
HAL Id: tel-01534703
https://hal.science/tel-01534703

Submitted on 8 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rule-based meta-modelling for bio-curation
Russell Harmer

To cite this version:
Russell Harmer. Rule-based meta-modelling for bio-curation. Bioinformatics [q-bio.QM]. Ecole Nor-
male Supérieure de Lyon, 2017. �tel-01534703�

https://hal.science/tel-01534703
https://hal.archives-ouvertes.fr

École Normale Supérieure de Lyon

Mémoire d’habilitation à diriger des recherches
présenté et soutenu publiquement le 22 mai 2017

Rule-based meta-modelling
for bio-curation

Russell HARMER

Rapporteurs :
Pierre-Louis CURIEN

François FAGES
Barbara KÖNIG

Examinateurs :
Pierre-Louis CURIEN
Thomas EHRHARD

François FAGES
Jasmin FISHER

Olivier GANDRILLON
Barbara KÖNIG

Pawel SOBOCINSKI

This page intentionally left blank.

Dossier

As explained in the main text, my scientific work has been carried out in two
quite (technically) distinct fields: game semantics and rule-based modelling.
For my habilitation dossier, I have chosen only papers from the latter field as
this reflects the majority of my work subsequent to my PhD thesis. Out of
my work in that field, I have focussed on the particular theme of bio-curation
as this has always been my principal personal interest in rule-based modelling
and is also the subject of my research project—as summarized in the final
chapter.

[17] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-
based modelling of cellular signalling. CONCUR 2007–Concurrency
Theory, pages 17–41, 2007.

[27] V. Danos, R. Harmer, and G. Winskel. Constraining rule-based dy-
namics with types. MSCS, 23(2):272–289, 2013.

[28] ⇤ V. Danos, J. Feret, W. Fontana, R. Harmer, J. Hayman, J. Krivine,
C. Thompson-Walsh, and G. Winskel. Graphs, Rewriting and Pathway
Reconstruction for Rule-Based Models. In FSTTCS 2012, volume 18 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 276–
288. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012.

[37] R. Harmer, V. Danos, J. Feret, J. Krivine, and W. Fontana. Intrinsic
information carriers in combinatorial dynamical systems. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 20(3):037108, 2010.

[26] * V. Danos, R. Harmer, R. Honorato-Zimmer, and S. Stucki. Deriving
rate equations for site graph rewriting systems. To appear in Electronic
Notes in Theoretical Computer Science, 2014.

⇤Paper for which I was not lead author but played a significant rôle.

1

[20] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based
modelling and model perturbation. In Transactions on Computational
Systems Biology XI, pages 116–137. Springer, 2009.

[36] R. Harmer. Rule-based modelling and tunable resolution. EPTCS,
9:65–72, 2009.

[6] A. Basso-Blandin, W. Fontana, and R. Harmer. A knowledge repre-
sentation meta-model for rule-based modelling of signalling networks.
EPTCS, 204:47–59, 2016.

2

Acknowledgements

Special thanks to Pasquale, Guy, Vincent, Walter, Jean & Jérôme for helping
me to get here; and to Rebecca & Winston for making it worthwhile.

There are many others too, of course; I trust you know who you are.

Ce mémoire est dédié à la mémoire de mon ami Benôıt Carreau.

3

This page intentionally left blank.

Contents

Perspective 7

I Cellular signalling and rule-based modelling 7
II The bio-curation problem . 9

Trajectory 11

I Game semantics . 11
II Rule-based modelling . 15

Graph rewriting 19

Preamble . 19
I Rewriting . 20
II Matchings . 24
III Implicit state simulation . 26

Reinterpretation 31

I Semantics of Kappa rules . 32
II Causality, activation and inhibition 35
III Towards knowledge representation 37

Project 39

Context . 39
I Multiple models

short- to medium-term . 40
II Automation

medium- to long-term . 43
Summary . 46

Bibliography 47

5

Appendix 53

I Slice categories . 53
II Propagating rewriting . 58
III Concrete Kappa . 61

6

Perspective

My current research concerns the development of a general, graph rewriting-
based framework for knowledge representation, modelling and analysis that I
call rule-based meta-modelling as it incorporates the entire modelling process
itself as a modulable component of the framework. My particular interest at
present lies in a specific instantiation of this general methodology to build a
conceptual and software platform for bio-curation in the context of cellular
signalling and its deregulation in disease states.

In this chapter, I provide a high-level overview of this specific project.
Further detail and discussion can be found in the final chapter.

I Cellular signalling and rule-based modelling

Cellular signalling is the decentralized mechanism through which the cells
of an organism coordinate during (embryonic and childhood) development,
wound healing and adult homeostasis. Many diseases of the developed world,
notably type II diabetes and many cancers, arise from the deregulation of
signalling. A significant fraction of the human genome, estimated at 20–25%
of the whole, codes for proteins dedicated to signalling; these proteins control
the state of the cell through the agency of receptor proteins that detect the
presence of various hormones in the cell’s environment and which transduce
these ‘signals’ into the modulation of gene expression. However, the result of
signal tranduction also depends, to some extent, on the internal state of the
cell—most notably, the current cell cycle phase—as this also substantially
a↵ects gene expression. In this way, the cell can be induced to grow, divide,
bide its time, specialize its function or even die, depending on its own state
and its external context. In particular, the ‘same’ signal can a↵ect the ‘same’
cell di↵erently at di↵erent times; and a single signal can a↵ect cells of di↵erent
types, e.g. liver versus skin, quite di↵erently.

7

The ‘wiring diagram’ of signal transduction involves many thousands of
proteins and tens, perhaps even hundreds, of thousands of individual protein-
protein interactions (PPIs). These PPIs principally control (i) the transient
association of proteins into so-called complexes ; and (ii) the activation or
inhibition of the enzymatic action of certain proteins to modify the state of
other proteins. The modulation of gene expression depends on exactly which
proteins get modified (and how) and on which complexes are formed which
itself depends on prior modifications and complex formations and, ultimately,
on the cell’s state and external context.

Most protein modifications significant to signalling are of a binary ‘present
or absent’ nature; however, it is not at all unusual for a single protein to have
many [up to a couple of dozen] such sites of modification which means that,
even in isolation, the protein can exist in many thousands of distinct states.
Once the protein’s multiple binding partners—which can themselves exist
in many distinct states in isolation and have many binding partners—are
additionally taken into consideration, the number of distinct complexes that
can exist rapidly becomes truly astronomical. This fact rules out the use of
traditional modelling methodologies such as ODEs, Petri nets and multi-set
rewriting which rely on an a priori listing of all possible complexes.

In the last decade or so, an approach called rule-based modelling has
emerged where protein complexes are represented explicitly as the connected
components of a (very) large graph representing the whole system. In this
setting, a model is a collection of graph rewriting rules, each representing
a particular PPI; importantly, a rule expresses only the (known) necessary
conditions for its corresponding interaction to occur. This avoids the need
to enumerate all possible complexes in advance and enables the scalable
representation and simulation of very high-dimension systems [22,43].

In addition to stochastic simulation, the rule-based modelling approach
in the Kappa [17] language enables further analyses: static analysis using
abstract interpretation [23] and, especially, causal analysis [28] based either
on the extraction of causal traces from execution traces of the simulator; or,
when feasible, by a static enumeration of all possible such causal traces for a
given collection of rules and initial state. After appropriate post-processing,
these causal traces bear a very close resemblance to what biologists call signal
transduction pathways. However, while biologists generally try to ‘figure out’
these pathways in their heads, the rule-based approach, given a collection
of PPIs formalized as (graph) rewriting rules, reconstitutes these pathways
automatically from the dynamics provided by the simulator.

8

II The bio-curation problem

The rule-based approach provides a solution to the problem of combinatorial
explosion of the number of possible complexes. However, in order to take
advantage of this, the modeller still needs to collate all pertinent information
for each PPI of their desired model; and, while a great deal has been learned
about signalling PPIs over the last two or three decades, a number of major
obstacles remain before this knowledge can be fully exploited.

The first obstacle has a rather banal, but non-negotiable, nature: the
overwhelming majority of knowledge has been reported only in the scientific
literature and only in non-machine-readable format. This literature has been
organized and made e↵ectively searchable by the NCBI’s PubMed repository
(and related tools) but the actual knowledge remains imprisoned in those
papers in the form of a combination of text and image. The ongoing DARPA
‘Big Mechanism’ programme [10], which I am involved in, aims to automate
the extraction of textual knowledge by the use of natural language processing.
While progress has undoubtedly been made, I think it is fair to say that there
is little immediate prospect of removing human supervision of such a machine
curation process; moreover, the programme makes no attempt to treat image-
based knowledge, not all of which is reified in the text, which would clearly
require its own specialized curation pipeline. As such, for the foreseeable
future, the need for human intervention implies an inevitable bottleneck for
any attempt to extract knowledge from PubMed on a large scale.

Even for a curation process su�ciently restricted in scope that the human
bottleneck can be neglected, a second obstacle arises: the knowledge is highly
dispersed and typically heterogeneous. A single paper may contain partial
details about several PPIs; and the information pertinent to a single PPI
is not contained in a single paper but, rather, partial details will be found
across many papers. Moreover, some papers contain highly—even overly—
detailed mechanistic descriptions while others provide far less detail. This
situation imposes the need for a robust aggregation process where, as a paper
is read, all the pertinent details it contains can be immediately incorporated
into a curated format. In this way, the necessary details for PPIs can be
gradually ‘stitched together’ from a variety of sources. In the absence of such
a process, my own experience has shown that the human curator becomes
rapidly overwhelmed by the apparent need to read an ever-increasing pile of
papers: in e↵ect, they are trying to stitch the details together in their head
and, without machine assistance, the cognitive burden is simply too great.

9

This second obstacle is further complicated because the partial details one
reads in scientific papers have varied epistemic status: sometimes they refer
directly to experimentally observed facts; sometimes they infer evolutionarily
plausible hypotheses from observed facts; sometimes they state phenomeno-
logical observations about the overall e↵ect of many PPIs in some particular
context; and sometimes they propose purely hypothetical PPIs, advanced as
possible explanations of phenomenological observations. Clearly, these varied
kinds of information cannot be used in the same way; but they do all have
a rôle to play in the curation process: the first two and the last provide raw
material, of di↵ering quality, while the third provides assertions that can be
investigated through the use of simulation, static and causal analysis.

Let us now summarize by stating our basic bio-curation problem: we
want a platform that enables the machine-assisted collation and aggregation
of the knowledge that is pertinent to the construction of rule-based models
of signal transduction and its deregulation in disease.

Philosophical aside Modelling in physics generally occurs in the head of the
physicist and [what is usually called] the ‘model’—typically a collection of ODEs or
PDEs—is but a transcript of that mental construct. The overwhelming complexity
of signal transduction renders this rather opaque modelling process completely
infeasible; the sheer number of moving parts and the huge variety of ways that
they can perturbed simply cannot fit in anyone’s head⇤. As such, it seems that the
modelling process itself must be reified explicitly, providing an audit trail and the
means to test hypotheses and backtrack when necessary. In other words, modelling
as a tool for discovery and not merely the codifying of achieved understanding in
an artefact.

In practice, this means that the modelling process must emphatically not seek
to ‘figure out’ how the model ‘ought’ to work, i.e. hard-wire its responses to known
perturbations, but rather provide only the raw material required to construct, at
any given time, a model whose behaviour can then be investigated with whatever
analyses† we have at hand. In its conception of a model as a collection of lots of
formalized PPIs, the rule-based approach fulfils this basic requirement; and, once
coupled with additional machinery addressing the above concerns, should bring us
closer to this conception of modelling as a tool for discovery.

⇤People have tried, of course, but the resulting models are brittle and unevolvable.
†cf. the above discussion of pathways and causal analysis

10

Trajectory

I give a high-level account of my scientific career from my PhD onwards. I
have tried to avoid technical details, as far as reasonably possible, while main-
taining a rigorous discourse; nonetheless, given the fairly broad scope, there
may be a few moments where I must ask for a little indulgence. References
are provided as entry points to the literature for the interested reader.

I Game semantics

In linguistics, the term ‘semantics ’ refers to the relationship between a class
of signifiers and their denotations. A formal language provides a precise
definition of ‘a class of signifiers’ which may correspond, among many other
possibilities, to a fragment of some natural language or to a programming
language. In formal semantics, the process of assigning a denotation to
a signifier can itself be described as a particular signifier in an appropriate
formal language. For example, in the case of particular interest to us here, the
process of assigning a denotation to terms of a given programming language is
generally defined as a syntax-directed process, i.e. ‘by cases’ according to the
syntactic structure provided by the programming language, which could itself
be written—were we so inclined—as a term in a second formal language that
provides su�cient composition operators to build all required denotations.
Let us note that this ‘second formal language’ is generally left implicit with
only the assignment process itself being written down in situ, i.e. in the
terms of the general mathematical universe⇤ within which denotations lie:
composition of functions, evaluation of a function at an argument, &c.

⇤In modern programming language semantics, this almost always means a category—
and if said category has an internal language, the case of �-calculus for Cartesian closed
categories [47] being the exemplar, then this precisely provides an explicit definition of our
second formal language.

11

The field of game semantics provides means to construct mathematical
universes appropriate for defining the formal semantics of a wide variety of
programming languages. Similarly to the sequential algorithms [15] approach
that preceded it, these mathematical universes are generally (although not
exclusively) Cartesian closed categories but are not extensional: they provide
denotations that cannot be viewed as mathematical functions but rather as
intensional descriptions of functions that explicitly include information about
how the function is to be deployed, e.g. order of evaluation of arguments.

These denotations are called strategies, following the underlying metaphor
that views the behaviour of a program as a collection of rules, a ‘crib sheet’,
for a two-player game telling one of the players how to respond to the moves
made by the other (representing the program’s context of execution). A play
of a game, an execution trace, is an alternating sequence of moves beginning
with a move by the context, so that a strategy can be defined as a set of
plays—possibly subject to certain constraints.

The key particularity of game semantics lies in its definability theorem
which establishes a one-to-one correspondence between the (finite, ⌘-long)
normal forms of PCF—an idealized functional programming language: the
typed �-calculus with boolean and natural numerals plus constructs, if and
case, to manipulate local control flow—and a particular class of strategies
satisfying a suite of technical constraints: determinism, visibility, innocence
and well-bracketing [45]. In other words, in addition to the usual process
assigning a strategy to each PCF term, we can further assign a PCF normal
form to each (deterministic, visible, innocent and well-bracketed) strategy in
such a way that going there-and-back-again returns the normal form of the
starting term without performing any syntactic normalization whatsoever; a
kind of ‘normalization by evaluation’.

This definability theorem was refined and extended to richer settings by a
number of researchers; perhaps the most notable landmarks were FPC [53],
an extension of PCF with product, sum and recursive types, maintaining
the correspondence with the same class of strategies; and µPCF [42], PCF
extended with non-local control flow, which removed the constraint of well-
bracketing while retaining the others. My subsequent work with V. Danos
[24] deconstructed these results in order to reconstitute a new constraint on
strategies, called rigidity, to establish definability even in the absence of local
control flow; and my further work with O. Laurent [39] systematized all of
the above into a single setting that even allowed a statement of definability
in the absence of numerals through a further decomposition of rigidity.

12

The very tight correspondence between strategies and programs implied
by these definability results left game semantics vulnerable to the criticism
that it was nothing but ‘glorified syntax’. Indeed, an earlier development
of T. Coquand [11] and the independent, but contemporary with Hyland &
Ong, work by H. Nickau on PCF [56] remained tightly anchored to syntax:
in both cases, the ‘semantic’ notion of composition of strategies† retained
the asymmetric character of its ‘syntactic’ correspondent, i.e. substitution.
However, the work of Hyland & Ong precisely enabled an ‘unfolding’ of this
vision into a properly symmetrized setting with an elegant and general notion
of composition—based on parallel composition plus hiding à la CCS [54]—
while retaining the property of definability. This result did not follow from
purely syntactic considerations and required real proof.

Let us note that the work of Abramsky, Jagadeesan and Malacaria [2]
independently provided the same definability result for PCF; however, this
setting proved less ‘modular’ than that of Hyland & Ong and gradually fell
from favour as a result. Indeed, although at the time game semantics was
largely marketed as solving various long-standing full abstraction problems‡,
its real significance only became apparent a posteriori in the unanticipated,
serendipitous unravelling (c. 1996–1999) of the interpretation of PCF: each of
the above constraints (determinism, visibility, innocence and well-bracketing)
required for PCF definability turned out to correspond to a specific, known
sequential programming feature. We have already mentioned that dropping
the constraint of well-bracketing corresponds to admitting non-local control
flow. In a similar vein, although only proved indirectly by factorization rather
than through a direct definability result, dropping innocence corresponds to
introducing references for numerals [3]; and dropping visibility leads to full-
blown references (including references to references) [1].

My PhD work contributed to this e↵ort by analysing the role of the
determinism constraint. Unsurprisingly, removing this corresponds to adding
a finite non-deterministic choice construct; however, a more subtle analysis
was also possible, inspired by the concept of divergences in CSP [7], so as
to take account of the possibility of divergence as well as all possibilities of
convergence, leading to an interpretation of Idealized Algol with respect to
may- and must-convergence testing [40] (with G. McCusker).

†Coquand called them E-dialogues.
‡We choose not to comment this particular debate. The interested reader can find a

detailed and measured discussion in [16].

13

My PhD manuscript [35] remains a standard reference for the state of the
art in 1999, providing a clean general framework and resuming the results of
this unravelling process for all the above constraints. My early post-doctoral
work with V. Danos [25] extended this with the possibility to express proba-
bilistic strategies. Unlike my PhD work—where non-determinism arises due
to a program’s lack of knowledge of a nonetheless deterministic context—this
setting corresponds to the situation where programs are themselves making
non-deterministic choices. Indeed, the resulting interpretation of Idealized
Algol has a flavour of fairness : a program that, under the interpretation
given in my PhD work may diverge, would now converge with probability 1;
or, to put it di↵erently, the possibility of divergence results entirely from the
behaviour of a malicious (deterministic) scheduler in the context.

My final works in game semantics concerned a deeper and finer analysis
of certain aspects of innocent strategies. One line of work, in conjunction
with my PhD student Pierre Clairambault§, provided an analysis of the class
of total innocent strategies, where a strategy always has a valid response
irrespective of what its context does, and their relation to proofs in logic
as opposed to programs [9]. This work provided the technical basis for the
subsequent developments, principally concerning inductive and co-inductive
types, in Clairambault’s thesis [8]. Another line of work, in collaboration with
M. Hyland and P.-A. Melliès, investigated the combinatorial underpinnings of
the composition of innocent strategies [38]. Indeed although, as noted above,
this can be written in a generic ‘parallel composition plus hiding’ form, this
presentation leaves a great deal of additional structure, particular to the
innocent case, implicit. This work showed one way of making this additional
structure explicit, at the cost of (apparently) restricting the applicability of
the approach to defining composition only of innocent strategies.

I still retain a distant interest in game semantics, primarily with respect
to two unresolved questions upon which it may yet shed some light: whether
or not contextual equivalence in sesqui PCF¶ is decidable; and the precise
relationship between (innocent) strategies and sequential algorithms. The
first question is intriguing because, in the case of sesqui PCF, the techniques,
due to Loader [50] and Schmidt-Schauß [60], to establish decidability of unary
PCF fail; and likewise for the technique of Loader [51] to prove undecidabilty
of boolean PCF.

§defended 02/2010, now CR at the CNRS (LIP, ENS Lyon)
¶unary PCF with a single error value

14

The second question arose out of initial attempts to solve the first. The
principal di↵erence between strategies and sequential algorithms concerns
their treatment of multiple calls to a function: sequential algorithms provide
a far more subtle account than game semantics where functions are called at
most once and, if a second evaluation proves necessary, this occurs via a back-
tracking mechanism. I have shown how, in restricted cases, this backtracking
interpretation can be obtained incrementally from an innocent strategy via a
cellularization procedure inspired by that of Schmidt-Schauß [60] (and sub-
sequently simplified by Loaderk). In the case of unary PCF, the result of
this procedure can be optimized to recover a well-bracketed strategy that is
the denotation of the canonical representative of the contextual equivalence
class of the original term; the hope, as yet unrealized, was that this might
extend to full sesqui PCF.

A more general approach could be to try to adapt the ideas of Hofmann,
Streicher and Reus [44,63], and as later extended by Selinger [62], to a setting
appropriate for delimited control operators [29]. This would provide a richer
formal language for defining denotations with support for the reification of
‘bits of code’ as composable entities whose subsequent recomposition could
include sophisticated backtracking behaviour. In such a setting, the process
of cellularization could potentially be formalized abstractly, thus avoiding the
(huge) concrete complications that arise from working within the particular
mathematical universe of game semantics. On verra bien ; à l’occasion.

II Rule-based modelling

2007–2009 My first work in the field of rule-based modelling consisted
in the building of a large proof-of-concept model of a real cellular signalling
system. The aims were rather prosaic: to test the behaviour and performance
of the early Kappa simulator and, in particular, the extraction of causal traces
from execution traces [17]. I started building this model by refactoring an
existing ODE model [61], a process that rapidly forced me to turn to the
primary (biological) literature in order to fill in a variety of details that
had been abstracted away—in order to simplify—in the transcription of the
ODEs. Although at the time it seemed more like a fun puzzle that could be
‘solved’ by reading enough and thinking hard, with hindsight this was my
first exposure to the bio-curation problem.

kUnpublished note: http://homepages.ihug.co.nz/~suckfish/papers/atomic.pdf

15

This thread of work continued until late 2009, culminating in a proposed
meta-language for Kappa to relieve some of the cognitive burden of writing
large collections of rules [20, 36]. In particular, it enabled the definition of
generic rules that can express PPIs that are shared by a family of proteins—
and provided their automatic expansion into the implied full set of Kappa
rules—and loss- (but not gain-)of-function mutations where a generic rule
could be expanded only for a specified subset of a family of proteins. This
work enabled the further extension of the model of [17] which was validated,
using a very simple class of assertions in conjunction with the static and
causal analyses of Kappa, with respect to the experimental data of [64].
Concretely, this provided the assurance that the Kappa model was capable
of reproducing the qualitative behaviour reported in [64]—an illustration of
the most basic requirements of bio-curation.

2008–2013 In parallel with this thread of nascent bio-curation, I worked
on a number of theoretical questions about Kappa. The first, in collaboration
with V. Danos and, subsequently, also E. Murphy, concerned the notion of
rule refinement—the splitting of a rule into a collection of non-overlapping,
and usually exhaustive, sub-cases—as the motor for a systematic process of
deriving model variants from a starting model [18, 19, 55].

Several years after this initial work, in collaboration with V. Danos and
R. Honorato-Zimmer, the refinement methodology was applied to construct
automatically a thermodynamically-correct collection of Kappa rules given
a collection of generator rules and a set of energy patterns. Thermodynamic
correctness, in this context, means that each rule has a fixed, statically-
determined impact on the number of instances of each energy pattern (that
can be written as a vector of integers). In order to achieve this, the generator
rules must be systematically refined to reveal su�cient additional context so
that each energy pattern is either definitely included, and so impacted, or
definitely excluded.

The second question concerned the definition, given a collection of Kappa
rules, of a system of ODEs whose solution corresponds to the thermodynamic
limit of the stochastic dynamics of the rules. In other words, the stochastic
behaviour converges to the ODEs as the size of the system is increased. One
approach to this question, in which I played a minor rôle, used abstract
interpretation to identify all information flows implied by the rules from
which a system of ODEs can be determined [21, 34].

16

A second approach, in which I played a major rôle, specified the required
class of graphs as a category and exploited the categorical structure in order
to identify, given the starting collection of Kappa rules and a collection of
desired observables, a collection of graphs that are su�cient to keep track of
the average stochastic dynamics of the system [26,37]. Given this, a system
of ODEs can easily be written that captures the average behaviour of the
desired observables.

The third question addressed the definition of the (stochastic) dynamics
of a collection of Kappa rules, and the subsequent extraction of causal traces,
in terms of graph rewriting. Initial work, principally in collaboration with G.
Winskel, used the double push-out approach to describe the side-e↵ect-free
fragment of Kappa [27]; subsequent work, led by J. Hayman but in which
I played a significant rôle, generalized this to full Kappa using the single
push-out approach [28] and provided the first categorically-based treatment
of the extraction of causal traces from the graph rewriting dynamics.

In the next chapter, I give a condensed presentation of all aspects of
graph rewriting that have been required for rule-based modelling to date.
This subsumes, and generalizes, the various approaches to the theoretical
questions cited above and will be used, in the subsequent chapter, as a post
hoc reading guide to the papers of my habilitation dossier.

2011– After a hiatus where I was occupied with the theoretical questions
discussed above, I returned to the theme of bio-curation, initially in the con-
text of a short exploratory project with NIBR⇤⇤, during my sabbatical period
at Harvard Medical School. Although this collaboration, with S. Jaeger and
J. Loureiro (NIBR) and W. Fontana (HMS), gave rise to no publication, it
led to the idea that bio-curation critically requires a ‘staging area’ that plays
a double rôle: it represents knowledge and provides an executable model.

This vision has subsequently begun to be realized—in the context of two
DARPA programmes: Big Mechanism and Communicating with Computers—
as an instance of a general methodology that I call rule-based meta-modelling.
This approach again relies on graph rewriting; however, usual rewriting rules
are now reified as graphs which are themselves subject to rewriting. This
provides a setting where the knowledge/executable rules can be continually
updated in the light of new information. The basic mathematical framework
appeared recently [6] and will be further discussed in the final chapter.

⇤⇤Novartis Institute of Basic Research, Cambridge, MA

17

This page intentionally left blank.

Graph rewriting

Preamble

The pull-back complement (PBC) [31] of any pair of composable arrows in a
category, ⇡1 : G0 ! G1 and h1 : G1 ! G3, is a pull-back

G0 G2

G1 G3

⇡1

⇡2

h2

h1

satisfying [its universal property]: for any pull-back and arrow p : G0

0 ! G0

G0

0 G0

2

G0

G1 G3

⇡0
2

⇡0
1

p

h0
2⇡1

h1

such that ⇡1 � p = ⇡0

1, there exists a unique arrow h : G0

2 ! G2

G0

0 G0

2

G0 G2

G3

⇡0
2

p

h0
2

h

⇡2

h2

such that h2 � h = h0

2 and h � ⇡0

2 = ⇡2 � p.

19

In words, the PBC gives the largest, i.e. least general, G2 for which
the completed square is nonetheless a pull-back. In the simplest imaginable
case—the category of sets and set inclusions—the PBC of A ✓ B ✓ D is
C := D � (B � A): all the other candidates are included in C (and include
A).

In this chapter, we present a rapid technical introduction to sesqui-push-
out graph rewriting [13]. The basic setting is a category⇤ C with all pull-
backs, all push-outs and all pull-back complements over monos, i.e. the sec-
ond arrow, h1, in the above definition is a mono. The simplest model of
these requirements is the category Set of sets and total functions—although
it gives rise to a rather uninteresting setting where, e↵ectively, we can only
rewrite multi-sets over a singleton base set.

The pull-back, push-out and PBC constructions are all preserved† by
the slice category construction C/T which, in practice, is a rich source of
additional models, e.g. Set/T gives rise to multi-set rewriting over T .

In general, assuming that we consider C to be some category of ‘graphs’
and appropriate homomorphisms, an object of C/T can be viewed as a graph
typed by T in the sense that each node acquires a type, the node of T to which
it maps, and every edge must respect the ‘admissible’ edges provided by T ;
moreover, all arrows of the slice category must preserve typing in the natural
sense. We will continually exploit this notion of typing in what follows.

I Rewriting

From now on, we assume that C is a category with all pull-backs, push-outs
and PBCs over monos. In this setting, a rewriting rule is a span

P

L R

� ⇢

Unlike in the double push-out (DPO) [14] or the single push-out (SPO) [32]
approaches, we do not require that � be a mono. A rule is linear i↵ both
legs of its span are monos.

⇤We do not give a self-contained introduction to category theory; the interested reader
should consult one (or more) of [4, 49, 52]. In particular, we assume knowledge of basic
concepts such as ‘monos’, ‘pull-backs’/‘push-outs’ and ‘slice’ categories.

†see section I of the Appendix for full details

20

Cloning and deleting

In general, nodes and edges in a graph can be cloned and deleted by a step of
rewriting; the exact details depend on the class of graphs under consideration.
This ‘negative’ phase of a rewriting step is defined by the left leg of the span
� : P ! L. An instance—also often called a matching—of this in a graph G
is a mono e : L ⇢ G and the rewriting step is defined by taking a pull-back
complement.

P

L G�

G

� e�

e
��

In concrete settings, such as Set or Grph, the category of simple graphs,
deletion‡ arises from failures of surjectivity of � while cloning—impossible
under DPO or SPO rewriting—arises from failures of injectivity.

Merging and adding

The right leg of the span ⇢ : P ! R defines the adding and merging of nodes
and edges. Again, the precise details depend on the exact class of graphs
under consideration; but this ‘positive’ phase of rewriting is always defined
by taking a push-out.

P

G� R

G0

e�
⇢

⇢0
e0

Concretely, failures of surjectivity in ⇢ give rise to addition while failures of
injectivity give rise to merging.

Note that e0 has no abstract reason to be a mono; in many concrete
settings, this is however the case. Certain abstract settings, based on various
notions of ‘adhesivity’ [46], can also be used to guarantee this property that
‘push-outs reflect monos’.

‡An edge can also be deleted implicitly as the side-e↵ect of the deletion of a node to
which it is incident.

21

Typing

If our category is a slice category, a rewriting rule necessarily respects typing
in the sense that

P

L R

T

�

⌧P

⇢

⌧L ⌧R

commutes; and likewise for the matching e : L ⇢ G. After the negative phase
of rewriting, G� is still typed by T by pre-composition§: ⌧G� := ⌧G � ��. By
a routine diagram chase, we find that ⌧R � ⇢ = ⌧G� � e� and, by the universal
property of the push-out (of the positive phase), we have a unique arrow
⌧G0 : G0 ! T which types G0. In words, rewriting preserves typing.

Retyping

What if we wished to rewrite the type T? We might reasonably expect this
to have a generic e↵ect on all graphs G typed by T , e.g. if we delete a node
of T , this should delete all nodes of G typed by that node of T .

Clearly, within the slice category framework, we cannot rewrite T itself
directly as it is hard-wired into the slice category; instead, we must examine
the situation in the underlying category by considering an untyped rule r
with a matching e into T and an arbitrary arrow h : G! T . This will allow
us to ‘rewrite’ T by changing base.

P

L R

G

T

� ⇢

e

h

§cf. the post-composition ‘change of base’ functor [31]

22

The negative phase of rewriting e↵ected by r on T can be propagated¶

canonically to G by building the PBC of � and e

P

L

T�

T

�

e�

e

��

and then taking the pull-backk of h and �� to obtain

G�

G T�

T

��
G h�

h ��

with the final arrow ‘typing’ G� defined by h0 := ⇢0 � h� : G� ! T 0.

P

G� R

T�

T 0

e�

⇢

h�

e0

⇢0

There is no canonical propagation of this positive phase of rewriting to G�;
the e↵ect is rather to change the interpretation of G�, e.g. nodes in T� can
be merged so that di↵erently-typed nodes in G� have the same type in T 0.

We can thus rewrite on a typing tower G1 ! · · ·Gn where a rule typed at
level i canonically rewrites all levels j < i, leaving all levels j > i una↵ected
as rewriting preserves typing.

¶We give an alternative, but equivalent, definition in section II of the Appendix.
kwe are essentially evaluating the �� ‘change of base’ functor at h

23

II Matchings

Multi-sums

The notion of multi-sum—and, more generally, of multi-co-limit—is due to
Y. Diers [30]. It generalizes the standard notion of co-product (and co-limit)
to situations where the universal property fails in a ‘not too serious’ fashion:
instead of having a single universal co-span, we ask for a family of co-spans
that are collectively universal: any co-span factors uniquely through a unique
family member.

Specifically, the multi-sum of two objects G1 and G2 consists of a family of

co-spans G1 Mi G2
m1i m2i such that any co-span G1 G G2

e1 e2

factors through exactly one member Mj of the multi-sum—and does so
uniquely.

G1 G2

Mj

G

e1

m1j

e2

m2j

Concrete examples of multi-sums often arise when we restrict attention to
subcategories of monos, e.g. the co-product in Set—disjoint union—precisely
splits into a multi-sum in the subcategory of injective functions. In this case,
which is representative of all situations of concern to us here, the members
of the multi-sum enumerate the ways in which the images of two functions
can overlap: the requirement that the mediating arrow be a mono prevents
us from taking simply the disjoint union.

More generally, multi-sums provide us with some abstract machinery with
which we can formalize relationships between matchings and, by extension,
(instances of) rules. In e↵ect, if we assume that the sub-category C> of
monos has all multi-sums, these provide us with an abstract enumeration of
all types of pairs of matchings.

In the next section, we exploit this abstract enumeration in order to
define two relations⇤⇤ between rules that capture the intuitive notions of
co-operation and conflict.

⇤⇤of an intensional character, as we make the witnesses explicit

24

Activation and inhibition

A mono P ⇢ G1 influences an object G2 i↵, for some G1 M G2

in the multi-sum ofG1 andG2 (inC>) with pull-back G1 O G2,

the arrow •! O of the further pull-back

•

P O

G1 G2

M

6

⇠=

is not an isomorphism. In words, O is not contained in P so something in
the overlap O of G1 and G2 is in G1 but not P .

Given two linear rules r1 := L1 � P1 ⇢ R1 and r2 := L2 � P2 ⇢ R2,
we say that r1 activates r2 i↵ ⇢1 : P1 ! R1 influences L2 [via the activation
witness R1 ⇢ M � L2]; and r1 inhibits r2 i↵ �1 : P1 ! L1 influences L2

[via the inhibition witness L1 ⇢ M � L2].
In words, if r1 activates r2 then rewriting via r1 may create new instances

of r2; and, if r1 inhibits r2 then rewriting via r1 may destroy existing instances
of r2. Note that inhibition is not necessarily symmetric; note also that there
may be several witnesses for a given activation or inhibition. We will exploit
the additional information provided by the witnesses in the next section.

Application conditions

Given a rule r := L P ! R, an application condition (AC) is simply
any mono ↵ : L ⇢ S. An application condition can be thought of as being
negative if, by default, we consider any matching of L in some graph G as
inducing an admissible rewrite but take as exceptions, i.e. sub-cases where
the rewrite is inadmissible, those matchings that factor through such an ↵.
We abbreviate ‘negative application condition’ by NAC.

Dually, an AC can be thought of as positive if, by default, no matching
is considered admissible unless it factors through such an ↵; we abbreviate
‘positive application condition’ by PAC.

25

The use of (negative or positive) application conditions may result in
the loss of activation or inhibition witnesses: given a mono P ⇢ G1 that

influences an object G2 through witness G1 M G2
m1 m2 and two sets

of monos, A1 and A2, from G1 and G2 respectively to be thought of as NACs,
the witness is eliminated if m1 factors through some ↵1i : G1 ⇢ S1i 2 A1 or
if m2 factors through some ↵2j : G2 ⇢ S2j 2 A2. Dually, taking A1 and A2

as PACs, if m1 factors through no ↵ 2 A1 or m2 factors through no ↵ 2 A2

then the witness never applies and is eliminated.
Given two linear rules r1 := L1 � P1 ⇢ R1 and r2 := L2 � P2 ⇢ R2

with sets A1 and A2 of NACs from L1 and L2 respectively, we therefore
only need to keep those inhibition witnesses L1 ⇢ M � L2 that are not
eliminated by any ↵ 2 A1 or ↵ 2 A2; and we need only keep those activation
witnesses that are not eliminated by the rewrite ↵0 : R1 ⇢ S 0

P1

L1 S� R1

S S 0

↵ ↵0

of any ↵ : L1 ⇢ S 2 A1 or by any ↵ 2 A2. Note that we are assuming here
that push-outs reflect monos.

If all inhibition (resp. activation) witnesses for a given pair of rules are
eliminated in this way, this changes the overall inhibition (resp. activation)
relation.

III Implicit state simulation

We now define the (qualitative) dynamics of a system specified by a finite
set of linear rules R := {r1, . . . rn} and an object G—the current state. We
must further require that push-outs in the ambient category reflect monos.

The event horizon

The R-event horizon in G is the set of all matchings of all R-LHSs into G;
we denote this set by E

R

(G). As a convenient notation, we write ei,k for an
event in E

R

(G) which is the kth matching of rule ri 2 R.

26

Given ei,k 2 E
R

(G), we can perform the associated rewrite, obtaining a
new object G0. In an implementation, such as that provided by the Kappa
simulator, this state update is generally performed in-place.

The new event horizon E
R

(G0) is typically only mildly di↵erent from
E
R

(G) and is also generally updated in-place. The changes can involve both
the removal [negative update] and addition [positive update] of matchings
from/to the event horizon; and even those that have been ‘preserved’ must
still be updated to reflect the rewrite, i.e. to define the new event horizon
mathematically, we must calculate the residual ej,`/ei,k 2 E

R

(G0) of every
‘preserved’ ej,` 2 E

R

(G).
In practice, the calculation of residuals generally occurs implicitly via

the in-place update of G to G0 since a matching into the current state will
not be a↵ected by a rewrite that does not touch the image of the matching.
However, the negative and positive updates require considerable e↵ort [22]
and are still the subject of ongoing research††.

Negative update

Recall that an inhibition witness is a co-span of the form L ⇢ M � L0 in
the multi-sum of L and L0 where L and L0 range over LHSs of rules in R.
As a convenient notation, given R, we denote by Ii the set of all inhibition
witnesses (modulo ACs) where L is the LHS of ri.

Given ei,k 2 E
R

(G), for all inhibition witnesses fi : Li ⇢ M � Lj : fj 2
Ii and for all factorizations ei,k = f � fi, the matching f � fj =: ej,` 2 E

R

(G)
of the LHS of rj must be removed from E

R

(G0).

Li Lj

M

G

fi

ei,k

fj

ej,`
f

The existence of one or more such fs means that ei,k matches G in a way that
is compatible with the refinement‡‡ M of Li and Lj. Every such f necessarily
gives rise to an ej,` that must be removed: the algorithmic di�culty lies in
e�ciently identifying the ej,`s despite the double universal quantification.

††J. Krivine and P. Boutillier, private communication.
‡‡specialization to a sub-case

27

Positive update

An activation witness is a co-span of the form R ⇢ M � L in the multi-sum
of R and L where R (resp. L) ranges over RHSs (resp. LHSs) of rules in R;
let Ai be the set of all activation witnesses (modulo ACs) for the RHS of ri.

Given ei,k 2 E
R

(G), we obtain e0i,k : Ri ⇢ G0 after rewriting; so, for all
activation witnesses f 0

i : Li ⇢ M � Lj : fj 2 Ii and for all factorizations
e0i,k = f 0 � f 0

i , the matching f 0 � fj =: ej,` 2 E
R

(G0) must be added to E
R

(G0).

Ri Lj

M

G0

f 0
i

e0i,k

fj

ej,`
f 0

Residuals

The remaining case we need to consider arises for all ej,` 2 E
R

(G) for which
the left leg of ri, �i : Pi ! Li, does not influence Lj. Intuitively, this leaves
ej,` ‘unchanged’ but, mathematically speaking, we still need to define the
residual ej,`/ei,k since the co-domain changes (from G to G0).

Given ei,k, ej,` 2 E
R

(G), they have a unique factorization through a unique
member Li ⇢ M � Lj of the multi-sum of Li and Lj. The pull-back Li �
� ⇢ Lj of Li ⇢ M � Lj is therefore also the pull-back of Li ⇢ G � Lj

and, since �i : Pi ! Li has no influence on Lj, the arrow �0

i : • ! � in the
further pull-back

•

� Pi

Lj Li

M

G

�0
i

m00
j,`

f

m0
j,` �i

mj,`

ei,k

is an isomorphism and we thus obtain the dashed arrow f := �0�1
i �m00

j,`.

28

We can now calculate m0

j,` = m0

j,` � �0

i � �0�1
i = �i �m00

j,` � �0�1
i = �i � f , so

the pull-back complement

Pi

Li

G�

G

�i

e0i,k

ei,k

factorizes the pull-back of Li ! G Lj and, by its universal property,

�

Pi

Li Lj

G�

G

fm0
j,`

�i

e0i,k

ei,k

ej,`

we obtain the dotted arrow e�j,` : Lj ⇢ G� [which is a mono because ej,` is].
After post-composition with ⇢i,k from the push-out,

Pi

Ri

G�

G0

e0i,k

⇢i,k

we define the residual ej,`/ei,k := ⇢i,k � e�j,` : Lj ! G0.

29

The property that push-outs reflect monos implies that ⇢i,k is a mono; so
ej,`/ei,k is also a mono. More generally, it would be necessary to generalize
the notions of activation and inhibition—indeed, the underlying notion of
influence—to all arrows, not just monos, in order to extend the negative and
positive updates to non-linear rules that can merge and clone nodes: a clone,
although specified by the left leg of the span, impacts upon the positive
update; and a merge, dually, on the negative update.

However, this would take us beyond the intended scope of this manuscript
as linear rules su�ce for the graph-based formulation of Kappa. Nonetheless,
it would be an interesting direction for future research to consider how to
extend implicit state simulation to full-blown sesqui-push-out rewriting and
to even more general approaches, e.g. the AGREE framework [12].

30

Reinterpretation

In this chapter, I provide a reinterpretation of the papers in my dossier in
terms of a general framework that I call rule-based meta-modelling. This
serves the double purpose of (i) setting those papers in a unified technical
context that hopefully aids the reader to understand the progression of ideas
and to appreciate, with the benefit of hindsight, the technical di�culties that
motivated various developments, i.e. a kind of ‘reader’s guide’ to the dossier;
and of (ii) allowing me to situate my research project, as discussed in the
(next and) final chapter, in the same technical context so as to emphasize
that it can be seen as one logical progression from what came before.

Rule-based meta-modelling is not so much a technical idea as a ‘way of
thinking’ that emerges from the previous chapter, the intention being to fully
exploit the preservation of the categorical structure required to define graph-
like rewriting, and activation and inhibition, by various constructions—most
notably slice categories—and the ability to propagate rewriting in a ‘tower’ of
graphs. This enables a workflow where an ambient ‘universe’ can be defined
simply by writing down a concrete ‘graph’⇤—the meta-model—to serve as
the root of a tower whose upper levels are then automatically ‘framed’ in
terms of the nodes and edges of that meta-model.

To take an overly simple example, the meta-model for multi-set rewriting
is a singleton set representing formally the concept of a ‘kind of element’
of a multi-set; in chemical kinetics, this would be the concept of ‘molecular
species’. The next level up is a model which is the set of all actual elements—
the molecular species—relevant to a given system which, in turn, types all the
rewriting rules that collectively define the system (and its implied dynamics).
A rewrite at one level, e.g. to delete a molecular species, can be automatically
propagated, i.e. to delete all mention of that species in the rules.

⇤In our case, in the category of graphs with multiple, disjoint edge structures [alter-
natively, where edges as well as nodes can have attributes] and their homomorphisms.

31

As we will see, the meta-model for Kappa is a bit less trivial and, more
generally, adopting this way of thinking enables a more incremental approach
to modelling: one starts with a basic meta-model and, as experience reveals
its defects, it can be updated—through a rewrite—to allow the expression
of richer and/or refined concepts; critically, this update propagates upwards,
providing a canonical and intrinsic notion of backwards compatibility. In
contrast, even in a purely mathematical development, if the meta-model has
been implicitly hard-wired into multiple fundamental definitions, this already
obfuscates its transversal rôle and greatly complicates the e↵ort of ‘updating
the meta-model’ as and when the need arises.

Beyond such (meta-)mathematical considerations, in collaboration with
various interns and post-docs, I have developed the ReGraph Python library†

which provides support precisely for the definition of towers of graphs, rooted
by a meta-model, and sesqui-push-out rewriting with upward propagation.
As I will discuss in my project in the final chapter, this library provides the
basic functionality upon which the bio-curation machine is being built. This
work will be presented in detail in a forthcoming paper.

I Semantics of Kappa rules

The first mathematical interpretation of Kappa‡ rules, qua graph rewriting
rules, and the dynamics induced by a collection of Kappa rules made use
of the double push-out approach to rewriting and, as such, necessarily had
to restrict to a side-e↵ect-free fragment of Kappa [27]: the mass-preserving
linear rules, i.e. no deletion/addition of agents, plus addition/deletion of
fully-specified connected components with respect to the contact graph.

Although earlier work had already defined a category of realizable site
graphs and embeddings [19,55], the work in [27] marked the first time that a
general notion of site graph and homomorphism was defined, giving rise to a
category with the structure required to define rewriting. Another technical
novelty of the paper was the explicit specification of a contact graph as a type
and the use of its slice category to control the kinds of graphs and rewriting
rules under consideration; this was the first, faint sign of the general meta-
modelling framework.

†

https://github.com/Kappa-Dev/ReGraph (with, in alphabetical order, Adrien
Basso-Blandin, Ismäıl Lahkim Bennani, Yves-Stan Le Cornec and Ievgeniia Oshurko)

‡Refer to section III of the Appendix for a brief guide to the concrete syntax of Kappa.

32

Indeed, with hindsight, the entire basic mathematical framework could
have been more compactly defined by specifying a simple meta-model

agent site state

[where the dotted edges represent a ‘belongs to’ relation and the solid edge
represents Kappa bonds] and imposing some mild constraints to ensure that
(i) every site (resp. state) belongs to an agent (resp. site); and (ii) no site
(resp. state) belongs to more than one agent§ (resp. site). Further constraints
could have been applied more selectively to obtain sub-classes of graphs of
interest, e.g. realizable and (realizable and) fully-specified. Let us also note
that this meta-model represents states as nodes, exactly as in [27]; but, with
hindsight, it would have been more natural to use attributes§ on sites.

Aside In my opinion, the key advantages of the meta-modelling approach—
‘state your concepts and the constraints they should satisfy’—are (i) that the
explicit statement of constraints, de-convolved from concepts, makes explicit the
‘wiggle room’ that you still have without needing to enrich your concepts; and (ii)
provides cognitive support for the fateful day when you realize that you do need
to upgrade your meta-model, by at least enabling you to bring along your work to
date. As noted above, this is even useful for ‘purely mathematical’ modelling, i.e.
everyday mathematical work [59], but becomes completely indispensable in the
wild open world of knowledge representation.

The above meta-model does have one slight di↵erence to the framework
of [27] in that it lacks the ‘free site’ predicate. However, this does not result in
any loss of expressivity—at least with respect to defining an interpretation of
Kappa rules that correctly describes their intended actions—because a ‘free
site’ condition can instead be expressed by a collection of NACs—one for
each possible incident (solid) edge in the contact graph.

§The ReGraph library provides such functionality.

33

This issue of whether a ‘free’ site should be represented explicitly in some
way or implicitly via NACs becomes central once we attempt to extend our
mathematical interpretation to full-blown Kappa [28]. If, as in [27], we have a
‘free site’ predicate in the structure of our graphs, this implies that (usually)
all sites in a contact graph satisfy this predicate—as well as having multiple
incident edges. This makes sense because, read as a type, this merely asserts
that each site may be free but also may be bound in various specified ways.

A Kappa rule such as

A(s!_) -> A(s)

applied to such a graph would pick an edge incident to s, delete it and make
s ‘free’, despite leaving all other incident edges in place; but, most of all,
not make the unnamed site at the other end of the deleted edge ‘free’. This,
however, is emphatically not the intended action of the rule applied, as it
properly should be, to a realizable graph: the action then is to unbind s

from whatever (unique) thing it is bound to and make the sites at both ends¶

explicitly ‘free’. In other words, the intended meaning of this rule convolves
pure graph rewriting aspects with the constraint of realizability which insists
that all sites maintain a well-defined binding state.

The approach in [28] amounted to performing an upgrade of the meta-
model of [27], with additional explicit structures for binding wild-cards (and
binding-types) and the extra constraints they necessitated, then forcing the
(SPO) rewriting process to maintain these constraints—even when it really
had no business doing so. The resulting framework is, not unexpectedly,
complicated and fragile; however, its real weakness is that, in doing this, it
becomes rather a mere transcription of Kappa into bespoke-tailored graphs
than an insightful re-situating in a more general mathematical setting.

One possible approach to easing this criticism would be not to enforce
the maintenance of constraints but rather include, in the rule, a post hoc
‘application condition’ intended to be satisfied after applying the rule; and,
if not, this should induce an automatic administrativek rewrite to reestablish
any violated constraints. This is actually how the operational semantics of
Kappa [21] deals with the issue, albeit in a term-rewriting setting. However,
NACs (and PACs for the dual encoding of the ! wild-card) can achieve the
same e↵ect using, moreover, a far simpler notion of graph so, in the absence
of any other motivating need, there seems little point in doing this.

¶Such side-e↵ects also arise through deletion of an agent bound on some of its sites.
kcf. administrative reductions in CPS

34

II Causality, activation and inhibition

The first account of how ‘pathways’, i.e. causal traces, could be extracted
from the execution traces of a rule-based simulation appeared in [17]. The
treatment was largely informal, being based on the empirical use of (an early
version of) the Kappa simulator in the context of a reasonably large model,
built by myself, as a way of providing a proof of concept. One of the key
(meta-)findings was the need for the automatic compression of causal traces
in order to remove irrelevant digressions⇤⇤ due to binding equilibria and futile
cycles of modification.

A second key point of the paper was the use of activation and inhibition
between rules to characterize influences between causal traces. Most notably,
these took the form of feed-back and/or feed-forward within, or between,
causal traces. However, the notions of activation and inhibition were defined
in a state-dependent fashion—‘there exists a state in which the firing of this
rule creates/destroys instances of that rule’—which were only later related
formally to the state-independent definitions in terms of multi-sums.

The real purpose of [28] was not to provide a definitive interpretation
of Kappa rules but to give the first rigorous treatment of this extraction—
from execution traces, as formalized with SPO rewriting††—of causal traces
and their compression in order to obtain something close to what biologists
call ‘signalling pathways’. As such, the paper critically needed to take wild-
cards and, more generally, side-e↵ects into account and, although application
conditions (mainly NACs) could have been employed for this purpose, the
explicit reification of structures for wild-cards into the graphs was in practice
rather more direct and convenient.

In addition, although it was not treated explicitly in the paper, a second
motivation of [28] was to have a graphical interpretation of rules suitable
for the design of static analyses: in that case, far from wanting a general
mathematical universe within which to situate, and investigate the possible
generalizations, of a class of rules, for static analysis we seek a finely-tuned,
highly specific interpretation with which we can extract the most information
possible [23].

⇤⇤The causal traces presented in the paper were compressed de facto by manipulating
the system’s state and ignoring any non-compressed traces that still arose.

††In this paper, execution traces were not described à la ‘implicit state simulation’ but
just in pedestrian fashion as a sequence of matchings of LHSs into the current system
state. A reformulation in terms of witnesses could provide further insight.

35

A completely di↵erent application of activation and inhibition arose from
the observation that they allow us to characterize all ways in which a graph, a
pattern, can be produced and consumed by the action of a collection of rules.
Indeed, one can use activation and inhibition to define an ODE describing the
limiting trajectory‡‡ of a pattern; however, this ODE must keep track of the
entire system state. In earlier work, J. Feret showed [21,34] how to compute,
via an abstraction interpretation, a finite set of coarse-grained patterns—
called fragments—giving rise to a self-consistent description of their limiting
trajectories: the ODE for each fragment requires access only to the current
values of (some of) the other fragments. In this way, the dependence on the
whole system state is suppressed and the resulting description generally gives
rise to a significant reduction in the number of variables.

This idea of computing a self-consistent coarse-graining, relative to a
given set of rules and observables, was revisited through the lens of the
abstract categorical combinatorics of production and consumption provided
by the multi-sum formulation of activation and inhibition [37]. The setting
was a simplified Kappa with no internal states and no wild-cards—although
with hindsight there is no reason why these could not be incorporated—with
the further key assumption that the contact graph of the system is acyclic.
This enabled a description of the (finite) set of fragments and their ODEs
via a saturation procedure whose termination was implied by acyclicity. This
assumption was suppressed in the follow-up paper [26] at the cost of requiring
a less computationally intuitive mathematical definition of (in general) an
infinite set of fragments and their associated ODEs.

These methods complement those based on abstract interpretation: the
abstract combinatorics provides a mathematically optimal coarse-graining;
whereas static analysis§§ seeks to e�ciently compute a good approximation
to the optimal solution.

These papers made use of several fairly idiosyncratic notions in order to
formulate the abstract combinatorics: production and consumption squares,
minimal gluings and relative push-outs. However, ultimately, all the abstract
machinery required follows from the existence of all multi-sums in the sub-
category of monos; in particular, the notions of production and consumption
squares correspond directly to the definitions of activation and inhibition and
a minimal gluing is a restatement of the notion of an element of a multi-sum.

‡‡

i.e. in the thermodynamic limit
§§see F. Camporesi’s forthcoming PhD thesis for a definitive account

36

III Towards knowledge representation

The ‘proof of concept’ Kappa model in [17] rapidly acquired a double status
as being, on the one hand, the source code of an executable model; yet, on
the other hand, somehow—and despite a clear dose of arbitrary encoding—a
representation of the domain-specific (biological) knowledge upon which the
model is based. As the model was expanded¶¶, certain commonalities began
to emerge between rules: in e↵ect, some rules felt like they could be expressed
at a more generic level and then instantiated into various concrete cases. The
motivations for this were partly pragmatic—keeping the model smaller—but
also derived from biological arguments: many PPIs have generic character as
they involve regions of proteins conserved across orthologs [between species]
and paralogs [between distinct genes of a single species].

In collaboration with J. Feret, I designed and built a definitional meta-
language for Kappa rules, called MetaKappa, in which the user could define
(forest) hierarchies of agents and rules that could refer to agents at any level
of the hierarchy [20]. The sites of an agent could be duplicated or deleted in
its descendants; so a rule written at one level might be duplicated for some
of its children and disappear completely for others. Given a hierarchy and
a collection of rules, MetaKappa automatically translated into Kappa⇤⇤⇤.
The ability, through the deletion of sites, to express the e↵ects of loss-of-
function (LOF) mutations enabled a new use of static and causal analysis:
for a simple class of ‘reachability’ assertions††† we could use these analyses to
validate our proof of concept model against empirical data [20] that precisely
exploits engineered LOF mutations in order to characterize the necessary
conditions for PPIs.

A rather paradoxical e↵ect of this definitional approach was that it forced
the user to keep in mind the ‘intended’ Kappa rules; as such, it still required
the bulk of the actual modelling work to be carried out ‘in the head’ of the
user and only intervened, after the fact, in order to provide a more humanly-
readable presentation of the model. Moreover, a given collection of intended
rules can—in the absence of other constraints—generally be expressed in
multiple ways, even in a simple framework like MetaKappa, so the approach
su↵ers from an intrinsic lack of canonicity.

¶¶ultimately to roughly 300 rules
⇤⇤⇤This was not done using graph rewriting although, with hindsight, it would have been

very natural to formulate MetaKappa in these terms.
†††can this pattern be built? and, if so, how?

37

The follow-up paper [36] continued in this definitional vein, allowing even
more powerful and even less canonical definitions by generalizing hierarchies
to being DAGs. In hindsight, this was a completely wrong turn. However, the
very fact that this more powerful framework inevitably enabled many more
ways of defining the same collection of Kappa rules brought into sharper
focus the deeper underlying opposition between specification and definition:
a specification-based approach simply lists, in an unstructured fashion, all
the cases; whereas a definitional approach seeks to find some regularity. The
ultimate aim of the latter approach is lofty and amounts to being an attempt
to provide a preliminary theory of PPIs: not merely documenting what we
know but trying to predict what should be the case. With all due respect to
the progress made in recent decades in biochemistry, such a theory remains
a distant hope. As such, and despite its being the most initially tempting
to a computer scientist, it seems that the definitional approach is, at best,
extremely premature.

My recent work has reverted to the specification-based approach—as was
initially implicit in the use of Kappa to ‘represent knowledge’—but in a
graph-based setting [6]. The aim is simply to represent knowledge and,
to this end, employs a domain-specific meta-model. As before, automatic
translation into Kappa is provided. The graph-based formalism of [6] falls
squarely‡‡‡ into the rule-based meta-modelling framework—although it was
not presented in that way—and possesses considerable, as yet untapped,
additional representational power for capturing phenomena such as gain-of-
function mutations and negative constraints (such as allosteric inhibition)§§§.
This work relies heavily on the ReGraph library which is still under active
development. Some future directions for this line of work are explored in the
next chapter.

‡‡‡indeed, this marked the birth of the very idea
§§§This extension of [6] will be presented in a forthcoming paper.

38

Project

Context

I have already begun work on the bio-curation problem, in the context
of DARPA’s ‘Big Mechanism’ and ‘Communicating with Computers (bio-
curation use case)’ programmes, in collaboration with W. Fontana at the
Harvard Medical School. So far, this has focused on a general approach to
solving the aggregation problem using graph rewriting relative to a domain-
specific meta-model defining precisely the kinds of information of interest [6].
A prototype system KAMI⇤ has been built to enable the incremental collation
of knowledge, its aggregation and automatic translation into the rule-based
modelling language Kappa [17] for the purposes of simulation†.

More recent work has begun to formalize key domain-specific properties
of our meta-model so as to support a semantically normalized representation
of proteins. Similar work has been done by others in the past, most notably
in the BioPAX project [33], but the particularity and principal novelty of our
approach is to restrict our domain of interest to signalling while insisting on
a more detailed representation of proteins so that the e↵ects of mutations on
PPIs can be automatically accounted for in the translation into Kappa.

An important further consequence of semantic normalization is to ease
the integration of separate human curation projects into a larger whole: until
the human bottleneck of ‘high-throughput curation’ has been resolved, large-
scale curation can only realistically occur through the merging of smaller-
scale human-led e↵orts. Such merges may very well yield an inconsistent
whole—typically di↵erent versions of the same PPI—but normalization would
at least guarantee, and indeed identify, that the di↵erent versions refer to,
and are intended to refer to, the same entities.

⇤

KnowledgeAggregator &Model Instantiator: https://github.com/Kappa-Dev/Kami
†KaSim: http://dev.executableknowledge.org

39

I Multiple models

short- to medium-term

The first axis of my project aims to address this issue of inconsistency and,
more generally, the need to support and evaluate multiple models. The first
step is to provide a robust infrastructure that enables KAMI to maintain
distinct, but interlinked, models by making explicit their common parts;
and to enable the evolution of those linkages as the models are updated over
time. This would enable (i) small-scale variants of a single model where some
of the PPIs have several versions; and (ii) more significant variant models
that propose alternative collections of PPIs to explain some experimental
observations; but also (iii) connections between models for di↵erent species
(e.g. human vs. mouse) that formalize evolutionary homology relations.

The first case would provide machine support for keeping track of small
variants, such as those that could arise from merging, that would otherwise
be the modeller’s responsibility; while the second extends this to more sub-
stantial variant models—for di↵erent cell types, e.g. skin vs. liver, employing
di↵erent collections of PPIs; or proposing alternative hypotheses—so as to
compare and contrast competing explanations of experimental data.

The third case exploits the same underlying idea—connecting two models
by specifying their common parts—with a rather di↵erent aim: to formalize
the notion of knowledge transfer ‘by similarity’ frequently used by biologists.
Specifically, if some PPI has been experimentally observed in one species, e.g.
mouse, and the (relevant regions of the) proteins in question are conserved in
(say) humans then, by similarity and in the absence of data to the contrary,
we would hypothesize that ‘the same’ PPI occurs in humans. The linkage
between the mouse and the human model defines precisely what we mean
by ‘the same’. This formalization of knowledge transfer implies that we also
need to augment our platform with the ability to assign epistemic status to
PPIs (as discussed briefly above) so as to distinguish between ‘experimentally
observed fact’, ‘inferred by similarity’ and ‘pure hypothesis’.

This first step must be accompanied by a significant use case designed to
test the above functionality. A good candidate would be the development of
a collection of models of the activation of [the protein] Raf, recently reviewed
in [48]. Raf activation is a highly complex, and only partially understood,
process involving a number of proteins and PPIs. Its literature is highly
complicated, with multiple competing hypotheses, and the data have been
gathered across many human cell types as well as in other species.

40

As such, the curation of this literature would potentially benefit greatly
from precisely the kind of infrastructure we are proposing to build; and should
moreover usefully inform the very design of that infrastructure. Furthermore,
Raf protein mutations are implicated in certain cancers, notably melanoma,
so this use case has further interest for the KAMI system as a whole.

The second step is concerned with enhancing this infrastructure to provide
support for the evaluation of the explanatory power of models. As mentioned
above, a great deal of knowledge takes the form of assertions that apply in a
certain context, i.e. a particular cell type of a particular species; these may
be compatible with some models and incompatible with others. I plan to
formalize assertions within KAMI, by generalizing its meta-model, so that
they can be evaluated in an automated fashion via the Kappa simulator: if
(say) an assertion claims that treating cells with a certain hormone leads
to Raf activation, this scenario can be ‘run’ across all appropriate variant
models in order to identify which ones validate the assertion (and which ones
don’t). The exact class of assertions we need remains an empirical question
at this time; however, since KaSim provides full-blown stochastic simulation,
it could in principle be used to validate quite sophisticated assertions about
the timing and the degree of activation of a signal transduction pathway.

The completion of the above would already provide a powerful platform
for bio-curation, allowing the user to construct plausible variant models in
an organized fashion, transfer knowledge across species and perform semi-
automated evaluation of their relative explanatory power. However, the third
(and, for this part of my project, final) step should take the platform one step
further to provide support for distillation of consensus models for species by
the gradual merging of smaller models into a larger-scale, but still human-
directed, curation e↵ort. Specifically, di↵erences in behaviour between (say)
skin and liver cells only arise because the cells express di↵erent repertoires of
proteins; their behaviour is obviously blind to whether they live in a skin or a
liver cell‡. So, ultimately, a human skin model is one instantiation of a single
consensus human model; and a human liver model is a di↵erent instantiation
of that same consensus model. The identification of such consensus models
hinges on a decontextualization process that prunes spurious, typically cell
type-specific, conditions on PPIs, leading to a canonical structure for KAMI
consisting of a collection of consensus species models, each connected to its
variants for cell types (and any outstanding competing hypotheses).

‡cf. the philosophical aside at the end of the first chapter

41

Technical approach

The approach is grounded in the mathematical formalism of graphs and
graph rewriting [6]. Each PPI is represented by a graph detailing the nature
of the interaction—usually binding, unbinding or enzymatic modification—,
the participant proteins and any further necessary conditions, e.g. one of the
proteins must be phosphorylated in some way and the other must be bound to
some ‘chaperone’ protein. A model consists of a collection of such formalized
PPIs together with additional disambiguating information specifying when
actions are in conflict, e.g. a protein can engage in two binding actions but
only one-at-a-time because the two binding sites overlap physically. This
additional information is itself represented as a graph. Updates to a PPI are
expressed by applying rewriting rules that modify the necessary conditions.
This can be either the removal of conditions newly revealed to be spurious;
or the addition of newly discovered conditions.

Mathematically speaking, a linkage between two graphs is precisely a
rewriting rule from one to the other: it expresses what they have in common;
and what must be removed and added from the one to obtain the other. If
we rewrite one of the graphs with some second rewriting rule, this induces
a canonical rewrite on the linkage itself which, in turn, induces a canonical
rewrite on the other graph. This fundamental formal choreography provides
the underpinnings for how we propose to represent and maintain multiple
evolving model variants: it is enough to represent one graph explicitly—and
in non-volatile fashion so we will require some database infrastructure, based
on RDF or similar, well-matched to our graphical formalism—and the others
implicitly as ‘rewrites’ of the first; in practice, the explicitly represented graph
should ideally be our current best candidate for consensus model. The same
notion of linkage can be used to represent conserved regions of proteins, i.e.
homology relations, and, in this case, the implied rewrites correspond exactly
to our desired notion of knowledge transfer between species.

All our graphs are constrained in form by our choice of meta-model. In
order to accommodate assertions, we will generalize the existing meta-model
to allow the representation of ‘actions at a distance’ that correspond to what
biologists call pathways. In other words, such an assertion could represent
a statement such as ‘hormone X leads to Raf activation’ which does not
correspond to any direct notion of causality; on the contrary, there can be a
complicated chain of PPIs required to fulfil the claim. There could even be
several distinct ways by which hormone X leads to Raf activation.

42

As mentioned previously, the KaSim simulator, in addition to providing
execution traces, can also perform post hoc causal analysis of traces in order
to detect the existence of such causal chains between processes. We would
consider the discovery of such a chain to be a validation of the corresponding
assertion. We can complement this with static analysis, based on abstract
interpretation, which can establish the definite non-existence of any such
explanatory causal trace. Although potentially computationally expensive,
in principle these analyses enable the automated ‘screening’ of many variant
models with respect to a collection of assertions.

The greatest point of di�culty in this project lies in the elucidation of the
decontextualization process. The basic idea is to excise—from PPIs and from
assertions—details that have proven to be spurious. For example, in one cell
type, a necessary phosphorylation in the middle of some pathway might occur
constitutively whereas, in a di↵erent cell type, it might be regulated by some
other process and, in some third cell type, by yet another process. Depending
on which context one uses to curate, one might begin by assuming that
those auxiliary processes themselves, not just their ultimate phosphorylation
action, belong to the overall pathway. This would then be contradictory with
the first cell type where no such auxiliary process occurs. Decontextualization
would remove these spurious dependencies, replacing them with INUS§-style
causal relations within and between pathways. The proper formalization and
automation of this procedure will have to be informed by our experience of
first applying the ideas—by hand—in our use case.

II Automation

medium- to long-term

The second axis of my project aims to build an automated curation pipeline.
More precisely, it seeks to sharpen the requirements that we make on machine
reading that are indispensable for the specific notion of bio-curation discussed
in this manuscript. The basic problem can be stated in rigorous semantic
terms¶ as follows: given an input to the bio-curation machine and given the
current state of that machine, calculate the denotation of that input, i.e. the
rewriting rule that must be applied to update the current state—in the light
of what the input contains.

§‘Insu�cient but Necessary, Unnecessary but Su�cient’, due to J. L. Mackie
¶as in our earlier discussion of game semantics

43

At the time of writing, the current status of the project is: we have built
generic machinery for performing such rewriting; and we have identified the
kinds of entities and edges that can exist in a state of the specific bio-curation
machinek. The former is provided by the general purpose ReGraph Python
library discussed in the previous chapter; the latter by the definition of a
specific meta-model, i.e. a particular graph that types all other graphs in the
machine, that expresses a collection of concepts relevant to bio-curation for
cellular signalling. On the other hand, the calculation of the denotation of
an input must still be performed in the head of the user of the machine; and,
at present, the incarnation of that rewriting rule in the machine can only
occur through the user transcribing it via the agency of a user interface.

The automation of this task can only realistically be tackled incrementally
and will require considerable introspection on how, as humans, we calculated
these updates during the development of the use case. Certain aspects of the
problem fall naturally into the category of ‘background knowledge’ that any
expert bio-curator could be expected to know, e.g. the name and standard
symbols for amino acids, their chemical properties pertinent to signalling
and standard notation for mutations; or more sophisticated properties built
on top of this such as ‘only serine, threonine and tyrosine residues can be
phosphorylated by an active kinase domain’.

Further semantic properties specific to signalling—i.e. with respect to
the corresponding real-world entities: the domain-specific semantics—such
as the binding properties of the various modular ‘binding domains’ would
also play an important rôle; as would more pedestrian (typically syntactic)
notions such as synonyms and near synonyms, e.g. ‘bind’ verses ‘associate’
or ‘form a complex’. Ultimately, the determination of all relevant factors can
only be considered an open-ended empirical question.

Technical approach

Although we are evidently a long way from calculating denotations with a
program written in the internal language of some highly-structured category,
this rigorous framing of the problem does at least provide some conceptual
sca↵olding that will hopefully prevent the project from degenerating into an
imbroglio of ‘chewing gum and string’.

kThere is also the automatic translation into Kappa rules for simulation and analysis
but that is not germane to this discussion.

44

It is already clear that we need to write a (complicated) program; the
above discussion also makes it clear that its behaviour must depend on the
current state of the machine: not only does the update need to be situated—
we must calculate not just a rewriting rule but also its matching, i.e. where
it is to be applied—but the denotation itself, and potentially even the way
it is calculated, will also vary depending on the current state. For (a simple)
example, the denotation of a sentence mentioning some entity, e.g. a protein,
di↵ers depending on whether or not that entity is already represented in the
machine: we only wish to add entities that do not already exist.

As far as ‘anatomical’ aspects of proteins are concerned, a great deal of
ground work has already been done, by the bioinformatics community, in
providing databases that ground entities: UniProt gives unique identifiers
for genes and documents their protein products; PFAM details regions and
domains of proteins; and PhosphoSite has a lot of detail on post-translational
modifications (primarily phosphorylation) relevant to signalling. In all like-
lihood, it will be necessary to complement these concrete groundings with
additional phenomenological properties, typically enzymatic ‘activity’, that
are su�ciently systematic to be incorporated into an ontology. As suggested
above, the combination of such properties—either by hand in ad hoc fashion;
or more systematically using an OWL Description Logic-based ontology [5]—
already provides the basis for a step of [domain-specific] semantic validation:
if an input sentence states non-sense, we want to detect this, if at all possible.

The situation is far less clear when it comes to PPIs: to date, no standard
grounding exists⇤⇤. In consequence, when an input sentence speaks of some
interaction, we cannot simply ‘look up’ whether or not it already exists in
our machine’s representation. Instead, we can only rely on domain-specific
semantic properties so as to identify (at least a sub-class of) the cases where
the interaction does already exist in the machine, e.g. sequence constraints or
the localization of an interaction at some protein domain. We are not aware
of any previous e↵orts of this kind and, as such, the early development will
likely have a rather artisanal character. However, we can hope that broader
principles might begin to emerge over time.

In any case, once we have identified what is new and what already existed
in the machine, given an input sentence, we can construct its denotation—
the rewriting rule and its matching—and subsequently apply it in order to
update the machine’s state.

⇤⇤Indeed, a notable side-e↵ect of this project is precisely to provide such a grounding.

45

One final point concerns syntactic issues. In the early phase of the project,
and as tacitly assumed above, we do not intend to perform syntactic parsing
ourselves; we will rather provide the system with pre-annotated sentences in
order to focus our initial attention on developing domain-specific semantic
aspects. However, as the system matures, we intend to incorporate syntactic
parsing and an even earlier phase of machine learning in order to detect which
sentences we actually need to read: the biological literature is highly stylized
and most sentences fall into one (or sometimes two) of only a small number
of ‘types’ of sentences, only some of which ever contain actionable content.

Summary

My project has two broad and complementary axes: the first is primarily
concerned with aspects of bio-curation that exploit having a human expert
‘in the loop’; whereas the second aims to increase the overall throughput of
curation by incorporating machine reading technology.

In the longer term, this project could evolve towards the development of a
very general (rule-based) meta-modelling [41] framework. This could include
abstracting the Kappa-specific simulator to being meta-model independent,
thus enabling the user to execute directly any collection of rules written
over their own meta-model. Such a framework would enable more flexible
representations for biology—e.g. by capturing pertinent notions of locality,
without going all the way to 3d-coordinates, if di↵usion-limited or membrane-
associated processes are implicated; or to coordinate multi-level modelling to
capture the e↵ects of signalling at the tissue organization level—or, indeed,
for a wide variety of modelling domains.

An entirely di↵erent generalization could focus instead on the linguistic
side in order to extend its scope, beyond that of bio-curation, towards other
target domains or even general semantics. This might enable the forging of
connections with work that seeks to analyse the semantics of natural language
via 3d temporal simulations [57, 58] to capture context-specific aspects of
semantics that natural language does not (explicitly) express††. In particular,
the dependence of such work on ‘Cartesian 3d-space’ could potentially be
suppressed by the use of a meta-model-independent simulation machinery.
As such, there should be scope for synergy with general meta-modelling.

On verra bien.

††cf. the use of Kappa to investigate the cell type-dependence of a collection of PPIs

46

Bibliography

[1] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game se-
mantics for general references. In Proceedings, 13th Annual IEEE Sym-
posium on Logic in Computer Science, pages 334–344. IEEE, 1998.

[2] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for
PCF. Information and Computation, 163(2):409–470, 2000.

[3] S. Abramsky and G. McCusker. Linearity, sharing and state: a fully
abstract game semantics for Idealized Algol with active expressions. In
Algol-like languages, pages 297–329. Springer, 1997.

[4] S. Awodey. Category theory. Oxford University Press, 2010.

[5] F. Baader et al. The Description Logic handbook: theory, implementa-
tion and applications. Cambridge University Press, 2003.

[6] A. Basso-Blandin, W. Fontana, and R. Harmer. A knowledge repre-
sentation meta-model for rule-based modelling of signalling networks.
EPTCS, 204:47–59, 2016.

[7] S. D. Brookes and A. W. Roscoe. An improved failures model for commu-
nicating processes. In International Conference on Concurrency, pages
281–305. Springer, 1984.

[8] P. Clairambault. Logique et interaction: une étude sémantique de la
totalité. PhD thesis, Université Paris-Diderot-Paris 7, 2010.

[9] P. Clairambault and R. Harmer. Totality in arena games. Annals of
pure and applied logic, 161(5):673–689, 2010.

[10] P. R. Cohen. DARPA’s Big Mechanism program. Physical biology,
12(4):045008, 2015.

47

[11] T. Coquand. A semantics of evidence for classical arithmetic. Journal
of Symbolic Logic, 60:325–337, 1995.

[12] A. Corradini, D. Duval, R. Echahed, F. Prost, and L. Ribeiro. Agree–
algebraic graph rewriting with controlled embedding. In International
Conference on Graph Transformation, pages 35–51. Springer, 2015.

[13] A. Corradini, T. Heindel, F. Hermann, and B. König. Sesqui-pushout
rewriting. In International Conference on Graph Transformation, pages
30–45. Springer, 2006.

[14] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe.
Algebraic approaches to graph transformation, part I: Basic concepts
and double pushout approach. In Handbook of Graph Grammars, pages
163–246, 1997.

[15] P.-L. Curien. Categorical combinators, sequential algorithms, and func-
tional programming. Birkhaüser Boston, 1993.

[16] P.-L. Curien. Definability and full abstraction. Electronic Notes in
Theoretical Computer Science, 172:301–310, 2007.

[17] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based
modelling of cellular signalling. CONCUR 2007–Concurrency Theory,
pages 17–41, 2007.

[18] V. Danos, J. Féret, W. Fontana, R. Harmer, and J. Krivine. Inves-
tigation of a biological repair scheme. In International Workshop on
Membrane Computing, pages 1–12. Springer, 2008.

[19] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-
based modelling, symmetries, refinements. In Formal methods in systems
biology, pages 103–122. Springer, 2008.

[20] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based
modelling and model perturbation. In Transactions on Computational
Systems Biology XI, pages 116–137. Springer, 2009.

[21] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Abstract-
ing the di↵erential semantics of rule-based models: exact and automated
model reduction. In Logic in Computer Science (LICS), 2010 25th An-
nual IEEE Symposium on, pages 362–381. IEEE, 2010.

48

[22] V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable simulation
of cellular signaling networks. In Asian Symposium on Programming
Languages and Systems, pages 139–157. Springer, 2007.

[23] V. Danos, J. Feret, W. Fontana, and J. Krivine. Abstract interpre-
tation of cellular signalling networks. In International Workshop on
Verification, Model Checking, and Abstract Interpretation, pages 83–97.
Springer, 2008.

[24] V. Danos and R. Harmer. The anatomy of innocence. In International
Workshop on Computer Science Logic, pages 188–202. Springer, 2001.

[25] V. Danos and R. Harmer. Probabilistic game semantics. ACM Trans-
actions on Computational Logic (TOCL), 3(3):359–382, 2002.

[26] V. Danos, R. Harmer, R. Honorato-Zimmer, and S. Stucki. Deriving rate
equations for site graph rewriting systems. In To appear in Electronic
Notes in Theoretical Computer Science, 2014.

[27] V. Danos, R. Harmer, and G. Winskel. Constraining rule-based dynam-
ics with types. MSCS, 23(2):272–289, 2013.

[28] V. Danos, Feret J., W. Fontana, R. Harmer, J. Hayman, J. Krivine,
C. Thompson-Walsh, and G. Winskel. Graphs, Rewriting and Pathway
Reconstruction for Rule-Based Models. In IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2012), volume 18 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 276–288. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2012.

[29] O. Danvy and A. Filinski. Representing control: A study of the
CPS transformation. Mathematical structures in computer science,
2(04):361–391, 1992.

[30] Y. Diers. Familles universelles de morphismes, volume 145 of Publi-
cations de l’U.E.R. mathématiques pures et appliquées. Université des
sciences et techniques de Lille I, 1978.

[31] R. Dyckho↵ and W. Tholen. Exponentiable morphisms, partial products
and pullback complements. Journal of Pure and Applied Algebra, 49(1-
2):103–116, 1987.

49

[32] H. Ehrig, R. Heckel, M. Kor↵, M. Löwe, L. Ribeiro, A. Wagner, and
A. Corradini. Algebraic approaches to graph transformation, part II:
Single pushout approach and comparison with double pushout approach.
In Handbook of Graph Grammars, pages 247–312, 1997.

[33] E. Demir et al. The BioPAX community standard for pathway data
sharing. Nature biotechnology, 28(9):935–942, 2010.

[34] J. Feret, V. Danos, J. Krivine, R. Harmer, and W. Fontana. Inter-
nal coarse-graining of molecular systems. Proceedings of the National
Academy of Sciences, 106(16):6453, 2009.

[35] R. Harmer. Games and full abstraction for non-deterministic languages.
PhD thesis, Imperial College of Science, Technology and Medicine, 1999.

[36] R. Harmer. Rule-based modelling and tunable resolution. In S. B.
Cooper and V. Danos, editors, 5th Workshop on Developments in Com-
putational Models — Computational Models From Nature, volume 9 of
Electronic Proceedings in Theoretical Computer Science, pages 65–72.
Open Publishing Association, 2009.

[37] R. Harmer, V. Danos, J. Feret, J. Krivine, and W. Fontana. Intrinsic
information carriers in combinatorial dynamical systems. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 20(3):037108, 2010.

[38] R. Harmer, M. Hyland, and P.-A. Mellies. Categorical combinatorics
for innocent strategies. In 22nd Annual IEEE Symposium on Logic in
Computer Science (LICS 2007), pages 379–388. IEEE, 2007.

[39] R. Harmer and O. Laurent. The anatomy of innocence revisited. In
International Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 224–235. Springer, 2006.

[40] R. Harmer and G. McCusker. A fully abstract game semantics for finite
nondeterminism. In Logic in Computer Science, 1999. Proceedings. 14th
Symposium on, pages 422–430. IEEE, 1999.

[41] B. Henderson-Sellers. On the mathematics of modelling, metamodelling,
ontologies and modelling languages. Springer Briefs in Computer Sci-
ence, 2012.

50

[42] H. Herbelin. Games and weak-head reduction for classical PCF. In
International Conference on Typed Lambda Calculi and Applications,
pages 214–230. Springer, 1997.

[43] W. S. Hlavacek, J. R. Faeder, M. L. Blinov, R. G. Posner, M. Hucka,
and W. Fontana. Rules for modeling signal-transduction systems. Sci
STKE, 2006(344):re6, 2006.

[44] M. Hofmann and T. Streicher. Continuation models are universal for
�µ-calculus. In Logic in Computer Science, 1997. LICS’97. Proceedings.,
12th Annual IEEE Symposium on, pages 387–395. IEEE, 1997.

[45] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II
and III. Information and Computation, 163(2):285–408, 2000.

[46] S. Lack and P. Sobociński. Adhesive categories. In International Confer-
ence on Foundations of Software Science and Computation Structures,
pages 273–288. Springer, 2004.

[47] J. Lambek and P. J. Scott. Introduction to higher-order categorical logic.
Cambridge University Press, 1988.

[48] Hugo Lavoie and Marc Therrien. Regulation of RAF protein kinases in
ERK signalling. Nature Reviews Molecular Cell Biology, 16(5):281–298,
2015.

[49] T. Leinster. Basic category theory. Cambridge University Press, 2014.

[50] R. Loader. Unary PCF is decidable. Theoretical Computer Science,
206(1):317–329, 1998.

[51] R. Loader. Finitary PCF is not decidable. Theoretical Computer Science,
266(1):341–364, 2001.

[52] S. Mac Lane. Categories for the working mathematician. Springer-
Verlag, 1998.

[53] G. McCusker. Games and definability for FPC. Bulletin of Symbolic
Logic, 3(03):347–362, 1997.

[54] R. Milner. Communication and concurrency. Prentice Hall, 1989.

51

[55] E. Murphy, V. Danos, J. Feret, R. Harmer, and J. Krivine. Rule-based
modeling and model refinement. Elements of Computational Systems
Biology, pages 83–114, 2009.

[56] H. Nickau. Hereditarily sequential functionals. In International Sym-
posium on Logical Foundations of Computer Science, pages 253–264.
Springer, 1994.

[57] J. Pustejovsky. Dynamic event structure and habitat theory. In 6th In-
ternational Conference on Generative Approaches to the Lexicon, pages
1–10. ACL, 2013.

[58] J. Pustejovsky and N. Krishnaswamy. Generating simulations of motion
events from verbal descriptions. Lexical and Computational Semantics,
pages 99–109, 2014.

[59] R. Rosen. On models and modeling. Applied Mathematics and Compu-
tation, 56(2):359–372, 1993.

[60] M. Schmidt-Schauß. Decidability of behavioural equivalence in unary
PCF. Theoretical Computer Science, 216(1):363–373, 1999.

[61] B. Schoeberl, C. Eichler-Jonsson, E. D. Gilles, and G. Müller. Com-
putational modeling of the dynamics of the MAP kinase cascade acti-
vated by surface and internalized EGF receptors. Nature biotechnology,
20(4):370–375, 2002.

[62] P. Selinger. Control categories and duality: on the categorical seman-
tics of the lambda-mu calculus. Mathematical Structures in Computer
Science, 11(02):207–260, 2001.

[63] T. Streicher and B. Reus. Classical logic, continuation semantics and
abstract machines. Journal of functional programming, 8(06):543–572,
1998.

[64] X. Zhang, J. Gureasko, K. Shen, P. A. Cole, and J. Kuriyan. An al-
losteric mechanism for activation of the kinase domain of epidermal
growth factor receptor. Cell, 125(6):1137–1149, 2006.

52

Appendix

I Slice categories

Given a category C and an object T , the slice category C/T has, as objects, all
arrows of the form f : X ! T where X is any object of C, and, as arrows from
f : X ! T to g : Y ! T , all arrows h : X ! Y of C such that f = g � h.

A commuting square

A

B C

D

g0 f 0

f g

in C and an arrow ⌧D : D ! T uniquely determines a commuting square in C/T
(by setting ⌧B := ⌧D � f , ⌧C := ⌧D � g and ⌧A := ⌧B � g0 = ⌧C � f 0). This clearly
extends to a bijection between commuting squares in C/T and pairs consisting of
a commuting square in C and an arrow ⌧D : D ! T from its sink object to T , i.e.
all commuting squares in C/T arise in this way.

Lemma 1. The bijective correspondent of a pull-back

A

B C

D

g0 f 0

f g

in C and an arrow ⌧D : D ! T is a pull-back in C/T .

53

Proof. Any span ⌧B ⌧A0 ⌧C
g00 f 00

in C/T for which

⌧A0

⌧B ⌧C

⌧D

g00 f 00

f g

commutes gives rise, by the above bijection, to a commuting square in C

A0

B C

D

g00 f 00

f g

and, by the universal property of the pull-back in C, we have a unique h : A0 ! A
in C making

A0

A

B C

g00 f 00h

g0 f 0

commute. Since ⌧A0 = ⌧B � g00 = ⌧B � g0 �h = ⌧A �h, we can conclude that h is also
an arrow of C/T .

This is already enough to establish that the property of C having all pull-backs
carries over to C/T .

Corollary 2. If C has all pull-backs then so does C/T .

Proof. A co-span in C/T determines a co-span in C whose pull-back in C, by
Lemma 1, determines a pull-back in C/T .

Analogous to the case for commuting squares, there is a ‘converse’ to lemma
1 that establishes that the bijection restricts to pull-backs, i.e. all pull-backs in
C/T arise in this way.

54

Lemma 3. The bijective correspondent of a pull-back

⌧A

⌧B ⌧C

⌧D

g0 f 0

f g

in C/T is a pull-back in C.

Proof. Any span B A0 C
g00 f 00

in C for which

A0

B C

D

g00 f 00

f g

commutes gives rise to a commuting square in C/T where ⌧A0 := ⌧B � g00:

⌧A0

⌧B ⌧C

⌧D

g00 f 00

f g

By the universal property of the pull-back in C/T , there is a unique h : ⌧A0 ! ⌧A
in C/T making

⌧A0

⌧A

⌧B ⌧C

g00 f 00h

g0 f 0

commute.

55

We can conclude by noting that any arrow h0 : A0 ! A in C making

A0

A

B C

g00 f 00h0

g0 f 0

commute can be construed as an arrow of C/T from ⌧A0 [⌧ 0A0 := ⌧B � g0 � h0 =
⌧B �g00 = ⌧A0] and so, by the universal property of h in C/T , we have h0 = h which
transfers that universal property of h back to C.

This completes the proof that the bijective correspondence—between pairs
consisting of a commutative square in C and an arrow from its sink object to
T and commuting squares in C/T—restricts to pull-backs. We make use of the
second half of this result in the following lemma that implies that all pull-back
complements in C transfer to C/T .

Lemma 4. A pull-back complement

A

B C

D

g0 f 0

f g

in C and arrow ⌧D : D ! T uniquely determines a pull-back complement in C/T .

Proof. Any pull-back

⌧A0

⌧C0

⌧B

⌧D

g01 f 0
1

g1f

56

together with any arrow h01 : ⌧A0 ! ⌧A in C/T such that

⌧A0

⌧A

⌧B

g01
h0
1

g0

commutes gives rise, by lemma 3, to a pull-back in C together with a factorization
g01 = g0 � h01

A0

A C 0

B

D

g01
f 0
1

h0
1

g0

g1f

and, by the universal property of the pull-back complement in C, we have a unique
arrow h1 : C 0 ! C in C such that

C 0 A0

C A C 0

D C

g1

h1 h0
1 f 0

1

g

f 0 h1

commute.
Since ⌧C0 = ⌧D � g1 = ⌧D � g � h1 = ⌧C � h1, we can conclude that h1 is also an

arrow of C/T .

Corollary 5. If C also has all pull-back complements (over monos) then so does

C/T .

It is also immediate that co-limits in C are preserved in C/T : all canonical
typing arrows arise as universal arrows inC. This easily extends to multi-co-limits.
In particular, and for our specific purposes, push-outs in C and multi-sums in C>

are preserved in C/T .

57

II Propagating rewriting

Recall the starting point for propagating rewriting: we have an object G typed by
T and an instance of a rule r in T .

P

L R

G

T

� ⇢

e

h

Instead of rewriting T and using that to construct G�, we can rewrite [the left leg
of] r itself by taking two successive pull-backs

PG

LG P

L

G

T

�0 h00

e0

h0
�

e

h

so as to obtain [the left leg of] a new rule that has expanded r into all its instances
in G according to the typing h. We thus obtain a propagation of r to G by taking
the PBC.

PG

LG

G
�

G

�0

e0�

e0

�0�

58

By the pasting lemma, we find that the outer rectangle of

PG LG L

G
�

G T

e0�

�0 h0

e0 e

�0� h

is a pull-back and, by a simple diagram chase, we can apply the universal property
of the PBC P ⇢ T� ! T to obtain the dotted arrow h00�.

PG

P

L G
�

T�

T

h00h0
��0

e0�

�

e�

e

h00�

h��0���

We can thus apply the universal property of the pull-back

G�

G T�

T

��
G h�

h ��

to obtain the dotted arrow.

G
�

G�

G T�

T

�0� h00�

��
G h�

h ��

59

A second application of the pasting lemma implies that the outer rectangle of

PG P T�

LG L T

�0

h00

�

e�

��

h0 e

is a pull-back. The bottom line can be ‘refactorized’ through G since e�h0 = h�e0.
Moreover, h � e0 ��0 = �� � e� �h00 by a simple diagram chase, so we can apply the
universal property of the pull-back

PG

G�

G T�

p
e0��0 e��h00

��
G

h�

and hence ‘refactorize’ the top line, yielding

PG G� T�

LG G T

�0

p

��
G

h�

��

e0 h

where the right-hand inner square is a pull-back. A final application of the pasting
lemma therefore implies that the left-hand inner square is a pull-back and, by the
universal property of the PBC, we obtain the dotted arrow

PG

LG G
�

G�

G

�0
e0�

p

e0
�0�

from which, by standard categorical reasoning, we can conclude that G� ⇠= G
�

.

60

This establishes the equivalence of this definition of propagation with that
given in the main text. To aid the reader, we provide a single diagram with all
the arrows to situate the argument in a single global context:

PG

LG P

G
�

G�

L

G T�

T

�0 h00

e0� p

e0

h0 �

e�

�0�

h00�

⇠=

��
G

h�

e

h ��

III Concrete Kappa

We give a brief guide to the concrete syntax of Kappa [17].
A Kappa agent has an interface of sites, each of which may have a single

internal state (with multiple possible values) attached. Agent(type)s are
declared in the following way:

%agent: A(s~0~1,t)

%agent: B(s)

In words, this declares an agent type A that has two sites, s and t, the former
of which has a state taking value 0 or 1; and a second agent type B with a
single site s which, despite having the same ‘name’, has no connection with
the site s of A. The default value of a state is the value mentioned after the
first ˜in the declaration.

61

A Kappa rule is specified by a LHS and RHS (but without explicitly
stating the preserved region) of a rewriting rule:

A(s~1,t), B(s) -> A(s~1,t!2), B(s!2)

A(s~0) -> A(s~1)

The first rule says that an agent of type A whose site s is in state 1 and
whose site t is free, i.e. unbound, can bind to an agent of type B whose site s
is free. The resulting edge between the two free sites is represented explicitly
in the RHS with the !2 syntax: the 2 is just a label that allows us to identify
the two end-points of the edge.

The second rule says that an agent of type A whose site s is free and in
state 0 can change that state to 1; the rule does not mention t and, as such,
applies irrespective of its binding state. We could instead write

A(s~0?) -> A(s~1?)

if we want it to be independent of the ‘free or bound’ binding state of s.
In general, a rule can delete/add edges, change states and delete/add

agents. The preserved region of a rule is determined by the so-called ‘longest
common prefix’ convention: the longest common prefix of the LHS and
RHS—ignoring the values of states and binding states—is considered to be
preserved. In the two rules above, all agents (and so sites) are preserved. If
we instead wrote

A(s~1,t), B(s) -> B(s!2), A(s~1,t!2)

then nothing, not even the existence of the agents, would be preserved and
the e↵ect of this rule would be to delete both agents and recreate them—
including any missing sites and states with their default values—with states
as per the RHS.

The specification of a Kappa system is completed by providing an initial
state. Unlike in rules, all agents in the initial state must be fully-specified:
display all their sites, according to their declaration, and specify a single
well-defined value for each binding and internal state. These invariants must
be preserved by all rule applications; we will see that this is, occasionally,
non-trivial and a source of considerable complication.

Given a collection of agent declarations and rules and an initial state,
their contact graph summarizes all the admissible edges. (This is e↵ectively
an annotation of the %agent declarations with !2-like syntax for edges.)

62

As such, the contact graph plays the rôle of model, analogous to the set of
molecular species in chemical kinetics: it lays out everything that is possible,
i.e. all rules and states project onto it. However, the contact graph is not
subject to the realizability constraint applied to all other Kappa graphs: in
a rule, or a state, a site can have at most one incident edge and, if it has a
state, that must have a single value.

The final piece of syntax is the binding wild-card ! which, in the ‘world-
closing’ context of a given contact graph, is the negation of being free: s!

tests that s is bound but cares not to what. The use of this construct is
restricted to rules, i.e. it cannot be used when defining an initial state, and,
even in rules, can only appear in a RHS if it does so as part of the preserved
region of the rule, i.e. a rule cannot create a binding wild-card.

For further details on the concrete syntax of Kappa, its simulator KaSim,
and its static analyser KaSA, please refer to the evolving online manual⇤.

⇤

http://dev.executableknowledge.org/docs/KaSim-manual-master/KaSim manual.htm

63

