précision est écrite en CUDA C, une version du langage C adaptée pour les GPUs. Notre implantation est très flexible et peut-être efficacement utilisée à la fois pour les programmes orientés CPU et GPU. Nous avons également évalué les performances de nos algorithmes, en termes de nombre d'opérations flottantes et de bornes d'erreur obtenues. Ils se comparent très favorablement par rapport aux autres bibliothèques existantes.

List of Tables

5.8

The optimal value, iterations and time for solving some problems from SDPLIB by SDPA-CAMPARY, when varying precision from 4D to 8D. 5.9 The optimal value, iterations and time for solving some ill-posed problems for binary codes by SDPA-DD, -GMP and -CAMPARY.

I start by thanking my supervisors. To Mioara, for "discovering" me when I was nearly a baby in L3 and for introducing me to the beauty of arithmetic and GPUs. Thank you for believing in me even when I did not (remember that time I cried?). Also, for introducing me to French cheese and wine and for all those relaxing evenings in which somehow we always ended up talking about work (we had some good ideas!!). Jean-Michel, thank you for not loosing faith in humanity and for taking me as your PhD student even before you knew me (I still don't understand how you had the courage), for always having your door open when I had questions (they were a lot) and for all the funny stories that showed me life as a PhD student is not that bad. I thank both of you for introducing me to an interesting subject and believing in my potential. Thank you for being there to guide me and also allowing me enough freedom to answer my own questions.

I thank my family, Ana, Emil, Vlad and Terezia, for their unconditional support in all that I do, for trying to understand my work and pretending it's interesting. Thank you for encouraging me when I decided to move across Europe and for being understanding all those times I had something else to do instead of going back home to visit. I will be forever grateful.

I would like to express my gratitude to the reviewers of this manuscript, Stef Graillat and Paolo Ienne, for their hard work and for their availability regarding the schedule of this work. I also thank Marius Cornea, Sylvie Putot and Daniel Wilczak for having accepted to participate in my jury.

Then, I am very grateful to my external collaborators who helped and inspired me: Sylvie Boldo, Sylvain Collange, Peter Tang and Warwick Tucker.

I would like to thank the AriC team members (it's a big team, so I will not enumerate all of them) for making me feel like home in the lab, for all the coffee breaks, the jokes, the cultural debates, the free French classes and the list could go on. A special thanks to Fabrice and Florent for being my French spell checkers during these years and to Nicolas L. for trusting me to teach his classes even when I was only "faking" French. To our assistants and administrative team for their help with the "hell" that is French administration. Thank you all for making my stay in the lab memorable! I could never forget my previous teams that helped me grow to get here. Thank you Warwick for receiving me in the CAPA during my L3 internship: it was a cold but great summer. Thank you Denis (if I may) and the MAC team for making me feel welcome not only during my M2 internship, but every time I went back for a visit.

Last but not least I want to thank my friends (they know who they are) and all the people I met during my stay in Lyon, some of them came and go, others are still in my life, but they all made my stay here so much more enjoyable. I would also like to thank Région Rhône-Alpes and ANR FastRelax Project for the grants that support this activity.

Résumé

Actuellement la plupart des calculs en virgule flottante (VF) sont faits dans le format «doubleprécision» et sont conformes à la norme IEEE 754-2008. Cette norme exige l'arrondi correct des opérations arithmétiques de base avec plusieurs modes d'arrondi. Cette exigence améliore la portabilité des codes numériques et rend également possible et -relativement-aisée la construction d'une arithmétique d'intervalles correcte. La majorité des applications nécessitant des calculs haute performance (HPC), déployés sur les architectures parallèles usuelles, bénéficient directement des opérations en VF (en simple-ou double-précision) du fait de leur disponibilité en matériel.

Il existe cependant, de nombreux problèmes numériques qui demandent à faire appel, au moins dans des parties critiques, à une plus grande précision que celle offerte par les formats virgule flottante usuels. Parmi les exemples d'applications possibles, on vise le processus d'itération à long terme des systèmes dynamiques chaotiques. Cela apparaît à la fois dans des problèmes mathématiques (e.g., l'étude des attracteurs étranges comme celui de Hénon, l'analyse des bifurcations et l'étude de la stabilité des orbites périodiques) et dans des applications de mécanique spatiale (e.g., la stabilité à long terme du système solaire). Une autre application possible est le problème dit SDP (pour Semi-definite programming : programmation semi-définie positive) dans lequel si les conditions initiales sont mal posées on a besoin d'une précision plus grande que celle disponible en standard pour obtenir un résultat utilisable.

Une solution est de faire appel à des bibliothèques multi-précision telles que GNU-mpfr (http ://www.mpfr.org), mais elles peuvent parfois être une alternative assez lourde lorsqu'une précision de quelques centaines de bits suffit et que l'on a des exigences fortes de performance. Actuellement, le seul code disponible et facilement portable sur une architecture parallèle est celui de la bibliothèque QD de Bailey, qui propose une arithmétique en double-double (DD) et quaddouble (QD), c.à.d., les nombres sont représentés comme la somme non évaluée de 2 ou 4 nombres virgule flottante en double-précision. Il est connu, cependant, que les opérations mises en oeuvre dans cette bibliothèque ne sont pas conformes à la norme IEEE 754-2008, ne fournissant pas l'arrondi correct. En outre, les effets des erreurs d'arrondi peuvent être très élevés dans certaines applications, et aucune analyse systématique n'est actuellement disponible pour évaluer la précision effective des résultats obtenus avec de tels formats.

L'objectif majeur de cette thèse a été de développer une bibliothèque multi-précision ciblée pour les architectures hautement parallèles, comme les processeurs graphiques. Pour cela, nous nous sommes intéressés à des algorithmes arithmétiques suffisamment simples et efficaces pour obtenir, pour quelques précisions étendues fixées, des performances élevées, des présentations rigoureuses et des preuves solides. Nous avons proposé d'étendre la précision en représentant les nombres comme des sommes non évaluées de nombres en virgule flottante, aussi appelées «expansions en VF». Cette représentation permet d'utiliser directement les opérations «natives» et hautement optimisées disponibles en matériel (par exemple, dans les processeurs graphiques).

On a développé activement le logiciel CAMPARY-CudA Multiple Precision ARithmetic li-brarY-, présenté à http ://homepages.laas.fr/mmjoldes/campary/. Cette bibliothèque multi- [START_REF] Anderson | LAPACK Users' Guide[END_REF] Hénon map sinks found using CAMPARY on GPU [START_REF] Zbigniew | Is the hénon attractor chaotic? Chaos: An Interdisciplinary[END_REF]. 148 5.5 Theoretical peak vs. kernel peak for Rgemm with CAMPARY for n-double on GPU. . 153 5. [START_REF] Bailey | ARPREC: an arbitrary precision computation package[END_REF] The optimal value, relative gaps, primal/dual feasible errors, iterations and time for solving some problems from SDPLIB by SDPA-QD, -DD, -CAMPARY. 154 5. [START_REF] Bailey | High-precision computation: Mathematical physics and dynamics[END_REF] The optimal value, iterations and time for solving some problems from SDPLIB by SDPA-GMP, -CAMPARY. 155

List of Figures

List of Tables

1 CHAPTER 1

Introduction

Even before the first electronic computer was developed in 1946 (ENIAC -Electronic Numerical Integrator And Calculator), scientists have tried different ways of approximating real numbers inside a computer, i.e., to find a mapping from the infinite continuous set of real numbers IR to a discrete, finite one. Such representations include the well-known floating-point and fixedpoint formats, logarithmic and semi-logarithmic number systems, rational numbers, etc. When choosing between these representations one has to take into account many constraints like speed, accuracy, dynamic range, ease of use and implementation, memory use or power consumption.

By far the most used in modern computers, the floating-point number system is considered to offer a good compromise among the above constraints. It appears that in itself, this idea is very old, dating back to as early as the Babylonians [START_REF] Knuth | The Art of Computer Programming[END_REF]. The first real implementation of such a system was in Zuse's Z1 mechanical computer, in 1938, followed by the modern implementation inside the Z3 electromechanical computer in 1941 (see [START_REF] Ceruzzi | The early computers of Konrad Zuse, 1935 to 1945[END_REF]). For a more complete history see [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]Ch.1] and references therein.

In the early beginnings, each computer manufacturer chose a floating-point system of their liking to implement, but in 1985 the IEEE Standard for Binary Floating-Point Arithmetic [START_REF]IEEE Standard for Binary Floating-Point Arithmetic[END_REF] was released, that specified various formats, exceptions and basic operations behaviors. While its detailed description will be given in Section 1.1, let us first note that a binary floating-point number of precision p is a number of the form M • 2 e-p+1 , where M is an integer of absolute value less than or equal to 2 p -1 and e is an integer such that e min ≤ e ≤ e max , where the extremal exponents e min and e max are constants of the floating-point format being considered, and with the additional requirement that, unless e = e min , 2 p-1 ≤ |M |. The standard also specified correct rounding for basic arithmetic operations, i.e., when the result cannot be exactly represented with precision p, the returned result should be as if computed with infinite precision and unlimited range, then rounded to the specified format. A new version of the standard was released in 2008 [START_REF]IEEE Standard for Floating-Point Arithmetic. IEEE Standard[END_REF], which also recommended (but did not require) correctly rounded elementary functions.

From the four binary formats defined by the standard, the most commonly used is binary64, i.e., p = 53, which gives approximately 15 decimal digits, also known as double-precision. This is due not only to its accuracy and performance, but also to its wide availability. The more accurate format, binary128, is not usually implemented in hardware; the only exception that we know of is the IBM Z series of mainframes. The precision provided by the binary64 format is usually enough for numerical computing. For example, in [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF], the authors even explain that this is enough for expressing "the distance from the Earth to the Moon with an error less than the thickness of a bacterium".

However this standard precision is not enough for some numerically sensitive problems. Examples include planetary orbit dynamics, such as the long-term stability of the solar system [START_REF] Laskar | Existence of collisional trajectories of Mercury, Mars and Venus with the Earth[END_REF], or supernovas simulations; also, when studying chaotic dynamical systems, like finding sinks in the Hénon Map [START_REF] Joldes | Searching for sinks for the hénon map using a multipleprecision gpu arithmetic library[END_REF], or iterating the Lorenz attractor [START_REF] Abad | Computing periodic orbits with arbitrary precision[END_REF]. Other examples can be found in experimental mathematics [START_REF] Bailey | High-precision computation: Mathematical physics and dynamics[END_REF]5], or in some numerically sensitive semidefinite optimization problems which have a very wide range of applications in control theory, quantum chemistry and physics. We will detail some of these applications in Chapter 5.

In such cases, when more than double-precision is required, the situation deteriorates brutally in terms of performance. Arbitrary precision, i.e., the ability of the user to choose the precision for each calculation, is available in software in most computer algebra systems like Maple or Sage. Also GNU MPFR [START_REF] Fousse | MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding[END_REF] is a general-purpose high-precision arithmetic library that follows the general philosophy of IEEE-754. However, arbitrary precision, which is very useful in general, comes with drawbacks: (i) there is a slow-down factor of 10 to 50 compared to a native double computation; (ii) the algorithms are finely tuned and difficult to prove formally; (iii) the algorithms are not easily portable to highly parallel architectures, such as GPUs or Xeon Phi. All this is because these libraries offer the ability to manipulate numbers with tens of thousands -or even much more -of digits, which requires very complex and non regular arithmetic algorithms, heavily tuned programming, and nontrivial memory management.

In order to harness the availability and efficiency of the hardware implementations of the standard, our approach in this work consists in representing higher precision numbers as floatingpoint expansions. These are unevaluated sums of several floating-point numbers (of different magnitudes). Such a representation is possible thanks to the availability of error-free transforms, namely algorithms that allow one to compute the error of a floating-point addition or multiplication exactly, taking the rounding mode into account. For instance, the sum of two floating-point numbers, x and y can be represented exactly (in the sense of dyadic numbers) as a floating-point number s which is the correct rounding of the sum, plus another floating-point number e corresponding to the remainder. This will be detailed in Section 1.1.3, for the moment let us just note that under certain assumptions, this decomposition can be computed at a very low cost by a simple sequence like s = x + y; z = s -x; e = y -z;. This is actually Algorithm 1, known as Fast2Sum, and more general and sophisticated algorithms exist for a number of related questions and will be detailed throughout this work. In what follows, we describe a typical example where such extended precision is used in practice. It appears when implementing transcendental functions in mathematical libraries (libms), like glibc, Sun libmcr, Intel c libm or CRlibm [START_REF] Daramy-Loirat | a library of correctly-rounded elementary functions in doubleprecision[END_REF] 1 .

Roughly speaking if the input y of a function, say sin(y), is given with 15 decimal digits of accuracy, then the result is expected to also have 15 digits of accuracy. More specifically, some developers of libms aim for correctly rounded sin in double-precision. To achieve this, usually, one firstly performs a so-called argument reduction, which allows for the input range to be sufficiently small, such that polynomial approximations are efficient. Such polynomials can be evaluated using only basic arithmetic operations like addition and multiplication. But if these operations are all performed in standard double-precision, it is very difficult to guarantee an intermediary extended accuracy that will allow for a final correctly rounded result in double-precision. Let us explain this in more detail in the following Example 1.0.1, taken from the actual sin function implementation in CRLibm [START_REF] Muller | Elementary Functions: Algorithms and Implementation[END_REF].

Example 1.0.1. For sine function evaluation, the reduced argument x is obtained by subtracting from the floating-point input y an integer multiple of π/256. As a consequence, x ∈ [-π/512, π/512] ⊆ [-2 -7 , 2 -7]. Then, one needs to compute the value of the odd polynomial:

p(x) = x + x 3 • (s 3 + x 2 • (s 5 + x 2 • s 7)),
which is a polynomial close to the Taylor approximation of the sine function. The coefficients s 1 , s 3 and s 5 are represented in binary64 precision arithmetic: s 3 = -6004799503160661/2 55 , s 5 = 4803839602528529/2 59 , s 7 = -3660068268593165/2 64 .

However, since x is an irrational number, the implementation of the range reduction needs to return a number more accurate than a binary64, such that the intermediary output accuracy for p(x) allows for subsequent correct rounding of sin(x). To overcome this problem, in the CRlibm library [START_REF] Daramy-Loirat | a library of correctly-rounded elementary functions in doubleprecision[END_REF] the authors represent x as the unevaluated sum of two binary64 numbers x h +x l , representation also known as doubledouble.

As a numerical example, let y = 0.5, and the corresponding reduced argument x = 1/2-41π/256. This is approximated in double-double as the unevaluated sum x h + x l , with x h = -7253486725817229/2 61 and x l = -508039184604813/2 112 .

If one computes directly p(x h + x l) with the following Horner scheme and binary64 precision:

p eval (x h + x l) = (x h + x l) + (x h + x l) 3 • (s 3 + (x h + x l) 2 • (s 5 + (x h + x l) 2 • s 7)),
one obtains a poor accuracy. Note that with this order of operations, the floating-point addition x h + x l returns x h , so the information held by x l is lost. The other part of the Horner evaluation also has a much smaller magnitude than x h , since |x| ≤ 2 -7 , which gives x 3 ≤ 2 -21 . The following evaluation leads to a much more accurate algorithm, since the leftmost addition is performed with an extended precision, namely the above mentioned Fast2Sum algorithm:

s = x l + (x h • x h • x h • (s 3 + (x h • x h • (s 5 + (x h • x h • s 7))))),
p eval (x h + x l) = Fast2Sum(x h , s).

For our numerical example, one obtains p eval = -7253474763108583/2 61 +82031/2 79 . This allows for 72 bits of accuracy in the evaluation of p compared with 54 for the first evaluation scheme. Note that for both evaluation schemes only standard binary64 operations are used: the second one performs 2 more additions than the first one (by executing the Fast2Sum algorithm) and yet, it allows for an accuracy extension by 33%.

This shows that it possible to compute very accurate values, even in the presence of roundings at the floating-point level, by using only standard precision floating-point arithmetic operations in a clever way. However, proofs of these algorithms get tricky very often. An important objective of this thesis is to generalize algorithms like Fast2Sum, for handling all arithmetic operations (addition, multiplication, division and square root) with numbers represented as unevaluated sums of floating-point values. We aim in the sequel to provide both efficient implementations and to prove tight error bounds.

Concerning efficiency, more than often, practical applications which require extended precision support, are also very computationally expensive and are executed in so-called High Performance Computing (HPC) architectures. In this work, we thus aim to tune our implementations of extended precision arithmetic algorithms for accelerators such as Graphics Processing Units (GPUs).

Contributions of this work.

In Chapter 2 we "double" the available precision by representing a real number as the unevaluated sum of two floating-point numbers. Though extensive work has been already done in this area, many algorithms have been published without a proof, or with error bounds that are sometimes loose. Thus we revisited the existing algorithms and proposed new ones, providing them with correctness and error bound proofs. This joint work with M. Joldes and J.-M. Muller, led to the article:

1. Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic [START_REF] Joldes | Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic[END_REF], that is currently under revision for publication in the ACM Transactions on Mathematical Software journal.

Chapter 3 focuses on arbitrary precision by looking into algorithms for arithmetic operations using floating-point expansions, i.e., numbers are represented as the unevaluated sum of several (more than two) floating-point numbers. We propose several new algorithms designed to fit different needs a user might have, either very tight error bounds on the results, either "quick-and-dirty" results. This work was presented in:

2. On the computation of the reciprocal of floating point expansions using an adapted Newton-Raphson iteration [START_REF] Joldes | On the computation of the reciprocal of floating point expansions using an adapted newton-raphson iteration[END_REF], joint work with M. Joldes In Chapter 4 we explore the possibility of directly parallelizing the arithmetic algorithms by using what we called parallel floating-point expansions. This joint work with S. Collange (researcher at Inria Rennes), M. Joldes and J.-M. Muller, entitled: 5. Parallel floating-point expansions for extended-precision GPU computations [START_REF] Collange | Parallel floating-point expansions for extended-precision gpu computations[END_REF] was published in Proceedings of the 27th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2016).

Finally, in Chapter 5 we present two numerical applications in which CAMPARY proved to be useful. The first application comes from a classical problem in the field of chaotic dynamical systems. Specifically, we search for periodic orbits in the Hénon map, which is a very numerically sensitive problem. Our approach, based on extensive long-term numerical iterations of the map, also needs high-performance computing in order to be tackled. This joint work with M. Joldes and W. Tucker (professor at Department of Mathematics, Uppsala University), entitled: 6. Searching for Sinks for the Hénon Map Using a Multiple-precision GPU Arithmetic Library [START_REF] Joldes | Searching for sinks for the hénon map using a multipleprecision gpu arithmetic library[END_REF], was published in the ACM SIGARCH Computer Architecture News -HEART '14 journal.

Second, we took interest in another problem which needs both higher-precision and highperformance computing: semidefinite programming (SDP) solvers for numerically sensitive problems. We integrated CAMPARY with the already existing SDPA solver, and we provide arbitrary precision not only for the CPU routines, but also GPU support for matrix multiplication. This joint work with M. Joldes and J.-M. Muller, led to the article:

7. Implementation and performance evaluation of an extended precision floating-point arithmetic library for high-accuracy semidefinite programming [START_REF] Joldes | Implementation and performance evaluation of an extended precision floating-point arithmetic library for high-accuracy semidefinite programming[END_REF], which was accepted for publication and is going to be presented at the 24th IEEE Symposium on Computer Arithmetic (ARITH 2017).

In what follows, some preliminary notions are given: we detail floating-point arithmetic in Section 1.1, followed by previously existing related software in Section 1.3. In Section 1.2 we detail the GPU architecture and programming model. In Section 1.4, we give a general overview of CAMPARY and we illustrate its features. At the same time, we aim to introduce in a concrete way the problems that will occupy us in the rest of the this work. CAMPARY was also presented in an extended abstract [START_REF] Joldes | CAMPARY: cuda multiple precision arithmetic library and applications[END_REF] published in Proceedings of the 5th International Congress on Mathematical Software, ICMS 2016.

Floating-point arithmetic

It is common knowledge that floating-point numbers are by far the most common used representation of real numbers. This section aims at recalling several basic definitions and concepts of floating-point arithmetic, as defined by the IEEE 754 standard for floating-point arithmetic, and at defining notations that are going to be used throughout this manuscript. Here we mainly focus on the specifications defined by the 2008 release of the IEEE 754-2008 standard [START_REF]IEEE Standard for Floating-Point Arithmetic. IEEE Standard[END_REF]. All these concepts have been extensively studied and explained in the Handbook on Floating-Point Arithmetic [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]. Further information can be also found in [START_REF] Goldberg | What every computer scientist should know about floating-point arithmetic[END_REF][START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF][START_REF] Kahan | IEEE 754: An interview with William Kahan[END_REF][START_REF] Koren | Computer Arithmetic Algorithms[END_REF][START_REF] Overton | Numerical Computing with IEEE Floating-Point Arithmetic[END_REF] (this list is far from exhaustive).

A floating-point system is characterized by four integers:

• a radix (or base) β ≥ 2;

• a precision p ≥ 2 (roughly speaking, p is the number of "significant digits" of the representation);

• two extremal exponents e min and e max such that e min < e max (in all practical cases, e min < 0 < e max).

Definition 1.1.1. A finite precision-p floating-point number in such a format is a number x for which there exists at least one representation (M x , e x) such that

x = M x • β ex-p+1
, where

• the integer e x is the exponent of x, such that e min ≤ e x ≤ e max

• and M x • β -p+1 is the significand (sometimes improperly called the mantissa) of x.

IEEE 754 Standard

In 1985, the first release of the IEEE 754-1985 Standard [START_REF]IEEE Standard for Binary Floating-Point Arithmetic[END_REF] for floating-point arithmetic was introduced by the Institute of Electrical and Electronics Engineers and it was implemented by all the computers produced after that moment. It was a key factor in improving the quality of the computational environments and providing portable code. This initial version considered only binary representations, but two years later, the IEEE 854-1987 Standard [START_REF]IEEE Standard for Radix Independent Floating-Point Arithmetic[END_REF] for "Radix-Independent" floating-point arithmetic was released, that would also consider decimal representations.

The latest version IEEE 754-2008 [START_REF]IEEE Standard for Floating-Point Arithmetic. IEEE Standard[END_REF], encompasses both precision standards and adds some novelties, among them: portability, standardizing the FMA operation, quadruple-precision. The standard enforces maximum quality for the basic operations (+, -, * , /, √), unique exception handling and the implementation of four rounding modes. In the following we will recall some of its notions and requirements and since scientific computing always uses binary arithmetic, we consider the binary representation only. So from now on by a floating-point number we will understand a binary floating-point number.

Normal and subnormals.

From the above definition one can notice that this representation is not unique. Just consider the "toy format" with p = 5 and two floating-point numbers x = 1.1010 • 2 -1 and y = 0.1101 • 2 0 . They are both valid representations of the same number. We can eliminate the redundancy, by normalizing the finite nonzero floating-point numbers. This is done by choosing the representation for which the exponent is minimum (yet larger than or equal to e min). The numbers that satisfy this are called normalized floating-point numbers. This type of representation allows for easier expression of error bounds, and it somewhat simplifies the implementation. Two cases may occur:

• when the number is greater than or equal to 2 e min and its representation satisfies 2 p-1 ≤ |M x | ≤ 2 p -1, we say that it is a normal number;

• otherwise, one necessarily has e = e min , and the significand adjusted according to that, with |M x | ≤ 2 p-1 -1; the corresponding floating-point number is called a subnormal number (the term denormal may be used also).

A consequence of the normalization in radix 2 is that the significand of a normal number always has the form M x = 1.m 1 m 2 m 3 . . . m p-1 and 2 p-1 ≤ |M x | ≤ 2 p -1. Also, the significand of a subnormal number always has the form M x = 0.m 1 m 2 m 3 . . . m p-1 and |M x | ≤ 2 p-1 -1. This allows one to save one bit of storage, by applying the "hidden bit" convention.

Even though subnormal numbers have been one of the most controversial parts of the IEEE 754-1985 standard, and they have not always been implemented in hardware (in modern computers they are), they allow for what Kahan calls gradual underflow: the loss of precision when numbers converge to zero is slow instead of being abrupt.

According to the above definitions, the smallest positive normal number is 2 e min ; the largest finite floating-point number is Ω = (2 -2 1-p) • 2 emax ; and the smallest positive subnormal number is α = 2 e min -p+1 .

Rounding modes. Sometimes, the result of an operation on floating-point numbers is not exactly representable in the floating-point system being used, so it has to be rounded. One of the most interesting ideas brought out by IEEE 754-1985 is the concept of rounding mode: how a numerical value is rounded to a finite floating-point number.

The four rounding modes defined by the standard (illustrated in Figure 1.1), when applied on a real number x, are:

• round toward -inf: RD(x) is the largest floating-point number less than or equal to x;

• round toward + inf: RU(x) is the smallest floating-point number greater than or equal to x;

• round toward zero: RZ(x) is the closest floating-point number to x that is no greater in magnitude than x (it is equal to RD(x) if x ≥ 0, and to RU(x) if x ≤ 0);

• round to nearest: RN(x) is the floating-point number that is the closest to x. A tie-breaking rule must be chosen when x falls exactly halfway between two consecutive floating-point numbers. A frequently chosen rule is "ties-to-even", i.e., x is rounded to the only one of these two consecutive floating-point numbers whose significand is even. This is the default mode.

RU(x)

¡ ¡ ¡ ¡ ¡ RZ(x) RN(x) RD(x) d d d d x c u 2 k T E Figure 1.
1 -Possible roundings of a real number x in a radix-2 floating-point system. In this example, x > 0.

When the exact result of a function is rounded according to a given rounding mode (as if the result was computed with infinite precision and unlimited range, then rounded), one says that the function is correctly rounded. The IEEE 754 Standard requires all basic arithmetic operations (+/-, ×, ÷, √) to be correctly rounded.

The four rounding modes presented above (•) have the important property that they are monotonic, i.e., if x ≤ y, then •(x) ≤ •(y). Moreover, if x is a floating-point number, then •(x) = x, which means that when the result of a correctly rounded operation is a floating-point number, we get that exact result.

A classic lemma that applies to any floating-point system with correct rounding and subnormal numbers is Sterbenz's [START_REF] Sterbenz | Floating-Point Computation[END_REF] lemma, which implies that, under certain conditions, the subtraction is exact, i.e., the result is a representable floating-point number. This is also exemplified in Example 1.1.3. We do not present the entire proof here, but this lemma is very useful when designing and proving algorithms, and we will make extensive use of it throughout this work. Lemma 1.1.2 (Sterbenz Lemma [90]). Let x and y be two finite binary floating-point numbers. If

y 2 ≤ x ≤ 2y,
then x -y is a floating-point number, so that •(x -y) = x -y exactly, where • is the rounding function.

Example 1.1.3. Let x = 0.713938 and y = 1.213694 be two binary32 floating-point numbers. When computing RN(x -y) we obtain -0.499756, which is also representable as a binary32 number.

A slightly more general result is that if the exponent of x -y is less than or equal to the minimum between e x and e y , the exponents of x and y, respectively, then the subtraction is performed exactly. Another example of exact addition is given by Hauser [START_REF] Hauser | Handling floating-point exceptions in numeric programs[END_REF], who showed that when a gradual underflow occurs it does not necessarily mean an inaccurate result 2 : Lemma 1.1.4 (Hauser Lemma [31]). Let x and y be two floating-point numbers. If RN(x + y) is subnormal, then RN(x + y) = x + y exactly.

It is worth recalling that some multiplications and divisions are also performed exactly. A straightforward example is multiplication/division by a power of 2, which, assuming that no overflow or underflow occurs, can be reduced to an add/subtract to the exponent. Another example is multiplication of numbers with known number of trailing zero bits in the lower-order part of the significand. This property is at the heart of Dekker's multiplication algorithm (see Algorithm 5, Section 1.1.3). It is also very useful for reducing the range of inputs when evaluating elementary functions. Special floating-point data and exceptions. Some data cannot be expressed as a normal or subnormal number. A straightforward example is the number zero, that requires a special encoding. In order to achieve a "closed" floating-point system in which any machine operation is well specified, the standard defines several not fully "numeric" data used to cope with values that are undefined or those of different magnitudes than the representable ones. These are:

• the NaN (Not a Number) value, which is used to deal with invalid operations (e.g., √ -5 or 0/0);

• two signed infinities, +Inf and -Inf ;

• two signed zeros, +0 and -0.

2. Notice that this is a consequence of the fact that the exponent of a subnormal number is the smallest possible exponent, emin.

20

Chapter 1. Introduction

Sometimes an exception can be signaled along with the result of an operation under the form of a status flag and/or some trap mechanism. The standard defines five such exceptions:

• Overflow is signaled when the result of an operation or function, rounded as if there was no exponent bound, is of absolute value strictly larger than Ω defined above;

• Underflow is opposite to the former; is signaled when the result is smaller than 2 e min and inexact;

• Invalid exception (an input is invalid for the function) is raised when the result is a NaN (e.g. ∞ -∞, 0/0, √ -1);

• DivideByZero exception is self explanatory; signaled when an exact infinite result is defined for a function on finite inputs (e.g. 1/0, log +0);

• Inexact is signaled when the result is not exactly representable and it has to be rounded.

Standard formats.

One of the main goals of the IEEE 754-2008 Standard for floating-point arithmetic was to reduce the implementation choices during hardware design. As we explained above, in radix 2, the leftmost bit of the significand of a finite normal floating-point number is always a 1, or 0 if the number is subnormal. The standard requires for specified formats the use of the "hidden bit" convention, i.e., the information on the type of floating-point number should be stored in the exponent field, allowing to store only the last p -1 significant bits of the significand. Also it is required that e min should be 1 -e max for all formats. Both binary and decimal formats are defines, but the standard only requires the availability of one of the following: binary32, binary64, binary128, decimal64, decimal 128. In this work we focus only on binary floating-point arithmetic. The four main binary formats defined are given in Table 1.1, though the most commonly available are the two presented in Figure 1.2. The Fused Multiply-Add Instruction. The Fused Multiply-Add (FMA) instruction was first introduced in 1990 on the IBM RS/6000 processor [START_REF] Hokenek | Second-generation RISC floating point with multiply-add fused[END_REF][START_REF] Montoye | Design of the IBM RISC System/6000 floatingpoint execution unit[END_REF], but it was included in the IEEE 754 standard only in 2008, on its latest release. Even though at first it was not available on widely spread processors, with the release of the Intel Haswell and AMD Bulldozer architectures, this is not the case anymore. This instruction evaluates a floating-point multiplication and a summation (an expression of the form a • b + c) using only one rounding. By retaining full precision in the intermediate stage it improves upon the classic Multiply-Add (MAD) instruction that executes the same operations performing two roundings. That is, if • is the rounding function applied, the two instructions perform as follows:

fma(a, b, c) = •(a • b + c); mad(a, b, c) = •(•(a • b) + c).
The FMA is extremely helpful for the design of some arithmetic algorithms:

• it facilitates correctly rounded software division [START_REF] Brisebarre | Accelerating correctly rounded floating-point division when the divisor is known in advance[END_REF][START_REF] Cornea | Correctness proofs outline for Newton-Raphsonbased floating-point divide and square root algorithms[END_REF][START_REF] Kahan | Lecture notes on the status of IEEE-754[END_REF][START_REF] Markstein | IA-64 and Elementary Functions: Speed and Precision[END_REF];

• it makes some calculations (especially dot products and polynomial evaluations) faster and, in general, more accurate [START_REF] Cornea | Scientific Computing on Itanium R -based Systems[END_REF][START_REF] Markstein | IA-64 and Elementary Functions: Speed and Precision[END_REF];

• as explained in Section 1.1.3, it makes it possible to easily get the exact product of two floating-point numbers.

Error handling

Relative error. In a binary precision-p floating-point arithmetic that supports correct rounding, when approximating a real number x ∈ R, with x = 0, by •(x), with • being the rounding mode, then the relative error that occurs satisfies:

x -RN(x) x ≤ 2 -p ,
if the rounding function is round-to-nearest (the inequality is strict in round-to-nearest ties to even), and

x -•(x) x < 2 1-p
with the other rounding functions, assuming that no underflow 3 /overflow occurs. When •(x) = x = 0, we consider that the relative error is 0. If x is subnormal, the relative error can become very large (it can be close to 1). In that case, we have a bound on the absolute error due to rounding:

|x -RN(x)| ≤ 1 2 2 e min -p+1
in round-to nearest mode, and

|x -•(x)| < 2 e min -p+1
if • is one of the directed rounding modes.

3. Let us say, as does the IEEE 754 standard, that an operation underflows when the result is subnormal and inexact.

ULPs. When expressing errors of "nearly atomic" functions (arithmetic operations, elementary functions, small polynomials, sums, dot products, etc.) it is advisable (frequently more accurate) to do it in terms of what we would intuitively define as the "weight of the last bit of the significand." If x is a binary floating-point number and is not an integer power of 2, the function ulp(x) (for unit in the last place) denotes the magnitude of the least significant bit of M x . I.e., if,

x = ± m 0 .m 1 m 2 . . . m p-1 • 2 ex , then ulp(x) = 2 ex-p+1 .
A definition of ulp(x) for all real x is desired. In the literature [START_REF] Goldberg | What every computer scientist should know about floating-point arithmetic[END_REF][START_REF] Harrison | A machine-checked theory of floating-point arithmetic[END_REF][START_REF] Kahan | A logarithm too clever by half[END_REF][START_REF] Markstein | IA-64 and Elementary Functions: Speed and Precision[END_REF][START_REF] Overton | Numerical Computing with IEEE Floating-Point Arithmetic[END_REF] there are several slightly different definitions, but they all coincide as soon as x is not extremely close to a power of 2 (for more details refer to [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]). In this work we consider only the definition given by Goldberg [START_REF] Goldberg | What every computer scientist should know about floating-point arithmetic[END_REF], that has been generalized by Cornea, Golliver, and Markstein [START_REF] Cornea | Correctness proofs outline for Newton-Raphsonbased floating-point divide and square root algorithms[END_REF][START_REF] Markstein | IA-64 and Elementary Functions: Speed and Precision[END_REF] and that follows.

Definition 1.1.5. Let x ∈ R. If |x| ∈ [2 ex , 2 ex+1)
, where e x is exponent of x, then ulp(x) = 2 max(ex,e min)-p+1 .

It satisfies the following property:

Property 1.1.6. Let real x ∈ R and X an exact floating-point number. Considering Definition 1.1.5 it holds:

|X -x| < 1 2 ulp(x) ⇒ X = RN(x); (1.1) |X -x| < 1 2 ulp(X) ⇒ X = RN(x); (1.2) X = RN(x) ⇒ |X -x| ≤ 1 2 ulp(x); (1.3) X = RN(x) ⇒ |X -x| ≤ 1 2 ulp(X). (1.4)
The following lemma, which appears as an immediate consequence of Property (2.16) in [START_REF] Rump | Accurate floating-point summation part I: Faithful rounding[END_REF], holds and the proof is actually very simple. Lemma 1.1.7. (see Property (2.16) in [START_REF] Rump | Accurate floating-point summation part I: Faithful rounding[END_REF]) Let x and y be floating-point numbers, and let s = RN(x + y).

If s = 0 then |s| ≥ max 1 2 ulp(x), 1 2 ulp(y) .
Proof. Without loss of generality, assume |x| ≥ |y|, so that ulp(x) ≥ ulp(y). The number |x + y| is the distance between x and -y. Hence, since x = -y (otherwise s would be 0), |x + y| is larger than or equal to the distance between x and the floating-point number nearest to x, which is larger than or equal to 1 2 ulp(x).

Therefore |RN(x + y)| = RN(|x + y|) ≥ RN(1 2 ulp(x)) = 1 2 ulp(x).
A similar concept is that of unit in the last significant place, denoted by uls, which, roughly speaking, gives the weight of the last non-zero bit of the significand. The formal definition follows. Definition 1.1.8. Let x = M x •2 ex-p+1 be a binary precision-p floating-point number. If |x| ∈ [2 ex , 2 ex+1), then uls(x), for x = 0, is the only power of 2 such that x is an odd integer times that power of 2.

In Figure 1.3 we give a graphical representation of the above two concept. Unit roundoff. Another useful notion, closely related to the notion of ulp, is the notion of unit roundoff, also called machine epsilon. Definition 1.1.9. The unit roundoff u of a binary precision-p floating-point system is defined as

u =          1 2 ulp(1) = 2 -p in round-to-nearest mode, ulp (1)
= 2 1-p in directed rounding modes.

The two following lemmas referring to the unit roundoff are considered classical, this is why we do not include the proof here (for details see [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]).

Lemma 1.1.10. Let x ∈ R. If |x| ≤ 2 k , where k is an integer, then |RN(x) -x| ≤ u 2 • 2 k . Lemma 1.1.11. Let x ∈ R.
There exist 1 and 2 , both of absolute value less than or equal to u, such that

RN(x) = x • (1 + 1) = x 1 + 2 .

Error-free transforms: computing the error

Let x and y be two precision-p binary floating-point numbers, and s = RN(x + y). It can be shown that if the addition of x and y does not overflow, the rounding error that occurs, namely (x + y) -s, is exactly representable by a floating-point number of the same format. 4 The same thing holds for multiplication, with the condition that e x +e y ≥ e min +p-1, where e x and e y are the exponents of x and y, respectively. Interestingly enough, that error can be computed using the algorithms presented in what follows, that employ only basic operations (+, ×). The full correctness proofs of the algorithms can be consulted in the Handbook of Floating-Point Arithmetic [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF].

Addition. For computing the error of a floating-point addition we have two possible algorithms. The first one is Fast2Sum (Algorithm 1 and Theorem 1.1.12) that computes the result using only 3 basic operations. It first appeared as part of a summation algorithm, called "Compensated sum method," due to Kahan [START_REF] Kahan | Pracniques: further remarks on reducing truncation errors[END_REF], and was later published by Dekker [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF].

Algorithm 1 -Fast2Sum (x, y). s ← RN(x + y) z ← RN(s -x) e ← RN(y -z) return (s, e)
Theorem 1.1.12. Let x and y be precision-p floating-point numbers that satisfy e x ≥ e y , where e x and e y are the exponents of x and y, respectively. Algorithm 1 computes two floating-point numbers s and e such that:

• s + e = x + y exactly;

• s = RN(x + y).

The relationship between the exponents of x and y might be difficult to check, but it will always be satisfied if |x| ≥ |y|.

If there is no preliminary knowledge on the order of magnitude of the input numbers, there exists another algorithm, due to Knuth [START_REF] Knuth | The Art of Computer Programming[END_REF] and Møller [START_REF] Møller | Quasi double-precision in floating-point addition[END_REF], called 2Sum (Algorithm 2 and Theorem 1.1.13) that computes the exact same result, but it uses 6 floating-point basic operations. It was actually showed by Kornerup et.al. [START_REF] Kornerup | On the computation of correctly rounded sums[END_REF] that this algorithm is optimal in terms of number of operations, if branch instructions cannot be used.

Algorithm 2 -2Sum (x, y). s ← RN(x + y) x ← RN(s -y) y ← RN(s -x) δ x ← RN(x -x) δ y ← RN(y -y) e ← RN(δ x + δ y) return (s, e)
Theorem 1.1.13. Let x and y be precision-p floating-point numbers. Algorithm 2 computes two floatingpoint numbers s and e such that:

• s + e = x + y exactly;

• s = RN(x + y).

Notice that the two algorithms are mathematically equivalent in the sense that the 2Sum algorithm can always be replaced by a preliminary comparison followed by a possible swap of the operands and the Fast2Sum algorithm. Until recent years the penalty due to a wrong branch prediction when comparing two numbers was more costly than 3 additional basic operations. In modern CPU processors, e.g. the AMD Bulldozer or the Intel Haswell, due to highly optimized branch prediction, this is not the case anymore. Though, in the context of Graphics Processing Units (GPUs) branches are still costly and it is preferable to avoid them if possible (see Section 1.2).

Multiplication.

Computing the rounding error of a floating-point multiplication is straightforward when an FMA instruction is available. In fact, unless underflow/overflow occurs, the algorithm 2ProdFMA (Algorithm 3 and Theorem 1.1.14) does this using only 2 floating-point basic operations. • π + e = x • y exactly;

• π = RN(x • y).
For cases in which an FMA instruction is not available, the best known algorithm for computing the rounding error of a multiplication is Dekker's product [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF] that is mathematically equivalent to Algorithm 3 (it also satisfies Theorem 1.1.14), but it is much more costly.

This algorithm is possible by means of an algorithm due to Veltkamp [START_REF] Veltkamp | ALGOL procedures voor het berekenen van een inwendig product in dubbele precisie[END_REF][START_REF] Veltkamp | ALGOL procedures voor het rekenen in dubbele lengte[END_REF] that can "split" a precision-p floating-point number x into two floating-point numbers x h and x such that, for a given integer t < p and using a floating-point constant C = 2 t + 1, the significand of x h fits in p -t digits, the significand of x fits in t digits, and x = x h + x exactly. The Split algorithm is presented in Algorithm 4.

Algorithm 4 -Split (x, t). Constant: C = 2 t + 1 γ ← RN(C • x) δ ← RN(x -γ) x h ← RN(γ + δ) x ← RN(x -x h) return (x h , x)
When used in a binary floating-point system the algorithm has the following property ([START_REF] Dekker | A floating-point technique for extending the available precision[END_REF][START_REF] Boldo | Pitfalls of a full floating-point proof: example on the formal proof of the Veltkamp/Dekker algorithms[END_REF]):

Property 1.1.15. Algorithm 4 satisfies:

• if C • x does not overflow, no other operation will overflow;

• there is no underflow problem: if x is subnormal, the result still holds;

• the significand of x h fits in p -t bits;

• the significand of x actually fits in t -1 bits.

The full multiplication algorithm given by Dekker is presented in Algorithm 5. The first step is to split each of the operands x and y into two floating-point numbers, the significand of each of them being representable with p/2 or p/2 bits only. The underlying idea is that the pairwise products of these values should be exactly representable. Then these pairwise products are added.

Algorithm 5 -Dekker (x, y).

Constant: t = p/2 (x h , x) ← Split(x, t) //using Alg. 4 (y h , y) ← Split(y, t) π ← RN(x • y) t 1 ← RN(-π + RN(x h • y h)) t 2 ← RN(t 1 + RN(x h • y)) t 3 ← RN(t 2 + RN(x • y h)) e ← RN(t 3 + RN(x • y)) return (π, e)
The algorithm was analyzed by Boldo [START_REF] Boldo | Pitfalls of a full floating-point proof: example on the formal proof of the Veltkamp/Dekker algorithms[END_REF] who showed that in any case,

|xy -(π + e)| ≤ 7 2 2 e min -p+1 .
Dekker's multiplication algorithm requires 17 floating-point operations: 7 multiplications, and 10 additions/subtractions. This may seem a lot, compared to the 6 floating-point additions/subtractions required by the 2Sum algorithm (Algorithm 2). Yet an actual implementation of Algorithm 5 will not be 17/6 times slower than an actual implementation of 2Sum, since many operations are independent and they can be performed in parallel or in pipeline if the underlying architecture supports it.

Since the two algorithms for computing the exact result of a multiplication are mathematically equivalent, throughout our work we will call algorithm 2Prod (Algorithm 6) that choses between 2ProdFMA and Dekker's product depending on the availability of an FMA instruction. 5 The choice is done using a static if instruction that is treated at compilation time, hence it does not slow down computations.

Algorithm 6 -2Prod (x, y). #if defined FP_FAST_FMA (π, e) ← 2ProdFMA(x, y) #else (π, e) ← Dekker(x, y) #endif return (π, e)
The error-free transforms presented here are basic bricks for doing computations using the multiple-term extended precision format and we are going to use them extensively in the following chapters.

Graphics Processing Units -GPUs

Today, Graphics Processing Units (GPUs) represent an important hardware development platform for many problems where massive parallel computations are needed. Even though initially they were developed as highly specialized integer only processors for real time image rendering, they gradually evolved towards more programmability and increasingly powerful arithmetic capabilities.

In 2003, along with the appearance of some high-level shading languages and programming interfaces like Microsoft's DirectX, the development of General-Purpose GPU Computing (GPGPU) started. Despite all efforts, the GPUs were still difficult to program and the program complexity was much higher than for the CPU. In 2007 programmability was greatly improved by the appearance of Software Development Kits (SDK) like Nvidia's C-language based CUDA platform, followed by the Khronos Group OpenCL in 2009.

Soon after the two main vendors, Nvidia and ATI (now AMD), also started producing specialized computing cards, that would offer more arithmetic capabilities. This was one of the main turning points in the development of parallel computing. Our work targets Nvidia's CUDA based GPUs, so we continue by detailing them.

CUDA Architecture

Computer Unified Device Arichitecture -CUDA -is the hardware and software architecture that enables Nvidia GPUs to execute programs written with C, C++, Fortran, OpenCL, Direct-Compute, and other languages. 5. During operation count we will consider that an FMA is available.

The parallelization power that the GPU offers is closely related to its structure; it can be seen as a highly multi-threaded SIMD (Sigle Instruction Multiple Data) architecture [START_REF] Garland | Understanding throughput-oriented architectures[END_REF]. One GPU is composed of more that one Streaming Multiprocessors (SM), each with several cuda cores. Each SM has its own cache memory and a shared memory that allows communication between the cuda cores. The communication between the SMs and with the CPU is done through the global memory. A visual description of this structure is given in Figure 1.4. Execution model. Programmers describe compute kernels as a single cuda program run by many fine-grained threads. The compiler and hardware scheduler groups these into thread blocks and grids of thread blocks. In detail the three concepts are:

1. A thread executes an instance of the kernel, and has a thread ID within its thread block, a program counter, registers and per-thread private memory. The private memory is used for register spills, function calls, and C automatic array variables.

2.

A thread block is a set of concurrently executing threads that can cooperate among themselves through shared memory and barrier synchronization. It has a block ID within its grid.

Each thread block has a per-block shared memory space used for inter-thread communication, data sharing, and result sharing in parallel algorithms.

3.

A block grid is an array of thread blocks that execute the same kernel, communicate through global memory (see Figure 1.4) and synchronize between dependent kernel calls. Grids share results in global memory space after kernel-wide global synchronization.

A graphical representation of the cuda execution model is presented in Figure 1.5.

Hardware execution.

The thread hierarchy presented above maps to the hierarchy of processors of the GPU as shown in Figure 1.6: a GPU executes one or more block grids; a SM executes one or more thread blocks; and cuda cores inside the SM execute threads.

A concept that we did not mention yet is that of a warp. A thread block can contain many threads, but they are executed by the SM in groups (usually 32 threads) called warps. While programmers can generally ignore warp execution for functional correctness, they can greatly improve performance by having threads in a warp execute the same code path and access memory in nearby addresses. Also, threads inside a warp run in lockstep and share a single control flow. This allows for warp-synchronous programming that we are going to detail later on.

Floating-point units

Binary floating-point units appeared in 2002 in the GPUs of both main vendors, ATI and Nvidia. In the first implementation, addition and multiplication were incorrectly rounded: instead of rounding the exact sum or product, these implementations typically rounded a p + 2-bit intermediate result to the output precision of p bits.

Between 2007 and 2009 the floating-point support greatly improved. From there on GPUs support binary32 and binary64 precisions, with correctly rounded addition and multiplication. Also, comparing to prior generation GPUs that flushed subnormal operands and results to zero, incurring a loss of accuracy, todays GPUs support subnormal numbers by default in hardware.

They implement as well all four IEEE specified rounding modes and offer support for dynamic rounding mode changing, avoiding pipeline flushing and time penalties. The cuda architecture even offers correctly rounded FMAs (see Section 1.1). Each cuda core can perform one binary32 FMA operation in each clock period and one binary64 FMA in two clock periods. It is worth mentioning that GPUs also include hardware acceleration of some elementary functions.

Programming model

In what follows we are going to give a short introduction to CUDA C programming. For more details refer to the Cuda Programing Guide [START_REF][END_REF].

The CUDA C programing language is an extension of the C++ programing language. The difference between the CPU and GPU code is done through the use three specifiers:

• __host__ specifies the code dedicated to the CPU;

• __global__ specifies the kernel code;

• __device__ specifies the GPU dedicated functions. A function can be declared using both __host__ and __device__ specifiers.

A kernel is defined as a void function. The basic call syntax is KernelName<<< Blocks, Threads >>>, where:

• Blocks is the number of thread blocks per grid; it can be of type int or dim3;

• Threads is the number of threads per thread block; same types as above can be used. The communication between the host and the device happens exclusively through global memory. Linear memory is managed by the host typically using the functions:

• cudaMalloc(void * * ptr, size_t size);

• cudaMemcpy(void * dst, const void * src, size_t count, cudaMemcpyKind kind); • cudaFree(void * ptr); Through cudaMemcpyKind kind one specifies the data transfer direction: HostToHost, HostToDevice, DeviceToHost, or DeviceToDevice.

The shared memory of the device is declared in device code using the __shared__ specifier. The size of the shared memory block to use can also be given (in number of bytes) as a third parameter in the kernel call.

As mentioned before, a kernel is executed by many parallel threads. Each thread has access to four built-in variables that define it's position in the execution grid:

• gridDim gives the number of thread blocks launched;

• blockIdx returns the block ID inside the grid;

• blockDim gives the number of threads per block;

• threadIdx returns the thread ID inside its block;

Warp-synchronous programming. At execution time, the threads are grouped into so-called warps. Threads inside a warp run in lockstep and share a single control flow, and their instructions are executed on SIMD units (cuda cores), with one thread per lane. This type of programing allows for an implicit SIMD programming, that is particularly efficient starting with the Kepler architecture [START_REF]Kepler GK110 architecture[END_REF]. We are going to take advantage of it in Chapter 4. Warp vote instructions perform boolean reductions across all threads within a warp. For instance, they can check whether a condition holds for all the threads, or for any of the threads of the warp. The __any function computes the logical OR of a warp-sized vector of predicates and broadcast it to all elements.

Warp shuffle instructions allow arbitrary communication between threads in a warp, without having to go through memory. They are analogous to shuffle or permute instruction in explicit SIMD instruction sets [START_REF] Firasta | Intel AVX: New frontiers in performance improvements and energy efficiency[END_REF].

• shfl_up(x, n, R) and shfl_down shift components upward or downward, respectively, by n positions within each group of threads of size R, where R is less than or equal to the warp size;

• shfl reads a variable from a specific thread and broadcasts it to all other threads in the warp.

The code written in CUDA C is compiled with Nvidia's nvcc compiler, that separates the host code (compiled with the available gcc compiler) from the device one.

Multiple-precision libraries

There are mainly two ways of representing numbers in higher precision (see Figure 1.7):

(i) the multiple-digit representation, in which numbers are represented by a sequence of possibly high-radix digits coupled with a single exponent (M • 2 t);

(ii) the multiple-term representation, in which a number is expressed as the unevaluated sum of several standard floating-point numbers, often called a floating-point expansion

(u 0 + u 1 + • • • + u n-1
) (a thorough definition will be given in Chapter 3). Note that the extended precision achieved when using an expansion with n terms of precision-p is not exactly the same as np bits of significant in the multiple-digit representation. In the multipleterm approach one can sometimes represent a wider precision by skipping some intermediary zero bits [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]Chap.14].

There exist many mathematical software that include multiple-precision facilities, like Maple, Mathematica, Sage, etc., but in what follows we are concerned only with stand alone highprecision libraries.

A well know arithmetic library that uses the first approach is the GNU MPFR [START_REF] Fousse | MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding[END_REF]. This is an open-source C library based on the integer level of the GNU MP library (GMP) [START_REF] Granlund | GNU MP: The GNU Multiple Precision Arithmetic Library[END_REF]. It provides not only arbitrary precision, but also correct rounding for each atomic operation. Using this library one can use extended precision for up to millions of bits (the only real constraint is the available memory). Its generality makes it a heavy alternative (in terms of speed and memory consumption) when only a few hundred bits are required. Another drawback of MPFR is that it is not ported on the GPU, and because it implements very complex arithmetic algorithms that employ non-trivial memory management, this would be a very difficult task, close to impossible (at least for now). Based on it, some of the same people developed GNU MPFI [START_REF] Revol | Motivations for an arbitrary precision interval arithmetic and the MPFI library[END_REF], which is a multiple-precision interval arithmetic library.

Another library that uses the multiple-digit representation for extending the available precision is ARPREC [START_REF] Bailey | ARPREC: an arbitrary precision computation package[END_REF], which has been ported to GPUs under the name GARPREC [START_REF] Lu | Supporting extended precision on graphics processors[END_REF]. In their approach, the authors use the binary64 for representing the significant of an integer, real or complex number.

In [START_REF] Nakayama | Implementation of multiple-precision floating-point arithmetic library for GPU computing[END_REF] the CUMP library is presented, which targets exclusively GPUs. This library is based on the low-level integer arithmetic routines of GMP, and uses the 64-bit integer arithmetic internally on the GPU instead of the binary64 arithmetic used by GARPREC. On the NVIDIA Tesla C2050, CUMP is reported to be up to 2.6 times faster than GARPREC. For more details concerning integer multiple-precision and earlier work for GPUs without binary64 hardware support we refer to related works given in [START_REF] Nakayama | Implementation of multiple-precision floating-point arithmetic library for GPU computing[END_REF].

CUMP and GARPREC libraries were both tuned for big array operations where the data is generated on the CPU, and only the operations are performed on the GPU. They use an interval memory layout where the limbs of the multiple-precision numbers are interleaved. Specifically, for an array of n multiple-precision numbers, each with m limbs, the jth limb of the ith number is stored in the position jn + i in the array. This format is best suited for operations with large arrays of multiple-precision numbers, since it favors coalesced accesses of off-chip memory.

When looking for libraries that employ the second approach, the multiple-term representation, the options are not as many. Even though the technique was often used in compensated algorithms or intermediate calculations, not many per-say libraries are available. One of the first software available was Brigg's doubledouble library [START_REF] Briggs | The doubledouble library[END_REF], which extended the available precision to a double-double number, using two binary64 numbers (see Chapter 2). This library is no longer maintained and on his website Briggs states, and we quote: "I no longer support or recommend this software".

The most well known software that uses the second approach is Hida, Li, and Bailey's QD library [START_REF] Hida | Algorithms for quad-double precision floating-point arithmetic[END_REF][START_REF] Hida | C++/fortran-90 double-double and quad-double package[END_REF] that offers supports for double-double and quad-double computations, i.e., a number is represented as the unevaluated sum of two or four binary64 numbers, which is equivalent to roughly up to 212 bits of significand. This has been ported on the GPU under the name of GQD [START_REF] Lu | Supporting extended precision on graphics processors[END_REF]. It is well known that the algorithms employed do not come with correctness proofs of error bound proofs.

After analyzing the available options, we concluded that there is a demand for algorithms for arithmetic operations using floating-point expansions with arbitrary precision, that are sufficiently simple yet efficient, and for which effective error bounds and thorough proofs are given. Our goal is to implement a library that can be used on both CPU and GPU.

CAMPARY -Features and implementation

An overview on the implementation features was published in the extended abstract [START_REF] Joldes | CAMPARY: cuda multiple precision arithmetic library and applications[END_REF].

As already mentioned, one of the main goals of this thesis was to develop a multiple-precision arithmetic software library. To this end we developed CAMPARY (CudA Multiple Precision ARithmetic LibrarY), an open source library distributed under the GNU General Public License as published by the Free Software Foundation, that is freely available at http://homepages. laas.fr/mmjoldes/campary/.

• a C++ version, compilable with g++, that can be used on the CPU;

• a CUDA C version, compilable with nvcc, that can be used both on GPU 6 and CPU, except for the parallel algorithms (see Chapter 4).

For each of these versions we offer support for extending both the binary64 and the binary32 formats, even though the latter one is mostly useful for GPU use, since some architectures offer 6. Compute capability 2.0 or greater for the sequential algorithms or at least 3.0 for the parallel ones.

Chapter 1. Introduction optimizations only for this format. The constraint on the expansion size is given by the exponent range of the underlying floating-point format:

• for binary64 (exponent range [-1022, 1023]) the maximum expansion size is 39;

• for binary32 (exponent range [-126, 127]) the maximum expansion size is 12.

Since all these different versions are equivalent from a design and algorithmic point of view we will continue by exemplifying the binary64 GPU version. One of the most important design decisions that we had to take was how to define the precision, i.e., the expansion size. We decided on using templates, because it offers flexibility to the implementation. The exact definition is: template <int prec> class multi_prec{ private: double data[prec]; public:

... } For allocating and/or initializing a multi_prec object we provide constructors along with random initialization functions and "visualization" functions like pretty print. We also provide low level routines for data encapsulation and overloaded operators (to list a few: arithmetic and assignment operators, relational operators, etc.). This makes the code robust, but in the same time flexible and easy to use. For example, for computing the sum of two multi_prec values one can use the code: The functions that implement the arithmetic operations are declared as templated friend functions 7 , in order to keep the code of the class "clean". For each function that receives as input multi_prec objects we also include the equivalent with a multi_prec object and a binary64 value as input.

Since fully certified algorithms usually come with a performance cost, we allow trade-off between proven output accuracy in the worst case versus highly efficient average case by offering two levels of algorithms. The library includes two separate files, that define the same class with the same functionalities, and the user has the choice of which one to use, depending on the time and accuracy constraints of one's problem.

1. The multi_prec_certif.h file implements the algorithms for all basic operations: addition/subtraction, multiplication, reciprocal/division, and square root, according to the algorithms presented in Chapter 3, with specialized templates for double-double operations, using algorithms from Chapter 2. These algorithms come with rigorous correctness proofs and relatively tight error bounds. For example, for multiplying a double-double number with a floating-point one, we can prove that, using an algorithm that takes 10 Flops (floating-point operations), the relative error is less than

1.5 • 2 -106 + 4 • 2 -159 (see Table 2.2).
However, more than often these algorithms also come with a performance penalty. This is because when analyzing them we consider worst case scenarios, which for the average case is too pessimistic. If we loosen the accuracy constraints, for the same operation, one could use another algorithm, that only takes 7 Flops, but for which the relative error is less than 3 • 2 -106 . This is detailed in what follows.

2. The multi_prec.h file implements the "quick-and-dirty" level of the library. It uses algorithms which are faster, but do not consider accuracy issues for corner cases. In most cases the result is going to be the same as obtained when computing with the certified level. The uncertainty appears if cancellation happens during intermediate computations, since this can generate intermediate 0s or even non-monotonic expansions in the result. For double-double operations we also implement specialized templates using the least accurate algorithms from Chapter 2.

This level also comes with a code generation module, that allows for the user to code generate the algorithms function of the needed expansion size. This module provides increased performance by custom unrolling some complex loops (which are usually not optimized by gcc or nvcc compilers).

We recommend the use of this level if the performance requirements are strong, especially if there is the possibility of a-posteriori verification of the correctness of the numerical result.

More implementation details are given in Appendix A, alongside with the code of the class multi_prec in Appendix B.1.

Parallel expansions.

In Chapter 4 we will present parallel arithmetic algorithms tuned for GPU implementation. These algorithms are dealt with separately. In a separate file, gpu_mprec.h, we declare the simple (not templated) class: class gpu_mprec{ private: double val; public:

... } which appears from the point of the view of a single execution thread, this is why it stores only one value.

For an easy "switch" between the two classes we implemented load and store functions that can distribute a multi_prec object across threads and reform it, respectively. In more detail: Alongside two constructors, a getter and a setter, the class implements the three parallel algorithms presented in Chapter 4. These are parallelized using the x dimension of the thread block, allowing the user to also parallelize at a higher level, depending on the problem, using dimensions y and z. At a first glance this may seam difficult, but users that are familiar with cuda programing can take advantage of these algorithms with minimum effort.

The entire code of this class can be consulted in Appendix B.2.

Our server configuration

During the development of CAMPARY we tested its accuracy and performance on different models of CPU and GPU. In what follows we detail the last server configuration that we used, on which we obtained the performance reported throughout this manuscript.

As the CPU we used an Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz based on the Haswell architecture, which offers improved AVX 8 2.0 instruction with floating-point FMA3 with up to twice the Flops per core (16 Flops/clock). A detailed overview is given in Appendix C: the main features in Table C.1 and an excerpt of the result obtained using the command more /proc/cpuinfo in Figure C.1.

On the GPU side we had two Nvidia Tesla K20Xm cards with Kepler GK110 architecture. Details are also included in Appendix C: important features in Tables C.2 and C.3 and an excerpt of the result obtained using the command nvidia-smi -i 0 -q in Figure C.2.

The software configuration was as follows:

• Debian 4.9.2-10 GNU/Linux 8.2 operating system with 3.16.0-4-amd64 kernel;

• compilers GCC and G++ 4.9.2;

• CUDA 7.5 toolkit with NVCC V7.5.17.

8. Advanced Vector Extensions.

CHAPTER 2

Double-Word Arithmetic

Buturuga micȃ rastoarnȃ carul mare.

Romanian proverb

This chapter is dedicated to the analysis of several classical basic building blocks of doubleword arithmetic (frequently called "double-double arithmetic" in the literature). We consider addition/subtraction, multiplication and division. Some of the algorithms are known, but some of them are new. For most of the algorithms we get better relative error bounds than the ones previously published, except for the addition of two double-word numbers, for which we show that the previously published error bound was wrong. We also give numerical examples that illustrate the tightness of our bounds. This is a joint work with J.-M. Muller and M. Joldes, presented in Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic [START_REF] Joldes | Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic[END_REF], which, as we are writing these lines, is under revision at ACM Transactions on Mathematical Software (ACM TOMS).

Given the fact that our goal is to offer extended precision for applications that could benefit from it, the first logical step towards achieving that is to extend it just "a little", say "double" it. Double-word arithmetic, called "double-double" in most of the literature, consists in representing a real number as the unevaluated sum of two floating-point numbers. In all existing implementations, the underlying floating-point format is the binary64 defined by the IEEE 754-2008 Standard [START_REF]IEEE Standard for Floating-Point Arithmetic. IEEE Standard[END_REF] (see Section 1.1), hence the name "double-double". Kahan qualifies double-double arithmetic as an "attractive nuisance except for the BLAS" and even compares it to an unfenced backyard swimming pool! Double-word arithmetic is not similar to a conventional floating-point arithmetic with twice the precision. It lacks many nice properties such as Sterbenz Lemma (Lemma 1.1.2), clearly defined rounding modes, etc. The difference becomes more clear when comparing the doubledouble format (made up with binary64 floating-point numbers) and the binary128 format. Though one might have the impression that the two are equivalent, there are a few important differences (presented in Table 2.1) like the precision or the exponent range. Kahan even mentions in [START_REF] Kahan | Lecture notes on the status of IEEE-754[END_REF] that double-double "undermines the incentive to provide quadruple-precision correctly rounded". This may well be true: although the binary128 format (frequently called "quad-precision") was specified by the IEEE 754-2008 Standard on Floating-Point Arithmetic, it is seldom implemented in hardware. To our knowledge, the only commercially significant platform that has supported binary128 in hardware for the last decade has been the IBM Z Systems [START_REF] Lichtenau | Quad precision floating point on the ibm z13[END_REF]. Thus, one will be tempted to use "double-double" arithmetic at times. Furthermore, even if hardwired binary128 arithmetic becomes commonplace, there will be a need for "double-quad" operations for carefully Some of the first work in this area was done by Dekker [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF], who presented algorithms for adding, multiplying, and dividing double-word numbers. His addition and multiplication algorithms are very similar (in fact, mathematically equivalent) to Algorithms 8 and 13, analyzed below, but his division algorithm was quite different (and less accurate) than the algorithms considered here. After that, Linnainmaa [START_REF] Linnainmaa | Software for doubled-precision floating-point computations[END_REF] suggested similar algorithms, assuming that an underlying extended precision format is available, but we will not consider that hypothesis here.

Libraries that offer double-double arithmetic have been written by Briggs [START_REF] Briggs | The doubledouble library[END_REF], who no longer maintains his library, and by Hida, Li, and Bailey [START_REF] Hida | Algorithms for quad-double precision floating-point arithmetic[END_REF][START_REF] Hida | C++/fortran-90 double-double and quad-double package[END_REF]. The later one, the QD library, is the most often used nowadays, and it offers both a double-double format and a quad-double one (treated in Chapter 3).

Though extensive work has been done in this area, many algorithms have been published without a proof, or with error bounds that are sometimes loose, sometimes fuzzy (the error is "less than a small integer times u 2 "), and sometimes unsure. Thus we felt the strong need to "clean up" the literature. In this chapter we provide a rigorous error analysis of some existing algorithms for double-word arithmetic, and introduce a few new ones. We cannot suppress all the drawbacks mentioned by Kahan: clearly, having in hardware a "real" floating-point arithmetic with twice the precision would be a better option. And yet, if rigorously proven and reasonably tight error bounds are provided, expert programmers can rely on double-word arithmetic for extending the precision of calculations in places where the available floating-point arithmetic does not suffice.

In Definition 2.0.1 we formally introduce the concept of double-word representation.

Definition 2.0.1. A double-word number x is the unevaluated sum x h + x of two floating-point numbers x h and x such that x h = RN(x).

In our work we tried to obtain error bounds as tight as possible. To this end, roughly speaking, we limit the exponent range of the numbers and we subdivide the possible range of values into sections that allow us to deduce different properties between the numbers. Thus, when performing operations using two double-word numbers x = (x h , x) and y = (y h , y), we can assume without loss of generality that:

• x h is positive, otherwise we change the sign of all the operands;

• 1 ≤ x h < 2 (which implies 1 ≤ x h < 2 -2u, since x h is a floating-point number), otherwise
we scale the operands by a power of 2.

The same principles can be applied if we have operations between a double-word number x = (x h , x) and a floating-point one y.

Throughout this entire chapter we will consider only double-word numbers that satisfy Definition 2.0.1 and use an underlying floating-point format with precision-p. This offers generality to the analysis and allows users to also extend the binary32 format or even the binary128 if one day it becomes widely available. We also consider that underflow and overflow do not occur, even though in the case of addition underflow does not pose a problem. All algorithms return their results as a double-word number, insured by the Fast2Sum applied at the end of each algorithm, which has a "renormalization" purpose. Also, we stress here that all the constraints given in each theorem on the precision-p, in order for the error bound to hold, are satisfied in practice.

The sequel of the chapter is organized as follows: Section 2.1.1 deals with the sum of a doubleword number and a floating-point number; Section 2.1.2 is devoted to the sum of two doubleword numbers; in Section 2.2.1 we consider the product of a double-word number by a floatingpoint number; in Section 2.2.2 we consider the product of two double-word numbers; Section 2.3.1 deals with the division of a double-word number by a floating-point number, and Section 2.3.2 is devoted to the division of two double-word numbers.

Addition of double-word numbers

The basic idea behind the addition algorithms is to accumulate the numbers that are roughly of the same magnitude. For example, when adding two double-word numbers x = (x h , x) and y = (y h , y), we consider that x h and y h have around the same magnitude (this is true in most cases), and we know for sure that, unless they cancel (but in this case Sterbenz lemma will help), they are the most significant terms in the addition (since all double-word numbers satisfy Definition 2.0.1). As a deduction, the error obtained from adding them should be, roughly speaking, around the same magnitude as x and y . On account of that, we try to minimize the number of basic floatingpoint operations that we do, while still accumulating the errors.

We present first the case of adding a double-word number with a floating-point one, followed by the addition of two double-word numbers.

Addition of a double-word number and a floating-point number

The algorithm implemented in the QD library [START_REF] Hida | C++/fortran-90 double-double and quad-double package[END_REF] for adding a double-word number and a floating-point number is Algorithm 7 below that computes (x h , x) + y. Figure 2.1 contains a graphical representation of the algorithm, using the same notations.

This algorithm, or variants of it, implicitly appears in many "compensated summation" algorithms that aim at accurately computing the sum of several floating-point numbers. At intermediate steps of the summation, most such algorithms represent the sum of all input numbers accumulated so far as a doubldotse-word number. For instance the first two lines of the algorithm constitute the internal loop of Rump, Ogita and Oishi's "cascaded summation" algorithm [START_REF] Ogita | Accurate sum and dot product[END_REF].

In what follows we analyze Algorithm 7 and we show its correctness by proving Theorem 2.1.1.

2u 2 1 -2u = 2u 2 + 4u 3 + 8u 4 + • • • ,
which is less than 2u 2 + 5u 3 as soon as p ≥ 4.

Algorithm 7 -DWPlusFP(x h , x , y). Proof. First of all, we can quickly proceed with the case x h + y = 0: in that case s h = s = 0 and the computation is errorless. Now, without loss of generality, we can assume |x h | ≥ |y|. If this is not the case, since x h and y play a symmetrical role in the algorithm we can exchange them in our proof: we add the double word number (y, x) and the floating-point number x h . 1 We also assume that x h is positive (otherwise we change the sign of all the operands), and that 1 ≤ x h ≤ 2 -2u (otherwise we scale the operands by a power of 2).

1: (s h , s) ← 2Sum(x h , y) 2: v ← RN(x + s) 3: (z h , z) ← Fast2Sum(s h , v) 4: return (z h , z)

If

-x h ≤ y ≤ -x h 2 , then Sterbenz Lemma (Lemma 1.1.2) implies s h = x h + y and s = 0. It follows that v = x . Lemma 1.1.7 implies |s h | ≥ 1 2 ulp(x h), which implies |s h | ≥ |x |.
Hence Algorithm Fast2Sum introduces no error at line 3 of the algorithm, and so z h +z = s h +v = x+y exactly.

If

-x h 2 < y ≤ x h , then 1 2 ≤ x h 2 < x h + y ≤ 2x h , such that s h ≥ 1 2 . Since |x + s | ≤ 3u (
see the two cases considered below), we have |v| ≤ 3u. It follows that s h > |v|, so Algorithm Fast2Sum introduces no error at line 3 of the algorithm.

• If x h + y ≤ 2 then |s | ≤ u; so that |x + s | ≤ 2u, hence, v = x + s + , with | | ≤ u 2 . In the end we get z h + z = s h + v = x + y + and the relative error | x+y | of the calculation is bounded by | | 1 2 -u ≤ 2u 2 1 -2u . • If x h + y > 2 then |s | ≤ 2u, such that |x + s | ≤ 3u, hence, v = x + s + , 1.
(y, x) may not be a double-word number, according to Definition 2.0.1, in the case x = 1 2 ulp(y) = 1 2 ulp(x h). However, one easily checks that in that case the algorithm returns an exact result.

with | | ≤ 2u 2 . Therefore the relative error | x+y | of the calculation is bounded by

| | 2 -u ≤ 2u 2 2 -u .
Notice that the bound given by Theorem 2.1.1 is very sharp. In fact, it is asymptotically optimal, showed by the generic example given in Example 2.1.2.

Example 2.1.2. Let the following values as input for Algorithm 7:

x h = 1, x = (2 p -1)2 -2p , and y = -1 2 (1 -2 -p).
The algorithm computes the sum as

z h + z = 1 2 + 3 • 2 -p-1 ,
while the exact sum is

x h + x + y = 1 2 + 3 • 2 -p-1 -2 -2p ,
resulting in a relative error equal to

2u 2 1 + 3u -2u 2 ≈ 2u 2 -6u 3 .
For an implementation that uses the binary64 format, the input from the above example gives an error equal to 1.99999999999999933 . . . × 2 -106 .

Addition of two double-word numbers

Algorithm 8 (Figure 2.2) below was first given by Dekker [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF], under the name of add2, but in a slightly different presentation: he did not use Algorithm 2Sum in line 1 of the algorithm, instead there was a comparison of |x h | and |y h | followed by a possible swap of x and y and a call to Fast2Sum. However, from a mathematical point of view, Dekker's algorithm and Algorithm 8 are equivalent: they always return the same result. This algorithm was then implemented in the QD library [START_REF] Hida | C++/fortran-90 double-double and quad-double package[END_REF] under the name "sloppy addition".

Dekker proved an error bound on the order of (|x| + |y|) • 4u 2 . Because of the absolute values, when x and y do not have the same sign, there is no proof that the relative error is bounded. Indeed, the relative error can be so large that the obtained result has no significance at all. A generic example of such values is given in Example 2.1.3 below.

Example 2.1.3. Let the following values as input for Algorithm 8:

x h = 1 + 2 -p+3 , x = -2 -p , y h = -1 -6 • 2 -p , and y = -2 -p + 2 -2p .
The algorithm computes the sum as z h + z = 0, while the exact sum is x + y = 2 -2p , resulting in a relative error equal to 1.

Chapter 2. Double-Word Arithmetic

Algorithm 8 -SloppyDWPlusDW(x h , x , y h , y). Algorithm 9 -AccurateDWPlusDW(x h , x , y h , y).

1: (s h , s) ← 2Sum(x h , y h) 2: v ← RN(x + y) 3: w ← RN(s + v) 4: (z h , z) ← Fast2Sum(s h , w) 5: return (z h , z)
1: (s h , s) ← 2Sum(x h , y h) 2: (t h , t) ← 2Sum(x , y) 3: c ← RN(s + t h) 4: (v h , v) ← Fast2Sum(s h , c) 5: w ← RN(t + v) 6: (z h , z) ← Fast2Sum(v h , w) 7: return (z h , z) Figure 2.3 -Graphical representation of Algorithm 9.
In the 2Sum and Fast2Sum calls the sum s is outputted downwards and the error e to the right.

As showed above, the result of Algorithm 8 are not to be trusted, this is why, the use of this algorithm should be restricted to special cases such as, for instance, when we know that the operands will have the same sign. When accurate computations are required, it is much more advisable to use Algorithm 9 (Figure 2.3), presented by Li et al. [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF][START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF] and implemented in the QD library under the name of "IEEE addition".

In [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF][START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF], the authors claim that in binary64 arithmetic the relative error of Algorithm 9 is upper bounded by 2 • 2 -106 . This statement is not correct, as shown by Example 2.1.4.

Example 2.1.4. If we have as input for Algorithm 9, with binary64 as underlying arithmetic, the values: 54 , y h = -9007199254740987/2, and y = -9007199254740991/2 56 , then the relative error of the algorithm is

x h = 9007199254740991, x = -9007199254740991/2
2.24999999999999956 . . . × 2 -106 .
In Example 2.1.5 we give a generic example, to show that the bound can be exceeded for any precision-p floating-point system.

Example 2.1.5. Let the following values as input for Algorithm 9:

x h = 2 p -1, x = -(2 p -1)2 -p-1 , y h = -(2 p -5)/2, and y = -(2 p -1)2 -p-3 .
It leads to a relative error that is asymptotically equivalent (as p goes to infinity) to 2.25u 2 .

A new bound on the relative error of Algorithm 9 is given in Theorem 2.1.6, for which we provide a rigorous proof. Theorem 2.1.6. If p ≥ 3, the relative error of Algorithm 9 (AccurateDWPlusDW) is bounded by

3u 2 1 -4u = 3u 2 + 12u 3 + 48u 4 + • • • ,
which is less than 3u 2 + 13u 3 as soon as p ≥ 6.

Proof. First of all, we exclude the straightforward case in which one of the operands is zero. We can also quickly proceed with the case x h + y h = 0: in that case one easily sees that the returned result is 2Sum(x , y), which is equal to x + y, i.e., the computation is errorless. Now, without loss of generality, we assume 1

≤ x h ≤ 2 -2u, x ≥ |y| (which implies x h ≥ |y h |), and x h + y h nonzero. Notice that 1 ≤ x h < 2 implies 1 ≤ x h ≤ 2 -2u, since x h is a floating-point number. 1. If -2 + 2u ≤ y h ≤ -1.
Notice that |x | and |y | are bounded by u, and that x and |y| are bounded by 2 -u. We know that -1 + 2u ≤ x h + y h ≤ 1 -2u and the sum x h + y h is a multiple of 2 -p+1 = 2u, hence it is a floating-point number. This implies s h = x h + y h exactly and s = 0, therefore c = RN(t h) = t h . We also have

t h + t = x + y ,
v h + v = s h + t h = x + y -t . Also, |s h + t h | ≤ (1 -2u) + 2u ≤ 1, so that |v h | ≤ 1 and |v | ≤ u 2 .
We finally have

w = t + v + 2 , with | 2 | ≤ 1 2 ulp(t + v) ≤ 1 2 ulp(u 2 + u 2), (2.1)
and

| 2 | ≤ 1 2 ulp 1 2 ulp(x + y) + 1 2 ulp (x + y) + 1 2 ulp(x + y) . (2.2) From (2.1), we get | 2 | ≤ u 2 2 . Now, since s h is a nonzero multiple of 2u, |s h | ≥ 2u. Lemma 1.1.7 implies that either s h +t h = 0, or |v h | = | RN(s h + c)| = | RN(s h + t h)| ≥ 2u 2 . If s h + t h = 0 then v h = v l =
0 and the sequel of the proof is straightforward. Therefore, in the following, we assume

|v h | ≥ 2u 2 . This implies |v h | ≥ u 2 1-u , so that |v h | ≥ u|v h | + u 2 ≥ |v | + |t |. Hence |w| = | RN(v + t)| ≤ |v h |,
so the Fast2Sum Algorithm in line 6 introduces no error. We finally have,

z h + z = v h + w = x + y + 2 .
(

Directly using (2.3) and the bound u 2 2 on | 2 | to get a relative error bound might result in a rather large bound, because x + y may be small. However, as we are going to see, when x + y is very small, some simplification occurs thanks to Sterbenz Lemma. First,

x h + y h is a nonzero multiple of 2u. Hence, since |x + y | ≤ 2u, we have |x + y | ≤ x h + y h . • If -(x h + y h) ≤ x + y ≤ -1 2 (x h + y h), which implies -s h ≤ t h ≤ -1 2 s h ,
then Sterbenz Lemma applies to the floating-point addition of s h and c = t h . Therefore line 4 of the algorithm produces v h = s h and v = 0. An immediate consequence is 2 = 0, so that

z h + z = v h + w = x + y: the computation of x + y is errorless. • If -1 2 (x h + y h) ≤ x + y ≤ x h + y h , then 2(x + y) ≤ (x h + y h) + (x + y), which implies x + y ≤ 1 2 (x + y). Also, -1 2 (x + y) ≤ 1 2 (x + y), which implies -(x + y) ≤ x + y . Hence |x + y | ≤ x + y, so that ulp (x + y) ≤ ulp(x + y).
Combined with (2.2), this gives

| 2 | ≤ 1 2 ulp 1 2 ulp(x + y) + 1 2 ulp (x + y) + 1 2 ulp(x + y) .
Hence,

| 2 | ≤ 1 2 ulp 3 2 ulp(x + y) ≤ 2 -p ulp(x + y) ≤ 2 • 2 -2p • (x + y). 2. If -1 + u ≤ y h ≤ -x h 2 . It implies u ≤ x h + y h ≤ x h
2 , so Sterbenz Lemma can be applied to the first line of the algorithm. Therefore s h = x h + y h and s = 0, so that c = RN(t h) = t h . Hence, this case is very similar to the previous one. Since s h is a nonzero multiple of u and |c| = |t h | ≤ 3u 2 , the floating-point exponent of s h is at least 2 -p and the floating-point exponent of c is at most 2 -p . Hence Algorithm Fast2Sum at line 4 of the algorithm introduces no error, and

v h + v l = s h + c. Now, since s h is a nonzero multiple of u, |s h | ≥ u. Lemma 1.1.7 implies that either s h + t h = 0, or |v h | = | RN(s h + c)| = | RN(s h + t h)| ≥ u 2 . • If s h + t h = 0 then v h = v l =
0 and the sequel of the proof is straightforward.

• If |v h | = u 2 , then |v + t | ≤ u|v h | + u 2 = u 3 + u 2 , therefore |w| = | RN(v + t)| ≤ u 2 = |v h |. • If |v h | > u 2 , then (since v h is a floating-point number) |v h | ≥ u 2 + 2u 3 hence |v h | ≥ u 2 1-u , so that |v h | ≥ u|v h | + u 2 ≥ |v | + |t |. Hence |w| = | RN(v + t)| ≤ |v h |.
Therefore, in all cases, Algorithm Fast2Sum introduces no error in line 6 of the algorithm. Again, we have

z h + z = v h + w = x + y + 2 , with | 2 | ≤ 1 2 ulp 1 2 ulp(x + y) + 1 2 ulp (x + y) + 1 2 ulp(x + y) . From x h + y h ≥ u and |x + y | ≤ 2u, we deduce -2(x h + y h) ≤ x + y ≤ 2(x h + y h). • If -2(x h + y h) ≤ x + y ≤ -1 2 (x h + y h) then -2s h ≤ t h = c ≤ -1 2 s h , hence
Sterbenz Lemma can be applied to line 4 of the algorithm, so that v = 0, hence w = RN(t) = t and 2 = 0 so that the computation is errorless:

z h + z = x + y; • If -1 2 (x h + y h) < x + y ≤ 2(x h + y h), then 3(x + y) ≤ 2(x h + y h + x + y) so that x + y ≤ 2
3 (x + y), and -1 2 (x + y) ≤ 1 2 (x + y), so that -(x + y) < x + y . Hence, in any case, |x + y | < x + y, so that ulp (x + y) ≤ ulp(x + y), and we end up with the same bound as in the previous case:

| 2 | ≤ 2 • 2 -2p |x + y|. 3. If -x h 2 < y h ≤ x h . It implies x h 2 < x h + y h , and consequently 1 2 < x h + y h . • If 1 2 < x h + y h ≤ 1 -2u then 1 2 ≤ s h ≤ 1 -2u and |s | ≤ u 2 .
Notice that having x h + y h ≤ 1 -2u requires y h to be negative, so that -1 < y ≤ 0, which implies |y | ≤ u 2 . We have

t h + t = x + y , with |x + y | ≤ 3u 2 , hence |t h | ≤ 3u 2 ,
v h + v = s h + c ≤ 1 -2u + 2u = 1.
Therefore v h ≤ 1 and |v | ≤ u 2 . Thus,

w = t + v + 2 ,
where |t

+ v | ≤ u 2 + u 2 , so that | 2 | ≤ u 2 2 . Also, s h ≥ 1 2 and |c| ≤ 2u imply v h ≥ 1 2 -2u. And |t + v | ≤ u 2 + u 2 implies |w| ≤ u 2 + u 2 . Hence, if p ≥ 3 (i.e., u ≤ 1 8
) Algorithm Fast2Sum introduces no error at line 6 of the algorithm, i.e., z h + z = v h + w. Therefore,

z h + z = x + y + η, with |η| = | 1 + 2 | ≤ 3u 2 2 . Since x + y ≥ (x h -u) + (y h -u 2) > 1 2 -3u 2 , the relative error |η| x+y is upper-bounded by 3u 2 2 1 2 -3u 2 = 3u 2 1 -3u . • If 1 -2u < x h + y h ≤ 2 -4u then 1 -2u ≤ s h ≤ 2 -4u and |s | ≤ u.
We have,

t h + t = x + y , with |x + y | ≤ 2u, hence |t h | ≤ 2u, and |t | ≤ u 2 . Now, c = s + t h + 1 , with |s + t h | ≤ 3u, so that |c| ≤ 3u, and | 1 | ≤ 2u 2 . Since s h ≥ 1 -2u and |c| ≤ 3u, if p ≥ 3 then Algorithm Fast2Sum introduces no error in line 4 of the algorithm, i.e., v h + v = s h + c. Therefore, v h + v ≤ 2 -4u + 3u = 2 -u, so that v h ≤ 2 and |v | ≤ u. Thus, w = t + v + 2 ,
where |t

+ v | ≤ u + u 2 , so that | 2 | ≤ u 2 . Also, s h ≥ 1 -2u and |c| ≤ 3u imply v h ≥ 1 -5u, and |t + v | ≤ u + u 2 implies |w| ≤ u. Hence, if p ≥ 3, Algorithm Fast2Sum introduces no
error in line 6 of the algorithm, i.e., z h + z = v h + w. Therefore,

z h + z = x + y + η, with |η| = | 1 + 2 | ≤ 3u 2 . Since x + y ≥ (x h -u) + (y h -u) > 1 -4u, the relative error |η| x+y is upper-bounded by 3u 2 1 -4u . • If 2 -4u < x h + y h ≤ 2x h then 2 -4u ≤ s h ≤ RN(2x h) = 2x h ≤ 4 -4u and |s | ≤ 2u. We have, t h + t = x + y , with |x + y | ≤ 2u, hence |t h | ≤ 2u, and |t | ≤ u 2 . Now, c = s + t h + 1 , with |s + t h | ≤ 4u, so that |c| ≤ 4u, and | 1 | ≤ 2u 2 . Since s h ≥ 2 -4u and |c| ≤ 4u, if p ≥ 3,
then Algorithm Fast2Sum introduces no error in line 4 of the algorithm. Therefore,

v h + v = s h + c ≤ 4 -4u + 4u = 4, so that v h ≤ 4 and |v | ≤ 2u. Thus, w = t + v + 2 ,
where |t

+ v | ≤ 2u + u 2 . Hence, either |t + v | < 2u and | 2 | ≤ 1 2 ulp(t + v) ≤ u 2 , or 2u ≤ t + v ≤ 2u + u 2 , in which case w = RN(t + v) = 2u and | 2 | ≤ u 2 . In all cases | 2 | ≤ u 2 . Also, s h ≥ 2 -4u and |c| ≤ 4u imply v h ≥ 2 -8u. And |t + v | ≤ 2u + u 2 implies |w| ≤ 2u.
Hence, if p ≥ 3 then Algorithm Fast2Sum introduces no error in line 6 of the algorithm. All this gives

z h + z = v h + w = x + y + η, with |η| = | 1 + 2 | ≤ 3u 2 . Since x + y ≥ (x h -u) + (y h -u) > 2 -6u, the relative error |η| x+y is upper-bounded by 3u 2 2 -6u ,
The largest bound obtained in the various cases we have analyzed is

3u 2 1 -4u .
Elementary calculus shows that for u ∈ [0, 1 64] (i.e., p ≥ 6) this is always less than 3u 2 + 13u 3 . The bound given in Theorem 2.1.6 is probably not optimal. The largest relative error we have obtain through many random tests is around 2.25u 2 , as showed by Examples 2.1.4 and 2.1.5.

Multiplication of double-word numbers

For performing a double-word multiplication the algorithms follow the paper-and-pencil technique by accumulating partial products. A big advantage when it comes to multiplication, as opposed to addition, is that we know for sure cancellation cannot happen at the level of the most significant term of the result. For example, when multiplying two double-word numbers x = (x h , x) and y = (y h , y) we know that the product z = (z h , z) will be roughly around 2 ex h +ey h (more precisely, 2 ex h +ey h ≤ |xy| < 2 ex h +ey h +2 holds), where e x h and e y h are the exponents of x h and y h , respectively.

The above property allows us to explore different algorithms that offer compromises between speed and accuracy. For example, in some cases we can even chose not to accumulate at all the partial product x y (we know that its magnitude is very small), and to simply account for it when computing the error bound.

Multiplication of a double-word number by a floating-point number

For multiplying a double-word number with a floating-point one we first consider Algorithm 10 (Figure 2.4) that was suggested by Li et al. [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF].

Algorithm 10 -DWTimesFP1(x h , x , y). In [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF][START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF] (with more detail in the technical report [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF], which is a preliminary version of the journal paper [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF]), Li et al. give a relative error bound 4 • 2 -106 for Algorithm 10 when the underlying floating-point arithmetic is binary64. Below, in Theorem 2.2.1, we present a new result, in the more general context of precision-p arithmetic, that significantly improves their relative error bound. Theorem 2.2.1. If p ≥ 4, the relative error

1: (c h , c 1) ← 2Prod(x h , y) 2: c 2 ← RN(x • y) 3: (t h , t 1) ← Fast2Sum(c h , c 2) 4: t 2 ← RN(t 1 + c 1) 5: (z h , z) ← Fast2Sum(t h , t 2) 6: return (z h , z)
(z h + z) -xy xy of Algorithm 10 (DWTimesFP1) is bounded by 3 2 u 2 + 4u 3 .
Proof. One easily notices that if x = 0, or y = 0, or y is a power of 2, the obtained result is exact. Therefore, without loss of generality, we can assume

1 ≤ x h ≤ 2 -2u and 1 + 2u ≤ y ≤ 2 -2u. This gives 1 + 2u ≤ x h y ≤ 4 -8u + 4u 2 , so that 1 + 2u ≤ c h ≤ 4 -8u, (2.4)
and

|c 1 | ≤ 1 2 ulp(4 -8u) = 2u. (2.5)
From |x | ≤ u and y ≤ 2 -2u we deduce

|c 2 | ≤ 2u -2u 2 , (2.6) so that 1 = x y -c 2 satisfies | 1 | ≤ u 2 .
From (2.4) and (2.6) we deduce that Algorithm Fast2Sum introduces no error at line 3 of the algorithm, i.e., t h + t 1 = c h + c 2 . Also, we deduce that

1 = RN(1 + 2u 2) ≤ t h ≤ RN(4 -6u -2u 2) = 4 -8u, (2.7)
and

|t 1 | ≤ 1 2 ulp(4 -8u) = 2u. (2.8)
From (2.5) and (2.8), we obtain

|t 2 | ≤ RN(4u) = 4u, (2.9)
and we find that

2 = t 2 -(t 1 + c 1) satisfies | 2 | ≤ 2u 2 .
(2.10)

Define = 2 -1 . Using (2.7
) and (2.9), we deduce that Algorithm Fast2Sum introduces no error at line 5 of the algorithm. Therefore,

z h + z = t h + t 2 = t h + t 1 + c 1 + 2 = c h + c 2 + c 1 + 2 = x h y + x y -1 + 2 = xy + . (2.11)
Hence the absolute error of Algorithm 10 is

| | ≤ | 1 | + | 2 | ≤ 3u 2 .
Let us now consider two possible cases:

1. If x h y ≥ 2, then xy ≥ x h (1 -u)y ≥ 2 -2u. This leads to a relative error | xy | bounded by 3u 2 2 -2u = 3 2 u 2 + 3 2 u 3 + 3 2 u 4 + • • • . (2.12) 2. If x h y < 2, which implies |c h | ≤ 2,
we easily improve on some of the previously obtained bounds. We have, |c 1 | ≤ u, and

t h ≤ RN(2 + 2u -2u 2) = 2. The case t h = 2 is easily handled: (2.11) implies xy = t h + t 2 -≥ 2 -4u -3u 2 ,

and the relative error

| xy | is bounded by 3u 2 2 -4u -3u 2 = 3 2 u 2 + 3u 3 + 33 4 u 4 + • • • . (2.13) If t h < 2 then |t 1 | ≤ u, |t 2 | ≤ 2u, and | 2 | ≤ u 2 . Hence, a first upper bound on | | is 2u 2 .
However, some refinement is possible.

• first, if |c 2 | < u then | 1 | ≤ u 2 2 , which implies | | ≤ 3u 2 2 ; • second, if |c 2 | ≥ u, then c 2 is a multiple of ulp(u) = 2u 2 ,
so that t 1 is a multiple of 2u 2 . Also, since x h and y are multiple of 2u, x h y is a multiple of 4u 2 , so that c 1 is a multiple of 4u 2 . Hence, t 1 + c 1 is a multiple of 2u 2 of absolute value less than or equal to 2u. This implies that t 1 + c 1 is a floating-point number, hence RN(t 1 + c 1) = t 1 + c 1 and 2 = 0.

Chapter 2. Double-Word Arithmetic Therefore, when t h < 2, | | is upper-bounded by 3u 2 2 , so the relative error | xy | is bounded by

3 2 u 2 (1 -u)(1 + 2u) ≤ 3 2 u 2 . (2.14)
The largest of the three bounds (2.12), (2.13), and (2.14) is the second one. It is less than 3 2 u 2 + 4u 3 as soon as u ≤ 1 16 . This proves the theorem. The bound given by Theorem 2.2.1 is very sharp. The largest error we have found so far when performing many random tests is about 1.5u 2 . An example of input values that would lead to an error of that magnitude is given in Example 2.2.2.

Example 2.2.2. If we have as input for Algorithm 10, with binary32 as underlying arithmetic, the values: 13 , and y = 8389633, then the relative error of the algorithm is

x h = 8388609, x = 4095/2
1.4993282 . . . × 2 -48 .
In the QD library [START_REF] Hida | C++/fortran-90 double-double and quad-double package[END_REF] as well as in Briggs' library [START_REF] Briggs | The doubledouble library[END_REF], Algorithm 11 (Figure 2.5) below is suggested for multiplying a double-word number by a floating-point one.

Algorithm 11 -DWTimesFP2(x h , x , y). Indeed, Algorithm 11 is faster than Algorithm 10 (we save one call to Fast2Sum), but it is less accurate. One can easily find values for x and y for which the error attained using Algorithm 11 is larger than the bound given by Theorem 2.2.1 (see Example 2.2.3).

1: (c h , c 1) ← 2Prod(x h , y) 2: c 2 ← RN(x • y) 3: c 3 ← RN(c 1 + c 2) 4: (z h , z) ← Fast2Sum(c h , c 3) 5: return (z h , z)
Example 2.2.3. If we have as input for Algorithm 11, with binary64 as underlying arithmetic, the values: 54 , and y = 5085664955107621, then the relative error of the algorithm is 2.517 . . . × 2 -106 .

x h = 4525788557405064, x = 8595672275350437/2
The relative error bound we are going to prove for Algorithm 11 is the one stated in Theorem 2.2.4 that follows, for which the proof is very similar to (in fact, simpler than) the proof of Theorem 2.2.1. Theorem 2.2.4. If p ≥ 3, the relative error of Algorithm 11 (DWTimesFP2) is less than or equal to 3u 2 .

Proof. Without loss of generality, we can assume 1 ≤ x h ≤ 2 -2u and 1 ≤ y ≤ 2 -2u. Since the analysis of the case y = 1 is straightforward, we even assume andc h ≥ 1 + 2u we deduce that Algorithm Fast2Sum introduces no error at line 4 of the algorithm.

1 + 2u ≤ y ≤ 2 -2u. This implies 1 + 2u ≤ x h y ≤ 4 -8u + 4u 2 , thus 1 + 2u ≤ c h ≤ 4 -8u and |c 1 | ≤ 2u. From |x | ≤ u and y ≤ 2 -2u we deduce |c 2 | ≤ 2u -2u 2 , so that 1 = x y -c 2 satisfies | 1 | ≤ u 2 . Now, |c 1 + c 2 | ≤ 4u -2u 2 , hence |c 3 | ≤ 4u, and c 3 = c 1 + c 2 + 2 , with | 2 | ≤ 2u 2 . From |c 3 | ≤ 4u
Further more,

z h + z = c h + c 3 = xy -1 + 2 ,
and

| -1 + 2 | ≤ 3u 2 . Since xy ≥ (x h -u)y ≥ (1 -u)(1 + 2u) ≥ 1,
we deduce that the relative error of Algorithm 11 is less than 3u 2 .

Algorithm 11 can be improved both in speed and accuracy if an FMA instruction is available. This is done by merging the multiplication in line 2 with the addition in line 3. This results in Algorithm 12 bellow, with the corresponding Theorem 2.2.5.

Algorithm 12 -DWTimesFP3(x h , x , y).

1: (c h , c 1) ← 2ProdFMA(x h , y) 2: c 3 ← fma(x , y, c 1) 3: (z h , z) ← Fast2Sum(c h , c 3) 4: return (z h , z) Theorem 2.2.5. If p ≥ 3, the relative error of Algorithm 12 (DWTimesFP3) is less than or equal to 2u 2 .
The proof of Theorem 2.2.5 is very similar to the proof of Theorem 2.2.4, so we omit it. We do believe that the bound is very sharp, since the largest error that we obtained through many random tests is the one presented in Example 2.2.6.

Example 2.2.6. If we have as input for Algorithm 12, with binary64 as underlying arithmetic, the values: 54 , and y = 4511413997183120, then the relative error of the algorithm is

x h = 4505619370757448, x = -9003265529542491/2
1.984 . . . × 2 -106 .

Multiplication of two double-word numbers

Algorithm 13 (Figure 2.6) below was first suggested by Dekker (under the name mul2 in [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF]), with the only difference that he always used Algorithm 5 (Dekker's product) for getting the result and error of a floating-point multiplication. This algorithm is also the one that has been implemented in the QD library [START_REF] Hida | C++/fortran-90 double-double and quad-double package[END_REF] and in Briggs' library [START_REF] Briggs | The doubledouble library[END_REF].

Dekker proved a relative error bound of 11 • 2 -2p , but we were able to significantly improve that bound. The result that we obtained is the one stated by Theorem 2.2.8. In the proof we will make use of Lemma 2.2.7, for which the proof is straightforward calculus, this is why we do not include it.

Algorithm 13 -DWTimesDW1(x h , x , y h , y).

1: (c h , c 1) ← 2Prod(x h , y h) 2: t 1 ← RN(x h • y) 3: t 2 ← RN(x • y h) 4: c 2 ← RN(t 1 + t 2) 5: c 3 ← RN(c 1 + c 2) 6: (z h , z) ← Fast2Sum(c h , c 3) 7: return (z h , z)
≥ 1, then x + y ≤ 2 √ 2.
Theorem 2.2.8. If p ≥ 4, the relative error of Algorithm 13 (DWTimesDW1) is less than or equal to

7u 2 (1 + u) 2 < 7u 2 .
Proof. Without loss of generality, we assume that 1 ≤ x h ≤ 2 -2u and 1 ≤ y h ≤ 2 -2u. As a deduction x h y h < 4, and

c h + c 1 = x h y h , with |c 1 | ≤ 2u. We also have t 1 = x h y + 1 , with |x h y | ≤ 2u -2u 2 , so that |t 1 | ≤ 2u -2u 2 and | 1 | ≤ u 2 ; and t 2 = x y h + 2 , with |x y h | ≤ 2u -2u 2 , so that |t 2 | ≤ 2u -2u 2 and | 2 | ≤ u 2
. Now, we have

c 2 = t 1 + t 2 + 3 , with |t 1 + t 2 | ≤ 4u -4u 2 , which implies |c 2 | ≤ 4u -4u 2 and | 3 | ≤ 2u 2 .
We finally obtain

c 3 = c 1 + c 2 + 4 ,
and from

|c 1 +c 2 | ≤ 6u-4u 2 , we deduce |c 3 | ≤ 6u. Hence | 4 | ≤ 4u 2 and, since c h ≥ 1, Algorithm
Fast2Sum introduces no error at line 6 of the algorithm.Therefore,

z h + z = c h + c 3 = (x h y h -c 1) + c 1 + c 2 + 4 = x h y h + t 1 + t 2 + 3 + 4 = x h y h + x h y + x y h + 1 + 2 + 3 + 4 = xy -x y + 1 + 2 + 3 + 4 = xy + η, (2.15
)

with |η| ≤ u 2 + | 1 + 2 + 3 + 4 | ≤ 9u 2 . On top of that, x h ≥ 1 and y h ≥ 1 imply xy ≥ (1 -u 2)
2 , so that we can first deduce a relative error bound 9u 2 /(1 -u 2) 2 . That bound can be improved by looking at two different cases.

If x

h y h > 2. Since x ≥ x h -u and y ≥ y h -u, we have xy ≥ x h y h -u(x h + y h) + u 2 > 2 -u(4 -4u) + u 2 = 2 -4u + 5u 2 .
Hence the relative error is bounded by

9u 2 2 -4u + 5u 2 = 9 2 u 2 + 9u 3 + 27 4 u 4 + • • • . (2.16) 2. If x h y h ≤ 2.
We now obtain |c 1 | ≤ u. Furthermore, Lemma 2.2.7 implies

x h + y h ≤ 2 √ 2.
(2.17)

We have,

|t 1 | = | RN(x h y)| ≤ RN(x h u) = x h u,
and, similarly, |t 2 | ≤ y h u, so that, using (2.17),

|t 1 + t 2 | ≤ x h u + y h u ≤ 2 √ 2u. (2
| ≤ |t 1 + t 2 | + | 3 | ≤ 2 √ 2u + 2u 2 .
Consequently (1-u 2) 2 . However, that error bound can be made slightly smaller by noticing that if x h = 1 or y h = 1 then, either 1 = 0 or 2 = 0, which results in a significantly smaller bound for |η|. So we can assume that x h ≥ 1 + 2u (hence, x > 1 + u) and y h ≥ 1 + 2u (hence, y > 1 + u). Therefore the relative error is bounded by

|c 1 + c 2 | ≤ u • (2 √ 2 + 1) + 2u
7u 2 (1 + u) 2 < 7u 2 .
(The bound provided by Theorem 2.2.8 is probably too pessimistic. The largest relative error we have encountered in our tests using binary32 and binary64 formats are the ones given in Example 2.2.9 and Example 2.2.10, respectively. Example 2.2.9. If we have as input for Algorithm 13, with binary32 as underlying arithmetic, the values: 25 , y h = 8414932, and y = 16756961/2 25 , then the relative error of the algorithm is 4.947 × 2 -48 .

x h = 8399376, x = 16763823/2
Example 2.2.10. If we have as input for Algorithm 13, with binary64 as underlying arithmetic, the values: 54 , y h = 4504969740576150, and y = -4503599627273753/2 53 , then the relative error of the algorithm is

x h = 4508231565242345, x = -9007199254524053/2
4.9916 × 2 -106 .
As in the case of multiplication of a double-word number by a floating-point number, Algorithm 13 can also be improved if an FMA instruction is available, by merging lines 3 and 4, as showed in Algorithm 14 below, with the corresponding error bound given in Theorem 2.2.11. This way we save one floating-point operation and we are able to slightly improve our error bound. Algorithm 14 -DWTimesDW2(x h , x , y h , y).

1: (c h , c 1) ← 2ProdFMA(x h , y h) 2: t ← RN(x h • y) 3: c 2 ← fma(x , y h , t) 4: c 3 ← RN(c 1 + c 2) 5: (z h , z) ← Fast2Sum(c h , c 3) 6: return (z h , z)
Theorem 2.2.11. If p ≥ 5, the relative error of Algorithm 14 (DWTimesDW2) is less than or equal to

6u 2 + 1 2 u 3 (1 + u) 2 < 6u 2 .
Proof. The proof is very similar to the proof of Theorem 2.2.8, and follows the same structure, so we do not detail it. The major changes are:

• the term 2 of the proof of Theorem 2.2.8 no longer exists;

• c 2 = x y h + t + 3 , where 3 ≤ 2u 2 ,
• instead of (2.15), we now have

z h + z = xy -x y + 1 + 3 + 4 = xy + η, with |η| ≤ u 2 + | 1 + 3 + 4 | ≤ 8u 2 .
We do not know if the bound given by Theorem 2.2.11 is optimal, because the largest errors we have obtained during intensive random testing are the ones presented in Example 2.2.12 and Example 2.2.13 below.

Example 2.2.12. If we have as input for Algorithm 14, with binary64 as underlying arithmetic, the values: 24 , y h = 8409182, and y = -4193899/2 23 , then the relative error of the algorithm is 4.936 × 2 -48 .

x h = 8404039, x = -8284843/2
Example 2.2.13. If we have as input for Algorithm 14, with binary64 as underlying arithmetic, the values: 52 , y h = 4503988428047019, and y = -2248477851812015/2 52 , then the relative error of the algorithm is

x h = 4515802244422058, x = -2189678420952711/2
4.9433 × 2 -106 .
The multiplication algorithm for two double-word numbers can be improved even further, by taking into account also the partial product x y . The algorithm that does this is shown in Algorithm 15, with the corresponding error bound in Theorem 2.2.14.

Algorithm 15 -DWTimesDW3(x h , x , y h , y).

1: (c h , c 1) ← 2ProdFMA(x h , y h) 2: t 0 ← RN(x • y) 3: t 1 ← fma(x h , y , t 0) 4: c 2 ← fma(x , y h , t 1) 5: c 3 ← RN(c 1 + c 2) 6: (z h , z) ← Fast2Sum(c h , c 3) 7: return (z h , z)
Theorem 2.2.14. If p ≥ 4, the relative error of Algorithm 15 (DWTimesDW3) is less than or equal to

5u 2 + 1 2 u 3 (1 + u) 2 < 5u 2 .
Proof. The proof is very similar to the proof of Theorem 2.2.8, and follows the same structure, so we do not detail it. The major changes are:

• t 1 = x h y + x y + 1 , where 1 , now, is bounded by u 2 + u 3 2 ,
• the term 2 of the proof of Theorem 2.2.8 no longer exists;

• instead of (2.15), we now have

z h + z = xy + 1 + 3 + 4 = xy + η, with |η| ≤ | 1 + 3 + 4 | ≤ 7u 2 + u 3 2 .
We do not know if the bound given by Theorem 2.2.11 is optimal. The largest relative error we have encountered so far in intensive tests is the one presented in Example 2.2.15.

Example 2.2.15. If we have as input for Algorithm 14, with binary64 as underlying arithmetic, the values: 53 , y h = 4511576932111935, and y = 2250098448199619/2 52 , then the relative error of the algorithm is 3.936 × 2 -106 .

x h = 4510026974538724, x = 4232862152422029/2

Division of double-word numbers

The same as for the double-word multiplication, the division algorithms follow the paper-andpencil technique, this is why they are called long division algorithms. More specifically, when computing the division of two real numbers, x ÷ y, we first aproximate the quotient q 0 = x y , then compute the reminder r = x -q 0 y, and we finish by computing a second correction term q 1 = r y . In what follows we show how we apply this techique to double-word division.

Division of a double-word number by a floating-point number

The algorithm suggested by Li et al. in [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF] for dividing a double-word number by a floatingpoint number is Algorithm 16 below.

Let us notice that Algorithm 16 can be simplified. We have

t h = x h y (1+ 0) and π h = t h y(1+ 1), with | 0 |, | 1 | ≤ u. Hence, (1 -u) 2 x h ≤ π h ≤ (1 + u) 2 x h .
Therefore, as soon as p ≥ 2 (i.e., u ≤ 1 4), π h is within a factor 2 from x h , and Sterbenz Lemma (Lemma 1.1.2) implies that x h -π h is an exact floating-point number. As a deduction, we always have δ = 0 and δ = δ = RN(x -π), so line 3 of the algorithm can be replaced by a simple subtraction. As a consequence, Algorithm 16 can be simplified into Algorithm 17 (Figure 2.7) Algorithm 16 -DWDivFP1(x h , x , y).

1: t h ← RN(x h /y) 2: (π h , π) ← 2Prod(t h , y) 3: (δ h , δ) ← 2Sum(x h , -π h) 4: δ ← RN(x -π) 5: δ ← RN(δ + δ) 6: δ ← RN(δ h + δ) 7: t ← RN(δ/y) 8: (z h , z) ← Fast2Sum(t h , t) 9: return (z h , z)
below, that is mathematically equivalent (always returns the same result) while being significantly simpler.

Algorithm 17 -DWDivFP2(x h , x , y). In the proof of Theorem 2.3.1 we make use of Lemma 2.3.2 for which we also give a short proof.

1: t h ← RN(x h /y) 2: (π h , π) ← 2Prod(t h , y) 3: δ h ← x h -π h //exact operation 4: δ ← RN(x -π) 5: δ ← RN(δ h + δ) 6: t ← RN(δ/y) 7: (z h , z) ← Fast2Sum(t h , t) 8: return (z h , z)
Lemma 2.3.2. Assume a radix-2, precision-p, floating-point arithmetic. Let x and y be floating-point numbers between 1 and 2. The distance between RN(x y) and x y is less than

   u -2u 2 y if x y ≥ 1; u 2 -u 2 y
otherwise.

(2.20)

Proof. It suffices to estimate the smallest possible distance between x y and a "midpoint" (i.e., a number exactly halfway between two consecutive floating-point numbers). Let

x = M x • 2 -p+1 , y = M y • 2 -p+1 , with 2 p-1 ≤ M x , M y ≤ 2 p -1. • If x y ≥ 1, a midpoint µ between 1 and 2 has the form 2Mµ+1 2 p , with 2 p-1 ≤ M µ ≤ 2 p -1. We have x y -µ = 2 p M x -M y (2M µ + 1) 2 p M y .
The numerator,

2 p M x -M y (2M µ + 1), of that fraction cannot be zero: since 2M µ + 1 is odd, having 2 p M x = M y (2M µ + 1) would require M y to be a multiple of 2 p , which is impossible since M y ≤ 2 p -1.
Hence that numerator has absolute value at least 1. And so

x y -µ ≥ 1 2 p M y = 2u 2 y .
• If x y < 1 the proof is similar. The only change is that a midpoint is of the form

2Mµ+1 2 p+1 .
Note that in a more recent result [39, Table 1], a similar bound obtained for division could be used instead of Lemma 2.3.2, but we include it for completeness. Let us now prove Theorem 2.3.1.

Proof. (Of Theorem 2.3.1) The case where y is a power of 2 is straightforward, so we omit it. Without loss of generality, we assume 1 ≤ x h ≤ 2 -2u, so that |x l | ≤ u, and

1 + 2u ≤ y ≤ 2 -2u. There on 1 2 -2u ≤ x h y ≤ 2 -2u 1 + 2u . (2.21)
The quotient 1 2-2u is always larger than 1 2 + u 2 , and, as soon as

p ≥ 4, 2-2u 1+2u is less than 2 -5u. Therefore 1 2 + u ≤ t h = RN x h y ≤ 2 -6u. (2.22) 1. If x ≥ y, implying x h ≥ y and t h ≥ 1, then Lemma 2.3.2 implies t h - x h y ≤ u - 2u 2 y , hence |t h y -x h | ≤ uy -2u 2 ≤ 2u -4u 2 . Consequently π h = RN(t h y) ∈ {x h -2u, x h , x h + 2u}.
One might think that π h could be x h -u in the case x h = 1, but x h = 1 is not compatible with our assumptions, x ≥ y and y ≥ 1 + 2u. We also have,

|t h y| ≤ |t h y -x h | + |x h | ≤ 2u -4u 2 + 2 -2u = 2 -4u 2 , (2.23) which implies |π | ≤ 1 2 ulp(t h y) = u. In all cases x h -π h ∈ {-2u, 0, 2u}, so that δ h = x h -π h . Also, from |π | ≤ u and |x | ≤ u, we deduce |π -x | ≤ 2u. As a consequence, |δ | ≤ 2u, and 1 = δ -(x -π) satisfies | 1 | = |δ -(x -π)| ≤ u 2 .
(2.24)

Define 2 = δ -(δ h + δ). • If δ h = -2u then x h -π h = -2u, so that π = t h y -π h = (t h y -x h) + (x h -π h) satisfies π ≤ (2u -4u 2) + (-2u) ≤ -4u 2 . Hence -u ≤ π ≤ -4u 2 , so that -u + 4u 2 ≤ δ ≤ 2u, which implies -3u + 4u 2 ≤ δ h + δ ≤ 0. Furthermore, -if u ≤ δ ≤ 2u then Sterbenz's Lemma implies that δ h + δ is a floating-point number, so that 2 = 0; -if -u + 4u 2 ≤ δ < u then -3u + 4u 2 < δ h + δ < -u, hence | 2 | = |δ -(δ h + δ)| ≤ 1 2 ulp(3u) = 2u 2 .
However, in that case, since |δ | < u, the bound (2.24) is improved and becomes

| 1 | ≤ u 2 2 . Hence, if δ h = -2u, we always have | 1 + 2 | ≤ 5u 2 2 .
• Symmetrically, if δ h = 2u we also always have

| 1 + 2 | ≤ 5u 2 2 . • If δ h = 0 then |δ h + δ | = |δ | ≤ 2u.
Since there is no error when adding δ h and δ , we have

2 = 0. Hence, δ = (x h -π h) + (x -π) + δ -(x -π) 1 + δ -(δ h + δ) 2 , = x -t h y + with | | = | 1 + 2 | ≤ 5u 2 2 .
We deduce

δ y = x y -t h + y . (2.25)
Let us now bound the error committed when rounding δ y . For that purpose, we first try to find a reasonably tight bound on δ y (tighter than the obvious bound we would obtain by dividing the upper bound 3u 2 on δ by the lower bound 1 + 2u on y). We have

x y -t h ≤ x h y -t h + x y ≤ u -2u 2 y + u y , and
y ≤ 5u 2 2y .
Therefore, using (2.25),

δ y ≤ u + u 2 2y + u y ≤ u + u 2 2(1 + 2u) + u 1 + 2u = 4u + 5u 2 2 + 4u < 2u.
Hence |t | ≤ 2u, which means, since t h ≥ 1, that Algorithm Fast2Sum introduces no error at line 7 of the algorithm. Also,

t - δ y = RN δ y - δ y ≤ u 2 .
Therefore, using (2.25),

t = x y -t h + y + , (2.26)
with | | ≤ u 2 . We finally conclude that

(z h + z) - x y = (t h + t) - x y ≤ 5u 2 2y + u 2 , (2.27)
so that the relative error is bounded by

y x 5u 2 2y + u 2 ≤ 5u 2 2x + u 2 y x ≤ 7u 2 2 = 3.5u 2 ,
since y x ≤ 1.

If

x < y, implying x h ≤ y and t h ≤ 1.

We first notice that the case x h = y is easily handled. It leads to

t h = 1, π h = x h , π = 0, δ = x , and z h + z = t h + t = x y + η, with |η| ≤ u |x | y ≤ u 2 x y .
We can now focus on the case x h < y. Notice that this case implies

x h ≤ y-2u, so that x ≤ y-u, so that x y ≤ 1 -u y ≤ 1 -u 2-2u < 1 -u 2 , which implies t h ≤ 1 -u.
The remainder of the proof is very similar to the proof of the case x > y, so we give it with less details. Lemma 2.3.2 implies

t h - x h y ≤ u 2 - u 2 y , so that |t h y -x h | ≤ u 2 • y -u 2 ≤ u -2u 2 . This implies π h = RN(t h y) ∈ {x h -u, x h }, so that δ h ∈ {0, u}. The case RN(t h y) = x h -u (i.e., δ h = u) being possible only when x h = 1. We also have |t h y| ≤ |t h | • |y| ≤ (1 -u) • (2 -2u) = 2 -3u + 2u 2 , so that |π | ≤ 1 2 ulp(t h y) ≤ u. As previously, define 1 = δ -(x -π) and 2 = δ -(δ h + δ). From |π | ≤ u and |x | ≤ u, we deduce |δ | ≤ 2u and 1 ≤ u 2 . • If δ h = 0 then 2 = 0. • If δ h = u (which implies x h = 1), then, since π h = 1 -u, we have t h y < 1. This implies |π | ≤ 1 2 ulp(t h y) ≤ u 2 . We also have π = t h y -π h = (t h y -x h) + (x h -π h) ≥ -u + 2u 2 + u = 2u 2 , hence, 2u 2 ≤ π ≤ u 2 .
(2.28)

Also, x h = 1 implies -u 2 ≤ x ≤ u. Therefore -u ≤ x -π ≤ u -2u 2 , so that -u ≤ δ ≤ u -2u 2 , and | 1 | ≤ u 2 2 . From 0 ≤ δ + δ h ≤ 2u -2u 2 , we deduce | 2 | ≤ u 2 .
Hence,

δ = (x h -π h) + (x -π) + δ -(x -π) 1 + δ -(δ h + δ) 2 = x -t h y + , with | | = | 1 + 2 | ≤ 3u 2 2 . We deduce δ y ≤ x h y -t h + x y + y ≤ u 2 + 2u 2 y + u y <

Division of two double-word numbers

The algorithm implemented in the QD library for dividing two double-word numbers is Algorithm 18. It follows the same structure as Algorithm 16, the only difference is that the reminder is computed using Algorithm 10 (DWTimesFP1) for multiplying a double-word number by a floating-point one.

Algorithm 18 -DWDivDW1(x h , x , y h , y).

1: t h ← RN(x h /y h) 2: (r h , r l) ← DWTimesFP1(y h , y , t h) //approximation to (y h + y)t h with relative error ≤ 1.5u 2 + 4u 3 using Alg. 10 3: (π h , π) ← 2Sum(x h , -r h) 4: δ h ← RN(π -r) 5: δ ← RN(δ h + x) 6: δ ← RN(π h + δ) 7: t ← RN(δ/y h) 8: (z h , z) ← Fast2Sum(t h , t) 9: return (z h , z)
Let us quickly analyze the beginning of Algorithm 18. This will lead us to suggest another algorithm, faster yet mathematically equivalent (as soon as p ≥ 3, it always returns the very same result). Without loss of generality, we assume x h > 0 and y h > 0. Define x and y such that x h = x(1 + x) and y h = y 1+ y . These two numbers x and y have an absolute value less than or equal to u. We have

t h = x h y h (1 + 0), with | 0 | ≤ u, (2.29)
and, from Theorem 2.2.1,

r h + r = t h y(1 + η), with |η| ≤ 3 2 u 2 + 4u 3 .
(2.30)

There exists | 1 | ≤ u such that r h = (r h + r)(1 + 1)
. This can be rewritten r = -1 (r h + r), so that, using (2.30), r = -1 t h y(1 + η). We finally obtain

r h = t h y h (1 + y)(1 + 1)(1 + η) = x h (1 + y)(1 + 0)(1 + 1)(1 + η), (2.31)
so that

(1 -u) 3 (1 -2u 2)x h ≤ r h ≤ (1 + u) 3 (3 2 u 2 + 4u 3)x h , from which we deduce |x h -r h | ≤ (3u + 9 2 u 2 + 19 2 u 3 + 33 2 u 4 + 27 2 u 5 + 4u 6) • x h . This implies |x h -r h | ≤ (3u + 6u 2) • x h (2.32)
as soon as p ≥ 3. One easily checks that for p ≥ 3 (i.e., u ≤ 1 8), 3u + 6u 2 is less than 1 2 . Hence, From Sterbenz Lemma (Lemma 1.1.2), the number x h -r h is an exact floating-point number. Therefore, the number π obtained at line 3 of the algorithm is always 0 and that line can be replaced by a simple, errorless, subtraction. This gives π h = x h -r h , and δ h = -r . Thus, without changing the final result, we can replace Algorithm 18 by the simpler Algorithm 19 (Figure 2.8), below.

Algorithm 19 -DWDivDW2(x h , x , y h , y). Proof. For reasons of symmetry, we can assume that x and y are positive. We will use the results (2.29) to (2.32) obtained when analyzing the beginning of Algorithm 18. Assume p ≥ 7. It follows

1: t h ← RN(x h /y h) 2: (r h , r l) ← DWTimesFP1(y h , y , t h) //approxima- tion to (y h + y)t h with relative error ≤ 1.5u 2 + 4u 3 using Alg. 10 3: π h ← x h -r h //exact operation 4: δ ← RN(x -r) 5: δ ← RN(π h + δ) 6: t ← RN(δ/y h) 7: (z h , z) ← Fast2Sum(t h , t) 8: return (z h , z)
δ = (x -r)(1 + 2), with | 2 | ≤ u, We have |x | ≤ ux h and |r | ≤ ur h , so that |x -r | ≤ |x | + |r | ≤ ux h + ur h ≤ ux h + u ((r h -x h) + x h) ≤ ux h + u (|r h -x h | + x h) .
Therefore, using (2.32) (which holds since we assume p ≥ 7),

|x -r | ≤ ux h + u (3u + 6u 2)x h + x h , which gives |x -r | ≤ (2u + 3u 2 + 6u 3)x h . (2.33) We have δ = (π h + δ)(1 + 3), with | 3 | ≤ u, so that δ = x h -r h + x -r + (x -r)(2 + 3 + 2 3) + (x h -r h) 3 , = x -(r h + r) + αx h ,
with (using (2.32) and (2.33))

|α| ≤ (2u + 3u 2 + 6u 3)(2u + u 2) + (3u + 6u 2)u ≤ 7u 2 + 15u 3 (2.34) as soon as p ≥ 4. Hence δ = x -t h y(1 + η) + αx h , so that δ y h = x -t h y y • y y h - ηt h y y h + α x h y h . (2.35)
The number x -t h y is equal to

x h -t h y h + x -t h y . From (2.29), x h -t h y h is equal to -x h 0 . Also,
|x | is less than or equal to ux h , and

|t h y | ≤ |ut h y h | ≤ u(1 + u)x h . Hence, |x -t h y| ≤ x h (u + u + u(1 + u)) = x h (3u + u 2). (2.36)
From (2.35), we deduce

δ y h = x-t h y y (1 + y) -ηt h (1 + y) + α x h y h , = x-t h y y + β, (2.37)
with

|β| = y x-t h y y -t h (1 + y)η + x h y h ≤ u(3u + u 2) x h y + (1 + u)(2u 2) x h y h + (7u 2 + 15u 3) x h y h ≤ u(3u + u 2)(1 + u) x y + (1 + u) 3 (2u 2) x y + (7u 2 + 15u 3)(1 + u) 2 x y = 12u 2 + 39u 3 + 44u 4 + 17u 5 x y .
(2.38)

Hence, t = RN δ y h = δ y h (1 + 4) with | 4 | ≤ u, = x-t h y y + β (1 + 4) = x-t h y y + γ, (2.39)
with

|γ| = x-t h y y 4 + β + 4 β ≤ x h y (3u + u 2)u + β + βu ≤ (3u + u 2)u(1 + u) x y + β + βu = 15u 2 + 55u 3 + 84u 4 + 61u 5 + 17u 6 x y .
(2.40)

Hence t h + t = x y + γ.
Since we straightforwardly have

t h ≥ x y (1 -u)
z h + z = t h + t = x y + γ,
so that the relative error is upper-bounded by

15u 2 + 55u 3 + 84u 4 + 61u 5 + 17u 6 ,
which is less than 15u 2 +56u 3 as soon as p ≥ 7 (i.e., u ≤ 1/128), which always holds in practice.

The bound provided by Theorem 2.3.4 is almost certainly not optimal. However, during many random tests, we have encountered cases (Example 2.3.5) for which the relative error, although significantly less than the bound 15u 2 + 56u 3 , remains of a similar order of magnitude, i.e., more than half the bound. Now, notice that if an FMA instruction is available, it is possible to design an even more accurate algorithm. This is possible due to Property 2.3.6 that is easy to prove, and common knowledge among the designers of Newton-Raphson based division algorithms (we will extensively treat this subject in Chapter 3, Section 3.5). Property 2.3.6. If x is a nonzero floating-point number, and if t = RN(1x), then xt -1 is a floating-point number.

Chapter 2. Double-Word Arithmetic Proof. Without loss of generality we assume 1 ≤ x ≤ 2 -2u, which implies that x is a multiple of 2 -p+1 = 2u. The number 1

x is between 1 2-2u = 1 2 + u 2 + u 2 2 + • • • and 1, and so t is between 1 2 and 1, so t is a multiple of 2 -p = u. From

1 -u x ≤ t ≤ 1 + u x we deduce -u ≤ 1 -xt ≤ u.
Hence, 1 -xt is a multiple of 2 -2p+1 of absolute value less than or equal to 2 -p , which implies that it is an exact floating-point number.

The improved algorithm, based on the above property, is the one given in Algorithm 20 and Figure 2.9, with the corresponding error bound in Theorem 2.3.7.

Algorithm 20 -DWDivDW3(x h , x , y h , y). Proof. Roughly speaking, Algorithm 20 first approximates 1 y by t h = RN(1 y h), then improves that approximation to 1 y by performing one step of Newton-Raphson iteration, and then multiplies the obtained approximation (m h , m) by x.

1: t h ← RN(1/y h) 2: r h ← fma(-y h , t h , 1) //exact operation 3: r ← RN(-y • t h) 4: (e h , e) ← Fast2Sum(r h , r) 5: (δ h , δ) ← DWTimesFP3(e h ,
Without loss of generality, we assume 1 ≤ y h ≤ 2 -2u, so that 1 2 ≤ t h ≤ 1. We have

t h - 1 y h ≤ u 2 ,
and (from Property 2.3.6)

r h = 1 -y h t h .
We also easily check that

t h (2 -yt h) - 1 y = -y t h - 1 y 2 . (2
|r + y t h | ≤ u 2 2 .
This gives

e h + e = r h + r = 1 -y h t h -y t h + η, with |η| ≤ u 2 2 . (2.44) Also, since |y h t h -1| = y h |t h -1 y h | ≤ u, we have |r h | ≤ u, hence |r h + r | ≤ 2u. This implies |e h | ≤ 2u and |e | ≤ u 2 . Define e = e h + e = r h + r , we have |e| ≤ 2u.
Now, from Theorem 2.2.5, we have

δ h + δ = et h (1 + ω 1), with |ω 1 | ≤ 2u 2 , (2.45)
and from Theorem 2.1.1, we have

m h + m = (t h + δ h + δ)(1 + ω 2), with |ω 2 | ≤ 2u 2 + 5u
m h + m = (t h + et h (1 + ω 1))(1 + ω 2) = t h + et h + et h ω 1 + ω 2 t h + ω 2 et h + ω 2 ω 1 et h = t h + et h + αt h , (2.47)
with

|α| = |eω 1 + ω 2 + ω 2 e + ω 2 ω 1 e| ≤ (2u)(2u 2) + (2u 2 + 5u 3) + (2u 2 + 5u 3)(2u) + (2u 2 + 5u 3)(2u 2)(2u) = 2u 2 + 13u 3 + 10u 4 + 8u 5 + 20u 6 ≤ 2u 2 + 14u 3 as soon as p ≥ 4.
(2.48)

Therefore,

m h + m = t h + et h + αt h = t h + t h (1 -yt h + η) + αt h = t h (2 -yt h) + t h (η + α),
which implies

(m h + m) - 1 y = t h (2 -yt h) - 1 y + t h (η + α) ,
so that, using (2.43) and the bounds on η and α,

(m h + m) - 1 y ≤ y t h - 1 y 2 + t h 5 2 u 2 + 14u 3 . (2.49)
Let us now consider

y 2 t h - 1 y .
That term is less than

y 2 t h - 1 y h + y -y h yy h 2 ,
which is less than

y 2 u 2 1 2 + 1 y(y -u) 2 .
The largest value of

y 2 1 2 + 1 y(y -u) 2
for 1 ≤ y < 2 is always attained for y = 1, so that as soon as p ≥ 6 (i.e., u ≤ 1 64), we have

y 2 t h - 1 y ≤ 1 2 + 1 1 -1 64 2 u 2 = 36481 15876 u 2 ≤ 2.298u 2 .
Hence, from (2.49), we obtain

(m h + m) - 1 y ≤ 1 y 2.298u 2 + t h 5 2 u 2 + 14u 3 , which implies x(m h + m) - x y ≤ x y 2.298u 2 + xt h 5 2 u 2 + 14u 3 . Notice that |t h | ≤ 1+u y h ≤ (1+u) 2 y
, so that

x(m h + m) - x y ≤ x y ϕ(u), (2.50)
with ϕ(u) = 2.298u 2 + (1 + u) 2 5 2 u 2 + 14u 3 . Now, from Theorem 2.2.5, we have

|z h + z -x(m h + m)| ≤ 5u 2 |x(m h + m)| ≤ 5u 2 x y + 5u 2 x y -x(m h + m) ≤ x y 5u 2 + 5u 2 ϕ(u) .
(

Comparison and discussion

In this chapter we have proven relative error bounds for several basic building blocks of double-word arithmetic, suggested two new algorithms for multiplying two double-word numbers, suggested an improvement of the algorithms used in the QD library for dividing a doubleword number by a floating-point number, and for dividing two double-word numbers. We have also suggested a new algorithm for dividing two double-word numbers when an FMA instruction is available.

Table 2.2 summarizes the obtained results. For the functions for which an error bound was already published, we always obtain a significantly smaller bound, except in one case, for which the previously known bound turned out to be slightly incorrect. Our results make it possible to have more trust in double-word arithmetic. They also allow us to give some recommendations:

• For adding two double-word numbers, one should never use Algorithm 8, unless one is certain that both operands have the same sign. Double-word numbers can be added very accurately using the (unfortunately more expensive) Algorithm 9.

• For multiplying a double-word number by a floating-point number, Algorithm 10 is the most accurate, while Algorithm 11 is slightly less accurate, yet slightly faster. Hence one cannot say that one is really better than the other one. The choice between them depends on whether one mainly needs speed or accuracy. If an FMA instruction is available, Algorithm 12 is a good candidate.

• For multiplying two double-word numbers, if an FMA instruction is available, Algorithm 15 is to be favoured. It is more accurate both from a theoretical (better error bound) and from a practical (smaller observed errors in our intensive testings) point of view.

• There is no point in using Algorithm 16 for dividing a double-word number by a floatingpoint number. Algorithm 17, introduced here, always returns the same result and it is faster.

• There is no point in using Algorithm 18 for dividing two double-word numbers. Algorithm 19, presented in this paper, always returns the same result and it is faster. If an FMA instruction is available, depending whether the priority is speed or accuracy, one might prefer Algorithm 20. It is almost certainly significantly more accurate (although we have no full proof of that: we can just say that our bounds are smaller, as well as the observed errors), however, it is slower. In Table 2.3 we present an overview of the performance obtained using the algorithms presented in this chapter when run both on CPU and on GPU. 2 The values are given in Mop/s (Mega operations per second) and were obtained on the architectures described in Section 1.4.1. We also include the floating-point operation count.

In the below table you can see that most of the algorithms perform as expected, in accordance with their floating-point operations count. However, this is not the case of Algorithm 20 for which we obtained an exceptional performance. After analyzing the situation, we concluded that this is due to compiler optimizations at instruction level parallelism and also, the capacity of the algorithm to fill up the pipeline. This does not mean that we always recommend the use of this algorithm for dividing two double-word numbers; in a real world application the performance will depend heavily on the type of the application.

Floating-Point Expansions Arithmetic

Înţeleptul învaţȃ din pȃţania altora, nesocotitul nici din a sa.

Romanian proverb

In this chapter we deal with the so-called floating-point expansions, i.e., the representation of real numbers as the unevaluated sum of several (more than two) standard machine precision floating-point numbers. Firstly we present two new (re-)normalization algorithms that are meant to ensure that the expansions satisfy their formal definition; these will be the base of all other arithmetic algorithms. We develop algorithms for all basic operations (addition/subtraction, multiplication, reciprocal/division and square root) and we provide them with correctness and error bound proofs.

This work was partially published in: -On the computation of the reciprocal of floating point expansions using an adapted Newton-Raphson iteration [START_REF] Joldes | On the computation of the reciprocal of floating point expansions using an adapted newton-raphson iteration[END_REF] In the previous chapter we just doubled the available precision, but now we want to achieve arbitrary precision (or rather moderately arbitrary precision: for precisions of thousands of digits other solutions are preferred). A natural extension of the notion of double-word is the notion of floating-point expansion. If, starting from a set of floating-point inputs, we only perform exact additions, subtractions, or multiplications, then the values we obtain are always equal to finite sums of floating-point numbers. Such finite sums are called expansions and they are formally defined in Definition 3.0.1. Definition 3.0.1. A floating-point expansion x with n terms is the unevaluated sum of n floating-point numbers x 0 , . . . , x n-1 , in which all nonzero terms are ordered by magnitude (i.e., if y is the sequence obtained by removing all zeros in the sequence x, and if sequence y contains m terms,

|y i | ≥ |y i+1 |, for all 0 ≤ i < m -1). Each x i is called a component (or a term) of x.
A natural idea is to try to manipulate such expansions for performing calculations that are either exact, either approximate yet very accurate. The arithmetic on floating-point expansions was first developed by Priest [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF], and in a slightly different way by Shewchuk [START_REF] Shewchuk | Adaptive precision floating-point arithmetic and fast robust geometric predicates[END_REF].

One may notice that the notion of expansion is "redundant" since a nonzero number always has more than one representation as a floating-point expansion. To make the concept useful in practice and easy to manipulate, we must introduce a constraint on the components: the x i 's cannot "overlap". The notion of (non)overlapping varies depending on the authors. We present here three definitions that were already present in the literature (Definition 3.0.3 to 3.0.5) and we introduce a new one (Definition 3.0.6) that allows for a relatively relaxed handling of the floating-point expansions and keeps the redundancy to a minimum. An expansion may contain interleaving zeros, but the definitions that follow apply only to the non-zero terms of the expansion (i.e., the array y in Definition 3.0.1). Definition 3.0.2. (P-nonoverlapping floating-point numbers) Assuming x and y are normal numbers with representations M x • 2 ex-p+1 and M y • 2 ey-p+1 (with 2 p-1 ≤ |M x | , |M y | ≤ 2 p -1), they are Pnonoverlapping (that is, nonoverlapping according to Priest's definition [START_REF] Priest | On Properties of Floating-Point Arithmetics: Numerical Stability and the Cost of Accurate Computations[END_REF]) if |e y -e x | ≥ p. Definition 3.0.3. A floating-point expansion x 0 , x 1 , . . . , x n-1 is P-nonoverlapping (that is, nonoverlapping according to Priest's definition [START_REF] Priest | On Properties of Floating-Point Arithmetics: Numerical Stability and the Cost of Accurate Computations[END_REF]) if all of its components are mutually P-nonoverlapping (i.e., |x i | < ulp(x i-1), for all 0 < i < n).

Shewchuk [START_REF] Shewchuk | Adaptive precision floating-point arithmetic and fast robust geometric predicates[END_REF] weakens this into nonzero-overlapping sequences, as it follows in Definition 3.0.4. Definition 3.0.4. A floating-point expansion x 0 , x 1 , . . . , x n-1 is S-nonoverlapping (that is, nonoverlapping according to Shewchuk's definition [START_REF] Shewchuk | Adaptive precision floating-point arithmetic and fast robust geometric predicates[END_REF]) if for all 0 < i < n, we have

e x i-1 -e x i ≥ p -z x i-1
, where e x i-1 and e x i are the exponents of x i-1 and x i , respectively, and z x i-1 is the number of trailing zeros of x i-1 . This can be translated into |x i | < uls(x i-1), for all 0 < i < n.

In general, a P-nonoverlapping expansion carries more information than a Snonoverlapping one with the same number of components. In the worst case, in radix 2, a S-nonoverlapping expansion with 53 components may not contain more information than one binary64 floating-point number; it suffices to put one bit of information into every component.

When Priest first started developing the floating-point expansion arithmetic, he considered that all the computations were done in faithful floating-point arithmetic (see [START_REF] Priest | On Properties of Floating-Point Arithmetics: Numerical Stability and the Cost of Accurate Computations[END_REF]), since round-tonearest rounding mode was not so common. More recently, a slightly stronger sense of nonoverlapping was introduced by Hida, Li and Bailey [START_REF] Hida | Algorithms for quad-double precision floating-point arithmetic[END_REF] (see Definition 3.0.5). Definition 3.0.5. A floating-point expansion x 0 , x 1 , . . . , x n-1 is B-nonoverlapping (that is, nonoverlapping according to Bailey's definition [START_REF] Hida | Algorithms for quad-double precision floating-point arithmetic[END_REF]) if for all 0 < i < n, we have |x i | ≤ 1 2 ulp(x i-1).

A visual representation of the above definitions, inspired from [START_REF] Ogita | Accurate sum and dot product[END_REF], in order of their "strength" (from (a) the strongest to (c) the weakest) is given in Figure 3.1.

Intuitively, the stronger the sense of the (non)overlapping definition, the more difficult it is to guarantee it in the output. In practice, even the P-nonoverlapping property proved to be quite difficult and costly to obtain. In the same time, the S-nonoverlapping property is not strong enough. On account of that we chose to compromise by using a different sense of (non)overlapping, referred to as ulp-nonoverlapping , that we formally introduce in Definition 3.0.6. Definition 3.0.6. A floating-point expansion x 0 , x 1 , . . . , x n-1 is ulp-nonoverlapping if for all 0 < i < n,

|x i | ≤ ulp(x i-1).
In other words, the components are either P-nonoverlapping or they overlap by one bit, in which case the second component is a power of two. This is showed in Figure 3.2. Remark 3.0.7. Note that for P-nonoverlapping expansions we have

|x i | ≤ 2 p -1 2 p ulp(x i-1)
and for S-nonoverlapping expansions

|x i | ≤ 2 p -1 2 p uls(x i-1).
Depending on the nonoverlapping type of an expansion, when using standard floating-point formats as underlying arithmetic, the exponent range forces a constraint on the number of terms. The largest expansion can be obtained when the largest term is close to overflow and the smallest is close to underflow. We remark that, when using B-nonoverlapping , P-nonoverlapping or ulpnonoverlapping expansions, for the two most common floating-point formats, the constraints are:

• for binary64 (exponent range [-1022, 1023]) the maximum expansion size is 39;

• for binary32 (exponent range [-126, 127]) the maximum expansion size is 12.

In this thesis we will manipulate only ulp-nonoverlapping expansions. The only previously existing algorithms for manipulating arbitrary precision floating-point expansions that come with rigorous correctness proofs are the ones given by Priest in [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF], so we use them for comparison.

The outline of the chapter is structured as follows: in Section 3.1 we introduce two classical algorithms that we make use of in different contexts. We then proceed to introducing algorithms for basic operations using floating-point expansions: renormalization (Section 3.2), addition (Section 3.3), multiplication (Section 3.4), reciprocal/division (Section 3.5) and square root (Section 3.6). We end the chapter by comparing the algorithms in Section 3.7.

Prerequisites

Before going further into the algorithms for performing arithmetic operations using floatingpoint expansions we need to introduce two classical algorithms of which we are going to make extensive use. We employ these algorithms in different contexts, considering different input/output constraints, so, for clarity, we present all their properties here, providing proofs.

Overlapping numbers. We need to formally define the concept of floating-point numbers that overlap by at most d digits. This is done in Definition 3.1.1, from where we can deduce and prove Property 3.1.2. Definition 3.1.1. Consider an array of floating-point numbers: x 0 , x 1 , . . . , x n-1 . According to Priest's [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF] definition, they overlap by at most d digits (0 ≤ d < p) if and only if ∀i, 0 ≤ i ≤ n -2, ∃k i , δ i such that:

2 k i ≤ |x i | < 2 k i +1 , (3.1
)

2 k i -δ i ≤ |x i+1 | ≤ 2 k i -δ i +1 , (3.2)
δ i ≥ p -d, (3.3)
δ i + δ i+1 ≥ p -z i-1 , (3.4)
where z i-1 is the number of trailing zeros at the end of x i-1 and for i = 0, z -1 := 0.

Loosely speaking, if the terms were to be written in positional notation, the digits of any two successive non-zero terms would coincide in at most d digit positions, and no three terms would mutually coincide in any digit position. Property 3.1.2. Let x 0 , x 1 , . . . , x n-1 be an array of floating-point numbers that overlap by at most d digits (0 ≤ d < p). The following properties hold:

|x i+1 | < 2 d ulp(x i), (3.5
)

ulp(x i+1) ≤ 2 d-p ulp(x i), (3.6
)

|x i+2 + x i+1 | ≤ (2 d + 2 2d-p) ulp(x i). (3.7)
Proof. We have ulp(x i) = 2 k i -p+1 and from (3.3) we get

|x i+1 | < 2 k i -δ i +1 < 2 p-δ i ulp(x i) < 2 d ulp(x i)
. This proves that (3.5) holds for all 0 ≤ i < n -1.

By applying (3.3) we get ulp(x i+1) = 2 k i -δ i -p+1 ≤ 2 d-p ulp(x i), which proves that (3.6) holds for all 0 ≤ i < n -1.

We have

|x i+1 | ≤ 2 d ulp(x i) and |x i+2 | ≤ 2 d ulp(x i+1) ≤ 2 2d-p ulp(x i) from which (3.7) follows.

The VecSum algorithm

It first appeared as part of Priest's renormalization algorithm [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF], but was coined as VecSum by Ogita et.al [START_REF] Shewchuk | Adaptive precision floating-point arithmetic and fast robust geometric predicates[END_REF][START_REF] Ogita | Accurate sum and dot product[END_REF]. The VecSum algorithm, presented in Algorithm 21 and Figure 3.3, is simply a chain of 2Sum that performs an error-free transform on n floating-point numbers. Kahan calls this a "distillation" algorithm.

This algorithm is of interest because it has many nice properties and, depending on the input constraints, it allows us to deduce some relationships between the outputted numbers. One can observe the following:

• x 0 + • • • + x n-1 = e 0 + • • • + e n-1 , i.e.
, the sums of the input and output arrays are equal; Algorithm 21 -VecSum(x 0 , . . . , x n-1).

1: s n-1 ← x n-1 2: for i ← n -2 to 0 do 3:

(s i , e i+1) ← 2Sum(x i , s i+1) 4: end for 5: e 0 ← s 0 6: return e 0 , . . . , e n-1 • e 0 = RN(x 0 + RN(

x 1 + RN(• • • + RN(x n-2 + x n-1))
)), i.e., e 0 = s 0 is the result of the "naive" summation of x 0 , . . . , x n-1 .

Other properties, that we are going to use in Section 3.2, are given in Theorems 3.1.3, 3.1.7, and 3.1.9. Each theorem considers a different input for the algorithm and shows the constrains on the output. In the proofs we use the notations showed in Figure 3.3.

Theorem 3.1.3 was first proven by Priest [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF], who showed that the algorithm can transform an array of overlapping numbers into an S-nonoverlapping expansion. We are going to use this theorem in Section 3.2.

Theorem 3.1.3. Let x = (x 0 , x 1 , . . . , x n-1) be an array of floating-point numbers that overlap by at most d digits (d ≤ p -2) and that may contain interleaving 0s. Provided that no underflow/overflow occurs during computations, and that

2 d 1-2 d-p (1 + (n -2)2 -p) ≤ 2 p-1
(which always holds in practice), when applying Algorithm 21 on x, the output array e = (e 0 , e 1 , . . . , e n-1) is an S-nonoverlapping expansion that may contain interleaving zeros.

Proof. We can quickly observe that if x i = 0, then the sum s i = s i-1 and e i-1 = 0. This implies that in the result we can also have interleaving zeros. Now, since

s i = RN(x i + s i+1), s i is closer to x i + s i+1 than x i . This gives us |(x i + s i+1) -s i | ≤ |(x i + s i+1) -x i |, and so |e i+1 | ≤ |s i+1 |. Similarly, s i is closer to x i + s i+1 than s i+1 , so |e i+1 | ≤ |x i |.
From (3.5) we get:

|x i+1 | + |x i+2 | + • • • ≤ ≤ [2 d + 2 2d-p + 2 3d-2p + 2 4d-3p + • • •] ulp(x i) ≤ 2 d 1 -2 d-p ulp(x i). (3.8)
We know that s i+1 = RN(x i+1 + RN(• • • + x n-1)) and, using a property given by Jeannerod and Rump in [START_REF] Jeannerod | Improved error bounds for inner products in floating-point arithmetic[END_REF], we get:

|s i+1 -(x i+1 + • • • + x n-1)| ≤ (n -i -2) • 2 -p • (|x i+1 | + • • • + |x n-1 |) .
(3.9)

From (3.8) and (3.9) we obtain:

|s i+1 | ≤ 2 d 1 -2 d-p (1 + (n -i -2)2 -p) ulp(x i).
It is easily seen that

2 d 1 -2 d-p (1 + (n -i -2)2 -p) ≤ 2 p-1 , (3.10)
is satisfied for p ≥ 4 and n ≤ 10, for p ≥ 5 and n ≤ 18, for p ≥ 6 and n ≤ 34, and so on. This includes all practical cases, when d ≤ p -2, so that ulp(s i+1) < ulp(x i). Therefore x i and s i+1 are multiples of ulp(s i+1), Remark 3.1.5. Theorem 3.1.3 also holds if we have the weaker condition d ≤ p -1, provided that n ≤ 12 for binary32 and n ≤ 39 for binary64. However, if this is the case, the above remark does not hold anymore, so we cannot replace the 2Sum algorithm with Fast2Sum.

thus x i + s i+1 is multiple of ulp(s i+1), hence RN(x i + s i+1) is multiple of ulp(s i+1) and |e i+1 | = |x i + s i+1 -RN(x i + s i+1)| is multiple of ulp(s i+1). Also,
In Example 3.1.6, using a toy system with p = 5, we present the behavior of the algorithm in this setting.

Example 3.1.6. Consider a floating-point system with precision p = 5. Let x be a 5-term array:

x 0 = -1.0011 2 × 2 -1 , x 1 = -2 -3 , x 2 = 1.1110 2 × 2 -6 , x 3 = -1.1010 2 × 2 -8 , x 4 = 1.1110 2 × 2 -11 .
Using x as input for Algorithm 21 will result in the S-nonoverlapping array e:

e 0 = -1.0110 2 × 2 -1 , e 1 = -2 -7 , e 2 = 0.0, e 3 = -2 -11 , e 4 = -2 -13 .
The second setting that we consider is going to be used in Section 3.2 and 3.3 later on. Theorem 3.1.7. Let x = (x 0 , x 1 , . . . , x n-1) be an array of floating-point numbers that overlap by at most d ≤ p -2 digits and may contain pairs of at most 2 consecutive terms that overlap by p digits. The array may also contain interleaving 0s. Provided that no underflow/overflow occurs during computations, when applying Algorithm 21 on x, the output array e = (e 0 , e 1 , . . . , e n-1)

satisfies |e 0 | > |e 1 | ≥ • • • > |e i-1 | ≥ |e i | > |e i+1 | ≥ |e i+2 | > • • •
and the e i s are S-nonoverlapping for strict inequality or they are equal to a power of 2.

We know that s i+1 = RN(x i+1 + s i+2), so ulp(s i+1) ≤ 2 ulp(x i+1) = 2 ulp(x i). If they are equal we either have e i+1 S-nonoverlapping with e i+2 or we have the limit case

|e i+1 | = |e i+2 | = ulp(x i) = ulp(x i+1).
Also s i = RN(x i + s i+1), so ulp(s i) ≤ 2 ulp(s i+1) ≤ ulp(x i-1). Since s i-1 + e i = x i-1 + s i , s i-1 and e i are multiples of ulp(s i). Also |e i+1 | ≤ 1 2 ulp(s i), from where we deduce that e i and e i+1 are S-nonoverlapping . Now, ulp(s i-1) ≤ 2 ulp(x i-1) = 2 ulp(x i-2). In case they are equal, the limit case

|e i-1 | = |e i | = ulp(x i-2) = ulp(x i-1) can occur again.
This proves that the array e is S-nonoverlapping and may contain two consecutive pairs of powers of 2, so the theorem holds.

Step 3. As the last step of the induction consider N consecutive pairs of p-digit overlapping numbers, starting from x i overlapping with x i+1 and so on.

For (e i-1 , e i , e i+1 , . . . , e n-1) the same things hold as proven in the previous case. Now x i-4 and x i-3 can overlap by at most p digits, hence ulp(s i-2) ≤ ulp(x i-3) = ulp(x i-4). We know that |e i-1 | ≤ 1 2 ulp(s i-2) and because s i-3 +e i-2 = x i-3 +s i-2 , s i-3 and e i-2 are multiples of ulp(s i-2). If follows that e i-2 and e i-1 are S-nonoverlapping .

We have the case in which x i-4 , x i-3 and s i-2 overlap by at most p digits, so we get ulp(s i-3) ≤ ulp(x i-4) = ulp(x i-3) and the limit case

|e i-3 | = |e i-2 | = ulp(x i-4) can occur again.
We know that we can have only pairs of 2 floating-point numbers that overlap by p digits and that the other numbers in the input sequence overlap by at most p -2 digits. This ensures that we can only get pairs of 3 floating-point numbers of the form (x j-1 , x j , s j+1) that overlap by p digits. In this case we will either have e j = e j+1 equal to a power of 2, either e j and e j+1 are S-nonoverlapping , as showed before.

By this the induction holds and we have at most pairs of two e j s that are equal to a power of 2 and the theorem is proven.

In Example 3.1.8 we show the algorithm's behavior under these assumptions.

Example 3.1.8. Consider a floating-point system with precision p = 5. Let x be a 5-term array:

x 0 = -1.0001 2 × 2 -3 , x 1 = -1.1111 2 × 2 -3 , x 2 = -1.0110 2 × 2 -6 , x 3 = -1.1000 2 × 2 -6 , x 4 = -1.0110 2 × 2 -9 .
Using x as input for Algorithm 21 will result in the array e:

e 0 = -1.1010 2 × 2 -2 , e 1 = 2 -7 , e 2 = 2 -7 , e 3 = 2 -10 , e 4 = 2 -12 .
Shewchuk [START_REF] Shewchuk | Adaptive precision floating-point arithmetic and fast robust geometric predicates[END_REF] used the same algorithm (under the name Grow-Expansion) for adding an Snonoverlapping expansion with a random floating-point number. Theorem 3.1.9 shows that when doing this, the resulted expansion is also S-nonoverlapping . Theorem 3.1.9. Let x = (x 0 , x 1 , . . . , x n-1) be an S-nonoverlapping floating-point expansion that may contain interleaving 0s and t a random floating-point number. Provided that no underflow/overflow occurs during computations, when applying Algorithm 21 on (x, t), the output array e = (e 0 , e 1 , . . . , e n) is going to be S-nonoverlapping .

Proof. We know that s n-1 is the nearest floating-point number to x n-1 + t, closer than t. This means that |s n-1 -

(x n-1 + t)| ≤ |(x n-1 + t) -t|, hence |e n | ≤ |x n-1 |.
There exists two integers k and k such that:

s n-1 is multiple of 2 k s.t. |e n | ≤ 1 2
2 k , and

x n-2 is multiple of 2 k s.t. |x n-1 | ≤ 1 2 2 k . (3.12)
We define k = min(k , k) and we observe that e n-1 is multiple of 2 k . Since |e n | is less than both 2 k and 2 k , we proved that e n-1 and e n are S-nonoverlapping . Now, we can prove by induction that for all n ≥ i > 0, |e i | ≤ 1 2 uls(e i-1) (i.e., e i and e i-1 are S-nonoverlapping). We proved that it holds for i = n. Following the same reasoning we can deduce that e i-1 is multiple of 2 k, where k is an integer, and |e i | ≤ 2 k. This shows that e i-1 and e i are S-nonoverlapping and the induction holds. We give a numerical example in Example 3.1.10.

Example 3.1.10. Consider a floating-point system with precision p = 5. Let x be a 5-term Snonoverlapping array: In the worst case, Algorithm 21 performs n -1 calls to 2Sum or Fast2Sum. This accounts for a total of V (n) = 6n -6 or V f ast (n) = 3n -3 floating-point operations.

x 0 = -1.1001 2 × 2 -2 , x 1 = 2 -8 , x 2 = 0.0, x 3 = 2 -12 , x 4

The VecSumErrBranch algorithm

Algorithm 22, illustrated in Figure 3.5, is a variation of VecSum presented above, consisting also in a chain of 2Sum, but instead of starting from the least significant, we start from the most significant component. Also, instead of propagating the sums we propagate the errors. If however, the error after a 2Sum block is zero, then we propagate the sum.

This algorithm can render different type of inputs ulp-nonoverlapping . The properties given in Theorem 3.1.11 and 3.1.14 are going to be used in Section 3.2, and the one in Theorem 3.1.17 in Section 3.4, for one of the two multiplication algorithms.

Algorithm 22 -VecSumErrBranch(e 0 , . . . , e n-1 , m).

1: j ← 0 2: ε 0 = e 0 3: for i ← 0 to n -2 do 4:

(r j , ε i+1) ← 2Sum(ε i , e i+1)

5:

if ε i+1 = 0 then 6: if j ≥ m -1 then 7:
return r 0 , r 1 , . . . , r m-1 //enough output terms 8:

end if 9:

j ← j + 1

ε i+1 ← r j 12:
end if 13: end for 14: if ε n-1 = 0 and j < m then 15:

r j ← ε n-1 16: end if 17: return r 0 , r 1 , . . . , r m-1
e 0 = E 0 • 2 k 0 with |e 1 | < 2 k 0 , e 1 = E 1 • 2 k 1 with |e 2 | < 2 k 1 .
Hence, r 0 and ε 1 are both multiples of 2 k 1 . Two possible cases may occur:

(i) ε 1 = 0. If we choose to propagate directly ε 1 = 0, then r 1 = e 2 and ε 2 = 0. This implies by induction that r i = e i+1 , ∀i ≥ 1. So, directly propagating the error poses a problem, since the whole remaining chain of 2Sum is executed without any change on the input array. So, as shown in line 11, when ε i+1 = 0 we propagate the sum r j .

(ii) ε 1 = 0. Then |e 2 | < |ε 1 | and |ε 1 + e 2 | < 2 |ε 1 |, from where we get |r 1 | = |RN(ε 1 + e 2)| ≤ 2 |ε 1 | ≤ ulp(r 0).
Now, we prove by induction the following statement: at step i > 0 of the loop in Algorithm 22, both r j-1 and ε i are multiples of 2 k i with |e i+1 | < 2 k i . We proved above that for i = 1 it holds. Suppose now it holds for i and prove it for i + 1. Since r j-1 and ε i are multiples of

2 k i with |e i+1 | < 2 k i and e i+1 = E i+1 • 2 k i+1 with |e i+2 | < 2 k i+1
(by definition of S-nonoverlapping), it follows that both r j and ε i+1 are multiples of 2 k i+1 (by definition of 2Sum).

Finally, we prove the relation between r j and r j-1 . If ε i+1 = 0, we propagate r j , i.e.,

ε i+1 = r j . Otherwise |e i+1 | < |ε i |, so |e i+1 + ε i | < 2 |ε i | and finally |r j | = |RN(e i+1 + ε i)| ≤ 2 |ε i | ≤ ulp(r j-1).
Remark 3.1.12. We observe that in all practical cases the calls to 2Sum can be replaced by calls to Fast2Sum. This is possible because we have |s i+1 | ≤ 2 p-1 ulp(x i), for p ≥ 4 and n ≤ 10, for p ≥ 5 and n ≤ 18, for p ≥ 6 and n ≤ 34, and so on, and our constraints on the expansion size are n ≤ 39 for binary64 and n ≤ 12 for binary32. Also ulp(

x i) ≤ 2 -p+1 |x i |. As a deduction |s i+1 | ≤ |x i |.
In Example 3.1.13 we show the behavior described above using a floating-point toy system.

| > |e 1 | ≥ • • • > |e i-1 | ≥ |e i | > |e i+1 | ≥ |e i+2 | > • • •
and the e i s are S-nonoverlapping for strict inequality or they are equal to a power of 2 and let m be an integer input parameter, with 1 ≤ m ≤ n -1, the required number of output terms. Provided that no underflow/overflow occurs during computations, when applying Algorithm 22 on e, the output array r = (r 0 , . . . , r m-1) is an ulp-nonoverlapping expansion, i.e., it satisfies

|r i+1 | ≤ ulp(r i) for all 0 ≤ i < m -1.
Proof. The proof follows the exact same structure as the proof of Theorem 3.1.11, with very little modifications, so we do not detail it here. The main changes are:

• we can also have

|e 1 | = |e 2 | = 2 k 1 ; • we assume that • • • ≤ |e i | < |e i+1 | ≤ |e i+2 | < • • • , so |e i+1 | < 2 k i and e i+1 = E i+1 • 2 k i+1 with |e i+2 | ≤ 2 k i+1 ;
• |r j | ≤ ulp(r j-1);

• |e i+1 | ≤ |ε i |, so |e i+1 + ε i | ≤ 2 |ε i |, with equality when |e i+1 | = |e i+2 | = |ε i | = 2 k i+1 .
Remark 3.1.15. We observe that the calls to 2Sum can still be replaced by calls to Fast2Sum, since, if e i = e i+1 they are equal to a power of 2, in which case the result is exact.

A numerical example is given in Example 3.1.16.

Example 3.1.16. Consider a floating-point system with precision p = 5. Let e be a 5-term array:

e 0 = -1.0011 2 × 2 2 , e 1 = 2 -5 , e 2 = 2 -5 , e 3 = 2 -7 , e 4 = 1.1 2 × 2 -9 ,
and m = 3 an integer. Using e, m as input for Algorithm 22 will result in the ulp-nonoverlapping array r:

r 0 = -1.0011 2 × 2 2 , r 1 = 1.0011 2 × 2 -4 , r 2 = -2 -10 .
The next theorem is going to be used for proving the correctness of the "accurate" multiplication algorithm in Section 3.4. Theorem 3.1.17. Let e = (e 0 , e 1 , . . . , e n-1) that satisfies: e i is multiple of

2 t 0 -ib = 2 t i and |e i+1 | < 2 t i +c+1 , for all 0 ≤ i < n -1, where b + c = p -1 (c << b). Also |e 0 | > |e 1 | and |e 0 | < 2 t 0 +p+1
. And let m be an integer input parameter, with 1 ≤ m ≤ n -1, the required number of output terms. Provided that no underflow/overflow occurs during computations, when applying Algorithm 22 on e, the output array r = (r 0 , . . . , r m-1) is an ulp-nonoverlapping expansion.

Proof. The case when e contains 1 or 2 elements is trivial. Consider now at least 3 elements. By the input type we know that:

e 0 = E 0 • 2 t 0 , e 1 = E 1 • 2 t 1 with t 1 = t 0 -b.
Hence, r 0 and ε 1 are both multiples of 2 t 0 -b . Two possible cases may occur:

(i) ε 1 = 0. If we choose to propagate directly ε 1 , then r 1 = e 2 and ε 2 = 0. This implies, by induction, that r i = e i+1 , ∀i ≥ 1. So, directly propagating the error poses a problem, since the whole remaining chain of 2Sum is executed without any change between the input and the output. So, as shown line 11, when ε i = 0 we propagate the sum r j , so ε i ← r j .

(ii) ε 1 = 0. By definition of 2Sum, we have |ε 1 | ≤ 1 2 ulp(r 0). We also have

|e 0 | > |e 1 |, so |r 0 | = |RN(e 0 + e 1)| ≤ 2 |e 0 |. Hence: |ε 1 | < 2 t 0 +2 .
We now prove by induction the following statement: at each step i ≥ 1 of the loop in Algorithm 22, both r j-1 and ε i are multiples of 2 t i and ε i = 0 or |ε i | < 2 t i +b+2 , meaning that ε i fits in at most b + 1 bits. We proved above that for i = 1 this holds. Suppose now it holds for i and prove it for i + 1.

At this step we have ε i + e i+1 = r j + ε i+1 . Since ε i is a multiple of 2 t i and e i+1 is a multiple of 2 t i+1 , with t i+1 = t i -b, then both r j and ε i+1 are multiples of 2 t i+1 . Two cases may occur: -if |ε i | < 2 t i +c+1 then ε i + e i+1 is a floating-point number, which implies r j = ε i + e i+1 exactly and ε i+1 = 0, in which case we propagate r j < 2 t i +c+2 .

-if |ε i | > 2 t i +c we have |r j | ≤ 2 |ε i | and we get (by definition of 2Sum):

|ε i+1 | ≤ 1 2 ulp(r j) < 2 -p • 2 • 2 t i +b+2 < 2 t i -c+2
This condition is even stronger than what we were trying to prove, so the induction holds. Finally, we prove the relation between r j-1 and r j . If ε i = 0, we propagate r j-1 , i.e., ε i ← r j-1 . Otherwise

|r j | = |RN(ε i + e i+1)| ≤ 2 |ε i | and since ε i ≤ 1
2 ulp(r j-1), then |r j | ≤ ulp(r j-1) and the proposition is proven. Remark 3.1.18. In this case also we can replace the 2Sum calls with Fast2Sum calls, since we showed that the addition is exact for

|e i+1 |, |ε i | < 2 t i +c+1 .
For an easier understanding of this setting we give a numerical example in Example 3.1.19. Remark 3.1.20. After applying Algorithm 22 on an input that satisfies any of the above constraints, the output expansion cannot have interleaving zeros; zeros may appear only at the end of the expansion.

In the worst case, Algorithm 22 performs n -1 calls to Fast2Sum and n -2 comparisons. This accounts for a total of V f ast err (n, m) = 4n -5 floating-point operations. Now that we have all the prerequisites that we need, we can start looking into more complex algorithms for floating-point arithmetic.

Renormalization of floating-point expansions

As we explained, in order to ensure that the expansions carry significant information we require them to be nonoverlapping. Even if the input expansions satisfy this requirement, this property is often "broken" during the calculations. So, in order to ensure the precision related requirements, we may need to perform a (re-)normalization after each operation. This types of algorithms are an important brick for manipulating floating-point expansions.

In what follows we will present a renormalization algorithm given by Priest, followed by two new algorithms, that we developed.

Priest's renormalization algorithm

While several renormalization algorithms have been proposed in literature, Priest's [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF] algorithm was the only one provided with a complete correctness proof. The proposed algorithm, with a slightly modified inner loop proposed by Nievergelt [START_REF] Nievergelt | Analysis and applications of priest's distillation[END_REF] 3 is the one showed in Algorithm 23. For an easier understanding of how the algorithm works we also illustrate an example with n = 5 in Figure 3.6. The "boxes" with a gradient color represent a 2Sum call followed by a conditional branch.

Algorithm 23 -Renormalize_Priest(x 0 , x 1 , . . . , x n-1).

1: c ← x n-1 2: for i ← n -2 to 0 do 3: Priest proved that Theorem 3.2.1 holds, but for space constrains we do not include the proof. Theorem 3.2.1. Let x 0 , x 1 , . . . , x n-1 be an array of floating-point numbers that overlap by at most p -2 digits. Provided that no underflow/overflow occurs during the calculations, Algorithm 23 returns a Pnonoverlapping expansion r = (r 0 , r 1 , . . . r k-1) with k terms, were k ≤ n.

(c, f i+1) ← 2Sum(c, x i) 4: end for 5: r 0 ← c; k ← 1 6: for i ← 1 to n -1 do 7: (r k-1 , d) ← 2Sum(r k-1 , f i) 8: if d = 0 then 9: ← k -1; k ← k + 1 10: while ≥ 1 do 11: (r -1 , d) ← 2Sum(r -1 , r) 12: if d = 0 then 13: k ← k -
In the worst case, Algorithm 23 performs a total of R priest (n) = 20(n -1) floating-point operations. One can easily see that the algorithm has many conditional branches, which make it even slower in practice. Even though modern processors have optimized branch prediction, this is not the case for GPUs. Furthermore, the decisions depend heavily on the input values, which may cause branch prediction to fail often.

A new renormalization algorithm

The algorithm that follows is actually a reduced version of Algorithm 6 in [START_REF] Joldes | Arithmetic algorithms for extended precision using floating-point expansions[END_REF]. There we presented an algorithm with m + 1 levels that would render the result as an m-term Pnonoverlapping floating-point expansion. Even though the last m -1 levels do not use any branching, and take advantage of the pipeline, after tests and discussions, we decided that it is too expensive to ensure P-nonoverlapping expansions. In practice, we are happy to use ulpnonoverlapping expansion only, this is why we do not include here the full initial algorithm.

This step is crucial for assuring the "quality" of the expansion, but the proofs are complex and tedious and errors may have been left unnoticed, so having a formal proof would be ideal. To this end we collaborated with S. Boldo 4 , for building a formal proof using the Coq proof assistant and the Floq library [START_REF] Boldo | Flocq: A Unified Library for Proving Floating-point Algorithms in Coq[END_REF]. We were also able to prove that the algorithm also works in the presence of underflow, since the additions are exact (see Lemma 1.1.4), hypothesis that we dismiss here. This work is presented in Formal Verification of a Floating-Point Expansion Renormalization Algorithm [START_REF] Boldo | Formal Verification of a Floating-Point Expansion Renormalization Algorithm[END_REF], which was accepted for publication and is going to be presented at the 8th International Conference on Interactive Theorem Proving (ITP 2017).

Algorithm 24 (ilustrated in Figure 3.7) is based on different layers of chained 2Sum, that we grouped in simpler layers based on VecSum. It renders an array of overlapping numbers into an ulp-nonoverlapping expansion. Using some of the theorems proved in the previous section we will prove that this algorithm works in three different contexts.

Algorithm 24 -Renormalize(x 0 , x 1 , . . . , x n-1 , m).

1: e[0 : n -1] ← VecSum(x[0 : n -1]) 2: r[0 : m -1] ← VecSumErrBranch(e[0 : n -1], m) 3: return r 0 , r 1 , . . . , r m-1
Remark 3.2.2. Note that the first Fast2Sum in VecSumErrBranch can be skipped. We know that e 0 and e 1 are the result of the last 2Sum in the VecSum call. This means that |e 1 | ≤ 1 2 ulp(e 0), so (r 0 , ε 0) ← 2Sum(e 0 , e 1) will return r 0 = e 0 and ε 1 = e 1 .

Theorem 3.2.3 shows the general context in which the algorithm renders an array of overlapping numbers arranged in decreasing order of magnitude, into an ulp-nonoverlapping expansion. Theorem 3.2.3. Let x 0 , x 1 , . . . , x n-1 be an array of floating-point numbers that overlap by at most d ≤ p -2 digits that may contain interleaving 0s and let m be an integer input parameter, with 1 ≤ m ≤ n -1. Provided that no underflow/overflow occurs during the calculations, Algorithm 24 returns a "truncation" to m terms of an ulp-nonoverlapping floating-point expansion r

= r 0 + • • • + r n-1 such that x 0 + • • • + x n-1 = r.
Proof. The proof is straightforward, using the properties in the previous section. From Theorem 3.1.3 we know that the first level transforms the overlapping input sequence into an Snonoverlapping expansion. After passing through the second level, from Theorem 3.1.11, we know that the output is an ulp-nonoverlapping expansion.

In this context we can use the Fast2Sum algorithm for both levels, so in the worst case Algorithm 24 performs R f ast (n, m) = V f ast (n) + V f ast err (n, m) -3 = 7n -11 floating-point operations. Theorem 3.2.4 presents a different context in which the algorithm works. This is the case in which pairs of two numbers that overlap by p digits may appear in the input. We use this property when performing additions of floating-point expansions (for details see Section 3.3, Algorithm 27). Theorem 3.2.4. Let x 0 , x 1 , . . . , x n-1 be an array of floating-point numbers that overlap by at most d ≤ p -2 digits that may contain pairs of at most 2 consecutive terms that overlap by p digits. The array may also contain interleaving 0s. Let m an integer input parameter, with 1 ≤ m ≤ n -1. Provided that no underflow/overflow occurs during the calculations, Algorithm 24 returns a "truncation" to m terms of an ulp-nonoverlapping floating-point expansion r

= r 0 + • • • + r n-1 such that x 0 + • • • + x n-1 = r.
Proof. The proof is similar to the proof of Theorem 3.2.3, but this time we use Theorem 3.1.7 and Theorem 3.1.14 from the previous section.

Another (simpler) context in which the renormalization works is presented in Theorem 3.2.5. This is actually used for a special case of the addition, i.e., the addition of a floating-point expansion with a floating-point number. Theorem 3.2.5. Let x 0 , x 1 , . . . , x n-1 be an S-nonoverlapping floating-point expansion that may contain interleaving 0s, t an arbitrary floating-point number and m be an integer input parameter, with 1 ≤ m ≤ n. Provided that no underflow/overflow occurs during the calculations, Algorithm 24 returns a "truncation" to m terms of an ulp-nonoverlapping floating-point expansion r = r 0 +

• • • + r n such that x 0 + • • • + x n-1 + t = r.
Proof. The proof is straightforward using Theorem 3.1.9 and Theorem 3.1.11.

In these last two contexts we cannot use Fast2Sum on the first level, so in the worst case Algorithm 24 performs R(n, m) = V (n) + V f ast err (n, m) -3 = 10n -14 floating-point operations. We give an overview of all the cases for which this renormalization algorithm returns an ulpnonoverlapping expansion in Proposition 3.2.6. Proposition 3.2.6. Provided that Algorithm 24 receives as input one of the following:

• an n-term array x of floating-point numbers that overlap by at most p -2 digits that may contain interleaving 0s;

• an n-term array x of floating-point numbers that overlap by at most p -2 digits that may contain pairs of at most 2 consecutive terms that overlap by p digits and that may contain interleaving 0s;

• an S-nonoverlapping floating-point expansion x with n -1 terms that may contain interleaving 0s and a random floating-point number x n-1 ;

along with an integer m, the result r = r 0 , . . . , r m-1 is going to be an ulp-nonoverlapping floating-point expansion equal to x truncated to m terms.

Renormalization of random numbers

Sometimes, in practice, we are not able to prove a uniform relationship between the numbers of an array (e.g. the monotony of the array). Even if this is the case we sometimes still need to render them ulp-nonoverlapping . To this end, we developed Algorithm 25 (illustrated in Figure 3.8) that satisfies Theorem 3.2.8.

Algorithm 25 -Renormalize_random(x 0 , x 1 , . . . , x n-1 , m). e (i) [0 : i] ← VecSum(e (i-1) [0 : i -1], x i) 4: end for 5: r[0 : m -1] ← VecSumErrBranch(e[0 : n -1], m) 6: return r 0 , r 1 , . . . , r m-1 Remark 3.2.7. Note that we can also skip the first Fast2Sum in the VecSumErrBranch call, for the same reasons as for the previous algorithm. Theorem 3.2.8. Let x 0 , x 1 , . . . , x n-1 be an array of random floating-point numbers that may contain interleaving 0s and let m be an integer input parameter, with 1 ≤ m ≤ n -1. Provided that no underflow/overflow occurs during the calculations, Algorithm 25 returns a "truncation" to m terms of an ulp-nonoverlapping floating-point expansion r

= r 0 + • • • + r n-1 such that x 0 + • • • + x n-1 = r.
Proof. It can be easily seen that during the first iteration of the for loop (lines 2 to 4), the Vec-Sum algorithm is actually reduced to a call to 2Sum. Thence, we have e

(1) 1 ≤ 1 2 ulp(e (1)
0), which implies that the two numbers are S-nonoverlapping . In the second level we call VecSum on an S-nonoverlapping expansion with 2 terms (e

(1) 0 , e (1)
1) and a random number, x 2 . By induction, using Theorem 3.1.9, it follows that at each iteration i of the loop we call VecSum on an S-nonoverlapping expansion (e (i-1) 0 , . . . , e (i-1) i-1) and a random number, x i and we get the result e (i) 0 , . . . , e (i) i , also an S-nonoverlapping expansion. In line 5 we apply VecSumErrBranch on an S-nonoverlapping expansion, e (n-1) , and from Theorem 3.1.11 we get that the resulted expansion r is ulp-nonoverlapping . In the worst case, Algorithm 25 calls n -1 times VecSum on i terms (2 ≤ i ≤ n), followed by a call to VecSumErrBranch using Fast2Sum. This accounts for a total of R rand (n, m) = n i=2 V (i) + V f ast err (n, m) -3 = 3n 2 + n -8 floating-point operations.

Addition of floating-point expansions

In general, an algorithm that performs the addition of two expansions x and y with n and m terms, respectively, will return a floating-point expansion with at most n + m terms. This poses a problem when successive computations are done using the result, this is why a reduction of terms is required. This is done, using "truncation" and normalization methods, both on-the-fly or a-posteriori.

Note that, in this setting, subtraction can be performed simply by negating the floating-point terms in y.

Priest's addition algorithm

Many variants of algorithms that compute the sum of two expansions have been presented in the literature [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF][START_REF] Shewchuk | Adaptive precision floating-point arithmetic and fast robust geometric predicates[END_REF][START_REF] Hida | Algorithms for quad-double precision floating-point arithmetic[END_REF][START_REF] Rump | Accurate floating-point summation part I: Faithful rounding[END_REF]. One of the oldest algorithms was given by Priest [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF]. His algorithm, Algorithm 26, is "merge-sorting the components of the two expansions by increasing magnitude and adding in this order", followed by applying his renormalization algorithm, in order to render the expansion P-nonoverlapping .

This algorithm uses many conditional branches, and it has a worst case operation count of A priest (n, m) = 27(n + m) -19.

Algorithm 26 -Addition_Priest(x 0 , . . . , x n-1 , y 0 , . . . , y m-1).

1: i ← n -1, j ← m -1 2: if |x i | < |y i | then 3: while i > 0 and |x i-1 | ≤ |y j | do 4:
e i+j ← x i , i ← i -1 In what follows we will present two algorithms for adding floating-point expansions, a new one and one that is a generalization of the algorithm used in the QD library [START_REF] Hida | C++/fortran-90 double-double and quad-double package[END_REF]. For both algorithms we use the same on-the-fly truncation method, i.e., when computing the sum of two expansions with n and m terms, respectively, if the result is expected to have r terms, we take into consideration only the first r terms of each of the expansions. We give here, in Theorem 3.3.1, the error bound on the error caused by this truncation, since we are going to use it for both algorithms. Theorem 3.3.1. Let x and y be two ulp-nonoverlapping floating-point expansions, with n and m terms, respectively. If, when computing the sum x + y we "truncate" the input expansions to the most significant r terms, the error satisfies:

if i = 0 or (j > 0 and |y j-1 | < |x i-1 |) then 16: b ← y j-1 , j ← j -1 17: else 18: b ← x i-1 , i ← i -
n-1 i=r x i + m-1 j=r y j ≤ (|x 0 | + |y 0 |) 2 -(p-1)r 1 -2 -(p-1) .
Proof. From the hypothesis we know that

|x i | ≤ 2 -pi+i |x 0 | , for all 0 < i ≤ n -1; and |y j | ≤ 2 -pj+j |y 0 | , for all 0 < j ≤ m -1. Hence n-1 i=r x i + m-1 j=r y j ≤ |x 0 | n-1 i=r 2 -(p-1)i + |y 0 | m-1 j=r 2 -(p-1)j ≤ |x 0 | n-r-1 i=0 2 -(p-1)(i+r) + |y 0 | m-r-1 j=0 2 -(p-1)(j+r) ≤ 2 -(p-1)r   |x 0 | n-r-1 i=0 2 -(p-1)i + |y 0 | m-r-1 j=0 2 -(p-1)j   .
When applying the formula

∞ k=0 t k = 1 1-t with t = 2 -(p-1) we get n-1 i=r x i + m-1 j=r y j ≤ (|x 0 | + |y 0 |) 2 -(p-1)r 1 -2 -(p-1) .

"Accurate" addition algorithm

We first mentioned the algorithm that follows in [START_REF] Joldes | Arithmetic algorithms for extended precision using floating-point expansions[END_REF], but a full correctness and accuracy proof was not previously published. This first algorithm that we consider for adding two floating-point expansions consists in merging the two expansions in decreasing order of magnitude, and applying the renormalization algorithm (Algorithm 24) on the obtained array. The full algorithm is given in Algorithm 27 and illustrated in Figure 3.9.

Algorithm 27 -Addition_accurate(x 0 , . . . , x n-1 , y 0 , . . . , y m-1 , r). For merging the input expansions we use the classical algorithm given in Algorithm 28 that has a time complexity of O(n + m), and in the worst case scenario performs n + m floating-point comparisons.

Algorithm 28 -Merge(x 0 , . . . , x n-1 , y 0 , . . . , y m-1).

1: i, j ← 0 2: for t ← 0 to n + m -1 do 3:

if i = n or (j < m and |y j | > |x i |) then 4:
f t ← y j ; j ← j + 1 5: else 6:

f t ← x i ; i ← i + 1 7:
end if 8: end for 9: return f 0 , f 1 , . . . , f n+m-1 Theorem 3.3.2. Let x and y be two ulp-nonoverlapping floating-point expansions, with n and m terms, respectively. Assume p ≥ 4, which always holds in practice. Provided that no underflow/overflow occurs during the calculations, when computing their sum using Algorithm 27, the result s is an ulpnonoverlapping floating-point expansion with r terms that satisfies:

|x + y -s| < 9 2 2 -(p-1)r (|x| + |y|).
Proof. After merging the two input arrays we obtain f that may contain pairs of at most 2 terms that overlap by p bits. From Theorem 3.2.4 we know that the renormalization (Algorithm 24) also works under these constraints, and the output is going to be an ulp-nonoverlapping expansion.

The array f contains the merged truncations to r terms of x and y, and from Theorem 3.3.

1 we have |x + y -f | ≤ (|x 0 | + |y 0 |)γ r , (3.13)
with γ r = 2 -(p-1)r 1-2 -(p-1) . Let f = f 0 , f 1 , . . . be the ulp-nonoverlapping expansion equal to f one would obtain with a renormalization not limited to r-terms. Consequently, s is going to be a truncation to r terms of f . The error caused by truncating (renormalizing) satisfies:

f -s = ∞ k=r f k ≤ f 0 ∞ k=r 2 -(p-1)k ≤ f 0 k=0 2 -(p-1)(k+r) ≤ 2 -(p-1)r f 0 k=0 2 -(p-1)k ≤ f 0 2 -(p-1)r 1 -2 -(p-1) = f 0 γ r . (3.14)
From (3.13) and (3.14) we get:

|x + y -s| ≤ (|x 0 | + |y 0 | + f 0)γ r . (3.15)
We want to express this as a function of x and y. We have x -

x 0 = n-1 i=1 x i ≤ |x 0 | γ 1 , hence x 0 = x 1-ε 1 , with |ε 1 | < γ 1 .
Analog for y 0 and f 0 . We can now rewrite (3.15) as

|x + y -s| ≤ (|x| + |y| + f) γ r 1 -γ 1 . We know that |f | ≤ ||x + y| + |η||, with |η| ≤ (|x 0 | + |y 0 |)γ r ≤ (|x| + |y|) γr 1-γ 1 . Hence, |x + y -s| ≤     (|x| + |y|) 1 + γ r 1 -γ 1 <2 + |x + y|     γ r 1 -γ 1 < (2(|x| + |y|) + |x + y|) γ r 1 -γ 1 , (3.16)
which is less than

9 2 2 -(p-1)r (|x| + |y|)
as soon as p ≥ 4.

In the worst case, Algorithm 27 performs 2r comparisons for merging, followed by a call to Renormalize on 2r terms. This accounts for a total of A accurate (n, m, r) = 2r + R(2r, r) = 22r -14 floating-point operations.

"Accurate" addition of a floating-point expansion with a floating-point number. In this case the aforementioned algorithm can be simplified: we observe that, by Theorem 3.2.5 (the third case of Proposition 3.2.6), the addition of an ulp-nonoverlapping expansion with a floating-point number can be performed by a simple renormalization using Algorithm 24. This allows us to give a tighter error bound on the result in Theorem 3.3.3 and to speed up the addition by not performing a merge. Theorem 3.3.3. Let x be an ulp-nonoverlapping floating-point expansion with n terms, and y a floatingpoint number. Provided that no underflow/overflow occurs during the calculations, when computing their sum using Algorithm 24, the result s is going to be an ulp-nonoverlapping floating-point expansion with r terms that satisfies:

|x + y -s| < 2 • 2 -(p-1)r (2|x| + |y|).

In the worst case this addition performs A accurate (n, 1, r) = R(r + 1, r) = 10r -4 floating-point operations.

"Quick-and-dirty" addition algorithm

The algorithm that follows was mentioned in [START_REF] Joldes | Searching for sinks for the hénon map using a multipleprecision gpu arithmetic library[END_REF], but, the same as for the previous one, a full correctness and accuracy proof was not given.

The addition algorithm presented in Algorithm 29 and Figure 3.10 is a generalization of the algorithm for double-double and quad-double addition implemented in the QD library [START_REF] Hida | Algorithms for quad-double precision floating-point arithmetic[END_REF], combined with a different renormalization algorithm. Although we have implemented a fully customized version of the algorithm, that uses the same truncation method mentioned before, for simplicity, we give here only the "r input -r output" variant of it.

At step n = 0 we compute the exact sum x 0 + y 0 = f 0 + e 0 . Since |e 0 | ≤ 1 2 ulp(f 0), we use the following intuition: let ε = 1 2 ulp(f 0), then, roughly speaking, if f 0 is of order of O(Λ), then e 0 is of order O(εΛ). At each step n = 1, . . . , r we compute the exact result of x n + y n = s n + e n , where s n and e n are of order O(ε n Λ) and O(ε n+1 Λ), respectively. From previous steps we have already obtained n error terms of order O(ε n Λ) that we add together with s n to obtain the term f n of order O(ε n Λ) for the renormalization step. This addition is done in line 4, using VecSum. In the renormalization step, line 10, we use an extra error correction term, so we perform our "errorfree transformation scheme" r + 1 times. The (r + 1)-th component f r is obtained by a simple summation of the previously obtained terms of order O(ε k Λ).

Algorithm 29 -Addition_quick(x 0 , . . . , x r-1 , y 0 , . . . , y r-1 , r).

1: (f 0 , e 0) ← 2Sum(x 0 , y 0) 2: for n ← 1 to r -1 do Theorem 3.3.4. Let x and y be two ulp-nonoverlapping floating-point expansions, with n, and m terms, respectively. Assume p ≥ 4, which always holds in practice. Provided that no underflow/overflow occurs during the calculations, when computing their sum using Algorithm 29, the result s is an ulpnonoverlapping floating-point expansion with r terms that satisfies:

|x + y -s| < 24 • 2 -(p-1)r (|x| + |y|).
Proof. The use of Algorithm 25 (Renormalize_random) in the last step of the algorithm ensures that the output is an r-term ulp-nonoverlapping expansion.

As a first error source we have the truncation of the inputs. From Theorem 3.3.1 we have:

x + y -(f 0 + s 1 + • • • + s r-1) ≤ (|x 0 | + |y 0 |)γ r , (3.17)
with γ r = 2 -rp+r 1-2 -(p-1) < 2 -pr+r+1 .
From the hypothesis we know that

|x i | ≤ 2 -pi+i |x 0 | , for all 0 < i ≤ n -1;
and

|y j | ≤ 2 -pj+j |y 0 | , for all 0 < j ≤ m -1, so |x n + y n | ≤ 2 -np+n (|x 0 | + |y 0 |).
A second source of error is the simple addition used for computing f r . At this step we add |e r-1 | ≤ 1 2 ulp(s r-1) ≤ 2 -rp+r-1 (|x 0 | + |y 0 |) with r -1 terms obtained from the VecSum in step r -1. All the terms are of the same order, and it can be shown by induction that e r-1 is the largest term in this addition, so the r -1 terms are bounded by the same value. As a deduction, at this step we perform r -1 simple additions that may cause an error bounded by (r -1)2 -(r+1)p+r (|x 0 | + |y 0 |).

(3.18)

From (3.17) and (3.18) we get

|x + y -f | ≤ (1 + (r -1)2 -(p+1))2 -rp+r+1 (|x 0 | + |y 0 |). (3.19)
Now, let f = f 0 , f 1 , . . . be the ulp-nonoverlapping expansion equal to f one would obtain with a renormalization not limited to r-terms. Consequently, s is going to be a truncation to r terms of f . The error caused by truncating (renormalizing) is the same as the one given in (3.14), i.e.,

f -s ≤ f 0 γ r < 2 -rp+r+1 f 0 , (3.20)
From (3.19) and (3.20) we get:

|x + y -s| ≤ (2 + (r -1)2 -(p+1))2 -rp+r+1 (|x 0 | + |y 0 | + |f 0 |). (3.21)
We want to express this as a function of x and y. We have |x -

x 0 | = n-1 i=1 x i ≤ |x 0 | γ 1 , hence x 0 = x 1-ε 1 , with |ε 1 | < γ 1 .
Analog for y 0 and f 0 . We can now rewrite 3.21 as

|x + y -s| ≤ (|x| + |y| + f) (2 + (r -1)2 -(p+1))2 -rp+r+1 1 -γ 1 . (3.22) We know that |f | ≤ ||x + y| + |η||, with |η| ≤ (1 + (r -1)2 -(p+1))2 -rp+r+1 (|x 0 | + |y 0 |) ≤ (|x| + |y|) (1+(r-1)2 -(p+1))2 -rp+r+1 1-γ 1 . Hence, |x + y -s| ≤       (|x| + |y|) 1 + (1 + (r -1)2 -(p+1))2 -rp+r+1 1 -γ 1 <2, if p≥3 + |x + y|       • • (2 + (r -1)2 -(p+1))2 -rp+r+1 1 -γ 1 < (2(|x| + |y|) + |x + y|) γ r 1 -γ 1 , which is less than 24 • 2 -(p-1)r (|x| + |y|),
as soon as p ≥ 4.

In the worst case, Algorithm 29 performs r 2Sum calls, r-1 i=1 calls to VecSum on i elements, r -1 simple additions, followed by the renormalization. This accounts for a total of A quick (n, m, r) = 6r + r-1 i=1 V (i + 1) + r -1 + R rand (r + 1, r) = 6r 2 + 11r -5 floating-point operations. Remark 3.3.5. For the special case of adding a floating-point expansion with a floating-point number we use Theorem 3.3.3 which results in an important simplification: s 0 , . . . , s r-1 ← Renormalize(x 0 , . . . , x n-1 , y, r).

We have not explain yet why we call this algorithm "quick-and-dirty". It may be clear that "dirty" refers to the large error bound, but when looking at the operation count, the "quick" does not seem justified. The high cost of the algorithm comes mostly form the Renormalize_random algorithm that is used to ensure the ulp-nonoverlapping requirement on the output. There exist corner cases, as the one given in Example 3.3.6, in which cancellation happens on one of the f i s, causing them to be out of order. Because of cases like these we are unable to prove a strict relationship between the f i s, so, in theory, we are obliged to consider them random. Despite this, in practice, we can still get reliable results when replacing the call to Renormalize_random (Algorithm 25) with a call to Renormalize (Algorithm 24). In our implementation we offer both versions of the algorithm (see Section 1.4 for more details), and we prefer the later one if the computation is not critical, or if we can verify the result a-posteriori. We fill call this the Fast "quick-and-dirty" addition. Example 3.3.6. Consider the two 4-term expansions, with binary32 as underlying arithmetic:

x 0 = 1.000011010101000001101 2 × 2 -1 , x 1 = 2 -24 , x 2 = 2 -47 , x 3 = 2 -70 ; y 0 = -1.00001101010100000110011 2 × 2 -1 , y 1 = 2 -24 , y 2 = 2 -47 , y 3 = -1.01110001001110000101111 2 × 2 -72 .
Using these expansions as input for Algorithm 29 will result in the array f :

f 0 = 2 -24 , f 1 = 2 -23 , f 2 = 2 -46 , f 3 = 1.01000111011000111101 2 × 2 -71 , and f 4 = 2 -95 .
Since f 0 < f 1 we cannot ensure that the array f is ordered.

When replacing the call to Renormalize_random with a call to Renormalize, in the worst case, Algorithm 29 performs A f ast quick (n, m, r) = 3r 2 + 11r -5 floating-point operations.

Remark 3.3.7. Note that even if the operation count still looks big, during execution, the VecSum levels will take great advantage of the computer pipeline, making Algorithm 29 faster that Algorithm 27 in most practical cases (see Section 3.7).

Multiplication of floating-point expansions

In general, an algorithm that performs the multiplication of two expansions x and y with n and m terms, respectively, will return a floating-point expansion with at most 2nm terms. The same as in the case of addition this poses a problem when successive computations are done using the result, this is why we use "truncation" and renormalization.

The basic idea behind the multiplication algorithms is to compute partial products, the same as in the "paper-and-pencil" method, and accumulate them. The main difference between the algorithms consists in the method of choice for accumulating these partial products.

Priest's multiplication algorithm

One of the only algorithms provided with a full correctness proof was given by Priest [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF]. He proposed an algorithm that uses the following reasoning:

• split x in two arrays, one containing the high order part of each term and another for the low order parts;

• split y in three arrays, using the same principle;

• compute all partial products x[i] × y into arrays; Priest proved that the partial products are exact, so this is done using simple multiplication;

• accumulate all the arrays to the result.

We present it in Algorithm 30. We denote by b[0 : . . .] and expansion b whose number of terms is not known in advance. The cost of the algorithm is very high, because the accumulation of each array of partial products is done using successive addition and renormalization calls. The worst case operation count for this algorithm is M priest (n, m) = 81mn 2 + 747nm + 2m -233n. Note that the algorithm is not symmetrical, its cost depends on the order of the input expansions.

Algorithm 30 -Multiplication_Priest(x 0 , . . . , x n-1 , y 0 , . . . , y m-1). Constant:

k 2 = p/2 , k 3 = p/3 + 1 1: for i ← 0 to n -1 do 2:
(x i , x i) ← Split(x i , k 2) //using Alg. 4 3: end for 4: for i ← 0 to m -1 do 5: b[0 : . . .] ← Renormalize_Priest(a (1) [0 : m -1]) //using Alg. [START_REF] Ercegovac | Division and Square Root: Digit-Recurrence Algorithms and Implementations[END_REF] 19:

(y i , z) ← Split(y i , k 3) 6: (y i , y i) ← Split(z, k 3) 7: end for 8: p 1 ← 0, k ← 1 9: for i ← 0 to n -1 do 10: for j ← 0 to m -1 do 11: a (1) j ← RN(x i • y j) 12: a (2) j ← RN(x i • y j) 13: a (3) j ← RN(x i • y j) 14: a (4) j ← RN(x i • y j
c[0 : . . .] ← Renormalize_Priest(a (2) c[0 : . . .] ← Renormalize_Priest(a (5) c[0 : . . .] ← Renormalize_Priest(a (6) [0 : m -1]) In what follows we will present two multiplication algorithms, a new one and one that is a generalization of the algorithm used in the QD library for quad-double multiplication, each using a different method for accumulating the partial products.

Both algorithms use an "on-the-fly" truncation method, following the same reasoning as in the case of addition. Consider computing the product π with r terms of two floating-point expansions x and y, with n and m terms, respectively. Consider that the product x 0 y 0 is of order O(Λ), then, for the product (π , e) = 2Prod(x i , y j), π is of order O(ε k Λ) and e of order O(ε k+1 Λ), where k = i + j. In order to gain performance we discard the partial products that have an order of magnitude less than π r , i.e., 0 ≤ k ≤ r, meaning that we compute the approximate result based on the first r k=0 (k + 1) partial products. The products with the same order of magnitude as π r are intended as an extra error correction term, that is why we compute them using only standard floating-point multiplication.

In Theorem 3.4.1, we bound the error caused by this truncation. The same bound will apply to both algorithms that we are going to present in this section. 1) .

x i y j ≤ |x 0 y 0 | 2 -(p-1)(r+1) -2 -(p-1) (1 -2 -(p-1)) 2 + m + n -r -2 1 -2 -(p-
Proof. From the definition of the ulp-nonoverlapping expansion we have x 1 ≤ ulp(x 0) ≤ 2 -p+1 |x 0 | and, by induction, we get x i ≤ 2 -pi+i |x 0 |, for all 0 < i < n. The same goes for y.

The discarded partial products satisfy:

m+n-2 k=r+1 i+j=k a i b j ≤ m+n-2 k=r+1 i+j=k 2 -p(i+j)+i+j |x 0 y 0 | ≤ |x 0 y 0 | m+n-2 k=r+1 i+j=k 2 -(p-1)k ≤ |x 0 y 0 | m+n-2 k=r+1 (m + n -1 -k)2 -(p-1)k ≤ |x 0 y 0 | m+n-r-3 k =0 (m + n -k -r -2)2 -(p-1)(k +r+1) ≤ |x 0 y 0 | 2 -(p-1)(r+1) m+n-r-3 k =0 (m + n -r -2 -k)2 -(p-1)k . (3.23)
We define the function φ(e) = ∞ k=0 (m + n -r -2 -k)e k that satisfies:

φ(e) = ∞ k=0 -ke k + ∞ k=0 (m + n -r -2)e k = -e ∞ k=1 ke k-1 + (m + n -r -2) ∞ k=0 e k = -e d de ∞ k=1 e k + (m + n -r -2) 1 1 -e = -e d de 1 1 -e + m + n -r -2 1 -e = -e (1 -e) 2 + m + n -r -2 1 -e .
When applying function φ(2 -(p-1)) in equation (3.23) we get:

m+n-2 k=r+1 i+j=k x i y j ≤ |x 0 y 0 | 2 -(p-1)(r+1) -2 -(p-1) (1 -2 -(p-1)) 2 + m + n -r -2 1 -2 -(p-1) ,
which concludes the proof.

"Accurate" multiplication algorithm

Article [START_REF] Muller | A new multiplication algorithm for extended precision using floating-point expansions[END_REF], was fully dedicated to the algorithm presented in Algorithm 31. The algorithms called inside it are going to be detailed as we explain the reasoning behind it.

The main idea of the algorithm is to accumulate numbers of size at most b in "containers", referred to as "bins", that are floating-point variables whose least significant bit (LSB) has a fixed weight. This allows for errorless accumulation provided that we do not add more than 2 c numbers to one bin, where b + c = p -1.

Even though we present here a general setting with precision p, our implementation uses standard available formats. We made the following choices:

• when using binary64 we defined bins of size b = 45, which allows for c = 7 bits of carry to happen; this means that we can add 128 numbers that satisfy the above condition to each bin and the result is still going to be exact;

• for binary32 we chose bins with b = 18, which implies c = 5, allowing us to add up to 32 numbers to one bin.

In both cases, these values also satisfy 3b > 2p, a property that we are going to use later on. The number of allocated bins is computed as r•p b + 2 and the LSB of each bin is set according to the starting exponent, t = t x 0 + t y 0 at a distance of b bits, where t x 0 and t y 0 are the exponents of x 0 and y 0 , respectively. We start the algorithm by initializing each bin B i with the value 1.5

• 2 t-(i+1)•b+p-1 .
After the initialization step is done we start the actual computations. For each partial product computed using 2Prod, line 7, we get the pair (π , e) and, using the formula (t -t x i -t y j)/b , we determine the corresponding bins in which we have to accumulate it, where t x i and t y j are the exponents of x i and y j , respectively. Algorithm 31 -Multiplication_accurate(x 0 , . . . , x n-1 , y 0 , . . . , y m-1 , r).

1: t ← t x 0 + t y 0 2: for i ← 0 to r • p/b + 1 do 3: B i ← 1.5 • 2 t-(i+1)b+p-1 4: end for 5: for i ← 0 to min(n -1, r) do 6: for j ← 0 to min(m -1, r -1 -i) do 7:
(π , e) ← 2Prod(x i , y j)

B i ← B i -1.5 • 2 t-(i+1)b+p-1 23: end for 24: π[0 : r -1] ← VecSumErrBranch(B[0 : r • p/b + 1], r) //using Alg. 22 25: return π 0 , π 1 , . . . , π r-1
We know that one pair of floating-point numbers can "fall" into at most four bins, since 3b > 2p, and we can deduce three different cases (see Figure 3.11):

• 2:2 case, in which both π and e fall into two bins each;

• 2:3 case, in which π falls into two bins and e into three; These cases are dealt with in Algorithm 32 that accumulates the partial products. Apart from the (π , e) pair and the bins array, B, the algorithm also receives two integer parameters. The sh value represents the first corresponding bin for the pair and , computed as t -t x i -t y j -sh • b, the number of leading bits. This value gives the difference between the LSB of B sh-1 and the sum of the exponents of x i and y j of the corresponding (π , e) pair. (B sh+2 , B sh+3) ← Deposit(e) 13: end if 14: return B We determine which one of the three cases apply depending on the value. So,

• if 2c + 1 < b -≤ b we are in the 2:2 case;
• if c < b -≤ 2c + 1 we need to consider the 2:3 case;

• and if 0 < b -≤ c the 3:2 case applies. Remark 3.4.2. For simplicity, we consider that the extra error correction partial products, the ones that are computed using only standard floating-point multiplication, are dealt with the same way, using the pair (π , 0). This is not the case in our implementation, where we save operations by accumulating only the π term.

As we stated before, all the bins are initialized with a constant value depending on their LSB, that is going to be subtracted before the renormalization step (VecSumErrBranch algorithm). This type of addition was first used by Rump (in [START_REF] Rump | Ultimately Fast Accurate Summation[END_REF]) for adding the elements of an array of floatingpoint numbers. In his paper he proved that the result is correct. For the sake of completeness we also give here a short correctness proof.

Proof of correctness for Algorithm 32. We consider all the values that fall into the same bins B sh , B sh+1 as an array of floating-point numbers x 1 , . . . , x n that satisfy |x i | < 2 t+b , where 2 t is the LSB of B sh and b is the size of the bins. The lower part of each x i is denoted by x l i and represents the part that will be accumulated into B sh+1 . Theorem 3.4.3. Let x 1 , . . . , x n an array of floating-point numbers that satisfy |x i | < 2 t+b , for all 0 < i ≤ n, where b < p -1. We initialize a floating-point container with s 0 = 1.5 • 2 t+p-1 , we compute s 1 = RN(s 0 + x 1); . . . ; s i = RN(s i-1 + x i); . . . ; s n = RN(s n-1 + x n); and we return the value RN(s n -s 0). For each x i we also compute the lower part x i = RN(RN(s i-1 -s i) + x i). When using this method, no significant informations is lost in the process, so no rounding can occur, provided that n ≤ 2 p-b-2 -1 and that no underflow/overflow occurs during the calculations.

Proof. We first prove by induction that the following statement holds:

1.5 • 2 t+p-1 -i • 2 t+b ≤ s i ≤ 1.5 • 2 t+p-1 + i • 2 t+b . (3.24)
It is easy to see that it holds for i = 0. Now we assume that is true for i and we try to prove it for i + 1. We deduce:

1.5 • 2 t+p-1 -(i + 1)2 t+b ≤ s i + x i+1 ≤ 1.5 • 2 t+p-1 + (i + 1)2 t+b .
Hence, since rounding is a monotonic function:

RN(1.5 • 2 t+p-1 -(i + 1)2 t+b) ≤ s i+1 ≤ RN(1.5 • 2 t+p-1 + (i + 1)2 t+b).
The value 1.5 • 2 t+p-1 -(i + 1)2 t+b is an exact floating-point number because it is a multiple of 2 t and it is less than 2 t+p in absolute value, provided that i ≤ 2 p-b-1 • 3.5 -1, which holds in all practical cases. With our parameters:

• i ≤ 447 for binary64, p = 53 and b = 45, and • i ≤ 111 for binary32, p = 24 and b = 18. The same holds for 1.5 • 2 t+p-1 + (i + 1)2 t+b provided that i ≤ 2 p-b-2 -1, which also holds in all practical cases (with our parameters: i ≤ 63 for binary64 and i ≤ 15 for binary32).

Furthermore, we have

(s i , x i) = Fast2Sum(s i-1 , x i), therefore ∀i, s i + x i = s i-1 + x i ,
such that, by induction,

s i + x i + x i-1 + • • • + x 1 = s 0 + x 1 + x 2 + • • • + x i , which implies (s n -s 0) + x n + x n-1 + • • • + x 1 = x 1 + x 2 + • • • + x n .
From (3.24), we easily find that s n and s 0 are within a factor 2 (in practice, much less), such that (from Sterbenz lemma -Lemma 1.1.2), their difference is exactly computed: RN(s n -s 0) = s n -s 0 . We therefore conclude that

RN(s n -s 0) + x n + x n-1 + • • • + x 1 = x 1 + x 2 + • • • + x n .
The VecSumErrBranch (Algorithm 22) call in the last step of the multiplication has the role of a renormalization. By Theorem 3.1.17 that we proved in Section 3.1, we see that this step is enough for rendering the bins array into an ulp-nonoverlapping expansion. Theorem 3.4.4. Let x and y be two ulp-nonoverlapping floating-point expansions, with n, and m terms, respectively. Provided that no underflow/overflow occurs during the calculations, when computing their product using Algorithm 31, the result π is an ulp-nonoverlapping floating-point expansion with r terms that satisfies: 1) .

|xy -π| ≤ |x 0 y 0 | 2 -(p-1)r 1 + (r + 1)2 -p + 2 -(p-1) -2 -(p-1) (1 -2 -(p-1)) 2 + m + n -r -2 1 -2 -(p-
Proof. When using Algorithm 31 we "truncate" the result by discarding the partial products with an order of magnitude less than π r . From Theorem 3.4.1 we know that this causes a maximum error that is less or equal to

|x 0 y 0 | 2 -(p-1)(r+1) -2 -(p-1) (1 -2 -(p-1)) 2 + m + n -r -2 1 -2 -(p-1) . (3.25)
Also, in the algorithm we do not use error-free-transforms for computing the last r + 1 partial products, the ones with the same order of magnitude as π r , for which i + j = r. We know that

|x i y j | ≤ 2 -(p-1)(i+j) |x 0 y 0 |, from where |x i y j -RN(x i y j)| ≤ 2 -(p-1)r |x 0 y 0 | 2 -p
. This implies that the maximum error caused doing this is less or equal to:

(r + 1) |x 0 y 0 | 2 -(p-1)r • 2 -p . (3.26)
Apart from these two possible errors we also need to account for the error caused by the renormalization step. In Theorem 3.1.17 we showed that Algorithm 22 returns an ulpnonoverlapping expansion, in which case the maximum error is less or equal to ulp(π r-1). This implies that is less or equal to:

|x 0 y 0 | 2 -(p-1)r . (3.27)
To get the final error bound we have to add the bounds on all the possible errors that can occur, i.e., (3.25), (3.26) and (3.27), and we get:

|x 0 y 0 | 2 -(p-1)r 1 + (r + 1)2 -p + 2 -(p-1) -2 -(p-1) (1 -2 -(p-1)) 2 + m + n -r -2 1 -2 -(p-1)
This concludes our proof.

During the execution of Algorithm 31 we perform the following steps:

• during a preprocessing step we need to get the exponents of each term of the input expansions. We do this using the math.h library function, frexp, that uses only one floating-point operation, which we call 2r times;

• the first step of the algorithm consists in initializing the bins; we allocate binN r = r•p b + 2 bins. For this we use twice the math.h library function, ldexp (that can take up to 34 Flops, depending on the exponent's size), and after that we perform binN r -1 floating-point multiplications;

• during the main loop of the algorithm we compute r i=1 i partial products using 2Prod, which we accumulate into the bins using 3 Fast2Sum calls and 2 floating-point additions. During this same loop we also compute r -1 correction terms using simple floating-point multiplication, which we can accumulate using only 2 Fast2Sum calls and one floating-point addition.

• in the last part of the algorithm we first unbias the bins, by subtracting their initial values from each one of them, then we renormalize the result.

In the worst case, this account for a total of M accurate (n, m, r) = 13 2 r 2 + 33 2 r + 6(r•p b + 2) + 54 floating-point operations.

"Quick-and-dirty" multiplication algorithm

The below algorithm was first mentioned in [START_REF] Joldes | Searching for sinks for the hénon map using a multipleprecision gpu arithmetic library[END_REF] and after that in [START_REF] Joldes | Arithmetic algorithms for extended precision using floating-point expansions[END_REF], but a full correctness and accuracy prove was never given.

The algorithm presented in this section is also a generalization of the quad-double multiplication implemented in the QD library, coupled with a different renormalization algorithm. In Algorithm 33 and Figure 3.12 we present the "r input -r output" variant, although in our implementation we have a fully customized version.

Algorithm 33 -Multiplication_quick(x 0 , . . . , x r-1 , y 0 , . . . , y r-1 , r).

1: (f 0 , e 0) ← 2Prod(x 0 , y 0) 2: for k ← 1 to r -1 do 3:

for i ← 0 to k do 4: (π i , êi) ← 2Prod(x i , y k-i) 5:
end for 6:

(f k , e[0 : k 2 + k -1]) ← VecSum(π [0 : k], e[0 : k 2 -1]) 7: e[0 : k 2 + 2k] ← (e[0 : k 2 + k -1], ê[0 : k]) 8: end for 9: f r ← 0 10: for i ← 1 to r -1 do 11:
f r ← f r + x i • y r-i 12: end for 13: for i ← 0 to r 2 -1 do 14:

f r ← f r + e i 15: end for 16: π[0 : r -1] ← Renormalize_random(f [0 : r], r) 17: return π 0 , π 1 , . . . , π r-1
We perform the same "on-the-fly" truncation as in the previous algorithm, but we accumulate the values using a different method, based on the VecSum algorithm, in which we add all the products with the errors of the same order resulted from the previous step. So, we already established that for each k, 0 ≤ k ≤ r, we have k + 1 products to compute (line 4). Besides these we also have k 2 terms resulting from the previous iteration. We accumulate all these terms using VecSum, to obtain f k in line 6. The remaining error terms are concatenated with the errors from the k + 1 products, and the entire array e 0 , . . . , e k 2 +2k is propagated to the next iteration. The (r + 1)-st component f r is obtained by simple summation of all remaining errors with the simple products of order O(ε k Λ), where O(Λ) is the order of x 0 × y 0 . Error-free transforms are not needed in the last step since the errors are not reused. The array f is then reused in order to render the result ulp-nonoverlapping . Theorem 3.4.5. Let x and y be two ulp-nonoverlapping floating-point expansions, with n, and m terms, respectively. Assume p ≥ 8. Provided that no underflow/overflow occurs during the calculations, when computing their product using Algorithm 33, the result π is an ulp-nonoverlapping floating-point expansion with r terms that satisfies:

|xy -π| ≤ |x 0 y 0 | 2 -(p-1)(r+1) 128 127 (m + n) - 129 254 r - 385 254 + 2 p-1 + 2 -p-r (r 2 + r)((r + 1)!) 2 .
Proof. When using Algorithm 33 we "truncate" the result by discarding the partial products with an order of magnitude less than π r . From Theorem 3.4.1 we know that this causes a maximum error that is less than or equal to

|x 0 y 0 | 2 -(p-1)(r+1)      -2 -(p-1) (1 -2 -(p-1)) 2 <0 +(m + n -r -2) 1 1 -2 -(p-1) < 128 127 for p≥8      . (3.28)
From the definition we know that |x i | ≤ 2 -i(p-1) |x 0 | and |y j | ≤ 2 -j(p-1) |y 0 |, so we can deduce

|x i y j | ≤ 2 -(p-1)(i+j) |x 0 y 0 | .
For computing f 0 we use only 2Prod(x 0 , y 0), and we get |f 0 | ≤ |x 0 y 0 | (1 + 2 -p).

For computing f 1 we use VecSum#1, with 3 entries: the error from the previous step, and two partial products, which are less than 2 -(p-1) |x 0 y 0 | (1 + 2 -p). It is easily seen that all these entries are bounded by the same value. We define the following notation:

Ω 1 = 2 -(p-1) |x 0 y 0 | (1 + 2 -p).
(3.29) 3 and the outputted errors are less than

It follows that f 1 < 3 • 2 -(p-1) |x 0 y 0 | (1 + 2 -p)
Ω 2 = 3 • 2 -2p+1 |x 0 y 0 | (1 + 2 -p) 3 .
For computing f 2 we use VecSum#2 which is going to have 7 entries: 2 errors outputted by VecSum#1, bounded by Ω 2 ; 2 errors from the previous step's partial products, which are less than 2 -2p+1 |x 0 y 0 | (1 + 2 -p); and 3 partial products, less than 2 -2(p-1) |x 0 y 0 | (1 + 2 -p). We observe once more that all the entries are less than Ω 2 .

For the induction step we consider VecSum#i -1. For computing f i-1 we have (i -1) 2 + i entries, which we assume are all less than Ω i-1 . It follows:

f i-1 < (2Ω i-1 (1 + 2 -p) + Ω i-1)(1 + 2 -p) + • • • < (i 2 -i + 1)Ω i-1 (1 + 2 -p) i 2 -i
and also, the largest error term outputted and implicitly all the others are less than 1 2 ulp(f i-1). This implies that all error terms are less than:

(i 2 -i + 1)Ω i-1 (1 + 2 -p) i 2 -i • 2 -p ; = 2 -(p-1) |x 0 y 0 | (1 + 2 -p) i n=1 (n 2 -n + 1)(1 + 2 -p) n 2 -n 2 -p ; = 2 -(p-1)-ip |x 0 y 0 | (1 + 2 -p) 1+2+•••+(i 2 -i) <2 always true in practice i n=1 (n 2 -n + 1); < 2 -(i+1)p+2 |x 0 y 0 | (i!) 2 .
(3.30)

and this last value will define Ω i . This implies that, since we use only simple summation for computing f r , in the last step we neglect r 2 + r terms, all less than Ω r+1 .

We also have to account for the errors that occur when computing the last partial products using only simple multiplication. This means r + 1 terms less than

|x 0 y 0 | 2 -(p-1)r-p = 1 2 |x 0 y 0 | 2 -(p-1)(r+1) .
When adding all these errors we get the following bound:

|xy -f | ≤ |x 0 y 0 | 2 -(p-1)(r+1) 128 127 (m + n -r -2) + (r 2 + r)2 -p-r+1 ((r + 1)!) 2 + r + 1 2 ≤ |x 0 y 0 | 2 -(p-1)(r+1) 128 127 (m + n) - 129 254 r - 385 256 + (r 2 + r)2 -p-r+1 ((r + 1)!) 2 .
(3.31)

Now, let f = f 0 , f 1 , . . . be an ulp-nonoverlapping expansion equal to f . Consequently, π is going to be a truncation to r terms of f . For renormalizing the result we use Algorithm 25, which ensures that the result is going to be an ulp-nonoverlapping expansion, in which case the maximum error is less or equal to ulp(π r-1). This implies that is less or equal to:

|x 0 y 0 | 2 -(p-1)r = |x 0 y 0 | 2 -(p-1)(r+1)+(p-1) .
To get the final error bound we have to add the two bounds obtained above and we get:

|xy -π| ≤ |x 0 y 0 | 2 -(p-1)(r+1) 2 p-1 + 128 127 (m + n) - 129 254 r - 385 254 + (r 2 + r)2 -p-r+1 ((r + 1)!) 2 .
And this concludes our proof.

We ask the reader to keep in mind that this bound is a big overestimate to the error. When bounding the error given by the simple addition in the last step of the algorithm we assume that all the terms added are bounded by the same value, even if this is not the case. In practice we still obtain reliable results using this algorithm.

During the execution of Algorithm 33 we perform the following steps:

• we compute r i=1 i partial products using 2Prod; • for computing each f i , with 1 ≤ i ≤ r -1 we perform r-1 n=1 V (n 2 + n + 1) floating-point operations;

• we compute r -1 partial product using only simple multiplication;

• we perform r 2 + r -1 simple additions in order to get the extra error correction term, f r ;

• followed by the renormalization of the result using Renormalize_random.

In the worst case, this account for a total of M quick (n, m, r) = 2r 3 + 5r 2 + 8r -6 floating-point operations.

Algorithm 33 can be slightly improved if an FMA instruction is available, by performing the accumulation in line 11 using f r ← fma(x i , y r-1 , f r). This change would imply that in the last step of the algorithm we ignore only r 2 -1 terms less than Ω r+1 instead of r 2 + r, which slightly improves the error bound:

|xy -π| ≤ |x 0 y 0 | 2 -(p-1)(r+1) 2(m + n) -r -2 + (r 2 -1)((r + 1)!) 2 .
The floating-point operation count becomes M quick [f ma](n, m, r) = 2r 3 + 5r 2 + 7r -5 in the worst case.

The "quick" appellative has the same meaning as for addition. In this case we also replace the call to Renormalize_random with a call to Renormalize (for details see Section 1.4), so we get M f ast quick (n, m, r) = 2r 3 + 2r 2 + 8r -6 or M f ast quick [f ma](n, m, r) = 2r 3 + 2r 2 + 7r -5, respectively.

Division of floating-point expansions

There are two classes of algorithms for performing division: the so-called digit-recurrence algorithms [START_REF] Ercegovac | Division and Square Root: Digit-Recurrence Algorithms and Implementations[END_REF], that generalize the "paper-and-pencil" method, and the algorithms based on the Newton-Raphson iteration [START_REF] Ypma | Historical development of the Newton-Raphson method[END_REF][START_REF] Cornea | Correctness proofs outline for Newton-Raphsonbased floating-point divide and square root algorithms[END_REF]. The algorithms employed so far for dividing expansions belong to the former class, as Priest's algorithm presented below. In our work we focused on the possible use of the latter class, since its very fast, quadratic convergence is appealing when high precision is at stake.

Classical long division algorithm

In [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF] Priest's division is done using the classical long division algorithm, which is recalled in Algorithm 34. We denote by f [0 : . . .] and expansion f whose number of terms is not known in advance.

Algorithm 34 -Division_Priest(x 0 , . . . , x n-1 , y 0 , . . . , y m-1 , d).

1: q 0 = RN(x 0 /y 0) 2: r (0) [0 : n -1] ← x[0 : n -1] 3: for i ← 1 to d -1 do 4:
f [0 : . . .] ← Multiplication_Priest (q i-1 , y[0 : m -1]) //using Alg. [START_REF] Harrison | A machine-checked theory of floating-point arithmetic[END_REF] 5: r (i) [0 : . . .] ← Addition_Priest(r (i-1) [0 : . . .], -f [0 : . . .])) //using Alg. [START_REF] Galias | Combination of exhaustive search and continuation method for the study of sinks in the Hénon map[END_REF] 6:

q i = RN(r (i)
0 /y 0) 7: end for 8: q[0 : . . .] ← Renormalize_Priest (q[0 : d -1]) //using Alg. [START_REF] Ercegovac | Division and Square Root: Digit-Recurrence Algorithms and Implementations[END_REF] 9: return q 0 , q 1 , . . . with at most d terms

The division algorithm implemented in the QD library [START_REF] Hida | Algorithms for quad-double precision floating-point arithmetic[END_REF] is similar. For instance, let x = x 0 + x 1 + x 2 + x 3 and y = y 0 + y 1 + y 2 + y 3 be quad-double numbers. First, one approximates the quotient q 0 = x 0 /y 0 , then computes the remainder r = x-q 0 y in quad-double. The next correction term is q 1 = r 0 /y 0 . Subsequent terms q i are obtained by continuing this process. At each step when computing r, full quad-double multiplication and subtraction are performed since most of the bits will be canceled out when computing q 3 and q 4 . A renormalization step is performed only at the end, on q 0 + q 1 + q 2 + ... in order to ensure the nonoverlapping requirement. No error bound is given in [START_REF] Hida | Algorithms for quad-double precision floating-point arithmetic[END_REF].

Note that in Algorithm 34 a renormalization step is performed after each computation of r = r -q i y. Priest proved in [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF] the error bound given in Theorem 3.5.1. Theorem 3.5.1. Let x and y be two P-nonoverlapping floating-point expansions, with n, and m terms, respectively and d an integer parameter, the required number of output terms. Provided that no underflow/overflow occurs during the calculations, Algorithm 34 computes a quotient P-nonoverlapping expansion q = q 0 + • • • + q d-1 that satisfies:

q -x/y x/y < 2 1-(p-4)d/p . (3.32)
Daumas and Finot [START_REF] Daumas | Division of floating point expansions with an application to the computation of a determinant[END_REF] modify Priest's division algorithm by using only estimates of the most significant component of the remainder r 0 and storing the less significant components of the remainder and the terms -q i y unchanged in a set that is managed with a priority queue. While the asymptotic complexity of this algorithm is better, in practical simple cases Priest's algorithm is faster due to the control overhead of the priority queue [START_REF] Daumas | Division of floating point expansions with an application to the computation of a determinant[END_REF]. The error bound obtained with Daumas' algorithm is (using the same notations as above):

q -x/y x/y < 2 -d(p-1) d-1 i=0 (4i + 6). (3.33)
In the worst case, Algorithm 34 requires d simple divisions, (d -1) multiplications with 1 and m terms, d-1 i=0 additions A priest (n + 2m(i -1), 2m), and a final renormalization on d terms. This accounts for a total of

D priest (n, m, d) = d+(d-1)M priest (1, m)+ d-1 i=0 A priest (n+2m(i-1), 2m)+ R priest (d) = 27d 2 m + (803m + 27n -231)d -830m + 213 floating-point operations.

Newton-Raphson based reciprocal algorithm

The following algorithm was presented in [START_REF] Joldes | On the computation of the reciprocal of floating point expansions using an adapted newton-raphson iteration[END_REF], and in the extended journal version [START_REF] Joldes | Arithmetic algorithms for extended precision using floating-point expansions[END_REF], where we proved that it works in the context of B-nonoverlapping and P-nonoverlapping floating-point expansions, but the ulp-nonoverlapping context is first considered in this manuscript.

The classical Newton-Raphson iteration for computing reciprocals [START_REF] Ypma | Historical development of the Newton-Raphson method[END_REF][START_REF] Cornea | Correctness proofs outline for Newton-Raphsonbased floating-point divide and square root algorithms[END_REF][START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]Chap. 2] is based on the general Newton-Raphson iteration for computing the roots of a given function f , which is:

r n+1 = r n - f (r n) f (r n) . (3.34)
When r 0 is close to a root α, f (α) = 0, the iteration converges quadratically. For computing 1

x we choose f (r) = 1 r -x, which gives

r n+1 = r n (2 -xr n). (3.35)
The iteration converges to 1

x for all r 0 ∈ (0, 2 x). However, taking any point in (0, 2 x) as the starting point r 0 would be a poor choice. A much better choice is to choose r 0 equal to a floating-point number very close to 1

x . This only requires one floating-point division. The quadratic convergence of (3.35)

is deduced from r n+1 -1 x = -x(r n -1 x) 2 .
This iteration is self-correcting because rounding errors do not modify the limit value.

While iteration (3.35) is well known, in Algorithm 35 we use an adaptation for computing reciprocals of floating-point expansions, with "truncated" operations, and we prove a tight error bound on the result in Theorem 3.5.2.

Algorithm 35 -Reciprocal(x 0 , x 1 , . . . , x 2 k -1 , 2 q). 1: r 0 = RN(1/x 0) 2: for i ← 0 to q -1 do 3: v[0 : 2 i+1 -1] ← Multiplication_accurate(r[0 : 2 i -1], x[0 : 2 i+1 -1], 2 i+1) //using Alg. 31 4: ŵ[0 : 2 i+1 -1] ← Renormalize(-v[0 : 2 i+1 -1], 2.0, 2 i+1) //using Alg. 24 5: r[0 : 2 i+1 -1] ← Multiplication_accurate(r[0 : 2 i -1], ŵ[0 : 2 i+1 -1], 2 i+1
) 6: end for 7: return r 0 , r 1 , . . . , r 2 q -1 Theorem 3.5.2. Let x be an ulp-nonoverlapping floating-point expansions, with n = 2 k terms and q ≥ 0, an integer parameter such that 2 q is the required number of output terms. Assume p ≥ 6 and q ≤ p 2 -2, which always holds in practice. Provided that no underflow/overflow occurs during the calculations, Algorithm 35 computes an approximation of 1

x as r = r 0 + • • • + r 2 q -1 , an ulp-nonoverlapping floatingpoint expansion that satisfies:

r - 1 x ≤ 2 -2 q (p-4)-2 |x| (1 -2 -p+1) . (3
= u 0 + u 1 + • • • + u k with k + 1 > 0. Denote u (i) = u 0 + u 1 + • • • + u i , i ≥ 0, i.e.
, "a truncation" of u to i + 1 terms. The following inequalities hold for 0 ≤ i ≤ k:

|u i | ≤ 2 -i(p-1) |u 0 | , (3.37)
u -u (i) ≤ 2 -i(p-1) |u| η 1 -η , (3.38)
1 -2 -i(p-1) η 1 -η |u| ≤ u (i) ≤ 1 + 2 -i(p-1) η 1 -η |u| , (3.39)
1 u - 1 u 0 ≤ 1 |u| η, (3.40)
where

η = ∞ j=0 2 (-j-1)(p-1) = 2 -(p-1) 1 -2 -(p-1) = 1 2 p-1 -1 .
Proof. By definition of an ulp-nonoverlapping expansion and since for any normal binary floatingpoint number

u i , ulp(u i) ≤ 2 -p+1 |u i | we have |u i | ≤ ulp(u i-1) ≤ 2 -p+1 |u i-1 |
| = |u 1 + u 2 + • • • + u k | ≤ 2 -(p-1) |u 0 | + 2 -2(p-1) |u 0 | + • • • + 2 -k(p-1) |u 0 | ≤ |u 0 | η.
One easily observes that u and u 0 have the same sign. One possible proof is by noticing that 1-η > 0 and

-|u 0 | η ≤ u-u 0 ≤ |u 0 | η. Suppose u 0 > 0, then -u 0 η ≤ u-u 0 ≤ u 0 η, and hence u 0 (1 -η) ≤ u ≤ u 0 (1 + η) which implies u > 0. The case u 0 < 0 is similar. It follows that |u| 1 + η ≤ |u 0 | ≤ |u| 1 -η . (3.41)
For (3.38) we use (3.41) together with:

u -u (i) ≤ ∞ j=0 2 (-i-j-1)(p-1) |u 0 | ≤ 2 -i(p-1) η |u 0 | , and (3.39)
is a simple consequence of (3.38). Similarly, (

) follows from 1 u -1 u 0 = 1 |u| u 0 -u u 0 ≤ 1 |u| η. 3.40
Remark 3.5.4. Note that given an expansion u which satisfies the properties listed in Proposition 3.2.6, one can obtain its truncation u (i) , with i + 1 terms, by applying the renormalization Algorithm 24:

u (i) ← Renormalize(u, i + 1).
Proof. (of Theorem 3.5.2) Let

f i = 2 i+1 -1 and x (f i) = x 0 + x 1 + • • • + x f i , i.
e., a "truncation" of x to f i + 1 terms, with 0 ≤ i.

For computing 1

x we use the Newton-Raphson iteration:

r 0 = RN(1 x 0), r i+1 = r i (2 - x (f i) r i))
, i ≥ 0 by truncating each operation involving floating-point expansions in the following way:

• let v i := x (f i) • r i be the exact product; we compute a truncation vi with Algorithm 31, such that it has 2 i+1 terms and from Theorem 3.4.4 and eq. (3.41) it satisfies:

|v i -vi | ≤ x (f i) 0 r 0 2 -(p-1)2 i+1 1 + (2 i+1 + 1)2 -p + 2 -(p-1) -2 -(p-1) (1 -2 -(p-1)) 2 + 2 i -2 1 -2 -(p-1) ≤ x (f i) r i 2 -(p-1)2 i+1 1 + 2 i (2 -(p-1) + η) + 2 -p (1 -η) 2 ≤ x (f i) r i 2 -(p-1)2 i+1 1 -2 -p+i+3 , (3.42)
as soon as p ≥ 3 and i < p -3.

• let w i := 2 -vi be the exact result of the subtraction; we compute a truncation ŵi by directly applying the renormalization Algorithm 24, such that it has 2 i+1 terms. This is correct by the third case of Proposition 3.2.6: vi is ulp-nonoverlapping and 2.0 plays the role of an arbitrary number;

• let τ i := r i • ŵi be the exact product; we compute a truncation r i+1 = τ

(2 i+1 -1) i

with Algorithm 31, such that it has 2 i+1 terms and, similarly to (3.42) we have:

|τ i -r i+1 | ≤ |r i ŵi | 2 -(p-1)2 i+1 1 -2 -p+i+3 . (3.43)
Let us first prove a simple upper bound for the approximation error in r 0 :

ε 0 = r 0 - 1 x ≤ 2η |x| . (3.44)
Since

r 0 = RN(1 x 0), then r 0 -1 x 0 ≤ 2 -p 1
x 0 , so, from (3.41):

r 0 - 1 x ≤ 2 -p 1 x 0 + 1 x - 1 x 0 ≤ (1 + η)2 -p + η |x| ≤ 2η |x| .
Now let us deduce an upper bound for the approximation error in r at step i + 1, ε i+1 = r i+1 -1

x . For this, we will use a chain of triangular inequalities that make the transition from our "truncated" Newton error, to the "untruncated" one. Let

γ i = 2 -(2 i+1 -1)(p-1) η 1 -η = 2 -2 i+1 (p-1) 1 -2 -p+2 ,
and

β i = 2 -2 i+1 (p-1)
1 -2 -p+i+3 . From Property 3.5.3, eq. (3.38) and eq. (3.42) and (3.43) we deduce:

|r i+1 -τ i | ≤ β i |r i ŵi | , (3.45)
|w i -ŵi | ≤ γ i |w i | ≤ γ i |2 -vi | , (3.46)
|v i -vi | ≤ β i x (f i) r i , (3.47)
x -

x (f i) ≤ γ i |x| . (3.48)
From (3.45) we have:

ε i+1 ≤ |r i+1 -τ i | + τ i - 1 x ≤ β i |r i ŵi | + r i ŵi - 1 x ≤ β i |r i (w i -ŵi)| + β i |r i w i | + r i ŵi - 1 x ≤ (1 + β i) |r i | |w i -ŵi | + β i |r i w i | + r i w i - 1 x .
Using (3.46) and (3.47):

ε i+1 ≤ r i w i - 1 x + (γ i (1 + β i) + β i) |r i w i | ≤ r i (2 -v i) - 1 x + |r i | • |v i -vi | + (γ i (1 + β i) + β i) |r i | (|2 -v i | + |v i -vi |) ≤ r i (2 -x (f i) r i) - 1 x + (1 + γ i (1 + β i) + β i)β i r 2 i x (f i) + (γ i (1 + β i) + β i) r i (2 -x (f i) r i) .
By (3.48), we have:

r i (2 -x (f i) r i) - 1 x ≤ |x| r i - 1 x 2 + γ i |r i | 2 |x| , |r i | 2 x (f i) ≤ (1 + γ i) |r i | 2 |x| , and
r i (2 -x (f i) r i) ≤ |x| r i - 1 x 2 + γ i |r i | 2 |x| + 1 |x| .
Hence we have:

ε i+1 ≤ (γ i + 1)(β i + 1) |x| r i - 1 x 2 + (1 + β i)(1 + γ i)(γ i (1 + β i) + β i) |r i | 2 |x| + (γ i (1 + β i) + β i) 1 |x| . (3.49)
We now prove by induction that for all 0 ≤ i ≤ p 2 -2 and p ≥ 6:

ε i = r i - 1 x ≤ 2 -2 i (p-4)-2 |x| (1 -2 -p+1) . (3.50)
For i = 0, this holds from (3.44). For the induction step, we have from (3.49):

ε i+1 ≤ (1 + γ i)(1 + β i) |x| |ε i | 2 + (1 + β i)(1 + γ i)(γ i (1 + β i) + β i) (1 ± ε i |x|) 2 1 |x| + (γ i (1 + β i) + β i) 1 |x| , (3.51)
which implies

|x| (1 -2 -p+1)ε i+1 ≤ (1 + γ i)(1 + β i)2 -2 i+1 (p-4)-4 1 -2 -p+1 + + (1 + β i)(1 + γ i)(γ i (1 + β i) + β i)(1 ± ε i |x|) 2 (1 -2 -p+1) + (γ i (1 + β i) + β i)(1 -2 -p+1). (3.52)
Now, we bound

γ i 2 -2 i+1 (p-4)-2 = 2 -2 i+1 (p-1) (1 -2 -p+2)2 -2 i+1 (p-4)-2 = 2 -2 i+1 (p-1-p+4)+2 1 -2 -p+2 = 2 -3•2 i+1 +2 1 -2 -p+2 ≤ 2 -4 1 -2 -p+2 ≤ 1 16(1 -2 -p+2) , (3.53)
and

γ i = 2 -2 i+1 (p-1) 1 -2 -p+2 ≤ 2 -2(p-1) 1 -2 -p+2 ≤ 2 -2p+2+p-2 1 2 p-2 -1 ≤ 2 -2p+3 ≤ 1 512 ∀ p ≥ 6.
We also have:

β i = 2 -(p-1)2 i+1 1 -2 -p+i+3 ≤ γ i (1 -2 -p+2) 1 -2 -p+i+3 ≤ γ i (1 + 2 i-p+3) ∀ i ≤ p 2 -2 and p ≥ 6. (3.54) Also 2 i-p+3 ≤ 2 -p/2+1 ≤ 1 4 ∀ p ≥ 6, so β i ≤ γ i 1 + 1 4 ∀ i ≤ p 2 -2 and p ≥ 6.
From (3.52) and (3.53) we have:

|x| (1 -2 -p+1)ε i+1 2 -2 i+1 (p-4)-2 ≤ (1 + γ i)(1 + γ i + 1 4 γ i) 4(1 -2 -p+1) + 1 16 (1 + γ i + 1 4 γ i)(1 + γ i)(γ i + 1 4 γ i + 1 4 + 2)(1 ± ε i |x|) 2 1 -2 -p+1 1 -2 -p+2 + 1 16 (γ i + 1 4 γ i + 1 4 + 2) 1 -2 -p+1 1 -2 -p+2 . (3.55)
We denote:

ω 1 = (1 + γ i)(1 + γ i + 1 4 γ i) 4(1 -2 -p+1)
;

ω 2 = 1 16 (1 + γ i + 1 4 γ i)(1 + γ i)(γ i + 1 4 γ i + 1 4 + 2)(1 ± 2 -2 i (p-4)-2 1 -2 -p+1) 2 1 -2 -p+1 1 -2 -p+2 ; ω 3 = 1 16 (γ i + 1 4 γ i + 1 4 + 2) 1 -2 -p+1 1 -2 -p+2 s.t. |x| (1 -2 -p+1)ε i+1 2 -2 i+1 (p-4)-2 ≤ ω 1 + ω 2 + ω 3 . (3.56)
We have 1 2 -2p+3 ≤ 32 31 for all p ≥ 6 and since γ i ≤ 1 512 it follows that:

ω 1 ≤ 1 3 .
On the same note, (1

± 2 -2 i (p-4)-2 1-2 -p+1) 2 ≤ 3 2 for all i ≤ p-4
2 and p ≥ 6, and 1-2 -p+1 1-2 -p+2 ≤ 31 30 for all p ≥ 6, so:

ω 2 ≤ 1 3
, and ω 3 ≤ 1 3 .

By the above three bounds we get

|x| (1 -2 -p+1)ε i+1 2 -2 i+1 (p-4)-2 ≤ 1,
and this completes our proof.

Our algorithm has the feature of truncating the expansions "on-the-fly" by taking into account only the significant terms of the input expansions in order to compute the result. In total we perform q iterations, and during each ith iteration we perform

• two multiplications M accurate (2 i , 2 i+1 , 2 i+1
), and • one addition using the renormalization Algorithm 24 (see Section 3.3), R(2 i+1 + 1, 2 i+1).

In the worst case, this account for a total of I(2 k , 2 q) = 52 3 4 q + 98 • 2 q + 128q -343 3 floating-point operations.

Note that, in practice, we can replace the calls to the "accurate" addition and multiplication with calls to the fast "quick-and-dirty" versions. When doing this we can still get correct results (sometimes the same), but the error bound is not guaranteed anymore. By doing this we can speed up the algorithm in order to perform only I f ast (2 k , 2 q) = 32 7 8 q + 16 3 4 q + 48 • 2 q -14q -1195 21 floating-point operations.

Newton-Raphson based division algorithm

In this setting the division of two floating-point expansions is simply performed with Algorithm 35 followed by a multiplication with the numerator expansion. This can be done using either Algorithm 31, either Algorithm 33, as shown in Algorithm 36.

Algorithm 36 -Division(x 0 , . . . , x n-1 , y 0 , . . . , y m-1 , r). If the "accurate" algorithms are employed, in the worst case, Algorithm 36 performs D(n, m, 2 q) = 143 6 4 q + 241 • 2 q-1 + 128q -145 3 floating-point operations. On the other hand, if the fast algorithms are considered it perform only D f ast (n, m, 2 q) = 46 7 8 q + 22 3 4 q + 55 • 2 q -14q -1300 21 floating-point operations.

Square root of floating-point expansions

The families of algorithms most commonly used are exactly the same as for division, although, in the case of square root the digit-recurrence algorithm that generalizes the "paper-and-pencil" technique is typically more complicated than for division. This is the reason why a software implementation would be tedious, so there is none available. Moreover, Newton-Raphson based algorithms offer the advantage of assuring a quadratic convergence.

Newton-Raphson based square root algorithm

The two algorithms presented below were presented in [START_REF] Joldes | Arithmetic algorithms for extended precision using floating-point expansions[END_REF] in the context of Bnonoverlapping and P-nonoverlapping expansions. Here we will treat the case of ulpnonoverlapping expansions.

Starting from the general Newton-Raphson iteration (3.34), we can compute the square root in two different ways. We can look for the zeros of the function f (r) = r 2 -x that leads to the so called "Heron iteration":

r n+1 = 1 2 (r n + x r n). (3.57)
One can easily show that if r 0 > 0, then r n goes to √ x. This iteration needs a division at each step, which counts as a major drawback.

To avoid performing a division at each step we can look for the positive root of the function

f (r) = 1 r 2 -x.
From here we get the iteration

r n+1 = 1 2 r n (3 -xr 2 n). (3.58)
This iteration converges to 1

√

x , provided that r 0 ∈ (0,

√ 3 √
x). The result can be multiplied by x in order to get an approximation of √ x. To obtain fast, quadratic, convergence, the first point r 0 must be a close approximation to 1 √ x . In this case we still need to perform a division (by 2), but this one is much simpler. Since dividing a floating-point number by 2 can be done by multiplying it with 0.5, this being an exact operation, we can compute the division of a floating-point expansion by 2 by simply multiplying each of the terms by 0.5, separately.

As in the case of the reciprocal, in Algorithm 37 we use an adaption of iteration (3.58), using "truncated" algorithms.

Algorithm 37 -Reciprocal_SquareRoot(x 0 , x 1 , . . . , x 2 k -1 , 2 q). 1: r 0 = RN(1/ √ x 0) 2: for i ← 0 to q -1 do 3: v[0 : 2 i+1 -1] ← Multiplication_accurate(r[0 : 2 i -1], x[0 : 2 i+1 -1], 2 i+1
) //using Alg. 31 [START_REF] Anderson | LAPACK Users' Guide[END_REF]:

ŵ[0 : 2 i+1 -1] ← Multiplication_accurate(r[0 : 2 i -1], v[0 : 2 i+1 -1], 2 i+1) 5:
ŷ[0 : 2 i+1 -1] ← Renormalize(-ŵ[0 : 2 i+1 -1], 3.0, 2 i+1) //using Alg. [START_REF] Firasta | Intel AVX: New frontiers in performance improvements and energy efficiency[END_REF] 6:

ẑ[0 : 2 i+1 -1] ← Multiplication_accurate(r[0 : 2 i -1], ŷ[0 : 2 i+1 -1], 2 i+1) 7: r[0 : 2 i+1 -1] ← ẑ[0 : 2 i+1 -1] * 0.5 8: end for 9: return r 0 , r 1 , . . . , r 2 q -1
The error analysis for this algorithm follows the same principle as the one for the reciprocal algorithm. The goal is to show that the relative error decreases after every loop of the algorithm, by taking into account the truncations performed after each operation. The strategy is to make the exact Newton iteration term and bound appear. Theorem 3.6.1. Let x be an ulp-nonoverlapping floating-point expansions, with n = 2 k terms and q ≥ 0, an integer parameter such that 2 q is the required number of output terms. Assume p ≥ 6 and q ≤ p 2 -2, which always holds in practice. Provided that no underflow/overflow occurs during the calculations, Algorithm 38 computes an approximation of 1

√

x as r = r 0 + • • • + r 2 q -1 , an ulp-nonoverlapping floatingpoint expansion that satisfies:

r - 1 √ x ≤ 2 -2 q (p-4)-1 √ x(1 -2 -p+1) . (3.59)
Proof. In Property 3.5.3 we gave and proved some properties of ulp-nonoverlapping floating-point expansions. To those we are going to add a new one:

1 √ u - 1 √ u 0 ≤ 1 √ u η. (3.60)
It can be seen that

1 √ u -1 √ u 0 = 1 √ u 1 - √ u
√ u 0 . By using Property 3.5.3 eq. (3.41), the fact that u and u 0 have the same sign, and the fact that the square root is an increasing function, we have:

1 - √ u √ u 0 ≤ 1 - 1 1+η
≤ η, which proves the property. We use the same notation as for the reciprocal:

f i = 2 i+1 -1 and x (f i) = x 0 + x 1 + • • • + x f i i.e.
a "truncation" of x to f i + 1 terms, with 0 ≤ i. For computing 1 √ a we use the Newton iteration:

r 0 = RN(1 √ x 0), r i+1 = 1 2 r n (3-x (f i) r 2 n
), i ≥ 0 by truncating each operation involving floating-point expansions in the following way:

• let v i := x (f i) • r i be the exact product; we compute a truncation vi with Algorithm 31, such that it has 2 i+1 terms and from Theorem 3.4.4 and (3.41) it satisfies:

|v i -vi | ≤ x (f i) r i 2 -(p-1)2 i+1 1 -2 -p+i+3 , (3.61)
as soon as p ≥ 3 and i < p -3.

• let w i := vi • r i be the exact product; we compute a truncation ŵi with 2 i+1 terms that, similarly to (3.61), satisfies:

|w i -ŵi | ≤ |v i r i | 2 -(p-1)2 i+1 1 -2 -p+i+3 , (3.62)
as soon as p ≥ 3 and i < p -3.

• let y i := 3 -ŵi be the exact result of the subtraction; we compute a truncation ŷi by directly applying the renormalization Algorithm 24, such that it has 2 i+1 terms. This is correct by the third case of Proposition 3.2.6: ŵi is ulp-nonoverlapping and 3.0 plays the role of an arbitrary number;

• let τ i := 1 2 ŷi • r i be the exact product; we compute a truncation r i+1 with 2 i+1 terms similarly to (3.61) and (3.62) we have:

|r i+1 -τ i | ≤ 1 2 ŷi r i 2 -(p-1)2 i+1 1 -2 -p+i+3 , (3.63)
as soon as p ≥ 3 and i < p -3.

We continue by first proving a simple upper bound for the approximation error in r 0 :

ε 0 = r 0 - 1 √ x ≤ 1 √ x η(3 + η). (3.64)
We denote α = RN(√ x 0), so we have

r 0 = RN(1 α). We know that α - √ x 0 ≤ 2 -p √ x 0 and r 0 -1 α ≤ 2 -p 1 α , so we obtain: 1 α -1 √ x 0 ≤ (1 1-2 -p -1) 1 √ x 0
. By (3.60) we have:

r 0 - 1 √ x 0 ≤ r 0 - 1 α + 1 α - 1 √ x 0 ≤ 2 -p 1 α + 1 α - 1 √ x 0 ≤ 2 -p 1 √ x 0 + (2 -p + 1) 1 α - 1 √ x 0 ≤ 2η 1 √ x 0 .
From (3.60) it follows:

ε 0 ≤ r 0 - 1 √ x 0 + 1 √ x - 1 √ x 0 ≤ 2η 1 √ x 0 + η 1 √ x . Because √ x √ 1+η ≤ √ x 0 , then 1 √ x 0 ≤ √ 1+η √ x ≤ 1+η/2 √ x . We can conclude that ε 0 ≤ (2η(1+ η 2)+η) 1 √ x ≤ η(3 + η) 1 √ x . Before going further, let E i = ε i √
x, such that:

E 0 ≤ η(3 + η).
Next we will deduce an upper bound for the approximation error in r at step i + 1,

ε i+1 = r i+1 -1 √ x .
For this, we use, same as in the case of the reciprocal, a chain of triangular inequalities that make the transition from our "truncated" error, to the "untruncated" one. Let

γ i = 2 -(2 i+1 -1)(p-1) η 1 -η = 2 -2 i+1 (p-1) 1 -2 -p+2 ,
and

β i = 2 -(p-1)2 i+1 1 -2 -p+i+3 .
From Property 3.5.3, eq. (3.38) and eq. (3.61), (3.62), and (3.63) we have:

|r i+1 -τ i | ≤ β i |τ i | ≤ β i 1 2 r i ŷi , (3.65)
|y i -ŷi | ≤ γ i |y i | ≤ γ i |3 -ŵi | , (3.66)
|w i -ŵi | ≤ β i |w i | ≤ β i |r i vi | , (3.67)
|v i -vi | ≤ β i |v i | ≤ β i x (f i) r i , (3.68)
x -

x (f i) ≤ γ i |x| . (3.69)
From (3.65) we have:

ε i+1 ≤ |r i+1 -τ i | + τ i - 1 √ x ≤ β i 1 2 r i ŷi + 1 2 r i ŷi - 1 √ x .
Using (3.66) and (3.67):

ε i+1 ≤ (γ i (1 + β i) + β i) 1 2 r i (3 -ŵi) + 1 2 r i (3 -ŵi) - 1 √ x ≤ (γ i (1 + β i) + β i) 1 2 r i (|3 -w i | + β i |w i |) + β i 1 2 r i w i + 1 2 r i (3 -w i) - 1 √ x .
By (3.68) we have:

ε i+1 ≤ 1 2 r i (γ i (1 + β i) + β i) |3 -r i vi | + (1 + γ i)(1 + β i)β i |r i vi | + 1 2 r i (3 -r i vi) - 1 √ x ≤ 1 2 r i (γ i (1 + β i) + β i)(|3 -r i v i | + β i |r i v i |) + (1 + γ i)(1 + β i) 2 β i |r i v i | + β i 1 2 r 2 i v i + 1 2 r i (3 -r i v i) - 1 √ x ≤ 1 2 r i (γ i (1 + β i) + β i) |3 -r i v i | + ((γ i + 1)(β 2 i + 3β i + 1) + γ i)β i |r i v i | + β i 1 2 r 2 i v i + 1 2 r i (3 -r i v i) - 1 √ x
From (3.69) we have:

ε i+1 ≤ 1 2 r i (γ i (1 + β i) + β i) 3 -r 2 i x (f i) + (γ i + 1)(β 2 i + 3β i + 2)β i r 2 i x (f i) + + 1 2 r i (3 -r 2 i x (f i)) - 1 √ x ≤ (γ i (1 + β i) + β i) 1 2 r i (3 -r 2 i x) + (γ i (γ i (1 + β i) + β i)) + (γ i + 1) 2 (β 2 i + 3β i + 2)β i + γ i (1+γ i)(1+β i)(γ i (1+β i) 2 +β 2 i +2β i) • • 1 2 r 3 i x + 1 2 r i (3 -r 2 i x) - 1 √ x .
Hence we have:

ε i+1 ≤ (1 + γ i (1 + β i) + β i) r i+1 - 1 √ x + (1 + γ i)(1 + β i)(γ i (1 + β i) 2 + β 2 i + 2β i) 1 2 r 3 i x + +(γ i (1 + β i) + β i) 1 √ x . (3.70)
By using the quadratic convergence of the sequence we can say that:

r i+1 - 1 √ x = 1 2 √ x(r i √ x + 2) r i - 1 √ x 2 . (3.71)
We now prove by induction that for all i ≥ 0 ε i = r i -1

√

x respects the imposed bound. We know that

|r i √ x| ≤ ε i √ x + 1 and r 3 i x ≤ (ε i √ x+1) 3 √ x
and from (3.70) we have:

ε i+1 ≤ 1 2 (1 + γ i)(1 + β i) √ x(ε i √ x + 3)ε 2 i + 1 2 (1 + γ i)(1 + β i)(γ i (1 + β i) 2 + β 2 i + 2β i) (ε i √ x + 1) 3 √ x +(γ i (1 + β i) + β i) 1 √ x . (3.72)
Using the notation E i = ε i √ x we can transform (3.72) in an equation independent of x:

E i+1 ≤ 1 2 (1 + γ i)(1 + β i)(E i + 3)E 2 i + 1 2 (1 + γ i)(1 + β i)(γ i (1 + β i) 2 + β 2 i + 2β i))(E i + 1) 3 +(γ i (1 + β i) + β i)).
For the last part of the proof we denote by f a function that writes the previous inequality as:

E i+1 ≤ f (E i , i). We want to show that ∀i ∈ N, E i ≤ 2 -2 i (p-4)-1
1-2 -p+1 so we will define ind(i) =

2 -2 i (p-4)-1 1-2 -p+1 .
For i = 0 we verify that E 0 ≤ ind(0) for p ≥ 3.

For i ≥ 1 by induction:

• we first prove, similarly to (3.54) that β i ≤ γ i (1 + 2 i-p+3 when p ≥ 6 and i ≤ p 2 -2; • for i = 1 we can prove by using computer algebra and the above inequality that E 1 ≤ ind(1), for p ≥ 6; • then, it is easily shown (by using the definition of a decreasing function and computation for example) that the function i → f (ind(i),i) ind(i+1) is decreasing and it's value in

1 is < 1 for p ≥ 6 and i ≤ p 2 -2. So, f (ind(i),i) ind(i+1) ≤ 1, for i ≤ p 2 -2; • suppose that E i ≤ ind(i), we have E i+1 ind(i+1) ≤ f (ind(i),i)
ind(i+1) ≤ 1 which concludes the induction, for p ≥ 6 and i ≤ p 2 -2. At last we find the final inequality with i = q.

In the QD library, for the square root computation, also the Newton iteration is used. Although they use the same function as we do, they use the iteration under the form: r i+1 = r i + 1 2 r i (1-xr 2 i), which from a mathematical point of view is the same, but it requires a different implementation.

During the ith iteration we perform:

• 3 multiplications M accurate (2 i , 2 i+1 , 2 i+1),
• one addition using the renormalization Algorithm 24 (see Section 3.3), R(2 i+1 + 1, 2 i+1), and • 2 i+1 multiplications by 0.5. In the worst case, this account for a total of I sqrt (2 k , 2 q) = 26•4 q +139•2 q +194q -163 floating-point operations.

Note that, in practice, we can replace the calls to the "accurate" addition and multiplication with calls to the fast "quick-and-dirty" algorithms. When doing this we can still get correct results (sometimes the same), but the error bound is not guaranteed anymore. By doing this we can speed up the algorithm in order to perform only I f ast sqrt (2 k , 2 q) = 48 7 8 q 8•4 q +64•2 q -19q -538 7 floating-point operations.

We obtain the square root of an expansion by simply multiplying the result obtained from Algorithm 37 by x, the input expansion, as shown in Algorithm 38. If the "accurate" algorithms are employed, in order to compute sqrt(x), we perform S(2 k , 2 q) = 65 2 4 q + 323 • 2 q-1 + 194q -97 floating-point operations. On the other hand, if the fast algorithms are considered we perform only S f ast (2 k , 2 q) = 62 7 8 q + 10 • 4 q + 71 • 2 q -19q -573 7 floating-point operations.

Algorithm 38 -SquareRoot(x 0 , x 1 . . . , x 2 k -1 , 2 q).

1: f [0 : 2 q -1] ← Reciprocal_SquareRoot(x[0 : 2 k -1], 2 q) //using Alg. 37 2: r[0 : 2 q -1] ← Multiplication(x[0 : 2 k -1], f [0 : 2 q -1], 2
q) //using Alg. 31 or Alg. [START_REF] Henrion | SPECTRA -a Maple library for solving linear matrix inequalities in exact arithmetic[END_REF] 3: return r 0 , r 1 , . . . , r 2 q -1 Heron iteration algorithm. The same type of proof as above can be applied for the algorithm using the "Heron iteration" (3.57) and the same type of truncations. In this case (Algorithm 39) we obtain a slightly larger error bound, given in Theorem 3.6.2.

Algorithm 39 -SquareRoot_Heron(x 0 , x 1 . . . , x 2 k -1 , 2 q).

1: r 0 = RN(√ x 0) 2: for i ← 0 to q -1 do 3: v[0 : 2 i+1 -1] ← Division(x[0 : 2 i+1 -1], r[0 : 2 i -1], 2 i+1
) //using Alg. [START_REF] Hida | C++/fortran-90 double-double and quad-double package[END_REF] 4:

ŵ[0 : 2 i+1 -1] ← Addition_accurate(r[0 : 2 i -1], v[0 : 2 i+1 -1], 2 i+1) //using Alg. 27 5:
r[0 : 2 i+1 -1] ← ŵ[0 : 2 i+1 -1] * 0.5 6: end for 7: return r 0 , r 1 , . . . , r 2 q -1 Theorem 3.6.2. Let x be an ulp-nonoverlapping floating-point expansions, with n = 2 k terms and q ≥ 0, an integer parameter such that 2 q is the required number of output terms. Assume p ≥ 6 and q ≤ p 2 -2, which always holds in practice. Provided that no underflow/overflow occurs during the calculations, Algorithm 39 computes an approximation of 1

√

x as r = r 0 + • • • + r 2 q -1 , an ulp-nonoverlapping floatingpoint expansion that satisfies:

r - √ x ≤ 3 √ x • 2 -2 q (p-4)-2 1 -2 -p+1 . (3.73)
During each iteration i we perform:

• one division using Algorithm 36, D(2 i+1 , 2 i , 2 i+1).

• one addition using Algorithm 27, A accurate (2 i , 2 i+1 , 2 i+1), and

• 2 i+1 multiplications by 0.5.

This account for a total of S heron (2 k , 2 q) = 64 • q 2 + 286 9 4 q + 287 • 2 q + 5 3 q -2860 9 floating-point operations.

The same as before, in practice, we can replace the calls to the "accurate" algorithms with calls to the fast "quick-and-dirty" ones, by losing the guaranty of the error bound. This means we will perform only S f ast heron (2 k , 2 q) = -7 • q 2 + 368 49 8 q + 124 9 4 q + 134 • 2 q -1552 21 q -68041 441 floating-point operations.

Comparison and discussion

Choosing which arithmetic algorithm to use frequently depends on a compromise between accuracy, speed, and safety. In this section we compare the algorithms presented above, so that the user can get a flavor of how they behave in practice.

In Table 3.1 we give some approximates of the relative error bounds for each algorithm, considering underlying binary64 (p = 53). We present the values for input and output expansions of size n = 4, 8, 16, and 32. In order to assess the performance of the algorithms we first look at the operation count, followed by the real time execution performance. In Table 3.2 we give the worst case floating-point operation count for all the algorithms, using the notations already introduced. We consider that the input and output expansions have the same size n. We highlight with red, for each entry of n, the lowest operation count in each group of algorithms that perform the same operation. One can see that as the expansion size increases, the "quick-and-dirty" algorithms are not optimal from this point of view. In what follows we present some performance measurements obtained for our underlying binary64 implementation, on the CPU and GPU 5 described in Section 1.4.1. The CPU implementation's performance is compared with that of MPFR. The CPU performance is given in Mop/s (Mega operations per second), and the GPU performance in Kop/s (Kilo operations per second).

In Table 3.3 and 3.4 we assess the addition performance on CPU and GPU, respectively. Table 3.5 and 3.6 refer to the multiplication performance. In Table 3.7 and 3.8 we present the reciprocal performance, followed by the division one in Table 3.9 and 3.10. We finish by comparing the squaring algorithms in Table 3.11 and 3.12.

In each table, for each size entry, we highlight with red the algorithm from our library that performs the best. In the CPU performance tables, in case the MPFR library performs better, we highlight that entry with green. When looking at these tables, one can observe that in general the algorithms perform in accordance with their operation count. This is why, as the expansion size increases, the "accurate" algorithms are faster. However, this is not the case for addition, where Algorithm 27 has the lowest operation count for all entries, but, in practice, for expansion size up to 4, Algorithm 29 performs better. This is due to pipeline optimization.

Another strange behavior, both on CPU and on GPU, can be observed for Algorithm 37: when we compute the reciprocal square root of an input expansion of size 2 (double-double) as an output expansion of size 4, the performance is worse or the same as for computing starting from an input expansion of size 4. We suppose that this is due to compiler optimizations an the ability of the algorithms to fill up the pipeline.

As expected the performance of the reciprocal/division and square root algorithms is in accordance to the performance of the addition and multiplication algorithms used for intermediate computations.

We ask the reader to keep in mind that these values were obtained in an ideal setting, in which we performed operations using only the tested algorithm. In real life applications the performance may depend on many factors like instruction level parallelism, pipeline depth, branch prediction, memory usage, etc. We will compare CAMPARY with other existing libraries in two real applications in Chapter 5.

CHAPTER 4

Parallel Floating-point Expansions

Ce poţi face singur cu mâna ta, nu aştepta de la alţii.

Romanian proverb

In this chapter we explore the possibility of directly parallelizing the arithmetic algorithms. We present new data-parallel algorithms for adding and multiplying floating-point expansions specially designed for extended precision computations on GPUs. This is a joint work with S. Collange,1 M. Joldes, and J.-M. Muller, that was presented in Parallel floating-point expansions for extended-precision GPU computations [START_REF] Collange | Parallel floating-point expansions for extended-precision gpu computations[END_REF], published in Proceedings of the 27th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2016).

We argued in the introduction (Chapter 1) that our work also focuses on GPU implementation, but the algorithms that we presented until now were sequential. In that setting we assumed we have to deal with "embarrassingly parallel" problems with compact intermediate data for which it was certainly better not to try to parallelize the arithmetic itself. However, many applications do not provide as much parallelism. Even for those that do, locality can be a problem. Increasing the precision of sequential arithmetic operations requires a corresponding increase in the amount of intermediate data to keep. Thus, parallel arithmetic algorithms are attractive not just by the extra parallelism they provide, but also by the locality improvements they enable.

With GPU oriented implementation in mind, in this chapter we deal with what we called "parallel floating-point expansions", i.e., the expansion is stored on parallel execution threads, with one term/thread. This implies that the user has to launch as many threads as the expansion size.

In Section 4.1 and Section 4.2 we present the addition and multiplication of parallel floatingpoint expansions in the general context of parallel architectures. We finish by comparring performance with the algorithms presented in Chapter 2 and 3 in Section 4.3.

Data-parallel addition algorithm

The first algorithm that we developed for parallel addition of floating-point expansions is Algorithm 40 below, illustrated in Figure 4.1 for the case of expansions with 3 components. For the sake of simplicity, we only present here the "input r -output r" version of the algorithm, even though the generalized version allows for different input sizes.

Algorithm 40 -PAddition_safe(x = (x 0 , . . . , x r-1), y = (y 0 , . . . , y r-1), r).

1: a ← (x 0 , 0, 0, . . . , 0) 2: b ← (y 0 , 0, 0, . . . , 0) 3: (s, e) ← 2Sum(a, b) 4: for i ← 1 to r do (s, e) ← 2Sum(s, e) (s, e) ← 2Sum(s, e) 13: end for 14: e ← (0, e 0 , e 1 , . . . , e r-2)//shift right 15: s ← s + e 16: return s = (s 0 , s 1 , . . . , s r-1)

In this setting, all arithmetic operations including error-free transforms are performed in parallel element-wise on r-element vectors. We assume vectors can be merged and elements inside a vector can be shuffled. As the data-parallel computations are homogeneous, larger vectors can be assembled by concatenating several expansion vectors and processing them in parallel. This allows to fill SIMD execution units by leveraging parallelism between expansions. These assumptions make the algorithms applicable to most SIMD units, including the Intel SSE/AVX instruction set extensions [START_REF] Firasta | Intel AVX: New frontiers in performance improvements and energy efficiency[END_REF] and all recent Nvidia GPUs [START_REF]Kepler GK110 architecture[END_REF].

The main constraint of the algorithm is the fact that it requires r parallel execution threads in order for it to work and we rely on the user to launch them.

The algorithm is based on a pipelined error propagation. We start by adding the first elements of each expansion, x 0 and y 0 , on the first vector component. We continue to add the rest of the elements on the first component one by one and propagating the error upwards, to the other vector components. When we run out of elements to add we continue to propagate the errors for another r -1 steps by injecting 0s on the first component. In the last step of the algorithm we can use only simple addition since we are not going to propagate the errors anymore.

By using this scheme to add the two expansions we ensure that the most significant term of the output, s 0 , is the sum of the inputs rounded to nearest. Moreover, the terms of the output are arranged in terms of magnitude in decreasing order, with some constraints. We will show this by proving Theorem 4.1.1. Consider that x 0 and y 0 are of opposite signs and x 0 2 ≤ |y 0 | ≤ |2x 0 | (we say that there is a "Sterbenz relation" between x 0 and y 0). Then e 01 = 0 and s 01 = x 0 + y 0 , which implies that s 12 = e 02 and e 12 = 0, and so on. In this case we end up propagating a 0 to the end of the result expansion, and we are left with the same scheme as we began with (illustrated in Figure 4.3). This means that in our analysis we can eliminate the case in which we have a "Sterbenz relation". We will first prove an intermediate property given in Theorem 4.1.2 that refers to only one horizontal line of the scheme, i.e., a chain of 2Sum starting from the left side and propagating the error to the right. An algorithm that performs this type of addition can be visualized as a "reverse" VecSum. For the proof we use the notations given in Proof. From the proof of the algorithm 2Sum we know that

|e i | ≤ 1 2 ulp(s i) = 2 -p |s i |. From |s 0 |(1 -2 -p) ≤ |x 0 + t| ≤ |s 0 |(1 + 2 -p) and |x 0 |(1 -2 -p+) ≤ |x 0 + t| ≤ |x 0 |(1 + 2 -p+),
we get

|s 0 | 1 -2 -p 1 + 2 -p+ ≤ |x 0 | ≤ |s 0 | 1 + 2 -p 1 -2 -p+ . (4.1)
It follows that

|x 1 | ≤ 2 -(p-1)+δ |x 0 | ≤ 2 -(p-1)+δ 1 + 2 -p 1 -2 -p+ |s 0 |. This gives |e 0 + x 1 | ≤ 2 -p 1 + 2 δ+1 (1 + 2 -p) 1 -2 -p+ |s 0 | .
From which we deduce). An easy induction finally gives:

|s 1 | ≤ 2 -p (1 + 2 -p) 1 + 2 δ+1 (1 + 2 -p) 1 -2 -p+ |s 0 | . (4
|s i | < 2 -ip θ i |s 0 |, (4.3)
with

θ i = (1 + 2 -p) i + 1 1 -2 -p+ i j=1 2 j+δ (1 + 2 -p) i-j+2 . (4.4)
"Quick-and-dirty" parallel addition. We can speed up the above algorithm by using a "relaxed" version of it, that requires at most r -1 steps (the last step using only simple additions). The "quick-and-dirty" parallel addition, illustrated in Figure 4.5, offers a worse error bound and it does not ensure a correct result when cancellation occurs, if no renormalization algorithm is applied on the result. We advise it's use only with input floating-point expansions of the same sign and close magnitudes.

Data-parallel multiplication algorithm

Algorithm 41 computes an approximation of xy, where x and y are two parallel expansions. Here we also present just the "input r -output r" version. This algorithm has the same behavior as Multiplication_quick (Section 3.4, Algorithm 33), but we do not compute the extra error correction term π r , since we do not apply a renormalization. A graphical representation of the parallel execution would be too difficult to read, this is why in Figure 4.6 we present just an equivalent sequential execution.

We consider two parallel floating-point expansions x and y, each with r terms and we compute the r most significant floating-point components of the product π = xy. We perform the same "onthe-fly" truncation as for the sequential multiplication algorithms (see Section 3.4), by considering only the partial products for which 0 ≤ i + j ≤ r -1.

The multiplication algorithm runs as follows: at each iteration i of the for loop (lines 3-17) we compute p + e = xy; we add p to the result of the same order, using 2Sum, which also generates an error, e . After that, using the two while loops (lines 9 -12 and 13 -16) we propagate the two generated errors, e and e to the lower order results. In the last step of the algorithm, we do not use any error-free transforsm, because the errors that are supposed to be computed are going to be of order O(ε r Λ), and we do not need to propagate them anymore.

Algorithm 41 -PMultiplication(x = (x 0 , . . . , x r-1), y = (y 0 , . . . , y r-1), r).

1: s ← (0, . . . , 0) 2: π ← (0, . . . , 0) 3: for i ← 0 to r -2 do 4:

y ← (y i , y i , . . . , y i) //broadcast 5:

(p, e) ← 2Prod(x, y) 6:

(s, e) ← 2Sum(s, p) Proof. For bounding the discarded partial products we use the same reasoning as in Theorem 3.4.1 and we get:

m+n-2 k=r i+j=k x i y j ≤ |x 0 y 0 | 2 -(p-1)r      -2 -(p-1) (1 -2 -(p-1)) 2 <0 +(m + n -r -1) 1 1 -2 -(p-1) < 128 127 for p≥8      .
For computing the error bound on the discarded errors we use the same method as in the proof of Theorem 3.4.5. Along these lines, by using simple summation for computing π r-1 , in the last step we neglect r 2 -r terms, all less than Ω r = 2 -(r+1)p+2 |x 0 y 0 | (r!) 2 .

We also have to account for the errors that occur when computing the last partial products using only simple multiplication. This means r terms less than 1 2 |x 0 y 0 | 2 -(p-1)r . When adding all these errors we get the following bound:

|xy -π| ≤ |x 0 y 0 |2 -(p-1)r 128 127 (m + n -r -1) + 2 -p-r+2 (r 2 -r)(r!) 2 + r 2 ≤ |x 0 y 0 |2 -(p-1)r 128 127 (m + n -1) - 129 254 r + 2 -p-r+2 (r 2 -r)(r!) 2 .

And this concludes our proof

Unfortunately, for the multiplication algorithm we are unable to prove any constraints on the terms of the result. Even though cancellation cannot happen when multiplying two floating-point numbers, it may happen during the summation process, in which case we can get |π i | < |π j |, with i < j. If this happen we would have to apply a renormalization algorithm, like the ones presented in Chapter 3, Section 3.2, that would render the result ulp-nonoverlapping . However, those algorithms are highly sequential, and they would significantly decrease performance. This is why we recommend using this algorithm only if computations are known not to be cancellationprone or if the result can be verified a-posteriori.

Comparison and discussion

In Section 1.2 we explained the implicit SIMD architecture of a GPU, that is equivalent to an explicit SIMD, which means that a GPU program can be also understood as computations on vectors from the point of view of a warp. This enables us to directly implement the data-parallel algorithms we proposed in this chapter.

An excerpt of the code of Algorithm 41 is illustrated in Figure 4.7. The code appears from a single thread's perspective, but it runs in parallel and it takes decisions based on the vector lane within an expansion (i.e., threadIdx.x). Although we present here a version of the code that is parameterized by only one parameter, r, our actual implementation uses different template parameters for inputs and output, meaning that we allow static generation of any input-output precision combinations.

Our implementation targets GPUs with compute capability 3.0 or above, such as Kepler and Maxwell architectures, that support warp vote and shuffle instructions. Warp shuffle instructions are used to shift vector components to propagate the errors across expansion terms, and to insert and extract scalar values inside vectors. Although the hardware only supports shuffling binary32 numbers, we implemented shuffle instructions on binary64, by shuffling each half of a number separately. Using warp vote instructions, like the __any function, we implement the loop exit conditions of Algorithm 41.

As the algorithms have straightforward control flow, they can be applied to larger vectors containing multiple expansions side by side. This way we exploit both the parallelism that exist between expansion terms and across different expansions. To benefit from the SIMD execution and intra-warp communication primitives, all terms in a given expansion have to be computed by threads of the same warp and, as warps have 32 threads on Nvidia architectures, the maximal supported expansion size is 32. Smaller expansions are packed together inside warps. Although this approach works with any expansion of size r between 1 and 32 using appropriate padding, we recommend using power of two sizes, which allow filling the whole warp.

To analyze the performance of the algorithms and the effect of parallelism on memory footprint, we consider two different shared memory usage scenarios: one best case that assumes the application uses no intermediate data outside of the registers used for the computation, and one worst case where the application uses 32 bytes of cuda shared memory for each term of the expansion. The performance presented here was obtained on the GPU detailed in Section 1.4.1. We measure throughput on embarrassingly-parallel computations using random generated examples, running on 1024 blocks each with 512, 256, 128 and so on, execution threads, depending on the expansion size and the required resources to run the algorithms. We compare with the sequential algorithms presented in Chapter 3. The value r represents the number of terms in both input and output expansions.

In Table 4.1 we show the performance of the addition algorithm for the best case, no memory configuration, followed by the performance obtained in the memory constrained configuration, in Table 4.2. For the multiplications algorithm we assess performance in Tables 4.3 and 4.4, for the best case setting and for the memory constrained one, respectively. Even in the worst-case embarrassingly-parallel setup, the performance of data-parallel algorithms is competitive with the sequential algorithms for large expansions: the parallelism comes at little cost in number of operations per expansion. For small expansions, like the double-word case the parallel algorithms suffer from parallelization overhead.

The benefits of exploiting the parallelism available within each expansion are fully realized when parallelism is constrained by internal memory usage. The performance of data-parallel algorithms remains stable in this setup, while the performance of sequential algorithm decreases sharply with memory usage. Although the sequential algorithms remain faster on expansions of size 2 (double-word), the data-parallel algorithms significantly outperform their sequential counterparts for all larger expansions, due to the distribution of memory usage over more threads. The performance gap increases with the expansion size, eventually reaching an order of magnitude for 32-term expansions.

These data-parallel algorithms can be used as a starting point into developing parallel arithmetic algorithms suitable for different parallel architectures.

CHAPTER 5

Applications

Nimeni nu s , tie mai bine unde strânge cizma, decât cel ce o poartǎ.

Romanian proverb

During this thesis, besides our efforts towards providing arithmetic algorithms for performing computations using floating-point expansions, we also looked into applications for our work. More specifically we looked into two problems. The first one comes from the dynamical systems field, the Hénon attractor, presented in Section 5.1. The second application comes from experimental mathematics, the semidefinite programing solver presented in Section 5.2, that actually has a broader range of use, form quantum chemistry to control theory.

This resulted in two publications: -Searching for Sinks for the Hénon Map Using a Multiple-precision GPU Arithmetic Library [START_REF] Joldes | Searching for sinks for the hénon map using a multipleprecision gpu arithmetic library[END_REF], joint work with M. Joldes and W. Tucker,1 published in the ACM SIGARCH Computer Architecture News -HEART '14 journal.

-Implementation and performance evaluation of an extended precision floating-point arithmetic library for high-accuracy semidefinite programming [START_REF] Joldes | Implementation and performance evaluation of an extended precision floating-point arithmetic library for high-accuracy semidefinite programming[END_REF], joint work with M. Joldes and J.-M. Muller, which was accepted for publication and is going to be presented at the 24th IEEE Symposium on Computer Arithmetic (ARITH 2017).

Hénon attractor

CAMPARY was initially developed and tuned for long time iteration of chaotic dynamical systems in extended precision. Using a first version of the library we looked into one of the "classic" discrete dynamical systems for which several long-standing open questions remain, the Hénon map [START_REF] Hénon | A two-dimensional mapping with a strange attractor[END_REF].

Mathematical background

The Hénon map is a two-parameter, invertible map h(x, y) = (1 + y -ax 2 , bx).

Depending on the two parameters a and b, the map can be:

• chaotic -trajectories belonging to the attractor are aperiodic and sensitive to initial conditions;

• regular -the attractor of the map is a stable periodic orbit;

• a combination of the above two.

It was conjectured that for the classical parameters a = 1.4 and b = 0.3, the Hénon map is chaotic and supports a strange attractor. This property has been observed numerically, but the question whether or not the Hénon attractor is indeed chaotic remains open. It is known [START_REF] Benedicks | The dynamics of the Hénon map[END_REF] that there exist a set of parameters (near b = 0) with positive Lebesgue measure for which the Hénon map has a strange (chaotic) attractor. The parameter space is believed to be densely filled with open regions, where the attractor consists of one or more stable periodic orbits (sinks). In light of this, it is probably impossible to verify that, given a specific point (a, b) in parameter space, the dynamics of the map generates a strange attractor.

On the other hand, it was proven, using validated numerics [START_REF] Galias | Combination of exhaustive search and continuation method for the study of sinks in the Hénon map[END_REF], that for several parameter values close to the classical ones, what appears to be a strange attractor is actually a stable periodic orbit. Such parameters are given in Example 5.1.1. Proving the existence of such a stable periodic orbit involves a finite (yet challenging) amount of computations and we should theoretically be able to find them using high performance computing.

Computational approach

We adapted the method in [START_REF] Galias | Combination of exhaustive search and continuation method for the study of sinks in the Hénon map[END_REF] where a CPU architecture is used. In brief:

(i) for each considered point (a, b) in parameter space, we perform a large amount of iterations of the Hénon map h, for many different initial points. The hope is that at least one of these trajectories will, after some initial transient behavior, be attracted to what appears to be a periodic orbit; (ii) we use rigorous numerics to validate/falsify the existence of any sink found at the previous step. With more detail, given a fixed (a, b) together with a single initial point (x 0 , y 0), the subsequent computations are governed by two integers N t and p max .

• First, we perform N t iterations of the map h which now depends on (a, b) :

h(x 0 , y 0), h(h(x 0 , y 0)), . . . , h Nt (x 0 , y 0).

• These are all discarded, except the final iterate h Nt (x 0 , y 0).

• Starting from h Nt (x 0 , y 0) we continue to follow for another p max iterates.

• At this stage, we examine the piece of orbit h Nt+1 (x 0 , y 0), . . . , h Nt+pmax (x 0 , y 0)

for any close returns. In other words, we attempt to find an integer 1 < k < p max such that k max i=1 h Nt+i (x 0 , y 0) -h Nt+i+k (x 0 , y 0) is small. If this succeeds, we may have found a period-k sink, which we later attempt to verify using rigorous numerics.

The number N t of transient iterations which are discarded is usually chosen by trial-and-error since it depends on hidden intrinsic properties of the dynamics of the Hénon map. In practice, N t ∼ 10 9 . In our search, we have used p max = 5000. For each parameter we use N i ∼ 10 3 different initial points. Finally, we repeat the entire procedure for N p ∼ 10 6 parameters near (1.4, 0.3).

If at the end of this search process we identify some "numerical periodic orbits", in a second step we rigorously prove their existence using methods from interval analysis [START_REF] Moore | Interval Analysis[END_REF][START_REF] Neumaier | Interval methods for systems of equations[END_REF]. This part can be checked "off-line" on a CPU architecture, and we use the procedure described in [START_REF] Galias | Combination of exhaustive search and continuation method for the study of sinks in the Hénon map[END_REF], which is based on an interval Newton operator. This step is not detailed further here, since it is only the first part that is computationally expensive. Its complexity depends on two main factors: the precision used for computations, and the capability of exploiting the inherent parallelism available in the parameter space and the initial points considered for each parameter.

Parallelization approach. In order to tackle the conjecture we need to analyze a very wide parameter space, so the computation can be viewed as a SIMD parallel problem, for which a GPU implementation is suitable.

The main idea for the parallelization on GPU is that each thread computes the iterates of the map h starting with one fixed initial point and fixed parameter (a, b) (these iterations are inherently sequential). The initial points are generated in a suitable region close to the attractor by a single thread on the GPU. They are stored in a shared memory array that gives access to all the other threads in the same block. Each thread writes in a shared memory array the period (if any) of the orbit, and one point of the orbit in the affirmative case. Each block is bi-dimensional and corresponds to one parameter (a, b). We grid the parameter space near (1.4, 0.3) and apply the above process to each grid point. We also implemented some variants where several blocks correspond to the same parameter (a, b) in order to be able to iterate on more initial points. Without this ability, we are limited by the size of the block's shared memory to ca 10 3 initial points/parameter, depending on the used GPUs architecture and model. Remark 5.1.2. Before going further we would like to stress here that this research was performed in 2013-2014, when we did not have access to the server presented in Section 1.4.1. This is why we present our results based on a previous architecture available at the time:

• an Nvidia GeForce Tesla C2075 GPU with 448 cores, 1.15GHz and,

• for the CPU code, an Intel(R) Core(TM) i7 CPU 3820, 3.6GHz, 4 cores, 8 threads computer.

As a first step in our research we implemented this GPU-oriented method using the standard binary64 format, to compare the performance with respect to the CPU implementation in [START_REF] Galias | Combination of exhaustive search and continuation method for the study of sinks in the Hénon map[END_REF] and we re-checked the same orbits already found there, given in Table 5 But binary64 precision does not suffice if we want to obtain sinks for parameters closer to the classical ones, so we had to increase the precision. Using the "quick-and-dirty" level of our library we were able to adapt the code written for binary64 Hénon map iterations using only minor changes. This was possible due to the operators that we overload. An excerpt of the code using quad-double precision is:

#define prec 4 / *

Numerical results and performance

A performance comparison between CAMPARY versus GQD library computations on GPU for Hénon iterations is given in Table 5.2. In the same table we also compare performance versus binary64 computations. In what follows, we denote by 2D double-double, 3D triple-double, 4D quad-double, 5D quintuple-double, and so on. For this problem we also intended to compare performance with GARPREC and CUMP libraries, but we were not able to straightforwardly adapt our code because they were both tuned for big array operations where the data is generated on the host, and only the operations are performed on the device. In our case, each thread needs to generate and allocate multiple-precision data on the device. However, in [START_REF] Lu | Supporting extended precision on graphics processors[END_REF] it is stated that GQD should be faster that GARPREC for double-double and quad-double computations. Moreover, it is also known [START_REF] Hida | Algorithms for quad-double precision floating-point arithmetic[END_REF][START_REF] Lu | Supporting extended precision on graphics processors[END_REF] that multipleterm operations are usually faster than multiple-digit ones for precisions in the range of up to several hundreds of bits, which was also confirmed in our case.

More precisely, for the same benchmark Hénon map code we also compare the performances on a CPU implementations parallelized with OpenMP using CAMPARY versus MPFR in Table 5.3. This comparison is not entirely fair seeing that the multiple-digit format is not equivalent to the multiple-terms format. Indeed, we do not guarantee the correct rounding for each basic operation, but we present this comparison from a prospective point of view. It is clear from a mathematical point of view that only a very small amount of sinks can be found using double-precision. At the same time, any sink can be resolved using a sufficiently high precision.

In [START_REF] Zbigniew | Is the hénon attractor chaotic? Chaos: An Interdisciplinary[END_REF] Galias and Tucker present a very extensive study of the problem. Two of the orbits presented there, given in Table 5.4, were obtained using our GPU implementation. Table 5.4 -Hénon map sinks found using CAMPARY on GPU [START_REF] Zbigniew | Is the hénon attractor chaotic? Chaos: An Interdisciplinary[END_REF]. P is the period, d is the distance to the point (1.4, 0.3), r is the minimum immediate basin radius. In the same paper, [START_REF] Zbigniew | Is the hénon attractor chaotic? Chaos: An Interdisciplinary[END_REF], the authors report that the closest to the classical parameters periodic window that they found, with d = 6.335e-22, is given by parameters: a = 1.39999999999999999999968839903277301984563091568983, and b = 0.29999999999999999999944845519288458244332946957783, for which a period-115 sink was confirmed. They concluded their search by stating that since the periodic windows are very narrow and the transient time to corresponding sinks can be extremely long, "it is practically impossible to observe such sinks in simulations". This work provided us with better means for observing the behavior of dynamical systems, which would be impossible using only standard machine precision numbers, due to the numerical instability of the problem. These first results offered numerical support for the belief that the parameter space close to the classical ones (1.4, 0.3) is densely filled with open regions, where the attractor can be reduced to a periodic sink.

SDP solver

A known class of problems that can benefit from increased precision is the class of semidefinite optimization problems (SDP) which come to solving in a very accurate way, numerically sensitive (and sometimes large-scale). Examples include problems from experimental mathematics, like the high-accuracy computation of kissing numbers, i.e., the maximal number of non-overlapping unit spheres that simultaneously can touch a central unit sphere [START_REF] Mittelmann | High-accuracy semidefinite programming bounds for kissing numbers[END_REF]; bounds from binary codes [START_REF] De Klerk | A new library of structured semidefinite programming instances[END_REF]; control theory and structural design optimization (e.g., the wing of Airbus A380) [START_REF] De Klerk | A new library of structured semidefinite programming instances[END_REF]; quantum information and physics [START_REF] Simmons-Duffin | A Semidefinite Program Solver for the Conformal Bootstrap[END_REF].

Given the wide range of possible applications and the recent increased interest in the subject, as a second application for CAMPARY, we also took interest in higher-precision and highperformance SDP solvers.

Developing such a solver comes with multiple challenges. Firstly, one has to establish the core mathematical algorithm for numerically solving (say, in "real numbers") the SDP problem: most nowadays solvers employ primal-dual path-following interior-point method (PDIPM) [START_REF] Monteiro | Primal-dual path-following algorithms for semidefinite programming[END_REF]. Secondly, the underlying multiple-precision arithmetic operations have to be treated. Some highprecisions solvers were developed, and though they are more accurate, they are also more computationally expensive [START_REF] Nakata | A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP,-QD and -DD[END_REF]. Finally, since most problems are large-scale, parallelization is also very important. Having (at least partially) computations done on highly parallel architectures like GPUs is of interest.

Mathematical background

Semidefinite programing (SDP) is a convex optimization problem, which can be seen as a natural generalization of linear programming to the cone of symmetric matrices with non-negative eigenvalues, i.e., positive semidefinite matrices. While linear programming optimizes a linear functional subject to linear inequality constraints, SDP optimizes a linear functional subject to linear matrix inequalities (LMIs). Many optimization problems in automatic control or signal processing can be formulated using LMIs.

Denote by R n×n the space of size n × n real matrices, by S n ⊆ R n×n the subspace of real symmetric matrices, equipped with the inner product A, B S n = tr(A T B), where tr(A) denotes the trace of the matrix A. Also, denote by A O the fact that A is positive semidefinite (and respectively A O for positive definite). A typical SDP program is expressed in its primal-dual form as follows:

(P)

p * = sup X∈S n C, X S n s.t. A i , X S n = b i , i = 1, . . . , m, X O, (D) d * = inf y∈R m b T y s.t. Y := m i=1 y i A i -C O,
where C, A i ∈ S n×n , i = 1, . . . m and b ∈ R m are given. However, in general, it is difficult to obtain an accurate optimum for a SDP problem. On the one hand, strong duality does not always hold, unlike for linear programs: weak duality is always satisfied, i.e., p * ≤ d * , but sometimes, p * is strictly less than d * . Simpler instances are those where strong duality holds and this happens when the feasible set contains a positive definite matrix [START_REF] Laurent | Sums of squares, moment matrices and optimization over polynomials[END_REF]Theorem 1.3].

More than often the method of choice for SDP solving is based on the interior-point algorithm, which relies on the existence of interior feasible solutions for problems (P) and (D). In such cases, these two problems are simultaneously solved in polynomial time in the size of parameters of the input problem using the well-established primal-dual path-following interior-point method (PDIPM) [START_REF] Monteiro | Primal-dual path-following algorithms for semidefinite programming[END_REF]. This algorithm is considered in the literature as theoretically mature, is widely accepted and implemented in most state-of-the-art SDP solvers. The method relies on the fact that when an interior feasible solution exits one has the necessary and sufficient condition for X * , Y * and y * to be an optimal solution:

X * Y * = 0, X * O, Y * O, (5.1)
Y * = m i=1 y * i A i -C, (5.2)
A i , X S n = b i , i = 1, . . . , m, (5.3)
The complementary slackness condition (5.1) is replaced by a perturbed one: X µ Y µ = µI. It is known that this perturbed system has a unique solution and that the central path, that is the set C = {(X µ , Y µ , y µ) : µ > 0} forms a smooth curve converging to (X * , Y * , y *) as µ → 0. So, the main idea of the method is to numerically trace the central path C.

In Algorithm 42 we give a sketch of the algorithm adapted from [START_REF] Nakata | A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP,-QD and -DD[END_REF].

Step 1 describes the procedure for computing the search direction based on Mehrotra type predictor-corrector [START_REF] Yamashita | Latest developments in the SDPA family for solving large-scale SDPs[END_REF]. The stopping criteria (Step 4) depends on several quantities: primal and dual feasibility error are defined as the maximum absolute error appearing in (5.3) and (5.2), respectively. The duality gap depends on the absolute or relative difference between the objectives of (P) and (D).

Algorithm 42 -PDIPM Algorithm, adapted from SDPA implementation [START_REF] Nakata | A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP,-QD and -DD[END_REF].

Step 0: Choose an initial point X 0 O, y 0 and Y 0 O. Set h = 0 and choose the parameter γ ∈ (0, 1).

Step 1: Compute a search direction:

Evaluate the Shur Complement Matrix B ∈ S n by the formula

B ij = (Y h) -1 A i X h , A j .
Solve the linear equation Bdy = r. Using the solution dy, compute dX, dY and obtain the search direction (dy, dX, dY).

Step 2: Compute max step length α to keep the positive semidefiniteness: α = max {α ∈ [0, 1] :

Y h + αdY O, X h + αdX O .
Step 3: Update the current point: (y h+1 , X h+1 , Y h+1) = (y h , X h , Y h) + γα(dy, dX, dY).

Step 4: If (y h+1 , X h+1 , Y h+1) satisfies the stopping criteria, output it as a solution. Otherwise, set h = h + 1 and return to Step 1.

However, problems which do not have an interior feasible point2 induce numerical instability and may result in inaccurate calculations or non-convergences. Even for problems which have interior feasible solutions, numerical inaccuracies may appear when solving with finite precision due to large condition numbers (higher than 10 16 , for example) which appear when solving linear equations. This happens, as explained in [START_REF] Nakata | A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP,-QD and -DD[END_REF], when approaching optimal solutions: suppose there exist X * O, Y * O and y * which satisfy all the constraints in (P) and (D); or better said, when µ → 0 on the central path. Then, X * Y * = 0. From this it follows that rank(X *) + rank(Y *) ≤ n, which implies that these matrices are usually singular in practice.

In the later case, having an efficient underlying multiple-precision arithmetic is crucial to detect (at least numerically) whether the convergence issue came simply from numerical errors due to lack of precision.

Existing mathematical software

The PDIPM algorithm is considered in the literature as theoretically mature. This is why most state-of-the-art SDP solvers implement it. The most commonly used are SDPA [START_REF] Yamashita | Latest developments in the SDPA family for solving large-scale SDPs[END_REF], CSDP [START_REF] Borchers | CSDP, a C library for semidefinite programming[END_REF], SeDuMi [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] and SDPT3 [START_REF] Toh | SDPT3 -a Matlab software package for semidefinite programming[END_REF]. We took main interest in the SDPA solver, since it provides multipleprecision versions, using the GMP and the QD libraries: SDPA-GMP, SDPA-DD, SDPA-QD.

Starting with version 6.0, SDPA incorporated LAPACK [START_REF] Anderson | LAPACK Users' Guide[END_REF] for dense matrix computations, but also exploits the sparsity of data matrices and solves large scale SDPs [START_REF] Yamashita | Implementation and evaluation of sdpa 6.0 (semidefinite programming algorithm 6.0)[END_REF]. More recently, MPACK [START_REF] Nakata | The MPACK (MBLAS/MLAPACK) a multiple precision arithmetic version of BLAS and LAPACK[END_REF] was developed and integrated with SDPA. This is a multiple-precision linear algebra package which is based on BLAS and LAPACK [START_REF] Anderson | LAPACK Users' Guide[END_REF]. For this package, the major change is, as in our case, the underlying arithmetic format, such that users can easily switch from a double-precision BLAS/LAPACK code to a multiple-precision one, in order to obtain better accuracy. MPACK supports various multiple-precision arithmetic libraries like GMP, MPFR, and QD, as well as IEEE 754 binary128 (via gcc's extension __float128).

Moreover, MPACK also provided a GPU tuned implementation in double-double arithmetic of the Rgemm routine: this is the multiple-precision Real version of Dgemm, the general double matrix multiplication [START_REF] Nakata | A fast implementation of matrix-matrix product in double-double precision on nvidia c2050 and application to semidefinite programming[END_REF]. This routine is central for other linear algebra operations such as solving linear equations, singular value decomposition or eigenvalue problems. For this, MPACK authors reimplemented parts of QD library for cuda-compliant code. This routine's implementation is reported in [START_REF] Nakata | A fast implementation of matrix-matrix product in double-double precision on nvidia c2050 and application to semidefinite programming[END_REF] with best practical performance and was intensively tuned for GPU-based parallelism: classical blocking algorithm is employed, and for each element of a block a thread is created; a specific number of threads is allocated per block also. More specifically, in [START_REF] Nakata | A fast implementation of matrix-matrix product in double-double precision on nvidia c2050 and application to semidefinite programming[END_REF], for the NVIDIA(R) Tesla(TM) C2050 GPU, best performance of 16.4 GFlops is obtained for A × B, the product of two matrices A and B with blocks of size: 16 × 16 for A and 16 × 64 for B; 256 threads are allocated per block. Shared memory is used for each block. Also, reading is done from texture memory.

SDPA-CAMPARY package

We built this package starting from the SDPA-QD/DD package, where the QD/GQD library was replaced with CAMPARY (using underlying binary64) at the compilation step of SDPA. This can be done efficiently since both SDPA and CAMPARY are written in C/C++.

We also integrated CAMPARY with MPACK, in order to take advantage of the parallelized matrix multiplication for which we used our GPU version of CAMPARY. In our implementation, we use a similar algorithm, except that reading is done from global memory instead of texture memory. We were forced to do this since a texture memory element (texel) size is limited to int4 (i.e., 128 bits) and our implementation is generic for n-term expansions. In what follows, we denote by 2D double-double, 3D triple-double, 4D quad-double, 5D quintuple-double, and so on.

Rgemm performance. As a first step in our research we compared our implementation of Rgemm with the implementation in [START_REF] Nakata | A fast implementation of matrix-matrix product in double-double precision on nvidia c2050 and application to semidefinite programming[END_REF], using a GPU card similar to theirs. Specifically, we used an NVIDIA(R) Tesla(TM) C2075 card, 3 that is part of the same Fermi architecture. The difference is that our GPU has 6 GB of global memory, compared to 3 GB of their NVIDIA(R) Tesla(TM) C2050. However, this has little importance for the performance results on kernel execution once the global memory has been loaded.

In their (re-)implementation of the QD library the authors of [START_REF] Nakata | A fast implementation of matrix-matrix product in double-double precision on nvidia c2050 and application to semidefinite programming[END_REF] used Algorithms 9 and 13 for addition and multiplication of double-double numbers. For a fair comparison we did the same.

On top of that, for our arbitrary precision with n-term expansions we used the "quick-and-dirty" level of our library, implemented in the multi_prec.h file (see Section 1.4), that uses the fast versions of Algorithms 29 and 33.

Remark 5.2.1. We recall that the theoretical peak performance is obtained as follows:

(i) first, consider that in Rgemm operations are mainly multiply-add type, so the theoretical peak for multiply-add is of 1.15 GHz ×14 SM ×32 cuda cores ×(2 Flops/2 cycle) = 515 GFlops;

(ii) second, we compute the theoretical peak for multiple-precision Rgemm by dividing the above peak performance for standard floating-point operations by the operation count for addition plus multiplication with n-term expansions.

In Figure 5.2 we compare our implementation of 2D Rgemm, with the one in [START_REF] Nakata | A fast implementation of matrix-matrix product in double-double precision on nvidia c2050 and application to semidefinite programming[END_REF]. Our implementation proved to be slower by ∼ 10% than the implementation in [START_REF] Nakata | A fast implementation of matrix-matrix product in double-double precision on nvidia c2050 and application to semidefinite programming[END_REF], which can be explained by the generality of our code. Although we tested our implementation also using texture memory, we observed no speedup. Maximum performance was 14.8 GFlops for CAMPARY and 16.4 GFlops for [START_REF] Nakata | A fast implementation of matrix-matrix product in double-double precision on nvidia c2050 and application to semidefinite programming[END_REF]. On the other hand, in our case, higher precision Rgemm is straightforward. Performance results for n-double Rgemm are shown in Figure 5.3: one observes that the decrease of performance when the precision is increased fits the increase in the number of standard operations performed for additions and multiplications with n-term expansions. In Table 5.5 we compare the theoretical peak vs. the maximum performance that we obtained for n-double expansions. We also recall the worst case operation count for the algorithms that we employed.

Note that cuBLAS, the NVIDIA GPU linear algebra package does not support precisions higher than binary64 and it is not open source, so we consider it difficult to extend it in the context of multiple-precision linear algebra for GPUs. For Fermi architecture GPUs like C2050 or C2075, the peak performance of Dgemm is reported in [START_REF] Tan | Fast implementation of dgemm on fermi gpu[END_REF] to be 302 GFlops with cuBlas and 362 GFlops with further optimizations which is 58% and 70% of the theoretical peak performance, so, based in the values reported in Table 5.5, the Rgemm implementation we have is quite efficient.

Numerical results and performance

In order to verify the SDPA-CAMPARY solver and assess its performance we look at the results obtained for some standard SDP problems both on CPU and GPU. In particular, on GPU we use the Rgemm routine, with the implementation explained above. All the tests presented in what follows were performed on the server detailed in Section 1.4.1, which we recall that is not the same as the one used for the Rgemm performance assessment. The results obtained on that server are published in [START_REF] Joldes | Implementation and performance evaluation of an extended precision floating-point arithmetic library for high-accuracy semidefinite programming[END_REF].

Table 5.6 shows the results and performance obtained for five well-known problems from the SDPLIB package [START_REF] Borchers | SDPLIB 1.2, a library of semidefinite programming test problems[END_REF]. We compare both SDPA-DD and SDPA-QD with the 2D, 3D, and 4D formats of SDPA-CAMPARY, on both CPU and GPU. One can observe that our 2D and 4D implementations outperform the ones of QD. The 3D format proves that it can be a good alternative for problems for which 2D does not suffice, but for which 4D is too expensive. When looking at the performance obtained with the GPU version versus the CPU one, one can observe that for 3D and 4D precision the GPU enhanced version performs better, while for 2D precision no gain is obtained. This is the case for both SDPA-CAMPARY and SDPA-DD. This can be explained by the overhead given by the memory transfer and GPU-CPU communication. Accuracy wise, SDPA-CAMPARY performs as expected: the results obtained are more and more accurate as precision is increased. While the QD library offers only two extended precisions, GMP offers arbitrary precision, so we compare our library against it in Table 5.7. Note that GMP has yet to been ported on GPU. We consider three problems from the SDPLIB with corresponding precisions of 106, 159, 212, 318 and 424 bits.

One can see that our library outperforms GMP by far for all tested precisions, even without GPU support. However this was not the case in the tests presented in [START_REF] Joldes | Implementation and performance evaluation of an extended precision floating-point arithmetic library for high-accuracy semidefinite programming[END_REF] (where we used a different server configuration), where GMP performed better for precisions higher than 4D. This shows that the underlying architecture plays a very important role in the performance of these libraries and that our library takes better advantage of the newer architectures, like the ones used for these tests. Table 5.9 -The optimal value, iterations and time for solving some ill-posed problems for binary codes by SDPA-DD, -GMP and -CAMPARY. * problems that converge to more than two digits only with 4D precision. * * problems that converge to more than two digits with precision higher than 4D. The digits written with blue were obtained only when 3D precision was employed.

Conclusions

Unde e un car cu înţelepciune, acolo sunt douȃ de nebunie.

Romanian proverb

Nowadays, very efficient arithmetic operations with double-precision floating-point numbers compliant with the IEEE-754 standard are available on most recent computers. However, when more than double-precision/binary64 (53 bits) is required, especially in the HPC context, fewer multiple-precision arithmetic libraries exist, and the trade-off between performance versus reliability is still a challenge.

To address this challenge, in this work we propose to represent multiple-precision numbers as unevaluated sums of standard machine precision floating-point numbers, so-called floating-point expansions. This approach allows us to directly benefit from the available and efficient hardware implementation of the IEEE-754 standard.

Although several works exist in this area, many algorithms have been published without a proof, or with error bounds that are sometimes loose, sometimes fuzzy (the error is "less than a small integer times u 2 "), and sometimes unsure. Thus we started this study by first "cleaning up" the literature.

This allowed us to improve or design several new algorithms for performing basic arithmetic operations using this extended format. For all the algorithms that we present we give rigorous correctness and error bound proofs. For all the obtained theoretical results we provide an implementation in our mupltiple-precision arithmetic library, CAMPARY. This library targets both CPUs and GPUs, provides flexible and user friendly routines and it allows one to easily reprogram a problem that uses standard precision, into a program that uses extended precision by providing overloaded operators for all the basic arithmetic operations.

Specifically, we provide:

• specialized algorithms for addition, multiplication and division using double-word numbers, that allow for very efficient computations with "double" of the available precision;

• algorithms for all basic operations (+/-, ×, /, √) using arbitrary precision, in the range of a few hundred bits;

• parallel algorithms for arbitrary precision addition and multiplication, tuned for highly optimized GPU performance.

Our work focused not only on the arithmetic details and technicalities of achieving a multipleprecision arithmetic, but also on its utility. We applied our theoretical results in two applications:

• in the context of dynamical systems, we search for periodic orbits in the Hénon map, which is a very numerically sensitive problem, using an apporach based on extensive long-term numerical iterations of the map;

• for semidefinite programming (SDP) solvers for numerically sensitive problems we integrated CAMPARY with the already existing SDPA solver, and we provide arbitrary precision not only for the CPU routines, but also for matrix multiplication with GPU support.

Despite our best efforts, and our reluctance to admit it, work is still to be done.

Perspectives and future work.

-Firstly, seeing the performance obtained when using specialized algorithms for double-word operations, a logical step would be to also design specialized algorithms for triple-word arithmetic. Triple-word arithmetic procedures are also useful for implementing correctly rounded elementary functions in CRLIBM.

-Also on the theoretical part of our work, we intend to continue the development of our library by also providing rigorous algorithms for elementary functions.

-One can remark that the proofs that come with this type of algorithms are very tedious and not easy to follow. A formal proof would inspire even more confidence in our algorithms. We already started a collaboration on this topic.

-On the application side of our work, as a first step we plan on continuing to develop the SDPA-CAMPARY package by also integrating the parallel algorithms into the matrix multiplication with GPU support routine. This would allow us to better test those algorithms and to take advantage of the data locality and the extra parallelization layer that they provide.

-Apart from the endless applications that could benefit from the use of the SDPA-CAMPARY package, we would be interested to tackle the kissing numbers problem.

A APPENDIX A

CAMPARY -Implementation details

As already mentioned, one of the main goals of this thesis was to develop a multiple-precision arithmetic software library. To this end we developed CAMPARY (CudA Multiple Precision ARithmetic LibrarY), an open source library distributed under the GNU General Public License as published by the Free Software Foundation, that is freely available at http://homepages. laas.fr/mmjoldes/campary/.

The library targets both CPU applications and applications deployed on NVIDIA GPU platforms (compute capability 2.0 or greater), this is why we provide two different versions:

• a C++ version, compilable with G++, that can be used on the CPU;

• a CUDA C version, compilable with NVCC, that can be used both on GPU1 and CPU, except for the parallel algorithms (see Chapter 4).

For each of these versions we offer support for extending both the binary64 and the binary32 formats, even though the latter one is mostly useful for GPU use, since some architectures offer optimizations only for binary32. The constraint on the expansion size is given by the exponent range of the underlying floating-point format:

• for binary64 (exponent range [-1022, 1023]) the maximum expansion size is 39;

• for binary32 (exponent range [-126, 127]) the maximum expansion size is 12.

Since all these different versions are equivalent from a design and algorithmic point of view we will continue by detailing the binary64 GPU version. The extended precision using classical sequential floating-point expansions (Chapter 3) is offered as a class called multi_prec; the parallel floating-point expansions (Chapter 4) are dealt with in a separate class that we are going to detail later on. One of the most important design decisions that we had to take was how to define the precision, i.e., the expansion size. We decided on using templates, because it offers flexibility to the implementation. The exact definition is: template <int prec> class multi_prec{ private: double data[prec]; public:

... } For allocating (and initializing) a multi_prec object the user has the choice between six different constructors. Depending on ones choice the objects can be initialized with one or more values, a string or another multi_prec object: __host__ __device__ multi_prec(){}; __host__ __device__ multi_prec(const double x); __host__ __device__ multi_prec(const double * datap, const int precP); __host__ __device__ multi_prec(const char * s); template<int precP> __host__ __device__ multi_prec(const multi_prec<precP> * mp); __host__ __device__ multi_prec(const multi_prec<prec> * mp); Member functions for random initialization with an ulp-nonoverlapping or P-nonoverlapping expansion are also available along with "visualization" functions like pretty print.

In order to achieve robustness we encapsulate the private data array (that contains the floatingpoint expansion) with getters and setters that allow the user to manipulate it. The prec value is given as a template, so it cannot be changed throughout the execution; this is why only a getter is required for it. The declarations are as follows:

__host__ __device__ int getPrec() const; __host__ __device__ const double * getData() const; __host__ __device__ void setData(const double * datap, const int precp); __host__ __device__ void setData(const double * datap); __host__ __device__ void setElement(const double datap, const int index);

The code is also very flexible due to all the overloaded operators. The ones that we overload are:

• assignment operator, =, that can receive a binary64 value, another multi_prec object or a string of characters;

• unary -, that negates the data array;

• arithmetic operators, +, -, * , /, applied between two multi_prec objects or one multi_prec and one binary64;

• compound assignment operators + =, -=, * =, / =, applied as the arithmetic ones;

• relational/comparison operators, ==, ! =, >, >=, <, <= (along with the min and max functions), applied as the arithmetic ones;

• subscript [] that gives access to one specific element of the data array;

The functions that implements the arithmetic operations are declared as templated friend functions 2 , in order to keep the code of the class "clean". For each function that receives as input multi_prec objects we also include the equivalent with a multi_prec object and a binary64 value as input.

For some of the algorithms presented in Chapter 3 we mention that in practice we can make them faster by not considering the corner cases. Since fully certified algorithms usually come with a performance cost, we allow trade-off between proven output accuracy in the worst case versus highly efficient average case by offering two levels of algorithms. The library includes two separate files, that define the same class with the same functionalities, and the user has the choice of which one to use, depending on the time and accuracy constraints of one's problem.

1. The multi_prec_certif.h file implements all the algorithms as presented in Chapter 3, ensuring that the result is always an ulp-nonoverlapping expansion that conforms to the given bound. The declared functions are:

• certifAddExpans, implements Algorithm 27 without truncation on the input;

• truncAddExpans, implements Algorithm 27;

• QD_LikeAddExpans, implements Algorithm 29;

• certifMulExpans, implements Algorithm 31 without truncation of the partial products;

• truncMulExpans, implements Algorithm 31;

• QD_LikeMulExpans, implements Algorithm 33;

• invExpans, implements Algorithm 35;

• divExpans, implements division with Algorithm 35 followed by Algorithm 31;

• invSqrtExpans, implements Algorithm 38 for computing the reciprocal of the square root;

• sqrtNewtonExpans, implements square root with Algorithm 38 followed by Algorithm 31;

• sqrtHeronExpans, implements square root with Algorithm 39.

The arithmetic operators use the truncated versions of the algorithms.

For the special case of double-double numbers we use specialized templates in which we implemented the algorithms in Chapter 2 in oder of error bound tightness on the result.

2. The multi_prec.h file implements the "quick-and-dirty" level of the library. It uses algorithms which are faster, but do not consider accuracy issues for corner cases. In most cases the result is going to be the same as obtained when computing with the certified level, even the nonoverlapping condition can be achieved. The uncertainty appears if cancellation happens during intermediate computations, since this can generate intermediate 0s or even non-monotonic expansions in the result.

Even though some of the functions are implemented the same as in the certified level, the ones that are optimized are now used by the arithmetic operators. They are:

• QD_LikeAddExpans, implements Algorithm 29 with a faster renormalization step that uses Algorithm 24 with Fast2Sum;

• QD_LikeMulExpans, implements Algorithm 33, with the changed renormalization;

• invExpans, implements Algorithm 35 using the fast "quick-and-dirty" algorithms for intermediate computations;

• the same changes as above for invSqrtExpans, sqrtNewtonExpans and sqrtHeronExpans.

This level also comes with a code generation module, that allows for the user to code generate the algorithms function of the needed expansion size. This module provides increased performance by custom unrolling some complex loops (which are usually not optimized by GCC or NVCC compilers).

We recommend the use of this level if the performance requirements are strong, especially if there is the possibility of a-posteriori verification of the correctness of the numerical result.

Parallel expansions. As we mentioned, the parallel expansions are dealt with separately. In a separate file, gpu_mprec.h, we declare the simple (not templated) class: double val; public: //---------constructors--------------__device__ gpu_mprec(){} __device__ gpu_mprec(const double newVal):val(newVal){} //----------geters & setters--------------__device__ double getVal(){ return val; } __device__ void setVal(const double newVal){ val = newVal; } template <int prec> __device__ friend gpu_mprec loadExpans(multi_prec<prec> const &mp); template <int prec> __device__ friend void storeExpans(gpu_mprec gmp, multi_prec<prec> &mp); //----------friend functions-------------template <int L, int K, int R> __device__ friend gpu_mprec P_addExpans_safe(gpu_mprec x, gpu_mprec y); template <int R> __device__ friend gpu_mprec P_addExpans_quick(gpu_mprec x, gpu_mprec y); template <int K, int L, int R> __device__ friend gpu_mprec P_mulExpans(gpu_mprec x, gpu_mprec y); }; #endif

class

1. 1

 1 Possible roundings of a real number in a binary floating-point system. 1.2 Most commonly available floating-point formats. 1.3 Graphical representation of ulp vs. uls. 1.4 Graphical representation of a general GPU's structure. 1.5 Graphical representation of the GPU's thread execution layout. 1.6 Graphical representation of the GPU's execution model. 1.7 Graphical representation of the multiple-digit vs. the multiple-term approach. 2.1 Graphical representation of Algorithm 7. 2.2 Graphical representation of Algorithm 8. 2.3 Graphical representation of Algorithm 9. 2.4 Graphical representation of Algorithm 10. 2.5 Graphical representation of Algorithm 11. 2.6 Graphical representation of Algorithm 13. 2.7 Graphical representation of Algorithm 17. 2.8 Graphical representation of Algorithm 19. 2.9 Graphical representation of Algorithm 20. 3.1 Graphical representation of nonoverlapping sequences by three different schemes. . 3.2 Graphical representation of an ulp-nonoverlapping sequence. 3.3 Graphical representation of Algorithm 21. 3.4 Excerpt of Algorithm 21. 3.5 Graphical representation of Algorithm 22. 3.6 Example of execution of Algorithm 23. 3.7 Graphical representation of Algorithm 24. 3.8 Graphical representation of Algorithm 25. 3.9 Graphical representation of Algorithm 27. 3.10 Graphical representation of Algorithm 29. 3.11 Cases for accumulating the partial products into the bins. 3.12 Graphical representation of Algorithm 33. 4.1 Graphical representation of Algorithm 40. 4.2 Sequential representation of Algorithm 40. 4.3 Reduction of the sequential representation in Figure 4.2 based on the "Sterbenz relation". 4.4 Addition of a floating-point number to an array, starting from the left side and propagating the error. 4.5 Graphical representation of a "quick-and-dirty" version of Algorithm 40. 4.6 Sequential representation of Algorithm 41. .

Figure 1 . 2 -

 12 Figure 1.2 -Most commonly available floating-point formats: (a) binary32 (single-precision) and (b) binary64 (double-precision).

Figure 1 . 3 -

 13 Figure 1.3 -Graphical representation of ulp vs. uls.

Algorithm 3 -Theorem 1 . 1 . 14 .

 31114 2ProdFMA (x, y). π ← RN(x • y) e ← fma(x, y, -π) return (π, e) Let x and y be precision-p floating-point numbers, such that e x + e y ≥ e min + p -1, where e x and e y are the exponents of x and y, respectively. Algorithm 3 and Algorithm 5 compute two floating-point numbers π and e such that:

Figure 1 . 4 -

 14 Figure 1.4 -Graphical representation of a general GPU's structure.

Figure 1 . 5 -

 15 Figure 1.5 -Graphical representation of the GPU's thread execution layout.

Figure 1 . 6 -

 16 Figure 1.6 -Graphical representation of the GPU's execution model.

Figure 1 . 7 -

 17 Figure 1.7 -Graphical representation of the (a) multiple-digit vs. the (b) multiple-term approach.

 Data[2] = -1.255566e-15

Theorem 2 . 1 . 1 .

 211 The relative error of Algorithm 7 (DWPlusFP) is bounded by

Figure 2 . 1 -

 21 Figure 2.1 -Graphical representation of Algorithm 7. In the 2Sum and Fast2Sum calls the sum s is outputted downwards and the error e to the right.

Figure 2 . 2 -

 22 Figure 2.2 -Graphical representation of Algorithm 8. In the 2Sum and Fast2Sum calls the sum s is outputted downwards and the error e to the right.

 and, since |x + y | ≤ 2u, |t h | ≤ 2u and |t | ≤ u 2 . Because s h is a nonzero multiple of 2u and |c| = |t h | ≤ 2u, we can legitimately use the Fast2Sum Algorithm in line 4 of the algorithm (it does not introduce any error). Therefore,

Figure 2 . 4 -

 24 Figure 2.4 -Graphical representation of Algorithm 10. In the 2Prod and Fast2Sum calls the sum s or the product π are outputted downwards and the error e to the right.

Figure 2 . 5 -

 25 Figure 2.5 -Graphical representation of Algorithm 11. In the 2Prod and Fast2Sum calls the sum s or the product π are outputted downwards and the error e to the right.

Figure 2 . 6 -Lemma 2 . 2 . 7 .

 26227 Figure 2.6 -Graphical representation of Algorithm 13. In the 2Prod and Fast2Sum calls the sum s or the product π are outputted downwards and the error e to the right. Lemma 2.2.7. Let x and y be two positive real numbers. If xy ≤ 2, x ≥ 1 and y ≥ 1, then x + y ≤ 2 √ 2.

Figure 2 . 7 -Theorem 2 . 3 . 1 .

 27231 Figure 2.7 -Graphical representation of Algorithm 17. In the 2Prod and Fast2Sum calls the sum s or the product π are outputted downwards and the error e to the right.

Figure 2 . 8 -

 28 Figure 2.8 -Graphical representation of Algorithm 19. In the Fast2Sum and DWTimesFP1 calls the sum s or z h is outputted downwards and the error e or z l to the right.

Example 2 . 3 . 5 .

 235 If we have as input for Algorithm 18 or Algorithm 19, with binary64 as underlying arithmetic, the values: x h = 4503607118141812, x = 4493737176494969/2 53 , y h = 4503600552333684, and y = -562937972998161/2 50 , then the relative error of the algorithm is 8.465 . . . × 2 -106 .

Figure 2 . 9 -

 29 Figure 2.9 -Graphical representation of Algorithm 20. All algorithm calls output both parts of their results downwards.

 , joint work with M. Joldes, and J.-M. Muller, published in Proceedings of the 25th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2014). -The extended journal version Arithmetic algorithms for extended precision using floating-point expansions [41], joint work with M. Joldes, O. Marty, 1 and J.-M. Muller, published in the IEEE Transactions on Computers journal. -A New Multiplication Algorithm for Extended Precision Using Floating-Point Expansions [69], joint work with J.-M. Muller and P. Tang, 2 published in Proceedings of the 23rd IEEE Symposium on Computer Arithmetic (ARITH 2016).

Figure 3 . 1 -

 31 Figure 3.1 -Graphical representation of nonoverlapping sequences by (a) Bailey's scheme, (b)Priest's scheme, and (c) Shewchuk's scheme[START_REF] Ogita | Accurate sum and dot product[END_REF].

Figure 3 . 2 -

 32 Figure 3.2 -Graphical representation of an ulp-nonoverlapping sequence by Definition 3.0.6.

Figure 3 . 3 -

 33 Figure 3.3 -Graphical representation of Algorithm 21. In the 2Sum calls the sum s is outputted to the left and the error e downwards.

 by definition of 2Sum, we have |e i+2 | ≤ 1 2 ulp(s i+1). Now, we can compare |e i+1 | and |e i+2 |. Since |e i+1 | is a multiple of ulp(s i+1), either e i+1 = 0 or e i+1 is larger than 2 |e i+2 | and multiple of 2 k , such that 2 k > |e i+2 |. This implies that the array e = (e 0 , e 1 , . . . , e n-1) is Snonoverlapping and may have interleaving zeros. Remark 3.1.4. We observe that the calls to 2Sum can be replaced by calls to Fast2Sum. This is possible because we have |s i+1 | ≤ 2 p-1 ulp(x i), for p ≥ 4 and n ≤ 10, for p ≥ 5 and n ≤ 18, for p ≥ 6 and n ≤ 34, and so on. Also ulp(x i) ≤ 2 -p+1 |x i |. As a deduction |s i+1 | ≤ |x i |.

= 1 .

 1 1011 2 × 2 -14 , and t = -1.1010 2 × 2 -8 an arbitrary number; Using (x, t) as input for Algorithm 21 will result in the S-nonoverlapping array e: e 0 = -1.1001 2 × 2 -2 , e 1 = -1.001 2 × 2 -9 , e 2 = 0.0, e 3 = 0.0, e 4 = 0.0, e 5 = 1.1011 2 × 2 -14 .

Figure 3 . 5 -Theorem 3 . 1 . 11 .

 353111 Figure 3.5 -Graphical representation of Algorithm 22. In the 2Sum calls the sum s is outputted downwards and the error e to the right.

Example 3 . 1 . 13 .Theorem 3 . 1 . 14 .

 31133114 Consider a floating-point system with precision p = 5. Let e be a 5-term Snonoverlapping array:e 0 = 1.0110 2 × 2 -1 , e 1 = -2 -7, e 2 = 0.0, e 3 = 2 -10 , e 4 = 2-13 , and m = 3 an integer. Using e, m as input for Algorithm 22 will result in the ulp-nonoverlapping array r:r 0 = 1.0110 2 × 2 -1 , r 1 = -1.1100 2 × 2 -8 , r 2 = 2 -13. Let e = (e 0 , e 1 , . . . , e n-1) that satisfies |e 0

Example 3 . 1 . 19 .

 3119 Consider a floating-point system with precision p = 5 and b = 3, c = 1. Let e be a 5-term array: e 0 = 1.0111 2 × 2, e 1 = 1.1110 2 × 2 -3 , e 2 = 2 -9 , e 3 = -1.011 2 × 2 -9 , e 4 = 1.1 2 × 2 -12 , and m = 3 an integer. Using e, m as input for Algorithm 22 will result in the ulp-nonoverlapping array r: r 0 = 1.1001 2 × 2, r 1 = -1.0001 2 × 2 -6 , r 2 = 1.01 2 × 2 -11 .

1

 1

22 :

 22 return r 0 , r 1 , . . . r k-1

Figure 3 . 6 -

 36 Figure 3.6 -Example of execution of Algorithm 23, for an input array with n = 5 terms.

Figure 3 . 7 -

 37 Figure 3.7 -Graphical representation of Algorithm 24.

2 :

 2 for i ← 1 to n -1 do 3:

Figure 3 . 8 -

 38 Figure 3.8 -Graphical representation of Algorithm 25.

6 : 7 :

 67 else if |x i | > |y i | then while j > 0 and |y j-1 | ≤ |x i | do 8: e i+j ← y j , j ← j -1 9: end while 10: end if 11: a ← x i , b ← y j 12: while i > 0 or j > 0 do 13: (c, e i+j) ← 2Sum(a, b)

1

 1

21 :

 21 (c, e 1) ← 2Sum(a, b) 22: e 0 ← c 23: s[0 : . . .] ← Renormalize_Priest(e[0 : m + n -1]) //using Alg. 23 24: return s 0 , s 1 , . . .

1 : 1 Figure 3 . 9 -

 1139 Figure 3.9 -Graphical representation of Algorithm 27.

3 : 4 : 1 Figure 3 . 10 -

 341310 Figure 3.10 -Graphical representation of Algorithm 29.

 [0 : m -1]) 20: b[0 : . . .] ← Addition_Priest(c[0 : . . .], b[0 : . . .]) //using Alg. 26 21: c[0 : . . .] ← Renormalize_Priest(a (3) [0 : m -1]) 22: b[0 : . . .] ← Addition_Priest(c[0 : . . .], b[0 : . . .]) 23: c[0 : . . .] ← Renormalize_Priest(a (4) [0 : m -1]) 24: b[0 : . . .] ← Addition_Priest(c[0 : . . .], b[0 : . . .]) 25:

 [0 : m -1]) 26: b[0 : . . .] ← Addition_Priest(c[0 : . . .], b[0 : . . .]) 27:

 : . . .] ← Addition_Priest(c[0 : . . .], b[0 : . . .]) 29: π[0 : . . .] ← Addition_Priest(b[0 : . . .], π[0 : . . .]) 30: end for 31: return π 0 , π 1 , . . .

Theorem 3 . 4 . 1 .

 341 Let x and y be two ulp-nonoverlapping floating-point expansions, with n, and m terms, respectively. If, when computing the product xy we "truncate" the operations by adding only the first r+1 k=1 k partial products, where r is the required size of the final result, then the error satisfies:

8 :Bπ ← x i • y j 15 :B

 815 ← t -t x i -t y j ← Accumulate(π , e, B, sh,) //using Alg. ← t -t x i -t y j ← Accumulate(π , 0., B, sh,) //using Alg.[START_REF] Hénon | A two-dimensional mapping with a strange attractor[END_REF] 19: end if 20: end for 21: for i ← 0 to r • p/b + 1 do 22:

• 3 :

 3 2 case, in which π falls into three bins and e into two.

Figure 3 . 11 -

 311 Figure 3.11 -Cases for accumulating the partial products into the bins.

Algorithm 32 -then 2 : 4 :

 3224 Accumulate(π , e, B, sh,).1: if < b -2c -1 (B sh , B sh+1) ← Deposit(π) // that is, (B sh , π) ←Fast2Sum(B sh , π),and 3: // B sh+1 ← B sh+1 + π (B sh+1 , B sh+2) ← Deposit(e) 5: else if < b -c then 6: (B sh , B sh+1) ← Deposit(π) 7: (B sh+1 , e) ← Fast2Sum(B sh+1 , e) 8: (B sh+2 , B sh+3) ← Deposit(e) 9: else 10: (B sh , p) ← Fast2Sum(B sh , π) 11: (B sh+1 , B sh+2) ← Deposit(π) 12:

Figure 3 . 12 -

 312 Figure 3.12 -Graphical representation of Algorithm 33.

. 36) 3 . 5 . 3 .

 36353 Property Consider an ulp-nonoverlapping expansion u

1 :

 1 f [0 : r -1] ← Reciprocal(y[0 : m -1], r) //using Alg. 35 2: d[0 : r -1] ← Multiplication(x[0 : n -1], f [0 : r -1], r) //using Alg. 31 or Alg. 33 3: return d 0 , d 1 , . . . , d r-1

5 :

 5 e ← (x i , e 0 , e 1 , . . . , e r-2) //shift right & insert x i 6:

7 :

 7 e ← (y i , e 0 , e 1 , . . . , e r-2) //shift right & insert y i 8:(s, e) ← 2Sum(s, e) 9: end for 10: for i ← 1 to r -2 do 11:e ← (0, e 0 , e 1 , . . . , e r-2)12:

Theorem 4 . 1 . 1 .

 411 Let x and y be two ulp-nonoverlapping floating-point expansions, with n and m terms, respectively. Provided that no underflow/overflow occurs during the calculations, when computing their sum using Algorithm 40, the result array s with r terms satisfies|s i | ≤ 2 -(p-1)i+2r-1 |s 0 |, with 0 < i < n and |x + y -s| < 2 -(p-1)r (|x 0 | + |y 0 |) 2 2r (1 + 2 -p) + 1 1 -2 -(p-1) .

Figure 4 . 1 -

 41 Figure 4.1 -Graphical representation of Algorithm 40 illustrated for expansions of size 3.

Figure 4 . 2 -

 42 Figure 4.2 -Sequential representation of Algorithm 40.

Figure 4 . 3 -

 43 Figure 4.3 -Reduction of the sequential representation in Figure 4.2 based on the "Sterbenz relation".

Figure 4

 4

Figure 4 . 4 -Theorem 4 . 1 . 2 .

 44412 Figure 4.4 -Addition of a floating-point number to an array, starting from the left side and propagating the error. In the 2Sum calls the sum s is outputted downwards and the error e to the right.

Figure 4 . 5 -

 45 Figure 4.5 -Graphical representation of a "quick-and-dirty" version of Algorithm 40 illustrated for expansions of size 4.

7 : 1) 4 . 2 . 1 .

 71421 π i ← s 0 //insert into vector 8: s ← (s 1 , s 2 , . . . s r-1 , 0) //shift left 9: while e = 0 do 10: (s, e) ← 2Sum(s, e) 11: e ← (0, e 0 , e 1 , . . . , e r-2) //shift right 12: e) ← 2Sum(s, e) 15: e ← (0, e 0 , e 1 , . . . , e r-2) //shift right 16: end while 17: end for 18: p ← x • y 19: s ← s + p 20: π r-1 ← s 0 //insert into vector 21: return π = (π 0 , π 1 , . . . , π r-Theorem Let x and y be two ulp-nonoverlapping floating-point expansions, with n and m terms, respectively. Assume p ≥ 8, which always holds in practice. Provided that no underflow/overflow occurs during the calculations, when computing their product using Algorithm 41, the result array π with r terms satisfies |xy -π| ≤ |x 0 y 0 |2 -(p-1)r 128 127 (m + n -1) -129 254 r + 2 -p-r+2 (r 2 -r)(r!) 2 .

Example 5 . 1 . 1 .

 511 When considering the two fixed parameters a = 1.399999486944 and b = 0.3, the Hénon map can be reduced to a sink with 33 points, as shown in Figure5.1, where 10000 iterations of the map h(x, y) are plotted. More specifically, the iterates appearing in part (a) of the figure start in a point (x 0 , y 0) and those in part (b) in a different point (x 0 , y 0). We chose the two points in the following way:(a) 5 • 10 9 iterations are performed and skipped (not plotted) before obtaining (x 0 , y 0); (b) respectively, 6 • 10 9 iterations are skipped before obtaining (x 0 , y 0).One can observe that, what looks like the Hénon strange attractor in Figure5.1(a), proves to be just the periodic orbit showed in Figure5.1(b). This means that what we observe in computer simulations is actually a transient behavior to the periodic steady state that we are interested in.

Figure 5 . 1 -

 51 Figure 5.1 -Hénon map with parameters a = 1.399999486944, b = 0.3; 10000 iterates are plotted after skipping (a) 5 • 10 9 and (b) 6 • 10 9 iterations.

Figure 5 . 2 -

 52 Figure 5.2 -Performance of Rgemm with CAMPARY vs [73] using double-double precision on GPU.

Figure 5 . 3 -

 53 Figure 5.3 -Performance of Rgemm with CAMPARY for n-double on Fermi architecture GPUs.

 ; public: //---------constructors--------------__host__ __device__ multi_prec(){}; __host__ __device__ multi_prec(const double x); __host__ __device__ multi_prec(const double * datap, const int precp); __host__ __device__ multi_prec(const char * s); template<int precP>__host__ __device__ multi_prec(const multi_prec<precP> * mp); __host__ __device__ multi_prec(const multi_prec<prec> * mp); // ********************* MUL ********************

 1.1 Main parameters of the binary formats specified by the IEEE 754-2008 standard. . . 20 2.1 Main differences between the double-double format and quad-precision. 36 2.2 Summary of the results presented in Chapter 2. 68 2.3 Performance in Mop/s for double-word addition, multiplication and division algo-GPU performance in Mop/s for the addition algorithms in the memory constrained case with 32 B shared memory per expansion term. 140 4.3 GPU performance in Mop/s for the multiplication algorithms in the best case with no internal memory usage. 140 4.4 GPU performance in Mop/s for the multiplication algorithms in the memory constrained case with 32 B shared memory per expansion term. 141 5.1 Known Hénon map orbits from [26]. 146 5.2 Peak number of Hénon map orbits/second for binary64 vs. CAMPARY vs. QD library. 147 5.3 Peak number of Hénon map orbits/second for CAMPARY vs. MPFR library. 148 5.

rithms. 69 3.1 Orders of magnitude of the the relative error bounds. 121 3.2 Effective values of the worst case floating-point operations count. 122 3.3 CPU performance in Mop/s for the addition algorithms. 123 3.4 GPU performance in Kop/s for the addition algorithms. 123 3.5 CPU performance in Mop/s for the multiplication algorithms. 124 3.6 GPU performance in Kop/s for the multiplication algorithms. 124 3.7 CPU performance in Mop/s for the reciprocal algorithms. 125 3.8 GPU performance in Kop/s for the reciprocal algorithms. 125 3.9 CPU performance in Mop/s for the division algorithms. 126 3.10 GPU performance in Kop/s for the division algorithms. 126 3.11 CPU performance in Mop/s for the squaring algorithms. 127 3.12 GPU performance in Kop/s for the squaring algorithms. 127 4.1 GPU performance in Mop/s for the addition algorithms in the best case with no internal memory usage. 140 4.2

 and J.-M. Muller, published in Proceedings of the 25th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2014); 3. Arithmetic algorithms for extended precision using floating-point expansions [41], joint work with M. Joldes, O. Marty (student intern during collaboration, now engineer at Google, France) and J.-M. Muller, published in the IEEE Transactions on Computers journal; 4. A New Multiplication Algorithm for Extended Precision Using Floating-Point Expansions [69], joint work with J.-M. Muller and P. Tang (senior engineer at Intel Corporation), published in Proceedings of the 23rd IEEE Symposium on Computer Arithmetic (ARITH 2016).

Table 1 .

 1 1 -Main parameters of the binary formats specified by the IEEE 754-2008 standard.

	Name	binary16 binary32 binary64 binary128
		N/A	(single) (double)	(quad)
	Storage width	16	32	64	128
	Precision p	11	24	53	113
	e max	+15	+127	+1023	+16383
	e min	-14	-126	-1022	-16382
	1	8	23		
	s	e	m		
			(a)		

Table 2 .

 2

	1 -Main differences between the double-double format (made up with binary64
	floating-point numbers) and quad-precision (binary128).
		double-double quad-precision
	Precision	≥ 107 bits	113 bits
		"wobbling"	
	Exponent range	-1022 to 1023 -16382 to 16383
		(11 bits)	(15 bits)
	Rounding modes	N/A	RN, RU, RD, RZ
	implementing very accurate binary128 elementary functions. Hence, designing and analyzing
	algorithms for double-word arithmetic is of interest.	

 2u, so that |c| ≤ 2u, and | 1 | ≤ u 2 . Since s h ≥ 1 2 and |c| ≤ 2u, we can legitimately use Algorithm Fast2Sum in line 4 of the algorithm because it introduces no error, meaning that

and |t | ≤ u 2 . Now, c = s + t h + 1 , with |s + t h | ≤

 .19) One easily notices that if p ≥ 4 the bound (2.16) is less than the bound (2.19).

 The above bound is reasonably sharp, and this is showed by Example 2.3.3, for which we obtained the largest relative error while doing many random computations.

			t -		δ y	≤ u 2 .
	Therefore		t =	x y	-t h + η,
	with		|η| ≤	3u 2 2y	+ u 2 ,
	y x	3u 2 2y	+ u 2 ≤	3u 2 2x	+ u 2 y x	≤ 3.5u 2 .
	Example 2.3.3. If we have as input for Algorithm 16 or Algorithm 17, with binary64 as underlying arith-
	metic, the values:					
	x h = 4588860379563012,

2u, so that |t | ≤ 2u. Hence, since t h ≥ 1 2 + u, Algorithm Fast2Sum introduces no error at line 7, and hence z h + z = t h + t approximates x y with a relative error bounded by x = -4474949195791253/2 53 , and y = 4578284000230917, then the relative error of the algorithm is 2.95157083 . . . × 2 -106 .

:

 e , t h) //approximation to (e h + e)t h with relative error ≤ 2u 2 using (m h , m) ← DWPlusFP(δ h , δ , t h) //approximation to δ h + δ + t h with relative error ≤ 2u 2 + 5u3

	Alg. 12
	6using Alg. 7

7: (z h , z) ← DWTimesDW3(x h , x , m h , m) //approximation to (x h + x)(m h + m) with relative

error ≤ 5u 2 using Alg.

[START_REF] Ceruzzi | The early computers of Konrad Zuse, 1935 to 1945[END_REF]

8: return (z h , z)

 This relative error bound is certainly a large overestimate, since we cumulate in its calculation the overestimates of the errors of Algorithms 12, 7, and 15. The largest error that we were able to obtain in practice is the one presented in Example 2.3.8. If we have as input for Algorithm 20, with binary64 as underlying arithmetic, the values:

	Combining (2.50) and (2.51) we finally obtain x = 1125391118633487/2 51 , y h = 4522593432466394, and y = -9006008290016505/2 54 , then the relative error of the algorithm is z Example 2.3.8. x h = 4528288502329187, 5.922 . . . × 2 -106 .	.51)

h + z -x y ≤ x y (5u 2 + ϕ(u) + 5u 2 ϕ(u)) ≤ x

y 9.798u 2 + 19u 3 + 54.49u 4 + 109u 5 + 152.5u 6 + 70u 7 ≤ 9.8u 2 x y as soon as p ≥ 14.

Table 2 .

 2 2 -Summary of the results presented in this chapter. For each algorithm, we give the previously known bound (when we are aware of it, and when the algorithm already existed), the bound we have proved, and the largest relative error observed in our fairly intensive tests.

	Operation	Algorithm	Previously known bound	Our bound	Largest relative error observed in experiments
	DW + FP	Algorithm 7	?	2u 2 + 5u 3	2u 2 -6u 3
	DW + DW Algorithm 8	N/A	N/A	1
		Algorithm 9	2u 2 (incorrect) 3u 2 + 13u 3	2.25u 2
	DW × FP Algorithm 10	4u 2	1.5u 2 + 4u 3	1.5u 2
		Algorithm 11	?	3u 2	2.517u 2
		Algorithm 12	N/A	2u 2	1.984u 2
	DW × DW Algorithm 13	11u 2	7u 2	4.9916u 2
		Algorithm 14	N/A	6u 2	4.9433u 2
		Algorithm 15	N/A	5u 2	3.936u 2
	DW ÷ FP Algorithm 16	4u 2	3.5u 2	2.95u 2
		Algorithm 17	N/A	3.5u 2	2.95u 2
	DW ÷ DW Algorithm 18	?	15u 2 + 56u 3	8.465u 2
		Algorithm 19	N/A	15u 2 + 56u 3	8.465u 2
		Algorithm 20	N/A	9.8u 2	5.922u 2

Table 2 .

 2 3 -Performance in Mop/s for double-word addition, multiplication and division algorithms. For each algorithm, we give the values obtained when run on CPU and on GPU, and the number of floating-point operations required by the algorithm

			Performance	Performance	
	Operation	Algorithm	on CPU	on GPU	of Flops
			(Mop/s)	(Mop/s)	
	DW + FP	Algorithm 7	229.866	5.379	10
	DW + DW Algorithm 8	208.961	5.379	11
		Algorithm 9	114.932	3.81	20
	DW × FP Algorithm 10	342.065	6.532	10
		Algorithm 11	484.239	9.145	7
		Algorithm 12	484.248	9.626	6
	DW × DW Algorithm 13	392.666	8.069	9
		Algorithm 14	473.746	8.703	8
		Algorithm 15	331.026	7.62	9
	DW ÷ FP Algorithm 16	80.7219	1.693	16
		Algorithm 17	81.6378	2.176	10
	DW ÷ DW Algorithm 18	80.615	1.784	24
		Algorithm 19	81.5674	1.988	18
		Algorithm 20	329.962	5.964	31

Table 3 .

 3 1 -Orders of magnitude of the the relative error bounds.

			n	4	8	16	32
		Alg. 26	1.5 • 10 -64	2 • 10 -128	5 • 10 -256	2 • 10 -511
	Addition	Alg. 27	10 -62	2 • 10 -125	1.5 • 10 -250	5 • 10 -501
		Alg. 29	5 • 10 -62	1.4 • 10 -124	8 • 10 -250	2 • 10 -500
		Alg. 30	1.5 • 10 -64	2 • 10 -128	5 • 10 -256	2 • 10 -511
	Multiplication	Alg. 31	2 • 10 -63	5 • 10 -126	3 • 10 -251	1.2 • 10 -501
		Alg. 33	2 • 10 -63	2 • 10 -126	6 • 10 -251	5 • 10 -465
	Division	Alg. 34	eq. (3.32) eq. (3.33)	0.25 3 • 10 -59	1.5 • 10 -2 5 • 10 -116	1.2 • 10 -4 1.4 • 10 -227	3 • 10 -9 3 • 10 -446
	Reciprocal	Alg. 35	2 • 10 -60	2 • 10 -119	2 • 10 -237	2 • 10 -473
	Square root	Alg. 37 Alg. 39	4 • 10 -60 7 • 10 -60	4 • 10 -119 7 • 10 -119	4 • 10 -237 7 • 10 -237	4 • 10 -473 7 • 10 -473

Table 3 .

 3 2 -Effective values of the worst case floating-point operations count.

			n	3	4	6	8	12	16
		Alg. 23	R priest	40	60	100	140	220	300
	Renormalization	Alg. 24	R f ast R	10 16	17 26	31 46	45 66	73 106	101 146
		Alg. 25	R rand	22	44	106	192	436	776
		Alg. 26	A priest	143	197	305	413	629	845
	Addition	Alg. 27 Alg. 29	A accurate A quick A f ast quick	52 82 55	74 135 87	118 227 169	162 467 275	250 991 559	338 1,707 939
		Alg. 30	M priest	8,217 16,212 43,002 87,432 244,764 519,312
		Alg. 31	M accurate	192	260	441	668	1,284	2,102
	Multiplication	Alg. 33	M quick M quick [f ma] M f ast quick	117 115 90	234 231 186	654 649 546	1,402 1,395 1,210	4,266 4,255 3,834	9,594 9,579 8,826
			M f ast quick [f ma]	88	183	541	1,203	3,823	8,811
	Reciprocal	Alg. 35	I I f ast	847 485	847 485	2,259 2,967	2,259 2,967	6,619 20,745	6,619 20,745
		Alg. 34	D priest	5,229 10,977 29,559 58,669 153,657 306,309
	Division	Alg. 36	D D f ast	1,107 1,107 668 668	2,927 4,170	2,927 4,170	8,721 29,556	8,721 29,556
	Reciprocal of square root	Alg. 37	I sqrt I f ast sqrt	1,251 1,251 708 708	3,339 4,401	3,339 4,401	9,817 31,006	9,817 31,006
	Square root	Alg. 38 Alg. 39	S S f ast S heron S f ast heron	1,511 1,511 891 891 1,646 1,646 907 907	4,007 5,604 4,743 5,360	4,007 5,604 4,743 5,360	11,919 39,817 13,818 35,871	11,919 39,817 13,818 35,871

Table 3 .

 3 3 -CPU performance in Mop/s for the addition algorithms.

	n, m, r	CAMPARY Alg. 27 Alg. 29 Fast Alg. 29	MPFR
	3, 3, 3	34		27.3	40	31.5
	3, 1, 3	75.3	75.3	75.3	22.2
	4, 4, 4	19.3	16.9	23.2	28.2
	4, 2, 4	33.5	19.9	28.1	20.2
	4, 1, 4	59.2	59.2	59.2	20.7
	8, 8, 8	8.15	4.48	7.07	24.5
	8, 4, 8	11.2	5	7.36	19.7
	8, 2, 8	15		6.32	10.2	19.1
	16, 16, 16	3.82	1.12	1.73	17.1
	16, 8, 16	5.46	1.2	2.5	15.3
	Table 3.4 -GPU performance in Kop/s for the addition algorithms.
				CAMPARY
	n, m, r	Alg. 27 Alg. 29 Fast Alg. 29
	3, 3, 3		396	310	765
	3, 1, 3		1,244	1,244	1,244
	4, 4, 4		270	189	566
	4, 2, 4		365	217	752
	4, 1, 4		972	972	972
	8, 8, 8		135	60.8	274
	8, 4, 8		170	72.2	162
	8, 2, 8		205	78.9	235
	16, 16, 16	55.8	17.4	35.3
	16, 8, 16	81.3	22.1	46
	5. The values reflect the performance obtained on GPU using only one execution thread.
				123	

Table 3 .

 3

	8 -GPU performance in Kop/s for the reciprocal algorithms.
		CAMPARY
	2 k , 2 q Alg. 35 Fast Alg. 35
	4, 2	2 • 10 7	2 • 10 7
	4, 4	129	282
	2, 4	128	149
	1, 4	129	202
	8, 8	19	19.3
	4, 8	24	20.2
	2, 8	25.7	21.2
	16, 16	4.4	1.83
	8, 16	5.6	1.98
	4, 16	6.2	2.45

Table 3 .

 3 10 -GPU performance in Kop/s for the division algorithms.

		CAMPARY
	n, m, r	Alg. 36 Fast Alg. 36
	2, 4, 2	8310	7987
	4, 4, 4	86.3	180
	4, 2, 4	75.5	108
	4, 1, 4	82.9	146
	8, 8, 8	12.7	11.8
	8, 4, 8	14.3	13.3
	8, 2, 8	14.9	14.9
	16, 16, 16	2.78	1.23
	16, 8, 16	3.21	1.28
	16, 4, 16	3.42	1.48

Table 3 .

 3 11 -CPU performance in Mop/s for the squaring algorithms. CAMPARY MPFR 2 k , 2 q Alg. 37 Fast Alg. 37 Alg. 38 Fast Alg. 38 Alg. 39 Fast Alg. 39 1/

	√	√

Table 3 .

 3 12 -GPU performance in Kop/s for the squaring algorithms. CAMPARY 2 k , 2 q Alg. 37 Fast Alg. 37 Alg. 38 Fast Alg. 38 Alg. 39 Fast Alg. 39

	4, 2	1,185	1,235	6,875	578	635	2,857
	4, 4	70.8	131	53.2	96.4	56.5	83.9
	2, 4	70.8	106	58.7	87.1	56.3	89
	1, 4	76.8	137	60.1	115	62.3	93.7
	8, 8	12.9	9.87	9.69	8.29	8.45	9.38
	4, 8	14.9	10.4	10.2	8.89	8.98	8.14
	2, 8	15.1	11.9	13.1	9.65	9.67	9.18
	16, 16	2.77	1.15	2.07	0.92	2.06	1.05
	8, 16	3.13	1.27	2.47	0.99	2.25	1.09
	4, 16	3.5	1.46	3.07	1.24	2.51	1.19

 .2) We can continue, by noticing that |e 1 | is bounded by 2 -p |s 1 |, and bounding |x 2 | by 2 -2(p-1)+δ 1+2 -p 1-2 -p+ |s 0 |. This gives a bound on |e 1 + x 2 |, and a bound on s 2 is obtained by multiplying that last bound by (1 + 2 -p

Table 4 .

 4 1 -GPU performance in Mop/s for the addition algorithms in the best case with no internal memory usage.

	r	Alg. 40 Quick Alg. 40	Alg. 27	Alg. 29	Fast Alg. 29
	2	10,131	11,500	30,134 (Alg. 9) 30,134 (Alg. 9) 51,822 (Alg. 8)
	4	1,695	4,085	1,080	1,929	4,856
	8	368	1,793	425	641	1,728
	16	87.6	760	154	160	348
	32	20.8	120	49.5	25.6	72.7

Table 4 .

 4 2 -GPU performance in Mop/s for the addition algorithms in the memory constrained case with 32 B shared memory per expansion term.

	r	Alg. 40 Quick Alg. 40	Alg. 27	Alg. 29	Fast Alg. 29
	2	9,865	9,251	25,953 (Alg. 9) 25,953 (Alg. 9) 38,876 (Alg. 8)
	4	1,672	3,330	536.3	1,210	2,272
	8	364	1,340	119	249	456
	16	86.9	540	28.5	41.4	61.8
	32	20.7	89.5	7.54	4.83	8.85

Table 4 .

 4 3 -GPU performance in Mop/s for the multiplication algorithms in the best case with no internal memory usage.

	r	Alg. 41	Alg. 31	Alg. 33	Fast Alg. 33
	2	2,747.2 73,061 (Alg. 14) 73,061 (Alg. 14) 73,061 (Alg. 14)
	4	510	354	1,893	2,959
	8	107	87.7	358	469
	16	23.7	16.2	43.4	44.1
	32	1.64	3.49	0.72	0.74

Table 4 .

 4 [START_REF] Anderson | LAPACK Users' Guide[END_REF] -GPU performance in Mop/s for the multiplication algorithms in the memory constrained case with 32 B shared memory per expansion term.

	r	Alg. 41	Alg. 31	Alg. 33	Fast Alg. 33
	2	2,416	62,248 (Alg. 14) 62,248 (Alg. 14) 62,248 (Alg. 14)
	4	456	291	977	1,444
	8	94.4	49.1	94.3	116
	16	20.6	5.76	8.44	9.09
	32	1.39	0.64	0.23	0.28

Table 5 .

 5 .1. For example, for 10 6 grid points for a ∈ [1.3999, 1.4001], b = 0.3 fixed, 1024 orbits/parameter and 10 6 iterations/orbit we found 57 parameters which present stable periodic orbits in 2.94 hours on 2 GPUs. A 21.5x speedup is obtained by our CUDA C implementation vs, a C implementation with OpenMP; for other Intel(R) platforms like Xeon E5 series the speed-ups are similar. 1 -Known Hénon map orbits from[START_REF] Galias | Combination of exhaustive search and continuation method for the study of sinks in the Hénon map[END_REF]. The parameter b = 0.3 is fixed, P is the period, d is the distance to the point (1.4, 0.3), r is the minimum immediate basin radius, and λ 1 is the largest Lyapunov exponent.

	a	P	d	r	λ 1
	1.399922051	25 5.522e-12 2.473e-12 -0.00132
	1.39997174948	30 1.354e-11 3.561e-12 -0.01887
	1.3999769102	18 3.207e-09 1.014e-09 -0.05306
	1.39998083519	24 1.703e-11 7.384e-12 -0.02819
	1.399984477	20 8.875e-10 4.076e-10 -0.05099
	1.39999492185	22 3.686e-11 1.531e-11 -0.09600
	1.3999964733062 39 2.784e-13 1.115e-13 -0.03547
	1.399999486944 33 1.110e-12 6.901e-13 -0.01843
	1.40000929916	25 1.118e-11 5.128e-12 -0.08379
	1.4000227433	21 2.262e-10 7.901e-11 -0.05612
	1.40002931695	27 5.782e-11 2.646e-11 -0.01140
	1.40006377472	27 8.692e-11 3.810e-11 -0.05636
	1.40006667358	24 6.278e-11 2.646e-11 -0.01112
	1.4000843045	27 9.400e-11 4.572e-11 -0.06870
	1.40009110518	22 3.493e-11 1.531e-11 -0.02157
	1.4000967515	26 2.463e-10 1.365e-10 -0.13233

 device fct to be run using prec * doubles precision * / __host__ __device__ void henon_iterate(double x0, double y0,

	double a, double b, long int ITER){
	/ * init multi_prec template vars * /
	multi_prec<prec> x_i(x0);
	multi_prec<prec> y_i(y0);
	multi_prec<prec> x_old;
	for (long int i=1; i <= ITER; i++) {
	/ * Compute iterates * /
	x_old = x_i;
	x_i = y_i + 1.0 -a * x_i * x_i;
	y_i = b * x_old;
	}
	}

Table 5 .

 5 2 -Peak number of Hénon map orbits/second for double vs. CAMPARY vs. QD library on Tesla GPU[C2075] using 10 6 iterations/orbit. *precision not supported

	Precision CAMPARY QD
	binary64	102398	
	2D	7608	4539
	3D	5200	*
	4D	1788	618
	5D	758	*
	6D	374	*
	7D	205	*
	8D	122	*

Table 5 .

 5 3 -Peak number of Hénon map orbits/second for CAMPARY vs. MPFR library (both parallelized with OpenMP on 8 threads) on Intel i7-3820 @3.60GHz using 10 6 iterations/orbit.

	Precision	CAMPARY MPFR
	2D (106 bits)	227	11.8
	3D (159 bits)	76	10.6
	4D (212 bits)	37	10.1
	6D (318 bits)	15	8.9
	8D (424 bits)	8	7.9

Table 5 .

 5 5 -Theoretical peak vs. kernel peak for Rgemm with CAMPARY for n-double on GPU.

	Format	# of Flops + *	Theoretical peak	Kernel peak	
	2D	20	9	17.8 GFlops	14.8 GFlops 83%
	3D	55	88	3.6 GFlops	1.6 GFlops	44%
	4D	87	183	1,900 MFlops 976 MFlops 51%
	5D	125	330	1,130 MFlops 660 MFlops 58%
	6D	169	541	725 MFlops	453 MFlops 62%
	8D	275 1203	348 MFlops	200 MFlops 57%

Table 5 .

 5 6 -The optimal value, relative gaps, primal/dual feasible errors, iterations and time for solving some problems from SDPLIB by SDPA-DD, -QD, and -CAMPARY. 04 5e -04 4e -12 8e -12 5e -18 5e -19 p.feas.error 2e -2e -20 3e -45 2e -20 5e -20 1e -31 1e -30 1e -41 6e -42 d.feas.error 1e -7e -14 1e -30 1e -13 1e -13 1e -16 9e -16 4e -21 7e -21 03 1e -03 9e -12 9e -12 2e -17 2e -17 p.feas.error 1e -1e -20 2e -45 6e -21 1e -20 7e -31 1e -30 2e -42 1e -42 d.feas.error 8e -7e -14 3e -30 7e -14 6e -14 1e -16 3e -16 7e -22 8e -22

	Problem	SDPA-DD	SDPA-QD	2D		SDPA-CAMPARY 3D	4D	
		CPU	GPU		CPU	GPU	CPU	GPU	CPU	GPU
	gpp124-1				optimal: -7.3430762652465384			
	relative gap	7e -7e -04	6e -13	7e -04 7e -04 8e -12 6e -12 1e -18 8e -18
	p.feas.error	1e -5e -20	3e -45	1e -19 8e -20 1e -30 1e -30 2e -41 4e -42
	d.feas.error	5e -3e -14	7e -31	2e -14 3e -14 1e -16 1e -16 2e -21 2e -22
	iteration		24	40	24	24	38	39	58	49
	time (s)	1.32	1.96	23.4	1.12	1.62	14.2	12.14	32.6	29.5
	gpp250-1			optimal: -1.5444916882934070e + 01			
	relative gap 5e -iteration 5e -5e -04 4e -13 25 41 25	25	41	40	56	66
	time (s)	7.86	9.43	151.7	6.46	7.42	80.5	71.7	200.7	213.5
	gpp500-1			optimal: -2.5320543879075792e + 01			
	relative gap 1e -iteration 1e -1e -03 4e -13 25 42 25	25	40	41	56	53
	time (s)	50.4	54.2	1,053	43.11	42.3	520.5	466.9	1,356	1,112
	qap10			optimal: -1.0926074684462390e + 03			
	relative gap	1e -3e -05	1e -14	6e -05 4e -05 1e -09 2e -10 6e -15 2e -14
	p.feas.error	3e -2e -21	3e -46	2e -20 5e -21 9e -35 6e -34 4e -47 2e -47
	d.feas.error	3e -2e -14	3e -30	1e -13 7e -14 2e -21 1e -22 5e -31 2e -30
	iteration		20	37	59	20	27	29	37	36
	time (s)	12.87	16.4	288.9	74.2	12.4	114	116.9	284.7	261.7
	theta5			optimal: 5.7232307282180003e + 01			
	relative gap	6e -1e -23	2e -46	1e -25 1e -24 2e -31 2e -31 2e -31 2e -31
	p.feas.error	8e -4e -31	1e -63	7e -31 7e -31 1e -45 1e -44 5e -61 2e -61
	d.feas.error	1e -2e -25	9e -49	1e -26 9e -26 4e -39 6e -39 1e -55 2e -55
	iteration		54	58	65	54	43	43	43	43
	time (s)	470.2	401.25	4,687	312.3	319.6	1,837	1,533	3,373	2,685

The CRlibm library is developed by my research group, AriC in Lyon, France.

Beware: that property is not always true with rounding functions different from RN.

Only the signature is included in the class, while the full body function is external.

The values reflect the performance obtained on GPU using only one execution thread.

Student intern during collaboration, now engineer at Google, France.

Senior engineer at Intel Corporation.

Priest's version of the algorithm had a missed condition that would cause the inner loop to turn infinitely in some cases.

Researcher in the Toccata project-team, Inria Saclay, Paris, France.

Researcher in PACAP project-team, Inria Rennes, Rennes, France.

Professor at Department of Mathematics, Uppsala University, Sweden.

Recently, SPECTRA package[START_REF] Henrion | SPECTRA -a Maple library for solving linear matrix inequalities in exact arithmetic[END_REF] proposes to solve such problems with exact rational arithmetic, but the instances treated are small and this package does not aim to be a concurrent of general numerical solvers.

NVIDIA(R) Tesla(TM) C2075 with 448 cores, 1.15 GHz, 32 KB of register, 64 KB shared memory / L1 cache set by default to 48 KB for shared memory and 16 KB for L1 cache

Compute capability

2.0 or greater for the sequential algorithms or at least 3.0 for the parallel ones.

Only the signature is included in the class, while the full body function is external.

Acknowledgements

The authors of [57] claim that their binary64 implementation of Algorithm 16 has a relative error bounded by 4 • 2 -106 . That bound can be slightly improved. The bound that we are going to prove is given in Theorem 2.3.1 and it holds for both algorithms, given the fact that they return the same result.

Proof. The proof is done by induction, and for an easier following we include Figure 3.4 that illustrates an excerpt of the algorithm. Step 1. We consider that the input array contains only one pair of p-overlapping numbers, say x i and x i+1 .

The same as in the proof of Theorem 3.1.3, we have ulp(s i+2) < ulp(x i+1). Since s i+1 = RN(s i+2 + x i+1) we can deduce that ulp(s i+1) ≤ 2 ulp(x i+1) = 2 ulp(x i). We tackle this by splitting it into two cases.

(i) ulp(s i+1) = 2 ulp(x i+1) = 2 ulp(x i). It follows that s i+1 > x i , but we can make the following statement: (e 0 , . . . , e i+1) = VecSum(x 0 , . . . , x i-1 , s i+1 , x i), and consider them swapped, since 2Sum(x i , s i+1) is the same as 2Sum(s i+1 , x i). Also, (s i+1 , e i+2 , . . . , e n-1) = VecSum(x i+1 , . . . , x n-1). From Theorem 3.1.3 and Remark 3.1.5 it follows that the two portions of the array e are Snonoverlapping . Now we need to find a relationship between e i+1 and e i+2 .

From 2Sum, |e i+2 | ≤ 1 2 ulp(s i+1) = ulp(x i). We have s i + e i+1 = x i + s i+1 , so s i and e i+1 are both multiples of ulp(x i), hence |e i+1 | ≥ ulp(x i). It holds that:

(3.11)

If |e i+2 | < ulp(x i), the two numbers are S-nonoverlapping and it follows that the entire array e is S-nonoverlapping . Otherwise |e i+2 | = ulp(x i) = |e i+1 |, meaning that we have one pair of terms that are equal to a power of 2 and the rest of the array e is S-nonoverlapping. For this case the theorem holds.

(ii) ulp(s i+1) ≤ ulp(x i+1) = ulp(x i). We have s i = RN(x i + s i+1), so it follows that ulp(s i) ≤ 2 ulp(x i). Also, from the hypothesis we know that ulp(x i) ≤ 1 4 ulp(x i-1). This implies ulp(s i) ≤ 1 2 ulp(x i-1), meaning that s i and x i-1 overlap by at most p -1 digits.

We know that (e 0 , . . . , e i) = VecSum(x 0 , . . . , x i-1 , s i) and (s i+1 , e i+2 , . . . , e n-1) = VecSum(x i+1 , . . . , x n-1), and from Theorem 3.1.3 and Remark 3.1.5 it follows that they are Snonoverlapping . Now we need to find a relationship between e i , e i+1 and e i+2 .

From 2Sum, |e i+1 | ≤ 1 2 ulp(s i). Also, s i-1 + e i = x i-1 + s i , so e i is multiple of ulp(s i), hence e i and e i+1 are S-nonoverlapping .

Following the same reasoning |e i+2 | ≤ 1 2 ulp(s i+1) and e i+1 is multiple of ulp(s i+1), hence e i+1 and e i+2 are S-nonoverlapping . This makes the entire array e S-nonoverlapping , proving that the theorem also holds for this case.

Step 2. We consider at most 2 consecutive pairs of p-overlapping numbers, say x i-2 overlaps with x i-1 and x i overlaps with x i+1 .

Same as above we have (e 0 , . . . , e i-1) = VecSum(x 0 , . . . , x i-3 , s i-1 , x i-2) and (e i+2 , . . . , e n-1) = VecSum(x i+1 , . . . , x n-1), with both portions of the array e S-nonoverlapping .

One easily finds

with

We recall u = 2 -p , the roundoff error. In all practical cases ≥ 2 and δ ≥ 0, so that H i ≤ G i , with

We have,

The only positive term (after the initial "1") in that sum is u(u+6) 1-4u , which is less than 7u for all pertinent values of u. Hence G i < 1 as soon as 2 i+1 ≤ 2 p 7 , which occurs in all practical cases. This gives

This concludes our proof.

Now we are able to prove Theorem 4.1.1.

Proof. (of Theorem 4.1.1) In Algorithm 40 we use the same type of truncation as for the sequential algorithms, i.e., we take into account only the most significant r components of x and y. From Theorem 3.3.1 we know that the ignored terms satisfy, : 1) .

From Theorem 4.1.2 we know that in the array of Figure 4.1, δ is increased by 1 at each line. For computing s we use 2r -1 "horizontal lines", which implies that

By keeping only the first r terms of s we have an error less than

We can now bound the total error. We get: Chapter 5. Applications

In Table 5.8 we compare the performance obtained by SDPA-CAMPARY on CPU versus GPU, when varying precision from four to eight doubles, for five problems from the SDPLIB. Table 5.8 -The optimal value, iterations and time for solving some problems from SDPLIB by SDPA-CAMPARY, when varying precision from 4D to 8D. For testing not only the performance, but also the accuracy of our library, we considered several examples from Sotirov's collection [START_REF] De Klerk | A new library of structured semidefinite programming instances[END_REF], which are badly conditioned numerically, and cannot be tackled using only binary64. A classical problem in coding theory is finding the largest set of binary words with l letters, such that the Hamming distance between two words is at least some given value d. This is reformulated as a maximum stable set problem, which is solved with SDP, according to the seminal work of Schrijver [START_REF] Schrijver | New code upper bounds from the terwilliger algebra and semidefinite programming[END_REF], followed by Laurent [START_REF] Laurent | Strengthened semidefinite programming bounds for codes[END_REF].

In Table 5.9 we show the performance obtained for the Schrijver and Laurent instances from [START_REF] De Klerk | A new library of structured semidefinite programming instances[END_REF]. The comparison is done between SDPA-DD, SDPA-GMP (run with 106 bits of precision) and SDPA-CAMPARY with 2D and 3D. Some instances do not converge when 2D precision is used, this is why we also include the 3D results.

A strange behavior that we obtained on these instances is that the GPU versions of both SDPA-DD and SDPA-CAMPARY perform worse than their CPU counterparts. This is probably due to the nature of the problems treated and the way they are formulated. On the CPU side of these tests one can observe once again that our library outperforms its counterparts and even more, our 3D precision version is faster than GMP with 106 bits.

Chapter A. CAMPARY -Implementation details double val; public:

... } which appears from the point of the view of a single execution thread, this is why it stores only one value.

For an easy "switch" between the two classes we implemented load and store functions that can distribute a multi_prec object across threads and reform it, respectively. In more detail: Alongside two constructors , a getter and a setter, the class implements the three parallel algorithms presented in Chapter 4. These are parallelized using the x dimension of the thread block, allowing the user to also parallelize at a higher level, depending on the problem, using dimensions y and z. At a first glance this may seam difficult, but users that are familiar with CUDA programing can take advantage of these algorithms with minimum effort. ------------ ---------operators--------------/

//----------geters & setters-

Server configuration details

As the CPU we used an Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz based on the Haswell architecture, which offers improved AVX 1 2.0 instruction with floating-point FMA3 with up to twice the Flops per core (16 Flops/clock). The main features are given in Table C.1 and an excerpt of the result obtained using the command more /proc/cpuinfo is given in Figure C.1.

On the GPU side we had two NVIDIA Tesla K20Xm cards with Kepler GK110 architecture. Some important features are given in Tables C.2 and C.3 and an excerpt of the result obtained using the command nvidia-smi -i 0 -q is given in Figure C.2.

The software configuration was as follows:

• Debian 4.9.2-10 GNU/Linux 8.2 operating system with 3.16.0-4-amd64 kernel;

• compilers GCC and G++ 4.9.2;

• CUDA 7.5 toolkit with NVCC V7.5.17.

1. Advanced Vector Extensions.

Chapter C. Server configuration details