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Introduction

1.1 The Semantic Web initiative

Semantic Welis an extension of the current Web, known also a/eb of Data It provides

a normalized way to nd, share, reuse and combine information [10,]18]. The Semantic
Web is made up ofLinked Datafji.e., the Semantic Web is the whole while Linked Data

is the parts. Linked Data practices have lead to a global data space interlinking various
domains. In Figure/ 1.1 we see published datasets of the Linked Data cloud as of February
2017 including publications (in light grey), life science (in light purple) or cross domain
(in brown). The WSCE] recommendations to store, query and update Linked Data are the
Resource Description Framework (RDF) data model and theSPARQguery language.

RDF is the graph-based model to represent information in the Linked Data. RDF
encodes data intriples (subject; predicate; object. Subjects and objects are both IRIs
or IRI and a string literal respectively. The predicate speci es how the subject and object
are related, also represented by an IRI. In Figurg 1.2 on pafe| 17, we see an example of
RDF graphs concerning Bob and DBpedfa A RDF triple example of Bob's dataset is
(bob: me; foaf : topic_interest; wd : Q12418) which expresses the interest of Bob
to the wikipedia resource Wd : Q12418 i.e., Mona Lisa. A RDF triple example of
DBpedia's dataset is(wd : Q12418 dcterms : creator; dbpedia: Leonardo_da_Vinci),
which expresses thatwd : Q12418 was created by Leonardo da Vinci.

SPARQL is a sql-like query language that allows to manipulate and retrieve data
stored in RDF format. SPARQL is used to match RDF triples expressed in form afiple
patterns, where subjects, predicates and objects are IRIs, literals or variables. Each set
of joined triple patterns of a SPARQL query is called a Basic Graph Pattern (BGP).
Furthermore, SPARQL allows a query to consist of triple patterns which enhanced with

Thttp://semanticweb.org

2http://linkeddata.org/

3http://www.w3.org/

4Example taken from: https://www.w3.0rg/TR/2014/NOTE-rdf11-primer-20140225/
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Legend

Government

Publications
Social Networking

—ncoming Links

mmm——=0utgoing Links

Figure 1.1 Linked Data cloud, as of February 2017110].

various features can express more complex expressions such as conjunctions, disjunctions
or optional graph patterns.

The graph matching facility of the SPARQL language can be applied over one or
several RDF datasets, residing in dierent sources. In Figurg 1.3 the SPARQL query
expresses a conjunction graph pattern, seeking to nd all artifacts that interest Bob and
were created by Leonardo da Vinci. There exist a variety of methods and strategies to
evaluate SPARQL queries. Although, the way of how Linked Data are consumed is mostly
in uenced by who bears the workload of query processing, the data consumer or the data
provider. Next we overview, the main approaches to query the Linked Data.

1.2 Querying the Linked Data

In the Linked Data, billions of triples are provided by autonomous providers across mul-
tiple domains. We overview below how this plethora of information is consumed [16].
Strategies for querying the Linked Data, can be hierarchized depending on (a) if the
guery can be answered on single or over several sources, and (b) if the query processing
load is ensured by the data consumer or the data provider:
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http://example.org/bob https://www.wikidata.org/wiki/Special:EntityData/Q12418
Alice Leonardo da Vinci
http://example.org/alice#me http://dbpedia.org/resource/Leonardo_da_Vinci

®
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foaf:topic_interest determs:title .
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http://example. orglbob#me Subjg
LY The Mona Lisa ct
http://www.wikidata.org/entity/Q12418
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% La Joconde a Washington
http://data.europeana.eu/item/04802/243FA
Person 4rth July 1990 8618938F4117025F17A8B813C5F9AA4D619

http://xmins.com/foaf/0.1/Person  "1990-07-04"**xsd:date

Figure 1.2 RDF graphs of Bob and DBpedia (concerning "Mona Lisa").

PREFIX bob:< http : ==example:org=bgbme= >
PREFIX dbpedia:< http : ==dbpedia:org=resource= >
PREFIX dcterms :< http : ==purl.org=dc=terms= >
PREFIX foaf :<http : ==xmiIns:com=foaf=0:1= >
SELECT ?artifact WHERE {
bob:me foaf:topic_interest ?artifact
?artifact dcterms:creator dbpedia:Leonardo_da_Vinci }

Figure 1.3 SPARQL query combining data from Bob and DBpedia.

1. Direct access to public interfaces : In the simplest case, a user accesses the public
interfaces of providers in the Linked Datg Although such an access provides the
user with valuable data, at the same time ignores the great potential of the Web of
Data that is to combine information from di erent sources.

2. Data warehouse : All providers' datasets are downloaded into a dump, creating
a single local RDF store at the data consumer. Subsequently, queries are exe-
cuted in a centralized way by combining data without any further communication
with providers that publish them, following a data warehouse approach[50,153,56].
Query processing over a data dump increases the availability of providers. However,
a data warehouse solution is not always practical, because of the cost to host all
downloaded datasets and also the question of data freshness.

3. Federated query processing : Federated query engines 2] 9, 12,148], evaluate a
SPARQL query over a set of autonomous SPARQL endpoints. This federation is

5A well known example, is the public interface of the DBpedia SPARQL endpoint: http://dbpedia.
org/spargl .
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transparent to the end user i.e., the distributed datasets are consumed as if they were
a single RDF graph. Federated query processing guarantees that data are up-to-
date. On the other hand, the workload is pushed to the selected endpoints, raising
the issue of servers' unavailability. Even if SPARQL endpoints put restrictions such
as a limited execution time, their availability remains low|[5].

4. Alternative query processing strategies : Due to the limitations that data
warehouse and federated query processing have in exploiting the Web of Data, other
approaches have been proposed [17] 23, [29,[45,/55, 58]. Some solutions, aim to nd
a trade-o between processing e ort on the consumer and data availability on the
provider, for instance:

i Linked Data Documents (LDD) Consuming the Linked Data through LDDs,
either uses pre-populated index structure$ [55], or focuses on live exploration
by a traversal-based query execution [17]. Query evaluation with LDDs, has
the constraint of longer query execution times, compared to federated query
processing or direct access to public interfaces. On the other hand compared
to data dumps, documents allow live querying.

il Triple Pattern Fragments (TPF): TPFs are a new way to consume Linked Data,
also calledbasic Linked Data Fragments (LDFs)[[58] Clients split queries
into single triple pattern subqueries and evaluate them against providers, that
publish their data as TPF serverf. The TPF solution can be applied over
single or federations of TPF servers. Query processing of costly SPARQL
features, is pushed to the client to leverage the pressure on providers.

LD provider IP | Time Query Answer
Bob ip1| 12:11:10 | SELECT WHERE f frartifact 7! wd:Q12418 g
Bob : me foaf : topic_interest ?artifact g
DBpedia ip1 | 12:11:15 | SELECT WHERE f
?artifact dcterms : creator f?artifact 7! wd:Q12418 g
dbpedia : Leonardo _da_Vincig

Table 1.1 Federated log ofQ, traces, produced by a federated query engine and executed
over the federation of SPARQL endpoints that are hosted by DBpedia and Bob data
providers.

The usefulness of Linked Data is that it allows to evaluate queries through a dis-
tributed execution that roams from resource to resource, residing in the same or dif-
ferent datasets. Queries can be decomposed in many subqueries, either due to the
location of their matching triples or for optimization reasons during their execution.
Data providers receiving subqueries do not know the whole query they evaluate. In
Table [1.1 we see a federated log of DBpedia and Bob, with execution tracesQf =
SELECT 7artifact WHERE f bob: me foaf : topic_interest Zartifact: <?artifact
dcterms : creator dbpedia: Leonardo_da_Vinci g. The question that emerges in this
example, is how Bob data provider could know that its data were combined with data of
DBpedia data provider. Next, we de ne the problem we aim to solve.

8In this thesis, we refer to LDF as TPF servers.
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1.3 Problem statement

The limitation of consuming Linked Data using either federated query processing or TPFs,
is that providers are not aware of the whole user queries they process. Data providers
just observe subqueries of decomposed user queries and have no idea about their data
usage i.e., which data are joined with their datasets, when and by whom. Knowing how
datasets are queried is essential, not only for ensuring usage control but for other purposes
as well. In particular, data providers need to know the queries they process in order to
optimize the cost of provided services (i.e., access to their Linked Data), justify return
on investment, improve their users' experience or even create business models to discover
usage trends over the Semantic Web.

In the traditional model of data warehousgthe meta-information of data usage is
completely hidden from data providers. But due to the distributed nature of the Semantic
Web, the extraction and processing of all Linked Data locally at the data consumer seems
a paradox. On the other hand, for query processing either over single, or, federations
of data providers, the de ciency of ignoring how data are joined remains open to be
answered.

A simple solution is to consider that data consumers inform data providers about their
data usage, either: (i)a priori, for instance by respecting licence agreements established
between both parties [[51], (ii))on the y, through query execution environments that
inform data providers, to which original query every subquery belongs to, or, (iii
posteriori, by publishing on the web their queries, once they have been executed. However,
such solutions are not practical and scalable. Even worst, data providers have to verify
that data are actually joined in the way public queries describe or agreements stipulate.
Only logs give evidences about real execution of queries.

In this thesis we aim to infer what users are looking for on the Semantic Web, by
inferring the general form of SPARQL queries, in particular over (i) single or federations
of TPF servers, and, (b) over federations of SPARQL endpoints. The scienti ¢ question
we aim to answer, is the following:

How to infer Basic Graph Patterns (BGPs) of SPARQL queries executed by data con-
sumers from logs of servers hosted by data providers?

Note that we do not aim to infer the exact queries posed by users as we are interested,
in a general way, in detecting how Linked Data are crossed together.

1.4 Approach

We aim to reconstruct BGPs from logs of Linked Data providers. Extracting information
from logs is traditionally a Data Mining process. A log of subqueries is in fact a log
of accessed resources via the web. Thus, Data Mining algorithms [3] 15, 32] could be
used to solve our problem where each predicate, triple pattern or subquery is an accessed
resource on the data provider. The lacunae of Data Mining is that none of its algorithms
has addressed reversing BGPs from a query log. In general, these algorithms extract sets
of items and deduce rules based on occurrences of items in query logs. Unfortunately,
obtained results may not be always representative of joins. In particular, frequent sets of
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accessed resources do not correspond necessarily to joins and joins are not always frequent
enough to be deduced as sets.

LD provider IP | Time Query Answer

Bob ip1| 12:11:10 | SELECT WHERE f f?artifact 7! wd:Q12418 g
Bob : me foaf : topic_interest ?artifact g

DBpedia ip1 | 12:11:15 | SELECT WHERE f f ?artifact 7! wd:Q12418 ;
?artifact dcterms :title ?title g 2title 7! "Mona Lisa "g

SELECT WHERE f
DBpedia ip1 | 12:11:15 | ?artifact dcterms : creator f?artifact 7! wd:Q12418 g
dbpedia: Leonardo _da_Vincig

Table 1.2 Federated log ofQ, and Q,, traces, produced by a federated query engine
and executed concurrently over the federation of SPARQL endpoints that are hosted by
DBpedia and Bob data providers.

In this thesis, we propose a BGP reversing approach to solve our problem statement.
Our work aims to reveal and deduce joins between triple patterns i.e., to extract exe-
cuted BGPs over the Linked Data from single or federated logs of Linked Data providers.
The goal, is to link hundred or thousand subqueries that correspond to one or more user
gueries, based on common constants on their triple patterns or mappings of their projected
variables. The main challenge is the concurrent execution of queries. Suppose an addi-
tional SPARQL query Q,, = SELECT WHERE f ?artifact dcterms : title ?itle g,
executed concurrently withQ, from the same useip;. The federated log of DBpedia and
Bob for a concurrent execution of); and Q,, , is presented in Tablé 1.2. We observe that
all queries in the log concern the same resource for the variaBsetifact i.e.,wd: Q12418
If we nd a function f to reverse BGPs from execution traces of one query, fisable to
reverse the same BGPs from execution traces of several concurrent queries?

1.5 Organization and contributions

The contributions of this thesis are, in summary:

The de nition of the scienti ¢ problem of reversing BGPs of user queries, from a
log of subqueries that corresponds to their execution traces.

The analysis of Data Mining algorithms to solve our problem and their limitations.

LIFT, an ad hoc approach that reverses triple patterns and their joins, evaluated
through Triple Pattern Fragments over single or federations of TPF servers. Ob-
tained results have good recall and a precision which depends on the concurrent
execution of queries and the deduction parameters bfFT.

FETA, an ad hoc approach that reverses triple patterns and their joins, evaluated
through federated query processingver federations of SPARQL endpoints. Similarly
to LIFT, obtained results have good recall and a precision which depends on the
concurrent execution of queries and the deduction parameters BETA.
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The thesis manuscript is organized as follows: Chaptéf 2 introduces the SPARQL
semantics, illustrates two main procedures for querying the Linked Data and de nes
formally the scienti ¢ problem we address. The related work of Data Mining, is analysed
in Chapter [3. Chapter[4 presentdIFT, our proposed reversing approach that extracts
BGPs from single or federated logs of TPF servers. Chapf{dr 5 preseRETA, our proposed
reversing approach that extracts BGPs from federated logs of SPARQL endpoints. Finally,
conclusions and perspectives are outlined in Chaptelr 6.
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In this chapter we illustrate how SPARQL expressions are formally de ned and then
consumed over data providers using various query processing strategies, each with its own
optimization techniques. Then, based on traces produced with these query processing
strategies, we formally de ne the problem we aim to solveHow to infer Basic Graph
Patterns (BGPs) of SPARQL queries executed by data consumers from logs of servers
hosted by data providers?

First, we present how SPARQL semantics formalize the graph expressions to consume
Linked Data, in Section[2.1. Then, we describe the main physical join operators, used
in practice to evaluate SPARQL, in Sectiorj 2]2. Thereafter, we illustrate two main ap-
proaches to consume Linked Data based on these physical operators, each with its own
optimization techniques. In particular, rst we present query processing over single or
federations of TPF servers in Sectioh 2.3, and second, query processing over federations
of SPARQL endpoints in Sectior] 2}4. Finally, we formally de ne the scienti ¢ problem
we aim to solve based on log traces generated with these approaches, in Seftign 2.5.

23
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2.1 SPARQL semantics

RDF is a model that represents the Linked Data as directed labeled graphs and SPARQL is
essentially a graph-matching query language. In this section, we address the formal study
of SPARQL, by focusing on its graph pattern facilitf} From its basic features, SPARQL

is used to build recursively more complex expressions in order to consume data residing
in one or more data providers. In order to de ne how these expressions are evaluated
over RDF graphs, we adopt the formalization of [39, 47]. The elementary assumptions
and de nitions we adopt, are:

We assume pairwise disjoint in nite setsB, L, | (blank nodes, literals, and IRIs re-
spectively). A RDF triple, tr, has the form(s; p; 9, where the subjecs 2 (I ; B), the
predicatep 2 | and the objecto 2 (I ; B; L). A RDF graph is a set of triples, also
called RDF dataset or RDF document. The nite set of all triples in a RDF graph is
G22" ,whereT=(I[B ) (I) (I[B[L ) isthe (innite) set of all RDF triples.

We assume an in nite setS of variables. A mapping is a partial, non surjective
and non injective function that expresses a variable-to-document binding i.e.; S 7!
BLI . The universe of all mappings is . The domain of a mapping,dom( ), is the
subsetS where is de ned. Two mappings ;, » are compatible, written ; 2,
if they agree on their common domain variablgsi.e., if 1(?x) = (?x); 8 7 2
(dom( ;)\ dom( ;)). This is equivalent to say that ;[ , is also a mapping.

The SPARQL language and Relational Algebra have the same expressive power [5].
For this reason, SPARQL is formalized based on Relational Algebra, usisgt-basedse-
manticg] in order to evaluate algebraic operatof$ Next de nitions, present SPARQL
algebraic syntax.

De nition 1 (SPARQL expression) A SPARQL graph pattern expressiorP is built
recursively as followg

1. A triple pattern, tp, is a graph pattern represented by a triple fronl [L[S )
(s ) «af[Lrs ).

2. If P, and P, are graph patterns, then expressiond?( AND PZ)E], (P, OPT P;)
and (P, UNION P,) are graph patterns i.e., conjunction, optional, and union graph
pattern, respectively.

3. If P is a graph pattern andR is a SPARQL built-in conditior{’}, then the expression
(P FILTER R) is a graph pattern (or a lIter graph pattern).

1The de nitions presented in this chapter concern the 1.0 SPARQL protocol version.

2Variables in SPARQL language are pre xed by a '?' symbol.

3Almost all aspects of set-based semantics can be carried over the o cidbag-basedsemantics adopted
by W3C [47].

4Which are partially extended for SPARQL 1.1 [7].

SSPARQL 1.1 extends SPARQL 1.0 with graph expression keywords, such aSERVICE.

SNote that conjunction is also denoted with the "." symbol.

’A SPARQL built-in condition is constructed using a combination of elementsi[L[S  and constants,
logical connectivities (: ; ~; _), inequality or equality symbols (<; ; ;> or =), unary predicates
(such asboundor isIRI ) plus other features.
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De nition 2 (SPARQL set algebra) Let 1, o be mapping setsR is a lter
condition and S S be a nite set of variables. The algebraic operations of joinl(),
union ([ ), minus (n), projection ( ), and selection () are de ned as follow:

=f 4 2] 12 1, 22 2: 1 29

=f j 2 1_ 2 29

=f 12 1)8 22 2 16 29

fro1j9 2:( [ 22 ) ~(dom( ) S)” (dom( 2)\ S=7)g

f 2 j FRg

De nition 3 (SPARQL set semantics) Let G be a RDF graph,tp a triple pattern, P,

P, P, SPARQL expressionsR a lter condition and S S be a nite set of variables.
The evaluation of a graph expressidfiP ]|, by using the set semantics as described above,
is de ned recursively as follows:

[tpllc .= f j (dom( )= vars(tp)) * ( (tp) 2G) g
[[P1 AND Pl :=[[Pillc 1 [[P2lle

[[P1 UNION P]Jc := [[Pillc [ [[P2]lc

[[P1 OPT Polle := ([[Pulle 1 [[P2lle) [ ([[Pille n[P2lle)
[P FILTER R ]lc := r([PIlr)

[[SELECTs (P)llec == s([[Plle)

[[ASK (P)llc == : (; =I[[Plle)

Note, that these elementary operators may be used to recursively de ne other. For
instance, thefull outer join is evaluated as:( 11 2)[ ( 1n 2)[ ( 2n 1).

In this section we reviewed the formal de nitions of the SPARQL language and how
it is used to evaluate RDF graph expressions. Next, we describe how the evaluation of
SPARQL expressions is implemented over the distributed network of the Linked Data
through physical join operators, namelysymmetric hashand nested-loopjoins.

2.2 Physical join operators

We focus in this work on join operators in distributed environments, as we aim to deduce
how data are combined. Join features de ne the evaluation of a SPARQL query at the
conceptual level i.e., what needs to be done, thus calleajical operators Physical opera-
tors, each associated with a cost, implement the operation described by logical operators
l.e., stipulate how the join is actually done. We present next the physical operators that
are mainly used to evaluate SPARQL queries, namelgymmetric hashand nested-loop
joins.

Consider the graph expressionR = f?x p2 2yg and S = f?z p3 g, which are eval-
uated over data providerspy and pg respectively. M and N are the sizes oR and S,
respectively. R-matching triples aref (sl; p2; 03); (s2; p2; ol); (s3; p2; o4) g, while

8SPARQL 1.1 extends 1.0 also with features to evaluate the variables contained in graph expressions,
such asFILTER NOT EXISTS .
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S-matching triples aref (s2; p3; ol); (s2; p3; 02); (s4; p3; 03) g. We denote every
id-matching triple of a graph expressiorP astrp, €.9.,trs, = (s2; p3; ol). Next we
evaluate theR 1 S conjunction graph pattern, using the symmetric hash and nested-loop
operators that we describe next.

Symmetric hash join  [60]: In the traditional hash join [13], two phases are per-
formed. First, inputs from the smaller dataset are partitioned i.e., built into a hash table.
Then, tuples of the opposite dataset are used to probe i.e., lookup matching data from
the built table. For this, its time complexity is O(M + N). This is a blocking operator as,
rst, inputs from the smaller dataset must be partitioned into a table. On the other hand,
the symmetric hashjoin uses at the same time both datasets to partition and lookup com-
mon data, independently of which dataset has the smaller cardinality. Symmetric hash
is used to reduce response time because of its fully pipelined nature as build and probe
phases are interleaved. That is, each tuple from either dataset is partitioned into a hash
table and at the same time used to probe the hash table of the other dataset. So the
complexity of this operator isO(2 (M + N)), equivalent to O(M + N). Depending on
the size of retrieved datasets i.e., interim result sets, it can be a very e cient solution due
to its possible parallelization. However, symmetric hash is expensive if the interim result
sets are much larger than the join result size. In addition, if remote sites impose a result
size limit k, wherek < jSj or jRj, then join results may be lost([7].

The symmetric hash operator proceeds incrementdilyby fetching one by one triples
from both R and S datasets for our example. Firstfrg, andtrs, are partitioned to their
corresponding hash tables and probed to the opposite ones. Then, it is the turntog,
and trs,, and nally of trg, and trs,. The conjunction graph patternR 1 S produces
results when the triple pairsftrg,, trs,gandftrg,, trs, g are joined. Thus, solution map-
pings with this physical operator are extracted only in the last step, wherg g, and tr s,
are fetched from their sources and are also used to probe the opposite triples respectively.

Nested-loop join [30]: In a double iteration, each triple of the outer dataset is used
to search matching triples in the inner, so its time complexity iO(M N). In a dis-
tributed environment, in order for nested-loops to be e ective the outer is the smaller and
the inner is the largest source. The main advantages of this physical operator, is that (a)
it is used to avoid reaching the limit response de ned by data providers, as triples of the
smaller dataset are progressively pushed to the site hosting the larger dataset, and (b) the
necessary in-memory size to compare the input data, is less important than in the case
of a symmetric hash join. The disadvantages of nested-loop compared to symmetric hash
are: (a) its higher time complexity, and (b) the fact that it is not by default pipelined.
Nested-loop joins can be evaluated either as a blocking operator [7], or, enhanced with
the well known pipelined operator model described in[13]. In the former case, all triples
of the outer dataset are extracted locally at the client before probing the inner dataset
in the opposite site. In the latter case, triples of the outer dataset are progressively used
to probe matching triples in the inner, without waiting all outer triples to be extracted

9The block size of triples that are incrementally extracted, is de ned using theLIMIT feature. Every
following step of the symmetric hash join, fetches the next matching triple de ned with the OFFSET
operator.
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locally at the client.

The nested-loop operator for our example, may be implemented either in a blocking or
pipelined fashion. In any case, the rst solution mapping is produced wheg, is pushed
to the inner dataset while the second solution withtg,, as the conjunction graph pat-
tern R 1 S produces results when the triple pair§trg,, trs,g and ftrg,, trs,g are joined.
Note that as both datasets have the same cardinality, the join ordering choice is arbitrary.

Next, we focus on two approaches to query the Linked Data. First, using Triple

Pattern Fragments over single or federations of TPF servers, in Sectipn [2.3. Second,
using federated query processing over federations of SPARQL endpoints, in Secfioh 2.4.

2.3 Querying TPF servers

data Linked Data triple pattern SPARQL
dump document fragments result

1 1 HE 1 : : : |
generic requests specific requests
high client effort various types of high server effort
high server availability Linked Data Fragments low server availability

Figure 2.1 Di erent types of Linked Data Fragments (LDFs) and their trade-o s [57].

Triple Pattern Fragments, also called basic LDFs, were proposed to leverage the "pres-
sure" on data provideri&)] by delegating to clients the process of high cost SPARQL fea-
tures [58]. As we see in Figurg 2.1, all di erent types of LDFs are hierarchized based on
a combination of characteristics of Web APIs such agerformanceor cache reusefrom
the perspective of either servers or clients performing a speci c task. For instancedata
dump is the LDF that requires a high e ort on the client but at the same time creates
high availability on the server. These criteria are:

1. Performance : Measures the rate of completion per query processing task i.e., the
number of processed requests/responses per time unit.

2. Cost: Refers to consumed resources per query processing task i.e., CPU, RAM, and
IO consumption.

3. Cache reuse: Measures the ratio of items in the case that are requested multiple
times versus the totality of stored items in this cactf€]

4. Bandwidth : Consists of the product of retrieved responses with the average re-
sponse size, per query processing task.

10 inked Data providers e.g., DBpedia, publish their data both as SPARQL endpoint and TPF server.
1servers use extensively caches with LDFs. As clients have the tendency to repeat the same queries,
it is useful for data providers to employ practices ofdata shipping .
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5. Eciency : Measures the fraction of data retrieved from a server during the execu-
tion of a task over the amount of data that are actually required for this task. This
measure was introduced to highlight the overhead for clients when using TPFs, as
they mostly bear the workload of query processing.

TPF clients decompose SPARQL queries into single triple patterns which they evaluate
on TPF servers, and process locally the high cost operators of the SPARQL language.
This approach introduces new semantics and de nitions, that we abstractly present in
Section[2.3.l. Then, based on TPF semantics, we illustrate the query evaluation with
TPFs in Section[2.3.2.

2.3.1 The TPF framework

TPF semantics describe conceptually how the client needs to evaluate complex queries,
by matching only single triple patterns on the server. Next, we brie y introduce the TPF
concepts. The formalization of both LDF and TPF is analytically presented in[59]. We
use the simpli ed dataset of Tablg 2.1 to explain the de nitions of this sectidh]

@pa
clpla
c2plb
c3plc
c4pld

cl p2 toto
C2 p2 toto
c3 pa3 titi
c4 pa3 titi
clpda
c2p4b

Table 2.1 Example of a simpli ed dataset of a TPF server, hosted by data providep, .

Triple Pattern Fragments (TPF) interface : Consists of Linked Data Fragments
with the following properties: (a) data: all triples of a RDF graph that match a
given triple pattern and are returned as answer to a single triple pattern subquery
posed by a client, (b) metadata estimation of the number of triples that match
the given triple pattern, and (c) controls: a hypermedia form that allows clients to
retrieve any TPF of the same knowledge graph.

We suppose that the dataset presented in Tabje 2.1 is published by the TPF server
hosted byp, data provider. Consider the triple patterntp = f?y pl Xg. pa will re-
turn as answer to this triple pattern a TPF with: (a) the set of triples that matches
the triple pattern i.e., f (cl; pl; a); (c2; pl; b); (c3; pl;, ¢); (c4; pl;, d) g (b)
the estimation of the number of matching triples for this set i.e., 4 triples and (c) a

12Note, that for simplicity we removed the pre xes from predicates.



2.3. QUERYING TPF SERVERS 29

form with how to retrieve other triple patterns of the same graph i.e., triple patterns
f2x p2 g, f2x p3 g and f ?x p4 ¥g.

Triple-pattern-based selector function . Let tp be a triple pattern. The triple-
pattern-based selector function fotp, denoted bysry, , is a selector function that for
every datasetG 2 2" is de ned by sry, = ftr 2 G j tris @ matching triple for tp g.

For the dataset of Table[ 2.1, of a TPF server hosted bga, an instance of triple-
pattern-based selector corresponding ttp = f?y pl Xg is sry, = f?subject= &
predicate = pl & object =g. Note, that the TPF client always renames variable
names in a SPARQL query asubject, predicate or object The TPF returned from
the TPF server fortp, is described in the previous point.

Hypermedia controls : A hypermedia control is a declarative construct, that in-
forms clients for possible application and/or session state changes in the server and
explains how to e ectuate them. With this information, no external documentation

is necessary to browse and consume the datasets of this server. TPF servers use
on their interfaces a speci ¢ language, namely thelydraCoreV ocabulary[24], in
order to de ne the collection of links and forms in RDF.

A simpli ed set of controls, regarding forms for the dataset in Tablé 2]1, is the set of
predicates that can be answered from this TPF server i.€.pl; p2; p3; p4g. With
this information the TPF client will know the possible triple patterns that this TPF
server is able to answer, even when requesting only one triple pattern.

Triple Pattern Fragment : Let G 2 2T be a nite set of blank-node-free RDF
triples. A Triple Pattern Fragment (TPF) of G, denotedf , is atuplehu;sr; ;M;Ci
with the following ve elements: (i) u is a URI representing the "authoritative”
source from whichf can be retrieved, (ii) sr is a selector function, (iii) is a set
of (blank-node-free) RDF triples that is the result of applying the selector function
sr to G, (iv) M is a nite set of (additional) RDF triples, including triples that
represent metadata for f, and (v)C is a nite set of hypermedia controls.

Consider that querySELECT WHERE f?x p2toto : 2x pl g is addressed to
TPF server ofpa. The corresponding TPFs for each triple pattern in this query, are:

fip, = hugp, = http : ==pa:com=sp,;
Sryp, = f?subject= & predicate= p2 & object= totog;
wp, = f(cl; p2; toto); (c2; p2; toto)g
My, = f(up,; void: triples; 2)g;
C=1pl; p2; p3; p4g i, and

fip, = huy, = http : ==pa:com=sg,;
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Sryp, = f?subject= & predicate= pl & object=g;

v, = F(CL; pL; a); (€2 pL b); (c3; pL; ©); (¢4 pl; d)g;
My, = f(uyp,; void: triples; 4)g;

C = fpl; p2; p3; p4g i

Note that for fy,, andfy, we use the same annotatiol€, as control elds for both
fragments are the same for the dataset of the TPF server pf.

TPF page : Let hu;sr; ;M;Ci bef, a TPF of some nite set of blank-node-free
RDF triples G 2 2" . A page partitioning of f is a nite, non-empty set [[§whose
elements are called pages 6f Each page? 2 has the formhuy; u; sry; »; My; Cyi
with the following six properties: (i) uz is the URI from which the page is retrieved,
(i) u is the source for retrieving the whold , (ii) srx is a selector function to re-
trieve the page, (iii) x is the set of matching triples of the page, a subset of the
triples matching f (iv) M is a superset of the metadata of , with both matching
estimations of the page and the fragmerit, and (v) Cy is a superset of the controls
of f , enhanced with links to previous and next pages.

A TPF page is composed by the subset of matching triples of a fragment, which
size is de ned by the TPF servet] Next we present the sets of TPF pages for
triple patterns of our example query. Consider that the page size de ned by the
TPF server is equal to 2. Then, the fragment that corresponds ttp; will not be
fractioned. Instead, the corresponding set of pages fim,, namely #,, and #,,, are:

#2a = hug,, = http : ==pa:com=sp,& page=1;
Uyp, = http : ==pa:com=sp,
Sry,, = Slyp,& page=1,
#. = £(c1; pl; @); (2 pL; bg;
My,, = f(ug,;void: triples; 2); (uy,;void: triples; 4)g;
Cy,, = T pL; p2; p3; p4g;
f< prev_page > null; <next _page > ug, 09 i, and

#an = huy, = http : ==pa:com=sp,& page= 2;
Uyp, = http : ==pa:com=sp,
Sly,, = Sryp,& page= 2;
#w = F(C3; pl; ©); (c4 pl, d)g;
My,, = f(ug,,; void: triples; 2); (uy,; void: triples; 4)g;

3We use the notation instead of [59] to distinguish it from the federation of data providers , a
notation we used in [35].
141n practice, a TPF server e.g., DBpedia de nes a page size equal to 100 matching triples.



2.3. QUERYING TPF SERVERS 31

Cu,. = T pL p2; p3; p4g;
f< prev_page > uy,,; <next_page > nullgg i

Next, we describe the procedure of query evaluation through TPFs. In particular we
present thepipelined evaluation of TPFs, where mappings from a fragment that match a
triple pattern are incrementally pushed into another, through a dynamic implementation
of the nested-loop join.

2.3.2 TPF query processing

TPFs can be used to evaluate SPARQL queries over both single or federations of TPF
servers. The general work ow model of query execution on TPF severs, represented in
Figure[2.2, consists of three steps:

1. Query decomposition Transforms at the TPF client a SPARQL query into sets of
triple patterns that are evaluated through a set of TPFs over the targeted TPF
server(s). SPARQL features will be processed locally at the TPF client, during the
distributed executionphase.

2. Global query optimization Establishes at the TPF client the most suitable order of
joins in the original query, in order to minimize the number of http requests using
a cost estimation function. First, the TPF client sends a selector function for each
triple pattern of the original query. Then, it decides the join ordering execution
using the estimation of matching triples in theMetadata M, returned by the TPF
server of each selector. Note that when a query is addressed to a federation of
TPF servers, each selector in this phase is used for both count estimation and data
localisation.

3. Distributed execution Evaluates each triple pattern at the TPF server based on the
join ordering established in the previous phase and pushes its mappings towards the
next triple pattern. This procedure simulates anested-loopimplementation. The
rst implementation of the algorithm in [58] de nes a blockingiterator to evaluate
each nested-loop. More precisely, this blocking operator needs rst to pull all triples
of the outer dataset before pushing mappings into the inner. The evolution of this
algorithm in [57], employs the pipelined iterator model [13]. This model extracts
progressively triples that match a triple pattern and pushes their mappings to the
next, without waiting to extract the remaining triples of the former. Next, we see
an example of this evaluation.

Consider againSELECT WHERE f?x p2 toto : ?x pl1 %g. First, this query is
decomposed in a set of triple patterns i.etp; = f ?x p2 totog and tp, = f 2x p1 Ag. Next,
the TPF client sends two selectors, one for each triple pattern i.ef.;p; and fy,», and uses
their Metadata i.e., My, and My,,, to choose the most suitable join ordering, as we see
in the rst two entries of Table @ As My, = 2 and M¢,, =4, the TPF client starts
with tp;. That is, mapping results of the join variable oftp; i.e., ?subject7! c1; c2, are
pushed into the corresponding variable dp,, one by one. TPF client pushes these map-
pings by evaluating sequentially the triple pattern selectors?subject= c1 & predicate=
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SPARQL query Query results
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Query decomposition
(sets of triple patterns. SPARQL
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"count estimation") processed in blocks

Integration
(non-blocking TPF
evaluation per pagg

TPFy, page request

_______________ >

TPF,, page result ii
......................... >

@T PF server

Figure 2.2 TPF query processing model. When applied over a federation of TPF servers,
the selector functions for count estimation are also used for data localisation.

LD

, IP | Time TP selector Answer
provider
f<::controls:: >;
Pa ip1 | 09:10:0] 7?subject= & predicate f(cl; p1; a);
= pl & object= (c2; p1; b);
(c3; pL; o),
(c4; pl; d)g;
<::metadata:::>g
f<::controls:: >;
Pa ip1 | 09:10:04 7?subject= & predicate f(cl; p2; toto);
= p2 & object= toto (c2; p2; toto)g;
<::metadata:::>g
f<::controls::: >;
Pa ip1 | 09:10:07 ?subject= cl & predicate f(cl;, pl;, a);
= pl & object= <::metadata::: >g
f<::controls:: >;
Pa ip1 | 09:10:0¢ ?subject= c2 & predicate f(c2; pl; bg;
= pl & object= <::metadata:::>g

Table 2.2 Query log of SELECT WHERE f?x p2toto : ?2x pl %qg traces, produced
by a TPF client with ip; IP address and executed on the TPF server hosted Ipy data
provider.
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pl & object=g and f ?subject= c2 & predicate = pl & object=g to the TPF server,
which results to mappings?object 7! a and ?object 7! b respectively, as we see in
the last two entries of Table[2.2. This approach is recursive, as continuous joins between
multiple triple patterns are evaluated without waiting all mappings of a triple pattern to

be pushed into another. For instance, suppose that this query had a third triple pattern,
tps = T2y p3 g. In this case, results produced when pushing progressively mappings of
fip, INto tp, are subsequently pushed intdps, without waiting all mappings of fy,, to be
pushed intotp,.

In this section, rst we abstractly presented the concept of Triple Pattern Fragments.
Thereafter, we illustrated the incremental procedure of TPF evaluation through nested-
loops, that can be applied both over single or federations of TPF servers. Next, we de ne
the procedure of consuming Linked Data over federations of SPARQL endpoints.

2.4 Querying SPARQL endpoints

As pointed in Chapter[1, data consumers query Linked Data in SPARQL endpoints, either
by accessing directly their public interfaces or via query engines that access data residing
in di erent sites. In this section, we focus on query processing over federations of SPARQL
endpoints. Actually, query engines view SPARQL endpoints as federations of distributed
and autonomous sources, sharing their data to answer complex queries [14, 40]. Next, we
present the procedure of federated query processing employed by query engines, followed
by the illustration of two state of art query engines, namelyredX [48] andAnapsid [Z, 2].

2.4.1 Federated query processing

In federated query processingeferred also awirtual integration [14], a query is split into
subqueries that can be answered from a federation of data providers. This procedure is
employed by a federated query processor, hamed query engine. The federation is trans-
parent to the end user i.e., the distinct data sources can be queried as if they were a single
RDF graph. Challenges of federated query processing over the Linked Data, concern the
conception of aquery planand its distributed execution[3g].

We present below this procedure, based on distributed query processing over relational
database systems [22, 37] and which is adapted in the context of the Linked Datal[19].
Given a SPARQL query and a federation of SPARQL endpoints, a federated query engine
performs the following tasks, as we see in Figure P.3.

1. Query parsing/rewriting: Checks if the input query is valid regarding the SPARQL
protocol and, if necessary, rewrites and normalizes it. Regardless the optimization
techniques of the query engine this phase rewrites federated queries into equiva-
lent but more e cient ones, thus producing alternative execution plans. Typical
transformations are the elimination of redundant predicates or simpli cation of ex-
pressions. An example of query rewriting, is the transformation dR 1 S into
(R 1 S)[ (RnS). Intypical SPARQL optimization based on Relational Algebral[47],
guery rewriting rules are used in order to de ne equivalent SPARQL expressions that
minimize the execution cost for data consumers, such d&er pushing.
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Figure 2.3 Federated query processing model [37].

2. Data localization: Performs source selection among a user-de ned federation of

trusted SPARQL endpoints and rewrites the query into a decomposed set of sub-
gueries. Most approaches are based omaple-Pattern-Wise Source Selection (TP-
WSS) [12,[34/40[43,48]. In this strategy, even if the join produces a non-empty re-
sult set, some selected sources may not contribute to the retrieved data when joined
with others. Consequently, a possible overestimation of data sources may decrease
the performance of query processing by increasing network tra ¢ and intermediate
results. On the other hand,join-aware TPWSS strategies have been proposed to
reduce this problem based on predicates of triple patterns such as([2] 42]. There
exist also some other approaches that are not in the scope of this thesis [36].

. Global query optimization Optimizes the adopted query plan, by rewriting it using

various heuristics [[9/ 12| 48] such as, grouping evaluation of triple patterns to the
same source, minimizing intermediate results, minimizing number of calls, etc. As
an extension, dynamic oriented approaches adjust their planning based on load and
availability of sources [[2]. Note, that the cardinality estimation of matching data
is not based on statistics, as a reliable source providing this information does not
exist to the best of our knowledge.

Distributed query execution Deploys physicals operators in order to evaluate the
plan established in the previous steps. As presented in Sectjon|2.2, the evaluation of
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a join may be either (a)pipelined where results are incrementally produced by the
guery engine, or (b)blocking where intermediate results are blocked when SPARQL
endpoints are temporary unavailab(®}

@pa
slplol

sl pl o2
s2 pl o2
s3 pl o3
c3 pa3 titi
c4 p3 titi
clpda
c2pdb

(a) Dataset of pa

@ps
sl p2 o3
S2 p2 04
s3p2o01
s4 p2 o2
cl p5 toto
c2 p5 toto

(b) Dataset of pg

Table 2.3 Example of simpli ed datasets of two SPARQL endpoints, hosted by, and
ps data providers respectively.

In next section, we overview two state of art query engines, namely FedX and Anapsid,
and illustrate how each query engine evaluates the federated query processing model with
its own optimization techniques.

2.4.2 State of art query engines: FedX and Anapsid

FedX [48], is a framework that follows an on-demand approach to setup a federation of
SPARQL endpoints at query time. This query engine has the advantage that it does not
need anypreprocessed metadatauch asstatistics and indices to discover and consume
Linked Data, but is based only on the list of relevant SPARQL endpoints de ned by the
user. Figure[Z.4 presents the procedure of federated query processing of FedX. We use
the simpli ed datasets of Tabled 2.3a anfl 2.3b, to explain the de nitions of this sectipf

The set of heuristics and optimization techniques established by FedX for e cient query
processing, are namely:

1. Statement sourcesDiscovers the relevant sources able to answer each triple pattern
of a federated query through SPARQL ASK queries, given the user de ned list of

15Note that Integration is considered as a post step of federated query processing.
8Note that, like in the previous section, we removed pre xes from predicates for simplicity.
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Figure 2.4 Federated query processing model of FedX.

LD provider IP | Time Subquery Answer
Pa ip; | 10:00:01 SELEC,:?-ZI- ;i Z;l_}IERE { f?z7!f sl, s2gg
SELECT? 0% _1
WHERE
Ps ip1 | 10:00:04 {{s1p2?% 0} f?y_ 07!'f 03g;
UNION ?y 17!'f odgg
{s2p2y 1}}

Table 2.4 Federated query log oSELECT 7z ?y WHERE f?z pl 02: ?z p2 g traces,
produced byFedX query engine withip; IP address and executed over the federation of
SPARQL endpoints hosted byp, and pg data providers.

targeted SPARQL endpoints. This technique is used in conjunction with an adaptive
cache, that learns after executing each federated query the location(s) of its triple
patterns.

2. Groupings Groups the evaluation of multiple triple patterns to the same SPARQL
endpoint using the information extracted in the previous step. Thus, joins are
pushed to the SPARQL endpoint hosting the largest subtotal of the triple patterns
that need to be evaluated and local processing at the client is minimized. This type
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of joins are calledexclusive groups

3. Join ordering: Reorders the joins between triple patterns by using variable counting
techniques, in order to choose the most e ective evaluation order. FedX implements
a rule-based join functionto choose iteratively the next triple pattern to be eval-
uated. This function is an extension of the variable counting strategy [54], where
unboundvariables of a triple pattern are counted by excluding those that are com-
mon with variables of previously evaluated triple patterns. The next triple pattern
to be evaluated is the one with lessinboundvariables.

4. Nested-loops with bound joinsin conjunction with a nested-loop, it computes joins
in a block to minimize requests to the targeted sites. Before applying bound joins,
all matching triples of the outer dataset are retrieved. Then, mapping results of
these triple patterns i.e., literals/IRIs, are grouped into subqueries using SPARQL
UNION constructs. Each subquery is sent to the relevant sources and used to search
matching triples in the inner dataset.

Consider that querySELECT 7z 2%y WHERE f7?z pl 02 : ?z p2 g, is executed
over the federation of SPARQL endpoints of Tablgs 2.Ba afd 2|3b. FedX chooses to
start the evaluation with the rst triple pattern, based on the join ordering strategy

we presented above. In the second entry of Takile R.4, we see an example of a bound
query, where mappings ofp; = f?z pl o2g i.e., ,(?z) = fsl; s2g from the rst
entry of the same table are used to evaluatp, = f 7z p2 /g through a nested-loop.
The number of produced bound join queries, depends on the number of mappings
of the outer dataset and the block size of bound queries which is con gurable by
the user. For our example, as the cardinality of mappings ofy,, (?z) is 2 and for a
block size also equal to 2, FedX will send one bound query.

Anapsid [1, 2] is an adaptive query processing engine, that attempts to minimize the
workload of SPARQL endpoints by adapting its query execution to data availability and
run-time conditions. In order to do so, Anapsid provides witmon-blockingimplementa-
tions of physical join operations, thatopportunistically produces results as quickly as they
are retrieved from relevant sources. Figure 2.5 presents the procedure of federated query
processing of Anapsid. The set of heuristics and optimization techniques established by
Anapsid for e cient query processing are:

1. Schema alignments Obtains the ontologies of datasets of SPARQL endpoints and
stores them in form of acatalogue This catalogue is expressed as the set of predicates
that can be answered by each SPARQL endpoint, and which is exploited during data
localization.

2. Adaptive source selectionSelects SPARQL endpoints that can answer a query. For
this, it uses sampling techniques [31] to adapt on the execution context, namely: i)
Star Shaped Group Multiple sources or SSGMhere a triple pattern is evaluated by
the set of SPARQL endpoints that can give answers, iiptar Shaped Group Single
source or SSGSwhere a triple pattern is evaluated according to SSGM rules but
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Figure 2.5 Federated query processing model of Anapsid.

SPARQL result

LD provider IP | Time Subquery Answer
Pa ipy | 11:30:15 SELE%-ZI- ;i ng}'ERE { f<?z7!'f sl, s2g>g
SELECT ?y WHERE
Ps ipy | 11:30:17 {{ 2Zzp2¥} f<?y7!f 03; o4g>g

FILTER
((?z="s1") || (?z="s2"))}

Table 2.5 Federated query log oSELECT 7z 2y WHERE f?z pl o2: ?z p2 g traces,
produced byAnapsid query engine withip; IP address and executed over the federation
of SPARQL endpoints hosted byp, and pg data providers.

also by choosing the rst SPARQL endpoint which con rms that can evaluate this
triple pattern, and iii) Exclusive Groupswhich is not recommended but only created
to be compared with FedX.

3. Bushy-tree query decomposition and rewritingDecomposes user queries into mul-
tiple subqueries and eventually rewrites them in SPARQL 1.1. These subqueries
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are produced using an estimation function cost, which is based on the hypothesis
that subqueries with triple patterns sharing exactly one variable have small-sized
cardinality of answers. This gives an execution plan in form of a balanced tree,
compared to theleft linear tree of FedX where each pattern is individually evalu-
ated and subsequently its mappings are pushed to the next one. Thus, as the depth
of the execution tree is minimized, the parallelization of the processing workload is
maximized during the adaptive evaluation of the query.

4. Adaptive query execution Employs physical join operators in order to adapt on the
execution context, during query evaluation. These operators are: @daptive Group
Join (Agjoin) , a combination of symmetric hash ancjoin, in order to integrate the
results as they are produced, (i)Adaptive Dependent Join (Adjoin) an extension
of Agjoin where results are produced when both SPARQL endpoints are available
and not asynchronously, and nally (iii) Adaptive Nested Join (Anjoin), an exten-
sion of nested-loop deployed when selectivity between triple patterns is not balanced.

Consider again querySELECT ?z ?%y WHERE f?z pl 02 : ?z p2 %g. Anapsid
using SSGM or SSGS, chooses to start the evaluation with the rst triple pattern
based on the join ordering strategy we presented above. In the second entry of
Table [2.5, we see a query with two FILTER options produced with thanjoin op-
erator, where mappings ofp; = f?z pl o2g i.e., ,(?z) = fsl, s2g from the rst
entry of the same table are used to evaluatp, = f ?z p2 /g through a nested-loop.
The number of produced FILTER join queries depends on the number of mappings
of the outer triple pattern and a static upper bound for FILTER options which is
employed by Anapsid. So for our example, as the cardinality of mappings af, (?z)

is 2 and for a block size equal to 2, we have one FILTER query.

In Sections[2.l {24, we presented two approaches to consume Linked Data using
either Triple Pattern Fragments or the procedure of federated query processing. Next, we
formally de ne the problem we aim to solve: how to reverse BGPs of user queries from
logs of their execution traces.

2.5 Formal problem statement

As pointed in Chapter[], the limitation of query processing over the Linked Data, is that
data providers are not aware of queries they process; they just observe subqueries of the
original user queries. In this thesis we aim to answer this limitation (a) over single or fed-
erations of TPF servers, and, (b) over federations of SPARQL endpoints. In order to do
so, we use the example of Bob and DBpedia sites, as presented on pa@je 17 in Chapter 1,
which triples are presented in Tables 2.6b ar{d 2]6c, respectively.

De nition 4 (Query log) A log of one or more Linked Data providers is a sequence of
execution traces structured in tuples$p; ip;ts; q; ri wherep is a data provider,ip is the ip
address of the clientts is the timestamp of the http requesty is a query, andr is the
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Pre x IRI
alice <http://example.org/alice#me/>
bob <http://lexample.org/bob#me/>
dbpedia <http://dbpedia.org/resource/>
dcterms <http://purl.org/dc/terms/>
europeana <http://data.europeana.eu/item/>
foaf <http://xmins.com/foaf/0.1/>
schema <http://schema.org/sameAs/>
rcf <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
wiki <http://www.wikidata.org/entity/>
xsd <http://www.w3.0rg/2001/XMLSchema#>

(a) IRI pre xes

@Bob
(bob:me, rdf:type, foaf.Person)
(bob:me, foaf:knows, alice:me)
(bob:me, schema:birthDate, "1990-07-04%sd:date)
(bob:me, foaf:topic_interest, wiki:Q12418)

(b) Dataset triples of Bob

@DBpedia
(wiki:Q12418, dcterms:creator, dbpedia:Leonardo_da_Vinci)
(europeana:243FA...4D619, dcterms:subject, wiki:Q12418
(wd:Q12418, dcterms:title, "Mona Lisa")

(c) Dataset triples of DBpedia (concerning "Mona Lisa")

Table 2.6 Dataset triples of DBpedia and Bob data providers.

set of matching RDF triples, returned as a response tpfrom data provider p. Note that
for a single data provider, log traces are totally ordered, while, for a federation of data
providers, log traces are partially ordered as queries may be received in di erent sites at
same time.

We denote byE(Q;) the execution trace of queryQ;, which consists of log of sub-
gueries produced when a data consumer executes the SPARQL qu&y We represent
execution traces oin concurrent queries byE (Q; k ::: k Qp).

Consider againQ, = SELECT ~artifact WHERE f bob: me foaf : topic_interest
?artifact : ?artifact dcterms : creator dbpedia: Leonardo_da_Vinci g, of Figure[1.3
on page[ 1. Triple patternstp; and tp, of Q, are evaluated at Bob's and DBpedia's
sites, respectively. A federated log corresponding to the execution @f is presented in
Table [1.] on pagg 18. Suppose that the user witip; IP Address, concurrently poses
another queryQ,, = SELECT  WHERE f 7artifact dcterms :title ?title g. This
query corresponds tadBGP, = ftpsg, wheretps = f ?artifact dcterms : title “title g.
The federated log of DBpedia and Bob for a concurrent execution @ and Q,, , denoted

asE(Q, kQy ), is presented in Tabld 1]2 on pade PO.
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De nition 5 (BGP reversing) Given a log corresponding to the execution of one query
E(Qj), nd a function f(E(Q;)) producing a set of BGPS BGP;;::;; BGP,g, such that

f (E(Q;)) approximates ( ) the BGPs existing in the original query. Thus, if we consider
that BGP (Q;) returns the set of BGPs ofQ; thenf (E(Q;)) BGP(Q)).

We consider that a BGP approximates another () if both contain same triple patterns
and same joins. We evaluate the quality df with the precision and recall of triple patterns
and joins returned byf against those existing in original queries. If (E(Q,)) produces
the BGP = ftp; : tpog, then precision and recall of triple patterns and joins are perfect
according to the BGP present inQ), .

Property 1 (Resistance to concurrency) The reversing functionf should guarantee
that BGPs obtained from execution traces osolated queries, approximate () results ob-
tained from execution traces ofconcurrentqueries: f (E(Q1))[ [ f(E(Qn)) f(E(Q1 k

ik Qn)):

If Q and Q, , were sent by two dierent IP addresses, it is possible to separate
E(Q kQp)into E(Q), E(Q ) and apply the reversing function to each trace. However,
in the worst case,Q, and Q;, have the same IP address i.e., a web application running
on the cloud that runs queriesQ, and Q,, in parallel. In this case, iff (E(Q, k Q)
produces theBGP = ftp; : tp, : tpsg then recall in joins is perfect. Precision of joins,
although, is equal to0:33 asf (E(Q, k Q;; )) deduce two additional false joins i.eftp; :

tpsg and ftp; : tpsg. Thus, we expect thatf (E(Q kQu))  f(E(Qi)) [ f(E(Qu)).

Next chapters, explore if existing approaches are able to solve the problem that was
formally de ned in this section and then present new ones. First, in Chapté¢f 3 we address
this problem using Data Mining algorithms to identify BGPs as frequent sets of triple
patterns. Then, in Chapter{4 we propose an approach to solve tB&P reversingproblem
over single or federations of TPF servers. Finally, in Chaptéri 5 we propose an approach
to solve the BGP reversing problem over federations of SPARQL endpoints.
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Extracting information from raw logs is a task related to theData Mining process,
known also asKnowledge Data Discovery (KDD) Data Mining algorithms have been
extensively used to extract knowledge from web logs. Therefore, Data Mining could
be used to solve our scienti ¢ problem, by considering each predicate, triple pattern or
subquery as a requested resource via the web on the data provider. The questiofCan
Data Mining algorithms extract BGPs of queries based on the occurrences of sequences of
their triple patterns?” In this chapter, we aim to explore if this is possible.

First, we briey present web usage mining, in Sectiofi 3.1. Then, we concentrate
on sequential pattern mining by illustrating its main approaches and presenting two
state of art algorithms, WINEPI and MINEPI, in Section[3.2. Third, we apply the
MINEPI algorithm as to solve our problem in Sectior] 3]3. Thereafter, we identify the
limitations of sequential pattern mining when applied over logs of Linked Data providers,
in Section[3.4. Finally, we present an extension MINEPI with either pre-processingdata
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transformation or post-processingconstraints which we developed to solve our problem in
Section[3.5.
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3.1 Web usage mining

Web mining [38,(52] is the application of Data Mining techniques to nd interesting and
potentially useful knowledge from web data, which is divided into: (ayeb content mining
which extracts useful information from a diversity of web content such as audio, video or
text, (b) web structure mining which models the web based on the topology of hyperlinks
and tags and (c)web usage miningwhich aims to understand the behaviour of users in
interacting with the web or within a website, as they navigate from web resource to web
resource.

We argue that our work is related toweb usage miningLogs of execution traces ac-
tually correspond to subqueries or simply triple patterns accessed via the HTTP protocol
on data providers. Consider the abstract log of Tablg 3.1, corresponding to execution
plans of queriesQa = SELECT ?2x 2y WHERE f 2x plol: X p2 % : ? p3 g,

Qg = SELECT %y WHERE f X p2 % 0, Qc = SELECT ?%y WHERE f 2y p3 2% g
and Qp = SELECT X WHERE f ?x pl ol g. In this chapter, we aim to explore

if the scienti ¢ problem we address, as presented on page 39 in Chagtér 2, is equivalent
to associate sets of triple patterns that are accessed on data providers via the web. The
intuition is to explore if joins of triple patterns, which are evaluated by query engines or
TPF clients in multiple blocks for optimization reasons, can be detected based on their
occurrences in server logs.

Various algorithms have been proposed in web usage mining in order to nd web usage
patterns either based on association ruling, clustering, classi cation or simply statistical
knowledge extraction. The approach that identi es causal relations between webpages,
is association ruling As we aim to discover which sets of triple patterns are joined
together from asequenceof subqueries/triple patterns evaluated through the HTTP pro-
tocol on data providers, we overview the association rule-based approach of sequential
pattern mining. In this case, frequent episodes of accessed webpages are identi ed, by
viewing a web historic journal as assequence of timestamped URLs

In the next section, we overview approaches sequential pattern miningand position
our interest to the approach that is most suitable to answer our scienti ¢ problem, namely
sequential mining overtemporal sequences

3.2 Sequential pattern mining

Sequential pattern mining [32] discovers frequempisodesfrom a sequence oévents An
event is a collection of totally or partially ordered item, where the set of all di erent
items composes thalphabet An episode is a set of events. The aim of sequential pattern
mining is to discover the sets of frequent episodes, in a log of either xed or dynamic
size. Such episodes can be represented as acyclic digraphs and are thus more general
than linearly ordered sequences. Frequent episodes are identi ed using a threshold value
which is represented either asrequency or support, in order to calculate the ratio or the
number of occurrences respectively of an episode in a log.

Sequential mining algorithms follow techniques similar t@association rule mining in

1Serial and parallel class of events correspond to totally or partially ordered items, respectively.
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LD -
provider IP Time HTTP request
http : ==pa:com=spargl=
[1] Pa ip1 11:24:19 &query = SELECT ?x ?y { ?x pl ol}

&format = json &timeout =0
http : ==pa:com=sparql=

[2] PA ip1 11:24:23 &query = SELECT ?y {s1 p2 ?y}

&format = json &timeout =0
http : ==pb:com=sparql=

[3] Ps ip1 11:24:24 &query = SELECT ?z { 03 p3 ?z}

&format = json &timeout =0
http : ==pa:com=spargl=

[4] Pa ip1 11:24:27 &query = SELECT ?y {s2 p2 ?y}

&format = json &timeout =0
http : ==pb:com=sparqgl=

[5] Ps ip1 11:24:28 &query = SELECT ?z {04 p3 7z}

&format = json &timeout =0
http : ==pa:com=sparql=

[6] PA ip1 11:24:30 &query = SELECT ?y { ?2x p2 ?y}

&format = json &timeout =0
http : ==pb:com=sparql=

[7] Ps ip1 11:24:31 &query= SELECT ?y { ?y p3 7?7z}

&format = json &timeout =0
http : ==pa:com=spargl=

[8] PA ip1 11:24:36 &query = SELECT ?x { ?x pl1 ol}

&format = json &timeout =0

Table 3.1 HTTP log of of Qs - Qp traces, produced by data consumer withp; IP
Address and executed over the federation @i and pg data providers. SPARQL results
are requested inson format with execution timeout = 0.

LD :
provider IP Time HTTP request
[1] Pa ip1 11:24:19 URL1
[2] Pa ip1 11:24:23 URL>
[3] PB ip1 11:24:24 URL3
[4] PA ip1 11:24:27 URL>
[5] Ps ip1 11:24:28 URL3
[6] pPa ip1 11:24:30 URL4
[7] Ps ip1 11:24:31 URLs
[8] PA ip1 11:24:36 URL

Table 3.2 HTTP log of web pages, accessed by the data consumer wigh IP Address,
over the federation ofpy and pg data providers. The log is represented as &mporal
seguence

order to discover causal relations between events. Although, the di erence with traditional
Data Mining is that sequential mining views data as a sequence. Therefore, sequential pat-
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tern mining can be applied over di erentdataset formatssuch as transactional-oriented,
streams, time series, etc.

Examples of raw data analyzed through sequential pattern mining include genome
searching, web logs, alarm data in telecommunications networks, population health data,
etc. In Table[3.2, we see an abstract example of an HTTP navigation journal. All
di erent events composing the alphabet of this example, areURL;; URL,; URLg3;
URL,4 and URL5. For a threshold de ned by the user as equal to 2, the deduced episodes
are: episodg, = f URL; g, episodgg = f URL, g, episode = f URL3 g and nally
episodgy = f URL,; URLj3 g, all with occurrencegpisode = 2.

Next, we overview the main categories of sequential pattern mining, namedpriori-
based pattern growth algorithmsand temporal sequencesn Section[3.2.1. Subsequently,
we focus on two state of art algorithms applied ovetemporal sequencesWINEPI and
MINEPI, that could be used to solve our problem, in Sectidn 3.2.2.

3.2.1 Approaches and techniques

Depending on the dataset format and the generation method of episodes, sequence mining
algorithms are divided into three broad classe5[32], we brie y overview below:

(A) Apriori-based : This family of algorithms discovers frequent sets of events that
appear in di erent transactions. In particular, they transform transactions into
sequences and apply on them thapriori approach [4] in order to generate associ-
ation rules. These algorithms are divided depending on how data are stored, into
horizontal and vertical. Horizontal e.g., AprioriAll, AprioriSome, or DynamicSome,
save the data by their Transaction 1d" and sort them by 'Customer Id" and
"Transaction Time". Vertical e.g., SPADE, SPAM or CCSM, transform their data
in event-oriented lists i.e., for each event there exist a list of paifsequence id;
timestampi. Vertical compared to horizontal algorithms, are used to applyepth-
rst approach to the mining and then employ pattern growth methods. Indepen-
dently of their taxonomy, once these algorithms transform transactions into se-
guences, they apply two phases (gandidate generationwhere episodes are gener-
ated in di erent ways e.g., maximal sequences, hash trees or pre x tree, each with
a particular cost in space and time, and, (2pruning: where candidate episodes
are considered as frequent, based on the user de ned threshold. The limitation of
apriori-based family, is the exponential number of generated episodes. Some works
address this problem usingonstraints i.e., conditions to remove generated episodes
such as episode length, time gap between events, etc.

In Figure [3.3, we see an example of transactions transformed into sequences. Note
that items of a transaction are considered as non ordered i.e., parallel, when trans-
formed into a sequence. For instance, customer with ID=1 bought on December
12, 2016 the items <a, b, c>, which are denoted in the sequence with ID=1 as
(a b c) parallel events. Once transactions are transformed into sequences, apriori
based algorithms are able to extract the most frequent episodes. In our example,
for support =5 and serial class of events, the most frequent episodes of maximum
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Customer ID Transaction items bought
(CID) Item
1 December 09, 2016 <a>
1 December 12, 2016 <a b,c>
1 December 15, 2016 <a,c>
1 December 18, 2016 <d>
1 December 20, 2016 <gc, f>
2 November 5, 2016 <a d>
2 November 7, 2016 <c>
2 November 12, 2016 <b,c>
2 November 22, 2016 <a, e>
3 November 23, 2016 <e, f>
3 December 1, 2016 <a,b>
3 December 10, 2016 <d, f>
3 December 12, 2016 <c>
3 December 14, 2016 <b>
4 November 12, 2016 <e>
4 November 15, 2016 <g>
4 November 20, 2016 <a, f>
4 December 1, 2016 <c>
4 December 10, 201€ <b>
4 December 20, 201€ <c>
(a) Transaction oriented DB, sorted by "Customer ID "
Seq(uselr[l)c)e D Sequence
1 < a(abc)(ac)d(cf) >
2 < (ad)c(bc)(ae) >
3 < (ef)(ab)(df)cb >
4 < eg(af)cbc >
(b) Sequential oriented DB, stored in anhorizontal for-

mat

Table 3.3 Transformation of transaction-oriented into sequence-oriented DB.

length isfa;b; @ as it has 5 occurrences. The episode; b; @ appears in di erent
subsequences i.ea(_bg and (abqg in the rst sequence, (a_)(bg in the second,
(abc in the third and nally (a_)bcin the fourth.

Regarding our scienti ¢ problem, we could apply theApriori  basedalgorithms to
extract BGPs of user queries by considering an execution log as a single transaction.
But with this approach, we do not use any more timestamps and all events are un-
ordered i.e., considered as parallel. Consequently, this will produce a large number
of generated episodesApriori  basedalgorithms would correlate triple patterns
even if they originally were captured in distant timestamps in the log, or, correlate
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triple patterns of the inner operand of a nested-loop that originally were captured
before triple patterns that seems to be the outer operand.

5|10 sequence Length-1 sequential patterns
<a(abc)(ac)d(cf)> <a> <b> <C>, < EIE o £
Support=5 2 | <(ad)c(bc)(ze)> ! ! ! ! !
. 3 | <(ef)ab)(df)cb>
4 <eg(af)cbc> . .
Having W Having prefix <c>
Having prefix <b>
<(abc)(ac)d(cf)> Length-2 sequential
<(_d)c(bc)(ae)> patterns
<(_b)(df)cb> —<aa>; <ab>, <(ab)>,
<(_f)cbe> <ac>, <ad>, <af>
Havingﬁ <a"3>\Ha7§«w3~reﬁx <ac>
<ab>-proj. db | .. | <ac>-proj. db

Figure 3.1 Extraction of frequent episodes withpattern growthalgorithms, by projecting
only subsequences with frequent pre xes.

(B) Pattern growth algorithms : Even when constraints are employed by apriori-
based algorithms, the number of generated episodes is still high especially when the
datasets are large. On the other hand, pattern growth algorithms while generally
more complex to develop, test and maintain, can be faster with large volumes of
data. In order to do so, these algorithms e.g., FreeSpan, Pre xSpan, SLPMiner,
apply the Frequent Pattern growth (FP growth) paradigm. In this case, frequent
episodes are compressed into a database represented fasgaient pattern treg which
is subsequently divided into a set of projected databases during the generation of
episodes. The main idea, is to save a subsequence into the frequent pattern tree
only if its pre x is frequent enough. With this approach pattern growth algorithms,
compared to apriori based, are able to extract progressively frequent episodes and
in general with only one scan of the input dataset.

For the example of Figuré 3.3, consider again thatupport = 5. First, regarding se-

rial class of events, subsequences with frequent pre xeslehgth = 1 are projected

l.e., subsequences with pre xes a >, <b > and < c >, asoccurrences,- =7,
occurrencesy- = 5 and occurrences.- = 7. Then, all episodes ofength = 2

are generated and then subsequences that have these episodes as pre x, are pro-
jected. For instance, only subsequences with pre xes a;b > and < a;c > are
then projected, asoccurrencesp,- = 5 and occurrences.. = 8 in the < a >

projected database For this projected database, the occurrences of episodes

< a)b > and < a;c > are calculated asoccurrences,,- = OCCUIfrences,- = 5
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and occurrences,.- = OCcurrences.- = 8 respectively.

Regarding our scienti ¢ problem, likeapriori-based we could usepattern growth al-
gorithms to extract BGPs of user queries by considering an execution log as a single
transaction. But again with this approach, we do not use any more the timestamps
and all events of a single log are unordered i.e., considered as parallel.

(C) Temporal sequences : Sequence mining is not applied only for data stored in dis-
tinct and independent database instances. The need of events that are statistically
dependent emerges in some domains i.e., for events that are episodic in nature. In
such domains, data can be viewed as series of events occurring at specic times
and therefore the problem becomes a search for collections of events that occur
frequently together. There exist various algorithms such as MINEPI, WINEPI or
PROWL, that are actually apriori-like[ and for which the FP growth paradigm also
holds. The limitation of such approaches is that the size of generated episodes may
be still important regardless theFP growth paradigm, as it depends on the user-
de ned threshold.

Table [3.2 on page 46, corresponds to an example of timestamped HTTP log, used
directly to apply algorithms of temporal sequencesSimilarly to web logs, our log is
formatted as a sequence dgimestamped subqueries/triple patternghat are accessed
with the HTTP protocol on data providers. Therefore, we argue that the problem
of BGP reversing is related to sequential pattern mining over temporal sequences.

In the next section, we present two state of art sequential mining algorithms over
temporal sequences, nameWINEPI and MINEPI .

3.2.2 State of art algorithms: WINEPI and MINEPI

WINEPI [26] decomposes a temporal sequence into overlapping sliding windows which
size is de ned by the user, and thereafter calculates frequencies of episodes over these
windows. MINEPI [27] instead, looks for all minimal occurrences of episodes into a speci ¢
time interval. A minimal occurrence is an interval such that no sub-interval contains the
episode. The minimum threshold of minimal occurrences of an episode is cakegport.
The minimum frequency (for WINEPI), the minimum support (for MINEPI) and the
maximum window size (for both), are thresholds de ned by the user.

In Figure we see an example of temporal sequeficeThis timestamped log of
events is used to illustrate, step by step, howVINEPI and MINEPI are employed to
extract frequent episodes of events and deduce the association rules between them.

2Note that all approaches of sequential pattern mining areapriori-like , as they aim to generateasso-
ciation rules between events of frequent episodes.
3This example is taken from [21].
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D CA B DAB C

| | | | | | ] | | | ] ] | | | »
! | | | | | | | | | | | | | | v

0 10 20 30 40 50 60 70 80 90 - time

Figure 3.2 Abstract example of a temporal sequence, used as input to WINEPI and
MINEPI.

Figure[3.3, presents how WINEPI parses the temporal sequence, during the interval
[ 20, 120] and over 11 sliding windows. Figur¢ 3|5 on pade |52, presents all sets of
deduced episodes, per sliding window. For instance, we observe that the epig@d®; D ),
consideringparallel class of events, is identi ed in 5/11 windows i.efrequencyag.p ) =
0; 45.

0 ———0
U, —————)  |f——)

U b—_20 U,

—_—) | |—()

D CA B DAB C
i

| | | | | | | | ] ] | | | |
| | I ! I I 1 | | | 1

0 10 20 30 40 50 60 70 80 90

4

time

Figure 3.3 Sliding windows oflength = 40 for WINEPI over the temporal sequence in
interval [0; 120[ Episodes containingA; B; D are identi ed in windows Uy, Us, Ug, U; and
Ug (in red color).

|
I I||||
D CA B DAB C
. < rr - r r - 1r 11 a
rF - - °r % 1 & 1+ & 17 "> "7 ‘1 =

0 10 20 30 40 50 60 70 80 90

| ' ]
Figure 3.4 Minimal occurrences for MINEPI over the temporal sequence in interval

[0; 120 Episodes containingA; B; D are identi ed in intervals [10; 40], [30; 70], [30; 50],
[5C; 70] and [40; 60] (in red color).

Figure [3.4 presents how MINEPI identi es all frequent episodes, over the temporal
sequence in interva[ 20; 120] Figure[3.8 presents all sets of deduced episodes over this



52

CHAPTER 3. STATE OF ART: DATA MINING

Window U; Contents of I/; Parallel episodes occurring in U;
U1 1-20,20] [--- D] {D}
lf&[—lD,SD[ [—,-:IJ:CT] {(351)}5 {C?l)}
U3,[0,40[ [—aDaC: A] {AJ C: D}: {AC: ADlCD}J {ACD}
U4,[10,50[ [D,C,A,B] {A,B,C, D}a {AB,AC) AD,BC, BD) CD}a
{ABC, ABD, ACD, BCD}, {ABCD}
Uﬁ,{20,60[ [CﬂA!BBD] {A,B,C, D}: {AB,AC, AD:BC: BD: CD}}
{ABC, ABD, ACD, BCD}, {ABCD}
Uﬁ,[SD,?U[ [AaB’D::A] {AaBaD}a {AB,AD,BD};
{ABD}
U?,HU,SO[ [BsDa AaB] {AaBaD}a {AB;AD:BD},
{ABD}
UB,[EO,QO[ [D,A,B,C] {AJBJCI D}: {AB,AC, AD:BC: BD: CD}:
{ABC, ABD, ACD, BCD}, {ABCD}
UQ,[GD,IDD[ [As BaC: —] {Aa B,C}, {AB,AC, BC}) {ABC}
Uio, 70,110 [B,C, ] {B,C}, {BC}
U11,180,120f C, - -] {C}

Figure 3.5 Frequent episodes of the temporal sequence in intenj& 120[ for WINEPI
with sliding windows of length = 40.

Minimal occurrences Episode : #occurs

Minimal (serial) occurrences

D 10-10 50-50 D : 2
C 20-20 80-80 C : 2

A 30-30 60-60 A : 2

B 40-40 70-70 B : 2 DBC 50-80 DBC :1

D C 10-20 50-80 DC : 2 CDA 20-60 CDA :1

D & 10-30 50-80 DA :2 CAD 20-50 CAD :1
DB 10-40 50-70 DB : 2 CAB 20-40 CAB :1
CD 20-50 CD :1 CBD 20-50 CBD :1

C A 20-30 CaA :1 CB A 20-60 CB4& :1
CB 20-40 CB : 1 ADB_30-70 ADB : 1
AD 30-50 AD :1 A BD_30-50 ABD :1

A C 60-80 AC : 1 A B C 60-80 ABC :1

A B 30-40 60-70 AB :2 B D C 40-80 BDC :1

B D 40-50 BD :1 [(B DA 40-60 BDA :1 |
B C 70-80 BC :1 B AC 40-80 BAC :1

B A 40-60 BA :1 DCAB 10-40 DCAB :1
DCA 10-30 DCA :1 DABC 50-80 DABC :1
DCB 10-40 DCB :1 CABD 20-50 CABD :1
D AC 50-80 DAC -1 CBDA 20-80 CEBEDA 1
[D A B 10-40 50-70 DAB :2| BDAC 40-80 BDAGC 1

Figure 3.6 Frequent episodes of the temporal sequence in intenj@ 120} for MINEPI
with support=1.
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interval. For instance, we observe that episod&BD , consideringserial class of events,
is identi ed 5 times and in di erent orders i.e., occurrencesag = 2, occurrenceSpg = 1,
occurrencesgp =1 and occurrencegpa = 1.

The main di erence of these two approaches, is that WINEPI can be interpreted as the
probability of encountering an episode over sliding windows of randomly chosen size, while
MINEPI counts exact minimal occurrences of episodes over a log of xed size. Compared
to classic apriori-based algorithms, candidate episodes for MINEPI and WINEPI are gen-
erated progressively by extending already identi ed frequent subsequences. As WINEPI
operates over sliding windows it is more e cient in the rst phases of the episode gener-
ation, while MINEPI outperforms in the latter iterations. The limitation of WINEPI is
that while sliding windows iterate over a dynamic log, the cost of maintaining frequent
episodes and rules can be high if previously deduced episodes are not any longer observed.
On the other hand, MINEPI's localisation of minimal occurrences can be high at the rst
iterations when required data structures are larger than the original sequence. Time com-
plexity of WINEPI [26] is O((m=w)kj j + m) for parallel and O(mkj j + m) for serial
class of events, where are shifts,k generated episodes, j pre xes for each episode and
m the size of the log. The complexity of nding whether a serial or parallel episode has
an occurrence in a sequence for MINEPI, i P complete[25].

In this section, we illustratedWINEPI and MINEPI , two state of art sequential mining
algorithms. The question that emerges is whether these mining algorithms can e ectively
discover joins over a query log. Next, we apply the MINEPI algorithm over query logs
and identify its limitations.

3.3 MINEPI over query logs

In this section, we apply theMINEPI [ state-of-art algorithm using as input query logs
that are collected from data providers, but similar observations may hold foNINEPI as
well. The challenge, is to explore if MINEPI is su cient to solve our scienti ¢ problem
as presented on page B9 in Chaptef 2, or, we need to furthermore process the query log
in order to have representative results in both recall and precision of joins.

First, in Section[3.3.1, we present the experimental testbed of MINEPI. Thereafter,
in Section[3.3.2, we apply MINEPI default version over query logs.

3.3.1 Experimental testbed

Experiments in this chapter are evaluated using execution traces of queries of {Bmss
Domain (CD) collection, which is taken from FedBench[46]. From this benchmark, we
used the setup of DBpedf NY Times, LinkedMDB, Jamendo, Geonames and SW Dog

4We execute MINEPI using parallel class of events, as subqueries in a federated log are partially
ordered.

SDBpedia is distributed in 12 data subsets fttp:/fedbench.fluidops.net/resource/Datasets ),
in our setup, DBpedia Ontology dataset is duplicated in all SPARQL endpoints, so we install 11 SPARQL
endpoints for DBpedia instead of 12.
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Food datasets. Each of these datasets is installed into a SPARQL endpoint using Virtuoso
OpenLinkf 6.1.7.

We executed federated queries with FedX 3.0. We implemented a tool to shue
several logs of queries executed in isolation, according to di erent parameférsThus,
given E(FQ,);::;; E(FQ,) we were able to produce di erent signi cant representations
of E(FQ: k ::: K FQp). Produced traces with this tool vary in (i) the order of federated
queries, (ii) the number of subqueries of the same federated query, appearing continuously
in the shu ed log (blocks of 1 to 16 subqueries), and (iii) the delay between each subquery
(from 1 to 16 units of time). As we aimed to deduce the joins of triple patterns in the
original queries, we extracted only episodes size = 2 with MINEPI.

3.3.2 Experiments with MINEPI

Query/Collection Alphabet size

CD; 3
CD, 3
CD3; 695
CDy4 17
CDs 12
CDg 1229
CDy 371

CD concurrent 2316

Table 3.4 Alphabet sizes of events of CD traces, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI default version with
triple pattern granularity.

: Frequent episodes Frequent episodes
el (Iengtﬂ =2, s[szport =1) (Iengtﬂ =2, srijpport =2)
CD; 3 0
CD, 3 0
CD3; 75 36
CD, 136 81
CDs 66 15
CDg 754606 92570
CDy 68635 56895
CD concurrent 2033005 404330

Table 3.5 Frequent episodes of CD traces, produced by a federated query engine and
executed over a federation of SPARQL endpoints, for MINEPI default version with triple
pattern granularity, length =2 and di erent support thresholds.

Shttp://virtuoso.openlinksw.com/
"The program to shu e several execution logs in isolation, used as input either to MINEPI, LIFT or
FETA, is available at: https://github.com/coumbaya/traceMixer
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Figure 3.7 Recall of joins of traces of CD queries, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI default version with
triple pattern granularity and di erent support thresholds.
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Figure 3.8 Precision of joins of traces of CD queries, produced by a federated query
engine and executed over a federation of SPARQL endpoints, for MINEPI default version
with triple pattern granularity and di erent support thresholds.
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In this section we executed the MINEPI default version, by considering as events
the triple patterns. Table [3.4 presents alphabet sizes of events of MINEPI for triple
pattern granularity. Table B.5 presents frequent episodes of length=2 for di erergupport
threshold values. Figureg 3]7 anfl 3.8, illustrate MINEPI's performance in recall and
precision of joins, respectively.

From this experiments, rst, we observe that the alphabet of events may consist of
hundreds of triple patterns, even when executing only one query. Even worst, MINEPI
performs poorly in recall but also in precision of joins, for both traces of queries executed
in isolation or in concurrence. Finally, we observe that fosupport > 1 along with the
number of episodes recall also decreases dramatically or event zeroed.

We conclude with this experiment, that MINEPI is not adequate to reveal the actual
joins in original queries for both traces produced in isolation or in concurrence, even
when using the most favourable execution condition i.e., f@upport = 1. Next, we aim
to interpret the results obtained in this section and to identify the limitations of sequential
pattern mining when applied over query logs, using an abstract example.

3.4 Limitations of query log analysis

In this section we aim to explain why sequential pattern mining algorithms, in their
current form, perform poorly in recall and precision of joins when analyzing query logs.
From their limitations, we identify which is the necessary processing e ort that needs to
be employed, so that these algorithm become more e cient in deducing the actual joins
of original queries. In order to explain our proposed perspectives, we use the following
example.

Consider again the abstract log of Tablé 3|1 on page|46, corresponding to execution
plans of queriesQa = SELECT ?2x 2y WHERE f 2x plol: X p2 % : ? p3 ?zq,
Qs = SELECT %y WHERE f X p2 % 0, Qc = SELECT ?%y WHERE f 2y p3 2% g
and Qp = SELECT ?x WHERE f 2 pl 01 g. We present next, one by one, the
limitations of such algorithms over a log of (sub) queries.

1. The pertinence of the alphabet : The alphabet of events in a query log is pro-
portional to the cardinality of triples residing in the Linked Datd, However, the
main issue for triple pattern§] is not their quantity but their pertinence Depend-
ing on optimization techniques employed by query engines, constant values of triple
patterns actually may correspond to mappings that replace a join variable of a triple
pattern in the original user query. That is, when two triple patterns of a user query
are joined through a nested-loop, as we presented in Chapfgr 2 on pagé 25, the
former triple pattern pushes its mappings into the latter. In other words, the triple
patterns we observe in the log may actually be the result of the decomposition of
original triple patterns in user queries. Without knowing the exact triple patterns,

8We do not take into account triple patterns that do not correspond to actual Linked Data resources
i.e., IRl/literals of triple patterns that are contained in queries posed by data consumers. In this case,
the alphabet of events is in nite.

9We could consider di erent levels of granularity, regarding the accessed resource of our log: predicate,
triple pattern or subquery. We choose triple patterns, as we aim to extract BGPs of user queries.
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Heuristic Alphabet

f f 2xplolg;
f s1p2 % g;
f o3p37zg;
fs2p2%g;

none f o4p3 g
f2xXp2%g;
fyp82zg;
f 2xplolg ¢

f f xplolg;

N estedLoopDetection f Xp2%ug;

f?ym72g g

Table 3.6 Alphabet of events ofQa - Qp traces, produced by a federated query engine
and executed over a federation of SPARQL endpoints, for MINEPI with triple pattern
granularity and with or without the NestedLoopDetectionheuristic.

we are not able to identify the joins of these queries. Therefore, we need a reverse
function the reveals hidden join variables from triple patterns, by detecting nested-
loops between them. We denote such function &estedLoopDetection which we

de ne next.

De nition 6 (NestedLoopDetection) Suppose a query log of one or more data
providers corresponding to execution traces of queries they process, as de ned in
De nition 4Jon page[39. We de neNestedLoopDetectionas a nested function that
detects pushed mappings from a triple pattern in the log into followings, respecting a
time-interval threshold between them. Once a nested-loop is detected, pushed map-
pings in the latter triple patterns are replaced with the original variable of the former

to which they are joined.

Therefore without N estedLoopDetection performance in recall may be considerably
low as original patterns in user queries are decomposed in tens or hundreds of
triple patterns during nested-loops. In our example, using\estedLoopDetection
we realize that entries 2, 4 of Tablé 3]1 on page]46 are the result of a nested-loop
betweenf ?x pl olg and f ?x p2 g, where subject mappings s1; s2g of the former

are pushed in the subject of the latter. Likewise, entries 3, 5 are the result of a
nested-loop betweerf 2x p2 g and f?y p3 ?zg. Table 3.6 presents the alphabet
for triple pattern granularity, with or without N estedLoopDetection

2. The size of the alphabet : By default, sequential pattern mining is applied over
logs spread over days or weeks of usage, as it aims to discover episodes that occur
multiple times e.g., with support > 1. The diversity of these triple patterns will
not depend only on the nested-loops employed by query engines, but also on queries
posed by users. So, regarding the previous challenge, the size of the alphabet may
be considerably large even if we apply thid estedLoopDetectionfunction. Table[3.]
presents a log of only a few seconds. The size of the alphabet of events for larger
logs e.g., one hour, can be unpredictably large.
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3. The choice of threshold : In general, Data Mining algorithms are using a threshold

either de ned asfrequency for WINEPI or supportfor MINEPI, to extract frequent
episodes. The choice of such value is completely arbitrary. Using a small threshold
value, we may get a lot of false positives regarding discovered episodes and their
correspondence to joins. On the other hand, a larger threshold would exclude some
non frequent sets of triple patterns that correspond to joins. But as in general
sequential mining algorithms are applied over logs of a signi cant duration, this
threshold is greater that one. For our example, wittsupport = 2 we deduce the
episode associatindg ?x p2 g and f?y p3 2zg, but not the complete BGP of Qa

e, ff ?2xplolg;, f2x p2 dg; f?y p3 7zg g as it occurs only once.

. The di erence between apparition and join ordering : The order in which

events are captured in the log does not necessary correspond to joins. Frequent
episodes in MINEPI or WINEPI, group events that occur together. Nevertheless,
joins are not always made over consecutively appearing triple patterns, even for the
execution of a single query. For instance, joins in querQg, composed by triple
patterns tp; = f?2x pl olg, tp, = f2w p2 ?zg and tps = f?2x p3 2zg, are between
ftpy, tpsg and ftp,, tpsg, even if a sequential mining algorithm will also identify
ftps1, tp2g. This challenge a ects mostly performance in precision but in presence
of concurrence it may a ect also performance in recall, as we see next.

. The concurrent execution of queries : In the context of concurrent execution

of queries, either decomposed in multiple subqueries or posed directly over data
providers, both precision and recall may be a ected. We present below in which
cases these situations emerge.

First, occurrences of events in a query log is related to the selectivity of operations.
Suppose an additional quernfQr = SELECT X WHERE f X p32Z:?y p4 2 g.

A data consumer may decide to execute the join with a nested-loop. S&x p3 7zg
will appear once in the log, while triple patterns withf ?y p4 IRIs g will appear many
times according to the selectivity off 2x p3 ?zg. Searching for frequent episodes will
raise up episodes with triple patterns containing false positives of joins, for instance
p2 and p4 but actual joins were betweerf pl; p2g, f p2; p3g and f p3; p4g. Second,
due to the di erence between apparition of events and the join ordering decided
by the data consumer to evaluate them, sequential mining algorithms may combine
triple patterns contained in di erent queries instead those contained in the same.
For instance, the episode composed ltg; = f ?x pl olg and tpz = f 2 p3 2zg, may
be created fromtp; of the rst pattern of Qg and the rst of Qg. In this case, the
actual join betweentp; and tp; of Qg will never be detected.

In this section, we illustrated the limitations of query log analysis and realized that

in order to have a pragmatic view of actual joins we need to apply a reverse function in
order to reveal the actual events i.e., triple patterns that we aim to track. This is made
through the NestedLoopDetectionheuristic, either using a phase of pre-processing data
transformation or by applying post-processing constraints, that we explain next.
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3.5 MINEPI with pre or post-processing

In this section, we aim to enchance th/INEPI [IY state-of-art algorithm, by processing
the input logs enough in order to have a more pragmatic view of actual joins of original
gueries. The challenge is to explore if MINEPI enhanced with a processing e ort is
su cient to solve our scienti ¢ problem, as presented on pagé 39 in Chaptér] 2, or, its
performance is still moderate in terms of either recall or precision of joins.

In the experiments of the next sections, we adopt the experimental tesbed of Sec-
tion 8.3.1. In order to reveal actual joins of triple patterns, we aim to apply thél estedLoop
Detection using two di erent strategies. First, in Section 3.5.]1, we apply MINEPI with a
pre-processingN estedLoopDetection which is a applied as adata transformation phase
over the whole query log. Finally, in Sectio 3.5/2, we present MINEPI with a post-
processing\ estedLoopDetection which is applied as gruning phase only to the minimal
occurrences of frequent episodes identi ed by MINEPI.

3.5.1 MINEPI with data transformation

As in every Data Mining process, a pre-processing phase can be applied befiata
analysisin order to transform the raw input into a homogeneous schema. In particular,
we apply the NestedLoopDetection heuristic over the whole query log. Our aim is to
eventually reveal from which variable's mappings, the constants of each triple pattern
were pushed during nested-loops.

Query/Collection Frequent episodes Frequent episodes
(length =2, support = 1) (length =2, support = 2)
CD; 2 0
CD, 2 0
CDg3 10 6
CDy 6 2
CDs 6 3
CDe¢ 3 2
CDy 3 2
CD concurrent 230 87

Table 3.7 Frequent episodes of CD traces, produced by a federated query engine and
executed over a federation of SPARQL endpoints, for MINEPI with triple pattern gran-
ularity, NesteLoopDetectionas data transformation andlength = 2.

Table [3.8 presents the sizes of the alphabet of events, when applyiNgstedLoop
Detection as data transformation before applying MINEPI, for execution logs of CD
queries. Tablg 3.]7 presents frequent episodes of length=2 for di erestipport threshold
values. Figureg 3)9 and 3.10, illustrate MINEPI's performance when enhanced with a
pre-processing phase &f estedLoopDetection regarding both recall and precision of joins
respectively.

10we execute MINEPI using parallel class of events, as subqueries in a federated log are partially
ordered.
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Figure 3.9 Recall of joins of traces of CD queries, produced WyedX query engine and
executed over a federation of SPARQL endpoints, for MINEPI witiN estedLoopDetection
as data transformation and di erent support thresholds.
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Figure 3.10 Precision of joins of traces of CD queries, produced BgdX query engine and
executed over a federation of SPARQL endpoints, for MINEPI witiN estedLoopDetection
as data transformation and di erent support thresholds.
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Query/Collection Alphabet size
CD, 3
CD, 8
CDs; 5
CD, 4
CDs 5
CDs 4
CD; 4
CD concurrent 28

Table 3.8 Alphabet sizes of events of CD execution traces, produced by a federated
guery engine and executed over a federation of SPARQL endpoints, for MINEPI triple
pattern granularity and NesteLoopDetectionas data transformation.

First, we observe that the alphabet is reduced signi cantly, some times from thou-
sands into just tens of triple patterns. Even better, we are able to have a pragmatic view
of real joins of the log (cf. Limitation 1 ). In addition, similarly to the default MINEPI
version, both the number of episodes and recall signi cantly decrease feupport > 1
(cf. Limitations 2, 3). Finally, we observe that precision compared to the default version
of MINEPI is low, as frequent episodes may concern false joins from triple patterns of
di erent queries (cf. Limitation 5).

Next, we aim to enhance MINEPI with NestedLoopDetectionbut this time in form
of a post-processing constraint, thus minimizing the intervention to those events that are
identi ed as minimal occurrences by MINEPI.

3.5.2 MINEPI with pruning constraints

As presented in Sectiof 3|2, akpriori-like algorithms have the problem of producing an
exponential number of generated episodes. So in order to minimize the volume of episodes,
we can apply constraints after the episode generation of MINEPI. In particular, we apply
the NestedLoopDetectionheuristic as a constraint, only to those entries identi ed by the
minimal occurrences of MINEPI and not to the whole input log.

Table[3.9 presents frequent episodes of length=2 for di eremupport threshold values
and predicate granularity. Figureq 3.11 anf 3.12, illustrate MINEPI's performance when
enhanced with a post-processing phase NfestedLoopDetection in recall and precision
of joins respectively.

As expected, similarly to the default version of MINEPI and MINEPI with preprocess-
ing transformation, both the number of deduced episodes and recall signi cantly decrease
with support > 1 (cf. Limitations 2, 3). Furthermore, even if we have a more prag-
matic view of joins comparing to the default version of MINEPI, recall is not as good as
MINEPI's with pre-processing data transformation. This is explained from the fact that
MINEPI with post processing only identi es the minimal occurrencesof episodes, which
in presence of concurrence combine triple patterns from concurrently executed queries
and not those from the same (cfLimitations 4,5).
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Figure 3.11 Recall of joins of traces of CD queries, produced IiedX query engine and
executed over a federation of SPARQL endpoints, for MINEPI witiN estedLoopDetection
as pruning constraint and di erent support thresholds.
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Figure 3.12 Precision of joins of traces of CD queries, produced BgdX query engine and
executed over a federation of SPARQL endpoints, for MINEPI witiN estedLoopDetection
as pruning constraint and di erent support thresholds.
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e s Frequent episodes Frequent episodes
(length =2, support =1) (length =2, support =2)
CD; 1 0
CD, 2 0
CDs; 7 2
CDy4 4 1
CDs 3 1
CDgs 3 2
CDy 3 2
CD concurrent 17 9

Table 3.9 Frequent episodes of CD traces, produced by a federated query engine and
executed over a federation of SPARQL endpoints, for MINEPI with triple pattern gran-
ularity, NesteLoopDetectionas pruning constraint andlength = 2.

In summary, it is necessary to enhance MINEPI with reverse heuristics, either as a
pre-processing or post-processing phase, in order to have a more pragmatic view of joins
in original queries. But even so, recall depends on theupport threshold and is also
a ected by concurrency. Anyhow, precision can perform poorly as deduced episodes of
triple patterns do not correspond always to joins.

Therefore, we need to process logs of subqueries by linking directly triple patterns
based only on their mappings without relying on occurrences of their sets. In the next
chapters, we present our proposed BGP reversing approaches that aims to solve our
scienti ¢ problem, presented on pagg 39 in Chaptér 2.
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In this chapter we presentLIFT, our proposed approach that aims to answer the
guestion: "Can TPF servers track and approximate BGPs they process from their logs?"
This question is addressed both over single and federations of TPF servers, as TPF clients
decompose SPARQL queries even when only one server is concerned. The challenge to
infer queries that are evaluated with this approach, over single or federations of servers,
is to link maybe hundreds of single triple pattern subqueries per query execution. Such
an endeavour must be resistant in presence of concurrent execution of other queries.

This chapter rstillustrates the scienti ¢ problem we aim to solve, as described on page
[39 in Chapter[2, Sectior] 2J5 over the context of TPF query processing, in Section|4.1.
Thereafter, the BGP reversing approach oLIFT is presented in Sectionn 4]2. Finally,
experiments are reported in Sectiop 4.3.

65
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4.1 lllustration example

In Figure 4.1, two clients, c; and c,, execute concurrently querie®Q; and Q, over the
TPF server of DBpedia. Q; asks for movies starring Brad Pitt andQ, for movies starring
Natalie Portman. Q; and Q, are taken from the TPF web applicatioﬂﬂ

€(1732819114) : Query Qu »(1732819114) : Query Q,
SELECT ?movie ?title ?name WHERE { SELECT “titleEng 2title WHERE {
2titleEng ?title
?movie dbpedia owl : starring  ?actor . (tp1) omovie dbppropq starring  ?actor (1p0)
2actor rd's :label "Brad Pitt "@en . 1 ' ' ' ' !
’)ac o-r r; 'Tt?l 7_“? t "@en (p2) ?actor rd's :label "Natalie Portman "@en . (tp9)
Fmovie rds - label ?title . (tp3) ?movie rd's :label ?titleEng . (tpd)
?movie dbpedia owl : director ?director . (tpa) 5 e rd label it (tp0)
) ?movie rds : label ?title pY
?direct ds :label ? f
Fl:rf_:_:;; LI;AI\SIGMaATi:HEr;aT:NG otitle). "EN" (t0s) FILTER LANGMATCHES(LANG(?titleEng), "EN")
( (2itle) ) FILTER ((LANGMATCHES(LANG(?title), "EN") }
FILTER LANGMATCHES(LANG(?name), "EN") }
Ppredicate = rdfs : label._ /,/’?prgdmate: rdfs : label
& ?0bject = & ’?ob;ect =
"Brad Pitt "@en ::: . . Natalie Portman"@en :::

DBpedia TPF server

Figure 4.1 Concurrent execution of queriefQ; and Q,, produced by TPF client with
17328191141P Address and executed on the DBpedia TPF server.

TPF clients decompose SPARQL queries into a sequence of triple pattern queries, as
partially presented in Table[4.1 for queryQ;. Lines in grey color correspond to answers
of the single triple pattern queries in enumerated lines. As the TPF server only see triple
pattern queries, the original queries e.gQ; and Q, remain unknown to the data provider.

In this chapter, we address the following research questiohCan TPF servers track
and approximate BGPs they process, from their logs7his question is addressed both
over single or federations of TPF servers, as TPF clients decompose SPARQL queries
even when only one TPF server is concerned. In particular, we aim to solve the scienti ¢
problem of BGPs reversing(cf. De nition % jon #0), of query evaluation over TPF servers.
We also consider the de nition, notation and property ofquery log(cf. De nition 4]on
[39), execution traceand resistance to concurrency(cf. Property [1 on[4]) respectively.

In our example, the DBpedia TPF server log corresponds t6(Q; k Q,). We aim to
extract two BGPs from this, one corresponding t&;, BGP[1]= ftp; : tp, : tps : tps : tpsg
and another corresponding tdQ,, BGP[2]= ftp? : tpd : tp : tpdg.

In Figure 4.1, if c; and ¢, have dierent IP addresses it is possible to separate
E(Q: k Q) into E(Q;) and E(Q), and apply the reversing function to each trace.
However, in the worst caseg; and ¢, have the same IP address i.e., a web application
running on the cloud that executes querie®; and Q; in parallel. Thus, we expect that

f(E(Q1kQ2) f(E(QL)I[ f(E(Q2).

Lhttp://client.linkeddatafragments.org/
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LD
provider

IP

Time

Triple pattern sugbuery/TPF

w | DBpedia

173..

11:24:19

?predicate=rdfs:label & object="Brad Pitt"@en

{ <.. controls ... > ,
< {dbpedia:Brad_Pitt rdfs:label "Brad Pitt"@en} >,
< ... metadata ... > }

2 DBpedia

173..

11:24:24

?predicate=dbpedia-owl:starring & object= dbpedia:Brad_Pitt

{ <... contrals ... >,
< { dbpedia:A_River_Runs_Through_It_( Im) dbpedia-owl:starring
dbpedia:Brad_Pitt}, ... ,
{dbpedia:Troy_(Im) dbpedia-owl:starring dbpedia:Brad_Pitt} >,
< .. metadata ... > }

@ | DBpedia

173..

11:24:28

?subject=dbpedia:A_River_Runs_Through_It_(Im) &
predicate=rdfs:label

{ <.. controls ... >,
< {dbpedia:A_River_Runs_Through_lIt_( Im) rdfs:label
"A River Runs Through It (Im)"@en}, ... ,
{dbpedia:A_River_Runs_Through_It_(Im) rdfs:label
"Et au milieu coule une riviere"@fr} >,
< ... metadata ... > }

(4] DBpedia

173..

11:24:31

?subject=dbpedia:A_River_Runs_Through_It_(Im) &
predicate=dbpedia-owl:director

{ <... controls ... >,
< {dbpedia:A_River_Runs_Through_It_(Im) dbpedia-owl:director
dbpedia:Robert_Redford  } >,
< .. metadata ... > }

s | DBpedia

173..

11:24:34

?subject=dbpedia:Robert_Redford & predicate=rdfs:label

{ <.. controls ... > ,
< {dbpedia:Robert_Redford rdfs:label "Robert Redford"@en}, ... ,
{dbpedia:Robert_Redford rdfs:label "Robert Redford"@fr} >,
< .. metadata ... > }

Table 4.1 Partial log of Q, traces, produced by TPF client with1732819.114IP Address

and executed on DBpedia TPF server. Answers are extracted from data providers in form
of Triple Pattern Fragment.

Next, we present our proposed BGP reversing solutioh] nked dataFragmentT racking
(LIFT), which we evaluate with traces of queries from th&PF web applicationinterface

executed (i) in isolation and (ii) in concurrence, over single or federations of TPF servers.

In addition, we report that LIFT extracts useful BGPs with traces of the real log of
USEWOD 2016 [28].
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4.2 LIFT: a reversing approach

LIFT is a system of algorithms based on heuristics, to implement the reverse functibn
The idea is to detect nested-loop joins. In Table 4.1, the mappings returned in Line 2 are
reused in the next triple pattern query in Line 3. We track such bindings in order to link
di erent triple pattern queries.

In this chapter, we make the following hypothesis:
1. We consider only bound predicat&s

2. We consider that TPF servers do not use a web cache (this information can be easily
obtained by data providers), and

3. We consider that clients do not use a cache (concerning both selectivity of triple
patterns and their mappings).

Figure [4.2 presents a simplied log 0fQ; = SELECT WHERE f?x p2 toto :
X pl A0), Qs = SELECT WHERE f?2x p3titi: ?2x pl % : ?x p4 tatag) and
E(Qs k Q).

For the sake of simplicity, timestamps are transformed into integers. The IP address
of the TPF client is the same forQs; and Q4, so we removed thdap column. Unknown
variables are named?s or ?0. , represents the mappings of variables resulting from the
evaluation oftp on data. We call themoutput-mappings

ts tp Mo
1 |7s p2 toto| 7s|cl c2 ts[tp m
ts|tp Lo 2 |7s p3 titi | 7sjed cd 12 [7s p3 titi ?s|c3 c4
1 |?s p2 toto ?Q‘Cl c2 /)3 clpl o |%ola 4 |c3 p4 tata
- i o . o d Lc
4 |c3 p4 tata — |
3 |c ? 70|é I ? ?
T e 21 o [ AT v
0 e bl ' —] 6 [c3pl %20 |70lc ) -8 C4p17(0( 70|d
(a) Log E(Qs). 7 |cd p4d tata ) r P> -
8 |c4d pl 7o ?O‘d ) (c) Log E(Q4).

(b) Log E(Qs || Q).
Figure 4.2 Examples of simpli ed TPF logs, forQs; and Q4 traces.

Algorithm [[[shows the three phases dfIFT:

1. First, LIFT merges triple patterns intocandidate triple patterns It allows to gather
triple patterns that can be part of the same outer or inner operand of a join. We
denote the set of candidate triple patterns a€TP.

2As reported in [8], predicates of triple patterns are frequently bound. NeverthelessFETA like LIFT
can be extended to deal with predicates just like they deal with subjects and objects.
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2. Next, LIFT looks for an inclusion relationship among mappings of candidate tps. If
it does not exist, LIFT splits candidate triple patterns to build it. This produces a
set of graphs, which we denote d@3T P, where nodes areleduced triple patternsand
edges represent inclusion relationships between these triple patterns. This detects
nested-loops.

3. Finally, LIFT extracts BGPs from the DTP Graph set. Ideally, LIFT(E(Q3 k
Q4); gap should compute the 2 BPGs 0fQ; and Q4: f?s p2 toto : ?s pl g
and f?s p3titi: ?s pl 2 :?s p4 tatag.

The basic intuition of LIFT is to detect if mappings are bound in next requests. This
can be challenging, as mappings can be: (i) bound several times (e.g., in star queries),
(i) bound partially as a side-e ect of LIMIT and FILTER clauses, or (iii) bound into
a di erent concurrent query. As a real log can be hugel.IFT analyzes the log using a
constraint as a sliding window which is de ned by agapi.e., a time interval. WhenLIFT
reads an entrye in the log with a timestampts, it considers only entries reachable within

the gap i.e.,ts gap

Algorithm 1: Global algorithm of LIFT
1 Function LIFT (log;gap is
input : alog; agapin time units (seconds)
output : a set ofBGPs
data : CTP a set of candidate tpsDTP a set of graphs of deduced tps

CTP  ctpExtraction (log;gap
3 |DTP nestedLoopDetection (CTP;gap
4 |returnBGP  bgpExtraction (DTP)

Section[4.2.]l details theCTP extraction. Section[4.2.P describes the nested-loop
detection. Finally, Section[4.2.B presents the nal phase of extraction of BGPs.

4.2.1 Extraction of candidate triple patterns

ctpExtraction aims to aggregate together log entries that seem to participate in the same
outer or inner operand of a join. Aggregated entries are represented tgndidate triple
patterns. All candidate triple patterns form the CTP set.

A c2CTPisa tupleﬁ hp;ts;tp; o; il whereip is an IP addressts is a pair of times-
tamps (ts:min; ts:max ) representing a range; when creating a candidate triple pattern,
both timestamps are identical and correspond to the timestamp of the current entry in the
log. tp is a triple pattern query, , (output-mappings) is the list of solution mappings for
variables oftp. ; (input-mappings) is a set of mappings built during thectpExtraction.
Basically, we replace any constant ofp by a variable, we use for subject and! for
object. Replaced constants are regrouped in.

3Note, that in the case of a federated log, the candidate tp tuple is enhanced with an additional eld,
which we denote asf tsr g, with the set of TPF servers that evaluate it.
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Figure 4.3 TPF log and CTP List, produced by Algorithm @ with E(Q3 k Q4) and for
gap=8.

Algorithm 2:  Extraction of Candidate Triple Patterns

1 Function ctpExtraction (log;gap is
input : a TPF log; gap an interval in time units (seconds)
output : CTP a list of candidate tps

2 |[CTP ]

3 |foreach e2 log do

4 c read(e) as (ip, (ts,ts), tp, o) switch ctp do
5 case ?s p o: ctp ?Sp?n ; C 2! |o

6 casesp?0:.ctp 7S, p?0;C ? s

7 casespo:ctp  ?Sip P ; C i ? s, ? |o
8

case?sp?o:ctp ?»sp?;cCci ;

9 [|if 9 ¢ 2 CTP |ingap(¢ &, gap)”™ (&:ip = cip) * (ctp = &:tp) then
10 |[[(& ol ¢o)i(& i[ ci)(&tsimax = ctsimax);

11 | |else CTP.add(9

12 |return CTP

Algorithm P]outlines the extraction of aCTP List from a TPF log for a particular
gap Figure[4.3 illustrates the e ect of this algorithm on logE (Qs k Q,) for gap=8.

The log is processed in sequential order. Lines 5 to 8 initialize input-mappings by
replacing constants by variables or ! . Next, lines 9 to 10 merge the current candidate
triple pattern with an existing and compatible, if there exist one. An existing candidate
tp is compatible if it has the sametp, it is produced by the samep address and ts in
the gap. Theingap( ¢ &;gap function returns true if cts:min g:its:max gap If
the current candidate tp is compatible with an existing one, output/input-mappings and
timestamps are merged. Otherwise, we create a new entry in line 11. When updating
timestamps, the lower timestamp remains always the same and only the upper timestamp
can grow up. A variable oftp can not belong to , and ; simultaneously.

This algorithm can aggregate triple patterns that do not belong to the same nested-
loop as it is the case in our example, where CTP[3] aggregates triple patterns@f and
Q4. We suppose that this case is not likely, especially when the gap is small. But if it is
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(a) CTP List of candidate triple patterns obtained by Algorithm 2.

Twltata

(b) DTP set of graphs of deduced triple patterns obtained by Algorithm 3.

Figure 4.4 CTP List and DTP Graph set, produced by Algorithm[:}% forgap= 8.

the case, next algorithm splits candidate tps to separate these nested-loops.

422

Nested-loop join detection

Algorithm B] describes how to link variables of di erent candidate tps, produced by Al-
gorithm [2, and builds a set of graphs ofleduced triples patternswhich we denote as
DTP, by linking di erent candidate tps if there a relation of inclusion between them.
Figure[4.4 presents theDTP Graph set produced by Algorithm[3, using theCTP List of
Algorithm P] Dashed links represent linked variables deduced by Algorithfrj 3.

If the ; of a candidate tp is a subset of the , of a previous candidate tp, then we
consider that the 2 corresponding variables can be linked. This happens in the example
described in Figurg 4.4, with CTP[2] and CTP[4]. We consider tha® of CTP[4] is linked
to ?s of CTP[2]. We formalize this behaviour at lines 6 to 7 of Algorithrh|3.

Algorithm 3: Detection of nested-loop joins

1 Function nestedLoopDetection (gap;CTP) is

a h W N

~N O

input : gapan interval in time units (secondsC TP a set of candidate tps
output : DTP a set of graphs of deduced tps

foreach c¢2 CTP do

if split( 9 & ; then CTP.insertAfter(cid, split( 9);
else DTP.addnode(q ; foreach v, 2 vars(c ) do
foreach (g;vi)2 {( &, Vvi)| « 2 CTP ~ (g.id > cid) » ingap(&, G gap)”
9vi 2 vars(&: i) | (& i(vi)\ ¢ o(Vo) 6 ;)} do
if & i(vi) ¢ o(Vo) then
| DTP.addnode(g) ; DTP.addEdge(c &, (Vo,Vi));

else DTP.addnode(s=split(&, Vi, G Vo)) ; DTP.addEdge(c s, (Vo,Vvi));

10 Ieturn DTP;

A direct inclusion does not occur if Algorithm 2 aggregated too many log entries as it
Is the case with CTP[3]. IndeedQ3; and Q4 have a common triple pattern(?x; pl1; ?y)
and Algorithm P| aggregates them. We solve this problem by splitting a candidate tp.
The idea is to produce a deduced tp from a candidate tp, if it exists an intersection
between the , of another candidate triple pattern and the ; of this one. In the example



72 CHAPTER 4. LIFT: LINKED DATA FRAGMENT TRACKING

described in Figure 4.4, CTP[3] is split two times: one when analyzing CTP[1] (DTP[3]
is produced) and another when analyzing CTP[2] (DTP[4] is produced) because both
intersect the ; of CTP[3]. Splitting does not a ect only the input-mappings, it also
impacts timestamps and output-mappings. After splitting, we obtain input-mappings
that are subsets of previous output-mappings.

Intersection and splitting is shown in lines 5 and 8 of Algorithmj 3. The function
split is straightforward, as it basically remerges from the TPF log values that belong
to the intersection. This generates correct timestamps, output-mappings and input-
mappings. We register the split relationship with asplit predicate that links a candidate
tp with its produced deduced tps. In our example, for CTP[3] we have $plit relations;
split (CTP[3]; CTP[39) and split(CTP[3],CTP[47).

Splitting has an e ect on CTP traversal that we see in Line 3. Output-mappings of
produced deduced tps must be analyzed, so when the nested-loop detection analyzes a
split candidate tp it inserts in the CTP List the deduced tps that are produced with this
split. split(c) returns the set of deduced tps produced by splitting this candidate tp.

4.2.3 BGP extraction

Figure [4.3 represents the connected components of tB P Graph set shown in Fig-
ure[4.4. From this representation, it is easy to compute the nal BGPs with a variable
renaming and restitution of an IRl/literal in place of I when there is only one input
mapping e.g.,toto; titi and tata.

5 p2 2 7% =? ?pl
dtp[1], ! = toto dtp[3]

(@) {?s1 p2 toto . ?sl pl ?03}

25 p3 2 2% =7 2pl
dtp[2], ! = titi " dip[4]
25 =7 2 P32

dtp[5];! = tata
(b) {?s2 p3 titi . ?s2 pl ?04 . ?s2 p4 tata}

Figure 4.5 Connected components of th®TP Graph set, produced by Algorithrr[:]B for
gap=38.

In our example, LIFT rebuilds perfectly BGPs of querieQs; and Q4. This example
Is executed withgap = 8. If we reduce the gap, then some joins are not detected and
recall decreases. If we execute concurrently more queries having same triple patterns,
then LIFT can deduce joins that do no exist in original queries and consequently precision
will decrease. In Sectiof 4]3, we measure experimentally the precision and recallLl&T
in di erent situations.
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4.2.4 Time complexity of LIFT

The computational complexity of LIFT isO(N M + M?). N is the number of entries
in the TPF log and M is the size of theCTP List. The cost of ctpExtraction is O(N
M), because it extracts the candidate tp from each entry of the TPF log and merges
it with an existing similar candidate tp of CTP, or, creates a new one. The cost of
nestedLoopDetectionis O(M M) that gives O(M ?), as each candidate tp ofCTP is
compared with each other. The cost dbgpExtraction is M.

The overload produced byLIFT is high, but we underline that the size of the log
corresponds to aslicing window of timee.g., a separate log for each hour of the day, and
that the log analysis can be made as a batch processing.

4.3 Experiments

The goals of the experiments are twofold: (i) to evaluate precision and recall bfFT's
results and (ii) to show that LIFT extracts meaningful BGPs from a real TPF log. In
Section[4.3.11 we present the experimental testbed bfFT. In Section[4.3.2, we evaluate
precision and recall ofLIFT, with traces of queries in the TPF web application executed
in isolation. In Section[4.3.8, we evaluate precision and recall iFT, with traces of
queries in the TPF web application execute@oncurrently under the worst case scenario,
that is when they come from the same IP address. In Sectipn 4]3.4, we analy#€T with
the TPF log of USEWOD 2016 [23].

Query Selectors Query Selectors Query Selectors
Q. 114 Qu 85 Qa1 1223
Q> 1133 Q1w 29 Q22 103
Qs 27 Qi3 100 Q23 1588
Q4 113 Q14 274 Q24 217
Qs 296 Qs o4 Qs 881
Qs 114 Q16 106 Q26 76
Q7 103 Q17 6 Q27 193
Qs 207 Qs 20 Qs excluded
Qo 7 Q19 44 Q29 4
Q1o 119 Q20 3615 Q30 18981

Total 2233 Total 4330 Total 23266

Table 4.2 Number of requests of single triple patterns for queries in the TPF web
application, produced by a TPF client and executedn isolation on single TPF servers
(DBpedia, Ughent, VIAF or LOV).

4.3.1 Experimental tesbed of LIFT

We extracted 30 queries from the TPF web application concerning DBpedia 2015-04,
UGhent, LOV and VIAF datasets. We captured http requests and answers of queries using
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the weblnspector 1.2toof] We implemented a tool to shu e several TPF logs of queries
executed in isolation, according to di erent parameteﬁ Thus, givenE (Q1); :::; E(Qn) we
were able to produce di erent signi cant representations ok (Q; k ::: k Q,). Produced
traces with this tool vary in: (i) the order of queries, (i) the number of subqueries of the
same query, appearing continuously in the shu ed log (blocks of 1 to 16 subqueries), and
(i) the delay between each subquery (from 1 to 16 units of time).

Furthermore, we analyzed the log of the DBpedia TPF server available in the USE-
WOD 2016 dataset[[2B]. This log contains http requests from October 2014 to November
2015. We analyzed the rst quarter of the log representing 4,720,874 single triple pattern
queries (until 27th February 2015). We cleaned 1% of the log with entries that do not
correspond to TPF requests. We considered that all queries were sent by the same TPF
client. To obtain corresponding answers, we re-executed the log directly over the DBpedia
TPF serverf] Source code ofIFT is available athttps://github.com/coumbayal/lift

Query Runtime Query Runtime Query Runtime
Q1 <1 Qu <1 Q21 2
Q2 2 Qo <1 Q2 <1
Qs <1 Q13 <1 Q23 <1
Qs <1 Q14 <1 Q24 <1
Qs <1 Qs <1 Qzs <1
Qs <1 Q16 <1 Q26 <1
Q7 <1 Q17 11 Q27 <1
Qs <1 Qs 2 Qa2s excluded
Qo <1 Q1o <1 Q29 <1
Q1o <1 Q20 10 Q3o 220

Average 0.2 Average 2.3 Average 22

Table 4.3 Runtimes (seconds) oLIFT with traces of queries in the TPF web application,
produced by a TPF client and executedn isolation on single TPF servers (DBpedia,
Ughent, VIAF or LOV).

Table [4.2 presents the number of requests produced for each query executed in iso-
lation. Table 4.3 presents the runtimes ofLIFT for each execution trace produced in
isolatior{’] As we observe, the TPF client produces hundreds of requests for most queries.
The execution of Qzg produces the largest amount of requests of single triple patterns
l.e., 18980, which is the most time consuming fdrlFT to analyse. Qsg is composed by
tp, = f?s a 2typeg and tp, = f2type rd : label ?labelyg. The TPF client by default
rewritestp; into f?s rdf : type ?typeg, which matches 94,190,063p, matches 20,755,041
triples. The TPF client evaluates the query incrementally by fetching mappings from one
and pushing them into the other triple pattern, page by page, thus producing this large
amount of requests.

“4https://sourceforge.net/p/webinspector/wiki/Home/

5The program to shu e several execution logs in isolation, used as input either to MINEPI, LIFT or
FETA, is available at: https://github.com/coumbaya/traceMixer

Shttp://fragments.dbpedia.org/

"We run our experiments in Linux 64 bit machine, with 32 CPUs and 800 Mhz CPU speed.
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4.3.2 LIFT deductions of queries in isolation

For each queryQ;, we ran LIFT (E(Q;), 1 ). Figure presents precision and recall of
LIFT deductions in terms of joins, against original queries of the TPF web applicatigin
These results show to which extentIFT (E(Q;)) BGP(Qi) (cf. De nition $Jon page
[40). In average LIFT obtained 97% of recall and 75% of precision of joinkIFT deduces
perfectly 15/30 BGPs: Q:  Qs, Qg, Q11, Q15 Q1s, Q22, and Q29 Qao.

ConcerningQg and Q,g, LIFT does not detect UNION queries.Qq is a query in the
form {(tp1 UNION tp2) . tp3}. In this case, LIFT detects 2 BGPs, {tp1 . tp3} and {tp2
. tp3}. Q9 is also a UNION query but without joins, thus LIFT detects two separate
triple patterns. We consider this behaviour correct.

B Recall Precision

0,75
0,5
0,25

0 Queries
Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q17 Q19 Q21 Q23 Q25 Q27 Q30

Figure 4.6 Precision and recall of joins folLIFT with traces of queries in the TPF web
application, produced by a TPF client and executedn isolation on single TPF servers
(DBpedia, Ughent, VIAF or LOV).

Figure[4.7 describe®; and its deduced BGPs. BGP[1] is correct, while BGP[2] is not.
When processingQy, like for all queries, the TPF client asks for the cardinality of each
triple pattern and decides to begin with the rst triple pattern. Then it binds resulting
mappings into the ?bookvariable of the second triple pattern to retrieve corresponding
authors. This nested-loop is deduced in BGP[1]. But as output mappings of the rst
request (for the cardinality) intersects with the values of the inner loopLIFT deduces
BGP[2] with a self-join that is very unlikely and that can be easily Itered in a post-
processing. Such situation appears in 6/29 querieQ;, Q12 14, Q21 and Qzs.

Concerning Qg, Q10, Q14, Q20, Q23 27, LIFT nds two possible variables for a com-
ponent of a triple pattern (a subject or an object). That is due to the fact that, during
the NestedLoopDetection a join is detected even if there is a partial inclusion between
output and input-mappings of two triple patterns. This is more challenging to lter.
We illustrate this with Qs, in Figure [4.7. Deduced BGP 0fQg, has an additional triple
pattern, the last one, and a join with the second triple pattern. This is the case fdQg,
Q10, Q14, Q20, Q23 27. In addition, LIFT merges triple patterns that are verysyntactically
similar, as it is the case inQi9 and Q,9 Where some triple patterns have same predicate
and variables in the same position (subject/object).

8Queries, TPF logs andLIFT results are available at: https://github.com/coumbaya/lift/blob/
master/experiments.md
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To summarize, in some caseslFT deduces additional triple patterns and thus false
joins with well deduced triple patterns, because an intersection between mappings of
semantically similar triple patterns that are not originally joined® But as right triple
patterns are in general well deduced, recall is good.

ID | Original query Deduced BGPs
SELECT DISTINCT BGP[1]:
?book ?author {?s1 rdf:type dbpo:Book .
Q, WHERE { ?sl dbpo:author ?02}
?book rdf:type dbpo:Book . BGP[2]:
?book dbpo:author ?author {?s3 dbpo:author ?03 .
} LIMIT 100 ?s3 dbpo:author ?04}
{SELECT ?award WHERE { {?s1 dbpedia owl:language
?award a dbpedia owl:Award . dbpedia:Dutch_language .
Qs | ?award dbpprop:country ?language .| ?s2 dbpprop:country ?s1 .
?language dbpedia owl:language ?s2 rdf:type dbpedia owl:Award .
dbpedia:Dutch_language} ?sl rdf:type dbpedia owl:Award}

Figure 4.7 Deduced BGPs forLIFT with traces of Q; and Qg queries in the TPF web
application, executedin isolation on the DBpedia TPF server.

4.3.3 Does LIFT resist to concurrency?

We grouped all queries of the TPF web application, into 6 generated collections of
randomly chosen queries both on single or over federations of TPF servers, as pre-
sented in Tableg 44 and 4|5 respectively. For each query set, we evaluated HORT
(E(Q)) [ =:[ (LIFT (E(Qn)) LIFT (E(Q1 k::: kQp)) in terms of recall and precision

of joins for di erent gap values. gap varies from 1% to 100% of the log duration. Each
query set was shu ed 4 times and we calculated the average &fFT results by gaf’

Figures[4.8 and 4.10 show the average of precision whereas Figprels 4.9 and 4.11 show
the average of recall, when analyzing single TPF query logs. Figufes 4.12 and }4.13 show
the average of precision and recall respectively, when analyzing federated logs of TPF
servers.

Concerning gap, according to its value increase we observe that globally precision and
recall improve, as shown in Figures 4.8[- 4]10 and Figures]49 - 4.11. When gap is small
(less than 50%) precision decreases signi cantly. A small gap ledd&T to split values of
an inner loop across di erent blocks i.e., thetpExtraction algorithm can not aggregate
in one candidate tp all triple patterns of the inner operand of a join. This is explained
from the pipelined nested-loop operator that is implemented by TPF clients. Actually,
TPF clients evaluate consecutive joins of multiple triple patterns of a query in blocks
of pushed mappings, without waiting rst all output-mappings of a triple pattern to be
pushed to the following. For more details see pa@e|27 in Chapfér 2.

SWe consider that two semantically similar triple patterns match same triples.
1ONote that as we vary the gap between two subqueries from 1 to 16 seconds, the duration of each
shu ed log we produce diverges from some seconds to one hour and a half.
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Dataset Query sets

DB]_ = fos Qs Qu 0220 DB4 = fos 0w Q20
DBpedia 2015| DB = fosouios:ie20d DBs = fori0w:qu:es0
DB3 = fos 015:010: 029 DBg = fas 0u0: 020: 0200
Ughent UG; = fazi 0m: 02s:020: @200

LOV LV]_: fQ17;Q13:Qze;Q29:Qsog

VIAF VFi = fox: 0w

Table 4.4 Query sets executed concurrently on single TPF servers (DBpedia, Ughent,
VIAF or LOV).

Dataset Query sets

LF, = lezQz;Qs;Qm;szg LF4 = fQ4:Qza;Q12;Qz4g
Federated log | LF, = fos 0u: 01502059 LFs5= for 0w 017: 0a; 050
LF3 = foe 015 Qs Quo 0xg LFg= f oo Q101 Qoe: Qo QxJ

Table 4.5 Query sets executed concurrently over a federation of TPF servers (DBpedia,
Ughent, VIAF and LOV).

Concerning recall,LIFT is moderately impacted by concurrency. Indeed,IFT favours
recall by producing all possible joins in the nested-loop detection.

Concerning precision,LIFT is more impacted by concurrency and results depend on
concurrently executed queries. When executed queries have triple patterns that ae
mantically or syntactically similar, then LIFT generates many false joins that impact
precision. A post-processing over the set of deduced BGPs, could lIter these false joins.

4.3.4 Analysis of the TPF log of USEWOD 2016

We ran LIFT with log slices, each of one hour, from the USEWOD 2016 tracésl|[28] using a
maximum gap (one hour). We obtain 595 BGPs of size >1 and 169,491 BGPs of size=1.
Table [4.14 describes the most frequently deduced BGPs. Unsurprisingly, most of
them correspond to the queries available on the TPF web application. Observing that
both queries of the TPF web application and deduced BGPs with the TPF log of USE-
WOD 2016 are similar, provides with a proof of concept fotlFT. BGP[1] corresponds
to Q1, while BGP[2] is like BGP[1] except thatdbpedia-owl:starringis replaced bydbp-
prop:starring. BGP[1] and BGP[2] do not co-exist in time, thanks toLIFT we observed
that the Brad Pitt query was modi ed on 27/10/2014. This observation also provides
with a proof of concept forLIFT. BGP[3] corresponds to the query used as the motivation
example of[[44], BGP[4] corresponds Q3, BGP[5] to Qs, etc. In this top 14 list, only 1/3
of BGPs were unknown: BGP[6], BGP[7], BGP[8], BGP[12] and BGP[13]. In addition,
we observe that almost all deduced BGPs blyIFT, start with a triple pattern containing
a constant in its subject or object. The latter observation is explained from the fact,
that triple patterns with constants are generally the most selective ones and a TPF client
starts the query evaluation with them. As a TPF server receives the selective patterns
rst, they appear rst in the log and thus in LIFT deductions.
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Figure 4.8 Precision of joins forLIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executedn concurrence on the DBpedia
TPF server.
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Figure 4.9 Recall of joins for LIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executedn concurrence on the DBpedia
TPF server.
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Figure 4.10 Precision of joins forLIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executedn concurrence on single TPF
servers (DBpedia, Ughent, VIAF or LOV).
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Figure 4.11 Recall of joins forLIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executedn concurrence on single TPF
servers (DBpedia, Ughent, VIAF or LOV).
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Figure 4.12 Precision of joins forLIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executedn concurrence over a federation
of TPF servers (DBpedia, Ughent, VIAF and LOV).
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Figure 4.13 Recall of joins forLIFT per gap with traces of queries in the TPF web
application, produced by a TPF client and executedn concurrence over a federation
of TPF servers (DBpedia, Ughent, VIAF and LOV).
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BGP[1]- deduced 126 times BGP[2] - deduced 47 times
{?s1 rdfs:label "Brad Pitt"@en . {?s1 rdfs:label "Brad Pitt"@en .
?s2 dbpo:starring ?sl . ?s2 dbpprop:starring ?sl .

?s2 rdfs:label ?03 . ?s2 rdfs:label ?03 .

?s2 dbpo:director ?04 . ?s2 dbpo:director ?04 .

?04 rdfs:label ?05} ?04 rdfs:label 705}

BGP[3] - deduced 43 times BGP[4] - deduced 34 times

{?s1 dbpedia owl:in uencedBy
dbpedia:Pablo_Picasso .

?sl rdf:type dbpedia owl:Artist .

?s1 dbpedia owl:birthDate ?03}

{?s1 rdfs:label "York"@en .
?s2 dbpo:birthPlace ?s1 .
?s2 rdf:type dbpo:Artist}

BGP[5] - deduced 34 times BGP[6] - deduced 20 times
{?s1 dbpprop:cityServed dbpedia:ltaly . {dbpedia owl:Agent rdfs:subClassOf ?01 .
?sl rdf:type dbpo:Airport} ?01 rdfs:subClassOf ?02}
BGP[7] - deduced 17 times BGP[8] - deduced 16 times
{?s1 rdfs:label "Trinity College,
{dbpedia owl:Activity rdfs:subClassOf ?01 . Dublin"@en .
?01 rdfs:subClassOf ?02} ?s2 dbpedia owl:almaMater ?s1 .
?s2 rdf:type dbpedia owl:Writer}
BGP[9] - deduced 15 times BGP[10] - deduced 13 times
{?s1 rdf:type yago:PeopleExecuted

{?s1 rdf:type dbpedia owl:Book .

. i ByCruci xion .
?sl dbpedia owl:author ?02} 2s1 rdf:type yago:Carpenters}
BGP[11] - deduced 11 times BGP[12] - deduced 11 times

{?s1 dbpedia owl:birthPlace
dbpedia:Urbel_del_Castillo .

?sl dbpedia owl:team ?02}

BGP[13] - deduced 10 times BGP[14] - deduced 10 times

{?s1 dbpedia owl:type dbpedia:Dessert .
?sl dbpedia owl:ingredient ?02 .
?02 dbpedia owl:kingdom dbpedia:Plant}

{?s1 dbpedia owl:ingredient ?01 .
?s1 dbpedia owl:kingdom dbpedia:Plant}

{?s1 rdf:type foaf:Person .
?s1 foaf:isPrimaryTopicOf ?02}

Figure 4.14 Frequent BGPs extracted withLIFT from the TPF log of USEWOD 2016.

To summarize, we presented|FT, a BGP reversing approach that aims to infer BGPs
of queries executed over TPF servers. We provided with experiments, illustratindFT's
good recall and precision that depends not only to the similarity of concurrently executed
gueries but also execution parameters aflFT.
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In this chapter we presentFETA, our proposed approach that aims to answer the
guestion: "If several SPARQL endpoints share their logs, can they track and approxi-
mate BGPs they process?Compared toLIFT we address this problem only over federa-
tions of SPARQL endpoints, because single SPARQL endpoints are already aware of the
whole queries that are addressed only to them as they are not decomposed in subqueries.
Like LIFT, the challenge with this approach is to link maybe hundreds of subqueries per
guery execution and to be resistant in presence of concurrent execution of other federated
queries. The di erence although withLIFT, is that FETA in addition must be able to (a)
detect di erent physical joins operators i.e., exclusive group, nested-loop and symmetric
hash joins, and (b) adapt to di erent optimization techniques, produced by query engines
during query execution to push mappings through nested-loops from one triple pattern
into another.

83
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This chapter rst illustrates the scienti c problem we aim to solve, as described on
page[39 in Chapterf R, Sectiof 2.5 over the context of federated query processing, in
Section[5.1. Thereafter, the BGP reversing approach 6fETA is presented in Sectiof 5]2.
Finally, experiments are reported in Sectiof 5]3.
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5.1 lllustration example

In Figure 5.7, two data consumersgc; and c;, execute concurrently federated queries
CD3; and CD4 of FedBench[[45] over the federation of SPARQL endpoints composed by
LMDB, DBpedia InstanceTypes, DBpedia InfoBoxand NYTimes. They use Anapsid/[1, 2]
or FedX [48] federated query engines.

¢ (1732819114) : Query CD; G, (1732819114) : Query CDy4
SELECT ?pres ?party ?page WHERE { SELECT ?actor ?news WHERE  {
?presrd :type dbpedia owl : President . (tp1) ? Im purl:title 'Tarzan' . ( tp?)
?presdbpedia owl : nationality dbpedia : US . (tp2) ? Im linkedMDB:actor ?actor . ( tpd)
?presdbpedia owl : party ?party . (tps) ?actor owl:sameAs ?X . 2)
?X nytimes : topicP age ?page . tp4) ?y owl:sameAs ?x . tp%)
?x owl : sameAs ?pres } (tps) ?y nytimes:topicPage ?news } (tp2)

T
1
1
1
1

~ ’
N ~ ,
A RS 7
i \ ~ ’
n \ S 7
] N S 4
\, < ,

DBpedia InstTypes DBpedia InfoBox  NYTimes LMDB
(@IT) (@IB) (@NYT)

T
1

= ---

Figure 5.1 Concurrent execution of FedBench querie€D3; and CDy, produced by a

federated query engine withl732819.114 IP Address and executed over a federation of
SPARQL endpoints.

Federated query engines, decompose SPARQL queries into a sequence of subqueries as
partially presented in Tableq 5.]L andl 5]2 for quer€ D3 using Anapsid and FedX, respec-
tively. Lines in grey color correspond to answers of the queries in enumerated lines. As
this federation of SPARQL endpoints receive only subqueries corresponding to physical

execution plans, the original queries e.gCD3; and CD, remain unknown to the corre-
sponding data providers.

In this chapter, we address the following research questiofif several SPARQL end-
points share their logs, can they track and approximate BGPs they procesk?particular,
we aim to solve the scienti ¢ problem ofBGPs reversing(cf. De nition $]on page [40),
for federated query processing over SPARQL endpoints. ComparedltéFT, we address
this problem only over federations of SPARQL endpoints. We do so, because queries ad-
dressed to a single source are not decomposed by query engines and thus are already know
by the SPARQL endpoint they evaluates them. We also consider the de nition, notation
and property of query log(cf. De nition 4Jon page[39), execution traceand resistance to
concurrency (cf. Property [ on pagg 39), respectively.

In our example,CD3 can be decomposed intbtp@T : (tp, : tps) @B : (tps : tps) @Y T g,
and NYTimes data provider just observedp, and tps; it does not know that these triple
patterns are joined withtp, from DBpedia InstanceTypes andtp,; tps) from DBpedia In-
foBox. Consequently, NYTimes provider does not know the real usage of data it provides.
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LD
provider
&Y @IT 173..| 11:24:19 SELECT ?pres WHERE {

?pres rdf:type dbpedia-owl:President }

{ {"pres", "http://dbpedia.org/Ernesto_Samper" },...
{"pres", "http://dbpedia.org/Shimon_Peres" },...
{"pres", "http://dbpedia.org/Barack_Obama" },... }

@ @IB 173..| 11:24:21 SELECT ?party ?pres WHERE {

?pres dbpedia-owl:nationality dbpedia:United_States .

?pres dbpedia-owl:party ?party }

{ {{"party","http:.../Democratic_Party %28United States%29" },

IP Time Subquery/Answer

{"pres", "http://dbpedia.org/Barack_Obama "1
{{"party","http:.../Democratic_Party %28United States%29" },
{"pres", "http://dbpedia.org/Johnny_Anders "

{{"party”,"http:.../Republican_Party %28US%29" },
{"pres", "http://dbpedia.org/Judith_Flanagan_Kennedy"
e}
@m| @NYT | 173.. 11:24:25 SELECT ?pres ?x ?page WHERE {
?Xx nytimes:topicPage ?page .
?x owl:sameAs ?pres .
FILTER ((?pres= <http://dbpedia.org/Barack_Obama> )y |l
(?pres=<http://dbpedia.org/Johnny_Anders> ) |
(?pres=<http://dbpedia.org/Judith_Flanagan_Kennedy> ),.er)
}} LIMIT 10000 OFFSET 0
{ {"pres","http://dbpedia.org/Barack_Obama" },
{"x","http://data.nytimes.com/47452218948077706853" },
{"page", "http://topics.nytimes.com/.../barack_obama/index.html"} }

Table 5.1 Partial federated log of CD3 traces, produced by Anapsid E anapsia (CD3))
with 1732819114 IP Address and executed over a federation of SPARQL endpoints.
Answers are extracted from data providers in json format.

In our example, ifc; and ¢, have di erent IP addresses then it is straightforward to
split E(CD3 k CDy) into E(CD3) and E(CD,4), and apply the reversing function sepa-
rately. However, in the worst case¢; and ¢, share the same IP addre@s In this case, we
expect that f (E(CD3 k CD4)) f(E(CD3)[ f(E(CD4).

lLike TPF evaluation this can be produced when, for instance, a proxy server is used as a mediator
between clients and federations of SPARQL endpoints.



5.1. ILLUSTRATION EXAMPLE 87

LD

provider P

Time

Subquery/Answer

&) @IB 173..

17:04:08

SELECT ?pres ?party WHERE {
?pres owl:nationality <http://dbpedia.org/dbpedia.org/United_States>.
?pres owl:party ?party }

{ {{"pres", " http:dbpedia.org/Barack_Obama "
{"party”, "http:.../Democratic_Party %28United_States%29" }},...
{{"pres", " http:dbpedia.org/Johnny_Anders "1
{"party", "http:.../Independent_%28politics%29" }}, ...
{{"pres", " http:dbpedia.org/Judith_Flanagan_Kennedy "1
{"party”, "http:.../Republican_Party %28US%29" }},... }

2 @IT 173..

17:04:11

SELECT ?0_0 ?0_1 ?0_2... WHERE {
{ <http:dbpedia.org/Barack_Obama> rdf:type ?0_0.
FILTER(?0_0 = <http://dbpedia.org/ontology/President>) }
UNION
{<http:dbpedia.org/Johnny_Anders> rdf:type ?0_1.
FILTER(?0_1 = <http://dbpedia.org/ontology/President>) }
UNION
{ <http:dbpedia.org/Judith_Flanagan_Kennedy> rdf:type
?0_2.
FILTER(?0_2 = <http://dbpedia.org/ontology/President>) },... }

{{ 0_0 http /ldbpedia.org/ontology/President" }
{"0_1", ™}
{ 0 2II nn },... }

m| @NYT | 173..

17:04:13

SELECT ?x WHERE {
?x owl:sameAs<http:dbpedia.org/Barack_Obama> .}

{
{"x", "http://data.nytimes.com/47452218948077706853" 1}

w| @NYT | 173..

17:04:15

SELECT ?page WHERE {
<http://data.nytimes.com/47452218948077706853>
nytimes:topicPage ?page }

{
{ "page","http://topics.nytimes.com/.../barack_obama/index.html"} }

Table 5.2 Partial federated log of CD; traces, produced by FedX Eregx (CD3)) with

17328191141P Address and executed over a federation of SPARQL endpoints. Answers

are extracted from data providers in json format.

Next, we present our proposed BGP reversing solutior;ederated q&ry T rA cking

(FETA), which we evaluate with traces of FedBench [46] queries executed (i) in isolation

and (ii) in concurrence, over federations of SPARQL endpoints.
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5.2 FETA: a reversing approach

FETA is a system of algorithms based on heuristics, to implement the reverse function
f. The idea is to detect exclusive groups, nested-loops and symmetric hash joins. In
Table 5.2, the mappings returned from DBpedia InfoBox in line 2, are reused in DBpedia
InstanceTypes in the next subquery, in line 3. We track such bindings in order to link
di erent subqueries.

In this chapter, we make the following hypothesis:
1. We consider only bound predicat&s

2. We consider that SPARQL endpoints do not use a web cache (this information can
be easily obtained by data providers), and

3. We do not consider query engines use a cache (concerning both the location of
SPARQL endpoints that evaluate triple patterns and also their answers).

Figure presents a simplied federated log of two SPARQL endpointsp, and
e, corresponding toQz; = SELECT 7z 2y WHERE f?z pl 02 : 7z p2 %Q), Q4 =
SELECT ?x 2y WHERE f?x pl %qg) and E(Q3 k Q4).

For the sake of simplicity, timestamps are transformed into integers. The IP address of
the query engine is the same fa@; and Q4, so we removed thep column. Query engines
use the same variable hames for subqueries as those used in the original user queries, in
contrast to TPF clients that rename them either assubjector object , represents the
mappings of variables resulting from the evaluation of the triple pattern on data. Like
LIFT, we call them output-mappings

Algorithm #]shows the ve phases ofFETA:

1. First, FETA cleans the input log from ASK queries, aggregates SELECT queries
into merged SELECT queriesf they di er only in their OFFSET values or are sent
to di erent SPARQL endpoints, and then groups them into the same graph if they
are syntactically joinable. We denote the set of graphs of subqueriesM$Q.

2. Second,FETA reducesMSQ into graphs of triple patterns, by merging them into
a set of candidate triple patterns which we denote asCTP. It allows to gather
triple patterns of queries, that can be part of the same inner operand of a join.
Compared toLIFT, we need also to save the information regarding which candidate
tps are joined asexclusive groupsor that are syntactically joinable. The former
will be excluded during detection of nested-loops. The latter will be used to detect
symmetric hash joins.

3. Next, FETA looks for an inclusion relationship among output and input-mappings
of CTPs. If it does not exist, FETA splits candidate triple patterns to build it. This
produces a set of graphs, which we denote B P, where nodes areleduced triple

2As reported in [8], predicates of triple patterns are frequently bound. NeverthelessFETA like LIFT
can be extended to deal with predicates just like they deal with subjects and objects.
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L1 | epl | sqp = SELECT 7?0ty WHERE {?x pl 7y} 2y :}1 02
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(a) Log E(Q3).
ts ep | tp Ho
7s | sl 82
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6 | ep2 | sq3 = SELECT 7y WHERE {s1 p2 7y} Ty | 03 /
7 | ep2 | sqqu =SELECT 7y WHERE {s2 p2 7y} 7y |04 _/

(c) Log E(Qa).

Figure 5.2 Examples of simpli ed logs of SPARQL endpoints, folQ; and Q4 traces.

patterns and edges represent inclusion relationships between them. This detects
nested-loops. Note that compared t&IFT, FETA adapts on di erent optimization
techniques that are employed by query engines in order to detect pushed values from
the outer into the inner operand of a nested-loop.

4. Thereafter, FETA looks for intersection relationship among output-mappings of
DTPs that are connected only with unlabeled edges i.e., triple patterns that are
syntactically joinable. This maintains the set of graphsPTP, by con rming that
every syntactical connection between triple patterns correspond actually to an inter-
section relationship between their output-mappings. If not, their edge is removed.
This detects symmetric hash joins, a heuristic not applied with.IFT.

5. Finally, FETA extracts BGPs fromDTP graph set. Ideally,FETA(E (Q3 k Q4); gap
should compute the 2 BPGs of); and Q4: f?7z pl 02 : ?z p2 yg and f ?X p1 %qg.

The basic intuition of FETA is to detect if mappings are bind in next requests but also
if there exist and intersection between output-mappings of di erent requests. This can
be challenging, as mappings can be: (i) bind several times (e.qg., in star queries), (ii) bind
partially as a side-e ect of LIMIT clause@, or (iii) bind into a di erent concurrent query.

SFILTER clauses are in general detectable because they are pushed to relevant SPARQL endpoints to



90 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

As a real log can be huger-ETA analyzes the log using a constraint as a sliding window
which is de ned by agapi.e., a time interval. When FETA reads an entrye in the log
with a timestamp ts, it considers only entries reachable within the gap i.ets gap

Algorithm 4:  Global algorithm of FETA
1 Function FETA (log;gap is
input : a federated loggap an interval in time units (seconds)
output : a set ofBGPs
data : MSQ a set of graphs of merged subqueri€sT P a set of candidate tps,
DTP an edge-labelled set of graphs of deduced tps

MSQ  graphConstruction  (log;gap
CTP  graphReduction (MSQ)

DTP  nestedLoopDetection (CTP;gap
DTP symmetricHashDetection (DTP)
return BGP bgpExtraction (DTP)

D U WN

Section[5.2.1L presents the construction of syntactically joinable subqueries. Sec-
tion b.2.7 explains the reduction of this graph into a graph of candidate triple patterns.
Section[5.2.B describes the nested-loop detection. Section 5.2.4 presents the symmetric
hash detection. Finally, Sectioni 5.2]5 returns the BGP graphs theETA deduces.

5.2.1 Graph construction

The graphConstruction heuristic rst aggregates same or similar queries and then con-
structs graphs of syntactically joinable subqueries, from the input log. We consider that
two queries are similar, if they di er only on their OFFSET values. Aggregated queries
are represented by anerged SELECT query All graphs of syntactically merged queries,
form the MSQ Graph set. Queries that have same projected variables or constants are
connected to the same graph, respecting a user-de ngdp value.

A m2 MSQ, is a tuple hp;ts;q; o;fepgi whereip is an IP address,ts is a pair of
timestamps (ts:min; ts:max ) representing a range; when creating an both timestamps
are identical and correspond to the timestamp of the current entry in the log.q is
a SPARQL SELECT query, o (output-mappings) is the list of solution mappings for
projected variables ofg. fepg is the set of SPARQL endpoints that evaluate the merged
guery. This module executes two main functions: (alogP reparation(log;gap and (b)
groupQueryGraphgM SQ), as we explain next.

(a) logPreparation, prepares and cleans the input log. ASK queries are suppressed.
Identical or subqueries di ering only in their OFFSET values are aggregated in one single
query, respecting a gap value, as we see in Algorithim 6, lines 5 and 6. If it is the rst time
we observe this query, then it is saved as a new graph, line 7. In this phase, each graph
is composed by a single merged query. Timestamp of such aggregated query becomes
an interval. Identical queries are sent twice to the same SPARQL endpoint to be sure
obtaining an answer and to dierent to have complete answers. Similar queries with
di erent OFFSETs are sent to avoid reaching the limit response of SPARQL endpoints.

minimize local processing at the data consumei[47], in contrast with TPF clients that bear the processing
load of all SPARQL features.
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Algorithm 5:  Construction of a set of graphs of syntactically joinable subqueries

1 Function graphConstruction (log;gap is
input : a federatedog; gap an interval in time units (seconds)

output : MSQ a set of graphs of subqueries

2 |[MSQ logPreparation (log;gap
3 |MSQ  groupQueryGraphs (MSQ;gap)
4 |return MSQ

Algorithm 6: Cleaning of the input log fromASK and redundant queries
1 Function logPreparation(log;gap is

input : a federatedog; gap an interval in time units (seconds)

output : MSQ a set of graphs of merged subqueries

data : m a merged subquery of multiple query entries in the log

foreach e 2 log do

m  read(e) as (ip, (ts,ts), 4, o, €PS)

if lisAsk ( mq) then

if 9 mc 2 MSQ | ingap(m m, gap) * (mk:ip = nip) *
(mg= mc:moduloOFFSET(q)) then

6 L(m(. o[ m o); ((M.ts.max=mts.max); (m.fepg [ mfepy);

7 else MSQ:add( m)
8 |[returnMSQ

a b~ WON

(b) groupQueryGraphs presented in Algorithm[7, incrementally connects single sub-
qguery graphs in MSQ. Di erent (merged) queries are connected depending on thap
value either on their common projected variables, or, if their triple patterns have common
IRI/literal on their subjects or objects, line 4. In general, subqueries are joined on their

common projected variables. However, we consider also IRIs and literals, even if they can

produce some false positives. Joins detected until here are not labeled.

Algorithm 7:  Grouping of syntactically joinable subqueries into the same graph
1 Function groupQueryGraphs(MSQ;gap) is
input : MSQ a set of single (merged) subquery graplygip an interval in time units
(seconds)
output : MSQ a set of connected graphs of merged subqueries

foreach m 2 MSQ do

foreach m 2 MSQ do

if ingap(m, m, gap)* (m:ip = m:ip) *
(sameProjectedVars(m:q; m:q) _ sameConstants(m:qg, m:qg)) then

MSQ.addEdgefn, m)
break;

7 | [return MSQ

In our example, with a gap equal to 5, two graphs are constructed1SQ = fhf sq; st; SQ;
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f (Sth; St); (S0; St); (Sth; saug i; h fsapg i gff) as we see in Figurg 53 on page|92.

tslep |q Ho

7s (sl s2
s3
7y|ol o2
03
@ ! |cpl|sqo = SELECT ?z WHERE {7z pl 02} ?Z‘Sl s2 /J
16 |ep2|sqs = SELECT 'y WHERE {s1 p2 7y} '?3-"03 //
{7 lep2|sqs = SELECT 7y WHERE {s2 p2 7y} |7y o4 &

1 lepl|squ = SELECT 7z 7y WHERE {?z pl 7y}

Figure 5.3 Deduced graphsmy, m, 2 MSQ, in blue and red colors respectively, produced
by Algorithm []for gap=5.

5.2.2 Graph reduction

graphReductionaims to transform graphs of queries into set of triple patterns. Triple pat-
terns that belong to di erent queries iINnMSQ, are aggregated if they seem to participate
in the same outer or inner operand of a join. Aggregated triple patterns are represented
by a candidate triple pattern All candidate triple patterns form the CTP set.

Algorithm 8: Reduction of a set of subquery graphs into a set of CTPs
1 Function graphReduction(MSQ) is
input : MSQ a set of graphs of merged subqueries
output : CTP a set of candidate tps
data : CTP, atemporary set of candidate tps for each merged subquery

2 |foreach m 2 MSQ do

3 | |CTPy read(m:q) asf (ip, (ts;ts), tp, o, i, fepg, thig) g
4 | |foreach ¢c2 CTP, do

5 switch ctp do

6 case?spo.ctp ?sp?p ; C 2 |o

7 casesp?o:ctp 7S, p?0;C ? |s

8 casespo:.ctp  ?Sip P ; C ?1s,? o

9

[case?sp ?oictp  ?Sp?; C
if 9 2 CTP | (:ip=cip)” (ctp= g:tp) then

(& ol cohi(& i[ ci)(afepg[ cfepy); (athig[ cfhig);
| ( g:ts:max = cts:max);

12 |else CTP.add(9

B
)

13 j;turn CTP

The CTP de ned for FETA is enhanced with two additional arguments, compared to
the one de ned forLIFT: (a) a set of SPARQL endpoints, which evaluate the candidate
triple pattern and (b) a set of pair-tuples, each representing to which other triple pattern

4To simplify, all annotations to sq are omitted.
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the current one is joined and with what type of join i.e., syntactical (which would be

identi ed as symmetric hash or be removed), exclusive group or nested-loop. In this
phase, we identify syntactically or exclusive group joins, that will be excluded during
following heuristics. We re de ne next, the notion of candidate triple pattern.

A c2 CTP is a tuple hip;ts;tp; o; i;fepg;fh igi. ip is an IP address.ts is a pair
of timestamps (ts:min; ts:max ) representing a range; when creating a candidate triple
pattern both timestamps are identical and correspond to the timestamp of the current
entry in the log. tp is a triple pattern, , (output-mappings) is the list of solution
mappings for variables oftp. ; (input-mappings) is a set of mappings built during the
graphReduction Basically, we replace any constant ofp by a variable, we use for
subject and! for object. Replaced constants are regrouped in.. fepg is the set of
SPARQL endpoints that evaluate the current triple pattern. fh ig (labeled edges) is a
set ofkey-valuetuples, each representing to which other candidate triple pattern i.ekey
the current triple pattern is joined and with what type of join i.e., value "unlabeled" (or
eventually "symmetricHash"), "exclusiveGroup" or "nested-loop".

tslep q T,
'x|sl s2
1 |epl|sqg = SELECT 7z 7y WHERE {?x pl 7y} ﬁsB

6 |ep2|sqgs = SELECT "y WHERE {sl p2 7y}
7 lep2|sqy = SELECT "y WHERE {s2 p2 7y}

(a) Graph of subqueries m1 €MSQ.

id|ts |ep tp Mo i
7x|sl s2
} I R 1o _53
L 1 epl 1,172 pl1 7y ol o2
03

L 2 lepl|4,4|7z pl Tw]| 7z|sl s2 ?w‘o?
3 1ep2|6,7 7o p2 7y| Ty|o3 o4 ?G"Sl S24

(b) CTP List of candidate triple patterns obtained by Algorithm 8.

€p |4 Ho
L 4lepl|sq2 = SELECT 72 WHERE {7z pl 02}‘ ?z‘:sl s2

(c) Graph of subqueries m2 e MS5Q .

Figure 5.4 Federated log andCT P List, produced by Algorithm @ for gap=5.

The heuristic graphReduction of Algorithm 8| di ers from the heuristic employed by
LIFT of Algorithm ] in three points: (i) it does not need a gap value, as triple patterns
that seems to be part of the same outer or inner operand of a join have already been
grouped in the same graph regarding the gap, (ii) it iterates over temporary candidate
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triple patterns, CT Py, as they are red from each query iM SQP and not log entries, and
nally (iii) it maintains exclusive groups or syntactical joins of CT P, into the nal CTP

list. Actually, the graphReduction module will signi cantly reduce the size of each graph

in MSQ, because nested-loops can be executed with hundreds of subqueries. Figuie 5.4
illustrates the CTP List after graphReduction, for our motivating example.

5.2.3 Nested-loop join detection

Like LIFT, this heuristic identi es nested-loops joins between pairs of candidate patterns,
as described in Algorithm[ 9. In particular, nestedLoopDetectionbuilds a set of graphs
of deduced triples patternswhich we denote aT P, by linking di erent candidate triple
patterns if there is a relation of inclusion between thefh The di erence with LIFT is that
edges between triple patterns created with this heuristic, are labeled asested loog',
to be excluded during thesymmetricHashDetection.

Algorithm 9:  Detection of nested-loop joins

1 Function nestedLoopDetection (gap;CTP) is
input : gapan interval in time units (seconds)C TP a list of candidate tps
output : DTP an edge-labelled set of graphs of deduced tps

foreach c¢2 CTP do

if split( 9 6 ; then CTP.insertAfter(cid, split( 9);

else DTP.addnode(q ;

foreach v, 2 vars(c o) do

foreach (G;vi) 2 {( & Vvi)| « 2 CTP " (&.id > cid) * (ingap( &, ¢ gap)) "
9vi 2 vars(&: i) | (& i(vi)\ € o(vo) 6 ;)} do

7 if l(unlabeldedEdgeG &)_exclusiveGroupEdge @)™ ( &: (V) C o(Vo))
then

DTP.addnode(g);

LDTP.addEdge(c &, (Vo,Vi), "nested loop");

10 else DTP.addnode(s=split(&, Vi, G Vo));
11 DTP.addEdge(G s, (Vo,vj), "nested loop");

o O WN

12 ||
13 jeturn DTP;

5.2.4 Symmetric hash join detection

symmetricHashDetection identi es possible joins between output-mappings of pairs of
deduced tps. In particular, this module deals with pairs of triple patterns that have not
been connected with éxclusiveGroug' or "nested loop' labels, but are syntactically
connected by transitivity as the queries that contained them were already syntactically
joined.

SNote that a query may correspond to more than one joined candidate triple patterns, a join named
exclusive group

6Note that in [35], we de ned the notion of inverse mapping in order to detect the inclusion of
input-mapping values of the inner from output-mappings of the outer triple pattern of a nested loop.
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(a) CTP List of candidate triple patterns obtained by

) (b) DTP set of graphs of deduced triple patterns obtained by
Algorithm 8.

Algorithm 9.

Figure 5.5 CTP List and DTP Graph set, produced by Algorithm@ for gap=>5.

Algorithm 10: Detection of symmetric hash joins
1 Function symmetricHashDetection (DTP) is
input : DTP an edge-labelled set of graphs of deduced tps, either as "unlabeled",
"exclusiveGroup" or "nested-loop".
output : DTP an edge-labelled set of graphs of deduced tps, either as

non

"exclusiveGroup", "nested-loop" or "symmetricHash"

foreach dtp;;dtp; 2 DTP do
if unlabeldedEdgédtp;; dtp;) then
if CheckConceptSimilarity (dtp;: o; dtpj: o) then
if (dtpi: o\ dtpj: o) & ; then

| DTP.replaceEdgedtp;, dtp;, "symmetricHash ");
else
8 | DTP.removeEdgedtp;, dtp;);

o 0o M~ WDN

~

9 Ieturn DTP

Algorithm [L0]shows how thesymmetricHashDetection proceeds over pairs of deduced
triple patterns. First, Line 3 identi es edges of syntactically joined triple patterns. Then,
Line 4, checks if output-mappings of these triple patterns are aame or similar concepts
We consider that two concepts are similar if they are connected by thedmeAs' ontology.
This heuristic is presented in Algorithm[Il. The idea is that through a query executed
on SPARQL endpoints, it will be possible to know if two sets of IRIs of syntactically
joined triple patterns are actually on same or similar concepf§. Then, in Line 6, if
the intersection of the output-mappings of deduced triple patterns is not an emptyset,
they are connected through an edge labeled as "symmetricHash". Otherwise, the edge
representing a syntactical join is removed, in Line 8.

This heuristic produces false positives because it infers all possible joins that can be
made locally at the query engine. If a star-shape join of triple patterns exists, all possible
combinations of joins will be deduced instead of the subset of joins chosen by the query
engine. The consequence f&fETA, compared toLIFT, is that it is more vulnerable to

“Another way to do this is to have locally at the data consumer, all ontologies of the federation. The
advantage is to avoid surcharging SPARQL endpoints, but the risk is to have old versions of ontologies.
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Algorithm 11: Check for same/similar concepts of output-mappings of DTPs
1 Function checkConceptSimilarity (dtp;: o; dtpj: o) is
input : a pair of output-mappings of two deduced tps
output : b a boolean value, to verify if two deduced tps have same or similar concepts
data : g a SPARQL query to retrieved concepts and parent concepts of an IRl

foreach iri | 2 dtpj: o do
Gri, SELECT distinct ?class ?parent WHERE f
iri | a 7class :
?class rdf's : subClassOf ?parent g
foreach iri ¢ 2 dtpj: o do
Gri, SELECT distinct ?class ?parent WHERE f
iri k a 7class :
?class rd's : subClassOf ?parent g
b areSameOrSimilar (execute(gyi , ); execute(Gyi ,))
return b

© 00 N o o b~ 0N

B
o

detect false joins because of theymmetricHashDetection heuristic. Like LIFT, FETA
privileges recall to the detriment of precision. In our example, we detect one symmetric
hash join between DTP[1] and DTP[4] as there exist an intersection for their output-
mappings on variable?y i.e., ?y 7! 03, as we see in Figurg 5/.6.

id | ts | ep tp Lo i
7x | sl 82
o, o, s3

1] 1,1 |epl ‘x pl Ty 7y [ol o2 -

03 H
2 | 44 | epl 7z pl 7w 7z ‘ sl s2 i Tw | 02
3 16,7 | epl,ep2 | 70 p2 Ty 7y | 03 o4 : 70 | s1 82
4 | 6,7 | epl,ep2 | 7o p2 7y 7y | 03 o4 - 70 | sl 82

Figure 5.6 DTP Graph set with detection of a symmetric hash joint between DTP[1]
and DTP[4], produced by Algorithm for gap=>5.

5.2.5 BGP extraction

Figure[5.7 represents the connected components®@T P shown in Figure[5.5. From this
representation, it is easy to compute the nal BGPs with a variable renaming and restitu-
tion of an IRl/literal in place of ! when there is only one input-mapping, for our example
it is "02".

5.2.6 Time complexity of FETA

The computational complexity of the global algorithm ofFETAs in the worst caseO(N 2+
N M + M?), while in the best caseO(N + M ?). N is the number of queries in the log
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Figure 5.7 Connected components of th®©TP Graph set, produced by Algorithm
for gap=>5.

and M is the number of candidate triple patterns ofCTP.

The cost of thegraphConstruction heuristic, is the addition of costs ofogP reparation
and commonJoinCondition. logP reparation in Algorithm 6] costs O(N). The worst
case complexity ofcommonJoinCondition in Algorithm is O(N?), when all queries
in the log are compared together. On the other hand, ideally each subquery is syntac-
tically joined with just the previous one i.e., when they belong to the same execution
plan. In the latter case,commonJoinCondition costsO(N). Therefore, the worst time
complexity of graphConstruction is O(N) + O(N?), that gives O(N?), and the best
O(N) + O(N), that gives O(N). graphReductionin Algorithm 8|costs O(N M), as it
extracts and merges similar triple patterns of already syntactically connected queries in
MSQ. nestedLoopDetectionin Algorithm @costs O(M ?) as it compares every candidate
tp with any other. symmetricHashDetection in Algorithm @]also costsO(M ?). First,
it checks all pairs of triple patterns of DT P that are syntactically joinable, for same or
similar concepts and then for a possible intersection, thud(2 M 2) that gives O(M ?)
Finally the cost of extracting BGPs is linear to the size of DTP, that isO(M). To sum-
marize, the worst case complexity oFETAis O(N?2+ N M + M?+ M? + M), that
givesO(N?2+ N M + M?2), while the best complexity isO(N + N M + M2+ M) or
equivalently O(N M + M?). If we bypass thegraphConstruction phase, the complexity
of FETAis always the same i.eO(N M + M ?2), like LIFT.

The overload produced byFETA, like LIFT, is high but we underline that the size of
the log corresponds to aslicing window of timee.g., a separate log for each hour of the
day, and that the log analysis can be made as a batch processing.

8Note that even if only nested-loops or symmetric hash joins were used to evaluate a query, the cost
of nestedLoopDetection and symmetricHashDetection would always be the same as all pairs of triple
patterns must be compared together.



98 CHAPTER 5. FETA: FEDERATED QUERY TRACKING

5.3 Evaluation

The goals of the experiments is to evaluate precision and recall BETA's results. In
Section[5.3.11 we present the experimental testbed BETA. In Section[5.3.2 we evaluate
precision and recall ofFETA, with traces of federated queries executed isolation. In
Section[5.3.B we evaluate precision and recall BETA, with traces of federated queries
executed concurrently under a worst case scenario, that is when they come from the
same IP address. In contrast withLIFT, neither a public set nor a log with traces of real
federated queries executed over the Linked Data does exist, to the best of our knowlgtige

FETA

Experiments are evaluated by reusing the queries and the setup of FedBench [46]. We
use the collections of Cross Domain (CD) and Life Science (LS), each one has 7 federated
queries. CD queries concern datasets of DBpefflaNY Times, LinkedMDB, Jamendo,
Geonames and SW Dog Food. LS queries use datasets of DBpedia, KEGG, Drugbank
and CheBi. We setup 19 SPARQL endpoints using Virtuoso OpenLifik6.1.7.

5.3.1 Experimental tesbed of

Query Anapsid FedX Query Anapsid FedX
CD1 14 164 LS1 2 32
CD2 4 38 LS2 34 154
CD3 142 196 LS3 872 4736
CD4 4 138 LS4 10 36
CD5 4 82 LS5 792 946
CD6 16 596 LS6 3252 20908
CD7 52 638 LS7 240 1000

] Total | 236 \ 1852 H Total \ 5202 \ 27812 \

Table 5.3 Number of requests of SELECT subqueries for CD and LS queries, produced
with Anapsid or FedX and executedn isolation over a federation of SPARQL endpoints.

We executed federated queries with Anapsid 2.7 and FedX 3.0. We con gured Anap-
sid to use Star Shape Grouping Multi-Endpoints (SSGM) heuris@. We captured http
requests and answers from SPARQL endpoints with justni er 0.5.£8 We implemented
a tool to shu e several logs of queries executed in isolation, according to di erent pa-
rameterﬂ. Thus, given E(Q,);:::;; E(Q,) we were able to produce di erent signi cant
representations ofE (Q; k ::: k Qy), like LIFT. Produced traces with this tool vary in
() the order of queries, (ii) the number of subqueries of the same query, appearing

90n the other hand, there exist a public set of queries executed over single SPARQL endpointS [41]

OpBpedia is distributed in 12 data subsets fttp://fedbench.fluidops.net/resource/Datasets ),
in our setup, DBpedia Ontology dataset is duplicated in all SPARQL endpoints, so we install 11 SPARQL
endpoints for DBpedia instead of 12.

Whttp://virtuoso.openlinksw.com/

2The di erence of SSGM and SSGS, as presented in Chapt{r] 2, is that the latter minimizes the scope
of addressed SPARQL endpoints to the rst that can evaluate a triple pattern.

Bhttp://justniffer.sourceforge.net/

14The program to shu e several execution logs in isolation, used as input either to MINEPI, LIFT or
FETA, is available at: https://github.com/coumbaya/traceMixer
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continuously in the shu ed log (blocks of 1 to 16 subqueries), and (iii) the delay be-
tween each subquery (from 1 to 16 units of time). Source code IBETA is available at
https://github.com/coumbaya/feta

Table [5.3 presents the number of requests produced by FedX and Anapsid, for the
execution of FedBench queries in isolation. Table 5.4 presents the runtimeskETA for
each execution trace produced in isolatiff. As we observe, the number of subqueries
produced by query engines can be up to 20908 i.e., for query LS6 executed with FedX,
which is the most time consuming forFETA to analyse. In addition we observe that
there is a signi cant di erence between FedX and Anapsid. For instance, when LS6 is
executed with Anapsid it produces 3252 subqueries i.e., 6 times less than FedX. This is
explained by two reasons. First, Anapsid usdsushy treeexecution plans which is proven
to create less requests than thieft-linear tree execution plans of FedX, where consecutive
joins between multiple triple patterns are produced sequentially. Second, the user-de ned
block size of bound joins for FedX is generally smaller than the constant block size of
FILTER options for Anapsid, thus the latter produces more requests during nested-loops.
For more details see page B5 in Chaptgf 2.

Query Anapsid FedX Query Anapsid FedX
CD1 <1 <1 LS1 <1 <1
CD2 <1 <1 LS2 <1 <1
CD3 <1 <1 LS3 4 10
CD4 <1 <1 LS4 14 <1
CD5 <1 <1 LS5 1 2
CD6 33 <1 LS6 10 271
CD7 <1 <1 LS7 98 2

| Average | 47 | <1 | Average | 43 | 407 |

Table 5.4 Runtimes (seconds) oFETA with traces of CD and LS queries, produced with
Anapsid or FedX and executedn isolation over a federation of SPARQL endpoints.

5.3.2 FETA deductions of queries in isolation

Like LIFT, for each query of the Cross Domain and Life Science collections, we FHTA
(E(Q),1 ). Figures[5.9 to[5.1D present precision and recall 5ETA's deductions in terms
of triple patterns and Figures 5.1]L [ 5.2 in terms of joins, by query and query engine. In
average, we obtained 94,64% of precision and 94,64% of recall of deduced triple patterns.
We obtain 79,40% of precision and 87,80% of recall for detected joi’EETA succeeds in
deducing 11 out of 14 exact BGPs from Anapsid traces, and 7 out of 14 from FedX traces.
Globally FETA nds 18/28 exact BGPs i.e., 64%. If we include Union queries where all
triple patterns are deduced FETA nds (18+3)/28 queries i.e., 75% of FedBench queries.
From Anapsid traces, deduced BGPs correspond to CD and LS queries except for
Union queries i.e.,CD;, LS; and LS,. For CD,, presented in Figure 5.8aFETA gives
one BGP instead of two, because of the joinable common variables and the common IRI
used in their BGPs. This query has two BGPs but a join is possible between them. As
the Union of each query is made locally at the query enginEETA deduces a symmetric

15We run our experiments in Linux 64 bit machine, with 32 CPUs and 800 Mhz CPU speed.
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SELECT ?predicate ?object WHERE {
{ dbpedia:Barack_Obama ?predicate ?object } (tp,)

UNION
{ ?subject owl:sameAs dbpedia:Barack_Obama (tp;)
?subject ?predicate ?object }} (tp3)

(a) CD1

SELECT ?drug ?melt WHERE{

{ ?drug drugbank: meltingP oint ?melt (tpy) }

UNION

{ ?drug dbpedia-owl-drug:meltingPoint ?melt}}  (tp,)
(b) LS1

Figure 5.8 Two UNION queries of FedBench.

hash join: FETA(E anapsia (CD1)) = f (tpz : tps) @Y T : tpPBPe®@ g The deduction is
similar for LS,. For LS;, presented in Figure 5.8b,FETA deduces only the rst BGP
because Anapsid does not send a subquery for the second BGP of the Unip2)( From

its source selection process, Anapsid knows that there is no SPARQL endpoint that can
evaluatetp2 and only tpl is send to Drugbank.

From FedX traces, deduced BGPs correspond exactly to the original BGPs of 7 queries:
CD,, CD3, CDs, CDg, CD+, LS, and LS. For LS4, FETA nds one BGP instead of two
but unlike Anapsid, all triple patterns are well deduced. All other problems of deduction
come from the nested-loop detection dFETA. For CD; and LS, FETA fails to nd some
triple patterns. We illustrate what happens onCD;. Instead of nding the object of tp,
that is an IRI, it nds the variable ?object The reason is that this IRI is contained in
the mapping oftp; that is used in a nested-loop withtp;.

ConcerningCDy, LS3, LS5, and LSg, FETA nds two possible variables for a compo-
nent of a triple pattern (a subject or an object). That is because during th&l estedLoop
Detection, a join is detected even if there is a partial inclusion between output and input-
mappings. We illustrate this case withCD, (see Figure[ 5.1 on page B5)FETA nds
that two variables may correspond to the subject of an inner operand of a joir?y and
?actor. That is because the set of mappings ¢y corresponds to a subset of the map-
pings of ?actor. As FETA can not decide which variable is the good one it produces two
triple patterns, the good one with?y (tp5) and another with ?actor (tp5°). In this case:
FETA(Ereax (CD4)) = T (tpy 1 tp2)@MPB : (tps : tpy)@Seonamesietc:; p@YT: j (p@aNvT g

To summarize, in some caseBETA like LIFT deduces additional triple patterns and
thus false joins with well deduced triple patterns, because an intersection between map-
pings of semantically similar triple patterns that are not originally joined™] Further-
more, FETA compared toLIFT detects additional false positives of joins, because of the
symmetricHashDetection heuristic. But as right triple patterns are in general well de-
duced, recall is good.

% Triple patterns tp3 and tp4 are joined as an exclusive group to: Geonames, NYT, Jamendo, SWDF,
LMDB, DBpediaNYT, DBpediaLGD, representing an exclusive group.
"We consider that two semantically similar triple patterns match same triples.
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Figure 5.9 Precision of triple patterns for FETA with traces of CD and LS
queries, produced with Anapsid or FedX and executeid isolation over a fed-
eration of SPARQL endpoints.

"1 Recall of triple patterns from Anapsid traces

I Recall of triple patterns from FedX traces
1,00 -

0,75 ... X ! B . . N | . ...
050 -
0,25

0,00 Queries
CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7

Figure 5.10 Recall of triple patterns forFETA with traces of CD and LS queries,
produced with Anapsid or FedX and executedh isolation over a federation of
SPARQL endpoints.
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Figure 5.11 Precision of joins forFETA with traces of CD and LS queries,
produced with Anapsid or FedXin isolation and executed over a federation
of SPARQL endpoints.
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Figure 5.12 Recall of joins for FETA with traces of CD and LS queries,
produced with Anapsid or FedX and executedh isolation over a federation
of SPARQL endpoints.
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5.3.3 Does FETA resist to concurrency?

We executed concurrently all queries of the same collection i.e., Cross Domain and Life
Science, over the federations of SPARQL endpoints presented in the beginning of this
section. For each query set, we evaluated havETA (E(FQq)) [ :::[ (FETA(E(FQy))
FETA(E(FQ. k ::: k Qpn)) in terms of recall and precision of joins for di erent gap values.
gapvaries from 1% to 100% of the log duration. Each query set was shu ed 4 times and
we calculated the average oFETA's results by gaf?

Figures[5.18 and 5.14 show the average of precision and recall of concurrently ex-
ecuted queries of the CD and LS collections, over a federation of SPARQL endpoints.
Figures[5.15 and 5.16 show the recall of 4 mixes for a set of non similar queries executed
with Anapsid and FedX, respectively, over federated logs of SPARQL endpoints. This set
of chosen federated queries having distinguishable triple patterns i€D3, CD4, CDs,
CDeg, LS, and LSs.

Concerning gap, according to its value increase we observe that globally precision and
recall improve, as shown in Figureg 5.13 arfd 5|14 respectively. ComparedLtéT, we
observe that FETA has still good results in precision and recall, even when the gap is
small (less than 50%). This is explained, as nested-loop operators of Anapsid and FedX
are not fully pipelined like the one implemented by TPF clients, but rst they retrieve
all mappings of the outer before pushing them into the inner dataset (in blocks to avoid
reaching the limit response of SPARQL endpoints). Thud-ETA even with a small gap
associates triple patterns that belongs to the same inner operand of a join and do not
split them in many blocks of joins likeLIFT. For more details see page B5 in Chaptgf 2.

Concerning recall FETA like LIFT is moderately impacted by concurrency, as shown in
Figure[5.13. Indeed FETA favours recall by producing all possible joins in the nested-loop
detection. In general FETA results on recall for FedX and Anapsid traces are similar. On
the other hand, recall for LS is better than recall for CD traces. This happens because
for traces of LS queriesFETA generate lots of symmetric hash joins including the good
ones. Finally, concerning non-similar queries, recall of joins for Anapsid and FedX traces
IS even better.

Concerning precision,FETA is more impacted by concurrency and even more than
LIFT, as shown in Figurd 5.14. When executed queries have triple patterns that are se-
mantically or syntactically similar, then FETA generates many false joins that impact
precision. This is explained from the fact that queries of Cross Domain and Life Science
are very similar, thus FETA detects inclusion relations between mappings of triple pat-
terns of di erent queries during nestedLoopDetection On the other hand, concerning
the collection of non-similar queries, presented above, we get 100% of recall with a gap of
50% from traces of both query engines, as shown Figureg in 5.15 And]5.16 respectively.

18Note that as we vary the gap between two subqueries from 1 to 16 seconds, the duration of each
shu ed log we produce diverges from some seconds to one hour and a half.
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Figure 5.13 Recall (average) of joins per gap fdFETA with traces of CD and
LS queries, produced with Anapsid or FedX and executeid concurrence
over a federation of SPARQL endpoints.
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Figure 5.14 Precision (average) of joins per gap fdfETA with traces of CD
and LS queries, produced with Anapsid or FedX and executed concur-
rence over a federation of SPARQL endpoints.
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Figure 5.15 Recall of joins per gap and per mix foFETA with traces of CD and
LS selective queries, produced with Anapsid and execut&d concurrence over a

federation of SPARQL endpoints.
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Figure 5.16 Recall of joins per gap and per mix foFETA with traces of CD and
LS selective queries, produced with FedX and executed concurrence over a

federation of SPARQL endpoints.
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To summarize, we presentedETA, a BGP reversing approach that aims to infer
BGPs of queries executed over federations of SPARQL endpoints. We provided with
experiments that illustrate FETA's good recall and precision. Obtained results depend
not only on the similarity of concurrently executed queries but also execution parameters
of FETA. Compared toLIFT, FETA s less e cient in recall and precision for both queries
executed in isolation or in concurrence. This is explained from the fact that (i) the
symmetricHashDetection employed by FETA generates a lot of false positives, and (ii)
FETA's queries are more similar to each other than those used lihFT. lat
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6.1 Conclusion

In this thesis, we aimed to infer the general form of SPARQL queries executed over the
Linked Data, that is to infer the set of joined triple patterns of these queries. In particu-
lar, we focused on the following research question:

How to infer Basic Graph Patterns (BGPs) of SPARQL queries executed by data con-
sumers from logs of servers hosted by data providers?

Answering this question allows data providers to know how their data are used. The
knowledge of how data are used is a valuable asset that may be exploited individually
by each data provider or as a group, for a diversity of purposes: ensure usage control,
optimize the cost of provided services (i.e., access to their Linked Data), justify return
on investment, improve their users' experience or even create business models to discover
usage trends over the Semantic Web.

Concerning this research question, we proposed four contributions:

First, we formally de ned the scienti ¢ problem of BGP reversingand the property

of resistance to concurrencyof multiple queries executed at the same time. We
addressed this problem on query processing over both (a) single or federations of
TPF servers, and (b) federations of SPARQL endpoints.

Second, we analyzed howequential Data Miningalgorithms can be used to tackle
this problem. Frequent episodes detected by MINEPI on raw logs of queries, do
not correspond to BGPs of SPARQL queries. This can be improved in terms of
joins between triple patterns, with specic pre and post-processing. Even so, this
approach is not able to resist to concurrency, regarding both precision and recall of
joins.

Third, we proposedLIFT. LIFT takes as input the logs of single triple pattern queries
from single or federations of Triple Pattern Fragment (TPF) servers, and extracts
a set of BGPs to which these logs correspond t@IFT groups triple patterns that
seems to be part of the same outer or inner operand of a join and subsequently
detects nested-loops between these triple patterns. Experimental results reported
that LIFT is able to extract BGPs with good recall and precision. However, deducing
BGPs with LIFT is challenging in presence of concurrence.

Fourth, we proposedFETA. FETA takes as input the logs of queries from federations
of SPARQL endpoints, and extracts a set of BGPs to which these logs correspond
to. Compared to LIFT, FETA does not need to process logs of single SPARQL
endpoints, as they are already aware of the single source queries they procEESA
groups triple patterns that seems to be part of the same outer or inner operand of a
join and subsequently detects nested-loops and symmetric hash joins between these
triple patterns. FETA deals with di erent optimizations techniques employed by
guery engines to push mappings from a triple pattern into another during nested-
loops. LikeLIFT, experimental results reported thatFETA is able to extract BGPs
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with good recall and precision. However, deducing BGPs witRETA, like LIFT, is
challenging in presence of concurrence.

In this thesis we introduced theBGP reversing problem and proposed an approach to
solve it in two di erent contexts, using either logs of TPF servers or logs of federations of
SPARQL endpoints. Our solutions aimed to extract BGPs of user queries, by processing
logs o -line and privileging recall in the detriment of precision In the next section we
present some perspectives related to these choices.

6.2 Perspectives

This thesis opens the following perspectives:
rst, we can extract BGPs in real-time. Currently, we do o -line analysis.

Second, we can handle false-positives due to concurrency, with post-processing based
on occurrences of BGPs extractions. As concurrently executed queries are not mixed
systematically, we can prune detected false joins between their triple patterns.

Third, we can propose new strategies to link subqueries in the log. Di erent strate-
gies o er di erent trade-o s between precision and recall.

In order to explain our proposed perspectives, we use the following example. Consider
queriesQa = SELECT X ?y WHERE f 2xplol: X p2 % :?y p3 2Z gand Qr =
SELECT 2 WHERE f 2 p3 %z : ?y p4 %z g on page[5p in Chaptef [3. Tabl¢ 6|1
corresponds to the log with shu ed execution traces 0@, and Qe[ QueriesQa and Q¢
are evaluated by joining triple patterns through nested-loops.

LD provider IP Time | Requested tp Answer
Pa ip1 0 X plol f2x 71f sl;, s2gg
Pa ip1 10 slp2 % f2y 7'f 03gg

fx 7'f s3; s4g;

Pa 'P1 20 2z 7'f 03, 04gg
Pa ip1 40 S2p2 Yy f?y 7'f o4gg
Pa ip1 60 f?y 71 f sbgg
Pa ip1 80 f2y 71f s6gg
Pa ip1 90 04 p3 2z f?z7'f o06gg

Table 6.1 Query log corresponding to execution oQ, and Qg, produced by data
consumer withip; IP Address and executed orp, data provider. Traces in red color
correspond to queryQa while traces in green correspond to quer§g.
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U1o

|
|
0 10 20 30 40 S0 60 70 80 90 time

? ?x p3 ?z o3 p3 ?z ?y p4 o4
.xp1o1s1p2?y P s2 p2?y P ?y p4 03 yP 04 p3 7z

Figure 6.1 Sliding windows oflength = 20 seconds with an incremental approach to
extract BGPs of executed queries in the lo§0; 110[ Traces in red color correspond to
guery Qa while traces in green correspond to quer§Qe .

6.2.1 Real-time extraction of BGPs

As a rst perspective we aim to infer BGPs of user queries, this timacrementally over
server logs that are dynamically created [26]. The idea, is to associate progressively join-
able triple patterns that appear in consecutive windows of user-de ned size. The challenge,
like for WINEPI (cf. Chapter BJon page[50), is to manage intermediate deduced BGPs.
Once joins between triple patterns are inferred, it is not obvious to nalize deduced BGPs
and free the in-memory allocated to host their mappings. That is, deduced BGPs (and
their mappings) may be associated to triple patterns of following windows because: (i)
mappings can be bind several times (e.qg., star queries), (ii) apparition of triple patterns is
not related always to joins e.g., during the execution of a speci c query, a block of traces
of other concurrently executed queries could interfere. Experiments will reveal to which
deduction parameters, the inferred BGPs by this approach are stabilised.

Suppose that we extract BGPs from the log of Tablg 6.1, using an incremental BGP
reversing approach over 10 sliding windows, each with a size of 20 seconds, as we see in
Figure[6.1. For instance, we observe that mappings 8k pl ol are injected in the second
and fth window, into " s1 p2 " and "s2 p2 4". As described above, the challenge is to
considered that a deduced BGPs is nal. If consider thaBGP,; = f ?2xplol: 2xp2 ¥ g
is nal after the third window and remove its mappings from the memory, we will not
detect the join in Qa between?x p2 % and ?y p3 7z, in the sixth and tenth window
respectively.

6.2.2 Handling false-positives due to concurrency, with post-
processing
Handling concurrency is a very di cult problem. When similar queries run concurrently

in the same time, it is nearly impossible to extract correctly BPGs. However, it is unlikely
that similar queries always run concurrently. Consequently, if we ruhlFT or FETA on

INote that for simplicity we supposed that timestamps are integers.
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long periods, false positives due to concurrency will get less occurrences than correct
deduced BPGs. Running algorithms that exploit occurrences of BGPs is now possible
thanks to our BGP reversing approaches because, in some way, they transform a non-
transaction log (timestamped triple pattern queries folLIFT or FETA) into a transactional

log (timestamped list of linked triple pattern queries). With a transactional log of deduced
BGPs it is possible to nd their occurrences and subsequently the occurrences of their
joins. Figure[6.2 represents the extracted BGPs from log of TabJe 6.1 usihdFT or
FETA for logs of multiple hours, which edges are annotated with the occurrences of their
joins. The rst deduced BGP corresponds tda, the second toQr and the third to the
mixed BGP corresponding toQa and Qr. In this gure, edges between triple patterns
are labeled with the occurrence of their joins (in form of nested-loops).

?x pl ol

xp2 Y
|20
3%

(a) Deduced BGP for traces ofQa executed inisola-
tion .

15

X p3 2 A ph %z

(b) Deduced BGP for traces of Q¢ executed
in isolation .

21

51

7y p3 %z 1

?X plol

X P2y

X p3 2  p4 2
p TS

(c) Deduced BGP for traces of Qa and Qr executed
in concurrence .

Figure 6.2 Set of deduced BGPs withLIFT when applied on logs of multiple hours,
where each edge is annotated with theccurrences of the join of two triple patterns.
The less frequent join is presented in blue.

One approach to handle false positives, is by associating deduced triple patterns on the
number of their occurrences. Computing frequent association of BPGs can be done with
Apriori-based algorithms[4]. Hence, given 10 hours of a log, we aim to see if the precision
of frequent BGPs detected over 10 hours is better than precision of BGPs detected on 1
hour. For the example of Figurg 6]2 using a threshold equal to 5, we can prune the false
join between triple patterns?x p2 & and ?y p4 7z, from Q, and Qg in the third BGP.

Another approach to handle false positives, is by grouping deduced triple patterns
on their con dence represented by their occurrences. Extracting subgraphs of BGPs
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in presence of uncertainty can be done with th&-core approach [49]. That is, given

a deduced BGP which is uncertain because its triple patterns are joined with di erent
levels of con dence, we can extract a set of subgraphs with the same con dence. For the
example of Figurg 6.2 we can extract three subgraplfis?x plol: ?x p2 % : ?y p3 %z g,
fXp32Z:ypd?2Zgandf X p2 .2 p4 2 g with condences 21, 16 and 1
respectively.

6.2.3 Other strategies to link subqueries

?x pl ol Xp2Yy
|22
?y p3 2z
(a) Deduced BGP for traces ofQa executed inisola-
tion .
X p3 2z yphz
(b) Deduced BGP for traces ofQr executed
in isolation .
2/2
?x pl ol Xp2Yy
5
Y p3 Z 2/2
X p3 %z yp4z

(c) Deduced BGP for traces of Qa and Qf executed
in concurrence .

Figure 6.3 Set of deduced BGPs withLIFT when applied on a log, where each edge is
annotated with the coverage of the mappings of two triple patterns. The two alternative
options of coverage of the injected mappings intey p4 7z, are presented in blue.

There is a diversity of strategies linking triple patterns, each with a di erent trade-o
between precision and recall. ILIFT and FETA, we made the arbitrary choice to link all
triple patterns which mappings intersect. With this choice, our approaches were able to
favour recall in the detriment of precision. Alternatively, we could employ strategies that
take into account the quality of the matching between mappings of triple patterns. This
can be done, using theet-coveringstrategy [20] where triple patterns are grouped based
on the coverageof their mappings and each triple pattern can participate only in one set.
The set-covering approach favours precision of joins as in general the number of deduced
joins is minimized, when at the same time it eventually detriments recall. However, in
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presence of concurrence, performance in both recall and precision of joins may be a ected.
We illustrate this on extracted BGPs from log of Tablg 6.1.

Figure[6.3 presents extracted BGPs, where each edge is annotated with the coverage
of mappings of two triple patterns. WhenLIFT or FETA is applied to extract BGPs
from the log of Table[6.1, recall in terms of joins is 3/3=1 while precision is 3/4=0.75,
as we see in the third BGP of Figuré 6]|3. If the set-covering approach was employed
to extract BGPs from the log of Table[6.1, we would have two possible combinations as
?y p4 7z can be assigned to two dierent sets: (af x plol: X p2d : 2 p3%Zg
andf X p32Z:?2ypd?2zg or,b)f Xplol: 2xp2?d:Xp37Z:?%pd g and
f 2y p3 7z g. In terms of both recall and precision of joins, the set-covering approach
detects 3/3=1 joins in the former set of deduced BGPs while 2/3=0.66 in the latter set
of deduced BGPs. Compared t&.IFT or FETA, performance in precision is better while
recall remains the same for the former set of deduced BGPs. However, both recall and
precision are inferior for the latter set of deduced BGPs, compared tdFT or FETA.
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