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Résumé

Actuellement la plupart des calculs en virgule flottante (VF) sont faits dans le format «double-
précision» et sont conformes à la norme IEEE 754-2008. Cette norme exige l’arrondi correct des
opérations arithmétiques de base avec plusieurs modes d’arrondi. Cette exigence améliore la por-
tabilité des codes numériques et rend également possible et —relativement— aisée la construc-
tion d’une arithmétique d’intervalles correcte. La majorité des applications nécessitant des calculs
haute performance (HPC), déployés sur les architectures parallèles usuelles, bénéficient directe-
ment des opérations en VF (en simple- ou double-précision) du fait de leur disponibilité en maté-
riel.

Il existe cependant, de nombreux problèmes numériques qui demandent à faire appel, au
moins dans des parties critiques, à une plus grande précision que celle offerte par les formats
virgule flottante usuels. Parmi les exemples d’applications possibles, on vise le processus d’itéra-
tion à long terme des systèmes dynamiques chaotiques. Cela apparaît à la fois dans des problèmes
mathématiques (e.g., l’étude des attracteurs étranges comme celui de Hénon, l’analyse des bifur-
cations et l’étude de la stabilité des orbites périodiques) et dans des applications de mécanique
spatiale (e.g., la stabilité à long terme du système solaire). Une autre application possible est le
problème dit SDP (pour Semi-definite programming : programmation semi-définie positive) dans
lequel si les conditions initiales sont mal posées on a besoin d’une précision plus grande que celle
disponible en standard pour obtenir un résultat utilisable.

Une solution est de faire appel à des bibliothèques multi-précision telles que GNU-mpfr
(http ://www.mpfr.org), mais elles peuvent parfois être une alternative assez lourde lorsqu’une
précision de quelques centaines de bits suffit et que l’on a des exigences fortes de performance.
Actuellement, le seul code disponible et facilement portable sur une architecture parallèle est celui
de la bibliothèque QD de Bailey, qui propose une arithmétique en double-double (DD) et quad-
double (QD), c.à.d., les nombres sont représentés comme la somme non évaluée de 2 ou 4 nombres
virgule flottante en double-précision. Il est connu, cependant, que les opérations mises en œuvre
dans cette bibliothèque ne sont pas conformes à la norme IEEE 754-2008, ne fournissant pas l’ar-
rondi correct. En outre, les effets des erreurs d’arrondi peuvent être très élevés dans certaines ap-
plications, et aucune analyse systématique n’est actuellement disponible pour évaluer la précision
effective des résultats obtenus avec de tels formats.

L’objectif majeur de cette thèse a été de développer une bibliothèque multi-précision ciblée
pour les architectures hautement parallèles, comme les processeurs graphiques. Pour cela, nous
nous sommes intéressés à des algorithmes arithmétiques suffisamment simples et efficaces pour
obtenir, pour quelques précisions étendues fixées, des performances élevées, des présentations
rigoureuses et des preuves solides. Nous avons proposé d’étendre la précision en représentant
les nombres comme des sommes non évaluées de nombres en virgule flottante, aussi appelées
«expansions en VF». Cette représentation permet d’utiliser directement les opérations «natives»
et hautement optimisées disponibles en matériel (par exemple, dans les processeurs graphiques).

On a développé activement le logiciel CAMPARY—CudA Multiple Precision ARithmetic li-
brarY—, présenté à http ://homepages.laas.fr/mmjoldes/campary/. Cette bibliothèque multi-



6 Résumé

précision est écrite en CUDA C, une version du langage C adaptée pour les GPUs. Notre implan-
tation est très flexible et peut-être efficacement utilisée à la fois pour les programmes orientés CPU
et GPU. Nous avons également évalué les performances de nos algorithmes, en termes de nombre
d’opérations flottantes et de bornes d’erreur obtenues. Ils se comparent très favorablement par
rapport aux autres bibliothèques existantes.
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1 CHAPTER 1

Introduction

Even before the first electronic computer was developed in 1946 (ENIAC - Electronic Numeri-
cal Integrator And Calculator), scientists have tried different ways of approximating real numbers
inside a computer, i.e., to find a mapping from the infinite continuous set of real numbers IR
to a discrete, finite one. Such representations include the well-known floating-point and fixed-
point formats, logarithmic and semi-logarithmic number systems, rational numbers, etc. When
choosing between these representations one has to take into account many constraints like speed,
accuracy, dynamic range, ease of use and implementation, memory use or power consumption.

By far the most used in modern computers, the floating-point number system is considered to
offer a good compromise among the above constraints. It appears that in itself, this idea is very
old, dating back to as early as the Babylonians [51]. The first real implementation of such a system
was in Zuse’s Z1 mechanical computer, in 1938, followed by the modern implementation inside
the Z3 electromechanical computer in 1941 (see [15]). For a more complete history see [68, Ch.1]
and references therein.

In the early beginnings, each computer manufacturer chose a floating-point system of their
liking to implement, but in 1985 the IEEE Standard for Binary Floating-Point Arithmetic [2] was
released, that specified various formats, exceptions and basic operations behaviors. While its de-
tailed description will be given in Section 1.1, let us first note that a binary floating-point number
of precision p is a number of the form M · 2e−p+1, where M is an integer of absolute value less
than or equal to 2p−1 and e is an integer such that emin ≤ e ≤ emax, where the extremal exponents
emin and emax are constants of the floating-point format being considered, and with the additional
requirement that, unless e = emin, 2p−1 ≤ |M |. The standard also specified correct rounding for
basic arithmetic operations, i.e., when the result cannot be exactly represented with precision p,
the returned result should be as if computed with infinite precision and unlimited range, then
rounded to the specified format. A new version of the standard was released in 2008 [38], which
also recommended (but did not require) correctly rounded elementary functions.

From the four binary formats defined by the standard, the most commonly used is binary64,
i.e., p = 53, which gives approximately 15 decimal digits, also known as double-precision. This is
due not only to its accuracy and performance, but also to its wide availability. The more accurate
format, binary128, is not usually implemented in hardware; the only exception that we know of is
the IBM Z series of mainframes. The precision provided by the binary64 format is usually enough
for numerical computing. For example, in [68], the authors even explain that this is enough for
expressing “the distance from the Earth to the Moon with an error less than the thickness of a
bacterium”.

However this standard precision is not enough for some numerically sensitive problems. Ex-
amples include planetary orbit dynamics, such as the long-term stability of the solar system [54],
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or supernovas simulations; also, when studying chaotic dynamical systems, like finding sinks in
the Hénon Map [46], or iterating the Lorenz attractor [1]. Other examples can be found in exper-
imental mathematics [7, 5], or in some numerically sensitive semidefinite optimization problems
which have a very wide range of applications in control theory, quantum chemistry and physics.
We will detail some of these applications in Chapter 5.

In such cases, when more than double-precision is required, the situation deteriorates brutally
in terms of performance. Arbitrary precision, i.e., the ability of the user to choose the precision for
each calculation, is available in software in most computer algebra systems like Maple or Sage.
Also GNU MPFR [25] is a general-purpose high-precision arithmetic library that follows the gen-
eral philosophy of IEEE-754. However, arbitrary precision, which is very useful in general, comes
with drawbacks: (i) there is a slow-down factor of 10 to 50 compared to a native double computa-
tion; (ii) the algorithms are finely tuned and difficult to prove formally; (iii) the algorithms are not
easily portable to highly parallel architectures, such as GPUs or Xeon Phi. All this is because these
libraries offer the ability to manipulate numbers with tens of thousands – or even much more
– of digits, which requires very complex and non regular arithmetic algorithms, heavily tuned
programming, and nontrivial memory management.

In order to harness the availability and efficiency of the hardware implementations of the stan-
dard, our approach in this work consists in representing higher precision numbers as floating-
point expansions. These are unevaluated sums of several floating-point numbers (of different
magnitudes). Such a representation is possible thanks to the availability of error-free transforms,
namely algorithms that allow one to compute the error of a floating-point addition or multiplica-
tion exactly, taking the rounding mode into account. For instance, the sum of two floating-point
numbers, x and y can be represented exactly (in the sense of dyadic numbers) as a floating-point
number s which is the correct rounding of the sum, plus another floating-point number e corre-
sponding to the remainder. This will be detailed in Section 1.1.3, for the moment let us just note
that under certain assumptions, this decomposition can be computed at a very low cost by a sim-
ple sequence like s = x+y; z = s−x; e = y−z;. This is actually Algorithm 1, known as Fast2Sum,
and more general and sophisticated algorithms exist for a number of related questions and will be
detailed throughout this work.

In what follows, we describe a typical example where such extended precision is used in prac-
tice. It appears when implementing transcendental functions in mathematical libraries (libms),
like glibc, Sun libmcr, Intel c©libm or CRlibm [19] 1.

Roughly speaking if the input y of a function, say sin(y), is given with 15 decimal digits of
accuracy, then the result is expected to also have 15 digits of accuracy. More specifically, some
developers of libms aim for correctly rounded sin in double-precision. To achieve this, usually, one
firstly performs a so-called argument reduction, which allows for the input range to be sufficiently
small, such that polynomial approximations are efficient. Such polynomials can be evaluated
using only basic arithmetic operations like addition and multiplication. But if these operations
are all performed in standard double-precision, it is very difficult to guarantee an intermediary
extended accuracy that will allow for a final correctly rounded result in double-precision. Let
us explain this in more detail in the following Example 1.0.1, taken from the actual sin function
implementation in CRLibm [70].

Example 1.0.1. For sine function evaluation, the reduced argument x is obtained by subtracting from
the floating-point input y an integer multiple of π/256. As a consequence, x ∈ [−π/512, π/512] ⊆
[−2−7, 2−7]. Then, one needs to compute the value of the odd polynomial:

p(x) = x+ x3 · (s3 + x2 · (s5 + x2 · s7)),

1. The CRlibm library is developed by my research group, AriC in Lyon, France.
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which is a polynomial close to the Taylor approximation of the sine function. The coefficients s1,
s3 and s5 are represented in binary64 precision arithmetic: s3 = −6004799503160661/255, s5 =
4803839602528529/259, s7 = −3660068268593165/264.

However, since x is an irrational number, the implementation of the range reduction needs to return
a number more accurate than a binary64, such that the intermediary output accuracy for p(x) allows for
subsequent correct rounding of sin(x). To overcome this problem, in the CRlibm library [19] the authors
represent x as the unevaluated sum of two binary64 numbers xh+xl, representation also known as double-
double.

As a numerical example, let y = 0.5, and the corresponding reduced argument x = 1/2−41π/256. This
is approximated in double-double as the unevaluated sum xh + xl, with xh = −7253486725817229/261

and xl = −508039184604813/2112.
If one computes directly p(xh + xl) with the following Horner scheme and binary64 precision:

peval(xh + xl) = (xh + xl) + (xh + xl)
3 · (s3 + (xh + xl)

2 · (s5 + (xh + xl)
2 · s7)),

one obtains a poor accuracy. Note that with this order of operations, the floating-point addition xh + xl
returns xh, so the information held by xl is lost. The other part of the Horner evaluation also has a much
smaller magnitude than xh, since |x| ≤ 2−7, which gives

∣∣x3∣∣ ≤ 2−21. The following evaluation leads to a
much more accurate algorithm, since the leftmost addition is performed with an extended precision, namely
the above mentioned Fast2Sum algorithm:

s = xl + (xh · xh · xh · (s3 + (xh · xh · (s5 + (xh · xh · s7))))),
p′eval(xh + xl) = Fast2Sum(xh, s).

For our numerical example, one obtains p′eval = −7253474763108583/261+82031/279. This allows for
72 bits of accuracy in the evaluation of p compared with 54 for the first evaluation scheme. Note that for both
evaluation schemes only standard binary64 operations are used: the second one performs 2 more additions
than the first one (by executing the Fast2Sum algorithm) and yet, it allows for an accuracy extension by
33%.

This shows that it possible to compute very accurate values, even in the presence of roundings
at the floating-point level, by using only standard precision floating-point arithmetic operations
in a clever way. However, proofs of these algorithms get tricky very often. An important objective
of this thesis is to generalize algorithms like Fast2Sum, for handling all arithmetic operations
(addition, multiplication, division and square root) with numbers represented as unevaluated
sums of floating-point values. We aim in the sequel to provide both efficient implementations and
to prove tight error bounds.

Concerning efficiency, more than often, practical applications which require extended preci-
sion support, are also very computationally expensive and are executed in so-called High Perfor-
mance Computing (HPC) architectures. In this work, we thus aim to tune our implementations of
extended precision arithmetic algorithms for accelerators such as Graphics Processing Units (GPUs).

Contributions of this work.
In Chapter 2 we “double” the available precision by representing a real number as the uneval-

uated sum of two floating-point numbers. Though extensive work has been already done in this
area, many algorithms have been published without a proof, or with error bounds that are some-
times loose. Thus we revisited the existing algorithms and proposed new ones, providing them
with correctness and error bound proofs. This joint work with M. Joldes and J.-M. Muller, led to
the article:

15
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1. Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic [43], that is
currently under revision for publication in the ACM Transactions on Mathematical Software
journal.

Chapter 3 focuses on arbitrary precision by looking into algorithms for arithmetic operations
using floating-point expansions, i.e., numbers are represented as the unevaluated sum of several
(more than two) floating-point numbers. We propose several new algorithms designed to fit differ-
ent needs a user might have, either very tight error bounds on the results, either “quick-and-dirty”
results. This work was presented in:

2. On the computation of the reciprocal of floating point expansions using an adapted Newton-Raphson
iteration [42], joint work with M. Joldes and J.-M. Muller, published in Proceedings of the
25th IEEE International Conference on Application-specific Systems, Architectures and Pro-
cessors (ASAP 2014);

3. Arithmetic algorithms for extended precision using floating-point expansions [41], joint work with
M. Joldes, O. Marty (student intern during collaboration, now engineer at Google, France)
and J.-M. Muller, published in the IEEE Transactions on Computers journal;

4. A New Multiplication Algorithm for Extended Precision Using Floating-Point Expansions [69],
joint work with J.-M. Muller and P. Tang (senior engineer at Intel Corporation), published in
Proceedings of the 23rd IEEE Symposium on Computer Arithmetic (ARITH 2016).

In Chapter 4 we explore the possibility of directly parallelizing the arithmetic algorithms by us-
ing what we called parallel floating-point expansions. This joint work with S. Collange (researcher
at Inria Rennes), M. Joldes and J.-M. Muller, entitled:

5. Parallel floating-point expansions for extended-precision GPU computations [16] was published
in Proceedings of the 27th IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP 2016).

Finally, in Chapter 5 we present two numerical applications in which CAMPARY proved to
be useful. The first application comes from a classical problem in the field of chaotic dynamical
systems. Specifically, we search for periodic orbits in the Hénon map, which is a very numerically
sensitive problem. Our approach, based on extensive long-term numerical iterations of the map,
also needs high-performance computing in order to be tackled. This joint work with M. Joldes
and W. Tucker (professor at Department of Mathematics, Uppsala University), entitled:

6. Searching for Sinks for the Hénon Map Using a Multiple-precision GPU Arithmetic Library [46],
was published in the ACM SIGARCH Computer Architecture News - HEART ’14 journal.

Second, we took interest in another problem which needs both higher-precision and high-
performance computing: semidefinite programming (SDP) solvers for numerically sensitive prob-
lems. We integrated CAMPARY with the already existing SDPA solver, and we provide arbitrary
precision not only for the CPU routines, but also GPU support for matrix multiplication. This joint
work with M. Joldes and J.-M. Muller, led to the article:

7. Implementation and performance evaluation of an extended precision floating-point arithmetic library
for high-accuracy semidefinite programming [44], which was accepted for publication and is
going to be presented at the 24th IEEE Symposium on Computer Arithmetic (ARITH 2017).

In what follows, some preliminary notions are given: we detail floating-point arithmetic in
Section 1.1, followed by previously existing related software in Section 1.3. In Section 1.2 we de-
tail the GPU architecture and programming model. In Section 1.4, we give a general overview of
CAMPARY and we illustrate its features. At the same time, we aim to introduce in a concrete way
the problems that will occupy us in the rest of the this work. CAMPARY was also presented in an
extended abstract [45] published in Proceedings of the 5th International Congress on Mathemati-
cal Software, ICMS 2016.
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1.1 Floating-point arithmetic 17

1.1 Floating-point arithmetic

It is common knowledge that floating-point numbers are by far the most common used repre-
sentation of real numbers. This section aims at recalling several basic definitions and concepts of
floating-point arithmetic, as defined by the IEEE 754 standard for floating-point arithmetic, and at
defining notations that are going to be used throughout this manuscript. Here we mainly focus on
the specifications defined by the 2008 release of the IEEE 754-2008 standard [38]. All these concepts
have been extensively studied and explained in the Handbook on Floating-Point Arithmetic [68].
Further information can be also found in [28, 36, 49, 52, 80] (this list is far from exhaustive).

A floating-point system is characterized by four integers:

• a radix (or base) β ≥ 2;

• a precision p ≥ 2 (roughly speaking, p is the number of “significant digits” of the represen-
tation);

• two extremal exponents emin and emax such that emin < emax (in all practical cases, emin < 0 <
emax).

Definition 1.1.1. A finite precision-p floating-point number in such a format is a number x for which there
exists at least one representation (Mx, ex) such that

x = Mx · βex−p+1,

where

• the integer ex is the exponent of x, such that emin ≤ ex ≤ emax

• and Mx · β−p+1 is the significand (sometimes improperly called the mantissa) of x.

1.1.1 IEEE 754 Standard

In 1985, the first release of the IEEE 754-1985 Standard [2] for floating-point arithmetic was
introduced by the Institute of Electrical and Electronics Engineers and it was implemented by all
the computers produced after that moment. It was a key factor in improving the quality of the
computational environments and providing portable code. This initial version considered only bi-
nary representations, but two years later, the IEEE 854-1987 Standard [3] for “Radix-Independent”
floating-point arithmetic was released, that would also consider decimal representations.

The latest version IEEE 754-2008 [38], encompasses both precision standards and adds some
novelties, among them: portability, standardizing the FMA operation, quadruple-precision. The
standard enforces maximum quality for the basic operations (+,−, ∗, /,√), unique exception han-
dling and the implementation of four rounding modes. In the following we will recall some of
its notions and requirements and since scientific computing always uses binary arithmetic, we
consider the binary representation only. So from now on by a floating-point number we will un-
derstand a binary floating-point number.

Normal and subnormals. From the above definition one can notice that this representation is not
unique. Just consider the “toy format” with p = 5 and two floating-point numbers x = 1.1010 ·2−1
and y = 0.1101 · 20. They are both valid representations of the same number.

We can eliminate the redundancy, by normalizing the finite nonzero floating-point numbers.
This is done by choosing the representation for which the exponent is minimum (yet larger than
or equal to emin). The numbers that satisfy this are called normalized floating-point numbers. This
type of representation allows for easier expression of error bounds, and it somewhat simplifies
the implementation. Two cases may occur:

17



18 Chapter 1. Introduction

• when the number is greater than or equal to 2emin and its representation satisfies 2p−1 ≤
|Mx| ≤ 2p − 1, we say that it is a normal number;

• otherwise, one necessarily has e = emin, and the significand adjusted according to that, with
|Mx| ≤ 2p−1 − 1; the corresponding floating-point number is called a subnormal number (the
term denormal may be used also).

A consequence of the normalization in radix 2 is that the significand of a normal number
always has the form Mx = 1.m1m2m3 . . .mp−1 and 2p−1 ≤ |Mx| ≤ 2p − 1. Also, the significand
of a subnormal number always has the form Mx = 0.m1m2m3 . . .mp−1 and |Mx| ≤ 2p−1 − 1. This
allows one to save one bit of storage, by applying the “hidden bit” convention.

Even though subnormal numbers have been one of the most controversial parts of the IEEE
754-1985 standard, and they have not always been implemented in hardware (in modern com-
puters they are), they allow for what Kahan calls gradual underflow: the loss of precision when
numbers converge to zero is slow instead of being abrupt.

According to the above definitions, the smallest positive normal number is 2emin ; the largest
finite floating-point number is Ω = (2− 21−p) · 2emax ; and the smallest positive subnormal number
is α = 2emin−p+1.

Rounding modes. Sometimes, the result of an operation on floating-point numbers is not exactly
representable in the floating-point system being used, so it has to be rounded. One of the most
interesting ideas brought out by IEEE 754-1985 is the concept of rounding mode: how a numerical
value is rounded to a finite floating-point number.

The four rounding modes defined by the standard (illustrated in Figure 1.1), when applied on
a real number x, are:

• round toward − inf : RD(x) is the largest floating-point number less than or equal to x;

• round toward + inf : RU(x) is the smallest floating-point number greater than or equal to x;

• round toward zero: RZ(x) is the closest floating-point number to x that is no greater in
magnitude than x (it is equal to RD(x) if x ≥ 0, and to RU(x) if x ≤ 0);

• round to nearest: RN(x) is the floating-point number that is the closest to x. A tie-breaking
rule must be chosen when x falls exactly halfway between two consecutive floating-point
numbers. A frequently chosen rule is “ties-to-even”, i.e., x is rounded to the only one of
these two consecutive floating-point numbers whose significand is even. This is the default
mode.

RU(x)

�
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���

RZ(x)
RN(x)
RD(x)
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?u
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-

Figure 1.1 – Possible roundings of a real number x in a radix-2 floating-point system. In this
example, x > 0.
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1.1 Floating-point arithmetic 19

When the exact result of a function is rounded according to a given rounding mode (as if the
result was computed with infinite precision and unlimited range, then rounded), one says that
the function is correctly rounded. The IEEE 754 Standard requires all basic arithmetic operations
(+/−,×,÷,√) to be correctly rounded.

The four rounding modes presented above (◦) have the important property that they are mono-
tonic, i.e., if x ≤ y, then ◦(x) ≤ ◦(y). Moreover, if x is a floating-point number, then ◦(x) = x,
which means that when the result of a correctly rounded operation is a floating-point number, we
get that exact result.

A classic lemma that applies to any floating-point system with correct rounding and subnor-
mal numbers is Sterbenz’s [90] lemma, which implies that, under certain conditions, the subtrac-
tion is exact, i.e., the result is a representable floating-point number. This is also exemplified in
Example 1.1.3. We do not present the entire proof here, but this lemma is very useful when de-
signing and proving algorithms, and we will make extensive use of it throughout this work.

Lemma 1.1.2 (Sterbenz Lemma [90]). Let x and y be two finite binary floating-point numbers. If

y

2
≤ x ≤ 2y,

then x− y is a floating-point number, so that ◦(x− y) = x− y exactly, where ◦ is the rounding function.

Example 1.1.3. Let x = 0.713938 and y = 1.213694 be two binary32 floating-point numbers. When
computing RN(x− y) we obtain −0.499756, which is also representable as a binary32 number.

A slightly more general result is that if the exponent of x− y is less than or equal to the mini-
mum between ex and ey, the exponents of x and y, respectively, then the subtraction is performed
exactly. Another example of exact addition is given by Hauser [31], who showed that when a
gradual underflow occurs it does not necessarily mean an inaccurate result 2:

Lemma 1.1.4 (Hauser Lemma [31]). Let x and y be two floating-point numbers. If RN(x + y) is sub-
normal, then RN(x+ y) = x+ y exactly.

It is worth recalling that some multiplications and divisions are also performed exactly. A
straightforward example is multiplication/division by a power of 2, which, assuming that no
overflow or underflow occurs, can be reduced to an add/subtract to the exponent. Another ex-
ample is multiplication of numbers with known number of trailing zero bits in the lower-order
part of the significand. This property is at the heart of Dekker’s multiplication algorithm (see Al-
gorithm 5, Section 1.1.3). It is also very useful for reducing the range of inputs when evaluating
elementary functions.

Special floating-point data and exceptions. Some data cannot be expressed as a normal or sub-
normal number. A straightforward example is the number zero, that requires a special encoding.
In order to achieve a “closed” floating-point system in which any machine operation is well spec-
ified, the standard defines several not fully “numeric” data used to cope with values that are
undefined or those of different magnitudes than the representable ones. These are:

• the NaN (Not a Number) value, which is used to deal with invalid operations (e.g.,
√
−5 or

0/0);

• two signed infinities, +Inf and −Inf ;

• two signed zeros, +0 and −0.

2. Notice that this is a consequence of the fact that the exponent of a subnormal number is the smallest possible
exponent, emin.
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20 Chapter 1. Introduction

Sometimes an exception can be signaled along with the result of an operation under the form
of a status flag and/or some trap mechanism. The standard defines five such exceptions:

• Overflow is signaled when the result of an operation or function, rounded as if there was no
exponent bound, is of absolute value strictly larger than Ω defined above;

• Underflow is opposite to the former; is signaled when the result is smaller than 2emin and
inexact;

• Invalid exception (an input is invalid for the function) is raised when the result is a NaN
(e.g. ∞−∞, 0/0,

√
−1);

• DivideByZero exception is self explanatory; signaled when an exact infinite result is defined
for a function on finite inputs (e.g. 1/0, log +0);

• Inexact is signaled when the result is not exactly representable and it has to be rounded.

Standard formats. One of the main goals of the IEEE 754-2008 Standard for floating-point arith-
metic was to reduce the implementation choices during hardware design. As we explained above,
in radix 2, the leftmost bit of the significand of a finite normal floating-point number is always a 1,
or 0 if the number is subnormal. The standard requires for specified formats the use of the “hid-
den bit” convention, i.e., the information on the type of floating-point number should be stored in
the exponent field, allowing to store only the last p− 1 significant bits of the significand. Also it is
required that emin should be 1− emax for all formats.

Both binary and decimal formats are defines, but the standard only requires the availability
of one of the following: binary32, binary64, binary128, decimal64, decimal 128. In this work we
focus only on binary floating-point arithmetic. The four main binary formats defined are given in
Table 1.1, though the most commonly available are the two presented in Figure 1.2.

Table 1.1 – Main parameters of the binary formats specified by the IEEE 754-2008 standard.

Name binary16 binary32 binary64 binary128
N/A (single) (double) (quad)

Storage width 16 32 64 128

Precision p 11 24 53 113

emax +15 +127 +1023 +16383

emin −14 −126 −1022 −16382

s e m

1 8 23

(a)

s e m

1 11 52

(b)

Figure 1.2 – Most commonly available floating-point formats: (a) binary32 (single-precision) and
(b) binary64 (double-precision).

The Fused Multiply-Add Instruction. The Fused Multiply-Add (FMA) instruction was first in-
troduced in 1990 on the IBM RS/6000 processor [37, 66], but it was included in the IEEE 754

20



1.1 Floating-point arithmetic 21

standard only in 2008, on its latest release. Even though at first it was not available on widely
spread processors, with the release of the Intel Haswell and AMD Bulldozer architectures, this is
not the case anymore.

This instruction evaluates a floating-point multiplication and a summation (an expression of
the form a · b + c) using only one rounding. By retaining full precision in the intermediate stage
it improves upon the classic Multiply-Add (MAD) instruction that executes the same operations
performing two roundings. That is, if ◦ is the rounding function applied, the two instructions
perform as follows:

fma(a, b, c) = ◦(a · b+ c);

mad(a, b, c) = ◦(◦(a · b) + c).

The FMA is extremely helpful for the design of some arithmetic algorithms:

• it facilitates correctly rounded software division [14, 17, 48, 62];

• it makes some calculations (especially dot products and polynomial evaluations) faster and,
in general, more accurate [18, 62];

• as explained in Section 1.1.3, it makes it possible to easily get the exact product of two
floating-point numbers.

1.1.2 Error handling

Relative error. In a binary precision-p floating-point arithmetic that supports correct rounding,
when approximating a real number x ∈ R, with x 6= 0, by ◦(x), with ◦ being the rounding mode,
then the relative error that occurs satisfies:∣∣∣∣x− RN(x)

x

∣∣∣∣ ≤ 2−p,

if the rounding function is round-to-nearest (the inequality is strict in round-to-nearest ties to
even), and ∣∣∣∣x− ◦(x)

x

∣∣∣∣ < 21−p

with the other rounding functions, assuming that no underflow 3 /overflow occurs. When ◦(x) =
x = 0, we consider that the relative error is 0.

If x is subnormal, the relative error can become very large (it can be close to 1). In that case,
we have a bound on the absolute error due to rounding:

|x− RN(x)| ≤ 1

2
2emin−p+1

in round-to nearest mode, and

|x− ◦(x)| < 2emin−p+1

if ◦ is one of the directed rounding modes.

3. Let us say, as does the IEEE 754 standard, that an operation underflows when the result is subnormal and inexact.
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ULPs. When expressing errors of “nearly atomic” functions (arithmetic operations, elementary
functions, small polynomials, sums, dot products, etc.) it is advisable (frequently more accurate)
to do it in terms of what we would intuitively define as the “weight of the last bit of the signifi-
cand.”

If x is a binary floating-point number and is not an integer power of 2, the function ulp(x) (for
unit in the last place) denotes the magnitude of the least significant bit of Mx. I.e., if,

x = ±m0.m1m2 . . .mp−1 · 2ex ,

then ulp(x) = 2ex−p+1.
A definition of ulp(x) for all real x is desired. In the literature [28, 30, 50, 62, 80] there are

several slightly different definitions, but they all coincide as soon as x is not extremely close to
a power of 2 (for more details refer to [68]). In this work we consider only the definition given
by Goldberg [28], that has been generalized by Cornea, Golliver, and Markstein [17, 62] and that
follows.

Definition 1.1.5. Let x ∈ R. If |x| ∈ [2ex , 2ex+1), where ex is exponent of x, then ulp(x) =
2max(ex,emin)−p+1.

It satisfies the following property:

Property 1.1.6. Let real x ∈ R and X an exact floating-point number. Considering Definition 1.1.5 it
holds:

|X − x| < 1
2 ulp(x)⇒ X = RN(x); (1.1)

|X − x| < 1
2 ulp(X)⇒ X = RN(x); (1.2)

X = RN(x)⇒ |X − x| ≤ 1
2 ulp(x); (1.3)

X = RN(x)⇒ |X − x| ≤ 1
2 ulp(X). (1.4)

The following lemma, which appears as an immediate consequence of Property (2.16) in [85],
holds and the proof is actually very simple.

Lemma 1.1.7. (see Property (2.16) in [85]) Let x and y be floating-point numbers, and let s = RN(x+ y).
If s 6= 0 then

|s| ≥ max

{
1

2
ulp(x),

1

2
ulp(y)

}
.

Proof. Without loss of generality, assume |x| ≥ |y|, so that ulp(x) ≥ ulp(y). The number |x+ y| is
the distance between x and −y. Hence, since x 6= −y (otherwise s would be 0), |x+ y| is larger
than or equal to the distance between x and the floating-point number nearest to x, which is larger
than or equal to 1

2 ulp(x). Therefore |RN(x+ y)| = RN(|x+ y|) ≥ RN(12 ulp(x)) = 1
2 ulp(x).

A similar concept is that of unit in the last significant place, denoted by uls, which, roughly
speaking, gives the weight of the last non-zero bit of the significand. The formal definition follows.

Definition 1.1.8. Let x = Mx·2ex−p+1 be a binary precision-p floating-point number. If |x| ∈ [2ex , 2ex+1),
then uls(x), for x 6= 0, is the only power of 2 such that x is an odd integer times that power of 2.

In Figure 1.3 we give a graphical representation of the above two concept.
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1.1 Floating-point arithmetic 23

Figure 1.3 – Graphical representation of ulp vs. uls.

Unit roundoff. Another useful notion, closely related to the notion of ulp, is the notion of unit
roundoff, also called machine epsilon.

Definition 1.1.9. The unit roundoff u of a binary precision-p floating-point system is defined as

u =


1

2
ulp(1) = 2−p in round-to-nearest mode,

ulp(1) = 21−p in directed rounding modes.

The two following lemmas referring to the unit roundoff are considered classical, this is why
we do not include the proof here (for details see [68]).

Lemma 1.1.10. Let x ∈ R. If |x| ≤ 2k, where k is an integer, then

|RN(x)− x| ≤ u

2
· 2k.

Lemma 1.1.11. Let x ∈ R. There exist ε1 and ε2, both of absolute value less than or equal to u, such that

RN(x) = x · (1 + ε1) =
x

1 + ε2
.

1.1.3 Error-free transforms: computing the error

Let x and y be two precision-p binary floating-point numbers, and s = RN(x + y). It can be
shown that if the addition of x and y does not overflow, the rounding error that occurs, namely
(x + y) − s, is exactly representable by a floating-point number of the same format. 4 The same
thing holds for multiplication, with the condition that ex+ey ≥ emin+p−1, where ex and ey are the
exponents of x and y, respectively. Interestingly enough, that error can be computed using the al-
gorithms presented in what follows, that employ only basic operations (+,×). The full correctness
proofs of the algorithms can be consulted in the Handbook of Floating-Point Arithmetic [68].

Addition. For computing the error of a floating-point addition we have two possible algorithms.
The first one is Fast2Sum (Algorithm 1 and Theorem 1.1.12) that computes the result using only
3 basic operations. It first appeared as part of a summation algorithm, called “Compensated sum
method,” due to Kahan [47], and was later published by Dekker [22].

Algorithm 1 – Fast2Sum (x, y).
s← RN(x+ y)
z ← RN(s− x)
e← RN(y − z)
return (s, e)

4. Beware: that property is not always true with rounding functions different from RN.
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Theorem 1.1.12. Let x and y be precision-p floating-point numbers that satisfy ex ≥ ey, where ex and ey
are the exponents of x and y, respectively. Algorithm 1 computes two floating-point numbers s and e such
that:
• s+ e = x+ y exactly;
• s = RN(x+ y).

The relationship between the exponents of x and y might be difficult to check, but it will always
be satisfied if |x| ≥ |y|.

If there is no preliminary knowledge on the order of magnitude of the input numbers, there
exists another algorithm, due to Knuth [51] and Møller [64], called 2Sum (Algorithm 2 and The-
orem 1.1.13) that computes the exact same result, but it uses 6 floating-point basic operations. It
was actually showed by Kornerup et.al. [53] that this algorithm is optimal in terms of number of
operations, if branch instructions cannot be used.

Algorithm 2 – 2Sum (x, y).
s← RN(x+ y)
x′ ← RN(s− y)
y′ ← RN(s− x′)
δx ← RN(x− x′)
δy ← RN(y − y′)
e← RN(δx + δy)
return (s, e)

Theorem 1.1.13. Let x and y be precision-p floating-point numbers. Algorithm 2 computes two floating-
point numbers s and e such that:
• s+ e = x+ y exactly;
• s = RN(x+ y).

Notice that the two algorithms are mathematically equivalent in the sense that the 2Sum al-
gorithm can always be replaced by a preliminary comparison followed by a possible swap of the
operands and the Fast2Sum algorithm. Until recent years the penalty due to a wrong branch
prediction when comparing two numbers was more costly than 3 additional basic operations. In
modern CPU processors, e.g. the AMD Bulldozer or the Intel Haswell, due to highly optimized
branch prediction, this is not the case anymore. Though, in the context of Graphics Processing
Units (GPUs) branches are still costly and it is preferable to avoid them if possible (see Section 1.2).

Multiplication. Computing the rounding error of a floating-point multiplication is straightfor-
ward when an FMA instruction is available. In fact, unless underflow/overflow occurs, the al-
gorithm 2ProdFMA (Algorithm 3 and Theorem 1.1.14) does this using only 2 floating-point basic
operations.

Algorithm 3 – 2ProdFMA (x, y).
π ← RN(x · y)
e← fma(x, y,−π)
return (π, e)

Theorem 1.1.14. Let x and y be precision-p floating-point numbers, such that ex + ey ≥ emin + p − 1,
where ex and ey are the exponents of x and y, respectively. Algorithm 3 and Algorithm 5 compute two
floating-point numbers π and e such that:
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1.1 Floating-point arithmetic 25

• π + e = x · y exactly;

• π = RN(x · y).

For cases in which an FMA instruction is not available, the best known algorithm for comput-
ing the rounding error of a multiplication is Dekker’s product [22] that is mathematically equiva-
lent to Algorithm 3 (it also satisfies Theorem 1.1.14), but it is much more costly.

This algorithm is possible by means of an algorithm due to Veltkamp [94, 95] that can “split”
a precision-p floating-point number x into two floating-point numbers xh and x` such that, for a
given integer t < p and using a floating-point constant C = 2t + 1, the significand of xh fits in p− t
digits, the significand of x` fits in t digits, and x = xh+x` exactly. The Split algorithm is presented
in Algorithm 4.

Algorithm 4 – Split (x, t).
Constant: C = 2t + 1
γ ← RN(C · x)
δ ← RN(x− γ)
xh ← RN(γ + δ)
x` ← RN(x− xh)
return (xh, x`)

When used in a binary floating-point system the algorithm has the following property ([22, 9]):

Property 1.1.15. Algorithm 4 satisfies:

• if C · x does not overflow, no other operation will overflow;

• there is no underflow problem: if x` is subnormal, the result still holds;

• the significand of xh fits in p− t bits;

• the significand of x` actually fits in t− 1 bits.

The full multiplication algorithm given by Dekker is presented in Algorithm 5. The first step
is to split each of the operands x and y into two floating-point numbers, the significand of each of
them being representable with bp/2c or dp/2e bits only. The underlying idea is that the pairwise
products of these values should be exactly representable. Then these pairwise products are added.

Algorithm 5 – Dekker (x, y).
Constant: t = dp/2e

(xh, x`)← Split(x, t) //using Alg. 4

(yh, y`)← Split(y, t)
π ← RN(x · y)
t1 ← RN(−π + RN(xh · yh))
t2 ← RN(t1 + RN(xh · y`))
t3 ← RN(t2 + RN(x` · yh))
e← RN(t3 + RN(x` · y`))
return (π, e)

The algorithm was analyzed by Boldo [9] who showed that in any case,

|xy − (π + e)| ≤ 7

2
2emin−p+1.
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26 Chapter 1. Introduction

Dekker’s multiplication algorithm requires 17 floating-point operations: 7 multiplications, and
10 additions/subtractions. This may seem a lot, compared to the 6 floating-point additions/sub-
tractions required by the 2Sum algorithm (Algorithm 2). Yet an actual implementation of Algo-
rithm 5 will not be 17/6 times slower than an actual implementation of 2Sum, since many op-
erations are independent and they can be performed in parallel or in pipeline if the underlying
architecture supports it.

Since the two algorithms for computing the exact result of a multiplication are mathematically
equivalent, throughout our work we will call algorithm 2Prod (Algorithm 6) that choses between
2ProdFMA and Dekker’s product depending on the availability of an FMA instruction. 5 The
choice is done using a static if instruction that is treated at compilation time, hence it does not
slow down computations.

Algorithm 6 – 2Prod (x, y).
#if defined FP_FAST_FMA

(π, e)← 2ProdFMA(x, y)
#else

(π, e)← Dekker(x, y)
#endif
return (π, e)

The error-free transforms presented here are basic bricks for doing computations using the
multiple-term extended precision format and we are going to use them extensively in the follow-
ing chapters.

1.2 Graphics Processing Units - GPUs

Today, Graphics Processing Units (GPUs) represent an important hardware development plat-
form for many problems where massive parallel computations are needed. Even though initially
they were developed as highly specialized integer only processors for real time image render-
ing, they gradually evolved towards more programmability and increasingly powerful arithmetic
capabilities.

In 2003, along with the appearance of some high-level shading languages and program-
ming interfaces like Microsoft’s DirectX, the development of General-Purpose GPU Computing
(GPGPU) started. Despite all efforts, the GPUs were still difficult to program and the program
complexity was much higher than for the CPU. In 2007 programmability was greatly improved
by the appearance of Software Development Kits (SDK) like Nvidia’s C-language based CUDA
platform, followed by the Khronos Group OpenCL in 2009.

Soon after the two main vendors, Nvidia and ATI (now AMD), also started producing spe-
cialized computing cards, that would offer more arithmetic capabilities. This was one of the main
turning points in the development of parallel computing. Our work targets Nvidia’s CUDA based
GPUs, so we continue by detailing them.

1.2.1 CUDA Architecture

Computer Unified Device Arichitecture – CUDA – is the hardware and software architecture
that enables Nvidia GPUs to execute programs written with C, C++, Fortran, OpenCL, Direct-
Compute, and other languages.

5. During operation count we will consider that an FMA is available.
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1.2 Graphics Processing Units - GPUs 27

The parallelization power that the GPU offers is closely related to its structure; it can be seen
as a highly multi-threaded SIMD (Sigle Instruction Multiple Data) architecture [27]. One GPU is
composed of more that one Streaming Multiprocessors (SM), each with several cuda cores. Each
SM has its own cache memory and a shared memory that allows communication between the
cuda cores. The communication between the SMs and with the CPU is done through the global
memory. A visual description of this structure is given in Figure 1.4.

Figure 1.4 – Graphical representation of a general GPU’s structure.

Execution model. Programmers describe compute kernels as a single cuda program run by
many fine-grained threads. The compiler and hardware scheduler groups these into thread blocks
and grids of thread blocks. In detail the three concepts are:

1. A thread executes an instance of the kernel, and has a thread ID within its thread block, a
program counter, registers and per-thread private memory. The private memory is used for
register spills, function calls, and C automatic array variables.

2. A thread block is a set of concurrently executing threads that can cooperate among them-
selves through shared memory and barrier synchronization. It has a block ID within its grid.
Each thread block has a per-block shared memory space used for inter-thread communica-
tion, data sharing, and result sharing in parallel algorithms.

3. A block grid is an array of thread blocks that execute the same kernel, communicate through
global memory (see Figure 1.4) and synchronize between dependent kernel calls. Grids
share results in global memory space after kernel-wide global synchronization.

A graphical representation of the cuda execution model is presented in Figure 1.5.

Hardware execution. The thread hierarchy presented above maps to the hierarchy of processors
of the GPU as shown in Figure 1.6: a GPU executes one or more block grids; a SM executes one or
more thread blocks; and cuda cores inside the SM execute threads.

A concept that we did not mention yet is that of a warp. A thread block can contain many
threads, but they are executed by the SM in groups (usually 32 threads) called warps. While
programmers can generally ignore warp execution for functional correctness, they can greatly
improve performance by having threads in a warp execute the same code path and access memory
in nearby addresses. Also, threads inside a warp run in lockstep and share a single control flow.
This allows for warp-synchronous programming that we are going to detail later on.
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28 Chapter 1. Introduction

Figure 1.5 – Graphical representation of the GPU’s thread execution layout.

Figure 1.6 – Graphical representation of the GPU’s execution model.

1.2.2 Floating-point units

Binary floating-point units appeared in 2002 in the GPUs of both main vendors, ATI and
Nvidia. In the first implementation, addition and multiplication were incorrectly rounded: in-
stead of rounding the exact sum or product, these implementations typically rounded a p + 2-bit
intermediate result to the output precision of p bits.

Between 2007 and 2009 the floating-point support greatly improved. From there on GPUs
support binary32 and binary64 precisions, with correctly rounded addition and multiplication.
Also, comparing to prior generation GPUs that flushed subnormal operands and results to zero,
incurring a loss of accuracy, todays GPUs support subnormal numbers by default in hardware.

They implement as well all four IEEE specified rounding modes and offer support for dynamic
rounding mode changing, avoiding pipeline flushing and time penalties. The cuda architecture
even offers correctly rounded FMAs (see Section 1.1). Each cuda core can perform one binary32
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FMA operation in each clock period and one binary64 FMA in two clock periods. It is worth
mentioning that GPUs also include hardware acceleration of some elementary functions.

1.2.3 Programming model

In what follows we are going to give a short introduction to CUDA C programming. For more
details refer to the Cuda Programing Guide [78].

The CUDA C programing language is an extension of the C++ programing language. The
difference between the CPU and GPU code is done through the use three specifiers:
• __host__ specifies the code dedicated to the CPU;
• __global__ specifies the kernel code;
• __device__ specifies the GPU dedicated functions.

A function can be declared using both __host__ and __device__ specifiers.
A kernel is defined as a void function. The basic call syntax is KernelName<<< Blocks,

Threads >>>, where:
• Blocks is the number of thread blocks per grid; it can be of type int or dim3;
• Threads is the number of threads per thread block; same types as above can be used.
The communication between the host and the device happens exclusively through global

memory. Linear memory is managed by the host typically using the functions:
• cudaMalloc(void∗∗ ptr, size_t size);
• cudaMemcpy(void∗ dst, const void∗ src, size_t count, cudaMemcpyKind
kind);
• cudaFree(void∗ ptr);

Through cudaMemcpyKind kind one specifies the data transfer direction: HostToHost,
HostToDevice, DeviceToHost, or DeviceToDevice.

The shared memory of the device is declared in device code using the __shared__ specifier.
The size of the shared memory block to use can also be given (in number of bytes) as a third
parameter in the kernel call.

As mentioned before, a kernel is executed by many parallel threads. Each thread has access to
four built-in variables that define it’s position in the execution grid:
• gridDim gives the number of thread blocks launched;
• blockIdx returns the block ID inside the grid;
• blockDim gives the number of threads per block;
• threadIdx returns the thread ID inside its block;

Warp-synchronous programming. At execution time, the threads are grouped into so-called
warps. Threads inside a warp run in lockstep and share a single control flow, and their instruc-
tions are executed on SIMD units (cuda cores), with one thread per lane. This type of programing
allows for an implicit SIMD programming, that is particularly efficient starting with the Kepler
architecture [77]. We are going to take advantage of it in Chapter 4.

Warp vote instructions perform boolean reductions across all threads within a warp. For in-
stance, they can check whether a condition holds for all the threads, or for any of the threads of
the warp. The __any function computes the logical OR of a warp-sized vector of predicates and
broadcast it to all elements.

Warp shuffle instructions allow arbitrary communication between threads in a warp, without
having to go through memory. They are analogous to shuffle or permute instruction in explicit
SIMD instruction sets [24].
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30 Chapter 1. Introduction

• shfl_up(x, n, R) and shfl_down shift components upward or downward, respec-
tively, by n positions within each group of threads of size R, where R is less than or equal to
the warp size;

• shfl reads a variable from a specific thread and broadcasts it to all other threads in the
warp.

The code written in CUDA C is compiled with Nvidia’s nvcc compiler, that separates the host
code (compiled with the available gcc compiler) from the device one.

1.3 Multiple-precision libraries

There are mainly two ways of representing numbers in higher precision (see Figure 1.7):

(i) the multiple-digit representation, in which numbers are represented by a sequence of possibly
high-radix digits coupled with a single exponent (M · 2t);

(ii) the multiple-term representation, in which a number is expressed as the unevaluated sum of
several standard floating-point numbers, often called a floating-point expansion (u0 + u1 +
· · ·+ un−1) (a thorough definition will be given in Chapter 3).

(a)

(b)

Figure 1.7 – Graphical representation of the (a) multiple-digit vs. the (b) multiple-term approach.

Note that the extended precision achieved when using an expansion with n terms of precision-p is
not exactly the same as np bits of significant in the multiple-digit representation. In the multiple-
term approach one can sometimes represent a wider precision by skipping some intermediary
zero bits [68, Chap.14].

There exist many mathematical software that include multiple-precision facilities, like Maple,
Mathematica, Sage, etc., but in what follows we are concerned only with stand alone high-
precision libraries.

A well know arithmetic library that uses the first approach is the GNU MPFR [25]. This is an
open-source C library based on the integer level of the GNU MP library (GMP) [29]. It provides not
only arbitrary precision, but also correct rounding for each atomic operation. Using this library
one can use extended precision for up to millions of bits (the only real constraint is the available
memory). Its generality makes it a heavy alternative (in terms of speed and memory consumption)
when only a few hundred bits are required. Another drawback of MPFR is that it is not ported on
the GPU, and because it implements very complex arithmetic algorithms that employ non-trivial
memory management, this would be a very difficult task, close to impossible (at least for now).
Based on it, some of the same people developed GNU MPFI [83], which is a multiple-precision
interval arithmetic library.

Another library that uses the multiple-digit representation for extending the available preci-
sion is ARPREC [6], which has been ported to GPUs under the name GARPREC [61]. In their
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approach, the authors use the binary64 for representing the significant of an integer, real or com-
plex number.

In [74] the CUMP library is presented, which targets exclusively GPUs. This library is based on
the low-level integer arithmetic routines of GMP, and uses the 64-bit integer arithmetic internally
on the GPU instead of the binary64 arithmetic used by GARPREC. On the NVIDIA Tesla C2050,
CUMP is reported to be up to 2.6 times faster than GARPREC. For more details concerning integer
multiple-precision and earlier work for GPUs without binary64 hardware support we refer to
related works given in [74].

CUMP and GARPREC libraries were both tuned for big array operations where the data is
generated on the CPU, and only the operations are performed on the GPU. They use an interval
memory layout where the limbs of the multiple-precision numbers are interleaved. Specifically,
for an array of n multiple-precision numbers, each with m limbs, the jth limb of the ith number is
stored in the position jn+ i in the array. This format is best suited for operations with large arrays
of multiple-precision numbers, since it favors coalesced accesses of off-chip memory.

When looking for libraries that employ the second approach, the multiple-term representa-
tion, the options are not as many. Even though the technique was often used in compensated
algorithms or intermediate calculations, not many per-say libraries are available. One of the first
software available was Brigg’s doubledouble library [13], which extended the available precision to
a double-double number, using two binary64 numbers (see Chapter 2). This library is no longer
maintained and on his website Briggs states, and we quote: “I no longer support or recommend
this software”.

The most well known software that uses the second approach is Hida, Li, and Bailey’s QD
library [34, 35] that offers supports for double-double and quad-double computations, i.e., a num-
ber is represented as the unevaluated sum of two or four binary64 numbers, which is equivalent
to roughly up to 212 bits of significand. This has been ported on the GPU under the name of
GQD [61]. It is well known that the algorithms employed do not come with correctness proofs of
error bound proofs.

After analyzing the available options, we concluded that there is a demand for algorithms for
arithmetic operations using floating-point expansions with arbitrary precision, that are sufficiently
simple yet efficient, and for which effective error bounds and thorough proofs are given. Our goal
is to implement a library that can be used on both CPU and GPU.

1.4 CAMPARY - Features and implementation

An overview on the implementation features was published in the extended abstract [45].

As already mentioned, one of the main goals of this thesis was to develop a multiple-precision
arithmetic software library. To this end we developed CAMPARY (CudA Multiple Precision
ARithmetic LibrarY), an open source library distributed under the GNU General Public License
as published by the Free Software Foundation, that is freely available at http://homepages.
laas.fr/mmjoldes/campary/.

• a C++ version, compilable with g++, that can be used on the CPU;

• a CUDA C version, compilable with nvcc, that can be used both on GPU 6 and CPU, except
for the parallel algorithms (see Chapter 4).

For each of these versions we offer support for extending both the binary64 and the binary32
formats, even though the latter one is mostly useful for GPU use, since some architectures offer

6. Compute capability 2.0 or greater for the sequential algorithms or at least 3.0 for the parallel ones.
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32 Chapter 1. Introduction

optimizations only for this format. The constraint on the expansion size is given by the exponent
range of the underlying floating-point format:

• for binary64 (exponent range [−1022, 1023]) the maximum expansion size is 39;

• for binary32 (exponent range [−126, 127]) the maximum expansion size is 12.

Since all these different versions are equivalent from a design and algorithmic point of view we
will continue by exemplifying the binary64 GPU version.

One of the most important design decisions that we had to take was how to define the pre-
cision, i.e., the expansion size. We decided on using templates, because it offers flexibility to the
implementation. The exact definition is:

template <int prec>
class multi_prec{
private:

double data[prec];
public:

...
}

For allocating and/or initializing a multi_prec object we provide constructors along with ran-
dom initialization functions and “visualization” functions like pretty print. We also provide low
level routines for data encapsulation and overloaded operators (to list a few: arithmetic and as-
signment operators, relational operators, etc.). This makes the code robust, but in the same time
flexible and easy to use. For example, for computing the sum of two multi_prec values one can use
the code:

multi_prec<3> a; a.randomInit_ulp();
multi_prec<3> b(a + 4.25);
multi_prec<3> c = a + b;

a.prettyPrint();
b.prettyPrint();
c.prettyPrint();

That will output:

Prec = 3
Data[0] = 6.803755e-01
Data[1] = 5.960464e-08
Data[2] = 2.924931e-15

Prec = 3
Data[0] = 4.930376e+00
Data[1] = -5.960464e-08
Data[2] = -6.277831e-16

Prec = 3
Data[0] = 5.610751e+00
Data[1] = -1.192093e-07
Data[2] = -1.255566e-15

The functions that implement the arithmetic operations are declared as templated friend func-
tions 7, in order to keep the code of the class “clean”. For each function that receives as input

7. Only the signature is included in the class, while the full body function is external.
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multi_prec objects we also include the equivalent with a multi_prec object and a binary64 value as
input.

Since fully certified algorithms usually come with a performance cost, we allow trade-off be-
tween proven output accuracy in the worst case versus highly efficient average case by offering
two levels of algorithms. The library includes two separate files, that define the same class with
the same functionalities, and the user has the choice of which one to use, depending on the time
and accuracy constraints of one’s problem.

1. The multi_prec_certif.h file implements the algorithms for all basic operations: addition/-
subtraction, multiplication, reciprocal/division, and square root, according to the algorithms pre-
sented in Chapter 3, with specialized templates for double-double operations, using algorithms
from Chapter 2. These algorithms come with rigorous correctness proofs and relatively tight error
bounds. For example, for multiplying a double-double number with a floating-point one, we can
prove that, using an algorithm that takes 10 Flops (floating-point operations), the relative error is
less than 1.5 · 2−106 + 4 · 2−159 (see Table 2.2).

However, more than often these algorithms also come with a performance penalty. This is
because when analyzing them we consider worst case scenarios, which for the average case is too
pessimistic. If we loosen the accuracy constraints, for the same operation, one could use another
algorithm, that only takes 7 Flops, but for which the relative error is less than 3 · 2−106. This is
detailed in what follows.

2. The multi_prec.h file implements the “quick-and-dirty” level of the library. It uses algo-
rithms which are faster, but do not consider accuracy issues for corner cases. In most cases the
result is going to be the same as obtained when computing with the certified level. The uncer-
tainty appears if cancellation happens during intermediate computations, since this can generate
intermediate 0s or even non-monotonic expansions in the result. For double-double operations
we also implement specialized templates using the least accurate algorithms from Chapter 2.

This level also comes with a code generation module, that allows for the user to code generate
the algorithms function of the needed expansion size. This module provides increased perfor-
mance by custom unrolling some complex loops (which are usually not optimized by gcc or
nvcc compilers).

We recommend the use of this level if the performance requirements are strong, especially if
there is the possibility of a-posteriori verification of the correctness of the numerical result.

More implementation details are given in Appendix A, alongside with the code of the class
multi_prec in Appendix B.1.

Parallel expansions. In Chapter 4 we will present parallel arithmetic algorithms tuned for GPU
implementation. These algorithms are dealt with separately. In a separate file, gpu_mprec.h, we
declare the simple (not templated) class:

class gpu_mprec{
private:

double val;
public:

...
}

which appears from the point of the view of a single execution thread, this is why it stores only
one value.

For an easy “switch” between the two classes we implemented load and store functions that
can distribute a multi_prec object across threads and reform it, respectively. In more detail:
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template <int prec>
__device__ gpu_mprec loadExpans(multi_prec<prec> const &mp){
if (threadIdx.x < prec)

return gpu_mprec(mp.getData()[threadIdx.x]);
else

return gpu_mprec(0.);
}

template <int prec>
__device__ void storeExpans(gpu_mprec gmp, multi_prec<prec> &mp){
mp.setElement(gmp.getVal(), threadIdx.x);

}

Alongside two constructors, a getter and a setter, the class implements the three parallel algo-
rithms presented in Chapter 4. These are parallelized using the x dimension of the thread block,
allowing the user to also parallelize at a higher level, depending on the problem, using dimensions
y and z. At a first glance this may seam difficult, but users that are familiar with cuda programing
can take advantage of these algorithms with minimum effort.

The entire code of this class can be consulted in Appendix B.2.

1.4.1 Our server configuration

During the development of CAMPARY we tested its accuracy and performance on different
models of CPU and GPU. In what follows we detail the last server configuration that we used, on
which we obtained the performance reported throughout this manuscript.

As the CPU we used an Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz based on the Haswell
architecture, which offers improved AVX 8 2.0 instruction with floating-point FMA3 with up to
twice the Flops per core (16 Flops/clock). A detailed overview is given in Appendix C: the main
features in Table C.1 and an excerpt of the result obtained using the command more /proc/cpuinfo
in Figure C.1.

On the GPU side we had two Nvidia Tesla K20Xm cards with Kepler GK110 architecture.
Details are also included in Appendix C: important features in Tables C.2 and C.3 and an excerpt
of the result obtained using the command nvidia-smi -i 0 -q in Figure C.2.

The software configuration was as follows:

• Debian 4.9.2-10 GNU/Linux 8.2 operating system with 3.16.0-4-amd64 kernel;

• compilers GCC and G++ 4.9.2;

• CUDA 7.5 toolkit with NVCC V7.5.17.

8. Advanced Vector Extensions.
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Double-Word Arithmetic

Buturuga mică rastoarnă carul mare.

Romanian proverb

This chapter is dedicated to the analysis of several classical basic building blocks of double-
word arithmetic (frequently called “double-double arithmetic” in the literature). We consider ad-
dition/subtraction, multiplication and division. Some of the algorithms are known, but some of
them are new. For most of the algorithms we get better relative error bounds than the ones pre-
viously published, except for the addition of two double-word numbers, for which we show that
the previously published error bound was wrong. We also give numerical examples that illustrate
the tightness of our bounds.

This is a joint work with J.-M. Muller and M. Joldes, presented in Tight and Rigorous Error
Bounds for Basic Building Blocks of Double-Word Arithmetic [43], which, as we are writing these lines,
is under revision at ACM Transactions on Mathematical Software (ACM TOMS).

Given the fact that our goal is to offer extended precision for applications that could benefit
from it, the first logical step towards achieving that is to extend it just “a little”, say “double” it.

Double-word arithmetic, called “double-double” in most of the literature, consists in repre-
senting a real number as the unevaluated sum of two floating-point numbers. In all existing im-
plementations, the underlying floating-point format is the binary64 defined by the IEEE 754-2008
Standard [38] (see Section 1.1), hence the name “double-double”. Kahan qualifies double-double
arithmetic as an “attractive nuisance except for the BLAS” and even compares it to an unfenced
backyard swimming pool!

Double-word arithmetic is not similar to a conventional floating-point arithmetic with twice
the precision. It lacks many nice properties such as Sterbenz Lemma (Lemma 1.1.2), clearly de-
fined rounding modes, etc. The difference becomes more clear when comparing the double-
double format (made up with binary64 floating-point numbers) and the binary128 format.
Though one might have the impression that the two are equivalent, there are a few important
differences (presented in Table 2.1) like the precision or the exponent range. Kahan even mentions
in [48] that double-double “undermines the incentive to provide quadruple-precision correctly
rounded”.

This may well be true: although the binary128 format (frequently called “quad-precision”) was
specified by the IEEE 754-2008 Standard on Floating-Point Arithmetic, it is seldom implemented
in hardware. To our knowledge, the only commercially significant platform that has supported
binary128 in hardware for the last decade has been the IBM Z Systems [59]. Thus, one will be
tempted to use “double-double” arithmetic at times. Furthermore, even if hardwired binary128
arithmetic becomes commonplace, there will be a need for “double-quad” operations for carefully
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Table 2.1 – Main differences between the double-double format (made up with binary64
floating-point numbers) and quad-precision (binary128).

double-double quad-precision

Precision ≥ 107 bits 113 bits
“wobbling”

Exponent range −1022 to 1023 −16382 to 16383

(11 bits) (15 bits)
Rounding modes N/A RN,RU,RD,RZ

implementing very accurate binary128 elementary functions. Hence, designing and analyzing
algorithms for double-word arithmetic is of interest.

Some of the first work in this area was done by Dekker [22], who presented algorithms for
adding, multiplying, and dividing double-word numbers. His addition and multiplication al-
gorithms are very similar (in fact, mathematically equivalent) to Algorithms 8 and 13, analyzed
below, but his division algorithm was quite different (and less accurate) than the algorithms con-
sidered here. After that, Linnainmaa [60] suggested similar algorithms, assuming that an under-
lying extended precision format is available, but we will not consider that hypothesis here.

Libraries that offer double-double arithmetic have been written by Briggs [13], who no longer
maintains his library, and by Hida, Li, and Bailey [34, 35]. The later one, the QD library, is the most
often used nowadays, and it offers both a double-double format and a quad-double one (treated
in Chapter 3).

Though extensive work has been done in this area, many algorithms have been published
without a proof, or with error bounds that are sometimes loose, sometimes fuzzy (the error is “less
than a small integer times u2”), and sometimes unsure. Thus we felt the strong need to “clean up”
the literature. In this chapter we provide a rigorous error analysis of some existing algorithms for
double-word arithmetic, and introduce a few new ones. We cannot suppress all the drawbacks
mentioned by Kahan: clearly, having in hardware a “real” floating-point arithmetic with twice
the precision would be a better option. And yet, if rigorously proven and reasonably tight error
bounds are provided, expert programmers can rely on double-word arithmetic for extending the
precision of calculations in places where the available floating-point arithmetic does not suffice.

In Definition 2.0.1 we formally introduce the concept of double-word representation.

Definition 2.0.1. A double-word number x is the unevaluated sum xh +x` of two floating-point numbers
xh and x` such that

xh = RN(x).

In our work we tried to obtain error bounds as tight as possible. To this end, roughly speak-
ing, we limit the exponent range of the numbers and we subdivide the possible range of values
into sections that allow us to deduce different properties between the numbers. Thus, when per-
forming operations using two double-word numbers x = (xh, x`) and y = (yh, y`), we can assume
without loss of generality that:

• xh is positive, otherwise we change the sign of all the operands;

• 1 ≤ xh < 2 (which implies 1 ≤ xh < 2 − 2u, since xh is a floating-point number), otherwise
we scale the operands by a power of 2.

The same principles can be applied if we have operations between a double-word number x =
(xh, x`) and a floating-point one y.

36



2.1 Addition of double-word numbers 37

Throughout this entire chapter we will consider only double-word numbers that satisfy Defi-
nition 2.0.1 and use an underlying floating-point format with precision-p. This offers generality to
the analysis and allows users to also extend the binary32 format or even the binary128 if one day
it becomes widely available. We also consider that underflow and overflow do not occur, even
though in the case of addition underflow does not pose a problem. All algorithms return their
results as a double-word number, insured by the Fast2Sum applied at the end of each algorithm,
which has a “renormalization” purpose. Also, we stress here that all the constraints given in each
theorem on the precision-p, in order for the error bound to hold, are satisfied in practice.

The sequel of the chapter is organized as follows: Section 2.1.1 deals with the sum of a double-
word number and a floating-point number; Section 2.1.2 is devoted to the sum of two double-
word numbers; in Section 2.2.1 we consider the product of a double-word number by a floating-
point number; in Section 2.2.2 we consider the product of two double-word numbers; Section 2.3.1
deals with the division of a double-word number by a floating-point number, and Section 2.3.2 is
devoted to the division of two double-word numbers.

2.1 Addition of double-word numbers

The basic idea behind the addition algorithms is to accumulate the numbers that are roughly of
the same magnitude. For example, when adding two double-word numbers x = (xh, x`) and y =
(yh, y`), we consider that xh and yh have around the same magnitude (this is true in most cases),
and we know for sure that, unless they cancel (but in this case Sterbenz lemma will help), they are
the most significant terms in the addition (since all double-word numbers satisfy Definition 2.0.1).
As a deduction, the error obtained from adding them should be, roughly speaking, around the
same magnitude as x` and y`. On account of that, we try to minimize the number of basic floating-
point operations that we do, while still accumulating the errors.

We present first the case of adding a double-word number with a floating-point one, followed
by the addition of two double-word numbers.

2.1.1 Addition of a double-word number and a floating-point number

The algorithm implemented in the QD library [35] for adding a double-word number and a
floating-point number is Algorithm 7 below that computes (xh, x`) + y. Figure 2.1 contains a
graphical representation of the algorithm, using the same notations.

This algorithm, or variants of it, implicitly appears in many “compensated summation” al-
gorithms that aim at accurately computing the sum of several floating-point numbers. At inter-
mediate steps of the summation, most such algorithms represent the sum of all input numbers
accumulated so far as a doubldotse-word number. For instance the first two lines of the algorithm
constitute the internal loop of Rump, Ogita and Oishi’s “cascaded summation” algorithm [79].

In what follows we analyze Algorithm 7 and we show its correctness by proving Theo-
rem 2.1.1.

Theorem 2.1.1. The relative error of Algorithm 7 (DWPlusFP) is bounded by

2u2

1− 2u
= 2u2 + 4u3 + 8u4 + · · · ,

which is less than 2u2 + 5u3 as soon as p ≥ 4.
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38 Chapter 2. Double-Word Arithmetic

Algorithm 7 – DWPlusFP(xh, x`, y).
1: (sh, s`)← 2Sum(xh, y)
2: v ← RN(x` + s`)
3: (zh, z`)← Fast2Sum(sh, v)
4: return (zh, z`)

Figure 2.1 – Graphical representation of
Algorithm 7. In the 2Sum and Fast2Sum calls

the sum s is outputted downwards and the error
e to the right.

Proof. First of all, we can quickly proceed with the case xh + y = 0: in that case sh = s` = 0
and the computation is errorless. Now, without loss of generality, we can assume |xh| ≥ |y|. If
this is not the case, since xh and y play a symmetrical role in the algorithm we can exchange
them in our proof: we add the double word number (y, x`) and the floating-point number xh. 1

We also assume that xh is positive (otherwise we change the sign of all the operands), and that
1 ≤ xh ≤ 2− 2u (otherwise we scale the operands by a power of 2).

1. If −xh ≤ y ≤ −xh

2
, then Sterbenz Lemma (Lemma 1.1.2) implies sh = xh + y and s` = 0. It

follows that v = x`. Lemma 1.1.7 implies |sh| ≥ 1
2 ulp(xh), which implies |sh| ≥ |x`|. Hence Algo-

rithm Fast2Sum introduces no error at line 3 of the algorithm, and so zh+z` = sh+v = x+y exactly.

2. If −xh

2
< y ≤ xh, then 1

2 ≤
xh
2 < xh + y ≤ 2xh, such that sh ≥ 1

2 . Since |x` + s`| ≤ 3u
(see the two cases considered below), we have |v| ≤ 3u. It follows that sh > |v|, so Algorithm
Fast2Sum introduces no error at line 3 of the algorithm.

• If xh + y ≤ 2 then |s`| ≤ u; so that |x` + s`| ≤ 2u, hence,

v = x` + s` + ε,

with |ε| ≤ u2. In the end we get zh + z` = sh + v = x + y + ε and the relative error | ε
x+y | of

the calculation is bounded by
|ε|

1
2 − u

≤ 2u2

1− 2u
.

• If xh + y > 2 then |s`| ≤ 2u, such that |x` + s`| ≤ 3u, hence,

v = x` + s` + ε,

1. (y, x`) may not be a double-word number, according to Definition 2.0.1, in the case x` = 1
2
ulp(y) = 1

2
ulp(xh).

However, one easily checks that in that case the algorithm returns an exact result.
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2.1 Addition of double-word numbers 39

with |ε| ≤ 2u2. Therefore the relative error | ε
x+y | of the calculation is bounded by

|ε|
2− u

≤ 2u2

2− u
.

Notice that the bound given by Theorem 2.1.1 is very sharp. In fact, it is asymptotically optimal,
showed by the generic example given in Example 2.1.2.

Example 2.1.2. Let the following values as input for Algorithm 7:

xh = 1,

x` = (2p − 1)2−2p, and

y = −1
2(1− 2−p).

The algorithm computes the sum as

zh + z` =
1

2
+ 3 · 2−p−1,

while the exact sum is
xh + x` + y =

1

2
+ 3 · 2−p−1 − 2−2p,

resulting in a relative error equal to

2u2

1 + 3u− 2u2
≈ 2u2 − 6u3.

For an implementation that uses the binary64 format, the input from the above example gives
an error equal to 1.99999999999999933 . . .× 2−106.

2.1.2 Addition of two double-word numbers

Algorithm 8 (Figure 2.2) below was first given by Dekker [22], under the name of add2, but
in a slightly different presentation: he did not use Algorithm 2Sum in line 1 of the algorithm,
instead there was a comparison of |xh| and |yh| followed by a possible swap of x and y and a call
to Fast2Sum. However, from a mathematical point of view, Dekker’s algorithm and Algorithm 8
are equivalent: they always return the same result. This algorithm was then implemented in the
QD library [35] under the name “sloppy addition”.

Dekker proved an error bound on the order of (|x|+ |y|) · 4u2. Because of the absolute values,
when x and y do not have the same sign, there is no proof that the relative error is bounded.
Indeed, the relative error can be so large that the obtained result has no significance at all. A
generic example of such values is given in Example 2.1.3 below.

Example 2.1.3. Let the following values as input for Algorithm 8:

xh = 1 + 2−p+3,

x` = −2−p,

yh = −1− 6 · 2−p, and

y` = −2−p + 2−2p.

The algorithm computes the sum as zh+z` = 0, while the exact sum is x+y = 2−2p, resulting in a relative
error equal to 1.
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40 Chapter 2. Double-Word Arithmetic

Algorithm 8 – SloppyDWPlusDW(xh, x`, yh, y`).
1: (sh, s`)← 2Sum(xh, yh)
2: v ← RN(x` + y`)
3: w ← RN(s` + v)
4: (zh, z`)← Fast2Sum(sh, w)
5: return (zh, z`)

Figure 2.2 – Graphical representation of
Algorithm 8. In the 2Sum and Fast2Sum
calls the sum s is outputted downwards

and the error e to the right.

Algorithm 9 – AccurateDWPlusDW(xh, x`, yh, y`).
1: (sh, s`)← 2Sum(xh, yh)
2: (th, t`)← 2Sum(x`, y`)
3: c← RN(s` + th)
4: (vh, v`)← Fast2Sum(sh, c)
5: w ← RN(t` + v`)
6: (zh, z`)← Fast2Sum(vh, w)
7: return (zh, z`)

Figure 2.3 – Graphical representation of
Algorithm 9. In the 2Sum and Fast2Sum
calls the sum s is outputted downwards

and the error e to the right.
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2.1 Addition of double-word numbers 41

As showed above, the result of Algorithm 8 are not to be trusted, this is why, the use of this
algorithm should be restricted to special cases such as, for instance, when we know that the
operands will have the same sign. When accurate computations are required, it is much more
advisable to use Algorithm 9 (Figure 2.3), presented by Li et al. [57, 58] and implemented in the
QD library under the name of “IEEE addition”.

In [57, 58], the authors claim that in binary64 arithmetic the relative error of Algorithm 9 is
upper bounded by 2 · 2−106. This statement is not correct, as shown by Example 2.1.4.

Example 2.1.4. If we have as input for Algorithm 9, with binary64 as underlying arithmetic, the values:

xh = 9007199254740991,

x` = −9007199254740991/254,

yh = −9007199254740987/2, and

y` = −9007199254740991/256,

then the relative error of the algorithm is

2.24999999999999956 . . . × 2−106.

In Example 2.1.5 we give a generic example, to show that the bound can be exceeded for any
precision-p floating-point system.

Example 2.1.5. Let the following values as input for Algorithm 9:

xh = 2p − 1,

x` = −(2p − 1)2−p−1,

yh = −(2p − 5)/2, and

y` = −(2p − 1)2−p−3.

It leads to a relative error that is asymptotically equivalent (as p goes to infinity) to 2.25u2.

A new bound on the relative error of Algorithm 9 is given in Theorem 2.1.6, for which we
provide a rigorous proof.

Theorem 2.1.6. If p ≥ 3, the relative error of Algorithm 9 (AccurateDWPlusDW) is bounded by

3u2

1− 4u
= 3u2 + 12u3 + 48u4 + · · · ,

which is less than 3u2 + 13u3 as soon as p ≥ 6.

Proof. First of all, we exclude the straightforward case in which one of the operands is zero. We
can also quickly proceed with the case xh + yh = 0: in that case one easily sees that the returned
result is 2Sum(x`, y`), which is equal to x+ y, i.e., the computation is errorless. Now, without loss
of generality, we assume 1 ≤ xh ≤ 2− 2u, x ≥ |y| (which implies xh ≥ |yh|), and xh + yh nonzero.
Notice that 1 ≤ xh < 2 implies 1 ≤ xh ≤ 2− 2u, since xh is a floating-point number.

1. If −2 + 2u ≤ yh ≤ −1. Notice that |x`| and |y`| are bounded by u, and that x and |y| are
bounded by 2 − u. We know that −1 + 2u ≤ xh + yh ≤ 1 − 2u and the sum xh + yh is a multiple
of 2−p+1 = 2u, hence it is a floating-point number. This implies sh = xh + yh exactly and s` = 0,
therefore c = RN(th) = th. We also have

th + t` = x` + y`,
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42 Chapter 2. Double-Word Arithmetic

and, since |x` + y`| ≤ 2u, |th| ≤ 2u and |t`| ≤ u2. Because sh is a nonzero multiple of 2u and
|c| = |th| ≤ 2u, we can legitimately use the Fast2Sum Algorithm in line 4 of the algorithm (it does
not introduce any error). Therefore,

vh + v` = sh + th = x+ y − t`.

Also, |sh + th| ≤ (1− 2u) + 2u ≤ 1, so that |vh| ≤ 1 and |v`| ≤ u
2 . We finally have

w = t` + v` + ε2,

with
|ε2| ≤

1

2
ulp(t` + v`) ≤

1

2
ulp(u2 +

u

2
), (2.1)

and

|ε2| ≤
1

2
ulp

[
1

2
ulp(x` + y`) +

1

2
ulp

(
(x+ y) +

1

2
ulp(x` + y`)

)]
. (2.2)

From (2.1), we get |ε2| ≤ u2

2 .
Now, since sh is a nonzero multiple of 2u, |sh| ≥ 2u. Lemma 1.1.7 implies that either sh+th = 0,

or |vh| = |RN(sh + c)| = |RN(sh + th)| ≥ 2u2. If sh + th = 0 then vh = vl = 0 and the sequel
of the proof is straightforward. Therefore, in the following, we assume |vh| ≥ 2u2. This implies
|vh| ≥ u2

1−u , so that |vh| ≥ u|vh|+ u2 ≥ |v`|+ |t`|. Hence |w| = |RN(v` + t`)| ≤ |vh|, so the Fast2Sum
Algorithm in line 6 introduces no error. We finally have,

zh + z` = vh + w = x+ y + ε2. (2.3)

Directly using (2.3) and the bound u2

2 on |ε2| to get a relative error bound might result in a rather
large bound, because x + y may be small. However, as we are going to see, when x + y is very
small, some simplification occurs thanks to Sterbenz Lemma. First, xh + yh is a nonzero multiple
of 2u. Hence, since |x` + y`| ≤ 2u, we have |x` + y`| ≤ xh + yh.

• If −(xh + yh) ≤ x` + y` ≤ −1
2(xh + yh), which implies −sh ≤ th ≤ −1

2sh, then Sterbenz
Lemma applies to the floating-point addition of sh and c = th. Therefore line 4 of the
algorithm produces vh = sh and v` = 0. An immediate consequence is ε2 = 0, so that
zh + z` = vh + w = x+ y: the computation of x+ y is errorless.

• If −1
2(xh + yh) ≤ x` + y` ≤ xh + yh, then 2(x` + y`) ≤ (xh + yh) + (x` + y`), which implies

x` + y` ≤ 1
2(x + y). Also, −1

2(x + y) ≤ 1
2(x` + y`), which implies −(x + y) ≤ x` + y`. Hence

|x` + y`| ≤ x+ y, so that
ulp (x` + y`) ≤ ulp(x+ y).

Combined with (2.2), this gives

|ε2| ≤
1

2
ulp

[
1

2
ulp(x+ y) +

1

2
ulp

(
(x+ y) +

1

2
ulp(x+ y)

)]
.

Hence,

|ε2| ≤
1

2
ulp

(
3

2
ulp(x+ y)

)
≤ 2−p ulp(x+ y) ≤ 2 · 2−2p · (x+ y).
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2.1 Addition of double-word numbers 43

2. If −1 + u ≤ yh ≤ −xh

2
. It implies u ≤ xh + yh ≤ xh

2 , so Sterbenz Lemma can be applied to
the first line of the algorithm. Therefore sh = xh + yh and s` = 0, so that c = RN(th) = th. Hence,
this case is very similar to the previous one. Since sh is a nonzero multiple of u and |c| = |th| ≤ 3u

2 ,
the floating-point exponent of sh is at least 2−p and the floating-point exponent of c is at most 2−p.
Hence Algorithm Fast2Sum at line 4 of the algorithm introduces no error, and vh + vl = sh + c.

Now, since sh is a nonzero multiple of u, |sh| ≥ u. Lemma 1.1.7 implies that either sh + th = 0,
or |vh| = |RN(sh + c)| = |RN(sh + th)| ≥ u2.

• If sh + th = 0 then vh = vl = 0 and the sequel of the proof is straightforward.

• If |vh| = u2, then |v` + t`| ≤ u|vh|+ u2 = u3 + u2, therefore |w| = |RN(v` + t`)| ≤ u2 = |vh|.

• If |vh| > u2, then (since vh is a floating-point number) |vh| ≥ u2 + 2u3 hence |vh| ≥ u2

1−u , so
that |vh| ≥ u|vh|+ u2 ≥ |v`|+ |t`|. Hence |w| = |RN(v` + t`)| ≤ |vh|.

Therefore, in all cases, Algorithm Fast2Sum introduces no error in line 6 of the algorithm. Again,
we have

zh + z` = vh + w = x+ y + ε2,

with

|ε2| ≤
1

2
ulp

[
1

2
ulp(x` + y`) +

1

2
ulp

(
(x+ y) +

1

2
ulp(x` + y`)

)]
.

From xh + yh ≥ u and |x` + y`| ≤ 2u, we deduce −2(xh + yh) ≤ x` + y` ≤ 2(xh + yh).

• If −2(xh + yh) ≤ x` + y` ≤ −1
2(xh + yh) then −2sh ≤ th = c ≤ −1

2sh, hence Sterbenz Lemma
can be applied to line 4 of the algorithm, so that v` = 0, hence w = RN(t`) = t` and ε2 = 0 so
that the computation is errorless: zh + z` = x+ y;

• If −1
2(xh + yh) < x` + y` ≤ 2(xh + yh), then 3(x` + y`) ≤ 2(xh + yh + x` + y`) so that

x`+y` ≤ 2
3(x+y), and−1

2(x+y) ≤ 1
2(x`+y`), so that−(x+y) < x`+y`. Hence, in any case,

|x` + y`| < x + y, so that ulp (x` + y`) ≤ ulp(x + y), and we end up with the same bound as
in the previous case:

|ε2| ≤ 2 · 2−2p|x+ y|.

3. If −xh

2
< yh ≤ xh. It implies xh

2 < xh + yh, and consequently 1
2 < xh + yh.

• If 1
2 < xh+yh ≤ 1−2u then 1

2 ≤ sh ≤ 1−2u and |s`| ≤ u
2 . Notice that having xh+yh ≤ 1−2u

requires yh to be negative, so that −1 < y ≤ 0, which implies |y`| ≤ u
2 . We have

th + t` = x` + y`,

with |x` + y`| ≤ 3u
2 , hence |th| ≤ 3u

2 , and |t`| ≤ u2. Now,

c = s` + th + ε1,
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44 Chapter 2. Double-Word Arithmetic

with |s` + th| ≤ 2u, so that |c| ≤ 2u, and |ε1| ≤ u2. Since sh ≥ 1
2 and |c| ≤ 2u, we can

legitimately use Algorithm Fast2Sum in line 4 of the algorithm because it introduces no
error, meaning that

vh + v` = sh + c ≤ 1− 2u+ 2u = 1.

Therefore vh ≤ 1 and |v`| ≤ u
2 . Thus,

w = t` + v` + ε2,

where |t` + v`| ≤ u
2 + u2, so that |ε2| ≤ u2

2 . Also, sh ≥ 1
2 and |c| ≤ 2u imply vh ≥ 1

2 − 2u. And
|t` + v`| ≤ u

2 + u2 implies |w| ≤ u
2 + u2. Hence, if p ≥ 3 (i.e., u ≤ 1

8 ) Algorithm Fast2Sum
introduces no error at line 6 of the algorithm, i.e., zh + z` = vh + w. Therefore,

zh + z` = x+ y + η,

with |η| = |ε1 + ε2| ≤ 3u2

2 .

Since x+ y ≥ (xh − u) + (yh − u
2 ) > 1

2 −
3u
2 , the relative error |η|

x+y is upper-bounded by

3u2

2
1
2 −

3u
2

=
3u2

1− 3u
.

• If 1− 2u < xh + yh ≤ 2− 4u then 1− 2u ≤ sh ≤ 2− 4u and |s`| ≤ u. We have,

th + t` = x` + y`,

with |x` + y`| ≤ 2u, hence |th| ≤ 2u, and |t`| ≤ u2. Now,

c = s` + th + ε1,

with |s` + th| ≤ 3u, so that |c| ≤ 3u, and |ε1| ≤ 2u2. Since sh ≥ 1 − 2u and |c| ≤ 3u, if p ≥ 3
then Algorithm Fast2Sum introduces no error in line 4 of the algorithm, i.e., vh + v` = sh + c.
Therefore,

vh + v` ≤ 2− 4u+ 3u = 2− u,

so that vh ≤ 2 and |v`| ≤ u. Thus,
w = t` + v` + ε2,

where |t` + v`| ≤ u+ u2, so that |ε2| ≤ u2. Also, sh ≥ 1− 2u and |c| ≤ 3u imply vh ≥ 1− 5u,
and |t` + v`| ≤ u + u2 implies |w| ≤ u. Hence, if p ≥ 3, Algorithm Fast2Sum introduces no
error in line 6 of the algorithm, i.e., zh + z` = vh + w. Therefore,

zh + z` = x+ y + η,

with |η| = |ε1 + ε2| ≤ 3u2.

Since x+ y ≥ (xh − u) + (yh − u) > 1− 4u, the relative error |η|
x+y is upper-bounded by

3u2

1− 4u
.
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• If 2 − 4u < xh + yh ≤ 2xh then 2 − 4u ≤ sh ≤ RN(2xh) = 2xh ≤ 4 − 4u and |s`| ≤ 2u. We
have,

th + t` = x` + y`,

with |x` + y`| ≤ 2u, hence |th| ≤ 2u, and |t`| ≤ u2. Now,

c = s` + th + ε1,

with |s` + th| ≤ 4u, so that |c| ≤ 4u, and |ε1| ≤ 2u2. Since sh ≥ 2 − 4u and |c| ≤ 4u, if p ≥ 3,
then Algorithm Fast2Sum introduces no error in line 4 of the algorithm. Therefore,

vh + v` = sh + c ≤ 4− 4u+ 4u = 4,

so that vh ≤ 4 and |v`| ≤ 2u. Thus,

w = t` + v` + ε2,

where |t` + v`| ≤ 2u + u2. Hence, either |t` + v`| < 2u and |ε2| ≤ 1
2 ulp(t` + v`) ≤ u2, or

2u ≤ t` + v` ≤ 2u + u2, in which case w = RN(t` + v`) = 2u and |ε2| ≤ u2. In all cases
|ε2| ≤ u2. Also, sh ≥ 2 − 4u and |c| ≤ 4u imply vh ≥ 2 − 8u. And |t` + v`| ≤ 2u + u2

implies |w| ≤ 2u. Hence, if p ≥ 3 then Algorithm Fast2Sum introduces no error in line 6 of
the algorithm. All this gives

zh + z` = vh + w = x+ y + η,

with |η| = |ε1 + ε2| ≤ 3u2.

Since x+ y ≥ (xh − u) + (yh − u) > 2− 6u, the relative error |η|
x+y is upper-bounded by

3u2

2− 6u
,

The largest bound obtained in the various cases we have analyzed is

3u2

1− 4u
.

Elementary calculus shows that for u ∈ [0, 1
64 ] (i.e., p ≥ 6) this is always less than 3u2 + 13u3.

The bound given in Theorem 2.1.6 is probably not optimal. The largest relative error we have
obtain through many random tests is around 2.25u2, as showed by Examples 2.1.4 and 2.1.5.

2.2 Multiplication of double-word numbers

For performing a double-word multiplication the algorithms follow the paper-and-pencil tech-
nique by accumulating partial products. A big advantage when it comes to multiplication, as op-
posed to addition, is that we know for sure cancellation cannot happen at the level of the most sig-
nificant term of the result. For example, when multiplying two double-word numbers x = (xh, x`)
and y = (yh, y`) we know that the product z = (zh, z`) will be roughly around 2exh+eyh (more pre-
cisely, 2exh+eyh ≤ |xy| < 2exh+eyh+2 holds), where exh and eyh are the exponents of xh and yh,
respectively.

The above property allows us to explore different algorithms that offer compromises between
speed and accuracy. For example, in some cases we can even chose not to accumulate at all the
partial product x`y` (we know that its magnitude is very small), and to simply account for it when
computing the error bound.
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46 Chapter 2. Double-Word Arithmetic

2.2.1 Multiplication of a double-word number by a floating-point number

For multiplying a double-word number with a floating-point one we first consider Algo-
rithm 10 (Figure 2.4) that was suggested by Li et al. [57].

Algorithm 10 – DWTimesFP1(xh, x`, y).
1: (ch, c`1)← 2Prod(xh, y)
2: c`2 ← RN(x` · y)
3: (th, t`1)← Fast2Sum(ch, c`2)
4: t`2 ← RN(t`1 + c`1)
5: (zh, z`)← Fast2Sum(th, t`2)
6: return (zh, z`)

Figure 2.4 – Graphical representation of
Algorithm 10. In the 2Prod and Fast2Sum calls

the sum s or the product π are outputted
downwards and the error e to the right.

In [57, 58] (with more detail in the technical report [57], which is a preliminary version of
the journal paper [58]), Li et al. give a relative error bound 4 · 2−106 for Algorithm 10 when the
underlying floating-point arithmetic is binary64. Below, in Theorem 2.2.1, we present a new result,
in the more general context of precision-p arithmetic, that significantly improves their relative
error bound.

Theorem 2.2.1. If p ≥ 4, the relative error ∣∣∣∣(zh + z`)− xy
xy

∣∣∣∣
of Algorithm 10 (DWTimesFP1) is bounded by 3

2u
2 + 4u3.

Proof. One easily notices that if x = 0, or y = 0, or y is a power of 2, the obtained result is exact.
Therefore, without loss of generality, we can assume 1 ≤ xh ≤ 2 − 2u and 1 + 2u ≤ y ≤ 2 − 2u.
This gives 1 + 2u ≤ xhy ≤ 4− 8u+ 4u2, so that

1 + 2u ≤ ch ≤ 4− 8u, (2.4)

and
|c`1| ≤

1

2
ulp(4− 8u) = 2u. (2.5)

From |x`| ≤ u and y ≤ 2− 2u we deduce

|c`2| ≤ 2u− 2u2, (2.6)
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2.2 Multiplication of double-word numbers 47

so that ε1 = x`y − c`2 satisfies |ε1| ≤ u2. From (2.4) and (2.6) we deduce that Algorithm Fast2Sum
introduces no error at line 3 of the algorithm, i.e., th + t`1 = ch + c`2. Also, we deduce that

1 = RN(1 + 2u2) ≤ th ≤ RN(4− 6u− 2u2) = 4− 8u, (2.7)

and
|t`1| ≤

1

2
ulp(4− 8u) = 2u. (2.8)

From (2.5) and (2.8), we obtain
|t`2| ≤ RN(4u) = 4u, (2.9)

and we find that ε2 = t`2 − (t`1 + c`1) satisfies

|ε2| ≤ 2u2. (2.10)

Define ε = ε2 − ε1. Using (2.7) and (2.9), we deduce that Algorithm Fast2Sum introduces no
error at line 5 of the algorithm. Therefore,

zh + z` = th + t`2

= th + t`1 + c`1 + ε2

= ch + c`2 + c`1 + ε2

= xhy + x`y − ε1 + ε2

= xy + ε.

(2.11)

Hence the absolute error of Algorithm 10 is |ε| ≤ |ε1| + |ε2| ≤ 3u2. Let us now consider two
possible cases:

1. If xhy ≥ 2, then xy ≥ xh(1− u)y ≥ 2− 2u. This leads to a relative error | εxy | bounded by

3u2

2− 2u
=

3

2
u2 +

3

2
u3 +

3

2
u4 + · · · . (2.12)

2. If xhy < 2, which implies |ch| ≤ 2, we easily improve on some of the previously obtained
bounds. We have, |c`1| ≤ u, and th ≤ RN(2 + 2u− 2u2) = 2.

The case th = 2 is easily handled: (2.11) implies xy = th+ t`2−ε ≥ 2−4u−3u2, and the relative
error | εxy | is bounded by

3u2

2− 4u− 3u2
=

3

2
u2 + 3u3 +

33

4
u4 + · · · . (2.13)

If th < 2 then |t`1| ≤ u, |t`2| ≤ 2u, and |ε2| ≤ u2. Hence, a first upper bound on |ε| is 2u2. However,
some refinement is possible.

• first, if |c`2| < u then |ε1| ≤ u2

2 , which implies |ε| ≤ 3u2

2 ;

• second, if |c`2| ≥ u, then c`2 is a multiple of ulp(u) = 2u2, so that t`1 is a multiple of 2u2. Also,
since xh and y are multiple of 2u, xhy is a multiple of 4u2, so that c`1 is a multiple of 4u2.
Hence, t`1 + c`1 is a multiple of 2u2 of absolute value less than or equal to 2u. This implies
that t`1 + c`1 is a floating-point number, hence RN(t`1 + c`1) = t`1 + c`1 and ε2 = 0.
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48 Chapter 2. Double-Word Arithmetic

Therefore, when th < 2, |ε| is upper-bounded by 3u2

2 , so the relative error | εxy | is bounded by

3
2u

2

(1− u)(1 + 2u)
≤ 3

2
u2. (2.14)

The largest of the three bounds (2.12), (2.13), and (2.14) is the second one. It is less than 3
2u

2 + 4u3

as soon as u ≤ 1
16 . This proves the theorem.

The bound given by Theorem 2.2.1 is very sharp. The largest error we have found so far when
performing many random tests is about 1.5u2. An example of input values that would lead to an
error of that magnitude is given in Example 2.2.2.

Example 2.2.2. If we have as input for Algorithm 10, with binary32 as underlying arithmetic, the values:

xh = 8388609,

x` = 4095/213, and

y = 8389633,

then the relative error of the algorithm is

1.4993282 . . . × 2−48.

In the QD library [35] as well as in Briggs’ library [13], Algorithm 11 (Figure 2.5) below is
suggested for multiplying a double-word number by a floating-point one.

Algorithm 11 – DWTimesFP2(xh, x`, y).
1: (ch, c`1)← 2Prod(xh, y)
2: c`2 ← RN(x` · y)
3: c`3 ← RN(c`1 + c`2)
4: (zh, z`)← Fast2Sum(ch, c`3)
5: return (zh, z`)

Figure 2.5 – Graphical representation of
Algorithm 11. In the 2Prod and Fast2Sum calls

the sum s or the product π are outputted
downwards and the error e to the right.

Indeed, Algorithm 11 is faster than Algorithm 10 (we save one call to Fast2Sum), but it is less
accurate. One can easily find values for x and y for which the error attained using Algorithm 11
is larger than the bound given by Theorem 2.2.1 (see Example 2.2.3).

Example 2.2.3. If we have as input for Algorithm 11, with binary64 as underlying arithmetic, the values:

xh = 4525788557405064,

x` = 8595672275350437/254, and

y = 5085664955107621,
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2.2 Multiplication of double-word numbers 49

then the relative error of the algorithm is

2.517 . . . × 2−106.

The relative error bound we are going to prove for Algorithm 11 is the one stated in Theo-
rem 2.2.4 that follows, for which the proof is very similar to (in fact, simpler than) the proof of
Theorem 2.2.1.

Theorem 2.2.4. If p ≥ 3, the relative error of Algorithm 11 (DWTimesFP2) is less than or equal to 3u2.

Proof. Without loss of generality, we can assume 1 ≤ xh ≤ 2 − 2u and 1 ≤ y ≤ 2 − 2u. Since the
analysis of the case y = 1 is straightforward, we even assume 1 + 2u ≤ y ≤ 2 − 2u. This implies
1+2u ≤ xhy ≤ 4−8u+4u2, thus 1+2u ≤ ch ≤ 4−8u and |c`1| ≤ 2u. From |x`| ≤ u and y ≤ 2−2u
we deduce |c`2| ≤ 2u− 2u2, so that ε1 = x`y − c`2 satisfies |ε1| ≤ u2.

Now, |c`1 + c`2| ≤ 4u − 2u2, hence |c`3| ≤ 4u, and c`3 = c`1 + c`2 + ε2, with |ε2| ≤ 2u2. From
|c`3| ≤ 4u and ch ≥ 1 + 2u we deduce that Algorithm Fast2Sum introduces no error at line 4 of the
algorithm.

Further more,
zh + z` = ch + c`3 = xy − ε1 + ε2,

and | − ε1 + ε2| ≤ 3u2. Since xy ≥ (xh − u)y ≥ (1 − u)(1 + 2u) ≥ 1, we deduce that the relative
error of Algorithm 11 is less than 3u2.

Algorithm 11 can be improved both in speed and accuracy if an FMA instruction is available.
This is done by merging the multiplication in line 2 with the addition in line 3. This results in
Algorithm 12 bellow, with the corresponding Theorem 2.2.5.

Algorithm 12 – DWTimesFP3(xh, x`, y).
1: (ch, c`1)← 2ProdFMA(xh, y)
2: c`3 ← fma(x`, y, c`1)
3: (zh, z`)← Fast2Sum(ch, c`3)
4: return (zh, z`)

Theorem 2.2.5. If p ≥ 3, the relative error of Algorithm 12 (DWTimesFP3) is less than or equal to 2u2.

The proof of Theorem 2.2.5 is very similar to the proof of Theorem 2.2.4, so we omit it. We
do believe that the bound is very sharp, since the largest error that we obtained through many
random tests is the one presented in Example 2.2.6.

Example 2.2.6. If we have as input for Algorithm 12, with binary64 as underlying arithmetic, the values:

xh = 4505619370757448,

x` = −9003265529542491/254, and

y = 4511413997183120,

then the relative error of the algorithm is

1.984 . . . × 2−106.
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50 Chapter 2. Double-Word Arithmetic

2.2.2 Multiplication of two double-word numbers

Algorithm 13 (Figure 2.6) below was first suggested by Dekker (under the name mul2 in [22]),
with the only difference that he always used Algorithm 5 (Dekker’s product) for getting the result
and error of a floating-point multiplication. This algorithm is also the one that has been imple-
mented in the QD library [35] and in Briggs’ library [13].

Dekker proved a relative error bound of 11 · 2−2p, but we were able to significantly improve
that bound. The result that we obtained is the one stated by Theorem 2.2.8. In the proof we will
make use of Lemma 2.2.7, for which the proof is straightforward calculus, this is why we do not
include it.

Algorithm 13 – DWTimesDW1(xh, x`, yh, y`).
1: (ch, c`1)← 2Prod(xh, yh)
2: t`1 ← RN(xh · y`)
3: t`2 ← RN(x` · yh)
4: c`2 ← RN(t`1 + t`2)
5: c`3 ← RN(c`1 + c`2)
6: (zh, z`)← Fast2Sum(ch, c`3)
7: return (zh, z`)

Figure 2.6 – Graphical representation of
Algorithm 13. In the 2Prod and Fast2Sum calls

the sum s or the product π are outputted
downwards and the error e to the right.

Lemma 2.2.7. Let x and y be two positive real numbers. If xy ≤ 2, x ≥ 1 and y ≥ 1, then x+ y ≤ 2
√

2.

Theorem 2.2.8. If p ≥ 4, the relative error of Algorithm 13 (DWTimesDW1) is less than or equal to

7u2

(1 + u)2
< 7u2.

Proof. Without loss of generality, we assume that 1 ≤ xh ≤ 2 − 2u and 1 ≤ yh ≤ 2 − 2u. As a
deduction xhyh < 4, and

ch + c`1 = xhyh,

with |c`1| ≤ 2u. We also have
t`1 = xhy` + ε1,
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2.2 Multiplication of double-word numbers 51

with |xhy`| ≤ 2u− 2u2, so that |t`1| ≤ 2u− 2u2 and |ε1| ≤ u2; and

t`2 = x`yh + ε2,

with |x`yh| ≤ 2u− 2u2, so that |t`2| ≤ 2u− 2u2 and |ε2| ≤ u2. Now, we have

c`2 = t`1 + t`2 + ε3,

with |t`1 + t`2| ≤ 4u− 4u2, which implies |c`2| ≤ 4u− 4u2 and |ε3| ≤ 2u2. We finally obtain

c`3 = c`1 + c`2 + ε4,

and from |c`1+c`2| ≤ 6u−4u2, we deduce |c`3| ≤ 6u. Hence |ε4| ≤ 4u2 and, since ch ≥ 1, Algorithm
Fast2Sum introduces no error at line 6 of the algorithm.Therefore,

zh + z` = ch + c`3

= (xhyh − c`1) + c`1 + c`2 + ε4

= xhyh + t`1 + t`2 + ε3 + ε4

= xhyh + xhy` + x`yh + ε1 + ε2 + ε3 + ε4

= xy − x`y` + ε1 + ε2 + ε3 + ε4

= xy + η,

(2.15)

with |η| ≤ u2 + |ε1 + ε2 + ε3 + ε4| ≤ 9u2. On top of that, xh ≥ 1 and yh ≥ 1 imply xy ≥ (1 − u
2 )2,

so that we can first deduce a relative error bound 9u2/(1 − u
2 )2. That bound can be improved by

looking at two different cases.

1. If xhyh > 2. Since x ≥ xh − u and y ≥ yh − u, we have xy ≥ xhyh − u(xh + yh) + u2 >
2− u(4− 4u) + u2 = 2− 4u+ 5u2. Hence the relative error is bounded by

9u2

2− 4u+ 5u2
=

9

2
u2 + 9u3 +

27

4
u4 + · · · . (2.16)

2. If xhyh ≤ 2. We now obtain |c`1| ≤ u. Furthermore, Lemma 2.2.7 implies

xh + yh ≤ 2
√

2. (2.17)

We have,
|t`1| = |RN(xhy`)| ≤ RN(xhu) = xhu,

and, similarly, |t`2| ≤ yhu, so that, using (2.17),

|t`1 + t`2| ≤ xhu+ yhu ≤ 2
√

2u. (2.18)

Since 2
√

2u is between 2u and 4u, (2.18) gives |ε3| ≤ 2u2 (i.e., the same bound on |ε3| as previously).
Hence c`2 satisfies

|c`2| ≤ |t`1 + t`2|+ |ε3| ≤ 2
√

2u+ 2u2.

Consequently
|c`1 + c`2| ≤ u · (2

√
2 + 1) + 2u2.

If p ≥ 4 (i.e., u ≤ 1
16 ), this new bound is always less than 4u. Therefore, we now have |ε4| ≤ 2u2.

In (2.15), this will result in |η| ≤ 7u2 instead of 9u2. Again, using xy ≥ (1− u
2 )2 , we can deduce a
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52 Chapter 2. Double-Word Arithmetic

relative error bound 7u2

(1−u
2
)2

. However, that error bound can be made slightly smaller by noticing
that if xh = 1 or yh = 1 then, either ε1 = 0 or ε2 = 0, which results in a significantly smaller bound
for |η|. So we can assume that xh ≥ 1 + 2u (hence, x > 1 + u) and yh ≥ 1 + 2u (hence, y > 1 + u).
Therefore the relative error is bounded by

7u2

(1 + u)2
< 7u2. (2.19)

One easily notices that if p ≥ 4 the bound (2.16) is less than the bound (2.19).

The bound provided by Theorem 2.2.8 is probably too pessimistic. The largest relative error
we have encountered in our tests using binary32 and binary64 formats are the ones given in Ex-
ample 2.2.9 and Example 2.2.10, respectively.

Example 2.2.9. If we have as input for Algorithm 13, with binary32 as underlying arithmetic, the values:

xh = 8399376,

x` = 16763823/225,

yh = 8414932, and

y` = 16756961/225,

then the relative error of the algorithm is
4.947× 2−48.

Example 2.2.10. If we have as input for Algorithm 13, with binary64 as underlying arithmetic, the values:

xh = 4508231565242345,

x` = −9007199254524053/254,

yh = 4504969740576150, and

y` = −4503599627273753/253,

then the relative error of the algorithm is

4.9916× 2−106.

As in the case of multiplication of a double-word number by a floating-point number, Al-
gorithm 13 can also be improved if an FMA instruction is available, by merging lines 3 and 4, as
showed in Algorithm 14 below, with the corresponding error bound given in Theorem 2.2.11. This
way we save one floating-point operation and we are able to slightly improve our error bound.

Algorithm 14 – DWTimesDW2(xh, x`, yh, y`).
1: (ch, c`1)← 2ProdFMA(xh, yh)
2: t` ← RN(xh · y`)
3: c`2 ← fma(x`, yh, t`)
4: c`3 ← RN(c`1 + c`2)
5: (zh, z`)← Fast2Sum(ch, c`3)
6: return (zh, z`)
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2.2 Multiplication of double-word numbers 53

Theorem 2.2.11. If p ≥ 5, the relative error of Algorithm 14 (DWTimesDW2) is less than or equal to

6u2 + 1
2u

3

(1 + u)2
< 6u2.

Proof. The proof is very similar to the proof of Theorem 2.2.8, and follows the same structure, so
we do not detail it. The major changes are:
• the term ε2 of the proof of Theorem 2.2.8 no longer exists;
• c`2 = x`yh + t` + ε3, where ε3 ≤ 2u2,
• instead of (2.15), we now have

zh + z` = xy − x`y` + ε1 + ε3 + ε4 = xy + η,

with |η| ≤ u2 + |ε1 + ε3 + ε4| ≤ 8u2.

We do not know if the bound given by Theorem 2.2.11 is optimal, because the largest errors
we have obtained during intensive random testing are the ones presented in Example 2.2.12 and
Example 2.2.13 below.

Example 2.2.12. If we have as input for Algorithm 14, with binary64 as underlying arithmetic, the values:

xh = 8404039,

x` = −8284843/224,

yh = 8409182, and

y` = −4193899/223,

then the relative error of the algorithm is
4.936× 2−48.

Example 2.2.13. If we have as input for Algorithm 14, with binary64 as underlying arithmetic, the values:

xh = 4515802244422058,

x` = −2189678420952711/252,

yh = 4503988428047019, and

y` = −2248477851812015/252,

then the relative error of the algorithm is

4.9433× 2−106.

The multiplication algorithm for two double-word numbers can be improved even further,
by taking into account also the partial product x`y`. The algorithm that does this is shown in
Algorithm 15, with the corresponding error bound in Theorem 2.2.14.

Algorithm 15 – DWTimesDW3(xh, x`, yh, y`).
1: (ch, c`1)← 2ProdFMA(xh, yh)
2: t`0 ← RN(x` · y`)
3: t`1 ← fma(xh, y`, t`0)
4: c`2 ← fma(x`, yh, t`1)
5: c`3 ← RN(c`1 + c`2)
6: (zh, z`)← Fast2Sum(ch, c`3)
7: return (zh, z`)
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54 Chapter 2. Double-Word Arithmetic

Theorem 2.2.14. If p ≥ 4, the relative error of Algorithm 15 (DWTimesDW3) is less than or equal to

5u2 + 1
2u

3

(1 + u)2
< 5u2.

Proof. The proof is very similar to the proof of Theorem 2.2.8, and follows the same structure, so
we do not detail it. The major changes are:

• t`1 = xhy` + x`y` + ε1, where ε1, now, is bounded by u2 + u3

2 ,

• the term ε2 of the proof of Theorem 2.2.8 no longer exists;

• instead of (2.15), we now have

zh + z` = xy + ε1 + ε3 + ε4 = xy + η,

with |η| ≤ |ε1 + ε3 + ε4| ≤ 7u2 + u3

2 .

We do not know if the bound given by Theorem 2.2.11 is optimal. The largest relative error we
have encountered so far in intensive tests is the one presented in Example 2.2.15.

Example 2.2.15. If we have as input for Algorithm 14, with binary64 as underlying arithmetic, the values:

xh = 4510026974538724,

x` = 4232862152422029/253,

yh = 4511576932111935, and

y` = 2250098448199619/252,

then the relative error of the algorithm is
3.936× 2−106.

2.3 Division of double-word numbers

The same as for the double-word multiplication, the division algorithms follow the paper-and-
pencil technique, this is why they are called long division algorithms. More specifically, when
computing the division of two real numbers, x ÷ y, we first aproximate the quotient q0 = x

y , then
compute the reminder r = x − q0y, and we finish by computing a second correction term q1 = r

y .
In what follows we show how we apply this techique to double-word division.

2.3.1 Division of a double-word number by a floating-point number

The algorithm suggested by Li et al. in [57] for dividing a double-word number by a floating-
point number is Algorithm 16 below.

Let us notice that Algorithm 16 can be simplified. We have th = xh
y (1+ε0) and πh = thy(1+ε1),

with |ε0|, |ε1| ≤ u. Hence,
(1− u)2xh ≤ πh ≤ (1 + u)2xh.

Therefore, as soon as p ≥ 2 (i.e., u ≤ 1
4 ), πh is within a factor 2 from xh, and Sterbenz Lemma

(Lemma 1.1.2) implies that xh − πh is an exact floating-point number. As a deduction, we always
have δ′ = 0 and δ` = δ′′ = RN(x` − π`), so line 3 of the algorithm can be replaced by a simple
subtraction. As a consequence, Algorithm 16 can be simplified into Algorithm 17 (Figure 2.7)
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2.3 Division of double-word numbers 55

Algorithm 16 – DWDivFP1(xh, x`, y).
1: th ← RN(xh/y)
2: (πh, π`)← 2Prod(th, y)
3: (δh, δ

′)← 2Sum(xh,−πh)
4: δ′′ ← RN(x` − π`)
5: δ` ← RN(δ′ + δ′′)
6: δ ← RN(δh + δ`)
7: t` ← RN(δ/y)
8: (zh, z`)← Fast2Sum(th, t`)
9: return (zh, z`)

below, that is mathematically equivalent (always returns the same result) while being significantly
simpler.

Algorithm 17 – DWDivFP2(xh, x`, y).
1: th ← RN(xh/y)
2: (πh, π`)← 2Prod(th, y)
3: δh ← xh − πh //exact operation

4: δ` ← RN(x` − π`)
5: δ ← RN(δh + δ`)
6: t` ← RN(δ/y)
7: (zh, z`)← Fast2Sum(th, t`)
8: return (zh, z`)

Figure 2.7 – Graphical representation of
Algorithm 17. In the 2Prod and Fast2Sum calls

the sum s or the product π are outputted
downwards and the error e to the right.

The authors of [57] claim that their binary64 implementation of Algorithm 16 has a relative
error bounded by 4 · 2−106. That bound can be slightly improved. The bound that we are going
to prove is given in Theorem 2.3.1 and it holds for both algorithms, given the fact that they return
the same result.
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Theorem 2.3.1. If p ≥ 4 and y 6= 0, the relative error of Algorithm 16 (DWDivFP1) and Algorithm 17
(DWDivFP2) is less than or equal to 3.5u2.

In the proof of Theorem 2.3.1 we make use of Lemma 2.3.2 for which we also give a short proof.

Lemma 2.3.2. Assume a radix-2, precision-p, floating-point arithmetic. Let x and y be floating-point
numbers between 1 and 2. The distance between RN(xy ) and x

y is less thanu− 2u2

y if xy ≥ 1;

u
2 −

u2

y otherwise.
(2.20)

Proof. It suffices to estimate the smallest possible distance between x
y and a “midpoint” (i.e., a

number exactly halfway between two consecutive floating-point numbers). Let x = Mx · 2−p+1,
y = My · 2−p+1, with 2p−1 ≤Mx,My ≤ 2p − 1.

• If x
y ≥ 1, a midpoint µ between 1 and 2 has the form 2Mµ+1

2p , with 2p−1 ≤ Mµ ≤ 2p − 1. We
have ∣∣∣∣xy − µ

∣∣∣∣ =

∣∣∣∣2pMx −My(2Mµ+ 1)

2pMy

∣∣∣∣ .
The numerator, 2pMx −My(2Mµ+ 1), of that fraction cannot be zero: since 2Mµ+ 1 is odd,
having 2pMx = My(2Mµ + 1) would require My to be a multiple of 2p, which is impossible
since My ≤ 2p − 1. Hence that numerator has absolute value at least 1. And so∣∣∣∣xy − µ

∣∣∣∣ ≥ 1

2pMy
=

2u2

y
.

• If xy < 1 the proof is similar. The only change is that a midpoint is of the form 2Mµ+1
2p+1 .

Note that in a more recent result [39, Table 1], a similar bound obtained for division could be
used instead of Lemma 2.3.2, but we include it for completeness. Let us now prove Theorem 2.3.1.

Proof. (Of Theorem 2.3.1) The case where y is a power of 2 is straightforward, so we omit it.
Without loss of generality, we assume 1 ≤ xh ≤ 2− 2u, so that |xl| ≤ u, and 1 + 2u ≤ y ≤ 2− 2u.
There on

1

2− 2u
≤ xh

y
≤ 2− 2u

1 + 2u
. (2.21)

The quotient 1
2−2u is always larger than 1

2 + u
2 , and, as soon as p ≥ 4, 2−2u

1+2u is less than 2 − 5u.
Therefore

1

2
+ u ≤ th = RN

(
xh
y

)
≤ 2− 6u. (2.22)

1. If x ≥ y, implying xh ≥ y and th ≥ 1, then Lemma 2.3.2 implies∣∣∣∣th − xh
y

∣∣∣∣ ≤ u− 2u2

y
,

hence |thy − xh| ≤ uy − 2u2 ≤ 2u− 4u2. Consequently

πh = RN(thy) ∈ {xh − 2u, xh, xh + 2u}.
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One might think that πh could be xh − u in the case xh = 1, but xh = 1 is not compatible with our
assumptions, x ≥ y and y ≥ 1 + 2u. We also have,

|thy| ≤ |thy − xh|+ |xh| ≤ 2u− 4u2 + 2− 2u = 2− 4u2, (2.23)

which implies

|π`| ≤
1

2
ulp(thy) = u.

In all cases xh − πh ∈ {−2u, 0, 2u}, so that δh = xh − πh. Also, from |π`| ≤ u and |x`| ≤ u, we
deduce |π` − x`| ≤ 2u. As a consequence, |δ`| ≤ 2u, and ε1 = δ` − (x` − π`) satisfies

|ε1| = |δ` − (x` − π`)| ≤ u2. (2.24)

Define ε2 = δ − (δh + δ`).

• If δh = −2u then xh − πh = −2u, so that

π` = thy − πh = (thy − xh) + (xh − πh)

satisfies
π` ≤ (2u− 4u2) + (−2u) ≤ −4u2.

Hence −u ≤ π` ≤ −4u2, so that −u+ 4u2 ≤ δ` ≤ 2u, which implies −3u+ 4u2 ≤ δh + δ` ≤ 0.
Furthermore,

— if u ≤ δ` ≤ 2u then Sterbenz’s Lemma implies that δh + δ` is a floating-point number, so
that ε2 = 0;

— if −u+ 4u2 ≤ δ` < u then −3u+ 4u2 < δh + δ` < −u, hence

|ε2| = |δ − (δh + δ`)| ≤
1

2
ulp(3u) = 2u2.

However, in that case, since |δ`| < u, the bound (2.24) is improved and becomes |ε1| ≤
u2

2 .

Hence, if δh = −2u, we always have |ε1 + ε2| ≤ 5u2

2 .

• Symmetrically, if δh = 2u we also always have |ε1 + ε2| ≤ 5u2

2 .

• If δh = 0 then |δh + δ`| = |δ`| ≤ 2u. Since there is no error when adding δh and δ`, we have
ε2 = 0.

Hence,
δ = (xh − πh) + (x` − π`) + δ` − (x` − π`)︸ ︷︷ ︸

ε1

+ δ − (δh + δ`)︸ ︷︷ ︸
ε2

,

= x− thy + ε

with |ε| = |ε1 + ε2| ≤ 5u2

2 . We deduce

δ

y
=
x

y
− th +

ε

y
. (2.25)
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Let us now bound the error committed when rounding δ
y . For that purpose, we first try to find

a reasonably tight bound on δ
y (tighter than the obvious bound we would obtain by dividing the

upper bound 3u2 on δ by the lower bound 1 + 2u on y). We have∣∣∣xy − th∣∣∣ ≤ ∣∣∣xhy − th∣∣∣+
∣∣∣x`y ∣∣∣

≤ u− 2u2

y + u
y ,

and ∣∣∣∣ εy
∣∣∣∣ ≤ 5u2

2y
.

Therefore, using (2.25),∣∣∣∣δy
∣∣∣∣ ≤ u+

u2

2y
+
u

y
≤ u+

u2

2(1 + 2u)
+

u

1 + 2u
=

4u+ 5u2

2 + 4u
< 2u.

Hence |t`| ≤ 2u, which means, since th ≥ 1, that Algorithm Fast2Sum introduces no error at line 7
of the algorithm. Also, ∣∣∣∣t` − δ

y

∣∣∣∣ =

∣∣∣∣RN

(
δ

y

)
− δ

y

∣∣∣∣ ≤ u2.
Therefore, using (2.25),

t` =
x

y
− th +

ε

y
+ ε′, (2.26)

with |ε′| ≤ u2. We finally conclude that∣∣∣∣(zh + z`)−
x

y

∣∣∣∣ =

∣∣∣∣(th + t`)−
x

y

∣∣∣∣ ≤ 5u2

2y
+ u2, (2.27)

so that the relative error is bounded by

y

x

(
5u2

2y
+ u2

)
≤ 5u2

2x
+
u2y

x
≤ 7u2

2
= 3.5u2,

since y
x ≤ 1.

2. If x < y, implying xh ≤ y and th ≤ 1.
We first notice that the case xh = y is easily handled. It leads to th = 1, πh = xh, π` = 0, δ = x`,

and zh + z` = th + t` = x
y + η, with |η| ≤ u |x`|y ≤ u

2 x
y .

We can now focus on the case xh < y.Notice that this case implies xh ≤ y−2u, so that x ≤ y−u,
so that xy ≤ 1− u

y ≤ 1− u
2−2u < 1− u

2 , which implies th ≤ 1− u.
The remainder of the proof is very similar to the proof of the case x > y, so we give it with less

details. Lemma 2.3.2 implies ∣∣∣∣th − xh
y

∣∣∣∣ ≤ u

2
− u2

y
,

so that |thy − xh| ≤ u
2 · y − u2 ≤ u − 2u2. This implies πh = RN(thy) ∈ {xh − u, xh}, so that

δh ∈ {0, u}. The case RN(thy) = xh − u (i.e., δh = u) being possible only when xh = 1. We also
have

|thy| ≤ |th| · |y| ≤ (1− u) · (2− 2u) = 2− 3u+ 2u2,

so that |π`| ≤ 1
2 ulp(thy) ≤ u.

As previously, define ε1 = δ` − (x` − π`) and ε2 = δ − (δh + δ`). From |π`| ≤ u and |x`| ≤ u, we
deduce |δ`| ≤ 2u and ε1 ≤ u2.

58



2.3 Division of double-word numbers 59

• If δh = 0 then ε2 = 0.

• If δh = u (which implies xh = 1), then, since πh = 1 − u, we have thy < 1. This implies
|π`| ≤ 1

2 ulp(thy) ≤ u
2 . We also have

π` = thy − πh = (thy − xh) + (xh − πh) ≥ −u+ 2u2 + u = 2u2,

hence,
2u2 ≤ π` ≤

u

2
. (2.28)

Also, xh = 1 implies −u
2 ≤ x` ≤ u. Therefore −u ≤ x` − π` ≤ u − 2u2, so that −u ≤ δ` ≤

u− 2u2, and |ε1| ≤ u2

2 . From
0 ≤ δ` + δh ≤ 2u− 2u2,

we deduce |ε2| ≤ u2.

Hence,
δ = (xh − πh) + (x` − π`) + δ` − (x` − π`)︸ ︷︷ ︸

ε1

+ δ − (δh + δ`)︸ ︷︷ ︸
ε2

= x− thy + ε,

with |ε| = |ε1 + ε2| ≤ 3u2

2 . We deduce∣∣∣∣δy
∣∣∣∣ ≤ ∣∣∣∣xhy − th

∣∣∣∣+

∣∣∣∣x`y
∣∣∣∣+

∣∣∣∣ εy
∣∣∣∣ ≤ u

2
+

2u2

y
+
u

y
< 2u,

so that |t`| ≤ 2u. Hence, since th ≥ 1
2 + u, Algorithm Fast2Sum introduces no error at line 7, and∣∣∣∣t` − δ

y

∣∣∣∣ ≤ u2.
Therefore

t` =
x

y
− th + η,

with

|η| ≤ 3u2

2y
+ u2,

hence zh + z` = th + t` approximates x
y with a relative error bounded by

y

x

(
3u2

2y
+ u2

)
≤ 3u2

2x
+ u2

y

x
≤ 3.5u2.

The above bound is reasonably sharp, and this is showed by Example 2.3.3, for which we
obtained the largest relative error while doing many random computations.

Example 2.3.3. If we have as input for Algorithm 16 or Algorithm 17, with binary64 as underlying arith-
metic, the values:

xh = 4588860379563012,

x` = −4474949195791253/253, and

y = 4578284000230917,

then the relative error of the algorithm is

2.95157083 . . . × 2−106.
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60 Chapter 2. Double-Word Arithmetic

2.3.2 Division of two double-word numbers

The algorithm implemented in the QD library for dividing two double-word numbers is Al-
gorithm 18. It follows the same structure as Algorithm 16, the only difference is that the reminder
is computed using Algorithm 10 (DWTimesFP1) for multiplying a double-word number by a
floating-point one.

Algorithm 18 – DWDivDW1(xh, x`, yh, y`).
1: th ← RN(xh/yh)
2: (rh, rl)← DWTimesFP1(yh, y`, th) //approximation to (yh + y`)th with relative error≤ 1.5u2 + 4u3 using Alg. 10

3: (πh, π`)← 2Sum(xh,−rh)
4: δh ← RN(π` − r`)
5: δ` ← RN(δh + x`)
6: δ ← RN(πh + δ`)
7: t` ← RN(δ/yh)
8: (zh, z`)← Fast2Sum(th, t`)
9: return (zh, z`)

Let us quickly analyze the beginning of Algorithm 18. This will lead us to suggest another
algorithm, faster yet mathematically equivalent (as soon as p ≥ 3, it always returns the very same
result). Without loss of generality, we assume xh > 0 and yh > 0. Define εx and εy such that
xh = x(1 + εx) and yh = y

1+εy
. These two numbers εx and εy have an absolute value less than or

equal to u. We have
th =

xh
yh

(1 + ε0), with |ε0| ≤ u, (2.29)

and, from Theorem 2.2.1,

rh + r` = thy(1 + η), with |η| ≤ 3

2
u2 + 4u3. (2.30)

There exists |ε1| ≤ u such that rh = (rh + r`)(1 + ε1). This can be rewritten r` = −ε1(rh + r`), so
that, using (2.30), r` = −ε1thy(1 + η). We finally obtain

rh = thyh(1 + εy)(1 + ε1)(1 + η)

= xh(1 + εy)(1 + ε0)(1 + ε1)(1 + η),
(2.31)

so that
(1− u)3(1− 2u2)xh ≤ rh ≤ (1 + u)3(

3

2
u2 + 4u3)xh,

from which we deduce

|xh − rh| ≤ (3u+
9

2
u2 +

19

2
u3 +

33

2
u4 +

27

2
u5 + 4u6) · xh.

This implies
|xh − rh| ≤ (3u+ 6u2) · xh (2.32)

as soon as p ≥ 3. One easily checks that for p ≥ 3 (i.e., u ≤ 1
8 ), 3u+ 6u2 is less than 1

2 . Hence, From
Sterbenz Lemma (Lemma 1.1.2), the number xh − rh is an exact floating-point number. Therefore,
the number π` obtained at line 3 of the algorithm is always 0 and that line can be replaced by a
simple, errorless, subtraction. This gives πh = xh − rh, and δh = −r`. Thus, without changing the
final result, we can replace Algorithm 18 by the simpler Algorithm 19 (Figure 2.8), below.
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2.3 Division of double-word numbers 61

Algorithm 19 – DWDivDW2(xh, x`, yh, y`).
1: th ← RN(xh/yh)
2: (rh, rl) ← DWTimesFP1(yh, y`, th) //approxima-

tion to (yh + y`)th with relative error ≤ 1.5u2 + 4u3 using

Alg. 10

3: πh ← xh − rh //exact operation

4: δ` ← RN(x` − r`)
5: δ ← RN(πh + δ`)
6: t` ← RN(δ/yh)
7: (zh, z`)← Fast2Sum(th, t`)
8: return (zh, z`)

Figure 2.8 – Graphical representation of
Algorithm 19. In the Fast2Sum and

DWTimesFP1 calls the sum s or zh is outputted
downwards and the error e or zl to the right.

If an FMA instruction is available, Algorithm 12 can be used at line 2 instead of Algorithm 10
without changing much the proof of Theorem 2.3.4 below.

Theorem 2.3.4. If p ≥ 7 and y 6= 0, the relative error of Algorithms 18 (DWDivDW1) and Algorithm 19
(DWDivDW2) is upper-bounded by 15u2 + 56u3.

Proof. For reasons of symmetry, we can assume that x and y are positive. We will use the results
(2.29) to (2.32) obtained when analyzing the beginning of Algorithm 18. Assume p ≥ 7. It follows

δ` = (x` − r`)(1 + ε2), with |ε2| ≤ u,

We have |x`| ≤ uxh and |r`| ≤ urh, so that

|x` − r`| ≤ |x`|+ |r`|
≤ uxh + urh

≤ uxh + u ((rh − xh) + xh)

≤ uxh + u (|rh − xh|+ xh) .

Therefore, using (2.32) (which holds since we assume p ≥ 7),

|x` − r`| ≤ uxh + u
(
(3u+ 6u2)xh + xh

)
,

61



62 Chapter 2. Double-Word Arithmetic

which gives
|x` − r`| ≤ (2u+ 3u2 + 6u3)xh. (2.33)

We have
δ = (πh + δ`)(1 + ε3), with |ε3| ≤ u,

so that
δ = xh − rh + x` − r` + (x` − r`)(ε2 + ε3 + ε2ε3) + (xh − rh)ε3,

= x− (rh + r`) + αxh,

with (using (2.32) and (2.33))

|α| ≤ (2u+ 3u2 + 6u3)(2u+ u2) + (3u+ 6u2)u

≤ 7u2 + 15u3
(2.34)

as soon as p ≥ 4. Hence δ = x− thy(1 + η) + αxh, so that

δ

yh
=
x− thy

y
· y
yh
− ηthy

yh
+ α

xh
yh
. (2.35)

The number x− thy is equal to xh− thyh+x`− thy`. From (2.29), xh− thyh is equal to−xhε0. Also,
|x`| is less than or equal to uxh, and

|thy`| ≤ |uthyh| ≤ u(1 + u)xh.

Hence,
|x− thy| ≤ xh(u+ u+ u(1 + u)) = xh(3u+ u2). (2.36)

From (2.35), we deduce

δ
yh

= x−thy
y (1 + εy)− ηth(1 + εy) + αxhyh ,

= x−thy
y + β,

(2.37)

with

|β| =
∣∣∣εy x−thyy − th(1 + εy)η + xh

yh

∣∣∣
≤ u(3u+ u2)xhy + (1 + u)(2u2)xhyh + (7u2 + 15u3)xhyh

≤ u(3u+ u2)(1 + u)xy + (1 + u)3(2u2)xy + (7u2 + 15u3)(1 + u)2 xy

=
(
12u2 + 39u3 + 44u4 + 17u5

)
x
y .

(2.38)

Hence,

t` = RN
(
δ
yh

)
= δ

yh
(1 + ε4) with |ε4| ≤ u,

=
(
x−thy
y + β

)
(1 + ε4)

= x−thy
y + γ,

(2.39)
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2.3 Division of double-word numbers 63

with

|γ| =
∣∣∣x−thyy ε4 + β + ε4β

∣∣∣
≤ xh

y (3u+ u2)u+ β + βu

≤ (3u+ u2)u(1 + u)xy + β + βu

=
(
15u2 + 55u3 + 84u4 + 61u5 + 17u6

)
x
y .

(2.40)

Hence
th + t` =

x

y
+ γ.

Since we straightforwardly have
th ≥

x

y
(1− u)3, (2.41)

we deduce
|t`| ≤

x

y

(
(15u2 + 55u3 + 84u4 + 61u5 + 17u6) + (3u− 3u2 + u3)

)
. (2.42)

From (2.41) and (2.42) we easily deduce that as soon as p ≥ 4 (i.e., u ≤ 1/16), th is larger than |t`|,
so that Algorithm Fast2Sum introduces no error at line 7 of the algorithm. Therefore,

zh + z` = th + t` =
x

y
+ γ,

so that the relative error is upper-bounded by

15u2 + 55u3 + 84u4 + 61u5 + 17u6,

which is less than 15u2+56u3 as soon as p ≥ 7 (i.e., u ≤ 1/128), which always holds in practice.

The bound provided by Theorem 2.3.4 is almost certainly not optimal. However, during many
random tests, we have encountered cases (Example 2.3.5) for which the relative error, although
significantly less than the bound 15u2 + 56u3, remains of a similar order of magnitude, i.e., more
than half the bound.

Example 2.3.5. If we have as input for Algorithm 18 or Algorithm 19, with binary64 as underlying arith-
metic, the values:

xh = 4503607118141812,

x` = 4493737176494969/253,

yh = 4503600552333684, and

y` = −562937972998161/250,

then the relative error of the algorithm is

8.465 . . . × 2−106.

Now, notice that if an FMA instruction is available, it is possible to design an even more accu-
rate algorithm. This is possible due to Property 2.3.6 that is easy to prove, and common knowledge
among the designers of Newton-Raphson based division algorithms (we will extensively treat this
subject in Chapter 3, Section 3.5).

Property 2.3.6. If x is a nonzero floating-point number, and if t = RN( 1x), then xt− 1 is a floating-point
number.
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64 Chapter 2. Double-Word Arithmetic

Proof. Without loss of generality we assume 1 ≤ x ≤ 2− 2u, which implies that x is a multiple of
2−p+1 = 2u. The number 1

x is between 1
2−2u = 1

2 + u
2 + u2

2 + · · · and 1, and so t is between 1
2 and 1,

so t is a multiple of 2−p = u. From
1− u
x
≤ t ≤ 1 + u

x

we deduce
−u ≤ 1− xt ≤ u.

Hence, 1−xt is a multiple of 2−2p+1 of absolute value less than or equal to 2−p, which implies that
it is an exact floating-point number.

The improved algorithm, based on the above property, is the one given in Algorithm 20 and
Figure 2.9, with the corresponding error bound in Theorem 2.3.7.

Algorithm 20 – DWDivDW3(xh, x`, yh, y`).
1: th ← RN(1/yh)
2: rh ← fma(−yh, th, 1) //exact operation

3: r` ← RN(−y` · th)
4: (eh, e`)← Fast2Sum(rh, r`)
5: (δh, δ`)←DWTimesFP3(eh, e`, th) //approx-

imation to (eh + e`)th with relative error ≤ 2u2 using

Alg. 12

6: (mh,m`) ← DWPlusFP(δh, δ`, th) //approxi-

mation to δh + δ` + th with relative error ≤ 2u2 + 5u3

using Alg. 7

7: (zh, z`) ← DWTimesDW3(xh, x`,mh,m`)
//approximation to (xh + x`)(mh + m`) with relative

error ≤ 5u2 using Alg. 15

8: return (zh, z`)

Figure 2.9 – Graphical representation of
Algorithm 20. All algorithm calls output both

parts of their results downwards.

Theorem 2.3.7. If p ≥ 14 and y 6= 0, the relative error of Algorithm 20 (DWDivDW3) is upper-bounded
by 9.8u2.
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Proof. Roughly speaking, Algorithm 20 first approximates 1
y by th = RN( 1

yh
), then improves that

approximation to 1
y by performing one step of Newton-Raphson iteration, and then multiplies the

obtained approximation (mh,m`) by x.
Without loss of generality, we assume 1 ≤ yh ≤ 2− 2u, so that 1

2 ≤ th ≤ 1. We have∣∣∣∣th − 1

yh

∣∣∣∣ ≤ u

2
,

and (from Property 2.3.6)
rh = 1− yhth.

We also easily check that (
th(2− yth)− 1

y

)
= −y

(
th −

1

y

)2

. (2.43)

Now, from |y`| ≤ u and |th| ≤ 1, we deduce |y`th| ≤ u, so that |r`| ≤ u, and

|r` + y`th| ≤
u2

2
.

This gives

eh + e` = rh + r` = 1− yhth − y`th + η, with |η| ≤ u2

2
. (2.44)

Also, since |yhth − 1| = yh|th − 1
yh
| ≤ u, we have |rh| ≤ u, hence |rh + r`| ≤ 2u. This implies

|eh| ≤ 2u and |e`| ≤ u2. Define e = eh + e` = rh + r`, we have |e| ≤ 2u.
Now, from Theorem 2.2.5, we have

δh + δ` = eth(1 + ω1), with |ω1| ≤ 2u2, (2.45)

and from Theorem 2.1.1, we have

mh +m` = (th + δh + δ`)(1 + ω2), with |ω2| ≤ 2u2 + 5u3. (2.46)

Combining (2.45) and (2.46), we obtain

mh +m` = (th + eth(1 + ω1))(1 + ω2)

= th + eth + ethω1 + ω2th + ω2eth + ω2ω1eth

= th + eth + αth,

(2.47)

with

|α| = |eω1 + ω2 + ω2e+ ω2ω1e|
≤ (2u)(2u2) + (2u2 + 5u3) + (2u2 + 5u3)(2u) + (2u2 + 5u3)(2u2)(2u)

= 2u2 + 13u3 + 10u4 + 8u5 + 20u6

≤ 2u2 + 14u3 as soon as p ≥ 4.

(2.48)

Therefore,
mh +m` = th + eth + αth

= th + th(1− yth + η) + αth

= th(2− yth) + th(η + α),

which implies ∣∣∣∣(mh +m`)−
1

y

∣∣∣∣ =

∣∣∣∣th(2− yth)− 1

y
+ th(η + α)

∣∣∣∣ ,
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so that, using (2.43) and the bounds on η and α,∣∣∣∣(mh +m`)−
1

y

∣∣∣∣ ≤ y(th − 1

y

)2

+ th

∣∣∣∣52u2 + 14u3
∣∣∣∣ . (2.49)

Let us now consider

y2
(
th −

1

y

)
.

That term is less than

y2
((

th −
1

yh

)
+
y − yh
yyh

)2

,

which is less than

y2u2
(

1

2
+

1

y(y − u)

)2

.

The largest value of

y2
(

1

2
+

1

y(y − u)

)2

for 1 ≤ y < 2 is always attained for y = 1, so that as soon as p ≥ 6 (i.e., u ≤ 1
64 ), we have

y2
(
th −

1

y

)
≤

(
1

2
+

1

1− 1
64

)2

u2 =
36481

15876
u2 ≤ 2.298u2.

Hence, from (2.49), we obtain∣∣∣∣(mh +m`)−
1

y

∣∣∣∣ ≤ 1

y
2.298u2 + th

(
5

2
u2 + 14u3

)
,

which implies ∣∣∣∣x(mh +m`)−
x

y

∣∣∣∣ ≤ x

y
2.298u2 + xth

(
5

2
u2 + 14u3

)
.

Notice that |th| ≤ 1+u
yh
≤ (1+u)2

y , so that∣∣∣∣x(mh +m`)−
x

y

∣∣∣∣ ≤ x

y
ϕ(u), (2.50)

with ϕ(u) = 2.298u2 + (1 + u)2
(
5
2u

2 + 14u3
)
. Now, from Theorem 2.2.5, we have

|zh + z` − x(mh +m`)| ≤ 5u2|x(mh +m`)|
≤ 5u2 xy + 5u2

∣∣∣xy − x(mh +m`)
∣∣∣

≤ x
y

(
5u2 + 5u2ϕ(u)

)
.

(2.51)

Combining (2.50) and (2.51) we finally obtain∣∣∣zh + z` − x
y

∣∣∣ ≤ x
y (5u2 + ϕ(u) + 5u2ϕ(u))

≤ x
y

(
9.798u2 + 19u3 + 54.49u4 + 109u5 + 152.5u6 + 70u7

)
≤ 9.8u2 xy as soon as p ≥ 14.
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This relative error bound is certainly a large overestimate, since we cumulate in its calculation
the overestimates of the errors of Algorithms 12, 7, and 15. The largest error that we were able to
obtain in practice is the one presented in Example 2.3.8.

Example 2.3.8. If we have as input for Algorithm 20, with binary64 as underlying arithmetic, the values:

xh = 4528288502329187,

x` = 1125391118633487/251,

yh = 4522593432466394, and

y` = −9006008290016505/254,

then the relative error of the algorithm is

5.922 . . . × 2−106.

2.4 Comparison and discussion

In this chapter we have proven relative error bounds for several basic building blocks of
double-word arithmetic, suggested two new algorithms for multiplying two double-word num-
bers, suggested an improvement of the algorithms used in the QD library for dividing a double-
word number by a floating-point number, and for dividing two double-word numbers. We have
also suggested a new algorithm for dividing two double-word numbers when an FMA instruction
is available.

Table 2.2 summarizes the obtained results. For the functions for which an error bound was
already published, we always obtain a significantly smaller bound, except in one case, for which
the previously known bound turned out to be slightly incorrect. Our results make it possible to
have more trust in double-word arithmetic. They also allow us to give some recommendations:

• For adding two double-word numbers, one should never use Algorithm 8, unless one is
certain that both operands have the same sign. Double-word numbers can be added very
accurately using the (unfortunately more expensive) Algorithm 9.

• For multiplying a double-word number by a floating-point number, Algorithm 10 is the most
accurate, while Algorithm 11 is slightly less accurate, yet slightly faster. Hence one cannot
say that one is really better than the other one. The choice between them depends on whether
one mainly needs speed or accuracy. If an FMA instruction is available, Algorithm 12 is a
good candidate.

• For multiplying two double-word numbers, if an FMA instruction is available, Algorithm 15
is to be favoured. It is more accurate both from a theoretical (better error bound) and from a
practical (smaller observed errors in our intensive testings) point of view.

• There is no point in using Algorithm 16 for dividing a double-word number by a floating-
point number. Algorithm 17, introduced here, always returns the same result and it is faster.

• There is no point in using Algorithm 18 for dividing two double-word numbers. Algo-
rithm 19, presented in this paper, always returns the same result and it is faster. If an FMA
instruction is available, depending whether the priority is speed or accuracy, one might pre-
fer Algorithm 20. It is almost certainly significantly more accurate (although we have no full
proof of that: we can just say that our bounds are smaller, as well as the observed errors),
however, it is slower.
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68 Chapter 2. Double-Word Arithmetic

Table 2.2 – Summary of the results presented in this chapter. For each algorithm, we give the
previously known bound (when we are aware of it, and when the algorithm already existed), the

bound we have proved, and the largest relative error observed in our fairly intensive tests.

Operation Algorithm
Previously

known
bound

Our bound

Largest
relative error
observed in
experiments

DW + FP Algorithm 7 ? 2u2 + 5u3 2u2 − 6u3

DW + DW Algorithm 8 N/A N/A 1
Algorithm 9 2u2 (incorrect) 3u2 + 13u3 2.25u2

DW × FP Algorithm 10 4u2 1.5u2 + 4u3 1.5u2

Algorithm 11 ? 3u2 2.517u2

Algorithm 12 N/A 2u2 1.984u2

DW × DW Algorithm 13 11u2 7u2 4.9916u2

Algorithm 14 N/A 6u2 4.9433u2

Algorithm 15 N/A 5u2 3.936u2

DW ÷ FP Algorithm 16 4u2 3.5u2 2.95u2

Algorithm 17 N/A 3.5u2 2.95u2

DW ÷ DW Algorithm 18 ? 15u2 + 56u3 8.465u2

Algorithm 19 N/A 15u2 + 56u3 8.465u2

Algorithm 20 N/A 9.8u2 5.922u2

In Table 2.3 we present an overview of the performance obtained using the algorithms pre-
sented in this chapter when run both on CPU and on GPU. 2 The values are given in Mop/s (Mega
operations per second) and were obtained on the architectures described in Section 1.4.1. We also
include the floating-point operation count.

In the below table you can see that most of the algorithms perform as expected, in accordance
with their floating-point operations count. However, this is not the case of Algorithm 20 for which
we obtained an exceptional performance. After analyzing the situation, we concluded that this is
due to compiler optimizations at instruction level parallelism and also, the capacity of the al-
gorithm to fill up the pipeline. This does not mean that we always recommend the use of this
algorithm for dividing two double-word numbers; in a real world application the performance
will depend heavily on the type of the application.

2. The values reflect the performance obtained on GPU using only one execution thread.
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2.4 Comparison and discussion 69

Table 2.3 – Performance in Mop/s for double-word addition, multiplication and division
algorithms. For each algorithm, we give the values obtained when run on CPU and on GPU, and

the number of floating-point operations required by the algorithm

Operation Algorithm
Performance

on CPU
(Mop/s)

Performance
on GPU
(Mop/s)

] of Flops

DW + FP Algorithm 7 229.866 5.379 10

DW + DW Algorithm 8 208.961 5.379 11

Algorithm 9 114.932 3.81 20

DW × FP Algorithm 10 342.065 6.532 10

Algorithm 11 484.239 9.145 7

Algorithm 12 484.248 9.626 6

DW × DW Algorithm 13 392.666 8.069 9

Algorithm 14 473.746 8.703 8

Algorithm 15 331.026 7.62 9

DW ÷ FP Algorithm 16 80.7219 1.693 16

Algorithm 17 81.6378 2.176 10

DW ÷ DW Algorithm 18 80.615 1.784 24

Algorithm 19 81.5674 1.988 18

Algorithm 20 329.962 5.964 31
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3 CHAPTER 3

Floating-Point Expansions Arithmetic

Înţeleptul învaţă din păţania altora, nesocotitul nici din a sa.

Romanian proverb

In this chapter we deal with the so-called floating-point expansions, i.e., the representation of
real numbers as the unevaluated sum of several (more than two) standard machine precision
floating-point numbers. Firstly we present two new (re-)normalization algorithms that are meant
to ensure that the expansions satisfy their formal definition; these will be the base of all other
arithmetic algorithms. We develop algorithms for all basic operations (addition/subtraction, mul-
tiplication, reciprocal/division and square root) and we provide them with correctness and error
bound proofs.

This work was partially published in:
– On the computation of the reciprocal of floating point expansions using an adapted Newton-Raphson iter-
ation [42], joint work with M. Joldes, and J.-M. Muller, published in Proceedings of the 25th IEEE
International Conference on Application-specific Systems, Architectures and Processors (ASAP
2014).
– The extended journal version Arithmetic algorithms for extended precision using floating-point expan-
sions [41], joint work with M. Joldes, O. Marty, 1 and J.-M. Muller, published in the IEEE Transac-
tions on Computers journal.
– A New Multiplication Algorithm for Extended Precision Using Floating-Point Expansions [69], joint
work with J.-M. Muller and P. Tang, 2 published in Proceedings of the 23rd IEEE Symposium on
Computer Arithmetic (ARITH 2016).

In the previous chapter we just doubled the available precision, but now we want to achieve
arbitrary precision (or rather moderately arbitrary precision: for precisions of thousands of digits
other solutions are preferred). A natural extension of the notion of double-word is the notion
of floating-point expansion. If, starting from a set of floating-point inputs, we only perform exact
additions, subtractions, or multiplications, then the values we obtain are always equal to finite
sums of floating-point numbers. Such finite sums are called expansions and they are formally
defined in Definition 3.0.1.

Definition 3.0.1. A floating-point expansion x with n terms is the unevaluated sum of n floating-point
numbers x0, . . . , xn−1, in which all nonzero terms are ordered by magnitude (i.e., if y is the sequence
obtained by removing all zeros in the sequence x, and if sequence y contains m terms, |yi| ≥ |yi+1|, for all
0 ≤ i < m− 1). Each xi is called a component (or a term) of x.

1. Student intern during collaboration, now engineer at Google, France.
2. Senior engineer at Intel Corporation.
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A natural idea is to try to manipulate such expansions for performing calculations that are
either exact, either approximate yet very accurate. The arithmetic on floating-point expansions
was first developed by Priest [81], and in a slightly different way by Shewchuk [88].

One may notice that the notion of expansion is “redundant” since a nonzero number always
has more than one representation as a floating-point expansion. To make the concept useful in
practice and easy to manipulate, we must introduce a constraint on the components: the xi’s can-
not “overlap”. The notion of (non)overlapping varies depending on the authors. We present here
three definitions that were already present in the literature (Definition 3.0.3 to 3.0.5) and we intro-
duce a new one (Definition 3.0.6) that allows for a relatively relaxed handling of the floating-point
expansions and keeps the redundancy to a minimum. An expansion may contain interleaving
zeros, but the definitions that follow apply only to the non-zero terms of the expansion (i.e., the
array y in Definition 3.0.1).

Definition 3.0.2. (P-nonoverlapping floating-point numbers) Assuming x and y are normal numbers
with representations Mx · 2ex−p+1 and My · 2ey−p+1 (with 2p−1 ≤ |Mx| , |My| ≤ 2p − 1), they are P-
nonoverlapping (that is, nonoverlapping according to Priest’s definition [82]) if |ey − ex| ≥ p.

Definition 3.0.3. A floating-point expansion x0, x1, . . . , xn−1 is P-nonoverlapping (that is, nonover-
lapping according to Priest’s definition [82]) if all of its components are mutually P-nonoverlapping (i.e.,
|xi| < ulp(xi−1), for all 0 < i < n).

Shewchuk [88] weakens this into nonzero-overlapping sequences, as it follows in Definition 3.0.4.

Definition 3.0.4. A floating-point expansion x0, x1, . . . , xn−1 is S-nonoverlapping (that is, nonoverlap-
ping according to Shewchuk’s definition [88]) if for all 0 < i < n, we have exi−1 − exi ≥ p− zxi−1 , where
exi−1 and exi are the exponents of xi−1 and xi, respectively, and zxi−1 is the number of trailing zeros of
xi−1. This can be translated into |xi| < uls(xi−1), for all 0 < i < n.

In general, a P-nonoverlapping expansion carries more information than a S-
nonoverlapping one with the same number of components. In the worst case, in radix 2, a
S-nonoverlapping expansion with 53 components may not contain more information than one
binary64 floating-point number; it suffices to put one bit of information into every component.

When Priest first started developing the floating-point expansion arithmetic, he considered
that all the computations were done in faithful floating-point arithmetic (see [82]), since round-to-
nearest rounding mode was not so common. More recently, a slightly stronger sense of nonover-
lapping was introduced by Hida, Li and Bailey [34] (see Definition 3.0.5).

Definition 3.0.5. A floating-point expansion x0, x1, . . . , xn−1 is B-nonoverlapping (that is, nonoverlap-
ping according to Bailey’s definition [34]) if for all 0 < i < n, we have |xi| ≤ 1

2 ulp(xi−1).

A visual representation of the above definitions, inspired from [79], in order of their “strength”
(from (a) the strongest to (c) the weakest) is given in Figure 3.1.

Intuitively, the stronger the sense of the (non)overlapping definition, the more difficult it is to
guarantee it in the output. In practice, even theP-nonoverlapping property proved to be quite dif-
ficult and costly to obtain. In the same time, the S-nonoverlapping property is not strong enough.
On account of that we chose to compromise by using a different sense of (non)overlapping, re-
ferred to as ulp-nonoverlapping , that we formally introduce in Definition 3.0.6.

Definition 3.0.6. A floating-point expansion x0, x1, . . . , xn−1 is ulp-nonoverlapping if for all 0 < i < n,
|xi| ≤ ulp(xi−1).

In other words, the components are either P-nonoverlapping or they overlap by one bit, in
which case the second component is a power of two. This is showed in Figure 3.2.
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(a)

(b)

(c)

Figure 3.1 – Graphical representation of nonoverlapping sequences by (a) Bailey’s scheme, (b)
Priest’s scheme, and (c) Shewchuk’s scheme [79].

Figure 3.2 – Graphical representation of an ulp-nonoverlapping sequence by Definition 3.0.6.

Remark 3.0.7. Note that for P-nonoverlapping expansions we have

|xi| ≤
2p − 1

2p
ulp(xi−1)

and for S-nonoverlapping expansions

|xi| ≤
2p − 1

2p
uls(xi−1).

Depending on the nonoverlapping type of an expansion, when using standard floating-point
formats as underlying arithmetic, the exponent range forces a constraint on the number of terms.
The largest expansion can be obtained when the largest term is close to overflow and the smallest
is close to underflow. We remark that, when using B-nonoverlapping , P-nonoverlapping or ulp-
nonoverlapping expansions, for the two most common floating-point formats, the constraints are:
• for binary64 (exponent range [−1022, 1023]) the maximum expansion size is 39;
• for binary32 (exponent range [−126, 127]) the maximum expansion size is 12.
In this thesis we will manipulate only ulp-nonoverlapping expansions. The only previously

existing algorithms for manipulating arbitrary precision floating-point expansions that come with
rigorous correctness proofs are the ones given by Priest in [81], so we use them for comparison.

The outline of the chapter is structured as follows: in Section 3.1 we introduce two classi-
cal algorithms that we make use of in different contexts. We then proceed to introducing algo-
rithms for basic operations using floating-point expansions: renormalization (Section 3.2), addi-
tion (Section 3.3), multiplication (Section 3.4), reciprocal/division (Section 3.5) and square root
(Section 3.6). We end the chapter by comparing the algorithms in Section 3.7.
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74 Chapter 3. Floating-Point Expansions Arithmetic

3.1 Prerequisites

Before going further into the algorithms for performing arithmetic operations using floating-
point expansions we need to introduce two classical algorithms of which we are going to make
extensive use. We employ these algorithms in different contexts, considering different input/out-
put constraints, so, for clarity, we present all their properties here, providing proofs.

Overlapping numbers. We need to formally define the concept of floating-point numbers that
overlap by at most d digits. This is done in Definition 3.1.1, from where we can deduce and prove
Property 3.1.2.

Definition 3.1.1. Consider an array of floating-point numbers: x0, x1, . . . , xn−1. According to
Priest’s [81] definition, they overlap by at most d digits (0 ≤ d < p) if and only if ∀i, 0 ≤ i ≤ n− 2,∃ki, δi
such that:

2ki ≤ |xi| < 2ki+1, (3.1)
2ki−δi ≤ |xi+1| ≤ 2ki−δi+1, (3.2)

δi ≥ p− d, (3.3)
δi + δi+1 ≥ p− zi−1, (3.4)

where zi−1 is the number of trailing zeros at the end of xi−1 and for i = 0, z−1 := 0.

Loosely speaking, if the terms were to be written in positional notation, the digits of any two
successive non-zero terms would coincide in at most d digit positions, and no three terms would
mutually coincide in any digit position.

Property 3.1.2. Let x0, x1, . . . , xn−1 be an array of floating-point numbers that overlap by at most d digits
(0 ≤ d < p). The following properties hold:

|xi+1| < 2d ulp(xi), (3.5)
ulp(xi+1) ≤ 2d−p ulp(xi), (3.6)

|xi+2 + xi+1| ≤ (2d + 22d−p) ulp(xi). (3.7)

Proof. We have ulp(xi) = 2ki−p+1 and from (3.3) we get |xi+1| < 2ki−δi+1 < 2p−δi ulp(xi) <
2d ulp(xi). This proves that (3.5) holds for all 0 ≤ i < n− 1.

By applying (3.3) we get ulp(xi+1) = 2ki−δi−p+1 ≤ 2d−p ulp(xi), which proves that (3.6) holds
for all 0 ≤ i < n− 1.

We have |xi+1| ≤ 2d ulp(xi) and |xi+2| ≤ 2d ulp(xi+1) ≤ 22d−p ulp(xi) from which (3.7) follows.

3.1.1 The VecSum algorithm

It first appeared as part of Priest’s renormalization algorithm [81], but was coined as VecSum
by Ogita et.al [88, 79]. The VecSum algorithm, presented in Algorithm 21 and Figure 3.3, is simply
a chain of 2Sum that performs an error-free transform on n floating-point numbers. Kahan calls
this a “distillation” algorithm.

This algorithm is of interest because it has many nice properties and, depending on the input
constraints, it allows us to deduce some relationships between the outputted numbers. One can
observe the following:

• x0 + · · ·+ xn−1 = e0 + · · ·+ en−1, i.e., the sums of the input and output arrays are equal;
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Algorithm 21 – VecSum(x0, . . . , xn−1).
1: sn−1 ← xn−1
2: for i← n− 2 to 0 do
3: (si, ei+1)← 2Sum(xi, si+1)
4: end for
5: e0 ← s0
6: return e0, . . . , en−1

Figure 3.3 – Graphical representation of Algorithm 21. In the 2Sum calls the sum s is outputted to
the left and the error e downwards.

• e0 = RN(x0 + RN(x1 + RN(· · ·+ RN(xn−2 + xn−1)))), i.e., e0 = s0 is the result of the “naive”
summation of x0, . . . , xn−1.

Other properties, that we are going to use in Section 3.2, are given in Theorems 3.1.3, 3.1.7,
and 3.1.9. Each theorem considers a different input for the algorithm and shows the constrains on
the output. In the proofs we use the notations showed in Figure 3.3.

Theorem 3.1.3 was first proven by Priest [81], who showed that the algorithm can transform
an array of overlapping numbers into an S-nonoverlapping expansion. We are going to use this
theorem in Section 3.2.

Theorem 3.1.3. Let x = (x0, x1, . . . , xn−1) be an array of floating-point numbers that overlap by at most
d digits (d ≤ p − 2) and that may contain interleaving 0s. Provided that no underflow/overflow occurs
during computations, and that 2d

1−2d−p (1 + (n − 2)2−p) ≤ 2p−1 (which always holds in practice), when
applying Algorithm 21 on x, the output array e = (e0, e1, . . . , en−1) is an S-nonoverlapping expansion
that may contain interleaving zeros.

Proof. We can quickly observe that if xi = 0, then the sum si = si−1 and ei−1 = 0. This implies
that in the result we can also have interleaving zeros.

Now, since si = RN(xi+ si+1), si is closer to xi+ si+1 than xi. This gives us |(xi + si+1)− si| ≤
|(xi + si+1)− xi|, and so |ei+1| ≤ |si+1|. Similarly, si is closer to xi + si+1 than si+1, so |ei+1| ≤ |xi|.
From (3.5) we get:

|xi+1| + |xi+2|+ · · · ≤
≤ [2d + 22d−p + 23d−2p + 24d−3p + · · · ] ulp(xi)

≤ 2d

1− 2d−p
ulp(xi). (3.8)

We know that si+1 = RN(xi+1 + RN(· · · + xn−1)) and, using a property given by Jeannerod
and Rump in [40], we get:

|si+1 − (xi+1 + · · ·+ xn−1)|
≤ (n− i− 2) · 2−p · (|xi+1|+ · · ·+ |xn−1|) . (3.9)
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From (3.8) and (3.9) we obtain:

|si+1| ≤
2d

1− 2d−p
(1 + (n− i− 2)2−p) ulp(xi).

It is easily seen that
2d

1− 2d−p
(1 + (n− i− 2)2−p) ≤ 2p−1, (3.10)

is satisfied for p ≥ 4 and n ≤ 10, for p ≥ 5 and n ≤ 18, for p ≥ 6 and n ≤ 34, and so on. This
includes all practical cases, when d ≤ p − 2, so that ulp(si+1) < ulp(xi). Therefore xi and si+1 are
multiples of ulp(si+1), thus xi + si+1 is multiple of ulp(si+1), hence RN(xi + si+1) is multiple of
ulp(si+1) and |ei+1| = |xi + si+1 − RN(xi + si+1)| is multiple of ulp(si+1).

Also, by definition of 2Sum, we have |ei+2| ≤ 1
2 ulp(si+1). Now, we can compare |ei+1| and

|ei+2|. Since |ei+1| is a multiple of ulp(si+1), either ei+1 = 0 or ei+1 is larger than 2 |ei+2| and
multiple of 2k, such that 2k > |ei+2|. This implies that the array e = (e0, e1, . . . , en−1) is S-
nonoverlapping and may have interleaving zeros.

Remark 3.1.4. We observe that the calls to 2Sum can be replaced by calls to Fast2Sum. This is possible
because we have |si+1| ≤ 2p−1 ulp(xi), for p ≥ 4 and n ≤ 10, for p ≥ 5 and n ≤ 18, for p ≥ 6 and n ≤ 34,
and so on. Also ulp(xi) ≤ 2−p+1 |xi|. As a deduction |si+1| ≤ |xi|.

Remark 3.1.5. Theorem 3.1.3 also holds if we have the weaker condition d ≤ p− 1, provided that n ≤ 12
for binary32 and n ≤ 39 for binary64. However, if this is the case, the above remark does not hold anymore,
so we cannot replace the 2Sum algorithm with Fast2Sum.

In Example 3.1.6, using a toy system with p = 5, we present the behavior of the algorithm in
this setting.

Example 3.1.6. Consider a floating-point system with precision p = 5. Let x be a 5-term array:

x0 = −1.00112 × 2−1,

x1 = −2−3,

x2 = 1.11102 × 2−6,

x3 = −1.10102 × 2−8,

x4 = 1.11102 × 2−11.

Using x as input for Algorithm 21 will result in the S-nonoverlapping array e:

e0 = −1.01102 × 2−1,

e1 = −2−7,

e2 = 0.0,

e3 = −2−11,

e4 = −2−13.

The second setting that we consider is going to be used in Section 3.2 and 3.3 later on.

Theorem 3.1.7. Let x = (x0, x1, . . . , xn−1) be an array of floating-point numbers that overlap by at most
d ≤ p − 2 digits and may contain pairs of at most 2 consecutive terms that overlap by p digits. The array
may also contain interleaving 0s. Provided that no underflow/overflow occurs during computations, when
applying Algorithm 21 on x, the output array e = (e0, e1, . . . , en−1) satisfies |e0| > |e1| ≥ · · · > |ei−1| ≥
|ei| > |ei+1| ≥ |ei+2| > · · · and the eis are S-nonoverlapping for strict inequality or they are equal to a
power of 2.
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Proof. The proof is done by induction, and for an easier following we include Figure 3.4 that
illustrates an excerpt of the algorithm.

Figure 3.4 – Excerpt of Algorithm 21.

Step 1. We consider that the input array contains only one pair of p-overlapping numbers, say
xi and xi+1.

The same as in the proof of Theorem 3.1.3, we have ulp(si+2) < ulp(xi+1). Since
si+1 = RN(si+2 + xi+1) we can deduce that ulp(si+1) ≤ 2 ulp(xi+1) = 2 ulp(xi). We tackle
this by splitting it into two cases.

(i) ulp(si+1) = 2 ulp(xi+1) = 2 ulp(xi). It follows that si+1 > xi, but we can make the follow-
ing statement: (e0, . . . , ei+1) = VecSum(x0, . . . , xi−1, si+1, xi), and consider them swapped, since
2Sum(xi, si+1) is the same as 2Sum(si+1, xi). Also, (si+1, ei+2, . . . , en−1) = VecSum(xi+1, . . . , xn−1).
From Theorem 3.1.3 and Remark 3.1.5 it follows that the two portions of the array e are S-
nonoverlapping . Now we need to find a relationship between ei+1 and ei+2.

From 2Sum, |ei+2| ≤ 1
2 ulp(si+1) = ulp(xi). We have si + ei+1 = xi + si+1, so si and ei+1 are

both multiples of ulp(xi), hence |ei+1| ≥ ulp(xi). It holds that:

|ei+2| ≤ ulp(xi) ≤ |ei+1| . (3.11)

If |ei+2| < ulp(xi), the two numbers are S-nonoverlapping and it follows that the entire array e is
S-nonoverlapping . Otherwise |ei+2| = ulp(xi) = |ei+1|, meaning that we have one pair of terms
that are equal to a power of 2 and the rest of the array e is S-nonoverlapping. For this case the
theorem holds.

(ii) ulp(si+1) ≤ ulp(xi+1) = ulp(xi).
We have si = RN(xi + si+1), so it follows that ulp(si) ≤ 2 ulp(xi). Also, from the hypothesis we
know that ulp(xi) ≤ 1

4 ulp(xi−1). This implies ulp(si) ≤ 1
2 ulp(xi−1), meaning that si and xi−1

overlap by at most p− 1 digits.
We know that (e0, . . . , ei) = VecSum(x0, . . . , xi−1, si) and (si+1, ei+2, . . . , en−1) =

VecSum(xi+1, . . . , xn−1), and from Theorem 3.1.3 and Remark 3.1.5 it follows that they are S-
nonoverlapping . Now we need to find a relationship between ei, ei+1 and ei+2.

From 2Sum, |ei+1| ≤ 1
2 ulp(si). Also, si−1 + ei = xi−1 + si, so ei is multiple of ulp(si), hence ei

and ei+1 are S-nonoverlapping .
Following the same reasoning |ei+2| ≤ 1

2 ulp(si+1) and ei+1 is multiple of ulp(si+1), hence ei+1

and ei+2 are S-nonoverlapping . This makes the entire array e S-nonoverlapping , proving that
the theorem also holds for this case.

Step 2. We consider at most 2 consecutive pairs of p-overlapping numbers, say xi−2 overlaps
with xi−1 and xi overlaps with xi+1.

Same as above we have (e0, . . . , ei−1) = VecSum(x0, . . . , xi−3, si−1, xi−2) and (ei+2, . . . , en−1) =
VecSum(xi+1, . . . , xn−1), with both portions of the array e S-nonoverlapping .
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We know that si+1 = RN(xi+1 + si+2), so ulp(si+1) ≤ 2 ulp(xi+1) = 2 ulp(xi). If they are
equal we either have ei+1 S-nonoverlapping with ei+2 or we have the limit case |ei+1| = |ei+2| =
ulp(xi) = ulp(xi+1).

Also si = RN(xi + si+1), so ulp(si) ≤ 2 ulp(si+1) ≤ ulp(xi−1). Since si−1 + ei = xi−1 + si, si−1
and ei are multiples of ulp(si). Also |ei+1| ≤ 1

2 ulp(si), from where we deduce that ei and ei+1 are
S-nonoverlapping .

Now, ulp(si−1) ≤ 2 ulp(xi−1) = 2 ulp(xi−2). In case they are equal, the limit case |ei−1| = |ei| =
ulp(xi−2) = ulp(xi−1) can occur again.

This proves that the array e is S-nonoverlapping and may contain two consecutive pairs of
powers of 2, so the theorem holds.

Step 3. As the last step of the induction consider N consecutive pairs of p-digit overlapping
numbers, starting from xi overlapping with xi+1 and so on.

For (ei−1, ei, ei+1, . . . , en−1) the same things hold as proven in the previous case.
Now xi−4 and xi−3 can overlap by at most p digits, hence ulp(si−2) ≤ ulp(xi−3) = ulp(xi−4).

We know that |ei−1| ≤ 1
2 ulp(si−2) and because si−3+ei−2 = xi−3+si−2, si−3 and ei−2 are multiples

of ulp(si−2). If follows that ei−2 and ei−1 are S-nonoverlapping .
We have the case in which xi−4, xi−3 and si−2 overlap by at most p digits, so we get ulp(si−3) ≤

ulp(xi−4) = ulp(xi−3) and the limit case |ei−3| = |ei−2| = ulp(xi−4) can occur again.
We know that we can have only pairs of 2 floating-point numbers that overlap by p digits and

that the other numbers in the input sequence overlap by at most p − 2 digits. This ensures that
we can only get pairs of 3 floating-point numbers of the form (xj−1, xj , sj+1) that overlap by p
digits. In this case we will either have ej = ej+1 equal to a power of 2, either ej and ej+1 are
S-nonoverlapping , as showed before.

By this the induction holds and we have at most pairs of two ejs that are equal to a power of 2
and the theorem is proven.

In Example 3.1.8 we show the algorithm’s behavior under these assumptions.

Example 3.1.8. Consider a floating-point system with precision p = 5. Let x be a 5-term array:

x0 = −1.00012 × 2−3,

x1 = −1.11112 × 2−3,

x2 = −1.01102 × 2−6,

x3 = −1.10002 × 2−6,

x4 = −1.01102 × 2−9.

Using x as input for Algorithm 21 will result in the array e:

e0 = −1.10102 × 2−2,

e1 = 2−7,

e2 = 2−7,

e3 = 2−10,

e4 = 2−12.

Shewchuk [88] used the same algorithm (under the name Grow-Expansion) for adding an S-
nonoverlapping expansion with a random floating-point number. Theorem 3.1.9 shows that when
doing this, the resulted expansion is also S-nonoverlapping .
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Theorem 3.1.9. Let x = (x0, x1, . . . , xn−1) be an S-nonoverlapping floating-point expansion that may
contain interleaving 0s and t a random floating-point number. Provided that no underflow/overflow occurs
during computations, when applying Algorithm 21 on (x, t), the output array e = (e0, e1, . . . , en) is going
to be S-nonoverlapping .

Proof. We know that sn−1 is the nearest floating-point number to xn−1 + t, closer than t. This
means that |sn−1 − (xn−1 + t)| ≤ |(xn−1 + t)− t|, hence |en| ≤ |xn−1|. There exists two integers k′

and k′′ such that:

sn−1 is multiple of 2k
′

s.t. |en| ≤
1

2
2k
′
, and

xn−2 is multiple of 2k
′′

s.t. |xn−1| ≤
1

2
2k
′′
. (3.12)

We define k = min(k′, k′′) and we observe that en−1 is multiple of 2k. Since |en| is less than both
2k
′

and 2k
′′
, we proved that en−1 and en are S-nonoverlapping .

Now, we can prove by induction that for all n ≥ i > 0, |ei| ≤ 1
2 uls(ei−1) (i.e., ei and ei−1 are

S-nonoverlapping ). We proved that it holds for i = n. Following the same reasoning we can
deduce that ei−1 is multiple of 2k̂, where k̂ is an integer, and |ei| ≤ 2k̂. This shows that ei−1 and ei
are S-nonoverlapping and the induction holds.

We give a numerical example in Example 3.1.10.

Example 3.1.10. Consider a floating-point system with precision p = 5. Let x be a 5-term S-
nonoverlapping array:

x0 = −1.10012 × 2−2,

x1 = 2−8,

x2 = 0.0,

x3 = 2−12,

x4 = 1.10112 × 2−14,

and t = −1.10102 × 2−8 an arbitrary number;
Using (x, t) as input for Algorithm 21 will result in the S-nonoverlapping array e:

e0 = −1.10012 × 2−2,

e1 = −1.0012 × 2−9,

e2 = 0.0,

e3 = 0.0,

e4 = 0.0,

e5 = 1.10112 × 2−14.

In the worst case, Algorithm 21 performs n− 1 calls to 2Sum or Fast2Sum. This accounts for a
total of V (n) = 6n− 6 or V fast(n) = 3n− 3 floating-point operations.

3.1.2 The VecSumErrBranch algorithm

Algorithm 22, illustrated in Figure 3.5, is a variation of VecSum presented above, consisting
also in a chain of 2Sum, but instead of starting from the least significant, we start from the most
significant component. Also, instead of propagating the sums we propagate the errors. If however,
the error after a 2Sum block is zero, then we propagate the sum.

This algorithm can render different type of inputs ulp-nonoverlapping . The properties given
in Theorem 3.1.11 and 3.1.14 are going to be used in Section 3.2, and the one in Theorem 3.1.17 in
Section 3.4, for one of the two multiplication algorithms.

79



80 Chapter 3. Floating-Point Expansions Arithmetic

Algorithm 22 – VecSumErrBranch(e0, . . . , en−1,m).
1: j ← 0
2: ε0 = e0
3: for i← 0 to n− 2 do
4: (rj , εi+1)← 2Sum(εi, ei+1)
5: if εi+1 6= 0 then
6: if j ≥ m− 1 then
7: return r0, r1, . . . , rm−1 //enough output terms

8: end if
9: j ← j + 1

10: else
11: εi+1 ← rj
12: end if
13: end for
14: if εn−1 6= 0 and j < m then
15: rj ← εn−1
16: end if
17: return r0, r1, . . . , rm−1

Figure 3.5 – Graphical representation of Algorithm 22. In the 2Sum calls the sum s is outputted
downwards and the error e to the right.

Theorem 3.1.11. Let e = (e0, . . . , en−1) an S-nonoverlapping input expansion that may contain in-
terleaving 0s and let m be an integer input parameter, with 1 ≤ m ≤ n − 1, the required number
of output terms. Provided that no underflow/overflow occurs during computations, Algorithm 22 re-
turns r = (r0, . . . , rm−1), an ulp-nonoverlapping expansion, i.e., it satisfies |ri+1| ≤ ulp(ri) for all
0 ≤ i < m− 1.

Proof. The case when e contains 1 or 2 elements is trivial. Consider now at least 3 elements. By
definition of 2Sum, we have |ε1| ≤ 1

2 ulp(r0) and by definition of S-nonoverlapping ,

e0 = E0 · 2k0 with |e1| < 2k0 ,

e1 = E1 · 2k1 with |e2| < 2k1 .

Hence, r0 and ε1 are both multiples of 2k1 . Two possible cases may occur:

(i) ε1 = 0. If we choose to propagate directly ε1 = 0, then r1 = e2 and ε2 = 0. This implies
by induction that ri = ei+1,∀i ≥ 1. So, directly propagating the error poses a problem, since the
whole remaining chain of 2Sum is executed without any change on the input array. So, as shown
in line 11, when εi+1 = 0 we propagate the sum rj .
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(ii) ε1 6= 0. Then |e2| < |ε1| and |ε1 + e2| < 2 |ε1|, from where we get |r1| = |RN(ε1 + e2)| ≤
2 |ε1| ≤ ulp(r0).

Now, we prove by induction the following statement: at step i > 0 of the loop in Algorithm 22,
both rj−1 and εi are multiples of 2ki with |ei+1| < 2ki . We proved above that for i = 1 it holds.
Suppose now it holds for i and prove it for i + 1. Since rj−1 and εi are multiples of 2ki with
|ei+1| < 2ki and ei+1 = Ei+1 · 2ki+1 with |ei+2| < 2ki+1 (by definition of S-nonoverlapping ), it
follows that both rj and εi+1 are multiples of 2ki+1 (by definition of 2Sum).

Finally, we prove the relation between rj and rj−1. If εi+1 = 0, we propagate rj , i.e., εi+1 =
rj . Otherwise |ei+1| < |εi|, so |ei+1 + εi| < 2 |εi| and finally |rj | = |RN(ei+1 + εi)| ≤ 2 |εi| ≤
ulp(rj−1).

Remark 3.1.12. We observe that in all practical cases the calls to 2Sum can be replaced by calls to
Fast2Sum. This is possible because we have |si+1| ≤ 2p−1 ulp(xi), for p ≥ 4 and n ≤ 10, for p ≥ 5
and n ≤ 18, for p ≥ 6 and n ≤ 34, and so on, and our constraints on the expansion size are n ≤ 39 for
binary64 and n ≤ 12 for binary32. Also ulp(xi) ≤ 2−p+1 |xi|. As a deduction |si+1| ≤ |xi|.

In Example 3.1.13 we show the behavior described above using a floating-point toy system.

Example 3.1.13. Consider a floating-point system with precision p = 5. Let e be a 5-term S-
nonoverlapping array:

e0 = 1.01102 × 2−1,

e1 = −2−7,

e2 = 0.0,

e3 = 2−10,

e4 = 2−13,

and m = 3 an integer. Using e,m as input for Algorithm 22 will result in the ulp-nonoverlapping array r:

r0 = 1.01102 × 2−1,

r1 = −1.11002 × 2−8,

r2 = 2−13.

Theorem 3.1.14. Let e = (e0, e1, . . . , en−1) that satisfies |e0| > |e1| ≥ · · · > |ei−1| ≥ |ei| > |ei+1| ≥
|ei+2| > · · · and the eis are S-nonoverlapping for strict inequality or they are equal to a power of 2 and let
m be an integer input parameter, with 1 ≤ m ≤ n − 1, the required number of output terms. Provided
that no underflow/overflow occurs during computations, when applying Algorithm 22 on e, the output
array r = (r0, . . . , rm−1) is an ulp-nonoverlapping expansion, i.e., it satisfies |ri+1| ≤ ulp(ri) for all
0 ≤ i < m− 1.

Proof. The proof follows the exact same structure as the proof of Theorem 3.1.11, with very little
modifications, so we do not detail it here. The main changes are:

• we can also have |e1| = |e2| = 2k1 ;

• we assume that · · · ≤ |ei| < |ei+1| ≤ |ei+2| < · · · , so |ei+1| < 2ki and ei+1 = Ei+1 · 2ki+1 with
|ei+2| ≤ 2ki+1 ;

• |rj | ≤ ulp(rj−1);

• |ei+1| ≤ |εi|, so |ei+1 + εi| ≤ 2 |εi|, with equality when |ei+1| = |ei+2| = |εi| = 2ki+1 .
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Remark 3.1.15. We observe that the calls to 2Sum can still be replaced by calls to Fast2Sum, since, if
ei = ei+1 they are equal to a power of 2, in which case the result is exact.

A numerical example is given in Example 3.1.16.

Example 3.1.16. Consider a floating-point system with precision p = 5. Let e be a 5-term array:

e0 = −1.00112 × 22,

e1 = 2−5,

e2 = 2−5,

e3 = 2−7,

e4 = 1.12 × 2−9,

and m = 3 an integer. Using e,m as input for Algorithm 22 will result in the ulp-nonoverlapping array r:

r0 = −1.00112 × 22,

r1 = 1.00112 × 2−4,

r2 = −2−10.

The next theorem is going to be used for proving the correctness of the “accurate” multiplica-
tion algorithm in Section 3.4.

Theorem 3.1.17. Let e = (e0, e1, . . . , en−1) that satisfies: ei is multiple of 2t0−ib = 2ti and |ei+1| <
2ti+c+1, for all 0 ≤ i < n− 1, where b+ c = p− 1 (c << b). Also |e0| > |e1| and |e0| < 2t0+p+1. And let
m be an integer input parameter, with 1 ≤ m ≤ n− 1, the required number of output terms. Provided that
no underflow/overflow occurs during computations, when applying Algorithm 22 on e, the output array
r = (r0, . . . , rm−1) is an ulp-nonoverlapping expansion.

Proof. The case when e contains 1 or 2 elements is trivial. Consider now at least 3 elements. By the
input type we know that:

e0 = E0 · 2t0 ,
e1 = E1 · 2t1 with t1 = t0 − b.

Hence, r0 and ε1 are both multiples of 2t0−b. Two possible cases may occur:

(i) ε1 = 0. If we choose to propagate directly ε1, then r1 = e2 and ε2 = 0. This implies,
by induction, that ri = ei+1,∀i ≥ 1. So, directly propagating the error poses a problem, since
the whole remaining chain of 2Sum is executed without any change between the input and the
output. So, as shown line 11, when εi = 0 we propagate the sum rj , so εi ← rj .

(ii) ε1 6= 0. By definition of 2Sum, we have |ε1| ≤ 1
2 ulp(r0). We also have |e0| > |e1|, so

|r0| = |RN(e0 + e1)| ≤ 2 |e0|. Hence: |ε1| < 2t0+2.

We now prove by induction the following statement: at each step i ≥ 1 of the loop in Algo-
rithm 22, both rj−1 and εi are multiples of 2ti and εi = 0 or |εi| < 2ti+b+2, meaning that εi fits in at
most b+ 1 bits. We proved above that for i = 1 this holds. Suppose now it holds for i and prove it
for i+ 1.

At this step we have εi + ei+1 = rj + εi+1. Since εi is a multiple of 2ti and ei+1 is a multiple of
2ti+1 , with ti+1 = ti − b, then both rj and εi+1 are multiples of 2ti+1 . Two cases may occur:
– if |εi| < 2ti+c+1 then εi + ei+1 is a floating-point number, which implies rj = εi + ei+1 exactly
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and εi+1 = 0, in which case we propagate rj < 2ti+c+2.
– if |εi| > 2ti+c we have |rj | ≤ 2 |εi| and we get (by definition of 2Sum):

|εi+1| ≤
1

2
ulp(rj)

< 2−p · 2 · 2ti+b+2

< 2ti−c+2

This condition is even stronger than what we were trying to prove, so the induction holds.
Finally, we prove the relation between rj−1 and rj . If εi = 0, we propagate rj−1, i.e., εi ← rj−1.

Otherwise |rj | = |RN(εi + ei+1)| ≤ 2 |εi| and since εi ≤ 1
2 ulp(rj−1), then |rj | ≤ ulp(rj−1) and the

proposition is proven.

Remark 3.1.18. In this case also we can replace the 2Sum calls with Fast2Sum calls, since we showed that
the addition is exact for |ei+1|, |εi| < 2ti+c+1.

For an easier understanding of this setting we give a numerical example in Example 3.1.19.

Example 3.1.19. Consider a floating-point system with precision p = 5 and b = 3, c = 1. Let e be a 5-term
array:

e0 = 1.01112 × 2,

e1 = 1.11102 × 2−3,

e2 = 2−9,

e3 = −1.0112 × 2−9,

e4 = 1.12 × 2−12,

and m = 3 an integer. Using e,m as input for Algorithm 22 will result in the ulp-nonoverlapping array r:

r0 = 1.10012 × 2,

r1 = −1.00012 × 2−6,

r2 = 1.012 × 2−11.

Remark 3.1.20. After applying Algorithm 22 on an input that satisfies any of the above constraints, the
output expansion cannot have interleaving zeros; zeros may appear only at the end of the expansion.

In the worst case, Algorithm 22 performs n− 1 calls to Fast2Sum and n− 2 comparisons. This
accounts for a total of V fast

err (n,m) = 4n− 5 floating-point operations.
Now that we have all the prerequisites that we need, we can start looking into more complex

algorithms for floating-point arithmetic.

3.2 Renormalization of floating-point expansions

As we explained, in order to ensure that the expansions carry significant information we re-
quire them to be nonoverlapping. Even if the input expansions satisfy this requirement, this
property is often “broken” during the calculations. So, in order to ensure the precision related
requirements, we may need to perform a (re-)normalization after each operation. This types of
algorithms are an important brick for manipulating floating-point expansions.

In what follows we will present a renormalization algorithm given by Priest, followed by two
new algorithms, that we developed.
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3.2.1 Priest’s renormalization algorithm

While several renormalization algorithms have been proposed in literature, Priest’s [81] algo-
rithm was the only one provided with a complete correctness proof. The proposed algorithm, with
a slightly modified inner loop proposed by Nievergelt [76] 3 is the one showed in Algorithm 23.
For an easier understanding of how the algorithm works we also illustrate an example with n = 5
in Figure 3.6. The “boxes” with a gradient color represent a 2Sum call followed by a conditional
branch.

Algorithm 23 – Renormalize_Priest(x0, x1, . . . , xn−1).
1: c← xn−1
2: for i← n− 2 to 0 do
3: (c, fi+1)← 2Sum(c, xi)
4: end for
5: r0 ← c; k ← 1
6: for i← 1 to n− 1 do
7: (rk−1, d)← 2Sum(rk−1, fi)
8: if d 6= 0 then
9: `← k − 1; k ← k + 1

10: while ` ≥ 1 do
11: (r`−1, d

′)← 2Sum(r`−1, r`)
12: if d′ = 0 then
13: k ← k − 1
14: else
15: r` ← d′

16: end if
17: `← `− 1
18: end while
19: rk−1 ← d
20: end if
21: end for
22: return r0, r1, . . . rk−1

Priest proved that Theorem 3.2.1 holds, but for space constrains we do not include the proof.

Theorem 3.2.1. Let x0, x1, . . . , xn−1 be an array of floating-point numbers that overlap by at most p − 2
digits. Provided that no underflow/overflow occurs during the calculations, Algorithm 23 returns a P-
nonoverlapping expansion r = (r0, r1, . . . rk−1) with k terms, were k ≤ n.

In the worst case, Algorithm 23 performs a total of Rpriest(n) = 20(n− 1) floating-point oper-
ations. One can easily see that the algorithm has many conditional branches, which make it even
slower in practice. Even though modern processors have optimized branch prediction, this is not
the case for GPUs. Furthermore, the decisions depend heavily on the input values, which may
cause branch prediction to fail often.

3. Priest’s version of the algorithm had a missed condition that would cause the inner loop to turn infinitely in some
cases.
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Figure 3.6 – Example of execution of Algorithm 23, for an input array with n = 5 terms.

3.2.2 A new renormalization algorithm

The algorithm that follows is actually a reduced version of Algorithm 6 in [41]. There
we presented an algorithm with m + 1 levels that would render the result as an m-term P-
nonoverlapping floating-point expansion. Even though the last m − 1 levels do not use any
branching, and take advantage of the pipeline, after tests and discussions, we decided that it
is too expensive to ensure P-nonoverlapping expansions. In practice, we are happy to use ulp-
nonoverlapping expansion only, this is why we do not include here the full initial algorithm.

This step is crucial for assuring the “quality” of the expansion, but the proofs are complex and
tedious and errors may have been left unnoticed, so having a formal proof would be ideal. To this
end we collaborated with S. Boldo 4, for building a formal proof using the Coq proof assistant and
the Floq library [86]. We were also able to prove that the algorithm also works in the presence of
underflow, since the additions are exact (see Lemma 1.1.4), hypothesis that we dismiss here. This
work is presented in Formal Verification of a Floating-Point Expansion Renormalization Algorithm [10],
which was accepted for publication and is going to be presented at the 8th International Confer-
ence on Interactive Theorem Proving (ITP 2017).

Algorithm 24 (ilustrated in Figure 3.7) is based on different layers of chained 2Sum, that we
grouped in simpler layers based on VecSum. It renders an array of overlapping numbers into an
ulp-nonoverlapping expansion. Using some of the theorems proved in the previous section we
will prove that this algorithm works in three different contexts.

Algorithm 24 – Renormalize(x0, x1, . . . , xn−1,m).
1: e[0 : n− 1]← VecSum(x[0 : n− 1])
2: r[0 : m− 1]← VecSumErrBranch(e[0 : n− 1],m)
3: return r0, r1, . . . , rm−1

Remark 3.2.2. Note that the first Fast2Sum in VecSumErrBranch can be skipped. We know that e0 and
e1 are the result of the last 2Sum in the VecSum call. This means that |e1| ≤ 1

2 ulp(e0), so (r0, ε0) ←
2Sum(e0, e1) will return r0 = e0 and ε1 = e1.

4. Researcher in the Toccata project-team, Inria Saclay, Paris, France.
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Theorem 3.2.3 shows the general context in which the algorithm renders an array of overlap-
ping numbers arranged in decreasing order of magnitude, into an ulp-nonoverlapping expansion.

Figure 3.7 – Graphical representation of Algorithm 24.

Theorem 3.2.3. Let x0, x1, . . . , xn−1 be an array of floating-point numbers that overlap by at most d ≤
p−2 digits that may contain interleaving 0s and let m be an integer input parameter, with 1 ≤ m ≤ n−1.
Provided that no underflow/overflow occurs during the calculations, Algorithm 24 returns a “truncation”
to m terms of an ulp-nonoverlapping floating-point expansion r = r0 + · · · + rn−1 such that x0 + · · · +
xn−1 = r.

Proof. The proof is straightforward, using the properties in the previous section. From Theo-
rem 3.1.3 we know that the first level transforms the overlapping input sequence into an S-
nonoverlapping expansion. After passing through the second level, from Theorem 3.1.11, we
know that the output is an ulp-nonoverlapping expansion.

In this context we can use the Fast2Sum algorithm for both levels, so in the worst case Algo-
rithm 24 performs Rfast(n,m) = V fast(n) + V fast

err (n,m)− 3 = 7n− 11 floating-point operations.
Theorem 3.2.4 presents a different context in which the algorithm works. This is the case in

which pairs of two numbers that overlap by p digits may appear in the input. We use this property
when performing additions of floating-point expansions (for details see Section 3.3, Algorithm 27).

Theorem 3.2.4. Let x0, x1, . . . , xn−1 be an array of floating-point numbers that overlap by at most d ≤
p − 2 digits that may contain pairs of at most 2 consecutive terms that overlap by p digits. The array may
also contain interleaving 0s. Let m an integer input parameter, with 1 ≤ m ≤ n − 1. Provided that no
underflow/overflow occurs during the calculations, Algorithm 24 returns a “truncation” to m terms of an
ulp-nonoverlapping floating-point expansion r = r0 + · · ·+ rn−1 such that x0 + · · ·+ xn−1 = r.

Proof. The proof is similar to the proof of Theorem 3.2.3, but this time we use Theorem 3.1.7 and
Theorem 3.1.14 from the previous section.

Another (simpler) context in which the renormalization works is presented in Theorem 3.2.5.
This is actually used for a special case of the addition, i.e., the addition of a floating-point expan-
sion with a floating-point number.

Theorem 3.2.5. Let x0, x1, . . . , xn−1 be an S-nonoverlapping floating-point expansion that may contain
interleaving 0s, t an arbitrary floating-point number and m be an integer input parameter, with 1 ≤
m ≤ n. Provided that no underflow/overflow occurs during the calculations, Algorithm 24 returns a
“truncation” to m terms of an ulp-nonoverlapping floating-point expansion r = r0 + · · · + rn such that
x0 + · · ·+ xn−1 + t = r.

Proof. The proof is straightforward using Theorem 3.1.9 and Theorem 3.1.11.
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In these last two contexts we cannot use Fast2Sum on the first level, so in the worst case Algo-
rithm 24 performs R(n,m) = V (n) + V fast

err (n,m)− 3 = 10n− 14 floating-point operations.
We give an overview of all the cases for which this renormalization algorithm returns an ulp-

nonoverlapping expansion in Proposition 3.2.6.

Proposition 3.2.6. Provided that Algorithm 24 receives as input one of the following:

• an n-term array x of floating-point numbers that overlap by at most p − 2 digits that may contain
interleaving 0s;

• an n-term array x of floating-point numbers that overlap by at most p − 2 digits that may contain
pairs of at most 2 consecutive terms that overlap by p digits and that may contain interleaving 0s;

• an S-nonoverlapping floating-point expansion x with n − 1 terms that may contain interleaving 0s
and a random floating-point number xn−1;

along with an integer m, the result r = r0, . . . , rm−1 is going to be an ulp-nonoverlapping floating-point
expansion equal to x truncated to m terms.

3.2.3 Renormalization of random numbers

Sometimes, in practice, we are not able to prove a uniform relationship between the numbers of
an array (e.g. the monotony of the array). Even if this is the case we sometimes still need to render
them ulp-nonoverlapping . To this end, we developed Algorithm 25 (illustrated in Figure 3.8) that
satisfies Theorem 3.2.8.

Algorithm 25 – Renormalize_random(x0, x1, . . . , xn−1,m).

1: e
(0)
0 ← x0

2: for i← 1 to n− 1 do
3: e(i)[0 : i]← VecSum(e(i−1)[0 : i− 1], xi)
4: end for
5: r[0 : m− 1]← VecSumErrBranch(e[0 : n− 1],m)
6: return r0, r1, . . . , rm−1

Remark 3.2.7. Note that we can also skip the first Fast2Sum in the VecSumErrBranch call, for the same
reasons as for the previous algorithm.

Theorem 3.2.8. Let x0, x1, . . . , xn−1 be an array of random floating-point numbers that may contain
interleaving 0s and let m be an integer input parameter, with 1 ≤ m ≤ n − 1. Provided that no un-
derflow/overflow occurs during the calculations, Algorithm 25 returns a “truncation” to m terms of an
ulp-nonoverlapping floating-point expansion r = r0 + · · ·+ rn−1 such that x0 + · · ·+ xn−1 = r.

Proof. It can be easily seen that during the first iteration of the for loop (lines 2 to 4), the Vec-
Sum algorithm is actually reduced to a call to 2Sum. Thence, we have e(1)1 ≤ 1

2 ulp(e
(1)
0 ), which

implies that the two numbers are S-nonoverlapping . In the second level we call VecSum on an
S-nonoverlapping expansion with 2 terms (e(1)0 , e

(1)
1 ) and a random number, x2.

By induction, using Theorem 3.1.9, it follows that at each iteration i of the loop we call VecSum
on an S-nonoverlapping expansion (e(i−1)0 , . . . , e

(i−1)
i−1 ) and a random number, xi and we get the

result e(i)0 , . . . , e
(i)
i , also an S-nonoverlapping expansion.

In line 5 we apply VecSumErrBranch on an S-nonoverlapping expansion, e(n−1), and from
Theorem 3.1.11 we get that the resulted expansion r is ulp-nonoverlapping .
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Figure 3.8 – Graphical representation of Algorithm 25.

In the worst case, Algorithm 25 calls n− 1 times VecSum on i terms (2 ≤ i ≤ n), followed by a
call to VecSumErrBranch using Fast2Sum. This accounts for a total of Rrand(n,m) =

∑n
i=2 V (i) +

V fast
err (n,m)− 3 = 3n2 + n− 8 floating-point operations.

3.3 Addition of floating-point expansions

In general, an algorithm that performs the addition of two expansions x and y with n and m
terms, respectively, will return a floating-point expansion with at most n + m terms. This poses
a problem when successive computations are done using the result, this is why a reduction of
terms is required. This is done, using “truncation” and normalization methods, both on-the-fly or
a-posteriori.

Note that, in this setting, subtraction can be performed simply by negating the floating-point
terms in y.

3.3.1 Priest’s addition algorithm

Many variants of algorithms that compute the sum of two expansions have been presented in
the literature [81, 88, 34, 85]. One of the oldest algorithms was given by Priest [81]. His algorithm,
Algorithm 26, is “merge-sorting the components of the two expansions by increasing magnitude
and adding in this order”, followed by applying his renormalization algorithm, in order to render
the expansion P-nonoverlapping .

This algorithm uses many conditional branches, and it has a worst case operation count of
Apriest(n,m) = 27(n+m)− 19.
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3.3 Addition of floating-point expansions 89

Algorithm 26 – Addition_Priest(x0, . . . , xn−1, y0, . . . , ym−1).
1: i← n− 1, j ← m− 1
2: if |xi| < |yi| then
3: while i > 0 and |xi−1| ≤ |yj | do
4: ei+j ← xi, i← i− 1
5: end while
6: else if |xi| > |yi| then
7: while j > 0 and |yj−1| ≤ |xi| do
8: ei+j ← yj , j ← j − 1
9: end while

10: end if
11: a← xi, b← yj
12: while i > 0 or j > 0 do
13: (c, ei+j)← 2Sum(a, b)
14: a← c
15: if i = 0 or (j > 0 and |yj−1| < |xi−1|) then
16: b← yj−1, j ← j − 1
17: else
18: b← xi−1, i← i− 1
19: end if
20: end while
21: (c, e1)← 2Sum(a, b)
22: e0 ← c
23: s[0 : . . .]← Renormalize_Priest(e[0 : m+ n− 1]) //using Alg. 23

24: return s0, s1, . . .

In what follows we will present two algorithms for adding floating-point expansions, a new
one and one that is a generalization of the algorithm used in the QD library [35]. For both al-
gorithms we use the same on-the-fly truncation method, i.e., when computing the sum of two
expansions with n and m terms, respectively, if the result is expected to have r terms, we take into
consideration only the first r terms of each of the expansions. We give here, in Theorem 3.3.1, the
error bound on the error caused by this truncation, since we are going to use it for both algorithms.

Theorem 3.3.1. Let x and y be two ulp-nonoverlapping floating-point expansions, with n and m terms,
respectively. If, when computing the sum x+ y we “truncate” the input expansions to the most significant
r terms, the error satisfies:

∣∣∣∣∣∣
n−1∑
i=r

xi +

m−1∑
j=r

yj

∣∣∣∣∣∣ ≤ (|x0|+ |y0|)
2−(p−1)r

1− 2−(p−1)
.

Proof. From the hypothesis we know that

|xi| ≤ 2−pi+i |x0| , for all 0 < i ≤ n− 1;

and |yj | ≤ 2−pj+j |y0| , for all 0 < j ≤ m− 1.
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Hence ∣∣∣∣∣∣
n−1∑
i=r

xi +
m−1∑
j=r

yj

∣∣∣∣∣∣ ≤ |x0|
n−1∑
i=r

2−(p−1)i + |y0|
m−1∑
j=r

2−(p−1)j

≤ |x0|
n−r−1∑
i=0

2−(p−1)(i+r) + |y0|
m−r−1∑
j=0

2−(p−1)(j+r)

≤ 2−(p−1)r

|x0| n−r−1∑
i=0

2−(p−1)i + |y0|
m−r−1∑
j=0

2−(p−1)j

 .

When applying the formula
∞∑
k=0

tk = 1
1−t with t = 2−(p−1) we get∣∣∣∣∣∣

n−1∑
i=r

xi +

m−1∑
j=r

yj

∣∣∣∣∣∣ ≤ (|x0|+ |y0|)
2−(p−1)r

1− 2−(p−1)
.

3.3.2 “Accurate” addition algorithm

We first mentioned the algorithm that follows in [41], but a full correctness and accuracy proof
was not previously published.

This first algorithm that we consider for adding two floating-point expansions consists in
merging the two expansions in decreasing order of magnitude, and applying the renormaliza-
tion algorithm (Algorithm 24) on the obtained array. The full algorithm is given in Algorithm 27
and illustrated in Figure 3.9.

Algorithm 27 – Addition_accurate(x0, . . . , xn−1, y0, . . . , ym−1, r).
1: n′ ← min(n, r); m′ ← min(m, r)
2: f [0 : m′ + n′ − 1]←Merge(x[0 : n′], y[0 : m′]) //using Alg. 28

3: s[0 : r − 1]← Renormalize(f [0 : m′ + n′ − 1], r) //using Alg. 24

4: return s0, s1, . . . , sr−1

Figure 3.9 – Graphical representation of Algorithm 27.

For merging the input expansions we use the classical algorithm given in Algorithm 28 that
has a time complexity of O(n+m), and in the worst case scenario performs n+m floating-point
comparisons.
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3.3 Addition of floating-point expansions 91

Algorithm 28 – Merge(x0, . . . , xn−1, y0, . . . , ym−1).
1: i, j ← 0
2: for t← 0 to n+m− 1 do
3: if i = n or (j < m and |yj | > |xi|) then
4: ft ← yj ; j ← j + 1
5: else
6: ft ← xi; i← i+ 1
7: end if
8: end for
9: return f0, f1, . . . , fn+m−1

Theorem 3.3.2. Let x and y be two ulp-nonoverlapping floating-point expansions, with n and m terms,
respectively. Assume p ≥ 4, which always holds in practice. Provided that no underflow/overflow oc-
curs during the calculations, when computing their sum using Algorithm 27, the result s is an ulp-
nonoverlapping floating-point expansion with r terms that satisfies:

|x+ y − s| < 9

2
2−(p−1)r(|x|+ |y|).

Proof. After merging the two input arrays we obtain f that may contain pairs of at most 2 terms
that overlap by p bits. From Theorem 3.2.4 we know that the renormalization (Algorithm 24) also
works under these constraints, and the output is going to be an ulp-nonoverlapping expansion.

The array f contains the merged truncations to r terms of x and y, and from Theorem 3.3.1 we
have

|x+ y − f | ≤ (|x0|+ |y0|)γr, (3.13)

with γr = 2−(p−1)r

1−2−(p−1) .
Let f ′ = f ′0, f

′
1, . . . be the ulp-nonoverlapping expansion equal to f one would obtain with a

renormalization not limited to r-terms. Consequently, s is going to be a truncation to r terms of
f ′. The error caused by truncating (renormalizing) satisfies:

∣∣f ′ − s∣∣ =
∞∑
k=r

f ′k ≤
∣∣f ′0∣∣ ∞∑

k=r

2−(p−1)k

≤
∣∣f ′0∣∣∑

k=0

2−(p−1)(k+r)

≤ 2−(p−1)r
∣∣f ′0∣∣∑

k=0

2−(p−1)k

≤
∣∣f ′0∣∣ 2−(p−1)r

1− 2−(p−1)
=
∣∣f ′0∣∣ γr. (3.14)

From (3.13) and (3.14) we get:

|x+ y − s| ≤ (|x0|+ |y0|+
∣∣f ′0∣∣)γr. (3.15)

We want to express this as a function of x and y. We have x − x0 =
n−1∑
i=1

xi ≤ |x0| γ1, hence

x0 = x
1−ε1 , with |ε1| < γ1. Analog for y0 and f ′0. We can now rewrite (3.15) as

|x+ y − s| ≤ (|x|+ |y|+
∣∣f ′∣∣) γr

1− γ1
.
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We know that |f ′| ≤ ||x+ y|+ |η||, with |η| ≤ (|x0|+ |y0|)γr ≤ (|x|+ |y|) γr
1−γ1 . Hence,

|x+ y − s| ≤

(|x|+ |y|)
(

1 +
γr

1− γ1

)
︸ ︷︷ ︸

<2

+ |x+ y|

 γr
1− γ1

< (2(|x|+ |y|) + |x+ y|) γr
1− γ1

, (3.16)

which is less than
9

2
2−(p−1)r(|x|+ |y|)

as soon as p ≥ 4.

In the worst case, Algorithm 27 performs 2r comparisons for merging, followed by a call to
Renormalize on 2r terms. This accounts for a total of Aaccurate(n,m, r) = 2r +R(2r, r) = 22r − 14
floating-point operations.

“Accurate” addition of a floating-point expansion with a floating-point number. In this case
the aforementioned algorithm can be simplified: we observe that, by Theorem 3.2.5 (the third
case of Proposition 3.2.6), the addition of an ulp-nonoverlapping expansion with a floating-point
number can be performed by a simple renormalization using Algorithm 24. This allows us to
give a tighter error bound on the result in Theorem 3.3.3 and to speed up the addition by not
performing a merge.

Theorem 3.3.3. Let x be an ulp-nonoverlapping floating-point expansion with n terms, and y a floating-
point number. Provided that no underflow/overflow occurs during the calculations, when computing their
sum using Algorithm 24, the result s is going to be an ulp-nonoverlapping floating-point expansion with r
terms that satisfies:

|x+ y − s| < 2 · 2−(p−1)r(2|x|+ |y|).

In the worst case this addition performs Aaccurate(n, 1, r) = R(r+ 1, r) = 10r− 4 floating-point
operations.

3.3.3 “Quick-and-dirty” addition algorithm

The algorithm that follows was mentioned in [46], but, the same as for the previous one, a full
correctness and accuracy proof was not given.

The addition algorithm presented in Algorithm 29 and Figure 3.10 is a generalization of the
algorithm for double-double and quad-double addition implemented in the QD library [34], com-
bined with a different renormalization algorithm. Although we have implemented a fully cus-
tomized version of the algorithm, that uses the same truncation method mentioned before, for
simplicity, we give here only the “r input - r output” variant of it.

At step n = 0 we compute the exact sum x0 + y0 = f0 + e0. Since |e0| ≤ 1
2 ulp(f0), we use

the following intuition: let ε = 1
2 ulp(f0), then, roughly speaking, if f0 is of order of O(Λ), then

e0 is of order O(εΛ). At each step n = 1, . . . , r we compute the exact result of xn + yn = s′n + en,
where s′n and en are of order O(εnΛ) and O(εn+1Λ), respectively. From previous steps we have
already obtained n error terms of order O(εnΛ) that we add together with s′n to obtain the term
fn of order O(εnΛ) for the renormalization step. This addition is done in line 4, using VecSum. In
the renormalization step, line 10, we use an extra error correction term, so we perform our “error-
free transformation scheme” r + 1 times. The (r + 1)-th component fr is obtained by a simple
summation of the previously obtained terms of order O(εkΛ).
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3.3 Addition of floating-point expansions 93

Algorithm 29 – Addition_quick(x0, . . . , xr−1, y0, . . . , yr−1, r).
1: (f0, e0)← 2Sum(x0, y0)
2: for n← 1 to r − 1 do
3: (sn, en)← 2Sum(xn, yn)
4: (fn, e[0 : n− 1])← VecSum(sn, e[0 : n− 1])
5: end for
6: fr ← 0
7: for i← 0 to r − 1 do
8: fr ← fr + ei
9: end for

10: s[0 : r − 1]← Renormalize_random(f [0 : r], r) //using Alg. 25

11: return s0, s1, . . . , sr−1

Figure 3.10 – Graphical representation of Algorithm 29.

93



94 Chapter 3. Floating-Point Expansions Arithmetic

Theorem 3.3.4. Let x and y be two ulp-nonoverlapping floating-point expansions, with n, and m terms,
respectively. Assume p ≥ 4, which always holds in practice. Provided that no underflow/overflow oc-
curs during the calculations, when computing their sum using Algorithm 29, the result s is an ulp-
nonoverlapping floating-point expansion with r terms that satisfies:

|x+ y − s| < 24 · 2−(p−1)r(|x|+ |y|).

Proof. The use of Algorithm 25 (Renormalize_random) in the last step of the algorithm ensures
that the output is an r-term ulp-nonoverlapping expansion.

As a first error source we have the truncation of the inputs. From Theorem 3.3.1 we have:∣∣x+ y − (f0 + s′1 + · · ·+ s′r−1)
∣∣ ≤ (|x0|+ |y0|)γr, (3.17)

with γr = 2−rp+r

1−2−(p−1) < 2−pr+r+1.

From the hypothesis we know that

|xi| ≤ 2−pi+i |x0| , for all 0 < i ≤ n− 1;

and |yj | ≤ 2−pj+j |y0| , for all 0 < j ≤ m− 1,

so |xn + yn| ≤ 2−np+n(|x0|+ |y0|).

A second source of error is the simple addition used for computing fr. At this step we add
|er−1| ≤ 1

2 ulp(s′r−1) ≤ 2−rp+r−1(|x0| + |y0|) with r − 1 terms obtained from the VecSum in step
r− 1. All the terms are of the same order, and it can be shown by induction that er−1 is the largest
term in this addition, so the r − 1 terms are bounded by the same value. As a deduction, at this
step we perform r − 1 simple additions that may cause an error bounded by

(r − 1)2−(r+1)p+r(|x0|+ |y0|). (3.18)

From (3.17) and (3.18) we get

|x+ y − f | ≤ (1 + (r − 1)2−(p+1))2−rp+r+1(|x0|+ |y0|). (3.19)

Now, let f ′ = f ′0, f
′
1, . . . be the ulp-nonoverlapping expansion equal to f one would obtain with

a renormalization not limited to r-terms. Consequently, s is going to be a truncation to r terms of
f ′. The error caused by truncating (renormalizing) is the same as the one given in (3.14), i.e.,∣∣f ′ − s∣∣ ≤ ∣∣f ′0∣∣ γr < 2−rp+r+1

∣∣f ′0∣∣ , (3.20)

From (3.19) and (3.20) we get:

|x+ y − s| ≤ (2 + (r − 1)2−(p+1))2−rp+r+1(|x0|+ |y0|+ |f ′0|). (3.21)

We want to express this as a function of x and y. We have |x− x0| =

∣∣∣∣n−1∑
i=1

xi

∣∣∣∣ ≤ |x0| γ1, hence

x0 = x
1−ε1 , with |ε1| < γ1. Analog for y0 and f ′0. We can now rewrite 3.21 as

|x+ y − s| ≤ (|x|+ |y|+
∣∣f ′∣∣)(2 + (r − 1)2−(p+1))2−rp+r+1

1− γ1
. (3.22)

We know that |f ′| ≤ ||x+ y|+ |η||, with |η| ≤ (1 + (r − 1)2−(p+1))2−rp+r+1(|x0| + |y0|) ≤
(|x|+ |y|) (1+(r−1)2−(p+1))2−rp+r+1

1−γ1 .
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Hence,

|x+ y − s| ≤

(|x|+ |y|)

(
1 +

(1 + (r − 1)2−(p+1))2−rp+r+1

1− γ1

)
︸ ︷︷ ︸

<2, if p≥3

+ |x+ y|

 ·

·(2 + (r − 1)2−(p+1))2−rp+r+1

1− γ1
< (2(|x|+ |y|) + |x+ y|) γr

1− γ1
,

which is less than
24 · 2−(p−1)r(|x|+ |y|),

as soon as p ≥ 4.

In the worst case, Algorithm 29 performs r 2Sum calls,
∑r−1

i=1 calls to VecSum on i elements, r−
1 simple additions, followed by the renormalization. This accounts for a total of Aquick(n,m, r) =
6r +

∑r−1
i=1 V (i+ 1) + r − 1 +Rrand(r + 1, r) = 6r2 + 11r − 5 floating-point operations.

Remark 3.3.5. For the special case of adding a floating-point expansion with a floating-point
number we use Theorem 3.3.3 which results in an important simplification: s0, . . . , sr−1 ←
Renormalize(x0, . . . , xn−1, y, r).

We have not explain yet why we call this algorithm “quick-and-dirty”. It may be clear that
“dirty” refers to the large error bound, but when looking at the operation count, the “quick” does
not seem justified. The high cost of the algorithm comes mostly form the Renormalize_random
algorithm that is used to ensure the ulp-nonoverlapping requirement on the output. There exist
corner cases, as the one given in Example 3.3.6, in which cancellation happens on one of the
fis, causing them to be out of order. Because of cases like these we are unable to prove a strict
relationship between the fis, so, in theory, we are obliged to consider them random. Despite
this, in practice, we can still get reliable results when replacing the call to Renormalize_random
(Algorithm 25) with a call to Renormalize (Algorithm 24). In our implementation we offer both
versions of the algorithm (see Section 1.4 for more details), and we prefer the later one if the
computation is not critical, or if we can verify the result a-posteriori. We fill call this the Fast
“quick-and-dirty” addition.

Example 3.3.6. Consider the two 4-term expansions, with binary32 as underlying arithmetic:

x0 = 1.0000110101010000011012 × 2−1,

x1 = 2−24,

x2 = 2−47,

x3 = 2−70;

y0 = −1.000011010101000001100112 × 2−1,

y1 = 2−24,

y2 = 2−47,

y3 = −1.011100010011100001011112 × 2−72.

Using these expansions as input for Algorithm 29 will result in the array f :

f0 = 2−24,

f1 = 2−23,

f2 = 2−46,

f3 = 1.010001110110001111012 × 2−71, and

f4 = 2−95.

Since f0 < f1 we cannot ensure that the array f is ordered.
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When replacing the call to Renormalize_random with a call to Renormalize, in the worst case,
Algorithm 29 performs Afastquick(n,m, r) = 3r2 + 11r − 5 floating-point operations.

Remark 3.3.7. Note that even if the operation count still looks big, during execution, the VecSum levels
will take great advantage of the computer pipeline, making Algorithm 29 faster that Algorithm 27 in most
practical cases (see Section 3.7).

3.4 Multiplication of floating-point expansions

In general, an algorithm that performs the multiplication of two expansions x and y with n and
m terms, respectively, will return a floating-point expansion with at most 2nm terms. The same
as in the case of addition this poses a problem when successive computations are done using the
result, this is why we use “truncation” and renormalization.

The basic idea behind the multiplication algorithms is to compute partial products, the same
as in the “paper-and-pencil” method, and accumulate them. The main difference between the
algorithms consists in the method of choice for accumulating these partial products.

3.4.1 Priest’s multiplication algorithm

One of the only algorithms provided with a full correctness proof was given by Priest [81]. He
proposed an algorithm that uses the following reasoning:

• split x in two arrays, one containing the high order part of each term and another for the
low order parts;

• split y in three arrays, using the same principle;

• compute all partial products x[i] × y into arrays; Priest proved that the partial products are
exact, so this is done using simple multiplication;

• accumulate all the arrays to the result.

We present it in Algorithm 30. We denote by b[0 : . . .] and expansion b whose number of terms is
not known in advance.

The cost of the algorithm is very high, because the accumulation of each array of partial prod-
ucts is done using successive addition and renormalization calls. The worst case operation count
for this algorithm is Mpriest(n,m) = 81mn2 + 747nm+ 2m− 233n. Note that the algorithm is not
symmetrical, its cost depends on the order of the input expansions.
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Algorithm 30 – Multiplication_Priest(x0, . . . , xn−1, y0, . . . , ym−1).
Constant: k2 = bp/2c, k3 = bp/3c+ 1

1: for i← 0 to n− 1 do
2: (x′i, x

′′
i )← Split(xi, k2) //using Alg. 4

3: end for
4: for i← 0 to m− 1 do
5: (y′i, z)← Split(yi, k3)
6: (y′′i , y

′′′
i )← Split(z, k3)

7: end for
8: p1 ← 0, k ← 1
9: for i← 0 to n− 1 do

10: for j ← 0 to m− 1 do
11: a

(1)
j ← RN(x′i · y′j)

12: a
(2)
j ← RN(x′i · y′′j )

13: a
(3)
j ← RN(x′i · y′′′j )

14: a
(4)
j ← RN(x′′i · y′j)

15: a
(5)
j ← RN(x′′i · y′′j )

16: a
(6)
j ← RN(x′′i · y′′′′j )

17: end for
18: b[0 : . . .]← Renormalize_Priest(a(1)[0 : m− 1]) //using Alg. 23

19: c[0 : . . .]← Renormalize_Priest(a(2)[0 : m− 1])
20: b[0 : . . .]← Addition_Priest(c[0 : . . .], b[0 : . . .]) //using Alg. 26

21: c[0 : . . .]← Renormalize_Priest(a(3)[0 : m− 1])
22: b[0 : . . .]← Addition_Priest(c[0 : . . .], b[0 : . . .])
23: c[0 : . . .]← Renormalize_Priest(a(4)[0 : m− 1])
24: b[0 : . . .]← Addition_Priest(c[0 : . . .], b[0 : . . .])
25: c[0 : . . .]← Renormalize_Priest(a(5)[0 : m− 1])
26: b[0 : . . .]← Addition_Priest(c[0 : . . .], b[0 : . . .])
27: c[0 : . . .]← Renormalize_Priest(a(6)[0 : m− 1])
28: b[0 : . . .]← Addition_Priest(c[0 : . . .], b[0 : . . .])
29: π[0 : . . .]← Addition_Priest(b[0 : . . .], π[0 : . . .])
30: end for
31: return π0, π1, . . .
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In what follows we will present two multiplication algorithms, a new one and one that is a
generalization of the algorithm used in the QD library for quad-double multiplication, each using
a different method for accumulating the partial products.

Both algorithms use an “on-the-fly” truncation method, following the same reasoning as in the
case of addition. Consider computing the product π with r terms of two floating-point expansions
x and y, with n andm terms, respectively. Consider that the product x0y0 is of orderO(Λ), then, for
the product (π′, e) = 2Prod(xi, yj), π′ is of order O(εkΛ) and e of order O(εk+1Λ), where k = i+ j.
In order to gain performance we discard the partial products that have an order of magnitude
less than πr, i.e., 0 ≤ k ≤ r, meaning that we compute the approximate result based on the first
r∑

k=0

(k + 1) partial products. The products with the same order of magnitude as πr are intended as

an extra error correction term, that is why we compute them using only standard floating-point
multiplication.

In Theorem 3.4.1, we bound the error caused by this truncation. The same bound will apply to
both algorithms that we are going to present in this section.

Theorem 3.4.1. Let x and y be two ulp-nonoverlapping floating-point expansions, with n, and m terms,

respectively. If, when computing the product xy we “truncate” the operations by adding only the first
r+1∑
k=1

k

partial products, where r is the required size of the final result, then the error satisfies:

∣∣∣∣∣∣xy −
r∑

k=0

∑
i+j=k

xiyj

∣∣∣∣∣∣ ≤ |x0y0| 2−(p−1)(r+1)

(
−2−(p−1)

(1− 2−(p−1))2
+
m+ n− r − 2

1− 2−(p−1)

)
.

Proof. From the definition of the ulp-nonoverlapping expansion we have x1 ≤ ulp(x0) ≤ 2−p+1 |x0|
and, by induction, we get xi ≤ 2−pi+i |x0|, for all 0 < i < n. The same goes for y.

The discarded partial products satisfy:

m+n−2∑
k=r+1

∑
i+j=k

aibj ≤
m+n−2∑
k=r+1

∑
i+j=k

2−p(i+j)+i+j |x0y0|

≤ |x0y0|
m+n−2∑
k=r+1

∑
i+j=k

2−(p−1)k

≤ |x0y0|
m+n−2∑
k=r+1

(m+ n− 1− k)2−(p−1)k

≤ |x0y0|
m+n−r−3∑

k′=0

(m+ n− k′ − r − 2)2−(p−1)(k
′+r+1)

≤ |x0y0| 2−(p−1)(r+1)
m+n−r−3∑

k′=0

(m+ n− r − 2− k′)2−(p−1)k′ .

(3.23)
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We define the function φ(e) =
∞∑
k=0

(m+ n− r − 2− k)ek that satisfies:

φ(e) =
∞∑
k=0

−kek +
∞∑
k=0

(m+ n− r − 2)ek

= −e
∞∑
k=1

kek−1 + (m+ n− r − 2)
∞∑
k=0

ek

= −e d
de

( ∞∑
k=1

ek

)
+ (m+ n− r − 2)

1

1− e

= −e d
de

(
1

1− e

)
+
m+ n− r − 2

1− e

=
−e

(1− e)2
+
m+ n− r − 2

1− e
.

When applying function φ(2−(p−1)) in equation (3.23) we get:

m+n−2∑
k=r+1

∑
i+j=k

xiyj ≤ |x0y0| 2−(p−1)(r+1)

(
−2−(p−1)

(1− 2−(p−1))2
+
m+ n− r − 2

1− 2−(p−1)

)
,

which concludes the proof.

3.4.2 “Accurate” multiplication algorithm

Article [69], was fully dedicated to the algorithm presented in Algorithm 31. The algorithms
called inside it are going to be detailed as we explain the reasoning behind it.

The main idea of the algorithm is to accumulate numbers of size at most b in “containers”,
referred to as “bins”, that are floating-point variables whose least significant bit (LSB) has a fixed
weight. This allows for errorless accumulation provided that we do not add more than 2c numbers
to one bin, where b+ c = p− 1.

Even though we present here a general setting with precision p, our implementation uses stan-
dard available formats. We made the following choices:

• when using binary64 we defined bins of size b = 45, which allows for c = 7 bits of carry to
happen; this means that we can add 128 numbers that satisfy the above condition to each
bin and the result is still going to be exact;

• for binary32 we chose bins with b = 18, which implies c = 5, allowing us to add up to 32
numbers to one bin.

In both cases, these values also satisfy 3b > 2p, a property that we are going to use later on.
The number of allocated bins is computed as

⌊ r·p
b

⌋
+ 2 and the LSB of each bin is set according

to the starting exponent, t = tx0 + ty0 at a distance of b bits, where tx0 and ty0 are the exponents
of x0 and y0, respectively. We start the algorithm by initializing each bin Bi with the value 1.5 ·
2t−(i+1)·b+p−1.

After the initialization step is done we start the actual computations. For each partial product
computed using 2Prod, line 7, we get the pair (π′, e) and, using the formula b(t− txi − tyj )/bc, we
determine the corresponding bins in which we have to accumulate it, where txi and tyj are the
exponents of xi and yj , respectively.
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100 Chapter 3. Floating-Point Expansions Arithmetic

Algorithm 31 – Multiplication_accurate(x0, . . . , xn−1, y0, . . . , ym−1, r).
1: t← tx0 + ty0
2: for i← 0 to br · p/bc+ 1 do
3: Bi ← 1.5 · 2t−(i+1)b+p−1

4: end for
5: for i← 0 to min(n− 1, r) do
6: for j ← 0 to min(m− 1, r − 1− i) do
7: (π′, e)← 2Prod(xi, yj)
8: `← t− txi − tyj
9: sh← b`/bc

10: `← `− sh · b
11: B ← Accumulate(π′, e, B, sh, `) //using Alg. 32

12: end for
13: if j < m− 1 then
14: π′ ← xi · yj
15: `← t− txi − tyj
16: sh← b`/bc
17: `← `− sh · b
18: B ← Accumulate(π′, 0., B, sh, `) //using Alg. 32

19: end if
20: end for
21: for i← 0 to br · p/bc+ 1 do
22: Bi ← Bi − 1.5 · 2t−(i+1)b+p−1

23: end for
24: π[0 : r − 1]← VecSumErrBranch(B[0 : br · p/bc+ 1], r) //using Alg. 22

25: return π0, π1, . . . , πr−1
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3.4 Multiplication of floating-point expansions 101

We know that one pair of floating-point numbers can “fall” into at most four bins, since 3b >
2p, and we can deduce three different cases (see Figure 3.11):

• 2:2 case, in which both π′ and e fall into two bins each;

• 2:3 case, in which π′ falls into two bins and e into three;

• 3:2 case, in which π′ falls into three bins and e into two.

Figure 3.11 – Cases for accumulating the partial products into the bins.

These cases are dealt with in Algorithm 32 that accumulates the partial products. Apart from
the (π′, e) pair and the bins array, B, the algorithm also receives two integer parameters. The sh
value represents the first corresponding bin for the pair and `, computed as t − txi − tyj − sh · b,
the number of leading bits. This value gives the difference between the LSB of Bsh−1 and the sum
of the exponents of xi and yj of the corresponding (π′, e) pair.

Algorithm 32 – Accumulate(π′, e, B, sh, `).
1: if ` < b− 2c− 1 then
2: (Bsh, Bsh+1)← Deposit(π′) // that is, (Bsh, π′)←Fast2Sum(Bsh, π

′), and

3: // Bsh+1 ← Bsh+1 + π′

4: (Bsh+1, Bsh+2)← Deposit(e)
5: else if ` < b− c then
6: (Bsh, Bsh+1)← Deposit(π′)
7: (Bsh+1, e)← Fast2Sum(Bsh+1, e)
8: (Bsh+2, Bsh+3)← Deposit(e)
9: else

10: (Bsh, p)← Fast2Sum(Bsh, π
′)

11: (Bsh+1, Bsh+2)← Deposit(π′)
12: (Bsh+2, Bsh+3)← Deposit(e)
13: end if
14: return B

We determine which one of the three cases apply depending on the ` value. So,

• if 2c+ 1 < b− ` ≤ b we are in the 2:2 case;

• if c < b− ` ≤ 2c+ 1 we need to consider the 2:3 case;

• and if 0 < b− ` ≤ c the 3:2 case applies.

Remark 3.4.2. For simplicity, we consider that the extra error correction partial products, the ones that
are computed using only standard floating-point multiplication, are dealt with the same way, using the pair
(π′, 0). This is not the case in our implementation, where we save operations by accumulating only the π′

term.
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102 Chapter 3. Floating-Point Expansions Arithmetic

As we stated before, all the bins are initialized with a constant value depending on their LSB,
that is going to be subtracted before the renormalization step (VecSumErrBranch algorithm). This
type of addition was first used by Rump (in [84]) for adding the elements of an array of floating-
point numbers. In his paper he proved that the result is correct. For the sake of completeness we
also give here a short correctness proof.

Proof of correctness for Algorithm 32. We consider all the values that fall into the same bins
Bsh, Bsh+1 as an array of floating-point numbers x1, . . . , xn that satisfy |xi| < 2t+b, where 2t is the
LSB of Bsh and b is the size of the bins. The lower part of each xi is denoted by xli and represents
the part that will be accumulated into Bsh+1.

Theorem 3.4.3. Let x1, . . . , xn an array of floating-point numbers that satisfy |xi| < 2t+b, for all 0 < i ≤
n, where b < p − 1. We initialize a floating-point container with s0 = 1.5 · 2t+p−1, we compute s1 =
RN(s0 + x1); . . . ; si = RN(si−1 + xi); . . . ; sn = RN(sn−1 + xn); and we return the value RN(sn − s0).
For each xi we also compute the lower part x`i = RN(RN(si−1 − si) + xi). When using this method, no
significant informations is lost in the process, so no rounding can occur, provided that n ≤ 2p−b−2 − 1 and
that no underflow/overflow occurs during the calculations.

Proof. We first prove by induction that the following statement holds:

1.5 · 2t+p−1 − i · 2t+b ≤ si ≤ 1.5 · 2t+p−1 + i · 2t+b. (3.24)

It is easy to see that it holds for i = 0. Now we assume that is true for i and we try to prove it for
i+ 1. We deduce:

1.5 · 2t+p−1 − (i+ 1)2t+b ≤ si + xi+1 ≤ 1.5 · 2t+p−1 + (i+ 1)2t+b.

Hence, since rounding is a monotonic function:

RN(1.5 · 2t+p−1 − (i+ 1)2t+b) ≤ si+1

≤ RN(1.5 · 2t+p−1 + (i+ 1)2t+b).

The value 1.5 · 2t+p−1 − (i + 1)2t+b is an exact floating-point number because it is a multiple of
2t and it is less than 2t+p in absolute value, provided that i ≤ 2p−b−1 · 3.5 − 1, which holds in all
practical cases. With our parameters:
• i ≤ 447 for binary64, p = 53 and b = 45, and
• i ≤ 111 for binary32, p = 24 and b = 18.

The same holds for 1.5 · 2t+p−1 + (i + 1)2t+b provided that i ≤ 2p−b−2 − 1, which also holds in all
practical cases (with our parameters: i ≤ 63 for binary64 and i ≤ 15 for binary32).

Furthermore, we have (si, x
`
i) = Fast2Sum(si−1, xi), therefore

∀i, si + x`i = si−1 + xi,

such that, by induction,

si + x`i + x`i−1 + · · ·+ x`1 = s0 + x1 + x2 + · · ·+ xi,

which implies
(sn − s0) + x`n + x`n−1 + · · ·+ x`1 = x1 + x2 + · · ·+ xn.

From (3.24), we easily find that sn and s0 are within a factor 2 (in practice, much less), such that
(from Sterbenz lemma - Lemma 1.1.2), their difference is exactly computed: RN(sn−s0) = sn−s0.
We therefore conclude that

RN(sn − s0) + x`n + x`n−1 + · · ·+ x`1 = x1 + x2 + · · ·+ xn.
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3.4 Multiplication of floating-point expansions 103

The VecSumErrBranch (Algorithm 22) call in the last step of the multiplication has the role of a
renormalization. By Theorem 3.1.17 that we proved in Section 3.1, we see that this step is enough
for rendering the bins array into an ulp-nonoverlapping expansion.

Theorem 3.4.4. Let x and y be two ulp-nonoverlapping floating-point expansions, with n, and m terms,
respectively. Provided that no underflow/overflow occurs during the calculations, when computing their
product using Algorithm 31, the result π is an ulp-nonoverlapping floating-point expansion with r terms
that satisfies:

|xy − π| ≤ |x0y0| 2−(p−1)r
[

1 + (r + 1)2−p + 2−(p−1)

(
−2−(p−1)

(1− 2−(p−1))2
+
m+ n− r − 2

1− 2−(p−1)

)]
.

Proof. When using Algorithm 31 we “truncate” the result by discarding the partial products with
an order of magnitude less than πr. From Theorem 3.4.1 we know that this causes a maximum
error that is less or equal to

|x0y0| 2−(p−1)(r+1)

(
−2−(p−1)

(1− 2−(p−1))2
+
m+ n− r − 2

1− 2−(p−1)

)
. (3.25)

Also, in the algorithm we do not use error-free-transforms for computing the last r + 1 partial
products, the ones with the same order of magnitude as πr, for which i + j = r. We know that
|xiyj | ≤ 2−(p−1)(i+j) |x0y0|, from where |xiyj − RN(xiyj)| ≤ 2−(p−1)r |x0y0| 2−p. This implies that
the maximum error caused doing this is less or equal to:

(r + 1) |x0y0| 2−(p−1)r · 2−p. (3.26)

Apart from these two possible errors we also need to account for the error caused by
the renormalization step. In Theorem 3.1.17 we showed that Algorithm 22 returns an ulp-
nonoverlapping expansion, in which case the maximum error is less or equal to ulp(πr−1). This
implies that is less or equal to:

|x0y0| 2−(p−1)r. (3.27)

To get the final error bound we have to add the bounds on all the possible errors that can occur,
i.e., (3.25), (3.26) and (3.27), and we get:

|x0y0| 2−(p−1)r
[

1 + (r + 1)2−p + 2−(p−1)

(
−2−(p−1)

(1− 2−(p−1))2
+
m+ n− r − 2

1− 2−(p−1)

)]
This concludes our proof.

During the execution of Algorithm 31 we perform the following steps:
• during a preprocessing step we need to get the exponents of each term of the input expan-

sions. We do this using the math.h library function, frexp, that uses only one floating-point
operation, which we call 2r times;
• the first step of the algorithm consists in initializing the bins; we allocate binNr =

⌊ r·p
b

⌋
+ 2

bins. For this we use twice the math.h library function, ldexp (that can take up to 34 Flops,
depending on the exponent’s size), and after that we perform binNr− 1 floating-point mul-
tiplications;
• during the main loop of the algorithm we compute

∑r
i=1 i partial products using 2Prod,

which we accumulate into the bins using 3 Fast2Sum calls and 2 floating-point additions.
During this same loop we also compute r − 1 correction terms using simple floating-point
multiplication, which we can accumulate using only 2 Fast2Sum calls and one floating-point
addition.
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104 Chapter 3. Floating-Point Expansions Arithmetic

• in the last part of the algorithm we first unbias the bins, by subtracting their initial values
from each one of them, then we renormalize the result.

In the worst case, this account for a total of Maccurate(n,m, r) = 13
2 r

2 + 33
2 r + 6(

⌊ r·p
b

⌋
+ 2) + 54

floating-point operations.

3.4.3 “Quick-and-dirty” multiplication algorithm

The below algorithm was first mentioned in [46] and after that in [41], but a full correctness
and accuracy prove was never given.

The algorithm presented in this section is also a generalization of the quad-double multipli-
cation implemented in the QD library, coupled with a different renormalization algorithm. In
Algorithm 33 and Figure 3.12 we present the “r input - r output” variant, although in our imple-
mentation we have a fully customized version.

Algorithm 33 – Multiplication_quick(x0, . . . , xr−1, y0, . . . , yr−1, r).
1: (f0, e0)← 2Prod(x0, y0)
2: for k ← 1 to r − 1 do
3: for i← 0 to k do
4: (π′i, êi)← 2Prod(xi, yk−i)
5: end for
6: (fk, e[0 : k2 + k − 1])← VecSum(π′[0 : k], e[0 : k2 − 1])
7: e[0 : k2 + 2k]← (e[0 : k2 + k − 1], ê[0 : k])
8: end for
9: fr ← 0

10: for i← 1 to r − 1 do
11: fr ← fr + xi · yr−i
12: end for
13: for i← 0 to r2 − 1 do
14: fr ← fr + ei
15: end for
16: π[0 : r − 1]← Renormalize_random(f [0 : r], r)
17: return π0, π1, . . . , πr−1

We perform the same “on-the-fly” truncation as in the previous algorithm, but we accumulate
the values using a different method, based on the VecSum algorithm, in which we add all the
products with the errors of the same order resulted from the previous step. So, we already estab-
lished that for each k, 0 ≤ k ≤ r, we have k+ 1 products to compute (line 4). Besides these we also
have k2 terms resulting from the previous iteration. We accumulate all these terms using VecSum,
to obtain fk in line 6. The remaining error terms are concatenated with the errors from the k + 1
products, and the entire array e0, . . . , ek2+2k is propagated to the next iteration. The (r + 1)-st
component fr is obtained by simple summation of all remaining errors with the simple products
of order O(εkΛ), where O(Λ) is the order of x0 × y0. Error-free transforms are not needed in the
last step since the errors are not reused. The array f is then reused in order to render the result
ulp-nonoverlapping .
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3.4 Multiplication of floating-point expansions 105

Figure 3.12 – Graphical representation of Algorithm 33.

Theorem 3.4.5. Let x and y be two ulp-nonoverlapping floating-point expansions, with n, and m terms,
respectively. Assume p ≥ 8. Provided that no underflow/overflow occurs during the calculations, when
computing their product using Algorithm 33, the result π is an ulp-nonoverlapping floating-point expan-
sion with r terms that satisfies:

|xy − π| ≤ |x0y0| 2−(p−1)(r+1)

(
128

127
(m+ n)− 129

254
r − 385

254
+ 2p−1 + 2−p−r(r2 + r)((r + 1)!)2

)
.

Proof. When using Algorithm 33 we “truncate” the result by discarding the partial products with
an order of magnitude less than πr. From Theorem 3.4.1 we know that this causes a maximum
error that is less than or equal to

|x0y0| 2−(p−1)(r+1)

 −2−(p−1)

(1− 2−(p−1))2︸ ︷︷ ︸
<0

+(m+ n− r − 2)
1

1− 2−(p−1)︸ ︷︷ ︸
< 128

127
for p≥8

 . (3.28)

From the definition we know that |xi| ≤ 2−i(p−1) |x0| and |yj | ≤ 2−j(p−1) |y0|, so we can deduce

|xiyj | ≤ 2−(p−1)(i+j) |x0y0| .
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For computing f0 we use only 2Prod(x0, y0), and we get |f0| ≤ |x0y0| (1 + 2−p).
For computing f1 we use VecSum#1, with 3 entries: the error from the previous step, and two

partial products, which are less than 2−(p−1) |x0y0| (1 + 2−p). It is easily seen that all these entries
are bounded by the same value. We define the following notation:

Ω1 = 2−(p−1) |x0y0| (1 + 2−p). (3.29)

It follows that f1 < 3 · 2−(p−1) |x0y0| (1 + 2−p)3 and the outputted errors are less than Ω2 =
3 · 2−2p+1 |x0y0| (1 + 2−p)3.

For computing f2 we use VecSum#2 which is going to have 7 entries: 2 errors outputted by
VecSum#1, bounded by Ω2; 2 errors from the previous step’s partial products, which are less than
2−2p+1 |x0y0| (1 + 2−p); and 3 partial products, less than 2−2(p−1) |x0y0| (1 + 2−p). We observe once
more that all the entries are less than Ω2.

For the induction step we consider VecSum#i − 1. For computing fi−1 we have (i − 1)2 + i
entries, which we assume are all less than Ωi−1. It follows:

fi−1 < (2Ωi−1(1 + 2−p) + Ωi−1)(1 + 2−p) + · · ·
< (i2 − i+ 1)Ωi−1(1 + 2−p)i

2−i

and also, the largest error term outputted and implicitly all the others are less than 1
2 ulp(fi−1).

This implies that all error terms are less than:

(i2 − i+ 1)Ωi−1(1 + 2−p)i
2−i · 2−p;

= 2−(p−1) |x0y0| (1 + 2−p)

i∏
n=1

(n2 − n+ 1)(1 + 2−p)n
2−n2−p;

= 2−(p−1)−ip |x0y0| (1 + 2−p)1+2+···+(i2−i)︸ ︷︷ ︸
<2 always true in practice

i∏
n=1

(n2 − n+ 1);

< 2−(i+1)p+2 |x0y0| (i!)2. (3.30)

and this last value will define Ωi.
This implies that, since we use only simple summation for computing fr, in the last step we

neglect r2 + r terms, all less than Ωr+1.
We also have to account for the errors that occur when computing the last partial prod-

ucts using only simple multiplication. This means r + 1 terms less than |x0y0| 2−(p−1)r−p =
1
2 |x0y0| 2

−(p−1)(r+1).
When adding all these errors we get the following bound:

|xy − f | ≤ |x0y0| 2−(p−1)(r+1)

(
128

127
(m+ n− r − 2) + (r2 + r)2−p−r+1((r + 1)!)2 +

r + 1

2

)
≤ |x0y0| 2−(p−1)(r+1)

(
128

127
(m+ n)− 129

254
r − 385

256
+ (r2 + r)2−p−r+1((r + 1)!)2

)
.

(3.31)

Now, let f ′ = f ′0, f
′
1, . . . be an ulp-nonoverlapping expansion equal to f . Consequently, π

is going to be a truncation to r terms of f ′. For renormalizing the result we use Algorithm 25,
which ensures that the result is going to be an ulp-nonoverlapping expansion, in which case the
maximum error is less or equal to ulp(πr−1). This implies that is less or equal to:

|x0y0| 2−(p−1)r = |x0y0| 2−(p−1)(r+1)+(p−1).
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3.5 Division of floating-point expansions 107

To get the final error bound we have to add the two bounds obtained above and we get:

|xy − π| ≤ |x0y0| 2−(p−1)(r+1)

(
2p−1 +

128

127
(m+ n)− 129

254
r − 385

254
+ (r2 + r)2−p−r+1((r + 1)!)2

)
.

And this concludes our proof.

We ask the reader to keep in mind that this bound is a big overestimate to the error. When
bounding the error given by the simple addition in the last step of the algorithm we assume that
all the terms added are bounded by the same value, even if this is not the case. In practice we still
obtain reliable results using this algorithm.

During the execution of Algorithm 33 we perform the following steps:

• we compute
∑r

i=1 i partial products using 2Prod;

• for computing each fi, with 1 ≤ i ≤ r − 1 we perform
∑r−1

n=1 V (n2 + n + 1) floating-point
operations;

• we compute r − 1 partial product using only simple multiplication;

• we perform r2 + r − 1 simple additions in order to get the extra error correction term, fr;

• followed by the renormalization of the result using Renormalize_random.

In the worst case, this account for a total of Mquick(n,m, r) = 2r3 + 5r2 + 8r − 6 floating-point
operations.

Algorithm 33 can be slightly improved if an FMA instruction is available, by performing the
accumulation in line 11 using fr ← fma(xi, yr−1, fr). This change would imply that in the last
step of the algorithm we ignore only r2 − 1 terms less than Ωr+1 instead of r2 + r, which slightly
improves the error bound:

|xy − π| ≤ |x0y0| 2−(p−1)(r+1)
(
2(m+ n)− r − 2 + (r2 − 1)((r + 1)!)2

)
.

The floating-point operation count becomes Mquick[fma](n,m, r) = 2r3 + 5r2 + 7r−5 in the worst
case.

The “quick” appellative has the same meaning as for addition. In this case we also replace
the call to Renormalize_random with a call to Renormalize (for details see Section 1.4), so we get
Mfast
quick(n,m, r) = 2r3 + 2r2 + 8r − 6 or Mfast

quick[fma](n,m, r) = 2r3 + 2r2 + 7r − 5, respectively.

3.5 Division of floating-point expansions

There are two classes of algorithms for performing division: the so-called digit-recurrence al-
gorithms [23], that generalize the “paper-and-pencil” method, and the algorithms based on the
Newton-Raphson iteration [98, 17]. The algorithms employed so far for dividing expansions be-
long to the former class, as Priest’s algorithm presented below. In our work we focused on the
possible use of the latter class, since its very fast, quadratic convergence is appealing when high
precision is at stake.

3.5.1 Classical long division algorithm

In [81] Priest’s division is done using the classical long division algorithm, which is recalled in
Algorithm 34. We denote by f [0 : . . .] and expansion f whose number of terms is not known in
advance.
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108 Chapter 3. Floating-Point Expansions Arithmetic

Algorithm 34 – Division_Priest(x0, . . . , xn−1, y0, . . . , ym−1, d).
1: q0 = RN(x0/y0)
2: r(0)[0 : n− 1]← x[0 : n− 1]
3: for i← 1 to d− 1 do
4: f [0 : . . .]←Multiplication_Priest (qi−1, y[0 : m− 1]) //using Alg. 30

5: r(i)[0 : . . .]← Addition_Priest(r(i−1)[0 : . . .], −f [0 : . . .])) //using Alg. 26

6: qi = RN(r
(i)
0 /y0)

7: end for
8: q[0 : . . .]← Renormalize_Priest (q[0 : d− 1]) //using Alg. 23

9: return q0, q1, . . . with at most d terms

The division algorithm implemented in the QD library [34] is similar. For instance, let x =
x0 + x1 + x2 + x3 and y = y0 + y1 + y2 + y3 be quad-double numbers. First, one approximates the
quotient q0 = x0/y0, then computes the remainder r = x−q0y in quad-double. The next correction
term is q1 = r0/y0. Subsequent terms qi are obtained by continuing this process. At each step when
computing r, full quad-double multiplication and subtraction are performed since most of the bits
will be canceled out when computing q3 and q4. A renormalization step is performed only at the
end, on q0 + q1 + q2 + ... in order to ensure the nonoverlapping requirement. No error bound is
given in [34].

Note that in Algorithm 34 a renormalization step is performed after each computation of r =
r − qiy. Priest proved in [81] the error bound given in Theorem 3.5.1.

Theorem 3.5.1. Let x and y be two P-nonoverlapping floating-point expansions, with n, and m terms,
respectively and d an integer parameter, the required number of output terms. Provided that no under-
flow/overflow occurs during the calculations, Algorithm 34 computes a quotient P-nonoverlapping expan-
sion q = q0 + · · ·+ qd−1 that satisfies: ∣∣∣∣q − x/yx/y

∣∣∣∣ < 21−b(p−4)d/pc. (3.32)

Daumas and Finot [20] modify Priest’s division algorithm by using only estimates of the most
significant component of the remainder r0 and storing the less significant components of the re-
mainder and the terms −qiy unchanged in a set that is managed with a priority queue. While
the asymptotic complexity of this algorithm is better, in practical simple cases Priest’s algorithm
is faster due to the control overhead of the priority queue [20]. The error bound obtained with
Daumas’ algorithm is (using the same notations as above):∣∣∣∣q − x/yx/y

∣∣∣∣ < 2−d(p−1)
d−1∏
i=0

(4i+ 6). (3.33)

In the worst case, Algorithm 34 requires d simple divisions, (d− 1) multiplications with 1 and
m terms,

∑d−1
i=0 additions Apriest(n+ 2m(i− 1), 2m), and a final renormalization on d terms. This

accounts for a total ofDpriest(n,m, d) = d+(d−1)Mpriest(1,m)+
∑d−1

i=0 Apriest(n+2m(i−1), 2m)+
Rpriest(d) = 27d2m+ (803m+ 27n− 231)d− 830m+ 213 floating-point operations.

3.5.2 Newton-Raphson based reciprocal algorithm

The following algorithm was presented in [42], and in the extended journal version [41], where
we proved that it works in the context of B-nonoverlapping and P-nonoverlapping floating-point
expansions, but the ulp-nonoverlapping context is first considered in this manuscript.
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The classical Newton-Raphson iteration for computing reciprocals [98, 17, 68, Chap. 2] is based
on the general Newton-Raphson iteration for computing the roots of a given function f , which is:

rn+1 = rn −
f(rn)

f ′(rn)
. (3.34)

When r0 is close to a root α, f ′(α) 6= 0, the iteration converges quadratically. For computing 1
x we

choose f(r) = 1
r − x, which gives

rn+1 = rn(2− xrn). (3.35)

The iteration converges to 1
x for all r0 ∈ (0, 2x). However, taking any point in (0, 2x) as the starting

point r0 would be a poor choice. A much better choice is to choose r0 equal to a floating-point
number very close to 1

x . This only requires one floating-point division. The quadratic convergence
of (3.35) is deduced from rn+1− 1

x = −x(rn− 1
x)2. This iteration is self-correcting because rounding

errors do not modify the limit value.
While iteration (3.35) is well known, in Algorithm 35 we use an adaptation for computing

reciprocals of floating-point expansions, with “truncated” operations, and we prove a tight error
bound on the result in Theorem 3.5.2.

Algorithm 35 – Reciprocal(x0, x1, . . . , x2k−1, 2q).
1: r0 = RN(1/x0)
2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1]←Multiplication_accurate(r[0 : 2i − 1], x[0 : 2i+1 − 1], 2i+1) //using Alg. 31

4: ŵ[0 : 2i+1 − 1]← Renormalize(−v̂[0 : 2i+1 − 1], 2.0, 2i+1) //using Alg. 24

5: r[0 : 2i+1 − 1]←Multiplication_accurate(r[0 : 2i − 1], ŵ[0 : 2i+1 − 1], 2i+1)
6: end for
7: return r0, r1, . . . , r2q−1

Theorem 3.5.2. Let x be an ulp-nonoverlapping floating-point expansions, with n = 2k terms and q ≥ 0,
an integer parameter such that 2q is the required number of output terms. Assume p ≥ 6 and q ≤ p

2 −
2, which always holds in practice. Provided that no underflow/overflow occurs during the calculations,
Algorithm 35 computes an approximation of 1

x as r = r0 + · · · + r2q−1, an ulp-nonoverlapping floating-
point expansion that satisfies: ∣∣∣∣r − 1

x

∣∣∣∣ ≤ 2−2
q(p−4)−2

|x| (1− 2−p+1)
. (3.36)

Property 3.5.3. Consider an ulp-nonoverlapping expansion u = u0 + u1 + · · · + uk with k + 1 > 0.
Denote u(i) = u0 + u1 + · · ·+ ui, i ≥ 0, i.e., “a truncation” of u to i+ 1 terms. The following inequalities
hold for 0 ≤ i ≤ k:

|ui| ≤ 2−i(p−1) |u0| , (3.37)

∣∣∣u− u(i)∣∣∣ ≤ 2−i(p−1) |u| η

1− η
, (3.38)

(
1− 2−i(p−1)

η

1− η

)
|u| ≤

∣∣∣u(i)∣∣∣ ≤ (1 + 2−i(p−1)
η

1− η

)
|u| , (3.39)

∣∣∣∣1u − 1

u0

∣∣∣∣ ≤ 1

|u|
η, (3.40)
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where

η =
∞∑
j=0

2(−j−1)(p−1) =
2−(p−1)

1− 2−(p−1)
=

1

2p−1 − 1
.

Proof. By definition of an ulp-nonoverlapping expansion and since for any normal binary floating-
point number ui, ulp(ui) ≤ 2−p+1 |ui| we have |ui| ≤ ulp(ui−1) ≤ 2−p+1 |ui−1| and (3.37) follows
by induction.

Consequently we have |u− u0| = |u1 + u2 + · · ·+ uk| ≤ 2−(p−1) |u0| + 2−2(p−1) |u0| + · · · +
2−k(p−1) |u0| ≤ |u0| η. One easily observes that u and u0 have the same sign. One possible proof is
by noticing that 1−η > 0 and− |u0| η ≤ u−u0 ≤ |u0| η. Suppose u0 > 0, then−u0η ≤ u−u0 ≤ u0η,
and hence u0(1 − η) ≤ u ≤ u0(1 + η) which implies u > 0. The case u0 < 0 is similar. It follows
that

|u|
1 + η

≤ |u0| ≤
|u|

1− η
. (3.41)

For (3.38) we use (3.41) together with:

∣∣∣u− u(i)∣∣∣ ≤ ∞∑
j=0

2(−i−j−1)(p−1) |u0| ≤ 2−i(p−1)η |u0| ,

and (3.39) is a simple consequence of (3.38). Similarly, (3.40) follows from
∣∣∣ 1u − 1

u0

∣∣∣ = 1
|u|

∣∣∣u0−uu0

∣∣∣ ≤
1
|u|η.

Remark 3.5.4. Note that given an expansion u which satisfies the properties listed in Proposition 3.2.6,
one can obtain its truncation u(i), with i+ 1 terms, by applying the renormalization Algorithm 24:

u(i) ← Renormalize(u, i+ 1).

Proof. (of Theorem 3.5.2) Let fi = 2i+1 − 1 and x(fi) = x0 + x1 + · · ·+ xfi , i.e., a “truncation” of x
to fi + 1 terms, with 0 ≤ i.

For computing 1
x we use the Newton-Raphson iteration: r0 = RN( 1

x0
), ri+1 = ri(2 −

x(fi)ri)), i ≥ 0 by truncating each operation involving floating-point expansions in the following
way:

• let vi := x(fi) · ri be the exact product; we compute a truncation v̂i with Algorithm 31, such
that it has 2i+1 terms and from Theorem 3.4.4 and eq. (3.41) it satisfies:

|vi − v̂i| ≤
∣∣∣x(fi)0 r0

∣∣∣ 2−(p−1)2
i+1

[
1 + (2i+1 + 1)2−p + 2−(p−1)

(
−2−(p−1)

(1− 2−(p−1))2
+

2i − 2

1− 2−(p−1)

)]

≤
∣∣∣x(fi)ri∣∣∣ 2−(p−1)2i+1

(
1 +

2i(2−(p−1) + η) + 2−p

(1− η)2

)

≤
∣∣∣x(fi)ri∣∣∣ 2−(p−1)2

i+1

1− 2−p+i+3
, (3.42)

as soon as p ≥ 3 and i < p− 3.

• let wi := 2− v̂i be the exact result of the subtraction; we compute a truncation ŵi by directly
applying the renormalization Algorithm 24, such that it has 2i+1 terms. This is correct by the
third case of Proposition 3.2.6: v̂i is ulp-nonoverlapping and 2.0 plays the role of an arbitrary
number;
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• let τi := ri · ŵi be the exact product; we compute a truncation ri+1 = τ
(2i+1−1)
i with Algo-

rithm 31, such that it has 2i+1 terms and, similarly to (3.42) we have:

|τi − ri+1| ≤ |riŵi|
2−(p−1)2

i+1

1− 2−p+i+3
. (3.43)

Let us first prove a simple upper bound for the approximation error in r0:

ε0 =

∣∣∣∣r0 − 1

x

∣∣∣∣ ≤ 2η

|x|
. (3.44)

Since r0 = RN( 1
x0

), then
∣∣∣r0 − 1

x0

∣∣∣ ≤ 2−p
∣∣∣ 1
x0

∣∣∣, so, from (3.41):∣∣∣∣r0 − 1

x

∣∣∣∣ ≤ 2−p
∣∣∣∣ 1

x0

∣∣∣∣+

∣∣∣∣1x − 1

x0

∣∣∣∣ ≤ (1 + η)2−p + η

|x|
≤ 2η

|x|
.

Now let us deduce an upper bound for the approximation error in r at step i + 1, εi+1 =∣∣ri+1 − 1
x

∣∣. For this, we will use a chain of triangular inequalities that make the transition from our
“truncated” Newton error, to the “untruncated” one. Let

γi = 2−(2
i+1−1)(p−1) η

1− η
=

2−2
i+1(p−1)

1− 2−p+2
,

and

βi =
2−2

i+1(p−1)

1− 2−p+i+3
.

From Property 3.5.3, eq. (3.38) and eq. (3.42) and (3.43) we deduce:

|ri+1 − τi| ≤ βi |riŵi| , (3.45)

|wi − ŵi| ≤ γi |wi| ≤ γi |2− v̂i| , (3.46)

|vi − v̂i| ≤ βi
∣∣∣x(fi)ri∣∣∣ , (3.47)∣∣∣x− x(fi)∣∣∣ ≤ γi |x| . (3.48)

From (3.45) we have:

εi+1 ≤ |ri+1 − τi|+
∣∣∣∣τi − 1

x

∣∣∣∣
≤ βi |riŵi|+

∣∣∣∣riŵi − 1

x

∣∣∣∣
≤ βi |ri(wi − ŵi)|+ βi |riwi|+

∣∣∣∣riŵi − 1

x

∣∣∣∣
≤ (1 + βi) |ri| |wi − ŵi|+ βi |riwi|+

∣∣∣∣riwi − 1

x

∣∣∣∣ .
Using (3.46) and (3.47):

εi+1 ≤
∣∣∣∣riwi − 1

x

∣∣∣∣+ (γi(1 + βi) + βi) |riwi|

≤
∣∣∣∣ri(2− vi)− 1

x

∣∣∣∣+ |ri| · |vi − v̂i|+ (γi(1 + βi) + βi) |ri| (|2− vi|+ |vi − v̂i|)

≤
∣∣∣∣ri(2− x(fi)ri)− 1

x

∣∣∣∣+ (1 + γi(1 + βi) + βi)βi
∣∣r2i ∣∣ ∣∣∣x(fi)∣∣∣+ (γi(1 + βi) + βi)

∣∣∣ri(2− x(fi)ri)∣∣∣ .
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By (3.48), we have: ∣∣∣∣ri(2− x(fi)ri)− 1

x

∣∣∣∣ ≤ |x| ∣∣∣∣ri − 1

x

∣∣∣∣2 + γi |ri|2 |x| ,

|ri|2
∣∣∣x(fi)∣∣∣ ≤ (1 + γi) |ri|2 |x| , and

∣∣∣ri(2− x(fi)ri)∣∣∣ ≤ |x| ∣∣∣∣ri − 1

x

∣∣∣∣2 + γi |ri|2 |x|+
1

|x|
.

Hence we have:

εi+1 ≤ (γi + 1)(βi + 1) |x|
∣∣∣∣ri − 1

x

∣∣∣∣2
+ (1 + βi)(1 + γi)(γi(1 + βi) + βi) |ri|2 |x|

+ (γi(1 + βi) + βi)
1

|x|
. (3.49)

We now prove by induction that for all 0 ≤ i ≤ p
2 − 2 and p ≥ 6:

εi =

∣∣∣∣ri − 1

x

∣∣∣∣ ≤ 2−2
i(p−4)−2

|x| (1− 2−p+1)
. (3.50)

For i = 0, this holds from (3.44). For the induction step, we have from (3.49):

εi+1 ≤ (1 + γi)(1 + βi) |x| |εi|2

+ (1 + βi)(1 + γi)(γi(1 + βi) + βi) (1± εi |x|)2
1

|x|

+ (γi(1 + βi) + βi)
1

|x|
, (3.51)

which implies

|x| (1− 2−p+1)εi+1 ≤ (1 + γi)(1 + βi)2
−2i+1(p−4)−4

1− 2−p+1
+

+ (1 + βi)(1 + γi)(γi(1 + βi) + βi)(1± εi |x|)2(1− 2−p+1)

+ (γi(1 + βi) + βi)(1− 2−p+1). (3.52)

Now, we bound

γi

2−2i+1(p−4)−2 =
2−2

i+1(p−1)

(1− 2−p+2)2−2i+1(p−4)−2

=
2−2

i+1(p−1−p+4)+2

1− 2−p+2

=
2−3·2

i+1+2

1− 2−p+2

≤ 2−4

1− 2−p+2

≤ 1

16(1− 2−p+2)
, (3.53)
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and

γi =
2−2

i+1(p−1)

1− 2−p+2

≤ 2−2(p−1)

1− 2−p+2

≤ 2−2p+2+p−2 1

2p−2 − 1

≤ 2−2p+3 ≤ 1

512
∀ p ≥ 6.

We also have:

βi =
2−(p−1)2

i+1

1− 2−p+i+3

≤ γi(1− 2−p+2)

1− 2−p+i+3

≤ γi(1 + 2i−p+3) ∀ i ≤ p

2
− 2 and p ≥ 6. (3.54)

Also 2i−p+3 ≤ 2−p/2+1 ≤ 1
4 ∀ p ≥ 6, so

βi ≤ γi
(

1 +
1

4

)
∀ i ≤ p

2
− 2 and p ≥ 6.

From (3.52) and (3.53) we have:

|x| (1− 2−p+1)εi+1

2−2i+1(p−4)−2 ≤
(1 + γi)(1 + γi + 1

4γi)

4(1− 2−p+1)

+
1

16
(1 + γi +

1

4
γi)(1 + γi)(γi +

1

4
γi +

1

4
+ 2)(1± εi |x|)2

1− 2−p+1

1− 2−p+2

+
1

16
(γi +

1

4
γi +

1

4
+ 2)

1− 2−p+1

1− 2−p+2
.

(3.55)

We denote:

ω1 =
(1 + γi)(1 + γi + 1

4γi)

4(1− 2−p+1)
;

ω2 =
1

16
(1 + γi +

1

4
γi)(1 + γi)(γi +

1

4
γi +

1

4
+ 2)(1± 2−2

i(p−4)−2

1− 2−p+1
)2

1− 2−p+1

1− 2−p+2
;

ω3 =
1

16
(γi +

1

4
γi +

1

4
+ 2)

1− 2−p+1

1− 2−p+2

s.t.
|x| (1− 2−p+1)εi+1

2−2i+1(p−4)−2 ≤ ω1 + ω2 + ω3. (3.56)

We have 1
2−2p+3 ≤ 32

31 for all p ≥ 6 and since γi ≤ 1
512 it follows that:

ω1 ≤
1

3
.

On the same note, (1 ± 2−2i(p−4)−2

1−2−p+1 )2 ≤ 3
2 for all i ≤ p−4

2 and p ≥ 6, and 1−2−p+1

1−2−p+2 ≤ 31
30 for all p ≥ 6,

so:
ω2 ≤

1

3
, and ω3 ≤

1

3
.
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By the above three bounds we get

|x| (1− 2−p+1)εi+1

2−2i+1(p−4)−2 ≤ 1,

and this completes our proof.

Our algorithm has the feature of truncating the expansions “on-the-fly” by taking into account
only the significant terms of the input expansions in order to compute the result. In total we
perform q iterations, and during each ith iteration we perform

• two multiplications Maccurate(2
i, 2i+1, 2i+1), and

• one addition using the renormalization Algorithm 24 (see Section 3.3), R(2i+1 + 1, 2i+1).

In the worst case, this account for a total of I(2k, 2q) = 52
3 4q + 98 · 2q + 128q − 343

3 floating-point
operations.

Note that, in practice, we can replace the calls to the “accurate” addition and multiplication
with calls to the fast “quick-and-dirty” versions. When doing this we can still get correct results
(sometimes the same), but the error bound is not guaranteed anymore. By doing this we can
speed up the algorithm in order to perform only Ifast(2k, 2q) = 32

7 8q + 16
3 4q + 48 · 2q − 14q − 1195

21
floating-point operations.

3.5.3 Newton-Raphson based division algorithm

In this setting the division of two floating-point expansions is simply performed with Algo-
rithm 35 followed by a multiplication with the numerator expansion. This can be done using
either Algorithm 31, either Algorithm 33, as shown in Algorithm 36.

Algorithm 36 – Division(x0, . . . , xn−1, y0, . . . , ym−1, r).
1: f [0 : r − 1]← Reciprocal(y[0 : m− 1], r) //using Alg. 35

2: d[0 : r − 1]←Multiplication(x[0 : n− 1], f [0 : r − 1], r) //using Alg. 31 or Alg. 33

3: return d0, d1, . . . , dr−1

If the “accurate” algorithms are employed, in the worst case, Algorithm 36 performs
D(n,m, 2q) = 143

6 4q + 241 · 2q−1 + 128q − 145
3 floating-point operations. On the other hand, if the

fast algorithms are considered it perform only Dfast(n,m, 2q) = 46
7 8q + 22

3 4q + 55 · 2q − 14q − 1300
21

floating-point operations.

3.6 Square root of floating-point expansions

The families of algorithms most commonly used are exactly the same as for division, although,
in the case of square root the digit-recurrence algorithm that generalizes the “paper-and-pencil”
technique is typically more complicated than for division. This is the reason why a software
implementation would be tedious, so there is none available. Moreover, Newton-Raphson based
algorithms offer the advantage of assuring a quadratic convergence.

3.6.1 Newton-Raphson based square root algorithm

The two algorithms presented below were presented in [41] in the context of B-
nonoverlapping and P-nonoverlapping expansions. Here we will treat the case of ulp-
nonoverlapping expansions.
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Starting from the general Newton-Raphson iteration (3.34), we can compute the square root in
two different ways. We can look for the zeros of the function f(r) = r2 − x that leads to the so
called “Heron iteration”:

rn+1 =
1

2
(rn +

x

rn
). (3.57)

One can easily show that if r0 > 0, then rn goes to
√
x. This iteration needs a division at each step,

which counts as a major drawback.
To avoid performing a division at each step we can look for the positive root of the function

f(r) = 1
r2
− x. From here we get the iteration

rn+1 =
1

2
rn(3− xr2n). (3.58)

This iteration converges to 1√
x

, provided that r0 ∈ (0,
√
3√
x
). The result can be multiplied by x in

order to get an approximation of
√
x. To obtain fast, quadratic, convergence, the first point r0 must

be a close approximation to 1√
x

. In this case we still need to perform a division (by 2), but this one
is much simpler. Since dividing a floating-point number by 2 can be done by multiplying it with
0.5, this being an exact operation, we can compute the division of a floating-point expansion by 2
by simply multiplying each of the terms by 0.5, separately.

As in the case of the reciprocal, in Algorithm 37 we use an adaption of iteration (3.58), using
“truncated” algorithms.

Algorithm 37 – Reciprocal_SquareRoot(x0, x1, . . . , x2k−1, 2q).
1: r0 = RN(1/

√
x0)

2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1]←Multiplication_accurate(r[0 : 2i − 1], x[0 : 2i+1 − 1], 2i+1) //using Alg. 31

4: ŵ[0 : 2i+1 − 1]←Multiplication_accurate(r[0 : 2i − 1], v̂[0 : 2i+1 − 1], 2i+1)
5: ŷ[0 : 2i+1 − 1]← Renormalize(−ŵ[0 : 2i+1 − 1], 3.0, 2i+1) //using Alg. 24

6: ẑ[0 : 2i+1 − 1]←Multiplication_accurate(r[0 : 2i − 1], ŷ[0 : 2i+1 − 1], 2i+1)
7: r[0 : 2i+1 − 1]← ẑ[0 : 2i+1 − 1] ∗ 0.5
8: end for
9: return r0, r1, . . . , r2q−1

The error analysis for this algorithm follows the same principle as the one for the reciprocal
algorithm. The goal is to show that the relative error decreases after every loop of the algorithm,
by taking into account the truncations performed after each operation. The strategy is to make the
exact Newton iteration term and bound appear.

Theorem 3.6.1. Let x be an ulp-nonoverlapping floating-point expansions, with n = 2k terms and q ≥ 0,
an integer parameter such that 2q is the required number of output terms. Assume p ≥ 6 and q ≤ p

2 −
2, which always holds in practice. Provided that no underflow/overflow occurs during the calculations,
Algorithm 38 computes an approximation of 1√

x
as r = r0 + · · ·+ r2q−1, an ulp-nonoverlapping floating-

point expansion that satisfies: ∣∣∣∣r − 1√
x

∣∣∣∣ ≤ 2−2
q(p−4)−1

√
x(1− 2−p+1)

. (3.59)

Proof. In Property 3.5.3 we gave and proved some properties of ulp-nonoverlapping floating-point
expansions. To those we are going to add a new one:∣∣∣∣ 1√

u
− 1
√
u0

∣∣∣∣ ≤ 1√
u
η. (3.60)
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It can be seen that
∣∣∣ 1√

u
− 1√

u0

∣∣∣ = 1√
u

∣∣∣1− √
u√
u0

∣∣∣. By using Property 3.5.3 eq. (3.41), the fact that
u and u0 have the same sign, and the fact that the square root is an increasing function, we have:∣∣∣1− √

u√
u0

∣∣∣ ≤ 1−
√

1
1+η ≤ η, which proves the property.

We use the same notation as for the reciprocal: fi = 2i+1 − 1 and x(fi) = x0 + x1 + · · ·+ xfi i.e.
a “truncation” of x to fi + 1 terms, with 0 ≤ i. For computing 1√

a
we use the Newton iteration:

r0 = RN( 1√
x0

), ri+1 = 1
2rn(3−x(fi)r2n), i ≥ 0 by truncating each operation involving floating-point

expansions in the following way:

• let vi := x(fi) · ri be the exact product; we compute a truncation v̂i with Algorithm 31, such
that it has 2i+1 terms and from Theorem 3.4.4 and (3.41) it satisfies:

|vi − v̂i| ≤
∣∣∣x(fi)ri∣∣∣ 2−(p−1)2

i+1

1− 2−p+i+3
, (3.61)

as soon as p ≥ 3 and i < p− 3.

• let wi := v̂i · ri be the exact product; we compute a truncation ŵi with 2i+1 terms that,
similarly to (3.61), satisfies:

|wi − ŵi| ≤ |v̂iri|
2−(p−1)2

i+1

1− 2−p+i+3
, (3.62)

as soon as p ≥ 3 and i < p− 3.

• let yi := 3− ŵi be the exact result of the subtraction; we compute a truncation ŷi by directly
applying the renormalization Algorithm 24, such that it has 2i+1 terms. This is correct by the
third case of Proposition 3.2.6: ŵi is ulp-nonoverlapping and 3.0 plays the role of an arbitrary
number;

• let τi := 1
2 ŷi · ri be the exact product; we compute a truncation ri+1 with 2i+1 terms similarly

to (3.61) and (3.62) we have:

|ri+1 − τi| ≤
∣∣∣∣12 ŷiri

∣∣∣∣ 2−(p−1)2
i+1

1− 2−p+i+3
, (3.63)

as soon as p ≥ 3 and i < p− 3.

We continue by first proving a simple upper bound for the approximation error in r0:

ε0 =

∣∣∣∣r0 − 1√
x

∣∣∣∣ ≤ 1√
x
η(3 + η). (3.64)

We denote α = RN(
√
x0), so we have r0 = RN( 1

α). We know that
∣∣α−√x0∣∣ ≤ 2−p

√
x0 and∣∣r0 − 1

α

∣∣ ≤ 2−p 1
α , so we obtain:

∣∣∣ 1α − 1√
x0

∣∣∣ ≤ ( 1
1−2−p − 1) 1√

x0
. By (3.60) we have:∣∣∣∣r0 − 1

√
x0

∣∣∣∣ ≤ ∣∣∣∣r0 − 1

α

∣∣∣∣+

∣∣∣∣ 1α − 1
√
x0

∣∣∣∣
≤ 2−p

1

α
+

∣∣∣∣ 1α − 1
√
x0

∣∣∣∣
≤ 2−p

1
√
x0

+ (2−p + 1)

∣∣∣∣ 1α − 1
√
x0

∣∣∣∣
≤ 2η

1
√
x0
.
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From (3.60) it follows:

ε0 ≤
∣∣∣∣r0 − 1

√
x0

∣∣∣∣+

∣∣∣∣ 1√
x
− 1
√
x0

∣∣∣∣
≤ 2η

1
√
x0

+ η
1√
x
.

Because
√
x√

1+η
≤ √x0, then 1√

x0
≤
√
1+η√
x
≤ 1+η/2√

x
. We can conclude that ε0 ≤ (2η(1+ η

2 )+η) 1√
x
≤

η(3 + η) 1√
x

.
Before going further, let Ei = εi

√
x, such that:

E0 ≤ η(3 + η).

Next we will deduce an upper bound for the approximation error in r at step i + 1, εi+1 =∣∣∣ri+1 − 1√
x

∣∣∣. For this, we use, same as in the case of the reciprocal, a chain of triangular inequalities
that make the transition from our “truncated” error, to the “untruncated” one. Let

γi = 2−(2
i+1−1)(p−1) η

1− η
=

2−2
i+1(p−1)

1− 2−p+2
,

and

βi =
2−(p−1)2

i+1

1− 2−p+i+3
.

From Property 3.5.3, eq. (3.38) and eq. (3.61), (3.62), and (3.63) we have:

|ri+1 − τi| ≤ βi |τi| ≤ βi
∣∣∣∣12riŷi

∣∣∣∣ , (3.65)

|yi − ŷi| ≤ γi |yi| ≤ γi |3− ŵi| , (3.66)

|wi − ŵi| ≤ βi |wi| ≤ βi |riv̂i| , (3.67)

|vi − v̂i| ≤ βi |vi| ≤ βi
∣∣∣x(fi)ri∣∣∣ , (3.68)∣∣∣x− x(fi)∣∣∣ ≤ γi |x| . (3.69)

From (3.65) we have:

εi+1 ≤ |ri+1 − τi|+
∣∣∣∣τi − 1√

x

∣∣∣∣
≤ βi

∣∣∣∣12riŷi
∣∣∣∣+

∣∣∣∣12riŷi − 1√
x

∣∣∣∣ .
Using (3.66) and (3.67):

εi+1 ≤ (γi(1 + βi) + βi)

∣∣∣∣12ri(3− ŵi)
∣∣∣∣+

∣∣∣∣12ri(3− ŵi)− 1√
x

∣∣∣∣
≤ (γi(1 + βi) + βi)

∣∣∣∣12ri
∣∣∣∣ (|3− wi|+ βi |wi|) + βi

∣∣∣∣12riwi
∣∣∣∣+

∣∣∣∣12ri(3− wi)− 1√
x

∣∣∣∣ .
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By (3.68) we have:

εi+1 ≤
∣∣∣∣12ri

∣∣∣∣ ((γi(1 + βi) + βi) |3− riv̂i|+ (1 + γi)(1 + βi)βi |riv̂i|
)

+

∣∣∣∣12ri(3− riv̂i)− 1√
x

∣∣∣∣
≤

∣∣∣∣12ri
∣∣∣∣ ((γi(1 + βi) + βi)(|3− rivi|+ βi |rivi|) + (1 + γi)(1 + βi)

2βi |rivi|
)

+

βi

∣∣∣∣12r2i vi
∣∣∣∣+

∣∣∣∣12ri(3− rivi)− 1√
x

∣∣∣∣
≤

∣∣∣∣12ri
∣∣∣∣ ((γi(1 + βi) + βi) |3− rivi|+ ((γi + 1)(β2i + 3βi + 1) + γi)βi |rivi|

)
+

βi

∣∣∣∣12r2i vi
∣∣∣∣+

∣∣∣∣12ri(3− rivi)− 1√
x

∣∣∣∣
From (3.69) we have:

εi+1 ≤
∣∣∣∣12ri

∣∣∣∣ ((γi(1 + βi) + βi)
∣∣∣3− r2i x(fi)∣∣∣+ (γi + 1)(β2i + 3βi + 2)βi

∣∣∣r2i x(fi)∣∣∣ )+

+

∣∣∣∣12ri(3− r2i x(fi))− 1√
x

∣∣∣∣
≤ (γi(1 + βi) + βi)

∣∣∣∣12ri(3− r2i x)

∣∣∣∣+

[
(γi(γi(1 + βi) + βi)) + (γi + 1)2(β2i + 3βi + 2)βi + γi︸ ︷︷ ︸

(1+γi)(1+βi)(γi(1+βi)2+β2
i+2βi)

]
·

·
∣∣∣∣12r3i x

∣∣∣∣+

∣∣∣∣12ri(3− r2i x)− 1√
x

∣∣∣∣ .
Hence we have:

εi+1 ≤ (1 + γi(1 + βi) + βi)

∣∣∣∣ri+1 −
1√
x

∣∣∣∣
+

[
(1 + γi)(1 + βi)(γi(1 + βi)

2 + β2i + 2βi)

] ∣∣∣∣12r3i x
∣∣∣∣+

+(γi(1 + βi) + βi)
1√
x
. (3.70)

By using the quadratic convergence of the sequence we can say that:∣∣∣∣ri+1 −
1√
x

∣∣∣∣ =
1

2

√
x(ri
√
x+ 2)

∣∣∣∣ri − 1√
x

∣∣∣∣2 . (3.71)

We now prove by induction that for all i ≥ 0 εi =
∣∣∣ri − 1√

x

∣∣∣ respects the imposed bound.

We know that |ri
√
x| ≤ εi

√
x+ 1 and

∣∣r3i x∣∣ ≤ (εi
√
x+1)3√
x

and from (3.70) we have:

εi+1 ≤ 1

2
(1 + γi)(1 + βi)

√
x(εi
√
x+ 3)ε2i

+
1

2
(1 + γi)(1 + βi)(γi(1 + βi)

2 + β2i + 2βi)
(εi
√
x+ 1)3√
x

+(γi(1 + βi) + βi)
1√
x
. (3.72)
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Using the notation Ei = εi
√
x we can transform (3.72) in an equation independent of x:

Ei+1 ≤ 1

2
(1 + γi)(1 + βi)(Ei + 3)E2

i

+
1

2
(1 + γi)(1 + βi)(γi(1 + βi)

2 + β2i + 2βi))(Ei + 1)3

+(γi(1 + βi) + βi)).

For the last part of the proof we denote by f a function that writes the previous inequality

as: Ei+1 ≤ f(Ei, i). We want to show that ∀i ∈ N, Ei ≤ 2−2i(p−4)−1

1−2−p+1 so we will define ind(i) =

2−2i(p−4)−1

1−2−p+1 .
For i = 0 we verify that E0 ≤ ind(0) for p ≥ 3.
For i ≥ 1 by induction:
• we first prove, similarly to (3.54) that βi ≤ γi(1 + 2i−p+3 when p ≥ 6 and i ≤ p

2 − 2;
• for i = 1 we can prove by using computer algebra and the above inequality thatE1 ≤ ind(1),

for p ≥ 6;
• then, it is easily shown (by using the definition of a decreasing function and computation

for example) that the function i 7→ f(ind(i),i)
ind(i+1) is decreasing and it’s value in 1 is < 1 for p ≥ 6

and i ≤ p
2 − 2. So, f(ind(i),i)

ind(i+1) ≤ 1, for i ≤ p
2 − 2;

• suppose that Ei ≤ ind(i), we have Ei+1

ind(i+1) ≤
f(ind(i),i)
ind(i+1) ≤ 1 which concludes the induction,

for p ≥ 6 and i ≤ p
2 − 2.

At last we find the final inequality with i = q.

In the QD library, for the square root computation, also the Newton iteration is used. Although
they use the same function as we do, they use the iteration under the form: ri+1 = ri+

1
2ri(1−xr

2
i ),

which from a mathematical point of view is the same, but it requires a different implementation.
During the ith iteration we perform:
• 3 multiplications Maccurate(2

i, 2i+1, 2i+1),
• one addition using the renormalization Algorithm 24 (see Section 3.3), R(2i+1 + 1, 2i+1), and
• 2i+1 multiplications by 0.5.

In the worst case, this account for a total of Isqrt(2k, 2q) = 26·4q+139·2q+194q−163 floating-point
operations.

Note that, in practice, we can replace the calls to the “accurate” addition and multiplication
with calls to the fast “quick-and-dirty” algorithms. When doing this we can still get correct results
(sometimes the same), but the error bound is not guaranteed anymore. By doing this we can speed
up the algorithm in order to perform only Ifastsqrt (2k, 2q) = 48

7 8q8·4q+64·2q−19q− 538
7 floating-point

operations.
We obtain the square root of an expansion by simply multiplying the result obtained from

Algorithm 37 by x, the input expansion, as shown in Algorithm 38. If the “accurate” algorithms
are employed, in order to compute sqrt(x), we perform S(2k, 2q) = 65

2 4q + 323 · 2q−1 + 194q − 97
floating-point operations. On the other hand, if the fast algorithms are considered we perform
only Sfast(2k, 2q) = 62

7 8q + 10 · 4q + 71 · 2q − 19q − 573
7 floating-point operations.

Algorithm 38 – SquareRoot(x0, x1 . . . , x2k−1, 2q).

1: f [0 : 2q − 1]← Reciprocal_SquareRoot(x[0 : 2k − 1], 2q) //using Alg. 37

2: r[0 : 2q − 1]←Multiplication(x[0 : 2k − 1], f [0 : 2q − 1], 2q) //using Alg. 31 or Alg. 33

3: return r0, r1, . . . , r2q−1
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120 Chapter 3. Floating-Point Expansions Arithmetic

Heron iteration algorithm. The same type of proof as above can be applied for the algorithm
using the “Heron iteration” (3.57) and the same type of truncations. In this case (Algorithm 39)
we obtain a slightly larger error bound, given in Theorem 3.6.2.

Algorithm 39 – SquareRoot_Heron(x0, x1 . . . , x2k−1, 2
q).

1: r0 = RN(
√
x0)

2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1]← Division(x[0 : 2i+1 − 1], r[0 : 2i − 1], 2i+1) //using Alg. 35

4: ŵ[0 : 2i+1 − 1]← Addition_accurate(r[0 : 2i − 1], v̂[0 : 2i+1 − 1], 2i+1) //using Alg. 27

5: r[0 : 2i+1 − 1]← ŵ[0 : 2i+1 − 1] ∗ 0.5
6: end for
7: return r0, r1, . . . , r2q−1

Theorem 3.6.2. Let x be an ulp-nonoverlapping floating-point expansions, with n = 2k terms and q ≥ 0,
an integer parameter such that 2q is the required number of output terms. Assume p ≥ 6 and q ≤ p

2 −
2, which always holds in practice. Provided that no underflow/overflow occurs during the calculations,
Algorithm 39 computes an approximation of 1√

x
as r = r0 + · · ·+ r2q−1, an ulp-nonoverlapping floating-

point expansion that satisfies: ∣∣r −√x∣∣ ≤ 3
√
x · 2−2

q(p−4)−2

1− 2−p+1
. (3.73)

During each iteration i we perform:

• one division using Algorithm 36, D(2i+1, 2i, 2i+1).

• one addition using Algorithm 27, Aaccurate(2i, 2i+1, 2i+1), and

• 2i+1 multiplications by 0.5.

This account for a total of Sheron(2k, 2q) = 64 · q2 + 286
9 4q + 287 · 2q + 5

3q −
2860
9 floating-point

operations.
The same as before, in practice, we can replace the calls to the “accurate” algorithms with calls

to the fast “quick-and-dirty” ones, by losing the guaranty of the error bound. This means we
will perform only Sfastheron(2k, 2q) = −7 · q2 + 368

49 8q + 124
9 4q + 134 · 2q − 1552

21 q −
68041
441 floating-point

operations.
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3.7 Comparison and discussion 121

3.7 Comparison and discussion

Choosing which arithmetic algorithm to use frequently depends on a compromise between
accuracy, speed, and safety. In this section we compare the algorithms presented above, so that
the user can get a flavor of how they behave in practice.

In Table 3.1 we give some approximates of the relative error bounds for each algorithm, con-
sidering underlying binary64 (p = 53). We present the values for input and output expansions of
size n = 4, 8, 16, and 32.

Table 3.1 – Orders of magnitude of the the relative error bounds.

n 4 8 16 32

Addition
Alg. 26 1.5 · 10−64 2 · 10−128 5 · 10−256 2 · 10−511

Alg. 27 10−62 2 · 10−125 1.5 · 10−250 5 · 10−501

Alg. 29 5 · 10−62 1.4 · 10−124 8 · 10−250 2 · 10−500

Multiplication
Alg. 30 1.5 · 10−64 2 · 10−128 5 · 10−256 2 · 10−511

Alg. 31 2 · 10−63 5 · 10−126 3 · 10−251 1.2 · 10−501

Alg. 33 2 · 10−63 2 · 10−126 6 · 10−251 5 · 10−465

Division Alg. 34
eq. (3.32) 0.25 1.5 · 10−2 1.2 · 10−4 3 · 10−9

eq. (3.33) 3 · 10−59 5 · 10−116 1.4 · 10−227 3 · 10−446

Reciprocal Alg. 35 2 · 10−60 2 · 10−119 2 · 10−237 2 · 10−473

Square root
Alg. 37 4 · 10−60 4 · 10−119 4 · 10−237 4 · 10−473

Alg. 39 7 · 10−60 7 · 10−119 7 · 10−237 7 · 10−473
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122 Chapter 3. Floating-Point Expansions Arithmetic

In order to assess the performance of the algorithms we first look at the operation count, fol-
lowed by the real time execution performance. In Table 3.2 we give the worst case floating-point
operation count for all the algorithms, using the notations already introduced. We consider that
the input and output expansions have the same size n. We highlight with red, for each entry of n,
the lowest operation count in each group of algorithms that perform the same operation. One can
see that as the expansion size increases, the “quick-and-dirty” algorithms are not optimal from
this point of view.

Table 3.2 – Effective values of the worst case floating-point operations count.

n 3 4 6 8 12 16

Renormalization

Alg. 23 Rpriest 40 60 100 140 220 300

Alg. 24
Rfast 10 17 31 45 73 101

R 16 26 46 66 106 146

Alg. 25 Rrand 22 44 106 192 436 776

Addition

Alg. 26 Apriest 143 197 305 413 629 845

Alg. 27 Aaccurate 52 74 118 162 250 338

Alg. 29
Aquick 82 135 227 467 991 1,707

Afastquick 55 87 169 275 559 939

Multiplication

Alg. 30 Mpriest 8,217 16,212 43,002 87,432 244,764 519,312

Alg. 31 Maccurate 192 260 441 668 1,284 2,102

Alg. 33

Mquick 117 234 654 1,402 4,266 9,594

Mquick[fma] 115 231 649 1,395 4,255 9,579

Mfast
quick 90 186 546 1,210 3,834 8,826

Mfast
quick[fma] 88 183 541 1,203 3,823 8,811

Reciprocal Alg. 35
I 847 847 2,259 2,259 6,619 6,619

Ifast 485 485 2,967 2,967 20,745 20,745

Division
Alg. 34 Dpriest 5,229 10,977 29,559 58,669 153,657 306,309

Alg. 36
D 1,107 1,107 2,927 2,927 8,721 8,721

Dfast 668 668 4,170 4,170 29,556 29,556

Reciprocal of
Alg. 37

Isqrt 1,251 1,251 3,339 3,339 9,817 9,817

square root Ifastsqrt 708 708 4,401 4,401 31,006 31,006

Square root
Alg. 38

S 1,511 1,511 4,007 4,007 11,919 11,919

Sfast 891 891 5,604 5,604 39,817 39,817

Alg. 39
Sheron 1,646 1,646 4,743 4,743 13,818 13,818

Sfastheron 907 907 5,360 5,360 35,871 35,871
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In what follows we present some performance measurements obtained for our underlying
binary64 implementation, on the CPU and GPU 5 described in Section 1.4.1. The CPU implemen-
tation’s performance is compared with that of MPFR. The CPU performance is given in Mop/s
(Mega operations per second), and the GPU performance in Kop/s (Kilo operations per second).

In Table 3.3 and 3.4 we assess the addition performance on CPU and GPU, respectively. Ta-
ble 3.5 and 3.6 refer to the multiplication performance. In Table 3.7 and 3.8 we present the recip-
rocal performance, followed by the division one in Table 3.9 and 3.10. We finish by comparing the
squaring algorithms in Table 3.11 and 3.12.

In each table, for each size entry, we highlight with red the algorithm from our library that
performs the best. In the CPU performance tables, in case the MPFR library performs better, we
highlight that entry with green.

Table 3.3 – CPU performance in Mop/s for the addition algorithms.

CAMPARY
MPFR

n,m, r Alg. 27 Alg. 29 Fast Alg. 29
3, 3, 3 34 27.3 40 31.5

3, 1, 3 75.3 75.3 75.3 22.2

4, 4, 4 19.3 16.9 23.2 28.2

4, 2, 4 33.5 19.9 28.1 20.2

4, 1, 4 59.2 59.2 59.2 20.7

8, 8, 8 8.15 4.48 7.07 24.5

8, 4, 8 11.2 5 7.36 19.7

8, 2, 8 15 6.32 10.2 19.1

16, 16, 16 3.82 1.12 1.73 17.1

16, 8, 16 5.46 1.2 2.5 15.3

Table 3.4 – GPU performance in Kop/s for the addition algorithms.

CAMPARY
n,m, r Alg. 27 Alg. 29 Fast Alg. 29
3, 3, 3 396 310 765

3, 1, 3 1,244 1,244 1,244

4, 4, 4 270 189 566

4, 2, 4 365 217 752

4, 1, 4 972 972 972

8, 8, 8 135 60.8 274

8, 4, 8 170 72.2 162

8, 2, 8 205 78.9 235

16, 16, 16 55.8 17.4 35.3

16, 8, 16 81.3 22.1 46

5. The values reflect the performance obtained on GPU using only one execution thread.
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Table 3.5 – CPU performance in Mop/s for the multiplication algorithms.

CAMPARY
MPFR

n,m, r Alg. 31 Alg. 33 Fast Alg. 33
3, 3, 3 22.6 22 30.2 14.1

3, 1, 3 33.9 35.5 51.5 17.9

4, 4, 4 10.7 10.8 13.4 12.8

4, 2, 4 12.8 13.4 17.2 16.1

4, 1, 4 20.5 20.8 28.7 16.7

8, 8, 8 2.05 1.55 1.94 7.72

8, 4, 8 2.8 1.82 2.16 10.7

8, 2, 8 4.23 2.83 3.53 13.83

16, 16, 16 0.62 0.24 0.21 2.92

16, 8, 16 0.83 0.25 0.24 5.12

Table 3.6 – GPU performance in Kop/s for the multiplication algorithms.

CAMPARY
n,m, r Alg. 31 Alg. 33 Fast Alg. 33
3, 3, 3 400 192 750

3, 1, 3 502 351 994

4, 4, 4 226 107 411

4, 2, 4 251 132 517

4, 1, 4 318 231 764

8, 8, 8 31.8 22.1 65.5

8, 4, 8 45.9 26.2 33.1

8, 2, 8 67.1 40.4 58.1

16, 16, 16 8.5 3.56 3.62

16, 8, 16 12.9 4.09 4.44
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Table 3.7 – CPU performance in Mop/s for the reciprocal algorithms.

CAMPARY
MPFR

2k, 2q Alg. 35 Fast Alg. 35
4, 2 6 · 104 7 · 104 12.8

4, 4 8.76 10.65 5.3

2, 4 4.34 5.18 10.2

1, 4 4.87 6.35 10.9

8, 8 1.04 0.83 3.9

4, 8 1.16 0.88 4.3

2, 8 1.29 1.03 8

16, 16 0.32 0.08 1.7

8, 16 0.36 0.08 2.5

4, 16 0.4 0.12 3

Table 3.8 – GPU performance in Kop/s for the reciprocal algorithms.

CAMPARY
2k, 2q Alg. 35 Fast Alg. 35
4, 2 2 · 107 2 · 107

4, 4 129 282

2, 4 128 149

1, 4 129 202

8, 8 19 19.3

4, 8 24 20.2

2, 8 25.7 21.2

16, 16 4.4 1.83

8, 16 5.6 1.98

4, 16 6.2 2.45
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126 Chapter 3. Floating-Point Expansions Arithmetic

Table 3.9 – CPU performance in Mop/s for the division algorithms.

CAMPARY
MPFR

n,m, r Alg. 36 Fast Alg. 36

2, 4, 2 410 411 11.02

4, 4, 4 3.1 3.7 5.05

4, 2, 4 2.99 3.63 9.3

4, 1, 4 3.23 4.1 9.6

8, 8, 8 0.72 0.58 3.7

8, 4, 8 0.74 0.6 3.9

8, 2, 8 0.78 0.67 6.9

16, 16, 16 0.21 0.06 1.65

16, 8, 16 0.22 0.06 2.3

16, 4, 16 0.24 0.07 2.6

Table 3.10 – GPU performance in Kop/s for the division algorithms.

CAMPARY
n,m, r Alg. 36 Fast Alg. 36

2, 4, 2 8310 7987

4, 4, 4 86.3 180

4, 2, 4 75.5 108

4, 1, 4 82.9 146

8, 8, 8 12.7 11.8

8, 4, 8 14.3 13.3

8, 2, 8 14.9 14.9

16, 16, 16 2.78 1.23

16, 8, 16 3.21 1.28

16, 4, 16 3.42 1.48

126
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Table 3.11 – CPU performance in Mop/s for the squaring algorithms.

CAMPARY MPFR
2k, 2q Alg. 37 Fast Alg. 37 Alg. 38 Fast Alg. 38 Alg. 39 Fast Alg. 39 1/

√ √

4, 2 28.9 28.9 13.3 14.3 43 163 4 6.6

4, 4 3.98 4.75 2.25 2.67 2.36 2.95 2.1 4.2

2, 4 3.04 3.4 2.93 2.97 2.44 3.18 2.2 4

1, 4 3.22 3.96 3.2 3.31 2.61 3.56 2.2 4.3

8, 8 1 0.56 0.52 0.43 0.54 0.47 1.3 2.2

4, 8 0.97 0.58 0.6 0.44 0.59 0.47 1.3 2.2

2, 8 1.08 0.63 0.68 0.54 0.63 0.53 1.3 2.2

16, 16 0.85 0.06 0.16 0.047 0.15 0.061 0.7 1.15

8, 16 0.93 0.064 0.21 0.051 0.16 0.064 0.7 1.2

4, 16 1.02 0.067 0.24 0.056 0.18 0.071 0.7 1.2

Table 3.12 – GPU performance in Kop/s for the squaring algorithms.

CAMPARY
2k, 2q Alg. 37 Fast Alg. 37 Alg. 38 Fast Alg. 38 Alg. 39 Fast Alg. 39

4, 2 1,185 1,235 6,875 578 635 2,857

4, 4 70.8 131 53.2 96.4 56.5 83.9

2, 4 70.8 106 58.7 87.1 56.3 89

1, 4 76.8 137 60.1 115 62.3 93.7

8, 8 12.9 9.87 9.69 8.29 8.45 9.38

4, 8 14.9 10.4 10.2 8.89 8.98 8.14

2, 8 15.1 11.9 13.1 9.65 9.67 9.18

16, 16 2.77 1.15 2.07 0.92 2.06 1.05

8, 16 3.13 1.27 2.47 0.99 2.25 1.09

4, 16 3.5 1.46 3.07 1.24 2.51 1.19
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128 Chapter 3. Floating-Point Expansions Arithmetic

When looking at these tables, one can observe that in general the algorithms perform in ac-
cordance with their operation count. This is why, as the expansion size increases, the “accurate”
algorithms are faster. However, this is not the case for addition, where Algorithm 27 has the lowest
operation count for all entries, but, in practice, for expansion size up to 4, Algorithm 29 performs
better. This is due to pipeline optimization.

Another strange behavior, both on CPU and on GPU, can be observed for Algorithm 37: when
we compute the reciprocal square root of an input expansion of size 2 (double-double) as an output
expansion of size 4, the performance is worse or the same as for computing starting from an input
expansion of size 4. We suppose that this is due to compiler optimizations an the ability of the
algorithms to fill up the pipeline.

As expected the performance of the reciprocal/division and square root algorithms is in ac-
cordance to the performance of the addition and multiplication algorithms used for intermediate
computations.

We ask the reader to keep in mind that these values were obtained in an ideal setting, in which
we performed operations using only the tested algorithm. In real life applications the performance
may depend on many factors like instruction level parallelism, pipeline depth, branch prediction,
memory usage, etc. We will compare CAMPARY with other existing libraries in two real applica-
tions in Chapter 5.
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4 CHAPTER 4

Parallel Floating-point Expansions

Ce poţi face singur cu mâna ta, nu aştepta de la alţii.

Romanian proverb

In this chapter we explore the possibility of directly parallelizing the arithmetic algorithms.
We present new data-parallel algorithms for adding and multiplying floating-point expansions
specially designed for extended precision computations on GPUs.

This is a joint work with S. Collange, 1 M. Joldes, and J.-M. Muller, that was presented in Par-
allel floating-point expansions for extended-precision GPU computations [16], published in Proceedings
of the 27th IEEE International Conference on Application-specific Systems, Architectures and Pro-
cessors (ASAP 2016).

We argued in the introduction (Chapter 1) that our work also focuses on GPU implementation,
but the algorithms that we presented until now were sequential. In that setting we assumed we
have to deal with “embarrassingly parallel” problems with compact intermediate data for which
it was certainly better not to try to parallelize the arithmetic itself. However, many applications
do not provide as much parallelism. Even for those that do, locality can be a problem. Increasing
the precision of sequential arithmetic operations requires a corresponding increase in the amount
of intermediate data to keep. Thus, parallel arithmetic algorithms are attractive not just by the
extra parallelism they provide, but also by the locality improvements they enable.

With GPU oriented implementation in mind, in this chapter we deal with what we called
“parallel floating-point expansions”, i.e., the expansion is stored on parallel execution threads,
with one term/thread. This implies that the user has to launch as many threads as the expansion
size.

In Section 4.1 and Section 4.2 we present the addition and multiplication of parallel floating-
point expansions in the general context of parallel architectures. We finish by comparring perfor-
mance with the algorithms presented in Chapter 2 and 3 in Section 4.3.

4.1 Data-parallel addition algorithm

The first algorithm that we developed for parallel addition of floating-point expansions is Al-
gorithm 40 below, illustrated in Figure 4.1 for the case of expansions with 3 components. For the
sake of simplicity, we only present here the “input r - output r” version of the algorithm, even
though the generalized version allows for different input sizes.

1. Researcher in PACAP project-team, Inria Rennes, Rennes, France.
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Algorithm 40 – PAddition_safe(x = (x0, . . . , xr−1),y = (y0, . . . , yr−1), r).
1: a← (x0, 0, 0, . . . , 0)
2: b← (y0, 0, 0, . . . , 0)
3: (s, e)← 2Sum(a,b)
4: for i← 1 to r do
5: e′ ← (xi, e0, e1, . . . , er−2) //shift right & insert xi

6: (s, e)← 2Sum(s, e′)
7: e′ ← (yi, e0, e1, . . . , er−2) //shift right & insert yi

8: (s, e)← 2Sum(s, e′)
9: end for

10: for i← 1 to r − 2 do
11: e′ ← (0, e0, e1, . . . , er−2)
12: (s, e)← 2Sum(s, e′)
13: end for
14: e′ ← (0, e0, e1, . . . , er−2)//shift right

15: s← s + e′

16: return s = (s0, s1, . . . , sr−1)

In this setting, all arithmetic operations including error-free transforms are performed in par-
allel element-wise on r-element vectors. We assume vectors can be merged and elements inside
a vector can be shuffled. As the data-parallel computations are homogeneous, larger vectors can
be assembled by concatenating several expansion vectors and processing them in parallel. This
allows to fill SIMD execution units by leveraging parallelism between expansions. These assump-
tions make the algorithms applicable to most SIMD units, including the Intel SSE/AVX instruction
set extensions [24] and all recent Nvidia GPUs [77].

The main constraint of the algorithm is the fact that it requires r parallel execution threads in
order for it to work and we rely on the user to launch them.

The algorithm is based on a pipelined error propagation. We start by adding the first elements
of each expansion, x0 and y0, on the first vector component. We continue to add the rest of the
elements on the first component one by one and propagating the error upwards, to the other
vector components. When we run out of elements to add we continue to propagate the errors for
another r − 1 steps by injecting 0s on the first component. In the last step of the algorithm we can
use only simple addition since we are not going to propagate the errors anymore.

By using this scheme to add the two expansions we ensure that the most significant term of
the output, s0, is the sum of the inputs rounded to nearest. Moreover, the terms of the output are
arranged in terms of magnitude in decreasing order, with some constraints. We will show this by
proving Theorem 4.1.1.

Theorem 4.1.1. Let x and y be two ulp-nonoverlapping floating-point expansions, with n and m terms,
respectively. Provided that no underflow/overflow occurs during the calculations, when computing their
sum using Algorithm 40, the result array s with r terms satisfies |si| ≤ 2−(p−1)i+2r−1|s0|, with 0 < i < n
and

|x+ y − s| < 2−(p−1)r(|x0|+ |y0|)
(

22r(1 + 2−p) +
1

1− 2−(p−1)

)
.
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4.1 Data-parallel addition algorithm 131

Figure 4.1 – Graphical representation of Algorithm 40 illustrated for expansions of size 3.
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132 Chapter 4. Parallel Floating-Point Expansions

Before proving the above theorem we need to take a closer look to the algorithm. It is easily
seen that the parallel scheme presented in Figure 4.1 can be reduced to the sequential one pre-
sented in Figure 4.2.

Figure 4.2 – Sequential representation of Algorithm 40.

Consider that x0 and y0 are of opposite signs and
∣∣x0
2

∣∣ ≤ |y0| ≤ |2x0| (we say that there is
a “Sterbenz relation” between x0 and y0). Then e01 = 0 and s01 = x0 + y0, which implies that
s12 = e02 and e12 = 0, and so on. In this case we end up propagating a 0 to the end of the result
expansion, and we are left with the same scheme as we began with (illustrated in Figure 4.3). This
means that in our analysis we can eliminate the case in which we have a “Sterbenz relation”.

Figure 4.3 – Reduction of the sequential representation in Figure 4.2 based on the “Sterbenz
relation”.
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4.1 Data-parallel addition algorithm 133

We will first prove an intermediate property given in Theorem 4.1.2 that refers to only one
horizontal line of the scheme, i.e., a chain of 2Sum starting from the left side and propagating the
error to the right. An algorithm that performs this type of addition can be visualized as a “reverse”
VecSum. For the proof we use the notations given in Figure 4.4.

Figure 4.4 – Addition of a floating-point number to an array, starting from the left side and
propagating the error. In the 2Sum calls the sum s is outputted downwards and the error e to the

right.

Theorem 4.1.2. Let x = x0, x1, . . . xn−1 be an array of floating-point numbers that satisfy |xi| ≤
2−i(p−1)+δ|x0|, for some (presumably small) integer δ and |t| ≤ 2−p+`|x0|, for some (presumably small)
integer `. If s = (s0, s1, . . . , sn) is the array obtained by adding t to x as shown in Figure 4.4 (from left to
right, by propagating the error), then all the terms in s satisfy: |si| ≤ 2−i(p−1)+δ+1, for all 0 < i ≤ n.

Proof. From the proof of the algorithm 2Sum we know that |ei| ≤ 1
2 ulp(si) = 2−p|si|.

From

|s0|(1− 2−p) ≤ |x0 + t| ≤ |s0|(1 + 2−p) and
|x0|(1− 2−p+`) ≤ |x0 + t| ≤ |x0|(1 + 2−p+`),

we get

|s0|
1− 2−p

1 + 2−p+`
≤ |x0| ≤ |s0|

1 + 2−p

1− 2−p+`
. (4.1)

It follows that

|x1| ≤ 2−(p−1)+δ|x0| ≤ 2−(p−1)+δ
1 + 2−p

1− 2−p+`
|s0|.

This gives

|e0 + x1| ≤ 2−p
[
1 +

2δ+1(1 + 2−p)

1− 2−p+`

]
|s0| .

From which we deduce

|s1| ≤ 2−p(1 + 2−p)

[
1 +

2δ+1(1 + 2−p)

1− 2−p+`

]
|s0| . (4.2)

We can continue, by noticing that |e1| is bounded by 2−p|s1|, and bounding |x2| by
2−2(p−1)+δ 1+2−p

1−2−p+` |s0|. This gives a bound on |e1 + x2|, and a bound on s2 is obtained by mul-
tiplying that last bound by (1 + 2−p). An easy induction finally gives:

|si| < 2−ipθi|s0|, (4.3)

with

θi = (1 + 2−p)i +
1

1− 2−p+`

i∑
j=1

2j+δ(1 + 2−p)i−j+2. (4.4)
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134 Chapter 4. Parallel Floating-Point Expansions

One easily finds

θi = (1 + 2−p)i +
2δ+1(1 + 2−p)2

1− 2−p+`

[
2i − (1 + 2−p)i

1− 2−p

]
,

hence,
θi = 2i+δ+1Hi,

with

Hi =
(1 + 2−p)i

2i+δ+1
+

(1 + 2−p)2

1− 2−p+`

(
1− (1+2−p)i

2i

1− 2−p

)
.

We recall u = 2−p, the roundoff error. In all practical cases ` ≥ 2 and δ ≥ 0, so that Hi ≤ Gi, with

Gi =
1

2

(
1 + u

2

)i
+

(1 + u)2

1− 4u

(
1−

(
1+u
2

)i
1− u

)
.

We have,
Gi = 1− 1

2

(
1+u
2

)i
+ u(u+6)

1−4u −
1
2

(
1+u
2

)i ( 2u(7−3u)
(1−4u)(1−u)

)
.

The only positive term (after the initial “1”) in that sum is u(u+6)
1−4u , which is less than 7u for all

pertinent values of u. Hence Gi < 1 as soon as 2i+1 ≤ 2p

7 , which occurs in all practical cases. This
gives

|si| < 2−i(p−1)+δ
′ |s0|,

with δ′ = δ + 1. This concludes our proof.

Now we are able to prove Theorem 4.1.1.

Proof. (of Theorem 4.1.1) In Algorithm 40 we use the same type of truncation as for the sequential
algorithms, i.e., we take into account only the most significant r components of x and y. From
Theorem 3.3.1 we know that the ignored terms satisfy, :

n−1∑
i=r

xi +
m−1∑
j=r

yj ≤ (|x0|+ |y0|)
2−(p−1)r

1− 2−(p−1)
.

From Theorem 4.1.2 we know that in the array of Figure 4.1, δ is increased by 1 at each line.
For computing s we use 2r − 1 “horizontal lines”, which implies that

|si| ≤ 2−(p−1)i+2r−1|s0|.

By keeping only the first r terms of s we have an error less than

(2−rp+3r−1 + 2−(r+1)p+3r + 2−(r+2)p+3r+1 + · · · )︸ ︷︷ ︸
≈2−rp+3r−1<2−rp+3r

|s0|.

We can now bound the total error. We get:

|x+ y − s| < 2−(p−1)r(|x0|+ |y0|)
(

22r(1 + 2−p) +
1

1− 2−(p−1)

)
. (4.5)
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4.2 Data-parallel multiplication algorithm 135

“Quick-and-dirty” parallel addition. We can speed up the above algorithm by using a “relaxed”
version of it, that requires at most r − 1 steps (the last step using only simple additions). The
“quick-and-dirty” parallel addition, illustrated in Figure 4.5, offers a worse error bound and it
does not ensure a correct result when cancellation occurs, if no renormalization algorithm is ap-
plied on the result. We advise it’s use only with input floating-point expansions of the same sign
and close magnitudes.

Figure 4.5 – Graphical representation of a “quick-and-dirty” version of Algorithm 40 illustrated
for expansions of size 4.

4.2 Data-parallel multiplication algorithm

Algorithm 41 computes an approximation of xy, where x and y are two parallel expansions.
Here we also present just the “input r - output r” version. This algorithm has the same behavior
as Multiplication_quick (Section 3.4, Algorithm 33), but we do not compute the extra error correc-
tion term πr, since we do not apply a renormalization. A graphical representation of the parallel
execution would be too difficult to read, this is why in Figure 4.6 we present just an equivalent
sequential execution.

We consider two parallel floating-point expansions x and y, each with r terms and we compute
the r most significant floating-point components of the product π = xy. We perform the same “on-
the-fly” truncation as for the sequential multiplication algorithms (see Section 3.4), by considering
only the partial products for which 0 ≤ i+ j ≤ r − 1.

The multiplication algorithm runs as follows: at each iteration i of the for loop (lines 3-17) we
compute p + e = xy; we add p to the result of the same order, using 2Sum, which also generates
an error, e′. After that, using the two while loops (lines 9− 12 and 13− 16) we propagate the two
generated errors, e and e′ to the lower order results. In the last step of the algorithm, we do not
use any error-free transforsm, because the errors that are supposed to be computed are going to
be of order O(εrΛ), and we do not need to propagate them anymore.
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136 Chapter 4. Parallel Floating-Point Expansions

Figure 4.6 – Sequential representation of Algorithm 41.
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Algorithm 41 – PMultiplication(x = (x0, . . . , xr−1),y = (y0, . . . , yr−1), r).
1: s← (0, . . . , 0)
2: π ← (0, . . . , 0)
3: for i← 0 to r − 2 do
4: y′ ← (yi, yi, . . . , yi) //broadcast

5: (p, e)← 2Prod(x,y′)
6: (s, e′)← 2Sum(s,p)
7: πi ← s0 //insert into vector

8: s← (s1, s2, . . . sr−1, 0) //shift left

9: while e 6= 0 do
10: (s, e)← 2Sum(s, e)
11: e← (0, e0, e1, . . . , er−2) //shift right

12: end while
13: while e′ 6= 0 do
14: (s, e′)← 2Sum(s, e′)
15: e′ ← (0, e′0, e

′
1, . . . , e

′
r−2) //shift right

16: end while
17: end for
18: p← x · y
19: s← s + p
20: πr−1 ← s0 //insert into vector

21: return π = (π0, π1, . . . , πr−1)

Theorem 4.2.1. Let x and y be two ulp-nonoverlapping floating-point expansions, with n and m terms,
respectively. Assume p ≥ 8, which always holds in practice. Provided that no underflow/overflow occurs
during the calculations, when computing their product using Algorithm 41, the result array π with r terms
satisfies

|xy − π| ≤ |x0y0|2−(p−1)r
(

128

127
(m+ n− 1)− 129

254
r + 2−p−r+2(r2 − r)(r!)2

)
.

Proof. For bounding the discarded partial products we use the same reasoning as in Theorem 3.4.1
and we get:

m+n−2∑
k=r

∑
i+j=k

xiyj ≤ |x0y0| 2−(p−1)r

 −2−(p−1)

(1− 2−(p−1))2︸ ︷︷ ︸
<0

+(m+ n− r − 1)
1

1− 2−(p−1)︸ ︷︷ ︸
< 128

127
for p≥8

 .

For computing the error bound on the discarded errors we use the same method as in the proof
of Theorem 3.4.5. Along these lines, by using simple summation for computing πr−1, in the last
step we neglect r2 − r terms, all less than Ωr = 2−(r+1)p+2 |x0y0| (r!)2 .

We also have to account for the errors that occur when computing the last partial products
using only simple multiplication. This means r terms less than 1

2 |x0y0| 2
−(p−1)r.

When adding all these errors we get the following bound:

|xy − π| ≤ |x0y0|2−(p−1)r
(

128

127
(m+ n− r − 1) + 2−p−r+2(r2 − r)(r!)2 +

r

2

)
≤ |x0y0|2−(p−1)r

(
128

127
(m+ n− 1)− 129

254
r + 2−p−r+2(r2 − r)(r!)2

)
.

And this concludes our proof
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Unfortunately, for the multiplication algorithm we are unable to prove any constraints on the
terms of the result. Even though cancellation cannot happen when multiplying two floating-point
numbers, it may happen during the summation process, in which case we can get |πi| < |πj |,
with i < j. If this happen we would have to apply a renormalization algorithm, like the ones
presented in Chapter 3, Section 3.2, that would render the result ulp-nonoverlapping . However,
those algorithms are highly sequential, and they would significantly decrease performance. This
is why we recommend using this algorithm only if computations are known not to be cancellation-
prone or if the result can be verified a-posteriori.

4.3 Comparison and discussion

In Section 1.2 we explained the implicit SIMD architecture of a GPU, that is equivalent to an
explicit SIMD, which means that a GPU program can be also understood as computations on
vectors from the point of view of a warp. This enables us to directly implement the data-parallel
algorithms we proposed in this chapter.

An excerpt of the code of Algorithm 41 is illustrated in Figure 4.7. The code appears from
a single thread’s perspective, but it runs in parallel and it takes decisions based on the vector
lane within an expansion (i.e., threadIdx.x). Although we present here a version of the code that
is parameterized by only one parameter, r, our actual implementation uses different template
parameters for inputs and output, meaning that we allow static generation of any input-output
precision combinations.

Our implementation targets GPUs with compute capability 3.0 or above, such as Kepler and
Maxwell architectures, that support warp vote and shuffle instructions. Warp shuffle instructions
are used to shift vector components to propagate the errors across expansion terms, and to insert
and extract scalar values inside vectors. Although the hardware only supports shuffling binary32
numbers, we implemented shuffle instructions on binary64, by shuffling each half of a number
separately. Using warp vote instructions, like the __any function, we implement the loop exit
conditions of Algorithm 41.

As the algorithms have straightforward control flow, they can be applied to larger vectors
containing multiple expansions side by side. This way we exploit both the parallelism that exist
between expansion terms and across different expansions. To benefit from the SIMD execution
and intra-warp communication primitives, all terms in a given expansion have to be computed
by threads of the same warp and, as warps have 32 threads on Nvidia architectures, the maximal
supported expansion size is 32. Smaller expansions are packed together inside warps. Although
this approach works with any expansion of size r between 1 and 32 using appropriate padding,
we recommend using power of two sizes, which allow filling the whole warp.

To analyze the performance of the algorithms and the effect of parallelism on memory foot-
print, we consider two different shared memory usage scenarios: one best case that assumes the
application uses no intermediate data outside of the registers used for the computation, and one
worst case where the application uses 32 bytes of cuda shared memory for each term of the ex-
pansion. The performance presented here was obtained on the GPU detailed in Section 1.4.1.
We measure throughput on embarrassingly-parallel computations using random generated ex-
amples, running on 1024 blocks each with 512, 256, 128 and so on, execution threads, depending
on the expansion size and the required resources to run the algorithms. We compare with the
sequential algorithms presented in Chapter 3. The value r represents the number of terms in both
input and output expansions.
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template<int R>
__device__ double parallelMul(double x, double y){

int lane = threadIdx.x; // Index within expansion
double s = 0., r = 0., y_i, p, s, e, ep;
for(int i=0; i<R-1; i++) {

y_i = shfl(y, i, R); // Broadcast y_i
p = TwoProdFMA(x, y_i, &e);
s = TwoSum(s, p, &ep);

double tmp = shfl(s, 0, R);
if(lane == i) r = tmp; // Save s_0 to r_i
s = shfl_down(s, 1); // Shift left
if(lane == K-1) s = 0.;

while(__any(e != 0.)) { // Accumulate e
s = TwoSum(s, e, &e);
e = shfl_up(e, 1, R); // Shift right
if(lane == 0) e = 0.;

}
while(__any(ep != 0.)) { // Accumulate e’

s = TwoSum(s, ep, &ep);
ep = shfl_up(ep, 1, R); // Shift right
if(lane == 0) ep = 0.;

}
}
y_i = shfl(y, R-1, R);
p = x * y_i;
s = s + p;
double tmp = shfl(s, 0, R); // save r_{R-1}
if (lane == R-1) r = tmp;
return r;

}

Figure 4.7 – Algorithm 41 implemented in CUDA C, simplified for the case in which the inputs
and the output have the same power-of-two size, r.
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In Table 4.1 we show the performance of the addition algorithm for the best case, no memory
configuration, followed by the performance obtained in the memory constrained configuration,
in Table 4.2. For the multiplications algorithm we assess performance in Tables 4.3 and 4.4, for the
best case setting and for the memory constrained one, respectively.

Table 4.1 – GPU performance in Mop/s for the addition algorithms in the best case with no
internal memory usage.

r Alg. 40 Quick Alg. 40 Alg. 27 Alg. 29 Fast Alg. 29

2 10,131 11,500 30,134 (Alg. 9) 30,134 (Alg. 9) 51,822 (Alg. 8)
4 1,695 4,085 1,080 1,929 4,856

8 368 1,793 425 641 1,728

16 87.6 760 154 160 348

32 20.8 120 49.5 25.6 72.7

Table 4.2 – GPU performance in Mop/s for the addition algorithms in the memory constrained
case with 32 B shared memory per expansion term.

r Alg. 40 Quick Alg. 40 Alg. 27 Alg. 29 Fast Alg. 29

2 9,865 9,251 25,953 (Alg. 9) 25,953 (Alg. 9) 38,876 (Alg. 8)
4 1,672 3,330 536.3 1,210 2,272

8 364 1,340 119 249 456

16 86.9 540 28.5 41.4 61.8

32 20.7 89.5 7.54 4.83 8.85

Table 4.3 – GPU performance in Mop/s for the multiplication algorithms in the best case with no
internal memory usage.

r Alg. 41 Alg. 31 Alg. 33 Fast Alg. 33

2 2,747.2 73,061 (Alg. 14) 73,061 (Alg. 14) 73,061 (Alg. 14)
4 510 354 1,893 2,959

8 107 87.7 358 469

16 23.7 16.2 43.4 44.1

32 1.64 3.49 0.72 0.74
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Table 4.4 – GPU performance in Mop/s for the multiplication algorithms in the memory
constrained case with 32 B shared memory per expansion term.

r Alg. 41 Alg. 31 Alg. 33 Fast Alg. 33

2 2,416 62,248 (Alg. 14) 62,248 (Alg. 14) 62,248 (Alg. 14)
4 456 291 977 1,444

8 94.4 49.1 94.3 116

16 20.6 5.76 8.44 9.09

32 1.39 0.64 0.23 0.28

Even in the worst-case embarrassingly-parallel setup, the performance of data-parallel algo-
rithms is competitive with the sequential algorithms for large expansions: the parallelism comes
at little cost in number of operations per expansion. For small expansions, like the double-word
case the parallel algorithms suffer from parallelization overhead.

The benefits of exploiting the parallelism available within each expansion are fully realized
when parallelism is constrained by internal memory usage. The performance of data-parallel al-
gorithms remains stable in this setup, while the performance of sequential algorithm decreases
sharply with memory usage. Although the sequential algorithms remain faster on expansions of
size 2 (double-word), the data-parallel algorithms significantly outperform their sequential coun-
terparts for all larger expansions, due to the distribution of memory usage over more threads. The
performance gap increases with the expansion size, eventually reaching an order of magnitude
for 32-term expansions.

These data-parallel algorithms can be used as a starting point into developing parallel arith-
metic algorithms suitable for different parallel architectures.
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Applications

Nimeni nu s, tie mai bine unde strânge cizma, decât cel ce o poartǎ.

Romanian proverb

During this thesis, besides our efforts towards providing arithmetic algorithms for perform-
ing computations using floating-point expansions, we also looked into applications for our work.
More specifically we looked into two problems. The first one comes from the dynamical systems
field, the Hénon attractor, presented in Section 5.1. The second application comes from exper-
imental mathematics, the semidefinite programing solver presented in Section 5.2, that actually
has a broader range of use, form quantum chemistry to control theory.

This resulted in two publications:
– Searching for Sinks for the Hénon Map Using a Multiple-precision GPU Arithmetic Library [46], joint
work with M. Joldes and W. Tucker, 1 published in the ACM SIGARCH Computer Architecture
News - HEART ’14 journal.
– Implementation and performance evaluation of an extended precision floating-point arithmetic library for
high-accuracy semidefinite programming [44], joint work with M. Joldes and J.-M. Muller, which was
accepted for publication and is going to be presented at the 24th IEEE Symposium on Computer
Arithmetic (ARITH 2017).

5.1 Hénon attractor

CAMPARY was initially developed and tuned for long time iteration of chaotic dynamical
systems in extended precision. Using a first version of the library we looked into one of the
“classic” discrete dynamical systems for which several long-standing open questions remain, the
Hénon map [32].

5.1.1 Mathematical background

The Hénon map is a two-parameter, invertible map

h(x, y) = (1 + y − ax2, bx).

Depending on the two parameters a and b, the map can be:

• chaotic - trajectories belonging to the attractor are aperiodic and sensitive to initial condi-
tions;

1. Professor at Department of Mathematics, Uppsala University, Sweden.
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• regular - the attractor of the map is a stable periodic orbit;

• a combination of the above two.

It was conjectured that for the classical parameters a = 1.4 and b = 0.3, the Hénon map is chaotic
and supports a strange attractor. This property has been observed numerically, but the question
whether or not the Hénon attractor is indeed chaotic remains open.

It is known [8] that there exist a set of parameters (near b = 0) with positive Lebesgue measure
for which the Hénon map has a strange (chaotic) attractor. The parameter space is believed to
be densely filled with open regions, where the attractor consists of one or more stable periodic
orbits (sinks). In light of this, it is probably impossible to verify that, given a specific point (a, b)
in parameter space, the dynamics of the map generates a strange attractor.

On the other hand, it was proven, using validated numerics [26], that for several parameter
values close to the classical ones, what appears to be a strange attractor is actually a stable periodic
orbit. Such parameters are given in Example 5.1.1.

Example 5.1.1. When considering the two fixed parameters a = 1.399999486944 and b = 0.3, the Hénon
map can be reduced to a sink with 33 points, as shown in Figure 5.1, where 10000 iterations of the map
h(x, y) are plotted. More specifically, the iterates appearing in part (a) of the figure start in a point (x′0, y

′
0)

and those in part (b) in a different point (x′′0, y
′′
0). We chose the two points in the following way:

(a) 5 · 109 iterations are performed and skipped (not plotted) before obtaining (x′0, y
′
0);

(b) respectively, 6 · 109 iterations are skipped before obtaining (x′′0, y
′′
0).

One can observe that, what looks like the Hénon strange attractor in Figure 5.1(a), proves to be just the
periodic orbit showed in Figure 5.1(b). This means that what we observe in computer simulations is actually
a transient behavior to the periodic steady state that we are interested in.
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Figure 5.1 – Hénon map with parameters a = 1.399999486944, b = 0.3; 10000 iterates are plotted
after skipping (a) 5 · 109 and (b) 6 · 109 iterations.

Proving the existence of such a stable periodic orbit involves a finite (yet challenging) amount
of computations and we should theoretically be able to find them using high performance com-
puting.

5.1.2 Computational approach

We adapted the method in [26] where a CPU architecture is used. In brief:
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(i) for each considered point (a, b) in parameter space, we perform a large amount of iterations
of the Hénon map h, for many different initial points. The hope is that at least one of these
trajectories will, after some initial transient behavior, be attracted to what appears to be a
periodic orbit;

(ii) we use rigorous numerics to validate/falsify the existence of any sink found at the previous
step.

With more detail, given a fixed (a, b) together with a single initial point (x0, y0), the subsequent
computations are governed by two integers Nt and pmax.
• First, we perform Nt iterations of the map h which now depends on (a, b) :

h(x0, y0), h(h(x0, y0)), . . . , h
Nt(x0, y0).

• These are all discarded, except the final iterate hNt(x0, y0).
• Starting from hNt(x0, y0) we continue to follow for another pmax iterates.
• At this stage, we examine the piece of orbit

hNt+1(x0, y0), . . . , h
Nt+pmax(x0, y0)

for any close returns.
In other words, we attempt to find an integer 1 < k < pmax such that

k
max
i=1

∣∣∣hNt+i(x0, y0)− hNt+i+k(x0, y0)∣∣∣
is small. If this succeeds, we may have found a period-k sink, which we later attempt to verify
using rigorous numerics.

The number Nt of transient iterations which are discarded is usually chosen by trial-and-error
since it depends on hidden intrinsic properties of the dynamics of the Hénon map. In practice,
Nt ∼ 109. In our search, we have used pmax = 5000. For each parameter we use Ni ∼ 103 different
initial points. Finally, we repeat the entire procedure for Np ∼ 106 parameters near (1.4, 0.3).

If at the end of this search process we identify some "numerical periodic orbits", in a second
step we rigorously prove their existence using methods from interval analysis [67, 75]. This part
can be checked "off-line" on a CPU architecture, and we use the procedure described in [26], which
is based on an interval Newton operator. This step is not detailed further here, since it is only
the first part that is computationally expensive. Its complexity depends on two main factors: the
precision used for computations, and the capability of exploiting the inherent parallelism available
in the parameter space and the initial points considered for each parameter.

Parallelization approach. In order to tackle the conjecture we need to analyze a very wide pa-
rameter space, so the computation can be viewed as a SIMD parallel problem, for which a GPU
implementation is suitable.

The main idea for the parallelization on GPU is that each thread computes the iterates of the
map h starting with one fixed initial point and fixed parameter (a, b) (these iterations are inher-
ently sequential). The initial points are generated in a suitable region close to the attractor by a
single thread on the GPU. They are stored in a shared memory array that gives access to all the
other threads in the same block. Each thread writes in a shared memory array the period (if any)
of the orbit, and one point of the orbit in the affirmative case. Each block is bi-dimensional and
corresponds to one parameter (a, b). We grid the parameter space near (1.4, 0.3) and apply the
above process to each grid point. We also implemented some variants where several blocks corre-
spond to the same parameter (a, b) in order to be able to iterate on more initial points. Without this
ability, we are limited by the size of the block’s shared memory to ca 103 initial points/parameter,
depending on the used GPUs architecture and model.
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Remark 5.1.2. Before going further we would like to stress here that this research was performed in 2013-
2014, when we did not have access to the server presented in Section 1.4.1. This is why we present our
results based on a previous architecture available at the time:

• an Nvidia GeForce Tesla C2075 GPU with 448 cores, 1.15GHz and,

• for the CPU code, an Intel(R) Core(TM) i7 CPU 3820, 3.6GHz, 4 cores, 8 threads computer.

As a first step in our research we implemented this GPU-oriented method using the standard
binary64 format, to compare the performance with respect to the CPU implementation in [26]
and we re-checked the same orbits already found there, given in Table 5.1. For example, for 106

grid points for a ∈ [1.3999, 1.4001], b = 0.3 fixed, 1024 orbits/parameter and 106 iterations/orbit
we found 57 parameters which present stable periodic orbits in 2.94 hours on 2 GPUs. A 21.5x
speedup is obtained by our CUDA C implementation vs, a C implementation with OpenMP; for
other Intel(R) platforms like Xeon E5 series the speed-ups are similar.

Table 5.1 – Known Hénon map orbits from [26]. The parameter b = 0.3 is fixed, P is the period, d
is the distance to the point (1.4, 0.3), r is the minimum immediate basin radius, and λ1 is the

largest Lyapunov exponent.

a P d r λ1

1.399922051 25 5.522e−12 2.473e−12 −0.00132

1.39997174948 30 1.354e−11 3.561e−12 −0.01887

1.3999769102 18 3.207e−09 1.014e−09 −0.05306

1.39998083519 24 1.703e−11 7.384e−12 −0.02819

1.399984477 20 8.875e−10 4.076e−10 −0.05099

1.39999492185 22 3.686e−11 1.531e−11 −0.09600

1.3999964733062 39 2.784e−13 1.115e−13 −0.03547

1.399999486944 33 1.110e−12 6.901e−13 −0.01843

1.40000929916 25 1.118e−11 5.128e−12 −0.08379

1.4000227433 21 2.262e−10 7.901e−11 −0.05612

1.40002931695 27 5.782e−11 2.646e−11 −0.01140

1.40006377472 27 8.692e−11 3.810e−11 −0.05636

1.40006667358 24 6.278e−11 2.646e−11 −0.01112

1.4000843045 27 9.400e−11 4.572e−11 −0.06870

1.40009110518 22 3.493e−11 1.531e−11 −0.02157

1.4000967515 26 2.463e−10 1.365e−10 −0.13233

But binary64 precision does not suffice if we want to obtain sinks for parameters closer to
the classical ones, so we had to increase the precision. Using the “quick-and-dirty” level of our
library we were able to adapt the code written for binary64 Hénon map iterations using only
minor changes. This was possible due to the operators that we overload. An excerpt of the code
using quad-double precision is:

146



5.1 Hénon attractor 147

#define prec 4
/*device fct to be run using prec*doubles precision*/
__host__ __device__ void henon_iterate(double x0, double y0,

double a, double b, long int ITER){
/*init multi_prec template vars*/
multi_prec<prec> x_i(x0);
multi_prec<prec> y_i(y0);
multi_prec<prec> x_old;
for (long int i=1; i <= ITER; i++) {

/*Compute iterates*/
x_old = x_i;
x_i = y_i + 1.0 - a*x_i*x_i;
y_i = b*x_old;

}
}

5.1.3 Numerical results and performance

A performance comparison between CAMPARY versus GQD library computations on GPU
for Hénon iterations is given in Table 5.2. In the same table we also compare performance versus
binary64 computations. In what follows, we denote by 2D double-double, 3D triple-double, 4D
quad-double, 5D quintuple-double, and so on.

Table 5.2 – Peak number of Hénon map orbits/second for double vs. CAMPARY vs. QD library
on Tesla GPU[C2075] using 106 iterations/orbit. *precision not supported

Precision CAMPARY QD

binary64 102398

2D 7608 4539
3D 5200 *
4D 1788 618
5D 758 *
6D 374 *
7D 205 *
8D 122 *

For this problem we also intended to compare performance with GARPREC and CUMP li-
braries, but we were not able to straightforwardly adapt our code because they were both tuned
for big array operations where the data is generated on the host, and only the operations are per-
formed on the device. In our case, each thread needs to generate and allocate multiple-precision
data on the device. However, in [61] it is stated that GQD should be faster that GARPREC for
double-double and quad-double computations. Moreover, it is also known [34, 61] that multiple-
term operations are usually faster than multiple-digit ones for precisions in the range of up to
several hundreds of bits, which was also confirmed in our case.

More precisely, for the same benchmark Hénon map code we also compare the performances
on a CPU implementations parallelized with OpenMP using CAMPARY versus MPFR in Table 5.3.
This comparison is not entirely fair seeing that the multiple-digit format is not equivalent to the
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multiple-terms format. Indeed, we do not guarantee the correct rounding for each basic operation,
but we present this comparison from a prospective point of view.

Table 5.3 – Peak number of Hénon map orbits/second for CAMPARY vs. MPFR library (both
parallelized with OpenMP on 8 threads) on Intel i7-3820 @3.60GHz using 106 iterations/orbit.

Precision CAMPARY MPFR

2D (106 bits) 227 11.8

3D (159 bits) 76 10.6

4D (212 bits) 37 10.1

6D (318 bits) 15 8.9

8D (424 bits) 8 7.9

It is clear from a mathematical point of view that only a very small amount of sinks can be
found using double-precision. At the same time, any sink can be resolved using a sufficiently
high precision.

In [99] Galias and Tucker present a very extensive study of the problem. Two of the orbits
presented there, given in Table 5.4, were obtained using our GPU implementation.

Table 5.4 – Hénon map sinks found using CAMPARY on GPU [99]. P is the period, d is the
distance to the point (1.4, 0.3), r is the minimum immediate basin radius.

P d r

41 4.73e−10 3.31e−17

47 1.47e−10 1.17e−20

In the same paper, [99], the authors report that the closest to the classical parameters periodic
window that they found, with d = 6.335e−22, is given by parameters:

a = 1.39999999999999999999968839903277301984563091568983, and

b = 0.29999999999999999999944845519288458244332946957783,

for which a period-115 sink was confirmed. They concluded their search by stating that since the
periodic windows are very narrow and the transient time to corresponding sinks can be extremely
long, “it is practically impossible to observe such sinks in simulations”.

This work provided us with better means for observing the behavior of dynamical systems,
which would be impossible using only standard machine precision numbers, due to the numerical
instability of the problem. These first results offered numerical support for the belief that the
parameter space close to the classical ones (1.4, 0.3) is densely filled with open regions, where the
attractor can be reduced to a periodic sink.

5.2 SDP solver

A known class of problems that can benefit from increased precision is the class of semidefinite
optimization problems (SDP) which come to solving in a very accurate way, numerically sensitive
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(and sometimes large-scale). Examples include problems from experimental mathematics, like the
high-accuracy computation of kissing numbers, i.e., the maximal number of non-overlapping unit
spheres that simultaneously can touch a central unit sphere [63]; bounds from binary codes [21];
control theory and structural design optimization (e.g., the wing of Airbus A380) [21]; quantum
information and physics [89].

Given the wide range of possible applications and the recent increased interest in the sub-
ject, as a second application for CAMPARY, we also took interest in higher-precision and high-
performance SDP solvers.

Developing such a solver comes with multiple challenges. Firstly, one has to establish the
core mathematical algorithm for numerically solving (say, in "real numbers") the SDP problem:
most nowadays solvers employ primal-dual path-following interior-point method (PDIPM) [65].
Secondly, the underlying multiple-precision arithmetic operations have to be treated. Some high-
precisions solvers were developed, and though they are more accurate, they are also more com-
putationally expensive [72]. Finally, since most problems are large-scale, parallelization is also
very important. Having (at least partially) computations done on highly parallel architectures
like GPUs is of interest.

5.2.1 Mathematical background

Semidefinite programing (SDP) is a convex optimization problem, which can be seen as a
natural generalization of linear programming to the cone of symmetric matrices with non-negative
eigenvalues, i.e., positive semidefinite matrices. While linear programming optimizes a linear
functional subject to linear inequality constraints, SDP optimizes a linear functional subject to
linear matrix inequalities (LMIs). Many optimization problems in automatic control or signal
processing can be formulated using LMIs.

Denote by Rn×n the space of size n × n real matrices, by Sn ⊆ Rn×n the subspace of real
symmetric matrices, equipped with the inner product 〈A,B〉Sn = tr(ATB), where tr(A) denotes
the trace of the matrix A. Also, denote by A < O the fact that A is positive semidefinite (and
respectively A � O for positive definite). A typical SDP program is expressed in its primal-dual
form as follows:

(P)

p∗ = sup
X∈Sn

〈C,X〉Sn

s.t. 〈Ai, X〉Sn = bi, i = 1, . . . ,m,

X < O,

(D)

d∗ = inf
y∈Rm

bT y

s.t. Y :=

m∑
i=1

yiAi − C < O,

where C,Ai ∈ Sn×n, i = 1, . . .m and b ∈ Rm are given.
However, in general, it is difficult to obtain an accurate optimum for a SDP problem. On the

one hand, strong duality does not always hold, unlike for linear programs: weak duality is always
satisfied, i.e., p∗ ≤ d∗, but sometimes, p∗ is strictly less than d∗. Simpler instances are those where
strong duality holds and this happens when the feasible set contains a positive definite matrix [56,
Theorem 1.3].

More than often the method of choice for SDP solving is based on the interior-point algorithm,
which relies on the existence of interior feasible solutions for problems (P) and (D). In such cases,
these two problems are simultaneously solved in polynomial time in the size of parameters of
the input problem using the well-established primal-dual path-following interior-point method
(PDIPM) [65]. This algorithm is considered in the literature as theoretically mature, is widely
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accepted and implemented in most state-of-the-art SDP solvers. The method relies on the fact that
when an interior feasible solution exits one has the necessary and sufficient condition for X∗, Y ∗

and y∗ to be an optimal solution:

X∗Y ∗ = 0, X∗ � O, Y ∗ � O, (5.1)

Y ∗ =
m∑
i=1

y∗iAi − C, (5.2)

〈Ai, X〉Sn = bi, i = 1, . . . ,m, (5.3)

The complementary slackness condition (5.1) is replaced by a perturbed one: XµYµ = µI . It is
known that this perturbed system has a unique solution and that the central path, that is the set
C = {(Xµ, Yµ, yµ) : µ > 0} forms a smooth curve converging to (X∗, Y ∗, y∗) as µ→ 0. So, the main
idea of the method is to numerically trace the central path C.

In Algorithm 42 we give a sketch of the algorithm adapted from [72]. Step 1 describes the
procedure for computing the search direction based on Mehrotra type predictor-corrector [96].
The stopping criteria (Step 4) depends on several quantities: primal and dual feasibility error are
defined as the maximum absolute error appearing in (5.3) and (5.2), respectively. The duality gap
depends on the absolute or relative difference between the objectives of (P) and (D).

Algorithm 42 – PDIPM Algorithm, adapted from SDPA implementation [72].

Step 0: Choose an initial point X0 � O, y0 and Y 0 � O. Set h = 0 and choose the parameter
γ ∈ (0, 1).

Step 1: Compute a search direction:
Evaluate the Shur Complement Matrix B ∈ Sn by the formula Bij = 〈(Y h)−1AiX

h, Aj〉.
Solve the linear equation Bdy = r. Using the solution dy, compute dX , dY and obtain the
search direction (dy, dX, dY ).

Step 2: Compute max step length α to keep the positive semidefiniteness: α = max {α ∈ [0, 1] :
Y h + αdY � O,Xh + αdX � O

}
.

Step 3: Update the current point: (yh+1, Xh+1, Y h+1) = (yh, Xh, Y h) + γα(dy, dX, dY ).

Step 4: If (yh+1, Xh+1, Y h+1) satisfies the stopping criteria, output it as a solution. Otherwise, set
h = h+ 1 and return to Step 1.

However, problems which do not have an interior feasible point 2 induce numerical instability
and may result in inaccurate calculations or non-convergences. Even for problems which have
interior feasible solutions, numerical inaccuracies may appear when solving with finite precision
due to large condition numbers (higher than 1016, for example) which appear when solving linear
equations. This happens, as explained in [72], when approaching optimal solutions: suppose there
exist X∗ � O, Y ∗ � O and y∗ which satisfy all the constraints in (P) and (D); or better said, when
µ → 0 on the central path. Then, X∗Y ∗ = 0. From this it follows that rank(X∗) + rank(Y ∗) ≤ n,
which implies that these matrices are usually singular in practice.

In the later case, having an efficient underlying multiple-precision arithmetic is crucial to de-
tect (at least numerically) whether the convergence issue came simply from numerical errors due
to lack of precision.

2. Recently, SPECTRA package [33] proposes to solve such problems with exact rational arithmetic, but the instances
treated are small and this package does not aim to be a concurrent of general numerical solvers.
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5.2.2 Existing mathematical software

The PDIPM algorithm is considered in the literature as theoretically mature. This is why most
state-of-the-art SDP solvers implement it. The most commonly used are SDPA [96], CSDP [11],
SeDuMi [91] and SDPT3 [93]. We took main interest in the SDPA solver, since it provides multiple-
precision versions, using the GMP and the QD libraries: SDPA-GMP, SDPA-DD, SDPA-QD.

Starting with version 6.0, SDPA incorporated LAPACK [4] for dense matrix computations,
but also exploits the sparsity of data matrices and solves large scale SDPs [97]. More recently,
MPACK [71] was developed and integrated with SDPA. This is a multiple-precision linear algebra
package which is based on BLAS and LAPACK [4]. For this package, the major change is, as in our
case, the underlying arithmetic format, such that users can easily switch from a double-precision
BLAS/LAPACK code to a multiple-precision one, in order to obtain better accuracy. MPACK
supports various multiple-precision arithmetic libraries like GMP, MPFR, and QD, as well as IEEE
754 binary128 (via gcc’s extension __float128).

Moreover, MPACK also provided a GPU tuned implementation in double-double arithmetic of
the Rgemm routine: this is the multiple-precision Real version of Dgemm, the general double matrix
multiplication [73]. This routine is central for other linear algebra operations such as solving linear
equations, singular value decomposition or eigenvalue problems. For this, MPACK authors re-
implemented parts of QD library for cuda-compliant code.

This routine’s implementation is reported in [73] with best practical performance and was
intensively tuned for GPU-based parallelism: classical blocking algorithm is employed, and for
each element of a block a thread is created; a specific number of threads is allocated per block
also. More specifically, in [73], for the NVIDIA(R) Tesla(TM) C2050 GPU, best performance of 16.4
GFlops is obtained for A×B, the product of two matrices A and B with blocks of size: 16× 16 for
A and 16 × 64 for B; 256 threads are allocated per block. Shared memory is used for each block.
Also, reading is done from texture memory.

5.2.3 SDPA-CAMPARY package

We built this package starting from the SDPA-QD/DD package, where the QD/GQD library
was replaced with CAMPARY (using underlying binary64) at the compilation step of SDPA. This
can be done efficiently since both SDPA and CAMPARY are written in C/C++.

We also integrated CAMPARY with MPACK, in order to take advantage of the parallelized
matrix multiplication for which we used our GPU version of CAMPARY. In our implementation,
we use a similar algorithm, except that reading is done from global memory instead of texture
memory. We were forced to do this since a texture memory element (texel) size is limited to int4
(i.e., 128 bits) and our implementation is generic for n-term expansions. In what follows, we
denote by 2D double-double, 3D triple-double, 4D quad-double, 5D quintuple-double, and so on.

Rgemm performance. As a first step in our research we compared our implementation of Rgemm
with the implementation in [73], using a GPU card similar to theirs. Specifically, we used an
NVIDIA(R) Tesla(TM) C2075 card, 3 that is part of the same Fermi architecture. The difference
is that our GPU has 6 GB of global memory, compared to 3 GB of their NVIDIA(R) Tesla(TM)
C2050. However, this has little importance for the performance results on kernel execution once
the global memory has been loaded.

In their (re-)implementation of the QD library the authors of [73] used Algorithms 9 and 13 for
addition and multiplication of double-double numbers. For a fair comparison we did the same.

3. NVIDIA(R) Tesla(TM) C2075 with 448 cores, 1.15 GHz, 32 KB of register, 64 KB shared memory / L1 cache set by
default to 48 KB for shared memory and 16 KB for L1 cache
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On top of that, for our arbitrary precision with n-term expansions we used the “quick-and-dirty”
level of our library, implemented in the multi_prec.h file (see Section 1.4), that uses the fast versions
of Algorithms 29 and 33.

Remark 5.2.1. We recall that the theoretical peak performance is obtained as follows:

(i) first, consider that in Rgemm operations are mainly multiply-add type, so the theoretical peak for
multiply-add is of 1.15 GHz ×14 SM ×32 cuda cores ×(2 Flops/2 cycle ) = 515 GFlops;

(ii) second, we compute the theoretical peak for multiple-precision Rgemm by dividing the above peak
performance for standard floating-point operations by the operation count for addition plus multipli-
cation with n-term expansions.

In Figure 5.2 we compare our implementation of 2D Rgemm, with the one in [73]. Our imple-
mentation proved to be slower by∼ 10% than the implementation in [73], which can be explained
by the generality of our code. Although we tested our implementation also using texture mem-
ory, we observed no speedup. Maximum performance was 14.8 GFlops for CAMPARY and 16.4
GFlops for [73].
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Figure 5.2 – Performance of Rgemm with CAMPARY vs [73] using double-double precision on
GPU.

On the other hand, in our case, higher precision Rgemm is straightforward. Performance results
for n-double Rgemm are shown in Figure 5.3: one observes that the decrease of performance when
the precision is increased fits the increase in the number of standard operations performed for
additions and multiplications with n-term expansions. In Table 5.5 we compare the theoretical
peak vs. the maximum performance that we obtained for n-double expansions. We also recall the
worst case operation count for the algorithms that we employed.

Note that cuBLAS, the NVIDIA GPU linear algebra package does not support precisions higher
than binary64 and it is not open source, so we consider it difficult to extend it in the context of
multiple-precision linear algebra for GPUs. For Fermi architecture GPUs like C2050 or C2075, the
peak performance of Dgemm is reported in [92] to be 302 GFlops with cuBlas and 362 GFlops with
further optimizations which is 58% and 70% of the theoretical peak performance, so, based in the
values reported in Table 5.5, the Rgemm implementation we have is quite efficient.
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Figure 5.3 – Performance of Rgemm with CAMPARY for n-double on Fermi architecture GPUs.

Table 5.5 – Theoretical peak vs. kernel peak for Rgemm with CAMPARY for n-double on GPU.

Format # of Flops Theoretical Kernel
+ ∗ peak peak

2D 20 9 17.8 GFlops 14.8 GFlops 83%

3D 55 88 3.6 GFlops 1.6 GFlops 44%

4D 87 183 1,900 MFlops 976 MFlops 51%

5D 125 330 1,130 MFlops 660 MFlops 58%

6D 169 541 725 MFlops 453 MFlops 62%

8D 275 1203 348 MFlops 200 MFlops 57%

5.2.4 Numerical results and performance

In order to verify the SDPA-CAMPARY solver and assess its performance we look at the results
obtained for some standard SDP problems both on CPU and GPU. In particular, on GPU we use
the Rgemm routine, with the implementation explained above. All the tests presented in what
follows were performed on the server detailed in Section 1.4.1, which we recall that is not the
same as the one used for the Rgemm performance assessment. The results obtained on that server
are published in [44].

Table 5.6 shows the results and performance obtained for five well-known problems from the
SDPLIB package [12]. We compare both SDPA-DD and SDPA-QD with the 2D, 3D, and 4D for-
mats of SDPA-CAMPARY, on both CPU and GPU. One can observe that our 2D and 4D imple-
mentations outperform the ones of QD. The 3D format proves that it can be a good alternative
for problems for which 2D does not suffice, but for which 4D is too expensive. When looking at
the performance obtained with the GPU version versus the CPU one, one can observe that for 3D
and 4D precision the GPU enhanced version performs better, while for 2D precision no gain is
obtained. This is the case for both SDPA-CAMPARY and SDPA-DD. This can be explained by the
overhead given by the memory transfer and GPU-CPU communication. Accuracy wise, SDPA-
CAMPARY performs as expected: the results obtained are more and more accurate as precision is
increased.
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Table 5.6 – The optimal value, relative gaps, primal/dual feasible errors, iterations and time for
solving some problems from SDPLIB by SDPA-DD, -QD, and -CAMPARY.

Problem
SDPA-DD

SDPA-QD
SDPA-CAMPARY

2D 3D 4D
CPU GPU CPU GPU CPU GPU CPU GPU

gpp124-1 optimal: −7.3430762652465384

relative gap 7e− 04 7e− 04 6e− 13 7e− 04 7e− 04 8e− 12 6e− 12 1e− 18 8e− 18

p.feas.error 1e− 19 5e− 20 3e− 45 1e− 19 8e− 20 1e− 30 1e− 30 2e− 41 4e− 42

d.feas.error 5e− 14 3e− 14 7e− 31 2e− 14 3e− 14 1e− 16 1e− 16 2e− 21 2e− 22

iteration 24 24 40 24 24 38 39 58 49

time (s) 1.32 1.96 23.4 1.12 1.62 14.2 12.14 32.6 29.5

gpp250-1 optimal: −1.5444916882934070e+ 01

relative gap 5e− 04 5e− 04 4e− 13 5e− 04 5e− 04 4e− 12 8e− 12 5e− 18 5e− 19

p.feas.error 2e− 20 2e− 20 3e− 45 2e− 20 5e− 20 1e− 31 1e− 30 1e− 41 6e− 42

d.feas.error 1e− 13 7e− 14 1e− 30 1e− 13 1e− 13 1e− 16 9e− 16 4e− 21 7e− 21

iteration 25 25 41 25 25 41 40 56 66

time (s) 7.86 9.43 151.7 6.46 7.42 80.5 71.7 200.7 213.5

gpp500-1 optimal: −2.5320543879075792e+ 01

relative gap 1e− 03 1e− 03 4e− 13 1e− 03 1e− 03 9e− 12 9e− 12 2e− 17 2e− 17

p.feas.error 1e− 20 1e− 20 2e− 45 6e− 21 1e− 20 7e− 31 1e− 30 2e− 42 1e− 42

d.feas.error 8e− 14 7e− 14 3e− 30 7e− 14 6e− 14 1e− 16 3e− 16 7e− 22 8e− 22

iteration 25 25 42 25 25 40 41 56 53

time (s) 50.4 54.2 1,053 43.11 42.3 520.5 466.9 1,356 1,112

qap10 optimal: −1.0926074684462390e+ 03

relative gap 1e− 04 3e− 05 1e− 14 6e− 05 4e− 05 1e− 09 2e− 10 6e− 15 2e− 14

p.feas.error 3e− 21 2e− 21 3e− 46 2e− 20 5e− 21 9e− 35 6e− 34 4e− 47 2e− 47

d.feas.error 3e− 13 2e− 14 3e− 30 1e− 13 7e− 14 2e− 21 1e− 22 5e− 31 2e− 30

iteration 19 20 37 59 20 27 29 37 36

time (s) 12.87 16.4 288.9 74.2 12.4 114 116.9 284.7 261.7

theta5 optimal: 5.7232307282180003e+ 01

relative gap 6e− 25 1e− 23 2e− 46 1e− 25 1e− 24 2e− 31 2e− 31 2e− 31 2e− 31

p.feas.error 8e− 31 4e− 31 1e− 63 7e− 31 7e− 31 1e− 45 1e− 44 5e− 61 2e− 61

d.feas.error 1e− 27 2e− 25 9e− 49 1e− 26 9e− 26 4e− 39 6e− 39 1e− 55 2e− 55

iteration 70 54 58 65 54 43 43 43 43

time (s) 470.2 401.25 4,687 312.3 319.6 1,837 1,533 3,373 2,685

While the QD library offers only two extended precisions, GMP offers arbitrary precision, so
we compare our library against it in Table 5.7. Note that GMP has yet to been ported on GPU. We
consider three problems from the SDPLIB with corresponding precisions of 106, 159, 212, 318 and
424 bits.

One can see that our library outperforms GMP by far for all tested precisions, even without
GPU support. However this was not the case in the tests presented in [44] (where we used a
different server configuration), where GMP performed better for precisions higher than 4D. This
shows that the underlying architecture plays a very important role in the performance of these
libraries and that our library takes better advantage of the newer architectures, like the ones used
for these tests.
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Table 5.7 – The optimal value, iterations and time for solving some problems from SDPLIB by SDPA-GMP,
-CAMPARY.

Problem SDPA-CAMPARY SDPA-GMP
CPU GPU

gpp124-1 optimal: −7.3430762652465384

precision 2D 106 bits
iteration 24 24 38

time (s) 1.12 1.62 88.6

precision 3D 159 bits
iteration 38 39 48

time (s) 14.2 12.14 117.8

precision 4D 212 bits
iteration 58 49 59

time (s) 32.6 29.5 159.1

precision 6D 318 bits
iteration 77 77 77

time (s) 109.2 103 225.5

precision 8D 424 bits
iteration 77 77 77

time (s) 223.4 271.7 280.7

gpp250-1 optimal: −1.5444916882934070e+ 01

precision 2D 106 bits
iteration 25 25 39

time (s) 6.46 7.42 715

precision 3D 159 bits
iteration 41 40 46

time (s) 80.5 71.7 889.9

precision 4D 212 bits
iteration 56 66 64

time (s) 200.7 213.5 1,359

precision 6D 318 bits
iteration 73 73 73

time (s) 648.5 578.5 1,683

precision 8D 424 bits
iteration 73 73 73

time (s) 1,449 1,253 2,103

theta5 optimal: 5.7232307282180003e+ 01

precision 2D 106 bits
iteration 65 43 46

time (s) 312 1,837 28,072

precision 3D 159 bits
iteration 43 43 43

time (s) 1,837 1,533 27,601

precision 4D 212 bits
iteration 43 43 43

time (s) 3,373 2,685 31,377

precision 6D 318 bits
iteration 43 43 43

time (s) 8,538 6,476 33,857

precision 8D 424 bits
iteration 43 43 43

time (s) 17,392 13,248 41,206
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In Table 5.8 we compare the performance obtained by SDPA-CAMPARY on CPU versus GPU,
when varying precision from four to eight doubles, for five problems from the SDPLIB.

Table 5.8 – The optimal value, iterations and time for solving some problems from SDPLIB by
SDPA–CAMPARY, when varying precision from 4D to 8D.

gpp500-1 theta5 theta6 equalG51 mcp500-1

opt. −2.532054e+ 01 5.723230e+ 01 6.347708e+ 01 4.005601e+ 03 5.981485e+ 02

4D
CPU it. 56 43 44 45 43

(s) 1,356 3,373 8,291 7,856 793

GPU it. 53 43 44 45 43

(s) 1,112 2,685 6,052 6,654 701

5D
CPU it. 63 43 44 45 43

(s) 2,563 5,745 14,157 13,217 1,339

GPU it. 63 43 44 45 43

(s) 2,194 4,410 9,921 11,092 1,159

6D
CPU it. 82 43 44 45 43

(s) 4,969 8,538 21,153 19,712 2,007

GPU it. 82 43 44 45 43

(s) 4,282 6,476 14,543 16,466 1,760

7D
CPU it. 82 43 44 45 43

(s) 7,337 12,380 30,749 29,384 2,967

GPU it. 82 43 44 45 43

(s) 6,225 9,220 20,624 24,292 2,534

8D
CPU it. 82 43 44 45 43

(s) 10,324 17,392 42,971 41,092 4,231

GPU it. 82 43 44 45 43

(s) 8,985 13,248 29,854 34,925 3,694

For testing not only the performance, but also the accuracy of our library, we considered sev-
eral examples from Sotirov’s collection [21], which are badly conditioned numerically, and cannot
be tackled using only binary64. A classical problem in coding theory is finding the largest set of
binary words with l letters, such that the Hamming distance between two words is at least some
given value d. This is reformulated as a maximum stable set problem, which is solved with SDP,
according to the seminal work of Schrijver [87], followed by Laurent [55].

In Table 5.9 we show the performance obtained for the Schrijver and Laurent instances
from [21]. The comparison is done between SDPA-DD, SDPA-GMP (run with 106 bits of preci-
sion) and SDPA-CAMPARY with 2D and 3D. Some instances do not converge when 2D precision
is used, this is why we also include the 3D results.

A strange behavior that we obtained on these instances is that the GPU versions of both SDPA-
DD and SDPA-CAMPARY perform worse than their CPU counterparts. This is probably due to
the nature of the problems treated and the way they are formulated. On the CPU side of these
tests one can observe once again that our library outperforms its counterparts and even more, our
3D precision version is faster than GMP with 106 bits.

156



5.2 SDP solver 157

Table 5.9 – The optimal value, iterations and time for solving some ill-posed problems for binary codes
by SDPA-DD, -GMP and -CAMPARY. ∗ problems that converge to more than two digits only with 4D
precision. ∗∗ problems that converge to more than two digits with precision higher than 4D. The digits
written with blue were obtained only when 3D precision was employed.

Problem
SDPA-DD SDPA-CAMPARY SDPA-GMP

2D 3D
106 bits

CPU GPU CPU GPU CPU GPU
Laurent_A(19,6) optimal: −2.4414745686616550e− 03

iteration 94 89 92 87 71 71 73

time (s) 22.14 77.9 18.98 77.49 34.7 99.77 45.63

Laurent_A(26,10) optimal: −1.3215201241629400e− 05

iteration 79 79 77 77 121 138 125

time (s) 33 105 27.67 95 155.32 357.8 270.2

Laurent_A(28,8) optimal: −1.1977477306795422e− 04

iteration 90 101 95 98 76 76 113

time (s) 88.3 337.8 74.31 311 274.4 565.9 837.9

Laurent_A(48,15) optimal: −2.229e− 09

iteration 133 133 133 132 164 164 145

time (s) 2,777 4,469 2,101 3,845 13,889 17,792 34,969

Laurent_A(50,15) optimal: −1.9712e− 09

iteration 143 161 144 151 175 172 154

time (s) 4,143 11,393 3,127 5,841 20,534 25,053 56,364

Laurent_A(50,23) optimal: −2.5985e− 13

iteration 126 125 123 126 155 156 140

time (s) 533 814.6 361 671.5 2,915 3,515 5,385

Schriver_A(19,6) optimal: −1.27903627001809100e+ 03

iteration 41 41 40 40 66 66 95

time (s) 8.5 36 8.24 33.1 28 86.8 50.3

Schriver_A(26,10) optimal: −8.8585714285713880e+ 02

iteration 54 54 54 54 124 118 108

time (s) 21.2 66.7 17.7 67.2 143.4 290 209.3

Schriver_A(28,8) optimal: −3.2150795825792913e+ 04

iteration 45 45 45 45 70 72 97

time (s) 40.6 143.2 34.5 142.5 226.4 502 656

Schriver_A(37,15) optimal: −1.40069999999999886e+ 03

iteration 58 59 58 59 141 163 116

time (s) 104.5 225 78.53 214.3 970.9 1,654 1,532

Schriver_A(40,15)* optimal: −1.9e+ 04

iteration 23 23 23 23 23 23 23

time (s) 84 168.4 62.34 153.7 349.7 494 742.2

Schriver_A(48,15)* optimal: −2.56e+ 06

iteration 27 27 27 27 27 27 27

time (s) 526.8 865.3 400 768 2,095 2,687 6,172

Schriver_A(50,15)** optimal: −7.6e+ 06

iteration 29 29 29 29 29 29 29

time (s) 792.1 1,245 596.8 1,103 3,142 3,937 10,224

Schriver_A(50,23)** optimal: −5e+ 03

iteration 29 29 29 29 29 29 29

time (s) 119.8 188.7 86.74 158.5 523.7 631.8 1,069
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Conclusions

Unde e un car cu înţelepciune, acolo sunt două de nebunie.

Romanian proverb

Nowadays, very efficient arithmetic operations with double-precision floating-point numbers
compliant with the IEEE-754 standard are available on most recent computers. However, when
more than double-precision/binary64 (53 bits) is required, especially in the HPC context, fewer
multiple-precision arithmetic libraries exist, and the trade-off between performance versus relia-
bility is still a challenge.

To address this challenge, in this work we propose to represent multiple-precision numbers as
unevaluated sums of standard machine precision floating-point numbers, so-called floating-point
expansions. This approach allows us to directly benefit from the available and efficient hardware
implementation of the IEEE-754 standard.

Although several works exist in this area, many algorithms have been published without a
proof, or with error bounds that are sometimes loose, sometimes fuzzy (the error is “less than a
small integer times u2”), and sometimes unsure. Thus we started this study by first “cleaning up”
the literature.

This allowed us to improve or design several new algorithms for performing basic arithmetic
operations using this extended format. For all the algorithms that we present we give rigorous
correctness and error bound proofs. For all the obtained theoretical results we provide an im-
plementation in our mupltiple-precision arithmetic library, CAMPARY. This library targets both
CPUs and GPUs, provides flexible and user friendly routines and it allows one to easily reprogram
a problem that uses standard precision, into a program that uses extended precision by providing
overloaded operators for all the basic arithmetic operations.

Specifically, we provide:

• specialized algorithms for addition, multiplication and division using double-word num-
bers, that allow for very efficient computations with “double” of the available precision;

• algorithms for all basic operations (+/−,×, /,√) using arbitrary precision, in the range of a
few hundred bits;

• parallel algorithms for arbitrary precision addition and multiplication, tuned for highly op-
timized GPU performance.

Our work focused not only on the arithmetic details and technicalities of achieving a multiple-
precision arithmetic, but also on its utility. We applied our theoretical results in two applications:

• in the context of dynamical systems, we search for periodic orbits in the Hénon map, which
is a very numerically sensitive problem, using an apporach based on extensive long-term
numerical iterations of the map;
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• for semidefinite programming (SDP) solvers for numerically sensitive problems we inte-
grated CAMPARY with the already existing SDPA solver, and we provide arbitrary precision
not only for the CPU routines, but also for matrix multiplication with GPU support.

Despite our best efforts, and our reluctance to admit it, work is still to be done.

Perspectives and future work.
– Firstly, seeing the performance obtained when using specialized algorithms for double-word

operations, a logical step would be to also design specialized algorithms for triple-word arith-
metic. Triple-word arithmetic procedures are also useful for implementing correctly rounded ele-
mentary functions in CRLIBM.

– Also on the theoretical part of our work, we intend to continue the development of our
library by also providing rigorous algorithms for elementary functions.

– One can remark that the proofs that come with this type of algorithms are very tedious and
not easy to follow. A formal proof would inspire even more confidence in our algorithms. We
already started a collaboration on this topic.

– On the application side of our work, as a first step we plan on continuing to develop the
SDPA-CAMPARY package by also integrating the parallel algorithms into the matrix multiplica-
tion with GPU support routine. This would allow us to better test those algorithms and to take
advantage of the data locality and the extra parallelization layer that they provide.

– Apart from the endless applications that could benefit from the use of the SDPA-CAMPARY
package, we would be interested to tackle the kissing numbers problem.
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A APPENDIX A

CAMPARY - Implementation details

As already mentioned, one of the main goals of this thesis was to develop a multiple-precision
arithmetic software library. To this end we developed CAMPARY (CudA Multiple Precision
ARithmetic LibrarY), an open source library distributed under the GNU General Public License
as published by the Free Software Foundation, that is freely available at http://homepages.
laas.fr/mmjoldes/campary/.

The library targets both CPU applications and applications deployed on NVIDIA GPU plat-
forms (compute capability 2.0 or greater), this is why we provide two different versions:

• a C++ version, compilable with G++, that can be used on the CPU;

• a CUDA C version, compilable with NVCC, that can be used both on GPU 1 and CPU, except
for the parallel algorithms (see Chapter 4).

For each of these versions we offer support for extending both the binary64 and the binary32
formats, even though the latter one is mostly useful for GPU use, since some architectures offer
optimizations only for binary32. The constraint on the expansion size is given by the exponent
range of the underlying floating-point format:

• for binary64 (exponent range [−1022, 1023]) the maximum expansion size is 39;

• for binary32 (exponent range [−126, 127]) the maximum expansion size is 12.

Since all these different versions are equivalent from a design and algorithmic point of view we
will continue by detailing the binary64 GPU version.

The extended precision using classical sequential floating-point expansions (Chapter 3) is of-
fered as a class called multi_prec; the parallel floating-point expansions (Chapter 4) are dealt with
in a separate class that we are going to detail later on. One of the most important design decisions
that we had to take was how to define the precision, i.e., the expansion size. We decided on using
templates, because it offers flexibility to the implementation. The exact definition is:

template <int prec>
class multi_prec{

private:
double data[prec];

public:
...

}

1. Compute capability 2.0 or greater for the sequential algorithms or at least 3.0 for the parallel ones.

http://homepages.laas.fr/mmjoldes/campary/
http://homepages.laas.fr/mmjoldes/campary/
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For allocating (and initializing) a multi_prec object the user has the choice between six different
constructors. Depending on ones choice the objects can be initialized with one or more values, a
string or another multi_prec object:

__host__ __device__ multi_prec(){};
__host__ __device__ multi_prec(const double x);
__host__ __device__ multi_prec(const double *datap, const int precP);
__host__ __device__ multi_prec(const char *s);
template<int precP>
__host__ __device__ multi_prec(const multi_prec<precP> *mp);
__host__ __device__ multi_prec(const multi_prec<prec> *mp);

Member functions for random initialization with an ulp-nonoverlapping or P-nonoverlapping ex-
pansion are also available along with “visualization” functions like pretty print.

In order to achieve robustness we encapsulate the private data array (that contains the floating-
point expansion) with getters and setters that allow the user to manipulate it. The prec value is
given as a template, so it cannot be changed throughout the execution; this is why only a getter is
required for it. The declarations are as follows:

__host__ __device__ int getPrec() const;
__host__ __device__ const double* getData() const;
__host__ __device__ void setData(const double *datap, const int precp);
__host__ __device__ void setData(const double *datap);
__host__ __device__ void setElement(const double datap, const int index);

The code is also very flexible due to all the overloaded operators. The ones that we overload
are:

• assignment operator, =, that can receive a binary64 value, another multi_prec object or a
string of characters;

• unary −, that negates the data array;

• arithmetic operators, +,−, ∗, /, applied between two multi_prec objects or one multi_prec and
one binary64;

• compound assignment operators + =,− =, ∗ =, / =, applied as the arithmetic ones;

• relational/comparison operators, ==, ! =, >,>=, <,<= (along with the min and max func-
tions), applied as the arithmetic ones;

• subscript [] that gives access to one specific element of the data array;

The functions that implements the arithmetic operations are declared as templated friend func-
tions 2, in order to keep the code of the class “clean”. For each function that receives as input
multi_prec objects we also include the equivalent with a multi_prec object and a binary64 value as
input.

For some of the algorithms presented in Chapter 3 we mention that in practice we can make
them faster by not considering the corner cases. Since fully certified algorithms usually come
with a performance cost, we allow trade-off between proven output accuracy in the worst case
versus highly efficient average case by offering two levels of algorithms. The library includes two
separate files, that define the same class with the same functionalities, and the user has the choice
of which one to use, depending on the time and accuracy constraints of one’s problem.

2. Only the signature is included in the class, while the full body function is external.
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1. The multi_prec_certif.h file implements all the algorithms as presented in Chapter 3, ensur-
ing that the result is always an ulp-nonoverlapping expansion that conforms to the given bound.
The declared functions are:

• certifAddExpans, implements Algorithm 27 without truncation on the input;

• truncAddExpans, implements Algorithm 27;

• QD_LikeAddExpans, implements Algorithm 29;

• certifMulExpans, implements Algorithm 31 without truncation of the partial products;

• truncMulExpans, implements Algorithm 31;

• QD_LikeMulExpans, implements Algorithm 33;

• invExpans, implements Algorithm 35;

• divExpans, implements division with Algorithm 35 followed by Algorithm 31;

• invSqrtExpans, implements Algorithm 38 for computing the reciprocal of the square root;

• sqrtNewtonExpans, implements square root with Algorithm 38 followed by Algorithm 31;

• sqrtHeronExpans, implements square root with Algorithm 39.

The arithmetic operators use the truncated versions of the algorithms.
For the special case of double-double numbers we use specialized templates in which we

implemented the algorithms in Chapter 2 in oder of error bound tightness on the result.

2. The multi_prec.h file implements the “quick-and-dirty” level of the library. It uses algo-
rithms which are faster, but do not consider accuracy issues for corner cases. In most cases the
result is going to be the same as obtained when computing with the certified level, even the non-
overlapping condition can be achieved. The uncertainty appears if cancellation happens during
intermediate computations, since this can generate intermediate 0s or even non-monotonic expan-
sions in the result.

Even though some of the functions are implemented the same as in the certified level, the ones
that are optimized are now used by the arithmetic operators. They are:

• QD_LikeAddExpans, implements Algorithm 29 with a faster renormalization step that uses
Algorithm 24 with Fast2Sum;

• QD_LikeMulExpans, implements Algorithm 33, with the changed renormalization;

• invExpans, implements Algorithm 35 using the fast “quick-and-dirty” algorithms for inter-
mediate computations;

• the same changes as above for invSqrtExpans, sqrtNewtonExpans and sqrtHeronExpans.

This level also comes with a code generation module, that allows for the user to code generate
the algorithms function of the needed expansion size. This module provides increased perfor-
mance by custom unrolling some complex loops (which are usually not optimized by GCC or
NVCC compilers).

We recommend the use of this level if the performance requirements are strong, especially if
there is the possibility of a-posteriori verification of the correctness of the numerical result.

Parallel expansions. As we mentioned, the parallel expansions are dealt with separately. In a
separate file, gpu_mprec.h, we declare the simple (not templated) class:

class gpu_mprec{
private:
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double val;
public:

...
}

which appears from the point of the view of a single execution thread, this is why it stores only
one value.

For an easy “switch” between the two classes we implemented load and store functions that
can distribute a multi_prec object across threads and reform it, respectively. In more detail:

template <int prec>
__device__ gpu_mprec loadExpans(multi_prec<prec> const &mp){
if (threadIdx.x < prec)

return gpu_mprec(mp.getData()[threadIdx.x]);
else

return gpu_mprec(0.);
}

template <int prec>
__device__ void storeExpans(gpu_mprec gmp, multi_prec<prec> &mp){
mp.setElement(gmp.getVal(), threadIdx.x);

}

Alongside two constructors , a getter and a setter, the class implements the three parallel algo-
rithms presented in Chapter 4. These are parallelized using the x dimension of the thread block,
allowing the user to also parallelize at a higher level, depending on the problem, using dimen-
sions y and z. At a first glance this may seam difficult, but users that are familiar with CUDA
programing can take advantage of these algorithms with minimum effort.
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B APPENDIX B

CAMPARY - Class code

B.1 multi_prec class code

#ifndef _multi_prec_h
#define _multi_prec_h

/**forward declarations**/
template <int prec> class multi_prec ;

/**template friends**/
template <int prec>
__host__ __device__ multi_prec<prec> abs(const multi_prec<prec> &mp);
template <int prec>
__host__ __device__ multi_prec<prec> sqrt(const multi_prec<prec> &mp);
template <int prec>
__host__ __device__ multi_prec<prec> invSqrt(const multi_prec<prec> &mp);

template <int prec>
__host__ __device__ void renorm(multi_prec<prec> &mp);
template <int prec>
__host__ __device__ void renorm_rand(multi_prec<prec> &mp);
template <int prec>
__host__ __device__ void renorm_2ndL(multi_prec<prec> &mp);

//********************* ADD *********************//
template <int pR, int p1, int p2>
__host__ __device__ void certifAddExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ void certifAddExpans_d( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const double val );
template <int pR, int p1, int p2>
__host__ __device__ void truncAddExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ void truncAddExpans_d( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const double val );
template <int pR, int p1, int p2>
__host__ __device__ void QD_LikeAddExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ void QD_LikeAddExpans_d( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const double val );



172 Chapter B. CAMPARY - Class code

//********************* MUL *********************//
template <int pR, int p1, int p2>
__host__ __device__ void certifMulExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ void certifMulExpans_d( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const double val );
template <int pR, int p1, int p2>
__host__ __device__ void truncMulExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ void truncMulExpans_d( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const double val );
template <int pR, int p1, int p2>
__host__ __device__ void QD_LikeMulExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ void QD_LikeMulExpans_d( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const double val );

//********************* DIV *********************//
template <int pR, int p1>
__host__ __device__ void invExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1 );
template <int pR>
__host__ __device__ void invExpans_d( multi_prec<pR> &res, const double val );
template <int pR, int p1, int p2>
__host__ __device__ void divExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ void divExpans_d( multi_prec<pR> &res, const multi_prec<p1> &mp1,

const double val );
template <int pR, int p1>
__host__ __device__ void divExpans_d( multi_prec<pR> &res, const double val,

const multi_prec<p1> &mp1 );

//********************* SQRT *********************//
template <int pR, int p1>
__host__ __device__ void invSqrtExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1 );
template <int pR>
__host__ __device__ void invSqrtExpans_d( multi_prec<pR> &res, const double val );
template <int pR, int p1>
__host__ __device__ void sqrtNewtonExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1 );
template <int pR>
__host__ __device__ void sqrtNewtonExpans_d( multi_prec<pR> &res, const double val );
template <int pR, int p1>
__host__ __device__ void sqrtHeronExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1 );
template <int pR>
__host__ __device__ void sqrtHeronExpans_d( multi_prec<pR> &res, const double val );

template <int prec>
class multi_prec{
private:
double data[prec];
public:
//---------constructors--------------
__host__ __device__ multi_prec(){};
__host__ __device__ multi_prec(const double x);
__host__ __device__ multi_prec(const double *datap, const int precp);
__host__ __device__ multi_prec(const char *s);
template<int precP>__host__ __device__ multi_prec(const multi_prec<precP> *mp);
__host__ __device__ multi_prec(const multi_prec<prec> *mp);
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//----------geters & setters--------------
__host__ __device__ int getPrec() const;
__host__ __device__ const double* getData() const;
__host__ __device__ void setData(const double *datap, const int precp);
__host__ __device__ void setData(const double *datap);
__host__ __device__ void setElement(const double datap, const int index);

/**pretty print**/
__host__ __device__ void prettyPrint(){

printf("Prec = %d\n", prec);
for(int i=0; i<prec; i++) printf(" Data[%d] = %e\n",i,data[i]);

}
__host__ __device__ void prettyPrintBin(){

printf("Prec = %d\n", prec);
for(int i=0; i<prec; i++) printf(" Data[%d] = %a;\n",i,data[i]);

}
__host__ __device__ void prettyPrintBin_UnevalSum(){

for(int i=0; i<prec-1; i++) printf("%a + ", data[i]);
printf("%a;", data[prec-1]);

}

__host__ __device__ char* prettyPrintBF(){
size_t needed = snprintf(NULL, 0, "%e", data[0]);
if (prec>1)
for(int i=1; i<prec; i++) needed += snprintf(NULL, 0, "%e ", data[i]);

char *ch;
ch =(char *) malloc((2*needed++)*sizeof(char));

sprintf(ch, "%e ", data[0]);
if (prec>1)
for(int i=1; i<prec; i++) sprintf(&ch[strlen(ch)], "%e ", data[i]);

sprintf(&ch[strlen(ch)], "%c", ’\0’);
return ch;

}

//----------operators--------------
/** operator [] overloading **/
__host__ __device__ double operator [](const int i)const {return data[i];}

/** Puts the value other in data[0] of the current multi_prec variable **/
__host__ __device__ multi_prec& operator =(const double other){

setData(&other, 1);
return *this;

}
/** Transfers the multi_prec parameter other in the current multi_prec variable **/
__host__ __device__ multi_prec<prec>& operator =(const multi_prec<prec>& other){

if(this != &other) setData(other.getData(), prec); /* check against self assingment */
return *this;

}
template <int pS>
__host__ __device__ multi_prec& operator =(const multi_prec<pS>& other){

setData(other.getData(),pS);
return *this;

}
__host__ __device__ multi_prec& operator =(const char *s){

if (read(s, *this)){
printf("(qd_real::operator=): INPUT ERROR.");

*this = 0.0;
}

173



174 Chapter B. CAMPARY - Class code

return *this;
}

/** Equality overloading**/
template <int pS> __host__ __device__ bool operator ==(const multi_prec<pS> &mp2) const;
__host__ __device__ bool operator ==(const multi_prec<prec> &mp2) const;
__host__ __device__ bool operator ==(const double &mp2) const;
template <int pS> __host__ __device__ bool operator !=(const multi_prec<pS> &mp2) const;
__host__ __device__ bool operator !=(const multi_prec<prec> &mp2) const;
__host__ __device__ bool operator !=(const double &mp2) const;
template <int pS> __host__ __device__ bool operator < (const multi_prec<pS> &mp2) const;
__host__ __device__ bool operator < (const multi_prec<prec> &mp2) const;
__host__ __device__ bool operator < (const double &mp2) const;
template <int pS> __host__ __device__ bool operator <=(const multi_prec<pS> &mp2) const;
__host__ __device__ bool operator <=(const multi_prec<prec> &mp2) const;
__host__ __device__ bool operator <=(const double &mp2) const;
template <int pS> __host__ __device__ bool operator > (const multi_prec<pS> &mp2) const;
__host__ __device__ bool operator > (const multi_prec<prec> &mp2) const;
__host__ __device__ bool operator > (const double &mp2) const;
template <int pS> __host__ __device__ bool operator >=(const multi_prec<pS> &mp2) const;
__host__ __device__ bool operator >=(const multi_prec<prec> &mp2) const;
__host__ __device__ bool operator >=(const double &mp2) const;

/**Random expansion generation **/
__host__ __device__ void randomInit_P(){ genExpans_P<prec>(data);}
__host__ __device__ void randomInit_ulp(){ genExpans_ulp<prec>(data);}
__host__ __device__ void randomInit_ulp(int order){ genExpans_ulp<prec>(data, order);}
__host__ __device__ void randomInit_ulp(double first){ genExpans_ulp<prec>(data, first);}

/**Unary - overloading**/
__host__ __device__ friend multi_prec operator -(const multi_prec<prec> &mp1){

multi_prec<prec> res;
for(int i=0; i<prec; i++) res.data[i] = -mp1.getData()[i];
return res;

}

/** operator += overloading **/
template <int pS>
__host__ __device__ multi_prec<prec>& operator +=(const multi_prec<pS> &mp){

QD_LikeAddExpans<prec,prec,pS>( *this, *this, mp );
return *this;

}
__host__ __device__ multi_prec<prec>& operator +=(const double val){
QD_LikeAddExpans_d<prec,prec>( *this, *this, val );
return *this;

}

/** operator -= overloading **/
template <int pS>
__host__ __device__ multi_prec<prec>& operator -=(const multi_prec<pS> &mp){

QD_LikeAddExpans<prec,prec,pS>( *this, *this, -mp );
return *this;

}
__host__ __device__ multi_prec<prec>& operator -=(const double val){
QD_LikeAddExpans_d<prec,prec>( *this, *this, -val );
return *this;

}

/** operator *= overloading **/
template <int pS>
__host__ __device__ multi_prec<prec> operator *=(const multi_prec<pS> &mp){
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QD_LikeMulExpans<prec,prec,pS>( *this, *this, mp );
return *this;

}
__host__ __device__ multi_prec<prec>& operator *=(const double val){

QD_LikeMulExpans_d<prec,prec>( *this, *this, val );
return *this;

}

/** operator /= overloading **/
template <int pS>
__host__ __device__ multi_prec<prec>& operator /=(const multi_prec<pS> &mp){

divExpans<prec,prec,pS>( *this, *this, mp );
return *this;

}
__host__ __device__ multi_prec<prec>& operator /=(const double val){

divExpans_d<prec,prec>( *this, *this, val );
return *this;

}

/**absolute value **/
__host__ __device__ friend multi_prec<prec> abs<>(const multi_prec<prec> &mp);
__host__ __device__ friend multi_prec<prec> sqrt<>(const multi_prec<prec> &mp);
__host__ __device__ friend multi_prec<prec> invSqrt<>(const multi_prec<prec> &mp);

template<int pS> __host__ __device__ friend int read(const char *s, multi_prec<pS> &mp);

template <int pR, int p1, int p2>
__host__ __device__ friend multi_prec<pR> max( const multi_prec<p1> &mp1,

const multi_prec<p2> &mp2 );
template <int pR, int p1, int p2>
__host__ __device__ friend multi_prec<pR> min( const multi_prec<p1> &mp1,

const multi_prec<p2> &mp2 );

__host__ __device__ friend void renorm<>(multi_prec<prec> &mp);
__host__ __device__ friend void renorm_rand<>(multi_prec<prec> &mp);
__host__ __device__ friend void renorm_2ndL<>(multi_prec<prec> &mp);

/** operator + overloading **/
template <int pS>
__host__ __device__ friend multi_prec operator +(const multi_prec<prec> &mp1,

const multi_prec<pS> &mp2){
multi_prec<(prec>pS)?prec:pS> res(mp1.getData(), prec);
return res += mp2;

}
__host__ __device__ friend multi_prec operator +(const multi_prec<prec> &mp1,

const double val){
multi_prec<prec> res(mp1.getData(), prec);
return res += val;

}
__host__ __device__ friend multi_prec operator +(const double val,

const multi_prec<prec> &mp1){
multi_prec<prec> res(mp1.getData(), prec);
return res += val;

}

/** operator - overloading **/
template <int pS>
__host__ __device__ friend multi_prec operator -(const multi_prec<prec> &mp1,

const multi_prec<pS> &mp2){
multi_prec<(prec>pS)?prec:pS> res(mp1.getData(), prec);
return res -= mp2;
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}
__host__ __device__ friend multi_prec operator -(const multi_prec<prec> &mp1, const double val){

multi_prec<prec> res(mp1.getData(), prec);
return res -= val;

}
__host__ __device__ friend multi_prec operator -(const double val, const multi_prec<prec> &mp1){

multi_prec<prec> res(val);
return res -= mp1;

}

/** operator * overloading **/
template <int pS>
__host__ __device__ friend multi_prec operator *(const multi_prec<prec> &mp1,

const multi_prec<pS> &mp2){
multi_prec<(prec>pS)?prec:pS> res(mp1.getData(), prec);
return res *= mp2;

}
__host__ __device__ friend multi_prec operator *(const multi_prec<prec> &mp1, const double val){

multi_prec<prec> res(mp1.getData(), prec);
return res *= val;

}
__host__ __device__ friend multi_prec operator *(const double val, const multi_prec<prec> &mp1){

multi_prec<prec> res(mp1.getData(), prec);
return res *= val;

}

/** operator / overloading **/
template <int pS>
__host__ __device__ friend multi_prec operator /(const multi_prec<prec> &mp1,

const multi_prec<pS> &mp2){
multi_prec<(prec>pS)?prec:pS> res(mp1.getData(), prec);
return res /= mp2;

}
__host__ __device__ friend multi_prec operator /(const multi_prec<prec> &mp1, const double val){

multi_prec<prec> res(mp1.getData(), prec);
return res /= val;

}
__host__ __device__ friend multi_prec operator /(const double val, const multi_prec<prec> &mp1){

multi_prec<prec> res(val);
return res /= mp1;

}

//********************* ADD *********************//
template <int pR, int p1, int p2>
__host__ __device__ friend void certifAddExpans( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ friend void certifAddExpans_d( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const double val );
template <int pR, int p1, int p2>
__host__ __device__ friend void truncAddExpans( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ friend void truncAddExpans_d( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const double val );
template <int pR, int p1, int p2>
__host__ __device__ friend void QD_LikeAddExpans( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ friend void QD_LikeAddExpans_d( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const double val );
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//********************* MUL *********************//
template <int pR, int p1, int p2>
__host__ __device__ friend void certifMulExpans( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ friend void certifMulExpans_d( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const double val );
template <int pR, int p1, int p2>
__host__ __device__ friend void truncMulExpans( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ friend void truncMulExpans_d( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const double val );
template <int pR, int p1, int p2>
__host__ __device__ friend void QD_LikeMulExpans( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ friend void QD_LikeMulExpans_d( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const double val );

//********************* DIV *********************//
template <int pR, int p1>
__host__ __device__ friend void invExpans( multi_prec<pR> &res, const multi_prec<p1> &mp1 );
template <int pR>
__host__ __device__ friend void invExpans_d( multi_prec<pR> &res, const double val );
template <int pR, int p1, int p2>
__host__ __device__ friend void divExpans( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const multi_prec<p2> &mp2 );
template <int pR, int p1>
__host__ __device__ friend void divExpans_d( multi_prec<pR> &res,

const multi_prec<p1> &mp1, const double val );
template <int pR, int p1>
__host__ __device__ friend void divExpans_d( multi_prec<pR> &res,

const double val, const multi_prec<p1> &mp1 );

//********************* SQRT *********************//
template <int pR, int p1>
__host__ __device__ friend void invSqrtExpans( multi_prec<pR> &res,

const multi_prec<p1> &mp1 );
template <int pR>
__host__ __device__ friend void invSqrtExpans_d( multi_prec<pR> &res, const double val );
template <int pR, int p1>
__host__ __device__ friend void sqrtNewtonExpans( multi_prec<pR> &res,

const multi_prec<p1> &mp1 );
template <int pR>
__host__ __device__ friend void sqrtNewtonExpans_d( multi_prec<pR> &res, const double val );
template <int pR, int p1>
__host__ __device__ friend void sqrtHeronExpans( multi_prec<pR> &res,

const multi_prec<p1> &mp1 );
template <int pR>
__host__ __device__ friend void sqrtHeronExpans_d( multi_prec<pR> &res, const double val );
};

#endif
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B.2 gpu_mprec class code
#ifndef _gpu_mprec_h
#define _gpu_mprec_h

class gpu_mprec{
private:

double val;
public:
//---------constructors--------------
__device__ gpu_mprec(){}
__device__ gpu_mprec(const double newVal):val(newVal){}

//----------geters & setters--------------
__device__ double getVal(){ return val; }
__device__ void setVal(const double newVal){ val = newVal; }

template <int prec>
__device__ friend gpu_mprec loadExpans(multi_prec<prec> const &mp);
template <int prec>
__device__ friend void storeExpans(gpu_mprec gmp, multi_prec<prec> &mp);

//----------friend functions--------------
template <int L, int K, int R>
__device__ friend gpu_mprec P_addExpans_safe(gpu_mprec x, gpu_mprec y);
template <int R>
__device__ friend gpu_mprec P_addExpans_quick(gpu_mprec x, gpu_mprec y);

template <int K, int L, int R>
__device__ friend gpu_mprec P_mulExpans(gpu_mprec x, gpu_mprec y);
};

#endif
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C APPENDIX C

Server configuration details

As the CPU we used an Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz based on the Haswell architecture, which
offers improved AVX 1 2.0 instruction with floating-point FMA3 with up to twice the Flops per core (16 Flops/clock).
The main features are given in Table C.1 and an excerpt of the result obtained using the command more /proc/cpuinfo is
given in Figure C.1.

On the GPU side we had two NVIDIA Tesla K20Xm cards with Kepler GK110 architecture. Some important features
are given in Tables C.2 and C.3 and an excerpt of the result obtained using the command nvidia-smi -i 0 -q is given in
Figure C.2.

The software configuration was as follows:

• Debian 4.9.2-10 GNU/Linux 8.2 operating system with 3.16.0-4-amd64 kernel;

• compilers GCC and G++ 4.9.2;

• CUDA 7.5 toolkit with NVCC V7.5.17.

1. Advanced Vector Extensions.
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Table C.1 – Main features of the Intel(R) Xeon(R) CPU E5-2695 v3. 2

# of cores 14

# of threads 28

Processor Base Frequency 2.3 GHz
Max Turbo Frequency 3.3 GHz

L3 Cache 35 MB SmartCache
Max Memory Size 768 GB

Memory Types DDR4 1600/1866/2133

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 63
model name : Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz
stepping : 2
microcode : 0x29
cpu MHz : 2300.000
cache size : 35840 KB
physical id : 0
siblings : 14
core id : 0
cpu cores : 14
fpu : yes
fpu_exception : yes
cpuid level : 15
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc
arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq
dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic
movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm ida arat epb xsaveopt
pln pts dtherm tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2
erms invpcid
bogomips : 4600.23
clflush size : 64
cache_alignment : 64
address sizes : 46 bits physical, 48 bits virtual

Figure C.1 – Excerpt of the result obtained using the command more /proc/cpuinfo.

2. https://ark.intel.com/products/81057/Intel-Xeon-Processor-E5-2695-v3-35M-Cache-2_
30-GHz
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Table C.2 – Main features of the NVIDIA Tesla K20Xm card. 3

# of SMX Units 14

# of CUDA Cores 2688

GPU Base Clock 732 MHz
GPU Boost Support Limited

GPU Boost Clocks
758 MHz
784 MHz

Peak Single Precision 3.95 TFlops
Peak Double Precision 1.32 TFlops

Onboard GDDR5 Memory 6 GB
Memory Bandwidth 250 GB/s

Memory Clock 2600 MHz

Table C.3 – Execution features of the NVIDIA Tesla K20Xm card.

Compute Capability 3.5

Threads per Warp 32

Max Warps per SM 64

Max Threads per SM 2048

Max Thread Blocks per SM 16

32-bit Registers per SM 64 K
Max Registers per Thread Block 64 K

Max Registers per Thread 255

Max Threads per Thread Block 1024

Shared Memory an L1 Cache 64 KB total
Max Shared Memory per Thread Block 48 KB

3. https://www.microway.com/knowledge-center-articles/in-depth-comparison-of-nvidia-tesla\
-kepler-gpu-accelerators/#tabs-3-2
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Driver Version : 361.45.18
Attached GPUs : 2
GPU 0000:03:00.0

Product Name : Tesla K20Xm
Accounting Mode Buffer Size : 1920
Serial Number : 0324114085169
GPU UUID : GPU-e35294d2-1252-6a68-aae9-72b8f039b90b
VBIOS Version : 80.10.39.00.13
MultiGPU Board : No
Board ID : 0x300
GPU Part Number : 900-22081-0130-000
GPU Operation Mode

Current : Compute
Pending : Compute

Performance State : P0
Clocks Throttle Reasons

Idle : Not Active
Applications Clocks Setting : Active
SW Power Cap : Not Active
HW Slowdown : Not Active
Sync Boost : Not Active
Unknown : Not Active

FB Memory Usage
Total : 5759 MiB
Used : 12 MiB
Free : 5747 MiB

Power Readings
Power Management : Supported
Power Draw : 59.07 W
Power Limit : 235.00 W
Default Power Limit : 235.00 W
Enforced Power Limit : 235.00 W
Min Power Limit : 150.00 W
Max Power Limit : 235.00 W

Clocks
Graphics : 732 MHz
SM : 732 MHz
Memory : 2600 MHz
Video : 540 MHz

Applications Clocks
Graphics : 732 MHz
Memory : 2600 MHz

Default Applications Clocks
Graphics : 732 MHz
Memory : 2600 MHz

Max Clocks
Graphics : 784 MHz
SM : 784 MHz
Memory : 2600 MHz
Video : 540 MHz

Figure C.2 – Excerpt of the result obtained using the command nvidia-smi -i 0 -q.
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