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Résumeé

Soit I' un sous-groupe fini de SUy. F. Klein a publié¢ [Klein84] en 1884 dans lequel
il démontre que le quotient C?/T" est isomorphe & une surface dans C* définie par une
équation polynomiale. Cette surface possede une unique singularité isolée et est appelée
singularité de Klein, ou singularité simple. Ces singularités ont par la suite été étudiées
par de nombreux auteurs. En 1934, P. Du Val a démontré dans [DuVa34] que la préimage
du point singulier de la singularité de Klein par sa résolution minimale est une union de
droites projectives dont la matrice d’intersection est I'opposée de la matrice de Cartan
d’une algebre de Lie simplement lacée de type A,, D,, Eg, E7 ou Eg. Cette relation
entre la théorie de Lie et les singularités simples a depuis été exploitée par, entre autres,
E. Brieskorn qui a montré dans [Bries71] que la déformation semiuniverselle d’une singu-
larité simple C? /T peut étre obtenue par le quotient adjoint de I’algébre de Lie de méme
type que C2/T'. 1l a aussi démontré une conjecture d’A. Grothendieck portant sur une
résolution simultanée de ce méme quotient adjoint. En 1978, P. Slodowy a donné une de-
scription en termes de systemes de racines des singularités présentes dans les fibres d’une
déformation d’une singularité de Klein différentes de la fibre spéciale. Puis en 1998, P.
Slodowy et H. Cassens publiérent [CaSlo98| dans lequel ils construisent les déformations
semiuniverselles des singularités simples dans un contexte algébro-géométrique en util-
isant la théorie des représentations de carquois ainsi que des travaux de P.B. Kronheimer
en géométrie différenticlle. A la base de cette construction, on trouve la correspondance
de McKay, découverte en 1980 par J. McKay ([McK80(]), et qui établit un lien entre les
représentations irréductibles des sous-groupes finis de SU5 et les diagrammes de Dynkin
étendus de types :47, E, EE, E et E}.

En théorie de Lie, la classification des algebres de Lie simples permet leur séparation
en deux catégories: d’un coté les algebres de Lie simplement lacées de types A, D,
Eg, E7 et Eg, de l'autre les algeébres de Lie non simplement lacées (ou inhomogenes)
de types B, C,, Fy et G2. P. Slodowy a étendu la notion de singularité simple aux
types inhomogenes en 1978 et a défini des singularités simples de types B, C,, Fy
et Go. Une singularité simple inhomogene est alors un couple (Xg, Q) ot Xg = C?/T'
est une singularité simple homogene et ) est un groupe de symétrie du diagramme de
Dynkin associé a la singularité. Il a ensuite montré que l'on peut trouver un sous-
groupe fini I de SUsy qui contient I' comme sous-groupe distingué et tel que le quotient
I'V/T = Q agit sur la singularité C?/T. Cette action peut étre relevée sur la résolution
minimale de C2/T" et induit une action sur les diviseurs exceptionnels qui correspond au
groupe d’automorphismes du diagramme de Dynkin associé¢ a C?/T'. P. Slodowy a par
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Résumé

la suite démontré des résultats généralisant ceux obtenus pour les singularités simples
homogenes. Il a notamment construit la déformation semiuniverselle d’une singularité
de Klein inhomogeéne a partir du quotient adjoint d’une algebre de Lie homogene et d’un
groupe de symétrie du diagramme de Dynkin associé.

La correspondance de McKay se généralise également aux cas inhomogenes. En effet, il
est possible d’établir un lien entre les diagrammes de Dynkin de types By, C,, Fy et Go
et certains couples (T, T") de sous-groupes finis de SUs avec I' < T et ce de deux manieres
différentes. La premiere, dite par induction, consiste a induire des représentations de
IV & partir des représentations irréductibles de I'. On peut a partir de la retrouver
la matrice de Cartan transposée du diagramme de Dynkin étendu AV (T, T) associé a
la singularité simple inhomogene (C2/I',I/T") de type A(T,I’). La seconde méthode
restreint les représentations irréductibles de I'V en des représentations de I' et obtient la
matrice de Cartan de type AV (T, ), transposée de celle obtenue par induction.

L’objectif de cette these est de généraliser la construction de H. Cassens et P. Slodowy
d’une déformation semiuniverselle aux singularités de types B,., C;., Fy et G2. On va com-
mencer par rappeler les définitions et propriétés de base des algebres de Lie semisimples
sur un corps algébriquement clos de caractéristique nulle, et on donnera les résultats
de E. Brieskorn et P. Slodowy sur le lien entre le quotient adjoint et les singularités
simples. On établira également un lien entre les diagrammes de Dynkin homogenes et
inhomogenes a travers un procédé appelé pliage. Dans un second temps, on présen-
tera les définitions et théoreémes nécessaires a la compréhension des résultats de P.B.
Kronheimer en géométrie différentielle et symplectique, ainsi que d’un résultat de G.
Kempf et L. Ness ([KemNes79]) reliant les quotients hyperkéhlériens et les quotients
GIT. Le troisieme chapitre sera l'occasion d’introduire la notion de représentation de
carquois ainsi que son lien avec les systemes de racines d’algebres de Lie. On don-
nera également une interprétation du pliage en termes de carquois. Le chapitre 4 sera
consacré a la généralisation des travaux de H. Cassens et P. Slodowy. Pour ce faire,
on étudiera ’espace des représentations d’un carquois appelé carquois de McKay défini
A partir du diagramme de Dynkin associé & C?/T', ainsi que d’un groupe de symétrie
Q = I"/T de ce méme diagramme de Dynkin en se basant sur la correspondance de
McKay inhomogene. L’orientation de ce carquois, présente dans la construction de H.
Cassens et P. Slodowy mais jusqu’ici arbitraire, jouera ici un rdle bien plus important.
En effet, la déformation semiuniverselle est construite & partir d’une application mo-
ment dépendant de l'orientation du carquois. Si l'action du groupe de symétrie €2 est
symplectique, alors I'application moment devient naturellement 2-équivariante. La dé-
formation semiuniverselle devient elle aussi {2-équivariante et grace a des travaux de P.
Slodowy on obtient la déformation semiuniverselle d’une singularité inhomogene. On
déterminera tout d’abord dans quelles conditions 'action de € est symplectique ainsi
que la compatibilité de cette action avec la symétrie du diagramme de Dynkin. On
calculera ensuite explicitement la déformation semiuniverselle des singularités de types
Agr_1 (r quelconque), Cs, Fy et Go. Ces calculs vont nécessiter I'utilisation d’un systéme
de coordonnées particulier sur ’espace de base de la déformation: les coordonnées plates

iv



de K. Saito. Aprés avoir rappelé leur définition ainsi que la raison pour laquelle on les a
sélectionnées, des formules explicites en seront données. La déformation semiuniverselle
inhomogene obtenue vérifie que chacune de ces fibres est munie d’une action de 2. En
passant chaque fibre et donc la déformation au quotient, on obtient une nouvelle dé-
formation mais cette fois d’une singularité simple homogeéne. On verra que le caracteére
semiuniverselle est perdu par passage au quotient. On terminera par une étude de la
régularité des fibres de cette déformation sur certains exemples.
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Introduction

In [Klein84], F. Klein studied the polynomial equations of degree 5. For this he looked
at the rotation groups of the five Platonic solids and at the finite subgroups of SLs(C),
which are (up to conjugacy) the cyclic group C,, the binary dihedral group D,, and the
binary polyhedral groups 7, O and Z. They are exactly the finite subgroups of SUs.
F. Klein proved that for such a group I', the quotient C2/T" is a surface S in C3 defined
by a polynomial equation R(X,Y,Z) = 0. The surface has an isolated singularity and is
called a Kleinian (or simple) singularity. It was proved that a minimal resolution exists
for all surface singularities and thus for all Kleinian singularities, and P. Du Val showed
in [DuVa34] that, if 7 : S - S is the minimal resolution of the simple singularity S and s
is the isolated singular point, then the exceptional divisor 77!(s) is a union of projective
lines P}(C) whose intersection matrix is the opposite of the Cartan matrix of a root
system of type A,, D,, FEg, E7 or Eg that we note A(I"). This result is summarized in
the following table:

I R A(T)
Cn X"+YZ Ay
Dp | X(Y2-X")+2Z% | Dpio
T X4+Y3+ 22 Es
O | X3+XY3+2? Ey
T X°+Y3+ 272 Es

This connection between Lie theory and Kleinian singularities has since been exten-
sively studied. Let T" be a finite subgroup of SUy, A(T") the associated Dynkin diagram
and g a simple Lie algebra of type A(T"). E. Brieskorn proved in 1971 ([Bries71]) that the
semiuniversal deformation of the simple singularity C2/I" can be obtained by restricting
the adjoint quotient x : g — h/W to a particular subspace of g called a slice and linked
to subregular nilpotent elements of g. He also proved a conjecture by A. Grothendieck
relative to the construction of a simultaneous resolution of the adjoint quotient. P.
Slodowy showed in his thesis in 1978 (cf. the enlarged version [Slo80]) how to describe
the singularities that appear in the fibers of a deformation of a simple singularity C?/T"
other than the special fiber containing C?/T" in terms of subdiagrams of A(T). Let us
also mention T.A. Springer’s resolution of the nilpotent variety of g ([Sprin69|).
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In [McKS80] J. McKay discovered a connection between the finite subgroups of SU3 and
the simply-laced Lie algebras without using a resolution. He exhibited a way of con-
structing the Cartan matrix of the extended Dynkin diagram E(F) from the irreducible
representations of I'. From this correspondence one can construct the representation
space M (T") of a quiver obtained from A(T") and called a McKay quiver. The dimension
vector of the said quiver is composed of the dimensions of the irreducible representations
of T'. Tt happens that M(T") can be equipped with a symplectic structure based on the
orientation of the McKay quiver. P.B. Kronheimer took advantage of such a structure
and constructed in [Kron89] a semiuniversal deformation of C?/T" using hyperkihler re-
duction. Then in [CaSIo98] H. Cassens and P. Slodowy worked on P.B. Kronheimer’s
results to obtain the semiuniversal deformation of C?/T" and its minimal resolution in an
algebraic-geometric context.

Dynkin diagrams can be separated in two classes: the simply-laced (or homogeneous)
ones, namely A,, D,, Eg, E7 and Eg and the non simply-laced (or inhomogeneous) ones
B, C., Fy and G5. In 1978 P. Slodowy extended the definition of a simple singularity
to the inhomogeneous types in the following way: a simple singularity of type B,, Cy,
Fy or G is a pair (Xp,2) where X is a simple singularity of type A, D,, Fg, E7 or Eg
and € is a group of automorphisms of the Dynkin diagram associated to Xy as indicated
in the table below:

type (X0,9Q) | type Xo | r I’
B, Aoy | Z]2Z | Co D,
Cr Dyi1 | Z/2Z | Dyoq | Doy
Fy Bs |zj2z| T | o
Go Dy Ss | Do o

Let T' be a finite subgroup of SUs and Xy = C2/I'. Then it is possible to find a finite
subgroup I of SUjy such that T' < TV and I'"/T' = Q acts on X,. This action can then
be lifted to the minimal resolution of the singularity and induces an action on the ex-
ceptional divisors that corresponds to a group of automorphisms of the Dynkin diagram
of Xy. P. Slodowy generalized the McKay correspondence to the inhomogeneous types.
Let (T',T') be a pair as in the table above and A(T,T") the associated inhomogeneous
Dynkin diagram. By restricting the irreducible representations of I to T', one can con-
struct the extended Cartan matrix of type AV (T',T"). The correspondence can also be
obtained by inducing representations of I'' from representations of I, in which case we
obtain the Cartan matrix of the dual diagram.

In this thesis we aim to generalize the construction by H. Cassens and P. Slodowy to
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the inhomogeneous cases. Starting from the representation M (') of a McKay quiver
and a symmetry group 2 of the Dynkin diagram A(T") associated to I" and based on the
inhomogeneous McKay correspondence, we will construct the semiuniversal deformations
of the simple singularities of types B,, C, F4 and G2. In order to do so, we study the
representation space of a quiver called McKay quiver, that is defined by using the Dynkin
diagram associated to the simple singularity C?/T" as well as a symmetry group Q of the
same diagram based on the inhomogeneous McKay correspondence. The action of the
group 2 on M (I") is obtained by lifting its action on the underlying graph. The choice of
the orientation of the quiver, which did not play any particular role in the homogeneous
case, will now have to be carefully made (Subsection . Indeed the representation
space of the McKay quiver can be equipped with a symplectic structure depending on
the orientation of the McKay quiver. This symplectic structure induces a moment map
from which the semiuniversal deformation is obtained. If the action of €2 is symplectic,
then the semiuniversal deformation becomes Q-equivariant. We will need to determine
the conditions in which the action is symplectic as well as their compatibility with the
action of € on the special fiber of the deformation. In fact we will prove the following

theorem (cf. Theorems and [4.3.4))

Theorem. 1. The action of Q=T"'/T" on M(T') is symplectic when
(i) For (Agr-1,Z/2Z), Q reverses the orientation of the McKay quiver.
(i) For the other cases, Q) preserves the orientation of the McKay quiver.

2. For any inhomogeneous singularity (C2/T',Q), there exists an action of Q on M(T)
such that

(i) Q acts symplectically on M(T').
(ii) The action of Q on M(T') induces the natural action on the singularity C*/T.

With the semiuniversal deformation now {2-equivariant, results by P. Slodowy will
lead to the semiuniversal deformation of a simple singularity of inhomogeneous type.
This semiuniversal deformation is such that the group 2 induces an action on each of
its fibers. In order to analyze the family to which the quotient of the fibers will lead
we need to obtain explicit expressions for the semiuniversal deformation. In that sense
we will compute explicitly the semiuniversal deformations of the inhomogeneous simple
singularities of types Ag,_1 (r arbitrary), Cs, Fy and Ga. After quotient, we obtain a
new deformation, but this time of the simple homogeneous singularity C2/I. We will
see that the semiuniversal nature of the deformation is lost in the process. We will also
prove results regarding the regularity of the fibers of the new deformation. For example,
when T is of type Az or Dy (and Q is either Z/2Z or &3), we will see that every single
fiber is singular after quotient by € (cf. Propositions [4.4.1] [4.4.2 and |4.4.3)).

In the first chapter in Part I, we recall the main definitions and properties of semisim-
ple Lie algebras over an algebraically closed field of characteristic zero (Section [1.1)).
Then a relation between the simply-laced and non-simply laced cases will be exhibited
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through a process called folding in Section [I.2] after which known results on homo-
geneous simple singularities from E. Brieskorn and P. Slodowy will be presented and
explained in Section[I.4] Following P. Slodowy’s definition of the inhomogeneous simple
singularities, we will provide in Subsection [1.4.2] some of his results generalizing those
already obtained on the simple homogeneous ones. The chapter will end with an ex-
planation as well as computations of the McKay correspondence (Section , in both
homogeneous and inhomogeneous settings.

The second chapter will be devoted to the symplectic reduction. In particular, we will
present a theorem by G. Kempf and L. Ness linking hyperkéhler quotients and GIT
quotients (Section that will be of use later on.

In the third chapter we define quivers, representation spaces as well as basic notions re-
lated to them (Section [3.1)). We will then present results by T. Tanisaki ([Tani80]) that
explain the folding process using quivers representation spaces (Section , although
it will not be used in our construction, but is related nonetheless.

The construction by H. Cassens and P. Slodowy as well as its generalization to the

inhomogeneous cases will occupy Part II and the final chapter of this thesis. At first
we recall the work of P.B. Kronheimer on which the original construction is based (Sec-
tion , present the construction itself (Section , and then study the case Ag,._1
as an example (Section . The work on a generalization of the construction to the
inhomogeneous cases will occupy the rest of this thesis.
We study the orientation of the McKay quiver as well as the action of £ from Sub-
section [4.3.1] to Subsection [£.3.4f Then we will compute explicitly the semiuniversal
deformations of the inhomogeneous simple singularities of types As,_1 (r arbitrary), Cs,
Fy and G5. These computations require the use of a particular set of coordinates on
the base space of the deformation: K. Saito’s flat coordinates. After defining them and
explaining why they can be of use for our construction, explicit formulae will be given
(Subsection . The computations of the semiuniversal deformations of the simple
inhomogeneous singularities will be presented in Subsections through The
quotient of the semiuniversal deformation by the action of €2 will then be done in Sub-
sections through The thesis will be concluded with computations on the
regularity of the fibers of this deformation in some special cases.
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1. Lie Theory

1.1. Definitions and basic properties

In this section we give basic definitions on Lie algebras as well as some elementary
properties. Many of the proofs will be omitted. If not stated otherwise, the reader may
consult the book [Hum78| by J.E. Humphreys for the proofs.

We fix an algebraically closed field k of characteristic 0.

1.1.1. Generalities on Lie algebras

Definition 1.1.1. A vector space £ over a field K, with an operation £x £ — £

(z,y) = [z,y]
called bracket, is called a Lie algebra if the three following properties are verified:

(i) The bracket is bilinear.
(ii) [xz,x] =0 for all x € L.
(i) [, [y, 2]+ [, [ 2]] + [2 [, ]] = O for all 2,7 € £,

The second axiom is equivalent to the bracket being skew-symmetric and the third one
is commonly called Jacobi’s identity. The notion of subalgebra of a Lie algebra £ is
defined naturally as a subspace of £ that is a Lie algebra with respect to the restriction
of the Lie structure on £.

In what follows all the Lie algebras will have finite dimension (i.e. the underlying vector
space of the Lie algebra is finite dimensional). The study of infinite dimensional Lie
algebras requires other tools that we will not present in this thesis. A detailed account
on this subject can be found in [Kac90].

Examples 1.1.2. e IfV is a K-vector space of dimension n, let us write gl(V') = End(V)
for the set of endomorphisms of the vector space V. By choosing a base of V', one can
identify gl(V') with the set of matrices of size n xn. It is a Lie algebra with bracket
[z,y] = zy — yz and is called the general linear algebra. All the Lie algebras in
these examples will be equipped with the same bracket. s((V') is the subalgebra of gl(V)
composed of all the traceless matrices of gl(V'). It is called the special linear algebra.
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The structure of sl(V) when n = 2 will be seen in details later on. Any subalgebra of
gl(V') is called a linear Lie algebra.

0 I,
-1, 0
identity matriz of size n xn. One writes sp(V) = {M e gl(V) | AJ + JA = 0}, a space
that will be referred to as the symplectic algebra. One can check that it is indeed a
Lie algebra.

e Let V be k-vector space of dimension 2n. Set J = ( ) with I, the

e The orthogonal algebra is defined in the same way as the symplectic one.

0 I,

If dim V' = 2n, set J = (In 0

1 0 O
) and if dim V = 2n+ 1, set J = (O 0 In). The
0 I, O
orthogonal algebra is defined as o(V) = {M € gl(V) | Y"AJ + JA = 0}. It is yet again a
Lie algebra.
Usually, when it is clear what vector space is chosen, (V') is omitted and the dimension
of V is put as index. The preceding examples are thus gl,,(K), sl,(K),spy, (K), 02, (K) and

02n+1(K).

A morphism of Lie algebras ¢ : £ — £’ is a linear transformation such that o([z,y]) =
[p(x),p(y)] for all z,y € £. A representation (or module) of a Lie algebra £ is a
morphism ¢ : £ — gl(V') where V is a vector space. When the context is clear, we will
write h.x for ¢(h)(x). If V is a representation of £ and W C V is stable by £, then
W is an £-sub-representation (or submodule). A representation ¢ : £ — gl(V') is said to
be irreducible if the only £-submodules of V' are {0} and itself. One important kind
of representation is the adjoint representation. It is the morphism ad : £ — gl(£)
such that ad(z)(y) = [z,y] for all z,y € £. One can check explicitly that ad preserves
the Lie bracket and is linear. It is then a morphism of Lie algebras. An interesting fact
is that Ker ad = 3(£), the center of the Lie algebra. So if £ is simple, i.e. if £ has
no non-trivial ideal for the Lie bracket and £ is not abelian, then Ker ad = {0} and £
injects into gl(£). Therefore any simple Lie algebra can be seen as a linear Lie algebra.

It will be shown at the end of this section that the algebras sl,(K) (n > 2), sp,,, (k)
(n >2), 09,(K) (n>3), and 02,4+1(K) (n > 2) in the preceding examples are in fact simple
Lie algebras.

Example 1.1.3. One can check that slo(C) has a basis consisting of e = (8 (1)) f =
1 0 0 -1

infinite dimensional representation of sla(C) noted ¢ : sla(C) — gl(C[X,Y]) is defined

as follows:

(0 0) and h = (1 0 ) with the relations [e, f] = h, [h,e] = 2e and [h, f] = -2f. An



1.1. Definitions and basic properties

0 0 0 0
o(e) =Xy p(f) =Y 55 and o(h) =Xox Yoy

It can be seen that ¢ verifies the requirements for making C[X,Y'] into an sly(C)-module.
The action is given by the following formulas:

e XY™ = p XMy n-l o f xmyn - mXxmlyntl g Xmyn = (m - n)X™Y™,

The action preserves the degree of the monomials, so C[X,Y] splits as a direct sum
CIX,Y]peC[X,Y]1®C[X,Y]2@®... as an sla(C)-module, where C[X,Y |, is the sub-
module of homogeneous polynomials of degree k. The monomials of degree k form a base
for C[X,Y ]k, so C[X,Y ]i is a C-vector space of dimension k + 1.

We claim that C[X,Y | is irreducible. Let x + 0 in an slo(C)-submodule of C[X,Y .
Then x = Z?:o a; XY " with the a;’s being complex numbers. Let ky = min{0 < ¢ <
k| a; # 0}. Therefore p(e)* " (z) = ag,(k - ko)!X* and X* belongs to the submodule.
Because o(f)7(X*) = k(k-1)...(k-j+1)X*JY7, it follows that all the elements of
the base of C[X,Y ] are in the submodule, so the submodule is all of C[X,Y |x. This
proves that C[X,Y |i is irreducible, for all k € Zsg. Since dim C[X,Y |, =k +1, all the
C[X,Y ] are non-isomorphic.

Proposition 1.1.4. Let V be a K-vector space of finite dimension and let x € End(V).

(i) There exists xg,x,, € End(V') such that: x = xs+xy,, x5 is semisimple, x,, is nilpotent
and [xg,xy] = 0. Furthermore, x5 and x, are unique.

(ii) There exists two polynomials p(t) and q(t) of one variable such that: p(0) = q(0) =
0, zs = p(x) and x,, = q(x). In particular, xs and x, commute with every endo-
morphism commuting with x.

(iii) If A C B C V are subspaces such that x maps B into A, then x5 and x,, also map
B into A.

The decomposition =z = x5 + x,, is called the Jordan-Chevalley decomposition.
We call x5 and x,, the semisimple and nilpotent parts of x respectively.

Lemma 1.1.5. Let z € End(V) (dim V < +00) and x = x5 + z,, its Jordan-Chevalley
decomposition. Then ad x = ad xs+ad x,, is the Jordan-Chevalley decomposition of ad x

in End(End(V)).

Let £ be a Lie algebra over K. Its derived series is a sequence of ideals of £ defined
by £0) = ¢ g =120 ¢©)] @ - [a¢M a¢M] . The Lie algebra £ is solvable if
there exists n € Zso such that £ = {0}.

Example 1.1.6. Let £ be the Lie algebra of upper triangular matrices of size n x n
with coefficients in K and the Lie bracket [A,B] = AB - BA. It is indeed a Lie algebra.
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One computes that [£,£] is the set of upper triangular matrices with a zero diagonal.
FEach time a new bracket is computed the first non-zero diagonal goes up one place above.
Therefore, £ = {0} and £ is solvable.

The maximal solvable ideal of a Lie algebra £ is called the radical of £. If the radical
is zero, then £ is called a semisimple Lie algebra. For a semisimple Lie algebra £,
it can be proved that the space Der £ of derivations of £ coincides with the space ad £
and that £ — ad £ is a bijection. So if z € £, then there exists s,n € £ such that
ad x = ad s+ad n is the usual Jordan-Chevalley decomposition of ad = in End(£). This
means that x = s + n, with commuting s and n, ad s being semisimple and ad n being
nilpotent. We call s and n the semisimple and nilpotent part of x, respectively. This
decomposition is called the abstract Jordan-Chevalley decomposition. It is linked
to the usual decomposition thanks to the following theorem and corollary.

Theorem 1.1.7. Let £ C gl(V) be a semisimple linear Lie algebra over K (V finite
dimensional). Then £ contains the semisimple and nilpotent parts in gl(V') of all its el-
ements. In particular, the abstract and usual Jordan-Chevalley decompositions coincide.

Corollary 1.1.8. Let £ be a semisimple Lie algebra over K and ¢ : £ - gl(V') a finite
dimensional representation of £. If x = s+n is the abstract Jordan-Chevalley decompo-
sition of © € £, then ¢(x) = ¢(s) + ¢(n) is the usual Jordan-Chevalley decomposition of

¢(x).

Example 1.1.9. Let V be a finite dimensional slo(C)-module. As h is semisimple, h
acts diagonally on V. Thus one can write V = @xec Vo where Vy ={x e V | h.x = \z}.
V' is decomposed with respect to the eigenvalues of h. If X € C is such that V) # {0}, A
is called a weight of h and V) is a weight space. A quick calculation shows that if
veVy, then ev € Vi o and fveVy_o.

As 'V is of finite dimension, there is only a finite number of A such that V) is not zero.
So there exists X\ such that V # {0} and Vy,o = {0}. An element from this V) is a
highest weight vector of weight A (cf. Section[1.1.4]).

Let V' be an irreducible and finite dimensional slo(C)-module. Fix vy € V) a highest
weight vector. We note v_1 =0 and v; = %fi.’l)o (i>0). We then compute that

(Z) h.vi = ()\ - 2@')%,
(ZZ) f.vi = (l + 1)’[)1'_,.1,

(ZZ’l) e.v; = ()\ -1+ 1)7)1‘—1'

The v;’s turn out to be eigenvectors of h for distinct eigenvalues and thus are linearly
independent. As V' is finite dimensional, there exists a smaller m € Zsg such that
Um % 0 and vye1 = 0. By taking into account the preceding formulas, one deduces that

10
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(vo,v1,...,Um) is a base of a non-zero sly(C)-submodule of V. By the irreducibility of
V, (vo,v1,...,0m) 1s a base of V. If in (iii) one sets i =m+1, we obtain 0 = (A—m)vy,.
As v, # 0, it implies that A = m € Zyg. We say that m is the highest weight of V. One
also notices that all the weight spaces are unidimensional and appear only once in the
decomposition of V. The following theorem summarises our conclusions:

Theorem 1.1.10. Let V' be an irreducible finite dimensional sla(C)-module.

(i) With respect to h, V s the direct sum of weight spaces V,, where p = m,m —
2,...,-m+2,-m with dim V = m+1 and dim V,, = 1 for all u. We then write
V = L(m).
(i) V has a unique maximal vector (up to multiplication by a scalar) of weight m.
(iii) The action of sla(C) on V is explicitly given by the previous formulas. In par-
ticular, there exists (up to isomorphism) at most one irreducible slo(C)-module of
dimension m+ 1 for all m > 0.

We can illustrate this theorem in the following manner.

Because of the previous example, one sees that for all n € Zy, C[X,Y ], ¢ L(n) as
sl (C)-modules.

The next theorem gives a hint on the structure of the representation space for a certain
kind of algebra and will be of use later.

Theorem 1.1.11. (Lie). Let £ be a solvable Lie subalgebra of gl(V') with V a finite
dimensional K-vector space. Then £ stabilizes a complete flag in V', i.e. there is a
sequence of proper subspaces {0} =Vy c Vi € ... € V,, =V such that dim V; =i and V;
is an £-module for all 0 <i < n.

1.1.2. Structure of semisimple Lie algebras

A semisimple Lie algebra can be described in a unique manner as a sum of simple Lie
subalgebras:

11
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Theorem 1.1.12. Let £ be a semisimple Lie algebra over K. Then there exists ideals
Ly,..., Ly of £ which are simple (as Lie algebras), such that £=£1&...® £;. FEvery
simple ideal of £ coincides with one of the £;.

A semisimple Lie algebra also has the property, proved by H. Weyl, that any finite
dimensional module is completely reducible.

Theorem 1.1.13. (Weyl). Let £ be a semisimple Lie algebra over K and V' be a
finite dimensional £-module. Then V is completely reducible, i.e. V can be uniquely
decomposed as a direct sum of simple £-modules.

Let £ be a non-zero semisimple Lie algebra over K. If every element of £ was nilpotent,
then by a theorem of F. Engel, £ would be nilpotent and so solvable. But then {0} =
Rad £ = £ because £ is semisimple. It contradicts £ being non-zero. So £ contains an
element z € £ such that its semisimple part x, is not zero. Hence there exists non-zero
subalgebras of £ composed of semisimple elements. Such a subalgebra is said to be
toral. It can be proved that a toral subalgebra is abelian. A maximal (for the inclusion)
toral subalgebra is called a Cartan subalgebra.

Theorem 1.1.14. Let 1 and $H be two Cartan subalgebras of a semisimple Lie algebra
£ over K. Then $1 and $H2 are conjugated under the group generated by the elements of
the form exp(ad x) for x € £ nilpotent. This implies that all Cartan subalgebras have
same dimension, called the rank of £.

Let $ denote a Cartan subalgebra of £. As §) is abelian, ade($)) is a family of
commuting semisimple elements. It is therefore possible to simultaneously diagonalize
ade($). £ becomes the direct sum of subspaces £, = {z € £ | [h,z] = a(h)x Yh € H}
with a € 9. We write @ for the set of a # 0 such that £, # {0}. If a = 0, we have
Lo =Ce($), the centralizer in £ of ). The decomposition is then

£= Cg(f)) (&) @ Lo

aed

The «’s in this decomposition are called the roots of £ relative to $) (and they are in
finite number), ® is the root system of £ and the preceding equality is called the root
space decomposition of £. Since the Cartan subalgebras are all conjugated, the root
system of £ does not depend on the choice of a Cartan subalgebra ).

Proposition 1.1.15. Let § be a Cartan subalgebra of a semisimple Lie algebra £ over K.
Then Ceo(9) = $ and the restriction of the Killing form k: £x£ - k

(z,y) ~ Tr(ad(x)ad(y))
to $) is non-degenerate.

12
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The previous proposition enables us to write £ = $H ® P o Lo and to identify $ with
$H* via the Killing form x. To any element ¢ € $§* one associates an element £y € §
by ¢(h) = k(ty,h), Vh € . We define a bilinear form (.,.) on H* by (9,7) = k(ts, t,).
Because the root system generates $*, one can choose a base {«a1,...,q,} consisting
of roots. If § € @, then 5 = i ; c;ay, where ¢; € K. Furthermore, one can show that
c; € Q for all . Therefore the Q-sub-vector space Eq of $* generated by the roots has
Q-dimension r = dim x $*. Additionally it is known that («, 3) € Q for all «, 3 € ®. This
implies that the restriction of (.,.) to Eq is a non-degenerate form on Eqg. By definition,
for A\, u e H*,

(A, p) = k(ta ty) = 3 ata)alty) = 3 (o, M) (o, ).

aed aed

In particular (A, A) = Ypea(a, A)?, so that if X € Eq, then (A, A) is a sum of squares of
rational numbers and is hence positive (unless A = 0). Therefore the form (.,.) is positive
definite on Eq.

We extend Eq to the field of real numbers by setting £ = R ®q Eg. The bilinear form
extends to E and is positive definite, which makes F a Euclidean space. We have that
® contains a base of F and dimgr E =r. The properties of £ and ® are summarized in
the following theorem:

Theorem 1.1.16. Let £,9,® and E be as above. Then:

(i) ® generates E and 0 does not belong to .
(ii) If e @, then KaN P = {+a}.
2
(iii) If o, B € @, then B — M@ e d.
(a, )
2(8, )

(0.0 e”Z.

(iv) If o, B € ®, then

Set (a, ) = 208) 1t o € E, one defines the reflection o, € GL(FE) by 04(B) =
B—{(B,a)a. If a € ®, the preceding theorem shows that o, leaves ® invariant, and one
can prove that it preserves the bracket (.,.). Let us write W for the subgroup of GL(E)
generated by the o, o € ®, and call it the Weyl group of £. As W permutes the
elements of @, it can be seen as a subgroup of the symmetric group of ®, and is thus
finite.

A subset II of a root system @ is called a base if:
e II is a base of E. This implies that |II| = rank(£).
e Every 3 € ® can be written 8 = Y g ko with integer coefficients all nonnegative
(6 is a positive root) or all nonpositive (5 is a negative root).
An element of II is called simple. One can show that a base exists for ® but is not

13
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unique. We shall see that the classification of simple Lie algebras can be achieved by
studying the simple roots of a Lie algebra.

For a € ®, set H, = {# € E | (8,a) =0 }. The hyperplanes H, partition E in a
finite number of regions. The connected components of F \ Uq,ee Hy are called Weyl
chambers. The Weyl chambers are in bijection with the bases of @, because the walls
of a Weyl chamber define the elements of a base. If Il is a base of ®, the Weyl chamber
¢(IT) defined by

C(I)={feFE|(B,a)>0, Vaell}

is called the fundamental Weyl chamber. The Weyl chambers are permuted by the
Weyl group, and so are the bases of the root system.

Let IT = {a1,...,a;} be a base of a root system ®. The matrix ((o,a;))1<ij<r is

called the Cartan matrix of ®. The Cartan matrix does not depend on the choice of
a base of the root system ® because the Weyl group permutes the bases and preserves
the bracket (.,.).
If o, B are two distinct non-proportional roots, it can be shown that («, 5){(8,«) =0,1,2
or 3. One defines the Coxeter graph of ® as the graph with r vertices, and such that
i-th and the j-th vertices (i # j) are linked by (a;, oj){a;, ;) edges. If all simple roots
have the same length (the length of a root is its norm), the Coxeter graph determines
the (v, a;) because then (o, o) = (o, ;) and between two distinct vertices there is at
most one edge. If simple roots have different lengths, there can be double or triple edges.
In that situation, on a multiple edge, one adds an arrow pointing to the shortest root.
With this complementary information, one can reconstruct the Cartan matrix from the
graph. The graph is then called a Dynkin diagram and is noted A. The Dynkin
diagram determines entirely the root system and their classification is given below.

A root system @ is irreducible if it cannot be partitioned in two subsets such that
each root of one subset is orthogonal to each root of the other subset. ® is irreducible
if and only if a base II cannot be partitioned in the aforementioned manner. This is
equivalent to saying that the Dynkin diagram of ® is connected. In general, a Dynkin
diagram is composed of several connected components and each one has a base IIj.
We write 1I = II; U...UIl; the corresponding decomposition of the base. We then
get a decomposition ® = &1 U...UP; of & as a union of sub-root systems and this
decomposition is unique. Each of these irreducible sub-root systems is the root system
of an irreducible component of the semisimple Lie algebra. Thus a semisimple Lie algebra
is simple if and only if its root system is irreducible.

Theorem 1.1.17. Let £ be a simple Lie algebra over C of rank r with an irreducible
root system ®. Then the Dynkin diagram A of ® is one of the following (each diagram
has r vertices):

14
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Type of A
1
A (r>1) o
1 2
B, (r>2) @ @
1 2
Cr (r>3) ® @
1
D, (r>4) ®
1
o
Eg
2
1 3 4 5 6 7
o o @ @ o
E7
2
1 3 4 5 6 7 8
o @ @ @ @ o
Eg
2
1 2 3 4
F *—0——0—0©
1 2
G .ﬁ.

Remark 1.1.18. The previous table contains exceptions for small ranks in the A, B,C, D
types. This is done to avoid overlaps of isomorphic classes and obtain only non-isomorphic
simple Lie algebras. In small ranks, these overlaps are called exceptional isomor-
phisms. They are as follows:

A1 = Bl = Cl,
322027
A3§D3.

15
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The classification of simple Lie algebras over the complex number field was first
achieved by W. Killing in [Kill88]. The proof was revised by E. Cartan in his Ph.D
thesis [Car94] and he added the classification over the real number field but did not
make use of simple roots whose existence was unknown at the time. In [Weyl25], H.
Weyl introduced the notion of positive root. B.L. Van der Waerden simplified the proof
of the classification in [VAW33|, and then E.B. Dynkin used the diagrams bearing his
name and simplified the proof still further in [Dyn46] and [Dyn47]. Dynkin diagrams
are instances of Coxeter graphs ([Cox34]), and E. Witt used these graphs in [Witt41] in
the context of complex semisimple Lie algebras.

By means of Theorem any Dynkin diagram of a semisimple Lie algebra is
a disjoint union of some of the previous simple diagrams. One can find the Cartan
matrices associated to the diagrams in the table as well as explicit realizations of their
root systems in e.g. [Bou68].

Examples 1.1.19. Let us go back to the previous examples:

e The special linear algebra sl.,1(C) is of type A,.
e The orthogonal algebra 02,11(C) is of type B;.

e The symplectic algebra sp,,.(C) is of type C,.

e The orthogonal algebra 04,(C) is of type D,.

The Lie algebras of type A, B,C and D are called classical and the others excep-
tional. Contrary to the classical algebras seen in the preceding example, the exceptional
Lie algebras do not have such simple realizations. It requires more sophisticated tools
like the octonion algebra for Go or isometries of projective spaces for Fy and the types
E. The reader can find in [Ada96] more information on the exceptional Lie algebras.

From a simple Lie algebra one can construct an associated Dynkin diagram. The
reverse process is possible. One can construct a simple Lie algebra from a Dynkin
diagram. Because the Cartan matrix of ® determines ® up to isomorphism, one can
construct ® from the knowledge of the Cartan matrix, and thus from the Dynkin diagram
(cf. [HumTg|). The following theorem is due to J.P. Serre and describes a simple Lie
algebra in terms of generators and relations.

Theorem 1.1.20. (Serre). Let A be a Dynkin diagram, ® the corresponding root
system and 11 = {aq,...,0.} a base of ®. Let £ be the Lie algebra generated by 3r
elements {e;, fi,hi | 1 <i<r}, subject to the relations

16



1.1. Definitions and basic properties

(S1) [hihj]=0  (L<i,j<r).
(52) [ei, fil =hi, [ei, f]1=0ifi#j.

(83)  [hires] ={aj,ai)ej,  [hi, f3] = —(oy, i) f.
(Sf) (ad &)l (e;) =0 (i # ).

(55) (ad fi)Tlred*i(f)=0  (i%]).

Then £ is a finite dimensional semisimple Lie algebra, with Cartan subalgebra spanned
by the h;, and with corresponding root system ®. The e;, f;, h;’s are called the Chevalley
generators of £.

1.1.3. Weyl group invariants

Let £ be a semisimple Lie algebra over K with root system ®, §) a Cartan subalgebra
of £ and W the associated Weyl group. As a set of simple roots of ® is a base of $*
and the Weyl group W permutes the elements of the root system @, there is an action
of W on $H*. But $) and $H* are identified by means of the Killing form thus W acts on
the Cartan subalgebra $). It is known that W is finite and generated by reflections. The
next theorem was proved by C. Chevalley in [Cheb5].

Theorem 1.1.21. (Chevalley). Let £, $ and W be as above. The algebra of polyno-
mial invariants K[H]W is generated by rank(L) algebraically independent homogeneous
elements.

We now define several notions associated to the Weyl group which will be of use later
on.

Definition 1.1.22. Let £ be a Lie algebra over kK, W its Weyl group, {a1,...,a,} a set
of simple roots and {s1,...,s,} the simple reflections of the Weyl group associated to the
sitmple roots. Then s =s1...5, is called a Coxeter element.

Proposition 1.1.23. All Cozeter elements are conjugated in W .

Because of the previous proposition, all Coxeter elements have the same order h. It is
called the Coxeter number of W. As all Coxeter elements are conjugated, they have
the same characteristic polynomial and therefore the same eigenvalues. If ¢ a primitive
h-th root of unity in C, these eigenvalues are of the form (" with 0 < m < h. The
exponents of W are the various m involved, written as

17



1. Lie Theory

The following theorem gives a practical way to compute the exponents of a Weyl
group.

Theorem 1.1.24. Let £ be a Lie algebra over K of rank r, $ a Cartan subalgebra and
W the Weyl group. We set fi,..., fr invariant homogeneous polynomials (cf. Theo-
rem such that S(HW = K[fi1,...f-] and deg(f1) < ... < deg(f.). Then the
exponents of W are deg(f1) - 1,...,deg(f;) — 1 and the Coxeter number is h = deg(f;).

Proof. We can find a proof of this theorem in [Bou68]. O

Examples 1.1.25. We are going to compute the Coxeter number as well as the exponents
for the Lie algebras of types A and D.

o Case A.: £=51,1(C), H={diag(x1,...,2r41) | T1+... + 231 =0} and W = S,4;.

We have S($) =C[X1,..., Xo1]/(X1+ ...+ X,11) with X; being the dual of

€; = ((€)rj) ik jere1 with (€)= | 1 ifk=j=1, The family (€ —€+1)1<i<r s a base of
0 otherwise.

$ embedded in gl,..,(C).

It is known that C[X1,...,X,41]" = C[o1,...,0041] with o; the i-th elementary sym-

metric polynomial. But in S(9), o1 = 0 so S(H)W = Cloa,...,0041]. The degrees of

the generators are 2,3,...,r + 1 so the exponents of W are 1,2,...,7 and the Coxeter

number is h=r+ 1.

One can also compute directly the eigenvalues of the Cozeter element. The Weyl group
is 6,41 which acts as the permutation group of the base (€;)1<i<r+1 (Bourbaki’s notations).
A base of the root system of type A, is given by (o; = €; — €;41)1<i<r- Let s be the Coxeter
element corresponding to the permutation (123 ---r+1). Then s(a1) = =Y )4 ok and
s(e;) = a1 if i > 2. One can express s as a matriz in the base (aq,...,a;) and compute
its characteristic polynomial xs. By induction one obtains xs(z) = (-1)" Xj_g z*. So
the eigenvalues of s are exp(m) for 1 <k <r, and we find the same result as before

r+1
for the exponents.

A

e Case D,: £=09.(C), $ is generated by h; = ( 0 —A.

) with A; = €ii—€Cit+1,i+1, 1<i<r,

r o
and h, = (0 T
and (Z/2Z)"" acts by h; —> (£1);h; such that [T;(x1); = 1.
We have a group homomorphism ¢:  (Z/2Z2)" —  Z]2Z . The action of the

(a1,...,00) — aq...qp

(Z2/22)" part of W on $) corresponds to the kernel of @ which is of index 2: it is then
(z2/2Z)" 1.
Because S(9) = C[X1,...,X,] and (Z/2Z)""" is normal in W, one finds
SV = (C[Xy,... X, ] @D Let P e C[Xy,...X, ] 2D be a homogeneous

) withT' =e,_1 -1 +€py, and W = (Z2/22)" ! % &,.. &, permutes the h;
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polynomial. Let X; be a wvariable in a monomial factor of P. If X; is alone, it has
to have an even power. Otherwise it must be multiplied by [1;.; X;. Therefore P €
C[XZ,..., X2 X1...X,].

Let P e S(H)W. One sees that P € Clo1(X?),...,001(X?),0.(X)]. Here o;(X?) :=
oi( X2, X2) forall1<i<r—1. So S(HW c Clo1(X?),...,00-1(X?2),0.(X)] and
the other inclusion follows immediately.

We thus have S($)W = C[o1(X?),...,001(X?),0,(X)]. The degrees of the polynomials
are 2,4,...,2r —2,r, hence the exponents of W are 1,3,...,2r = 3,7 -1 and the Cozxeter
number is h = 2r — 2.

The next proposition ([Hum90]) will give a connection between the Coxeter number
of a simple Lie algebra and its dimension.

Proposition 1.1.26. Let £ be a simple Lie algebra over K of rank r and dimension n.
Then its Coxeter number h satisfies the following relation

rh=2N

with N the number of positive roots of £. Because of the root space decomposition of £,
the previous relation implies

n=r(h+1).

In the next table, we give some numerical values regarding the Coxeter numbers and
the dimensions of the simple Lie algebras. These values can be found in [Bou68].

type of Lie algebra £ | rank of £ exponents of W Coxeter number h of £
A, r 1,2,..,r r+1
B, r 1,3,5,...,2r-1 2r
C. r 1,3,5,...,2r-1 2r
D, r 1,3,5,...,2r-3,r-1 2r -2
Eg 6 1,4,5,7,8,11 12
Er 7 1,5,7,9,11,13,17 18
Eg 8 1,7,11,13,17,19,23,29 30
Fy 4 1,5,7,11 12
Go 2 1,5 6
Table 1.1.
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1. Lie Theory

Using the formula in Proposition [1.1.26] and the values of the ranks and the Coxeter
numbers in Table 1.1, one can compute the dimensions of the simple Lie algebras.

1.1.4. Highest weight modules

If not specified otherwise, the proofs of the results in this subsection can be found in
[HumO8§].

Let £ be a finite dimensional Lie algebra over K. We write T'(£) for the tensor algebra
of £ and I for the two-sided ideal of T'(£) generated by z ® y -y ® x — [z,y], for all
z,y € £. We define U(L) =T(£)/I and call it the universal enveloping algebra of £.
Let A be an associative k-algebra with unit. A filtration on A is an increasing sequence
{0} € Ap & A1& ... such that A = Ujez,, Ai and A; - A; € Ay, for all i,j € Zsg. The
associated graded algebra to the filtration {4}z, is the direct sum

Gr A= @ Ai/Ai—la A_l = {0},

ieZzO

where the algebra structure on A induces the one on Gr A.

One can define a filtration on U(L). For m € Zy, set Trn(L£) = @, L£2*. Then
{T0n (L) }mez,, is a filtration on T'(£). It induces the one on U(L) by setting Uy, (L) =
(T (L)) where 7 : T(£) - U(L) is the canonical projection. This filtration on U (L)
is called the standard filtration of U(£). Because Gr T'(£) = T'(£), the canonical
projection induces a surjective morphism of algebras ¢ : T(£) - Gr U(£). Let J be the
ideal of T'(£) generated by z®y—-y®x, for all z,y € £. We have r(z®@y-y®x) € U2(L)
by definition (z,y € £). But in fact, 7(z ® y -y ® ) = w([z,y]) € U1(£). Therefore
in Gr U(£), one finds p(x ® y —y ® x) = 0 and thus J C Ker ¢. Hence ¢ induces a
surjective morphism of algebras w : S(£) - Gr U(£). The next theorem is called the
Poincaré-Birkhoff-Witt theorem, often shortened as PBW:

Theorem 1.1.27. (PBW). The morphism w: S(£) — Gr U(L) is an isomorphism of
algebras.

Corollary 1.1.28. Let (x1,x2,...) be an ordered base of £. Then the elements
Ti(1) - - Tigm) = T(Ti1) ® - ® Tyy)), M € Zso, (1) < ... < i(m), along with the unit,
form a base of U(L).

We fix £ a finite dimensional semisimple Lie algebra over k, ) a Cartan subalgebra
of £, ® the root system with base IT = {a1,...,a,} and £ = ) ® Byeqp Lo the root
space decomposition. A Borel subalgebra of £ is a maximal solvable subalgebra of £.
Just like Cartan subalgebras, all Borel subalgebras are conjugated in £. One can show
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that 9 @ @peqp+ Lo, With ®F the set of positive roots relative to the base II, is a Borel
subalgebra. For example, in the case of sl,(C), the diagonal matrices form a Cartan
subalgebra and the upper triangular matrices form a Borel subalgebra.

Let V be a finite dimensional £-module. Because the elements of £ are semisimple, V'
can be decomposed as V' = @)ey+ Vi with

Vw={veV | hv=Ah)v, VhefH}.

Whenever V) # {0} it is called a weight space and X\ is called a weight of V. An
£-module V is called a highest weight module of highest weight A if there exists
v eV~ {0}, called a highest weight vector, such that

o Lov=0, aed
e h.w=A(h)v, Vhe$,

e v generates V as a £-module.

Let A € $H* and Cy := Cvp be the by = ) & n,-module, with n, := @ e+ Lo, defined by
ny.vp =0 and h.vy = A(h)vy, for any h € 9.

Set
M(A) =U(L) ®y(s,) Ca-

M(A) is a highest weight module of infinite dimension by construction, and because

of the PBW theorem (Theorem [1.1.27) it is also U(n_)-free, with n_ := @,cqp+ £_o. The
module M (A) is called the Verma module of highest weight A and 1®v, is a highest
weight vector.

Theorem 1.1.29. Let A € §* and E a highest weight £-module of highest weight A with
a highest weight vector vg. Then there exists a surjection

M(A) » E

l®evy ~» wvg

It implies that any highest weight £-module of highest weight A is a quotient of the Verma
module M (A).
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1. Lie Theory

It can be proved that if A € §*, then there exists a unique irreducible highest weight
£-module (not necessarily finite dimensional) of highest weight A. We write L(\) for this
module. Furthermore, one can show that any sum of proper submodules of M(\) is a
proper submodule of M (). This implies that there exists a unique maximal proper sub-
module of M () noted N(A). It is a known result that L(\) is the quotient M (X)/N(N).

Any finite dimensional irreducible £-module is a highest weight module. Indeed, if V'
is such a module, then the Borel subalgebra $ ® @ o+ £ has a common eigenvector
v €V of weight A by Theorem and v is annihilated by all the £,, a € ®*. Thus
the submodule generated by v is a highest weight module of weight \. However V is
supposed to be irreducible and hence V = L(\). Furthermore, it can be shown that
(A, ;) € Zsg for all 1 <i <r. On the other hand, any L(\) for A € §* is not necessarily
finite dimensional. It requires an additional condition on A. A € $* is called a dominant
integral weight if (), a;) € Zy for all 1 <i <r. We have just seen that if L()\) is finite
dimensional, then A is dominant integral. It turns out that the converse is true.

Theorem 1.1.30. Let A e H*. Then
L()\) is finite dimensional <= X is a dominant integral weight.

Furthermore, if A is dominant integral, then the Weyl group W permutes the weights
appearing in L(\) and preserves the dimensions of the weight spaces.

The next theorem gives a presentation of the submodule N(\).

Theorem 1.1.31. Let A € H* be a dominant integral weight. The submodule N(A)

of the Verma module M (A) with a highest weight vector vy is generated by the vectors
A(hi)+1
f~ JUA -

)

Corollary 1.1.32. Any finite dimensional highest weight module is irreducible.

Proof. Let V be a finite dimensional highest weight £-module of highest weight A and
highest weight vector v. By Serre’s theorem (Theorem , £ is generated by the
Chevalley generators e;, fi, h;, for all 1 < i < r. Let s; (1 <4 <) be the Lie algebra
generated by e;, f; and h;. It is isomorphic to sly(k). By restriction one can look at
V as an s;-module, for all 1 < i < r. Let V; be the s;-submodule of V' generated by
v. V; is finite dimensional because V is. So according to Example the highest
weight of V; as an s;-module is a positive integer and so A(h;) € Zso. This result is
true for any i € {1,..., F&‘nd thus A is a dominant integral weight. Furthermore, it

was shown in Example [1.1.9) that fi’\(h")ﬂ.

to Theorem |1.1.31) N () is contained in the kernel of the morphism M(\) - V

v =0, for all 1 <¢ < r. Therefore, according

xr = TV
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This kernel is a proper submodule of M(A) and N()\) is the unique maximal one, so
N () is the kernel. By the isomorphism theorem, one finds V' M (\)/N(X) = L()\) and
V' is irreducible. O

Later on, we will compute some irreducible highest weight modules for some particular

kind of weights, which we define now. Let {aq,...,a.} be a base of the root system
of a semisimple Lie algebra £. Let {\1,...,\.} be the dual set of the simple roots
{oa,...,0n}, ie. (N, a;) = d;j, for all 1 <¢,j <r. The elements of this dual base are

called the fundamental weights of the root system and they are dominant integral
weights.

When A is a dominant integral weight, the dimension of the associated irreducible
highest weight module can be computed by means of a formula proved by H. Weyl.

Theorem 1.1.33. (Weyl). Let X € 9* be a dominant integral weight. Then

m _ 17 QA+pB)
dim L) = 11705

with p the half-sum of the positive roots of the root system .

1.1.5. Lie groups, algebraic groups and Lie algebras

We finish this section by a link between Lie groups, algebraic groups and Lie algebras
as well as some notations. The references used here are [DuiKol00] and [OV90)].

Definition 1.1.34. A Lie group is a group G with a smooth manifold structure over
R or C, and such that the multiplication m : G x G - G and the inversion i : G - G are
smooth maps.

Remark 1.1.35. A Lie group can also be defined over a p-adic field, but being smooth
is replaced by being locally analytic (cf. [Schneill]). However, in this thesis, we will not
work over p-adic fields.

Let G be a Lie group. Because of its smooth manifold structure, one can define the
tangent space to G at a point € G by T,G = {7/ (0) | v: [~¢,¢] - G is a C! curve
on G and 7(0) =x}. A vector field on G is a derivation X : C*°(G) - C*(G), i.e. a
linear map such that on a product of functions f and g

X(fg)=f(Xg)+(Xf)g.
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1. Lie Theory

Locally one can choose coordinates so that such a derivation is a linear combination of
the derivatives with respect to the coordinates

0
8:@- ’

X=Zai(x1,...,$n)

n
i=1
and with respect to this choice of coordinates, a vector field is given at each point by
the n-vector (ai,...,a,). If X is a vector field on G and g € G, then the value of X at
gis Xg: C®(G) - K defined by X,(f) = X(f)(g) for any f e C*°(G). The set of all
values at a point g € G of all vector fields on G is the tangent space at g noted T,G. It
can be thought of in terms of derivations acting on germs of functions at g. We have a
diffeomorphism of G defined by the left multiplication by an element g € G and noted
Ly. It induces the map dypLg : T),G — Ty, G for any h € G. A vector field X is called
left-invariant if

(dnLg)(Xp) = Xgn,

The set ™X(G) of all left-invariant vector fields is called the Lie algebra of the Lie
group G and is isomorphic to T,G as a G-module. The Lie bracket for this Lie algebra is
[X,Y](f)=XY(f))-Y(X(f)) for any X,Y left-invariant vector fields and f € C*°(G).

Definition 1.1.36. An algebraic group is an algebraic variety G over K which is also a
group and such that the maps defining the group structure p: GxG - G with u(z,y) = vy
and v:x — 21 are morphisms of varieties.

The following definition of the tangent space to an algebraic group comes from [Sprin09].

Definition 1.1.37. Let G be an algebraic group over a field K. The tangent space to
G at x € G is defined by T,G = Derk(K[G],Kz), i.e. the set of K-derivations from K[G]
to Ky, with K, the field k seen as K[G]-module by the morphism f — f(x). An element
X € T,G is thus a map X : K[G] = K such that X(fg) = X(f)g(z) + f(x)X(g) for any

f,9 €K[G].

The tangent space of an algebraic group G can also be expressed using the regular
functions on G. If z € G, we write M, = {f e K[G] | f(x) =0}. It can be proved that the
tangent space to G at z is isomorphic to (M,/M2)* (cf. [Sprin09]).

The Lie algebra of an algebraic group G is the tangent space at the unit element

T.G and is usually noted g. We can check that g is a Lie algebra in the sense given at
the beginning of Section Indeed, there are two maps
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1.1. Definitions and basic properties

inv i
X(6) % Dend(k[Glk.) =g

defined by: '
e for any X € "™X(G), o(X)(f) = X(f)(e) for e the unit in G and any f € K[G].

o for any x € Derg(K[G],Ke), ¥(2)(f)(g) == 2(Ly f) for any feC*(G) and geG.
The maps ¢ and 1 are both well defined isomorphisms and inverse to each other (cf.
[Hum?75] Sections 9.1 and 9.2). Thus the Lie bracket on g is given by the one for the
left-invariant vector fields. From now on we will write h C b C g for a Cartan subalgebra,
a Borel subalgebra and a Lie algebra respectively.

An algebraic group over a field K is defined using polynomials. So if k =R or C, an
algebraic group is always a Lie group. But the converse is not always true. The easiest
example is D! = {z € C | 0 < |2| < 1}, the pointed unit disc without its border in R?, the
group action being the product. The metaplectic group Mp,(R), which is the connected
double cover of SLy(R), as well as the subgroup of GL3(R) given by

10 0
z t 0] zyeRteR"

y 0 t*

with « irrational, are non-trivial examples. But there are particular situations in which
the converse is true. The next theorem is proved in [OV90].

Theorem 1.1.38. Let G be a connected, complex, semisimple Lie group. Then G admits
a unique structure of complex algebraic group.

Under these conditions, the classification of simple Lie groups over C and the classifi-
cation of simple algebraic groups over C lead to the same results. In what follows, the
base field will be the complex number field, hence we will identify Lie groups and alge-
braic groups. If G is an algebraic group, then its tangent space as Lie group coincides
with its tangent space as algebraic group. In a similar fashion, the two definitions of the
Lie algebra of GG coincide.

If g € G, we define
Ad(g):g—~g

as the derived map at the unit element e of the conjugation = ~ gzg~! from G to G.
This is the Adjoint action of G on g. Also we define

25



1. Lie Theory

ad : g - End(g)

as the differential at e of Ad: G — End(g). It coincides with the adjoint representation
of g on itself and thus one finds ad(X)(Y) = [X,Y], VX,Y eg.

1.2. Folding of Dynkin diagrams

We fix an algebraically closed field K of characteristic 0.

1.2.1. Definition of the folding of a Dynkin diagram

Let g be a simple Lie algebra of finite dimension over k with root system ® and z € g.
If ad x is nilpotent of order (say) n+1, then exp(ad z) =1+ad =+ M +.. % €
Aut(g) is well defined. Any automorphism of g that can be written exp(ad x) with =
nilpotent is called inner and the group generated by inner automorphisms is denoted by
Inn(g). It is a connected and normal subgroup of Aut(g), the group of automorphisms of
g. An outer automorphism is an element of Out(g) := Aut(g)/Inn(g). One can find the
proof of the next proposition in [FulHar91] (or [Bou68] chapter VI, §1, n°5, Proposition
16).

Proposition 1.2.1. Out(g) is isomorphic to the automorphism group of the Dynkin
diagram A of g.

One can verify that the irreducible Dynkin diagrams that have a non-trivial outer
automorphism group are those of type A, (r > 2), D, (r > 3) and Es. Let o be an
automorphism of one of these Dynkin diagrams. Then ¢ induces an automorphism of
the corresponding Lie algebra. This is achieved by taking a section s of the morphism
7 : Aut(g) - Aut(g)/Inn(g) and get s(o). It has been seen that every vertex of the
Dynkin diagram corresponds to an element of a base II of ®. With this identification, o
induces a permutation of II. From Serre’s theorem (Theorem[1.1.20)), it is known that the
Lie algebra is generated by the Chevalley generators e, fa, ha, Wwith « running through
I1. Define s(o) by s(0)(%a) = Ty(q) for any a €Il, z = ¢, f or h. It can be verified that
s(o) is an automorphism of g and 7o s(0) = 0. One can see that s(o) preserves the
Cartan subalgebra b and is thus, by definition, an automorphism of the root system. But
s(o) preserves also the Borel subalgebra b @ @,cqp+ go. This implies that s(o) induces
a permutation, which we call p, of the positive roots through s(o)(ga) = g,(a)- Hence
the permutation p is induced by an automorphism of the root system ® and preserves
&+ thus it preserves the base II. As it also preserves the bracket (.,.), one sees that the
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Cartan matrix is unchanged by p, and so is the Dynkin diagram. Therefore p induces
an automorphism of the Dynkin diagram which is equal to o.

In order to simplify the notations, we will write ¢ for the automorphism s(o). By
definition of o, ¢ has finite order. Assuming the order is r € Zsg, ¢ induces a gradation
on g such that g = @jez/,z9: With g; = {z e g | 6(x) = w'r}, w being a primitive r-th
root of unity. Indeed, because ¢ is of finite order, it is semisimple. Hence there exists
a base of g composed of eigenvectors of ¢ and the eigenspaces are the summands of the
gradation.

In the next subsections we are going to compute explicitly the gradation of the Lie
algebra by a case by case analysis of the Dynkin diagrams. Furthermore we will also com-
pute the invariants of the root lattice by the action of ¢ and the corresponding Dynkin
diagram. The folding of a Dynkin diagram consists in computing the invariants of
the automorphism . The reader may consult [Kac90] for more results on Lie algebras
automorphisms.

1.2.2. AQT—l and BT

Let g be a Lie algebra over K of type Ag,_1, A its Dynkin diagram and {aq,..., a1}
a base of the root system. We identify the simple roots of g with their respective vertices
in A, so that an automorphism of A can be seen as a permutation of the simple roots.
We define o the automorphism of A by (o) = agp.

a) Folding of the Lie algebra: o is lifted to an automorphism ¢ of g defined by &(x;) =
To(;), With z = ¢, f or h, the Chevalley generators.

¢ is of order 2 so g = go @ g1. We are going to compute gg and g;.
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g is generated by e;, fi, hi, 1 <i<2r—1, with Serre’s relations (Theorem [1.1.20)). The
simple roots are ai,...az,—1 and the positives ones are };cjag, 1 <i<j <2r. The
root space decomposition gives g =H ® Dpeap+ (ga ® g-o) With g, = Ce,.

In the following computations, we are going to use that if ¢ is of finite order r and

r—1 o
zeg, theny=>) ('¢'(x) with (" =1 is an eigenvector of ¢ for the eigenvalue (.
i=0
® go: set

E, = e+o(e), 1<i<r—-1,| F, = fi+o(fi),1<i<r-1 and
E. = e F.o= [

H; hi+a(h;), 1<i<r—-1,

H = h.

We have the following relations

Ei, Fy]=6; ;H;, 1<i<r,

[

[Hi, H;] =0, Vi, j,
[H;, Ej] = cij Ej,
[HZ,F] —cij Fj,

(ad E)V 9 E; =0 (i),
(ad )G F; =0 (i# 7).

2 -1 0 O
-1 2 -1
0o -1 2
where the matrix (¢;;)1< j<r 15 00 A ,
2 -1 0
-1 2 -1
0 O 0o -2 2
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According to Serre’s theorem (Theorem [1.1.20)), the E;, F;, H; are the Chevalley gener-
ators of a simple Lie algebra a C gg whose corresponding Dynkin diagram is

which is of type C..

* g1: we have [g0,91] C 91,80 [a,81] C g1. g1 is then a representation of a. Let (\;)1<i<r
be the fundamental weights of a. Set | 71 = o +...+ag-—2, and v=¢, —e¢,,. One
N2 = ag+...+02-1,
can see that v € g and v # 0 because n; # n2. Let V be the a-module generated by
v. By direct computations one finds | [H;,v] = Ao(H;)v, Vi, Therefore V is a highest
[Ei,v] = 0, V1.

weight module of highest weight Ao and is finite dimensional. By Corollary [1.1.32] V is
irreducible and so V' 2 L(Az).

By Weyl’s formula (Theorem [1.1.33)), we obtain dim V = 272 —r — 1. Furthermore
g= go ® g1 anddima+dim V=r2r+1)+2r2-r-1=47?>-1=dim g, with dim a

U U

a %4
given in Table 1.1. The simple Lie algebra a c gg which is of type C, is therefore equal
to go- We conclude that gg = a is the simple Lie algebra of type C, and g; = V is an
irreducible highest weight a-module of highest weight Ao.

2r-1
b) Folding of the root lattice Q: let @ = €D Za; be the root lattice of a root system
i=1
of type As,.—1. We have defined o by o(a;) = ag,—; and extend it to @ by linearity. Let
us compute the invariants Q°.

2r-1

asziaieQU < ki=kor, 1<i<r—1,
i=1
! r—1
= o= Z ki(ai + Ozgr_i) + kra,«.
i=1

Set
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Bi=o; +aor_;, 1<i<r—1,

/81“ = Q.

The S;’s generate the lattice Q°. From direct computation, one has

({Bs, Bj))1<ij<r

The corresponding diagram is

-1 0 0
2 -1
-1 2
0 -1
-1
2 -1 0
-1 2 -2
0 0o -1 2
r-2 r-1 r

It is a Dynkin diagram of type B,. We deduce that @7 is the root lattice of a Lie

algebra of type B;.

1.2.3. A, and C,

Let g be a Lie algebra over Kk of type Ag,, A its Dynkin diagram and {a1,..., a9} a
base of the root system. We identify the simple roots of g with their respective vertices
in A, so that an automorphism of A can be seen as a permutation of the simple roots.
We define o the automorphism of A by o(a;) = a2r11-;-
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1.2. Folding of Dynkin diagrams

1 2 r r+1 2r-1 2r
o——eo @— @ e o—©
‘\/

o

a) Folding of the Lie algebra: o is lifted to an automorphism & of g defined by
(i) = To(;), with z = ¢, f or h, the Chevalley generators.

¢ is of order 2 so g = go @ g1. We are going to compute gg and g;.

g is generated by e;, fi,hi, 1 < i < 2r, with Serre’s relations (Theorem [1.1.20). The
simple roots are aq,...ag, and the positives ones are ., ;.; ag, 1 <7 <j < 2r. The root
space decomposition gives g =h ® Dpcp+(go ® g-o) With g, = Ceq.

o%set

Ei=€i+é'(€i),1ﬁi£r,
FiZfi+é'(fi),1SiST,
Hi=hi+0"(hi),1SiS7".

We have the following relations

(ad E)" 9 E; =0 (i#})),
(ad F))1CiF; =0 (i # 7).
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2 -1 0 O
-1 2 -1
0O -1 2
where the matrix (¢;;)1< j<r 1S 00 A .
2 -1 0
-1 2 =2
0O O 0o -1 2

According to Serre’s theorem (Theorem [1.1.20)), the E;, F;, H; are the Chevalley gener-
ators of a simple Lie algebra a C gy whose corresponding Dynkin diagram is

which is of type B,.

* g1: we have [go,91] C g1, 80 [a,91] C g1. g1 is then a representation of a. Let (\i)1<i<r
be the fundamental weights of a. Set 6 = a1 +...+ a9, and v = eg. One can see that v € g1
and v # 0. Let V be the a-module generated by v. By direct computations one finds

[H;,v] =2\ (H;)v, Vi, Therefore V is a highest weight module of highest weight 2,
[E;,v] =0, Vi.
and is finite dimensional. By Corollary [1.1.32} V is irreducible and so V' = L(2\;).

By Weyl’s formula (Theorem [1.1.33), we obtain dim V = r(2r + 3). Furthermore
g=go ® g1 anddima+dim V=r2r+1)+r(2r+3)=4r(r+1) =dim g, with dim a
U U

a V
given in Table 1.1. We conclude that go = a is the simple Lie algebra of type B, and
g1 =V is an irreducible highest weight a-module of highest weight 2);.

2r
b) Folding of the root lattice Q: let @ = EBZ% be the root lattice of a root system of

type Ag,. We have defined o by o(a;) = ozg,url ; and extend it to @@ by linearity. Let us
compute the invariants Q°.
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2r
a=> ki €Q” < kij=kop1o, 1<i<r,
i-1

r
< o= Z k‘l(al + a2r+1_i).
i=1

Set
Bi = +oopp1-i, 1<i<r.

The §;’s generate the lattice Q7. From direct computation, one has

2 -1 0 0
-1 2 -1
0o -1 2
0o 0 -1
({8, Bj)<ijer = X
2 -1 0
-1 2 -1
0 O 0o -2 2
The corresponding diagram is
1 2 3 r-2 r-1 r

® @ @ P oe—=o

It is a Dynkin diagram of type C,.. We deduce that @7 is the root lattice of a Lie
algebra of type C,.

1.2.4. D,.; and C,

Let g be a Lie algebra over K of type D,,1, A its Dynkin diagram and {aq,...,ar41} a

base of the root system. We define o an automorphism of A by | o(a;) =y if i #r,r+1,
U(ar) = Qpyil,

o(ars1) = ap.
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r+1

a)Folding of the Lie algebra: o is lifted to an automorphism ¢ of g defined by
0(x;) = Ty(;), With x = e, f or h, the Chevalley generators.

As previously one sees that g =go @D g1.

e go contains

E, = e,1<i<r-1, aswellas | F; = f;, 1<i<r-1,
E, = e +d(er), F. = fr+o(fr),
and | H; = h;, 1<i<r—1,
H. = hy,+0d(h;).

Let a be the subalgebra of gy generated by the F;, F; and H;’s. As in the previous
subsection, by means of Serre’s theorem (Theorem [1.1.20)), one sees that the E;, F;, H;’s
are the Chevalley generators of the simple Lie algebra a C gg whose Dynkin diagram is

1 2 3 r-2 r-1 T

® ® @ P o——o

which is of type B,.

e g1: as in the previous subsection, we find that g is a representation of a. Let (\;)1<i<r
be the fundamental weights of a. Let | 71 = a1 +...+ -1+, andv=e, —ey,.
N2 = a1+...+t0-1+Qps1,
One can see that v € g; and v # 0 because 11 # 72. Let V' be the a-module generated by
v. By direct computations we find | [H;,v] = A1 (H;)v, Vi, Therefore V is a highest
[E;,v] =0, Vi.

weight module of highest weight A1 and is finite dimensional. By Corollary [1.1.32] V is
irreducible and so V' = L(\1).
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1.2. Folding of Dynkin diagrams

By means of Weyl’s formula (Theorem [1.1.33]), we obtain dim V' = 2r+1. Furthermore
g=9g0 ® g1 anddima+dim V=_2r+1)r+2r+1=2r+1)(r+1)=dim g, with

U U

a |4
dim a given in Table 1.1. We conclude that go = a is the simple Lie algebra of type B,
and g; =V is an irreducible highest weight a-module of highest weight A;.

r+1

b) Folding of the root lattice Q: let Q@ = @ Za; be the root lattice of a root system
i=1

of type D;,1. We have defined o by | o(;) =« if i #r,r+1, and extend it to ) by
o () = Oy,

U(aT+1) = Qy,
linearity. We compute the invariants Q.

r+1
a = Z kici € Q° < Ky =k,
i—1
’ r—1
< a=) ki + k(o + o).
=1

Set

Bi=a;,1<i<r-1,

Br = + Qg1

The f;’s generate the lattice Q7. From direct computation, one has

2 -1 0 O
-1 2 -1
0o -1 2
({Bis Bi)sijsr = oov X
2 -1 0
-1 2 -1
0 O 0o -2 2
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The corresponding diagram is

It is a Dynkin diagram of type C,. We deduce that ()7 is the root lattice of a Lie algebra
of type C,.

1.2.5. E6 and F4

Let g be a Lie algebra over K of type Fg, A its Dynkin diagram and {aq,...,as} a

base of the root system. We define o an automorphism of A by [ (o) = ag,
o(ag) = as,
U(a5) = Qg,
0(046) =,
o(a;) = a; otherwise.

g
® ® @ ®
1 3 4 5 6
2

a) Folding of the Lie algebra: o is lifted to an automorphism & of g defined by
(i) = To(;), with = e, f or h, the Chevalley generators.

As previously we prove that g = go @ g1.
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1.2. Folding of Dynkin diagrams

e go contains | Fy = eo, | FLo= fo, aswell as | Hy = ho,
Ey = e = fu Hy = hy
Es = e3+es, Fy = fs+fs, Hs = hg+hs,
Ey = ey +eg, Fy = fi+fe, Hy = hy+hs.

Let a be the subalgebra of gg generated by the E;, F; and H;’s. From direct compu-
tations and by Serre’s theorem (Theorem [1.1.20)), one sees that the F;, F;, H;’s are the
Chevalley generators of the simple Lie algebra a C go whose Dynkin diagram is

which is of type Fjy.

e gi: as in the previous subsection, we find that g; is a representation of a. Let
(Ai)1<i<a be the fundamental weights of a. Let | 71 = a +ag +2a3 + 2a4 + as + ag,
N2 = a1+a2+a3+2a4+2a5+a6,
and v = e, —ep,,. One can see that v € g; and v # 0 because 71 # 1n2. Let V be the
a-module generated by v. By direct computations we find | [H;,v] = \(H;)v, Vi,
[E;,v] =0, Vi.

Therefore V is a highest weight module of highest weight Ay and is finite dimensional.
By Corollary [1.1.32 V' is irreducible and so V' = L(\4).

By Weyl’s formula (Theorem [1.1.33]), we obtain dim V' = 26. Furthermore
g= g0 @ g1 anddim a+dim V =52+26 =78 = dim g, with dim a given in Table 1.1.

U U

a Vv
We conclude that gg = a is the simple Lie algebra of type Fy and g1 = V is an irreducible
highest weight a-module of highest weight A\4.

6
b) Folding of the root lattice Q: let Q = @ Za; be the root lattice of a root system of
i=1

37



1. Lie Theory

type Fg. We have defined o by o(on) = ag, and extend it to ) by linearity.
o(ag) = as,
o(as) = as,
0(046) =1,
o(a;) = a; otherwise,

Let us compute the invariants Q°.

6
Oé=2/{7i04i€QU <~ k:1=k:6andk3=k:5,
i=1

= o= k’l(al + 046) + kg(ag + Oz5) + k4044 + kQOzQ.

Set

B1 = a1 + o,
B2 = ag + as,

B3 = o,

Ba = 2.

The f;’s generate the lattice Q7. From direct computation, one has

2 -1 0 0
-1 2 -2 0
((Bi, Bi))1<ij<a =
-1 2 -1
0o 0 -1 2
The corresponding diagram is
1 2 3 4

It is a Dynkin diagram of type Fy. We deduce that Q7 is the root lattice of a Lie algebra
of type Fy.
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1.2. Folding of Dynkin diagrams

1.2.6. D4 and G2

Let g be a Lie algebra of type Dy, A its Dynkin diagram and {aq, a9, a3, s} a base

of the root system. We define o an automorphism of A by | o(a;) = as,
o(ag) = ay,
o(ag) = a,
o(ag) = as.

a) Folding of the Lie algebra: o is lifted to an automorphism & of g defined by
0 () = Ty(;), With x = e, f or h, the Chevalley generators.

As before we can prove that g = go @ g1 ® g2 because ¢ is of order 3.

e go contains | Fj =ej +e3 + ey, Fi=fi+fs+fy, and | Hy=hy+hs+ hy,

Es = eo, Fy = fo, Hs = ho.

Let a be the subalgebra of gy generated by the E;, F; and H;’s. As in the previ-
ous subsection, by means of Serre’s theorem (Theorem , one concludes that the
E;, F;, H;’s are the Chevalley generators of the simple Lie algebra a C gg whose Dynkin
diagram is

which is of type Gs.
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* g1: as in the previous subsection, we find that g; is a representation of a. Let (A1, N\2)

be the fundamental weights of a. Let | 11 = oy +as+as and v = e, + j2en, + jep,.
N2 = azt+tag+a;
m = ogtoaztas

One can see that v € g; and v # 0 because 71,72 and 73 are distinct. Let V' be the a-
module generated by v. Through direct computations one finds | [H;,v] = A1 (H;)v, Vi,
[E’i,v] = 0, Vi.

Therefore V is a highest weight module of highest weight A4 and is finite dimensional.
By Corollary |1.1.32] V' is irreducible and so V' 2 L(\1).

With Weyl’s formula (Theorem [1.1.33)), we obtain dim V =7.

e go: we have [go,g2] C g2, 5o [a,92] C g2. Thus g2 is a representation of a. Set
w = ey + Jen, +j26n3. One can see that w € go and w # 0 because 71,72 and n3 are
distinct. Let W be the a-module generated by w. From direct computations we find

[H;,w] = 1 (H;)w, Vi, Therefore W is a highest weight module of highest weight
[E;,w] =0, Vi.

A1 and is finite dimensional. By Corollary [1.1.32] W is irreducible and so W = L(Ay).
Therefore V2 W = L(\1).

Wehaveg= go @ g1 & ¢go anddim a+dim V+dim W =14+7+7 = 28 = dim g,

U U U

a Vv U
with dim a given in Table 1.1. We conclude that gg = a is the simple Lie algebra of type
Go and g1 =V 2 W = gy is an irreducible highest weight a-module of highest weight A;.

4
b) Folding of the root lattice Q: let Q@ = @ Za; be the root lattice of a root system
i=1

of type Dy. We defined o by | o(a;) =03, and extend it to @ by linearity. Let us
o(as) = ay,
o(ay) = oy,
o(ag) = g,

compute the invariants Q°.
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1.2. Folding of Dynkin diagrams

4
a:ZkiaiEQU < ki =ks=ky,
i=1
A a:kl(a1+a3+a4)+k2a2.

Set

B1 =01 +az+ oy,

B2 = .

The f;’s generate the lattice Q7. From direct computation, one has

2 -3
({Bis Bi)sij<2 = .
-1 2
The corresponding diagram is
1 2
[ =—=]

This is a Dynkin diagram of type G2. We deduce that Q¢ is the root lattice of a Lie
algebra of type Ga.

1.2.7. Conclusions

We summarize the results we obtained in the previous subsections in the following
table:

typeof g || Aor—1 | A2y | Dy | Eg | Dy

typeofgo || Cr | Br | By | Fi|Gs

type of Q7 B, C, C, Fy | Go

order of o 2 2 2 2 3

Table 1.2.
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One notices that, in all five cases, the types of gg and QQ° are dual to each other. This
is due to the fact that the short roots and the long roots are switched when we go from
the Lie algebra to the root lattice. For example, with the case As,._1, go is of type C.
with simple roots (%(al F 1)y %(ar_l +ay11), ) SO we have r— 1 short roots and
one long. Q7 is of type B, with base (a1 + @2,-1,...,7-1 + @11, ) S0 we have r — 1
long roots and one short. The Coxeter graphs will then be identical but the Dynkin
diagrams will differ by the direction of the arrow on the multiple edge.

1.3. Adjoint quotient

1.3.1. Definition of the affine quotient

In this subsection we follow the presentation of the affine quotient given in [Muk03].

Let X = Spm k[ X ] be an affine variety on which acts an algebraic group G. We want to
define a quotient “X /G ” which would characterize the action of G on X. A most natural

way is to look at a map of the following form ¢: X — A" with the

z = (fi(@),..., fa(®))

fi being G-invariant regular functions. This map is then constant on each G-orbit. We
say that GG is linearly reductive if for any surjective map f:V — W of representations
of G, the induced map f©: V% - W on the G-invariants is surjective. It is equivalent
to the assertion that every finite dimensional representation of G is completely reducible
(cf. [Pro07] Chapter 7, Section 3.1, Lemma). Furthermore, in characteristic 0, a linear
algebraic group is linearly reductive if and only if it is reductive (cf. [Pro07] Chapter
7, Section 3.6, Theorem 2). One can show that SL,(C), as well as compact Lie groups
(which include the exceptional Lie groups), are linearly reductive. D. Hilbert proved the
following theorem in [Hilb90]:

Theorem 1.3.1. (Hilbert). Let G be a linearly reductive algebraic group, which acts
on a polynomial ring S, preserving the grading. Then the ring of invariant polynomials
SC s finitely generated.

Hilbert’s theorem states that K[X]¢ has a finite number of generators. So we take
the above f;’s to be a set of generators of the invariants. One wonders if this map can
separate the orbits, or what does the image of ¢ looks like.

Example 1.3.2. Let us look at the action of the multiplicative group G,, on the affine

plane X = A? given by t.(z,y) = (tz,t'y), t € Gy, (x,y) € A%. The orbits of this action
are of three kinds:
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1.3. Adjoint quotient

(i) the origin (0,0),
(ii) every hyperbola xy = a with a not zero,

(iii) the x — axis without the origin and the y — axis without the origin.

On the other hand G acts on the coordinate ring of X, which is K[X] = K[z,y]. It is
easy to see that K[X]9 = k[zy] and so there is a map

e: A2 > Kk

(z,y) = wy

This map separates the orbits of type (ii), but makes no difference between the types (i)
and (iii).

According to the previous example, the invariant functions are not sufficient to sep-
arate orbits. This is due to topology. The map ¢ is polynomial so continuous. This
implies that each fiber is closed, so if one G-orbit is not closed, ¢ cannot separate the
orbits. We are going to see that ¢ does not separate orbits but certain equivalence
classes of orbits.

Definition 1.3.3. Two G-orbits O and O’ € X are said to be closure-equivalent if
there exists a sequence of orbits

O=0p, O1,..., Op_q, 0, =0'

such that O; N Qi1 # D, for all i=0,...,7—1.
Theorem 1.3.4. (Mumford-Nagata). Let G be a linearly reductive group acting on
an affine variety X and O, O' ¢ X two orbits in X. The following assertions are
equivalent:
(i) ONO' + @.
(ii) O and O" are closure-equivalent.

(iii) O and O' are not separated by the G-invariants K[ X]9.

According to the theorem, ¢(X) parametrizes the closure-equivalence classes of G-
orbits in X.
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Corollary 1.3.5. Let G be a linearly reductive group acting on an affine variety X. Then
the distinct closed G-orbits are separated by . Furthermore, each closure-equivalence
class contains one unique closed orbit.

The corollary implies that the image of ¢ parametrizes the closed G-orbits. Now we
can define our quotient variety.

Definition 1.3.6. We note X//G for the affine variety Spm(K[X]%). The inclusion
K[X]% c K[X] defines a map

o: X > X//G,

which is called the affine quotient map. The variety X /|G is called the affine GIT
quotient.

It is possible to show (cf. [Muk03] Theorem 5.9) that if G is linearly reductive and
acts on an affine variety X, then ® is surjective and there is a bijective correspondence
between the points of X//G and the closure-equivalence classes of G-orbits in X.

Assuming that G is a finite group, the affine quotient has an interesting property.
Indeed, as G is finite, every orbit G.z, z € X, is of finite cardinal and is thus closed.
Therefore X//G characterizes all the orbits of G. This turns X//G into a geometric
quotient, and as such, is noted X/G. By definition, a geometric quotient of a G-
variety X by an algebraic group G is a morphism 7 : X - Y such that:

(i) = is surjective, and its fibers are exactly the G-orbits in X.
(ii) The topology of Y is the quotient topology: a subset U C Y is open if and only if
7 1(U) is open.
(iii) For any open subset U C Y, the comorphism 77 yields an isomorphism
K[U] =z k[=1(U)]°.
The reader may consult [Mum94| for properties of a geometric quotient. In particular, if
X is irreducible, then so is Y, and there is an equality of function fields k(Y') = k(X)%.

From conditions (i) and (ii), as a set, the geometric quotient is the set of all orbits.
However, the geometric quotient and the set theoric quotient are not always the same,
because the geometric quotient does not always exists.

Examples 1.3.7. (1) Consider the action of G = G, on X = A" by scalar multiplica-
tion. The orbits are the lines through 0 minus the origin, and the origin. But there
is mo geometric quotient, since 0 lies in every orbit closure.

(2) Let G = Gy, act on A2~ {0} via t- (z,y) := (tz,t'y), as in Example . Recall
that the orbits are the hyperbolae {xy = a}, with a € K*, the x-axis minus the origin
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1.3. Adjoint quotient

and the y-axis minus the origin. All the orbits are closed in A? ~ {0}, but there is
no geometric quotient. Indeed, K(X)¢ = k(zy) and thus, the G-orbits (z = 0) ~ {0}
and (y =0) \ {0} are not separated by G-invariant rational functions.

One may add that if the geometric quotient and the affine GIT quotient both exist,
then they are identical.

1.3.2. Adjoint quotient

We return to Lie theory. Let G be a semisimple algebraic group over K and g its Lie
algebra. The adjoint action of G on g has already been defined. Let us look at the
morphism g - g//G.

Let h C g be a Cartan subalgebra and W the corresponding Weyl group. We write
S(h) c S(g) for the symmetric algebras of h and g respectively. C. Chevalley proved
the following theorem:

Theorem 1.3.8. (Chevalley). Let G be a semisimple algebraic group over K, g its Lie
algebra, h C g a Cartan subalgebra and W the corresponding Weyl group. There is an
isomorphism

S(9)¢ = S(Hn)".

Proof. A proof due to R. Steinberg can be found in [Hum7§g]. O

Examples 1.3.9. In Examples we computed the exponents for the Lie algebras
of types A and D in the complex settings, and for this we obtained a set of generators
for the algebra S(h)W.

For the type A,, we found S(h)W = C[oo(X),...,0,11(X)] with o; the i-th elementary
symmetric polynomial. According to Theorem the algebra S(g)G of G-invariants
is generated by o2(X),...,0041(X).

For the type D,, we had S(h)"W = C[o1(X?),...,0,1(X?),0.(X)] = S(g)¢.

For the cases B, et C,, one finds that S(g)¢ = S(h)V = C[o1(X?),...,0.(X?)].

In the settings of Chevalley’s theorem, g is semisimple and therefore the Killing form
k of g is non-degenerate. Thus it determines an isomorphism =: g - g* defined by

E(x)(y) = k(z,y), Vw,yeg.
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This isomorphism enables us to identify S(g)¢ (respectively S(h)") with k[g]® (re-
spectively k[b]w). Looking at the spectrum in Chevalley’s theorem, one obtains the
isomorphism g//G = h/W.

One can write h/TV because W is a finite group and so the quotient j//W is geometric
(cf. Subsection [1.3.1)). So there is a surjective morphism x : g - h/W that we call the
adjoint quotient of g. This morphism will be described in more details.

The next two lemmas can be found in [ColMcG93].

Lemma 1.3.10. Let g be a semisimple Lie algebra over K, G its corresponding group
acting by the Adjoint action, and by a Cartan subalgebra. We define a map

: b — {G-orbits of semisimple elements} .

h — O, =G.h

Then [ is surjective.

Remark 1.3.11. The closed orbits of G in its Lie algebra g are exactly the orbits of
semisimple elements (cf. [ColMcG93] Theorem 2.3.1).

Lemma 1.3.12. Let g be a semisimple Lie algebra over K, G its corresponding group
acting by the Adjoint action, b a Cartan subalgebra and W the associated Weyl group.
Then we have a natural isomorphism

W= Na(h)/Ca(b),

with Na(h) ={ge G| g.b=b} and Ca(h) ={ge G | g.h =h Vh e b} the normalizer and
the centralizer of b in G, respectively.

Proposition 1.3.13. Let g be a semisimple Lie algebra over K, b a Cartan subalgebra
and W the associated Weyl group. Then the set of conjugacy classes of semisimple
elements of g is in bijection with h/W .

Proof. Consider the map

w: bW — {0, | x is semisimple}

h —~ Oy,
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1.3. Adjoint quotient

with h being the image of h € h by the natural projection b — h/W. Say h and hy are
two distinct representatives of the conjugacy class . Then by Lemma , h and hq
are G-conjugated and so Op, = Op,,. Therefore y is well defined. Lemma [1.3.10] implies
that p is surjective.

We now prove that y is injective. Assume u(hy) = u(ha). Then Oy, = Oy, and so there
exists g € G such that g.h; = ha. One notices that h and g.h are two Cartan subalgebras
containing ho. Since Cartan subalgebras are abelian, h and g.h centralize ho, i.e.

b, g.h C g"2.

These are both Cartan subalgebras of g2, which is reductive. Therefore there exists go
an element of the adjoint group of g" such that go.g.h = h and ¢2.9.h; = he. This implies
that go.g is in Ng(h) and sends h; to hy. By Lemma there exists w € W such
that w.hq = he. In other words, hy = hy and 1 is injective. O

We have the following diagram:

T=Ts+Tp€g
(G C g//G) \X

G.xs < g/|G — h/W

with s and z,, the semisimple and nilpotent parts of z and x the adjoint quotient.

Example 1.3.14. If g = sl,,(k), A e g, we have x(A) = (Tr(A2),..., Tr(A")) e h/W =
kL,

Let g be a simple Lie algebra over K of rank r, h a Cartan subalgebra and W the Weyl
group. We have K[h]" = k[g]® = K[x1, ..., xr] where the x; are the homogeneous gener-
ators from Chevalley’s theorem (Theorem |1.1.21)). One can then realize the morphism

X:g~bh/W by

X: g — h/W = k"

r (Xl(x)v" '7X7“(x))
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More details on the adjoint quotient can be found in [Hum95].

We conclude this section with a theorem on the structure of the orbits of the Adjoint
action.
Let g be a semisimple Lie algebra over k with adjoint Lie group G acting via the Adjoint
action on g and O an orbit for this action. Let (.,.) be a G-invariant inner product on
g, for instance the opposite of the Killing form. Each element U of the Lie algebra g
induces a vector field Xy on O defined by

Xu(Z)=[U,Z] = -ad(2)(U), VYZeO.

Xy is called the fundamental vector field attached to U.

Since GG acts transitively on O, at any point Z € O, the values of the fundamental vector
fields Xy generate the whole tangent space T7O of O at Z. We deduce that TzO is the
affine sub-space of g at Z associated with the (vector) subspace Im(ad Z), the image of
the endomorphism ad Z in g.

The next theorem is proved in [Bes87].

Theorem 1.3.15. Let g be a semisimple Lie algebra over K with adjoint algebraic group
G acting via the Adjoint action on g. Let O be an orbit in g. Then O possesses a
symplectic structure (cf. Definition given by the symplectic form F defined by

Fy(X,Y)=(Z,[UV]), VX,YeT;0,Z€0,

where U and V are any elements of g whose image by ad Z are X and Y respectively
(here Tz O is viewed as a vector space and not as an affine space). The symplectic form
F' is called the Kostant-Kirillov-Souriau form.

Remark 1.3.16. The Kostant-Kirillov-Souriau form is initially a symplectic form on
the co-Adjoint orbits. However, as g is semisimple, the Killing form enables us to identify
g and its dual, thus giving the orbits of the Adjoint action a symplectic structure.

1.3.3. Nilpotent cone

From now on, the base field k will always be the complex number field C. Because of
Theorem [1.1.38] we can now use indifferently the terms Lie group and algebraic group
in our setting of semisimple groups.

Let g be a semisimple Lie algebra over C, h a Cartan subalgebra, W the associated

Weyl group and x : g — h/W the adjoint quotient. The next theorem is due to R.
Steinberg and proved in [Stein74]:

48



1.3. Adjoint quotient

Theorem 1.3.17. The adjoint quotient x is a flat morphism. As a consequence, all
fibers have the same dimension dim g —rank g. Furthermore, any fiber is a union of a
finite number of conjugacy classes.

We call N'(g) = x1(x(0)) the nilpotent cone of g. It was explained in the previous
section that if x = x5+ x,, € g is the Jordan-Chevalley decomposition of an element of
g, then x(x) = x(xs). It follows that = € N(g) if and only if x5 = 0, which means x
nilpotent. A/(g) is indeed a cone because it is stable by scalar multiplication. It is clear
that the algebraic group G associated to g acts by the Adjoint action on AV (g). Because
the nilpotent cone is a fiber of the adjoint quotient, we have the following corollary:

Corollary 1.3.18. Let g be a simple Lie algebra with Weyl group W and nilpotent cone
N(g) = {x € g | z is nilpotent}. Let ® be the set of roots of g. Then dim N (g) = |®| =
dim g -rank g.

It is also possible to find more information on N (g) as it is done in [Sprin66):

Proposition 1.3.19. N (g) is an irreducible variety as well as a Zariski-closed subset
of the affine space modelled on g.

An element x € g is called regular if dim Zg(z) = rank(g), where Zg(z) is the
centralizer of x in G under the adjoint action. B. Kostant proved the following in
[Kos63]:

Proposition 1.3.20. Let F' be a fiber of the adjoint quotient. Then F' contains a unique
regular orbit. Furthermore this orbit is dense in F'.

It is proved in [Kosh9] that for all = € g, the centralizer j4(x) of x in g contains

a commutative subalgebra of dimension rank(g). So dim 34(x) > rank(g). It is also
known that exp: g — G is a local homeomorphism. We compute %‘ o 01 each side of
ad(exp(tX))(x) =  with X € g, and find [X,z] = 0 so X € 34(x). One deduces that
Te(Za(x)) = 3¢(2), implying dim Zg(z) = dim 34(x) > rank(g). So an element is regular
if and only if its centralizer is of minimal dimension, or equivalently if its orbit is of
maximal dimension.
One can explain this in another fashion. Let x : g - h/W = A" be the adjoint quotient.
Then x = (x1,---,Xr), the x; are algebraically independent and each fiber has dimension
dim g —r, because of the flatness of x. Each fiber of x is G-invariant and is a union of a
finite number of G-orbits. Moreover, as the dimension of an orbit is dim G —dim Zg(x),
where z is a point in the orbit, we have dim Zg(x) > r for any x € g.

In [Stein74], R. Steinberg defined an element x € g as being subregular if dim Zg(x) =
rank(g) + 2. It was stated in Theorem [1.3.15| that all orbits have a symplectic struc-
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ture and because of Remark their dimensions are even. Therefore the orbits of
subregular elements are those of maximal size right after the regular ones.
We have the following propositions regarding the orbits in the nilpotent cone.

Proposition 1.3.21. There exists a unique regular orbit Oreg in N(g). If z is reqular
nilpotent, then dim O, = dim G -dim Zg(z) = dim g - rank(g) = dim N (g).

The existence of the regular orbit is due to the fact that A(g) is a finite union of
orbits and a finite union of subspaces of dimensions strictly inferior than n cannot be a
space of dimension n. The unicity is due to Proposition There is a similar result
for the subregular nilpotent elements due to R. Steinberg ([Stein74]):

Proposition 1.3.22. There exists a unique subregular orbit Ogupreg in N(g). It is
open and dense in N(g) \ Oreq. If x is subregular nilpotent, then dim O, = dim G -
dim Zg(x) = dim g -rank(g) -2 =dim N (g) - 2.

1.4. Simple singularities and Dynkin diagrams

1.4.1. Simple singularities of type ADE
1.4.1.1. Definition of simple singularities

F. Klein studied the finite subgroups of SLy(C) in terms of transformations of C2 and
classified them in [Klein84]. Later H.S.M. Coxeter and W. Moser gave a presentation
for each one in [CoxMos57]. Let I' be a finite subgroup of SLa(C). Then I is conjugate
to a unique subgroup of the form:

eCy,=(al]a”=1)(nx1), the cyclic group of order n,

e D, ={(a,b,c|a®=b*=c"=abc)(n>2), the binary dihedral group of order 4n,
e T ={a,b,c|a®=0%=c®=abc), the binary tetrahedral group of order 24,

e O={a,b,cl|a®=0%=c=abc), the binary octahedral group of order 48,

e Z={a,b,c|a®=0%=c’=abc), the binary icosahedral group of order 120.

The natural action of I on C? induces an action of T' on the ring C[C?] of polynomial
functions on C2. The ring C[C2]" of I'-invariant polynomials is then generated by three
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1.4. Simple singularities and Dynkin diagrams

elements X, Y, Z satisfying a unique relation R(X,Y, Z) = 0. Indeed, such relations were
determined by F. Klein in [Klein84].

Theorem 1.4.1. Let I' be a finite subgroup of SLo(C). Then C?/T injects into C3 as
the zeros of a polynomial R € C[X,Y, Z], which is given in the following table:

r R

Cn X"+YZ
D, | X(Y?-X")+ 22
T X41y3 422
O | X3+XY3+22
T X543+ 22

Proof. Let T' be a finite subgroup of SLy(C). As I is conjugated to a subgroup of SUs,
without loss of generality, we can assume that I' is a finite subgroup of SUs.

w 0 9 w 0 9
eletI'=C,=2Z/nZ =< > where w = exp(="). Set g = . C*hasa

0 wt 0 wt
base (e1,e2) with e = and ey = . So (C?)* has a base (z1,22) with z1(z) =z
0 1
x
and zo(z) = x9, for x = e C, acts on (C?)* by (0.f)(x) = f(o7l.x), for
T2

0€Cp, fe(C?* and z € C2. Thus (g.21)(z) = z21(¢g7 .2) =w iz = wlz (z), ¥V x e C2
Hence ¢.z; = w21, and in a similar manner, ¢.zo = wzs.

The polynomial ring on C? is Clz1,22]. Let k,l € Zyy. The element g acts on the

monomial 2Fz} by g.(2F24) = wF2F 2L, Hence T' acts diagonally on each monomial, and
it follows that C[z1, 2] = C[2%, 2129, 23].
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There is a surjection ¢: C[X,Y,Z] - C[z],2129,2%] .

X [— Z1%9
Y — 21
Z — 2y

We show that (X" -Y Z) = Ker(¢). As the inclusion C follows immediately, we show the
other inclusion. Let P € Ker(y). The division of P by X" —Y Z seen as a polynomial in
the X variable gives P(X.,Y,Z) = Q(X,Y, Z)(X"-Y Z)+T(X,Y, Z) with T(X,Y, Z) =
an1(Y,Z) X" L+ .. +a1(Y,2)X + ao(Y,Z). By using the relation T(z122,2},25) = 0
and then looking at the degrees of z; and z9 modulo n, one sees that ag =...=a,-1 =0.
Hence P is divisible by X™ - Y Z, which implies that Ker(y) c (X" - Y Z). Therefore
Ker(p) =(X"-Y2).

It has been proved that C[z1, 22]%" = C[27, 2129, 28] = C[X, Y, Z]/(X" - Y Z). So C?/C,
injects into C? as the solutions of the equation X" -Y Z = 0. By a linear transformation,
the equation becomes X™ +Y Z =0.

X A

Representations of R3M(C?/C,,) for n =2 and 3.

The cases where I" = D,,, 7 and O are solved in a similar manner. The realizations of

the groups can be found in [Co76] or in Chapter 4 of [Sprin77].

2ir . 4 2_ .3
exp( =5 0 0 1 - -

e let' =7 =< p( 10 0 , ,% e >, where 1 =
0 exp(-23)) \i 0 n”?-n* n-n

exp(28).
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1.4. Simple singularities and Dynkin diagrams

This case cannot be solved easily through direct computations as the previous ones.
Another approach is needed. Here are some preliminary definitions.

Let (21, 22) be the coordinate system of C? on which Z acts by matrix multiplication.

Definition 1.4.2. Let G be a group acting on C2. A homogeneous polynomial F €
Clz1,22] is a relative invariant of G if for all g € G, g.F = \gF with Ay € C*. The
map xXr:G —C*,g— Ay is called the character of F'.

Definition 1.4.3. A Grundform is a relative invariant ® whose divisor of zeros is an
exceptional orbit (i.e. an orbit with a non-trivial stabilizer).

The Grundformen will form a basis of the invariant polynomials. The following theo-
rem gives the necessary conditions for it to happen (cf. [Dolg07]).

Theorem 1.4.4. Assume that G is finite and there exist two Grundformen ®1 and ®o
whose orbits have cardinalities |G|/e1 and |G|[/e2 such that the characters satisfy

e2 _ el
Xo, = Xo, -
Then every relative invariant is a polynomial in Grundformen.

Our aim is to apply the previous theorem to Z.

The group Z acts on C[z1, 22] and preserves the degree. Let F' € C[z1,22] be a ho-
mogeneous polynomial of degree d. Note that if (z,y) is a zero of F', then F(A\z, \y) =
MNF(z,y) = 0, so (x,y) defines a line of zeros passing through the origin. It defines
therefore a point in PY(C). If g € Z, then g.F(z,y) = F(g7'.(z,y)) = 0 because (z,v)
is a zero of F. Hence T permutes the zeros of F' and the lines they define in P(C).
Therefore there is an action of Z on P!(C).

Let an icosahedron J be centered at the origin and included in the unit sphere. Choose
two diametrically opposite vertices and set them on the north and south poles of the
sphere. Let &,p,¢ denote the coordinates of the unit sphere {¢2 + p? + ¢? = 1}. The
stereographic projection from the north pole to the plane {¢ = 0} of the icosahedron
sends a vertex of coordinates (&, u, () to a point (x,y) of the plane {¢ =0} with

oS oM
1-¢’ 1-¢

The point (z,y) will be given an affine coordinate z =  +4y. Hence the projection sends

(&, 11,¢) to z = % The north pole and the south pole are sent to oo and 0, respectively.
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1. Lie Theory

Let I be the group of rotations of the icosahedron J. Then Z is the preimage of I
under the projection SLa(C) - PGL2(C). With the stereographic projection previously
mentioned, a point on the sphere is given an affine coordinate and can thus be seen as
a point in P}(C). A point of affix z can be seen as (z; : z2) € P}(C) with z = Z. The
point (21, 22) corresponds to the affine coordinate z = L. The action of Z preserves the

icosahedron J because the action of I does so. If (21,22) is fixed by Z, then z = Z- ¢

PL(C) = S? is fixed by I. However, the only points of J that are fixed by an element
of I are the vertices, the centers of the faces and the midpoints of the edges. Under
the action of I, the vertices, the faces and the edges form three orbits. This property
is naturally transferred to Z. Hence the exceptional orbits are the one of the vertices,
the one of the centers of the faces and the one of the midpoints of the edges. More
details on the binary icosahedral group as well as the other finite subgroups of SUy can
be found in [Sprin77]. By applying all elements of Z to the south pole, one obtains the
affine coordinates of all the vertices:

2=0, oo, n’(n+n*), n’(n*+n?), for v=0,1,2,3,4.
Set

4 4
f(z1,20) = 2120 [[ (21 = 0" ( + ™) 20) [T (21 = 0" (0 + 1) 22).

v=0 v=0

The zeros of f correspond to the vertices of the icosahedron J and thus form an excep-
tional orbit. Because the zeros are permuted by Z, if g € Z, then ¢g.f and f have the
same degree and the same roots for all g € Z. Hence there exists xy: Z — C* such that
g.f = x5(g)f for any g € Z, implying that f is a Grundform. One can prove that x; is
in fact trivial.

Set
or o4 of of
- i 82% 0z122 and T = i 0z1 Oz
| o s 0| on on
02129 82% O0z1 0z

From explicit computations, one finds g.H = (det(g))?H and ¢.T = (det(g))T for g € T.
But Z is a subgroup of SUs, hence det(g) =1 for any g € Z. One deduces that H and T
are Z-invariants, and thus their zeros are unions of Z-orbits.
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1.4. Simple singularities and Dynkin diagrams

The reader is reminded that

f(z1,20) = z2122(210 + 112025 - 230),
H(z1,22) —(229 + 220) + 288(21%25 — 22247) — 494210210,

T(z1,22)

(239 + 239) + 522(23525 — 2922°) — 10005229240 - 2{9220).

H is an I-invariant of degree 20, which implies that the set of his zeros in P}(C) = §?
is a union of I-orbits and is of cardinal < 20. However, the orbits of the group I are of
cardinal either 12, 20, 30 or 60 and H is not proportional to a power of f. The only
possibility is that the zeros of H are the 20 centers of the faces of J. Hence they form an
exceptional orbit and H is a Grundform. In a similar manner one shows that 7' is the
Grundform corresponding to the midpoints of the edges. All Grundformen have thus
been found.

It was shown above that xyg = xr = 1. Therefore H and T satisfy the condition

of Theorem It follows that the ring of invariants C[z1,22]% is generated by the
Grundformen f, H and T

There is a surjection ¢: C[X,Y,Z] - C[f,H,T].

X — f
Y —> H
A — T

Let P e Ker(y). The division of P by 1728X5 — Y3 — Z2 seen as a polynomial in the Z
variable gives P(X,Y,Z) = Q(X,Y, Z)[1728X°-Y3 - Z%]+S(X,Y, Z) with S(X,Y, Z) =
a1 (X, Y)Z + ap(X,Y). We have a1(f,H)T + ao(f,H) = 0. The first member of the
expression is of homogeneous degree 2 modulo 4 in zi, 29, whereas the second is of
homogeneous degree 0 modulo 4 in z1,29. Thus a; = ag = 0 and 1728X° - Y3 - 7?2
divides P. This implies Ker(y) c (1728X° - Y3 - Z?) and the other inclusion follows
immediately, proving Ker(p) = (1728X° - Y3 - Z?2).

One finally obtains C[z1,22]F = C[X,Y, Z]/(1728X® - Y3 ~ Z2). So C?/Z injects into

C? as the solutions of the equation 1728X° - Y3 - Z2 = 0. By a linear transformation,
the equation becomes X° +Y3+22=0
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Representation of R3(N(C?/T).

O]

According to the above theorem, C?/T" can be seen as a hypersurface in C3. T' acts
freely and properly on C? \ {0} and as C? \ {0} is smooth, so is (C2/T") \ {0}. Hence
C?/T" has at most one singularity at the origin. Using the polynomial equation R = 0,
one can verify that C2/T" has a unique singularity at the origin in all cases. The quotient
C?/T is called a simple singularity or a Kleinian singularity.

Remark 1.4.5. In [Durf79], A.H. Durfee gave many different names for these types
of singularities like rational double points, quotient singularities or absolutely isolated
double points among others. In this thesis, the chosen denomination will be simple or
Kleinian singularities.

Singularities are usually defined as germs (see below) of analytic spaces. However we
will see that with simple singularities one can work with the algebraic settings given by
the polynomials equations of the previous theorem.

Definition 1.4.6. Let A be the set of pairs (X,x) consisting of an analytic space X
and a point x € X. On the set A we define the relation ~ as follows:

(X,z)~(Y,y) < there exists a neighborhood U C X of x (for the complex
topology), a neighborhood V-C'Y of y, and an isomorphism
f:U =2V such that f(x) =y.
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1.4. Simple singularities and Dynkin diagrams

The relation ~ is an equivalence relation on A. Let G denote the quotient A/ ~. An ele-
ment of G is called a germ of the analytic space and we denote it by a representative
(X,z).

The next theorem is due to M. Artin and allows us to switch from the analytic setting
to the algebraic one (cf. [Ishiil4] Theorem 4.2.4).

Theorem 1.4.7. (Artin’s Algebraization Theorem). For a germ (X, z) of analytic
space, if x is an isolated singularity, there exists an algebraic variety X over C and a
point p of X such that

(X,z) = (X,p).

This theorem allows us to see isolated singularities as algebraic varieties. Furthermore,
when it comes to simple singularities, the following proposition (proved in [Lamo86]
Chapter 4) tells us that one can work globally using the polynomial equations R of

Theorem [T.4.1t

Proposition 1.4.8. Let 30 denote the germs of holomorphic functions (C3,0) - C and
let f € 30 be a germ without multiple factors. If Z(f) = {x e C3 | f(z) =0} is isomorphic
to the simple singularity C*/T defined from a finite subgroup T' of SUs , then there is a
biholomorphic germ ¢ : (C3,0) = (C3,0) such that R = f oy is the polynomial associated
to I by Theorem[1.7.1].

The proof of this proposition is based on the fact that every polynomial of Theo-
rem [[.4.1] is a weighted homogeneous polynomial. The reader may want to consult
[Lamo86] for more details on weighted homogeneous functions.

Let p € Z,o and choose T1,...,T, among A, (r > 1), D, (r > 4), Es, E7 and Es.
A singular configuration of type 77 +... + T}, is a complex algebraic surface with p
isolated singularities si, ..., s,, such that, for each 1 <1 < p, locally around s; the surface
is a simple singularity of type T;.

Example 1.4.9. Let f: ct - c? . The fiber

(z,y,2,t) ~ (22-23+329°+t(2®+9°),1)

£710,0) is a simple singularity of type Dy. Let us look at the other singular fibers. One
computes that, except from the origin, the singular fibers are of two types: f~1(0,t) and
f’1(24—7t3,t), t+0. The former has a single singularity of type A1 at the origin, whereas
the latter has three singular points, namely (%t,0,0), (—%, %,O) and (—%,—%,0), each
of type Ay. Therefore f71(0,t) is a simple singularity of type A1 and f‘l(%t?),t) s a
singular configuration of type Ay + A1 + A1. Below is an illustration in the plane {z =0}
of both fibers for t=1:
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Red=Al+Al+Al Blue=Al

0.5

-0.5

-1 -0.5 0 0.5 1 1.5

1.4.1.2. Resolutions of simple singularities

The study of singularities requires an essential tool:

Definition 1.4.10. Let X be a complex algebraic variety and X8 its set of reqular
points. A proper morphism m: X — X is called a resolution of X if:
e X is a smooth complex algebraic variety.

o T 1(X™®) is dense in X and the restriction 7T|7r_1(Xreg) s (XT8) - X8 s an,

isomorphism.

The subvariety E = X \ 775 (X"®) is called the exceptional locus of .

A resolution g : Xo — X is said minimal if any other resolution = : X - X can be
factorized through mg:

Minimal resolutions exist for singularities of curves (proved by I. Newton) and surfaces
(proved algebraically by O. Zariski in [Zari39]) and are unique up to isomorphism.
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1.4. Simple singularities and Dynkin diagrams

Examples 1.4.11. In case of the groups Co and D, the real part XoNR3 of the minimal
resolution Xg gives a quite faithful idea of the complex situation.

o We know that Cy is associated with the surface S = {X?+Y Z = 0}. The restriction

TR = Tolgs of the minimal resolution my of the singularity C2/Cy can be obtained by
blowing up the origin. We obtain

P~
SNR3 SNR3

o |
\I.
s
\
\
|
| ( >
!
I
:
:

Tor ' (0)

The circle myz(0) is contracted on the origin.

e Dy is associated with the surface S = {X(Y?-X?)+Z?=0}. Again, moR is obtained
by blowing up the origin several times:
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This time, 7r6F1{(0) is composed of four circles:

In the case when S = C?/I" is a simple singularity, P. Du Val proved in [DuVa34] that
if s is the singular point and g : S — S is the minimal resolution of S, then the preimage

of s is a union of projective lines

Each projective line has self-intersection —2 and intersects with others transversally in at
most one point. We associate to every line C; a vertex e in a graph, and two vertices are
linked by an edge if the corresponding lines intersect. We obtain the following diagrams

7T61($) =C1U...UcC,,

Ci = Pl(C).

A(T):
r A(T) Name of A(T")
2 3 n-2 n-1
CTL . .. .................. .—. An—l
n+1
Dn ._z_; ......... o Dn+2
n+2
3 4 5 6
@ @  J
T Eg
2
4 5 6
@ @
O Er
2
1 4 5 6 7
® @ @ @
A Es
2
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Examples 1.4.12. Let us rework the preceding examples with the illustrations of the
real resolutions.

o We have seen that with Ca, moa(0) is a circle, which is P1(R). The corresponding
diagram is then Aj.

o In the case of Da, the diagram corresponding to waé(O) is , which

is called Dy.

The diagrams A(T") are the Dynkin diagrams of the homogeneous root systems of the
simple Lie algebras. We will see another connection between the simple singularities and
the homogeneous Dynkin diagrams in the next section.

Remark 1.4.13. D. Kirby in [Kirby57] has characterized the Kleinian singularities as
being the only double points whose minimal resolution can be obtained by successive

blowups. Kleinian singularities have many characterisations which have been summa-
rized by A.H. Durfee in [Durf79].

1.4.1.3. Semiuniversal deformation

We start this section by defining a deformation of a singularity based on [Ishiil4].

Definition 1.4.14. Let Xy be a complex integral algebraic variety with an isolated sin-
gularity x. A deformation of (Xo,x) is a flat morphism of germs of algebraic varieties

v: (X, x) > (U,u) with an isomorphism i : (Xo,x) 5 (o~ (u),x).

(X,%)
X

X

(U,) l

61
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The space (U, u) is called the base of the deformation (¢, 7).

An isomorphism ¢ : (¢,7) - (¢',i') of two deformations ¢ : (X,z) — (U,u) and
o (X',x) » (Uyu) of (Xp,x) is an isomorphism § : (X,z) — (X', z) such that the
following diagram commutes:

(X(],.’B)
(X,z) (X', x)
(U,u)

If o: (X,z) - (U,u) is a deformation of (X, z) and ¢ : (T,t) - (U, w) is any morphism,
then the pullback @7 : (X, ) %) (T,t) = (T,t) of ¢ by 1 is a deformation of (Xo,x)
over (T,t) called the induced deformation by v from ¢.

(X, 2) xu (Tht) — (X, z)

YT ¥

(T,1)

(U,u)

A deformation ¢ : (X,z) - (U,u) of (Xo,z) is called semiuniversal if any other
deformation ¢’ : (X', z) — (T,t) of (Xp, ) is isomorphic to a deformation induced from
¢ by a base change ¢ : (T,t) — (U,u) whose differential at ¢t € T' is uniquely determined.

More details on deformations of singularities can be found in M. Artin’s lecture notes
[Artin76].

We are now able to give one of the important theorems of this section.

Theorem 1.4.15. (Brieskorn). Let g be a simple Lie algebra over C of type A, D,
or E, and x a subregular nilpotent element of g. Let S C g be a transversal slice (notion

62
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defined below) at x to the G-orbit of  ing. Then the restriction x|g : (S,z) - (h/W,0) of
the adjoint quotient x : g = h/W is a semiuniversal deformation of the simple singularity
(X|:ql (0),z), which is of the same type as g.

Proof. The theorem was first proved in [Bries71] in the setting of deformations of germs
of complex spaces, and then in [SIo80] Section 8.7 in an algebraic setting. O

According to the theorem, (SON(g),z) = (SN x " (x(0)), ) is a simple singularity
of the same type as g.

A transversal slice S at z to the orbit of x is a locally closed subvariety S C g, x € .5,
such that the morphism G xS - g is smooth and dim S = codim G.z.
(g,s) ~ (Adg)s

In our context, a transversal slice is easily obtained by choosing an affine subspace in g
complementary to the tangent space of G.z at x and passing through z.

T, (Gx)

G.x

Brieskorn’s theorem gives us the possibility to study singularities linked to subregular
nilpotent elements of g. In order to use this theorem, a more precise description of the
transversal slice S is necessary. One will be constructed explicitly, but before, here are
some definitions and preliminary results (cf. [Huse94] Chapter 4, Section 5).

Definition 1.4.16. Let G be an algebraic group, H C G an algebraic subgroup of G
and X a variety on which H acts. The associated bundle G x X over G/H is the
quotient of G x X by the action of H defined by

h.(g,z)=(g.h" ', ha), Vhe H,ge G,z e X.
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We write g » x for the class of (¢g,x) in G x X. The morphism Gx" X - G/H

grxx = gH
gives a fiber bundle structure of fiber X.

When G and H are linear and X is an affine algebraic variety, the associated bundle
G xM X exists as a variety.

Example 1.4.17. Let G = St be the unit circle, H = {1} and X =R. The action of H
on X is the multiplication. Then the associated bundle G x X is the Mobius strip. The
effect of the quotient is illustrated on the following representation:

| P —

GxHX

—
>
I

The following lemma will be of use later on.

Lemma 1.4.18. Let X be a G-variety and 7 : X - G/H a G-equivariant morphism.
Then T is G-isomorphic to the bundle G x® F — G/H, where F is the fiber m~(e.H).
We have the following diagram:

1R

X;’GXHF

G/H

Corollary tells us that every fiber of the adjoint quotient x : g — h/W contains
a unique closed orbit. This orbit is composed of the semisimple elements of the fiber.

In fact, the closed orbits are the orbits of semisimple elements, as stated in the next
theorem (cf. [Warn72] Proposition 1.3.5.5).

64



1.4. Simple singularities and Dynkin diagrams

Theorem 1.4.19. (Borel, Harish-Chandra). Let g be a reductive Lie algebra, i.e.
the representation ad : g — End(g) is semisimple, and G its associated adjoint Lie group.
Then x € g is semisimple if and only if its orbit Ad(G)(x) is closed.

Moreover one can prove (cf. [Stein74] 3.4, Corollary 1) that if = = x5 +x,, is the Jordan
decomposition of an element x € g, then x () = x(5). Let h € h with h the class of h in
h/W. One can identify the closed orbit contained in x~!(h) with G/Zg(h), where Zg(h)
is the stabilizer of h in G. If x € g is such that x(x) = h, then x, is conjugated to h. So by
sending x on its semisimple part, one obtains a G-morphism o : Y1 (h) - G/Zg(h). o is
indeed a morphism because for any x € g, there exists a polynomial P, without contant
term and depending only on the characteristic polynomial of x such that P,(x) = x5, and
all the elements of x ™' (h) have the same characteristic polynomial for any faithful linear
representation of g (cf. [SIo80] 3.10, proof of the lemma). Because of Lemma
one sees that x~'(%) is isomorphic to the associated bundle G x%¢(") F where F is
the fiber of o over e.Zg(h). Furthermore F = o7 !(e.Zg(h)) = {x = x5+, | =5 €
Zg(h) and x5 conjugated to h}. As G.h 2 G/Zg(h), an element contained in the orbit
of h as well as in Zg(h) can only be h. Hence F = h+ N (34(h)), with N (34(h)) being
the set of nilpotent elements of 34(h) = Lie Zg(h). One can identify F' and N (34(h)),
therefore x 1 (h) = G xZ¢(M) N (34(h)).

The following theorem is a key result about nilpotent elements in a Lie algebra.

Theorem 1.4.20. (Jacobson-Morozov). Let g be a semisimple Lie algebra and let
f € g be a nilpotent element. Then there exists e, h € g such that (e, f,h) is a sly-triple.
This means that the Lie algebra generated by e, f and h is isomorphic to sla(C) equipped
with its standard basis.

Proof. The proof of this theorem is quite long. Only the main steps will be given below.
A detailed version can be found in [Kos59].

1. Let us take E a C-vector space of finite dimension and A, B € Endc(FE). One shows
that if A is nilpotent and [A, [A, B]] = 0 then AB is also nilpotent.

2. Let e € g be nilpotent. Then e € Im(ad €)?. One deduces that there exists f € g such
that [[f,e],e] =e. We set x =[f,e].

3. Let m be the smallest positive integer such that (ad e = 0. One proves that
[Tyt (ad l’—%pid) is zero on Ker(ad e). It implies that ad z+id is invertible on Ker(ad e).
4. If [z, f] = —f then the subalgebra generated by e,z, f is isomorphic to slp(C). If
[x, f] # —f, one can show that there exists a unique g € Ker(ad e) such that [z, f]+ f =
[x,g] + g. It follows that the subalgebra generated by e,x, f — g is isomorphic to sly(C).
Thus for all f e g nilpotent, there exists a subalgebra a C g containing f such that
a2 515(C). O

)m+1
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It is possible to prove that Brieskorn’s theorem does not depend on the choice of the
transversal slice. It is thus possible to choose one that is convenient. The following
construction is due to P. Slodowy.

Let e be a nilpotent element in a semisimple Lie algebra g. Because of the discussion
right before Theorem it is known that T.(G.e) = e+[g,e]. A transversal slice can
then be written

S=e+3,

where 3 is a complementary of [g,e] in g.

According to Jacobson-Morozov theorem (Theorem , there exists f nilpotent and
h semisimple, two elements of g such that [e, f] = h, [h,e] = 2e, [h,f] = -=2f and
< e, f,h >2 5l3(C). The inclusion gives us a morphism sl3(C) — g. By composing this
morphism with the adjoint representation of g, one can see g as an slo(C)-module. Then
Theorem [I.1.13] implies that there is a decomposition

9=@DE;
7
of g in a direct sum of irreducible submodules F;, and

[9,¢] = (ad €)(g9) = P(ad €)(E;).

In each Ej, isomorphic to an irreducible representation V,,; of sla(C), one chooses as
complementary of (ad e)(E;) the space of smallest weight of weight —(n; — 1) for the
action of ad h, which is 35,(f) = {z € E; | [f,x] = 0}. It follows that 34(f) = ®; 3, (f) is
the complementary of [g,e] in g and thus

S =e+3q(f)

is a transversal slice to the orbit of e at e. We will denote it by S, and call it the
Slodowy slice at e (cf. [Slo80(2)]).

Now that we know a transversal slice, explicit computations can be made.

0100
0010
Example 1.4.21. Let g = sl4(C) and S, the Slodowy slice for e = .
0000
0000
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1.4. Simple singularities and Dynkin diagrams

0100 00 00 20 0 O
0010 2 0 00 00 0 O
One can check that e = , f= and h = form an
00 00 0200 00 -2 0
00 00 00 00 00 0 O
x 0 0 0
y 0 0
slo-triple. We then compute 55[4(C)(f) = z,y,z,t,weCyp. Finally
z Yy r w
t 0 0 -3z
x 1 0 0
y z 1 0
one obtains S, = x,y, 2, t,weCrp.

z Yy x w

t 0 0 -3z

Let A € S.. Then det(A — A) = A — p(A)A% + q(A)\ + 7(A) with p(A) = 622 + 2y,
q(A) = 823 — dxy — z and r(A) = 622y — 3xz — tw — 3z*. The adjoint quotient is then

X|Se: Se — h/W
A — (p(A),q(A),r(A4))

(i) Let us compute (X|Se)’1(a,b,c) for a,b,ceC. It is equivalent to solving the system

622 + 2y = a,
823 —day - 2 = b,
6x2y ~3zz-tw-3z* = ¢

By replacing the expressions of y and z depending on x in the last equation one gets
81zt — 9ax? - 3bx + tw + ¢ = 0.
So (X|Se)_1(a, b,c) is defined by the equation F(xz,t,w) = 81z* — 9az? — 3bx + tw + ¢ = 0.

(i) We now compute the discriminant D C h/W of x|g. . (X|Se)_1(a, b,c) has a singu-

larity if and only if there exists x,t,w such that F(x,t,w) = 0, F(x,t,w) = 0 F(x,t,w) =
OwF (z,t,w) =0, which is equivalent to
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F(x,t,w) = 8laz* - 9az? -3bx+tw+c = 0,
0. F(z,t,w) = 32423 — 18ax - 3b = 0,
OF (z,t,w) = w = 0,
OwF (z,t,w) = t = 0.

Set P(z) = 81x* — 9ax? — 3bx + c. Then (X|S€)_1(a,b, ¢) has a singularity if and only
if P(x) = P'(z) =0. So P has a multiple root. The resultant of P and P’ is R =
43046721 (4ab? - 27b* + 16a*c — 144ab®c — 128ac? + 256¢%). Hence (X|Se)‘1(a, b,c) has a
singularity if and only if 4a3b? — 27b* + 16a*c — 144ab’c - 128a2c? + 256¢ = 0. Therefore
the discriminant is

D ={(a,b,c) e C? | 4a3b? - 27b* + 16a*c - 144ab’c - 128a>c? + 256¢3 = 0}.

(iii) Let m: b — b/W be the natural projection. Let us find 71(D). It is known that

z
0
0
0

0

Y
0

0

0
0

z

0

0
0
0

(z,y,2) eC?

- -Y-Z

Ifheb thenm(h) = (2?2 +y? + 22 +ay+ a2+

yz, (z+y)(z+2)(y+ 2), —zyz(z +y + 2)). Wanting (x,y,z) e 7 (D) is equivalent to

(z-%*(x-2)%(y-2)2Qr+y+2)*(x+2y+2)*(x +y +22)? = 0.

Thus 7= Y(D) is the union of six surfaces: {y = x}U{z = 2} U{z = y}U{2z +y + 2 =
0} U{x+2y+2z=0}U{x +y+22=0}.

It is known that § is generated by hy =

o o o O
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0
-1

o o O

0 00 00 0 O
-1 0 0 01 0 O
, hy = and hg =
0 0 0 00 -10
0 00 00 0 O

. Moreover a1,as and az form a base of the root system of sly(C).
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xz 0 0 0
0 = 0 0

The surface {x =y} corresponds to and is generated by
0 0 =z 0
0 00 -2xz-=2

10 0 O 00 0 O

010 000

= h1+2ho+2hs and = hs. The Cartan matriz of 5l4(C) is
000 O 001 O
000 -2 0 00 -1

2 -1 0

-1 2 -=1| so aj(hy+2ha+2h3) =aj(hs) =0. As aq is a linear form on b which is

0 -1 2
of dimension 3, Ker(«y) is of dimension 2. Hence Ker(ay) = Vectc(hy +2hg +2hs, hs) =

{z =y}

In a similar fashion one can show that {z=2x} = Ker(a; + a9),
{z=y} = Ker(ay),
{20+y+2=0} = Ker(ag+a2+a3),

{r+2y+2=0} = Ker(az+as),

{r+y+22=0} = Ker(as).
However sly(C) is of dimension 15 and b of dimension 3. There are siz positive roots.
As all the roots previously given are clearly positive, one obtains ®* = {ay, a9, a3, 1 +
ag, a9 + a3, a1 +ag +az}. Therefore 7™1(D) = Uy e p* Ker(«).

We remind the reader of an interesting fact:

Let g be a semisimple Lie algebra, h a Cartan subalgebra, W the Weyl group, ® the
root system and S, a Slodowy slice. We have the following diagram

Se

Voo Xls,
h 5 /W
U H, » D

aedt
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with H, the kernel of o and D the discriminant of y.

In the case of Ag, let p € Upep Ho- Then pe Hy, N (Hoy, UHay4a,), OF
pe Hag N (Hal UHa1+a2)7 orpe Ha1+a2 N (Hal UHag), orpe Ha1 mHag ﬂHa1+a2- It can
be showed that if p belongs to only one H, (« = g, 2 or a3 + 2, then X‘:qi (w(p)) is
a singularity of type A;. However if p e Hy, N Hay N Hoy 4o, X|§i (7(p)) is a singularity
of type A,. An illustration of this property is shown below

x3+yz=0
H ]

aqtag

T
_—
H O
2

Example 1.4.22. We go back to our previous example with g = sl4(C) and Se the
computed Slodowy slice. Let p € Upex+ Ho and set ®, ={a e ® | pe Hy}. For every ®,,
we are going to compute XE (m(p)).

x 0 0 0
0 y O 0 3
The Cartan subalgebra is b = (z,y,2) € C° . The simple roots
0 0 =z 0
0 00 —x-y-=

are a1 = €1 — €2, g = €2 — €3 and a3 = €3 — €4, with (€1, €2, €3,€4) an orthonormal base
of (CY*. One can check that (ay,az) = %ﬂ, (a2, a3) = %ﬂ and (g, as) = 5. In order
to picture them in R3, we take oy = (1,0,0), ag = (—%,%,—%) and az = (0,0,1). The
following picture with the associated color-coding follows:
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1.4. Simple singularities and Dynkin diagrams

aq Blue

a9 Red
Qag Green
a1 + oo Yellow
a9+ a3 Purple
a1+ + a3 | Broun

We can then represent the Hy'’s, keeping the same colors:

1010

The <I>; are determined by looking at the intersections. We regroup them depending on
their number of elements and arrange them in the next table:
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D] o, Py
1| {ar}, {ae} {asg}, {1 + a2}, {ao + a3}, {a1 + a2 + a3} Ay
2 {al,ag},{ag,al+a2+a3},{a1 +052,042+Oz3} A1 +A1

{al,az,al + 042}7 {017042 tasz, o1 tag+ 043},

{ag, a3, 00 + a3z}, {az, 01 + a2, 00 + 2 + a3}

6 {al,ag,ag,a1+a2,a2+oz3,a1 +012+O£3} A3

One can see that, by adding the negative roots, the ®,’s are root systems extracted from
As. They are written in the last column.

We are now going to compute X|§i (n(p)) for pe @, with |®,]=1,2,3 and 6 and check
that the singularities obtained are of the same types as the ®,,.

z 0 0 0

0 = O
o0 ={ai}: p= . with © # z because p ¢ H,, and z #+ —x because
- z

0 00 -2z-=2
p ¢ Hy,. Subsequently m(p) = (3z% + 2zz + 2%, 22(x + 2)%,-2%2(z + 22)). By taking
x =2 and z = -1, one gets w(p) = (9,4,12). X|;~i (9,4,12) is given by the equation
f(x,t,w) = 81zt — 8122 — 122 + tw + 12 = 0. The singular point is (—%,0,0). In order
to see what happens near the singularity, in the equation f we make the substitution
T T - % After an analytic change of variables, we find a singularity of type Aj.

z 0 0 O

0 =z
@’ ={ag,a3}: p = with  # 0. So w(p) = (222,0,2*). By taking
- 0 0 -z O

00 0 -z

x =1, one finds w(p) = (2,0,1). X|§1 (2,0,1) is given by the equation f(x,t,w) =
81z 1822 +tw+1=0. There are two singular points: (%,0,0) and (—%,0,0). In order
to see what happens near the singularity, in the equation f we make the substitution
-+ % After an analytic change of variables, we find a singularity of type Ay. The
same result is obtained for the substitution r — = — % Therefore the fiber is a singular

configuration of type A1 + Aj.

72



1.4. Simple singularities and Dynkin diagrams

z 0 0 0
0 y O
&) ={ai, 9,01 +az}: p = with x =y, y =2 and v = z. So
0 0 z 0
0 00 —x-y-=
z 0 0 O
0 =
D= with © # 0. Then w(p) = (622,823, -32%). By taking x = 1, one
00 = O
0 0 0 -3«

gets w(p) = (6,8,-3). X|§1 (6,8,-3) is given by the equation f(x,t,w) = 81a* - 54a? -
24x +tw — 3 = 0. The singular point is (—%,0,0). In order to see what happens near
the singularity, in the equation f we make the substitution r — x — % After an analytic
change of variables, we find an As-type of singularity.

o|®)|=6: p=(0,0,0). Then n(p) = (0,0,0) and X|§1 (0,0,0) is given by the equation
f(z,t,w) = 81z* + tw = 0, which is a singularity of type As.

The preceding example is a nice illustration of the following proposition. The proof
can be found in [Slo80].

Proposition 1.4.23. Let x : X - U be a deformation of a simple singularity Xo with
associated Dynkin diagram A. Let X, +# Xg be a non-special fibre of x. Then there is
a proper subdiagram A’ € A and a type-preserving bijection of the components of A’
onto the singular points of X.. This means that each connected component of A is
sent to a singular point of X¢, which is a simple singularity of the corresponding type.
Furthermore, if x is semiuniversal, then all subdiagrams of A are realized as singular
configurations in non-special fibers.

Since the beginning of our study, all the singularities have been isolated. The fact
that a singularity is isolated or not can be algebraically characterized (cf. [Loo84]).

Theorem 1.4.24. Let A be the ring of convergent series C{z1,...,x,}. Let f € A

such that f(0,...,0) = 0 and let J(f) be the ideal of A generated by f and the :;)—f,
z;
1 <i <n. Assuming that (f71(0),0) is a singular point, it is isolated if and only if

dim(A/J(f)) < co.

Proof. One can show that the ring A is Noetherian and local with m = (21, ...,x,) as its
unique maximal ideal. The proof of the theorem is based on the following proposition:
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Proposition 1.4.25. Let a c A be an ideal of A. The following assertions are equivalent:
(i) dim A/a < co.
(i) 3k € Z5o such that mF c a.

(iii) Z(a):={(a1,...,an) €C" | g(ai,...,an) =0 Vg ea} = {0}.

Proof. (ii) = (i) Assume there exists k € Z5q such that m* c a. There is a surjection

AjmF - Ala

zmod m* — 2z moda

It follows that dim A/a < dim A/mF. Furthermore the elements of A/m* are polynomials
whose degree is at most k—1. Thus A/m" has a finite base, which implies dim A/m" < oo
and dim A/a < oco.

(1) = (4ii) Assume there exists k € Z,q such that m¥ c a. If = € Z(a), then z is a
common zero to all elements in m*. But A is an integral domain, implying that z cancels
all elements in m. As the only common zero of the elements of m is 0, it follows that
x=0and Z(a)={0}.

(i) = (i7) Assume that dim A/a < co. There is a sequence of vector spaces:

Afa> (m+a)/a> (m®+a)/as ...

According to the hypothesis, there exists k € Z,q such that (m**! +a)/a = (m”* + a)/a,
hence m.(m* + a)/a = (m* + a)/a. Then Nakayama’s lemma (cf. [Eis95] Corollary 4.8)
implies that (m* + a)/a = 0, which means m* c a.

(i71) = (i1) The analytic version of Hilbert’s Nullstellenstaz (cf. [GinKhen90|] First
Part, Chapter 2, Theorem 2.3) tells us that I(Z(a))={fe A| f(z)=0Vze Z(a)} =/a.
If one assume that Z(a) = {0}, then Va={feA| f(0) =0} =m.

Set k € Zoo. m is generated by 1, ..., , so an element in m* can be written

Za517._,75n(x1, ...,xn)a;ll...a;gn with 81 +...+ B, =k and ag, g, € A.
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1.4. Simple singularities and Dynkin diagrams

For any partition of k in n elements, there exists one part higher or equal to % Indeed,
if the partition (fi,...,5,) is such that g; < % forany 1<i<n,then k=081 +...+ 8, <
n% = k, which is impossible.

As m = \/a, for any 1 < i < n, there exists a; € Zsg such that x" € a. Set k € Z,o such
that % > max(aq,...,a,). Then for any partition (5i,...,5,) of k in n elements, there
exists 1 <7 <n such that 5; > % > «;. Thus J:Z’B “ € a and because a is an ideal, one finds
ag,..g. (21, ...,xn)xll...xgn € a. Hence any element of m* is a sum of elements of a and
so is in a. It follows that m* c a. [

The singularity (f71(0),0) is isolated if and only if 0 is the only solution of the system

fo=0,
of
= 0, 1<:<
o , i<n
Hence {0} = Z(J(f)). According to Proposition |[1.4.25| this is equivalent to
dim(A/J(f)) < oo, which proves the theorem. O

The number dim(A/J(f)) is called the Tjurina number of the singularity (cf. [Loo84]).

The next theorem gives us a way of computing the semiuniversal deformation of any
simple singularity. It was proved by A. Kas and M. Schlessinger in [KasSchle72].

Theorem 1.4.26. (Kas-Schlessinger). Let Xy be a Kleinian singularity defined in
C3 by the polynomial equation f(X,Y,Z) =0. Because of the previous proposition (or by
explicit computation), the vector space V = C[X,Y, Z]/(f, 68—;(, g—}i, g—é) is finite dimen-
sional. Let (b;(X,Y,Z))1<i<k be a base of V.. Then the semiuniversal deformation of the

simple singularity Xo is given by the map
p: C3xCF - C
k .
(XY, Z,ay,...,ar) ~ [(X,Y,Z)+) apbp(X,Y,Z)
i=1

1.4.1.4. Springer’s resolution

The theorem that will be proved shortly is about the nilpotent variety. Its proof
requires some reminders on regular nilpotent elements. The following theorem is proved
in [Stein65].

Theorem 1.4.27. Let x be a nilpotent element of a reductive Lie algebra g. The fol-
lowing properties are equivalent:
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(i) x is regular.
(ii) x is contained in a unique Borel subalgebra of g.

(iii) If b = h Bpca+ 9o is the decomposition in root spaces of a Borel subalgebra b of g
and x € b, then the projection of x on g, is not zero for all the simple roots.

Let B be a Borel subgroup of G, T' a maximal torus contained in B, b = Lie B and
h =Lie T. It is known that b decomposes as b = h & n with n the nilradical of b. As n is
stable under the Adjoint action of B, one can define the associated bundle G xZ n. The
next proposition can be found in [Sprin09].

Proposition 1.4.28. With the same notations as before, the quotient G| B is a projective
variety called the flag variety for G, and is in bijection with the set of Borel subalgebras
of g.

The flag variety contains interesting information and will be studied in the following
example.

Example 1.4.29. Let G =SL,(C), B a Borel subgroup of G and g,b the respective Lie
algebras. We have the following morphism

G/Bﬁ{{o}:vog‘ﬁ ¢ ...%V,=C"|dim V; =i}

sending a Borel subalgebra of g to the flag it stabilizes. Indeed, let (e1,...,e,) be the
canonical base of C™ on which G acts, and for any 1 <i < n, let V; = Vectc(eq,...,e;).
Then the stabilizer of the flag {V;}1<i<n s the space of upper triangular matrices in G and
is a Borel subalgebra. But as all Borel subalgebras are conjugated, any Borel subalgebra
b appears as the stabilizer of a unique flag we call (b). This defines the morphism .
There are also the following morphisms

grz - Ad(g)(2)

g*x GxBn - g
I !
gB G/B
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0 00 00
0 01 00
Setx=|. . . . . . .|eg andlet us find the flags stabilized by x.
000 . .10
000 . .01
000 . .00

Let (v1,...v,) be the canonical base of C". Because x is nilpotent, its only eigenvalue is
0. Set v1 = ajv1 + avvy an eigenvector.

e The aim is to find Ty such that the vector space generated by U1 and Uy is stable
by x and of dimension 2. This will imply a relation xVy = o1 + \va. On (T1,02) the

matriz of x will be a . But x is nilpotent so A = 0 and so x¥y = pvy. By writing
0 A

Ty = Yovy Bivi and applying x, one obtains Bava + ...+ Bpun_1 = paqvr + pogve. Thus

B3 = pas, Ba=...=Pp =0 and pag = 0.

If a1 # 0, set Uy =vy. This implies that V1 = Co1 & Vo =< vy, v2 > are stable by x.

If a1 =0, set Uy =v3. Therefore Vi = Cva & Vo =< wa,v3 > are stable by x.

e We now aim to construct a vector U3 such that the C-vector space Vs = (01,02, 03) i
stable by x and of dimension 8. The computation leads to:
If a1 =0, U3 = ave +[Bvs. By setting U3 = f1v1+ Bavs, one finds Vi =< v, v3, B1v1 + Bav4 >.
If ay #0, one obtains Us = P11 + Pove + B3vs thus Vi =< vy, v9, v >.

If one keeps on computing the case ay + 0, therefore V; =< wvi,va,...,v; >, forall 1 <i<mn,
is a C-vector space stable by x.

Let us go back to the case oy =0. One eventually finds that every flag stabilized by x is
indexed by an 1<i<n—-1 and an element (X: pu) € P(C) such that

<W9,..., V41 > if j <4,

V'iﬂ()‘:u‘) —

f <V2,...,0;, AV + (i1 > if 1= 7,

<v1,...v5> if g >

The previously‘ mentioned flag will be denoted as V>N and the family of flags indexed
by PY(C) as Vi = {VEO*) | (X\:p) e PY(C)}.
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) . one point if k=1+1
Let 1 <i<k<n-1. It can be verified that VINVF = 4 . We
@ otherwise.

therefore have the following configuration:

Assuming that the self-intersection is =2 for each V', the intersection matriz of the flag
configuration is the opposite of the Cartan matrix of A,_1, which is the Cartan matriz

of SL,(C).

One can also look at the Borel subalgebras containing x and notice that they are in
bijection with the flags stable by x.

The next theorem is due to T.A. Springer and can be found in [Sprin69].

Theorem 1.4.30. (Springer). The morphism y: GxBn - N(g) is a reso-

gen o Ad(g)n
lution of singularities for the nilpotent variety N'(g).

Proof. The associated bundle G x? n is smooth and has the same dimension as N (g).
Indeed, ¢: G xBn— G/B is a vector bundle and a surjective map. Hence, for any point
p € G/B, the dimension of the fiber $~!(p) = n is dim(G x® n) — dim G/B. So

dim(G xBn) =dim G/B +dim n = % + %,
= [®],
= dim N (g),
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with ® the root system of the Lie algebra g, as previously seen. We have the morphism

a: GxBn - {(A2)eBxN(g)|zeA}
gen o (69, Ad(g)n)

with b9 = Ad(g)b and B = G/B the set of Borel subalgebras of g. Because N (g) is
G-stable and the action of B on N (g) is the restriction of the G-action, one has an
isomorphism ¢ : G x® N(g) > G/B x N(g) given by (g * z) = (9B, Ad(g)(z)) (cf.
[SIo80] 3.7, Lemma 1). Hence the inclusion G xZ n < G x® N(g) composed with ¢ is a
closed embedding of G xP n in B x A'(g) and is exactly the morphism . We conclude
that G x® n can be embedded onto the closed subvariety {(A4,z) e Bx N (g) | z € A} of
B x N (g). Under this identification, the morphism 1)y corresponds to the projection on
N (g). One deduces that 1) is proper. Moreover, 1)y is surjective because every nilpotent
element is contained in the nilradical of some Borel subalgebra. As 1y is G-equivariant
and the orbit of a regular element is dense in N (g), it is enough to prove that the
preimage under 1y of any regular element of N'(g) contains only one point. According
to the identification, one sees ¥y (x) with x € N(g) as B, = {A € B | x € A}. Then
because of Theorem B, is a point if x is regular. The theorem is thus proved.

O]

1.4.1.5. Simultaneous resolutions

Definition 1.4.31. Let x : X - U be a flat morphism of complex algebraic integral
varieties. A simultaneous resolution of x is a commutative diagram of morphisms of
algebraic varieties

such that:
e O is smooth,
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e Y and ¢ are proper and surjective,
e ¢ induces 1, : 071(v) - x(¢(v)), which is a resolution of singularities for
X Hp(v)), forallveV.
We will speak of simultaneous resolution of x over .

Let x : (C?,0) - (C,0) be a flat morphism whose only singular fiber x~*(0) has a
unique isolated singularity. The next theorem was obtained by E. Brieskorn in [Bries66]
in the setting of holomorphic maps of complex manifolds, and later algebraized by M.
Artin in [Artin74] .

Theorem 1.4.32. There exists a simultaneous resolution of x if and only if x~*(0) has
a simple singularity.

This theorem provides us a means of proving the existence of a simultaneous resolution.

We say that two simultaneous resolutions of y;,

vi (3] (0

01 X 02 X

are isomorphic if there exists an isomorphism ¢ : Y7 — Y5 such that 9 ot = 91 and
O 01 =0.

Set x as in the previous theorem and let ¢ : (C,0) = (C,0) be a base change such that
x has a simultaneous resolution over . As x~1(0) is a simple singularity one can assign
it a Dynkin diagram as well as a Weyl group W. The next result comes from [Bries68]
(analytically) and [Artin74] (algebraically).

Theorem 1.4.33. The number of non-isomorphic simultaneous resolutions of x over ¢
is exactly the order of W.

Let g be a reductive Lie algebra and h € b C g a Cartan and a Borel subalgebras of
g. The triangular decomposition of g gives b = h @ n with n the subalgebra composed of
the nilpotent elements of b. Let W be the Weyl group of g associated to b as well as G
and B the Lie groups corresponding to g and b. We have the following diagram:
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GxBp

h/W

with x the adjoint quotient map, ¢ the canonical projection of h on h/W and € and
1 defined by (g *b) = Ad(g)b and O(g* (h+n))=h for ge G,b=h+neb=hH&Gn.

The next theorem was conjectured by A. Grothendieck and then proved by E. Brieskorn.

Theorem 1.4.34. (Grothendieck). The aforementioned diagram is a simultaneous
resolution of the adjoint quotient x.

Proof. Several points need to be verified:

(1) The diagram is commutative. Indeed, if g * x € G xZ b, then y o 9(g * ) = G.zs N b
with x5 the semisimple part of x and @ o8(g*x) = W.h with x = h+n the decomposition
of x in b. But as W = N(H)/H, W.h is the set of elements of h conjugated to h. On
the other hand G.xsNb is the set of elements of h conjugated to xs. However we know
that x5 and h are conjugated so yo¥(g*z) =@ o0(g*x).

(2) The action of B on h = b/[b,b] is trivial because the action of its Lie algebra b on

h is trivial by definition. There is therefore an isomorphism G xZ b =N G/B x h. The
morphism 6 is smooth because it can be factorized as

GxBb > GxBp S G/Bxh - p
gx(h+n) = gxh ~ (gBh) ~ h
and each morphism of the factorization is smooth.

(3) The morphism ¢ is clearly proper and surjective, and so is 1 because every element
of g is contained in a Borel subalgebra and Borel subalgebras are conjugated.

(4) Let h denote the conjugacy class of h in h/IW. We aim to show that ¢y, : §71(h) -
x~1(h) is a resolution of singularities for all h € b.
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1. Lie Theory

It has been seen before that x ' (h) = GxZ(" N'(3(h)). By composing the G-equivariant
morphism v, with the projection on G/Z(h), one can see ~1(h) as an associated bundle:

o)~ xR G2 N (3(h)) ~ GJZ(h)
g (hen) v ad(g)(h+n) = gx((h+n)) =~ gZ(h)

112

According to Lemma we need to find the Z(h)-stable fiber of this composition
above eZ(h) € G/Z(h). One can see that h + N(3(h)) is the set of elements whose
semisimple part is k and G.(h+ N (3(h))) 2 G x?"M) N (3(h)). The preimage of eZ(h)
by the projection on G/Z(h) is e * N (3(h)), which corresponds to the set h + N (3(h)).
The preimage of the composition above eZ(h) is thus the set of elements g * (h+n) €
G xB (h+n) such that the semisimple part of Ad(g)(h+n) is h. One can replace g+ (h+n)
by an equivalent gb™! » Ad(b)(h +n) with a b € B chosen such that (Ad(b)(h+n))s = h.
As (Ad(gb Y (Ad(b)(h +n)))s = h, we get Ad(gb~1)(Ad(b)(h +n))s = h, which means
that Ad(gb~*)h = h. We deduce that gb! € Z(h). Hence the fiber above eZ(h) is
{g*(h+n) e GxBn|ge Z(h) and nen(h)} with n(h) =nN3(h). But this is isomorphic
to Z(h) xBM) n(h), where B(h) = BN Z(h) is a Borel subgroup of Z(h) whose Lie
algebra has n(h) for nilradical.

Finally, writing ¢o(h) : Z(h) xB" n(h) - N (3(h)) for the restriction of the Springer
resolution, one sees that 1)y, is induced by 1g(h). Therefore v, is isomorphic to

G o (h) : G 7P (Z(h) xPP) n(h)) - G <7 M N (3(R)).

As 1g(h) is a resolution by Springer’s theorem (Theorem [1.4.30)), so is ¥y. O

Let us consider the diagram of the previous theorem. Let S be a transversal slice to
a nilpotent orbit (not necessarily subregular) in g and S =1~(S) the preimage of S by
¥ in G xBb.

Corollary 1.4.35. The restriction of the Grothendieck resolution is a simultaneous
resolution.
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1.4. Simple singularities and Dynkin diagrams

S"}%S

N N
GxBo v g

HJ JX

b /W

Proof. One sees that S = (G xZ b) xgS. We know that S is transversal to an orbit at x
in g. As v is surjective, let y € G xB b such that 1(y) = 2. Then S is a transversal slice
to the orbit at y in G xP b. Indeed, one can see that:

°® yes,

e the morphism G x § - G x5 b is smooth (cf. [SIo80] Section 5.1, Lemma 2),

e codim S = dim G.y. Indeed, because dim GxZb-dim G = dim G/B+dim b—dim G =
0, any fiber of 7 is discrete. The restriction w|G’.y : G.y - G.x is surjective and
the dimension of any fiber is dim G.y — dim G.x = 0 because it is discrete. So

dim S =dim G xZb+dim S-dim g =dim G x® b-dim G.z because S is transversal,
=dim G xB b -dim G.y,
= codim G.y.

Then it follows that S is transversal to the G-orbit at y in G xZ b.
One concludes that the composition

GxS - GxBp > h

(9,8) = gxs = 0(gxs)

is smooth. As it factorizes in

— m ~ O
G><S—2>Si>[)7

then 6 = 6| g is smooth. Therefore TS is well defined for all s € § so S is smooth. One
can easily check that the other properties of a simultaneous resolution are verified as
well. 0
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1. Lie Theory

Let S be a transversal slice to a nilpotent subregular orbit of a simple Lie algebra of
type A,, D, or E,. Using Theorem [1.4.15]and Corollary[1.4.35] one obtains a simultane-
ous resolution of the semiuniversal deformation of the corresponding simple singularity.

1.4.2. Simple singularities of type BCFG

The simple singularities have been defined and some of their properties proved. These
singularities are linked to the homogeneous (or simply-laced) Dynkin diagrams of simple
Lie algebras. However in Section it was shown that there are other kinds of simple
Lie algebras, and as such Dynkin diagrams, which are the inhomogeneous (or non-simply-
laced) types B, (r >2), C; (r > 3), Fy and Ga. P. Slodowy gave a definition of simple
singularities of inhomogeneous types. This definition requires some preparation.

1.4.2.1. Group action on a simple singularity

Let I c T’ be finite subgroups of SUs. We would like I to act on C?/T". T acts on C?
and, if I' < T”, this action induces an action of the group I'//T" on C?/T". Tt is thus natural
to require that I' be normal in I, In the following table are all normal subgroups I' of
the finite subgroups I'" of SUy (cf. [Cox91]).

T/ r order of I’
C,, Cr,Vr/n r
Dg if n even 2n
Dy | Cn,Vq/n and 2 odd z
q q q
C2n,Vq/n 2n
. q
Do 8

T

{£1} 2
T 24
@ Do 8
{£1} 2
z {£1} 2

The symmetry groups of the simply-laced Dynkin diagrams have been determined in
Section For type Agy_1, the symmetry group is Q = Z/2Z and T' = Cy,. We are
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1.4. Simple singularities and Dynkin diagrams

looking for I in SUj such that I' < T” and I'" acts on C?/T". The action of I’ can be
lifted through the minimal resolution of C2/I". As the minimal resolution restricts to an
isomorphism on a dense open subset and I" acts trivially on C? /T, it follows that I" acts
trivially on the minimal resolution. So the action of IV on the whole minimal resolution
factors through an action of I/T. As the origin is a fixed point of I in C?/T, I'/T'
acts on the exceptional locus, which is composed of a union of projective lines whose
intersection pattern corresponds to the Dynkin diagram As,._1. Therefore we want I'V/T'
to act on the exceptional locus the same way () acts on the Dynkin diagram. This can
be achieved by requiring I'V/T' 2 Q and T' < T".

e Type Ag,—1: T' = Co and Q = Z/2Z. Based on the previous table, the possibilities
are IV = Cy, or D,.
The singularity C?/T" is defined by {X* - Y Z = 0} with X = 2120, Y = 22", Z = 23",
where (21, 29) is the dual of the canonical base of C? (cf. Theorem .

0 .
- Cy4y is generated by g = ¢ . with ¢ = exp(%f—f). The action is g.z; = ("2 and
0 ¢

g.z9 = (2z9. Then

g X = X,
gy = -Y,
9.z = -Z
0 ¢
- D, is generated by ¢ and h = . g2 fixes C?/T and h.z; = —iz9, h.zp = —iz1.
1
Then

hX = =X,

LY = (-1)"Z, .

h.Zz = (-1)"Y.

In order to determine which group is the appropriate one, it is necessary to extend
the action of I to the minimal resolution of C?/T" and check that I permutes the
components of the exceptional locus the same way 2 acts on the Dynkin diagram. In
the next subsection, it will be explicitly proved that I'V = D,.

e Type Ag,: ' =Copi1 and Q = Z/2Z. Based on the previous table, the only possibility
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1. Lie Theory

is F, = C4T+2.
The singularity C?/T is defined by {X*™1 Y Z = 0} with X = 2129, Y = 2"+ Z = 22r+1,
where (21, 29) is the dual of the canonical base of C? (cf. Theorem [1.4.1)).

0 .
Cyr+2 is generated by g = ¢ . with ¢ = exp(ﬁg). The action is g.z; = "'z and
0 ¢
g.z2 = (z9. Then
g X = X,
9Y = -Y,
9.2z = -Z

It is necessary to extend the action of T to the minimal resolution of C?/T" and check
that T permutes the components of the exceptional locus the same way 2 acts on the
Dynkin diagram. In the next subsection, it will be shown that is does not. Therefore a
group I satisfying our conditions does not exist.

e Type D,y1: I'=D,_1 and Q =Z/2Z. The only possibility is T = Do(r-1)-
If r is odd, the singularity C?/T is defined by {X (Y2?-X""1)+Z2 = 0} with X = 4r (2122)2,
Y = 47%(2?7”_1) + zg(r_l)), Z = izlzg(zz(r_l) - zg(r_l)), where (21, z2) is the dual of the
canonical base of C? (cf. Theorem [1.4.1)).
If r is even, the singularity C?/T" is defined by {X(Y? + X"!) + Z2 = 0} with X =
4%(212'2)2, Y = 4’2%(2%(1”_1) - zg(r_l)), Z = izlzg(zf(r_l) + zg(r_l)), where (z1,29) is
defined similarly as when r is odd.

0 . 0 ¢
Dy(r-1) is generated by g = : with & = exp(%) and h = . Then

0 ¢t i 0
¢ X = X, hX = X,
gy = -Y, and Y =Y,
9.7z = -Z, hz = Z.

e Type Fg: I'=T and Q =Z/2Z. According to the previous table, IV = O.

The singularity C2/T is defined by {X*+ Y3+ Z? = 0} with X = 108izlzg(zi1 - 23),
Y = exp(%)(zél3 + 28+ 14(2122)1), Z = (2f + 25) = 36(2120)* (2] + 23), with (21,22) the
dual of the canonical base of C? (cf. Theorem [1.4.1)).
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1.4. Simple singularities and Dynkin diagrams

3

e 0 .
O=<g,T > with g = ( 5) and € = exp(&7). It is know that 7 fixes C?/I" and
0 ¢

g X = -X,
gY =Y,
9.z = -Z

e Type Dy: T'=D5 and Q = &3. The only possibility is I = O.
The singularity C2/T' is defined by {X (Y2 - X2) + Z2 = 0} with X = 43(2122)%, Y =
4_%(211 +23), Z = iz120(2f — 23), with (z1,22) the dual of the canonical base of C? (cf.
Theorem [1.4.1)).

3 3

€ € e 0 4

O =<Dy,g,h > with g = %( 7) and h = ( 5) with € = exp(7). It is known
€ € 0 €

that D fixes C?/T', and

9.X = LY -X), hX = X,
9.Y = -L(Y+3X), and hY = -Y,
g.Z = Z, h.Zz = -Z.
We summarize the results we obtained in the following table:
Homogeneous | Inhomogeneous T I’ Q

Agr 1 B, Cor D, Z/2Z
AQT Cr 62r+1 x Z/QZ
Dy C, Dy-1 | Dygr-ny Z/2Z

Eg Fy T (@) Z/2Z

T Z/3Z
Dy Ga D,
o GFS
Table 1.3.
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1. Lie Theory

The "inhomogeneous" column corresponds to the foldings of the root lattices whose
types compose the first column. They were computed in Section We add that if we
chose Q to be Z/3Z in the case I = Dy, it can be proved that IV =T.

Remark 1.4.36. One may wonder why the Dynkin diagram As, was disregarded. Let
g be a Lie algebra over K of type Ay, A its Dynkin diagram and {aj,...,as,} a base of
the root system. We identify the simple roots of g with their respective vertices in A,
so that an automorphism of A can be seen as a permutation of the simple roots. We
define o the automorphism of A by o(a;) = agp11-;-

1 2 T r+1 2r-1 2r
.—. ..................... .—.. .................... .—.
o

The folding of the Lie algebra g gives a Lie algebra gg of type B, and the folding of the
root lattice gives a root lattice Q7 of type C,. This case should a priori be included

in Table 1.3. However, it will be shown in Section that for any I'" such that
I/ 2 Q =2Z/2Z, T'/T fails to permute the components of the exceptional locus of the
minimal resolution of As,. like the symmetry group €2 of the Dynkin diagram permutes
its vertices.

1.4.2.2. Computation with A,. | and B,

Let o be the automorphism of the Dynkin diagram of type As,_1 defined, as in Sec-
tion by
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1.4. Simple singularities and Dynkin diagrams

The group corresponding to As._1 is I' = Cy.. Set I'' = D,.. Let us check that I
permutes the components of the exceptional locus of As._; the same way o permutes
the vertices of the Dynkin diagram.

The singularity of type As,_1 is Xo, = {(2,y,2) € C* | 2% —yz = 0} and its minimal
resolution is given by (cf. [Lamo86])

Qp : 5(:2»,‘ - XQT

((z,y,2),{(a;  bi) hcicor-1) = (2,9,2)

with X, the surface in C3 x (P27~ defined by | a9, 1z = bor_1Y,
abis1r = aj1b;, 1<i<2r-2,
a1z =  bix.
) ) eXp(QQZ;: 0 0 ¢
It is known that D, = (g,h) with g = . and h = . It was
0 exp(—é’—f) i 0

shown in Subsection [1.4.2.1|that D, acts on Xo, by | g.(z,y,2) = (2,9, 2),

h.(.l’, Y, Z) = (_:Ua (_1)TZ> (_1)Ty)'

Let = ((z,y,2),(a1:b1),...,(ag-1:b2-1)) € X5,. Our goal is to define g.a and h.«
and make v a I''-equivariant morphism.

By definition I' = (g) fixes every point in X, so g.a = ((z,y,2), (a] : b}),...,(ah_; :
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1. Lie Theory

4 !
Q91T = by, 1Y, agr-1T = bar 1Y,
by,_1)) € Xop thus abljw=al, b, 1<i<2r-2, and| ;b1 = a;b;, 1<i<2r -2,

alz = bz, ajz = bz

One deduces from these systems that (a; : b}) = (a; : b;) for all ¢, hence g.ov = a0, Vv € Xo,.

Furthermore, h.a € X, with ab._(~z) = bl _1(-1)"z, . But a €

abl (-z) = ai b, 1<i<2r-2,
a(-1)"y = Yi(-z).

. bon_ a/ -1 r+1 bon_ b/ -1 r+1

Xor 80 r_ %l and r_a One deduces that 1 ,) =271 and 2T_1,( ) =

Yy a1 z b by agr-1 ag,
A l4 A A
ﬂ' Then ay _ (_1)r+1 bar—1 and A9r-1 _ (_1)r+1b_1' Thus Qor-2 _ ia2r—1 _ (_1)r+2b_1 -
b bll a2r-1 b/27“—1 ay bl2r—2 - bl?r—l a1z

!/

b : :bor_
(-1)"*2=2. The computation finally gives % = (=1)7*2r~i 2L 1 < < 2p — 1. Therefore
a ; a2r—i

the action of his given by h.a = (=, (<1)" 2, (~1)"), {((=1)"*2 " ba, s azy—i) bresear-1) €
Xo.

2r-1

Let E = ¢ 1(0) be the exceptional locus. One sees that E = | J E; with E; =
i=1
{(0,0,0),(1:0),...,(1:0), (a;:b;) ,(0:1),...,(0:1)} € Xo,. The action of g on the

——
i-th position

components of E is g.F; = E; for any 1 <i<2r -1, and h.E; = {(0,0,0),(1:0),...,(1:
0), ((-=1)"*2=r=Dp;: 4:),(0:1),...,(0:1)}. Thus h.E; = Eo,_; for any 1 <i<2r—1.

(2r-i)-th position

Finally T permutes the components of the exceptional locus the same way I''/T" per-
mutes the vertices of the Dynkin diagram.

We go back to the case Ao, for I' = Cor,1 and explain why it differs from the others.
For As, one cannot find a finite subgroup I'” of SUs such that I' < IV and I'" permutes the
components of the exceptional locus of the minimal resolution of C? /T the same way the
symmetry group of the Dynkin diagram permutes the vertices of the Dynkin diagram.
Indeed, let us take I' = Co,y1. The singularity C?/I" is of type As,. The symmetry group
of the Dynkin diagram of type Ag, is 2 = Z/2Z and permutes the vertices ¢ and 2r+1 -1,
1 < < 2r. Based on the table in Section if one wants I'” such that I' < TV and
IV/T = Q, then the only possibility is T = Cyy42.

The singularity C?/T" is defined by {X?"*1 Y Z = 0} with X = 2120, Y = 2" Z = 227+,
where (21, 29) is the dual of the canonical base of C? (cf. Theorem .
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1.4. Simple singularities and Dynkin diagrams

0 .
Cyr+2 is generated by g = z - with ¢ = exp(fTTQ). The action is g.z; = ("2 and
g.z2 = Cz9. Then
g.X = X,
gy = -Y,
9.z = -Z

If one lifts this action to the minimal resolution of Ao, like we did previously for As,_1,
then I' stabilizes every component of the exceptional locus. However the action of Q on
the Dynkin diagram is not the identity, so I'//T" acts differently on the exceptional locus
than Q acts on the Dynkin diagram of type As,. Therefore a finite subgroup I'' of SUs
that fits our requirements does not exist.

1.4.2.3. Definition and deformations of BCFG singularities

Let us begin with the definition the inhomogeneous Kleinian singularities given by P.
Slodowy in [SIo80].

Definition 1.4.37. A simple singularity of type B, (r > 2), C, (r > 3), Fy or
Go is a pair (Xo,) of a simple singularity (in the former sense) and a group Q of
automorphisms of Xo according to the following list:

Type of (Xo,Q) | Type of Xo| T I’ Q
B, r>2 Ay | Cor | D, | Z/2Z
Cp, 723 Dot | Doy | Doy | 2/22

Fy Eg T o Z/2Z
Go Dy Dy o S3

A simple singularity of inhomogeneous type is then a simple homogeneous singularity
with a symmetry of the Dynkin diagram. One notices from the Section [1.2] that the type
of (Xo, ) is the same as the type of the folding of the root lattice of type Xj.

Remark 1.4.38. One notices that the case where Xy is of type As, does not appear
in the preceding table. Although the Dynkin diagram of type As, has a non-trivial
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1. Lie Theory

symmetry group, it was proved in Subsection that the action of this symmetry
group fails to lift to the exceptional locus of the minimal resolution of Xg.

The notion of symmetry has been added to simple singularities, therefore it is necessary
to include this symmetry in the definition of deformations of singularities of type B,
Cy, Fy and Go. P. Slodowy gave the following definition.

Definition 1.4.39. A deformation of a simple singularity (Xo,Q) is a deformation
x: X = U of Xg together with a trivial action of Q) on U and with an action of Q on X
which induces the given one on Xg and such that x is Q-invariant.

An isomorphism of two deformations of (Xy,2) is an isomorphism in the previous
sense which is in addition Q-equivariant. A semiuniversal deformation is then defined
in an analogous way as done in Subsection [1.4.1.3

In [S1o80], P. Slodowy constructs a semiuniversal deformation of (Xp,(2) in the case of
Xo a hypersurface with an isolated singularity and €2 a reductive group. More precisely,
he shows the existence of a semiuniversal deformation x : X — U of Xg in the original
sense with the following additional property: there are 2-actions on X and U such that
x is 2-equivariant and the restriction of 2 on Xy is the given one. Furthermore, if Y - T
is any Q-equivariant deformation of Xy, it can be induced from y by a Q-equivariant
morphism. From here, a semiuniversal deformation yqo of (Xp,{2) is obtained by the
deformation induced from x by the base change U — U, with U® being the fixed point
set of Q in U.

X xy UY X
XQ X
Ut U

1.4.2.4. Inhomogeneous singularities from Lie algebras of type B,, C,, F; and G2

Let g be a simple Lie algebra over C with adjoint group G and let e € g be a nilpotent
element. It is known that there exist f,h € g such that (e, f,h) is an sly-triple. In
[S1o80] Section 7.5, P. Slodowy defines C'(e) := Zg(e) N Zg(h) and calls it the reductive
centralizer of e with respect to h.
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1.4. Simple singularities and Dynkin diagrams

Lemma 1.4.40. The reductive centralizer of e centralizes the sly-Lie subalgebra of g
generated by e, f and h. As a consequence, the Slodowy slice S. = e + 34(f) is C(e)-
stable.

Proof. Let ¢ € C(e). Then (ce,ch,cf) = (e,h,cf) is an sly-triple for e. Based on the
representation theory of the Lie algebra sla(C), the map ad x : g(-2) — g(0) is injective
and h = [e, f] = [e,cf]. Tt follows that c¢f = f and the sly-Lie subalgebra of g is stable.
It implies naturally that S, = e + 34(f) is C'(e)-stable. O

Remark 1.4.41. In fact, the reductive centralizer C'(e) is exactly the centralizer of the
slp-Lie subalgebra.

Proposition 1.4.42. If e € g is regular nilpotent then C(e) = {1}, and in particular
Za(e) is connected. If e is subregular nilpotent, then according to type we have

Type ofg AT, r>1 BT Cr Dr E(; E7 Eg Fy G2
C(e) Gm | Gmx2Z/2Z|Z/2Z | {1} | {1} | {1} | {1} | Z/22 | &5

In the semidirect product G,, x Z/2Z, Z/2Z acts on G, by =~ 271,

Proof. The case e regular was done in [SprinStein70]. The rest was done by various
authors with case by case analysis. All the references can be found in [Slo80] Section
7.5. O

In Subsection [1.4.1.3| we stated a theorem due to E. Brieskorn (Theorem which
gives the semiuniversal deformation of a Kleinian singularity of type A, D,., or E, from
the adjoint quotient of a simple Lie algebra of the same type. This theorem can be
extended to the inhomogeneous case.

Theorem 1.4.43. Let g be a simple Lie algebra over C of type B,., C., Fy or Gy and e
a subreqular nilpotent element of g. Then there exists a finite subgroup Z of the reductive
centralizer C'(e) of e and a Z-stable transversal slice S at e to the G-orbit of e such that
the (Z-invariant) restriction of the adjoint quotient map x : g - h/W to S realizes a
semiuniversal deformation of a simple singularity of the same type as g.

The proof can be found in [SIo80].
As a special case, the theorem states that the intersection Xo = SNN(g) of S with

the nilpotent variety of g plus the induced action of = on Xy is a simple singularity
(Xo,Z) of the same type B, C, Fy or G5 as g.
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It was mentioned in Proposition that for a simple singularity whose Dynkin
diagram A is of type A,, D,, or E,, singularities whose types correspond to subdiagrams
of A can be found in the fibers of the semiuniversal deformation near the singular point.
There is a similar result for the inhomogeneous singularities.

If A is an inhomogeneous Dynkin diagram, it was shown in Section that it can be
obtained from a simply-laced Dynkin diagram ;A as a quotient by the action of a group
= of diagram isometries. The preimages of this quotient map in , A of subdiagrams of
A are the Z-stable subdiagrams of , A. The following corollary is also proved in [Slo80].

Corollary 1.4.44. Let x : X - U be a deformation of a simple singularity (Xo,Z) of
inhomogeneous type A, and let X, # X be a non-special fiber. Then there is an Z-stable
subdiagram , A" of ,A and a E-equivariant type-preserving bijection of the connected
components of , A" onto the singular points of X..

Example 1.4.45. For the Lie algebra G, one obtains a semiuniversal deformation of
type (D4, S3). Consider the projection of ,A onto A:

There are only two non-trivial subdiagrams of A:

(1) Omit the red vertexr ®==<=® and it gives : ® = A+ Ay + Ay plus a permutation

L
by 63.

(2) Omit the blue verter =@ and it gives : ® = Ay which is invariant under Ss.

1.4.2.5. A stable Slodowy slice for As,._1, D, and FEjg

Let A be a Dynkin diagram of type As-_1, D,, or Eg and let g be a simple Lie algebra
of type A with adjoint simple group G. Take (e, f,h) an sly-triple with e a nilpotent
element of g. In [SIo80] Section 7.6, CA(e) := {o € Aut(g) | o(e) = e and o(h) = h} is
called the outer reductive centralizer of e with respect to h. The group C A(e) can
be described with the following proposition:

Proposition 1.4.46. If e € g is reqular nilpotent, then C A(e) is isomorphic to Aut(A).
If e € g is subregular nilpotent, then C A(e) has the following form depending on the type
of A:
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1.4. Simple singularities and Dynkin diagrams

Type of A A9 Dy | D, r>4| Eg
CA(e) E(Z/2Z,G,,) | &3 Z/2Z Z/2zZ

Here E(Z/2Z,G,,) is an extension of Z[2Z by Gy, with non-trivial action of Z|2Z on G,y,.
For r odd this extension is the semi-direct product, for r even it is the unique non-trivial
extension.

Proof. Let o € Aut(g) be an automorphism of g. Then (o(e),o(f),o(h)) is an sly-triple
for o(e), which is again regular resp. subregular. By the uniqueness of the regular resp.
subregular G-orbit, there exists g € G such that g.o(e, f,h) = (e, f,h). This implies that
g.o € CA(e). From the surjectivity of Aut(g) — Aut(A), it follows that the composition
CA(e) - Aut(g) - Aut(A) is surjective and its kernel is C'(e) = CA(e)NG. For e
regular as well as for A = D, or Eg and e subregular, the kernel is trivial and thus
CA(e) 2 Aut(A). For A = Ay_; and e subregular we have C(e) = G,, and Aut(A) =
Z/2Z. Thus CA(e) is an extension of Z/2Z by G,,. Let s e CA(e) x C(e). To prove the
remaining statements, we need to show that s induces the non-trivial automorphism of
C(e) = G,, and that s? = 1, respectively s? = -1, for r odd, respectively even. We verify
this on an example.

Let e be the subregular element of sly,.(C) given by the matrix

and let o € Aut(sly,.(C)) be the outer automorphism o(m) =t (-m). Let
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0 10
0 0

g=l0 0 1 . . . .|eGL(C)
0 -1 0. .0
1 0 0 . 0
0 0 0 . 1

and ® := (Inn g) o 0 € Aut(sl,(C)). A computation gives ®(e) = e and ®? = 1. With
respect to a suitable choice of an sla-triple (e, f, h), the Lie algebra c(e) of C(e) is

t 0 0
0t 0 0

e)={m@t) ="~ ' teCt.
000 .0 0
000 .t 0
000 . . —(2r=1)t

Then ® transforms c(e) into itself by sending m(¢) to m(—t). The lemma is hence proved
in this special case. ]

Take (e, f, h) an sly-triple with e a subregular nilpotent element of g and S = e+ 34(f)
a Slodowy slice at e. With the same arguments as for the proof of Lemma CA(e)
stabilizes the slice S. Let § : S — h/W denote the restriction of the adjoint quotient of g
to the Slodowy slice. The group Aut(A) = Aut(g)/G acts naturally on g//G = h/W and
can be considered as a subgroup of C'A(e).

Corollary 1.4.47. Aut(A) is a finite subgroup of C A(e) and stabilizes the Slodowy slice
S.

1.4.2.6. Inhomogeneous singularities from Lie algebras of type A,, D, and FEjg

Like in the previous section, A is a Dynkin diagram of type As,_1, D,, or Eg, g is a
simple Lie algebra of type A with adjoint simple group G, e € g a subregular nilpotent
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element of g, (e, f, h) an sly-triple of g and S = e +34(f) a Slodowy slice at e. Because of

Corollary [1.4.47, Aut(A) acts on S and on h/W and makes d equivariant. As a result,
there is an action of Aut(A) on the special fiber X = 671(0). Now let A be the unique

inhomogeneous Dynkin diagram such that ,A¢ = A and AS(Ap) = Aut(A) with AS(Ay)
being the associated symmetry group of Aq defined by

G3 if Ag = Go,
Z/2Z otherwise.

AS(Ao) =

The following two theorems are proved in Section 8.8 of [SIo80):

Theorem 1.4.48. (X, AS(Ap)) is a simple singularity of type Ay.

Let G denote the simple adjoint group of type Ag with Lie algebra gg. Let (eq, fo,ho)
be an slp-triple with eg a subregular nilpotent element of go and Sy = e + 34,(f0). Let
do : So = ho/Wy denote the restriction to Sy of the adjoint quotient map of gg.

Theorem 1.4.49. The AS(A)-equivariant deformation § : S — h/W of X is AS(Ay)-
semiuniversal, and the restriction 6520 of § over the fized point space (/W )A3(80)
is isomorphic to dg.

Remark 1.4.50. The theorem above allows an identification of ho/Wp with (/W )A5(20),
However another identification is possible. The group AS(Ag) acts on the Dynkin
diagram A and its action can be naturally extended to h. Set b = hA9(20) and
Wi ={weW | wy=~w,Vy e AS(Ag)}. Then the natural map h; — (h/W)A5(%0)
induces a G,,-equivariant morphism bh1/W; — (h/W)A5(20)  The G,,-weights of this
morphism are the same on b1 /Wi and (h/W)45(20) and are strictly positive. Hence
using [SIo80] Section 8.1, Lemma 3, one finds that it is an isomorphism.

1.5. McKay correspondence

1.5.1. Homogeneous correspondence

In 1980, J. McKay noticed in [McK80| a link between the irreducible representations
of the finite subgroups of SUs and the extended Dynkin diagrams of types A,, D, and
E,.
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1.5.1.1. Statement of the correspondence

Let T be a finite subgroup of SUs. As such I' acts naturally on Vi := C2. For every
irreducible representation V;, 0 < ¢ < r, of I' (V) being the trivial representation), one
can define the representation Vy,s ® V;. Using representation theory of finite groups (cf.
[Ser78]), these tensor products decompose as:

.
Vnat®Vi=EBmijVj, OSiST,
Jj=0

with m;; € Zsg, for all 0 < 4,5 < r. m;; is the multiplicity of V; in Vi ® V. Set
M = (myj)o<i,j<r the corresponding matrix and I the (r+1) x (r + 1) identity matrix. J.
McKay observed the following:

McKay correspondence: The matrix 21 — M is the Cartan matrix of the extended
Dynkin diagram A(T') associated to I'. We write A(T") for the Dynkin diagram associated
to I’ through the resolution of C2/T". The extended Dynkin diagram A(T") is obtained
by adding -6 to A(T"), with 6 being the highest root of the root system of A(T"). The
obtained diagrams are listed in the table below:

r A(D) Name of A(T")
6
Cn An—l
Dn Dn+2
1 3 4 5 6
@ L L L
T 2 Eg
-0
-6 1 3 4 5 6 7
%* L L L L L
@) E;
2
1 3 4 5 6 7 8 )
@ L L L L L %
T Ex
2
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McKay correspondence can be interpreted directly from the diagram E(F) To each
vertex of Z(F) one associates an irreducible representation of I', the trivial one Vj
corresponding to the vertex of the highest root. Recall that the tensor product V. ® V;
decomposes as a direct sum of irreducible representations. Draw an edge between the
vertices V; and Vj if V; appears in the decomposition of V;,,®V;. The process is illustrated
with this example:

Vnat®vi:v2@Vk@‘/j and mil:mik:mijzl-

One can also interpret McKay’s result using the eigenvectors and eigenvalues of the

Cartan matrix of A(T). Let ynat: I — C (respectively x;) the character

v = Tr(pnat(v))
associated to the representation ppat : I' &> GL(Vpat) of T on Vi (respectively p; on V;).
Let v = 1,71,...,7 be representatives of the conjugacy classes of I'. As characters are
central functions, they are defined by their values on 7;, 0 < j <r. By putting all these
values in a table one finds the character table of I':

Y| m Vi Tr
Yo |l 1 1 1 1
x1 || di | x1(7) x1 ()
Xj || dj X (k) X ()
Xr || dr xr (V&) xr (V)

The formula Vyar ® Vi = @ mi;V; gives us xnat (1) xi (V) = Zmijxj(fyk) for all 0 <
=0 j=0
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xo(Vk) xo(Vk)
1,k <r, which can be written M : = Xnat (V%) : . This can be interpreted

' xr (V) xr (V)

The k-th column of the character table is an eigenvector of M (respec-
tively 21 — M) of eigenvalue ynat (V1) (respectively 2 — xnat (7k))-

In particular, as Vja¢ is of dimension 2, for k = 0, one finds that the column (dy, ..., d;)
is annihilated by 21 — M, with d; = dim V;, for 0 < ¢ < r. This is due to the fact that
this column corresponds to the coefficients in the decomposition of the highest root 6

in terms of the simple roots {aq,...,a;,} of the root system associated to A(T"). Indeed
21 - M = ((as,05))i; = ((a4,05))sj because we work on A,, D, or E, hence all the roots
do
dq r
have the same length. Therefore (21 - M) =0 < Y dj(a;a;)=0,VYi.
: j=0
dr
-
<~ (OZZ', Z djaj) = 0, V1.
=0
,
A Z djOéj =0.
=0
,
< 0= Qg = zdjOéj.

J=1

This correspondence was obtained by J. McKay through explicit computation. R.
Steinberg has since proved the result in a more abstract way in [Stein85].

1.5.1.2. Example

Let I' =Z, A(T") = Es. As I' is the preimage of 25 by the morphism f : SU3(C) —
SO3(R), we first need to compute the character table of 2s.

s is the rotation group of the dodecahedron, which is composed of 12 faces, 30 edges
and 20 vertices. Each vertex of the dodecahedron has a stabilizer containing 3 elements:
id, a rotation of angle 2% and a rotation of angle —%ﬂ. There are 1 element of order 1

and 2 elements of order 3. Furthermore, two opposite vertices have the same stabilizer.
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Hence there are 10 x 2 = 20 elements of order 3.

In a similar fashion, each face has a stabilizer composed of 5 elements: id and rotations
of angles %”, 4?”, %”, %“. We have 1 element of order 1 and 4 elements of order 5. Fur-
thermore, two opposite faces have the same stabilizer. We thus have 6 x 4 = 24 elements
of order 5.

Fach edge has a stabilizer composed of 2 elements: id and a rotation of angle w. We
have 1 element of order 1 and 1 element of order 2. But two opposite edges have the
same stabilizer so we have 15 x 1 = 15 elements of order 2.

This far, A5 contains 1+20+24+ 15 = 60 = |5| elements. Hence we have all the elements

of the group.

It is an obvious fact that two elements in the same orbit will have conjugated stabiliz-
ers. As the subgroups of order 2 are stabilizers of elements in the same orbit (the action
of A5 on the edges is transitive), these groups are conjugated. The same goes for the
subgroups of order 3 (vertices) and of order 5 (faces).

Let us find the conjugacy classes of Us.

1. As the subgroups of order 2 are conjugated, we deduce that all the elements of
order 2 form one unique conjugacy class of order 15.

2. Let = be the rotation of angle %’T and of vertex v. z is conjugated to any rotation
of angle 2?” of another vertex. Let 2’ be the rotation of angle %” and of vertex v/,
the opposite of v. 2’ is conjugated to x and z’ = 2. Thus all elements of order 3
are conjugated. They form a unique conjugacy class of order 20.

3. In a similar manner, rotations of angle %ﬂ and —%ﬂ form a conjugacy class of order
12.

4. Furthermore, rotations of angle %’r and —%” form a conjugacy class of order 12.
These last two classes cannot be conjugated because that would mean there exists

a class of order 24 + 60 = |5

The class equation of 25 is thus 60 = 1+ 15+ 20+ 12 + 12. There are 5 conjugacy classes.
One can check that 60 = 12 + 3% + 32 + 42 + 52

The conjugacy classes are:
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Class Order
e =A{1} 1
co = {z rotation of 7} 15
c3 = {y rotation of %ﬂ, —%ﬂ 20
¢4 = {z rotation of %’T, _2% 12
cs = {#? rotation of %’r, —%T} 12

Let pg be the trivial representation and p; the representation of dimension 3 as a
subgroup of SO3(R). Denote pa,ps3, ps the other irreducible representations and g,

0 <4 <4, the character of p;.

1|z |y|z|2?
voll 1| 1[1]1]1
x1|3/-1|0|a|p
with | o = 1+200$%7r = 1+2\/5,
4
g = 1+2cos?7r = %

25 acts on the set {1,2,3,4,5}. Hence there exists a representation p’ of dimension 5.
One can see from the dimensions that there is a decomposition p’ = pg + p3. p’ realizes
x as an even element of order 2. It is a product of transpositions and thus fixes one
element. So x'(z) =1 and x3(z) = 0. In a similar manner, one finds the values of x3 on

the other conjugacy classes and obtains

x3 4101

s permutes the six axes linking the opposite faces of the dodecahedron, so there is a
representation p” of dimension 6. It follows that p” = pg + ps. p''(x) fixes two diagonals,
implying x”(z) = 2 and x4(z) = 1. The other values of y4 are obtained in a similar

fashion. Eventually one finds
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yall5[1]-1]0]0

s is a normal subgroup of &5 so we can define the conjugation ¢ by an element in
G5\ 2A5. o is an automorphism of A5 and o permutes ¢4 and ¢5. Thus p; oo is an
irreducible representation of dimension 3 but is not p;. It has then to be ps.

The action of o permutes z and z?. Hence x2(2) = x1(z?) = B,
x2(2%) = x(2) = e
xe(z) = xa(z) = -1,
x2(y) = xi(y) = 0.

The character table of 25 is now entirely determined:

volltl1|1]1]1

X1

X2

X3

ot = w w
o
—_
|
[
|
[

X4

Because the morphism f is a double cover of SO3(R), the preimage of a conjugacy class
from s by the morphism f is one conjugacy class in I' with order doubled or two classes
of same order. 1 lifts to two classes: 1 and —1. c3, ¢4 and ¢5 each transform in two classes
and co turns into one class twice its original size. There are 60 new elements divided as
follows: 60 = 1+15+20+12+12. There are 4 additional classes hence 60 = 22 +22 +42 + 62,
Therefore I' has 9 conjugacy classes.

4 2 .3 2 .4 4
- - - -1
I' is generated by ¢; = % T and g = —= T , with n =
n”?-n* n-n' 1-n 7*-n
297

e 5 , and its conjugacy classes are:
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Number of
1 1 30 20 20 12 12 12 12

elements

Order of
1 2 4 6 3 10 5 5 10

the elements

Name of
Ch|Cy| Cf Cy Cs Cs Cy Cy Cy

the class
Representative | 1 | -1 | gigs | 393 | —9195 | 9192 | (9192)* | (9192)* | (9192)°

Representative

in As

We remind the reader that a rotation of angle 6 around the axis O, can be written

in SUQ

Let po, p1, p2, p3, p4 denote the lifts of the characters of 25 and pg the representation
of I' as a subgroup of SUsy. The corresponding characters are noted ;.

1. One finds ¢g = [2,-2,0,1,-1,, -, =3, 3] and (¢s,1g) = 1 implying that g is
irreducible.

2. Onme can check that g1y = [6,-6,0,0,0,a8,—af,—af,af] thus ps ® ps is irre-
ducible of dimension 6. Let us call it pg.

3. A computation gives g1 = [6,-6,0,0,0,a2,—a?, -2, 3%]. The only possible de-
compositions are then pg ® p1 = ps + p7r or pg ® p1 = p7 + ps. If it is p7 + ps, then
Y7 =[4,-4,0,-1,1,1,-1,-1,1] which is irreducible. Hence we found p7.

4. 15 is obtained using the orthogonality of the columns of the character table.

The character table of T is:
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1| -1 gig3 | 9193 | —9193 | 9192 | (9192)* | (9192)* | (9192)°
doll1] 1] 1 1 1 1 1 1 1
1313 -1 1] 0 0 B B
Yo || 3] 3 | -1 0 0 « «
w3l 4] 4] 0 1 1 -1 -1 -1 -1
Yy 5] 1 | -1 | -1 0 0 0
Y5 || 2] -2 0 1 -1 15} -6 -« «
ve || 6] 6] 0 0 0 -1 1 1 -1
Y|4 -4] 0 | -1 1 1 -1 -1 1
Yg || 2] -2 O 1 -1 a - - 15}

Let us look at the tensor products pg ® p;, 0 <7 < 8.

e p3s ® po = pg because pg is trivial.

e 1311 = [6,-6,0,0,0,02, —a? -2, 3%]. By inversing the character table, we get

ps ® p1 = p7 + pg. With the same method it follows that | pg ® p2 = ps,

The corresponding diagram is

P8 ® p3 = P5 + Pe,

P8 ® pa = pe + p7,

P8 ® p5 = p3,

P8 ® pg = p2 + p3 + pa,
ps ® p7 = p1+ P4,

P8 ® ps = po + p1.

02

which is indeed the Dynkin diagram of Es.
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1.5.2. Inhomogeneous correspondence by restriction
1.5.2.1. Statement of the correspondence

In Subsection [1.4.2.1| we associated some finite subgroups I' < IV of SU to inhomoge-
neous Dynkin diagrams in the following way:

Inhomogeneous A(T,T') | Homogeneous A(T') | T r’ Q
By, r>2 Aoy Co | D |Z22
Cp, 723 Dy Doy | Doy | 2/22
Fy Eg T @) Z/2Z

Go Dy Dy o S3

(In the case of Dy the group O can be replaced with the smaller group 7 and what
follows remains valid. The difference will be Q =Z/3Z)

This association can be explained using group-theoretic arguments. The next theorem
is proved in [Slo80] Appendix III.

Theorem 1.5.1. Let I' <T" be a pair of finite subgroups of SUy as in the previous table.
By restriction, the irreducible representations of I'' may be regarded as representations
of I'. Let Si,...,S, denote the equivalence classes (with respect to I') of these represen-
tations and let N be the natural representation of I' as a subgroup of SUs, which can
be seen as the restriction of the natural representation of I''. It follows that the tensor
product N ® S; decomposes as:

.
N®S¢=@bﬁ5’j, 1<i<r,
J=1

which defines an r xr matriz B = (b;j)1<i j<r. One verifies explicitly that the matrix
C=2I-B

is the Cartan matriz of the extended Dynkin diagram AV(I',T") of the dual of A(T,I").
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The diagrams obtained in this correspondence are given in the table below:

r r’
CQT Dr
Dy D2(T—1)
T o
0 1 2
Do T Go L o

In the following subsection the case A(T',I") = G5 will be explicitly computed.

1.5.2.2. Computations for A(T',T") = G,

Set I'=Dy, I' =T, Q=2/3Z and A(T,T") = Go.

i 0 0 i et et
I'=<a,b> with a = , b= and IV =< T, ¢ > with ¢ = == and
. . V2
0 —2 i 0 —-€ €

e=exp(%).

The irreducible characters of T are
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xoffl]1 1|1} 1 | 1 |1

x1 1] 1|1 ]|w]| w w? | w

X2111w2www

x32(-2]10 | 1] -1] -1 1

xall2]-2]10|w| -w|-w?|w

x5 112]-2]0 |w?|-w?| -w| w

xe |33 |-1]0| 0 | 0 | O

with w = exp(%). For any 0 < < 6, one denotes by X; the restriction of x; to Dsy. It
leads to

Clp,(1) | Clp,(-1) | Clp,(b)
X0 1 1 1
X1 1 1 1
X2 1 1 1
T P ) 0
o P ) 0
s P ) 0
o 3 3 -1

Set | 1o =%o0=7X1=X2 - The 1; are the equivalence classes of the restrictions of the
Y1=X3=X4=X5

Y2 = X
irreducible characters of T to Dy. The restricted character table is thus
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Clp,(1) | Clp,(-1) | Clp,(b)

o 1 1 1
" 2 9 0
b 3 3 1

Let tnat be the restriction to Do of xpnat, the character of the representation of T as
a subgroup of SUy. The character table of ,¢ is

ClDz (1) ClDz (_1) CZDQ (b)

Ynat 2 -2 0

Therefore | a¢100
wnatq/)l = [4747 0]
¢nat¢2 = [6, _6a O]

[2,-2,0] . By inversing the character table one obtains

YnatPo = 1
wnatwl = ¢0 + 1/}2 :
wnatw2 = 3¢1

The matrix C' = 2] — B introduced in Subsection [1.5.2.1|is then C = | -1 2 -3},

and the corresponding diagram is

0 1 2

*—0——0

It is an extended Dynkin diagram of type Gg = @g = AV(I,T).
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If we take IV = O and ) = &3, the restriction of the irreducible characters of IV to Dy
are

Clp,(1) | Clp,(-1) | Clp,(b)
Yo 1 1 1
X1 1 1 1
Vo 2 -2 0
T 2 =) 0
o 2 2 2
X5 3 3 -1
T 3 3 -1
X7 4 —4 0

Set | 19 =%Xo - The 1); are the equivalence classes of the restrictions of the irreducible
Y1 =Xz

Y2 = X5
characters of @ to Dy. The restricted character table is then

ClDz (1) CZD2 (_1) CZD2 (b)

Yo 1 1 1
o 2 -2 0
¥s 3 3 -1

It is the exact same table as in the case I'' = 7. As the restriction of ynat of O to Do
is the same as the restriction of xpat OL T to D,, one obtains the same result as before:
the matrix C' is the Cartan matrix of AV(T',T").
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1.5.3. Inhomogeneous correspondence by induction
1.5.3.1. Statement of the correspondence

In the Subsection a connection between pairs I' <« T of finite subgroups SUs
and inhomogeneous Dynkin diagrams using a restriction approach on the representations
of IV was presented. A similar argument can be made using induction. The following
result appears in [Slo80] Appendix III.

Theorem 1.5.2. Let T' < IV be a pair of finite subgroups of SUy as in the table in
Subsection[1.5.2.1 By induction, one can study the I'-equivalence classes Q1,...,Q; of
the representations of I induced from the irreducible representations of I'. Then | = r,
r being the number of I'-equivalence classes of the restrictions to I' of the irreducible
representations of I''. Furthermore, with a convenient ordering of the Q;, there is the
following decomposition formula:

N®Qi=db;Q; 1<i<r,
j=1

with N the natural representation of ' as a subgroup of SUy. This decomposition leads
to an r xr matriz 'B = (bji)1<ij<r, which is the transpose of the matriz found in Subsec-

tion|1.5.2.1. Therefore the matriz
C=2I-'B,

is the Cartan matriz of (AV(D,I"))Y, the dual of the type obtained with the restriction
argument.

The diagrams obtained in this correspondence are given in the table below:
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Type of ~
T I (AV(T,T"))"
A(F,F')
0 1 2 3 r-2 r-1 r
Cor D, B, .:@. @ @ .—.ﬁ}:.
0
2 3 r-2 r-1 r
D, Dg(r_l) Cr | @ o— .:@.
1
0 1 2 3 4
T O Fy ® @ o—0—©
0 1 2
Do T Gy @ L @

In the following subsection the case A(T',T") = Gy will be explicitly computed.

1.5.3.2. Computations for type A(T',T") = G,

Set I' =Dy, I" = T, @ = Z/3Z and A(I,T") = Ga.

i 0 0 @ 1 el et
I =<r,b,c>and I' =< r,s > with r = , b= ,C= —= with
0 — ] €

. 0
e=exp(]) and s = (

). The natural representation of 7 as a subgroup of SUjy is
-1 0

denoted N.

Set

1;); the irreducible characters of T,
X;); the irreducible characters of Do,
(G

j)l the restrictions of the (1);); to Dy,

(
(
(
(X; ); the inductions of the (x;); to T,

and (.,.)7 (respectively (.,.)p,) the scalar product of characters on T (respectively Da).
Frobenius reciprocity formula (cf. [Ser78|) states
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X3 = 2 Wi XY = 2 (W5, X)) ps Y

The computations of the (ﬂ’j)z will lead us to the decomposition in irreducible compo-
nents of the induced representations.

The irreducible characters of T are given by

Clr(1) | Clr(-1) | Clr(b) | Clr(c) | Clr(c?) | Clr(=¢) | Cly(=¢?)
Yo 1 1 1 1 1 1 1
|| 1 1 1 j 7 j 7
Go || 1 1 1 72 j 7 j
Vs 2 =) 0 1 -1 -1 1
o 2 -2 0 j -5 -J j?
vs || 2 -2 0 52 ~j -5 j
P 3 3 -1 0 0 0 0

with j = exp(%).

It is known that Dy is the quaternion group and is generated by I, J, K with I =r,J =
s, K =rs. The conjugacy classes of Dy are {1},{-1},{I,-I},{J,-J},{K,-K}.

If one looks at the restrictions of the conjugacy classes of T to D5, then the classes
Clr(c), Clyr(c?), Cly(=c) and Cly(~c?) disappear and Cly(b) splits into {I, -1}, {J,-J},
{K,-K}. The character table of the v} is then

Clp, (1) | Clp,(-1) | Clp,(I) | Clp,(J) | Clp,(K)
wé=¢1=¢% 1 1 1 ! L
Yi=vi=vs| 2 -2 0 0 ’
Vg 3 3 -1 -1 -1

The character table of Ds is
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Clp,(1) | Clp,(-1) | Clp,(I) | Clp,(J) | Clp,(K)
X0 1 1 1 1 1
1 1 1 1 1 1
X2 1 1 -1 -1 1
X3 1 1 -1 1 -1
X4 2 -2 0 0 0

The scalar product on the character space of Dy is defined by
(e, X)Dy = ﬁ Y iep, P(t)x(t) and the values of (@Z)Z.l, X;j)p, are put in the following table:

Yo =i =5 | Ui =vi=u4 | U
X0 1 0 0
X1 0 0 1
X2 0 0 1
X3 0 0 1
X4 0 1 0

Therefore Xp & o + 11 + g, SO Xo2Yy+Y; +Y,,  where the Y are the irre-
X} = xb = X4 = ¥, X1 =Xo=X32Ys,

X£§¢3+¢4+1/)5’ Xi2Y3+Yy+Ys,

ducible representations of 7 and the X; are the irreducible representations of Ds.
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One can verify that Y3 = N and the character table of T gives [ Yy @ N = V3,
Yi® N 2Yy,
Yo® N 2Ys,
Y50 N 2Yy o Vs,
YINz2Y, Y,

Ys; Nz2Yo,d Y,

Y NzYs0Y,@Y5,

which implies [ Xo@ N = (Yp+Yi+Y2)®N = Ys+Ys+Ys ~ Xy,
X @N = Yo ® N r Y3+Yi+Ys o= Xy
Xo® N = Ys® N ¥ Y3+Yi+Ys = Xy
X390 N = Ys @ N > Ys+Y,+Y5 = Xy,
Xi9N = (Y3+Y,+Y5)®@N = Yy+Y +Y5+3Y = X;+3X,.

The non-equivalent induced representations are Xg, X; and X4. We reorder the indices
via the permutation 1 - 2, 4 - 1, 0 - 0. The system then becomes

XQ@N’EXl,
X\1®N;XO+3X\2,

XQ@NEXL

2 -1 0
The matrix introduced in Subsection|(1.5.3.1jisthen C'=| -1 2 -1 | whose diagram

0 -3 2

is

It is the extended Dynkin diagram of type (G2)¥ = (ég)v = (AV(T,T"))V.
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2. Symplectic geometry and moment map

2.1. Reminders on symplectic geometry and group actions

Let X be a smooth manifold.

Definition 2.1.1. X is a symplectic manifold if it is equipped with a symplectic form
w, i.e. a non-degenerate, closed differential 2-form. This translates as:

e VreX, w,: T, X xT, X — C is skew-symmetric and bilinear,

e dw =0,

o Vx e X, if there exists ue Ty X such that w;(u,v) =0 for all veT, X, then u =0.
The symplectic manifold will be referred to as (X,w).

Remark 2.1.2. The non-degeneracy of the symplectic form implies that any symplectic
manifold is even-dimensional.

Let (X,w) be a symplectic manifold and let f:Y — X be a morphism of manifolds.
The pullback of w by f, noted f*w, is the 2-form on Y defined by

(frw)y(v1,v2) = wp)(dyf(v1),dyf(v2)), VYyeY,Vui,v2eT,Y.

Example 2.1.3. Equip R* with a coordinate system (x1,...,Tn,Y1,...,Yn). The form
wr2n defined by

n
WR2n = Z dx; A dy;
i=1

is a symplectic form and thus R*" is a symplectic variety. The reader is reminded that
the dx;, dy;’s form the dual base of (%, %)1519, base of the tangent space. One can

also see R*™ as C"™ and thus as a complex variety. An elementary computation shows
that the form becomes
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2.1. Reminders on symplectic geometry and group actions

s n
)
wen = — E dz; A dzj.

A theorem due to G. Darboux states that any symplectic form is locally of the form of
CUR2n.

It was stated in Remark that a symplectic manifold is necessary even-dimensional.
However the converse is not true, i.e. any variety of even dimension does not necessarily
have a symplectic structure. An example is given below.

Example 2.1.4. We are going to show that the sphere S*™ is not a symplectic manifold
if n>1. Let (X,w) be a compact symplectic variety without boundary and of dimension
2n. The 2-form w is closed by definition and it defines a non-zero element in HgR(X),
the second de Rahm cohomology group of X. Indeed, assume that there exists a 1-form
a on X such that w =da. Then

fw”:fd(oz/\wn_l):f aAw™ =0
X X 0X

using Stokes’ theorem and the fact that X = @. But this is impossible because w™ is a
volume form and therefore not zero (it follows from the non-degeneracy of w). Hence w
is not exact and its class [w] is not zero in Hap(X). This implies that H2p(X) # {0}.
However a computation of the de Rahm cohomology of the sphere gives HgR(SQ”) ={0}
if n> 1. Therefore, if n > 1, the sphere S*™ cannot be a symplectic manifold.

Definition 2.1.5. Let (X,w) be a symplectic variety and G a Lie group. An action of
G on X is defined by a smooth map ® : G x X - X such that ®(g.h,z) = ®(g,®(h,))
and ®(e,x) = x for g,h € G,z € X and e the unit in G. Let ®4(x) := ®(g,x). The action
of G is symplectic if w is invariant by the pullback of the action, i.e.

w(dPy(.),dPy(.)) =w(.,.), VgeG.

Definition 2.1.6. A vector field on X is a section of the tangent bundle TX — X. If
a Lie group G acts on X, any § € g (the Lie algebra of G) induces a vector field Ve on
X called infinitesimal action defined by

d
Ve@)= 2| exp(t)a

where exp : g > G is the exponential map of G defined using one-parameter subgroups of
G (cf. [Helga01)).

117



2. Symplectic geometry and moment map

Remarks 2.1.7. 1. The exponential map exp : g > G corresponds to the classical
matrix exponential when G is a linear algebraic group.

2. When X is a Lie group acting on itself by left multiplication, this definition of a
vector field on X coincides with the one given in Section [I.1.5

The Adjoint action Ad of G on g is defined as follows (as in Section [1.1.5):

d .
Ady(§) = —| g.exp(t8).g”',  forfeggeC.

For g € G, the coAdjoint action Ad} : g* — g* is given by
CAQS(1),€>=< L,Ady1 () >, Vieg".

where < .,. > is the dual pairing.

All necessary elements have been given in order to define a crucial notion for later
reasonings: the moment map.

Definition 2.1.8. Let (X,w) be a symplectic variety with a symplectic G-action. A
moment map is a morphism p: X - g* such that

(i) dpg = w(V,.),
(i) p(g.x)=Ady(p(x)), Ve X,9€G (equivariance of ),
where pe: X - C for all £ eg.

r o~ <p(x),€>

One notices that g = i¢ o p with (1) :=< [,£ > for all [ € g*, and that i¢ is lin-
ear. Therefore dype = dy(i¢ o) = ig o dyp. Hence for any v, € T, X, one obtains

do e (Vz) i¢ odyp1(vy),  according to the (i) condition.

<dyp(vz),§ >,
we(Ve(2), vz),

Example 2.1.9. Let M be the vector space C* equipped with the Hermitian product H
given by

H(Za C) = Z Zia}
i=1
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2.1. Reminders on symplectic geometry and group actions

for any z,{ € C". Set w=Im(H). Then w is a symplectic form on C". By identifying
every tangent space of M to C", one identifies w with a symplectic form on M. A system
of real coordinates (x;,y;)1<i<n on M is given by

2 = Tp + 1Yk,

n

and the symplectic form can be written w = Z dxi A dyy,.
k=1
Let K = U,(C) act on M naturally. By definition, K preserves H which means

H(u.vi,u.vy) = H(vi,v2) for any vi,ve € M,u € K. The Lie algebra of K will be
referred to as €. One computes

t=u,(C)={XeM,(C)|X=-X)}.

Let us verify that the following map

w: M -
m o~ p(m)
with px(m) =< u(m), X >= —%H(X.m,m), VX et is a moment map.
The map 1is equivariant because K preserves H: set g€ K,m e M and X et. Then
<u(gm),X >=-5H(X.g.m,g.m) = —%H(g_ng.m,m) =<p(m),Ad;1 X >

=< Adgpu(m), X > and therefore pu(g.m) = Adypu(m).
Set X et,meM and £ € T,, M = C". By definition,

din(px)(€) = ~5(H(X&m) + H(Xm,£)).

Furthermore it is known that if X € ¢, then its adjoint for H is X = -X. Hence

H(X§7m) _H(&Xm)7

—-H(Xm,§).

It follows that

~L(-H(Xm, &) + H(Xm,£))

_%(2iw(Xma g))a
w(Xm,§).
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2. Symplectic geometry and moment map

Therefore dy,(pux ) (&) = w(Xm, &), which is the condition (i) in the definition of a mo-
ment map.

The next example gives a hindsight on why a moment map is thus called.
Example 2.1.10. The tangent bundle T*R™ of R™ is identified with R™ x R™ through the

inner product. The group SO, (R) = {A e M,(R) | ‘A= A"} acts on T*R by

A.(p,q) = (Ap, Aq) for any (p,q) € R" x R™.

This action preserves the symplectic form w = Y- dp; Adg;. The Lie algebra of SO, (R)
is 50,(R) = {A e M,(R) | tA=-A}. A moment map

w:T*R"™ - so;,

for the action of SO, (R) on T*R™ is then given by

pa(p,q) =< u(p,q), A>=(p, Aq)

with (.,.) the inner product in R™, A € so,, and (p,q) € T*R".
When n = 3 there is a bijective correspondence

so3 — R3

A = «
given by

Av=axv

for v e R3 (x is the cross product). This correspondence identifies pa with the angular
momentum about the axis directed by c.

The next lemma gives a condition on the action of a group €2 on a symplectic manifold
(M,w) equipped with an action of a Lie group G so that the associated moment map
w:M - g* is Q-equivariant.
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Lemma 2.1.11. Let p: M — g* be a moment map on a symplectic manifold (M,w)
with an action of a semisimple Lie group G. Assume a group €2 acts on M by symplecto-
morphisms and that € is a subgroup of the outer automorphism group of G. Furthermore
assume that the action of G lifts to an action of G x Q. Then u is Q-equivariant.

Proof. The action of 2 on G induces an action on the Lie algebra g as well as on its
dual g*. If we, let 0 : M - M and 0, : g* — g* denote the action of w on M and
g*. The g* x g pairing is denoted by (.,.). By definition of the moment map, it is known
that for any x €e M,ve T, M and € € g,

(dzp(v),€) = we(Ve(),v).

Hence

<do'w(x)lu'(d0w(v))7 §> Wo o (z) (%(O’w(-%')), dO’w(U)),

wz((dow) Ve (0m(x)),v) because o preserves the symplectic form.

But (dow) ™ Ve(ow(w) = (dow) ™ &, exp(t)-(0w(2)) = 0w exp(t€) (0w (),
= 4]y exp(to1(6)).(2),

= fow—l (5) (SC)
So

<daw(x)u(dgw(v))7§> = wx(Vawfl(g)(x),v),
(dwu(v)vaw’l (5))7
(0w 0 dpu(v),&) by the definition of the action on the dual space.

Thus d,_ (y)i10dom = Omodyp. 1t follows that u(w.x) = @.u(r) + frm, with f an element
of g* (we replaced o4 by w. in order to lighten the notation). Let us prove that f = 0.
For any g € G, we have
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2. Symplectic geometry and moment map

fo = w@.(g.2)) -@.(u(g.7)),
= w(w.(9.¢)) — w.(g.u(x)) because p is G-equivariant,
= p((w.g).(w.x)) —w.(g.u(x)) because as the action lifts to the semi-direct product
one finds that for any z € M and (g,w) € GxQ, w.(9.2) = (w.g).(w.x),
= (w.9).u(w.z) - w.(9.u(x)) because u is G-equivariant,
= (@g)(w.p(z) + f=) - @.(9.1(2)),
= (@wg)(w.pu(2)) + (@.9) - fo - @.(9.u(2)),
= @.(g.u(2)) + (@.9).fw — @.(9-1(x)),
= (@.9)-f=-

Hence for any g € G, we have g.f, = fr, implying that f is a G-invariant element of g*.
But as G is semisimple, Theorems [1.1.21) [1.1.24/and [1.3.8/state that the ring S(g*)“ is
generated by r = rank(G) homogeneous polynomials fi, ..., f, such that the exponents
mi,...,m, of g verify m; = degf; — 1 for all . But as m; > 1 for all i (cf. [Hum90]
Section 3.16, Lemma), it follows that the non-constant G-invariant elements of S(g*)
are of degree at least 2. As f is of degree 1, f =0. We thus found pu(w.z) = w.u(x)
for any z € M, w € (), and so p is Q-equivariant. 0

2.2. Symplectic reduction

In this section we study the Marsden-Weinstein quotient, which is the quotient of a
symplectic manifold by a symplectic action.

Let (X,w) be a symplectic manifold and G a compact Lie group acting symplectically
on X. Let p: X — g* be a moment map for this action. If [ € g*, let GG; be the isotropy
subgroup of G relative to [ for the Ad*-action defined by

Gi={geG | Ad:(l) =1}.

The group G acts on (1) because if 2 € u~1(I) and g € G; then u(g.z) = Adg(u(z)) =
Adg (1) = 1. The orbit space

Xy = p ()]G

is called symplectic reduction. In what follows it will be shown that, under suitable
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2.2. Symplectic reduction

assumptions, X; is in fact a symplectic manifold. Before we can state this result, some
notions remain to be defined.

Let f: X - Y be a morphism between two manifolds X and Y. A point y € Y is said
to be a regular value of f if for any x € f~(y), the derivative d, f : T, X — Ti@)Y is
surjective.

An action of a Lie group G on X is free if for any x € X, its stabilizer G, = {g€ G | g.x =

x} is trivial. Furthermore, the action of G is proper if the map GxX - X xX

(g,z) ~ (g.w,2)
is proper, i.e. the preimage of any compact is compact. One can show that the action
of a compact group is always proper (cf. [Bou7l] Chapter III, §4, Proposition 2).

Lemma 2.2.1. Let M be a smooth manifold and G a Lie group acting smoothly, freely
and properly on M. Then the orbit space M |G has a natural structure of manifold such
that the quotient map w: M — M |G is smooth. Furthermore, for any m € M, there is
an isomorphism

Tw(m)(M/G) = (TmM)/Tm(Gm)

Proof. The first assertion comes from the quotient manifold theorem which can be
found in [Leel3d] Theorem 21.10. According to the quotient manifold theorem, 7 is
a smooth submersion and thus, for any m € M, dpm : TpM — Ty (M/G) is sur-
jective. One can prove ([Leel3] Proposition 5.38) that Ker d,,m = T,,(G.m). It follows
from the isomorphism theorem that (7, M)/T,,(G.m) = (T, M)/(Ker d,,7) 2 Im d,,,7 =
Trm)(M]G). O

The next theorem is proved in [MaWein74].

Theorem 2.2.2. (Marsden-Weinstein). Let (X,w) be a symplectic manifold, G a
Lie group acting symplectically on X and pn: X — g* a moment map. Assume thatl € g*
is a regqular value of p and that the isotropy group G; under the Ad* action on g* acts
freely and properly on = *(1). Then the following assertions are verified:

(i) The symplectic reduction X; = =1 (1)/Gy is a smooth manifold of dimension dim X -
dim G -dim Gj.
%, red _

(ii) There exists a unique symplectic form w™ on X; such that W™ = ijw where
ip: (1) = X s the inclusion and m : p=1(1) - =1 (1)/Gy is the quotient map.

The proof of this theorem will require the following lemma:

Lemma 2.2.3. Let z € p~'(1). Then
(i) To(Gr.x) = To(G.x) N T (u (1)), and
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(ii) Tp(p~t(1)) is the w-orthogonal complement of Tp(G.x).

Proof. (i) Viewing the tangent space to Y in y as T,Y = {7/(0) | v:]-¢,e[~> Y is C' and
~7(0) =y}, one sees

T:(G.x) = {Ve(x) | £ e g},
To(Grow) = {Ve(z) | € e ai},

where g; is the Lie algebra of (G;. Hence the desired equality is equivalent to

Ve(z) e T(p' (1) <= €.

It is known that the moment map y is Ad*-equivariant so dyu(Ve(z)) = V¢ (u(x)) where
Vg* is the vector field on g* induced by £. Indeed, let ¢, : M — M denote the action
of g € G on M. Then the equivariance of y implies o @eyp(1¢) = Ad;xp(tg) o for any
t € R. By differentiating with respect to t at ¢ = 0, one obtains the desired equality (cf.
[AbMar78| Proposition 4.1.28). Hence

Ve(w) € Tp(n™ (1)) = Ker dyp == V¢ (1) = 0.

Then V(1) =0 <V (l),z>=0forall z € X,

< d| AL (D), >=0forall € X,

%’tzo <, Adeypigyr >=0 for all z € X,

<l,[§x]>=0 for all z € X,

2

ad¢ (1) = 0 because <.,.> is non-degenerate,

= feg.
(ii) By definition it is known that

wac(vﬁ(x)7vx) =< dw“(”m)ag >
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Therefore v, € T, (p1(1)) = Ker (dgp) dyp(vg) =0,

<~
= <dyu(vy),£>=0, V€eg,
— we(Ve(x),v,) =0, V€eg,

— v, e (T,(G.x))",
according to the equality verified by T, (G.z) at the beginning of this proof. O

Proof. (Marsden-Weinstein Theorem)

(i) The preimage theorem (cf. [Leel3] Corollary 5.14) implies that x~1(I) is a smooth
manifold. As the action of G; is free and proper, Lemma [2.2.1] states that X; is a
smooth manifold. Furthermore, as [ € g* is regular, the map d,u is surjective for any
z € 1~ (1) hence dim p~*(1) = dim Ker(dyp) = dim T, X —dim Im(d,p) = dim X —dim g =
dim X —dim G. Finally dim X; = dim p(I) - dim G; = dim X - dim G - dim G;.

(ii) For v, € T (11 (1)) let [v,] denote the equivalence class of v, in T, (=1 (1)) /T (G).x) =
T,.(u~1(1)/G;). The relation we aim to prove is

mrwed = ifw <= wed([v], [w]) = w(v,w), Yv,weT(u (1))

Because of Lemma (i), w'd is a well defined 2-form. Additionally, 7; is a surjective
submersion thus admits locally a smooth section o; at every point of its image. There-
fore, by definition of w9, one verifies that w9 4 is a composition of
smooth maps and is thus smooth.

Let us show that w™? is closed. By definition w is symplectic and so d(7;jw™?) = d(ifw) =
if (dw) = 0. Hence 7/ (dw™?) = 0. As m is a submersion, dm; is surjective and one con-
cludes that dw'™ = 0.

For the non-degeneracy of w9, assume that there exists v € T,(u~'(1)) such that
wd([v],[w]) = 0 for any w € Tp(px~'(1)). It implies that w(v,w) = 0 for any w €
T.(p (1)) and thus v € (Tp ("1 (1)))* = T,(G.z) according to Lemma So [v] =0
and w™? is non-degenerate. O

= o;w. Hence w'®

Example 2.2.4. Let us rework the example of C™ equipped with a Hermitian form H.
The group U, (C) acts naturally on C™ and it has been seen before that there is a moment
map 1 :C" - u, (C)* given by

MX(U) = _%H(va U):

forveC™ and X €u,(C).

Consider the circle S* = {z1d,, € U,(C) | z € C and |z| = 1}. As it is a subgroup of U,(C),
it can be shown that its action on C" leads to a moment map which is the compose of
the moment map p with the transpose of the inclusion Lie(S') = 2i7R < u,, (C). Define
1* € Lie(SY)* such that
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<17, 2imr >=1.

It follows that

p (1) = {veC" | pain(v) =1},
{veC" | mH(v,v) =1},

{veC [Pl =2}

Hence p~(1%) is a sphere of radius \/g in C", and is thus homeomorphic to S?" 1.
If XA e S fizes v € S 1 it means that \ = €*™F with k € Z. One deduces that the
stabilizer of v is discrete (in fact, finite) and so 1* is a regular value of . One applies
Theorem and obtains that p~1(1*)/St = §?=1/St = P(C") is a symplectic manifold.
The symplectic form obtained by reduction on P(C™) is called the Fubini-Study form.
One notices that for n =2, the result is S3/S* = P, which is the Hopf fibration.

It was shown that a symplectic reduction has a symplectic structure. In the next
section, a particular symplectic reduction will be investigated, namely the one coming
from p~1(0).

2.3. Kempf-Ness theorem

The aim of this section is to present a result of G. Kempf and L. Ness that will prove
the existence of an isomorphism between a symplectic reduction and a GIT quotient.
Some preliminary definitions are necessary.

2.3.1. Kahler quotients

Definition 2.3.1. Let M be a smooth manifold.

1. The Lie bracket [X,Y] of two vector fields X and Y on M is defined as the
vector field on M such that

(X Y](f) = X(Y(f)) -Y(X([)) for any feC™(M).
2. An almost complex structure J on M is a linear map J : TM — TM on the
tangent bundle of M such that

J? = —id.

126



2.3. Kempf-Ness theorem

Locally, this implies that for any p € M there is an endomorphism J,, : T, M — T, M
which satisfies Jg =- id|TpM and which depends smoothly on pe M.

3. Assume M is endowed with an almost complex structure. A complex vector field
Z on M is holomorphic if J(Z)=1iZ.

4. Assume M is equipped with an almost complex structure J. The almost complex
structure is integrable if the Lie bracket of any two holomorphic vector fields is
again a holomorphic vector field.

We can now define the main object of this part.

Definition 2.3.2. A Kdhler manifold X is a symplectic manifold (X,w) with an
integrable almost complex structure J which is compatible with the complex structure in
the sense that the bilinear form w(.,J.) is symmetric and positive definite.

More information on Kéhler manifolds can be found in [McD99].

Let (X,w,J) be a compact Kédhler manifold and G a reductive complex Lie group
acting symplectically on X. Because G is reductive, it can be seen as the complexification
of Gr, a maximal compact subgroup. Assume that the action of Gg on X preserves the
symplectic form w (one can eventually replace w by -[GR w) and assume there exists
p: X - gg a moment map associated to the action of Ggr on X. gg is a vector space on
which a Ggr-invariant inner product and thus a norm ||.|| is fixed. Set

fr X - R

v o (@)

For any x € X, the path of steepest descent of f from x is the trajectory {x;, ¢t > 0} of
—grad(f) and let

¢(z) = {y € X | every neighbourhood of y € X contains points z; for ¢ arbitrarily large}

be the set of limit points of the trajectory starting from z. Let X,,;, denote the subspace
of X composed of the x € X such that ¢(z) N p1(0) # @. Xynin will play a preponderant
role in this section.

Lemma 2.3.3. G = Grexp(igr).

Proof. The proof is based on the polar decomposition of G and on the universal com-
plexification of Gr. The details can be found in [HiNel2]. O
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Remark 2.3.4. The universal complexification G¢ of a real Lie group GR is a pair
(nGr, Gc) of a complex Lie group G¢ and a morphism 7g, : Gr = Gc such that, for
every homomorphism « : GR - H to a complex Lie group H, there exists a unique
holomorphic homomorphism ac : G¢ - H with acong, = o. This is called the universal
property of Gc.

Lemma 2.3.5. If x € n~1(0) then G.xNp 1(0) = Ggr.z.

Proof. Let g € G such that g.x € 4~1(0). We aim to show that there exists k € Gg such
that g.x = k.x. Because u is Gr-equivariant, it follows that Gg acts on p~(0). By
Lemma one can assume that g = exp(iz) with z € ggr. Let h: R - R be defined by
h(t) =< p(exp(izt).x),z >. Then h(0) = h(1) = 0 because x and exp(iz).x = g.x both lie
in £~1(0). As h is a non-zero continuous function, it follows that there exists t € [0,1]
such that

0="n'(t) =<dyu(iV>(y)), 2 >= —wy(iV2(y), V2(v)) = =(Vz(y), V2(v))

where y = exp(izt).z and (.,.) := w(i.,.) is the metric induced by the Kéhler structure.
Hence V,(y) = 0 so that exp(izR) fixes y and also x. Therefore g.z = exp(iz).z = x € Grx
and the proof is complete. O

The proof of the following lemma can be found in [Kir84].

Lemma 2.3.6. Set x and y in 1 (0) such that x ¢ Gr.y. Then there exists disjoint
G-stable neighbourhoods of x and y in X.

The theorem we were aiming for can now be proved. It was first proved in [KemNes79].

Theorem 2.3.7. (Kempf-Ness). Let X be a compact Kahler manifold on which acts
G, the complexification of a maximal compact subgroup Gr. Assume that Gr preserves
the Kdahler form w (in this context, the symplectic form is taken to be the Kdhler form)
and write p + X — gg for a moment map associated to this action. Suppose that for
any x € u1(0), the stabiliser (GR)s is finite. Then Xpmin = G.u~1(0) and there is a
homeomorphism 11 (0)/GR —> Xpmin/G between both orbit spaces.

Proof. The minimal value that the function ||u||* can take is 0 implying that any point of
1~ 1(0) is in X,in. Furthermore, it is shown in [Kir84] that X, is G-stable. It follows
that G.u71(0) € Xpin. Conversely if & € X, then there exists y € p71(0) lying in the
closure of the path of steepest descent for ||u|[? from z. Following [Kir84], this path is
included in G.z, hence y € G.z. One deduces that G.y € G.z and so either y € G.z or
dim G.y < dim G.z. However (GRr), is supposed to be finite, and as G = Grexp(igr), it
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follows that dim Gy, = 0, because Gy, is the complexification of (Gr)y (cf. [Szeld] Lemma
5.24). Therefore dim G.y = dim G > dim G.z. One sees that y € G.z and so x € G..~1(0).
This proves the first assertion.

There is an injection p71(0) = X, as well as a surjection X, — Xomin/G. The com-
position of both these maps and the quotient of ~1(0) by G gives a map p~(0)/Gr —
Xmin/G. Additionally, according to the first assertion and the structure of G, the map
is surjective. Lemma [2.3.5|implies that this map is injective and Lemma that the
space Xin/G is Hausdorffl. Thus the map is a continuous bijection from a compact
space to a Hausdorff space and therefore it is a homeomorphism. ]

The preceding theorem establishes a link between Kéhler quotients and algebraic
quotients and will help to show the existence of a link between the symplectic reduction
1~ 1(0)/Gr and the GIT quotient X//G, assuming that X has an algebraic structure.
We first need to define the notion of stability for the manifold X.

Until the end of this subsection the Kéhler manifold X is a non-singular complex
projective variety in P and G is a connected reductive complex group acting linearly
on X, i.e. via a morphism G - GL;,41(C).

Definition 2.3.8. Let X C P" be a complex non-singular projective variety equipped
with a G-action (i.e. G acts on P" and stabilizes X ) and x a point in X. x is semi-
stable if there exists a polynomial function F € C[Xq, ..., X, ] on X that is homogeneous,
non-constant, G-invariant and such that F(x) # 0. x is stable if it is semi-stable, i.e.
there exists F' a homogeneous G-invariant polynomial such that F(z) # 0, all orbits of
G contained in

Xp:={yeX | F(y) #0}

are closed in Xp and G, is finite.
Let X® C X*° denote respectively the sets of stable and semi-stable elements of X .

The following theorem can be found in various references, like [Kir84] or [Mum94].

Theorem 2.3.9. Set X C P" a complex non-singular projective variety and G a complex
reductive algebraic group acting on X wvia a morphism ¢ : G - GL,.1(C). Assume that
G has a maximal compact subgroup Gr such that ¢(Gr) C U,11(C). Then the set X*°
coincides with the set X for the function ||u||* where p: X — g is a moment map
for the action of Gr and || . || is the norm associated to any Gr-invariant inner product

on gr.

Let us place ourselves in the context of the previous theorem. The inclusion C[X]¢ —
C[X] induces a rational map X — X//G = Proj C[X]“. Its domain of definition is X**
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and it gives a G-invariant surjective morphism ¢ : X** - X//G.

Assume now that G, is finite for any x € X semi-stable. Then if z € X*° there exists
F € C[X]% such that F(z) # 0. As all elements in Xp are semi-stable, the stabilizer
of each one of these elements is finite and so its orbit is of same dimension as G. This
implies that all orbits in Xz are closed. Indeed, it is known that G.z \ G.z is a union of
orbits of dimension strictly smaller that dim G.x (cf. Proposition . As all orbits
have the same dimension, G.z \ G.z = & and G.z is closed. Therefore z is stable and
one finds X** = X*. However according to [Mum94] Theorem 1.10, every fiber of ¢ that
meets X° = X*®° is a unique G-orbit. It follows that there exists a continuous bijection
Y : X**|G - X//G. Because X*°/G and X//G are compact and Hausdorff, one deduces
that ¢ is a homeomorphism. By means of Theorem and Theorem one obtains
the following proposition:

Proposition 2.3.10. With the hypotheses of the last paragraph, there exists a homeo-
morphism

p(0)/Gr — X//G

between the symplectic reduction and the GIT quotient.

Remark 2.3.11. A theorem due to W.L. Chow states that an analytic subspace of
complex projective space that is closed (in the ordinary topological sense) is an algebraic
subvariety. Thus if we suppose our manifold X to be analytic, non-singular and closed
in some P™, then it is algebraic and non-singular and Proposition remains valid.

2.3.2. Hyperkahler quotients

The last proposition of the previous subsection can be extended to another class of
manifold, namely hyperkédhler manifolds.

Definition 2.3.12. Let M be a Riemanniann manifold with a metric g. M is a hyper-
kahler manifold if M is equipped with three complex structures I,J, K such that

o g is Kdhler for I,J and K.
e I,J and K verify the quaternionic relations, i.e. I*> = J? = K? = IJK = -1.

More information on hyperkéhler manifolds can be found in [Dan99].
Let M be a simply-connected hyperkédhler manifold on which a compact Lie group

GR acts freely. Assume that the action of Gr preserves the symplectic forms induced
be the complex structures I,J and K. Because M is simply-connected, there exist
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three moment maps pur, py, uix : M — gg. One can regroup these maps to construct a
hyperkahler moment map

pH: M - ggreHg
x e pur(x)el+pj(z)®J+pg(xr)® K.
with Hg = RI + RJ + RK the set of pure imaginaries.

Proposition 2.3.13. The quotient ' (0)/GRr is a hyperkihler manifold.

This proposition is proved in [Hi87]. It can also be extended to a whole family of
quotients. Let Z =3(gr)* denote the dual of the center of gg.

Theorem 2.3.14. Assume Gr acts freely on m € g (¢), with ¢ = (¢1,¢s,Ck) € Z ® H.
Then the quotient uit(¢)/GRr is non-singular in w(m) and is a hyperkdihler manifold of
dimension dim M - 4dim Gr, with 7 : ugt(¢) = pit (¢)/GRr the canonical projection.

Proof. cf. [Hi87| Sections 3.B, 3.C, 3.D. O

Assume that M has a complex vector space structure and let N be an affine algebraic
subvariety of M stable by the action of G, the complexification of Gr. The next theorem
links hyperkéahler quotient and GIT quotient.

Theorem 2.3.15. The composition ,u}l(O) NN - N with the affine algebraic quotient
w: N = N/|G induces a homeomorphism

(17" ()N N)/CGr = N//[G.
Proof. cf. [RS90] Theorem 7.7. O

One can also construct the following moment map:

puc: M - g*eC

v e ug(a) i ().
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with g the Lie algebra of the complexification G of Gr. It is shown in [Hi87] that uc is
a moment map for the action of G on M equipped with the form wc = wjy + iwg.

Corollary 2.3.16. By setting N = ,u(_:l(Z®C) in Theorem there is a homeomor-
phism

(17 (0) N1 (Z © C))/Gr = uz (2 © C)/)G.

Hyperkédhler manifolds and simple singularities are linked. Indeed, using Hilbert
schemes of points one can prove that the minimal resolutions of the simple singular-
ities have a hyperkahler structure (cf. [Naka99]). Furthermore, in the next chapter, a
construction by P.B. Kronheimer will be presented in which he constructs the semiuni-
versal deformations of the simple singularities with aid of hyperkéhler quotients.
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The first three sections of this chapter are largely based on the lecture notes by M.
Brion [Brion00] and the ones by W. Crawley-Boevey [Crawley].

3.1. Definitions and basic properties

Let k be an algebraically closed field.

Definition 3.1.1. A quiver is a quadruplet Q = (Qo,Q1,s,t) with Qo a set of vertices,
Q1 a set of arrows between the vertices and s,t: Q1 - Qo two maps that give to each
arrow a source and a target respectively. We shall denote the vertices by letters i,7j,. . ..
The arrow « such that s(a) =i and t(a) = j will be written « : i — j. There can be
several arrows between two vertices. An edge loop in the quiver Q) is an edge o with
s(a) = t(a). An oriented cycle in Q is a succession of edges aq,...,ax such that
t(ar) = s(ag),t(a2) = s(ag),...,t(ax) = s(a1). Fdges loops and oriented cycles are
allowed as well.

Example 3.1.2. The reader will find below an example of a quiver:

@5
A
6&
b
(03
o—0 = o—© U
\
@5

All through this chapter it will be assume that for a quiver @, the sets of vertices Qg
and edges Q1 are finite.

Definition 3.1.3. A representation V = ((V;)icq,, (fa)acq,) of a quiver Q is given by
a family of K-vector spaces V; indexed by the vertices i € Qo as well as a family of linear
maps fo : Vs(a) =~ Vi(a) indezed by the arrows a € Q1.
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Example 3.1.4. A representation of the quiver in Example[3.1.9 will have the form

Vi
x
fsa
fov
f Ja f
V1—C“>V2—’f—>V447—>V5 In
e
€
Ve

with the V;’s being vector spaces and the f.’s linear maps.

Definition 3.1.5. Let M = ((Vi)ieQo, (fa)ae,) and N = ((Wi)iecQo, (9a)acq,) be two
representations of a quiver Q. A morphism u: M — N between two quiver represen-
tations is a collection of maps u; : V; — W; indexed by i € Qo such that the following
diagram commutes:

Vs(a) o, Vi(a)
Us(ar) Ut(a)

W) 5> Wite)

for all a € Q1.

The composition of two morphisms between quiver representations is defined naturally
and thus the category Rep(Q) of the representations of the quiver () can be defined.
One can verify that this category is abelian.

Definition 3.1.6. The dimension vector of a representation M = ((V;)icQo: (fa)ac,)
of a quiver QQ is

dim M := (dim g Vi)icq,-

The next example shows that the classification of the representations of a given quiver
can be linked to the classification of other objects.
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Example 3.1.7. The quiver with r+1 vertices i1,..., i, J, equipped with arrows aq, . ..,
whose sources are the i1,...,1,. and whose target is j is commonly noted as S,.. Below is
an example of Sy (it is also known as Dy):

19
@
aq

i1 J i3
a3

[e%

7

Hence a representation M of S, is given by K-vector spaces Vi,...,V.,W whose di-
mensions are mi, ..., m,,n,respectively, and linear maps fo; : V; > W for 1 < j <.
By sending M to the images of the fo,’s, one obtains a bijection between the isomor-
phism classes of representations of dimension vector (my,...,my,n) and the orbits of
the general linear group GL,,(K) acting on r-uplets (Ex, ..., E.) of subspaces of K" such
that dim E; < m; for any i, the action being g.(En,...,E;) = (9.F1,...,9.E,) for any
g € GL,(K). Therefore there is an equivalence between the classification of the represen-
tations of the quiver S, for a given dimension vector and the classification of r-uplets of
subspaces of prescribed dimensions of a given K-vector space.

Definition 3.1.8. A quiver Q is of finite orbit type if Q has only finitely many
isomorphism classes of representations of any prescribed dimension vector.

Example 3.1.9. One may check that the quivers Sy,S2 and Ss of Example are of
finite orbit type, but Sy = Dy is not.

The next important theorem is due to P. Gabriel who proved it in [GabT72].

Theorem 3.1.10. (Gabriel). A quiver is of finite orbit type if and only if every
connected component of its underlying graph is a simply-laced Dynkin diagram, i.e. it is
one of the following:
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A, (n>1)
D, (n>4)
Es
P
1 9 4 5 6 7
@ @ @ @
Er7
2
1 3 4 5 6 7 8
® @ @ @ J
Eg

3.2. The path algebra

Let k be an algebraically closed field and @ = (Qo, Q1, s,t) a quiver. For a represen-
tation ((V;)icQos (fa)ae,) of @, one defines the k-vector space

V=PV

i€Qo
as well as two families of linear maps:
e The projections
fi: v - % , 1€Qo.

(v1y.e ey 05 .cy0p) > (0,...,0,0;,0,...,0)

e The maps
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3.2. The path algebra

fa: V - Vv ) ate'
(vl,...,vs(a),...,vr) g (0,...,0, fa(vs(a)) ,0,...,0)
————

t(a)-th position

One notices that these maps verify the relations

f2=fis fifi=0(i#3), fua)fa = fafs@) = fa

and all other compositions are zero. This leads us to the next definition.

Definition 3.2.1. The path algebra KQ of QQ is the K-associative algebra defined by
the generators e;, i € Qqu, and «, a € Q1, satisfying the following identities:

e = e, eiej =0 (%)), eya) = aeya) =

One notices that the e;’s are idempotent and pairwise orthogonal in KQ. An important
relation is ¥ ;cq, €i = 1.
The k-vector space V defined above can be seen as a left-k@Q-module. Indeed, by defining

injections ¢;: V; — \%4 and projections m; : 1% - V

Vi = (07"'70avi707"'a0) (Ulv""U\Qo\) - U
naturally, the action of kQ on V is given by:

Qjy oo U= Lt(ail)fail ‘-'fainﬂs(ain)(”) and e;.v = 1;m;(v),

for any path «;, ...q;, of KQ, veV and i€ Q.

The next proposition establishes a link between the representations of a quiver Q and
the KQ-modules.

Proposition 3.2.2. The category of representations of a quiver Q) is equivalent to the
category of KQ-left-modules.

Proof. We have previously seen how, from a representation M of a quiver () one can
construct a K@Q-module V. Let us do the converse. Let V be a kQ-module. Define
Vi =e€;.V for any i € Qo. As Y, ¢i = 1, one finds V' = @jcq, Vi Furthermore, for any
arrow « : 7 — j, there is a map f, : V; = Vj given by the multiplication by «, which has its
image in V; because o = ejar . One can verify that both constructions extend to functors
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between the category of representations of ) and the category of kQ-left-modules, and
each one is the inverse of the other. The details of the computations can be found in
[AuRe97] Chapter III, Theorem 1.5. O

Remark 3.2.3. One notices that as a k-vector space, K@ is finite dimensional if and
only if () does not contain any edge loops nor oriented cycles.

We will now define the notion of a quiver with relations.

Definition 3.2.4. A relation on a quiver QQ is a subspace of KQ generated by linear
combinations of paths with same source and same target, and with a length of at least 2.
A quiver with relations is a pair (Q, 1) with Q a quiver and I an ideal of KQ generated
by relations. The quotient KQ/I is called the path algebra of (Q,I).

Example 3.2.5. Consider the quiver Q) with one vertex and n edge loops aq,...,qp:

Its path algebra is KQ = kK(X1,....,X,), the ring over K generated by n independent
elements. KQ is clearly infinite dimensional due to the edge loops. For example, if one
wants the order in which the edge loops are browsed not to matter, one defines I the
ideal of KQ generated by the relations X;X; — X;X;, for any i # j. The path algebra
then becomes K(X1,...., X1)/(XiX; - X;X;,1<4,j<n) =k[X1,...,X,] the polynomial
algebra in n variables.

Remark 3.2.6. We mention that the representations of a finite dimensional algebra can
be described in terms of quivers. Starting from an algebra A, one can define a quiver
with relations (Q, ) such that the category of representations Rep(A) is equivalent to
the category Rep(Q,I). More details on this procedure can be found in the fourth
chapter of [Ben98].

Let @ be a quiver without oriented cycles. We are going to classify the simple
representations of @), i.e. those which do not contain non-trivial subrepresentations.
First let S(i) (i € Qo) be the representation of @ given by
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S(Z)’L = k7 S(Z)] = {O} (.7 € QO)j # i), foz =0 (a EQl).

S(1) is clearly simple and its dimension vector is €; = (0,...,0, 1 ,0,...,0).

i-th ;:;sition
Proposition 3.2.7. Let QQ be a quiver without oriented cycles nor edge loops. Any
stmple representation of @Q is isomorphic to some S(i) with i € Q. Furthermore, any
finite dimensional semisimple representation, i.e. a direct sum of its simple submodules,
is completely determined by its dimension vector.

Proof. Let M be a non-trivial simple KQ-module. One sees that M # KQ,>1 M with
kQ,>1 the ideal of kQ generated by the non-trivial arrows of Q. Indeed, if M = kQ,»1 M,
then M = (KQ,»1)"M for any n > 1. But (kQ,»1)" is a k-vector space generated by the
paths whose length is at least n. As ) does not contain any oriented cycle nor edge loop,
it follows that there exists n € Zy such that (kQ,»1)™ = {0}, which implies M = {0}
and contradicting the non-triviality of M. Because M is simple and KQ,»1 M is a proper
submodule of M, one deduces that kQ,>1M = {0}. Hence M can be seen as a module
over

kQ/erzl = @ kei = H k.
i€Qo i€Qo

Therefore any subspace e; M is a kQ-submodule de M. Thus e;M = {0} or M for any
i € Qo. It is known that ¥,.o, e; = 1, implying that e;M = {0} cannot happen for all
1 € (Qp. Consequently there exists i € Qg such that e;M = M. Assume that there exists
J # i such that e;M = M. Then {0} = e;e; M = e;M = M because e;ej = 0. It follows that
there exists a unique i € Qg such that e;M = M and then M = S(3).

Let M be a semisimple kQ-module of finite dimension. According to the first statement
of the proposition,

1€Qo

with m; € Z5 for any ¢ € Qg. Thus

dim M = ) m; dim S(i) = ) mqe;
1€Qo 1€Qo

with ¢; being the i-th basis vector of Zgoo. O
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We finish this section by introducing an object which will give us a numerical criterion
for the classification of quivers.

Definition 3.2.8. The Euler form of a quiver Q is the bilinear form on R denoted
by (.,.)g and defined by

(m,n)g = Y mini— ) Mya)li(a)
’iEQo aEQl

for any m = (m;)ieqern = (i) ieq, € R9°.
The quadratic form associated to the Euler form is denoted by qq and is called the Tits
form. Explicitly,

4(n) = (n,n)g = Y ni= Y Nya)lia)-
1€Qo acQ1

for any n = (n;)ieq, € R0,

Using a result called the standard resolution (cf. [Crawley]), one can prove the next
formula:

qo(dim M) = dim Endg (M) - dim Extg (M, M).

Therefore the Tits form gives us information on self-extensions of a finite dimensional
representation of a quiver. But it is not its only use. Some of its properties give conditions
on whether or not a quiver is of finite orbit type. The next theorem can be found in
[Ben9sg|.
Theorem 3.2.9. Let QQ be a quiver. The following assertions are equivalent:

(i) The Tits form qq is positive definite.

(11) qo(n) > 1 for any n € Zgé’ ~{0}.

(iii) The underlying non-oriented graph of Q is a union of simply-laced Dynkin dia-
grams.

This theorem enables us to reformulate Gabriel’s theorem in the following manner:

Q is of finite orbit type <= qq is positive definite.
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3.3. Orbits and indecomposable representations

3.3. Orbits and indecomposable representations

In this section we define and study a structure of module on the representation space.
Let Q = (Qo,Q1,s,t) be a quiver and n = (n;);eq, € Zgoo a dimension vector.
Definition 3.3.1. The representation space of a quiver Q with dimension vector

n= (ni)i€Q0 is

Rep(Q.n) = €O Hom(k™ k™).

ai—]

It is a K-vector space of dimension Z nin;.

=g
Let n be a dimension vector of a quiver (). The group

GLy(K) = [] GLo, (K)
i€Qo

acts naturally on each Hom(k™ K" ) by

(9i)ieQo-Ta = gjxagi_l,

and hence acts on Rep(Q,n) by preserving the decomposition.

Any point x € Rep(Q, n) defines a representation M, of (). Furthermore, two represen-
tations M, and M, are isomorphic if and only if z and y are in the same GL,(k)-orbit.
The next lemma follows naturally.

Lemma 3.3.2. The map which associates to any x € Rep(Q,n) a representation M, of
Q defines a bijection between the set of GL,,(K)-orbits in Rep(Q,n) and the isomorphism
classes of representations of Q with dimension vector n. Additionally, the isotropy group
of z,

GLy (K)o = {g € GLy(K) | g2 =z}

is isomorphic to the group Autg(M,) of automorphisms of M.
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For a quiver @ let us write Q) for the orbit in Rep(Q,n) associated to the representa-
tion M. Then Oy = GL,(K).z where z is any element of Rep(Q,n) such that M, = M.
In particular one may notice that a quiver is of finite orbit type if and only if the number
of GL,(k)-orbits in Rep(Q, n) is finite for any dimension vector n.

The following proposition is stated in a setting broader than that of quivers but can
be easily adapted.

Proposition 3.3.3. Let X be a variety with an algebraic action of an algebraic group
G and x a point in X. The following assertions are true:

(i) The isotropy group G, is closed in G.

(ii) The orbit G.x is a non-singular subvariety of X and locally closed in X. The
connected components of G.x all have the same dimension: dim G —dim G,.

(iii) The closure G.x of the orbit is the union of G.x and of orbits of strictly smaller
dimensions. An orbit with the smallest dimension is then closed.

(iv) The variety G is connected if and only if it is irreducible. If so the orbit G.x as
well as its closure G.x are irreducible.

Proof. (i) Consider the map ¢, : G — X . This map is continuous and every fiber

g ~ gx
is a set gG,, for some g € G. As all points are closed, it follows that gG, is closed and
so is G.

(ii) The orbit G.z is the image of the morphism ¢, and is thus a constructible subset
of X (cf. Corollary 14.7 in [Eis95]). Hence G.z contains an open subset U dense in its
closure (cf. [Bo91] page 2). One deduces that G.z = Uz gU implying that G.x is open
in its closure. In a similar manner, G.x is non-singular and all its connected components
have the same dimension.

(iii) According to (ii), G.z \ G.z is of dimension strictly inferior to dim G.z. As it is G-
stable, one deduces that it is a union of orbits of dimensions strictly inferior to dim G.z.
Let us denote by O, an orbit with the smallest dimension in G.x. Tt follows that
Opin N Opmin is empty and thus O,,;, is closed.

(iv) The group G can be seen as the orbit of the action of G on itself. According to (ii),
G is non-singular. Because it is an algebraic group, G is connected if and only if it is
irreducible. Hence if G is irreducible, G.z is the image of G' by the morphism ¢, and so
G.z and G.z are irreducible. O

Proposition 3.3.4. Let x = (zq)a:i—; € Rep(Q,n) and M be the corresponding repre-
sentation.

(i) The following sequence is exact:

0 - Endg(M) - End(n) <> Rep(Q,n) -~ Exty,(M, M) > 0
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with End(n) = [] End(K™) and cz((fi)ieqo) = (fiTa = Tafi)aij-
1€Qo
(ii) The map ¢, can be identified with the differential at the identity of the map

¢z GL(n) — Rep(Q,n)

(iii) The image of c; is the tangent space T,(GL(n).z) seen as a subspace of T,(Rep(Q,n)) =
Rep(Q,n).

Proof. cf. [Brion00] Theorem 2.2.3. O

The next proposition gives us some details on the structure of the orbits of GL(n) in
Rep(Q,n). Its proof can be found in [Brion00] Theorem 2.3.1.

Proposition 3.3.5. Let
0-M ->M->M'"->0

be an exact sequence of finite dimensional representations of a quiver Q. Then O
contains Opprgnrr. Furthermore, the exact sequence splits if and only if Oy = Opprenr -

We can now give a more precise version of Gabriel’s theorem (cf. [GabT72]).

Definition 3.3.6. A representation M of a quiver Q) is a Schur representation if
Endg (M) = Kidy.

Theorem 3.3.7. Let Q be a quiver with |Qo| = r. Assume that the Tits form qg of Q is
positive definite. Then:

1. Any indecomposable representation M (i.e. M cannot be decomposed as a direct
sum of non-zero submodules) is a Schur representation and has no non-zero self-
extension.

2. The dimension vectors of the indecomposable representations are exactly then € Z%,
such that gg(n) = 1.

3. Any indecomposable representation is uniquely determined (up to isomorphism) by
its dimension vector.
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4. If the underlying graph of Q is connected, then it is a Dynkin diagram A of type
Ay, Dy or E,. Let {a1,...,a,} and Lg = Yi_y Zay; be a base of the root system of
type A and the associated root lattice. Identify the vertices of the Dynkin diagram
with their respective roots. Then the map

Rep(Q) - LQ
M = (M;)i<isr + Zdim(Mai)ai
=1

gives a bijection from the set of all isomorphism classes of indecomposable repre-
sentations onto the set of all positive roots of the root system of type A.

All quivers are not of finite orbit type. Let @ be a quiver. If there exists a full
embedding of the category of representations of the quiver

(o)

into the category of representations of @, ) is called wild. If () is neither wild nor of
finite orbit type then it is tame.

In [Gab75], P. Gabriel presented the different types of quivers and stated that the rep-
resentations of a wild quiver are not classifiable. Indeed, let @) be the previous quiver
with one vertex and two edge loops. The path algebra of @ is the free algebra k(X,Y")
generated by two indeterminates X and Y. One can show that for any k-algebra of finite
type A there is a fully faithful functor F' : Modf4 — Modfyx,yy from the category of
finite dimensional A-modules to the category of finite dimensional k(XY )-modules. If
A is generated by n elements a1, ..., a, and M € Modf 4, then F(M) = M™?2 and X and
Y act on F'(M) by

0 1 0 0 0

0 01 0 1 0 0
and ol

0 00 10 0 0 0

0 00 0 1 0 0 0 0

0 00 0 0 00 a 1 O
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A complete classification of the finite dimensional representations of the quiver ) would
imply a complete classification of all finite dimensional modules for all finite type K-
algebras, which is not practical.

When the underlying graph of the quiver @) is not a Dynkin diagram, the root system
(in the sense of Section|1.1.2]) of the Lie algebra gq (defined below) whose Coxeter graph

is @ is different than what has been previously described. Let @@ be a quiver whose
underlying graph is connected and simply-laced without edge loops. The Cartan matrix

Co=2I-A
with A the adjacent matrix of Q:
A; j = number of edges between vertices ¢ and j € Qp.

This matrix can be used to define a Kac-Moody Lie algebra gg (cf. [Kiril6]). In
particular it defines a root lattice and a Weyl group.

The root lattice Lg of @ is defined by

Lo= Y Za;j2Z9,
1€Qo

where the oy;’s are the simple roots. «; can be seen as the vector dimension of a
representation S(7) of @ with 1 at the i-th vertex and 0 elsewhere. The Cartan matrix
defines an integral symmetric bilinear form on Lg, called the symmetrized Euler
form:

(i, ) = (CQ)iyj = 2045 — Ay j.

For every i € g, the corresponding simple reflection s; is defined as

sit Lg — Lqg

a » a-(o,0)

The subgroup of GL(Lg ®z R) generated by the simple reflections is the Weyl group
Wq of gg.
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By looking at the adjoint action of gg on itself, one finds the root system ®q of gg.
In the special case where @) is a Dynkin diagram or an extended Dynkin diagram, the
root system is given by

g ={aeLo {0} | (@a)<2}.

Like in Section one can show that ®q = @, L1 P, with <I>Z2 1= (Tieq, Z200) N P
being the set of positive roots of ®p and g = (Xicqo Z<0aii) N @ the set of negative
roots of ®q.

A root o € @ is called real if there exists w € Wg and 7 € Qg such that o = w.ci;. All
the other roots are called imaginary, so that

D = Oy LB

When the underlying graph of @) is a Dynkin diagram or an extended Dynkin diagram,
the next proposition (cf. [Kac90]) characterizes ®¢5 and ®¢)" more precisely.

Proposition 3.3.8. 1. Let Q be a quiver such that its underlying graph is a Dynkin
diagram. Then ®g = <1>7”e

2. Let QQ be a quwer such that its underlying graph is an extended Dynkin diagram
A. Let <I>Q and HQ denote the root system and a basis of type A. Let ag € @ be
the simple root associated to the extended vertex of Q). Then Ilg = HQ u{ap} is a
base of ®q,

O =276 and By = {a+nd | aedq, neZ}

with § = ag + 0 and 0 being the highest root of i)Q with respect to ﬁQ.

Remark 3.3.9. Let @ be a quiver such that its underlying graph is a simply-laced
extended Dynkin diagram A. The dimension vector of the imaginary root ¢ is the vector
(do,...,d,) from Subsection as well as the dimension vector of the McKay quiver
which will be used in Section

The tame quivers were classified by L.A. Nazarova [Nazar73| and by P. Donovan and

M.R. Freislich [DonFrei73].

Theorem 3.3.10. (Donovan-Freislich-Nazarova). A finite connected quiver Q is
tame if and only if its underlying graph is A1 or a simply-laced extended Dynkin diagram,
i.e. it is one of the following:
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Ay
A, (n>2)
0 n-1
Dy, (n>4) . — e
1 n
1 3 4 5 6
@ @ @ @
Eyg
2
0
0 1 3 4 5 6 7
- @ @ @ @ @ @
E;
2
1 3 4 5 6 7 8 0
~ @ L @ @ @ ®
Eg
2

Assume Q) is tame of type A. Let {ao,...,an} and Lg = Yi_y Za; be a base of the root
system of type A and the associated root lattice. Identify the vertices of the extended
Dynkin diagram with their respective roots. Then the map

i Rep(Q) - Lq

.
M = (M;)ocicr ~ Y, dim(My,)oy
i=0

gives a surjection from the set of all isomorphism classes of indecomposable representa-
tions onto the set of all positive roots of the root system of type A. Furthermore,

1. If a is a positive real root then f~1(a) is a singleton.

2. If a is a positive imaginary root, then there exists a finite subset D = {p1, ..., pi} € P!
and a collection of positive integers I, > 1, p € D, such that the set of isomorphism
classes of indecomposable representations of Q of dimension « is in bijection with
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(P~ D)u U z/1,Z.
peD

Finally, in [Kac80] and [Kac83] V. Kac generalized the previous results to an arbitrary
connected quiver without edge loops.

Theorem 3.3.11. (Kac). Let Q be a connected quiver without edge loops. Let o =
YieQo i € Z%0 be positive, i.e. n; >0 for allie Qg, o #0. Then:
1. An indecomposable representation M of QQ of dimension « exists if and only if o
18 a positive root.

2. If a is a positive real root, then the indecomposable representation M, with dim M, =
« 18 unique up to isomorphism.

3. If a is a positive imaginary root, then there are infinitely many non-isomorphic
indecomposable representations of dimension «. The set of isomorphism classes

of indecomposable representations of dimension o can be parametrized by a finite
(o,0)
o

union of algebraic varieties Z1, ..., Z, such that max{dim Z;}; =1 -

In Subsection [I.1.2] a root system ® was defined as a finite subset of a k-vector space

FE coming from a semisimple Lie algebra. It was then equipped with a non-degenerate
_ 2(8,2)
© ()"
The definition of (.,.) can be extended to equip affine root systems corresponding to

infinite-dimensional Kac-Moody algebras (cf. [Kac90]).

Definition 3.3.12. A root system ® (in the sense axioms (R1), (R2) and (R3) of
[Hum75] Appendiz) is crystallographic if for any o, € ®, then (o, () € Z.

bilinear form (.,.) coming from the Killing form and if o, 8 € ®, we defined (3, «)

It was said in Theorem [I.1.16] that finite root systems are crystallographic. It can be
shown that extended root systems are crystallographic as well.

The notion of folding of a root system via automorphism was presented in Section
for the finite root systems. However the notion can be generalized to a larger class of
root systems. The next proposition comes from [Stem08§].

Proposition 3.3.13. Any crystallographic root system may be realized as a folding of a
simply-laced root system by some diagram automorphism.

3.4. Folding of root systems and quivers

In the following subsection we present a construction by T. Tanisaki of some kind of
folding of the representation space of a quiver whose underlying graph is a simply-laced
Dynkin diagram. In the subsequent subsection observations on the different types of
folding will be given.
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3.4.1. Foldings and quivers representations

It has been stated in the previous part that a connected quiver ) has only finitely
many isomorphism classes of finite dimensional indecomposable representations if and
only if @) is a Dynkin diagram A of type A,, D, or E,. If Q is of such type, then there
is a bijection from the set of all isomorphism classes of indecomposable representations
onto the set of all positive roots of a root system of type A given by the function dim (cf.
Theorems [3.1.10| and [3.3.7). This result has been extended by T. Tanisaki in [Tani80]
to the non-simply-laced Dynkin diagrams using an approach based on foldings of root
systems. In what follows we present his results.

Let Q = (Qo,Q1,5,t) be a simply-laced quiver. An automorphism of @ is a permu-
tation o of the set Qo = {}ier such that a pair (0(w;),0(a;)) forms an edge of Q if
and only if the pair (o, ;) is an edge of Q. The set of automorphisms of @ is a group
Aut(Q) given by

Aut(Q) = {o = (00,01) € & x 8121 | 5(01()) = 70(s5(a)), t(01()) =
oo(t(a)) for all e Q1}.

For any o € Aut(Q), one defines the functor F7 : Rep(Q) — Rep(Q) in the following
way:
e For any (Vi>fa)ier,o¢eQ17 then FU((V%afa)ier,aeQJ = (VViaga)ier,aeQ1 with W; =
Vagl(i) for any i € Qq, and g, = fgil(a) for any a € Q.
e For any ¢ : (Viafa)iéQo,ate - (Whga)iéQo,atev then F7(p) + FO(V;, fa) —
F? (Wi, ga) is given by (F7(¢)): = Po1() for all i € Qo.

Definition 3.4.1. Let G be a subgroup of Aut(Q). Define the category Rep(Q)%,
which is a full subcategory of Rep(Q), as follows: if (Vi, fa)ieQo,aeQ, € Rep(Q), then
(Vis fa)ieqoacqr € Rep(Q) if for any g € G, FI((Vi, fa)icQo.acq,) is isomorphic to
(Vis fa)icQo,ae@, in the category Rep(Q).

One can see Rep(Q)® as the invariants up to isomorphism of Rep(Q) by the action
of G through the functor F'.

We are now able to state Tanisaki’s theorem (cf. [Tani80]).

Theorem 3.4.2. (Tanisaki). Let Q be a connected quiver and G a subgroup of Aut(Q)
which preserves the orientation of Q. Then the following assertions are verified:

(i) In the category Rep(Q)Y, the theorem of Krull-Remak-Schmidt (which states the
unicity of the decomposition of a module into a direct sum of indecomposable sub-
modules) is valid.
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3. Quivers

(ii) There are only finitely many isomorphism classes of indecomposable objects in

Rep(Q)€ if and only if Q and G are in the following table:

A(Q,G) Graph of Q G
2 3 r-1 r
A, (r > 1) o @ o—© {1}
2 3 2r-2 2r-1
BT (TZQ) .—.—. .................... .—. {177_} with 7‘(0[1) = Qopi
. {1,7} with
1 2 3 r-1 T(ar) = a1,
C, (r>3) ® P ® 7(rs1) = ap,
r+1 () =g ifi£r,r+1.
D, (r>4) {1}
1 3 4 5 6
® @ @ @
Ee {1}
2
4 5 6 7
@ L
Ex {1}
2
3 4 5 6 7 8
@ @ @ L J
Es {1}
2
1 3 4 5 6 {1,717} with
F ¢ ¢ ¢ ¢ (1) = ag, T(a2) = az,
4
T(Oég) = 0457’7'(()[4) =Qy,
2 T(as) = as, 7(ag) = 1.
G acts transitively
Go on {a1,as,a4} and
fizes as.
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3.4. Folding of root systems and quivers

(iii) Let (Q,G,A(Q,G)) be a triple as in the previous table. Then there exists a natural
one-to-one correspondence between the set of all isomorphism classes of indecom-
posable objects of Rep(Q)Y and the set of positive roots of the root system of type

AQ,G).
Remarks 3.4.3. 1. One notices that A(Q,G) is the type obtained by folding the
root system associated with the graph of @) by the action of G.

2. The reader might wonder why T. Tanisaki did not work on the Dynkin diagram
Ag, with the Z/2Z =< o > symmetry given by o(a;) = aori1-4:

1 2 r r+1 2r-1 2r
o——eo o————eo *o—©
\/

o

Theorem is based upon choosing an orientation of the quiver @ and a sub-
group G of Aut(Q) which preserves the orientation. However the non-trivial sym-
metry group of Ag, is Z/2Z and the action of o would send the arrow r — r + 1 to
r+1 — r, thus reversing the orientation of this edge. It is the same if we choose to
orient the edge by 7 + 1 — r. Therefore there cannot be a subgroup G of Aut(Q)
which preserves the orientation and so Tanisaki’s result is not valid anymore.

3.4.2. Observations on foldings

Throughout the several previous sections we have obtained connections between the
simply-laced Dynkin diagrams and the non-simply-laced ones. In this subsection the
different results will be compared.

In Section we realized foldings on:
1. simply-laced Lie algebras.
2. root systems of simply-laced Lie algebras.

These foldings give results dual to each others.
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3. Quivers

Typeofg || A1 | Dry1 | Ee | Dy

Q Z/2Z | 2/2Z | Z/2Z | &5

Type of go Cy B, Fy | Gy

Type of Q° B, C, Fy | Gy

Table 3.1. — Foldings of root systems and Lie algebras

Remark 3.4.4. The case of type Ao, had to be left out because of the absence of a
group I'" acting on the singularity with the required properties (cf. Remark [1.4.38)).

P. Slodowy defined the inhomogeneous simple singularities based on the symmetries
of the Dynkin diagrams in [Slo80] and [Slo80(2)]:

r I’ Q=T'/T | Type of Xq | Type of (Xp,Q)
Co | D | Z/2z Aoy 1 By, r3>?2
Doy | Doory | 2/2Z Dy Cy, >3

T o z/27 o) )

D, @ S3 Dy Gs

Remark 3.4.5. When (X(,Q) is of type Go, the possibility IV = T was disregarded
because the quotient 7 /Dy leads to the same invariants as O/Ds.

He also computed two variants of the McKay correspondence: one by induction and
one by restriction. The results are as follows:
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3.4. Folding of root systems and quivers

! \Y A
. s A) | AL,TY) AV(I,TY)
627' DT A2r—1 Br .@}:‘0 . z ; .................. ;2 1.‘_1 é .
0
2 3 r-2 -1 r
Dy DQ(T_l) D, 1 Cr .................. .—.@:’
1
T Es Fy g ; 2 3 4
Table 3.2. — McKay’s correspondence by restriction
and
Type of | Type of —
! \ / \
LU A | amr) (A%(r.T))
Cor | D Agry B, .:@.0 . o ® . - S o
0
2 3 r-2 r-1 r
Dy DQ(T’—U D, c. | @ ® P é ®
1
T FEg Fy g ; 2 3 1

Table 3.3. — McKay’s correspondence by induction

Finally the foldings by T. Tanisaki using quiver representations gave:
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A(Q) A(Q,G) Graph of Q G
1 2 3 2r-2 2r-1
Agr B, (r22) | @ P @ o— o | 2/?Z
T
1 2 3 r-1
Dy (r23) | Cp (r>3) ® ® ® Z/2Z
r+1
1 3 4 5 6
o @ @ o
Ee ) 7/27
2
3
1 2
D4 G2 63
4

Table 3.4. — Foldings using quiver representations

Remark 3.4.6. In the case of (D4, G2) (cf. Remark(3.4.5)), the group &3 can be replaced
by the smaller group Z/3Z and the results of Theorem remain valid.

We notice that the way P. Slodowy defined the inhomogeneous singularities is in
adequacy with the foldings of the root systems as well as the foldings using quiver rep-
resentations. Furthermore, the McKay correspondences by induction and restriction
establish a similar link between the homogeneous and the inhomogeneous Dynkin dia-
grams, however less direct because of the extension of the Dynkin diagrams as well as
their duals.

The connections between the different foldings are summarized in the following dia-
grams:
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Figure 3.1. — Foldings and McKay correspondences

In the next chapter we are going to present a construction by H. Cassens and P.

Slodowy of the semiuniversal deformations of the simple singularities using quiver rep-
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the semiuniversal deformations of the inhomogeneous simple singularities. The process
is based on the affinization of the Dynkin diagram associated to the singularity through

resentations and symplectic geometry. Their method will then be generalized to obtain
its minimal resolution, as illustrated below:

3. Quivers

SIOATND }IM SUOIIN[OSaI
pUue SUOI)euLIojo(]

SOLIJOUITUAS

pu® sIoAm{)

Figure 3.2. — Quivers, symmetries and simple singularities
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4. Deformations and quiver representations

Throughout this chapter the base field will be the complex number field C.

4.1. Kronheimer’s construction

P.B. Kronheimer gave in [Kron89] a new approach regarding the deformations and the
resolutions of Kleinian singularities. His work is based on finite subgroups of SUs and
hyperkéhler quotients. Some of his ideas will be recalled in this section.

4.1.1. Definition of a hyperkahler manifold M (I")

Let I" be a finite subgroup of SUs, N its natural representation as a matrix group and
R its regular representation. Set

M =End(R)® N

where End(R) = Homc (R, R). There is a linear action of I' on M with the action on
End(R) being the conjugation and the action on N the natural one. Let us focus on the
space

M(T) = (End(R) ® N)¥

of I'-invariants of M.

By providing N with an orthonormal base, as dim ¢ N = 2, any element of M can be
seen as a pair («, 3) with «, 3 elements of End(R).

Let H=R +RI + RJ + RK be the field of quaternions. It is known that I, J, K satisfy
the relations
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4. Deformations and quiver representations

I’=J?=K?=]JK =-1.

Fix a I'-invariant Hermitian form on R and, if a € End(R), let a* denote the adjoint of
a relative to the Hermitian form.

Let us give M an H-module structure by defining the action of H with the following
formulae:

I.(a, B) = (i, if3),
J.(Oé,ﬁ) = (_ﬁ*7a*)a
K.(a,B) = (-if",ia").

Hence I, J and K can be seen as elements of End(T'M), where every tangent space of
M is identified with M.

Let U(R) be the subgroup of unitary transformations of End(R) with respect to the
[-invariant Hermitian form on R, and set

UT)={geU(R)|gy=99 Vyel}

the subgroup of U(R) composed of elements commuting with the action of I'. U(T") acts
naturally on M (I") by conjugation:

u.(a, B) = (wouw™ upu™t), VueU(T),V(a,B) e M(T).

It is a classical result of finite group theory that R can be decomposed as a sum of the
irreducible representations of I'. Let Ry, Ry, ..., R, denote the irreducible representations
of I' with Ry being the trivial one and set d; = dim R;. Then

R=@PR;®C%.
1=0

One can also decompose U(T"). The elements of End(R) commuting with I" are

Homr (R, R) = Homp(®!_, R; ® C%, @_ R;® C%) = @, ; Homr(R;, R;) ® Hom(C%,C%).
However Schur’s lemma implies that the elements of Homr(R;, R;) are scalars if ¢ = j or
are invertible or zero if ¢ # j. But by definition R; # R;, therefore Homp(R;, R;) = {0}
if i # j and Homrp(R;, R;) =2 C. It follows that Homr(R, R) = @], Hom(C%,C%) and
looking at the unitary elements one finds
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4.1. Kronheimer’s construction

U = @Udi(C).

Hence any element of U(I") can be seen as an (r+1)-uplet (ug,u1, ..., u,) with u; € Ug, (C)
for any 0 <7 <r. Furthermore, one sees that

M(T)

(End(R)® N)I' = (R*®@ Re N)T',
Homr(R,R® N) = Homr (P R, ® C% P R;j ® N ® C%),
i=0 §=0

@ Homr(R;,R;® N) ® Hom(Cdi7 Cdj).
1,7=0

-
Any element of M(I") can be written as Z rij ® fi; with 7;; € Homp(R;, R; ® N') and
3.5=0

fi; € Hom(C%,C%). The action of U(T") on M(T') is given by

T T
(uo,uty -y ur ). (D) 135 ® fig) = D iy @ uyfijui
1,7=0 1,7=0

It can be verified that the action of U(T") on M (T") preserves the quaternionic structure,
i.e. the induced action of U(I") on End(7"M (I")) preserves the real vector space generated
by I,J and K. One can thus obtain three real U(T")-invariant symplectic structures on
M (T"). More specifically, one can choose a U(T")-invariant scalar product (.,.) on M (T')
such that the quaternionic operators I,J and K are anti-self-adjoint with respect to
(.,.). One finds three real symplectic forms given by

wr(v,w) = (v, Tw),
wy(v,w) = (v, Jw),

wi (v,w) = (v, Kw),

for any v,w e TM(T'). As M(T") is a vector space, for any x € M (I"), one has T, M (") =
M(T"). Hence the symplectic forms I,J and K can be seen as elements of End(M(T")).

One also notices that the group of scalars T = {(Aldg,,...,Aldg,) € [Tj_g Uq,(C) | A €
Ui(C) = S'} c U(I") acts trivially on M(T") and so U(T')/T acts on M(T"). Let su(T")
denote the Lie algebra of U(T")/T. Three moment maps g, i, i : M(I') - su(I')* can
be obtained, each relative to one symplectic structure. They are given by
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pr(a, B) = 5([a, a1+ [8,5°]),
MJ(avﬁ) = %([aaﬁ] + [a*aﬁ*])a
pr (. B) = 5(~[a, ]+ [a*, 5*]).

With these maps one defines two new moment maps puy and puc on M(T') by

pH: MT) - su()"®Ho
(a718) ind IU/[(CY”B)®I+IU/J(Q,B)®J+,U,K(C¥,B)®K

pe = py +ipk o MT) - su(l)*eC
(,8) = [of]

with Hp = RI + RJ + RK the set of pure imaginaries.

4.1.2. Hyperkahler quotients and simple singularities

Let u(I') be the Lie algebra of U(I') and define the following form

<o uw) xuw(l) - C .
(A,B) — Tr(AB*)=-Tr(AB)

It is bilinear, symmetric, non-degenerate and invariant under the adjoint action of U(T").
Set t = Lie(T) = {(Aldg,,...,Aldg,.) € [Ti-;ug,(C)) | A e ug(C)} and t* = {u e u(T") | <
u,t >=0,Vt € t} = {u € w(T') | Tr(u) = 0}. The restriction of the bilinear form < .,. >
to t+ x u(T"), induces the bilinear form < .,. >: t* x u(T")/t - C, which is symmetric and

non-degenerate. Therefore

- (uw@)/H”
u e <u,.>

is an isomorphism. But it is known that t* = su(T"), hence su(I') = (u(T")/t)*. This
isomorphism turns (u(I')/t)* into a Lie algebra. Let ¢ be the center of (u(I')/t)*. Then

the isomorphism gives
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4.1. Kronheimer’s construction

¢ 2 {(20ldgy, - .., 21dg,) €su(T) | z; €u1(C) and )’ zd; = 0}.
i=0

Let mj: R—> R; ® C% denote the canonical projection, 0 < j <. The im; (here ¢ is the
square root of —1, not an index) generate the center of u(I') . Set

pr 3w(l)) - by

Z7Tj = djaj

with (o;)1<j<r a set of simple roots of the Lie algebra g of type A(I") relative to a

Cartan subalgebra b, by = {¥i_; aio; | a; € R,Vi} the R-span of the roots of g, and

Qg =— Z;zl dja;. The root system of g is denoted by ®. p is surjective and its kernel is t

thus p induces an isomorphism 7: 3(u(T'))/t 5 hgr . However, we know that ¢ =
iﬂ'j +1 [ djOéj

3((w(™)/0)*) = (w())/t)* = 3(su(T")), therefore the transpose of p gives an isomorphism

luz

™t bR

h = zwith z(m;) = ho p(n;) = dja;(h)

¢

with b ={h ebh | a(h) €R, Ya e ®} = {¥i_ a0 | a; € R,Vi}. By definition, o is the
only element of [ga,, 8a, | such that «;(;) =2 and is called the coroot associated to «;.
As mj e w(T")/t and z € su(T") = (u(T")/t)*, it implies that z(7;) =< z,m; >= -Tr(7m;z) =
—dej.

Finally we obtain an isomorphism

lnz

br
(20ldgy, ..., 2 1dg,) = hwith aj(h)=-2;, VO<j<r

T c

There is a natural identification of c® C = ¢® J + ¢ ® K with the Cartan subalgebra b of
type A(T).

If v is a root, set Dy, = Ker(awor) Cc. If £ € cxUy Da, € is called generic. It is known
that ¢ = su(T')Y). Hence U(T) acts on every fiber p(€), with € = & T+ J+E63K € c®H.
Let X¢ denote the quotient pp!(€)/U(T). It was explained in Section that, upon
some hypotheses, X¢ can have a symplectic structure. This result can be strengthened.
First let us define the good set (¢ ®r Hp)° (denomination due to P.B. Kronheimer) by
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(c®r Ho)® = (¢ ®r Ho) \ U(Daq ®r Ho).

where a runs through the roots of the root system of type A(I"). The next proposition
is proved in [Kron89].

Proposition 4.1.1. If { € (¢ ®r Ho)°, then X¢ is a non-singular hyperkdihler manifold
of dimension 4 over R.

The main theorem of this section can now be stated. Its proof may be found in
[Kron8&9].
Theorem 4.1.2. (Kronheimer). We have
Ui (0)/U(T) = CT.
Furthermore, the complex r-parameter family

pr(c®C)/U) — c¢®C

is the pullback (via b — b/W with W the Weyl group) of the semiuniversal deformation
of C?/TI.

For & € ¢ generic, one obtains a simultaneous resolution of the previous family by the
following diagram:

pri (611 +c¢® C)/U(T) — py' (¢ ® C)/U(T)

§1I+C®C;>c®c

Finally, all resolutions obtained in this way are minimal.

We conclude this section by mentioning that P.B. Kronheimer gave in [Kron89] an
interpretation of M(T') in terms of quivers. This interpretation will be presented in
the next section and is the base of a construction by H. Cassens and P. Slodowy of the
semiuniversal deformations of Kleinian singularities using geometric invariant theory and
quiver theory.
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4.2. Deformations of homogeneous simple singularities

4.2. Deformations of homogeneous simple singularities

In [CaSlo98] H. Cassens and P. Slodowy gave a construction of the semiuniversal
deformations of the simple singularities based on quiver theory and P.B. Kronheimer’s
work as well as H. Cassens’ Ph.D thesis [Cas95]. This construction is presented in the
following subsection.

4.2.1. Presentation of the construction

Let T' be a finite subgroup of SU; and A(T') the associated Dynkin diagram (cf.
Subsection . We write Ry, ..., R, for the irreducible representations of I', Ry
being the trivial one, and N for the natural representation obtained through the inclusion
I' € SU,. The regular representation is R = @]_, d; R; with d; = dim R;. The space M(T")
of the previous section can be interpreted in terms of quivers in the following way:

M) = (End(R)®N)'=(R*®ReN)',
= Homp(R,R® N) = Homp(@m ® cdi,é)Rj ® N®Ch),
1= j=
- @0 Homr(R;, R; ® N) ® Hom(C%, C%),
1,j=
= & Hom(C%,C%) by McKay’s correspondence,
= Rep(Q,d),

for a quiver () whose vertices are the vertices of the extended Dynkin diagram Z(F),
with two arrows (one in each direction) for any edge in A(T), and whose dimension
vector is d = (dp,dq, .. ..,d;). It is called a McKay quiver. For every arrow a:i — j of
Q, the opposite arrow j — 7 is denoted a.

Remark 4.2.1. The dimension vector d associated to the McKay quiver (@ based on
é(l“) is the same as the minimal imaginary root of the extended root system of type
A(T) (cf. [Kac90]).

Example 4.2.2. Take T'=O. Then A(T') = E7 and the quiver Q is

0 1

3 7
® ) ) L) J

v @——@ -
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4. Deformations and quiver representations

with dimension vector d ={1,2,2,3,4,3,2,1}.

The group [T;_y GLg4, (C) acts on M (I') by simultaneous conjugation and C* = {(zIdy,,
...,2Idg,) | z € C*} acts trivially. Therefore an action of G(I') = ([T;_y GLg4,(C))/C* on
M (T') is induced. We are going to define a G(I')-invariant symplectic form on M (I').
An orientation of @ is a function € : Q1 — C*, such that e(a) = —e(a) = -1 for every
arrow

i a J

*——0

belonging to a fixed orientation of the edges of ) and its opposite arrow

i a j

o—<0
For every pair ¢ = (¢q,a € Q1),% = (¥q,a € Q1) of elements of M(T"), set

(o) = ZQ: e(a)Tr(pata)-

Then one can verify that (.,.) is a non-degenerate G(I')-invariant symplectic form on
M(T") and induces a moment map

nes - M(T) ~ (Lie G(I)* € @ Mj,(C)
i=0
given by

pes(e) = (.-, ‘ Z _ e(a)papa ,-..).

i-th entry

Here Lie G(T") is identified with its dual (Lie G(I'))* using the bilinear form < .,. >
defined at the beginning of Subsection

Example 4.2.3. For I' = Dy, the associated Dynkin diagram is A(I') = Dy. A repre-
sentation of the quiver Q is denoted by ¢ = (¢]) with i=0,1,3 or4 and j =a orb. The
complete notation can be found on the following diagram
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4.2. Deformations of homogeneous simple singularities

For the orientation, take the ©*’s to be positive. The moment map is then
nes(#) = (~p5et, —o1 ot w50 + 9} + 03eh + wivh, 0308, —plel).

It can be verified through explicit computations that ucg is equal to the map uc
defined in the previous section.

Let Z be the dual of the center of Lie G(I'). As previously seen, by means of the
bilinear form from Subsection Z is identified with

¢®C = {(poldo, p11dy, ..., ppld,) € [T My, (C) | pi € C, )" dipi = 0}.
=0 =0

As the moment map is G(I')-equivariant, for all z € Z, G(I') acts on the fiber ugy(z2)
and we can form the quotient gy (2)//G(T). Moreover Kempf-Ness’ Theorem (Theo-
rem and Proposition can be adapted to work on a symplectic vector space
instead of a compact symplectic manifold (cf. [Kiril6] Sections 9.9 and 9.10). It follows
that there exists an isomorphism

nes(D/]GIL) = pcH(2)//G(T) = i (0,62, €3)/U(T)
with z = & + i3 € c® C = Z. Furthermore, because of Theorem [4.1.2] one obtains that
N (2)U(D) — 2

is the pullback of the semiuniversal deformation of the Kleinian singularity C?/I". We
hence have a construction of the pullback of the semiuniversal deformation of C2/T
purely in terms of invariant theory:
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4. Deformations and quiver representations

HEs(2)]1G(T) =55 X xgpw b

Z—= 5y

Remark 4.2.4. H. Cassens and P. Slodowy also used the space M(T") in [CaSIo9§| to
work on resolutions of the Kleinian singularities. Indeed, by linearizing the quotient
pcis(Z)//G(T) with a well suited character x : G(I') - C* (cf. [CaSIo98] Section 7),
they obtain the following diagram:

nes(2)|XG(T) —— ngis(2)//G(T)

112

A cC

which is a simultaneous minimal resolution of the simple singularity C2/T.

4.2.2. Example: Aoy

Start with the McKay quiver of type As,_; with dimension vector (1,....,1):
b1 by
L ) @ i @ [
ai Qp-2
bo br—l
ag Qr-1
®
a2r-1 Ay
bar-1 br
a2p-2 Qrt1
o @ i@ o
2r-2 r+1
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4.2. Deformations of homogeneous simple singularities

The representation space of this quiver is M(T") = {(ao,...a2_1,bo,...,b2,_1) € C¥ &
C?'}. The orientation of the quiver is fixed by e(a;) = —e(b;) =1, 0<i < 2r - 1.
Moreover G(I') = (C*)?"/C* = (C*)?"~! and the action of any g € G(I') on an element of

M (T") is done by conjugation:

g-(ag, - ..az-1,bo, ..., bar-1) = (9195 @0, - - - G0Gar—1a2r-1, 9097 -00s - - - s G2r-197 "b2r-1).

r=ag...0a2r-1,

The fundamental invariants are then { zi =azb;, 0<i<2r—1, with the relation
y=bg... b1,

Z20%1 - --R2r-1 = Y.
Therefore M(T")//G(T") is the hypersurface
{(20,21,...,200-1,2,9y) € C¥*2 | 2021 ... 2001 = 2y}

The moment map for the action of G(I') on M (I") is

2r-1
w: M(T) - H C
i=0
e o~ (.., Y ela)eapa;- )
By quotient of the previous map one gets
m 2r-1 2r-1
M()//G(T) = Z={(po,--- p21) € [T C| D pi=0}.
i=0 i=0
(205, 227-1,7,Y) + (22/-1 = 20,20 = 215+ -, 22r-2 = 227-1)
1 2r-1
We change the variables by setting | = 7 Z i, Furthermore, Z is
T i=0
No=z—2, 0<i<2r—1.
2r-1
identified with the Cartan subalgebra b = {diag(Xo,...,Aor-1) | Y. Ai = 0} C sly,(C)
i=0

b A .
(Aos vy A2re1) = (A= Aoy.. s A0 — A2rm1)

lm

through the isomorphism
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4. Deformations and quiver representations

The computations in this example are fairly simple because pu(M(T')) = Z. For the
types D, and FEjg it is not the case anymore.

In the new coordinate system, one finds

2r-1 ~

{Q)(Z—/\i)=xy}=M(F)//G(F) - b
C (A0 dor,255,2) > (Aoser s Aapet)

which is the pullback of the semiuniversal deformation of the hypersurface Xo = @ *(0) =
{(x,y,2) e C? | 22" = zy}, i.e. a simple singularity of type As,_1.

The following diagram

a O a

is the pullback of the semiuniversal deformation X 5 h/W of Xy. W is the Weyl group
of type AQT_l, i.e. 62T.

It is known that C[h] = C[xo, ..., zor1]/ (X7  x;) and C[h/W] = C[h]V,
=Clea(x),...,e.(2)],

with ¢; the i-th elementary symmetric polynomial with 2r variables. There is a natural
injection C[h/W] < C[h] which induces

. b » oW
Aoy -5 A2r-1) = (e2(N), ... €2.(N))

2r-1 27 . )
A polynomial expansion gives [ (z-\;) =27 + > (~1)"e;(\)z* . Set
i=0 i=2

X ={(z,y,2,ta, ..., ta,) € COx bW | 22" + Z(—l)ztiZQT_’ =zy}.
i=2
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4.3. Deformations of inhomogeneous simple singularities

There are two natural maps

a: X - h/W and
(:z:,y,z,tg, e ,tQ,«) g (tQ, e ,tgr)

7 b > b/W .
(AO,...,AQT_l) = (EQ(A),...,EQT(A))

The pullback of these maps gives

X Xh/Wh
= {(($7y727t27‘ . '7t21”)7 ()\07" '7)‘21”—1)) e X Xh | a(xuya'Z?tZa’ "7t27“) = 7'['()\0,. "7>\27‘—1)}7
= {((z,y,2,t2,.. . t2r), (Ko, - -, Azr1)) € X x b | (B2, t2r) = (€2(N),.. -, €2 (M)},

2r . .
= {(2,9,2,X0,...,Mop_1) €C3x b | 22 Z(—l)zei()\)zz“Z =xy},
i=2
2r—-1

= {(xvyvzv)‘oa"'v)‘ZT‘—l)ECSXh | H(Z_)‘i):xy}7
=0

= M(T)//G(T),

and o 1(0) = {(z,y,2) € C3 | 22" = xy}. It is a simple singularity of type As,_1 and « is
its semiuniversal deformation.

4.3. Deformations of inhomogeneous simple singularities

The aim of this section is to extend the results of H. Cassens and P. Slodowy to the
inhomogeneous simple singularities. This means that we aim to construct the semiuni-
versal deformations of the simple singularities of type B,., C,, Fy and G2 using McKay
quivers. First we will lay out the objectives of the task. Then computations will be made
in order to ensure that the objectives are validated. The semiuniversal deformations will
then be explicitly constructed. However, as the semiuniversal deformation of a simple
inhomogeneous singularity is a (2-equivariant morphism for €2 a symmetry group of the
simply-laced Dynkin diagram associated to the singularity, the fibers above the fixed
points are all acted upon. We will then compute the quotients of these fibers and look
at some of their properties.
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4. Deformations and quiver representations

4.3.1. Objectives

This section aims to extend the construction of Section to the inhomogeneous
simple singularities of type B;, C;, Fy and Gb.

Let us start with a Dynkin diagram A(T) of type As,_1, Dy+1 or Eg with T’ being

the associated finite group of SUs. The notations and results of Section give the
following diagram:

pues(Z)c M(T)

Uk (2))G(T) = X iy b —2 X
a O Q
Z=h - h/W

with o the semiuniversal deformation of the singularity C?/T" of type A(T'). Let I be
the finite subgroup of SUs such that there exists an inhomogeneous simple singularity

of type A(T',T) (cf. Definition and the first table in Subsection [1.5.2.1). Then
Q = T’/T acts on the singularity Xo = o 1(0). Our aim is to define natural actions of
Q on X and h/W such that o becomes Q-equivariant. The next theorem is a direct
consequence of Theorem [1.4.49

Theorem 4.3.1. With the previously defined notations, the restriction a’afl((h/w)ﬂ)

over the fized points (h/W) of a semiuniversal deformation of the singularity C?/T" is
a semiuniversal deformation of the inhomogeneous singularity of type A(T,T").

A natural way to accomplish this, is to render @ Q-equivariant. By Lemma 2.1.17] it
suffices to analyze when the action of Q on M(I") is symplectic.

We need to define actions of {2 on every object in the preceding diagram such that:

1. The restriction of the action on X to the singularity X coincides with the natural
action computed with matrices in Subsection [1.4.2.1

2. The action on M (T") is symplectic.
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4.3. Deformations of inhomogeneous simple singularities

3. The action on G(I") is induced from the one on M (T').

4. The action on Lie(G(I')) stabilizes Z. Hence the isomorphism 7 : Z — § (cf.
Subsection [4.1.2) becomes 2-equivariant, with the action on h coming from the
action on the Dynkin diagram A(T").

In Subsection we will compute the conditions required on the action of © so
that it restricts to the natural action on the singularity C?/T" seen in Subsection
In order for  to act symplectically on M(I"), it has to preserve the symplectic form
(.,.). However, by definition, this form depends on an orientation of the McKay quiver
based on A(I"). The orientation will then have to be chosen accordingly, which will be
done in Subsection The questions regarding the action of  on G(I') as well as
the Q-equivariance of 7:Z — b will be handled in Subsection [£.3.4]

Because of Theorem oz|a_1((h JW)2) is an Q-invariant morphism, and as such
the group €2 acts on every fiber of « a1((h/W)2)- In order to analyse the quotients of
the fibers, an explicit description of the semiuniversal deformation is required. We will
introduce in Subsection a system of coordinates on the base space h/W of the semi-
universal deformation called flat coordinates. It will simplify the computations because
with this system the action of © on h/W becomes linear. The remaining subsections
will be devoted to the explicit computations of the semiuniversal deformations of simple
singularities of inhomogeneous types. The study of the quotients of the fibers will be
conducted in Section [£.4]

4.3.2. Action of I'"/I" on C?/T

The action of 2 =T"/T on M(I") induces an action on ug!'(Z)//G(I') and it is known
that C?/T" C uc'(Z)//G(T'). However it has been seen in Subsectionthat I'"/T acts
on the singularity C?/T" in a natural way. We therefore want to impose that the action
of I/T on M(T") that is to be defined shall induce the right action on the singularity
C3/T.

4.3.2.1. Computations for C?/T of type Ao,

The McKay quiver when A(T) = Ag,_q is
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4. Deformations and quiver representations

by by
L ) @ i@ o
ay Qr-2
bO br—l
ag Q-1
®
a2r-1 Ay
bor_1 by
a27-2 Qr+1
L) @ i@ ()
b2r—2 r+1

It is known that ' = Cy,, IV = D, and I"/T' = Z/2Z =< ¢ >. The action of 2 on the
Dynkin diagram exchanges the vertices ¢ and 2r —i, 1 <i < 2r-1. We extend this action
to the extended Dynkin diagram of type A(I') by making € fix the additional vertex
labelled 0. The action of €2 on M (I') arises naturally from its action on the extended
Dynkin diagram. Hence the action of 2 on M(T") needs to verify

0.(ao, ... a2r-1,b0,...,b2,-1) = (A2p—1b2,—1, ..., Aobo, 62r—1a2,—1, ..., d0a0).

with A, d; € C.

The action of Z/2Z needs to be consistent with the action on the singularity computed
with matrices. Recall that the singularity C2/T is defined by {Z?" - XY =0} with Z =

2129, X = 22" Y = 23" (cf. Theorem [1.4.1|for the notation), and that | ¢.X = (-1)"Y,
oY =(-1)"X,
0.4 =-7.

After computation of the special fiber of the moment map, we find that C? JT = {Z2T -
xy =0} with | = [1¥'a;, which implies

HQ'I‘ 1 bZ7

1 2r-1
z= 21"2 =0 a;bi,

o = (75" M)y,
_( 2r15)x

2r-1
0.z= 5 Los2rt \idsaib;.
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4.3. Deformations of inhomogeneous simple singularities

For the action to satisfy our conditions, it needs to verify | A\;0; = -1, 0<i<2r-1,

25 N\ =125 6, = (-1)".

4.3.2.2. Computations for C?/T of type D,,;

The McKay quiver when A(T) = Dy is

It is known that T' = D1, I = Dy(,_qy and I''/T' = Z/2Z =< ¢ >. The action of {2 on the
Dynkin diagram exchanges the vertices r and r + 1 and fixes the others. We extend this
action to the extended Dynkin diagram of type A(I') by making © fix the additional
vertex labelled 0. The action of €2 on M(I') arises naturally from its action on the
extended Dynkin diagram. Hence the action of © on M(I") needs to verify

U;}(@S? 908’ ceey f?—l? 90?—17 ‘P?v ‘P?v ‘Pgﬂa (Plr)+1) = )
(95 P0s - s Pr_1s Pr_1> Ar+1P54 15 Ors 105415 Ar P, 0007

with \;,d; € C.

Assume 7 odd. The action of o has to induce the correct action on the singularity C?/T.
From Theorem we know that the singularity C?/T" is defined by {X (Y2 - X"1) +

72 = 0} with X = 47 (2120)2, YV = 4727 (22070 1 22070 7 = gy 2y (207D 2 2070y,
Furthermore, I is generated by ¢ = (g {5(_)1) with £ = exp(4(27ff1)) and h = ((Z) 6) h
fixes X,Y and Z and

-Y,
-Z.

Shet=
Innn
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4. Deformations and quiver representations

After computation of the special fiber of the moment map, we get that C? JT = {z" +

y2ZL' + 22 = 0} with €T = 47%pr,r+17 and
r—1

Y =457 (Q0,..or = 3P, 500);

2= 80,...,r,r+15
Pror+1 = Tr(@?@?usoﬁnwﬁ)a which implies
qo,..r = Tr(pf ... b o0l o ... 0f),
80,1 = Tr(f - 080 100 102002 5. . 0]),

0.2 = \p0pApi 1041,

L1 1
.y = 142r ((_)\r+157"+1)q0,...,7“ + ()\r+15r+1 - %)\rérAr+16r+l)prj«+1)a
0.2 = =M Op Ayps107412.

In order for the action to satisfy our conditions, we need A\.0, = Apy10,41 = 1.
The conditions when r is even are also A\.0, = A\p410,41 = 1.
4.3.2.3. Computations for C?/T of type Ej

The McKay quiver when A(T") = Ej is

o () () o o
o} o5 o5 o5
oh || eh
[ !
o || et
o

It is known that ' =7, IV = O and I'//T" = Z/2Z =< ¢ >. The action of 2 on the Dynkin
diagram permutes the vertices 1 <> 2, 4 <> 5 and fixes the others. We extend this action
to the extended Dynkin diagram of type A(I') by making € fix the additional vertex
labelled 0. The action of €2 on M (I') arises naturally from its action on the extended
Dynkin diagram. Hence the action of 2 on M (T") needs to verify

bff-(s08,s08,sb0‘f,w’{,¢%,¢b3,<p§,<p§,soi,soi,w%b,sﬁ’é)= )
(()087 2ne /\290%7 62@27 )‘1()0(117 51@17 9037 ©3, )\53037 559057 )\49027 64904)'
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4.3. Deformations of inhomogeneous simple singularities

with \;, d; € C.

The action of Z/2Z needs to be consistent with the action on the singularity computed
with matrices. It is known that the singularity C?/I" is defined by {X*+Y3+2Z2 = 0} with
1 .
X = 108121,22(211—2%), Y = exp(%)(zf+z§+14(zlzg)4), Z = (zf+z§)3—36(zlzg)4(zf+z§),
(cf. Theorem for the notation), and that

X = -X,
oY =Y,
0.4 = -Z.

We adopt the following notation: ®(iyis...1x) := Tr(cp?lgpi?l np%gpg . ..cp?k@fk). After
computation of the special fiber of the moment map, we find that C2/F ~ {a:4+y3+z2 =0}

with | z = ex%%)é(zl%) which implies
y= @(4252)’

z = ®(32425%) + 10(4%5)?,

0.2 = —(\s505) % \dar,
g.Y = (/\454)\565)2y,
o.z2 = —()\454)\555)2@(324252) + (—()\454)\5(55)2 + %()\454()\555)2)2)(1)(425)2.

For the action to satisfy our conditions, it needs to verify A4d4 = 1 and A505 = 1.

4.3.2.4. Computations for C?/T" of type Dy and I'/T" = &3

The McKay quiver of type Dy is

0@ ®:
o3 o4
b
a 4
®o 9 ¥3
[ )
@} o4
o} o}
1@ Qo
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4. Deformations and quiver representations

WehaveF:’DQZ((é —O’L)’((z) (l))) and IV = O = ( (6 ( )cz
1 -1
% (6_6 66 )) with € = exp(Z). Then I'/T = {1,¢,¢*,a@,ac,ac’} = (¢,a) = G5 with &> = 1

and @ = 1, the symbol ~ meaning the class modulo Ds.

The action of 2 on the Dynkin diagram permutes the vertices with ¢ acting as (143)
and @ as (34). We extend this action to the extended Dynkin diagram of type A(I') by
making € fix the additional vertex labelled 0. The action of Q2 on M (I") arises naturally
from its action on the extended Dynkin diagram. Hence the action of Q on M (T") needs
to verify

C(8007@0790179017%73780379047%04) (SDOa8007>\3803753<P37/\49047544P47/\1901751901)
a. (300780079017 (1017 ()0373037@47904) (SOO,@0,@1,@1,Oé4§04,ﬁ4§04,0[3§03,,83§03)

with )\i,&;,ai,ﬁi eC.

It was proved in Theorem that C?/T = {X3 +Y2X + Z2? = 0} with
X (le’g) . We can then compute

2 (Zl + ZQ)
Z 5 Lo12a(2f - 23),

eX = =X aX = X,
ey = 3EY and ay = -V,
¢z = Z, aZ = -Z

After computation of the special fiber of the moment map, we get that C?/T" = {3 +y?z+

2 = 0} with | z=273 exp(%)ﬁs% and | po3 = Tr(pSedbepd), which
y =25 exp() (po3 + 1p3a), p3a = Tr(D3050504),
2 = qos4, qo34 = Tr( b0t 0h050508),
implies
e = \oi oy 5, and
cy=25 exp(Z) (~Aadapss + Aads (2L —1)pg3),
c.z =2z,
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4.3. Deformations of inhomogeneous simple singularities

a.x = azfzay s,
1 .
a.y =25 exp(F) (pos(—aBs) + psa(F03B30ia By — aufBy)),

a.z = —a363a464z.

In order for the action of I'/T" on M(T') to induce the natural action of &3 on C?/T'
we need /\1(51 = )\353 = )\4(54 = 1,

a3flz = ayfy = -1.

If T'/T = Z/3Z, the results are similar.

4.3.2.5. Conclusions

In the last four subsections, conditions have been found in order to ensure that the
restriction of the action of Q on M(T') to the singularity C2/I" corresponds to the action
we computed using matrices in Theorem The results are summarized in the
following table:

Type of singularity Conditions on the action

A= -1, 0<i<2r-1,
M7t Ai =TT 6 = (-1)"
Cr=(Dyy1,2/2Z) ArOr = Aps10p41 = 1

Fi = (Es,2/22) A6 =1 and A = £1

B, = (Ag,-1,2/22)

A161 = A3d3 = by = 1,
GQZ(D4,63) 101 303 404

a3flz = ayfy = —1.

4.3.3. Choice of an orientation

Let M(T') be the representation space of the McKay quiver @) defined in Subsec-
tion By definition, we have M(T') = @qcq, Hom(V(4), Vi(a)). It is known that
between two connected vertices there are two arrows, one in each direction. For every
such pair of arrows, let us choose one. All the selected arrows form a subset Q7 of Q1.
Hence one can write
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4. Deformations and quiver representations

M(T) = ®aeqr (Hom(Vyay, Vi(a)) ® Hom(Vya), Vica))):
= @ucqr Hom(Vy(a): Vi(a)) ® @ucqr Hom(Vy(a): Vi(a) )
= @ucqr Hom(Viay: Vica)) ® Bacqr Hom(Vi(ay: Vi(a)) ™
= @ucqr Hom(Vy(a), Vi(a)) @ (Bucqr Hom(Viay, Viay))™

Therefore M (I") can be seen as the cotangent space on the vector space

Dacqr Hom(Vy(a), Vi(a)).- The choice of @7, which is the equivalent to the choice of
an orientation of @), determines the space on which the cotangent fiber is constructed.
Conversely, the choice of the base space of the cotangent fiber will define a subset Q7 of
@1 and so an orientation of Q.

Theorem 4.3.2. The action of Q =T"/T on M(T) is symplectic when:
o for (Ag,-1,2/2Z), Q reverses the orientation of the McKay quiver.
e for the other cases, §) preserves the orientation of the McKay quiver.

4.3.3.1. Proof of Theorem for the type (Ay_1,2/22)

The McKay quiver of type Zg,«,l is

. bl . ................................. . b,r‘_2
P —
bo b1
ao Qr-1
® ®
a2r-1 ar
b2r—1 b'r
a2r—-2 Qr+1
o @ i @
2r-2 r+1

It was showed in Subsection that the action of I''/T' = Z/2Z =< o > needs to verify

o.(aog,...,a2-1,b0,...,b2r_1) = (A2r_1b2,—1, ..., Aobo, O2r—1a2,-1, . . ., dpag)-

with \;,8; € C.

Let ¢ = (ag,...,a27-1,b0,...,b2,-1) and ¥ = (cop,...,c2r-1,do,...,do,—1) be two ele-
ments of M (I"). We are going to compute (p,?) and (0., 0.1) with (.,.) the symplectic
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4.3. Deformations of inhomogeneous simple singularities

form defined in Subsection M (T) is a vector space so it is identified with its
tangent space. Furthermore, o acts linearly thus ¢ = do. Then

2r-1 2r-1
{0, 9) = Z(:) (€(ai)(aids) + e(bi)(bici)) = ;) e(a;)(aid; — bic;)
and
2r-1
(O’.QD, O"gb) = Z(:) e(bgT_l_i))\i&(aidi - bZCZ)

For Q to act symplectically it requires that e(a;) = €(b2r—1-i)Ai0; < \;id; = €(a;)e(bar-1-;)
for all i. However, for o to induce the right action on C2/I', it is necessary that \;é; = —1
for all i (cf. Subsection. Then we get €(a;)e(bay-1-;) = —1. But the arrow a; is sent
to the arrow by,_1-; by o, thus the equality €(a;)e(bay—1-;) = —1 means that o reverses
the orientation of Q.

From now on the McKay quiver of type As,_; will be equipped with the clockwise
orientation:

o o PORLE SN
Lo —
bO br—l
agp Ar-1
®
Qa2r-1 ar
bar_1 br
a2p-2 Qr+1
@ i @ [ )
bzr_g br+1

Then all a;’s are positive and all b;’s are negative.

4.3.3.2. Proof of Theorem for the type (D,.1,Z/22)

The McKay quiver of type Dy, is
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4. Deformations and quiver representations

1 r+1

It was showed in Subsection that the action of I'V/T' = Z/2Z =< ¢ > needs to verify

b b b
0;)(908, L2V IERER) (bp?_D Or—1Prs Prs (P§+1v 90r+1)
(9087 ¥0s - - 790;‘!,17 Pr-1s )‘7“+190g+175T+130r+17 P TQOT)

with \;, d; € C.

Let ¥ = (9087 90?)’ AR Soga Qo?w ¢g+17 90?“+1) and ¢ = (d}(a)? @bg, ce a¢r7wr7¢r+1’ 713+1) be two
elements of M(T"). We are going to compute (¢,?) and (o.p,0.1)) with (.,.) the sym-
plectic form defined in Subsection M (T") is a vector space so it is identified with
its tangent space. Furthermore, o acts linearly thus o = do. Then

r-2 r+1

Z (e(e)Tr(@fe7) + e(0)) Tr(iwf)) + 2 (el Tr(wfe?) + e(9)) T,

=0 =7
r—2 r+1

= 6(%)(Tr(<p?¢f) Tr(Qvf)) + 3. e(0f ) (Tr(pfe?) - Tr(gtey)),

=7

@

and

r—2

(0.p,0.0) = Z(:) (@) (Te(pfo7) = Te( i) + (@) Arardran (Tr(f1 970 -

Tr( P71 9e1)) +e(9p) A (Te(f9)) = Tr(@d))).-

For Q to act symplectically it requires that e(¢f)Ar116,11 = €(pf, 1) and e(p, ) Ar0r =
e(¢?), which is equivalent to the system

e(@r)e(pran) = Ars16r41,
6(90g+1)5(90g) = Ardp.
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4.3. Deformations of inhomogeneous simple singularities

However, for o to induce the right action on c? /T, it is necessary that A0, = A\py10,41 = 1
(cf. Subsection [£.3.2). Then we get €(¢%)e(p%,) = 1. But the arrow ¢f is sent to
the arrow ¢?%,; by o, thus the equality e(¢?)e(¢?,;) = 1 means that o preserves the
orientation of Q.

From now on, the orientation of the McKay quiver of type Dy, will be all a;’s are
positive and all b;’s are negative.

4.3.3.3. Proof of Theorem m for the type (Fs,Z/22Z)

The McKay quiver of type Eg is

o () () o o
o o5 o8 o5
oh || ei
@
@ || et
Q!

It was showed in Subsection [4.3.2]that the action of I'/I' = Z/2Z =< & > needs to verify

b010p8,¢8,f?,¢?,¢5,¢§,@§,¢§,¢Z,¢Z,¢%:¢g): )
(9087 2t /\2S0(2la 52()027 A1()0(117 51()017 @%7 L3, )\5@?:7 559057 )\48027 54904)'

with A;, d; € C.

Let ¢ = (02,8, ..., 0%, ¢8) and ¥ = (Y&, ¥8,..., ¢, 9L) be two elements of M (T').
We are going to compute (¢,1) and (o.p,0.1p) with (.,.) the symplectic form defined
in Subsection M(T") is a vector space so it is identified with its tangent space.
Furthermore, o acts linearly thus ¢ = do. Then

5

(@, 9) = 3 el (Tr(pf?) = Te(pfef))

1=0

and
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4. Deformations and quiver representations

(0.0,00) = €(08) (Tr(pdd) - Tr(whv§)) + e(9$) Aad2 (Tr(§h) — Tr(whe5))
+e(9$) A6 (Tr(fvh) — Tr(pv8)) + e(0) (Tr(wiyh) — Tr(ph94))
+e(0) X505 (Tr(p2vl) — Tr(p8vs)) + e(p8) Aada(Tr(p§es) - Tr(@he))).

For €2 to act symplectically it requires that

e(p)e(93) = A161 = Aada,
e(p])e(@s) = Aabs = A505.

However, for o to induce the right action on C2/T", it is necessary that Asé; = 1 (cf.
Subsection [4.3.2]). Then we get \5d5 = €(¢])e(pf) = 1. But the arrow ¢} is sent to

the arrow g by o, thus the equality means that o preserves the orientation between
6 i 4 6 ¢ 5

.;b. and .;b.. One notices that there are no conditions on the orientation
P4 s
of the arrows indexed by 1 and 2.

From now on, the orientation of the McKay quiver of type FEs will be all a;’s are
positive and all b;’s are negative.

4.3.3.4. Proof of Theorem for the type (D, S3)

The McKay quiver of type Dy is

0@ o
o} 3
b
a
®o 9 ®3
[ )
o8 4
o} A
1@ [

It was showed in Subsection that the action of I/T' = Z/3Z =< o > needs to verify

U'(SO(Olﬂ ()02077 ()OclLv @?7 SO§7 90?),7 9027 SOZ) = (9087 8087 )‘3S0§7 53()02[’7,7 A4¢Za 54()027 A1()0(117 61@?)

with \;, 8 e C.
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4.3. Deformations of inhomogeneous simple singularities

Let ¢ = (08,65, ..., 0%, ¢}) and ¥ = (&, 48, ...,1%, %) be two elements of M(T).
We are going to compute (@, ) and (o.p,0.90) with (.,.) the symplectic form defined
in Subsection M (T) is a vector space so it is identified with its tangent space.
Furthermore, o acts linearly thus ¢ = do. Then

()= 3 (el Te(pfer) + () Tr(wiui)) = 30 el (Tr(pfy) - Tr(ef)

1=0,1,3,4 1=0,1,3,4

and

(0.0,0.) = (D) (Tr(ih) - Tr(whibd)) + e(9}) Asds(Tr(@3ebh) - Tr(hg)) +
e(£5)Aa64(Tr(p§h) = Tr(phef)) + e(0§) Adr (Tr(pfy]) - Tr(Lhu)).

For ) to act symplectically it requires that

e(¢f) M1 = e(p7), A101 = (@] )e(¥f),
e(p)A303 = €(93), <= | A303 = e(p])e(¢}),
e(¢§)A104 = €(). Adg = e(@f)e(@f)-

However, for o to induce the right action on C?/T, it is necessary that \;6; = A3d3 =
Agd4 =1 (cf. Subsection [4.3.2). Then we get (] )e(]) = €(¢])e(¢s) = e(¥§)e(v]) = 1.
But o permutes circularly the triple (¢, %, ¢4), thus o preserves the orientation of Q.
Remark 4.3.3. One can replace Z/3Z by &3 and the result remains the same.

From now on, the orientation of the McKay quiver of type D, will be all a;’s are
positive and all b;’s are negative.

4.3.3.5. Conclusions

During the last four subsections, conditions have been found in order to ensure that
the action of Q on M(T") is symplectic. The results are summarized in the following
table:
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4. Deformations and quiver representations

Type of singularity Conditions on the action

B, = (A2,-1,Z2/2Z) | e(a;)e(bor—1-;) = Xid;, 0<i<2r -1

Cy = (Drs1,2/22) e(@r)e(prsn) = Arbr = Ar16741

e(p1)e(p3) = Ad1 = A2da,

e(p1)e(p5) = Aada = A565.
A1 = e(p1)e(]),

G2 = (D4, G3) Asd3 = (0 )e(5),

Ay = e(p5)e(])-

Fy=(FEs,2/22)

One can see that by setting constants \;,d; such that they verify the conditions in
Subsection and an orientation like in Theorem the action of Q on M(T") is
both symplectic and induces the natural action on the singularity C?/T". It follows that
we proved the following result:

Theorem 4.3.4. For any McKay quiver built on a Dynkin diagram of type Asy_1, Dri1
or Eg, there exists an action of Q =T'/T' on M(T') that is both symplectic and induces
the natural action on the singularity C?/T.

4.3.4. Compatibility of the action of I''/T" on G(I)

In the preceding section we saw how to define a natural action of Q = T/T" on M(T")
such that the action is symplectic and induces the right action on the singularity C2/T.
We now want to define an action of I'V/T on G(I") such that 7.(g.¢) = (7.9).(y.¢) for
all v e IV/T', g € G(T") and ¢ € M(T'). Furthermore the morphism 7 : Z — h has to be
I'"/T-equivariant. The action will be found by a case by case analysis.

4.3.4.1. Case A(T") = Ay

The orientation of the quiver is all a;’s are positive. Let g = (go,...,92--1) be a
representative of an element in G(I') and let ¢ = (ag,...,a2.-1,b0,...,b2r—1) € M(T).
We have I'"/T' = Z/2Z =< o >. Set

g.p= (_bQT—la L) _b’l‘7b7"—17 o '7b07a27’—17 sy Qpy=Qp-1,- .., —CLO).

It can be verified that this action abides by the conditions of the previous section and is
then symplectic, induces the natural action on the singularity C?/T" and verifies o2 = Id.
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4.3. Deformations of inhomogeneous simple singularities

Let © act on G(I") by

0.9 = (907927“—17 ... ,g1), for any g € G(I‘),

One may check explicitly that the desired relation o.(g.¢) = (0.9).(0.¢) is satisfied.

Proposition 4.3.5. The action of Q on G(I') induces the correct action on the Cartan
subalgebra § of type As_q.

Proof. By definition G(T') = [15* GLg4,(C)/C* with d; = 1 for all i. T'/T acts on G(T') by
permuting the i-th and (2r—1)-th coordinates for all ¢ > 1 and fixing the 0-th coordinate.
As the action is linear, it stays the same on g(I') = Lie(G(I')) = @";'gl,, (C)/C. Z is
defined as the dual of the center of g(I'). Let z € Z. Then there exists zg, ..., 22,1 € C
such that 23;‘51 dizi =0 and z = (20ldg,,- .., 22,-11dg,, , ). Then the action of I''/T on Z
is given by

0.2 = (20, 227-1y -+, 21)-

Thus I'’/T" acts on Z by permuting the coordinates ¢ and 2r — 1.
Let (af,...,a3,_1) be a base of a Cartan subalgebra h of the Lie algebra of type Ag,q_1,
with (aq,...,a9--1) being a base of the root system of type Ag,_1. I'’/T" acts naturally

on h by permuting the i-th and (2r —i)-th coordinates. The isomorphism 7: Z 5 h was
computed in Section and is given by

T Z -
z = h
with a;(h) = -z;, for all 1 <4 < 2r —1. Using the fundamental root system and its
coroot system, it can be verified that 7(0.2) = 0.7(2) for all z € Z. Hence 7 is I'"/T-
equivariant. ]
4.3.4.2. Case A(I') =D,
Let g = (go,-..,9r+1) be a representative of an element in G(I') and let

©=(0%¢") gcicrin €M(T). By definition I'/T' = Z/2Z =< & >. Set

iEr—1

O-'QO = (@87@87@%790?7 cee 7@?+17902+17§0?a QO?)
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4. Deformations and quiver representations

It can be checked that this action abides by the conditions of the previous section (an
analysis has to be made depending on the parity of r) and is then symplectic and induces
the natural action on the singularity C2/T.

Let © act on G(T") by

0.9=(90,91: -+ 9r-1,Gr+1,9r),

Then the desired relation o.(g.¢) = (0.9).(0.¢) is verified.

Proposition 4.3.6. The action of Q on G(I') induces the correct action on the Cartan
subalgebra b of type D,.1.

Proof. G(T) = [1724 GL4,(C)/C* with d; = 1 for i = 0,1,7,7 + 1, and d; = 2 otherwise.
IV/T acts on G(I') by permuting the r-th and (r + 1)-th coordinates. As the action is
linear, it stays the same on g(I') = Lie(G(T')) = /%y gl;,(C)/C. Z is defined as the dual
of the center of g(I"). Let z € Z. Then there exists zo, ..., zy+1 € C such that 2201 d;zi =0
and z = (20ldg,, . .., 2zr+11d4,,, ). The action of I''/T" on Z is given by

0.z = (207217 s 7ZT—17ZT+1727‘)-

Hence I'"/T" acts on Z by permuting the coordinates r and r + 1.
Let (of,...,a;),1) be a base of a Cartan subalgebra b of the Lie algebra of type D,.1,
with (a1,...,a,+1) being a base of the root system of type D,.1. I''/T" acts naturally on

b by permuting the r-th and (r + 1)-th coordinates. The isomorphism 7: Z = b is

T 4 - b

z ~ h
with a;(h) = —z;, for all 1 <4 < r+1. Using the fundamental root system and its
coroot system, one may verify that 7(0.z) = 0.7(2) for all z € Z. Therefore 7 is I'"/T-
equivariant. ]

The cases for Fg as well as (D4, &3) are dealt with in a similar fashion.

4.3.5. Flat coordinates

The field on which we work is the complex number field C.
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4.3. Deformations of inhomogeneous simple singularities

4.3.5.1. Definition of flat coordinates

Flat coordinates were defined by K. Saito in [Saito79] and [Saito83] in the context
of flat structures of tangent bundles of parameter spaces of universal unfoldings. This
setting goes beyond the scope of this thesis, so the definition will be given only for the
simple singularities.

Let b be a Cartan subalgebra of a simple Lie algebra g of rank r with simply-laced
Dynkin diagram, and W the associated Weyl group. According to Chevalley’s Theorem
(Theorem , the ring S(h*)" of W-invariant polynomials on b is generated by
r algebraically independent homogeneous polynomials Py, ..., P. of degrees m; + 1 =
2<...<mp+1="h, h being the Coxeter number of g. Let A be the product of all
the linear functions defining reflection hyperplanes of reflections in W (A? is called the
discriminant of ). Then A is a fundamental anti-invariant of W and is a homogeneous
element in S (f))% The polynomial A? is W-invariant and can thus be written as
A? = ao Pl + alP:_l +...+a,, with a; a polynomial in Py, ..., P._1 of degree hi. Let s be
a Coxeter element (cf. Definition . The eigenvalues of s are h-th roots of unity.
Let £ € h be an eigenvector of s associated to the eigenvalue exp(m%). Because degP; < h
for 1 <4 <r, one has P;(§) =0 for 1 <4 < r. Therefore a;(§) =0 for 1 <i < r and
A(€)? = agP,(¢)". One can show (cf. Proposition 3, §6, V in [Bou68]) that A(¢) # 0,
hence ag £ 0.

Let x be the Killing form on §. It induces an inner product

I(dPi,de) = me OB %H(xmal‘n)

0T OTn
on the cotangent vectors dP; (i = 1,...,r) on h/W. The following proposition can be
found in [SekYan79].

Proposition 4.3.7. There exists a constant ¢ such that
det(I(dR-, de)lSi,er) = CA2.

The proposition implies that the inner product degenerates along the discriminant.
Set D := %. Because the degree of P, is maximal among the generators of S(h*)",
D is unique up to scalar multiplication. We define a new inner product J(dP;,dP;) =
DI(dP;,dP;) on h/W. The next theorem comes from [SYS80].

Theorem 4.3.8. The following assertions are verified:
1. Jis a non-degenerate bilinear form and det(J(dP;,dP;j)1<i j<r) = ao.

2. The inner product J does not depend on the coordinates Py, ..., P;.
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4. Deformations and quiver representations

3. There exists affine linear coordinates, say Q1,...,Qr, on h/W, such that, for any
1<id,j<r, J(dQ;,dQj) is a constant. These coordinates are called flat coordi-
nates.

The next proposition is proved in [Yano80| and explains why we take interest in flat
coordinates.

Proposition 4.3.9. Let h be a Cartan subalgebra of a simply-laced simple Lie algebra g,
and W the associated Weyl group. Then the action of any automorphism of the Dynkin
diagram of g on h/W is linear relative to flat coordinates.

In the next subsections flat coordinates for g of type Ao,._1, Dyy1 and Eg will be
explicitly given for later purposes. For more details on flat coordinates, the reader may
consult [Saito93] and [Saito01].

4.3.5.2. Flat coordinates for A, _;

Set g a simple Lie algebra of type Ag,_1, h a Cartan subalgebra and W the associated
Weyl group. Let &1,...,&, be an orthonormal basis of a Euclidian space V = R?*". j
is isomorphic to the subspace of V defined by {¥# x;& € V | X2, z; = 0}. The set of
roots of Ap,_1 consists of & —&; (1< 4,5 <2r and i # j). The Weyl group of type Ag,_1
is G9, and permutes the §;. Hence the ring of W-invariant polynomials is generated
by €9,€3,... €2 with €,(§) the i-th elementary symmetric polynomial in 2r variables

€=(&,..., &), Set I=1{2,3,...,2r}.

According to [SYS80], flat coordinates for Ag,_; are 19,3, ..., 19, with

(-1 (5 (h-i+1),d-1))

d
bi= ), = X
d>1 :
where
d _ . .
X = Z €ip - €iy-
11+...+10 =1
ijEI

and (a,n) =a(a+1)...(a+n-1). For any i € I, 1; is a homogeneous polynomial of
degree 1.
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4.3. Deformations of inhomogeneous simple singularities

4.3.5.3. Flat coordinates for D,

Set g a simple Lie algebra of type D,.1, h a Cartan subalgebra and W the associated
Weyl group. Let &1,...,&41 be an orthonormal basis of a Euclidian space V = R™*!,
The set of roots of D,,; consists of § +&; (1 < i < j < r+1). The Weyl group
of type D,1 is the semi-direct product (Z/2Z)" x &,,1. &,41 permutes the & and
(Z/22)" acts by & — (£1);& such that [];(£1); = 1. Hence the ring of W-invariant
polynomials is generated by 2,24, ..., T2, % with 2o = €(£2) with € = (&1,...,&41),
€; the i-th elementary symmetric polynomlal in r + 1 variables, and @ = H”ll i Set
I={2,4,...,2r}.

According to [SYSS80], flat coordinates for D, are 9,1y, ..., 12,9 with

(-1 (h-i+1),d- 1))Xd

=Y

i
d>1 d!
where
d
X% = Z Tip .. Ty,
+...+0g=1
ij el

and (a,n) =a(a+1)...(a+n-1) (the formulas are similar to the case As,_1, except
for Xl-d who is now a function of the z;’s rather than the ¢;’s). For any i € I, 1; is a
homogeneous polynomial of degree .

According to the preceding formulae, flat coordinates for Dy are 19,14, 1¢ and ¢ with

4

2

o = 1o :ZEia
1=1

4
wen-did= ¥ gg- 060

1<i<j<4

Vo = 76~ T+ 35a = D) fgék——@s (X &)+ 216(Zf>3

1<i<j<k<4 1<i<j<4

P =£1628384.

They will be used in Subsections [£.3.7] and [£.3.8
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4. Deformations and quiver representations

4.3.5.4. Flat coordinates for Fj

The computation of flat coordinates for type FEg requires a more delicate approach
than the previous cases. In [Frame51], J.S. Frame studied the Weyl group W of type
FEg as the group of automorphisms of the 27 lines on a non-singular cubic surface. He
described the 27 lines as 27 complex triples:

(0,w?, w") with A\, p=1,2,3,

(—w*,0,w) with A,z =1,2,3,

(W, —wh,0) with A,z =1,2,3,

with w = exp(%). By taking x1,y1,%2,y2, 3, ys the real and imaginary parts of the
complex triples, Frame identified the 27 lines with the 27 vertices of a polyhedron in RS
and W as its group of symmetries. The polyhedron has 36 hyperplanes of symmetries,
each given by its normal vector which is one of the following:

Dy = %(cmsmc)\,sA,cM,sM)T with x, A\, u=1,2 or 3,
Dy 0.0 = (=84, ¢x,0,0,0,0)T with k=1,2 or 3,

Do =(0,0,-5y,¢x,0,0)7 with A =1,2 or 3,

D070a# = (07070707 _SuaC#)T with p=1,2 or 3,

with ¢, = COS(QGT”) and s, = sin(zaT”). Let s, = Id - 2Dy D}, with k a triple, denote
the reflection in R® of hyperplane whose normal vector is Dj. Frame proved that W is
generated by s1,0,0,50,1,0550,0,1553,0,0, 50,0,3 and $33 3.

Let aq,...,aq be a basis of the root system of type Fg, and index the Dynkin diagram
in the following way (it is the indexation that will be used for the computation of the
semiuniversal deformation):

1 4 6 5 2
® ® ® ®
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4.3. Deformations of inhomogeneous simple singularities

Remark 4.3.10. The indexation used here is not the standard one used in reference
books like [Bou68], which is

1 3 4 5 6
® ® @ ®

If sq, denote the simple reflection in W associated to «;, then sq, () = a; — ¢ji0u;,
2 0 0 -1 0 0
0 2 0 0 -1 0

with (c¢ij)1<i<6 = _01 8 (2) 8 8 :% the Cartan matrix of Fg. With the Cartan

o -1 0 0 2 -1

o 0 -1 -1 -1 2
matrix, one can identify the s,,’s with their corresponding sj, and as such identify the
«;’s with the Dy’s. The correspondence is as follows:

a1 <> \/2D300 =2(0,1,0,0,0,0)7,
ag <> /2D 3 =/2(0,0,0,0,0,1)7,
as < /2Dy 10 = v2(0,0, ——,—‘ 0,0)",
Oé4<—>\/_D100—\/_( ¥8,-3.0,0,0,0)7,
a5 < V2Doo.1 = v2(0,0,0,0,-2, - 1)T,

Qg <> \/§D3,3,3 = \/g(lvoa 1,0, 17O)Ta

S0 ¢ii = 2 = ||a||?, for any 1 <4 <6.

Set p; = m? + y?, q; = %:):;9’ - xiy? for 1 <7 < 3, and define two differential operators ©

and A by

0 = 221 (3ai(pj - i) ~ 2pi(gj — a)) 5o + (507 (pj — pi) — 34i(a5 — )

0g;

for (ijk) = (123), (231), (312),

3
A= Zi: Bp 5. Pi g Bp +12¢; 55— 8p Bq +pz dq
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4. Deformations and quiver representations

Set A=py+pa+ps, B=1OA, H=0B,C=%~AH, J=4(0C-3A’B), K = 20.J. Then
it is proved in [SYS80] that flat coordinates of type Eg are given by

T;Z)2:Aa
Q;Z)E):Bv
7/)6:0_%143’

Yy =H - LTAC + 55 A*,

P19 =K - §A?H - £C? + 2-A3C - AB? - ;- A5

4.3.6. Semiuniversal deformation of type B, = (A._1,2/2Z)

We have I' = Co, and IV = D,.. The McKay quiver Ag,_; is

by by_
L ) @ i@ o
ai Q-2
bo b1
ao Qpr-1
®
a2r-1 Qp
b?r—l br
a2r-2 Qrt1
o @ i@ o
2r-2 r+1

The orientation has been chosen as €(a;) = —€(b;) = 1, for any 0 <i < 2r - 1. M(I") is
the space of representation of this quiver with dimension vector (1,...,1):

M(F) — C2r ® C2r )
{(ao,.. .,agr,l,bo,... ,bzrfl) | ai,bi € C}

Furthermore G(I") = (C*)?"/C* = C?~! and the action of g € G(T') on M (T) is done by
conjugation:
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4.3. Deformations of inhomogeneous simple singularities

g-(ao, .. azr-1,b, .. bar-1) = (9165 a0, - - - 90ga,-1a2r-1, 9097 bos - - -, G2r-195  b2r-1)-
It was computed in Subsection [£.2.2) that the procedure by H. Cassens and P. Slodowy

leads to

2r-1
b

(I1 G- A) =} = MD/G(T) =
i= Aoy -y Aore1,,y,2) = (Ao, - ey A1)

which, according to Section [4.2.1] is the pullback of the semiuniversal deformation of
Xo=a1(0) = {(z,y,2) € C3 | 2% = zy}, a singularity of type Az, ;.

The following diagram:

M(T)//G(T)z Xt xgyw b L X
a O o

is the pullback of the semiuniversal deformation X 54 h/W of Xj.

It is known that C[h] = C[zo,...,z2_1]/(x0 + ... + z2,_1) and C[h/W] = C[p]V
Clv2(x), ..., Y2 (x)] with the 1);’s being the flat coordinates from Subsection [4.3.5.2

Because W is finite and C[h/W ] < C[h], there is a surjection

b - b/‘@f .
(Aoy-- oy A2r21) = (2 (M), ... 2 (M)

Tr =

If A € b, then one computes [[7 (2= \i) = 227 + 27, (~1)%¢;(\) 22~ with ¢; being the
i-th elementary symmetric polynomial in 2r variables. It is proved in [SYS80] that

e @r-itl,d-1) 4
“T Lo Y

where
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4. Deformations and quiver representations

Y= > Yiy - iy
it tig=i
iie{2,...,2r}
and (a,n) =a(a+1)...(a+n-1). Hence for any i € {2,...,2r}, there exists a polynomial

fi such that €; = f;(¥), with ¢ = (¢a,...,19,.). Set
2r ) )
X[‘ = {(m,y,z,h, e ,tgr) € C3 X b/W | ZZT + Z(—l)lfi(tg, e ,tQT)z2r—z = l'y}
i=2

There are two maps

a: Xr - h/W and
(z,y,2z,te,... . tap) > (to,...,ta)
T h/W

h — .
()\0,...,)\27_1) = (wg()\),,wgr()\))

Then the pullback of these maps (or fibered product of these two maps) is
X xpw b
{((xvya'z?tZa" '7t27‘)7 ()‘07" 'a>\2r—l)) e X x b | a(xayaz7t25' . ',t27“) = 77()‘0" .. 7A27‘—1)}7
{(($7y727t27” '7t27‘)7 ()‘07" '7)‘27”—1)) €X x h | (t27" . 7t27") = (1/}2()‘)7 71/}27‘()‘))}7
2r ) .
{(x7yaza)‘07 .. -7)\27‘—1) € C3 X h ’ Z(_l)lfz(wQ(A)v s 7¢27’(A))22T_1 = xy}a
i=0

2r-1

{(z,y,2, X0, -, A2r1) €CP x b | [] (2= Ni) = 2y},
i=0

M(T)//G(T),
and Xr:=a"1(0) = {(z,y,2) e C® | 2% = xy}. It is indeed an As,_1-type singularity.

We now need to verify that all the maps in the pullback diagram are Q-equivariant,
with Q:=T"/T'=Z/2Z =< 0 >.

One sees that

\Il: XF Xh/Wb —> Xl" .
(lU,y»Za )\07 sy )\27'71) g (x7y>z7¢2()‘)7 s 7w27‘()‘))

W is surjective if and only if for all (2,7, 2,ta,... ta,) € C3 x h/W with
2242 (<1) fi(ta, . . . ta, )22~ = xy, there exists A € b such that ¢g(X) = ta, ..., 12 (N) =
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4.3. Deformations of inhomogeneous simple singularities

to,. It is a system of 2r — 1 polynomial equations in 2r variables with the relation
231‘5 L'\; = 0 because g = slo-(C). As the field C is algebraically closed and the v;’s are
algebraically independent, there exists a solution. Hence W is surjective.

o Let (x,y,2,00,---,A20-1) € M(T")//G(T"). With the action of 2 on M(T') from
Subsection and the change of variables we did in Subsection we obtain

O'.(l’,y, 2, >‘07 ) >\2T71) = ((_1)ry> (_1)7”:13’ —Z, _>\2T717 SRR _>\0) € XF ><I)/W b

Therefore &(o.(x,y, 2, Aoy - - -, A2r-1)) = (=A2p-1, ..., =Ag) =20.(No,-- -5 A2r_1),
= U.a()\o, ceey )\27’—1)7

and @ is Q-equivariant.

o If (2,9, 2, Ao, - .., Aay_1) € M(T)//G(T), then

\II(U'(xv Y, %, /\07 ) /\27"—1)) = \Ij(((_l)Tyv (_1)T$7 —Z, _/\2r—17 ceey _/\0))7
((_1)ry7 (_1)7"1;’ —Z, 77[)2(_)‘)7 s 7w2r(_)\))7
: U-(l’,y, Zan()‘)’ cee anT()\))7

o U (x,y,2, A0,y A2r-1))-

Hence the action of 2 on X1 makes ¥ an ()-equivariant map.

o If ()\0, e ,)\2r_1) € b, then 7'('(0'.(/\0, ceey /\Qr_l)) = W(—)\Qr_l, ey —)\0),
= (1/}2(_)\)7 s 7¢2T(_A))7
= (¢2(>‘)7 _¢3(A)a s 7¢2T()‘))7
= U'(wQ()‘)v 77b3()‘)> st 7¢27’()‘))7
= 0'.71'()\0, ey )\Qr,l).
Hence the action of Q on h/W makes 7 an Q-equivariant map.

We have just defined the action of €2 on Xp. It needs to induce the natural action on
the special fiber Xr = a~1(0) € Xy, i.e. the one obtained in Subsection [1.4.2.1 Xro

is defined by {z?" = xy} and Q acts on Xrg by | o.x = (-1)"y, The action of €2 on
0.y = (_1)T$7

g.2=—Z.
XF = {(377%277527 .. '7t27") € CS X h/W | Z2T + 212:2(_1)1]02(252) cee 7t27’)22r_i = ‘Ty} is

U'($7y527t25 “ee )tQT‘) = ((_1)Ty7 (_1)7”1,7 _thQa _t37t4a _t57 .. 7t27‘)'

Then on Xr, t; =0 for i > 2 and 0.(z,y, 2,0,..,0) = ((-1)"y, (-1)"x,-2,0,...,0), which
is the expected action on C?/T.
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4. Deformations and quiver representations

e Let us check the equivariance of «. For any (x,y, z,ta,...,t2,) € Xr,

alo(x,y,z,te, ... te)) =a((-1)"y, (1) x,—z,ts, —t3, tg,—ts5,...,ta),
= (t27 _t37t4a _t57 o 7t27‘)7

and o.a(z,y,z,ta,...,tay) = o.(ta,...,tay) = (ta,—t3,tg,—t5,...,t2). Hence a is Q-
equivariant.

Finally the diagram

Xl" Xh/Wh LXF
a O a

is commutative and 2-equivariant.

Let us place ourselves above (h/W)2. If (z,y, 2, to,...,t2) € o~ ((§/W)?), then
toi+1 =0 for any 1 <i <r—1. Furthermore a(o.(z,y, z,t2,0,...,t2)) = 0.(t2,0, ...t ) =
a(x,y, z,t2,0, ... to).

Set Xt = {(z,9,2,t2,0,...,t2,) € X}. Then the restriction ot Xrao - (6/W)® of a
is Q-invariant and

(@H)710) =a1(0)NXrq because 0 € (h/W)%,
= XroNXro,
= Xr,0 because Xty C X o.

Therefore o is a semiuniversal deformation of type (Agy_1,Z/2Z) = B,, result we ex-

pected from Theorem [£.3.1]

Remark 4.3.11. As the elementary symmetric polynomials ¢; appear naturally in
the expression of M(I")//G(T"), instead of the flat coordinates we could have chosen
(e2,...,€2,) as a system of coordinates for h/W.
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4.3. Deformations of inhomogeneous simple singularities

4.3.7. Semiuniversal deformation of type C5 = (D,,Z/22)

Set I' = Dy and I = Dy. The McKay quiver of type Dy is

0@ o
b 5
b
a’
%o 9 ¥3
[ )
@} o4
o} A
1@ ®:

The dimension vector of this quiver is (1,1,2,1,1), which corresponds to the coordi-
nates of the highest root of the root system D4. The orientation is all a’s are positive
and all b’s are negative.

We have Z = {(Mo,,u,l,ugldQ,ug,/L4) | Mo + (1 + 2,[1,2 + U3 + g = O}

In [LeBryPro90], it is proved that the ring of invariants of the representation space of
a quiver by the product of general linear groups associated with vertices is generated by
the traces of the oriented cycles of the said quiver.

We have uc(p) = (—gogcpg, —gol{@‘f, gogapg +g0‘11<pZ{ +(p§g0g +<ng02, —90l§¢§7 —SDZCPZ) and com-
pute uél (ko po1, 2l pig, p1a) [/ G(T).

b

o Cycles of degree 2: Tr(p%p?) = % = —p;, i=0,1,3,4.

i 2 7
o Cycles of degree 4: p;; = ®——@———®. TFor example, po1 = Tr(pjpiplps) =
Tr(pgepeie?)-
We have pii+pij +pir+pa =  Tr(opl (0ol +080? + oioh + o el))
with {ivja ka l} = {07 1,3, 4}7
= Tr(uapfel),
= TH2iy-
So ( po1 +po3+pos = —po(po + H2),
po1 +pi3+pia = —pa(pn + p2),
Po3+pi3+p3a = —p3(ps+ p2),
Poa+pia+p3a = —pa(pea + p2).

There are 4 linear equations with 6 unknowns. The matrix of the system is of rank 4.
There are then 2 independent elements and we choose pp3 and ps4.

e Cycles of degree 6: They are ¢;j, = Tr(cp%cpi@?gp?gpf@?) = Qjki = Qhij-
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4. Deformations and quiver representations

We have qijk +iji + Giji + @ij; = Tr((@peh + i o) + 0@l + 0dob) ot obplol)
with {7, k, 1} = {0,1,3,4},

p2Tr(p2eh ot eh),

H2pisz-

Furthermore g;ji = —pipij and qij; = —p;pij. S0 qiji + Giji = (b + 15 + p2)pij-

Finally ( goi3+qoia = (po+p1+42)Po1 = qios + qio4,
q103 + qo34 = (Mo + u3 + Mz)pos = qo13 t Qq304,
quoa +qzoa = (fo+ fa+ [2)Pos = Qo1 + G034,
q134 + qo13 = (,ul + u3 + MQ)p13 = @314 t 4103,
qo14a+q31a = (p1+pa+p2)Pia = qioa+ i34,
G134 + Qo34 = (p3+pa+p2)p3a = q314 + G304-

There are 12 linear equations with 8 unknowns. The matrix of the system is of rank 7.
Therefore there are 8 — 7 = 1 independent element and we choose ¢g34.

e Cycles of degree 8: They are z;;; = Tr(gp?cp?@iapicp?goggoggpf).

We have zijui + zijkk + Zighj + Zige = (0] 0] + @l + 0105 + ool b o ebot ob),
{i7j7 k? l} = {07 1737 4}7
= o Tr(ppeheihetel),
= H2Gijk-

We compute that zijkk = —pdijr, Zijki = —1iGijk and 2ijk; = DjkDij-
So ikt = (pi + [k + 12)Gijk — DijDjk-

Thus all degree 8 cycles are determined by elements with inferior degrees.
e Cycles of degree > 10: Starting from degree 10, for any cycle, there is at least one

repetition in the indices. Hence any element of degree k > 10 breaks down as the product
of two elements with degrees strictly smaller than k.

Eventually there are 3 linearly independent elements: pos3, p34 and goz4. By [LeBryPro90]
they generate the ring of invariants.

Because the space we want to exhibit is the pullback of the semiuniversal deformation
of a simple singularity, and that such a deformation is defined by a single equation (cf.
[KasSchle72]), a unique relation has to link the generators (or one can compute the
dimension of the quotient variety and see that it is a hypersurface). Let us find this
relation.

2
dp34

40344034,

qo34((po + p3 + p12)pos — (fo + o1 + p2)po1 + (po + fa + (2)Poa — ¢304)
qo34((po + p3 + p12)pos — (fto + o1 + p2)por + (fo + pa + f2)Poa) — 0349304,
%34((#0 + pu3 + ,u2)p03 - (,uo + 1+ p2 )p01 + (Mo + g + U2 )p04) — P03P04P34-
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4.3. Deformations of inhomogeneous simple singularities

We know that 2(p01 —p34) = —,u,()(uo + ,LLQ) — Nl(ﬂl + ,LLQ) + ,LL3(M3 + ,LLQ) + ,LL4(M4 + ,LLQ) and
Po1 + Po3 + Pos = —fo(fo + p2) thus por and pos can be expressed using po3z and p3s. By
reinjecting these expressions in the preceding equation, one finds

G234 = qo3a(po3 (13 — pa) + p3a(ps — p1o) + C) + pospsa(pos + p3a) + Pospsa B,

with C = i3 (p2 + p3) (1 + pa + p3) and E = 5 (po(po + p2) = pa(pn + o) + puz (s + ) +
palps + p2))-

Set qogq = Qo34 — 5 (pos (13 — a) + p3a(ps — po) + C). The equation becomes
Q654 = po3ps3a(pos + ps3a) + pospsa(D + E) + Aps + Bp3, + Fpos + Gpsa + H,
with

A= 1(p3 - pa)?,

B = 5 (p3 - pmo)?,

D = 3(pus - pa)(pis — p0),
F=1(p3-pa)C,

G =5 (p3 - po)C,
H=1c2

Set { Pl3 = po3 + B . The equation now becomes
Py =p3a+ A

q6234 = Po3P54 (P03 + P3g) + Apospsy + Bpos + Cpsy + D,

with

A= —papip - paps — popia — p3 — papa - Spaps — pspa - 33 - Spd - $ud,

B =L (s — pua) (s + pa) (2u2 + pg + pa) (21 + 202 + i3 + ua),

C = (p1 — pua) (1 + pa) (2 + py + pa) (2 + 202 + pu1 + 1),

D = — 55 (21 i + pa iz + pa pra + 2005 + 240413 + 24004 + papua + p3) (a3 + i1t

+2p19pta + prapia + ) (a3 = 1 g — 2pi2pta — pr3fes = 13)-
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4. Deformations and quiver representations

The equation is indeed of type Dy as predicted by Theorem [1.4.26] However we want
to look at the fibers over h/W, so the coefficients of the equation need to be invariant by
the Weyl group W. The coefficients A, B,C,D have to be expressible using Weyl group
invariants.

L

From Subsection [4.1.2} it is known that 7: Z h such that

(noldgy, - -, paldg,) = A
7(z) = h with a;(h) = —p;, V0 < i < 4. Hence an element p € Z can be identified with

v, —piAY , with (A}); being the fundamental coweights, i.e. the dual base of the simple
roots (a;);.
The Weyl group W of type Dy is generated by the ra]y’s with

(A\/) _ Av Q(A;/,Oz}-/) Vv
Ta}’ i = i (Oﬂ aV @,
777
| AYifi# g,

AY —a) ifi=3j.

2 -1 0 O

It is known that o} = iCijA]v‘ with ¢ = _01 _21 _21 _01 the Cartan matrix of type
g=1 0 -1 0 2
Dy. One sees that oy =2A] - A3,
ay =-AY +2Ay — Ay - A,
ay = —Ay +2A3,
ay =-Ay +2A}.

Hence ray (i) = ray(Tisg —idy) = Ay = (1 + p2)Ay — paAy — paAY, which means

M1 —H1 M1 H1+ 2
Tay Z; ~ ,Uzl;g,LLZ - In a similar fashion we compute rqy : Z; > Mz_f?% )
g jon Ha 2+ py
K1 H1 K1 H1
v H2 M2 + 3 v H2 M2+ [
Tai N ps |7 —us and 7y : | ms |
Ha Ha Ha “H4

It can be verified that the coefficients A, B,C and D are invariant by these transforma-
tions and thus are invariant by W.

The base we chose to use for h/W is the one with flat coordinates. Therefore the
coefficients A, B,C and D have to be expressed using 2,14, and 1 from Subsec-
tion 3531
It is known (cf. [Bou68]) that the simple roots of the root system of type Dj are
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4.3. Deformations of inhomogeneous simple singularities

a1 =e1 — ez, with (€;)1<i<4 the canonical base of h*. Let (€;)i1<i<a be its dual base.

Qg = €2 — €3,
Qa3 = €3 — €4,
oy =€3+ey.
. Vo
Again from [Bou68|] one finds Ay =er, We have a correspondence

A\Q/ :a"_@,
Ay =Lt(ET+ez+es—en),
Aj=5(e1+ex+ez+eq).
s Zle —pi\} = Zle &e;. It follows that §1=—p1—p2— %(M:& +14);  and so
&2 = —pa — 5(p3 + 1),
& = —5(p3 + p1a),
o =—5(pa — p3).
H1 = _gl +§2, We can now replace the p; in the coefficients A, B,C and D and we
M2 =—§2 +§3,

=N

p3 = —&3 + &4,
pa = —§3 — &4
obtain

A= _561(52)7
B = _64(5)7

C = 1-e1(£2)? - Jes(§) - Jea(E?),
D = 1(e3(€2) + ea()er (€9)),

with ¢; the i-th elementary symmetric polynomial, & = (&1,...,&) and €2 = (£2,...,€2).
Using the expressions from Subsection one finds

A= —31,

B=-v,

C=—5(¥+30),

D = (16 + 2hotha + Yiha + 713,

Set x = p4,, y = pl3 and z = g)34. The equation of the deformation becomes:
1 1 1 1 1 1
2 =ay(a+y) - Svamy = vy = S (0 + SV + (o + cthaths + by + ).

The coefficients are indeed invariants of W = &4 x (Z/2Z)3. According to Subsec-
tion it is the equation of the pullback of the semiuniversal deformation of type
Dy.
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4. Deformations and quiver representations

Set Xr= {(2,y,2 t2,t4,t6,t) €C* xh/W | 22 =ay(z +y) - %tz!zy -ty - %(t + %M)ﬂf
+1(t6 + gtats + tto + 1ost3) ).

b - h/W and
(51752753754) = (¢2(f),¢4(5),¢6(§),w(5))
a: Xr - h/W .
(957y72,t2,t4,t6>t) = (t27t47t67t)

We have 7:

Then Xr xp/w b
= {((@,y, 2,12, ta, 16, 1), (€1,€2, 83, 64)) € X x b | (@, y, 2, ti, 1) = (&1, 62,63, €4) }
= {(z,y,2,ti,4,65) | t2 = a(€),ta = Ya(€), t6 = P6(€),t = (&) and 2% = zy(x +y)
—Stowy —ty — 3 (t+ ta)w + S (te + Stoty + tta + 75513) ),
= {(@,5,2,6) | 22 = xy(z +y) - 5922y - P(E)y — 5(P(&) + 59 (8))x
+5(06(8) + §2()Pa(€) + P()P2(E) + 15512(€)®)},

= M D/[C).

Finally we obtain

Xr Xh/wf) LXF
a O !

with o being the semiuniversal deformation of Xr g = a™1(0) = {(x,y,2) € C? | 2% =
xy(x +y)}, which is a Dy singularity.

Previously we defined the action of Q =TI/ = Z/2Z =< o > on ug'(Z)//G(T) as being
the natural 3 <> 4 permutation.  also acts naturally on h by the permutation a3 < ay,
which corresponds to €5 <> —e;z. By setting o.(t2,t4,t6,t) = (t2,t4,ts,—t) for the action
of Q on h/W, we find that = becomes Q-equivariant.

We look at what happens above (h/W)%, i.e. the elements of /W that are Q-invariant.
One finds o ((h/W)) = {(z,y, 2, t2, t4,16,0) € C3xh/W | 22 = ay(z+y) - %tgxy— %t4x+

i(t6+%t2t4+ﬁt?2’)}. The action of Q on Xr g = a~1((h/W)%) is induced by the u3 <> pu4
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4.3. Deformations of inhomogeneous simple singularities

permutation. It was proved that | £ = P34+ l(MS - ,u4)2,
Y po3+z(u3—ﬂo)2,
z 4034 — %(p03(u3 — pa) + p3a(f13 = pto)
+ps(p2 + pa) (1 + pi2 + p3)),

and 3 <> iy

Because pos = —po3 = por — po(po + p2) and 2(po1 = p3a) = —po(po + p2) — pa(pr + p2) +
w3 (s + o) + pa(pa + p2), we obtain the following relations:

oxr =
oy = -—rx-y+ %tz,
oz = -z
Above the origin, the system is ( oc.x = z, It is known that the equa-
gy = P = —T-Y,
0.2 = qo43 = —-Z.

tion of the Dy-singularity is X (Y2 - X2) + Z2? = 0 and the natural Q-action (cf. Subsec-

tion|l.4.2.1) is { 0. X = X,
oY = -Y,
02 = -Z.

With our computations from the quiver we obtained the equation 22 = zy(z +y). Set
X = 4By, . Then X(Y2-X?)+22=0and ({ 0.X = X, The action on
Y = _41/6(y+ 5) oY = -Y,

oz = -z

the singularity is thus the correct one.

Finally our pullback diagram is 2-equivariant with the natural action on the singu-
larity, so the restriction o : Xr g — (h/W)% of a is Q-invariant and

(@)710) =a"1(0)NXrq because 0 € (h/W)*,
= XroNXro,

= X1, because Xt C X o.

Therefore o is a semiuniversal deformation of type (D4, Z/2Z) = C3 as expected from

Theorem [L.3.11

4.3.8. Semiuniversal deformation of type G, = (D,, S3)

Set I' = Dy and I' = O. The McKay quiver of type Dy is given in the previous
subsection and we keep the same notations.
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4. Deformations and quiver representations

The pullback diagram

of the semiuniversal deformation « of the singularity C?/T" of type D4 was computed in
the previous subsection. We now check the action of Q =TI"/T" = S3 = (0, p) with o = (34)
and p = (134). Q induces a natural action on ug'(Z)//G(T) and permutes of the vertices

1,3 and 4.

X1 xpw b Y, Xr
a O a

There is also a natural action of 2 on h given by

v —
We have ay =€ - e,
04%262—63,
Qs = €3 — €4,

the canonical orthonormal base of h. Because of how p permutes the «’s, it follows that

AR
11 -1 -1
P=3511 -1 1

-1 1 1 -1
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af—saf—ay and oY ay -
p

From the previous case (Dy4,Z/2Z), it is known that o corresponds to the permutation
€1 < —€4. We determine the action of p on the base (€;)1<i<4 (cf. Subsection |4.3.7) of b.

and p is represented by a 4 x4 matrix P in the base (€;)1<i<4

_1 |- This implies that the action of p on the €;’s is given by

e1~ g(er+ex+e3—eq),
e g(e1+eg—e3+eq),
es > s(er-ez+ez+ea),

e1 s(e1-ez-e3-e1).



4.3. Deformations of inhomogeneous simple singularities

We already know from Subsection that

T b - h/W and thus
(51,62’63’54) = (¢2(€),¢4(£),¢6(£),w(£))
Wa+&+&+&)
&1 1 L
m(p.(€1,82,€3,84)) = (P % ) =n i(& +6 -8 -&)
& 3l -+ &-&)

(-G + &+ &-&)
= 7T(Y1,Y2,Y37Y21)7

= (¢2(Y)7¢4(Y)a wG(Y)a w(Y))7

¥2(§)
RGNS
¥6(€)
194(8) = 39(8)
to
We define the action of p on h/W by p.(ta,t4,t6,t) = _%%6_ 3t and 7 becomes Z/3Z-
b

equivariant. In the preceding section it was defined o.(t2,t4,t6,t) = (t2,t4,ts,—t). Hence
7 is Q-equivariant and the action of 2 on h/W is linear.

Let us work above (h/W)%, which implies | #4 = —%t4—3t, and ¢t = —t. Hence
=1ty -1t
ty = t = 0. It implies that o~ ((h/W)?) = {(z,y, 2, t2,0,t5,0) € C> x h/W | 22 =
zy(x+y) - %tgxy + }l(tg + ﬁt%)}.
Q induces a natural action on Xr g = a~1((h/W)%) via the permutations of 1,3 and 4.
It was proved in the previous section that | z pag + L (uz - pa)?,

) p03+z(1M3—M0)2,
z o34 — 5 (Po3 (113 = pa) + p3a(ps — po)

+pug(p2 + p3) (1 + pi2 + p3)).
The action of 2 is given by { .13 = 114 and { p.ju1 = 3 - Hence we have

Oy = 43 P-H3 = Ha
pP-Ha = 1
ox = x, and ( px = v,
oy = -—r-y+ %tg, pYy = —r-y+ %tQ,
0.2 = -z, p.z = z.

We have previously seen that the action of ¢ on the singularity is the correct one. Let
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4. Deformations and quiver representations

us check what happens with p.

Above the origin, ( p.x = piy = Do3 = Y It is known that the
pY = Po4 = —Po3—pPo1 = —T-Y,
P2 = qoa1 = qo34 = Z.

equation of the Dy-singularity is X (Y2 - X?) + Z? = 0 and the natural action is

pX = %(Y - X)a
pY = -3(YV +3X),
pZ = Z
In our case we have 22 = zy(z+y). Set [ X = —3%/156, Then X(Y2-X2)+22=0
Y = -VA(y+ %x)

and | p.X = %(Y— X), The action on the singularity is the expected one (cf.
pY = -3(Y +3X),
p.z = z.

Subsection [1.4.2.1]).

Finally the pullback diagram is 2-equivariant with the natural action on the singu-
larity, hence the restriction of?: Xr o — (h/W)% of a is Q-invariant and

(@®)71(0) =a1(0)N Xrq because 0 € (h/W)%,
= XroNXro,

= X1 because Xt C X .

Therefore of? is a semiuniversal deformation of an inhomogeneous singularity of type

(D4, S3) = G, as predicted by Theorem [4.3.1]

4.3.9. Semiuniversal deformation of type F, = (Es,Z/2Z)

Set I'=7 and I = ©. The McKay quiver of type Eg is
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4.3. Deformations of inhomogeneous simple singularities

o () () o o
o} o4 ol @
oh || i
[
o || et
Q!

The dimension vector of this quiver is (1,1,1,2,2,2,3) and corresponds to the coordi-
nates of the highest root of the root system of type Eg. The orientation is that all a’s
are positive and all d’s are negative.

By definition Z = { (o, p1, 2, p3lda, palda, pslda, pelds) | po + gy + po +2(ps + pa + p5) +
3u6 = 0}.

In [LeBryPro90], it is proved that the ring of invariants of the representation space of
a quiver by the product of general linear groups associated with vertices is generated by
the traces of the oriented cycles of the said quiver.

We have pc(p) = (0508, —050%, —050%, 0ivh— 0503, il —050T, p5ph—0lel, Pl +
3o + p2pt) and compute pt (o, p s pi2, pslda, pglda, pslda, pelds)//G(T).

Like we did for the McKay quiver of type D,, we compute the traces of the oriented
cycles of the quiver and find those which are linearly independent. Set

D(iniy .. i) = Tr((of 0l ) (0l 0l,) - (0l o2 )

for i1,49,...,ix € {3,4,5}. We find that there are only three linearly independent ele-
ments: X := ®(425), Y = ®(425%) and Z := ®(3%425%). These are therefore the gener-
ators of the ring of invariants. Because this ring is the coordinate ring of the pullback
of the semiuniversal deformation of a simple singularity, and that such a deformation is
defined by a single equation (cf. [KasSchle72]), a unique relation has to link the gen-
erators. We then compute the relation between the generators X,Y, Z. It leads to the
following equation:

X2Z+Y3+2% = axsX?+axyay X2Y +axyy2 XY?2 + a2 X2 +axy XY +axz X 72

+ay2Y? +ayYZ +ax X +ayY +azZ + ao,

with ag,ax,ay,az,axz,avz,axy,ax2,ax3,ay2,ax2y and axyz2 homogeneous polyno-
mials in p1,. .., pue. They are given in the Appendix [£.4.5]
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4. Deformations and quiver representations

In order for the equation of the deformation to have the form predicted by Theo-
rem [1.4.26] it requires a change of variables: replace (X,Y,Z) by (X +a,Y +8X +1, Z +

1
k=-1,
8=t
= 30xv2,
_1
€=5ayz,
OX +€Y + kX? ith =—ays -1 — 243, + saxy + 3
+e€Y + +p) wi Q=-axs - 3ax2yaxy? ~ 550y y2 + 50x7 + gAYy 2axy?2,

1.2 2 4 1
=Taxy20x3 — 30%y20x2y ~ 550xyo + 50xy20X 7
1.2 1.2

1 1
6= i(aXZ -2a+ gayzaxy2),

p=3(axza+ayzp - o +az).

It follows that the equation becomes

X Y3+ 22+ Ay X2Y + Axe X2+ Axy XY + Ax X + AyY + Ag =0
with

4 5 2 2 10 3 2
54XY = S_IGX 2—Ax3ay7+3Q QYaXy2+2aX2an3+2—7aX2any2—aX2anZ—§aXy2ay2
+ 30%y20x3 — 3Axy20X7Z ~— 570%xy20yZ — 30x2yAyZaxy?2 — GXY .

1.2 1
Ax2y = T30y + 50y 7z —Gx2y.

_ 1.3 2 1 2 1 2 2

Ay = —5a%2y0yya— gaXQYaXZaYZafﬂg? + §GX2Y1@Y2ZGXY2@X3 - zaxwfixz;axwaxs
— 30y 707 + 55AXY Axyyoe — 5AXYAXZ ~ gAx 70y 7Z + 50530y 7 T AXY QX3 — 750y 20y 7
—la 2(12 +5500 a +—CL4 a Q—La4 CL2 —LCL2 CL2 —la2 a5 —57a Q x:

6 YOV Z "9 T Xy 2 YZ7T81%Xy? 208 xy2 Y 2T 12Xy 2tz 3By fixs TRI Yy X3
—Taxyzaxgy—maXy2CLX2y+8—1axyzlaX2+aX2YaXZaX13—gaXSCngyGXW+§CLXZCLX2YGXY2
T 50y Z0xy20%2y ~ 150XxYy20X 2720y 7+ galXYaXQYaXYQ - gla)Q(YaYZaXYQ + §5a)%y2ax2yay2
+ %agﬂ,QaXanyz ~180%xy20Xz0yZ — —CL2Xy2aXZay2 - —aéygayzaxm + 2—72aXY2aX3ayz
- ?CL%YQGXZGX;Y + 2—,7?X3/2aX2anZ+ gaXy2aX3aXZ— %aXy2aX2yaYZ+ gCLXy2ax3ay2
T 8%z~ 2ier%xy2 T 3%y2 T Ay

2 2

AX = —§ax2any2(LYZCly2 + 2axsaxzax2yaxy2 - gaXBCLXZCLYZClxy2

2 2 2 2 1 1 3
+ —ax3ayzaxygax2y - —gax2an X z7AY 7 — gax3ayzay2 - EaXQYaXYQGYZ

2 1 8 3 2
SGYZ(ZXy2ay2—gax2yaxy2az—§aX2ayzaxy2 —8—1aXY2ayzay2 —ax+§ax2ax2any2

3 3 8 5
+ 5aXy Ayy20x2y — 2053 — 19683%?,2 - 2—17aXY2aZ — 150x30y » —4aX3a23+ 51305y 20Y?
- §ayaxy2 - @axyayz + ﬁaxyax 9 — gaxyayz + 2aXzaX3 + ﬁaXZCLXYg —Gx20x7
T _ 4 1 1.2 2 T 3 2
316‘1XZ‘1XY2‘LYZ 81OXy2AXZAY ZHgUxay Uxy20Y 732y Uy y20X 2~ 153 AX2Y Oy y20y 7

2
3aX2any2aXZ + 8—1aX2anY2aYZ —2aX3aX2any2 + 2—7aX2anYgaXZ +CLYZG/Xy2CLX3
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4.3. Deformations of inhomogeneous simple singularities

- %aXsa_)@ya;l(g/Q - %axsaﬁpya%ﬂ/g - 1—18aX3a2 YQG%Z + %axsayzaé(w + %ax3axza§(Y2
T gaxy? aya - 3_284“?))/ZQXY2 T odxy2 V2 T srylxy2 vz T XY Ay ¥ a3 Xy 20X 7
_TGXYZGXZ_%T:;@XLEQ y2 270x2y Axy2 g1 x2y Ay 2;3aXZaX3_aX136aXZ_§aX3aXY2
—19ax2yAX 70y 7 T glxy20x30y2 — 3Ax2yAXZAy2 — gQ%xy20X7Z0y2 + 570 x2y Ay 20y 2
+ —Sa?XQYaXy%L%/Z + %aX2yCLX3ay2 + %aX2an3a2YZ - %axanygayz + %aXQYaXyzay2
+3axXyaxy20x3 — %QXYQXYQGXZ-

214)2(2 = %CLX2YCL4X}/2 - %CLXQYayQ - 1—12a)1(2ya§/2 + %CL%(QYag(Yg - %axzaiﬁ,g - 2—17ayza31(—y2
— —aXYQaW - ﬁaXYIQCLYZ -I2- anzay2 -Flﬁaxzayzaxyg +3a)§3axz32/a)éyz — §1agZaX112a3X?’
- —aXZaéXzya)gyz Ay Z0xy20x2y —30XYAxYy2 ~AX2 + 5% + 5230 xy2 + 30xz + 510y 7
+ §az + §aX3aXY2 - iaX3axz.

Ag = 22—3a§(2ya§(Y2 - %axsa?xzayzaxyz - %axsaxzai(yza%/z + %axza?xgyaiwayz
+35AXZ0 52y Axy20y2 + %axza2 QYCLXYzCL%/Z + ﬁayzaXWa%@Yayz - §aX3a§(2YaXYzayz
—glayzcgyzaz+gaXlaxganyz;gaxgyzaXyz+—aan1y2aX3+§aan 20x2y —gAyaxy20X7
~180Y Uy 20y 7 — glaxanyzaxg - _1a2XYaX3aXy2 + gaxyaxsayz — 07+ TgaXQKaXy2aZ
+ 570 X305y 207 = 7_aXY2aYZ§LZ + 5030y Z2Ay2 = 570 QY ZAy2 _4§GX22CLX2YaXy2 :
_§aX2aX2anY2_2_7aX2aX3aXY22_%GXZGXYQGYZ"'WC‘X?YQXZ@X)H_ﬂaXQYaéXZaxyﬁ
+ TzaX;aXQZaXY? —3ax2y O30y 7 — 5ax2y Ay 30y2 = 50x2y Oxy20y 7 — 750y 70y 2 Qy2
Ty z9xy2 T 108 Mxy2 X7 T g Oxy2 42 T a6 g0y 7 T 89X 707 T gAxs Uy (xy»

+ a8 AX30y 7 xy2 — EchXZaXQYCLXl,Q + maxzy2ayzaxyg + maxzyayzl(leg A

T X2y Ay ZAxye — 3gAx2y Ux 70y 7 — 150x2y Ux 70y2 + Togl oy U yy2 — gUx30Y 70 xy2

- —a§(3aXZaXY2 + %aXzayzag(yg tax2axzax3 + a§(3aX2any2 - ﬁaxya:})’/zaxy2
QQ—QX};GXZ(L%/Z—ﬂax2ya§(2agxy2+2§(IX3(IXZ—EaXZC;§(3+maX2ya)§Y2+@(IX2}§CL§(Y2+
Za)ig—gaxyaxzayz—@axanYgaYZ—ﬁaXanyzaXZ+ﬁanaXYzaXZ+ﬁa)5(any2ayz
- maxyaxysg - mglxzaxgg - §ayza1Xy2aX3 + 53 x30y 7 + 50530z + maxanygang -
@agfyaxwa;%yz+8—axyai<yzaxz;ﬁaxyaxwygz—ﬁaxyaxzya y2 T 530Y Z0xy 2052y~
_SaXZSZaXYQQYZ - ﬁgyzayz - ngyzayz —5ayay ; — gayay; +357Ax3Ax2y Ay 20y 7 +
210Xx30 5y 20X 70y Z ~ 5-Ax30x2y Q Yzayz+ T90x30x2yAxy20x 7~ gAxX3Ax2yAxy20Y Z —
§GX3GX2YG§(W axz— §gX3ax2any2 axz +2ﬁa§(ZaXZ%YZaXY2 —2503(301/2@)(13/2?)(21/ -
ﬁaxyayfa)iy2a};2—§1aX3aXZaX2any22+ﬁ?yaxyg—ngaxz-i-Q—aXaXYg—ﬂayzaz-i-
aXaX3+maXY2aY2+%axanzanyzaYZ—l—saxanZaXygayz+§aXan2anY2aXZ+
57 AXYAX2y Uy 20y 7 + gAXYAx2y G xy20y2 + 30Xy Ax3Axy20X7 T qAXYAx3UAxy20Y 7 +
glaxzaygaxyzaxg + %axzayzaianaxgy - %aX2aX3aX2Ya)gY2 - I%GXYGX3G§(Y2QX2Y -
77 AX 705y 20y ZAy2 — 7gAxYy2AXZAy20y 7 + g0 xy20x3Ay20y 7 — 150X 20y ZAXy20Z
+1§‘1X3‘1X2YG5XY25‘Z t30x20x70x2y0xy?2~ ga)gzaxzagzaxyz + @axzyaxzagfzagnn -
gagZaﬁxwaxs{? . gAx30xz t Triar Oxy? T a1 94X30xy2 ~ 6alxz ~ 1_‘1)%1/2“XZ“Y2 +
310%30xy2 ~ Tg0xy20y2ay 7 + 3157 Uyy20Y 20y2 ~ g5 Axy 20X 20y 7 — @QYQZ

— 370x30xy20X7Z ~ TogCxy20x 20V Z — 535 X y20x 70y 7 — T“X3ax22anY2aYZ

186 AxX3Axy20y 7 ~ 5530X30xy20Y 7 — g7 Ay Z0xy20x2y — _4aX22YaXZaYZaXY2
?a)@yaxzai/zaxyg - 8—12(LX2an3aXY2ay2 + maxzyaxyzayzagzz
ﬁaxﬂyayzaxygayﬂ + §aX3aX2anYZ - maXQYanayz + ﬁaxygaxzayﬂ

+
+
+
+ =550 a a +ia a CL7 +lCL a a +=a a —La a a4 +
2187 U xy2UXZUY Z T 53U X3U X2y U xy2 T o7 X3l xay Uxy2Tglxsl xy2 ™ T UXY20XZ0y 7

211



4. Deformations and quiver representations

%axyzaXsa%Q - 217(1%,2 - %axyzaXZaZYQ - %a)@yagﬂ,ga)n - éllaXza%(Z - achL%(g

+ ﬁaX2anY2aY§ - @a%wayz - @aXWaXZ - Eaxs;ziwayz - maxygayz -
65—1aXY2ay2 +‘maxy2ayz + ﬁaxgax QCLYlZayz + §aX3axy2axlzayz ;

T RTAX2Y X Z Ay 20y2 + 50x2y X 70 x30y 7+ 30 x2y X 70 x30y2 + 150 x2y Ay A xy20 X3 —
ﬁCLX2YaXZG?{/ZCQLXy2 —ag + 1_58aXY2alXZ + ﬁaXZax'zYa%(W + 75ay 0% 2a§(2g ,
+mayzaXygaXQXE—gangaxgayz—?agzayzaéﬂxz+$a§(2yaxy2az—ﬁa5yzaXY2aY2—
4aAX 2y 20y 7+ 53Uy 2y Uyyo + 75 A3 xy 20y 7 — ﬁaXQYaXY22 ay2 + grglxy20yz +
90x2y QY ZAxy20x30y2 — {glx2yAX Z7AYy 7AxXy20y2 + {gAx30x2y Ay 20X ZAY 7.

According to Subsection [£.1.2] there is an isomorphism

T: A 5 b

(,uo,,ul, po, walda, palds, pslds, ,U,G:[dg) ~ h with Oél(h) =—u;, V0<i<6
with b a Cartan subalgebra of the simple Lie algebra of type Eg. Hence an element y € Z
can be identified with Y%, i\, with (A} )1<i<6 being the fundamental coweights, i.e.
the dual base of the simple roots (a;)i<i<¢ of the root system of type Eg.
It is known that the Weyl group W is generated by the Ta¥ ’s, with

AV = AV 2(/\;/,04;-/) v
ray(Af) = T a)
- A if i # g,

AY —a) ifi=j,

2 0 0 -1 0 O
0 2 0 0 -1 0
for 1 <j <6. It is also known that o} = Z?zl cij Ay with ¢ = _01 8 (2) 8 8 :%
o -1 0 0 2 -1

o o -1 -1 -1 2
the Cartan matrix of type Fg according to our labelling of the vertices. Therefore one
can write

ay = 2AY - AY,
oy =20y - A,
ay =243 - AY,
oy = =AY +24Y - AY,
0¥ = —AY +24Y - AY,

ay = —AY - AY — AY +2A.
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4.3. Deformations of inhomogeneous simple singularities

221 —H1
H2 H2
: ; : . N W25 H3
A computation gives us the action of the generators of W on b : oy g | 7
Hs M5
He He
M1 2 M1 M1 M1 H1+ g 2
2 —H2 2 2 H2 H2 2
2] 3 i 2% —H3 2] 3 2
’]“ag . Z4 (=g 54 N ’r’a})/ . Z4 (=4 /ﬁi s TOCZ . Z4 — —'u/j/4 , ra%/ : 54 =
M5 M2 + s M5 M5 M5 Hs M5
He He He B3 + te He Ha + g He
H1 M1 H1
2 + s 2 2
3 .| 43 M3 + He
114 and rpy : wn |7 i+ e |
—H5 M5 M5 + He
M5 + U6 He ~He6

Using a computer software (in our case Maple 2015) one can explicitly verify that
the coefficients Ay, Ax, Ay, Axz2, Axy,Axa2y are invariant by the ra}/’s and are thus
W-invariant. They can then be expressed using the flat coordinates defined in Subsec-
tion As the coefficients and the flat coordinates are homogeneous, the relations
have to homogeneous as well.

According to our indexation of the vertices of the Dynkin diagram, the expressions of
the fundamental weights, i.e. the duals of the coweights, are given below (cf. [Bou68]):

Ay = 2(4aq + 205 + 3o + 5oy + das + 6ag),
Ag = %(2(11 +4ag + 3az + 4ay + bas + 6ag),
A3 = a1 + ag + 203 + 204 + 2005 + 30,

Ay = 3(5a1 +4ag + 63 + 100y + 8as + 120),

As = %(4ay +5ag + 6as + 8oy + 10as + 12a5),

A6 =20 + 209 + 3a3 + 4oy + 5&5 + 60[6.

Therefore it follows that
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4. Deformations and quiver representations

A3 = (07 70 _\/_ O7O)T7
A4:(_£7 a 37 \/—OO)T
As-(oo,g,f /8,0)7,

AG_(O 07 27 \;—700)

So if one writes (z1,%1,...,y3)7 = Z?zl Ai;, one finds

w1 = -Y0x - By,

Y1 = \/75)\1,

T2 = \/?6)\1 + \/?6/\2 + @M + %6/\5 + @)\6,

yo = =M = X - V23— V2 - V2 - S
T3 = —gh - é)\s,

Y3 = 4)\2-

Using the isomorphism 7, it follows that u; = —A; for any 1 < ¢ < 6, and thus the
coefficients of the equation can be expressed with the flat coordinates:

Ao = 555 (12(1) = Ts (i)t (1)? = 26 (1) + v (1) (1) — 15 (1) 0o (1)),
Ax = Y8 (o (1) + 2us(u)n(1)?),
vy = 15 (=vs(p) + 306 (L) (p) - 75502(1)*),
Axz = 35 (he(p) — g2 (1)),
Axy = ﬁ%(#),
Axzy = =32 (p).

Hence
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4.3. Deformations of inhomogeneous simple singularities

pc (2)]/G(T)
= {(X,)Y. Z, 1, p6) | - 53X+ Y3+ 22— 2o (0) XY + —qu,(u)XY
+a2 (Ve () — 22 (1)) X% + 5 (—wbs(p) + T ()ha(p) — 7o3t2(n))Y
144( Wo () + 25 ()ha(p)*) X
+2 (V12(p) — s() o (1)? = 506 (10)? + g5be ()2 (1) = s (1) *ha (1)) = 0}

Set

Xr = {(X,Y,Z,ty,t5,t6,t5,t9,t12) €C3 x /W | = IX*+ V3 + 2% - 2, X2V + 2\/_1t5XY
tk (- 23) X% + K (~ts + ttota — Toth)Y + X8 (<tg + Lt512) X
+515 (1o — §tst3 — 515 + ggtets — t3t2) = 0.
We have 7: b - h/W (as Z = b

(1, pme) = (2a(u), ¥s(p), ve(p), we(p), o (), Y1a(p))

and (u1,...,us) are coordinates on Z, we use the same coordinates on h) and
a: Xr - h/W
(X YZ t2;t57t65t87t9at12) = (t27t5at67t8at97t12)
Then

X xpw b
= {((X,Y, Z, ta,t5,t6,ts,to, t12), (1, -, i16)) € X x b | (X, Y, Z. ;) = w(p1,- .., p6)},
= {(X,Y, Zti, 1) | ta = ba(p), ts5 = ¥s(p), te = Ve (1), ts = ¥s(), to = o(k), ti2 = Yr2(p),
and - $X*+ Y3+ 22— 16, XY + ﬁ%xy + 15 (t — §13) X2 + Jo(—ts + fteta — 15t3)Y
#308 (tg + Lsi2) X + Lo (trn - Lestd - L2 + Ltgtd — 2t5) = 0},

= e (2)//G(D).

Finally we obtain

Xt xpw b Y, Xp
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4. Deformations and quiver representations

with a being a semiuniversal deformation of X :=a™*(0) = {(X,Y,2) e C¥| -1X*+
Y3+ Z% =0}, which is an Eg singularity.

Finally our pullback diagram is 2-equivariant with the natural action on the singu-
larity, so the restriction o : Xr g — (h/W)% of a is Q-invariant and

(@®)71(0) =a1(0)N Xr.q because 0 € (h/W)%,
= XroNXro,

= Xr,0 because Xty € X q.

Therefore o is a semiuniversal deformation of type (Fs,2/2Z) = Fy as expected from

Theorem

4.4. Quotient of the inhomogeneous singularity (C?/I",2) by Q

4.4.1. Objectives

It was shown in the previous section that the restriction af? := a]a_l((h/w)g) : Xt~

(5/W) over the fixed points (h/W )% of a semiuniversal deformation of the singularity
C2/T is a semiuniversal deformation of the inhomogeneous singularity of type A(T,T")
and is thus Q-invariant. Hence Q acts on each fiber of of? and the fibers can be quotiented.
It is known that (a®*)™1(0) = X, = C2/T". Hence the fiber above the origin of the quotient
map is also a Kleinian singularity. Indeed, (af*)"1(0)/Q = Xo/Q = (C?/T")/(I"/T) =
C2/T’. As T’ is a finite subgroup of SUs, C%/T"” is a Kleinian singularity. Therefore the
family given by the quotient map o : X o/Q — (h/W)% is a deformation of the simple
singularity C2/I".

With Proposition P. Slodowy described the singularities in the fibers around
the special fiber C?/T" in terms of subdiagrams of the Dynkin diagram of type A(T)
when C2/T is of homogeneous type. Furthermore, he gave a relation mentioned in
Remark between (h/W)* and a quotient ho/Wy. This raises two questions:

1. how is the map a® related with the semiuniversal deformation of type C?/T”, and
how to describe the base space (h/W)% using a Cartan subalgebra and a Weyl
group of type A(T”)?

2. can we describe the singularities in the neighbouring fibers of C?/T" in terms of
sub-root systems of the root system of type A(T"), like P. Slodowy did for the
homogeneous case?
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

The content of Section [£.4]is only a first step in the search for answers to the previous
questions. In order to investigate the nature and the regularity of the fibers of the
quotient of a semiuniversal deformation of a simple singularity of inhomogeneous type,
we use an explicit realization of the map o : Xr o — (h/W)® given in the previous
section. The quotient map of? is computed for the cases (Agy—1,2/22Z), (D4,Z/22),
(D4, 83) and (Eg,Z/2Z). In particular, when the original singularity C?/T is of type A3
or Dy, one notices that every fiber of the map af? is singular.

4.4.2. Case (Ay.1,2/2Z)

We have I' = Cy,. and IV = D,. In Subsection a semiuniversal deformation
of type (Ag,_1,Z/2Z) was computed. It is the projection o' : X o — (h/W) with
T .
Xr.a={(z,y,2,t2,0,t4,0,...,t2) € C3xbh/W | 22y ngi(tg, .. ,tgr)z2(r_z) = xy} with
i=1
the same notations as in Subsection The morphism o is Q-invariant and thus
(2 acts on every fiber of a®. The purpose of this subsection is to compute the quotient
morphism a® : X o/Q - (h/W)%, and study its nature.

4.4.2.1. The morphism o : X1 o/Q — (h/W)®

The action of Q=T"/T'=Z/2Z =<0 > on X1 is
o.(x,y,z,t2,0,t4,...,0,t2) = ((-1)"y, (-1)"x,—2,12,0,t4,...,0,ta). Let us compute the
(-invariant polynomial ring of the coordinate ring of Xt q.

Set p e C[ Xt q]. Then p = p(z,y,2,t2,t4,..,tar) and o.p = p((-1)"y, (-1)"z, -2, t2, 14,
..., tor). As the tog, 1 <k <r, are invariant by the action of  on p, they can be treated
as constants and will be omitted in order to simplify the notations.

We can write p = po(z,y) + p1(z,y)z + p2(2,9)2° + ... + pu(@,9)2" = Tispr(w,y)2" €
C[z,y][#] with the p;’s being polynomials in x and y. Let us assume that p is Q-invariant.
Then

go((—l)Tya (-1)"z) = pr((-1)"y, (1) @)z + ...+ (-1)"pn((-1)"y, (-1)"z)2",
p;)(x,y) +p1(z,y)z + pa(z,y) 2% + ...+ pulz,y)2™

o.p
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4. Deformations and quiver representations

By identification, one obtains po((-1)"y, (-1)"z) = po(x,y),
pi((=1)"y, (-1)"2) = -p1(,y),
pQ((_l)T:% (_1)Tx) = pQ(:I:?y)v

pa((=1)"y, (-1)"2) = (=1)"pn(z,y).
Assume 7 to be even. Then the system of equations becomes
po(y, ) = po(,y),

p1(y,z) = -p1(x,y),
p2(y, ) = p2(z,9),

Py, ) = (=1)"pn(z,9).

It follows that p; is symmetric in (z,y) if 7 is even and skew-symmetric otherwise. The
polynomial p can be rewritten in the following form

_ 2 3
p=po(z,y) +2"p2(@,y) +...+ 2 pi(z,y) +2° ps(z,y) +...
— — —_— —
symmetric symmetric skew-symmetric skew-symmetric

However it is known that a skew-symmetric polynomial in two variables can be writ-
ten (x — y)sym(z,y) where sym(z,y) is some symmetric polynomial. Hence p can be
expressed as

p=symg(z,y) + 2*symy(z,y) + ...+ 2(z — y)symy (z,y) + 2%2(z ~ y)symg(z,y) + ...

Therefore any Q-invariant polynomial is generated by 22, z(z — y) and symmetric poly-
nomials in (z,y). It is also known that the latters are generated by (z +vy) and xy. The
converse is trivial and we have proved

C[Xrql® =
Cl[22, z(x —y),x +y, 2y, ta, ..., to. ]/ (2% + falta,...,t2:) 22 2 + ... for(to, ..., tar) = 2y).

Set X =z +y,Y =y, Z = 2% and W =iz(x - y). The relation between these variables
is X2Z+W? =4ZY. This implies that the coordinate ring of our quotient space is given
by
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

ClXral?=C[X,Z, W, ta,... ta,[(Z(X? -4Z") + W2~ 4fo(t2,... to,) 2" ~
4f4(t2, ce ,tQT)ZT_l - = 4f2r(t2, R ,tQT)Z = 0)

and thus

Xro/f = {(X,2,W,ty,... t3) € C3x (h/W)? | Z(X2-42") + W?
—4f2(t2, e tgr)Zr - 4f4(t2, e ,tQT)ZT_l - .= 4f2r(t2, . ,tzr)Z = O}
The quotient of the map o is then o : Xr.a/Q - (h/W)%

(X,Z,VV,tQ,...,tQT) > (O,tQ,O,...O,tQ,«)
which is a deformation of (a?)71(0) = {(X,2,W) e C* | Z(X?-42") + W? = 0}. It is
a D, .o singularity. However, the deformation af? is not semiuniversal. Indeed, accord-
ing to Theorem the base space of a semiuniversal deformation of type D,,s is

bD,.,/Wb,.,, which is of dimension r+2. But our base space is (h/ VV)Q and of dimension
r <r+ 2. Hence the deformation cannot be semiuniversal.

We now assume that r is odd. Then for p = X% pi(x,y) 2" € C[x,y][2] Q-invariant,
we have

po(~y,—) = po(z,y),
p1(~y,~z) = -p1(z,y),

pn(=y,—z) = (-1)"pn(z,y).

po(~y,—z) = po(x,y), so po(y,r) = po(-x,~y). We write po(z,y) = po(T,y)even +
po(%,y)oqqa the decomposition of py in a sum of monomial factors of even degrees and
a sum of monomial factors of odd degrees. Then po(y,x) = po(¥, X )even + Po(Y, T)odd =
po(—x,=y) = po(Z,Y)even —Po(T,Y)oda- Therefore the even part is symmetric and the odd
part is skew-symmetric. So pg(x,y) = symmetric of even degree + skew-symmetric of
odd degree. All p;, with ¢ even, can be expressed in a similar fashion.

We have p1(x,y) = p1(,Y)even + P1(2,Y)odq the decomposition of pi. As pi(-y,-x) =
-p1(z,y), we get that p;(z,y) = skew-symmetric of even degree + symmetric of odd

degree. All p;, with 7 odd, have a similar decomposition.

Then if p is Q-invariant, we have p(z,y) = sym(z,y)even + skew-sym(x, y)odd
+2(skew-sym(z, y) even +5ym(@, Y )oda) + 2°(sym(@, y ) even +skew-sym(z,y)oda) + - - .- But
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4. Deformations and quiver representations

we know that skew-sym(x,y)oqq = (z — y)sym(z,y)even and skew-sym(x,y)even = (z —
y)sym(m, y)odd- Then p(ZL‘, y) = sym(:r, y)even+($_y)sym($a y)e'uen"'z((l'_y)sym(xa y)odd+
sym(,y)oda) + 2> (Sym(, y) even + (2 = y)sym(2,y)even) + - - -

We deduce that p is generated x — 1y, 2y, 22, 2(x +y) and the to;, 1 <k <r. Hence

Cl:X]_“7Q]Q = Clz-y,xy, 22, 2(x +y),ta, ..., tar ]/ (Z¥ + falta, ... toy)2* 72

+... +f27«(7f2,. ..,tgr) = .’Ey)

Set Z=22,X=2-9,Y =2y and W = iz(z +y). We have the relation W2 + ZX? =
-4Y Z. As we did when r was even, we show that

C[Xral*=C[X,ZW,t;]/(X2Z + W? =
—4Z(ZT + fg(tQ, o ,tQT)ZT71 +...+ fgr(tg, - ,tQT))).

We deduce that

Xraf = {(X.Z.Wits,... 1) «CPx (6/W)2 | Z(X? 4427) + W
+4f2(t2, . ,tQT)ZT + 4f4(t2, e 7t2T)Z,’171 oot 4f27«(t2, ce ,tQT)Z = 0}
The quotient a® is then af: Xr o/ - (h/W)% , which is
(X, Z,W,ta,...,ta,) + (0,t2,0,...0,t2.)

—1
a deformation of af? (0) = {(X,Z,W) € C* | Z(X?+4Z") + W? = 0}. It is a Do
singularity. With the same argument as when r is even, the deformation cannot be
semiuniversal.

4.4.2.2. Example: regularity of the fiber of a® when 1 =2

We look at the regularity of Xr o and X1 o/f2 on an example. Set r = 2. Then

Xro
Xr0/Q

{(z,y,2,t2,t4) € C*x /W | 2* + fo(ta, ta)2” + falta, ta) = 2y},
{(X, Z,W,ta,14) € CP x (b/W)? | Z(X? ~42%) + W? —4fo(t2,t4) Z°
—Afy(t2,t)Z = 0}
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

For a fiber in Xt g other than (af?)71(0) to be singular, it requires 16 f4(ta, t4) (f2(t2,t4)?~
4f4(t2,t4))2 =0 f4(t2,t4) =0or fQ(tz,t4)2 = 4f4(7f2,t4).
o If fy(ta,ty) =14+ %tQ =0 then (to,t4) = (tg,—%t%) and ((XQ)_I(tQ,—%t%) is singular
at the origin.
o If fo(ta,t4)? = t3 = Afs(t2, ta) = 4(ta+513), then (ta,t4) = (t2, 513) and (o) (L2, 513)
is singular.

In X.0/9, for any fiber (o)~ (t2,t4), the point (X, W, Z) = (£2v/fa(t2,t4),0,0) is a
singular point. Hence all fibers of o are singular. We have proved the next proposition.

Proposition 4.4.1. Every fiber of the deformation a2 : Xr.0/Q = (h/W) of type Dy
is singular.

4.4.3. Case (D4, Z/22)

We have I' = Dy and I = Dy and Q = I'/T = Z/2Z =< o >. In Subsection [£.3.7]
a semiuniversal deformation of type (Dy4,Z/2Z) was computed. It is the projection
aQ : XF,Q - ([]/W)Q with XF,Q = {(xvyaz7t2at47t670) € C% x []/W | 2% = .’By(.ﬁU + y) -
%tgxy - it;;xg i(t(; + %t2t4 + W%Stg)} with the same notations as in Subsection m The

morphism o is -invariant and thus € acts on every fiber of a®t. The purpose of this
subsection is to compute the quotient morphism af : X o/Q — (h/W)%, and study its

nature.

4.4.3.1. The morphism o : X1 o/Q — (h/W)%

We obtained in Subsection the following relations:

oxr = uw,
oy = —r-y+ %tg,
oz = -z

ot; = t;, 1=2,4,6.

The relations imply that Cx @ Cy @ Cz @ Cty is a C-vector space on which €2 acts linearly.
The eigenvalues of o are =1 and 1. Set ¢y’ = %a: +y - %tg and then .y’ = —y’. With this
change of variable, one has Xr o ={(z,y,2,t2,t41,t,0) € C3xh/W | 22 = ay(z +y)
Stoxy — Ttz + $(te + gtats + 155t3) ),
= {(1$7y,721t217 t47t6170) € C31>< []/VI{ | 22 = Lllt6 + it2t4
1 +mt% + (_1_6t§ - Zt4).’11 - Z.Z'g + Zt2$2 + a;(y’)Z}
an
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4. Deformations and quiver representations

o.xr = x,
oy = -y,
g.z = —Z.
ot; = 1=2,4,6.

Let pe C[Xr 0 £ As z and the t;’s are not altered by o, we omit them from the notation.
We have o.p(y’,2) = p(=y',—-2) = p(y, 2). Tt is then clear that p is generated by 32, 22
and y,Z' So C[$> Y, 2, 12,14, tﬁ]Q = C[JJ, y,7 Z,t2,14, tﬁ]ﬂ = C[:Ea yl2v 22, y’% l2,t4, tﬁ]'

Set X =2,Y =92, Z = 22 and W = y/2. The equations between the invariants are

Z = e+ gytats+ pots + (—13 - 11a) X - 1 X7+ 112X + XY,
YZ w2,

hence W? = (3tg + gptats + p5t3)Y + (—15t3 — 114) XY = 1X3Y + 16, X2Y + XY2. We
finally obtain

C[XF’Q]Q = C[X Y W tg,t4,t6]/(( te + t2t4+ 4§2t3)Y+ (—%t% - %t4)XY
—1X3Y + 1t2X2Y+XY2 W2),

with X of degree 4, Y of degree 4 and W of degree 6. The t; are of degree 2,4 and 6,
respectively.

With the following substitution: ¥ - Y + %XQ - %th + %t% + %t4, the equation becomes

—HXPH XY2 W2 Axa X+ Ays X3+ Aye X2+ Ax X + AyY + Ag =0

with
t

AX4 = 3—227
Axs = —o513 — 35t
AX2 192t2t4 + t6 864t
Ax = —Stgty — 212ty — oo th — Lt2

X 3296%2 7 381 27648 644>

1 1
Ay = —tﬁ + —t2t4 + 432t2,
5

A = 128t6t2 t6t4 + 6912t2t4 + 192t2t4 13824t

Hence a fiber of o in Xr1,0/S is defined by the preceding equation. We notice that it
is a subfamily of the semiuniversal deformation of a Dg-singularity. It follows that the
projection
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

a®: Xpo/Q — (h/W)*©

is a deformation of type Dg. However it is not semiuniversal. Using Theorem [1.4.15
one sees that the dimension of the base space of a semiuniversal deformation of a simple
singularity of type Dg is of dimension 6. But we have dim(h/W)% = 3. So a® is not
semiuniversal.

4.4.3.2. The discriminant of o

Let us determine the discriminant of a®, i.e. the elements (to,t4,t6) € (h/W)* such
that the fiber (a?)~!(ty,t4,ts) is singular.
The fiber ()7 (to,t4,1¢) is defined by the equation f(X,Y,Z) = —éX‘r’ +XY2-W2+
Ava X+ As X3+ A2 X2+ Ax X + AyY + Ag = 0, with A;’s depending on the t;’s and
whose expressions we can find above. The fiber is singular if and only if the following
system has a solution:

(X, Y.z) =0,
A (X,Y,2) =0,
(XY, Z) =0,
2(Xx,Y,Z) =o.

This system leads to the following equations:

W =0,

V2= 2 XY - 4Ai X3 -3Axs X% - 2452 X - Ax,

~ S X5+ BAxa Xt +4Axs X + 3Ax2 X2 +2Ax X + Ao = 0.

The polynomial equation of degree 5 in X always has a solution X, because the base
field is C which is algebraically closed. It follows that the second equation has two
solutions: +Y;, depending on X,. Hence for any (tz,t4,t6) € (h/W)?, there exists
(X4, 2Y5,0) € (@) 1(ta, t4, tg) that is a singularity. We obtained the following result:

Proposition 4.4.2. Every fiber of the deformation af: Xr.o/f > (5/W)® of type Dg
is singular.
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4. Deformations and quiver representations

4.4.4. Case (D,,6;)

We have seen that the action of Q = &3 = (0,p) on ug!(Z)//G(T) comes from the
permutations of the vertices 1,3 and 4.
We also have a natural action on h given by af—say—sar) and ae—ay - We com-

o
N

puted in Subsection m that Xr.o = {(2,y,2,t2,0,t6,0) € C* x h/W | 2% = zy(z +y) -
Stoxy + 3 (te + 1agts) -

) induces a natural action on Xt o via the permutations o = (34) and p = (134).

4.4.4.1. The morphism af: Xro/St— (h/W)*

In Subsection [£.3.8] we obtained

oxr = I, ) and [ P = Y, :
0y = —x-y+3la, py = —T-y+ 5l
0.z = -z, p-z = z,

ot; = t, 1= 2,6. p.ti = 1= 2,6.

Hence Cx & Cy @ Cts is a C-vector space one which p acts linearly. The eigenvalues of p
are 1,w = exp(QZT”) and w?. Set

{X (=3-iv/3)z + (=3 +i/3)y + Lo,
Y = (=3 +iv3)x + (-3 -iv3)y + to.

Then

p-X =wX,
p.Y =w?Y,

and p fixes z,t9 and tg.

Set p € C[(a®) M (ta,t6)]7* = (Cla,y, 2,t2,16) /(=2 + wy(x + y) - Showy + §(t6 +
st = (CIX, Y, 2 ta,t6]/ (2% = 315" - 515 X° - 513 + 5 X YVia + t6)) /%%, Tt
follows that p.p(X,Y) = p(wX,w?Y) = p(X,Y). It is clear that p is generated by X3,V

and XY.
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

Hence C[(a)™!(ta,16)]?/%% = C[X3,Y3 XY,z ta,t5]/(-2% - 15V - s X° - 3513
+%XYt2+%t6)),

= C[X,y,W,z,tg,t(;]/(—z 216(X+y+ t3)+ th
+1te, XY - W3).

Now let us look at the action of Z/2Z =< o > on X, Y, W, z,ta,ts. We compute that

o.X =Y,
cy=2X,

oW =W,

0.2 =—2,

o.t; =t;,1=2,6.

Set{ X = ;c+y Then C[(o*?) (¢, 13)]%/3% = C[X,D, W, 2, ta, tg]/ (2> 21636 7t
2) = - +%Wt2+it6,%(%2 ) W )
The action of Z/ 2Z is given by

0.X =X,
U'Q‘j = _@7
o W=W,
0.2=-2

ot;=1;, 1 =2,0.

Therefore ((C[(af})™1(t2,t6)])%/3%)%/?2 = Cla™ (ta, tﬁ)]63’
= CIX, 9% 2%, 92 W ta, ]/ (22 = 515 X - 5513
S Wty + Ltg L(R2-92) - WB).

We have X = 216(-22 - mt?’ + Wty + 1tg), thus W3 = —19)? + —2 - 35 + 54t322
IW2H3 - 324Wty2? - Zltdts + 116642 + 81Wt2t6 — 5832tgz% + 7291:6

We then have C[(a®) !(t,16)]%% = C[V?, 22, Dz, W, Lo, ts]/(P(W, ), 2?)) with

POW,Y,2%) = 4@2 2 3Wt2+54t2z + IWPHE - 324 Wty 22 - Zltdts
+11664z + 81Wt2t6 — 5832tg22 + 729t2

Set{ if(:gz Then C(af) ™ (t2,t6)]%* = C[X,Y, Z,W, t2,1]/(Q(X,Y, Z), R(X,Y, Z))
Z=2
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4. Deformations and quiver representations

QX,Y,Z) = -W3- 1X+ 2 - SWi + BASZ + W3 - 324Wty Z — 2 t3t + 1166422
+81Wt2t6 - 5832tGZ + 729t6,
R(X,Y,Z) = XZ-Y2
We deduce that C[(a?)™(t2,16)]%% = C[Z,Y, W, ta,16]/(S(Z,Y,W)), with

S(Z,Y W) = W3Z+1Y?-116642° - (a1 Z + aa Z* + DWZ + S3W?Z — 3241, W Z2)

and [ aq =2 - i3t + 7292
1= 16 6 )
ag = b4t3 — 58321,

b= 81tyts — 3t3.

After renaming the variables X := W, Y := Z, and Z := Y, one finds C[(a®?) " (t2, 16)]%? =
C[Xa Y7 Za L2, tﬁ]/(T(X’ Y7 Z))7 with

T(X,Y,Z)= XY -11664Y3 + 1 Z? = (a1Y + azY? + bXY + J13X%Y - 3241, XY?)

and | a = i% 27t§t6 +729t2, Looking at the degrees of the generators, one finds that

ag = 54t3 — 5832tg,
b = 81tats — 3t3.

X is of degree 4,
Y is of degree 6,
Z is of degree 9,
to is of degree 2,
tg is of degree 6.

In order for our equation to have the form predicted by Theorem we do the
following substitutions: [ X — —(11664)°X + 3¢3,

Y - —(11664)"1/3Y,
Z —27.
The equation is finally

XY +Y3+ 7% - —t2116649XY2 + 116645 (- 6912t4 11664b)XY + 116647 (~ rriagas +
L3)Y? 1+ 116643 5+ bt2)Y = 0.

(13824 11664a1 + 15552

Hence a fiber of o in Xr1,0/S is defined by the preceding equation. We notice that it
is a subfamily of the semiuniversal deformation of an Er-singularity. It follows that the
projection
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

a®: Xpo/Q — (h/W)*©

is a deformation of type E7. However it is not semiuniversal. Using Theorem [1.4.15
one sees that the dimension of the base space of a semiuniversal deformation of a simple
singularity of type Ey is 7. But we have dim(h/W)% = 2. So af is not semiuniversal.

4.4.4.2. The discriminant of o

Let us determine the discriminant of o, i.e. the elements (ta,tg) € (§/W) such that
the fiber (o) (2, 1) is singular.
The fiber (o)™ (ta,tg) is defined as the zero locus of the function
f(X,Y,Z)= X3Y +Y3+ 22 - t2116649XY2 + 116649( e

wtzts ~ Tioed
+116645 (- ]1664a2'* Y2+ 116645 (138719 + 1atgr01 + 155

The fiber is singular if and only if the following system has a solution:

b)XY
bt2)Y.

15552

[XY.2) =0,
?_9%.' (X’ Y? Z) = 07
%Y

2L(X,Y,Z) =0,

(X Y,Z) =0.

If Y £ 0, this system leads to the following 2 equations:

P(X) = (145898Xt2 + 117414585 + 14585 7776t2t6 _TTT6X2) (214585 — 216X)2 =
Q(X) = (£214585 + 648X (1214585 — 216X)? =

We notice that P and () have a common factor, namely (t§1458g —-216X). But this
factor is a degree 1 polynomial and thus always has a solution. It follows that there
exists X such that P(X;) =Q(Xs) =0

If Y =0, this system leads to the following equation:

R(X) = X? + 116645 (— g0t — Thrtote) X + 116643 (gilstS + 1octdte + (1/16)2) = 0.
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4. Deformations and quiver representations

The polynomial R is of degree 3 and because the base field is C, which is algebraically
closed, R(X) = 0 always has a solution.

Finally for any (t2,t6) € (h/W)%, the fiber (a_Q)_l(tg,tg) has a singularity. We ob-
tained the following result:

Proposition 4.4.3. Every fiber of the deformation af: Xrao/Q? - (5/W)® of type Er
s singular.

4.4.5. Case (FEg,2/2Z)

We have I' = 7 and I'" = 0. In Subsection a semiuniversal deformation of type
(Fg,2/2Z) was computed. It is the projection a'? : X o — (h/W)$ with

Xra = {(X,Y,Z,t,0,tg,ts,0,t12) € C> x h/W | —§X4+Y3+ZQ—§t X2y

+a5(te — §13) X% + g5 (~ts + 3teta — 75313)Y + =05 (t1o — tst3 — 58 + 5stets) = 0}

with the same notations as in Subsection The morphism o is Q-invariant and
thus Q acts on every fiber of a®. The purpose of this subsection is to compute the
quotient morphism o : Xp o/Q — (h/W)®, and study its nature.

The action of Q=T"/T'=Z/2Z =<0 > on X1 is

0. X =-X,

oY =Y,

0.4 =-14,

ot;=t;, 1=2,6,8,12.

It follows that
C[(a) ! (ta, t6, ts, t12)]°
= C[X27 Z27XZ’ Y t27 t67t83t12]/(_lX4 + Y3 + Z2 - thng + ﬁ(tﬁ - %t%)XZ
o (—tg + gty — T )Y + ke (g - Sgt2 - Ltg13)),
= C[XayaWazat27t67t87t12]/(__ +y3 + Z - Zt2Xy + @(tﬁ — %t%)X

1 1 1 44 1, 42 142 1 3 2
+E(_t8 + Ztﬁtz 1927f )y + = 576 (tlg t8t2 - §t6 + %t6t2), XZ-W )
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4.4. Quotient of the inhomogeneous singularity (C?/T',) by Q

We deduce that C[(OzQ)_l(tQ,tg,tg,tlg)]Q = C[X,y,W,tg,tﬁ,tg,tlg]/(R(X,y,W)),
with

R(X, VW)= —3X3+ XV? - 1t2X02Y + o (t6 — 513) X2 + 35 (—ts + fleta — 15t3) XY

+eb(tig — htsth — 22 + dtetd) X + W2

After renaming the variables X := X, Y := ) and Z := W, the equation is finally

X3+ XY+ 22— 26 XPY + 5(te — 513) X2 + g5 (—ts + yteta — m5ta) XY

1 1, 42 142 1 3
+m(t12 - gtgtz - §t6 + %t6t2)X =0.

Hence a fiber of a® in Xr,0/S is defined by the preceding equation. We notice that it
is a subfamily of the semiuniversal deformation of an E7-singularity. It follows that the
projection

a®: Xpo/Q - (h/W)?

is a deformation of type F7. However it is not semiuniversal. Using Theorem [I.4.15]
one sees that the dimension of the base space of a semiuniversal deformation of a simple
singularity of type E7 is 7. But we have dim(h/W)®? = 4. So a® is not semiuniversal.
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Appendix

After computation of the relation between the generators of the coordinate ring of
the invariants of the representation space of the McKay quiver of type Eg (cf. Subsec-
tion [4.3.9)), we obtain the following equation

Y3+ X2Z2+2% = axsX?+axy2XY?+axey X?Y +ax2 X2 +ay2Y? +axy XY
+aszZ+ aYZYZ+aXX + ayY+ aZZ+ agp.

with X = ®(425) of degree 3, Y = ®(425%) of degree 4 and Z = ®(32425?) of degree 6.
The coefficients are homogeneous polynomials in u1, ..., ug and are given below.

axs = =2p1piafa + 241 propis-Ap pais-2p fapss + 201 43 - 2papf + Apopaps + 242/t
- dpdps - 2udpe + dpapd + 2 pe.

ax = ApSpdpa - 268185 + 6pSpopspa - 2uSpopsps + ASpop? + 148 popaps +
120 poprapis - 6pSpopi3 - 4pSpopis s + 209 p3pa + 208 s + 12uSpspaps + 8pfpspiape
- ulpspd + SpSpips + 4uipdpe + 14pSpapd + 24pSpapspe + Spdpapg - 4uiud -
ASpdue - 2 pdpa + 20813 ps + 2udpdpsps + pipdpsps + 28p3pded - 21pdpdpaps
+ 6uipdpaps + 10p3pdpd + 2l pduspe + SpSpopdpa - pipepdus + SApSpopsyd -
Ay papispapis + 320 popispais + 3upopispd - 4pspopsps e + 30u5 pop + 10105 ol s
+ 1003 papdps - S1pSpopapd + 3203 popapg + 1643 popd + 6ppopdpe - 43 papsg +
A pgpa + 24p3papd + 1605 p3paps + 2203 papape - pipas + 2008 gl + 10843 papg s
+ 84pduspdpe - Appspapd + 6403 uspapspe + 40pipspapd + 2udpspd - Apdpspdue
+ 60ppius + 30pipiue + 101pipipd + 200pfpdpspe + T2pfppg - 34uTpapd +
6Ap8 puapus i + 2408 puage + Sy + Apd g - ApS g - 3t g - pdpdps - 11 i3 pspa
+ 20 i pus - 2641 g - Tyt i pagus - 2648 13 papse - O 3 4 20 s i - 100 p3pd e
+ Byt papd s - 64t pudpapd - 44t pdpapas - 43t p3papape + Llpd pdpsp + 150t 3 psps e
T2l - 148t 23 s - 183213 e + 1208 P2 pap? - 10644 p2paps e - 51 pnapl
- Wi pdped + 120 p3pdpe + 13uipdpspd + 20t popius + 58utuapdpd - 36t napdians
+ 2pd poprdpae + 150 popdpd + 9pdpopdps e + 2040 popspsd - 28ptpapspid s
+ 2044 popapd s - 6641 popispapd - 1494 popispapispis - 201 popispag + 181t papapd +
A5pt papapdpe + 150 papsps g + 94 popy + 282pf popps + 33641 paplue
- 28811 paig g - T2 papips e + 164 papdpg + 38t papad - 16203 pojuaiz pe
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

- 173p poprapis g - 12001 popapsy - 15u  pops + 204 popdpe + 39t popdpg + 100t popis g
+ 2utpspa + 36uipipd + 16ptpdpape + 2utpdpd + 116ptpsu; + 116p pspius +
1884t 12113 i - 362 3 pap? + dutpdpapspe + 44utpdpap? + 10utpdpd + 9ptu3udue +
824 sy + 4084 pus i s + 3684t puspii e - 284t papi i + 4084t pa gl pspue + 310 s prd
- ddptpspapd - 149t papapd e - 4pd pspapspd + 48utpspapd + 9ptpspd + 30utpapd e
o+ 152 + 188pd s + 94ptpdpe + 282utudpd + 672t B pspe + 264pt Sl
- 1920 pipd - T2pipipdpe + 328uipipspg + 156p i pipg + 1947 papis - 10847 puapidpie -
VT3 papig g - 248 papis e + 160t papg - 6ptpd + 10pipgpe + 26 pdug + 10p7pdpd -
20 s - 10p s - i pspaps - 24u3pap - 2503 papags - 2408 popuapie - 2403 s e
- 18 pdpdps - 88 sy - 62403 3 papuapis - 861 i3 pspaps - 65 sy - 112003 3 pf -
13043 i s - 212003 s g - 104403 s pra i - 156423 s pua s prs - 10043 pispua g - 12403 i pu
- 23 s pd - 1203 pdpdpa 4 2t pdpdps - 80u3 P pdng - 64pt udpdpaps - 920 u3ud e
+ pi s pd + 1208 pd 3 s e - 80Ut pu3pa el - 394uS pspspdis - 3720t u3ps i pe

- 14045 sz a3 - 35203 p3papapispie - 22203 p3pspapg - 14 papsps + 4 pspspsue +
22463 i3 papus i + 803 pudped - 554ud pd i s - 2403 3 e - 2618 33 - 96013 3t s e
- 464415 s g g - 206405 o papd - 37603 papapd e - 424405 b papis g - 174U 3

- 28ufpspdne - Ouppdpg + 1203 s - 205 popspa + pipopzps - 284 papdpags -
2415 popiipaie + Oppapipd + 8 papipspe + 17205 popdpd - 2544 pops s

- 183 papspipe - 84udpopapap3 - 25663 pop3papspe - 100p3 popspapg + 203 pop3pd +
365 popdpdpe + 24uSpopduspd + 42003 popspd - 20803 paps s + 52008 popspie -
65443 popis i pnd - 117643 popus il pspte - 14643 popuspid g - 15603 papspiapd

- 5404 popuspuapiz pis - 65643 popiapiapis g - 1763 popizpap - 1503 popizps + 8ps papapidpe
+ 6613 popspdig + 3203 papspspy + 16203 pop + 38543 papips 4+ 60043 pop e

- 9903 popigpd - 684pSpopiuspe + 280pSpopiug - 262uF popgud - 160843 popiuiie -
147613 o3 uspd - 22003 popdpg - 20503 popapd - 44003 popapid e - 67203 popapid -
52045 proprapus g - 112003 puoprapug - 3043 papus i - 8105 pop g + 3613 popd i + 1603 popus g +
V4pd sl - 43 pspaps + 208 pspaps + 15 pzpd + 12808 pdpf + 11208 3 g pe - 28463 13 prapi
- A8y ppuapis s + Bt p3papg + Auipiud + 8utpdpdpe + 290ptpdpd + 344ptpdpdps +
64443 i3 i e - 2543 p3pdpE - 365 3t pspe + 2881t 3 pTNG - BOuTpApapE

- 25645 pu3papdie - 20003 p3papspd + A pSpapg + pSpdpd + 2403 33 pe + 24ud u3udug
+ 176p5uspl + 840p3papips + 860u3pspdps - 208u3 papip? + 104043 pspipspe +
980w it g - 436403 pgpuf s - V17615 il e - 292405 pus i pus g + 268103 i i

- T8 papagus - 36043 pzprapd pue - 65643 paprapid g - 352443 paprapus i - 16453 paprapu - 6403 pzpid
+ A papspe + A4t papd g + 320 papd g + 324 pips + 16203 puiue + 385uFpgud +
120073 s s + 52043 g - 660p7 pdpd - 684ufpiudue + 560u3pdpspg + 408y pd g
- 131t pips - 107203 pdpdpe - 14765 pipspg - 4403 pfuspg + 56p3uiug - 8243 paps
- 2200 papis e - A48 papidug - 52003 papis g - 2248 papis g - 163 papg - 1203 pdpe -
A pgpg + 24 pdpd + 16t pdpg - 3ptpdpspa - 10pTpdpg - pipdpaps - 613 popapes -
OEpapipa - 513 udpspd - 34l uguspans - A1pdpdpspaps - 13 papspspe - 6603 uaud -
108 papdps - 122uipapdpe - 8ufpspaps - 66pFpspapsie - 4703 apapg - pipapsg -
1013 py i - L pR il - 683 i3 puapss - TO3 3 puapie - 24203 pipus o

- 48117 i3 i pus - 442007 i3z pue - 142007 13z pragl - 302007 13 iz pragus pi - 182403 iy papuafig
- Opuf s i3 po - 20T 3 s g - 2163 g - 41003 3 s - 58813 s e - 42567 u3ping
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4. Deformations and quiver representations

- 832p3 pspdps e - 520M1u2u?1u§ - 2003 ppai - 268uF 3 papdpe - 338t pipaps g -
14043 3 papey - 6#1#2#5% 243 sy - ApTpdpizpa - 60pTp3papG - A4 pspdpaps -
BOpT i pafis + 2403 papips e - 22003 sz - A0ApS papdpg s - 469 sz i e

- 188pi p3pdpad - 3533 pap3paps e - 20303 o p3papg + HIn3pAELe + TUTSE s HE -
20043 i3 g - 111643 i3 g’y pus - 1058443 i3 g pr - 8903 3 pus il i - 205903 pdpus il ps e
- 1153ui s s piug - 288uinsuspap? - 82Tpiususpapiie - 863uiu3uspapspg

- 3361 p3papapy - VApR s papdie - Tidpapspiug + Spi papaps g + 320730

- 1027pipspips - 600uiuspipe - 964uiuspind - 2740uiuspiuspe - 1346uiusuing -
8203 pspapd - 2140 p3pipd e - 243903 papdps g - 920uT 3 s - 4343 s paps

- 532uipspapipe - IBuTudpapdug - 666uFudpapspd - 195uFuspapd - 14piududud -
Suipspduy + 3pipspspg - 10uTpopsuy - 8u3papspaps - Butpapizpape + 1 Hats i
- 17203 o3 pd s - 120pd o pd e - 72003 popdpap? - 138483 poppagis pg - 64463 pappuapd
+ 6 papdpdie + Opfpopipspg + 266p3uopdug - 676uF popdpips - 9203 popdpdpe -
66613 papdpip? - 1453u3 popdudps s - 516p3 popduipd - 24003 popdpuapd

- 603#?#2#3#4#%% - 613#?#2#%#4#5#% - 19203 popi3 papsy + 2003 o ps + 213 popi3 g g
+ 14u1uzu3,u5u6 + 504u1u2u3u4 504u1u2u3uiu5 + TO0p3 popuspigpe - 18967 popispuiy i3
- 3294:“1#2#3#4#5#6 - 564#1#2#3#4% 1084413 paprapi il - 352503 popiapii e

- 367143 popiz i s i - 93647 popizpgpg - 29003 paprapuapss - 105043 popizpiapid pie

- 14973 puopus puapipig - 104643 popuspuapis g - 25203 popapapd - 1513 papspdie

- 10pTpopapdpg + 24p3popspdpy + 1503 papisps g + 16643 puopf + 280#?#2#3#5 +
63203 papi e - 17850 popiypi - 16923 papigpspue + 1803 papipug - 1108#1#2#4#5

- 4692013 o i g - A254703 pappis i - T60p3 popipd - 805uFpapdpd - 2616u1u2u4u5u6
- 4197y puapipisid - 2042 iy - G084 puapiin - 36pRuaguans - 530uiupapisus -
1154u1u2u4u5u6 - 1158#1#2#4#5% - Glluluzmuwﬁ - 120p3 popapg - 15p3popspg -
12u1u2u5u6 + 9u1u2u5u6 + 6u1u2u5u6 + 36#1#3#4 - 20pipspips + 10p3pspipe -
8pfpspapy - 16uipapapspie - 203 pzpapg + pipzpdpe + 2243 piug + 288p3 e -
17203 3 g pd - 24003 i3 pd s e + A0p3 puipdpd - 48udpdpuapd

- 138013 p3 pa i3 s - 128#?#3#4%#% - 1643 p3pap + Apd 3 e + 63 pdpd g + 3963 3 g
+ 532uipapaps + 1102u1u3u4u6 - 676pFpapg s - 18403 p3piuspe + 712u1u3u4u% -
444#?#%#2#? 1453#1#3#4#5#6 1032#?#%#3#5#% + 1203 p i g - 120#1#3#4#5

- 402u1u3u4u5u6 - 6133 p3papiZug - 384T pdpaps g - 463 p3papg + pipd e

+ 14M1M3M5M6 + 1pipapdpg + 208uipuspd + 1008uiuapiis + 11287 uapde

- 50443 pspgpd + 140003 papipspe + 159003 papdpd - 126473 pspdpd - 3294763 sy g
- 1128pf pspiips g + D92pi papii g - 542uF pspdpg - 235003 papif i e - 36713 sy pd g
- 1872pf pspips g - 10403 pspipg - 116p3 pgpapd - 525uF papapapis - 998uT pspapipg -
1046413 11 ap g - 50T papuapispig - 5643 s piapsd - 6163 pispdpse - 5ps pspapig + 16463 pgpdpud
1502 pgpdud + 332208 s + 16602816 + 280p2p5 02 + 1264215 pis g + 60002 il -
119043 g - 169203 pypiz e + 3607 pipuspg + 56443 pipg - 55447 i - 312843 i pdpue -
425413 s g - 152003 s pig + 6473 i - 32203 pi g - 1308uiuiuspe - 2798uf uiudpg
- 294203 s - 121603 pips g - 96pTpdpg - 1203 papl - 21203 papidpe - ST7p3 papispg -
TT2003 puapid g - 611103 papdpu - 2403 papis g - 24003 puapug - 6163 3 g - 6163 s g + 6pipdpg +
613 p2ud - papdpdi - O pdpspd - dpuapdpspaps - 16p1pdd - 3uapdpdus - 181 papi e
o pSpapd - Apapdpapd - 2 pdpdig - 27 pspdpd - 10ppdpduaps - 150 ps 3 ape
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

- 82puypigpspry - 96 papspdps - 123p1popspiie - 2 papspapy - Alpapopspaps e -
3541 piapapuagiy - T5pypapd - 16640 i puis - 196 i pe - 24pa i - 18641 103 113 ps e
- 141 g pd pd + Gpapi3papd + 2pn papapd e - 37 pigpaps g - 260 i3 pad - paps s
- 30pa g - 16 i3 paps - 161 p3pdpaps - 1461 p3pdpd - 204 p3p3pius

- 228y s pa e - 421 papapapd - 11601 pd 3 paps e - 681 p3p3apg - 2750 sz -
BT2p pispus i s - 71240 i papii e - 390 pipapd g - 906 pipua g pus i - 546 i iz i pg
- 12 i3 pspiapd - 17201 pd pispapd g - 26400 pdpspapes g - 11200 pdpspapd - 192p1 pd s -
A8 pipu s - 6TOu1p3 g6 - 6420 i3 - 13524 g pidpus o - SAOp pipudyu

- T8uaps g pd - T2 3 pipd e - 100201 g3 pspd - 42000 p3pdpd + 1500 3 papd

+ B i3 papdie - 14001 g3 puapid g - 184y i pagis i - 64pa i3 papd - 120 p3pdpd

- Bpuap3pspagts - Spnpapapage - 96 i - 144p p3pdpd s - 150 p3piut e

- A8pap3ppapd - 86p1pa i paps e - A2 p3ppapg - 250 p3paug - 680 p3pdu s -
T54 4 s pa e - ST0p papdpa s - 1131 pspd g pspe - 609 33 pi g - 884 pa iz paps
- 3391 p3 i3 papd s - 3591 p3 i3 papus i - 12641 p3 i3 papd - 1920 pdpspel

- 1280p ppisprig s - 1215 p3puapigpe - 1500p p3papi s - 34144 p3 s pii s i

- 18621 pypua g - T80p o papipd - 25050 p3pus iy pg e - 2721 pi3 s i s i

- 100841 p3pa g - 2601 p3pzpaps - 3581 p3pzpapdpe - 7571 p3Hspap3 g

- 582pu1 p3 s paps iy - 1610 p3papapg - 900updpdps - 5761 pdpdpe - 1185 p3puipd -
B150p i pig pspte - 1555 papugpg - 1228 ppfud - 352841 papitpd e - 4030 b il s pig
- 1492pn iy - 1291 p3 iy - 1428 pspdpd e - 2709 pspdpudpg - 20707 i s g
- 585y pgpd g + 20pp3papd + 14 pdpapie - 270m pdpapdpd - 5064 pdpapdd -
32501 p3 pua pis pig - TApapdpad - 160 popip - 30pypopdpd s - 241 papdid e

- 1201 propipuapd - 1501 propdpiapis i - Gy popigpapsg - 2881 popuipi s - 1920 popy i pe -
252411 pro i i3 - 4624 o pis i - 192001 profud i i - 6411 pro g prapsd - 162001 pro g prapt i
- 13841 puoprdpapis i - A0p pappeapsy + 21641 popidpf - 760 papdpips - 12000 papdpipe
- 106401 propd 2 - 239440 piopi3 s e - 8324 puopi3 g - T32p1 puopd il il

- 202541 puo i3 pi pa s - 19834 piopi3 i s g - 57641 piopi3 g - 90 propdpiapis

- 446y o3 prapi e - 669 ol puapia g - 4264 puopd puagus i - 98p popi3 puagig

+ 3361 popuzpl - 480 popiz s + 528 otz s - 21901 popus it 2

- 376541 puofus e is i - TOOp piopus iy - 18564 popupigd - 5970 popiz i e

- 603041 puapiapiigpus i - 15204 puopiapiigpeg - T80 popua iy iy - 31984 propua i i i

- 48871y prapus B g - 33300 prapappis i - T5610 taptpig - 2440 fiopispaps

- 36541 pua iz uaispis - 986 puopuapuapidpig - 10744 puopuspuapid g - 5454 puzfuafiafs i

- 10440 papspiapsg + 96 papy + 12611 pop§ps + 392 papSpe - 15480 popl i

- 16204 propti s s + 4841 puopul i - 1400w propuge - 54300 proprigpid prs - 4905 proprig s g
- 92041 pupigpuy - 12000 po gy iy - 435200 propuigpid s - 7050 popuigpud g - 4844y popiius g
- 9924 popiipi - 1081 popigpd - 14101 popi s - 3414pa popdpd g - 3690 popd pd g
- 192941 piopif pspg - 360pnpapipg + 14papiopiaps + 121 popapdue - 2650 popapapg -
64411 puoprapidpud - 591 pua puopuapidpig - 2501 proprapus g - A0p propraps§ + A0p pigp

- 32uipspiips + 16p1pzpipe - 30uipspips - ASpn i s e - Gpapapdig - Suipspaps -
15 iz papid i - 120 pzpaps i - 21 pzpapg -+ 1920 pipd + 320 i3 e - 288y pi3 g3
- 384y 3t pspe + 64ppdpiug - 168uipdpgud - 462 pspdpsee - 384 A uspg -
A8y p il - 3201 ppagd - 108p1 pdpapdpe - 138 pdpaptud - 80 pdpaps i
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4. Deformations and quiver representations

- 12p1 pprapr + 2801 p3p§ + 432p p3pips + 9364 p3piue - 760 33

- 240p i pgpspe + T80p1pApApG - TT0m papipd - 2394 papipdpe - 16641 p3 i s
+ 161 papi g - 366 p3pdps - 1350p1 p3puipdpe - 1983p1p3pipdug - 11520 p3 s s
- 138 pdpipg - 36p1pdpand - 223updpapdpe - 446 pduapdpd - 42600 pdpapdd -
196411 pi3 prapus g - 2601 p3puapg + 12841 puapu + 67241 prapfpis + 7844 pua i - 480 a3
+ 1056701 1315 s i + 1320411 prapf pd - 146041 prapu i - 376501 pspig g - 14004 psprg ps i
+ 6201 p3prg gy - 9284 puzpii g - 3980pa pus il pdpe - 60304 pua i pdpg - 30404 pua iy s
- 1761 papuid g - 31201 papipd - 15991 papipape - 3258u1pspipdng - 3330m pspipdig
- 1512 papdpspg - 168 pspdpg - Spapspaps - 146 papapdug - A93pn papapipd -
1641 prgprapud iy - 54541 i papd pug - 2084 puapiapis g - 2441 papuaps + 19201 ppis + 96111 116
+ 1260 p§p + T84 pGus e + 3921 g - 10320 p3ps - 16200 pipid e + 96 1 s i
+ 43201 p34ag - 700 il - 3620 il pue - 49051 pkpi2 2 - 18404 pubpaspd + 40y -
48041 pig a3 - 21760 il s pu - 4700p g i3 g - 48444 pid 2 - 1984p i puspi - 160 15 1
- 3641 08 - 564y iy g - 1707 pun puf pu i - 246001 i 3 g - 1929 pi pd g - 720 pa s g
- T2uapdpg + Apapapd + Apapapdpe - 1060 papdpd - 3220 papid - 3944 puapid i -
25041 puapid pig - 80 prajuspug - Spinprapis - P31y - Ouspapd - Apspspipe - 8pspy - 23t is
- 12ubpuine + p3pind - Apdpiug - 2pspdpd - 18uspiud - 10pspdpdps - 15u5u305 0
- Alpspspy - 64pspspiips - 82uspspipe - 2uapspind - Alpspspduspe - 35u3uspiug -
30puap} - 83puapips - I8uapdpe - 16pspdpd - 124pspdpspe - Ypopipg + Guspind +
253 - 3THopg s g - 20055 - papspg - 205 piud - 16p3ps s - 16p5p3u3 e -
T3udndut - 13613p3utus - 16203 pdutue - 42u3udpin? - 116p3pdutpsme - 68u3udptud -
11043 pu il - 286413 s i s - 35643 pipri e - 260163 gy i3 - 60443 pua g s pu - 36443 s pri
- 123 papigpd - 17203 papdpdpe - 264u3 s s g - 11205 papgpg - 64p3uG - 194u8pdpus -
26813 115 16 - 321p3pgud - 6763 uGpspe - 42003 pipd - 52p3piud - A88p3udpd e

- 6683t ps g - 280t + 15p3pgps + Spdpipdpe - 140uspdpsug - 184u3ugpspg -
6Ap3 g - Budpapl - Guspspaps - Suspspape - A8usuiug - 96 ugutus - 10033 ue
- 483 s N - SO paHA s e - A2p5pgpd g - 100u3p3 0] - 340p3p3 g - 3TTaHAG e
- 380pdp3 i3 - TAp3papps e - A06p3paptpE - 88uspaptud - 33953t nd e

- 35953 ps g - 12645 p3pa g - O4pspaps - 51205 papd s - 4865 s g e - T505 a3
- 170Tp3pspipsps - 931p3papipd - 520u3uspipd - 1670u3pspiudis - 18145 uspiuspg
- 672p5papipg - 26p3puspipg - 358uspapipdne - T5THSHapAEHG - 5825 papi s g -
1617353 pg - 300p3pSps - 192p3pSpe - A74Ap3pGp2 - 12600303 s - 622030505 -
614pspgpd - 1764p3pipdpe - 2015uspgpspg - TAGus g g - 86udpius - 95255 udue -
1806151 3 g - 138054 ps g - 390p3 g + 20p5pipd + 14pspiusue - 270u5pgud g -
5063 papE G - 3251515 s iG - TAuspae - Spapiziy - 20uapapitps - 16papz i

- 12p0p3p3 13 - 15papzpiisps - Opopizping - 144popdius - 96uopdpipe - 168uopiuips
- 308papipiisie - 128uopiuing - 64uopinind - 162uapiuindue - 138uspiuiusug -
A0popi§pd g + 22031 - 304papd s - 48uap3 i pe - 582puap3 g pd - 1197 o3 s e
- A6papzpipg - 488uapzuiud - 1350uapiuindue - 1322uapdpdpspg - 384papdpipg -
90papzpips - 446pap3papdue - 669papzpipag - 426p2p3 i ps g - ISpapapig

+ 96pap13p] - 160papspiGpts + 176pap3 s - 876papapipd - 1506 o is il s pt

- 280popspgpg - 928uapspiipd - 2985puapspiiptie - 3015uapspiipspg - T60uopspg g -
520papspiid - 2132popspipdng - 3268uapspipudug - 2220paps i ps g - 504 s g -
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

2Apopspipd - 365puapspipsie - 986uopspgpipg - 10T4popspipdpg - 545uapspdpspg -
104pap3p3pg + 24pap§ + 36popips + 112p0p pg - 516papGu

- 540papf s + 16p2pdpg - 560 i ud - 2172003 B e - 1962013 1515 - 36821318 -
600p2pips - 2176papipdne - 3525popdpdpg - 2422uspiipspg - 496popipg - T2puapind -
940pa 15 g pe - 2276 puipd g - 2460uapt 3 g - 1286424 puspig - 240p2pug + 14papd s
+ 12u0p5 36 - 265pap3papg - 644popdpdpd - 591 popdpdpg - 250papipspg - 40uapsug
+ 16p3pu3 - 16p3ugps + Spsujpe - 20pspiud - 32uspuiuspe - Auzpipg - Suspaus -
1552 e - 120305 Hspg - 2uspi g + 64p3pg + 12803 i pe - 144puduips - 19203 pd s e
+ 328 pug g - 1120303 i - 308431 2 e - 2563 i ps g - 32p3pdpd - 32p3pius

- 108p3pd s - 138pu3udndpd - 80pdpduspd - 12u3pdpd + 80udud + 144p3uSus +
3120218 11 - 304020512 - 9612 u3 s e + 3123 u5 02 - 388udpdpd - 11972 12 g

- 832u3pps g + Sppgp - 244p3ping - 900 uiudue - 1322p3pd g - T68u3 s
- 92p3 g - 36p3pdpd - 223pdpdpdpe - 446p3udpdpd - 426p3p3pdpd - 196133 uspg -
2630518 + 32p3p5 + 1923 i s + 224356 - 160u3p803 + 3523 G s e + 440384
- 584ps i3 3 - 15063513 - 560z s pig + 248uzpipg - 464uzpiug - 19903 pdme -
30153 s g - 15203 pis i - 88papipg - 208papuipd - 106643 pus e - 21720315 3 g
- 222033 - 10083 pspug - 1120343 - Buzpzpd - 146p3p5udue - 493uspi g -
T16p3papdpg - 5ABpapgpdug - 208uspipspg - 24pspapg + 48ufus + 24pGus + 36uiu3
+ 224pipspe + 1120008 - 344pGpd - 540pu§usue + 32ufuspg + 144088 - 280515 -
14481536 - 19623 p3 g - 7365 s g + 1605 - 240543 - 1088516 - 2350413 113
- 2422052 i - 992ppuspig - SOpdpg - 24p3ps - 376piudue - 1138pdpspg - 16404321
- 1286p 3G - 480 pspg - A8pdpg + Apdpd + dufpdpe - 106p3pdug - 322u5uspg -
394p3pd g - 250p3 0308 - S0uFuspG - 8udis.

ay = =2u§p3 - 3pSpaps - pSpapa - 8uSuaps - 6pSpape - pSp3 - 6uSuaps - 4uSpspe +
pS g - 203 paps - SpSps - 12ufpspe - ApSpg - 2635 - 6pf pips - 18u3papa - 1003 s ps -
14pdpd i - 645 piopd - 30pS papispia - 22008 tiapapis - 2608 popispis - Spipapd - TOuS popiaps
- 54pSpopaps - 18uSpopd - 52pS popspe - 28pSpopd - 2pps - 1203 p3pa - 1208 p3ps -
12013 13 1 - 205 paped - 6045 pispraps - A0S pispiaps - 22008 s pi? - 5245 papus pig - 2443 gl +
8ud i - 1643 pfps + 4pdpdpe - T0u papd - 10803 papus e - 323 papsg - 120543 - 52413 2
- B6pSpspg - 1603 - pipd - Apipdps - 10ptpdps - 8pdudps - 10uipdue - 6utpsp3
- A3t pdpsps - 2208 3 psps - 30ptp3pspe - 63uipdud - 53uindpaps - 864t p3paps -
24y s - 5641 pd s i - 3541 pd g - Apipopd - 53t papdia - 220 papds - 30pt papdie
- 129pfpopspy - 164pi popapiaps - 204ui popspiaps - 42uipopspd - 112ut popspspe -
69 papuapg - 26411 popiy - 24648 iopid s - 1944 ol pis - 99t pioprap? - 3284 papuais i -
1851  propapsd - 324t popd - 108yt puopipus - 13240t popuspeg - 50pipapd - putpis - 2043 pipey -
8t s - 10pd g - 62utpdps - 106t pdpaps - 111 ptpdpape - 220t pdps - 60utpdps e
- 34pipapg - 164 gt - 268t pspd s - 1TTpd papd e - 1644 papuap? - 4084t pspuapis e -
193411 puaprape - 28t psped - 1120  papid i - 1384 puspuspud - A8pipap + 27ptpiy - 520 i s
+ 30ptpdpe - 24608 p3n2 - 388utpd s e - 95uT GG - 661 papd - 32848 papd e
- 370t papspg - 102ptpap - 16pipd - 72ptpdpe - 132uipdpg - 100ppsp - 24u) g
- Wipsps - pipapa - 2u3pape - 2uipaps - 14t s - St pspaps - 12633 s e -
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4. Deformations and quiver representations

1043 pi g - 1203 p3 puapis - 22005 13 prapi - 1645 i ps e - 1A 3G - 203 s - 3445 ppzps -
1208 s 3 pns - 1818 p e - 122005 s gl - 883 pspuapuapus - 14203 p3 iz paps - 24405 s
- TOpS s s s e - ATuipgpapg - 11005 s s - 68utusudps - 178uf pspiue - 44uduzpaps
- 1403 papapispe - TS pdpapg - A8utudpdpe - 82utuduspg - 36uiudug - pipaps -
303 papipua - 8 o s - 12003 g pr - 19203 popi g - 13443 popig paps - 20003 pop3puapes
- 240 papi3pd - TOpS o s i - AT popd g - 30643 popuap - 4944 popspiis

- 6564153 pia iz it e - 1803 papispuapi? - 56445 o pispapis s - 38843 popispapd - 32403 papuspd -
13813 propuapid i - 182405 puopispus g - TApS popua iy - A1 popsy - 448153 popt s - 36045 oy e
- 144y popig g - T30p3 popdps e - 45503 popig g - 6443 popapd - 28813 popapi3 e

- AT0u poptapis g - 210143 puoguagd - 6443 popdpg - 16203 popid pig - 140143 puagus g - 403 papig
- Bubudpa - 2pipsps - 2 pdpe - 80uSpdpd - 60T pSpaps - T pEpaps - Spippd -
243 s e - 14pSpdpg - 17203 pdpd - 384ududpdps - 420utp3pdpe - 134utuzpaps -
400 p3papis s - 2420t pu3papg - 1605 p3ps - T0u3papdpe - 94piu3pspg - 3607 p3pg -
5O gy - 612003 s i s - 43813 psp e - 4941 papdpd - 1312003 pus gl s e - 642465 psp g
- 120443 pu praps - 564153 papuapi e - 76103 s puages i - 290763 psprapsd - 1643 ps e - 9208 s i pg
- 1820 papd g - 14848 papus iy - A0p3 papu + 5043 1] - 903 s + 90us pd e - 44845 i
- T20pipgpspe - 122u3piug - 96p pdnd - T30pTpipEpe - 910u s - 238 piug
- 32 papy - 19203 papdpe - AT0p papdpg - 42003 papspg - 108ptpapg - 3243 pspe -
10803 pdpig - 1403 p3pd - 80pipspg - 160303 + 2uTpdpa + 3pTuspsps - piuspaps +
Wpfpapg + 200 papapes + VAp3 papaps - puspg - 2403 s - 203 papape - 643 pspapg
+ VAp pipapiagis - 203 s papts - Sp papaps e - Sptpapapg + 20uT i + 6813 3 uips
+ 50pE 3 pdpe + T6u3 pipapd + 9613 pdpapispg + 2603 3 papd - Spdudpspd - 6433 -
8uf s - 243 P33 - TAP BT - 24p3p3 S aps - SOpT B S paps - 1203 U3 3 s e
- 12p3p3p3pd - 17843 p3pspd - 90p3 pdpspd s - 23203 p3pspdpe + 2003 pdpspap?

- 62pfpdpspapsite - AR s papg - 24pFpsps s e - A8uTHGpa sy - 23uTHaap -
10522 12 + 582123 s - 13202 12153 g + 1562120212 + 18612 22 s pu - 2902 122 2
142 g2 papd + 24843 p2papd g + 103p2 3 papspd - 10p2p2papd - 2402 i3 udu?

- 36pipspspy - 13ptpspg - Suipepdps - pipepdpe - S6uTuapdug - 36u3popipas -
60T papiypuatis - 813 prapiypus i - 8T puapig i - 3584 papua il - 3203 o 3 i pus - 52203 pa iz i e
- 60T popizpap - 2484F popdpuapis e - 20203 popipuapg - 24T papdpE e - ASp3 papais g
- 23pfop3pd - 423pdpopspy - TT6pT popspips - 1104t pops e - 234ptpopspipd -
V042043 puo s iy s i - 844403 puopus iy + 1203 popuzpiapsd - 17413 popz prapid e

- 42811 po iz papus i - 23643 papuapiap - 32003 papiapi i - 96 popuapiz g - O240F o pua s g -
28113 pioprapg - A6p3 ol - 46403 popiips - 38013 papipis + 5Apdpopind - 680u3 o ps i
- 530pdpopipd + 176pdpopdud + 2583 papdpdng - 26203 uopdpspd - 258utpopiud +
14043 paprapis, + 304puF popiapid + 1533 popiapdpug - 84p7 papuapis g - 6443 popaji

- 3203 papdpd - T2 popidpd - 52udpops g - 1203 popd - 24pdudpd - 1003l paps

- Wpdpspuaps - 203 pzpspie - (i paig - 160pi puapd - 17203 pipdps - 230uipspsue

- 363 ppapd - 120p3pdpaps e - T6ptpdpapd - 8utudntue - 163 uduspd - 613 3ug -
266415 113414 - 71613 1340 105 - 810p3 3 il g - 32003 pdpd el - 104443 13 i3 s s - 6683 1315 1
- 4023 3 prapid - 248103 p3 papd i - 40403 pdpapspd - 1763 pdpapd - 16p3pdpd e - 48p3pdpd
- A6pipapspy - 13pR g - TOuipapd - 846pFpapps - 629uipuapdpe - TT6uT a3 -
2208113 psprpspte - L1118pdpapdpd - 15603 uspfpud - 104203 papdpdpe - 16885 iyl pis i
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

- 6883 papdpg + 6pduspapt - 11603 papapipg - A2813 papapdpd - AT203 papaps i -
15503 ppuapig - 16pipapizie - 64pfpapdpg - 9203 pspsug - S6uiuapsig - 1207 papg +
54psp§ - 9203 puips + 13403 puipe - 464pTpaps - T60p3 ipspe - S1ptpugug + 365 uius -
68047 pindie - 106007 s i - 25207 i + 88uipiug + 172uipdudne - 26203 pi s g
- 51643 pd s g - 160p3pdpg + 5613 papd + 152uF papspe + 10203 papdpg - 84uipapdpg
- 128F puapis i - 38uipapg - 16pipspg - A8pfpdpg - S2uindug - 24p3uspg - Apgpg +
2 pi3papis + Gpapd i + 2puapdpapis + Apypdpape + 3pnpapdps + 15p p3pspd

+ 18 piapuzpaps + 16 iy piapis + 2441 pugd + 60 pia s + 54 pia i pie + 154 piapa
+ Ay il paps e + 2400 papapd + 2 p3pdpa + 6papdpdud + 20p1 3 pdpaps

+ W pdppape + 16ppdpsp; + 90mpspspips + 66p psuspine + 64p pdpuspans
+ 108y ppizpapispis + 42p1p3pzpapg + A0pypspg + 160 pspidps + 144pypdpiue +
2281 pipps + 384pipapdpspe + 162 pspipg + A6 pdpapd + 178uipdpapue +
178 i papis g + D24 piapasy + papspigpa - 12pp3p3pd + 8pa pspdpaps

+ 2umpspipaps - SOppapapy - 60p1pszpte + S0pnpapapaps + 581 p3pE aps e
+ Gpapspapapg - 145 papspy - dpapdpspdps - 180 papspipe + 204 phpspipd +
234p pi3 s iy ps e + 116 o papapd + 278 p3papapdpe + 19440 3 s pia ps g

+ 34 p3pspap - 60 p3us + 155u pdugus - 20 pduipe + 400p1pdudpd

+ 65201 p g s e + 17641 pd g + 43201 p3 g + 103201 p3 s e + 801 pu 3 i s
+ 1861 pdptpd + T3pn 3 puapid + 352p p3papidig + 49841 pdpapdpd + 270p pdpuaps i +
ABpuy p3puapts - Opa iy + 24u proppraps - 240 proppaps - 11200 pogpi il - 604 poppl ps
- 108 popripipe + 120 propripap? - A popipapis e - 18y popipapd - 345 popdud -
3724 popa s - 644 popdpiipe - 36 papdpipd - 324 popd g psie - 3244 i3 pd g
+ 601 popigpapd + 90 popipuapd pis - 104 prop3 prapus i - 38p1 prop3pajsy - 324 poprap -
67071 papus iy pts - 1000 pops i g - 108 papus i 2 - 95641 pio i pes i - 912401 popuz i il
+ 22841 pioprspi il + 306 papspd pEpe - 1920 papapl s g - 26440 popa g g

+ 110 popizpragis + 340p popiapapis i + 330 popiapiap g + 88pua piopiafiapis il

- 12401 propuspiapg - 2841 puopt - 288411 puopipus - 2400 prop i + 22541 pioprig i3 - 29071 profud pis e
- 340p1popigpd + A80p piopiipid + 1092p poprpdpe + 41670 puopidpispig - 96y il g +
42070 papdpd + 12960 papdpd s + 1431y popid 2 pd + 588p1 popi sl + 481 puopid g +
601 papaps + 350p1papapispie + 6401 popuapidug + 498k popapdg + 1644 o papis g
+ 16 papapd - 32 st - 18 pgpips - 21 pdpine + 2papdpapd - Apapdpapspe -
31 pd pap? - 160 13 pd - 2240 3153 s - 304papSpS g - 60 g2 2 - 2060 113 12 s g -
Vdpapdpgpd + Spapdpapd - Apypdpappg - 36 pipapspd - 1810 pipagd - 216p1p3 1 -
69071 13 5 - TODp p3 e - BT2pun p3puig i3 - 128840 3 a3 s s - 85241 g g - 244 i o
- 324y pdpdpdpe - 648 pdpdpspd - 312u1p3pdud + 30 pdpapd + 60u1pdpapdie -
1041 p3puapd g - T6p1p3papspsy - 33p1pipap - DOy pap§ - 6484 pspfps - 4920 puapil e
- 670u1pugpigpd - 20001 papiypispig - 1035p1 puapugpig - T2p1papipd - 956 pspipdie -
182441 pus i pspd - 796 papdpy + 114pnpspdpd + 2040 pspdpdpe - 192p1 papd
- 528papspipspy - 225p1pspipg + Adpapspapd + 170p1pspapgpe + 22000 papapd g
+ 88 pspapdiy - 24p pspapsiig - 18papspapd + 32pnph - 56p0pSus + 98 s -
288u1pgug - 480 pgps e + 12u1p3ug + 150u1pgpd - 290 iy e - 680 pdpispg -
1400 pdpd + 2400 3 pd + 7280 i3 1B g + A16700 13 22 - 19201 p3 s 3 - 104 i +
16811 33 + 648u1 pips e + 954 pipd g + 588 pipg g + 96 pdps g - 18mpiug +

237



4. Deformations and quiver representations

2041 prapi + 140p1 prapdpis + 3204 prapuspi + 3324 prapidpug + 1640 pragi g + 324 prapis g
+ 2udpapl + Apdpf + 2udpdps + Audpipe + 3usp3ud + 10psuspd + 18ususpius +
1615303 + 120505 + 40uapitps + 36pspiue + 15uapdpd + 4dpspiusie + 24p5p5 g
boodidu? + Adpdid + 20ududilus + 14didutue + Suduspt + 60y +
A4S pspdpe + 64pdpspind + 108uSpspduspe + 42uspspdug + 164305 + 80u3ugus +
T2udutne + 1523302 + 2560303 s e + 108332 + A6p3p2pd + 178uducucus +
1785 pi s g + 52uspipe + papapy - Spapapd + Suspipius + 2uspipdpe - A0usu3ug
- A0psp3pipe + S0usp3uipE + BBusuIMAMspe + Opapauang - S8uduapl - 2u3usuiis
- 90p5psppe + 136puspspiui + 156p3uspiuspe + 116p3uspips + 278u3pspiuiie +
19453 pd s + 34uapapipg - 200508 + 62505 s - Suspiue + 200u5uiu3

+ 326p3pdpspe + 88usipg + 2885l + 688usppEpe + 534usutuspg + 1241505 g
+ T3uspips + 352u3pipdne + A98uduguEug + 270usuiuspy + A8uspdug - Ouopzi
+ 2puopspips - 2uepapipe - SOuopduy - AOpopduius - T2uopiuipe + 12popiuiud -
Ao piuspe - 18uopdpipg - 138uapind - 186pop3uius - 322uspiudpe - 24papsuiud
- 2163 s e - 21603 pE + 60pap3piud + O0uopdudpdie - 10po 3 s pd

- 38puapdpd g - 108popgl - 268uaps il ps - 400uaps s g - SApiopapdpd - AT8po s s e
- A56popsppy + 152uopspips + 204uapspipdng - 128pops sy - 1T6papspdpd +
110popspips + 340popspipdpe + 330ugpspduing + 88uopspipspy - 12p0pspiug -
Spuapry - 96papfps - 80uapfue + papips - 116papuiuspe - 136p2pdpg + 240uapgps +
546 pZ e + 208puapips g - A8papipy + 280uapfis + 864uapipdie + 954uapi iz g
+ 392pu0 s i + 32p2p g + 60pa G + 350u2pd s e + 640uapipdig + A98pa i i
+ 164popgps g + 16popfug - 16pdud - 12p8pi s - 14p3uipe + 2u3pipd - Apspipspe
- Bugpipg - 6Apdus - 112u3ugps - 152pdpipe - 40u3uind - 144pdpduspe - 96u3us g
+ Buspdns - Ap3pindue - 36pspiuspg - 18uspGug - 720308 - 2T6p3ugps - 318u3u e
- 186p3pgp3 - 644p3pipspe - 426p3u50g - 16p3pap3 - 216p3uGudie - 4320305 s g -
20830 + 30p3pdps + 60p3pdpd e - 10p3pdpapg - T6p3 T s g - 33p3pa g - 1634y -
216434515 - 164315416 - 268113313 - 800wz 113 s pr - 4143 i - 363441l - 478z gz e
- 912035 - 398uspipg + TOuspius + 136u3uiudue - 128uspipdg - 352u3puiuspg
- 150pspSpd + A4psplpd + 170usp2ud s + 220psp3 S ud + 88pusppid - 2Apsp usud -
18upipg + 8uf - 1645 + 28416 - 961113 - 160uG s p6 + 4ufug + 60uGus - 116312 e
- 272p5pspg - 56pGpg + 12055 + 364pgpdue + 208pipsug - 96pipusu - 52uipg +
W2p3p3 + 432u3pdps + 636p3usug + 392uipdpd + 64pfuspd - 12p3p8 + 20u3ud +
1405 p3pe + 320u3papg + 332u5udug + 164p3p3ug + 32p3pspg-

axe = 2pipops - pipops + pipsps + Aptpaps + 2uipape - pipd - 6pSp3ps +
A pdps - A papsi + 3pSpopsps + 6pdpopd - 23udpopaps - 1003 popaps + 1203 pop?
+ 6pipapspe + pipaps + Tulpspi - 8ufuspaps + 3uipspd + 12ufpius + 6ptuiue
- 23 papd - 20 paps e - Aptpapd + Spdud + 6ptutpe - 2033 ps - Spindpsps +
Ap papsps - 30pT s + Tud s paps - 2203 3 pagis + Sut s s e - DUt tapi + 3uT a3
- 202 piopis? - 13002 popus puapts - 2602 papuzpiapis + 123 popisp? + 13udpops s e + 4p2 pops
- 9Tpf popiis - S4uipapipe + 33uipapapnd - AOpT popuapis i - 34uipapapg + 2407 papdie
+ 1543 popus i + 53 i - 10uF i puages - 3uipdpapie + 3udp3ps + 1843 sl - 40u7 papi s
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

- 13pipspapd - 52utpuspapsie - 13pTuspapg + Suiuspd + 13piuspdpe + Spiuips +
A3 e - 9TpR g - 1083 pi s pe - 2403 g + 22pipapd - 4003 papd e - 684 paps g
- V4R papy + 16pTpdpe + 15p3 3G - papspa + 2pnpiaps - 3papispsps + 201 pspsps -
O pidpg - Sp prypaps - papapape + 12 pspd + 8ppdpspe - 3pnpapapa + o ppzis -
240 pdps it - papdpspaps - 17p1pdpspaps + 10ppdpsp? + 10p1pdpsps s - 481 pd s
- Bppspips - 66 pspTae - Tpapapapd + 2 papapspe - 21 phpapg + 28 paps +
361 53 e + 14pa psps g - 1501 popiz iy + pupiapipuapis - Spapopi3piapic + 3papopips +
Apy popi pspse - 3201 papispe - DT piopsppts - T8 popapiiie + 150 popspapd

- 13p1piopapapispic - 284 piapapag + 16p1popspd 4+ 30 popspdue + 14 popsus g -
148 prapi s - 88pu1 puapidpi + 27pun piopig s - 15641 popfps e - 1020 puapiy g - 4 propuage
+ 421 poprapd g - 13 profuapis g - 244 popagiy + 304 piops + 561 paid pe + 420 popi g
+ 12p1popspg + Spapdpl - 30up3pipus - Opapspise + pipdpapd - 16 p3papspe -
Ap 2 pap + 2 p2pd + Apgplp2g + 200 papd - 640 papd s - 57 sy i

- 15641 pus i pspe - 39 papdpg + 10p pspapd - 131 papuapid g - 5640 s papis i

- 12p pspapd + Spapspd + 20p1papdie + 1Apn pspdud - 148 pdpd - 176 1 s -
A0 i pd + 18y p3pd - 156401 113 ¢ g - 20441 103 s pd - 4201 p3 g - 2001 praped + 2811 pagd pig
- 13papapd g - A8 puapis sy - Spipapg + 12pmpl + 28ppspe + 28p1pdpg + 1201 pd
+ ppsis - Haps + Aapaps + 2papspe + HapAus - 3uapspy + Apudpspaps + THbp3uE
+ 6pdpspspe - A3KG - Spdpdps - 6p3piue + 24pdpapd + 16p3papspe + 120302 e +
Suspsiiy - SusHaKE + 2uapdpaps + Spspius + 3piuzuspe - 16p3uspy - p3pspdps -
17pdpspdpe + 20p3pspap? + 20pdpspapspe + 18p3uspd + 30uduspdue + 11pduspspd
- 24pspd - 2uspips - Adpspiie - Tuspipd + 2pspipspe - 21pspaug + 56uspapd +
7203 pap e + 28udpapspd + 28u3udue + 36p3u2u3 + 10p3uspd - 10uapd il + popdudus
- 8uopduiue + Gpopduapd + Spopdpapspe + Spopdud + uopduiue + 2popduspd -
16papis it - 38uapspidis - 52uapspdie + 15puapspiu® - 13uapspiiisis - 28papspud +
32uapapapty + 60uapspapdie + 28uapizpapis g + 20paps iy + A8 pspd e + 33popapd g
+ Gpapspsiy - Thpopips - 44popipe + 18uapiud - 104uopdpsps - 68uapiug - dpopius
+ 4203 pdpe - 13papipspg - 24uapipg + 60u2paps + 11200papdue + 8duapiapid g
+ 2Apspapspy + 30uspzpe + 56uzpipg + 30uzpEug + Auopspg + Audpg - 20p3 05 s -
Gpapitpe + p3piud - 16p3pdps s - Apapapg + 4uspapd + 8uipapdpe + Apsus + 6p3pue
+ 2u3pEpg + Suaph - 32uzpgps - 3Buspipd - 104uspduspe - 26uspdpg + 10uzpdud
- 13pspindne - S6uspiuspg - 12uspiug + 16pspapy + 40uspapdpe + 28uspapspg +
Suaps + 24pspspe + 22p3pdpg + Gpapdpg - TAugus - 88ugpspe - 20 + 1208 -
104pud e - 136pipspg - 28 - 2paps + 28ufpdpe - 13pdpdpg - A8uduspg - Sujug +
24p43 + 56papigpe + 56papdng + 24papdug + 12p3ue + 28p5pg + 20udud + 4pug.

az = pips + pipeps - pipeps + Aptpops + 2ptpape - 2utpspa + 2ptpsps - 2uind -
2t praps - Apipaps + 4ptpd + dptpspe + pipsps + 3pduspa + 203 p3ue + pipepd +
203 papuapia + Apd popia s + Audpapspe - I papg + 1203 popaps + Spipapspe + 4ptpopg
- 23 pdp + 20313 ps - 1413 sl + dpdpspaps - 1203 pspape + A psp? + Spdusps e -
120344 - 18 s - 323 pipse + 1203 papd - 1603 papsg + Buindpe + 8pipspg - 207 s
+ pipdpsps - pipspg - pipdpaps - 43 pspaps + pipspg + 20 pepii + 13 papiie
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4. Deformations and quiver representations

- 6pdpopspt + 2puipopspaps + Adpspspspe + 3pdpopspd - 26ptpopl - 2udpopis
- 32 papipe - 21ppopapd - 12p3popapspe - 8utpopap + Autpopspg + 2pi oy -
10p3p3 g + 4pfpdpaps - Opipipapis + 2033 s - 3643 sl - 1203 papg s - 60uF s pe
+ 2ufppiapd - 2203 pspapd + Apdpspdie + 643 pspspg - 2603 g - 52ud s - 881 p e
- 233l - 6443 pspe - 80T pdud - 14pdpapd - 1203 papidpg - 1603 papis g - 2003 pua gy
+ AR pdpg + Apdpspd - 2mpdpspa - 6papdpd - 2 pdpaps - Apipipape - 2 s
- Gpapspapg - 10p1p3pspaps - Spipapspiape - Spapapy - 33papapaps - 24 p3pdpe -
Spipapaps - 24 pi3papisie - 12pm g - 6pnpopipaps - 2pn popid e - 164 popis
- 18uapiopispipis - 244 popispipis - 181 popispapiy - 204 popispapispt - 100 piopapiapg -
B0pypiapty - 28papiopiipis - 64ppopiipie - 63p1popipd - 84ppopdpisps - A8 piopil g -
12401 popuasl - A8y popuapidis - A2p poprapuspig - 120 popapy - 16 p3pd - 18 p3pdpe
- Bpapgpapd - dpapipapsps - Apipspapg - A0pipspy - 32pipspips - 9p1pspipe -
1841 pua g - A8pu pus i s i - 6611 papud g - 1201 puauapss - 26 prz prapzpe - 204 puafoafis fig
- 12p1 prapuasg - 241 - 60ppigpes - 100p puypie - 281 pigps - 1284 i pspue - 1284 pud g -
A2 133 - 84pn i3 2 g - 96y p3pspd - 60p1pdpd - Gpapuapid - 32 puapidpi - 4200 papd
- 24 papuspig - Spauapig - 2ppapd - Al - 2u3pips - Auspiue - 2uapapg - Apuspspd
- 10pbpapiis - Suspapipe - 4puspy - 22p3pips - 16p3pdpe - Spspgps - 24p5u5uspe -
12031314 - Gpiapdpips - 2uapdpips - Suapapy - 12popspips - 16popspie - 18puopspipd
- 20papzpgpsie - 10papspag - 12005 - 14uopis - 32uapie - 42uapipa - 56 s e
- B2popipg - 12papipd - ABuopiudue - A2uapipspg - 12uapipd - Spdpy - 12u3pipe -
O3 paps - Apdpipspe - Apspiug - 16p3pf - 16pspips - A8uapipe - 12uspi? - 32us i ps i
- Adpgpdpd - 12035 pd - 26p3p3 12 e - 20puspdps g - 12pspg s - 84§ - 24pius - 40uG e -
Vdpui g - 6445 s e - 64pipg - 281313 - 563 p3 e - 644 s g - 40u3 g - Gpips - 320313
- A2pd g - 2443 s - By,

ay2 = - i} + pips - Sptpa - 2636 - 2uip3 + (i paps - S paps - 613 papis + pipd +
Tuipspa + 2utpsps + 3pipspe - Opind - 8ufpape - 8pip3 - 12ufpsps - Suiug - 2 s
- papsps - Spapaps - 10 psps - 10 p3pe + Buypopspis - 3pipopsps - 201 f2isie -
27y papuais - 201 piaprapis - 1841 a3 - 361 papispe - 161 popg + Spapdpa + 150 papg
+ 10p1pspaps + 15p1pspaps - Spipspd - Apipspspe - papspg - Spps - 12p1pus -
27 prapid - 40p1 puapis i - 16 prapi - 120103 - 36p1pdpe - 32pn s - Spapig - o - paps3
- Apdpa - TEdps - 6udue - pdud - 2udusps - Spdusus - Spdusie - Sudud - 20pd s -
203 papte - 19p503 - 32u3puspie - 13u3ug - Suapips - 2uapipe + Suapiaiy - Guopiaiajs
- dpopspaps - Opopspi - 1Tpopspspe - Thopspg - 2Tpopips - 20puopipe - 36puopuap? -
T2uapapsits - 32papapg - 24pap3 - 60uapdpe - Apapspg - 12u9pd + Spudud - 3ujud -
ABpspe - p3pg + 10pspd + 10uspfus + 15pspdue - Guspap? - Suspapisiies - 24spaiy
- Gpuzpd - 1Tuspdpe - 1pspspg - 3pspg - 4ud - 8uiue - 27uip3 - 40p3pspe - 16p3u -
24p4pa3 - T2papi3pie - 64papspg - 16papg - 123 - 40pdpe - A8p3 g - 24pspg - 4ug.

axzy = 4ppe + pips - papa + Spaps + dpipe + pops + Spiapa - pops + Apuops + 13
+ 2u3pa + 2u3p5 + 3pspe - pf + 16paps + Spapis - p3 + Suspe + 4ug.
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

axy? =241 - 2p2 + 4pa - Aps.

axy = -2uips - pips + pipa - Aptus - 2utpe + 4pdpd + Apdpops - Sufuops +
1613 paps + 8pdpapis - 8uSpsps + 81 usps + 2uipspe + 4pdpd - 1643 paps - 61 paps +
16053 + 1603 pspe + 4pipg + 43 ps + 1003 pu3ps + 28uTpsps + 18p3 psps + 24puip3 e
+ 8ol + 2412 uopspa + 38uduapsps + 36p3popspe - Suduapd + 10203 popans +
6202 popiapis + 30p2pap? + 843 papspe + 4202 pop2 + 2020 + 16021305 + 1202 13 g
- 243 uapd + 4813 papaps + 1203 pspape + 38p3uspd + T2ppapsue + 273 uapd +
6uipy - 16pTpugus + 102uipaps + 124p3papsps + 3Tpipapg + 20uipd + 84utpiue
+ 8dpdpspg + 22uipd + 2paps + 6papdps + 16pipdps + dpipdps + 160 p3ue
+ Sunp3pd + A0 pdpuspa + 34 p3usps + 38papapape + 60 pdng + 80u 3 pags
+ 104pip3paps + 38uipdpd + 82updpspe + A6pap3pg + Apipopd + 32ppapdis
+ 30mpapzns + 30pipopdpe + A8mpspspy + 152 popspaps + 144 popzpaps +
6611 popapl + 144 popispspis + T2 popispg + 210p1popdps + 1381 popil e
+ 144 popapi + 368papioptapsis + 1801 popuapg + A8 popid + 1501 popd e
+ 1644 popispg + SOprpopy + paps + Spapipa + Suapdps + Suapiiie + 641 p3paps
+ 48urpdpape + 30uipdud + 60 pduspe + 27 pdug - 32uipapd + 96 pspius +
241 puspipe + 1520 papapl + 2881 puspuapspie + 1081 papuapg + 44 papd
+ M4 pspipe + 144ppspspg + 42mpspy + Spapg + 12uipipe + 210ppiu? +
276 piipspe + 8Tpapapg + 96 paps + 368u1puapizpe + 3601 papspg + 94p papg +
24y s + 100 p3pg + 164 pdpd + 11201 puspd + 24 g + pdps + Apdp - phps +
2udpie + 2p3pd + 1203 paps + Spusps + 10p3uspe + 16p3p3 + 283 puaps + 3243 paps -
6ipd + 10u3ps e + 12p5ug + 2u303 + 16p5u30ma + 1203505 + 14p3p3 s + 40u3pus )
+ 68u3pspaps + TOuspapape + 24p5uspd + 58ususpspe + 33uapapg + A0usul +
80ps g s + 1045 pdpe + T6p3paps + 16415 paps e + 925 papng - 14psps + 205216 +
B9uduspd + 261308 + papd + Suapdia + Suapdius + Suapdie + 32uap3u + 603 paps
+ 60uap3papis + 24papdpd + Sdpopdusie + 2Tuapdpd + 32uapspl + 152u0pzu3us +
14dpopspiiue + 132uap3papi3 + 288papspapispc + 144papapapg + 32papsps
+ Wdpgpzp3pe + 126papspspg + 42popspg + 140papius + 92uapipe + 144uapipd +
368pappspe + 180uapipg + 96uapapd + 300uapapdie + 328uopapspg + 112p0pap] -
150208 + 20p2pdpe + 10502 pd + Ypapspy + 24popg + 2pdps + 2pdps + pipe +
8uaps + 16p3paps + 16p3pape + 8uips + 16p3uspe + 6p3pg + 64p3pius + 483031
+ 60p3 a3 + 120p3papspis + S4p3papg + 16p303 + 54pipdue + S4psuspg + 15u3u8 -
16p3p04 + 64p3p3 15 + 16p3p3pe + 15230503 + 288uspipspe + 108uspdpg + 88uapiaps
+ 288ugpapdie + 288pspapspig + 84papapy + 16papd + T6puspdpe + 126pspipd +
8dpspspy + 18uspg + 2u3 + Gujue + 140p3p3 + 184puspe + 58uiug + 96ujus +
368u3pdue + 360uiuspg + 9Apdpg + 48uaps + 200papdpe + 328uapdpg + 224paps g
+ A8uapd - 642 + 10pdug + TOpEp2 + 94pZud + A8uspud + 8pg.

axz =- i3 - 3uiia - 2uTi6 - 2u1p5 - 2p1piaps - 24 piapia - O piapts - A pagie - g3
- Ap prapi - Appispis - Apnpspe - O pd - A papts - 1240 pagis - 6p1 s - Spapispie - A -
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4. Deformations and quiver representations

[3ps - A g + p3ps - 2i5pe - popty - dpopisii - Apiops s - Apapisie - 2uapd - 1200 paps -
Suapaps + Bpap? - Apiapsiie - 4uopg - 2030 - 235 - 3 - Ayl - Spzpaps - Suspafi
- dpapd - Spspispis - Bpapg - 64 - Apdps - 120316 - 12042 - 16pap5006 - Spapd + 243 -
Apdpue - 8pspd - 2u.

ayz = 203 + 2pipo + pups + Tpipa + Apaps 4+ 6pipe + 203 + pops + dpops +
Tuaps + Gpops + 13 + 2uspa + 2usps + 3uspe + Tug + Spaps + 12pap6 + Tud +
2
12ps5p6 + Sug.

ao = 205 g - 1§ p3ps + SuSiduspa - 2p8 B usps + 4uSpdud + 1045 pdpaps
+ 10pSpdpans - Spdpsp? - duSudpspe + duSpopdpa - pipapdps + 6uSpopsd
+ 184S poprspuapss + 168 popspuapss - 615 papispi? - Apf papspispe + 208 papd + 150 popd s
+ 1208 popgpe + 18uSpopapd + 3643 popapsps + 1648 popapd - 8pfpopl - 1205 popidpe
- ApSpopspg + pSpdps + 208 psui + 8uSpspaps + 6pipipaps - pipzpd + puspd +
1208 pspips + SpSuspiie + 18ufpspapd + 32ubpspapspe + 1208 pspapg - A pspd -
ApSpspdpe + 4pufpius + 208 pipe + 15pSping + 24pSpipspe + Sulpapug + 12u8 papd
+ 36pYpapdpe + 32p papspg + Sppapy - Aptps - 8pfpdue - ApSpEug + 2uipspa
+ 10p{p3paps - 20 pdpsps + 26uipapd + 6pipbpaps + 2201 ppaps - A pipspe +
VT iz - Api papaps + T3 papapg + 3641 g papuais + 720 papaiapic - 10 s i3
16p] 3 s s e + A6l papd + 1367 33 s + 14607 3 p3 6 - 20 3 pap? + 84u] pd s e
+ T6u] p5papg - 20u] papd e - 1607 paps g + 120] papi - 20 popdps + 664 papipg +
DAL o paps + TApT ol uapis - 1207 propi s - 12007 popidpuspic + 767 prapis i
+ 270u] papis s + 260] popapipie + ASpT papapiap? + 23207 pojiapiapis e
+ 15201 propig papi - V6] propiz il - A8y prapus i i - 24401 prapispis g + 2201 popiy
+ 1T popips + 146p  popdpe + 2520 popdpd + 540p] popdpspe + 25647 popiug -
16711 poprapsd + 120u] popapdps + 2484 puapuapuspig + 10447 puopuapug - 32407 piogid i
- A8 g2 p? - 16T popuspd + 3uTpds + 1907302 + 24pT B aps + 2407 i paps -
2T 32 + 20u7 12 + 13207 p2p2 s + 110pT 212 g + 54uT p2pap? + 14807 2 aps e
2T - Splpdud - 12722 e + 130 st 4+ 1520 gt s + 1088 pspi g
+ 270p  papii iy + 520uf papdpspie + 2120  papiug + 3201 papapd + 2320 papapiz e +
304u{pspapispig + 96uTpspapd - Spipsps - 32upspitpe - 24uipspspg + A4pipdps +
2207 pdus + 174pTpdpd + 2920713 pspe + 1000t 132 + 1687 28 + 54007 1212 +
B12uipiuspg + 136uiuiug - Spipaps + 80pipapdue + 2480 papig g + 2087 prapis g
+ A8y papts - 160  pdpe - 32p 3 pg - 160 pdpd + pSudpa + TpSpopsps + 19uSugps +
1208 pigpapes + 168 pspuapis + 18§ p3pdps - pSuspdps + 107pS p s + 420 p3uapaps +
83 3 s prapss - 68 piy s s e + 1420 pi el + 11508 3 pd s + 22848 i3y pu + 5208 13 papi
+ 10048 3 prapus s + O S ppuapsd - 618 s g + 220 3 pua - 208 s p s + 1998 3 p3p
+ T3S pspdpaps + 152uSpspdpaps - Spdpspapg - 16pSuspzuspe + 450uS pspspd +
53318 3 papi s + 82505 pdps i e + 96uS 3 s papd + 35618 13 papuapis g + 3348 13 s papd
- 30uS pdpapdie - 36pSpspaps g + 230uSpauy + TT6p8 s + 8828 s e
+ 269uS papips + 11500 papd s pe + 845uS 3 g + 108uS pu3papd + 240 p3papz e +

242



4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

40478 3 papus i + 23608 p3papsd - 30pSp3pdpd - 24p8 p3pspd + 13uSpopdp - p$papdps
+ 152pSpopdpy + 69pSpopipaps + 118pSpapipaps - 6pfpopips - 10ufpopsuspe +
ABBpS papd s + T240S papd s + 924uS popz pipe + 111 pS popdpaps + 49248 o3 rapis e
+ 386uS uopdpuapd - SuSpapdpd - A8pSpopdudug - 34uSpopdspd + 42208 popis i

+ 170948 popus s + 17508 papapipie + 95708 papspiu? + 301208 popispi s e

+ 185448 apz g + 10808 popuspuapd + 5T0uSpopspapidpie + 110208 uopzpapis g

+ 544l popuzpagy - A8pSpopspidue - 108uS papapdig - A8uSpapspspg + 106ufpop; +
883 papiipis + TTApSpopipe + 1476 popdps + 334645 popdpspe + 1670u popipg +
308 papips + 20828 popiiudne + 3092uSpapdpspg + 1228uSpopipg + 110pS popiapsy
+ 280pS popapdpe + 6664 uopapdug + T88uS popapspy + 280pS poprap - ASpS popdug
T2 o - 24pS papspd + 3pbpSps + A1pSpdp? + 2618 udpaps + 33u8pdpapg -
pBpdp? + 146838 + 304833 s + 32408 131216 + 698 3 pap? + 23648 1S aps g
o+ 1410 B a2 - ApSpdpd - 10p8 32 e + 1818 p2pd + 91081203 s + 8218 213 e
+ 1248 ppind + 1848uf A uspe + 952uS papiug + TAuSpapapd + 49208 p3papdpe +
TT2uS 3 papsig + 29408 pipapg - 4pSpps - 3208 pspdue - 34uSp3psng + T3pSpapy +
8448 papips + 6368 papigpe + 1709u8 papiind + 35006 papilpspe + 1523u8 pspfug +
6384  papips + 30128 papidpdpe + 37081 sy pspg + 12320 pspuf g + 54uS papapd +
3808 papappe + 11028 papapd g + 108848 ppuapspsy + 3004 papuapi - 2448 pspispe -
T2 s pi? - A8pSpapdud + 21208 1S ps + 106181316 + 883uS it + 154881t s s +
5448t 2 + 984813 2 + 33468 13 12 + 334008 B s + 93083 + 154483l
+ 1388ufpiudpe + 3092ufpindpg + 24560 puips g + 5926 piug + 44pSpapd

+ 14048 puapis s + 44405 papd g + T88pS papiZ g + 56048 papus pig + 1200 papefy - 2445 pzpd
- A8pS 3y - 24pSpRpg + 248 P s + 61 pspg + pipdpaps + ApSpdpaps + 8p Hap3i
+ B3pS pdpspd + 2508 ppspaps + 388 papspapts + T205 papd + T9uS it us

+ 14l pspipe + 1008 pspapd + 5203 popuapispe + 4208 papiapg + 14u3 33

+ 1593 pap3pd + 663 papdpaps + 10645 p3paps - 205 pap3pspe + 482ufpudpspd +
A48 1B s gt s + T0602 13 pspli + 11643 pudpspuap? + 299 13 s prapis e

+ 24643 p s puagig - 64 pipaps g + 430u3papd + 5320 puipiis + 98043 3

+ 366, papdps + 89208 ppipspe + T36uT s ug + 383 pspapd 4 24640 pdpapdpe +
333pf P paps g + LT8R s pap - 4pdpdps g + 13pS pdpz s + 21808 p g

+ TS pd s paps + 1363 33 paps - 43 pspipspe + 99TuT ps s + 8683 uspapua s +
14593 a3 i e + 20203 pap3papd + 561p3 puapdpapspie + 48613 pd s pa g

- 108 pd s 3 e - 2003 puapaps g + 155403 uapspey + 269503 s papitps + 402043 s pe
+ 1214p3 pdpspdpd + 38T5uSpd s s e + 309303 P s ping + 25403 p3papapd

+ 887p3 p3pspapdpe + 1293u8 3 pspaps g + 72203 p3pspag - 30u8 3 ps s g

- 32u3papapis iy + 658pf Ay 4 246208 P s + 294613 papgpe + 150043 papdpE +
BABBYS 3 i pus i + 39563 s g + T4 puapdpd + 26208 3 i e + 4057 i s e
+ 209208 g + 695 pdpapy + 544pS 3 papdue + 993ud p3papdug + 94648 d aps
+ 380147 3 papugs - 203 ppi g - 163 3 s i + 613 pio g + 1393 popiu + ATus papizpaps
+ 820 papusprapi - 205 papiz s + 82448 popiud + 81543 o pfis + 123448 popd i e +
14713 papdpeapid + 48643 papdpuapis g + 4003 popdpuapd - 12003 popipd e - 1443 po gl pis il
+ 174 popidud + 383318 popidud s + 492448 popdid e + 16503 pop2p2pl

+ BAT8 popFptus e + 393003 o3 ping + 27203 papizpap? + 10ATpS popdpuapid e +
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4. Deformations and quiver representations

1734413 popi3 papus g + 90848 puopigpapsd - 1645 popdpd e - 6013 papdpdpd - 3643 papd s
+ 134408 popiz i’y + 605713 popapiius + 652205 pops e + 519305 popzuld

+ 1546403 popispipspe + 962003 popapiug 4+ 1600p8 popspdpd + 7389u3 popiapiipdie
+ 1164448 popuapidpis g + 536443 popapdpg + 26503 popapaps + 117603 popzpapdie +
240345 popapapid g + 258443 popuspaps e + 9648 popgpageg - ASp3 pops it p

- 963 popapdg - 40p3 popspspg + 294u3pap§ + 257613 uopius + 235043 popiue +
4806443 puo iy i + 11ATOWS o pig s e + 599043 papud pig + 193643 puo iy i + 10584417 puopi
+ 1521603 popigpis g + 613613 oy g, + 82503 popiips + 345643 papipdie

+ TT5503 o pid g + T888YS papi sy + 2656143 papu g -+ 6045 popuapsd + 57045 poprapizpe
+ 13205 popra g + 177003 poprapd g + 1368113 poprapuspig + 40043 papuapeg - 3203 popid g
- A8S oy - 168 papispd + ppSpa + 33uSpdpd + 1208 B paps + 1805 pdpaps +
23615 pzply + 278ufpapips + 363p3 papipe + ATpS papapd + 16448 g pajis i

+ 104pf pipagg - 203 p3pdue + 6083 g + 16488 uips + 18488 3l pe

+ 815p5 pipi g + 246815 pipd s e + 153148 i g + 98pd pdpuap + 48643 puipapdue +
80045 13 prapus g + 352415 piypapy - 8 pipd e - 14p3 pdpdpd + 63508 3l + 348205 i3 s
+ 33414} i e + 38331 3 nd 4 98484 i pdps e + 53288 s g + 11003 3 i
+ 5AT8} i i s e + T860T 3 s g + 312203 i i g + 13643 pu3peapes + 6983 (i3 pua pi3 i
+ 17340 3 papiz g + 18163 pdpaps g + STOuTpApapg - Syl pipspe - 40p3 pu3pdug -
B6uS papaps + 2318 usp§ + 268815 sy s + 213203 pspipe + 605745 papg

+ 1304403 pappus s + SIBTuT papugpug + 346203 papd i + 1546445 i3 g i3 e

+ 1924003 pua s g+ 669613 s iy g + 80043 papiips + 492643 papiudie

+ 1164443 papl pd g + 1072803 puapud pus i + 309248 pua i g + 106445 s piapsd

+ 588uf s papigie + 160208 papuapdpg + 258407 papapd g + 195208 s prapes g

+ A80p3 papapy - 2405 papis g - 64pS papdpg - 40pSpapdpg + 588p3uGus + 29413 e
+ 2576ufpdps + 4700u3pdpspe + 1692p5puGpg + 3204uSpgps + 11470u3 pdpsue +
1198045 pips g + 34T4p3 pipud + 968p3 pd + 70563 i pdpe + 152168 i g

+ 1227203 sy + 3088ufpipg + 330ufpdps + 1728ufpduspe + S17T0p3ugudug +
788813 g g + 531203 nips g + 119203 puing + 2008 papS + 22803 puapid e

+ 66045 puapig g + 118048 puapid g + 136845 puapig g + 80043 papis g + 16043 papud

- 1647 ps g - 3203 pdpi - 163 p2pug - pipSHT + pip3pAIa + THTH3aIE + 1 p5 s s +
Budidpspaps + 10pudud - Tutududus + 1003303 ps + 2utpSpaps e + Sutuduapd +
Bpi e + ABpipopipd + 14pi popipaps + 264 papdpape + 15T sl

+ 115 ppapd s + 2040 paps e + 120t papspap? + 71t pd s paps e

+ 64ptpspspapd + 139t pspy + 178t ps s + 302 pspipe - pipgps i

+ 196pi papdpspe + 2020  papiug + pipapapd + 24uipapapdpe + T3ptpspapspg +
A6t piapapsy + At papat 102 p3pdpg + 33pipspdpaps + 520 p3pspape

+ 587 udpdpd + 451t pdpdpds + T35ut i pd i e + Thpt B3 an?

+ 2550 i paagis e + 2074 S i3 pagug - pips s s pg + 120108 i papd + 14331 s pa g s
+ 248201 3 ps e + 62201 i pspdpd + 19320 pps s e + 161101 u3us g
51t B g pad + 371 papapd g + 601l s papspd + 3248 i3 g

- 2pipipaps g + 802p pap + 1203 pspdps + 2294 pspdpe + 960 3t

+ 27664 papi s e + 24104 g + 84ptpdpdpd + 113041 p3 s 3 e

+ 1922p pipi s g + 10803 pd i + St pdpapsy + 10208 3 papid e

244



4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

+ 385y iy papd g + A30pt 3 papis iy + 173ptpdpag - pipdps g + 3uipdpsia

+ 109  p3pdpd + 33puipspspaps + 52utpspspape + 908utp3uipd + 665 s pSuts +
1096411 p3 iy s + 121t p3 ppuapsd + 3571y w33 prapus v + 290 3 i puapig - 24t i piy s g
+ 2780yt 2yt + 3608t pulpdpd s + 588Tut p2p2pd e + 1533l P23

+ 46304 oz pdps e + 3757y papa g pg + 180u 53 pnapd + 8T 53 a3 e

+ 1324y pd 3 puapis g + TI208 33 pagel - SpipSHARENG - Spi o3 s g + 3332 b sl
+ 7268 12 st s + 10911022 st e + 46650 P2 spdpd + 15190u2 P2 s pd s e +
120093 s piypeg + 1478p1 pspspipd + 6454pip3pspindpe + 1001003 3 s i s iy +
532641 pspapig g + 98t pspapaps + 8TAu pspapapdpe + 20174 p3papapd g

+ 201844 p3 s uapis g + TISpL pd s uapeg - 10uTp3papdpg - 100 s s g + 11901
+ 48324 s s + 6070 s s + 3793t ps s + 13902u7 p3pud s e + 1025547 pd g g
+ 2260417 pa iy i3 + 902645 pd iy 2 g + VATT8p 3l s e + TTI8S 3 iy + 2220t s i o
+ 276041 p3pi e + 6440 s g g pg + 67160 3t s g + 26490 s g + Ot s paps
+ 19641 papapispie + 91044 p3puapd g + 14380 ppapd g + 10750 i paps g

+ 3324 s prapig - SEIHSKE LG - At s s g + i pepspa + 54Ut pepdpd 4+ 15 pepSpaps +
24y papipaie + 18y popigp + 4450  popizpips + T8  papizpipie + T5ut papipuagss +
2231 popis paps e + 180pt popigpapg - pdpopspspg + 24760 oy + 3618t pop3 s
+ 5388uipapipi e + 13834 popd i g + 43984t o3 pips i + 340401 popipd g

+ 176 popdpap? + T59pt popd papdig + 10760 popdpapspl + 6204 o papsd

- Gput pa i pd g - Oput papis g + A083pui popdpd + 11113 p popd s + 1455441 nap3 i
+ 7302t o pd + 23425pt popdpdpspe + 16756ptuapdpdpd + 2164utpapduiud +
94801 pop3pa s e + 14959u] popis i s g + TASApT popdpi g + 19501 popdpiaps

+ 1248p popidpuapidpe + 2730p  popspapdig + 2822p  popdpaps g + 108841 ol puapig
- Spipapzpdng - 24pipapapdpg - 13uipapipspg + 2688utpapap§ + 1330541 popiapips
+ 1492611 popapipe + 14598 popapiipd + 43500 popiapipspie + 277100  popuapigpg +
646443 popispipd + 30678t popspipdpe + ATTSTutpopspdpspd + 22184y popis g +
159503 papsppd + 90440t papsp2pd g + 203644 popsp 2 ud + 211500 popus i s +
TT561 papz g + STutpapapuaps + 940pt popispiapispis + 283241 popizpapiig

+ 411008 popgpap g + 3137t popspapsig + 944t popspapd - 164t popis it pd

- 30uipopspdpg - 12uipopspsug + S16uipapy + AT60uipopfus + 4498uiuopufus +
96847t papipd + 24258 popips e + 13190p papdpd + 5180pf poppd

+ 27942 oy i e + 409320 propiypis i + 170120 popi e + 243047 popi

+ 125200 popidpd s + 29874ui popidpd g + 307584 popidpus g + 1056041 puo gy g
2165 pap2pd + 3010t pap2piting + 903642 pop S pd + 136684 puopi2 2

+ 10533 papig ps i + 3048t papdpg + T popaps + 1745 popapidpe + 980pt popiapiz g
+ 201645 popapd g + 2187t praprapd g + 130641 popapispig + 3201 paprapg - Spiipapid g
- 12pfpopdng - Aptpepspd + pdpSud + 2pdpSpaps + 3ptpSpaps + 150ptudud +
10841 p3 g s + 162403 3 g pe + 15403 p3paapd + 4844 3 paps i + 36t p3papg + 74201 pzpd
+ 12361 s s + 1650u pzpiue + 44541 papipd + 14368 papdpspe + 10160 3 ug
+ 50ud i papd + 223ut P pap2ie + 360p pdpapspd + 174 b papd - pd b2l

+ 1520 3 + 4952403 pipud s + STT2003 i3y s + 361843 ppuid 2 + 107761 113 iy s i +
68901 3 g + 922 p3pi s + 4398pipspdpdpe + 680841 g s g + 30841 g
+ 88y pidpuaps + 506 ppapid e + 117603 pufpapdug + 12400 i papus e + 43501 3 puapug
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- dpipapdig - Opi s pspg + 1369p i + 81664 5 s s + 82094 134 e

+ 11113 p3 g pd + 2910848 s e + 16384 pdpgpd + 4868ud gty

+ 23425 i e + 335120 papus g + 137964 it + 10824 s pius

+ 632041 papdpd e + 149594 papd g + 149684 3 s g + 493071 3 g

T8 R + 624pt 2 papdig + 182002 P2 papdpd + 282208 P2 papd

+ 207605 i3 puapis prg + 594 p3papg - A p3ps g - 1601 p3 g - 130t p3 s g

+ 450pt pspy + 537641 pspGps + 4444ptpspGpe + 1330501 ppifu? + 2985241 s il s e
+ 14299u s g g + 973203 papipd + 43500  papipdie + 554201 puspud s g

+ 200724 pua gy + 32324 pua iy + 204520 pua iy e + ATTRTp s i3 g

+ 44368y pa s iy + 133120 papipug + 638ptpapgud + 45220 papi pgpe

+ 13576  papfpdpg + 21150p  papdpdpg + 1551201 papipspg + 399241 papi g

200 papuapd + 376t papapd e + 141602 papuapdpd + 274008 pspuapd

+ 3137 papapdig + 1888uiuspapspg + 420p i pspapg - Spdpspspy - 2001 papdig -
1208 s 2l + 103202 T s + 5160 ul g + 4760u S 2 + 899642 1S s s + 33081t Gy
+ 6456p  pipd + 24258udplpdne + 26380uipfuspg + T922uf pipy + 2590u iy +
1862811 jpudpe + 40932ufpgp3pg + 34024p pipspd + 8912uipypg + 972ui il +
626041 pipape + 19916p8 pidpdpg + 30758t pfudug + 211204 pidps g + 4960 i g
+ T2 paps + 1204p ppdie + 4518y pdpspg + 9112p piudug + 10533uipdpdg +
609641 1 s g + 128811 g + 201 papg + 58 papgie + 3924 papug + 1008 prapis g
+ 14584 papipug + 1306 papiZpg + 640u papispg + 1200 papsd - 4t ps g - 8pipdpug -
At pdpd - 2uipSpapd - 6t Sl - 203 pSpdps - Audududue - piuduing + pipdudpape -
200 sl - 20udpSpspdps - Sutpduspipe + pSpdpspapsie + 3uSpSpspand - Sududu;
- 6445 i s - 2805 s e - 195 s pd - A8y s s e - 13p3 pdpd g + 1S pdpaps g +
208 p3papd + 11 pdpdpd + 1 pugpdpaps + Apdpd s pape + 1008 pdpdpd + 2508 udpdpd s
+ 90 pap3 g e + 20 papdpapd + 200 wapd paps e + 2208 s g papg + 23505 s g +
14 pd s g s + 388y g s pri e - 55165 iy s g 2 + 10643 13 s pis prg + 19603 i3 g pd
+ pSpapapapd + 18ufpspspapdpe + 5645 phpapaps g + 380F pspapapg + 1465 u5pg +
1253 s + 3603 papui e - 226103 g it + 34703 i g pis i + 2881453 it - 69p3 popii
- 1763 papdpdpe + 181t uapipspg + 1063 poppg + 2udpapapipe + 1805 pypapdug +
38y pspaps i + 2003 popapg + 24t pspdpd + 3utudpdpaps + Tpdpdpspape

+ 3043 33t + 1638 pdpdpd s + 2883 pdududpe + 113 pdpduapd

+ 62uf 3 pspaps e + 563 3 pgpapd + 1180p3 s pzpd + 11913 udpzpdps

+ 2078ut papd e + 258utpspd s + 1183ut ps i pipspe + 106903 s uz g

+ BB B pdpad + 13513 3 pdpapdue + 27503 ud i pnapspd + 1588 3 p2papd

+ 182403 sl + 256503 udpapiius + 472503 pipsptie + 118703 ud sl

+ 463815 i iy s e + 425403 i g - 11 ppapd e 4 1099003 s i e

+ 2507 papapips g + 154003 pd s i + 5ptpspapaps + 90upspspapdpe

+ 3538 3 papappd + 44413 S s paps e + 187 i3 papapg + 966703 p3ul

+ 155013 g s + 324003y e + 113003 ppgpd + 423003 g pspie + 419503 s i g
- 328pf papipd + 138615 sz e + 38344 s s g + 256403 3 g - 130u p3pg s -
2423 p3piudne + T35pR papdpd g + 14780 s pius pg 4 T31ptpapdug + 1003 s pa s pe
+ 90p pspapdpg + 240p3 pdpapdpg + 2318 P papspg + U papg + 2103 puspdug
+ 3pdps S paps + 6pduspipaps + 368utusuzud + 200t psuzpiis + 344udusuzpine +
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VT p3pdpaps + T5uS pdpspapsie + 6403 uspapmapg + 204003 p3pdpy + 216843 133 1l s
+ 3584uipapdpipe + 66Tpipsps s + 22218 P33 piuspe + 18281 uapiud g

+ 343 S pagd + 26203 3 pdpapdue + A6Tudpdpd papspd + 25618 3 pd

+ 4T3 p3pd s + 7855 pudpd s + 128T0uS pdpd e + 44398 s 3 il i

+ 144190 papa i pspe + 11850ufp3psuing + 762ufpapspuipd + 4631t uspauiuiie +
78094 iz pT s g + A2T2u  papdpd g + 298 P s + 36043 i p3apE e

+ 10718 p3 3 papd g + 1202003 p3pdpuapspnd + 48443 33 papg + 459245 3 papl

+ 117753 2 s s + 1800643 2 papd e + 91753 plpapiu? + 3140503 p2papips e +
2534043 papuapigpig + 32988 psps g + 17330p  pspapindpe + 29329u s papitps g +
16072448 pis s iy g + 142003 ps ps iy + 323643 puspapiudie + 970343 puapuspd g g

+ 1105043 papapipus g + 452803 pdpa i g + 9pi pspapaps + 185u3p3pspaps e

+ 9120} pspapapd g + 167603 puspapapdpg + 13720 phpapaps g + 43443 s papg +
140843 3y + 613203 p3psps + 8050 pu3pspe + 546643 pu3ps 3 + 2114003 p3 s s e +
1618243 g g + 3170uf p3pgpd + 1563003 p3pipsue + 2829503 5 s i

+ 1547003 g - 1T4pS pa s + 464408 st pd e -+ 1493475 s 1 i3 i

+ 1796615 s g + T534p3 g - 14303 papi 3 - 8645 s s e

+ 250043 i pdpd g + 5902uf pipipd g + 530208 paptus g + 17604t s g

+ 18ufpapapipe + 185u3 p3papis g + 62007 ppapdig + 867u pspapd g

+ 568uf papapspig + 1485 p3papg + Tpdpop§u + 1 pap§paps + 24 papipape

+ 19203 popS il + 10503 popipd s + 16813 poplpd e + Ot popSpiap? + 36443 puapsaps e
+ 30p pop3pap + 1460u3papzpy + 157203 popzpitis + 250448 paps e

+ 489p3popdpd i + 1551u3 popd i uspe + 1232063 popipdnd + 2813 papdpapd

+ 183pf popipapdpe + 31103 popdpaps il + 16643 popspapy + 444843 o pp

+ 842043 oyt s + 125603 gt e + 4680u3 uopdpdp2 + 1505643 popid pdps e +
1162445 popi3pipg + 1008p3 papipiud + 4935uSpopdpdpdpe + 79140 popguipspg +
A1243 pop3 i g + A0pS popipaps + 4004 popdpapdpe + 106545 popd a3 g

+ 115443 popipapis i + 45203 o papg + 604143 popp + 1933503 popd s

+ 258004 popi3 e + 1648503 gt + 5301503 popil s i + 383405 o3 g +
649673 g2 pd + 3078913 topidudpdie + 4943413 popdpd st + 249283 pop i ud +
88513 o2t + 689643 papdut e + 170133 popdpt it + 1817443 popidp s +
700443 popis g g + 2703 papzpapd + 40503 popdpapspe + 159208 pop3 papdug

+ 26585 papisprapd i + 2100103 pop3paps g + 6503 popd g + 345645 popus iy

+ 18711 popsp§ps + 2165813 popspGue + 2438113 popspipd + T3TAALS popspi s e +
48088115 popus g + 1322045 popusprgpiy 4 6586545 popuspigpig e + 10452545 opus iy s g
+ 4950043 popua iy + 376043 popuapidps + 2538443 popua e + 624631 oz i i3 g
+ 6699243 popspiiuspy + 250640 popspiig + 1776 popapipd + 375503 papspiusie +
1439203 popapdpdpg + 239100 popapipdpg + 1915503 popis i pspg + 585643 papua i g
+ T paptspap + 168u3popspapd e + 101503 popispapdud + 246413 popspapdud

+ 299476 popisprapid g + 18681 papspaps il + AT23 popuspuapl + 5883 oy

+ BT44S popi s + 558443 popiipg + 1260043 poppd + 3294248 po s e

+ 1852203 popfug + 783243 o + 43980 papipZ e + 6660017 izl pis i

+ 285607 oy + 362505 papiipis + 22800 popipidpe + S9TV5 o i3 g

+ 641703 popuypus prg. + 2276013 puapipag - 12403 puo g2 + 558013 puapiy i i
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+ 2220003 poppd g + 38514u popdpd g + 315T4u popidpus g + 948843 oy g

- 9B a2l + 4203 pap2ilug + 3015uSpappdpd + 884813 1oyl

+ 1152048 pop3 pd g + TATOWS papdpes g, + 19043 popdpd + 14763 papapSpe

+ 1683 papra i3 g + 6903 popapizpg + 127208 popuaid g + 123645 popua iz g

+ 63613 paprapis g + 1365 popapd + 3203 pgpd + 14p3puspdps + 21 p3 pS i pe + 15 p§paps
+ 4t p§papspe + 3pdpSpapg + 360p3 3y + 384t u3utus + ST6uTHZMG MG

+ 1053 pdpipd + 3363 piuipspe + 252utpdpuiug + 6uSpSuapd + 36u5pSpapdpe +
60 p3papispig + 30p3 p3papg + 137603 pzpg + 292063 pzpius + 3960u3 3

+ 157203 pd 2 + 500848 1 i s g + 35883 it + 3263 pd 3t + 15518 i 2 e
+ 246445 s i ps g + 120003 papdpg + 14udpapaps + 12203 papapd e + 31105 ps papd g
+ 332uf pigpapis iy + 1233 papapg + 235203 pipg + 8896p uiutus + 1065647 u3utie +
842043 3 + 2512008 13 pips pe + 1642008 3 pipd + 31208 3l

+ 1505645 i3 pi pd e + 23248103 s g + 107603 pipu g + 5043 pipd s

+ 329075 p3 i pd e + TOVAWS pdpd s i + 8248108 3 g ps g + 296503 i pd g + 16443 i
+ 20043 3 papis s + 7100 3 papdpg + V15403 i papd g + 9044053 3 papus i + 26403 13 apeg
+ 185645 3y + 1208208 p3 s + 12551103 p e + 1933505 3 p g + 5160045 3 il s s
+ 2990443 pi3 iy g + 109903 3 g + 5301503 p3 i e + 668013 13 1 pis 1

+ 32440p3 p3 i + 3248utpipdps + 2052643 p3udpd e + 494344 ua i d g

+ 4985617 st ps iy + 169083 p3 g + 354p3 s il + 34484 3 i g pe

+ 113423 ps g pd g + 181743 pgpdpd g + 1400813 pu3pd s g + 39624 u3pi g
932 apl + 16203 p2papl s + 1965 P2 puapd? + 177203 2 papid il

+ 2001 P papd g + 130003 p3papspg + 31203 pspapg + 552udpspd + 691203 uzpips
+ 5888ut papipe + 18711 papfpd + 4331643 uapfuspe + 2141343 paudpg

+ 162543 paplpd + 37443 psplpd e + 9617613 s s g + 3592813 wapdpd

+ 66103 papips + 4391013 papipdpe + 10452503 pspugpd g + 9900043 s s i

+ 306804 papupug + 150443 iy + 1269203 pua iy s e + 41642053 sy i g

+ 6699275 s pd iy + 50128163 psp s g + 1339203 papii g + 59u3 papipd

+ 150203 papipd e + T1963 pspdpspg + 15940 s pd g + 1915503 s il i g

+ 7120  ps s g + 273245 papi g + 2008 papaps + 5645 papiapgpe

+ 4064 papapd g + 123205 s puagpis g + 199643 pspuapipig + 186843 uapap3pg

+ 944p paprapis g + 19203 papuapd + 11765 pdps + 588upipe + 5744pduind

+ 11168y ppspie + 417605 g + 8400p3u§ps + 3294203 s e + 3704473 s g
+ 11438ufplpg + 39163 pfus + 2932003 pipdpe + 666003 pfpzpg + 571203 s
+ 154720 g + 145005 pips + 114003 pipiaps + 398105 pipi g + 6417003 pjpud
+ 455200 paps g + 1112005 pgpg - Apdpdpd + 2232ufpdpcpe + 11100p3pdpspg +
2567615 i pdpg + 315T4p3 Pl pdpg + 1897645 s g + 4208u pidpf - 2643 i g

+ 14 pipspe + 120603 pgpdpg + 4424 pipsug + 7680p3 uipdpg + TATOUS g pdug +
380813 12 s 8 + T60u3 121l + B puapl g + 563 papb 2 + 2763 uapd pud + 6363 papdpd
+ 824y papdpd + 6361 papdud + 20208 papispl + A8pdpapd - pduSpdnd - 81 uSps
- 2pipspapps - A pSpapipe - 13pspSug - Spipspdus - 16p3uSutie - pinspau3 -
AR pSpidps e - AR pSpapg - 203 papipy - VAR pspd g - 1203 papd s - 1103 ps i pe
- 31 pdpspg - Oudpduspips - T0ududpspine - 18pdpdpspdud - 513 pSpspdpspe -
25p3 s st pd - 30p3 pdug - 15203 u3ptps - 114pdududpe - T6udpdpdpd - 21203 pd i s pe
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2
- 10243 g - 8 o - 40ufu§uiu§m; - 59/1?5353?5% - 22M?u2§u§u§ - Mjﬂ%ﬂ%%
+ Wpdpapdpd - 11 pf pspiuiis + 2u?u%u§ufu26 T st F s
+ 1000t papius - 400t papipius + 100u?u2u§,u4u6 - A6ui s s - 43111525354%5?
+ 2443 i g 2403 i pa i e + 6u?fzu3§t42xt5u6 i p G +14i A3k -
2712l papd s + 33421 gt g - 340u%u%uzu4ug - 2864 uspsppis -+ 144455 piaps g
- 63113 pi s e 3 - 1993 i pis il i3 s - L0543 13 i s+ 0uiHi s +7 glngzaéumis
+ Opfpypapapdpg + 1047 o paps g I Swiiapapagg - BOipauy - Topiuips
186113 pu i - 62313 s - 618#?#‘2‘#4#1/1% - G4y - 286uipsuips
- 944pd s i pd e - 658143 g s g - 36/‘%/‘2/;4/16 - 2M i pips - 154043510
- 2671 papd pE g - 13615 s ps i - 4u?u§ué4u6 g g + i
+ Suipapaisiig + 207 papiapg + 56“%,“%#3/;43"'39/11M2M3U4553+322M1M2M§§24M26 o
+ Buipspspaps e + ST S apE + AT2pd pigpigp + 322y + G324 i e
+ 3uFpspipdpd + 19203 s pspd s e + QU8 pispipig + LUy iopispiapis e
+ 2903 i ppapis g + 18uiuspipapg + 1380y i pinyisp + 1648uisspgpips
+ 30892 pdp2 e + 282u2 323t + 214200y pspipsps + 2206123131534
- TUpdpdpapdpd + 16503 s papips e + T8Oy ips i s g + STOU i3
+ 1302 33 papdie + 60p2 iyl + 863 u3uspansils + 303k ang
+ 1728ui s + 268507 p3uspips + 53003 papuspips + 103Lud 5 uspiyss
+ 5749 s s e + 593Tpdps s g - 55403 agpiapigies + 686y idpapippe
+ 389817 s papitpis g + 29200 ks g - L5y igps i - 08 pispuapipisis
+ 307pd s papiudug + 108003 p3pspdps g + 6073 ups i + Sudpizpapaligiia
+ 39uipspapa i g 4 98 s papapd g + 1004 ispspiapspiy + SBuipispapagy N
+ 7563 oy + 122603 s + 287203 e + 564#152?455 +23638M1M2/;4éi5563
A310p7 P g - 12143 pdpgpd - 26203 P pgpde + 355Tystpaiiusis + 3L82yri iy -
BTO0pT sl s - 198803 i e - 9103 pdpdud g + 1532uf pbpdps i + 1194y i3uyug
- 50;?53#3#? - B10ptpspspape - 540udpdpdpdng - 88u?u§uiu§gé4+ 38711 3ui 15115
+ 2143 g + Spipspapsig + 26#?#3/;4#?#% + ;19/2{%/;%;4#5#6 + 49/%1/@#4%;?
+ 1203 p3papg + S4uiusudu + 15#?#32@4#43#5 + 30ui 3k + 3“1"3“3“3“3“2 !
Buipuipang + 624uipspisuy + S14upspisyips + 856 usus e t+ Tludps s
34642 13 pd 1o s e + 3070l sl ud + LTpspgpuaiidpe + 420 i pgpapispg
+ 253 papuspuapsy + 26083 s + 3564y papispigus + S92 pispiguips
o WSSy + 5234y + AN20EEREE + S2 GG N
+ 10083 313 pgpE e + 2047 u3 pa s ud s g + WT8ppidpspipg + 3dpipidpspansie
141 p3 33 papdpd + 18703 udpdpapspd + 80udpdpipapg + A881ptusyisug
272 25 22 2 5 666242 p2pduip? + 2291242 122 ps e +
+ 9764pipopspps + 16145u7p5p5 0006 + 2HTHo 1S Hapbighsig &
1919503 papapdpg + 1248ufpspspi s + 9534t pia ipiisiis + 175964 ispspigps g
996813 a3 g - 431 pap3HTHE + 870#?@#3#4#25#26 3805y N
+ 495603 papa sy + 2127 papa g + 20p3u5u511apsi6 + 1803 505 papispg
394ui s papis g + 36613 p3pdpapsig + 1234 pi5pipantg + 4000utpspisp
Tus 3 Tusnz 10453 + 37552015 a3 i 15 6
+ 11709u3 popspgps + 18210pf pspspgpe + ipapsfs 1H3Hs k5 G
+ 3097503 pispus g + T4 ppspigps + 215501 3 akis3 1o + 444022u21u2u§,u51u25;$
+ 2519673 papappy - 41203 p3pus s + 42043 pgyiine + 180424 i3 pspipd e
2338047 3 s iy s iy + 1013203 ppuz i - 123uf papuapi g - 18443 s papd s s
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+ 1778 s s i + 525203 i g + 52U 13 s s g 4 18063 s g +
Opdpspapuapidpie + 8Tpi o papapisig + 29203 papuapapd g + 45003 s s puapis g

+ 327p p3pspapspg + O pTpspspapng + 107203 pipl + 5016puTpuspips + 681243 u3puspe
+ 48463 3§ pd + 19964u3 13 S pspe + 1581003 p3uGud + 24163 13 s

+ 156743 p3 g pd e + 3168813 p3uips g + 18158 pdudug - 1287pdpdpsps

+ 285203 it pe + V756703 p s g + 2504813 i pips pg + 112570 g

- 6620223 2 - 230472123 e + 900p2 23 B pd + 882812 2yl 2 L,
+ 10138113 po i s i + 372003 o g - SApT s g - 36203 3 i pdpue - 5803 s i s g +
B68uT s pgpapy + 216713 papd g + 1918ufudpiuspl + STOuTusuEHG + IuTpdpapdug
+ 5813 i papis g + 14603 i papdig + 180uip3papdug + 109u3 u3papus g + 2643 pauapg
+ 18pipapSp + SpipapSpdns + 1003 papSpdne + 13 papSpapspe + pipopSpapg +
33613 papipy + 27003 papipips + 43203 paps e + 4507 pop3uing + 180uF popdpd s e
+ 15002 popdpd i + O3 popdpapid e + 21 pfpopdpapsp? + 1203 poplapy

19282 ol + 272602 popidpt s + 433202 piopd it e + 120602 ot 2

+ 3934p popapipis e + 31283 popiz g + 12403 popizpipd + 86443 papispd i e

+ 15243 popizpdpis g + 818pi papspii g + 28ui popspapdpe + 1083 popizpapiz g

+ 1350 popipuapis g + 55p% papizpaps + AT68pR poping + 1098443 popii i

+ 1644813 o3 i pe + T860uT popid gy + 256084 popispipis e + 198520 oy +
227202 oSS ud + 1191042 papdudpdie + 1961602 papdpdpspd + 1029602 popdpdpd +
12002 popdpdud + 163202 papd i3 e + 483302 topd 22 ud + 5488u2papdpdpspd +
218042 papdp2ud + A0p2popd uapii e + 22402 popS papdnd + A53p2 03 gl

+ 39503 popipapispig + 12603 popdpapg + 5518uTpopspg + 202770 popiu s

+ 2741603 popiuue + 20958p 3 papzugps + 6T91TpTuappgps e + 49608uipapispipg +
1002843 o pi3 g + 5020203 popi3pd e + 8217713 popdpgspg + 419043 oy g +
159002 puopidpdpd + 1478412 pop S ud e + 3955202 uop S p2pd + A37560% poplpid s
+ 1713603 papapidps - Opi popzpdps + 114003 popdpdpspe + 603203 popd s pdug

+ 11448pdpopdpipdpd + 966013 papdpduspd + 305443 popdpdpg + 27t pnopdapdie
+ 210ufpapzpaps g + 616uTpop3papidpsy + 86443 papipuapid g + 58513 popiipuagispig +
15413 popizpap + 278447 popiapd + 1653003 papiapipes + 1953203 papua g e

+ 247592 ozl + 7595203 popizpbpis e + 503763 popapSud + 155362 popapipd +
8082013 papap i e + 130787 uf popiz s g + 6297643 popspipy + 46303 pops s +
368124 papapipdie + 97584  uapspipdug + 10814643 pops s g + 4129243 pops g pg
- 16203 pops i pd + 56203 paps i pape + 2828813 papus i pEpd + 5262013 papus i pdpd +
A445003 popus i pus g + 1398443 popuspuigpeg - TTp popspi i - 3643 pops il s pe

+ 236003 popupig g g + 8344pF popiz g i + 119913 puopua iy pud i + 814843 puopua il s i
+ 2152023 popupidpd + TpdpapspapSie + S1pdpapapapdpd + 34003 s puapi

+ T00u3 popspuapia g + TO5u3 popiapapdy + 42703 popspapspg + 96uT popspiapg

+ 4243 pop) + 443643 popips + 4396uT popfpe + 10512uF popfpd + 2837203 oyl ps e
+ 16332ui popi g + T240p3 oGl + 4266007 popduZie + 665524 o s g

+ 2923203 popd g + 3060uTpopdps + 240720  popipd e + 6920447 ol pid g

+ TT510p3 popuiy s iy + 2825613 popipug - 8163 popugd + ASAOpT popu s s

+ 2802043 poppi g + 5605207 popdpdpg + 48897 pd popipspig + 1522403 o g

- 4342 o3 8 - 15722 papd R e + 226002 popd 2 + 1459202 puopid i i
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+ 2325047 po it i3 prg 4 1650007 pua iy s iy + 4416103 popuid s - 32003 propi - 23841 po iy i
- 37203 o pag + 940p3 popii g + 35604 popdpdug + AATOUT ot pd g
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+ 300p3 pSpips g + 150pF pSpdpg + 6pfp3papde + 2103 p3paps g + 2403 3 s g
+ i pdpaps + 1504uiuzpg + 3856piuzpius + 5280uiuspiue + 2726pTpapuaps +
8664113 g pig s e + 625447 pus i + 804uT pzpui g + 39343 s e + 625613 3 ps g
+ 3084t ps g + 6202 Pt ud + 57603 pindudpe + 1524p3pdpl s ud + 16362 s ut s
+ 611 pd pgpdpg + 14pipspapspe + 7203 udpapd g + 135p3pdpapd g + 11003 5 pis i
+ 33ppgpapg + 22083 pipy + 95367 pdpS s + 1161603 uiudue + 109843 p3ufué +
3289617 i s e + 218003 papi g + 524003 pgpigpd + 2560843 33 e

+ 39704p sy + 1862007 pipdpg + 1136u7 papidps + T940u papipd e

+ 1961643 iy iy pd g + 2059203 pi it ps g, + 751003 puipidpg + 4843 ppd s

+ 816p3 pdpdps e + 322203 S pdpdpg + 548813 3 pd g + A360uip3uius g

+ 129643 3 g + 163 3 papd e + 11207 pipapis g + 302007 3 papd g + 39503 a3 g
+ 25203 pprapis i + 63 pipapg + 1544ufp3pd + 11036uipu3pius + 11698uiu3uiue +
202773 p3pGpd + 5483243 p3pG s e + 3236813 pduSpd + 1397203 pduipd

+ 67917 s s e + 9921675 3l s i + 4271203 iyl g + 501443 pdpgpd

+ 33468ui papdpipe + 821TTuipapdpdpg + 83808ufpapipspg + 289543 3 g

+ 63602 paugpd + 739202 i ud e + 26368u2 ududpdud + 4375603 udpd i ud

+ 3427203 3 pd s g + 9908uTpApidpg - 3pipapipg + 45603 p3pindie

+ 3016pi papgpspg + 7632uTp3pipdpg + 966003 p3ud e + 610813 u3ud s

+ 1508uf p3pipg + Iuipipapdpe + 84uiudpapdpg + 308uTpdpapspg + STOuT 3 g
+ 585ufpdpapdig + 308uTpdpapspg + 6643 p3pap + 416puT sy + 5568uTpsplus +
4832413 pspijpe + 16530uipspips + 39064uf puapiuspe + 1970203 papi g

+ 1650613 paplpd + 7595203 paplpd e + 10075203 pap s g + 3840843 s i

+ 77683 pspipd + 53880uuspipine + 130787pd sy pdud + 12595203 syl pis g
39880 papif g + 1852ui papipd + 184064 papiipgpe + 6505647 puapud g

+ 108146p7 pua B pig + 82584413 pua s i + 2261613 pua g - 5443 pua g s

+ 22483 g pdpe + 1414403 papguspg + 3508003 papigudpg + A4S0 s i g
2796813 s s g + 6728 papidpd - 22uF papipl - 1203 pspiudue + 94443 papgpdug
AVT20F papd g g + 199403 papdpd g + 814803 papii g g + 4304u7 papiusig

+ 91203 papdpg + 23 pspapdie + 27pd pspapSpg + 1363 pspapdy + 35003 s papid g
+ 510p3 papuapis g + 42Tpdpapapdpg + 192uf papapspg + 36uTpspapy + 848u3 s +
42403 pugpe + 4436pFpGps + 8T92p pfps e + 332405 ping + 700843 3

+ 283T2uipgpdpe + 326643 pipspg + 1027605 g + 362003 s + 284403 i e
+ 665527 pgpipg + 58464uipdus g + 16208uipdug + 12243 pips + 1203643 1 5
+ 4613613 p3pdug + TT510pF g + 5651203 s g + 1419203 piug - 27203 pgpg +
18163 pgpdps + 14010p3 pudps g + 373683 pjpus g + 48897 pf pipdpug + 3044843 s pif
+ 6984pF pa g - 124pF pdpd - 52403 piubue + 904p3 piudug + 729673 i s

_|_

+
+
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4. Deformations and quiver representations

+ 155000t pitpdng + 165004 pipdpg + 8832p3piuspg + 1840u3 g - Spi il

- 68pipipdpe - 124p3 P + 376p7 pipudug + 1780pF pips g + 2980pF i g

+ 26167 pgpzpg + 120003 pipspg + 224uF pipg + 203 papspg + 183 papsig

+ 6847 puapidpig + 14007 papis g + 17003 papdpg + 12203 papiz g + 4847 papus g + 8113 papg
- 2 p§pdd - W0papSpspy - ApapSpspips - SpuapSuspiie - 12 pSpd - 10ppSudps
- 20p1pSpdpe - 2papSppd - S pSpiuspe - SpupSpipd - dppdpdpd - 20papdpdug -
24y 33t ps - 24 ps st ie - 36ppapapy - 1151 p3papigis - 100 sy s

- 36y S - L04gu pus s i pis pr - 56y pud s i g - 28y pdpu - 144p1 pdpips

- 1201 p i - 95 ppgpd - 270pa pdpugpuspi - 140 pupr g - 160 p3pud il

- 80 pid e - 120 pd i pus g - ASpu pd g - 2 p s} + 10p gy

- 24y piy i s - Apn papi e + 3ppapa g s e + 3p1papEpAIE + T2 tap3]

- 851 pap3 iy ps + 601 33 e - 961 a3 ppd - 12601 ppdpips e + dpapspduipg +
6 piapapa g e + 18 piapd g ps g + 1201 ppigpgpg + 1051 papzp§ - 1171 ppuz s +
16841 puy st - 455 pgpapgpis - 535 papa iy s + 2041 sy pg - 1284 puspusprig
- 4341 pdpapdpd e - 3220 papapd s g - 160 papapd g + 3puipdpspddue

+ 18 popspi g g + 30p papspipspg + 15 papspapg + 32u1paps - 12600 popius +
420 piyppue - 612p1 piapipd - T62p popd s i - 96 iyl g - 360 ppp il

- 1240 papipdpe - 10050 pypigpspg - 160p1papgpg - Sdpapspipg - 3124 popipd e
- 5T0p1 papdpd g - 348upiapitpspy - A8 popiug + Suipapipdng + 12 papdpdud +
151 pispipuspig + Gpapapgug + 60p ppzpy + 12p ppgpidps + 4duip3pspdpe

+ Opu g pspte + Opa pppa g + 384 pd il + 320 3 s + 660 143143 e
-~ 16pn i p? + 260 3 pd s e + 324 pipipd g + 33 pdud 3t e

+ 8Tpa iy pipaps g + 54 papdpgpg + Ty pdpspu + 126301 p3ps s us

+ 2460 g e + 165 psp3pipg + 2030u papdpd s + 2240 i s g g

- 168 g2l + 60u1 B pdud e + 10280 pdp2pd psp? + 824p pid 2

+ 39 papapd s pe + 180 p s pipdpg + 258 papapd s g + 117 pd s g

+ 96041 13 sy + 16591 g puspubpis + 34164 113 sl e + 525 i s il

+ 4116 i i s s + 45720 ppz g g - 8200 ppapip - T0p s pa i e

+ 3340y i3 papdpus g + 2840 pipua iy iy - 240 i papidpis - 796k pd i3 i 1 e

- 92 3 pE g + 1272 pspa sl + 840p pdpa ity + 15 i pap s e

+ W Tpappapipdpg + 294 pdpapipdmg + 300 pipapdps g + 1084 3 i g

+ 360p1 3l + 608p1pdpuips + 1536 pspape + 11201 p3uGud + 1946 puspduspe +
263241 iy g - 1260 iy pi s - 1146 pspdpdpe + 1968 s pd s g + 2280p iy pi g -
7250 pi s - 2740 g pde - 2100 pp s g + 820p sy + 1060 i
- 100p1 pi3pidp3 - 640 ppitps e - 1260 ppidpdpg - 656p ppidpd g + 312 il s g
+ 272 3 g + 15papdpgpspg + T8uipdpgpdng + 14T pdpgudg + 1200 3 s s g
+ 36 pspipg + 60upapsuy + 24 pspSpiis + A8uipapspdpe + G phuapd s +
Op papipa g + 528 papapl + 560 i pgpdps + 940u pspgpdpe + 108 papspipg +
DAy i s s i + 486 3z HGHG + Sl s pdpe + 1260 p3pzpTHs G

+ Topipapspi g + 17920 p3psp§ + 29764 p3 s s + 499240 pi3 13 13 e

+ 15201 papdpapd + 5630u1pdpd s pe + ATI0u P33 pgpd + 961 p3pdud

+ 1492 p3pd i pdpe + 3160 papdpipspg + 1844 p3pdpiud + 102u p3pdpiudpe +
423p1 p3pdpdpd g + 561 s s g + 240u p3pspduG + 2832 p3pdp
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

+ 6622001 228 s + 109971 2 pdube + 5331 p2pdudpd + 18843 P22l uspe +
15924 pspapipg + 1110pp3p3pgpd + 9670um pspspgpdpe + 18585 pspapipsig +
1068041 pis i3 g - 144 papa s + 10200 p3p3 i pdpe + 5468 ppaus s g

+ T508m pap3ptps g + 3286 g + ST s s e + 540 pE S g +
118241 p3 i3 pipd g + 10981 pdpdpd pspd + 369u1p3p3ping + 201640 i3 psps

+ 667212 psptps + 10464 2 psptie + 6783u1 2 pspbul + 2499001 p2pspb s s +
208391 piypapgig + 25500 papapgpd + 185881 p3pspipdpe + 35685u pipapg s g +
2059211 5 pz g g - 760 iz iy + 3070my pipappdie + 1736001 puapuapdpd g

+ 2402041 iy g s i + 10670p1 p3 g - 264 p3papid g - 7381 pud puzprig s i

+ 1732 i pspipdng + TIS2umpdpspdpdng + T67T8uipsuspipspg + 274400 paps g
+ 2T s e + 261 p3pspdpspg + 8T6p papapdpdpy + 1350up3papipdug +
981 pdpspd sy + 273p1pdpspipg + 480p1p3pg + 24481 pdpl s + 3384 pdptue +
2592401 p3pipd + 1107200 pdpd s s + 89281 pd g + 114841 pu3 G + 942201 i3 G e
+ 20370p oG s g + 11970p papdpg - 14401 papi s + 636 paps s pe

+ 121201 p3ppd g + 19278y pipul s iy + 89884 p3 g - 8501 prpr

- 3370 p s e - 1150 g pd g + T340p s pgpd g + 9905 s g

+ 382041 p3pudpug - 108 pid g g - 760 i ps - 1530p papd s pg - 104 papidpd g +
260041 i3 p2 g + 2700y p3 g pus gy + 85641 p3 s g + 271 p3pd S pd + 1744 i3 i pa
+ 438y s g + 540w pa g pA g + 327 pa i ps g + T8 papspE + 20m1 papfuy +
Buapiap§pips + 16p1pop§pipe + 3papopSpuiuspe + 3pipopSuiug + 288upapiul +
3004 popi s + 480 popidpibpie + 7201 papiudud + 28841 po i s e

+ 24040 o p il + 27 pappd i ue + 63u1 popdudpspd + 36 papdud

+ 1344p1 popius + 232811 popsus s + 36961 popsud e + 132001 o sl pud

+ 4350 popizpipsie + 3460 popzpipg + 192 popizpiud + 13624 pops i e +
242611 puopis i ps i + 1304 proprzpuig g + 84 popizpdpd e + 3244 popis iy 3 g

+ 4050 propis s g + 1650 popizpiig + 2816 popipy + 76160 popipdis

+ 1142440 pioi3 p§ e + 66244 piopi3 g g + 216964 puopis i pspie + 168484 puo i i g
2400011 oSt s + 129300 propdpd p2p + 21510 popd pdpis i + 113207 puopid i
1601 propdpdpd + 24640 popdpd it e + 75361 oSt + 86684 puopid sl
345611 propdpdpd + 120 popd 2 pdpe + 672p popdpdudud + 1359 popd 2y

+ 11851 popipipuspig + 3781 popi3pipg + 2844 popzp + 118561 popizpipes

+ 16128u popi3pufpie + 14364 popp§pd + AGTLL i popi s i + 34272¢m puopipi g +
81361 prop2piSpid + A1T69p1 puopi2 il s + 689520 popdudpsp? + 35328uy paplpdpd +
150041 popis g + 152801 popzpigpispis + 42315 popispgpdug ~+ AT460p popis i s
+ 18700p1 pro i puag - 7241 propi g s + 14700 o i ps e + 8880 popi3pudng

+ 17580p1 piopiz pigpid g + 1509841 puopu3 it pus i + 4808y pop3pid g + 81pa pop3pi s s +
63041 propipipispig + 1848p popspipd g + 25924 popi s g + 17550 popiz i ps g +
462401 pioprz g + 1280p popiz i + 8388y propiapilfpes + 10008 popiz e

+ 142560 papapp? + 440320 popzppispie + 294400 papappd + 10248 popzpfpd +
BA4TAp popspl iz e + 88977 popisp§ps g + 43176 popspug + 3300u1popspius +
289441 popiz g e + 7962341 popapipdug + 895804 puapus i s iy + 345124 puopus g g
- 4201 popu g + AGTS 1 propspiypiape + 280400 propspigpdpg + 550200 popspigpd g +
AT520p papapi s + 15120 popiapi g - 1681 popapitpd - 408 popap e

+ o+
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4. Deformations and quiver representations

+ 2690p1 popsppapd + 11760p1 popis i pdpd + 1799470 popusppd g

+ 125601 popz sy + 3360 popzpipg + 21 popspipspe + 243 popspipdug +
102011 popuapi s iy + 2100 popuapi g + 22951 popuapii g g + 1281 popua i s g +
2881 poprapig i + 176p1popy® + 20001 popps + 2000p1popipe + 5184p1popfpd +
1422011 pro s e + 82804 populyig + 3968k popugpid + 2400041 popr s i

+ 380161 puopupuis iy + 16896 puopugpig + 1610 puopi§pis + 14952 propi§ i o

+ 4531841 piopu§pd g + 5184200 poppus i + 191520 pop§ g - 97201 propi

+ 210001 popipigpe + 203041 popdpdng + 441540 popgudng + 39732u1papius g +
1257611 propu g - 560y puopigpf - 2400 popigpid i + 375p1 popupuspig + 130404 propuypid g
+ 2335501 puopud pid prg 4 17280p1 puo iy s iy + 47200 popuig g - 641 popiif ik - 50440 puopi g
- 1080p1 propig i3 g + 500 popifpis iy + 45761 popidpdpg + 64684 puopuidpid g

+ 396041 po it pus ul + 92801 propi s + 21 g papdpdpd + 16241 puopid pd g + 510 papd ik
+ 840p propigpdpg + 765 popdps g + 366 popipspg + T2u1popgug + 48u1puSul +
A0p p§ s + 60p1 s e + BpapSpuind + 32pn p§pdps e + 24p1 pSpiug + 3pn p§pdpd e
+ 6pipSpdps g + 3papSpdud + 336p1 S + 5T6p1pS s + 8644 3G e

+ 300 p3pdpd + 960u1pdpipspe + T20p1pdpdpd + A8pn pdudpd + 288u1pSpdptpe +
480u1 p3 sty + 240p1p3ptid + 18uipduiudue + 63pnpspdpdug + T2uip3uius g
+ 2Tmpdpgpg + 896uipapy + 2688uipapdus + 3696u1papuue + 23281 pspiug +
739211 33 ps i + 535241 pus g + 880 g pi g 4 43500 pupud i 6 + 6920 i i s g
+ 342041 pr gy + 961 pus i s + 908 przpu e + 24264 ppid s g + 2608 s il s i
+ 976 pis i + 4240 pspdps e + 216p1 pzpuipdpg + 4050 pspd pd g + 330u1 pzpl s g
+ 99 pzpipg + 1152 pdpl + 5632 p3uius + 69120 pdpipe + 76160 p3uGus +
2284811 pi s s + 1523201 pi3 g + 441640 p3 g g + 2169641 3 115 13 i

+ 336961 ppi s iy + 15888p pipg g + 12004 pipupus + 86204 pipuid e

+ 21510p i3 g pd g + 226400 pripri s iy + 8300 pipu g + 64pm pripig

+ 12321 ppidps e + 50244 pipd pd g + 8668y il 3 g + 69120 il s g
206441 163 i3 3 + A8uu pd 2B + 33641 13 3 pd 2 + 906y i 2 pd

+ 1185 g + 756 g ps g + 189 pdpiug + 720p1p3pg + 5688u1p3uius +
608401 11345 16 -+ 1185671 p3 i pd + 32256 pa3 paf pas s + 192001 p3 i + 957641 p3 il
+ 46711 3 s + 68544 P s g + 297360 p3uG g + 40681 p3pf

+ 27846 3 pfpdpe + 68952 p3pdpE g + T06561 p3 s s pg + 246004 pi3 05 g
600 2t + 76400 2t it g + 282100 p2dpdpd + AT460p pdud p2ud

+ 37400p1 p3 s ig + 109004 p3pdpg - 24 p3pipg + 588 p3pipd e

+ 4440p papitps g + 1172001 p3pd pd g + 150984 pi3 i3 g + 961641 a3 145 s 1

+ 23921 238 + 2Tpy ppdubie + 252 p3pdudpd + 924 pdudpdpd

+ 1728 pi g p g + 1755 papdpdpg + 9241 pipgpspg + 198 p3pdus + 176 pgpg’
+ 256001 papps + 22400 paps + 8388pu1 papd 2 + 200164 gl s e

+ 101881 pa g + 9504 papuped + 4403201 pappd e + 58880 puafuyfus i

+ 2265641 p3pgpg + 51241 papus + 363161 papiudue + 88977 pusplpd g

+ 8635241 puspu§ps iy + 276081 pappug + 132001 papfpd + 1447200 pu g s e

+ 5308241 pua g i3 g + 89580 pua i pag + 69024y pus i pus prg + 19104 i g

- 140p1 papigpd + 18701 pspigpdpe + 14020 puspifpdpd + 366805 puspgpd iy

+ 4752041 puapud s prg + 30240p pua iy pus iy + 7360 papuig g - A8 papui i - 136 il e
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

+ 10761 pa i g + 5880 puapips g + 1199641 puapidpd g + 1256071 g 3

+ 672041 i3 priypus i + 1440 pspii p + 6p puapag pd s + S1pa s pd g + 4084 s ped i
+ 1050 papipa g + 1530p papdpdng + 1281 papipzug + 5764 pua il ps i

+ 1081 papdpf + 352u1pi0ps + 1761 p3 16 + 20000 p§p? + 40007 11 s e

+ 1520 pgpd + 3456ppfpd + 14220ppfpd e + 16560p S pspd + 52567 ppd
198411 pfpd + 160001 pipdps + 38016 piudpd + 33792p pipspd + 94720 piug
644y i + TAT6p pfpispe + 30212 pf B + 51842 pfpuspug + 38304 puf s pig
9744y p§pg, - 324 pi s + 840 pipdpe + 10152p pipgug + 2943641 piudud

+ 397324 piypd g + 251524 py s g + 5856 g - 160p pudpaf - 800pa i

+ 150p1 ppd g + 6520p1 pudpid g + 15570u pugpis g + 17280 g2 pd + 94400 pjpspl
+ 200041 pr - 1641 p 8 - 1440 il - 3601 i pSpud + 20041 pid el g + 2288 g i pr
+ 4A312p i pd g + 3960p il + 18561 pid sl + 3524 pip + 6pu pig ik i

+ 5dppdpd g + 204p1 pdpdpg + 420p1pdpd g + 510p1pdpd g + 36641 p3pE g

+ Mg pgpspl + 24ppipg - popdpy - ApSpspd - 2uSpspdps - ApSpspipe - 4udud -
ApS s - SUSHIIG - PSS - AuSgs e - ApSpGG - 2ubpaug - Spudpsu;

- 12p3pdpips - 12053 pipe - 1233 - 46p3uspius - 40usuapipe - 18u3uspips -
B2u3 s iie - 285 s iy - Suapy - 48u3uGus - A0p3pdpe - 38udpgps - 108u3 g s e
- 56u3pdpg - Suappd - A0udpugpdue - 60uspgpsg - 24uspdpg - papapd + Auapau -
12033 - 2papspine + 2uspdnduspe + 2uspspipd + 24uiudul - 34pdpduus +
2415 6 - A8pgpa g F - O3 s e + 2UapALANG + dapd il uEie + 12515 i s g
+ Budpd i ud + 30ppapt - 39uduauSis + 56 papS e - 182 puapd it - 214 s s s e +
8uspispipg - 64pspuspipd - 21T pdpapd i g - 161pdps i pspd - 8pspspid + 20 s pud e
+ 12pdpspipdpd + 20p3pspiispd + 10udpspdpd + Susp§ - 36usuins + 12uduiue
- 204450803 - 2545uGuspe - 32uaping - 144uauipd - 4965uiudie - 402503 s
- GApdpipd - 2Tpdpipd - 156p3ptudne - 285puspipdpd - 1TApdpt s - 24pdudng +
2uspd g + Spapip3pg + 10pspiuspg + Auspiug + 24p3uzud + 6z

+ 223 iz i e + Opd iz s e + Ops s g + 128u3papg 4+ 12805 uipd s + 264451305 e
- Spapdpdpd + 130p3pduiuspe + 16203 p3pdpg + 22u3u3uinine + S8udpdpipspg +
36u3pa g + 262p3p3uf + 421p3p3pS s + 820p3p3uS e + 6643030513

+ 812 p3pfuspe + 896t - 84ubpapapd + 30udusuipdue + H1AuS S s g
+ A2 s + 26pp3pipdne + 12033 pindng + 17283 ptuspd + TS 3G
+ 240p3puspt + ATApSpspips + 976p3pspipe + 175udpspp? + 137203 pspSuspe +
15245 p3uig - 32813 uspgnd - 28p3puspipdpe + 1336uauspipusug + 113613 usuiug -
12005 papps - 398puspypipe - A6uspspdpdpg + 636ususuipspy + 420p3pspipg +
10p3ps it pape + T8uSpspipdnd + 196u3pspguiid + 200udpspiuspd + 72u3pspiug +
80y + 1523 py s + 3843 15 e + 3205 i pg + 55615 g s e -+ TH2pap g - 42005 G
- 382pu3 i3 e + 6563 G s i + T60p3 G - 290p5 318 - 109645 5 113 e - 84053 12 1
+ 328pb s g + 42405 GG - S0 gp3 - 32003 s e - 630uspdpsug - 328u3puEpg +
1565 pdpspg + 136p3ugug + 10uspiuspg + 52uspipdpg + 98pdpidpdg + 80usuiusug
+ 243 g + 24p3paus + 12038 ies + 24udpsugne + 6p3pduipspe + 6u3psudng +
V765311 + 224153305 + 3TOu3H3HG MG + SApSpapANE + 2T1p5 5] s o

+ 243pspspdpg + 34p3papiine + 84pspspd s pg + S0 psutud + 512u3 3]

+ 99233 pdps + 1664p3p3pdpe + 608p3pdpdps + 2252u5p3 s s e + 191650353

+ o+
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4. Deformations and quiver representations

+ 483 pd + TAGuSpRpdpE e + 1580uspapd s + 922055y + B85S 3 e
+ 282p5pipd g + 3TApspspd s g + 160ps 3 ptig + T08usp3us + 1892u3pu5ugms +
31423 p3 s pe + 1TTTp3p3pGuE + 628133 pGus e + 5308p5p3piug + 44dusuzutps +
38683515 3 e + TABApS S G s g + 427205 p3ps s - T2u3p3 s + S10p3p3 i pe +
2T34p3 i3 A g + 3THAUS A s + 16433 18 iy s + D83 s it s + 3605 p3 4 i3 g
+ T83us 3 A + T32usp3pt s g + 246u5p3utng + 448u5uap] + 1668udus s +
261631351 + 1938p3pspipd + T140p3pspipspie + 595413 paptpg + 8503 papsps +
619643 1315 13 16 + 118955z pi s g + 6864p5 34 1ug - 3045z s + 1228u5 33 i3 e
+ 69443 i pE pg + 96085 g ps iy + 42685z - 13205 s s - 3693 s s i
+ 8665 pspgpspg + 3576p3uspipspg + 38395 pspipspg + 137205 sy

+ 183 pspi i e + 1743 pap s + 584u3pa i pdpd + 900p3 pspdpd g + 65443 pa g s
+ 18223 b + 962010 + 5442105 + 75202 s + 64812 uS 2 + 27681318 s g +
2232218 12 + 3282t + 269202k p2 s + 5820u3 s pd + 34200207 pd - 48043 Sl
+ 2120503 e + 4040p5 G pE g + 6426p5uGus g + 2996u3uG kG - 34051513

- 134853 pg e - 460p3pdpdpg + 2936p3pd s + 3962u3pdps s + 15281505 1

- BApz g - 3805y pRpe - T65 5 A s g - 525y i + 13005 g pd g + 135054548
+ 428pd gl + 18uspipdug + 116p3pdpdus + 2923 pdpdpg + 360553 g

+ 2183t pspd + 52u5pinG + Spopdul + Apap§pips + SpapSuine + 2pepSudpsue +
2o pS 3 12 + 9691318 + 1200003305 + 1920003013 16 + 36t 2 + 14402 s g
+ 120p2p3 g pg + 18uopdpipdie + 42uapsuiuspg + 24popduiig + 384puopsp]

+ TT6popzpips + 1232uopspuius + 528uopapspi + 1740popzpiuspe + 1384uapsus g
+ 96popipd + 681popdpipine + 1213popduiuspd + 652u0pipiud + 56p0pd i piue
+ 216popgpi pdpg + 270uopspi pspg + 110uopgpi g + T04popipl + 2176pp3plps +
3264p0p3 146 + 2208p2p3pdpE + 1232003 s e + 561610 131G g + 960u2pRuGpE +
5172403 i pd s + 8604 o il pis g + 45284043 i pd + 80papduipd + 12320003 i pd e
+ 3T68ugpipdpdpg + 4334puapippspg + 1728puopd g + 80uap i g e

+ 448puo 3 i pd il + 90603 i pd g + TI0po S i ps g + 252p0p3pipg + 632p2p31] +
206410135 + 40322306 + 410403 pipg + 13346uapd s + 9T92ua i g
+ 2712003 1§03 + 13923 p0p3uSpdie + 22984p0p3 s g + 117760 p3uG 40

+ 600pop it + 61122 g + 169260023 p2 02 + 189840 p2 i s

+ TASOpap3 g g - 36uapipdps + T35uapdpipspie + 4440pop3 g + 8T90uap3 i3 i
+ 7549 oS s g + 24040 3G + Sdpapdpdpde + 420papd s g

+ 123203 pipd g + 17283 i pud g + 1170 p3 s g + 308 a3 g + 256345
+ 1864 o134y 15 + 2224 o gy g + 3564 gz pf + 11008 o pugpuy pspus + T360pmops 13 peg
+ 202803t pd + 15564 o st p2ie + 2542203l puspl + 1233603k

+ 110003813 + 96481038 i + 26541 popuspbup? + 29860 un s ub s il

+ 11504203115 - 168pu2p13p33 + 1870z puaplpispie + 1121620303 13 1

+ 22008133 i3 11 + 19008213115 s s + 60481z g - 8o piapigus - 20440 a3 15 13t
+ 1345035y + 5880uapapippg + 8997 popuapipiz g + 6280paps s g

+ 16803t 18 + 14popspid b + 162paps Bl + 680z pudpd

+ 1400p2p3 i3 i3 g + 1530 pspiugug + 854uapapipspg + 192popspipg + 32uapy' +
400p2415° 15 + 400p2418 s + 115200302 + 3160uapiipspe + 1840uaping + 992uopiid
+ 6000popspZpe + 9504uopfuspd + 4224popfpd + 460uopipd + 4272popipdpe +
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4.4. Quotient of the inhomogeneous singularity (C2/T",Q) by Q

12948 i3 g + 1481200 pf s g + 54722401 - 324papu§ps + 700§ s 6

+ 6768popfudug + 14T18popSp3ug + 13244popSpuspg + 4192p0ppg - 224popins -
960papgudpe + 150papipspg + 5216uapdpdud + 9342uapufpdpg + 6912p0p5uspg +
1888 1o p1i - B2papipl - 252015 S png - 540uappd g + 250papdpud iy + 228841044 103 11
+ 3234popg g pd + 1980papipis il + 464poping + 14popiudpg + 108puapi i

+ 340 p g g + 560uapfudug + 510 i3 ug + 244 il s pu + A8 il g + 16050 +
16uSuips + 24pSpiue + 4p§papd + 16pSuipspe + 12uSpipg + 2pSpipdie + 4usuipspg
2833 + 96307 + 1923 s + 2883 b s + 12003312 + 3843403 s g

+ 288uB 2 + 24plpdpd + 144put e + 2400t pspd + 1200t + 1208 113 13 1
+ 425 B + A8udpuspg 4 18u3uiug + 224p3pf + T68uzuius + 105630406 +
TT6usps 3 + 2464p5uSpspe + 1784p5pS s + 352u3uipd + 174055 ud e

+ 27683 s + 1368u3uiug + A8uzpuius + 454uspipdne + 1213puspipgug

+ 1304z sy + A88uzpips + 28uzpipspe + 144uzpipdpg + 270z pdpd g

+ 220pz s + 66pzuiug + 256p3py + 14083 uius + 1728u3pdpe + 2176130113
+ 65283t pspe + A352p8pgpg + 1472u3ubud + 7232p8pd e + 1123203 uGps g +
5296305 + 480u3pdps + 3448u5 i pdpe + 860455 uZpg + 90564504 s

+ 3320p3 i g + 323 i + 616p3ugpane + 2512u3papdpg + 433434 pd 0

+ 345603 ks + 1032308 + 32u3pipdpe + 224p3pGus g + 6043 udud g

+ T90p3 g + 50ApS s g + 126p3pdpd + 144p301° + 1264430 s + 1352p3 8 e
+ 2964p3p5uF + 8064u3puiuspe + 4800u3pipg + 2736uzpgps + 13346u3p4p2pe +
195843 pi s g + 8496u3uipeg + 1356u5pdps + 9282p3pGusue + 22984u3pdpiug +
23552p3 pa sty + 8200p3p8 g + 240u3pdps + 3056u3u5pspe + 11284p3 05131

+ 18984p3 115 3 + 149600303 s g + 4360p3p5ug - 12030408 + 294p3pudpdue

+ 2220p3pgpspg + S860u3ugpdue + T5AuAugpEuG + 4808u3papsug + 119643444
+ 18p3pdpdpe + 168p3piudug + 616p3utusug + 1152p3pdpdpg + 1170u3utuzug
616p3p3 s g + 132u3pips + 32papy’ + 512u31i%1s + 448u31° e + 1864p35 113
44483 ppspe + 2264pspug + 2376p3uipd + 11008uspuiims + 14720uspd s g
5664uzpufug + 1464uzuips + 10376uzuipdue + 25422u3pipdng + 24672u3p5 s
78883 + 440uzpdpd + 4824uzpGpspe + 17694uzuGudug + 29860u3uGpd

+ 230083 s i + 6368usps g - 56pspiud + TA8uspG e + 5608 s ] g

+ 14672p3p5pdug + 19008uspipusug + 12096pspiusug + 2944pspiuf - 24uzpgpd -
68puspigpSpe + 538uapiudug + 2940uspiusug + 5998uspsudug + 6280uspiudug

+ 3360uspi sl + T20usppl + dpspipdpe + 5ApspipuSpd + 272ps 3 pd g

+ 7003 papg + 102036 g + 854papd g + 384pspidpisu + T2uspdpd + 64pi' us
+ 320k g + 40001002 + 800110 s s + 3041002 + T68udud + 3160912

+ 3680uipspg + 1168pqug + 496uus + 4000ufudpe + 9504pfpsus + 8448uf s
+ 23688 ud + 184pT 02 + 21367l e + 8632ukpdp2 + 148120523 + 1094475 pus il
S+ 2784pt i - 108uEp8 + 280p8p2 g + 3384pSpudpd + 98128 pdpd + 132448 p2pd +
83841111, + 19520 g, - 64p50f - 320p3 Sy + 60305 g + 26085 1ud iy + 622875143 11
+ 691205 p2pg + 377605 usp6 + 800ufud - Buipd - T2uiplpe - 180ugugng + 100u5u2u
+ Vddpipspg + 2156p5u3ug + 1980uiu3ug + 928uiuspg + 176pdpg + 4uiuiug +
363 S + 136313 g + 280p3 s + 340udpd g + 244pdpd g + 96uus g + 16450,

+ o+t
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4. Deformations and quiver representations

Whereas the case As._1 was easily done by hand, the case Eg requires the help of a
computer software. In order to find these coefficients, we used the program Maple 2015.
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Résumé : Soit T' un sous-groupe fini de SU,(C). Alors le quotient C?/T" peut étre plongé dans C3
sous la forme d’une surface munie d’une singularité isolée. Le quotient C?/T" est appelé singularité de
Klein, d’apres F. Klein qui fut le premier a les décrire en 1884. A travers leurs résolutions minimales,
ces singularités ont un lien étroit avec les diagrammes de Dynkin simplement lacés de types A,, D, et
E,. Dans les années 1970, E. Brieskorn et P. Slodowy ont tiré profit de cette connection pour décrire les
résolutions et les déformations de ces singularités a 1’aide de la théorie de Lie. En 1998 P. Slodowy et H.
Cassens ont construit les déformations semiuniverselles des C2/T" & I'aide de la théorie des carquois ainsi
que des travaux de P.B. Kronheimer en géométrie symplectique datant de 1989.

En théorie de Lie, la classification des algebres de Lie simples divise ces dernieres en deux classes : les
algebres de Lie de types A,, D, et E, qui sont simplement lacées, et celles de types B,, C,., Fy et Gs
appelées non-homogenes. A 1'aide d’un second sous-groupe fini I'" de SU,(C) tel que I' <T”, P. Slodowy a
étendu en 1978 la notion de singularité de Klein aux algebres de Lie non-homogenes en ajoutant & C?/T
le groupe d’automorphismes 2 = I"/T" du diagramme de Dynkin associé a la singularité.

L’objectif de cette these est de généraliser la construction de H. Cassens et P. Slodowy a ces singularités
de types B,, C,, Fy et G5. Il en résultera des constructions explicites des déformations semiuniverselles de
types inhomogenes sur les fibres desquelles le groupe 2 agit. Le passage au quotient d’une telle application
révele alors une déformation d’une singularité de type C?/T”.

Mots clés : Systemes de racines; pliage; singularité simple; réduction symplectique; carquois;
déformations de singularités.

Singularity and Lie Theory

Abstract : Let T be a finite subgroup of SU,(C). Then the quotient C?/T' can be embedded in C? as a
surface with an isolated singularity. The quotient C?/T" is called a Kleinian singularity, after F. Klein who
studied them first in 1884. Through their minimal resolutions, these singularities have a deep connection
with simply-laced Dynkin diagrams of types A,, D, and FE,. In the 1970’s E. Brieskorn and P. Slodowy
took advantage of this connection to describe the resolutions and deformations of these singularities in
terms of Lie theory. In 1998 P. Slodowy and H. Cassens constructed the semiuniversal deformations of
the Kleinian singularities using quiver theory and work from 1989 by P.B. Kronheimer on symplectic
geometry.

In Lie theory, the classification of simple Lie algebras allows for a separation in two classes : those simply-
laced of types A,, D, and E,, and those of types B,., C,, F; and G5 called inhomogeneous. With the use
of a second finite subgroup I" of SU,(C) such that I' < IV, P. Slodowy extended in 1978 the definition
of a Kleinian singularity to the inhomogeneous types by adding to C?/T" the group of automorphisms
Q =T"/T of the Dynkin diagram associated to the singularity.

The purpose of this thesis is to generalize H. Cassens’ and P. Slodowy’s construction to the singularities
of types B,., C,, Fy and G. It will lead to explicit semiuniversal deformations of inhomogeneous types on

the fibers of which the group 2 acts. By quotienting such a map we obtain a deformation of a singularity
c?/1T.

Keywords : Root systems; folding; simple singularity ; symplectic reduction; quiver; deformations of
singularities.

Image en couverture : La queue d’aronde, ou le discrimant de la déformation semiuniverselle d’une singularité simple de type As.
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