
HAL Id: tel-01555591
https://hal.science/tel-01555591

Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional View of Geometry Processing:
Operator-based Techniques for Shape Analysis

Maks Ovsjanikov

To cite this version:
Maks Ovsjanikov. Functional View of Geometry Processing: Operator-based Techniques for Shape
Analysis. Computer Vision and Pattern Recognition [cs.CV]. Université Paris-Sud Orsay, 2017. �tel-
01555591�

https://hal.science/tel-01555591
https://hal.archives-ouvertes.fr


HABILITATION A DIRIGER DES RECHERCHES

A Functional View of Geometry

Processing

Operator-based Techniques for Shape Analysis

Author: Maks Ovsjanikov

Université Paris-Sud

Orsay, France

Dissertation defended on:

May 19th, 2017

In front of the jury consisting of:

Pierre Alliez Directeur de recherche, Inria – President

Tamy Boubekeur Professor, Télécom ParisTech

Antonin Chambolle Directeur de recherche, CNRS, Ecole Polytechnique

Misha Kazhdan Professor, Johns Hopkins University

Leif Kobbelt Professor, RWTH Aachen University

Quentin Mérigot Professor, Université Paris-Sud



Abstract

In this document, we present a set of tools and algorithms for analyzing

and processing shapes and their relations. Our main observation is that a

very productive way of looking at many operations in geometry processing,

both in theory and in practice, is by representing them as linear operators

acting on real-valued functions defined on the shapes. Although this point

of view has been common in some areas of mathematics, such as dynamical

systems, representation theory or parts of differential geometry, it has only

recently been adopted in digital geometry processing, where it has led to

novel insights and efficient algorithms for a wide variety of problems includ-

ing shape matching, tangent vector field analysis and shape comparison to

name a few. In this document, we will give an overview of these and re-

lated techniques and demonstrate, in particular, how the operator point of

view can be helpful in a wide variety of practical settings, both by provid-

ing a common language in which many operations can be expressed and by

enabling the use of classical linear-algebraic tools in novel, and sometimes

unexpected scenarios.

i



Acknowledgments

This work would not have been possible without a very large number of

people, starting from the many collaborators that I have had the privilege

of working with during the past four years, including (in alphabetical order):

Omri Azencot, Mirela Ben-Chen, Thomas Bonis, Adrian Butscher, Math-

ieu Carrière, Luca Castelli-Aleardi, Antonin Chambolle, Frederic Chazal,

Étienne Corman, Leonidas Guibas, Qixing Huang, Moos Hueting, Chunyuan

Li, Quentin Mérigot, Niloy Mitra, Alexandre Nolin, Steve Oudot, Viorica

Pătrăucean, Raif Rustamov, Justin Solomon, Fan Wang, Max Wardetzky

and Steffen Weißmann.

I am also extremely grateful for the support of my colleagues at the

the LIX research laboratory of Ecole Polytechnique and at the Geomet-

rica/Datashape teams of INRIA, including Catherine Bensoussan, Christine

Biard, Evelyne Rayssac, Sylvie Jabinet, Olivier Bournez, Benjamin Werner,

Gilles Schaeffer and Leo Liberti among many others.

Finally, my family has been tremendously supportive over the years, and I

would like to thank them, and especially my wife Ayşegül, for their boundless

patience, understanding and a constant source of inspiration.

Parts of this work have been supported by the CNRS chaire d’excellence,

Marie Curie Career Integration Grant HRGP-334283, the FUI project “TAN-

DEM 2”, a grant from the French Direction Générale de l’Armement (DGA),

the chaire Jean Marjoulet from Ecole Polytechnique, a Google Focused

Research Award, a Qualcomm post-doctoral grant and a Google Faculty

Award.

ii



Contents

Abstract i

Acknowledgments ii

Contents iii

1 Introduction 1

I Mappings as Functional Operators 6

2 Overview 7

3 Functional Maps 8

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Functional Map Representation . . . . . . . . . . . . . . . . . 12

3.5 Functional Representation Properties . . . . . . . . . . . . . . 14

3.6 Functional Map Inference . . . . . . . . . . . . . . . . . . . . 22

3.7 Shape Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Extensions 29

4.1 Supervised Descriptor Learning . . . . . . . . . . . . . . . . . 29

4.2 Subspace (quotient) matching . . . . . . . . . . . . . . . . . . 30

II Tangent Vector Fields as Functional Operators 32

5 Overview 33

6 Vector Fields as Operators 34

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Vector Fields as Operators . . . . . . . . . . . . . . . . . . . . 37

6.3 Representation in a Basis . . . . . . . . . . . . . . . . . . . . 44

6.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iii



Contents

6.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Extensions 55

7.1 Continuous Matching via Vector Field Flow . . . . . . . . . . 55

7.2 Covariant Derivatives as Operators . . . . . . . . . . . . . . . 56

III Shapes and their Differences as Operators 57

8 Overview 58

9 Shape Differences 59

9.1 Introduction and Rationale . . . . . . . . . . . . . . . . . . . 59

9.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9.3 Shape Differences . . . . . . . . . . . . . . . . . . . . . . . . . 64

9.4 Differences in Shape Collections . . . . . . . . . . . . . . . . . 68

9.5 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.6 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10 Extensions 83

11 Conclusions and Future work 85

iv



1
Introduction

The work presented in this dissertation falls within the general field of “ge-

ometry processing,” which is a relatively young discipline, whose primary

objective is to develop novel theoretical tools and practical algorithms for

the analysis and processing of geometric data, whose scope and variability

have been increasing during the past several decades1. The tools developed

within this field deal with a wide variety of geometric data, but are tra-

ditionally dedicated to surface-based representations, where “shapes” are

considered as discrete samplings of smooth surfaces, embedded in 3D. Such

discrete representations most often come in two forms: either as point clouds

(i.e., collections of points sampled from the surface of the shape), or trian-

gle meshes, where in addition to the coordinates of the points one is also

given some topological structure, which represents the connectivity across

points. This latter mesh-based representation has its roots in Computer-

Aided Design (CAD) and Computer Graphics (especially interactive and

special effects) applications, in which one of the primary goals is to create

photo-realistic images (renderings) of 3D objects, in addition to being able

to manipulate these objects efficiently. In this context, the main focus of

geometry processing has been to provide techniques that would help to ana-

lyze and process such geometric data, often with the goal of enabling higher

order operations, such as shape comparison, deformation transfer or shape

parameterization to name a few.

For most of the methods presented below, we will assume that the input

data is given as a manifold triangle mesh, or as a collection of such meshes.

This means, in particular, that we will assume that each shape is represented

as a collection of faces (triangles), such that each edge belongs to at most

two faces. We will often assume that the shapes do not contain any bound-

aries, although this assumption can often be replaced with the appropriate

1A great introduction to geometry processing and some of the problems it considers can
be found in [BKP+10]. Also see [PLB12] for an overview of 3D imaging and acquisition.

1



Chapter 1. Introduction

Figure 1.1: Examples of the shape structure and complexity that we con-
sider in our work. The shapes (taken from SCAPE [ASK+05] and TOSCA
[BBK08] datasets) are all represented as triangle meshes embedded in R3,
containing several thousand (here, between 12 and 25 thousand) points.

handling of boundary conditions. See Figure 1.1 for some typical examples

of such shapes.

One of the main challenges associated with developing efficient techniques

in geometry processing is the sheer size of the input data, since even a shape

with moderate complexity often contains tens or even hundreds of thousands

of points or triangles. This implies that techniques that require complex data

processing, and that even have quadratic complexity in the input size are,

in most cases not feasible. At the same time, a lot of the data that we will

consider, such as for example, the adjacency matrix of the graph associated

with the input triangle mesh, is sparse, meaning that even though the size

of such matrix is quadratic in the number of input points, the number of

non-zero entries is linear, and it is important to develop techniques that

exploit such structure.

Another important consideration, which is often present in geometry pro-

cessing applications is robustness with respect to changes in the input. In

the types of problems that we will consider below, this means two sepa-

rate phenomena: one is the resilience with respect to the changes in the

coordinates of the points on the shape, and with respect to the changes in

triangulation, and the other is with respect to the change in the orientation

or “pose” of the object. This latter consideration is especially important in

the problem of finding correspondences or matching across different shapes,

which is the focus of the first part of this dissertation. Therefore, successful

techniques have to be at the same time efficient and robust in the presence

of noise and shape changes.

2



Chapter 1. Introduction

Structure and Overview

In this document, we will concentrate on three different problems: shape

matching, tangent vector field design and shape exploration. In all three

of these areas, we will show that it is possible to obtain very efficient and

robust algorithms by considering shapes as functional spaces and by rep-

resenting various geometric operations as linear operators acting on appro-

priate real-valued functions. This “functional” point of view is classical in

many areas of pure and applied mathematics, including dynamical systems

(where the notion of functional maps that we introduce below is closely re-

lated to the composition or Koopman operator [Koo31, SM93]) differential

geometry (where vector fields are often defined by their action on real-valued

functions [Spi99, Mor01]) and representation theory among others. However,

its utility has only been recently been observed in computer graphics (e.g.,

[PMT+11] in the context of fluid simulation), and is only now beginning to

be appreciated within geometry processing.

As we show below, in addition to the efficiency and the robustness of

methods obtained by considering this linear operator point of view of ge-

ometry processing, another very significant advantage of these techniques is

that they allow to express many different geometric operations in a common

language. This means, for example, that it makes it easy to define the push-

forward of a vector field with respect to a map, which can be cumbersome in

the discrete setting, by simply considering a composition of appropriate op-

erators (as shown in Chapter 6). Similarly, computing near-isometric maps

can be reduced to solving a linear system of equations (Chapter 3) and de-

termining the distortion associated with a correspondence to commutativity

with the Laplace-Beltrami operator (Chapter 9). Thus, although some ex-

amples of these interactions are provided below, I also strongly believe that

this is only a small part of the space of possibilities that this functional

point of view provides. Some particularly promising future directions are

mentioned in the concluding Chapter 11.

More specifically, the rest of the document is organized in three separate

parts, each corresponding to a particular problem. In each part we will

first present material based on a particular article, and then mention some

extensions and follow-up works.

• Part I: Functional Maps for shape correspondence. Material based on

[OBCS+12]. Extensions based on [COC14, OMPG13].

3



Chapter 1. Introduction

• Part II: Operator-based representation of tangent vector fields. Mate-

rial based on [ABCCO13]. Extensions based on [AOCBC15, COC15].

• Part III: Map-based shape exploration. Material based on [ROA+13].

Extensions based on [CSBC+17].

Finally, I would like to note that although this material represents a large

portion of my work during the past 4 years, there is nevertheless a number

of articles that I have published that will not be mentioned below, either

due to the lack of space, or due to the difference in content. The articles,

written after I started my position at Ecole Polytechnique and not discussed

in this document include:

1. “Informative Descriptor Preservation via Commutativity for Shape Match-
ing,” D. Nogneng and M. O., Computer Graphics Forum (Proc. Eurograph-
ics), 2017.

2. “Scene Structure Inference through Scene Map Estimation,” M. Hueting, V.
Pătrăucean, M. O., N. Mitra, Proc. VMV - Vision, Modeling and Visualiza-
tion, 2016.

3. “Persistence-based Pooling for Shape Pose Recognition,” T. Bonis, M. O.,
S. Oudot, F. Chazal, International Workshop on Computational Topology in
Image Context, 2016.

4. “Stable Region Correspondences Between Non-Isometric Shapes,” V. Ganapathi-
Subramanian, B. Thibert, M. O., L. Guibas, Computer Graphics Forum Proc.
SGP, 2016.

5. “CROSSLINK: Joint Understanding of Image and 3D Model Collections
through Shape and Camera Pose Variations,” M. Hueting, N. Mitra, and
M. O., Proc. SIGGRAPH Asia, 2015.

6. “Stable Topological Signatures for Points on 3D Shapes,” M. Carrière, Steve
Y. Oudot, and M. O., Proc. SGP, 2015.

7. “Efficient and practical tree preconditioning for solving Laplacian systems,”
L. Castelli-Aleardi, A. Nolin, and M. O., Proc. SEA, 2015.

8. “Affine Invariant Visual Phrases for Object Instance Recognition”, V. Pa-
traucean, and M. O., Proc. MVA, 2015.

9. “Functional Fluids on Surfaces,” O. Azencot, S. Weissmann, M. O., Max
Wardetzky, and M. Ben-Chen, Proc. SGP, 2014

10. “Unsupervised Multi-Class Joint Image Segmentation,” F. Wang, Q. Huang,
M. O. and L. Guibas, Proc. CVPR, 2014

11. “Persistence-based Structural Recognition,” C. Li, M. O. and F. Chazal,
Proc. CVPR, 2014

12. “Analysis and visualization of maps between shapes,” M. O., M. Ben-Chen,
F. Chazal, and L. Guibas, Comp. Graph. Forum (CGF), 2013.

13. “Detection of Mirror-Symmetric Image Patches,” V. Pătrăucean, R. Grompone

4



Chapter 1. Introduction

von Gioi, and M. O., Proc. CVPR Workshop on Symmetry Detection from
Real World Images, 2013.

14. “Feature-based methods in 3d shape analysis,” A. Bronstein, M. Bronstein,
and M. O., Book Chapter In 3D Imaging, Analysis and Applications, Springer-
Verlag, London, 2012.

5



Part I

Mappings as Functional

Operators

6



2
Overview

In this part, we present a representation of maps between pairs of shapes that

will serve as the basic building block for the rest of the material presented in

this document. Key to our approach is a generalization of the notion of map

that puts in correspondence real-valued functions rather than points on the

shapes. By choosing a multi-scale basis for the function space on each shape,

we show how to obtain a representation of a map that is very compact, yet

fully suitable for global inference. We also demonstrate that most natural

constraints on a map, such as descriptor preservation, landmark correspon-

dences, part preservation and operator commutativity become linear in this

formulation. Moreover, the representation naturally supports certain alge-

braic operations such as map sum, difference and composition, and enables

a number of applications, such as function or annotation transfer without

establishing point-to-point correspondences. We exploit these properties to

devise an efficient shape matching method, at the core of which is a single

linear solve. We also show how this representation can be used in segmen-

tation transfer and other applications.

The material in this part is based on the article:

• “Functional maps: a flexible representation of maps between shapes,”

by M. O., M. Ben-Chen, J. Solomon, A. Butscher and L. Guibas. In

Proc. SIGGRAPH, 2012.

While the extensions mentioned at the end are based on the articles:

• “Shape matching via quotient spaces,” by M. O., Q. Merigot, V. Pa-

traucean, and L. Guibas. In Proc. SGP (SGP), 2013.

• “Supervised Descriptor Learning for Non-Rigid Shape Matching,” by

E. Corman, M. O., and A. Chambolle. In Proc. ECCV NORDIA

Workshop, 2014.

7



3
Functional Maps

3.1 Introduction

Shape matching lies at the core of many operations in geometry processing.

While several solutions to rigid matching are well established, non-rigid

shape matching remains difficult even when the space of deformations is

limited to e.g. approximate isometries. Part of the difficulty in devising a

robust and efficient non-rigid shape matching method is that unlike the rigid

case, where the deformation can be represented compactly as a rotation and

translation, non-rigid shape matchings are most frequently represented as

pairings (correspondences) of points or regions on the two shapes. This

representation makes direct map estimation and inference intractable, since

the space of possible point correspondences is exponential in size. For exam-

ple, isometric matching techniques try to find correspondences that preserve

geodesic distances as well as possible, but such optimization problems can be

shown to be an NP-hard subclass of the quadratic assignment problem [Ç98].

Perhaps more importantly, this representation does not naturally support

constraints such as map continuity or global consistency.

Additionally, in many practical situations, it is neither possible nor nec-

essary to establish point-to-point correspondences between a pair of shapes,

because of inherent shape ambiguities or because the user may only be in-

terested in approximate alignment. Such ambiguous or approximate map

inference is difficult to phrase in terms of point-to-point correspondences.

The majority of existing methods try to tackle these challenges by limit-

ing their search for correspondences between a small set of landmark points

and extending those to a dense set of correspondences on entire shapes dur-

ing final post-processing ([BBK06, HAWG08, LF09, KTCO+10, OMMG10,

KLF11, TBW+11, SY11] among many others). This strategy has also been

justified theoretically, since under general conditions a small set of landmark

8



Chapter 3. Functional Maps

correspondences is known to be sufficient to obtain a unique dense mapping

between isometric surfaces ([LF09, OMMG10]). Nevertheless, although this

landmark-based approach reduces the complexity of the solution space it

still relies on representing shape maps as point-to-point correspondences,

making it difficult to incorporate global constraints or return meaningful

results when establishing point correspondences is not possible due to the

presence of only coarse similarities or symmetry ambiguities.

In this chapter we present a novel approach for inference and manipulation

of maps between shapes that tries to resolve the issues above in a funda-

mentally different way. Rather than putting in correspondence points on the

shapes, we propose to consider mappings between functions defined on the

shapes. This notion of correspondence generalizes the standard point-to-

point map since every pointwise correspondence induces a mapping between

function spaces, while the opposite is, in general, not true. However, this

generalized representation is: 1) flexible, since it allows choosing a basis for

the function space on each shape and representing the mapping as a change

of basis matrix and 2) well-suited for shape-matching, since many natural

constraints on the map become linear constraints on the functional map.

As we show in the rest of this paper, our representation works especially

well when combined with the eigenfunctions of the Laplace-Beltrami oper-

ator, by benefiting from their multi-scale, “geometry-aware” nature. This

allows us, in particular, to devise a simple algorithm that achieves state-

of-the art results on an isometric shape matching benchmark and at the

heart of which is a single linear solve. We also demonstrate the usefulness

of this representation on a number of tasks including improving existing

maps, segmentation transfer and joint analysis of shape collections without

establishing point-to-point correspondences.

3.2 Related Work

Both shape matching in general and non-rigid shape matching in particular

are relatively well-established fields with several recent books (e.g. [BBK08])

and surveys [vKZHCO11] dedicated exclusively to this subject. Below we

concentrate on reviewing the various classes of underlying representations for

maps between pairs of shapes and indicate ways in which they are optimized

for in the literature.

9



Chapter 3. Functional Maps

As mentioned in the introduction, the vast majority of existing shape

matching methods represent a map between a pair of shapes as a point-

to-point correspondence. Since it is infeasible to optimize over such corre-

spondences directly, most methods aim to obtain a sparse set of point corre-

spondences and extend them to dense mappings [BBK06, HAWG08, LF09,

KTCO+10, OMMG10, KLF11, TBW+11, SY11]. Because sparse point cor-

respondences are inherently discrete, common ways to enforce global con-

sistency include preservation of various quantities between pairs or sets of

points, including geodesic distances [BBK06, HAWG08, SY11], various spec-

tral quantities [JZvK07, MHK+08, SH10, OMMG10], or embedding shapes

into into canonical domains [LF09] based on landmark correspondences, or a

combination of multiple geometric and topological tests [DK11, KTCO+10].

A related set of techniques aims to establish shape part or segment corre-

spondences rather than reliable point-to-point matches, e.g. [GF09, XLZ+10,

PBB11, HKG11, vKTS+11]. Such techniques either pre-segment the shape

and try to establish part correspondences, or more recently phrase the seg-

mentation and correspondence (and possibly labelling) in a joint optimiza-

tion framework [KHS10, PBB11, HKG11] which generally avoids the need

to establish reliable pointwise correspondences. In this chapter we show how

segment correspondences can be used as constraints to establish high quality

point matches.

Finally, some methods optimize the deformation of one shape to align it

with another, rather than optimizing the correspondences directly [ZSCO+08,

YLSL10]. In the majority of cases, however, such methods still rely on

point correspondences either during alignment or pre-processing as feature

matches.

We also note that some recent methods have concentrated on measuring

and optimizing consistency of sets of maps [NBCW+11, KLF11] and showed

superior performance to optimizing individual correspondences. These ap-

plications show the importance of algebraic operations on maps (averages,

differences), which are challenging to do in the point-to-point correspon-

dence domain.

Our use of spectral quantities is also closely related to spectral embed-

dings [Rus07] and their application in shape matching [JZvK07, MHK+08,

OSG08]. However, unlike such methods our framework does not assume

one-to-one correspondences between eigenfunctions of the Laplace-Beltrami

10



Chapter 3. Functional Maps

operator. This difference is crucial for both removing the combinatorial

complexity present in these methods (e.g. sign ambiguities, order switching)

and achieving superior results in practice.

One common characteristic of all existing non-rigid shape matching meth-

ods is that they lead to difficult, non-convex, non-linear optimization prob-

lems. In this chapter, we argue that this is primarily because maps between

shapes are represented as point or segment correspondences, making it in-

herently difficult to devise map inference methods using global constraints.

On the other hand, we show that by generalizing the notion of a map to

include pairings of real-valued functions instead of points, map inference can

be phrased as a linear system of equations. One danger of this generalization

is that the solution may not correspond to a point-to-point map. We show

simple regularization techniques that help avoid this possibility.

Note that analyzing mappings through their effect on function spaces is a

common theme used in various fields of mathematics. A famous example can

be found in the field of Representation Theory (see for instance [Wey46]).

Here, one relates the different ways in which a compact Lie group (a contin-

uous group of transformations, e.g. the group of rotations) can act on itself

to the induced linear action of the group on functions.

3.3 Contributions

Our key contribution is a representation for maps between pairs of shapes

as linear transformations between the corresponding function spaces. We

show how this notion of a map generalizes the standard point-to-point rep-

resentation and yet has the following key advantages:

• By using the Laplace-Beltrami basis for the function space on each

shape, the map can be well-approximated using a small number of

basis functions and expressed simply as a matrix.

• Most natural constraints on maps, such as descriptor preservation,

landmark correspondences, part preservation and operator commuta-

tivity become linear in the functional formulation, enabling extremely

efficient inference.

• Maps in this representation can be manipulated via standard algebraic

operations e.g. addition, subtraction, composition.

Last but not least, functional maps can be useful even when they do not cor-

11



Chapter 3. Functional Maps

respond to point-to-point maps for information or attribute transfer between

shapes, shape collection analysis, and other shape processing tasks.

3.4 Functional Map Representation

To set the stage for functional mappings as a generalization of classical

point-to-point mappings, let T : M → N be a bijective mapping between

manifolds M and N (either continuous or discrete). Then, T induces a

natural transformation of derived quantities, such as functions on M . To

be precise, if we are given a scalar function f : M → R then we obtain a

corresponding function g : N → R by composition, as in g = f ◦T−1. Let us

denote this induced transformation by TF : F(M,R)→ F(N,R), where we

use F(·,R) to denote a generic space of real-valued functions. We call TF the

functional representation of the mapping T 1. We now make the following

two simple remarks:

Remark 3.4.1. The original mapping T can be recovered from TF .

Indeed, to recover the image T (a) of any point a on M , construct an

indicator function f : M → R, s.t. f(a) = 1 and f(x) = 0 ∀ x 6= a ∈M. By

construction if g = TF (f), then g(y) = f ◦T−1(y) = 0 whenever T−1(y) 6= a

and 1 otherwise. Since T is assumed to be invertible, there is a unique point

y s.t. T (a) = y. Thus, g must be an indicator function of T (a) and T (a) is

the unique point y ∈ N s.t. g(y) = 1.

Remark 3.4.2. For any fixed bijective map T : M → N , TF is a linear

map between function spaces.

To see this, note TF (α1f1 + α2f2) = (α1f1 + α2f2) ◦ T−1 = α1f1 ◦ T−1 +

α2f2 ◦ T−1 = α1TF (f1) + α2TF (f2).

We may paraphrase these remarks to say that knowledge of TF is equiva-

lent to knowledge of T . And while T may be a complicated mapping between

surfaces, TF acts linearly between function spaces.

Now suppose that the function space of M is equipped with a basis so

that any function f : M → R can be represented as a linear combination of

basis functions f =
∑

i aiφ
M
i , with scalar coefficients ai. Then, we have:

1Note that it would perhaps be more natural to define TF as via pull-back with respect
to T rather than T−1, so that TF would map functions from N to M . We follow this
approach in the following chapters, but for simplicity of presentation keep TF and T to
be maps in the same direction here.

12



Chapter 3. Functional Maps

TF (f) = TF

(∑
i

aiφ
M
i

)
=
∑
i

aiTF
(
φMi
)
.

In addition, if N is equipped with a set of basis functions {φNj }, then

TF
(
φMi
)

=
∑

j cjiφ
N
j for some {cji}, and we obtain:

TF (f) =
∑
i

ai
∑
j

cjiφ
N
j =

∑
j

∑
i

aicjiφ
N
j . (3.1)

Therefore if we represent f as a vector of coefficients a = (a0, a1, ....ai, ...)

and g = TF (f) as a vector b = (b0, b1, ...., bi, ...), then Eq. 3.1 simply says:

bj =
∑

i cjiai, where cji is independent of f and is completely determined by

the bases and the map T . In particular cji is the jth coefficient of TF (φMi ) in

the basis {φNj }. Note that C has a particularly simple representation if the

basis functions {φNi } are orthonormal with respect to some inner product

〈·, ·〉, namely cji = 〈TF (φMi ), φNj 〉.
We conclude with the following key observation:

Remark 3.4.3. The map TF can be represented as a (possibly infinite)

matrix C s.t. for any function f represented as a vector of coefficients a

then TF (a) = Ca.

This remark in combination with the previous two remarks shows that

the matrix C fully encodes the original map T .

Motivated by this discussion, we now turn towards the definition of linear

functional mappings that are strictly more general than functional represen-

tations of classical point-to-point mappings. The point of view that we take

is to downplay the mapping T and focus our attention on the matrix C. We

thus define:

Definition 1. Let {φMi } and {φNj } be bases for F(M,R) and F(N,R),

respectively. A generalized linear functional mapping TF : F(M,R) →
F(N,R) with respect to these bases is the operator defined by

TF

(∑
i

aiφ
M
i

)
=
∑
j

∑
i

aicjiφ
N
j ,

where cji is a possibly infinite matrix of real coefficients (subject to con-

ditions that guarantee convergence of the sums above).

13



Chapter 3. Functional Maps

(a) source (b) ground-truth map (c) left to right map (d) head to tail map

Figure 3.1: Two shapes with three maps between them, each rendered as
a point-to-point mapping through color correspondence (top) and its func-
tional representation (bottom) with colors proportional to matrix values.
Note that the least isometric map in (d) leads to a more dense matrix.

Example. As an example, consider a pair of shapes in Figure 3.1 with

three bijective maps between then: two approximate isometries (the “nat-

ural” map that associates the points of the source with their counterparts

of the target, and the left-right mirror symmetric map) and one map that

puts the head and tail in correspondence. For each map, the point-to-point

representation is shown as color correspondence while the functional repre-

sentation is shown as a heat map of the matrix C0..20×0..20, where we used

the Laplace-Beltrami eigenfunctions as the basis for the function space on

each shape. Note that the functional representations of the near-isometric

maps are close to being sparse and diagonally dominant, whereas the rep-

resentation of the map that associates the head with the tail is not. Also

note that none of the maps is diagonal, an assumption made by previous

algorithms [JZvK07, MHK+08, OSG08].

3.5 Functional Representation Properties

As we have noted above, the functional representation of a pointwise bijec-

tion can be used to recover its representation as a correspondence, and is

thus equivalent. Note, however, that this does not imply that the space of

bijections coincides with the space of linear maps between function spaces,

as the latter may include functional mappings not associated with any point-

14



Chapter 3. Functional Maps

to-point correspondence.

Perhaps the simplest example of this is a functional map D that maps

every function on one shape to the constant zero function on the other. Such

a map D clearly cannot be associated with any pointwise correspondences

since all such functional maps must, by definition, preserve the set of values

of each function. Nevertheless, by going to this richer space of correspon-

dences, we obtain a representation that has several key properties making

it more suitable for manipulation and inference.

Intuitively, functional maps are easy to manipulate because they can be

represented as matrices and thus can benefit from standard linear algebra

techniques. To make this intuition practical, however, the size of the ma-

trices must be moderate (i.e., independent of the number of points on the

shapes), and furthermore map inference should be phrased in terms of linear

constraints in this representation. In the following sections we will show how

to achieve these goals first by choosing the appropriate basis for the function

space on each shape (Section 3.5.1) and then by showing how many natural

constraints on the map can be phrased as linear constraints on the func-

tional map (Section 3.5.3), reducing shape matching to a moderately-sized

system of linear equations (Section 3.6).

3.5.1 Choice of basis

As noted above, the functional map representation is flexible in the sense

that it gives us the freedom to choose the basis functions for the functional

spaces of M and N . Indeed, if we choose the basis functions to be indicator

functions at the vertices of the shapes, then C is simply the permutation

matrix which corresponds to the original mapping. However, other choices of

bases are possible, which can lead to significant reductions in representation

complexity and are much better suited for near-isometric mappings between

shapes, which is desired behavior in many practical applications.

Perhaps the two most important characteristics for choosing a basis for

functional maps are compactness and stability. Compactness means that

most natural functions on a shape should be well approximated by using

a small number of basis elements, while stability means that the space of

functions spanned by all linear combinations of basis functions must be

stable under small shape deformations. These two properties together ensure

that we can represent the action TF using a small and robust subset of basis

15



Chapter 3. Functional Maps

(a) source (b) Cat10 (c) Cat1 (d) Cat6

0 50 100 150 200

Number of Basis Functions

0

0.5

1

1.5

2

A
ve

ra
ge

 G
eo

de
si

c 
Er

ro
r cat 10

cat 1
cat 6

(e) errors

Figure 3.2: Average error vs. number of basis functions used in the represen-
tation. For each shape with a known ground-truth point-to-point correspon-
dence (shown as a color correspondence), we computed its functional repre-
sentation and measured its accuracy in reconstructing the original pointwise
map. A geodesic disk of radius 1 is shown on each shape for scale.

functions and we need only consider a finite submatrix C0..m×0...n, for some

moderate values of m and n, of the infinite matrix C (Definition 1). In

other words, for a given function f , represented as a vector of coefficients

a = (a0, a1, ....ai, ...), we would like
∑

j

∑
i aicjiφ

N
j ≈

∑n
j=0

∑m
i=0 aicjiφ

N
j ,

for some fixed small values of m and n.

In this work, we will concentrate on shapes undergoing near-isometric de-

formations, for which we will use the first n Laplace-Beltrami eigenfunctions

as the basis for their functional representations (where n = 100 throughout

all of our experiments, independent of the number of points on the shape).

This choice of basis is natural, since eigenfunctions of the Laplace-Beltrami

operator are ordered from “low frequency” to “higher frequency,” meaning

that they provide a natural multi-scale way to approximate functions, and as

a result functional mappings, between shapes. Moreover, although individ-

ual eigenfunctions are known to be unstable under perturbations, suffering

from well-known phenomena such as sign flipping and eigenfunction order

changes, the space of functions spanned by the first n eigenfunctions of the

Laplace-Beltrami operator can be shown to be stable under near-isometries

as long as the nth and (n+ 1)st eigenvalues are well separated, as shown for

example in the work of [Kat95].

To illustrate the role of the size of the basis on the functional representa-

tion, we measure the ability of a functional map to capture a ground-truth

point-to-point correspondence using a fixed number n of basis functions.

16



Chapter 3. Functional Maps

In particular, we consider the eigenfunctions of the standard cotangent

weight discretization of the Laplace-Beltrami operator [PP93, MDSB02].

Figure 3.2 shows the average error induced by the functional representa-

tion for a set of pairs of deformed versions of the cat shape provided in

the TOSCA [BBK08] dataset. Each of these shapes contains 27.8K points,

with a known ground-truth correspondence. We represented this pointwise

correspondence between the cat0 shape and the others using an increas-

ing number of eigenvectors, and for each point x computed its image as:

T (x) = arg miny ||δy − TF (δx)|| where δx and δy are the projections of the

indicator functions at the points x and y onto the corresponding basis (See

Section 3.6.1 for details). The error is measured in average geodesic error

units, and we plot a geodesic disk of a unit radius around a single (corre-

sponding) point on each shape for reference. Note that the eigenfunctions

of the Laplace-Beltrami operator provide a compact representation of the

map and that that only 30−40 eigenfunctions are sufficient to represent the

ground truth map to a quality that is extremely close to the ground-truth

point-to-point map.

Sparsity. In addition to the multi-scale property of the functional rep-

resentation with the Laplace-Beltrami eigenfunctions, we also point out that

near-isometric maps induce matrices C that are nearly sparse and thus can

be stored efficiently. Indeed, if the shapes M and N are isometric and T

is an isometry, it is easy to see that the matrix Cij can be non-zero only if

φMj and φNi correspond to the same eigenvalue. In particular, if all eigen-

values are non-repeating, C is a diagonal matrix. In practice, we observe

that if T is only approximately an isometry, the matrix C is still close to

being sparse, or funnel-shaped. Figure 3.3 shows the sparsity patterns of

the matrices C corresponding to two of the maps shown in Figure 3.2. In

particular, note that over 94% of the values of these matrices are below 0.1.

Let us stress, however, that the functional matrix C stops being diagonal

very quickly under even mild non-isometric deformations, and this effect

is especially pronounced for high-frequency eigenfunctions (Figure 3.1 illus-

trates the same effect). While this poses fundamental challenges to previous

spectral methods [JZvK07, MHK+08, OSG08], the functional representation

naturally encodes such changes.

17



Chapter 3. Functional Maps

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 4835

Cat0 −> Cat6

(a) cat6

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 4457

Cat0 −> Cat10

(b) cat10

Figure 3.3: Sparsity pattern of the matrices C corresponding to two out of
4 maps shown in Figure 3.2. Only cells where |C| > 0.11 are shown. Note
that more than 94% are not. Note also that the functional matrix for the
more deformed shape cat6 is also farther from being diagonal.

3.5.2 Continuity

Another major advantage of using the functional representation of the map-

ping is that it naturally handles map continuity unlike the point-to-point or

segment-to-segment bijection which is inherently discrete. Here continuity

means three distinct phenomena:

Continuity under changes of the input function. This means that

the image of a function TF (f) = Ca varies continuously under changes of

the vector of coefficients a and thus under the changes of the function for a

fixed mapping C. This property is useful since in most natural settings the

desired mapping is continuous.

Continuity of the image function. The Laplace-Beltrami operator

is inherently well-suited for representing smooth functions on the shapes.

Thus, for any fixed number n, and any set of coefficients a, the function

f =
∑n

i=0 aiφ
M
i will be smooth and if we use a truncated matrix C0..n×0...n

then the image Ca of any function f will be smooth.

Continuity of the representation. Finally, we also note that the

functional representation is more amenable to numerical optimization since

it is inherently continuous. That is, the matrix C can be modified continu-

ously and still produce meaningful results. Note that there are no inherent

18



Chapter 3. Functional Maps

(a) α = 0 (b) α = 0.25 (c) α = 0.5 (d) α = 0.75 (e) α = 1

Figure 3.4: Mapping of the three coordinate functions from the source shape
shown in Figure 3.2a onto the target shape using an interpolation between
two maps C = αC1 + (1 − α)C2. Note that the mapped function varies
continuously under changes of the parameter α.

restrictions on the matrix C to be able to establish functional correspon-

dences. Thus, given any matrix C and any vector of coefficients a, we can

interpret Ca as a functional mapping. To illustrate this, in Figure 3.4 we

show the image of a set of three functions from a fixed source shape (shown

in Figure 3.2) onto a target shape under a functional correspondence, inter-

polated between two mappings corresponding to the direct and symmetric

shape matching. Note that each mapping is both meaningful and produces

intuitive results.

3.5.3 Linearity of constraints

Perhaps even more importantly, the functional representation is particularly

well-suited for map inference (i.e., constrained optimization) for the follow-

ing reason: when the underlying map T (and by extension the matrix C) are

unknown, many natural constraints on the map become linear constraints in

its functional representation. Below we describe the most common scenarios.

Function preservation. Given a pair of functions f : M → R and

g : N → R, the correspondence between f and g can be written simply as

Ca = b where C is the functional representation of the map, while a and

b are the representation of f and g in the chosen bases of M and N . Note

that the function preservation constraint can be phrased entirely in terms of

the matrix C without knowledge of the underlying correspondence T , since

a and b do not depend on the map C. This is especially useful for shape

matching applications where C is unknown, but could possibly be recovered

by phrasing enough constraints of type Cai = bi. The function preservation

constraint is quite general and includes the following as special cases.

19



Chapter 3. Functional Maps

Descriptor preservation. If f and g are functions corresponding to

point descriptors (e.g. f(x) = κ(x) where κ(x) is Gauss curvature of M at

x), then the function preservation constraint simply says that descriptors

are approximately preserved by the mapping. Furthermore if the point

descriptors are multidimensional so that f(x) ∈ Rk for each x then we can

phrase k scalar function preservation constraints, one for each dimension of

the descriptor.

Landmark point correspondences. If we are given landmark point

correspondences T (x) = y for some known x ∈M and y ∈ N (e.g., specified

by the user or obtained automatically), we can phrase this knowledge as

functional constraints by considering functions f and g that are, for exam-

ple, distance functions to the landmarks or normally distributed functions

around x and y. Indeed, the confidence with which the landmark correspon-

dence is known can be encoded in the functional constraints very naturally

(e.g., if it is only known within a certain radius).

Segment correspondences. Similarly, if we are given correspondences

between parts of shapes rather than individual points we can phrase such

correspondences as functional correspondences again by either considering

the indicator functions on the segments or using more robust derived quan-

tities such as the distance function.

In our implementation for finding functional maps between shapes, we

impose a variety of functional constraints as described above.

3.5.4 Operator Commutativity

In addition to the function preservation constraint, another class of con-

straints on the map that induce linear constraints on its functional repre-

sentation is commutativity with respect to linear operators on M and N .

That is, often M and N can be endowed with linear functional operators

that we may want to preserve. A first example is a symmetry operator

SF : F(M,R)→ F(M,R) which associates with every function f : M → R
another function SF (f) : M → R obtained as SF (f)(x) = f(S−1(x)), where

S : M → M is some symmetry of M . A second example is the Laplace-

Beltrami operator and derived operators (e.g. the heat operator), which are

preserved under isometries. The operators on M and N can be quite general,

20



Chapter 3. Functional Maps

however, and can represent any association of functions on the manifold. In

any case, given functional operators SMF and SNF on M and N respectively,

it may be natural to require that the functional map C commute with these

operators. In particular: SNF C = CSMF or ‖SMF C − CSNF ‖ = 0. Note that

this constraint also leads to linear equations in the elements of C.

3.5.5 Regularization Constraints

Note that although we mentioned in Section 3.5.2 that there are no inherent

constraints on the matrix C to be a functional map, this does not mean

that any matrix C is associated with a point-to-point map. Indeed, while

every bijective map T has a functional representation through the matrix C,

the converse is not necessarily true. Thus, there may be constraints on the

functional representation if it is known to be associated with a point-to-point

map. Although finding such constraints is difficult in general, a very useful

observation is the following (See [OBCS+12] for a proof):

Theorem 3.5.1. (1) If the basis functions are discrete and orthonormal

with respect to the standard inner product, i.e.
∑

x φi(x)φj(x) = δij, or if

the underlying map T (discrete or continuous) is volume preserving, i.e.

µM (x) = µN (T (x)) where µM and µN are volume elements on M and N

respectively, then the matrix C associated with the functional representation

of T must be orthonormal. (2) If the underlying map T is an isometry then

T commutes with the Laplace-Beltrami operator.

It follows that in most natural settings, e.g. when one expects isome-

tries between shapes, if one is using the functional representation to ob-

tain a point-to-point map it is most meaningful to consider orthonormal or

nearly-orthonormal functional map matrices. Furthermore, it makes sense

to incorporate commutativity with the Laplace-Beltrami operators into the

regularization.

3.5.6 Map Inversion and Composition

A challenging task when considering point-to-point mappings between shapes

is map inversion, i.e. given a map T : M → N that is not necessarily bijec-

tive, one is required to find a meaningful version of T−1 : N → M . In the

functional representation finding an inverse can be done simply by finding

21



Chapter 3. Functional Maps

an inverse of the mapping matrix C. Moreover, because for near-isometric

maps we expect this matrix to be close to diagonal (or “funnel” shaped as

shown in Figure 3.3) it is reasonable to take the inverse of the approximating

submatrix of C. Finally, in light of Theorem 3.5.1 this can be done by sim-

ply taking the transpose of C or its approximation. We note that similarly,

map composition becomes simple matrix multiplication in the functional

representation, which has been exploited when we use our representation

for joint map inference on a collection of shapes [OBCS+12].

3.6 Functional Map Inference

As mentioned in Section 3.5, functional shape maps are well-suited for infer-

ence because of their continuous nature and because a large number of con-

straints become linear in this representation. In this section we discuss how

such inference can be done in practice. For this suppose we are given a pair

of discrete shapes represented as meshes, with the corresponding Laplace-

Beltrami eigenfunctions. Our goal is to find the underlying functional map

represented as a matrix C. The simplest way to do so is to construct a large

system of linear equations, where each equation corresponds to one of the

constraints mentioned above (either a functional constraint or the operator

commutativity constraint) and find the best functional map by finding the

matrix C that best satisfies the constraints in the least squares sense.

3.6.1 Efficient Conversion to Point-to-Point

As mentioned in Section 3.4, given a bijection T between two discrete shapes,

and the basis vectors of their function spaces, the functional representation

C of the map T can be obtained by solving a linear system.

To reconstruct the original mapping from the functional representation,

however, is more challenging. The simplest method alluded to in Remark

3.4.1 to find a corresponding point y ∈ N to a given point x ∈ M would

require constructing a function f : M → R (either the indicator function,

or a highly peaked Gaussian around x) obtaining its image g = TF (f) using

C and declaring y to be the point at which g(y) obtains the maximum.

Such a method, however, would require O(VNVM ) operations for a pair of

meshes with VN and VM vertices. Such complexity may be prohibitively

expensive in practice for large meshes. To obtain a more efficient method,

22



Chapter 3. Functional Maps

Algorithm 1 Functional Map Inference For Matching

1. Compute a set of descriptors for each point on M and N , and create
function preservation constraints.

2. If landmark correspondences or part decomposition constraints are
known, compute the function preservation constraints using those.

3. Include operator commutativity constraints for relevant linear opera-
tors on M and N (e.g. Laplace-Beltrami or symmetry).

4. Incorporate the constraints into a linear system and solve it in the
least squares sense to compute the optimal C.

5. Refine the initial solution C with the iterative method of Section 3.6.2.

6. If point correspondences are required, obtain them using the method
in Section 3.6.1.

note that in the Laplace-Beltrami basis δx, the delta function around a point

x ∈M , has the coefficients: ai = φMi (x). This can be seen for example, since

δx = limt→0+ kMt (x, ·) = limt→0+

∑∞
i=0 e

−tλiφMi (x)φMi (·) , where kMt (·, ·) is

the heat kernel at time t on the shape M .

Therefore, given a matrix ΦM of the Laplace-Beltrami eigenfunctions of

M , where each column corresponds to a point and each row to an eigenfunc-

tion, one can find the image of all of the delta functions centered at points

of M simply as CΦM . Now recall that by Plancherel’s theorem, given two

functions g1 and g2 both defined on N , with spectral coefficients b1 and b2,∑
i(b1i− b2i)2 =

∫
N (g1(y)− g2(y))2µ(y). That is, the distances between the

coefficient vectors is equal to the L2 difference between the functions them-

selves. Therefore an efficient way to find correspondences between points

is to consider for every point of CΦM its nearest neighbor in ΦN . Using

an efficient proximity search structure, such as a kd-tree, this procedure

will require only O(VN log VN + VM log VN ) operations, giving a significant

efficiency increase in practice.

3.6.2 Post-Processing Iterative Refinement

The observation made in Section 3.6.1 can also be used to refine a given

matrix C to make it closer to a point-to-point map. Suppose we are given

an initial estimate matrix C0 that we believe comes from a point-to-point

23



Chapter 3. Functional Maps

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

Geodesic Error

%
 C

o
rr

e
s

p
o

n
d

e
n

c
e

s

 

 

Functional maps Sym

Functional maps

[Kim et al. 2011] Sym

[Kim et al. 2011]

[Sahillioglu and Yemez 2011] Sym

[Sahillioglu and Yemez 2011]

(a) SCAPE

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

Geodesic Error

%
 C

o
rr

e
s

p
o

n
d

e
n

c
e

s

 

 

Functional Maps Sym

Functional Maps

[Kim et al. 2011] Sym

[Kim et al. 2011]

[Sahillioglu and Yemez 2011] Sym

[Sahillioglu and Yemez 2011]

(b) TOSCA

Figure 3.5: Comparison of our method with the state-of-the-art methods
of Kim et al. [KLF11] and Sahillioglu and Yemez [SY11] on two datasets:
SCAPE [ASK+05] and TOSCA [BBK08] with and without symmetric maps
allowed (solid and dashed lines respectively). Note that since our method is
intrinsic only symmetric (solid line) evaluation is meaningful.

map T . As noted in Section 3.6.1, theoretically C0 must be such that each

column of C0ΦM coincides with some column of ΦN . If we treat ΦM and ΦN

as two point clouds with dimensionality equal to the number of eigenvalues

used in the functional representation C0 then this means that C0 must align

ΦM and ΦN . Moreover, since by Theorem 3.5.1 we expect the mapping

matrix C0 to be orthonormal, we can phrase the problem of finding the

optimal mapping matrix C as rigid alignment between ΦM and ΦN . Thus

an iterative refinement of C0 can be obtained via:

1. For each column x of C0ΦM find the closest x̃ in ΦN .

2. Find the optimal orthonormal C minimizing
∑
‖Cx− x̃‖.

3. Set C0 = C and iterate until convergence.

Note that this technique is identical to the standard Iterative Closest

Point algorithm of Besl & McKay, [BM92], except that it is done in the

embedded functional space, rather than the standard Euclidean space. Note

also that this method cannot be used on its own to obtain the optimal

functional matrix C because the embedding ΦM and ΦN are only defined up

to a sign change (or more generally an orthonormal transformation within an

eigenspace). Therefore, it is essential to have a good initial estimate matrix

24



Chapter 3. Functional Maps

C0. Finally, note that the output of this procedure is not only a functional

matrix C but also a point-to-point correspondence given by nearest neighbor

assignment between points on M and N . We will use this method to obtain

good point-to-point maps when we apply these observations to devise an

efficient shape matching method in Section 3.7.

Relation to Existing Methods. We remark that this refinement

step is similar to existing spectral matching methods such as [JZvK07,

MHK+08, SH10]. However, in addition to having a good initial estimate

C0, our method is different since we allow “mixing” across eigenvectors cor-

responding to different eigenvalues. In addition, the functional representa-

tion allows to formulate other constraints such as operator commutativity

(Section 3.5.4) and represent the map itself compactly.

3.7 Shape Matching

In this section we describe a simple yet very effective method for non-rigid

shape matching based on the functional map representation.

The simplest version of the shape matching algorithm is summarized

in Algorithm 1. Namely, suppose we are given two shapes M and N in

their discrete (e.g. mesh) representation, and the Laplace-Beltrami eigen-

decomposition. Then, we simply compute functional constraints that corre-

spond to descriptor and segment preservation constraints together with the

operator commutativity, form a linear system of equations and solve it in

the least squares sense. If necessary, we refine the solution using the method

in Section 3.6.2 and compute the point-to-point map using the method in

Section 3.6.1.

3.7.1 Implementation

The key ingredients necessary to implement this method in practice are the

computation of the eigendecomposition of the Laplace-Beltrami operator,

the descriptors used in the function preservation constraints, and a method

to obtain landmark or segment correspondences. Note that our framework

allows great flexibility for the choice of descriptors and correspondence con-

straints since they all fit into a general function preservation framework.

In our implementation we have used the cotangent scheme [MDSB02] for

25



Chapter 3. Functional Maps

the Laplace-Beltrami operator on meshed surfaces. We also used the Wave

Kernel Signature (WKS) and Heat Kernel Signature descriptors of [ASC11]

and [SOG09]. Because the method described above is fully intrinsic and

does not distinguish between left and right symmetries, it is also impor-

tant to resolve ambiguities using correspondence constraints. However, since

point-to-point correspondences (e.g. landmark) are generally unstable and

difficult to obtain without manual intervention, we have used segment cor-

respondences instead. Towards this goal, we first pre-segment every shape

using the persistence-based segmentation technique of [SOCG10] with the

WKS at a fixed energy value of the underlying function (we used e = 5 in all

examples below). This gives a relatively stable segmentation with a small

number of segments (between 3 and 7 in the shapes we examined). Given

a pair of shapes, we first compute the segment correspondence constraints.

For this, we first compute the set of candidate pairs of segments from the

two shapes by computing segment descriptors and finding the ones likely to

match. For segment descriptors we use the sum of the WKS values of the

points in the segment. Given a pair of candidate segment matches s1, s2

on M and N respectively, we construct a set of functional constraints using

the Heat Kernel Map [OMMG10] based on segment correspondences. We

combine these together with the Laplace-Beltrami commutativity constraint

and the WKS constraints into a single linear system and solve it to find the

optimal functional mapping matrix C. Finally, we refine the solution us-

ing the iterative method described in Section 3.6.2 and find the final dense

point-to-point correspondences using the method in 3.6.1.

3.7.2 Results

We have evaluated our basic method for computing point-to-point corre-

spondences on the shape matching benchmark of Kim et al. [KLF11] in

which the authors showed state-of-the art results using their Blended Intrin-

sic Maps (BIM) approach. Using the correspondence evaluation, Figure 3.5

shows the results of our automated shape matching on two standard datasets

used in the benchmark of Kim et al. [KLF11] on which their method re-

ported significant improvement over prior work. In addition, we evaluated a

recent shape matching method by Sahillioglu and Yemez [SY11] which did

not appear in the benchmark. The graphs show the percent of correspon-

dences which have geodesic error smaller than a threshold. Note that our

26



Chapter 3. Functional Maps

 

Source  Target 1 Target 2 Target 3 

Figure 3.6: Maps between remeshed versions of shapes from the SCAPE
collection, mapping the coordinate functions from the source to the three
target shapes using an inferred functional map.

method shows quality improvement over Blended Intrinsic Maps on both

datasets. Note also that all of the parameters for our system were fixed

before running the benchmark evaluation and were therefore not optimized

for benchmark performance in any way.

Although the shapes in both SCAPE and TOSCA datasets have the same

connectivity structure, this information is not used by our method, and is not

needed for applying our algorithm. To demonstrate this, Figure 3.6 shows

three maps computed by our method between a source and three target

shapes from the SCAPE collection, all remeshed with uniform remeshing.

We show the map by transferring the XYZ coordinate functions to the target

shapes using the inferred functional maps. These functions are then rendered

as RGB channels on the source and target shapes.

3.8 Other Applications

3.8.1 Function (Segmentation) Transfer

As mentioned earlier, one of the advantages of the functional representa-

tion is that it reduces the transfer of functions across shapes to a matrix

product, without resorting to establishing point-to-point correspondences.

This is particularly useful since function transfer is one of the key applica-

tions of maps between shapes and obtaining point-to-point correspondences

is often challenging. We illustrate the performance of this idea on the task

of segmentation transfer across shapes. Here we are given a pair of shapes

27



Chapter 3. Functional Maps

Figure 3.7: Segmentation transfer using the functional map representation.
For each pair of shapes we show 3 figures: the user-provided source seg-
mentation of the first shape, the image of one of the indicator functions of
a segment using the functional map computed with our method, and the
final segmentation transfer onto the target shape. Note that point corre-
spondences were not computed at any point during this procedure.

where one of the shapes is pre-segmented and the goal is to find a com-

patible segmentation of the second shape. To achieve this task we simply

construct an indicator function for each of the segments on the source shape

and use the functional map to transfer this indicator function. Then each

point on the target map will have a set of values for each of the transferred

segments. Finally, if “hard” clustering is required, we associate with the

point the segment that produced the maximum of these values.

Figure 3.7 shows this idea applied to several shapes from the TOSCA

and SCAPE datasets. For each pair of shapes we show the image of the

the indicator function of one of the segments as well as the final “hard”

segmentation. Note that throughout this procedure no point-to-point cor-

respondences were used.

28



4
Extensions

The ideas presented in the previous chapter provide a general framework

for shape matching using the functional map representation. In particular,

Algorithm 1, mentioned in Section 3.7, is very modular and each of its parts

can be adapted in different scenarios. Below we outline two extensions of

this basic approach, which can be used in the supervised setting (i.e., when

some example correspondences are given) and in the presence of ambiguities

resulting from shape symmetries respectively.

4.1 Supervised Descriptor Learning

One of limitations of the shape matching algorithm presented in the previous

chapter is that it assumes that the functional constraints, including, e.g., the

descriptor correspondences are given as input. This means that in practice,

the user needs to specify the best descriptors by hand, and the specific

descriptor choice can have a significant impact on the resulting functional

maps. For the near-isometric shapes present in the TOSCA and SCAPE

datasets that we considered, we used the diffusion-based descriptors such as

the HKS [SOG09] and WKS [ASC11]. However, in general, finding the best

descriptors can be a tedious domain-specific task.

On the other hand, it is possible to formulate the problem of choosing the

optimal functional constraints, including descriptor preservation constraints

as a supervised learning problem. Namely, suppose we are given some ex-

ample shapes with known (functional, not necessarily point-to-point) cor-

respondences. Then, we can find the constraints such that the resulting

functional maps would be as close as possible to the given ground-truth

ones, and ultimately use those constraints on new test data.

In [COC14] we presented an approach that for supervised descriptor learn-

ing, specifically adapted to the functional maps framework. In particular, it

uses the fact that given the functional constraints, the resulting optimization

29



Chapter 4. Extensions

Figure 4.1: Left: quantitative correspondence improvement with learning
(dashed red) and without (solid blue). Right: detected stable parts.

problem described in Algorithm 1 is simply a linear least squares system.

Thus, if we are given a set of pre-computed descriptors, and if we let D

represent a set of scalar weights associated with the descriptors, then the

optimal functional map : Copt(D) is obtained by solving a linear system of

equations. In [COC14], we proposed to find the optimal descriptor weights

by solving:

D∗ = arg min
D

∑
‖Copt(D)− Cground truth‖,

where the sum is over all the given training shapes. By exploiting the fact

that C(D) is simply the solution to a linear system, which is a consequence

of the functional map representation, we proposed an efficient method for

descriptor computing optimal descriptor weights given example correspon-

dences. The choice of the norm for comparing the functional maps turns out

to be very important, as for example Frobenius norm, penalizes the entire

functional space uniformly. Finally, after computing the optimal weights,

we were also able to extract an optimal shape parts, where the computed

maps are more reliable, and the optimal descriptors are consistently informa-

tive. Figure 4.1 shows both quantitative improvement of using the learning

procedure on a shape benchmark, and some detected stable parts.

4.2 Subspace (quotient) matching

At the same time, we have also used the functional map representation to

find correspondences between shapes in the presence of ambiguities result-

ing from shape symmetries. Shape symmetries are a common problem for

30



Chapter 4. Extensions

Figure 4.2: Correspondences obtained on the TOSCA dataset [BBK08] be-
tween a target shape (first row) and a source shape, using BIM [KLF11]
(second row), the original functional maps approach [OBCS+12] (third row),
and our semi-quotient method (last row). Corresponding points are indi-
cated through the same color.

isometric shape matching methods, they result in multiple equally good so-

lutions for any method based on purely intrinsic quantities such as geodesic

distances or diffusion-based descriptors. This can be a particularly signifi-

cant issue when solving optimization problems, as the presence of multiple

optima can lead to instabilities in the final solution [OHG11].

In [OMPG13] we proposed a method specifically meant to deal with shape

correspondences in the presence of symmetry ambiguities by exploiting the

fact that the space of functions can easily be factorised into symmetric and

non-symmetric ones, without explicitly decomposing the shape geometry.

Namely, we proposed a method such that allows to find a functional corre-

spondence between two shapes, when one of them is known to be symmetric

with a given symmetry self-map. By decomposing the space of functions

into appropriate subspaces, we were able to obtain a method that results in

a stable shape matching optimisation problem while being able output mul-

tiple direct and symmetric correspondences. Figure 4.2 shows an example

of correspondences obtained using this method.

31



Part II

Tangent Vector Fields as

Functional Operators

32



5
Overview

In this part, we show that the operator-based approach for representing

maps, described in the previous part, can also be successfully applied to

representing and manipulating tangent vector fields on surfaces. In par-

ticular, unlike the commonly used representations of a vector field as an

assignment of vectors to the faces of the mesh, or as real values on edges, we

argue that, similarly to mappings, vector fields can also be naturally viewed

as linear operators whose domain and range are functions defined on the

mesh. Although this point of view is common in differential geometry it

has so far not been adopted in geometry processing applications. We recall

the theoretical properties of vector fields represented as operators, and show

that composition of vector fields with other functional operators is natural

in this setup. This leads to the characterization of vector field properties

through commutativity with other operators such as the Laplace-Beltrami

and symmetry operators, as well as to a straightforward definition of differ-

ential properties such as the Lie derivative. Finally, we demonstrate a range

of applications, such as Killing vector field design, symmetric vector field

estimation and joint design on multiple surfaces.

The material in this part is based on the article:

• “An operator approach to tangent vector field processing,” by O. Azen-

cot, M. Ben-Chen, F. Chazal and M. O. In Proc. SGP, 2013.

While the extensions mentioned at the end are based on the articles:

• “Continuous Matching via Vector Field Flow,” by E. Corman, M. O.,

and A. Chambolle. In Proc. SGP, 2015.

• “Discrete Derivatives of Vector Fields on Surfaces – An Operator Ap-

proach,” by O. Azencot, M. O., F. Chazal, and M. Ben-Chen. In

Transactions on Graphics (TOG), 2015.

33



6
Vector Fields as Operators

6.1 Introduction

Manipulating and designing tangent vector fields on discrete domains is

a fundamental operation in areas as diverse as dynamical systems, finite

elements and geometry processing. The first question that needs to be ad-

dressed before designing a vector field processing toolbox, is how will the

vector fields be represented in the discrete setting? In this chapter we pro-

pose a representation, which is inspired by the point of view of vector fields

in differential geometry as operators or derivations.

In the continuous setting, there are a few common ways of defining a

tangent vector field on a surface. The first, is to consider a smooth assign-

ment of a vector in the tangent space at each point on the surface. This

is, perhaps, the most intuitive way to extend the definition of vector fields

from the Euclidean space to manifolds. However, it comes at a price, since

on a curved surface one must keep track of the relation between the tangent

spaces at different points. A natural discretization corresponding to this

point of view (used e.g. in [PP03]) is to assign a single Euclidean vector to

each simplex of a polygonal mesh (either a vertex or a face), and to extend

them through interpolation. While this representation is clearly useful in

many applications, the non-trivial relationships between the tangent spaces

complicate tasks such as vector field design and manipulation.

An alternative approach in the continuous case, is to work with differential

forms (see e.g. [Mor01]) which are linear operators taking tangent vector

fields to scalar functions. In the discrete setting this point of view leads to

the famous Discrete Exterior Calculus [Hir03, FSDH07], where discrete 1-

forms are represented as real-valued functions defined over the edges of the

mesh. While this approach is coordinate-free (as no basis for the tangent

space needs to be defined), and has many advantages over the previous

34



Chapter 6. Vector Fields as Operators

method, there are still some operations which are natural in the continuous

setting, and not easily representable in DEC. For example, the flow of a

tangent vector field is a one parameter set of self-maps and various vector

field properties can be defined by composition with its flow, an operation

which is somewhat challenging to perform using DEC.

Finally, another point of view of tangent vector fields in the continuous

case is to consider their action on scalar functions. Namely, for a given

vector field, its covariant derivative is an operator that associates to any

smooth function f on the smooth surface another function which equals the

derivative of f in the direction given by the vector field. It is well known that

a vector field can be recovered from its covariant derivative operator, and

thus any vector field can be uniquely represented as a functional operator.

We will refer to these operators as functional vector fields (FVFs). Note,

that while this point of view is classical in differential geometry, it has so

far received limited attention in geometry processing.

In this chapter, we argue that the operator point of view yields a useful

coordinate-free representation of vector fields on discrete surfaces that is

complementary to existing representations and that can facilitate a number

of novel applications. For example, we show that constructing a Killing

vector field [Pet97] on a surface can be done by simply finding a functional

vector field that commutes with the Laplace-Beltrami operator. Further-

more, we show that it is possible to transport vector fields across surfaces,

find symmetric vector fields and even compute the flow of a vector field

easily by employing the natural relationship between FVFs and functional

maps described in the previous part. Finally, the Lie derivative of two vec-

tor fields is given by the commutator of the two respective operators, and

as a result the covariant derivative of a tangent vector field with respect to

another can be computed through the Koszul formula [Pet97].

To employ this representation in practice, we show that for a suitable

choice of basis, a functional vector field can be represented as a (possibly

infinite) matrix. As not all such matrices represent vector fields, we show

how to parameterize the space of vector fields using a basis for the operators.

With these tools in hand, we propose a Finite Element-based discretization

for FVFs, and demonstrate its consistency and empirical convergence. Fi-

nally, we apply our framework to various vector field processing tasks in

vector field design and analysis, which were challenging so far.

35



Chapter 6. Vector Fields as Operators

6.1.1 Related Work

The body of literature devoted to vector fields in graphics, visualization and

geometry processing is vast and a full overview is beyond our scope. Thus,

we will focus on the representation and discretization of vector fields, as

these aspects of vector field processing are most related to our work.

One approach to discretization (e.g. [PP03, TLHD03]) is to use piecewise

constant vector fields, where vectors are defined per face and represented

in the standard basis in R3. This approach is simple and allows to define

discrete versions of standard operators such as div and curl, which are con-

sistent with their continuous counterparts (e.g. one can define a discrete

Hodge decomposition [PP03]). However, since the representation is based

on coordinate frames, it makes vector field design challenging as the relation-

ship between tangent spaces is non-trivial, leading to difficult optimization

problems.

An alternative discretization of vector fields was suggested as part of the

formalism of Discrete Exterior Calculus (DEC) [Hir03], where vector fields

are identified with discrete 1-forms, represented as a single scalar per edge.

This approach is inherently coordinate-free, allowing to formulate vector

field design as a linear system [FSDH07]. Unfortunately, computing the

Lie derivative of vector fields remains a complex task using DEC (as shown

in [MMP+11]).

Vector field design and processing applications are also tightly connected

to the analysis of rotationally symmetric (RoSy) fields, as described in

e.g. [PZ07, RVAL09, CDS10]. In the latter work, for example, a vector field

(or a symmetric direction field) is represented using an angle per edge (an

angle-valued dual 1-form), which represents how the vector changes between

neighboring triangles. While these approaches are also coordinate-free and

lead to linear optimization problems for direction field design, it is not clear

how vector field valued operators can be represented in such a setup.

We argue that in addition to the existing discretization methods, it is often

useful to represent vector fields through their covariant derivatives as linear

functional operators. This representation is coordinate-free and, in addition,

elucidates the intimate connection between vector fields and self maps of the

surface, allowing us to extend the basic vector field processing toolbox to

computational tasks which are challenging using existing discretization tools.

Note that the operator representation of vector fields has been used in

36



Chapter 6. Vector Fields as Operators

the context of fluid simulation by Pavlov et al. [PMT+11]. However, in

that work, the authors were primarily interested in representing divergence-

free vector fields and did not use this representation for tangent vector field

analysis and design. On the other hand, we consider general vector fields,

demonstrate how this representation can be used for vector field processing,

and show a deep connection with the functional map framework.

6.1.2 Contributions

Our main observation is that tangent vector fields can be represented in

a coordinate-free way as functional operators. While this view is classical

in differential geometry [Mor01], it has so far received limited attention in

geometry processing. Using this perspective we:

• Show how functional vector fields can be naturally composed with

other operators, and thus relate vector fields to functional maps and

the Laplace-Beltrami operator (Section 6.2) among others.

• Provide a novel coordinate-free discretization of tangent vector fields

(Section 6.4).

• Describe various applications for vector field processing including Killing

vector field design, design of symmetric vector fields and joint vector

field design on multiple shapes, which are all easily solvable as linear

systems in our framework (Section 6.5).

6.2 Vector Fields as Operators

In this section we define the coordinate-free view of vector fields as abstract

derivations of functions in the continuous setting. This point of view is well-

known in differential geometry (see e.g. [Mor01] for an excellent reference).

Thus, we only recall the standard definition and its main properties.

6.2.1 The Covariant Derivative of Functions

We first assume that we are given a compact smooth Riemannian manifold

M and a tangent vector field V , which can be thought of as a smooth

assignment of a tangent vector V (p) to each point p ∈ M . The vector field

defines a one-parameter family of maps, Φt
V : M → M for t ∈ R, called

37



Chapter 6. Vector Fields as Operators

Figure 6.1: Given a vector field V (left) and a function f (center left), the
inner product of ∇f (center right) with V is the covariant derivative DV (f)
(right). For the marked point, for example, V is orthogonal to ∇f , yielding
0 for DV (f). Vector fields are visualized by color coding their norm, and
showing a few flow lines for a fixed time t.

the flow of V . The flow is formally defined as the unique solution to the

differential equation:

d

dt
Φt
V (p) = V (Φt

V (p)), Φ0
V (p) = p. (6.1)

Then, for a given function f ∈ C∞(M), the covariant derivative DV (f)

of f with respect to V is a function g, which intuitively measures the change

in f with respect to the flow under V . Formally,

g(p) = DV (f)(p) = lim
t→0

f(Φt
V (p))− f(p)

t
.

A classical result in Riemannian geometry (See [Mor01], p. 148) is that

the covariant derivative can also be computed as:

DV (f)(p) = g(p) = 〈(∇f)(p), V (p)〉p , (6.2)

where 〈, 〉p denotes the inner product in the tangent space of p, and ∇f is

the gradient of f (see Figure 6.1).

6.2.2 The Covariant Derivative as a Functional Operator

We stress that DV is best viewed as an operator, which maps smooth func-

tions on M to smooth functions on M . Moreover, one can show that DV

encodes V so that if V1 and V2 are vector fields such that DV1f = DV2f for

any f ∈ C∞(M), then V1 = V2 (see [Mor01], p. 38). Said differently, there

is no loss of information when moving from V to DV .

The covariant derivative (viewed as a functional operator, i.e. an FVF)

satisfies the following two key properties:

Linearity:

38



Chapter 6. Vector Fields as Operators

D(αf + βg) = αD(f) + βD(g), (6.3)

and Leibnitz (product) rule:

D(fg) = fD(g) + gD(f). (6.4)

Conversely, a functional operator D corresponds to a vector field, if and only

if it satisfies (6.3) and (6.4) (see [Spi99] p. 79).

Why are these the necessary properties for operators that represent vector

fields? Intuitively, this is because vector fields can be thought of as first

order directional derivatives, which have two essential properties. First,

that constant functions are mapped to the zero function. And second, that

DV (f) depends on f only to first order.

One of the advantages of considering vector fields as abstract derivations

is that this point of view can be generalized to settings where differential

quantities are not well-defined. For example, on a discrete surface there is no

well-defined normal direction at vertices and edges. By working with purely

algebraic constructs, such as linear operators, we can define differentiation

without requiring the concept of a limit, which is useful when the underlying

surface is not continuous and such a limit does not exist. Moreover, as we

will see, the operator point of view makes it easier to manipulate vector

fields and relate them to other functional operators.

6.2.3 Properties

While the operator point of view is equivalent to the standard notion of a

vector field as a smooth assignment of tangent vectors, certain operations

are more natural in this representation. Below we list such operations, which

we will use in our applications in Section 6.5. For the proofs of all lemmas,

please see [ABCCO13].

Operator composition. By using the operator point of view of vector

fields, it becomes easy to define their composition both with other vector

fields and other more general functional operators. Unfortunately, given

two vector fields DV1 and DV2 , the operator DV1 ◦DV2 does not necessarily

correspond to a vector field. However, one can modify this operator to

obtain a fundamental notion:

39



Chapter 6. Vector Fields as Operators

Figure 6.2: Two orthogonal vector fields on the torus V1, V2, whose Lie
derivative is 0. Modifying the norm of V2 using a function s yields a Lie
derivative which is parallel to V2.

Lie derivative of a vector field. Given two vector fields V1 and V2,

the Lie derivative (or Lie bracket) of V2 with respect to V1 is a vector field

V3 defined as:

LV1(V2) = [V1, V2] = DV3 = DV1 ◦DV2 −DV2 ◦DV1 . (6.5)

It is easy to see that DV3 thus defined is both linear and satisfies the product

rule. Hence, DV3 corresponds to a unique vector field V3. Intuitively, the

Lie derivative captures the commutativity of the flows of V1 and V2. In

particular, the Lie derivative is zero if and only if the flows defined by V1

and V2 commute (see [Spi99], p.157):

Φ−sV2
◦ Φ−tV1

◦ Φs
V2
◦ Φt

V1
= Id ∀s, t ∈ R (6.6)

Figure 6.2 illustrates the computation of the Lie derivative on a torus. We

consider two vector fields V1 and V2 whose flows commute. The average norm

of [V1, V2] computed using the discrete operators we describe in Section 6.4

is on the order of 1e-8, close to 0 as expected. In general, if [V1, V2] = 0,

it can be shown that for any scalar function s : M → R, [V1, sV2] must be

parallel to V2. In Figure 6.2, we show a scaling function s, and the computed

vector field V3 = [V1, sV2], which is parallel to V2, as expected.

Composition with other operators. Of course, it is possible to

consider the composition of the FVF operator DV with other functional op-

erators. Interestingly, the commutativity of DV with a differential operator

D is closely related to the commutativity of its flow with D.

Lemma 6.2.1. Let T tF , t ∈ R be the functional operator representations of

the flow diffeomorphisms Φt
V : M →M of V , defined by T tF (f) = f ◦Φt

V for

40



Chapter 6. Vector Fields as Operators

Figure 6.3: Using commutativity with L, we compute the KVFs on the
sphere (V1, V2, V3). Alternatively, we compute V4 = [V1, V2], note the simi-
larity of V3 and V4.

any function f ∈ C∞(M). If D is a linear partial differential operator then

DV ◦D = D ◦DV if and only if for any t ∈ R, T tF ◦D = D ◦ T tF .

For example, on a Riemannian manifold, we can consider composition

with the Laplace-Beltrami operator L. The commutativity of DV with L is

then closely related to the metric distortion imposed by the flow of V . In

particular, recall that a vector field is called a Killing vector field (KVF) if

Φt
V is an isometry for all t (see [Pet97], Chapter 7). Then:

Lemma 6.2.2. A vector field V is a Killing vector field if and only if DV ◦
L = L ◦DV .

From this lemma, it is easy to see that KVFs form a group under the

Lie derivative. Indeed, the following lemma, which follows directly from the

definition of the Lie derivative, is useful in general:

Lemma 6.2.3. Given two vector fields DV1 and DV2 that both commute with

some operator D, the Lie derivative LV1(V2) will also commute with D.

Figure 6.3 demonstrates these properties on the sphere. On the left, we

show V1, V2, V3, the three KVFs of the sphere, computed using Lemma 6.2.2

by constructing a linear system (as explained in Section 6.5). On the right,

we show V4 = [V1, V2], which was computed as the Lie bracket of the first

two KVFs. Note the similarity between V3 and V4. We will use these results

for designing approximate KVFs in Section 6.5.

Composition with mappings. In many settings we are also inter-

ested in the relation between vector fields on multiple surfaces related by

41



Chapter 6. Vector Fields as Operators

Figure 6.4: Given a vector field V1 on M and a map T : M → N , we
generate a vector field V2 on N using Lemma 6.2.4. Compare with directly
transporting V1 using the differential of the map, yielding V3. Note the
ringing artifacts in V3.

mappings. In particular, given a vector field V1 on surface M and a diffeo-

morphism T : M → N , one can define the vector field V2 on surface N via

the push forward: V2(q) = dT (V1(T−1(q))). Note that in the discrete case,

it is often difficult to compute the differential dT of a map T between shapes

with different discretizations. At the same time, one can equivalently define

the vector field V2 using the operator approach, without relying on dT , by

using the functional representation of the map T .

As mentioned in Part I (Chapter 3), the functional representation TF of

a map T is a linear operator on the space of functions, taking functions on

N to functions on M defined by TF (g) = g ◦T for any function g ∈ C∞(N).

This means that the functional vector field DV2 , and thus V2 itself can be

obtained by simple composition of three linear functional operators without

the need to estimate the differential dT , using:

Lemma 6.2.4. DV2 = (TF )−1 ◦DV1 ◦ TF .

Figure 6.4 illustrates vector field transportation using this approach (vec-

tor fields are visualized using [PZ11]). Given V1 on M , and a map T :

M → N , we generate V2 on N using Lemma 6.2.4. V3 is computed using

the differential of the map, given by the affine map between corresponding

triangles. Note that V3 tends to be noisy, due to the locality of the trans-

port procedure, as opposed to the smoother V2. Furthermore, this approach

is applicable to shapes with different connectivity, where computing dT is

challenging. In Section 6.5 we use a similar approach to design vector fields

which are consistent with the map T : M → N .

42



Chapter 6. Vector Fields as Operators

Vector field flow. The FVF DV representing a vector field is also

closely related to the functional representation of the flow Φt
V . In particular:

Lemma 6.2.5. Let T t = Φt
V be the self-map associated with the flow of V

at time t. Then if T tF is the functional representation of T t, for any real

analytic function f (see [DFN92], p. 210):

T tF f = exp (t DV )f =
∞∑
k=0

(tDV )kf

k!
.

This lemma is particularly useful since it allows to avoid the potentially

costly solution of the system of differential equations (6.1) and directly es-

timate the functional representation of the map Φt
V through operator expo-

nentiation. Note that DV is a moderately sized matrix when represented in

a basis, and therefore its exponent can be computed efficiently. Figure 6.5

shows an example of function flow using this method.

Covariant derivative of a tangent vector field. Some PDEs can

be described using the covariant derivative [Mor01] of a vector field V1 with

respect to another vector field V2, denoted ∇V2V1. For planar vector fields,

for example, ∇V2V1 = J(V1)V2, where J(V1) is the Jacobian matrix of V1.

On a surface, however, this representation requires a basis for the tangent

space at every point, and a suitable connection that allows to transport a

vector V (p) to a neighboring point q, which makes ∇V2V1 elusive to compute

in a coordinate-free way. Fortunately, there is an intimate connection be-

tween the Lie and covariant derivatives of vector fields, through the Koszul

formula, ([Pet97], p. 25):

2g(∇V1V2, Z) = DV1(g(V2, Z))− g(V1, [V2, Z])

+DV2(g(V1, Z))− g(V2, [V1, Z])

−DZ(g(V1, V2)) + g(Z, [V1, V2]).

(6.7)

Here, Z is an arbitrary vector field, g(·, ·) = 〈·, ·〉p is the inner product

in the tangent space of p, and [·, ·] is the Lie bracket (Eq. 6.5). Hence,

given an operator representation of DV1 and DV2 , we can use Equation (6.7)

to compute ∇V1V2. We leave further investigation of this direction, and

possible applications for future work.

43



Chapter 6. Vector Fields as Operators

Figure 6.5: Applying the flow of a vector field (left) to a function (center
left) using Lemma 6.2.5. (center right, right) The function after the flow,
for two sample t values.

6.3 Representation in a Basis

The properties mentioned above suggest that representing and analyzing

tangent vector fields through their functional representation can enable a

number of applications which are challenging using standard methods. Our

goal, therefore, will be to represent this operator such that it can be easily

analyzed and manipulated in practice.

6.3.1 Basis for the Function Space

As mentioned in Section 6.2.2, an FVF is a linear operator acting on smooth

functions defined on the manifold. In practice, we will assume that the

functional space of interest can be endowed with a (possibly infinite) basis,

so that any function can be represented as a linear combination of some

basis functions {φi}. Then, for any given function f =
∑

i aiφi, we have that

g = DV (f) = DV (
∑

i aiφi) =
∑

i aiDV (φi). Since DV (φi) is also a function,

it can be represented in the basis as DV (φi) =
∑

j Djiφj . Therefore, g =∑
j(
∑

iDjiai)φj =
∑

j bjφj . In other words, if one thinks of the coefficients

ai, bi as vectors a,b and D as a matrix, then the transformation between

the basis representations of f and g = DV (f) is given by: b = Da.

When the basis functions φi are orthonormal with respect to the standard

functional inner product on M , i.e.
∫
M φiφjdµ = 1 if i = j and 0 otherwise,

then the (j, i)th element Dji of the FVF corresponding to V is given by:

Dji =

∫
M
φjDV (φi)dµ(p) =

∫
M
φj(p) 〈V (p),∇φi〉p dµ(p), (6.8)

where 〈, 〉p denotes the inner product in the tangent space of the point p,

and dµ(p) represents the volume measure at p.

44



Chapter 6. Vector Fields as Operators

Figure 6.6: Prescribing directional constraints (left) or singularities (right).

The Laplace-Beltrami basis. A useful basis for the space of smooth

functions on a compact manifold, which we will often use in practice, is the

basis given by the eigenfunctions of the Laplace-Beltrami operator (note

that on a compact manifold the space L2(M) is strictly larger than the

space of smooth functions). Since each eigenfunction of the Laplace-Beltrami

operator is smooth, Equation (6.8) is well defined. One advantage of this

basis is that the basis functions are ordered and can be attributed a notion

of scale, given by the corresponding eigenvalue. This has been exploited in a

number of scenarios including the work on functional maps in Part I, where

a mapping between two shapes is compactly encoded using a sub-matrix

of a possibly infinite functional map matrix. This choice of basis yields a

compact representation of the FVF operator as an Nf ×Nf matrix, where

Nf is the number of basis functions we use.

6.3.2 Parameterization with Basis Operators

As mentioned in Section 6.2.2, the space of linear functional operators is

strictly larger than the space of vector fields. Therefore, in order to work

with this representation in practice, it is useful to have a parametrization of

the space of FVFs, which is easy to manipulate.

One possible such parameterization, is to consider a basis for the space of

tangent vector fields ψi, and to represent an operator DV as a linear combi-

nation of the functional vector field operators Dψi
. In our work, we consider

the eigenfunctions of the 1-form Laplace-de Rham operator to generate a

basis for the 1-forms on a surface, and use these as a basis for the tangent

45



Chapter 6. Vector Fields as Operators

Figure 6.7: Given a vector field (left), we reconstruct it with growing accu-
racy by increasing the number of basis operators ND (right). Note that the
index 2 singularity is accurately reconstructed given enough basis operators.

vectors, by duality [Mor01].

Given such basis operators Dψi
, the FVF operator DV that represents a

vector field V =
∑

i aiψi is given by: DV =
∑

i aiDψi
. Note, that this basis

is also ordered, so that smoother vector fields can be represented using fewer

basis operators. In practice, we truncate the basis, and limit the number of

basis operators to a fixed value ND.

With this parameterization, it is straightforward to use the properties

we mentioned in Section 6.2 to design a vector field that has various de-

sirable characteristics, simply by solving a linear system for the coefficients

ai. Figure 6.6 shows a vector field designed by posing a small number of

directional constraints (one direction for the teddy (left) and 4 zero valued

vectors for the kitten (right)), and solving for the coefficients as explained

in Section 6.5.

Figure 6.7 demonstrates the effect of using a varying number of basis

operators. Given a direction field (left), we project it on a growing number

of basis operators and show the reconstruction error as a function of ND

(right). We additionally show the reconstructed vector field, for a few choices

of ND. Note, that although the direction field is smooth, due to the jump

from unit length norm to zero norm at the singular point, it is difficult to

reconstruct this vector field exactly. However, using a growing number of

basis operators we can approximate better this discontinuity in scale.

46



Chapter 6. Vector Fields as Operators

6.4 Discretization

So far we have described the properties of tangent vector fields as functional

operators in the continuous case. In this section we will focus on the dis-

cretization of these concepts to surfaces which are represented as triangle

meshes. We propose a finite-element based discretization, and discuss its

consistency and experimental convergence properties.

6.4.1 Representation

We will first address the following problem: given a triangle mesh M =

(X,F,N), where X are the vertices, F the faces and N the normals to

the faces, and a piecewise constant tangent vector field V = {vr ∈ R3|r ∈
F, vr ⊥ Nr}, how do we represent the functional vector field DV ?

The answer is in fact straightforward, when we consider the representation

of DV in the functional basis given by the standard hat functions. On a

triangle mesh we can represent functions in a piecewise linear basis, namely

f(p) =
∑|X|

j=1 bjγj(p), where γj are the standard hat functions (valued 1

at vertex i and 0 at all other vertices), and bj ∈ R are the coefficients.

Now, given the function f(p) =
∑

j bjγj(p), and a piecewise constant vector

field V , we wish to compute g = DV (f). We set g(p) =
∑

j ajγj(p), and

solve (6.2) in the weak sense, as is standard in Finite Element Analysis

(see [AFW06] for a complete discussion of this approach):∫
M
γigdµ =

∫
M
γiDV (f)dµ, ∀i.

Plugging in the expressions for f , g and DV we get ∀i:∑
j

aj

∫
M
γiγjdµ =

∑
j

bj

∫
M
γi 〈∇γj , V 〉 dµ. (6.9)

The integrands in (6.9) vanish everywhere, except on the set of triangles

Rij ⊂ F , for which both γi and γj are non-zero. For i = j, these are the

triangles neighboring the vertex i. For i 6= j, we have that (i, j) must be an

edge, and Rij contains only the two triangles which share that edge.

This leads to
∑

j ajBij =
∑

j bjSij , where:

Bij =
∑
tr∈Rij

∫
tr

γiγjdµ, Sij =
∑
tr∈Rij

∫
tr

γi 〈∇γj , V 〉 dµ.

Computing the elements Bij yields the standard mass matrix used in the

solution of Laplacian systems, whereas Sij is given by (see the inset figure

47



Chapter 6. Vector Fields as Operators

for the notations):

Sij =
1

6

(〈
V1, e

⊥
1

〉
+
〈
V2, e

⊥
2

〉)

Sii = −
∑
j∈N(i)

Sij .

i j

e1

„

e2

„

V1

V2

Here, r1 and r2 are the two faces that share the edge (i, j), V1 is the

value of V on the face r1, e⊥1 is the rotation by π/2 of the edge opposite

to the vertex j in the face r1 (similarly for V2 and e⊥2 ), and N(i) are the

neighboring vertices of vertex i. See [ABCCO13] for the derivation.

We further replace B with a diagonal lumped mass matrix W of the

Voronoi areas wi of the vertices [BKP+10], and get:

a = D̂V b, D̂V = W−1S. (6.10)

Note, that the size of D̂V is |X|×|X|, but it is sparse, as only the diagonal

and entries of adjacent vertices are non-zero.

It is sometimes useful to decompose D̂V as a product of two operators:

D̂V = P|X|×|F |(D̂
F
V )|F |×|X|, where P is independent of V and depends only

on the mesh. We take:

(P )ir =
1

3wi
Ar, (D̂F

V )ri = 〈∇γi, V 〉r , (6.11)

where Ar is the area of the triangle tr. In fact, the operator D̂F
V is

simply the smooth operator DV per triangle, where V is fixed. Therefore,

it preserves most of the properties of its smooth counterpart. However, to

get an operator which commutes with other operators, we need to apply

P , averaging values from faces to vertices. This introduces a discretization

error into our formulation, due to the discontinuity of the vector field near

the vertices.

Alternatively, we can use the first Nf eigenvectors φ̂i of the discrete

Laplace-Beltrami operator as the basis for the function space, and then

DV will be represented using an Nf ×Nf matrix, which we will denote by

D̂LB
V . We compute D̂LB

V by using a change of basis:

D̂LB
V = B+D̂VB, (6.12)

where B is a matrix whose columns are φ̂i and B+ is its pseudo-inverse.

48



Chapter 6. Vector Fields as Operators

This representation introduces some additional error, due to the truncation

of the basis, and there exists a trade-off between the complexity of the

representation (in terms of Nf ) and the amount of detail the functions we

work with can represent.

6.4.2 Properties

It is interesting to investigate which properties of DV are preserved from the

smooth case, and which are not but converge under refinement of the mesh.

Constant functions. We have that DV (c) = 0, for any constant

function c. It is easy to see this property is preserved in the discrete case,

since the rows of D̂V sum to zero, hence the constant functions are in its

kernel.

Product rule. The continuous DV fulfills two defining properties:

linearity (Equation (6.3)) and the Leibnitz product rule (Equation (6.4)).

Since D̂V is a matrix, linearity is clearly satisfied. However, as we work in

a limited subspace of functions, the product rule is no longer valid: given

two PL functions f, g, their pointwise product fg is no longer PL, and

therefore we cannot apply D̂V to it. However, we can show empirically that

when applying increasingly finer discretizations of DV to increasingly finer

discretizations of continuous functions f, g, the product rule error decreases.

Let fh, gh, be the two random smooth piecewise lin-

ear functions defined on a mesh with h vertices, and

take V to be a smooth tangential vector field. Now,

for every h, compute the error eh = DV (fhgh) −
(ghDV (fh) + fhDV (gh)), where the multiplication is

done vertex-wise. The inset figure shows the graph of

‖eh‖2/h as a function of h, in loglog scale, for a few

choices of models. Note that the graph is linear, implying exponential con-

vergence under refinement.

Uniqueness. The correspondence between a vector field V and its FVF

operator DV is one-to-one and onto in the continuous case, implying that

given an operator DV we can uniquely reconstruct the vector field V . This

property, unfortunately, may not hold in the discrete case. We do, however

have the following weaker result:

49



Chapter 6. Vector Fields as Operators

Figure 6.8: Geodesic distances between pairs of starting points are mea-
sured before and after the flow. Comparing the normalized average error for
the models shown yields (left to right): 0.2,0.96, 2.47 for our method, and
0.23,1.15, 4.5 for [BCBSG10] (units are average edge length).

Lemma 6.4.1. Let M = (X,F,N) and let V1, V2 be two piecewise constant

vector fields on M . Then: D̂F
V1

= D̂F
V2

if and only if V1 = V2.

In practice, given an operator D̂V we reconstruct the corresponding vector

field V by projecting on the operator basis, as described in Section 6.3.2.

Metric invariance. The continuous functional vector field operator DV

commutes with the pushforward under a map. Specifically, given a bijective

diffeomorphism T : M → N , a vector field V1 on M and a function f : M →
R, we have that DV1(f)(p) = DV2(f ◦ T−1)(T (p)), where V2 = dT (V1(p)),

and dT is the differential of T . As a consequence, DV does not depend on

the embedding of the shape M .

As we do not have the uniqueness property, the discrete metric invariance

property is also limited to the D̂F
V operator:

Lemma 6.4.2. Let M1 = (X1, F,N1) and M2 = (X2, F,N2) be two triangle

meshes with the same connectivity but different metric (i.e. different embed-

ding). Additionally, let V1 be a piecewise constant vector field on M1, then

D̂F
V1

= D̂F
V2

.

Here (V2)r = A(V1)r, where A is the linear transformation that takes

the triangle r in M1 to the corresponding triangle in M2. Note that D̂Vi is

computed using the embedding Xi.

Integration by parts. For a closed surface, we have that
∫
M f(∇div(V )) =∫

M 〈∇f, V 〉 =
∫
M DV (f), for all f : M → R. This holds exactly in the dis-

50



Chapter 6. Vector Fields as Operators

crete case, when using the standard vertex-based discrete divergence, defined

as in [PP03]:

Lemma 6.4.3. Let M = (X,F,N), V a piecewise constant vector field on

M , f =
∑

i fiγi a PL function on M , and wi the Voronoi area weights,

then:
|X|∑
i=1

wi(D̂V f)i =

|X|∑
i=1

wifi(div(V ))i.

6.5 Applications

In this section, we describe how our representation can be used to com-

pute vector fields which have various desirable properties. While some of

the suggested applications have been attempted before (e.g. designing vector

fields using direction and singularity constraints [FSDH07, CDS10], comput-

ing Killing vector fields [BCBSG10] and symmetric vector fields [PLPZ12],

among others), our framework is unique in that it allows to combine any

such constraints into a single optimization problem. In addition, we provide

a proof-of-concept for more advanced tools, such as jointly designing vector

fields on two or more surfaces.

6.5.1 Implementation Details

Given a mesh M , scalars Nf , ND and a set of desired properties for a vector

field, we propose the following algorithm:

1. Compute the first Nf eigenfunctions of the LB operator φ̂i, using the

area normalized cotangent scheme [BKP+10].

2. Compute the first ND 1-form eigenfunctions of the Laplace-de Rham

operator, and convert those to piecewise constant vector fields ψ̂i. We

used the definitions from [FSDH07] for both operations.

3. Convert ψ̂i to D̂LB
ψ̂i

using Equation (6.12).

4. Optimize simultaneously for the vector field V =
∑

i aiψ̂i and its func-

tional representation DV =
∑

i aiD̂
LB
ψ̂i

, by solving a linear system for

ai. The joint formulation allows us to stack constraints which are best

represented using the operator (e.g. commutativity constraints) to-

gether with constraints which require the vector field (e.g. prescribed

51



Chapter 6. Vector Fields as Operators

Figure 6.9: An AKVF V (left), an indicator function f (center), and its
symmetrization computed by projecting f on the kernel of DV (right).

directions at specified locations). This yields a linear system Wa = c,

which we solve in the least squares sense.

5. Output the computed vector field V =
∑

i aiψ̂i.

Throughout our experiments we used meshes in the range of 5k-200k

vertices, with Nf and ND between 50 and 300, depending on the experiment.

The computational time was dominated by the eigen-decompositions and

took a few minutes on a standard laptop.

Figures 6.2, 6.3, 6.4 and 6.6 from the previous sections were generated

using this framework. In addition, we describe a few examples of poten-

tial applications of our framework, related to the properties discussed in

Section 6.2.

6.5.2 Approximate Killing Vector Fields

Lemma 6.2.2 provides a linear constraint on the FVF operator, which guar-

antees that a given vector field is a KVF. We can use this result, and optimize

for the best KVF on a given surface, by optimizing for a set of coefficients a

such that the resulting operator DV will commute with the Laplace-Beltrami

operator, i.e. ||DV ◦ L− L ◦DV | | = 0. Here we get a homogeneous system

Wa = 0, hence the AKVF is the singular vector corresponding to the lowest

singular value.

Figure 6.8 shows a comparison of the resulting vector fields with the

results of the state-of-the-art algorithm [BCBSG10]. The comparison is

done using the same meshes, where on each mesh we pick a few vertices

and show the flow lines for a fixed time t starting from these vertices. Note,

52



Chapter 6. Vector Fields as Operators

Figure 6.10: On the human model (left and center) we show design results
with and without symmetry constraints - note the difference on the right
hand. On the spot model (right) we show symmetric and anti-symmetric
vector fields.

that we achieve similar results, but in our framework we can easily combine

the KVF constraint with other constraints such as commutativity with a

symmetry operator.

Interestingly, the spectral decomposition of the functional vector field

operator is meaningful and potentially useful in applications. Specifically,

functions are in the kernel of DV if and only if they are fixed points of

the flow Φt
V for all t (since DV f = 0 if and only if exp(tDV )f = f,∀t ).

Therefore, the kernel of an AKVF operator spans the linear subspace of

symmetric functions under the corresponding symmetry. This implies, that

given an arbitrary function f , we can symmetrize it by projecting it onto

the kernel of such an operator. Figure 6.9 shows an example of an AKVF

V , an indicator function f and its symmetrization sym(f).

6.5.3 Composition with Mappings

Given a self-map S, we design a symmetric vector field by posing a constraint

of the form ||DV ◦ S − S ◦DV | | = 0. Figure 6.10 (left and center) shows

an example of a vector field designed with directional constraints and one

designed with both directional and symmetry commutativity constraints.

Note the difference on the hand of the model, as the symmetric constraints

enforce similar behavior on both hands. Additionally, we can define an

anti-symmetric vector field, by requiring V (S(p)) = −V (p), where S is

the symmetry map. To enforce this requirement, we use the constraint

||DV ◦ S + S ◦DV | | = 0. Figure 6.10 (right) shows an example of symmetric

and anti-symmetric vector fields.

Given a collection of shapes, a desirable goal when designing vector fields

is to have different constraints on each shape, yet generate compatible vector

fields across the collection. In Figure 6.11 (right) we achieve this goal using

53



Chapter 6. Vector Fields as Operators

Figure 6.11: (left) Independent design on two shapes which are in correspon-
dence does not yield a consistent vector field, even if compatible constraints
are used. (right) Solving jointly using our framework yields consistent vec-
tor fields (note the corresponding locations of the singularities on the back
of the shape). See the text for details.

the map composition property. We are given two shapes M1 and M2 and a

functional map TF between the corresponding function spaces. In addition,

on each shape we are given a set of directional constraints c1, c2. We wish

to generate vector fields Vi on the shapes Mi, such that Vi commute with

TF , and fulfill the constraints. A natural approach would be to transfer

the constraints and solve separately for each mesh. However, as shown in

Figure 6.11 (left), there is a large difference between the resulting fields -

e.g in the locations of the singularities. Figure 6.11 (right), shows the result

when solving jointly for both shapes. Note that the singularities on the back

of the shape are consistent between the models. For evaluation, we transport

V1 to M2 and measure the angle difference between the resulting vector field

and V2. Figure 6.11 (center) shows the resulting histogram, emphasizing

that our joint design method preserves the directions better.

54



7
Extensions

As mentioned in the previous chapter, one of the particularly appealing

properties of the operator representation of vector fields is that it allows

to establish an explicit relation between vector fields and the functional

representation of their associated flows, which are simply self-maps resulting

from vector field advection. We have exploited this relation in several follow-

up works, including two mentioned below.

7.1 Continuous Matching via Vector Field Flow

One limitation of the shape matching technique presented in Chapter 1 and

in particular the method for converting functional maps to point-to-point

maps mentioned in Section 3.6.1 is that the image of each point is computed

independently and thus the resulting correspondences are not necessarily

continuous. To alleviate this issue, in [COC15] we proposed to use the

connection between the flows of vector fields and their functional represen-

tation to find an optimal continuous correspondence associated with a given

functional map C. Namely, given a functional map C and an arbitrary

continuous point-to-point correspondence Tcont a functional representation

Ccont, between a pair of shapes M and N , we find the optimal vector field

V such that:

Vopt = arg min
V

‖ΦV ◦ Ccont − C‖ = arg min
V

‖ exp(V )Ccont − C‖.

Here ΦV is the functional representation of the flow of V , and we compose

maps by simple matrix multiplication.

By solving for the optimal vector field V in the functional domain and

then performing advection in the primal (shape) domain, we are able to find

accurate correspondences, that are as continuous as the given maps Tcont.

55



Chapter 7. Extensions

7.2 Covariant Derivatives as Operators

We have also used the idea of representing vector fields as operators when

discretizing their derivatives and in particular the Levi-Civita covariant

derivative ∇UV of a vector field V with respect to another vector field U

[AOCBC15]. The covariant derivative is one of the most fundamental con-

cepts in differential geometry, and is closely related to other notions such

as parallel transport and yet it has been very challenging to find a satisfac-

tory discretization for it using classical approaches in the discrete setting,

such as Discrete Exterior Calculus. In our work [AOCBC15] we proposed

a novel discretization of the covariant derivatives of vector fields by using

the covariant derivative of functions and furthermore demostrated that by

considering the linear operators ∇U (·) and ∇(·)(V ) acting on vector fields,

for fixed U and V respectively, one can obtain an accurate discretization of

parallel transport on triangle meshes, which we have used in applications

such as fluid simulation on curved surfaces, among others.

56



Part III

Shapes and their Differences

as Operators

57



8
Overview

In this part we demonstrate that the operator-based approach presented

in the two previous parts, can also be used to develop a novel formulation

for the notion of shape differences, aimed at providing detailed information

about the location and nature of the differences or distortions between the

two shapes being compared. The difference operator, derived from a func-

tional map, that we obtain is much more informative than just a scalar

global shape similarity score, rendering it useful in a variety of applications

where more refined shape comparisons are necessary. Similarly to the other

two parts, the approach presented here is intrinsic and is based on a linear

algebraic framework, allowing the use of many common linear algebra tools

(e.g, SVD, PCA) for studying a matrix representation of the operator. Re-

markably, the formulation allows us not only to localize shape differences

on the shapes involved, but also to compare shape differences across pairs of

shapes, and to analyze the variability in entire shape collections based on the

differences between the shapes. We give a number of applications of shape

differences, including parameterizing the intrinsic variability in a shape col-

lection, exploring shape collections using local variability at different scales,

performing shape analogies, and aligning shape collections.

The material in this part is based on the article:

• “Map-Based Exploration of Intrinsic Shape Differences and Variabil-

ity,” by R. Rustamov, M. O., O. Azencot, M. Ben-Chen, F. Chazal,

and L. Guibas. In Proc. SIGGRAPH, 2013.

While the extensions mentioned at the end are based on :

• “Functional characterization of intrinsic and extrinsic geometry”, by

Etienne Corman, J. Solomon, M. Ben-Chen, L. Guibas, and M.O. In

Transactions on Graphics (to appear), 2017.

58



9
Shape Differences

9.1 Introduction and Rationale

Comparing shapes is a fundamental operation in shape analysis and ge-

ometry processing, with many applications to computer graphics, including

interactive shape design, shape search, and the organization of shape col-

lections. Most approaches to comparing shapes reduce the comparison to a

single number, a shape similarity score or distance. These distances can be

computed either by establishing correspondences between the shapes (and

therefore being able to compare the geometry at a finer scale) or by com-

puting certain global shape descriptors and then estimating a distance in

descriptor space.

In many settings, however, we may desire a more detailed understanding

of how two shapes differ that goes beyond a single similarity score. Shapes

can be complex objects and the very plethora of shape distances that have

been proposed is testimony to the fact that no single scalar metric is able

to satisfy all applications. For example, we may be interested in where two

shapes are different and in how they are different. Such finer comparisons

have long been important in other fields, such as industrial metrology to

assess the quality of manufacturing processes, or in computational anatomy,

to separate normal organ variability from disease forms for diagnostic pur-

poses. In computer graphics and geometry processing, as shape collections

are getting larger and larger with more objects in each category, these finer

and more detailed shape comparisons are becoming important – and difficult

to handle by coarse traditional techniques.

When computing maps or correspondences between shapes (including

shape parametrization) the minimization of measures of shape distortion

has long been used as a key optimization criterion. Yet once the map is

computed, the distortion information is not stored, analyzed, or compared

59



Chapter 9. Shape Differences

to that of other maps. We propose reverse this process. Starting from a map

between two shapes, we propose a novel notion of shape differences as seen

by this map, one that provides detailed information about how the shapes

differ. Thus our work leverages the recent flurry of activity in algorithms

for mapping shapes.

The main contribution of the work described in this part is to give a

rigorous formulation of the concept of a shape difference under a map and

show how such shape differences can be computed, analyzed, and compared

– thus making shape differences concrete, tangible objects that can be ma-

nipulated just like the shapes themselves can. Our approach is based on

the following insight: in classical Riemannian geometry, local distortions in-

duced by a map are expressed in terms of changes in the metric — which

essentially is equivalent to tracking the changes in inner products of tan-

gent vectors before and after these vectors are transported by the map from

the source to the target shape. In contrast, we track the changes in inner

products of real-valued functions induced by transporting these functions

from the source shape to the target shape via a functional map. Our main

observation is that all these changes can be captured by certain linear oper-

ators (matrices), which we call shape differences; remarkably, a single such

operator works simultaneously for all pairs of functions.

Our approach has several key advantages. First, we exploit the functional

map formulation, so our notion of a map can be quite general and incorporate

mapping ambiguities due to symmetry, slippage, etc. Second, the approach

is intrinsic and is not affected by the embedding of the shape in 3D. Third,

when we have point-to-point correspondences, our shape difference can be

directly related to classical local notions of geometric distortion, such as

area or conformal distortion. Additionally, under a few assumptions and

allowing for certain equivalences, the original map can be recovered from

the shape difference. Fourth, we define shape difference via a linear operator

formulation and discretize it into a matrix or vector form, giving us access

to a wealth of linear algebra tools.

Our explicit representation of shape differences facilitates a number of

challenging shape analysis tasks. For example, given two pairs of shapes, A,

B and C, D, shape differences allow us to quantify how much the change

from A to B is similar to the change from C to D, regardless of how similar

A is to C. We can do these kinds of “shape analogies” only because we

60



Chapter 9. Shape Differences

Figure 9.1: Our notion of shape differences provides a way to compare
deformations between shape pairs. This allows us to recognize similar ex-
pressions of shape A (top row) to those of shape B (bottom row), without
correspondences between A and B and without any prior learning process.

can compute the “difference among the differences” of the four shapes. For

example, consider the face shapes in Figure 9.1. While the two rows of faces

shown differ significantly, the relative changes between the undeformed and

deformed version of each are similar, which is captured by our informative

descriptors.

One of the key aspects of our shape differences is that they allow both

localizing and parameterizing the variability between a single pair or of a

collection of shapes. Thus, we can provide not only a canonical descriptor for

a difference between a pair of shapes but also use it to analyze and visualize

the source of the variability, making the interpretation of results easier and

more concrete. In addition, we can now analyze the structure of shape

collections based on relating the differences between the shapes and not the

shapes themselves. We show several examples of the power of this approach.

In particular, unlike almost all existing work, we can look at the variability

of related shapes in a collection without necessarily having explicit point-

to-point or landmark correspondences between the shapes (though we can

use these when we have them).

After discussing related work (Section 9.2), we show how to formally

define shape differences (Section 9.3) and compare them in shape collec-

tions (Section 9.4). We then discuss the discretization and computational

aspects of shape differences (Section 9.5), as well as their key properties

(Section 9.6). Finally we proceed to give a number of applications of this

notion, including parameterizing the intrinsic variability in a shape collec-

tion, exploring shape collections using local variability at different scales,

performing shape analogies, and aligning shape collections (Section 9.7).

61



Chapter 9. Shape Differences

9.2 Related Work

Shape differences and variability have been of interest in several scientific

communities over many decades. One approach, generally termed Sta-

tistical Shape Analysis, exploits the notion of Shape Space introduced by

D.G. Kendall [DM98], where a standard set of key points or landmarks is

selected on each shape and a shape is represented by its vector of land-

marks after normalizing for rotation, translation and scale. Multiple shapes

are analyzed jointly by first aligning their landmark vectors and then using

principal components analysis (PCA) to extract the main modes of shape

variation. Such learned shape variability models can also be used in seg-

menting shapes out of image or volume data (see, e.g. [CT+01]), following

the active contour paradigm [KWT88] from computer vision.

The medical research community, and especially brain anatomists, have

explored many variations along this general theme, trying to compensate for

the fact that exact landmarks may be hard to locate either algorithmically

or manually in noisy medical images (2D or 3D). Many other shape features

and shape descriptors, local and global, have been tried, including area,

volume, spherical harmonics, medial axes or skeletons, etc. (see [GSSL01,

GGSK05] among many others) — see also the 2D image analysis survey

by F.L. Bookstein [Boo96]. In these works, shape variability is effectively

modeled by descriptor variability.

Another important issue is that not all variability carries the same sig-

nificance. For example, in a population of 3D models of humans, some

models may be the same human in different poses. If our goal is to under-

stand the variability of human shapes, we must then factor out the vari-

ability due to pose variations among the subjects. Various approaches have

been tried towards this end, including PCA in a Riemannian symmetric

space [FLPJ04], multivariate tensor-based morphometry using holomorphic

forms [WZG+10], tensor ICA [VT07], the use of Laplace coordinates for

points [WSX12], and others [NSN+07]. Only recently has an approach been

proposed in these communities for comparing shapes intrinsically [LSS+10]

using a spectral L2 distance, but the approach suffers from the usual sign

ambiguities (or more generally rotations within an eigenspace) of the eigen-

functions in spectral embeddings.

In the geometry processing area there has been considerable work in

62



Chapter 9. Shape Differences

comparing shapes in an indirect way, in the setting of computing good

maps between shapes. This is especially true in the context of non-rigid

shape matching where the goal is to recover the best map according to some

quality criterion (see e.g. [BBK06, KLF11, SY11] among a myriad of oth-

ers). Perhaps the most common such criterion for a map between a pair

of shapes is preservation of pairwise quantities such as geodesic distances

[BBK06, SY11] or spectral quantities such as the heat kernel (e.g. [SH10]).

Generally, such measures of quality are both expensive to compute and

non-trivial to analyze, making the intuitive understanding of the difference

between shapes challenging. Another way of evaluating the distortion of a

map, used mostly in shape deformation and parametrization applications

(see e.g. [SMW06, BCWG09], among others), is to consider the local affine

distortion introduced by the map at every point on the shape, e.g., angu-

lar or area distortions. While such local distortion measures are efficient

to compute, they can often be too noisy to be used directly for identify-

ing problematic regions. Finally, collections on human shapes were studied

in [ACP03, ASK+05, HSS+09]. These papers either explore pose and human

shape variability separately, or they use skeleton information to facilitate

pose alignment.

Our work is also related to the large volume of research on shape similarity

metrics, either map-based or descriptor-based, whose complete survey would

be beyond our scope. Shape search using on such metrics has also been

intensely studied, but mostly focused on discriminating shapes under large-

scale variations (e.g., cars from humans). The current effort is aimed at fine

variability, which has received less attention. In a related vein, the problem

of how to map shape descriptor variability back onto something semantically

meaningful on the original shapes was addressed in [OLGM11]. We also note

that the topic of fine classification/categorization has been popular in the

computer vision community in the last few years (see, e.g., [FBW11] and

the references in the papers therein).

From our point view, all of these approaches suffer from certain draw-

backs. First of all, the notion of shape difference is not made explicit —

at best only a shape “distance” is defined. With that it is impossible to

understand precisely where the variation happens on a shape, as each shape

is treated as “atom” — typically, a point in a fixed-dimensional Euclidean

space. Furthermore, it is hard to compare differences between shapes —

63



Chapter 9. Shape Differences

to express “differences among the shape differences,” for the same reason.

Second, large amounts of information about the shapes is ignored, and this

can affect the results. For example, the connectivity of the landmarks can

be just as important as their absolute positions. Third, linear methods such

as PCA are most often used — a notable exception being [KMP07] — even

when it is not clear that a flat approximation to the shape space, either

locally or globally is indicated. Fourth, these works perform extrinsic com-

parisons between the shapes and do not focus on their intrinsic geometry

which is often what carries the true semantics of the shape. Unfortunately,

invariance to isometric deformations is much harder to incorporate than in-

variance to Euclidean transformations. Finally, unlike earlier works that

require vertex-to-vertex or consistent landmark correspondences, our use of

the functional framework allows us to compare shapes whose meshes may

be entirely different.

9.3 Shape Differences

Similarly to the functional representation of mappings and vector fields de-

scribed in Chapters 3 and 6, shape differences are linear operators (matrices

in the discrete setting) that capture the disparity between shapes M and

N under a given map (T or F below) between them. We define two types

of shape differences, one based on the area distortion and another based

on the conformal distortion, as induced by the map. In this section, we

introduce the abstract definition of shape differences, applicable both in the

continuous and discrete setting, and then show how they can be computed

in practice in Section 9.5.

9.3.1 Background and notation

Our formulation uses the functional maps framework defined in Chapter 3

to represent maps between surfaces. Namely, given two surfaces M and

N , a map T : N → M between them induces a map between functions

F : L2(M)→ L2(N), where L2(·) is the set of square integrable real-valued

functions on a surface. This functional map TF takes each function f :

M → R and maps it to g : N → R defined as g = TF (f) = f ◦ T . As

pointed out in Chapter 3, TF is a linear transformation between function

spaces and, therefore, can be represented as a matrix in the discrete setting.

64



Chapter 9. Shape Differences

It is crucial to note that functional maps are not limited to point-to-point

maps, but provide a general notion of a map that can incorporate mapping

ambiguities due to symmetry, slippage, etc. In the formulations below we

will directly make use of a linear functional map TF : L2(M) → L2(N),

regardless of whether or not it is associated with a point-to-point map.

9.3.2 Formulation

Our goal in defining the shape differences between two shapes M and N ,

given a functional map TF is to quantify some measure of distortion in-

duced by TF between L2(M) and L2(N). We compare shapes by comparing

corresponding measurements made on the function spaces of the shapes.

Following a Riemannian point of view, a measurement over a shape is de-

fined by an inner product of functions on the shape. Recall that such an

inner product h(·, ·) is a bi-linear form taking pairs of functions into real

numbers. In our work, for every surface S, we consider the following two

inner products on L2(S):

Definition 2. We define the area-based inner product as:

hSa (f, g) =

∫
S
f(x)g(x) dµ(x).

Definition 3. We define the conformal inner product as hSc (f, g) =
∫
S ∇f(x)·

∇g(x) dµ(x) on the space of differentiable functions modulo constants.

These inner products are called area-based and conformal-based because

of the following result (see [ROA+13] for a proof):

Theorem 1. Given a pair of surfaces M,N and a bijection T : N → M

with the functional representation TF , the following holds:

1. hMa (f, g) = hNa (TF (f), TF (g)), ∀f, g if and only if T is locally area

preserving.

2. hMc (f, g) = hNc (TF (f), TF (g)), ∀f, g if and only if T is conformal.

If the underlying map is not locally area preserving or conformal, the

stated equalities will not hold. It is natural to quantify the distortions

induced by the map through the failure of these equalities, perhaps by as-

signing a single number measuring the discrepancy. Of course the precise

notion of discrepancy will depend on the functions f and g chosen. The

65



Chapter 9. Shape Differences

Figure 9.2: Given a pair of shapes M and N (left column) and a functional
map F , the shape difference V is a linear operator, which for every function
f on M produces another function V (f) on M which intuitively encodes
how much f is distorted by F (center and right). Note that f1 is supported
in an area that deforms under the map, and f2 in an area that does not.

challenge is to encode all these numbers arising out of different f and g into

a single richer notion.

Our main observation is that all these discrepancies can be captured by

certain matrices (linear operators), where these matrices are not simply

tables of numbers, but can be meaningfully manipulated and compared as

matrices. These operators effectively compensate for the distortions caused

by the map TF to the measurement in question and allow us to “pull back”

the measurement hNa (TF (f), TF (g)) on N to a measurement made on M .

Having all measurements on a common space is advantageous, as we want

to be able to compare and compute differences between many measurements.

Technically, we can accomplish this measurement transportation by using

the following consequence of the classical Riesz representation theorem from

functional analysis (see the [ROA+13] for proof):

Theorem 2. Given two shapes M,N, endowed with inner products hM and

hN respectively, and a general functional map F : L2(M) → L2(N)1, there

exists a unique linear operator DhM ,hN : L2(M)→ L2(M) satisfying:

hM (f,DhM ,hN (g)) = hN (F (f), F (g)) ∀f, g.

We will refer to the operator DhM ,hN as the difference between hM and hN .

1We denote the functional map by F rather than TF to emphasize the fact that it
might not come from a pointwise map T

66



Chapter 9. Shape Differences

The linear operator D modifies g so as to exactly compensate for the

distortions introduced by the map F . It is remarkable that D is a “uni-

versal compensator” — a single such operator works simultaneously for all

functions f and g. Stated differently, D depends only on the given inner

products on M and N , and the functional map F . It is also important to

note that D is a linear self-map of the space of functions over M, (see Figure

9.2 for an illustration).

Now, we can apply this theorem to inner products hMa and hNa (resp.

hMc and hNc ) to formally quantify the difference between them. Namely, we

define the area-based shape difference as:

VM,N,F = DhMa ,hNa
(9.1)

and conformal-base shape difference as:

RM,N,F = DhMc ,hNc
(9.2)

Since the map is usually clear from the context, we will often use the abbre-

viated notation VM,N and RM,N .

We stress here that both VM,N and RM,N are not numbers but operators.

They yield numbers, once functions specifying the measurement of interest

are given. This flexibility enables a rich set of applications as we will show

in Section 9.7. Note also that two shape differences VM,N1 and VM,N2 , even

if N1 6= N2, both represent linear operators with the same domain (L2(M))

and range (L2(M)). This allows us to compare shape differences even when

they are defined using maps to different shapes (see Section 9.4), as hinted

above.

Matrix representation: After a choice of a basis, the linear operators

defined above can be made more tangible by expressing them in terms of

matrices. Indeed, when dealing with discrete shapes, the underlying func-

tion spaces are finite-dimensional vector spaces. Any inner product hM (·, ·)
can always be represented via a positive definite matrix HM such that:

hM (f, g) = f>HMg, where f and g are column vectors. Similarly, given

the shape N with an inner product hN , and a functional map F , we can

represent hN (Ff, Fg) = f>F>HNFg, for some matrix HN .

When these expressions for discrete inner products are plugged into The-

orem 2, we can obtain an explicit expression for the difference operator D

between these inner products:

D = (HM )−1F>HNF. (9.3)

67



Chapter 9. Shape Differences

Explicit formulas for both types of shape differences under various basis

choices are provided in Section 9.5.

Discussion: These particular shape difference formulations were cho-

sen for a number of reasons. First, isometric and conformal maps play

an important role in shape processing, and so it is important to capture

these exact notions. While conformal maps are directly characterized by

our framework via the requirement RM,N = I, where I is the identity map,

note that isometric maps are both area-preserving and conformal and so

can be characterized by the equalities VM,N = I and RM,N = I. These and

several more desirable properties of our shape differences will be discussed

in Section 9.6.

Second, inclusion of the map F : L2(M) → L2(N) into our formulation

allows the notion of the shape difference to change and depend on the context

of a particular application. For example, while a purely geometric notion

of shape difference can be obtained by taking the difference induced by

some type of geometrically optimal map, such a shape difference may not

be optimal for studying, say, differences in human brain shapes. In this

latter case, our framework allows use of the maps provided by a specialist

to compute a domain-specific shape difference. This is unlike, for example,

various notions of Gromov-Hausdorff distances [BBK06], which are often

defined with respect to some “optimal” map.

Finally, when working with shape collections, it is crucial to be able to

compare the shape difference between a pair of shapes to the shape difference

between another pair of shapes. We discuss this in the next section, and show

that our shape difference matrices can be rigorously compared to each other

in a variety of circumstances without falling into the fallacy of “comparing

apples to oranges.” Key to our approach is the ability to transport or

move a shape difference between two shapes to a third reference shape via

connecting maps, so as to make meaningful comparisons possible.

9.4 Differences in Shape Collections

One of the main advantages of the shape differences defined above is that

they not only encode detailed knowledge about the distortion under a given

map, but also allow distortion comparisons across pairs of shapes, defining

68



Chapter 9. Shape Differences

“differences between differences.” Here, we outline how such comparisons

can be carried out in three different scenarios. The discussion below is valid

for both kinds of shape differences; to avoid repetition we will focus on the

area-based shape differences.

The first scenario arises when for shapes M , N1, and N2, one wants to

compare the shape difference VM,N1 to VM,N2 . As mentioned earlier, both of

these shape differences are linear operators with the same domain and range

L2(M), and thus can be directly compared and even algebraically combined

if needed.

The second scenario arises when one wants to compare the shape differ-

ence VM1,N1 to VM2,N2 , where M1 6= M2, assuming that a linear functional

map G between L2(M1) and L2(M2) is known. Note that VM1,N1 and VM2,N2 ,

cannot be directly compared because they are defined over different domains

and ranges (L2(M1) and L2(M2)). In order to make the comparison possi-

ble, we need to first apply a change of basis transformation to one of the

matrices — this is where the cross map G : L2(M1) → L2(M2) enters the

picture, to allow the transportation of the difference. By applying a matrix

conjugation by G to VM2,N2 we bring it into a common basis with the other

matrix, and now the matrices VM1,N1 and G−1VM2,N2G can be compared

and algebraically combined as needed. To avoid computing the inverse of

matrix G, one can also compare matrix products GVM1,N1 and VM2,N2G.

The last, third, scenario arises when one wants to compare the shape

difference VM1,N1 to VM2,N2 , but a mapping between M1 and M2 is not

known. If we knew the map G, we would have compared after conjugating

one of the matrices by G. However, since now we do not know the map, our

comparison needs to rely on the quantities that are invariant under matrix

conjugation. It is well known that the spectrum of a matrix is such an

invariant, and therefore, for comparing the shape differences we can compare

the spectra of the matrices VM1,N1 and VM2,N2 .

In the third scenario, it is crucial that the shape difference matrices

are represented in terms of a truncated basis (e.g. low-frequency Laplace-

Beltrami eigenfunctions) spanning a subspace of smooth functions. In essence,

this adds a regularization on the unknown cross map G, forcing it to be

smooth. This is a benefit of the functional map representation, as described

in Part I above.

69



Chapter 9. Shape Differences

9.5 Computation

In this section we present explicit formulas for computing shape differences

between two triangle mesh surfaces M and N . As it is clear from formula

(Eq. 9.3), to compute the shape differences we need to have access to three

matrices: the inner product matrices HM , HN and the functional map F .

Since these matrices depend on the choice of a basis for the functional spaces

L2(M) and L2(N), we will consider three options.

Before proceeding, let us fix our discretizations. For a surface mesh S, we

discretize the area-based inner product by hSa (f, g) =
∑

x∈S f(x)g(x)AS(x)

where AS(x) is the area element (Voronoi area) associated with vertex x.

The Laplace-Beltrami operator is discretized as L = (AS)−1WS , where AS

is the diagonal matrix of area weights and WS is the stiffness matrix (e.g.

the standard cotangent weight matrix) [PP93].

Option 1: Here we use the finite element “hat function” basis for

both L2(M) and L2(N). In the indicator, hat function basis, the matrix

associated with the area-based inner products hMa and hNa are simply the

diagonal matrices of area weights at vertices, AM and AN . Using formula

(Eq. 9.3) the matrix associated with the area-based shape difference is given

by VM,N = (AM )−1F>ANF.

To derive the conformal-based shape difference, we use Stokes’ theorem∫
∇f(x) · ∇g(x) dµ(x) = −

∫
f(x)∆g(x) dµ(x), where ∆ is the Laplace-

Beltrami operator. This is valid in the discrete case (even if there is a

boundary) due to our choice of discretization. In the discrete case, this

means that hMc (f, g) = −f>AM (AM )−1WMg, and thus, the matrix associ-

ated with the conformal-based shape difference hMc is given simply by −W ,

the stiffness matrix. This implies that the conformal-based shape difference

under the functional map F is given by2: RM,N = (WM )−1F>WNF.

In a special case when the surfaces M and N have identical tessellations

conforming to the map T , the functional map F is simply the identity matrix.

Therefore, we obtain the following formulas:

VM,N = (AM )−1AN and RM,N = (WM )−1WN .

2The conformal shape difference operator is defined on L2(M) modulo constants, and
extended to the entire L2(M) by setting it to zero for constants. In the discrete setting,
the same effect is achieved by using pseudo-inverses; all inverses appearing in formulas for
R are pseudo-inverses.

70



Chapter 9. Shape Differences

These formulas shed light into the nature of our shape differences. For

example, RM,N is seen to capture the change of the conformal cotangent

Laplacian (without the area weights) and, as a result, of the angles of the

mesh.

Option 2: Here we use the orthonormal Laplace-Beltrami bases for both

L2(M) and L2(N). First note that the matrix associated with area-based

inner product is simply the identity matrix because the Laplace-Beltrami

basis is orthonormal. The matrix associated with the conformal-based inner

product on M is the diagonal matrix DM = diag(−{λMi }), where λMi is

the ith eigenvalue of the Laplacian of M ; similarly for the conformal inner

product on N . Therefore, given a functional map F :

VM,N = F>F, and RM,N = (DM )−1F>DNF. (9.4)

Option 3: Here we use the orthonormal Laplace-Beltrami basis for

L2(M), and hat basis for L2(N). The resulting formulas can be derived by

essentially combining the derivations for the two options above to yield:

VM,N = F>ANF, and RM,N = D−1
M F>WNF.

Discussion: The first option is presented here only for theoretical

reasons, to show that simple and intuitive expressions exist in cases when

the shapes are identically tessellated. However, this option is not practi-

cally useful: a) the obtained shape difference matrices are sensitive to noise

both in the meshes and the maps, b) their sizes scale with the number of

mesh vertices, and c) the computation requires the pseudo-inverse of a large

matrix.

The second option has the advantages of being generally applicable and

allows a smoothed approximation (by using a small (50-100) number of

low-frequency eigenfunctions) when dealing with imperfect meshes and/or

correspondences. The third option allows a smoothed approximation and

speeds up computations in shape collections where all of the meshes are

identically tessellated. Indeed, when computing shape differences from one

shape to all others in such a collection, the eigenfunction basis is needed

on the source mesh only. Due to basis truncation, both of the latter two

options result in small shape difference matrices, making joint analysis (e.g.

PCA in Section 9.7.1) feasible.

71



Chapter 9. Shape Differences

9.6 Properties

In this section we discuss a number of properties of shape differences: functo-

riality, informativeness, and localization and relation to point-wise measures

of distortion.

Functoriality: The shape differences behave functorially under map

inversions and compositions. To simplify the exposition let us assume that

one uses the Laplacian basis on all shapes, and so the formulas (Eq. 9.4)

apply. While we focus on the area based shape differences, similar arguments

are valid for the conformal ones.

We start with map inversion: given the maps F : L2(M) → L2(N) and

F−1 : L2(N) → L2(M) , we want the induced shape differences satisfy

VN,M = V −1
M,N . This cannot directly hold because the involved matrices

are expressed in terms of different bases. We compute VM,N = F>F and

VN,M = (F−1)>F−1; next, we need to apply matrix conjugation to the

matrix VN,M to transport it into the same basis as VM,N ; this results in

F−1VN,MF = F−1(F−1)>F−1F = F−1(F−1)>, which indeed is the inverse

of VM,N . Thus, after transporting to a common basis, VN,M = V −1
M,N holds.

As for map compositions, given the maps F1 : L2(M) → L2(N), F2 :

L2(N) → L2(K) and the composition F2F1 : L2(M) → L2(K), we want

VM,K = VM,NVN,K to hold. We compute VM,N = F>1 F1, VN,K = F>2 F2,

and VM,K = (F2F1)>F2F1. Note that only the matrix VN,K needs to be

transported to the same basis as the other matrices; this requires conjugation

by F1, and gives the matrix F−1
1 VN,KF1 = F−1

1 F>2 F2F1. Now, the sought

equality can be easily seen to hold.

The latter property can be used to speed up computations as follows. Sup-

pose that we have a collection of shapes with functional maps Fi : L2(M)→
L2(Ni), and we compute all of the shape differences VM,Ni . Now, the shape

differences between any pair of shapes Ni and Nj , after transporting to M ,

is given by VNi,Nj = V −1
M,Ni

VM,Nj .

Informativeness: We have seen in Section 9.3.2, that VM,N = I and

RM,N = I, if and only if the underlying maps are area preserving and con-

formal respectively. Combining this with functoriality properties we have:

if VM,N,F = VM,N,G then the map F−1G is area preserving (resp. conformal

for R). This means, in particular, that the shape difference matrices encode

72



Chapter 9. Shape Differences

the map up to an area preserving, or conformal self-map. In other words,

the shape difference matrices that we define are fully informative up to the

given notion of distortion.

Localization and relation to existing measures: When the func-

tional map F : L2(M)→ L2(N) is associated with a point-to-point bijection

T : N →M , we can extract local distortion information from the shape dif-

ference operators. Let ρ be a compactly supported function on Ω ⊂ M

(i.e. ρ(x) = 0 when x /∈ Ω), then VM,Nρ and RM,Nρ only depend on the

restricted map T |T−1(Ω) : T−1(Ω) → Ω. In other words, if the map T is

modified outside the region Ω, then VM,Nρ and RM,Nρ would not change.

To prove this for, say, the conformal shape differences, note that for any

f : M → R, the operator RM,N satisfies
∫
M (∇f)(∇RM,Nρ) dµM =

∫
N ∇(f ◦

T )∇(ρ ◦ T ) dµN =
∫
T−1(Ω)∇(f ◦ T )∇(ρ ◦ T ) dµN , where the latter equality

follows from ρ being supported in Ω, and by bijectivity of T , ρ ◦ T being

supported within T−1(Ω). The last expression involves T only in an integral

over the region T−1(Ω), which proves the claim.

This property means that by selecting a function ρ supported within some

ROI, we can use VM,Nρ and RM,Nρ as descriptors of distortion happening

along this region. As a result, we can make localized comparisons between

different maps such as T1 : N1 →M and T2 : N2 →M ; see Section 9.7.2 for

an application.

Additionally, the area based shape differences enjoy the following two

properties (both proved in [ROA+13]). Given a region Ω ⊂ M , and a

function ρ : M → R supported within this region, the support of VM,Nρ lies

inside Ω . Finally, by letting χ be the indicator function of Ω (i.e. χ(x) = 1 if

x ∈ Ω and 0 otherwise), we can extract from VM,N the traditional measure

of area distortion using the following formula: area(Ω)
/

area(T−1(Ω)) =

hMa (χ, χ)
/
hMa (VM,Nχ, χ) .

9.7 Applications

The shape differences provide a general framework with many potential

applications in computer graphics, computer vision, medical imaging, struc-

tural biology, and a number of other fields that require precise comparisons

between shapes. Here we explore a number of prototype applications involv-

73



Chapter 9. Shape Differences

(a)

(b)

(c)

. . .

. . .

. .
 .

. .
 .

1

57

8

64

Shapes in dataset:
numbered

left to right, top to bottom

PCA on area-based
shape differences

PCA on conformal
shape differences

Variability
localization

for area

Variability
localization

for conformal

Figure 9.3: The proposed shape differences reveal the major variability in
a collection of shapes as well as the locations (sources) of variability, useful
for visualization. Each row represents a different shape collection (left),
followed by PCA performed on area-based and conformal shape differences
(middle) and visualization of the locations of variability color coded from
red for high to blue for low variability (right).

ing collections of 3D models.

9.7.1 Intrinsic Shape Space

Shape differences can be used to explore variability in a collection of related

shapes. For this purpose it is important to obtain a common representa-

tion that captures the landscape where the models live, to determine the

“average” shape, and to visualize where variability happens directly on the

shapes. We choose to represent a collection of shapes as a collection of

shape differences from one of them, what we term the “base” shape. Since

shape differences can be transported to different shapes, the choice of the

base shape is not at all critical — it is rather like choosing an arbitrary

74



Chapter 9. Shape Differences

origin when introducing a coordinate system. We will demonstrate that, by

applying Principal Component Analysis (PCA) to these shape differences,

we can extract the types of information outlined above.

First, we vectorize the area based and conformal shape difference matri-

ces, apply PCA, and depict each shape’s coefficients along the two largest

principal component directions. As usual, the vectors determining the PCA

directions are normalized to have unit vector norm. Since we are working

with matrices, this is equivalent to the unit Frobenius norm of matrices.

Due to this normalization, the xy-coordinate ranges in the PCA plot are

commensurable both within and across plots.

Second, we obtain the visualization on the base shape of where shape

variability localizes. To this end, we convert the principal components into

matrices {Pi}; the amounts of variances explained are {σ2
i }. For a given

function f on the base shape, let ~f be its vector representation in the basis.

After normalizing ‖~f‖ = 1, it is true that ‖Pi ~f‖ is small for all i = 1, 2, ...,

then the distortion that this function undergoes is similar between all the

shapes. Note that we are not discussing the average amount of distortion,

but rather the deviation of the distortion from the average. Now, we can de-

fine an aggregate amount of this deviation over all the principal components

as ∑
i

σ2
i ‖Pi ~f‖2 =

∑
i

σ2
i
~f>P>i Pi

~f = ~f>M ~f ,

where M =
∑

i σ
2
i P
>
i Pi; here the weighting by variances allows giving more

importance to more prominent principal directions. To visualize what re-

gions vary most between different shapes (again not the regions of highest

distortion, but of highest variability), for every point p on the base shape,

we compute the variance function as var(p) = (~f>M ~f)1/2/‖~f‖ where ~f

represents the delta function centered at p. In practice we replace the delta

function by the heat kernel computed at a small value of the time parameter.

Our first dataset (first column of Figure 9.3(a)) is comprised of 64 de-

formations of the unit sphere obtained by adding two protrusions to the

unit sphere using normal displacement. The sizes of protrusions sample an

equally spaced two-dimensional grid of values.

The PCA plots for area based and conformal shape differences are shown

respectively in the second and third columns of Figure 9.3(a). These plots

uncover the grid structure of the underlying shape space. The fact that the

75



Chapter 9. Shape Differences

percent of variance explained by each PCA direction (shown in parenthesis

for each axis) nearly add up to 100%, recovers the fact that deformations

have two degrees of freedom. The percent of variance explained for both

PCA directions are almost the same, meaning that deformations in both of

the bumps have similar strength range. Since PCA centers data around the

average, we can find the average shape for this collection by looking around

the origin, which gives shapes 28, 29, 36, and 37 as the average shapes;

these are exactly the four shapes in the center of the image depicting the

collection (first column of Figure 9.3(a)). The fourth column of Figure 9.3(a)

is the visualization of variability amount (blue is small, red is large) on the

base shape for both area and conformal distortions, which are both correctly

identified.

Figure 9.3(b) depicts the results on the galloping horse sequence that was

used as the frames in a video produced by Sumner and Popović [SP04]. Both

of the PCA plots reveal the expected circular “topology” of this dataset, and

that this circle is traversed twice. The xy-coordinate range for conformal

plot is larger than that of area based PCA plot. This hints that within this

collection there is more conformal than area distortion, which is likely due

to different parts of body moving relative to each other, inducing higher

conformal distortion than area distortion at the joints. Finally, the visual-

izations of variability in the last column identify the regions of variability

correctly.

Figure 9.3(c) depicts the results on a collection of humans synthetically

generated using the tools from [HSS+09] as a black-box. This collection

Fuzzy map: each point on
one surface is taken to a

probability distribution on
the other

PCA on area-based shape
differences

PCA on conformal shape
differences

Variability
localization

for area

Variability
localization

for conformal

Figure 9.4: Given fuzzy maps between deformed spheres of Figure 9.3(a),
the shape differences correctly identify the major variability as well as the
locations of variability.

76



Chapter 9. Shape Differences

involves a combination of pose change and body shape variation. Namely,

we sample a grid of shapes with two modes of variation: 1) hips get larger

and 2) the person raises arms. Both of the PCA plots recover the two

dimensional nature of the underlying shape space. From the placement of

mesh id numbers in these plots we can see that the main PCA directions for

area based and conformal shape differences correspond to different modes of

variation: area PCA detects hips getting larger as the main PCA direction,

whereas the conformal main PCA direction corresponds to the moving arms.

This can also be seen by looking at the visualizations of variability in the

last column. Namely, we see that the area variability is maximal around the

hips, but the conformal variability is concentrated around the shoulders.

Since functional maps provide a more general notion than point-to-point

maps, our framework is applicable in such more general settings. Here, we

show an example of applying shape differences in the setting where only

fuzzy correspondences between models in the collection are available. A

fuzzy correspondence between two surfaces maps every point on the source

surface to a probability distribution on the target. The corresponding func-

tional map goes in the opposite direction, and is obtained by convolving a

function on the target surface with the probability distributions. We gener-

ated a set of such fuzzy maps between the deformed spheres of Figure 9.3(a)

by centering a Gaussian distribution at the corresponding point and adding

noise. The first image in Figure 9.4 shows an example probability distribu-

tion for a single point. Despite the noise, our shape difference framework

can correctly identify both the major variabilities present in the collection

and their locations.

9.7.2 Exploring Shape Collections

Another step in understanding and using shape collections is being able to

track variation of shapes on a finer level, similarly to [OLGM11, KLM+12].

In this subsection we adopt the shape exploration approach of Kim et al.

[KLM+12]: a user paints regions of interest on the shape, and the collection

is sorted according to the shape similarity within the user specified ROIs.

Our approach is based on the localization property of our shape differ-

ences. We pick one of the shapes in the collection as the base shape M .

For a given ROI on any of the shapes, let ~ρ be its smoothed characteristic

function expressed in terms of the function basis on the base shape. For each

77



Chapter 9. Shape Differences

ROI Output: shapes similar along ROI

Figure 9.5: Faceted browsing similar to Kim et al. [KLM+12].

shape Ni in the collection, the vectors given by VM,Ni~ρ and RM,Ni~ρ carry

information about the shape variability within this ROI. We concatenate

these vectors into one, and use it to interactively sort the shape collection

by similarity/dissimilarity along the ROI, and for operations such as defor-

mation magnification and interpolation. These experiments were run on the

SCAPE dataset [ASK+05] which contains 71 poses of the same subject.

Figure 9.5 shows two examples (separated by whitespace) of faceted ex-

ploration of human pose. In each of these examples, the first two rows show

the selected ROIs and shapes that are most similar to the given shapes along

these ROIs. In the third row, similarity along both of the ROIs is sought.

In addition to faceted browsing above, our approach allows the introduc-

tion of new exploration capabilities. First, the user may want to see shapes

that undergo several times the magnitude of deformation in N1 along the

ROI relative to the base shape M . To this end, we multiply the localized

shape differences VM,N1~ρ and RM,N1~ρ by the user specified amount, and sort

the shapes in the collection according to the proximity to these magnified

differences. Figure 9.6a shows two examples of this capability. In the first

example, the ROI containing the knee is painted on a shape with a bent

knee. Magnifying this difference with respect to the base pose, means hav-

ing the knee bent even more. The shapes retrieved by our method indeed

have the most severely bent knees in the dataset.

Another novel exploration capability is shape interpolation along an ROI.

Given an initial (N1) and final (N2) shape, together with an ROI, we com-

78



Chapter 9. Shape Differences

Rest ROI Output: magnified distortion at ROI

(a) Magnification

Initial FinalOutput: interpolating poses on ROI

(b) Interpolation

Figure 9.6: Magnification: given a rest pose (leftmost), and an input shape
(second) with an ROI, we find shapes that have 3-4 times the distortion
at ROI. Interpolation: given an initial pose (leftmost), and a final pose
(rightmost) with an ROI, we find shapes that interpolate between the initial
and final poses along the ROI.

pute the vectors VM,N1~ρ and RM,N1~ρ for the initial shape, and similarly

VM,N2~ρ and RM,N2~ρ for the final shape. Next, we produce equally spaced

sample vectors between these initial and final vectors. The shapes having

closest vectors to these sample vectors are retrieved. Figure 9.6b shows two

examples of this operation.

As a qualitative comparison to the approach of [KLM+12], note that Kim

et al. ROI exploration is based on rigidly aligning the ROIs of shapes dur-

ing the search time, whereas our approach uses intrinsic quantities and is

based on directly comparing vectors VM,Ni~ρ and RM,Ni~ρ. Additionally, sim-

ply scaling/linearly interpolating these vectors leads to exaggeration and

interpolation capabilities, which are not as straightforward to formulate ex-

trinsically.

9.7.3 Shape Analogies

One of the higher level cognitive operations central to human thought pro-

cess is constructing analogies. While very difficult to imitate, this operation

has received some attention in the image processing context and has led to

the concept of image analogies [HJO+01]. In this subsection we show that

our shape differences can be used to introduce the notion of shape analogies.

Given a pair of 3D models A and B, and another model C, our goal is to

retrieve from the collection a shape D such that D relates to C in the same

way as B relates to A. We describe an approach to this problem where “in

79



Chapter 9. Shape Differences

the same way” is interpreted as having the same or close shape differences.

Two sets of experiments will be presented, one when a map between A and

C is available, and another when such a map is not available.

We first explain how shape analogies can be obtained when a map be-

tween A and C is available. Let be G the corresponding functional map:

G : L2(A) → L2(C). We start by computing the area VA,B and confor-

mal RA,B shape differences between A and B. Next, for every shape X in

our collection, we compute the corresponding shape differences VC,X , RC,X

between C and X. Among all X, we select D as

D = arg min
X
‖VC,XG−GVA,B‖2F + ‖RC,XG−GRA,B‖2F ,

here we use the Frobenius norm. Note that to compare shape differences we

needed to carry out matrix conjugation for transporting the differences to

a common comparison ground, which in this case can be achieved without

resorting to inverses (see Section 9.4).

Figure 9.7a depicts two examples of analogies constructed using this ap-

proach on SCAPE dataset. Here, the map between A and C is known as

all of the shapes in the dataset are tessellated in the same way. In the

first example (left), as one goes from A to B, the hands get half raised.

Therefore, we expect D to differ from C by hand being half raised as well;

and indeed our approach retrieves such a pose from SCAPE. The second

example involves raising the hands fully, and again our approach succeeds

in finding such a pose from SCAPE. Note that the variety of retrieved poses

are limited by the dataset being employed.

Figure 9.7b shows a similar experiment but involving multiple analogies

based on the Cats and Lions dataset from [SP04]. Here the map between

the base cat and base lion is known, the cats are in correspondence and so

are the lions. Shape A is the base pose for the cat, and shape B is the base

pose for the lion. Then, for multiple shapes Ci (poses of the cat), we find

the analogies Di (poses of the lion). In this case, we embed the V matrices

after conjugation in a lower dimensional space using PCA, and compute the

distances in this space. Note, that we have recovered all the correct matches

between poses.

Our final set of experiments considers the case where a cross collection

map is not available. In this case, we cannot use the conjugation method

in order to bring the shape differences to the same common ground, and

therefore we need to use a descriptor of the difference which is invariant

80



Chapter 9. Shape Differences

(a) (b)

Figure 9.7: (a) Shape analogies in SCAPE: given shapes A, B, and C, we
find a shape D such that the shape difference D to C is close to the shape
difference B to A. (b) Multiple shape analogies between the cats and the
lions. We find all the analogies — recovering the relationship between the
poses of the cat and the lion.

to matrix conjugation. We chose the singular values of the V matrix as

such a descriptor. Note, that now we have considerably less information

than when a cross map is available, and therefore we need to regularize our

experiment by exploiting more of the data. Here we assume that we have to

“parallel” shape collections with corresponding shape variants. Instead of

simply fixing A,B,C and searching for the bestD such that “D is to C like B

is to A”, we find the best permutation of the shapes which simultaneously

best aligns all the shapes in one collection with their counterparts in the

other collection. Namely, given n shapes, we compute the singular values of

all the possible pairwise maps, and use that as a descriptor. We compare

this descriptor to the singular values of all the possible pairwise maps in

the other collection. To be more precise, for every one of the possible n!

permutations we can compute a score measuring the agreement between the

descriptors. This provides a ranking of the permutations, which allows us

to find all the analogies simultaneously.

Figure 9.8 shows this experiment for a subset of the shapes from the

TOSCA dataset [BBK08]. There, poses of the cat and the dog are not

marked as corresponding, and in fact there are various changes in the pose

between the cat and the dog — for example the tails are geometrically quite

different. As in the previous figure, we show the first collection, followed

by the color coded best first and second permutations. We can see that

81



Chapter 9. Shape Differences

Figure 9.8: Simultaneous analogies between all pairs in two collections (five
cats and five dogs from the TOSCA dataset), without a cross map. Note that
our best permutation (2nd row) recovers the ground truth, and the second
best permutation (3rd row) swaps between two dogs in similar poses.

the best permutation matched correctly between the poses, and the second

best permutation confused between similar shapes. This demonstrates that

the important information we recover is the relative change in pose between

the cats within themselves and the dogs within themselves, and there is no

requirement for geometric similarity between a cat and a dog.

Finally, note that Figure 9.1 shows another example of such space shape

alignment where a cross collection map is not available.

82



10
Extensions

As mentioned in the previous chapter, one of the appealing properties of

shape difference operators is that they provide a convenient way to encode

various kinds of distortion induced by a functional map between a pair or

a collection of shapes. Moreover, it is possible to show that in the case of

smooth surfaces, the shape difference operators fully encode the distortion.

I.e., a map is an intrinsic isometry if and only if both the area-based and

conformal shape difference operators are identity.

One question that can arrise is to see whether given a shape difference

operator it is possible to synthesize or deform a shape so that the induced

shape difference is close to a given one. A related question is to see whether

the difference operators fully encode the distortion in the discrete setting of

triangle meshes.

In [CSBC+17] we proposed an extension of the material presented in this

chapter that demonstrates that under mild genericity conditions shape dif-

ference operators enjoy the same informativeness properties in the discrete

setting as they do in the continuous one, and moreover, in the presence

of full information (i.e., without basis reduction), it is possible to intrinsic

metric structure (that is, the edge lengths of the triangle mesh) from the

shape difference operators by solving two linear systems of equations. We

also showed that it is possible to encode extrinsic, or embedding-dependent

distortion of the second-fundamental form induced by a map, by consider-

ing shape difference operators associated with maps between surface offsets.

Together with the statements of completeness mentioned above, this implies

that given a base shape of fixed topology, generically any other shape can

be encoded by four shape difference operators that describe the intrinsic

and extrinsic distortion with respect to this shape. In other words, this

implies that shapes themselves can be fully encoded as linear functional

operators. Interestingly, these statements hold nearly identically in the con-

83



Chapter 10. Extensions

Source Target kM = 20 kM = 40 kM = 60 kM = 80 kM = 100

Figure 10.1: Example of mesh recovery from a source mesh with about
one thousand vertices and varying-sized shape differences. As the size of the
operators increases more details are added to the reconstructed deformation.
At kM = 100 and above we achieve a high-quality reconstruction.

tinuous (smooth surfaces) as well as the discrete (triangle mesh) setting.

Thus, the linear operator-based representation provides a common language

that can be used to describe a coordinate-free representation of surfaces.

In [CSBC+17] we proposed an robust optimization method to reconstruct

a shape given a base mesh and the difference operators by recovering the

lengths of the edges of the triangle mesh and its offset surface, which works

even when the map is represented in a reduced basis. Figure 10.1 shows an

example of such reconstruction. At the same time, it would be interesting

to see whether performing standard geometry processing operations, such

as shape deformation and analysis can be done directly by working with the

operator representation, without relying on the potentially resolution and

tessellation dependent triangle mesh representation.

84



11
Conclusions and Future work

In this document we have presented a number of techniques aimed to ad-

dress various problems in geometry processing, including shape matching,

vector field design and manipulation and shape exploration. One of the

key observations that is common to all of the methods presented here is

that in many cases it is beneficial to represent different geometric concepts

as linear operators acting on real-valued functions defined on the shapes.

This includes the composition operator (functional maps) in the context

of shape matching, which can greatly simplify the problem of finding and

manipulating correspondences across pairs of shapes. In addition, we have

shown that working with tangent vector fields, represented as derivations

(covariant derivatives of functions) naturally encoded as linear functional

operators, can be used for vector field design and analysis. Finally, we also

demonstrated that it is possible to define linear functional operators, which

we call shape differences that allow to capture different kinds of distortion

induced by a map between a pair of shapes. These shape differences enable

novel exploration interfaces, such as extracting the most distorted areas or

finding shape analogies in collections in a robust and efficient way.

There is a number of common themes that run through the applications

and techniques that we have described. First, by formulating different struc-

tures as linear operators, we can often enable the use of a large number of

powerful techniques from numerical linear algebra, such as inference via so-

lution of least squares systems, operator factorisation, PCA, SVD, etc. In-

terestingly, these operations often have geometric equivalents, that would be

somewhat non-trivial to formulate directly on the shapes themselves, espe-

cially in a multi-scale and robust way. For example, computing approximate

Killing vector fields, whose flows approximately preserve the metric, can be

done simply by finding vector fields, whose covariant derivative operators

commute with the standard Laplace-Beltrami operator.

85



Chapter 11. Conclusions and Future work

In addition to the computational advantages, the operator-based ap-

proach is also often useful both for relating different concepts, such as vector

fields and maps, and also for providing a common language in which both

continuous and discrete properties can be expressed. For example, the def-

inition of shape difference operators is based inner products between func-

tions, and once those are established many properties can be shown in an

equivalent way between smooth surfaces and discrete triangle meshes.

Of course many questions are left unexplored in our work so far. First,

we are interested to see whether the operator point of view can also be

successfully applied to other shape representations, such as point clouds,

volumetric data and eventually images and other types of media. We have

done some preliminary work in exploring the functional map representation

in the context of image co-segmentation [WHOG14] by representing images

as graphs. However, much more further analysis is necessary to develop a

rigorous framework as was suggested here.

A natural domain, where many of the ideas presented here can be also be

explored is graph drawing and analysis. For example, a common problem in

visualizing large dynamic graphs or networks, is to find regions where most of

the changes occur and to highlight those regions in a robust (and especially

multi-scale) way. We are currently working on adapting the techniques

presented here to the domain of graph analysis.

Finally, most of the techniques discussed here are aimed at analyzing

either a single shape or a pair of shapes. However, as hinted in Chapter 9,

shape collections can be used to define an entire space of shapes. It is very

interesting to explore the properties of shape spaces from a functional point

of view. For example, we are planning to study ways to defe curvature in

shape space, or to formulate deformation of a collection via vector field flow,

among many other possible questions.

From a more conceptual point of view, it will be interesting and impor-

tant to study the limitations of the linear operator approach and consider

more general, perhaps non-linear functional operators. Finally, construct-

ing better functional bases (beyond, e.g., the eigenfunctions of the Laplace-

Beltrami operator) will be important to extend the ideas presented here to

more general scenarios and types of geometric data.

86



Bibliography

[ABCCO13] Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Maks Ovs-

janikov. An operator approach to tangent vector field processing. In

Computer Graphics Forum, volume 32, pages 73–82. Wiley Online

Library, 2013.

[ACP03] Brett Allen, Brian Curless, and Zoran Popović. The space of human

body shapes: reconstruction and parameterization from range scans.

ACM Trans. Graph., 22(3):587–594, July 2003.

[AFW06] Douglas N Arnold, Richard S Falk, and Ragnar Winther. Finite

element exterior calculus, homological techniques, and applications.

Acta numerica, 15(1):1–155, 2006.

[AOCBC15] Omri Azencot, Maks Ovsjanikov, Frédéric Chazal, and Mirela Ben-

Chen. Discrete derivatives of vector fields on surfaces–an operator

approach. ACM Transactions on Graphics (TOG), 34(3):29, 2015.

[ASC11] M. Aubry, U. Schlickewei, and D. Cremers. The wave kernel signa-

ture: A quantum mechanical approach to shape analysis. In ICCV -

Workshop (4DMOD), 2011.

[ASK+05] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian

Thrun, Jim Rodgers, and James Davis. Scape: shape completion and

animation of people. In Proc. SIGGRAPH, pages 408–416, 2005.

[BBK06] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized

multidimensional scaling: a framework for isometry-invariant partial

surface matching. PNAS, 103(5), 2006.

[BBK08] Alexander Bronstein, Michael Bronstein, and Ron Kimmel. Numer-

ical Geometry of Non-Rigid Shapes. Springer, 2008.

[BCBSG10] Mirela Ben-Chen, Adrian Butscher, Justin Solomon, and Leonidas

Guibas. On discrete killing vector fields and patterns on surfaces. In

CGF, volume 29, pages 1701–1711, 2010.

[BCWG09] Mirela Ben-Chen, Ofir Weber, and Craig Gotsman. Variational har-

monic maps for space deformation. ACM Trans. Graph., 28(3):34:1–

34:11, July 2009.

[BKP+10] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno

Lévy. Polygon mesh processing. CRC press, 2010.

[BM92] Paul J. Besl and Neil D. McKay. A method for registration of 3-d

shapes. IEEE TPAMI, 14:239–256, 1992.

[Boo96] F.L. Bookstein. Shape and the information in medical images: A

decade of the morphometric synthesis. In Proc. IEEE MMBIA, pages

2–12, 1996.

87



Bibliography

[Ç98] Eranda Çela. The Quadratic Assignment Problem: Theory and

Agorithms. Kluwer Academic Publishers, 1998.

[CDS10] Keenan Crane, Mathieu Desbrun, and Peter Schröder. Trivial con-

nections on discrete surfaces. In CGF, volume 29, pages 1525–1533,

2010.

[COC14] Étienne Corman, Maks Ovsjanikov, and Antonin Chambolle. Super-

vised descriptor learning for non-rigid shape matching. In NORDIA:

ECCV 2014 Workshop. Springer International Publishing, 2014.

[COC15] Étienne Corman, Maks Ovsjanikov, and Antonin Chambolle. Con-

tinuous matching via vector field flow. In Computer Graphics Forum,

volume 34, pages 129–139. Wiley Online Library, 2015.

[CSBC+17] Étienne Corman, Justin Solomon, Mirela Ben-Chen, Leonidas

Guibas, and Maks Ovsjanikov. Functional characterization of intrin-

sic and extrinsic geometry. In Transactions on Graphics (to appear),

2017.

[CT+01] T.F. Cootes, C.J. Taylor, et al. Statistical models of appearance for

medical image analysis and computer vision. In Proc. SPIE Medical

Imaging, volume 4322, pages 236–248, 2001.

[DFN92] BA Dubrovin, A Fomenko, and S Novikov. Modern Geometry-

Methods and Applications, Part I. Graduate texts in mathematics,

1992.

[DK11] Anastasia Dubrovina and Ron Kimmel. Approximately isometric

shape correspondence by matching pointwise spectral features and

global geodesic structures. Advances in Adaptive Data Analysis,

pages 203–228, 2011.

[DM98] I. L. Dryden and K. V. Mardia. Statistical Shape Analysis. John

Wiley and Sons, 1998.

[FBW11] R. Farrell, S. Branson, and P. Welinder. First Workshop on Fine-

Grained Visual Categorization (FGVC) at CVPR 2011. http://

http://www.fgvc.org/, 2011.

[FLPJ04] P.T. Fletcher, C. Lu, S.M. Pizer, and S. Joshi. Principal geodesic

analysis for the study of nonlinear statistics of shape. Medical Imag-

ing, IEEE Transactions on, 23(8):995–1005, 2004.

[FSDH07] Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues

Hoppe. Design of tangent vector fields. In ACM Transactions on

Graphics (TOG), volume 26, page 56. ACM, 2007.

88

http://http://www.fgvc.org/
http://http://www.fgvc.org/


Bibliography

[GF09] Aleksey Golovinskiy and Thomas Funkhouser. Consistent segmenta-

tion of 3D models. Computers and Graphics (Shape Modeling Inter-

national 09), 33(3):262–269, June 2009.

[GGSK05] P. Golland, W.E.L. Grimson, M.E. Shenton, and R. Kikinis. De-

tection and analysis of statistical differences in anatomical shape.

Medical Image Analysis, 9(1):69 – 86, 2005.

[GSSL01] G. Gerig, M. Styner, M. Shenton, and J. Lieberman. Shape versus

size: Improved understanding of the morphology of brain structures.

In Proc. MICCAI, pages 24–32, 2001.

[HAWG08] Q-X. Huang, B. Adams, M. Wicke, and L. J. Guibas. Non-rigid regis-

tration under isometric deformations. CGF (Proc. SGP), 27(5):1449–

1457, 2008.

[Hir03] Anil N Hirani. Discrete exterior calculus. PhD thesis, California

Institute of Technology, 2003.

[HJO+01] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless,

and David H. Salesin. Image analogies. In Proc. SIGGRAPH, pages

327–340, 2001.

[HKG11] Qixing Huang, Vladlen Koltun, and Leonidas Guibas. Joint

shape segmentation with linear programming. ACM Trans. Graph.,

30:125:1–125:12, December 2011.

[HSS+09] N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.P. Seidel. A

statistical model of human pose and body shape. Computer Graphics

Forum, 28(2):337–346, 2009.

[JZvK07] V. Jain, H. Zhang, and O. van Kaick. Non-rigid spectral correspon-

dence of triangle meshes. International Journal on Shape Modeling,

13(1):101–124, 2007.

[Kat95] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag

GmbH, 1995.

[KHS10] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. Learn-

ing 3D Mesh Segmentation and Labeling. ACM Transactions on

Graphics, 29(3), 2010.

[KLF11] Vladimir G. Kim, Yaron Lipman, and Thomas Funkhouser. Blended

intrinsic maps. ACM TOG (Proc. SIGGRAPH), 30(4), 2011.

[KLM+12] Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Stephen DiVerdi, and

Thomas Funkhouser. Exploring collections of 3d models using fuzzy

correspondences. ACM Trans. Graph., 31(4):54:1–54:11, July 2012.

89



Bibliography

[KMP07] Martin Kilian, N. J. Mitra, and H. Pottmann. Geometric modeling

in shape space. In Proc. SIGGRAPH, pages 64:1–64:8, 2007.

[Koo31] Bernard O Koopman. Hamiltonian systems and transformation in

hilbert space. Proceedings of the National Academy of Sciences,

17(5):315–318, 1931.

[KTCO+10] Oscar Kin-Chung Au, Chiew-Lan Tai, Daniel Cohen-Or, Youyi

Zheng, and Hongbo Fu. Electors voting for fast automatic shape

correspondence. Comp. Graph. Forum, 29(2):645–654, 2010.

[KWT88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour

models. Int. J. Comput. Vision, 1(4):321–331, 1988.

[LF09] Y. Lipman and T. Funkhouser. Möbius voting for surface correspon-

dence. In Proc. of SIGGRAPH, volume 28:3, pages 72:1–72:12, 2009.

[LSS+10] Rongjie Lai, Yonggang Shi, K. Scheibel, S. Fears, R. Woods, A.W.

Toga, and T.F. Chan. Metric-induced optimal embedding for intrin-

sic 3d shape analysis. In CVPR, pages 2871 – 2878, june 2010.

[MDSB02] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete dif-

ferential geometry operators for triangulated 2-manifolds. In Proc.

VisMath’02, Berlin, Germany, 2002.

[MHK+08] D. Mateus, R. P. Horaud, D. Knossow, F. Cuzzolin, and E. Boyer.

Articulated shape matching using laplacian eigenfunctions and un-

supervised point registration. In Proc. CVPR, 2008.

[MMP+11] P Mullen, A McKenzie, D Pavlov, L Durant, Y Tong, E Kanso,

JE Marsden, and M Desbrun. Discrete lie advection of differential

forms. Found. Comp. Math., 11(2):131–149, 2011.

[Mor01] S Morita. Geometry of differential forms. American Mathematical

Society, Providence, R.I, 2001.

[NBCW+11] A. Nguyen, M. Ben-Chen, K. Welnicka, Y. Ye, and L. Guibas. An

optimization approach to improving collections of shape maps. In

Proc. SGP, pages 1481–1491, 2011.

[NSN+07] D. Nain, M. Styner, M. Niethammer, J.J. Levitt, M.E. Shenton,

G. Gerig, A. Bobick, and A. Tannenbaum. Statistical shape analysis

of brain structures using spherical wavelets. In Proc. ISBI, pages

209–212, 2007.

[OBCS+12] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian

Butscher, and Leonidas Guibas. Functional maps: a flexible repre-

sentation of maps between shapes. ACM Trans. Graph., 31(4):30:1–

30:11, July 2012.

90



Bibliography

[OHG11] Maks Ovsjanikov, Qi-Xing Huang, and Leonidas J. Guibas. A condi-

tion number for non-rigid shape matching. Comput. Graph. Forum

(Proc. SGP), 30(5):1503–1512, 2011.

[OLGM11] Maks Ovsjanikov, Wilmot Li, Leonidas Guibas, and Niloy J. Mi-

tra. Exploration of continuous variability in collections of 3d shapes.

ACM Trans. Graph., 30(4):33:1–33:10, July 2011.

[OMMG10] Maks Ovsjanikov, Quentin Merigot, Facundo Memoli, and Leonidas

Guibas. One point isometric matching with the heat kernel. CGF,

29(5):1555–1564, 2010.

[OMPG13] Maks Ovsjanikov, Quentin Mérigot, Viorica Pătrăucean, and

Leonidas Guibas. Shape matching via quotient spaces. Computer

Graphics Forum, 32(5):1–11, 2013.

[OSG08] M. Ovsjanikov, J. Sun, and L. Guibas. Global intrinsic symmetries

of shapes. Comp. Graph. Forum, 27(5):1341–1348, 2008.

[PBB11] Jonathan Pokrass, Alexander M. Bronstein, and Michael M. Bron-

stein. A correspondence-less approach to matching of deformable

shapes. In SSVM, pages 592–603, 2011.

[Pet97] P. Petersen. Riemannian geometry. Graduate texts in mathematics.

Springer, 1997.

[PLB12] Nick Pears, Yonghuai Liu, and Peter Bunting. 3D imaging, analysis

and applications, volume 3. Springer, 2012.

[PLPZ12] Daniele Panozzo, Yaron Lipman, Enrico Puppo, and Denis Zorin.

Fields on symmetric surfaces. ACM Transactions on Graphics

(TOG), 31(4):111, 2012.

[PMT+11] D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J.E. Marsden, and M. Des-

brun. Structure-preserving discretization of incompressible fluids.

Physica D: Nonlinear Phenomena, 240(6):443 – 458, 2011.

[PP93] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal

surfaces and their conjugates. Exp. Math., 2(1):15–36, 1993.

[PP03] Konrad Polthier and Eike Preuss. Identifying vector field singularities

using a discrete hodge decomposition. Visualization and Mathemat-

ics, 3:113–134, 2003.

[PZ07] Jonathan Palacios and Eugene Zhang. Rotational symmetry field

design on surfaces. In ACM Transactions on Graphics (TOG), vol-

ume 26, page 55. ACM, 2007.

91



Bibliography

[PZ11] Jonathan Palacios and Eugene Zhang. Interactive visualization of

rotational symmetry fields on surfaces. Visualization and Computer

Graphics, IEEE Transactions on, 17(7):947–955, 2011.

[ROA+13] Raif M. Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-

Chen, Frédéric Chazal, and Leonidas Guibas. Map-based exploration

of intrinsic shape differences and variability. ACM Trans. Graph.,

32(4):72:1–72:12, July 2013.

[Rus07] Raif M. Rustamov. Laplace-Beltrami eigenfunctions for deformation

invariant shape representation. In Proc. SGP, pages 225–233, 2007.

[RVAL09] Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy.

Geometry-aware direction field processing. ACM Transactions on

Graphics (TOG), 29(1):1, 2009.

[SH10] Avinash Sharma and Radu P. Horaud. Shape matching based on

diffusion embedding and on mutual isometric consistency. In Proc.

NORDIA Workshop (CVPR), June 2010.

[SM93] Raj Kishor Singh and Jasbir Singh Manhas. Composition operators

on function spaces, volume 179. Elsevier, 1993.

[SMW06] Scott Schaefer, Travis McPhail, and Joe Warren. Image deformation

using moving least squares. ACM TOG, 25(3):533–540, July 2006.

[SOCG10] P. Skraba, M. Ovsjanikov, F. Chazal, and L. Guibas. Persistence-

based segmentation of deformable shapes. In CVPR Workshop on

Non-Rigid Shape Analysis and Deformable Image Alignment, pages

45–52, June 2010.

[SOG09] J. Sun, M. Ovsjanikov, and L. Guibas. A Concise and Provably

Informative Multi-Scale Signature Based on Heat Diffusion. CGF

(Proc. SGP), 28(5), 2009.

[SP04] Robert W. Sumner and Jovan Popović. Deformation transfer for

triangle meshes. ACM Trans. Graph., 23(3):399–405, August 2004.

[Spi99] Michael Spivak. A comprehensive introduction to differential geome-

try. Vol. I. Publish or Perish Inc., third edition, 1999.

[SY11] Y. Sahillioǧlu and Y. Yemez. Coarse-to-fine combinatorial match-

ing for dense isometric shape correspondence. Computer Graphics

Forum, 30(5):1461–1470, 2011.

[TBW+11] Art Tevs, Alexander Berner, Michael Wand, Ivo Ihrke, and H-P Sei-

del. Intrinsic shape matching by planned landmark sampling. In

Computer Graphics Forum, volume 30, pages 543–552. Wiley Online

Library, 2011.

92



Bibliography

[TLHD03] Yiying Tong, Santiago Lombeyda, Anil N Hirani, and Mathieu Des-

brun. Discrete multiscale vector field decomposition. In ACM Trans-

actions on Graphics (TOG), volume 22, pages 445–452, 2003.

[vKTS+11] Oliver van Kaick, Andrea Tagliasacchi, Oana Sidi, Hao Zhang, Daniel

Cohen-Or, Lior Wolf, , and Ghassan Hamarneh. Prior knowledge for

part correspondence. Computer Graphics Forum (Proc. Eurograph-

ics), 30(2):553–562, 2011.

[vKZHCO11] Oliver van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel

Cohen-Or. A survey on shape correspondence. Computer Graph-

ics Forum, 30(6):1681–1707, 2011.

[VT07] M. Vasilescu and D. Terzopoulos. Multilinear (tensor) ICA and di-

mensionality reduction. Independent Component Analysis and Signal

Separation, pages 818–826, 2007.

[Wey46] Hermann Weyl. The Classical Groups: Their Invariants and Repre-

sentations. Princeton University Press, 1946.

[WHOG14] Fan Wang, Qixing Huang, Maks Ovsjanikov, and Leonidas J Guibas.

Unsupervised multi-class joint image segmentation. In 2014 IEEE

Conference on Computer Vision and Pattern Recognition, pages

3142–3149. IEEE, 2014.

[WSX12] Stefanie Wuhrer, Chang Shu, and Pengcheng Xi. Posture-invariant

statistical shape analysis using laplace operator. Computers &

Graphics, 36(5):410–416, 2012.

[WZG+10] Y. Wang, J. Zhang, B. Gutman, T.F. Chan, J.T. Becker, H.J. Aizen-

stein, O.L. Lopez, R.J. Tamburo, A.W. Toga, and P.M. Thomp-

son. Multivariate tensor-based morphometry on surfaces: Applica-

tion to mapping ventricular abnormalities in hiv/aids. Neuroimage,

49(3):2141–2157, 2010.

[XLZ+10] Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-Or, Yueshan Xiong,

and Zhiquan Cheng. Style-content separation by anisotropic part

scales. ACM Transactions on Graphics, (Proceedings SIGGRAPH

Asia 2010), 29(5):184:1–184:10, 2010.

[YLSL10] I-Cheng Yeh, Chao-Hung Lin, Olga Sorkine, and Tong-Yee Lee.

Template-based 3d model fitting using dual-domain relaxation. IEEE

Transactions on Visualization and Computer Graphics, 99, 2010.

[ZSCO+08] H. Zhang, A. Sheffer, Cohen-Or, Q. Zhou, O. van Kaick, and

A. Tagliasacchi. Deformation-driven shape correspondence. In Proc.

SGP, pages 1431–1439, 2008.

93


	Abstract
	Acknowledgments
	Contents
	Introduction
	I Mappings as Functional Operators
	Overview
	Functional Maps
	Introduction
	Related Work
	Contributions
	Functional Map Representation
	Functional Representation Properties
	Functional Map Inference
	Shape Matching
	Other Applications

	Extensions
	Supervised Descriptor Learning
	Subspace (quotient) matching


	II Tangent Vector Fields as Functional Operators
	Overview
	Vector Fields as Operators
	Introduction
	Vector Fields as Operators
	Representation in a Basis
	Discretization
	Applications

	Extensions
	Continuous Matching via Vector Field Flow
	Covariant Derivatives as Operators


	III Shapes and their Differences as Operators
	Overview
	Shape Differences
	Introduction and Rationale
	Related Work
	Shape Differences
	Differences in Shape Collections
	Computation
	Properties
	Applications

	Extensions
	Conclusions and Future work


