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Abstract

This report elaborates on my research activities with a particular focus put on the period that
ranges from my graduation until now (2009-2016). Only a brief overview of scientific results
obtained on this period is presented. The research topic discussed is mainly concerned with
hybrid system identification from input-output measurements. Hybrid systems form a class of
dynamic systems where discrete and continuous dynamics interact. The global behavior results
from switching among a finite number of subsystems. A fundamental challenge associated with
the identification of such systems is that the available data points are not labelled beforehand
in the sense that one does not know a priori which data point is generated by which subsystem.
Ideally, one would like to partition the data points into a finite number of groups each of which
is relevant to a single subsystem. However this is typically a nonconvex procedure which does
not admit any numerically efficient solution.
We propose a robust identification approach whose principle is to fit appropriately the entire
mixed dataset to a single equation. A common thread of our results is the concept of sparse
optimization with its associated convex relaxations. This common idea is presented in the third
chapter as a solution to the robust regression problem. It is later applied to the identification
of switched linear systems and piecewise affine systems.
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Chapter 1

Introduction

Contents

1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Research interests and contributions . . . . . . . . . . . . . . . . . . . 6

1.3 Outline of this report . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 General context

In many fields of system engineering such as machine learning, process control, signal processing

or finance, one is frequently confronted with the necessity of finding the underlying relationship

that relates a set of signals of interest. Such a relationship is commonly called a system at

least in system theory. In informal terms, a system can be viewed as a modeling abstraction

of a causality relationship between some phenomena which can be quantitatively described by

signals. A model of the system is then a mathematical object (or a set of mathematical objects)

which formally (and quantitatively) describes the interaction of the signals brought into play by

the system. Hence a model attempts to capture as well as possible the (true, physical) hidden

relationship. In some simple specific applications, there are well-established physical laws from

which the control engineer can readily obtain a useful model. For example, the control of a

DC-motor requires the knowledge of the mathematical model that relates the input voltage to

its angular position. For such a simple system, a model is obtainable by combining the laws

of electricity and Newton’s laws of dynamics. Most of the time however such physical laws are

either not clearly known or are too complex or involve unknown parameters. In these situations,

an alternative approach for constructing a model is by processing experimental measurements

of the signals of interest. The process of building a model from experimental data is referred to

as system identification or experimental/data-driven modeling.

The primary interest in a model resides in its capacity to predict the values of some signals

based on the knowledge of some others. This makes it a valuable tool for analysis, simulation,

control design, filtering, fault detection, etc. Perhaps an application which illustrates somewhat

strikingly the benefit of models is that of computer simulation. Indeed if one can find a reliable

mathematical model of a certain physical process under study, then it is possible to substitute a

numerical experiment on a computer for a possibly long and costly physical experiment. There-

fore the availability of a mathematical model allows for a great deal of flexibility in the study of
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true industrial processes by making it possible to experiment a rich set of operating conditions

some of which would not have been possible on the true system.

The standard procedure in system identification consists in many steps: (1) run an experi-

ment on the real system of interest and measure input-output data samples; (2) setup a model

structure that is, a family of relevant (generally parametrized) candidate models; (3) estimate a

model, that is, determine an instance of the model structure that explains best the data using,

for example, optimization methods; (4) check validity or the representativity of the candidate

model with respect to the usage for which it is intended. Depending on whether or not the

validation step is conclusive it might be necessary to repeat all the above steps until a model

which achieves the desired performance is obtained. The approaches to system identification

are essentially classified with respect to the class of models which are treated: linear models

[37, 59], nonlinear smooth models [58, 35, 50, 61], Linear Parameter Varying (LPV) models

[25, 62], PieceWise Affine (PWA) models. A secondary classification is based on the nature of

the estimation algorithms: batch or adaptive. The batch estimator operates on a finite collec-

tion of data samples and produces a single estimate along with an uncertainty set. In contrast,

the adaptive estimator processes sequentially (and possibly in real-time) the data samples and

produces a parameter estimate at any time ; it acts as a dynamic system whose input is the

sequence of input-output pairs of the to-be-identified system.

1.2 Research interests and contributions

Our research focuses essentially on system identification. Given input-output measurements col-

lected from a real system, the system identification problem aims at constructing a mathematical

model which describes as accurately as possible the behavior of the system. Our research covers

various classes of dynamic and static systems but a strong focus is put on the class of hybrid dy-

namical systems. These are systems in which continuous dynamics interact with discrete-event

dynamics. Loosely speaking, hybrid systems can be thought of as systems whose global dynam-

ics are generated by different operating regimes together with internally or externally controlled

switchings, jumps or transitions among these regimes. The discrete dynamics are typically in-

duced by the presence of logic devices, switching circuits, valves, computer programs, . . . The

class of hybrid systems is virtually universal in the sense that almost any system can be formally

represented as a hybrid system either naturally or somewhat artificially through some modeling

abstraction. Typical examples of hybrid systems are: chemical processes, electrical networks,

air traffic modeling/management, biological systems, etc.

The identification of hybrid systems is a relatively recent research topic in the control com-

munity. It was pioneered in the beginning of the 2000s by the works [28, 66, 11, 36, 52]. See also

the tutorial paper [45] and references therein. Other researchers including myself joined later the

research effort in striving to devise efficient algorithms for estimating hybrid systems from em-

pirical observations. The sum of these efforts has incrementally produced now a wealth of results

based on various mathematical and learning concepts. A quite large number of approaches have

been developed: algebraic-geometric, set-membership based, bayesian, clustering-based, convex

optimization based, . . . . For an overview of the existing methods we refer the interested reader

to the recent survey [29]. However a fair assessment of the current state-of-art reveals that there

are still numerous challenges ahead. We will get back to some of these in Section 5.2.
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Hybrid system identification

From a mathematical point of view, a hybrid system is informally defined by two types of

interacting components:

• a finite number of subsystems described by ordinary differential (or difference) equations

• an event-generator generating the switching signal that controls the activation of the dif-

ferent subsystems over time.

Therefore the general problem of hybrid system identification consists in determining only from

a collection of input-output measurements, a model of each individual subsystem and a model

of the switching law whenever such a law exists. This is a very challenging problem because

the switching signal is not observed. As a result, by just looking at the global input-output

data we do not know a priori which subsystem has been activated at which time. With respect

to the nature of the switching mechanism and the structure of the models used to describe

the subsystems, different classes of models can be considered for identification: switched input-

output models, switched state-space models, jump markov models, piecewise affine models,

hinging hyperplanes, . . .

Our contributions cover most of these models. We have developed a variety of algorithms for

the estimation of models for hybrid systems. A general idea of our approach is to formulate the

hybrid system identification problem as a sparse optimization problem which, in some sense,

can be viewed as a robust estimation scheme. By sparse optimization, we refer here to an

optimization problem which aims at optimizing the number of nonzero (or zero) entries in a

vector or a matrix. Note in passing that this class of problems include matrix rank minimization

as a special case since this latter is equivalent to minimizing the number of nonzero entries in

the vector formed with the singular values.

We will consider in this report two classes of hybrid systems:

• switched linear systems with subsystems described by ARX models (SARX). To tackle

the identification of this class of systems, we develop a sparse optimization approach.

Implementing this scheme directly however comes with a huge price in complexity. We

therefore resort to a more affordable convex relaxation. An analysis of the equivalence

between the original sparse optimization and the relaxed version is proposed.

• piecewise affine systems with subsystems described by ARX models (PWARX). These

can be viewed as particular switched systems where the regressor domain is partitioned

into a finite number of polyhedral regions with each region associated to one subsystem.

The switching signal is then internally controlled by the regressor being member of one

region or another. The identification problem aims at identifying the parameters of the

submodels and the boundary hyperplanes of the validity regions. The report will present

two approaches: the first is a nonsmooth convex optimization formulation inspired by

our general framework of sparse optimization; the second is a recursive scheme which

performs alternately clustering and identification for the simultaneous estimation of both

the parameter vectors and the associated regions.
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Robust estimation

One of our approach to hybrid system identification is by employing robust estimation tools

to identify the submodels one after another from the mixed data set. For example, for the

case of switched systems, if one concentrates on the estimation of a single submodel, then the

data pertaining to the other submodels can be regarded as outliers to be detected and corrected.

Therefore to carry out properly the estimation task for hybrid systems we need to design a robust

identifier which would be insensitive to multiple gross errors. This view has shifted our attention

to the development and analysis of a class of estimators that may be robust against a relatively

large number of outliers. We propose a class of robust estimators which contains the well-known

least deviation (LAD) estimator as a special member. In particular, we consider the problem

of identifying a linear model from measurements which are corrupted by two types of noise: a

dense noise sequence and a sparse noise sequence. While the dense noise is generally assumed

to be of moderate amplitude and zero-mean, the sparse noise shows up only intermittently in

time but when it does, it can take on arbirarily large values. This is a fundamental problem in

many estimation-related applications such as fault detection, state estimation in lossy networks,

hybrid system identification, etc. In its most natural formulation, the problem is computationally

hard to handle because it exhibits some intrinsic combinatorial features. Therefore, obtaining an

effective solution necessitates relaxations that are both solvable at a reasonable cost and effective

in the sense that they can return the true parameter vector under specific circumstances.

• We introduce a new, quantitative and computable measure of the richness properties of

the regression data called self-decomposability amplitude. Based on this number an under-

estimate of the bound on the number of correctable outliers is obtained. It is shown that

when the measurements are affected by only a sparse noise sequence, exact recovery of the

true parameter vector is possible provided the number of outliers is no larger than a bound

depending on the richness of the regression data.

• When sparse and dense noises are simultaneously active within the data, (computable)

parametric error bounds are derived in function of the amplitude of the dense noise and

the number of outliers. These bounds give rise to an uncertainty set containing the true

parameter matrix.

Some other research topics

We have also conducted research on various other topics which are closely related to that of

estimating hybrid systems. These works will not be described in details here but we do provide

a summary.

• Subspace clustering: This is the problem of identifying a finite number of subspaces from

mixed observations that lie in the union of those subspaces. Indeed the intrinsic challenge

of this problem is basically of the same nature as that of switched system identification.

The data points being in the union of the subspaces, it is not known which data point

originates from which subspace. Consequently, our robust identifier can be slightly adapted

for dealing with this scenario [2]. More precisely, we show that the clustering problem is

amenable to a sparse optimization problem. Considering a candidate subspace and the

distances of the data points to that subspace, the foundation of the proposed approach

lies in the maximization of the number of zero distances. This can be relaxed into a

8
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convex optimization (a second order cone programming). Efficiency of the relaxation

can be significantly increased by solving a sequence of reweighted convex optimization

problems. The problem of subspace clustering has numerous applications in Machine

Learning and Computer Vision (e.g., face clustering under varying illumination, temporal

video segmentation).

• State observer design for switched systems: While our research focuses mainly on

parameter estimation, we have also explored the problem of state estimation for switched

linear systems. For a dynamic system, the state usually refers to a vector of signals that

encodes at each time instant, from a modeling perspective, the full information about the

past of that system. There are many practical engineering situations in which an accurate

estimate of the state is desirable. For example, this can help get around the necessity of

instrumenting the system with possibly expensive state sensors. Another application of

state estimation is in fault detection. In effect, comparing a model-based estimate of some

function of the state (e.g., the output) to its measured version can bring out model incon-

sistencies thereby enabling the detection of changes in the system whose nominal behavior

is described by that model. Also, in state feedback control systems a complete knowledge

of the state is required. Our contribution on this topic consists in the development of a

(continuous) state observer for discrete-time linear switched systems under the assump-

tions that neither the continuous state nor the switching signal are known. A specificity

of the proposed observer is that, in contrast to the state of the art, it does not require

an explicit prior estimation of the discrete state. The key idea of the method consists in

minimizing a nonsmooth weighted cost function which is formed from the matrices of all

the subsystems regardless of when each of them is active [9].

• Time-optimal control of linear systems: We show that this problem can be solved via

nonsmooth optimization. The minimum-time (or time-optimal) control problem consists

in finding a control policy that will drive a given dynamic system from a given initial state

to a given target state (or a set of states) as quickly as possible. This is a well-known

challenging problem in optimal control theory for which closed-form solutions exist only

for a few systems of small dimensions. We have proposed a very generic solution to the

minimum-time problem for arbitrary discrete-time linear systems. This is a numerical

solution based on sparse optimization, that is, the minimization of the number of nonzero

elements in the state sequence over a fixed control horizon. We consider both single input

and multiple inputs systems. An important observation is that, contrary to the continuous-

time case, the minimum-time control for discrete-time systems is not necessarily entirely

bang-bang, see [7, 22].

• Realization and identifiability of switched systems: In collaboration with M. Pet-

reczky (CR, CRIStAL) I have been involved in the development of a piece of research

concerning the realization of discrete-time switched systems. System identification tech-

niques typically return input-output models. This is more particularly so when switched

systems are concerned. However control methods are based most of the time on state-space

models. A question of great interest then is whether state-space realizations exist naturally

for input-output descriptions of switched systems and if not, characterize the conditions

of existence and develop algorithms for computing such realizations. Our work focuses on

this analysis. A fundamental result is as follows: an input-output map admits a finite di-

mensional realization if and only if it has a generalized convolution representation and the

9
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rank of the Hankel matrix formed with its Markov parameters (which are interpretable as

generalized impulse responses) is finite, see [49] for further details. If a state-space realiza-

tion exists for a given input-output map, then there are infinitely many such realizations.

Is of particular interest the subset of minimal realizations, that is, those realizations which

have the smallest state-dimension. It can indeed be shown that such minimal realizations

are isomorphic. We provide rank conditions for characterizing system-theoretic concepts

such as observability, reachability and minimality. We also provide concrete realization

algorithms for computing a minimal realization from the Hankel matrix formed with the

Markov parameters and for model reduction.

The realization theory of switched linear systems lays down the background for studying

identifiability of those systems [48, 47]. Identifiability of parametrized model structures is

a central question in the theory of system identification. This is the qualitative, formal

and yet fundamental question of whether attempting to infer a given parametrized model

from noise-free input-output data is a well-posed problem. More precisely, this is related

to the injectivity of the parameterization map which maps a parameter space to a set of

dynamic models (here, the switched models). The answer to this question has a number

of implications for the design of informative experiments, the development of parameter

estimation algorithms, the analysis of identification methods and the significance of the

estimated models. In fact, determining whether the model structure is identifiable is an

essential step in the theoretical analysis of identification algorithms.

1.3 Outline of this report

The next chapter (Chapter 2) presents a somewhat general robust estimation framework for

models with linear-dependency on parameters. In Chapter 3, we formulate the problem of

switched linear system identification. Recalling that the inherent challenge posed by this problem

is the fact that the data are not partitioned per subsystem, we propose a sparse optimization

approach. As such however we are still facing a NP-hard complexity. Hence for implementation

purpose, a convex relaxation scheme is adopted which turns out to lie in the framework developed

in the first chapter.

Chapter 4 deals with the identification of the class of piecewise affine systems. These can be

viewed as models of nonlinear systems and as such, they are of major interest from the modeling

perspective. Finally Chapter 5 draws a picture of the research line we are planning to pursue in

the future.
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This chapter is partially based on our paper [10] and on an unpublished technical report.

It stands more as a generalization of the reflections reported in [10]. We present a class of

optimization-based robust estimators which aim at recovering a parameter matrix from data

which are subject to outliers and dense noise. We also derive some fundamental properties of

those estimators in terms of the number of admissible outliers and error bounds. The obtained

results are expected to be useful for analyzing later on the hybrid system identifiers.

2.1 The robust regression problem

Consider a system described by an equation of the form

yt = Aoxt + ft + et (2.1)

where yt ∈ R
m and xt ∈ R

n are respectively the output and the regressor vector at time

t; Ao ∈ R
m×n is an unknown parameter matrix; ft and et are some noise terms which are

unobserved.
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2.1. The robust regression problem

Given a finite collection {xt, yt}Nt=1 of measurements obeying the relation (2.1), the robust

regression problem of interest here is the one of finding an estimate of the parameter matrix Ao

under the assumptions that:

• {et} is a dense noise sequence with bounded elements accounting for moderate model

mismatches or measurement noise.

• {ft} is such that the majority of its elements are equal to zero while the remaining nonzero

elements can be of arbitrarily large magnitude. The nonzero elements of that sequence are

usually termed gross errors or outliers. They can account for possible intermittent sensor

faults. We will refer to {ft} as the sequence of sparse noise.

For the time being, these are just informal descriptions of the characteristics of the sequences

{ft} and {et}. They will be made more precise whenever necessary in the sequel for the need

of stating more formal results. The question of whether the considered signals can be stochastic

or not does not matter much provided, in the case stochasticity is assumed, each realization

satisfies the required assumptions almost surely (i.e., with probability one). Alternatively, the

analysis can be extended to the expected values of the different signals.

Let Y ∈ R
m×N and X ∈ R

n×N be data matrices formed respectively with N output measure-

ments and regressor vectors. Then it follows from (2.1) that

Y = AoX + E + F, (2.2)

where E ∈ R
m×N and F ∈ R

m×N are unknown noise components. The matrices Y and X can be

structured or not, depending on whether the system (2.1) is dynamic or not. For example, when

the model (2.2) is of MIMO FIR type, Y contains a finite collection of output measurements

while X is a Hankel matrix containing lagged inputs of the system. In this case Y and X take

the form
Y =

[

y1 y2 · · · yN

]

,

X =













u1 u2 · · · uN

u0 u1 · · · uN−1
...

... · · · ...

u1−nf
u2−nf

· · · uN−nf













.

where {ut} and {yt} stand respectively for the input and output of the system and the maximum

lag nf is called the order of the model. In the sequel, the notations of the type yt and xt with

subindex t ∈ I , {1, . . . , N} refer to the columns of Y and X respectively.

Relevant prior works. The so formulated regression problem is called a robust regression

problem in connection with the fact that the error matrix F assumes columns of (possibly)

arbitrarily large amplitude. It has applications in e.g., the identification of switched linear

systems [1, 44], subspace clustering [2], etc. Existing approaches for solving the robust regression

problem can be roughly divided into two groups: methods from the field of robust statistics

[54, 39, 34] which have been developed since the early 60s and a class of more recent methods

inspired by the compressed sensing paradigm [10, 19, 57, 67, 40]. The first group comprises

methods such as the least absolute deviation (LAD) estimator [33], the least median of squares

[53], the least trimmed squares [54], the family of M-estimators [34]. The latter group can be

viewed essentially as a refreshed look at the so-called least absolute deviation method. There

has been however a fundamental shift of philosophy in the analysis. While in the framework of

12



2.1. The robust regression problem

robust statistics, robustness of an estimator is measured in terms of the breakdown point (the

asymptotic minimum proportion of points which cause an estimator to be unbounded if they

were to be arbitrarily corrupted by gross errors), in the compressed-sensing-inspired category of

robust methods, the analysis aims generally at characterizing properties of the data that favor

exact recovery of the true parameter matrix Ao. In this latter group, the LAD estimator is

regarded as a convex relaxation of a combinatorial sparse optimization problem.

Contributions. In the work presented hereafter we propose and analyze a class of optimization-

based robust estimators. It is shown that the robust properties of the estimator are essentially

inherited from a key property of the to-be-optimized performance function (or loss function)

called column-wise summability. The proposed framework admits the LAD estimator and its

usual variants as special cases. Moreover it applies to both SISO and MIMO systems. When the

dense noise component E in (2.2) is identically equal to zero, we derive bounds on the number

of gross errors (nonzero columns of F ) that the estimator is able to accommodate while still

returning the true parameter matrix Ao. The proposed bounds have the important advantage

that they are numerically computable through convex optimization. When both E and F are

active, exact recovery of the true parameter matrix is no longer possible. In this scenario, we

derive upper bounds on the parametric estimation error in function of the amplitude of E and

the number of nonzero columns of F . Again, computable but (possibly) looser versions of those

bounds are obtainable.

To the best of our knowledge, only the papers [57] provides an explicit bound on the estim-

ation error induced by the LAD estimator. However that bound does not apply to the current

setting since the estimators although similar are of different natures. Indeed, the LAD estimator

stands only as a special case of the current framework. Moreover the bound in [57] is not easily

computable while ours is. The references [19] and [40] provide some bounds for a noise-aware

version of the LAD estimator which are based respectively on the Restricted Isometry Property

(RIP) and a measure based on subspace angles. Unfortunately numerical evaluation of those

bounds is a process of exponential complexity, a price that is unaffordable in practice.

Notations. This is a glossary of notations applicable to this chapter and all the following

ones.

I = {1, . . . , N} is the index set of the measurements. X = [x1 · · · xN ] ∈ R
n×N denotes

the matrix formed with the available regressors {xt}Nt=1 and Y = [y1 · · · yN ] ∈ R
m×N de-

notes the output matrix. If A ∈ R
m×n, then I

0(A) = {t ∈ I : yt −Axt = 0} and I
c(A) =

{t ∈ I : yt −Axt 6= 0}. In the special case where m = 1, the matrix A will be preferentially

replaced by a row vector θ⊤ with θ ∈ R
n. In this case a partition of the set of indices I is defined

by I
−(θ) = {t ∈ I : yt−θ⊤xt < 0}, I+(θ) = {t ∈ I : yt−θ⊤xt > 0}, I0(θ) = {t ∈ I : yt−θ⊤xt = 0}.

Hence I
c(θ) = I

−(θ) ∪ I
+(θ).

Cardinality of a finite set. Throughout this report, whenever S is a finite set, the notation |S|
will refer to the cardinality of S. However, for a real number x, |x| will denote the absolute

value of x.

Submatrices and subvectors. If I ⊂ I, the notation XI denotes a matrix in R
n×|I| formed with

the columns of X indexed by I. Likewise, with y = [y1 · · · yN ]⊤ ∈ R
N , yI is the vector in

R
|I| formed with the entries of y indexed by I. We will use the convention that XI = 0 ∈ R

n

(resp. yI = 0 ∈ R) when the index set I is empty.

Vector norms. ‖·‖p, p = 1, 2, . . . ,∞, denote the usual p-norms for vectors defined for any vector

z = [z1 · · · zN ]⊤ ∈ R
N , by ‖z‖p = (|z1|p + · · ·+ |zN |p)1/p. Note that in the limiting case

13



2.2. A class of robust estimators

where p = ∞, ‖z‖∞ = maxi=1,...,N |zi|. The ℓ0 "norm" of z is defined to be the number of

nonzero entries in z, i.e., ‖z‖0 = |{i : zi 6= 0}|.
Matrix norms. The notation ‖·‖p, with p = 1, 2, . . . ,∞, refers to the standard matrix p-norm.

‖·‖2,col and ‖·‖2,∞ are specific matrix-norms defined as follows. For a matrix A = [a1 · · · aN ] ∈
R

n×N with ai ∈ R
n,

‖A‖p = sup
x∈RN ,‖x‖p=1

‖Ax‖p and ‖A‖2,∞ = max
i=1,...,N

‖ai‖2 .

2.2 A class of robust estimators

Let DN be the set of N data points generated by system (2.1) for any possible values of the

noise sequences, i.e.,

DN =
{

(Y, X) ∈ R
m×N × R

n×N : ∃(E, F ) ∈ Ge
N × Gf

N , (2.2) holds
}

,

with Ge
N ⊂ R

m×N and Gf
N ⊂ R

m×N denoting the set of dense and sparse noise matrices respect-

ively. The estimation problem aims at determining the unknown parameter matrix Ao given a

point (Y, X) in DN . Of course, this quest would not make sense if the noises E and F were

completely arbitrary since in this case, we would have DN = R
m×N × R

n×N hence loosing any

informativity concerning the data-generating system. Therefore some minimum constraints need

to be put on E and F as informally described above.

With respect to the estimation problem just stated, an estimator is a set-valued map Ψ :

DN → P(Rm×n), (Y, X) 7→ Ψ(Y, X) which is defined from the data space DN to the power

set P(Rm×n) of the parameter space. For (Y, X) generated by a system of the form (2.1),

one would like to design an estimator achieving, whenever possible, the ideal property that

Ψ(Y, X) = {Ao}. In default of that ideal situation, a more pragmatic goal is to search for a Ψ so

that Ao ∈ Ψ(Y, X) and Ψ(Y, X) is of small size in some sense despite the troublesome effects of

the unknown noise components E and F . The design of an optimal estimator requires specifying

a performance index (usually called a loss function) which is to be minimized.

In this paper, we study the properties of the estimator of the parameter matrix Ao in (2.2)

defined by

Ψ(Y, X) = arg min
A∈Rm×n

ϕ(Y −AX) (2.3)

where ϕ :M (R)→ R≥0 is a convex function defined on the set M (R) of (all) real matrices. It

is assumed that ϕ has the following properties:

P1. For all A, B ∈M (R) of compatible dimensions,

ϕ([A B]) = ϕ(A) + ϕ(B) (2.4)

with [A B] denoting the matrix formed by concatenating column-wise A and B.

P2. There exists a matrix norm ℓ :M (R)→ R≥0 such that for all A, B ∈M (R), conformable

for addition,

ϕ(A) ≤ ϕ(A−B) + ℓ(B) (2.5)

P3. There exists a constant real number ε ≥ 0 such that for all A ∈ M (R) with n rows and
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2.3. Properties of the estimators

N columns,

ℓ(A)− |Ic
ε(A)| ε ≤ ϕ(A) ≤ ℓ(A) (2.6)

where

Ic
ε(A) =

{

i ∈ {1, . . . , N} : ℓ(ai) > ε
}

and |Ic
ε(A)| is the cardinality of Ic

ε(A) and ai ∈ R
n is the ith column of the (n, N)-matrix

A.

The property (2.4) will be called column-wise summability. Since ϕ is a function defined over

the space of real matrices of any dimensions, it is also defined for n-dimensional vectors of real

numbers. Hence according to property (2.4), if A =
[

a1 · · · aN

]

with column vectors ai ∈ R
n,

then

ϕ(A) =
N
∑

i=1

ϕ(ai).

The so-defined function ϕ is not necessarily a norm. For any εo ≥ 0 and any vector norm ℓo, it

can be verified that the function ϕ defined by

ϕ(A) =
N
∑

i=1

max(0, ℓo(ai)− εo) (2.7)

is positive and convex and satisfies properties (2.4)-(2.6) but it is not a norm for εo > 0 since in

this case, ϕ(A) = 0 does not imply that A = 0. But if εo = 0 in (2.7), then ϕ = ℓ by (2.6) so

that ϕ corresponds to the matrix norm defined by ϕ(A) =
∑N

i=1 ℓo(ai). We note in this latter

case that (2.6) is trivial while (2.5) reduces to the triangle inequality.

We will show in the sequel that the estimator Ψ in (2.3) enjoys some impressive robustness

properties with respect to the sparse noise matrix F . The term sparse is used here to mean

that a relatively large proportion of the column vectors of F are equal to zero. And saying that

Ψ is robust with respect to F means that Ψ(Y, X) does not depend on (or is insensitive to)

the magnitudes of the nonzero columns of F under the sparsity condition. Therefore those few

columns which are nonzero can have arbitrarily large magnitude. As will be shown in the sequel,

the robustness properties of Ψ are inherited from the properties P1-P3 of the objective function

ϕ. In the special case where ϕ is a norm, the properties P2-P3 are automatically satisfied so

that P1 becomes the only key property required. As to the convexity of ϕ, it is intended just

for computational reasons as it eases the solving of the optimization problem in (2.3).

2.3 Properties of the estimators

2.3.1 Exact recoverability

We first study the conditions under which the true parameter matrix Ao in (2.2) can be exactly

recovered. Theorem 2.1 and Theorem 2.2 stated next show that if the number of nonzero columns

in the matrix V , E + F is less than a certain threshold, then Ψ(Y, X) = {Ao}.

Theorem 2.1 (A necessary and sufficient condition). Let ϕ be a function satisfying (2.4)-(2.6)

with ε = 0 and Ψ be defined as in (2.3). Let d be an integer and assume that rank(X) = n.

For any A ∈ R
m×n and Y ∈ R

m×N , let I
c (A, Y ) = {t ∈ I : yt −Axt 6= 0}. Then the following

statements are equivalent.
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(i)

∀A ∈ R
m×n,∀Y ∈ R

m×N , |Ic (A, Y )| ≤ d

⇒ Ψ(Y, X) =
{

A
}

(2.8)

(ii)

max
Ic⊂I:
|Ic|=d

max
Λ∈Rm×n

Λ6=0

[

ϕ(ΛXIc)

ϕ(ΛX)

]

<
1

2
(2.9)

Here and in the following, the notation I , {1, . . . , N} is used to denote the index set for the

columns of the data matrices.

Proof. We first note that the rank assumption on X is intended to insure that (2.9) is well-

defined since then, with ϕ being a norm, ϕ(ΛX) 6= 0 whenever Λ 6= 0.

(i) ⇒ (ii): Assume that (i) holds.

Consider an arbitrary subset Ic of I such that |Ic| = d. Let Λ be any matrix in R
m×n satisfying

Λ 6= 0. Finally, consider a matrix Y ∈ R
m×N defined by YIc = 0 and YI0 = ΛXI0 where

I0 = I \ Ic. Then I
c(Λ, Y ) ⊂ Ic and so |Ic(Λ, Y )| ≤ d. Hence by (i) {Λ} = arg minH ϕ(Y −HX)

which means that ϕ(Y − ΛX) < ϕ(Y − HX) for any H ∈ R
m×n, H 6= Λ. In particular, by

taking H = 0 we get ϕ(Y − ΛX) < ϕ(Y ). It follows from the property (2.4) that

ϕ(YIc − ΛXIc) + ϕ(YI0 − ΛXI0) < ϕ(YIc) + ϕ(YI0).

Using now the relations YIc = 0 and YI0 = ΛXI0 yields ϕ(ΛXIc) < ϕ(ΛXI0) or, equivalently,

ϕ(ΛXIc) < 1/2ϕ(ΛX). Eq. (2.9) then follows from the fact that Ic and Λ are arbitrary.

(ii) ⇒ (i): To begin with, note that if Eq. (2.9) holds for some d, then it holds also for any

d0 ≤ d. As a result, the equality |Ic| = d in (2.9) can be changed to |Ic| ≤ d. Assuming (ii),

let A ∈ R
m×n and Y ∈ R

m×N be matrices satisfying |Ic(A, Y )| ≤ d. Set Ic = I
c(A, Y ) and

I0 = I \ Ic. Then for all Λ ∈ R
m×n such that Λ 6= 0,

2ϕ(ΛXIc) < ϕ(ΛX) = ϕ(ΛXIc) + ϕ(ΛXI0)

where the equality is obtained by the property (2.4) of ϕ. It follows that

ϕ(ΛXIc) < ϕ(YI0 − (A + Λ)XI0) (2.10)

On the other hand, we know by (2.5) that

ϕ(YIc −AXIc)−ϕ(YIc − (A + Λ)XIc) ≤ ϕ(ΛXIc)

Combining with the inequality (2.10) yields,

ϕ(Y −AX) < ϕ(Y − (A + Λ)X)

Since Λ is an arbitrary nonzero matrix, this inequality says that A is the unique minimizer of

V (H) = ϕ(Y −HX).

Consider a data pair (Y, X) generated by (2.2). By letting

πc
ϕ(X) = max

{

d : Eq. (2.9) holds
}

, (2.11)
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and assuming that πc
ϕ(X) > 0 we can see that whenever |Ic(Ao, Y )| ≤ πc

ϕ(X), Ao can be

exactly recovered by computing Ψ(Y, X). Of course this is likely to hold only if the dense noise

component E does not exist. So in the situation where E = 0, the theorem says that Ao can

be uniquely obtained by convex optimization provided that the number of outliers (nonzero

columns of F ) is less than or equal to πc
ϕ(X). For the condition of exact recoverability to be

checkable we must be able to compute πc
ϕ(X). The bad news are that evaluating numerically

such a number is likely to be NP-hard in most cases.

In the sequel, we investigate sufficient conditions of exact recovery which are more tractable

from a numerical standpoint. For this purpose let us introduce some definitions.

Definition 2.1. A matrix X = [x1 · · · xN ] ∈ R
n×N is said to be self-decomposable if

• X has full row rank, rank(X) = n

• For all k ∈ I, xk ∈ im(X 6=k) where X 6=k , XI\{k} is the matrix obtained from X by

removing its k-th column and im(·) refers to range space.

For a matrix to be self-decomposable it is enough that X 6=k be full row rank for any k ∈ I.

Achieving this condition in practice seems easy provided that the number N of measurements

is large enough compared to the dimension n of X.

Definition 2.2 (self-decomposability amplitude). Let X ∈ R
n×N be a self-decomposable matrix.

We call self-decomposability amplitude of X, the number ξ(X) defined by

ξ(X) = max
k∈I

min
γk∈RN−1

{

‖γk‖∞ : xk = X 6=kγk

}

. (2.12)

The so-defined ξ(X) constitutes a quantitative measure of richness (or genericity) of the

regressor matrix X. By richness it is meant here how much in a global sense the columns of X

are linearly independent. ξ(X) is expected to be small if the columns of X are somehow strongly

linearly independent.

Remark 2.1. If for some k the norm of xk was to be considerably large in comparison to

the norm of the other columns of X, then ξ(X) would get large hence reducing recoverability

capacity of the considered class of estimators (see also Eq. (2.9)). Such situations can be

alleviated by normalizing each column of X, i.e., for example by replacing (yk, xk) by (ỹk, x̃k) ,

(yk/ ‖xk‖ , xk/ ‖xk‖) under the assumption that xk 6= 0 for all k ∈ I.

With the help of the device of self-decomposability amplitude (2.12), we can state a condition

for exact recovery of the parameter matrix Ao by solving the optimization problem in (2.3). A

similar result was proven in [10] for the Least Absolute Deviation (LAD) estimator.

Theorem 2.2 (A sufficient condition for exact recovery). Let ϕ be a function satisfying (2.4)-

(2.6) with ε = 0 and Ψ be defined as in (2.3). Assume that X is self-decomposable. Then the

following statement is true:

∀A ∈ R
m×n, ∀Y ∈ R

m×N , |Ic(A, Y )| < T
(

ξ(X)
)

⇒ Ψ(Y, X) =
{

A
}

.
(2.13)

where T : R>0 → R>0 is the function defined by T (α) =
1

2

(

1 +
1

α

)

.
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Proof. The proof is completely parallel to that of Theorem 11 in [10]. From the assumptions,

each xk, k ∈ I, can be written as a linear combination of the columns of X 6=k. Let γk ∈ R
N−1

be any vector satisfying xk = X 6=kγk. It follows that for any Λ ∈ R
m×n,

ϕ(Λxk) = ϕ
(

∑

t∈I\{k}

γk,tΛxt
)

with γk,t denoting the entry of γk ∈ R
N−1 indexed by t. Under the assumptions of the theorem,

ϕ is a norm. So, it is positive and satisfies the triangle inequality property. As a result we can

write

ϕ(Λxk) ≤
∑

t6=k

|γk,t|ϕ(Λxt) ≤ ‖γk‖∞ (ϕ(ΛX)− ϕ(Λxk))

Since this holds for any γk such that xk = X 6=kγk, it holds also for

γ⋆
k = arg min

γ∈RN−1

{

‖γ‖∞ : xk = X 6=kγ
}

.

Hence,

ϕ(Λxk) ≤ ξ(X) (ϕ(ΛX)− ϕ(Λxk)) ∀k ∈ I,∀Λ ∈ R
m×n. (2.14)

or equivalently

ϕ(Λxk) ≤ ξ(X)

1 + ξ(X)
ϕ(ΛX) ∀k ∈ I, ∀Λ ∈ R

m×n.

Let Ic be any subset of I and pose |Ic| = d. Summing the previous inequality over the set Ic

yields

max
Λ6=0

ϕ(ΛXIc)

ϕ(ΛX)
≤ 1

2T
(

ξ(X)
) |Ic| (2.15)

Therefore (2.9) holds if |Ic| < T
(

ξ(X)
)

and the conclusion follows from Theorem 2.1.

Remark 2.2. The statement of Theorem 2.2 still holds true if we replace ξ(X) with δϕ(X)

defined by

δϕ(X) = max
k∈I

sup
Λ6=0

ϕ(Λxk)

ϕ(ΛX 6=k)
(2.16)

when it is assumed that ϕ is a norm and rank(X 6=k) = n for all k. Doing so will give a

less conservative condition for exact recovery. However δϕ(X) seems much harder to evaluate

numerically than ξ(X).

Remark 2.3 (A few useful properties of ξ(X)).

• For any nonsingular matrix T ∈ R
n×n, ξ(TX) = ξ(X). It follows that the number ξ(X)

depends only on the subspace spanned by the rows of the regressor matrix X.

• For any self-decomposable X ∈ R
n×N , ξ(X) is lower-bounded in the following sense

ξ(X) ≥ 1

N − 1
,

This follows from the more general observation that

ξ(X) ≥ max
k∈I

‖xk‖
∑

t6=k ‖xt‖
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for any vector norm ‖·‖. As a result, T (ξ(X) is upper-bounded as follows

T (ξ(X)) ≤ N

2
.

Theorem 2.2 provides a sufficient condition for exact recovery in the situation where the function

ϕ is a norm. Next, another condition is stated which holds in the general case.

Proposition 2.1. Consider a triplet (ϕ, ℓ, ε) satisfying (2.4)-(2.6). For A ∈ R
m×n and Y ∈

R
m×N , pose Ic = I

c(A, Y ), I0 = I\Ic = {t ∈ I : yt −Axt = 0} and Ic
ε(ΛXI0) =

{

t ∈ I0 : ℓ(Λxt) > ε
}

.

Then Ψ(Y, X) = {A} if

|Ic
ε(ΛXI0)| ε < ℓ(ΛXI0)− ℓ(ΛXIc), ∀Λ ∈ R

m×n, Λ 6= 0 (2.17)

Proof. Ψ(Y, X) = {A} is equivalent to

ϕ(Y −AX) < ϕ(Y − (A + Λ)X)

for any Λ ∈ R
m×n, Λ 6= 0. Using the definitions of the sets I0 and Ic and applying property

(2.4) of ϕ yields the equivalent relation

ϕ(YIc −AXIc)− ϕ(YIc − (A + Λ)XIc) < ϕ(ΛXI0).

By (2.5), we can note that ϕ(YIc−AXIc)−ϕ(YIc− (A+Λ)XIc) ≤ ℓ(ΛXIc). It then follows that

ℓ(ΛXIc) < ϕ(ΛXI0)

is a sufficient condition for Ψ(Y, X) = {A}. Finally, invoking (2.6) allows us to observe that

ℓ(ΛXI0) − |Ic
ε(ΛXI0)| ε ≤ ϕ(ΛXI0) which implies that ℓ(ΛXIc) < ℓ(ΛXI0) − |Ic

ε(ΛXI0)| ε is a

sufficient condition for Ψ(Y, X) = {A}. We have hence proved the proposition.

2.3.2 Uncertainty set induced by dense noise

When both E and F are nonzero in the data-generating system (2.2), Ψ(Y, X) is likely to be

a non-singleton subset of P(Rm×n) especially if we consider all possible realizations of the

unknown components E and F . In this case the desirable properties of the estimator are in

default of better (i) that it contains Ao and (ii) that its size with respect to some metric is as

small as possible. In this section we are interested in estimating the size of Ψ(Y, X) when both

dense noise E and sparse noise F are active in the data-generating system (2.2).

A notion of estimator gain. Similarly to the concept of system gain in control [68], one

could define the gain of an estimator, that is, a quantitative measure of the sensitivity of the

estimator with respect to the perturbations affecting the measurements. Consider a data pair

(Y, X) generated by a system of the form (2.2) with Ao being the parameter matrix sought

for. Let us fix the sparse noise matrix F or view it somehow as part of the data-generating

system. This consideration proceeds from the fact that Ψ can be insensitive to F (when acting

alone) under for example the condition derived in Theorem 2.2. Let E be bounded in the sense

that ℓ(E) is finite with ℓ being the norm appearing in (2.6). Then we can define a gain of the

estimator with respect to the dense noise component E. More specifically, an (ℓ, q)-gain of the
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estimator Ψ with respect to the dense noise E may be defined by

gℓ,q(Y, X) = sup
A⋆∈Ψ(Y,X)
0<ℓ(E)<∞

F sparse

‖A⋆ −Ao‖q
ℓ(E)

. (2.18)

Here ‖·‖q denotes matrix q-norm. The so-defined number gℓ,q(Y, X) provides an upper bound on

the distance from the set Ψ(Y, X) to Ao in function of the amount of dense noise. The following

theorem and its corollaries show that if the number of nonzero columns in F is no larger than

a certain threshold, then gℓ,q(Y, X) exists and is finite.

Theorem 2.3. Let (Y, X) be the data generated by system (2.2) subject to the noise components

E and F . Consider a triplet (ϕ, ℓ, ε) satisfying (2.4)-(2.6). Let S0 ⊂ I be a set such that FS0 = 0

and let Sc = I \ S0. Assume that the matrix X and the partition (S0, Sc) are such that there

exists α > 0 such that

ℓ(ΛXS0)− ℓ(ΛXSc) ≥ α ‖Λ‖q ∀Λ ∈ R
m×n, (2.19)

with ‖·‖q denoting some matrix q-norm.

Then for any A⋆ ∈ Ψ(Y, X), it holds that

‖A⋆ −Ao‖q ≤
1

γℓ,q(X, Sc)

[

2ℓ(ES0) + |Ic
ε | ε
]

(2.20)

with1 Ic
ε = Ic

ε(YS0 −A⋆XS0) =
{

t ∈ S0 : ℓ(yt −A⋆xt) > ε
}

and

γℓ,q(X, Sc) = inf
Λ∈Rm×n

Λ6=0

ℓ(ΛXS0)− ℓ(ΛXSc)

‖Λ‖q
(2.21)

where ‖·‖q refers to matrix q-norm.

Proof. By definition of Ψ(Y, X) in (2.3),

ϕ(Y −A⋆X) ≤ ϕ(Y −AX) ∀A ∈ R
m×n

By letting Λ = A−Ao, Λ⋆ = A⋆ −Ao and applying (2.2), the last inequality takes the form

ϕ(F + E − Λ⋆X) ≤ ϕ(F + E − ΛX) ∀Λ ∈ R
m×n.

In particular, for Λ = 0, we get ϕ(F + E − Λ⋆X) ≤ ϕ(F + E) which, thanks to property (2.4),

takes the form
ϕ(FSc + ESc − Λ⋆XSc)+ϕ(ES0 − Λ⋆XS0)

≤ ϕ(FSc + ESc) + ϕ(ES0).

Now applying property (2.5) to the first member of the left hand side and rearranging yields

ϕ(ES0 − Λ⋆XS0)− ℓ(Λ⋆XSc) ≤ ϕ(ES0).

1The notation Ic
ε is used for simplicity reasons.
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Using (2.6) gives

ℓ(ES0 − Λ⋆XS0)− |Ic
ε | ε− ℓ(Λ⋆XSc) ≤ ϕ(ES0) ≤ ℓ(ES0).

Here we used the fact that Ic
ε(ES0 − Λ⋆XS0) is equal to the set Ic

ε defined in the statement of

the theorem.

Applying the triangle inequality property of ℓ, it can be seen that ℓ(Λ⋆XS0)− ℓ(ES0) ≤ ℓ(ES0 −
Λ⋆XS0). Combining with the previous inequality yields

ℓ(Λ⋆XS0)− ℓ(Λ⋆XSc) ≤ 2ℓ(ES0) + |Ic
ε | ε.

Finally, it follows from the definition of γℓ,q(X, Sc) in (2.21) that

γℓ,q(X, Sc) ‖Λ⋆‖q ≤
[

2ℓ(ES0) + |Ic
ε | ε
]

.

The condition (2.19) guarantees that γℓ,q(X, Sc) is well-defined and positive. Hence the state-

ment of the theorem is established.

Theorem 2.3 constitutes an interesting stability result in that it provides a finite upper bound

on the distance from Ao to the set Ψ(Y, X) as a function of the amplitude of the dense noise

matrix E. It applies to any estimator Ψ defined as in (2.3) with ϕ a function obeying (2.4)-(2.6).

In particular, in the situation where ϕ is a norm (in which case ε can be taken equal to zero in

(2.6)), the inequality in (2.20) simplifies to

‖A⋆ −Ao‖q ≤
2

γℓ,q(X, Sc)
ℓ(ES0). (2.22)

If ϕ is defined as in (2.7) and if the dense noise matrix E is such that ℓo(et) ≤ εo for all t ∈ I,

then by taking ε = εo the set Ic
ε defined in the statement of Theorem 2.3 corresponds to the

empty set so that (2.22) holds as well in this case. In connection with the idea of gain discussed

earlier, one can interpret the factor 2/γℓ,q(X, Sc) as an estimate of the gain (of the estimator)

with respect to dense noise.

Lastly, it is interesting to see that when ϕ is a norm, if E = 0 then the result of Theorem

2.3 implies that Ψ(Y, X) = {Ao} provided (2.19) is true.

2.4 Discussions on some special cases

For the purpose of illustrating the extent of the results above, let us discuss further the situation

where ϕ reduces to a norm.

2.4.1 Scenario when the loss function is a norm

Corollary 2.1. Let (Y, X) be the data generated by system (2.2) subject to the noise components

E and F . Let S0 and Sc be defined as in the statement of Theorem 2.3. Assume that ϕ is a

norm i.e., it satisfies (2.4)-(2.6) with ε = 0.

If X is self-decomposable and |Sc| < T
(

ξ(X)
)

, then for any A⋆ ∈ Ψ(Y, X),

‖A⋆ −Ao‖q ≤ Bϕ(|S0|, X)ϕ(ES0) (2.23)
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2.4. Discussions on some special cases

where

Bϕ(α, X) =
2

σϕ,q(X)
[

1− N − α

T (ξ(X))

]

, (2.24)

σϕ,q(X) = inf
Λ6=0

ϕ(ΛX)

‖Λ‖q
(2.25)

Proof. The principle of the proof is to show that γℓ,q(X, Sc) is well-defined and find a positive

underestimate of it. Using the property (2.4) of ϕ and the fact that ϕ = ℓ, we can write

ℓ(ΛXS0)− ℓ(ΛXSc)

‖Λ‖q
=

2ϕ(ΛX)

‖Λ‖q

[

1

2
− ϕ(ΛXSc)

ϕ(ΛX)

]

.

On the other hand we know from the proof of Theorem 2.2 (see Eq. (2.15)) that

ϕ(ΛXSc)

ϕ(ΛX)
≤ 1

2T (ξ(X))
|Sc|

so that
[

1− |Sc|
T (ξ(X))

]

ϕ(ΛX)

‖Λ‖q
≤ ℓ(ΛXS0)− ℓ(ΛXSc)

‖Λ‖q
Taking now the infimum on both sides of the inequality symbol over all nonzero matrices Λ ∈
R

m×n yields

σϕ,q(X)

[

1− |Sc|
T (ξ(X))

]

≤ γℓ,q(X, Sc).

It follows from the rank condition imposed on X that σϕ,q(X) > 0. This shows that γℓ,q(X, Sc)

is well defined and is strictly positive. Finally, since ϕ = ℓ, invoking (2.22) gives the result.

Two important comments can be made at this stage.

• First it is interesting to note that the bound Bϕ(α, X) is an increasing function of ξ(X).

Therefore it is all the smaller as ξ(X) is small. That is the error bound will be small if the

data matrix X is rich enough.

• Second, Bϕ(α, X) is a decreasing function of α. This means that the upper bound on the

estimation error decreases when the number of gross error column in F decreases.

Beyond these observations it should be noted that a key assumption of Corollary 2.1 is that

|Sc| < T
(

ξ(X)
)

with Sc being the index set of the nonzero columns in F . Realizing this condition

requires on the one hand that the number of nonzero columns in the sparse noise matrix F be

small and on the other hand that ξ(X) be small2 (which means that the data must be generic).

Indeed this condition is not necessarily as strong as it might appear to be at first sight. For

example, it can be relaxed as follows. Observe that the sum E + F is not uniquely defined from

model (2.2). Taking advantage of this, one can always absorb in E all nonzero columns of F

whose magnitude does not exceed a certain level. To see this let I = {t ∈ Sc : ℓ(et + ft) ≤ εo}
where εo = maxt∈I ℓ(et). Then we can define Ẽ and F̃ such that E + F = Ẽ + F̃ and F̃S0∪I = 0

that is, we set ẽt = ft + et for any t ∈ I. As a consequence, E and F in Corollary 2.1 can be

2Recall that T is a decreasing function hence implying that T (ξ(X)) is large when ξ(X) is small.
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2.4. Discussions on some special cases

replaced by Ẽ and F̃ respectively so that |S| and |Sc| are replaced by |S| + |I| and |Sc| − |I|.
The condition of the corollary becomes |Sc|− |I| < T

(

ξ(X)
)

which is potentially easier to fulfill.

Remark 2.4 (sum of p-norms). Evaluating numerically the bound Bϕ(α, X) might prove to

be a hard problem due to the potential difficulty in computing the term σϕ,q(X) in (2.25). A

particular case of interest is when ϕ consists of a sum of p-norms of the column vectors, i.e.

when it is defined by ϕ(A) =
∑N

i=1 ‖ai‖p . In this case if we take q = 2 in (2.23) and (2.25), it

is easy to see that λ
1/2
min(XX⊤) ≤ σϕ,2(X) with λ

1/2
min denoting the square root of the minimum

eigenvalue. Replacing σϕ,2(X) with λ
1/2
min(XX⊤) in (2.24) yields an overestimate of Bϕ(α, X)

which is computable.

Remark 2.5. Corollary 2.1 still holds true if one replaces T (ξ(X)) with πc
ϕ(X) defined in

(2.11). As shown in [57], the number πc
ϕ(X) in (2.11) is computable although at the price of a

combinatorial complexity. However if the n-dimension of X is small enough the complexity of

the algorithm proposed there can be affordable. Then by using our formula (2.24) and Remark

2.4 above, it is possible therefore obtain a smaller bound on the estimation error.

2.4.2 Single output case: ℓ1 norm

The results obtained above apply very interestingly as well to single-output systems defined by

yt = (θo)⊤xt + ft + et (2.26)

where yt, et, ft are scalars and xt and θo are n-dimensional vectors. By letting Y = [y1 · · · yN ] ∈
R

1×N and defining E and F similarly, we obtain

Y = (θo)⊤X + F + E. (2.27)

This last equation corresponds indeed to (2.2) where the matrix Ao reduces to the row vector

(θo)⊤. In this case, if we let ϕ(A) =
∑N

i=1 ‖ai‖2 then for any θ ∈ R
n, the columns of (the row

vector) Y −AX are scalars so that

ϕ(Y − θ⊤X) =
N
∑

t=1

∥

∥yt − θ⊤xt

∥

∥

2
=

N
∑

t=1

∣

∣yt − θ⊤xt

∣

∣. (2.28)

As a result, Ψ coincides in this case with the Least Absolute Deviation (LAD) estimator. The

following corollary specializes the result of Theorem 2.3 to the LAD estimator.

Corollary 2.2. Let (Y, X) ∈ R
1×N × R

n×N be generated by model (2.26). Let Sc =
{

t ∈ I :

ft 6= 0
}

, S0 = I \ Sc. Assume that X is self-decomposable and |Sc| < T
(

ξ(X)
)

. Then for any

θ⋆ ∈ arg min
θ∈Rn

∥

∥Y − θ⊤X
∥

∥

1
,

‖θ⋆ − θo‖2 ≤ B1
(|S0|, X

) ‖ES0‖1
where

B1(α, X) =
2

σ1,2(X)
[

1− N − α

T (ξ(X))

]

,

σ1,2(X) = inf
η 6=0

∥

∥

∥X⊤η
∥

∥

∥

1

‖η‖2
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2.4. Discussions on some special cases

Again here the bound B1(α, X) can be numerically overestimated by following the idea of

Remark 2.4.

2.4.3 Further analysis of a special case

The elegance of the above results resides in the fact that they read nicely as a simple threshold

condition on the number of nonzeros columns (outliers) in the sparse noise matrix F under which

either exact recovery or estimation error boundedness is guaranteed. See for example Theorems

2.2 and 2.3. The derived threshold depends solely on the informativity properties of the regressor

matrix X. In addition, the threshold is computable. Note however that this readability of the

recoverability conditions is obtained at the price of introducing some pessimism.

In this section, we state necessary and sufficient conditions for exact recovery of the parameter

matrix. Considering the case where the function ϕ in (2.3) is defined by ϕ(A) =
∑N

i=1 ‖ai‖2, the

underlying optimization problem is nonsmooth and convex. Applying then the subdifferential

condition for optimality yields the following theorem [10].

Theorem 2.4. Consider the estimator Ψ in (2.3) with ϕ being defined from a sum of 2-norms

by ϕ(A) =
∑N

i=1 ‖ai‖2. Then a matrix A⋆ ∈ R
m×n lies in Ψ(Y, X) if and only if any of the

following equivalent statements holds:

T1. There exists a sequence of vectors {βt}t∈I0(A⋆) ⊂ B2(0, 1) such that

∑

t/∈I0(A⋆)

v⋆
t x⊤

t +
∑

t∈I0(A⋆)

βtx
⊤
t = 0, (2.29)

where v⋆
t = (yt − A⋆xt)/ ‖yt −A⋆xt‖2. Here, B2(0, 1) ⊂ R

m is the Euclidean unit ball of

R
m.

T2. For any matrix Λ ∈ R
m×n,

∣

∣

∣

∑

t/∈I0(A⋆)

v⋆
t

⊤Λxt

∣

∣

∣ ≤
∑

t∈I0(A⋆)

‖Λxt‖2 . (2.30)

T3. The optimal value of the problem

min
Z∈Rm×p

‖Z‖2,∞ subject to V ⋆X⊤
Ic(A⋆) = ZX⊤

I0(A⋆) (2.31)

is smaller than 1. Here, p =
∣

∣I
0(A⋆)

∣

∣ and V ⋆ being a matrix formed with the unit ℓ2-norm

vectors v⋆
t , for t ∈ I

c(A⋆).

Moreover, the solution A⋆ is unique if and only if any of the following assertions is true.

T1’. (2.29) holds and rank(XT ) = n where T =
{

t ∈ I
0(A⋆) : ‖βt‖2 < 1

}

.

T2’. (2.30) holds with strict inequality symbol for all Λ ∈ R
m×n, Λ 6= 0.

In the special case of single output systems the ℓ2-norm reduces to absolute value and Theorem

2.4 then takes a simpler form as recalled below (See Theorem 4 in [10]). For the sake of simplicity

we will discuss more the single output case instead of the general multivariable one.
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2.4. Discussions on some special cases

Theorem 2.5 (Solution to the ℓ1 problem). Consider the estimator Ψ in (2.3) with m = 1 and

ϕ being defined from a sum of 2-norms by ϕ(A) =
∑N

i=1 ‖ai‖2. Then a vector θ⋆ ∈ R
n lies in

Ψ(Y, X) if and only if any of the following equivalent statements hold:

S1. There exist some numbers λt ∈ [−1, 1], t ∈ I
0(θ⋆), such that3

∑

t∈I+(θ⋆)

xt −
∑

t∈I−(θ⋆)

xt =
∑

t∈I0(θ⋆)

λtxt. (2.32)

S2. For any η ∈ R
n,

∣

∣

∣

∑

t∈I+(θ⋆)

η⊤xt −
∑

t∈I−(θ⋆)

η⊤xt

∣

∣

∣ ≤
∑

t∈I0(θ⋆)

∣

∣η⊤xt

∣

∣. (2.33)

Moreover, the solution θ⋆ is unique if and only if any of the following is true.

S1’. (2.32) holds and rank(XS) = n where S =
{

t ∈ I
0(θ⋆) : |λt| < 1

}

.

S2’. (2.33) holds with strict inequality symbol for all η ∈ R
n, η 6= 0.

A number of important comments follow from Theorem 2.5.

• One first consequence of the theorem is that θo can be computed exactly from a finite

set of erroneous data (by solving the convex problem in (2.3)) provided it satisfies the

conditions S1’ or S2’ of the theorem. Note that there is no explicit boundedness condition

imposed on the error sequence {ft}. Hence the nonzero errors in this sequence can have

arbitrarily large magnitudes as long as the optimization problem makes sense, i.e., provided

ϕ(Y − (θo)⊤X) remains finite.

• Second, the true parameter vector θo can be exactly recovered in the presence of, say,

infinitely many nonzero errors ft (see also Proposition 2.2). For example, if the regressors

{xt} satisfy
∑

t∈I+(θo)

xt −
∑

t∈I−(θo)

xt = 0, (2.34)

and rank(XI0(θo)) = n, then by condition S2’ θo is the unique element of (2.3) regardless of

the number of errors affecting the data. This situation is graphically illustrated in Figure

2.1.

• Third, if Ψ(Y, X) admits a member θ⋆ ∈ R
n that satisfies yt−x⊤

t θ⋆ 6= 0 for all t = 1, . . . , N ,

then θ⋆ is non-unique. In effect, I
0(θ⋆) = ∅ in this case and so, rank(XI0(θ⋆)) = 0 < n

which, by Theorem 3.2, implies non-uniqueness. Indeed this is typically the case whenever

the noise {et} is nonzero.

Although it is unlikely that a condition of the form (2.34) holds in general, it is very instructive

to see the implication of that property. For example, a question one may ask is whether it

can hold approximately, i.e.,
∑

t∈I+(θo) xt −
∑

t∈I−(θo) xt ≈ 0. Next, we discuss a special case in

which the true parameter vector θo in (2.26) can, in principle, be obtained asymptotically in the

presence of an infinite number of nonzero errors ft’s.

3Eq. (2.32) should be understood here with the implicit convention that any of the three terms is equal to
zero whenever the corresponding index set is empty.
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y = θox

x

y

O

Figure 2.1: Illustration of the situation where condition (2.34) is satisfied. Here, I+(θo) is formed
by the index set of the black points; I−(θo) indexes the blue squares; finally I

0(θo) indexes the
red boxes. Note that the cardinalities of I

+(θo) and I
−(θo) are both equal to 8. The average

of the x-coordinates of the points indexed by I
+(θo) and I

−(θo) coincide at the point which is
materialized by a green cross. The dimension of the regressor x is one and there are at least one
point (distinct from the origin) that lies exactly on the line to be recovered. It follows from the
above remarks that θo can be uniquely recovered by convex optimization from the whole data
samples.

Proposition 2.2 (Infinite number of outliers). Assume that the error sequence {et} in (2.2) is

identically equal to zero. Assume further that the data {(xt, yt)}Nt=1 are generated such that:

• There is a set I0 ⊂ I with
∣

∣I0
∣

∣ ≥ n, such that for any t ∈ I0, ft = 0 and rank(XI0) = n,

• For any t /∈ I0, ft is sampled from a distribution which is symmetric around zero.

• The regression vector sequence {xt} ⊂ R
n is drawn from a probability distribution having

a finite first moment.

Then

lim
N→∞

arg min
θ∈Rn

1

N

N
∑

t=1

∣

∣

∣yt − x⊤
t θ
∣

∣

∣ = {θo} (2.35)

with probability one.

Another immediate consequence of Theorem 2.5 can be stated as follows.

Corollary 2.3 (On the special case of affine model). If the system (2.2) is affine in the sense

that the regressor xt has the form xt = [x̃⊤
t 1]⊤, with x̃t ∈ R

n−1, then a necessary condition for

θ⋆ to be in Ψ(Y, X) is that
∣

∣

∣

∣

∣

∣I
+(θ⋆)

∣

∣

∣−
∣

∣I
−(θ⋆)

∣

∣

∣

∣

∣ ≤
∣

∣

∣I
0(θ⋆)

∣

∣

∣ . (2.36)

Here, the outer bars | · | refer to absolute value while the inner ones which apply to sets refer to

cardinality.
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Eq. (2.36) implies that if the measurement model is affine (for example, (2.26)) and all the ft’s

have the same sign, i.e., if one of the cardinalities
∣

∣I
+(θo)

∣

∣ or |I−(θo)| is equal to zero, then (2.3)

cannot contain the true θo whenever more than 50% of the elements of the sequence {ft} are

nonzero.

The comments above show that exact recovery can happen in various circumstances and even

in situations where the number of outliers is very large. For that, it suffices that the signs of the

ft’s be appropriately distributed.

2.5 Practical implementation aspects

On the computation of Ψ(Y, X). In the previous sections we have studied the properties

of the estimator Ψ defined in (2.3) as induced by those of the loss function ϕ. An interesting

question we shall discuss now is the computability of Ψ(Y, X) given the data (Y, X). For this

purpose recall that the convexity assumption imposed on ϕ aims simply at easing the numerical

computation of Ψ. As long as ϕ is convex, the optimization problem which defines Ψ is a convex

optimization problem. And these types of problems can be efficiently solved using numerous and

well-documented solvers. In general, especially when dense noise is active, Ψ is likely to contain

an infinite number of elements so that it is impossible to enumerate them all. A pragmatic way

is to compute a single element of Ψ(Y, X) and then find a set of larger size containing Ψ(Y, X)

using for example the bounding results of Theorem 2.3.

Enforcing recoverability by iterative re-weighting. The parameter matrix Ao from the

model (2.2) can be uniquely recovered by solving the convex problem (2.3) if Ao satisfies, for

example, condition (2.13) of Theorem 2.2. In case this condition is not naturally satisfied, an

interesting question is how we can process the data in order to promote it. In this section we

discuss an algorithmic strategy for enhancing the recoverability of Ao. Our discussion is inspired

by [21]. The idea is to solve a sequence of problems of the type (2.3) with different weights

computed iteratively [21, 1]. The iterative scheme can be defined for a fixed number rmax of

iterations as follows. At iteration r = 0, . . . , rmax, compute

A(r) ∈ arg min
A∈Rm×n

ϕ
(

(Y −AX)W (r)), (2.37)

with weighting matrix W (r) defined by W (r) = diag
(

w
(r)
1 , . . . , w

(r)
N

)

with the weights defined for

all t, by w
(0)
t = 1/N , and

w
(r)
t =

ξ
(r)
t

∑N
t=1 ξ

(r)
t

, if r ≥ 1,

where

ξ
(r)
t =

1

ϕ(yt −A(r−1)xt) + δ
,

with δ > 0 a small number whose role is to prevent division by zero and r is the iteration

number. Since we are dealing here with a sequence of convex optimization problems, they can

be numerically implemented using any convex solver. In particular the CVX software package

[32] provides a handy environment for shaping this category of problems in a Matlab.
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(a) Linear static model
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(b) Affine static model

Figure 2.2: Estimates of probabilities of exact recovery when noise {et} is equal to zero.

2.6 Numerical illustrations

In this section we illustrate numerically the robustness property of the discussed estimators for

different configurations of datasets.

2.6.1 Exact recovery

Static models subject to intermittent gross errors. In our first experiment we consider

static linear and affine models of the form (2.26) with n = 4 and N = 500. The affine model

refers to the case where the regressor xt has the form xt = [x̃⊤
t 1]⊤. The goal is to estimate the

probability of exact recovery of the true parameter vector by minimizing the objective (2.28) as

a function of the number of nonzero elements in the sequence {ft}. For this purpose, the noise

{et} is set to zero. The nonzero elements of {ft} are drawn from a Gaussian distribution with

mean 100 and variance 10002. For each level of sparsity (i.e., proportion of nonzeros), a Monte

Carlo simulation of size 100 is carried out with randomly generated static/affine models and 500

data samples at each run. Repeating this for four situations (linear/affine and linear/affine with

positive ft’s), we obtain the results depicted in Figure 2.2. We observe that in the linear case,

the true parameter vector is the unique element of Ψ(Y, X) when the output is affected by up to

80% of nonzero gross errors. This is because the data {xt} which were sampled from a Gaussian

distribution are very generic. In the case of affine models, the performance is a little less good.

If we set all ft’s to have the same sign, then, the percentage of outliers that can be corrected by

the estimator Ψ cannot exceed 50%. This is consistent with (2.36).

Dynamic linear models subject to sensor intermittent faults. In the case when (2.26)

represents a dynamic ARX model subject to gross errors, it can be observed (see Fig. 2.3)

that the probabilities of exact recovery are much smaller than in the static case studied above.

This difference is related to the richness (or genericity) of the regression vectors (columns of X)

involved in each case. In the static example above, the vectors {xt} are freely sampled in any

direction of Rn by following a Gaussian distribution. In the dynamic system case however, the

data vectors {xt} constructed as

xt =
[

yt−1 · · · yt−na u⊤
t u⊤

t−1 · · · u⊤
t−nb

]⊤
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(a) Linear dynamic model
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(b) Affine dynamic model

Figure 2.3: Estimates of probabilities of exact recovery when noise {et} is equal to zero. Results
of a Monte-Carlo simulation of size 100 with randomly generated linear ARX systems of order
na = nb = 2.
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Figure 2.4: Estimates of probabilities of exact recovery by reweigthed ℓ1 minimization when
noise {et} is equal to zero. Results of a Monte-Carlo simulation of size 100 with randomly
generated linear ARX systems with orders na = nb = 2.

are constrained to lie on a manifold. As a result, the data matrix X generated by the dynamic

system is less generic. According to the condition (2.13), there is a threshold depending on the

richness of the data such that exact recovery is guaranteed whenever the number of nonzero

entries in f is smaller than this threshold. So, the more generic the data contained in X are, the

more outliers can be removed by the estimator. Note that the lack of sufficient genericity can

be compensated (to some extent) by implementing the iterative sparsity enhancing technique

(the ℓ1 reweighted algorithm) described in Section 2.5. This leads, for only two iterations, to

significantly improved results as represented in Figure 2.4.

2.6.2 Presence of both dense and sparse noise

Empirical estimation error. Consider now the case of static models of the form (2.2) in the

presence of both {et} and {ft} sampled from Gaussian distributions N (0, σ2
e) and N (100, 10002)

respectively. The variance σ2
e is selected so as to achieve a certain signal to noise ratio before the
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Figure 2.5: Average relative estimation error versus sparsity level.

gross error sequence is added to the output. Again, by carrying out a Monte-Carlo simulation

of size 100 with different sparsity levels and randomly generated models at each run, we obtain

the average errors plotted in Figure 2.5. The performance can be assessed by comparing with

an "oracle" estimate i.e., the least squares estimate one would obtain if the locations of zeros

in the sequence {ft} were known. The results in Figure 2.5 tend to suggest that the proposed

approach performs very well. For the current numerical experiment, our results are very close

to the ideal estimate when the proportion of nonzeros is less than 70%. Above this proportion,

the estimation error presents an important jump.

Evaluation of theoretical error bounds. Here we evaluate numerically an estimate of the

gain of the estimator based on Corollary 2.1 and Remark 2.4. The estimation is carried out for

the case where ϕ consists in the sum of 2-norms and q = 2. Four different cases are studied:

(a) Static data: X ∈ R
2×200 is sampled from a Gaussian distribution N (0, I2) with zero-mean

and identity-covariance.

(b) Dynamic data generated by a switched linear system: X ∈ R
2×200 is formed with the

regressors (yt−1, ut−1) generated by a switched linear system composed of 3 subsystems

of order 1. This is a switched ARX system defined by yt = aσ(t)yt−1 + bσ(t)ut−1 with the

switching signal σ(t) ∈ {1, 2, 3} generated from a uniform distribution and input ut being a

white noise with Gaussian distribution; (a1, b1) = (−0.40,−0.15), (a2, b2) = (1.55,−2.10)

and (a3, b3) = (1,−0.65).

(c) Dynamic data generated by a linear ARX system defined by yt = a1yt−1 + b1ut−1

(d) Dynamic data generated by a nonlinear NARX system defined by yt = (yt−1 + 2.5)/(1 +

y2
t−1) + ut−1

Following Remark 2.1, the columns of all data matrices X have been normalized to unit 2-norm

before being processed.

Figure 2.6 plots the obtained estimate of the estimator gain against the proportion of correctable

outliers. As remarked in Section 2.4, the gain estimate increases as the proportion of outliers

gets larger. But the growth rate of the gain estimate depends on the genericity of the data
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(b) switched: ξ(X) = 0.0127
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Figure 2.6: An overestimate of Bϕ using respectively πc
ϕ(X) and T (ξ(X)) for a data matrix

X ∈ R
2×200: (a) static data sampled from a Gaussian distribution; (b) data generated by a

switched system; (c) data generated by a linear dynamic system ; (d) data generated by a
dynamic nonlinear system.

matrix X. The more generic the columns of X are, the smaller the growth rate of the estimation

error is when regarded as a function of the proportion of outliers. The experiment confirms also

the intuition according to which static data tend to be more generic than data generated by a

dynamic system. Among the three cases of dynamic systems, the linear system appears to be

the one generating the least generic data.

2.7 Conclusion

In this chapter we have discussed a somewhat general framework for designing a robust estimator.

Given the training data, the estimator is defined as the minimizing set of a certain performance

index applying to the data. We have shown that if the performance function possesses some key

properties, then the so-defined estimator will inherit robustness properties. Considering a data

set generated by a linear model subject to both sparse and dense noises, we showed that the

estimator is insensitive to the sparse noise provided the number of its nonzero components is no

larger than a certain (computable) threshold. Conditions are proposed for the exact recovery

of the true parameter matrix when only the sparse noise is active. When both types of noises

affect the measurements we propose computable bounds on the parametric estimation error

which depend on the amplitude of the dense noise and the number of nonzero elements of the
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2.7. Conclusion

sequence of sparse noise. Finally we note that the proposed robust estimation and analysis

framework is sufficiently general to cover the LAD estimator and its main variants. Also, it

applies to both SISO and MIMO types of systems.

Robust estimation has been studied here in a batch identification mode. The resulting

estimator is defined from a finite collection of measurements. In this case, the estimator takes

the form of a static operator. One can also envision studying robust estimation in an adaptive

framework. In this latter case the estimator becomes a dynamic operator which produces at

each time a set-valued output. See for example our papers [23, 24, 3].

A relevant open problem is how to design the excitation input of a dynamic system so as to

maximize the richness of the resulting regressor (which can be measured in the sense of ξ(X)).
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Chapter 3

Identification of switched ARX

systems
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3.1 Introduction

This chapter is based on [1] where we consider the problem of identifying a switched linear system

from input-output data. In our setting, each subsystem is described by an ARX model. The

main challenge with this identification problem is that the data are available only as a mixture

of observations generated by a finite set of different interacting linear subsystems so that one

does not know a priori which subsystem has generated which data.

The contribution of this work consists in the development of an identification method for switched

linear systems. Data vectors generated by such systems lie in the union of a finite set of linear

hyperplanes. Therefore we pose the identification of a specific submodel as the problem of

extracting the hyperplane that contains the largest number of data. The corresponding submodel

is hence the one that, among all submodels, achieves, over the whole dataset, the sparsest vector
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3.2. Switched ARX systems

of fitting errors. With this formulation, one submodel can be estimated directly without any

prior clustering, by means of sparse optimization, i.e., the minimization of the number of nonzero

components in an error vector. Since sparse optimization is in general non-convex, it is classical

to consider instead a convex ℓ1 relaxation of this problem. We then present sufficient conditions

under which the ℓ1 relaxation is guaranteed to recover exactly the solution of the initial sparse

optimization problem. In the case when these conditions are not satisfied, we show that all the

PVs can still be identified by slightly adapting an iterative reweighted ℓ1 optimization technique

proposed in [21]. In contrast to most of the existing methods for hybrid system identification,

our method lends itself to a relatively easy analysis. For example, conditions for optimality even

though somewhat conservative, can be derived.

3.2 Switched ARX systems

We consider a discrete-time MISO switched linear system (SLS) represented by

yt = a1
σ(t)yt−1 + · · ·+ ana

σ(t)yt−na

+ (b1
σ(t))

⊤ut−1 + · · ·+ (bnb

σ(t))
⊤ut−nb

+ et

(3.1)

where ut ∈ R
nu and yt ∈ R denote respectively the input and the output of the system. The

integers na and nb in (3.4) are the output and input lags (also called the orders of the system).

{et} models a deterministic sequence of bounded errors referring to potential model mismatch

and measurement noise. We will assume that for all time t, |et| ≤ ε with ε possibly unknown.

σ(t) ∈ S , {1, . . . , s} is the discrete mode (or discrete state), that is, the index of the active

subsystem at time t; for j ∈ S, ai
j ∈ R and bq

j ∈ R
nu , i = 1, . . . , na, q = 1, . . . , nb, are the

parameters of the system. The model (3.2) is called a Switched Auto-Regressive eXogenous

(SARX) model. For convenience, we rewrite (3.1) in the form

yt = x⊤
t θo

σ(t) + et, (3.2)

where θo
σ(t) ∈ R

n, n = na + nbnu, is the parameter vector (PV) associated with the mode σ(t),

θo
σ(t) =

[

a1
σ(t) · · · ana

σ(t) (b1
σ(t))

⊤ · · · (bnb

σ(t))
⊤]⊤ (3.3)

and xt ∈ R
n is the regressor at time t ∈ Z+ defined by

xt =
[

yt−1 · · · yt−na u⊤
t−1 · · · u⊤

t−nb

]⊤
. (3.4)

Here we do not require that na ≥ nb. For example, if na = 0 in Eq. (3.4) then model (3.2)

corresponds to a switched FIR (Finite Impulse Response) model.

We consider the problem of inferring a model of the form (3.2) from a finite collection of

measurements {(xt, yt)}Nt=1. We shall solve the identification problem without any knowledge

of the switching signal {σ(t)}. This means that we do not know beforehand which data pair is

associated with which parameter vector.
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3.2. Switched ARX systems

3.2.1 On the identifiability of the SARX model

As discussed in [65], the problem of inferring a switched model such as (3.2) from a finite set

measurements is not well-posed if the structure of the model is not properly set. In effect, if

the structural indices na and nb are not fixed, then one can find for example a trivial switched

linear model consisting of one single submodel with large orders that fits all the finite data set.

Even if finite and fixed values are assigned to na and nb, there are still infinitely many switched

models that explain the data. For example, it can be simply verified that there is a switched

linear model with s = N submodels that can reproduce exactly the data.

In order to remove the identifiability issue, we will assume here that

• The orders na and nb are finite, equal for all submodels and known a priori. This fixes the

form of the model and thereby the dimension of the parameter space.

• Each individual ARX subsystem is minimal in the ordinary sense.1

With this setting for the structural indices na and nb, the SARX of interest will be viewed as the

one that, among all switched linear models consistent with the data, has the minimum number

of submodels. Note that by the results of [47], the second assumption implies minimality of

the SARX system. The interested reader is referred to the papers [47, 48] for a more complete

treatment of the identifiability problem for switched linear systems in both the frameworks of

state-space models and input-output models.

3.2.2 Preliminary discussions

The most direct approach to the SARX identification problem would be to solve the following

optimization problem

min
θ1,...,θs

σ(1),...,σ(N)

N
∑

t=1

(

yt − θ⊤
σ(t)xt

)2
(3.5)

that is, search jointly for a switching sequence {σ(t)}Nt=1 and a set of s parameter vectors {θi}si=1

so as to minimize the average discrepancy between the measured output yt and the output

θ⊤
σ(t)xt of the SARX model. A major obstacle however on the path to the solution to (3.5)

is computational complexity. In effect, solving (3.5) might require an exhaustive search over

the (discrete) set of length-N switching sequences {σ(t)}Nt=1 whose cardinality is about sN , a

number which grows exponentially fast with respect to the number N of samples. Note that an

equivalent formulation of the problem can be the following

min
θ1,...,θs

[

N
∑

t=1

min
i=1,...,s

(yt − θ⊤
i xt)

2
]

(3.6)

where the discrete decision variables have been removed. Unfortunately, this is a nonconvex

problem.

A geometrical interpretation. From a geometrical perspective, the switched system identi-

fication problem formulated above is equivalent to that of subspace clustering, i.e., the problem of

estimating subspaces from unlabeled data that lie in the union of those subspaces (an illustration

1i.e, the numerator and the denominator polynomials of the associated transfer function are coprime.

35



3.3. The sparse optimization approach

is depicted in Figure 3.1). In effect, if we neglect the noise and introduce the notations,

θ̄i = [1 θ⊤
i ]⊤ and x̄t = [yt −x⊤

t ]⊤. (3.7)

then for any time instant t, there is i ∈ {1, . . . , s} such that yt − θ⊤
i xt = x̄⊤

t θ̄i = 0. Hence the

data record {x̄t}Nt=1 lie in the union of s linear hyperplanes whose normal directions are given

by the parameter vectors θ̄i, i = 1, . . . , s. Estimating these normal vectors may require to group

data lying in each hyperplane and then proceed with standard linear identification techniques

for each group. Instead of doing so, we will extract the parameter vectors θi one after another,

starting directly from the entire data set. In a sense, our method can be thought of as a robust

identification approach. In fact, the method can only identify one submodel at a time and so,

when identifying one submodel, data from other submodels are roughly treated as outliers or

gross errors to be corrected.

3.3 The sparse optimization approach

3.3.1 The rationale of the idea

For the sake of clarity, assume for now that the noise sequence {et} is identically null. Let

θ ∈ R
n denote a candidate parameter vector. Given the data {(xt, yt)}Nt=1 generated by the

system (3.2), we form the error vector

φ(θ) = y −X⊤θ (3.8)

where y = [y1 · · · yN ]⊤ ∈ R
N and X = [x1 · · · xN ] ∈ R

n×N . Likewise define e =

[e1 · · · eN ]⊤ ∈ R
N . Let us denote with Ni the number of data (xt, yt) generated by the

subsystem indexed by i. Then we can observe that if θ = θi for some i ∈ {1, . . . , s}, then φ(θ) is

a sparse vector, i.e., a vector where many entries are equal to zero. More precisely, φ(θ) contains

Ni zero entries.

In order to avoid ambiguity in the definition of the number Ni, we make the following formal

assumption throughout all the chapter. This assumption will remain implicitly in force whenever

the notation Ni is invoked.

{x̄t}

O

{x̄t}

Figure 3.1: Switched system identification as a subspace clustering problem. Illustrative repres-
entation of homogenous hyperplanes in one and two dimensions.
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3.3. The sparse optimization approach

Assumption 3.1. There is no data pair (xt, yt) that fits two different submodels of the SARX

(3.2), i.e., yt = θ⊤
i xt = θ⊤

j xt ⇒ i = j.

To determine the PV θi that achieves the sparsest error φ(θi), we can in principle solve the

sparse optimization problem

min
θ
‖φ(θ)‖0 , (3.9)

where ‖z‖0 denotes the ℓ0 norm2 of z, that is, the number of nonzero entries of z, ‖z‖0 =

|{i : zi 6= 0}|. Trying to solve problem (3.9) is equivalent to attempting to find a homogeneous

hyperplane (or a vector θ̄) that contains (that is orthogonal to) as many data x̄t as possible.

For the purpose of discussing the ability of problem (3.9) to solve the identification the problem,

we introduce the following measure of informativity (richness) of the regression data [1].

Definition 3.1 (An integer measure of genericity).

Let X ∈ R
n×N be a data matrix satisfying rank(X) = n and let I = {1, . . . , N} be the index set

of the data. The n-genericity index of X denoted νn(X), is defined as the minimum integer m

such that any n×m submatrix of X has rank n,

νn(X) = min
{

m : ∀ S ⊂ I with |S| = m, rank(XS) = n
}

. (3.10)

If all the submodels are sufficiently excited within the data {xt}Nt=1 then, as suggested by the

following lemma, the solution to problem (3.9) is a PV representing one of the constituent

submodels of system (3.2).

Proposition 3.1 (Noise-free data). Let (y, X) ∈ R
N × R

n×N be data generated by the SARX

system (3.2) under noise-free assumption (e = 0) and pose φ(θ) = y −X⊤θ. Assume that each

subsystem has generated a sufficiently large number of data in the sense that
∣

∣I
0(θo

i )
∣

∣ ≥ sνn(X)

for all i ∈ S with s being the number of subsystems in (3.2). Then

arg min
θ∈Rn

‖φ(θ)‖0 ⊂ {θo
1, . . . , θo

s} (3.11)

Proposition 3.1 says that the set of parameter vectors minimizing ‖φ(θ)‖0 is included in {θo
1, . . . , θo

s}.
Next, we characterize the uniqueness of the minimizer of (3.9) in terms of the n-genericity index

of the data matrix X.

Theorem 3.1. Let (y, X) ∈ R
N × R

n×N be data generated by the SARX system (3.2) under

noise-free assumption (e = 0) and pose φ(θ) = y − X⊤θ. Then the following statements hold

true.

1. If there is a θ⋆ ∈ R
n such that ‖φ(θ⋆)‖0 ≤ (N − νn(X))/2, then

arg min
θ∈Rn

‖φ(θ)‖0 =
{

θ⋆}. (3.12)

2. If in addition Assumption 3.1 holds and N ≥ (2s− 1)νn(X), then

θ⋆ ∈ {θo
1, . . . , θo

s

}

.

2Strictly speaking, ℓ0 is not a norm as it does not satisfy the property of positive scalability, i.e., ‖λz‖0 = |λ| ‖z‖0

does not hold in general.
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3.3. The sparse optimization approach

Noise-aware sparse optimization. In case the noise is not equal to zero in the data-

generating system (3.2), then solving problem (3.9) is unlikely to return a true parameter vector.

This observation prompts us to reformulate the search query. To this end, assume that the noise

sequence {et} is bounded by a given positive number ε. Then consider the alternative formulation

min
(θ,ξ)∈Rn×RN

+

‖ξ‖0

s.t. |yt − x⊤
t θ| ≤ ε + ξt, t = 1, . . . , N.

(3.13)

The decision variables here are the PV θ ∈ R
n and the positive slack variable ξ ∈ R

N
+ . The

rationale behind this formulation is that if θ ∈ {θo
1, . . . , θo

s}, then |yt − x⊤
t θ| ≤ ε whenever

σ(t) = i. Consequently, the corresponding entry ξt of ξ can be set equal to zero hence yielding

a sparse vector ξ. Indeed (3.13) can be written in a more compact form as

min
θ∈Rn

‖φ(θ)‖0,ε (3.14)

where the notation ‖·‖0,ε is defined by

‖a‖0,ε =
∣

∣ {i = 1, . . . , N : max(0, |ai| − ε) 6= 0}
∣

∣

for any a = [a1 · · · aN ]⊤ ∈ R
N . In others words ‖a‖0,ε is the number of entries in a which

have absolute value strictly larger than ε. Hence when ε = 0, ‖a‖0,ε coincides with ‖a‖0.

Now we ask the question of what is the significance of the solutions to problem (3.14) with

respect to the goal of recovering the parameter vectors of system (3.2). This is discussed next.

For notational convenience, let us introduce the number δ(X) defined by

δ(X) = max
I⊂I

νn(X)≤|I|

√

|I|
λ

1/2
min

(

XIX⊤
I

)

(3.15)

The maximum is taken here over all subsets of I having cardinality at least equal to νn(X). The

notation λ
1/2
min

(

XIX⊤
I

)

refers to the square root of the minimum eigenvalue of XIX⊤
I , that is,

the minimum singular value of X⊤
I which is guaranteed to be strictly positive by the fact that

|I| ≥ νn(X).

Proposition 3.2 (Noisy data). Let (y, X) ∈ R
N × R

n×N be data generated by the SARX

system (3.2) where the noise sequence {et} is assumed to be bounded: there is ε > 0 such that

maxt |et| ≤ ε. Assume that each subsystem has generated a sufficiently large number of data in

the sense that |Iε(θo
i )| ≥ sνn(X) for all i ∈ S, where I

ε(θo
i ) =

{

t ∈ I : |yt − x⊤
t θo

i | ≤ ε
}

. Then

with φ(θ) = y −X⊤θ, it holds that

∀θ̂ ∈ arg min
θ∈Rn

‖φ(θ)‖0,ε ,∃i∗ ∈ S,
∥

∥θ̂ − θo
i∗

∥

∥

2
≤ 2εδ(X). (3.16)

Proof. The proof is similar to that of Lemma 1 in [1]. Because the data are generated by the

system (3.2), it is clear, under the boundedness assumption on the noise, that for any t ∈ I,

there exists i ∈ S such that |yt − x⊤
t θo

i | ≤ ε. It follows that I = I
ε(θo

1) ∪ · · · ∪ I
ε(θo

s). Let
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θ̂ ∈ arg minθ∈Rn ‖φ(θ)‖0,ε. Then

∣

∣

∣I
ε(θ̂)

∣

∣

∣ ≤
s
∑

i=1

∣

∣

∣I
ε(θ̂) ∩ I

ε(θo
i )
∣

∣

∣ (3.17)

We then claim that there is an i∗ ∈ S such that
∣

∣

∣I
ε(θ̂) ∩ I

ε(θo
i∗)
∣

∣

∣ ≥ νn(X). To see this, assume

that the opposite holds, meaning that for all i ∈ S,
∣

∣

∣I
ε(θ̂) ∩ I

ε(θo
i )
∣

∣

∣ < νn(X). Then by applying

(3.17) and using the definition of θ̂, we immediately obtain |Iε(θo
i )| ≤ |Iε(θ̂)| < sνn(X) which

is in contradiction with the assumption of the proposition. Hence i∗ exists as stated. Denote

with yI∗ a vector formed with the outputs indexed by I∗ , I
ε(θ̂) ∩ I

ε(θo
i∗) and with XI∗ the

matrix formed with the regressors indexed by I∗. For all t ∈ I∗, we have |yt − x⊤
t θ̂| ≤ ε and

|yt − x⊤
t θo

i∗ | ≤ ε. As a result,

∥

∥

∥X⊤
I∗

(

θ̂ − θo
i∗

)∥

∥

∥

2
≤ ‖yI∗ −XI∗θo

i∗‖2 +
∥

∥yI∗ −XI∗ θ̂
∥

∥

2
≤ 2

√

|I∗|ε

so that
∥

∥

∥θ̂ − θo
i∗

∥

∥

∥

2
≤ 2

√

|I∗|ε
λ

1/2
min(XI∗X⊤

I∗)
.

The conclusion follows naturally from this.

It is interesting to note that (3.11) is a special case of (3.16) corresponding to the scenario

when noise is absent (ε = 0).

3.3.2 Convex relaxation

Note that the problem (3.9) is NP-hard in general, see e.g., [42]. As a consequence, minimizing

directly the cost function in (3.9) is in general intractable. A popular alternative [18, 21] is to

consider a convex relaxation of problem (3.9) based on the ℓ1 norm.

min
θ∈Rn

‖φ(θ)‖1 , (3.18)

where ‖z‖1 =
∑N

i=1 |zi| for any vector z ∈ R
N . This latter problem corresponds to what

is classically referred to as sparse error correction problem in [56] and [20]. Contrary to the

problem (3.9), the problem (3.18) is convex and can even be transformed into a classical linear

program. It can therefore be efficiently solved by standard convex optimization techniques such

as interior points methods [16].

An interesting question one might ask is whether the surrogate problem (3.18) can ever yield

the solution to the original problem (3.9). In the event of such an equivalence, under which

conditions it occurs. An answer is given in Lemma 3.1 and Theorem 3.2 below.

Lemma 3.1. Let X ∈ R
n×N and d be an integer such that rank(X) = n and

max
I⊂I

|I|=d

max
η∈Rn

η 6=0

‖X⊤
I η‖1

‖X⊤η‖1
≤ 1

2
(3.19)

with I = {1, . . . , N}. Consider y ∈ R
N such that the set {θ ∈ R

n : ‖φ(θ)‖0 ≤ d}, with φ(θ) =
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3.3. The sparse optimization approach

y −X⊤θ, is non empty. Then

arg min
θ∈Rn

‖φ(θ)‖0 ⊂ arg min
θ∈Rn

‖φ(θ)‖1 . (3.20)

Proof. The proof is quite similar to the second part of the proof of Theorem 2.1. It is provided

for completeness. Consider θ⋆ ∈ arg minθ∈Rn ‖φ(θ)‖0. Then it follows |Ic(θ⋆)| = ‖φ(θ⋆)‖0 ≤ d

with I
c(θ⋆) = I \ I0(θ⋆). Note that the inequality in (3.19) still holds if we replace the equality

|I| = d by the inequality |I| ≤ d. So, since |Ic(θ⋆)| ≤ d, it is true that

max
η∈Rn

η 6=0

‖X⊤
Ic(θ⋆)η‖1
‖X⊤η‖1

≤ 1

2

This means that for any η ∈ R
n,

‖X⊤
Ic(θ⋆)η‖1 ≤ ‖X⊤

I0(θ⋆)η‖1

We now make two remarks. First, since yI0(θ⋆) − X⊤
I0(θ⋆)θ

⋆ = 0, ‖X⊤
I0(θ⋆)η‖1 = ‖yI0(θ⋆) −

X⊤
I0(θ⋆)(θ

⋆ + η)‖1. Second, by using the triangle inequality, it can be observed that

‖yIc(θ⋆) −X⊤
Ic(θ⋆)θ

⋆‖1 − ‖yIc −X⊤
Ic(θ⋆)(θ

⋆ + η)‖1 ≤ ‖X⊤
Ic(θ⋆)η‖1.

It follows that

‖yIc(θ⋆)−X⊤
Ic(θ⋆)θ

⋆‖1 ≤ ‖yI0(θ⋆)−X⊤
I0(θ⋆)(θ

⋆ +η)‖1 +‖yIc−X⊤
Ic(θ⋆)(θ

⋆ +η)‖1 = ‖y−X⊤(θ⋆ +η)‖1.

Finally adding ‖yI0(θ⋆)−X⊤
I0(θ⋆)θ

⋆‖1 (which is indeed equal to zero) to the left hand side member

of the inequality symbol gives

‖φ(θ⋆)‖1 ≤ ‖φ(θ⋆ + η))‖1 ∀η ∈ R
n.

Hence θ⋆ ∈ arg minθ∈Rn ‖φ(θ)‖1 hence proving the lemma.

According to this lemma, if we let

πc
1(X) = max {d : Eq. (3.19) holds} ,

then (3.20) holds whenever {θ ∈ R
n : ‖φ(θ)‖0 ≤ πc

1(X)} 6= ∅. As already discussed earlier in

Chapter 2, a number of the form πc
1(X) is expensive to evaluate numerically. So, we provide a

stronger version of the lemma as follows.

Theorem 3.2 (Equivalence ℓ0/ℓ1). Let X ∈ R
n×N be a self-decomposable matrix in the sense

of Definition 2.1 and let ξ(X) be defined as in (2.12). Then the following holds true:

∀θ⋆ ∈ R
n, ∀y ∈ R

N , ‖φ(θ⋆)‖0 < T (ξ(X))

⇒ arg min
θ∈Rn

‖φ(θ)‖0 = arg min
θ∈Rn

‖φ(θ)‖1 =
{

θ⋆} (3.21)

with φ(θ) = y −X⊤θ.

The theorem suggests that if there is one subsystem indexed by some i that has generated
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3.3. The sparse optimization approach

a much larger number of data than all the others, then the corresponding PV θo
i is the unique

solution to problem (3.18).

Recoverability of the true PVs through solving a sequence of ℓ1 problems. We now

propose some conditions on the data generated by (3.2) which allow for an exact recovery of all

the true PVs by convex optimization. Without loss of generality, we can assume in this subsection

that the subsystems of system (3.2) are indexed in such a way that N1 ≥ N2 ≥ . . . ≥ Ns with

Ni = N −‖φ(θo
i )‖0 being the number of data points pertaining to subsystem i. Define X1 = X,

and for any j = 2, . . . , s, let Xj be the matrix Xj−1 from which all the data vectors xt related

to the subsystem j − 1 have been deleted. This way, X1 contains N = N1 + . . . + Ns columns,

X2 contains N −N1 columns, X3 contains N −N1−N2 columns and so forth. Let y1, . . . , ys be

defined similarly. With these notations, we present below an immediate corollary to Theorem

2.2, which is relevant to the linear switched identification problem.

Theorem 3.3. Consider the data (y, X) ∈ R
N × R

n×N generated by the SARX system (3.2).

Let {Ni}si=1 and {(yi, Xi)}si=1 be defined as above. Assume that:

• For all i = 1, . . . , s, each matrix Xi is self-decomposable,

• For all i = 1, . . . , s, Ni > N −∑i−1
k=1 Nk − T (ξ(Xi)).

Then

arg min
θ∈Rn

∥

∥yi −X⊤
i θ
∥

∥

1
=
{

θo
i

} ∀i = 1, . . . , s.

i.e., all the true parameter vectors {θo
1, . . . , θo

s} can be extracted one after another by solving ℓ1

minimization problems of the form (3.18).

To illustrate the condition of Theorem 3.3, consider an SARX system with s = 3 modes.

Assume for example that the total number of data points collected from this SARX system is

N = 200. For the sake of simplicity, let us assume that for any i, T (ξ(Xi)) is about one third of

the number of columns in Xi. Then (N1, N2, N3) = (134, 45, 21) is an example of distribution (of

the data samples per subsystem) that fulfills the condition of the theorem. Hence the conditions

appear to be strong unless one has the possibility in practice to control somehow the switching

signal. Note however that these conditions suffer from some degree of pessimism since they are

only sufficient. As will be empirically discussed in the sequel, recovery of the PVs is still possible

beyond the theoretical conditions thanks to the reweighted scheme described in Algorithm 3.1.

3.3.3 Summary of the identification algorithm

We have seen in the previous subsections that by applying Algorithm 3.1, we can identify one

of the s parameter vectors of a switched system such as (3.2) from the whole dataset. If there

is one submodel i satisfying Ni > N − T (ξ(X)) (see Theorem 2.13) then Algorithm 3.1 will find

(after only one iteration) a vector θ∗ in the set {θo
1, . . . , θo

s}. If this condition is not fulfilled,

Algorithm 3.1 may not converge towards a point in {θo
1, . . . , θo

s}. However, as argued in [21, 1]

and suggested by different experiments reported therein, the algorithm is likely to find the vector

θ∗ that realizes the sparsest error φ(θ). According to Proposition 3.1 and Theorem 3.1, such a

point θ∗ is in {θo
1, . . . , θo

s} when enough rich data are available.

Without loss of generality, we will denote with θ̂1, i.e. the estimate of θo
1, the point of {θo

1, . . . , θo
s}

to which the algorithm converges when it is run over all the data. Observe that θ̂1 can be obtained

from the whole mixed data without any prior clustering. Given θ̂1, we need now to estimate
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3.4. Uncertainty sets induced by noise

Algorithm 3.1 Reweighted ℓ1 minimization

Inputs: Data {(xt, yt)}Nt=1

Initialization: Set the initial weights as: w
(0)
t = 1, t = 1, . . . , N and W (0) =

diag(w
(0)
1 , . . . , w

(0)
N ); Initialize a counter, r ← 0.

Repeat

1. Solve the convex problem
θ(r) = arg min

θ∈Rn

∥

∥W (r)φo(θ)
∥

∥

1

where φo(θ) is an ℓ2-normalized version of φ(θ) defined as

φo(θ) =

[

x̄⊤
1 θ̄

‖x̄1‖2
. . .

x̄⊤
N θ̄

‖x̄N‖2

]⊤

.

with x̄t and θ̄ defined as in (3.7).

2. Update the weights as

w
(r+1)
t =

1

|φo
t (θ(r))|+ ε

, t = 1, . . . , N

with φo
t (θ(r)) denoting the t-th entry of the vector φo(θ(r)).

3. r ← r + 1

Until r attains a pre-specified maximum number of iterations rmax or until convergence (for
example when ‖θ(r) − θ(r−1)‖2 < Tol, where r > 2 and Tol is a threshold).

Return θ(r)

the rest of the PVs. However we cannot proceed this time with the whole dataset because the

algorithm may still converge to the same PV θ1. Therefore it is preferable to remove the data

generated by that submodel. The indices of such data can be determined as

I(θ̂1) =
{

t ∈ {1, . . . , N} :
|x̄⊤

t
ˆ̄θ1|

‖x̄t‖2 · ‖ ˆ̄θ1‖2
≤ Thres

}

(3.22)

where it is assumed that Tresh ∈ [0, 1] is a tolerance threshold and ˆ̄θ1 = [1 θ̂⊤
1 ]⊤. From the

data indexed by I \ I(θ̂1), we estimate θ2. We can repeat this procedure until all the PVs are

identified. A pseudo-code of the method is summarized in Algorithm 3.2.

3.4 Uncertainty sets induced by noise

Consider now the more realistic situation where the dense noise sequence {et} in (3.2) is nonzero

but is bounded. In this case, the identification process is unlikely to return the true parameter

vectors irrespective of whether the conditions3 of Theorem 3.3 hold or not. Instead, each PV

estimate will come up with an associated uncertainty set. This is typically due to the fact that

the dense noise sequence is only known to be bounded.

3In the presence of noise the number of data points generated by a subsystem i can be defined as Ni = |Iε(θo
i )|.
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3.4. Uncertainty sets induced by noise

Algorithm 3.2 Identification of all PVs

1. Inputs: {(xt, yt)}Nt=1

2. Initialization: S ← ∅, J ← {1, . . . , N}

3. While |J | 6= 0

• Estimate a submodel by the reweighted ℓ1 minimization method (See Algorithm 3.1)
based on the data whose indices are contained in J

• Record the identified PV: S ← S ∪ {θ}
• Remove from J indices of data generated by the submodel obtained:

J ← J \ (J ∩ I(θ)),

with I(θ) defined as in Eq. (3.22).

4. EndWhile

5. Return S and s = |S|.

3.4.1 A theoretical characterization of the uncertainty

Let ε ≥ 0 be such that |et| ≤ ε for all t = 1, . . . , N . Assume that the conditions of Theorem 3.3

are satisfied. Denote with θ̂i the estimate (by the approach discussed earlier) of θo
i , i = 1, . . . , s

that is, θ̂i ∈ arg minθ∈Rn ‖yi − X⊤
i θ‖1 where yi and Xi are defined as in Section 3.3.2. Then

according to Corollary 2.2,
∥

∥θ̂i − θo
i

∥

∥

2
≤ riε (3.23)

where

ri =
2Ni

σ1,2(Xi)
[

1− N −∑i
k=1 Nk

T (ξ(Xi))

]

,

σ1,2(Xi) = inf
η 6=0

∥

∥

∥X⊤
i η
∥

∥

∥

1

‖η‖2
This means that for all i = 1, . . . , s, the estimate θ̂i lies in the ball centered at θo

i and having a

radius of riε. The size of these balls increases naturally with the magnitude of the noise. Note

that ri is decreasing as a function of the proportion Ni/
∑i−1

k=1 Nk of data points generated by the

subsystem i. Hence the parametric error relative to submodel i is all the smaller as the number

of data points pertaining to this mode is large. To avoid any ambiguity, one may require that

the s uncertainty balls defined around the different PVs do not intersect, a requirement which

translates into the condition ‖θo
i − θo

j‖2 > (ri + rj)ε for all pairs (i, j) ∈ S
2 with i 6= j. In other

words, the true PVs θo
i must be distinguishable enough.

A discussion on a noise-aware convex formulation. Problem (3.18) or its reweighted

versions as formulated in Algorithm 3.1 do not take the noise explicitly into account. An
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alternative to this would be to consider a convex relaxation of (3.13) in the form

min
(θ,ξ)∈Rn×RN

+

‖ξ‖1

s.t. |yt − x⊤
t θ| ≤ ε + ξt, t = 1, . . . , N.

(3.24)

Noting that this is equivalent to

min
θ∈Rn

ϕ(y⊤ − θ⊤X)

with ϕ defined by ϕ(A) =
∑N

t=1 max(0, |ai| − ε) for any matrix A = [a1 · · · aN ] ∈ R
1×N , we

can apply Theorem 2.3 to find a bound on the estimation error associated with (3.24). This

leads to a bound of the form (2.22). It then turns out that applying Corollary 2.2 leads to the

same bound as the one in (3.23).

Remark 3.1. The sparse optimization approach presented here for a MISO switched system

(3.2) can be extended to MIMO systems. We have discussed such an extension in, for example, [8]

for switched state-space models with measured state. Note that the analysis of Chapter 2 is readily

applicable to this estimator. In case the continuous state is not measured, the identification

problem is far more challenging.

3.5 Applications

In this section, we apply the proposed identification algorithm to a SISO SARX model composed

of three linear submodels of order two. The SARX model is defined by

yt = x⊤
t θo

σ(t) + et (3.25)

with xt = [yt−1 yt−2 ut−1 ut−2]⊤, σ(t) ∈ {1, 2, 3} and

θo
1 =

[−0.40 0.25 −0.15 0.08
]⊤

,

θo
2 =

[

1.55 −0.58 −2.10 0.96
]⊤

,

θo
3 =

[

1 −0.24 −0.65 0.30
]⊤

.

(3.26)

Using this switched model, we generate the identification data under the following conditions:

• The excitation input {ut} is a centered signal with normal distribution and variance unity.

• The noise {et} is a white Gaussian noise whose magnitude is such that the Signal to Noise

Ratio (SNR) is equal to 30 dB with respect to the output signal.

• The switching sequence {σ(t)} is uniformly distributed in {1, 2, 3}.

3.5.1 Performance of the (reweighted) ℓ1 relaxation

In a first experiment, we test the ability of the ℓ1-relaxation to exactly recover the solution of

the sparse optimization problem. With regard to this goal we can set the noise sequence {et}
to be identically null. We assign a fixed value to the sparsity of the error φ(θo

3) (expressed in

terms of the number ‖φ(θo
3)‖0 of nonzero components in φ(θo

3)) and then solve problem (3.18)

100 times on different independent simulations of input-output data of length N = 100 each.
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This procedure is repeated for different values of ‖φ(θo
3)‖0 reported in Table 3.1. In this table we

display for each given value of ‖φ(θo
3)‖0, the percentage of successes in attempting to compute the

solution of (3.9) by solving (3.18). Since the data (xt, yt), t = 1, . . . , N , is generated from (3.25)

with white noise as input and uniformly distributed discrete mode, it holds with overwhelming

probability that the columns of X are in general position. Consequently, it can be reasonably

assumed that νn(X) = n, i.e., νn(X) is equal to the dimension of xt. It can be observed from

the results of Table 3.1 that (3.18) effectively solves (3.9) successfully with a score of 100% over

100 trials (on randomly generated data) once ‖φ(θo
3)‖0 falls under 48.

∥

∥φ(θo
3)
∥

∥

0
58% 55% 53% 50% 48% 45%

# succ. 46% 76% 94% 99% 100% 100%

Table 3.1: Equivalence between ℓ0 and ℓ1 minimizations versus the sparsity of φ(θo
3). The ℓ0

norm of φ(θo
3) is expressed as a fraction of the nonzero entries over the total length of the vector

φ(θo
3).

Now we propose, in the same conditions as the first experiment, to approach the solution

of the sparse optimization problem (3.9) by instead running the reweighted ℓ1 optimization

technique described in Algorithm 3.1. The related results are presented in Table 3.2. It turns

out that the reweighted ℓ1 optimization approach significantly improves the ℓ1-relaxation. When

‖φ(θo
3)‖0 starts getting much larger than ‖φ(θo

1)‖0 and ‖φ(θo
2)‖0, Algorithm 3.1 may not keep

on converging towards θo
3 any longer. Instead, it is likely to converge towards θ1 or θ2 since

‖φ(θ1)‖0 and ‖φ(θ2)‖0 decrease as ‖φ(θo
3)‖0 increases.

∥

∥φ(θo
3)
∥

∥

0
58% 55% 53% 50% 48% 45%

# succ. 94% 100% 100% 100% 100% 100%

Table 3.2: Approximation of ℓ0 by reweighted ℓ1 minimization versus the sparsity of φ(θo
3). The

ℓ0 norm of φ(θo
3) is expressed as a fraction of the nonzero entries over the total length of the

vector φ(θo
3).

3.5.2 Identification of the PVs

The second objective of the numerical experiments is to test the statistical robustness of the

identification algorithm. For this purpose, we use 100 different independent realizations of the

input, the discrete state and the output noise (SNR=30 dB) to generate 100 data sequences of

length N = 600 each. The identification algorithm (Algorithm 2 indeed) is then run on each of

these different 100 data sequences. At each run, the first 300 points are used to identify a model

and the whole sequence of length 600 is used to validate the estimated model, i.e., to verify its

ability to reconstruct the system output from the true input and an estimated discrete state.

The performance is measured in term of the FIT criterion [38]

FIT =

(

1− ‖ŷ − y‖2
‖y − ȳ1N‖2

)

× 100% (3.27)

which measures the fitting error between the true output sequence y and the estimated model

output sequence ŷ. In this formula, ȳ stands for the mean of the true output sequence and 1N
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θ̂1 =







−0.3914 ± 0.0115
0.2452 ± 0.0106

−0.1666 ± 0.0201
0.0875 ± 0.0200







, θ̂2 =







1.5360 ± 0.0549
−0.5706 ± 0.0337
−2.0680 ± 0.1421
0.9434 ± 0.0728







, θ̂3 =







0.9909 ± 0.0128
−0.2365 ± 0.0124
−0.6727 ± 0.0263
0.3102 ± 0.0271







(a) – Average estimates over 100 independent runs of the identification algorithm: ε = 0.1,
Tol = 10−3, Thres = 0.05.

θ̂
LS
1 =







−0.3989 ± 0.0044
0.2490 ± 0.0042

−0.1511 ± 0.0107
0.0829 ± 0.0122







, θ̂
LS
2 =







1.5458 ± 0.0069
−0.5769 ± 0.0071
−2.0978 ± 0.0167
0.9543 ± 0.0174







, θ̂
LS
3 =







0.9974 ± 0.0060
−0.2391 ± 0.0062
−0.6493 ± 0.0129
0.2961 ± 0.0137







(b) – Least squares average estimates if the discrete state were known.

Table 3.3: Comparison of the proposed identification algorithm to standard least squares (if the
discrete state were known) over 100 independent runs: ε = 0.1, Tol = 10−3, Thres = 0.05.

is an N -dimensional vector with all entries equal to one.

For simplicity, it is assumed that the number of submodels is fed into the identification

algorithm.4 We present in Table 3.3 the average values of the estimated PVs together with their

standard deviations over 100 independent runs of the algorithm. Along with those results are

provided, for comparison purpose, the PVs’ estimates the standard least squares would yield if

the discrete mode sequence were fully known. By comparing the averaged estimates
{

θ̂i
}s

i=1
of

the PVs displayed in Table 3.3 to the true values
{

θi
}s

i=1
given in (3.26), we can see that the

proposed algorithm has effectively recovered the true PVs with a relatively good precision despite

the presence of noise. Moreover, by judging from the standard deviations, we are prompted to

conclude that the algorithm performs well. Of course, when the data is noise-free, the parameters

are exactly recovered by the algorithm.

Figure 3.2 represents the distribution of the FIT over 100 runs of the identification algorithm on

independent input-output data. This plot shows that most of the runs of the algorithm yield a

FIT greater than 90%. In fact 98% of the runs produce a FIT measure larger than 87% (which

means 100% if there were no noise in the data) on both identification and validation data. It

can therefore be concluded that 98% of the runs yield the correct PVs.

3.6 Conclusion

We have presented in this chapter a summary of our contributions to switched ARX system

identification. Before closing this part we make the following remarks:

• The discussion has started by a sparse optimization paradigm which is later shown to be

relaxable to a convex nonsmooth problem. The latter formulation in addition of being

easier to solve, enjoys some sparsity-inducing properties. An important feature of the

proposed method is that, contrary to the majority of hybrid system identification methods,

it can be theoretically analyzed. For example, under some worse-case conditions pertaining

to the proportion of data generated by each subsystem, it is proved that the parametric

estimation error is stable and bounded.

4Note that the structure of the identification algorithm allows for the estimation of the number of submodels
(see [1] for more details).
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Figure 3.2: Distribution of the FIT measure over the 100 independent runs of the algorithm.
ε = 0.1, Tol = 10−3, Thres = 0.05.

• Note that the number of subsystems need not be known a priori here. Also the discussed

sparse optimization approach can be extended to switched nonlinear systems in which each

subsystem is nonlinear and described as a weighted expansion over a dictionary of basis

functions, see e.g. [5].

• A weakness of the method however is that the (sufficient) correctness conditions might be

frequently violated in practice. Fortunately, different conclusive experiments on simulated

data tend to show that, thanks to the ℓ1-reweighted scheme (see Algorithm 3.1), the

performance of the method can be boosted far more beyond the established theoretical

conditions. Another problem is related to the one-by-one extraction of the PVs which

imposes that a threshold be defined for removing data at each step of the identification

process (see (3.22)). Without prior knowledge concerning the magnitude of the noise,

selecting this threshold may become increasingly challenging as the level of noise gets

higher. One way to overcome this problem would be to estimate all PVs simultaneously.

For this purpose, a procedure like the one described in Section 4.2.3 can be applied.
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Identification of piecewise affine

systems
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This chapter is mainly based on our papers [5, 6, 4].

4.1 General idea of nonlinear system modeling

A general approach for modeling smooth nonlinear systems consists in expanding the nonlinearity

over an appropriate dictionary of elementary (known) basis functions. The resulting model

structure has the advantage, from an estimation perspective, of being linear with respect to

the parameters. The estimation can then be efficiently addressed through solving a convex

optimization problem. For an overview on black-box nonlinear modeling we refer to the survey

papers [58, 35] and also to some more recent works such as e.g., [50, 61, 52]. Examples of

frequently used basis functions include polynomials, wavelets, radial basis functions (RBF),

kernel functions, linear functions.

4.1.1 Expansion of nonlinearity on basis functions

We first consider the problem of identifying a nonlinear system represented by a Nonlinear

AutoRegressive eXogenous (NARX) model of the form

yt = f(xt) + et (4.1)

48



4.1. General idea of nonlinear system modeling

with output yt ∈ R, input ut ∈ R
nu and regressor vector

xt =
[

yt−1 · · · yt−na u⊤
t u⊤

t−1 . . . u⊤
t−nb

]⊤
, (4.2)

where the integers na and nb are called the orders of the NARX model. The function f is assumed

to be a smooth nonlinear function defined on a bounded set X ⊂ R
n, with n = na + (nb + 1)nu;

it is completely unknown. {et} is a sequence of modeling errors or noise terms; {xt} is measured.

Note that from an estimation viewpoint, the vector xt need not be structured as in Eq. (4.2).

It can be unstructured or take a very arbitrary form. Therefore the discussions to follow apply

to static nonlinear regression as well.

Given a finite collection {(yt, xt)}Nt=1 of data generated by a system of the form (4.1), the

nonlinear system identification problem aims at finding a model which explains best the data.

Finding a solution to this problem typically requires performing two steps: (1) choose a model

structure which consists of a family of parametrized models of a certain form; (2) instantiate

the parameters of that model structure by optimizing a performance function defined on the

available measurements. In the conventional nonlinear approximation framework, the nonlinear

function f is approximated with a model of the form

f̂(x) =
s
∑

i=1

wiϕi(x) (4.3)

where the functions ϕi : Rn → R, i = 1, . . . , s, are some known basis functions and {wi}si=1 are

the associated parameters (also called weights). Although many choices are possible for the basis

functions1, a widely adopted choice in practice is the basis of Gaussian radial basis functions

(RBF) which are of the form

ϕi(x) = exp
(− ‖ci − x‖2

2σ2
i

)

(4.4)

with σi > 0 being the so-called widths of the RBFs and the ci are called their centers. A very

appealing feature of model (4.3) is that if the basis functions ϕi’s are assumed to be entirely

known, then f̂(x) depends linearly on the weights wi’s. This eases considerably the estimation

step. For example, it follows naturally from the linear structure that the associated least squares

criterion (on the difference between measured output and model prediction) is convex. However

since s is generally finite in practice, the approximation capability of the model (4.3) depends

strongly on the choice of the parameters {(ci, σi)}. The selection of these parameters is hard to

optimize since finding both the weights and the parameters of the basis functions is a nonconvex

program. One way to ease manual tuning, is to choose the σi’s to be all equal and use directly

the training regression data {xt}Nt=1 as the centers. As a consequence, we obtain in model (4.3)

as many basis functions as data samples with ϕt = k(xt, ·) and k(·, ·) denoting the Gaussian

kernel function [55] defined by k(x, y) = exp(−‖x− y‖22 /(2σ2)). The model (4.3) is then said to

be a non parametric model because its structure depends directly on the training dataset. By

letting

ϕ(x) = [ϕ1(x) · · · ϕN (x)]⊤ ∈ R
N (4.5)

and

θ = [w1 · · · wN ]⊤. (4.6)

1Other possibilities include polynomials, Fourier basis functions, general radial basis functions, wavelets, . . .
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4.1. General idea of nonlinear system modeling

one can interpret model (4.3) as a linear model obtained by lifting the original n-dimensional

regression space to a high (and possibly infinite) dimensional space. The mapping ϕ : Rn → R
N

is then the transformation map. In this space, the model is conceptually linear with respect to

the parameter vector θ to be estimated. This is more apparent by rewriting (4.1) as

yt = θ⊤ϕ(xt) + µ(xt) + et (4.7)

where µ(x) = f(x)− f̂(x) refers to model mismatch accounting for error incurred by the approx-

imation of f with (4.3). It is to be noticed that some of the basis components of the model (4.7)

may actually be redundant or irrelevant. For this reason one can require that the weight vector

θ being estimated be as sparse as possible i.e., θ must have most of its entries equal to zero.

This sparsity requirement on the weights θ presents the advantage of reducing the complexity

of the identified model while enhancing its generalization capacity.

4.1.2 Piecewise affine models for nonlinear systems

The general nonlinear model (4.3) can achieve great accuracy if its parameters are appropriately

selected. This comes however at the price of some structural complexity as the number of basis

functions can be large. As a result the model can be difficult to exploit in practice especially for

control design. A simpler model can be obtained by considering the special case where

• the basis functions {ϕi} are linear/affine with respect to x and are defined by ϕi(x) =

a⊤
i x + bi with (ai, bi) ∈ R

n × R

• the weights wi : X → {0, 1} are functions of x which take binary values

• for any x ∈X ,
∑s

i=1 wi(x) = 1 that is, only one weight is nonzero for a given x

• the sets {Xi}si=1 defined by Xi = {x ∈X : wi(x) = 1} form a complete partition of X .

Under the above listed conditions, Eq. (4.3) reads as

f̂(x) =
s
∑

i=1

wi(x)(a⊤
i x + bi) = a⊤

j x + bj if wj(x) = 1 (4.8)

Hence with the above configuration, the nonlinear system is modeled by a finite number of

linear/affine submodels, each of which is related to a region of the system operating space. For

illustration purpose, an example of such a piecewise affine modeling of a static sinus function

is depicted in Figure 4.1. The main advantage in doing so is that linear/affine models are

simpler than general nonlinear models and there exists an abundant theory for controlling and

analyzing them. One can therefore reasonably hope for a somewhat easier extension of the

available expertise in linear system theory to nonlinear systems through the PWA modeling.

Indeed it can be shown via simple arguments from differential calculus that any smooth

nonlinear system can be approximated to an arbitrary precision using a PWA map. This property

is known as a universal approximation capability [60, 17] of PWA systems.

To see this assume that the nonlinear function f in (4.1) is continuously differentiable (f ∈ C1).

Consider s nominal points {ci}si=1 in X . Then the first order Taylor series expansion of f in

the neighborhood of ci is given as follows

f(x) = f(ci) + (x− ci)
⊤∇xf(ci) + ε(ci, x), (4.9)
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Figure 4.1: Illustration of PWA approximation of a static nonlinear function on the interval
[−π, π] of R. This example is generated with the HIT toolbox [27].

where ∇xf(ci) is the gradient of f at ci and ε(ci, x) accounts for the higher order terms and sat-

isfies limx→ci
ε(ci, x) = 0. When x lies in a neighboring ball B(ci, δi) = {x ∈X : ‖x− ci‖ ≤ δi}

of ci (with δi > 0 small), the nonlinear term ε(ci, x) can be considered negligible so that f can

be approximated by the affine part of (4.9). Following this idea, X can be decomposed into a

set of a large enough number s of regions B(ci, δi), i = 1, . . . , s on which an affine approximation

holds. Then, by denoting

ai = ∇f(ci) and bi = f(ci)− c⊤
i ∇f(ci), (4.10)

the function f̂ defined by

f̂(x) = a⊤
i x + bi if x ∈ B(ci, δi) (4.11)

approaches f . As such the function f̂ is not well defined as the set of balls B(ci, δi), i = 1, . . . , s,

is not necessarily a disjoint cover of X . To overcome this problem we can redefine δi as a

function of x in the form δi(x) = minj=1,...,s:j 6=i ‖x− cj‖2 so that the euclidean ball B(ci, δi)

becomes

Xi =
{

x ∈X : ∀j = 1, . . . , s, ‖x− ci‖2 ≤ ‖x− cj‖2
}

. (4.12)

With this rearrangement, we have ∪s
i=1Xi = X and int(Xi)∩ int(Xj) = ∅∀i 6= j, where int(Xi)

refers to the interior of Xi. One can easily recognize that Xi corresponds indeed to a polyhedron

(which is more common in the definition of PWA models [28]) of the form

Xi = {x ∈X : Hix � hi} , (4.13)

where

Hi =
[

c1 − ci · · · ci−1 − ci ci+1 − ci · · · cs − ci

]⊤

hi =
[

β1,i · · · βi−1,i βi+1,i · · · βs,i

]⊤
,

(4.14)
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4.1. General idea of nonlinear system modeling

with the βj,i being defined as βj,i =
1

2
(c⊤

j cj − c⊤
i ci). The so-defined partition {Xi}si=1 is called a

Voronoi partition associated with the centers (or seeds) {ci}si=1. An example of such a partition

for a two-dimensional subset is depicted in Figure 4.2. Then f̂ is modified to be

f̂(x) = θ⊤
i

[

x

1

]

if x ∈Xi. (4.15)

Thus, Eq. (4.15) represents a PWA approximation of the nonlinear continuous system defined

in (4.1). Note that in the definition (4.15), ambiguity may still occur on the boundaries of Xj .

This issue can be avoided by arbitrarily assigning the points that lie on the common boundaries

of any two different sets Xi and Xj , to the one with the smallest index.

Theoretical approximation error. It can be shown that the approximation error induced

by the approximation of a nonlinear smooth function is bounded. To see this assume that X

is a compact set. Then by assuming further that f ∈ C2 and denoting with ∇2f(x) ∈ R
n×n the

Hessian matrix of f at any point x ∈X ,
∥

∥∇2f(x)
∥

∥

2 is upper bounded over X . It follows from

the Taylor theorem (for multivariable functions) that

∣

∣

∣f(x)− f(c)−∇f(c)⊤(x− c)
∣

∣

∣ ≤M ‖x− c‖22 ∀ x ∈X , (4.16)

where

M = sup
x∈X

∥

∥

∥∇2f(x)⊙W
∥

∥

∥

2
. (4.17)

Here, ‖ · ‖2 stands for matrix 2-norm (also called the spectral norm), ⊙ refers to the Hadamard

product (elementwise matrix product) and W ∈ R
n×n is a constant matrix defined by Wij = 1

if i 6= j and Wij = 1/2 if i = j. In a particular cell Xi, the inequality (4.16) becomes

∣

∣

∣f(x)− a⊤
i x− bi

∣

∣

∣ ≤Mir
2
i ∀x ∈Xi

with ri = maxx∈Xi
‖x− ci‖2 and Mi defined as in (4.17) with X replaced by the euclidean ball

B(ci, ri). Mi is an intrinsic characteristic of the function f which reflects its smoothness on the

cell Xi. As for the number ri, it characterizes the size of Xi as a neighborhood of ci.

The discussion of this section has shown that, through some modeling abstraction, a quite

large class of smooth nonlinear systems can be viewed as PWA systems. It can indeed be

shown that a much larger class of nonlinear systems including those where the function f is

discontinuous can be represented as PWA systems. In the next section we will formally present

the class of (strictly) piecewise affine ARX systems.

4.1.3 Piecewise Affine Systems

A PieceWise Affine ARX system is a dynamical system described by an equation of the form

yt = fPWA(xt) + et (4.18)

where yt ∈ R is the output of the system, et is accounting for potential noise or model mismatch

and xt ∈ R
n is the regressor vector defined as in (4.2). The map fPWA : X → R is a piecewise
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Figure 4.2: Example of Voronoi-type partition of [0 1]× [0 1] ⊂ R
2.

affine function defined by

fPWA(x) =















a⊤
1 x + b1 if x ∈X1

...
...

a⊤
s x + bs if x ∈Xs

(4.19)

where the {Xi}si=1 are convex polyhedra which form a partition of the regression space X ⊂ R
n

i.e., X = ∪s
i=1Xi, int(Xi) ∩ int(Xj) = ∅ for i 6= j. As a polyhedron, each Xi is defined by

Xi = {x ∈ R
n : Hix � hi} (4.20)

for some Hi ∈ R
di×n and hi ∈ R

di with di denoting the number of hyperplanes delimiting the

polyhedron and � standing for component-wise inequality. For convenience, we may write

yt = x̃⊤
t θo

σ(t) + et (4.21)

with x̃t = [x⊤
t 1]⊤, θo

i = [a⊤
i bi]

⊤ and σ(t) being the discrete state defined by σ(t) = i ∈
{1, . . . , s} if xt ∈Xi.

On the difference between PWARX and SARX models. It is worth observing the

following from the definition of the PWA map:

(i) The PVs θi are not necessarily all distinct. An example of situation where two PVs are

equal is represented in Figure 4.3. In this case, the pairs (θ1, X1) and (θ4, X4) of the PWA

map differ only in their validity regions.

(ii) It may happen that some pairs (xt, yt) fit more than one different affine submodels. That

is, it is possible (if noise is assumed nonexistent) to have yt = θ⊤
i x̃t = θ⊤

j x̃t, while xt ∈Xi,

xt /∈Xj and θi 6= θj .

If one disregards the correspondence between the regions and the affine subsystems, then a PWA

system is structurally equivalent to a switched system where, by definition, the nature of the

switched mechanism is unspecified. One tiny difference is that case (ii) above can occur in a
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Figure 4.3: One-dimensional example of a PWA map where two PVs are equal.

switched system but not case (i). However if one concentrates only on the identification of the

PVs, a method which is designed for switched systems is readily applicable to PWA as well. In

the latter case, information about local linearity can be exploited in order to ease the estimation

process.

4.2 Identification of PWA systems

Given observations {(yt, xt)}Nt=1 generated by a PWA model of the form (4.18), with xt defined

as in (4.2), we are interested here in estimating the parameter vectors {θi}si=1 together with

the associated validity regions {Xi}si=1. Note that estimation of the regions boils down to the

determination of separating hyperplanes once the data are correctly partitioned. This can be

efficiently handled via many quite standard SVM-based classification tools [63, 55, 12]. Therefore

we will not treat explicitly the region estimation problem here.

To proceed with the estimation of the PVs, we will assume that the orders na and nb are finite,

equal for all submodels and known a priori. However the number of submodels may be unknown.

It is further assumed that each individual affine submodel is minimal in the ordinary sense.

The major challenge in inferring PWA models from data lies in the fact that the switching

law defined by the partition {Xi}si=1 is not available. For this reason, the classical idea for

tackling the PWA system identification problem is to start by partitioning the data according to

their most presumably generating submodels. This is achieved in general through data clustering

algorithms which rely on the principle that two close regressors (in the sense of the euclidean

norm) are likely to have been generated by the same affine submodel [28, 41]. Given such

a partition, standard linear identification techniques such as the least squares method can be

applied to recover each of the constituent submodels of (4.18). One problem however in that

conventional approach is that data clustering algorithms are rarely guaranteed to be optimal. In

effect, most of those algorithms iteratively re-assign the data to the different submodels, starting

from a certain initial guess. They are hence very sensitive to initialization.
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4.2. Identification of PWA systems

4.2.1 A first introductory idea: overparameterization

One way to overcome the combinatorial nature of the PWA regression problem is by employing

overparameterization. This consists in indexing the PVs in (4.21) with time instead of the

unknown discrete mode. With this idea in mind, the problem becomes that of searching for

as many PVs as data points while trying to reduce the number of the identified PVs. The

reduction can be achieved either a posteriori through a second-stage clustering procedure [28]

or simultaneously as the estimation step through a sparsity-inducing regularization [43]. We

discuss here a special formulation of the overparameterization technique given by

min
θ1,...,θN

N
∑

t=1

t
∑

k=1

wt,kdt,k (4.22)

with

dt,k =
∣

∣yk − θ⊤
t x̃k

∣

∣+
∣

∣yt − θ⊤
k x̃t

∣

∣+ γ
∥

∥θt − θk

∥

∥

2
(4.23)

and

wt,k = exp
[− 1

σ2
x

‖xt − xk‖22 −
1

σ2
y

‖yt − yk‖22
]

. (4.24)

The rationale behind this formulation is as follows. For each pair (xt, xk) of data points, we

would like to find a pair of PVs θk and θt to fit (as far as possible) the data points (x̃t, yt)

and (x̃k, yk) respectively in such a way that both PVs are close whenever xt and xk are close

in the sense of the euclidean norm. This last requirement justifies the presence of the quantity

‖θt − θk‖2 in the cost function. The fitting error is measured here in terms of the ℓ1-norm

which is known to offer a robust minimization capacity (see the earlier chapters 2 and 3) with

respect to potential mismatches. The weight wt,k ∈ [0, 1] attached to the term dt,k is intended

for reinforcing the fact that θt and θk must be all the closer as xt and xk are spatially close.

The parameters σ2
x and σ2

y appearing in the expression of wt,k can be empirically chosen as the

average of the pairwise squared-distances, i.e.,

σ2
x =

2

N(N − 1)

N
∑

t=1

t
∑

k=1

‖xt − xk‖22 ,

σ2
y =

2

N(N − 1)

N
∑

t=1

t
∑

k=1

‖yt − yk‖22 .

When the data are noise-free, σ2
x and σ2

y can be chosen such that the solution {θ1, . . . , θN} to

problem (4.22) enjoys the ideal property that θk = θt whenever σ(k) = σ(t). This property can

be enhanced by increasing the regularization parameter γ in (4.23).

Observing that the optimization problem (4.22) is convex, it can be efficiently solved by

existing numerical tools [16]. A sequence {θt}Nt=1 of PVs can hence be computed from the data.

Ideally, the PVs that correspond to data points generated by the same submodel of (4.18) are

expected to be equal. However strict equality may not hold between such vectors if for example

the training data are contaminated by noise. In order to reduce the number of PVs, one can

cluster the set of identified PVs by using for example the K-means algorithm [26]. However,

as already mentioned above, convergence properties of such clustering algorithms are not well

established.
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Example 4.1. For illustration purpose we use the following numerical example [11]

yt =



















θ⊤
1 x̃t + et, if [4 −1 10]x̃t < 0

θ⊤
2 x̃t + et, if

[

−4 1 10

5 1 −6

]

x̃t � 0

θ⊤
3 x̃t + et, if [−5 −1 6]x̃t < 0

(4.25)

with x̃t = [yt−1 ut−1 1]⊤ and the PVs are given by

θ1 =







−0.4

1.0

1.5






, θ2 =







0.5

−1.0

−0.5






, θ3 =







−0.3

0.5

−1.7






.

Solving (4.22) respectively with noise-free and noisy (SNR=30 dB) data yield the sequences {θt}
depicted in Figure 4.4. The outcome of this experiment is that when the data are completely

noise-free, such ideal result as θt ∈ {θo
1, . . . , θo

s} can be reasonably expected. In the presence

of noise however, the story is slightly different, hence prompting the necessity of clustering the

estimated PVs.

4.2.2 The nonsmooth optimization approach

The method presented above has the inconvenience of necessitating a subsequent clustering step

after a large number of affine submodels have been identified first. In this section, a slightly

different approach is taken. While this approach keeps the main basic features of the one

developed in Subsection 4.2.1, it provides directly a number of submodels that is as small as

possible. For clarity of presentation it is perhaps better to focus on the estimation of a first

single2 PV from the entire mixed data set.

Based on the considerations of Chapter 3 and the well-known sparsity-promoting property of

the ℓ1-norm, one can search for one of the θis by minimizing the cost function

JSARX(θ) =
N
∑

t=1

∣

∣yt − θ⊤x̃t

∣

∣. (4.26)

This solution derived in [1] applies to general switched systems where no additional information

is available about the nature of the switching mechanism. Therefore this solution is, in principle,

directly applicable to PWA systems. However since the model is affine, the effectiveness of a

direct minimization of (4.26) can be questioned in the light of Corollary 2.3. Nevertheless we

can still exploit the sparse optimization paradigm together with the continuity of the map fPWA

to design an identifier. By the continuity and the local linearity (affine) of fPWA we are prompt

to consider that two close regressors are very likely to pertain to the same affine subsystem.

Taking advantage of this, we introduce the following cost function

Jpwa(θ) =
N
∑

t=1

t
∑

k=1

wt,k

(|yk − θ⊤x̃k|+ |yt − θ⊤x̃t|
)

(4.27)

2Similarly as in Chapter 3, the remaining PVs can be obtained by repeating the estimation process over a
modified data set where the data pairs pertaining to the firstly identified PVs have been removed.
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in which the weights wt,k are defined as in (4.24). This last objective function resembles the one

in (4.22) but with the fondamental difference that it can, in contrast to (4.22), provide directly a

single θ in {θo
1, . . . , θo

s} without requiring parameter clustering. To further enhance sparsity, we

can call upon the type of iterative reweighting procedure described in Section 2.5. The iterative

scheme consists in generating a a finite sequence of parameter vectors according to

θ(r) = arg min
θ∈Rn+1

J (r)
pwa(θ) (4.28)

for an iteration index r ranging in 0, . . . , rmax with

J (r)
pwa(θ) =

N
∑

t=1

t
∑

k=1

wt,k

(

α
(r)
k |yk − θ⊤x̃k|+ α

(r)
t |yt − θ⊤x̃t|

)

(4.29)

and
{

α
(r)
t

}rmax

r=1
being a sequence defined by α

(0)
t = 1/N for all t,























α
(r)
t =

ξ
(r)
t

∑N
t=1 ξ

(r)
t

, if r ≥ 1,

ξ
(r)
t =

1

|yt − x̃⊤
t θ(r−1)|+ δ

Here, the number δ > 0 is a small positive number intended essentially here for preventing

division by zero.

4.2.3 An iterative sparsity-promoting scheme

In this section we consider a PWARX system where the partition of the regression space has

the particular form described in (4.13)-(4.14). This is called the Voronoi partition. If we adopt

such a partition for the regression space X , the PWA identification problem reduces to that of

identifying the centers {ci}si=1 and the PVs {θi}si=1. Note that some of the approaches discussed

earlier are still applicable in this scenario: for example, overparameterization, combined k-

means/k-subspaces, one-by-one estimation based on sparsity-inducing optimization. A special

implementation of the latter is discussed here for PWA identification. But it is worth noting

that the principle of this scheme is applicable to the general scope of the sparse optimization

approach for hybrid system identification (including the one presented in Chapter 3 for switched

systems).

The goal is to address some shortcomings of the one-by-one estimation strategy which was

implemented for example by Algorithm 3.2. Recall that in the sparse optimization approach,

the parameter vectors are not estimated all at once; instead they are incrementally identified

one after another through an ℓ1-norm convex relaxation technique. After each parameter vector

(PV) is identified, the data points pertaining to the corresponding submodel need to be removed

before proceeding with the identification of the next PV. The data removal steps require however

the definition of appropriate thresholds, the choice of which gets increasingly delicate as the level

of noise becomes high. We discuss an efficient implementation of the sparsity ideas of [1] (see

also Chapter 3) such that all the PVs can be identified all at once. Being able to identify

simultaneously the parameter vectors has an essential advantage. It allows us to get rid of the

necessity to extract the PVs in an incremental manner and thereby dropping the requirement
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4.2. Identification of PWA systems

of thresholds for data elimination. By so doing however, the method looses it convex feature.

The main device for estimating all the PVs simultaneously is the introduction of some implicit

discriminatory weights on the fitting errors involved in the objective function to be minimized.

Intuition of the method. Inspired by the results of Chapter 3 (which formulates the

identification of a single PV), one could consider formulating the objective function

h
( {(θi, ci)}si=1

)

=
s
∑

i=1

N
∑

t=1

rt(θi, ci). (4.30)

with rt : Rn+1 × R
n → R+ is a time indexed function defined by

rt(θ, c) = |yt − θ⊤x̃t|+ γ ‖c− xt‖2 .

However, minimizing simply the convex function h will not yield the searched parameter vectors

{θo
i , co

i }. The reason for this is as follows.

Proposition 4.1. Let {θ⋆
i , c⋆

i }si=1 be a minimizer of the objective function in (4.30). Then it

holds that
N
∑

t=1

rt(θ
⋆
i , c⋆

i ) = min
θ,c

N
∑

t=1

rt(θ, c) ∀i ∈ S. (4.31)

Proof. Suppose, for contradiction purpose, that the statement (4.31) is not true. Consider a

pair (θ⋆, c⋆) in arg min(θ,c)

∑N
t=1 rt(θ, c). Then there is at least one pair (θ⋆

q , c⋆
q), q ∈ S, such that

∑N
t=1 rt(θ

⋆, c⋆) <
∑N

t=1 rt(θ
⋆
q , c⋆

q). It follows that

h((θ⋆, c⋆), . . . , (θ⋆, c⋆)) = s
N
∑

t=1

rt(θ
⋆, c⋆) < h

( {(θ⋆
i , c⋆

i )}si=1

)

.

The first term on the right hand side refers to the value taken by h when all pairs (θi, ci) are set

equal to (θ⋆, c⋆). This contradicts the assumption that {(θ⋆
i , c⋆

i )}si=1 is a minimizer of (4.30). In

conclusion, (4.31) holds as claimed.

The proposition says that any minimizing sequence {(θi, ci)}si=1 of (4.30) is such that (θi, ci) ∈
arg min(θ,c)

∑N
t=1 rt(θ, c) for all i = 1, . . . , s. This suggests that there is very little hope of

estimating correctly the parameter vectors and the regions centers by minimizing (4.30). For

example if arg min(θ,c)

∑N
t=1 rt(θ, c) = {(θ⋆, c⋆)}, then any minimizing sequence {(θi, ci)}si=1 of

h is such that (θi, ci) = (θ⋆, c⋆) for all i = 1, . . . , s. As a result, it is impossible to obtain s

distinct pairs by minimizing (4.30). It is therefore necessary to impose an additional constraint

on the allowable solution set if we want the solution to coincide with {(θo
i , co

i )}si=1. To this

end, we will introduce a discriminative weighting strategy. The idea is to assign some weights

to the different terms of the objective function (4.30). By doing so, we introduce an implicit

discriminatory treatment of the data points i.e., the data samples are no longer fitted similarly

to the parameter vectors.

Derivation of the algorithm. To proceed, consider a weighted version of (4.30) in the form

s
∑

i=1

N
∑

t=1

wi(t)rt(θi, ci).
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As an initialization step, let us minimize this cost by considering that wj(t) = 1 for all (t, j) ∈
I× S. Denote with

{

(θ
(1)
i , c

(1)
i )
}s

i=1
the resulting solution. Introduce the notation

I
(1)
i =

{

t ∈ I : i ∈ arg min
j=1,...,s

rt(θ
(1)
j , c

(1)
j )
}

(4.32)

for the collection of all time indices t for which rt(θ
(1)
i , c

(1)
i ) is minimum among all others. Let

X
I

(1)
i

be a matrix formed by the regressors
{

x(t) : t ∈ I
(1)
i

}

; similarly, let y
I

(1)
i

be a vector formed

with the outputs indexed by I
(1)
i . The collection

{

I
(1)
i

}

defines a partition of the data set. Using

this partition the prior estimates are updated as follows:

θ
(1)
i ← arg min

θ∈Rn

[

∥

∥

∥θ − θ
(1)
i

∥

∥

∥

2

2
+ η

∥

∥y
I

(1)
i

−X⊤

I
(1)
i

θ
∥

∥

2

2

]

c
(1)
i ← arg min

c∈Rn

[

∥

∥

∥c− c
(1)
i

∥

∥

∥

2

2
+ η

∑

t∈I
(1)
i

‖c− xt‖22
]

.
(4.33)

where η > 0.

Now we need to update the weights before performing the next iteration. From the values
{

(θ
(1)
i , c

(1)
i )
}

, define for any t ∈ I, j ∈ S, the "fitting error" rt(θ
(1)
j , c

(1)
j ) = |yt − x̃⊤

t θ
(1)
j | +

η
∥

∥

∥c
(1)
j − xt

∥

∥

∥

2
, and the weights

w
(1)
j (t) =

∏

i6=j rt(θ
(1)
i , c

(1)
i )

[rt(θ
(1)
j , c

(1)
j )]s−1 + δ

(4.34)

with δ > 0 a small number destined for preventing division by 0. The so-defined w
(1)
j (t) will be

large when rt(θ
(1)
j , c

(1)
j ) is small compared to all the other errors rt(θ

(1)
i , c

(1)
i ), i 6= j. A large fitting

error rt(θ
(1)
j , c

(1)
j ) on the contrary will indicate a discrepancy between the available estimate

(θ
(1)
j , c

(1)
j ) and the data pair (xt, yt). This results in a small weight w

(1)
j (t) being assigned to the

sample (xt, yt). Therefore, minimizing the weighted cost
∑s

i=1

∑N
t=1 w

(1)
i (t)rt(θi, ci) is expected

to decrease further the smallest error rt(θj , cj) in the next iteration.

The overall algorithm proceeds as follows. Let w
(0)
j (t) = 1 for any (t, j) ∈ I × S, define a small

number δ0 > 0. Then apply for any iteration number k ≥ 0,

{

(θ
(k+1)
i , c

(k+1)
i )

}s

i=1
∈ arg min

(θi,ci)∈Rn+1×Rn

i=1,...,s

h(k)( {(θi, ci)}si=1

)

(4.35)

θ
(k+1)
i ← (

I + ηX
I

(k+1)
i

X⊤

I
(k+1)
i

)−1(
θ

(k+1)
i + ηX

I
(k+1)
i

y
I

(k+1)
i

)

, i ∈ S (4.36)

c
(k+1)
i ← 1

1 + η|I(k+1)
i |

(

c
(k+1)
i + η

∑

k∈I
(k+1)
i

xt
)

, i ∈ S (4.37)

until some stopping condition is satisfied. Such a condition can be of the form

∥

∥

∥χ(k+1) − χ(k)
∥

∥

∥

2
< ǫ
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with χ(k) = col(θ
(k)
1 , . . . , θ

(k)
s , c

(k)
1 , . . . , c

(k)
s ) being a vector formed by vectorizing all parameters.

In (4.36)-(4.37) the set I
(k+1)
i is defined as in (4.32) from

{

θ
(k+1)
i , c

(k+1)
i

}s

i=1
. Concerning the

function h(k) in (4.35), it is a weighted version of h in (4.30) defined by

h(k)( {(θi, ci)}si=1

)

=
s
∑

i=1

N
∑

t=1

w
(k)
i (t)rt(θi, ci),

where {w(k)
j (t)} form a sequence of weights which is updated as

w
(k+1)
j (t) =

qj(t)
∑s

j=1 qj(t)
, j ∈ S, t ∈ I, (4.38)

qj(t) =

∏

i6=j rt(θ
(k+1)
i , c

(k+1)
i )

[rt(θ
(k+1)
j , c

(k+1)
j )]s−1 + δ(k)

, j ∈ S, t ∈ I, (4.39)

δ(k+1) = αδ(k), 0 < α ≤ 1. (4.40)

After the algorithm is completed, one can consider refining the estimates by performing s least

squares estimations based on the last partitioning
{

I
(k+1)
i

}s

i=1
of the data set.

To test the algorithm (4.35)-(4.37), we consider two examples: two static functions and a

nonlinear dynamic system.

Example 4.2. Applying the method to a set of data generated by the two static systems defined

by

yt = sin(ut) + et (4.41)

yt = −3/2u2
t − 1/2u3

t + et, (4.42)

yields the results depicted in Figure 4.5. It can be seen that the algorithm returns estimates of

reasonable accuracy. Note that the performance of the estimated PWA model can be much better

if there were no noise in the identification data and if the number of submodels is increased. See

for example Figure 4.6 for an illustration.

Example 4.3. The second example concerns the PWA modeling of a nonlinear dynamical

system defined by

yt =
sin(0.1ut−1)(yt−1 + 3)yt−1yt−2

1 + y2
t−1 + y2

t−2

+ ut−1 + et. (4.43)

The excitation signal is chosen to be the multisine signal represented in Figure 4.7; the noise

sequence {et} is generated as the realization of a white Gaussian noise so as to achieve an SNR

of 20 dB. Applying the algorithm (4.35)-(4.37) to N = 600 samples, we can estimate a PWA

model with the Voronoi type of partition. The results displayed in Figure 4.8 seem to yield a

"good" fit as the number of submodels goes up although the increase rate of the fit slows down

considerably after the second submodel.

4.3 Adaptive identification of PWA models

We now discuss a simple adaptive scheme for the estimation of PWA models with the Voronoi

type of partition. We present here a simple recursive approach. The data are assumed to be

61



4.3. Adaptive identification of PWA models

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

(a) 3 submodels

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

(b) 8 submodels

-4 -2 0 2 4
-60

-40

-20

0

20

x

y

(c) 3 submodels

-4 -2 0 2 4
-60

-50

-40

-30

-20

-10

0

10

x

y

(d) 5 submodels

Figure 4.5: PWA modeling of static nonlinear functions from noisy data with the proportion of
noise being such that the SNR is equal to 20 dB: noisy data (black dots); true nonlinear function
(red solid line); PWA function (blue stars). The two top subfigures are related to system (4.41)
while the two other pertain to system (4.42).
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(b) 10 submodels

Figure 4.6: PWA modeling of static nonlinear functions from noise-free data: observations (black
dots); true nonlinear function (red solid line); PWA function (blue stars). The crosses indicate
the positions of the centers {ci}.
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Figure 4.7: Excitation signal for the identification of the nonlinear system (4.43).

sequentially acquired. Then, starting from some initial values, we proceed alternately to data

clustering and parameter update on-line. At a given time, the discrete state is inferred based on

the information available up to that time and the PVs are accordingly refined via, for example,

recursive least squares. In comparison with batch mode methods, it is fair to say that our

method, though possibly less effective than some of them, makes it easier to effectively handle

higher dimensional data or larger amounts of data. Furthermore, it can be used for on-line

identification of hybrid systems.

To proceed with the description of the method, let us assume that the regressors {xt}σ(t)=i

and the noise sequence {et}σ(t)=i pertaining to each submodel i have Gaussian distributions

N (ci, Λi) and N (0, λe
i ) respectively. The parameters of the distributions are updated thanks

to the empirical formula for expected value while the submodels’ parameters are updated via

recursive least squares. More precisely, if c(t− 1) and Λ(t− 1) designate the prior values for the

center and the covariance matrix respectively, then we compute c(t) and Λ(t) when xt becomes
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(a) PWA with 1 submodel: FIT=71.30
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(b) PWA with 2 submodels: FIT=77.60

Figure 4.8: PWA modeling of a nonlinear system: comparison of system and model outputs.
The model is identified with 60% of the data and validation is done on the entire data set.

available as follows

c(t) = arg min
c∈Rn

[

γ ‖c− c(t− 1)‖22 + (1− γ) ‖c− xt‖22
]

Λ(t) = γΛ(t− 1) + (1− γ)(xt − c(t))(xt − c(t))⊤

where γ ∈ [0, 1] is a forgetting factor. In a quite symmetric way, by letting θ(t− 1) denote the

prior value of the parameter vector, θ(t) is obtained via a proximal operator

θ(t) = arg min
θ∈Rn

[

γ
(

θ − θ(t− 1)
)⊤

P −1(t− 1)
(

θ − θ(t− 1)
)

+ (yt − θ⊤x̃t)
2
]

P −1(t) = γP −1(t− 1) + xtx
⊤
t .

Here, P −1(t) can be viewed as a kind of correlation matrix of the sequence {xt}.
Let (ci(t), Λi(t)) and λe

i (t)) denote the estimates of the parameters of the distributions (intro-

duced above) obtained empirically from observations up to time t. Likewise, denote with θi(t)

the estimate of the PV θo
i at time t. Then the recursive identification algorithm consists of the

following steps:

• At the initial time t = 0, generate vectors {ci(0), θi(0)} at random; select the matrices
{

Λ−1
i (0), Pi(0)

}

to be proportional to the identity matrix. Finally, set λe
i (0) to be a small

positive scalar.

• At each subsequent time t = 1, 2, . . ., find an estimate of the discrete state as

σ̂(t) = arg min
i=1,...,s

Ji(t),

where

Ji(t) =
(

ci(t− 1)− xt
)⊤

Λ−1
i (t)

(

ci(t− 1)− xt
)

+ λe
i (t)−1

(

yt − θi(t− 1)⊤x̃t

)2
.

Then update the variables as follows:
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4.3. Adaptive identification of PWA models

– center cσ̂(t) and associated covariance Λ−1
σ̂(t):

cσ̂(t)(t) = γcσ̂(t)(t− 1) + (1− γ)xt (4.44)

vσ̂(t)(t) =
√

γ(xt − cσ̂(t)(t− 1)) (4.45)

Λ−1
σ̂(t)(t) = γ−1

[

In −
Λ−1

σ̂(t)(t− 1)vσ̂(t)(t)vσ̂(t)(t)
⊤

γ + vσ̂(t)(t)⊤Λ−1
σ̂(t)(t− 1)vσ̂(t)(t)

]

Λ−1
σ̂(t)(t− 1) (4.46)

ci(t) = ci(t− 1), Λ−1
i (t) = Λ−1

i (t− 1) ∀i ∈ {1, . . . , s} , i 6= σ̂(t) (4.47)

– output noise variance λe
σ̂(t):

εσ̂(t)(t|t− 1) = yt − θ⊤
σ̂(t)(t− 1)x̃t (4.48)

λe
σ̂(t)(t) = γλe

σ̂(t)(t− 1) + (1− γ)ε2
σ̂(t)(t|t− 1) (4.49)

λe
i (t) = λe

i (t− 1) ∀i ∈ {1, . . . , s} , i 6= σ̂(t) (4.50)

– and (θσ̂(t), Pσ̂(t)) by recursive least squares:

q(t) =
Pσ̂(t)(t− 1)x̃t

γ + x̃⊤
t Pσ̂(t)(t− 1)x̃t

(4.51)

θσ̂(t)(t) = θσ̂(t)(t− 1) + q(t)εσ̂(t)(t|t− 1) (4.52)

Pσ̂(t)(t) = γ−1
(

In − q(t)x̃⊤
t

)

Pσ̂(t)(t− 1) (4.53)

θi(t) = θi(t− 1), Pi(t) = Pi(t− 1) ∀i ∈ {1, . . . , s} , i 6= σ̂(t) (4.54)

In the interest of computational load one can consider simplifying the algorithm by forcing for

example Λj(t) to the identity matrix and by dropping the parameters related to the distribu-

tions of the output noise {et}. More precisely, removing Eqs (4.45)-(4.50) yields the algorithm

described in our paper [4]. Interested readers are referred to this latter paper for an application

of the recursive identifier (4.44)-(4.54) to the modeling of an open channel system.

Let us close this section by giving a few comments on the estimation method:

• The proposed recursive algorithm has the property of being able to operate online while

allowing for the simultaneous estimation of the validity regions and the affine submodels

by the same procedure. Still, it has a very low complexity at each update (about O(n2)).

• The true number of submodels need not be known in advance. Given an upper bound

s̄ ≪ N on the number s of submodels, the algorithm is able to operate with s̄ initially

presumed submodels and determine s in the end, as the number of modes to which a

significant number of data have been affected. After the algorithm converges, the s̄ − s

unnecessary submodels should stop being assigned data so that in the end, only a negligible

amount of data have been affected to those submodels. They can therefore be recognized

and eliminated.

• Note that the concept of the method is not restricted to the recursive least squares (RLS) as

an identifier. In fact any linear and fast recursive algorithm can be used for the estimation

of the parameters. For example we can use algorithms such as the stochastic gradient

algorithm, the equation error identifier, the projection algorithm, the Kalman filter based
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identifier [31]. It might be advisable to endow those routines with forgetting capabilities

in such a way that effects of wrong prior decisions concerning the discrete mode can be

quickly removed.

• An open problem regarding the recursive identifier is convergence analysis. In this respect,

it should be observed that the algorithm is trying to solve a nonconvex optimization

problem. As a consequence, global convergence is very hard to guarantee. In practice

however, the algorithm performs surprisingly well. The performance can even be enhanced

via multiple random initializations in parallel.

4.4 Conclusion

This chapter provides an overview of our reflections on piecewise affine system identification

from input-output measurements. In particular, two groups of approaches have been discussed.

The first group is based on sparsity-inducing optimization. The second relies on an adaptive

clustering/identification scheme. We have contributed to the development of some other ap-

proaches which are not presented here but they can be found in full detail in [15, 14]. Also, an

application of PWA identification to the modeling of the NOx emission of diesel engines can be

found in [64].

66



Chapter 5

Conclusions and Perspectives
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5.1 Summary

This report is intended as an overview of my research results over the period 2009-2016. The

problem dealt with is that of estimating (learning) models from data. Globally speaking,

my research concerns the development of methods and algorithms for extracting relevant fea-

tures/patterns contained in informative observations collected, in principle, from real-world pro-

cesses. This way of constructing models is sometimes called data-based modeling with regards to

its principle of attempting to generically mimic (hidden) laws of nature by performing quantitat-

ive experiments. Different types of model structures can be considered: static, dynamic, linear,

nonlinear, switched, piecewise affine. Given a model structure parameterized with unknown

parameters and a collection of data which are assumed to be informative enough, our estimation

approach consists in formalizing appropriately an optimization problem whose solution (a vec-

tor/matrix of parameters) (1) produces a model that fits best the data (2) is easy to compute

numerically. The current manuscript describes a few specific approaches to switched and piece-

wise affine systems identification but the applicability scope of the methods is much larger. In

particular, the scope goes beyond the traditional view of system identification (which is confined

to the estimation of dynamic models) and embraces the much larger topic of machine learning.

Given the nature of the challenge posed by the hybrid system identification problem, a common

thread of our methods is their sparsity-inducing capability which, as discussed in Chapter 2, is

closely relevant to robustness (discriminatory insensitivity to outliers). Due to the central role

of this sparsity-inducing property, Chapter 2 has received a more detailed treatment than the

other chapters. We have then shown how this property can be exploited for the identification

of switched and PWA systems. In the case of switched systems one of the main results has
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the following flavor: if the regression data are sufficiently rich and if each subsystem has been

visited a sufficient number of times, then the parameters of the submodels can be estimated as

the solutions of a sparse optimization problem. For computational efficiency, a sparsity-inducing

convex relaxation has then been considered. Correctness of this latter procedure is proved un-

der informativity assumptions and an additional requirement related to the proportion of data

generated by each subsystem.

5.2 Perspectives

In this section, we describe our plan for future research. This is articulated around four main

points:

• capitalize on the developed identification methods by providing further analysis for under-

standing them and packaging them in a software

• formalize goal-oriented identification of PWA models for nonlinear systems

• generalize and extend sparsity-inducing optimization techniques to the design of control

policies and other problems in control theory and machine learning

• analyze performance and stability of nonlinear systems through a PWA differential em-

bedding.

5.2.1 Analysis and application of hybrid system identification methods

Analysis of algorithms. It is fair to observe that after about fifteen years of intensive research,

the topic of hybrid system identification is not completely mature yet. In effect, the research

community working on this topic is still facing many theoretical challenges the main of which

being convergence and correctness analysis of most of the developed algorithms. The expected

outcome of such an analysis is to provide a priori some guarantees as to the reliability of a given

identification algorithm under specific assumptions. From a practical standpoint, it is important

to provide some guidance for users who are interested in applying existing methods to modeling

problems. The purpose of the analysis is to derive the necessary elements for appreciating a

priori which method among the existing ones would perform (or is likely to perform) better

in which circumstances. It should however be kept in mind that due to the nontrivial (and

generally nonconvex) structure of the hybrid system computation algorithms, the analysis is a

very challenging task.

Identifiability and persistence of excitation. Closely related issues to the convergence

analysis are the study of structural identifiability of hybrid system models and persistence of

excitation of the regression data. Identifiability is an injectivity property of the parameterization

map defined from a parameter space to a set of (hybrid) dynamical models. As such, it is related

to the well-posedness of the identification problem. If the to-be-identified system lies in the range

space of the parameterization map and this latter has the property of identifiability, then it is

possible, in principle, to find uniquely the parameter vector associated with the true system.

As for the persistence of excitation1 (PE), it is a property that reflects sufficient informativity

1Note that this terminology is reserved by some authors to the specific situation where the estimation schemes
are adaptive.
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for a specific collection of the input-output data. Recall that the goal of system identification

is to infer from a single input-output trajectory (of possibly infinite-length) of the system all

its possible trajectories. Persistence of excitation then characterizes the minimal condition the

regression data set generated by a single experiment on the system must satisfy for this inference

to be possible. There are two levels of analysis here: (i) characterize the PE condition that the

regression data must satisfy (this is expressed in Chapter 3 for example in term of the n-

genericity index); (ii) characterize sufficient richness of inputs, i.e., find the set of input signals

(and possibly the set of switching signals) which, if fed to the to-be-identified hybrid system,

will generate regressors that satisfy the PE condition. While these aspects are well-understood

for linear model sets, there are still much obscure for hybrid models. In the current literature,

only the level (i) is formalized for a few methods. We have already made some progress over

these subjects in the papers [48, 47, 46] but the derived conditions are generic in the sense that

they do not depend of any specific estimation algorithm. Therefore, it still remains to connect

these results to the analysis of concrete algorithms.

Developing a unified toolbox. It can be observed from the rapidly growing literature that

there is an increasing interest for hybrid system identification on both the fronts of theory and

application (see e.g. the surveys [45, 29]). The large number of references covered by the above

cited survey papers also show how vast the scope of applications may be. The consequence

of the dynamism of the research on hybrid system identification is the production of a large

amount of methods supported by different mathematical frameworks. This diversity of methods

and algorithms prompts the necessity of providing a proper guidance for potential users. So,

in the next few years we intend to devote some effort in promoting the field of hybrid system

identification. Perhaps one way to ease the applicability of the methods to real problems is to

build a unified toolbox2 with the most efficient methods for each class of models. There are two

possibilities for achieving such a goal: The first is a unilateral coding of the existing methods

on the same platform; the second possibility is a collaborative development through launching

a call for contributions to the respective authors.

5.2.2 Optimal control of switched systems

An ongoing research project is that of optimal control of switched systems. The control law in

this case is constituted of two components: a continuous input which controls the evolution of

the system in each discrete mode and a switching control signal which selects over time which

subsystem should be activated. The optimal control design therefore is concerned with finding a

joint optimal policy for both types of control components. This is a hard combinatorial problem.

For the time being it has not been completely addressed yet. For example, no exact solution is

available for the infinite horizon quadratic control problem. For the finite horizon version, the

solution has been formally characterized (see e.g., [69, 51]) but its implementation still suffers

from an exponential complexity even in finite horizon. Judging from the nature of the challenge

posed by this problem, the sparse optimization approach together with its nonsmooth convex

relaxation seem applicable to it. The huge numerical complexity of the solution is indeed due to

the fact that an exponential number of switching sequences have to be explored. One possible

idea to reduce the computational complexity is to parameterize the system equations so as to

replace the switching sequence with auxiliary continuous input variables which therefore should

2To our knowledge, the only accessible toolbox is the HIT package [27] developed by Ferrari-Trecate. But it is
based on a single PWA identification method, the one in [28].
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satisfy a sparsity constraint. The hope in doing so is to be able to transform the optimal

(quadratic) control problem whose natural formulation suffers from a combinatorial complexity,

to a continuous (but potentially nonconvex) optimization problem. We think that sparsity

inducing-optimization methods treated in Chapters 2 and 3 of the current manuscript might

help derive efficient convex relaxations of this problem.

5.2.3 PWA modeling for nonlinear systems control and analysis

Another ongoing research project concerns the control design and the analysis for nonlinear

systems based on piecewise affine systems (thesis of S. Waitman). Our ultimate goal is to reach

a rich set of systematic design and analysis tools for general nonlinear systems. A first step to-

wards this goal is to describe nonlinear systems with model structures which are simple enough

to apprehend and yet able to capture the essential behavior of the nonlinear system with respect

to the application of interest. In this respect, a good candidate of model class is, as discussed in

Chapter 4, that of PWA models. A PWA model consists of a partition of the state-input space

of the system into local regions, each of which is associated with an affine time-invariant model.

The advantage of such models, is that they arise naturally from a basic intuition of control engin-

eering practitioners, the notion of operating point. They are therefore more easily amenable to

interpretation and analysis by judiciously using the available knowledge on linear systems. Note

that for the analysis of nonlinear systems based on the PWA model to be conclusive, it is neces-

sary to embed the approximation error into an uncertainty set that has to be taken into account

during the analysis. There are two sources of uncertainty: the theoretical approximation error

resulting from the approximation of nonlinear system by a PWA system ; the uncertainty/bias

induced by the estimation algorithm and the noise contained in the measurements. The pair

formed by a nominal PWA model and the uncertainty set is termed PWA Differential Inclu-

sions (PWA-DI). We would like to develop systematic procedures for constructing PWA-DI for

nonlinear systems either from the nonlinear equations of the system (when available) or from

experimental data using system identification techniques or a combination of both approaches.

5.2.4 PWA modeling for nonlinear control

Another aspect of our future research plan is to tie the search for a PWA model to the application

it is intended for. For example if the intended use of the model is control design, it would

be interesting to connect the model derivation step and the controller design step as parts of

a single design chain for nonlinear control systems. A widespread practice is to treat these

steps as two totally independent tasks. However, the quality of a model is closely related to

its purpose. Therefore, finding pragmatically the "best" model requires setting a quantitative

"measure" of model quality which is consistent with the expected/achievable control performance.

Optimizing such an application-dependent "measure" is indeed the only way to make sure that the

searched model, in addition to describing the process with an acceptable accuracy, is structurally

suitable for its purpose. For example, depending on the intended application, some dynamics

or behaviors of the true system might not be relevant; they can therefore be neglected, thereby

resulting in a rough model and yet still pertinent in regards to the envisaged application. The

system identification and control communities tend to grow more or less independently and

without much interactions. In nonlinear control theory, it is generally assumed that an analytic

model is available while in system identification, the custom is to compute a general purpose

black-box model by minimizing only a prediction error, that is, without taking explicitly into

70



5.2. Perspectives

account any specified purpose of the model. As a consequence, the model obtained via system

identification might be unnecessarily complex and thus not directly suitable for a specific control

design technique or the control laws designed under exact model assumption (which does not hold

in reality) might not be applicable to the true system. These observations have driven an intense

research activity referred to as identification for control [30, 13]. However, the models considered

in most existing methods are essentially linear. We envisage reflecting on the extension of these

methods to PWA models when the system of interest is nonlinear.
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