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Usual abreviations 
 

IR : Infrared 

QCL : Quantum Cascade Laser 

QCD : Quantum Cascade Detector 

 

 

CQD : Colloidal Quantum Dots 

DDT: Dodecanthiol 

EDT: Ethandithiol 

EtOH: Ethanol 

 

FET: Field Effect Transistor 

PL: Photoluminescence 

FWHM: Full Width at Half Maximum 
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0. INTRODUCTION 

0.1. CV 

 

FORMATION 

2007-2010 
 
 
 
2006-2007 
2003-2007 

PhD from Ecole Polytechnique for work done at ONERA, in collaboration 
with the laboratory MPQ (Paris VII) and Thales R&T, on  electronic transport 
in superlattices and their application to long wavelength infrared 
photodetection. PhD advisor: Emmanuel Rosencher. 
Condensed matter physics Master II Paris VI-Paris XI 
Engineering Degree from ESPCI with double major in Physics and 
Chemistry 
 

PROFESIONAL EXPERIENCE 

2015-
present 
2012-2015 
 
2010-2012 

Research fellow (CR 2) CNRS at the Institute for NanoSciences of Paris 
(INSP) at University Pierre and Marie Curie. 
Post doc at LPEM – ESPCI funded by Nexdot. Main project: Optoelectronics 
of 2D nanocrystals. 
Post doc at the University of Chicago in Philippe Guyot-Sionnest’s group. 
Main project: Photoconduction in mid-infrared HgTe nanocrystal solids. 

 

TEACHING ACTIVITIES 

2015-2017 ESPCI Electron Microscopy Lab class (40h/year), level bac +4 
2008-2010 U. 

Diderot 
Paris 7 

« Moniteur » (2x64 h).  Electromagnetism Lab class (level bac 
+2) and IT lab class (level bac +1). 
 

 

PRIZES AND AWARDS 

2015 
2011 

Langlois Foundation prize 
Ecole Polytechnique Prize for best PhD 

 

MAIN FUNDED PROJECTS 

2017-2018 Industrial project with Nexdot for the development of an infrared 
photodetector based on CQD (180k€) 

2016-2019 
2017-2018 
2014-2015 

Labex Matisse -  PhD thesis funding (130k€) 
C-nano project dopQD: tuning the doping of self-doped nanocrystals (20k€) 
Concours Mondial d’innovation: Electrochemical charging of 2D colloidal 
material (193k€) 

 

ORGANIZATION OF SCIENTIFIC EVENTS 

2016 Organization of a mini colloquium on colloidal semiconductor nanocrystals 
during the condensed matter day (JMC) at Bordeaux – 50 participants 
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2011 Nanotalk: a student symposium on nanomaterial at the University of Chicago 
- 30 participants 

 

SCIENTIFIC PUBLICATIONS 

 H factor 16 from Google Scholar (12 according to ISI) 

 40 publications in peer-reviewed journals (22 as first or last authors), see references: 

1-40 including 5 reviews (ref 15,22,30,32,39). 

 11 conference proceedings, see references: 41-51. 

 Member of the editorial board of Scientific Report. 

 Regular referee for Nature Communication, Scientific Report, Advanced Material, 
Nanoscale, Applied Physics Letter, ACS Photonics, J Mater Chem C, Journal of 
Applied Physics, IEEE Journal of Quantum Electronics… 

 6 patents and patent applications, see references 52-57. 

 7 conference invited talks: 58-64 and seminar in laboratory, see references 65-76 
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0.2. PhD Work 

 

Publications relative to this work: 1-7,11. 

Conference proceedings relative to this work : 41-43. 

 

I conducted my PhD work at ONERA under the supervision of Emmanuel Rosencher. This project 

was also undertaken in collaboration with laboratory MPQ (Paris VII) for the modelling side. Thales 

R&T was our sample provider. This work was dedicated to the study of electronic transport in 

semiconductor superlattices and its application to long infrared wavelength detection. The research 

included both experimental and modeling aspects. The basic idea was to measure and model the 

electronic transport properties of the GaAs/AlGaAs heterostructure, operated in the tunnel regime, 

and to determine what was the transport bottleneck in order to suggest improved semiconductor 

designs. 

 
Figure 1 a. Scheme and image of a dual cryostats setup 
dedicated to the characterization of long wavelength QWIP 
operated under low background photon flux. b. Dark current 
density as a function of applied bias for the 15µm QWIP 
investigated in ref 4. c. Spectral photoresponse of the 15µm 
QWIP investigated in ref 4. 
 

On the experimental side, I 
measured, in cryogenic 
condition, the dark current of a 
multiquantum well 
heterostructure (QWIP) 
dedicated to 15µm 
photodetection (see Figure 1c). 
15 µm infrared emission 
corresponds to the maximum 
emission of a black body at ≈200 
K. This device is typically made 
of 40 doped quantum wells of 
GaAs surrounded by a barrier of 
AlGaAs, with a 15% content of 
Al. To obtain narrow energy 
transition, fairly large (7.3 nm) 
wells have been grown by 
molecular beam epitaxy (MBE). 
Each well includes two steady 
states—one ground state ≈40 
meV above the bottom of the 
well and one almost resonant 
with the barrier. Under IR light, 
electrons are promoted to the 
excited state and can then easily 
drift in the continuum. Such a 
long wavelength device is 
dedicated to infrared detection 
under low photon background.  

In addition to photocurrent, a dark current is also flowing in the semiconductor stack. At high 

temperatures, it comes from the phonon activation of the carrier up to the continuum. At low 

temperatures, tunnel transport through the barrier also occurs, and determines the ultimate 

performance of a given heterostructure1.  

Experimentally, I developed a setup dedicated to the measurement of dark current and the 

photoresponse of the QWIP. Measuring dark current can be quite challenging, since it relates to low 

level of current (sub pA) (see Figure 1b). To measure the photoresponse, I built a two-cryostat setup; 
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one is used to cool down the QWIP to 4 K, and the other one is used as cold blackbody (77 K-300 K) 

(see Figure 1a). This setup was used to measure a calibrated photoresponse of the QWIP over 4 

orders of magnitude of incident photon flux.  

 

Figure 2 a. Band structure and wavefunction of a THz quantum cascade detector, as proposed in 
ref 3. b. Scattering rates resulting from different scattering processes as a function of the applied bias 
for the 15µm QWIP structure, as investigated in ref 4. c. Different scattering mechanisms considered 
in the modelling tools developed in ref 3-5, 7.  

The obtained results were then used as experimental input and compared with the results obtained 

from my modeling tool2,4. I developed from scratch a simulation code dedicated to the determination 

of electronic structure and transport properties of semiconductor heterostructures. In the first step, a 

1D heterostructure profile (energy and mass) is defined (see Figure 2a). Then, using a kp code, the 

time independent 1D Schrodinger equation )()()(
)(*
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solved and the steady states of the heterostructure are determined. This gives us access to the 

electronic spectrum and wavefunction of the system. I then use the Fermi golden rule 
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 to evaluate the scattering rate between two 

states coupled by different Hamiltonians. These interactions are the electron–phonon interaction 

(acoustic + optical), the coulombic interaction between electrons and ionized impurities (i.e., doping), 

and the scattering resulting from interface roughness and alloy disorder (see Figure 2c). This type of 

“exact” modelling is only made possible by the almost perfect quality of the GaAs/AlGaAs 

heterostructure, which makes transport limited by fundamental processes. Finally, the current is 

evaluated through the expression 
iiFDfFD

E

dffFE
m

eJ 


)()).(1).(,(.
* 1

2

1

 



 
which includes the 

thermally activated population of each state. Such modeling of the current is actually very common 

for a quantum cascade laser,77-79 but its use for QWIP was previously lacking. The actual challenge 

comes from the fact that quasi-resonant states already exist in the detector, and so a steady-state 

evaluation of the wavefunction tends to overestimate the state coherence. I thus proposed a model 

which introduces a coherence length to overcome this difficulty4. 

This modeling tool was used to determine which interaction is leading to the main current contribution. 

In the 15 µm QWIP, the bottleneck results from the interaction of electrons with ionized impurities. 

This suggests that the current doping profile located in the center of the well, which has a strong 

overlap with the electron wave function, is actually maximizing the scattering rate relative to the 

election doping interaction. I thus suggested a new doping profile, shifted from the well center. The 
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Sample have been grown by Thales. We measured a 15 % reduction of the dark current7, which is 

not so small given the high maturity of this QWIP structure. 

I also used my simulation code to evaluate the impact of growth defects on the final optoelectronic 

properties of QWIP5. I considered their effect on non-sharp interfaces and inhomogeneous dopant 

distribution and investigated their impact on the electronic spectrum. Another interesting output of the 

simulation tool was its use in understanding the transport properties of THz quantum cascade 

detectors3,80 (QCD). QCDs are the detecting counterpart of the quantum cascade laser81. They have 

been initially proposed in the mid-infrared,82,83 and in this range of energy the coupling between the 

states of the cascade occurs through optical phonon. However, this type of coupling is no longer 

possible in the THz since the whole states ladder is included in a small range of energy below the 

optical phonon energy (36 meV in GaAs). Thus the coupling has to occur through a different scattering 

process. The interface roughness was determined to be the main contribution3. The estimation of the 

two driving parameters relative to this interaction was critical. The interface length and the coherence 

length between defects was then determined from TEM imaging conducted in a dark field condition 

by Gilles Patriarche at LPN. 

Overall this PhD work was great training, which gave me knowledge on both the experimental and 

modelling side. The great maturity of the field on the modelling and material side ensure that 

properties of devices can be evaluated with a high level of accuracy and a limited number of tunable 

parameters. However, this high maturity, combined with the lack of tunability of the sample, can be 

frustrating. Consequently, when I chose my post doc experience it was important for me to get greater 

control over the sample fabrication. Colloidal quantum dots (CQD) have perfectly answered this 

demand. 
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0.3. Student supervision 

I have supervised 8 students at levels below PhD (Master II, technician, undergraduate) and one post 

doc. I co-supervised one finished PhD thesis and currently co-supervise two of them.  

 

 PhD Student 

Student Level /place period Thesis title - co supervisor 

Adrien Robin ESPCI 2013-2016 
Defended 
4/11/16 

Opto-électronique de boîtes et puits 
quantiques colloïdaux – Application 
au photo-transport 
Benoit Dubertret 

Clement Livache INSP/ESPCI 2016-2019 Dynamic aspect in narrow band gap 
nanocrystals 
Benoit Dubertret 

Bertille Martinez INSP 2016-2019 Control of carrier density in narrow 
band gap nanocrystals 
Emmanuelle Lacaze 

Wasim Mir INSP 2017 Visiting student from Angshuman 
Nag‘s group  

 

 Post doctoral student 

Student Level /place period Project 

Remi Castaing ESPCI 2015 – 6 
months 

Electrochemistry of 2D colloidal 
nanocrystals 

Nicolas Goubet INSP 2017-2018 Mid IR nanocrystal synthesis 
 

 Pre PhD Students 

Student Level /place period Thesis title - co supervisor 

Paul Rekemeyer Undergraduate 
/U. Chicago 

2011  
6 months 

Noise in nanocrystal solid 
Philippe Guyot Sionnest 

Adrien Robin Master II/ 
ESPCI 

2013  
5 months 

Transport in nanoplatelet arrays 
Benoit Dubertret 

Daniel Thomas Master II/ 
ESPCI 

2014  
5 months 

Transport in nanotrench devices 
Benoit Dubertret 

Marion Scarafagio Master II/ 
ESPCI 

2015  
5 months 

Infrared nanocrystal 
Benoit Dubertret 

Patrick Hease technician 2013-2014 Electrophoresis of nanoplatelets 
Benoit Dubertret 

Loic Guillemot Master II/ 
ESPCI 

2015  
5 months 

New material obtained from self-
assembly of colloidal nanocrystals 
Emmanuelle Lacaze 

Sharif Shahini Master II/ INSP 2011  
2 months 

Ferro electric gating of nanocrystal 
film 
Emmanuelle Lacaze 

Clement Livache Master II/ INSP 2011  
6 months 

Transport in narrow band gap 
nanocrystals 
Benoit Dubertret 

For seven of them their work has led to a publication.  
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0.4. Main Collaborations 

 

Collaborator Intitutions/compagnies Topic 

S. Ithurria 

H. Aubin 

LPEM – ESPCI 

LPEM - ESPCI 

2D Nanocrystal synthesis 

Tunnel transport 

A. Ouerghi LPN -CNRS 2D system : graphene  and TMDC 

J.-F. Dayen IPCMS – U. Strasbourg Nanofabrication and electronic transport 

B. Dubertret Nexdot Nanocrystal synthesis and infrared 

L. Biadala 

J. Houel 

V. Krachmalnicoff 

Q. Glorieux 

IEMN (U. Lille) 

ILM (U. Lyon) 

Institut Langevin 

LKB 

Sample provider 

Sample provider 

Sample provider 

Sample provider 
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0.5. Research strategies 

My research has always been at the interface between fundamental science and more applied 

research. The early motivation is generally driven by applied needs, and in particular in the field of 

infrared photodetection, by the need to understand current performance limitations and to identify 

strategies for performance enhancements. To achieve this goal, it is necessary to go fairly deep into 

the understanding of the material and its electronic structure. That is also why my research is always 

multidisciplinary, encompassing a material understanding of the electronic structure in question, the 

measurement of its transport properties, all the way up to the performance of the optoelectronic 

device.  

My interest in nanocrystal synthesis was initially driven by the need to obtain samples. But in this field 

in which materials are still not mature, the control of chemistry is always necessary to tune physical 

parameters (e.g., doping, height and length of a tunnel barrier). This might not be the case a decade 

from now, because synthesized CQD have an increasing complexity, but as of yet it is still possible 

to do research from the CQD synthesis up to the application. This gives us tremendous advantages 

in terms of material control. 

Another key difference from the III-V semiconductor that I studied during my PhD is the very limited 

understanding of the electronic structure. In III-V semiconductors, all parameters are known within 

several digits of accuracy. This is not the case for II-VI semiconductors, particularly once quantum 

confinement is added. Determining the physical parameters of these new materials is still a necessary 

challenge that has to be tackled.  

I also think that CQD-based devices can also benefit from the progress of nanofabrication. The overall 

geometry of CQD-based devices remains simple, because the topic has been driven by groups with 

a strong chemical background. For my research, I will introduce strategies for the design of devices 

on a smaller scale, while introducing mechanisms allowing higher control of the material properties. 
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0.6. Manuscript organization 

The manuscript is organized over five main parts. I first introduce colloidal nanocrystals, their 

synthesis, the transport properties in nanocrystal solids, and their applications. The second part is 

dedicated to narrow band gap nanocrystals and their application to photoconduction and detection in 

the mid-infrared. In particular, the document includes my contribution to the use of HgTe and HgSe 

CQD as mid-IR photoconductors. This research was initiated by the time I was a post doc in the 

Guyot-Sionnest group, with Sean Keuleyan (graduate student) and Paul Rekemeyer (undergraduate 

student) as co-workers. The contribution concerning HgSe is more recent, and was supported by two 

former students (Patrick Hease and Marion Scarafagio) and two ongoing PhD student (Bertille 

Martinez and Clément Livache).  

Part three deals with transport and phototransport in 2D nanoplatelet arrays. This research 

corresponds with my period in residence at LPEM and overlaps with the PhD project of Adrien Robin. 

Daniel Thomas, a Masters student, was also involved for the nanoscale device part. 

The fourth part is focused on Van der Waals heterostructures with mixed dimensionality. This work 

was initially driven by the idea to decouple transport and absorption in order to overcome hopping 

transport. To do so, we coupled nanocrystals with a graphene layer to take advantage of its large 

carrier mobility while the absorption is occurring in the semiconductor nanocrystals. This research 

provided the opportunity to initiate a collaboration with Abdelkarim Ouerghi at C2N. Since then, we 

have amplified our collaboration with several projects dedicated to transport in Van der Waals 

heterostructures. 

In section five, I describe the main perspective of my work for the upcoming years. This includes the 

ongoing PhD projects of Bertille Martinez and Clément Livache and post doc by Nicolas Goubet. I 

suggest that I will pursue research in three main directions, including the synthesis of new narrow 

band gap materials, the probing of their electronic structure, and the investigation of their relaxation 

dynamic. Finally, I propose the design of a new generation of optoelectronic devices based on CQD 

as active material. 
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1. COLLOIDAL NANOCRYSTALS : From material to devices 
 

For a review, in French, on the topic see ref 32. 

 

Up to the 1960’s, low dimensional objects were only limited to theory. Great progress in material 

science has made confined material a reality. The progress of epitaxy has led to the development of 

quantum well84 (2D) and then quantum dot85 (0D) structures. Additionally, progress in micro- and 

nanofabrication also made possible the definition of confined areas thanks to electrostatic gating on 

2D electron gas. These new materials are not limited to the academic world and some of them have 

reached a mass market. This is in particular the case of the GaAs quantum well, which is now a key 

building block for lasers and the quantum cascade laser77 is probably the most achieved example of 

quantum engineering. Achieving confined objects is nevertheless not limited to these approaches, 

and chemical paths were developed by the end of the 1980’s. At the early beginning of the field, barely 

nm scale particles were synthetized with a broad size dispersion. A key breakthrough occurred in 

1993 in the Bawendi group, where the hot injection method was developed.86 It has led to 

monodispersed nanoparticles with an atomic-like spectrum. For these nanoparticles, the 

inhomogeneous broadening is low enough to observe a structured spectrum resulting from the sparse 

density of state of 0D semiconductor nanoparticles. Over the following 25 years, these so-called 

quantum dots generated a huge research effort, not only on the material side but also with respect to 

their applications. 

 

Figure 3 a. Band structure of a confined semiconductor. b. Image of a nanocrystal solution of cadmium 
chalcogenides with different levels of confinment. c. Absorption and emission spectrum of CdSe 
nanoplatelets. 

1.1. Semiconductor colloidal nanoparticles  

1.1.1. Quantum confinement 
Colloidal nanocrystals, also called quantum dots, are nm size semiconductor nanoparticles. Their size 

is typically below the Bohr radius. The latter is given by 
2

2

0

µe

h
a r




  with 

0 the vacuum permittivity, 

r the material dielectric constant, h the Planck’s constant, µ the reduced effective mass and e the 

proton charge. The Bohr radius represents the mean spacing between a photogenerated electron 

hole pair. Once the size of a nanoparticle is reduced below this size, quantum confinement appears. 
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Only sizes between that of the atomic lattice up to that of the nanocrystal can now be reached. In the 

reciprocal space this corresponds to momentum from the infinite down to π/R with R as the CQD 

radius (see Figure 3a). The band edge energy is thus corrected toward higher energy and it results 

in a blue-shift of the optical features. Tuning the size of the cadmium chalcogenides gives access to 

the whole visible spectrum (see Figure 3b). 

The sparse density of state of CQD results in a structured optical spectrum. Typically, the absorption 

spectrum presents different peaks close to the band edge energy. They result from different possible 

transitions (see Figure 3c). At higher energy, the absorption becomes far less structured and is related 

to the amount of absorbing semiconductor, independent of the nanoparticle size and shape. The 

photoluminescence (PL) of these CQDs is the source of the interest in this material. The PL occurs 

at an energy slightly lower than the absorption band-edge. The difference between the absorption 

and the emission peak is called the Stoke-shift, which depends on the CQD polydispersity and 

possible trap states within the band gap. 

1.1.2. Colloidal synthesis 
CQDs are synthetized in solution. A typical setup 

is shown in Figure 4a. During a typical synthesis, 
cation salts are introduced with ligand and solvent. 
The solution is degassed to get rid of dissolved 
water and oxygen. To increase the temperature, the 
atmosphere is switched to argon or nitrogen. The 
temperature is set to a value which strongly 
depends on the targeted material: 250°C for CdX, 
150°C for PbX, and 80°C for HgX. Here X is a 
random chalcogenide (S, Se and Te). By the end of 
the synthesis, an excess of ligand is introduced to 
passivate the CQD surface.  
The obtained nanoparticles are crystalline, as 

shown on the high resolution TEM image, which 
highlights the lattice fringes (see Figure 4b). In 
addition, this nanoparticle is capped by an organic 
shell made of ligand molecule (see Figure 4c). With 
now more than two decades of research in the field, 
a broad range of material and shapes can be 
obtained in nanocrystal form (see Figure 5). This 
includes metals (Au), wide band-gap (ZnO, CdSe, 
CsPbBr3) and narrow band gap (PbS, PbSe, 
Sb2Te3), semiconductors, semimetal (HgTe, HgSe), 
superconductors (Pb).  

 
Figure 4a. Image of a colloidal synthetic 
setup, from PGS’ lab. b. TEM image of a 
single nanocrystal. c. Scheme of a 
nanocrystal with its inorganic core and its 
surrounding ligand shell. 

Control of the shape and dimensionality has reached a high level of maturity, enabling production of 

spheres, rods, wires, platelets, cubes and stars. In what follows, my research deals with the 

appropriate choice of material from this library in order to build devices with enhanced performance, 

or, alternatively, in order to probe material properties. 
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Figure 5 TEM image of nanocrystals of various composition and shape that I have synthesized. 

 

1.1.3. Ligands 
Ligands are critical elements of nanocrystals. They typically are made of an organic functional group 

such as carboxylic acid, amine, thiol or phosphine, which bond to the nanocrystal surface and to an 

alkane chain. The length of the chain typically ranges between 12 to 18 carbons. 

Ligands have three roles. (i) During the synthesis they make the nanocrystal surface difficult to access 

for additional precursors and thus slow down the reaction rate. This is critical to preserve the nm size 

of the quantum dots. Their introduction is the main difference from previous synthesis in the 1980’s, 

which was conducted in aqueous media. (ii) Ligands also preserve the colloidal stability of the 

nanoparticles. The non-polar nature of the alkane chain favors nanocrystal solubilization in non-polar 

solvents. (iii) Finally, ligands play a key role in the electronic passivation of the surface states. 

Dangling bonds tend to introduce states with the semiconductor band gap. The hybridization of these 

surface states with the ligands is used to push these states away from the gaps. 

In other words, their presence is mandatory but they actually are very detrimental to most nanocrystal 

applications. For biological applications, water soluble CQDs are desired, but as they are at the end 

of the synthesis, CQD are not soluble in water. In devices, ligands behave as tunnel barriers. From 

STM their height has been estimated to be 2 eV, while their length corresponds to the ligand lengths 

(1-2 nm typically).87 As a result, a film of nanocrystals is electrically insulating. Typical mobility is below 

10-6 cm2V-1s-1. Ligand exchange procedures have thus been developed to reduce ligand length. 

Initially the procedure was developed directly on the film. A pre-formed nanocrystal film is dipped in a 

solution of short ligands diluted in a non-solvent. For example, ethandithiol (EDT, a short chain with 

two thiol functions) is dissolved in ethanol at a 1% in volume concentration. Since ethanol is not a 

solvent for the CQDs, they do not get dissolved. The excess short ligands replace the initial long 

ligand and the related tunnel barrier shrinks from 1.5 nm to 0.5 nm, which leads to an increase of 

mobility in the 10-3-10-2 cm2V-1s-1 range. After 2009, inorganic ligands were introduced88. They 

introduced a new way to tune the inter CQD tunnel barrier while manipulating the barrier height. 

However, these metal chalcogenide complexes were still difficult to prepare and use. As a result, in 

the early 2010’s, ionic short ligands were introduced. They typically consist of anionic halide89 (Cl-, Br-
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, I-) or chalcogenides90 (S2-, Se2- and Te2-) anions. Other anions such as SCN-,91 OH- and close 

derivatives of previously mentioned anions (HS-) have also been proposed. These anions are both 

easy to use, commercially available, and allow for tunnel barrier height tunability. These new surface 

chemistries have made it possible to reach mobility in the 1-10 cm2V-1s-1 range.91,92 In this case the 

ligand exchange is conducted in liquid phase. Typically, some of the ions are dissolved in a polar 

solvent (DMF), while a top phase is made of CQDs in a non-polar solvent. After sonication the short 

ions cap the CQDs. They thus get transferred to the polar phase. After a cleaning step to remove the 

excess of ligands, a stable solution of ionically passivated CQD is obtained. These methods will be 

intensively used in the following sections of this report. The current mobility record93 for CQD-based 

film is around 400 cm2V-1s-1. Paradoxically the idea to use conjugated chains as ligand has so far not 

led to any successful results. The reason for this failure is not clear and might be due to the difference 

between the energy of the CQD and the polymer HOMO LUMO energy. 

 

1.2. Transport 

1.2.1. Hopping transport 
In a CQD solid transport occurs through a hopping process. Due to the difficulty involved in doping 

nanocrystals, charges are usually generated through optical pumping94 or field effect95. Carriers then 

hop from CQD to CQD. At each step the carrier has to overcome a tunnel barrier.87 The tunnel barrier, 

as described above, is the result of the ligand. Moreover, an imperfect surface passivation will lead 

to the presence of surface traps, which act as recombination centers. This results in a complex 

multiscale percolation path. At the nanoscale level, the CQD size distribution makes it such that large 

CQD are less confined and behave as traps. At the mesoscale level, the presence of cracks, which 

typically result from volume reduction after the ligand exchange, also makes the path to reach the 

electrodes even more tortuous. As we deal with transport in nanocrystal solids, all these difficulties 

have to be considered. I will describe some strategies I have developed to deal with these problems 

in the following sections. 

 

Figure 6 Scheme illustrating the hopping transport occuring in a CQD array. Charge has to be 
generated within a CQD by light illumination of field effect. This charge will then hop from CQD to 
CQD and has to overcome a tunnel barrier at each event. Traps surface states may be introduced in 
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the gap and leads to recombination. Finally this hopping process is multi scale diffuse transport. CQD 
size distribution and crack leads to a complex percolation path. 

 

1.2.2. Transistors 
While CQDs have historically attracted interest for their luminescent properties, their use for transport 

only began in the early 2000’s. This delay is a consequence of the previously mentioned need to 

change the CQD surface chemistry in order to make the CQD solid conductive. Research on transport 

in CQD solids has been motivated both by the design of devices and by its potential to be a new 

window onto electronic structure. Due to the inherent low mobility of CQD film, Hall geometry, which 

is in solid state physics the most common way to access the carrier density and mobility, is extremely 

difficult and only a few recent results have been obtained96. As a consequence, the field effect 

transistor (FET) has become the most popular way to conduct transport measurements in CQD solids. 

Clearly, CQD-based transistors are not built with the intention to replace silicon electronic. The FET 

is, on the other hand, the most reliable way to identify the majority carrier and the mobility of a CQD 

film. The latter is proportional to the derivative of the transfer curve (drain current vs gate voltage). 

Over the past decade, strong efforts have been made to demonstrate large mobility value. This is 

because mobility is the macroscopic measurement of the local inter-CQD coupling: 
2

1ii  where 

i  is the wavefunction associated with the ith CQD. CQD-based FET have been initially proposed by 

Talapin and Murray,95 using a SiO2 dielectric layer as gate. In this case, conventional oxidized Si 

wafers are used and the oxide layer is used as gate insulator. This approach is far from ideal because 

of hysteresis and large leakage, but is very easy to develop. A ligand exchanged film of CQD is 

connected to drain source electrodes (see Figure 7a). As drain bias is applied, the bands are biased 

and the charges can drift toward the electrodes (see Figure 7b). If a gate bias is applied, surface 

charges are generated on each side of the dielectric. These charges can be used to move the Fermi 

level within the semiconductor (see Figure 7c).  

 

Figure 7a. Scheme of a CQD-based transistor. 7b and c illustrate respectively the effect of drain and 
gate bias. 

  



E. Lhuillier’s Manuscript for HDR defense – Optoelectronics of nanocrystals 22 

1.3. Optoelectronic of nanocrystals 

CQDs have generated interest in a broad range of applications which span from bio imaging97 to 

optoelectronics32,98. I will not review all of them; I will instead focus on two applications with which I 

have experience. 

 

1.3.1. The nanocrystals as phosphor for display 
Because of their high PL quantum yield, the use of CQD as a photon source has driven most of the 

research efforts. CQDs combine several advantages, such as a good resistance to photobleaching, 

a large absorption cross section, a broad band absorption, and a tunable PL. They can even be used 

as single photon source. The idea to use them as light source is therefore appealing, but the reality 

remains challenging. To date, the electroluminescence (EL) of CQD thin film has been 

demonstrated99-101. However, the efficiency and lifetime of such film remains technologically non-

competitive. In addition, EL combines the difficulties of both luminescence and charge management. 

Industry has come to the conclusion that CQD-based EL is not mature yet, and have chosen to use 

CQD as down converters. For the last three years, CQD have been commercially available and their 

first mass market use is in the form of phosphor for display. In a conventional LCD LED display a blue 

GaN/InGaN diode emitting at 460 nm is pumping a Ce:YAG yellow phosphor (see Figure 8a). This 

combination of blue and yellow generates a white color. This is then filtered by a RGB filter to make 

colored pixels. The gamut, which is to say, the number of colors that can be reproduced by a display, 

strongly depends on the narrowness of the source (see Figure 8b). This is in particular the case with 

green, to which the eye is strongly sensitive. The narrowness of the emission is one of the key 

motivations for OLED. However, OLED remains expensive and its lifetime is still too short. Several 

industry players (Sony, Samsung) have chosen to preserve the well-established LED LCD 

configuration and just replace the broad Ce:YAG emitter with green and red CQD (Figure 8c). This 

leads to significantly improved gamut. Actually, all the challenges come from the need for good 

encapsulation of the CQD to make them sustain the operating conditions. The next generation of 

LED-pumped CQD will be operated under large photon flux (10-100 W.cm-2, which is a tenth of the 

transition saturation) and high temperature (≈100°C). While I was at ESPCI, funded by the start-up 

Nexdot, I had the opportunity to work on this topic pursuing the idea that 2D nanoplatelets can become 

the next generation of phosphors and lead to an even higher gamut (see Figure 8c). This field already 

represents a market of 100 million to one billion dollars per year. Industry developers have massively 

bet on this technology and nanomaterial, and they now aim for more applications of these CQD. I am 

convinced that optoelectronics and, in particular, infrared photodetection, will be part of this new 

market. 
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Figure 8a. Luminescence spectra of Ce doped YAG, CdSe CQD and CdS NPL. b. Chromaticity 
diagram for different FWHM of the source. c. Area of the chromaticity digram which can be accesed 
by the QCD color IQ technology by Sony and while using NPL as source. 

 

1.3.2. Photodetection 
It took 10 years after the introduction of nanocrystals to obtain transport in CQD solids. This progress 

paved the way for the integration of CQD as a building block for optoelectronics and prompted the 

idea to revisit all semiconductor physics using CQD as a building block. However, it was and remains 

a challenging question, not least because the study of transport properties is still less mature than 

that of bulk material. There are also more open avenues for continued research, including nanocrystal 

doping and developing reliable material processability. Amongst this tremendous amount of work 

conducted on CQD solids, the other main optoelectronic application that has driven my research on 

CQDs is the design of a photodetector specifically dedicated to infrared detection. This application is 

motivated by the fact that CQD can offer an interesting alternative to current technologies based on 

epitaxially-grown semiconductors for the design of low cost detectors. Indeed, CQD-based technology 

removed the constraint of epitaxial growth, as the material can be deposited on any substrate. We 

also benefit from the relative ease of processing material developed for organic electronics (spin 

coating, ink jet…). The challenge is to demonstrate a sufficiently high level of performance to 

demonstrate that CQD can indeed lead to a new generation of infrared sensors. In the following I 

illustrate several of my contributions to this field. 
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2. INFRARED NANOCRYSTALS 
 

Students involved in this work: Adrien Robin, Marion Scarafagio, Patrick Hease. 

Publications relative to this work: 8,9,10,12,14,26,31,35,37. 

Reviews related to this work: 15,37. 

Conference proceedings relative to this work: 44-47. 

Patents relative to this work: 52,57. 

 

In the visible range of wavelengths, current optoelectronic devices have succeeded in combining low 

cost and high performance. In the infrared this is still not the case. Infrared detection relies on two 

main types of detectors. Quantum (i.e., photon) detectors which are fast, but cooled. These detectors 

are based on narrow band-gap semiconductors such as InSb, HgCdTe or wide band gap 

semiconductor heterostructures (GaAs/AlGaAs or InAs/GaSb). Alternatively, energy detectors such 

as bolometers can detect infrared signals without cooling but at the price of a longer time response. 

Because of their low temperature operation, which involves cryogenic conditions, quantum detectors 

are dedicated to high performance needs. Their current price of $10-100 k per camera limits their use 

to defense and astronomy applications. There is nevertheless is a growing demand for IR detectors 

in applications such as building, thermal management, or night assistance car driving. These new 

applications require a cost disruption that current quantum technologies are unlikely to bring. I am 

convinced that CQDs can offer an interesting alternative to the bolometer technologies. 

To build an infrared detector from a CQD film, we first need a material which is absorbant in the IR. 

So far in the field of CQDs most of the effort has been focused on cadmium chalcogenides because 

of their tunable band gap in the visible. III-V semiconductors such as InP have been more recently 

investigated as a low toxicity alternative, even if they remain less mature (i.e., broader FWHM, lower 

PL efficiency). Lead chalcogenides with their moderate band gap have also attracted a significant 

research effort for their use as active material for CQD-based solar cells102. However, the bulk band 

gap of these materials (0.4eV for PbS) prevents their use in the mid-infrared and thus in thermal 

imaging. Narrower band gap semiconductors (SnTe, Bi2Te3) and semimetals (Bi, Sn, HgTe, 

graphene) have to be used to push the optical absorption above 3µm. 3µm is indeed an interesting 

threshold. First, it corresponds to the value above which the thermal emission (i.e., blackbody 

emission) prevails over the reflection from warmer source (i.e., the sun). Secondly, to conduct thermal 

imaging, the atmosphere has to be transparent and there are two transparency windows, which are 

the 3-5 µm range (MWIR) and the 8-12 µm range (LWIR). 

To answer this challenge HgTe was as of 2010 the most mature candidate. As a II-VI semiconductor 

it benefits from experience gained from CdX, and its proximity to the bulk alloy HgCdTe ensures that 

its band structure is reasonably well-known. 

 

2.1. Electronic structure 

Under bulk form, HgTe is a semimetal with an inverted band structure (see Figure 9a). The Γ6 band 
which has generally the symmetry of a conduction band (in CdTe, for example) is below the Γ8 bands 
which usually have the valence band symmetry. This inversion of the band is responsible for the 
negative value of the band gap reported for HgTe and HgSe. When they are intrinsic materials, the 
Fermi level lies between the two Γ8 bands. As a result the weakly dispersive heavy-hole band with Γ8 
symmetry plays the role of the valence band, while the conduction band is the second Γ8 band and 
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has a similar symmetry to the light hole band in CdTe. Interband transitions occur between these two 
Γ8 bands. A calculation of the electronic structure of HgTe CQD using a tight binding method (see 
Figure 9b) also leads to a good correlation with experimental results. 103,104  

 

Figure 9 a. Band structure of HgSe. The two top bands have a Γ8 symetry and the fermi level lies 
between these two bands. The blue lines represent the state with Γ6 symetry. Its energy below the Γ8 
bands is characteristic of the inverted band structure of HgTe and HgSe. b. Electronic structure of a 
HgTe CQD determined by a tight binding approach (see ref 104). c. Size dependence of the interband 
energy transistion of HgTe CQD and intraband energy transistion of HgSe CQD. 

 

2.2. Synthesis and Doping of infrared nanocrystals 

 

2.2.1. HgTe as interband material 
In 2010, when I joined Guyot-Sionnest’s group, there were already a few reports regarding the 

synthesis of HgTe QD, but they were all still below 3µm. For a review on the topic the reader should 

refer to references.105 Briefly, the colloidal synthesis of HgX compounds started with aqueous 

precipitation106-108 and evolved towards organic methods,109-111 striving for increasingly better control 

of size and optical properties. In 2010, Sean Keuleyan developed the first synthesis of HgTe CQD8 

with a tunable band edge all over the 3-5 µm range (see Figure 10a). This early material was strongly 

aggregated (see Figure 10b) which leads to broad optical features but has the advantage of leading 

to strong interdot coupling and high mobility of the order of 1 cm2V-1s-1, without ligand exchange. The 

synthesis was then further improved10 to reduce the aggregation (see Figure 10d) and obtain sharper 

optical transitions (see Figure 10c). An even higher level of control was reached by Sean by the time 

I had left Chicago to obtain an improved control of the monodispersity112 (see Figure 10f). The 

resulting spectrum now presents several excitonic transitions (see Figure 10e). The interband edge 

of HgTe can now be tuned from 3 to 12 µm depending on the CQD size (see Figure 9c). More recently, 

in collaboration with Sandrine Ithurria, we developed 2D NPL of HgTe and HgSe (see Figure 10g). 

Direct synthesis is not yet possible, so we use an indirect path where we first synthetize nanoplatelets 

(NPL) of CdTe or CdSe and then conduct a cation exchange process113-115. This amazing process 

consists in exchanging the cation while keeping the anion lattice unchanged. In the case of HgX NPL 

this was especially challenging because of the softness of Hg-based material. The trick was really to 

slow down the reaction by using bulky (i.e., complexed with long ligand) precursors of the mercury. 

So far they remain in the near-IR (800-900 nm), but they bring all the optical advantages of the 2D 

geometry (i.e., narrow optical feature and fast emission; see the next chapter for more details).  
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Figure 10 Recent progress regarding the synthesis of HgTe nanocrystals. In 2011, agregated CQD 
were the first to present infrared absorption in the 3-5µm range (see ref 8). In 2012, an improved 
synthesis with reduced agregation was proposed (see ref 10) and led to sharper optical transistion. 
In 2014, improved monodispersity was obtained and led to the observation of several excitonic 
transition (see ref 112). In 2016, 2D nanocrystals of HgTe were obtained from cation exchange of 
CdTe NPL (see ref 31). 

 

2.2.2. HgSe as Intraband Material 
 

 Synthesis 

While HgTe behaves almost like an intrinsic semiconductor, the two other mercury chalcogenides 

HgS and HgSe present a very interesting behavior: they are self-doped. In the field of CQDs the 

doping remains an open challenge, and no systematic method has been identified116,117 to obtain on-

demand doping. The Guyot-Sionnest group has been leading the field in this direction and was the 

first to observe this self-doping118,119. We bring our contribution to the field of self-doped nanocrystal 

with the work of several students, notably Marion Scarafagio and Patrick Hease for the synthetic part, 

and Adrien Robin for the understanding of doping. We first proposed a new synthetic path for the 

synthesis of HgSe26. The synthesis is based on the reaction of a mercury oleate oleylamine complex 

with a selenium precursor. Depending on the targeted size of the CQD, two types of precursor can 

be used. Selenium complex with trioctylphosphine (TOPSe) allows the growth of small CQD in the 3 

to 15 nm range (see Figure 11a). However, the presence of TOP, which strongly binds to mercury, 

prevents the growth of larger objects. So we switched to a phosphine free synthesis120 and used SeS2 

as precursor. Particles up to 50 nm can be obtained (see Figure 11b). The size of the CQD is then 

finally controlled by tuning the temperature (from 70 to 120°C, above which the mercury complex is 

degraded) and reaction time (from 1 min to 30 min, typically). 
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Figure 11 a. and b. are TEM images of HgSe nanocrystals of different size. c. Absorption spectrum 
of two sizes of HgSe CQD. The spectrum presents two main contributions. At high energy, the 
interband transistion is observed, while at low energy a peak absorption results from intraband 
transistion within the conduction band. d. The energy of this intraband peak can be tuned all over te 
mid infrared thanks to size tunning, adapted from 26. 

 

The spectrum of HgSe present two distinct features. At high energy, a broad signal results from the 

interband absorption. In the mid-infrared, a peak signal is the signature of the intraband transition and 

the evidence for the doped character of these nanocrystals. The intraband peak can be tuned from 3 

to 20 µm while tuning the CQD size from 4 nm to 50 nm (see Figure 9c and Figure 10d). This value 

of 20 µm, almost in the THz range, is the reddest reported for CQDs26. The presence of this intraband 

absorption is really opening new possibilities for quantum engineering based on nanocrystals 

 

 Self-doping origin 

The presence of this intraband band signal raises questions about the origin and possible control of 

the magnitude of the doping. This work has been the object of the end of Adrien Robin’s PhD project. 

Before proposing a model which would rationalize the self-doping of HgX CQD, a few observations 

are worth mentioning. Rapidly after the synthesis of these materials, it appears that the intraband 

signal magnitude can be strongly tuned while tuning the surface chemistry. The growth of a CdS shell 

or a ligand exchange step strongly tunes the ratio of the inter- to intraband absorption (see Figure 

12a-b). We can quantify this change of absorption in terms of the population of the 1s state. Typically 

the carrier density is reduced by a factor 10 as we switch from the initial capping ligand toward S2-. 

This change of the population while tuning the size is more important for smaller CQDs and strongly 

depends on the ligand. As we look for a doping within the bulk of the CQDs, we have to consider the 

high working function of HgX, which is around 6 eV. This makes the reduction of the QD by 

water/environment possible according to the reaction
 2H2/12QDH2QD 2

-

2 OO . Thus 

the stable form for HgS and HgSe is the negatively charged CQD, while HgTe which is closer to the 

vacuum level is not reduced and remains neutral. This mechanism was the further confirmed by 

electrochemistry.121 The effect of a surface chemistry modification is to add dipoles. This leads to a 

shift of the vacuum level according to the equation. The anionic ligands point their negative charge 

toward the CQDs, which screen this field by bringing positive charge at the surface, which tends to 
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bend the bands upwards and reduce the doping (see Figure 12d). The equation  

 

ligand

vac

ligandµ
NE

 0

  with N the dipole surface density, µ the dipole magnitude, 0  the vacuum 

permittivity and ligand the medium dielectric constant allows proposing the Figure 12e for the dipole 

dependence of the band structure as dipoles are added. Small CQDs, which are confined, have a 

conduction band above the O2/H2O couple and are not reduced as observed. Then the larger the 

CQD, the lower the confinement and the larger the reduction (i.e., the higher the doping). The effect 

of dipole is then to bring a surface tunability to the bulk reduction of the CQDs. This is an interesting 

approach because we reach tunability in the 0.1 to 2 electron(s) per CQD which is not so easy to 

obtain. Finally, we also proposed a model to relate the population of the 1s states to the magnitude 

of the dipole, which leads to an optical measurement of the dipole intensity (see Figure 12c). 

 

Figure 12 a. Absorption spectrum of HgSe and HgSe/CdS CQD. Once the shell is grown the 1Sh-1Se 
transistion appears and the relative magnitude of the intraband transistion is reduced. b. Absorption 
spectrum of HgSe CQD capped by different ligands. c. Population of the 1s state as a function of the 
surface dipole for HgSe CQD capped with different dipole. d. Scheme of the electroic structire of HgSe 
CQD functionalized by surface dipole which bend the band on the surface. e. Energy of the conduction 
and valence band as a function of the surface dipole magnitude, adapted from 35. 

 

2.3. Electronic transport in narrow band gap nanocrystals 

I now would like to discuss the transport properties of the HgX CQDs. HgX CQDs are not the only 

colloidal nanocrystals with absorption in the mid-infrared. There are a few reports of doped oxide122,123 

and doped silicon nanocrystals124 which show mid-IR plasmonic features. However, what makes HgX 

CQDs appealing is that not only do they absorb, but they also give a photoconductive signal. This is 

why they will become the next generation of low-cost infrared photodetectors. For this research, I was 

supported by several students: Sean Keuleyan at U. Chicago, Marion Scarafagio, Adrien Robin at 

ESPCI and Clément Livache at INSP. 
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2.3.1. Tuning the surface chemistry to boost the carrier mobility  
 

 Strategies to increase the local coupling 

To make a film of CQDs conductive, the general route is described in Figure 13.125 The idea is to 

reduce the height and length of the tunnel barrier in order to increase the interdot coupling. This can 

be obtained from solid state ligand exchange (i.e., the film is already formed) or in liquid phase. We 

first investigated the classic ligand exchange with ethandithiol (EDT). EDT is a two carbon chain with 

a thiol function at each end. The dithiol crosslinked the CQD, which not only leads to a higher 

electronic coupling but also mechanically hardens the film. With EDT treatment, we indeed observed 

a rise of the conductance, but we also observed a non-monotonic temperature dependence of the 

current.14 This effect actually results from an oxidation of the CQD surface and can be avoided by 

preparing the film in air-free condition (i.e., in a glove box). 

 

Figure 13 Scheme of the strategy to make a CQD film conductive. At first CQD are capped with long 
capping ligands which is analog to two wells coupled by a large and high tunnel barrier. As ligand 
exchange toward short ligand is conducted, the tunnel barrier height is reduced. If all the organic 
ligands is removed, not only it is possible to play on the barrier length but also on its height. 

 

However, this approach does not address one key difficulty which occurs in the IR and results from 

the ligand absorption in the IR. In particular the C-H bond has a strong resonance at 3000 cm-1. If the 

absorption of the CQD is close to this value, an energy transfer from the CQD to the ligands can 

occur. In fact, because of the vicinity of the two materials, this transfer is extremely efficient126 (>99%) 

and this quenches the PL and photodetection efficiency. For this reason, removing the organic ligands 

is even more important for IR materials. 

 

 As2S3 a well suited surface chemistry for infrared 

We investigated an inorganic approach for the HgTe CQD capping. This inorganic matrix has to be 

(i) IR transparent, (ii) form a type I heterostructure with the CQD (i.e., the CQD has to remain the 

active IR material) and leads to (iii) a reasonable mobility. We identified As2S3 as an interesting 

candidate127,128. In a first step As2S3 powder is dissolved in propylamine. This solution is then diluted 

in ethanol. The HgTe CQD film is dipped in this solution and then rinsed to remove the excess of 

ligands. The deposition process and the ligand exchange are repeated at least a second time to fill 

the cracks (see the SEM image on the bottom right part of Figure 6) resulting from the film volume 

reduction occurring as long ligands are replaced by short ligands. A top capping layer is added to 

insulate the CQD film from the environment (see Figure 14a). 
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Figure 14a. SEM image of HgTe/ As2S3 hybrid structure. b. Temperature dependence of the current 
for As2S3 and EDT capping of air free proceseed HgSe CQD thin film. c. Transfer curve of HgTe CQD 
capped with As2S3 thin film transistor at different temperatures. d. Field effect mobility as a function 
of temperature for short organic ligand (EDT) and As2S3 caping ligand of HgTe CQD, adapted from 
14. 

 

HgTe CQDs, prepared in air-free conditions, present an ambipolar behavior with an electron and hole 

mobility which are quite close (see Figure 14c). This situation is quite favorable for fast phototransport. 

In addition, the thermal dependence, which is very important for photodetection, presents an 

activation energy which is close to half the band edge energy.14 This value maximizes the benefit of 

cooling by greatly reducing the dark current (see Figure 14b). It is also worth noting the improvement 

brought by the As2S3 ligands. First, it leads to higher activation energy (see Figure 14b) compared to 

EDT ligands. Secondly, the obtained mobility is two orders of magnitude higher14 (see Figure 14d). 

We re-explored the surface chemistry of HgSe during the internship of Marion Scarafagio. We  

conducted the ligand exchange in liquid phase to maximize the removing of organic ligands. However, 

instead of conducting the measurements with a simple back gate of SiO2, we built a dual gate gating,26 

where the SiO2 back gate is combined with a top electrolytic gate (see a scheme of the device in 

Figure 15a). This type of gate will be further discussed in the next chapter. The transfer curve is 

characteristic of a n-type material26 (see Figure 15b). This confirms the doped character of the material 

and that doping is due to electrons. We have obtained very large mobility, up to 90 cm2V-1s-1. This 

rise of the conductance results from the improved character of the ligand exchange. We also note the 

non-monotonic character of the current as a function of the CQD filling (see Figure 15b). Above 1 

electron per CQD, some CQD are filled with 2 electrons on their 1s state. With only two states 

available, the Pauli blockage prevents an additional filling. Some CQDs become ineffective for 

transport until the p-states start getting filled.26 

To conclude this discussion about transport, I would like to mention some recent work of our 

collaborator, the Aubin’s group24,129. They have used our HgSe CQD in an on-chip tunnel 

spectroscopy configuration. Briefly, they (electro)spray the particles on a chip where nanogaps have 

been prepared by e-beam lithography. Once a nanoparticle is trapped between the electrodes, the 

current overcomes a threshold and the chip is transferred to a cryostat. They obtain a tunnel map for 

this HgSe CQD (see Figure 15c).37 In particular, the map clearly exhibits two band gap energies as a 

function of the gate bias (i.e., CQD filling): a large gap, due to the interband transition, and a smaller 

one, due to the intraband transition, once the Fermi level reaches the 1s state. This demonstrates 

that doping exists at the single particle level and brings one more piece of evidence to the self-doped 

character of these CQDs. 
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Figure 15 a. Scheme of a field effect transistor, which channel is made of HgSe CQD. b. Transfer 
curve (drain current vs gate bias) for a film of HgSe CQD. The curve is characteristic of a n type 
semiconductor. The local minimum result from the mobility edge once the 1s state is filled, adapted 
from 26. c. Tunnel map (conductance vs drain and gate bias) for a single HgSe CQD. Two gaps are 
clearly observed, adapted from 37. 

 

2.3.2. Dynamic aspect of transport 
On the subject of transport, a last aspect needs to be discussed, and concerns noise. This frequency-

resolved contribution of the current is particularly critical for infrared photodetection. Indeed, for IR 

detection, the signal to noise ratio tends to be low due to thermal activation through the narrow gap. 

The noise needs to be measured to accurately estimate the detectivity (i.e., the signal to noise ratio) 

of a detector. We were the first to investigate experimentally the noise in CQD solids.9,18,130 

 

Figure 16 a. Noise current density as a function of signal frequency for CdSe NPL film under different 
biases. b. Hooge constant normalized by the number of nanocrystals as a function of the interparticle 
conductance for a broad range of material and nanoparticle sizes. Conductance, transconductance 
and noise intensity as a function of the CQD carrier density, from ref 18. 
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So far our observation from a broad range of materials (metal, wide band gap and narrow band gap 

semiconductors) is that at low frequency (<kHz), the noise is always limited by a 1/f noise (see Figure 

16a). The exact exponent from the frequency dependence might fluctuate a bit, but values between -

0.8 and -1 include most of the measurements. Very little is as yet understood about the origin of the 

1/f noise,131,132 but Hooge’s law133 
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 is the most widely-accepted empirical model. It relates 

the noise spectral density ni with the current magnitude I, the number of carriers N involved in 

transport and the frequency f. α is a constant that Hooge spent his life to measure, and is equal in 

metal film to 10-4-10-3. In a CQD film, not only 1/f noise prevails but its relative magnitude is very high; 

α around 1 is typical.9 We came to the point where understanding more about the origin of the noise 

was necessary. A first key question was whether the noise results from charge or mobility fluctuation. 

To answer this question, we split the noise in two components according to the equation 
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 . Then we used the non-monotonic behavior of the transfer curve as a 

function of charging. I mentioned previously that the conductance as a function of the CQD filling 

presents a local maximum when 1 electron per dot is reached, and a local minimum when 2 electrons 

per CQD is reached (see Figure 15b or Figure 16c). At these two points we can cancel the 

transconductance 
n

I



 . We then follow the noise as a function of the CQD filling. If the carrier 

fluctuations were prevailing, we would have expected a minimum of noise in the 1 to 2 electron per 

CQD range. We did not observe such a minimum and we concluded that noise most likely results 

from mobility fluctuations themselves, resulting from the distribution of distance between the CQDs. 

Finally, we have identified a general law to relate the noise magnitude to the inter-CQD conductance. 

This rule applies for a broad range of materials (Au, ZnO, CdSe, HgTe) (see Figure 16b). This power 

dependence of the noise with the conductance implies that parameters such as the nanoparticle size, 

or even the material composition, are not driving the noise magnitude. On the other hand, when the 

coupling gets strong it is possible to recover noise levels similar to the bulk. 

 

2.4. Toward a new generation of infrared detector 

2.4.1. State of the art 
During my research, I have dedicated significant effort to the measurement of device performance. 

This means that we systematically measure the calibrated photoresponse, the time response, the 

noise, and finally, we can evaluate the detectivity. In terms of photoresponse the responsivity of HgTe 

CQD-based devices typically ranges from a few mA.W-1 to 100 mA.W-1. This corresponds to quantum 

efficiency around 10% (see Figure 17a). The time response of HgTe can be fast with a cut-off 

frequency above 100 kHz. With HgSe, the responsivity can be larger, up to 600 mA.W-1, but at the 

price of a much slower photoresponse. The cut-off frequency drops around 50 Hz. The main drawback 

relative to intraband-based devices remains their large dark current which leads to smaller detectivity 

around 108 jones at room temperature26 and 109 at liquid nitrogen temperature119. With HgTe the dark 

current can be lower, and thanks to higher activation energy can be reduced further at low 

temperature. The best devices are currently based on HgTe (see Figure 17b) with detectivity above 

1010 jones. The best mid-IR device has been proposed by the Guyot-Sionnest group with a cut-off 

wavelength at 5µm in a photovoltaic mode134. Comparison of the obtained performances with existing 

technologies shows that for monopixels the CQD-based device already offers a competitive level of 

performance (see Figure 17b). It is also worth mentioning that the U. Chicago groups generated the 

first image by coupling a film of HgTe CQDs to a bolometer readout circuit.135,136 
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Figure 17 a. Responsivity as a function of the wavelength for different technologies of infrared 
detectors, adapted from 26. b. Detectivity as a function of wavelength for different technologies of 
infrared detector. The point of HgX CQD are given in red, adapted from 39. 

 

2.4.2. Current limitations 

I have identified the following limitations to current CQD-based mid IR detectors 

 Control of the doping is a key issue. This is true for infrared detection but also true for the 
design of photovoltaic solar cells. I want to address this problem both from the material point 
of view and on the device side. Methods to control the doping level of the material and control 
it a posteriori using a gate need to be developed. Doping will also be critical for the device in 
photovoltaic geometry to achieve an efficient charge dissociation. 

 We still lack data about the electronic structure of the HgX CQDs. As a result we do not 
know where are the electronic levels and the design of devices is performed by an trail and 
error approach. We need more information about the absolute energy levels in HgX CQD. Too 
many material parameters remain unknown or are determined with a very poor accuracy (0.1 
eV and more for band edge energy of 0.1 to 0.5 eV). A very common methodology consists of 
using bulk parameters, but this approach is clearly a very rough estimation. I want to go 
beyond this approach and systematically probe the electronic structure of the HgX CQDs 
using photoemission and IR spectroscopy.  

 The noise in CQD solids comes under a 1/f noise and its relative magnitude is important (see 
ref 18). The noise raises the question of how to reduce the dark current.  

 The last aspect relates to the dynamics of this system. Again, this is an open question. From 
an applied point of view, we do not know how fast an IR CQD-based device can operate. Is 
there any fundamental limitation, or are the limitations related to the material? 

 The stability of the device remains also an open question. The device performance needs 
to remain stable over a long timescale and no measurement has been conducted to determine 
the device lifetime. Certainly the encapsulation of the device within a matrix will be necessary 
to reach an appropriate level of stability. 
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3. 2D NANOCRYSTALS 
 

Students involved in this work : Adrien Robin, Daniel Thomas, Remi Castain. 

Publications relative to this works: 16, 17, 19, 20, 23, 25, 28. 

Reviews related to this work: 22, 30. 

Conference proceedings relative to this work: 48, 49. 

Patents relative to this work: 53-56. 

 

3.1. Cadmium chalcogenide nanoplatelets 

3.1.1. Materials 
Of the material challenges in the field of nanocrystals, control of the shape and dimensionality has 

received a tremendous amount of effort. The Alivisatos group first reported the synthesis of non-

spherical objects with rod shape137. It was only later that flat objects with 2D dimentionality were 

obtained. It was first proposed by the Hyeon group138,139 and then improved by Ithurria et al,140,141 

although there were already reports concerning flat objects in particular by the Schaak group.142-144 

What makes the cadmium chalcogenides fairly special is the unique control of the thickness that has 

been achieved. So far, the optical properties of CQD are generally limited by the inhomogeneous 

broadening (i.e., size distribution) of the optical features. For example, CdSe CQDs with emission 

around 550 nm have a FWHM of 25 nm for good synthesis. With CdX nanoplatelets (NPL), the FWHM 

can be below 10 nm22,30,145. This corresponds to a broadening between 1-2kbT. CdX NPL are 2D 

objects with a lateral dimension above the Bohr radius and a thickness of a few monolayers (1-2 nm). 

Only the thickness direction is confined, and this direction is perfectly flat (i.e., no roughness). 

At first sight, the growth in solution of anisotropic objects is not obvious, as this is a medium where 

random isotropic Brownian forces are applied. We discuss the possible mechanisms which are likely 

to induce anisotropic 2D growth in a recent review.30 Four main mechanisms have been identified:30(i) 

The atomic lattice is it-self anisotropic. This is typically the case of wurtzite NPL for which the growth 

occurs preferably along the c axis. (ii) Anisotropy may be induced by lattice defects. A third way (iii) 

to induce anisotropy results from ligand engineering. Ligands might form a lamellar template which 

favors growth within the plane. Finally, (iv) the anisotropy might be reduced by the self-assembly of 

pre-formed, small isotropic nanocrystal which connect through specific facets. This mechanism is very 

common for lead chalcogenides146. In the case of zinc blend CdX NPL, such as the one we will 

investigate in what follows, the exact mechanism is still under debate,147 but the ligands and their 

relative solubility play a key role. 

 

3.1.2. An original approach for cleaning and film deposition: electrophoresis 
One of my first steps in the field of 2D NPL was actually focused on the development of alternative 

methods to deposit film of NPL using electrophoresis. With Patrick Hease, we demonstrated that it 

was possible, and additionally that the method can be used to sort NPL from the side products of 

synthesis. The synthesis of CdSe NPL relies on the initial growth of CdSe small seeds. To do so, 

cadmium complexed with long carboxylate chains (myristate or oleate) reacts with selenium powder. 

As the growth step starts, additional cadmiums complexed with short carboxylate chains (acetate) are 

introduced. This reduces the solubility of the seed and leads to the anisotropic growth of NPL. 

Nevertheless, spherical CQD comes as side product of the reaction. This typically illustrates the 

absorption spectrum of the CdSe NPL. The crude mixture of the reaction presents some absorption 
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below the first excitonic peak of the NPL which comes from the 0D CQD (see Figure 18a). To get rid 

of them, selective precipitations are performed. We use the difference of colloidal stability between 

the NPL (poorly stable) and the CQD (highly stable) to split the two populations. However, this 

procedure is time and solvent consuming. Thus during Patrick Hease’s tenure as technician, we 

developed an alternative method based on electrophoresis20. 

 

Figure 18 a. Absorption spectrum of the crude mixture resulting from the synthesis of 2D NPL before 
and after their selective cleaning. b. Image of a electrophoretically deposited fikm of CdSe NPL. The 
scale is in cm, adapted from ref 20. 

 

We first investigated the electrophoretic deposition of the model solution of pure NPL and CQD of 

similar size to the side product obtained during synthesis. The TEM image and absorption spectrum 

associated with each material are shown in Figure 19a-d. Some acetone was added to a solution of 

nanoparticles dispersed in their non-polar solvent, to destabilize the solution. We then dipped two 

FTO coated glass slides used as electrodes in the solution. We applied a 400 V bias (F≈400 V.cm-1) 

between them. We observed a deposition of material only on the positive electrode. The deposition 

takes less than 1 min in the case of NPL, while more than 1 h is necessary in the case of CQD (see 

Figure 19f). We then further used this difference of kinetic deposition to sort some small amount of 

NPL diluted in a large amount of CQD. From this mixture, we were indeed able to extract only the 

NPL (see Figure 19e). The selectivity of the process has been estimated to be in the 100-300 range 

(see Figure 19g). We finally applied the method to sort the NPL from their crude synthesis mixture. 

This process is far more challenging because of the complexity of the mixture—the solvent is more 

viscous and there are some unreacted species. In spite of these difficulties we obtained on the positive 

electrode a film made of mostly NPL. The deposition is homogenous over large scale (see Figure 

18b). The obtained film can also be redispersed in good solvent if necessary. 
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Figure 19 a. TEM image of CdSe NPL. b. Absorption spectrum of CdSe NPL. c. TEM image of CdSe 
CQD. d. Absorption spectrum of CdSe CQD. e. Absorption spectrum of a mixture made of 40 
equivalent of CQD and 1 equivalent of NPL. The absroption spectrum of the deposited material (grey 
line), similar to the spectrum of pure CdSe is also shown. f. Decay curve of the absorbance of a 
solution of CdSe NPL and CdSe CQD as a function of time during the electrophoretic procedure. g. 
Ratio of deposited NPL/CQD as a function of the ratio of NPL/CQD introduced in the initial solution. 

 

3.1.3. Impact of the dimentionality 
The use of NPL instead of CQD for the design of optoelectronic devices raises the question of why 

should we expect different properties from these 2D objects compared with 0D CQD. Anisotropic 

objects raise great hopes for transport since we can expect a reduced number of hopping steps to 

reach the electrodes, and consequently there will be fewer tunnel barriers to go through. In addition, 

2D platelets which can easily stack on each other should have a stronger wavefunction overlap 

compared to 0D CQD. On the optical side a well-defined optical feature with sharp transitions is 

obviously one of the key advantages of 2D NPL, even if it actually results from the growth mechanism 

rather than from the dimensionality itself. In addition, their short PL lifetime makes them promising for 

light emission and is certainly responsible for the reduced laser threshold obtained with NPL.148,149 

A very striking difference between NPL and 0D CQD is their dielectric confinement. This effect is also 

a key difference between the 2D colloidal objects and those obtained by epitaxy. For epitaxially grown 

heterostructures, the change of the dielectric constant from one material to the other is very small,  

while the change of the dielectric constant is great between the semiconductor and its solvent. As a 

result, mirror charge effects are boosted as we switch from 0D to 2D shape and charges are pushed 

way from the surface. However, this effect is not observed on the electronic spectrum, because it is 

mostly balanced by the binding energy of the electron hole pair. As we can see later this will have a 

severe impact on transport properties. In particular, the binding energy is quite large for these NPL. 

Its value has been estimated to be 200-300 meV.150,151 This magnitude has to be compared with the 

few meV to few tens of meV occurring in 0D CQD. This makes the NPL quite close to what can be 

observed on transition metal dichalcogenides (TMDC) for which a binding energy of 0.5-1 eV is quite 

typical.152 Managing the electron hole pair dissociation will be crucial for the design of photodetector 
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3.2. Transport in nanoplatelet arrays 

3.2.1. Electrolytic Transistor 
As a first step in the use of NPL for optoelectronics we have decided to design a field effect transistor 

(FET). After a few unsuccessful attempts for conventional back gate FET, we turned our focus to 

electrolytic transistors. A key motivation for electrolyte gating comes from the very large gate 

capacitance. In a conventional dielectric transistor the gate capacitance is given by the ratio of the 

dielectric constant divided by the dielectric thickness. For a 400 nm SiO2 layer, this corresponds to a 

gate value of 10 nFcm-2. With electrolytes this is the length of the ionic layer which drives the 

capacitance. As a result, gate values above 1 µF.cm-2 are commonly obtained. 

 

Figure 20 Transfer curve (drain curret vs gate bias) for broad range of CQD materials. 

 

Electrochemical FET have been widely investigated by the Guyot-sionnest group153 and 

Vanmaekelbergh group154. However, they were using liquid electrolytes which suffer from two main 

drawbacks. They have to be prepared and used in air-free conditions and the electrochemical cell 

remains bulky/leaky. Instead, we developed a very simple ion gel gating155 which has become the 

most used electrical characterization of our materials. To outline the process briefly: we combine a 
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ligand exchanged film of NPL with ion gel prepared of LiClO4 dissolved in polyethylene glycol (PEG). 

PEG is already a solvent of the Li salt and no other solvent has to be used. This prevents the exposure 

of the CQD to an annealing step in the presence of non-solvent.  

Employing this approach we obtained FET with strong current modulation (see Figure 20). The 

method is versatile and can be applied to a broad range of material, from that with wide band gap 

(CdSe, CdS, CdTe) to narrow band gap (PbS, PbSe and HgTe)  and with various shapes. We 

observed that wide band gap materials are generally unipolar. Indeed, with the exception of CdTe, 

they are almost all n-type. On the other hand, narrow band gap materials are ambipolars. This 

observation might be in contradiction with previous results in the literature, but it actually results from 

the more efficient gate compared to dielectric gating that we used. We can push the charge carrier 

density further for both (i.e. electron and hole) carriers. This electrolyte gating allows low bias 

operation and we obtain on state while the gate bias remains below 3 V, which is generally the range 

of stability of the electrolyte. 

We then investigated more deeply the gating process on its own. First we confirmed that charges are 

indeed injected in the quantum states of the NPL. To do so we conducted spectroelectrochemistry 

experiments, in which we look at the bleach of the absorption while electrons are injected in the 

conduction band (see Figure 21a). This confirms that charges are not injected only in surface traps. 

As for liquid electrolyte, ion gel allows the charging of thick film (500nm have been successfully 

charged). We indeed see that the injected charge increases almost linearly with the film thickness 

(see Figure 21b). This is made possible because ions percolate between the nanocrystals.  

 

Figure 21 a. (top) Absorbance spetrum of CdSe/CdS NPL film. (bottom) Change in the absorption of 
a CdSe/CdS NPL film as a function of time while a 2V gate bias is applied. b. Injected charge in a film 
of CdSe/CdS NPL as a function of the film thickness. c. X-ray diffraction pattern of LiClO4/PEG 
electrolyte as prepared and once cooled below 0°C. d. Phase relative to the excitation of the 
electrolytic gate as a function of the signal frequency. 

 

During the postdoctoral research of Remi Castaing, we investigated the temperature and frequency 

dependence of ion gel gating. We observed that below 0°C, the gating properties are lost. We can 

relate this loss of ion mobility to a change of phase within the PEG. At high temperature, the PEG 

forms an ether crown which solvates the Li+ ions. As the ions move the ether crown reorganizes. That 
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is why at high temperature we observed an amorphous signal (a broad peak, see Figure 21c) for the 

electrolyte. Below 0°C, the electrolyte starts to freeze, as shown by the appearance of narrow 

diffraction peaks in the diffractogram, and the ether crown can no longer reorganize. This is a current 

key limitation of the electrolyte, which is only tunable at a high temperature. 

Regarding the impedance measurements obtained on the ion gel gating, we can distinguish two 

regimes156 (see Figure 21d). At high frequency, the phase is close to 90°, which is typical of capacitive 

behavior. In this regime, a double layer is formed, just on surface. To achieve the bulk charging of the 

CQD film, the ions need more time to percolate and this diffusion process comes with a decrease of 

the phase signal close to 0°. Recently, it was even proposed by Puntambekar et al157 that with LiClO4, 

not only there is percolation of the Li+ between the nanocrystals ions, but in presence of small 

counterions Li+ can even intercalate within the atomic lattice of the CQD. This intercalation is 

associated with slow dynamic and might be responsible for the more ohmic behavior. 

 

3.2.2. From photoconductor to phototransistor 
In a second step of this aspect of the research, we used the electrolytic transistor for its gate tunable 

properties. The idea was no longer to use the transistor as a probe of the carrier density but rather as 

a way to prepare the system to a certain operating point. This work was motivated by our preliminary 

work on CdTe16 and CdSe NPL film. NPL films can present a strong current modulation under 

illumination (three four orders of magnitude) but the overall photoresponse is weak in the 10µA.W-1. 

Given the low dark current in this system, resulting from the wide gap nature of CdX compounds, we 

can “sacrifice” a bit of the modulation (i.e. increase the dark current) to boost the photoresponse. In a 

photoconductive mode, the photocurrent typically scales like the light power. On the other hand, with 

a transistor operating in its subthreshold regime, the current presents an exponential dependence 

with the carrier density.  

 

Figure 22 a Drain current and responsivity of a CdSe/CdS NPL film as a function of the applied gate 
bias. b. Scheme of the band structure of CdSe/CdS NPL in presence of electronic traps which limit 
the electron lifetime. Once the electronic traps are filled due to a shift of the Fermi level (part c) the 
time spent by the electron within the conduction band is extended. d. Sheme of a dual color 
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photodetector, which photoresponse can be tuned from visible only to visible + infrared thanks to a 
gate bias, from ref 19. e change of the photoresponse under visible (405 nm) and infrared (980 nm) 
of the device of part d, for two gate biases. 

Our idea was to apply a gate bias on the CdSe/CdS film to bring it just below the turn on point. Then 

the excess of photogenerated carriers are expected to generate more photocurrent. We indeed 

observed a gate dependent photoresponse (see Figure 22a). Thanks to the gate we can increase the 

photocurrent by 2-3 orders of magnitude. The mechanism to explain this increase is called 

photogating and is actually a very common mechanism in the field of nanocrystal-based 

photodetection. This same mechanism also drives the photocurrent in the CQD graphene hybrid—

see the section dedicated to the Van der Waals heterostructure. The CdSe NPL are n type materials, 

17,25 as a result the electron can flow while the hole gets trapped. Gain is generated because the 

electron can recirculate several times during the lifetime of the hole. The latter is actually limited by 

external recombination with the environment and possibly a bimolecular process (i.e. a recombination 

with an electron). To maximize the gain, also defined as the ratio of the minority carrier lifetime over 

the transit time, it is critical that the electron spend its time to drift in the conduction. However, the 

electron can also get trapped (see Figure 22b). By applying a positive gate bias, the electron traps 

get filled and we observe an increase of the electron lifetime. 

This strategy to control the photoresponse of a system through the use of gate bias was then further 

used for the design of a bicolor detector. We coupled a film of HgTe CQD which has a cut-off 

wavelength in the IR with a film of CdSe/CdS NPL which only presents a visible absorption (see Figure 

22d). The two films are connected in parallel and a gate is controlling the (photo) conductance of the 

CdSe/CdS NPL film. Without a gate the conductance of the narrow band gap material prevails and 

we observe a photoresponse both in the visible and the IR (see the top part of Figure 22e). With the 

gate bias, the film of NPL is made sufficiently conductive to make its conductance prevail over that of 

the HgTe film, and we observe photoresponse only in the visible (see the bottom part of Figure 22e). 

 

3.2.3. Transport at the single nanoplatelets scale  
Since most of the difficulty relative to transport in CQD solids results from the hopping transport, we 

investigated a strategy which removes it and takes advantage of the anisotropic shape of the NPL. 

One key issue which was not addressed by the electrolytic transistor is the large binding energy of 

the NPL. The applied energy drop per NPL remains below the exciton binding energy and the exciton 

dissociation is incomplete. For these two reasons, we chose to shrink the size of the device down to 

the single particle level.  

We used a technology developed by J. F. Dayen at IPCMS (U. Strasbourg) to build a nanotrench, 

which is composed of two electrodes spaced by 20 to 100nm. This size typically corresponds to the 

lateral size of the NPL. The process only requires two steps of optical lithography in spite of the 

subwavelength character of the final device. The process involved a tilted evaporation which allowed 

us to overcome the diffraction limit. Details of the fabrication process are shown in Figure 23. The 

process in particular allows a large aspect ratio which is important to preserve absorption but is not 

so easy to obtain using e-beam, for example. A SEM image of the obtained device before and after 

its functionalization by NPL are shown in Figure 23c-d. 
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Figure 23 a. Principle of fabrication of a nanotrench device thanks to a tilted evaporation. b. Size of 
the nanotrench spacing as a function of the evaporation angle and thickness of the first electrode. 
Size below 20nm generally led to shorted devices due to the electrode roughness, while device above 
100nm present a limited interest. c. SEM image of pristine nanotrench. d. SEM image of CdSe/CdS 
NPL functionalized nanotrench. 

 

As we used the same material as before (film of CdSe/CdS NPL) and switched from µm spaced 

electrodes to the nanotrench, we observed a dramatic effect on the photoresponse, which was 

boosted by more than 7 orders of magnitude (see Figure 24a). Only a factor 200 results from the 

increase of gain due to the shorter transit time. There are consequently other mechanisms responsible 

for this enhancement of the photoresponse. We have a stronger charge dissociation and the large 

applied electric field (500 kV.cm-1) is now able to overcome the exciton binding energy. In other words, 

the bias energy drop per particle overcomes the binding energy. Secondly, with the nanoscale device 

the transport mechanism switches from hopping to a single tunnel event. This means that we removed 

a thousand tunnel events, and also that the carriers no longer experience the trap states. The 

photocharge lifetime is now limited by bimolecular recombination, as evidenced by the dependence 

of the photoresponse with the photon flux (see Figure 24a). The device can achieve a fast operation 

with a cut-off frequency measured at around 3 kHz (see Figure 24b-c). 

 

Figure 24 a. Photoresponse as a function of the photon irradiance (λ=405nm) for a film of CdSe/CdS 
NPL deposited on 10µm spaced electrdes or on a nanotrench. b current in a CdSe/CdS NPL film 
deposited on a nanotrench under a pulse of light. c. Frequency dependence of the photocurrent for a 
CdSe/CdS NPL film deposited on a nanotrench. The cut-off frequency is around 3 kHz. d IV curves 
under different gate biases for a CdSe/CdS NPL film deposited on a nanotrench. e. Tunnel 
transparency relative to the injected contact as a function of the drain bias for different gate biases 
for a CdSe/CdS NPL film deposited on a nanotrench. 

We then coupled the CdSe/CdS film on the nanotrench with an ion-gel gate and observe a strong 

field effect, with on/off ratio of 104, mostly limited by the leakage in the ion gel (see Figure 24d). To 
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clarify our understanding of transport in the nanotrench, we then compared these measurements with 

the tunnel transparency resulting from the Schottky barrier at the metal-NPL interface. The model 

includes the band alignment in the presence of confinement of the NPL with the metallic contact and 

a WKB approximation for the evaluation of the tunnel transparency. We obtained a fairly good 

qualitative agreement (see Figure 24e). 

 

3.2.4. Metal-semiconductor hybride structure 
During the internship of Loic Guillemot, we investigated the effect on transport of a gold 

functionalization on the CdSe NPL. This work was initially motivated by a report from the Murray group 

which introduced nanocrystals as dopant for a nanocrystal film of another kind158,159. There was also 

news from the Talapin group reporting charge transfer between gold and PbS160, in an Au core /PbS 

shell heterostructure. Thus our initial goal was to find a path to change the carrier density within the 

NPL thanks to the addition of gold at a time when doping of the NPL was not possible. The growth of 

the gold tip on the CdSe NPL is actually inspired from the growth of the gold tip on CdSe rods161,162. 

Typically, a gold salt is reduced by amine and forms tips mostly located on the NPL corner (see Figure 

25a-b). Thanks to a collaboration with Benoit Mahler, we then further expanded the gold 

functionalization. By using gold reduction under temperature and light illumination we demonstrated 

control of the site and size of the gold tips. 

Unsurprisingly as we add the gold tip, the conductance of the metal semiconductor hybrid system 

rises (see Figure 25c-d). This phenomenon was also observed in Au functionalized gold tip163,164, 

however the proposed explanations remained insufficient. Several mechanisms can be proposed. 

Gold might act as a conductive ligand. Indeed, we observe that in the presence of gold tips the CdSe 

NPL formed a network and the gold tips can bridge several NPL (see Figure 25a). However, this 

hypothesis can be ruled out since we still need a ligand exchange step to make the film conductive. 

A second mechanism may result from the formation of an Au2Se phase. Instead of forming two distinct 

phases of Au and CdSe, we may obtain a mixed material due to cation exchange114. Since Au2Se is 

a narrow band gap material, the thermally activated carrier density may increase, and this may result 

in the observed rise of conductance. To test this hypothesis, Francois Rochet from LPCMR, 

conducted XPS measurements. In the case of Au, Cd and Se only one oxidation state has been 

identified. And no Au+ signature associated with an Au2Se phase was observed. Our third hypothesis, 

which we initially strongly believed was the good one, was an electron transfer from the gold to the 

CdSe NPL. However, neither the Cd core level shift from XPS, the change of Fermi level from UPS 

(made by A. Ouerghi at Tempo on synchrotron Soleil) nor the spatially resolved KPFM measurement 

confirmed this hypothesis (see Figure 25e-f). Indeed, this demonstrates the opposite effect, the Fermi 

level shift toward the valence band which suggest a hole filling165 of CdSe. Since CdSe is only an n-

type material19,25, this actually means that CdSe is not involved in transport in the hybrid system. It 

thus brings us to the conclusion that only the gold is active on transport and that the rise of 

conductance results from a percolation process between gold islands. 
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Figure 25 a and b are TEM images of CdSe NPL functionalized by gold tips on the edge. c. IV curve 
relative to CdSe NPL functionalized with various amount of gold tips. d. Change of current and 
photocurrent as a function of the gold atomic ratio. e. Histogram of work function relative to the MoS2 
substrate work function for pristine CdSe NPL and gold tipped CdSe NPL measured by KPFM. f. 
Relative band structure of pristine CdSe NPL and gold tipped CdSe NPL. 

 

3.3. Conclusion 

The use of anisotropic CQD for optoelectronics has indeed revealed that the shape and dimentionality 

of the object are key factors for photodetection. So far, our hope to significantly increase the mobility 

by reducing the number of hopping steps has not been fulfilled. However, we have identified that the 

shape strongly influences the dielectric screening and leads to a boost of the exciton binding energy, 

which has to be specially managed. My research now shifts toward the development and use of 

narrower band gap NPL. This work is conducted in collaboration with Sandrine Ithurria and is part of 

the PhD of Clément Livache. 

 

  



E. Lhuillier’s Manuscript for HDR defense – Optoelectronics of nanocrystals 44 

4. VAN DER WAALS HETEROSTRUCTURES 
 

Students involved in this work: Adrien Robin, Wasim Mir. 

Publications relative to this work : 27, 29, 34,36. 

 

4.1. Graphene nanoparticles Hybrids 

This research activity had already started by the time we were investigating transport in NPL arrays. 

As I already indicated in the previous section, transport is a true challenge for colloidal nanocrystals. 

It was proposed in 2012 that one might use CQD as a graphene light sensitizer.168 The basic idea is 

to take advantage of the large mobility of the graphene and the high absorption of the CQD. 

Absorption occurs within the semiconductor CQD, and thanks to a selective charge transfer a current 

can flow in the graphene. This idea is actually very similar to what can be done in dye-sensitized solar 

cells166 and phototransistors167.  

 

4.1.1. Motivation 
Since its (re)discovery in 2004, graphene has generated an impressive amount of research. This effort 

is motivated by the unique physical properties of graphene. Here, it is the electronic properties which 

raise our interest. Graphene is a semimetal with linear symmetric dispersion. As a result, electrons 

and holes present high carrier mobility. In the case of epitaxial graphene, values of 2000-4000 cm2V-

1s-1 are typical. 

The coupling of the graphene layer with CQD really started with the work of Konstantatos et al,168 

followed by several other groups,169 who demonstrated impressive photodetection performance in 

graphene-PbS CQD hybrid heterostructures. They reported extremely large photodetection gain and 

photoresponse up to 107 A.W-1. This work has paved the way for unconventional van der Waals 

heterostructures, where 2D materials are mixed with other low-dimensionality materials170. We 

revisited this approach during Adrien Robin’s PhD while using CdSe NPL as a light sensitizer for 

graphene. 

Thanks to a collaboration with Abdelkarim Ouerghi at C2N, we were provided with epitaxial graphene. 

This graphene combines two main practical advantages. It is immediately deposited on an insulating 

substrate and no transfer step is necessary. Secondly, the substrate is transparent so we can perform 

a back side illumination, which allows the building of a top gate. All operation of this hybrid device 

relies on the selective charge transfer between the dye and the transport layer. Under illumination, 

electron-hole pairs get generated in the semiconductor. If only energy transfer was occurring, the 

electron hole pair would quickly recombine in the graphene and only lead to heat. On the other hand, 

if one charge is preferentially transferred, the graphene carrier density is modulated and we observe 

its signature through a change of conductance. Ultimately, photodetection in this hybrid 

heterostructure is driven by the charge transfer. During the PhD of Adrien Robin we chose to 

investigate it thanks to a phototransistor configuration. 

 

4.1.2. On demand charge transfer 
The graphene layer on SiC substrate is first patterned via three steps of lithography. On the top of it 

we deposit CdSe NPL and finally electrolyte is deposited on the top of the whole heterostructure. A 

side gate is used to control the carrier density. We first conducted the transistor measurements 

without NPL. The measured transfer curve is shown in Figure 26a. This conductance curve is typical 
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for graphene and presents a minimum which corresponds to the bias where the Fermi level crosses 

the Dirac point. As is, the graphene is already n-type which results from an electron transfer from the 

SiC substrate to the graphene.171 Once NPL are added, the Dirac point shifts to positive gate biases. 

This shift, of almost 1 V, corresponds to an electron transfer from the graphene to the NPL of ≈1013 

cm-2 carriers, assuming a gate capacitance of 1-2 µF.cm-2 which is typical for electrolytically gated 

graphene.172,173 Under illumination, the Dirac point shifts reversibly back toward negative bias. Under 

illumination, electron-hole pairs get generated in the n-type NPL. The electrons are transferred to the 

graphene, while the holes remain trapped within the semiconductor. Thanks to the large mobility of 

the graphene, the electron can recirculate several times during the lifetime of the hole. The latter is 

likely limited by its recombination with environment, as indicated by the sensitivity of the system to air 

and moisture. This gain mechanism is actually the same as the one occurring in the pure film of NPL.19 

 

Figure 26 a Transfer curve (drain current vs gate bias) for a pristine graphene channel. b Transfer 
curve for a CdSe/CdS NPL functionalized graphene channel. c. Transfer curve for a CdSe/CdS NPL 
functionalized graphene channel under different level of illumination. d. change of the minimum of 
conductance gate bias as a function of the light irradiance (λ=405 nm) for CdSe NPL functionalized, 
for a CdSe/CdS core shell NPL functionalized and for a CdSe/CdTe core crown NPL functionalized 
graphene channel. 

The charge transfer between the NPL and the graphene has to be carrier selective to prevent energy 

transfer. Actually, both charge and energy transfer occur but generally only one of them is probed, 

either charge transfer by transport measurement or energy transfer for FRET measurement. This 

selectivity of the charge transfer relies on two key parameters, which are the band offset of the 

semiconductor with graphene and the binding energy. The large binding energy of the NPL is not so 

favorable to an efficient charge dissociation. This explains why at the end the NPL-based hybrid 

presents lower performance than the PbS-based hybrid. Indeed, in PbS, the carriers almost behave 

as free charges due to the large dielectric constant of PbS which makes the binding energy very weak 

(few meV). To boost the charge transfer, we then need to find a way to decrease the binding energy. 

This can be done by reducing the overlap between the electron and the holes. In the III-V 

semiconductor heterostructure, such a strategy has already been proposed to induce dipole.174 We 
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chose to use colloidal hetrostructures as a way to reduce the coulombic interaction between electron 

and hole. Two types of heterostructures have been tested, CdSe/CdS core-shell and CdSe/CdTe 

core-crown heterostructures. For core-shell, the CdSe NPL is encapsulated in a CdS shell and it is 

mostly the confined direction (i.e., the thickness) which is affected. The electron gets localized all over 

CdSe and CdS, while the hole remains confined in CdSe. For CdSe/CdTe core-crown, the thickness 

of the core remains unaffected and the growth of the CdTe occurs only in the plane. In this case, the 

electron stays in CdSe, while the hole gets localized in the CdTe crown. The overlap between electron 

and hole gets reduced and the rise of the PL lifetime is a signature of the reduced overlap. As we 

switch from core to core-shell, we obtain an increase of the charge transfer by a factor 3 (see Figure 

26d). On the other hand, as type II (CdSe/CdTe) band alignment is used, we observe that holes are 

now injected into the graphene. We thus have demonstrated a magnitude- and sign-tunable charge 

transfer from semiconductor to graphene. We now hope that the proposed strategy can be further 

used for the design of van der Waals heterostructures with a high level of control of the inter layer 

charge transfer. 

 

4.1.3. Noise in the hybrid structures 
In this hybrid heterostructure the photoresponse can be large thanks to gain, but several issues have 

been swept under the rug. In particular, the photoresponse almost scales like the inverse of the photon 

flux. In other words, good performance is limited to very low photon flux. In our hybrid the generated 

photocurrent remains unchanged over six orders of magnitude of photon flux. Once the electron-hole 

pair is generated the hole gets trapped and will then behave as a recombination center for the next 

photogenerated electron, and that leads to a huge non-linearity of the photoresponse. 

 

Figure 27 a. Noise voltage density as a function of signal frequency for a graphene channel under 
different applied biases. b. Relative magnitude of the 1/f noise contribution of the noise voltage density 
as a function of the applied bias for a pristine graphene channel and for a CdSe/CdS NPL 
functionalized graphene channel. 

A second key issue that needs to be addressed in this hybrid device is whether or not the presence 

of the nanoparticles brings more noise. To measure the noise in this device, Adrien Robin has built a 

setup where four devices are connected in a Wheatstone bridge configuration.27 This allows reducing 

most of the DC part of the signal, which can then be amplified and acquired on a spectrum analyzer. 

The voltage spectral density presents two clear components—a white noise, which we attribute to the 

thermal noise, and a huge contribution due to 1/f noise175 (see Figure 27a). Actually, in most published 

papers on this subject, this contribution, which cannot be estimated a priori by an analytical 

expression, is simply neglected. As a result, the detectivity values provided in many papers are largely 

overestimated. The magnitude of the 1/f noise is then compared for pristine graphene and NPL 

functionalized graphene. We measure a rise of the noise by a factor 3 (see Figure 27b). However, 



E. Lhuillier’s Manuscript for HDR defense – Optoelectronics of nanocrystals 47 

this difference can be fully attributed to the difference of carrier density within the graphene, according 

to the 1/N dependence given by Hooge’s law. The conclusion here is that functionalizing the graphene 

tunes the noise according to the change in graphene carrier density. 

Performance-wise these devices are not fully satisfying. The gain of performance resulting from the 

higher mobility is not balanced by the rise in the carrier density, due to the lack of band gap in 

graphene. This explains why most recent projects have switched from graphene to TMDC material 

such as MoS2.176 Another limitation of this system, which is easy to point a posteriori, is the fact that 

the photocurrent modulation in graphene cannot be more that what can be obtained on the transfer 

curve. As shown in Figure 26, we have obtained a modulation by a factor 4. A photomodulation of a 

factor of 4 while using a wide band gap semiconductor is very unimpressive, since we already 

demonstrated modulation by 4-5 orders of magnitude in pure film of NPL. On the other hand, revisiting 

this strategy in the infrared might be worthwhile. In the MWIR or LWIR, having photomodulation of 

only a few percent is common. The coupling of graphene with mid-IR CQD looks far more promising, 

since in this case we can expect some improvements. 

 

4.2. 2D Heterostructure: demonstration of a pn junction in graphene MoS2 

After this first work on graphene, we pushed our collaboration with A. Ouerghi to the next step and 

investigated transport in more conventional van der Waals heterostructures. The device is a stack of 

p-graphene with n-type MoS2, as shown in Figure 28a-b. Briefly, a MoS2 synthetically grown by CVD 

is transferred on a hydrogenated epitaxial graphene. Contacts are then deposited after an e-beam 

lithography step. All the steps of this process were performed by the C2N team, while the transport 

and phototransport experiments were conducted on our transport experimental setup.  

 

Figure 28 a and b are repectively a scheme and false color microscopy image of a graphene/MoS2 
vertical jucntion. c. IV curves under different light irradiance for the graphene/MoS2 vertical jucntion. 
The inset is the same set of curves in linear scale. The power dependence of the photocurrent is quite 
linear as shown in part d. e. Transfer curve of the graphene/MoS2 vertical jucntion. f. IV curve of the 
graphene/MoS2 vertical jucntion under hole (VGS<0 V) and electron injection (VGS>0 V). 
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The device is photoresponsive and the current rises linearly with the photon flux (see Figure 28c-d). 

We then added a top ion gel gating to investigate the impact of the Fermi level tuning. The transfer 

curve shows that the junction behaves as an effective n-type material (see Figure 28e). The on-off 

ratio reached almost four orders of magnitude. Even more interesting is the change of shape of the 

IV curve under gate control. Under electron injection (VGS>0 V) the IV curve is linear. In fact, the 

graphene is barely p-type, and under electron injection the Fermi level is moved above the Dirac point. 

We obtain a n-n junction with an ohmic behavior. On the other hand, if holes are injected, the p-

character of the graphene is reinforced, while the inherent n-doping of the MoS2 is high enough to 

preserve its n-type nature. We thus form a pn junction which is responsible for the rectifying behavior 

of the I-V curve. In this study we also demonstrated that the sign and magnitude of the photoresponse 

are gate tunable. 

 

These mixed-dimensionality van der Waals heterostructures are models for the investigation of 

charge transfer processes. So far our probe (i.e., transport under gate control) is well-suited to probe 

the static charge transfer. My goal will be now to gain insight on the dynamic of the coupling between 

layers. 
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5. PERSPECTIVES 
 

This section has been removed. 
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