
HAL Id: tel-01536912
https://hal.science/tel-01536912v1

Submitted on 13 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Deducing Basic Graph Patterns from Logs of Linked
Data Providers
Georges Nassopoulos

To cite this version:
Georges Nassopoulos. Deducing Basic Graph Patterns from Logs of Linked Data Providers. Computer
Science [cs]. Universite de Nantes, 2017. English. �NNT : �. �tel-01536912�

https://hal.science/tel-01536912v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Thèse de Doctorat

Georges
NASSOPOULOSMémoire présenté en vue de l’obtention du

grade de Docteur de l’Université de Nantes

École doctorale : Sciences et technologies de l’information, et mathématiques

Discipline : Informatique et applications
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)

Soutenue le 22 mai 2017

Deducing Basic Graph Patterns from Logs of
Linked Data Providers

JURY

Rapporteurs : M. Philippe LAMARRE, Professeur des Universités, Institut National des Sciences Appliquées de Lyon (INSA)
M. Olivier CURÉ, Maître de conférences HDR, Laboratoire d’informatique Gaspard-Monge

Examinateurs : Mme Pascale KUNTZ-COSPEREC, Professeur des Universités, Ecole Polytechnique de l’Université de Nantes
Mme Claudia RONCANCIO, Professeur des Universités, Institut Polytechnique de Grenoble - Ensimag
M. René QUINIOU, Chercheur, Institut National de Recherche en Informatique et en Automatique de Rennes (INRIA)

Directeur de thèse : M. Pascal MOLLI, Professeur des Universités, Université de Nantes
Co-encadrants de thèse : Mme Patricia SERRANO-ALVARADO, Maître de conférences, Université de Nantes

M. Emmanuel DESMONTILS, Maître de conférences, Université de Nantes

Acknowledgements

First of all, I would like to thank the rapporteurs, Professor Dr. Philippe LAMARRE and
Associate Professor Dr. Olivier CURÉ for accepting reading my PhD thesis and writing
up a report. I would also like to thank Professor Dr. Pascale KUNTZ - COSPEREC,
Professor Dr. Claudia RONCANCIO and Researcher Dr. René QUINIOU, for accepting
to be part of the PhD jury as examiners. I would like to thank also Professor Dr. Philippe
LAMARRE and Professor Dr. Sébastien GAMBS for the follow up during all the years
of my PhD as members of Comité de Suivi de Thèse.

I owe infinite gratitude to my supervisors Professor Dr. Pascal MOLLI, Associate
Professor Dr. Patricia SERRANO-ALVARADO and Associate Professor Dr. Emmanuel
DESMONTILS for entrusting me with my PhD theme and giving me the opportunity
to participate in this scientific journey. Their guidance and supervision were invaluable
during my PhD years. All the members of the GDD team and the LS2N (former LINA)
laboratory provided a nice working environment and I would like to thank them for that.

I am also very thankful to all my fellow Ph.D. students. This journey was enriched
with a multi-cultural and friendly environment, that I will never forget. I would like to list
the people that helped me the most sharing off-work moments, drinks... and of coarse ses-
sion therapies: Pauline FOLZ, Gabriela MONTOYA, Stamatina (Matoula) PETROLIA,
Mohamed Amine AOUADHI, Anicet BART, Marko BUDINICH, Amir HAZEM, Firas
HMIDA, Luis Daniel IBANIEZ, Brice NEDELEC, Jonathan PEPIN, Mathieu PERRIN,
Alejandro REYES-AMARO, Nicolo RIVETTI and James SCICLUNA. A special thanks
to Gabriela MONTOYA for showing me the good side of the force... of query processing
over the Linked Data!

Finally I would like to thank my family. Ευχαριστώ για την άνευ όρων και άνευ ορίων
στήριξή σας. Μοιάζει κοινότυπο αλλά χωρίς εσάς δεν θα τα κατάφερνα ... ή σίγουρα όχι τόσο

καλά. Ευτυχώς που υπάρχει το γοογλε τρανσλάτε και οποιοσδήποτε μπορεί να διαπιστώσει

ότι παραμένω όπως πάντα ευγενής :)

3

4

À Sophie, Hélène, Hypatie et Marc

Contents

1 Introduction 15
1.1 The Semantic Web initiative . 15
1.2 Querying the Linked Data . 16
1.3 Problem statement . 19
1.4 Approach . 19
1.5 Organization and contributions . 20

2 Preliminaries: querying the Linked Data 23
2.1 SPARQL semantics . 24
2.2 Physical join operators . 25
2.3 Querying TPF servers . 27

2.3.1 The TPF framework . 28
2.3.2 TPF query processing . 31

2.4 Querying SPARQL endpoints . 33
2.4.1 Federated query processing . 33
2.4.2 State of art query engines: FedX and Anapsid 35

2.5 Formal problem statement . 39

3 State of art: Data Mining 43
3.1 Web usage mining . 45
3.2 Sequential pattern mining . 45

3.2.1 Approaches and techniques . 47
3.2.2 State of art algorithms: WINEPI and MINEPI 50

3.3 MINEPI over query logs . 53
3.3.1 Experimental testbed . 53
3.3.2 Experiments with MINEPI . 54

3.4 Limitations of query log analysis . 56
3.5 MINEPI with pre or post-processing . 59

3.5.1 MINEPI with data transformation 59
3.5.2 MINEPI with pruning constraints 61

4 LIFT: LInked data Fragment Tracking 65
4.1 Illustration example . 66
4.2 LIFT: a reversing approach . 68

4.2.1 Extraction of candidate triple patterns 69
4.2.2 Nested-loop join detection . 71
4.2.3 BGP extraction . 72

5

6 CONTENTS

4.2.4 Time complexity of LIFT . 73
4.3 Experiments . 73

4.3.1 Experimental tesbed of LIFT . 73
4.3.2 LIFT deductions of queries in isolation 75
4.3.3 Does LIFT resist to concurrency? 76
4.3.4 Analysis of the TPF log of USEWOD 2016 77

5 FETA: Federated quEry TrAcking 83
5.1 Illustration example . 85
5.2 FETA: a reversing approach . 88

5.2.1 Graph construction . 90
5.2.2 Graph reduction . 92
5.2.3 Nested-loop join detection . 94
5.2.4 Symmetric hash join detection . 94
5.2.5 BGP extraction . 96
5.2.6 Time complexity of FETA . 96

5.3 Evaluation . 98
5.3.1 Experimental tesbed of FETA . 98
5.3.2 FETA deductions of queries in isolation 99
5.3.3 Does FETA resist to concurrency? 103

6 Conclusion and perspectives 107
6.1 Conclusion . 108
6.2 Perspectives . 109

6.2.1 Real-time extraction of BGPs . 110
6.2.2 Handling false-positives due to concurrency, with post-processing . 110
6.2.3 Other strategies to link subqueries 112

List of Tables

1.1 Federated log of QI traces, produced by a federated query engine and
executed over the federation of SPARQL endpoints that are hosted by
DBpedia and Bob data providers. 18

1.2 Federated log of QI and QII traces, produced by a federated query engine
and executed concurrently over the federation of SPARQL endpoints that
are hosted by DBpedia and Bob data providers. 20

2.1 Example of a simplified dataset of a TPF server, hosted by data provider pA. 28
2.2 Query log of SELECT ∗WHERE {?x p2 toto . ?x p1 ?y} traces, produced

by a TPF client with ip1 IP address and executed on the TPF server hosted
by pA data provider. 32

2.3 Example of simplified datasets of two SPARQL endpoints, hosted by pA

and pB data providers respectively. 35
(a) Dataset of pA . 35
(b) Dataset of pB . 35

2.4 Federated query log of SELECT ?z ?y WHERE {?z p1 o2 . ?z p2 ?y}
traces, produced by FedX query engine with ip1 IP address and executed
over the federation of SPARQL endpoints hosted by pA and pB data providers. 36

2.5 Federated query log of SELECT ?z ?y WHERE {?z p1 o2 . ?z p2 ?y}
traces, produced by Anapsid query engine with ip1 IP address and executed
over the federation of SPARQL endpoints hosted by pA and pB data providers. 38

2.6 Dataset triples of DBpedia and Bob data providers. 40
(a) IRI prefixes . 40
(b) Dataset triples of Bob . 40
(c) Dataset triples of DBpedia (concerning "Mona Lisa") 40

3.1 HTTP log of of QA - QD traces, produced by data consumer with ip1 IP
Address and executed over the federation of pA and pB data providers.
SPARQL results are requested in json format with execution timeout = 0. 46

3.2 HTTP log of web pages, accessed by the data consumer with ip1 IP Address,
over the federation of pA and pB data providers. The log is represented as
a temporal sequence. 46

3.3 Transformation of transaction-oriented into sequence-oriented DB. 48
(a) Transaction oriented DB, sorted by "Customer ID" 48
(b) Sequential oriented DB, stored in an horizontal format 48

7

8 LIST OF TABLES

3.4 Alphabet sizes of events of CD traces, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI default
version with triple pattern granularity. 54

3.5 Frequent episodes of CD traces, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI default
version with triple pattern granularity, length = 2 and different support
thresholds. 54

3.6 Alphabet of events of QA - QD traces, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI with
triple pattern granularity and with or without the NestedLoopDetection
heuristic. 57

3.7 Frequent episodes of CD traces, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI with
triple pattern granularity, NesteLoopDetection as data transformation and
length = 2. 59

3.8 Alphabet sizes of events of CD execution traces, produced by a federated
query engine and executed over a federation of SPARQL endpoints, for
MINEPI triple pattern granularity and NesteLoopDetection as data trans-
formation. 61

3.9 Frequent episodes of CD traces, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI with
triple pattern granularity, NesteLoopDetection as pruning constraint and
length = 2. 63

4.1 Partial log of Q1 traces, produced by TPF client with 173.28.19.114 IP
Address and executed on DBpedia TPF server. Answers are extracted
from data providers in form of Triple Pattern Fragment. 67

4.2 Number of requests of single triple patterns for queries in the TPF web
application, produced by a TPF client and executed in isolation on single
TPF servers (DBpedia, Ughent, VIAF or LOV). 73

4.3 Runtimes (seconds) of LIFT with traces of queries in the TPF web applica-
tion, produced by a TPF client and executed in isolation on single TPF
servers (DBpedia, Ughent, VIAF or LOV). 74

4.4 Query sets executed concurrently on single TPF servers (DBpedia, Ughent,
VIAF or LOV). 77

4.5 Query sets executed concurrently over a federation of TPF servers (DBpe-
dia, Ughent, VIAF and LOV). 77

5.1 Partial federated log of CD3 traces, produced by Anapsid (EAnapsid(CD3))
with 173.28.19.114 IP Address and executed over a federation of SPARQL
endpoints. Answers are extracted from data providers in json format. . . . 86

5.2 Partial federated log of CD3 traces, produced by FedX (EF edX(CD3)) with
173.28.19.114 IP Address and executed over a federation of SPARQL end-
points. Answers are extracted from data providers in json format. 87

5.3 Number of requests of SELECT subqueries for CD and LS queries, pro-
duced with Anapsid or FedX and executed in isolation over a federation
of SPARQL endpoints. 98

LIST OF TABLES 9

5.4 Runtimes (seconds) of FETA with traces of CD and LS queries, produced
with Anapsid or FedX and executed in isolation over a federation of
SPARQL endpoints. 99

6.1 Query log corresponding to execution of QA and QF , produced by data
consumer with ip1 IP Address and executed on pA data provider. Traces
in red color correspond to query QA while traces in green correspond to
query QF . 109

List of Figures

1.1 Linked Data cloud, as of February 2017 [10]. 16
1.2 RDF graphs of Bob and DBpedia (concerning "Mona Lisa"). 17
1.3 SPARQL query combining data from Bob and DBpedia. 17

2.1 Different types of Linked Data Fragments (LDFs) and their trade-offs [57]. 27
2.2 TPF query processing model. When applied over a federation of TPF

servers, the selector functions for count estimation are also used for data
localisation. 32

2.3 Federated query processing model [37]. 34
2.4 Federated query processing model of FedX. 36
2.5 Federated query processing model of Anapsid. 38

3.1 Extraction of frequent episodes with pattern growth algorithms, by project-
ing only subsequences with frequent prefixes. 49

3.2 Abstract example of a temporal sequence, used as input to WINEPI and
MINEPI. 51

3.3 Sliding windows of length = 40 for WINEPI over the temporal sequence
in interval [0, 120[. Episodes containing A,B,D are identified in windows
U4, U5, U6, U7 and U8 (in red color). 51

3.4 Minimal occurrences for MINEPI over the temporal sequence in interval
[0, 120[. Episodes containing A,B,D are identified in intervals [10, 40],
[30, 70], [30, 50], [50, 70] and [40, 60] (in red color). 51

3.5 Frequent episodes of the temporal sequence in interval [0, 120[, for WINEPI
with sliding windows of length = 40. 52

3.6 Frequent episodes of the temporal sequence in interval [0, 120[, for MINEPI
with support = 1. 52

3.7 Recall of joins of traces of CD queries, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI default
version with triple pattern granularity and different support thresholds. . . 55

3.8 Precision of joins of traces of CD queries, produced by a federated query
engine and executed over a federation of SPARQL endpoints, for MINEPI
default version with triple pattern granularity and different support thresh-
olds. 55

3.9 Recall of joins of traces of CD queries, produced by FedX query engine
and executed over a federation of SPARQL endpoints, for MINEPI with
NestedLoopDetection as data transformation and different support thresh-
olds. 60

11

12 LIST OF FIGURES

3.10 Precision of joins of traces of CD queries, produced by FedX query en-
gine and executed over a federation of SPARQL endpoints, for MINEPI
with NestedLoopDetection as data transformation and different support
thresholds. 60

3.11 Recall of joins of traces of CD queries, produced by FedX query engine
and executed over a federation of SPARQL endpoints, for MINEPI with
NestedLoopDetection as pruning constraint and different support thresholds. 62

3.12 Precision of joins of traces of CD queries, produced by FedX query engine
and executed over a federation of SPARQL endpoints, for MINEPI with
NestedLoopDetection as pruning constraint and different support thresholds. 62

4.1 Concurrent execution of queries Q1 and Q2, produced by TPF client with
173.28.19.114 IP Address and executed on the DBpedia TPF server. 66

4.2 Examples of simplified TPF logs, for Q3 and Q4 traces. 68
4.3 TPF log and CTP List, produced by Algorithm 2 with E(Q3 ‖ Q4) and

for gap = 8. 70
4.4 CTP List and DTP Graph set, produced by Algorithm 3 for gap = 8. . . . 71
4.5 Connected components of the DTP Graph set, produced by Algorithm 3

for gap = 8. 72
4.6 Precision and recall of joins for LIFT with traces of queries in the TPF web

application, produced by a TPF client and executed in isolation on single
TPF servers (DBpedia, Ughent, VIAF or LOV). 75

4.7 Deduced BGPs for LIFT with traces of Q7 and Q8 queries in the TPF web
application, executed in isolation on the DBpedia TPF server. 76

4.8 Precision of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence on
the DBpedia TPF server. 78

4.9 Recall of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence on
the DBpedia TPF server. 78

4.10 Precision of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence on
single TPF servers (DBpedia, Ughent, VIAF or LOV). 79

4.11 Recall of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence on
single TPF servers (DBpedia, Ughent, VIAF or LOV). 79

4.12 Precision of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence over
a federation of TPF servers (DBpedia, Ughent, VIAF and LOV). 80

4.13 Recall of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence over
a federation of TPF servers (DBpedia, Ughent, VIAF and LOV). 80

4.14 Frequent BGPs extracted with LIFT from the TPF log of USEWOD 2016. 81

5.1 Concurrent execution of FedBench queries CD3 and CD4, produced by a
federated query engine with 173.28.19.114 IP Address and executed over a
federation of SPARQL endpoints. 85

LIST OF FIGURES 13

5.2 Examples of simplified logs of SPARQL endpoints, for Q3 and Q4 traces. . 89
5.3 Deduced graphs ”mffl1, ”mffl2 ∈ MSQ, in blue and red colors respectively, pro-

duced by Algorithm 7 for gap=5. 92
5.4 Federated log and CTP List, produced by Algorithm 8 for gap=5. 93
5.5 CTP List and DTP Graph set, produced by Algorithm 3 for gap=5. . . . 95
5.6 DTP Graph set with detection of a symmetric hash joint between DTP[1]

and DTP[4], produced by Algorithm 10 for gap=5. 96
5.7 Connected components of the DTP Graph set, produced by Algorithm 10

for gap=5. 97
5.8 Two UNION queries of FedBench. 100
5.9 Precision of triple patterns for FETA with traces of CD and LS queries, pro-

duced with Anapsid or FedX and executed in isolation over a federation
of SPARQL endpoints. 101

5.10 Recall of triple patterns for FETA with traces of CD and LS queries, pro-
duced with Anapsid or FedX and executed in isolation over a federation
of SPARQL endpoints. 101

5.11 Precision of joins for FETA with traces of CD and LS queries, produced with
Anapsid or FedX in isolation and executed over a federation of SPARQL
endpoints. 102

5.12 Recall of joins for FETA with traces of CD and LS queries, produced with
Anapsid or FedX and executed in isolation over a federation of SPARQL
endpoints. 102

5.13 Recall (average) of joins per gap for FETA with traces of CD and LS queries,
produced with Anapsid or FedX and executed in concurrence over a
federation of SPARQL endpoints. 104

5.14 Precision (average) of joins per gap for FETA with traces of CD and LS
queries, produced with Anapsid or FedX and executed in concurrence
over a federation of SPARQL endpoints. 104

5.15 Recall of joins per gap and per mix for FETA with traces of CD and LS
selective queries, produced with Anapsid and executed in concurrence
over a federation of SPARQL endpoints. 105

5.16 Recall of joins per gap and per mix for FETA with traces of CD and LS
selective queries, produced with FedX and executed in concurrence over
a federation of SPARQL endpoints. 105

6.1 Sliding windows of length = 20 seconds with an incremental approach to
extract BGPs of executed queries in the log [0, 110[. Traces in red color
correspond to query QA while traces in green correspond to query QF . . . 110

6.2 Set of deduced BGPs with LIFT when applied on logs of multiple hours,
where each edge is annotated with the occurrences of the join of two
triple patterns. The less frequent join is presented in blue. 111

6.3 Set of deduced BGPs with LIFT when applied on a log, where each edge is
annotated with the coverage of the mappings of two triple patterns. The
two alternative options of coverage of the injected mappings into ?y p4 ?z,
are presented in blue. 112

1
Introduction

1.1 The Semantic Web initiative
Semantic Web1 is an extension of the current Web, known also asWeb of Data. It provides
a normalized way to find, share, reuse and combine information [10, 18]. The Semantic
Web is made up of Linked Data2 i.e., the Semantic Web is the whole while Linked Data
is the parts. Linked Data practices have lead to a global data space interlinking various
domains. In Figure 1.1 we see published datasets of the Linked Data cloud as of February
2017 including publications (in light grey), life science (in light purple) or cross domain
(in brown). The W3C3 recommendations to store, query and update Linked Data are the
Resource Description Framework (RDF) data model and the SPARQL query language.

RDF is the graph-based model to represent information in the Linked Data. RDF
encodes data in triples (subject, predicate, object). Subjects and objects are both IRIs
or IRI and a string literal respectively. The predicate specifies how the subject and object
are related, also represented by an IRI. In Figure 1.2 on page 17, we see an example of
RDF graphs concerning Bob and DBpedia4. A RDF triple example of Bob’s dataset is
(bob : me, foaf : topic_interest, wd : Q12418), which expresses the interest of Bob
to the wikipedia resource "wd : Q12418" i.e., Mona Lisa. A RDF triple example of
DBpedia’s dataset is (wd : Q12418, dcterms : creator, dbpedia : Leonardo_da_V inci),
which expresses that "wd : Q12418" was created by Leonardo da Vinci.

SPARQL is a sql-like query language that allows to manipulate and retrieve data
stored in RDF format. SPARQL is used to match RDF triples expressed in form of triple
patterns, where subjects, predicates and objects are IRIs, literals or variables. Each set
of joined triple patterns of a SPARQL query is called a Basic Graph Pattern (BGP).
Furthermore, SPARQL allows a query to consist of triple patterns which enhanced with

1http://semanticweb.org
2http://linkeddata.org/
3http://www.w3.org/
4Example taken from: https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/

15

http://semanticweb.org
http://linkeddata.org/
http://www.w3.org/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/

16 CHAPTER 1. INTRODUCTION

Figure 1.1 – Linked Data cloud, as of February 2017 [10].

various features can express more complex expressions such as conjunctions, disjunctions
or optional graph patterns.

The graph matching facility of the SPARQL language can be applied over one or
several RDF datasets, residing in different sources. In Figure 1.3 the SPARQL query
expresses a conjunction graph pattern, seeking to find all artifacts that interest Bob and
were created by Leonardo da Vinci. There exist a variety of methods and strategies to
evaluate SPARQL queries. Although, the way of how Linked Data are consumed is mostly
influenced by who bears the workload of query processing, the data consumer or the data
provider. Next we overview, the main approaches to query the Linked Data.

1.2 Querying the Linked Data
In the Linked Data, billions of triples are provided by autonomous providers across mul-
tiple domains. We overview below how this plethora of information is consumed [16].
Strategies for querying the Linked Data, can be hierarchized depending on (a) if the
query can be answered on single or over several sources, and (b) if the query processing
load is ensured by the data consumer or the data provider:

1.2. QUERYING THE LINKED DATA 17

Figure 1.2 – RDF graphs of Bob and DBpedia (concerning "Mona Lisa").

PREFIX bob :< http : //example.org/bob#me/ >
PREFIX dbpedia :< http : //dbpedia.org/resource/ >
PREFIX dcterms :< http : //purl.org/dc/terms/ >
PREFIX foaf :< http : //xmlns.com/foaf/0.1/ >
SELECT ?artifact WHERE {

bob:me foaf:topic_interest ?artifact .
?artifact dcterms:creator dbpedia:Leonardo_da_Vinci }

Figure 1.3 – SPARQL query combining data from Bob and DBpedia.

1. Direct access to public interfaces: In the simplest case, a user accesses the public
interfaces of providers in the Linked Data5. Although such an access provides the
user with valuable data, at the same time ignores the great potential of the Web of
Data that is to combine information from different sources.

2. Data warehouse: All providers’ datasets are downloaded into a dump, creating
a single local RDF store at the data consumer. Subsequently, queries are exe-
cuted in a centralized way by combining data without any further communication
with providers that publish them, following a data warehouse approach [50, 53, 56].
Query processing over a data dump increases the availability of providers. However,
a data warehouse solution is not always practical, because of the cost to host all
downloaded datasets and also the question of data freshness.

3. Federated query processing: Federated query engines [2, 9, 12, 48], evaluate a
SPARQL query over a set of autonomous SPARQL endpoints. This federation is

5A well known example, is the public interface of the DBpedia SPARQL endpoint: http://dbpedia.
org/sparql.

http://dbpedia.org/sparql
http://dbpedia.org/sparql

18 CHAPTER 1. INTRODUCTION

transparent to the end user i.e., the distributed datasets are consumed as if they were
a single RDF graph. Federated query processing guarantees that data are up-to-
date. On the other hand, the workload is pushed to the selected endpoints, raising
the issue of servers’ unavailability. Even if SPARQL endpoints put restrictions such
as a limited execution time, their availability remains low [6].

4. Alternative query processing strategies: Due to the limitations that data
warehouse and federated query processing have in exploiting the Web of Data, other
approaches have been proposed [17, 23, 29, 45, 55, 58]. Some solutions, aim to find
a trade-off between processing effort on the consumer and data availability on the
provider, for instance:

i Linked Data Documents (LDD): Consuming the Linked Data through LDDs,
either uses pre-populated index structures [55], or focuses on live exploration
by a traversal-based query execution [17]. Query evaluation with LDDs, has
the constraint of longer query execution times, compared to federated query
processing or direct access to public interfaces. On the other hand compared
to data dumps, documents allow live querying.

ii Triple Pattern Fragments (TPF): TPFs are a new way to consume Linked Data,
also called basic Linked Data Fragments (LDFs) [58]. Clients split queries
into single triple pattern subqueries and evaluate them against providers, that
publish their data as TPF servers6. The TPF solution can be applied over
single or federations of TPF servers. Query processing of costly SPARQL
features, is pushed to the client to leverage the pressure on providers.

LD provider IP Time Query Answer
Bob ip1 12 : 11 : 10 SELECT ∗ W HERE { {?artifact 7−→ wd:Q12418}

Bob : me foaf : topic_interest ?artifact}
DBpedia ip1 12 : 11 : 15 SELECT ∗ W HERE {

?artifact dcterms : creator {?artifact 7−→ wd:Q12418}
dbpedia : Leonardo_da_V inci}

Table 1.1 – Federated log of QI traces, produced by a federated query engine and executed
over the federation of SPARQL endpoints that are hosted by DBpedia and Bob data
providers.

The usefulness of Linked Data is that it allows to evaluate queries through a dis-
tributed execution that roams from resource to resource, residing in the same or dif-
ferent datasets. Queries can be decomposed in many subqueries, either due to the
location of their matching triples or for optimization reasons during their execution.
Data providers receiving subqueries do not know the whole query they evaluate. In
Table 1.1 we see a federated log of DBpedia and Bob, with execution traces of QI =
SELECT ?artifact WHERE { bob : me foaf : topic_interest ?artifact . ?artifact
dcterms : creator dbpedia : Leonardo_da_V inci }. The question that emerges in this
example, is how Bob data provider could know that its data were combined with data of
DBpedia data provider. Next, we define the problem we aim to solve.

6In this thesis, we refer to LDF as TPF servers.

1.3. PROBLEM STATEMENT 19

1.3 Problem statement
The limitation of consuming Linked Data using either federated query processing or TPFs,
is that providers are not aware of the whole user queries they process. Data providers
just observe subqueries of decomposed user queries and have no idea about their data
usage i.e., which data are joined with their datasets, when and by whom. Knowing how
datasets are queried is essential, not only for ensuring usage control but for other purposes
as well. In particular, data providers need to know the queries they process in order to
optimize the cost of provided services (i.e., access to their Linked Data), justify return
on investment, improve their users’ experience or even create business models to discover
usage trends over the Semantic Web.

In the traditional model of data warehouse, the meta-information of data usage is
completely hidden from data providers. But due to the distributed nature of the Semantic
Web, the extraction and processing of all Linked Data locally at the data consumer seems
a paradox. On the other hand, for query processing either over single, or, federations
of data providers, the deficiency of ignoring how data are joined remains open to be
answered.

A simple solution is to consider that data consumers inform data providers about their
data usage, either: (i) a priori, for instance by respecting licence agreements established
between both parties [51], (ii) on the fly, through query execution environments that
inform data providers, to which original query every subquery belongs to, or, (iii) a
posteriori, by publishing on the web their queries, once they have been executed. However,
such solutions are not practical and scalable. Even worst, data providers have to verify
that data are actually joined in the way public queries describe or agreements stipulate.
Only logs give evidences about real execution of queries.

In this thesis we aim to infer what users are looking for on the Semantic Web, by
inferring the general form of SPARQL queries, in particular over (i) single or federations
of TPF servers, and, (b) over federations of SPARQL endpoints. The scientific question
we aim to answer, is the following:

How to infer Basic Graph Patterns (BGPs) of SPARQL queries executed by data con-
sumers from logs of servers hosted by data providers?

Note that we do not aim to infer the exact queries posed by users as we are interested,
in a general way, in detecting how Linked Data are crossed together.

1.4 Approach
We aim to reconstruct BGPs from logs of Linked Data providers. Extracting information
from logs is traditionally a Data Mining process. A log of subqueries is in fact a log
of accessed resources via the web. Thus, Data Mining algorithms [3, 15, 32] could be
used to solve our problem where each predicate, triple pattern or subquery is an accessed
resource on the data provider. The lacunae of Data Mining is that none of its algorithms
has addressed reversing BGPs from a query log. In general, these algorithms extract sets
of items and deduce rules based on occurrences of items in query logs. Unfortunately,
obtained results may not be always representative of joins. In particular, frequent sets of

20 CHAPTER 1. INTRODUCTION

accessed resources do not correspond necessarily to joins and joins are not always frequent
enough to be deduced as sets.

LD provider IP Time Query Answer
Bob ip1 12 : 11 : 10 SELECT ∗ W HERE { {?artifact 7−→ wd:Q12418}

Bob : me foaf : topic_interest ?artifact}

DBpedia ip1 12 : 11 : 15 SELECT ∗ W HERE { {?artifact 7−→ wd:Q12418,
?artifact dcterms : title ?title} ?title 7−→"Mona Lisa"}

SELECT ∗ W HERE {
DBpedia ip1 12 : 11 : 15 ?artifact dcterms : creator {?artifact 7−→ wd:Q12418}

dbpedia : Leonardo_da_V inci}

Table 1.2 – Federated log of QI and QII traces, produced by a federated query engine
and executed concurrently over the federation of SPARQL endpoints that are hosted by
DBpedia and Bob data providers.

In this thesis, we propose a BGP reversing approach to solve our problem statement.
Our work aims to reveal and deduce joins between triple patterns i.e., to extract exe-
cuted BGPs over the Linked Data from single or federated logs of Linked Data providers.
The goal, is to link hundred or thousand subqueries that correspond to one or more user
queries, based on common constants on their triple patterns or mappings of their projected
variables. The main challenge is the concurrent execution of queries. Suppose an addi-
tional SPARQL query QII = SELECT ∗ WHERE { ?artifact dcterms : title ?title },
executed concurrently with QI from the same user ip1. The federated log of DBpedia and
Bob for a concurrent execution of QI and QII , is presented in Table 1.2. We observe that
all queries in the log concern the same resource for the variable ?artifact i.e., wd : Q12418.
If we find a function f to reverse BGPs from execution traces of one query, is f able to
reverse the same BGPs from execution traces of several concurrent queries?

1.5 Organization and contributions
The contributions of this thesis are, in summary:

• The definition of the scientific problem of reversing BGPs of user queries, from a
log of subqueries that corresponds to their execution traces.

• The analysis of Data Mining algorithms to solve our problem and their limitations.

• LIFT, an ad hoc approach that reverses triple patterns and their joins, evaluated
through Triple Pattern Fragments over single or federations of TPF servers. Ob-
tained results have good recall and a precision which depends on the concurrent
execution of queries and the deduction parameters of LIFT.

• FETA, an ad hoc approach that reverses triple patterns and their joins, evaluated
through federated query processing over federations of SPARQL endpoints. Similarly
to LIFT, obtained results have good recall and a precision which depends on the
concurrent execution of queries and the deduction parameters of FETA.

1.5. ORGANIZATION AND CONTRIBUTIONS 21

The thesis manuscript is organized as follows: Chapter 2 introduces the SPARQL
semantics, illustrates two main procedures for querying the Linked Data and defines
formally the scientific problem we address. The related work of Data Mining, is analysed
in Chapter 3. Chapter 4 presents LIFT, our proposed reversing approach that extracts
BGPs from single or federated logs of TPF servers. Chapter 5 presents FETA, our proposed
reversing approach that extracts BGPs from federated logs of SPARQL endpoints. Finally,
conclusions and perspectives are outlined in Chapter 6.

2
Preliminaries: querying the Linked
Data

Contents
2.1 SPARQL semantics . 24
2.2 Physical join operators . 25
2.3 Querying TPF servers . 27

2.3.1 The TPF framework . 28
2.3.2 TPF query processing . 31

2.4 Querying SPARQL endpoints 33
2.4.1 Federated query processing . 33
2.4.2 State of art query engines: FedX and Anapsid 35

2.5 Formal problem statement . 39

In this chapter we illustrate how SPARQL expressions are formally defined and then
consumed over data providers using various query processing strategies, each with its own
optimization techniques. Then, based on traces produced with these query processing
strategies, we formally define the problem we aim to solve: How to infer Basic Graph
Patterns (BGPs) of SPARQL queries executed by data consumers from logs of servers
hosted by data providers?

First, we present how SPARQL semantics formalize the graph expressions to consume
Linked Data, in Section 2.1. Then, we describe the main physical join operators, used
in practice to evaluate SPARQL, in Section 2.2. Thereafter, we illustrate two main ap-
proaches to consume Linked Data based on these physical operators, each with its own
optimization techniques. In particular, first we present query processing over single or
federations of TPF servers in Section 2.3, and second, query processing over federations
of SPARQL endpoints in Section 2.4. Finally, we formally define the scientific problem
we aim to solve based on log traces generated with these approaches, in Section 2.5.

23

24 CHAPTER 2. PRELIMINARIES: QUERYING THE LINKED DATA

2.1 SPARQL semantics
RDF is a model that represents the Linked Data as directed labeled graphs and SPARQL is
essentially a graph-matching query language. In this section, we address the formal study
of SPARQL, by focusing on its graph pattern facility1. From its basic features, SPARQL
is used to build recursively more complex expressions in order to consume data residing
in one or more data providers. In order to define how these expressions are evaluated
over RDF graphs, we adopt the formalization of [39, 47]. The elementary assumptions
and definitions we adopt, are:

• We assume pairwise disjoint infinite sets B, L, I (blank nodes, literals, and IRIs re-
spectively). A RDF triple, tr, has the form (s, p, o), where the subject s ∈ (I, B), the
predicate p ∈ I and the object o ∈ (I, B, L). A RDF graph is a set of triples, also
called RDF dataset or RDF document. The finite set of all triples in a RDF graph is
G ∈ 2T∗, where T = (I ∪B)× (I)× (I ∪B ∪L) is the (infinite) set of all RDF triples.

• We assume an infinite set S of variables. A mapping µ is a partial, non surjective
and non injective function that expresses a variable-to-document binding i.e., µ : S 7−→
BLI. The universe of all mappings is Ω. The domain of a mapping, dom(µ), is the
subset S ⊆ Ω where µ is defined. Two mappings µ1, µ2 are compatible, written µ1 ∼ µ2,
if they agree on their common domain variables2 i.e., if µ1(?x) = µ2(?x), ∀ ?x ∈
(dom(µ1) ∩ dom(µ2)). This is equivalent to say that µ1 ∪ µ2 is also a mapping.

The SPARQL language and Relational Algebra have the same expressive power [5].
For this reason, SPARQL is formalized based on Relational Algebra, using set-based se-
mantics3 in order to evaluate algebraic operators4. Next definitions, present SPARQL
algebraic syntax.

Definition 1 (SPARQL expression) A SPARQL graph pattern expression P is built
recursively as follows5:

1. A triple pattern, tp, is a graph pattern represented by a triple from (I ∪ L ∪ S) ×
(I ∪ S)× (I ∪ L ∪ S).

2. If P1 and P2 are graph patterns, then expressions (P1 AND P2)6, (P1 OPT P2)
and (P1 UNION P2) are graph patterns i.e., conjunction, optional, and union graph
pattern, respectively.

3. If P is a graph pattern and R is a SPARQL built-in condition7, then the expression
(P FILTER R) is a graph pattern (or a filter graph pattern).

1The definitions presented in this chapter concern the 1.0 SPARQL protocol version.
2Variables in SPARQL language are prefixed by a "?" symbol.
3Almost all aspects of set-based semantics can be carried over the official bag-based semantics adopted

by W3C [47].
4Which are partially extended for SPARQL 1.1 [7].
5SPARQL 1.1 extends SPARQL 1.0 with graph expression keywords, such as SERVICE.
6Note that conjunction is also denoted with the "." symbol.
7A SPARQL built-in condition is constructed using a combination of elements: I∪L∪S and constants,

logical connectivities (¬, ∧, ∨), inequality or equality symbols (<, ≤, ≥, > or =), unary predicates
(such as bound or isIRI) plus other features.

2.2. PHYSICAL JOIN OPERATORS 25

Definition 2 (SPARQL set algebra) Let Ω1, Ω2 ⊂ Ω be mapping sets, R is a filter
condition and S ⊂ S be a finite set of variables. The algebraic operations of join (1),
union (∪), minus (\), projection (π), and selection (σ) are defined as follows8:

Ω1 1 Ω2 := { µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 : µ1 ∼ µ2 }
Ω1 ∪ Ω2 := { µ | µ ∈ Ω1 ∨ µ ∈ Ω2 }
Ω1 \ Ω2 := { µ1 ∈ Ω1 | ∀ µ2 ∈ Ω2 : µ1 6∼ µ2 }
πS(Ω) := { µ1 | ∃ µ2 : (µ1 ∪ µ2 ∈ Ω) ∧ (dom(µ1) ⊆ S) ∧ (dom(µ2) ∩ S = ∅) }
σR(Ω) := { µ ∈ Ω | µ |= R }

Definition 3 (SPARQL set semantics) Let G be a RDF graph, tp a triple pattern, P ,
P1, P2 SPARQL expressions, R a filter condition and S ⊂ S be a finite set of variables.
The evaluation of a graph expression [[P]]G, by using the set semantics as described above,
is defined recursively as follows:

[[tp]]G := { µ | (dom(µ) = vars(tp)) ∧ (µ(tp) ∈ G) }
[[P1 AND P2]]G := [[P1]]G 1 [[P2]]G
[[P1 UNION P2]]G := [[P1]]G ∪ [[P2]]G
[[P1 OPT P2]]G := ([[P1]]G 1 [[P2]]G) ∪ ([[P1]]G \ [[P2]]G)
[[P FILTER R]]G := σR([[P]]R)
[[SELECTS (P)]]G := πS([[P]]G)
[[ASK (P)]]G := ¬(∅ = [[P]]G)

Note, that these elementary operators may be used to recursively define other. For
instance, the full outer join is evaluated as: (Ω1 1 Ω2) ∪ (Ω1 \ Ω2) ∪ (Ω2 \ Ω1).

In this section we reviewed the formal definitions of the SPARQL language and how
it is used to evaluate RDF graph expressions. Next, we describe how the evaluation of
SPARQL expressions is implemented over the distributed network of the Linked Data
through physical join operators, namely symmetric hash and nested-loop joins.

2.2 Physical join operators
We focus in this work on join operators in distributed environments, as we aim to deduce
how data are combined. Join features define the evaluation of a SPARQL query at the
conceptual level i.e., what needs to be done, thus called logical operators. Physical opera-
tors, each associated with a cost, implement the operation described by logical operators
i.e., stipulate how the join is actually done. We present next the physical operators that
are mainly used to evaluate SPARQL queries, namely symmetric hash and nested-loop
joins.

Consider the graph expressions R = {?x p2 ?y} and S = {?z p3 ?y}, which are eval-
uated over data providers pA and pB respectively. M and N are the sizes of R and S,
respectively. R-matching triples are { (s1, p2, o3), (s2, p2, o1), (s3, p2, o4) }, while

8SPARQL 1.1 extends 1.0 also with features to evaluate the variables contained in graph expressions,
such as FILTER NOT EXISTS.

26 CHAPTER 2. PRELIMINARIES: QUERYING THE LINKED DATA

S-matching triples are { (s2, p3, o1), (s2, p3, o2), (s4, p3, o3) }. We denote every
id-matching triple of a graph expression P as trPid

e.g., trS1 = (s2, p3, o1). Next we
evaluate the R 1 S conjunction graph pattern, using the symmetric hash and nested-loop
operators that we describe next.

Symmetric hash join [60]: In the traditional hash join [13], two phases are per-
formed. First, inputs from the smaller dataset are partitioned i.e., built into a hash table.
Then, tuples of the opposite dataset are used to probe i.e., lookup matching data from
the built table. For this, its time complexity is O(M +N). This is a blocking operator as,
first, inputs from the smaller dataset must be partitioned into a table. On the other hand,
the symmetric hash join uses at the same time both datasets to partition and lookup com-
mon data, independently of which dataset has the smaller cardinality. Symmetric hash
is used to reduce response time because of its fully pipelined nature as build and probe
phases are interleaved. That is, each tuple from either dataset is partitioned into a hash
table and at the same time used to probe the hash table of the other dataset. So the
complexity of this operator is O(2 ∗ (M + N)), equivalent to O(M + N). Depending on
the size of retrieved datasets i.e., interim result sets, it can be a very efficient solution due
to its possible parallelization. However, symmetric hash is expensive if the interim result
sets are much larger than the join result size. In addition, if remote sites impose a result
size limit k, where k < |S| or |R|, then join results may be lost [7].

The symmetric hash operator proceeds incrementally9, by fetching one by one triples
from both R and S datasets for our example. First, trR1 and trS1 are partitioned to their
corresponding hash tables and probed to the opposite ones. Then, it is the turn of trR2

and trS2 , and finally of trR3 and trS3 . The conjunction graph pattern R 1 S produces
results when the triple pairs {trR1 , trS3} and {trR3 , trS1} are joined. Thus, solution map-
pings with this physical operator are extracted only in the last step, where trR3 and trS3

are fetched from their sources and are also used to probe the opposite triples respectively.

Nested-loop join [30]: In a double iteration, each triple of the outer dataset is used
to search matching triples in the inner, so its time complexity is O(M ∗ N). In a dis-
tributed environment, in order for nested-loops to be effective the outer is the smaller and
the inner is the largest source. The main advantages of this physical operator, is that (a)
it is used to avoid reaching the limit response defined by data providers, as triples of the
smaller dataset are progressively pushed to the site hosting the larger dataset, and (b) the
necessary in-memory size to compare the input data, is less important than in the case
of a symmetric hash join. The disadvantages of nested-loop compared to symmetric hash
are: (a) its higher time complexity, and (b) the fact that it is not by default pipelined.
Nested-loop joins can be evaluated either as a blocking operator [7], or, enhanced with
the well known pipelined operator model described in [13]. In the former case, all triples
of the outer dataset are extracted locally at the client before probing the inner dataset
in the opposite site. In the latter case, triples of the outer dataset are progressively used
to probe matching triples in the inner, without waiting all outer triples to be extracted

9The block size of triples that are incrementally extracted, is defined using the LIMIT feature. Every
following step of the symmetric hash join, fetches the next matching triple defined with the OFFSET
operator.

2.3. QUERYING TPF SERVERS 27

locally at the client.

The nested-loop operator for our example, may be implemented either in a blocking or
pipelined fashion. In any case, the first solution mapping is produced when tR1 is pushed
to the inner dataset while the second solution with tR3 , as the conjunction graph pat-
tern R 1 S produces results when the triple pairs {trR1 , trS3} and {trR3 , trS1} are joined.
Note that as both datasets have the same cardinality, the join ordering choice is arbitrary.

Next, we focus on two approaches to query the Linked Data. First, using Triple
Pattern Fragments over single or federations of TPF servers, in Section 2.3. Second,
using federated query processing over federations of SPARQL endpoints, in Section 2.4.

2.3 Querying TPF servers

Figure 2.1 – Different types of Linked Data Fragments (LDFs) and their trade-offs [57].

Triple Pattern Fragments, also called basic LDFs, were proposed to leverage the "pres-
sure" on data providers10 by delegating to clients the process of high cost SPARQL fea-
tures [58]. As we see in Figure 2.1, all different types of LDFs are hierarchized based on
a combination of characteristics of Web APIs such as performance or cache reuse, from
the perspective of either servers or clients performing a specific task. For instance, a data
dump is the LDF that requires a high effort on the client but at the same time creates
high availability on the server. These criteria are:

1. Performance: Measures the rate of completion per query processing task i.e., the
number of processed requests/responses per time unit.

2. Cost: Refers to consumed resources per query processing task i.e., CPU, RAM, and
IO consumption.

3. Cache reuse: Measures the ratio of items in the case that are requested multiple
times versus the totality of stored items in this cache11.

4. Bandwidth: Consists of the product of retrieved responses with the average re-
sponse size, per query processing task.

10Linked Data providers e.g., DBpedia, publish their data both as SPARQL endpoint and TPF server.
11Servers use extensively caches with LDFs. As clients have the tendency to repeat the same queries,

it is useful for data providers to employ practices of data shipping.

28 CHAPTER 2. PRELIMINARIES: QUERYING THE LINKED DATA

5. Efficiency: Measures the fraction of data retrieved from a server during the execu-
tion of a task over the amount of data that are actually required for this task. This
measure was introduced to highlight the overhead for clients when using TPFs, as
they mostly bear the workload of query processing.

TPF clients decompose SPARQL queries into single triple patterns which they evaluate
on TPF servers, and process locally the high cost operators of the SPARQL language.
This approach introduces new semantics and definitions, that we abstractly present in
Section 2.3.1. Then, based on TPF semantics, we illustrate the query evaluation with
TPFs in Section 2.3.2.

2.3.1 The TPF framework
TPF semantics describe conceptually how the client needs to evaluate complex queries,
by matching only single triple patterns on the server. Next, we briefly introduce the TPF
concepts. The formalization of both LDF and TPF is analytically presented in [59]. We
use the simplified dataset of Table 2.1 to explain the definitions of this section12.

@pA

c1 p1 a
c2 p1 b
c3 p1 c
c4 p1 d

c1 p2 toto
c2 p2 toto
c3 p3 titi
c4 p3 titi
c1 p4 a
c2 p4 b

Table 2.1 – Example of a simplified dataset of a TPF server, hosted by data provider pA.

• Triple Pattern Fragments (TPF) interface: Consists of Linked Data Fragments
with the following properties: (a) data: all triples of a RDF graph that match a
given triple pattern and are returned as answer to a single triple pattern subquery
posed by a client, (b) metadata: estimation of the number of triples that match
the given triple pattern, and (c) controls: a hypermedia form that allows clients to
retrieve any TPF of the same knowledge graph.

We suppose that the dataset presented in Table 2.1 is published by the TPF server
hosted by pA data provider. Consider the triple pattern tp = {?y p1 ?x}. pA will re-
turn as answer to this triple pattern a TPF with: (a) the set of triples that matches
the triple pattern i.e., { (c1, p1, a), (c2, p1, b), (c3, p1, c), (c4, p1, d) } (b)
the estimation of the number of matching triples for this set i.e., 4 triples and (c) a

12Note, that for simplicity we removed the prefixes from predicates.

2.3. QUERYING TPF SERVERS 29

form with how to retrieve other triple patterns of the same graph i.e., triple patterns
{?x p2 ?y}, {?x p3 ?y} and {?x p4 ?y}.

• Triple-pattern-based selector function: Let tp be a triple pattern. The triple-
pattern-based selector function for tp, denoted by srtp , is a selector function that for
every dataset G ∈ 2T∗ is defined by srtp = {tr ∈ G | tr is a matching triple for tp}.

For the dataset of Table 2.1, of a TPF server hosted by pA, an instance of triple-
pattern-based selector corresponding to tp = {?y p1 ?x} is srtp = {?subject = &
predicate = p1 & object =}. Note, that the TPF client always renames variable
names in a SPARQL query as subject, predicate or object. The TPF returned from
the TPF server for tp, is described in the previous point.

• Hypermedia controls: A hypermedia control is a declarative construct, that in-
forms clients for possible application and/or session state changes in the server and
explains how to effectuate them. With this information, no external documentation
is necessary to browse and consume the datasets of this server. TPF servers use
on their interfaces a specific language, namely the HydraCoreV ocabulary [24], in
order to define the collection of links and forms in RDF.

A simplified set of controls, regarding forms for the dataset in Table 2.1, is the set of
predicates that can be answered from this TPF server i.e., {p1, p2, p3, p4}. With
this information the TPF client will know the possible triple patterns that this TPF
server is able to answer, even when requesting only one triple pattern.

• Triple Pattern Fragment: Let G ∈ 2T∗ be a finite set of blank-node-free RDF
triples. A Triple Pattern Fragment (TPF) of G, denoted f , is a tuple 〈u, sr,Γ,M,C〉
with the following five elements: (i) u is a URI representing the "authoritative"
source from which f can be retrieved, (ii) sr is a selector function, (iii) Γ is a set
of (blank-node-free) RDF triples that is the result of applying the selector function
sr to G, (iv) M is a finite set of (additional) RDF triples, including triples that
represent metadata for f, and (v) C is a finite set of hypermedia controls.

Consider that query SELECT ∗ WHERE {?x p2 toto . ?x p1 ?y} is addressed to
TPF server of pA. The corresponding TPFs for each triple pattern in this query, are:

ftp1 = 〈 utp1 = http : //pa.com/srtp1 ,

srtp1 = {?subject = & predicate = p2 & object = toto},
Γtp1 = {(c1, p2, toto), (c2, p2, toto)}
Mtp1 = {(utp1 , void : triples, 2)},
C = {p1, p2, p3, p4} 〉, and

ftp2 = 〈 utp2 = http : //pa.com/srtp2 ,

30 CHAPTER 2. PRELIMINARIES: QUERYING THE LINKED DATA

srtp2 = {?subject = & predicate = p1 & object =},
Γtp2 = {(c1, p1, a), (c2, p1, b), (c3, p1, c), (c4, p1, d)},
Mtp2 = {(utp2 , void : triples, 4)},
C = {p1, p2, p3, p4} 〉

Note that for ftp1 and ftp2 we use the same annotation C, as control fields for both
fragments are the same for the dataset of the TPF server of pA.

• TPF page: Let 〈u, sr,Γ,M,C〉 be f , a TPF of some finite set of blank-node-free
RDF triples G ∈ 2T∗. A page partitioning of f is a finite, non-empty set Θ13 whose
elements are called pages of f . Each page ϑ ∈ Θ has the form 〈uϑ, u, srϑ,Γϑ,Mϑ, Cϑ〉
with the following six properties: (i) uϑ is the URI from which the page is retrieved,
(ii) u is the source for retrieving the whole f , (ii) srϑ is a selector function to re-
trieve the page, (iii) Γϑ is the set of matching triples of the page, a subset of the
triples matching f (iv) M is a superset of the metadata of f , with both matching
estimations of the page and the fragment f , and (v) Cϑ is a superset of the controls
of f , enhanced with links to previous and next pages.

A TPF page is composed by the subset of matching triples of a fragment, which
size is defined by the TPF server14. Next we present the sets of TPF pages for
triple patterns of our example query. Consider that the page size defined by the
TPF server is equal to 2. Then, the fragment that corresponds to tp1 will not be
fractioned. Instead, the corresponding set of pages for tp2, namely ϑ2a and ϑ2b, are:

ϑ2a = 〈 uϑ2a = http : //pa.com/srtp2& page = 1,
utp2 = http : //pa.com/srtp2

srϑ2a = srtp2& page = 1,
Γϑ2a = {(c1, p1, a), (c2, p1, b)},
Mϑ2a = {(uϑ2a , void : triples, 2), (utp2 , void : triples, 4)},
Cϑ2a = { {p1, p2, p3, p4},

{< prev_page >: null, < next_page >: uϑ2b
}} 〉 , and

ϑ2b = 〈 uϑ2b
= http : //pa.com/srtp2& page = 2,

utp2 = http : //pa.com/srtp2

srϑ2b
= srtp2& page = 2,

Γϑ2b
= {(c3, p1, c), (c4, p1, d)},

Mϑ2b
= {(uϑ2b

, void : triples, 2), (utp2 , void : triples, 4)},
13We use the notation Θ instead of Φ [59] to distinguish it from the federation of data providers Φ, a

notation we used in [35].
14In practice, a TPF server e.g., DBpedia defines a page size equal to 100 matching triples.

2.3. QUERYING TPF SERVERS 31

Cϑ2a = { {p1, p2, p3, p4},
{< prev_page >: uϑ2a , < next_page >: null}} 〉

Next, we describe the procedure of query evaluation through TPFs. In particular we
present the pipelined evaluation of TPFs, where mappings from a fragment that match a
triple pattern are incrementally pushed into another, through a dynamic implementation
of the nested-loop join.

2.3.2 TPF query processing
TPFs can be used to evaluate SPARQL queries over both single or federations of TPF
servers. The general workflow model of query execution on TPF severs, represented in
Figure 2.2, consists of three steps:

1. Query decomposition: Transforms at the TPF client a SPARQL query into sets of
triple patterns that are evaluated through a set of TPFs over the targeted TPF
server(s). SPARQL features will be processed locally at the TPF client, during the
distributed execution phase.

2. Global query optimization: Establishes at the TPF client the most suitable order of
joins in the original query, in order to minimize the number of http requests using
a cost estimation function. First, the TPF client sends a selector function for each
triple pattern of the original query. Then, it decides the join ordering execution
using the estimation of matching triples in the Metadata M, returned by the TPF
server of each selector. Note that when a query is addressed to a federation of
TPF servers, each selector in this phase is used for both count estimation and data
localisation.

3. Distributed execution: Evaluates each triple pattern at the TPF server based on the
join ordering established in the previous phase and pushes its mappings towards the
next triple pattern. This procedure simulates a nested-loop implementation. The
first implementation of the algorithm in [58] defines a blocking iterator to evaluate
each nested-loop. More precisely, this blocking operator needs first to pull all triples
of the outer dataset before pushing mappings into the inner. The evolution of this
algorithm in [57], employs the pipelined iterator model [13]. This model extracts
progressively triples that match a triple pattern and pushes their mappings to the
next, without waiting to extract the remaining triples of the former. Next, we see
an example of this evaluation.

Consider again SELECT ∗ WHERE {?x p2 toto . ?x p1 ?y}. First, this query is
decomposed in a set of triple patterns i.e., tp1 = {?x p2 toto} and tp2 = {?x p1 ?y}. Next,
the TPF client sends two selectors, one for each triple pattern i.e., ftp1 and ftp2, and uses
their Metadata i.e., Mtp1 and Mtp2 , to choose the most suitable join ordering, as we see
in the first two entries of Table 2.2. As Mftp1

= 2 and Mftp2
= 4, the TPF client starts

with tp1. That is, mapping results of the join variable of tp1 i.e., ?subject 7−→ c1, c2, are
pushed into the corresponding variable of tp2, one by one. TPF client pushes these map-
pings by evaluating sequentially the triple pattern selectors {?subject = c1 & predicate =

32 CHAPTER 2. PRELIMINARIES: QUERYING THE LINKED DATA

@TPF client

SPARQL query

Query decomposition
(sets of triple patterns. SPARQL
features will be processed locally)

Global query optimization
(join ordering using
"count estimation")

Distributed execution
(incremental nested loops joins,

processed in blocks)

TPFtpi+1recursive call

Integration
(non-blocking TPF
evaluation per page)

@TPF server

Query results

TPFtpi
page request

TPFtpi
page result

Figure 2.2 – TPF query processing model. When applied over a federation of TPF servers,
the selector functions for count estimation are also used for data localisation.

LD
provider IP Time TP selector Answer

{< ...controls... >,
pA ip1 09:10:01 ?subject = & predicate {(c1, p1, a),

= p1 & object = (c2, p1, b),
(c3, p1, c),
(c4, p1, d)},

< ...metadata... >}
{< ...controls... >,

pA ip1 09:10:04 ?subject = & predicate {(c1, p2, toto),
= p2 & object = toto (c2, p2, toto)},

< ...metadata... >}
{< ...controls... >,

pA ip1 09:10:07 ?subject = c1 & predicate {(c1, p1, a),
= p1 & object = < ...metadata... >}

{< ...controls... >,
pA ip1 09:10:09 ?subject = c2 & predicate {(c2, p1, b)},

= p1 & object = < ...metadata... >}

Table 2.2 – Query log of SELECT ∗ WHERE {?x p2 toto . ?x p1 ?y} traces, produced
by a TPF client with ip1 IP address and executed on the TPF server hosted by pA data
provider.

2.4. QUERYING SPARQL ENDPOINTS 33

p1 & object =} and {?subject = c2 & predicate = p1 & object =} to the TPF server,
which results to mappings ?object 7−→ a and ?object 7−→ b respectively, as we see in
the last two entries of Table 2.2. This approach is recursive, as continuous joins between
multiple triple patterns are evaluated without waiting all mappings of a triple pattern to
be pushed into another. For instance, suppose that this query had a third triple pattern,
tp3 = {?y p3 ?w}. In this case, results produced when pushing progressively mappings of
ftp1 into tp2 are subsequently pushed into tp3, without waiting all mappings of ftp1 to be
pushed into tp2.

In this section, first we abstractly presented the concept of Triple Pattern Fragments.
Thereafter, we illustrated the incremental procedure of TPF evaluation through nested-
loops, that can be applied both over single or federations of TPF servers. Next, we define
the procedure of consuming Linked Data over federations of SPARQL endpoints.

2.4 Querying SPARQL endpoints
As pointed in Chapter 1, data consumers query Linked Data in SPARQL endpoints, either
by accessing directly their public interfaces or via query engines that access data residing
in different sites. In this section, we focus on query processing over federations of SPARQL
endpoints. Actually, query engines view SPARQL endpoints as federations of distributed
and autonomous sources, sharing their data to answer complex queries [14, 40]. Next, we
present the procedure of federated query processing employed by query engines, followed
by the illustration of two state of art query engines, namely FedX [48] and Anapsid [1, 2].

2.4.1 Federated query processing
In federated query processing, referred also as virtual integration [14], a query is split into
subqueries that can be answered from a federation of data providers. This procedure is
employed by a federated query processor, named query engine. The federation is trans-
parent to the end user i.e., the distinct data sources can be queried as if they were a single
RDF graph. Challenges of federated query processing over the Linked Data, concern the
conception of a query plan and its distributed execution [36].

We present below this procedure, based on distributed query processing over relational
database systems [22, 37] and which is adapted in the context of the Linked Data [19].
Given a SPARQL query and a federation of SPARQL endpoints, a federated query engine
performs the following tasks, as we see in Figure 2.3.

1. Query parsing/rewriting: Checks if the input query is valid regarding the SPARQL
protocol and, if necessary, rewrites and normalizes it. Regardless the optimization
techniques of the query engine this phase rewrites federated queries into equiva-
lent but more efficient ones, thus producing alternative execution plans. Typical
transformations are the elimination of redundant predicates or simplification of ex-
pressions. An example of query rewriting, is the transformation of R 1 S into
(R 1 S)∪(R\S). In typical SPARQL optimization based on Relational Algebra [47],
query rewriting rules are used in order to define equivalent SPARQL expressions that
minimize the execution cost for data consumers, such as filter pushing.

34 CHAPTER 2. PRELIMINARIES: QUERYING THE LINKED DATA

@Query engine

Federated SPARQL query

Query parsing/rewriting

Data localization

Global query optimization

Distributed execution

Integration

@ep1 @ep2 @epi @epn

SPARQL results

SPARQL result

SELECT query

Figure 2.3 – Federated query processing model [37].

2. Data localization: Performs source selection among a user-defined federation of
trusted SPARQL endpoints and rewrites the query into a decomposed set of sub-
queries. Most approaches are based on a Triple-Pattern-Wise Source Selection (TP-
WSS) [12, 34, 40, 43, 48]. In this strategy, even if the join produces a non-empty re-
sult set, some selected sources may not contribute to the retrieved data when joined
with others. Consequently, a possible overestimation of data sources may decrease
the performance of query processing by increasing network traffic and intermediate
results. On the other hand, join-aware TPWSS strategies have been proposed to
reduce this problem based on predicates of triple patterns such as [2, 42]. There
exist also some other approaches that are not in the scope of this thesis [36].

3. Global query optimization: Optimizes the adopted query plan, by rewriting it using
various heuristics [9, 12, 48] such as, grouping evaluation of triple patterns to the
same source, minimizing intermediate results, minimizing number of calls, etc. As
an extension, dynamic oriented approaches adjust their planning based on load and
availability of sources [2]. Note, that the cardinality estimation of matching data
is not based on statistics, as a reliable source providing this information does not
exist to the best of our knowledge.

4. Distributed query execution: Deploys physicals operators in order to evaluate the
plan established in the previous steps. As presented in Section 2.2, the evaluation of

2.4. QUERYING SPARQL ENDPOINTS 35

a join may be either (a) pipelined, where results are incrementally produced by the
query engine, or (b) blocking, where intermediate results are blocked when SPARQL
endpoints are temporary unavailable15.

@pA

s1 p1 o1
s1 p1 o2
s2 p1 o2
s3 p1 o3
c3 p3 titi
c4 p3 titi
c1 p4 a
c2 p4 b

(a) Dataset of pA

@pB

s1 p2 o3
s2 p2 o4
s3 p2 o1
s4 p2 o2
c1 p5 toto
c2 p5 toto

(b) Dataset of pB

Table 2.3 – Example of simplified datasets of two SPARQL endpoints, hosted by pA and
pB data providers respectively.

In next section, we overview two state of art query engines, namely FedX and Anapsid,
and illustrate how each query engine evaluates the federated query processing model with
its own optimization techniques.

2.4.2 State of art query engines: FedX and Anapsid
FedX [48], is a framework that follows an on-demand approach to setup a federation of
SPARQL endpoints at query time. This query engine has the advantage that it does not
need any preprocessed metadata such as statistics and indices to discover and consume
Linked Data, but is based only on the list of relevant SPARQL endpoints defined by the
user. Figure 2.4 presents the procedure of federated query processing of FedX. We use
the simplified datasets of Tables 2.3a and 2.3b, to explain the definitions of this section16.
The set of heuristics and optimization techniques established by FedX for efficient query
processing, are namely:

1. Statement sources: Discovers the relevant sources able to answer each triple pattern
of a federated query through SPARQL ASK queries, given the user defined list of

15Note that Integration is considered as a post step of federated query processing.
16Note that, like in the previous section, we removed prefixes from predicates for simplicity.

36 CHAPTER 2. PRELIMINARIES: QUERYING THE LINKED DATA

@FedX

Federated SPARQL query

Query parsing/rewriting

Data localization
(cache + statement sources)cache

Global query optimization
(groupings, join ordering)

Distributed execution
(nested loops with bound joins)

Integration
(blocking aggregation
of partial results)

@ep1 @ep2 @epi @epn

SPARQL results

SPARQL result

SELECT query

ASK query

Figure 2.4 – Federated query processing model of FedX.

LD provider IP Time Subquery Answer

pA ip1 10:00:01 SELECT ?z WHERE {
?z p1 o2 } {?z 7−→ {s1, s2}}

SELECT ?y_0 ?y_1
WHERE

pB ip1 10:00:04 { { s1 p2 ?y_0 } {?y_0 7−→ {o3},
UNION ?y_1 7−→ {o4}}

{ s2 p2 ?y_1 } }

Table 2.4 – Federated query log of SELECT ?z ?y WHERE {?z p1 o2 . ?z p2 ?y} traces,
produced by FedX query engine with ip1 IP address and executed over the federation of
SPARQL endpoints hosted by pA and pB data providers.

targeted SPARQL endpoints. This technique is used in conjunction with an adaptive
cache, that learns after executing each federated query the location(s) of its triple
patterns.

2. Groupings: Groups the evaluation of multiple triple patterns to the same SPARQL
endpoint using the information extracted in the previous step. Thus, joins are
pushed to the SPARQL endpoint hosting the largest subtotal of the triple patterns
that need to be evaluated and local processing at the client is minimized. This type

2.4. QUERYING SPARQL ENDPOINTS 37

of joins are called exclusive groups.

3. Join ordering: Reorders the joins between triple patterns by using variable counting
techniques, in order to choose the most effective evaluation order. FedX implements
a rule-based join function to choose iteratively the next triple pattern to be eval-
uated. This function is an extension of the variable counting strategy [54], where
unbound variables of a triple pattern are counted by excluding those that are com-
mon with variables of previously evaluated triple patterns. The next triple pattern
to be evaluated is the one with less unbound variables.

4. Nested-loops with bound joins: In conjunction with a nested-loop, it computes joins
in a block to minimize requests to the targeted sites. Before applying bound joins,
all matching triples of the outer dataset are retrieved. Then, mapping results of
these triple patterns i.e., literals/IRIs, are grouped into subqueries using SPARQL
UNION constructs. Each subquery is sent to the relevant sources and used to search
matching triples in the inner dataset.

Consider that query SELECT ?z ?y WHERE {?z p1 o2 . ?z p2 ?y}, is executed
over the federation of SPARQL endpoints of Tables 2.3a and 2.3b. FedX chooses to
start the evaluation with the first triple pattern, based on the join ordering strategy
we presented above. In the second entry of Table 2.4, we see an example of a bound
query, where mappings of tp1 = {?z p1 o2} i.e., µtp1(?z) = {s1, s2} from the first
entry of the same table are used to evaluate tp2 = {?z p2 ?y} through a nested-loop.
The number of produced bound join queries, depends on the number of mappings
of the outer dataset and the block size of bound queries which is configurable by
the user. For our example, as the cardinality of mappings of µtp1(?z) is 2 and for a
block size also equal to 2, FedX will send one bound query.

Anapsid [1, 2] is an adaptive query processing engine, that attempts to minimize the
workload of SPARQL endpoints by adapting its query execution to data availability and
run-time conditions. In order to do so, Anapsid provides with non-blocking implementa-
tions of physical join operations, that opportunistically produces results as quickly as they
are retrieved from relevant sources. Figure 2.5 presents the procedure of federated query
processing of Anapsid. The set of heuristics and optimization techniques established by
Anapsid for efficient query processing are:

1. Schema alignments: Obtains the ontologies of datasets of SPARQL endpoints and
stores them in form of a catalogue. This catalogue is expressed as the set of predicates
that can be answered by each SPARQL endpoint, and which is exploited during data
localization.

2. Adaptive source selection: Selects SPARQL endpoints that can answer a query. For
this, it uses sampling techniques [31] to adapt on the execution context, namely: i)
Star Shaped Group Multiple sources or SSGM, where a triple pattern is evaluated by
the set of SPARQL endpoints that can give answers, ii) Star Shaped Group Single
source or SSGS, where a triple pattern is evaluated according to SSGM rules but

38 CHAPTER 2. PRELIMINARIES: QUERYING THE LINKED DATA

Federated SPARQL query

@Anapsid
Query parsing/rewriting

Data localization
(adaptive source selection
+ schema allignements)

Global query optimization
(bushy SPARQL 1.1 subqueries)

Distributed execution
(adaptive execution:

adjoin, agjoin or anjoin)

Schema

allignements Integration
(non blocking

incremental results)

@ep1 @ep2 @epi @epn

SPARQL results

SPARQL result

SELECT query

Figure 2.5 – Federated query processing model of Anapsid.

LD provider IP Time Subquery Answer

pA ip1 11:30:15 SELECT ?z WHERE {
?z p1 o2 } {<?z 7−→ {s1, s2} >}

SELECT ?y WHERE
pB ip1 11:30:17 { { ?z p2 ?y } {<?y 7−→ {o3, o4} >}

FILTER
((?z="s1") || (?z="s2"))}

Table 2.5 – Federated query log of SELECT ?z ?y WHERE {?z p1 o2 . ?z p2 ?y} traces,
produced by Anapsid query engine with ip1 IP address and executed over the federation
of SPARQL endpoints hosted by pA and pB data providers.

also by choosing the first SPARQL endpoint which confirms that can evaluate this
triple pattern, and iii) Exclusive Groups, which is not recommended but only created
to be compared with FedX.

3. Bushy-tree query decomposition and rewriting: Decomposes user queries into mul-
tiple subqueries and eventually rewrites them in SPARQL 1.1. These subqueries

2.5. FORMAL PROBLEM STATEMENT 39

are produced using an estimation function cost, which is based on the hypothesis
that subqueries with triple patterns sharing exactly one variable have small-sized
cardinality of answers. This gives an execution plan in form of a balanced tree,
compared to the left linear tree of FedX where each pattern is individually evalu-
ated and subsequently its mappings are pushed to the next one. Thus, as the depth
of the execution tree is minimized, the parallelization of the processing workload is
maximized during the adaptive evaluation of the query.

4. Adaptive query execution: Employs physical join operators in order to adapt on the
execution context, during query evaluation. These operators are: (i) Adaptive Group
Join (Agjoin), a combination of symmetric hash and Xjoin, in order to integrate the
results as they are produced, (ii) Adaptive Dependent Join (Adjoin), an extension
of Agjoin where results are produced when both SPARQL endpoints are available
and not asynchronously, and finally (iii) Adaptive Nested Join (Anjoin), an exten-
sion of nested-loop deployed when selectivity between triple patterns is not balanced.

Consider again query SELECT ?z ?y WHERE {?z p1 o2 . ?z p2 ?y}. Anapsid
using SSGM or SSGS, chooses to start the evaluation with the first triple pattern
based on the join ordering strategy we presented above. In the second entry of
Table 2.5, we see a query with two FILTER options produced with the anjoin op-
erator, where mappings of tp1 = {?z p1 o2} i.e., µtp1(?z) = {s1, s2} from the first
entry of the same table are used to evaluate tp2 = {?z p2 ?y} through a nested-loop.
The number of produced FILTER join queries depends on the number of mappings
of the outer triple pattern and a static upper bound for FILTER options which is
employed by Anapsid. So for our example, as the cardinality of mappings of µtp1(?z)
is 2 and for a block size equal to 2, we have one FILTER query.

In Sections 2.1 - 2.4, we presented two approaches to consume Linked Data using
either Triple Pattern Fragments or the procedure of federated query processing. Next, we
formally define the problem we aim to solve: how to reverse BGPs of user queries from
logs of their execution traces.

2.5 Formal problem statement
As pointed in Chapter 1, the limitation of query processing over the Linked Data, is that
data providers are not aware of queries they process; they just observe subqueries of the
original user queries. In this thesis we aim to answer this limitation (a) over single or fed-
erations of TPF servers, and, (b) over federations of SPARQL endpoints. In order to do
so, we use the example of Bob and DBpedia sites, as presented on page 17 in Chapter 1,
which triples are presented in Tables 2.6b and 2.6c, respectively.

Definition 4 (Query log) A log of one or more Linked Data providers is a sequence of
execution traces structured in tuples 〈p, ip, ts, q, r〉 where p is a data provider, ip is the ip
address of the client, ts is the timestamp of the http request, q is a query, and r is the

40 CHAPTER 2. PRELIMINARIES: QUERYING THE LINKED DATA

Prefix IRI
alice <http://example.org/alice#me/>
bob <http://example.org/bob#me/>

dbpedia <http://dbpedia.org/resource/>
dcterms <http://purl.org/dc/terms/>
europeana <http://data.europeana.eu/item/>
foaf <http://xmlns.com/foaf/0.1/>
schema <http://schema.org/sameAs/>
rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
wiki <http://www.wikidata.org/entity/>
xsd <http://www.w3.org/2001/XMLSchema#>

(a) IRI prefixes

@Bob
(bob:me, rdf:type, foaf:Person)
(bob:me, foaf:knows, alice:me)

(bob:me, schema:birthDate, "1990-07-04"ˆ̂xsd:date)
(bob:me, foaf:topic_interest, wiki:Q12418)

(b) Dataset triples of Bob

@DBpedia
(wiki:Q12418, dcterms:creator, dbpedia:Leonardo_da_Vinci)
(europeana:243FA...4D619, dcterms:subject, wiki:Q12418)

(wd:Q12418, dcterms:title, "Mona Lisa")
(c) Dataset triples of DBpedia (concerning "Mona Lisa")

Table 2.6 – Dataset triples of DBpedia and Bob data providers.

set of matching RDF triples, returned as a response to q from data provider p. Note that
for a single data provider, log traces are totally ordered, while, for a federation of data
providers, log traces are partially ordered as queries may be received in different sites at
same time.

We denote by E(Qi) the execution trace of query Qi, which consists of log of sub-
queries produced when a data consumer executes the SPARQL query Qi. We represent
execution traces of n concurrent queries by E(Q1 ‖ ... ‖ Qn).

Consider again QI = SELECT ?artifact WHERE{ bob : me foaf : topic_interest
?artifact . ?artifact dcterms : creator dbpedia : Leonardo_da_V inci }, of Figure 1.3
on page 17. Triple patterns tp1 and tp2 of QI are evaluated at Bob’s and DBpedia’s
sites, respectively. A federated log corresponding to the execution of QI is presented in
Table 1.1 on page 18. Suppose that the user with ip1 IP Address, concurrently poses
another query QII = SELECT ∗ WHERE { ?artifact dcterms : title ?title }. This
query corresponds to BGP2 = {tp3}, where tp3 = { ?artifact dcterms : title ?title }.
The federated log of DBpedia and Bob for a concurrent execution of QI and QII , denoted
as E(QI ‖ QII), is presented in Table 1.2 on page 20.

2.5. FORMAL PROBLEM STATEMENT 41

Definition 5 (BGP reversing) Given a log corresponding to the execution of one query
E(Qi), find a function f(E(Qi)) producing a set of BGPs {BGP1, ..., BGPn}, such that
f(E(Qi)) approximates (≈) the BGPs existing in the original query. Thus, if we consider
that BGP (Qi) returns the set of BGPs of Qi then f(E(Qi)) ≈ BGP (Qi).

We consider that a BGP approximates another (≈) if both contain same triple patterns
and same joins. We evaluate the quality of f with the precision and recall of triple patterns
and joins returned by f against those existing in original queries. If f(E(QI)) produces
the BGP = {tp1 . tp2}, then precision and recall of triple patterns and joins are perfect
according to the BGP present in QI .

Property 1 (Resistance to concurrency) The reversing function f should guarantee
that BGPs obtained from execution traces of isolated queries, approximate (≈) results ob-
tained from execution traces of concurrent queries: f(E(Q1))∪...∪f(E(Qn)) ≈ f(E(Q1 ‖
... ‖ Qn)).

If QI and QII , were sent by two different IP addresses, it is possible to separate
E(QI ‖ QII) into E(QI), E(QII) and apply the reversing function to each trace. However,
in the worst case, QI and QII have the same IP address i.e., a web application running
on the cloud that runs queries QI and QII in parallel. In this case, if f(E(QI ‖ QII))
produces the BGP = {tp1 . tp2 . tp3} then recall in joins is perfect. Precision of joins,
although, is equal to 0.33 as f(E(QI ‖ QII)) deduce two additional false joins i.e., {tp1 .
tp3} and {tp2 . tp3}. Thus, we expect that f(E(QI ‖ QII)) ≈ f(E(QI)) ∪ f(E(QII)).

Next chapters, explore if existing approaches are able to solve the problem that was
formally defined in this section and then present new ones. First, in Chapter 3 we address
this problem using Data Mining algorithms to identify BGPs as frequent sets of triple
patterns. Then, in Chapter 4 we propose an approach to solve the BGP reversing problem
over single or federations of TPF servers. Finally, in Chapter 5 we propose an approach
to solve the BGP reversing problem over federations of SPARQL endpoints.

3
State of art: Data Mining

Contents
3.1 Web usage mining . 45
3.2 Sequential pattern mining . 45

3.2.1 Approaches and techniques . 47
3.2.2 State of art algorithms: WINEPI and MINEPI 50

3.3 MINEPI over query logs . 53
3.3.1 Experimental testbed . 53
3.3.2 Experiments with MINEPI . 54

3.4 Limitations of query log analysis 56
3.5 MINEPI with pre or post-processing 59

3.5.1 MINEPI with data transformation 59
3.5.2 MINEPI with pruning constraints 61

Extracting information from raw logs is a task related to the Data Mining process,
known also as Knowledge Data Discovery (KDD). Data Mining algorithms have been
extensively used to extract knowledge from web logs. Therefore, Data Mining could
be used to solve our scientific problem, by considering each predicate, triple pattern or
subquery as a requested resource via the web on the data provider. The question is "Can
Data Mining algorithms extract BGPs of queries based on the occurrences of sequences of
their triple patterns?" In this chapter, we aim to explore if this is possible.

First, we briefly present web usage mining, in Section 3.1. Then, we concentrate
on sequential pattern mining, by illustrating its main approaches and presenting two
state of art algorithms, WINEPI and MINEPI, in Section 3.2. Third, we apply the
MINEPI algorithm as to solve our problem in Section 3.3. Thereafter, we identify the
limitations of sequential pattern mining when applied over logs of Linked Data providers,
in Section 3.4. Finally, we present an extension ofMINEPI with either pre-processing data

43

44 CHAPTER 3. STATE OF ART: DATA MINING

transformation or post-processing constraints which we developed to solve our problem in
Section 3.5.

3.1. WEB USAGE MINING 45

3.1 Web usage mining
Web mining [38, 52] is the application of Data Mining techniques to find interesting and
potentially useful knowledge from web data, which is divided into: (a) web content mining,
which extracts useful information from a diversity of web content such as audio, video or
text, (b) web structure mining, which models the web based on the topology of hyperlinks
and tags and (c) web usage mining, which aims to understand the behaviour of users in
interacting with the web or within a website, as they navigate from web resource to web
resource.

We argue that our work is related to web usage mining. Logs of execution traces ac-
tually correspond to subqueries or simply triple patterns accessed via the HTTP protocol
on data providers. Consider the abstract log of Table 3.1, corresponding to execution
plans of queries QA = SELECT ?x ?y WHERE { ?x p1 o1 . ?x p2 ?y . ?y p3 ?z},
QB = SELECT ?y WHERE { ?x p2 ?y }, QC = SELECT ?y WHERE { ?y p3 ?z }
and QD = SELECT ?x WHERE { ?x p1 o1 }. In this chapter, we aim to explore
if the scientific problem we address, as presented on page 39 in Chapter 2, is equivalent
to associate sets of triple patterns that are accessed on data providers via the web. The
intuition is to explore if joins of triple patterns, which are evaluated by query engines or
TPF clients in multiple blocks for optimization reasons, can be detected based on their
occurrences in server logs.

Various algorithms have been proposed in web usage mining in order to find web usage
patterns either based on association ruling, clustering, classification or simply statistical
knowledge extraction. The approach that identifies causal relations between webpages,
is association ruling. As we aim to discover which sets of triple patterns are joined
together from a sequence of subqueries/triple patterns evaluated through the HTTP pro-
tocol on data providers, we overview the association rule-based approach of sequential
pattern mining. In this case, frequent episodes of accessed webpages are identified, by
viewing a web historic journal as a sequence of timestamped URLs.

In the next section, we overview approaches of sequential pattern mining and position
our interest to the approach that is most suitable to answer our scientific problem, namely
sequential mining over temporal sequences.

3.2 Sequential pattern mining
Sequential pattern mining [32] discovers frequent episodes from a sequence of events. An
event is a collection of totally or partially ordered items1, where the set of all different
items composes the alphabet. An episode is a set of events. The aim of sequential pattern
mining is to discover the sets of frequent episodes, in a log of either fixed or dynamic
size. Such episodes can be represented as acyclic digraphs and are thus more general
than linearly ordered sequences. Frequent episodes are identified using a threshold value
which is represented either as frequency or support, in order to calculate the ratio or the
number of occurrences respectively of an episode in a log.

Sequential mining algorithms follow techniques similar to association rule mining, in
1Serial and parallel class of events correspond to totally or partially ordered items, respectively.

46 CHAPTER 3. STATE OF ART: DATA MINING

LD
provider IP Time HTTP request

http : //pa.com/sparql/
[1] pA ip1 11:24:19 &query = SELECT ?x ?y { ?x p1 o1 }

&format = json &timeout = 0
http : //pa.com/sparql/

[2] pA ip1 11:24:23 &query = SELECT ?y { s1 p2 ?y }
&format = json &timeout = 0

http : //pb.com/sparql/
[3] pB ip1 11:24:24 &query = SELECT ?z { o3 p3 ?z }

&format = json &timeout = 0
http : //pa.com/sparql/

[4] pA ip1 11:24:27 &query = SELECT ?y { s2 p2 ?y }
&format = json &timeout = 0

http : //pb.com/sparql/
[5] pB ip1 11:24:28 &query = SELECT ?z { o4 p3 ?z }

&format = json &timeout = 0
http : //pa.com/sparql/

[6] pA ip1 11:24:30 &query = SELECT ?y { ?x p2 ?y }
&format = json &timeout = 0

http : //pb.com/sparql/
[7] pB ip1 11:24:31 &query = SELECT ?y { ?y p3 ?z }

&format = json &timeout = 0
http : //pa.com/sparql/

[8] pA ip1 11:24:36 &query = SELECT ?x { ?x p1 o1 }
&format = json &timeout = 0

Table 3.1 – HTTP log of of QA - QD traces, produced by data consumer with ip1 IP
Address and executed over the federation of pA and pB data providers. SPARQL results
are requested in json format with execution timeout = 0.

LD
provider IP Time HTTP request

[1] pA ip1 11:24:19 URL1
[2] pA ip1 11:24:23 URL2
[3] pB ip1 11:24:24 URL3
[4] pA ip1 11:24:27 URL2
[5] pB ip1 11:24:28 URL3
[6] pA ip1 11:24:30 URL4
[7] pB ip1 11:24:31 URL5
[8] pA ip1 11:24:36 URL1

Table 3.2 – HTTP log of web pages, accessed by the data consumer with ip1 IP Address,
over the federation of pA and pB data providers. The log is represented as a temporal
sequence.

order to discover causal relations between events. Although, the difference with traditional
Data Mining is that sequential mining views data as a sequence. Therefore, sequential pat-

3.2. SEQUENTIAL PATTERN MINING 47

tern mining can be applied over different dataset formats such as transactional-oriented,
streams, time series, etc.

Examples of raw data analyzed through sequential pattern mining include genome
searching, web logs, alarm data in telecommunications networks, population health data,
etc. In Table 3.2, we see an abstract example of an HTTP navigation journal. All
different events composing the alphabet of this example, are: URL1, URL2, URL3,
URL4 and URL5. For a threshold defined by the user as equal to 2, the deduced episodes
are: episodeA = { URL1 }, episodeB = { URL2 }, episodeC = { URL3 } and finally
episodeD = { URL2, URL3 }, all with occurrencesepisode = 2.

Next, we overview the main categories of sequential pattern mining, namely apriori-
based, pattern growth algorithms and temporal sequences, in Section 3.2.1. Subsequently,
we focus on two state of art algorithms applied over temporal sequences, WINEPI and
MINEPI, that could be used to solve our problem, in Section 3.2.2.

3.2.1 Approaches and techniques
Depending on the dataset format and the generation method of episodes, sequence mining
algorithms are divided into three broad classes [32], we briefly overview below:

(A) Apriori-based: This family of algorithms discovers frequent sets of events that
appear in different transactions. In particular, they transform transactions into
sequences and apply on them the apriori approach [4] in order to generate associ-
ation rules. These algorithms are divided depending on how data are stored, into
horizontal and vertical. Horizontal e.g., AprioriAll, AprioriSome, or DynamicSome,
save the data by their "Transaction Id" and sort them by "Customer Id" and
"Transaction T ime". Vertical e.g., SPADE, SPAM or CCSM, transform their data
in event-oriented lists i.e., for each event there exist a list of pairs 〈sequence id,
timestamp〉. Vertical compared to horizontal algorithms, are used to apply depth-
first approach to the mining and then employ pattern growth methods. Indepen-
dently of their taxonomy, once these algorithms transform transactions into se-
quences, they apply two phases (1) candidate generation, where episodes are gener-
ated in different ways e.g., maximal sequences, hash trees or prefix tree, each with
a particular cost in space and time, and, (2) pruning: where candidate episodes
are considered as frequent, based on the user defined threshold. The limitation of
apriori-based family, is the exponential number of generated episodes. Some works
address this problem using constraints i.e., conditions to remove generated episodes
such as episode length, time gap between events, etc.

In Figure 3.3, we see an example of transactions transformed into sequences. Note
that items of a transaction are considered as non ordered i.e., parallel, when trans-
formed into a sequence. For instance, customer with ID=1 bought on December
12, 2016 the items <a, b, c>, which are denoted in the sequence with ID=1 as
(a b c) parallel events. Once transactions are transformed into sequences, apriori
based algorithms are able to extract the most frequent episodes. In our example,
for support = 5 and serial class of events, the most frequent episodes of maximum

48 CHAPTER 3. STATE OF ART: DATA MINING

Customer ID
(CID)

Transaction
Item Items bought

1 December 09, 2016 < a >
1 December 12, 2016 < a, b, c >
1 December 15, 2016 < a, c >
1 December 18, 2016 < d >
1 December 20, 2016 < c, f >
2 November 5, 2016 < a, d >
2 November 7, 2016 < c >
2 November 12, 2016 < b, c >
2 November 22, 2016 < a, e >
3 November 23, 2016 < e, f >
3 December 1, 2016 < a, b >
3 December 10, 2016 < d, f >
3 December 12, 2016 < c >
3 December 14, 2016 < b >
4 November 12, 2016 < e >
4 November 15, 2016 < g >
4 November 20, 2016 < a, f >
4 December 1, 2016 < c >
4 December 10, 2016 < b >
4 December 20, 2016 < c >

(a) Transaction oriented DB, sorted by "Customer ID"

Sequence ID
(SID) Sequence

1 < a(abc)(ac)d(cf) >
2 < (ad)c(bc)(ae) >
3 < (ef)(ab)(df)cb >
4 < eg(af)cbc >

(b) Sequential oriented DB, stored in an horizontal for-
mat

Table 3.3 – Transformation of transaction-oriented into sequence-oriented DB.

length is {a, b, c} as it has 5 occurrences. The episode {a, b, c} appears in different
subsequences i.e., a(_bc) and (abc) in the first sequence, (a_)(bc) in the second,
(ab)c in the third and finally (a_)bc in the fourth.

Regarding our scientific problem, we could apply the Apriori− based algorithms to
extract BGPs of user queries by considering an execution log as a single transaction.
But with this approach, we do not use any more timestamps and all events are un-
ordered i.e., considered as parallel. Consequently, this will produce a large number
of generated episodes. Apriori − based algorithms would correlate triple patterns
even if they originally were captured in distant timestamps in the log, or, correlate

3.2. SEQUENTIAL PATTERN MINING 49

triple patterns of the inner operand of a nested-loop that originally were captured
before triple patterns that seems to be the outer operand.

Figure 3.1 – Extraction of frequent episodes with pattern growth algorithms, by projecting
only subsequences with frequent prefixes.

(B) Pattern growth algorithms: Even when constraints are employed by apriori-
based algorithms, the number of generated episodes is still high especially when the
datasets are large. On the other hand, pattern growth algorithms while generally
more complex to develop, test and maintain, can be faster with large volumes of
data. In order to do so, these algorithms e.g., FreeSpan, PrefixSpan, SLPMiner,
apply the Frequent Pattern growth (FP growth) paradigm. In this case, frequent
episodes are compressed into a database represented as a frequent pattern tree, which
is subsequently divided into a set of projected databases during the generation of
episodes. The main idea, is to save a subsequence into the frequent pattern tree
only if its prefix is frequent enough. With this approach pattern growth algorithms,
compared to apriori based, are able to extract progressively frequent episodes and
in general with only one scan of the input dataset.

For the example of Figure 3.3, consider again that support = 5. First, regarding se-
rial class of events, subsequences with frequent prefixes of length = 1 are projected
i.e., subsequences with prefixes < a >, < b > and < c >, as occurrences<a> = 7,
occurrences = 5 and occurrences<c> = 7. Then, all episodes of length = 2
are generated and then subsequences that have these episodes as prefix, are pro-
jected. For instance, only subsequences with prefixes < a, b > and < a, c > are
then projected, as occurrences = 5 and occurrences<c> = 8 in the < a >
−projected database. For this projected database, the occurrences of episodes
< a, b > and < a, c > are calculated as occurrences<ab> = occurrences = 5

50 CHAPTER 3. STATE OF ART: DATA MINING

and occurrences<ac> = occurrences<c> = 8 respectively.

Regarding our scientific problem, like apriori-based, we could use pattern growth al-
gorithms to extract BGPs of user queries by considering an execution log as a single
transaction. But again with this approach, we do not use any more the timestamps
and all events of a single log are unordered i.e., considered as parallel.

(C) Temporal sequences: Sequence mining is not applied only for data stored in dis-
tinct and independent database instances. The need of events that are statistically
dependent emerges in some domains i.e., for events that are episodic in nature. In
such domains, data can be viewed as series of events occurring at specific times
and therefore the problem becomes a search for collections of events that occur
frequently together. There exist various algorithms such as MINEPI, WINEPI or
PROWL, that are actually apriori-like2 and for which the FP growth paradigm also
holds. The limitation of such approaches is that the size of generated episodes may
be still important regardless the FP growth paradigm, as it depends on the user-
defined threshold.

Table 3.2 on page 46, corresponds to an example of timestamped HTTP log, used
directly to apply algorithms of temporal sequences. Similarly to web logs, our log is
formatted as a sequence of timestamped subqueries/triple patterns that are accessed
with the HTTP protocol on data providers. Therefore, we argue that the problem
of BGP reversing is related to sequential pattern mining over temporal sequences.

In the next section, we present two state of art sequential mining algorithms over
temporal sequences, namely WINEPI and MINEPI.

3.2.2 State of art algorithms: WINEPI and MINEPI
WINEPI [26] decomposes a temporal sequence into overlapping sliding windows which
size is defined by the user, and thereafter calculates frequencies of episodes over these
windows. MINEPI [27] instead, looks for all minimal occurrences of episodes into a specific
time interval. A minimal occurrence is an interval such that no sub-interval contains the
episode. The minimum threshold of minimal occurrences of an episode is called support.
The minimum frequency (for WINEPI), the minimum support (for MINEPI) and the
maximum window size (for both), are thresholds defined by the user.

In Figure 3.2 we see an example of temporal sequence3. This timestamped log of
events is used to illustrate, step by step, how WINEPI and MINEPI are employed to
extract frequent episodes of events and deduce the association rules between them.

2Note that all approaches of sequential pattern mining are apriori-like, as they aim to generate asso-
ciation rules between events of frequent episodes.

3This example is taken from [21].

3.2. SEQUENTIAL PATTERN MINING 51

Figure 3.2 – Abstract example of a temporal sequence, used as input to WINEPI and
MINEPI.

Figure 3.3, presents how WINEPI parses the temporal sequence, during the interval
[−20, 120] and over 11 sliding windows. Figure 3.5 on page 52, presents all sets of
deduced episodes, per sliding window. For instance, we observe that the episode (A,B,D),
considering parallel class of events, is identified in 5/11 windows i.e., frequency(A,B,D) =
0, 45.

Figure 3.3 – Sliding windows of length = 40 for WINEPI over the temporal sequence in
interval [0, 120[. Episodes containing A,B,D are identified in windows U4, U5, U6, U7 and
U8 (in red color).

Figure 3.4 – Minimal occurrences for MINEPI over the temporal sequence in interval
[0, 120[. Episodes containing A,B,D are identified in intervals [10, 40], [30, 70], [30, 50],
[50, 70] and [40, 60] (in red color).

Figure 3.4 presents how MINEPI identifies all frequent episodes, over the temporal
sequence in interval [−20, 120]. Figure 3.6 presents all sets of deduced episodes over this

52 CHAPTER 3. STATE OF ART: DATA MINING

Figure 3.5 – Frequent episodes of the temporal sequence in interval [0, 120[, for WINEPI
with sliding windows of length = 40.

Figure 3.6 – Frequent episodes of the temporal sequence in interval [0, 120[, for MINEPI
with support = 1.

3.3. MINEPI OVER QUERY LOGS 53

interval. For instance, we observe that episode ABD, considering serial class of events,
is identified 5 times and in different orders i.e., occurrencesDAB = 2, occurrencesADB = 1,
occurrencesABD = 1 and occurrencesBDA = 1.

The main difference of these two approaches, is that WINEPI can be interpreted as the
probability of encountering an episode over sliding windows of randomly chosen size, while
MINEPI counts exact minimal occurrences of episodes over a log of fixed size. Compared
to classic apriori-based algorithms, candidate episodes for MINEPI and WINEPI are gen-
erated progressively by extending already identified frequent subsequences. As WINEPI
operates over sliding windows it is more efficient in the first phases of the episode gener-
ation, while MINEPI outperforms in the latter iterations. The limitation of WINEPI is
that while sliding windows iterate over a dynamic log, the cost of maintaining frequent
episodes and rules can be high if previously deduced episodes are not any longer observed.
On the other hand, MINEPI’s localisation of minimal occurrences can be high at the first
iterations when required data structures are larger than the original sequence. Time com-
plexity of WINEPI [26] is O((m/w)k|φ| + m) for parallel and O(mk|φ| + m) for serial
class of events, where w are shifts, k generated episodes, |φ| prefixes for each episode and
m the size of the log. The complexity of finding whether a serial or parallel episode has
an occurrence in a sequence for MINEPI, is NPcomplete [25].

In this section, we illustratedWINEPI andMINEPI, two state of art sequential mining
algorithms. The question that emerges is whether these mining algorithms can effectively
discover joins over a query log. Next, we apply the MINEPI algorithm over query logs
and identify its limitations.

3.3 MINEPI over query logs
In this section, we apply the MINEPI 4 state-of-art algorithm using as input query logs
that are collected from data providers, but similar observations may hold for WINEPI as
well. The challenge, is to explore if MINEPI is sufficient to solve our scientific problem
as presented on page 39 in Chapter 2, or, we need to furthermore process the query log
in order to have representative results in both recall and precision of joins.

First, in Section 3.3.1, we present the experimental testbed of MINEPI. Thereafter,
in Section 3.3.2, we apply MINEPI default version over query logs.

3.3.1 Experimental testbed
Experiments in this chapter are evaluated using execution traces of queries of the Cross
Domain (CD) collection, which is taken from FedBench [46]. From this benchmark, we
used the setup of DBpedia5, NY Times, LinkedMDB, Jamendo, Geonames and SW Dog

4We execute MINEPI using parallel class of events, as subqueries in a federated log are partially
ordered.

5DBpedia is distributed in 12 data subsets (http://fedbench.fluidops.net/resource/Datasets),
in our setup, DBpedia Ontology dataset is duplicated in all SPARQL endpoints, so we install 11 SPARQL
endpoints for DBpedia instead of 12.

http://fedbench.fluidops.net/resource/Datasets

54 CHAPTER 3. STATE OF ART: DATA MINING

Food datasets. Each of these datasets is installed into a SPARQL endpoint using Virtuoso
OpenLink6 6.1.7.

We executed federated queries with FedX 3.0. We implemented a tool to shuffle
several logs of queries executed in isolation, according to different parameters7. Thus,
given E(FQ1), ..., E(FQn) we were able to produce different significant representations
of E(FQ1 ‖ ... ‖ FQn). Produced traces with this tool vary in (i) the order of federated
queries, (ii) the number of subqueries of the same federated query, appearing continuously
in the shuffled log (blocks of 1 to 16 subqueries), and (iii) the delay between each subquery
(from 1 to 16 units of time). As we aimed to deduce the joins of triple patterns in the
original queries, we extracted only episodes of size = 2 with MINEPI.

3.3.2 Experiments with MINEPI

Query/Collection Alphabet size
CD1 3
CD2 3
CD3 695
CD4 17
CD5 12
CD6 1229
CD7 371

CD concurrent 2316

Table 3.4 – Alphabet sizes of events of CD traces, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI default version with
triple pattern granularity.

Query/Collection Frequent episodes
(length = 2, support = 1)

Frequent episodes
(length = 2, support = 2)

CD1 3 0
CD2 3 0
CD3 75 36
CD4 136 81
CD5 66 15
CD6 754606 92570
CD7 68635 56895

CD concurrent 2033005 404330

Table 3.5 – Frequent episodes of CD traces, produced by a federated query engine and
executed over a federation of SPARQL endpoints, for MINEPI default version with triple
pattern granularity, length = 2 and different support thresholds.

6http://virtuoso.openlinksw.com/
7The program to shuffle several execution logs in isolation, used as input either to MINEPI, LIFT or

FETA, is available at: https://github.com/coumbaya/traceMixer

http://virtuoso.openlinksw.com/
https://github.com/coumbaya/traceMixer

3.3. MINEPI OVER QUERY LOGS 55

Figure 3.7 – Recall of joins of traces of CD queries, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI default version with
triple pattern granularity and different support thresholds.

Figure 3.8 – Precision of joins of traces of CD queries, produced by a federated query
engine and executed over a federation of SPARQL endpoints, for MINEPI default version
with triple pattern granularity and different support thresholds.

56 CHAPTER 3. STATE OF ART: DATA MINING

In this section we executed the MINEPI default version, by considering as events
the triple patterns. Table 3.4 presents alphabet sizes of events of MINEPI for triple
pattern granularity. Table 3.5 presents frequent episodes of length=2 for different support
threshold values. Figures 3.7 and 3.8, illustrate MINEPI’s performance in recall and
precision of joins, respectively.

From this experiments, first, we observe that the alphabet of events may consist of
hundreds of triple patterns, even when executing only one query. Even worst, MINEPI
performs poorly in recall but also in precision of joins, for both traces of queries executed
in isolation or in concurrence. Finally, we observe that for support > 1 along with the
number of episodes recall also decreases dramatically or event zeroed.

We conclude with this experiment, that MINEPI is not adequate to reveal the actual
joins in original queries for both traces produced in isolation or in concurrence, even
when using the most favourable execution condition i.e., for support = 1. Next, we aim
to interpret the results obtained in this section and to identify the limitations of sequential
pattern mining when applied over query logs, using an abstract example.

3.4 Limitations of query log analysis
In this section we aim to explain why sequential pattern mining algorithms, in their
current form, perform poorly in recall and precision of joins when analyzing query logs.
From their limitations, we identify which is the necessary processing effort that needs to
be employed, so that these algorithm become more efficient in deducing the actual joins
of original queries. In order to explain our proposed perspectives, we use the following
example.

Consider again the abstract log of Table 3.1 on page 46, corresponding to execution
plans of queries QA = SELECT ?x ?y WHERE { ?x p1 o1 . ?x p2 ?y . ?y p3 ?z},
QB = SELECT ?y WHERE { ?x p2 ?y }, QC = SELECT ?y WHERE { ?y p3 ?z }
and QD = SELECT ?x WHERE { ?x p1 o1 }. We present next, one by one, the
limitations of such algorithms over a log of (sub) queries.

1. The pertinence of the alphabet: The alphabet of events in a query log is pro-
portional to the cardinality of triples residing in the Linked Data8. However, the
main issue for triple patterns9 is not their quantity but their pertinence. Depend-
ing on optimization techniques employed by query engines, constant values of triple
patterns actually may correspond to mappings that replace a join variable of a triple
pattern in the original user query. That is, when two triple patterns of a user query
are joined through a nested-loop, as we presented in Chapter 2 on page 25, the
former triple pattern pushes its mappings into the latter. In other words, the triple
patterns we observe in the log may actually be the result of the decomposition of
original triple patterns in user queries. Without knowing the exact triple patterns,

8We do not take into account triple patterns that do not correspond to actual Linked Data resources
i.e., IRI/literals of triple patterns that are contained in queries posed by data consumers. In this case,
the alphabet of events is infinite.

9We could consider different levels of granularity, regarding the accessed resource of our log: predicate,
triple pattern or subquery. We choose triple patterns, as we aim to extract BGPs of user queries.

3.4. LIMITATIONS OF QUERY LOG ANALYSIS 57

Heuristic Alphabet
{ { ?x p1 o1 },
{ s1 p2 ?y },
{ o3 p3 ?z },
{ s2 p2 ?y },

none { o4 p3 ?z },
{ ?x p2 ?y },
{ ?y p3 ?z },
{ ?x p1 o1 } }

{ { ?x p1 o1 },
NestedLoopDetection { ?x p2 ?y },

{ ?y p3 ?z } }

Table 3.6 – Alphabet of events of QA - QD traces, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI with triple pattern
granularity and with or without the NestedLoopDetection heuristic.

we are not able to identify the joins of these queries. Therefore, we need a reverse
function the reveals hidden join variables from triple patterns, by detecting nested-
loops between them. We denote such function as NestedLoopDetection, which we
define next.

Definition 6 (NestedLoopDetection) Suppose a query log of one or more data
providers corresponding to execution traces of queries they process, as defined in
Definition 4 on page 39. We define NestedLoopDetection as a nested function that
detects pushed mappings from a triple pattern in the log into followings, respecting a
time-interval threshold between them. Once a nested-loop is detected, pushed map-
pings in the latter triple patterns are replaced with the original variable of the former
to which they are joined.

Therefore withoutNestedLoopDetection, performance in recall may be considerably
low as original patterns in user queries are decomposed in tens or hundreds of
triple patterns during nested-loops. In our example, using NestedLoopDetection
we realize that entries 2, 4 of Table 3.1 on page 46 are the result of a nested-loop
between {?x p1 o1} and {?x p2 ?y}, where subject mappings {s1, s2} of the former
are pushed in the subject of the latter. Likewise, entries 3, 5 are the result of a
nested-loop between {?x p2 ?y} and {?y p3 ?z}. Table 3.6 presents the alphabet
for triple pattern granularity, with or without NestedLoopDetection.

2. The size of the alphabet: By default, sequential pattern mining is applied over
logs spread over days or weeks of usage, as it aims to discover episodes that occur
multiple times e.g., with support > 1. The diversity of these triple patterns will
not depend only on the nested-loops employed by query engines, but also on queries
posed by users. So, regarding the previous challenge, the size of the alphabet may
be considerably large even if we apply the NestedLoopDetection function. Table 3.1
presents a log of only a few seconds. The size of the alphabet of events for larger
logs e.g., one hour, can be unpredictably large.

58 CHAPTER 3. STATE OF ART: DATA MINING

3. The choice of threshold: In general, Data Mining algorithms are using a threshold
either defined as frequency for WINEPI or support for MINEPI, to extract frequent
episodes. The choice of such value is completely arbitrary. Using a small threshold
value, we may get a lot of false positives regarding discovered episodes and their
correspondence to joins. On the other hand, a larger threshold would exclude some
non frequent sets of triple patterns that correspond to joins. But as in general
sequential mining algorithms are applied over logs of a significant duration, this
threshold is greater that one. For our example, with support = 2 we deduce the
episode associating {?x p2 ?y} and {?y p3 ?z}, but not the complete BGP of QA

i.e., { {?x p1 o1}, {?x p2 ?y}, {?y p3 ?z} } as it occurs only once.

4. The difference between apparition and join ordering: The order in which
events are captured in the log does not necessary correspond to joins. Frequent
episodes in MINEPI or WINEPI, group events that occur together. Nevertheless,
joins are not always made over consecutively appearing triple patterns, even for the
execution of a single query. For instance, joins in query QE, composed by triple
patterns tp1 = {?x p1 o1}, tp2 = {?w p2 ?z} and tp3 = {?x p3 ?z}, are between
{tp1, tp3} and {tp2, tp3}, even if a sequential mining algorithm will also identify
{tp1, tp2}. This challenge affects mostly performance in precision but in presence
of concurrence it may affect also performance in recall, as we see next.

5. The concurrent execution of queries: In the context of concurrent execution
of queries, either decomposed in multiple subqueries or posed directly over data
providers, both precision and recall may be affected. We present below in which
cases these situations emerge.

First, occurrences of events in a query log is related to the selectivity of operations.
Suppose an additional query QF = SELECT ?x WHERE { ?x p3 ?z . ?y p4 ?z }.
A data consumer may decide to execute the join with a nested-loop. So, {?x p3 ?z}
will appear once in the log, while triple patterns with {?y p4 IRIs} will appear many
times according to the selectivity of {?x p3 ?z}. Searching for frequent episodes will
raise up episodes with triple patterns containing false positives of joins, for instance
p2 and p4 but actual joins were between {p1, p2}, {p2, p3} and {p3, p4}. Second,
due to the difference between apparition of events and the join ordering decided
by the data consumer to evaluate them, sequential mining algorithms may combine
triple patterns contained in different queries instead those contained in the same.
For instance, the episode composed by tp1 = {?x p1 o1} and tp3 = {?x p3 ?z}, may
be created from tp1 of the first pattern of QE and the first of QF . In this case, the
actual join between tp1 and tp3 of QE will never be detected.

In this section, we illustrated the limitations of query log analysis and realized that
in order to have a pragmatic view of actual joins we need to apply a reverse function in
order to reveal the actual events i.e., triple patterns that we aim to track. This is made
through the NestedLoopDetection heuristic, either using a phase of pre-processing data
transformation or by applying post-processing constraints, that we explain next.

3.5. MINEPI WITH PRE OR POST-PROCESSING 59

3.5 MINEPI with pre or post-processing
In this section, we aim to enchance the MINEPI 10 state-of-art algorithm, by processing
the input logs enough in order to have a more pragmatic view of actual joins of original
queries. The challenge is to explore if MINEPI enhanced with a processing effort is
sufficient to solve our scientific problem, as presented on page 39 in Chapter 2, or, its
performance is still moderate in terms of either recall or precision of joins.

In the experiments of the next sections, we adopt the experimental tesbed of Sec-
tion 3.3.1. In order to reveal actual joins of triple patterns, we aim to apply theNestedLoop
Detection using two different strategies. First, in Section 3.5.1, we apply MINEPI with a
pre-processing NestedLoopDetection, which is a applied as a data transformation phase
over the whole query log. Finally, in Section 3.5.2, we present MINEPI with a post-
processing NestedLoopDetection, which is applied as a pruning phase only to the minimal
occurrences of frequent episodes identified by MINEPI.

3.5.1 MINEPI with data transformation
As in every Data Mining process, a pre-processing phase can be applied before data
analysis in order to transform the raw input into a homogeneous schema. In particular,
we apply the NestedLoopDetection heuristic over the whole query log. Our aim is to
eventually reveal from which variable’s mappings, the constants of each triple pattern
were pushed during nested-loops.

Query/Collection
Frequent episodes

(length = 2, support = 1)
Frequent episodes

(length = 2, support = 2)
CD1 2 0
CD2 2 0
CD3 10 6
CD4 6 2
CD5 6 3
CD6 3 2
CD7 3 2

CD concurrent 230 87

Table 3.7 – Frequent episodes of CD traces, produced by a federated query engine and
executed over a federation of SPARQL endpoints, for MINEPI with triple pattern gran-
ularity, NesteLoopDetection as data transformation and length = 2.

Table 3.8 presents the sizes of the alphabet of events, when applying NestedLoop
Detection as data transformation before applying MINEPI, for execution logs of CD
queries. Table 3.7 presents frequent episodes of length=2 for different support threshold
values. Figures 3.9 and 3.10, illustrate MINEPI’s performance when enhanced with a
pre-processing phase of NestedLoopDetection, regarding both recall and precision of joins
respectively.

10We execute MINEPI using parallel class of events, as subqueries in a federated log are partially
ordered.

60 CHAPTER 3. STATE OF ART: DATA MINING

Figure 3.9 – Recall of joins of traces of CD queries, produced by FedX query engine and
executed over a federation of SPARQL endpoints, for MINEPI withNestedLoopDetection
as data transformation and different support thresholds.

Figure 3.10 – Precision of joins of traces of CD queries, produced by FedX query engine and
executed over a federation of SPARQL endpoints, for MINEPI withNestedLoopDetection
as data transformation and different support thresholds.

3.5. MINEPI WITH PRE OR POST-PROCESSING 61

Query/Collection Alphabet size
CD1 3
CD2 3
CD3 5
CD4 4
CD5 5
CD6 4
CD7 4

CD concurrent 28

Table 3.8 – Alphabet sizes of events of CD execution traces, produced by a federated
query engine and executed over a federation of SPARQL endpoints, for MINEPI triple
pattern granularity and NesteLoopDetection as data transformation.

First, we observe that the alphabet is reduced significantly, some times from thou-
sands into just tens of triple patterns. Even better, we are able to have a pragmatic view
of real joins of the log (cf. Limitation 1). In addition, similarly to the default MINEPI
version, both the number of episodes and recall significantly decrease for support > 1
(cf. Limitations 2, 3). Finally, we observe that precision compared to the default version
of MINEPI is low, as frequent episodes may concern false joins from triple patterns of
different queries (cf. Limitation 5).

Next, we aim to enhance MINEPI with NestedLoopDetection but this time in form
of a post-processing constraint, thus minimizing the intervention to those events that are
identified as minimal occurrences by MINEPI.

3.5.2 MINEPI with pruning constraints
As presented in Section 3.2, all apriori-like algorithms have the problem of producing an
exponential number of generated episodes. So in order to minimize the volume of episodes,
we can apply constraints after the episode generation of MINEPI. In particular, we apply
the NestedLoopDetection heuristic as a constraint, only to those entries identified by the
minimal occurrences of MINEPI and not to the whole input log.

Table 3.9 presents frequent episodes of length=2 for different support threshold values
and predicate granularity. Figures 3.11 and 3.12, illustrate MINEPI’s performance when
enhanced with a post-processing phase of NestedLoopDetection, in recall and precision
of joins respectively.

As expected, similarly to the default version of MINEPI and MINEPI with preprocess-
ing transformation, both the number of deduced episodes and recall significantly decrease
with support > 1 (cf. Limitations 2, 3). Furthermore, even if we have a more prag-
matic view of joins comparing to the default version of MINEPI, recall is not as good as
MINEPI’s with pre-processing data transformation. This is explained from the fact that
MINEPI with post processing only identifies the minimal occurrences of episodes, which
in presence of concurrence combine triple patterns from concurrently executed queries
and not those from the same (cf. Limitations 4,5).

62 CHAPTER 3. STATE OF ART: DATA MINING

Figure 3.11 – Recall of joins of traces of CD queries, produced by FedX query engine and
executed over a federation of SPARQL endpoints, for MINEPI withNestedLoopDetection
as pruning constraint and different support thresholds.

Figure 3.12 – Precision of joins of traces of CD queries, produced by FedX query engine and
executed over a federation of SPARQL endpoints, for MINEPI withNestedLoopDetection
as pruning constraint and different support thresholds.

3.5. MINEPI WITH PRE OR POST-PROCESSING 63

Query/Collection
Frequent episodes

(length = 2, support = 1)
Frequent episodes

(length = 2, support = 2)
CD1 1 0
CD2 2 0
CD3 7 2
CD4 4 1
CD5 3 1
CD6 3 2
CD7 3 2

CD concurrent 17 9

Table 3.9 – Frequent episodes of CD traces, produced by a federated query engine and
executed over a federation of SPARQL endpoints, for MINEPI with triple pattern gran-
ularity, NesteLoopDetection as pruning constraint and length = 2.

In summary, it is necessary to enhance MINEPI with reverse heuristics, either as a
pre-processing or post-processing phase, in order to have a more pragmatic view of joins
in original queries. But even so, recall depends on the support threshold and is also
affected by concurrency. Anyhow, precision can perform poorly as deduced episodes of
triple patterns do not correspond always to joins.

Therefore, we need to process logs of subqueries by linking directly triple patterns
based only on their mappings without relying on occurrences of their sets. In the next
chapters, we present our proposed BGP reversing approaches that aims to solve our
scientific problem, presented on page 39 in Chapter 2.

4
LIFT: LInked data Fragment
Tracking

Contents
4.1 Illustration example . 66
4.2 LIFT: a reversing approach . 68

4.2.1 Extraction of candidate triple patterns 69
4.2.2 Nested-loop join detection . 71
4.2.3 BGP extraction . 72
4.2.4 Time complexity of LIFT . 73

4.3 Experiments . 73
4.3.1 Experimental tesbed of LIFT 73
4.3.2 LIFT deductions of queries in isolation 75
4.3.3 Does LIFT resist to concurrency? 76
4.3.4 Analysis of the TPF log of USEWOD 2016 77

In this chapter we present LIFT, our proposed approach that aims to answer the
question: "Can TPF servers track and approximate BGPs they process from their logs?"
This question is addressed both over single and federations of TPF servers, as TPF clients
decompose SPARQL queries even when only one server is concerned. The challenge to
infer queries that are evaluated with this approach, over single or federations of servers,
is to link maybe hundreds of single triple pattern subqueries per query execution. Such
an endeavour must be resistant in presence of concurrent execution of other queries.

This chapter first illustrates the scientific problem we aim to solve, as described on page
39 in Chapter 2, Section 2.5 over the context of TPF query processing, in Section 4.1.
Thereafter, the BGP reversing approach of LIFT is presented in Section 4.2. Finally,
experiments are reported in Section 4.3.

65

66 CHAPTER 4. LIFT: LINKED DATA FRAGMENT TRACKING

4.1 Illustration example
In Figure 4.1, two clients, c1 and c2, execute concurrently queries Q1 and Q2 over the
TPF server of DBpedia. Q1 asks for movies starring Brad Pitt and Q2 for movies starring
Natalie Portman. Q1 and Q2 are taken from the TPF web application1.

c1(173.28.19.114) : Query Q1

SELECT ?movie ?title ?name WHERE {
?movie dbpedia− owl : starring ?actor . (tp1)
?actor rdfs : label ”Brad P itt”@en . (tp2)
?movie rdfs : label ?title . (tp3)
?movie dbpedia− owl : director ?director . (tp4)
?director rdfs : label ?name (tp5)
FILTER LANGMATCHES(LANG(?title), "EN")
FILTER LANGMATCHES(LANG(?name), "EN") }

c2(173.28.19.114) : Query Q2

SELECT ?titleEng ?title WHERE {
?movie dbpprop : starring ?actor . (tp′1)
?actor rdfs : label ”Natalie P ortman”@en . (tp′2)
?movie rdfs : label ?titleEng . (tp′3)
?movie rdfs : label ?title (tp′4)
FILTER LANGMATCHES(LANG(?titleEng), "EN")
FILTER (!LANGMATCHES(LANG(?title), "EN")) }

DBpedia TPF server

?predicate = rdfs : label
& ?object =

”Brad Pitt”@en . . .

?predicate = rdfs : label
& ?object =

”Natalie Portman”@en . . .

Figure 4.1 – Concurrent execution of queries Q1 and Q2, produced by TPF client with
173.28.19.114 IP Address and executed on the DBpedia TPF server.

TPF clients decompose SPARQL queries into a sequence of triple pattern queries, as
partially presented in Table 4.1 for query Q1. Lines in grey color correspond to answers
of the single triple pattern queries in enumerated lines. As the TPF server only see triple
pattern queries, the original queries e.g., Q1 and Q2 remain unknown to the data provider.

In this chapter, we address the following research question: "Can TPF servers track
and approximate BGPs they process, from their logs?" This question is addressed both
over single or federations of TPF servers, as TPF clients decompose SPARQL queries
even when only one TPF server is concerned. In particular, we aim to solve the scientific
problem of BGPs reversing (cf. Definition 5 on 40), of query evaluation over TPF servers.
We also consider the definition, notation and property of query log (cf. Definition 4 on
39), execution trace and resistance to concurrency (cf. Property 1 on 41) respectively.

In our example, the DBpedia TPF server log corresponds to E(Q1 ‖ Q2). We aim to
extract two BGPs from this, one corresponding to Q1, BGP[1]= {tp1 . tp2 . tp3 . tp4 . tp5}
and another corresponding to Q2, BGP[2]= {tp′1 . tp′2 . tp′3 . tp′4}.

In Figure 4.1, if c1 and c2 have different IP addresses it is possible to separate
E(Q1 ‖ Q2) into E(Q1) and E(Q2), and apply the reversing function to each trace.
However, in the worst case, c1 and c2 have the same IP address i.e., a web application
running on the cloud that executes queries Q1 and Q2 in parallel. Thus, we expect that
f(E(Q1 ‖ Q2)) ≈ f(E(Q1) ∪ f(E(Q2).

1http://client.linkeddatafragments.org/.

http://client.linkeddatafragments.org/

4.1. ILLUSTRATION EXAMPLE 67

LD
provider IP Time Triple pattern suqbuery/TPF

[1] DBpedia 173... 11:24:19 ?predicate=rdfs:label & object="Brad Pitt"@en

{ < ... controls ... >,
< {dbpedia:Brad_Pitt rdfs:label "Brad Pitt"@en} >,
< ... metadata ... > }

[2] DBpedia 173... 11:24:24 ?predicate=dbpedia-owl:starring & object=dbpedia:Brad_Pitt
{ < ... controls ... >,
< {dbpedia:A_River_Runs_Through_It_(film) dbpedia-owl:starring

dbpedia:Brad_Pitt}, ... ,
{dbpedia:Troy_(film) dbpedia-owl:starring dbpedia:Brad_Pitt} >,

< ... metadata ... > }
[3] DBpedia 173... 11:24:28 ?subject=dbpedia:A_River_Runs_Through_It_(film) &

predicate=rdfs:label
{ < ... controls ... >,
< {dbpedia:A_River_Runs_Through_It_(film) rdfs:label

"A River Runs Through It (film)"@en}, ... ,
{dbpedia:A_River_Runs_Through_It_(film) rdfs:label
"Et au milieu coule une rivière"@fr} >,

< ... metadata ... > }
[4] DBpedia 173... 11:24:31 ?subject=dbpedia:A_River_Runs_Through_It_(film) &

predicate=dbpedia-owl:director
{ < ... controls ... >,
< {dbpedia:A_River_Runs_Through_It_(film) dbpedia-owl:director

dbpedia:Robert_Redford} >,
< ... metadata ... > }

[5] DBpedia 173... 11:24:34 ?subject=dbpedia:Robert_Redford & predicate=rdfs:label
{ < ... controls ... >,
< {dbpedia:Robert_Redford rdfs:label "Robert Redford"@en}, ... ,

{dbpedia:Robert_Redford rdfs:label "Robert Redford"@fr} >,
< ... metadata ... > }

Table 4.1 – Partial log of Q1 traces, produced by TPF client with 173.28.19.114 IP Address
and executed on DBpedia TPF server. Answers are extracted from data providers in form
of Triple Pattern Fragment.

Next, we present our proposed BGP reversing solution, LInked data Fragment Tracking
(LIFT), which we evaluate with traces of queries from the TPF web application interface
executed (i) in isolation and (ii) in concurrence, over single or federations of TPF servers.
In addition, we report that LIFT extracts useful BGPs with traces of the real log of
USEWOD 2016 [28].

68 CHAPTER 4. LIFT: LINKED DATA FRAGMENT TRACKING

4.2 LIFT: a reversing approach
LIFT is a system of algorithms based on heuristics, to implement the reverse function f .
The idea is to detect nested-loop joins. In Table 4.1, the mappings returned in Line 2 are
reused in the next triple pattern query in Line 3. We track such bindings in order to link
different triple pattern queries.

In this chapter, we make the following hypothesis:

1. We consider only bound predicates2,

2. We consider that TPF servers do not use a web cache (this information can be easily
obtained by data providers), and

3. We consider that clients do not use a cache (concerning both selectivity of triple
patterns and their mappings).

Figure 4.2 presents a simplified log of Q3 = SELECT ∗ WHERE {?x p2 toto .
?x p1 ?y}), Q4 = SELECT ∗ WHERE {?x p3 titi . ?x p1 ?y . ?x p4 tata}) and
E(Q3 ‖ Q4).

For the sake of simplicity, timestamps are transformed into integers. The IP address
of the TPF client is the same for Q3 and Q4, so we removed the ip column. Unknown
variables are named ?s or ?o. µo represents the mappings of variables resulting from the
evaluation of tp on data. We call them output-mappings.

Figure 4.2 – Examples of simplified TPF logs, for Q3 and Q4 traces.

Algorithm 1 shows the three phases of LIFT:

1. First, LIFT merges triple patterns into candidate triple patterns. It allows to gather
triple patterns that can be part of the same outer or inner operand of a join. We
denote the set of candidate triple patterns as CTP .

2As reported in [8], predicates of triple patterns are frequently bound. Nevertheless, FETA like LIFT
can be extended to deal with predicates just like they deal with subjects and objects.

4.2. LIFT: A REVERSING APPROACH 69

2. Next, LIFT looks for an inclusion relationship among mappings of candidate tps. If
it does not exist, LIFT splits candidate triple patterns to build it. This produces a
set of graphs, which we denote as DTP , where nodes are deduced triple patterns and
edges represent inclusion relationships between these triple patterns. This detects
nested-loops.

3. Finally, LIFT extracts BGPs from the DTP Graph set. Ideally, LIFT(E(Q3 ‖
Q4), gap) should compute the 2 BPGs of Q3 and Q4: {?s p2 toto . ?s p1 ?o}
and {?s p3 titi . ?s p1 ?o . ?s p4 tata}.

The basic intuition of LIFT is to detect if mappings are bound in next requests. This
can be challenging, as mappings can be: (i) bound several times (e.g., in star queries),
(ii) bound partially as a side-effect of LIMIT and FILTER clauses, or (iii) bound into
a different concurrent query. As a real log can be huge, LIFT analyzes the log using a
constraint as a sliding window which is defined by a gap i.e., a time interval. When LIFT
reads an entry e in the log with a timestamp ts, it considers only entries reachable within
the gap i.e., ts± gap.

Algorithm 1: Global algorithm of LIFT
1 Function LIFT (log, gap) is

input : a log; a gap in time units (seconds)
output: a set of BGPs
data : CTP a set of candidate tps, DTP a set of graphs of deduced tps

2 CTP ← ctpExtraction (log, gap)
3 DTP ← nestedLoopDetection (CTP, gap)
4 return BGP ← bgpExtraction(DTP)

Section 4.2.1 details the CTP extraction. Section 4.2.2 describes the nested-loop
detection. Finally, Section 4.2.3 presents the final phase of extraction of BGPs.

4.2.1 Extraction of candidate triple patterns
ctpExtraction aims to aggregate together log entries that seem to participate in the same
outer or inner operand of a join. Aggregated entries are represented by candidate triple
patterns. All candidate triple patterns form the CTP set.

A `c ∈ CTP is a tuple3 〈ip, ts, tp, µo, µi〉 where ip is an IP address, ts is a pair of times-
tamps (ts.min, ts.max) representing a range; when creating a candidate triple pattern,
both timestamps are identical and correspond to the timestamp of the current entry in the
log. tp is a triple pattern query, µo (output-mappings) is the list of solution mappings for
variables of tp. µi (input-mappings) is a set of mappings built during the ctpExtraction.
Basically, we replace any constant of tp by a variable, we use σ for subject and ω for
object. Replaced constants are regrouped in µi.

3Note, that in the case of a federated log, the candidate tp tuple is enhanced with an additional field,
which we denote as {tsr}, with the set of TPF servers that evaluate it.

70 CHAPTER 4. LIFT: LINKED DATA FRAGMENT TRACKING

Figure 4.3 – TPF log and CTP List, produced by Algorithm 2 with E(Q3 ‖ Q4) and for
gap = 8.

Algorithm 2: Extraction of Candidate Triple Patterns
1 Function ctpExtraction (log, gap) is

input : a TPF log; gap an interval in time units (seconds)
output: CTP a list of candidate tps

2 CTP ←[]
3 foreach e ∈ log do
4 `c ← read(e) as (ip, (ts,ts), tp, µo) switch `c.tp do
5 case ?s p o: `c.tp ← ?s p ?oin ; `c.µi ← ?ω|o
6 case s p ?o: `c.tp ← ?sin p ?o ; `c.µi ← ?σ|s
7 case s p o: `c.tp ← ?sin p ?oin ; `c.µi ← ?σ|s, ?ω|o
8 case ?s p ?o: `c.tp ← ?s p ?o ; `c.µi ← ∅
9 if ∃ `ck ∈ CTP | ingap(`c, `ck, gap) ∧ (`ck.ip =`c.ip) ∧ (`c.tp =`ck.tp) then

10 (`ck.µo ∪ `c.µo); (`ck.µi ∪ `c.µi); (`ck.ts.max =`c.ts.max);
11 else CTP.add(`c)
12 return CTP

Algorithm 2 outlines the extraction of a CTP List from a TPF log for a particular
gap. Figure 4.3 illustrates the effect of this algorithm on log E(Q3 ‖ Q4) for gap=8.

The log is processed in sequential order. Lines 5 to 8 initialize input-mappings by
replacing constants by variables σ or ω. Next, lines 9 to 10 merge the current candidate
triple pattern with an existing and compatible, if there exist one. An existing candidate
tp is compatible if it has the same tp, it is produced by the same ip address and fits in
the gap. The ingap(`c, `ck, gap) function returns true if `c.ts.min−`ck.ts.max ≤ gap. If
the current candidate tp is compatible with an existing one, output/input-mappings and
timestamps are merged. Otherwise, we create a new entry in line 11. When updating
timestamps, the lower timestamp remains always the same and only the upper timestamp
can grow up. A variable of tp can not belong to µo and µi simultaneously.

This algorithm can aggregate triple patterns that do not belong to the same nested-
loop as it is the case in our example, where CTP[3] aggregates triple patterns of Q3 and
Q4. We suppose that this case is not likely, especially when the gap is small. But if it is

4.2. LIFT: A REVERSING APPROACH 71

Figure 4.4 – CTP List and DTP Graph set, produced by Algorithm 3 for gap = 8.

the case, next algorithm splits candidate tps to separate these nested-loops.

4.2.2 Nested-loop join detection
Algorithm 3 describes how to link variables of different candidate tps, produced by Al-
gorithm 2, and builds a set of graphs of deduced triples patterns, which we denote as
DTP , by linking different candidate tps if there a relation of inclusion between them.
Figure 4.4 presents the DTP Graph set produced by Algorithm 3, using the CTP List of
Algorithm 2. Dashed links represent linked variables deduced by Algorithm 3.

If the µi of a candidate tp is a subset of the µo of a previous candidate tp, then we
consider that the 2 corresponding variables can be linked. This happens in the example
described in Figure 4.4, with CTP[2] and CTP[4]. We consider that ?σ of CTP[4] is linked
to ?s of CTP[2]. We formalize this behaviour at lines 6 to 7 of Algorithm 3.

Algorithm 3: Detection of nested-loop joins
1 Function nestedLoopDetection (gap, CTP) is

input : gap an interval in time units (seconds); CTP a set of candidate tps
output: DTP a set of graphs of deduced tps

2 foreach `c ∈ CTP do
3 if split(`c) 6= ∅ then CTP.insertAfter(`c.id, split(`c));
4 else DTP.addnode(`c) ; foreach vo ∈ vars(`c.µo) do
5 foreach (`ck, vi) ∈ { (`ck, vi) | `ck ∈ CTP ∧ (`ck.id > `c.id) ∧ ingap(`ck, `c, gap) ∧

∃ vi ∈ vars(`ck.µi) | (`ck.µi(vi) ∩ `c.µo(vo) 6= ∅) } do
6 if `ck.µi(vi) ⊆ `c.µo(vo) then
7 DTP.addnode(`ck) ; DTP.addEdge(`c, `ck, (vo,vi));
8 else DTP.addnode(s=split(`ck, vi, `c, vo)) ; DTP.addEdge(`c, s, (vo,vi));

9

10 return DTP;

A direct inclusion does not occur if Algorithm 2 aggregated too many log entries as it
is the case with CTP[3]. Indeed, Q3 and Q4 have a common triple pattern (?x, p1, ?y)
and Algorithm 2 aggregates them. We solve this problem by splitting a candidate tp.
The idea is to produce a deduced tp from a candidate tp, if it exists an intersection
between the µo of another candidate triple pattern and the µi of this one. In the example

72 CHAPTER 4. LIFT: LINKED DATA FRAGMENT TRACKING

described in Figure 4.4, CTP[3] is split two times: one when analyzing CTP[1] (DTP[3]
is produced) and another when analyzing CTP[2] (DTP[4] is produced) because both µo

intersect the µi of CTP[3]. Splitting does not affect only the input-mappings, it also
impacts timestamps and output-mappings. After splitting, we obtain input-mappings
that are subsets of previous output-mappings.

Intersection and splitting is shown in lines 5 and 8 of Algorithm 3. The function
split is straightforward, as it basically remerges from the TPF log values that belong
to the intersection. This generates correct timestamps, output-mappings and input-
mappings. We register the split relationship with a split predicate that links a candidate
tp with its produced deduced tps. In our example, for CTP[3] we have 2 split relations;
split(CTP [3], CTP [3′]) and split(CTP [3], CTP [4′]).

Splitting has an effect on CTP traversal that we see in Line 3. Output-mappings of
produced deduced tps must be analyzed, so when the nested-loop detection analyzes a
split candidate tp it inserts in the CTP List the deduced tps that are produced with this
split. split(c) returns the set of deduced tps produced by splitting this candidate tp.

4.2.3 BGP extraction
Figure 4.5 represents the connected components of the DTP Graph set shown in Fig-
ure 4.4. From this representation, it is easy to compute the final BGPs with a variable
renaming and restitution of an IRI/literal in place of ω when there is only one input
mapping e.g., toto, titi and tata.

?s p2 ?ω
dtp[1], ω = toto

?σ p1 ?o
dtp[3]

?s =?σ

(a) {?s1 p2 toto . ?s1 p1 ?o3}

?s p3 ?ω
dtp[2], ω = titi

?σ p1 ?o
dtp[4]

?σ P3 ?ω
dtp[5], ω = tata

?s =?σ

?s =?σ

(b) {?s2 p3 titi . ?s2 p1 ?o4 . ?s2 p4 tata}

Figure 4.5 – Connected components of the DTP Graph set, produced by Algorithm 3 for
gap = 8.

In our example, LIFT rebuilds perfectly BGPs of queries Q3 and Q4. This example
is executed with gap = 8. If we reduce the gap, then some joins are not detected and
recall decreases. If we execute concurrently more queries having same triple patterns,
then LIFT can deduce joins that do no exist in original queries and consequently precision
will decrease. In Section 4.3, we measure experimentally the precision and recall of LIFT
in different situations.

4.3. EXPERIMENTS 73

4.2.4 Time complexity of LIFT
The computational complexity of LIFT is O(N ∗M + M2). N is the number of entries
in the TPF log and M is the size of the CTP List. The cost of ctpExtraction is O(N ∗
M), because it extracts the candidate tp from each entry of the TPF log and merges
it with an existing similar candidate tp of CTP , or, creates a new one. The cost of
nestedLoopDetection is O(M ∗ M) that gives O(M2), as each candidate tp of CTP is
compared with each other. The cost of bgpExtraction is M.

The overload produced by LIFT is high, but we underline that the size of the log
corresponds to a slicing window of time e.g., a separate log for each hour of the day, and
that the log analysis can be made as a batch processing.

4.3 Experiments
The goals of the experiments are twofold: (i) to evaluate precision and recall of LIFT’s
results and (ii) to show that LIFT extracts meaningful BGPs from a real TPF log. In
Section 4.3.1 we present the experimental testbed of LIFT. In Section 4.3.2, we evaluate
precision and recall of LIFT, with traces of queries in the TPF web application executed
in isolation. In Section 4.3.3, we evaluate precision and recall of LIFT, with traces of
queries in the TPF web application executed concurrently under the worst case scenario,
that is when they come from the same IP address. In Section 4.3.4, we analyze LIFT with
the TPF log of USEWOD 2016 [28].

Query Selectors Query Selectors Query Selectors
Q1 114 Q11 85 Q21 1223
Q2 1133 Q12 29 Q22 103
Q3 27 Q13 100 Q23 1588
Q4 113 Q14 274 Q24 217
Q5 296 Q15 54 Q25 881
Q6 114 Q16 106 Q26 76
Q7 103 Q17 6 Q27 193
Q8 207 Q18 20 Q28 excluded
Q9 7 Q19 44 Q29 4
Q10 119 Q20 3615 Q30 18981
Total 2233 Total 4330 Total 23266

Table 4.2 – Number of requests of single triple patterns for queries in the TPF web
application, produced by a TPF client and executed in isolation on single TPF servers
(DBpedia, Ughent, VIAF or LOV).

4.3.1 Experimental tesbed of LIFT
We extracted 30 queries from the TPF web application concerning DBpedia 2015-04,
UGhent, LOV and VIAF datasets. We captured http requests and answers of queries using

74 CHAPTER 4. LIFT: LINKED DATA FRAGMENT TRACKING

the webInspector 1.2 tool4. We implemented a tool to shuffle several TPF logs of queries
executed in isolation, according to different parameters5. Thus, given E(Q1), ..., E(Qn) we
were able to produce different significant representations of E(Q1 ‖ ... ‖ Qn). Produced
traces with this tool vary in: (i) the order of queries, (ii) the number of subqueries of the
same query, appearing continuously in the shuffled log (blocks of 1 to 16 subqueries), and
(iii) the delay between each subquery (from 1 to 16 units of time).

Furthermore, we analyzed the log of the DBpedia TPF server available in the USE-
WOD 2016 dataset [28]. This log contains http requests from October 2014 to November
2015. We analyzed the first quarter of the log representing 4,720,874 single triple pattern
queries (until 27th February 2015). We cleaned 1% of the log with entries that do not
correspond to TPF requests. We considered that all queries were sent by the same TPF
client. To obtain corresponding answers, we re-executed the log directly over the DBpedia
TPF server 6. Source code of LIFT is available at https://github.com/coumbaya/lift.

Query Runtime Query Runtime Query Runtime
Q1 < 1 Q11 < 1 Q21 2
Q2 2 Q12 < 1 Q22 < 1
Q3 < 1 Q13 < 1 Q23 < 1
Q4 < 1 Q14 < 1 Q24 < 1
Q5 < 1 Q15 < 1 Q25 < 1
Q6 < 1 Q16 < 1 Q26 < 1
Q7 < 1 Q17 11 Q27 < 1
Q8 < 1 Q18 2 Q28 excluded
Q9 < 1 Q19 < 1 Q29 < 1
Q10 < 1 Q20 10 Q30 220

Average 0.2 Average 2.3 Average 22

Table 4.3 – Runtimes (seconds) of LIFT with traces of queries in the TPF web application,
produced by a TPF client and executed in isolation on single TPF servers (DBpedia,
Ughent, VIAF or LOV).

Table 4.2 presents the number of requests produced for each query executed in iso-
lation. Table 4.3 presents the runtimes of LIFT for each execution trace produced in
isolation7. As we observe, the TPF client produces hundreds of requests for most queries.
The execution of Q30 produces the largest amount of requests of single triple patterns
i.e., 18980, which is the most time consuming for LIFT to analyse. Q30 is composed by
tp1 = {?s a ?type} and tp2 = {?type rdf : label ?label}. The TPF client by default
rewrites tp1 into {?s rdf : type ?type}, which matches 94,190,063. tp2 matches 20,755,041
triples. The TPF client evaluates the query incrementally by fetching mappings from one
and pushing them into the other triple pattern, page by page, thus producing this large
amount of requests.

4https://sourceforge.net/p/webinspector/wiki/Home/
5The program to shuffle several execution logs in isolation, used as input either to MINEPI, LIFT or

FETA, is available at: https://github.com/coumbaya/traceMixer
6http://fragments.dbpedia.org/
7We run our experiments in Linux 64 bit machine, with 32 CPUs and 800 Mhz CPU speed.

https://github.com/coumbaya/lift
https://sourceforge.net/p/webinspector/wiki/Home/
https://github.com/coumbaya/traceMixer
http://fragments.dbpedia.org/

4.3. EXPERIMENTS 75

4.3.2 LIFT deductions of queries in isolation
For each query Qi, we ran LIFT (E(Qi), ∞). Figure 4.6 presents precision and recall of
LIFT deductions in terms of joins, against original queries of the TPF web application8.
These results show to which extent LIFT (E(Qi)) ≈ BGP (Qi) (cf. Definition 5 on page
40). In average, LIFT obtained 97% of recall and 75% of precision of joins. LIFT deduces
perfectly 15/30 BGPs: Q1 −Q6, Q9, Q11, Q15 −Q18, Q22, and Q29 −Q30.

Concerning Q9 and Q29, LIFT does not detect UNION queries. Q9 is a query in the
form {(tp1 UNION tp2) . tp3}. In this case, LIFT detects 2 BGPs, {tp1 . tp3} and {tp2
. tp3}. Q29 is also a UNION query but without joins, thus LIFT detects two separate
triple patterns. We consider this behaviour correct.

Figure 4.6 – Precision and recall of joins for LIFT with traces of queries in the TPF web
application, produced by a TPF client and executed in isolation on single TPF servers
(DBpedia, Ughent, VIAF or LOV).

Figure 4.7 describes Q7 and its deduced BGPs. BGP[1] is correct, while BGP[2] is not.
When processing Q7, like for all queries, the TPF client asks for the cardinality of each
triple pattern and decides to begin with the first triple pattern. Then it binds resulting
mappings into the ?book variable of the second triple pattern to retrieve corresponding
authors. This nested-loop is deduced in BGP[1]. But as output mappings of the first
request (for the cardinality) intersects with the values of the inner loop, LIFT deduces
BGP[2] with a self-join that is very unlikely and that can be easily filtered in a post-
processing. Such situation appears in 6/29 queries: Q7, Q12−14, Q21 and Q25.

Concerning Q8, Q10, Q14, Q20, Q23−27, LIFT finds two possible variables for a com-
ponent of a triple pattern (a subject or an object). That is due to the fact that, during
the NestedLoopDetection, a join is detected even if there is a partial inclusion between
output and input-mappings of two triple patterns. This is more challenging to filter.
We illustrate this with Q8, in Figure 4.7. Deduced BGP of Q8, has an additional triple
pattern, the last one, and a join with the second triple pattern. This is the case for Q8,
Q10, Q14, Q20, Q23−27. In addition, LIFT merges triple patterns that are very syntactically
similar, as it is the case in Q19 and Q20 where some triple patterns have same predicate
and variables in the same position (subject/object).

8Queries, TPF logs and LIFT results are available at: https://github.com/coumbaya/lift/blob/
master/experiments.md

https://github.com/coumbaya/lift/blob/master/experiments.md
https://github.com/coumbaya/lift/blob/master/experiments.md

76 CHAPTER 4. LIFT: LINKED DATA FRAGMENT TRACKING

To summarize, in some cases LIFT deduces additional triple patterns and thus false
joins with well deduced triple patterns, because an intersection between mappings of
semantically similar triple patterns that are not originally joined9. But as right triple
patterns are in general well deduced, recall is good.

ID Original query Deduced BGPs

Q7

SELECT DISTINCT
?book ?author

WHERE {
?book rdf:type dbpo:Book .
?book dbpo:author ?author
} LIMIT 100

BGP[1]:
{?s1 rdf :type dbpo:Book .
?s1 dbpo:author ?o2}
BGP[2]:
{?s3 dbpo:author ?o3 .
?s3 dbpo:author ?o4}

Q8

{SELECT ?award WHERE {
?award a dbpedia−owl:Award .
?award dbpprop:country ?language .
?language dbpedia−owl:language

dbpedia:Dutch_language}

{?s1 dbpedia−owl:language
dbpedia:Dutch_language .

?s2 dbpprop:country ?s1 .
?s2 rdf :type dbpedia−owl:Award .
?s1 rdf :type dbpedia−owl:Award}

Figure 4.7 – Deduced BGPs for LIFT with traces of Q7 and Q8 queries in the TPF web
application, executed in isolation on the DBpedia TPF server.

4.3.3 Does LIFT resist to concurrency?
We grouped all queries of the TPF web application, into 6 generated collections of
randomly chosen queries both on single or over federations of TPF servers, as pre-
sented in Tables 4.4 and 4.5 respectively. For each query set, we evaluated how LIFT
(E(Q1)) ∪ ... ∪ (LIFT (E(Qn)) ≈ LIFT (E(Q1 ‖ ... ‖ Qn)) in terms of recall and precision
of joins for different gap values. gap varies from 1% to 100% of the log duration. Each
query set was shuffled 4 times and we calculated the average of LIFT results by gap10.

Figures 4.8 and 4.10 show the average of precision whereas Figures 4.9 and 4.11 show
the average of recall, when analyzing single TPF query logs. Figures 4.12 and 4.13 show
the average of precision and recall respectively, when analyzing federated logs of TPF
servers.

Concerning gap, according to its value increase we observe that globally precision and
recall improve, as shown in Figures 4.8 - 4.10 and Figures 4.9 - 4.11. When gap is small
(less than 50%) precision decreases significantly. A small gap leads LIFT to split values of
an inner loop across different blocks i.e., the ctpExtraction algorithm can not aggregate
in one candidate tp all triple patterns of the inner operand of a join. This is explained
from the pipelined nested-loop operator that is implemented by TPF clients. Actually,
TPF clients evaluate consecutive joins of multiple triple patterns of a query in blocks
of pushed mappings, without waiting first all output-mappings of a triple pattern to be
pushed to the following. For more details see page 27 in Chapter 2.

9We consider that two semantically similar triple patterns match same triples.
10Note that as we vary the gap between two subqueries from 1 to 16 seconds, the duration of each

shuffled log we produce diverges from some seconds to one hour and a half.

4.3. EXPERIMENTS 77

Dataset Query sets

DBpedia 2015
DB1 = {Q1, Q8, Q14, Q22} DB4 = {Q4, Q12, Q24}
DB2 = {Q3, Q11, Q15, Q20} DB5 = {Q7, Q16, Q21, Q5}
DB3 = {Q6, Q13, Q19, Q27} DB6 = {Q9, Q10, Q29, Q30}

Ughent UG1 = {Q2, Q23, Q25, Q29, Q30}
LOV LV1 = {Q17, Q18, Q26, Q29, Q30}
VIAF V F1 = {Q29, Q30}

Table 4.4 – Query sets executed concurrently on single TPF servers (DBpedia, Ughent,
VIAF or LOV).

Dataset Query sets

Federated log
LF1 = {Q1, Q2, Q8, Q14, Q22} LF4 = {Q4, Q23, Q12, Q24}
LF2 = {Q3, Q11, Q15, Q20, Q25} LF5 = {Q7, Q16, Q17, Q21, Q5}
LF3 = {Q6, Q13, Q18, Q19, Q27} LF6 = {Q9, Q10, Q26, Q29, Q30}

Table 4.5 – Query sets executed concurrently over a federation of TPF servers (DBpedia,
Ughent, VIAF and LOV).

Concerning recall, LIFT is moderately impacted by concurrency. Indeed, LIFT favours
recall by producing all possible joins in the nested-loop detection.

Concerning precision, LIFT is more impacted by concurrency and results depend on
concurrently executed queries. When executed queries have triple patterns that are se-
mantically or syntactically similar, then LIFT generates many false joins that impact
precision. A post-processing over the set of deduced BGPs, could filter these false joins.

4.3.4 Analysis of the TPF log of USEWOD 2016
We ran LIFT with log slices, each of one hour, from the USEWOD 2016 traces [28] using a
maximum gap (one hour). We obtain 595 BGPs of size >1 and 169,491 BGPs of size=1.

Table 4.14 describes the most frequently deduced BGPs. Unsurprisingly, most of
them correspond to the queries available on the TPF web application. Observing that
both queries of the TPF web application and deduced BGPs with the TPF log of USE-
WOD 2016 are similar, provides with a proof of concept for LIFT. BGP[1] corresponds
to Q1, while BGP[2] is like BGP[1] except that dbpedia-owl:starring is replaced by dbp-
prop:starring. BGP[1] and BGP[2] do not co-exist in time, thanks to LIFT we observed
that the “Brad Pitt query” was modified on 27/10/2014. This observation also provides
with a proof of concept for LIFT. BGP[3] corresponds to the query used as the motivation
example of [44], BGP[4] corresponds to Q3, BGP[5] to Q6, etc. In this top 14 list, only 1/3
of BGPs were unknown: BGP[6], BGP[7], BGP[8], BGP[12] and BGP[13]. In addition,
we observe that almost all deduced BGPs by LIFT, start with a triple pattern containing
a constant in its subject or object. The latter observation is explained from the fact,
that triple patterns with constants are generally the most selective ones and a TPF client
starts the query evaluation with them. As a TPF server receives the selective patterns
first, they appear first in the log and thus in LIFT deductions.

78 CHAPTER 4. LIFT: LINKED DATA FRAGMENT TRACKING

Figure 4.8 – Precision of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence on the DBpedia
TPF server.

Figure 4.9 – Recall of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence on the DBpedia
TPF server.

4.3. EXPERIMENTS 79

Figure 4.10 – Precision of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence on single TPF
servers (DBpedia, Ughent, VIAF or LOV).

Figure 4.11 – Recall of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence on single TPF
servers (DBpedia, Ughent, VIAF or LOV).

80 CHAPTER 4. LIFT: LINKED DATA FRAGMENT TRACKING

Figure 4.12 – Precision of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence over a federation
of TPF servers (DBpedia, Ughent, VIAF and LOV).

Figure 4.13 – Recall of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executed in concurrence over a federation
of TPF servers (DBpedia, Ughent, VIAF and LOV).

4.3. EXPERIMENTS 81

BGP[1]- deduced 126 times BGP[2] - deduced 47 times
{?s1 rdfs : label "Brad Pitt"@en .
?s2 dbpo:starring ?s1 .
?s2 rdfs : label ?o3 .
?s2 dbpo:director ?o4 .
?o4 rdfs : label ?o5}

{?s1 rdfs : label "Brad Pitt"@en .
?s2 dbpprop:starring ?s1 .
?s2 rdfs : label ?o3 .
?s2 dbpo:director ?o4 .
?o4 rdfs : label ?o5}

BGP[3] - deduced 43 times BGP[4] - deduced 34 times

{?s1 rdfs : label "York"@en .
?s2 dbpo:birthPlace ?s1 .
?s2 rdf :type dbpo:Artist}

{?s1 dbpedia−owl:influencedBy
dbpedia:Pablo_Picasso .

?s1 rdf :type dbpedia−owl:Artist .
?s1 dbpedia−owl:birthDate ?o3}

BGP[5] - deduced 34 times BGP[6] - deduced 20 times
{?s1 dbpprop:cityServed dbpedia:Italy .
?s1 rdf :type dbpo:Airport}

{dbpedia−owl:Agent rdfs:subClassOf ?o1 .
?o1 rdfs :subClassOf ?o2}

BGP[7] - deduced 17 times BGP[8] - deduced 16 times

{dbpedia−owl:Activity rdfs:subClassOf ?o1 .
?o1 rdfs :subClassOf ?o2}

{?s1 rdfs : label "Trinity College,
Dublin"@en .

?s2 dbpedia−owl:almaMater ?s1 .
?s2 rdf :type dbpedia−owl:Writer}

BGP[9] - deduced 15 times BGP[10] - deduced 13 times

{?s1 rdf :type dbpedia−owl:Book .
?s1 dbpedia−owl:author ?o2}

{?s1 rdf :type yago:PeopleExecuted
ByCrucifixion .

?s1 rdf :type yago:Carpenters}
BGP[11] - deduced 11 times BGP[12] - deduced 11 times

{?s1 dbpedia−owl:ingredient ?o1 .
?s1 dbpedia−owl:kingdom dbpedia:Plant}

{?s1 dbpedia−owl:birthPlace
dbpedia:Urbel_del_Castillo .

?s1 dbpedia−owl:team ?o2}
BGP[13] - deduced 10 times BGP[14] - deduced 10 times

{?s1 rdf :type foaf :Person .
?s1 foaf :isPrimaryTopicOf ?o2}

{?s1 dbpedia−owl:type dbpedia:Dessert .
?s1 dbpedia−owl:ingredient ?o2 .
?o2 dbpedia−owl:kingdom dbpedia:Plant}

Figure 4.14 – Frequent BGPs extracted with LIFT from the TPF log of USEWOD 2016.

To summarize, we presented LIFT, a BGP reversing approach that aims to infer BGPs
of queries executed over TPF servers. We provided with experiments, illustrating LIFT’s
good recall and precision that depends not only to the similarity of concurrently executed
queries but also execution parameters of LIFT.

5
FETA: Federated quEry TrAcking

Contents
5.1 Illustration example . 85
5.2 FETA: a reversing approach . 88

5.2.1 Graph construction . 90
5.2.2 Graph reduction . 92
5.2.3 Nested-loop join detection . 94
5.2.4 Symmetric hash join detection 94
5.2.5 BGP extraction . 96
5.2.6 Time complexity of FETA . 96

5.3 Evaluation . 98
5.3.1 Experimental tesbed of FETA 98
5.3.2 FETA deductions of queries in isolation 99
5.3.3 Does FETA resist to concurrency? 103

In this chapter we present FETA, our proposed approach that aims to answer the
question: "If several SPARQL endpoints share their logs, can they track and approxi-
mate BGPs they process?" Compared to LIFT we address this problem only over federa-
tions of SPARQL endpoints, because single SPARQL endpoints are already aware of the
whole queries that are addressed only to them as they are not decomposed in subqueries.
Like LIFT, the challenge with this approach is to link maybe hundreds of subqueries per
query execution and to be resistant in presence of concurrent execution of other federated
queries. The difference although with LIFT, is that FETA in addition must be able to (a)
detect different physical joins operators i.e., exclusive group, nested-loop and symmetric
hash joins, and (b) adapt to different optimization techniques, produced by query engines
during query execution to push mappings through nested-loops from one triple pattern
into another.

83

84 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

This chapter first illustrates the scientific problem we aim to solve, as described on
page 39 in Chapter 2, Section 2.5 over the context of federated query processing, in
Section 5.1. Thereafter, the BGP reversing approach of FETA is presented in Section 5.2.
Finally, experiments are reported in Section 5.3.

5.1. ILLUSTRATION EXAMPLE 85

5.1 Illustration example
In Figure 5.1, two data consumers, c1 and c2, execute concurrently federated queries
CD3 and CD4 of FedBench [46] over the federation of SPARQL endpoints composed by
LMDB, DBpedia InstanceTypes, DBpedia InfoBox and NYTimes. They use Anapsid [1, 2]
or FedX [48] federated query engines.

c1 (173.28.19.114) : Query CD3

SELECT ?pres ?party ?page WHERE {
?pres rdf : type dbpedia − owl : P resident . (tp1)
?pres dbpedia − owl : nationality dbpedia : US∗ . (tp2)
?pres dbpedia − owl : party ?party . (tp3)
?x nytimes : topicP age ?page . (tp4)
?x owl : sameAs ?pres } (tp5)

c2 (173.28.19.114) : Query CD4

SELECT ?actor ?news WHERE {
?film purl:title ’Tarzan’ . (tp′1)
?film linkedMDB:actor ?actor . (tp′2)
?actor owl:sameAs ?x . (tp′3)
?y owl:sameAs ?x . (tp′4)
?y nytimes:topicPage ?news } (tp′5)

DBpedia InstTypes
(@IT)

DBpedia InfoBox
(@IB)

NYTimes
(@NYT)

LMDB

Figure 5.1 – Concurrent execution of FedBench queries CD3 and CD4, produced by a
federated query engine with 173.28.19.114 IP Address and executed over a federation of
SPARQL endpoints.

Federated query engines, decompose SPARQL queries into a sequence of subqueries as
partially presented in Tables 5.1 and 5.2 for query CD3 using Anapsid and FedX, respec-
tively. Lines in grey color correspond to answers of the queries in enumerated lines. As
this federation of SPARQL endpoints receive only subqueries corresponding to physical
execution plans, the original queries e.g., CD3 and CD4 remain unknown to the corre-
sponding data providers.

In this chapter, we address the following research question: "If several SPARQL end-
points share their logs, can they track and approximate BGPs they process?" In particular,
we aim to solve the scientific problem of BGPs reversing (cf. Definition 5 on page 40),
for federated query processing over SPARQL endpoints. Compared to LIFT, we address
this problem only over federations of SPARQL endpoints. We do so, because queries ad-
dressed to a single source are not decomposed by query engines and thus are already know
by the SPARQL endpoint they evaluates them. We also consider the definition, notation
and property of query log (cf. Definition 4 on page 39), execution trace and resistance to
concurrency (cf. Property 1 on page 39), respectively.

In our example, CD3 can be decomposed into {tp@IT
1 . (tp2 . tp3)@IB . (tp4 . tp5)@NY T},

and NYTimes data provider just observes tp4 and tp5; it does not know that these triple
patterns are joined with tp1 from DBpedia InstanceTypes and (tp2, tp3) from DBpedia In-
foBox. Consequently, NYTimes provider does not know the real usage of data it provides.

86 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

LD
provider IP Time Subquery/Answer

[1] @IT 173... 11:24:19 SELECT ?pres WHERE {
?pres rdf:type dbpedia-owl:President }

{ {"pres", "http://dbpedia.org/Ernesto_Samper" },...
{"pres", "http://dbpedia.org/Shimon_Peres" },...
{"pres", "http://dbpedia.org/Barack_Obama" },... }

[2] @IB 173... 11:24:21 SELECT ?party ?pres WHERE {
?pres dbpedia-owl:nationality dbpedia:United_States .
?pres dbpedia-owl:party ?party }

{ {{"party","http:.../Democratic_Party_%28United_States%29" },
{"pres", "http://dbpedia.org/Barack_Obama" }},...

{{"party","http:.../Democratic_Party_%28United_States%29" },
{"pres", "http://dbpedia.org/Johnny_Anders" }},...

{{"party","http:.../Republican_Party_%28US%29" },
{"pres", "http://dbpedia.org/Judith_Flanagan_Kennedy"

}},... }
[3] @NYT 173... 11:24:25 SELECT ?pres ?x ?page WHERE {

?x nytimes:topicPage ?page .
?x owl:sameAs ?pres .

FILTER ((?pres=<http://dbpedia.org/Barack_Obama>),... ||
(?pres=<http://dbpedia.org/Johnny_Anders>),... ||
(?pres=<http://dbpedia.org/Judith_Flanagan_Kennedy>),...)

}} LIMIT 10000 OFFSET 0
{ {"pres","http://dbpedia.org/Barack_Obama" },
{"x","http://data.nytimes.com/47452218948077706853" },
{"page", "http://topics.nytimes.com/.../barack_obama/index.html"} }

Table 5.1 – Partial federated log of CD3 traces, produced by Anapsid (EAnapsid(CD3))
with 173.28.19.114 IP Address and executed over a federation of SPARQL endpoints.
Answers are extracted from data providers in json format.

In our example, if c1 and c2 have different IP addresses then it is straightforward to
split E(CD3 ‖ CD4) into E(CD3) and E(CD4), and apply the reversing function sepa-
rately. However, in the worst case, c1 and c2 share the same IP address1. In this case, we
expect that f(E(CD3 ‖ CD4)) ≈ f(E(CD3) ∪ f(E(CD4).

1Like TPF evaluation this can be produced when, for instance, a proxy server is used as a mediator
between clients and federations of SPARQL endpoints.

5.1. ILLUSTRATION EXAMPLE 87

LD
provider IP Time Subquery/Answer

[1] @IB 173... 17:04:08 SELECT ?pres ?party WHERE {
?pres owl:nationality <http://dbpedia.org/dbpedia.org/United_States>.
?pres owl:party ?party }
{ {{"pres", "http:dbpedia.org/Barack_Obama"},

{"party", "http:.../Democratic_Party_%28United_States%29" }},...
{{"pres", "http:dbpedia.org/Johnny_Anders" },
{"party", "http:.../Independent_%28politics%29" }}, ...
{{"pres", "http:dbpedia.org/Judith_Flanagan_Kennedy" },
{"party", "http:.../Republican_Party_%28US%29" }},... }

[2] @IT 173... 17:04:11 SELECT ?o_0 ?o_1 ?o_2 ... WHERE {
{<http:dbpedia.org/Barack_Obama> rdf:type ?o_0.

FILTER(?o_0 = <http://dbpedia.org/ontology/President>) }
UNION
{<http:dbpedia.org/Johnny_Anders> rdf:type ?o_1.

FILTER(?o_1 = <http://dbpedia.org/ontology/President>) }
UNION

{<http:dbpedia.org/Judith_Flanagan_Kennedy> rdf:type
?o_2.

FILTER(?o_2 = <http://dbpedia.org/ontology/President>) },... }
{ { "o_0", "http://dbpedia.org/ontology/President" }
{ "o_1", "" }
{ "o_2", "" },... }

[3] @NYT 173... 17:04:13 SELECT ?x WHERE {
?x owl:sameAs <http:dbpedia.org/Barack_Obama>. }

{
{ "x", "http://data.nytimes.com/47452218948077706853"} }

[4] @NYT 173... 17:04:15 SELECT ?page WHERE {
<http://data.nytimes.com/47452218948077706853>

nytimes:topicPage ?page }
{
{ "page","http://topics.nytimes.com/.../barack_obama/index.html"} }

Table 5.2 – Partial federated log of CD3 traces, produced by FedX (EF edX(CD3)) with
173.28.19.114 IP Address and executed over a federation of SPARQL endpoints. Answers
are extracted from data providers in json format.

Next, we present our proposed BGP reversing solution, Federated quEry TrAcking
(FETA), which we evaluate with traces of FedBench [46] queries executed (i) in isolation
and (ii) in concurrence, over federations of SPARQL endpoints.

88 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

5.2 FETA: a reversing approach
FETA is a system of algorithms based on heuristics, to implement the reverse function
f . The idea is to detect exclusive groups, nested-loops and symmetric hash joins. In
Table 5.2, the mappings returned from DBpedia InfoBox in line 2, are reused in DBpedia
InstanceTypes in the next subquery, in line 3. We track such bindings in order to link
different subqueries.

In this chapter, we make the following hypothesis:

1. We consider only bound predicates2,

2. We consider that SPARQL endpoints do not use a web cache (this information can
be easily obtained by data providers), and

3. We do not consider query engines use a cache (concerning both the location of
SPARQL endpoints that evaluate triple patterns and also their answers).

Figure 5.2 presents a simplified federated log of two SPARQL endpoints ep1 and
ep2, corresponding to Q3 = SELECT ?z ?y WHERE {?z p1 o2 . ?z p2 ?y}), Q4 =
SELECT ?x ?y WHERE {?x p1 ?y}) and E(Q3 ‖ Q4).

For the sake of simplicity, timestamps are transformed into integers. The IP address of
the query engine is the same for Q3 and Q4, so we removed the ip column. Query engines
use the same variable names for subqueries as those used in the original user queries, in
contrast to TPF clients that rename them either as subject or object. µo represents the
mappings of variables resulting from the evaluation of the triple pattern on data. Like
LIFT, we call them output-mappings.

Algorithm 4 shows the five phases of FETA:

1. First, FETA cleans the input log from ASK queries, aggregates SELECT queries
into merged SELECT queries if they differ only in their OFFSET values or are sent
to different SPARQL endpoints, and then groups them into the same graph if they
are syntactically joinable. We denote the set of graphs of subqueries as MSQ.

2. Second, FETA reduces MSQ into graphs of triple patterns, by merging them into
a set of candidate triple patterns, which we denote as CTP . It allows to gather
triple patterns of queries, that can be part of the same inner operand of a join.
Compared to LIFT, we need also to save the information regarding which candidate
tps are joined as exclusive groups or that are syntactically joinable. The former
will be excluded during detection of nested-loops. The latter will be used to detect
symmetric hash joins.

3. Next, FETA looks for an inclusion relationship among output and input-mappings
of CTPs. If it does not exist, FETA splits candidate triple patterns to build it. This
produces a set of graphs, which we denote as DTP , where nodes are deduced triple

2As reported in [8], predicates of triple patterns are frequently bound. Nevertheless, FETA like LIFT
can be extended to deal with predicates just like they deal with subjects and objects.

5.2. FETA: A REVERSING APPROACH 89

Figure 5.2 – Examples of simplified logs of SPARQL endpoints, for Q3 and Q4 traces.

patterns and edges represent inclusion relationships between them. This detects
nested-loops. Note that compared to LIFT, FETA adapts on different optimization
techniques that are employed by query engines in order to detect pushed values from
the outer into the inner operand of a nested-loop.

4. Thereafter, FETA looks for intersection relationship among output-mappings of
DTPs that are connected only with unlabeled edges i.e., triple patterns that are
syntactically joinable. This maintains the set of graphs, DTP , by confirming that
every syntactical connection between triple patterns correspond actually to an inter-
section relationship between their output-mappings. If not, their edge is removed.
This detects symmetric hash joins, a heuristic not applied with LIFT.

5. Finally, FETA extracts BGPs from DTP graph set. Ideally, FETA(E(Q3 ‖ Q4), gap)
should compute the 2 BPGs of Q3 and Q4: {?z p1 o2 . ?z p2 ?y} and {?x p1 ?y}.

The basic intuition of FETA is to detect if mappings are bind in next requests but also
if there exist and intersection between output-mappings of different requests. This can
be challenging, as mappings can be: (i) bind several times (e.g., in star queries), (ii) bind
partially as a side-effect of LIMIT clauses3, or (iii) bind into a different concurrent query.

3FILTER clauses are in general detectable because they are pushed to relevant SPARQL endpoints to

90 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

As a real log can be huge, FETA analyzes the log using a constraint as a sliding window
which is defined by a gap i.e., a time interval. When FETA reads an entry e in the log
with a timestamp ts, it considers only entries reachable within the gap i.e., ts± gap.

Algorithm 4: Global algorithm of FETA
1 Function FETA (log, gap) is

input : a federated log; gap an interval in time units (seconds)
output: a set of BGPs
data : MSQ a set of graphs of merged subqueries, CTP a set of candidate tps,

DTP an edge-labelled set of graphs of deduced tps
2 MSQ← graphConstruction (log, gap)
3 CTP ← graphReduction (MSQ)
4 DTP ← nestedLoopDetection (CTP, gap)
5 DTP ← symmetricHashDetection (DTP)
6 return BGP ← bgpExtraction (DTP)

Section 5.2.1 presents the construction of syntactically joinable subqueries. Sec-
tion 5.2.2 explains the reduction of this graph into a graph of candidate triple patterns.
Section 5.2.3 describes the nested-loop detection. Section 5.2.4 presents the symmetric
hash detection. Finally, Section 5.2.5 returns the BGP graphs that FETA deduces.

5.2.1 Graph construction
The graphConstruction heuristic first aggregates same or similar queries and then con-
structs graphs of syntactically joinable subqueries, from the input log. We consider that
two queries are similar, if they differ only on their OFFSET values. Aggregated queries
are represented by a merged SELECT query. All graphs of syntactically merged queries,
form the MSQ Graph set. Queries that have same projected variables or constants are
connected to the same graph, respecting a user-defined gap value.

A ”mffl ∈ MSQ, is a tuple 〈ip, ts, q, µo, {ep}〉 where ip is an IP address, ts is a pair of
timestamps (ts.min, ts.max) representing a range; when creating a ”mffl, both timestamps
are identical and correspond to the timestamp of the current entry in the log. q is
a SPARQL SELECT query, µo (output-mappings) is the list of solution mappings for
projected variables of q. {ep} is the set of SPARQL endpoints that evaluate the merged
query. This module executes two main functions: (a) logPreparation(log, gap) and (b)
groupQueryGraphs(MSQ), as we explain next.

(a) logPreparation, prepares and cleans the input log. ASK queries are suppressed.
Identical or subqueries differing only in their OFFSET values are aggregated in one single
query, respecting a gap value, as we see in Algorithm 6, lines 5 and 6. If it is the first time
we observe this query, then it is saved as a new graph, line 7. In this phase, each graph
is composed by a single merged query. Timestamp of such aggregated query becomes
an interval. Identical queries are sent twice to the same SPARQL endpoint to be sure
obtaining an answer and to different to have complete answers. Similar queries with
different OFFSETs are sent to avoid reaching the limit response of SPARQL endpoints.
minimize local processing at the data consumer [47], in contrast with TPF clients that bear the processing
load of all SPARQL features.

5.2. FETA: A REVERSING APPROACH 91

Algorithm 5: Construction of a set of graphs of syntactically joinable subqueries
1 Function graphConstruction(log, gap) is

input : a federated log; gap an interval in time units (seconds)
output: MSQ a set of graphs of subqueries

2 MSQ← logPreparation (log, gap)
3 MSQ← groupQueryGraphs (MSQ, gap)
4 return MSQ

Algorithm 6: Cleaning of the input log from ASK and redundant queries
1 Function logPreparation(log, gap) is

input : a federated log; gap an interval in time units (seconds)
output: MSQ a set of graphs of merged subqueries
data : m a merged subquery of multiple query entries in the log

2 foreach e ∈ log do
3 ”mffl ← read(e) as (ip, (ts,ts), q, µo, eps)
4 if !isAsk(”mffl.q) then
5 if ∃ ”mfflk ∈ MSQ | ingap(”mffl, ”mfflk, gap) ∧ (”mfflk.ip =”mffl.ip) ∧

(”mffl.q = ”mfflk.moduloOFFSET (q)) then
6 (”mfflk.µo ∪ ”mffl.µo); (”mfflk.ts.max=”mffl.ts.max); (”mfflk.{ep} ∪ ”mffl.{ep});
7 else MSQ.add(”mffl)
8 return MSQ

(b) groupQueryGraphs, presented in Algorithm 7, incrementally connects single sub-
query graphs in MSQ. Different (merged) queries are connected depending on the gap
value either on their common projected variables, or, if their triple patterns have common
IRI/literal on their subjects or objects, line 4. In general, subqueries are joined on their
common projected variables. However, we consider also IRIs and literals, even if they can
produce some false positives. Joins detected until here are not labeled.

Algorithm 7: Grouping of syntactically joinable subqueries into the same graph
1 Function groupQueryGraphs(MSQ, gap) is

input : MSQ a set of single (merged) subquery graphs; gap an interval in time units
(seconds)

output: MSQ a set of connected graphs of merged subqueries
2 foreach ”mffli ∈ MSQ do
3 foreach ”mfflj ∈ MSQ do
4 if ingap(”mffli, ”mfflj, gap) ∧ (”mffli.ip =”mfflj .ip) ∧

(sameProjectedVars(”mffli.q, ”mfflj .q) ∨ sameConstants(”mffli.q, ”mfflj .q)) then
5 MSQ.addEdge(”mffli, ”mfflj)
6 break;

7 return MSQ

In our example, with a gap equal to 5, two graphs are constructed: MSQ = { 〈 {sq1, sq3, sq4},

92 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

{(sq1, sq3), (sq1, sq4), (sq3, sq4} 〉, 〈 {sq2} 〉 }4, as we see in Figure 5.3 on page 92.

Figure 5.3 – Deduced graphs ”mffl1, ”mffl2 ∈MSQ, in blue and red colors respectively, produced
by Algorithm 7 for gap=5.

5.2.2 Graph reduction
graphReduction aims to transform graphs of queries into set of triple patterns. Triple pat-
terns that belong to different queries in MSQ, are aggregated if they seem to participate
in the same outer or inner operand of a join. Aggregated triple patterns are represented
by a candidate triple pattern. All candidate triple patterns form the CTP set.

Algorithm 8: Reduction of a set of subquery graphs into a set of CTPs
1 Function graphReduction(MSQ) is

input : MSQ a set of graphs of merged subqueries
output: CTP a set of candidate tps
data : CTPm a temporary set of candidate tps for each merged subquery

2 foreach ”mffli ∈MSQ do
3 CTPm ← read(”mffli.q) as { (ip, (ts, ts), tp, µo, µi, {ep}, {〈ε〉}) }
4 foreach `c ∈ CTPm do
5 switch `c.tp do
6 case ?s p o: `c.tp ← ?s p ?oin ; `c.µi ← ?ω|o
7 case s p ?o: `c.tp ← ?sin p ?o ; `c.µi ← ?σ|s
8 case s p o: `c.tp ← ?sin p ?oin ; `c.µi ← ?σ|s, ?ω|o
9 case ?s p ?o: `c.tp ← ?s p ?o ; `c.µi ← ∅

10 if ∃ `ck ∈ CTP | (`ck.ip =`c.ip) ∧ (`c.tp =`ck.tp) then
11 (`ck.µo ∪ `c.µo); (`ck.µi ∪ `c.µi); (`ck.{ep} ∪ `c.{ep}); (`ck.{〈ε〉} ∪ `c.{〈ε〉});

(`ck.ts.max =`c.ts.max);
12 else CTP.add(`c)
13 return CTP

The CTP defined for FETA is enhanced with two additional arguments, compared to
the one defined for LIFT: (a) a set of SPARQL endpoints, which evaluate the candidate
triple pattern and (b) a set of pair-tuples, each representing to which other triple pattern

4To simplify, all annotations to sqi are omitted.

5.2. FETA: A REVERSING APPROACH 93

the current one is joined and with what type of join i.e., syntactical (which would be
identified as symmetric hash or be removed), exclusive group or nested-loop. In this
phase, we identify syntactically or exclusive group joins, that will be excluded during
following heuristics. We re define next, the notion of candidate triple pattern.

A `c ∈ CTP is a tuple 〈ip, ts, tp, µo, µi, {ep}, {〈ε〉}〉. ip is an IP address. ts is a pair
of timestamps (ts.min, ts.max) representing a range; when creating a candidate triple
pattern both timestamps are identical and correspond to the timestamp of the current
entry in the log. tp is a triple pattern, µo (output-mappings) is the list of solution
mappings for variables of tp. µi (input-mappings) is a set of mappings built during the
graphReduction. Basically, we replace any constant of tp by a variable, we use σ for
subject and ω for object. Replaced constants are regrouped in µi. {ep} is the set of
SPARQL endpoints that evaluate the current triple pattern. {〈ε〉} (labeled edges) is a
set of key-value tuples, each representing to which other candidate triple pattern i.e., key
the current triple pattern is joined and with what type of join i.e., value: "unlabeled" (or
eventually "symmetricHash"), "exclusiveGroup" or "nested-loop".

Figure 5.4 – Federated log and CTP List, produced by Algorithm 8 for gap=5.

The heuristic graphReduction of Algorithm 8 differs from the heuristic employed by
LIFT of Algorithm 2, in three points: (i) it does not need a gap value, as triple patterns
that seems to be part of the same outer or inner operand of a join have already been
grouped in the same graph regarding the gap, (ii) it iterates over temporary candidate

94 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

triple patterns, CTPm, as they are red from each query inMSQ5 and not log entries, and
finally (iii) it maintains exclusive groups or syntactical joins of CTPm, into the final CTP
list. Actually, the graphReduction module will significantly reduce the size of each graph
in MSQ, because nested-loops can be executed with hundreds of subqueries. Figure 5.4
illustrates the CTP List after graphReduction, for our motivating example.

5.2.3 Nested-loop join detection
Like LIFT, this heuristic identifies nested-loops joins between pairs of candidate patterns,
as described in Algorithm 9. In particular, nestedLoopDetection builds a set of graphs
of deduced triples patterns, which we denote as DTP , by linking different candidate triple
patterns if there is a relation of inclusion between them6. The difference with LIFT is that
edges between triple patterns created with this heuristic, are labeled as "nested − loop",
to be excluded during the symmetricHashDetection.

Algorithm 9: Detection of nested-loop joins
1 Function nestedLoopDetection (gap, CTP) is

input : gap an interval in time units (seconds); CTP a list of candidate tps
output: DTP an edge-labelled set of graphs of deduced tps

2 foreach `c ∈ CTP do
3 if split(`c) 6= ∅ then CTP.insertAfter(`c.id, split(`c));
4 else DTP.addnode(`c) ;
5 foreach vo ∈ vars(`c.µo) do
6 foreach (`ck, vi) ∈ { (`ck, vi) | `ck ∈ CTP ∧ (`ck.id > `c.id) ∧ (ingap(`ck, `c, gap)) ∧

∃ vi ∈ vars(`ck.µi) | (`ck.µi(vi) ∩ `c.µo(vo) 6= ∅)} do
7 if !(unlabeldedEdge(`c, `ck)∨exclusiveGroupEdge(`c, `ck))∧(`ck.µi(vi) ⊆ `c.µo(vo))

then
8 DTP.addnode(`ck);
9 DTP.addEdge(`c, `ck, (vo,vi), "nested− loop");

10 else DTP.addnode(s=split(`ck, vi, `c, vo));
11 DTP.addEdge(`c, s, (vo,vi), "nested− loop");

12

13 return DTP;

5.2.4 Symmetric hash join detection
symmetricHashDetection identifies possible joins between output-mappings of pairs of
deduced tps. In particular, this module deals with pairs of triple patterns that have not
been connected with "exclusiveGroup" or "nested − loop" labels, but are syntactically
connected by transitivity as the queries that contained them were already syntactically
joined.

5Note that a query may correspond to more than one joined candidate triple patterns, a join named
exclusive group.

6Note that in [35], we defined the notion of inverse mapping, in order to detect the inclusion of
input-mapping values of the inner from output-mappings of the outer triple pattern of a nested loop.

5.2. FETA: A REVERSING APPROACH 95

Figure 5.5 – CTP List and DTP Graph set, produced by Algorithm 3 for gap=5.

Algorithm 10: Detection of symmetric hash joins
1 Function symmetricHashDetection(DTP) is

input : DTPan edge-labelled set of graphs of deduced tps, either as "unlabeled",
"exclusiveGroup" or "nested-loop".

output: DTP an edge-labelled set of graphs of deduced tps, either as
"exclusiveGroup", "nested-loop" or "symmetricHash"

2 foreach dtpi, dtpj ∈ DTP do
3 if unlabeldedEdge(dtpi, dtpj) then
4 if CheckConceptSimilarity(dtpi.µo, dtpj .µo) then
5 if (dtpi.µo ∩ dtpj .µo) 6= ∅ then
6 DTP.replaceEdge(dtpi, dtpj , "symmetricHash");
7 else
8 DTP.removeEdge(dtpi, dtpj);

9 return DTP

Algorithm 10 shows how the symmetricHashDetection proceeds over pairs of deduced
triple patterns. First, Line 3 identifies edges of syntactically joined triple patterns. Then,
Line 4, checks if output-mappings of these triple patterns are on same or similar concepts.
We consider that two concepts are similar if they are connected by the "sameAs" ontology.
This heuristic is presented in Algorithm 11. The idea is that through a query executed
on SPARQL endpoints, it will be possible to know if two sets of IRIs of syntactically
joined triple patterns are actually on same or similar concepts.7. Then, in Line 6, if
the intersection of the output-mappings of deduced triple patterns is not an emptyset,
they are connected through an edge labeled as "symmetricHash". Otherwise, the edge
representing a syntactical join is removed, in Line 8.

This heuristic produces false positives because it infers all possible joins that can be
made locally at the query engine. If a star-shape join of triple patterns exists, all possible
combinations of joins will be deduced instead of the subset of joins chosen by the query
engine. The consequence for FETA, compared to LIFT, is that it is more vulnerable to

7Another way to do this is to have locally at the data consumer, all ontologies of the federation. The
advantage is to avoid surcharging SPARQL endpoints, but the risk is to have old versions of ontologies.

96 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

Algorithm 11: Check for same/similar concepts of output-mappings of DTPs
1 Function checkConceptSimilarity(dtpi.µo, dtpj .µo) is

input : a pair of output-mappings of two deduced tps
output: b a boolean value, to verify if two deduced tps have same or similar concepts
data : qiri a SPARQL query to retrieved concepts and parent concepts of an IRI

2 foreach iril ∈ dtpi.µo do
3 qiril

← SELECT distinct ?class ?parent WHERE {
4 iril a ?class .
5 ?class rdfs : subClassOf ?parent }
6 foreach irik ∈ dtpj .µo do
7 qirik

← SELECT distinct ?class ?parent WHERE {
8 irik a ?class .
9 ?class rdfs : subClassOf ?parent }

10 b← areSameOrSimilar(execute(qirik
), execute(qiril

))
11 return b

detect false joins because of the symmetricHashDetection heuristic. Like LIFT, FETA
privileges recall to the detriment of precision. In our example, we detect one symmetric
hash join between DTP[1] and DTP[4] as there exist an intersection for their output-
mappings on variable ?y i.e., ?y 7−→ o3, as we see in Figure 5.6.

Figure 5.6 – DTP Graph set with detection of a symmetric hash joint between DTP[1]
and DTP[4], produced by Algorithm 10 for gap=5.

5.2.5 BGP extraction
Figure 5.7 represents the connected components of DTP shown in Figure 5.5. From this
representation, it is easy to compute the final BGPs with a variable renaming and restitu-
tion of an IRI/literal in place of ω when there is only one input-mapping, for our example
it is "o2".

5.2.6 Time complexity of FETA
The computational complexity of the global algorithm of FETA is in the worst case O(N2+
N ∗M +M2), while in the best case O(N +M2). N is the number of queries in the log

5.2. FETA: A REVERSING APPROACH 97

?x p1 ?y
dtp[1]

?σ p2 ?y
dtp[3]

?z p1 ?ω
dtp[2], ω = o2

?σ p2 ?y
dtp[4]

?z =?σ
"nested− loop"

?x =?σ
"nested− loop"

"symmetricHash"

(a) {?z p1 o2 . ?z p2 ?y . ?x p1 ?y . ?x p2 ?y}

Figure 5.7 – Connected components of the DTP Graph set, produced by Algorithm 10
for gap=5.

and M is the number of candidate triple patterns of CTP .
The cost of the graphConstruction heuristic, is the addition of costs of logPreparation

and commonJoinCondition. logPreparation in Algorithm 6 costs O(N). The worst
case complexity of commonJoinCondition in Algorithm 7 is O(N2), when all queries
in the log are compared together. On the other hand, ideally each subquery is syntac-
tically joined with just the previous one i.e., when they belong to the same execution
plan. In the latter case, commonJoinCondition costs O(N). Therefore, the worst time
complexity of graphConstruction is O(N) + O(N2), that gives O(N2), and the best
O(N) + O(N), that gives O(N). graphReduction in Algorithm 8 costs O(N ∗M), as it
extracts and merges similar triple patterns of already syntactically connected queries in
MSQ. nestedLoopDetection in Algorithm 3 costs O(M2) as it compares every candidate
tp with any other. symmetricHashDetection in Algorithm 10 also costs O(M2). First,
it checks all pairs of triple patterns of DTP that are syntactically joinable, for same or
similar concepts and then for a possible intersection, thus O(2 ∗M2) that gives O(M2).8
Finally the cost of extracting BGPs is linear to the size of DTP, that is O(M). To sum-
marize, the worst case complexity of FETA is O(N2 + N ∗M + M2 + M2 + M), that
gives O(N2 + N ∗M + M2), while the best complexity is O(N + N ∗M + M2 + M) or
equivalently O(N ∗M +M2). If we bypass the graphConstruction phase, the complexity
of FETA is always the same i.e. O(N ∗M +M2), like LIFT.

The overload produced by FETA, like LIFT, is high but we underline that the size of
the log corresponds to a slicing window of time e.g., a separate log for each hour of the
day, and that the log analysis can be made as a batch processing.

8Note that even if only nested-loops or symmetric hash joins were used to evaluate a query, the cost
of nestedLoopDetection and symmetricHashDetection would always be the same as all pairs of triple
patterns must be compared together.

98 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

5.3 Evaluation
The goals of the experiments is to evaluate precision and recall of FETA’s results. In
Section 5.3.1 we present the experimental testbed of FETA. In Section 5.3.2 we evaluate
precision and recall of FETA, with traces of federated queries executed in isolation. In
Section 5.3.3 we evaluate precision and recall of FETA, with traces of federated queries
executed concurrently under a worst case scenario, that is when they come from the
same IP address. In contrast with LIFT, neither a public set nor a log with traces of real
federated queries executed over the Linked Data does exist, to the best of our knowledge 9.

5.3.1 Experimental tesbed of FETA
Experiments are evaluated by reusing the queries and the setup of FedBench [46]. We
use the collections of Cross Domain (CD) and Life Science (LS), each one has 7 federated
queries. CD queries concern datasets of DBpedia10, NY Times, LinkedMDB, Jamendo,
Geonames and SW Dog Food. LS queries use datasets of DBpedia, KEGG, Drugbank
and CheBi. We setup 19 SPARQL endpoints using Virtuoso OpenLink11 6.1.7.

Query Anapsid FedX Query Anapsid FedX
CD1 14 164 LS1 2 32
CD2 4 38 LS2 34 154
CD3 142 196 LS3 872 4736
CD4 4 138 LS4 10 36
CD5 4 82 LS5 792 946
CD6 16 596 LS6 3252 20908
CD7 52 638 LS7 240 1000
Total 236 1852 Total 5202 27812

Table 5.3 – Number of requests of SELECT subqueries for CD and LS queries, produced
with Anapsid or FedX and executed in isolation over a federation of SPARQL endpoints.

We executed federated queries with Anapsid 2.7 and FedX 3.0. We configured Anap-
sid to use Star Shape Grouping Multi-Endpoints (SSGM) heuristic12. We captured http
requests and answers from SPARQL endpoints with justniffer 0.5.1213. We implemented
a tool to shuffle several logs of queries executed in isolation, according to different pa-
rameters14. Thus, given E(Q1), ..., E(Qn) we were able to produce different significant
representations of E(Q1 ‖ ... ‖ Qn), like LIFT. Produced traces with this tool vary in
(i) the order of queries, (ii) the number of subqueries of the same query, appearing

9On the other hand, there exist a public set of queries executed over single SPARQL endpoints [41]
10DBpedia is distributed in 12 data subsets (http://fedbench.fluidops.net/resource/Datasets),

in our setup, DBpedia Ontology dataset is duplicated in all SPARQL endpoints, so we install 11 SPARQL
endpoints for DBpedia instead of 12.

11http://virtuoso.openlinksw.com/
12The difference of SSGM and SSGS, as presented in Chapter 2, is that the latter minimizes the scope

of addressed SPARQL endpoints to the first that can evaluate a triple pattern.
13http://justniffer.sourceforge.net/
14The program to shuffle several execution logs in isolation, used as input either to MINEPI, LIFT or

FETA, is available at: https://github.com/coumbaya/traceMixer

http://fedbench.fluidops.net/resource/Datasets
http://virtuoso.openlinksw.com/
http://justniffer.sourceforge.net/
https://github.com/coumbaya/traceMixer

5.3. EVALUATION 99

continuously in the shuffled log (blocks of 1 to 16 subqueries), and (iii) the delay be-
tween each subquery (from 1 to 16 units of time). Source code of FETA is available at
https://github.com/coumbaya/feta.

Table 5.3 presents the number of requests produced by FedX and Anapsid, for the
execution of FedBench queries in isolation. Table 5.4 presents the runtimes of FETA for
each execution trace produced in isolation15. As we observe, the number of subqueries
produced by query engines can be up to 20908 i.e., for query LS6 executed with FedX,
which is the most time consuming for FETA to analyse. In addition we observe that
there is a significant difference between FedX and Anapsid. For instance, when LS6 is
executed with Anapsid it produces 3252 subqueries i.e., 6 times less than FedX. This is
explained by two reasons. First, Anapsid uses bushy tree execution plans which is proven
to create less requests than the left-linear tree execution plans of FedX, where consecutive
joins between multiple triple patterns are produced sequentially. Second, the user-defined
block size of bound joins for FedX is generally smaller than the constant block size of
FILTER options for Anapsid, thus the latter produces more requests during nested-loops.
For more details see page 35 in Chapter 2.

Query Anapsid FedX Query Anapsid FedX
CD1 < 1 < 1 LS1 < 1 < 1
CD2 < 1 < 1 LS2 < 1 < 1
CD3 < 1 < 1 LS3 4 10
CD4 < 1 < 1 LS4 14 < 1
CD5 < 1 < 1 LS5 1 2
CD6 33 < 1 LS6 10 271
CD7 < 1 < 1 LS7 98 2

Average 4.7 < 1 Average 43 40.7

Table 5.4 – Runtimes (seconds) of FETA with traces of CD and LS queries, produced with
Anapsid or FedX and executed in isolation over a federation of SPARQL endpoints.

5.3.2 FETA deductions of queries in isolation
Like LIFT, for each query of the Cross Domain and Life Science collections, we ran FETA
(E(Q),∞). Figures 5.9 to 5.10 present precision and recall of FETA’s deductions in terms
of triple patterns and Figures 5.11 - 5.12 in terms of joins, by query and query engine. In
average, we obtained 94,64% of precision and 94,64% of recall of deduced triple patterns.
We obtain 79,40% of precision and 87,80% of recall for detected joins. FETA succeeds in
deducing 11 out of 14 exact BGPs from Anapsid traces, and 7 out of 14 from FedX traces.
Globally FETA finds 18/28 exact BGPs i.e., 64%. If we include Union queries where all
triple patterns are deduced, FETA finds (18+3)/28 queries i.e., 75% of FedBench queries.

From Anapsid traces, deduced BGPs correspond to CD and LS queries except for
Union queries i.e., CD1, LS1 and LS2. For CD1, presented in Figure 5.8a, FETA gives
one BGP instead of two, because of the joinable common variables and the common IRI
used in their BGPs. This query has two BGPs but a join is possible between them. As
the Union of each query is made locally at the query engine, FETA deduces a symmetric

15We run our experiments in Linux 64 bit machine, with 32 CPUs and 800 Mhz CPU speed.

https://github.com/coumbaya/feta

100 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

SELECT ?predicate ?object WHERE {
{ dbpedia:Barack_Obama ?predicate ?object } (tp1)
UNION
{ ?subject owl:sameAs dbpedia:Barack_Obama. (tp2)
?subject ?predicate ?object }} (tp3)

(a) CD1

SELECT ?drug ?melt WHERE{
{ ?drug drugbank : meltingPoint ?melt (tp1) }
UNION
{ ?drug dbpedia-owl-drug:meltingPoint ?melt}} (tp2)

(b) LS1

Figure 5.8 – Two UNION queries of FedBench.

hash join: FETA(EAnapsid(CD1)) = { (tp2 . tp3)@NY T . tp@DBpedia
1 }. The deduction is

similar for LS2. For LS1, presented in Figure 5.8b, FETA deduces only the first BGP
because Anapsid does not send a subquery for the second BGP of the Union (tp2). From
its source selection process, Anapsid knows that there is no SPARQL endpoint that can
evaluate tp2 and only tp1 is send to Drugbank.

From FedX traces, deduced BGPs correspond exactly to the original BGPs of 7 queries:
CD2, CD3, CD5, CD6, CD7, LS4 and LS7. For LS1, FETA finds one BGP instead of two
but unlike Anapsid, all triple patterns are well deduced. All other problems of deduction
come from the nested-loop detection of FETA. For CD1 and LS2, FETA fails to find some
triple patterns. We illustrate what happens on CD1. Instead of finding the object of tp2
that is an IRI, it finds the variable ?object. The reason is that this IRI is contained in
the mapping of tp3 that is used in a nested-loop with tp1.

Concerning CD4, LS3, LS5, and LS6, FETA finds two possible variables for a compo-
nent of a triple pattern (a subject or an object). That is because during the NestedLoop
Detection, a join is detected even if there is a partial inclusion between output and input-
mappings. We illustrate this case with CD4 (see Figure 5.1 on page 85). FETA finds
that two variables may correspond to the subject of an inner operand of a join: ?y and
?actor. That is because the set of mappings of ?y corresponds to a subset of the map-
pings of ?actor. As FETA can not decide which variable is the good one it produces two
triple patterns, the good one with ?y (tp5) and another with ?actor (tp5′)16. In this case:
FETA(EF edX(CD4)) = { (tp1 . tp2)@LMDB . (tp3 . tp4)@Geonames,etc.. tp@NY T

5 . | tp′@NY T
5 }.

To summarize, in some cases FETA like LIFT deduces additional triple patterns and
thus false joins with well deduced triple patterns, because an intersection between map-
pings of semantically similar triple patterns that are not originally joined17. Further-
more, FETA compared to LIFT detects additional false positives of joins, because of the
symmetricHashDetection heuristic. But as right triple patterns are in general well de-
duced, recall is good.

16Triple patterns tp3 and tp4 are joined as an exclusive group to: Geonames, NYT, Jamendo, SWDF,
LMDB, DBpediaNYT, DBpediaLGD, representing an exclusive group.

17We consider that two semantically similar triple patterns match same triples.

5.3. EVALUATION 101

Figure 5.9 – Precision of triple patterns for FETA with traces of CD and LS
queries, produced with Anapsid or FedX and executed in isolation over a fed-
eration of SPARQL endpoints.

Figure 5.10 – Recall of triple patterns for FETA with traces of CD and LS queries,
produced with Anapsid or FedX and executed in isolation over a federation of
SPARQL endpoints.

102 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

Figure 5.11 – Precision of joins for FETA with traces of CD and LS queries,
produced with Anapsid or FedX in isolation and executed over a federation
of SPARQL endpoints.

Figure 5.12 – Recall of joins for FETA with traces of CD and LS queries,
produced with Anapsid or FedX and executed in isolation over a federation
of SPARQL endpoints.

5.3. EVALUATION 103

5.3.3 Does FETA resist to concurrency?
We executed concurrently all queries of the same collection i.e., Cross Domain and Life
Science, over the federations of SPARQL endpoints presented in the beginning of this
section. For each query set, we evaluated how FETA (E(FQ1))∪ ...∪ (FETA (E(FQn)) ≈
FETA (E(FQ1 ‖ ... ‖ Qn)) in terms of recall and precision of joins for different gap values.
gap varies from 1% to 100% of the log duration. Each query set was shuffled 4 times and
we calculated the average of FETA’s results by gap18.

Figures 5.13 and 5.14 show the average of precision and recall of concurrently ex-
ecuted queries of the CD and LS collections, over a federation of SPARQL endpoints.
Figures 5.15 and 5.16 show the recall of 4 mixes for a set of non similar queries executed
with Anapsid and FedX, respectively, over federated logs of SPARQL endpoints. This set
of chosen federated queries having distinguishable triple patterns is: CD3, CD4, CD5,
CD6, LS2 and LS3.

Concerning gap, according to its value increase we observe that globally precision and
recall improve, as shown in Figures 5.13 and 5.14 respectively. Compared to LIFT, we
observe that FETA has still good results in precision and recall, even when the gap is
small (less than 50%). This is explained, as nested-loop operators of Anapsid and FedX
are not fully pipelined like the one implemented by TPF clients, but first they retrieve
all mappings of the outer before pushing them into the inner dataset (in blocks to avoid
reaching the limit response of SPARQL endpoints). Thus, FETA even with a small gap
associates triple patterns that belongs to the same inner operand of a join and do not
split them in many blocks of joins like LIFT. For more details see page 35 in Chapter 2.

Concerning recall, FETA like LIFT is moderately impacted by concurrency, as shown in
Figure 5.13. Indeed, FETA favours recall by producing all possible joins in the nested-loop
detection. In general, FETA results on recall for FedX and Anapsid traces are similar. On
the other hand, recall for LS is better than recall for CD traces. This happens because
for traces of LS queries, FETA generate lots of symmetric hash joins including the good
ones. Finally, concerning non-similar queries, recall of joins for Anapsid and FedX traces
is even better.

Concerning precision, FETA is more impacted by concurrency and even more than
LIFT, as shown in Figure 5.14. When executed queries have triple patterns that are se-
mantically or syntactically similar, then FETA generates many false joins that impact
precision. This is explained from the fact that queries of Cross Domain and Life Science
are very similar, thus FETA detects inclusion relations between mappings of triple pat-
terns of different queries during nestedLoopDetection. On the other hand, concerning
the collection of non-similar queries, presented above, we get 100% of recall with a gap of
50% from traces of both query engines, as shown Figures in 5.15 and 5.16 respectively.

18Note that as we vary the gap between two subqueries from 1 to 16 seconds, the duration of each
shuffled log we produce diverges from some seconds to one hour and a half.

104 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

Figure 5.13 – Recall (average) of joins per gap for FETA with traces of CD and
LS queries, produced with Anapsid or FedX and executed in concurrence
over a federation of SPARQL endpoints.

Figure 5.14 – Precision (average) of joins per gap for FETA with traces of CD
and LS queries, produced with Anapsid or FedX and executed in concur-
rence over a federation of SPARQL endpoints.

5.3. EVALUATION 105

Figure 5.15 – Recall of joins per gap and per mix for FETA with traces of CD and
LS selective queries, produced with Anapsid and executed in concurrence over a
federation of SPARQL endpoints.

Figure 5.16 – Recall of joins per gap and per mix for FETA with traces of CD and
LS selective queries, produced with FedX and executed in concurrence over a
federation of SPARQL endpoints.

106 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

To summarize, we presented FETA, a BGP reversing approach that aims to infer
BGPs of queries executed over federations of SPARQL endpoints. We provided with
experiments that illustrate FETA’s good recall and precision. Obtained results depend
not only on the similarity of concurrently executed queries but also execution parameters
of FETA. Compared to LIFT, FETA is less efficient in recall and precision for both queries
executed in isolation or in concurrence. This is explained from the fact that (i) the
symmetricHashDetection employed by FETA generates a lot of false positives, and (ii)
FETA’s queries are more similar to each other than those used in LIFT. lat

6
Conclusion and perspectives

Contents
6.1 Conclusion . 108
6.2 Perspectives . 109

6.2.1 Real-time extraction of BGPs 110
6.2.2 Handling false-positives due to concurrency, with post-processing 110
6.2.3 Other strategies to link subqueries 112

In this chapter, section 6.1 presents the conclusions. Section 6.2 describes the per-
spectives.

107

108 CHAPTER 6. CONCLUSION AND PERSPECTIVES

6.1 Conclusion
In this thesis, we aimed to infer the general form of SPARQL queries executed over the
Linked Data, that is to infer the set of joined triple patterns of these queries. In particu-
lar, we focused on the following research question:

How to infer Basic Graph Patterns (BGPs) of SPARQL queries executed by data con-
sumers from logs of servers hosted by data providers?

Answering this question allows data providers to know how their data are used. The
knowledge of how data are used is a valuable asset that may be exploited individually
by each data provider or as a group, for a diversity of purposes: ensure usage control,
optimize the cost of provided services (i.e., access to their Linked Data), justify return
on investment, improve their users’ experience or even create business models to discover
usage trends over the Semantic Web.

Concerning this research question, we proposed four contributions:

• First, we formally defined the scientific problem of BGP reversing and the property
of resistance to concurrency of multiple queries executed at the same time. We
addressed this problem on query processing over both (a) single or federations of
TPF servers, and (b) federations of SPARQL endpoints.

• Second, we analyzed how sequential Data Mining algorithms can be used to tackle
this problem. Frequent episodes detected by MINEPI on raw logs of queries, do
not correspond to BGPs of SPARQL queries. This can be improved in terms of
joins between triple patterns, with specific pre and post-processing. Even so, this
approach is not able to resist to concurrency, regarding both precision and recall of
joins.

• Third, we proposed LIFT. LIFT takes as input the logs of single triple pattern queries
from single or federations of Triple Pattern Fragment (TPF) servers, and extracts
a set of BGPs to which these logs correspond to. LIFT groups triple patterns that
seems to be part of the same outer or inner operand of a join and subsequently
detects nested-loops between these triple patterns. Experimental results reported
that LIFT is able to extract BGPs with good recall and precision. However, deducing
BGPs with LIFT is challenging in presence of concurrence.

• Fourth, we proposed FETA. FETA takes as input the logs of queries from federations
of SPARQL endpoints, and extracts a set of BGPs to which these logs correspond
to. Compared to LIFT, FETA does not need to process logs of single SPARQL
endpoints, as they are already aware of the single source queries they process. FETA
groups triple patterns that seems to be part of the same outer or inner operand of a
join and subsequently detects nested-loops and symmetric hash joins between these
triple patterns. FETA deals with different optimizations techniques employed by
query engines to push mappings from a triple pattern into another during nested-
loops. Like LIFT, experimental results reported that FETA is able to extract BGPs

6.2. PERSPECTIVES 109

with good recall and precision. However, deducing BGPs with FETA, like LIFT, is
challenging in presence of concurrence.

In this thesis we introduced the BGP reversing problem and proposed an approach to
solve it in two different contexts, using either logs of TPF servers or logs of federations of
SPARQL endpoints. Our solutions aimed to extract BGPs of user queries, by processing
logs off-line and privileging recall in the detriment of precision. In the next section we
present some perspectives related to these choices.

6.2 Perspectives

This thesis opens the following perspectives:

• first, we can extract BGPs in real-time. Currently, we do off-line analysis.

• Second, we can handle false-positives due to concurrency, with post-processing based
on occurrences of BGPs extractions. As concurrently executed queries are not mixed
systematically, we can prune detected false joins between their triple patterns.

• Third, we can propose new strategies to link subqueries in the log. Different strate-
gies offer different trade-offs between precision and recall.

In order to explain our proposed perspectives, we use the following example. Consider
queries QA = SELECT ?x ?y WHERE { ?x p1 o1 . ?x p2 ?y . ?y p3 ?z } and QF =
SELECT ?x WHERE { ?x p3 ?z . ?y p4 ?z } on page 56 in Chapter 3. Table 6.1
corresponds to the log with shuffled execution traces of QA and QF

1. Queries QA and QF

are evaluated by joining triple patterns through nested-loops.

LD provider IP Time Requested tp Answer
pA ip1 0 ?x p1 o1 {?x 7−→ {s1, s2}}
pA ip1 10 s1 p2 ?y {?y 7−→ {o3}}

pA ip1 20 ?x p3 ?z {?x 7−→ {s3, s4},
?z 7−→ {o3, o4}}

pA ip1 40 s2 p2 ?y {?y 7−→ {o4}}
pA ip1 50 o3 p3 ?z {?z 7−→ {o5}}
pA ip1 60 ?y p4 o3 {?y 7−→ {s5}}
pA ip1 80 ?y p4 o4 {?y 7−→ {s6}}
pA ip1 90 o4 p3 ?z {?z 7−→ {o6}}

Table 6.1 – Query log corresponding to execution of QA and QF , produced by data
consumer with ip1 IP Address and executed on pA data provider. Traces in red color
correspond to query QA while traces in green correspond to query QF .

110 CHAPTER 6. CONCLUSION AND PERSPECTIVES

Figure 6.1 – Sliding windows of length = 20 seconds with an incremental approach to
extract BGPs of executed queries in the log [0, 110[. Traces in red color correspond to
query QA while traces in green correspond to query QF .

6.2.1 Real-time extraction of BGPs
As a first perspective we aim to infer BGPs of user queries, this time incrementally over
server logs that are dynamically created [26]. The idea, is to associate progressively join-
able triple patterns that appear in consecutive windows of user-defined size. The challenge,
like for WINEPI (cf. Chapter 3 on page 50), is to manage intermediate deduced BGPs.
Once joins between triple patterns are inferred, it is not obvious to finalize deduced BGPs
and free the in-memory allocated to host their mappings. That is, deduced BGPs (and
their mappings) may be associated to triple patterns of following windows because: (i)
mappings can be bind several times (e.g., star queries), (ii) apparition of triple patterns is
not related always to joins e.g., during the execution of a specific query, a block of traces
of other concurrently executed queries could interfere. Experiments will reveal to which
deduction parameters, the inferred BGPs by this approach are stabilised.

Suppose that we extract BGPs from the log of Table 6.1, using an incremental BGP
reversing approach over 10 sliding windows, each with a size of 20 seconds, as we see in
Figure 6.1. For instance, we observe that mappings of ?x p1 o1 are injected in the second
and fifth window, into "s1 p2 ?y" and "s2 p2 ?y". As described above, the challenge is to
considered that a deduced BGPs is final. If consider that BGP1 = { ?x p1 o1 . ?x p2 ?y }
is final after the third window and remove its mappings from the memory, we will not
detect the join in QA between ?x p2 ?y and ?y p3 ?z, in the sixth and tenth window
respectively.

6.2.2 Handling false-positives due to concurrency, with post-
processing

Handling concurrency is a very difficult problem. When similar queries run concurrently
in the same time, it is nearly impossible to extract correctly BPGs. However, it is unlikely
that similar queries always run concurrently. Consequently, if we run LIFT or FETA on

1Note that for simplicity we supposed that timestamps are integers.

6.2. PERSPECTIVES 111

long periods, false positives due to concurrency will get less occurrences than correct
deduced BPGs. Running algorithms that exploit occurrences of BGPs is now possible
thanks to our BGP reversing approaches because, in some way, they transform a non-
transaction log (timestamped triple pattern queries for LIFT or FETA) into a transactional
log (timestamped list of linked triple pattern queries). With a transactional log of deduced
BGPs it is possible to find their occurrences and subsequently the occurrences of their
joins. Figure 6.2 represents the extracted BGPs from log of Table 6.1 using LIFT or
FETA for logs of multiple hours, which edges are annotated with the occurrences of their
joins. The first deduced BGP corresponds to QA, the second to QF and the third to the
mixed BGP corresponding to QA and QF . In this figure, edges between triple patterns
are labeled with the occurrence of their joins (in form of nested-loops).

?x p1 o1 ?x p2 ?y

?y p3 ?z

20

20

(a) Deduced BGP for traces of QA executed in isola-
tion.

?x p3 ?z ?y p4 ?z15

(b) Deduced BGP for traces of QF executed
in isolation.

?x p1 o1 ?x p2 ?y

?y p3 ?z

?x p3 ?z ?y p4 ?z

21

21

16

1

(c) Deduced BGP for traces of QA and QF executed
in concurrence.

Figure 6.2 – Set of deduced BGPs with LIFT when applied on logs of multiple hours,
where each edge is annotated with the occurrences of the join of two triple patterns.
The less frequent join is presented in blue.

One approach to handle false positives, is by associating deduced triple patterns on the
number of their occurrences. Computing frequent association of BPGs can be done with
Apriori-based algorithms [4]. Hence, given 10 hours of a log, we aim to see if the precision
of frequent BGPs detected over 10 hours is better than precision of BGPs detected on 1
hour. For the example of Figure 6.2 using a threshold equal to 5, we can prune the false
join between triple patterns ?x p2 ?y and ?y p4 ?z, from QA and QF in the third BGP.

Another approach to handle false positives, is by grouping deduced triple patterns
on their confidence represented by their occurrences. Extracting subgraphs of BGPs

112 CHAPTER 6. CONCLUSION AND PERSPECTIVES

in presence of uncertainty can be done with the k-core approach [49]. That is, given
a deduced BGP which is uncertain because its triple patterns are joined with different
levels of confidence, we can extract a set of subgraphs with the same confidence. For the
example of Figure 6.2 we can extract three subgraphs { ?x p1 o1 . ?x p2 ?y . ?y p3 ?z },
{ ?x p3 ?z . ?y p4 ?z } and { ?x p2 ?y . ?y p4 ?z } with confidences 21, 16 and 1
respectively.

6.2.3 Other strategies to link subqueries

?x p1 o1 ?x p2 ?y

?y p3 ?z

2/2

2/2

(a) Deduced BGP for traces of QA executed in isola-
tion.

?x p3 ?z ?y p4 ?z
2/2

(b) Deduced BGP for traces of QF executed
in isolation.

?x p1 o1 ?x p2 ?y

?y p3 ?z

?x p3 ?z ?y p4 ?z

2/2

2/2

2/2

2/2

(c) Deduced BGP for traces of QA and QF executed
in concurrence.

Figure 6.3 – Set of deduced BGPs with LIFT when applied on a log, where each edge is
annotated with the coverage of the mappings of two triple patterns. The two alternative
options of coverage of the injected mappings into ?y p4 ?z, are presented in blue.

There is a diversity of strategies linking triple patterns, each with a different trade-off
between precision and recall. In LIFT and FETA, we made the arbitrary choice to link all
triple patterns which mappings intersect. With this choice, our approaches were able to
favour recall in the detriment of precision. Alternatively, we could employ strategies that
take into account the quality of the matching between mappings of triple patterns. This
can be done, using the set-covering strategy [20] where triple patterns are grouped based
on the coverage of their mappings and each triple pattern can participate only in one set.
The set-covering approach favours precision of joins as in general the number of deduced
joins is minimized, when at the same time it eventually detriments recall. However, in

6.2. PERSPECTIVES 113

presence of concurrence, performance in both recall and precision of joins may be affected.
We illustrate this on extracted BGPs from log of Table 6.1.

Figure 6.3 presents extracted BGPs, where each edge is annotated with the coverage
of mappings of two triple patterns. When LIFT or FETA is applied to extract BGPs
from the log of Table 6.1, recall in terms of joins is 3/3=1 while precision is 3/4=0.75,
as we see in the third BGP of Figure 6.3. If the set-covering approach was employed
to extract BGPs from the log of Table 6.1, we would have two possible combinations as
?y p4 ?z can be assigned to two different sets: (a) { ?x p1 o1 . ?x p2 ?y . ?y p3 ?z }
and { ?x p3 ?z . ?y p4 ?z }, or, (b) { ?x p1 o1 . ?x p2 ?y . ?x p3 ?z . ?y p4 ?z} and
{ ?y p3 ?z }. In terms of both recall and precision of joins, the set-covering approach
detects 3/3=1 joins in the former set of deduced BGPs while 2/3=0.66 in the latter set
of deduced BGPs. Compared to LIFT or FETA, performance in precision is better while
recall remains the same for the former set of deduced BGPs. However, both recall and
precision are inferior for the latter set of deduced BGPs, compared to LIFT or FETA.

Bibliography

[1] M. Acosta and M. Vidal. The ANAPSID Evolution: An adaptive SPARQL query
engine. 2014. 33, 37, 85

[2] M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAPSID: An
Adaptive Query Processing Engine for SPARQL Endpoints. In The Semantic Web -
ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany, October
23-27, 2011, Proceedings, Part I, pages 18–34, 2011. 17, 33, 34, 37, 85

[3] R. Agrawal, T. Imielinski, and A. N. Swami. Mining Association Rules between Sets
of Items in Large Databases. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, D.C., May 26-28, 1993., pages
207–216, 1993. 19

[4] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large
Databases. In VLDB’94, Proceedings of 20th International Conference on Very Large
Data Bases, September 12-15, 1994, Santiago de Chile, Chile, pages 487–499, 1994.
47, 111

[5] R. Angles and C. Gutierrez. The Expressive Power of SPARQL. In The Semantic Web
- ISWC 2008, 7th International Semantic Web Conference, ISWC 2008, Karlsruhe,
Germany, October 26-30, 2008. Proceedings, pages 114–129, 2008. 24

[6] C. B. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche. SPARQLWeb-Querying
Infrastructure: Ready for Action? In The Semantic Web - ISWC 2013 - 12th Inter-
national Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013,
Proceedings, Part II, pages 277–293, 2013. 18

[7] C. B. Aranda, A. Polleres, and J. Umbrich. Strategies for Executing Federated
Queries in SPARQL1.1. In The Semantic Web - ISWC 2014 - 13th International
Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings,
Part II, pages 390–405, 2014. 24, 26

[8] M. Arias, J. D. Fernández, M. A. Martínez-Prieto, and P. de la Fuente. An Empirical
Study of Real-World SPARQL Queries. CoRR, abs/1103.5043, 2011. 68, 88

[9] C. Basca and A. Bernstein. Avalanche: Putting the Spirit of the Web back into
Semantic Web Querying. In Proceedings of the ISWC 2010 Posters & Demonstrations
Track: Collected Abstracts, Shanghai, China, November 9, 2010, 2010. 17, 34

[10] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Int. J.
Semantic Web Inf. Syst., 5(3):1–22, 2009. 11, 15, 16

115

116 BIBLIOGRAPHY

[11] Dijkstra, Edsger W. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[12] O. Görlitz and S. Staab. SPLENDID: SPARQL Endpoint Federation Exploiting
VOID Descriptions. In Proceedings of the Second International Workshop on Con-
suming Linked Data (COLD2011), Bonn, Germany, October 23, 2011, 2011. 17,
34

[13] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Comput. Surv.,
25(2):73–170, 1993. 26, 31

[14] P. Haase, T. Mathäß, and M. Ziller. An evaluation of approaches to federated query
processing over linked data. In Proceedings the 6th International Conference on
Semantic Systems, I-SEMANTICS 2010, Graz, Austria, September 1-3, 2010, 2010.
33

[15] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Elsevier,
2011. 19

[16] O. Hartig. Querying a Web of Linked Data - Foundations and Query Execution,
volume 24 of Studies on the Semantic Web. IOS Press, 2016. 16

[17] O. Hartig, C. Bizer, and J. C. Freytag. Executing SPARQL Queries over the Web of
Linked Data. In The Semantic Web - ISWC 2009, 8th International Semantic Web
Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings,
pages 293–309, 2009. 18

[18] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers, 2011. 15

[19] Heiko Betz and Francis Gropengießer and Katja Hose and Kai-Uwe Sattler. Learning
from the History of Distributed Query Processing - A Heretic View on Linked Data
Management. In Proceedings of the Third International Workshop on Consuming
Linked Data, COLD 2012, Boston, MA, USA, November 12, 2012, 2012. 33

[20] D. S. Johnson. Approximation Algorithms for Combinatorial Problems. J. Comput.
Syst. Sci., 9(3):256–278, 1974. 112

[21] M. Klemettinen and P. Moenand. Course on Data Mining (581550-4): Episodes and
episode rules. 50

[22] D. Kossmann. The State of the art in distributed query processing. ACM Comput.
Surv., 32(4):422–469, 2000. 33

[23] G. Ladwig and T. Tran. Linked Data Query Processing Strategies. In The Semantic
Web - ISWC 2010 - 9th International Semantic Web Conference, ISWC 2010, Shang-
hai, China, November 7-11, 2010, Revised Selected Papers, Part I, pages 453–469,
2010. 18

BIBLIOGRAPHY 117

[24] M. Lanthaler and C. Guetl. Hydra: A Vocabulary for Hypermedia-Driven Web
APIs. In Proceedings of the WWW2013 Workshop on Linked Data on the Web, Rio
de Janeiro, Brazil, 14 May, 2013, 2013. 29

[25] H. Mannila and H. Toivonen. Discovering Generalized Episodes Using Minimal Oc-
currences. In Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining (KDD-96), Portland, Oregon, USA, pages 146–151, 1996.
53

[26] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering Frequent Episodes in
Sequences. In Proceedings of the First International Conference on Knowledge Dis-
covery and Data Mining (KDD-95), Montreal, Canada, August 20-21, 1995, pages
210–215, 1995. 50, 53, 110

[27] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of Frequent Episodes in
Event Sequences. Data Min. Knowl. Discov., 1(3):259–289, 1997. 50

[28] L.-R. Markus, A. Saud, B. Bettina, and H. Laura. USEWOD Research Dataset.,
2016. http://dx.doi.org/10.5258/SOTON/385344. 67, 73, 74, 77

[29] D. P. Miranker, R. Depena, H. Jung, J. Sequeda, and C. Reyna. Diamond De-
bugger Demo: Rete-Based Processing of Linked Data. In Proceedings of the
RuleML2012@ECAI Challenge, at the 6th International Symposium on Rules, Mont-
pellier, France, August 27th-29th, 2012, 2012. 18

[30] P. Mishra and M. H. Eich. Join Processing in Relational Databases. ACM Comput.
Surv., 24(1):63–113, 1992. 26

[31] G. Montoya, M. Vidal, and M. Acosta. A Heuristic-Based Approach for Planning
Federated SPARQL Queries. In Proceedings of the Third International Workshop on
Consuming Linked Data, COLD 2012, Boston, MA, USA, November 12, 2012, 2012.
37

[32] C. Mooney and J. F. Roddick. Sequential pattern mining - approaches and algo-
rithms. ACM Comput. Surv., 45(2):19, 2013. 19, 45, 47

[33] Moore, Edward F. The shortest path through a maze. Bell Telephone System., 1959.

[34] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo and Josiane Xavier Parreira
and Helena F. Deus and Manfred Hauswirth. DAW: Duplicate-AWare Federated
Query Processing over the Web of Data. In The Semantic Web - ISWC 2013 - 12th
International Semantic Web Conference, Sydney, NSW, Australia, October 21-25,
2013, Proceedings, Part I, pages 574–590, 2013. 34

[35] G. Nassopoulos, P. Serrano-Alvarado, P. Molli, and E. Desmontils. FETA: Federated
QuEry TrAcking for Linked Data. In International Conference on Database and
Expert Systems Applications-DEXA, pages 303–312, 2016. 30, 94

[36] A. N. Ngomo and M. Saleem. Federated Query Processing: Challenges and Opportu-
nities. In Proceedings of the 3rd International Workshop on Dataset PROFIling and

118 BIBLIOGRAPHY

fEderated Search for Linked Data (PROFILES ’16) co-located with the 13th ESWC
2016 Conference, Anissaras, Greece, May 30, 2016., 2016. 33, 34

[37] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems, Third
Edition. Springer, 2011. 11, 33, 34

[38] S. K. Pal, V. Talwar, and P. Mitra. Web mining in soft computing framework:
relevance, state of the art and future directions. IEEE Trans. Neural Networks,
13(5):1163–1177, 2002. 45

[39] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. In
The Semantic Web - ISWC 2006, 5th International Semantic Web Conference, ISWC
2006, Athens, GA, USA, November 5-9, 2006, Proceedings, pages 30–43, 2006. 24

[40] B. Quilitz and U. Leser. Querying Distributed RDF Data Sources with SPARQL. In
The Semantic Web: Research and Applications, 5th European Semantic Web Con-
ference, ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, Proceedings, pages
524–538, 2008. 33, 34

[41] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A. N. Ngomo. LSQ: The Linked
SPARQL Queries Dataset. In The Semantic Web - ISWC 2015 - 14th International
Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings,
Part II, pages 261–269, 2015. 98

[42] M. Saleem and A. N. Ngomo. HiBISCuS: Hypergraph-Based Source Selection for
SPARQL Endpoint Federation. In The Semantic Web: Trends and Challenges - 11th
International Conference, ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014.
Proceedings, pages 176–191, 2014. 34

[43] M. Saleem, S. S. Padmanabhuni, A. N. Ngomo, A. Iqbal, J. S. Almeida, S. Decker,
and H. F. Deus. TopFed: TCGA Tailored Federated Query Processing and Linking
to LOD. J. Biomedical Semantics, 5:47, 2014. 34

[44] M. V. Sande, R. Verborgh, J. V. Herwegen, E. Mannens, and R. V. de Walle. Op-
portunistic Linked Data Querying Through Approximate Membership Metadata. In
ISWC Conference, 2015. 77

[45] F. Schmedding. Incremental SPARQL Evaluation for Query Answering on Linked
Data. In Proceedings of the Second International Workshop on Consuming Linked
Data (COLD2011), Bonn, Germany, October 23, 2011, 2011. 18

[46] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. FedBench:
A Benchmark Suite for Federated Semantic Data Query Processing. In The Semantic
Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany,
October 23-27, Proceedings, Part I, pages 585–600, 2011. 53, 85, 87, 98

[47] M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query optimiza-
tion. In Database Theory - ICDT 2010, 13th International Conference, Lausanne,
Switzerland, March 23-25, 2010, Proceedings, pages 4–33, 2010. 24, 33, 90

BIBLIOGRAPHY 119

[48] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimiza-
tion Techniques for Federated Query Processing on Linked Data. In International
Semantic Web Conference (ISWC), Part I, 2011. 17, 33, 34, 35, 85

[49] S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269–
287, 1983. 112

[50] A. Sen. Metadata management: past, present and future. Decision Support Systems,
37(1):151–173, 2004. 17

[51] P. Serrano-Alvarado and E. Desmontils. Personal linked data: a solution to manage
user’s privacy on the web. In Atelier sur la Protection de la Vie Privée (APVP),
2013. 19

[52] J. Srivastava, R. Cooley, M. Deshpande, and P. Tan. Web Usage Mining: Discovery
and Applications of Usage Patterns from Web Data. SIGKDD Explorations, 1(2):12–
23, 2000. 45

[53] M. Staudt, A. Vaduva, and T. Vetterli. Metadata management for data warehousing.
Universität Zürich. Institut für Informatik, 1999. 17

[54] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL basic
graph pattern optimization using selectivity estimation. In WWW, pages 595–604,
2008. 37

[55] J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and A. Polleres. Comparing data
summaries for processing live queries over Linked Data. World Wide Web, 14(5-
6):495–544, 2011. 18

[56] A. Vaduva and T. Vetterli. Metadata Management for Data Warehousing: An
Overview. Int. J. Cooperative Inf. Syst., 10(3):273–298, 2001. 17

[57] R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D. Vocht, M. V. Sande,
R. Cyganiak, P. Colpaert, E. Mannens, and R. V. de Walle. Querying Datasets on the
Web with High Availability. In The Semantic Web - ISWC 2014 - 13th International
Semantic Web Conference, Riva del Garda, Italy, October 19-23, Proceedings, Part
I, pages 180–196, 2014. 11, 27, 31

[58] R. Verborgh, M. V. Sande, P. Colpaert, S. Coppens, E. Mannens, and R. V. de Walle.
Web-Scale Querying through Linked Data Fragments. In Proceedings of the Workshop
on Linked Data on the Web co-located with the 23rd International World Wide Web
Conference (WWW 2014), Seoul, Korea, April 8, 2014., 2014. 18, 27, 31

[59] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht,
B. De Meester, G. Haesendonck, and P. Colpaert. Triple Pattern Fragments: a Low-
cost Knowledge Graph Interface for the Web. Journal of Web Semantics (JWS),
37–38:184–206, 2016. 28, 30

[60] A. N. Wilschut and P. M. Apers. Dataflow query execution in a parallel main-memory
environment. In International Conference on Parallel and Distributed Information
Systems, pages 68–77. IEEE, 1991. 26

Thèse de Doctorat
Georges NASSOPOULOS
Déduire des Basic Graph Patterns depuis les Logs des Fournisseurs du Linked
Data

Deducing Basic Graph Patterns from Logs of Linked Data Providers

Résumé
Conformément aux principes de Linked Data, les
fournisseurs de données ont publié des milliards
de faits en tant que données RDF. Exécuter les
requêtes SPARQL sur les endpoints SPARQL ou
les serveurs Triple Pattern Fragments (TPF)
permet de consommer facilement des données
du Linked Data. Cependant, le traitement des
requêtes SPARQL fédérées, tout comme le
traitement des requêtes TPF, décompose la
requête initiale en de nombreuses
sous-requêtes. Les fournisseurs de données ne
voient alors que les sous-requêtes et la requête
initiale n’est connue que des utilisateurs finaux.
La connaissance des requêtes exécutées est
fondamentale pour les fournisseurs, afin
d’assurer un contrôle de l’utilisation des données,
d’optimiser le coût des réponses aux requêtes,
de justifier un retour sur investissements,
d’améliorer l’expérience utilisateur ou de créer
des modèles commerciaux à partir de tendances
d’utilisation. Dans cette thèse, nous nous
concentrons sur l’analyse des logs d’exécution
des serveurs TPF et des endpoints SPARQL
pour extraire les Basic Graph Patterns (BGP) des
requêtes SPARQL exécutées. Le principal défi
pour l’extraction des BGPs est l’exécution
simultanée des requêtes SPARQL. Nous
proposons deux algorithmes : LIFT et FETA.
Sous certaines conditions, nous constatons que
LIFT et FETA sont capables d’extraire des BGPs
avec une bonne précision et un bon rappel.

Abstract
Following the principles of Linked Data, data
providers published billions of facts as RDF data.
Executing SPARQL queries over SPARQL
endpoints or Triple Pattern Fragments (TPF)
servers allow to easily consume Linked Data.
However, federated SPARQL query processing
and TPF query processing decompose the initial
query into subqueries. Consequently, the data
providers only see subqueries and the initial
query is only known by end users. Knowing
executed SPARQL queries is fundamental for
data providers, to ensure usage control, to
optimize costs of query answering, to justify
return of investment, to improve the user
experience or to create business models of
usage trends. In this thesis, we focus on
analyzing execution logs of TPF servers and
SPARQL endpoints to extract Basic Graph
Patterns (BGP) of executed SPARQL queries.
The main challenge to extract BGPs is the
concurrent execution of SPARQL queries. We
propose two algorithms: LIFT and FETA. LIFT
extracts BGPs of executed queries from a single
TPF server log. FETA extracts BGPs of federated
queries from a log of a set of SPARQL endpoints.
For experiments, we run LIFT and FETA on
synthetic logs and real logs. LIFT and FETA are
able to extract BGPs with good precision and
recall under certain conditions.

Mots clés
Linked Data, Triple Pattern Fragments, federated
query processing, Basic Graph Pattern, Usage
Control, Log Analysis, Data Mining

Key Words
Linked Data, Triple Pattern Fragments, federated
query processing, Basic Graph Pattern, Usage
Control, Log Analysis, Data Mining

L’UNIVERSITÉ NANTES ANGERS LE MANS

	Introduction
	The Semantic Web initiative
	Querying the Linked Data
	Problem statement
	Approach
	Organization and contributions

	Preliminaries: querying the Linked Data
	SPARQL semantics
	Physical join operators
	Querying TPF servers
	Querying SPARQL endpoints
	Formal problem statement

	State of art: Data Mining
	Web usage mining
	Sequential pattern mining
	MINEPI over query logs
	Limitations of query log analysis
	MINEPI with pre or post-processing

	LIFT: LInked data Fragment Tracking
	Illustration example
	LIFT: a reversing approach
	Experiments

	FETA: Federated quEry TrAcking
	Illustration example
	FETA: a reversing approach
	Evaluation

	Conclusion and perspectives
	Conclusion
	Perspectives

