choose pg3 and ps4.

e Cycles of degree 6: They are g;j;, = Tr((ngoigogcpgcp?gof) = Qki = Qkij-
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4. Deformations and quiver representations

We have qijr + giji + Giji + Gi; = Tr((@heh + oo + 0708 + 9300 pllpte?)
with {7, ,k,1} = {0,1,3,4]},
p2Tr (2%t e?),
=  H2Pij-

Furthermore g;j; = —t;pi; and g;j; = —f1pij. SO Qijk + Qiji = (fq + pj + p12)Pij-

Finally ( goi13+qoia = (po+p1+p2)por = qios + qiod,
q103 t qo34 = (Mo + u3 + p2 )p03 = qo13 t g304,
qoa+q30a = (fo+pa+p2)pos = qora + qozd,
q134 + qo13 = (Ml + U3 + 2 )p13 = (314 t 4103,
Q014 +q31a = (p+pa+p2)pa = qioa+ qizd,
Q3a+qo3a = (p3+pa+p2)p3a = G314 + G304

There are 12 linear equations with 8 unknowns. The matrix of the system is of rank 7.
Therefore there are 8 — 7 =1 independent element and we choose ¢g34.

e Cycles of degree 8: They are z;j; = TT((pf‘gp?gp%gpigp?(p?(p?gp?).

Wehave zijri + Zigkh + Zighj + Zigki = Tr((0f 0] + o) + 00h + ool ot b0l ote?),
{Z.7j7 k? l} = {07 17 37 4}7
= e Tr(pfelplebole?),
= H24ijk-

We compute that z;jrr = —prqije, zijri = —HiQijr and ik = DjkPij-
S0 Zijkr = (pi + fik + 12)Gijk — DijDjk-

Thus all degree 8 cycles are determined by elements with inferior degrees.
e Cycles of degree > 10: Starting from degree 10, for any cycle, there is at least one

repetition in the indices. Hence any element of degree k > 10 breaks down as the product
of two elements with degrees strictly smaller than k.

Eventually there are 3 linearly independent elements: pos, ps4 and gos4. By [LeBryPro90]
they generate the ring of invariants.

Because the space we want to exhibit is the pullback of the semiuniversal deformation
of a simple singularity, and that such a deformation is defined by a single equation (cf.
[KasSchle72]), a unique relation has to link the generators (or one can compute the
dimension of the quotient variety and see that it is a hypersurface). Let us find this
relation.

2

4034

403449034,

qo34((po + p3 + p2)pos — (po + g1 + p2)por + (fo + fa + [12)Pos — G304),
q034( (o + p3 + p12)po3 — (o + p1 + p2)po1 + (fo + fea + 112)Doa) — G0349304,
= qo3a((po + p3 + p2)po3 — (po + p1 + p2)po1 + (fo + (14 + f12)Po4) — Po3P04D34-
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4.3. Deformations of inhomogeneous simple singularities

We know that 2(po1 — psa) = —po(po + p2) — pa(p1 + p2) + pa(ps + p2) + pra(pra + pi2) and
Po1 + Po3 + poa = —Ho(po + p2) thus por and pos can be expressed using poz and p3s. By
reinjecting these expressions in the preceding equation, one finds

@331 = Q034 (Po3 (13 — pa) + p3a(pa3 — 110) + C) + Po3p3a(Pos + p3a) + Pospsa

with C = i3 (pg + p3) (1 + p + p3) and E = §(po(po + p2) = pa(pn + o) + piz (a3 + o) +
pa(fia + p2)).

Set gls4 = q034 — %(pog(u;; — ptg) + p3a(ps — po) + C). The equation becomes

04 = Po3P34 (o3 + p34) + pospsa(D + E) + Apjs + Bp3y + Fpog + Gpsa + H,
with

A= 3(p3 - pa)?,

B =1 (ps - po)?,

D = 3 (p3 — pa) (s = o),
F =1 (pus—pa)C,

G =5 (s - o) C,
H=1C%

Set { PO3 = po3 + B . The equation now becomes
Py =psa+ A

q6234 = po3P34 (P03 + P3a) + Apozpsy + Bpog + Cpyy + D,

with

A= —papg — pops — popis — 13 — g s — Lpaps - Lpspa - 23 - 13 - 143,

B = 15 (3 = pa) (s + p1a) (242 + 13 + p1a) (241 + 2 + pi3 + pra),

C = (1 = pa) (i1 + pa) (g + p1 + o) (23 + 22 + iy + 1),

D = — 5 (21 o + pua i3 + [i1fia + 2413 + 2piopt3 + 2ptopug + puafiy + 113) (p1 o3 + s

+2pu2/04 + przpa + ) (H1 3 — pi fia — 2p2/00 — fi3pa = 13)-
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4. Deformations and quiver representations

The equation is indeed of type Dy as predicted by Theorem 1.4.26. However we want
to look at the fibers over /W, so the coefficients of the equation need to be invariant by
the Weyl group W. The coefficients A, B,C,D have to be expressible using Weyl group
invariants.

luz

From Subsection 4.1.2, it is known that 7: Z h such that
(:UJOIddov s >M4Idd4) = h
7(z) = h with «;(h) = =13, Y0 < i < 4. Hence an element p € Z can be identified with

Sy —uiAY, with (AY); being the fundamental coweights, i.e. the dual base of the simple
roots ().
The Weyl group W of type Dy is generated by the ra}/’s with

Vv \% 2(1\;/,04;-/ \%
ray(Af) = Af - W%’
- AY if i # g,

AY —a) ifi=3j.

2 -1 0 O
4
It is known that o = ) c;;Aj with ¢ = _01 _21 _21 _Ol the Cartan matrix of type
J=1 0 -1 0 2

Dy. One sees that ay =2A7 - Ay,

ay =-A] +2A5 - Ay - A},
ay = -Ay +2AY,

ay =-Ay +2A].

Hence 7oy (1) = rov(Tig —pihy) = mAY = (1 + p2)Ay = pzAy - psAy, which means

1 — 1 H1 M1+ 2
L 2 M1+ 2 .. . v e K2 —H2
Tay 3 — 13 . In a similar fashion we compute Tay 13 — po + s |
1 ha M4 M2+ g
H1 H1 H1 H1
e po + 3 L me p2 +
Tay Nps |7 —us and 7oy : ps | JTE S
f4 o 4 — 4

It can be verified that the coefficients A, B,C and D are invariant by these transforma-
tions and thus are invariant by W.

The base we chose to use for h/W is the one with flat coordinates. Therefore the
coefficients A, B,C and D have to be expressed using 9,14, 1¢ and v from Subsec-
tion 4.3.5.3.

It is known (cf. [Bou68]) that the simple roots of the root system of type Ds are
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4.3. Deformations of inhomogeneous simple singularities

a1 =e1 —ez, with (e;)1<j<4 the canonical base of h*. Let (€ )i1<i<a be its dual base.

Qg = €2 — €3,
Qa3 =e3 — ey,
4 = €3+ ey.
. VvV _ =
Again from [Bou68| one finds A{ =y, We have a correspondence

5 = €1 + €3,
AY = 3(e1+e3+ 25— 1),
Ay =5(e1+ex+ez+eq).
pe Y Y =YL & Tt follows that [ §1= =1 — 2 — 5(us+p4), and so
&2 = —po — 5 (13 + p1a),
&3 = =5 (u3 + pua),
§a=—5(Ha — p13).
p1 = _gl +§2, We can now replace the u; in the coefficients A, B,C and D and we
2 = =82 + 3,

p3 = =3 + &4,
pa = =3 = &4.
obtain

A= _%61(52)7

B = _64(§)7

C=e1(£2)? - 3ea(8) - 3e2(€?),
D = 1(e3(6%) +ea(§)er (€7)),

with ¢; the i-th elementary symmetric polynomial, & = (&1,...,&) and €2 = (£2,...,€2).
Using the expressions from Subsection 4.3.5.3 one finds

A= -3,

B = -1,

C=—5(¢+5v),

D = 3 (16 + ghota + Vb2 + 153,

Set = = phy, y = pi3 and z = g(g,. The equation of the deformation becomes:
1 1 1 1 1 1
2 3
= +y)— = —py— = (¢ + = + = (g + = + +——5).
2" =zy(z+y) 5 Y2y — Yy 2(1/1 2¢4)$ 4(1/16 G2va+ v 1081/)2)

The coefficients are indeed invariants of W = &4 x (Z/2Z)3. According to Subsec-
tion 4.2.1, it is the equation of the pullback of the semiuniversal deformation of type
Dy.
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4. Deformations and quiver representations

Set Xpr= {(x,y,2 ta,ta, s, 1) € C* x h/W | 2% =zy(z +y) - %tszy—ty - %(t+ %M)fﬁ
+3(t6 + gtats + ta + 15513) }.

We have 7: and

b - h/W
(51752753754) e (¢2(£)7¢4(£)7¢6(£)7¢(§))
/W

Qo XF g .
(z,y,2,t2,ta, te,t) = (t2,l,t6,1)

Then  Xr xyw b
= {((z,y, 2, t2,ta, 16, 1), (1,62,€3,64)) € X x b [ @, y, 2,8, 1) = (€1, 62,85, 64) },
= {(@,y, 2,1, 1,5) [ 12 = 92(€),ta = Ya(€), t6 = Y6(), = ¥(€) and 2* = zy(x +y)
—Stowy —ty — 2(t+ ta)z + L(te + Ftots + tta + 115t3) ],
= {(@9,2,8) | 22 =ay(z +y) - 302(E)my - ()y - (&) + $va(§))x
+5 (106(€) + 512 (E)Ya(€) + Y(E)Ya(€) + 15512()*)},
= e (2)/]G(D).

Finally we obtain

Xr Xb/Wh LXF
a O Q

bﬁh/w

with o being the semiuniversal deformation of Xr ¢ = a™'(0) = {(x,y,2) € C* | 2% =
zy(z +y)}, which is a Dy singularity.

Previously we defined the action of Q =I'"/I" = Z/2Z =< o > on ug' (Z)//G(T) as being
the natural 3 <> 4 permutation. (2 also acts naturally on h by the permutation ay < ay,
which corresponds to €5 < —e;. By setting o.(t2,t4,t6,t) = (t2,t4,tg,—t) for the action
of Q on h/W, we find that 7 becomes Q-equivariant.

We look at what happens above (h/W)%, i.e. the elements of h/WW that are Q-invariant.
One finds o ((/W)%) = {(x,y, 2, t2,t4,16,0) € C*x h/W | 2% = :ch(x+y)—%t2xy—%t4x+

i(t6+%t2t4+1(1)—8tg’)}. The action of Q on Xt g = a~*((h/W)%) is induced by the u3 <> pu4
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4.3. Deformations of inhomogeneous simple singularities

permutation. It was proved that [ T = P34+ l(ﬂi% - pa)?,
Yy = Po3+z(/~t3—u0)2,
z qo34 — %(poz(ﬂs — p14) + p3a(p3 = f10)
+pa(p2 + p3) (1 + pi2 + ps)),

and pi3 <> pua.

Because pos = —po3 — po1 — Ho(uo + ,u2) and 2(1701 —P34) = —Mo(,uo + Hz) - ,ul(,ul + MQ) +
w3 (s + p2) + pa(pg + p2), we obtain the following relations:

ox =
{ oy = —:U—y+%t2,
0.z = -z
Above the origin, the system is ( o.x = It is known that the equa-
{ 0.y = P4 = —T-Y,
0.z = qo43 = @ —Z.

tion of the Dy-singularity is X (Y? - X?) + Z? = 0 and the natural -action (cf. Subsec-

tion 1.4.2.1)is ( 0.X = X,
oY = -Y,
0.7 = -Z.

With our computations from the quiver we obtained the equation 22 = zy(z + ). Set
X = -4y, . Then X(Y2-X?)+22=0and ( 0.X = X, The action on
Yy = _41/6(y+ 5) oY = -Y,

oz = -z

the singularity is thus the correct one.

Finally our pullback diagram is Q-equivariant with the natural action on the singu-
larity, so the restriction o’ : Xr o — (h/W)% of a is Q-invariant and

(@®)710) =a"1(0)NXrq because 0 € (h/W)?,
= XroNXr,o,

= Xr,0 because Xty € Xt q.

Therefore of? is a semiuniversal deformation of type (D4, Z/27) = C3 as expected from

Theorem 4.3.1.

4.3.8. Semiuniversal deformation of type G, = (D4, S3)

Set I' = Dy and I = O. The McKay quiver of type D, is given in the previous
subsection and we keep the same notations.
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4. Deformations and quiver representations

The pullback diagram

Xr <y b Lo Xp
a O a
b T b/W
of the semiuniversal deformation « of the singularity C?/T" of type Dy was computed in
the previous subsection. We now check the action of Q =TI"/T" = &3 = (0, p) with o = (34)
and p = (134). © induces a natural action on ug' (Z)//G(T") and permutes of the vertices

1,3 and 4.
There is also a natural action of 2 on h given by

aY—ad——ay and Y Y -
p

From the previous case (Dy4,Z/27), it is known that o corresponds to the permutation
eg < —¢4. We determine the action of p on the base (€;)1<j<4 (cf. Subsection 4.3.7) of b.

We have ( o) =€7 —e3, and p is represented by a 4 x4 matrix P in the base (€;)1<i<4
R
04% = €2 — €3,
Qg = €3 — €4,
\

the canonical orthonormal base of h. Because of how p permutes the o;’’s, it follows that

11 1 1
1 -1 -
P= 3 % _11 11 _% . This implies that the action of p on the €;’s is given by
-1 1 1 -1

e1 > y(er+ez+e3-e1),
e > 5(e1 +e2—e3 + 1),

e3 > 5(e1 ez +e3 + 1),

es > 5(e1 -3 -3 - e1).
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4.3. Deformations of inhomogeneous simple singularities

We already know from Subsection 4.3.5.3 that

" b - h/W and thus
(€1,60,65,61) > (Va(€),10a(€),16(€),(E))
¢ %(§1+§2+§3+§4)
1 1 ~ -
m(p.(&1,&2,€3,84)) = w(P §§ —_ i(f1+fz & - &)
&4 3(61-&+& &)

(- + &+ & - &)
= W(Ylayéa}/?nyél)a

(©2(Y), 9a(Y), v6(Y), ¥ (Y)),

¥2(&)
| w300
¥6(€)
114(€) = 39(8)
to
We define the action of p on h/W by p.(ta,t4,ts,t) = _%tzlﬁ_ 3t and 7 becomes Z/3Z-
b 4

equivariant. In the preceding section it was defined o.(t2,t4,t6,t) = (t2,t4,t,—t). Hence
7 is Q-equivariant and the action of 2 on h/W is linear.

Let us work above (h/W)%, which implies | t, = —%t4—3t, and t = —t. Hence
t =gty 5t,
ty =t = 0. Tt implies that o '((h/W)?) = {(x,y,2,t2,0,t6,0) € C> x h/W | 2% =
xy(x+y) - %tga:y + %(tg + ﬁt%)}.
1 induces a natural action on Xt o = 0[1(
It was proved in the previous section that

h/W)?) via the permutations of 1,3 and 4.
p3a+ (i3 — pa)?,
Pos + Z(Ms - ,uo)Q,

qo34 — %(p03(u3 — ) +p3a(p3 — o)

+ug(p2 + p3) (pa + p2 + p3)).
The action of € is given by { o3 = 14 and { p.ju1 = puz - Hence we have

~—~~

IS IS
[l

O.g = 43 P-13 = H4
P-4 = f1
or = x, and ( p.x = v,
oy = -—r-y+ %tg, pYy = —T-y+ %tz,
oz = -z, pz = Z.

We have previously seen that the action of o on the singularity is the correct one. Let
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4. Deformations and quiver representations

us check what happens with p.

Above the origin, ( p.x = puya = P03 = Y It is known that the
pYy = Po4 = ~Po3—pPor = —T-Y,
p-z = qoa1 = 4034 = Z.

equation of the Dy-singularity is X (Y? - X?) + Z2 = 0 and the natural action is

pX = 3(Y-X),
pY = —3(Y +3X),
pZ = Z.
In our case we have 22 = zy(z+y). Set { X = _%\/Z‘T’ Then X(Y2-X2)+22=0
Y = -VAy+ %IL‘)
and | p.X = %(Y— X), The action on the singularity is the expected one (cf.
pY = -1(YV+3X),
p.z = z.

Subsection 1.4.2.1).

Finally the pullback diagram is 2-equivariant with the natural action on the singu-
larity, hence the restriction af?: Xt.q — (h/W)® of a is Q-invariant and

(@®)71(0) =a710)N Xrq because 0 € (h/W)%,
= XroNXro,

= Xr,0 because Xty C Xt q.

Therefore o is a semiuniversal deformation of an inhomogeneous singularity of type

(D4, S3) = G, as predicted by Theorem 4.3.1.

4.3.9. Semiuniversal deformation of type F, = (Eg, Z/27)

Set T'=7 and I = ©. The McKay quiver of type Eg is
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4.3. Deformations of inhomogeneous simple singularities

o () ([ ] () o
b o4 b b
o4 || el
Qo
o || ¥t
Q!

The dimension vector of this quiver is (1,1,1,2,2,2,3) and corresponds to the coordi-
nates of the highest root of the root system of type Eg. The orientation is that all a’s
are positive and all b’s are negative.

By definition Z = {(Mo, M1, 12, ,U,31d2, /L4Id2, M5Id2, HGIdg) | Mo + i+ 2 + 2(#3 + g + /15) +
3#6 = 0}.

In [LeBryPro90], it is proved that the ring of invariants of the representation space of
a quiver by the product of general linear groups associated with vertices is generated by
the traces of the oriented cycles of the said quiver.

We have pc () = (—0§08, —05 0%, —050%, 050 —050%, 050l — Do, 05— B, pgph+
3o + plpl) and compute et (pos p s pi, pslda, palda, pslds, pelds)//G(T).

Like we did for the McKay quiver of type Dy, we compute the traces of the oriented
cycles of the quiver and find those which are linearly independent. Set

for iy,i9,...,i% € {3,4,5}. We find that there are only three linearly independent ele-
ments: X := ®(425), Y := ®(425%) and Z := #(3%4%52). These are therefore the gener-
ators of the ring of invariants. Because this ring is the coordinate ring of the pullback
of the semiuniversal deformation of a simple singularity, and that such a deformation is
defined by a single equation (cf. [KasSchle72]), a unique relation has to link the gen-
erators. We then compute the relation between the generators X,Y, Z. It leads to the
following equation:

X2Z+Y3+2% = axsXP+axy X2Y +axy2 XY? +a 2 X? +axy XY +axz X7

+ay2Y2 + ayzYZ + axX + ayY + aZZ + aop,

with ag,ax,ay,az,axz,0yz,axy,ax2,ax3,ay2,ax2y and axy2 homogeneous polyno-
mials in p1,. .., ue. They are given in the Appendix 4.4.5.
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4. Deformations and quiver representations

In order for the equation of the deformation to have the form predicted by Theo-
rem 1.4.26, it requires a change of variables: replace (X,Y,Z) by (X +a,Y +8X +¢, Z +

1
k=—§,
1
B = zaxyz,
1
€= §a'YZ7

2 : _ 1 2 .3 1 1
X +eY + kX + /L) with a=—-ax3 — §aX2yaxy2 - _27aXY2 + §(ZXZ + ECLYZCLX}/Q,
— . 1.2 2 4 1
Y =—axy2ax3 — 305y20x2y ~ 570yy2 T 5AXY20X7
1.2 1.2
+6aXY2aYZ + ay? + Zayz,

1 1
0= Q(CLXZ -2a+ gayzaXy2),

p=3(axza+ayzh-a® +az).

It follows that the equation becomes
X Y3+ 22+ Ayey X2Y + Axa X2+ Axy XY + Ax X + AyY + Ag =0

with

_ 4.5 2.2 10 3 2
AXY = ﬁaX 2—Ax3Ay z+3Q QYCLXy2+22ax2yax3+ﬁax2anY2—Gx2y0/XZ—§aXy2a,y2
+ 30%xy20x3 = 3Axy20X7Z ~ 550 5y20y 7 — 30x2y Ay ZGxy?2 — AXY -

1.2 1
Ax2y = —gaxyg + 50y 7z —Gx2y.

_ 1.3 2 1 2 1 2 2
Ay = —90x2yUxy2 ~g0x2yAXZAY Z0xy2 30 X2y QY ZAXYy20x3 — 70 x2y Uy 7~ A X2y U3

1 1.2 1.2 2 3
- ‘CLYZC;Z t 570Xy Oxy2 — 50XYAXZ — gaxfayz; §a1X32aYZ ; aX)ICL%@ - ?CLX 20y 7

——aygayz+mal)%y2gyz+8—la§( 20y2 =108 O xy2 0y 2 130 xy2 A% 7~ 30 y20 3~ g1 Ay y20X3
“'1%xy20x2y "7 0 Y2aX2y+8—1aXY2aXZ+aX2anZaX3—gaX3aX2YaXy2+§aXZaX2YaXy2
T 5AY 20y 202y ~ T50XY20X 20y 7z T 3AXY X2y AXYy?2 ~ gAXYAY ZAXYy2 T gAY 20 x2y Ay2

+ _&aé(y2 ax2yQyz — Lgai'y2 axzayz — laxw axzayz2 — la?)(yz ay zay2 + %axyz axsayz
—?ai(ygaXiaXzy+ﬁaig2axzyaxz+gag(waxsaxz—%a?XYgaXzyaYZ+§aXyzaX3ay2

T 8%z T 2187%xy2 T 3%y2 T Ay

2 2
214)( = —§a§2yaxy2ayzgy2 + 2aéx3a/XZG/X2y0/X'1y2 - EGX3G/XZG/1YZG,X§/2 X
+ —ax3aYZ(lXY2ax2y - —§CLX2Y{lX 20X 7AY 7 — §(IX3GYZCLy2 - 1—8ax2any2CLYZ
2 1 8 3 2
——SCLYZCLXy2ay2—§ax2yaxy2CLZ—gax2ayzaxy2—ﬁaxy2ayzay2—ax+§ax2ax2yaxy2
+ 2 -9 3 _ 16 9 2 _ e . 8 5
_a’XYa’XY2aX2Y (IX3 _1968301)13/2 2—7(1XY26LZ ﬁaxsayz Ax3ay + maXygay2
1 4 3
—30yaxy2 — TaXYayZ + ﬁaxyax 0 — gaxyay2 + 2aX2aX3 + ﬁaX%LXYZ —ax20xy7
2 2 3 1.2 2 1 3 2
__GaXZaxy2aYZ_8_1aXy2aXZaYZ+§ax2 aXy2aYZ+§a 2any2aXZ_ﬁaX2Yaxy2aYZ

5 2
- gax2yaxy2axz+ 31 0x2y Oy y20YZ —2aX3ax2yCLXy2 + 57 0x2y Oy 20X 7 +ayzaxy2aX3
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4.3. Deformations of inhomogeneous simple singularities

8 4 2 2 2 1 2 2 4 4 4 3
- —7ax3ax2ang,2 g gax3(LX2YCLXY2 - Eaxﬂa YQaYZ + ﬁaxsaYZ(LXYQ + §(1X3(IXZGXY2

- gaXYQa%Q - 3_984“YZ“XY2 + nggXYQQYZ ~213%xy20y 7 ~ maXZYQE(YQ + E‘IXYQG?)XZ
To7xy20x 77 9430X30 xy2 T 9702y Ay T g1 dx2y O 2;”3CLXZ‘LX3_aXSQXZ_§§LX3aXY2
= l—agpyaxzayz T 90xy20x30y2 — §?X2yaxzay2 T 90xy20XxZ0y2 T gAX2y Uy 2 Ay2
+ 182y 0xy20yz -li- 30x2yax3ay2 + 6ax2y0x30y 7z — gAXY Axy20YZ + 9% 2yAXYy20y?2
+3axyaxy20x3 — 30Xy axy20X7-

214)2(2 = %ax2ya;§(yg —Q%ax2yay2 - Tlgaxzyag/z + %a§(2ya§(Y2 - %axzaiyg - %ayzaﬁ(w
—9Uxy20y2 ~ 7505y 20y 7+ Ay ZAy2 -iiﬁaxzayza_)ﬂw +3aX3aX252/a)gy2 - ilagzaxgzagxzs
—50xz70x2yAxy2 — gayzaXygaXzy - gaxyaxyz —ax9o+ §GX3 + maXY2 + §aXZ + 2_4aYZ
+ 50z + %axsaiyz - %anaXZ.

Ao = %aizyagﬂﬁ - %axsa?xzayzaxw - 7—12aX3aXZa§<Y2a§/Z + %axza2 ang(ygayz
+ 9aXZ0%2y A xy20y2 + %axzaQ QY(LXYzCL%Z + I—SCLYZaXl,Qa%(gYayz —9ax3Qx2y A xy20y2
—glayz(gyzaz+gaXICLX2any2;éaxfyzaxyz+—aan1y2aX3+§aya§( 20x2y gAYy axy20X7Z
~18AY U5y 20y 7 — 31(1)(2an§;2an - —1a2Xan3aXYz + gaxan:sayz —za7+t TSGXQXZCLX}ﬂaZ
+ 57Ax30 5y 007 — 7505y 20y 707 + U530y ZAy2 — 5705 70y 7Ay2 — g7Ax20x2y Uy
—§aX2aX2any2_2_7@X2aX3a§(y22—%ax2axyzayz+ﬁax2yaxzaj4xy2—%CLX?YGQXZGE(W
+ Tza)(;aXZaXYQ — 50x2y Ox30y 7 — 3Ax2y Ay30y2 — 350x2y Oxy2Oy 7 — ﬁayzag(ygaYQ
T aptyzfxy2 T T0sCxy2 Xy T g txy2 @2 T a6 Ux g0y 7 T §Ax 707 T 0xedaay Gy
+ 1R AX30y 7O 5y2 — 1_810’XZaX2YaXY2 + maxzy;yzaXW + 1370 x2y Ay 705 y2 A
T X2y Ay 2y — 3gAx2y U 70y 7 — 150x2y Uy z0y2 ¥ 180 x2y A xy2 — gAxsAy 70 xy2
- _agfgaXZaAngYg + %ax2ayza§(Y2 tax20xz0x3 + ag(gaxzanyz - ﬁaxyaizaxyz
;Taxﬁaxzagfz—ﬂaxzyagfzagyz+2§aX3aXZ—%aXZc2L§(3+maxzya§y2+@a§(2%a§(y2+
ng 3—6aXanZa;f—@axyaxwayz—ﬁaxyaxygaXZ+5—4aX3aXYzaXZ+8—1a)§yaxyzayz
_4T87aXYaXY52 - mZCLXQCLX}iz - §ayza1XYzaX3 + %axgayz + 50530z + maXya)£Y2a)gZ -
@%{Y‘lx?y%gyz+g—aXYaZIXyzaXZQwLﬁaxyax?)ayzz—ﬁclbxyaxzya y2 T 530Y Z0xy 2052y~
_8aX211aXY2aYZ - ﬁgYQGYZ - 1_8?Y2GYZ —5ayay ; — gayayz +5570x3Ax2y Uyy 20y 7 +
—1axsaXY2aXZaYZ - 2—aX3aX2anY2ayz+ 1—ax3CLX2yaxy2aXZ - —GXSCLXQYaXygaYZ—
§1aX3aXzya§(YzaXZ - §Z’X3aX2ya§(y2aXZ + ﬁa?xgaxzciyzaxyz - Eaﬁ(gayzalegngy -
Eaxyayfa)iy%q; —§1aX3aXZaX2any2z +§?anY2 - 5(;xaxz+ 2—aXaXY2 - ﬂayzaz+
aXaX3+ma Ygayg+%axya)@yaxyzayz—Tsaxyaxzaxygayz+§a_xyax2ya YgaXZ+
i7CLXYCLXZ’YaXyzCLYZ + %CLXYCLXZYCLXYZ’CLY2 + %CLXYCLXMLXY?CLXZ + 9AXY x3Q%y 20y 7 +
glax2aY3ZCLXy2ax3 + %?XQGYZG_%QHGX;Y - %axzaXaaxzya)gw - I%axyaxsa?xyzaxzy -
7 AX Z Ay 20y ZAy2 — g xy20X70y20y 7 + {gAxy20x30y20y 7 — 150X 720y Z7AXy20Z
+1§ax3a2x2ya5xy2azl+ gaxga)(zaxiyaxyz - Ea)%ZCLXZG)Q/ZCLXy21+ %GXZ%/GXZG%/Zaiyg -
Ezgzsb,xwfxf& sa;(‘*aXZ * ﬂugxw * 6561?)(11XY2 69Xz - 1_“)%YQCLXZ“Y2 *
BTOX39xy2 7 186 Uxy? v2ay 7z * 51570 xy2ay Z0y2 ~ g 2“XY12‘LXZ‘L%/Z 864aY22
TR AXIAxy2 X2 T gy 2 U z0Y 2 T g Uxy 20X 70y 7 T 154X A2y AXY 2y 7
+ TRgAx30xy 20y 7 — 5530x30 20y Z _3ﬁaYZaXY2aX2Y - _4aX22YaXZaYZaXY2
+ TGXZYCLXZCLZZGXYQ — 31ax2yAX305y20y2 + maxzyaxwaﬂzag/z
+ Tgaxzyayzaxygayj + §aX3aX27anY22 ~ o430 %2y Oxy20y2 + maxyglaxzayz A
Torgr Axy2@X 2y Z+ 5550 x30 X2y Uxy2to7Ax3Axoy Oxy2 T 530y~ 75 0xy20X 20y 7+
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4. Deformations and quiver representations

2 2 2 3 1 2 28 6 1 2 2
gaxy2&X3(IY2 - ﬁaw - §Cixy2(1XZ(IY2 - maxﬂyaxygayz - ZaX2aXZ - aXQan

+ %axzanwaY; - @a)z(WaYZ - FglaXY?aXZ - %GX32‘1§(Y26‘Y2 - ﬁaxwayz -
maXYQ(lyz +3maXY2aYZ + 8—1aX3aX}2,2aYZay2 + §aX3aXY2aXIZaYz ;

+ 8—1ax2anZSCLXY2ay2 + EG/XQYCLXZCLX3CLYZ+ gax2yangx3ay2 + l—ax2yay2zaxy2ax3 -
ﬁax2anZCLYZC2LX)/2 —aop + T58GXY201X23 + 73U 7 A2y Oxy2 + Ay 70 angg )
+MCLYZGXY2GX2Y1—§CZX2Y2aX3ay2—§a2xzayzaxy2+ﬁa§(2ya YQaZ—fayzanaYz—
TAAXZWxy20y 7 T 3Ax3Uxay Uyya T 75 AxsUyy20y 7 — 270x2y Uxy2 0y tgrasOxy2yz *
gax2yayzaxy2aX3(lyz - E(IXQYaXZCLYZ(IXy2ay2 + Eax3ax2anY2aXZaYZ.

According to Subsection 4.1.2, there is an isomorphism

T: 7 5 b
(Mo,ul,/LQ, puslds, M4Id2,u51d2,uﬁld3) ~ h with Oél(h) =—1;, V0<i <6
with b a Cartan subalgebra of the simple Lie algebra of type Eg. Hence an element p € Z
can be identified with Y9, —u; AY, with (AY)1<i<¢ being the fundamental coweights, i.e.
the dual base of the simple roots (a;)i<i<¢ of the root system of type Eg.
It is known that the Weyl group W is generated by the r,v’s, with
J

2(AY, )
rav(A) = Af-ﬁ%&
7777
- AY if i # g,

AY —a) if i =],

2 0 0 -1 0 O
0o 2 0 0 -1 0
for 1 <j <6. It is also known that o = Z?:l cijAj with ¢ = _01 8 [2) (2) 8 :i
0o -1 0 0 2 -1

o 0 -1 -1 -1 2
the Cartan matrix of type Fg according to our labelling of the vertices. Therefore one
can write

vV _ \4 \%
oy = 2A{ - Ay,
Vv _ \ \
\ \ \%
CE3:2A3— 6
af = —AY +2AY — AY,
o = Ay +2AY - AY,

af =AY — Ay — AY +2AY.
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4.3. Deformations of inhomogeneous simple singularities

M1 —H1
M2 2
. . . . M3 m3
A computation gives us the action of the generators of W on b : Tay 11y > 1+ g |
M5 s
M6 e
241 241 251 241 241 M1+ g M1
U2 —[2 12 H2 K2 H2 H2
a3 3 | a3 —H3 L a8 3 N
T‘ag . M4 = ,LL4 : TO%/ . /144 (=g M4 s TD[X . M4 =g _M4 s Tag . H4 =
M5 Ha2 + s s s s Hs M5
He He He u3 + e He Ha + e He
M1 M1 H1
M2 + ps K2 K2
M3 M3 M3+ e
H4 and roy : pa |7 s+ s |
~H5 M5 M5+ e
U5 + e 6 —H6

Using a computer software (in our case Maple 2015) one can explicitly verify that
the coefficients Ag, Ax, Ay, Ax2, Axy, Ax2y are invariant by the ra}_/’s and are thus
W-invariant. They can then be expressed using the flat coordinates defined in Subsec-
tion 4.3.5.4. As the coefficients and the flat coordinates are homogeneous, the relations
have to homogeneous as well.

According to our indexation of the vertices of the Dynkin diagram, the expressions of
the fundamental weights, i.e. the duals of the coweights, are given below (cf. [Bou68]):

A= %(4(11 + 209 + 3a3 + bay + 4as + 6ag),
Ay = %(2(11 +4ag + 3ag + day + bas + 6ag),
A3 = a1 + ag + 203 + 204 + 205 + 30,

Ay = 3(5aq +4ag + 603 + 100y + 8as + 1206),

A5 = %(40&1 +bag + 60é3 + 8y + 10045 + 12066)7

A6 = 20&1 + 2&2 + 30&3 + 4044 + 50[5 + 60(6.

Therefore it follows that
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4. Deformations and quiver representations

Al = (_§7 \/Tiv ?7 _\/757070)T7
A2 = (0707 ?7_47 _%7 §)T7
A3 = (0,0,0,—\/§,O,O)T,
A4 = (_§707 \/Tév _\/§)O)O)T7
As = (0,0, T67_\/§7_§70)Ta
AG = (ana @7_%3()’0)’11
. . T _ 6
So if one writes (z1,y1,...,y3)" = X1 Ai\i, one finds
Ty = —?)\1 - \/?6)\4,
Y1 = 4)\17

yo = =20 = 0 - V23 - V2 - Vs - 2o,

T3 = —g)\z - @Aa

Y3 = g)\z-

Using the isomorphism 7, it follows that pu; = —A; for any 1 < ¢ < 6, and thus the
coefficients of the equation can be expressed with the flat coordinates:

Ao = 575 (Vr2(w) = 5¥s()v2(1)? = g6 (1)? + 55¥6 (1) vo2(1)? = s (1) * (1)),
Ax = 3 (=bo(p) + f¥s(m)un(n)?),

Ay = g5 (=) + Fo()ua(n) ~ gigta(n)),

Axz = L (W6(p) - S (1)),

Axy = z—\l/g%(u),

Axey = —11ba(p).

Hence
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4.3. Deformations of inhomogeneous simple singularities

e (2)]/G(T)
= {(X,Y.Zop, i) | = 3 X0+ Y24 22 = pp () XPY + ot () XY
+a5 (6 (1) = 502 ()*) X2 + 32 (~vs(p) + 106 (1) V2(1) — 7532 () )Y
HYE (=0 (1) + T () ea (1)) X
+2 (V12(p) — s () (1)? = 306 (1)* + g5tbe (1) W2(1)? = s (1) o (i) = 0}

Set

Xr = {(X,Y,Z,to,t5,t6, ts,to, t12) € C3x h/W | = 1X4+ Y3+ 2% - L, X2y + Lt XY

26
1 1 1 1 1 6 1
+R(t6 - gt%)XQ + E(_ts + Zt6t2 - @t%)y + T\{;(_tg + Zt‘:’t%)X

1 1 2 1,42 1 3 2 _
+57g (12 = §lsts — gt + gglets — t5ta) = 0.

We have 7: (as Z = b

) - h/W
(1, -sp6) = (Pa(p), ¥s (), b (1), Ps (), Yo (), 12(p))

and (p1,...,us) are coordinates on Z, we use the same coordinates on ) and
o Xr N b/ W .
(X,Y, Z, ta,t5,t6,18,t9,t12) = (t2,15,t6,18,t9,112)
Then

X xpw b

= {((X,Y, Z,ta,t5,t6,ts,t9,t12), (1, .-, p6)) € X xb | (X, Y, Z,t;) = w(p1, .-, 16) },

= {(X,)Y, Z,ti, p15) | t2 = o), t5 = Ps5(p), te = e (1), ts = s(pn), to = o (1), tr2 = 12 (p),
and — ;X1 4+ Y? 4 2% - 16 XPY + S Uts XY+ go(te - 513) X7 + gg(~ts + jtota — 5513)Y

/6 192
5 (-t + §1513)X + g (o - 1513 - 413 + ggtet} - t3t2) = 0),
= 1 (2)//G(D).

Finally we obtain

Xr xpw b Y, Xp
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4. Deformations and quiver representations

with a being a semiuniversal deformation of Xp:=a 1(0) = {(X,Y,Z) e C? | - }lX4+
Y3+ Z? =0}, which is an Eg singularity.

Finally our pullback diagram is £2-equivariant with the natural action on the singu-
larity, so the restriction o : Xr g — (h/W)% of a is Q-invariant and

(@®)71(0) =a710)N Xrq because 0 € (h/W)<,
= XroNXro,

= Xr,0 because Xty € Xt o.

Therefore o is a semiuniversal deformation of type (Eg,Z/2Z) = Fy as expected from

Theorem 4.3.1.

4.4. Quotient of the inhomogeneous singularity (C?/T",2) by Q

4.4.1. Objectives

It was shown in the previous section that the restriction o := 0‘|a-1((h/W)9) 1 Xro —

(5/W) over the fixed points (h/W )% of a semiuniversal deformation of the singularity
C2/T is a semiuniversal deformation of the inhomogeneous singularity of type A(T,T")
and is thus Q-invariant. Hence Q acts on each fiber of of? and the fibers can be quotiented.
It is known that (af?)71(0) = X = C2/T". Hence the fiber above the origin of the quotient
map is also a Kleinian singularity. Indeed, (a®*)~1(0)/Q = Xo/Q = (C*/T)/(I"/T) =
C2/T’. As I is a finite subgroup of SUs, C2/I"” is a Kleinian singularity. Therefore the
family given by the quotient map a?: Xrao/Q— (b/ W)¥ is a deformation of the simple
singularity C2/T".

With Proposition 1.4.23, P. Slodowy described the singularities in the fibers around
the special fiber C2/I" in terms of subdiagrams of the Dynkin diagram of type A(T)
when C2/T' is of homogencous type. Furthermore, he gave a relation mentioned in
Remark 1.4.50 between (h/W)® and a quotient ho/Wy. This raises two questions:

1. how is the map a? related with the semiuniversal deformation of type C?/T’, and
how to describe the base space (h /I/V)Q using a Cartan subalgebra and a Weyl
group of type A(T”)?

2. can we describe the singularities in the neighbouring fibers of C2/I' in terms of
sub-root systems of the root system of type A(T), like P. Slodowy did for the
homogeneous case?
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

The content of Section 4.4 is only a first step in the search for answers to the previous
questions. In order to investigate the nature and the regularity of the fibers of the
quotient of a semiuniversal deformation of a simple singularity of inhomogeneous type,
we use an explicit realization of the map o : Xra— (b JW)® given in the previous
section. The quotient map o is computed for the cases (Agp_1,2/27), (D4, 2]27),
(D4, 83) and (Eg,Z/2Z). In particular, when the original singularity C2/T is of type A3
or Dy, one notices that every fiber of the map af is singular.

4.4.2. Case (Ay.1,7/27)

We have I' = Cy. and IV = D,. In Subsection 4.3.6, a semiuniversal deformation
of type (Ag,_1,Z/2Z) was computed. It is the projection of? : Xro - (h/W)¢ with
r .
Xrao={(z,y,2,t2,0,t4,0,...,t2) € C3 x h/W | 22 4 ngi(tg, .. .,tgr)ZQ(T_’) = xy} with
i=1
the same notations as in Subsection 4.3.6. The morphism af! is Q-invariant and thus
(2 acts on every fiber of a. The purpose of this subsection is to compute the quotient
morphism of? : X o/Q — (h/W)%, and study its nature.

4.4.2.1. The morphism a_Q:XnQ/Q - (h/W)%

The action of Q =T"/T'=7/27 =< 0 > on X q is
o.(x,y,z,t2,0,t4,...,0,t0.) = ((-1)"y, (=1)"x,—2,t2,0,t4,...,0,ts.). Let us compute the
()-invariant polynomial ring of the coordinate ring of Xr .

Set p € C[ X1 q]. Then p = p(z,y, z,t2,t4, .., t2,) and o.p = p((-1)"y, (-1)"z, -2, t2, L4,
... tar). As the tor, 1 <k <r, are invariant by the action of Q on p, they can be treated
as constants and will be omitted in order to simplify the notations.

We can write p = po(z,y) + p1(z,y)z + p2(z,9)22 + ... + pul2,y)2" = Sr_gpr(w,y)2F €
Clz,y][z] with the p;’s being polynomials in 2 and y. Let us assume that p is Q-invariant.
Then

po((-1)"y, (-1)"z) = p1((-1)"y, (-1)"z)z + ...+ (-1)"po((-1)"y, (-1)"x) 2",
2
po(x,y) + p1(@,y)z +p2(x,y)2° + ... + pu(w,y)2".

o.p
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4. Deformations and quiver representations

By identification, one obtains po((-1)"y, (-1)"z) = po(z,y),
pi((-1)"y, (-1)"2) = -p1(z,y),
p2((-1)"y, (-1)"z) = p2(z,y),

Pr((=1)"y, (-1)"z) = (-1)"pn(z,y).
Assume r to be even. Then the system of equations becomes
po(y, ) = po(z,y),

p1(y,z) = -p1(x,y),
p2(y, ) = p2(z,y),

Py, ) = (=1)"pu(z,y).

It follows that p; is symmetric in (z,y) if 7 is even and skew-symmetric otherwise. The
polynomial p can be rewritten in the following form

_ 2 3
p=po(z,y) +z" pa(x,y) +...+z pi(z,y) +2° ps(zy) +...
~— ~— ~— ~—
symmetric symmetric skew-symmetric skew-symmetric

However it is known that a skew-symmetric polynomial in two variables can be writ-
ten (x —y)sym(z,y) where sym(x,y) is some symmetric polynomial. Hence p can be
expressed as

p=symy(z,y) + 22symy (2, y) + ... + z(z - y)sym, (z,y) + 222(x - y)symg(z,y) + ...

Therefore any Q-invariant polynomial is generated by 22, z(x — y) and symmetric poly-
nomials in (z,y). It is also known that the latters are generated by (z+v) and zy. The
converse is trivial and we have proved

Q _
C[Xrol" =
C[22, 2(x —y),z +y,xy, ta, ..., tor [ (ZZ + fo(ta, ..., to.) 22 2+ ... for(to,... tor) = ).

Set X =x+vy,Y =2y, Z = 22 and W =iz(z - y). The relation between these variables
is X2Z+W? =4ZY. This implies that the coordinate ring of our quotient space is given
by
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

C[ Xl =C[X,Z,W,ta,... ta, [ (Z(X2=4Z") + W2 —dfo(ta,... o) 2" ~
4f4(t2, - ,tQT)ZT_l - .= 4f2r(t2, S ,th)Z = 0)

and thus

XrafQ = {(X.Z.Wits ... t5) € € x (b/W)® | Z(X2~4Z") + W
—4f2(t2, - ,tQT)ZT — 4f4(t2, . ,tQT)ZT_l - .= 4f27n(t2, e ,tQT)Z = O}

The quotient of the map o is then o : Xt/ - (f)/VV)Q

(X, Z,W,ta,...,tay) +— (0,t2,0,...0,t2)
which is a deformation of (a?)71(0) = {(X, Z,W) e C3| Z(X2-4Z")+W? =0}. It is
a D,,o singularity. However, the deformation o is not semiuniversal. Indeed, accord-
ing to Theorem 1.4.15, the base space of a semiuniversal deformation of type D, o is

bp,.,/Wp.,.,, which is of dimension +2. But our base space is (h/W)** and of dimension
r <7+ 2. Hence the deformation cannot be semiuniversal.

We now assume that r is odd. Then for p = 1 pi(x,y)2" € C[x,y][2] Q-invariant,
we have

po(=y,—) = po(z,y),
p1(~y,—z) = -p1(x,y),

pn(=y,—z) = (=1)"pn(z,y).

po(-y,—z) = po(z,y), so po(y,z) = po(-z,-y). We write po(z,y) = po(Z,y)even +
po(x,Y)oqq the decomposition of py in a sum of monomial factors of even degrees and
a sum of monomial factors of odd degrees. Then po(y,x) = po(y, x)even + Po(Y, ) odd =
po(—x,-y) = po(Z,Y)even —P0(T,Y)odd- Therefore the even part is symmetric and the odd
part is skew-symmetric. So po(x,y) = symmetric of even degree + skew-symmetric of
odd degree. All p;, with 7 even, can be expressed in a similar fashion.

We have pi(x,y) = p1(2,Y)even + P1(Z,Y)oda the decomposition of p;. As pi(-y,—z) =
-p1(x,y), we get that py(z,y) = skew-symmetric of even degree + symmetric of odd

degree. All p;, with i odd, have a similar decomposition.

Then if p is Q-invariant, we have p(z,y) = sym(x, y)even + skew-sym(x, y) odq
+ 2(skew-sym(z, ) ven + S, Y)oda) + 22 (SYM(E Y )euen + SKew-5ym(z, y)oaa) + .. But
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4. Deformations and quiver representations

we know that skew-sym(x,y)oqq = (z — y)sym(z,y)even and skew-sym(z,y)epen = (z —
y)sym(z,y)oad- Then p(x,y) = sym(z,y)cvent(2-4)sym(z,y) cven+2((x=y)sym(z, y)odd+
sym(z, Y )odd) + zg(sym(a@, Yeven + (2 = y)sym(z, Y)even) + - - -

We deduce that p is generated x -y, zy, 22, 2(x + y) and the toy,, 1 <k <r. Hence

G:[XI‘,Q]Q = C[w—y,xy,zQ,z(x+y),tg,...,tgr]/(z%+f2(t2,...,t27n)227"_2

+...+f27«(t2,...,t2,«) =:By).

Set Z =22 X=x-vy,Y =2y and W =iz(x +y). We have the relation W2 + ZX? =
-4Y Z. As we did when r was even, we show that

C[XF,Q]Q =C[X, Z,V[/,ti]/(XQZ +W?2 =
—4Z(ZT + fg(tg, - ,tQT)ZT71 +...+ fQT(tQ’ - ,tgr))),

We deduce that

Xro/Q = {(X,Z,Wta,... ta) e C*x (h/W)? | Z(X2+42") + W?
+4f2(t2, - ,tQT)ZT + 4f4(t2, - ,tQT)ZT‘71 L.+ 4f2T(t2, - ,t27~)Z = 0}
The quotient o is then af: Xr.o/Q2 - (h/W)% , which is
(X, Z,Wita, ... ,tay) +— (0,t2,0,...0,t2,)

—1
a deformation of af? " (0) = {(X,Z,W) € C3 | Z(X?+4Z") + W? = 0}. Tt is a Dyyo
singularity. With the same argument as when r is even, the deformation cannot be
semiuniversal.

4.4.2.2. Example: regularity of the fiber of a? when r =2

We look at the regularity of Xt o and X1 /€2 on an example. Set 7 = 2. Then

(2, y,2,t2,14) € C3 x h/W | 24+ fg(tz,t4)22 + fa(to,ty) = xy},
{(X,Z,W,tg, ) € C¥ x (h/W)? | Z(X? - 42%) + W? — 4f(ta, 1) Z°
—4f4(t2,t4)Z=0}.

Xro
XF’Q/Q
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

For a fiber in X7 g other than (f?)71(0) to be singular, it requires 16 f4(t2,t4)( f2(t2, t4)*~
4f4(t2,t4))2 =0« f4(t2,t4) =0 or f2(t2,t4)2 = 4f4(t2,t4).
o If fy(to,ty) =14+ %t2 =0 then (t2,t4) = (tg,—%t%) and (aQ)_l(tz,—%tg) is singular
at the origin.
o If fo(to, ta)? = t3 = 4 f4(t2, ts) = 4(ta+5t3), then (ta,t4) = (t2, 313) and (o) (L2, £13)
is singular.

In Xt /R, for any fiber (@) 1(tg, t4), the point (X, W, Z) = (2\/fa(t2,11),0,0) is a
singular point. Hence all fibers of o are singular. We have proved the next proposition.

Proposition 4.4.1. Every fiber of the deformation af: Xro/ft— (6/W) of type Dy
is singular.

4.4.3. Case (Dy,7/27)

We have T' = Dy and IV = Dy and Q = I'/T = Z/27 =< o >. In Subsection 4.3.7,
a semiuniversal deformation of type (Dg4,Z/27) was computed. It is the projection
2 Xro — (/W) with XI‘Q = {(z,y,2,t2,ts,16,0) € C3 x h/W | 2% = ay(z +y) -

%tgxy - Z—it;;xg;r }L(t(; + %t2t4 + t%)} with the same notations as m Subsection 4.3.7. The

108
morphism o is Q-invariant and thus  acts on every fiber of af?. The purpose of this

subsection is to compute the quotient morphism af : X o/Q — (h/ W), and study its
nature.

4.4.3.1. The morphism a_Q:Xr,Q/Q - (h/W)%

We obtained in Subsection 4.3.7 the following relations:

ox = x,

oy = —T—-Yy+ %tg,
oz = -z,

ot; = 1, ’i=2,4,6.

The relations imply that Cx@Cye Cz & (Dtg is a C-vector space on which () acts linearly.
The eigenvalues of o are =1 and 1. Set ¢ = x +y- —tg and then .y’ = —y’. With this
change of variable, one has Xrgo ={(z, v, 2, tg,t4,t6,0) € C3x h/W | 2% = zy(z +y)
stoxy — ttaw + 3 (te + glata + Togt3) ),
= {(:U y z t2,t4,t6,0) € G:3 X f)/W | Z = tﬁ + 24t2t4
4;)2155 + (- 16t2 1154)3U - Zx + 1t2$ +1:(y )2}
and
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4. Deformations and quiver representations

ox = x
oy = -y,
ag.z = —Z.
ot; = t, i=24,6.

Letpe C[XF’Q]Q. As x and the ¢;’s are not altered by o, we omit them from the notation.
We have o.p(y’,2) = p(-y',—2) = p(¢', 2). It is then clear that p is generated by y'2, 2>
and y'z. So Clxz,y, 2, ta, ts, t6]% = Clz, v, 2, ta, ta, 6] = Clx, y'%, 22,y 2, ta, ta, tg].

Set X =2,Y =y"?,Z = 22 and W = y/z. The equations between the invariants are

Z = e+ gptata+ gt + (—7513 — 1) X — 1 X3+ 162 X2 + XY,
YZ w2,

hence W2 = (s + gytats + p5ts)Y + (—15t3 — 1ta) XY = 1 X3V + 16, X2V + XV2. We
finally obtain

C[Xrol® = C[X YWtQ,t4,t6]/(( Lto + gytota + pxts)Y + (513 - )XY
—1X3Y + 4 t2X2Y+XY2 W2),

with X of degree 4, Y of degree 4 and W of degree 6. The t; are of degree 2,4 and 6,
respectively.

With the following substitution: ¥ - Y + %X2—§Xt2+ %t%+%t4, the equation becomes
g XPH XY2- W2+ Axa Xt + Ay X3+ Axa X2+ Ax X + AyY + Ag = 0.
with

_ t2
j4x4 = §§,

Axs = —ooot3 — 5t

128

Ax2 = 192t2t4 + t 864t

Ax = _3_2t6t2 384t2t4 2736548t4 64t47
Ay = 3te + 2—14t2t4 + g55ta,

Ao = agteth + s5tets + ghistats + tistat] + 5asrth.

~ 128 192 13824

Hence a fiber of o in X1,/ is defined by the preceding equation. We notice that it
is a subfamily of the semiuniversal deformation of a Dg-singularity. It follows that the
projection
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

af: Xp o/ — (h/W)9

is a deformation of type Dg. However it is not semiuniversal. Using Theorem 1.4.15,
one sees that the dimension of the base space of a semiuniversal deformation of a simple
singularity of type Dg is of dimension 6. But we have dim(h/W) = 3. So a® is not
semiuniversal.

4.4.3.2. The discriminant of o

Let us determine the discriminant of a®, i.e. the elements (ta,t4,ts) € (§/W)? such
that the fiber (a®?)™!(ta,t4,tg) is singular.
The fiber (a?)1(ta, t4,t6) is defined by the equation f(X,Y,Z) = —éX‘r’ + XY?2-W?%+
A X+ As X3+ A2 X2+ Ax X + AyY + Ag = 0, with A;’s depending on the t’s and
whose expressions we can find above. The fiber is singular if and only if the following
system has a solution:

(XY, Z) =0,
2L(x,v,2) =0,
W (x,v.z) =0,
9(X,Y,Z) =0.

This system leads to the following equations:

W =0,

Y2 = %X4 —4AX4X3 —3AX3X2 _QAXQX_AX’

— 2 X% +5Axa X +4Axs X3 +3Ax2 X2+ 2Ax X + Ag = 0.

The polynomial equation of degree 5 in X always has a solution X because the base
field is C which is algebraically closed. It follows that the second equation has two
solutions: +Y;, depending on X,. Hence for any (t,ts,tg) € (h/W)%, there exists
(Xs,+Ys,0) € (af?) 7L (t2,t4,t6) that is a singularity. We obtained the following result:

Proposition 4.4.2. Every fiber of the deformation o : Xr.a/Q = (h/W) of type Dg
is singular.
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4. Deformations and quiver representations

4.4.4. Case (D4, S3)

We have seen that the action of Q = &3 = (0,p) on pug'(Z)//G(T') comes from the
permutations of the vertices 1,3 and 4.
We also have a natural action on h given by oY —o—ar) and sy We com-

o
W

puted in Subsection 4.3.8 that Xt = {(=,y, 2,t2,0,t,0) € C3 x h/W | 22 = zy(x +y) -
Stowy + %(t(ﬁ + ﬁt%)}.

2 induces a natural action on Xt o via the permutations o = (34) and p = (134).

4.4.4.1. The morphism o2 : Xro/Q— (/W)

In Subsection 4.3.8 we obtained

or = I, . and [ P = Y, .
0y = —x-y+ sl py = —x-y+ 5l
0.z = -z, p.z =z,

oty = ti, 1= 2, 6. p.ti = i, 1= 2, 6.

Hence Cx & Cy @ Cty is a C-vector space one which p acts linearly. The eigenvalues of p
are 1,w = exp(QZT”) and w?. Set

{ X = (-3-iv3)z+ (-3+iV3)y + ta,
Y = (-3+iv3)x+ (-3 -iV/3)y + to.

Then

p.Y =w?Y,

and p fixes z,to and tg.

Set p € C[(aQ)‘l(tz,tg)]Z/3Z = (Clz,y, 2,to, t]/ (=22 + zy(z + y) — %tgﬂcy + i(t6 +
TtNPE = (C[X,Y, 2,ta,16]/ (=22 = 515Y° — 51 X3 = 515 + XYty + 3t)) 732, It
follows that p.p(X,Y) = p(wX,w?Y) = p(X,Y). It is clear that p is generated by X3, Y3

and XY.
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

Hence C[(a®) ™ (t2,t6)]7/*7 = «:[XS Y3 XY, 2, b, 6]/ (=27 = 575 Y? = 516 X° — 513
XYt2+ tﬁ))

= [X VW, 2, ta,t6]/(—2* 216(X+y+%t§’)+%Wt2
+= tG,Xy WS).

Now let us look at the action of Z/27Z =< o > on X, Y, W, z,ta,ts. We compute that

o.X =),

0y =X,
oW=W,
0.2=-2,
oti=t;,i=2,6.

Set{ X= X+y Then C[ (o)™ (ta, t3)]%/3% = [%,Q),W,z,tg,t(;]/(—z 21635 o ts
2) - - +%Wt2+%t6,%(%2— ) W )
The action of Z/ 27 is given by

0.X =X,
U'@ = _2‘)’
oW=W,
0.2=-2

ot;=1;, 1=2,6.

Therefore (((IZ[(aQ)_l(t2,756)])2/32)2/2Z = C[a_l(t27t6)]63’
= C[% 2, 2%, 9z, W, t2,t6]/( 2~ o7 X — g3th
+72Wt2+ 1t6,4(:{2 ED ) Wg)

We have 3€—216( 2 —@t?* LWty + L), thus W3 = ~199% 4 t2 ~ Wi + 5432 +

IWH3 - 324Wity2? - Zlt3te + 1166424 + 81Wiat - 58321522 +729t2
We then have C[(af?)™(t2,16)]% = C[D?, 22, D2, W, ta, t6]/(P(W, Y, 2?)) with

6
POW,Y,2%) = 4@2 % 3Wt4+54t2z + IW2H3 - 324Wta2? - 25t
+11664z + 81 Wit - 58326627 + 72912,

Set{ i/(::%)?, Then C(a®) " (t2,16)]9° = C[X, Y, Z,W, t2,15]/(Q(X,Y, Z), R(X,Y, Z))
Z

225



4. Deformations and quiver representations

QUX,Y,Z) = -W3-1X+B Syl 5437 + OW23 - 324Wits Z — Lt + 1166427
F81Wiats — 5882667 + 729¢2,
R(X,Y,Z) = XZ-Y2
We deduce that C[(af?)™ (t2,16)]%% = C[Z,Y, W, t2,t6]/(S(Z,Y,W)), with

S(Z,Y, W) = W3Z+1Y?2-116642Z3 — (a1 Z + apZ* + DV Z + SB3W?Z - 324t W Z7)

6
and ( ay = 2 - Z3tg+ 72912,
ag = 5413 — 5832,

b = 81tats — 5t3.

After renaming the variables X := W, Y := Z, and Z := Y, one finds C[(a®*) ™! (2, 16)]%* =
C[X7K27t27t6]/(T(X7KZ))7 with

T(X,Y,Z)=X3Y -11664Y°% + 122 - (a1Y + apY? + bXY + J13X°Y - 324t, XY'?)

and | aq = ?6 27t%t6 + 7291‘,%7 Looking at the degrees of the generators, one finds that

ag = 54t3 — 58321,
b= 81tats — 3.

X is of degree 4,
Y is of degree 6,
Z is of degree 9,
to is of degree 2,
tg is of degree 6.

In order for our equation to have the form predicted by Theorem 1.4.26, we do the
following substitutions: ( X — —(11664)/°X + %t%,

Y - —(11664)7'/3Y,
Z - 2.
The equation is finally

3 3,72 1 SYy2 L
X3Y +Y3+7 —%t2116649XY2+116649( sasts - 11664 b)XY + 116645 (~1igzaz +
L13) Y2 + 116643 (g5isy 1S + bt3)Y =0.

a) +

1
( 13824 11664 15552

Hence a fiber of o in X1,/ is defined by the preceding equation. We notice that it
is a subfamily of the semiuniversal deformation of an E7-singularity. It follows that the
projection
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

s Xp o/ — (h/ W)

is a deformation of type E7. However it is not semiuniversal. Using Theorem 1.4.15,
one sees that the dimension of the base space of a semiuniversal deformation of a simple
singularity of type F7 is 7. But we have dim(h/W)% = 2. So of? is not semiuniversal.

4.4.4.2. The discriminant of o

Let us determine the discriminant of a®, i.e. the elements (t2, %) € (§/W) such that
the fiber (o) 1(t,t¢) is singular.
The fiber ()~ (ta, t6) is defined as the zero locus of the function
f(X,Y,Z)= X3V +Y3+22- 4 t2116649XY2 + 116645 (-1 14 -

T 6912 h 11664
+116645 (- 11664a2 + A3V 4 116647 (ghggtS + Trisgar +

The fiber is singular if and only if the following system has a solution:

b)XY
bt2)Y.

15552

Jxv.z) -0
9 xv.z) o
a‘}/

%Y

ZL(X,Y,Z) =0,

(X Y,Z) =0.

If Y # 0, this system leads to the following 2 equations:

P(X) = (145858 X2 + 117t414585 + 14585 7776t tg — TTT6.X2)(t314585 — 216X)2 =
Q(X) = (1214585 + 648X ) (1214585 — 216X)3 =

We notice that P and () have a common factor, namely (t%1458% -216X). But this
factor is a degree 1 polynomial and thus always has a solution. It follows that there
exists X such that P(X;) = Q(X;s) =0.

If Y =0, this system leads to the following equation:

R(X) = X3 + 116645 (— 0= t4 — thrtots) X + 116647 (5hbctS + 1 t3ts + (1/16)12) = 0.
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4. Deformations and quiver representations

The polynomial R is of degree 3 and because the base field is C, which is algebraically
closed, R(X) =0 always has a solution.

Finally for any (ta,ts) € (h/W)?, the fiber (a?)"!(t2,t¢) has a singularity. We ob-
tained the following result:

Proposition 4.4.3. Every fiber of the deformation af Xr.o/f2 > (6/W) of type Fr
s singular.

4.4.5. Case (Eg,Z/27)

We have I' = 7 and I = O. In Subsection 4.3.9, a semiuniversal deformation of type
(Fe,7/27) was computed. It is the projection af*: X o — (/W) with

Xra = {(X,Y,Z,t,0,t5,ts5,0,t12) € C> x h/W | —}LX4+Y3+Z2—it X2y

+a5(te — 513) X% + g5 (~ts + leta — 7o5t3)Y + 505 (t12 — 5lst3 — 5t + getets) = 0}

with the same notations as in Subsection 4.3.9. The morphism ! is Q-invariant and
thus Q acts on every fiber of a®’. The purpose of this subsection is to compute the
quotient morphism a® : X1 o/Q — (h/W)?, and study its nature.

The action of Q=T"/T'=Z/2Z =< o > on Xr g is

0.X =-X,

oY =Y,

0.4 =-7,

oti=1t;, 1=2,6,8,12.

It follows that
C[(a) " (ta, t6, ts, t12)]"
= C[X?, 2% XZ,Y o, t, tg, t12] /(-5 X + VP + 2% - 1, XY + 1o (l6 — 5t5) X
+k(—ts + Steta — 1h5t3)Y + she (tio — Stst3 — 212 + tet3)),
= C[X, YW, 2, by, lg, s, t12] [ (-3 X2+ V3 + Z = 102XV + £ (t6 — 5t5) X
+a5(~ts + leta — 155t3)Y + zis (tia — §tst3 — 13 + 5etets), XZ - W?).
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

We deduce that C[(aﬂ)_l(tz,tﬁ,tg,tlz)]ﬂ = C[X,y,W,t2,t6,tg,tlz]/(R(X,y,W)),
with

R(X, VW)= —1X3+ XV3 — Lt X2V + L(t — 5t5) X2 + o (—ts + Leto — 15513) XY

1 1, ,2 1,2, 1, ,3 2
+m(t12 - gtsty — gt + %thQ)X + W=

After renaming the variables X := X, Y := Y and Z := W, the equation is finally

—3 X3+ XYP 4 2% - Lo XY + o (te — §t5) X7 + g5 (—ts + fleta — 1a5t3) XY

+21=(t12 — glsth — g3 + gtets) X = 0.

Hence a fiber of af in Xr1,0/8 is defined by the preceding equation. We notice that it
is a subfamily of the semiuniversal deformation of an E7-singularity. It follows that the
projection

OZ_Q:XF,Q/Q - (b/W)“

is a deformation of type E7. However it is not semiuniversal. Using Theorem 1.4.15,
one sees that the dimension of the base space of a semiuniversal deformation of a simple
singularity of type E7 is 7. But we have dim(h/W)®? = 4. So a® is not semiuniversal.
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Appendix

After computation of the relation between the generators of the coordinate ring of
the invariants of the representation space of the McKay quiver of type Fg (cf. Subsec-
tion 4.3.9), we obtain the following equation

Y3+ X2Z2+2% = axsX3+axy2 XY?2+axey X2Y +ax2 X2 +ay2Y? +axy XY
+aszZ+ay2YZ+ axX + ayY + aZZ + ap.

with X = ®(425) of degree 3, Y = ®(4252) of degree 4 and Z = ®(3%425%) of degree 6.
The coefficients are homogeneous polynomials in pu1, ..., ug and are given below.

axs = =241 fiofia + 2401 pops-Apa pafis-2pu1 papte + 201 pE - 2ot + dpiopaps + 2p0ps i
- dpdps - 2p3pe + dpapd + 202

ax = 483pg - 208 p3ps + 6pSpopspa - 248 papsps + ApSpapd + 14pSpopaps +
1208 papuapis - 6pS pop - 4pfpopspie + 2083 + 2ufpapl + 1205 papuaps + 8l papuapis
- ulpspg + SpSpips + 4pSpdpe + 14pfpaps + 2408 papspe + SpSpapg - ApSps -
Appdpe - 2pipdpa + 28 Bps + 2uipdpsps + pipdpsps + 28p3pded - 21pdpdpaps
+ 6p3pdpape + 10033 + 2uipdusps + Splpopdi - pSpopdus + 544 puapsps -
ApS popusprapis + 320 papispapis + 3 popspd - 4pd popsps e + 30u8 ot + 10105 popd s
+ 10043 popipas - S1pfpopuapiy + 3203 popap + 163 papd + 6pfpopizpe - 4l popis g +
Aps a4 24p8 p3 g + 165 p3paps + 2208 p3pape - pSpaps + 2008 pap + 10843 paps s
+ 84pSpspdpe - ApSpspapt + 64plpspapspe + 40pS pspapl + 2pipspd - A4S pspdig
+ 60ppips + 30uipipe + 101pipipd + 200pfpdpspe + T2p5pgpug - 34udpapd +
6415 praps g + 2448 iy + 85 s + ApS e - ApS pdpd - Bptpdpia - pipdps - 11t pdps g
+ 200 pi s s - 26407 ] - Th i peages - 26401 ppeagie - O pE + 240 i s i - 107 5 i3 pua
+ 5t p3 b - 6t pdps el - 448 pd s pags - 43ut 3 s pape + 11t p3pspd + 1508 3 psps e
b 72t 2 - 148t 22 s - 18t 22 e + 120t 12 pap? - 1060t p2paps i - 510 P2l
- Vpipspd + 12pipdps e + 13ptpsps g + 2408 popdps + 584t papdpd - 36 o papis
+ 20t popBpape + 15ptpuapdpd + Outpopduspe + 2040t popsged - 280t pops s
+ 2044 poprapd i - 66411 popispapd - 1490t oz piapisiie - 20t papspapg + 18uf popspd +
A5pt paps i3 e + 15p  popspspg + 94t pop + 282pt popips + 33641 popi e
- 288y po s - T2pu pa g s e + 1640 popi g + 38uipapapd - 16201 popia iz e
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

- 173pt popaps g - 12007 popuageg - 150 popis + 204 popidps + 39y papdug + 10p pops i
+ 2ptpdpa + 36utpdnd + 16ptpdpape + 2ptpind + 116ptpdd + 116ptpduius +
188utpdidpe - 361 ppap? + At papspe + 44ptp3pap? + 10pt3ud + 9pdpdptue +
820t pspud + 408yt s pii s + 3684t pspi e - 28ptpapd pud + 4084 ps il psje + 3104 g pd
- ddptpgpapd - 1490t papapd e - Apdpapapspd + 484 papuapy + ptpapd + 30utpspdie
+ 15t pap2p? + 188ptpd s + 94t utpe + 2820t + 672t i s + 2644t 32
- 192uipipd - T2 pipsue + 328uipiuspg + 156p pdpg + 190t paps - 10843 papdpe -
173 papid g - 24 paps g + 168 papig - 613 + 10p pspe + 2641 pdpg + 10p7 p3pg -
2 ps - 10upapagus - pipiapaps - 24 pand - 2505 pispaps - 2408 P paps - 2403 s s e
- 18u3pd i3 - 884 13 puspd - 62063 i3 papuapis - 863 pS s paps - 665 3 papd - 1120 pdpd -
13043 3 s - 21203 i pas - 104405 s papi - 15603 ppuagus i - 1003 s pagug - 12005 13 i3
- 2 s g - 1203 pdpdpa + 20633 ps - 80 pd 33 - 64 P33 paps - 9203 33 pape
+ pl s papd + 1208 pd s s e - S0 pu3pa el - 394Ut pspapiis - 37203 p3ps g e

- 14043 p3papuapss - 35200 s prapispie - 2220 pypapapg - 1Aps s pspd + 4 pspspdpe +
22003 3 s s g + BO0pS 3 - 554 3 s - 24003 3 ik e - 261413 13113 12 - 96045 i3 s i
- 464415 s g g - 20645 b papd - 37603 pspapd e - 42445 pdpaps g - VT4 3y

- 28 papdpe - 6p sz g + 1203 paps g - 24t popizpa + [ papizps - 2863 papipaps -
2415 papiipagie + Oppapips + 8pfpapips e + 17203 papdpd - 2544 pops s

- 188 pops i - 84udpapdpapd - 25603 popFpapspe - 100p3 pop3papg + 203 pop3ud +
363 papdpdie + 24pS popduspd + 42003 pops i - 20803 paps s + 52003 popspe -
654413 popapipd - 1176103 popspipspe - 146103 nopspd g - 156763 popispiaps?

- 54043 popuapuaid e - 65643 popuapuapis g - 17643 popapuapsg - 1503 popaps + 845 papizpdpe
+ 6613 popspiig + 3203 pops sy + 16203 ol + 38543 papgus + 60043 o)

- 990 popipd - 68443 popipspe + 28043 o g - 26243 popdpl - 160813 popdppe -
147603 popd puspd - 22003 popdpg - 205u3popapt - 44003 popapde - 672u3 popuaptu? -
520415 popuapis pr - 112013 puopuapug - B0p popud pu - Sy papd -+ 3645 popi i + 16465 popus s +
Vg papes - Apd pgpapes + 20 papape + 15 psps + 12803 ppf + 11203 pdpd pe - 28403 i paps?
- A8y s s + Syt p3papg + AuTpiud + 8ptpdpdpe + 290pt A + 344pS A pdps +
644403 i3 i e - 2543 p3pdpE - 367 pE i pspe + 2881t 3 pING - 56T A

- 256763 pdpapd g - 20003 3 papus il + A pdpapd + 13 p3pd + 24pdpd e e + 243 pdpd
+ 17603 papl + 840p puspips + 860uSuspgpe - 2080 papipd + 104013 pspps e +
98013 ps g - 43613 papdpis - 117645 pupid b e - 292003 papdpis g + 26813 papd g

- T8u papraps - 3603 papapid e - 6560 papapd g - 35203 papapis g - 1603 papapi - 665 il
+ 4 pspispe + AAptpspdug + 320 papdng + 324p3pius + 16205 p e + 38503 pipE +
120073 s s + 5203 g - 6603 pdpd - 684t uiuzue + 560uiuiuspg + 408uf g
- 131 pdps - 10723 piudue - 147603 pdpdpg - 440utpiusg + 56piudug - 82upap?
- 2203 papigpe - A48 papdpg - 520pF papd g - 22403 papispg - 1643 papg - 1205 pdpe -
Apdpspg + 24pdpdud + 1643 p2pg - 3uipdpspa - 10p3pdps - pRpdpaps - 6p3pspaps -
O papdpg - 5L udpapd - 34pdpdpspaps - ALpd pgpspapts - 13 paps s g - 6617 -
1083 s - 12203 papie - 8uipapaps - 66uiuopapispie - 4705 papuagig - 113 papis g -
1043 g - O3 ppapeg - 68pi pap3puaps - TOp3 s papagss - 24207 3z i

- 348113 i s s - 4420 3 pa e - 14203 kg uagd - 302003 13 pus pua s i - 18203 pi i pra g
- 6 s pdie - 23 ipaps g - 21643 g - 41003 s - 5883 e - 42503 phpipd
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- 832pipspdps e - 520p3 papdg - 26uipspapd - 26803 pspapdie - 3384 s paps g -
14003 pdpuapey - Opipspdpg - 205 papsps - 4pipspigia - 60pipapapg - 4443 t5pipaps -
S0pTps s apts + 243 s ie - 220pF pa sl - A0ApR s papd s - ABIpT b3 e

- 188 ps iz papd - 35313 papapapisiie - 20303 papApapg + PHaHEUEHG + THTI3 LS s IG -
20043 p3 sy - 111643 p3 s il s - 105843 s iz il e - 8903 3 pappd - 205903 3 pus gl s e
- 115303 i papd g - 28843 s paps - 82Tt pd s pua i3 g - 86343 133 ua pis i

- 3363 s piapiy - VApS P papdie - Tt pspsping + Spi pwapaps g + 32073

- 10273 pdpdps - 60043 p3pgpe - 964utpdpsud - 274003 pdpdpspe - 1346u1u2uiu§ -
82013 il - 214007 papi i3 e - 243903 g ps i - 92003 iy gy - 43403 i pajus

- 53R pspapipe - IBpTpdpapdug - 666uTpdpapsp - 195uTp3papg - 14piuspdug -
St papaie + 3pi sty - 10uipopspy - 8ufpapizpaps - Suipopspape + p3paizs e
- 17208 o3 i s - 120003 puo i il pr - 72003 pro i prapi - 13813 puo i pra s pr - 6413 propis prapid
+ 6 papipde + 6pfpopipspg + 266p3pop3py - 676ptpop3utis - 920F opdpipe -
66613 apdpips - 1453ud popduips e - 51643 popduiug - 24013 popdpuap?

- 603143 a3 prapd i - 61313 popul prajis i - 19203 popiz pagsg + 207 popizpape + 2103 popaps g
+ Mpdpopgpspg + 504utpopspl - 504utpops s + 70043 pops i pe - 189613 o pus 2
- 3294417 puo s i s i - 5644 papua g - 108447 popizpdpd - 352503 popzpindie

- 367143 popuz i s g - 93647 popuapigpg - 2903 paprapuapss - 105043 popizpiafd pie

- 14973 popuapuapid g - 104643 popspuapspd - 25203 popspapd - 1503 popspape

- 10pF popiz g + 2403 popisp3ug + 15M?u2u3u5ué + 166/@#2/& + 280#%#2#2#5 +
63273 piap e - 178503 popujpi? - 1692M1u2u4u5u6 - 180u1u2u4u6 1108#1#2#4#5

- 469243 popii pd s - A25403 po il ps g - 760u1u2u4u6 805#1#2#4#5 - 2616u1u2u4u5u6
- 4197y popipis g - 2942003 o s i - 608M1M2M4M6 36u1uzu4u5 530M1u2u4ﬂ5ﬂﬁ
1154 pTpopapdpg - 11585 poprapdpg - 611#1#2#4#5% - 12003 popapsg - 15p3 popspg -
1203 popidpd + Opipopdug + 6p3popspg + 36u1u3u4 - 20p3pgpips + 10p3psuine -
Suipspapd - 16pipzpapsie - 2uipzpapg + pipspdpe + 224p7 sy + 288pf pdpipe -
172p3 3 g pd - 2403 13 pdps e + A0p3 ppdpd - A8p3 pudpuapss

- 13803 i3 pra i s - 128M?u§u4u5u§ - 163 3 prapig + Apd pdpd e + 6pTpipdug + 3967 3
+ 532uipzpaps + 1102u1u3u4u6 - 6T6uTpapips - 184p3 3 pspe + 712u1u3u4ué -
444#?#%#3#? 1453u1u3u4u5u6 1032u?u§uiu5u§ + 12pF 3t - 120u1u3u4u5

- 402#1#3#4#5#6 - 613#1#3#4#5% - 384#?#3#4#5#2 - 46#?#3#4#% + 1R s e

+ 14u1u3u5u6 + 14u1u3u5u6 + 2087 s + 1008u1u3u4u5 + 1128u1u3uiﬂ6

- 504#1#3#4#5 + 1400#1#3#4#5% + 1590u1u3u4u6 - 1264#1#3#4#5 32944173 pua i i
- 1128u1u3u4u5u6 + 592#1#3#4% 54203 papi g - 2350pF papdpdpe - 36T1pT uzpd s g
- 1872pf papipsprg - 104pTpapipg - 116pFpapap? - 525uF papapigpe - 998uT papapiug -
1046413 pu prap g - 5OALS papapis pig - 563 puapiapy - 6p7 pspidie - 53 pspapg + 16p3 sy i
+ 152 uspdpd + 332021 s + 16613 ubps + 280p2 3 p2 + 12641315 s s + 6003 u3pd -
11904 pig 3 - 169203 pugpi s + 3607 ppus pag + 56443 g pg - 554p7 pid s - 312817 pid i e -
4254413 i ps g - 152007 pid s g + 6443 pidpg - 322003 pip - 1308 s e - 27983 i pd g
- 294203 pipE g - 121643 s g - 96pTpiug - 1203 paps - 21203 papdpe - STTL prapis g -
TT203 papid g - 611103 prapud pug - 240003 puagus g - 24413 puagug - 63 p3 g - 63 s g + 613 i3 pag +
Gpdpdpd - s - Y pdpsud - duapdpspape - 16000303 - 3pnpdpdps - 180 p3pi e
+ o papdpapd - Adpapdpapd - 2 pd g - 27 pdpd et - 10ppdpdaps - 15018 p3page
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

- 82upigpapsy - 96pipspsptps - 123 pspspiie - 2 papspapd - Alpapspspags s -
350 papapuapid - Ty - 16640 papt s - 1960 pipipe - 240 pipdnd - 1864 i3 s e
- 1l s pdpg + Opapispapd + 24 p3papd e - 3Tpa g paps g - 2601 i papd - o psps
- 30p1 p i3 - 16 iy pipages - 1641 psps paps - 146 pspdp - 204 p3p3 s

- 228u pbp3pg e - A2 s paps - 1164 p3pdpapspe - 68 pdp3papg - 275p pdps gy -
BT2p pip s - T12p pipua e - 390 ppua g - 906 ppua g s i - 5464 3 s pd g
- 12p1 i prauapss - 172400 3 pspapid pig - 264p pipspaps g - 1120 prpuspapd - 192p0 pdpf -
A8 pi i pus - 6701 iy - 6424 il - 1352p1 pipuid s s - 840 i i g

- T8uaps g pd - T2 3 pdpd e - 100241 pd g pspd - 42000 pipd e + 1500 3 papd

+ Bpuy gt prg - 1400 ppapd el - 184y i prapspd - 64p i3 puapig - 1201 pdpud

- G pis iz paps - Spnpapapiapis - 96 g - 144 pspdpd s - 15040 5 pd e

- A8y p3 il - 86 papgpaps e - A2 papdpag - 250 sy - 680m pap3HE s -
544 5 pa e - STOp papapa s - 1131 pspd g pspie - 609 sz pi g - 88pu ps i3 paps
- 3391 313 papd e - 3591 pApA papsp? - 12611 pdpdpapd - 192 p3ps il

- 12804 pipispri s - 12150 p3pspiypie - 15004 i3 pspiipd - 34141 p3pus i pspie

- 186270 g - T80p iz g - 25054 p3 s i i s - 2721 pi s s i

- 10081 pi3 s i - 26p1 pi3puafuages - 35841 papuapuafidpie - 75T p3puapiafid g

- 582pu1p3pspiapsisy - 161 p3papapg - 900 pdpips - 5761 pu3pdue - 11850 p3pipd -
B150p1 p3 i pspte - 15551 sy - 1228 pspfud - 352841 papitpd e - 4030 pib il s pig
- 1492pn iy - 1291 p3 iy - 1428 p3pdpd e - 2709 p3pdpdpg - 2070 3 pi s g
- B85y papdpg + 20 p3papl + LA pdpapine - 270p p3papdpd - 5064 pdpapdy -
325001 i3 puapis g - TApapd g - 1600 popdid - 30p1 popigpid s - 24p1 popdpd e

- 120 popgpapd - 15 popigpapispe - G piapipiapg - 288y popi s - 19270 pogi i e -
25241 pro iy 13 - 46241 propiy i s pr - 1921 profud i i - 64101 progid prapsd - 162001 pro g prapt
- 13841 piopidpapis i - A0p poppuapsy + 21641 popi3 g - 760 papdpips - 12000 papdppe
- 116441 puo i3 i i3 - 239441 proppd g s e - 83201 popdptpid - T32u1 papdudid

- 2025411 piopi3 3 A e - 1983411 puo i3 i pus g - 5761 pop3 g - 90 propipeasis

- 4461 propiz papii i - 669 popis papdpg - 42611 pop3papis iy - I8 papi3 g

+ 3361 popuz il - 480 popiz s + 528 papizpie - 2190 pojus i p?

- 37651 popusigpsfis - TO0u propspigpg - 1856 popizpigpid - 5970 popus i e

- 603001 popuapigpus i - 1520 propuzpigg - T804 puopus i iy - 319841 papuapil i3 pie

- 4887y puois i pa g - 33304 piofispig sty - T5641 piofispig g - 2470 prapispiapil

- 36541 pua s puafispis - 986 puofuspuapidpig - 10T4pu puoguspuapid g - 5454 puafuspiafs i

- 104y papspiapg + 96 papy + 1261 popSps + 3921 papSpe - 1548 popil i

- 16201 prapi s s + A8p piopug - 1400y puopug i - 5430 puopu i pi - 4905y propiypis g
- 92041 puapigpe - 12000 popi iy - 43520 propidpid s - 7050 popidpdpg - ABA4pu poptipus g
- 992p popifpig - 1081 puopipd - 1410 popipispe - 3414 papd g - 3690u papdpid g
- 19294 propi pspsg - 360p propipg + 1dpapiopapl + 12p popapidps - 2650 piopiapiapg -
644 01 proprapid i - 591 puoprapdpug - 25011 propuapis i - 40y pioprapd + 40 pispiy

- 32 s + 16ppzpipe - 30p s pd - A8 i pisiie - 6 pupdig - S s -
15p pusprapid e - 1201 piapeapis g - 240 przpapsy + 192 3 + 32001 pi g e - 2884 i3l i
- 3843 piuspe + 64 g - 168mpiuiud - 462u1pipdndue - 384p pdpdps g -
A8y i pd gl - 32pappuaped - 1081 pdpuapdpes - 138 ppapi i - 80 103 prapus o
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- 121 ppapig + 2801 p3p§ + 432 p3pis + 93641 3 e - T60u p3 g3

- 240 papapspe + T80p1p3IpG - TTOM1paps S - 2394 papipd e - 16644 i3 s g

+ 16 3 p g - 366 3y - 1350p papd e - 1983 papdpspg - 11524 pud s s g

- 138 pdpdpg - 36papdpapd - 223 pdpapitpe - A46p0 pdpapdpd - 42600 p3papd e -

19601 113 1 prs g - 2641 3 papi + 1284 pua i + 6724 pap§ s + 7844 pua e - 480y pua g 3
+ 1056401 s pes i + 1320 pap el - 146041 pus i - 376500 pa g i - 1400701 prgpu s il
+ 62041 pua gy - 928p1 puapuides - 3980p papuitd pus - 6030pa papuigpid g - 304041 pu gy s g

- 1T6p papidpg - 312p1 pzpipd - 15991 papipigpe - 3258 papipipg - 3330 pzp pd g

- 1512p papdpspg - 168pnpspdpg - Spapspapd - 14600 pspapdps - 493 pspapig -

16411 puspua i i - 5454 puspuapid g - 208411 puspuafis pig, - 244 puapuafad + 1924 pul pis + 9611 15 i
+ 126§z + T84 p§ps e + 3921 pgug - 10320 i pd - 162001 pipd e + 9641 43 s 113

+ 43240 31, - 700 i - 362001 p 13 6 - 49050 puf 2 p - 18400 sl + 40p e -

48041 g3 - 21760 p15 s pu - 4700p i i3 g - 4844y pidpd i - 1984p1 il puspi - 160 15 g

- 36101 11318 - 564 i a2 pr - 1707 pn pu s pag - 2460 g 3 a3 g - 1929pa1 2 g - 72011 03 151
- T2papipd + Apapapl + ApnpapSpe - 106p papdpd - 322p papdpy - 394pa puapid g -
25041 puafi g - 80pa prapsug - Spinprapss - o3y - Oudpaped - Apspspiie - 8pspy - 23t s
- 12u3pdpe + papipd - Apduiug - 2uspdpd - 18uspdud - 10p3pduius - 15usp3psue
- Alpdpspy - 64pdpspips - 82uspspiue - 2pspspipd - Alpspspdpspe - 35ususpiLg -
30papy - 83papips - I8papipe - 16papind - 124suiuspe - I4usping + 6uspiud +
23 - 3THopg s g - 26055 - papspg - 205 piud - 16p3p3uius - 16p5p3u31e -
T3udpdut - 13613 p3utus - 16203 pdutue - 42u3uduin? - 116p3udutsme - 68u3pdptud -
11043 pus il - 286413131115 - 35643 s i e - 26073 prgprigpid - 60473 prgpuidpus pr - 36443 s il i
- 123 papgpd - 17203 pspipdpe - 264uspspiuspg - 11203 puspdpg - 64usud - 194p3ui s -
26813 e - 3213 pgpd - 6763 ugps e - 42003 pipd - 52p3pipd - A88p3udpd e

- 6685 s g - 280pspipg + 15u3pdps + Spudpipdpe - 1403 pipdpg - 1845 udps g -
64pu3 g - Spdpspsl - Bpspzpiis - Spapapime - ASp3pdpy - 96us s s - 1005315 e
- A8pua s i pg - SO paKA s e - 4253 g - 100u3pa 0] - 340p3 3 s - 3TT5pA 16
- 380pspa 3 - T5Apspapt s e - 40653 ng - 83usuauiug - 33953 s 3 e

- B59pud g s g - 12615 p3pua g - 645 s - 5125 sl s - 4865 s e - T50S a3
- 17073 pspdpspe - 9313 pspipg - 520pdpspipd - 16703 puspd e - 181403 gy s g
- 6T2p3pspiug - 26p3pspips - 358usuapdpipe - TSTEsuspi AN - D82 uapT s -
161p3psp3pg - 300u3ubps - 192u3pSpue - ATAppGp? - 1260p3udpsps - 622p3pu5ud -
614p5p4 003 - 1764p3pipdpe - 20155 uguspg - TAGu3 g - 86uspius - 952u5pipdpe -
1806451 13 15 - 13803 s g - 390p3 g + 20u3pip3 + 14pspuiug e - 270u5pipud g -
506u3pT puE G - 3255 sk - TA GG - Spiapizpiy - 20papis s - 16245403 16

- 12pppi3 i3 - 15papiz iy pspis - Opopzpiiug - 144 uius - 96poppiue - 168uapi il 3
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520papspipd - 2132papspiipudpe - 3258uaps i udud - 2220uapspipspd - 504 pspdpg -
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24popi3pips - 365papspipspe - 986uapzpipdg - 10T4popapgudung - 5AD 3 pd s G -
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- 5402 s s + 16p2p3ug - 560uapiud - 217203 p3 e - 1962115 15 1 - 368215115 -
600papigps - 2176papgpape - 3525uapipisug - 2422papigpspig - 496puapipg - T2u2pip3 -
940p2p 1316 - 22762 i 3G - 2460232 g - 12860 p13 pspig - 240p2 g + 14popipg
+ 12p0p5pd e - 265pop3 s g - 644popdpd g - 591 popgpdig - 250uapi s - A0uapdig
+ 16303 - 16pzp4ps + Spapdpe - 20p3pipd - 32uzpiuspe - 4uzping - Suzuiud -
5pzpipg e - 120303 s g - 2p3pdpg + 64u3ug + 128p3pdpe - 144p3pdpE - 1923 1 s e
+ 32p3 g - 11203 pd - 308p3pdpdpe - 25603 pdpspd - 32udpd g - 320331

- 108p3pd e - 138u3pdpdpd - 80pdpduspd - 12u3pdpd + 80udud + 144p3uSus +
31202118 6 - 30402 1S p2 - 96121 ps e + 3120205 p2 - 388p2ptud - 119712t 2y

- 832u3pipspg + Spapipg - 244p3 s - 900p3 i e - 132203 pGpE g - TO8p3 1S s g
- 92p3pipg - B6p3pdnd - 2233 pfpdpe - 446p3pGpEng - 42603 pd B - 19613 s g -
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- 584pua i - 15063513 1 - 560pa g s g + 248puzpipg - 464uzpips - 19903 g pdpe -
3015uspugpapg - 1520y sy - 88uapipg - 208 puipd - 1066ps s pgpe - 2172ps 151315
- 22204343 2 s - 1008z pspg - 11203348 - Spuzpapd - 146p3p3ps e - 4933 iz g -
T16papgpdpg - 545puspindug - 208puspipspg - 24usping + 48ufus + 24ufue + 364443
+ 224pipspe + 1120008 - 344pdpd - 540pu§usue + 32pfpspg + 144p8g - 280515 -
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1433 e - 65 pop? - 3045 papiapia - 22003 papuapis - 2665 popispie - Sppapel - TOUS o piapis
- 5415 popaps - 18ufpapd - B2ubpopispe - 2805 popd - 24 - 1203 p3pa - 1203 pdps -
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24y 5 - 5641 pd s i - 3541 pspag - A papd - 53t papdi - 220 papdps - 30ut papdie
- 129ptpopspd - 164t popspaps - 204t popispape - A2utpopspd - 11208 popspspie -
69t papiapig - 2643 popd - 2460t popiis - 194pt popiue - 99t papuapss - 3284 popaps s -
185414 puopiapsd - 32pipapd - 10841t popidpug - 132t piopuspeg - 5Ot popiy -y - 20414 13 g -
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193t papuaps - 284t papd - 11200 pusppd pu - 13847 puspus g - A8pa puapsy + 2741y - 5200 pii s
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- uiHaps - pipapa - 24 pape - 205 s - 14pSpdpspg - Spfpdpsps - 1208 p3ps e -
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1045 g - 1203 pipuapes - 2203 3 puapis - 163 p3ps i - 1443 g - 23 ps s - 3445 ppd s -
1208 s iz s - 1818 sz e - 122003 s - 88445 i papagus - 14203 s puapi - 24405 sz
- T0pS s s e - ATufpapapg - 110p3pdps - 68ppspis - 1T8ufpuspdpe - 4403 s papd
- 1403 popapispe - 11T pspapg - ASppspdpe - S2upspspg - 36pusug - pipapy -
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- ATOp popuapus g - 21005 propuapig - 643 papdig - 162403 papd g - 1403 popus g - 4043 papi
- Bubpspa - 2ipgps - 2t pgpe - S0utpApg - 60uS i paps - T8UY S paps - S -
24pfpipspe - 14pdpdpg - 1720 p3pd - 384pd s - 420ptp3uine - 134ptpapap? -
400 p3papis e - 2420 p3papg - 16p5p3ud - T0u3papdpe - 94p i pu3pspg - 3605 p3pg -
BOUS pa gy - 612403 iy s - 438p papuid e - 49443 papig g - 1312003 papuf s e - 642007 s i g
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- T20pipipspe - 12203 ping - 96utuind - T30utuiudue - 910utuiuspg - 2384 piug
- 32 papy - 19208 papidpe - ATOpS papdng - 42005 papspg - 1085 papig - 325 pspe -
10803 3 pg - 1403 pdpd - 80pdpspg - 16piug + 2uiudpa + 3uiuspapa - pipspape +
Vi popf + 20pi papaps + VAuipapajs - pipapg - 20 i - 203 s e - 6ptpuapapd
+ 1Ap s pags - 203 s piaps - S s s e - SuTpama g + 2003 iy + 687 13 g ps
+ 503 3 pdpe + TOE papapd + 9613 u3papis g + 2603 p3papd - 81 pdpspd - 6pdpd g -
Buf s - 2p3 s e - TAPR BT - 24p3p3 S paps - SOuT B paps - 1203 L33 s e
- 12p3pdpdpd - 1783 s - 9013 pdpapd s - 23203 p3uspipe + 2003 3 s pagd

- 62pf iz papsite - MRS spapg - 24pT s s e - A8uTUG s s g - 23uTHaap -
10502 12 + 582123 s - 13202 12153 1 + 1562120212 + 18642 22 s u - 2902 122 12
+ 144p3 s papd + 248uF pdpapdie + 103uF pdpaps g - 103 p3papg - 24uT psps g

- 36pTps sy - 13ptpspg - Suipepaps - pipepdpe - S6uTuapdpy - 36u3uapspaps -
6OpT prapipuatis - 817 pua i s i - ST pa i3 g - 35845 prapu e - 32003 po iz s - 52247 popi3 i e
- 60 papizpapd - 2483 popdpapsiie - 20203 popdpapg - 24T papzpdie - 48uT papd s g
- 23pTpop3pd - A23pFpopspy - TTOpT popspi s - 110407 pops i e - 23443 popspipd -
104241 popuapipis i - 8444 popuapipg + 1203 popuapuapss - 17443 popiapiapid i

- 428417 puopuz puapus i - 23643 papuspuageg - 3203 papapdie - 964 papspEug - 92013 i pis g -
28113 paprapg - 4643 piopf - 46443 popiips - 380pT papiipis + BApTuopipd - 6803 ol ps e
- 530p papipd + 17603 papipd + 25813 uapdpdue - 26203 popduspd - 258utuapdpd +
14047 poprapis + 304u7 popapidpie + 153uT popuapis g - 843 paprapus iy - 6413 popap

- 3203 popdpd - T2 popid i - 523 paps g - 1202 pop - 243 udpd - 1003 i puaps
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15503 uapaps - 16pipapspe - 64uipspdpg - 92uipspdpg - 56utpspsps - 1203 papg +
BAptpg - 92uipfus + 134pipiue - 464uFpipd - 760 ugpspe - Dlpiugug + 36uTuiusd -
6807 i s - 10603 i pspe - 252uipidpg + 88pi pius + 17203 pipdpe - 26203 pipz g
- 51677 pdps g - 160pipiug + 56pFpapd + 15203 papspe + 10203 papdpg - 84ufpapiug
- 12803 papspg - 38pTpapg - 16pfpspg - A8 pdug - 52uindug - 24pTuspg - Apipg +
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178 pi3 prapis g + B2 i3 papsd + papdpigpa - 1200 p3pdpd + 8papd s paps
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+ 110 popisprapts + 340p1 propapapips + 330 piopiapuapidpig + 884 piapispapts i
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601 poptapey + 3501 popapisps + 640p poprapidpg + 49841 popuapd g + 16440 popiaps g
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101 p3 prapdpeg - TOp1 3 papssy - 33papspap - DOu1pap§ - 648 papfps - 492p il pe
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+ooddp? 4+ adpdud 4+ 20pdpdidus + 14312030 + SBuspt + 60uduspips +
A3 st + 64p3pspipd + 108u3puspipspe + 423 pspiug + 1630 + 80usuius +
T2udpd e + 152031302 + 256u3p3pspe + 1083 p3p2 + 4631208 + 17813 pcpipe +
VT8p3pips g + S2udpipg + papzud - Suspdpd + Suspdpdus + 2p3piuiue - 40usp3mud
- A0p3pappe + S0u3pApaNE + B8usu3pAps e + Ouapapdng - BSu3uap] - 2u3papis
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+ T3y + 352u3piudne + A98pspdpdug + 2T0uspiuspg + A8pspdpg - Bpapsp
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110papspips + 340popspipdpe + 330uspspduing + 88uopspipspy - 12p0pspiug -
8puapy - I6uapfus - 80uapfpe + Ouapips - 116p2pi3pisp6 - 136papiug + 240uapgu? +
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+ 164popspspg + 16papiug - 163t - 12p8pdps - 14pgpiue + 2u3pind - 4udpspspe
- Bpapapg - 64pdpg - 112p3pips - 152p8pu5ue - 40p3uiud - 144p3uiuspe - 96u3usug
+ Buspdps - Ap3pindue - 36p3piuspg - 18uspgug - T2u30g - 2T6p3pgus - 318u3ut e
- 186p3pgpd - 644pdpdpspe - 426p350g - 16p3paps - 216p3uGudie - 4320305 s g -
208p3 g + 30p3pdps + 603 piudue - 10u3pip3HG - TOu3pTHs G - 33u3pTHG - 16u34] -
21635415 - 164138116 - 26811341313 - 800315 s i - A1Apz g - 363yl - 478z e
- 912035 - 398uspipg + TOuspipus + 136u3puiudue - 128uspipdg - 352u3puiuspg
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18ug g + 8y - 1645 + 2815 i - 9603 - 160G pus g + g + 60p3 42 - 116313 g
- 272p5ps g - 56pGpg + 12055 + 364ugpdpe + 208pipsug - 96pipuspg - 52 +
1120303 + 432updpe + 636uiudpg + 392uipdug + 64uipspg - 12p3ug + 20p3us +
140033 e + 320u3 s + 332ufpdug + 164pdpdpg + 3203 s g

ax2 = 2uipgpa - pipops + plpspa + Auipaps + 2uipape - pipd - 6pipsps +
A pdps - A popspa + 3uSpopsps + 6pdpopd - 233 papaps - 10udpopape + 12003 popd
+ 6ulpopspe + pipdpa + Tdpspd - 8ulpuspaps + 3uiuspd + 12p3pius + 6pipdue

1 13 1 4 1 1 5 1M4 1H4
- 2ptpapd - 2003 papspe - ApSpapg + Sutud + 6ptusue - 2pipspa - 8piuspapa +
Api papapis - B0pT 5 + THTp3 s - 22403 s pajie + Sps s e - SuTpapspa + 3pT a3
- 20413 popus i - 1313 popusprapss - 2603 popspuapis + 1203 pops il + 13pF popspis s + 43 pop
- 973 popii s - S papie + 333 paptapil - A0p3 popaps e - 34uipapapy + 2415 popid e
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- V4R pap + 16pFpdpe + 15p3pdug - papsps + 2uapaps - Spapdpapa + 2u1pipsps -
Opapispd - Spapdpaps - 6papdpaps + 12 p3pE + Suypdpspie - 31 P33 e + p 5HAS -
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- Buipapaps - 66 papdpe - T papaps + 2mpapapisie - 2 pipspapg + 28p1pspd +
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Apypopi3 s it - 3201 piaptapey - BTpapiopapii s - T8 papapiipe + 150 papispiafid

- 13p1 propspiapispic - 284 popspiapsg + 16p1popspd + 30p popspdpe + 14 popispspg -
1481 popii s - 88y piapifpis + 27 prapipis - 1564 popid s e - 1020 propiy g - Ap propua s
+ A2y popuaprd e - 13401 proprapis i - 244 propragsy + 304 puopig + 561y propid s + 4240 popd g
+ 12 pops iy + Spapdpd - 30papdpdus - ppdpdie + papdpapd - 16p1pdpapsie -
Ap 2 pap + 2 p2ud + Apgpdp2ig + 200 papd - 645 papd s - 57p1 pspi2p
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17p3pspdpe + 20p3pspaps + 20p3pspapsps + 18u§u3u§’ + 30u3pspdpe + L1p3pspispg
- 24pspd - 2uspips - Adpspine - Tuspipd + 2pspduspe - 21pspugug + 56uspapd +
7202 papdie + 2802 papspd + 2802 ud e + 36p2p2p2 + 1002 s pd - 10pap2p + popduis
- Buopdpiue + Gpopduap? + Suopduapsie + Spopdud + uapdpdue + 2uopduspd -
1641241301 - 3Bpapsiips - 52uapspipe + 15puopspipd - 13uapspipspie - 28uapspiiug +
B2puopu3ptapts + 60papapapid e + 28 uopspapis g + 20papisis + A8papapd e + 33papspipg
+ Gpuopispsig - TApapips - A4popipe + 18uopip? - 104uapdpspie - 68uapiug - Apapips
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+ 2p3pEpg + Suapl - 32uspgps - 3Buspipd - 104pspduspe - 26uzpipg + 10uzpdud
- 13ugpdpdpe - 56uspipspg - 12uspipg + 16papaps + 40pspapdpe + 28uspapdpg +
Spaps + 24pspspe + 22uspdug + Gpapdug - TAugpd - 88uiuspe - 20ppg + 12uGu3 -
104ppd e - 1364 s g - 2843y - 2pips + 28ufpdpe - 13pdpdpg - A8pdusug - Sujug +
24papi3 + 56papspe + 56papdpg + 24papsug + 12u3ue + 28u5ug + 20p3 g + 4pd g

az = pipd + ptpops - pipspa + dutpops + 2utpope - 2utpspa + 2utpsps - 2pdpd -
2t prapts - Aptpaps + Aptpd + Aptpspe + pipdps + 3uSpdps + 2p3 e + ppopd +
200 papis s + A popis s + A popispe - I popt + 1208 popuaps + 8ud popis e + 4t o
- 2 pd g + 208 pdps - 14 nspd + Apdpspaps - 1203 pspape + 4 psp? + 81 psps e -
12033 - 18 s - 320 pipe + 1203 papd - 1643 papig + Suipdue + Suiuspg - 207 s pa
+ R pspe - pipspg - 1R phpaps - Apipdpape + pipspg + 20t papdpa + pipeps e
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4. Deformations and quiver representations

- 6pdpopspl + 2pipopspaps + Adpapspspe + 3utpopspd - 2603 e - 203 papd s
- 32udpopdue - 213 apapd - 1203 popapspe - 8pdpapapy + Apdpapspg + 203 papd -
10uFpdpd + 4pd papaps - 613 p3paps + 203 3 s i - 3643 pa el - 1203 pa il s - 6043 3 il i
+ 2p3 papiapd - 2203 pspapd + Apdpspdie + 613 psps g - 2603 g - 52udpdps - 8813 pd e
- 2pdpipd - 64p3 pips s - 80 piug - 14p3 papd - 1203 papid e - 16003 papis g - 2003 papid
+ Apipdpg + ApTpspg - 2 pipspa - i - 2papapmas - A pipape - 240 b p3Ha
- Bpapspapy - 10papdpspaps - Suipapspapie - Spupspy - 33uipdpaps - 24 pspiue -
Spnpipiapi - 24pip3papispis - 12u1p3pagg - 6pn popipags - 20 propzpape - 16 popizpg
- 18ppiopispipis - 244 popispipis - 181 piopispais - 2641 popispapispi - 100 iopapiapg -
B0uapapy - 28p1papips - 6Ap popipe - 631 popipd - 84 poppspe - A8k popii g -
12401 proprags - A8y propuapidie - A2p1 piopiapuspig - 120 popuaps - 16pyp3pd - 184 p3pdpe
- Gpapdpapd - A pdpapsps - upspapg - A0mpspy - 32mpspips - 96u1papiie -
1841 pu i g - 484 pua i s i - 6611 papud g - 120 puauapss - 26 a3 prapgpee - 204 puafoafis fig
- 124 pr3prapiy - 24 115 - 60p pjpas - 1004 pu e - 28p1 pidpd - 12811 s e - 12811 pi g -
A2py p3pd - 84y i pd e - 96pu i3 pspd - 60 i3 pd - Gpuapuapid - 32p1 papidpi - 4201 papid il
- 24 papis iy - Bpajuaig - 2p3psp - ApSpl - 2p3pius - Audpine - 2p5papg - Ausps
- 10p5papips - Suspapips - duspg - 22p3pius - 16p3pipe - Spauipg - 24uspiusie -
120303113 - 6piapdpis - 2papdpipe - Spiapsid - 12papspiius - 16papspiipe - 18uapus i
- 26pap3pspsie - 10uapspig - 12093 - 14papgus - 32puapipe - 42papip? - 56pa i ps
- B2puopipg - 12pppipd - ABpopiudpe - A2popipspd - 12p0pipd - 8udug - 12u3ptue -
OpARANE - A3 s i - Ap3pdpg - 16pap] - 16pspdps - A8uapipe - 124303 - 32p355 s e
- Adpgppd - 12ps 3 s - 26p3p3 B e - 20 ps g - 1203 - 8 - 24pg 45 - 40p3 6 -
14pit 3 - 645 s pe - 6Apgpg - 2843 - 5673 g e - 64y s g - 40ppg - 6puf s - 320313 e
- 4203 B g - 24pdps g - 8udug.

ay2 = - iy + pips - Spipa - 208 pe - 20T s + g paps - 8 paps - 6pipape + pips +
Tuipspa + 2utpsps + 3pipspe - pipd - 8utpape - 8uTps - 120 pspe - Suipg - 2
- papsps - 8pap3pa - 10pmp3ps - 10p1pdpe + Dpapiopisiis - 3papapisis - 240 papis s -
2Tp piapuapss - 20 piapapis - 1841 puopl - 36 puapispis - 161 p2pg + Spapzpa + 15 papg
+ 10ppapiapis + 15p1piapiapis - Spajispis - 4papapspie - papapig - Spaps - 12ppgpe -
27p puagss - A0p prapuspie - 164 prageg - 12013 - 3601 pi3 s - 32 pispig - S iy - iy - pipes
- dpdpa - Tpdps - 6udue - pAp3 - 2uduspa - Spdpsps - Sp3psue - Sp3u3 - 20u3paps -
20p5pape - 19503 - 32u3pspie - 13p3uG - Buapaps - 2uapipe + Suapiap - Gpapiaiajs
- dpopzpaps - popapd - 1Tpopapsie - Tuopsig - 2Tpapips - 20papiue - 36uapaps -
T2papiapisis - 32papaig - 24paps - 60popZue - A8puopspg - 12u03 + Sp3ud - 3u3ud -
Apdpspe - papg + 10uspl + 10pspdps + 15uspipe - Ouapiapis - Spapiapispie - 2papiapig
- Gpapd - 1Tpapdpe - VApapspg - 3uapg - 4y - 8uiue - 27uing - 40p3uspe - 16p305 -
24pa i3 - T2uap3pe - 64puapis g - 16puapsg - 12405 - 403 pe - A8pB g - 2445018 - 44t

axzy =4papio + paps - paps + Spips + Apipe + piaps + Spapia - piaps + Apiaps + 43
+ 2uzpia + 2p3p5 + pape - i + 16paps + Spuapis - 3 + Suspe + 4G
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

axy? =2p1 - 2p2 + 4y - Aps.

axy = —2pipe - pips + pipa - Aptps - 2utpe + 4pdpd + dpdpops - Spipapa +
16463 paps + Spdpapis - Spudpspia + 83 usps + 2utpspe + 4 - 1643 puaps - 613 puaps +
164313 + 1663 pspte + 4 g + Apips + 10p3pdps + 28ufudpa + 18uipdus + 2443 3 pe
+ 8ullgud + 2413 popapa + 383 papaps + 36u3papape - Spduapi + 10203 popaps +
6202 paptapts + 30p3uap? + 84 popspe + 420 g2 + 2243 + 164213 + 1242 12 g
- 24pipapt + 4813 uspaps + 12pfpuspape + 38pipspi + T203pspspe + 2T pspd +
6pips - 1603 uins + 10203 pap? + 12403 papspe + 37p3papd + 200303 + 84p3pdpe
+ 8dpiuspg + 22uipg + 2uips + Spipdps + 16pipdps + 14papdps + 16ppdue
+ S pdid + A0uippaps + 3duipduaps + 38uipapsie + 60u1pdug + 80u p3pags
+ 104 p3paps + 38ppdud + 82 pduspe + A6 pdpd + Appopd + 32 popdia
+ 30p1pop3ps + 30uipopdus + A8upopspi + 152pn popspiaps + 1444 popspaps +
661 p2pisp? + 1440 papspisps + T2p popspg + 210p1 popdps + 1381 popi pe
+ 144 poprapi + 3681 popaptspts + 18041 popuapd + A8y piopid + 150 propid i
+ 164p1popspig + 56p1piapy + paps + Spapips + Suipdps + 8pipipe + 6413
+ A8 Bpaps + 30mpduE + 60uipdusps + 2T pdud - 32umpspd + 96uipspius +
24p1 puspip + 1520 papapd + 2881 puspuapispis + 108p1 puspuapg + 4dpn papd
+ M4 pspipe + 1dpipspspg + 42upspd + Spapg + 12upips + 210ppd
2761 pips e + 8Tpapdpg + 96p1papd + 368pnpapdue + 360p papspg + 94 prapg
240 pid + 100 i3 pg + 164 pdpd + 11201 pspd + 24papg + pips + dpdpa - paps +
2 + 20313 + 1203 s + Suduaps + 10uduape + 16u3u3 + 2803 paps + 3203 paje -
6pipd + 10u3ps e + 1205 ug + 20303 + 16p5u30ma + 1203505 + 14p3p3 e + 40u3pus )
+ 68u3pspaps + TOuspapape + 24p5pspd + 58ususpspe + 33uapspg + 405 +
80ps s + 104u3pdpe + T6p5papg + 1645 paps s + 9205 papg - 14psp3 + 205206 +
BOuSpspE + 260318 + paph + Spopips + Spapdus + Spopipe + 32uapdud + 60uapSpuaps
+ 60pap3paie + 24uopdpi + Sdpspdusie + 2Tuapdud + 32uspapt + 152u0pspius +
14dpopzpipe + 132023 papd + 288uapspiapsie + 144popspapg + 32uap3ps
+ Wdpopapdpe + 126popapsp + 42uopspy + 140uapips + 92uapipe + 144uopipd +
368papipspe + 180paping + 96puopaps + 300uspapdpe + 328papapspg + 112papap -
5papd + 20pp3 e + 10500023 + Ypopspsy + 24papg + 2uipa + 2085 + pips +
Spip + 16p3paps + 16p3pape + Spips + 16p3uspe + 6p3pg + 64p3pins + 48u3pde
+ 60p3pap? + 120p3papspe + S4pipapg + 16p3ud + 54p3pue + 5Apsusug + 150508 -
164340y + 64papips + 16p3pdpe + 1523502 + 288uspugpuspe + 108uzpipg + 88puapiap
+ 288uspaptie + 288uspiapisig + 84pspapg + 16pusps + T6uspdpe + 126puspiug +
84pspispid + 18uspd + 205 + 6ptpg + 140p3p2 + 184p3psps + 58udp2 + 96p2u3 +
368u5piue + 360ususpg + 94pipg + 48uaps + 200uapdpe + 328uapdpg + 224paps i
+ A8l - 643 + 10pdpe + TOp3pE + 94pu2ud + A8uspd + 8y

+
+

axz =- [ips - Bpipa - 2003 e - 2u1 13 - 241 fiafis - 2401 pofua - O pafis - A1 piope - p i3
- Apaps i - A psps - A psps - Oppd - A pages - 1240 page - 6p1 3 - 8 pispie - Appg -
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4. Deformations and quiver representations

L5 p3 - dudpia + paps - 2i5He - papty - Aoz - Apops s - dpopizie - 2t - 1200 pags -
Sapajis + 3uap3 - Apiapsiis - Apuapg - 203 - 2p3ps - pae - Auspd - Suspiaps - Spsfiapis
- dpapd - Spugpspie - Bpapg - Opf - Apdps - 12036 - 120403 - 16papspe - Spapd + 243 -
Ay g - Spus g - 2pip-

ayz = 2u3 + 2pap + paps + Tpaps + dpps + 6pape + 205 + pops + Apop +
Tuops + Gpops + 13 + 2uspa + 2usps + uspe + T + Spaps + 12pape + Tud +
1245016 + Hpg.

ao = 205 pdpa - S pdus + SuSuduspa - 208 3 usps + S pdud + 104 udpaps
+ 10p8 B paps - SpSpspd - Al pduspe + ApSpopdig - ppapdps + 618 apsd
+ 18448 piapusprapis + 1608 papipapss - 645 popsp? - 4pfpopspspe + 2uSpopl + 1543 pop s

1 1 1 5 1 1 4 1 4

+ 1208 popipe + 18 papapd + 36p8popapsps + 16p8 popapg - 8ufpops - 128 pop3pe
- ApSpopspg + pSpdps + 208 pdpg + 8uSpdpaps + 6pfp3pape - pSpsud + pSuspud +
V20 pspips + Spipspipe + 1805 pspapd + 3208 pspapspe + 1208 papapg - 4upsps -
ApSpspzue + 4pfpips + 2ufpipe + 15pSping + 24pspipspe + Suluiug + 1208 papd
+ 36p papdpe + 320 papspg + SpSpapg - ApSps - 8ulpdue - Aulpdug + 2p]papa
+ 10p] p3papa - 20  pipaps + 26pipapd + 6pfpbpaps + 2201 ppape - A pipspe +
VT iz - A i s + T3 papapd + 3647 s paps + 724 piapapeapis - 100 sz pd
16p] 3 s s s + A6l S + 1367 33 s + 1460] 33 6 - 20 3 pap? + 84u] pdpuaps e
+ T0p] p5papg - 20u] papdpe - 16 paps g + 120] papipes - 20 popdps + 664 papipg +
S4p papipages + TR popipiapis - 12007 puopi s - 12007 pogii s i + 7611 propis i
+ 27007 popiz s + 260 popapipie + ASpT papapiap? + 2320 pojiapiapis i
+ 1520  popizpragug - 160 popuaid - 484 popizpdiie - 241 papiapis g + 2241 pajy
+ 1T popips + 146p popipe + 2520  popipd + 540p] popipspe + 2564 popdpg -
164 popapl + 120uf popapdie + 24847 puapuapis g + 104 popuapeg - 32007 piogid e
- A8 T g2 - 16l popspd + 3uTpdus + 1907 pdp2 + 24pT S paps + 2407 P pape -
2T B2 + 2007 1203 + 13207 213 s + 11007 122 g + 54T pdpap? + 14807 i uapis g
72Tl - Bulpdpd - 120 p2pdie + 130T papd + 15207 papdus + 108 s e
+ 270u{ paping + 5200  papiuspe + 21201 papi g + 3201 papraps + 232407 papuapidpie +
B304y pspapis g + 9647 papuagiy - Spipspd - 32uipapdpe - 24pipusping + 44pipdps +
2207 g + 174pT 302 + 292073 s + 10007 i3 p2 + 168721 + 540uT 22 e +
51207 pgpspg + 136uipdpg - Spipaps + 80uipapidue + 248ui papdpg + 2084 papsig
+ 484 papig - 16p] pape - 32T pdpug - 16p pdpd + pSpdpa + TuSugpapa + 19uSusps +
1208 s praps + 168 popapss + 180 pipda - pS i pzps + 1070S pdps gl + 420 pudpspaps +
8348 13 i prapte - 68 1 psprs s + 1420 pdped + 10505 3 pd pus + 22848 13 i s + 528 i paps?
+ 1000 p3 puapus is + O s pajug - 618 s g + 2208 i pi e - 208 papd s + 1998 pap3 g
+ TS sz paps + 1528 pdpspaps - SuSpapapd - 16pSuspususpe + 450uSpususpl +
533u s iy s + 82508 pipa e + 96uS iz papis + 3564 sz paps e + 33445 3z papg
- 30uS 3z pdie - 36pSpspaps g + 230puS 3y + TT6uS s + 88208 3 i e
+ 2698 p i g + 115008 p i ps e + 8450 papdng + 108 pspapd + 2406 p3papdpe +
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

40448 s puapus i + 2368 p3puapsg - 30pSpspEpg - 24pS sy + 13pSpapizpa - S papizps
+ 1520 popdpl + 69pSpapipaps + 118uSpapipape - 6pSpapips - 104 popdpspe +
4558 iz iy + T24pS popizpd s + 92448 popd e + 1118 popi3 papd + 49248 papdpaps e
+ 38648 poptdpapd - SpSpopdpd - 4848 popdude - 34pSpopduspd + 42208 popis i

+ 17098 popus s + 175018 popap e + 95708 popspdu? + 301208 popua il s e

+ 18540 popua g + 108ufpapispuaps + 5T0uS popizpapgie + 110208 oz papes g

+ 544pS popispiapsg - ASpSpapispidpe - 108uSpopspdng - 48uSpapspspg + 106uTpapuy +
883uS papps + TT4pSpopype + 14768 popnd + 33468 popiiuspe + 1670u8 uopng +
308 papipd + 208208 popipdpe + 30924 popiius g + 1228ufpopdpg + 11048 papuapiy
+ 280pS popapdpe + 666pSpapapdng + T88uS papaps g + 280uS popuapig - A8 popid g
T2 o - 248 papspd + 3pbpds + A1pSpdu? + 2618 udpaps + 338 pdpapg -
B2 + 146081318 + 304481312 s + 32408 13112 g + 698 pdpuap? + 2368 i3 puapis g
141 B a2 - ApSpdpd - 10p8 32 e + 1818 p2pd + 910u8 1203 s + 8218 213 e
+ T24pS P + 848pS pa s e + 9520 P g + TAuSp3papd + 49205 p3papdie +
TT2uS 3 papsig + 29408 pipapg - A4Sy - 3208 s - 34uSp3p3ng + T3pSpapd +
84418 pgpuips + 63648 psppe + 1709u8 pspiip? + 350068 papipspe + 1523u8 pspiug +
6385 pzpipd + 3012uS papdpdpe + 3708uS papdpspg + 12326 papiug + 54pSpapaps +
380uS pspapdps + 110208 papapd g + 108848 s papspsy + 3004 puapuaps - 2448 pspipe -
T2 s - A8pS st + 21208 s + 1068 u3ug + 883 pdn2 + 1548u8ud s g +
544pbpdp2 + 98481313 + 33468 13 2 g + 33408 B s + 93083 + 15408 2
+ 1388 e + 309208 i3 g + 245618 s g + 592 pipg + A4pufpapd

+ 1408 prapisprs + 4440 papidpg + T8 papiz i + 56048 pajus g + 12008 papsd - 248 s g
- A8pS 3y - 24pSpR g + 248 P s + 6p pspg + pipdpaps + ApS S paps + Spd H3p3i
+ B3pS i pspd + 2508 ppspags + 388 pdpspaie + T205 apd + T9uS s s

+ 14l pspipe + 1003 pspapd + 5203 popapsie + 4208 pspiapg + 1463 313

+ 159pS pdpaps + 6643 pbpzpaps + 10645 pdp3paps - 203 s ps e + A828 pdpapd +
A48 1B papi s + 70605 pdpsp g + 11605 pudpspiap? + 29903 1 s piaps e

+ 24643 i s puagig - 6p s ps g + 430u3papd + 53203 puiuips + 98043 3t e

+ 366p3 s pipE + 892p8 s pdpspe + T36uS s ptug + 38t pspapd + 24603 p3papdie +
3333 s papispig + 178 p3papsg - 4pdpdpspg + 13u3p3pspa + 21803 papd g

+ TS s pags + 13603 p3ps paps - 4udpdpdpspe + 99703 uaps s + 8688 usuzudus +
145903 p3pdpipe + 20203 papd s + 5610 33 paps e + 48673 s apg

- 10u3 3 p3HE G - 2003 o 3 ps i + 155403 iy + 269503 i i i s + 402013 i i i
+ 121448 3 s pdpd + 38758 3 pspd s e + 30933 pdpspipd + 25448 13 s papd

+ 887uf papspapid e + 12938 pdpspapsig + 72203 s pagy - 30p5 sz pdpg

- 32ufpapapspiy + 658pS sy + 246205 s + 294603 wspgpe + 15004 papdpE +
BABBYS 3 i s i + 395613 i i + AT s pdpd + 262003 3 i pd e + A0STpul s s s g
+ 209208 ps g + 69 pdpapy + 544pS 3 papdie + 993ud pipapdug + 94648 s paps g
+ 38043 3 papig - 2003 3 pd g - 1603 s g + O ol g + 13908 popizpf + 4703 popizpaps
+ 8205 papizprapie - 203 g s pie + 82445 ol + 81543 popd s + 123443 popid i s +
TATUS puoprpapi? + 48643 po i prapis e + 4008 puopripape? - 12063 popiipi pig - 14ps po g pis p
1 TAL S ot + 383318 popi2pid s + 492445 popid b g + 165043 popduu’

+ BAT8 o s e + 3930p3 poppipg + 27203 popdpapd + 104743 popdpapiz e +
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4. Deformations and quiver representations

1734438 papiz papus iy + 90843 papizpapsy - 1643 popiapdie - 6003 popi g - 3643 popil s i
o+ 1344008 o gt + 605718 popis it s + 652205 piopia e + 51935 popra g il

+ 1546405 popizpipspe + 962003 popa g + 1600pS popapipd + T389u3 papiapi i e
+ 1164403 popua sy + 536413 popapdpg + 26503 popzpaps + 117645 popzpapde +
2403115 poprspapdpg + 258443 popuspuagis i + 976185 o pispiapg - A popis i i

- 96uS popapdpiy - A0uSpopspspg + 294uSpopl + 2576p5uopius + 2350u5 papfue +
4806447 pua i i3 + V1ATOWS propig s e + 599043 papud pig + 193643 puopid i + 1058445 puo iy i3 i
+ 1521643 popiidpus g + 613643 popid i + 82503 popiipis + 345643 popu i3 e

+ TT55S o pa g + T8883 papui pus iy + 2656415 pua i i + 6045 papiapid + 5TOUS paprapiz i
+ 13208 poprapid g + 1770p5 poprapd g + 13683 popaps g + 40003 popiap - 32018 popid g
~ A8B ot - 168 papspd + ppSpa + 33u3pdpd + 1208 B paps + 1805 pdpaps +
23643 pgpy + 2783 pzpdis + 363pdpspdpe + ATps s paps + 16403 3 paps i

+ 104 ppagg - 208 pspd e + 6088 g + 164848 1l i s + 184848 13 1 e

+ 8153 papipE + 24688 i s e + 153108 g + 98 i papd + 48645 pipapdpe +
8001 i prapus i + 352415 i prapigy - 8l il pu - 14p5 p3pd g + 63503 3 + 348205 3 puipus
+ 334143 e + 38333 3 g + 98483 p3 i s e + 5328 A + 110047 3 i3
+ 54T A pd B e + TRO0UT 3 g ps g + 312203 3 s + 13643 papuapis + 69818 3 prapid e
+ 17343 p3pappg + 181603 pu3papspg + STOpS p3paps - Spspapspe - AOps pu3pdug -
363 p3ud g + 23108 s + 268845 pspii s + 213205 pspi e + 605715 g

+ 1304445 g s e + S98TpS papigpg + 346208 sy pd + 1546448 s i e

+ 1924043 papuid s iy + 669643 sty + 80043 papips + 492643 puapd i pe

+ 1164415 papt pd g + 1072845 papd s iy + 309208 pua g g + 106415 s il

+ 588uf s + 160205 pgpuapid g + 258408 paprapd g + 1952003 pia puages i

+ A80pS papapy - 248 papispg - 64pSpapdpg - A0uTpapdpg + 588uSpufus + 29445 e
+ 25763 pdpE + 47003 pdpspe + 1692ufpdpg + 32043 pipd + 1147003 pipdpe +
119803 s g + 3474p3 pipg + 968u pipy + 705643 uudpe + 1521643 u g

+ 122723 sy + 3088p3 pipg + 330p3pdps 4+ 17283 pdpspe + S1T0uS pipdug +
7888u i pE g + 53123 pdps g + 11923 pd g + 203 papd + 22843 a3y

+ 6604 papudpg + 118043 papdd + 136815 papdpug + 80043 papspeg + 16045 papg

- 163 pgp - 3203 pdpg - 1603 pEpg - pipSud + plpdpspa + Tuipduspl + pipduspaps +
Sutiduspaps + 10p3ud - Tt pdpdus + 103032 s + 2ud S paps e + Sutuduap +
Bt g + 465 pspzpd + 14uipopspaps + 268 ppzpape + 15708 s

+ 105  pudpapdps + 204utudpspie + 1208 papspap? + 710t s paps e

+ 64pf sz pagg + 139t popy + 178 s s + 302u pa gt i - p g g

+ 1961 pypiips e + 20201 paping + pipapapd + 24u papapde + T30 papaps g +
A6t popapy + Aptpdpgpat 1020 p3pdpd + 33ptpdpdpaps + 528 33 pape

587 pdpdpd + 451 Rl s + T35ut i e + THpl B pdpap?

+ 2550 i 3 agis s + 2074} 3 i paps - iy pipd s g + 1201403 pd gy + 1433405 13 i o
+ 2482p  pipapitpie + 62201 sy + 1932008 s i ps e + 16110 s pa g

+ 5 b pdpapapd + 3Tt pdpapapd e + 601t i pspapspd + 324t s puapd

- 2u 3z sy + 802uf il 4+ 1203t pdpdps + 2294p  pspdpe + 960 i3

+ 276641 i i s pro + 24103 s g + 84uipapiud + 11301 p3pd pd e

+ 19228 3 pfps g + 1080 ppd g + St paps + 10208 13 papid o
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

+ 385 i puapiz g + 430 S paps i + VT34 pspagg - i paps g + 3p s

+ 1094 sz g + 33pipapspiaps + 52p papapiaps + 908 pspAws + 66501 upgpdus +
109641 3 s + 121 s papd + 357t 3 papis e + 290 s i papd - 21 s 3 ps g
+ 2789t 22t + 3608t P2 pdud s + 5887l 2 udud e + 1533t pududplpl

+ 463001 s s s e + TS oz pipg + 180 pspzpapd + STOuT 33 apd e

+ 13244 ps g pagus g + TA208 g pagsg - Sptpapapd g - St puspips g + 333201 sl
+ 7268t 3 s pips + 1091l pdpspipe + 46650 papa i + 15190pt pdus s e +
12009u1 papapidpg + 1478  pspspgud + 6454p i pspapipdpe + 100107 p3pspipspg +
532641 iy sy + 98 papapapts + STAU papapapdie + 200740 5z papid g

+ 20181y s prapis iy + T8 papapagig - 10t pd a3 g - 10p] pspapus g + 1190p1 5 pg
+ 48324 s i s + 6070 s s + 3793t p3 il + 13902 p3 s e + 1025541 13 g 1
+ 2260pf Rt pd + 902644 13t 2 e + 14778 3l s pd + TTASpt pudpdpd + 22208 1315 s
+ 2760p1 p3 3 3 e + 6440 s g g pg + 67160 papd s g + 26498 s g + 9t s pap?
+ 19641 papapis e + 91043 p3puapid g + 14384 pipuapidpg + 10750 s papus g

+ 3324 i prap - SHIRSHE LG - At s pspg + i pepSpa + 54utpepdpd + 15 pepS s +
244 o3 pagis + 6184 popipd + 44501 popizpis + TI8 popiz i + Tout papizpaps +
2234 poprpais e + 180p  popspapd - pdpopigps g + 2476 popipd + 36184 oy s
+ 5388uipopipii e + 13834 o + 43984 o3 i ps i + 34040 popi g
176 o + Tt popd papd g + 11767 pop papisp? + 6200t o puaps?

- Gpu o pa g - Op papi sy + 4083ui popi + 1IN pop3 s + 145540 popi3 e
+ T302utpapdpdpd + 234250 popdudpspe + 167560t papdpdpd + 2164pt popdudpd +
9480 popipi i e + 149594 popig i s g + TASApT popdpa g + 1950 popd s

+ 1248pi popdpuapidpe + 2730p  popspapdig + 2822p  popdpaps g + 10884 ol puapig
- Spipapapdng - 24p papipdpg - 13pipapipspg + 26884t popap + 1330501 popz g s
+ 1492611 pop e + 14598 popuapiipd + 43500 popiapipspie + 277100 popuapig +
646442 papapdpd + 30678udpapspdpdie + ATTSTUA popspdpsp? + 2218458 popspdpd +
159503 papus i pid + 9044pd popusppid g + 203644t popisp 2 pd + 2115008 popuspi s +
TT5641 popia iy g + 8Tt papizpiapd + 9A0pT popzpapspie + 283240 pojiapuapid g

+ 411048 poprspapp + 3137pt popispiaps g + 94448 poprspaged - 164t popis it pd

- 30ptpopspdpg - 120 popspspl + 5164t popi + AT60u noplps + 4498utuop§us +
96841t papipd + 24258 papfps e + 13190 papdpd + 5180pf popiped

+ 27942pt ot pie + 409324t ot pis i + 1701203 popug g + 243043 po g i

+ 125200  popidpdpe + 29874u popidpd g + 30758k popidpis g + 1056041 popu g
20608 puopi2 il + 301002 g2t e + 9036 pop2pd 2 + 136681 ap2pld

+ 10533p1 papi s g + 304843 papdpg + Ty popap + VT4 popapdies + 980 popuapis g
+ 20164  poprapi iy + 2187 p poprapd g + 130647 poprapus g + 32007 pojragsd - 8yt papidpig
- 12pfpopEug - Apipopspd + pipSpu + 2pipSpaps + 3pdtpSpaps + 150ptudud +
108u p3pips + 16244 p5pi e + 1501 p3papd + 484y pu3paps e + 3601 papapg + 7420 pzpy
+ 12365 pzpips + 1650t pspiie + 4450t psping + 143644 pspipspe + 101671 iz
+ 50pd pdpap + 2230t b papZig + 360pt pdpapsp? + VTR pdpapd - bl

+ 15200 i + 4952008 3 s + STT2p5 p e + 3618 pipid i + 1077647 p i s i +
6890u7 k3G + 92203 p3pps + 4398pi p3pindie + 6808t pdpd s + 30841 g
+ 88 ppapis + 506 pipapis e + 117607 pdpuapd g + 124003 il paps g + 43501 i3 papsg
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4. Deformations and quiver representations

- dp g - 6p s + 13693 + 81664 p3ugus + 820941 p3HG e

+ 111134 g p? + 29108t 3 i pspe + 1638448 ppgpd + 48684 13 s pd

+ 234250t pipdpd e + 335120 pdpd s + 13796pt pdpd g + 1082t pdpdpd

+ 632005 p3pipdpe + 149593 pspipdpg + 14968u i puapdps g + 4930p] papdpg

T8 a2 + 624pt 2 paptig + 1820pd p2papdpd + 28228 2 g

+ 20760 3 papusig + ST papapg - At pzpgpg - 1603 p3pdug - 13uipzpdug

+ 450pt pspy + 537641 papi§ps + 4444pf s e + 1330503 papifpd + 29852411 pus il s e
+ 142997 pua g + 973240 pua i + 4350003 pua i pre + 554201 s iy pis pig

+ 20072p g + 3232p  papitpg + 204520 papudpe + ATTST 3 pd g

+ 44368p papi sy + 13312p  papi g + 6384 papipd + 452240 i s e

+ 13576  pspugpdpg + 21150p papdpdpg + 155120 papipspig + 399201 papi g
290 s puap + 3760t pspaplug + 141603 papuapdp? + 274002 puspuapd

+ 3137 papuapidpg + 1888ufpapuapispg + 42047 papuapsf - Spitpzpispg - 204 pspdg -
1208 g2 pd + 10320 p s + 5165 1071 + AT60u3 b2 + 89964 1S puspig -+ 33087 16 2
+ 6456 ph s + 24258utpfpdpe + 263801 phpsug + T922utpiug + 2590u gy +
186284 pujpidpe + 40932uipgpgpg + 34024pipipspd + 8912uipipg + 972uf il +
62601 pipape + 199160 pdpd g + 30758t pipdug + 211200 ppspg + 49601 g
+ T2 papd + 12045 ppdpe + A518ppipspg + N2t pipdug + 10533pipipdug +
609641 ks g + 128801 i + 203 papg + 58ui papgpe + 392u pappg + 1008 puapis g
+ 14584 prapipug + 1306 papiZpg + 640u7 papuspg + 12008 papsd - 4t ps g - 8pipidpug -
AppB g - 263 pspspd - 6utuSus - 208 pSpdps - Auiuspdne - pipspANT + pipspd e -
20 sl - 20p3 S pspdps - Sutpduspipe + pipSpspapsie + 3uS S pspap - Sudpd g
- 6445 S s - 2803 pd e - 1903 pd i - 4843 s s e - 1303 uspdg + pipspapspg +
2068 3 papsd + 11 pdpdpd + e pudpdpaps + Apdpdpdpape + 10008 pdpded + 2508 udpdpd s
+ 903 papd g e + 2003 papdpap + 20003 papd s e + 2203 3 papd + 23548 sy +
141183 i s i s + 38843 s i - 55163 s i + 10643 pndpspd s e + 196765 i pis i i
+ i papspapd + 18t papapapdpe + 5643 papspaps g + 38utpspapapg + 14643 paps +
12574 pu e s + 36043 piapi e - 22675 g2 + 3443 pus s e + 28843 kg g - 693 s
- 176p3 papdpdpe + 18p3 uapipspg + 10603 pspug + 2pdpapapdpe + 1803 popapdpg +
3813 pgpaps iy + 2003 popapg + 2403 3 pspd + 3pd i pspaps + Ty pspmae

+ 3043 33t + 163us 3 i s + 2888 S pdie + 113 pd s ap?

+ 623 P i paps e + 560 papApapg + 1180ufpd sy + 119163 p3p3 s s

+ 2078 sz e + 2581 s pdpdpd + 1183ud i s e + 10690 u3uzui g

+ 3B B pdpagd + 13513 i3 pdpaptue + 275u3 udpdnapspd + 1583 i3 ud

182413 g + 256503 pudpapdps + 472503 st e + 11873 pd sl 2

+ 4638115 i s s e + 4254003 s i g - V1S ppspdpd + 10993 i s s s pe

+ 250703 i papdps g + 154003 s s i g + 5 s papaps + 90u p3 s papd e

+ 35308 3 pspapd g + AA4p pdpspapspd + 1878 3 pspap + 96645 13§

+ 15503 s + 32403 s e + 11303 sy s + 423063 3 ps e + 419503 13 g
- 328y it + 1386p3 s udie + 383413 s s g + 256445 3 g - 13043 puspius -
2423 i3 3 e + 7350 pspipdpg + 1478t papd s g + T3t s g + 1007 s g e
+ 90t pspapdng + 2400t S papdnd + 2310 pdpaps g + T8RP papg + 21 pdpdps
+ 3uS s paps + 6utuspdpape + 368utpudpspl + 211 pd s pspips + 3448 us s pdie +
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

VTS pdpspaps + T5p8 pdpspapspe + 64t u3pspapg + 20403 p3pd g + 216843 13 13 1l s
+ 3584ut papipipe + 66Tulpapd s + 22218 ps 3 i us e + 18281 o ud g

34 pd s + 26203 p3 s papd g + A6 p3udpapspd + 25643 pi S papd

+ 4T3 33l + 78553 B3 + 1287008 33 pd e + 4439 3 pd s

+ 1441903 s p3 i ps e + VI850p3 pa i g + 76205 pipi s + 463103 pspd i e +
78091 iy papd s g + 427203 paps g + 2963 papspaps + 3604 s pa g e

+ 1071 i p3pdpap g + 120208 3 3 papspd + 48403 pdpdpapd + 459203 p3 sl

+ 117753 s S s + 180063 pduapd e + 917503 pdpapdp? + 3140513 3 pspi s e +
2534015 o sy + 329803 pspapipd + 17330p3 papspiiudie + 2932908 pbpspips g +
160725 i g, + 14203 pspa iy + 32363 puspapdndie + 970345 3 st pd g

+ 1105043 p3 s s g + 452843 3 i g + 9 s papapd + 18503 3 s piaps i

+ 9128 s puapidpag + 16765 p3papapd g + 137203 uapapapispsg + 434uipspapapg +
1408u papy + 613203 p3pds + 8050t pu3pdpe + 546643 pspsus + 2114003 p3pG s e +
1618213 g + 3170p3p3pipd + 156303 u3piudue + 2829505 3 pspg

+ 154703 s - 1TApT papidps + A644ySpapitpd e + 1493445 32 g

+ 1796643 i s g + T534pTu3niug - 143p3u3uin? - 8613 uapdus e

+ 250003 papdpdpg + 5902t papdpd g + 530248 s s g + 17603 5 g

+ 18ufuspapdpe + 185u3 3 puapis g + 62005 ppapdig + 867u pspapd g

+ 568uf papaps g + 14843 p3papg + TpdpopSps + pipap§paps + 203 papgpape

+ 1920 popS il + 10503 popipd s + 16803 poplpd pe + O poplpap? + 3643 ol aps e
+ 30 pop3pap + 14603 puopzpy + 157203 popguitis + 250443 paps it e

+ 4893 popdpdpd + 15516 papdpd s pe + 123203 popdpipd + 2848 o pidpapd

+ 1834 popipap g + 31113 popdpapspd + 16643 popigpapeg + 444846 popid

+ 842043 popid it s + 1256043 popid it + 468043 popd B p2 + 1505645 o it s +
1162443 popi3 g + 100803 popipipd + 4935ufpop3uipdpe + 791403 popsiuspg +
412443 popipd g + AOpS popidpuapis + 40003 popi3papd e + 106503 popipapdug

+ 115443 popipapis g + 45203 o pap + 60413 pops§ + 1933508 popi s

+ 2580043 pa g3 g + 1648543 popdpdpd + 5301543 popdpisie + 383403 papiuing +
649673 popi2 i3 pd + 307893 popi2pd s + 4943403 popdpd sy + 2492848 oyl +
8853 papp2pd + 689613 pop2p2 B g + 170133 popp 2 + 181743 oy s +
700443 popi3piapig + 270 popizpapd + 40503 popzpapspe + 15920 popdpapd g

+ 2658015 o pi3 pap iy + 2111103 popdpiaps g + 6505 popi3papg + 345645 o pis i

+ 18711 paprapbpis + 2165813 poprapbii + 243818 popuspip? + T3TAAYS o sl s e +
48088113 papuz g g + 1322003 popuapgpid + 658655 popapipdse + 10452500 o i s g
+ 495007 papus g + 3T60p3 popispiips + 25384p3 popispijpidpe + 6246343 o pis i s g
+ 6699243 o i s + 2506443 pops g + 1TTpd popspgpd + 37550 popspiuspe +
1439213 poprsp ppeg + 2391048 popspfpd g + 1915503 popispipus g + 58563 popis il g
T poprspap® + 1683 popapuapdig + 101543 popispiapdp? + 24648 popapuapd i

+ 299443 o pgpap g + 186803 papspiaps il + 47208 popispapd + 5884 oyt

+ 574413 pap s + 558413 papl s + 1260003 poubu? + 3294203 oS s e

+ 1852203 o g + T832pF oyl + 4398043 o pE e + 6660043 paplpus iy

+ 2856043 popig g + 362503 papigps + 2280003 pappdue + BTSN} popipnd g

+ 6417003 popit sy + 227604 popidpug - 12065 popiud + 55803 popil iz e
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4. Deformations and quiver representations

+ 2220045 popiifpd g + 38514y popidpd g + 3157ApS popidpus g + 94884 popuid g

OB a2l + 4203 pappl e + 301543 popdpdpd + 884843 o2yl il

+ 1152003 papdpd g + TATOuS popdpis g + 1904u3popdpd + 14u3 popuapdpg

+ 168p3 popapd g + 690U papuapis g + 1272003 popuapid g + 123643 piopua p3 g

+ 63613 popaps g + 13603 popapg + 3203 pS iy + 14p3 pSpips + 218 pdpd e + pd S
+ A pSpaps e + 3pSpSpapg + 360pFpspy + 384pS S s + 5768 5k e

+ 105ufpdpdpd + 336u5 S uspe + 252p piping + 6piudpapd + 36p3pSpapine +
6003 p3paps g + 30p3 pdpap + 137603 gl + 292003 ps s + 396043 s i e

+ 15728 i 2 + 500813 i s e + 3588pdpd g + 3263 a3 ud + 155148 1l 2 ue
+ 2464773 s g ps pg + 12060 pzpd g + 1403 papaps + 12203 iz papdpe + 3114 papapd g
+ 3328 s paps iy + 1238 pspapg + 235205 s + 8896 pipdps + 10656465 3 utpe +
842043 p3ptn? + 2512003 pd s e + 16420033t pd + 312005 1

+ 1505645 13 i pd s + 2324845 3 p s g + 107603 pp e + 50445 3 o

+ 32904 i pd i e + T9144S P g g g + 824843 pipd s g + 296543 13 g + 16763 3 papd
+ 20043 i papis e + 710 3 papdpg + V15403 i3 papd g + 904465 3 papus s + 26403 13 papeg
+ 185645 g g + 1208208 3 s + 12551103 p3 e + 1933505 pzpf iz + 5160075 3 s e
+ 2990443 i3 g + 109903 3 g + 530153 p3 i pe + 668073 13 1 pas 1

+ 32440p3 3 gy + 3248pt p3ping + 205260 pu3piudie + 4943403 3 pd g

+ 49856 3 s iy + 16908u3 3 + 354t pudpapd + 34484 uipdpspe

+ 113428 P g pd g + 181743 pgpdpd g + 140083 pu3pd s g + 39624 pu3ps g
932 papl + 16203 p2papd s + 7965 p2puapdp + 177208 p2puapid i

+ 2001 p3 a3 g + 130003 p3paps il + 31203 pspapg + 5520 papf + 691243 s s
+ 5888 pa s + 1871 pap§ s + 4331605 pappus e + 2141303 pa g

+ 1625418 sl pd + 7374448 gl pd e + 9617615 pappspd + 3592814 izl

+ 6610453 s pigps + 4391043 pspigpdie + 10452508 s pigpd g + 990007 g s i

+ 306804 pspigpg + 150443 papiud + 1269203 papidps e + 4164206 sy g

+ 66992415 s i pd g + 501284 pgpil s g + 13392003 s + 594 pspi i

+ 150203 uapipd e + 19603 papfusug + 1594003 papdpdug + 1915508 s g

+ T2  papuf s g + 27323 papi g + 208 papapd + 5648 s papdpe

+ 40645 papapd g + 123205 pgpuapig g + 1996703 papuapd g + 18681 puprapiz

+ 9440} paprapispn + 19203 papuapg + 117645 plps + 588uipipe + 5744p3uips

+ 11168  pgpspe + 41765 pgpg + 8400ufudud + 3294205 uGpdpe + 37044465 s g
+ 11438 pS g + 391645 s + 293203 s e + 6660045 s s g + 571204 1 s g
+ 1547203 p g + 145003 gl + 114003 pipgpe + 39810p3 pgpdpg + 6417013 pgpd
+ 45520 pipspg + 11120p3piug - 4piuipd + 2232ufpdpdpe + 11100p3 pdpspg +
2567645 it g + 31574t pidpd g + 1897643 pitps g + 4208u pitpg - 263 il

+ 13 pd s + 12063 pdpdpg + 442453 pfpdpd + 76805 p pdud + TATOUS pd g +
380813 12 s S + 6043 21l + ApiB puapl g + 563 papbp2 + 2763 uapid pud + 6363 papid il
+ 824pdpappd + 636uSpaptud + 27203 papspd + A8y papl - 12uSpdnd - 8pd s
- 2 pdpapdps - ApRpSpspipe - 135Sy - SpipSpius - 16 pSuiue - pinsping -
AR pSpdps s - ApTpSpIng - 2pipspapg - 14uipsps - 1203 pspapdps - 1pdpspspde
- BLpdpdpspy - Ouipspspips - TOuIpdpapipe - 18p3 puSpapdpd - 513 pSpspimspe -
2503 pips i - 30pdpdpl - 152u3 pd s - 1143 pdpipe - T6p3 pudpd? - 21203 3 p s pe
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

- 10203 pd g - Spipspdpd - A0 pdpa s e - SIUT ST HsIE - 2203 HopAG - 143 Hapa sy

+ Vpfpapdpd - 1R pspdpiis + 2uipapipdpe + piuspspapsie + (5 Hopipnag

+ 1103 popz iy - A0pRpspspiis + 100ui papdpipe - 46T papapaps - 434 apa s s e

+ 24T s i pg + 20 apapapdie + Opd Hapdpaps g + Apd papdpapg + 19903 ps s -

2Tpd s pigps + 334uT ps s i i - 34003 popus i pd - 28643 ppus gt s s + 14443 13 s il g

- 634 papua i i3 - 19943 piapus i i3 s - 105#?#3#3#3#5#% + 3043 g g + 143 s pra e

+ 6plpspspaping + 10”%”2”3”4#5:“6 + 5#1#2#3#4% + 86u1u§u2 - 6T st ps +

18647 i e - 62313 poppd - 61813 g s e + 64u1u2u4u6 286417 puy 113

- 944pT i i e - 6583 g s i - 36uT il - 2713 popips - 154 uapd i pe

- 2671 papd A g - 1363 s ps iy - AT pspapg + (R pspapdng + A opapdig

+ BpT s paps g + 2408 piapapg + S6pT Sz + uipdpspips + 2903 s s e

+ 3pi g paps e + 3pTpapapaps + AT2pTpdpdpd + 322p3 pdpd s + 632007 3l e

3R pdpd + 19203 3 pd s e + 218u3pspdudnd + V3 sl papdue

- 29u?u§ﬂ§mu5u§ + 18u?u§’u§u4u% + 1389#?#3#3#3 + 164847 3 p3 s

+ 3089u1u2u3u4u6 + 282u1u2u3u4u5 + 2142u1u2u3u4u5u6 + 2206u1u2u3u4u%

- 71#1#2#3#4#5 + 165#1#2#3#4#5#6 + 789#1#2#3#4#5#6 + 570#1“2“3“4#6

+ 13u1u2u3u4u5u6 + Gomugugmuwﬁ- + 86#1#2#3#4#5% + 39#1#2#3#4%

+ 1728#1#2#3#4 + 2685#1#2#3#4#5 + 5306#1#2#3,“4#6 + 1031 i p3 a3

+ 5749#1#2#3#4#5% + 5937#1#2#3#4#6 554#1#2#3#4#5 + 68647 13 a3 i3 1o

+ 389817 s papitps g + 29200 s g - 115pT pspapd s - 308u7 sy e

+ 307#?#%#3/&#%#% + 1080#?#5’#3;&3#5#2 + 60Tui pudpapipg + Sutuspspapgie

+ 39u1u2u3u4u5u6 + 98u1u2u3u4u5u6 100u1u3u3u4u5u‘é + 3643 s piapg
756#1#2#4 + 1226#1#2#4#5 + 2872u1u2u4ﬂﬁ + 5643 s pdps + 3638ut s pspe +

A310p3pdppd - 121473 pdpdpd - 26203 13 pdpdne + 3557udpdptpspd + 3182udpdpiud -

BT0uT it ps - 19883 pipidpd s - 910p3 i pdpg + 153203 i ps gy + 119443 iy i o

- B0uTpapapd - 310pipbpipgpe - 5A0uS g pEpg - S8pRpdpaEsy + 387w pbpuips g

+ 214p3 B + Spipspapspg + 2603 ppapdpd + AR pdpapdug + A0pTpdpapspg

+ 1203 pdpapg + SAuipspsp + 15p3pspspiis + 30uipaps e + 31 pap3paps e +

Bpipdpdpapg + 62413 pdpspy + 514pdpdudpins + 856utpdusuie + Tlpipdpuguied +

34617 sz pips e + 30Tppapapdpg + VTuipaps s e + 42005 by pa s g

+ 250 paps sy + 2608pFps sy + 3564pT s s s + 595203 s

+ 1458p3 papd i + 5234ptpd s s pe + 441208 P pdnd + 82p3 ududpdd

+ 1008#?#3#%#2#%% + 2047u%#§u§uiu5u§ + 1178#?#3#%#3#% + 34pt ps i papdue +

141u1u2u3u4u5u6 + 187u1u2u3u4u5u6 + 80#1#2#3#4/% + 4881#%#%#%#2

+ 9764#1#2#3#4#5 + 16145#1#2#3#4#6 + 6662M1M2M3M4M5 + 22912p i papdps e +

1919513 p3p3pgpg + 1248#1#2#3#4#5 9534p3 pappipine + 175963 pdpduiuspg +

996817 ps i i s - A3pTpapE s + 870u?u§u§uiu§’u6 - 3805#@3#?,@#?#%

+ 4956#%”%:“%#4“5#6 2127#1M2M§u4u6 + 29u1u2u3u4u5u6 + 180u1u2u§u4u§u§ +

394u1u2u3u4u5u6 + 366u1u2u3u4u5u6 123u1u2u3u4u6 + 4000u1u2u3u4

+ 11709M1M2M3u4u5 + 18210u1u2u3u4u6 + 10453#1#2#3#4#5 + 375520 papua s e
+ 30975pf s pgpg + 3TTARS P papipd + 2415503 spapiipdpe + 4440207 3 pus el s g

+ 251963 papspdpsg - 205 pips s + 42043 papspdpdpe + 18042uf p3papindpg +

2338047 i s pus iy + 101320 p3pa i - 12303 papapipg - 18443 sz s e
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4. Deformations and quiver representations

+ 17783 pspapd g + 525203 s papdpd g + 521113 pspapd s g + 18063 s pspdig +
It pipspapdie + STuTp3apapis g + 29203 3z papdig + 45003 o papapd g

+ 32T  papapapis g + I pFpspzpap + 107203 pspf + 50167 pdpg s + 681203 3 e
+ 48463 3§ pd + 19964u3p3 S pspe + 1581003 p3pGud + 24163 3 s

+ 1567413 pu3pipdpe + 3168813 pdudpspg + 18158uF pdufpd - 1287y s it

+ 2852#?#3#3#?% + 17567#?#%#3#%#% + 250483 s ps gy + 1125703 s pi g

- 662#1#2#4#5 2304#1#2#4#5#@ + 900u?ﬂ§ﬂi/~b§u§ + 88287 3 it pE g

+ 10138u1u2u4u5u6 + 3720u1u2u4u6 B4 s g - 36203 i g pd e - 580uT a5 g +
568#1#2#4#5% + 2167u1u2u4u5u6 + 191843 o ps g + STOpR papdpg + s piapaps g
+ 58u papaps iy + 1467 p3papdpg + 180pTp3papzpg + 10903 pspuaps g + 263 b puapg
+ 18 papSp + Bpfpopipdus + 10p3popSpdpe + pipopSpapspe + 13 pepSuapd +
33647 papipg + 270pF popd s + 43203 popd e + 45pF popdpipd + 1803 popid il s e
+ 15002 popdpd pd + O3 poplpapid e + 21 piuopdpapspl + 12403 popl gy

+ 1928#%#2#%#2 + 2726#%#2#%#3% + 4332/@2#&‘#3#6 + 1206;&/12#%#3#?

+ 3934u1u2u3u4u5u6 + 3128u1u2u3u4u6 + 124u1u2u3u4u5 + 864u1u2u3u4u5u6

+ 1524#1#2#3#4#5% + 818u1u2u3u4u6 + 28u1u2u3u4ﬂ5u6 + 108M1ﬂ2u3u4u5u6

+ 135#1#2#3#4#5% + 55#1#2#3#4% + 4768#1#2#3#4 + 10984#1#2#3M4M5

+ 1644843 popipipe + T860uT popisppd + 256083 puopipipspe + 1985203 popi i pg
227212 popd Sl + 1191042 popdudulug + 1961642 oy psp2 + 102962 g i 13
12002 popd p2pd + 163202 ol due + 4833p2papdpl it + 54882 oyl 2 sl
21802 o 2t + A0p2 piopid papid i + 22402 o puap 2 + A53p2 o pid papd

+ 39503 o papis g + 12643 popdpapg + 5518uTpopsg + 202770 popsu s
27416y piguipue + 20958 piguys + 6TONT i pnpiguipispss + 496084 uapgyidug +
10028#1#2#3#4#5 + 50202#1#2#3#4#5#6 + 82177u1u2u3u4u5u6 + 4190443 popiz g +
1590#1#2#3#4#5 + 14784u1u2u3u4u5u6 + 39552u1u2u3u4u5u6 + A3T56.3 o3 il s g
+ 1713603 popdpid g - Opi pop3pdps + 114003 popdpipspe + 603203 popd s pdug

+ 11448pd popdpipdpd + 9660p3 papdpduspd + 305403 uopdpdpg + 27t pnepdpapdie
+ 21003 o puapis g + 6163 popdpapdpg + 864uipopdpapdg + 585uipapiuapspg +
15403 popiipuap + 27843 popuapl + 1653047 popuapupis + 1953203 puopus il e

+ 247591 popapS? 4 7595203 oz b s e + 5037603 papspbpd + 1553613 popuzpdus +
8082013 papapy i e + 130787 popiz s + 6297613 popspipug + 46303 popapupi +
3681203 papapuypid e + 97584 popuapiypdig + 10814643 popizpigpus g + 41292003 oz g
16202 o pE + 562003 papspdid e + 2828802 topis S B pd + 5262002 ol plpd +
AA45003 popuapii s i + 13984uF popiz g - TTps papap g - 363 papiapd s e

+ 2360113 po s p g g + 834473 prapis g 2 g + 1199103 puo s i pid prg + 8148413 puapus s g
+ 215203 popis il + Tpdpopspaplie + 813 popapaplud + 34043 popispapt i

- 700u?u2u3u4u§’u‘é + 765#?#2#3/14#%#2 + 42748 popapapis g + 9643 o papd

+ 424#1#2#4 + 4436u1u2u4u5 + 4396#%#2#2% + 1051207 popu i + 2837273 pua iy pis pi
- 16332u1u2u4uﬁ + 7240u1uzu4u5 + 4266003 pop§ud e + 6655203 o ps il

+ 2923203 poppg + 3060pF popGus + 24072003 oy + 692044 o pd g

+ TT510p3 popii ps gy + 28256#?/@@1#% - 816#@2;&3#? + 4540u?u2uiu§u6

+ 2802047 papigpd g + 56052#1#2#4#5% + 48897#1#2#4%#6 + 15224M1M2M3M2
- 43473 popiipd - 15720 popi S e + 2260 poppuapg + 1459208 popid pd g

+ o+
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

+ 2325003 pa iy 13 1 + 165004y popii s iy + 4416107 puopidpug - 32003 puo i paf - 238103 pa iy i pr
- 3T2pF poppd g + 94003 popi sy + 356043 papi g + AAT0uT papiuiug

+ 261613 papd sl + 600udpopdpd + Tuduopapdpd + 54udpopapdud + 17003 popuapd
+ 280uF popia il + 25503 popapdng + 122pF popapspl + 24p3 popapg + 56pTpSul +
36uTpspdps + S4uiuguiue + SR pSpips + 20uFuspdpspe + 15u3uSpiug + 13 pSpa s pe
+ 23 pSpaps g + 13 pSpapg + 480pFpS g + 672 pipips 4+ 100843 i e

+ 270p2 3t + 864ududpduspe + 64803 udutpd + 30p3ppudud + 180udpdpd e
+ 300p3 3t pspg + 150uipspiug + 6pip3papdpe + 215 pu3papdpg + 2407 p3paps g
+ Quipdpapg + 1504uTpapg + 3856piuspips + 5280pipapipe + 27260 papips +
8664417 515 1 i + 6254113 iz pg g + 804ud pupidpid + 3934p3 ps i i e + 625673 iz pii s e
+ 308442 i pd + 622 papdpd + 57602 pand p e + 1524udpd i pdpd + 163642 g ud s g
+ 611 ps g + 14 pzpapizie + T203papapdpg + 13503 papapd g + 11003 s puapis pig
+ 33pi pgpapg + 22083 g + 95363 pipdus + 116167 p3uGus + 10984ufpspusud +
3289601 p3ugsie + 21800uf pipiug + 5240uF pipdpd + 2560847 13t id e

+ 39704p s g + 186207 pipapy + 113647 pipidps + 79400 it pid e

+ 1961647 g i3 prg + 20592003 1 pid s iy, + 51003 p3 i g + 484 pipiud

+ 8163 3 ps e + 322203 pipipdng + 5488uipiuiudug + 436047 1 s g

+ 129645 3 i g + 1643 3 papd s + 11207 pdpapis g + 302007 3 papd g + 395003 pipapis g
+ 25203 pprapis g + 63T pipapg + 1544pip3pt + 110363 pu3pins + 11698uiuzuiue +
202773 p3ulp? + 548323 13 S s e + 323683 p3uGud + 139723 p3

+ 6T9LTpd a2 s + 9921673 3 s i + 42712005 3 i + 501473 i3 i

+ 33468p3 3 pipe + 821TTuipapdpdpg + 83808ufpdpdpsig + 28954uF 3G

+ 6363 pdpdpe + 739203 pdpdpdpe + 26368u3udpd il + 43756u3 03l g

+ 3427203 3 ps g + 9908uT At pg - 3pi papipg + 45603 p3ptnd e

+ 30163 p g pspg + T63203 p3pdpdpg + 96603 p3pdpdug + 6108u3 uaudpspg

+ 15083 p3papg + I p3papiie + 84uTpdpapdug + 3083 papaps i + 5763 3 papid g
+ 585uTpapapdug + 308pipapaps g + 66p7 pspaps + 41603 papd + 55687 pusptus +
4832uf papiiipe + 16530uipzpind + 39064uiuspipspe + 197020 papiug

+ 1650647 s pu§pd + 7595203 puspu§pdpe + 10075207 s pu§pus g + 3840845 psppu

+ TT68uipspips + 53880u3 papiuipe + 130787uipspipuing + 12595203 syl s
39880u papig g + 185207 papiipd + 1840647 papiipigpis + 6505647 puapud el g

+ 10814647 uapugpa g + 8258443 papipisig + 2261603 papugpg - 54 sl g

+ 2248yF papidpdpe + 1414403 papduspg + 35080uiuspiudug + 4445003 pspipd g +
2796813 s prps g + 6728ufpuspiipd - 2203 pspinl - 12udpspdpbue + 9444 papduiug +
AVT203 s s g + T994uT s pi S + S148uF papiudug + 430443 s s g

+ 91203 papdpg + 2p3pspapdpe + 2Tpdpspapbug + 136p3puspapdid + 35003 pspiapiig
+ 510pT papapipng + A27p  papapdpg + 19203 papapsis + 36u3pzpapg + 848u3udus +
42403 pupe + 4436pT i3 + 8792u pfps e + 332403 pufpg + T0084F gl

+ 28372 papdpe + 32664u7 paps g + 10276pT g + 362003 pGus + 2844003 i e
+ 66552uipuGuZug + 58464uTpGuspg + 16208uFpdpg + 122407 i3 + 1203647 135 e
+ 461363 pdpdng + TT510pTpguing + 56512uiuiuspg + 1419203 uiug - 27203 pyps +
18167 pgpid s + 1401043 pgpug g + 373683 pidpd g + 4889713 i g + 3044843 i s o
+ 6984y3 g - 1243 Pl - 524pF i pdue + 904ud S ug + 72964 s g

_l’_
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4. Deformations and quiver representations

+ 155007 pidpd g + 165007 pidpd g + 8832007 pid s pug + 184007 pid g - 8y o

- 683 i e - 12403 pdpdpg + 37603 pgpd g + 1780p3 iz g + 2980p i pdig

+ 261607 puipdpg + 1200pi pfpsps + 224uipinG + 2uipapspg + 18uf papdp

+ 6813 prapd g + 14003 papis g + 17003 papd g + 12207 pap g + 4843 papus g + 8y paje
- 2 pSpdpl - 10papSpspy - A pSpspips - SpapSpspiue - 12p1pSph - 10 pSpius
- 20p pSpgpe - 2papSpind - SpuapSpiuspe - SpapSpiud - dpapdpud - 20p1pdpdug -
24p pd s s - 241 p3pdppe - 36 pdpusp - 11501 pdpus s - 100 pd st e

- 36p1 pd izt pd - 104 pdpus i pspie - 56 papa g g - 28pa pp§ - 144p 5l ps

- 12041 p il s - 95p pud g - 270 pdpuit s i - 1401 pd g - 164 pudpig o

- 80 ph i pE e - 120 pdpuips g - A8 pd i g - 2pa ppd e + 1041 p g

- 24p i3 s - A papi i e + 3 papa g s + 3P s pE g + T2 s pa g

- 8541 pa s + 60 pia 36 - 96 A pE - 126 il iy s s + A popid g +
6 piap3pa g e + 18 pap3 g ps g + 1201 papis pg g + 1051 papap - 117y iz s +
168111 iy i3t e - 455 g iy s id - 535 pgpapiy pis e + 2010 paps iy - 12811 ppus i o
- A34pa ps s pd e - 3221 p s s - 161 pdps g + 3papdps i pdie

+ 18 piappuapdpdpg + 30p ppapd sy + 15p papapdig + 32ppapy - 126 pypps +
A2 piap s - 612p1 p i - T62p1 s pspie - 96 piapuag - 360pa pu iy i

- 1240 popipdpe - 10050 pspgpspg - 160p1pspgpg - Sdpapspipg - 312 popipd e
- 5TOp1 ppidpd g - 348ppiapitpspnd - A8 pspiug + Suipapipdng + 12 papdpdud +
15p1 piapipspig + Gpapapgug + 60p1 sy + 12 pdpzpips + 44 ppzpde

+ Op g s e + Opa papapaRE + 3841 pipiph + 320 pdpdpd s + 6604 3 e
-~ 16pa 3 pip? + 260 3 pd s e + 324 pipipd g + 33 pdpd it e

+ 8Tuipapa i s g + S4pn a3 piug + T pspiug + 1263 g3 pdis

+ 2460p pis s s + 1650 psp3pipg + 2030m psp3 s e + 22400 papd g

- 168y pd 2l + 601 B pdud e + 10280 pdp2pd psp? + 824p pid 2

+ 39 s s pipdpe + 180p1 papapdpE g + 258 s s g + 117 psp3ug g

+ 960p1 3 sl + 16591 pdpuspiGis + 341641 sl + 5251 13 gl 2

+ 4116 g i s g pas o+ A572pun pr s g pg - 820 i iy i - TOp i3 s 11 113 o

+ 3340p iy psprig s g + 2840 pips iy - 2400 i s pigpus - 796 piy s i e

- O2pu i3 pa i pd g + 127201 p3 s s + 840 pps i g + 150 ppus g pa e

+ VT pipapipdpg + 294 pdps g pd g + 300 ppspd s g + 10801 p3pspi g

+ 36013y + 608u1pdpips + 1536 pipipe + 112u1p3pusud + 19464 i pSuspe +
263211 5 pGpg - 12604 pusppd - V146 i pug i e+ 1968 i3 g pas pag + 22804 i 1, -
725 p g - 2740 e - 2100p pappd g + 820p pdpps g + 1060 i g
- 100 i 3 - 640p p3 s ps s - 12601 p3piudug - 656 papidpud g + 312pm ps s ps g
+ 272 i + 5 pd s pg + T8uapd g pdid + 147y pdpgpdmg + 1204 3 g s g
+ 36 3 pipl + 60uipdpsu + 24 pdpspius + A8uipdpSuipe + O p3pspt s +
O pspspipg + 528 sz + 560p pspspips + 940 pspzpipe + 108 sz ping +
542pu pis iz i s + 486 papa g + Sl papspd e + 12600 3 s i s g

+ TSpapapapa g + 17920 p3psp§ + 29764 p3pd g s + 499240 ps 3 pe

+ 15204 i3 i + 5630 p3pipspis e + AT90u1p3 s pgpd + 964 3

+ 1492 po g pudne + 3160 pps s pg + 1844 pdpd i g + 102 pdpd i e +
423 p3pd g pdng + 561p1pdpdpdps g + 2400 pspdpa g + 2832p1p3pa s
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

+ 662201 12120815 + 109971 p2p2ubie + 53311 p2p2udud + 188431y p2p2 il s +
159244 pipizpipg + 1110p popapaps + 9670 papapuspiie + 18585u pspzpapspg +
1068041 p3p3 g - 144 pspz s + 1020 p5pdpdpd e + 54684 p3p3 s i pg

+ 508 p3 s i ps g + 32861 p3pd g + 8TuipspA G s e + DA0u1 papAHGEHE +
11827 i3 pi3 i g + 1098 p3pi3pd pspig + 3691 pdpdpdnd + 20164 pdpspl
6672012 uspts + 1046401 p2psptie + 6783u1p2uspbud + 24990u1 s s e +
2083941 p3papi§pg + 2550p1 sz + 18588y pspspiudie + 35685 p3papi s +
2059241 p3 s i g, - 760 ps sy + 3070u1papappdpe + 173600 p3 a3 pg

+ 240200 i pap s g + 10670 papua iy pig - 26440 i papidpd - 73841 p3 s il s e

+ 1732 papapidpd g + TI52pn pdpspipdig + 7678 pspapips g + 274440 p3 s i g
+ 2T pspapdpspe + 261 pipapdps g + 876 phpspd iy + 1350 b papipdg +
9811 sz i ps il + 273 papspipg + 480u1p3pd + 2448 pspius + 3384 pspiue +
2592401 3 pipd + 1107200 pdpd s g + 892841 pd i g + 114841 pi3 S + 942241 13 G
+ 20370 ppps g + V19701 pd g - 14400 p3 s + 63641 p3 05103

+ 121200 p3pi pd g + 192781 papul s iy + 898841 pipu g - 850 pi i i

- 3370 pi3 s i - 11501 papudpd g + T340pu g3 g pid g ~+ 9905 1 i pis i

+ 3820 prpig i - 108 iy - 760 i pdpue - 1530 i g g - 104 pspigpd g +
260041 i3 p2 g + 270000 p3 g0 pus iy + 85641 p3 i + 271 p3pl pdpd + 174p g3 i3yt i
+ 438y s g + 540 s A g + 327 p3 i ps g + T8 papspE + 20p1 papfuy +
Spapepipips + 16p1pop§uipe + 3pipepsuiuspe + 3uipepduing + 288upopiul +
30041 popu s + 480 oS it pie + 720 popi S 2 + 28841 pop i s i

+ 24040 o pd + 27 popd it e + 63p1 popd i sl + 36 popdid g

+ 1344y puopi S + 23284 puopia s + 36967 popiupe + 1320 popipipd

+ 4350pm popizpipsie + 3460 popzpipg + 192 paprz il + 13624 oz e +
242611 puo s i ps i + 1304 proprz g + 84 popizpdpd e + 3244 pofis iy 3 g

+ 405 oz iy ps g + 1651 papizpiig + 28164 puapuipeg + 76164 puo g s

+ 1142440 proi3 p§ e + 66244 puopipig s + 216964 puopis i s s + 168484 puopispig g +
240001 popdpgid + 12930u1papdpipdue + 21510p1 popipdpespd + 113200 popidppe +
1600 popd St + 2464p1 popdpdpdpe + 7536 popd s 2ud + 8668y papdutusud +
34560 propd it + 1200 popd 2 b e + 67201 popdplpd pd + 13591 propd 2 p2

+ V1851 popipi s pig + 378 popi3 i g + 2844 popzp + 11856 popiz g s

+ 16128 popi e + 143641 pop3pdpd + 46711 pop3pispie + 34272 popipd g +
8136411 pap2pdpd + ALT69u1 pop2plpdiie + 689521 puopdpdpsp? + 35328y puoppdpd +
150041 popdptps + 15280 popipipdpe + 4231501 popdpipdud + 47460p popd i pis il
+ 18700p1 popiz i pig - T2 paprzpips + 1470p popdpius e + 8880 popdpidpdng

+ 1758041 puo i pigpid g, + 15098411 puopig it s g, + 4808y puopu3puidug + 81pa propis g pd i +
630p1 piapiz i pigig + 1848 popapipdg + 2592pn popipdpd g + 1755 popdpdps g +
A62pu popip g + 1280 popuapey + 8388y papiapipis + 10008 popia il e

+ 1425611 propia 2 + 4403201 puopiz s e + 294400 propua il + 102484 puopiz il +
BAATAp popia iz e + 88977 popizp§ps g + 431761 popapdpg + 3300 popuapiipis +
28944111 propapi i3 e + 796231 popiz i i + 89580 papua iy s i + 3451241 pio iz g
- 4207 propuis i d + A6T5 1 praprapd it s + 28040 popis it i pd + 550207 propuspdppd +
AT520p1 popapugpis it + 151200 propizpigpd - 168 popapi g - 4084 puopizpiidpid i
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4. Deformations and quiver representations

+ 269041 poprs s pig + 11760 propus i pdpd + 1799441 puoprspri pid g

+ 125601 popa sy + 3360p popapiipg + 21 popspipspe + 243 popspipdig +
10201 prapu i s g + 2100 propus iy pd g + 2295 propu iy pa g + 1281 propua i s g +
288p1 piapispipg + 176p1popy” 4+ 20001 popips + 20001 popipe + H184p1popip? +
1422041 popiifps s + 8280p1 puapldpg + 3968 puopugpd + 24000p pua iy i s

+ 380161 papy s + 168961 papipsy + 16101 papips + 149520 popfud e

+ 45318y puo i g + 518420 puo iy pis gy, + 191520 propa§ g - 972411 puo gy 2

+ 2100 popipgie + 20304 popfpdug + 44154 popi s g + 397324 propiipis g +
1257641 o g - 5601 papiip§ - 240001 papiiuspe + 375 popugpus g + 130400 popupisyed
+ 233551 pua i prg + 17280 popi s i + 472001 puo g g - 644 puogidpuf - 5044 puo it S s
- 1080 poprig 3 g + 500 popidpis iy + 4576k popidpid g + 64684 puopid i3 g

+ 396011 it s 1 + 928411 puopuit s + 21 g propid a4 16241 propid il pud + 5100 popid pd g
+ 8401 popd pdpd + T65p popdpin + 366p1popipsps + T2ppopipy + A8uipSul +
A0 p§pt s + 60p1 S s + B pS i3 + 32p G s s + 24p1 pS i g + 3pa p§pd i e
+ GpapSpipspd + 3papSpipd + 336u1pSus + 5761 pdudus + 8641 tiu e

+ 3001 p3pgpg + 960p1 p3ptpispe + T20p1 pdptpd + 48pn pdpdps + 288 pdpipudue +
A0 pi sy + 240 3y + 18mp3uiudue + 63pipdpdpdpg + T2p 3 s g
+ 2Tpmpdpapg + 896uipapy + 2688 pzpdps + 3696 papdpue + 2328 papgps +
73924 p s pi + 53524 prz g g + 880 iz piipd + 4350pa prppid e + 6920 s s g
+ 34204 pr g + 96 pus i s + 908 g i e + 24264 ppidpd g + 2608 s il s i
+ 976 i3 g + A2 papdps e + 2160 g + 405 ppgugug + 330 s s g
+ 99 pzpipg + 1152 pdpl + 5632um p3pius + 6912 pdpipe + 76160 p3uGus +
2284811 pi s i + 152324 pi3 g + A416p0 i3 pd + 216964 3115 13 i

+ 336961 s g + 15888ppipipg + 12001 pipdps + 862001y s e

+ 21510 i3 g pd g + 226407 pripr s iy + 8300 pipuug + G4pun priprig o

+ 1232 i3 i prs s+ 5024 3 3 g + 86681 p3uiudig + 69120 pi it s g
206441 13 i3 2 + A8u p 2 B e + 3361 13 pd i + 906y i pd

+ 1185y pipdpd g + T56u1 pipapspg + 189u1pipipg + T20u1p3py + 5688 p3uius +
608401 i3y 6 + 1185641 p3 g + 322560 i3 s e + 192004 p3 i g + 9576 pis 3
+ 46T pip§ud e + 68544 papSuspg + 297361 p3pdud + 406841 p3us s

+ 27846 p3pipape + 689521 papdpd g + T06561 papdps g + 246004 p3 G g

S+ 600p1 p2pd 2 + 76400 p2ud e + 282101 pdpd B2 + ATA60u1 pdpd 2

+ 37400 p3 s g + 109001 p3 g - 24 papiug + 588 3 pdpe

+ 44400 i ps g + 117200 p3ppd g + 15098 p3pdpd g + 9616 papidpis g
239200 p2 38 2Ty p2p2pS g + 25201 p2p2 S pd + 924p g2t

+ 1728y pa g g + 1755 papdpdpg + 924u1 papgpspg + 198 p3pdus + 176 pzpy’
+ 256041 s + 224040 pgpdpe + 83881 psuip? + 200164y pus s e

+ 101881 pua iy + 9504pm pua i + 440320 pua g i s + 588801 a3 1] pis pig

+ 2265611 papipg + 51241 papfpg + 363161 papfudie + 88977 papiud g

+ 8635241 pua s g + 27608 pua g + 1320 pupug s + 144720 s i s

+ 5308241 pus g pd g + 895801 puapipd g + 69024 papd s g + 191041 papig g

- 140p0 pus g + 18701 pspifpdps + 140200 pspiipapd + 36680u pspgpdpd

+ 47520 pua i3 i + 302400 prapi s + 73604 pua g g - A8 g pua i puf - 136 pua i il pr
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

+ 107671 pua iy g + 5880 prapif s pi + 119961 papipdpg + 125600 pappugig
+ 67201 papig s g + 14400 pspi g + 6pnpapiplpe + 81papspdudpd + 408ua puspif pd s
+ 1050p1 papdpspug + 1530 prapipuapg + 1281 puapigpz g + 5764 pua i ps i
+ 1081 pisp3pd + 352u1 00505 + 17611080 116 + 200011 p§p? + 400041 463 115 g
+ 1520p1pdpd + 3456 pSpd + 14220 p§pdpe + 16560p1pfpsp + 5256 pud
19844 pu s + 160001 plpd e + 38016 pipdpg + 33792p pipspy + 94720 ppg
644yu1 i3 + TAT6urpipigp + 302124 pufpisyig + 518420 pfpispg + 38304pufpsiig
9744 p§pf - 324#1#3#2 + 840p1 i3l g + 1015201 plpdp2 + 29436#1#3#?#%
+ 39732#1#4#5% + 251520 pf ps g + 585601 g - 160p pugpes - 800p gl g

+ 150p1 ppd g + 65201 pdpedpig + 1557T0p1 pdpid g + 17280 pudpi g + 94404 pudpus il
+ 2000u1u3u5 - 16u1uiu§ - 144u1uiu§u6 - 36041 11 S + 200u1/~ciu§u2 + 22881 115 g 1
+ 4312u1u4u5u6 + 3960u1u4u5u6 + 1856#1#4#51% + 352p1 pi g + Gpapipiug
+ 54u1u4u5ua + 204#1#4#5% + 420u1u4u5u6 + 510u1uiu§u2 + 36641 113 13 16

+ M pipspg + 24mping - u2u3u4 4u2u3ui - 2u2u3u4u5 - 4u3u3u3u6 - dpgpg -
ApSpps - 8puSpgue - pSpipg - 4u2u4u5u6 - 4Mgu4u6 25y - 8/@#3#4
- 1203 ptps - 12083 utpe - 12u2u3u4 - 46#2#3#4#5 - 40u2u3u4u6 - 18M2M3M4N5 -
B2uSpispig s tic - 2815 s pd - 8#2#4 48#2#4#5 - 40#2#4#6 - 38#2#4#5 108u2u4u5u6
- 56u3pdpg - Suspipd - AOuspgpdue - 60usugpspg - 24uduipg - papizpy + Auspipg -
V2033 i - 2papspine + 2uspdndispe + 2pspsppd + 24uiudul - 34pspduius +
24315 6 - A8papApAHE - OBl g s ie + 2papaig + Apopap s e + 120503 5 s g
+ Budpdudpd + 30p st - 39puduaSus + 56 papS e - 182 papd it - 214 s pd s s +
8 pspi g - 6Apgpapd s - 2173 papdpid g - 161p3 s i pspd - Spspspid + 208 s pd e
+ 12p8pspipdud 4 20pspspipspd + 10pduspiud + Spdul - 36uduius + 12u5psue
- 204450803 - 2545uGuspe - 32uapiug - 14duspipd - 4965l p3ne - 4020505 s g
- 64u§u51ﬂ§ - 27u%uiu§ - 156#%#3#?% - 285u§uiu§u% - 1TApspgpspg - 2Ap5g0G +
2#2#4#5% + 8#2#4#5#6 + 10#2#4#5% + 4#2#4% + 24M2u§ui + Gpspspips
+ 22u2u3u4u6 - 6M2M3M4M5M6 - 6#2#3#4% + 128#2#3#4 + 1283 i s + 26445 g pd e
- 8/@#3#4#5 + 130#2#3#4#5% + 162uzﬂsﬂ4ue + 22p3p3pipde + S8ppApus g +
36u2u3u4u6 + 2623120} + 421 pd 2 uGps + 820p3pdpS e + 6633 u 2
+ 812u3papiuspe + 896pdpzpGuG - Sdubpapapd + 30pdpsuiuine + S14udpdugpspg
+ 023 p3pgpd + 26p3p3pddne + 120 p3pdpdug + 1728 p3pdps g + T8u3 i
+ 240p3p3py + ATApdpuspips + 976 uspipe + 175pdpspsus + 1372u3pspspspe +
15243 pspdpg - 328ppspgpd - 28p3pspiudue + 1336ususpgpspg + 1136p5usu3u -
1203 pspigps - 398uspapipdne - 46uspapiping + 636psuspdpspug + 420p5puspgig +
1013 s pipe + TSu3pspiuind + 196u3uspiuipd + 200uduspdpspd + T2u3pspdpg +
80 + 152u3pl s + 384psutpe + 32p5papd + 5563 s ps e + T52p i - 4205 pG s
- 382puip§pd e + 65643 G s 1ug + TO03 1S g - 2903 s - 1096445 15 11 - 8403 i 2 g
+ 328pud g s iy + A2443 1 g - 50 p3 - 320435 e - 6303 g pEng - 3283 pdpE g +
1565 s + 136u3udpg + 10p3pdpspg + 52p3pipdug + 98 piudug + 80usuispg
+ 24#%’#3#2 + 24#%#3#2 + 12#3#2#2% + 24#%#3#1% + 6#3#3#3#% + Buspipdpg +
176u2u3u4 + 224u2u3u4u5 + 376u2u3u4u6 + 54u2u3u4u5 + 27 1u2u3u4usua
+ 243#2#3#4% + 34#2#3#4#5#6 + 84#2#3#4#5% + 50#2#3#4% + 5120513114

+ 992u3p3ugps + 1664u5p3uGue + 608ususuapE + 2252u3p3pdus e + 1916550515

++ +
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4. Deformations and quiver representations

+ A8us s pd + TAGuS R pnE e + 1580uspa s g + 92255 g + 68us A pd e
+ 282p5 iR g + 3TApS S s + 160ps s g + TO8ps sy + 1892p5 5 s +
3142p5p3pa e + 1TTTp3pANHNE + 6281 p3p3pdpspe + 5308psp3 g + 4445 uzuiud +
38685z pE e + TABASpApS s g + 42723 pu3ps g - T2u3p3 s + DL0uspA L HE1G +
2T34p3pa s g + 3T5ApS S g sy + 16435 p3 14 0 + 5833 1 e + 36053 1
+ TS pA G + TR2pd s p s g + 246p3 s ping + 4485 sy + 1668u5pus s s +
2616433116 + 1938udpapip + T140p3 sl pspe + 5954p3pspipg + 850p5pusp§us +
619615131343 16 + 118955 3145 s s + 686443 13§ pus - 304 s + 122815 papuy i i
+ 69445 3l s pg + 96085 s s g + 4268153 g - 13205353 - 3693 s 151516
+ 8665 s i + 35T6uspapap3g + 3839uapapipispig + 137205 a8

+ 183 pspi i + 1743 papi s + 584udpuspipudpd + 900p3 uspdpd g + 65403 s s g
18202 sl + 962080 + 54402105 + T52udpdpe + 64828 2 + 27681218 s e +
2232215 112 + 328u3p i + 269203k 26 + 5820p3 ks + 342003l ud - 4803 Sl
+ 2120503 e + 404005 pE g + 6426p5uGpspg + 29963 uG kG - 340553

- 134853 g e - 460p3pdpdpg + 2936p3pdpd g + 3962u3pdps s + 1528503

- 5y pf - 3805 g2 e - T655 g s g - S2u5 g p3 g + 13003 2 g + 13503 11 pis g
+ 4283 g + 18 pa g + 116pspuipdug + 2923 udug + 360u3 3 g

+ 218pdpfps g + 52u5pipg + Suapspy + duepSuips + Spap§uiie + 2uapspipsie +
2o pS 3 2 + 9612138 + 120000301 15 + 192003015 16 + 3603t i + 14440031 105 16
+ 120p0p3 5 pd + 18popSpiptie + A2uops sy + 24popSuipd + 384papsp]

+ TT6uapzpiis + 1232u0p305 06 + 528p0p3pipd + 1TA0popspbpspe + 13845518
+ 96popdpipd + 681popdpipine + 1213popdpiuspd + 652uapdpipg + 56uapdd s e
+ 216popg g + 270popipius g + 110puopdpiug + T04uopsp + 2176p0piuius +
3264pap3 g6 + 2208p2p3pdnd + 1232208l s e + 56160131 pug + 960uop3uipE +
51724013 s + 8604 o3l pis g + 45284043 il i + 80papd s + 12320003 i pd e
+ 3768papd g + 4334papsuius g + 1728uapduiug + 80papipips e

+ 448puo i pudpd + 906 oS i pdpd + T90uopd i s g + 25203t pg + 632uap3u] +
2964pap3 s + 403203 e + 4104uop3ping + 13346uapd s + 9792ua i3 g
+ 2712003 1§ 3 + 13923 pop3puSpde + 2298403 S s g + 117760 u3uG 0

+ 600p2pdpius + 6112pop3 s uips + 16926p0pduiupd + 18984 a3 ps g

+ TA8Opap3 g g - 36papzpips + T35uapzipspe + 4440uapipdpd g + 8T90uap3 3 g
+ T549uaps s g + 2404uapdppg + Sdpopdpddpe + A20papd s pg

+ 1232ps 3 i pd g + 1728 ot pd g + 11T0uop3 i psy + 308papi3 i g + 256243
+ 1864 a3 15 + 22240 p3 i pus + 3564403 + 110083 s i + T360p2 izl 1
+ 2928 puapa i + 15564papaplpdie + 254220 s g + 12336311l

+ 1100p0u3 812 + 9648110413118 316 + 26541 oz S p2p2 + 298600 is 1 s il

+ 115043 1§ p1g - 168uopzpfud + 1870p2papiugue + 11216p2p3p3 13 ug

+ 22008 21343 113 11 + 1900810 13 15 s i + 6048124311315 - SApuz s g s - 204412303113 6
+ 134503 iy s + 5880papapipipg + 8997 uapapdps g + 6280uapua gy is g

+ 1680papspiul + 14popspd b s + 162papau3udu2 + 680 syl

+ 1400 p3pidpd g + 1530pops s ug + 854papspiuspg + 192uapsping + 32uapy’ +
400p2p13° 15 + 4002411 pi6 + 11520 p5 113 + 3160p2ppspe + 1840popig + 992papip?
+ 6000papspd e + 9504paptps g + 4224p0pfpy + A60uapipd + A272popipdpe +
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4.4. Quotient of the inhomogeneous singularity (C?/T',Q) by Q

12948pop5 p3 g + 14812005 pspy + 5472p0p5 416 - 324p2p8p3 + T00uapG 136

+ 6768popfpdpg + 14T18uopfpdpg + 13244poppspg + 4192u0pu§pg - 224popipf -
960p2pipdpe + 150popipspg + 5216puouiudpd + 9342upiudug + 6912u0pfuspg +
18881251 - 32pa4p1l - 252pu0u5 186 - 5A0popigpdpg + 250popipaud + 2288puopiudig
+ 3234popp3pg + 1980uapps g + 464uapiug + 14popipdpg + 108 pd g

+ 340pap s g + 560uappdpg + 510papipdug + 2440l s g + 48puopitpg + 165 +
160855 + 24p§ui e + 4uSuipd + 16pSudpspe + 1208 puipg + 2u§pipdue + 4u§uiuspd
oS + 9630l + 19203815 + 28838 + 120030502 + 3840305 s g

+ 288uB 2 + 24pdpdpd + 144put P2 e + 2400t s + 1200t + 1208 113 13 1
+ A2 pdng + A8udpdpspg + 18p3puiug + 224zt + T68uzpips + 1056450406 +
TT6pspuGud + 2464p3uSpspe + 1784pusubug + 352u3psud + 1740p3u8 13 e

+ 27685 s iy + 1368130518 + A8uzpips + 454pzpindne + 12135k pE

+ 1304uz sy + A88uz s + 28uzpipape + 144uzpipdpg + 27033 g

+ 220pzpipspg + 66pspiug + 256u50d + 1408p3uGus + 1728u3utue + 2176031413
+ 65283t pspe + A352pdpgpg + 1472u3ubpd + T232p3pd 3 e + 112323 uGps g +
5296305 + 480u3pips + 34485 pdpe + 8604u5u5uZpg + 90564545 s g

+ 332055 g + 32ufpapd + 616p3pipgue + 2512083 pdng + 4334u3pips g

+ 345603 s + 1032038 + 3203 pipdpe + 224p3pdus g + 6043 ud

+ T90p3 B g + 504pdpitps g + 126p3p3 06 + 14443050 + 12643 s + 13520313 e
+ 2964p3p5uE + 8064uspuiuspe + 4800u3pipg + 2736u3pgps + 13346u3p4p2ps +
195843 sy + 8496p3ppg + 1356p3udps + 9282p3udpdpe + 22984u3uludug +
2355203 14 s iy + 8200u3p8pg + 240u3u3p3 + 305635 pape + 11284p3 5 udng

+ 189843 g pd g + 1496033 s g + 43603038 - 1203008 + 29431513 16

+ 2220p3papspg + S860p3pgpd + THApAugpENG + 4808u3papspug + 119643444
+ 18p3piptpe + 168uspuiudug + 616p3udpspy + 1152u3pdpdug + 1170u3 03 2 pg
616u3uipspg + 132u3uiug + 32uspy’ + 512p3p8° s + 4481301 ne + 1864730413
A448 3 ppspe + 2264pspug + 2370p3pipd + 11008uspluius + 147204348 s g
5664z pfug + 1464uzpips + 10376u3pipdue + 25422u3uipdng + 24672u3p0 s
7888z + 440uzpipd + A824uzpGuspe + 176943 uGudng + 29860uspsud g

+ 230081315 p1g + 6368u3uGud - 6uspiud + TA8uspipd e + 5608Lgus 1A E

+ 14672p3p5p3ug + 19008uspgpsug + 12096pspgpuspg + 2944pspipug - 24uspipd -
68puspigpape + 538puapigudpg + 2940uapipis g + 5998uspipspg + 6280344318

+ 3360pua s + T20pspipg + duspipdis + SApspdpdpg + 272ps i g

+ T00ps i ps g + 10203 pd g + 854puapi 3 g + 384uspips g + T2usping + 64uy s
+ 320 g + 40042042 + 800410516 + 3041002 + 768133 + 3160uduiug

+ 3680pf sy + 1168pdpg + 496uus + 4000pdpdpe + 9504ufuiug + 8448 s
+ 2368uGug + 184ufud + 2136piudue + 8632uludud + 14812ufp2ud + 1094407 s g
+2784pt 2 - 108uEp8 + 28082 g + 3384pSpdp2 + 981208 B ud + 1324458204 +
8384 s + 19528 g - 64p5 L - 320058 pn6 + 60ufud g + 260815 pug 1t + 622811513 11
+ 691203 p2pg + 377615544 + 800p; g - Buius - T2pipspe - 180ppSug + 100p4p3pg
+ Uddpgpspg + 2156p5p3pg + 1980pu5p3ug + 928uuspg + 176pdug + Auiuing +
364 pbp + 13605 u3pg + 280pdpapg + 340uiudug + 244pdpdps + 96 us i + 160543

++ + +
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4. Deformations and quiver representations

Whereas the case As,._1 was easily done by hand, the case Eg requires the help of a
computer software. In order to find these coefficients, we used the program Maple 2015.
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Résumé : Soit I' un sous-groupe fini de SUy(C). Alors le quotient C?/T" peut étre plongé dans C?
sous la forme d’une surface munie d’une singularité isolée. Le quotient C?/T" est appelé singularité de
Klein, d’apres F. Klein qui fut le premier & les décrire en 1884. A travers leurs résolutions minimales,
ces singularités ont un lien étroit avec les diagrammes de Dynkin simplement lacés de types A,., D, et
E,.. Dans les années 1970, E. Brieskorn et P. Slodowy ont tiré profit de cette connection pour décrire les
résolutions et les déformations de ces singularités a 1'aide de la théorie de Lie. En 1998 P. Slodowy et H.
Cassens ont construit les déformations semiuniverselles des C?/T" & I'aide de la théorie des carquois ainsi
que des travaux de P.B. Kronheimer en géométrie symplectique datant de 1989.

En théorie de Lie, la classification des algebres de Lie simples divise ces dernieres en deux classes : les
algebres de Lie de types A,, D, et E, qui sont simplement lacées, et celles de types B,, C,., Fy et G,
appelées non-homogenes. A 'aide d’'un second sous-groupe fini IV de SU5(C) tel que I' < IV, P. Slodowy a
étendu en 1978 la notion de singularité de Klein aux algebres de Lie non-homogenes en ajoutant a C?/T'
le groupe d’automorphismes 2 = I"V/T" du diagramme de Dynkin associé a la singularité.

L’objectif de cette these est de généraliser la construction de H. Cassens et P. Slodowy a ces singularités
de types B,, C,, Fy et G5. Il en résultera des constructions explicites des déformations semiuniverselles de
types inhomogenes sur les fibres desquelles le groupe €2 agit. Le passage au quotient d’une telle application
révele alors une déformation d’une singularité de type C?/T".

Mots clés : Systemes de racines; pliage; singularité simple; réduction symplectique; carquois;
déformations de singularités.

Singularity and Lie Theory

Abstract : Let T' be a finite subgroup of SU,(C). Then the quotient C?/T" can be embedded in C? as a
surface with an isolated singularity. The quotient C?/T is called a Kleinian singularity, after F. Klein who
studied them first in 1884. Through their minimal resolutions, these singularities have a deep connection
with simply-laced Dynkin diagrams of types A,, D, and FE,. In the 1970’s E. Brieskorn and P. Slodowy
took advantage of this connection to describe the resolutions and deformations of these singularities in
terms of Lie theory. In 1998 P. Slodowy and H. Cassens constructed the semiuniversal deformations of
the Kleinian singularities using quiver theory and work from 1989 by P.B. Kronheimer on symplectic
geometry.

In Lie theory, the classification of simple Lie algebras allows for a separation in two classes : those simply-
laced of types A,, D, and FE,, and those of types B,, C,, F, and G5 called inhomogeneous. With the use
of a second finite subgroup I" of SU,(C) such that T' < T”, P. Slodowy extended in 1978 the definition
of a Kleinian singularity to the inhomogeneous types by adding to C?/T" the group of automorphisms
Q2 =T1"/T of the Dynkin diagram associated to the singularity.

The purpose of this thesis is to generalize H. Cassens’ and P. Slodowy’s construction to the singularities
of types B,., C,, Fy and Gs. It will lead to explicit semiuniversal deformations of inhomogeneous types on
the fibers of which the group €2 acts. By quotienting such a map we obtain a deformation of a singularity

C2T.

Keywords : Root systems; folding; simple singularity ; symplectic reduction ; quiver; deformations of
singularities.

Image en couverture : La queue d’aronde, ou le discrimant de la déformation semiuniverselle d’une singularité simple de type Aj.
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