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Abstract

Cable-Driven Parallel Robots (CDPRs) are parallel robots whose legs consist of cables. CDPRs may be used
successfully in several industrial applications such as sandblasting and painting of large and heavy structures.
However, the flexible nature of the cables, the possible collisions between the cables and the environment and the
cable interferences can limit their use in an industrial context. These drawbacks are usually amplified when the
task to be performed is complex and the working environment is cluttered.

Recent developments in CDPRs have shown that the reconfiguration of their geometric parameters can lead to
several advantages. CDPR performances can be improved, with respect to a given task, by modifying the position
of the exit points, defined as the connection points between the cables and the robot base frame. CDPRs that are
able to displace their exit points are defined hereafter as Reconfigurable Cable-Driven Parallel Robots (RCDPRs).
The research work presented in this manuscript deals mainly with RCDPRs whose cable connection points on the
base frame can be positioned at a possibly large but discrete set of possible locations.

The first part of this manuscript is dedicated to the modelling of CDPRs. When the deformations induced
by the mass of the cables can be neglected, cables are modelled as linear segments. The linear cable model has
been used to describe the static, kinematic and dynamic models of the CDPRs. When the mass of the cables is not
negligible, cables are modelled while considering the sagging effect. Heavy cables are generally used when the
CDPR has to displace a heavy payload over a large workspace. For this kind of operations, we considered the
equilibrium of the robot as quasi-static, describing the CDPR through its geometrico-static model. Finally, two
elasto-static models have been introduced in this manuscript, in order to describe the small displacement of the
moving platform due to the non-rigid nature of the cables. These models can be used for the modal analysis of the
CDPRs, as well. The elasto-static model based on linear cables has been computed including the effect of the
pulleys orienting the cables into the CDPR workspace. The elasto-static model based on sagging cables has been
computed developing both the passive and active stiffness matrices of the CDPR, while the active stiffness matrix
is usually neglected in the literature. The CDPR models based on the linear and the sagging cable models are well
known in the literature. In this manuscript, the notation describing these models has been adapted for RCDPRs.

The second part of this manuscript deals with the investigation of the workspace of CDPRs, in terms of their
moving platform static and dynamic equilibria, and in terms of their moving platform kinematic constraints. Two
novel workspaces have been defined: (i) the Twist Feasible Workspace (TFW), defined as the set of twist feasible
poses of the CDPR. A pose is said to be twist feasible if the platform of the CDPR can assume a given range
of twists while satisfying the cable speed limits imposed by the actuators and the transmission systems; (ii) the
Improved Dynamic Feasible Workspace (IDFW), defined as the set of dynamic feasible poses of the CDPR. A
pose is said to be dynamic feasible if the actuators of the CDPR can provide to the cables the tensions necessary to
achieve a given set of moving platform accelerations. With respect to the Dynamic Feasible Workspace (DFW), the
IDFW does not neglect the contributions of the external wrenches applied on the moving platform on the dynamic
equilibrium of the moving platform. Coriolis and centrifugal wrenches are considered as well, by supposing the
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twist of the moving platform to be constant. All the workspaces described in this manuscript are valid for both
CDPRs and RCDPRs.

The third part of this manuscript describes a generic design strategy for CDPRs. According to the state
of the art, the design problem of CDPRs is formulated as an optimization problem. It aims at optimising the
design variables with respect to one or several criterion(a), e.g. computing the locations of the cable exit points
minimising the size of the CDPR. It may also aim at dimensioning the CDPR components, such as winches,
pulleys and actuators while maximising the size of the WFW, TFW or the IDFW. The optimisation is performed
while satisfying a set of constraints which validates the feasibility of the required operations with respect to the
CDPR capabilities and limitations.

However, when the working environment is cluttered, CDPRs may not be able to accomplish the required
task. Under this assumption, RCDPRs may solve this problem. A novel design strategy has been proposed in this
thesis. This strategy contemplates the possibility to displace the cable exit points on a predefined grid of locations.
The prescribed workspace or path of the moving platform is divided by the designer into np parts. Each part has
to be covered by one and only one configuration of the RCDPR. An optimization algorithm defines the optimal
configuration to be associated to each part of the prescribed workspace or path. The configurations are selected
while optimising one or several global criterion(a), e.g. maximising the number of cable exit point locations
shared among two or more configurations. The selection is performed by analysing all the configurations that can
be generated by placing the cable exit points in any position of the exit point grid of locations. A case study has
been introduced in this manuscript in order to validate the efficiency of this design strategy.

The fourth part of this manuscript introduces an algorithm to compute an optimal reconfiguration strategy
for RCDPRs. This strategy can be used when the working environment of the RCDPR is extremely cluttered
and it is not possible to predict how many configurations are necessary to complete the task. The moving
platform of the RCDPR is supposed to follow a prescribed discretised path. If necessary, a reconfiguration is
performed by detaching the cables from given exit point positions and attaching them to new locations. A so-called
feasibility map is first generated. For each possible configuration of the RCDPR, this map stores the feasible
or unfeasible character of each point of the discretised prescribed path, according to user-defined constraints
which ensure a proper functioning of the RCDPR. The feasibility map is next analysed in order to determine
minimum sets of configurations, which allow the RCDPR to follow the whole prescribed path. Finally, the
corresponding discrete reconfiguration planning problem is represented as a graph whose nodes correspond to
feasible RCDPR reconfigurations. The arcs of the graph are weighted by a user-defined cost function, e.g. the
number of reconfigurations, the stability of the robot moving platform and the cable tensions, so that the graph
can be searched for an optimal reconfiguration strategy using Dijkstra’s algorithm. A set of constraints should be
satisfied all along the task, including the equilibrium of the moving platform, the cable interference avoidance and
the absence of collisions between the cables and the environment. The effectiveness of the algorithm has been
studied by analysing a planar and a spatial RCDPRs reproducing some industrial tasks.

Keywords: Cable-Driven Parallel Robots, Discrete Reconfiguration, Workspace Analysis, Elasto-Static
Modelling, Design.



Résumé

Les robots parallèles à Câbles (RPCs) sont des robots parallèles dont les jambes se composent de câbles. Les
applications industrielles potentielles des RPCs sont nombreuses telles que le grenaillage et la peinture de structures
massives et de grandes dimensions. Cependant, la flexibilité des câbles, les collisions éventuelles entre les câbles
et entre les câbles et l’environnement peuvent limiter leur utilisation dans un contexte industriel. Ces inconvénients
sont généralement amplifiés lorsque la tâche à accomplir est complexe et l’environnement de travail est encombré.

Les développements récents dans le domaine de la robotique parallèle à câbles ont montré que la reconfiguration
des paramètres géométriques peut conduire à de nombreux avantages. Les performances des RPC peuvent être
améliorées, par rapport à une tâche donnée, en modifiant notamment la position des points de sortie des câbles.
Les robots parallèles à câbles pour lesquels les points de sortie des câbles peuvent être déplacés sont appelés
Robots Parallèles à Câbles Reconfigurables (RPCRs). Les travaux de recherche présentés dans ce manuscrit
traitent de RPCRs pouvant avoir un nombre important de reconfigurations mais « discrètes ».

La première partie de ce manuscrit est dédié à la modélisation des RPCs. Lorsque les déformations induites par
la masse des câbles peuvent être négligées, les câbles sont modélisés comme des segments linéaires. Le modèle
de câble linéaire a été utilisé pour décrire les modèles statiques, cinématiques et dynamiques des RPCs. Lorsque
la masse des câbles n’est pas négligeable, ces derniers sont modélisés en tenant compte de leur affaissement. Les
câbles lourds sont généralement utilisés lorsque le RPC doit déplacer une charge utile lourde sur un grand espace
de travail. Pour ce genre d’opérations, nous avons considéré l’équilibre du robot quasi-statique, décrivant le RPC
grâce à son modèle geometrico-statique. Enfin, deux modèles élasto-statiques ont été introduits dans ce manuscrit,
pour décrire le petit déplacement de la plate-forme mobile en raison de la nature non-rigide des câbles. Ces
modèles peuvent également être utilisés pour l’analyse modale des RPC. Le modèle élasto-statique basé sur des
câbles linéaires a été calculé, y compris l’effet des poulies orientant les câbles dans l’espace de travail du RPC. Le
modèle élasto-statique basé sur des câbles pesants a été exprimé en faisant la différence entre la matrice de raideur
active et la matrice de raideur passive du RPC, la matrice de raideur active étant généralement négligée dans la
littérature. Dans ce manuscrit, la notation a été adaptée afin d’exprimer le modèle élasto-statique de RPCRs.

La deuxième partie de ce manuscrit traite de l’analyse d’espaces de travail de RPCs vis-à-vis de leurs
performances statiques et dynamiques. Deux nouveaux espaces de travail ont été définis : (i) l’Espace des
Vitesses Générables (EVG), défini comme l’ensemble des situations (positions et orientations) possibles de la
plateforme mobile pour lesquelles des intervalles de vitesses linéaires et angulaires de la plateforme peuvent
être atteintes connaissant les intervalles de vitesses angulaires des moteurs; (ii) l’Espace de Travail Dynamique
Amélioré (ETDA) correspondant à l’ensemble des situations de la plateforme mobile pour lesquelles des intervalles
d’accélérations peuvent être atteints, des intervalles d’efforts extérieurs peuvent être supportés en fonction des
tensions admissibles dans les câbles et pour une torseur cinématique constant de la plateforme mobile. Il est à
noter que l’ETDA tient compte des efforts de Coriolis et centrifuges appliqués sur la plateforme mobile. Tous les
espaces de travail décrits dans ce manuscrit sont valables aussi bien pour les RPCs que pour les RPCRs.
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La troisième partie de ce manuscrit décrit une stratégie de conception générique de RPCs. Le problème de
conception de RPCs est formulé sous la forme d’un problème d’optimisation. Il vise à optimiser les variables de
conception par rapport à un ou plusieurs critère(s) tels que le calcul de l’emplacement des points de sortie des
câbles permettant de minimiser la taille du RPC. Il peut également viser le dimensionnement des composants des
RPCs, tels que des treuils, des poulies et des actionneurs tout en maximisant la taille de l’Espace des Torseurs
Générables (ETG), de l’EVG et de l’ETDA. Le problème d’optimisation est sujet à des contraintes qui doivent être
satisfaites afin de valider la faisabilité des opérations nécessaires vis-à-vis des capacités et des limites des RPCs.

Toutefois, lorsque l’environnement de travail est encombré, les RPCs peuvent ne pas être en mesure d’accomplir
la tâche requise contrairement aux RPCRs. Une nouvelle stratégie de conception a été proposée dans cette thèse.
Cette stratégie envisage la possibilité de déplacer les points de sortie des câbles du RPCR sur une grille prédéfinie
d’emplacements. L’espace de travail ou le chemin de la plate-forme mobile prescrit sont divisé par le concepteur
en np éléments. Chaque élément doit être couvert par une et une seule configuration du RPCR. Un algorithme
d’optimisation définit la configuration optimale qui doit être associée à chaque partie de l’espace de travail ou le
chemin prescrit. Les configurations sont choisies tout en optimisant un ou plusieurs critère(s) global(aux), par
exemple la maximisation de points de sortie communs à deux ou plusieurs configurations du RPCR. La sélection
est effectuée en analysant toutes les configurations qui peuvent être générées en plaçant les points de sortie des
câbles dans toutes les positions de la grille de points de sortie des emplacements. Une étude de cas a été introduite
dans ce manuscrit afin de valider l’efficacité de cette stratégie de conception.

La quatrième partie de ce manuscrit présente un algorithme pour calculer une stratégie de reconfiguration
optimale pour les RPCRs. Cette stratégie peut être utilisée lorsque l’environnement de travail de RPCRs est
extrêmement encombré et qu’il n’est pas possible de prévoir le nombre de configurations nécessaires pour
compléter la tâche. La plateforme mobile du RPCR est censée suivre un chemin discrétisé prescrit. Si nécessaire,
une reconfiguration est effectuée en détachant les câbles de leur point de sortie et les attachant à un nouvel
emplacement. Une carte dite de faisabilité est d’abord générée. Pour chaque configuration possible du RPCR,
cette carte stocke le caractère réalisable ou irréalisable de chaque point de la trajectoire prescrite discrétisée,
en fonction des contraintes définies par l’utilisateur qui assurent un bon fonctionnement du RPCR. La carte de
faisabilité est ensuite analysée afin de déterminer des ensembles minimaux de configurations qui permettent au
RPCR de suivre tout le parcours prescrit. Enfin, le schéma de reconfigurations discrètes est représenté comme
un graphe dont les nœuds correspondent à des reconfigurations du RPCR réalisables. Les arcs du graphe sont
pondérés par une fonction de coût définie par l’utilisateur, par exemple le nombre de reconfigurations, un critère
de stabilité de la plateforme mobile et les tensions dans les câbles, de sorte que la carte de faisabilité permet de
rechercher une stratégie de reconfiguration optimale en utilisant l’algorithme de Dijkstra. Des contraintes doivent
être satisfaites tout au long de la tâche telles que l’équilibre de la plateforme mobile, l’évitement des interférences
des câbles et l’absence de collisions entre les câbles et l’environnement. L’efficacité de l’algorithme a été analysée
en étudiant les reconfigurations d’un robot parallèle à câbles planaire et d’un robot parallèle à câbles spatial en
lien avec des applications industrielles.

Mot-clés: Robots Parallèles à Câbles, Reconfigurations Discrètes, Espaces de travail, Modélisation
Elasto-Statique, Conception.
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Parallel robots made their first appearance in 1954, with the original Gough-Stewart platform [Ste65] shown
in Fig. 1.1. Parallel robots are closed-loop mechanisms, mainly composed of a platform, connected to a fixed base
by several kinematic chains, hereafter defined as legs [Mer06].

These robots proved to be appealing from a scientific and a technical point of view, thanks to their low inertia
and their high stiffness, precision, repeatability and payload capabilities.

Parallel robots are used in several industrial contexts for manufacturing [CW03, WS02] and pick and place
operations [PRF90]. The Delta robot [CE90], shown in Fig. 1.2, is an example of industrial parallel robot widely
used in the food and electronic industries for fast pick-and-place operations. Parallel robots are also efficient in
other domains, being used as flight simulators [Cap67,KJ75] and medical devices [Mer01,BBGA07], as illustrated
in Fig. 1.3.

Fig. 1.1 – Original Gough-Stewart platform [Ste65]
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Fig. 1.2 – FlexPicker, a Delta parallel robot from
ABB company [ABB]

Fig. 1.3 – SurgiScope at the Surgical Robotics Lab,
Humboldt-University [Int]

Fig. 1.4 – Architecture of a Cable-Driven Parallel Robot (CDPR), developed in the framework of the IRT Jules
Verne CAROCA project

1.1 Cable-Driven Parallel Robots (CDPRs)

Legs of parallel robots are traditionally composed of rigid links. Those rigid links contribute to the high stiffness
characterising these robots, which are mainly provided by the parallel architecture of the robots. However, rigid
links limit the dimensions of the workspace of parallel robots. This limitation does not concern Cable-Driven
Parallel Robots (CDPRs), a particular class of parallel robots whose moving platform is connected to a fixed base
frame by cables. Hereafter, the connection points between the cables and the base frame will be referred to as exit
points. The cables are coiled on motorised winches. Passive pulleys may guide the cables from the winches to the
exit points. A central control system coordinates the motors actuating the winches. Thereby, the pose and the
motion of the moving platform are controlled by modifying the cable lengths. An example of CDPR, developed at
IRT Jules Verne in the framework of the CAROCA project, is shown in Fig. 1.4.
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Tab. 1.1 – ADVANTAGES AND DRAWBACKS OF CABLE-DRIVEN PARALLEL ROBOTS (CDPRS)

Advantages Drawbacks

• Large workspace
• High payload-to-weight ratio
• Low inertia of the mobile parts
• Low cost
• Low maintenance effort
• Deployability and transportability
• Possible reconfigurability

• Mono-directional cable transmission of
forces to the platform

• Cable interferences
• Collisions between the cables and the envi-

ronment
• Cable deformations

1.1.1 Advantages and Applications

CDPRs have several advantages. Thanks to their non-rigid nature, large cable lengths can be coiled on winches.
Consequently, CDPRs have potentially very large workspaces with respect to rigid-link parallel robots [Gos13].
From a structural point of view, cable properties provide CDPRs with a high payload capability while the low
mass of the cables assures a high payload-to-weight ratio. The low inertia of the mobile parts reduces the energy
consumption of CDPRs and improves their dynamic performances with respect to rigid-link robots. Moreover,
CDPRs can be manufactured using mostly standard industrial elements, limiting the manufacturing and the
maintenance costs. Finally, CDPRs can be eventually designed in such a way to be easily assembled, disassembled
and reconfigured. Table 1.1 summarises the advantages and drawbacks of CDPRs.

Industrial Applications

Taking advantage of the previous properties, CDPRs have already been used in some industrial applications.
Indeed, at the beginning of the 90s, Albus et al. developed the NIST RoboCrane [ABD92, ABJ03, BADJ94],
taking inspiration from the architecture of a Gough-Stewart platform. The NIST RoboCrane is able to perform
several tasks, like displacement of heavy payloads and painting of military aeroplanes (Fig. 1.5).

CDPRs are used as well to handle heavy payloads in large areas. In 2001, Holland and Cannon filed the
patent US6826452 B1 [HC04, GJC01]. They proposed a robotic system composed of four cranes to be used as
a CDPR for cargo transportation (Fig. 1.6). Later on, Hassan and Khajepour investigated the performances of
large CDPRs for warehouse applications [HK09] while other research studies focused on large-scale assembly
operations [WXB08, PMV10]. Recent studies have been performed in the framework of the CoGiRo (Control of
Giant Robot) ANR Project [Pro]. The goal of this project is the definition of novel design and control strategies for
CDPRs of large size and carrying heavy payloads. Some contributions of this project are: The integration in the
control system of feedbacks from external sensors, such as camera [LGCH13]; The development of a simplified
cable model [GCRB12]; The investigation of an efficient cable layout [GCRB15]. The CoGiRo CDPR prototype,
represented in Fig. 1.7, is 15 m long, 11 m wide and 6 m high. It is able to carry payloads up to 500 kg. The ratio
between the CDPR workspace and the CDPR volume is higher than 0.75.

Besides, CDPRs are good candidates for pick-and-place operations, thanks to their dynamic motion capabilities
(low mass and inertia of moving parts). The FALCON (Fast Load Conveyance) CDPR has been developed in
Japan at the end of the 90s [KCTP95, KKW00] (Fig. 1.8). This CDPR is able to reach linear speeds of 13 m/s and
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Fig. 1.5 – NIST RoboCrane painting an aero-
plane [ABD92, ABJ03]

Fig. 1.6 – Concept of a four-crane CDPR (Patent
US6826452 [HC04, GJC01])

Fig. 1.7 – CoGiRo prototype, designed by the LIRMM
and Tecnalia [Pro]

Fig. 1.8 – FALCON prototype [KCTP95, KKW00]
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Fig. 1.9 – IPAnema prototype, designed by the
Fraunhofer IPA [PMK+13]

Fig. 1.10 – SACSO, a CDPR for wind tunnel tests, de-
signed by ONERA [LLR02, Laf04]

Fig. 1.11 – Skycam, a CDPR for broadcasting of sport
events [Sky]

Fig. 1.12 – CAREX, a cable-driven arm
exoskeleton [MA12]

linear accelerations of 43 G. Similar applications have been investigated by Maeda et al. for the assembly of light
components [MTT+99]. In 2013, Pott et al. designed another family of CDPRs, the IPAnema series [PMK+13],
for fast pick-and-place and other industrial operations (Fig. 1.9).

Finally, CDPRs have been used as well for aerodynamic tests in wind tunnel [ZLL10, SWB11]. Figure 1.10
shows SACSO, an application developed by ONERA for vertical wind tunnels [LLR02, Laf04].

Other Applications

The first commercialised application of CDPRs is the broadcasting of sport events [TB05,NAD06,Cabb,Sky,Spy].
These CDPRs can be installed indoor and outdoor, for example in stadium, as shown in Fig. 1.11. They can cover
large spaces, reach speeds up to 40 km/h and their cables do not obstruct the field of view of the audience.

Thanks to their low inertia, high stiffness and large workspace, CDPRs are widely spread in the domain of hap-
tic interfaces [Wil98, GRR01, ZRS+09, FCCG14]. Haptic interfaces can be used in several fields, including virtual
reality [HS92,IS94,DPL07,HkMP15], teleoperation [MI93] and as locomotion interfaces [PG07,OMDT+08]. One
of the first application, WireMan, has been designed by Bonivento et al. in order to simulate the touch-rendering
of bas-relief virtual surfaces [BEM+97].
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Fig. 1.13 – MARIONET-CRANE during a
search and rescue simulation [Mer08, MD10]

Fig. 1.14 – Design of FAST project radio tele-
scope [KZW06, Dua99, DQZZ09]

In the medical field, CDPRs have been widely proposed for rehabilitation of injured people and post-stroke
patients. Most of the research works focused on upper limb rehabilitation [HA95, GR02, LCH04, RABG07,
RGM07, ZRMR14], like Sophia-3 and the wearable exoskeleton CAREX shown in Fig. 1.12 [MA12]. An
exception is represented by STRING-MAN, a CDPR for gait rehabilitation [SZB07].

In France, Merlet et al. created MARIONET, a family of CDPRs which includes MARIONET-ASSIST,
MARIONET-CRANE and MARIONET-REHAB. This family of robots proposes several architectures and
actuation systems, being designed to use both linear and rotational motors. MARIONET-REHAB, for example,
is actuated by linear motors and can be used for rehabilitation purposes or for fast displacements of small
payloads. MARIONET-ASSIST can be used to assist elderlies or people with motion disabilities. MARIONET-
CRANE [Mer08, MD10] can be used in search and rescue operations, as illustrated in Fig. 1.13, being portable
and deployable. Alternative solutions to the search and rescue problem have been proposed by several research
teams [TVHT99, BWT05, TET+05]. Takemura et al. provided a particular design. In their innovative concept, the
moving platform of the CDPR consists of an aero-static balloon. A camera or a thermal sensor are mounted on the
balloon in order to locate the injured people from the sky.

The high payload capabilities of CDPRs suggested another innovative use case. The Chinese project FAST
is currently developing a Five hundred meter Aperture Spherical Telescope [KZW06, Dua99, DQZZ09]. The
telescope receiver will be controlled using a CDPR [YTWH10, YLZ13]. A rendering illustrating the model of the
final structure appears in Fig. 1.14.

The investigation of CDPR capabilities leads to several other applications, including: Artistic painting [Hek],
3D scanning of artefacts [DLP+07], sport training [MKK97, MKK98], inspection of building façades [IGCS13],
actuation of underwater vehicle-manipulator systems [EGGC15], aerostat positioning systems [LNC07] and
entertainment [TSPE15].

1.1.2 Classification of CDPRs

According to the geometry of the CDPR, the moving platform is characterised by its number n of Degrees of
Freedom (DoF). CDPRs can be classified in two families: Fully constrained and under-constrained CDPRs. This
classification is based on the number of moving platform DoF that can be controlled by the CDPR actuators.

Fully constrained CDPRs assure the control of all the n DoF of the moving platform. The pose of the moving
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platform is completely determined and can be described according to the geometric constraints of the CPDR, such
as the lengths of its cables. In order to assure the control of the moving platform, at least n cables should be tensed.
Fully constrained CDPRs usually consist of at least n+1 cables [RGL98]. Since cables cannot push the moving
platform, redundant cables are used to guarantee the moving platform to be in a static equilibrium, assuming that
external wrenches can be exerted on the moving platform along any direction.

If the external wrench applied on the moving platform is constant or the moving platform is connected to a
passive constraining mechanism [BK05a], n cables may be sufficient to fully control the CDPR. Fully constrained
CDPRs with n cables usually consist of a suspended architecture. In suspended CDPRs, all the cable exit points are
located above the prescribed workspace of the moving platform [ABD92, SD00, GCRB15]. The static equilibrium
of the moving platform is assured by the gravity force generated by the payload of the moving platform: The
gravity force is equivalent to a virtual cable pulling the moving platform with a constant force along the gravity
direction.

Suspended and non-suspended fully constrained CDPRs are characterised by different advantages and draw-
backs. Since all the cables are located above the moving platform, fully constrained suspended CDPRs free the
space below the moving platform. The payload of the moving platform is shared among all the cables. Conse-
quently, suspended CDPRs usually offer higher payload capabilities and lower energy consumption. However,
performances of suspended CDPRs are directly related to the payload of the moving platform. When the payload
is low, the stiffness of the CDPR is reduced. Hence, the CDPR can be prone to low platform positioning accuracy,
vibrations and instability.

According to the previous considerations, the minimum number of cables for a 2T1R planar CDPR to be
fully constrained is 4, where T stands for translational DoF and R for rotational DoF. By definition, a planar
CDPR is a CDPR whose moving platform motion is constrained on a plane, being the payload of the moving
platform compensated along the orthogonal direction. An example of planar CDPR is described in Fig. 1.15. This
CDPR consists of a drawing platform. It has been designed by David Bynoe for the Telus Spark Science Centre in
Calgary [Fou] and it is composed of four cables supporting a metallic sphere used to trace lines on the sand.

The minimum number of cables for a 3R3T spatial CDPR to be fully constrained is equal to m= 6. Examples of
spatial fully constrained CDPRs are: IPAnema [PMK+13], a fully constrained 3T3R CDPR with m = 8 cables and
n = 6 DoF; CoGiRo [Pro], a suspended 3T3R CDPR with m = 8 cables and n = 6 DoF for logistic and warehouse
applications; Skycam [Sky], a suspended 3T CDPR with m = 4 cables and n = 3 DoF; FALCON [KCTP95], a
fully constrained 3T3R CDPR with m = 7 cables and n = 6 DoF for fast pick and place operations of lightweight
products; RoboCrane [BADJ94] and FAST [YTWH10], two suspended CDPRs composed of m = 6 cables and
n = 6 DoF.

In under-constrained CDPRs, at least one DoF of the moving platform is not controlled by the actuators
[CM13, AC15, BMC16]. In general, the number of cables, m, is usually smaller than the number of moving
platform DoF, n, allowing the CDPR to control at most m of the n DoF of the CDPR. The computation of the
moving platform pose of under-constrained CDPRs requires the simultaneous analysis of both the kinematic
constraints and the static equilibrium of the CDPR. It has to be noticed that the same CDPR may behave as a fully
constrained or a under-constrained CDPR according to the pose of the moving platform and the external wrench
acting on it. In particular, CDPRs with at least n cables may behave as under-constrained CDPRs, if one or more
cables become slack, and the number of tensed cables is lower than n.

Comparing fully constrained CDPRs with m ≥ n cables and under-constrained CDPRs with m < n cables,
several advantages and drawbacks can be mentioned. Fully constrained CDPRs with m ≥ n cables provide often
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Fig. 1.15 – Four-Cable Drawing Machine by David Bynoe [Fou]

the possibility to lower cable tensions by redistributing the moving platform payload on a larger number of cables.
Furthermore, a high number of cables increases the dexterity of the CDPR and improves the controllability of its
internal wrenches: thus, the CDPR is able to balance a wider range of external wrenches acting on the moving
platform and to adjust its stiffness. On the one hand, the presence of additional cables improves the reliability of
the system. If a cable breaks down, the remaining cables can ensure the stability, and eventually the controllability,
of the moving platform. On the other hand, under-constrained CDPRs with m < n cables are cheaper and are
intrinsically less prone to cable interferences and collisions. They can be used in applications where a limited
number of DoF should be controlled, like in rehabilitation applications [SZB07, RGM07], measuring [GMP11],
and search and rescue operations [TVHT99, MD10].

1.1.3 Reconfigurable Cable-Driven Parallel Robots (RCDPRs)

In most applications described in Sec. 1.1.1, the CDPR has a fixed configuration which is determined during
its design. In the sequel, a CDPR configuration refers to the positions of the cable exit points, the positions of
the connection points between the cables and the moving platform, and the cable layout between these two sets
of points. Hereafter, the connection points between the cables and the base frame will be referred to as exit
points. While fixed-configuration CDPRs are relevant in many cases, some more demanding applications require
reconfiguration capabilities. One notable case is a cluttered environment where cable collisions with objects
in the CDPR workspace cannot be completely avoided so that reconfigurations are necessary. Reconfigurable
Cable-Driven Parallel Robots (RCDPRs) are a class of CDPRs whose geometric parameters, such as the locations
of the exit points and the cable connection points on the moving platform, can be modified.

By changing the robot configuration, its workspace may be enlarged and collisions between the cables and the
environment can be avoided. At the same time, some robot performances may be improved such higher RCDPR
stiffness and payload capability and lower cable tensions and energy consumption.

1.1.4 IRT Jules Verne CAROCA Project

Nowadays, several industrial sectors are facing with the necessity to manufacture novel products having large
dimensions and complex shapes. In order to improve such manufacturing processes, the IRT Jules Verne (IRT JV)
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promoted the investigation of new technologies for metallic, composite and hybrid structures in the domain of the
advanced manufacturing. The investigation is dedicated to several engineering fields including naval, automotive,
aeronautics and renewable energy engineering and it is organised into three main axes: (i) product/process
integrated design, (ii) innovative process, (iii) flexible and intelligent systems.

CAROCA project 1 deals with the third research axis. It aims at investigating the performance of CDPRs and
RCDPRs for manufacturing large products in cluttered industrial environments. The CDPR should be able to
improve the productivity and the flexibility of the industrial processes, while releasing operators from repetitive
and sometimes dangerous tasks. Some of the investigated applications are the following:

• The assembly and displacement of heavy and/or large parts.
• The inspection and measurement of large parts.
• The sandblasting and painting of large tubular structures.

In order to investigate these applications, the CAROCA project requires: (i) the consolidation of the existing
CDPR design tools, in order to improve the efficiency of the design processes; (ii) the definition of a new design
and reconfiguration procedure for RCDPRs. Accordingly, the following research axes have been considered in the
framework of CAROCA project.

• The improvement of a stiffness model for large CDPRs. This model is required in order to model the
displacements of the moving platform of CDPRs subjected to variations in the external wrenches.

• The development of a tool to analyse the workspaces of CDPRs with respect to their static equilibrium,
dynamic equilibrium and kinematic constraints.

• The formulation of a design problem and a design strategy for CDPRs. The design problem should be used
to determine the positions of the cable exit points and the characteristics of the motors, the winches and the
gearboxes of the CDPRs.

• The formulation of a design problem and a design strategy for RCDPRs.
• The definition of a reconfiguration strategy for RCDPRs.

Three industrial partners are involved in the CAROCA project, namely, STX, DCNS and AIRBUS companies.
Moreover, the two following joint research units take part in the CAROCA project: (i) The Institut de Recherche
en Communications et Cybernetique de Nantes (IRCCyN, UMR CNRS 6597) and the Laboratoire d’Informatique,
de Robotique et de Microelectronique de Montpellier (LIRMM, UMR CNRS 5506). A flyer of the CAROCA
project is shown in Fig. 1.16.

1.2 Theoretical Background

Much of the research studies conducted on CDPRs have been developed in the last two decades. Several advances
in modelling, design and control of CDPRs have been obtained. However, some fundamental open problems have
not been solved yet. The following sections describe briefly some recent advances in CDPRs and some unsolved
open problems.

1Evaluation des CApacités de la RObotique à CÂbles dans un contexte industriel
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Fig. 1.16 – Flyer of IRT JV CAROCA project
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1.2.1 Direct Geometrico-Static Problem

The direct geometrico-static problem aims at determining the poses of a CDPR moving platform and the cable
tensions required to assure its static equilibrium, supposing that the lengths of the cables are known. A CDPR
being a particular type of parallel robot, the solving of the direct geometrico-static problem is a challenging
issue. However, in the case of CDPRs, the complexity of this problem is higher, due to the unilateral nature of
the kinematic constraints: Cables can only pull on the moving platform and not push on it. The complexity of
the problem has been highlighted by Carricato et al. for suspended CDPRs with less than six cables [CM13].
In particular, it has been proved that the direct geometrico-static problem is equivalent to finding the roots of a
univariate polynomial of degree 156, for a 3-cable CDPR [Car13], and of degree 216, for a 4-cable CDPR [CA13].
In 2015, the analysis was extended to a generic under-constrained CDPR with n cables [AC15].

One of the most efficient methods for the computation of the moving platform pose has been presented by
Berti et al. in [BMC13, BMC15, BMC16]. Their method is based on an interval-analysis algorithm, which can be
applied to both fully constrained and under-constrained CDPRs. The algorithm provides the complete solution
of the direct geometrico-static problem, describing all the possible poses of the moving platform that can be
generated by a given set of cable lengths. Interval analysis has been used as well to investigate the kinematics of
CDPRs with sagging cables [Mer15a]. At the cost of a high computational effort, the algorithm can find all the
solutions to the direct geometrico-static problem.

Another relevant contribution to the resolution of the direct geometrico-static problem has been provided by
Collard and Cardou [CC13]. They propose a novel method to compute the lowest equilibrium pose of a suspended
CDPR. By definition, the lowest equilibrium pose is the moving platform pose where the Centre of Mass (CoM)
of the moving platform is the closest to the ground. The design problem is formulated as an optimisation problem
aiming at minimising the potential energy of the CDPR moving platform. The algorithm efficiency is proportional
to the number of cables of the suspended CDPR.

1.2.2 Cable and Stiffness Modelling

In CDPRs, motion is transmitted to the moving platform by means of cables. The use of non-rigid links affects the
positioning accuracy of the moving platform, as well as its static and dynamic equilibrium. The accuracy of the
moving platform positioning may be related as well to other technical aspects, like measurement uncertainties
or manufacturing assembly imprecisions. Nevertheless, cable deformations are one of the principal sources of
inaccuracy. Cable deformations are due to gravity and to the force applied by the moving platform on the cables.
Indeed, under the action of gravity, the self-weight of a cable leads to sagging, especially for large diameter cables
which have a non-negligible mass linear density (mass per unit of length). The force applied to the cable end
produces as well a longitudinal elongation of the cable according to its axial stiffness.

According to the previous considerations, the moving platform stiffness and the moving platform positioning
accuracy of a CDPR are strictly related to the cable properties. Cables can be modelled as linear segments when
their mass is negligible and the axial stiffness is sufficient to describe their deformation [VHT98, KKW00, BK05b,
SRK13].

When the cables are heavy and the CDPR covers a wide workspace, the cables may sag under their own
weights [KZW06, RGBP10b, Ars13]. Cable sagging has been described by Irvine in [Irv92] by means of the
elastic catenary model which takes into account both the axial stiffness of the cable and the deformations due to
its weight. Comparisons between the two models show that the sagging model is usually more accurate than the
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linear one. A simplified model of a sagging cable has been proposed by Gouttefarde et al. [GCRB12, NG13]. As
proved experimentally, for a given range of cable properties, the proposed cable and stiffness models provide a
good moving platform positioning accuracy and the possibility to solve these models in real-time applications.

Stiffness influences as well the dynamic behaviour of CDPRs. The presence of wind, or fast movements of
the moving platform, can generate vibrations. Once again, cables have a higher influence over the compliance of
the robot than the other components. In order to analyse the dynamic behaviour of the cables, they have been
modelled as linear massless springs, as taut massless strings [DM09, MD05] and as sagging cables [YCD15]. The
CDPR dynamic stiffness has been investigated by means of the dynamic stiffness matrix [KZW06, YCD15] or by
means of the finite element method [DDB13].

1.2.3 Workspace Analysis

The non-rigid nature of the cables affects the equilibrium of the moving platform. Cables are not able to push the
moving platform, behaving as unilateral actuators. Hence, the static equilibrium, the dynamic equilibrium and the
kinematic constraints of the moving platform should be investigated carefully, being influenced by several factors,
including: The configuration of the cables, the pose of the moving platform and the characteristics of the CDPR
components, i.e. the nominal and the pick power of the actuators and the winch diameters.

The equilibrium of the moving platform is investigated analysing the workspace of the CDPR. In serial and
parallel robots, the workspace is usually defined as the set of end-effector poses at which a number of kinematic
constraints are satisfied. In CDPRs, the workspace is usually defined as the set of poses where the CDPR satisfies
one or more conditions including the static or the dynamic equilibrium of the moving platform, with the additional
constraint of non-negative cable tensions. Several workspaces and equilibrium conditions have been studied in the
literature.

The first investigations focused on the static equilibrium of the moving platform [GG04, GG06, SK04, SK06].
Most of the proposed approaches are based on the Wrench Closure Workspace (WCW). WCW has been widely
used in grasping problems, in order to verify if the fingers of the gripper can assure a stable static equilibrium of
the grasped object. It has to be noticed that the grasper can apply only pushing forces to the object [EUV04]. In
the case of CDPRs, cables are only able to transmit non-negative pulling forces to the moving platform. A pose of
the moving platform belongs to the WCW if and only if the static equilibrium of the moving platform is assured
by non-negative cables tensions, whichever is the external wrench on the platform. Therefore, cable tensions do
not present any upper bound, which is the main limitation of the WCW analysis.

The feasible static equilibria of the moving platform can be analysed using the Wrench Feasible Workspace
too (WFW) [BREU06, BGM08, GK10, GDM11]. By definition, the WFW is the set of wrench feasible moving
platform poses. A pose is wrench feasible when the cables can balance a set of external moving platform wrenches
while the cable tensions stay in between given cable tension upper and lower bounds. The Static Feasible
Workspace (SFW) represents a special case of the WFW, where no external wrench is applied on the moving
platform. The static equilibrium is achieved compensating only the weight of the moving platform [PFAM04].
The lower cable tension bound, τmin, is defined in order to prevent the cables to become slack. The upper cable
tension bound, τmax, is defined in order to prevent the CDPR to be damaged.

The dynamic equilibrium of the moving platform can be investigated using the Dynamic Feasible Workspace
(DFW). By definition, the DFW is the set of dynamic feasible moving platform poses. A pose is dynamic feasible
if a prescribed set of moving platform accelerations is feasible, with cable tensions lying in between given lower
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and upper bounds. The concept of dynamic workspace has already been investigated in [BG05] for planar CDPRs.
Barrette et al. solved the dynamic equations of a planar CDPR analytically, providing the possibility to compute
the boundary of the DFW. This strategy cannot be directly applied to spatial CDPRs due to the complexity of
their dynamic model. In 2014, Kozlov studied in [Koz14] the possibility to investigate the DFW by using a tool
developed by Guay et al. for the analysis of the WFW [GCCC14]. However, the dynamic model proposed by
Kozlov is incomplete: It does not take into account the dynamics of the cables, the dynamics of the winches and
the external wrenches acting on the moving platform. Furthermore, it considers the moving platform as a point
mass, neglecting centrifugal and Coriolis forces.

1.2.4 Tension Distribution and Control

The set of cable tensions which assures the static or the dynamic equilibrium of a CDPR is strictly dependent on
the pose of the moving platform and the external wrenches acting on the moving platform. When cable tensions
are not distributed homogeneously, some cable tensions may approach the upper and the lower cable tension
limits: In the first case, cables can be damaged. In the second case, cables may become slack. Slack cables
decrease the stiffness of the moving platform and may lead to the loss of the CDPR control. In order to avoid this
problem, it may be necessary to control the tension of each cable using a tension distribution algorithm. Tension
distribution algorithms optimise the cable tensions according to a given criterion while taking into account the
tension limits of the cables. A minimum cable tension prevent the cables to become slack while a maximum
cable tension prevent the CDPR to be damaged. Under the assumption of rigid cables, tension distribution can be
applied to fully constrained CDPRs, whose static equilibrium consists of an under-determined system of equations,
by modifying their internal wrenches. The internal wrenches are defined as the set of cable wrenches whose linear
combination does not modify the pose of the CDPR.

Cable tension distribution can be computed using several algorithms. Each algorithm has its own advantages
and drawbacks. Some of the developed methods are based on linear programming [BJS+09] and quadratic
programming [TB11]. Linear programming requires a low computational time but may lead to discontinuities.
Discontinuities can be avoided using quadratic programming, which assures the cable tension minimisation.
Alternative methods are based on the analysis of the vertices of the intersection between the space of the available
cable tension set and the affine space of the cable tensions which satisfy the static equilibrium of the moving
platform [BMHS07, BMB+09b, LG13]. These methods provide continuous solutions and they are quite easy
to implement. Recent developments lead to the formulation of the closed-form method [PBM09], the corner
projection method [BMB+09b] and the puncture method [MRB15]. The last method is quite intuitive, easy to be
implemented, and its solutions are closer to the ones produced by the quadratic programming.

The previous tension distribution algorithms have been tested on some fully constrained CDPRs [MBHS08,
PBM09, GG11]. They are also integrated in some CDPR control schemes. Several control schemes have been
provided in the literature. Their structure is inspired by the control schemes of serial and rigid-link parallel robots,
including: PID control schemes [FFT+04, OA05], impedance control schemes [RMB15] and adaptive control
schemes [SDJB08, LGCH13]. Some control schemes integrate exteroceptive sensors, such as cameras [DGAD12].

1.2.5 Design

Few research works on CDPRs focus on the development of a CDPR design strategy, aiming at determining
the optimal number of cables and cable arrangements as well as the optimal dimensions of the robot at hand.
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Several CDPR designs rely on the intuition of their designers, such as in [KCTP95, Laf04, BG07]. One of the
preliminary trajectory-based design approaches was proposed by Pusey et al. in 2004 [PFAM04]. The design
problem is formulated as an optimisation problem aiming at improving the size of the CDPR workspace and other
global conditioning indices. A generic numerical task-based approach has been proposed by Bruckmann et al.
in [BMB+09a]. The design problem is formulated as a constrained optimisation problem, as well. The problem
aims at maximising the workspace of the CDPR, while assuring the wrench feasibility of the moving platform
through the corresponding workspace and along the prescribed trajectory. Several optimisation methods have
been tested, including interval-based global optimisation techniques, simulated annealing, genetic algorithms
and gradient based algorithms. Gouttefarde et al. focused on the use of an interval-based global optimisation
techniques [GKC+08]. With respect to the method described in [BMB+09a], the approach proposed in [GKC+08]
is based on the investigation of the WCW. In 2015, Blanchet developed a design strategy based on the interval
analysis [Bla15], which takes into account the WFW. Recently, an analytical method has been proposed by Azizian
and Cardou in order to synthesise planar CDPRs [AC12]. This method has been extended numerically to spatial
CDPRs [AC13].

Specific design problems have been dedicated to the design of the actuators [ABAASV11] and the ca-
bles [RGBP10a]. In 2014, Khakpour et al. introduced the use of cables differentials in the architecture of planar
CDPRs, analysing the advantages and the drawbacks of these components [KBT14]. The selection of the cable
layout has been investigated briefly by Tadokoro et al. in [TMH+02]. A more efficient strategy, aiming at selecting
the geometry of fully constrained suspended CDPRs, has been recently described in [GCRB15].

1.2.6 Reconfigurability

Manufacturing processes over large products may not be executed by a fixed-configuration CDPR, because
of cable collisions. The most efficient way of avoiding cable collisions is to permit CDPR cable exit point
reconfigurations. Exit point reconfigurations can be performed in a continuous or in a discrete manner. The
first one consists in cable exit points mounted on mobile bases, e.g. a trolley on a rail [NGCP14] or a flying
platform [FMKK11, JK13, MDRC13]. Such a RCDPR has a continuous set of possible configurations. On the
contrary, the set of possible reconfigurations is discrete when the cable exit points can be positioned at a possibly
large but finite number of locations, such as those of a grid of possible exit point positions. From a technical point
of view, modifying a cable exit point amounts to move or change the last pulley which directs the cable toward the
moving platform. Hereafter, the RCDPRs whose cable exit points can be installed on a grid are defined as discrete
reconfigurable cable-driven parallel robots.

Preliminary studies on RCDPRs have already been performed by the NIST as a part of the NIST RoboCrane
project [BJP+00]. Izard et al. [IGM+13] also studied a family of RCDPRs, named ReelAx, in order to investigate
the potentialities of CDPRs in industrial contexts. However, no reconfiguration strategy has been proposed by the
authors. More detailed studies have been performed by Rosati et al. [RZA11, ZRMR14], which focused on planar
RCDPRs. They suggested to use movable exit points in order to maximise a local performance index across the
RCDPR workspace. The corresponding continuous reconfiguration problem is solved by means of an analytical
description of the desired optimal cable configuration, which can however hardly be extended to spatial RCDPRs.

In 2012, Zhou et al. [ZTK12] suggested to increase the number of DoFs of a CDPR by mounting the winches
on mobile bases, which results in a type of RCDPRs. In [ZJK13, ZJK14], Zhou used an alternative concept for
RCDPRs. A set of cables with constant lengths are connected to linear motors. The cables are either attached to
the moving platform [ZJK14] or pull the moving platform by means of idler pulleys [ZJK13]. In both cases, a
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Fig. 1.17 – Summary of the thesis organisation

planar case study has been investigated to show the concept advantages, namely: An even distribution of the load
among the cables, a decoupling between the cable lengths and the cable tensions and the elimination of the cable
length errors. However, Zhou’s solution has not been extended to a spatial case study.

Recently, Nguyen et al. [NGCP14, NG14b] proposed a reconfiguration strategy which consists in solving two
sub-optimisation problems. The first problem aims at defining bounds on the reconfiguration parameter such that
the CDPR reconfiguration is formulated as a box-constrained optimisation problem. The latter forms the second
sub-optimisation problem which, for example, can be solved by means of gradient based optimisation algorithms.

1.3 Contributions and Thesis Organisation

The research work presented in this manuscript aims mainly at defining a reconfiguration strategy for RCDPRs
whose exit points can be positioned on a discrete grid of possible locations. Several steps have to be accomplished
before the definition of a reconfiguration strategy. These steps are listed hereafter and summarised in Fig. 1.17.
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1.3.1 Elasto-Static Modelling

A set of models are required in order to analyse and design CDPRs and RCPDRs. Two cable models are used
in our research work: (i) the massless model, where the cables are represented as elastic straight line segments;
(ii) the sagging model, where the deformations induced by the mass of the cables are taken into account [Irv92].
The cable model is chosen according to the cable properties and the task to be executed. When the linear density
of the cable is low, the straight line segment cable model is used to describe the geometric, elasto-static, kinematic
and dynamic behaviour of the RCDPR. When heavy payloads have to be displaced, the sagging model is more
appropriate to describe the geometric and the elasto-static behaviour of the RCDPR. Under these assumptions,
the dynamic model of the RCDPR is neglected, the motion of the moving platform being considered quasi-static.
The CDPR models based on the linear and the sagging cable models are well known in the literature. In this
manuscript, the notation describing these models has been adapted for RCDPRs.

The analysis of the elasto-static behaviour of CDPRs and RCDPR is still an open problem. This thesis
proposes a formal definition of the elasto-static model of a RCDPR with linear nono-rigid cables. The model has
been derived for a generic spatial RCDPR. It has been computed developing the vectorial form of the equations
describing the kinematics and the statics of the RCDPR. The calculated stiffness matrix corresponds to the
model proposed in [BK05b]. However, the formalism and the assumption which lead to the computation of the
elasto-static model are more rigorous than the one performed in [BK05b].

The inverse geometrico-static model of a RCDPR with sagging cables has been implemented as well, according
to the strategy proposed in [KZW06, RGK+09, YCD15]. Being coupled, the inverse geometric problem and the
static problem are solved at the same time. The inverse geometrico-static problem aims at defining the cable
lengths of the RCDPR and the cable tensions with respect to the pose of the moving platform. The solution to the
problem is computed numerically. Then, the elasto-static problem has been formulated. This model can be used in
order to analyse the small pose variations of the moving platform, due to the non-rigid nature of the cables, and
the dynamic response of the CDPR by means of modal analysis.

The stiffness matrix of the RCDPR is decomposed in two components: The passive stiffness matrix and the
active stiffness matrix. The passive stiffness matrix takes into account the stiffness of the cable sagging model.
The active stiffness matrix is strictly related to the cable tensions. It has been obtained developing the Jacobian of
the cable wrenches with respect to the moving platform pose. Note that, in most of the models appearing in the
literature, the active stiffness matrix is neglected, e.g. in [KZW06].

1.3.2 Twist and Dynamic Feasible Workspaces

The analysis of RCDPRs requires the development of several tools. Part of these tools is dedicated to the
analysis of the moving platform static equilibrium, the dynamic equilibrium and the kinematic constraints. When
mechanical brakes are not active, the maximum tension in the cables depends mostly on the characteristics of
the actuators, such as their nominal or peak torque. The actuators influence also the twist (linear and angular
velocities) that the CDPR moving platform can attain, assuming the nominal speed of the actuators proportional to
the coiling/uncoiling speed of the cables.

In this manuscript, the concept of wrench feasibility has been extended to the moving platform kinematic
analysis, introducing the so called Twist Feasible Workspace (TFW). The TFW is the set of twist feasible moving
platform poses [GCG15a]. A pose is twist feasible when the actuators, according to their nominal speed, are able
to move the platform within a given range of linear and rotational velocities. The TFW is computed using the
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algorithm presented by Gouttefarde et al. in order to analyse the WFW [GK10]. The same algorithm is also used
to compute an Improved Dynamic Feasible Workspace (IDFW) [GGC16a]. With respect to the definition proposed
in [BG05], the IDFW considered in this manuscript takes into account: (i) the inertia of the moving platform; (ii)
the external wrenches applied on the moving platform; (iii) the centrifugal and the Coriolis forces induced by a
constant moving platform twist. The Required Wrench Set (RWS), defined here as the set of internal wrenches
the cables should be able to transmit to the moving platform in order to guarantee its dynamic equilibrium, is
calculated summing the three components of the dynamic equilibrium.

1.3.3 Design of CDPRs and RCDPRs

The models and the tools presented in Sec. 1.3.1 and Sec. 1.3.2 can be used in order to design a CDPR. In this
manuscript, according to the methods proposed in the literature (e.g. in [BMB+09a]), the CDPR design has
been formulated as an optimisation problem. The selected design strategy is task-based. The design problem is
formulated taking into account the tasks the CDPR has to perform, i.e. following a prescribed path or covering a
prescribed workspace defined for the CoM of the moving platform. Several design variables can be optimised,
including the exit point locations, the positions of the connection points between the cables and the moving
platform, the cables properties, the actuators and the winch properties. The optimisation is performed referring to
one or more objective functions. For example, the actuators and the winches can be optimised maximising the
size of WFW, the TWF and the DFW. The position of the exit points can be optimised as well, e.g., aiming at
minimising the size of the CDPR [GCG+14]. A set of constraints has to be satisfied during the task execution.
As typical examples, this manuscript considers cable collision, wrench-feasibility and the moving platform
displacement due to the non-rigid nature of the cables. A case study will be investigated in order to analyse the
design procedure for CDPRs.

However, the use of CDPRs is justified only when the task to be be accomplished is simple and the working
environment is not cluttered. In a cluttered environment, one configuration can hardly allow the CDPR moving
platform to cover the entire prescribed path or the entire prescribed workspace without cable collisions, so
that several reconfigurations are generally required. In this manuscript, the reconfigurations are limited to
the displacement of the exit points which is generally sufficient to avoid cable interferences and collisions
between the cables and the environment. The proposed design strategy is oriented by the task the RCDPR
should accomplish [GCG+15b]. The user discretises the prescribed workspace or the prescribed path and divides
them in nt portions. Each portion should be covered by one and only one configuration of the CDPR. Then,
each configuration is parametrised and the corresponding possible locations of the cables exit are thereby. The
parameters defining the locations of the exit points can take a discrete set of values. By combining these values, it
is possible to generate a large number of configurations. Each configuration is first analysed in order to verify if
it is feasible, i.e., if it can cover the assigned portion of the prescribed path or the prescribed workspace while
satisfying a set of constraints. Then, the feasible configurations are analysed to compose all the possible nt

dimensional combinations of configurations that allow the RCDR to accomplish the prescribed task. The retained
RCDPRs are the ones which satisfy one or more objective functions.

A case study has been considered in order to validate the proposed design strategy. The RCDPR should
sandblast and paint a three-dimensional tubular structure. These operations are performed by appropriate tools
embarked on the robot moving platform. The robot moving platform approaches each external side of the structure
following a prescribed path while the tools perform their work. Three of the external sides of the structure is
sandblasted and painted by means of a different configuration of the cable exit points. To reconfigure the RCDPR
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from one side of the structure to another one, one or several cables are disconnected from their current exit points
and moved to new ones. This procedure is repeated until all the sides of the structure are sandblasted and painted.
The variables of the corresponding design problems are the Cartesian coordinates of the exit points of the three
required configurations associated to the paths of the external sides of the structure. In this case study, the total
number of exit points on the base is minimised, selecting the exit point locations that can be shared between two
or more configurations. Thereby, during a configuration change, not all the cable exit points need to be modified.
Furthermore, according to a hierarchical optimisation, the design problem aims at minimising the robot overall
size and the average of the cable tensions along the prescribed path.

The feasibility of each configuration has to be guaranteed: Cable interferences as well as cable collisions with
the structure are not permitted.

1.3.4 Reconfiguration Strategy for Discrete RCDPRs

When the task to be solved is complicated, it is not always possible to predict the number of configurations
necessary to complete it. Therefore, the design algorithm introduced in Sec. 1.3.3 cannot always find a feasible
solution. In this context, it is preferable to design an arbitrary RCDPR with a large number of possible cable exit
point locations. Given such a complex RCDPR, where the number of cable exit point locations can be extremely
large, a reconfiguration algorithm is required in order to complete a given task. In the previous research works,
summarised in Sec. 1.2.6, two general problems are tackled. The first problem is related to RCDPR design
optimisation. It consists in determining reconfiguration parameter values allowing the RCDPR to work adequately
across a prescribed workspace. The RCDPR is then only occasionally reconfigured. The second problem is to
continuously resolve the reconfiguration parameter values so as to optimise some performance criterion along a
prescribed path. All these research works deal with continuous RCDPR reconfigurations. In our study, discrete
reconfigurations are considered because the use of continuous reconfigurations for industrial applications over
large structures can be prohibitive since several additional motorised DOFs must be used in order to continuously
reconfigure the cable exit points. Hence, the aforementioned second problem is irrelevant since, in this manuscript,
the set of possible values of the cable exit point positions (reconfiguration parameters) is not continuous but
discrete. The first problem is relevant to a discrete reconfiguration problem, but, to the best of our knowledge, in
the case of a discrete set of possible configurations, the issue of optimising the sequence of reconfigurations which
allow the RCDPR moving platform to follow a prescribed path has never been dealt with before.

This manuscript introduces a reconfiguration algorithm for discrete RCDPRs [GCG+15c,GCGG16,GGC+16b].
The algorithm is able to compute the optimal sequence of cable exit point reconfigurations permitting the moving
platform of a RCDPR to follow a prescribed path. The prescribed path is discretised into a finite set of points. The
cable exit points of the RCDPR can be positioned at the points of a user-defined grid of possible locations. The
user also defines a set of constraint functions which ensure a proper functioning of the RCDPR. The prescribed
path is deemed to be successfully followed if all these constraints are satisfied at all points of the discretised path.

The computation of the reconfiguration strategy is based on the following contributions. A so-called feasibility
map is firstly generated. For each possible RCDPR configuration, this map stores the feasibility of the points of
the prescribed path. A point is feasible if the corresponding moving platform pose satisfies all constraint functions,
it is unfeasible otherwise. From this map, feasiblity transitions are then defined. These transitions represent the
reconfigurations that can be possibly performed along the prescribed path. The feasibility map is next analysed
in order to find so-called dominant configurations and then to determine minimum sets of configurations which
allow the RCDPR moving platform to follow the whole prescribed path while satisfying all constraint functions,
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resulting in a reduced feasibility map. This analysis aims at reducing the number of configurations to be considered
in the next step. This next step uses the feasibility transitions to build a graph whose nodes represent the feasible
RCDPR reconfigurations along the prescribed path and whose arcs are weighted by means of a user-defined cost
function. Some possible cost functions are presented, a relevant example being the number of cable exit point
changes required for a given reconfiguration. Finally, the graph is searched using Dijkstra’s algorithm which
eventually determines the optimal reconfiguration strategy, i.e., the sequence of feasible reconfigurations that
permit to follow the whole prescribed path while optimising a cost function.

Two case studies are dealt within this manuscript. The first case study involves the reconfiguration of a planar
CDPR. In the second case study, the considered applications involve low force operations over the surface of a
large (metallic) structure, e.g. painting and sandblasting. The CDPR environment is cluttered because the structure
is located into the workspace and occupies a significant part of it. The task to be performed is simplified to that
of following a prescribed path which is defined by the user in such a way that the entire surface of the structure
is eventually treated. The moving platform orientation is constant. Tools and/or active devices may have to be
embarked on the CDPR moving platform but the corresponding issues are not dealt with in this thesis.

1.3.5 Manuscript Organisation

This manuscript is organised as follows. Chapter II introduces the geometric, kinematic, elasto-static and dynamic
models of CDPRs used in the thesis. Chapter III describes the tools used to analyse the workspace of CDPRs. The
workspace analysis is useful in Chap. IV, which introduces a strategy to design CDPRs and discrete RCDPRs.
Chapter V presents the main steps of a discrete reconfiguration planning method, detailing the feasibility map
computation, its analysis to reduce the number of considered configurations, the graph building, and the graph
search for an optimal discrete reconfiguration strategy. Chapter VI concludes this manuscript by summarising the
main contributions of this doctorate thesis and by discussing some research perspectives.
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The performances of CDPRs can be affected by their models. The choice of a relevant model allows to
control and predict the behaviour of a CDPR in terms of moving platform positioning accuracy and cable tension
distribution. Several geometric, elasto-static, kinematic and elasto-dynamic models have been proposed in the
literature. These models mainly differ in the cable descriptions and characteristics. Most of the models are based
on massless cables.

Massless cables are described as linear segments and provide a good accuracy when their linear density is low.
The effect of the pulleys on the CDPR geometric model, and consequently on the moving platform pose, is usually
neglected. However, in order to improve the robot performances, Bruckmann included the effects of the pulleys in
the geometric models of its prototype [Bru10]. Similarly, Surdilovic et al investigated the influence of pulleys on
the elasto-static behaviour of CDPRs [SRK13].

In Sec. 2.1.2 and Sec. 2.1.3 the geometric and the static models of CDPRs with massless cables are presented.
In Sec. 2.1.4, Sec. 2.1.5 and Sec. 2.1.6 the kinematic and dynamic models of CDPRs with massless cables are
described. For sake of simplicity, the effect of the pulleys on the kinematic and dynamic models of CDPRs is not
considered.

When a CDPR is designed to displace heavy loads, the cables used to perform the task have a large diameter
and consequently a high linear density. As a consequence, the deformations of the cables due to gravity effect
may not be negligible anymore and should be considered [KZW06, RGK+09, RGBP10b]. The cables are then
described using the sagging model defined in [Irv92]. The sagging cable model and the related geometric model
of the CDPR are detailed in Sec. 2.2.1 and Sec. 2.2.2, respectively. These models neglect the effect of pulleys that
have already been considered in Gouttefarde et al. [GNB14]. Since heavy cables are mostly used for quasi-static
operations [Ars13, NG14a], the dynamic models of the sagging cable are not taken into account in the scope of
this thesis.
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Fig. 2.1 – Schematic of a CDPR

Some of the geometric and static models of CDPRs described in the literature take into account the longitudinal
elasticity of the cables in order to lower the moving platform positioning error due to the cable deformations. The
elasto-static model based on linear cables will be presented in Sec. 2.3.1. In Sec. 2.3.2 pulleys are integrated into
the elasto-static modelling of CDPRs. These models have been derived using a more formal approach with respect
to the one proposed in [BK05b, Ars10, SRK13]. Section 2.3.3 describes the elasto-static model of CDPRs while
considering sagging cables.

The elasto-static model of a CDPR is expressed by means of its stiffness matrix. This stiffness matrix is
composed of two parts, namely, a passive stiffness matrix that strictly depends on the cables properties and
an active stiffness matrix that strictly depends on the cable tensions. It is noteworthy that most of the existing
elasto-static CDPR models with sagging cables neglect the active part of the stiffness matrix, except for the ones
proposed in [Ars13, NG14a, Li15]. In this manuscript, the elasto-static model of CDPRs with sagging cables has
been expressed while computing the active stiffness matrix by developing the Jacobian of the cable wrenches with
respect to the moving platform pose.

2.1 CDPR Models Based on the Linear Rigid Cable Model

2.1.1 Robot Representation

Figure 2.1 depicts a CDPR. The moving platform is actuated by m cables. The i-th cable connection point on the
moving platform is denoted by Bi. The cables are actuated by winches, fixed on the base of the robot. The cables
are routed to exit points by means of pulleys. The i-th exit point is defined as Ai.

Fb, of origin Ob and axes xb, yb, zb, denotes a fixed reference frame. Vector bb
i is the position vector of point

Bi expressed in frame Fb. Vector bp
i denotes the position vector of point Bi expressed in the moving platform

frame Fp of origin Op and axes xp, yp and zp. Vector ab
i denotes the position vector of point Ai expressed in the
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base frame Fb.

2.1.2 Inverse Geometric Models (IGMs)

IGM without Pulleys

The Inverse Geometric Model (IGM) of the CDPR provides the lengths li, i = 1, . . . ,m, of the cables, for a given
pose p =

[
tT,rT

]T of its moving platform. The pose p is defined in the reference frame Fb. t = [tx, ty, tz]T is the
position vector of the origin Op of frame Fp, which usually coincides with the moving platform CoM. Vector r
contains the Roll, Pitch, and Yaw (RPY) angles, φ , θ and ψ , around the axes zb, yb and xb, respectively. These
angles define the moving platform orientation with respect to Fb. Here, the weight of the cables is neglected and
the cables are thus considered to be straight line segments.

The IGM is based on the loop closure equations of the cable vectors, lbi , i = 1, . . . ,m, defined in Fb, as follows:

lbi = ab
i −bb

i = ab
i − t−Rbp

i = ab
i − t−br

i , i = 1, . . . ,m (2.1)

where vector lbi is directed along the i-th cable from point Bi to point Ai. br
i = Rbp

i is the vector pointing from
the origin Op of frame Fp to the attachment point Bi of the i-th cable. Vector br

i is expressed in frame Fb.
R = Rz (φ)Ry (θ)Rx (ψ) is the rotation matrix defining the moving platform orientation:

R = Rz (φ)Ry (θ)Rx (ψ) =

cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ

sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ

−sθ cθsψ cθcψ

 (2.2)

where c and s stand for cosinus and sinus, respectively.

The length li of the i-th cable is then defined by the 2-norm of the cable vector lbi , namely, li = ∥lbi ∥2, i = 1, . . . ,m.
The unit vectors associated to li, i = 1, . . . ,m are defined, with respect to Fb, as:

db
i =

lbi
li
, i = 1, . . . ,m (2.3)

IGM with Pulleys

Considering the static equilibrium of the moving platform, each cable and the associated pulley lie in a plane. The
plane of the i-th cable is described through a local reference frame, Fi, of origin Ai and axes xb

i , yb
i and zb

i . Axis
zb

i is vertical and lies along the gravity direction. Axis xb
i is orthogonal to axis zb

i and lies in the cable plane, i.e.
yb

i = zb
i ×xb

i is orthogonal to the two foregoing vectors axes.

The geometric model of a pulley is represented in Fig. 2.2. The geometry of the pulley affects the cable exit
point location, and consequently the IGM. Pulleys are composed of rollers mounted on vertical axis revolute joints.
rp is the radius of the pulleys. The orientation of the i-th roller around the vertical axis, and consequently of the
i-th cable local reference frame, is given by angle θi = atan2(−ly,i,−lx,i), where lx,i and ly,i are the components of
li along xb and yb, respectively. Knowing the orientation of the pulley, the position of the centre point of the i-th
roller, Oi, is computed as follows:

ob
i = ab

i + rpRixb = ab
i + rpxb

i (2.4)
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Fig. 2.2 – Schematic and parametrization of a pulley

where Ri is the rotation matrix associated to the rotation of the pulley about the axis zb
i of an angle θi:

Ri = Rz (θi) =

cosθi −sinθi 0
sinθi cosθi 0

0 0 1

 (2.5)

The Cartesian coordinates of the actual cable exit points, A′
i, i = 1, . . . ,m, are expressed in frame Fb by vector

Lb
i , i = 1, . . . ,m. Exit point locations depend on the cable wrap angle on the roller of the pulley αi = αi,1 +αi,2,

whose components are defined as follows:

sinαi,1 =

(
bb

i −ob
i
)T zb

i

∥bb
i −ob

i ∥2
, −π

2
< αi,1 <

π

2
(2.6)

cosαi,2 =
rp

∥bb
i −ob

i ∥2
, 0 < αi,2 <

π

2
(2.7)

The cable vectors pointing to the cable exit points A′
i, i = 1, . . . ,m are defined as follows:

Lb
i = ab

i + rp

(
xb

i +hb
i

)
−bb

i = ab
i − rp

(
zb

i +Di

)
×yb

i −bb
i , i = 1, . . . ,m (2.8)

where hb
i is the unit vector providing the direction from the centre of the pulley, Oi, to the cable exit point, A′

i.
Therefore, the cable length, Li = ∥Lb

i ∥2, is equal to the 2-norm of Lb
i . Db

i is the new unit vector directed along Lb
i .

The distance between the moving platform connection point Bi and the exit point Ai along xb
i is equal to Ni. This

distance is the 2-norm of vector Nb
i = lbi × zb

i = Niyb
i , directed along yb

i .

2.1.3 Inverse Static Model (ISM)

In order to assure the static equilibrium of the CDPR, cables have to balance the external wrench we exerted on
the moving platform. This wrench includes the weight of the moving platform, the weight of the embarked tools,
and the force and moments transmitted to the moving platform by the embarked tools.
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The external wrench we is a 6-dimensional vector expressed in frame Fb and takes the form:

we =
[
fT
e ,m

T
e
]T

= [ fx, fy, fz,mx,my,mz]
T (2.9)

fx, fy and fz are the x, y and z components of the external force vector fe. mx, my and mz are the x, y and z
components of the external moment vector me, respectively. The components of the external wrench we are
assumed to be bounded as follows:

f ≤ fx, fy, fz ≤ f (2.10)

m ≤ mx,my,mz ≤ m (2.11)

where f and f are the lower and the upper bounds of the external force components, while m and m are the lower
and the upper bounds of the external moment components.

In order to balance the external wrench, each cable generates on the moving platform a wrench, proportional to
its tension τi = 1, . . . ,m. The cables balance the external wrench we, according to the following equation [RGL98]:

Wτ +we = 0 (2.12)

The cable tensions are collected into the vector τ = [τ1, . . . ,τm]
T and multiplied by the wrench matrix W whose

columns are composed of the unit wrenches wi exerted by the cables on the moving platform [RGL98]:

W =

[
db

1 db
2 . . . db

m

Rbp
1 ×db

1 Rbp
2 ×db

2 . . . Rbp
m ×db

m

]
(2.13)

.

When the effect of pulleys is not neglected, Eq. (2.13) can be rewritten as follows:

W =

[
Db

1 Db
2 . . . Db

m

Rbp
1 ×Db

1 Rbp
2 ×Db

2 . . . Rbp
m ×Db

m

]
(2.14)

.

Most of the CDPRs and RCDPRs considered in this thesis are redundantly actuated, i.e., the number of cables
is greater than the number of DOFs of the moving platform. Then, the Inverse Static Model (ISM) (determination
of τ in Eq. (2.12)) of CDPRs modelled with linear rigid cables generally leads to an infinite number of solutions.
Considering that the cable tensions must be non-negative and satisfy Eq. (2.12), a possible solution is described by
the following equation:

τ = τn + τ0 =−W†we +Nλ , τ ≥ 0 (2.15)

where W† is the Moore-Penrose generalised inverse of W, λ ∈ R(m−n) and N is a matrix whose columns span the
null space of W [RGL98]. n is the dimension of the task space. In the framework of this thesis, the solution that
minimises the 2-norm of the cable tension vector τ is used.
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2.1.4 Direct and Inverse First Order Kinematic Models

The kinematic model of the CDPR describes the twist of the moving platform in terms of the cable coiling/uncoiling
velocities:

Jl̇− ṗ = Jl̇−

[
ṫ
ω

]
= 0 (2.16)

where ṫ = [ṫx, ṫy, ṫz]T is the vector of the moving platform linear velocity, ω = [ωx,ωy,ωz]
T is the vector of the

moving platform angular velocity and l̇ is the vector of the cable velocities, l̇ = [l̇1, . . . , l̇m]T. J is the kinematic
Jacobian matrix of the CDPR. The columns of the Jacobian matrix represent the twist ṗi associated to each cable.
The moving platform angular velocity can be expressed as a function of the RPY angular velocities, according to
the description provided in App. A.1.

Considering the duality between the kinematic model and static model of the CDPR, the static equilibrium of
the moving platform is rewritten as:

τ = JTwe (2.17)

Comparing Eq. (2.12) and Eq. (2.17) we observe that:

JTwe =−W†we (2.18)

Therefore, the kinematic Jacobian matrix of the CDPR is computed as:

J =−W†T
(2.19)

The Direct Kinematic Model (DKM) of a CDPR defines the twist ṗ of the moving platform as a function of
vector l̇:

ṗ = Jl̇ =−W†T l̇ (2.20)

The Inverse Kinematic Model (IKM) is computed by inverting Eq. (2.20), i.e.:

l̇ = J†ṗ =−WTṗ (2.21)

where J† is the Moore-Penrose pseudo-inverse of J.

2.1.5 Direct and Inverse Second Order Kinematic Models

The Second Order Direct Kinematic Model (SODKM) is computed differentiating Eq. (2.20):

p̈ =

[
ẗ
α

]
= J̇l̇+Jl̈ (2.22)

where ẗ = [ẗx, ẗy, ẗz]T is the vector of the moving platform linear acceleration, α = [αx,αy,αz]
T is the vector of the

moving platform angular acceleration, l̈ = [l̈1, . . . , l̈m]T is the vector collecting the second derivative of the cable
lengths and J̇ is the time derivative of the kinematic Jacobian J. The moving platform angular acceleration can be
expressed as a function of the RPY angular velocities and accelerations, according to the description provided in
App. A.1.
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The Second Order Inverse Kinematic Model (SOIKM) is defined inverting Eq. (2.22) or differentiating
Eq. (2.21):

l̈ = J† (p̈− J̇l̇
)
=−ẆTṗ−WTp̈ (2.23)

The time derivative of the wrench matrix, Ẇ, is detailed in App. A.2.

2.1.6 Inverse Dynamic Model (IDM)

The dynamic equilibrium used in this thesis takes into account the dynamics of the moving platform, as well as
the dynamics of the motors and the winches. However, assuming that the diameters of the cables and the pulleys
are small, the dynamics of the pulleys and the cables is neglected. A scheme of the actuation system is described
in Fig. 2.3. The dynamic equilibrium of the moving platform is described by the following equation:

Wτ − Ipp̈−Cṗ+we +wg = 0 (2.24)

In order to generalise the dynamic model of CDPRs, this thesis considers the possibility that the CoM of the
moving platform, G, may not coincide with the origin Op of frame Fp. Being M the mass of the moving platform,
the wrench wg due to the gravity acceleration g is defined as follows:

wg =

[
MI3

MŜp

]
g (2.25)

I3 is the 3×3 identity matrix; MSp = R [Mxp,Myp,Mzp]
T is the first momentum of the moving platform defined

with respect to frame Fb. Vector Sp = [xp,yp,zp]
T describes the position of the moving platform CoM, G, with

respect to the origin Op of frame Fp. MŜp is the skew-symmetric matrix associated to MSp.

Matrix Ip represents the spatial inertia of the moving platform:

Ip =

[
MI3 −MŜp

MŜp Ip

]
(2.26)

Ip is the inertia tensor of the moving platform, computed applying the Huygens-Steiner theorem to the moving
platform inertia tensor, Ig, defined with respect to the CoM of the moving platform itself. Ip takes the form:

Ip = RIgRT −
MŜpMŜp

M
(2.27)

C is the matrix of the centrifugal and Coriolis wrenches, defined such that:

Cṗ =

[
ω̂ω̂MSp

ω̂Ipω

]
(2.28)

where ω̂ is the skew-symmetric matrix of ω .

The input motor torques τM are computed by using the dynamic equilibrium of the motors:

τM = τR + IMq̈+Fviq̇+Fcsign(q̇) (2.29)
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Fig. 2.3 – Scheme of the torque transmission from the electric motors to the cables

Fvi and Fc are the diagonal matrices of the viscous and the Coulomb friction coefficients of the motors, respectively;
IM is the inertia matrix of the motors; τR is the vector of the torques transmitted by the motors to the gearboxes.

Gearboxes are usually integrated directly in the motor block. They transmit to the winches higher torques, τW ,
and lower rotational speeds, q̇W . The inertia of the gearbox is usually negligible.

τW = ηRρRτR (2.30)

q̇W = µRq̇ =
1

ρR
q̇ (2.31)

ρR is the gearbox ratio and ηR is the efficiency coefficient.

The cables are coiled around the winches, which are connected to the motors through the gearboxes. The
dynamic equilibrium of the winches is defined as follows:

τW =
φW

2
τ + IW q̈W +FV I q̇W +FCsign(q̇W ) (2.32)

IW is the diagonal matrix of the winch inertia, φW is the nominal diameter of the winches, FV I and FC are the
viscous and Coulomb friction matrices of the winches, respectively. q̈W is the vector of the rotational acceleration

of the winches. Considering a constant gearbox ratio, ρR =
q̇

q̇W
, it turns out that:

q̈W =
q̈
ρR

(2.33)

Considering q̇W = 2
l̇

φW
and its time derivative q̈W = 2

l̈
φW

, the dynamic equilibrium of the whole robot is

obtained substituting Eq.s (2.21), (2.23), and (2.29-2.33) in Eq. (2.24):

2
φW

ηRρRWτM +Ap̈+B+D+we = 0 (2.34)
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where:

A =−Ip +
4

φ 2
W

W
(
ηRρ

2
RIm + IW

)
WT (2.35)

B =−Cṗ+
4

φ 2
W

W
(
ηRρ

2
RIm + IW

)
ẆTṗ+ (2.36)

+
4

φ 2
W

W
(
ηRρ

2
RFvi +FV I

)
WTṗ

D = wg −
2

φW
W(ηRρRFc +FC)sign

(
−WTṗ

)
(2.37)

Thus, the motor torques τM are computed according to the Inverse Dynamic Model (IDM):

τM =− φW

2ηRρR
W† (Ap̈+B+D+we) (2.38)

2.2 CDPR Models Based on the Sagging Cable Model

When the payload of the CDPR is heavy and the acceleration of the moving platform are low, the motion of the
CDPR moving platform can be considered quasi-static. The geometric and the elasto-static models of the CDPR
provided in this section take into account the weight of the cables, according to the sagging model provided by
Irvine in [Irv92].

2.2.1 Sagging Cable Model

The sagging cable model is usually described with respect to the reference frame of the cable, Fi, as shown in
Fig. 2.4. Assuming that P is an arbitrary point of the strained cable profile parametrised by its linear abscissa p,
the geometric constraint for a differential cable element around the point P is expressed as:(

dx
d p

)2

+

(
dz
d p

)2

= 1 (2.39)

The static equilibrium of the unstrained cable element can be parametrised according to a curvilinear abscissa s:

fp
dx
d p

= fp,x (2.40)

fp
dz
d p

= fp,z +λ0g(s−L0,i) (2.41)

where fp = ||fp||2 is the tension of the cable at point P, defined as the 2-norm of the cable tension vector at point
P, fp = [ fp,x, fp,y, fp,z]

T. L0,i is the initial length of the i-th unstrained cable. The tension satisfies the Hooke’s law:

fp = EA0

(
d p
ds

−1
)

(2.42)

where E is the Young Modulus of the cable and A0 is the section area of the unstrained cable.
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Fig. 2.4 – Sagging model of a cable

By combining Eq.s (2.39-2.42), the profile of the cable is parametrised as a function of s [Irv92]:

xi(s) =
Fx,is
EA0

+
∥Fx,i∥2

λ0g

[
sinh−1

(
Fz,i +λ0 g(s−L0,i)

Fx,i

)]
− sinh−1

(
Fz,i −λ0gL0,i

Fx,i

)
(2.43)

yi(s) = 0 (2.44)

zi(s) =
Fz,is
EA0

+
λ0g
EA0

(
s2

2
−L0,is

)
(2.45)

+
1

λ0g

[√
F2

x,i +(Fz,i +λ0g(s−L0,i))
2 −
√

F2
x,i +(Fz,i −λogL0,i)

2
]

(2.46)

where λ0 is the linear density of the unstrained cable and Fx,i,Fy,i,Fz,i are the components of the forces transmitted
by the moving platform on the cables at point Bi. These components are collected in vector Fi = [Fx,i,Fy,i,Fz,i]

T.

2.2.2 Inverse Gometrico-Static Model

Problem Description

The objective of the IGM is to compute the lengths of the cables for a given pose of the moving platform.
Observing the equations describing the profile of the sagging cables, we notice that the profile of the cables
and the force Fi, i = 1, . . . ,m exerted on the cables at point Bi, i = 1, . . . ,m are strictly correlated through a set of
non-linear equations. Hence, the geometric and the static problems can not be decoupled. The pose of the moving
platform, p, is specified, as well as the external wrench applied on the moving platform. The unknown variables
of the geometrico-static problem are the cable lengths L0,i, i = 1, . . . ,m and the forces transmitted by the moving
platform to the cables, Fi, i = 1, . . . ,m. Each force is parametrised according to its non-null components, Fi,x and
Fi,z. Therefore, for a given CDPR, the number of unknown variables for the geometrico-static problem is equal to
3m.

The locations of the cable connection points on the moving platform, Bi, i = 1, . . . ,m, are computed, with
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respect to the local frames Fi according to the cable profile described in Eq. (2.43) and Eq. (2.46) [KZW06].

bl
x,i =

Fx,iL0,i

EA0
+

∥Fx,i∥2

λ0g

[
sinh−1

(
Fz,i

Fx,i

)
− sinh−1

(
Fz,i −λ0gL0,i

Fx,i

)]
(2.47)

bl
y,i = 0 (2.48)

bl
z,i =

Fz,iL0,i

EA0
−

λ0gL0,i

2EA0
+

1
λ0g

[√
F2

x,i +F2
z,i −

√
F2

x,i +(Fz,i −λ0gL0,i)
2
]

(2.49)

The previous components are collected into the vector bl
i = [bl

x,i,b
l
y,i,b

l
z,i]

T. The geometric constraints have to be
solved simultaneously with the static equilibrium equations of the moving platform:

m

∑
i=1

RiFi − fe = 0 (2.50)

m

∑
i=1

Rbp
i ×RiFi −me = 0 (2.51)

Hence, the geometrico-static problem consists of 2m geometric constraints and n static equilibrium equations.
For a spatial CDPR, when the number of cables is equal to the DoF of its moving platform, m = n = 6, the
geometrico-static problem contains as many unknowns as equations. For fully constrained CDPRs, with m > n,
the number of unknowns is greater than the number of equations, 3m > 2m+ n. In both cases, as proved by
Merlet in [Mer15b], the inverse geometrico-static problem may admit several solutions. The solutions have to be
computed numerically since there is no known analytical solution for the problem at hand.

Numerical Solution

The inverse geometrico-static problem can be solved numerically as an optimisation problem. The unknowns,
collected in the vector x, are the cable force components, Fx,i,Fz,i, i = 1, . . . ,m, and the cable unstrained lengths,
L0,i, i = 1, . . . ,m. A unique solution for the inverse geometrico-static problem can be found by minimising the
cable lengths (and consequently the cable sagging) or the cable tensions [RGK+09]. The objective function
aiming at minimising the cable length is:

V1 = ∥L∥2 (2.52)

where L is the vector collecting all the cable lengths L = [L1, . . . ,Lm]
T and ∥L∥2 is its 2-norm. The objective

function aiming at minimising the cable tension expressed as:

V2 = ∥τs∥2 (2.53)

where τs is the vector collecting all the maximum tensions measured along the cables, τs = [τs,1, . . . ,τs,m]
T, and

∥τs∥2 is its 2-norm. In order to assure the static equilibrium of the moving platform, Eq.s (2.47-2.51) are translated
into a set of constraints. The geometric constraints verify that the computed locations of points Bi, i = 1, . . . ,m
expressed in frame Fi are sufficiently close to the desired locations, b̃l

i = [b̃l
x,i, b̃

l
y,i, b̃

l
z,i]

T, calculated with respect
to the prescribed moving platform pose:

c1,i := ∥bl
x,i − b̃l

x,i∥< ε1 i = 1, . . . ,m (2.54)

c2,i := ∥bl
z,i − b̃l

z,i∥< ε2 i = 1, . . . ,m (2.55)
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where ε1 and ε2 represent the user-defined precision required to satisfy the previous constraints. Similarly, the
static equilibrium should be satisfied by the following constraint equations:

c3 := ∥
m

∑
i=1

RiFi − fe∥< ε3 (2.56)

c4 := ∥
m

∑
i=1

Rbp
i ×RiFi −me∥< ε4 (2.57)

In this thesis, the optimisation problem is solved using the fmincon function of Matlabr and the related active-set
solver. The optimisation problem can be rewritten in the following form:

min
x

V2(x) such that

c(x)<= ε

xlb ≤ x ≤ xub

(2.58)

where c(x) represents the set of constraint functions described in Eq.s (2.54-2.57). ε is the vector collecting the
precision required by each constraint, while xlb and xub are the lower and upper bounds of vector x, respectively.
Since the function searches for a local miniminum, vector x has to be initialised inside the domain defined by the
bounds xlb and xub. The convergence and the efficiency of the solution are related to the initial guess, x0. The
initial guess of the optimisation problem are computed solving the IGM and the ISM based on the linear rigid
cable model. These models have been presented in Sec. 2.1.2 and Sec. 2.1.3, respectively. As a reminder, for fully
constrained CDPRs with m > n, the ISM is computed while minimising the 2-norm of the cable tensions, ∥τ∥2.
Alternatively, the initial guess can be computed according to the simplified hefty cable CDPR model presented by
Gouttefarde et al. in [GCRB12]. In general, the simplified hefty cable model assures a better initial estimate than
the linear rigid cable model.

Once the geometrico-static problem has been solved, the cable lengths is computed as follows [KZW06]:

Li = L0,i +
1

2ρ0gEA0

[
Fz,i

√
F2

x,i +F2
z,i +F2

x,i sinh−1
(

Fz,i

∥Fx,i∥2

)
+

−(Fz,i −λ0gL0,i)
√

F2
x,i +(Fz,i −λ0gL0,i)

2+

−F2
x,i sinh−1

(
Fz,i −λ0gL0,i

∥Fx,i∥2

)]2

i = 1, . . . ,m (2.59)

It is noteworthy that the cable tensions vary along the cables:

fi(s) =
√

F2
x,i +(Fz,i +λ0g(s−L0,i))

2, i = 1, . . . ,m (2.60)

The minimum and the maximum tensions are located at the extremities of the cables:

f 0
i = ∥F0∥2 =

√
F2

x,i +(Fz,i −λ0gL0,i)
2 i = 1, . . . ,m (2.61)

fi(L0,i) = ∥Fi∥2 =
√

F2
x,i +F2

z,i i = 1, . . . ,m (2.62)
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Cable Tension Distribution over a Prescribed Path

Section 2.2.2 describes the procedure to solve the inverse geometrico-static problem for a given pose of the moving
platform. When the CoM of the moving platform has to follow a prescribed path, the algorithm described in
Fig. 2.5 can be applied to ensure the cable tension continuity. The prescribed path, P , is discretised into a set of
nP points Pj, j = 1, . . . ,np. The steps of the alogrithms are described as follows:

Step I. The initial point of the path, P1, is analysed using the IGM and the ISM based on the linear rigid cable
model or the hefty cable model. By using the linear rigid cable model, Eq. (2.1.2) provides the cable
lengths while assuming massless cables. The cable tensions are computed according to Eq. (2.15) by
minimising ∥τ∥2. The solutions correspond to the initial guess, x0,1, of the geometrico-static problem
for a CDPR with sagging cables. The bounds of the geometrico-static optimisation problem, xlb and
xub, are initialised: The cable lengths are bounded between 0 and lmax, while the cable tensions are
bounded between τmin and τmax. lmax is the maximum cable length that can be coiled onto the winches.

Step II. For the given point Pj, the statico-geometric problem is solved numerically according to Eq. (2.58) with
respect to the given initial guess, x0, j, and the given bounds, xlb and xub. The solution, x j, provides the
lengths of the cables and their tension at point Pj.

Step III. If point Pj is the last point of the path, Pe, the algorithm will stop. Otherwise, the initial guess and the
bounds of the optimisation problem in Eq. (2.58) are updated. The initial guess associated to point Pj+1

is equal to the solution of the geometrico-static problem obtained for point Pj, x0, j+1 = x j. The bounds
xlb and xub are updated while considering the surrounding of x j:

xlb = x j −∆P (2.63)

xub = x j +∆P (2.64)

where ∆P is a user-defined vector used to define the bounds of the optimisation at the next iteration.
The inverse geometrico-static problem associated to point Pj+1 is solved according to the updated
parameters by going back to Step II.

2.3 CDPR Elasto-Static Models

2.3.1 Linear Non-Rigid Cable Model

In order to quantify the stiffness of the CDPR, an elasto-static model is used. The elastic behaviour of the moving
platform is described by the following equation:

δwe =

[
δ fe

δme

]
= Kδp = K

[
δ t
δr

]
(2.65)

where δwe represents the infinitesimal (sufficiently small) change in the external wrench applied to the moving
platform, δp is the infinitesimal (sufficiently small) displacement screw of the moving platform, and K is the
stiffness matrix. In this case, δr = [δ rx,δ ry,δ rz]

T represents the vector of the infinitesimal (sufficiently small)
rotations of the moving platform around the axes xb, yb and zb, respectively.
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Fig. 2.5 – Algorithm for the computation of the geometrico-static model of a CDPR subjected to sagging effect.

According to Behzadipour and Khajepour [BK05b], it is possible to define the stiffness matrix K as:

K =
dwe

dp
(2.66)

Substituting Eq. (2.12) in Eq. (2.66), the stiffness matrix is decomposed into two terms: The active stiffness

matrix, Ka =−dW
dp

τ , depending on the cable tensions; The passive stiffness matrix, Kp =−W
dτ

dp
, depending on

the cable properties.

K =−dWτ

dp
= Ka +Kp =−dW

dp
τ −W

dτ

dp
(2.67)

Passive Stiffness Matrix Computation

The cable elasticity is modelled according to the linear spring model, where ki represents the elastic coefficient of
the i-th cable and δ li the length variation of the cable induced by the cable tension τi.

τi = kiδ li (2.68)
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The elastic behaviour of all the cables is thus defined as follows:

τ = Klδ l (2.69)

where the general cables-stiffness matrix, Kl = diag{k1,k2, . . . ,km}, is a diagonal matrix containing the elastic
coefficients ki, i = 1, . . . ,m of all the cables, δ l = [δ l1, . . . ,δ lm]

T is the vector containing the length variations of
all the cables of the CDPR.

Taking into account Eq. (2.21) and Eq. (2.69), where l = [l1, . . . , lm]T is the vector of the cable lengths, the
passive stiffness matrix Kp takes the following form:

Kp =−WKl
dl
dp

= WKlWT =
m

∑
i=1

ki

[
db

i dbT

i db
i dbT

i b̂rT

i

b̂r
i db

i dbT

i b̂r
i db

i dbT

i b̂rT

i

]
(2.70)

b̂r
i represents the cross product matrix of vector br

i = [br
i,x,b

r
i,y,b

r
i,z]

T:

b̂r
i =

 0 −br
i,z br

i,y

br
i,z 0 −br

i,x

−br
i,y br

i,x 0

 (2.71)

Active Stiffness Matrix Computation

Hereafter, the active stiffness matrix, Ka, will be developed:

dW
dp

τ =
m

∑
i=1

dwi

dp
τi (2.72)

The Jacobian matrix
dwi

dp
is decomposed as follows:

dwi

dp
=

 ddb
i

dt
ddb

i
dr

d
(
br

i ×db
i
)

dt
d
(
br

i ×db
i
)

dr

 (2.73)

The differential form of Eq. (2.1) is:

dlbi =−dt−dbr
i =−dt+br

i ×dr =−dbb
i (2.74)

Alternatively, the IGM can be differentiated as follows:

dlbi = d
(

lidb
i

)
= dlidb

i + liddb
i (2.75)

Taking into account that l2
i = lbT

i lbi , we can conclude that 2lidli = 2lbi
Tdlbi . Hence:

dli =
lbi

T

li
dlbi = db

i
T

dlbi = db
i

T
(−dt+br

i ×dr) =−db
i

T
dbb

i (2.76)
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Comparing Eq. (2.74) and Eq. (2.75) we obtain the following expression:

−dbb
i =−db

i
T

dbb
i db

i + lb
i ddb

i (2.77)

Observing Eq. (2.77) we can obtain the first components of matrix Ka of Eq. (2.73):

ddb
i =−1

li

(
I3,3 −db

i db
i

T
)

dbb
i =−1

li

(
I3,3 −db

i db
i

T
)
(dt−br

i ×dr) (2.78)

These components are:

ddb
i

dt
=−1

li

(
I3,3 −db

i db
i

T
)

(2.79)

ddb
i

dr
=

1
li

(
I3,3 −db

i db
i

T
)

b̂r
i (2.80)

The missing components of the active stiffness matrix Ka in Eq. (2.73) are obtained by differentiating br
i ×di,

namely,

d
(

br
i ×db

i

)
= dbr

i ×db
i +br

i ×ddb
i = (dr×br

i )×db
i +br

i ×ddb
i = (2.81)

= db
i ×br

i ×dr− 1
li

br
i ×
(

I3,3 −db
i db

i
T
)
(dt−br

i ×dr)

These components are:

d
(
br

i ×db
i
)

dt
=−1

li
b̂r

i

(
I3,3 −db

i db
i

T
)

(2.82)

d
(
br

i ×db
i
)

dr
=

[
d̂b

i +
b̂r

i
li

(
I3,3 −db

i db
i

T
)]

b̂r
i (2.83)

where d̂b
i denotes the cross product matrix of vector db

i .

Hence, the active stiffness matrix Ka takes the form:

Ka =−
m

∑
i=1

τi

 −1
li

(
I3,3 −db

i db
i

T
) 1

li

(
I3,3 −db

i db
i

T
)

b̂r
i

−1
li

b̂r
i

(
I3,3 −db

i db
i

T
) [

d̂b
i +

b̂r
i

li

(
I3,3 −db

i db
i

T
)]

b̂r
i

 (2.84)

2.3.2 Linear Non-Rigid Cable Model with Pulleys

The elasto-static model provided in Sec. 2.3.1 has been improved by taking into account the effect of pulleys.
Once again, the stiffness is described through the stiffness matrix of Eq. (2.66) and its components.

Passive Stiffness Matrix Computation

The structure of the passive stiffness matrix does not present major modifications with respect to Eq. (2.70):

Kp =
m

∑
i=1

ki

[
Db

i Db
i

T Db
i Db

i
T b̂b

i
T

b̂b
i Db

i Db
i

T b̂b
i Db

i Db
i

T b̂b
i

T

]
(2.85)
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Active Stiffness Matrix Computation

However, the active stiffness matrix is quite different. The components of the Jacobian presented in Eq. (2.73)
should be computed. This computation requires the derivation of a set of unit vectors, including dDb

i :

dDb
i =

dLb
i −
(

dLb
i

TDb
i

)
Db

i

li
(2.86)

The IGM described in Eq. (2.8) is differentiated as follows:

dLb
i =−rp

(
zb

i +Db
i

)
×dyb

i − rpdDb
i ×yb

i −dbb
i (2.87)

with:

yb
i =

lbi × zb
i

Ni
(2.88)

Equation (2.88) is differentiated according to the formula presented in Eq. (2.86) and Eq. (2.87):

dyb
i =

dNb
i −
(

dNb
i

Tyb
i

)
yb

i

Ni
(2.89)

Reminding that Nb
i = lbi × zb

i and that the unit vector zb
i is constant, the differentiation of Nb

i is:

dNb
i = dlbi × zb

i = zb
i ×dbb

i (2.90)

Hence, Eq. (2.89) is rewritten as follows:

Nidyb
i = zb

i ×dbb
i −
((

zb
i ×dbb

i

)T
yb

i

)
yb

i (2.91)

We can notice that Nidyb
i is the component of zb

i ×dbb
i normal to yb

i , and consequently parallel to xb
i :

Nidyb
i =

((
zb

i ×dbb
i

)T
xb

i

)
xb

i =

((
xb

i × zb
i

)T
dbb

i

)
xb

i =−
(

yb
i

T
dbb

i

)
xb

i (2.92)

Consequently, according to Eq. (2.92), the differentiation of unit vector yb
i is:

dyb
i =−

yb
i

Tdbb
i

Ni
xb

i (2.93)

The differential of yb
i is substituted in Eq. (2.87):

dLb
i = rp

(
zb

i +Db
i

)
×

(
yb

i
Tdbb

i
Ni

xb
i

)
− rpdDb

i ×yb
i −dbb

i (2.94)
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Hence, the projection of dLb
i on Db

i is expressed as:

dLb
i

TDb
i = rp

((
zb

i +Db
i

)
×

(
yb

i
Tdbb

i
Ni

xb
i

))T

Db
i − rp

(
dDb

i ×yb
i

)T
Db

i −dbb
i

TDb
i (2.95)

Considering that vector
(
zb

i +Db
i
)
× xb

i is parallel to yb
i , the first term of the previous equation is null. Thus,

post-multiplying Eq. (2.95) by Db
i we obtain:

(
dLb

i
TDb

i

)
Db

i =−rp

((
dDb

i ×yb
i

)T
Db

i

)
Db

i −
(

dbb
i

TDb
i

)
Db

i =−rpdDb
i ×yb

i −
(

dbb
i

TDb
i

)
Db

i (2.96)

As a matter of fact, since Db
i is a unit vector, i.e. dDbT

i Db
i = 0 and DbT

i Db
i = 1, the projection of

(
dDb

i ×yb
i
)T Db

i

on Db
i is equal to:((

dDb
i ×yb

i

)T
Db

i

)
Db

i =
(
||dDb

i ×yb
i ||2DbT

i Db
i

)
Db

i = ||dDb
i ×yb

i ||2Db
i = dDb

i ×yb
i (2.97)

The differential unit vector dDb
i is obtained substituting Eq. (2.94) and Eq. (2.96) into Eq. (2.86)

dDb
i =

1
li

[
rp

Ni

(
yb

i
T

dbb
i

)(
zb

i +Db
i

)
×xb

i −dbb
i +
(

dbb
i

TDb
i

)
Db

i

]
(2.98)

By definition, zb
i ×xb

i = yb
i . The triple cross product Db

i ×xb
i = Db

i ×
(
yb

i × zb
i
)

can be developed with the triple
cross product formula, concluding that Db

i ×xb
i =

(
Db

i
Tzb

i

)
yb

i . Finally, the differential vector dDb
i takes the form

dDb
i =

1
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(
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]
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=
1
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i

(
1+Db

i
Tzb

i

)
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=
1
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)
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T
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(2.99)

Equation (2.99) leads to the first components of the active stiffness matrix Ka:

dDb
i

dt
=−1

li

(
I3 −Db

i Db
i

T −H
)

(2.100)

dDb
i

dr
=

1
li

(
I3 −Db

i Db
i

T −H
)

b̂r
i (2.101)

where H =

[
rp

Ni
yb

i

(
1+Db

i
Tzb

i

)
yb

i
T
]

. The missing components of the active stiffness matrix, Ka, are obtained

upon differentiation of br
i ×Di:

d
(

br
i ×Db

i

)
= dbr

i ×Db
i +br

i ×dDb
i = (dr×br

i )×Db
i +br

i ×dDb
i =

= D̂b
i b̂r

i dr+
b̂r

i
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(
H+Db

i Db
i

T − I3

)(
dt− b̂r

i dr
)

(2.102)
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where D̂b
i denotes the cross product matrix of vector Db

i . The last components of the active stiffness matrix are:

d
(
br

i ×db
i
)

dt
=− b̂r

i
li

(
I3 −Db

i Db
i

T −H
)

(2.103)

d
(
br

i ×db
i
)

dr
=

[
D̂b

i +
b̂r

i
li

(
I3 −Db

i Db
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As a result, the active stiffness matrix Ka is expressed as:
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2.3.3 Sagging Cable Model

The sagging cable description requires to define a novel stiffness model adapted to this cable profile. The
stiffness is still described by the stiffness matrix defined in Eq. (2.66). For CDPRs with sagging cables, the static
equilibrium is described by Eq. (2.50) and Eq. (2.51). The static equilibrium is rewritten as follows:

m

∑
i=1

[
Ri

b̂r
i Ri

]
Fi −we = 0 (2.106)

Substituting Eq. (2.106) into Eq. (2.66), the stiffness matrix is decomposed into the active and passive stiffness
matrices:

K =
m

∑
i=1

d
dp

(WiFi) =
m

∑
i=1

dWi

dp
Fi +

m

∑
i=1

Wi
dFi

dp
(2.107)

where:

Wi =

[
Ri

b̂r
i Ri

]
(2.108)

Passive Stiffness Matrix

According to Eq. (2.107), it has to be noted that vectors Fi are differentiated with respect to the moving platform
pose vector p. Since vectors Fi are expressed in the local frames Fi, a projection is required:

dFi

dp
=

dFi

dbl
i

dbl
i

dp
(2.109)

The Jacobian
dbl

i
dp

is computed considering the following equation:
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i ω
)
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i −RT
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i

][ ṫ
ω

]
(2.110)
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where the twist of point Bi is defined, with respect to frame Fi, by vector ḃl
i . Considering sufficiently small

displacements and rotations, Eq. (2.110) is rewritten in the differential form:

δbl
i = WT

i δp (2.111)

from which it is possible to deduce
dbl

i
dp

= WT
i .

Thus, the passive stiffness Kp is detailed as follows:

Kp =
m

∑
i=1

Wi
dFi

dbl
i
WT

i (2.112)

Cable Stiffness Matrix

The passive stiffness matrix contains the Jacobian
dFi

dbl
i
. This Jacobian represents the stiffness matrix Ki of the i-th

cable expressed in the local reference frame Fi:

dFi = Kidbl
i (2.113)

The matrix Ki is derived from the corresponding compliant matrix:
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The components of matrix Ci is computed from Eq. (2.47) and Eq. (2.49) as follows [KZW06]:
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where F0
z,i = ρ0gL0,i −Fz,i represents the vertical component of the i-th cable tension at point Ai. The cable tension

at point Ai is defined as F0
i = [F0

x,i,F
0
y,i,F

0
z,i].
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In order to compute the stiffness matrix Ki it is possible to use the following formula:
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Active Stiffness Matrix

The active stiffness matrix is decomposed as follows:
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The first term of Eq. (2.120) is decomposed as:
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where Ri, j represents the j-th column of Ri. The derivative of Ri with respect to θi is:
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and the differential
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The Jacobian matrix
d
(
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)

dp
is decomposed into two terms:
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These terms are developed as follows:
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A detailed development of the active stiffness matrix is described in App. A.3.
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2.4 Conclusions

This chapter dealt with the modelling of CDPRs, which is the basis for the workspace analysis, the design
and the reconfiguration procedures described in the following chapters. Cables have been modelled using the
massless and the sagging models. Massless cables have been used to model the static, kinematic and dynamic
behaviour of CDPRs, when the effect of the cable mass is negligible [RGL98, LGCH13]. The dynamic model has
been developed taking into account the actuation and the transmission systems, including the dynamics of the
motors, the gearboxes and the winches. The inertia and the efficiency coefficients of these components have been
considered too.

When the cable mass can not be neglected, sagging cables have been used to model the geometrico-static
behaviour of CDPRs. This model is more accurate, despite its increasing complexity due to non-linearities. The
coupling of the geometric and static problems has been treated. A strategy to solve the foregoing problem for
a given pose or a given path of the moving platform has been described, developing the solutions proposed
in [RGK+09, YCD15].

The elasto-static behaviour of the cables has been considered too. The massless elastic cable model, for
sufficiently small pose displacements, has been derived with a more formal approach than the ones proposed
in the literature [BK05b, SRK13]. The model has been developed for a spatial CDPR while considering the
influence of the pulleys. Then, the elasto-static model of a CDPR with sagging cables has been derived. The
model considers the effects of both the passive and the active stiffness matrices, while the active stiffness matrix is
usually neglected in the literature. The proposed model is similar to the ones described in [Ars13, NG14a], despite
it has been developed according to a different strategy.

All the models described in this chapter are valid for both CDPRs and RCDPRs.
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One of the main differences between CDPRs and classical parallel robots is the unilateral nature of the cables.
The latter are only able to push the moving platform while rigid links can apply bidirectional forces on the moving
platform. Consequently, the static and dynamic equilibria of the CDPR moving platform can be assured only by
non-negative cable tensions. Moreover, CDPRs can be prone to collisions with the surrounding environment and
to cable interferences. Both cable collisions and interferences should usually be avoided to prevent damages to
the CDPR and to objects in the working environment. These requirements form a set of constraints, to which
supplementary contraints may be added, that define the CDPR workspace.

The analysis of the moving platform equilibrium can be performed by means of the static, kinematic and
dynamic models of the CDPR. Section 3.1 provides a formal description of the Wrench Closure Workspace (WCW),
the Wrench Feasible Workspace (WFW) and other CDPR workspaces, including the static, the dynamic, the
interference-free and the collision-free workspaces, which have already been defined in the literature. A pose of
the moving platform belongs to the WCW if and only if the static equilibrium of the moving platform is assured
by non-negative cables tensions, whichever is the external wrench on the platform. The WFW is defined as the set
of poses of the moving platform where the static equilibrium is satisfied with respect to a set of external wrenches
applied on the moving platform and the cable tension bounds [BREU06, BGM08, GDM11].

The Static Feasible Workspace (SFW) represents a particular case of the WFW, where only the gravity wrench
due to the weight of the moving platform is considered. The Interference Free Workspace (IFW) consists of the
set of accessible poses of the moving platform where the cables are not colliding with each other. Similarly, the
Collision Free Workspace (CFW) consists of the set of accessible poses of the moving platform where the cables
are not colliding with the surrounding environment.

The static equilibrium of the moving platform is mostly influenced by the geometry of the CDPR, the
properties of the cables, the motor nominal torques and speeds, and the winch diameters. These factors influence
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the kinematic constraints of the CDPR too. In Sec. 3.2, the kinematic constraints of the moving platform are
investigated by means of the Twist Feasible Workspace (TWF). This novel workspace corresponds to the moving
platform poses where a prescribed set of moving platform twists is feasible, under cable coiling and uncoiling
speed limitations.

The Dynamic Feasible Workspace (DFW) was defined by Barrette et al. in [BG05]. It consists of the moving
platform poses which are able to guarantee a given moving platform acceleration vector. The proposed DFW does
not take into account the influence of the external wrenches acting on the moving platform while considering the
mass and inertia of the moving platform. In this chapter, a new formulation of the DFW, the so called Improved
Dynamic Feasible Workspace (IDFW), has been introduced. According to the IDFW, both the moving platform
inertia and the external wrenches applied to the moving platform are considered. Coriolis and centrifugal forces
have been included in the dynamic model of the CDPR, assuming that the twist of the moving platform is constant.
The IDFW will be presented in Sec. 3.3.

Section 3.4 investigates the different workspaces of a spatial CDPR. The layout of the CDPR is inspired by the
CoGiRo prototype [Pro] while the dimensions are equal to the ones of the prototype developed in the framework
of the IRT JV CAROCA project. The SFW, WFW, DFW and IDFW have been traced. The analysis highlights the
differences between the dimensions of the four workspaces.

All the workspaces introduced in this chapter are valid for both CDPRs and RCDPRs.

3.1 Mathematical Definition of Existing Workspaces

The workspace of a classical serial or parallel manipulator depends on the robot geometry and its joint limits.
However, several workspaces have been defined for CDPRs. Those workspaces depend on the robot geometry
(i.e., the location of the exit points and the cable connection points on the moving platform), the cable tension
limits, the external wrench applied on the moving platform, and the acceleration required to the moving platform.
For CDPRs, several workspaces have been defined, as described in [EUV04]. A review of the most significant
workspace previously defined in the literature is provided in this section.

3.1.1 Wrench Feasible Workspace (WFW)

Definition

The moving platform of the CDPR is assumed to be a rigid body with m cables attached to it. Each cable generates
a wrench on the moving platform. The cable wrenches, wi = ŵiτi, i = 1, . . . ,m, where ŵi, i = 1, . . . ,m are the
columns of the wrench matrix W, have to balance the external wrench acting on the moving platform. The external
wrench acting on the moving platform is assumed to be bounded:

fmin ≤ fx, fy, fz ≤ fmax (3.1)

mmin ≤ mx,my,mz ≤ mmax (3.2)

The set of external wrenches applied to the moving platform, and that the cables have to balance, is defined as the
Required External Wrench Set (REWS), [we]r. According to Eq. (3.1) and Eq. (3.2), the REWS is a hyperrectangle.



3.1 Mathematical Definition of Existing Workspaces 45

Cable tensions, τi, i = 1, . . . ,m, are also bounded. Due to the unilateral nature of the cables, cable tensions are
always non-negative. A lower tension, τmin > 0, can be defined by the user in order to prestress the cables and to
account for the fact that cables should not be slack. Cable tensions should be lower than an upper bound, τmax,
associated to the physical characteristics of the cables, the nominal torque of the motors, and the breaking loads
of various mechanical elements of the robot. The set of of admissible cable tensions is defined hereafter as the
Available Cable Tension Set (ACTS):

[τ]a = {τ | τmin ≤ τi ≤ τmax, i = 1, . . . ,m} (3.3)

Due to the previous constraints, cables can apply on the moving platform only a bounded set of wrenches,
defined as the Available Wrench Set (AWS), [we]a. The AWS can be computed from the ACTS using Eq. (2.12).
Considering that [we]a is the image of [τ]a under the linear mapping described by the wrench matrix W, [we]a

belongs to a particular class of polytopes called zonotopes [BGM08].

Accordingly, the static equilibrium of the moving platform is feasible if and only if the moving platform pose
is wrench feasible.

Definition 3.1. A moving platform pose is said to be wrench feasible if and only if the CDPR can balance any
external wrench we included in [we]r while satisfying the cable tension limits expressed by [τ]a. The Wrench
Feasible Workspace (WFW) is the set of wrench feasible poses, [p]WFW .

[p]WFW =

(t,R) ∈ R3 ×SO(3) : ∀we ∈ [we]r, ∃τ ∈ [τ]a s.t.

 we ∈ [we]a

Wτ +we = 0

 (3.4)

where SO(3) is the group of proper rotation matrices.

Computation

Bosscher et al. proposed in [BREU06] a basic method to analyse the wrench feasibility of a moving platform
pose. The method aims at finding the analytical closed-form expression of the WFW bounds for spatial CDPRs.
The bounds are defined as the set of equations describing the contact between one vertex of [we]r and the facets of
[we]a. In fact, from a geometrical point of view, a pose is wrench feasible if [we]r is fully included in [we]a (as
shown in Fig. 3.1):

[we]r ⊆ [we]a (3.5)

Bouchard et al. were the first to notice, in 2009, that the AWS is a zonotope. As a zonotope, the AWS can
be defined as: (i) the linear combinations of the cable wrench vectors, according to cable tension limits, τmin

and τmax (the Minkowski sum of the cable wrenches); (ii) the affine transformation of a hypercube, from the
cable tension space to the moving platform wrench space. The AWS can be described by means of its vertices
or by means of its facet supporting hyperplanes. According to Bouchard et al., a basic method to determine the
AWS consists in computing the convex hull of the linear combinations (Minkowski sum) of the cable wrench
vector. This method usually requires an iterative procedure. An alternative method has been proposed and called
the hyperplane shifting algorithm. A subset of n−1 columns of the wrench matrix, ŵi, is selected in order to
create a set of hyperplanes. This operation is repeated until all the linearly independent combinations of n−1
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Fig. 3.1 – Mapping of [τ]a into the wrench space as [we]a. Example of a planar CDPR with 3 actuators

wrench matrix columns are analysed and all the supporting hyperplanes are defined. An improved version of the
hyperplane shifting method has been provided by Gouttefarde and Krut in [GK10].

The wrench feasibility can be verified by determining the distances between all the vertices of [we]r and the
facets of [we]a through the following inequality:

Cwe ≤ d, ∀we ∈ [we]r (3.6)

Equation (3.6) is the mathematical representation of the AWS obtained by means of the hyperplane shifting
method. The rows of matrix C represent the norms of the hyperplanes describing the facets of [we]a and vector d
collects the distances between these facets and the origin of the wrench space.

In order to analyse the WFW with the previous methods, the Cartesian space is usually discretised into a grid
of points. Each point of the grid is analysed in order to verify whether it belongs to the WFW of the CDPR or not.
The main limitation associated to such a discretisation is related to the fact that the results can not be extended
directly to a continuous domain. A finer grid can improve the quality of the results in such a way that the results
should be consistent with respect to a continuous analysis. Anyway, the WFW being in general a non-convex set
represented by non-linear inequalities, holes and separated feasible regions may exist and may not be detected by
a discretisation.

An alternative solution, based on interval analysis, has been proposed by Gouttefarde et al. in [GDM11]. The
Cartesian space is recursively divided into a set of boxes and a wrench feasibility analysis over the continuous
domain of each box is performed. Thereby, interval analysis can guarantee that all the poses contained inside a
box belong to the WFW, or that all poses inside the box are outside the WFW, or else cannot conclude. In the latter
case, the box is bisected. This method is thus a useful alternative to discretisation. However, the computation time
is not deterministic and, provided that the discretisation grid is relatively coarse, is usually higher than the one
required to compute the WFW by means of a discretisation.

3.1.2 Wrench Closure Workspace (WCW)

Definition

The WCW is a particular instance of the WFW, where the sole constraint on the cable tensions is non-negativity.
The ACTS is then defined as follows:

[τ]a = {τ | τi ≥ 0, i = 1, . . . ,m} (3.7)
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According to the absence of a cable tension upper bound, cables can be tightened without taking into account their
structural limits or the actuation system limits. Therefore, the WCW depends only on the CDPR geometry. The
CDPR should be able to bare any possible external wrench applied to the moving platform, where [we]r =R3×R3.
Therefore, the WCW can be formally defined as follows.

Definition 3.2. The Wrench-Closure Workspace (WCW) is the set of poses of the moving platform for which any
wrench can be exerted on the moving platform by tightening the cables [GG06].

[p]WCW =
{
(t,R) ∈ R3 ×SO(3) : ∀we ∈ R3 ×R3, ∃τ ∈ [τ]a s.t. Wτ +we = 0

}
(3.8)

It has to be noticed that, according to its definition, the WCW can be only used on non-suspended fully
constrained CDPRs.

Computation

The first analysis of the WCW has been performed by Veroheven in [VH00]. Veroheven proved that the WCW
of fully constrained CDPRs is bounded by polynomial surfaces expressed through an explicit formula. Later
on, a technique was proposed to compute cross sections of the WCW of spatial CDPRs and it was showed
that the constant orientation workspace is bounded by cubic surfaces [GG06]. Stump and Kumar developed an
analytical technique to delineate the WCW bounds of CDPRs. The method is inspired by the work performed by
Ebert-Uphoff and Voglewede in [EUV04]. By means of semi-definite programming, they obtained a closed-form
expression of the bounds of the WCW. Recently, Sheng et al. provided a similar method to compute the bounds of
the WCW analytically [SPSA15].

An alternative evaluation of the WCW has been provided by Arsenault in [Ars10]. In this context, the
analysis is performed while observing the active stiffness matrix of the CDPR. According to Eq. (2.15), the static
equilibrium of the moving platform can be assured multiplying the null space of the wrench matrix, W, by an
appropriate vector of scaling factors, λ . Vector λ represents the so called pre-stress. The active stiffness matrix of
the CDPR, Ka, is partially dependent on the pre-stress. For a given pose of the moving platform, Arsenault proved
that, if a vector λ exists such that the active stiffness matrix related to the cable pre-stress is positive definite, then
this pose will belong to the WCW.

3.1.3 Static Feasible Workspace (SFW)

According to some tasks, like quasi-static displacements of heavy-objects, the weight of the moving platform is
the only external wrench taken into account, [we]r = wg. In this case, the workspace of the CDPR can be described
through the SFW. Similarly to the WFW, it is possible to take into account the cable tension limits defined in
Eq. (3.3).

Definition 3.3. The Static Feasible Workspace (SFW) is the set of moving platform poses where the CDPR can
balance the weight of the possibly loaded moving platform, wg according to the cable tension limits expressed by
[τ]a.

[p]SFW =
{
(t,R) ∈ R3 ×SO(3) : ∃τ ∈ [τ]a s.t. Wτ +wg = 0

}
(3.9)
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3.1.4 Interference and Collision Free Workspaces

One of the main drawbacks associated to CDPRs is the possible interferences between cables and the possible
collisions between the cables, the moving platform and the working environment. Some symbolical and numerical
hybrid methods let verify cable interferences and collisions [MTT+99, PG07, MD06]. These methods can be
applied successfully when the trajectory of the moving platform is defined a priori. However, they do not assure
the possibility to observe which portion of the prescribed workspace is free of interferences and collisions. In 2004
Merlet computed by means of numerical algorithms the interference free regions of a CDPR [Mer04]. Taking
inspiration from Merlet work, Perreault et al. improved the method to compute, for a given constant orientation of
the moving platform, the so called Interference Free Workspace (IFW) [PCGO10].

Definition 3.4. The Interference Free Workspace (IFW) is the set of accessible moving platform poses, [p]IFW ,
without collisions between cables.

When interferences occur, the cables lie in the same plane. The algorithm proposed by Perreault et al. analyses
the possible cable interference loci in this plane, parametrising the interference equations and solving them as
a function of the moving platform pose. This algorithm can be used as well to compute, for a given constant
orientation of the moving platform, the so-called Collision Free Workspace (CFW).

Definition 3.5. The Collision Free Workspace (CFW) is the set of accessible moving platform poses, [p]CFW ,
without collisions between the cables, the moving platform, and the environment.

3.2 Twist Feasible Workspace (TFW)

The definition of the WFW is based on the linearity of the static equilibrium equation, W being a linear map
between the cable tension space and the space of the external wrench acting on the moving platform:

we =
m

∑
i=1

ŵiτi (3.10)

The kinematic problem described in Eq. (2.16) presents a similar structure. The kinematic Jacobian matrix,
J, is a linear map between the space of the cable velocities and the space of the moving platform twists. In this
manuscript, the kinematic Jacobian J is computed according to Eq. (2.19). As a matter of fact, Eq. (2.16) can be
rewritten as a linear combination of the cable twists, ṗi, i = 1, . . . ,m (ṗi, i = 1, . . . ,m being the column vectors of
J):

ṗ =
m

∑
i=1

ṗi l̇i (3.11)

Due to the similarities of the static and kinematic problems, the considerations made in Sec. 3.1.1 can be
extended to the kinematics of the CDPR moving platform. In this specific context, the workspace will focus on
the analysis of the twist that the moving platform will be able to achieve.

During the task execution, the moving platform velocities are supposed to lie within given ranges:

ṫmin ≤ ṫx, ṫy, ṫz ≤ ṫmax (3.12)

ωmin ≤ ωx,ωy,ωz ≤ ωmax (3.13)
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where ṫx, ṫy and ṫz represent the components of the moving platform linear velocity, ṫ, along xb, yb and zb,
respectively. ωx, ωy and ωz represent the components of the moving platform rotational velocity, ω , about xb,
yb and zb, respectively. ṫmin and ṫmax are the lower and the upper bounds on the linear velocity components.
Analogously, ωmin and ωmax are the lower and the upper bounds on the rotational velocity components. The set of
twists, [ṗ]r, which is limited by the previous lower ad upper bounds, is defined as the Required Twist Set (RTS).

Similarly to the WFW, matrix J depends on the moving platform pose. Thus, the TFW is a function of the
moving platform pose. The TFW depends as well on the power of the actuators. The nominal speed of the
motors limits the cable coiling/uncoiling velocities. The maximum coiling speed is defined as l̇max; for most of the
actuators, considering l̇min =−l̇max, the cable coiling/uncoiling velocities are bounded as follows:

l̇min ≤ l̇i ≤ l̇max, ∀i = 1, . . . ,m (3.14)

The set of possible cable coiling/uncoiling velocities is defined hereafter as the Available Cable Velocity
Set (ACVS), [l̇]a:

[l̇]a = {l̇ | l̇min ≤ l̇i ≤ l̇max, ∀i = 1, . . . ,m} (3.15)

According to Eq. (3.15) and Eq. (2.16), the moving platform can assume only a bounded set of twists, defined
hereafter as the Available Twist Set (ATS), [ṗ]a. The ATS, which is a convex polytope, can be computed from the
ACVS using the Jacobian matrix as a linear map from the cable velocity space to the moving platform twist space.

In order to satisfy the velocity constraints in Eq. (3.15), the CDPR can assume only the poses contained inside
the TFW.

Definition 3.6. A moving platform pose is said to be twist feasible when the CDPR moving platform can assume
any twist ṗ included in [ṗ]r according to the bounds on the cable velocities, [l̇]a. The Twist Feasible Workspace
(TFW) is the set of twist feasible poses, [p]T FW .

[p]T FW : ∀ṗ ∈ [ṗ]r, ∃l̇ ∈ [l̇]a s.t.

 ṗ ∈ [ṗ]a
Jl̇− ṗ = 0

(3.16)

Alternatively, the twist feasibility condition can be described as:

[ṗ]r ⊆ [ṗ]a (3.17)

Therefore, the TFW can be investigated, similarly to the WFW, using the improved hyperplane shifting method
presented in [GK10]:

C∗ṗ ≤ d∗, ∀ṗ ∈ [ṗ]r (3.18)

where the rows of matrix C∗ represent the norms of the hyperplane describing the facets of [ṗ]a and vector d∗ the
distances between the origin of the twist space and those facets.
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3.3 Dynamic Feasible Workspace (DFW)

3.3.1 Standard Dynamic Feasible Workspace

The concept of SFW has been extended to take into account the CDPR moving platform dynamics. When the
acceleration of the moving platform can not be neglected, the DFW takes into account its inertia. The first studies
on the DFW have been realised by Barrette et al. in [BG05]. The bounds of the DFW have been computed
for a generic planar CDPR developing the equations of its dynamic model. Since this method can not be easily
extended to spatial CDPRs, Kozlov proposed to use the method described in [GCCC14] in order to compute the
DFW of a fully-constrained CDPR [Koz14]. Similarly to the WFW, the proposed method takes into account the
cable tension limits in order to compute the AWS. The AWS has to assure the dynamic equilibrium of the moving
platform in presence of its inertial forces associated to the following accelerations:

ẗmin ≤ ẍC, ÿC, z̈C ≤ ẗmax (3.19)

αmin ≤ αx,αy,αz ≤ αmax (3.20)

where ẗmin, ẗmax,αmin,αmax represent the bounds on the moving platform linear and rotational accelerations. The
demanded moving platform accelerations belong to the so called Required Acceleration Set (RAS), [p̈]r. The RAS
can be projected into the wrench space by means of matrix A, defined in Eq. (2.35), which basically collects the
inertia matrix of the moving platform and the inertia matrices of motors and winches. The set of wrenches, [wd ]r,
generated by this linear mapping is defined as the Required Dynamic Wrench Set (RDWS). No external wrench is
applied to the moving platform. According to the previous requirements, the DFW can be defined as follows:

Definition 3.7. A moving platform pose is said to be dynamic feasible when the moving platform of the CDPR
can reach any acceleration included in [p̈]r according to cable tension limits expressed by [τ]a. The Dynamic
Feasible Workspace (DFW) is the set of dynamic feasible poses, [p]DFW .

[p]DFW =
{
(t,R) ∈ R3 ×SO(3) : ∀p̈ ∈ [p̈]r, ∃τ ∈ [τ]a s.t. Wτ +Ap̈ = 0

}
(3.21)

3.3.2 Improved Dynamic Feasible Workspace (IDFW)

The DFW described in Sec. 3.3.2 has several limitations. The main drawback is associated to the fact that the
proposed DFW takes into account neither the external wrenches applied to the moving platform nor its weight.
Furthermore, the model used to verify the dynamic equilibrium of the moving platform neglects the Coriolis and
the centrifugal wrenches associated to the CDPR dynamic model.

In the IDFW, at a given moving platform pose, the CDPR dynamic equilibrium should be assured as well
when a set of external wrenches is applied to the moving platform. Hence, the AWS should compensate both the
contribution associated to the REWS, [we]r, and the RDWS, [wd ]r. The components of the REWS are bounded
according to Eq. (3.1) and Eq. (3.2) while the components of the RDWS are bounded according to Eq. (3.19) and
Eq. (3.20).

The dynamic equilibrium of the moving platform is described by Eq. (2.38), where B is related to the Coriolis
and centrifugal forces of the moving platform and D to its weight. These terms depend only on the pose and the
twist of the moving platform. For a given pose and twist of the moving platform, these terms are constant. The
influence of the friction and the efficiency coefficients of motors, gearboxes and winches are considered as well.
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Therefore, with respect to the listed modifications, the IDFW can be defined as follows.

Definition 3.8. A moving platform pose is said to be dynamic feasible when the CDPR can balance any external
wrench we included in [we]r, while the moving platform can assume any acceleration p̈ included in [p̈]r and a
given twist ṗ. The Improved Dynamic Feasible Workspace (IDFW) is the set of dynamic feasible poses, [p]IDFW .

[p]IDFW : ∀we ∈ [we]r,∀p̈ ∈ [p̈]r ∃τ ∈ [τ]a s.t.
2

φW
ηRρRWτM +Ap̈+Bṗ+D+we = 0 (3.22)

Analysing the previous definition, we may notice that the feasibility conditions are expressed according to
three components defined in the wrench space. The first component, [wd ]r, is computed projecting the vertices
of [p̈]r into the wrench space. For a 3-dimensional case study, [p̈]r is composed of 64 vertices. The second
component, [we]r, is composed as well of 64 vertices, when defined for a 3-dimensional case study. By supposing
the twist of the moving platform is constant, the last component of the dynamic equilibrium, wc = {Bṗ+D},
represents a constant wrench. According to the polytope algebra [BR15], the composition of these components
still generates a polytope, [w]r, namely defined as the Required Wrench Set (RWS). [w]r can be computed using
the Minkowski sum over [we]r, [wd ]r and wc, as illustrated in the example of Fig. 3.2:

[w]r = [we]r ⊕ [wd ]r ⊕wc (3.23)

Thus, Def. 3.8 can be rewritten as a function of [w]r:

Definition 3.9. A moving platform pose is said to be dynamic feasible when the CDPR can balance any wrench
w included in [w]r. The Improved Dynamic Feasible Workspace is the set of dynamic feasible poses, [p]IDFW .

[p]IDFW : ∀w ∈ [w]r, ∃τ ∈ [τ]a s.t.
2

φW
ηRρRWτM +Ap̈+Bṗ+D+we = 0 (3.24)

The mathematical representation provided by Eq. (3.24) is similar to the one describing the WFW. In fact,
from a geometrical point of view, a moving platform pose is dynamic feasible if [w]r is fully included in [w]a:

[w]r ⊆ [w]a (3.25)

Once again, the dynamic feasibility of a pose can be verified according to the hyperplane shifting method
presented by Gouttefarde et al. in [GK10] and Guay et al. in [GCCC14]. The distances between the facets of the
available wrench set, [w]a, and the vertices of the RWS, [w]r, is verified according to the following inequality:

Cwr ≤ dd , ∀w ∈ [w]r (3.26)

3.4 Case Study

This section aims at comparing the SFW, WFW, DFW and Improved DFW (IDFW) of the spatial suspended
CDPR illustrated in Fig. 3.3. It has the layout the CoGiRo robot [GCRB15] and the size of the IRT JV CAROCA
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Fig. 3.2 – Computation of the RWS [w]r. Example of a planar CDPR with 3 actuators and 2 translational DoF

prototype. The robot consists of a moving platform connected to the fixed base frame by m = 8 cables. It is 7 m
long, 4 m width and 3.5 m high. The maximum cable tension is equal to 6990 N. The moving platform consists of
a parallelepiped. Its width, wp, its length, lp, and its height, hp, are equal to 20 cm, 20 cm and 25 cm, respectively.
The mass of the moving platform, M, is equal to 100 kg. In the proposed case study, the CoM of the moving
platform, G, does not coincide with the origin Op of frame Fp, being S = [1cm,1cm,1cm]T.

The volume inside the base frame has been discretized homogeneously into np = 882 points. Each point
has been analysed in order to verify if the corresponding poses of the CDPR belong to the improved DFW. The
analysis has been performed assuming that the moving platform is aligned with respect to the axes of frame Fb.
The linear velocity of the moving platform is equal to ṫ = [1 m/s,1 m/s,1 m/s]T and its angular velocity is equal
to ω = [0.05 rad/s,0.05 rad/s,0.05 rad/s]T. The external wrenches acting on the moving platform are bounded
as follows:

−100N ≤ fx, fy, fz ≤ 100N (3.27)

−1Nm ≤mx,my,mz≤ 1Nm (3.28)
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Fig. 3.3 – Layout of the CoGiRo cable-suspended parallel robot [GCRB15] with the size of the IRT JV CAROCA
prototype

Fig. 3.4 – Improved DFW of the CDPR under study
covering 47.96% of its volume

Fig. 3.5 – DFW of the CDPR under study covering
63.27% of its volume

Similarly, the range of accelerations of the moving platform is limited according to the following inequalities:

−2 m/s2 ≤ ẗx, ẗy, ẗz ≤ 2 m/s2 (3.29)

−0.1 rad/s2 ≤αx,αy,αz≤ 0.1 rad/s2 (3.30)

For the foregoing conditions, the improved DFW of the CDPR covers the 47.96% of its volume. Figure 3.4
illustrates the improved DFW of the CDPR under study.

The results have been compared with respect to the dynamic feasibility conditions described by Def. 3.9. By
considering only the weight and the inertia of the moving platform, the DFW covers the 63.27% of the volume
occupied by the DFW, as shown in Fig. 3.5. Neglecting the effects of the external wrenches and the Coriolis
forces, the volume of the DFW is 32% larger than the the volume of the improved DFW.

Similarly, by neglecting the inertia of the CDPR and taking into account only the external wrenches we, the
WFW occupies the 79.25% of the CDPR volume, as shown in Fig. 3.6. By taking into account only the weight of
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Fig. 3.6 – WFW of the CDPR under study covering
79.25% of its volume

Fig. 3.7 – SFW of the CDPR under study covering
99.32% of its volume

Tab. 3.1 – COMPARISON OF THE SFW , WFW , DFW AND IDFW OF THE CDPR UNDER STUDY

Workspace type SFW WFW DFW IDFW
Covered Volume of the CDPR 99.32% 79.25% 63.27% 47.95%

the moving platform, the SFW covers 99.32% of the CDPR volume, as illustrated in Fig. 3.7. These results are
summarized in Table 3.1.

3.5 Conclusions

This chapter dealt with the workspace analysis of CDPRs. Workspace analysis is one of the fundamental tools
in order to design CDPRs and investigated their potentialities. The workspaces and the tools presented in this
chapter are dedicated to CDPRs models neglecting the cable mass. They can be applied to RCDPRs as well.

A formal mathematical definition of several workspaces has been provided. Those workspaces are focused on
the analysis of the static and dynamic equilibria of CDPRs. The advantages and drawbacks of these workspaces
have been highlighted. According to our study, none of the existing workspace takes into account CDPR moving
platform velocities. Therefore, part of this chapter has been dedicated to the definition of a novel workspace, the
TFW [GCG15a]. This workspace can be used in order to evaluate the twist feasibility, namely, determining twists
the moving platform can reach.

Major improvements have been performed on the DFW. The basic DFW is mainly focused on the analysis
of the moving platform inertia. In the IDFW, the dynamic equilibria of the CDPR considers the effect of the
possible external wrenches applied on the moving platform and the CDPR payload too [GGC16a]. The conditions
verifying the so-called dynamic feasibility of the CDPR consider as well the dynamic contribution of the moving
platform centrifugal and Coriolis forces. In order to preserve the linear form of the dynamic equations, the twist of
the moving platform is supposed constant.

Both the TFW and the IDFW are defined through systems of linear equations, which formally describe a set of
polytopes. Hence, the twist feasibility and the dynamic feasibility can be verified according to the hyperplane
shifting method. Therefore, similarly to other workspaces, the TFW and the IDFW can be easily integrated into
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the dimensioning problem of the actuators, the gearboxes and the winches of CDPRs, as described in the following
chapter.

As an illustrative example, the static, wrench-feasible, dynamic and improved dynamic workspaces of a spatial
suspended cable-driven parallel robot, with the dimensions of a prototype developed in the framework of the IRT
JV CAROCA project, are traced. It turns out that the IDFW of the CDPR under study is respectively 1.32 times,
1.65 times and 2.07 times smaller than its DFW, WFW and SFW.
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The models and the tools described in Chap. 2 and Chap. 3 are used in this chapter to define a design strategy
for CDPRs and RCDPRs. The design of CDPRs is usually formulated as an optimisation problem. One of the
first task-based design was proposed by Pusey et al. in 2004 [PFAM04]. The authors aimed at maximising the
size of the CDPR workspace. Bruckmann et al. generalised this design approach, formulating it as a constrained
optimisation problem aiming at optimising one or several criterion(a) [BMB+09a]. The optimisation problem was
solved by using local and global search algorithms, showing the efficiency of genetic and simulated annealing
algorithms. Similar results have been obtained by Azizian and Cardou in [AC13]. An alternative has been proposed
by Gouttefarde et al., which used an interval based analysis to implement the design process [GKC+08]. In 2015,
Blanchet proposed a new design strategy, based on the interval analysis, guaranteeing the static equilibrium of the
CDPR when a set of external wrenches are acting on the moving platform [Bla15].

In this manuscript, CDPRs are designed according to [PFAM04, BMB+09a]. The design strategy is described
in Sec. 4.1.1. The CDPR design optimisation problem is formulated based on the industrial tasks to be performed
and the prescribed workspace or path of the Centre of Mass (CoM) of the moving platform. The optimisation
problem is solved by means of global search algorithms. While other design variables can be considered, this
manuscript focuses on the locations of cable exit points and the properties of winches and actuators. The design
variables are continuous and bounded. A list of objective functions is described in Sec. 4.1.2. The proposed
objective functions are related to the workspace size, the cable tensions, the CDPR stiffness, and the CDPR size.
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Section 4.1.3 gives a set of constraints proposed for the design optimisation problems. The constraints take into
account: The cable interference, the cable collisions with the working environment, and the Minimum Degree of
Constraint Satisfaction (MDoCS) [GCCC14].

CDPRs can be used successfully if the tasks to be fulfilled are simple and the working environment is not
cluttered. When these hypotheses are not satisfied, RCDPRs may be required to achieve the prescribed goal. In
general, several parameters can be reconfigured, as described in Sec. 4.2. These parameters can be reconfigured
selecting them between a discrete or a continuous set of values. Contrary to most of the previous research
works [RZA11, JK13, NGCP14, NG14b], we will take into account only discrete reconfigurations, namely the
locations of the cable exit points are selected from a finite set of values. Hereafter, the class of RCDPRs whose
exit points can be placed on a discrete set of exit points is defined as discrete RCDPRs. In this manuscript,
reconfigurations are limited to the cable exit point locations.

To the best of our knowledge, no design strategy has been formulated in the literature for discrete RCDPRs.
Section 4.4 describes a novel task-based design strategy for discrete RCDPRs. By taking into account the working
environment, the designer divides the prescribed workspace or path into nt parts. Each part will be covered by
one and only one configuration of the RCDPR. Then, for each configuration, the designer selects a cable layout,
parametrising the position of the cable exit points. The grid of locations where the cable exit points can be
located is defined by the designer as well. Placing the exit points on the provided set of possible locations, it is
possible to generate many CDPR configurations. All the possible configurations are analysed with respect to a
set of constraints, in order to verify the parts of the prescribed workspace or path that can be covered by each
configuration. The configurations satisfying the constraints are compared in order to find the combinations of nt

configurations that accomplish the required task and optimise at the same time one or several objective function(s).
A set objective functions, dedicated to RCDPRs, is provided in Sec. 4.4.2. These objective functions aim at
maximising the productivity (production cycle time) and reducing the reconfiguration time of the cable exit points.

In order to analyse the advantages and the limitations of the proposed design strategies, two case studies are
proposed. The first case study, presented in Sec. 4.5, requires the dimensioning of the actuators, the winches and
the gearboxes of a CDPR. The optimisation is performed with respect to the size of the WFW and the TWF of
the CDPR. The second case study, described in Sec. 4.6, involves the design of a RCDPR for sandblasting and
painting of a three-dimensional tubular structure. The tools performing these operations are embarked on the
moving platform, which follows the profile of the tubular structure. Each side of the tubular structure is associated
to a single configuration. Cable exit points are reconfigured switching from one side of the tubular structure to
another, until all the three external sides of the structure are sandblasted and painted. The cable exit point locations
of the three configurations subjected to design are optimised so that the number of cable attachment/detachment
operations required to switch from a configuration to another is minimised. The size of the RCDPR is also
minimised while its stiffness is maximised along the paths to be followed.

4.1 Design Strategy for CDPRs

The design of a CDPR requires the dimensioning of several components. Some components are chosen based on
the experience of the designer, with respect to the tasks to be performed by the CDPR. The properties of these
components represent the so called constant design parameters. The remaining components, which cannot be
chosen intuitively, can be dimensioned by means of a proper optimal design strategy, of which the design variables
characterise those components.
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Cables are usually selected based on their material, and in particular their Young modulus and diameter. These
parameters influence the structural resistance, the elasticity and the linear density of the cables. In this manuscript,
cable properties are considered as design constants.

The architecture of the CDPR consists of the number of cables, the locations of the exit points and the locations
of the cable connection points on the moving platform. The number of cables is usually defined a priori, as well as
the dimensions of the moving platform. Optimisation is usually required to define the locations of the cable exit
points and of the cable connection points on the moving platform.

The actuators, the winches and possibly the gearboxes have an important role with respect to the static and
dynamic performance of the CDPR. Their properties can be considered as constant parameters or design variables
depending on the design problem at hand.

4.1.1 Design Problem Formulation

In order to find the optimal design variables of a CDPR, this manuscript introduces a design strategy composed of
six steps. The design is formulated as an optimisation problem, which aims at optimising one or several objective
functions subject to a set of constraints. The steps of the proposed design strategy are described hereafter and
illustrated in Fig. 4.1.

Step I. Task and Environment. The designer describes the task to be performed. It specifies the nature of the
problem, defining if the motion of the moving platform is static, quasi-static or dynamic. According to
nature of the problem, the designer defines the external wrenches applied to the moving platform and,
possibly, the required moving platform twist and accelerations. The prescribed workspace or path of the
CoM of the moving platform is given. A description of the environment is provided as well, including
the possible obstacles encountered during the task execution.

Step II. Constant Design Parameters. The designer defines a set of constant design parameters and their values.
The parameters are collected in the constant design parameter vector q.

Step III. Design Variables and their Bounds. The designer defines a set of design variables. Lower and upper
bounds are assigned to each design variable. The design variables are collected in the design variable
vector x. The lower and the upper bounds on the design variables are collected in vectors xlow and xup,
respectively.

Step IV. Objective Functions. The designer defines one or several objective function(s), Vt , t =,1, . . . ,nV , where
nV is equal to the number of objective function(s). If nV is greater than 1, the objective functions
can be solved simultaneously or hierarchically. When several objective functions have to be solved
simultaneously, the multi-objective optimisation problem is transformed into a mono-objective problem.
The objective function is composed of the weighted sum of the objective functions:

V =
nV

∑
t=1

µtVt , µt ∈ [0,1] ,
nλ

∑
t=1

µt = 1 (4.1)

The weighting factors µt , t = 1, . . . ,nλ , are defined according to the priority assigned to each criterion.
The criteria Vt are bounded between 0 and 1.
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Fig. 4.1 – Design strategy for CDPRs

Step V. Constraint Functions. The designer defines a set of nφ constraint functions, φk,k =,1, . . . ,nφ that the
CDPR should satisfy over the prescribed workspace or along the prescribed path.

Step VI. Global Optimisation Algorithm. The optimisation problem associated to the design problem is solved by
means of an algorithm aiming at finding a candidate for the global optimum. Several global minimum
search algorithms can be used, including genetic algorithms, gradient-based algorithms [ULP+07],
simulated annealing and swarm particle optimisations. The choice of the algorithm depends on the
complexity of the problem, the nature of the constraint functions, and the nature of the objective
functions. Mono-objective optimisation problems are solved with respect to the constant design
parameters provided in Step II, the design variables described in Step III and the given objective
function. Hierarchical multi-objective problems require to solve several optimisation problems in series,
by repeating the previous steps with respect to each of the nV objective functions and the corresponding
design parameters and design variables.

4.1.2 Objective Functions

Workspace Size

One of the main advantages of the CDPR is the possibility to displace payloads over large workspaces. Logistics
and pick and place operations may require the moving platform of the CDPR to span a large space. In that case, the
design problem can be defined as an optimisation problem aiming at maximising the workspace of the CDPR. The
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design problem can be formulated in such a way to optimise the cable exit point locations, the cable connection
point locations on the moving platform, the cable layout, and the characteristics of the actuators and the winches.

The workspace can be the WFW. The designer defines the maximum volume the CDPR can span, providing
the bounds on the possible cable exit point locations. This volume represents the prescribed workspace, which is
later on discretised into a set of np points P = Pk,k = 1, . . . ,np.

The objective function is defined as the percentage p f of the wrench feasible points belonging to P:

V1 = p f =
∑

np
k=1 Fk

np
100 (4.2)

where Fk,k = 1, . . . ,np is a set of binary values associated to points Pk,k = 1, . . . ,np. Fk = 1 when the k-th point
Pk is wrench feasible, otherwise Fk = 0.

Alternatively, the objective function can be described as the regular volume included into the WFW of the
CDPR. The regular volume represents the largest polygon included in the WFW of the CDPR. For example, a
regular volume can assume the shape of a parallelepiped.

As described in Chap. 3, several workspaces can be used to analyse the behaviour of the CDPRs. Therefore,
the optimisation of the CDPR workspace can be performed as well using the TFW and the IDFW when the
kinematic constraints and the dynamic equilibrium of the CDPR are taken into account, respectively.

Minimum Degree of Constraint Satisfaction

When the dimensions of the prescribed workspace of the CDPR are fixed a priori by the designer, the Minimum
Degree of Constraint Satisfaction (MDoCS) of the CDPR may be optimised [GCCC14]. The MDoCS quantifies
how "close" the RCDPR is to a non static equilibrium condition with respect to a prescribed set of external
wrenches, [we]r.

Provided a set of np points P = Pk,k = 1, . . . ,np composing the discretised prescribed workspace or path,
the objective function V2 can be defined, with respect to the wrench feasibility, as the average of the MDoCS
computed for the nt points belonging to P:

V2 =
∑

np
k=1 Sk

np
(4.3)

where the MDoCS, Sk, measured at point Pk, is defined as follows:

Sk = min
j=1,...,n j

( min
l=1,...,nl

(sk, j,l)) (4.4)

sk, j,l being the signed "distance" from the j-th vertex of [we]r to the l-th facet of the Available Wrench Set (AWS),
[we]a, as illustrated in Fig. 4.2. n j and nl are equal to the number of vertices of the Required External Wrench
Set (REWS), [we]r, and the number of facets of [we]a, respectively.

It has to be noticed that the units of the components of vector we and matrix W (2.12) are not homogeneous.
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Fig. 4.2 – Minimum Degree of Constraint Satisfaction (MDoCS) for a planar CDPR

In order to compute the MDoCS, they are normalised as follows:

Wn =

I3 03

03
1
rg
I3

W (4.5)

we, n =

I3 03

03
1
rg
I3

we (4.6)

rg being the radius of gyration taking the form rg
2 =

1
m

∑
m
i=1 ∥bb

i ∥2
2. I3 and 03 are the (3×3) identity and null

matrices, respectively.

The MDoCS can be defined as well in terms of the dynamic equilibrium. In this case, the Minimum Degree
of Dynamic Constraint Satisfaction (MDoDCS) should take into account the task requirements influencing the
dynamic equilibrium of the moving platform, such as the acceleration of the moving platform, [p̈]r.

The MDoDCS, Sd
k , measured at point Pk, is defined as follows:

Sd
k = min

j=1,...,n j
( min

l=1,...,nl
(sd

k, j,l)) (4.7)

where sd
k, j,l is the signed "distance" from the j-th vertex of the Required Wrench Set (RWS) [w]r to the l-th facet

of [w]a. In this case, n j and nl are equal to the number of vertices of [w]r and the number of facets of [w]a,
respectively. The terms composing the RWS should be normalised by means of the radius of gyration, according
to the procedure illustrated for the WFW.

Cable Tensions

During the execution of the task, cable tensions may increase considerably in the neighbourhood of singularities
or workspace bounds. The higher the cables tensions, the higher the energy consumption and the higher the
risk to damage mechanical parts of the CDPR. The CDPR can be designed in such a way that the average of
the cable tensions is minimised. Given a prescribed workspace or a prescribed path discretised in np points,
P = Pk,k = 1, . . . ,np, the geometry of the CDPR can be optimised by minimising the mean of the cable tensions,
∥τ∥2, over a given workspace or along a given path. Thus, the objective function can formulated as follows:

V3 =
∥τ∥2
np

=
∑

np
k=1 ∥τk∥2

np
(4.8)
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where ∥τk∥2 is the 2-norm of the cable tension vector, τ , computed at point Pk.

Cable Tension Variations

The task execution may induce important variations in cable tensions, according to the pose assumed by the
moving platform, the moving platform accelerations and the external wrench. The reduction of variations in the
cable tensions can be performed by means of an appropriate CDPR design, whose objective function aims at
minimising the variations in the cable tensions over the prescribed workspace or path. The objective function
is defined as the standard deviation στ of the 2-norm of the cable tension vector for all point Pk,k = 1, . . . ,np

belonging to the prescribed workspace or path to be followed by the CDPR:

V4 = στ =

√√√√∑
np
k=1

(
||τk||2 −||τ||2

)2

np
(4.9)

CDPR Size

CDPRs may be used in small or cluttered environments. According to this assumption, the designer may want to
reduce the size of the CDPR as much s possible. A compact design may be also required for deployable CDPRs,
which require to be deployed, disassembled and moved easily. The size of the CDPR can be measured through the
volume V of the convex hull of its cable exit points, Ai, i = 1, . . . ,m, V5 =V (Ai) being the objective function.

Moving Platform Infinitesimal Displacement Due To Cable Deformations

The pose assumed by the moving platform is usually influenced by cable deformations. The variations in moving
platform pose due to the non-rigid nature of the cables can be minimised. By minimising this infinitesimal
displacement it is also possible to increase the stiffness of the CDPR.

The following objective function, V6, aims at minimising the 2-norm of the positioning infinitesimal dis-
placement of the RCDPR moving platform. This objective function is expressed as the mean of the 2-norm of
the positioning infinitesimal displacement, ∥δ t∥2, for the np points Pk,k = 1, . . . ,np of the discretised prescribed
workspace P:

V6 =
∥δ t∥2

np
=

∑
np
k=i ∥δ tk∥2

nP
(4.10)

where ∥δ tk∥2 is the 2-norm of the point-displacement vector at point Pk. The previous consideration can be
extended as well to the moving platform orientation, by defining the following objective function:

V7 =
∥δr∥2

np
=

∑
np
k=i ∥δrk∥2

nP
(4.11)

where ∥δr∥2 is the mean of the 2-norm of the orientation variation vector for the np points Pk,k = 1, . . . ,np of
the discretised prescribed workspace P and ∥δrk∥2 is the 2-norm of the orientation variation vector at point Pk,
according to the definition provided in Sec. 2.3.1.
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4.1.3 Constraint Functions

Wrench Feasibility

Since cables can only pull on the moving platform, the tensions in the cables must always be non-negative.
Moreover, cable tensions must be lower than an upper bound, τmax, which corresponds either to the maximum
tension τmax1 the cables (or other mechanical parts) can bare, or to the maximum tension τmax2 the motors can
provide.

The cable tension bounds can thus be written as:

0 ≤ τi ≤ τmax, ∀i = 1, . . . ,m (4.12)

where τmax = min{τmax1,τmax2}.

The maximum tension τmax1, due to the structural limit of the cables is expressed as follows:

τmax1 = π
φ 2

c

4
E (4.13)

where E is the Young modulus of the cables and φc the diameter of the cables. The motor power limits both the
tension transmitted to the cables and the rotational speed of the winches. In this manuscript, τM and ωM refer to
the nominal torque and speed of the motors, respectively. A gearbox is connected to the motor. The winches are
connected to the gearboxes. They transmit a tension τmax2 to the cable, proportional to the inverse of the winches

radius, ρW =
2

φw
:

τmax2 = ρW τG = ρW ρRτM =
2

φw
ρRτM (4.14)

Due to the cable tension bounds, CDPRs can balance only a a bounded set of external wrenches. Then, when
the motion of the moving platform is quasi-static, the analysis of the WFW is required. According to Def. 3.1, the
following constraint requires the poses of a RCDPR moving platform to be wrench feasible:

∀we ∈ [we]r, ∃τ ∈ [τ] s.t.

 we ∈ [we]a

Wτ +we = 0
(4.15)

With respect to Eq. (3.6), this constraint can be simplified as follows:

Cwe ≤ d, ∀we ∈ [we]r (4.16)

It has to be noticed that the wrench feasibility analysis verifies implicitly the absence of singularities. Singularities
of a CDPR can be detected by analysing the singularities of the wrench matrix. This analysis is included in the
WFW computation, namely, the singularity of the wrench matrix W implies that the corresponding pose is not
wrench feasible.

Dynamic Feasibility

When the accelerations of the moving platform are not negligible, the dynamic of the CDPR has to be taken in
consideration. Therefore, the analysis of dynamic feasibility becomes necessary. The constraint associated to the
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DFW can be deduced from Def. 3.9:

∀we ∈ [we]r,∀p̈ ∈ [p̈]r ∃τ ∈ [τ]a s.t.
2

φW
ηRρRWτM +Ap̈+Bṗ+D+we = 0 (4.17)

Using the IDFW computation strategy proposed in Sec. 3.3.2, the constraint can be rewritten as follows:

Cdwr ≤ dd , ∀w ∈ [w]r (4.18)

Twist Feasibility

According to the specifications of the tasks to be performed, the analysis of the TFW can be demanded. For
the given points Pk,k = 1, . . . ,np ∈ P of the prescribed workspace or path, the constraint associated to the twist
feasibility is issued from Def. 3.6:

∀ṗ ∈ [ṗ]r, ∃l̇ ∈ [l̇]a s.t.

 ṗ ∈ [ṗ]a
Jl̇− ṗ = 0

(4.19)

and can be rewritten according to the following equation:

C∗ṗ ≤ d∗, ∀ṗ ∈ [ṗ]r (4.20)

Cable Lengths

Due to technological reasons, cable lengths are bounded between a maximum cable length, lmax, and a minimum
cable length, lmin. The maximum cable length depends on the properties of the winches, in particular their lengths
and their diameters. The minimum cable length is defined according to the routing of the cable and the geometry
of the CDPR:

lmin ≤ li ≤ lmax, ∀i = 1, . . . ,m (4.21)

Cable Interferences

If two or more cables collide, the geometric and static models of the CDPR are not valid any more and the cables
can be damaged or their life time severely reduced. In order to verify that cables do not interfere, it is sufficient
to determine the distances between them. Modelling the cables as linear segments, the distance dcc

i, j between the
i-th cable and the j-th cable can be computed, e.g. by means of the method presented in [Lum85]. There is no
interference if the distance is larger than the diameter of the cables, φc:

dcc
i, j ≥ φc ∀i, j = 1, . . . ,m, i ̸= j (4.22)

The number of possible cable interferences to be verified is equal to Cm,2 =
m!

2!(m−2)! . Note that, depending on the
way the cables are routed from the winches to the moving platform, possible interferences of the cable segments
between the winches and the pulleys may have to be considered.
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Collisions Between the Cables and the Environment

Industrial environments may be cluttered. Collisions between the environment and the cables of the CDPR should
be avoided. For fast collision detection, the environment objects (obstacles) are enclosed in bounding volumes
such as spheres and cylinders. When more complex shapes have to be considered, their surfaces are approximated
with polygonal meshes. Thus, the collision analysis is performed by computing the distances between the edges of
those polygons and the cables, e.g. by using [Lum85].

Pose Infinitesimal Displacement Due to the Non-Rigid Nature of Cables

Cables are not perfectly rigid body. Consequently, the cables are subjected to some deformations that may induce
some moving platform pose infinitesimal displacements. The pose infinitesimal displacement can be computed by
inverting Eq. (2.65).

δp = K−1
δwe (4.23)

δ t = [δ tx,δ ty,δ tz]
T and δφ = [δγ,δβ ,δα]T characterise the positioning and orientation moving platform varia-

tions due to the cable elasticity, respectively.

The pose variation should be bounded by: The positioning error threshold vector, δ tc = [δ tx,c,δ ty,c,δ tz,c]
T,

where δ tx,c, δ ty,c and δ tz,c represent the bounds on the positioning errors along the axes xb, yb and xb and the
orientation error threshold vector, δφ = [δγc,δβc,δαc]

T, where δγc, δβc and δαc represent the bounds on the
moving platform orientation errors about the axes xb, yb and zb, i.e.:

− [δ tx,c,δ ty,c,δ tz,c]
T ≤ [δ tx,δ ty,δ tz]

T ≤ [δ tx,c,δ ty,c,δ tz,c]
T (4.24)

− [δγc,δβc,δαc]
T ≤ [δγ,δβ ,δα]T ≤ [δγc,δβc,δαc]

T (4.25)

Vibrations

By displacing the CPDR moving platform with high accelerations, vibrations can affect the CDPR during the task
execution. Vibration analysis can be performed computing the vibration modes of the CDPR by analysing the
CDPR stiffness matrix K and its eigenvalues. The analysis based on the stiffness matrix issued by the elasto-static
modelling of the CDPR (i.e. the ones described in Sec. 2.4) can provide a partial description of the vibration
modes. An accurate analysis should be performed over the dynamic stiffness matrix of the CDPR, as highlighted
by Yuan et al. in [YCD15].

4.2 Classes of RCDPRs

CDPRs consist usually of several standard components, notably: A fixed base, a moving platform, a set of m
cables connecting the moving platform to the fixed base through a set of pulleys, a set of m winches, gearboxes,
actuators and a set of internal and external sensors. These components are usually dimensioned in such a way
the geometry of the CDPR does not variate during the task. However, by modifying the CDPR geometry, the
capacities of CDPRs can be improved. As a matter of fact, RCDPRs are defined as follows:

Definition 4.1. A RCDPR is a CDPR whose geometry can be adapted reconfiguring part of its components.
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Fig. 4.3 – CableBot design with cable exit point
fixed to a grid. Courtesy of the European FP7
Project CableBot [Caba]

Fig. 4.4 – CableBot design with cable exit point
sliding on rails. Courtesy of the European FP7
Project CableBot [Caba]

4.2.1 Reconfigurable Elements and Technological Solutions

According to Def. 4.1, part of the components of a RCDPR may be reconfigured in order to improve its
performances. The geometry of the RCDPRs is mostly dependent on the locations of the cable exit points, the
locations of the cable attachment points on the moving platform and the number of cables.

The locations of the cable exit points, ab
i , i= 1, . . . ,m, have to be reconfigured when the environment is strongly

cluttered. Indeed, changing of the cable exit point locations can increase the IFW of the RCDPR. Furthermore, the
reconfiguration of cable exit points provides the possibility to modify the layout of the cables and improve the
performances of the RCDPR (such as its stiffness). From a technological point of view, points Ai, i = 1, . . . ,m
are displaced by moving the pulleys orienting the cables and guiding them to the moving platform. Pulleys are
connected on the base of the RCDPR. They can be displaced by sliding them on linear guides or fixing them
on a grid of locations, as proposed in the concepts of Fig. 4.3 and Fig. 4.4, resepectoely. These concepts have
been developed in the framework of the European FP7 Project CableBot [Caba]. Alternatively, pulleys can be
connected to several terrestrial or aerial unmanned vehicles, as proposed in [JK13, MDRC13, ZTK12].

The geometry of the RCDPR and the cable layout can be modified as well by displacing the cable connection
points on the moving platform, Bi, i = 1, . . . ,m. A change in the locations bp

i , i = 1, . . . ,m let improve the stiffness
of the RCPDR and the MDoCS margin, permitting to compensate higher external wrenches along a prescribed
direction. A modification of the cable attachment points may result as well in an improvement of the dimensions
of the IFW. The reconfiguration of points Bi, i = 1, . . . ,m can be performed by attaching and detaching the cables
at different locations of the moving platform.

The number of cables, m, has a major influence over the geometry and the performances of the RCDPR.
A higher number of cables may lead to an increase of the workspace dimensions and a reduction of the cable
tensions and vibrations. However, increasing the number of cables lead to a higher risk of collisions. Accessibility
problems can be limited by modifying m. In this case, the reconfiguration can be performed attaching or detaching
one or more additional cable(s) to the moving platform and to a new set of exit points. Furthermore, by attaching
and detaching one or more cable(s), the architecture of the RCDPRs can be modified, having access to both
suspended and non-suspended configurations and their advantages.
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Tab. 4.1 – CDPR RECONFIGURABLE PARAMETER CLASSIFICATION

Reconfigurable Parameter Discrete Domain Continuous Domain

Exit Point Locations Yes Yes
Moving Platform Connection Point Locations Yes Yes

Cable Number Yes No

4.2.2 Discrete and Continuous Reconfigurations

According to the reconfigured components and the associated technology, reconfiguration parameters can be
selected over a continuous or a discrete domain of values, as resumed in Table 4.1. Reconfigurations performed
over a discrete domain let select the reconfigurable parameters within a finite set of values. The variation of
the number of cables is a typical example of discrete reconfiguration. Discrete reconfigurations apply as well
to the connection points between the cables and the platform, when the dimensions of the moving platform are
fixed and the cables can be installed on the moving platform only at some specific locations, e.g. its corners.
Another example of discrete RCDPR is represented in Fig. 4.3. In this concept, developed in the framework of the
European FP7 Project CableBot, cable exit points are installed on a predefined grid of locations on the ceiling.
Discrete reconfigurations are performed off-line, interrupting the task the RCDPR is executing. For this reason,
the set-up time of these RCDPRs can be relative large. On the contrary, the costs associated to a discrete RCDPR
are moderate, since discrete RCDPRs do not require to motorise the cable exit points.

Reconfigurations performed over a continuous domain provides the possibility to select the geometric parame-
ters over a continuous set of values delimited by upper and lower bounds. A typical example of continous RCDPR
is represented in Fig. 4.4, which illustrates another concept developed in the framework of the European FP7
Project CableBot. In this example, the cable exit points slide on some rails fixed on the ceiling. Reconfigurations
can be performed on-line, by modifying smoothly the reconfigurable parameters durign the task execution. The
main advantages of continuous reconfigurations are the reduced set-up time and the local optimisation of the
RCDPR properties. However, modifying the locations of the exit points in real time may require the design of a
complex control scheme. Furthermore, the cost of RCDPRs with continuous reconfigurations is generally higher
than the cost of discrete RCDPRs, since the displacement of the pulleys should be fully actuated.

4.3 Nomenclature for RCDPRs

Similarly to CDPRs, a RCDPR is mainly composed of a moving platform connected to the base through a set of
cables, as illustrated in Fig. 4.5. The main difference between CDPRs and RCDPRs consists of the possibility to
displace the cable exit points on a grid of locations. Therefore, the nomenclature associated to the RCDPR models
requires some modifications in order to distinguish the possible configurations the RCDPR can assume.

The connection points of the i-th cable on the moving platform are denoted as Bi,c, where c represents the
configuration number. For the c-th configuration, the exit point of the i-th cable is denoted by Ai,c, i = 1, . . . ,8.
The Cartesian coordinates of each point Ai,c, with respect to Fb, are given by the vector ab

i,c. Therefore, the IGM
of the RCDPR can be rewritten according to the following equation:

lbi,c = ab
i,c − t−Rbp

i i = 1, . . . ,m (4.26)
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Fig. 4.5 – Schematic of a RCDPR. The red points represent the possible locations of the cable exit points, where
the pulleys can be fixed

where vector lbi,c is directed along the i-th cable from point Bi to point Ai,c. The length of the i-th cable is then
defined by the 2-norm of the cable vector lbi,c, namely, li,c = ∥lbi,c∥2, i = 1, . . . ,m.

The wrench matrix W characterising the static equilibrium of the moving platform can be described as follows:

Wc =

[
db

1,c db
2,c . . . db

m,c

Rbp
1 ×db

1,c Rbp
2 ×db

2,c . . . Rbp
m ×db

m,c

]
(4.27)

where db
i,c, i = 1, . . . ,m are the unit cables vectors associated to the c-th configuration. According to the provided

examples, the notations of all the RCDPR models introduced in Chap. 2 can be updated in order to distinguish
between the different configurations.

4.4 Design Strategy for RCDPRs

Similarly to CDPRs, the design of RCDPRs requires the dimensioning of all its components. In this manuscript,
the design of RCDPRs focuses on the selection of the cable exit point locations. The other components of the
RCDPR are supposed to be already chosen.

4.4.1 Design Problem Formulation

The RCDPR design strategy proposed in this section consists of ten steps, as shown in Fig. 4.6. The design can
be formulated as a mono-objective or a hierarchical multi-objective optimisation problem. The design defines a
prescribed workspace or a prescribed path and divides it into nt parts. Each part has to be covered by one and only
one configuration. The design variables are the locations of the cable exit points for the nt configurations covering
the nt parts of the prescribed workspace of path. The global objective functions investigated in Sec. 4.4.2 aim at
improving the performance of the RCDPR, e.g. reducing the reconfiguration time. The optimisation is performed
while verifying a set of user-defined constraints, typically the ones described in Sec. 4.1.3.
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Fig. 4.6 – Design strategy for RCDPRs

Step I. Task and Environment. The designer describes the task to be performed, according to the same procedure
presented for CDPRs.

Step II. Division of the Prescribed Workspace or Path. Given the prescribed workspace or moving platform
path, the designer divided it into nt parts, assuming that each of them is accessible by one and only one
configuration of the RCDPR. The division may be performed trying to predict the possible collisions of
the cables and the working environment.

Step III. Constant Design Parameter. The designer defines a set of constant design parameters and their values.
The parameters are collected in the constant design parameter vector q.

Step IV. Design Variables and Layout Parametrisation. For each part of the prescribed workspace or moving
platform path, the designer defines the cable layout of the associated configuration. The cable layout
associated to the t-th part of the prescribed workspace or path defines the locations of the cable exit
points, parametrised with respect to a set of nt,v design variables, ut,v,v = 1, . . . ,nt,v. The design
variables are defined as a discrete set of εt,v values, [u]t,v,v = 1, . . . ,nt,v.

Step V. RCDPR Configuration Set. For each part of the prescribed workspace or path, all the possible config-
urations that can be generated combining the values [u]t,v,v = 1, . . . ,nt,v of the nt,v design variables
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are computed. Therefore, nt,C = ∏
nt,v
v=1 εt,v possible configurations are generated for the t-th part of the

prescribed workspace or path.

Step VI. Constraint Functions. The user defines a set of nφ constraint functions, φk,k =,1, . . . ,nφ . These
functions are applied to all the possible configurations associated to all the nt part of the prescribed
workspace or path.

Step VII. Configuration Analysis. For each portion of the prescribed workspace or path, all the possible configu-
rations generated at Step V with respect to the nφ user-defined constraint functions are tested. The n f ,t

configurations satisfying the constraints all over the t-th part of the prescribed workspace or path are
defined hereafter as feasible configurations.

Step VIII. Feasible Configuration Combination. The nt-dimensional sets of configurations that lead to the
achievement of the prescribed task are computed. Each set is composed combining the n f ,t feasible con-
figurations associated to each part of the prescribed workspace or path. The number of nt -dimensional
sets of feasible configurations generated during this step is equal to nC .

Step IX. Objective Functions. The designer defines one or more global objective function(s), Vl , l =,1, . . . ,nV ,
where nV is equal to the number of global objective functions taken into account. With respect to
the objective functions described in Sec. 4.2.1, the global objective functions do not focus only on
a single configuration. They analyse the properties of the entire RCDPR, considering at once all
the nt configurations composing the RCDPR. If more global objective functions have to be solved
simultaneously, the optimisation problem can be reduced to a mono-objective optimisation, according
to Eq. (4.1). If several global optimisation functions have to be solved hierarchically, the designer will
number the objective functions according to their priority, l = 1, . . . ,nV , having V1 the highest priority
and VnV

the lowest one.

Step X. Discrete Optimisation Algorithm. The design problem is formulated as an optimisation problem and
solved by analysing all the nC sets of feasible configurations. The analysis is performed with respect to
the global objective functions defined at Step IX. The nt -dimensional set of feasible configurations with
the best global objective function is detected. If a hierarchical multi-objective optimisation is required,
the following procedure is applied:

a. The algorithm analyses the nC sets of feasible configurations with respect to a global objective
function, Vl , which is initialised as the highest priority global objective function, Vl = V1.

b. If only a nt-dimensional set of feasible configurations optimises Vl , this set is considered as the
optimal one. On the contrary, if nC ,l set of feasible configurations optimise Vl , the algorithm
proceeds to the following step.

c. The algorithm analyses the nC ,l sets of optimal solutions with respect to the global objective function
with lower priority, Vl+1. Then, the algorithm moves to Step b.

4.4.2 Global Objective Functions

The design strategy proposed in the previous section aims at optimising the characteristics of the RCDPR. The
optimisation may be performed with respect to one or more global objective functions. The objective functions
used in this manuscript are described hereafter.
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RCDPR Size

The design optimisation problem may aim at minimising the size of the robot, defined as the convex hull of the
cable exit points. The Cartesian coordinates of exit point Ai,c are defined as ai,c = [ax

i,c,a
y
i,c,a

z
i,c]

T. The variables
sx, sy and sz denote the smallest Cartesian coordinates of the cable exit points along the axes xb, yb and zb,
respectively:

sx = minax
i,c, ∀i = 1, ...,m, c = 1, ...,nt (4.28)

sy = minay
i,c, ∀i = 1, ...,m, c = 1, ...,nt (4.29)

sz = minaz
i,c, ∀i = 1, ...,m, c = 1, ...,nt (4.30)

where m is the number of cables and nt the number of configurations of the RCDPR.

The upper bounds on the Cartesian coordinates of the RCDPR cable exit points, along the axes xb, yb, zb, are
denoted by s̄x, s̄y and s̄z, respectively.

s̄x = maxax
i,c, ∀i = 1, ...,m, c = 1, ...,nt (4.31)

s̄y = maxay
i,c, ∀i = 1, ...,m, c = 1, ...,nt (4.32)

s̄z = maxaz
i,c, ∀i = 1, ...,m, c = 1, ...,nt (4.33)

Hence, the objective function related to the size of the robot is expressed as follows:

V1 = (s̄x − sx)(s̄y − sy)(s̄z − sz) (4.34)

Number of Cable Reconfigurations

According to the reconfiguration strategy proposed in this manuscript, reconfiguration operations require the
displacement of the cable exit points, and consequently attaching/detaching operations of the cables. These opera-
tions are time consuming. The following objective function aims at minimising the number of reconfigurations,
nr, defined as the number of exit point changes to be performed in order to switch from configuration Ci to
configuration C j:

V2 = nr (4.35)

By reducing the number of cable attaching/detaching operations, the RCDPR set-up time could be significantly
decreased.

Number of Configuration Changes

During the reconfiguration of the exit points, the task executed by the RCDPR has to be interrupted. These inter-
ruptions impact the task execution time. Therefore, it may be necessary to minimise the number of interruptions,
ni, in order to improve the effectiveness of the RCDPR. The objective function V3 associated to this goal measures
the number of configuration changes, ni, to be performed during a prescribed task, V3 = ni.
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RCDPR Complexity

The complexity of the RCDPR increases according to the number of configurations nC required to cover the
prescribed workspace of moving platform path. When the RCDPR demands a high number of configurations, the
base frame of the CDPR may become complex. In order to minimise the complexity of the RCDPR, it is possible
to reduce the overall number of exit point locations, C4 = ne, required by the nC configurations. Therefore, the
optimisation aims at maximising the number of exit point locations shared among two or more configurations.

4.5 Case Study I: Design of a CDPR Based on the Workspace Size

4.5.1 Problem Description

Designing a CDPR is a complex task which requires the dimensioning of several components and parameters.
Most of the research works involving the design of CDPRs are focused on the dimensioning of the moving
platform and the selection of the exit point locations. The present case study focuses on the dimensioning of:

• The actuators, which in this case study are electric motors, whose nominal torque and speed are defined as
τM and ωM , respectively.

• The winches, having a drum whose diameter is equal to φw.
• The gearboxes, connecting the winches to the motors, whose transmission ratio is equal to ρR.

Task and Environment

The dimensioning of the motors, the winches and the gearboxes has a great influence on the WFW and the TFW.
In order to increase the size of both the workspaces, the design procedure has been formulated as an optimisation
problem according to the strategy presented in Sec. 4.1.1. A prescribed workspace, P , is defined. It consists of a
box, as shown in Fig. 4.7. The box has been discretised into a set of nP = 1881 points, Pk, k = 1, . . . ,nP ∈ P ,
whose coordinates along xb, yb and zb are defined according to the sets of values [x], [y] and [z], respectively:

[x] = {−0.45m : 0.05m : 0.45m} (4.36)

[y] = {−0.25m : 0.05m : 0.25m} (4.37)

[z] = {−0.2m : 0.05m : 0.2m} (4.38)

The component of the external forces acting on the moving platform, fx, fy and fz, have been constrained
between ±20 N. The components of the external moments, mx, my and mz, are bounded between ±0.1 Nm:

−20N ≤ fx, fy, fz ≤ 20N (4.39)

−0.1Nm ≤mx,my,mz≤ 0.1Nm (4.40)

Analogously, the twist components of the moving platform, ṫx, ṫy and ṫz, have been constrained between
±0.1 m/s. The moving platform orientation is assumed to be constant, the frame Fp being aligned with the base
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Fig. 4.7 – Case Study I: Description of the case study and the prescribed workspace

frame Fb.

−0.1
m
s
≤ ṫx, ṫy, ṫz ≤ 0.1

m
s

(4.41)

ωx,ωy,ωz = 0 (4.42)

Constant Design Parameters

The spatial CDPR of this case study consists of m = 8 steel cables. Their diameter, φc, is equal to 2 mm and
their linear elastic coefficient, kc, is equal to 2.52×106 N

m . The cable mass is neglected. The cables exit points,
Ai, i = 1, . . . ,m, are located at the corner of the base frame, as illustrated in Fig. 4.7, according to the following
Cartesian coordinates:

ab
1 =

1
2

[
−sl ,−sw,−sh

]T
ab

2 =
1
2

[
sl ,−sw,−sh

]T
(4.43)

ab
3 =

1
2

[
sl ,sw,−sh

]T
ab

4 =
1
2

[
−sl ,sw,−sh

]T
(4.44)

ab
5 =

1
2

[
−sl ,−sw,sh

]T
ab

6 =
1
2

[
sl ,−sw,sh

]T
(4.45)

ab
7 =

1
2

[
sl ,sw,sh

]T
ab

8 =
1
2

[
−sl ,sw,sh

]T
(4.46)

where the base frame length, sl , width, sw, and height, sh, are equal to 1 m, 0.6 m, 0.5 m, respectively.

The cables are connected to the moving platform according to a cross cable layout. The main advantage of this
layout is the increase of the CDPR stiffness. The Cartesian coordinates bi of points Bi, i = 1, . . . ,m are defined as
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Fig. 4.8 – Case Study I: Moving Platform of the CDPR

Tab. 4.2 – DESIGN VARIABLE BOUNDS

Design Variable τM [Nm] ωM [rpm] φw [cm] ρR
min 0.5 50 1 0.5
Max 1.5 200 5 5

follows:

bp
1 =

1
2

[
−lp,−w′

p,hp

]T
bp

2 =
1
2

[
lp,−w′

p,hp

]T
(4.47)

bp
3 =

1
2

[
lp,w′

p,hp

]T
bp

4 =
1
2

[
−lp,w′

p,hp

]T
(4.48)

bp
5 =

1
2

[
−l′p,−wp,−hp

]T
bp

6 =
1
2

[
l′p,−wp,−hp

]T
(4.49)

bp
7 =

1
2

[
l′p,wp,−hp

]T
bp

8 =
1
2

[
−l′p,wp,−hp

]T
(4.50)

where w′
p = wp +u0 and l′p = lp +u0. u0 is an offset applied to the cable-platform connection points in order to

avoid cable collisions and singularities. Here, this offset is equal to 1 cm. The moving platform is a parallelepiped,
as shown in Fig. 4.8. Its width, wp, and its length, lp, are equal to 10cm. Its height, hp, is equal to 5cm. Cable
properties, moving platform dimensions and the Cartesian coordinates of the exit points of the cables are part of
the constant design parameters, collected in vector q.

Design Variables

The design variables are collected in the design variable vector, x:

x = [τM,ωM,φw,ρR]
T (4.51)

The ranges of these variables are given in Table 4.2.

Objective and Constraint Functions

The objective function of the optimisation problem, V , is the percentage p f of points P ∈ P which are both
wrench and twist feasible:

V (x) = p f =
∑

nP
k=1 Fk

nP
(4.52)
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where Fk = 1 if the the pose associated to the k-th point, Pk, is both wrench and twist feasible and Fk = 0 otherwise.

A set of constraints has to be satisfied for all the points Pk ∈ P where the pose assumed by the CDPR is
wrench and twist feasible. The constraints include the absence of cable interferences and a maximum moving
platform positioning displacement due to the elasticity of the cables. These constraints are detailed in Sec. 4.1.3.

According to all the previous considerations, the design problem is formulated as follows:

maximise: V (x) = p f

over: x = [τM,ωM,φw,ρR]
T

subject to:

∀Pk ∈ P : Fk = 1

dcc
i, j ≥ φc ∀i, j = 1, . . . ,m, i ̸= j

−δ tc ≤ δ tx,δ ty,δ tz ≤ δ tc

4.5.2 Optimisation Results

The case study has been solved in Matlabr using the genetic algorithm toolbox and the GlobalSearch® algorithm
developed by Ugray et al. [ULP+07].

According to the optimal solution, 57.70% of points Pk ∈ P are included in both the WFW and the TFW.
The optimal dimensioning of the design variables contemplates a motor nominal torque τM = 1.44Nm, a motor
nominal speed ωM = 195.6rpm, a winch diameter φw = 46.5mm and a gearbox ratio ρR = 3.1. Figure 4.9 shows
the intersection of the WFW and the TFW associated to the optimal solution. For the given values of the design
variables, the TFW includes 97.82% of the desired points Pk ∈ P , as illustrated in Fig. 4.10. On the contrary, the
WFW includes only 57.73% of points Pk ∈ P .

The correlation between the design variables, x, and the optimisation function, V , has been investigated by
means of the Matlabr function corrcoef

®. A set of values has been associated to each design variable:

[τM] = {−0.5Nm : 0.1Nm : 1.5Nm} (4.53)

[ωM] = {50rpm : 10rpm : 200rpm} (4.54)

[φw] = {1cm : 1cm : 5cm} (4.55)

[ρR] = {0.5 : 0.1 : 1, 2 : 1 : 5} (4.56)

The different combinations of design variables have been tested computing the percentage of feasible points
belonging to the WFW and the TFW. As illustrated in Fig. 4.11, the size of the WFW increases with respect to the
nominal torque of the motor, τM , and the gearbox transmission ratio, ρR. The diameter of the winch drums, φw, is
inversely proportional to the size of the WFW. Analogously, an increase of the nominal motor speed, ωM , induces
an improvement of the TFW size, as well as the increasing of the diameter of the winch drums. The size of the
TFW can be augmented by decreasing the the gearbox transmission ratio.

The performed analysis highlights that, regarding the dimensions of both the WFW and the TFW, φw and
ρR have a higher influence with respect to the other design variables. Consequently, dimensioning the gearbox
transmission ratio and the drum diameter, the designer should take into account the sensitivity of these design
parameters and the trade-off between increasing the WFW size and decreasing the TFW size. For example,
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Fig. 4.9 – Intersection of the WFW and the TFW for the optimal solution (τM = 1.44Nm, ωM = 195.6rpm,
φw = 46.5mm, ρR = 3.1)

Fig. 4.10 – Case Study I: TFW of the optimal solution (τM = 1.44Nm, ωM = 195.6rpm, φw = 46.5mm, ρR = 3.1)

the largest WFW can be obtained for the design variables at their upper limits: τM = 1.5Nm, ωM = 200rpm,
φw = 50mm and ρR = 5. Under these assumptions, the WFW covers 65.98% of points Pk, i = 1, . . . ,np belonging
to P , as shown in Fig. 4.12. However, due to the relatively large gearbox ratio, ρR = 5, all the points included in
the WFW are not twist feasible, the moving platform being not able to attain the prescribed twists.
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Fig. 4.11 – Analysis of the correlation between the design variables and the optimisation criterion

Fig. 4.12 – Case Study I: Larger WFW, covering the 65,98% of the prescribed workspace, obtained for the design
variables τM = 1.5Nm, ωM = 200rpm, φw = 50mm, ρR = 5

4.6 Case Study II : Design of a RCDPR for Sandblasting and Painting
of a Large Tubular Structure

4.6.1 Problem Description

The necessity to improve the production rate of large tubular structures pushed some companies to investigate
new technologies. These technologies should be able to reduce the time needed to perform several manufacturing
operations, such as the assembly of the structure parts or the treatment of their surfaces. Painting and sandblasting
operations over wide tubular structures can be realised by means of RCDPRs, as illustrated in the present case
study.
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Fig. 4.13 – Case Study II: Case study model and prescribed paths P1, P2 and P3 of the moving platform CoM

Task and Environment

The tubular structure selected for the given case study is 20 m long, with a cross section of 10 m x 10 m. The
number of tubes to be painted is equal to twenty. Their diameter, φs, is equal to 0.8 m. The sandblasting and
painting operations are realised indoor. The structure lies horizontally in order to reduce the dimensions of the
painting workshop. The whole system can be described with respect to a fixed reference frame, Fb, of origin Ob

and axes xb, yb, zb, as illustrated in Fig. 4.13.

Sandblasting and painting tools are embarked on the RCDPR moving platform. The CoM of the moving
platform follows the profile of the structure tubes and the tools perform the required operations. The paths to be
followed, P1, P2 and P3, are represented in Fig. 4.13. Note that each path Pi, i = 1, . . . ,3 is discretised into
38 points P j,i, j = 1, . . . ,38 i = 1, . . . ,3. They are located at a distance of 2 m from the structure tubes. No path
has been assigned to the lower external side of the structure, since it is sandblasted and painted from the ground.

Division of the Prescribed Workspace

In order to avoid collisions between the cables and the structure, the reconfiguration of the cable exit point positions
is necessary. Each external side of the structure should be painted by one and only one robot configuration. Three
configurations are necessary to work on the exterior of the structure: Configuration Ci being associated to path Pi,
i = 1, 2 and 3. This requirement is demanded in order not to interrupt the painting and sandblasting operations
during their execution. Passing from a configuration to another, one or more cables are disconnected from their
exit points and connected to other exit points located elsewhere. For each configuration, the locations of the cable
exit points are defined as variables of the design problem. In the present case study, the dimensions of the moving
platform as well as the position of the cable connection points on the moving platform are fixed.
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Constant Design parameters

The number of cables, m = 8, the cable properties and the dimensions of the moving platform are given. Those
parameters are the same for the three robot configurations. The RCDPR developed in this case study is composed
of steel cables. The Young Modulus, E, is equal to 100 GPa. Their diameter, φc is equal to 4 mm, the stiffness
coefficient, ki, is equal to 252 KN/m. The maximum allowed tension in the cables, τmax, is equal to 34950 N:

0 < τi ≤ τmax, ∀i = 1, . . . ,8 (4.57)

lp, wp and hp denote the length, width and height of the moving platform, respectively: lp = 30 cm, wp = 30 cm
and hp = 60 cm. The design (constant) parameter vector q is expressed as:

q = [m,φc,ki,τmax, lp,wp,hp]
T (4.58)

The design problem aims at identifying the locations of points Ai,c for the configurations C1, C2 and C3. At
first, in order to identify the set of feasible locations for the exit points Ai,c, the three robot configurations are
parameterised and analysed separately in the following paragraph. A set of exit points will be considered feasible
if the design constraints are satisfied along the whole path to be followed by the CoM of the moving platform. The
analysed constraints are: Cable interferences, Cable collisions with the structure, and maximum moving platform
infinitesimal displacement due to the non-rigid nature of the cables.

Constraint Functions and Configuration Analysis

A suspended and a non-suspended fully constrained 8-cable CDPR architectures are considered. The suspended
architecture is inspired by the CoGiRo CDPR prototype [LGCH13, GCRB15]. For the non-suspended configura-
tion, note that 8 cables is the smallest possible even number of cables that can be used for the moving platform to
be fully constrained by the cables. In the suspended architecture, the static equilibrium of the moving platform
is obtained thanks to the gravity force that plays the role of an additional cable pulling the moving platform
downward.

Since the sandblasting and painting operations are performed at low speed, the motion of the CDPR moving
platform can be considered to be quasi-static. Hence, only the static equilibrium of the robot moving platform
will be considered. Collisions between the cables as well as collisions between the cables and the structure tubes
should be avoided. Besides, the moving platform infinitesimal displacements, due to the elasticity of the cables,
are constrained. Here, the cable mass is not considered.

Configuration C1 A fully constrained architecture has been assigned to configuration C1. The exit points Ai,1

have been arranged in a parallelepiped layout. The edges of the parallelepiped are aligned with the axes of frame
Fb. This layout can be fully described by means of five variables: u1, u2 and u3 define the Cartesian coordinates
of the parallelepiped centre; u4 and u5 represent the half-lengths of the parallelepiped along the axes xb and yb,
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Fig. 4.14 – Case Study II: Design variables parametrising configuration C1

respectively. Therefore, the Cartesian coordinates of the exit points Ai,1, i = 1, . . . ,m are expressed as follows:

ab
1,1 = [u1 +u4, u2 +u5, u3]

T ab
2,1 = [u1 +u4, u2 +u5, −u3]

T (4.59)

ab
3,1 = [u1 −u4, u2 +u5, u3]

T ab
4,1 = [u1 −u4, u2 +u5, −u3]

T (4.60)

ab
5,1 = [u1 −u4, u2 −u5, u3]

T ab
6,1 = [u1 −u4, u2 −u5, −u3]

T (4.61)

ab
7,1 = [u1 +u4, u2 −u5, u3]

T ab
8,1 = [u1 +u4, u2 −u5, −u3]

T (4.62)

The layout of the first robot configuration is described in Fig. 4.14. The design variables of the design problem
at hand are collected into the vector x1:

x1 = [u1,u2,u3,u4,u5]
T (4.63)

The Cartesian coordinates of the connection points Bi,1, i = 1, . . . ,m of the cables on the moving platform are
expressed as:

bb
1,1 =

1
2
[lp,wp,hp]

T , bb
2,1 =

1
2
[lp,wp,−hp]

T (4.64)

bb
3,1 =

1
2
[−lp,wp,hp]

T , bb
4,1 =

1
2
[−lp,wp,−hp]

T (4.65)

bb
5,1 =

1
2
[−lp,−wp,hp]

T , bb
6,1 =

1
2
[−lp,−wp,−hp]

T (4.66)

bb
7,1 =

1
2
[lp,−wp,hp]

T , bb
8,1 =

1
2
[lp,−wp,−hp]

T (4.67)

A discretised set of design variables have been considered. The lower and upper bounds, as well as the number
of values for each design variable, are given in Table 4.3. 18225 robot configurations have been generated by
combining those values. It turns out that 4576 configurations satisfy the design constraints along the 38 discretised
points of path P1.

Configuration C2 A suspended fully constrained architecture has been assigned to configuration C2 in order to
avoid any possible collision with the tubular structure. The selected architecture is based on CoGiRo prototype, a
suspended CDPR designed and built in the framework of the ANR CoGiRo project [LGCH13, GCRB15]. An
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advantage of this architecture is the possibility to balance efficiently external wrenches throughout a very large
part of the robot footprint. The exit points Ai,2 have been arranged in a parallelepiped layout. The Cartesian
coordinates ai,c, i = 1, . . . ,m are defined as follows:

ab
1,2 = ab

2,2 = [v1 − v4, v2 − v5, v3]
T (4.68)

ab
3,2 = ab

4,2 = [v1 − v4, v2 + v5, v3]
T (4.69)

ab
5,2 = ab

6,2 = [v1 + v4, v2 + v5, v3]
T (4.70)

ab
7,2 = ab

7,2 = [v1 + v4, v2 − v5, v3]
T (4.71)

Variables v1 = 1, . . . ,5 assume the same geometric roles assigned to variables u1 = 1, . . . ,5. The layout of this
configuration is illustrated in Fig. 4.15. The design variables of configuration C2 are collected into the vector x2:

x2 = [v1,v2,v3,v4,v5]
T (4.72)

Note that this architecture is composed of couples of exit points theoretically connected to the same locations:
{A1,2,A2,2}, {A3,2,A4,2}, {A5,2,A6,2} and {A7,2,A8,2}. From a technical point of view, in order to avoid any cable
interference, the coupled exit points should be separated by a distance at least greater than cable diameter. For the
design problem at hand, this distance has been fixed to v0 = 5mm.

ab
1,2 =

[
v1 − v′4, v2 − v5, v3

]T (4.73)

ab
2,2 =

[
v1 − v4, v2 − v′5, v3

]T (4.74)

ab
3,2 =

[
v1 − v4, v2 + v′5, v3

]T (4.75)

ab
4,2 =

[
v1 − v′4, v2 + v5, v3

]T (4.76)

ab
5,2 =

[
v1 + v′4, v2 + v5, v3

]T (4.77)

ab
6,2 =

[
v1 + v4, v2 + v′5, v3

]T (4.78)

ab
7,2 =

[
v1 + v4, v2 − v′5, v3

]T (4.79)

ab
8,2 =

[
v1 + v′4, v2 − v5, v3

]T (4.80)

where v′4 = v4 − v0 and v′5 = v5 − v0

The Cartesian coordinates of points Bi,2, i = 1, . . . ,m are defined as:

bb
1,2 =

1
2
[lp,−wp,hp]

T , bb
2,2 =

1
2
[−lp,wp,−hp]

T (4.81)

bb
3,2 =

1
2
[−lp,−wp,hp]

T , bb
4,2 =

1
2
[lp,wp,−hp]

T (4.82)

bb
5,2 =

1
2
[−lp,wp,hp]

T , bb
6,2 =

1
2
[lp,−wp,−hp]

T (4.83)

bb
7,2 =

1
2
[lp,wp,hp]

T , bb
8,2 =

1
2
[−lp,−wp,−hp]

T (4.84)

Table 4.3 describes the lower and upper bounds as well as the number of values considered for configuration
C2. Combining these values, 22275 configurations have been generated. Amongst these configurations, only 5579
configurations are feasible.
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Fig. 4.15 – Case Study II: Design variables parametrising the configuration C2

Configuration C3 Configuration C3 follows the path P3. This path is symmetric to the path P1 with respect
to the plane ybOzb, O, yb and zb being the origin, the y-axis and the z-axis of the base frame. Considering
the symmetry of the tubular structure, the robot architecture used for configuration C1 has been assigned to
configuration C3. The set of values of the discretised design variables defined for configuration C3 is described in
Table 4.3. The design variables for configuration C3 are collected into the vector x3:

x3 = [w1,w2,w3,w4,w5]
T (4.85)

where variables wi, i = 1, . . . ,5 amount to the variables describing configuration C1, ui, i = 1, . . . ,5. Therefore, the
Cartesian coordinates of the exit points Ai,3, i = 1, . . . ,m are expressed as follows:

ab
1,3 = [w1 +w4, w2 +w5, −w3]

T ab
2,3 = [w1 +w4, w2 +w5, w3]

T (4.86)

ab
3,3 = [w1 −w4, w2 +w5, −w3]

T ab
4,3 = [w1 −w4, w2 +w5, w3]

T (4.87)

ab
5,3 = [w1 −w4, w2 −w5, −w3]

T ab
6,3 = [w1 −w4, w2 −w5, w3]

T (4.88)

ab
7,3 = [w1 +w4, w2 −w5, −w3]

T ab
8,3 = [w1 +w4, w2 −w5, w3]

T (4.89)

Objective Functions and Design Problem Formulation

The RCDPR should be as cheap and simple as possible. For this reason, the minimisation of the total number of
cable exit points, V1 = nc, is required. Consequently, the number of exit point locations, shared by two or more
configurations, should be maximised. The size of the robot is minimised as well, in order to reduce the dimensions
of the sandblasting and painting workshop. Finally, the mean of the moving platform infinitesimal displacement
due to cable deformations is minimised as well. The optimisations are performed hierarchically, by means of the
procedure described in Sec. 4.4.1 and the objective functions collected in Sec. 4.4.2.
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Tab. 4.3 – DESIGN VARIABLES ASSOCIATED WITH CONFIGURATIONS C1 , C2 AND C3

Configuration Design Variables Lower Bounds [m] Upper Bounds [m] Number of values

C1

u1 5.5 7.5 9
u2 8.0 12.0 9
u3 6 10 5
u4 0.5 2.5 9
u5 10 14 5

C2

v1 -1 1 9
v2 8.0 12.0 5
v3 7 11 9
v4 5 7.5 11
v5 10 14 5

C3

w1 -7.5 -5.5 9
w2 8.0 12.0 9
w3 6 10 5
w4 0.5 2.5 9
w5 10 14 5

Hence, the design problem of the CDPR is formulated as follows:

minimise


V1 = nc

V2 = (s̄x − sx)(s̄y − sy)(s̄z − sz)

V3 =
∥δ t∥2

np
over x1,x2,x3

subject to:

∀Pm,n, m = 1, . . . ,38
n = 1, . . . ,3



Cw ≤ d, ∀w ∈ [w]r

dcc
i, j ≥ φc ∀i, j = 1, . . . ,8, i ̸= j

dcs
i,k ≥

(φc +φs)

2
∀i = 1, . . . ,8,∀k = 1, . . . ,12

−5cm ≤ δ tx,δ ty,δ tz ≤ 5cm

−0.1rad ≤ δ rx,δ ry,δ rz ≤ 0.1rad
(4.90)

Once the set of feasible solutions have been obtained for each configuration, i.e., for each path, a list of
RCDPRs with a minimum number of exit points, nc, is extracted from the list of feasible RCDPRs. Finally, the
most compact and stiff RCDPRs from the list of RCDPRs with a minimum number of exit points are optimal
solutions.

4.6.2 Optimisation Results

The feasible robot configurations associated to paths P1, P2 and P3 have been identified. For each path,
a configuration is selected, aiming at minimising the total number of exit points required by the RCDPR to
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Tab. 4.4 – DESIGN VARIABLES OF THE SELECTED OPTIMUM RCDPR

Conf. var.1 var.2 var.3 var.4 var.5
x1 6.25 10.0 8.0 1.0 11.0
x3 0 10.0 8.0 5.25 11.0
x3 -6.25 10.0 8.0 1.0 11.0

complete the task. The 4576 feasible RCDPR configurations for path P1 are compared with the 5579 feasible
RCDPR configurations for path P2 and the 4576 feasible RCDPR configurations for path P3. The sets of robot
configurations that minimise the number, nc, of required exit points along the three paths are identified. According
to the discrete optimisation analysis, 16516 triplets of configurations minimise the total number of exit points.

A generic CDPR composed of 8 cables requires 8 exit points Ai = 1, . . . ,8 on the base. It is the case for the
non-suspended fully constrained configuration C1. The suspended CDPR presents 4 coincident couples of exit
points. Hence, the maximum total number of exit points of the RCDPR is equal to 20. The best results provide a
reduction of 4 points. Regarding the configurations C1 and C2, points A5,2 and A7,2 can be coincident with points
A3,1 and A5,1, respectively. Alternatively, points A5,2 and A7,2 can be coincident with points A1,1 and A7,1. As
far as configurations C2 and C3 are concerned, points A1,2 and A3,2 can be coincident with points A8,3 and A2,3,
respectively. Likewise, points A1,2 and A3,2 can be coincident with points A4,3 and A6,3, respectively.

The total volume of the robot has been computed for the 16516 triplets of configurations minimising the
total number of exit points. 96 RCDPRs amongst the 16516 triplets of configurations have the smallest size, this
minimum size being equal to 5104 m3. The selection of the bests solutions has been promoted through the third
optimisation criterion, based on the robot stiffness. 20 solutions provided a minimum mean of the moving platform
displacement of 1.392 mm due to non-rigid nature of the cables. An optimal solution is illustrated in Fig. 4.16.
The corresponding optimal design variables are given in Table 4.4.

Figure 4.17 illustrates the MDoCS introduced in [GCCC14] and defined thereafter along the paths P1, P2

and P3, which are discretised into 388 points.

s = min
i=1,...,n

(
min

j=1,...,p
s j,i

)
(4.91)

It turns out that moving platform is in a static equilibrium along all the paths because the MDoCS remains negative.
We remind that the MDoCS is negative when a pose is wrench feasible. Configurations C1 and C3 maintain their
degree of satisfaction lower than the 400 N. On the contrary, configuration C2 is often close to 0. The poses where
s vanishes require that two cables of the suspended CDPR are slack.

4.7 Conclusions

This chapter dealt with the design of CDPRs. The design of CDPRs has been formulated as an optimisation
problem, according to the state of the art [GCG+14]. The design problem aims at optimising one or more
objective function(s). A set of relevant objective functions, e.g. the maximisation of the workspace size and the
maximisation of the Minimum Degree of Dynamic Constraint Satisfaction (MDoDCS), has been presented in
this chapter. The optimal solution has been computed while considering a set of user-defined constraints. The
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Fig. 4.16 – Case Study II: Optimal Reconfigurable Cable-Driven Parallel Robot

most significant constraints have been described in the previous section including wrench, twist and dynamic
feasibility, cable interferences and the collisions between cables and the environment. An illustrative example has
been studied to highlight the contributions of this chapter. The sizes of the wrench and twist feasible workspaces
of a CDPR have been maximised by means of a global optimisation algorithm.

When the task to be accomplished is complicated, and the working environment is extremely cluttered, CDPRs
may not succeed in the task execution. The problem can be solved by means of RCDPRs. Despite several elements
of a RCDPR can be reconfigured, this manuscript focuses on the displacement of the exit points. A classification
between discrete and continuous reconfigurations of the exit points have been proposed. This chapter introduced
a design strategy for discrete RCDPRs, whose exit points can be placed on a predefined grid of locations. This
design strategy assumes that the number of configurations necessary to complete the task can be fixed by the
designer according to his/her experience [GCG+15b]. The designer divides the prescribed path, or the prescribed
workspace, into several parts. Each part has to be covered entirely by one and only one configuration. The position
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Fig. 4.17 – Case Study II: MDoCS of the selected optimum RCDPR. The analysis has been performed by
discretising the paths P1, P2 and P3 into 388 points

of the cable exit points, for all the configurations, is computed by means of an optimisation algorithm. The
algorithm optimises one or more global objective function(s) while satisfying a set of user-defined constraints. In
this manuscript, global objective functions will be used to optimise the RCDPR size, the number of exit point
displacements and the number of configuration changes. A case study has been proposed in order to validate
the RCDPR design strategy. The RCDPR has to paint and sandblast three of the four external sides of a tubular
structure. Each of the three sides to be painted is covered by one and only one configuration. The design
strategy provided several optimal solutions to the case study, minimising hierarchically the number of exit point
displacements, the size of the RCDPR and the moving platform displacement due to the non-rigid nature of the
cables. The computation of the optimal solution, performed on a Intelr CoreTM i7-3630QM 2.40 GHz, required
19 h of computation. More complicated tasks may require high computational efforts. An improvement of the
design strategy for RCDPR should be investigated in order to reduce this computational time.
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When the working environment is not extremely cluttered, RCDPRs can be designed according to the strategy
proposed in Chap. 4. The designer divides the prescribed workspace into nt portions. According to the grid
of cable exit point locations, the algorithm computes all the possible configurations of the RCDPR. Then, the
algorithm analyses, for each portion of the prescribed workspace, the configurations which satisfy the user defined
constraints and selects the best configurations with respect to one or more global objective functions.

When the environment is extremely cluttered, it is hard to predict if a given portion of the prescribed workspace
can be covered by a unique configuration. To overcome this problem, the RCDPR is designed in such a way the
cable exit points can be installed all around the prescribed workspace, on a discrete grid of possibly large but finite
number of locations.

From a technical point of view, cable exit points can be reconfigured according to the procedure described in
Sec. 5.1, by moving the pulleys which directs the cable toward the moving platform.

Most of the studies on RCDPRs are focused on continous reconfigurations, performed by several researchers,
e.g. in [RZA11, ZRMR14, ZTK12, ZJK13, NGCP14, NG14b]. To the best of our knowledge, none reconfiguration
strategy has been proposed in the framework of discrete RCDPRs, yet. This chapter proposes a strategy to compute
the optimal reconfiguration strategy for a RCDPR whose exit points can only be placed on a finite set of positions.
This strategy will allow the moving platform to follow the prescribed path improving the performance of the
RCDPR while satisfying one or more constraint(s). The strategy to optimise the RCDPR exit point reconfiguration
is detailed in Sec. 5.2.

The reconfiguration strategy will be verified for two case studies. The first case study, described in Sec. 5.3,
deals with a planar task. This case study illustrates the steps of the reconfiguration strategy through a basic example.
The second case study aims at optimising the reconfigurations of a spatial RCDPR for sandblasting and painting of
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tubular structures. The details of the problem and the results obtained using the proposed reconfiguration strategy
are described in Sec. 5.4.

5.1 Reconfiguration Procedure

When the working environment is not cluttered, and the ground is free, it is possible to perform the reconfiguration
on the ground. The CDPR moving platform is moved from the current pose to a home position on the ground.
Then, when no external wrench is applied on the moving platform and the cables are slack, the cables can be
disconnected easily from the moving platform. Once the exit points are reconfigured, the cables can be attached
again to the moving platform, and the moving platform can be moved to a desired working pose.

However, this strategy cannot always be applied. For instance, a cluttered environment may not permit to
put the CDPR moving platform in a home position on the ground. In the strategy proposed hereafter the moving
platform of the CDPR is supposed not to change its pose during the reconfiguration:

a. The robot is located at the desired reconfiguration pose. The current pose of the robot is denoted hereafter as
Ca. The cables balance the weight of the moving platform and the external wrenches applied on the moving
platform, according to the static equilibrium equation Waτa +we = 0.

b. A new set of cables are connected to the proper exit point locations, according to the new desired configuration,
defined hereafter as Ca′ . The other extremities of these cables are connected to the corresponding attachment
points on the moving platform. These cables are initially slack and they are coiled in such a way to be "just
tensed", their lengths being adjusted to the moving platform pose.

c. In order to be detached from the moving platform, the cables belonging to Ca, but not to Ca′ , should be slack.
These cables are gradually uncoiled in such a way that the external wrenches are transferred to the cables
belonging to Ca′ .

d. When the cables belonging exclusively to configuration Ca are slack, they can be detached. The RCDPR is
now ready to proceed with the task execution.

Figure 5.1 illustrates the proposed procedure.

5.2 Reconfiguration Strategy

The user provides a grid of possible exit point locations where the cables can be attached to the base frame. The
task to be performed can be realised by combining several configurations, disconnecting one or more cable(s)
from their exit points and connecting them to new locations. Accordingly, in order to determine the optimal
reconfiguration scheme of a RCDPR based on some user defined criteria, a 10-step algorithm, shown in Fig. 5.2,
is explained in the following sub-sections.

5.2.1 Step I: Constant Design Parameters

The user defines the constant design parameters of the RCDPR, including:
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Fig. 5.1 – Example of reconfiguration procedure for a 4-cable suspended planar robot. The continuous lines
represent the cable associated to configuration Ca; the dashed lines represent the cables associated exclusively to
configuration Ca′ . In this example only 2 cables are reconfigured

• The number of cables, m.
• The cable properties, namely, the Young Modulus, E, the diameter, φc, and the linear stiffness coefficient, k.
• The data of the motorisation, including the nominal torque, τM , the nominal speed, ωM , the gearbox

transmission ratio, ρR and the winch diameter, φW .
• The position of the cable connection points on the moving platform, Bi, expressed in the local reference

frame Fp by the Cartesian coordinate vectors bp
i .

5.2.2 Step II: RCDPR Layout Parametrisation

The user provides a point grid where the RCDPR exit points can be located. While placing the exit points at the
points of this grid, a huge number of CDPR configurations can be generated. In order to limit the complexity of
the problem, the user can parametrise the cable layouts, correlating the relative position of the cable exit points,
Ai,c, i = 1, . . . ,m, with respect to each other and with respect to the reference frame Fb. For instance, the cable
exit points can be disposed at the vertices of a parallelepiped, as shown in Fig. 5.3. The Cartesian coordinates
vectors ab

i,c, i = 1, . . . ,m, are described by means of nv design parameters, uv,v = 1 . . . ,nv. In the previous example,
three design parameters, x1, x2, and x3 are sufficient to describe the exit point locations.

Once the exit point locations are parametrised, a set of discrete values, [u]v, is assigned to each design
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Fig. 5.2 – Scheme of the optimal reconfiguration planning method

Fig. 5.3 – Location and parametrisation of the exit points of a RCDPR, disposed on a parallelepiped layout

parameter. The number of values contained in the v-th set is equal to εv. The discrete values [u]v,v = 1, . . . ,nv are
defined according to the grid where the cable exit points can be located.

5.2.3 Step III: RCDPR Configuration Set

The algorithm combines the discrete values [u]v provided at Step II. Hence, nC = ∏
nv
v=1 εv configurations of

CDPRs are generated. Each j-th configuration, C j, is described by a design parameter vector, x j, containing the
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Fig. 5.4 – Computation of one of the possible optimal paths covering the whole set of prescribed segments. In this
example, the segments to be followed do not represent an Eulerian graph. To transform it into an Eulerian graph,
minimising the cost of the corresponding Eulerian cycles, it is necessary to add three segments (supplementary seg-
ments). An optimal path consists in visiting the via points in the following order: N1N5N2N3N5N4N3N4N1N5N2N1

design parameters uv,v = 1 . . . ,nv associated to this specific configuration. The configurations are analysed in the
subsequent steps of the algorithm.

5.2.4 Step IV: Task and Environment

The user provides the data related to the task to be performed and the robot environment, namely:

• The moving platform weight wg and the bounds on the external wrench applied on the moving platform, f ,
f , m, m.

• The working environment, modelled by means of simple geometric shapes or approximated by means of
polygonal meshes.

• A set of nvp via points. The via points are connected with each other by segments. All the segments should
be followed by the RCDPR moving platform CoM. The minimisation of the length of the corresponding path
is a routing inspection problem [EGL95]. The via points and the segments connecting them are represented
as a graph. The graph is modified in such a way to contain at least one Eulerian path (a trail which crosses
every edge exactly once) or an Eulerian cycle (an Eulerian path starting and ending at the same vertex).
The graph is solved by means of Fleury’s algorithm [EGL95]. The user can select one of the solutions,
representing the path that the moving platform of the RCDPR must follow during the task. The chosen
path is discretised into nP points, P = {Pi, i = 1, . . . ,nP}, where pi, i = 1, . . . ,nP, are the moving platform
poses associated to these points. The moving platform orientation associated to each pose is defined by the
user. Figure 5.4 presents an example of such a path generation in a case where the moving platform has to
follow 8 segments starting from the via point N1.

5.2.5 Step V: Constraint Functions

The user specifies a set of nφ constraint functions that the RCDPR should satisfy during the task. Some constraints
are presented in Sec. 4.1 of Chap. 4.
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5.2.6 Step VI: Feasibility Map

This step aims at identifying the RCDPR configurations C j, j = 1, . . . ,nC which, at a given point Pi ∈P , satisfies
all the constraints defined at Step V. In particular, any pose associated to the i-th point, Pi, and the j-th configuration,
C j, is said to be feasible if it satisfies all the nφ user defined constraints, φl(i, j), l = 1, . . . ,nφ . The information
associated to the pose feasibility is stored in the variables Fi, j, i = 1, . . . ,np, j = 1, . . . ,nC where i and j represent
the index of the analysed point and the index of the analysed configuration, respectively.

Definition 5.1.

Fi, j = 1 ⇐⇒
nφ

∑
l=1

φl(i, j) = 0 (5.1)

where φl(i, j), l = 1, . . . ,nφ is defined as :φl(i, j) = 0 ⇐⇒ the l−th constraint is satisfied for the j−th robot configuration at point Pi

φl(i, j) = 1 ⇐⇒ the l−th constraint is not satisfied for the j−th robot configuration at point Pi

A feasibility map is created according to the values of Fi, j, i = 1, . . . ,nP, j = 1, . . . ,nC . A simple feasibility map
is shown inFig. 5.5. The horizontal axis represents the points Pi, i = 1, . . . ,nP of the discretised prescribed path.
The vertical axis shows the values of Fi, j computed for four configurations C1, C2, C3 and C4. At a given point
Pi, Fi, j = 1 if the pose assumed by configuration C j is feasible and Fi, j = 0 if the pose assumed by configuration
C j is infeasible. From the feasibility map, it is apparent that, for a given configuration, several changes in the
feasibility conditions are possible between two consecutive points Pi and Pi+1. These feasibility changes are
named Feasibility Transitions (FT). Hereafter, Fi, j is said to be a Positive Feasibility Transition (PFT) when a
transition from an infeasible condition to a feasible one occurs at point Pi for configuration C j.

Definition 5.2.

Fi, j is a PFT if


Fi, j = 1

Fi−1, j = 0

Fi+1, j = 1

(5.2)

On the contrary, Fi, j is said to be a Negative Feasibility Transition (NFT) when a transition from a feasible
condition to an infeasible one occurs.

Definition 5.3.

Fi, j is a NFT if


Fi, j = 1

Fi+1, j = 0

Fi−1, j = 1

(5.3)

For instance, observing the example in Fig. 5.5, F6,3 is a PFT since F5,3 = 0 and F6,3 = F7,3 = 1. Moreover, F2,3 is
a NFT since F1,3 = F2,3 = 1 and F3,3 = 0. In the following sections, the possible reconfigurations of the RCDPR
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Fig. 5.5 – A feasibility map: The green arrows represent the possible reconfigurations, the red dots show the
Positive Feasibility Transitions (PFTs), and the blue dots show the Negative Feasibility Transitions (NFTs)

will be generated only in presence of a PFT or a NFT. In Fig. 5.5, a so-called isolated feasible transition can be
seen at F9,1 since the surrounding poses are not feasible, i.e., F8,1 = 0 and F10,1 = 0. Obviously, isolated feasible
transitions need not be taken into account during the computation of the optimal reconfiguration strategy.

5.2.7 Step VII: Configuration Selection

Some feasibility maps may be composed of a large number nC of configurations. The present step aims at reducing
the number of configurations of the feasibility map to be used in the following optimisation by analysing the
minimum number of configurations, nm, that can be used to follow the whole prescribed path P . Figure 5.6
illustrates this configuration selection procedure.

a. Feasibility Map Modification (Fig. 5.6a). The algorithm simplifies the data stored in the feasibility map. A
configuration may present isolated feasible transitions (as illustrated in Sec. 5.2.6) or isolated clusters of
few adjacent feasible poses. In both cases, it is not convenient to use these feasible poses. Isolated feasible
poses imply that the RCDPR should be reconfigured to cover only a small portion of the prescribed path
of the moving platform. This situation does not facilitate the achievement of practical goals such as the
minimisation of the number of reconfigurations to be performed to follow the whole prescribed path. Each
isolated feasible transition, Fi, j = 1, s.t. Fi−1, j = 0,Fi+1, j = 0 is transformed directly into an infeasible pose,
Fi, j = 0. Regarding the clusters composed of a few feasible poses, they are detected by analysing each
configuration C j, j = 1, . . . ,nC by means of a clustering algorithm: If the detected cluster contains a number
of feasible poses lower than a user defined threshold, h1, the poses belonging to this cluster are transformed
into infeasible ones.

b. Filtering (Fig. 5.6b). The algorithm computes the percentage of feasible poses, p j, associated to each
configuration C j:

p j =
∑

nP
i=1 Fi, j

nP
(5.4)

The configurations with a number of feasible poses lower than a user defined threshold, h2, are eliminated from
the feasibility map. As a result, nC ′ configurations remain in the feasibility map after this filtering process.

c. Dominant Solution Computation (Fig. 5.6c). The algorithm analyses the nC ′ configurations at disposal and
identifies the so-called dominated and dominant configurations.
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(a) Feasibility map modification

(b) Filtering

(c) Dominant solution computation

(d) Computation of the minimum number of configurations

Fig. 5.6 – Example of a feasibility map and minimum set of configurations to be used during the graph building
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Definition 5.4.

A dominated configuration is a configuration C j such that its feasible poses are all included in the set of
feasible poses of another configuration Ck and whose percentage of feasible poses, p j is strictly lower
than pk

C j is a dominated configuration if ∃Ck, k ̸= j s.t.

∀Fi, j, i = 1, . . . ,nP : Fi, j = 1 =⇒ Fi, k = 1

p j < pk

Consequently, the dominant configurations can be defined as follows.

Corollary 5.5.

A dominant configuration is a configuration such that its feasible poses are not all included in the set
of feasible poses of another configuration.

d. Computation of the Minimum Number of Configurations (Fig. 5.6d). Given nd dominant configurations, the
algorithm computes the minimum number of configurations, nm, that allow the moving platform to follow the
whole prescribed path while satisfying all constraint functions. The computation is performed by analysing
the possible combinations of η dominant configurations. The analysis starts with η = 1. The value of η is
increased until at least one combination covers all the points of the prescribed path. For a given η , the number
of combinations to be tested is equal to

(
η

nd

)
= nd !

η!(nd−η) . In the best case, only one configuration is sufficient,
nm = η = 1. In the worst case, all dominant configurations are required to follow the complete path, i.e.,
nm = η = nd .

e. Definition of the Configurations to Build the Graph. Among all the
(

nm
nd

)
= nd !

nm!(nd−nm)
combinations of nm

configurations, all the ones which proved to belong to a combination which covers entirely the prescribed path
are retained and will be used to build the graph of the reconfigurations (Step VIII). When the prescribed path
cannot be fully covered, due to an extremely cluttered environment or other external constraints, the algorithm
selects the set of configurations that let cover the largest number of points of the prescribed path.

An example of the configuration selection procedure, based on a 4-configurations feasibility map, is illustrated
in Fig. 5.6. C1 contains an isolated feasibility transition at P9 and configuration C3 has a cluster of two feasible
points at P1 and P2. With the threshold h1 = 3, the feasibility map is modified in such a way that F9,1 = 0, F1,3 = 0
and F2,3 = 0 (Fig. 5.6a). According to the number of feasible points of the four configurations, and with a threshold
h2 = 0.4, configuration C4 has been eliminated, since p4 = 0.3 (Fig. 5.6b). The analysis performed over the
remaining configurations shows that configuration C1 is dominated by configuration C2 (Fig. 5.6c). Configuration
C3 is also a dominant configuration. Therefore, C2 and C3 are the two dominant configurations of the problem at
hand that can be used to complete the task (Fig. 5.6d).
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5.2.8 Step VIII: Graph Building

A graph is generated from the reduced feasibility map obtained at Step VII. The nodes of the graph, denoted as
Ni, j,k, represent the possible reconfigurations the robot can perform at point Pi to switch from the actual feasible
configuration C j to another feasible configuration Ck. The nodes are connected by oriented arcs representing the
possible sequences of reconfigurations to be followed in order to follow the whole prescribed path. In fact, two
nodes Ni, j,k and Ni′, j′,k′ are adjacent when i′ > i, k = j′ and all the poses between Pi,k and Pi′,k are feasible:

Definition 5.6.

Ni, j,k and Ni′, j′,k′ are adjacent if


i′ > i

j′ = k

Fi′′,k = 1, ∀ i′′ s.t. i ≤ i′′ ≤ i′
(5.5)

The graph building algorithm is illustrated in Fig. 5.7. It consists of the following steps.

a. The first node, N0, is a virtual node. This node represents the starting point of the graph. It is associated to a
virtual point of the prescribed path, P0, and it is not assigned to any configuration. Its adjacent nodes, N1,0,k,
are associated to the point P1 and they are created only when a configuration Ck is feasible at point P1, i.e.,
F1, k = 1.

b. The intermediate nodes, Ni, j,k, are generated by analysing each feasibility transition of the feasibility map,
from point P2 to point Pnp−1. Nodes are generated in correspondence to NFTs and PFTs. Given a NFT, a node
Ni, j,k is generated if configuration Ck is feasible at points Pi and Pi+1.

Definition 5.7.

Ni, j,k is generated if


Fi, j is a NFT

Fi, k = 1

Fi+1, k = 1

(5.6)

Given a PFT, a node Ni,k, j is generated if configuration Ck is feasible at points Pi and Pi−1. Thus:

Definition 5.8.

Ni,k, j is generated if


Fi, j is a PFT

Fi, k = 1

Fi−1, k = 1

(5.7)

Thus, the following corollary is verified:
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Corollary 5.9.

According to Def. 5.7 and 5.8, a node Ni, j,k exists only if both configurations C j and Ck are
feasible at point Pi : Fi, j = 1 and Fi, k = 1

c. The ending node, Ne, is a virtual node. This node is associated to point Pnp and it is not assigned to any
configuration. Its adjacent nodes, NnP, j,e, are associated to point PnP and they are created only when a
configuration C j is feasible at point PnP , e.g., FnP, j = 1.

Finally, the adjacent nodes are connected to each other, according to Def. 5.6, and a cost is assigned to each
arc. Some relevant cost functions are discussed in Sec. 5.2.9.

Figure 5.8 shows the graph associated to the feasibility map given in Fig. 5.5.

5.2.9 Step IX: Cost Functions

The user defines a set of nµ cost functions, µt , t = 1, . . . ,nµ . The cost functions are used to compute the cost of
each arc of the graph. The cost functions to be used depend on the task to be performed by the RCDPR or on the
user preferences. Nevertheless, five relevant cost functions, bounded between 0 and 1, are presented thereafter.

1. Number of reconfigurations. The first cost function, µ1, aims at minimising the number of reconfigurations,
nr, defined as the number of exit point changes to be performed in order to switch from configuration C j to
configuration Ck:

µ1 =
nr

m
(5.8)

Note that µ1 is equal to 1 if all the cables have to be reconfigured. This cost function can be considered in
order to reduce the number of cable attaching/detaching operations.

2. Capacity margin. The second cost function, µ2, aims at maximising the capacity margin of the RCDPR [CR-
CCG15]. The capacity margin quantifies how "close" the RCDPR is to a non static equilibrium configuration,
with respect to the REWS, [we]r. Given two adjacent nodes, Ni, j,k and Ni′,k,k′ , µ2 is defined as the inverse
of the average of the capacity margin between points Pi and Pi′ of the prescribed path. The evaluation is
performed with respect to configuration Ck:

µ2 =
∑

i′
i′′=i Si′′,k

(i′− i)
(i′− i)

np
=

∑
i′
i′′=i Si′′,k

np
(5.9)

where the capacity margin Si′′,k, measured at points Pi′′ , i′′ = i, . . . , i′ for configuration Ck, is defined as
follows:

Si′′,k = min
j=1,...,n j

( min
l=1,...,nl

(si′′, j,l)) (5.10)

si′′, j,l being the signed distance from the j-th vertex of [we]r to the l-th face of [we]a. n j and nl are equal to
the number of vertices of [we]r and the number of faces of [we]a, respectively.
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Fig. 5.7 – Flowchart of the graph building algorithm
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Fig. 5.8 – Graph associated to the feasibility map shown in Fig. 5.5

It has to be noticed that vector we and matrix W (Eq. (2.12)) are not homogeneous. In order to compute the
capacity margin, they are normalised as follows:

Wn =

I3 03

03
1
rg
I3

W (5.11)

we, n =

I3 03

03
1
rg
I3

we (5.12)

where rg
2 = (1/m)∑

m
i=1 ∥bb

i ∥2
2 is the radius of gyration of the moving platform. I3 and 03 are the [3x3]

identity and null matrices, respectively.

3. Positioning error. The third cost function, µ3, aims at minimising the norm of the positioning error of the
RCDPR moving platform. Given two adjacent nodes, Ni, j,k and Ni′,k,k′ , this cost function is expressed as the
weighted mean of the 2-norm of the positioning error, ∥δ t∥2, of the moving platform between points Pi and
Pi′ of the prescribed path. The evaluation is performed with respect to configuration Ck:

µ3 = ∥δ t∥2
(i′− i)

np
=

∑
i′
i′′=i ∥δ ti′′,k∥2

i′− i
(i′− i)

np
=

∑
i′
i′′=i ∥δ ti′′,k∥2

nP
(5.13)

where ∥δ ti′′,k∥2 is the 2-norm of the positioning error vector at point Pi′′ for configuration Ck.

4. Cable tensions. The fourth cost function, µ4, aims at minimising the cable tensions. Given two adjacent
nodes, Ni, j,k and Ni′,k,k′ , µ4 is equal to the weighted mean of the norm of the cable tension vector, ∥τ∥2,
between points Pi and Pi′ along the prescribed path. As mentioned in Sec. 2.2, the minimal 2-norm of
cable tension vector is chosen as the solution to Eq. (2.12). The evaluation is performed with respect to
configuration Ck:

µ4 = ∥τ∥2
(i′− i)

np
=

∑
i′
i′′=i ∥τ i′′,k∥2

i′− i
(i′− i)

np
=

∑
i′
i′′=i ∥τ i′′,k∥2

np
(5.14)

where ∥τ i′′,k∥2 is the 2-norm of the cable tension vector at point Pi′′ for configuration Ck.

5. Cable tension variations. The fifth cost function, µ5, aims at minimising the cable tension variations along
the prescribed path. This function is defined by the weighted standard deviation στ of the norm of the cable
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tension vector, between points Pi and Pi′ . The evaluation is performed with respect to configuration Ck:

µ5 = στ

(i′− i)
np

=

√√√√∑
i′
i′′=i

(
||τ i′′,k||2 −||τ||2

)2

i′− i
(i′− i)

np
(5.15)

5.2.10 Step X: Dijkstra’s Algorithm

A Dijkstra’s algorithm [SLL01], [Dik59], [CCH14] is used to select the optimal reconfiguration strategy. It
searches for the graph in order to compute the shortest path connecting nodes N0 and Ne. The optimal sequence of
nodes to be crossed corresponds to the optimal sequence of reconfigurations to be performed to allow the moving
platform to follow the whole prescribed path. The optimisation can be performed by analysing different criteria,
and consequently different costs associated to the arcs of the graph. The cost of the optimal reconfiguration
strategy, Φt , is equal to the sum of the costs of the arcs connecting the nodes belonging to the shortest path.

5.3 Case Study I: A Planar RCDPR

A first case study is considered in order to illustrate the algorithm presented in Sec. 5.2. A closed path P ,
discretised into 164 points, Pi, i = 1, . . . ,164, has to be followed by the moving platform CoM. The path, lying in
the plane (O,xb,yb), is shown in Fig. 5.9. The orientation of the moving platform is constant. The axes of the
moving reference frame, Fp, are oriented as the ones of the fixed reference frame, Fb.

The RCDPR under study is composed of four cables. The properties of the cables have been selected as
follows: the Young Modulus, E, is equal to 100 GPa; their diameter φc is equal to 4 mm; their stiffness coefficient,
ki, is equal to 252 KN/m; the maximum allowed tension in the cables, τmax, is equal to 34950 N. A safety
coefficient η = 5 has been taken into account such that:

0 < τi ≤
τmax

η
, ∀i = 1, . . . ,4 (5.16)

The dimensions of the moving platform have been set to 0.2 m for the width, wp, and 0.3 m for the height, hp.
The Cartesian coordinates of points Bi, i = 1, . . . ,4, expressed in the moving platform frame Fp are the following:

bp
1 = [wp/2, hp/2]T (5.17)

bp
2 = [−wp/2, hp/2]T (5.18)

bp
3 = [−wp/2, −hp/2]T (5.19)

bp
4 = [wp/2, −hp/2]T (5.20)

The cable exit points, Ai, i = 1, . . . ,4 can be reconfigured, according to the following parametrisation:

ab
1 = [u1 +u3, u2]

T (5.21)

ab
2 = [−u1 +u3, u2]

T (5.22)

ab
3 = [−u1 +u3, −u2]

T (5.23)

ab
4 = [u1 +u3, −u2]

T (5.24)
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Fig. 5.9 – Case Study I: Description of the exit point parametrisation for the RCDPR

Tab. 5.1 – Possible configurations of the first case study

Configuration u1 [m] u2 [m] u3 [m]
C1 2.25 6.25 2.50
C2 4.00 7.75 -1.00
C3 4.00 7.00 -0.25
C4 2.25 6.25 -2.50

The parameters u1 and u2 represent half of the distance between the exit points along xb and yb, respectively. u3 is
the offset of the cable connection point positions along xb. The robot is symmetric with respect to xb, as shown in
Fig. 5.9.

An obstacle is included in the environment. It consists of a square of side length equal to 1 m. The obstacle is
centred at the origin of the reference frame Fb as shown in Fig. 5.9.

The moving platform can be subjected to an external wrench, we. We assume that the components of we are
bounded as follows:

−500N ≤ fx, fy ≤ 500N (5.25)

−7.5N ≤ mz ≤ 7.5N (5.26)

where fx and fy stand for the external force components along xb and yb axes, respectively. mz is the external
moment about the zb axis.

Four configurations have been considered in this case study. Their parameters are represented in Table 5.1.

The first analysis has been performed by optimising the total number of reconfigurations, µ1. The solution
proves that four reconfigurations are sufficient to complete the proposed task. The optimal result is shown in
Fig. 5.10. The feasibility map has been built by analysing the constraints assigned to each point of the prescribed
path namely, wrench feasibility, cable interferences and obstacle collisions.

For instance, configuration C4 is the unique feasible configuration at point P1 of the desired path. The NFT at
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Fig. 5.10 – Case Study I: Feasibility map and optimal solution with regard to the minimisation of µ1

Fig. 5.11 – Case Study I: Optimal RCDPR configurations, selected by the algorithm in order to complete the task
with respect to the minimum number of configurations µ1

point P16 requires a change of configuration, from C4 to C3. When a new NFT appears at point P28, the RCDPR
adopts the configuration C1. A PFT appears at point P97. The RCDPR returns to the configuration C3 and, later
on, to the configuration C4, following the desired path until its end.

The optimal configurations required to complete the task are shown in Fig. 5.11.

A second optimisation has been tested, aiming at minimising the positioning error of the moving platform, µ3,
due to the cable non-rigid nature. The result is similar to the one obtained by minimising µ1. In this specific case,
the first reconfiguration is performed at P18. The RCDPR switches from the configuration C4 to the configuration
C2 as shown in Fig. 5.12.

Both the optimal solutions analysed in this case study are represented in the graph shown in Fig. 5.13. The red
arrows indicate the path obtained by minimising µ1. The blue arrows describe the path obtained by minimising
the moving platform positioning error. The blue optimal path leads to a reduction of the positioning error, with
respect to the red optimal path, of almost 18%: The total cost of the red path, in terms of positioning error, is equal
to 1.7663 while the cost associated to the blue path is equal to 1.4545.

5.4 Case Study II: A Spatial RCDPR

The reconfiguration planning method introduced in Sec. sec:5.2 is implemented in the following case study, which
aims at painting and sandblasting the yellow tubular structure shown in Fig. 5.14. This structure is 5 m long, 2 m
wide at its extremities and 1.5 m wide at its centre and lies on the ground. The tubes have a diameter φt equal
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Fig. 5.12 – Case Study I: Feasibility map and optimal solution with regard to the minimisation of µ3

to 10 cm. The RCDPR should paint and sandblast both the inner and the outer faces of the structure. A robotic
arm, embarked on the moving platform, aims at manipulating the sandblasting and painting tools. Therefore, the
orientation of the moving platform can be kept constant and the xp, yp and zp axes of the moving platform frame
Fp are supposed to be parallel to the xb, yb and zb axes of the base frame Fb.

5.4.1 Problem Description

Constant Design Parameters (Step I)

The RCDPR consists of a moving platform connected to the base by m = 8 cables, as shown in Fig. 5.14. The
characteristics of the cables of the RCDPR are the following: The Young Modulus, E, is equal to 100 GPa; the
diameter, φc, is equal to 4 mm; their stiffness coefficient, ki, is equal to 252 KN/m; the structural maximum cable
tension is equal to 34.95 KN. A tension safety coefficient, ks1 = 5, has been applied in this case study so that
τmax1 = 6.99KN.

The base length, ls, is equal to 7 m, the base width, ws, is equal to 4.5 m and the base height, hs, is equal to 4 m.
The cables are connected to the base frame through some pulleys. The pulleys can be installed on a predefined
grid of locations, which are located on ten sliding bars. The sliding bars are installed on the lateral and top sides
of the base. Their motion is discretised with a constant step of 25 cm.

The cables are coiled and uncoiled on winches, which are actuated by electric motors. The characteristics
of the power system are the following: The nominal motor torque, τM , is equal to 45 Nm, the nominal speed,
ωM , is equal to 3000 rpm, the gearbox transmission ratio, ρR, is equal to 10, the diameter of the winches, ρW , is
equal to 15 cm. The cable tension limit τmax is equal to τmax = min{τmax1,τmax2} = 6000 N. Considering that

τmax2 =
2

φw
ρR τM = 6000N, τmax = τmax2 since the tension that can be provided to the cables is lower than τmax1.

The moving platform is represented in Fig. 5.15. Its width, wp, is equal to 20 cm, its length, lp, is equal to
20 cm and its height is equal to 25 cm. The Cartesian coordinates of points Bi, i = 1, . . . ,8, are expressed in frame
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Fig. 5.13 – Case Study I: Graph of the two optimisation problems

Fp as follows:

bp
1 =

[
−wp/2− c0,−lp/2,−hp/2

]
(5.27)

bp
2 =

[
−wp/2,−lp/2− c0,hp/2

]
(5.28)

bp
3 =

[
−wp/2− c0, lp/2,−hp/2

]
(5.29)

bp
4 =

[
−wp/2, lp/2+ c0,hp/2

]
(5.30)

bp
5 =

[
wp/2+ c0, lp/2,−hp/2

]
(5.31)

bp
6 =

[
wp/2, lp/2+ c0,hp/2

]
(5.32)

bp
7 =

[
wp/2+ c0,−lp/2,−hp/2

]
(5.33)

bp
8 =

[
wp/2,−lp/2− c0,hp/2

]
(5.34)
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Fig. 5.14 – Case study II: The yellow tubular structure should be sandblasted and painted by the RCDPR. The
RCDPR consists of a moving platform, eight cables and a base with some sliding bars

Fig. 5.15 – Case study II: Moving platform

where c0 is an offset used to avoid both the collisions between the cables and the parallel singularities of the
RCDPR (the wrench matrix W has not full rank). The offset helps to prevent this situation by introducing an
asymmetry between the layout of the cable exit points and the layout of the cable connection points on the moving
platform. In this case study, the offset is equal to 3.5 cm.

RCDPR Layout Parametrisation and Configuration Set (Steps II and III)

Two different layouts and parametrisations of the RCDPR are used in order to cover the inner and the outer areas
of the tubular structure. In the layout chosen for the outer faces of the structure, the exit points, Ai, i = 1, . . . ,8,
are located at the vertices of a parallelepiped. The Cartesian coordinates of points Ai, i = 1, . . . ,8 are parametrised
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Fig. 5.16 – Case study II: Parametrisation of the RCDPR while operating on the outer faces of the tubular structure

by means of four parameters v1, v2, v3 and v4 as shown in Fig. 5.16:

ab
1 = [v1 − ls/2 v4]

T ab
2 = [v1 − ls/2 v2]

T (5.35)

ab
3 = [v1 ls/2 v4]

T ab
4 = [v1 ls/2 v2]

T (5.36)

ab
5 = [v3 ls/2 v4]

T ab
6 = [v3 ls/2 v2]

T (5.37)

ab
7 = [v3 − ls/2 v4]

T ab
8 = [v3 − ls/2 v2]

T (5.38)

The four parameters can take the following values:

[v]1 = {−2.10,−1.85,−1.60,−1.35,−1.10,1.10,1.35,1.60,1.85,2.10} (5.39)

[v]2 = {0.10,0.35,0.60,0.85,1.10,1.90,2.15,2.40,2.65,2.90,3.15,3.40} (5.40)

[v]3 = {−2.10,−1.85,−1.60,−1.35,−1.10,1.10,1.35,1.60,1.85,2.10} (5.41)

[v]4 = {0.10,0.35,0.60,0.85,1.10,1.90,2.15,2.40,2.65,2.90,3.15,3.40} (5.42)

(5.43)

Those values for parameters v1, v2, v3 and v4 lead to nC = 14400 possible configurations of the RCDPR.

The exit point layout used to cover the inner faces of the structure is a parallelepiped too, as shown in Fig. 5.17.
However, considering the symmetry of the task, the exit points Ai, i = 1, . . . ,8 are located symmetrically with
respect to planes xbOzb and ybOzb. As a consequence, the three parameters w1, w2 and w3 are considered to be
sufficient to define the Cartesian coordinates of points Ai:

ab
1 = [−w1 − ls/2 w2]

T ab
2 = [−w1 − ls/2 w3]

T (5.44)

ab
3 = [−w1 ls/2 w2]

T ab
4 = [−w1 ls/2 w3]

T (5.45)

ab
5 = [w1 ls/2 w2]

T ab
6 = [w1 ls/2 w3]

T (5.46)

ab
7 = [w1 − ls/2 w2]

T ab
8 = [w1 − ls/2 w3]

T (5.47)
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Fig. 5.17 – Case study II: Parametrisation of the RCDPR while operating on the inner faces of the tubular structure

Parameters w1, w2 and w3 can take the following values:

[w]1 = {0,0.25,0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.25} (5.48)

[w]2 = {0.25,0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.25} (5.49)

[w]3 = {0.25,0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.25} (5.50)

(5.51)

Those values for parameters w1, w2 and w3 lead to nC = 810 possible configurations of the RCDPR.

Task and Environment (Step IV)

The weight of the moving platform and the embarked tools is equal to 31 Kg. The forces transmitted by the
painting and sandblasting tools to the moving platform are bounded as follows:

−30N ≤ fx, fy ≤ 30N (5.52)

fz =−310N (5.53)

The moments mx, my and mz about axes xb, yb and zb are neglected: mx,my,mz = 0. In order to complete the
operations, the CoM of the moving platform should follow the profile of the tubular structure with an offset
dt = 80cm with respect to the central axes of the tubes. Figure 5.18 shows the red segments and the green via
points that the moving platform should follow. According to the procedure described in Sec. 5.2.4, an Eulerian
path, Pout , and an Eulerian cycle, Pin, covering the outer and inner faces of the tubular structure, respectively,
can be defined. Pout is discretised into 450 points and Pin is discretised into 500 points. The Eulerian path,
Pout , is illustrated in Fig. 5.19. The moving platform should go through the green via points while respecting a
prescribed order. For instance, the moving platform should follow the Eulerian path, Pout , while passing through
23 points in sequence, namely from point P1 to point P23, as shown in Fig. 5.19. Note that points P1, P5, P11 and
P23 are coincident and are named P1,5,11,23.
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Fig. 5.18 – Case Study II: Sets of red segments and green via points to be covered by the moving platform CoM

Fig. 5.19 – Case Study II: Eulerian path Pout to be followed by the moving platform CoM when moving on the
outer faces of the tubular structure
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5.4.2 Results for the Outer Faces of the Tubular Structure

Feasibility Map and Configuration Selection (Steps VI and VII)

The nC = 14400 possible configurations of the RCDPR obtained in the previous section are analysed in order
to identify the segments of Pout that can be covered by each configuration. Then, the constraints introduced in
Sec. 5.2.5 are considered leading to trace a feasibility map composed of 14400 lines, each line corresponding to
one RCDPR configuration. The problem turns out to be fairly complex because of the large number of lines in
the feasibility map. In order to reduce the problem complexity, the configuration selection approach explained
in Sec. 5.2.7 is used to reduce the number of configurations to be considered with the following thresholds:
h1 = 20 and h2 = 0.25. As a result, nd = 76 dominant configurations are obtained among nC ′ = 1186 filtered
configurations. It is noteworthy that the minimum number of configurations required to complete the task amongst
the 76 dominant configurations is equal to nCm = 3. Moreover, 784 triplets of dominant configurations can be
used to cover the prescribed path Pout completely. Note that 57 configurations can be considered amongst the
76 dominant ones to generate the 784 triplets. The 19 remaining dominant configurations necessarily lead to a
combination of more than three dominant configurations to cover the whole prescribed path.

Graph Building and Cost Functions (Steps VIII and IX)

Figure 5.20 illustrates the graph obtained from the selected 57 dominant configurations. The graph is composed
of 452 nodes and 10752 arcs. Due to the size of this graph, only a partial representation has been provided in
Fig. 5.20.

The corresponding reconfiguration planning problem has been solved using a Dijkstra’s algorithm with respect
to each cost function, µi = i = 1, . . . ,5, proposed in Sec. 5.2.9. The optimal solutions associated to each of the
five cost functions are represented on the feasibility map shown in Fig. 5.21. For the sake of clarity, only the 10
configurations, C ∗

i , i = 1, . . . ,10, composing the five different optimal solutions are displayed in the feasibility
map. Table 5.2 gives the design parameters corresponding to those 10 configurations.

Results Analysis

From Fig. 5.21, it is apparent that configurations C ∗
[1−4] have the same feasibility map, as well as configurations

C ∗
[6−10]. Indeed, from Def. 5.4, two dominant configurations, generated by different design parameters, can

share the same feasibility map. Note that different configurations can present the same feasibility map but
generally provide different performances. For instance, configuration C ∗

10 is better in terms of cable tensions than
configurations C ∗

[6−9].

While using µ1 as the cost function (arc cost in Dijkstra’s algorithm), the number of required reconfigurations
to complete the task is minimised. Five reconfigurations turn out to be sufficient to complete the task. C ∗

10 is the
starting configuration. At the 11th point, P11, of the discretised path Pout , all the constraints of the optimisation
problem at hand are not satisfied anymore for configuration C ∗

10. As a consequence, the RCDPR switches from
configuration C ∗

10 to configuration C ∗
5 . During the reconfiguration, all the exit points have to be displaced, except

points A5 and A7. A NFT is then encountered at P155 and the RCDPR switches to configuration C ∗
9 . During this

reconfiguration, exit points A5 and A7 are not displaced. The RCDPR meets another NFT at P209 and six of the
exit points are displaced. Between points P209 and P294, the RCDPR remains in configuration C ∗

5 . Two other
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Fig. 5.20 – Case Study II: Partial representation of the reconfiguration graph. The graph is composed of 452 nodes
and 10752 arcs

Tab. 5.2 – Optimal configurations for the spatial RCDPR

Configuration v1 [m] v2 [m] v3 [m] v4 [m]
C ∗

1 -2.1 0.1 -1.1 3.4
C ∗

2 -1.85 0.1 -1.1 3.4
C ∗

3 -1.85 0.35 -1.1 3.4
C ∗

4 -1.85 0.85 -1.1 3.4
C ∗

5 -1.85 2.4 1.85 3.4
C ∗

6 1.1 0.1 1.85 2.65
C ∗

7 1.1 0.1 1.85 3.4
C ∗

8 1.1 0.1 2.1 3.4
C ∗

9 1.1 0.6 1.85 3.4
C ∗

10 1.1 0.85 1.85 3.4
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Fig. 5.21 – Case Study II: Feasibility map and optimal solutions for the spatial RCDPR
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Tab. 5.3 – Optimal reconfiguration planning and the associated cost functions for the outer faces of the tubular
structure. For each reconfiguration strategy, the optimised cost function is surrounded by a red box

Optimal Reconfiguration Planning Cost of the reconfiguration strategy
µ1 [] µ2 [N] µ3 [mm] µ4 [N] µ5 [N]

Optimal planning w.r.t. µ1 30 234.8 0.208 578.1 233.9
Optimal planning w.r.t. µ2 34 281.3 0.217 615.0 232.8
Optimal planning w.r.t. µ3 56 260.4 0.132 751.2 504.5
Optimal planning w.r.t. µ4 42 238.9 0.205 542.3 203.5
Optimal planning w.r.t. µ5 60 135.0 0.227 561.8 158.5

reconfigurations are necessary to reach the end of Pout , as shown in Fig. 5.21. Table 5.3 gives the optimal value
of each cost function µi = i = 1, . . . ,5, obtained with Dijkstra’s algorithm 1.

The optimisation performed with respect to µ2 leads to five reconfigurations, as well, while maximising the
capacity margin of the RCDPR. C ∗

7 is the starting configuration. The first reconfiguration occurs at point P80, in
presence of a PFT. The RCDPR switches to configuration C ∗

5 . The portions of Pout between P80 and P148 and
between P204 and P294 cover the upper face of the tubular structure. Configuration C ∗

5 is assigned to these portions
of Pout since it improves the capacity margin. In fact, it should be noticed that C ∗

5 is a suspended configuration
and suspended configurations usually provide a higher capacity margin than fully constrained ones. The fully
constrained configurations C ∗

6 and C ∗
2 are used on the lateral faces of the tubular structure. The RCDPS switches

to these configurations when a PFT or a NFT is encountered.

The optimisation performed while considering µ3 minimises the use of the suspended configuration C ∗
5 . In

order to maintain a static equilibrium, a fully constrained configuration usually requires higher cable tensions
than a suspended configuration. Larger cable tensions allow us to increase the RCDPR stiffness, reducing the
positioning errors. The positioning error optimisation leads to configuration C ∗

8 at the beginning of Pout . When a
NFT is encountered, at P111, the RCDPR switches to configuration C ∗

5 , coming back to configuration C ∗
8 when a

PFT is encountered at P148. Following the same principle, the RCDPR uses configuration C ∗
5 only when the fully

constrained configurations become infeasible. It goes back to configurations C ∗
1 or C ∗

8 , as soon as possible, when
following configuration C ∗

5 a PFT is encountered. It is noteworthy that, despite the high number of reconfigurations,
only three configurations (C ∗

1 , C ∗
5 and C ∗

8 ) are required to complete the task. The fully constrained ones, C ∗
1 and

C ∗
8 , are symmetric with respect to the plane ybOzb, as shown in Fig. 5.22. Furthermore, it has to be noticed that,

despite an improvement of the moving platform positioning error, the optimal reconfiguration planning increases
the cable tension average to 751.2 N and the average of the cable tension variations to 504.5 N.

The optimisations performed while considering µ4 and µ5 as cost functions are similar: The two solutions
assign the same configurations to a large portion of Pout . In both the optimisation problems, the configurations

1The reader is referred to as the following link http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/
TestExtMu1.avi to visualise the optimal reconfiguration planning associated to the first cost function µ1. The reader is referred to
as the following link http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestExtMu2.avi to visualise the
optimal reconfiguration planning associated to the second cost function µ2. The reader is referred to as the following link http://www.
irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestExtMu3.avi to visualise the optimal reconfiguration planning asso-
ciated to the third cost function µ3. The reader is referred to as the following link http://www.irccyn.ec-nantes.fr/~caro/MMT/
VideosMMTGCGG/TestExtMu4.avi to visualise the optimal reconfiguration planning associated to the fourth cost function µ4. The
reader is referred to as the following link http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestExtMu5.avi
to visualise the optimal reconfiguration planning associated to the fifth cost function µ5.

http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestExtMu1.avi
http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestExtMu1.avi
http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestExtMu2.avi
http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestExtMu3.avi
http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestExtMu3.avi
http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestExtMu4.avi
http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestExtMu4.avi
http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestExtMu5.avi
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Fig. 5.22 – Case Study II: Configurations C ∗
1 , C ∗

5 and C ∗
8 , composing the optimal reconfiguration planning with

respect to cost function µ3
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Fig. 5.23 – Configurations C ∗
4 , C ∗

5 and C ∗
10, composing the optimal reconfiguration planning with respect to cost

function µ5

taking part to the optimal solutions are C ∗
4 , C ∗

5 and C ∗
10. The optimal reconfiguration planning with respect

to µ4 requires the RCDPR to perform seven reconfigurations and displaces 42 exit points. The number of
reconfigurations is equal to 10 when the cable tension variation (represented by µ5) is optimised, and the number
of exit point displacements is equal to 60. Figure 5.23 illustrates the optimal reconfiguration scheme of the
RCDPR obtained for cost function µ5.

Figure 5.24 illustrates the parallel graph associated to the 832 quadruplets of dominant configurations that can
be used to cover the whole prescribed path Pout . The parallel graph of Fig. 5.24 is composed of 9 columns. The
first four columns groups the configurations according to the segments of Pout they are covering. These columns
of the parallel graph let define the composition of the quadruplets: the first column defines which configuration,
[Cbottom] = {C5, . . . ,C12}, is used to paint the lower part of the structure; the second and the third columns refer to
the configurations used to paint the lateral sides of the structure, [Cright ] = {C13,C14} and [Cle f t ] = {C15,C16};
the fourth column defines the configurations, [Cup] = {C17, . . . ,C42}, that can be used to paint the upper part of
the tubular structure. The remaining five columns of the parallel graph represent the cost functions µi, i = 1, . . . ,5.
The coloured lines in Fig. 5.24 describe the optimal reconfiguration schemes corresponding to the five objective
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Fig. 5.24 – Case Study II: Parallel graph associated to the 832 quadruplets of dominant configurations

functions µi, i = 1, . . . ,5.

In addition, the parallel graph allows the user to select the quadruplets whose optimal solutions satisfy a set of
requirements over all the five optimisation criteria. For instance, Fig. 5.25 illustrates the solutions for which the
five criteria µi, i = 1, . . . ,5 are lower than 30 % of their maximum value, respectively.

• According to the layout of configurations C ∗
i , i = 1, . . . ,11, all the cables are crossing with each other.

Crossing cable layouts provide better performance than non-crossing cable layouts. According to the layout
description given in Sec. 5.2.2, the algorithm has been able to detect automatically the best layout for the
RCDPR.

• The capacity margin, related to the cost function µ2, is strictly associated to the robot architecture (configu-
ration).

• A high positioning error, characterised by the cost function µ3, is always associated to low cable tensions,
and consequently to µ4. On the contrary, a low positioning error can be associated to both low and high
cable tensions.

• The cost µ4, measuring the norm of the cable tension vector, is usually proportional to the cost µ5, measuring
the standard variation of the cable tensions along the prescribed path.

5.4.3 Results for the Inner Faces of the Tubular Structure

According to Sec. 5.4.1, mixing the design parameters in [w]1, [w]2 and [w]3, nC = 810 configurations are obtained.
Performing the constraint analysis, a feasibility map has been built and simplified according to the configuration
selection procedure described in Sec. 5.2.7. The thresholds h1 and h2 have been initialised with the same values
used to compute the optimal reconfiguration strategy for the outer faces of the tubular structure.
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Fig. 5.25 – Case Study II: Filtered parallel graph corresponding to cost functions lower than 30% of their maximum
values

Tab. 5.4 – Optimal configurations and the associated cost functions for the inner faces of the tubular structure. For
each configuration, the optimal cost functions are surrounded by red boxes

Optimal Configurations µ2 [N] µ3 [µm] µ4 [N] µ5 [N]

w1 =0.75 m, w2 =2 m, w3 =1.25 m (See Fig. 5.26) 526.31 157 841.99 365.67
w1 =0.75 m, w2 =2 m, w3 =0.25 m (See Fig. 5.27) 166.67 331 625.81 205.69

The analysis of the feasibility map leads to nd = 14 dominant configurations. Each of these configurations
allows the moving platform to cover entirely the path Pin without any reconfiguration of the robot. Hence, the
task can be performed by selecting only one of the dominant configurations. Among those configurations, two of
them lead to some optimal solutions.

The configuration whose design parameters w1, w2 and w3 are equal to 0.75 m, 2 m and 0.25 m, respectively,
minimises the cost functions µ2 and µ3, according to the values given in Table 5.4. According to this configuration,
the RCDPR is fully constrained, as shown in Fig. 5.26. The cables of the RCDPR are crossing (but without any
cable-cable collision), improving the RCDPR accuracy and stiffness.

The configuration whose design parameters w1, w2 and w3 are equal to 0.75 m, 2 m and 1.25 m, respectively,
is shown in Fig. 5.27. The RCDPR is suspended above the prescribed path. Being suspended, the cable tensions
are minimised. This configuration optimises the cost functions µ4 and µ5. The optimal values are collected in
Table 5.4 1.

1The reader is referred to as the following link http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestInt.
avi to visualise the optimal reconfiguration planning associated to cost functions µ4 and µ5 to cover the inner faces of the tubular structure.

http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestInt.avi
http://www.irccyn.ec-nantes.fr/~caro/MMT/VideosMMTGCGG/TestInt.avi
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Fig. 5.26 – Case Study II: RCDPR configuration, with w1 =0.75 m, w2 =2 m and w3 =0.25 m, which optimises µ2
and µ3 for the inner prescribed path Pin

Fig. 5.27 – Case Study II: RCDPR configuration, with w1 =0.75 m, w2 =2 m and w3 ==1.25 m, which optimises
µ4 and µ5 for the inner prescribed path Pin
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Tab. 5.5 – Analysis of the computational time and number of operations for the second case study

Algorithm Step Computational Time [s] Nb of Operations Complexity of Operations

Step III (RCDPR Configuration Set) 0.019 ∏
nv
v=1 εv Low

Step VI (Feasibility Map) 142335 ∏
nv
v=1 εvnp High

Step VII (Configuration Selection) 10.61 Non Predictable Medium
Step VIII (Graph Building) 492.64 npnφ High
Step X (Dijkstra’s Algorithm) 0.018 Non Predictable Low

5.4.4 Computational Time

The simulation has been performed on an Intel(R) Core(TM) i7-3630QM CPU @ 2.40 Ghz, with 8 GB of
RAM. The results collected in Table 5.5 show that Step III (RCDPR Configuration Set) and Step X (Dijkstra’s
Algorithm), presented inSec. 5.2, are performed in less than 0.02 s. On the contrary, Step VI (Feasibility Map),
which involves the constraint analysis of a large number of configurations, required 39 hours of computation.
Step VII (Configuration Selection) and Step VIII (Graph Building) required 10.1 s and 8.2 minutes of computation,
respectively. The low computational effort required to perform Step VIII is due to the configuration selection
performed at Step VII. Building the graph using the full set of configurations generated at Step III would require
several days of intensive computation. The result would lead to such a wide graph that the analysis will be
prohibitive.

5.5 Conclusions

This chapter dealt with RCDPRs discrete reconfiguration planning [GCG+15c, GCGG16, GGC+16b]. The
considered task consists of low force operations, such as sandblasting and painting, in cluttered industrial
environments and the RCDPR reconfigurability results from movable cable exit points. These exit points can be
positioned at a possibly large but discrete set of possible locations. Means to select and optimise the sequence of
discrete reconfigurations allowing the RCDPR moving platform to follow a prescribed path were introduced. A
so-called feasibility map was first defined and generated. This map reflects the feasibility of all possible RCDPR
configurations at all points of the discretised prescribed path, with respect to a set of constraints. In this chapter,
the latter set included wrench-feasibility, cable collision, and pose error constraints. Then, the feasibility map is
analysed and filtered in order to determine minimum sets of configurations, which allow the RCDPR to follow the
whole prescribed path. Based on these minimum sets, a graph-based approach was proposed to solve the discrete
reconfiguration planning problem by providing a reconfiguration sequence which is optimal with respect to one of
several possible user-defined cost functions.

A planar case study has been used in order to validate the proposed reconfiguration strategy. The results show
that the algorithm is able to compute the optimal solutions with respect to a set of configurations proposed by
the user. The results have been extended to a three-dimensional case study, which consists in following a path
covering the whole inner and outer parts a tubular structure. The results notably show that an optimal solution,
which minimises the number of required RCDPR reconfigurations, can be found.

The proposed discrete reconfiguration planning method may require further improvements, notably in order to
reduce the computational time of the constraint analysis (feasibility map). As part of our future work, heuristic
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approaches will be considered. Indeed, with such approaches, it is presumably possible to obtain solutions to the
discrete reconfiguration problem without analysing all the constraints of all the possible configurations. Such
solutions would not be optimal as the ones considered in this chapter but should be much faster to compute.
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6.1 General Conclusions

During the last decades, several research studies have been performed in the field of Cable-Driven Parallel Robots
(CDPRs). CDPRs provide several advantages, including a wide workspace and a high payload to weight ratio.
However, when the working environment is cluttered, CDPR cannot be used to accomplish complicated tasks.
Under these circumstances, it may be necessary to use Reconfigurable Cable-Driven Parallel Robots (RCDPRs).
The geometric parameters of RCDPRs can be modified in order to avoid the obstacles contained in the working
environment and improve the RCDPR performances.

The research work presented in this manuscript is mainly related to the development of a design and a
reconfiguration strategy for RCDPR whose exit points can be displaced on a large discrete set of locations.

6.1.1 Modelling

In order to define a design and a reconfiguration strategy for RCDPRs, it is necessary to describe the static,
kinematic, and dynamic behaviour of such RCDPRs by means of mathematical models. Some models have been
presented in Chap. 2. Most of these models, e.g. the geometric, kinematic and dynamic models, consider the
cables as linear segments. When the mass of the cables is not negligible, cables have been described by means
of the sagging model. The sagging cable model has been used uniquely to define the quasi-static model of the
RCDPRs.

Despite the previous models are well known in the literature, the elasto-static models of CDPRs and RCDPRs
require further improvements. The elasto-static model can be used to analyse the displacement of the moving
platform due to the non-rigid nature of the cables or the compliance of moving platform. The analysis is usually
performed while observing the stiffness matrix of the RCDPR. In this manuscript, the stiffness matrix of CDPRs
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and RCDPRs with linear non-rigid cables and pulleys has been expressed, by developing the model using a
different formalism with respect to the ones proposed in the literature. By using a similar approach, the stiffness
matrix of RCDPRs with sagging cables has been analysed. While in the literature the active stiffness component
of the stiffness matrix is usually neglected, both the active and passive stiffness matrices have been taken into
account in the proposed model. The model has been computed by differentiating the external wrench acting on the
moving platform with respect to the pose of the moving platform.

6.1.2 Workspace Analysis

Designing a RCDPR requires the computation and the analysis of the RCDPR capabilities, including the size and
the shape of its workspace. In Chap. 3, the workspace of a RCDPR is computed by verifying the poses of the
moving platform where the cables are able to assure the static or dynamic equilibrium of the moving platform. A
mathematical description of the workspaces appearing in the literature has been provided, including: the Wrench
Feasible Workspace (WFW), the Dynamic Feasible Workspace (DFW), the Static Feasible Workspace (SFW), the
Interference Free Workspace (IFW), and the Collision Free Workspace (CFW). Thus, two novel workspace have
been defined: the Twist Feasible Workspace (TFW) [GCG15a], and the Improved Dynamic Feasible Workspace
(IDFW) [GGC16a].

The TFW has been defined as the set of twist feasible poses of the moving platform Centre of Mass (CoM). A
pose is twist feasible if the CDPR is able to provide a given set of twists to the moving platform, while considering
the torque and the power limitations of the actuators and the winches. From a mathematical point of view, the
bounds of this workspace can be represented by a system of linear equations, similarly to the WFW. The bounds
have been computed according to the shifting hyperplanes method.

The DFW is defined in the literature as the set of dynamic feasible poses of the moving platform CoM. A
pose is dynamic feasible if the cables are able to transmit on the platform the tensions required to displace the
moving platform within a given range of accelerations. In the literature, the DFW contemplates only the inertia of
the moving platform, while neglecting the external wrenches applied on the moving platform and the Coriolis
forces. In this manuscript, the following components are accounted for the IDFW: the external wrench acting
on the moving platform, the weight of the moving platform, the inertia of the moving platform, Coriolis and
centrifugal forces of the moving platform. Coriolis and centrifugal forces have been considered as constant in
order to preserve the linear form of the dynamic equations. The bounds of the IDFW are obtained according to the
shifting hyperplanes method.

6.1.3 Design of CDPRs and RCDPRs

The design of CDPRs has been formulated as an optimisation problem, aiming at optimising one or more
objective function(s) [GCG+14]. Several objective functions have been presented in this manuscript, including:
the maximisation of the workspace size and the maximisation of the Minimum Degree of Dynamic Constraint
Satisfaction (MDoDCS). The solutions have been computed while considering a set of user-defined constraints
over the CDPR workspaces and performances. The most significant constraints have been described in Chap. 4,
including: wrench, twist and dynamic feasibility, cable interferences, and collisions between cables and the
environment. A case study has been illustrated in order to validate the efficacy of the proposed design problem.

When the task to be performed is complicated, and the working environment is cluttered, CDPRs may not be
able to accomplish the task. A solution may be provided by RCDPRs. This manuscript mainly focuses on discrete
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RCDPRs, where the reconfiguration of cable exit points, defined as the connection points of the cables on the
fixed base of the RCDPR, is performed by attaching and detaching the cables on a predefined grid of locations.

A novel design strategy for discrete RCDPRs has been proposed [GCG+15b]. This design strategy assumes
that the number of configurations necessary to complete the task can be fixed by the designer according to his/her
experience. The prescribed path, or the prescribed workspace, are divided into several parts. Each part has to
be covered by one and only one configuration. The configurations are computed by means of an optimisation
algorithm, which optimises one or more global objective function(s) while satisfying a set of user-defined
constraints. A case study has been proposed in order to validate the RCDPR design strategy. A RCDPR has to
paint and sandblast a tubular structure. The design strategy provided several optimal solutions to the case study,
minimising hierarchically the number of exit point displacements, the size of the RCDPR and the moving platform
displacement due to the non-rigid nature of the cables. The computation of the optimal solution, performed on a
Intelr CoreTM i7-3630QM 2.40 GHz, required 19 hours of computation. More complicated tasks may require
high computational efforts.

6.1.4 Reconfiguration Strategy for discrete RCDPRs

When the working environment is complex, and it is not possible to predict the number of configurations needed
to complete the tasks, a reconfiguration strategy is necessary to define the optimal placements of the RCDPR exit
points [GCG+15c, GCGG16, GGC+16b].

In this manuscript, we proposed an optimal reconfiguration strategy for optimising and selecting the sequence
of discrete reconfigurations allowing the RCDPR moving platform to follow a prescribed path. The exit points
can be positioned at a possibly large but discrete set of possible locations. A so-called feasibility map was first
defined and generated. This map reflects the feasibility of all possible RCDPR configurations at all points of the
discretised prescribed path, with respect to a set of constraints, including: wrench-feasibility, cable collision, and
pose error constraints. Then, the feasibility map is analysed and filtered out in order to determine the minimum
sets of configurations, which allow the RCDPR to follow the whole prescribed path. Based on these minimum
sets, a graph-based approach was proposed to solve the discrete reconfiguration planning problem by providing a
reconfiguration sequence, which is optimal with respect to one of several possible user-defined cost functions.

Two case studies have been proposed: (i) a planar case study, which validates the proposed reconfiguration
strategy and whose results show that the algorithm is able to compute the optimal solutions with respect to a set
of configurations proposed by the user; (ii) a three-dimensional case study, which consists in following a path
covering the whole inner and outer parts a tubular structure. The results notably show that an optimal solution,
which minimises the number of required RCDPR reconfigurations, can be found.

6.2 Perspectives

This manuscript focuses on the modelling, design and reconfiguration of Reconfigurable Cable-Driven Parallel
Robots (RCDPRs). Tools for the elasto-static, kinematic and dynamic modelling of RCDPRs have been provided.
These tools have been used in order to analyse the characteristics of RCDPRs, including their workspace.
A reconfiguration strategy for discrete RCDPRs has been provided. Based on the previous discussions and
developments, summarised in Sec. 6.1, some perspectives for future work are proposed hereafter.
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6.2.1 Modelling

The elasto-static models introduced in Chap. 2 are based on the linear and the sagging models of cables. While
most of the elasto-static models in the literature neglect the effects of the active stiffness matrix, the contribution of
this component on the CDPR stiffness may be relevant according to the external wrenches applied on the moving
platform. A detailed analysis of the effect of the active stiffness matrix onto the stiffness of the CDPR should
be performed. This analysis should define the CDPR layouts and the working conditions for which the active
stiffness matrix is not negligible with respect to the passive stiffness matrix. The analysis should also take into
account the pulleys in the proposed sagging cable stiffness model described in Sec. 2.3.3. Finally, more efficient
numerical approaches may be investigated in order to reduce the computational time required to compute the
elasto-static model. Finally, the obtained elasto-static model should be validated experimentally and should be
efficient from a practical viewpoint.

6.2.2 Workspace Analysis

The workspace of CDPRs and RCDPRs can be analysed according to several criteria, e.g. the static, kinematic and
dynamic behaviour of the moving platform. Chapter 3 describes some relevant workspaces, including: the Static
Feasible Workspace (SFW), the Wrench Feasible Workspace (WFW) and the Dynamic Feasible Workspace (DFW).
Two workspaces have been introduced in this thesis: the Twist Feasible Workspace (TFW) and the Improved
Dynamic Feasible Workspace (IDFW). According to the working conditions of the CDPR, its workspace may be
defined as the intersection of the proposed workspaces. A formal definition of the generalised CDPR workspaces
should be defined. A Global Minimum Degree of Constraint Satisfaction (GMDoCS) should be associated to this
workspace, proving a comprehensive tool quantifying the workspace capabilities of a CDPR.

6.2.3 Reconfiguration of the Cable Connection Points on the Moving Platform

Several components of a RCDPR may be reconfigured. This manuscript focused on the reconfiguration of cable
exit points. However, the layout and the geometry of a RCDPR can be reconfigured by displacing the cable
connection points on the moving platform.

Changes in the location of the cable connection points may introduce several advantages, e.g. the increase of
the RCDPR workspace size. The influence of positions of the cable connection points onto the workspace of the
RCDPR should be analysed. Eventually, a reconfiguration strategy of the cable connection points on the moving
platform should be developed.

6.2.4 Routing of the Cables

The cables that connect the winches to the moving platform are oriented into the workspace by means of passive
pulleys located on the exit points. The displacement of the exit points of a RCDPR amounts to the displacement
of the pulleys installed at the exit point locations. According to the complexity of the RCDPR, and the grid of
possible exit point locations, cables may be routed to the exit points by means of supplementary passive pulleys,
as shown in Fig. 6.1. Some of these pulleys may be fixed to the base of the RCDPR while the remaining pulleys
can be displaced.
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Fig. 6.1 – Example of cable routing for a RCDPR, described in the European Patent EP2982483 (A2) [GGC+16b].
This design has been developed in the framework of the IRT Jules Verne (IRT JV) CAROCA project

Accordingly, a strategy to determine the optimal routing of the cables should be developed. This strategy
should guarantee the possibility to displace the passive pulleys of the RCDPR without producing any interference
between the cables. The number of required pulleys to guide the cables should be minimised and their displacement
should be simplified, reducing the complexity of the RCDPR. The passive pulleys may have one, two or three
degree(s) of freedom.

6.2.5 Macro-micro RCDPRs and Control Laws

According to the task specification, the RCDPR may consist of a macro-micro system. The micro system, such as
a robotic arm, may be embarked onto the platform of the RCDPR. In that case, the robotic arm transfers an external
wrench onto the moving platform. This wrench is generated by the motion of the robotic arm and the action
performed by its end-effector. According to this context, the stability of the mobile platform can be influenced by
the micro system. Furthermore, the micro system could also induce vibrations on the mobile platform.

Further research works should be dedicated to the analysis of the influence of such a macro-micro system onto
the moving-platform of the RCDPR. A design strategy and a control strategy should be developed specifically
for this kind of systems. The design and control strategies should aim at compensating the potential vibrations
induced by both the micro and macro systems. The control strategy should integrate the trajectory planning. The
trajectory planning has to prevent any interference between the cables. Furthermore, it should coordinate and
optimise the motion of the micro and macro systems.





Bibliography

[ABAASV11] A. Alikhani, S. Behzadipour, A. Alasty, and S. Ali Sadough Vanini. Design of a large-scale
cable-driven robot with translational motion. Robotics and Computer-Integrated Manufacturing,
27:357–366, July 2011.

[ABB] ABB [Online]. Available: http://www.abb.com/.

[ABD92] J. Albus, R. Bostelman, and N. Dagalakis. The NIST spider, a robot crane. J. of Research of the
Nat. Inst. of Standards and Technology, 97(3):373–385, July 1992.

[ABJ03] J. Albus, R. Bostelman, and A. Jacoff. Modular suspended manipulator, May 2003.

[AC12] K. Azizian and P. Cardou. The dimensional synthesis of planar parallel cable-driven mechanisms
through convex relaxations. ASME J. of Mechanisms and Robotics, 4(3), July 2012.

[AC13] K. Azizian and P. Cardou. The dimensional synthesis of spatial cable-driven parallel mechanisms.
ASME J. of Mechanisms and Robotics, 5(4), Sept. 2013.

[AC15] G. Abbasnejad and M. Carricato. Direct geometrico-static problem of underconstrained cable-
driven parallel robots with n cables. IEEE Trans. on Robotics, 31(2):468–478, Apr. 2015.

[Ars10] M. Arsenault. Optimization of the prestress stable wrench closure workspace of planar parallel
three-degree-of-freedom cable-driven mechanisms with four cables. In Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA 2010), pages 1182–1187, Anchorage, AK, May 2010.

[Ars13] M. Arsenault. Workspace and stiffness analysis of a three-degree-of-freedom spatial cable-
suspended parallel mechanism while considering cable mass. Mechanism and Machine Theory,
66:1–13, Aug. 2013.

[BADJ94] R. Bostelman, J. Albus, N. Dagalakis, and A. Jacoff. Applications of the NIST RoboCrane. In
Proc. of the 5th Int. Symp. on Robotics and Manufacturing, Maui, HI, Aug. 1994.

[BBGA07] S. Briot, C. Baradat, S. Guegan, and V.A. Arakelian. Contribution to the mechanical behavior
improvement of the robotic navigation device surgiscope. In Proc. of the ASME Int. Design Eng.
Tech. Conf. & Comput. and Inform. in Eng. Conf. (IDETC/CIE 2007), pages 653–661, Las Vegas,
NV, Sept. 2007.

[BEM+97] C. Bonivento, A. Eusebi, C. Melchiorri, M. Montanari, and G. Vassura. Wireman: A portable wire
manipulator for touch-rendering of bas-relief virtual surfaces. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA 1997), pages 13–18, Monterrey, CA, July 1997.

[BG05] G. Barrette and C.M. Gosselin. Determination of the dynamic workspace of cable-driven planar
parallel mechanisms. ASME J. of Mech. Design, 127(2):242–248, 2005.

[BG07] S. Bouchard and C.M. Gosselin. Workspace optimization of a very large cable-driven parallel
mechanism for a radiotelescope application. In Proc. of the ASME Int. Design Eng. Tech. Conf. &
Comput.and Inform. in Eng. Conf. (IDETC/CIE 2007), pages 963–970, Las Vegas, NV, Sept. 2007.

[BGM08] S. Bouchard, C. M. Gosselin, and B. Moore. On the ability of a cable-driven robot to generate a
prescribed set of wrenches. In Proc. of the ASME Int. Design Eng. Tech. Conf. & Comput. and
Inform. in Eng. Conf. (IDETC/CIE 2008), pages 47–58, Brooklyn, NY, Aug. 2008.



130 Bibliography

[BJP+00] R. Bostelman, A. Jacoff, F. Proctor, T. Kramer, and A. Wavering. Cable-based reconfigurable
machines for large scale manufacturing. In Proc. of the 2000 Japan-USA Symp. on Flexible
Automation, Ann Arbor, MI, July 2000.

[BJS+09] P.H. Borgstrm, B.L. Jordan, G.S Sukhatme, M.A. Batalin, and W.J Kaiser. Rapid computation
of optimally safe tension distributions for parallel cable-driven robots. IEEE Trans. on Robotics,
25(6):1271–1281, Dec. 2009.

[BK05a] S. Behzadipour and A. Khajepour. A new cable-based parallel robot with three dof. J. of Multibody
Syst. Dynamics, 13(4):371–383, May 2005.

[BK05b] S. Behzadipour and A. Khajepour. Stiffness of cable-based parallel manipulators with application
to stability analysis. ASME J. of Mech. Design, 128(1):303–310, Apr. 2005.

[Bla15] L. Blanchet. Contribution à la modélisation de robots à câbles pour leur commande et leur
conception. PhD thesis, Université de Nice Sophia-Antipolis, Mai 2015.

[BMB+09a] T. Bruckmann, L. Mikelsons, T. Brandt, M. Hiller, and D. Schramm. Design approaches for wire
robots. In Proc. of the ASME Int. Design Eng. Tech. Conf. & Comput. and Inform. in Eng. Conf.
(IDETC/CIE 2009), pages 25–34, San Diego, CA, Aug. 2009.

[BMB+09b] T. Bruckmann, L. Mikelsons, T. Brandt, M. Hiller, D. Schramm, A. Pott, and M. Abdel-Maskoud.
A novel tensed mechanism for simulation of maneuvers in wind tunnels. In Proc. of the ASME Int.
Design Eng. Tech. Conf. & Comput. and Inform. in Eng. Conf. (IDETC/CIE 2009), pages 17–24,
San Diego, CA, Aug. 2009.

[BMC13] A. Berti, J.-P. Merlet, and M. Carricato. Solving the direct geometrico-static problem of 3-3
cable-driven parallel robots by interval analysis: Preliminary results. In Cable-Driven Parallel
Robots, volume 12 of Mechanisms and Machine Science, pages 251–268. Springer, 2013.

[BMC15] A. Berti, J.-P. Merlet, and M. Carricato. Workspace analysis of redundant cable-suspended parallel
robots. In Cable-Driven Parallel Robots, volume 32 of Mechanisms and Machine Science, pages
41–53. Springer, 2015.

[BMC16] A. Berti, J.-P. Merlet, and M. Carricato. Solving the direct geometrico-static problem of un-
derconstrained cable-driven parallel robots by interval analysis. Int. J. of Robotics Research,
35(6):723–739, 2016.

[BMHS07] T. Bruckmann, L. Mikelsons, M. Hiller, and D. Schramm. A new force calculation algorithm for
tendon-based parallel manipulators. In Proc. of the IEEE/ASME Int. Conf. on Advanced Intelligent
Mechatronics (AIM 2007), pages 1–6, Zurich, Switzerland, Sept. 2007.

[BR15] M. Beck and S. Robins. Computing the Continous Discretely, chapter Zonotopes. Springer, 2015.

[BREU06] P. Bosscher, A.T. Riechel, and I. Ebert-Uphoff. Wrench-feasible workspace generation for cable-
driven robots. IEEE Trans. on Robotics, 22(5):890–902, Oct. 2006.

[Bru10] T. Bruckmann. Auslegung und Betrieb redundanter paralleler Seilroboter. PhD thesis, Universität
Duisburg-Essen, Sept. 2010.

[BWT05] P. Bosscher, R.L. Williams, and M. Tummino. A concept for rapidly-deployable cable robot search
and rescue systems. In Proc. of the ASME Int. Design Eng. Tech. Conf. & Comput.and Inform. in
Eng. Conf. (IDETC/CIE 2005), pages 589–598, Long Beach, CA, Sept. 2005.

[CA13] M. Carricato and G. Abbasnejad. Direct geometrico-static analysis of under-constrained cable-
driven parallel robots with 4 cables. In Cable-Driven Parallel Robots, volume 12 of Mechanisms
and Machine Science, pages 269–285. Springer, 2013.

[Caba] CableBOT [Online]. Available: http://www.cablebot.eu/en/.

[Cabb] Cablecam [Online]. Available: www.cablecam.com.

[Cap67] K.L. Cappel. Motion simulator, Jan. 1967.



Bibliography 131

[Car13] M. Carricato. Direct geometrico-static problem of underconstrained cable-driven parallel robots
with three cables. ASME J. of Mechanisms and Robotics, 5(3), June 2013.

[CC13] J.-F. Collard and P. Cardou. Computing the lowest equilibrium pose of a cable-suspended rigid
body. Optimization and Engineering, 14(3):457–476, Sept. 2013.

[CCH14] S. Caro, D. Chablat, and Y. Hu. Algorithm for the actuation mode selection of the parallel
manipulator NaVARo. In Proc. of the ASME Int. Design Eng. Tech. Conf. & Comput. and Inform.
in Eng. Conf. (IDETC/CIE 2014), volume 5B, Buffalo, NY, Aug. 2014.

[CE90] R. Clavel and Ecublens. Device for the movement and positioning of an element in space, Dec.
1990.

[CM13] M. Carricato and J.-P. Merlet. Stability analysis of underconstrained cable-driven parallel robots.
IEEE Trans. on Robotics, 29(1), Feb. 2013.

[CRCCG15] A. Cruz Ruiz, S. Caro, P. Cardou, and F. Guay. Arachnis : Analysis of robots actuated by
cables with handy and neat interface software. In Cable-Driven Parallel Robots, volume 32 of
Mechanisms and Machine Science, pages 293–305. Springer, 2015.

[CW03] D. Chablat and P. Wenger. Architecture optimization of a 3-dof translational parallel mechanism for
machining applications, the orthoglide. IEEE Tans. on Robotics and Automation, 19(3):403–410,
June 2003.

[DDB13] J. Du, W. Ding, and H. Bao. Cable vibration analysis for large workspace cable-driven parallel
manipulators. In Cable-Driven Parallel Robots, volume 12 of Mechanisms and Machine Science,
pages 437–449. Springer, 2013.

[DGAD12] T. Dallej, M. Gouttefarde, N. Andreff, and R. Dahmouche. Vision-based modeling and control of
large-dimension cable-driven parallel robots. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Syst. (IROS 2012), pages 1581–1586, Vilamoura, Portugal, Oct. 2012.

[Dik59] E.W. Dikstra. A note on two problems in connection with graphs. Numerische Mathematik,
1(1):269–271, 1959.

[DLP+07] J.-D. Deschenes, P. Lambert, D. Perrault, N. Martel-Brisson, N. Zoso, A. Zaccarin, P. Herbert,
S. Bouchard, and C. Gosselin. A cable-driven parallel mechanism for capturing object appearance
from multiple viewpoints. In 6th Int. Conf. on 3-D Digital Imaging and Modeling, Montréal, QC,
Aug. 2007.

[DM09] X. Diao and O. Ma. Vibration analysis of cable-driven parallel manipulators. Multibody System
Dynamics, 21(4):347–460, 2009.

[DPL07] L. Dominjon, L. Perret, and A. Lécuyer. Novel devices and interaction techniques for human-scale
haptics. The Visual Computer, 23(4):257–266, Apr. 2007.

[DQZZ09] B.Y. Duan, Y.Y. Qiu, F.S. Zhang, and B. Zi. On design and experiment of the feed cable-suspended
structure for super antenna. Mechatronics, 19(4):503–509, June 2009.

[Dua99] B.Y. Duan. A new design project of the line feed structure for large spherical radio telescope and
its nonlinear dynamic analysis. Mechatronics, 9(1):53–64, Feb. 1999.

[EGGC15] G. El-Ghazaly, M. Gouttefarde, and V. Creuze. Hybrid cable-thruster actuated underwater vehicle-
manipulator systems: A study on force capabilities. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Syst. (IROS 2015), Hamburg, Germany, Sept. 2015.

[EGL95] H.A. Eiselt, Michel Gendreau, and Gilbert Laporte. Arc routing problems, Part I: The chinese
postman problem. Operational Research, 43(2):231–242, 1995.

[EUV04] I. Ebert-Uphoff and P.A. Voglewede. On the connections between cable-driven robots, parallel
robots and grasping. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA 2004),
volume 5, pages 4521–4526, New Orleans, LA, Apr. 2004.



132 Bibliography

[FCCG14] A. Fortin-Coté, P. Cardou, and C. Gosselin. An admittance control scheme for haptic interfaces
based on cable-driven parallel mechanisms. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA 2014), pages 819–925, Hong Kong, May 2014.

[FFT+04] S. Fang, D. Franitza, M. Torlo, F. Bekes, and M. Hiller. Motion control of a tendon-based
parallel manipulator using optimal tension distribution. IEEE/ASME Trans. on Mechatronics,
9(3):561–568, Sept. 2004.

[FMKK11] J. Fink, N. Michael, S. Kim, and V. Kumar. Planning and control for cooperative manipulation and
transportation with aerial robots. In Robotics Research, volume 70 of Springer Tracts in Advanced
Robotics, pages 643–659. Springer, 2011.

[Fou] Four Cable Drawing Machine by D. Bynoe [Online]. Available: http://dbynoe.blogspot.fr/.

[GCCC14] F. Guay, P. Cardou, A.L. Cruz, and S. Caro. Measuring how well a structure supports varying
external wrenches. In New Advances in Mechanisms, Transmissions and Applications, volume 17
of Mechanisms and Machine Science, pages 385–392. Springer, 2014.

[GCG+14] L. Gagliardini, S. Caro, M. Gouttefarde, P. Wenger, and A. Girin. Optimal design of cable-driven
parallel robots for large industrial structures. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA 2014), pages 5744–5749, Hong Kong, China, May 2014.

[GCG15a] L. Gagliardini, S. Caro, and M. Gouttefarde. Dimensioning of cable-driven parallel robot actuators,
gear head and winches according to the twist feasible workspace. In Proc. of the IEEE Int. Conf.
on Automation Science and Engineering (CASE 2015), pages 99–105, Gothennburg, Sweden, Aug.
2015.

[GCG+15b] L. Gagliardini, S. Caro, M. Gouttefarde, P. Wenger, and A. Girin. A reconfigurable cable-driven
parallel robot for sandblasting and painting of large structures. In Cable-Driven Parallel Robots,
volume 32 of Mechanisms and Machine Science, pages 275–291. Springer, 2015.

[GCG+15c] L. Gagliardini, S. Caro, M. Gouttefarde, P. Wenger, and A. Girin. A reconfiguration strategy
for reconfigurable cable-driven parallel robots. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA 2015), pages 1613–1620, Seattle, WA, May 2015.

[GCGG16] L. Gagliardini, S. Caro, M. Gouttefarde, and A. Girin. Discrete reconfiguration planning for
cable-driven parallel robots. Mechanism and Machine Theory, 100:313–337, 2016.

[GCRB12] M. Gouttefarde, J.-F. Collard, N. Riehl, and C. Baradat. Simplified static analysis of large-
dimension parallel cable-driven robots. In Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA 2012), pages 2299–2305, Saint Paul, MN, May 2012.

[GCRB15] M. Gouttefarde, J.-F. Collard, N. Riehl, and C. Baradat. Geometry selection of a redundantly
actuated cable-suspended parallel robot. IEEE Trans. on Robotics, 31(2):501–510, Fev. 2015.

[GDM11] M. Gouttefarde, D. Daney, and J.-P. Merlet. Interval-analysis-based determination of the wrench-
feasible workspace of parallel cable-driven robots. IEEE Trans. on Robotics, 27(1):1–13, Feb.
2011.

[GG04] M. Gouttefarde and C.M. Gosselin. On the properties and the determination of the wrench-closure
workspace of planar parallel cable-driven mechanisms. In Proc. of the ASME Int. Design Eng.
Tech. Conf. & Comput. and Inform. in Eng. Conf. (IDETC/CIE 2004), pages 337–346, Salt Lake
City, UT, Sept. 2004.

[GG06] M. Gouttefarde and C.M. Gosselin. Analysis of the wrench-closure workspace of planar parallel
cable-driven mechanisms. IEEE Trans. on Robotics, 22(3):434–445, June 2006.

[GG11] C. Gosselin and M. Grenier. On the determination of the force distribution in overconstrained
cable-driven parallel mechanisms. Meccanica, 46(1):3–15, 2011.

[GGC16a] L. Gagliardini, M. Gouttefarde, and S. Caro. Advances in Robot Kinematics, chapter Determination
of a Dynamic Feasible Workspace for Cable-Driven Parallel Robots. Springer, 2016.



Bibliography 133

[GGC+16b] A. Girin, L. Gagliardini, S. Caro, M. Gouttefarde, and P. Yvan. European patent ep2982483 (a2),
Feb. 2016.

[GJC01] J.J. German, K. Jablokow, and D.J. Cannon. The cable array robot: theory and experiment. In Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA 2001), volume 3, pages 2804–2810,
Seoul, Korea, May 2001.

[GK10] M. Gouttefarde and S. Krut. Advances in Robot Kinematics, chapter Characterization of parallel
manipulator available wrench set facets, pages 475–484. Springer, 2010.

[GKC+08] M. Gouttefarde, S. Krut, O Company, F. Pierrot, and N. Ramdani. Advances in Robot Kinematics,
chapter On the Design of Fully Constrained Parallel Cable-Driven Robots, pages 71–78. Springer,
2008.

[GMP11] M. Gobbi, G. Mastinu, and G. Previati. A method for measuring the inertia properties of rigid
bodies. Mechanical Systems and Signal Processing (MSSP), 25:305–318, 2011.

[GNB14] M. Gouttefarde, D.Q. Nguyen, and C. Baradat. Advances in Robot Kinematics, chapter Kinetostatic
Analysis of Cable-Driven Parallel Robots with Consideration of Sagging and Pulleys, pages 213–
221. Springer, 2014.

[Gos13] C. Gosselin. Global planning of dynamically feasible trajectories for three-DOF spatial Cable-
Suspended parallel robots. In Cable-Driven Parallel Robots, volume 12 of Mechanisms and
Machine Science, pages 3–22. Springer, 2013.

[GR02] P. Gallina and G. Rosati. Manipulability of a planar wire driven haptic device. Mechanism and
Machine Theory, 37(2):215–228, Feb. 2002.

[GRR01] P. Gallina, G. Rosati, and A. Rossi. 3-dof wire driven planar haptic interface. J. of Intelligent and
Robotic Syst., 32(1):23–36, Sept. 2001.

[HA95] K. Homma and T. Arai. Design of an upper limb motion assist system with parallel mechanisms.
In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA 1995), volume 2, pages
1302–1307, Nagoya, Japan, May 1995.

[HC04] C.S. Holland and D.J. Cannon. Cable array robot for material handling, Nov. 2004.

[Hek] Hektor [Online]. Available: http://juerglehni.com/works/hektor.

[HK09] M. Hassan and A. Khajepour. Analysis of large-workspace cable-actuated manipulator for
warehousing applications. In Proc. of the ASME Int. Design Eng. Tech. Conf. & Comput. and
Inform. in Eng. Conf. (IDETC/CIE 2009), pages 45–53, San Diego, CA, Aug. 2009.

[HkMP15] W.Y. Ho, W. kraus, A. Mangold, and A. Pott. Haptic interaction with a cable-driven parallel
robot using admittance control. In Cable-Driven Parallel Robots, volume 32 of Mechanisms and
Machine Science, pages 201–212. Springer, 2015.

[HS92] Y. Hirata and M. Sato. 3-dimensional interface device for virtual work space. In Proc. of the IEEE
Int. Conf. on Intelligent Robots and Syst. (IROS 1992), page 889–896, Raleigh, NC, July 1992.

[IGCS13] J.-B Izard, C. Gouttefarde, Baradat, D. Culla, and D. Sallé. Integration of a parallel cable-driven
robot on an existing building façade. In Cable-Driven Parallel Robots, volume 12 of Mechanisms
and Machine Science, pages 149–164. Springer, 2013.

[IGM+13] J.-B Izard, M. Gouttefarde, M. Michelin, O. Tempier, and C. Baradat. A reconfigurable robot for
cable-driven parallel robotic research and industrial scenario proofing. In Cable-Driven Parallel
Robots, volume 12 of Mechanisms and Machine Science, pages 135–148. Springer, 2013.

[Int] Intelligent Surgical Intruments & Systems [Online]. Available: http://www.isis-robotics.com/.

[Irv92] M. Irvine. Cable structures. Dover Publications, June 1992.

[IS94] M. Ishii and M. Sato. A 3d spatial interface device using tensed strings. Teleoperators and Virtual
Environments - Presence, 3(1):81–86, 1994.



134 Bibliography

[JK13] Q. Jiang and V. Kumar. The inverse kinematics of cooperative transport with multiple aerial robots.
IEEE Trans. on Robotics, 29(1):136–145, Feb. 2013.

[KBT14] H. Khakpour, L. Birglen, and S.-A Tahan. Synthesis of differentially driven planar cable parallel
manipulators. IEEE Trans. on Robotics, 30(3):619–630, Jan. 2014.

[KCTP95] S. Kawamura, W. Choe, S. Tanaka, and S.R. Pandian. Development of an ultrahigh speed robot
FALCON using wire driven system. In Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA 1995), volume 1, pages 215–220, Nagoya, Japan, May 1995.

[KJ75] W.P. Koevermans and C.J. Jansen. Design and performance of the four dof motion system of the
nlr research flight simulator. In Proc. of AGARD Conf. No 198, pages 17–1/17–11, The Hague,
Netherlands, Oct. 1975.

[KKW00] S. Kamawura, H. Kino, and C. Won. High-speed manipulation by using parallel wire-driven
robots. Robotica, 18(1):13–21, Jan. 2000.

[Koz14] V. Kozlov. A graphical user interface for the design of cable-driven parallel robots. Master’s thesis,
École Centrale de Nantes, Aug. 2014.

[KZW06] K. Kozak, Qian Zhou, and Jinsong Wang. Static analysis of cable-driven manipulators with
non-negligible cable mass. IEEE Trans. on Robotics, 22(3):425–433, June 2006.

[Laf04] P. Lafourcade. Etude des manipulateurs parallèles à câbles, conception d’une suspension active
pour soufflerie. PhD thesis, Thèse de Docteur Ingénieur ENSAE, 2004.

[LCH04] R. Loureiro, C.F. Collin, and W. Harwin. Robot aided therapy: Challenges ahead for upper limb
stroke rehabilitation. In Proc. of the 5th Int. Conf. on Disability, Virtual Reality and Associated
Technologies, pages 33–39, Oxford, UK, 2004.

[LG13] J. Lamaury and M. Gouttefarde. Control of a large redundantly actuated cable-suspended parallel
robot. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Syst. (IROS 2013), pages
4659–4664, Karlsruhe, Germany, May 2013.

[LGCH13] J. Lamaury, M. Gouttefarde, A. Chemori, and P.-E. Herve. Dual-space adaptive control of
redundantly actuated cable-driven parallel robots. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA 2013), pages 4879–4886, Tokyo, Japan, Nov. 2013.

[Li15] H. Li. On the static stiffness of incompletely restrained cable-driven robot. In Cable-Driven
Parallel Robots, volume 32 of Mechanisms and Machine Science, pages 55–69. Springer, 2015.

[LLR02] P. Lafourcade, M. Llibre, and C. Reboulet. Design of a parallel wire-driven manipulator for wind
tunnels. In Proc. of the Workshop on Fundamental Issues and Future Directions for Parallel
Mechanisms and Manipulators, pages 187–194, Quebec City, QC, Oct. 2002.

[LNC07] C. Lambert, M. Nahon, and D. Chalmers. Implementation of an aerostat positioning system with
cable control. IEEE/ASME Trans. on Mechatronics, 12(1):32–40, Feb. 2007.

[Lum85] V.J. Lumelsky. On fast computation of distance between line segments. Inform. Process. Lett.,
21(3):55–61, Aug. 1985.

[MA12] Y. Mao and S.K. Agrawal. Design of cable-driven arm exoskeleton (carex) for neural rehabilitation.
IEEE Trans. on Robotics, 28(4):922–931, Aug. 2012.

[MBHS08] L. Mikelsons, T. Bruckman, M. Hiller, and D. Schramm. A real-time capable force calculation
algorithm for redundant tendon-based parallel manipulators. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA 2008), pages 3869–3874, Pasadena, CA, May 2008.

[MD05] O. Ma and X. Diao. Dynamics analysis of a cable-driven parallel manipulator for hardware-in-
the-loop dynamic simulation. In Proc. of the IEEE/ASME Int. Conf. on Advanced Intelligent
Mechatronics (AIM 2005), pages 837–842, Monterey, CA, July 2005.



Bibliography 135

[MD06] J.-P. Merlet and D. Daney. Legs interference checking of parallel robots over a given workspace
or trajectory. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA 2006), pages
757–762, Orlando, FL, May 2006.

[MD10] J.-P. Merlet and D. Daney. A portable, modular parallel wire crane for rescue operations. In Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA 2010), pages 2834–2839, Anchorage,
AK, May 2010.

[MDRC13] M. Manubens, D. Devaurs, L. Ros, and J. Cortés. Motion planning for 6-d manipulation with
aerial towed-cable systems. In Proceedings of Robotics: Science and Systems, Berlin, Germany,
June 2013.

[Mer01] J.-P. Merlet. Micro parallel robot mips for medical applications. In Proc. of the IEEE Int. Conf. on
Emerging Technologies and Factory Automation (ETFA 2001), pages 611–619, Antibes-Juan les
Pins, France, Oct. 2001.

[Mer04] J.-P. Merlet. Advances in Robot Kinematics, chapter Analysis of the influence of wire interference
on the workspace of wire robots, page 211–218. Springer, 2004.

[Mer06] J.-P. Merlet. Parallel Robots. Springer, 2 edition, 2006.

[Mer08] J.-P. Merlet. Kinematics of the wire-driven parallel robot marionet using linear actuators. In Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA 2008), pages 3857–3862, Passadena,
CA, May 2008.

[Mer15a] J.-P. Merlet. The kinematics of cable-driven parallel robots with sagging cables: preliminary
results. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA 2015), pages 1593–1598,
Seattle, WA, May 2015.

[Mer15b] J.-P. Merlet. On the inverse kinematics of cable-driven parallel robots with up to 6 sagging cables.
In Proc. of the IEEE Int. Conf. on Intelligent Robots and Syst. (IROS 2015), pages 4356–4361,
Hamburg, Germany, Sept. 2015.

[MI93] S. Mawamura and K. Ito. A new type of master robot for teleoperation using a radial wire drive
system. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Syst. (IROS 1993), volume 1,
pages 55–60, Yokohama, Japan, July 1993.

[MKK97] T. Morizono, K. Kurahashi, and S. Kawamura. Realization of a virtual sports training system
with parallel wire mechanism. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA
1997), pages 3025–3030, Albuquerque, NM, Apr. 1997.

[MKK98] T. Morizono, K. Kurahashi, and S. Kawamura. Analysis and control of a force display system
driven by parallel wire mechanism. Robotica, 16(5):551–563, Sept. 1998.

[MRB15] K. Müller, C. Reichert, and T. Bruckmann. Analysis of a real-time capable force computation
method. In Cable-Driven Parallel Robots, volume 32 of Mechanisms and Machine Science, pages
227–238. Springer, 2015.

[MTT+99] K. Maeda, S. Tadokoro, T. Takamori, M. Hiller, and R. Verhoeven. On design of a redundant
wire-driven parallel robot WARP manipulator. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA 1999), volume 2, pages 895–900, Detroit, MI, May 1999.

[NAD06] M. Nikkhah, H. Ashrafiuon, and E.J. Dougherty. Motion control and design of an aerial robotic
system. In Proc. of the ASME Int. Design Eng. Tech. Conf. & Comput. and Inform. in Eng. Conf.
(IDETC/CIE 2008), pages 877–883, Philadelphia, PA, Sept. 2006.

[NG13] D.-Q. Nguyen and M. Gouttefarde. On the simplifications of cable model in static analysis of
large dimension cable-driven parallel robots. In Proc. of the IEEE Int. Conf. on Intelligent Robots
and Syst. (IROS 2013), pages 928–934, Tokyo, Japan, Nov. 2013.

[NG14a] D.-Q. Nguyen and M. Gouttefarde. Advances in Robot Kinematics, chapter Stiffness Matrix of
6-DOF Cable-Driven Parallel Robots and Its Homogenization, pages 181–191. Springer, 2014.



136 Bibliography

[NG14b] D.-Q. Nguyen and M. Gouttefarde. Study of reconfigurable suspended cable-driven parallel robots
for airplane maintenance. In Proc. of the IEEE Int. Conf. on Intelligent Robots and Syst. (IROS
2014), pages 1682–1689, Chicago, IL, Sept. 2014.

[NGCP14] D.-Q. Nguyen, M. Gouttefarde, O. Company, and F. Pierrot. On the analysis of large-dimension
reconfigurable suspended cable-driven parallel robots. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA 2014), pages 5728–5735, Hong Kong, Mai 2014.

[OA05] S.-R Oh and S.K. Agrawal. Cable suspended planar robots with redundant cables: Controllers
with positive tensions. IEEE Trans. on Robotics, 21(3):457–465, June 2005.

[OMDT+08] M.-D Otis, M. Mokhtari, C. Du Tremblay, D. Laurendeau, F.-M. De Rainville, and C. M. Gosselin.
Hybrid control with multi-contact interactions for 6dof haptic foot platform on a cable-driven
locomotion interface. In IEEE Symp. on Haptics, pages 161–168, Vancouver, Canada, Mar. 2008.

[PBM09] A. Pott, T. Bruckmann, and L. Mikelsons. Computational Kinematics, chapter Closed-form force
distribution for parallel wire robots, pages 25–34. Springer, 2009.

[PCGO10] Simon Perreault, Philippe Cardou, Clément M. Gosselin, and Martin J.-D. Otis. Geometric
determination of the interference-free-constant-orientation workspace of parallel cable-driven
mechanisms. ASME J. of Mechanisms and Robotics, 2(3), July 2010.

[PFAM04] J. Pusey, A. Fattah, S. Agrawal, and E. Messina. Design and workspace analysis of a 6-6
cable-suspended parallel robot. Mechanism and Machine Theory, 39(7):761–778, July 2004.

[PG07] S. Perreault and C.M. Gosselin. Cable-driven parallel mechanism: Application to a locomotion
interface. In Proc. of the ASME Int. Design Eng. Tech. Conf. & Comput.and Inform. in Eng. Conf.
(IDETC/CIE 2007), pages 791–799, Las Vegas, NV, Sept. 2007.

[PMK+13] A. Pott, H. Mütherich, W. Kraus, V. Schmidt, P. Miermeister, and A. Verl. IPAnema: a family of
cable-driven parallel robots for industrial applications. In Cable-Driven Parallel Robots, volume 12
of Mechanisms and Machine Science, pages 119–134. Springer, 2013.

[PMV10] A. Pott, C. Meyer, and A. Verl. Large-scale assembly of solar power plants with parallel cable
robots. In Proc. of the Int. Symp. on Robotics and 6th German Conf. on Robotics (ISR/ROBOTIK
2010), pages 1–6, Munich, Germany, June 2010.

[PRF90] F. Pierrot, C. Reynaud, and A. Fournier. Delta: a simple and efficient parallel robot. Robotica,
8(2):105–109, Apr. 1990.

[Pro] Project ANR CoGiRo [Online]. Available: http://www.lirmm.fr/cogiro/.

[RABG07] G. Rosati, M. Andreolli, A. Biondi, and P. Gallina. Performance of cable suspended robots for
upper limb rehabilitation. In Proc. of the IEEE 10th International Conference on Rehabilitation
Robotics (ICORR 2007), pages 385–392, Noordwijk, Netherlands, June 2007.

[RGBP10a] N. Riehl, M. Gouttefarde, C. Baradat, and F. Pierrot. On the determination of cable characteristics
for large dimension cable-driven parallel mechanisms. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA 2010), pages 4709–4714, Anchorage, AK, May 2010.

[RGBP10b] N. Riehl, M. Gouttefarde, C. Baradat, and F. Pierrot. On the static workspace of large dimensions
cable-suspended robots with non-negligible cable mass. In Proc. of the ASME Int. Design Eng.
Tech. Conf. & Comput.and Inform. in Eng. Conf. (IDETC/CIE 2010), pages 261–270, Montréal,
QC, Aug. 2010.

[RGK+09] N Riehl, M. Gouttefarde, S. Krut, C. Baradat, and F. Pierrot. Effects of non-negligible cable mass
on the static behavior of large workspace cable-driven parallel mechanisms. In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA 2009), pages 2193–2198, Kobe, Japan, May 2009.

[RGL98] R.G. Roberts, T. Graham, and T. Lippitt. On the inverse kinematics, statics, and fault tolerance of
cable-suspended robots. J. of Robotic Syst., 15(10):581–597, Oct. 1998.



Bibliography 137

[RGM07] G. Rosati, P. Gallina, and S. Masiero. Design, implementation and clinical test of a wire-based
robot for neurorehabilitation. IEEE Trans. on Neural Syst. and Rehabilitation Eng., 15(4):560–569,
Dec. 2007.

[RMB15] C. Reichert, K. Müller, and T. Bruckman. Robust internal force-based impedance control for
cable-driven parallel robots. In Cable-Driven Parallel Robots, volume 32 of Mechanisms and
Machine Science, pages 131–143. Springer, 2015.

[RZA11] G. Rosati, D. Zanotto, and S. K. Agrawal. On the design of adaptive cable-driven systems. ASME
J. of Mechanisms and Robotics, 3(2), May 2011.

[SD00] Y.X. Su and B.Y. Duan. The mechanical design and kinematics accuracy analysis of a fine tuning
stable platform for the large spherical radio telescope. Mechatronics, 10(7):819–834, Oct. 2000.

[SDJB08] Y.X. Su, B.Y. Duan, Du J.L., and H. Bao. Dynamic modeling and active control of a cable-
suspended parallel robot. Mechatronics, 18(1):1–12, Feb. 2008.

[SK04] E. Stump and V. Kumar. Workspace delineation of cable-actuated parallel manipulators. In Proc.
of the ASME Int. Design Eng. Tech. Conf. (DETC 2004), Salt Lake City, UT, Sept. 2004.

[SK06] Ethan Stump and Vijay Kumar. Workspaces of cable-actuated parallel manipulators. ASME J. of
Mech. Design, 128(1):159–167, Jan. 2006.

[Sky] SkyCam [Online]. Available: http://skycam.tv/.

[SLL01] J.G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library: User Guide and Refrence
Manual. Addison Wesley, Dec. 2001.

[SPSA15] Z. Sheng, J.-H. Park, P. Stegall, and K. Agrawal. Analytic determination of wrench closure
workspace of spatial cable driven parallel mechanisms. In Proc. of the ASME Int. Design Eng.
Tech. Conf. & Comput.and Inform. in Eng. Conf. (IDETC/CIE 2015), pages 1–10, Boston, MA,
Aug. 2015.

[Spy] SpyderCam [Online]. Available: http://spydercam.com/.

[SRK13] D. Surdilovic, J. Radojicic, and J. Krüger. Geometric stiffness analysis ofwire robots: A mechanical
approach. In Cable-Driven Parallel Robots, volume 12 of Mechanisms and Machine Science,
pages 389–404. Springer, 2013.

[Ste65] D. Stewart. A platform with six degrees of freedom. In Proc. of the Institution of Mech. Engineers,
volume 180, pages 371–386, May 1965.

[SWB11] C. Sturm, L. Wildan, and T. Bruckmann. Wind Tunnels and Experimental Fluid Dynamics
Research, chapter Wire Robot Suspension Systems for Wind Tunnels. InTech, July 2011.

[SZB07] D. Surdilovic, J. Zhang, and R. Bernhardt. STRING-MAN: Wire-robot technology for safe, flexible
and human- friendly gait rehabilitation. In Proc. of the IEEE 10th International Conference on
Rehabilitation Robotics (ICORR 2007), pages 446–453, Noordwijk, Netherlands, June 2007.

[TB05] R.R. Thompson and M.S. Blackstone. Three-dimensional moving camera assembly with an
informational cover housing, Mar. 2005.

[TB11] H.R. Taghirad and Y.B. Bedoustani. An analytic-iterative redundancy resolution scheme for
cable-driven redundant parallel manipulators. IEEE Trans. on Robotics, 27(6):1137–1143, Dec.
2011.

[TET+05] F. Takemura, M. Enomoto, T. Tanaka, K. Denou, and Y. Kobayashi. Development of the balloon-
cable driven robot for information collection from sky and proposal of the search strategy at a
major disaster. In Proc. of the IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM
2005), pages 658–663, Monterey, CA, July 2005.

[TMH+02] S. Tadokoro, Y. Murao, M. Hiller, R. Murata, H. Kohkawa, and T. Matsushima. A motion base
with 6-dof by parallel cable drive architecture. IEEE/ASME Trans. on Mechatronics, 7(2):115–123,
June 2002.



138 Bibliography

[TSPE15] P. Tempel, F. Schenelle, A. Pott, and P. Eberhard. Design and programming for cable-driven
parallel robots in the german pavilion at the expo 2015. IMachines, 3:223–241, 2015.

[TVHT99] S. Tadokoro, R. Verhoeven, M. Hiller, and T. Takamori. A portable parallel manipulator for search
and rescue at large-scale urban earthquakes and an identification algorithm for the installation in
unstructured environments. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Syst.
(IROS 1999), volume 2, pages 1222–1227, Kyongju, South Korea, Oct. 1999.

[ULP+07] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti. Scatter search and local nlp
solvers: A multistart framework for global optimization. INFORMS J. on Computing, 19(3):328–
340, July 2007.

[VH00] R. Verhoeven and Hiller. Advances in Robot Kinematics, chapter Estimating the controllable
workspace of tendon-based Stewart platforms, page 277–284. Springer, 2000.

[VHT98] R. Verhoeven, M. Hiller, and S. Tadokoro. Advances in Robot Kinematics, chapter Workspace,
stiffness, singularities and classification of tendon-driven Stewart platforms, pages 105–114.
Springer, 1998.

[Wil98] R.L. Williams. Cable suspended haptic interface. Int. J. of Virtual Reality, 3(3):13–21, 1998.

[WS02] M. Weck and D. Staimer. Parallel kinematic machine tools - current state and future potentials.
CIRP Annals - Manufacturing Technology, 51(2):671–683, Jan. 2002.

[WXB08] R.L. Williams, M. Xin, and P. Bosscher. Contour-crafting-cartesian-cable robot system concepts:
Workspace and stiffness comparisons. In Proc. of the ASME Int. Design Eng. Tech. Conf. &
Comput.and Inform. in Eng. Conf. (IDETC/CIE 2008), volume 2, pages 31–38, Brooklyn, NY,
Aug. 2008.

[YCD15] H. Yuan, E. Courteille, and D. Deblaise. Workspace and stiffness analysis of a three-degree-of-
freedom spatial cable-suspended parallel mechanism while considering cable mass. Mechanism
and Machine Theory, 85:64–81, Mar. 2015.

[YLZ13] R. Yao, H. Li, and X. Zhang. A modeling method of the cable driven parallel manipulator for
FAST. In Cable-Driven Parallel Robots, volume 12 of Mechanisms and Machine Science, pages
423–436. Springer, 2013.

[YTWH10] R. Yao, X. Tang, J. Wang, and P. Huang. Dimensional optimization design for the four-cable
driven parallel manipulator in FAST. IEEE/ASME Trans. on Meachatronics, 15(6):932–941, 2010.

[ZJK13] X. Zhou, S. Jun, and V. Krovi. Tension distribution shaping via reconfigurable attachment in
planar mobile cable robots. Robotica, 32(2):245–256, Mar. 2013.

[ZJK14] X. Zhou, S. Jun, and V. Krovi. Stiffness modulation exploiting configuration redundancy in mobile
cable robots. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA 2014), pages
5934–5939, Hong Kong, Mai 2014.

[ZLL10] Y. Zheng, Q. Lin, and X. Liu. Robot Manipulators Trends and Development, chapter A Wire-
Driven Parallel Suspension System with 8 Wires (WDPSS-8) for Low-Speed Wind Tunnels.
InTech, Mar. 2010.

[ZRMR14] D. Zanotto, G. Rosati, S. Minto, and A. Rossi. Sophia-3: A semiadaptive cable-driven rehabilitation
device with a tilting working plane. IEEE Trans. on Robotics, 30(4):974–979, Aug. 2014.

[ZRS+09] J. Zitzewitz, G. Rauter, R. Steiner, A. Brunschweiler, and R. Riener. A versatile wire robot
concept as a haptic interface for sport simulation. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA 2009), pages 313–318, Kobe, Japan, May 2009.

[ZTK12] A. Zhou, C. P. Tang, and V. Krovi. Analysis framework for cooperating mobile cable robots. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA 2012), pages 3128–3133, Saint
Paul, MN, May 2012.



Appendix A

Modelling Complements

A.1 Angular Speeds and Accelerations

The angular velocity of the moving platform, ω = [ωx,ωy,ωz], can be described with respect to the RPY angles.
Thus, according to the RPY definition, ω can be considered as the composition of three consecutive angular
velocities, φ̇ around zb, θ̇ around yb and ψ̇ around xb, as shown in Fig. A.1:

ω = φ̇zb + θ̇Rz(φ)yb + ψ̇Rz(φ)Ry(θ)xb = φ̇

0
0
1

+ θ̇

−sφ

cφ

0

+ ψ̇

cφcθ

sφcθ

−sθ

=

−θ̇sφ + ψ̇cφcθ

θ̇cφ + ψ̇sφcθ

φ̇ − ψ̇sθ

 (A.1)

Equation (A.1) can be rewritten as follows:

ω =

cφcθ −sφ 0
sφcθ cφ 0
−sθ 0 1


ψ̇

θ̇

φ̇

= SωRPY (A.2)

where ωRPY = [ψ̇, θ̇ , φ̇ ]T is the vector collecting the RPY angular velocities.

Therefore, the twist of the moving platform, ṗ, can be described with respect top the RPY angles:

ṗRPY =

[
ṫ

ωRPY

]
= SRPY ṗ (A.3)

where SRPY is the transformation matrix to express the moving platform twist in terms of the RPY angles.

SRPY =

[
I3 03

03 S−1

]
(A.4)

The moving platform angular accelerations, α = [αx,αy,αz]
T, are computed by deriving Eq. (A.2):

α̇ = ṠωRPY +SαRPY (A.5)



140 Modelling Complements

Fig. A.1 – RPY angle representation

where αRPY = [ψ̈, θ̈ , φ̈ ]T is the vector collecting the RPY angular accelerations and Ṡ is the time derivative of the
transformation matrix S.

Ṡ =

−φ̇sφcθ − θ̇cφsθ −φ̇cφ 0
φ̇cφcθ − θ̇sφsθ −φ̇sφ 0

−θ̇cθ 0 0

 (A.6)

Equation (A.5) can be rewritten as follows:

ω̇ =

−φ̇sφcθ − θ̇cφsθ −φ̇cφ 0
φ̇cφcθ − θ̇sφsθ −φ̇sφ 0

−θ̇cθ 0 0


ψ̇

θ̇

φ̇

+
cφcθ −sφ 0

sφcθ cφ 0
−sθ 0 1


ψ̈

θ̈

φ̈

=

=

−φ̇ ψ̇sφcθ − θ̇ ψ̇cφsθ − φ̇ θ̇cφ + ψ̈cφcθ − θ̈sφ

φ̇ ψ̇cφcθ − θ̇ ψ̇sφsθ − φ̇ θ̇sφ + ψ̈sφcθ + θ̈cφ

−θ̇ φ̇cθ − ψ̈sθ + φ̈

 (A.7)

Thus, the angular acceleration of the moving platform can be expressed in terms of the RPY angles, according to
the following transformation:

αRPY = S−1
α̇ −S−1ṠωRPY = S−1

α̇ −S−1ṠS−1
ω (A.8)

A.2 Wrench Matrix Time Derivative

The SOIKM requires the computation of the time derivative of the wrench matrix W. Its columns represent the
cable wrench, wi = [db

i ,br
i ×db

i ], i = 1, . . . ,m.

The time derivative of db
i is defined as follows:

ddb
i

dt
= ḋb

i =
l̇bi −

(
l̇bi

T db
i

)
db

i

li
(A.9)

where l̇bi =−ṫ− ω̂br
i .

The time derivative of br
i ×db

i is defined as follows:

d(br
i ×db

i )

dt
= ḃr

i ×db
i +br

i × ḋb
i (A.10)
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A.3 Active Stiffness Matrix Detailed Computation for Sagging Cables

Several elasto-static models, based on sagging cables, have been proposed in the literature. Most of them do not
develop the active stiffness matrix, Ka, which is one of the two components of the CDPR stiffness matrix, K.
The remaining models have been derived taking into account matrix Ka and developing it according to different
procedures [Ars13, NG14a].

Hereafter, the active stiffness matrix described in Sec. 2.3.3 is computed in details. For sake of simplicity,
matrix Ka can be decomposed as follows:

Ka =
m

∑
i=1

dWi

dp
Fi =

3

∑
j=1

dwi, j

dp
Fi, j (A.11)

where wi, j represents the j-th column of the wrench matrix Wi and Fi, j the j-th force component associated to the
i-th cable. The wrench projection matrix Wi is defined as follows:

Wi =

wT
i,1

wT
i,2

wT
i,3


T

=

 cθi sθi 0 −br
z,isθi br

z,icθi br
x,isθi −br

y,icθi

−sθi cθi 0 −br
z,icθi −br

z,isθi br
x,icθi +br

y,isθi

0 0 1 br
y,i −br

x,i 0


T

(A.12)

Each term of Wi is derived with respect to the pose p. In order to improve the readability of the result, the

Jacobian matrices
dwi,1

dp
have been decomposed:

dwi,1

dp
=

[(
dwi,11

dp

)T

,

(
dwi,12

dp

)T

,

(
dwi,13

dp

)T

,

(
dwi,14

dp

)T

,

(
dwi,15

dp

)T

,

(
dwi,16

dp

)T
]T

(A.13)

Hereafter, each gradient
dwi,1 j

dp
, j = 1, . . . ,6 is computed:
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Considering Fi,y is always equal to 0, it is not necessary to take into account the Jacobian matrices
dwi,2

dp
. On

the contrary, the Jacobian matrix
dwi,3

dp
has been developed as follows:

dwi,3

dp
=



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −br

z,i 0 br
x,i

0 0 0 0 −br
z,i br

y,i

0 0 0 0 0 0


(A.20)



Appendix B

Routing Inspection Problem

According to the reconfiguration algorithm introduced in Chap. 5, the user provides a list of nvp via points that the
moving platform should cross. The via points are connected by segments. In order to optimise the path planning
of the moving platform, the length of the path necessary to cover all the via points and the connecting segments
should be minimised. Hence, this optimisation problem is formulated as a routing inspection problem through a
graph representation. The problem is solved according to Fleury’s algorithm:

a. Graph Building. Build a graph such that the nodes represent the via points and the arcs the segments connecting
them. The costs of the arcs are the lengths of the corresponding segments.

b. Analysis of the Node Orders. Analyse the graph in order to verify if it is an Eulerian graph. A graph is Eulerian
if all the nodes have an even order. The order of a node is equivalent to the number of segments connected to
the node. An Eulerian graph contemplates one or more Eulerian cycle, a trail which cross every edge exactly
once, starting and ending at the same vertex. If the graph is Eulerian, steps c., d. and e. has to be skipped.

c. Pair up the Odd Nodes. If there exist some odd nodes, pair up each node of odd order and for each pairing find
the arcs which connect the odd nodes with the shortest possible path.

d. Combining the Pairings of Odd Nodes. Determine the combination of pairings that has the shortest total length.

e. Eulerian Graph Computation. Duplicate in the original graph the arcs connecting the odd nodes according to
the combination of pairings identified in the previous step. The modified graph is now Eulerian.

f. Eulerian Cycle Computation. Compute one or several Eulerian cycle(s) by means of Fleury’s algorithm [EGL95].
The total length of the Eulerian cycle is equal to the sum of the arc costs of the modified graph. Fig. B.1
presents an example of the path planning for a task demanding to the platform to cover 8 segments, starting
from via point N1.

g. Discretisation of the Shortest Path. Select an Eulerian cycle which represents the path that platform of the
RCDPR will follows during the task. The chosen path will be discretised into nP points, P = {Pi, i = 1, . . . ,nP},
where pi, i = 1, . . . ,nP, are the moving-platform pose vectors expressed in Fb.
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Fig. B.1 – Computation of one of the possible optimal path covering the whole set of prescribed segments. In this
example the segments to be crossed do not represent an Eulerian graph. To transform it into an Eulerian graph,
minimising the cost of the corresponding Eulerian cycles, it is necessary to add three segments
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Résumé 
 

Les Robots Parallèles à Câbles (RPCs) sont des robots 
parallèles dont les jambes se composent de câbles. Les 
applications industrielles potentielles des RPCs sont 
nombreuses telles que le grenaillage et la peinture de 
structures massives et de grandes dimensions. 

La première partie de ce manuscrit est dédié à la modélisation 
des RPCs. Deux modèles élasto-statiques ont été introduits 
dans ce manuscrit, pour décrire le petit déplacement de la 
plate-forme mobile en raison de la nature non-rigide des 
câbles. Le modèle élasto-statique basé sur des câbles 
pesants a été exprimé en faisant la différence entre la matrice 
de raideur active et la matrice de raideur passive du RPC. 

La deuxième partie de ce manuscrit traite de l’analyse 
d’espaces de travail de RPCs vis-à-vis de leurs performances 
statiques et dynamiques. Deux nouveaux espaces de travail 
ont été définis : (i) l'Espace des Vitesses Générables (EVG); 
(ii) l’Espace de Travail Dynamique Amélioré (ETDA). 

 La troisième partie de ce manuscrit décrit une stratégie de 
conception générique de RPCs et des Robots Parallèles à 
Câbles Reconfigurables (RPCRs). Les reconfigurations sont 
limitées uniquement aux points de sortie des câbles. Dans ce 
manuscrit, les points de sortie des câbles peuvent être placés 
dans une large mais limité ensemble de positions. La 
stratégie proposée envisage la possibilité de déplacer les 
points de sortie des câbles du RPCR sur une grille prédéfinie 
d'emplacements. 

La quatrième partie de ce manuscrit présente un algorithme 
pour calculer une stratégie de reconfiguration optimale pour 
les RPCRs. Cette stratégie peut être utilisée lorsque 
l'environnement de travail de RPCRs est extrêmement 
encombré et qu’il n'est pas possible de prévoir le nombre de 
configurations nécessaires pour compléter la tâche. 
L'efficacité de l'algorithme a été analysée en étudiant les 
reconfigurations d’un robot parallèle à câbles planaire et d’un 
robot parallèle à câbles spatial en lien avec des applications 
industrielles. 

 

Mots-clés 
Robots Parallèles à Câbles, Reconfigurations 
Discrètes, Espaces de travail, Modélisation Elasto-

Statique, Conception 

Abstract 
 

Cable-Driven Parallel Robots (CDPRs) are parallel robots 
whose legs consist of cables. CDPRs may be used 
successfully in several industrial applications such as 
sandblasting and painting of large and heavy structures. 

The first part of this manuscript is dedicated to the modelling 
of CDPRs. Two elasto-static models have been introduced 
in this manuscript, in order to describe the small 
displacement of the moving platform due to the non-rigid 
nature of the cables. These models can be used for the 
modal analysis of the CDPRs, as well. The elasto-static 
model based on linear cables has been computed including 
the effect of the pulleys orienting the cables into the CDPR 
workspace. 

The second part of this manuscript deals with the 
investigation of the workspace of CDPRs, in terms of their 
moving platform static and dynamic equilibria, and in terms 
of their moving platform kinematic constraints. Two novel 
workspaces have been defined: (i)  the Twist Feasible 
Workspace (TFW); (ii) the Improved Dynamic Feasible 
Workspace (IDFW). 

The third part of this manuscript describes a generic design 
strategy for CDPRs and a novel design strategy for 
Reconfigurable Cable-Driven Parallel Robots (RCDPRs). In 
this manuscript, reconfigurations are limited to the the 
displacement of the cable exit points, assuming the cables 
exit points can be installed on a large but finite set of 
locations. 

The fourth part of this manuscript introduces an algorithm to 
compute an optimal reconfiguration strategy for RCDPRs. 
This strategy can be used when the working environment of 
the RCDPR is extremely cluttered and when it is not 
possible to predict how many configurations are necessary 
to complete the task. The effectiveness of the algorithm has 
been analysed by means of a planar and a spatial case 
studies reproducing some industrial tasks. 

 
 

Key Words 
Cable-Driven Parallel Robots, Discrete 
Reconfigurations, Workspaces, Elasto-Static 

Modelling, Design. 
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