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RESUME FRANÇAIS 

«Tout objet étudié par la biologie est un système de systèmes» (Jacob, 1976). Pour le système de 

systèmes complexe qu’est le corps humain, de nombreuses questions restent ouvertes, 

particulièrement en ce qui concerne l'utérus. Comment l'utérus fonctionne exactement? Comment 

reste-t-il au repos pendant la plus grande partie de la grossesse? Et comment se contracte-t-il 

d'une manière très organisée pendant le travail pour expulser un nouvel être humain dans ce 

monde? Les réponses à toutes ces questions pourraient sauver la vie de plus d'un million 

d'enfants qui sont morts parce que nés prématurément. 

Donner naissance, ce miracle de la vie, peut se terminer tragiquement si l’enfant nait 

prématurément. En effet, l’accouchement prématuré survient quand une femme souffre de 

complications de sa grossesse et accouche avant la 37e semaine de gestation. Le risque de 

mortalité et de morbidité est le plus élevé pour les nouveau-nés qui naissent avant terme. La 

naissance d'un nouveau-né prématuré peut également entraîner des coûts économiques 

considérables et avoir des répercussions à court, moyen et long termes sur les services publics, 

tels que l'assurance maladie, l'éducation et d'autres systèmes de soutien social. Le fardeau 

économique social associé à la naissance prématurée était d'au moins 26,2 milliards de dollars en 

2005 aux Etats-Unis (Behrman et al., 2007). Passer quelques jours de plus dans l'utérus peut 

cependant améliorer considérablement la maturation du fœtus. De ce fait, la détection précoce de 

l’accouchement prématuré est l'une des clés les plus importantes pour sa prévention et la 

diminution de ses conséquences. 

L'un des marqueurs biologiques les plus prometteurs de la contraction utérine est l'activité 

électrique de l'utérus. Cette activité se reflète dans l'électrohystéogramme (EHG), qui représente 

la mesure non invasive de l'activité électrique utérine sur l’abdomen de la mère (Devedeux et al., 

1993). Plusieurs études ont déjà été réalisées dans le contexte de la détection dude 

l’accouchement prématuré en analysant l'EHG (Euliano et al., 2009; Marque and Duchene, 1989; 

Planes et al., 1984). En fait, L'EHG est l'un des rares indicateurs accessibles de manière non-

invasive, représentatifs de l'activité musculaire sous-jacente aux contractions utérines. 
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Le travail et l'accouchement sont précédés de deux phénomènes physiologiques: l’augmentation 

de l'excitabilité utérine et l’augmentation de la connectivité entre les cellules myométriales, suite 

à l’augmentation de la propagation du potentiel d'action initiateurs des contractions utérines 

(Devedeux et al., 1993). 

Plusieurs études ont été réalisées pour caractériser la propagation utérine en étudiant la 

synchronisation entre les signaux EHG enregistrés à la surface de l’abdomen. Ces études se sont 

fondées sur différentes méthodes telles que: i) la connectivité/corrélation entre EHG (Euliano et 

al., 2009; Mahmoud Hassan et al., 2010; Marque and Duchene, 1989) où les méthodes ont été 

appliquées sur les contractions utérines segmentées manuellement, ii) la vitesse de propagation, 

quantifiée par analyse soit de la propagation du signal EHG entier (Lucovnik et al., 2011) 

(Mikkelsen et al., 2013), soit de pics isolés dans les bouffées d’EHG (Lucovnik et al., 2011; C. 

Rabotti et al., 2010)(Lau et al., 2014)(de Lau et al., 2013). L'analyse basée sur les pics isolés (en 

utilisant souvent des électrodes de petite taille) permettrait d’analyser plus précisément le 

processus de diffusion électrique.  

L'analyse de connectivité a donné des résultats prometteurs en utilisant les signaux EHG pour 

l'identification du couplage statistique entre les contractions utérines enregistrées pendant le 

travail et/ou la grossesse, s’intéressant ainsi à la synchronisation globale de l’activité contractile., 

L'objectif principal de cette thèse est d'étudier cette synchronisation globale de l'activité 

électrique utérine en étudiant la connectivité entre différentes voies d’EHG enregistrées au cours 

de la grossesse et de l’accouchement. Concernant l'analyse globale, dans la plupart des études 

précédentes, les matrices de corrélation ont été réduites en ne gardant que leurs moyennes. 

Malgré les résultats encourageants obtenus, des informations pertinentes peuvent être manquées 

du fait de cette procédure de moyennage, ce qui peut expliquer les taux de classement 

relativement faibles obtenus jusqu'à présent. Pour caractériser précisément la matrice de 

corrélation et quantifier la connectivité associée, nous avons utilisé ici l'analyse basée sur la 

théorie des graphes., Ce type d’analyse, basée sur la théorie des graphes dans la caractérisation 

des matrices de corrélation (connectivité), s’est particulièrement développée récemment, 

notamment pour l’analyse des signaux électroencéphalographiques (EEG) (Bullmore and Sporns, 

2009; Rubinov and Sporns, 2010; van den Heuvel and Sporns, 2013). 
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Intuitivement, un graphe peut être défini par un ensemble de nœuds connectés par des arrêtes. En 

utilisant l’analyse de graphe,  la matrice de corrélation peut être représentée sous forme d’un 

graphe constitué d'un ensemble de noeuds (électrodes) interconnectés par des arêtes (valeurs de 

connectivité / corrélation entre les signaux recueillis par les électrodes). 

Deux approches principales ont été utilisées dans cette thèse: i) L’estimation de la connectivité 

au niveau de l'abdomen (électrodes) et ii) L’estimation de la connectivité au niveau de la source 

utérine (après localisation des sources). Le schéma complet du travail de thèse est présenté figure 

0.1.  

Tout d'abord, les signaux EHG ont été enregistrés pendant la grossesse et le travail en utilisant 

une grille de 4 * 4 électrodes (Figure 0.1 A). Afin d’analyser ces signaux, nous avons étudié la 

corrélation (connectivité) entre les activités électriques utérines et leur quantification précise en 

se basant sur une nouvelle approche : la théorie des graphes. Les étapes suivies dans cette 

procédure sont les suivantes: (i) Estimation de la connectivité entre les signaux EHG (Figure 0.1 

B) ; (ii) Quantification des matrices de connectivité obtenues à l'aide de la théorie des graphes 

(Figure 0.1 E) ; iii) Application clinique des mesures de graphe pour la surveillance de la 

grossesse ainsi que pour la classification entre grossesse et travail (Figure 0.1 E). Une 

comparaison avec les paramètres classiques de l'état de l’art pour la détection du travail 

prématuré a également été effectuée. 

Pour s’affranchir du problème du volume conducteur dans l’estimation de la connectivité au 

niveau de la surface abdominale, nous avons proposé une nouvelle méthode appelée 

«connectivité des signaux EHG au niveau de la source» (Figure 0.1 C, D). Cette méthode 

consiste à identifier par méthode inverse les signaux des sources utérines puis à calculer le 

couplage statistique entre ces sources. Comme cette nouvelle méthode comprend deux étapes 

(identification des sources et analyse de conenctivité) pour lesquelles il n’existe pas de données 

bibliographiques sur les meilleures méthodes inverse/connectivité à utiliser pour l’EHG, nous 

avons analysé l'effet i) de l'algorithme utilisé dans la solution du problème inverse EHG et ii) de 

la méthode utilisée pour l'estimation de la connectivité, en utilisant des données simulées à partir 

d’un modèle biophysique développé dans l'équipe. Ensuite, comme au niveau de la surface, les 

matrices de connectivité obtenues au niveau source seront quantifiées en utilisant l’analyse basée 

sur la théorie des graphes (Figure 0.1 E). 
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Figure  0.1 Schéma bloc complet de la thèse A. Enregistrement des signaux EHG B. Connectivité 

au niveau de la surface en utilisant les signaux EHG C. Problème Direct D. Connectivité au 

niveau de la source en utilisant les signaux EHG et la matrice du champ de dérivation estimée à 

partir du problème direct. E. Analyse de graphe et ses applications cliniques pour la 

surveillance de la grossesse ainsi que pour la classification entre grossesse et travail. 

Le manuscrit est organisé comme suit: 

Chapter 1  Dans ce chapitre, nous présentons l'état de l'art sur les bases anatomiques et 

physiologiques de l'utérus et de la contractilité utérine, en présentant les deux facteurs 

principaux qui la génèrent: l'excitabilité cellulaire et la propagation de l'activité électrique. 

Nous décrivons également les différentes études de propagation qui ont été déjà faites, ainsi 

que les principaux objectifs de la thèse et la nouvelle approche proposée. 

 

Chapter 2  Dans ce chapitre, nous présentons les matériels et méthodes utilisés dans cette 

thèse. Nous décrivons tout d'abord les méthodes existantes utilisées pour analyser la 

propagation de l'activité électrique utérine. Une explication détaillée de la nouvelle approche 

proposée est également présentée. Pour l'analyse des signaux EHG, nous proposons d'utiliser 

une technique de mesure de la connectivité des réseaux basée sur la théorie des graphes. 
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Nous avons également utilisé cette nouvelle approche pour la connectivité au niveau de la 

source utérine. Ces méthodes ont été appliquées sur des données simulées et réelles. Nous 

allons également expliquer brièvement le modèle utilisé pour simuler l'activité utérine ainsi 

que le protocole expérimental utilisé pour enregistrer les signaux EHG réels. 

 

Chapter 3  Nous présentons dans ce chapitre les résultats obtenus pour le calcul de la 

connectivité au niveau des EHG abdominaux. Nous avons d'abord comparé plusieurs 

méthodes de connectivité pour estimer la matrice d'adjacence représentée sous la forme d'un 

graphe. Nous avons ensuite évalué la performance de différentes mesures de graphe dans la 

classification des contractions de grossesse et de travail. Une comparaison avec les 

paramètres existants utilisés dans l'état de l'art pour la détection du travail et de la prévision 

du travail prématuré est également présentée. 

 

Chapter 4  Dans ce chapitre, nous montrons les résultats préliminaires obtenus lors de l'étude 

de la connectivité au niveau des sources d’EHG identifiées au niveau du myomètre. Nous 

évaluons les différentes solutions inverses et les méthodologies de connectivité (pour calculer 

les couplages statistiques entre les sources reconstruites). Les réseaux obtenus par chacune 

des combinaisons sont comparés au réseau de référence généré par le modèle. Cette approche 

a également été appliquée à des signaux EHG réels. 

Une conclusion générale et des perspectives sont enfin présentées au chapitre 5 

Les  résultats  obtenus  dans  cette  thèse  nous  ont  permis  de rédiger :  1  article  de  revue  

international en révision (un autre en préparation), 3 conférences internationales, 2 conférences 

nationales. 
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0 GENERAL INTRODUCTION 
“Every object that biology studies is a system of systems” (Jacob, 1976). Among the complex 

system of systems of the human body, many questions remain open concerning the human 

uterus. How does the uterus exactly work as an organ? How does it remain quiescent during 

most of pregnancy? And how does it contract in a very organized way during labor to expulse a 

new human into this world? The answers of all these questions could save the life of more than 

one billion children who died because they were born too soon. 

Giving birth, this miracle of life, can turn to death if preterm birth occurs. Indeed, preterm labor 

occurs when a woman suffers from complications of her pregnancy and gives birth before the 

37
th

 week of gestation. The highest risk of mortality and morbidity is for those infants born at the 

earliest gestational ages. The birth of a preterm infant can also bring considerable economic costs 

and has implications for public-sector services, such as health insurance, educational, and other 

social support systems. The annual societal economic burden associated with preterm birth in the 

United States was at least $26.2 billion in 2005 (Behrman et al., 2007).  However, more days in 

the uterus can improve the maturation of the fetus. For this reasons, the early detection of a 

preterm labor is one of the most important keys for its prevention.  

One of the most promising biomarkers of uterine contraction is the electrical activity of the 

uterus. This activity is reflected in the Electrohysterography (EHG), which represents the 

noninvasive abdominal measurement of the uterine electrical activity (Devedeux et al., 1993). 

Several studies have already been realized in the context of preterm labor detection by 

processing EHG (Euliano et al., 2009, 2009; Laforet et al., 2013; Marque and Duchene, 1989; 

Planes et al., 1984). EHG is one of the few indicators that are measurable and representative of 

the underlying muscular activity of uterine contractions.  

Labor and delivery are preceded by two physiological phenomena: increased excitability and 

increased connectivity between the myometrial cells, which results in an increase in the 

propagation of the action potentials that trigger the uterine contractions (Devedeux et al., 1993).  

Several studies have been realized to characterize the uterine propagation by means of the 

synchronization between EHG signals recorded at the abdominal surface. These efforts were 
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based on various methods such as i) correlation/connectivity analysis (Euliano et al., 2009; 

Mahmoud Hassan et al., 2010; Marque and Duchene, 1989) where the methods were applied on 

the entire uterine burst manually segmented, and ii) propagation velocity quantified by analyzing 

either the propagation of whole bursts of EHG (Lucovnik et al., 2011) (Mikkelsen et al., 2013), 

or single spikes identified within bursts (Lucovnik et al., 2011; C. Rabotti et al., 2010)(Lau et al., 

2014)(de Lau et al., 2013). The analysis based on spikes (often by using small and close 

electrodes) would permit to quantify the electrical diffusion process. The one made from whole 

bursts (with larger and more spaced electrodes) would focus more on the global synchronization 

of the uterus. 

The connectivity analysis gave some promising results when using EHG signals for the 

identification of statistical coupling between uterine contractions recorded during labor and/or 

pregnancy. Thus the main objective of this thesis is to develop a new way to study the global 

synchronization of the uterine electrical activity by computing the connectivity between the 

recorded EHG signals. Concerning the global analysis (whole burst), in most previous studies, 

the EHG connectivity matrices were reduced by keeping only their average. Despite the 

encouraging results obtained, relevant information was missed due to this averaging which may 

induce the relatively low classification rate reported so far. To characterize precisely 

connectivity matrices and quantify the global uterine connectivity, we used here the graph theory 

based analysis. This field has shown a growing interest in the last years, especially to 

characterize brain networks (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; van den 

Heuvel and Sporns, 2013). According to this approach, a connectivity matrix can be represented 

as graphs consisting of a set of nodes (electrodes) interconnected by edges (connectivity/ 

correlation values between electrodes). 

Two main approaches were used in this thesis i) Compute and quantify the connectivity at the 

abdomen (electrodes) level and ii) Compute and quantify the connectivity at the uterine source 

level. The complete pipeline of the thesis work is presented in Figure  0.1. 

First, the EHG signals were recorded during pregnancy and labor by using a grid of 4*4 

electrodes (Figure  0.1 A). To analyses these signals, we have computed the connectivity between 

the EHGs and quantified it by using graph theory approach. The processing pipeline includes i) 
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the estimation of the statistical dependencies between the different recorded EHG signals 

(Figure  0.1 B), ii) the quantification of the obtained connectivity matrices by using a graph 

theory-based analysis (Figure  0.1 E) and iii) the clinical use of network measures for pregnancy 

monitoring as well as for the classification of EHG bursts recorded during pregnancy or labor 

(Figure  0.1 E). A comparison with the existing parameters used in the state of the art for labor 

detection and preterm labor prediction was also performed.  

 

Figure  0.1 Complete pipeline of the thesis A. EHG recording B. Connectivity at the surface level 

that uses the EHG signals C. Forward Problem D. Connectivity at the source level that uses the 

EHG signals and the leadfield matrix estimated from the forward problem. E. Network analysis 

and its clinical use for pregnancy monitoring as well as for the classification between pregnancy 

and labor 

To overcome the so-called problem of ‘volume conduction’ when computing the connectivity at 

the abdominal surface level, we have proposed a new method called ‘EHG source connectivity’ 

(Figure  0.1 C, D). This method consists of reconstructing the time series of the uterine sources 

associated to given EHGs and then computing the statistical coupling between these sources. As 

this new method involves mainly two steps and as there is no consensus about the 

inverse/connectivity method to be used, we analyzed the effect of the algorithm used in the 

solution of the EHG inverse problem as well as of the method used in the estimation of the 
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functional connectivity by using data simulated by using a model developed in our team (ground 

truth). As in the connectivity at the surface level, the obtained connectivity matrices at the source 

level have been be quantified based on the same graph theory analysis (Figure  0.1 E). 

The manuscript is organized as follows: 

Chapter 1 In this chapter, we present the state of the art of anatomical and physiological 

background of the uterus and its contractility with its two main factors: cell excitability and 

propagation of the electrical activity. We also describe the different propagation studies that 

have been done previously, as well as the main objectives of the thesis and the proposed new 

approach. 

Chapter 2 presents the materials and methods used in this thesis. First we precise the 

existing methods used to analyze the propagation of the uterine electrical activity. A detailed 

explanation of our new proposed approach is also presented. For the analysis of the EHG 

signals, we propose to use a network measure technique based on graph theory. We have also 

used this new approach for the connectivity at the uterine source level. These methods were 

applied on simulated and real data. We will also briefly explain the model used for 

simulating uterine activity as well as the experimental protocol used to record real EHG 

signals.   

Chapter 3 This chapter is dedicated to the results obtained when computing connectivity at 

the level of the electrodes. We first compared several connectivity methods to compute the 

connectivity matrix represented as a graph: a set of nodes (electrodes) connected by edges 

(connectivity values). We then evaluated the performance of different graph measures in the 

classification of pregnancy and labor contractions. A comparison with the existing 

parameters used in the state of the art of labor detection and preterm labor prediction is also 

presented.  

 

Chapter 4 In this chapter, we show the first results obtained when studying the connectivity 

at the level of the EHG sources. We evaluate the different inverse solutions (to reconstruct 

the dynamics of uterine sources) and connectivity methods (to compute statistical couplings 

between reconstructed sources). Networks obtained by each of these combinations are 
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compared to the reference network (ground truth) generated by the model. This approach was 

also applied to real EHG signals. 

 

A general conclusion and perspectives will finally be presented in chapter 5 
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1. CHAPTER 1: BACKGROUND, 

PROBLEM STATEMENT AND PROPOSED 

APPROACH 

This chapter starts by a definition of the preterm labor problem, which represents the main cause 

of infant mortality and morbidity. We then briefly describe the anatomical and physiological 

background of the uterus and the uterine contractility with its two main factors: cell excitability 

and propagation of the electrical activity. An overview of the different pregnancy monitoring 

techniques available to record the uterine activity is then reported. Finally, we present an 

overview of the studies that were reported in the context of analyzing the propagation of the 

uterine activity. We conclude by the main objective of this thesis and the proposed new 

approach. 

1.1 PRETERM LABOR 

Preterm birth, which occurs before week 37 of pregnancy, is the major cause of newborn deaths 

and the second biggest cause of deaths in children under five years old. The premature birth is 

extremely preterm when it happens before week 28, very preterm between weeks 28 and 32, 

moderate to late preterm from 32 to 37 weeks (“WHO | Preterm birth,”). 

An estimated 15 million babies are born preterm every year which is more than 1 in 10 babies. 

One million children die each year due to complications of preterm birth with an increasing rate 

of preterm birth in most countries. Studies in 184 countries reported that the rates of preterm 

birth across these countries range between 5% and 18%. More than 80% of preterm births occur 

between 32 and 37 weeks of gestation as shown in Figure 1.1. Preterm newborns are at increased 

risk of illness, disability and death. Many preterm survivors face a lifetime of disability, 

including learning disabilities, visual and hearing problems (Blencowe et al., 2013). 

The immediate neonatal intensive care incurs large economic costs of preterm birth, including 

long-term complex health needs (Blencowe et al., 2013). Indeed, the medical, physiological and 

socioeconomic consequences of preterm labor are important. However, more days in the uterus 
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can improve the maturation of the fetus. For this reasons, the early detection of a preterm labor is 

one of the most important keys for its prevention. 

1.2 UTERUS ANATOMY AND PHYSIOLOGY  

As a dynamic female reproductive organ, the uterus is responsible for several reproductive 

functions, including menses, implantation, gestation, labor, and delivery (“Uterus Anatomy,” 

2015). The uterus, which is a hollow muscular organ, is where the fetus is developing during 

pregnancy.  

Three parts can be differentiated the uterus:  

 The fundus, which corresponds to the upper portion 

 The corpus, which is the main part of the uterus including uterine cavity 

 The narrow, which is the lower section and is called the cervix.  

The uterus is located above the vagina, midway between the bladder and the rectum. The non-

pregnant uterus measures approximately 7.5 cm in length, 4 to 5 cm in width at its upper portion, 

and 2 to 3 cm in thickness, and it weighs 50 to 70 g (Ellis, 2005) . At term, it measures 

approximately 32 cm in length, 23 cm in width, and weights about 1000 g, with an inner volume 

of 4-5 liters, for a mono-fetal pregnancy. 

 
Figure 1.1: Preterm birth by region and week of gestation for 2010 (Blencowe et al., 2010) 
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The anatomy of the thick uterine wall consists of three tissue layers (Chard, 1994). The inner 

layer, or endometrium, is the most active layer. This layer responds to cyclic ovarian hormone 

changes since it consists of glandular cells that produce secretions. This membrane thickens to 

prepare the uterus for implantation of a fertilized egg. The middle layer, or myometrium, is a 

muscular layer composed of smooth muscle cells and forms the larger part of the uterine wall. It 

increases by two procedures: either by hypertrophy of the existing cells, or by multiplication of 

the cell number. It is well known that the myometrium has an active role during pregnancy. 

During the last stage of gestation, the smooth cells reach a maximum length of 300 μm and a 

maximum width of 10 μm (Csapo, 1962). The interaction of myosin and actin filaments produces 

the contractions of smooth muscle cells. When delivery occurs, the electrical activity generated 

by the smooth muscle cells, produces rhythmic contractions, which lead to birth. The outer layer 

of the uterus, the serosa or perimetrium, is a thin layer of tissue made of epithelial cells that 

envelops the uterus. 

In Figure 1.2 we present the anatomy of a pregnant woman uterus. The amniotic sac, a thin-

walled sac filled with amniotic fluid is called the amnion. It surrounds the fetus during 

 

Figure 1.2: Anatomy of pregnant woman uterus (“Stanford Children’s Health” ) 
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pregnancy. The placenta only grows during pregnancy and provides a metabolic interchange 

between the fetus and mother. The umbilical cord connects the fetus to the placenta. The 

umbilical cord contains two arteries and a vein, which carry oxygen and nutrients to the fetus and 

waste products away from the fetus (“Stanford Children’s Health” ). 

1.3 UTERINE ELECTRICAL ACTIVITY 

One of the most promising markers of uterine contraction is the electrical activity of the uterus. 

This activity is reflected in the electrohysterogram (EHG), which is a noninvasive abdominal 

measurement of the uterine electrical activity (Devedeux et al., 1993). Labor and delivery are 

preceded by two physiological phenomena: increased excitability and increased connectivity 

between the myometrial cells which results in an increase in the propagation of the action 

potential that underlie uterine contractions (Devedeux et al., 1993).  

1.3.1 Cell excitability  

Two types of potential describe the electrical activity of cells: the resting potential and the action 

potential. The resting potential is the difference between the negative inside and the positive 

outside of a resting cell. The resting potential is unstable when recording the electrical activity of 

a membrane. It presents slow waves of low amplitude that describe the electrical base line. The 

potential difference across the cell membrane reverses, when a cell depolarizes. Then, the trans-

membrane potential increases. An action potential is generated when a given threshold is 

reached. For uterine cells, action potentials are often grouped by bursts. The physiological 

electrical activity is composed of irregular bursts of action potentials during pregnancy. While 

term and labor uterine electrical activity is composed of regular bursts composed of regular trains 

of action potentials (Sanborn, 1995), generated spontaneously.  . 

1.3.2 Propagation of the uterine electrical activity 

The uterus is known as a myogenic organ, therefore the myometrium is able to contract by itself 

without nervous or hormonal inputs (Shmygol et al., 2007; Wray, 1993). The electrical activity is 

controlled by changes in the membrane potential of the smooth muscle cell of the myometrium 

(Kuriyama and Suzuki, 1976; Ohya and Sperelakis, 1989; Wray, 1993). 
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The uterine myometrial cells can either generate their own potential; these cells are called 

pacemaker cells, or can be excited by the action potential from its neighbor cell; these cells are 

called pacefollower cells. However, myometrial cells may alternatively be pacemaker or 

pacefollower cells.  

Several studies were recently devoted to understand the propagation phenomena of the uterine 

electrical activity during pregnancy and labor (Rabotti and Mischi, 2015). Many studies focused 

on locating the pacemaker area of the uterine muscle during pregnancy and labor. However, 

uterine pacemakers have been mostly observed to appear randomly throughout the tissue and to 

change their location during a single contraction or several successive contractions even during 

labor (Lammers et al., 1994; Marshall, 1959; Parkington et al., 1988). 

In addition, myometrial cells are coupled together electrically by gap junctions (Garfield et al., 

1977; Devedeux et al., 1993; Garfield and Maner, 2007). These gap junctions are areas where the 

membranes of two adjacent cells form pores allowing electrical coupling. They form a pathway 

for the passage of action potentials by forming a low-resistance electrical contact between the 

cells (Miller et al., 1989) (Garfield et al., 1977). Many studies indicated that during most of 

pregnancy phases, the cell-to-cell gap junctions are absent or present in very low density 

 

Figure 1.3: The evolution of Gap junction number during gestation, birth and after delivery 

(Garfield et al., 1977) 
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(Garfield et al., 1977). On the other hand, a large number of gap junctions between myometrial 

cells is observed during labor (Garfield et al., 1977; Garfield and Hayashi, 1981) ensuring the 

development of a synchronized muscle activity (Figure  1.3) due to electrical diffusion. 

1.4 PREGNANCY MONITORING AND PRETERM LABOR DETECTION 

METHODS 

Detection and evaluation of the uterine contractions are of major importance. One of the aims of 

pregnancy monitoring is to differentiate normal pregnancy contractions, which are inefficient to 

those, efficient, which could cause a dilation of the cervix, thus inducing a premature birth. For 

this reason, many studies focused on pregnancy monitoring techniques to assess the key risk 

factors and allow the prediction of preterm labor.  

1.4.1 Pregnancy and Labor Monitoring Methods 

Typical clinical practice involves the use of different methods.  

One of the most efficient methods is the use of Intrauterine Pressure (IUP), it provides the best 

information concerning the contractile state of the uterus (Garfield et al., 2001). A catheter is 

inserted into the uterine cavity and connected to a pressure sensor, that gives different 

information on the duration, amplitude and frequency of appearance of the contractions (Garfield 

et al., 1998a). The main drawback of this method is its invasiveness which can increase the risk 

of infection and requires rupture of the membranes (Garfield et al., 2001). Obviously, it cannot 

therefore be used during pregnancy. 

Being external and non-invasive, the most widely used device for monitoring uterine 

contractions during pregnancy is the “Tocodynamometer”. It is used in over 90% of all hospital 

births. This device is an external pressure measurement device formed by a force sensor placed 

on the mother’s abdomen, usually over the uterine fundus. This sensor detects changes in 

abdominal stiffness as an indirect indication of uterine contraction (Garfield et al., 1998a). The 

main primary advantage of a tocodynamometer is its non-invasiveness which allows the device 

to be used for most pregnancies without any risk to the fetus or the mother. Nevertheless, the 

success of this device depends on the subjectivity of the examiner. In addition of being 

uncomfortable, its main disadvantage is its inaccuracy. Different variables could affect its 
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accuracy such as instrument placement, amount of subcutaneous fat, uterine wall pressure, 

mother’s motion…. Many other variables could be detected as uterine contractions such as body 

movements, gastric activity, and other non-labor induced stresses (Garfield et al., 2001). This 

technique could only permit to detect the number of contractions over a given time interval 

(usually 10 mm). 

Many clinicians prefer to rely on different indicators such as cervical dilation and effacement, 

vaginal bleeding, or ruptured membranes in order to detect preterm labor. However, since these 

parameters are subjective and have a high variability within and between observers, this 

technique has a low predictive value (Creasy, 1993). Other biological tests, such as fibronectin, 

have been clinically used for the diagnosis of premature births (Iams, 2003), but they have a low 

predictive value. 

A noninvasive technique named light-induced auto fluorescence (LIF) has been also proposed 

for labor monitoring (Garfield et al., 1998b). This technique attempts to measure cervical tissue 

changes during gestation and labor. Many studies have proved its capability for estimating the 

cervical status. Although this technique could provide useful information for preterm labor 

prediction, it is not used yet in clinical practice.  

Another technique used for the labor detection consists of measuring the cervix length via 

endovaginal ultrasonography. This method gives good predictive values but only after the 

appearance of symptoms of preterm labor (Romero et al., 1992). Therefore, the success to detect 

preterm labor is limited when using this technique. Additionally, the measurement of the cervical 

length using this technique is not reliable because it is influenced by the varying amount of urine 

in the bladder (Iams, 2003).  

The Magnetomyography (MMG) is a noninvasive technique permitting to measure the magnetic 

fields associated with the uterine action potentials. It is also used for uterine activity recording. 

MMG recordings of spontaneous uterine activity were recorded for the first time by Eswaran et 

al. (Escalona-Vargas et al., 2015; Eswaran et al., 2004). This method is presently only used as a 

research tool due to its high cost and the need of very special (and not easy to set-up) equipment. 
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The electrohysterography (uterine electromyography, EHG) permits to overcome the limitations 

of the MMG. This method permits to record the uterine activity non invasively, with affordable 

and simple equipment. The electrohysterography permits to derive quantitative information on 

the myometrium from the analysis of its electrical activity collected on the mother’s abdomen. 

EHG consists of the summation of the electrical activity generated by the active uterine muscle 

cells, plus the noise related to corrupting electrical and mechanical activities. The analysis of the 

EHG was shown to be one of the most promising tools to monitor the efficiency of uterine 

contractions during pregnancy (Marque et al., 2007). 

EHG signals, recorded externally using electrodes placed on the women’s abdomen, has been 

demonstrated to be representative of the uterine electrical activity (Devedeux et al., 1993; 

Mansour et al., 1996). The EHG is composed of two main components, a low wave (which is 

synchronous to the IUP) and a fast wave. The fast wave is also divided into two frequency 

components: Fast Wave Low (FWL) and Fast Wave High (FWH). It has been proposed that FWL is 

related to propagation and FWH is related to excitability of the uterine cells (Gondry et al., 1993) . 

According to these results, we can expect that this noninvasive recording of the EHG will 

provide information not only on the excitability of myometrial cells but also on the propagation 

of the uterine electrical activity. Therefore, EHG analysis could be used clinically for pregnancy 

monitoring, labor detection and preterm labor prediction. However, the performance of the EHG 

analysis depends on the electrodes number as well as on their positions (Rabotti et al., 2008). In 

the following section we will present the different systems used so far for the uterine electrical 

activity recordings. 

1.4.2 Electrode number and position 

Most of the early studies used two to five electrodes to invasively record uterine electrical 

activity. Therefore they focused mainly on the excitability of the uterus (Schlembach et al., 

2009) (M. Hassan et al., 2010).   
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Marque et al. (Marque et al., 2007) used 4 Ag/AgCl electrodes (8 mm diameter spaced by 2.5 

cm), forming 2 bipolar leads, to record EHG signals and a reference electrode was positioned on 

the hip of the patients as shown in Figure 1.4.1. Terrien et al. (Terrien et al., 2006) used four 

electrodes, a pair positioned in the middle of the median axis near the umbilicus and  another one 

positioned 5cm left of the middle electrode. In order to identify a suitable electrode 

configuration, Rabotti et al (Rabotti et al., 2008) proposed two measurements for 15 min in 

labor. They first used 11 active electrodes placed on the abdomen (Figure 1.4.2 a). They measure 

then the average SNR in each electrode. In this preliminary study, they evidenced the highest 

 

Figure 1.4: Different techniques used to record EHG signals. 
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average SNR on the lower vertical median line of the abdomen, in particular on the region 

immediately below the umbilicus. They explained these results by means of two main 

hypotheses. First, the distance between the recording site, on the skin, and the signal source, in 

the myometrium, is reduced with respect to the more lateral sites. Second, the position of the 

uterus relative to the abdominal wall is constant even during contractions, in the region 

surrounding the umbilicus, which results in a better SNR. According to the results obtained in 

this preliminary analysis, they used four unipolar contact Ag–AgCl electrodes placed on the 

abdomen (figured in Figure 1.4.2 b). The common reference for these electrodes was placed on 

the right hip. 

A system containing two bipolar electrode pairs was used in Randomski et al. (Radomski et al., 

2008). In addition, they used one Tocographic probe and a reference electrode attached to the left 

hip (Figure 1.4.3).  The distance between the electrodes forming the bipolar channels was fixed 

at 5 cm.  The electrodes were attached in the vertical median axis of the woman’s abdomen 

because they indicate that this position provides a suitable SNR due to a closer contact and 

during contractions, more invariant position of the uterus in relation to the abdominal wall 

(Graczyk et al., 1995).  

In other studies, (Baghamoradi et al., 2011; Fele-Zorz et al., 2008; Fergus et al., 2013), authors 

used 4 AgCl electrodes to record EHG. These electrodes were placed in two horizontal rows, 

symmetrically under and above the umbilicus, spaced 7 cm apart (Figure 1.4.4). Therefore, three 

bipolar EHG were obtained in these studies.  

Two electrodes placed on the abdominal wall of the women were used in (Terrien et al., 2010). 

The interelectrode distance was 2.1 cm and they were placed on the uterine median axis, midway 

between the fundus and the symphysis. They used also a reference electrode placed on the hip of 

the women. 

Four electrodes were used  by Lucovnik et al. (Miha Lucovnik, 2010) positioned around the  

umbilicus  in a form of square shape. The distance between each two electrodes vertically and 

horizontally is fixed at 2.5 cm (measured from center to center) (Figure 1.4.5). For EHG 

recording they use differential, bipolar electrode pairs. 
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Several studies indicated that this small number of electrodes used was not sufficient for 

adequate analysis of the propagation in this complex environment represented by the uterine 

muscle and abdominal anatomy of a pregnant woman (Devedeux et al., 1993; Garfield and 

Maner, 2007). Therefore, a high number of electrodes is required. In this context, Karlsson et al 

(Karlsson et al., 2007) proposed a new recording system consisting of a grid of 16 monopolar 

electrodes (4 x 4) to study  the  propagation  of  the  uterine  electrical activity (Figure 1.4.6). The 

inter-electrode distance was 2.1 cm. They positioned the grid on the abdomen of the pregnant 

woman where the third electrode column of the grid is always on the uterine median vertical 

axis, and the 10-11
th

 electrodes are midway between the symphisis and the uterus fundus. They 

used also two reference electrodes placed on each of the women’s hip.  In order to increase the 

signal to noise ratio,  authors  used  the  vertical  bipolar  signals  (BPi),  giving  thus  a  3 x 4 

signal matrix.  

Rabotti et al (Chiara Rabotti et al., 2010; C. Rabotti et al., 2010) used a Refa system made of a 

multichannel amplifier for electrophysiological signals and a grid of 64 (8×8) high density 

electrodes (1mm diameter, 4 mm spaced). They used this system in order to estimate non-

invasively the conduction velocity of the EHG-action potentials (Figure 1.4.7). 

Finally, Mikkelsen et al. used three surface electrodes placed abdominally along the median 

vertical axis (Mikkelsen et al., 2013) (Figure 1.4.8). The inter-electrode distance was of 6.5–

11.2 cm.  

1.4.3 Multichannel System for EHG Recording 

A high spatial resolution is always needed in order to obtain a precise mapping of underlying 

electrical activity. In a labor room, the placement of a large number of electrodes for measuring 

EHG takes time and is difficult to perform. To tackle this problem, from 2007, a collaborative 

group from France and Iceland, involving biomedical researchers, engineers and medical 

doctors, created a new design that reduces the inconvenient of multiple electrodes positioning. 

They defining a standard position (also their size and number) for the recording electrodes. The 

main goal of this project was to better record and analysis the propagation and the characteristics 

of the uterine electrical activity during contractions. More details about this protocol will be 

described in the next chapter. 
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Usually, a single bipolar signal is obtained by subtracting the signals recorded by two close 

electrodes. The results from a preliminary study showed a very acceptable SNR (signal to noise 

ratio) on bipolar signals (Alexandersson et al., 2015). On the other hand, this configuration 

introduces a bias for studying the propagation, as two adjacent bipolar signals can share a same 

electrode. 

Therefore, monopolar EHG could be more interesting to get rid of this bias as well as to increase 

the spatial resolution when processing signals. For this reason, Hassan et al (Hassan et al., 2011) 

developed a specific denoising method to denoise monopolar EHG. Thus we obtain a correct 

SNR permitting to study the propagation of the electrical uterine activity from monopolar EHG. 

This method is based on combination of canonical component analysis (CCA) and on Empirical 

Mode Decomposition (EMD). In this work, we used this denoising method to obtain noise-free 

monopolar signals to study the synchronization of uterine activity.  

1.5 PROPAGATION ANALYSIS OF THE EHG SIGNALS 

Numerous studies have shown that the analysis of the propagation of the uterine electrical 

activity is a powerful tool to characterize and to discriminate pregnancy and labor contractions 

(Lammers, 2013; Miha Lucovnik, 2010; Rabotti et al., 2009) . This propagation phenomenon can 

be studied at a micro level when using invasive recordings but also can be studied at the skin 

level with abdominal electrodes. Some of these studies focused on the propagation pattern or on 

the velocity of the uterine activity in the uterus during pregnancy and labor. Others studied the 

propagation phenomenon by looking at the statistical couplings and delays (also called 

correlation/connectivity) between the different electrodes. In this section we will explain these 

different approaches. 

Propagation pattern 

Earlier studies on the propagation of the uterine electrical activity in labor (women or animal) 

found a predominant downward propagation where the origin of the burst is in the upper/ovarian 

region of the uterus in women and in the guinea-pig (Lammers et al., 2008; Mikkelsen et al., 

2013; Norwitz and Robinson, 2001; Planes et al., 1984; Rabotti et al., 2009). In other studies, on 

women, upward and multidirectional propagation patterns have been reported (Lange et al., 
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2014; Mikkelsen et al., 2013; Rabotti et al., 2009), while, a predominant upward direction of the 

uterine activity was revealed into women who delivered successfully vaginally (Buhimschi, 

2009; Euliano et al., 2009).  

In addition, many studies based their analysis on single spikes manually identified from the EHG 

bursts and not on the whole EHG burst. It was proven that the propagation of single spikes is 

more relevant to the prediction of labor than the analysis of the whole burst (Miha Lucovnik, 

2010; Lammers et al., 1994; Lammers, 1997; Melton and Saldivar, 1964; Miller et al., 1989).  

This propagation of the uterine electrical activity was studied not only on women but also on 

different species. In (Lammers et al., 1994) authors used a two-dimensional high-density grid in 

order to study the propagation in an isolated preterm rat myometrium as well as in the intact 

guinea-pig uterus at term (Lammers et al., 2008). In these studies, authors reported that the 

propagation of single spikes is unpredictable and can propagate spontaneously in a circular way. 

Sparse and fractionated spike propagation was reported in the uterus of the guinea pig at term 

when recorded in the placental insertion area (Lammers et al., 2008). Miller et al (Miller et al., 

1989), when studying rat uterine strips, reported a progressive recruitment in the axial direction 

preterm and not at term. Authors used an array of six extracellular glass-pore surface electrodes 

(3 mm apart). Other studies were done on the intact uterus of pregnant ewes using pairs of 

stainless-steel wires sewn into the myometrium of their uterus. They evidenced that individual 

spikes do not propagate among electrodes when their inter-distance is over 3 cm apart along the 

longitudinal as well as along the circumferential layer of the myometrium (Parkington et al., 

1988). 

Another way to analyze the propagation phenomenon is to measure the statistical coupling 

between recorded signals. This coupling analysis can be associated with the detection of a time 

delay. Duchene et al. were the first to study the correlation between EHG envelopes recorded at 

several sites in the uterus of delivering macaques (Duchene et al., 1990). More recently Diab et 

al. showed that the correlation of the uterine electrical activity spreads to the whole matrix and in 

all directions but remains more concentrated down, towards the cervix, when approaching labor 

(Diab, 2014).  
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Other studies focused their analysis on the activity of the uterus on the placental region. Weaker 

potentials, slower propagations, and a shorter length constant were found in microelectrode 

recordings in the placental region, in rat myometrium (Kanda and Kuriyama, 1980). Research on 

the pregnant cat showed that the placental region was less excitable and showed little or no 

spontaneous activity by using extracellular recordings (Daniel, 1960). 

 

Propagation Velocity 

Recently, an increasing number of studies on animals and women evidenced that the propagation 

of single electrical spikes in the myometrium is linear. This observation permits to measure the 

propagation velocity (Lammers et al., 1994; Lammers, 1997; Lammers et al., 2008; Miha 

Lucovnik, 2010; Rabotti and Mischi, 2010) . The propagation velocity of electrical spikes in the 

uterus was for the first time quantified in (Bozler, 1970) for the guinea-pig, the rabbit and the cat. 

Later, many studies have focused on the propagation velocity by using different recording 

methods on different species like guinea-pig (Bozler, 1970), cat (Bozler, 1970; Daniel, 1960), rat 

(Kanda and Kuriyama, 1980; Miller et al., 1989) and ewe (Parkington et al., 1988) . They 

reported values of propagation velocity for guinea-pig ranging from 0.1 to 0.3 cm/s (Bozler, 

1970), and for the cat, 6 cm/s in (Bozler, 1970), 9-10 cm/s in vivo and 8-12 in vitro  in (Daniel, 

1960). For the rat, authors in (Kanda and Kuriyama, 1980) obtained values of 6.6 ± 2.2 cm/s (at 

7 days gestational age (GA)), 12.3 ± 3.2 cm/s (at 15 days GA), 33.4 ± 4.1 cm/s (at 22 days GA) 

in non-placental regions; and 1.3 ± 0.4 cm/s (at 15 days GA), 2 ± 0.9 cm/s (at 22 days GA) in 

placental regions. In (Miller et al., 1989) the values were 9.2 ± 0.6 cm/s (in the longitudinal 

layers), 2.3 ± 0.7 cm/s (in the circumferential directions) in pregnancy, while the values in labor 

were 10.5 ± 1.3 cm/s (in the longitudinal layers) and 4 ± 0.8 cm/s (in the circumferential 

directions). 

Also in the intact uterus of pregnant ewes, Parkington et al. found that the propagation velocity 

in the longitudinal direction significantly increased from pregnancy (7.2 ± 0.3 cm/s) to labor 

(13.3 ± 0.7 cm/s) (Parkington et al., 1988). 

 The MMG was also used to determine the uterine contractions propagation velocity (Escalona-

Vargas et al., 2015). Results indicated that the propagation was multidirectional and ranged from 
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1.9-3.9 cm/s. Authors in (Wikland and Lindblom, 1985) reported a velocity ranging between 1 

and 2 cm/s using biopsies technique of the myometrium. In labor, Wolfs & van Leeuwen (Wolfs 

and van Leeuwen, 1979) estimated a slightly higher propagation velocity by using intrauterine 

technique (2.5-5 cm.s
-1

). Using a two-dimensional flexible grid comprising 64 electrodes, others 

authors quantified  the propagation velocity (PV) by analyzing either the propagation of whole 

bursts of EHG (Lucovnik, 2010) (Mikkelsen et al., 2013), or single spikes identified within 

bursts (Lucovnik, 2010)(C. Rabotti et al., 2010)(Lau et al., 2014)(de Lau et al., 2013). These 

studies reported a speed of 5.30 ± 1.47 cm/s for pregnancy and 8.65 ± 1.90 cm/s for labor. 

The combination of PV and peak frequency (PF) reported so far the highest classification rate 

(96%) to discriminate labor and non-labor contractions (Lucovnik, 2010). On a larger population 

of pregnant women, much higher figures of PV than the aforementioned studies have been 

reported in (Lucovnik, 2010). In these studies, authors used only two couples of standard bipolar 

surface electrodes.  

Mikkelsen et al. (Mikkelsen et al., 2013) used three electrodes placed on the median vertical axis 

of the abdomen and used as reference the center of mass of the EHG burst envelop for the 

calculation of the interchannel delay. By analyzing separately, the upper and the lower uterine 

segments, authors found average values equal to 2.15 and 1.53 cm/s respectively, with a 

variability between 0.66 and 13.8 cm/s and between 0.58 and 6.7 cm/s for the upper and lower 

uterine segment respectively (Mikkelsen et al., 2013). Recently, Lange et al. used two-

dimensional electrode grids of 16-channels for the EHG recordings. The estimated average 

propagation velocity was 2.18 (±0.68) cm/s for 35 contractions (Lange et al., 2014).  

None of the above reported studies is clinically used so far. Thus, advanced techniques for 

analyzing the propagation of the EHG are required. In the next section, we show that more recent 

studies used the correlation/connectivity between EHG signals as a new feature to analyze the 

propagation phenomenon.  

Connectivity/Correlation 

Studying the correlation/coupling between signals recorded from different channels is not new. It 

is widely used for EEG signals. This approach has been reported in different studies based on 

human or animal EHG recordings. Indeed, looking at the connectivity at the electrode level could 
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provide important information on the synchronization of the uterine activity. Marque et al. have 

used the linear correlation coefficient (r
2
) and noticed more correlation in low than in high 

frequencies (Marque, 1987). Duchêne et al. used autocorrelation, cepstrum and deconvolution 

function in order to study the uterine EMG propagation (Duchene et al., 1990). Their results 

show that no linear propagation can be evidenced from all developed methods. 

 The linear inter-correlation has been also used for EHG propagation analysis by Karlsson et al. 

(Karlsson et al., 2007). They used 16 electrodes for the EHG recording. They present both an 

animation of the evolution of the electric potential, as well as a temporal correlation presentation and 

they observed complex activation patterns.  

Mansour et al. used the inter-correlation function to analyze the propagation of the internal 

uterine EMG of a monkey using four internal electrodes (Mansour et al., 1996). The signals were 

first filtered into FWL and FWH frequency bands. Their results indicate that the correlation 

during labor is higher for FWL than for FWH.  

Other studies used the nonlinear correlation coefficient to estimate the relationships between 16 

EHG signals recorded by a matrix of 4x4 electrodes placed on the woman’s abdomen (Hassan et 

al., 2010) (Hassan et al., 2013; Muszynski et al., 2012). Authors showed a significant difference 

between pregnancy and labor contractions (Hassan et al., 2013) as well as an increase in the 

correlation of EHGs as labor approaches (Muszynski et al., 2012). 

Very recently, a comparative study was performed between several correlation measures applied 

to EHG signals (Diab et al., 2014). Authors used the nonlinear correlation coefficient (h
2
), 

General synchronization (H) and the Granger causality (GC). Authors tested the sensitivity of 

these methods to some characteristics of the signal (nonstationarity, frequency content) or of the 

recording protocol (bipolar or monopolar recording), in order to improve the performance of the 

coupling detection methods for the classification of EHG bursts recorded during pregnancy and 

labor. They processed EHG signals recorded from 48 women during pregnancy (174 

contractions) and labor (115 contractions), with a 16 electrode matrix (4x4). The h
2
 coefficient 

did not demonstrate any monotonic increase from pregnancy to labor. Therefore, authors tried to 

improve the performance of this method. They retained only the low frequency band of the EHG 

(FWL), which is supposed to be more related to the propagation of EHG, and proposed a time-



34 
 

varying approach. Using the combination of these two preprocessing steps, the obtained Filtered 

Windowed-h
2
 (FW-h

2
) demonstrated good performance with an increase from pregnancy to 

labor. 

Again, none of the above reported studies is clinically used so far. 

1.5.1 Proposed approach 

Preterm birth remains a major problem in obstetrics. Therefore, it has been a topic of interest for 

many researchers. As presented in the overview above, the uterus is a complex organ. 

Understanding how this organ works would be important to detect the onset of labor as well as to 

predict preterm labor. Among the many methods used to record the uterine contractility, the most 

used is the abdominal EHG, as being an easy to use and a non-invasive tool. Many studies have 

reported that the use of this signal could be a very powerful tool to monitor pregnancy and to 

detect labor. It indeed permits to access the uterine excitability (with only one EHG signal, 

monovariate approach) as well as the synchronization of the uterine activity, by using multiple 

signals (bivariate approach). 

It has been shown that the connectivity analysis gave promising results when using EHG 

recordings in clinical application, such as the classification labor/pregnancy contractions. Thus 

this thesis focuses on the analysis of the uterine synchronization by mean of the study of the 

connectivity between the recorded EHG signals  

However, in almost all previous studies, reported above, about the synchronization of uterine 

electrical activity (Diab, 2014; Hassan et al., 2013), authors estimated the correlation between 

multiple EHG signals by using different connectivity methods. On the one hand, EHG 

correlation matrices were often reduced keeping only their mean and standard deviations. 

Despite the encouraging results obtained, relevant information may have been missed due to this 

averaging, which may induce the relatively low classification rate reported so far. To 

characterize precisely the correlation matrix and quantify the associated connectivity, we propose 

in this thesis to use a network measure technique based on graph theory. This field has shown a 

growing interest in the last years, especially to characterize brain networks (Bullmore and 

Sporns, 2009; Rubinov and Sporns, 2010). According to this approach, the obtained correlation 
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matrix can be represented as graphs consisting of a set of nodes (electrodes) interconnected by 

edges (connectivity/correlation values between electrodes). On the other hand, recent works on 

the synchronization of the uterine activity used always a small database. In this thesis, we tackle 

this issue by using a larger database of multichannel EHG signals recorded from women during 

pregnancy and labor from two different clinical sites. 

The new framework, to analyze the EHG signals recorded during pregnancy and labor, proposed 

in this thesis is based on the characterization of the correlation between the uterine electrical 

activities and on its precise quantification by using graph theory approach. The processing 

pipeline includes i) the estimation of the statistical dependencies between the different recorded 

EHG signals, ii) the quantification of the obtained connectivity matrices using graph theory-

based analysis and iii) the clinical use of network measures for pregnancy monitoring as well as 

for the classification between pregnancy and labor EHG bursts. A comparison with the already 

existing parameters used in the state of the art for labor detection and preterm labor prediction 

will also be performed. We also investigate a new method to study the EHG source connectivity, 

to overcome the problem of computing the connectivity at the abdominal surface level.  
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2 CHAPTER 2: MATERIALS  AND 

METHODS  
In this chapter we present the materials and methods used in this thesis to study uterine 

connectivity, by using the graph theory applied to the electrode then to the source levels. We first 

present the previously used methods in the literature. Then we describe our new approach based 

on the graph theory where we use also a new correlation method. We also applied this new 

approach to uterine sources identified from the real EHGs, after source localization (uterine 

level). We thus describe both kinds of data used in this work: real and simulated EHGs. 

Simulated data were generated from a computational EHG model developed in our team. Then, 

we describe the experimental protocol used to record real EHG signals, the data acquisition and 

the different preprocessing steps.  A short synthesis finally describes the network-based analysis 

approach by using graph theory, for the two levels of our analysis: surface-level (abdominal 

electrodes) and source-level uterine networks (after a source localization step). 

2.1 PREVIOUSLY USED METHODS 
 

The propagation of the uterine electrical activity has been studied with different approaches, and 

on different species. We report here the main results presented in the literature for the monitoring 

of pregnancy and the detection of preterm labor. 

2.1.1 Propagation Velocity and Peak Frequency (PV+PF)  

Lucovnik et al. explored on pregnant women the performance of the Propagation Velocity (PV) 

in the differentiation between nonlabor and labor EHGs (Lucovnik et al., 2011). After estimating 

the distance d that the propagating signals travels, and the time t needed for crossing this 

distance, PV can be estimated by dividing the distance d by the time t.  For a given EHG, after 

computing the Peak Frequency (PF) from its power spectral density, the obtained PF value is 

then combined with its PV values by a simple summation of their values. 
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2.1.2 Conduction Velocity (CV) 

The Conduction Velocity (CV) was proposed by Rabotti et al. (Rabotti et al., 2009; C. Rabotti et 

al., 2010). Authors estimated the velocity and the direction of the propagation of individual 

spikes identified in EHG signals recorded on women. The delay of time between two electrodes 

on a given row is tr and on a given column is tc. The velocity v and the angle of propagation Ѳ 

were computed using the equations: 

𝑣 = 𝑓𝑠

𝑑𝑐𝑜𝑠(𝜃)

𝜏𝑟
 

𝑣 = 𝑓𝑠

𝑑𝑠𝑖𝑛(𝜃)

𝜏𝑐
 

 

              

(1) 

 

where fs is the sampling frequency. For more details, see (C. Rabotti et al., 2010). 

PV and CV were mainly applied to single spikes identified within bursts, not to whole uterine 

burst. In this work, we have computed PV and CV on the whole EHG burst to process the same 

signals as with the other methods used in this thesis, and to be able to compare their results. 

Furthermore, these spike-based methods address only le local propagation, that can be related to 

close electrical tissue diffusion. In our work, we are interested in the analysis of the global 

synchronization of the uterine activity. For this global approach, the whole burst based 

connectivity measure is more pertinent. Moreover, the processing of the whole burst needs no a 

priori concerning which peak is supposed to be propagating, only tools for the burst 

segmentation (Khalil, 1997). Its use will therefore be more convenient for clinical purpose than 

the peak-based one. 

 

2.1.3 Correlation analysis 

Here, we refer to the correlation with the term ‘connectivity’ which represents the statistical 

couplings between two time series. Functional connectivity is defined as a temporal correlation 

between different signals recorded from different channels without any other information about 

the correlation direction, whereas effective connectivity describes the influence or causal effects 

that one signal exerts on another one (Friston, 1994), taking thus into account the direction of the 

information flow between the 2 signals (Lehnertz, 2011). In our work, we are interested in the 
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functional connectivity methods. In this section, we introduce different measures of functional 

connectivity. The classical linear (R
2
) and nonlinear (h

2
) correlation coefficients (Hassan et al., 

2013), its modified version (FW-h
2
) proposed by (Al-Omar et al., 2015; Diab, 2014) (this last 

method being chosen as demonstrating the highest performance for uterine EHG) as well as the 

imaginary part of the coherence (Icoh) proposed by (Nolte et al., 2004) will be presented in this 

section. 

2.1.3.1 The cross-correlation coefficient (R
2
) 

The cross-correlation method measures the linear correlation between two variables X and Y in 

the time domain. The estimation of this coefficient for the two-time series X(t) and Y(t) is 

performed by using the following equation: 

  𝑅2 = 𝑚𝑎𝑥
𝜏

𝑐𝑜𝑣2(𝑋(𝑡), 𝑌(𝑡 + 𝜏))

𝑣𝑎𝑟(𝑋(𝑡))𝑣𝑎𝑟(𝑌(𝑡 + 𝜏))
 

 

(2) 

 

where var and cov denote respectively the variance and covariance between the two-time series 

X(t) and Y(t).𝜏 denotes the time shift (Ansari-Asl et al., 2004). R
2
 was calculated by 

maximizing 𝜏. R
2
 varies between 0 (X and Y are independent) and 1 (X and Y are fully 

correlated). 

2.1.3.2 The nonlinear correlation (h
2
) 

The nonlinear correlation coefficient (h
2
) is a bivariate method that estimates the degree of 

dependence between two variables. The method is computed from the signals X (t) and Y (t), by 

considering that the value of X is seen as a function of the value of Y. Then the value of Y can be 

predicted according to a nonlinear regression curve when given X. The variance of Y according 

to this regression curve is termed as the explained variance, since it is explained or predicted by 

the knowledge of X. The unexplained variance is estimated by subtracting the explained variance 

from the original one. The correlation ratio, h
2
, describes the reduction of variance of Y that can 

be obtained by predicting the Y values from those of X, according to the regression curve, as h
2
 = 

(total variance - unexplained variance)/total variance. 

 In practice, to estimate the nonlinear correlation coefficient h
2
, we study a scatter plot of Y 

versus X. We subdivide the values of X into bins; for each bin, we calculate the average value of 
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X (pi) and the average value of Y (qi). The regression curve is approximated by connecting the 

resulting points (pi, qi) by straight line segments (Pereda et al., 2005). Then, the nonlinear 

correlation coefficient between the two signals X and Y is calculated as follows: 

 

 

The estimator ℎ𝑌/𝑋
2  ranges from 0 (Y is independent of X) to 1 (Y is fully determined by X) and 

the nonlinear correlation coefficient is asymmetrical so  ℎ𝑌/𝑋
2  ≠  ℎ𝑋/𝑌

2  and thus permits to give 

information on the direction of the information (Hassan et al., 2013; Wendling et al., 2001). This 

asymmetry feature is not explored in our work as we are interested only in the presence or not of 

a nonlinear relationship between two signals. 

2.1.3.3 Filtered Windowed h
2
 (FW-h

2
) 

The Filtered Windowed h
2
 is the modified version of the nonlinear correlation coefficient h

2
 

proposed by Diab et al (Diab, 2014). This method showed highest performance in labor detection 

when compared to other methods. When trying to improve the performance of nonlinear 

correlation method, Diab et al. (Diab, 2014) focused on overcoming some of the weaknesses in 

the methodology, as well as on getting free from the natural filtering effect due to inter-

individual varying fat thickness during signal recording. Based on the hypothesis that the 

propagation of EHG in more related to low frequency bands (FWL: 0.1 - 0.3 HZ) (Gondry et al., 

1993), this new method consists of filtering the data in the low frequency bands. The 

contractions will be then segmented by using the bivariate piecewise stationary signal pre-

segmentation (bPSP) algorithm proposed in (Terrien et al., 2008). This algorithm uses an 

automatic segmentation procedure of the EHG that search for the longer locally adapted 

stationary parts. 

 Authors (Diab, 2014) found that using a combination of these two preprocessing steps, the 

obtained Filtered-Windowed- h
2
 (FW-h

2
) yielded the best results in the classification between 

labor and pregnancy with a clear increase from pregnancy to labor. Although the encouraging 

results obtained in this study, the processing time of the segmentation is very long.  

hY/X
2

=
∑ Y(k)

2
-N

k-1 ∑ (Y(K)-f(Xi))
2N

k-1

∑ Y(k)
2N

k-1

 

 

(3) 
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The above classical R2 and h
2
 as well as the recent FW-h

2
 correlation-based methods will be 

compared with the features reported in the state of the art for the propagation of the uterine 

electrical activity. We remind here that none of the previously used methods gave results 

consistent enough to be used for clinical diagnosis of preterm labor. New approaches are thus 

needed to improve the robustness of the results. 

2.2 PROPOSED APPROACH 

2.2.1 Imaginary part of coherence (Icoh) 

Volume Conduction problem 

One major problem when estimating the interactions between surface-level signals is the so-

called ‘volume conduction’ problem. This term is used to describe the effects of recording and 

processing an electrical activity at a distance from its source generator. As an example, the 

diffusion process through this volume conduction (different tissues layered between the source 

and the recording electrodes) can induce a correlation between several signals even if the single 

sources are independent. This effect mainly occurs because the activity of a single source is 

mapped simultaneously by many sensors. In fact, the volume conduction plays a significant role 

in almost all noninvasive electrophysiological recordings, since the sensors are never in direct 

contact with the sources generating the signals (Westdrop, 1993). Therefore, volume conduction 

substantially affects the results of connectivity measures. This problem has been clearly defined 

and partly tackled in the context of brain network analysis using EEG (Holsheimer and Feenstra, 

1977; Nunez et al., 1997; Srinivasan et al., 2007; van den Broek et al., 1998). Several methods 

have been proposed to deal with this problem such as the imaginary part of the coherence 

(ICOH) proposed by Nolte et al. (Nolte et al., 2004). 

Coherence is a measure that has been widely used to detect the relationships between time series 

in the frequency domain. The weakness of coherence is that it is strongly affected by volume 

conduction. Recently new methods have been proposed in order to solve this problem by taking 

only the imaginary part of the coherence (Nolte et al., 2004). The hypothesis behind this method 

is that the real part of the coherence function reflects the zero lag interactions between signals 

which means a fake interaction and thus the imaginary part of the coherence may reflects the true 

interactions which the real correlation between signals (Nolte et al., 2004). The ICOH, a 
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promising tool for functional connectivity measurement of the EEG signals, has not been used 

yet for the EHG connectivity analysis. We thought that it could be interesting to test it on our 

signals and to compare it with the other methods. 

The coherence (C) function gives the linear correlation between two signals X and Y as a 

function of the frequency. It is defined as their cross-spectral density function CXY normalized by 

their individual auto-spectral density functions CXX and CYY. The imaginary part of coherence 

(Icoh) is then defined as:  

 

Icoh varies between 0 (X and Y are independent) and 1 (X and Y are fully correlated). This new 

connectivity analysis will be tested in this work and compared to the previously used method. To 

quantify the connectivity computed with these different methods over the whole matrix of EHG 

signals, we will use the graph theory approach.  

2.2.2 Graph theory 

The “Graph theory” started with the scientist Euler in 1936 when he tried to find a solution for 

the question: “What is the best path across the seven Köningsberg bridges?” (Figure  2.1(1)) 

(Boccaletti et al., 2006). This path that was called later “Eulerian path” should cross over each of 

the seven bridges exactly once (Figure  2.1(2-3)).  From such problems, the field of graph theory 

has developed numerous algorithms that can be applied into many domains. Later on, this 

approach has been largely used in several fields such as biological system, internet networks and 

social groups (Newman, 2002). 

𝐼𝑐𝑜ℎ = 

|𝐼𝑚𝐶𝑋𝑌(𝑓)|

√|𝐶𝑋𝑋(𝑓)||𝐶𝑌𝑌(𝑓)|
  

 

(4) 
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In biology and medicine, network analysis includes different application such as drug target 

identification, determining a protein or gene function, designing effective strategies for treating 

various diseases or providing early diagnosis of disorders (Pavlopoulos et al., 2011). Protein-

protein interaction (PPI) networks (Pellegrini et al., 2004), biochemical networks, transcriptional 

regulation networks, signal transduction or metabolic networks (Jeong et al., 2000) are the 

highlighted network categories in systems biology often sharing characteristics and properties. 

Graph theory has also been recently applied in neuroscience, and is nowadays considered as a 

promising research frontier topic in the field of brain connectivity analysis (Bullmore and 

Sporns, 2009; Rubinov and Sporns, 2010). 

2.2.2.1 Definitions 

A graph is an abstract representation of a complex system, consisting of a set of nodes (N), 

sometimes called vertices, associated with a set of connections, links or edges (E) (Figure  2.2).  

The edges in a graph can have different meaning, depending on the measured connectivity. 

Indeed, depending on the connectivity method, different types of graph can be obtained, which 

are related to the presence or absence of directions and weights for the edges. The weight can 

represent the strength of the connection, or some physical distance between the two connected 

vertices. According to this, four different types of graphs can be defined: 

Figure  2.1 The seven Köningsberg bridges problem 
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Figure  2.2 Definition of the graph. 

 Binary (or unweighted) undirected: where there is no information about direction of 

information flow and weights of connection; the edges are absent (0) or present (1). 

(Figure  2.3a) 

 Weighted undirected: there is information about edges weight but not about their 

directions (Figure  2.3 b). 

 Binary (or unweighted) directed: when we know the direction of edges, but not about 

their weights. Edges direction represents the fact that one vertex exerts some influence on 

its neighbor (Figure  2.3 c). 

 Weighted directed: there are information about both direction and weights of the edges 

(Figure  2.3 d). 

The graphs obtained from a functional connectivity are undirected while from effective 

connectivity the graphs are directed.  A graph can also be represented by a square matrix (N x N) 

called the “adjacency matrix”. This adjacency matrix indicates if there is an edge between each 

pair of nodes in a graph. For undirected graphs the adjacency matrix is symmetrical (Bullmore 

and Sporns, 2009) (Boccaletti et al., 2006). In our case, the nodes represent the electrodes 

(N=16) and the edges represent the value of the connectivity measure. 

A weighted graph G
W

 = (N, L, W) consist of a set N= {n1, n2,..,n3} of nodes, a set L={l1,l2,,….,lk} 

of links (or edges), and a set of weights W= {w1, w2,….., wk} that are real numbers attached to the 

 

Edges, Connections, Links 

Nodes, Vertices 
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links. A weighted graph can be drawn as in Figure 2.3b with the thicknesses of the links 

representing their weights.  

 

Figure  2.3 The different graph types obtained from the types of connectivity. Functional 

connectivity leads to: (a) Unweighted (Binary) Undirected graph and (b) Weighted Undirected 

graph. Effective Connectivity leads to: (c) Unweighted (Binary) Directed graph and (d) 

Weighted Directed graph 

2.2.2.2 Graph parameters 

Several metrics can be extracted from a graph: 

1) Strength 

The strength shows the importance and the contribution of each node with respect to the rest of 

the network. The strength of a node is the sum of the weights of the edges connected to this node 

and can be defined as: 

Si = ∑ 𝑤𝑖𝑗

𝑗∈𝑁

.                   (5) 
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where i, j denotes respectively the i
th

 , j
th

 nodes and wij is the value (weight) of the relation 

between nodes i and j (Rubinov and Sporns, 2010). The average strength value over all the nodes 

can be also computed, indicating the overall characteristic of the network (Figure  2.4 a). 

2) Density 

The network density is the actual number of edges in the graph as a proportion of the total 

number of possible edges. Connection weights are ignored in the calculation. It is one of the 

basic estimator of the physical cost of a network (Bullmore and Sporns, 2009). The density can 

be estimated as follow:  

D =
∑ 𝑎𝑖𝑗𝑗∈𝑁

𝑛
. 

                  (6) 

where aij=1 if there a link between nodes i and j (Figure  2.4 d). 

3) Clustering Coefficient 

Clustering coefficient is a graph measure introduced by Watts and Strogatz (Watts and Strogatz, 

1998). This measure captures the degree to which the neighbors of a given node link to each 

others. For a node i with degree ki the local clustering coefficient is defined as the fraction of 

triangular connection around the node. 

Ci = 
2ti

ki(ki-1)
 . (7) 

where ti denotes the number of triangular connections around the node and ki(ki-1) the maximum 

possible number of edges in the graph (Muñoz-Martínez, 2000; Watts and Strogatz, 1998). 

The clustering coefficient is a measure between 0 (none of the neighbors of node i link to each 

other’s) and 1 (the neighbors of node i form a complete graph, i.e. they all link to each other’s). 

Ci is the probability that two neighbors of a node link to each other. Consequently, C = 0.5 

implies that there is a 50% chance that two neighbors of a node are linked. 
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To sum up, Ci measures the network’s local link density: The more densely interconnected the 

neighborhood of node i, the higher is its clustering coefficient (Figure  2.4 b).  

4) Local efficiency 

Local efficiency is an alternative measure of the clustering properties of a graph (Boccaletti et 

al., 2006). It is the inverse of the shortest path parameter between a pair of nodes.  

 

E = 
1

N(N-1)
∑

1

dij
i,j∈N, i≠j

 .  (8) 

where i, j denotes respectively the i
th

 , j
th

 nodes, dij is the value of the shortest path length 

between nodes i and  j (Freeman, 1978) (Figure  2.4c). 

 

 

Figure  2.4: Measures of network. (a) Strength: the sum of weights of links connected to the 

node (orange). (b) Clustering coefficient: triangle counts (green) (c) The Efficiency based 

on the shortest path length (yellow) (d) Density: fraction of present connections to possible 

connections (Gray and blue). 
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2.2.3 Source localization 

Another original feature of this work is to study the uterine connectivity first, classically at the 

abdominal surface level, where the methods (connectivity measures) are applied to the EHGs, 

and then at the uterine level, where the analysis is applied to the uterine electrical sources. These 

uterine sources have first to be estimated from the surface-level recordings, the EHGs, by solving 

the so-called inverse problem. Generally speaking, this inverse problem consists of estimating 

the internal sources S(t) from the surface signals X(t) (here the EHGs). The main advantage of 

this approach is to analyze directly to the sources that generate the EHG signals. Source 

reconstruction has been widely applied to EEG (Hassan et al., 2013)(Hassan et al., 2014) (Becker 

et al., 2014; Hassan et al., 2014, 2016; Hauk, 2004; López et al., 2014; Montes-Restrepo et al., 

2014) and MEG (Hauk et al., 2011; Mattout et al., 2006). To our knowledge, the source 

localization has been applied on uterine EHG very recently, for the first time, by Marque et al. 

(Marque et al., 2015). Source localization requires two processing steps: i) the forward problem, 

to model the path from the source to the surface signals; ii) the inverse problem, going from real 

surface signals to the estimated sources. 

2.2.3.1 Forward problem 

The forward problem is used to define the path of signal propagation from the sources (here the 

uterine muscle) to the recorded sites (here the electrodes on the abdominal skin) (Mideksa et al., 

2013). This problem involves calculating the electric potentials generated by known current 

sources for a given anatomical model.  

Forward modeling is done in our case based on a volume-conduction model that describes the 

geometrical and electrical properties of the tissue in the abdomen above the uterus. The volume 

conduction often requires a geometrical description of the tissue boundaries contained in the 

abdomen (Mideksa et al., 2013). 

The volume conductor model that we first used in this work for the forward problem, assumes 

that the abdomen above the uterus consists of a set of 3D meshes, made of triangulated surfaces, 

representing the uterine muscle, the abdominal muscles, the fat, and the skin. If the 

conductivities for each of these regions are isotropic and constant, the electric potentials can be 

expressed in terms of surface integrals. Thus, the forward EHG problems can be solved 

numerically using the boundary-element method (BEM) (Gramfort et al., 2010; Hall, 1994; 
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Kybic et al., 2005). The BEM is a numerical technique for estimating the surface potentials 

generated by known sources. This method is still widely used because of its low computational 

needs. The method was first used in the field of electrocardiography (Hallez et al., 2007)., then in 

the field of EEG source localization in (Hallez et al., 2007). BEM provides a solution by 

calculating, for a given predefined volume, the potential values at the interfaces and boundary of 

the volume, induced by a given current source simulated by a current dipole. The interfaces 

separate regions of differing conductivity within the volume, while the boundary is the outer 

surface separating the non-conducting air with the conducting volume (Hallez et al., 2007). In 

our case, BEM calculates the potentials/fields of the non-intersecting homogeneous regions 

bounded by the uterine muscle, abdominal muscle, fat, and skin surface boundaries, giving thus a 

representation of the links existing between any point of the uterine muscle, as a possible source 

(dipole), and any point of the skin surface recording possible for EHG recording. This link, 

known as the leadfield matrix, will then be used for the inverse problem. 

2.2.3.2 Inverse problem 

As for other biological signals, the uterine activity can be estimated from surface EHGs by 

solving an ill-posed inverse problem that is regularized using anatomical and mathematical 

constraints (Grech et al., 2008). An increasing interest in current dipole reconstruction 

algorithms has occurred during the past few years. All these algorithms have in common that 

elementary dipoles are distributed on regular grids (Fuchs et al., 1999). The calculation of the 

strengths and position of these dipoles usually leads to a highly under determined system of 

equations – the number of unknown dipole P components (the sources) is greater than the 

number of channels M (the recorded EHGs).  

According to the linear discrete equivalent of current dipole model, EHG signals X(t) measured 

from M channels can be expressed as linear combinations of P time-varying current dipole 

sources S(t) as follow:  

𝑋(𝑡) = 𝐺. 𝑆(𝑡) + 𝑁(𝑡) (9) 

 

where G is the leadfield matrix of the dipolar sources and N(t) an additive noise. 

The inverse problem consists of finding an estimate Ŝ(t) of the dipolar source parameters 

(typically, the position, orientation and magnitude), given the EHG signals X(t) and given the 
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gain matrix G already computed from a multiple layer uterus model (volume conductor) and 

from the position of electrodes by using BEM by means of the forward problem step. 

Several algorithms have been proposed to estimate the sources moments based on different 

spatial and temporal assumptions (Groetsch, 1993; Vogel, 2002). Here we chose to evaluate 3 of 

the most commonly used algorithms (in the context of brain sources localization): the Minimum 

Norm Estimate (MNE), the weighted Minimum Norm Estimate (wMNE) and the standardized 

Low Resolution brain Electromagnetic Tomography (sLORETA), presented below. 

1) Minimum Norm Estimate (MNE) 

The Minimum Norm Estimate was proposed by Hämäläinen and Ilmoniemi in (Hämäläinen and 

Ilmoniemi, 1994)  Its concept is to search for the solution with the minimum power. This type of 

estimations is well suited to distributed source models where the dipole activity is likely to 

extend over some areas of the surface. 

A common equation for MNE resolution matrix is written as follow: 

ŜMNE =(G
T
G+αI)

-1
G

T
X (10) 

where 𝐼 is the identity matrix and 𝛼 is the regularization parameter that weights the influence of 

priors in the solution. 

2) Weighted Minimum Norm Estimate (wMNE)  

The Weighted Minimum Norm Estimate compensates for the tendency of MNE method to favor 

weak and surface sources. This algorithm concept is to modify the general expression of the 

MNE method by introducing a weighting matrix W, giving thus: 

�̂�𝑤𝑀𝑁𝐸 =  (G
TWG+αI)−1G

TWX (11) 

where W adjusts the properties of the solution by reducing the bias inherent to MNE solutions. 

Generally, W is a diagonal matrix that is estimated from matrix G, with non-zero terms inversely 

proportional to the norm of the lead field vectors. 

 



50 
 

 

3) Standardized low resolution brain electromagnetic tomography (sLORETA)  

Standardized low resolution brain electromagnetic tomography (sLORETA) (Grech et al., 2008) 

is a method in which the localization is based on images of standardized current density. As 

input, the sLORETA uses the current density estimate evaluated by the minimum norm estimate 

ŜwMNE then it standardizes it, based on its variance. 

�̂�𝑠𝐿𝑂𝑅𝐸𝑇𝐴 =  �̂�𝑀𝑁𝐸,𝐼
𝑇 {|𝑉𝐷|𝐼𝐼}−1�̂�𝑀𝑁𝐸,𝐼  (12) 

 

where: 

 �̂�𝑀𝑁𝐸,𝐼
𝑇  is the current density estimate at the I

th
 voxel given by the minimum norm estimate  

 𝑉𝐷  is the variance of the estimated current density �̂�𝑀𝑁𝐸,𝐼
𝑇  

 {|𝑉𝐷|𝐼𝐼} is the I
th

 diagonal block of 𝑉𝐷 defined as 𝐺𝑇[𝐺𝐺𝑇 + 𝛼𝐼]−1.  

 

The choice of 𝛼 is important and many approaches have been proposed for its estimation. 

Although there is no agreement on any optimal solution, our focus in this study is to compare 

different methods for our new approach based on inverse solutions and connectivity estimates. 

We thus choose to use the same value of 0.28 for the three inverse algorithms, as the inverse of 

the signal to noise ratio of our abdominal EHG real signals. 

We used these three inverse problem methods in order to estimate the uterine sources from real 

EHG signals. Connectivity methods and graph theory parameters will then be extracted from 

these estimated signals, as they are extracted from surface EHGs. 

2.3 DATA 
 

We first applied our new approach, developed for the quantification of the uterine activity 

connectivity (connectivity measures associated to graph theory), to real EHG signals (abdominal 

level). These signals have been recorded on women, during pregnancy or during labor, 

preprocessed, and used to test the clinical power of this new quantification of uterine 

contractility, for the monitoring of pregnancy and the detection of preterm labor. 
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We also applied this new approach to uterine sources identified from the real EHGs, after source 

localization (uterine level). We have had thus to use simulated EHG signals, in order to first test 

and compare the efficiency of the different source localization presented above, before using 

them for source localization from real EHGs. 

We describe in this section both kind of data used in this work: real and simulated EHGs. 

2.3.1 Real EHGs 

Experimental protocol 

We used a standard protocol, defined in a previous study, to record the electrical activity of the 

uterine muscle. This protocol uses a grid of 16 monopolar electrodes (4x4 matrix) placed on the 

woman's abdominal skin, with two reference electrodes on each of her hips. The hip is chosen as 

the reference site as there is little electrical activity under the electrode and the distance from the 

reference electrodes to the abdominal electrodes is small. The standardized system uses Ag/AgCl 

electrodes (8mm diameter, with 17.5 mm distance between the centers of two adjacent 

electrodes), an alignment frame, a double-sided hypoallergenic adhesive sheet and a silicone 

backing. The alignment frame was used to align and attach the double-sided adhesive sheet to the 

silicone backing. The electrodes were then placed into the holes of the silicone backing and 

attached to the adhesive sheet. The abdominal skin of the woman was carefully prepared by 

using an abrasive paste and cleaned with alcohol solution. The electrode holes are filled with 

electrode gel and then the electrode matrix is placed on the abdomen.  

The grid position on the abdomen is standardized as: the third column of the electrode grid has to 

be located on the median vertical axis of the uterus; the 10th–11th pair of electrodes has to be 

located midway between the uterine fundus and pubic symphysis (Figure 2.5a). We avoid the 

navel by moving the matrix up or down whilst staying as close as possible to the desired 

position. We also prepare the skin over the iliac crests on both sides in the same procedure as for 

the abdomen. A ground electrode and a reference electrode with electrode gel were then attached 

on each side using adhesive washers. A tocodynamometer (TOCO) was also attached to the 

abdomen during recordings. The measurements were performed using a 16 channels multi-

purpose physiological signal recorder (Embla A10). A typical example of the electrodes and 
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tocodynamometer sensor placement is illustrated in Figure 2.5b. The electrode numbering 

repartition, as seen when looking at the abdomen of the woman is as presented in Figure 2.5c. 

If the woman was in pregnancy, she was asked to seat in recliner chairs and a support, such as a 

small pillow, was positioned under the right side of the participants to prevent potential aorto-

caval compression syndrome. For labor recordings, the woman was lying on her bed in the 

maternity room. The woman was asked to sign an informed consent form and the declaration of 

Helsinki was respected in all aspects. The duration of a pregnancy recording was about one hour 

and the duration of a labor recording was at least half an hour (depending on the delivery 

conditions). 

After the recording, we followed the pregnant women in order to label their signals as either 

pregnancy or labor. Women were considered in labor if they were measured a maximum of 24 

hours before delivery, thus their EHGs were labeled “labor”. If the delivery occurred later, the 

signals were labeled “pregnancy”. The sampling frequency was 200 Hz, after using an 

antialiasing filter (Low-pass 100 Hz). The data were recorded at the Landspitali university 

hospital (Reykjavik, Iceland) using a protocol agreed by the Icelandic ethical committee 

(VSN02-0006-V2) and at the Center for Obstetrics and Gynecology (Amiens, France), using a 

protocol agreed by the French ethical committee (ID-RCB 2011-A00500-41).  

 

Figure  2.5 The grid of 4*4 electrodes system used for the uterine EHG measurement. (a) 

The grid position on the woman abdomen. (b) The recording system composed of the grid of 

electrodes, two references electrodes and the TOCO sensor. (b) The electrodes numbering 

on the grid when looking at the woman abdomen 
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Data Pre-processing  

The bursts of EHG related to uterine contraction (muscle activity) were segmented manually 

based on the tocodynamometer trace recorded simultaneously. The tocodynamometer paper trace 

(reflecting the mechanical activity of the abdomen) was digitalized in order to ease the 

segmentation of the uterine contractions (figure 2.6a).  

The EHGs are corrupted by different artifacts, such as the mother cardiac activity, electronic 

noises, drip pump noise… Thus, the segmented bursts were then denoised by using a CCA-EMD 

method, developed in the team (Hassan et al., 2011). This algorithm is a combination of blind 

source separation using canonical correlation analysis (BSS_CCA) and empirical mode 

decomposition (EMD) methods, permits to efficiently denoise monopolar EHGs. An example of 

the obtained signals is illustrated in Figure 2.6. The figure presents the digitized TOCO trace 

 

Figure  2.6 : Segmentation and Denoising of the recorded EHG signals. (a) TOCO signal used 

for segmentation. (b) Monopolar raw EHGs. (c) Monopolar EHGs after denoising. 
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(Figure 2.6a), the monopolar recorded signals (Figure 2.6b) and the monopolar signals after 

denoising (Figure 2.6c). After segmentation and denoising, we obtained 183 labor and 247 

pregnancy bursts. These contractions were extracted from 35 healthy women. Detailed 

information on the women enrolled in our study is presented in Table A. 1 (Appendix A). 

 

2.3.2 Simulated EHGs 
 

Studying the global synchronization of the uterus at the source level, by using noninvasive 

signals (recorded real EHGs) could be a very important tool for clinical purpose. In this part of 

our work, we used simulated EHGs signals to test and compare the efficiency of the different 

source localization and connectivity methods, in order to then use the best ones for processing 

the real EHGs. As source localization from real EHGs is based on solving the inverse problem, 

the performance of the different inverse problem should be first tested on simulated network 

obtained. For this aim, we used a realistic model developed in our team, to simulate EHGs 

(Yochum et al., 2016). This model permits us to control the number, position and activity of the 

uterine sources (network of sources) used to simulate the EHGs. The original simulated network 

is called the “ground truth”. This ground truth will then be compared with the estimated, one 

after application of the different methods, in order to identify the best inverse/connectivity 

combination to be applied to real EHGs. We present in this section the uterine model and the 

different simulated networks, based on this model, used as ground truth to test the methods. 

 

EHG model 

The model is multi-scale. It combines different sub-models of the uterine smooth muscle 

behavior, going from the electrical activity, generated at the cellular level, to the abdominal level 

where the EHGs are simulated. This model is also multiphasic. It computes also the mechanical 

force generated by the muscle, and from these forces, the deformation of the uterine tissue.  

The electrical model, adapted from the Hodgkin-Huxley model, describes, at the cell level, the 

ionic currents involved in the uterine cell activity, as well as the diffusion of the electrical 

activity to the neighboring cells. As outputs of this model we get first Vm, the cell electrical 

potentials at the uterine muscle surface. These Vm propagate through the volume conductor 
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model (modeling the 3 layers: abdominal muscle, fat, and skin) and are then integrated via the 

electrode model to simulate the EHGs.  

The second output of interest of the cellular electrical model is the intracellular calcium 

concentration, which is then used as an input parameter of the force model that gives the force 

generated by each active cell. The last step is to simulate the deformation of the uterine muscle at 

the tissue and organ levels. This is done by moving the cells depending on their generated force, 

by using a simple visco-elastic model of the tissue behavior, based on the classical Kelvin-

Voight model (Yochum et al., 2016).  

The co-simulation of the electrical and the mechanical models is done on a realistic 3D uterine 

mesh. Figure  2.7 presents the uterine mesh that we used for the simulations. This mesh was 

obtained from the FEMONUM project (http://fmonum.telecom-paristech.fr/) that offers the 

scientific community 3D fetal, uterine and abdominal meshes extracted from MRI imaging 

(Bibin et al., 2010). This figure displays the original mesh including the fetus mesh (head 

downwards), seen from the mother's left side. This mesh contains 99 084 vertices, where the 

surface of each vertex is 1.74 mm
2
. Each vertex is associated with an electrical and a force 

models. Each edge of this mesh is associated to an electrical diffusion process and to a Kelvin 

Voight model, in order to be able to co-simulate the electrical propagation and the tissue 

deformation. As illustrated in Figure  2.8 we were able to generate delayed uterine activity in 

 

Figure  2.7: Uterine and fetal mesh (Yochum, Laforêt, and Marque 2016) 

 

http://fmonum.telecom-paristech.fr/
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multiple zones just by introducing short delays between the simulation start times of the 

activated zones. A noise was also added to the simulated source signals. This noise was obtained 

based on real signals recorded from monkeys (Terrien, 2005). An example of the monkey uterine 

EHG signals is presented in Figure 2.9. We use these signals to estimate the SNR value (3.59 db) 

that permitted us to define the level of noise added to the simulated source signals. 

The simulation time was 45 seconds (the average period of a real contraction) and the sampling 

frequency was 200 Hz. In our case we have activated 1000 cells. We have considered in our 

work three different scenarios, described below.  

Scenario 1 

In this scenario a single network fully connected was generated. We have activated 1000 regions 

that were grouped into sixteen zones depending on their Euclidian distance. We have labeled 

these zones by their number (from 1 to 16). In this scenario, signals of 45 s at 200 Hz were 

simulated. All regions are activated at the same start time (t0=0s). After simulation, a noise is 

added to these signals. (Figure  2.10a) . 

 

 

 

 

Figure  2.8: Simulated Uterine EHG signals from source cells 



57 
 

Scenario 2 

In the second one we have generated an interconnected network. As in the first case, the regions 

are grouped into sixteen zones. In this case, only four zones were activated (zones 1, 3, 5 and 6). 

The signals of zones 1 and 6 started at t0=0s, while a time delay was added to signals of zones 3 

and 5.  The zones 3 and 5 were highly correlated with zones 1 and 6, but with a delay (30s). 

(Figure  2.10b). 

Scenario 3 

In this case, we have activated created two interconnected networks. The signals of zone 1, 2, 3, 

4, 5 and 14 were activated. Thus we created two interconnected networks that are also connected 

to each other together. (Figure 2.10c). 

 

Figure  2.9 Example of an EHG signal recorded in the uterus of a monkey 
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Figure  2.10 The different scenarios network. (a) Ground truth of scenario 1. (b) Ground truth of 

scenario 2. (c) Ground truth of scenario 3. 

2.4 WORK CONTENT 

The work in this thesis in divided into two main parts i) the analysis of the connectivity at the 

level of abdominal sensors (EHG) and ii) the analysis of the connectivity at the level of uterine 

sources. 

2.4.1 Connectivity on surface level  

The complete pipeline of our approach is presented in Figure 2.11 The first step consists in 

recording the uterine contractions by using a grid of 4x4 electrodes (Figure 2.11a). The EHG 

signals are then segmented and denoised (Figure 2.11b). The third step is to compute the 

connectivity between the denoised signals using different connectivity methods (Figure 2.11c).  
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Figure  2.11 Structure of the investigation. (a) Multichannel EHG recordings using a grid of 4x4 

electrodes. (b) Segmentation and filtering of EHG signals. (c) Pair-wise connectivity matrix. (d) 

Characterization of connectivity matrices using network measures (e) Graphs used for 

pregnancy monitoring along week of gestation . (f) Statistical study based on the extraction of 

graph parameters. (g) Classification of labor/pregnancy. 

The connectivity matrix obtained with each method can be represented by a graph (Figure 

2.11d). These graphs are computed from uterine pregnancy and labor EHG contractions at 

different term (Figure 2.11e). Several measures can be extracted from the obtained graphs based 

on graph theory (Figure 2.11f). These measures are then used to evaluate the clinical impact of 

the proposed approach in the classification between labor and pregnancy contractions and for 

pregnancy monitoring (Figure 2.11g). 

2.4.2 Connectivity at the source level 

The main objective in this second part is to estimate a corresponding graph for the electrical 

activity of the uterus at the source level. Therefore, it is important to find the best combination 
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inverse problem/connectivity methods. We based this analysis on the simulated networks 

described previously. We explain the complete pipeline of this analysis below. 

As illustrated in Figure  2.12, a given simulated network was generated at the source level. 

Surface EHG signals were obtained by solving the forward problem with the uterine model 

previously described. The volume conductor contains: the myometrium (where the source is 

located) with conductivity = 0.2 S/m and depth = 0 (the source are supposed to be located at the 

surface of the uterine muscle); the abdominal muscle with conductivity 0.3 S/m, and thickness = 

0.936 cm; fat with conductivity = 0.04 S/m and thickness = 2 cm; and skin with conductivity = 

 

Figure 2.12: Structure of the investigation. First, a given network is generated by the model and 

considered as the ‘ground truth’. The statistical couplings are then computed between the 

original sources by using three different methods (R
2
, h

2
 and Icoh). By solving the forward 

problem, we generate synthetic EHGs. These signals are then used to solve the inverse problem 

in order to reconstruct the sources by using three different inverse solutions (MNE, wMNE, 

sLORETA). The statistical couplings are then computed between the reconstructed sources by 

using the same different methods (R
2
, h

2
 and Icoh). The identified network by each combination 

(inverse/connectivity) was then compared with the original network using a ‘network similarity’ 

algorithm. 
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0.5 S/m and thickness = 0.2 cm. The corresponding leadfield is computed by using the Boundary 

Element Method (BEM) with OpenMEEG (Gramfort et al., 2010). After the estimation of EHG 

signals we added to these signals different SNR values. From these simulated EHG signals, 

source activity was estimated by using three inverse algorithms (wMNE, sLORETA and MNE).  

After the reconstruction of sources, functional connectivity was estimated by using three 

methods (R
2
, h

2
, Icoh). In all the scenarios (scenario 1, 2 and 3), the connectivity matrices were 

16x16. These matrices were thresholded by saving edges with the highest weight values. We 

have tried different threshold values in order to investigate the effect of threshold on the results. 

Threshold value ranged from 50% to 5%. These thresholds were applied on the matrices 

obtained with all the combinations (inverse/connectivity).  

In order to compare the reference uterine network, simulated from the ground truth modeled in 

each scenario, with the network identified from simulated surface EHG by each of the 

inverse/connectivity combination, we used the simNet algorithm (Mheich et al., 2015). The main 

advantage of this algorithm is that it takes into account the spatial location (3D coordinates) of 

the nodes when comparing two networks. The algorithm provides a normalized Similarity Index 

(SI) between 0 (totally different graph) and 1 (same graph).  

Once identified the best methods, the source localization was applied, for real EHG, on the 

segmented contractions (see section 2.3.1) using the best inverse/connectivity combination 

methods. The same thresholding procedure was also applied for the 16x16 connectivity matrices  

2.4.3 Statistical tests 

We used the Wilcoxon test in order to test the significance differences obtained between 

different situations. The Wilcoxon test is a nonparametric test used without a constraint about the 

distribution to be normal. This test can be also applied when the samples have unequal size 

(Wilcoxon, 1992).  

To evaluate the classification performance of the different features, we used the Receiver 

Operating Characteristic (ROC) curve analysis  (Metz, 1978; Zweig and Campbell, 1993). ROC 

curve is a fundamental tool for diagnostic classification test evaluation. In a ROC curve the true 

positive rate (Sensitivity) is plotted in function of the false positive rate (100-Specificity) for 
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different cut-off points of a parameter. Each point on the ROC curve represents a 

sensitivity/specificity pair corresponding to a particular decision threshold. The area under the 

ROC curve (AUC) is a measure of how well a parameter can distinguish between two diagnostic 

groups (in our case labor/pregnancy). 

In our case if we are looking if a woman is in the labor phase or not, the definition of specificity 

and sensitivity will be then as follows: 

Specificity is the probability that a test result will be negative when the patient is not in labor 

(true negative rate, expressed as a percentage). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (13) 

 

Sensitivity is the probability that a test result will be positive when the patient is in labor (true 

positive rate, expressed as a percentage). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

where TP, TN, FP and FN stand respectively for True Positive, True Negative, False Positive 

and False Negative values. 

2.4.4 Software 

On real data, we used the matlab based Brain Connectivity Toolbox (BCT) for the calculation of 

graph parameters (Rubinov and Sporns, 2010). For the surface-level graph visualization, we used 

‘GEPHI’ software (Bastian et al., 2009). For the simulated data, we used Python programming 

language using the ‘Pycharm Edu 2.0.3’ software (www.jetbrains.com). For the network 

visualization, we used ‘mayavi’ toolbox on the same software. 

file:///C:/Users/nadernou/Dropbox/redaction_Noujoud_katy/www.jetbrains.com
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3 CHAPTER 3: EHG CONNECTIVITY 

ANALYSIS DURING PREGNANCY AND 

LABOR 

3.1 OVERVIEW 

In most previous studies, the EHG correlation matrices were reduced by keeping only their 

average. Despite the encouraging results obtained, relevant information was missed due to this 

averaging. To characterize precisely the correlation matrix and quantify the associated 

connectivity, we used here analysis tools based on graph theory. As presented in Chapter 2 

section 2.4.1, the aim of this work is to characterize the connectivity between the noise-free EHG 

signals using different connectivity methods and the graph theory. The obtained connectivity 

matrix is thus represented by a graph where electrodes represent the nodes and the edges 

represent the connectivity values. These graphs are computed from pregnancy and labor uterine 

contractions at different terms. Several measures are then extracted from the obtained graphs by 

using graph theory. These measures are used to evaluate the clinical impact of the proposed 

approach in the context of classification between labor and pregnancy contractions. 

A total number of 247 pregnancy and 183 labor contractions were segmented from 35 women. In 

order to differentiate between these two groups, we have computed three connectivity methods: 

r
2
 (Ansari-Asl et al., 2004), FW_h

2
 (Diab, 2014) and Icoh (Nolte et al., 2004).  r

2
 has been used 

in  (Marque et al., 1987); authors noticed more correlation in low than in high frequencies. 

FW_h
2
 has been chosen as demonstrating the highest performance for uterine EHG in (Diab, 

2014). The imaginary part of the coherence (Icoh), proposed in (Nolte et al., 2004) was shown to 

reduce efficiently the effect of volume conductor (in the context of brain connectivity).  These 

methods are bivariate, thus they should be computed over all the pair-wise combinations of the 

16 channels.  We obtain a connectivity matrix (graph) for each contraction and each method. We 

have then tested the performance of each method for the classification between pregnancy and 

labor contractions. To investigate the added value of the graph measures, we have compared the 
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results given by each graph metric with the ones obtained by the approach previously used in the 

context of EHG correlation analysis (average of the values of each connectivity matrix). The 

results are also compared to the metrics mostly used in the literature, mainly PV+PF (Lucovnik 

et al., 2011) and CV (de Lau et al., 2013; Rabotti et al., 2009) by using ROC curves. We used 

here three graph metrics, described in the previous chapter,: Strength (Str), Efficency (Eff), 

Clustering Cofficient (CC) (Boccaletti et al., 2006; Rubinov and Sporns, 2010). We have also 

used the density parameter when visualizing the graphs. 

3.2 PREGNANCY VS. LABOR CLASSIFICATION 

In this section, the contractions are grouped into two groups: pregnancy and labor. 

3.2.1 Graph measures 

We present the ROC curves obtained for the different tested methods.  

 

Figure  3.1 ROC Curves for Icoh
 
without and with using graph analysis. CC_icoh, Eff_icoh, 

strength_icoh represents respectively the results obtained with CC, Eff, Str parameters 

computed from the connectivity values obtained by Icoh. Icoh represents the roc curve of 

the results obtained using Icoh without graph.  
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Figure 3.1 shows the ROC curves obtained for the imaginary part of coherence (Icoh) 

without/with graph measures. The area under curve (AUC) was higher when using the graph 

parameters for Icoh. For instance, AUC increases from 0.504 (Icoh) to 0.801 (Icoh/Str). CC, Eff 

and Str showed a good classification rate, with the highest AUC for Str. Eff presents an (AUC) of 

0.797, with 82% sensitivity and 72% specificity, while CC has an AUC of 0.785, with 78 % 

sensitivity and 73% specificity. Str presents the highest AUC (0.801), with 82 % sensitivity and 

71 % specificity 

 

 

Figure  3.2 ROC Curves for FW_h
2 

without and with using graph. strength_Fw_h
2
, Eff_Fw_h

2
 

and CC_Fw_h
2
 represents respectively the results obtained with Str, Eff and CC parameters 

computed from the connectivity values obtained by Fw_h
2
. Fw_h

2 
represents the roc of the 

results obtained by Fw_h
2 

without graph 

 dhbhd 

 

Figure 3.2 s\vfs 
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 In Figure  3.2 we present the results obtained by using the filtered windowed h
2
 (Fw_h

2
).  In this 

 

Figure  3.3 ROC Curves for r
2 

without and with using graph analysis. strength_r
2
, Eff_r

2
 

and CC_r
2
 represents respectively the results obtained with Str, Eff and CC parameters 

computed from the connectivity values obtained by Fw_h
2
. R

2 
represents the roc of the 

results obtained by R
2
 without graph. 
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Figure  3.4 Roc Curves for the Comparison of CV, PV+PF and Icoh/Str. 
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case, the AUC increases from 0.658 when using only FW_h
2
 to 0.77 when using graph measure 

(Str). Eff presents an (AUC) of 0.693, with 80% sensitivity and 49% specificity, while CC has an 

AUC of 0.661, with 72 % sensitivity and 53% specificity. Str presents the highest AUC (0.762), 

with 84 % sensitivity and 58 % specificity.  

The results obtained when using the linear correlation (r
2
) are presented in Figure  3.3. The AUC 

when using only r
2
 (AUC (r

2
) =0.669) is very close to the ones obtained when using graph 

measures. The AUC of r
2
/Eff is 0.676, with 61% sensitivity and 71% specificity. CC has an AUC 

of 0.664, with 59 % sensitivity and 72%. Str gives AUC of 0.664, with 59 % sensitivity and 70 

% specificity.  

Finally, we compare the results obtained with the parameters mostly used in the literature: the 

peak frequency combined with the propagation velocity (PF +PV) and the conduction Velocity 

(CV), both computed from the whole bursts. The results of this comparison are presented in 

Figure  3.4.  The AUC obtained with the CV was 0.495, with sensitivity and specificity 54% and 

55 % respectively, while for PV+PF the AUC was 0.789, with 73% as sensitivity and 79 % as 

specificity. Icoh/Str presents the best AUC (0.801) when computed these 3 methods from the 

whole EHG burst.  

Table 3.1 summarizes the results obtained from this first analysis. The best overall performances 

are obtained by using the strength parameter computed from the connectivity obtained by using 

the Icoh connectivity method. This observation confirms the interest of this new connectivity 

method, Icoh less sensitive to the volume conductor effect. It confirms also the interest of using 

graph parameters rather than the average of the whole connectivity matrix. The results are better 

when using the graph parameters, except for r
2
 that always gives poor classification results. We 

will thus use this combination of methods, Icoh + Strength (Icoh/Str), in the following work. 
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TABLE  3.1   COMPARISON OF SIGNIFICATIVITY IN LABOR VERSUS  PREGNANCY CLASSIFICATION FOR 

DIFFERENT PARAMETERS 

  Sensitivity (%) Specificity (%) AUC 

ICOH 30 72 0.504  

Icoh / Eff 82 72 0.797 

Icoh / CC 78 73 0.785 

Icoh / Str 82 71 0.801 

FW_h
2
 83 43 0.658 

FW_h
2  

/ Eff 80 49 0.693  

FW_h
2  

/ CC 72 53  0.661 

FW_h
2  

/ Str 84 58 0.762  

r
2
 57 74  0.667 

r
2
 / Eff 61 71  0.676 

r
2
 / CC 59 72  0.665 

r
2
 / Str 59 70  0.665 

CV  54 55  0.495  

PV+PF 73 79 0.789 

3.2.2 Graph visualization 

Figure  3.5 shows the graphs averaged on the 247 pregnancy (a-c), and the 183 Labor (b-d) 

contractions when using Icoh as connectivity method. The difference between densities over all 

contractions of labor and pregnancy groups is not significant (Wilcoxon test, p=0.384).  

In Figure  3.5a and Figure  3.5b, we represent each graph in a topographic way, as the grid of 4x4 

nodes (electrodes) located on the woman’s abdomen during recoding. The edges present the 

connectivity values between two electrodes. Figure 3.5c and Figure 3.5d, illustrate the same 

graphs in a circular layout. The thickness of each edge depends on its weight (here the Icoh 

values). The size of a node depends on its Str value. This representation permits to synthetize in 

a more visual way the connectivity values and graph parameters between all nodes. Figure 3.5c 

and 3.5d show that the nodes 1, 5 and 12 have the highest Str values, and that the weights are the 

highest (thickest edges) between nodes 1-5 and nodes 5-12 for the labor graph. 
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3.2.3 Node-Wise Analysis 

In this analysis we computed the graph measures for each electrode and then performed a 

statistical test at the level of each node, in order to test if some electrode locations are more 

efficient than others to discriminate between pregnancy and labor contractions. To investigate 

the possible difference between pregnancy and labor, we plotted a boxplot for these two classes 

on each electrode when using the three parameters described above. Figure  3.6a, show an increase 

in the Str values from pregnancy to labor with noticeable differences for all the electrodes. We 

 

Figure  3.5 Graph results using Icoh. (a) Mean pregnancy graph. (b) Mean labor graph 

 

 

Pregnancy Labor

(a) (b)

(c) (d)
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used the Wilcoxon test in order to test the significance of these differences. The results for Str 

parameter are shown in Table  3.2.  These results indicate that all the differences between labor 

and pregnancy Icoh/Str are significant (p<0.01, corrected for multiple comparison using 

Bonferroni method), whatever the electrode. The same results are obtained with Icoh/CC 

 

(a) Str  

 

(b) Eff  

 

(c) CC 

Figure  3.6 Boxplots of three parameter values in pregnancy and labor on 16 nodes 

(electrodes). All the differences are significant (p<0.01). (a) Str (b) Eff (c) CC 
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(Figure  3.6b) and Icoh/Eff (Figure  3.6c). There is always an increase in these parameter values 

from pregnancy to labor for all the electrodes. The differences between labor and pregnancy of 

these parameters are significant (p<0.01, corrected for multiple comparison using Bonferroni 

method), whatever the electrode. 

We can conclude from this analysis that there is no obvious preferred location of the electrode 

for the discrimination between pregnancy and labor contractions when using the Strength graph 

parameter computed from the Icoh connectivity values. 

TABLE  3.2 WILCOXON TEST RESULTS BETWEEN LABOR AND PREGNANCY AT EACH NODE 

(ELECTRODE) FOR ICOH/STR PARAMETER  

Nodes 
p_value Nodes P_value 

Node 1 5.76E-11 Node 9 
6.94E-11 

Node 2 1.33E-07 Node 10 
1.72E-08 

Node 3 6.53E-05 Node 11 
8.69E-10 

Node 4 7.14E-08 Node 12 
2.79E-10 

Node 5 4.93E-13 Node 13 
8.66E-08 

Node 6 1.15E-11 Node 14 
0.00111 

Node 7 8.71E-09 Node 15 
0.000119 

Node 8 7.69E-07 Node 16 
0.000322 

3.3 PREGNANCY MONITORING 

3.3.1 Graph Measures and Visualization 

To investigate the evolution of the uterine muscle connectivity all along pregnancy until labor, 

we have parted the uterine contractions in weeks before labor (WBL). For more details, see 

Chapter 2 section 2.2.2. The performance of the proposed approach for the monitoring of 

pregnancy evolution along term is presented in Figure  3.7. Figure  3.7a shows the evolution of the 

average Str values for each woman at each WBL. There is no clear evolution for all the terms 

before labor (8WBL to 1WBL), while an increase between 1WBL and Labor groups is clearly 
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noticed. The Str value for the most of the contractions (170/197) remains under 0.04 during 

pregnancy, unlike for the labor group. The regression curve of these results follow the same 

trends:  almost no evolution between weeks before labor, with a noticeable increase between 

1WBL group and labor group. 

Figure  3.7b-h presents the corresponding averaged circular graphs for the different terms. We can 

notice that the number of significant edges in the averaged labor graph (Figure  3.7h) is higher 

than for the different terms. In terms of node Str, no clear difference can be noticed between all 

the pregnancy groups (Figure  3.7b-g), unlike in the Labor graph where the nodes are larger than 

those of the other graphs. The same remark applies to edges thickness where edges in labor 

graph are the thickest.  

 

 

Table 3.3 summarizes the density values for the different graphs. The density value is the highest 

(0.5) for the Labor graph and ranges between 0.425 (8WBL) and 0.475 (4WBL) with a mean 

 

Figure  3.7 (a) Evolution of Icoh/Str with week before labor. Each point represents the Str value 

of one contraction for a given woman. Mean graph for: (b) 8WBL. (c) 6WBL. (d) 4WBL. (e) 

3WBL. (f) 2WBL. (g) 1WBL. (h) Labor. 
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value of 0.433 ±0,024.  

 

 

Table 3.3 Density values for each group 

Group 
Density value 

Group 
Density value 

8WBL 0.425 2WBL 0.442 

6WBL 0.433 1WBL 0.417 

4WBL 0.475 Labor 0.5 

3WBL 0.408   

3.3.2 Node Wise Analysis 

To evaluate, for a given electrode, the evolution of Icoh/Str along term, we have computed the 

value of Icoh/Str for each node and each available week of gestation group.  We showed the 

results for node number 12 in Figure  3.8. Node 12 has a higher Str value in labor than in 

 

Figure  3.8 Boxplots of Str values for node 12 from with week before labor. Mean graph for: 

(b) 8WBL. (c) 6WBL. (d) 4WBL. (e) 3WBL. (f) 2WBL. (g) 1WBL. (h) Labor.   
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pregnancy and a very low Wilcoxon p value between labor and pregnancy. 

Figure  3.8a shows that all the Str values during pregnancy stay relatively small. There are no 

clear differences between the term groups from 8WBL to 1WBL, while an increase between 

1WBL and Labor groups is noticeable.  We present in Figure  3.8b-h the corresponding averaged 

graphs for each of the term groups. We highlighted in each graph only node 12 and the nodes to 

which it connects. As usual, the thickness of the edge represents the weight (Icoh value) and the 

diameter of a node represents its Str. We can notice in the labor graph that node 12 is associated 

to a higher number of significant edges (Figure  3.8h). It is indeed connected to 11 nodes over the 

15 possible, unlike during pregnancy, where node 12 connects to a maximum of 6 nodes, 

whatever the pregnancy group (Figure  3.8b-g). In terms of Str (diameter of the node), no clear 

difference can be noticed between all the WBL graphs.  

 

However, during labor node 12 is clearly larger (higher Str) than for all the pregnancy groups. 

We then computed the statistical differences between all the terms by using the Wilcoxon test. 

results are presented in Table  3.4. No significant difference was observed between the pregnancy 

groups (p>0.01), except between 8WBL and 2WBL (p=0.009). A significant difference was 

always obtained between labor and all the other groups (p<0.01 corrected for multiple 

comparison using Bonferroni).  

Table  3.4 Statistical analysis of the difference between weeks before labor and labor groups at 

each node for Str parameter  

 
8wbl 6wbl 4wbl 3wbl 2wbl 1wbl Labor 

8wbl 
 

0.576 0.025 0.672 0.009 0.427 < 0.0001 

6wbl No diff 
 

0.017 0.547 0.02 0.296 < 0.0001 

4wbl No diff No diff 
 

0.067 0.457 0.131 0.0001 

3wbl No diff No diff No diff 
 

0.037 0.748 < 0.0001 

2wbl diff No diff No diff No diff 
 

0.029 0.005 

1wbl No diff No diff No diff No diff No diff 
 

< 0.0001 
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Labor diff diff diff diff diff diff 
 

3.4 LONGITUDINAL ANALYSIS PER WOMAN 

Some women (N=14) in our database have been recorded several times all along pregnancy. For 

these women, we have computed the Icoh/Str values at each week. The performance of the 

proposed approach for the monitoring of pregnancy evolution along term is presented for each 

woman. For example, woman W35 has been recorded four times at: 7WBL (11 contractions), 

4WBL (7 contractions), 3WBL (9 contractions) and 1WBL (9 contractions).  

 In Figure  3.9 we present the evolution of the average Str values after using the Icoh as 

connectivity method for Woman W35 for her recorded terms. No clear difference can be noticed 

between the Str values. No significant difference was observed between these groups (p>0.01). 

We present the evolution of the same parameter for the other women that have been recorded 

several times in Appendix B. We have also computed the mean graph at each term for this 

woman. Results are presented in Figure  3.10. It is clear that there is no difference between the 

mean graphs of 7WBL, 4WBL and 3WBL while a slight difference is noticed in 1WBL graph in 

 

Figure  3.9 Evolution of Icoh/Str with week before labor for Woman W35. Each point 

represents the Str value of one contraction for this woman.  
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terms of edges thickness and nodes diameter. The density of these graphs slightly increases from 

0.417 (7WBL) to 0.492 (1WBL).  

In our database we could record women not only in their pregnancy phase but also in labor. To 

investigate if this network reconfiguration is related to the labor process and not only resulted 

from the simple evolution of gestation, we selected contractions from the same women recorded 

in pregnancy and labor. A typical example is presented in Figure  3.11 for woman W3. This 

woman has 9 contractions during pregnancy (5WBL, 2WBL, 1WBL) and 10 contractions in 

Labor. A clear difference is noticed between the mean pregnancy graph (Figure  3.11a) and the 

mean Labor graph (Figure  3.11b). Edges in labor graph are more frequent and thicker and nodes 

are larger; which mean high values in term of edges weight and node Strs.  

3.5 WEEK OF GESTATION 

In order to investigate the possible usefulness of this approach for a clinical practice, we used the 

term count used in clinical practice, the Weeks of Gestation, WG (counted from the time of the 

last menstrual period). This term counting permits to test if the pregnancy evolution differs from 

labor for the same given WG term. We selected contractions from women recorded at the same 

term, 39 WG, but some being already in labor (labor group) and the others having delivered later 

(pregnancy group). We have 11 contractions from 5 women in the pregnancy group, and 41 

contractions from 5 women in labor. We present in Figure  3.12 the difference in the connectivity 

networks for these two groups recorded at 39WG. A clear difference is noticed between the 

mean graph of Pregnancy (Figure  3.12a) and the mean graph of Labor (Figure  3.12b) in term of 

edges number, weight and node strength. All these values are higher in the Labor group. Results 

 

Figure  3.10 Mean graphs for woman W35 contractions in each term 
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in other weeks 

of 

gestation (37, 38 and 40) are presented in Appendix C. Mean graphs for all the contractions of 

each week of gestation are presented in Appendix D. The contractions in the weeks under 37 

week of gestation are in pregnancy and in 41 and 42 week of gestation they are in labor.  

3.6 DISCUSSION AND CONCLUSION 

In this chapter, we have presented the results of a novel approach aiming at characterizing the 

functional connectivity of the uterine electrical activity. We investigated the ability of the EHG 

network-based analysis to characterize the evolution of uterine contractions from pregnancy to 

labor and to discriminate pregnancy and labor contractions. Previously, the connectivity matrices 

computed between EHGs were usually transformed into a single value per contraction, by 

averaging the connections weights of each matrix, for instance in (Hassan et al., 2013). 

Consequently, useful information was certainly lost. The graph theory based analysis used here 

is indeed a better way to characterize the whole connectivity matrix, taking into account all the 

characteristics of the network. In this study, the graph theory based analysis has been proven to 

be more efficient to quantify connectivity matrices for normal pregnancy and labor contractions 

than the previous averaged classical quantification of the connectivity. However, the method 

showed lower performance for pregnancy monitoring, as no significant changes were observed 

between the different pregnancy weeks before labor. These results are more specifically 

discussed hereafter. 

 

Figure  3.11 Graph results for Woman W3. (a) Mean pregnancy graph 

(b) Mean labor graph 
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Increase of synchronization with term 

This network-based approach has improved the classification between pregnancy and labor. The 

results obtained with Icoh/Str (AUC=0.801) were higher than those obtained by PF+PV (AUC = 

0.789), as well as by CV (AUC=0.495). It is however difficult to compare these results with the 

reported good performance of PV/CV in previous analysis (Lucovnik et al., 2011); (de Lau et al., 

2013; Rabotti et al., 2009) as these metrics were computed differently. PV and CV were usually 

applied to single spikes not to whole uterine burst which may explain the reported poor results of 

both methods in our study. We have computed PV and CV on the whole burst to standardize the 

computation way, and to be able to compare with the correlation-based methods. These poor 

results of CV and PV do not put any doubt about the high performance of CV and PV when used 

on single spikes as reported in (C. Rabotti et al., 2010). But, with the whole burst approach, 

getting free from spike identification may present a huge advantage from the applicative clinical 

point of view. 

Nevertheless, a classification rate of 80% between labor and nonlabor groups is still not 

clinically sufficient. A possible improvement of these results is, first the use of the EHG source 

connectivity approach (as realized recently in the context of brain connectivity) (Hassan et al., 

2014) and the possible combination of different features related to different physiological 

phenomena. 

 

Figure  3.12 Mean graphs for EHGs recorded at 39WG: (a) Pregnancy, 

(b) Labor. 
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One of the results obtained from this work based on graph theory, and on whole burst analysis, is 

that we did not evidence any increase in synchronization with increasing pregnancy term, but an 

abrupt increase during labor. This increase in the Str, Eff, and CC values from pregnancy to labor 

was noticeable for all the electrodes. This finding disagrees with the previously reported results 

using EHG when using the nonlinear correlation coefficient on a smaller dataset (Hassan et al., 

2013) or MMG-based studies where authors showed an increase in synchrony as the women 

approach active labor (Govindan et al., 2015). A possible explanation for this increase in 

connectivity only during labor can be related to the propagation phenomenon, associated with the 

appearance of a large number of gap junctions just prior to labor (Garfield and Hayashi, 1981).  

It could be also related to as the electromechanical coupling proposed by Young as one of the 

synchronization process appearing before and during labor (Young, 2007).  

It is important to notice that all women included in our study gave birth at term (none of the 

births was premature). Our study showed the possible use of a new promising approach to first 

characterize the uterine bursts during pregnancy and labor and secondly, to classify normal 

pregnancy and labor contractions. To validate the clinical impact of the approach, the method 

should be applied to data from women with premature labors. In addition, different steps in our 

approach, such as the manual burst segmentation also should be automatized in order to bring 

this approach the clinical use.   

Limitations 

First, a classical and still unsolved difficult question relates to the setting of threshold values 

applied to the connectivity matrices/measures. In this study, the same threshold value was used 

for each method/WBL or WG to standardize the analysis (10% of the maximum connectivity 

values). Other threshold values were also investigated (10% to 50%) and gave the same 

differences between methods and conditions.  

Other approaches can be also explored like those based on surrogate data, but they require a 

higher computation time.  

Another unsolved question that presents a big limitation for this study is that we cannot record 

always the same woman in all pregnancy and labor phases, due to the hospital and subject 

availability. Only few women (14) of our database have been recorded several times. Indeed, it is 

difficult to record contractions during pregnancy as the contraction number is very low during 



80 
 

most of pregnancy. Furthermore, the women being available for recording only when present at 

the hospital (for standard follow up, or hospitalization for risk pregnancy), due to the short 

duration of their availability, we got very few contractions for most of recordings. Nevertheless, 

results on women recorded in different terms gave similar conclusion than the results on the 

whole database. An increase in labor was also shown for a woman that was recorded in 

pregnancy and labor phases.  

 It is also important to keep in mind that the estimation of the functional connectivity at the 

electrode (surface abdomen) level can be affected by the volume conduction influence. The 

volume conduction induces that different channels actually measure the activity of a same 

uterine source. To tackle this problem, we used in this work the imaginary part of the coherence 

function, as it was proven to have a high performance to reduce this effect in the context of brain 

connectivity (Nolte et al., 2004). Moreover, in the context of electroencephalography, the 

connectivity analysis at the brain source level showed a considerable reduction of the effect of 

the volume conduction when compared to the scalp level (Hassan et al., 2015). One possible 

improvement to the results reported in this study is to adapt the ‘source connectivity’ approach to 

the uterine muscle, by localizing the sources of the EHG at the uterine muscle level, which is the 

subject of the next chapter. 

In conclusion, we showed that network-based approach can be used successfully to first 

characterize uterine electrical activity during pregnancy and second classify pregnancy and labor 

contractions. We speculate that this new approach could have a clinical impact for detecting 

alterations in the uterine networks connectivity in relation with the contractions recorded during 

preterm labor threat in order to detect as soon as possible preterm labor. 
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4 CHAPTER 4: EHG SOURCE 

CONNECTIVITY ANALYSIS 

This chapter presents the results obtained when studying the connectivity at the level of the 

source identified from the EHG. We started by evaluating the effect of the two key steps 

involved in EHG source connectivity processing: i) the algorithm used in the solution of the 

inverse problem and ii) the method used for the estimation of the functional connectivity. We 

evaluate three different inverse solutions (to reconstruct the dynamics of uterine sources) and 

three connectivity measures (to compute statistical couplings between the reconstructed sources). 

The networks obtained by each combination of the inverse/connectivity methods were compared 

to a reference network (ground truth) generated by the model. This approach was then applied to 

real EHG signals. 

4.1  OVERVIEW 

In this chapter, we evaluate the performance of the new approach called “EHG source 

connectivity” where the objective is to estimate the functional networks of the uterine electrical 

activity after source localization. This approach contains mainly two steps: first, solving EHG 

inverse problem and second, source connectivity estimation. Therefore, it is crucial to find the 

best combination (inverse/connectivity) that may give the best results. To do so, we used data 

generated by means of the EHG model previously described (see Chapter 2 Section 2.3.2).  

We first generated simulated data at the source level for each defined scenario. Then we 

simulated the related surface EHGs by solving the forward problem. The leadfield corresponding 

to each simulated scenario was computed using the Boundary Element Method (BEM), 

OpenMEEG software (Gramfort et al., 2010). From these simulated EHGs, the source activity 

was estimated by using three different classical algorithms for solving the inverse problem: 

wMNE (Hämäläinen and Ilmoniemi, 1994), sLORETA (Grech et al., 2008)  and MNE 

(Hämäläinen and Ilmoniemi, 1994). 

Then we used three connectivity methods, R
2 

(Ansari-Asl et al., 2004), h
2 

(Pereda et al., 2005), 

Icoh (Nolte et al., 2004) to compute the connectivity matrices both from the simulated sources 
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(reference network) and from the reconstructed sources. These matrices were then thresholded 

with different threshold values, by keeping a proportion of the highest connectivity values.  

In order to compare the reference network and the network identified after reconstruction of the 

sources, by using each one of the inverse/connectivity combination, we used the simNet 

algorithm (Mheich et al., 2015). This algorithm takes into account the spatial location (3D 

coordinates) of the nodes when comparing two networks. It provides a normalized Similarity 

Index (SI) between 0 (totally different graph) and 1 (same graph).  

The source connectivity approach was also applied to real EHG data, (see Chapter 2 section 

Erreur ! Source du renvoi introuvable.).  

4.2 RESULTS ON SIMULATED DATA 

1) Scenario 1 

The results obtained in the case of the first network scenario are illustrated Figure  4.1 for the 9 

different combinations of the source reconstruction and functional connectivity methods. Visual 

inspection of these results permit to say that the networks identified by using the different 

combinations fit more or less with the reference network (Figure  4.1B). Indeed, as for the 

reference network, all the 16 zones are connected to each other, but with difference in the weight 

values of the different edges (Figure  4.1A). For a given connectivity approach, changing the 

inverse method modifies the network topology. When using h
2
 or R

2
, MNE gives the closest 

graph in contrast with sLORETA. When using Icoh, the graph topology does not drastically 

change when changing the inverse method.  On the same way, for a given source localization 

approach, changing the functional connectivity measure changed, qualitatively, the network.  

The quantification of these differences is provided in Figure  4.1C. Overall, values of network 

similarity were relatively high and ranged from 66 to 78%. For a given connectivity approach, 

changing only the localization algorithm slightly modified SI values for h
2
 and R

2
 (5%). For a 

given source localization approach, the SIs changed when changing the connectivity method, by 

7% for wMNE, 10% for sLORETA and 12% (the highest change) for MNE. Results obtained by 

using h
2
 were on average better than with R

2
 and Icoh. The combination providing the highest 
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similarity values between the estimated and the reference network was MNE/h
2
 (78.2%) 

followed by sLORETA/h
2
 (76.3%) and sLORETA/R

2
 (76.2%). Icoh gives the lowest similarity 

whatever the localization algorithm. Results obtained with MNE/h
2 

were significantly closer to 

the reference network than the other ones (Wilcoxon rank-sum test, p<0.01, corrected using 

Bonferroni). 

2) Scenario 2 

The results obtained in the case of a single intra-connected network scenario are illustrated 

Figure  4.2, for the 9 different combinations of the source reconstruction and functional 

connectivity methods. The visual investigation of these results revealed that networks identified 

by using the different combinations of methods present important differences from the reference 

network (Figure  4.1B).  

The qualitative analysis showed also that the number of connections between the different zones 

varied according to the combination of methods used. For a given connectivity approach, 

changing the localization method modify more or less the network, depending on the 

connectivity method. On the other hand, for a given source localization approach, the functional 

connectivity measure changes qualitatively the network only for Icoh. h
2
 or R

2
 combined with 

sLORETA give the network that best matched the reference network. 

The quantification of these differences is provided Figure  4.2C. Overall, values of the Similarity 

Index are low and range from 16% to 27%. For a given connectivity approach, a change in the 

localization algorithm modifies the SI values for h
2
 (4%) and R

2
 (8%), not for Icoh. For a given 

source localization approach, the change in SI values is smaller for wMNE (7%) than for MNE 

(10%), and sLORETA (10%). Results obtained by using h
2
 were on average better than by using 

R
2 

and Icoh. The combination providing the highest similarity values between the estimated and 

the reference network was sLORETA/h
2
 (27.8%), followed by sLORETA/R

2
 (27.7%) and. 

wMNE /h
2
 (27%). Icoh gives the lowest similarity whatever was the localization algorithm. 

Similarly, for scenario 2, the results obtained with sLORETA/h
2 

and sLORETA/R
2
 were 

significantly closer to the reference network than the other ones (Wilcoxon rank-sum test, 

p<0.01, corrected using Bonferroni). 
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3) Scenario 3 

In this scenario we have simulated two interconnected networks. As for the previously scenario, 

this scenario presents connections between distant nodes. The results obtained in this case 

(Figure 4.3A) indicate that the networks identified by all the combinations present important 

difference from the reference network (Figure  4.3B).  

The networks slightly change for a given connectivity measure. The results of h
2
 (whatever the 

inverse solution algorithm) provide the closest result to the reference network, while Icoh 

showed, visually, the farthest result from this reference network whatever the inverse problem 

method.  

Values of network similarity are reported in Figure  4.3C. These values were a little bit higher 

than those obtained for the single network of scenario 2, but staying low, with a range from 20 to 

30%. For a particular connectivity measure, changing the inverse algorithm modified the SIs by 

3% (R
2
) to 4% (h

2
). While for a given source reconstruction algorithm, the SI variation remains 

low around 9% for wMNE, 8% for MNE and 5% for sLORETA. The combination providing the 

highest similarity values between the estimated and the reference networks is wMNE/h
2
 (30%). 

Closer values were also obtained with MNE/h
2
 (29%). The Icoh combination shows the lowest 

SI value (20%).  

Similarly, for scenario 3, the results obtained with wMNE/h
2
 were significantly closer to the 

reference network than the other ones (Wilcoxon rank-sum test, p<0.01, corrected using 

Bonferroni). 
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Figure  4.1 Complete network scenario. A) Uterine networks obtained by using the different 

inverse and connectivity methods, B) The original network (ground truth) and C) Values 

(mean ± standard deviation) of the similarity indices computed between the network 

identified by each combination and the model network. 
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Figure  4.2 One network scenario. A) Uterine networks obtained by using the different 

inverse and connectivity methods, B) The original network (ground truth) and C) Values 

(mean ± standard deviation) of the similarity indices computed between the network 

identified by each combination and the model network. 
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Figure  4.3 Two interconnected networks scenario. A) Uterine networks obtained by using the 

different inverse and connectivity methods, B) The original network (ground truth) and C) 

Values (mean ± standard deviation) of the similarity indices computed between the network 

identified by each combination and the model network. 
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4.3  RESULTS ON REAL DATA 

We there apply the EHG source connectivity methods to real EHG data. The main motivation is 

to find a possible significant difference (with the graph parameters, at node or edge level) 

between networks obtained for pregnancy and labor contractions. 

As no combination of inverse/connectivity methods arose from the previous study (simulated 

signals) as being the most pertinent one, we applied on real EHG (segmented and denoised 

bursts), all the combinations between inverse problem methods and connectivity measures 

methods (For more information see Chapter 2 section 2.3.1).   

4.3.1 Node Wise Analysis 

In this analysis we compute three graph measures: Str, Eff and CC for each zone. We then 

perform a statistical test at the level of each node (each zone) between pregnancy and labor 

networks. We plot for each inverse/connectivity combination method only the zones that present 

a difference between labor and pregnancy.  

Figure 4.4 shows the different zones that present a significant difference between labor and 

pregnancy when using Str as a graph measure. All the nodes presented in this figure have p-value 

< 0.01 using Wilcoxon test, corrected for multiple comparison using Bonferroni method. 

Results showed that, when using h
2
 as a connectivity method, the number of the significant zones 

(6/16) is the same whatever the inverse problem method used. The lowest p_value is obtained 

when using the wMNE for zone 8 (p=1.27 10
-30

), and for zone 9 with MNE or sLORETA 

(p=4.44 10
-27

). R
2
 gave the highest number of zones combined with sLORETA (10 zones) and 

with wMNE (9 zones). The lowest p_value is given for zone 8 with wMNE (p=6.69 10
-27

) then 

for zone 9 with MNE (p=3.77 10
-20

). Only one zone (zone 16) provided a significant difference 

when using MNE/Icoh (p=4.4 10
-4

), while no efficient zones are given with wMNE/Icoh and 

sLORETA/Icoh.  

The results of significant zones when using CC as a graph parameter are presented in Figure 4.5. 

All the nodes presented in this figure have a p_value under 0.01 using Wilcoxon test, corrected 

for multiple comparison using Bonferroni method. 
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The results obtained when using h
2
 were similar whatever the inverse method. We obtained five 

zones when using MNE and sLORETA and six zones when using wMNE. Zones 8 and 16 were 

significant when using any inverse method. Zone 8 was the most efficient when using wMNE 

(p=7.90 10
-20

), then zone 9 when using MNE (p=1.39 10
-13

) and sLORETA (p=4.67 10
-13

). Icoh 

gives the worst results. There was not any significant zone when using this method.  

The results obtained when using Eff as a graph parameter are the same than when using CC. 

 

4.3.2 Edge Wise Analysis 

In this part, we performed the significant test at the level of each edge (p<0.01, corrected for 

multiple comparison using Bonferroni method) between labor and pregnancy. Edges with 

significant differences between pregnancy and labor are showed in figure 4.6. 

Figure 4.6 presents the significant set of edges for each inverse/connectivity combination. For a 

given inverse method, the number of significant edges changes when changing the connectivity 

method. For instance, the number of significant edges is 23 for wMNE/h
2
 and 27 for wMNE/R

2
. 

Similar results were obtained for sLORETA and MNE. 

For a given connectivity method, sLORETA gives always the lowest number of edges. The 

number of significant edges was 9 and 18, for h
2
 and R

2
 respectively. These results slightly 

increase when using MNE (20 edges with h
2
 and 23 with R

2
). The best results were obtained for 

wMNE as an inverse method. There were again no significant edges for Icoh. 

The significant edges for all the combinations are listed in Table E.1, Appendix E.  



90 
 

 

 

Figure  4.4 Node-wise analysis for Strength metric. Only nodes showing significant 

differences between pregnancy/labor were visualized 
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Figure  4.5 Node-wise analysis for clustering coefficient  metric. Only nodes showing 

significant differences between pregnancy/labor were visualized 
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Figure  4.6 Edge-wise analysis. Only edges showing significant differences between 

pregnancy/labor were visualized 
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 Figure 4.7 presents a typical example of the mean graph of pregnancy and labor obtained by 

using wMNE/h
2 

combination. The graphs of the other combinations are presented Appendix F. 

The color and the size of the nodes reflect their strength; the thickness of the edges reflects their 

weights. An increase in connectivity is noticed in zones 4 and 6 from pregnancy to labor. A 

decrease in connectivity appears in the other zones (14, 2, 16, and 8).  

4.4 DISCUSSION AND CONCLUSION 

In this chapter, we presented the preliminary results of a novel approach aiming at characterizing 

the EHG functional connectivity at the source level.  

Source localization combined with functional connectivity analysis has been widely used in the 

estimation of functional cortical brain networks from scalp M/EEG recordings (Coito et al., 

2015; Hassan et al., 2016; Jiruska et al., 2013). The originality in this work is that it is the first 

time that we use this analysis in order to study the propagation on the uterine source level from 

noninvasive EHG data. Nevertheless, the joint use of these two approaches raises a number of 

methodological issues that should be controlled in order to get appropriate and interpretable 

results. Here we reported a comparative study of the networks obtained from all possible 

 

Figure  4.7 Mean graph for pregnancy and labor by using wMNE/h
2
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combinations between three algorithms to solve the EHG inverse problem and three methods to 

estimate the functional connectivity. A second originality of this study is related to the use of 

simulated EHG signals from a realistic uterine model, as a ground truth to compare the 

performance of the studied methods. 

Results obtained on different simulated data indicated that more than one combination give the 

most relevant networks when compared with the ground-truth (simulations), depending on the 

defined scenario. Indeed, the combination of MNE and h
2
 methods gives the higher similarity 

index in the first scenario, sLORETA combined with h
2
 in the second scenario and wMNE 

combined with h
2
 in the third scenario. We should also notice that in these two last scenarios the 

similarity indexes were low. We thus applied on real EHGs all the possible combinations. The 

obtained results indicate that wMNE combined with R
2
 or h

2
 gives better results than the other 

combinations.  Results are more specifically discussed hereafter. 

Methodological consideration 

The connectivity matrices were thresholded by keeping the edges with the highest weight values 

(stronger than 10%). This procedure was used to standardize the comparison between all the 

combinations. We were aware of a possible effect of this threshold. We thus previously realized, 

on the simulated data, a comparative study by using different threshold values, going from the 

50% to the 5% strongest weights. The highest similarity indexes were obtained when we kept the 

highest 10%. We thus used this thresholding procedure on real data. 

In this study, we have grouped the reconstructed sources into sixteen zones. Indeed, in our work 

we are interested in the analysis of the global propagation between the different parts of the 

uterus. We thus chose to study the propagation between different zones that cover the uterus. As 

a preliminary study, we have started with an arbitrary number of sixteen. Recent data indicate 

that the uterus may be parted in different zones of size estimated, to 64 cm
2
 (Young, 2015). 

Thus, when computed in our meshed uterus, the number of region should be about 27-30. Then a 

higher number of zones could be used in future work.  

Three classical inverse and connectivity algorithms were evaluated in this chapter. Indeed, we 

focused this study on evaluating different families of ‘functional’ connectivity methods 
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regardless the directionality of these connections. Nevertheless, we consider that the analyses of 

the ‘effective’ connectivity methods that investigate the directions between the different active 

zones may be of interest in order to study the propagation direction in labor and pregnancy. In 

addition, using other inverse methods more suited to the uterine activity (under study in the 

team) will be of great interest to improve the present results.  

The uterus model used in this study was computed by using the Boundary Element Method 

(BEM) with four tissue layers. This model was widely used in the context of M/EEG source 

estimation (Fuchs et al., 2007; Hassan et al., 2016) as a compromise between computational cost 

and accuracy. Nevertheless, other methods exist to solve the forward model such as the Finite 

Element Method (FEM). Future work will be done in our team to improve this model. 

Node and Edge wise analysis 

Three graph parameters were extracted from all the computed graphs. We then evidenced only 

the zones that present significant difference between labor and pregnancy contractions. Indeed, 

the results obtained with all the parameters were interesting. We got higher performance for Str 

in this preliminary study. In fact, two zones (8 and 16) were always significant, whatever the 

inverse/connectivity combination. However, other zones in different parts of the uterus were also 

frequently significant.  

Edge analysis has been also performed by keeping only the significant edges. These edges or 

links presented significant differences between labor and pregnancy. These edges are present 

between most of the zones, located in the whole uterus (upper, middle and lower parts).  

All these observations have been made by using two averaged graphs (Pregnancy and Labor), 

obtained from all the graphs computed from all the women contained in the pregnancy and labor 

groups. This averaging does not take into account the possible anatomical differences between 

women. It should be interesting also to test the graph evolution for a given woman, in a 

longitudinal approach. 

However, these findings were obtained by using only 16 surface EHG. In fact, a higher number 

of electrodes that could cover the whole uterus could improve these results, by improving the 

inverse problem step (work under study).  
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5 DISCUSSION AND PERSPECTIVES 
We have presented in this thesis novel approaches aiming at characterizing the functional 

connectivity of the uterine electrical activity for clinical purpose. Our approaches were based on 

the analysis of the synchronization of the uterine electrical activity by using the graph theory 

analysis. We have also investigated the usefulness of the network-based analysis to characterize 

the evolution of uterine contractions from pregnancy to labor and to discriminate pregnancy and 

labor contractions, at the abdominal as well at the source levels.  

The electrohysterography (EHG), a noninvasive abdominal measurement of the uterine electrical 

activity (Devedeux et al., 1993), has been already used to predict preterm labor in many previous 

studies. (Euliano et al., 2009, 2009; Laforet et al., 2013; Marque and Duchene, 1989; Planes et 

al., 1984). Moreover, labor and delivery are preceded by changes in two physiological 

phenomena known to control the efficiency of uterine contractions: i) increased excitability and 

ii) increased synchronization of the uterus. This synchronization could be the result of two 

phenomena: increased connectivity between the myometrial cells, due to the appearance of Gap 

Junctions, which results in an increase in the local diffusion of the action potentials (Devedeux et 

al., 1993).; increased sensitivity to mechanotransduction, at the cell level, that permit a longer 

distance activation of the uterine muscle due to its stretching (Young, 2007). 

Concerning the global analysis of the uterine synchronization (whole burst), in most previous 

studies, the EHG correlation matrices were reduced by keeping only their mean and standard 

deviations. The innovative approach proposed in this work is to extract from these correlation 

matrices, a much more complete picture of the organization of the uterus, as pregnancy evolves 

to delivery. The graph theory based analysis used in this thesis seems indeed a better way to 

characterize the EHG connectivity matrices than a simple averaging.  

Connectivity at the abdominal surface level 

First, we have proved in this work that the graph theory based analysis is more efficient to 

quantify the connectivity matrices of normal pregnancy and labor EHGs, when compared to the 

previous studies based on averaging the connectivity matrices. However, the method showed 
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lower performance for the monitoring of pregnancy, as no significant change was observed 

between the different pregnancy weeks before labor. An increase in synchronization from 

pregnancy to labor has been obtained from this work based on graph theory using whole burst 

analysis. This obtained result agrees with the previously reported results using EHG (Hassan et 

al., 2013) or MMG-based studies where authors showed an increase in synchrony as the women 

approach active labor (Govindan et al., 2015).  

We showed also a clear increased connectivity during labor. A classification rate of 80% has 

been reached with the combination of the Icoh as connectivity measure and the strength as graph 

measure. This increase from pregnancy to labor was observed for all the electrodes. Once again, 

these findings agree with the results obtained previously by Hassan et al. when using the 

nonlinear correlation coefficient on a smaller dataset (Hassan et al., 2013). A possible 

explanation of this increase in connectivity during labor is the electrical diffusion phenomenon, 

associated with the appearance of a large number of gap junctions prior to labor (Garfield and 

Hayashi, 1981), as well as the electromechanical coupling proposed by Young as one of the 

synchronization process appearing during labor (Young, 2007).  

The above mentioned results can be improved as following: 

 To validate the clinical impact of the proposed approach, it should be applied to a larger 

database, including signals recorded on women with premature labor, kind of data still 

missing in our database. A classification between normal labor and premature labor will 

be of great interest to test the clinical performance of the proposed approach, as well as to 

understand the process of premature labor, still poorly understood.  

 Different steps in the pipeline should be automatized when using this approach for 

clinical perspective, such as the manual segmentation of the uterine burst.  Manual 

segmentation is time consuming and depends on the ability of the person who segments 

the signals. This point is under development in our team.  

 So far, we have used only one parameter for the classification. The combination of 

several graph parameters could improve the classification rate based on the uterine 

synchronization analysis. Furthermore, as shown in a study recently done in our lab 

(Alamedine et al., 2014), different parameters representing either the excitability 
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(frequency content, non-linearity) or the synchronization of the uterus should be used 

simultaneously to get the best classification rate between pregnancy and labor EHGs. The 

selected graph parameters should be tested together with the excitability ones already 

selected, in order to improve this classification. 

 In our work we were interested in the analysis of the global synchronization of the uterus. 

We have thus applied the approach on whole EHG bursts. We think that analyzing the 

EHG local propagation (by applying the approach on single spikes) could be of interest. 

 In this thesis, we focused on the functional connectivity methods regardless directionality 

of the connectivity. Another type of connectivity called effective connectivity, that 

investigate the causality of the relationships, may provide new information about the 

possible directionality of the synchronization. 

 All the analysis presented in the thesis were computed on the whole burst duration (static 

analysis). As EHG signals present nonstationary behaviors, a dynamic analysis (by using 

sliding window) would permit to better respect the intrinsic characteristics of the signals. 

Connectivity at the source level 

Then, we tackled in this work the connectivity of the EHG at the source level. This work 

represents, the first use of this source analysis in order to study the synchronization of the uterine 

muscle level, from noninvasive abdominal EHGs. We have presented in this work the 

preliminary results obtained by using this approach. The originality of this work is the 

combination between source localization and functional connectivity. Indeed, this type of 

analysis has been widely used on EEG (Coito et al., 2015; Hassan et al., 2016; Jiruska et al., 

2013) but it is the first time that it is used on EHG. First, the uterus mesh was parted into sixteen 

zones, in order to simplify the global uterine level analysis. The approach was first validated on 

simulated networks by using a realistic uterine model. The EHGs were simulated to produce a 

reference networks (ground truth) in order to compare the performance of the considered 

methods. 

Three classical inverse methods were first used (wMNE, MNE and sLORETA) and three 

connectivity methods (h
2
, R

2
 and Icoh). The main objective of this part was to find the best 

combination of inverse/connectivity methods that gives the network closest to the reference 

network. Results obtained on simulated data indicated that more than one combination could 
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leads to the most relevant networks when compared to the reference network. However, h
2
 

appeared more frequently in the most efficient methods. Therefore, all the possible combinations 

were applied on real data in order to differentiate between labor and pregnancy contractions. The 

obtained results indicate that wMNE combined with R
2
 or h

2
 provided better results than the 

other combinations. The significant zones, different in labor and pregnancy, were mainly located 

in the middle and the lower part of the uterus. A network pattern (a set of edges) showed also 

significant difference between pregnancy and labor, but not always associated to an increase in 

connectivity from pregnancy to labor. These edges were identified between almost all the zones.  

This analysis was performed based on a recording grid of only sixteen surfaces EHG channels, 

covering a small part of the abdominal wall (6 cm x 6 cm). A higher number of electrodes, 

covering a larger part of the mother’s abdomen, could improve the inverse problem results and 

specify more the synchronization pattern as reported in other applications (Hassan et al., 2014; 

Song et al., 2015).  

These findings were the preliminary results on the EHG source connectivity. Possible 

improvements of the methods in order to improve these results can be summarized as following: 

 The uterus mesh was segmented into sixteen zones, a higher (more realistic) number of 

zones would give more precise results and improve the classification rate. 

 We used here as a first attempt, only classical inverse methods. Testing new algorithms 

more suited to the uterine activity, will be of great interest to improve the present results.  

 The mesh used in our uterine model was obtained from a MRI of a woman during 

pregnancy (34,5 weeks of pregnancy). Another mesh obtained for woman in labor (or 

from the same woman at different weeks of pregnancy) may improve the specificity of 

the results.  

 The uterus forward model used in the thesis was solved using a BEM model. A Finite 

Element Method (FEM) was shown to improve the solution of the EEG forward problem 

(Hallez et al., 2007). This approach may also be used and lead to improvements of the 

EHG source connectivity results. 

 In this preliminary study, we have investigated the classification of normal pregnancy 

and term labor contractions, in relation to the EHG signals available in our database. 
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Testing the capacity of the EHG source connectivity method to monitor pregnancy 

evolution is one of the main interesting application, for the ealy detection of preterm 

labor. We will thus need to include in this analysis EHGs recorded on risk pregnancies, 

as well as on preterm labors. 

To sum up, we have presented in this thesis a new approach based on connectivity analysis of the 

EHG signals combined with a graph theory based analysis. Our results showed that this network-

based approach is a very promising tool to quantify uterine synchronization, when applied at the 

abdominal level, for a better pregnancy monitoring. We expect this approach to be further used 

for the monitoring of pregnancy and would thus help for the early prediction of preterm labor.  
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6 APPENDIX A: DATABASE OF THE RECORDED WOMEN 

Table A. 1: Information of women used in our database. 

  
Weight Height Week of Week of Group Number of 

Woman 

 
(Kg) (m) 

pregnancy Delivery 

(WD)  
contractions 

(WP) 

W1 89 1.7 42 42 Labor 22 

W2 92.4 1.78 

35 

40 

5 WBL 5 

37 3 WBL 5 

38 2 WBL 6 

39 1 WBL 2 

W3 105 1.72 

33 

38 

5 WBL 1 

36 2 WBL 5 

37 1 WBL 3 

38 Labor 10 

W4 67 1.64 

34 

38 

4 WBL 6 

36 2 WBL 7 

37 1 WBL 9 

W5 76.2 1.7 37 37 Labor 5 

W6 71 1.75 
33 

41 
9 WBL 7 

37 4 WBL 3 

W7 61 1.75 

35 

40 

5 WBL 7 

38 2 WBL 5 

39 1 WBL 6 

W8 62 1.65 33 39 6 WBL 4 

W9 48 - 50 1.6 

29 

41 

12 WBL 2 

31 10 WBL 2 

34 7 WBL 1 

W10 75 1.72 

36 

40 

4 WBL 2 

38 2 WBL 3 

40 Labor 1 

W11 70 - 75 1.76 

33 

41 

8 WBL 4 

35 6 WBL 2 

38 3 WBL 4 

W12 63.4 1.63 39 39 Labor 7 



103 
 

W13 56 1.63 40 41 1 WBL 8 

W14 100 1.78 33 41 8 WBL 7 

W15 62 1.63 39 39 Labor 4 

W16 109 xxx 40 40 Labor 3 

W17 xxx xxx 40 40 Labor 26 

W18 xxx xxx 40 40 Labor 33 

W19 xxx xxx 39 39 Labor 23 

W20 xxx xxx 42 42 Labor 11 

W21 xxx xxx xxx xxx Labor 18 

W22 95 1.63 39 39 Labor 1 

W23 83 1.7 

34 

40 

6 WBL 1 

36 4 WBL 2 

37 3 WBL 4 

39 1 WBL 4 

W24 68 1.68 33 39 6 WBL 7 

W25 69.5 1.67 

31 

39 

8 WBL 3 

36 6 WBL 4 

39 Labor 4 

W26 95.3 1.62 34 39 5 WBL 1 

W27 110 1.76 

37 

41 

4 WBL 1 

38 3 WBL 1 

39 2 WBL 2 

40 1 WBL 9 

W28 90 1.68 37 39 2 WBL 1 

W29 85.5 1.68 

32 

40 

8 WBL 10 

37 3 WBL 9 

38 2 WBL 2 

W30 78 1.63 39 42 3 WBL 1 

W31 113.3 1.73 36 39 3 WBL 3 

W32 65.5 1.69 38 40 2 WBL 6 

W33 74 1.68 37 41 4 WBL 4 

W34 
88 

1.76 
36 

40 
4 WBL 1 

89 39 1 WBL 1 

W35 

82 

1.67 

33 

40 

7 WBL 11 

83 36 4 WBL 7 

84 37 3 WBL 9 

85 39 1 WBL 9 
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7 APPENDIX B: PREGNANCY MONITORING FOR EACH WOMAN 

 

Figure B. 1 Evolution of Str for woman W2 

 

Figure B. 2 Evolution of Str for woman W3

 

Figure B. 3 Evolution of Str for woman W4 
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Figure B. 4 Evolution of Str for woman W5 

 

Figure B. 5 evolution of Str for woman W6 

 

Figure B. 6 Evolution of Str for woman W9 
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Figure B. 7 Evolution of Str for woman W10 

 

Figure B. 8 Evolution of Str for woman W11 

 

Figure B. 9 Evolution of Str for woman W23 
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Figure B. 10 Evolution of Str for woman W25 

 

Figure B. 11 Evolution of Str for woman W27 

 

Figure B. 12 Evolution of Str for woman W29 

  



109 
 

8 APPENDIX C: PREGNANCY AND LABOR GRAPHS AT SAME WEEK 

OF GESTATION 

 

Figure C. 1 Mean graphs for EHGs recorded at 37WG: (a) Pregnancy, 

(b) Labor. 

 

 

 

Figure C. 2 Mean graphs for EHGs recorded at 38WG: (a) Pregnancy, (b) Labor. 
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Figure C. 3 Mean graphs for EHGs recorded at 40WG: (a) Pregnancy, (b) Labor. 
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9 APPENDIX D: WEEKS OF GESTATION GRAPHS 

 
 30                                         32 

 
33                                                    34 

 

35                                                  36 

Figure D. 1 Mean graph for weeks of gestation (30WG---36WG) 
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  37                                                      38 

 

      39                                                          40 

 

41                                                          42 

Figure D. 2 Mean graph for weeks of gestation (37WG---42WG) 
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10 APPENDIX E: TABLE OF SIGNIFICANT EDGES 

Table E.1 Significant edges in all the combinations 

h2 
 

R2 

MNE wMNE sLORETA 
 

MNE wMNE sLORETA 

'Edge1_6' Edge1_4' 'Edge1_10' 
 

'Edge1_6' 'Edge1_4' 'Edge1_2' 

'Edge1_8' 'Edge1_5' 'Edge2_12' 
 

'Edge1_8' 'Edge1_5' 'Edge1_16' 

'Edge1_11' 'Edge1_8' 'Edge6_8' 
 

'Edge1_10' 'Edge1_8' 'Edge2_12' 

'Edge2_9' 'Edge2_12' 'Edge6_16' 
 

'Edge1_11' 'Edge1_10' 'Edge3_12' 

'Edge2_10' 'Edge2_13' 'Edge8_9' 
 

'Edge2_9' 'Edge2_5' 'Edge4_12' 

'Edge2_12' 'Edge2_16' 'Edge8_14' 
 

'Edge2_10' 'Edge2_12' 'Edge5_13' 

'Edge2_14' 'Edge4_6' 'Edge8_15' 
 

'Edge2_12' 'Edge2_13' 'Edge6_8' 

'Edge3_9' 'Edge4_12' 'Edge12_16' 
 

'Edge2_14' 'Edge2_16' 'Edge6_16' 

'Edge3_11' 'Edge4_13' 'Edge14_15' 
 

'Edge2_16' 'Edge3_15' 'Edge8_9' 

'Edge6_8' 'Edge5_8' 
  

'Edge3_9' 'Edge4_6' 'Edge8_12' 

'Edge6_9' 'Edge5_15' 
  

'Edge6_8' 'Edge4_11' 'Edge8_14' 

'Edge6_11' 'Edge6_9' 
  

'Edge6_9' 'Edge4_13' 'Edge8_16' 

'Edge7_11' 'Edge6_12' 
  

'Edge6_11' 'Edge6_15' 'Edge12_13' 

'Edge8_13' 'Edge6_15' 
  

'Edge6_16' 'Edge7_8' 'Edge12_14' 

'Edge8_14' 'Edge8_10' 
  

'Edge7_11' 'Edge7_12' 'Edge12_16' 

'Edge8_16' 'Edge8_13' 
  

'Edge8_13' 'Edge7_13' 'Edge13_14' 

'Edge9_13' 'Edge8_14' 
  

'Edge8_16' 'Edge8_10' 'Edge13_16' 

'Edge11_14' 'Edge8_16' 
  

'Edge9_13' 'Edge8_13' 'Edge14_15' 

'Edge11_15' 'Edge10_13' 
  

'Edge11_14' 'Edge8_14' 
 

'Edge13_14' 'Edge11_15' 
  

'Edge11_15' 'Edge8_16' 
 

'Edge13_16' 'Edge12_15' 
  

'Edge12_13' 'Edge9_12' 
 

 
'Edge12_16' 

  
'Edge13_14' 'Edge9_13' 

 

 
'Edge13_14' 

  
'Edge13_16' 'Edge10_13' 

 

 
Edge14_15' 

  
'Edge14_15' 'Edge10_16' 

 

     
'Edge11_14' 

 

     
'Edge12_16' 

 

     
'Edge13_14' 

 

     
'Edge13_15' 
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11 APPENDIX F: PREGNANCY AND LABOR GRAPHS BY USING ALL THE 

INVERSE/CONNECTIVITY COMBINATIONS 

 

 

 

 

Figure F. 1 Mean graph for pregnancy and labor by using MNE/h
2
 

 

 

 

 

Figure F. 2 Mean graph for pregnancy and labor by using sLORETA/h
2
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Figure F. 3 Mean graph for pregnancy and labor by using wMNE/R
2
 

 

 

 

 

Figure F. 4 Mean graph for pregnancy and labor by using sLORETA/R
2
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Figure F. 5 Mean graph for pregnancy and labor by using MNE/R
2
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12 ABSTRACT 

Preterm birth remains a major problem in obstetrics. Therefore, it has been a topic of interest for 

many researchers. Among the many methods used to record the uterine contractility, the most 

used is the abdominal EHG, as being an easy to use and a non-invasive tool. Many studies have 

reported that the use of this signal could be a very powerful tool to monitor pregnancy and to 

detect labor. It indeed permits to access the uterine as well as the synchronization of the uterine 

activity, by using multiple signals. It has been shown that the connectivity analysis gave 

promising results when using EHG recordings in clinical application, such as the classification 

labor/pregnancy contractions. However, in almost all previous studies EHG correlation matrices 

were often reduced keeping only their mean and standard deviations thus relevant information 

may have been missed due to this averaging, which may induce the relatively low classification 

rate reported so far. To characterize precisely the correlation matrix and quantify the associated 

connectivity, we proposed in this thesis to use a network measure technique based on graph 

theory. According to this approach, the obtained correlation matrix can be represented as graphs 

consisting of a set of nodes (electrodes) interconnected by edges (connectivity/correlation values 

between electrodes). The new framework, to analyze the EHG signals recorded during pregnancy 

and labor, is based on the characterization of the correlation between the uterine electrical 

activities and on its precise quantification by using graph theory approach. The processing 

pipeline includes i) the estimation of the statistical dependencies between the different recorded 

EHG signals, ii) the quantification of the obtained connectivity matrices using graph theory-

based analysis and iii) the clinical use of network measures for pregnancy monitoring as well as 

for the classification between pregnancy and labor EHG bursts. A comparison with the already 

existing parameters used in the state of the art for labor detection and preterm labor prediction 

will also be performed. We also investigate a new method to study the EHG source connectivity, 

to overcome the problem of computing the connectivity at the abdominal surface level. 

The results of this thesis showed that this network-based approach is a very promising tool to 

quantify uterine synchronization, when applied at the abdominal level, for a better pregnancy 

monitoring. We expect this approach to be further used for the monitoring of pregnancy and 

would thus help for the early prediction of preterm labor.  

Keywords: Uterine electrical activity, Graph theory, pregnancy and labor contractions.  
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13 RESUME 
L’accouchement prématurée est l’un des problèmes majeurs en obstétrique. Par suite, il a été un 

sujet d'intérêt pour de nombreux chercheurs. Parmi les nombreuses méthodes utilisées pour 

enregistrer la contractilité utérine, le plus utilisé est l'EHG abdominal, comme étant un outil 

facile à utiliser et non invasif. De nombreuses études ont indiqué que l'utilisation de ce signal 

pourrait être un outil très puissant pour surveiller la grossesse et pour détecter le travail. Il permet 

en effet d'accéder à l'utérus ainsi que la synchronisation de l'activité utérine, en utilisant des 

signaux multiples. Il a été démontré que l'analyse de connectivité des signaux EHG a donné des 

résultats prometteurs lors de en application clinique, comme la classification des contractions de 

travail et de grossesse. Cependant, dans presque toutes les études antérieures, les matrices de 

corrélation EHG étaient souvent réduites en ne gardant que leur moyenne et les écarts-types, ce 

qui a peut aboutir à perdre des informations pertinentes en raison de ce moyennage, ce qui peut 

induire le taux de classification relativement faible jusqu'à présent. Pour caractériser précisément 

la matrice de corrélation et quantifier la connectivité associée, nous avons proposé dans cette 

thèse d'utiliser une technique de mesure de réseau basée sur la théorie des graphes. Selon cette 

approche, la matrice de corrélation obtenue peut être représentée sous forme de graphiques 

constitués d'un ensemble de noeuds (électrodes) interconnectés par des arêtes (valeurs de 

connectivité / corrélation entre électrodes). La nouvelle procédure de l'analyse des signaux EHG 

enregistrés pendant la grossesse et le travail se base sur la caractérisation de la corrélation entre 

les activités électriques utérines et sur sa quantification précise en utilisant l'approche de la 

théorie des graphes. Le pipeline de traitement inclut i) l'estimation des dépendances statistiques 

entre les différents signaux EHG enregistrés, ii) la quantification des matrices de connectivité 

obtenues à l'aide de l'analyse théorique des graphes et iii) l'utilisation clinique des mesures de 

réseau pour la surveillance de la grossesse ainsi que la classification entre les éclosions d'EHG de 

grossesse et de travail. Une comparaison avec les paramètres déjà existants utilisés pour la 

détection du travail et la détection d’accouchement prématuré sera également effectuée. Nous 

étudions également une nouvelle méthode pour étudier la connectivité source EHG, afin de 

surmonter le problème du calcul de la connectivité au niveau de la surface abdominale. 

 

Les résultats de cette thèse montrent que cette approche basée sur la théorie de graphe est un 

outil très prometteur pour quantifier la synchronisation utérine, lorsqu'elle est appliquée à 

l'abdomen, pour une meilleure surveillance de la grossesse. Nous espérons que cette approche 

soit utilisée pour le suivi de la grossesse et contribuerait ainsi à la prédiction précoce de 

l’accouchement prématuré. 

 

Mots-clés: Activité électrique utérine, théorie des graphes, contractions de la grossesse et du 

travail. 
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