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Résumé: Appartenir à une catégorie socio-économique
moins élevée est généralement associé à une mortalité
plus élevée pour de nombreuses causes de décès. De
précédentes études ont déjà montré l’importance de la
prise en compte des différentes dimensions des trajec-
toires socio-économiques au cours de la vie. L’analyse
des trajectoires professionnelles constitue une étape
importante pour mieux comprendre ces phénomènes.
L’enjeu pour mesurer l’association entre les parcours
de vie des trajectoires socio-économiques et la mortal-
ité est de décomposer la part respective de ces facteurs
dans l’explication du niveau de survie des individus. La
complexité de l’interprétation de cette association réside
dans la causalité bidirectionnelle qui la sous-tend: Les
différentiels de mortalité sont-ils dus à des différentiels
d’état de santé initial influençant conjointement la situ-
ation professionnelle et la mortalité, ou l’évolution pro-
fessionnelle influence-t-elle directement l’état de santé
puis la mortalité?
Les méthodes usuelles ne tiennent pas compte de
l’interdépendance des changements de situation pro-
fessionnelle et de la bidirectionnalité de la causalité
qui conduit à un biais important dans l’estimation du
lien causale entre situation professionnelle et mortalité.
Par conséquent, il est nécessaire de proposer des méth-
odes statistiques qui prennent en compte des mesures
répétées (les professions) simultanément avec les vari-
ables de survie. Cette étude est motivée par la base
de données Cosmop-DADS qui est un échantillon de la
population salariée française.
Le premier objectif de cette thèse était d’examiner
l’ensemble des trajectoires professionnelles avec une

classification professionnelle précise, au lieu d’utiliser
un nombre limité d’états dans un parcours profession-
nel qui a été considéré précédemment. A cet effet,
nous avons défini des variables dépendantes du temps
afin de prendre en compte différentes dimensions des
trajectoires professionnelles, à travers des modèles dits
de "life-course", à savoir critical period, accumulation
model et social mobility model, et nous avons mis en
évidence l’association entre les trajectoires profession-
nelles et la mortalité par cause en utilisant ces variables
dans un modèle de Cox.
Le deuxième objectif a consisté à intégrer les épisodes
professionnel comme un sous-modèle longitudinal dans
le cadre des modèles conjoints pour réduire le biais issu
de l’inclusion des covariables dépendantes du temps en-
dogènes dans le modèle de Cox. Nous avons proposé un
modèle conjoint pour les données longitudinales nom-
inales et des données de risques concurrents dans une
approche basée sur la vraisemblance. En outre, nous
avons proposé une approche de type méta-analyse pour
résoudre les problèmes liés au temps des calculs dans
les modèles conjoints appliqués à l’analyse des grandes
bases de données. Cette approche consiste à combiner
les résultats issus d’analyses effectuées sur les échantil-
lons stratifiés indépendants. Dans la même perspective
de l’utilisation du modèle conjoint sur les grandes bases
de données, nous avons proposé une procédure basée sur
l’avantage computationnel de la régression de Poisson.
Cette approche consiste à trouver les trajectoires types
à travers les méthodes de la classification, et d’appliquer
le modèle conjoint sur ces trajectoires types.

Title: Joint modelling of individual socio-professional trajectory and overall or cause-specific survival
Keywords: Statistics, Survival analysis, Longitudinal methods, Genelaized linear models, Regression
analysis, Latent variables, Social science – Statistical methods, Mortality, Hazards proportional models,
Causes of death, Joint models, Longitudinale data, Generalized linear mixed models, Competing risks,
Cause-specific hazards, Cox model, EM algorithm, Maximum likelihood, Poisson regression, Random
effects

Abstract: Being in low socioeconomic position is
associated with increased mortality risk from var-
ious causes of death. Previous studies have al-
ready shown the importance of considering differ-
ent dimensions of socioeconomic trajectories across
the life-course. Analyses of professional trajectories
constitute a crucial step in order to better under-
stand the association between socio-economic posi-
tion and mortality. The main challenge in measur-
ing this association is then to decompose the respec-
tive share of these factors in explaining the survival
level of individuals. The complexity lies in the bidi-
rectional causality underlying the observed associa-
tions: Are mortality differentials due to differences
in the initial health conditions that are jointly influ-
encing employment status and mortality, or the pro-
fessional trajectory influences directly health condi-
tions and then mortality?
Standard methods do not consider the interdepen-
dence of changes in occupational status and the
bidirectional causal effect underlying the observed
association and that leads to substantial bias in es-
timating the causal link between professional tra-
jectory and mortality. Therefore, it is necessary to
propose statistical methods that consider simulta-
neously repeated measurements (careers) and sur-
vival variables. This study was motivated by the
Cosmop-DADS database, which is a sample of the
French salaried population.
The first aim of this dissertation was to consider

the whole professional trajectories and an accu-
rate occupational classification, instead of using lim-
ited number of stages during life course and a sim-
ple occupational classification that has been con-
sidered previously. For this purpose, we defined
time-dependent variables to capture different life
course dimensions, namely critical period, accumu-
lation model and social mobility model, and we high-
lighted the association between professional trajec-
tories and cause-specific mortality using the defined
variables in a Cox proportional hazards model.
The second aim was to incorporate the employment
episodes in a longitudinal sub-model within the joint
model framework to reduce the bias resulting from
the inclusion of internal time-dependent covariates
in the Cox model. We proposed a joint model for
longitudinal nominal outcomes and competing risks
data in a likelihood-based approach. In addition,
we proposed an approach mimicking meta-analysis
to address the calculation problems in joint mod-
els and large datasets, by extracting independent
stratified samples from the large dataset, applying
the joint model on each sample and then combining
the results. In the same objective, that is fitting
joint model on large-scale data, we propose a proce-
dure based on the appeal of the Poisson regression
model. This approach consist of finding represen-
tative trajectories by means of clustering methods
and then applying the joint model on these repre-
sentative trajectories.
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Synthèse

(extended summary in French)

Introduction

Contexte

Les inégalités de santé sont définies comme la différence d’état de santé ou comme

la différence de répartition des déterminants de la santé entre les personnes ou entre

les différents groupes de population en raison des facteurs sociaux, des facteurs

biologiques ou d’autres facteurs. L’analyse de ces inégalités concerne l’analyse des

différentiels en matière de comportements (nutrition, activité physique, tabagisme

et etc.), d’exposition aux risques (pollutions, conditions de travail), d’attitudes face

au système de soins (accessibilité, recours aux soins préventifs et curatifs) et aussi

l’analyse des différentiels en matière de morbidité et de mortalité.

Les indicateurs de mortalité constituent des mesures synthétiques de l’état de

santé d’une population. Les données de mortalité par cause de décès ont l’avantage

d’être exhaustives et enregistrées sur l’ensemble du pays de manière homogène. Elles

sont régulièrement employées en France, en particulier depuis la loi de santé publique

de 2004 comme une information sanitaire de référence pour le pilotage des politiques

de santé publique.

Les inégalités socio-économiques de mortalité, quantifiée par les écarts de mortal-

ité entre les groupes sociaux, ont été étudiées dans de nombreux pays industriels [1–

6]. En France, ces différences de mortalité entre les groupes sociaux ont été mis en

xxi
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évidence depuis les années 1970, avec les études réalisées par l’Institut National de

la Statistique Et des sciences Economiques (INSEE), l’Institut National de la Santé

Et de la Recherche Médicale (INSERM), etc. [7, 8].

Malgré le faible niveau de la mortalité et sa diminution, les études menées au

Royaume-Uni, aux états-Unis et en Europe ont montré que ces inégalités restent

importantes dans de nombreux pays [9–11]. Plus précisément, en France, pour la

plupart des causes de décès, on observe des écarts de mortalité importants (par

profession, niveau d’étude, etc.) au niveau individuel [12]. Des études comparatives

ont également montré qu’en France ces inégalités sont parmi les plus importantes en

Europe [9–11]. En outre, ces études ont montré que les inégalités socio-économiques

ont augmenté au cours du temps chez les hommes et chez les femmes [1, 13, 14], en

particulier en France [12, 15, 16]. Par conséquent, l’analyse de ces inégalités est l’un

des sujets les plus importants en sciences sociales et en santé publique.

Bien qu’il n’y a pas de mesure unique défini pour le statut socio-économique,

plusieurs indicateurs, y compris le statut professionnel, l’éducation et les revenus

ont été proposés dans la littérature [17]. Cependant, certaines études ont montré

que le statut professionnel est plus prédictif de la mortalité que le niveau d’études

et le revenu, car il est lié à la fois au niveau d’études et au revenu. Par ailleurs la

profession est plus proche du moment du décès que le niveau d’études [18].

De nombreuses études ont constaté que les taux de mortalité sont plus élevés

chez les individus ayant un "faible" niveau socio-économique [19, 20]; quel que soit

l’indicateur socio-économique utilisé [17]. La plupart de ces études n’ont mesuré la

position socio-économique qu’à un moment de la vie. Cette approche ne tient pas

compte de l’impact des transitions entre les différents groupes socio-économiques.

Ainsi, pour obtenir une meilleure compréhension de la relation entre la santé et la

position socio-économique, il faut prendre en compte les diverses dimensions des tra-

jectoires socio-économiques, telles que la position socio-économique dans l’enfance,

l’évolution de la situation socio-économique et les modalités de transitions entre les

groupes sociaux [21, 22].

Certaines études ont déjà démontré ce fait en prenant en compte le niveau

socio-économique à travers la vie et en particulier l’influence des trajectoires socio-

professionnelles [22–24] et la situation sociale dans l’enfance [25] sur les écarts de
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mortalité. Ils ont considéré l’évolution de la profession au cours de la vie active

en tant que marqueur pour différencier les facteurs liés à l’environnement familial

dans l’enfance, et les facteurs liés à la personne. Plus précisément, en comparant

deux personnes ayant le même niveau professionnel à un instant donné, l’individu le

plus avantagé durant l’enfance aura commencé sa carrière dans une catégorie profes-

sionnelle supérieure et pourra avoir des caractéristiques intrinsèques différentes de

caractéristiques de l’individu en progression professionnelle. Plusieurs hypothèses

sont discutées le plus souvent pour caractériser l’influence de la trajectoire profes-

sionnelle sur la santé:

• Le niveau social réel d’un individu à un instant donné est peut être le reflet

de sa situation sociale dans les différentes étapes de sa vie [26],

• La seconde est l’hypothèse d’accumulation, à savoir que plus le nombre

d’années au cours desquelles la catégorie sociale d’un individu est défavorisée

est élevé, plus l’effet délétère sur sa santé sera important,

• Certaines étapes ou des moments particuliers de la vie (enfance, études, entrée

sur le marché du travail, vie professionnelle et retraite) sont considérés comme

des périodes clés ayant un impact sur la santé.

Cependant, ces trois hypothèses ne sont pas exclusives, ni exhaustives pour expli-

quer la contribution des trajectoires de vie sur l’association entre le niveau socio-

économique et la santé [27].

L’enjeu consiste ensuite à mesurer la part respective de ces différents facteurs

dans l’explication du niveau de survie. La complexité de la mise en évidence de

l’effet de ces facteurs réside dans les sens contradictoires de causalité sous-tendus par

ce type d’association. Les différentiels de mortalité sont-ils dus à des différentiels

d’état de santé initial influençant conjointement la situation professionnelle et la

mortalité, ou, l’évolution professionnelle influence-t-elle directement l’état de santé

puis la mortalité?

Matériel

La base de données Cosmop-DADS a été constituée dans le cadre du projet COS-

MOP [28] par l’Institut de Veille Sanitaire (InVS). Elle contient l’appariement des
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causes de décès du CépiDc (Centre d’épidémiologie sur les causes médicales de Décès)

avec un échantillon de salariés issu du Panel des Déclarations Annuelles de Données

Sociales (DADS) de l’INSEE. Un taux d’appariement de 98% a été obtenu. Cette

déclaration annuelle est une formalité administrative que doit accomplir toute en-

treprise employant des salariés, destinée aux administrations sociales et fiscales. Le

panel DADS regroupe les déclarations, relatives aux épisodes salariés des individus

nés en octobre d’une année paire. Dans le panel, une observation correspond à

l’emploi d’un individu, dans une entreprise, pour un poste et une année donnée. Le

champ de l’échantillon exploité recouvre les salariés hors agents de l’état, et hors des

secteurs de l’agriculture, des services domestiques et des activités extraterritoriales,

ayant eu une activité dans l’année, hors stagiaires et apprentis. Ces données forment

donc un échantillon représentatif de la population salariée pour les années 1976 à

2002.

Objectif de la thèse

A notre connaissance, il n’existe aucune étude qui a examiné l’ensemble des tra-

jectoires professionnelles, correspondant aux emplois successifs des individus. En

effet, les études retrouvées dans la littérature ne prennent en compte que deux

emplois (à l’entrée dans le marché du travail, un emploi en milieu de parcours pro-

fessionnel) [21, 22] et une classification simple des catégories professionnelles (basse,

moyenne, élevée). L’un des objectifs de nos travaux a consisté a prendre en compte

l’ensemble de la trajectoire professionnelle.

Une première approche pour la mise en évidence d’une association entre les

trajectoires professionnelles et les causes de décès a été l’utilisation des données

administratives de la profession comme une covariable dépendante du temps dans

un modèle à risques proportionnels dans le cadre des modèles de parcours de vie.

Cependant, les épisodes d’emploi sont recueillies uniquement pour les sujets vi-

vants, et donc ce sont des variables dépendantes du temps endogènes, ce qui va

avoir pour effet de biaiser les résultats de notre première approche [29]. Il est donc

nécessaire de modéliser conjointement les données de la profession et de la survie en

intégrant les épisodes d’emploi dans un sous-modèle longitudinal dans le cadre du

modèle conjoint. Les extensions existantes sur les modèles conjoints dans la plupart
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des cas sont concentrées sur des réponses continues, binaires et ordinales. Il y a eu

moins d’attention aux données longitudinales nominales. Cependant ces types de

données ne correspondent pas à nos données. Le second objectif de cette thèse était

de proposer un modèle conjoint pour les données longitudinales nominales et les

données de survie. La base de Cosmop-DADS étant très volumineuse, nous avons

rencontrés des problèmes de temps de calcul, ce qui nous a amené à proposer une

approche pertinente au regarde de la taille de cette base.

Mise en évidence de l’association entre trajectoires
professionnelles et mortalité

Contexte

Il a déjà été démontré que le niveau social observé d’un individu à un instant donnée,

peut refléter en partie sa position sociale à différentes étapes de sa vie passée [26].

Cependant, pour mieux décrire l’association entre la position sociale et la mortalité,

les modèles de parcours de vie ont été introduits dans la littérature.

Cette approche admet à la fois que les expositions et les conditions de vie précoces

et tardives agissent en tant que facteurs de risque ou de protection tout au long de

la vie de l’individu [30]. L’objectif est d’examiner comment le niveau social pendant

l’enfance, l’adolescence et la vie de jeune adulte influence le risque de maladie à l’âge

d’adulte et la position socio-économique qui entraîne des inégalités sociales de santé

et de mortalité. On peut citer des études démontrant qu’un niveau socio-économique

faible durant la vie influence la mortalité par cause-spécifique et en particulier par

maladies cardio-vasculaires [31, 32]. Les hypothèse les plus utilisées dans le cadre

des modèles de parcours de vie sont: les modèles critical periods, accumulation et

social mobility.

Une période critique (critical period) est une fenêtre temporelle dans laquelle

une exposition peut avoir des effets indésirables ou protecteurs de longue durée sur

le développement d’une maladie [30]. L’intérêt de ce modèle, qui est aussi parfois

connu comme modèle latent, est de mettre l’accent sur le moment de l’exposition,

il suppose qu’une exposition peut avoir des dommages irréversibles plus tard sur la

santé [21]. Ce concept a été étendu à l’évolution sociale, de sorte que dans ce modèle
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des étapes ou des moments précis dans la vie sont considérés comme des périodes

clés qui affectent la santé.

Le modèle d’accumulation fait l’hypothèse que les différences de mortalité sont

expliquées par l’accumulation de toutes les conditions actuelles et passées du travail,

les modes de vie et les comportements. Les analyses à l’aide de ce modèle sont

basées sur la durée de séjour cumulée dans le groupe social le plus défavorisé. Elles

suggèrent que l’accumulation de l’exposition à un bas niveau socio-économique au

cours de la vie augmente le risque de mortalité [21, 27, 30, 33].

Le modèle de mobilité sociale (social mobility) a été développé pour tenir compte

de la modalité de transitions entre les groupes sociaux qui peuvent être divisés en mo-

bilité intra-générationnelle et intergénérationnelle. La mobilité intergénérationnelle

porte sur les changements dans un groupe social entre les générations, comme les

changements entre la classe sociale des parents et la propre classe sociale de l’individu

à l’âge adulte. La mobilité intra-générationnelle désigne les changements entre les

classes sociales occupées par un individu à l’âge adulte. Différentes opinions quant à

l’impact de la mobilité sociale sur la santé et la mortalité peuvent être trouvées dans

la littérature. Certains auteurs montrent que les individus mobiles ont des niveaux

de santé placés entre le niveau de santé de leur classe actuelle et le niveau de santé

de leur classe d’origine, plus proche de la classe actuelle [34, 35].

Les modèles de parcours de vie contribuent à expliquer l’impact potentiel du

statut socio-économique sur la santé. Toutefois, un biais pourrait être dû dans ces

modèles à l’impact de la santé sur la situation socio-économique, ou une sélection

liée à l’état de santé. Cesser son activité professionnelle en raison de problèmes

de santé est un exemple de ce type de sélection, également connu sous le nom de

causalité inverse. Cette causalité inverse, entre la santé et la position sociale devrait

être pris en compte dans les analyses [36, 37].

Contributions

Dans un premier temps, nous avons défini une trajectoire professionnelle comme la

séquence des positions professionnelles consécutives occupées par un individu. Pour

tester les 3 hypothèses mentionnées précédemment, nous considérons les variables

dépendantes du temps suivantes:
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• La classe professionnelle à chaque année;

• Le temps cumulé dans les catégories socio-professionnelles défini comme la

durée du séjour individuel dans chaque catégorie professionnelle. Cet indica-

teur a été calculé pour toutes les classes sauf la classe des cadres, de sorte que

celle-ci ait constitué comme la référence;

• La mobilité sociale pour 10 ans, défini par les taux de transition entre les

classes. Cet indicateur a été classé en trois groupes en utilisant les tertiles de

sa distribution.

Ensuite, nous avons considéré un échantillon de la base Cosmop-DADS. Cet échantil-

lon contient toutes les personnes nées dans les territoires français pour lesquelles une

période salariée a été déclarée dans Cosmop-DADS entre 25 et 30 ans, à l’exclusion

de celles qui travaillent en dehors du champ d’étude dans leur première année. Au

total 337 706 hommes et 275 378 femmes sont incluses dans cette partie d’étude.

Le modèle de Cox a été utilisé pour estimer les risques relatifs toutes causes et

cause-spécifique en prenant en compte la troncature à gauche induite par les entrées

retardées. Ce modèle a été ajusté pour les 3 variables définies, la profession au

début du suivi et la période d’observation. Pour limiter l’impact de la causalité

inverse, ce qui est l’influence possible de la santé sur la situation sociale [36, 37],

les catégories professionnelles ont été considérées avec un décalage de deux ans, soit

au lieu d’utiliser la catégorie socio-professionnelle actuelle, celle de deux ans avant

a été prise en compte.

Des études précédentes sur ce sujet ont généralement considéré la position socio-

économique des individus à deux ou trois étapes de la vie, y compris l’enfance

(position socio-économique du père), la position à l’entrée dans le marché du travail

et celle du milieu de vie. Dans cette analyse, nous avons étudier l’association entre

toute la trajectoire professionnelle et la mortalité toutes causes confondues et trois

principales causes de décès: les maladies cardiovasculaires, le cancer et les causes

externes. Dans ce cadre, nous avons démontré que l’exposition à long terme à

une situation socio-économique faible est fortement associée à la mortalité chez les

hommes et les femmes, en particulier pour les maladies cardiovasculaires. En outre,

cette analyse a également mis en évidence la pertinence des modèles critical period
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et social mobility (cf. Figure 1 et Figure 2). Les résultats de cette partie de la thèse

ont fait l’objet d’une publication [38].
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Modélisation conjointe des données longitudinales
nominales et des risques concurrents

Contexte

L’utilisation des covariables dépendantes du temps endogènes dans le modèle de

Cox induit un biais dans les résultats. Par conséquent, il est nécessaire de modéliser

conjointement le processus longitudinal et le processus de survie.

La modélisation conjointe des données longitudinales et de survie fait partie

des modèles de mélanges de profils, ou des modèles de sélection et des modèles à

paramètres partagés. Bien que mathématiquement tous ces modèles décrivent la

distribution conjointe des données longitudinales et de survie, ils ont des interpré-

tations statistiques différentes. Nous nous concentrons uniquement sur les modèles

à paramètres partagés, dans la suite, nous appellerons ces modèles des modèles

conjoints pour les données longitudinales et la survie.

Ces modèles ont été introduits pour l’étude de la relation entre le nombre de

cellules CD4 et la date de survenue du diagnostic du SIDA ou du décès dans les essais

cliniques sur le VIH. Elle visait également à déterminer si le nombre de cellules CD4

pouvait être considéré comme un marqueur de substitution utile dans l’évaluation

de traitement [39, 40]. Dans ce genre d’études un modèle linéaire mixte a été utilisé

pour décrire la trajectoire du nombre de cellules CD4 à l’échelle logarithmique.

L’idée fondamentale des modèles conjoints est basée sur le lien entre le modèle de

survie avec un modèle approprié pour les mesures longitudinales, généralement un

modèle à effet aléatoire [41] dans lequel la corrélation entre les mesures répétées

n’est pas ignorée. L’association entre le processus longitudinal et le processus de

survie se fait par l’intermédiaire d’une structure latente.

Différentes approches ont été développées dans la littérature pour structurer

l’association entre les deux processus longitudinal et survie dans les modèles con-

joints. Un exemple est l’utilisation de modèle mixte défini pour lequel les données

longitudinales sont une covariable du sous-modèle de survie [42, 43]. Une autre ap-

proche inclut directement les effets aléatoires dans les deux sous-modèles longitudinal

et de survie avec une distribution conjointe supposée pour les effets aléatoires [44–

46]. En pratique ces deux approches sont les plus utilisées dans la littérature, cepen-
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dant il existe une démarche différente, appelé le modèle conjoint de classe latente.

Elle consiste à diviser la population, supposée être hétérogène, en un nombre fini

de classes homogènes où chaque classe est caractérisée par une trajectoire spécifique

des données longitudinales et du risque spécifique de l’événement [47, 48].

Dans la littérature, une attention particulière a été portée sur la modélisation

conjointe des données longitudinales et de survie au cours des dernières années.

Plusieurs extensions ont été proposées dans la littérature pour les adapter à une

plus grande variété de données et situations. Malgré toutes ces évolutions, la plu-

part de ces travaux ont porté sur des données continues [39, 49] ou des mesures de

qualité de vie [50], sur des mesures binaires [51] ou sur des réponses ordinales [46,

52] et il y a eu moins d’attention aux données longitudinales catégorielles non or-

dinales. Récemment, Murawska et Rizopoulos [53] ont développé une extension de

la modélisation conjointe de données longitudinales catégorielles et les données de

survie en utilisant une approche bayésienne.

Contributions

Compte tenu de la structure de notre jeu de données, la base de données Cosmop-

DADS, nous avons étendu le travail de Li et al. [46], en proposant une estimation

des paramètres d’intérêt par maximisation d’une vraisemblance pour un modèle

conjoint des données longitudinales nominales et des données de risques concurrents.

Nous avons introduit les effets aléatoires dans chaque sous-modèle pour structurer

l’association.

Soient n le nombre de sujets inclus dans l’étude, Yij la jème observation nominale

de l’individu i avec K modalité, Yij = k ∈ {1, · · · , K}, Xij les prédicteurs des

effets fixes, Wij les prédicteurs des effets aléatoires de la partie longitudinale et

Zi les covariables de la partie survie. Les bik représentent les effets aléatoires des

mesures répétées et ui représente l’effets aléatoires du modèle de survie. Le modèle

conjoint proposé comprend trois composantes: Un modèle GLMM (pour les sigles en

anglais de modèle linéaire mixte généralisé) pour les données nominales appelé sous-

modèle longitudinal, et un modèle à risques concurrents avec effets aléatoires appelé

sous-modèle de survie et la matrice de variance-covariance des effets aléatoires pour
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décrire l’association conjointe des mesures répétées et des données de survie.

g(πijk) = X
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ijbik k = 1, · · · , K

λd(t|Zi, ui) = λ0d(t) exp
(
Z
′
iγd + νdui

)
d = 1, 2

ai =
(
bi
ui

)
∼ N(K−1)q+1

( ( 0
0
)

,
(

Σb Σ′bu
Σbu σ2

u

) )

Σb =


σ2
b1 σb1b2 · · · σb1bK−1

σb2b1 σ2
b2 · · · σb2bK−1... ... . . . ...

σbK−1b1 σbK−1b2 · · · σ2
bK−1


La performance de ce modèle a été évaluée dans une étude de simulation. Les

paramètres du modèle ont été estimés par l’algorithme EM.

L’approche proposée a été appliquée à un sous-échantillon de la base Cosmop-

DADS comprenant 20 000 personnes. L’estimation des paramètres nécessite des cal-

culs complexes au niveau computationnel lorsque les données sont à grande échelle.

A notre connaissance aucun travail n’a jusqu’à présent appliqué des modèles con-

joint à des bases de données aussi volumineuse. Nous proposons donc une approche

reproduisant le principe d’une méta-analyse. Elle consiste à échantillonner la base

en S sous-ensemble de même taille présentant la même répartition des causes de

décès que dans la grande base. Les paramètres du modèle conjoint sont estimés sé-

parément sur chaque sous-échantillon stratifié, puis sont combinés. La combinaison

d’une estimation est faite en prenant la moyenne des paramètres estimés dans chaque

sous-échantillon. La présentation de cette méthode, sa validation et son application

sont l’objet de la deuxième publication qui est en cours de relecture (soumis).

Dans la même perspective, nous avons proposé une utilisation de la régression

de Poisson dans le modèle conjoint. Dans cette approche, le sous-modèle de survie

est remplacé par une régression de Poisson. Cette régression est computationnelle-

ment avantageuse par rapport au modèle de Cox dans les grandes bases de données

avec les covariables catégorielles, comme l’estimation des paramètres sont basées sur

les données des tableaux de contingence. Donc une catégorisation des trajectoires

professionnelles est nécessaires. Cette catégorisation est obtenue en trouvant les tra-

jectoires types de toutes les trajectoires obtenues. Après la validation de ce modèle

par une méthode de simulation, cette méthode sera appliquée au même échantillon
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que la deuxième publication. La présentation de cette approche, sa validation et

son application seront l’objet de la troisième publication.





Introduction

1 Context

Health inequalities are defined as the differences in health status or in the distribu-

tion of health determinants between people or different population groups due to

social, biological or other factors. Analysis of health inequalities concerns the anal-

ysis of differentials in behaviours such as nutrition, physical activity and smoking,

in exposure to risk as pollution and working conditions, in access to and attitudes

toward health care system. In addition, these analysis concern also the analysis of

differentials in morbidity and mortality.

Mortality indicators constitute synthetical measures of the health status of a

population. Mortality data by cause of death has the advantage of being exhaustive

and is recorded on the entire country uniformly. It is regularly used for international

and historical comparisons, and especially in France, since the 2004 public health

law, as a health information reference for the management of public health policies.

Socioeconomic inequalities in mortality, as quantified by mortality differentials

between social groups, have been studied in many industrialized countries [1–6]. In

France, these differences in mortality between social groups have been found since

the 1970s, with the studies performed by demographers and social epidemiologists [7,

8].

Despite the low level in mortality and its continuous decrease, studies conducted

in the UK, US and Europe have shown that these inequalities are still large in

many countries [9–11]. More specifically, in France, for most causes of death, strong

mortality differentials (by profession, educational level and etc.) are observed at

1
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the individual level [12]. Comparative studies have also shown that in France these

inequalities are among the largest in Europe [9–11]. Besides, these studies have

found that socioeconomic inequalities have increased over time in both men and

women [1, 13, 14], especially in France [12, 15, 16]. Therefore, the analysis of these

inequalities is one of the most important topics in social sciences and public health.

Although, there is no unique defined measure for socioeconomic status, several

indicators of socioeconomic status, including occupational status, education, and

income have been proposed in the literature [17]. However, some studies have shown

that occupational status is more predictive of mortality than educational level and

income, as it is related to both education and income and it is also closer to time of

death [18].

A large body of research has found that mortality rates are higher among those

in lower socioeconomic positions [19, 20]; regardless of the socioeconomic indicator

considered [17]. Most of these studies have measured socioeconomic positions only

at one stage of life. This approach does not consider the impact of transitions

between different socioeconomic groups. Thus, to obtain a better understanding

of the relationship between health and socioeconomic position, various dimensions

of socioeconomic trajectories, such as childhood’s socioeconomic position, evolution

of socioeconomic position and frequency and direction of transitions between social

groups, need to be taken into account [21, 22].

Some studies have already investigated the impact of the socioeconomic level

through life and in particular the influence of socio-professional trajectories [22–

24] and childhood’s social circumstances [25] on social mortality differentials. They

considered the evolution of the profession during active life as a marker for differenti-

ating the factors related to family environment in childhood, and the factors related

to the person. More specifically, while comparing individuals in the same profes-

sional level at a given instant, those with more benefits in childhood who started

their career in a higher professional category, would probably have some intrinsic

characteristics different from those in professional progress. Several hypotheses are

generally discussed to characterize the influence of professional trajectory on health:

• The actual social level of an individual in a given instant is the reflection of



2. Motivating Database 3

his/her social situation in different stages of his/her life [26],

• The accumulation, i.e., as the number of years that an individual spends in a

disadvantaged social category is higher, the deleterious effect on his/her health

will be more important,

• Certain steps or specific moments of life (childhood, education, entry into

the labour market, professional life and retirement) as key periods having an

impact on health.

However, given the inherent correlation of observations for the same individual over

time, these three hypotheses are not exclusive, nor exhaustive for explaining the

contribution of the lifetime trajectories on the association between socioeconomic

level and health [27].

The main challenge in measuring the association between life course socioeco-

nomic trajectories and mortality is then to decompose the respective share of these

factors in explaining the survival level of individuals. The complexity of this demon-

stration lies in the bidirectionnality of causality presented in Figure 3. Are the mor-

tality differentials due to differences in the initial health conditions that are jointly

influencing employment status and mortality, or the professional development influ-

ences directly health conditions and then mortality?

Health

Profession Mortality

Figure 3 – Socio-professional trajectories and mortality

2 Motivating Database

2.1 Panel of DADS

The Panel of the Annual Declarations of Social Data - Déclarations Annuelles des

Données Sociales (DADS) is managed by the Department of Employment and Activ-
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ity Incomes - Département Emploi et Revenus d’Activité (DERA) of French National

Institute for Statistics and Economic Studies - Institut National de la Statistique et

des Economics (INSEE). These annual declarations are a mandatory administrative

procedure that should be done by any company with employees pursuant to the ar-

ticle L133-5-4, R243-14 of the social security’s code and the articles 87, 88, 240 and

241 of the tax’s general code. Originally, these declarations are exploited primarily

by the National Old-Age Insurance Fund - Caisse National de l’Assurance Viellesse

(CNAV), and are used to calculate the retirement rights. They are also used by

taxes administrations for control reasons.

From 1976, DERA collects and links, at the individual level, all professional

episodes declared by employers, concerning individuals born in October of an even

year. The scope of the exploitation of DADS by INSEE up to 2002 was covering

the sectors semi-public and private non-agricultural. We note that owing to admin-

istrative reasons, professional episodes of the years 1981, 1983 and 1990 are missed

in DADS. Episodes of careers declared as self-employed, employees of the state,

employees in agriculture, domestic services, extra-territorial activities, interns and

apprentices are excluded from its scope. The DADS is, therefore, a representative

longitudinal sample of the French salaried population in this scope, that is, 80% of

all paid occupations in France.

This panel contains the professional paths of about 2,9 million people. For each

professional episode, the professional data consists of the dates of the beginning and

the end of activity, the social category of the individual, the sector of activity and

the place of activity.

The professional reference in DADS is the French classification of occupations

and occupational classes [54]. This classification was created by INSEE regard-

ing various social characteristics, such as type of work conditions (manual or non-

manual), skills and employment status (self-employed, employed, etc.) and income

level. The aim was to reflect both working conditions and social background, like

the English classification of occupations in UK [55].

The most aggregated level of this classification is presented in Table 1 [56]. As

described before, the Panel of DADS does not cover the farmers class, therefore,

only the first five classes will be considered.
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Table 1 – French classification of occupations

Short title Examples

Upper class
Intellectual occupations, upper managerial
staff and administrators, medical doctors,
independent professionals, engineers

Intermediary
occupations

Managerial staff, school teachers, skilled
technicians, medical and social workers,
intermediary managerial and administrators

Clerk class
Civil servants, police and army, company
administrative staff, sales and direct
personal services

Manual workers
class Skilled, unskilled and farm workers

Craftsmen and trade-
related workers

Shop owners, fim managers, craft industry,
independent workers (plumbers, electricians,
etc.)

Farmers class Various size farm buisness

2.2 Causes of Death Database

The underlying cause of death is defined as the disease or injury that initiated the

morbid evolution leading directly to death, or the circumstances of the accident or

violence which produced the fatal injury. In practice, the underlying cause of death

is chosen between a number of conditions listed on the medical death certificate.

The underlying causes of death are coded from death certificates according to

the International Classification of Diseases (ICD). In France, the French National

Death Registry (INSERM-CépiDc) is in charge of this mission. From 1968 till now,

three revisions of ICD were used, namely ICD-8 (1968 to 1978), ICD-9 (1979-1999)

and ICD-10 (2000-2016).

Three broad categories of the underlying causes of death considered in this dis-

sertation are presented in Table 2.

2.3 Cosmop-DADS database

The Cosmop-DADS database was constructed as part of the Cosmop project [28]

by the Departement of Occupational Health - Département Santé Travail (DST), of
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Table 2 – Causes of death according to the International Classification of Diseases
(ICD)

Causes of death ICD-8 ICD-9 ICD-10
Cardiovascular diseases 390–444.1, 444.3–458, 782.4 390–459 I00–I99

Cancers 140–239 140–239 C00–D48
Lung 155, 197.8 162 C33–C34
UADT1 140, 161 140, 161 C00–C14, C32
Breast 174 174–175 C50

External causes E800–E999 E800–E999 V01–Y89

the Institute of Health Surveillance - Institut de Veille Sanitaire (InVS).

First for the Panel of DADS, the vital status of the subjects, their date and

place of death up to the 1st of April 2006 were investigated by the Department of

Demography with the National Identification Registery of Individuals - Répertoire

National d’Identification des Personnes Physiques (RNIPP). Then a deterministic

record linkage was used to match the occupational paths provided from the Panel

of DADS with the causes of death database, reaching a matching rate of 98% using

sex, date of birth, date of death and the commune of residence at the time of death

as key identifiers.

In total, the Cosmop-DADS population is a sample of the French population (for

whom the vital status and date of death are available), employed at least once as a

salaried worker in the semi-public and private sectors between 1976 and 2002. This

database contains 1 755 590 individuals (957 299 men and 798 291 women). A more

complete description of the Cosmop-DADS database is shown in Appendix A.

These analysis were approved by the French data protection committee and

institutional ethical review board: National Commission on Informatics and Liberty

- Commission Nationale de l’Informatique et des Libertés (CNIL) (authorisation

no 904210v1).

3 Goals of the Thesis

Previous studies on such data have considered limited number of stages, either

individual’s position at entry into the labour market or his/her position at mid-
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life age [21, 22] and used a simple classification for socioeconomic positions (low-

medium-high). However, we would like to consider the whole professional trajecto-

ries, corresponding to the successive occupations of individuals and a more accurate

classification of occupations.

An existing alternative approach is the use of the administrative employment

episodes as a time-dependent covariate in a proportional hazards model. In Chap-

ter 3, we highlight the association by analysing different characteristics of profes-

sional trajectories and their relationship with the cause of death. Based on life-

course models, we define ancillary time-dependent covariates that characterize each

professional trajectory.

However, the employment episodes that are collected only for the subjects under

the study, are endogenous time-dependent covariates. It is thus natural to model

the joint distribution of professional trajectory process and time-to-event process.

In Chapter 4, we start by giving a brief literature review on the joint modelling

of longitudinal and time-to-event data. Previous joint models mostly have focused

on continuous, binary and ordinal responses. There has been less attention to non-

ordinal categorical longitudinal outcomes. We therefore propose a joint model for

nominal longitudinal data and competing risk data in a likelihood-based frame-

work. We adopt a Generalized Linear Mixed Model (GLMM) for nominal responses

to model the longitudinal trajectories and two cause-specific proportional hazards

models for competing risk survival data.

Even in a reasonable sample size and moderate individual measurements, estima-

tion of joint model parameters is computationally intensive [53, 57] and it becomes

out of reach in the case of large datasets. So far, the existing joint models have

been applied to sample size up to 2000 individuals. An approach mimicking a meta

analysis is employed to address the calculation problems in joint models and large

datasets (Chapter 4), by extracting independent stratified samples from the large

dataset, applying the joint model on each sample and then combining the results. In

Chapter 5, we propose a joint modelling approach for large-scale data by introducing

a Poisson regression model in the survival sub-model.





Part I

Preliminaries
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Chapter 1
Background on longitudinal

nominal data

1.1 What is longitudinal data?

In epidemiological and medical studies, personal characteristics or environmental

exposure, are often collected repeatedly over time. In the context of repeated mea-

sures, we refer to the so-called longitudinal data when the time itself is, at least in

part, a subject of interest [58]. In longitudinal data the observed repeated measures

for each subject are strongly correlated, tending to be more alike than the observed

repeated measures for different subjects. The key feature of longitudinal data is

that it is possible to evaluate the within-subject changes in the outcome of interest

over time and to assess the association between covariates and these changes [59].

Standard statistical methods, used for cross-sectional data, that do not take into ac-

count this within-subject correlation and assume that observations are independent

of each other, produce invalid standard errors [60].

1.2 Regression models for longitudinal outcomes

In longitudinal settings, observed data for each individual i consists of mi repeated

measures over time, Yi1, · · · , Yimi
for i = 1, · · · , n. Observations of each subject i,

Yi1, · · · , Yimi
are usually correlated and thus, their joint dependence (Yi1, · · · , Yimi)

should not be ignored. Two major approaches in the context of regression models for

longitudinal data are marginal models [61] and random effects models [41]. Marginal

10
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models are based on treating the joint dependence structure as a nuisance and aim

to describe the population-averaged effects. The alternative approach incorporates

unobserved subject-specific terms, namely random effects, into the model that remain

constant within a subject, but changes across individuals.

A third approach, namely transition models, which is not of our interest, may

also be found in the literature, in which each response is modelled conditional upon

the past responses. This approach has been criticized by Diggle et al. [59] due to its

difficulties in interpretations.

When the interest lies in the estimation of subject-specific effects, their variabil-

ity and also in modelling the joint distribution of the repeated measures, the random

effects approach is preferable [60, Chapter 13]. Since the random effects modelling

implies the marginal model, one could recover marginal informations from the ran-

dom effects modelling framework. Therefore, using random effects, not only is it

possible to estimate the parameters that describe how the average response changes

in the population, but also it is possible to analyse how individual response trajec-

tories change over time. Thus, the random effects modelling methodology is more

relevant in the context of joint modelling framework for longitudinal and time-to-

event data, which will be discussed in Chapter 4.

1.2.1 Generalized linear mixed models

Different extensions of random effects models have been developed regarding type

of the repeated measures, which is the key in choosing the appropriate statistical

methods. For instance, Linear Mixed Models (LMM) are applicable only for nor-

mally distributed outcomes. However, the repeated measurements are not always

continuous and normally distributed. As a result, using LMMs is not relevant in all

cases. An alternative approach for analysis non-Gaussian longitudinal outcomes is

the so-called Generalized Linear Mixed Model (GLMM).

The Generalized Linear Model (GLM)s described by McCullagh et al. [62] gener-

alize linear regression models to allow for non-Gaussian variables. This generaliza-

tion is done by using a link function relating the linear model to the non-Gaussian

variable. The GLMM is an extension of the GLM, incorporating random effects as

well as fixed effects in the linear predictor. It assumes that conditionally on random



12 Chapter 1. Background on longitudinal nominal data

effects, the repeated outcomes of a subject are independent, the so-called assumption

of conditional independence. Adding random effects allows for multiple observations

on each subject and though takes into account the correlation within the observa-

tions of each subject, by incorporating subject-specific random effects. The random

effects represent the influence of an individual on his/her repeated outcomes and

are usually assumed to be independent and normally distributed.

Regarding type of outcomes, extensions of the GLMMs such as mixed effects

logit models for binary data [63], proportional odds model for ordinal data [64] and

Poisson mixed models for count data [65] have been proposed in the literature. In

this thesis, the professional careers are coded according to the French classification

of occupations without a clear hierarchical order between the employment records.

Therefore, the focus of this document will be on the GLMMs for categorical nominal

data. Comprehensive overviews can be found for both Gaussian and non-Gaussian

cases in Verbeke et al. [66] and Molenberghs et al. [58].

1.2.2 Baseline-Category Logit Random Effects Model

When the response variables are not ordered, an appropriate link function is the

baseline-category logit [67, 68]. The baseline-category logit model with random ef-

fects, also known as mixed-effects multinomial logistic regression model, pairs each

category with an arbitrary reference category [60, Chapter 13].

Let n be the number of subjects in the study and mi the number of repeated

values for each subject, i = 1, · · · , n. Let Yij denotes the j-th value for subject i.

We assume that the repeated values are nominal data with K modalities, Yij = k ∈

{1, · · · , K}. Let Xij be a p×1 vector of predictors for fixed effects andWij be a q×1

vector of predictors for the random effects. The linear predictor of the GLMM for

nominal outcomes is defined as ηijk = αk +X
′
ijβk +W

′
ijbik, and the probability, πijk,

that the modality k is observed for the j-th value of a given individual i, conditional

on the random effects bi, is given by:

πijk = P
(
Yij = k|Xij,Wij, bik

)
=



1

1+
∑K−1

h=1 exp
(
αh+X′ijβh+W ′ijbih

) if k = K

exp
(
αk+X′ijβk+W ′ijbik

)
1+
∑K−1

h=1 exp
(
αh+X′ijβh+W ′ijbih

) if k = 1, · · · , K − 1

(1.1)
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Let α = (α1, · · · , αK−1)′ , the vector of intercepts and αK = 0. βk = (βk1, · · · , βkp)
′ is

a p×1 vector of the fixed effects parameters with βK = 0. So exp(βks), with βks the

s-th element of βk, can be interpreted as the increase in odds of falling into modality

k versus modality K resulting from a one-unit increase in the s-th covariate, holding

the other covariates constant. Let β = (β ′1, · · · , β′K−1)′ . bik = (bik1, · · · , bikq)
′ is a

q × 1 vector of the random effects for subject i in the k-th modality. The random

effects bik are commonly assumed to follow a multivariate Gaussian distribution with

the expectation vector zero and the covariance matrix Σbk
, bik ∼ Nq(0,Σbk

). Let

bi = (b′i1, · · · , b
′
i,K−1)′ be the (K − 1)q × 1 vector of the random effects for subject i

following a multivariate Gaussian distribution with the expectation vector zero and

the covariance matrix Σb, bi ∼ N(K−1)q(0,Σb), defined as:

Σb =


Σb1 Σb1b2 · · · Σb1bK−1

Σb2b1 Σb2 · · · Σb2bK−1... ... . . . ...
ΣbK−1b1 ΣbK−1b2 · · · ΣbK−1

 (1.2)

1.3 GLMM Model fitting and inference

As explained in section 1.2.1, the GLMM assumes that conditionally on random

effects bi, the response measures of a subject Yij are independent. The GLMM has

two components, a linear predictor ηij = α +X
′
ijβ +W

′
ijbi and a link function g(.),

satisfying the Equation (1.3)

µij = E[Yij | bi] = g−1(ηij) (1.3)

where random effects bi are drawn independently from a multivariate normal distri-

bution with mean vector 0 and covariance Σb, N (0,Σb). Let fij(yij | bi, α, β) be the

conditional density function corresponding to Yij given bi, α and β. The likelihood

contribution of subject i which is the marginal density for Yi, is given by:

fi(yi | α, β,Σ) =
∫ mi∏

j=1
fij(yij | bi, α, β)f(bi | Σb)dbi (1.4)

with f(bi | Σb) the density function of the random effects bi. By assuming indepen-

dence between subjects, the so-called marginal likelihood function is derived as

L(α, β,Σ) =
n∏
i=1

fi(yi | α, β,Σ) =
n∏
i=1

∫ mi∏
j=1

fij(yij | bi, α, β)f(bi | Σb)dbi (1.5)
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Estimation of the parameters α, β and Σ is often based on the Maximum Likelihood

(ML) method. When the response outcomes are normally distributed, the marginal

likelihood function in (1.5) has a closed-form solution. However, when the marginal

likelihood has no closed-form, numerical techniques is needed to approximate the

integration over random effects. For this purpose different methods have been de-

veloped in the literature. As stated by Fahrmeir et al. [69, Chapter 7], two different

strategies may be considered for the estimation, the direct approach and the indirect

approach.

The direct approach uses directly integration techniques such as Gauss-Hermite

or Monte Carlo to approximate the marginal likelihood function. Then, iterative

algorithms are used in order to calculate ML estimators. The indirect approach

applies an Expectation-Maximization (EM) algorithm, in which the conditional ex-

pectations in the Expectation step are calculated using Gauss-Hermite or Monte

Carlo techniques. Fisher scoring is used in the maximization of the Maximization

step. Although the second approach takes much more time than the first one, since

the EM algorithm never decreases the log likelihood, the indirect approach is nu-

merically more stable than the direct approach which does not have this property.

Detailed accounts of these two strategies in the context of random effects can be

found in Hedeker et al. [70], Pinheiro et al. [71], Fahrmeir et al. [69] and McCulloch

et al. [72]. In this dissertation we focus on the indirect approach since it will be

convenient for parameter estimation in the context of joint modelling presented in

Chapter 4. Brief description of the EM algorithm and the so-called Gauss-Hermite

quadrature technique are given followed by the indirect maximization approach.

1.3.1 The EM algorithm

The EM algorithm [73, 74] is a general iterative approach to obtain Maximum

Likelihood Estimation (MLE) in the context of incomplete data. This algorithm

can be applied to a remarkably broad family of estimation problems that are not

usually considered to involve missing data. Detailed descriptions and applications

of this algorithm can be found in Rubin [75].

The rational of the foundation of the EM algorithm is based on associating

with the observed incomplete data problem, a complete data problem for which
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MLE is much simpler. In order to start the algorithm, initial values are chosen for

the parameters and then it continues by iteration between two steps, namely the

Expectation (E) step and the Maximization (M) step, until convergence. The E-step

calculates the conditional expectation of the complete data log-likelihood given the

observed data and the parameter estimates. Then the M-step finds the parameter

estimates which maximize the complete data log-likelihood from the E-step.

Let Y represents the data consisting of an observed part Y o and a missing part

Y m. The EM algorithm aims to estimate the parameter vector α of the observed

data Y 0 by iterating between E-step and M-step. Usually employing complete case

estimate to choose the initial value for the parameter vector α. In the E-step, the

expected value of the complete data log-likelihood given the current values α(t) and

the observed data is calculated as follows:

Q(α | α(t)) =
∫
l(α, Y )f(Y m | Y o, α(t))dY m = E

[
l(α | Y ) | Y o, α(t)

]
(1.6)

In the M-step, the updated parameters α(t+1) are obtained satisfying

α(t+1) = argmaxαQ(α | α(t)) (1.7)

As showed by Dempster et al. [74], in the EM algorithm, at each iteration, the ob-

served data log-likelihood increases or stays constant, log f(Y o | α(t+1)) ≥ log f(Y o |

α(t)). Therefore, the convergence of the log-likelihood against a global or local max-

imum or stationary point is guaranteed. In general, if more than one maximum

or stationary point exists, this convergence requires stronger regularity conditions,

which are ensured for complete data densities of the exponential family. However,

its convergence rate could be slow which is reflecting the relative size of the unob-

servable data.

1.3.1.1 Standard Errors Estimation

The EM algorithm does not provide directly an estimate of the covariance matrix

of the MLE, contrary to other estimation methods. Methods for estimation of

the covariance matrix in the context of the EM algorithm are usually based on

the observed information matrix, I(α | Y ) = [−∂2l(α | Y )/∂α∂α′ ], the expected

information matrix, I(α) = [E[−∂2l(α | Y )/∂α∂α′ ]] or on resampling methods. For
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the two first approaches, the covariance matrix could be estimated by inverting the

observed or expected information matrices evaluated at the estimation parameter α̂

obtained by the MLE.

Louis [76] showed that the observed information matrix can be obtained in terms

of the conditional moments of the gradient and curvature of the complete-data log-

likelihood function, which are easier to handle than the corresponding derivatives of

the log-likelihood function with random effects, proposed within the EM framework.

An alternative approach is to obtain the Hessian by differentiating the likelihood

function.

However, the estimation of the covariance matrix based on the observed or ex-

pected information matrices are guaranteed to be valid inferentially only asymptoti-

cally. For instance, in mixture models, to apply the asymptotic theory of maximum

likelihood, the sample size n should be very large. To address this problem, the boot-

strap approach was proposed in the literature as an alternative method for standard

errors estimation [77]. More details on the EM algorithm and its extensions can be

found in McLachlan et al. [78].

1.3.2 Gauss-Hermite Quadrature

A popular method for approximating normal integrals is the Gauss-Hermite quadra-

ture [79].

Let

ωN(x | µ, σ2) = 1√
2πσ

exp
(
− (x− µ)2

2σ2

)
be the normal density function with mean µ and variance σ2. For every regular

function g(.), the Gauss-Hermite approximation gives

∫ +∞

−∞
exp(−x2)g(x)dx ≈

k∑
i=1

ωig(xi) (1.8)

where k is the number of sample points, the nodes xi are the roots of the Hermite

polynomial with degree k, Hk(x), and the ωi are the associated weights calculated

by:

ωi = 2k−1k!
√
π

k2[Hk−1(xi)]2
(1.9)
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More generally, if f(x) = ωN(x | µ, σ2)g(x), the integral
∫+∞
−∞ f(x)dx is approximated

by substituting x =
√

2σz + µ:

∫ +∞

−∞
f(x)dx ≈

k∑
i=1

νig(
√

2σxi + µ) (1.10)

with νi = π−1/2ωi.

In the case of an m-dimensional x = (x1, · · · , xm), a multivariate integration is

needed:

∫
Rm

f(x)dx =
∫
R
· · ·

∫
R
ω(x1, · · · , xm)g(x1, · · · , xm)dx1 · · · dxm (1.11)

with ω(x) = exp(−x′x) and f(x) = ω(x)g(x). By applying a Cartesian product

rule and the univariate Gauss-Hermite rule on each component of x, the following

approximation is obtained:

∫
Rm

f(x)dx ≈
k1∑
i1

ω
(1)
i1 · · ·

km∑
im=1

ω
(m)
im g

(
x

(1)
i1 , · · · , x

(m)
im

)
(1.12)

with x
(r)
ir being the ir-th root of the Hermite polynomial of degree kr and w

(r)
ir

being the corresponding weight. The number of nodes increases exponentially with

dimension and therefore, the Cartesian product rules are less appropriate for high-

dimensional integrals. Likewise, in the general case, i.e., if f(x) = ωN(x | µ,Σ)g(x)

with µ = (µ1, · · · , µm) and variance-covariance matrix Σ, the multivariate integrals

are approximated by substituting x =
√

2Σ1/2z + µ, where Σ1/2 is the left Cholesky

square root.

The quadrature technique needs k points in each of m dimensions and thus

the integrals are approximated with a summation over km quadrature points. This

technique is computationally feasible for integral dimensions up to 6. Alternative

approach that has been developed in the literature namely the Monte Carlo methods

that uses k nodes randomly sampled. The issue with this approach is the choice

of k since for small k, the method results to poor approximation and for big k

computation time increases. To address this problem, automated Monte Carlo [67]

has been proposed in which at each iteration if the Monte Carlo error exceed the

change in the estimation of previous iteration, we increase k.
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1.3.3 Newton-Raphson Method

The Newton-Raphson is a numerical method to solve equations numerically. Let x0

be an estimation of x = x0 +h, the true root of function f(.). Since h is small, using

the linear approximation we conclude that

0 = f(x) = f(x0 + h) ≈ f(x0) + hf
′(x0) (1.13)

And therefore,

x = x0 + h ≈ x0 −
f(x0)
f ′(x0) (1.14)

where the right side of ( 1.14) is the new estimation of x. The process can then be

repeated until convergence to a fixed point,

xn+1 = xn −
f(xn)
f ′(xn) (1.15)

In the EM algorithm, at each iteration, the parameter estimations are updated via

a one-step Newton-Raphson update.

1.3.4 Indirect Maximization Based on the EM Algorithm

One of the approaches for maximizing the marginal likelihood function (1.5) is based

on an EM algorithm. Let Y = (y1, · · · , yn) be the incomplete data, B = (b1, · · · , bn)

be the unobserved data and Ψ be the parameter vector. As explained in Sec-

tion 1.3.1, EM algorithm uses the complete-data log-likelihood defined by

log f(Y,B | Ψ) =
n∑
i=1

log f(yi | Ψ, bi) +
n∑
i=1

log f(bi) (1.16)

where f(yi) denotes the density function of the incomplete data Y and f(bi) denotes

the density function of the unobserved random effects bi.

In the E-step, the expectation of (1.16) conditional on the observed data and

parameter vector from the previous step is determined:

Q(Ψ | Ψ(t)) = E
[
log(Y,B | Y,Ψ)

]
=
∫
log
(
f(Y,B | Ψ)

)
f(B | Y,Ψ(t))dB (1.17)

Using Bayes’ theorem and the conditional independence assumption explained in

Section 1.2.1, the posterior function f(B | Y,Ψ(t)) is obtained by

f(B | Y,Ψ(t)) =
∏n
i=1 f(yi | bi,Ψ(t))∏n

i=1 f(bi)∏n
i=1

∫
f(yi | bi,Ψ(t))f(bi)dbi

(1.18)
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Hence,

Q(Ψ | Ψ(t)) =
n∑
i=1

∫ [
log f(yi | bi,Ψ) + log f(bi)

]
f(yi | bi,Ψ(t))f(bi)dbi∫

f(yi | bi,Ψ(t))f(bi)dbi
(1.19)

Calculating these integrals might be challenging, however, employing the Gauss-

Hermite quadrature techniques enable to approximate the integrals in (1.19) pro-

viding that the random effects bi are gaussian.

In the M-step, the obtained function Q(Ψ | Ψ(t)) should be maximized with

respect to the parameter vector Ψ. If QGH(Ψ | Ψ(t)) be the approximation of

Q(Ψ | Ψ(t)) using the Gauss-Hermite rule, in the M-step we should solve the following

equation,

S(Ψ | Ψ(t)) = ∂QGH(Ψ | Ψ(t))
∂Ψ (1.20)

With the GLMM formulation, a closed-form solution cannot be obtained for the

fixed effects. Hence, a one-step Newton-Raphson method is applied to update these

parameters in each iteration:

Ψ̂(t+1) = Ψ̂(t) − S(Ψ̂(t))
∂S(Ψ̂(t))/∂Ψ

(1.21)

where Ψ̂(t) denotes the value of the parameter vector in the t-th iteration, and

∂S(Ψ̂(t))/∂Ψ denotes the Hessian matrix evaluated at Ψ̂(t).

1.4 Missing data in longitudinal studies

In longitudinal studies, for each individual, data is collected at specific follow-up

times. However, it is possible that some individuals miss some of their planned

measurements. An important challenge in analysing longitudinal outcomes is the

problem of these missing data. Depending on the missing data patterns, two type of

missingness can be distinguished, namely monotone and non-monotone. Monotone

missingness covers the cases where all values of individual are not observed after a

scheduled time-point and the individual is said to have dropped-out of the study.

The reason might be events such as death or country moving. On the other hand,

non-monotone missingness, also called intermittent missingness, covers the cases

where the responses of an individual are observed following some missing values for

that individual.
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Suppose that for individual i, it is designed to measure the outcome of interest

Y at mi time-points which means that Yi = (Yi1, · · · , Yimi
)′ is the expected vector

of the outcome for individual i. The missing data indicator, Rij is defined as

Rij =

1 if Yij is observed

0 otherwise
(1.22)

Then, the vector Yi is factorized into two subvectors Y o
i and Y m

i , namely the observed

subvector and the missing subvector. These subvectors are representing the vector

containing Yij for which Rij = 1 and the vector containing Yij for which Rij = 0,

respectively. Therefore, the full data (Yi, Ri) consists of the complete data, which

refers to the vector of outcome that would have been recorded if there were no

missing data, and the vector of missing data indicators Ri = (Ri1, · · · , Rimi
)′ .

In a time-to-event setting, which is the concern of this work, one could con-

sider monotone missingness as an event, identified as the time that terminates the

repeated measurements sequence.

If missingness process is associated with longitudinal measurements, unobserved

data can introduce bias in the results, which is the main concern of longitudinal

analysis with missing data. Consequently, it is important to distinguish between

different missing data mechanism. This mechanism can be seen as the probability

model that describes the relation between the response data yi and the missing data

ri processes. Rubin’s taxonomy of missing data mechanism has been developed

based on the conditional density of the missing data process ri given the complete

data yi [80, 81]:

f(ri | yoi , ymi ;αr) (1.23)

with αr being the parameter vector of missingness process. Rubin’s classification dis-

tinguishes three types of missing data mechanism [58], namely Missing Completely

at Random (MCAR), Missing at Random (MAR) and Missing Not at Random

(MNAR).
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1.4.1 Missing Completely at Random

Under the MCAR mechanism, the probability of an observation being missing is

independent of the responses:

f(ri | yoi , ymi ;αr) = f(ri;αr) (1.24)

This means that the distribution of the observed data yoi is the same as the distribu-

tion of the complete data yi. In this situation, the data can be analysed supposedly

that the missing data process was predetermined. Therefore, under MCAR it is

possible to ignore the missing data process and to obtain valid inferences, whether

using likelihood-based or Bayesian approaches.

Methods that are usually used to analyse longitudinal data with missing val-

ues under MCAR are Complete Case (CC) analysis and Last Observation Carried

Forward (LOCF). In CC analysis, all individuals with missing values are excluded

from statistical analysis. However, using this approach leads to loss of information.

The other approach, LOCF [82], that can be regarded as an imputation strategy,

consists of substituting the last observed value whenever a value is missing. This

approach is based on a strong assumption, that is the subject’s measurements val-

ues do not change during the period they are unobserved. When this assumption

is violated, the magnitude and direction of the produced bias depend on the true

unknown regression coefficients [58, Chapter 27].

1.4.2 Missing at Random (MAR)

The MAR mechanism supposes that the probability of missingness is conditionally

independent of the unobserved data given the observed values:

f(ri | yoi , ymi ;αr) = f(ri | yoi ;αr) (1.25)

This class of missingness is also known as the random missingness. Under MAR,

the missingness process depends on the observed value of yoi , so the distribution of

yi does not match the distribution of yoi and therefore, the observed data is not a
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random sample of the original population. However, the conditional distribution of

missing values given the observed data can be written as:

f(ymi | yoi , ri;α) = f(ymi , yoi , ri;α)
f(yoi , ri;α) = f(ri | yoi , ymi ;αr)f(yoi , ymi ;αy)

f(ri | yoi ;αr)f(yoi ;αy)

= f(ri | yoi ;αr)f(yoi , ymi ;αy)
f(ri | yoi ;αr)f(yoi ;αy)

= f(yoi , ymi ;αy)
f(yoi ;αy)

= f(ymi | yoi ;αy)

(1.26)

where α is the parameter vector of the joint distribution of the measurements and

missingness processes and αy is the parameter vector of the measurements model.

The Equation (1.26) shows that under MAR, missing values can be predicted using

the observed data assuming a model for the joint distribution (yoi , ymi ).

Under MAR the likelihood of the complete data (yoi , ymi , ri) for the i-th subject

factors into two components as follows:

Li(α) =
∫
f(yi, ri;α)dymi

=
∫
f(yoi , ymi ;αy)f(ri | yoi , ymi ;αr)dymi

=
∫
f(yoi , ymi ;αy)f(ri | yoi ;αr)dymi

= f(yoi ;αy)f(ri | yoi ;αr)

= Li(αy)× Li(αr)

(1.27)

In addition if the two parameter vectors αy and αr are disjoint, i.e. if the parameter

space of the full vector α = (α′y, α
′
r)
′ is the product of the parameter spaces of vectors

αy and αr, then inference for αy can be based on the direct likelihood inference using

all observed data, ignoring the likelihood of the missing values [81]. This important

property under the MAR is known as ignorability.

An alternative approach under MAR is the Multiple Imputation (MI) approach

of Rubin [75]. The idea is based on replacing missing values with a set of M values

drawn from the distribution of the missing data given the observed values. Standard

statistical procedures for complete data are then applied on each imputed dataset

and the results are combined.
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1.4.3 Missing Not at Random (MNAR)

In this situation, the probability that a measurement is not observed depends on the

unobserved values. The MNAR missingness is also called nonrandom missingness.

Similarly to MAR, under MNAR, observed data is not a random sample of the

original population. However, contrary to the MAR, under MNAR the predictive

distribution of ymi conditional on the observed data depends on both observed values

yoi and f(ri | yi). In this case, the MNAR mechanism is nonignorable and thus, the

model for the missingness process should be included in the analysis.

Under MNAR, valid inferences based on the likelihood require specification of the

joint distribution of the measurement and missingness processes. The specification

of this joint distribution can be classified into three type of model families [81, 83]:

pattern mixture models, selection models and shared-parameter models.

The pattern-mixture approach [84] models the distribution of data conditional

on the missingness mechanism which correspond to the following fatorization:

f(yoi , ymi , ri;α) = f(yoi , ymi | ri;αy)f(ri;αr) (1.28)

In this factorization, the joint distribution is written as the product of a conditional

model for the longitudinal data given the missingness process and a marginal model

for the missingness process. In this factorization, the interest lies in estimating

the longitudinal trajectory conditional on the missingness process. Therefore, first

the samples are stratified according to the missingness process and then, different

models can be postulated for the longitudinal data [85, 86].

The selection models factorize the joint distribution as follows:

f(yoi , ymi , ri;α) = f(yoi , ymi ;αy)f(ri | yoi , ymi ;αr) (1.29)

This approach models the complete data together with the missingness process con-

ditional on the complete data. In this class of models, a marginal density for the

longitudinal data and a model for the missingness process conditional on the longi-

tudinal outcomes are chosen. The focus is therefore on estimating the missingness

process given the repeated outcomes.

Extensions of these models, namely random pattern-mixture models and random

selection models, have been developed in the literature by incorporating random
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effects, u, into the models. Omitting parameters, factorization of these two exten-

sions are as follows, respectively for random pattern-mixture models and random

selection models:

f(yoi , ymi , ri, ui) = f(yoi , ymi | ri)f(ri | ui)f(ui) (1.30)

f(yoi , ymi , ri, ui) = f(ri | yoi , ymi )f(yoi , ymi | ui)f(ui) (1.31)

Diggle [87] defined a third class of models, random effects models, which assumes that

both longitudinal data and missingness process depend on an unobserved random

effect, with a specified bivariate distribution for the random effects [85]:

f(yoi , ymi , ri, ui) = f(yoi , yim | ui1)f(ri | ui2)f(ui) (1.32)

where ui = (ui1, ui2)′ . This class of models are also known as shared-parameter

models as the measurements process and missingness mechanism are modelled by

sharing random effects. In this class of models, the two measurement and missing-

ness processes are assumed to be independent given random effects.

These three classes are shown visually in Figure 1.1 by diagrams presented in Dig-

gle [87], where Y , R and U are representing longitudinal outcomes process, miss-

ingness process and an unobserved process, respectively. The absence of an edge

between two nodes indicates conditional independence between the two nodes given

the third one.

A final remark regarding Rubin’s Taxonomy is that as shown by Molenberghs

et al. [88], in practice, it is not possible to distinguish between MAR and MNAR.

Besides studies with missingness by design, other missingness mechanism are not

verifiable. Often, primary analysis are based on the MAR assumption unless the

cases where the obvious MAR model does not fit the observed data. In this situa-

tion, it is attractive to fit a model under MNAR and then use the MAR model for

sensitivity analysis.

Comprehensive overviews of models for the joint analysis of longitudinal out-

comes with missing data can be found in Diggle et al. [59] and Hogan et al. [86, 89].

Random effects models will be the focus of Chapter 4 and Chapter 5.
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Y R

U

(a) Pattern-mixture models: The individual ran-
dom effects determine the missingness process,
which after being predefined develops the longi-
tudinal measurements.

Y R

U

(b) Selection models: Longitudinal data are in-
fluenced by individual random effects. The real-
isation of the longitudinal process influences the
missingness process.

Y R

U

(c) Random effects models: Both longitudinal and
missingness processes are a joint response to an
unobserved individual process. The measurement
and missingness processes are independent condi-
tional on this unobserved process.

Figure 1.1 – Graphical model for different strategies in joint analysis of longitudinal
data with nonignorable missing values

1.4.4 Missing data and professional scope in Cosmop-DADS

Since DADS declarations are mandatory for employers, there were theoretically

no missing occupational episodes for employees working in companies within the

DADS scope. However, professional trajectories were not fully observed for several

individuals. We note that only around 17% of subjects have complete data (141733

women and 159149 men).

The first set of missing episodes concerned the years 1981, 1983 and 1990 which

was mentioned in Section 2.1. We completed these episodes with information from

the previous years. However, for other years, some occupations could not be clas-

sified in the five occupational classes, called miscoded occupations in Appendix A.

We decided to impute these occupations using a multivariable multinomial logistic

regression [90], incorporating sex, age and type of employment in the imputation

model.

Regional and local authorities were not fully covered by DADS declarations be-

fore 1987. Therefore, any occupation of this type was excluded from our professional

scope. The same decision was taken for occupations declared in the craftsmen and

trade-related workers class, as those in DADS are not representative of this class
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in the general population. In summary, the professional scope in this dissertation

contains the DADS scope mentioned in Section 2.1 excluding regional and local

authorities, and craftsmen and trade related workers class.

The Cosmop-DADS database is also containing individuals that left the follow-

up. Some of them reapear in the database after some missing years and some of

them not. We refer to these type of missing data as temporary exit and permanent

exit, respectively. These exits may represent those professional episodes practiced

by an individual in careers not covered by the professional scope of this study or an

inactivity or retirement, as they are not covered in the DADS panel.

Missing data is a common issue in longitudinal study. The temporary and perma-

nent exits of the motivating example, Cosmop-DADS, contain inactive individuals.

In the literature it is already well established that inactivity is associated with an

increased mortality risk [5, 91], consequently, these exits should not be ignored.

As an alternative approach, imputation methods were introduced in the literature

which need making assumptions on the missing data mechanism [75]. However,

in the Cosmop-DADS database, missing professional episodes, the temporary and

permanent exits, resulted from different scenarios. Considering that these missing

professional episodes are a mixture of working outside the study scope, being inac-

tive or retired, in the absence of other complementary database, building a sound

imputation model is not feasible. We decided to add an additional outside the scope

category to the four remaining categories. In other words, the outside the scope

category, will gather all professional episodes that are not covered by DADS scope,

careers in regional and local authorities class and in craftsmen and trade related

workers class, in addition to the inactive and retired episodes. An overview of the

extent of all these cases of missingness is shown in Appendix A.





Chapter 2
Background on survival analysis

and competing risks

Survival analysis focuses on the study of time-to-event data defined as the time until

the occurrence of an event of interest. In epidemiological and clinical studies, the

event of interest may be death, onset or recurrence of a disease, while in demography,

this event could be marriage or divorce. The term failure is also utilized in survival

analysis signifying the event of interest. The occurrence of an event may be modelled

as a transition from one state to another one, which indicates the possibility of

analysing the time-to-event data as a multi-state model, as shown in Figure 2.1.

If all subjects are present at the beginning of the study, each individual is at the

"Event-free" or transient state until the occurrence of the event, if the event happens

the subject moves to the absorbing state "Failure".

0

Event-free

1

Failure

Figure 2.1 – Multi-state model representation for survival analysis

However, in many contexts, there is more than one event of interest such that

the occurrence of one event prevent the occurrence of other events [92–94]. For

example, in cardiovascular studies, death from other causes should be taken into

account in addition to death from cardiovascular diseases. Thus, in this framework,

the observed time is the time until the occurrence of any first event. As shown in

28
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Figure 2.2, a multi-state formulation for the competing risks problems can also be

adopted, with a transient "Event-free" state occupied by all subjects at the begin-

ning and g absorbing states representing competing failure types d ∈ {1, · · · , g}. In

such formulation, the occurrence of an event may be modelled as a transition into

any absorbing state. An alternative existing approach for competing risks is based

on latent failure times. However, this formulation appears to cause some interpreta-

tional confusions and identifiability problems [95–97]. Therefore, due to the lack of

plausibility of this later, the multi-state model formulation for competing risks will

be considered in this dissertation.

0

Event-free

1 Failure from cause 1

2 Failure from cause 2

...

J Failure from cause g

Figure 2.2 – Multi-state model representation for competing risks problem

In other words, competing risks models generalize survival analysis from a single

event to multiple competing events. Using this approach is necessarily in many

domains, particularly in clinical studies and in epidemiology. Different regression

models have been proposed in the literature in order to summarize the effect of

explanatory covariates in the competing risks setting. We start by introducing some

notations and basic functionals in the competing risks framework.

2.1 Notations and basic definitions

In this section, we consider the competing risks framework in which more than one

event may occur. Let T , be the response variable representing the failure time or

the waiting time until the occurrence of the first event. As in this thesis the focus

is on mortality, the failure events can be considered as death from different causes,
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indexed by d ∈ {1, 2, · · · , g}. Let D be a random variable representing the cause of

failure and let Z be a vector of covariates.

The important characteristics of survival analysis that distinguishes this domain

from other statistical analysis are censoring and truncation. In the presence of

censoring and truncation, the survival data is not fully collected, i.e., the failure time

on all subjects is not observed. Censoring and truncation are various disturbances,

independent or not from the multivariate failure time. In this document we focus

on right-censored and left-truncated data that we detail in the following.

In some studies, for a subset of individuals under study, the event is only known

to occur after a certain time-point C. For instance, some individuals may be dropped

out of the study due to relocation or the study may be closed while there are still

event-free individuals at the endpoint. In such cases, the only available information

for surviving individuals is that their failure time is greater than the value C, named

censoring time. This mechanism leads to incomplete data known as right-censoring.

Defining Ti as the observed event time or censoring of subject i, given that T ∗i
is the survival time and Ci is the right-censoring time of subject i, by definition

Ti = min(T ∗i , Ci). Let δi = 1{T ∗i ≤ Ci} be the indicator of censorship which

indicates if a failure occurred or not and εi = δi×Di ∈ {0, 1, 2, · · · , g} be the status

indicator. We note that εi = 0 if the failure time is censored.

In addition, regarding the study design, sometimes individuals enter the study

at a time L later than time 0. In this situation, the failure time T is observed with

delayed entry, T > L, and the data is said to be left-truncated. This implies that

only the survival of subjects surviving to the date of inclusion in the study may

be examined. In short, in the presence of right-censoring and left-truncation, the

observed data can be summarized as (Li, Ti, εi, Zi).

Even though censoring and truncation are two phenomenon representing a par-

ticular type of missing data, they should not detract the attention from the main

objective which is making inferences about the joint distribution of (T,D), if there

were neither censoring nor truncation in the study [97]. To address valid inference

on the joint distribution of (T,D), it is convenient to make random censoring and

random truncation assumptions, which means that (T,D) is independent of (L,C)

given the covariates Z. However, weaker assumptions, namely independent cen-
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soring and independent truncation, suffice for application of the martingale theory

and counting processes underlying most of the main results in competing risks [92].

These assumptions suggest that if a subject is still alive at time t, the additional

information that the individual is uncensored and not delayed entry will not change

his/her instantaneous probability of failing from cause d [97].

Recalling from the multi-state formulation of the competing risks problem (Fig-

ure 2.2), every subject is initially in the "event-free" state. Each subject stays in

the initial state until the occurrence of any first event, at time T . Occurrence of

the failure type d is modelled by the transition from state 0 to state d at this time.

Therefore, at the event time two components of the competing risks, (T,D), are

observed with D representing the event type. As argued in Andersen et al. [92,

Chapter II.6], the stochastic behaviour of a competing risks process is completely

determined through the Cause-Specific Hazard rate (CSH), λd(t), d = 1, · · · , g or

the transition intensities in a multi-state formulation, describing the instantaneous

risk of failure from cause d,

λd(t, z) := lim
dt→0

P (t ≤ T < t+ dt,D = d | T ≥ t, Z = z)
dt

, d = 1, · · · , g (2.1)

Under the random censoring assumption, the likelihood function can be introduced

as a function of the CSHs

L =
n∏
i=1

λdi
(ti, zi)δiS(ti, zi) =

n∏
i=1

g∏
d=1

λd(ti, zi)1(εi=d) exp
(
− Λd(ti, zi)

)
(2.2)

where Λd(t, z) =
∫ t

0 λd(u, z)du is the cumulative hazard for cause d and S(t, z) =∏g
d=1 exp(−Λd(t, z)) is the overall survival function. Regression modelling based on

the CSHs allows for a "direct" formulation of the covariates effect on the instanta-

neous forces that drive the patients remaining at risk at each time point t, i.e., those

without any prior event.

Alternatively, the other key concept of competing risks in order to describe the

joint distribution of (T,D) is the so-called Cumulative Incidence Function (CIF).

The CIF are defined as the occurrence probability of the event d before time t:

Fd(t) := P (T ≤ t,D = d), d = 1, · · · , g (2.3)

The CIF describes the absolute risk of failing from cause d until time t. As a
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result, regression models based on the CIFs may be useful when the prognosis is of

interest [98, 99].

In the multi-state formulation of Figure 2.2, the CIF for failure cause d is inter-

preted as the probability of having transitioned to state d by time t given that the

subject was in state 0 at time 0. The CIFs may be estimated using the CSHs, as

following:

S(t) = P (T ≥ t) = exp
(
−
∫ t

0
(λ1(u) + · · ·+ λg(u))du

)
(2.4)

and

Fd(t) =
∫ t

0
S(u)λd(u)du, d = 1, · · · , g (2.5)

It is important to note that in the standard survival analysis, given that F (t) =

1 − exp(−
∫ t

0 λ(u)du), there is a one-to-one correspondence between the rate λ(.)

and the risk F (.). This implies that analysing survival data based on the hazard

function leads to the same conclusions obtained by the analysis of the risk function.

For instance, if a hazard-based regression shows an association between a certain

factor and higher hazard function then the presence of this factor is also associated

with a higher risk. However, the Equation 2.5 shows that CIF for cause d depends on

all CSHs λd, d = 1, · · · , g through S(u). Therefore, an increase in one of the CSHs

will not necessarily leads to an increase in the corresponding CIF, as it depends

also on the behaviour of other CSHs. This is the key feature of competing risks,

that the one-to-one correspondence between CIF and CSH is no longer valid in

competing risks context. Both rates and risks measures are useful in order to have a

complete understanding of competing risks mechanism, as they tend to complement

each other[100, 101]. We further (cf. Section 2.3) explain that the prediction of the

CIFs is not possible if the model includes interval time-dependent covariates. Since

the focus of this thesis is on this type of covariates, only regression methods based

on the CSHs are considered here.
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2.2 Regression models for the cause-specific haz-
ard

The main objective is to assess the effect of a covariates vector Z on CSH. Figure 2.3

shows the association considered in regression models for the CSHs where Z is the

observed covariates and T is the survival event process.

Z T

Figure 2.3 – Graphical representation of the regression models for the CSH

Let n be the number of individuals in the study, and Zi be the l×1 vector of the

observed covariates for individual i at baseline. Zi may also be a time-dependent

covariate that we will explain in more detail in Section 2.3.

2.2.1 Cox model

Among the existing methods for regression modelling of the CSH, the most widely

used regression models are the proportional hazards models. The advantages of

these regression modellings is that they are easy to fit and simple to interpret [100].

The popular semi-parametric Cox model [102], assumes a multiplicative effect of

covariates on CSHs:

λd(t | Z) = λ0d(t) exp(γ′dZ), d = 1, · · · , g (2.6)

where γd is a l-vector of regression coefficients, γ′d = (γd1, · · · , γdl) , and λ0d(t) is an

unspecified, non-negative baseline hazard function for cause d. Since a parametric

form is only assumed for the covariate effect, this class of models are called semi-

parametric. Cox model is a proportional hazards model which refers to its special

property that the ratio of the CSHs of any two individuals i and j with covariates

Zi and Zj is constant over time:

λd(t | Zi)
λd(t | Zj)

= exp
(
γ
′

d(Zi − Zj)
)

(2.7)

The proportional hazards property can be checked by a graphical method using

Schoenfeld residuals [103]. The quantity (2.7) is called the Cause-Specific Hazard
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Ratio (CSHR), Hazard Ratio (HR) if g = 1, or the relative risk for the event d

conditional on the covariate Z. The exp(γd) represents the relative change in the

CSH for cause d for a one unit change in the covariate Z:

exp(γd) = λd(t | Z = z + 1)
λd(T | Z = z) (2.8)

Estimation of regression coefficients in (2.6) is based on the partial likelihood func-

tion in which specification of the baseline CSHs is not necessary [102],

pL(γ) =
g∏
d=1

qd∏
i=1

exp(γ′dZ(d)i(d))∑
j∈R(tdi) exp(γ′dZdj)

(2.9)

where qd denotes the number of distinct failure times due to cause d, td1 < · · · <

tdqd
, tdi corresponds to the i-th such time, R(tdi) is the set of individuals at risk

just prior to time tdi and i(d) is the index of the subject that died at tdi. The

estimation of regression coefficients is then calculated by maximizing the partial

likelihood 2.9. Note that the partial likelihood is a product over all observed failure

times, all individuals and all failure causes. This partial likelihood can be factorized

into g components, and the d-th component is algebraically identical to the partial

likelihood that may be obtained by treating observed competing failure causes d̃, d̃ ∈

{1, · · · , g} \ {d}1, as censoring [95, 100, 104]. In this case, one could fit the Cox

model using standard software packages for the classical Cox regression by censoring

the subjects who failed from other causes.

2.2.2 Poisson regression

In Cox regression models, the baseline hazard function is unspecified. However,

another possibility is to choose a parametric form for the baseline hazard function.

As an example we can mention the exponential model in which the baseline hazard

function is constant λ0(t | θ) = θ. A well-known example is the Poisson regression.

Poisson regression is based on choosing time-intervals in which the baseline hazard

rate is assumed to be constant and thus, compared to the Cox model, the baseline

hazard function is approximated by a piece-wise constant function [105, 106].

This approach estimates covariates effects on event rates and is particularly inter-

esting when data consists of much observations and less covariates, since estimation
1A \B = A ∩Bc
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of this model can be performed with much less computation. As in the Cosmop-

DADS database, we are encountering large-scale data with ’large n and small p’, we

will focus on this model also known as piece-wise exponential regression.

Let 0 = t0 < t1 < t2 < · · · < tK = τ be a partitioning of the study time

interval [0, τ ], then define the baseline hazard for cause d to be a step function with

a constant value in each interval, i.e.,

λ0d(t) =
K∑
k=1

θkd1{t ∈ (tk−1, tk]} (2.10)

with 1{t ∈ (tk−1, tk]} being the indicator of the k-th interval, θd = (θ1d, · · · , θKd)
′

and θ = (θ′1, · · · , θ
′
g)
′ .

The likelihood function presented in Equation (2.2) in this formulation is written

as

L(θ, γ) =
K∏
k=1

n∏
i=1

g∏
d=1

{
{θkd exp(γ′dZi)}Oikd exp

(
− θkd exp(γ′dZi)Rik

)}
(2.11)

where Oikd is the death indicator for cause d in the k-th interval and Rik is the

individual’s exposure time in the k-th interval.

One of the advantages of this modelling appears for large-scale data with cate-

gorical covariates. In this case, the likelihood could be simplified to

L(θ, γ) =
K∏
k=1

L∏
l=1

g∏
d=1

{
{θkd exp(γ′dZ(l))}O

(l)
kd exp

(
− θkd exp(γ′dZ(l))R(l)

k

)}
(2.12)

where L is the number of distinct values of the covariate Z, Z(1), · · · , Z(L) and

O
(l)
kd =

∑
i:Zi=Z(l)

Oikd, R
(l)
k =

∑
i:zi=Z(l)

Rik

Consequently, without loss of information, when the covariates are categorical or

categorized, estimation can be based on aggregated quantities O(l)
kd and R(l)

k which

is much less computational when n is much larger than L.

In this approach, the likelihood function from the piece-wise Exponential model

is proportional to the likelihood one would obtain if the number of death from cause

d in the k-th interval O(l)
kd were treated as independent and Poisson distributed

random variable with a mean that is the product of the R(l)
k and the hazard rate.

Accordingly, the term Poisson regression models is also utilized in the literature

representing the piece-wise constant hazard models. This means that one could use

statistical software for the Poisson distribution by including log(R(l)
k ) as an offset.
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2.3 Time-dependent covariates

In section 2.2, we assumed that the observed covariates are time-independent, such

as sex or age at baseline. However, it is possible that some components of Z be

time-dependent, i.e., Z = Z(t), when successive measurements are collected on

study subjects as they are followed over time [107]. Such covariates could include

environmental factors or clinical measurements collected during the follow-up.

For instance, in a multi-state formulation, Figure 2.2, a binary time-dependent

covariate may be modelled by adding an additional transient state 0̃:

0

0̃

1 Failure from cause 1

2 Failure from cause 2

...

J Failure from cause g

Figure 2.4 – Multi-state model representation for competing risks problem with a
binary time-dependent covariate

Transitions between two transient states 0 and 0̃ reflect the changes in binary

time-dependent covariate over time. A regression model for the CSH of failure d,

compares the hazard of transition 0̃ −→ d with the hazard of transition 0 −→ d [104].

As explained in Kalbfleisch et al. [29, Chapter 6], two different categories of

time-dependent covariates can be distinguished, internal or endogenous covariates

and external or exogenous covariates. A covariate is said to be external if it satisfies

the condition:

P (s ≤ Ti < s+ ds | Ti ≥ s,Zi(s)) = P (s ≤ Ti < s+ ds | Ti ≥ s,Zi(t)) (2.13)

for all s, t, 0 < s ≤ t, and ds → 0 with Zi(t) = {zi(s), 0 ≤ s < t} representing the

covariate’s history observed for subject i up to t [29, Chapter 6]. It means that the

hazard function at time u depends on the observed history of the covariate up to u,
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but the occurrence of a failure in the time interval [u, u+ du) is independent of the

future observations of the covariate. On the contrary, an internal time-dependent

covariate, is the one that does not satisfy Equation (2.13) which means that the

history of the covariate until t has an impact on the occurrence of a failure before

t. In other words, external covariates’ path is external to the individuals under

study and is not directly generated by individuals behaviour in time. For instance,

environmental temperature, air pollution levels and individual’s age are examples of

external time-dependent covariates and clinical characteristics such as blood pressure

and size of tumour are internal time-dependent covariates.

External covariates may vary in a predetermined way, namely defined time-

dependent covariate, such as individual’s age [29, Chapter 6.3]. Other external

covariates such as environmental temperature, are based on a stochastic process

with a distribution that does not contain the parameters of the regression model

of survival time, namely ancillary time-dependent covariates. The defined covari-

ates path is fixed in advance and therefore, inference can be based on the partial

likelihood conditional on the covariates. For an ancillary time-dependent covariate,

as it is completely external to the individuals, modelling of this covariate does not

include the parameter of interest and is not necessary to be specified. As a result,

the survival function conditional on the observed covariate path does not change

and thus, inference based on the partial likelihood can still be performed [92, Chap-

ter III.5]. To handle these covariates, Cox model have been extended using the

counting process formulation, known as extended Cox model or the Andersen-Gill

model [92]. Interpretation of regression coefficients is exactly the same as it was

in the standard Cox model. However, the proportionality assumption is no longer

valid as the covariate is time-dependent.

Internal time-dependent covariates complicate statistical analysis, as the survival

function is a function of both the hazard rate and the development process of the

covariates. When the interest lies in estimation of hazards functions, it is still

possible to use the partial likelihood conditionally on the observed covariates up

to the time just before t [29]. But since the extended Cox model is based on the

assumption that the covariates path is predictable, analysis based on the extended

Cox model for internal covariates is not optimal and might be involved by a potential
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bias.

In the presence of internal time-dependent covariates, estimating the survival

probability and the CIFs is no longer possible based on the obtained cause-specific

hazards [107]. This could be explained by the fact that the probability S(t | Z(t)) =

P (T ≥ t | Z) is equal to one since observing the covariate at time t denotes the

survival of the individual at this time. Therefore, prediction of the CIF which

depends on the survival probability (2.5) is not possible if the model includes an

internal time-dependent covariates.

2.4 Survival models with random effects or frailty
models

In the classical survival analysis, it is assumed that the survival of individuals with

the same values of the covariates is the same. However, there might be extra hetero-

geneities that are not included in the model. The survival modelling with random

effects or the so-called frailty models gives the possibility to introduce random ef-

fects in the survival model in order to take into account the association and the

unobserved heterogeneity. The term frailty appeared for the first time in a study

by Vaupel et al. [108] in which a univariate survival model was considered. Clayton

[109] was the first to apply this concept to a multivariate situation.

This model in its simplest way is based on adding a random effect that has a mul-

tiplicative effect on the hazard function of an individual or a cluster of individuals.

Several extensions of the classical survival regressions incorporating random effects

exist in the literature, including mixed effects Cox model [110–112] and Poisson

mixed effects models [113, 114].

2.4.1 Cox Model with Random Effects

This model is obtained by incorporating the random effect in the classical Cox

model [102] in which the random effect has as a multiplicative effect on the hazard

rates:

λ(t | Z, u) = λ0(t) exp(Z ′γ +R
′
u) (2.14)
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where Z and R are the fixed and random effects, γ is the vector of fixed-effects

coefficients and u is the vector of random effects. We can assume that the random

effects are normally distributed with mean 0 and a variance-covariance matrix Σu.

Klein [110] proposed to estimate the frailty and covariates effects by an EM

algorithm to extend the partial likelihood techniques. In the E-step, the expectation

of the full likelihood with respect to the observable data is computed. Then in the

M-step, a partial likelihood is constructed to estimate the covariate effects using

a profile likelihood technique. In this approach a nonparametric estimate of the

baseline hazard function is necessary at each iteration. Other estimation techniques

can also be found in the literature[111, 112].
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Chapter 3
Socio-professional trajectories and

mortality

3.1 Background on life-course models

The aim of this chapter is to highlight the association between life course professional

trajectory and adult mortality. Previous studies based on life course models have

considered two or three stages in professional life and used a simple classification for

socioeconomic positions (low-medium-high). Here, we go further by considering the

whole professional trajectories and all-cause and cause-specific mortality. For this

purpose, we use life course models on a representative sample of the French salaried

population in the semi-public and private sectors from 1976 to 2002 to investigate

the possible ways in which professional trajectories may be associated with adult

mortality.

It has already been shown that an observed individual’s social level at a given

time, partially, reflects his/her social position at different stages of his/her past

life [26]. However, to better describe the association, life course epidemiology models

have been introduced in the literature, which was defined as "the study of long term

effects on later health or disease risk of physical or social exposures during gestation,

childhood, adolescence, young adulthood and later adult life" [30, 115].

This approach admits that both early and later life exposures and conditions are

acting as risk or protective factors throughout individual’s life [30]. The objective

is to examine how the social level during childhood, adolescence and early adult life

42
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influence the disease risk in adulthood and socioeconomic position that causes social

inequalities in adult’s health and mortality. We can mention studies showing that

being in a low socio-economic level through life influences cause-specific mortality

and cardiovascular diseases [31, 32]. Popular used hypothesis in the life course field

are: critical periods, accumulation, and social mobility models.

A critical period is a time window in which an exposure can have long-lasting

adverse or protective effects on development and subsequent disease outcome [30].

The attention of this model, which is also sometimes known as latent model, is more

on the timing of an exposure and it assumes that an exposure can have irreversible

damages for later health [21]. This concept has been extended to social develop-

ments, so that in this model some stages or specific moments in life are considered

as key periods affecting health.

The accumulation model hypothesizes that mortality differentials are explained

by the accumulation of all present and past working conditions, lifestyles and be-

haviours. Analyses using this model are based on the life-cumulative length of stay

in the most disadvantaged social group. They suggest that the accumulation of poor

socioeconomic exposure in life increases the risk of mortality [21, 27, 30, 33].

The social mobility model was developed to take into account the modality of

transitions between social groups which can be divided into intra-generational and

inter-generational mobilities. The inter-generational mobility addresses the changes

in social group between generations, such as the changes between parental social class

and own social class in adulthood. The intra-generational mobility is the changes

between occupied social classes by an individual in adulthood. Different opinions

regarding the impact of social mobility on health and mortality can be found in the

literature. Some authors state that mobile individuals are placed in health levels

between those of their current class and their original class, closest to the current

class [34, 35].

Other models have also been proposed in the literature, such as pathway model,

which assumes that the influence of childhood social level is attenuated after adjust-

ing for other later conditions. Complete overviews of the life course models can be

found in Galobardes et al. [25], Kuh et al. [30], Mishra et al. [116], and Niedzwiedz

et al. [117].
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The life course models help to explain the potential impact of socioeconomic

status on health. However, a bias might be involved in the results obtained by this

framework due to the impact of health on socioeconomic position, or health related

selection. Selection out of the labour marker into an unemployment position due

to health problems is an example of this kind of selection, also known as reverse

causation. This reverse causation, between health and social position, is another

issue that should be taken into account [36, 37].

3.2 Professional trajectory

A professional trajectory may be defined as the sequence of consecutive professional

positions occupied by an individual. Figure 3.11 shows an example of 5 fictional

trajectories. For instance, the second individual was working in the manual workers

class from 1978 until 1985. No information on his professional category was available

between 1986 and 2001. Finally he worked in an intermediary occupation in 2002.

The fourth individual is an example of those individuals that do not stay in a single

occupational category. The fourth horizontal bar is showing an individual who

starts in a manual workers class and after experiencing some transitions between

professional categories, he ends up in an upper class occupation. The third example

shows an individual working in the manual workers class and clerk class. No further

information is available for his occupational category from 1994 until his death in

2000.

As we can observe in Figure 3.1, a professional trajectory may be characterized

by the occupied categories at each year, by the transitions between social classes

and by the length of stay at each social class. To mimic the accumulation and social

mobility hypothesis, we consider the following time-dependent covariates:

• Occupational class at each year ;

• Cumulative social class indicator, defined as individuals length of stay in each

occupational class. This indicator was calculated for all classes except the

upper class, so the latter served as reference;
1Plotted with the R package, TraMineR [118]
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Figure 3.1 – Examples of fictional trajectories

• 10-year social mobility indicator, defined by the transition rates between

classes, excluding the outside the scope category and calculated as follows:

number of transitions between occupational classes
duration of follow-up × 10

This indicator was categorised into three groups using tertiles, separately for

men and women.

To capture the critical period, third hypothesis, we consider the occupational class

at the beginning of follow-up that is the most representative position of the end of

childhood, given the fact that no information on childhood’s socio-economic position

was available in the motivating database.

3.3 Analysis of the Cosmop-DADS database

3.3.1 Study population

We consider the Cosmop-DADS database described in the Introduction. As ex-

plained previously, this database is obtained by linking the occupational life-course

provided from the panel of DADS with the causes of death recorded by INSERM–

CépiDc. In Section 1.4.4 of the Introduction, we explained the professional scope

considered in this study, containing five categories: Upper class, Intermediary oc-

cupations, Clerk class, Manual workers class and the additional Outside the scope
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class. The decision regarding this additional category will induce a bias but given

the structure of the data, building a sound imputation model would require addi-

tional assumptions for which no auxiliary data, such as data on employees of the

public sector, were available.

In this analysis, all individuals born in the French territories for whom a salaried

period was declared in Cosmop-DADS between ages 25 and 30, excluding those

working outside the study scope in their first year were considered. We excluded

individuals born outside France due to the uncertainty of their vital status. In

total 337 706 men and 275 378 women are included in the study. Less than 1%

of occupations were imputed (corresponding to the so-called miscoded professions),

and in total, 22% and 30% of follow-up years were outside the study scope for men

and women, respectively. 52% of men and 61% of women were outside the study

scope for at least one year of their follow-up.

Owing to the non-negligible number of episodes outside the study scope and the

lack of available information for making more hypotheses about these episodes, a

replicated analysis was carried out on a sub-sample of the analysed population for

whom the first five years of their follow-up was covered by the study scope in order

to ensure that an observed trajectory was complete (in the first five years) for the

analysis (198 381 males and 134 784 females, with fewer than 14% of follow-up years

outside the study scope in total).

3.3.2 Mortality

The Cosmop-DADS database is a sample of the French population for whom the vital

status and date of death are available. All individuals of this sample were followed

up to 2002 and the administrative censoring date was set at 31st December 2002.

The underlying causes of death, recorded by INSERM-CépiDc, were coded according

to the International Classification of Diseases, 8th, 9th and 10th revisions (ICD-8,

ICD-9 and ICD-10), presented in Section 2.2 of the Introduction. We considered

three broad categories of causes in this part: cardiovascular diseases, cancer and

external causes (Table 2).
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3.3.3 Statistical analysis

The Cox proportional hazards model, presented in Section 2.2.1, were used to esti-

mate all-cause hazard ratios (HRs), cause-specific hazard ratios (CSHRs) and their

95% Confidence Intervals (CIs) while accounting for left truncation induced by the

delayed entries. Age was used as the time-scale [119]. In the presence of competing

risks, for each cause of death, we can fit the classical Cox model by censoring the

participants who failed from competing causes of death [95, 100, 104].

The 3 indicators, occupational class at each year, cumulative social class indi-

cator and 10-year social mobility indicator, defined in Section 3.2 were calculated

for the considered sample. To limit the impact of reverse causation, which is the

possible influence of health on social position [36, 37], occupational classes were con-

sidered with a two-year time lag, i.e. instead of using the current occupational class,

that of two years before, was taken into account. Adjustment for the covariates, oc-

cupational class at the beginning of the follow-up as a baseline covariate and the

three indicators of professional trajectory as time-dependent covariates, was done

by performing univariable analysis in the first step. After calculating the sample

correlation between these covariates and finding no strong correlation between them,

all these covariates were used in a multivariable analysis. Considering the decrease

in mortality rates over time in France, all-cause and CSH models were adjusted for

observation periods.

The occupational class at each year and the 10-year social mobility indicator

were introduced into the models as categorical variables, and the upper class and

those without any mobility between classes were considered as the reference cate-

gories. For the cumulative social class indicator, HRs were interpreted as the hazard

corresponding to an increase in the time spent in an occupational class versus that

in the upper class. These HRs were calculated for a 10-year increase. No violation of

the proportional hazards assumptions was found according to Schoenfeld residuals.

Proportional hazards models were conducted separately for men and women

using the Survival package of the R software [120] and the imputation was carried

out by the IVEware software [121].
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3.3.4 Results

The average number of transitions between occupational classes differed between

the age categories. Transitions were more numerous between the ages of 25 and

44 in women and between the ages of 25 and 34 in men. At the beginning of the

follow-up, the largest class was the clerk class (about 54%) in women and manual

workers (about 60%) in men. For young men (25-34 years), 49.3% of the cumulated

time spent was in the manual workers class and much less in the upper class (6.5%).

The same magnitude was observed in young women for the clerk and the upper class

(25-34 years) (Table 3.1).
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Table 3.1 – Characteristics of study population according to occupational trajectories

Average
number of

transitions/10
years follow-

up

Proportion of time spent in occupational classes

Upper
class

Intermediary
occupations

Clerk
class

Manual
workers

class
Outside

the
scope Total

Men

At the
beginning 0 5.5 17.3 17.7 59.5 0 100

25-34 1.0 6.5 17.0 12.4 49.3 14.8 100
35-44 0.9 9.6 17.8 7.4 38.4 26.8 100
45-54 0.6 12.9 17.9 5.8 31.8 31.6 100
55-56 0.6 15.5 18.5 5.2 28.4 32.4 100

All ages 0.9 8.8 17.4 9.4 42.1 22.3 100

Women

At the
beginning 0 4.2 19.4 53.5 22.9 0 100

25-34 0.8 4.3 17.0 41.0 16.0 21.7 100
35-44 0.8 4.5 15.8 30.9 12.3 36.5 100
45-54 0.6 5.5 16.6 28.1 11.4 38.4 100
55-56 0.6 7.0 17.8 25.4 9.7 40.1 100

All ages 0.8 4.6 16.5 35.0 13.8 30.1 100



50 Chapter 3. Socio-professional trajectories and mortality

During the follow-up, 12 162 (3.6%) men and 3551 (1.3%) women died. Most

deaths occurred between the ages of 35 and 44. 48.7% of deaths among women and

39.8% of deaths among men occurred while individuals were outside the study scope

two years before death. Most other deaths in men and women occurred while they

were in the manual workers class and the clerk class, respectively (Table 3.2).

Table 3.2 – Distribution of study population according to occupational trajectories

Number of death (%) Person-year (%)

Men Women Men Women
Observation Beginning of follow-up
period Upper class 344 (2.8) 104 (3.0)

Intermediary occupations 1371 (11.3) 568 (16.0)
Clerk class 2042 (16.8) 1699 (47.8)
Manual workers class 8405 (69.1) 1180 (33.2)
Outside the scope 0 (0) 0 (0)

End of follow-up
Upper class 525 (4.3) 118 (3.3)
Intermediary occupations 1299 (10.7) 417 (11.7)
Clerk class 941 (7.7) 868 (24.5)
Manual workers class 4558 (37.5) 419 (11.8)
Outside the scope 4839 (39.8) 1729 (48.7)

1976-1980 306 (2.5) 66 (1.9) 4.52 3.87
1981-1985 970 (8.0) 268 (7.5) 12.41 11.65
1986-1990 1739 (14.3) 464 (13.1) 17.49 17.05
1991-1995 2999 (24.6) 856 (24.1) 23.38 23.50
1996-2002 6148 (50.6) 1897 (53.4) 42.20 43.93

Age category 25-34 2930 (24.1) 831 (23.4) 44.18 45.53
35-44 4637 (38.1) 1396 (39.3) 38.77 38.49
45-54 4329 (35.6) 1251 (35.2) 16.40 15.48
55-56 266 (2.2) 73 (2.1) 0.65 0.50

Total 12 162 3551 337 706 275 378

The results of the univariable and multivariable analysis are subsequently pre-

sented in Table 3.3 – Table 3.6. Overall, the same magnitude was found for the

results of the univariable and multivariable analysis, except for the estimated haz-

ard ratios for the social mobility indicator, although, adjusting for all indicators

led to some attenuation in the increased risk of death in association to professional

trajectory indicators.



Table 3.3 – All-cause and cause-specific mortality hazard ratios among men according to socio-professional trajectories (univariable analysis)

All-cause
(n=12 162)

Cardiovascular
(n=1452)

Cancer
(n=3116)

External causes
(n=4026)

Other causes
(n=3568)

HRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI]
Occupation at beginning of follow-up
Upper class 1 1 1 1 1
Intermediary occupations 1.23 [1.09, 1.38]∗∗∗ 1.56 [1.06, 2.30]∗∗∗ 1.10 [0.88, 1.37]∗∗∗ 1.20 [0.97, 1.47]∗∗∗ 1.29 [1.04, 1.62]∗∗∗
Clerk class 1.79 [1.60, 2.01]∗∗∗ 2.21 [1.52, 3.22]∗∗∗ 1.43 [1.16, 1.77]∗∗∗ 1.62 [1.33, 1.98]∗∗∗ 2.23[1.81, 2.76]∗∗∗
Manual workers class 2.05 [1.84, 2.28]∗∗∗ 2.84 [1.98, 4.05]∗∗∗ 1.85 [1.52, 2.26]∗∗∗ 2.03 [1.69, 2.45]∗∗∗ 2.01 [1.64, 2.46]∗∗∗

Current occupational classa
Upper class 1 1 1 1 1
Intermediary occupations 1.44 [1.30, 1.60]∗∗∗ 1.76 [1.31, 2.35]∗∗∗ 1.49 [1.24, 1.80]∗∗∗ 1.44 [1.20, 1.72]∗∗∗ 1.26 [1.04, 1.54]∗∗∗
Clerk class 2.33 [2.09, 2.60]∗∗∗ 2.73 [1.99, 3.74]∗∗∗ 2.41 [1.96, 2.97]∗∗∗ 1.88 [1.56, 2.28]∗∗∗ 2.73 [2.24, 3.33]∗∗∗
Manual workers class 2.34 [2.14, 2.56]∗∗∗ 2.74 [2.10, 3.58]∗∗∗ 2.52 [2.13, 2.98]∗∗∗ 2.46 [2.10, 2.90]∗∗∗ 1.83 [1.54, 2.18]∗∗∗
Outside the scope 3.67 [3.35, 4.01]∗∗∗ 3.68 [2.83, 4.79]∗∗∗ 3.20 [2.71, 3.78]∗∗∗ 3.05 [2.59, 3.60]∗∗∗ 4.80 [4.06, 5.68]∗∗∗

Cumulative time spent in occupational class
Upper class 1 1 1 1 1
Intermediary occupations 0.94 [0.86, 1.03]∗∗∗ 1.00 [0.81, 1.25]∗∗∗ 1.04 [0.90, 1.21]∗∗∗ 0.91 [0.75, 1.10]∗∗∗ 0.80 [0.67, 0.95]∗∗∗
Clerk class 1.68 [1.54, 1.83]∗∗∗ 1.66 [1.33, 2.06]∗∗∗ 1.57 [1.36, 1.83]∗∗∗ 1.35 [1.12, 1.63]∗∗∗ 2.09 [1.80, 2.42]∗∗∗
Manual workers class 1.66 [1.56, 1.76]∗∗∗ 1.69 [1.45, 1.96]∗∗∗ 1.74 [1.57, 1.93]∗∗∗ 1.68 [1.48, 1.91]∗∗∗ 1.51[1.34, 1.70]∗∗∗
Outside the scope 2.09 [1.95, 2.23]∗∗∗ 1.84 [1.55, 2.18]∗∗∗ 1.79 [1.60, 2.00]∗∗∗ 2.10 [1.82, 2.42]∗∗∗ 2.61 [2.30, 2.96]∗∗∗

Social mobility indicatorb
Low (= 0) 1 1 1 1 1
Medium 0.84 [0.79, 0.88]∗∗∗ 0.83 [0.72, 0.95]∗∗∗ 0.77 [0.70, 0.84]∗∗∗ 0.87 [0.78, 0.97]∗∗∗ 0.89 [0.80, 0.98]∗∗∗
High (> 1.11) 0.83 [0.79, 0.86]∗∗∗ 0.80 [0.71, 0.90]∗∗∗ 0.75 [0.69, 0.81]∗∗∗ 0.85 [0.79, 0.92]∗∗∗ 0.88 [0.81, 0.95]∗∗∗

∗(p < 0.05), ∗∗(p < 0.01), ∗∗∗(p < 0.001)
a: observed with two-year time lag
b: transition rates between occupational classes (10 years of follow-up)
c: adjusted separately for occupation at the beginning, current occupational class, cumulative time spent in occupational class, social mobility indicator
†: age as the time-scale in Cox proportional hazards model



Table 3.4 – All-cause and cause-specific mortality hazard ratios among women according to socio-professional trajectories (univariable analysis)

All-cause
(n=3551)

Cardiovascular
(n=304)

Cancer
(n=1388)

External causes
(n=894)

Other causes
(n=965)

HRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI]
Occupation at beginning of follow-up
Upper class 1 1 1 1 1
Intermediary occupations 0.95 [0.77, 1.17]∗∗∗ 1.20 [0.54, 2.63]∗∗∗ 0.98 [0.70, 1.37]∗∗∗ 0.93 [0.63, 1.38]∗∗∗ 0.87 [0.58, 1.31]∗∗∗
Clerk class 1.06 [0.87, 1.30]∗∗∗ 1.23 [0.58, 2.64]∗∗∗ 1.05 [0.76, 1.45]∗∗∗ 0.97 [0.67, 1.40]∗∗∗ 1.15 [0.79, 1.69]∗∗∗
Manual workers class 1.26 [1.03, 1.54]∗∗∗ 1.73 [0.81, 3.69]∗∗∗ 1.28 [0.92, 1.77]∗∗∗ 1.18 [0.81, 1.71]∗∗∗ 1.21 [0.82, 1.79]∗∗∗

Current occupational classa
Upper class 1 1 1 1 1
Intermediary occupations 1.05 [0.85, 1.29]∗∗∗ 2.92 [1.04, 8.18]∗∗∗ 0.84 [0.63, 1.11]∗∗∗ 1.27 [0.83, 1.97]∗∗∗ 1.09 [0.68, 1.75]∗∗∗
Clerk class 1.12 [0.92, 1.35]∗∗∗ 2.66 [0.97, 7.34]∗∗∗ 0.86 [0.66, 1.12]∗∗∗ 1.40 [0.93, 2.11]∗∗∗ 1.29 [0.83, 2.01]∗∗∗
Manual workers class 1.35 [1.10, 1.66]∗∗∗ 4.50 [1.61,12.56]∗∗∗ 0.91 [0.69, 1.22]∗∗∗ 1.77 [1.15, 2.72]∗∗∗ 1.60 [1.01, 2.55]∗∗∗
Outside the scope 2.11 [1.75, 2.54]∗∗∗ 5.12 [1.90,13.75]∗∗∗ 1.34 [1.04, 1.72]∗∗∗ 2.22 [1.48, 3.32]∗∗∗ 3.82 [2.50, 5.85]∗∗∗

Cumulative time spent in occupational class
Upper class 1 1 1 1 1
Intermediary occupations 0.83 [0.70, 0.97]∗∗∗ 1.38 [0.74, 2.60]∗∗∗ 0.88 [0.70, 1.11]∗∗∗ 0.79 [0.56, 1.10]∗∗∗ 0.59 [0.40, 0.86]∗∗∗
Clerk class 0.95 [0.83, 1.09]∗∗∗ 1.71 [0.98, 2.99]∗∗∗ 0.93 [0.76, 1.13]∗∗∗ 0.80 [0.60, 1.08]∗∗∗ 0.95 [0.73, 1.27]∗∗∗
Manual workers class 1.11 [0.96, 1.28]∗∗∗ 2.15 [1.24, 3.73]∗∗∗ 1.03 [0.84, 1.26]∗∗∗ 1.14 [0.85, 1.53]∗∗∗ 1.02 [0.76, 1.36]∗∗∗
Outside the scope 1.47 [1.29, 1.68]∗∗∗ 2.88 [1.67, 4.96]∗∗∗ 1.17 [0.96, 1.41]∗∗∗ 1.31 [0.99, 1.73]∗∗∗ 1.95 [1.50, 2.54]∗∗∗

Social mobility indicatorb
Low (= 0) 1 1 1 1 1
Medium 0.93 [0.84, 1.03]∗∗∗ 0.99 [0.72, 1.38]∗∗∗ 0.83 [0.71, 0.97]∗∗∗ 1.15 [0.93, 1.44]∗∗∗ 0.93 [0.76, 1.14]∗∗∗
High (> 0.91) 0.93 [0.86, 1.00]∗∗∗ 0.84 [0.65, 1.10]∗∗∗ 0.95 [0.85, 1.07]∗∗∗ 0.90 [0.77, 1.05]∗∗∗ 0.94 [0.81, 1.09]∗∗∗

∗(p < 0.05), ∗∗(p < 0.01), ∗∗∗(p < 0.001)
a: observed with two-year time lag
b: transition rates between occupational classes (10 years of follow-up)
c: adjusted separately for occupation at the beginning, current occupational class, cumulative time spent in occupational class, social mobility indicator
†: age as the time-scale in Cox proportional hazards model



Table 3.5 – All-cause and cause-specific mortality hazard ratios among men according to socio-professional trajectories (multivariable analysis)

All-cause
(n=12 162)

Cardiovascular
(n=1452)

Cancer
(n=3116)

External causes
(n=4026)

Other causes
(n=3568)

HRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI]
Occupation at beginning of follow-up
Upper class 1 1 1 1 1
Intermediary occupations 1.17 [1.04, 1.33]∗∗∗ 1.41 [0.94, 2.14]∗∗∗ 0.98 [0.77, 1.24]∗∗∗ 1.10 [0.89, 1.37]∗∗∗ 1.39 [1.10, 1.77]∗∗∗
Clerk class 1.34 [1.18, 1.51]∗∗∗ 1.57 [1.04, 2.37]∗∗∗ 1.02 [0.81, 1.29]∗∗∗ 1.26 [1.02, 1.56]∗∗∗ 1.68 [1.34, 2.12]∗∗∗
Manual workers class 1.43 [1.27, 1.61]∗∗∗ 1.90 [1.27, 2.83]∗∗∗ 1.10 [0.88, 1.37]∗∗∗ 1.41 [1.15, 1.73]∗∗∗ 1.60 [1.28, 2.00]∗∗∗

Current occupational classa
Upper class 1 1 1 1 1
Intermediary occupations 1.16 [1.03, 1.30]∗∗∗ 1.26 [0.90, 1.76]∗∗∗ 1.10 [0.88, 1.37]∗∗∗ 1.23 [1.01, 1.51]∗∗∗ 1.07 [0.86, 1.33]∗∗∗
Clerk class 1.49 [1.31, 1.69]∗∗∗ 1.58 [1.09, 2.30]∗∗∗ 1.50 [1.16, 1.93]∗∗∗ 1.43 [1.14, 1.79]∗∗∗ 1.58 [1.26, 1.98]∗∗∗
Manual workers class 1.39 [1.25, 1.56]∗∗∗ 1.43 [1.03, 1.99]∗∗∗ 1.26 [1.02, 1.56]∗∗∗ 1.73 [1.42, 2.12]∗∗∗ 1.09 [0.89, 1.33]∗∗∗
Outside the scope 2.57 [2.31, 2.85]∗∗∗ 2.45 [1.80, 2.34]∗∗∗ 2.21 [1.81, 2.71]∗∗∗ 2.20 [1.81, 2.68]∗∗∗ 3.25 [2.69, 3.94]∗∗∗

Cumulative time spent in occupational class
Upper class 1 1 1 1 1
Intermediary occupations 1.04 [0.92, 1.17]∗∗∗ 1.13 [0.83, 1.54]∗∗∗ 1.20 [0.98, 1.46]∗∗∗ 1.03 [0.81, 1.31]∗∗∗ 0.84 [0.66, 1.06]∗∗∗
Clerk class 1.50 [1.33, 1.69]∗∗∗ 1.59 [1.14, 2.20]∗∗∗ 1.53 [1.23, 1.89]∗∗∗ 1.23 [0.95, 1.60]∗∗∗ 1.62 [1.31, 2.00]∗∗∗
Manual workers class 1.52 [1.38, 1.66]∗∗∗ 1.54 [1.18, 2.00]∗∗∗ 1.75 [1.48, 2.06]∗∗∗ 1.33 [1.10, 1.60]∗∗∗ 1.53 [1.28, 1.83]∗∗∗
Outside the scope 1.35 [1.22, 1.48]∗∗∗ 1.29 [0.99, 1.69]∗∗∗ 1.33 [1.12, 1.57]∗∗∗ 1.46 [1.19, 1.77]∗∗∗ 1.39 [1.16, 1.67]∗∗∗

Social mobility indicatorb
Low (= 0) 1 1 1 1 1
Medium 1.03 [0.97, 1.08]∗∗∗ 1.03 [0.88, 1.20]∗∗∗ 0.96 [0.87, 1.06]∗∗∗ 1.11 [0.99, 1.24]∗∗∗ 1.03 [0.93, 1.13]∗∗∗
High (> 1.11) 1.15 [1.09, 1.21]∗∗∗ 1.12 [0.97, 1.29]∗∗∗ 1.07 [0.97, 1.18]∗∗∗ 1.17 [1.08, 1.28]∗∗∗ 1.23 [1.12, 1.34]∗∗∗

∗(p < 0.05), ∗∗(p < 0.01), ∗∗∗(p < 0.001)
a: observed with two-year time lag
b: transition rates between occupational classes (10 years of follow-up)
c: adjusted for occupation at the beginning, current occupational class, cumulative time spent in occupational class, social mobility indicator and observation
periods
†: age as the time-scale in Cox proportional hazards model



Table 3.6 – All-cause and cause-specific mortality hazard ratios among women according to socio-professional trajectories (multivariable analysis)

All-cause
(n=3551)

Cardiovascular
(n=304)

Cancer
(n=1388)

External causes
(n=894)

Other causes
(n=965)

HRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI]
Occupation at beginning of follow-up
Upper class 1 1 1 1 1
Intermediary occupations 0.99 [0.79, 1.23]∗∗∗ 0.93 [0.39, 2.24]∗∗∗ 1.02 [0.71, 1.47]∗∗∗ 0.90 [0.60, 1.35]∗∗∗ 1.03 [0.69, 1.55]∗∗∗
Clerk class 1.05 [0.85, 1.29]∗∗∗ 0.81 [0.35, 1.86]∗∗∗ 1.07 [0.76, 1.52]∗∗∗ 0.92 [0.62, 1.36]∗∗∗ 1.15 [0.78, 1.70]∗∗∗
Manual workers class 1.15 [0.93, 1.43]∗∗∗ 1.04 [0.45, 2.43]∗∗∗ 1.35 [0.94, 1.94]∗∗∗ 0.91 [0.60, 1.37]∗∗∗ 1.09 [0.73, 1.63]∗∗∗

Current occupational classa
Upper class 1 1 1 1 1
Intermediary occupations 1.04 [0.82, 1.32]∗∗∗ 2.18 [0.76, 6.23]∗∗∗ 0.77 [0.55, 1.09]∗∗∗ 1.40 [0.86, 2.27]∗∗∗ 1.27 [0.74, 2.19]∗∗∗
Clerk class 1.00 [0.80, 1.26]∗∗∗ 1.49 [0.52, 4.26]∗∗∗ 0.75 [0.54, 1.04]∗∗∗ 1.58 [0.98, 2.53]∗∗∗ 1.12 [0.66, 1.89]∗∗∗
Manual workers class 1.13 [0.88, 1.45]∗∗∗ 2.63 [0.88, 7.85]∗∗∗ 0.71 [0.49, 1.04]∗∗∗ 1.65 [0.99, 2.74]∗∗∗ 1.47 [0.84, 2.58]∗∗∗
Outside the scope 1.81 [1.45, 2.27]∗∗∗ 2.48 [0.89, 6.87]∗∗∗ 1.20 [0.86, 1.66]∗∗∗ 2.18 [1.38, 3.47]∗∗∗ 3.16 [1.90, 5.26]∗∗∗

Cumulative time spent in occupational class
Upper class 1 1 1 1 1
Intermediary occupations 0.98 [0.78, 1.23]∗∗∗ 1.61 [0.63, 4.10]∗∗∗ 1.12 [0.82, 1.53]∗∗∗ 0.86 [0.55, 1.36]∗∗∗ 0.66 [0.39, 1.12]∗∗∗
Clerk class 1.12 [0.92, 1.36]∗∗∗ 2.65 [1.14, 6.13]∗∗∗ 1.16 [0.88, 1.54]∗∗∗ 0.79 [0.52, 1.19]∗∗∗ 1.14 [0.77, 1.69]∗∗∗
Manual workers class 1.12 [0.91, 1.38]∗∗∗ 2.05 [0.86, 4.89]∗∗∗ 1.10 [0.81, 1.49]∗∗∗ 1.08 [0.71, 1.64]∗∗∗ 1.07 [0.70, 1.64]∗∗∗
Outside the scope 1.21 [1.01, 1.47]∗∗∗ 3.16 [1.41, 7.05]∗∗∗ 1.08 [0.82, 1.43]∗∗∗ 1.01 [0.69, 1.49]∗∗∗ 1.37 [0.93, 2.01]∗∗∗

Social mobility indicatorb
Low (= 0) 1 1 1 1 1
Medium 1.00 [0.90, 1.11]∗∗∗ 1.05 [0.76, 1.47]∗∗∗ 0.85 [0.73, 0.99]∗∗∗ 1.26 [1.01, 1.58]∗∗∗ 1.09 [0.89, 1.33]∗∗∗
High (> 0.91) 1.13 [1.04, 1.22]∗∗∗ 1.10 [0.84, 1.46]∗∗∗ 1.04 [0.91, 1.18]∗∗∗ 1.05 [0.88, 1.24]∗∗∗ 1.40 [1.19, 1.64]∗∗∗

∗(p < 0.05), ∗∗(p < 0.01), ∗∗∗(p < 0.001)
a: observed with two-year time lag
b: transition rates between occupational classes (10 years of follow-up)
c: adjusted for occupation at the beginning, current occupational class, cumulative time spent in occupational class, social mobility indicator and observation
periods
†: age as the time-scale in Cox proportional hazards model
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Occupation at beginning of follow-up

As shown in Table 3.5, men in the manual workers class at the beginning had a higher

mortality risk compared to those who were in the upper class (except for cancer

mortality) but to a different degree depending on the causes of death (HRs:1.43

[1.27, 1.61], 1.90 [1.27, 2.83], 1.41 [1.15, 1.73] and 1.60 [1.28, 2.00] respectively for

mortality from all causes, cardiovascular diseases, external causes and other causes).

Also, being in the clerk class at the beginning of follow-up increased the mortality

risk among men compared to being in the upper class at the beginning (HRs: 1.34

[1.18, 1.51], 1.57 [1.04, 2.37], 1.26 [1.02, 1.29] and 1.68 [1.34, 2.12] respectively for

mortality from all causes, cardiovascular diseases, external causes and other causes).

In women, this association was not statistically significant (Table 3.6).

Current occupational class

Among men, being in the clerk class increased the mortality risk compared to being

in the upper class (HRs: 1.49 [1.31, 1.69], 1.58 [1.09, 2.30], 1.50 [1.16, 1.93], 1.43

[1.14, 1.79] and 1.58 [1.26, 1.98] respectively for mortality from all causes, cardio-

vascular diseases, cancer, external causes and other causes. Among men, those in

the manual workers class had an increased mortality risk compared to those in the

upper class (HRs: 1.39 [1.25, 1.56], 1.43 [1.03, 1.99], 1.26 [1.02, 1.56] and 1.73 [1.42,

2.12] respectively for all-cause, cardiovascular, cancer and external-cause mortality).

Those outside the study scope had the highest mortality risk except for cardiovas-

cular and cancer mortality among women, i.e. about two to three-fold higher than

the mortality risk in the upper class (Table 3.5 and Table 3.6).

Cumulative time spent in occupational classes

The cumulative time spent in occupational classes was strongly associated with

men’s all-cause and cause-specific mortality (Table 3.5) and women’s all-cause and

cardiovascular mortality (Table 3.6), with less pronounced associations for men’s

external-cause mortality. Among men, more time spent in an occupational class

increased the mortality risk compared to that in the upper class. This increase in

manual workers was associated with a 1.8-fold higher cancer mortality risk (HR:

1.75 [1.48, 2.06]) and that outside the study scope was associated with a 1.5-fold
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higher external-cause mortality risk (HR: 1.46 [1.19, 1.77]) compared to that in the

upper class. Among women, more time spent in the clerk class was associated with

a 2.7-fold higher cardiovascular mortality risk compared to that in the upper class

(HR: 2.65 [1.14, 6.13]).

Social mobility indicator

In the univariable analysis (Table 3.3 and Table 3.6), an inverse association between

the social mobility indicator and mortality was systematically found among men,

and only for cancer mortality among women. Adjusting for other indicators changed

the direction of the results, except for women’s cancer mortality.

In multivariable analysis (Table 3.5 and Table 3.6), the same magnitude was

observed for this indicator among men and women except for women’s external-cause

mortality, with significant results for men and women’s all-cause, external-cause and

other causes mortality, and women’s cancer mortality. Having a high social mobility

indicator increased the all-cause mortality risk (HRs: 1.15 [1.09, 1.21] and 1.13 [1.04,

1.22] respectively for men and women), the other causes mortality risk (HRs: 1.23

[1.12, 1.34] and 1.40 [1.19, 1.64] respectively for men and women) and the external-

cause mortality risk (HR: 1.17 [1.08, 1.28] for men) compared to not experiencing

any mobility during professional life (Table 3.5 and Table 3.6).

3.3.5 Ad-hoc sensitivity analysis

When replicated analyses were performed on the sub-sample, including individuals

working in the study scope during their first five years of follow-up, the estimated all-

cause and cause-specific hazard ratios did not change much for any of the indicators

except for men’s cardiovascular mortality (Table 3.7 and Table 3.8).



Table 3.7 – All-cause and cause-specific mortality hazard ratios according to socio-professional trajectories among men working in the scope of study
on their first five years of follow-up

All-cause
(n=6884)

Cardiovascular
(n=949)

Cancer
(n=2067)

External causes
(n=1979)

Other causes
(n=1889)

HRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI]
Occupation at beginning of follow-up
Upper class 1 1 1 1 1
Intermediary occupations 1.25 [1.04, 1.50]∗∗∗ 2.04 [1.10, 3.79]∗∗∗ 0.88 [0.64, 1.21]∗∗∗ 1.04 [0.75, 1.46]∗∗∗ 1.84 [1.27, 2.66]∗∗∗
Clerk class 1.38 [1.15, 1.66]∗∗∗ 2.18 [1.16, 4.08]∗∗∗ 0.96 [0.71, 1.32]∗∗∗ 1.30 [0.93, 1.82]∗∗∗ 1.86 [1.29, 2.69]∗∗∗
Manual workers class 1.31 [1.10, 1.57]∗∗∗ 2.57 [1.39, 4.76]∗∗∗ 0.90 [0.66, 1.22]∗∗∗ 1.22 [0.88, 1.69]∗∗∗ 1.61 [1.13, 2.31]∗∗∗

Current occupational classa
Upper class 1 1 1 1 1
Intermediary occupations 1.09 [0.94, 1.25]∗∗∗ 1.09 [0.75, 1.59]∗∗∗ 1.01 [0.77, 1.31]∗∗∗ 1.20 [0.91, 1.56]∗∗∗ 1.04 [0.79, 1.37]∗∗∗
Clerk class 1.40 [1.19, 1.66]∗∗∗ 1.29 [0.83, 2.01]∗∗∗ 1.29 [0.94, 1.76]∗∗∗ 1.33 [0.97, 1.82]∗∗∗ 1.70 [1.26, 2.31]∗∗∗
Manual workers class 1.28 [1.12, 1.48]∗∗∗ 1.09 [0.74, 1.58]∗∗∗ 1.12 [0.87, 1.45]∗∗∗ 1.78 [1.37, 2.32]∗∗∗ 1.08 [0.83, 1.41]∗∗∗
Outside the scope 2.50 [2.18, 2.86]∗∗∗ 2.05 [1.42, 2.96]∗∗∗ 2.01 [1.58, 2.56]∗∗∗ 2.22 [1.70, 2.89]∗∗∗ 3.54 [2.77, 4.54]∗∗∗

Cumulative time spent in occupational class
Upper class 1 1 1 1 1
Intermediary occupations 1.07 [0.93, 1.23]∗∗∗ 1.05 [0.73, 1.49]∗∗∗ 1.26 [0.99, 1.60]∗∗∗ 1.10 [0.82, 1.47]∗∗∗ 0.87 [0.65, 1.15]∗∗∗
Clerk class 1.48 [1.27, 1.71]∗∗∗ 1.58 [1.08, 2.33]∗∗∗ 1.57 [1.21, 2.04]∗∗∗ 1.22 [0.88, 1.68]∗∗∗ 1.55 [1.18, 2.03]∗∗∗
Manual workers class 1.60 [1.43, 1.80]∗∗∗ 1.58 [1.08, 2.33]∗∗∗ 1.57 [1.21, 2.04]∗∗∗ 1.22 [0.88, 1.68]∗∗∗ 1.65 [1.32, 2.06]∗∗∗
Outside the scope 1.57 [1.38, 1.78]∗∗∗ 1.31 [0.92, 1.86]∗∗∗ 1.67 [1.34, 2.08]∗∗∗ 1.73 [1.31, 2.29]∗∗∗ 1.61 [1.26, 2.05]∗∗∗

Social mobility indicatorb
Low (= 0) 1 1 1 1 1
Medium 0.98 [0.92, 1.06]∗∗∗ 0.97 [0.81, 1.17]∗∗∗ 0.94 [0.83, 1.06]∗∗∗ 1.06 [0.92, 1.22]∗∗∗ 0.99 [0.87, 1.13]∗∗∗
High (> 1.18) 1.08 [1.02, 1.16]∗∗∗ 1.07 [0.89, 1.27]∗∗∗ 1.01 [0.89, 1.14]∗∗∗ 1.09 [0.97, 1.22]∗∗∗ 1.18 [1.05, 1.33]∗∗∗

∗(p < 0.05), ∗∗(p < 0.01), ∗∗∗(p < 0.001)
a: observed with two-year time lag
b: transition rates between occupational classes (10 years of follow-up)
c: adjusted for occupation at the beginning, current occupational class, cumulative time spent in occupational class, social mobility indicator and observation
periods
†: age as the time-scale in Cox proportional hazards model



Table 3.8 – All-cause and cause-specific mortality hazard ratios according to socio-professional trajectories among women working in the scope of
study on their first five years of follow-up

All-cause
(n=1544)

Cardiovascular
(n=136)

Cancer
(n=723)

External causes
(n=316)

Other causes
(n=369)

HRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI]
Occupation at beginning of follow-up
Upper class 1 1 1 1 1
Intermediary occupations 1.04 [0.72, 1.51]∗∗∗ 2.10 [0.25,17.80]∗∗∗ 1.12 [0.64, 1.95]∗∗∗ 1.15 [0.52, 2.52]∗∗∗ 0.78 [0.42, 1.47]∗∗∗
Clerk class 0.98 [0.68, 1.39]∗∗∗ 2.02 [0.24,16.62]∗∗∗ 1.09 [0.63, 1.87]∗∗∗ 0.86 [0.40, 1.86]∗∗∗ 0.80 [0.43, 1.49]∗∗∗
Manual workers class 0.99 [0.68, 1.44]∗∗∗ 2.35 [0.28,19.74]∗∗∗ 1.24 [0.71, 2.19]∗∗∗ 0.90 [0.41, 2.01]∗∗∗ 0.58 [0.30, 1.14]∗∗∗

Current occupational classa
Upper class 1 1 1 1 1
Intermediary occupations 1.16 [0.82, 1.65]∗∗∗ 2.21 [0.56, 8.71]∗∗∗ 0.97 [0.61, 1.56]∗∗∗ 0.85 [0.41, 1.77]∗∗∗ 2.60 [0.98, 6.72]∗∗∗
Clerk class 1.12 [0.80, 1.56]∗∗∗ 1.65 [0.41, 6.67]∗∗∗ 0.94 [0.60, 1.48]∗∗∗ 1.24 [0.60, 2.55]∗∗∗ 1.92 [0.77, 4.81]∗∗∗
Manual workers class 1.16 [0.80, 1.68]∗∗∗ 4.06 [0.94,17.59]∗∗∗ 0.84 [0.50, 1.40]∗∗∗ 0.98 [0.44, 2.16]∗∗∗ 2.10 [0.77, 5.69]∗∗∗
Outside the scope 2.08 [1.49, 2.91]∗∗∗ 3.03 [0.76,12.11]∗∗∗ 1.45 [0.92, 2.29]∗∗∗ 1.52 [0.73, 3.15]∗∗∗ 6.73 [2.73,16.60]∗∗∗

Cumulative time spent in occupational class
Upper class 1 1 1 1 1
Intermediary occupations 0.94 [0.69, 1.28]∗∗∗ 1.55 [0.45, 5.28]∗∗∗ 0.91 [0.60, 1.39]∗∗∗ 1.14 [0.58, 2.24]∗∗∗ 0.69 [0.33, 1.45]∗∗∗
Clerk class 1.05 [0.80, 1.39]∗∗∗ 2.38 [0.78, 7.29]∗∗∗ 0.95 [0.65, 1.39]∗∗∗ 0.86 [0.45, 1.65]∗∗∗ 1.15 [0.64, 2.09]∗∗∗
Manual workers class 1.12 [0.83, 1.50]∗∗∗ 1.44 [0.43, 4.78]∗∗∗ 0.98 [0.65, 1.48]∗∗∗ 1.38 [0.72, 2.64]∗∗∗ 1.26 [0.65, 2.43]∗∗∗
Outside the scope 1.21 [0.90, 1.61]∗∗∗ 2.56 [0.82, 8.01]∗∗∗ 1.10 [0.74, 1.64]∗∗∗ 1.12 [0.55, 2.26]∗∗∗ 1.27 [0.69, 2.32]∗∗∗

Social mobility indicatorb
Low (= 0) 1 1 1 1 1
Medium 0.94 [0.81, 1.08]∗∗∗ 1.18 [0.73, 1.90]∗∗∗ 0.84 [0.68, 1.03]∗∗∗ 1.03 [0.74, 1.43]∗∗∗ 1.01 [0.75, 1.36]∗∗∗
High (> 1) 1.03 [0.91, 1.15]∗∗∗ 1.17 [0.79, 1.72]∗∗∗ 0.97 [0.81, 1.15]∗∗∗ 0.86 [0.66, 1.12]∗∗∗ 1.27 [0.99, 1.61]∗∗∗

∗(p < 0.05), ∗∗(p < 0.01), ∗∗∗(p < 0.001)
a: observed with two-year time lag
b: transition rates between occupational classes (10 years of follow-up)
c: adjusted for occupation at the beginning, current occupational class, cumulative time spent in occupational class, social mobility indicator and observation
periods
†: age as the time-scale in Cox proportional hazards model
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3.4 Discussion

Previous studies on this topic have generally considered individuals’ socioeconomic

position at two or three stages of life including childhood (father’s socioeconomic

position), entry into the labour market and mid-life position. To our knowledge, the

present study is the first to investigate the association between the whole professional

trajectory and all-cause mortality and within that, three major causes of death:

cardiovascular disease, cancer and external causes. Overall, our results add to the

existing evidence of the strong relationship between professional trajectory and all-

cause mortality among men, with less pronounced associations among women [20–

22, 32, 122–125].

Compared to previous studies, a new aspect of our study is the use of the duration

of time spent in occupational classes as a measure of socioeconomic exposure and the

transition rates between occupational classes as a measure for capturing the social

mobility dimension. The three most commonly used life-course models, namely the

critical period, cumulative and social mobility models were taken into account. Our

results suggest that all three dimensions are associated to men’s all-cause mortality.

For women, only the cumulative and the social mobility models were confirmed by

this analysis.

3.4.1 Interpretations and comparisons with other studies

As shown in previous studies, strong associations between professional trajectories

and men’s and women’s mortality was found [20–22, 32, 122–125]. However, a direct

comparison with other studies cannot be easily made given the different occupational

classifications in each country, and the fact that we used whole professional trajec-

tories.

The present study only focused on professional trajectories with no information

on childhood circumstances. The individual’s first occupation is likely to be the most

representative dimension of the end of childhood. We found that the association

between the first occupation and mortality was strong for men’s cardiovascular and

external-cause mortality. Previously, strong associations have also been reported

between socioeconomic circumstances in childhood and mortality from some causes
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of death, such as cardiovascular diseases [21, 122–124].

On the other hand, for some other causes of death such as external causes and

lung cancer [124], stronger associations were found between socioeconomic circum-

stances in adulthood and adult mortality than those in childhood. Our results are in

accordance with the literature, since in other studies, for some causes of death such

as external causes and cancer, occupational classes were found to be strongly linked

with men’s mortality. Supplementary analysis on different cancers also reported

the same associations or even stronger ones, for deaths by UADT cancers (See Ap-

pendix B, Table B.1 and Table B.2). For women, the results were not statistically

significant.

Another hypothesis in the literature is the putative association between the accu-

mulation of exposure to different socioeconomic conditions and mortality. However,

the use of only three stages of life limited the number of possible trajectories, so

the different trajectories could be compared. By investigating the duration of time

spent in each occupational class instead of comparing different trajectories, we found

a strong relationship between the duration of exposure to low professional position

and mortality. This association was stronger for cardiovascular and cancer mortality

in men but was significant only for all-cause and cardiovascular mortality in women.

This is consistent with the results of previous studies [21, 22, 123, 126]. The large

mortality risk of those who stay longer in the low occupational categories can be

explained by exposure to poor working conditions and by the fact that the least

skilled are less likely to move upward. Furthermore, staying a long time in the same

professional conditions could reflect a greater adherence to a professional class and

its specific lifestyle.

The changes between occupational categories and their dynamics were also

pointed out in previous studies. Some studies have shown that within classes, male

movers have a mortality risk situated between that of non-movers in their class of

origin and that of their destination [23, 127]. Here, we investigated the association

between the frequency of changes between occupational classes and mortality. In-

stability in professional life may be interpreted in two ways. If instability is chosen,

it could be the reflection of high dynamism with the ability to change and adapt

to several professional environments. Conversely, if instability is forced, it could be
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due to difficulties in finding one’s place, to a high dependence on the work market

or to personal events. We found an inverse association for this indicator in the uni-

variable analysis, as it does not take into account the occupational classes before

and after the transitions. Our results of the multivariable analysis show that sub-

jects with high transition rates have an increased risk of all-cause and external-cause

mortality. These results suggest that the instability measured is more forced than

chosen, with a deleterious association on mortality. In a very explorative approach

to disentangle the chosen and forced instability, we considered the following naive

order of occupations from high to low level: upper class, intermediary occupations,

clerk class, and manual workers. Although this order is not strictly hierarchical,

upward and downward changes were studied as separate variables. The risk of mor-

tality was positively associated with downward changes, for instance, going from

the upper class to the clerk class, and negatively with upward changes, for example,

going from the manual workers class to the intermediary occupations class (Results

shown in Appendix B, Table B.3 and Table B.4).

3.4.2 Limitations

The main limitation in this investigation is the high percentage of follow-up years

outside the scope of the study. The decision to consider all these data in the outside

the scope category could induce a bias. However, we examined a wide range of

occupational sectors and the occupational stages are sufficiently reliable as they

were collected within the context of administrative procedures. Furthermore, the

replicated analysis on the subsample with sufficient follow-up provided almost the

same results, which strengthens the findings.

All participants had worked at least once between the ages of 25 and 30 and

were likely to be healthier than the general population, so the sample should not be

interpreted as representative of the French population.

Finally, taking into account the individual’s occupation with a two-year time lag

could reduce the reverse causation bias. Moreover, for some causes of death such as

transport accidents, the problem of reverse causation is less likely to be a source of

bias.

Despite these drawbacks, the large size of the sample, the annual nature of the
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information collected and the causes of death coded with high precision are the

major strength of this study. Using repeated measures of occupational category

over the follow-up could provide insight into changes that may have occurred during

a person’s professional life. However, using endogenous time-dependent covariates in

a Cox proportional hazards model results in bias. Consequently, to reduce the bias

and to better address the bidirectional association between professional trajectories

and mortality, in the next part we will focus on models that take into account

simultaneously professional trajectory and mortality, namely the joint modelling of

longitudinal data and cause-specific mortality.





Part III

Joint modelling of professional
trajectory and mortality
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Chapter 4
A joint modelling of longitudinal

nominal data and cause-specific

hazards

4.1 Background on joint models

In Chapter 3, we highlighted the association between socio-professional trajectories

and mortality using the administrative employment records as time-dependent co-

variates in a Cox proportional hazards model. However, the employment records

that are collected only for the subjects under the study are endogenous (internal)

time-dependent covariates. As mentioned in Section 2.3, the extended Cox model,

which is the extension of the Cox model to handle time-dependent covariates, is

based on the assumption that the covariates path is predictable and thus, is not

appropriate for internal time-dependent covariates. Consequently, it is of interest to

model jointly the longitudinal process and time-to-event process.

Joint analysis of longitudinal outcomes and survival data can be categorized

into pattern-mixture models, selection models and random effects models (cf. Sec-

tion 1.4.3). Although mathematically all these models describe the joint distribution

of longitudinal outcomes and survival data, they have different statistical interpre-

tations. We focus on the random effects models, also known as shared-parameter

models and refer to this class of models as joint models for longitudinal and time-

to-event data.
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A motivating example for the field of joint models was the study of the rela-

tionship between the CD4 cell counts and the time to AIDS diagnosis or death in

HIV clinical trials. It aimed also to determine whether the CD4 cell counts could

be considered as a useful surrogate marker in the treatment evaluation [39, 40]. In

these kind of studies a simple linear mixed model was used to describe the log of

CD4 cell counts trajectories. The fundamental idea of the so-called joint models is

based on linking the survival model with a suitable model for the longitudinal mea-

surements, usually a random effect model [41], in which the correlation between the

repeated measures is not ignored, via a common unobserved structure, to capture

the correlation between the two longitudinal and survival processes.

Different approaches have been developed in the literature for the association

structure in joint models. One may include the mixed model defined for the longi-

tudinal outcomes as a covariate in the survival sub-model [42, 43]. An alternative

approach would be including directly the random effects in both longitudinal and

survival sub-models with an assumed joint distribution for the random effects [44–

46]. These are the most used approaches in the literature, however, a different ap-

proach has also been proposed, namely the joint latent class model. The idea is

based on dividing the population, which is assumed to be heterogeneous, into a fi-

nite number of homogeneous classes where each class is characterized by a specific

trajectory of the longitudinal outcome and a specific event risk [47, 48].

Considerable attention has been paid to the joint modelling of longitudinal out-

come and survival data in recent years and since its appearance, several extensions

have been proposed in the literature to adapt them to a wider variety of outcomes

and situations. These extensions, with a preference for the association structure via

the random effects, include joint modelling for multiple longitudinal outcomes [49,

128–130], for multiple events in a cause-specific context for competing risks [45, 131],

for multiple correlated events [132], for survival data in the presence of recurrent

events [47, 133], or in the presence of cure fraction [134–137] and in the presence

of censored and missing time-varying covariates [138], using either likelihood-based

approaches or Bayesian ones. Some good overviews of this class of models can be

found in [43, 139–143].

Despite all these progress in the joint modelling of longitudinal and time-to-
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event, most previous works have focused on continuous measurements [39, 49] or

the quality of life measurements [50], on binary measurements [51] or on ordinal

responses [46, 52] and there has been less attention to non-ordinal categorical longi-

tudinal outcomes. Recently, Murawska and Rizopoulos [53] developed an extension

of the joint modelling of categorical longitudinal data and time-to-event data using

a Bayesian approach.

Given the structure of our motivation dataset, the Cosmop-DADS database, in

this chapter, we extend the work of Li et al. [46], by proposing a joint model for

nominal longitudinal data and competing risk data in a likelihood-based framework.

The association structure was modelled by introducing the random effects in each

sub-model.

However, even in the case of a reasonable sample size and moderate individual

measurements, the joint modelling of longitudinal outcomes and survival is compu-

tationally intensive [53, 57] and it becomes out of reach in the case of large datasets.

So far, the existing joint models have been applied to sample size up to 2000 indi-

viduals. To address this issue we propose an approach mimicking a meta analysis.

4.2 Joint modelling framework

The proposed joint model comprises three components: the nominal longitudinal

sub-model, the cause-specific sub-models and the variance-covariance matrix of ran-

dom effects to describe the joint association of repeated values and competing risks

data.

4.2.1 Nominal longitudinal sub-model

Let n be the number of subjects in the study and let Yij denotes the j-th ob-

served value for subject i, j = 1, · · · ,mi with Yij = k ∈ {1, · · · , K}. We postulate

a baseline-category logit model for Yij with random effects incorporated into the

model. Recall that the probability that the modality k is observed for the j-th value

of individual i, conditional on the random effects bi, is given by:
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πijk = P
(
Yij = k|Xij,Wij, bik

)
=



1

1+
∑K−1

h=1 exp
(
αh+X′ijβh+W ′ijbih

) if k = K

exp
(
αk+X′ijβk+W ′ijbik

)
1+
∑K−1

h=1 exp
(
αh+X′ijβh+W ′ijbih

) if k = 1, · · · , K − 1

(4.1)

where ηijk = αk + X
′
ijβk + W

′
ijbik, Xij vector of predictors for the fixed effects and

Wij vector of predictors for the random effects.

Similarly to Section 1.2.2, α = (α1, · · · , αK−1)′ , the vector of intercepts with

αK = 0. βk = (βk1, · · · , βkp)
′ a p × 1 fixed effects parameters vector with βK = 0,

β = (β ′1, · · · , β′K−1)′ , bik = (bik1, · · · , bikq)
′ a q × 1 vector of the random effects

for subject i in the k-th modality. We also assume that the random effects bik
follow a multivariate Gaussian distribution with mean 0 and covariance matrix Σbk

,

bik ∼ Nq(0,Σbk
). Then, bi = (b′i1, · · · , b

′
i,K−1)′ the (K − 1)q × 1 vector of random

effects for subject i follows a multivariate Gaussian distribution with mean 0 and

covariance matrix Σb, bi ∼ N(K−1)q(0,Σb), defined as:

Σb =


Σb1 Σb1b2 · · · Σb1bK−1

Σb2b1 Σb2 · · · Σb2bK−1... ... . . . ...
ΣbK−1b1 ΣbK−1b2 · · · ΣbK−1

 (4.2)

4.2.2 Cause-specific hazards sub-model

The survival sub-model is defined as a proportional hazards model for each CSH [95]

incorporated a subject-specific random effect.

Let Zi be a l× 1 vector of covariates, Ti = min(T ∗i , Ci) the right-censored event

time with Ci the censoring time of subject i and T ∗i the survival time of subject i, and

εi = δi ×Di with δi = 1{T ∗i ≤ Ci} the indicator of censorship and Di ∈ {1, · · · , g}

indicating the failure type of subject i. The sub-model for event d, d = 1, · · · , g, is

specified as:

λd(t|Zi, ui) = lim
h→0

h−1P
(
t ≤ Ti < t+ h, εi = d|Ti ≥ t, Zi, ui

)
= λ0d(t) exp

(
Z
′

iγd + νdui
) (4.3)
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where λd(t|Zi, ui) is the instantaneous risk of failure from cause d at time t given

the vector of covariates Zi and the frailty ui, λ0d(t) is an unspecified baseline hazard

function for event d and γ = (γ′1, · · · , γ
′
g)
′ is a vector of fixed regression coefficients.

In this formulation, the heterogeneities, that are not observed through the covariates

Zi, are accounted for by the random effect ui and the parameter νd. The νd represents

the effect of the random effect ui, and ν = (ν1, · · · , νg)
′ is therefore, the vector of

coefficients of the random effects ui with ν1 set to 1 to ensure identifiability [131].

Let Yi = (Yi1, · · · , Yimi
)′ , Y = (Y ′1 , · · · , Y

′
n)′ , T̃i = (Ti, εi)

′ and T̃ =

(T1, ε1, · · · , Tn, εn)′ . The association between longitudinal data Y and competing

risks data T̃ is modelled by assuming that the joint distribution of the random

effects of the two sub-models, bi and ui follows a multivariate Gaussian distribution:

ai =
(
bi
ui

)
∼ N(K−1)q+1

( ( 0
0
)

,
(

Σb Σ′bu
Σbu σ2

u

) )
(4.4)

4.3 Likelihood function, Estimation and Infer-
ence

Initial works in the joint models class have focused on a two-stage approach for the

estimation of the model parameters [40]. In this approach, in the first step, missing

values for all subjects at each time point are imputed using the assumed model

for the longitudinal data and all the information available at that time point. The

second step consists of fitting a Cox proportional hazards model treating the imputed

values as the true values of longitudinal outcome. However, since in the imputation

step, survival data is not employed, this approach may result in bias. Moreover, the

simulation studies have also shown the loss of efficiency of this approach [42, 144].

As a result, to eliminate this bias, a second approach based on the joint likeli-

hood from the two sub-models of longitudinal outcomes and survival data has been

developed. In a likelihood-based framework, the maximum likelihood method was

proposed for the parameter estimation [44, 145, 146]. An alternative method in the

literature is the Bayesian approach using Markov Chain Monte Carlo (MCMC) tech-

niques for estimating the parameters [42, 53, 128]. Both of these two approaches,

Bayesian and maximum likelihood, are based on specification of an appropriate joint
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likelihood of longitudinal outcomes and survival data.

A completely different approach was proposed by Tsiatis et al. [144] in which

the random effects are treated as nuisance parameters. In this work, we follow the

maximum likelihood estimation method for estimating the joint model of longitudi-

nal nominal outcomes and competing risks data, where each individual can fail from

one out of two or more possible event type and only the time to the first of these

events can be observed.

4.3.1 Likelihood formulation

Let Ψ = (α, β, γ, ν,Σ, λ01(t), · · · , λ0g(t)) be the vector of all parameters in (4.1)

and (4.3), where Σ is the variance-covariance matrix of ai defined in (5.4). We

assume that the longitudinal outcomes are independent of the competing risks sur-

vival data conditional on covariates and random effects. The joint distribution of

(Y, T̃ ) is completely determined by f(Y | a,Ψ), f(T̃ | a,Ψ) and f(a | Ψ) where f(.)

stands for the probability density function and a = (b, u)′ represents the vector of

random effects of the two sub-model. The observed-data likelihood function for Ψ,

conditional on the observed data (Yi, T̃i) for i = 1, · · · , n, is

L(Ψ|Y, T̃ ) ∝
n∏
i=1

f(Yi, T̃i|Ψ)

=
n∏
i=1

∫
a
f(Yi|T̃i, a,Ψ)f(T̃i|a,Ψ)f(a|Ψ)da

(4.5)

Since Y and T̃ are independent given the covariates, the Equation (4.5) can be

formulated as:

L(Ψ|Y, T̃ ) ∝
n∏
i=1

∫
a
f(Yi|a,Ψ)f(T̃i|a,Ψ)f(a|Ψ)da

=
n∏
i=1

∫
a

[ mi∏
j=1

K∏
h=1
{πijh}I(Yij=h)

]{ g∏
d=1

λd(Ti|Zi, u, γd, νd)I(εi=d)
}

× exp
[
−
∫ Ti

0
{

g∑
d=1

λd(t|Zi, ui, γd, νd)}dt
]

× 1√
(2π)(K−1)q+1|Σ|

exp
(
− 1

2a
′Σ−1a

)
da

(4.6)
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4.3.2 Estimation

We used the Maximum likelihood estimation approach to estimate the parameters.

Maximizing the observed-data likelihood, Equation (4.5), in the presence of inte-

gration over random effects ai is difficult. As a result and for simplification, the

complete-data likelihood conditional on the random effects will be considered.

L(Ψ|Y, T̃ , a) ∝
n∏
i=1

[ mi∏
j=1

K∏
k=1
{πijk}I(Yij=k)

]

×
{ g∏
d=1

λd(Ti|Zi, u)I(εi=d)
}

× exp
[
−
∫ Ti

0
{

g∑
d=1

λd(t|Zi, ui)}dt
]

× 1√
(2π)(K−1)q+1|Σ|

exp
(
− 1

2a
′

iΣ−1ai

)
(4.7)

The EM algorithm is used to obtain the maximum likelihood estimates of Ψ.

This algorithm iterates between E-steps and M-steps. The E-step computes the

expected logarithm of the complete-data likelihood conditional on the observed data

and the current estimates of the parameters. This means that in each iteration, the

conditional expectations of all functions of ai that appears in the log-likelihood must

be evaluated. We write the complete-data log-likelihood, l(Ψ | Y, T̃ , a) as:

l(Ψ|Y, T̃ , a) = logL(Ψ|Y, T̃ , a)

=
n∑
i=1

[( mi∑
j=1

K∑
k=1

I(Yij = k)log(πijk)
)

+
( g∑
d=1

I(εi = d)log(λd(Ti|Zi, u))
)

+
(
−
∫ Ti

0
{

g∑
d=1

λd(t|Zi, ui)}dt
)

+
(
log( 1√

(2π)(K−1)q+1|Σ|
)
(
− 1

2a
′

iΣ−1ai)
)]

(4.8)

where

log(πijk) =


0− log

(
1 +∑K−1

h=1 exp(X ′ijβh +W
′
ijbih)

)
if k = K

(X ′ijβk +W
′
ijbik)− log

(
1 +∑K−1

h=1 exp(X ′ijβh +W
′
ijbih)

)
if k 6= K

(4.9)
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In the (m+ 1)-th iteration of the E-step, we evaluate:

E
ai|Yi,T̃i,Ψ(m)

[
h(ai)

]
=
∫
h(ai)f(ai|Yi, T̃i,Ψ(m))dai

=
∫
h(ai)f(Yi, T̃i, ai|Ψ(m))dai

f(Yi, T̃i|Ψ(m))

=
∫
h(ai)f(Yi|ai,Ψ(m))f(T̃i|ai,Ψ(m))f(ai|Ψ(m))dai∫
f(Yi|ai,Ψ(m))f(T̃i|ai,Ψ(m))f(ai|Ψ(m))dai

(4.10)

for h(a) being a function of l(Ψ|Y, T̃ , a). Each integral (of dimension K + 1) of

Equation (4.10) can be approximated using Gauss-Hermite quadrature method. The

Gauss-Hermite method becomes intractable if the number of modalities of longitu-

dinal outcome exceeds 5. Thus, one could aggregate the modalities, if possible, to

reduce the dimension of integrals or use Monte Carlo techniques. Given the moti-

vating data in this study, we focus on the first approach.

The M-step estimates the new parameter by maximizing the expected log-

likelihood mentioned in Equation (4.10):

Ψ(m+1) = arg max
Ψ

E
a|Y,T̃ ,Ψ(m)

[
l(Ψ|Y, T̃ , a)

]
(4.11)

In this step, each cumulative baseline hazard function for cause d, H0d(t), is

assumed to be a step function with jumps at observed event times due to cause d,

d = 1, · · · , g:

H
(m+1)
0d (tdq) =

q∑
j=1

λ
(m+1)
0d (tdj)

=
q∑
j=1

ndj∑
r∈R

(
tdj

) exp
(
Z ′rγ

(m)
d

)
E
(

exp
(
ν

(m)
d ur

)) (4.12)

where qd is the number of distinct failure times due to the dth cause, td1 ≤ · · · ≤ tdqd

for d = 1, · · · , g and R(tdj) is the risk set at time tdj and ndj is the number of failures

due to cause d at time tdj.

The variance-covariance matrix Σ is updated as following:
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Σ(m+1)
bk

= 1
n

∑n
i=1E

(
bikb

′
ik

)
,

Σ(m+1)
bkbj

= 1
n

∑n
i=1E

(
bikb

′
ij

)
,

σ2(m+1)
u = 1

n

∑n
i=1E

(
u2
i

)
,

Σ(m+1)
bu = 1

n

∑n
i=1E

(
biui

)
(4.13)

where E stands for E
ai|Yi,T̃i,Ψ(m) .

Since no closed-form solution exists for score equations of α, β, γ and ν, a one-

step Newton-Raphson method is required to update the parameter estimations at

each iteration:

Ψ(m+1) = Ψ(m) − S
(m)
Ψ

I
(m)
Ψ

(4.14)

More details are given in Appendix C, Equations (C.1)–(C.10). The updated pa-

rameter estimation, Ψ(m+1) is then considered as the input of the E-step in the next

iteration. These two steps are iterated until the convergence criteria is met.

4.3.3 Standard Error Estimation

The baseline hazard function λ0d, being unspecified, the dimension of the maximum

likelihood estimates increases as the sample size increases and thus, the method

proposed by Louis [76] becomes time-consuming and computationally unattractive in

the calculation and inversion of this matrix. As a result, estimation of the standard

errors is based on a profile likelihood approach [43]. This approach aims to eliminate

a parameter of the likelihood function by replacing it with its maximum likelihood

estimator as a function of the remaining parameters.

We followed the approach applied in Elashoff et al. [45]. The parameter

vector Ψ =
(
α, β, γ, ν,Σ, λ01(t), · · · , λ0g(t)

)
was splitted into two components,

Ω =
(
α, β, γ, ν,Σ

)
and Λ =

(
λ01(t), · · · , λ0g(t)

)
. The variance-covariance matrix

of Ω is approximated by inverting the empirical Fisher information obtained from

the profile likelihood where the baseline hazards function have been profiled out.

The observed information matrix of Ω is approximated by
n∑
i=1

l(i)(Ω̂|Y, T̃ )l(i)(Ω̂|Y, T̃ )′
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given that l(i)(Ω̂|Y, T̃ ) is the observed score vector from the profile likelihood on the

i-th subject evaluated at Ω̂.

4.3.4 Estimation of marginal membership probabilities in
the longitudinal sub-sample

In a mixed-effects multinomial logistic model with quantitative predictors, it is of

interest to plot the estimated marginal probabilities. As explained in Hedeker [68],

the marginal probabilities, πmk , k = 1, · · · , K can be estimated in two steps. In

the first step, the subject-specific probabilities are calculated by replacing specific

values of covariates and estimated parameters, Ψ̂, in the Equation (4.1). These

probabilities are functions of the subject-specific random effects bi, π̂ssk (b). Then

the marginal probabilities can be obtained by integrating over the random effects

distribution of these subject-specific probabilities:

π̂mk =
∫
b
π̂ssk (b)f(b)db, for k = 1, · · · , K (4.15)

where f(b) denotes the probability density function of the random effects. Since we

assume that the random effects are normally distributed, we can resolve the integra-

tion by the numerical quadrature techniques, such as Gauss-Hermite quadrature.

Confidence intervals of these marginal probabilities can be estimated employing

delta method as follows. Let Ψ(l) = (Ψ1, · · · ,ΨP ) be the parameter vector of the

longitudinal sub-model. For the ease of notation we use Ψ instead of Ψ(l). Let Ψ0

be the true value of Ψ and Ψ̂ an estimation of Ψ obtained by the MLE. We have

the asymptotic property of the maximum likelihood estimators [147] as n −→∞:

I(Ψ0)1/2(Ψ̂−Ψ0) D−→ NP (0, IP ) (4.16)

where I(Ψ) is the Fisher information matrix, IP is the identity matrix of

rank P and D−→ denotes convergence in distribution. Thus for large n, Ψ̂ D∼

Ψ0 +I(Ψ0)−1NP (0, Ip), where D∼ is the shorthand for is approximately distributed as.

The marginal probability πmk , k = 1, · · · , K is approximately distributed as:
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πmk [Ψ̂]− πmk [Ψ0] D∼ πmk [Ψ0 +NP (0, I−1(Ψ0))]− πmk [Ψ0]
D∼ ∂Ψπ

m
k (Ψ0)NP (0, I−1(Ψ0))

D∼ NP
(
0, ∂Ψπ

m
k (Ψ0)I−1(Ψ0)(∂Ψπ

m
k (Ψ0))′

) (4.17)

with ∂Ψπ
m
k being the derivative of the function πmk with respect to the parameter

vector Ψ. This result is often called the delta method.

We can apply this result to the multivariate case where

Π(Ψ) =


πm1 (Ψ)
πm2 (Ψ)

...
πmK(Ψ)

 (4.18)

Then

Π(Ψ̂)− Π(Ψ0) D∼ N
(
0, ∂ΨΠ(Ψ0)I−1(Ψ0)(∂ΨΠ(Ψ0))′

)
(4.19)

with

∂ΨΠ(Ψ) =


(∇πm1 (Ψ))′
(∇πm2 (Ψ))′

...
(∇πmK(Ψ))′

 (4.20)

and

∇πmk (Ψ) =


∂πmk (Ψ)/∂Ψ1
∂πmk (Ψ)/∂Ψ2

...
∂πmk (Ψ)/∂ΨP

 (4.21)

Given the Equation (4.15) and by the so-called differentiation under the integral

sign, the gradient of the k-th marginal probability is

∂πmk (Ψ)
∂Ψp

= ∂
∫
b π̂

ss
k (b)f(b)db
∂Ψp

=
∫
b

∂

∂Ψp

(
π̂ssk (b)f(b)

)
db, for p = 1, · · · , P (4.22)
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In Section 4.5, we consider a particular case in which K = 3. We suppose a

random intercept bi and the variance-covariance matrix Σb defined as:(
σ2

1 σ12
σ12 σ2

2

)
Let M(α, β, b) = exp(α + X

′
β + b), the probabilities defined in Equation (4.1) are

as follows:
π1(b1, b2) = M(α1, β1, b1)

1 +M(α1, β1, b1) +M(α2, β2, b2)

π2(b1, b2) = M(α2, β2, b2)
1 +M(α1, β1, b1) +M(α2, β2, b2)

π3(b1, b2) = 1
1 +M(α1, β1, b1) +M(α2, β2, b2)

(4.23)

and

f(b1, b2) = 1
2π
√
σ2

1σ
2
2 − σ2

12

exp
( −1

2(σ2
1σ

2
2 − σ2

12)(σ2
2b

2
1 − 2σ12b1b2 + σ2

2b
2
2)
)

(4.24)

= (2π)−1(det)−1/2 exp
(
− 1

2(det)−1(σ2
2b

2
1 − 2σ12b1b2 + σ2

2b
2
2))
)

(4.25)

with det = det(Σb) = σ2
1σ

2
2 − σ2

12. Each parameter is replaced by its estimation

obtained by MLE. The derivative term presented in Equation (4.22) is calculated and

the Gauss-Hermite technique is used to approximate integration over the random

effects. Using Equation (4.19), we obtain the variance-covariance matrix and hence,

the 95% CI of the marginal probabilities.

As an alternative method we can use a parametric bootstrap. This could be

done by simulating B samples drawn from the estimated parameter, Ψ̂. Separated

analysis should be performed on each sample to obtain Ψ̂b, b = 1, · · · , B. For

each sample, marginal probabilities π̂m(b)
k , k = 1, · · · , K and b = 1, · · · , B, are

then estimated as explained earlier. The variance of marginal probabilities can be

approximated by the empirical variance

vark = 1
B

B∑
b=1

(
π̂
m(b)
k − ¯̂πmk

)2
(4.26)

with

¯̂πmk = 1
B

B∑
b=1

π̂
m(b)
k (4.27)

Given the fact that the latter approach requires much more time, in this dissertation,

the first approach is used to calculat confidence intervals.
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4.4 Simulation study

4.4.1 Design

We performed a simulation study in order to assess the effects of various censoring

rate in our proposed joint model. In particular, different scenarios were conducted

to investigate the performance of the proposed joint model for different censoring

rates.

The data were generated from two sub-models 4.1 and 4.3, while an administra-

tive censoring rate of 50% (scenario I) and 80% (scenario II) was superimposed.

The longitudinal data were simulated with 3 nominal classes, just as in the

motivating example. The covariate Xij = (xi, tij)
′ , where tij ∈ [0, 0.15] in scenario I

and tij ∈ [0, 0.70] in scenario II, up to 9 observation times, and xi ∼ Bernoulli(0.5).

We set Wij = 1, so that bik is the random intercept for subject i and category k.

Random effects bi and ui were simulated from a multivariate Gaussian distribution

using the mvrnorm function of the R software, setting the mean vector to 0 and the

covariance matrix Σ. For the longitudinal part, all πijk = P (Yij = k) were calculated

to be used in a multinomial experiment in order to generate longitudinal categories

(using the rmultinom function).

The competing risk data were simulated with scheme proposed in [148] with

constant baseline hazards λ01 = 0.15, λ02 = 0.25, Zi = (zi, xi)
′ with zi ∼ N(2, 1).

Table 4.1 shows the rate of each event type in our simulation.

Table 4.1 – Description of simulation scenarios

Scenario I Scenario II
Mean Proportion Mean Proportion

Repeated values 8.2 6.4
Categories (K = 3)

1 21.47 21.99
2 43.50 45.71
3 35.03 32.20

Event Type
0 82.73 50.85
1 10.33 27.99
2 6.94 21.16
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4.4.2 Results

Table 4.3 and Table 4.2 summarize the simulation results on 500 replications with

the sample size n = 500. The parameters of the proposed joint model and the sepa-

rate analysis, consisting of a nominal GLMM for longitudinal data and a Gaussian

frailty model for each cause-specific hazard ratio, were estimated respectively. The

estimated parameters, simulated bias, standard errors (SE), 95% confidence interval

coverage probability (CP), root-mean-square error (RMSE) and the comparison of

the mean square errors (MSE) of both joint and separate analysis are presented in

Table 4.3 and Table 4.2.

The joint model provided unbiased estimates for all the parameters in both

scenarios. The coverage probabilities reach their nominal value of 95%. On the

contrary, the separate analysis produces much larger bias in the time trend β12 and

β22 for the longitudinal sub-model. The non-ignorable missing values after death

cannot be taken into account in the nominal GLMM alone and therefore, produces

bias in the estimated time trend (β12 and β22). The standard error of the random

effect coefficient, ν2, is poorly estimated by the separate analysis. We observe that

the joint model provides us much more accurate estimates of the coefficient of the

random effect in the survival sub-model, ν2. The ratio of the MSE of the separate

analysis (MSES)/the MSE of the joint model (MSEJ) for the parameter ν2 is much

larger than 1. This indicates that combining longitudinal data and survival outcomes

improves the estimations of the survival sub-model.

Overall, the joint model performs better than the separate analysis as the MSEJ
is smaller than or equal to the MSES, or the ratio of MSES/MSEJ is larger than

or close to 1. Finally, we observe that in both joint model and separate analysis,

the estimation of the variance of the random effect in the survival sub-model, σ2
u,

is biased. Estimation of the variance of the survival random effect, σ2
u, requires a

larger sample size.



Table 4.2 – Comparison of the joint model and the separate analyses (sample size = 500, 50% administrative censoring)

Separate Analysis Joint Analysis
Parameter True Estimate Bias SE CP RMSE Estimate Bias SE CP RMSE MSES/MSEJ

Longitudinal
Fixed effects

θ1 -1.000 -0.975 -0.025 0.135 0.960 0.138 -1.000 -0.000 0.138 0.957 0.138 1.000
θ2 0.000 0.016 -0.016 0.111 0.968 0.112 0.000 -0.000 0.112 0.975 0.112 1.000
β11 0.200 0.159 0.041 0.151 0.962 0.156 0.191 0.009 0.153 0.953 0.153 1.043
β12 0.300 0.410 -0.110 0.243 0.939 0.267 0.308 -0.008 0.252 0.957 0.252 1.120
β21 0.100 0.081 0.019 0.133 0.960 0.134 0.099 0.001 0.134 0.961 0.134 1.001
β22 0.500 0.600 -0.100 0.205 0.941 0.228 0.516 -0.016 0.213 0.955 0.214 1.143

Random effects
Σb1 1.000 0.986 0.014 0.195 0.954 0.195 1.003 -0.003 0.198 0.959 0.198 0.969
Σb2 1.000 0.979 0.021 0.159 0.960 0.161 1.004 -0.004 0.161 0.967 0.161 0.992

Survival
Fixed effects

γ11 0.800 0.833 -0.033 0.109 0.876 0.114 0.815 -0.015 0.110 0.885 0.111 1.058
γ12 -1.000 -1.028 0.028 0.198 0.884 0.200 -0.997 -0.003 0.198 0.908 0.198 1.017
γ21 0.500 0.522 -0.022 0.123 0.899 0.125 0.510 -0.010 0.119 0.736 0.119 1.108
γ22 -1.000 -1.076 0.076 0.236 0.926 0.248 -1.038 0.038 0.226 0.926 0.230 1.171

Random effects
ν2 0.500 0.679 -0.179 1.296 0.867 1.308 0.498 0.002 0.494 0.818 0.494 7.008
σ2
u 0.500 0.770 -0.270 0.313 0.644 0.414 0.543 -0.043 0.324 0.721 0.326 1.605

Covariance
Σb1b2σ22 -0.500 -0.505 0.005 0.125 0.979 0.125 -0.503 0.003 0.127 0.973 0.127 0.974
Σb1u -0.200 - - - - - -0.196 -0.004 0.174 0.883 0.174 -
Σb2u -0.200 - - - - - -0.202 0.002 0.151 0.867 0.151 -



Table 4.3 – Comparison of the joint model and the separate analyses (sample size = 500, 80% administrative censoring)

Separate Analysis Joint Analysis
Parameter True Estimate Bias SE CP RMSE Estimate Bias SE CP RMSE MSES/MSEJ

Longitudinal
Fixed effects

θ1 -1.000 -0.997 -0.003 0.124 0.969 0.124 -1.003 0.003 0.125 0.975 0.125 0.984
θ2 0.000 0.000 -0.000 0.104 0.981 0.104 -0.005 0.005 0.104 0.981 0.105 0.981
β11 0.200 0.191 0.009 0.136 0.935 0.137 0.203 -0.003 0.137 0.944 0.137 1.000
β12 0.300 0.456 -0.156 0.963 0.956 0.975 0.309 -0.009 0.974 0.952 0.974 1.002
β21 0.100 0.095 0.005 0.121 0.979 0.121 0.106 -0.006 0.122 0.979 0.122 0.984
β22 0.500 0.629 -0.129 0.806 0.948 0.817 0.512 -0.012 0.815 0.944 0.815 1.005

Random effects
Σb1 1.000 0.993 0.007 0.166 0.965 0.166 1.000 0.000 0.168 0.971 0.168 0.976
Σb2 1.000 0.993 0.007 0.137 0.973 0.137 0.999 0.001 0.137 0.975 0.137 1.000

Survival
Fixed effects

γ11 0.800 0.873 -0.073 0.165 0.919 0.181 0.849 -0.049 0.163 0.919 0.170 1.133
γ12 -1.000 -1.077 0.077 0.331 0.939 0.340 -1.061 0.061 0.326 0.948 0.332 1.049
γ21 0.500 0.532 -0.032 0.244 0.969 0.247 0.509 -0.009 0.207 0.954 0.207 1.424
γ22 -1.000 -1.109 0.109 0.476 0.985 0.488 -1.087 0.087 0.418 0.979 0.427 1.306

Random effects
ν2 0.500 0.443 0.057 2.866 1.000 2.866 0.399 0.101 0.964 0.971 0.969 8.748
σ2
u 0.500 0.954 -0.454 0.416 0.687 0.615 0.714 -0.214 0.380 0.644 0.437 1.980

Covariance
Σb1b2 -0.500 -0.501 0.001 0.108 0.979 0.108 -0.498 -0.002 0.109 0.975 0.109 0.982
Σb1u -0.200 - - - - - -0.207 0.007 0.259 0.886 0.259 -
Σb2u -0.200 - - - - - -0.197 -0.003 0.224 0.877 0.224 -
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4.5 Application to the Cosmop-DADS database

We return to the analysis of the Cosmop-DADS database, our motivating database.

This database is the result of a record linkage to match the panel of DADS with the

causes of death database, using sex, date of birth, date of death and the commune

of residence at the time of death as key identifiers. The panel of DADS contains ap-

proximately 80% of all paid occupations in France. The Cosmop-DADS population

is a sample of the French population, composed of people for whom the vital status

and the date of death are available, employed at least once as salaried workers in

the semi-public and private sectors. All individuals in this database, 957 299 men

and 798 291 women, were followed-up to 2002 and the administrative censoring date

was set at 31 December 2002.

As explained in Section 1.4.4 of the Introduction, professional categories were

regrouped as upper class, intermediary occupations, clerk class, manual workers class

and the outside the scope class.

We illustrate an application of our proposed joint model using a large sample

size of the Cosmop-DADS database1. This subset contains all individuals without

missing professional episodes, followed-up at least for 10 years, at the age of 34 or

more at the entrance and with a transition rate higher than 0.1. Here, the transition

rate is defined as the ratio of the number of transitions between professional cate-

gories and the total number of follow-up years. For instance, if an individual was

working in total for 20 years, first in the manual workers class for 5 years and then

in the clerk class for 15 years, his transition rate is 1/20 = 0.05. Finally, there are

11 852 men and 9827 women included in this application, with 94% right censoring

rate.

4.5.1 Joint modelling on large-scale data

The joint modelling of longitudinal data and survival outcomes becomes almost

out of reach in large-scale data. The considered sample in this section is very

large compared to the existing applications of joint models on real databases. We

1It is worthy of note that the results obtained here are not comparable with those in Karimi et al.
[38](Chapter 3) as the considered populations in these two studies have not the same characteristics.
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therefore, propose an approach mimicking a meta analysis.

In this approach, the initial sample is stratified randomly into S equal size sub-

samples. The parameters of the joint model are estimated separately on each strat-

ified sub-sample, Ψ̂1, · · · , Ψ̂S, and then were combined. As the sub-samples are

chosen randomly, the combination of estimations is done by taking the mean of

the estimated parameters and therefore, the pooled estimation of the parameter is

obtained as follows:

Ψ̂∗ = 1
S

S∑
s=1

Ψ̂s (4.28)

As a consequence, their variance is estimated by:

var(Ψ̂∗) = 1
S2

S∑
s=1

varΨ̂s (4.29)

4.5.2 Results

We divide the initial sample into 10 stratified sub-samples. The sub-samples were

stratified by cause of death to preserve the proportion of different causes. Table 4.4

gives a description of these sub-samples. Two competing events, cancer mortality

Table 4.4 – Description of the meta-analysis sub-samples

Sample Total
Men 1184 11852

Death 101 1020
Cancer 48 488
Other causes 53 532

Women 982 9827
Death 24 242
Cancer 14 141
Other causes 10 101

and death by other causes were considered in this part. By using profession as

time-dependent variable in cause-specific Cox proportional hazards model, close

estimates were found for the upper class and the intermediary occupations [38], thus,

we combined these two classes. Therefore, three broad categories were considered:

upper class, clerk class and manual workers class, where the upper class were used

as the reference category. The longitudinal sub-model was adjusted for sex and age
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(mean-centered). The Cox model was adjusted for the variable sex and age was

used as the time-scale in this sub-model. To account for left truncation induced

by the delayed enteries, we include the age at the entry as the second variable of

adjustment.

The parameter estimations which resulted from fitting a joint model on each

sub-sample are presented in Figure 4.2 and Figure 4.1 for each covariate and the

pooled estimates of these 10 stratified sub-samples are summarized in Table 4.5.

In the longitudinal sub-model, the estimated intercept, θ2, has the following

interpretation: The estimated log-odds of the clerk class versus the upper class in

the reference group, i.e., men at the mean age, 48 years, is 1.044 (95% CI = [1.006,

1.082]). As highlighted earlier, the exponential of a fixed-effect coefficient in the

longitudinal sub-model is interpreted as, for those with the same random effect, the

increase in odds of falling into the modality of interest versus the reference modality

resulting from a one-unit increase in that covariate, holding the other covariates

constant. Therefore, the estimated sex effect in the clerk class versus the upper

class, -1.861, is interpreted as follows: Holding age constant, for those with the

same random effect, among men the odds of working in the clerk class rather than

in the upper class are 0.155 = exp(−1.861) (95% CI = [0.147, 0.163]) times (84.5%

lower than) the odds among women. This means that Men are less likely to work in

the clerk class versus the upper class than women. No difference was found between

men and women for working in the manual workers class versus the upper class.

For women, with the same random effect, a one-year increase in age multiplies

the odds of working in the manual workers class rather than working in the upper

class by 0.914 = exp(−0.090) (95% CI = [0.912, 0.915]), i.e. decreases this odds

by 8.6%. On the other hand, among men, with the same random effect, a one-year

increase in age multiplies the odds of working in the manual workers class rather

than working in the upper class by 0.926 = exp(−0.090 + 0.013) (95% CI = [0.922,

0.930]), i.e. decreases this odds by 7.4%. The relatively large σ2
11 = 5.879 and

σ2
22 = 3.325, random effects of the longitudinal sub-model, reflect strong positive

associations between the repeated values.
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(b) Age at Entry Effect

Figure 4.1 – Estimation of covariates effects: Survival sub-model
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Figure 4.2 – Estimation of covariates effects: Longitudinal sub-model
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For illustrating the difference between men and women over time, it is of interest

to plot the estimated membership probabilities of each professional category. As

explained in Section 4.3.4, each marginal probability was calculated by integrating

the subject-specific probabilities over the random effects distribution. Figure 4.3

plots the estimated probabilities of working in the upper class, working in the clerk

class or working in the manual workers class, for men and women, as a function of

age2.

As shown in Figure 4.3, the probability of working in the clerk class decreases

strongly for men over time, but it stays almost constant for women over time. The

probability of working in the clerk class is strongly higher among women than among

men. For working in the manual workers class, there is a more pronounced effect of

age among men than among women.

In the survival sub-model, significant effects of both covariates sex and age at

entry were observed for mortality by cancer and by other causes. The results show

that men had an increased cause-specific mortality compared to women, CSHRs =

3.803 [3.103, 4.662] and 4.574 [3.672, 5.697], respectively, for mortality from cancer

and other causes.

Even though, the estimates σ̂b1u, σ̂b2u or ν̂2 are not significant, it’s worth detailing

the interpretation of their signs. Notably a negative sign of the estimated covariance

between the random intercept bi2 in the longitudinal sub-model and the random

effect ui in the survival sub-model, σ̂b2u = −0.050, together with the positive ν̂2 =

0.210, coefficient of the random effect in the survival sub-model, highlights that

there is a lower cause-specific hazards for both death by cancers and death by other

causes for individuals working in the clerk class as compared to the upper class.

On the contrary, a positive sign of the estimated covariance σ̂b1u = 0.172 and the

positive ν̂2 highlights that, there is a higher cause-specific hazards for both death

from cancer and death from other causes for individuals working in the manual

workers class as compared to the upper class. By using the professional occupations

as time-dependent covariate in the Cox’s proportional hazards model, we find the

same conclusion, which is the higher cause-specific hazards of individuals in the

manual workers class compared to those in the upper class (Table 4.6).
2At each age, sum of the estimated marginal membership probabilities is equal to 1.
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Table 4.5 – Pooled estimates of 10 stratified sub-samples

(a) Longitudinal sub-model

Estimate [95% CI]
Upper class Reference category
Manual workers class
Intercept -0.113 [-0.151,-0.075]
Sex (Men=1, Women=0) 0.006 [-0.051, 0.063]
Age -0.090 [-0.092,-0.088]
Sex by Age 0.013 [ 0.011, 0.016]

Clerk class
Intercept 1.044 [ 1.006, 1.082]
Sex (Men=1, Women=0) -1.861 [-1.914,-1.808]
Age -0.040 [-0.042,-0.038]
Sex by Age -0.018 [-0.020,-0.016]

(b) Survival sub-model

CSHR [95% CI]
Fixed effects
Cancer
Sex 3.803 [3.103, 4.662]
Age at entry 1.247 [1.222, 1.273]

Other causes
Sex 4.574 [3.672, 5.697]
Age at entry 1.164 [1.143, 1.186]

Estimate [95% CI]
Random effect
ν2 0.210 [-0.027, 0.448]

(c) Estimated variance-covariance matrix of random effects

Σ̂ =


5.879 [ 5.669, 6.089] 2.817 [ 2.694, 2.941] 0.172 [−0.124, 0.468]

2.817 [ 2.694, 2.941] 3.325 [ 3.208, 3.442] −0.050 [−0.278, 0.178]

0.172 [−0.124, 0.468] −0.050 [−0.278, 0.178] 4.936 [ 4.552, 5.320]



bold indicates p-value < 0.05
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Figure 4.3 – Estimated membership probabilities in professional category
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Table 4.6 – Cox analysis on the same sample

Cancer
(n=620)

Other causes
(n=630)

CSHR† [95% CI] CSHR† [95% CI]
Sex
Women 1 1
Men 3.18 [2.61, 3.87] 5.10 [4.10, 6.35]

Age at entry 1.00 [0.98, 1.01] 1.02 [1.00, 1.03]

Current occupational class
Upper class 1 1
Manual workers class 1.42 [1.19, 1.69] 1.55 [1.30, 1.85]
Clerk class 0.87 [0.70, 1.08] 1.21 [0.98, 1.50]

bold indicates p-value < 0.05
†: age as the time-scale in Cox proportional hazards model
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4.6 Discussion

In this Chapter, we proposed an extension of the joint modelling of longitudinal

outcomes and competing risk data that handles longitudinal nominal data, such as

professional category, and a competing risk model, like time to death by cancer or

by other causes. In order to model the repeated observations collected in longitu-

dinal studies, by taking into account their correlation, both GLMMs and marginal

models as Generalized Estimating Equations (GEE) [61] have been proposed in the

literature. However, these analyses are limited in that they do not consider simulta-

neously longitudinal outcomes and time-to-event data. Conducting a joint analysis

of longitudinal outcomes and time-to-event data allows modelling these two types of

data together. A nominal GLMM was used to model the evolution of longitudinal

nominal observations over time. Longitudinal outcomes and survival data are then

linked by assuming a multivariate Gaussian distribution for the random effects of

the two aspects. For the sake of simplicity and given the Cosmop-DADS set also,

we considered time-independent covariates in the cause-specific hazards model, how-

ever, introducing time-dependent covariates in the survival model is feasible. This

can be achieved by evaluating the value of the time-dependent covariate at each

time point for the risk set at that time.

Parameter estimation was performed by MLE through an EM algorithm and a

one-step Newton-Raphson method. For numerical integrations in the expectation

step, Gauss-Hermite rules were applied. Simulation scenarios were carried out to

show that the proposed joint model provides less biased estimates than the separate

approach, even under high censoring rates.

A large sample size of administrative data on professional trajectories has moti-

vated this work. In the case of large datasets, the calculation of parameter estimates

of the joint model is out of reach, therefore, we adopted a meta-analysis strategy. We

applied the proposed joint model on stratified sub-samples of the large dataset and

then, combined the results by taking the average of the estimations. This approach

provides a practical application of the joint models for very large datasets.

In the current parameterization of our joint model, the value of the longitu-

dinal outcome is associated with the cause-specific hazard of an event of interest.
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However, as explained in Chapter 3, a professional trajectory can be character-

ized by the cumulative time spent in each professional category and the transition

rates between professional trajectories as well as the current professional category

itself. Furthermore, we would like to investigate whether other characteristics of in-

dividual’s professional trajectory may be associated with the cause-specific hazards.

Besides, recently some efforts have been made for situations with ’large n and small

p’, i.e., many observations and small number of explanatory variables, for Poisson

regression models [106]. Future research will focus on including these two aspects

in the joint modelling framework.

4.7 Software

To estimate the parameters and the standard errors, a program was devel-

oped in C programming language available in https://www.dropbox.com/sh/

ye8su77fa6wjffo/AAC2ClZWNinnsFWns9DjrG5Ca?dl=0. In order to reduce the cal-

culation time, OpenMP [149] was used. OpenMP is a specification for a set of

compiler directives, library routines, and environment variables that can be used to

specify high-level parallelism in Fortran and C/C++ programs.

https://www.dropbox.com/sh/ye8su77fa6wjffo/AAC2ClZWNinnsFWns9DjrG5Ca?dl=0
https://www.dropbox.com/sh/ye8su77fa6wjffo/AAC2ClZWNinnsFWns9DjrG5Ca?dl=0




Chapter 5
Joint modelling for large-scale

data using Poisson regression

models

There is an increasing attention to the analysis of large-scale data. The joint mod-

elling approaches are computationally intensive even in reasonable sample sizes [53,

57]. The parameter estimation in this class of models becomes almost out of reach

in large-scale datasets. In Chapter 4 we proposed an approach mimicking meta-

analysis to address the estimation problems in large data sets which was based

on stratifying the large database and estimating the parameter of interest in each

stratified sample.

In the proposed joint model in Chapter 4, a cause-specific proportional hazards

model was considered for the competing risks data. The Poisson regression model is

equivalent to the Cox model in which the baseline hazard function is approximated

by a piecewise constant function. The appeal of the Poisson regression model com-

pared to Cox model appears in the case where all covariates are categorical. That is

in large data sets, the hazard rate λ(t) of a Poisson regression can be estimated us-

ing aggregated data when covariates are categorical or categorized [106]. Using this

aggregated data saves a large amount of computation time. Based on this feature,

we derived an extension of the joint model for large-scale data.

93
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5.1 Poisson regression model

Let 0 = t0 < t1 < t2 < · · · < tL = τ be a partitioning of the study time interval

[0, τ ], a Poisson regression models assumes the baseline hazard for cause d to be a

step function with a constant value in each interval, i.e.,

λ0d(t) =
L∑
l=1

θld1{t ∈ (tl−1, tl]} (5.1)

with 1{t ∈ (tl−1, tl]} being the indicator of the l-th interval, θd = (θ1d, · · · , θLd)
′ and

θ = (θ′1, · · · , θ
′
g)
′ .

The likelihood of the Poisson regression when all covariates are categorized is

then:

L(θ, γ) =
C∏
c=1

L∏
l=1

g∏
d=1

{
{θld exp(γ′dZ(c))}O

(c)
ld exp

(
− θld exp(γ′dZ(c))R(c)

l

)}
(5.2)

where C is the number of distinct values of the covariate Z, Z(1), · · · , Z(C) and

O
(l)
ld =

∑
i:Zi=Z(c)

Oild, R
(c)
l =

∑
i:zi=Z(c)

Ril

Estimation of the parameters Φ = (θ, γ) is then based on aggregated quantities

O
(c)
ld and R(c)

c . When n is much larger than C the parameter estimation in Poisson

regression model is much less computational. This can be illustrated by the fact

that in a Poisson regression for the cause d, l × C tables containing the number

of deaths by each cause and the number of person-years at risk according to the

categorical covariate, are sufficient for the parameter estimation instead of working

with all observed data.

5.2 Large-scale joint modelling approach

We consider the same notation as previous chapter. We propose fitting the joint

model as follows:

• First, a set of representative trajectories of all observed trajectories, R, should

be obtained. This set should have the maximum coverage possible of all tra-

jectories. Let C = |R|

• The joint model, combined of three components
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– A baseline-category logit model for the c-th representative trajectory, as
the longitudinal sub-model (cf. 4.2.1), with

π
(c)
jk = P

(
Y

(c)
j = k|X(c)

j ,W
(c)
j , b

(c)
k

)
=


1

1+
∑K−1

h=1 exp
(
αh+X(c)′

j βh+W (c)′

j b
(c)
h

) if k = K

exp
(
αk+X(c)

′

j βk+W (c)
′

j b
(c)
k

)
1+
∑K−1

h=1 exp
(
αh+X(c)′

j βh+W (c)′

j b
(c)
h

) if k = 1, · · · ,K − 1

(5.3)

– A Poisson regression model with random effects as the cause-specific haz-

ards sub-model,
– and the variance-covariance matrix of random effects to describe the joint

association of longitudinal values and competing risks data,

a(c) =
(
b(c)

u(c)

)
∼ N(K−1)q+1

( (
0
0
)

,

(
Σb(c) Σ′

b(c)u(c)

Σb(c)u(c) σ2
u(c)

) )
(5.4)

is then performed based on the following likelihood:

L(Ψ|Y, T̃ , a) ∝
C∏
c=1

[m(c)∏
j=1

K∏
k=1
{π(c)

jk }
I(Y c

j =k)
]ω(c)

×
{ L∏
l=1

g∏
d=1

{
{θld exp(γ′dZ(c) + νdu

(c))}O
(c)
ld exp

(
− θld exp(γ′dZ(c) + νdu

(c))R(c)
l

)}}

× 1√
(2π)(K−1)q+1|Σ|

exp
(
− 1

2a
(c)′Σ−1a(c)

)
(5.5)

with ωc the percentage of trajectories represented by the c-th element of S and m(c)

the number of observed consecutive for the c-th trajectory.

5.3 Classification of longitudinal trajectories

Different clustering approaches can be found in the literature regarding type of

data, such as clustering approaches based on a mixture of regression models [58,

150]. Given the main objective of this part, that is searching for typical professional

trajectories, we focus on classification methods for longitudinal nominal trajectories.

The analysis of categorical sequences, also known as sequence analysis, is one of the

most discussed approaches for this purpose.

Sequence analysis has been initialized in social science since the work of Abbott

et al. [151], the so-called Optimal Matching (OM) analysis. The idea of sequence
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analysis is based on comparing life course trajectories according to different dissim-

ilarity metrics and clustering these trajectories based on the calculated distances

between them. One can identify typical trajectories through visual inspection [152].

However, when the number of trajectories in a cluster increases, finding visually

the typical trajectory may be difficult. To address this issue two approaches can

be considered: One could search for representative trajectories among the observed

trajectories, or creating an artificial trajectory that verify a supposed criteria. The

latter approach can produces a sequence that is not plausible in social context and

thus, we focus on the first approach.

5.3.1 Dissimilarity metrics

A dissimilarity metric is a method to evaluate the level of difference between two

trajectories. These metrics can be classified into three categories:

• Measuring the distance between the distributions of two sequences;

• Measuring the number of similar (common) patterns between two trajectories;

• Measuring the cost of operations transforming one trajectory to another, also

called as edit distances. These operations are substitutions, deletions and

insertions (indels), compression and expansions, and swaps.

A complete overview of these dissimilarity metrics can be found in Studer et al.

[153]. In this chapter, we focus on the most common approach in social science

which is OM.

OM which is an edit metric, aims to evaluate the distance between two trajecto-

ries x and y, d(x, y) as the minimum cost of transforming trajectory x to trajectory

y by operations substitution, insertion and deletion of states. The main drawback

of this approach is that these operations and their costs are not meaningful in soci-

ological terms [154, 155].

Let S = {s1, · · · , sN} be the list of the possible states. The dissimilarity between

two sequences x and y is then defined as:

dOM(x, y) = minj

lj∑
i=1

γ(Oj
i ) (5.6)
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where Oj
i are operations that transform trajectory x into y, lj is the necessary

number of operations and γ(Oj
i ) is the cost of operation O

j
i . These operations could

be substituting sm with sn (sm → sn), deleting sm (sm →) and inserting sm (→ sm).

Different strategies can be considered to determine the substitution costs. They

can be set based on a priori knowledge. For instance, this can be done when a

hierarchy order exists between the states. Even if by doing this, an order is set but

the costs of the operations are chosen arbitrary. Another option is to attribute a

value at each state and derive operation costs. A third solution would be using the

data.

For choosing the indel cost, most applications are based on a single indel cost

without giving any importance to the inserted or deleted state. As an alterna-

tive, one could choose state-dependent indel costs, by giving a higher cost to rare

states. By choosing different costs, variants of the OM, such as dynamic Ham-

ming distance [155], localized optimal matching [156], optimal matching sensitive to

spell length [157], optimal matching between sequences of spells [153] and optimal

matching between sequences of transitions [158] can be obtained.

5.3.2 Typical trajectories

Based on obtained distances between sequences, finding the sequences that represent

the trajectories is then possible. Given that the defined distances does not represent

the distribution of trajectories, typical trajectories can not be obtained directly using

these distances.

Gabadinho et al. [159] proposed the following approach for searching a typical

trajectory:

1. First, a representativeness score (frequency, neighbourhood density or central-

ity) for each distinct trajectory should be computed;

2. Sorting distinct trajectories according to their scores;

3. Starting from the most representative trajectory, keep from the list each tra-

jectory for which the distance with any already retained trajectory is greater

than a given threshold. Repeat until the expected overall coverage is attained.
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It is then necessary to evaluate obtained representative trajectories. The contri-

bution of the i-th representative trajectory ri to the overall absolute coverage is

defined as the number of trajectories among those assigned to ri that are in its

neighbourhood:

ci =
∑
j∈Ri

(
d(xj, ri) < δ

)
(5.7)

where δ is the neighbourhood radius for the overall coverage. Then the absolute

coverage c is defined as the sum of the ci and the overall coverage for n trajectories

is c/n.

5.4 Typical trajectories in Cosmop-DADS

We illustrate this approach by considering the sample of the previous chapter. This

sample contains 21 660 individuals with professional episodes in Upper class and

Intermediary occupations (UP), Clerk class (CL) and Manual workers class (MA).

Between these 21 660 professional trajectories, there are 16 625 distinct trajectories.

For calculating the dissimilarities between these trajectories, we consider OM with

a unit indel cost and the substitution cost matrix based on the transition rates.
UP → CL→ MA→

UP → 0.000 1.708 1.746
CL→ 1.708 0.000 1.712
MA→ 1.746 1.712 0.000

(5.8)

Figure 5.1 shows the representative trajectory between all observed trajectories. We

used the medoid [160], which is the criteria to find the most central sequence. This

typical trajectory represents the indivdual who was followed for 7 years, starting in

the Manusal workers class at first, moving to the Clerk class and working in this class

for 2 years, and then going back to the Manual workers class. This individual worked

in the Upper class for the last 3 years of his follow-up. It is clear that the professional

trajectory of this individual is not representative of all professional trajectories. The

overall coverage of this trajectory, obtained for a neighbourhood radius of 10% of the

maximal possible distance is about 2% which is not satisfactory. Thus, we should

search for a set of representative trajectory with more satisfied coverage.

Figures 5.2 and 5.3 show representative trajectories for 25%, 50%, 80% and

90% of coverage, respectively. As it is shown in these Figures, 5, 22, 208 and 469
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Figure 5.1 – Representation of typical trajectory

trajectories could represent 21660 professional trajectories for having respectively,

25%, 50%, 80% and 90% coverages. Based on these results, having 469 representative

professional trajectories coveraging almost all trajectories, is an advantage as the

proposed joint model in this chapter can be applied. It is obvious that running

through 469 individuals is much easier and needs less computational time.



100Chapter 5. Joint modelling for large-scale data using Poisson regression models

5 
re

pr
es

en
ta

tiv
e(

s)
 (

n=
21

66
0)

Y.1 Y.3 Y.5 Y.7 Y.9 Y.11 Y.13 Y.15 Y.17 Y.19 Y.21 Y.23 Y.25

Criterion=density, coverage=26%

●

●

●

0 11 21 32 43

B
A

(A) Discrepancy (mean dist. to center)
(B) Mean dist. to representative seq.

(a) Coverage 25%

22
 r

ep
re

se
nt

at
iv

e(
s)

 (
n=

21
66

0)

Y.1 Y.3 Y.5 Y.7 Y.9 Y.11 Y.13 Y.15 Y.17 Y.19 Y.21 Y.23 Y.25

Criterion=density, coverage=50.9%

●

●

●

●● ●

●●●

0 11 21 32 43

B
A

(A) Discrepancy (mean dist. to center)
(B) Mean dist. to representative seq.

(b) Coverage 50%

Figure 5.2 – Representative trajectories for different coverage percentage
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Figure 5.3 – Representative trajectories for different coverage percentage
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5.5 Discussion

In this Chapter, we proposed an approach to address the calculation problem of

joint models in large-scale data. Since we are dealing with professional trajectories

with less than 5 occupational category, and due to the fact that some transitions be-

tween occupational categories are more likely to happen compared to the others, the

trajectories are likely to repeat. Therefore, we considered an OM approach to find

representative trajectories of all observed trajectories and apply the presented joint

model on the obtained set of representative trajectories. The practical implementa-

tion and evaluation of the joint model are the object of ongoing research. A future

research should focus on a comparison of different approaches to classify professional

trajectories and their impact on the proposed joint modelling framework.





General discussion and future

research

In this dissertation we have presented and discussed different approaches to address

an epidemiological question that is measuring the association between life-course

socio-professional trajectories and cause-specific mortality. From an epidemiologi-

cal point of view, this has already been studied in different countries using limited

number of stages in professional trajectories, such as professional position at labour

market and professional position at midlife, while in this study we add the op-

portunity to consider the whole professional trajectory defined as the consecutive

occupational positions of an individual during his/her life course.

Some of previous studies on this subject were based on life course models, namely

critical period, accumulation model and social mobility model. In this context, we

proposed defining variables to capture these life-course hypothesis (Chapter 3). The

duration of time spent in occupational classes was considered as a measure of socioe-

conomic exposure and the transition rates between occupational classes was defined

to take into account the social mobility dimension. Through our analysis we showed

that long-time exposure to poor socioeconomic position is strongly associated with

adult mortality, especially for cardiovascular diseases. In addition, our analysis also

provided support for the critical period and social mobility model. Additional anal-

ysis showed the necessity of separating downward and upward analysis by defining

an order between professional categories if possible.

Regarding the bias due to using internal time-dependent variables in Cox pro-

portional hazards model, we focused on joint modelling for longitudinal nominal

104
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outcomes and competing risks data. Occupational episodes were incorporated in a

longitudinal sub-model to model professional trajectory. Longitudinal sub-model is

then linked with competing risks model through unobserved random effects (Chap-

ter 4). Furthermore, this approach provides additional summary measures, such

as estimation of membership probabilities of each professional category taking into

account competing risks data. In the parameterization of the proposed joint model,

the value of the longitudinal outcome was associated with the hazard of an event

of interest. Further research should focus on associating different characteristics of

longitudinal trajectories, such as the accumulation of time spent in each category,

with cause-specific mortality. An alternative approach would be the use of dynamic

landmarking [161], that aims to estimate the effect of a time-dependent exposure

covariate on survival. This approach is interesting, however building a super-model

and landmark data set in such large database could require data preprocessing.

One drawback of joint modelling is the computational burden required by mul-

tiple integrations. We therefore, proposed in Chapter 4 an approach mimicking

meta analysis to handle large-scale data in the joint modelling framework. This

approach gives us the opportunity to apply the joint model on a sample of 20 000

individuals. In the same objective, that is fitting joint model on large-scale data,

we propose a procedure based on the technical advantage of the poisson regression

model (Chapter 5). First a set of representative trajectories of all observed longitu-

dinal trajectories should be obtained by means of clustering methods following by a

joint model on these representative trajectories.

We should note that an important condition in using any statistical method is the

availability of software. Implemented R codes are available to perform the procedures

proposed in Chapter 3. In the joint modelling framework, different packages have

already been implemented, but none of them covers the proposed model in Chapter 4

for longitudinal nominal data. presented simulation results and application on real

data in Chapter 4 are obtained using a C code implemented for this purpose. Also,

software implementation for the proposed model in Chapter 5 is part of ongoing

work. Once finished, different simulation scenarios as well as application on the

same dataset as the dataset used in Chapter 4 will be performed to evaluate the

approach.
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It is also of interest to mention the life histories framework, such as multi-state

models [94, 162]. The idea is based on considering life course trajectories as a se-

quence of states and transitions between these states. In a multi-state framework,

a separate state should be considered for each professional category and for each

competing risk. The competing risks states are absorbing states and professional

categories are transient. The parameters of interest in this model are transition

rates between states that are estimated from data by counting the number of events

and individuals at risk. One of the interesting R packages in life history data analysis

is Biograph. In addition to the calculation of the parameter of interest in multi-state

model, Biograph provides functions for visualisation of life histories data using func-

tions of the TraMineR pacakge [118]. TraMineR also provides the model-free data

mining method of sequence analysis. In an exploratory analysis, the visualisation

and classification of professional trajectories in the Cosmop-DADS was studies pre-

viously [163]. As stated by Eerola et al. [164], these approaches complement each

other, as one focuses on finding typical patterns and the other focuses on transition

rates between states.

It is necessary to emphasize that the utility of approaches discussed in this disser-

tation depends on the quality and characteristics of the data. The main limitation

of our study was the structure of the motivating database. The Cosmop-DADS

database does not cover all professional categories and thus, contains about 40%

missing data that could not be completed by standard methods such as imputa-

tion approaches. In order to better estimate the association between professional

trajectories and cause-specific mortality, there is need for improving the quality

of database. Linking this database with datasets on educational level, on salaries

and on quality of life would improve the precision of socioeconomic categories and

thus more precise results on the association between socio-professional trajectories

and adults mortality can be obtained. The new Permanent Demographic Sam-

ple (EDP++) that has been constructed linking census and civil state data with

DADS could be the alternative dataset for future studies. Moreover, in the pres-

ence of professional episodes (time-dependent exposure) and salaries (confounding

time-dependent covariates), methods on causal inference such as Marginal Struc-

tural Model (MSM) [165] could go further in the analysis of this association. In this
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context, some approaches has also been proposed for competing risks problem [166].

It is also of interest to mention the mortality data used in this study registered

by INSERM-CépiDc. We focused on these data and especially on the underlying

cause of death as an indicator of mortality. Being exhaustive and the fact that these

data are recorded on the entire country uniformly are their main advantages. The

mortality data gives the possibility for international comparisons of epidemiological

and demographical studies. However, It is often difficult to define a single underlying

cause of death, especially in elderly populations where they suffer from multiple

pathologies [167]. In this context, the analyses of multiple causes of death should

be considered. Recently, Moreno-Betancur et al. [168] discussed this issue based

on an empirical approach. Employing multiple causes of death in joint modelling

framework could be the object of study in the future.





Bibliography

[1] Marang-van de Mheen, P. J., Davey Smith, G., Hart, C. L., and Gunning-
Schepers, L. J. (1998). Socioeconomic differentials in mortality among men
within Great Britain: time trends and contributory causes. J Epidemiol Com-
munity Health, 52(4): 214–218.

[2] Martikainen, P., Valkonen, T., and Martelin, T. (2001). Change in male and
female life expectancy by social class: decomposition by age and cause of
death in Finland 1971-95. J Epidemiol Community Health, 55(7): 494–499.

[3] Davey Smith, G., Bartley, M., and Blane, D. (1990). The Black report on
socioeconomic inequalities in health 10 years on. BMJ, 301(6748): 373–377.

[4] Desplanques, G. (1984). L’inégalité sociale devant la mort. estat, 162(1): 29–
50.

[5] Menvielle, G., Luce, D., Geoffroy-Perez, B., Chastang, J.-F., and Leclerc, A.
(2005). Social inequalities and cancer mortality in France, 1975–1990. Cancer
Causes Control, 16(5): 501–513.

[6] Lerlerc, A., Lert, F., and Goldberg, M. (1984). Les inégalités socials devant
la mort en grande-bretagne et en France. Soc Sci Med, 19(5): 479–487.

[7] Michel, E., Jougla, E., and Hatton, F. (1996). Mourir avant de vieillir. Insee
première, (429).

[8] Leclerc, A., Fassin, D., Granjean, H., Kaminski, M., and Lang, T. (2000).
Les inégalités sociales de santé. La Découverte.

[9] Kunst, A. E. and Mackenbach, J. P. (1994). The size of mortality differences
associated with educational level in nine industrialized countries. Am J Public
Health, 84(6): 932–937.

[10] Leclerc, A., Lert, F., and Fabien, C. (1990). Differential mortality: some com-
parisons between England and Wales, Finland and France, based on inequal-
ity measures. Int J Epidemiol, 19(4): 1001–1010.

[11] Mackenbach, J. P., Kunst, A. E., Cavelaars, A. E., Groenhof, F., and Geurts,
J. J. (1997). Socioeconomic inequalities in morbidity and mortality in western
Europe. The Lancet, 349(9066): 1655–1659.

[12] Leclerc, A., Chastang, J.-F., Menvielle, G., and Luce, D. (2006). Socioeco-
nomic inequalities in premature mortality in France: have they widened in
recent decades? Soc Sci Med, 62(8): 2035–2045.

[13] Mackenbach, J. P., Bos, V., Andersen, O., Cardano, M., Costa, G., Harding,
S., Reid, A., Hemstrom, O., Valkonen, T., and Kunst, A. E. (2003). Widening

109



110 Bibliography

socioeconomic inequalities in mortality in six Western European countries.
Int J Epidemiol, 32(5): 830–837.

[14] Pappas, G., Queen, S., Hadden, W., and Fisher, G. (1993). The increasing
disparity in mortality between socioeconomic groups in the United States,
1960 and 1986. N Engl J Med, 329(2): 103–109.

[15] Menvielle, G., Chastang, J. F., Luce, D., Leclerc, A., and Edisc Group (2007).
Changing social disparities and mortality in France (1968-1996): cause of
death analysis by educational level. Rev Epidemiol Sante Publique, 55(2):
97–105.

[16] Monteil, C. and Robert-Bobée, I. (2005). Les différences sociales de mortalité:
en augmentation chez les hommes, stables chez les femmes. Insee première,
(1025).

[17] Galobardes, B., Shaw, M., Lawlor, D. A., and Lynch, J. W. (2006). Indicators
of socioeconomic position (part 1). J Epidemiol Community Health, 60(1): 7–
12.

[18] Stringhini, S., Dugravot, A., Shipley, M., Goldberg, M., Zins, M., Kivimëki,
M., Marmot, M., Sabia, S., and Singh-Manoux, A. (2011a). Health be-
haviours, socioeconomic status, and mortality: further analyses of the British
Whithehall II and the French GAZEL prospective cohorts. PLoS Med, 8(2):
e1000419.

[19] Steenland, K., Henley, J., and Thun, M. (2002). All-Cause and Cause-specific
Death Rates by Educational Status for Two Million People in Two American
Cancer Society Cohorts, 1959–1996. Am J Epidemiol, 156(1): 11–21.

[20] Kunst, A. E., Groenhof, F., Mackenbach, J. P., and Leon, D. A. (1998).
Occupational class and cause specific mortality in middle aged men in 11
European countries: comparison of population based studies: EU Working
Group on Socioeconomic Inequalities in Health. BMJ, 316(7145): 1636–1642.

[21] Davey Smith, G., Hart, C., Blane, D., Gillis, C., and Hawthorne, V. (1997).
Lifetime socioeconomic position and mortality: prospective observational
study. BMJ, 314(7080): 547–552.

[22] Melchior, M., Berkman, L. F., Kawachi, I., Krieger, N., Zins, M., Bonenfant,
S., and Goldberg, M. (2006). Lifelong socioeconomic trajectory and prema-
ture mortality (35-65 years) in France: findings from the GAZEL Cohort
Study. J Epidemiol Community Health, 60(11): 937–944.

[23] Blane, D., Harding, S., and Rosato, M. (1999a). Does social mobility affect
the size of the socioeconomic mortality differential?: evidence from the Office
for National Statistics Longitudinal Study. J R Stat Soc Ser A Stat Soc,
162(1): 59–70.

[24] Lynch, J. W., Kaplan, G. A., Cohen, R. D., Kauhanen, J., Wilson, T. W.,
Smith, N. L., and Salonen, J. T. (1994). Childhood and adult socioeconomic
status as predictors of mortality. The Lancet, 343(8896): 524–527.

[25] Galobardes, B., Lynch, J. W., and Davey Smith, G. (2008). Is the association
between childhood socioeconomic circumstances and cause-specific mortality
established? Update of a systematic review. J Epidemiol Community Health,
62(5): 387–390.

[26] Stringhini, S., Dugravot, A., Kivimaki, M., Shipley, M., Zins, M., Gold-
berg, M., Ferrie, J. E., and Singh-Manoux, A. (2011b). Do different measures



Bibliography 111

of early life socioeconomic circumstances predict adult mortality? Evidence
from the British Whitehall II and French GAZEL studies. J Epidemiol Com-
munity Health, 65(12): 1097–1103.

[27] Singh-Manoux, A., Ferrie, J. E., Chandola, T., and Marmot, M. (2004). So-
cioeconomic trajectories across the life course and health outcomes in midlife:
evidence for the accumulation hypothesis? Int J Epidemiol, 33(5): 1072–1079.

[28] Geoffroy-Perez, B., Imbernon, E., and Goldberg, M. (2005). “Projet Cosmop :
cohorte pour la surveillance de la mortalité par profession. Premiers résultats
de l’étude de faisabilité á partir de l’Échantillon démographique permanent”.
Département santé-travail, InVS.

[29] Kalbfleisch, J. and Prentice, R. (2002). The Statistical Analysis of Failure
Time Data. 2nd ed. Wiley, New York.

[30] Kuh, D., Ben-Shlomo, Y., Lynch, J., Hallqvist, J., and Power, C. (2003). Life
course epidemiology. J Epidemiol Community Health, 57(10): 778–783.

[31] Galobardes, B., Lynch, J. W., and Davey Smith, G. (2004). Childhood So-
cioeconomic Circumstances and Cause-specific Mortality in Adulthood: Sys-
tematic Review and Interpretation. Epidemiol Rev, 26(1): 7–21.

[32] Pollitt, R. A., Rose, K. M., and Kaufman, J. S. (2005). Evaluating the evi-
dence for models of life course socioeconomic factors and cardiovascular out-
comes: a systematic review. BMC Public Health, 5(1): 1–13.

[33] Heslop, P., Davey Smith, G., Macleod, J., and Hart, C. (2001). The socioeco-
nomic position of employed women, risk factors and mortality. Soc Sci Med,
53(4): 477–485.

[34] Blau, P. M. (1956). Social Mobility and Interpersonal Relations. Am Social
Rev, 21(3): 290–295.

[35] Blane, D., Davey Smith, G., and Hart, C. (1999b). Some Social and Physical
Correlates of Intergenerational Social Mobility: Evidence from the Western
of Scotland Collaborative Study. Sociology, 33(1): 169–183.

[36] Fox, A. J., Goldblatt, P. O., and Jones, D. R. (1985). Social class mortality
differentials: artefact, selection or life circumstances? J Epidemiol Community
Health, 39(1): 1–8.

[37] Smith, J. P. (1999). Healthy Bodies and Thick Wallets: The Dual Relation
Between Health and Economic Status. J Econ Perspect, 13(2): 144–166.

[38] Karimi, M., Geoffroy-Perez, B., Fouquet, A., Latouche, A., and Rey, G.
(2015). Socioprofessional trajectories and mortality in France, 1976-2002:
a longitudinal follow-up of administrative data. J Epidemiol Community
Health, 69(4): 339–346.

[39] DeGruttola, V. and Tu, X. M. (1994). Modelling progression of CD4-
lymphocyte count and its relationship to survival time. Biometrics, 50(4):
1003–1014.

[40] Tsiatis, A. A., DeGruttola, V., and Wulfsohn, M. S. (1995). Modeling the
Relationship of Survival to Longitudinal Data Measured with Error. Appli-
cations to Survival and CD4 Counts in Patients with AIDS. J Am Stat Assoc,
90(429): 157–169.

[41] Laird, N. M. and Ware, J. H. (1982). Random-Effects Models for longitudinal
Data. Biometrics, 38(4): 963–974.



112 Bibliography

[42] Faucett, C. L. and Thomas, D. C. (1996). Simultaneously Modelling Cen-
sored Survival Data and Repeatedly Measured Covariates: a Gibbs Sampling
Approach. Stat Med, 15(15): 1663–1685.

[43] Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event
Data: With Applications in R. 1st ed. Chapman & Hall/CRC.

[44] Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longi-
tudinal measurements and event time data. Biostatistics, 1(4): 465–480.

[45] Elashoff, R. M., Li, G., and Li, N. (2007). An approach to joint analysis of
longitudinal measurements and competing risks failure time data. Stat Med,
26(14): 2813–2835.

[46] Li, N., Elashoff, R. M., Li, G., and Saver, J. (2010). Joint modeling of longi-
tudinal ordinal data and competing risks survival times and analysis of the
NINDS rt-PA stroke trial. Stat Med, 29(5): 546–557.

[47] Han, J., Slate, E. H., and Peña, E. A. (2007). Parametric latent class joint
model for a longitudinal biomarker and recurrent events. Stat Med, 26(29):
5285–5302.

[48] Proust-Lima, C., Dartigues, J.-F., and Jacqmin-Gadda, H. (2015). Joint mod-
eling of repeated multivariate cognitive measures and competing risks of de-
mentia and death: a latent process and latent class approach. Stat Med, 35(3):
382–398.

[49] Brown, E. R., Ibrahim, J. G., and DeGruttola, V. (2005). A flexible B-spline
model for multiple longitudinal biomarkers and survival. Biometrics, 61(1):
64–73.

[50] Zeng, D. and Cai, J. (2005). Simultaneous Modelling of Survival and Lon-
gitudinal Data with an Application to Repeated Quality of Life Measures.
Lifetime Data Anal, 11(2): 151–174.

[51] Faucett, C. L., Schenker, N., and Elashoff, R. M. (1998). Analysis of Cen-
sored Survival Data with Intermittently Observed Time-Dependent Binary
Covariates. J Ame Stat Assoc, 93(442): 427–437.

[52] Li, N., Elashoff, R. M., Li, G., and Tseng, C.-H. (2012). Joint analysis of
bivariate longitudinal ordinal outcomes and competing risks survival times
with nonparametric distributions for random effects. Stat Med, 31(16): 1707–
1721.

[53] Murawska, M. and Rizopoulos, D. (2013). “Extensions in Joint Modeling
of Survival and Longitudinal Outcomes”. PhD thesis. Erasmus University
Rotterdam.

[54] Desrosières, A. and Thévenot, L. (2002). Les catégories socio-professionnelles.
5th ed. La Découverte.

[55] Rose, D. and O’Reilly, K. (1998). The ESRC review of government social
classifications. Office for National Statistics/ESRC.

[56] Cambois, E. (2004a). Occupational and educational differentials in mortality
in French elderly people: Magnitude and trends over recent decades. Demogr
Res, S2: 277–304.

[57] McCrink, L. M., Marshall, A. H., and Cairns, K. J. (2013). Advances in
Joint Modelling: A Review of Recent Developments with Application to the
Survival of End Stage Renal Disease Patients. Int Stat Rev, 81(2): 249–269.



Bibliography 113

[58] Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal
Data. Springer, New York.

[59] Diggle, P. J., Heagerty, P., Liang, K. Y., and Zeger, S. L. (2002). Analysis of
longitudinal data. Oxford University Press, New York.

[60] Agresti, A. (2013). Categorical Data Analysis. 3rd ed. Hoboken, NJ, USA:
Wiley-Blackwell.

[61] Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using gen-
eralized linear models. Biometrika, 73(1): 13–22.

[62] McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed.
Chapman & Hall/CRC.

[63] Pendergast, J. F., Gange, S. J., Newton, M. A., Lindstrom, M. J., Palta, M.,
and Fisher, M. R. (1996). A survey of methods for analyzing clustered binary
response data. Int Stat Rev, 64(1): 89–118.

[64] McCullagh, P. (1980). Regression models for ordinal data (with discussion).
J R Stat Soc Series B Methodol, 42(2): 109–142.

[65] Stukel, T. (1993). Comparison of methods for the analysis of longitudinal
interval count data. Stat Med, 12(14): 1339–1351.

[66] Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitu-
dinal Data. Springer, New York.

[67] Hartzel, J., Agresti, A., and Caffo, B. (2001). Multinomial logit random ef-
fects models. Stat Modelling, 1(2): 81–102.

[68] Hedeker, D. (2003). A mixed-effects multinomial logistic regression model.
Stat Med, 22(9): 1433–1446.

[69] Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based
on Generalized Linear Models. Springer.

[70] Hedeker, D. and Gibbons, R. D. (1994). A random-effects ordinal regression
model for multilevel analysis. Biometrics, 50(4): 933–944.

[71] Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and
S-PLUS. Springer.

[72] McCulloch, C. E., Searle, S. R., and Neuhaus, J. M. (2008). Generalized,
Linear, and Mixed Models. 2nd ed. Wiley.

[73] Hartley, H. O. (1958). Maximum Likelihood Estimation from Incomplete
Data. Biometrics, 14(2): 174–194.

[74] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood
from Incomplete Data via the EM Algorithm. J R Stat Soc Series B Methodol,
39(1): 1–38.

[75] Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Hobo-
ken, NJ, USA: John Wiley & Sons, Inc.

[76] Louis, T. A. (1982). Finding the Observed Information Matrix when Using
the EM Algorithm. J R Stat Soc Series B Methodol, 44(2): 226–233.

[77] Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. Ann
Stat, 7(1): 1–26.

[78] McLachlan, G. J. and Krishnan, T. (2008). The EM Algorithm and Exten-
sions. 2nd ed. Wiley Series in Probability and Statistics.

[79] Pinheiro, J. C. and Bates, D. M. (1995). Approximations to the Loglikelihood
Function in the Nonlinear Mixed Effects Model. J Comput Graph Stat, 4(1):
12–35.



114 Bibliography

[80] Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3): 581–592.
[81] Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing

Data. 2nd ed. New York, USA: John Wiley & Sons, Inc.
[82] O., S. and W., A. M. (1998). A comparison of the random-effects pattern

mixture model with last-observation-carried-forward (LOCF) analysis in lon-
gitudinal clinical trials with dropouts. J Biopharm Stat, 8(4): 545–563.

[83] Little, R. J. A. (1995). Modeling the drop-out mechansim in repeated-
measures studies. J Am Stat Assoc, 90(431): 1112–1121.

[84] — (1993). Pattern-Mixture Models for Multivariate Incomplete Data. J
Am Stat Assoc, 88(421): 125–134.

[85] Wu, M. C. and Carroll, R. J. (1988). Estimation and Comparaison of Changes
in the Presence of Informative Right Censoring by Modeling the Censoring
Process. Biometrics, 44(1): 175–188.

[86] Hogan, J. W. and Laird, N. M. (1997a). Mixture models for the joint distri-
bution of repeated measures and event times. Stat Med, 16(3): 239–257.

[87] Diggle, P. J. (1998). “Recent advances in the Statistical Analysis of Medical
Data”. Ed. by B. S. Everitt and G. Dunn. Arnold, London. Chap. Dealing
with missing values in longitudinal studies: pp. 203–228.

[88] Molenberghs, G., Beunckens, C., Sotto, C., and Kenward, M. G. (2008). Every
missingness not at random model has a missingness at random counterpart
with equal fit. J R Stat Soc Series B Stat Methodol, 70(2): 371–388.

[89] Hogan, J. W. and Laird, N. M. (1997b). Model-based approaches to analyzing
incomplete longitudinal and failure time data. Stat Med, 16(3): 259–272.

[90] Raghunathan, T., Lepkowski, J. M., Van Hoewyk, J., and Solenberger, P.
(2001). A Multivariate Technique for Multiply Imputing Missing Values. Us-
ing a Sequence of Regression Models. Surv Methodol, 27: 85–95.

[91] Martikainen, P. (1990). Unemployment and mortality among Finnish men,
1981-5. BMJ, 301(6749): 407–411.

[92] Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N. (1993). Statistical
Models Based on Counting Processes. New York, USA: Springer-Verlag.

[93] Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis: Techniques
for Censored and Truncated Data. New York, USA: Springer-Verlag.

[94] Beyersmann, J., Schumacher, M., and Allignol, A. (2012). Competing risks
and multistate models with R. New York, USA: Springer.

[95] Prentice, R. L., Kalbfleisch, J. D., Peterson, A. V., Flournoy, N., Farewell,
V. T., and Breslow, N. E. (1978). The analysis of failure times in the presence
of competing risks. Biometrics, 34(4): 541–554.

[96] Aalen, O. O. (1987). Dynamic modelling and causality. Scand Actuar J,
1987(3-4): 177–190.

[97] Andersen, P. K. and Keiding, N. (2012a). Interpretability and importance of
functionals in competing risks and multistate models. Stat Med, 31(11-12):
1074–1088.

[98] Ambrogi, F., Biganzoli, E., and Boracchi, P. (2008). Estimates of clinically
useful measures in competing risks survival analysis. Stat Med, 27(30): 6407–
6425.



Bibliography 115

[99] Wolbers, M., Koller, M. T., Witteman, J. C., and Steyerberg, E. W. (2009).
Prognostic models with competing risks: methods and application to coronary
risk prediction. Epidemiology, 20(4): 555–561.

[100] Andersen, P. K., Geskus, R. B., de Witte, T., and Putter, H. (2012b). Com-
peting risks in epidemiology: possibilities and pitfalls. Int J Epidemiol, 41(3):
861–870.

[101] Latouche, A., Allignol, A., Beyersmannc, J., Labopin, M., and P., F. J. (2013).
A Competing risk analysis should report results on all cause-specific hazards
and cumulative incidence functions. J Clin Epidemiol, 66(6): 648–653.

[102] Cox, D. R. (1972). Regression models and life-tables. J R Stat Soc Series B
Methodol, 34(2): 187–220.

[103] Schoenfeld, D. (1982). Partial Residuals for The Proportional Hazards Re-
gression Model. Biometrika, 69(1): 239–241.

[104] Beyersmann, J. and Scheike, T. H. (2014). “Handbook of Survival Analysis”.
Ed. by J. P. Klein, H. C. Van Houwelingen, J. G. Ibrahim, and T. H. Scheike.
Chapman & Hall/CRC Handbooks of Modern Statistical Methods. Chap. 8
Classical regression models for competing risks.

[105] Whitehead, J. (1980). Fitting Cox’s Regression Model to Survival Data using
GLIM. J R Stat Soc Ser C Appl Stat, 29(3): 268–275.

[106] Gron, R., Gerds, T. A., and Andersen, P. K. (2016). Misspecified poisson
regression models for large-scale registry data: inference for ’large n and small
p’. Stat Med, 35(7): 1117–1129.

[107] Cortese, G. and Andersen, P. K. (2010). Competing Risks ans Time-
dependent Covariates. Biom J, 51(6): 138–158.

[108] Vaupel, J. W., Manton, K. G., and Stallard, E. (1979). The Impact of Het-
erogeneity in Individual Frailty In the Dynamics of Mortality. Demography,
16(3): 439–454.

[109] Clayton, D. G. (1978). A model for association in bivariate life tables and its
application in epidemiological studies of familial tendency in chronic disease
incidence. Biometrika, 65(1): 141–151.

[110] Klein, J. P. (1992). Semiparametric Estimation of Random Effects Using the
Cox Model Based on the EM Algorithm. Biometrics, 48(3): 795–806.

[111] Guo, G. and Rodriguez, G. (1992). Estimating a multivariate proportional
hazards model for clustered data using the EM algorithm, with an application
to child survival in Guatemala. J Am Stat Assoc, 87(420): 969–976.

[112] Sargent, D. J. (1998). A General Framework for Random Effects Survival
Analysis in the Cox Proportional Hazards Setting. Biometrics, 54(4): 1486–
1497.

[113] Ma, R., Krewski, D., and Burnett, R. T. (2003). Random Effects Cox Models:
A Poisson Modelling Approach. Biometrika, 90(1): 157–169.

[114] Crowther, M. J., Riley, R. D., Staessen, J. A., Wang, J., Gueyffier, F., and
Lambert, P. C. (2012). Individual patient data meta-analysis of survival data
using Poisson regression models. BMC Med Res Methodol, 12(34): 1–14.

[115] Ben-Shlomo, Y. and Kuh, D. (2002). A life course approach to chronic disease
epidemiology: conceptual models, empirical challenges and interdisciplinary
perspectives. Int J Epidemiol, 31(2): 285–293.



116 Bibliography

[116] Mishra, G. D., Cooper, R., and Kuh, D. (2010). A life course approach to
reproductive health: Theory and methods. Maturitas, 65: 92–97.

[117] Niedzwiedz, C. L., Katikireddi, S. V., Pell, J. P., and Mitchell, R. (2012). Life
course socio-economic position and quality of life in adulthood: a systematic
review of life course models. BMC Public Health, 12: 628.

[118] Gabadinho, A., Mueller, N. S., Studer, M., and Ritschard, G. (2009). Package
’TraMineR’.

[119] Thiébaut, A. C. M. and Bénichou, J. (2004). Choice of time-scale in Cox’s
model analysis of epidemiologic cohort data: a simulation study. Stat Med,
23(24): 3803–3820.

[120] Therneau, T. M. (2013). A Package for Survival Analysis in S. url: http:
//CRAN.R-project.org/package=survival.

[121] Raghunathan, T. E., Solenberger, P. W., and Hoewyk, J. V. (2007). IVEware:
Imputation and variance estimation software. url: http://www.isr.umich.
edu/src/smp/ive.

[122] Beebe-Dimmer, J., Lynch, J. W., Turrell, G., Lustgarten, S., Raghunathan,
T., and Kaplan, G. A. (2004). Childhood and Adult Socioeconomic Condi-
tions and 31-Year Mortality Risk in Women. Am J Epidemiol, 159(5): 481–
490.

[123] Claussen, B., Davey, S., and Thelle, D. (2003). Impact of childhood and adult-
hood socioeconomic position on cause specific mortality: the Oslo Mortality
Study. J Epidemiol Community Health, 57(1): 40–45.

[124] Davey Smith, G., Hart, C., Blane, D., and Hole, D. (1998). Adverse socioeco-
nomic conditions in childhood and cause specific adult mortality: prospective
observational study. BMJ, 316(7145): 1631–1635.

[125] Mackenbach, J. P. et al. (1999). Socioeconomic inequalities in mortality
among women and among men: an international study. Am J Public Health,
89(12): 1800–1806.

[126] Pensola, T. and Martikainen, P. (2003). Cumulative social class and mortality
from various causes of adult men. J Epidemiol Community Health, 57(9): 745–
751.

[127] Cambois, E. (2004b). Careers and mortality in France: evidence on how far
occupational mobility predicts differentiated risks. Soc Sci Med, 58(12): 2545–
2558.

[128] Brown, E. R. and Ibrahim, J. G. (2003). Bayesian approaches to joint cure-
rate and longitudinal models with applications to cancer vaccine trials. Bio-
metrics, 59(3): 686–693.

[129] Rizopoulos, D. and Ghosh, P. (2011). A Bayesian semiparametric multivariate
joint model for multiple longitudinal outcomes and a time-to-event. Stat Med,
30(12): 1366–1380.

[130] Andrinopoulou, E.-R., Rizopoulos, D., Takkenberg, J. J. M., and Lesaffre,
E. (2014). Joint modeling of two longitudinal outcomes and competing risk
data. Stat Med, 33(18): 3167–3178.

[131] Elashoff, R. M., Li, G., and Li, N. (2008). A Joint Model for Longitudinal
Measurements and Survival Data in the Presence of Multiple Failure Types.
Biometrics, 64(3): 762–771.

http://CRAN.R-project.org/package=survival
http://CRAN.R-project.org/package=survival
http://www.isr.umich.edu/src/smp/ive
http://www.isr.umich.edu/src/smp/ive


Bibliography 117

[132] Chi, Y.-Y. and Ibrahim, J. G. (2006). Joint Models for Multivariate Longi-
tudinal and Multivariate Survival Data. Biometrics, 62(2): 432–445.

[133] Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures
and recurrent events processes in the presence of death, with application
to a study on acquired immune deficiency syndrome. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 58(1): 65–81.

[134] Yu, M., Taylor, J. M. G., and Sandler, H. M. (2008). Individual Prediction
in Prostate Cancer Studies Using a Joint Longitudinal Survival-Cure Model.
J Am Stat Assoc, 103(481): 178–187.

[135] Song, H., Peng, Y., and Tu, D. (2012). A new approach for joint modelling
of longitudinal measurements and survival times with a cure fraction. Can J
Stat, 40(2): 207–224.

[136] Law, N. J., Taylor, J. M. G., and Sandler, H. (2002). The joint modeling of
a longitudinal disease progression marker and the failure time process in the
presence of cure. Biostatistics, 3(4): 547–563.

[137] Chen, M.-H., Ibrahim, J. G., and Sinha, D. (2004). A new joint model for
longitudinal and survival data with a cure fraction. J Multivar Anal. Special
Issue on Semiparametric and Nonparametric Mixed Models, 91(1): 18–34.

[138] Chen, Q., May, R. C., Ibrahim, J. G., Chu, H., and Cole, S. R. (2014). Joint
modeling of longitudinal and survival data with missing and left-censored
time-varying covariates. Stat Med, 33(26): 4560–4576.

[139] Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and
time-to-event data: an overview. Stat Sinica, 14: 809–834.

[140] Diggle, P. J., Sousa, I., and Chetwynd, A. G. (2008). Joint modelling of
repeated measurements and time-to-event outcomes: the fourth Armitage
lecture. Stat Med, 27(16): 2981–2998.

[141] Wu, L., Liu, W., Yi, G. Y., Huang, Y., Wu, L., Liu, W., Yi, G. Y., and
Huang, Y. (2012). Analysis of Longitudinal and Survival Data: Joint Mod-
eling, Inference Methods, and Issues, Analysis of Longitudinal and Survival
Data: Joint Modeling, Inference Methods, and Issues. Journal of Probability
and Statistics, 2012: 17 pages.

[142] Sousa, I. (2011). A Review on Joint Modelling of Longitudinal Measurements
and Time-to-event. Revstat Stat J, 9(1): 57–81.

[143] Proust-Lima, C., Séne, M., Taylor, J. M. G., and Jacqmin-Gadda, H. (2014).
Joint latent class models for longitudinal and time-to-event data: a review.
Stat Methods Med Res, 23(1): 74–90.

[144] Tsiatis, A. and Davidian, M. (2001). A semiparametric estimator for the
proportional hazards model with longitudinal covariates measured with error.
Biometrika, 88(2): 447–458.

[145] Wulfsohn, M. S. and Tsiatis, A. A. (1997). A Joint Model for Survival and
Longitudinal Data Measured with Error. Biometrics, 53(1): 330–339.

[146] Hsieh, F., Tseng, Y.-K., and Wang, J.-L. (2006). Joint Modeling of Survival
and Longitudinal Data: Likelihood Approach Revisited. Biometrics, 62(4):
1037–1043.

[147] Davison, A. C. (2008). Statistical Models. Cambridge University Press.



118 Bibliography

[148] Beyersmann, J., Latouche, A., Buchholz, A., and Schumacher, M. (2009).
Simulating competing risks data in survival analysis. Stat Med, 28(6): 956–
971.

[149] Dagum, L. and Menon, R. (1998). "OpenMP": an industry standard API for
shared-memory programming. IEEE Comput Sci Eng, 5(1): 46–55.

[150] Spiessens, B., Verbeke, G., and Komárek, A. (2002). A SAS-macro for the
classification of longitudinal profiles using mixtures of normal distributions
in nonlinear and generalised linear mixed models. Technical Report, Biosta-
tistical Center, Catholic Univ. Leuven, Leuven.

[151] Abbott, A. and Forrest, J. (1986). Optimal matching methods for historical
sequences. J Interdiscipl Hist, 16(3): 471–494.

[152] Abbott, A. and Hrycak, A. (1990). Measuring resemblance in sequence data:
An optimal matching analysis of musician’s carrers. Am J Soc, 96(1): 144–
185.

[153] Studer, M. and Ritschard, G. (2016). What matters in differences between
life trajectories: a comparative review of sequence dissimilarity measures. J
R Stat Soc Ser A Stat Soc, 179(2): 481–511.

[154] Abbott, A. and Tsay, A. (2000). Sequence Analysis and Optimal Matching
Methods in Sociology: Review and Prospect. Sociol Methods Res, 29(1): 3–33.

[155] Lesnard, L. (2010). Setting Cost in Optimal Matching to Uncover Contem-
poraneous Socio-Temporal Patterns. Sociol Methods Res, 38(3): 389–419.

[156] Hollister, M. (2009). Is Optimal Matching Suboptimal? Sociol Methods Res,
38(2): 235–264.

[157] Halpin, B. (2010). Optimal Matching Analysis and Life-Course Data: The
Importance of Duration. Sociol Methods Res, 38(3): 365–388.

[158] Biemann, T. (2011). A transition-oriented approach to optimal matching.
Sociol methodol, 41(1): 195–221.

[159] Gabadinho, A. and Ritschard, G. (2013). “Searching for typical life trajecto-
ries applied to childbirth histories”. Gendered life course - Between individu-
alization and standardization. Ed. by R. Levy and E. Widmer. Vienna: LIT:
A European approach applied to Switzerland: pp. 287–312.

[160] Kaufman, L. and Rousseeuw, P. J. (2008). “Partitioning Around Medoids
(Program PAM)”. Finding Groups in Data: An Introduction to Cluster Anal-
ysis. Hoboken, NJ, USA: John Wiley & Sons, Inc.

[161] Houwelingen, H. C. van (2007). Dynamic Prediction by Landmarking in
Event History Analysis. Scand Journal Stat, 34(1): 70–85.

[162] Willekens, F. (2014). Multistate Analysis of Life Histories with R. Springer.
[163] Karimi, M. (2012). “Trajectoire socio-professionnelle: Description et associ-

ation avec la mortalité”. MA thesis. Paris, France: University of Paris VI
(UPMC).

[164] Eerola, M. and Helske, S. (2012). Statistical analysis of life history calendar
data. Stat Methods Med Res: 1–27.

[165] Robins, J. M., Hernan, M. A., and Brumback, B. (2000). Marginal Structural
Models and Causal Inference in Epidemiology. Epidemiology, 11(5): 550–560.

[166] Moodie, E. E. M., Stephens, D. A., and Klein, M. B. (2014). A marginal
structural model for multiple-outcome survival data: assessing the impact of



Bibliography 119

injection drug use on several causes of death in the Canadian Co-infection
Cohort. Stat Med, 33(8): 1409–1425.

[167] Alpérovitch, A., Bertrand, M., Jougla, E., Vidal, J.-S., Ducimtrère, P.,
Helmer, C., Ritchie, K., Pavillon, G., and Tzourio, C. (2009). De we re-
ally know the cause of death of the very old? Comparison between official
mortality statistics and cohort study classification. Eur J Epidemiol, 70(11):
669–675.

[168] Moreno-Betancur, M., Sadaoui, H., Piffaretti, C., and Rey, G. (2016). Sur-
vival analysis with multiple causes of death: Extending the competing risks
model. Epidemiology. In press.





Part IV

Appendices

121



Appendix A
Descriptive Statistics of the

Cosmop-DADS database

Table A.1 – Description of Cosmop-DADS

Men (%) Women (%)
(n = 957 299) (n = 798 291)

Born in the French territory 806 513 (84.23) 704 943 (88.31)
Temporary exit 556 830 (69.04) 466 385 (66.16)
Definive exit 335 858 (41.64) 308 464 (43.76)
Death 89 639 (11.11) 29 218 (4.14)

Born outside the French territory 150 786 (15.75) 93 348 (11.69)
Temporary exit 92 497 (61.34) 53 635 (57.46)
Permanent exit 94 042 (62.37) 51 765 (55.45)
Death 9557 (6.34) 2401 (2.57)
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Table A.2 – Description of missing professional episodes in Cosmop-DADS database

Men (%) Women (%)
(n =16 892 644) (n =13 425 495)

Miscoded occupations 97 020 (0.57) 103 459 (0.77)
At home job 40 (0.04) 66 (0.06)
No Full-time job 699 (0.72) 483 (0.47)
Sporadic job 5585 (5.76) 6085 (5.88)
Part-time job 26 449 (27.26) 42 646 (41.22)
Full-time job 64 247 (66.22) 54 179 (52.37)

Craftsmen and trade-related
workers

172 890 (1.02) 43 835 (0.33)

Temporary exit 2 773 523 (16.42) 2 521 171 (18.78)
Year 1981 396 681 (14.30) 268 374 (10.65)
Year 1983 401 304 (14.47) 283 772 (11.26)
Year 1990 448 501 (16.17) 358 769 (14.21)
Other 1 527 037 (55.06) 1 610 256 (63.88)

Permanent exit 4 304 526 (25.48) 3 608 861 (26.88)

Regional and local authorities 322 518 (1.91) 451 364 (3.36)
Miscoded occupation 20 449 (6.34) 22 391 (4.96)
Craftsmen and trade-related workers 72 (0.02) 23 (0.01)
Upper class 31 881 (9.89) 24 804 (5.50)
Intermediary occupations 88 858 (27.55) 107 449 (23.80)
Clerk class 140 205 (43.47) 285 657 (63.29)
Manual workers class 41 053 (12.73) 11 040 (2.44)
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Figure A.1 – Distibution of age by observed professional situation



Appendix B
Supplementary results for the

study of Chapter 3

125



Table B.1 – Cancer mortality hazard ratios among men according to socio-professional trajectories

Cancer
(n=3116)

Lung
(n=848)

UADT
(n=472)

Other
(n=1796)

CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI]
Occupation at beginning of follow-up
Upper class 1 1 1 1
Intermediary occupations 0.98 [0.77, 1.24]∗∗∗ 0.88 [0.58, 1.36]∗∗∗ 3.13 [1.06, 9.23]∗∗∗ 0.89 [0.66, 1.19]∗∗∗
Clerk class 1.02 [0.81, 1.29]∗∗∗ 0.98 [0.64, 1.50]∗∗∗ 3.34 [1.14, 9.77]∗∗∗ 0.91 [0.68, 1.22]∗∗∗
Manual workers class 1.10 [0.88, 1.37]∗∗∗ 0.93 [0.62, 1.39]∗∗∗ 3.84 [1.32,11.15]∗∗∗ 1.01 [0.76, 1.33]∗∗∗

Current occupational classa
Upper class 1 1 1 1
Intermediary occupations 1.10 [0.88, 1.37]∗∗∗ 1.27 [0.84, 1.93]∗∗∗ 2.79 [0.93, 8.33]∗∗∗ 0.97 [0.74, 1.28]∗∗∗
Clerk class 1.50 [1.16, 1.93]∗∗∗ 1.71 [1.02, 2.85]∗∗∗ 5.38 [1.82,15.91]∗∗∗ 1.28 [0.93, 1.75]∗∗∗
Manual workers class 1.26 [1.02, 1.56]∗∗∗ 1.69 [1.11, 2.57]∗∗∗ 3.92 [1.40,11.00]∗∗∗ 1.06 [0.81, 1.39]∗∗∗
Outside the scope 2.21 [1.81, 2.71]∗∗∗ 2.06 [1.39, 3.06]∗∗∗ 1.26 [4.60,34.49]∗∗∗ 1.82 [1.42, 2.34]∗∗∗

Cumulative time spent in occupational class
Upper class 1 1 1 1
Intermediary occupations 1.20 [0.98, 1.46]∗∗∗ 1.20 [0.84, 1.72]∗∗∗ 0.52 [0.27, 0.98]∗∗∗ 1.39 [1.07, 1.80]∗∗∗
Clerk class 1.53 [1.23, 1.89]∗∗∗ 1.12 [0.74, 1.71]∗∗∗ 1.64 [0.98, 2.73]∗∗∗ 1.73 [1.31, 2.30]∗∗∗
Manual workers class 1.75 [1.48, 2.06]∗∗∗ 1.56 [1.13, 2.15]∗∗∗ 1.93 [1.27, 2.93]∗∗∗ 1.76 [1.42, 2.19]∗∗∗
Outside the scope 1.33 [1.12, 1.57]∗∗∗ 1.26 [0.91, 1.74]∗∗∗ 1.19 [0.78, 1.83]∗∗∗ 1.41 [1.13, 1.76]∗∗∗

Social mobility indicatorb
Low (= 0) 1 1 1 1
Medium 0.96 [0.87, 1.06]∗∗∗ 0.95 [0.79, 1.14]∗∗∗ 1.08 [0.85, 1.38]∗∗∗ 0.95 [0.83, 1.08]∗∗∗
High (> 1.11) 1.07 [0.97, 1.18]∗∗∗ 1.00 [0.83, 1.21]∗∗∗ 1.18 [0.90, 1.54]∗∗∗ 1.10 [0.97, 1.25]∗∗∗

∗(p < 0.05), ∗∗(p < 0.01), ∗∗∗(p < 0.001)
a: observed with two-year time lag
b: transition rates between occupational classes (10 years of follow-up)
c: adjusted for occupation at the beginning, current occupational class, cumulative time spent in occupational class, social mobility
indicator and observation periods
†: age as the time-scale in Cox proportional hazards model



Table B.2 – Cancer mortality hazard ratios among women according to socio-professional trajectories

Cancer
(n=1388)

Lung
(n=133)

UADT
(n=39)

Breast
(n=447)

Other
(n=769)

CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI]
Occupation at beginning of follow-up
Upper class 1 1 1 1 1
Intermediary occupations 1.02 [0.71, 1.47]∗∗∗ 1.71 [0.58, 5.42]∗∗∗ - 0.63 [0.35, 1.13]∗∗∗ 1.17 [0.70, 1.97]∗∗∗
Clerk class 1.07 [0.76, 1.52]∗∗∗ 1.27 [0.40, 4.00]∗∗∗ - 0.83 [0.48, 1.43]∗∗∗ 1.18 [0.72, 1.96]∗∗∗
Manual workers class 1.35 [0.94, 1.94]∗∗∗ 2.38 [0.76, 7.46]∗∗∗ - 1.00 [0.57, 1.77]∗∗∗ 1.43 [0.85, 2.41]∗∗∗

Current occupational classa
Upper class 1 1 1 1 1
Intermediary occupations 0.77 [0.55, 1.09]∗∗∗ 1.07 [0.35, 3.21]∗∗∗ - 0.77 [0.44, 1.36]∗∗∗ 0.73 [0.45, 1.18]∗∗∗
Clerk class 0.75 [0.54, 1.04]∗∗∗ 1.07 [0.37, 3.12]∗∗∗ - 0.72 [0.42, 1.25]∗∗∗ 0.69 [0.44, 1.10]∗∗∗
Manual workers class 0.71 [0.49, 1.04]∗∗∗ 1.28 [0.40, 4.12]∗∗∗ - 0.61 [0.31, 1.18]∗∗∗ 0.74 [0.44, 1.24]∗∗∗
Outside the scope 1.20 [0.86, 1.66]∗∗∗ 1.51 [0.54, 4.23]∗∗∗ - 1.06 [0.62, 1.82]∗∗∗ 1.21 [0.76, 1.91]∗∗∗

Cumulative time spent in occupational class
Upper class 1 1 1 1 1
Intermediary occupations 1.12 [0.82, 1.53]∗∗∗ 0.86 [0.35, 2.16]∗∗∗ - 1.21 [0.71, 2.06]∗∗∗ 1.15 [0.74, 1.80]∗∗∗
Clerk class 1.16 [0.88, 1.54]∗∗∗ 0.80 [0.36, 1.78]∗∗∗ - 1.34 [0.83, 2.15]∗∗∗ 1.18 [0.79, 1.76]∗∗∗
Manual workers class 1.10 [0.81, 1.49]∗∗∗ 0.54 [0.24, 1.24]∗∗∗ - 1.18 [0.69, 2.03]∗∗∗ 1.17 [0.76, 1.79]∗∗∗
Outside the scope 1.08 [0.82, 1.43]∗∗∗ 0.73 [0.34, 1.60]∗∗∗ - 1.25 [0.78, 2.00]∗∗∗ 1.05 [0.70, 1.57]∗∗∗

Social mobility indicatorb
Low (= 0) 1 1 1 1 1
Medium 0.85 [0.73, 0.99]∗∗∗ 0.68 [0.42, 1.11]∗∗∗ - 0.95 [0.73, 1.24]∗∗∗ 0.81 [0.65, 1.01]∗∗∗
High (> 0.91) 1.04 [0.91, 1.18]∗∗∗ 1.07 [0.71, 1.63]∗∗∗ - 1.14 [0.92, 1.43]∗∗∗ 0.96 [0.80, 1.13]∗∗∗

∗(p < 0.05), ∗∗(p < 0.01), ∗∗∗(p < 0.001)
a: observed with two-year time lag
b: transition rates between occupational classes (10 years of follow-up)
c: adjusted for occupation at the beginning, current occupational class, cumulative time spent in occupational class, social mobility indicator and observation
periods
†: age as the time-scale in Cox proportional hazards model



Table B.3 – All-cause and cause-specific mortality hazard ratios among men according to socio-professional trajectories considering an order between
occupational categories

All-cause
(n=12 162)

Cardiovascular
(n=1452)

Cancer
(n=3116)

External causes
(n=4026)

Other causes
(n=3568)

HRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI]
Occupation at beginning of follow-up
Upper class 1 1 1 1 1
Intermediary occupations 1.01 [0.81, 1.26]∗∗∗ 0.96 [0.40, 2.32]∗∗∗ 1.04 [0.72, 1.49]∗∗∗ 0.91 [0.60, 1.38]∗∗∗ 1.46 [1.15, 1.85]∗∗∗
Clerk class 1.16 [0.94, 1.44]∗∗∗ 0.95 [0.40, 2.22]∗∗∗ 1.17 [0.82, 1.66]∗∗∗ 0.95 [0.63, 1.44]∗∗∗ 1.83 [1.45, 2.31]∗∗∗
Manual workers class 1.38 [1.09, 1.74]∗∗∗ 1.36 [0.55, 3.33]∗∗∗ 1.58 [1.05, 2.23]∗∗∗ 0.98 [0.63, 1.53]∗∗∗ 1.88 [1.49, 2.38]∗∗∗

Current occupational classa
Upper class 1 1 1 1 1
Intermediary occupations 1.02 [0.80, 1.30]∗∗∗ 2.11 [0.74, 6.07]∗∗∗ 0.77 [0.54, 1.08]∗∗∗ 1.37 [0.83, 2.25]∗∗∗ 1.05 [0.84, 1.30]∗∗∗
Clerk class 0.91 [0.72, 1.15]∗∗∗ 1.28 [0.44, 3.77]∗∗∗ 0.71 [0.51, 1.00]∗∗∗ 1.48 [0.90, 2.43]∗∗∗ 1.48 [1.18, 1.87]∗∗∗
Manual workers class 0.96 [0.73, 1.25]∗∗∗ 2.04 [0.65, 6.39]∗∗∗ 0.65 [0.44, 0.97]∗∗∗ 1.50 [0.86, 2.59]∗∗∗ 0.95 [0.76, 1.17]∗∗∗
Outside the scope 1.64 [1.30, 2.07]∗∗∗ 2.12 [0.74, 6.06]∗∗∗ 1.14 [0.82, 1.61]∗∗∗ 2.04 [1.25, 3.32]∗∗∗ 2.94 [2.42, 3.59]∗∗∗

Cumulative time spent in occupational class
Upper class 1 1 1 1 1
Intermediary occupations 0.97 [0.77, 1.21]∗∗∗ 1.57 [0.61, 4.04]∗∗∗ 1.11 [0.81, 1.52]∗∗∗ 0.86 [0.54, 1.35]∗∗∗ 0.81 [0.64, 1.02]∗∗∗
Clerk class 1.10 [0.90, 1.33]∗∗∗ 2.58 [1.11, 6.00]∗∗∗ 1.13 [0.86, 1.50]∗∗∗ 0.79 [0.52, 1.19]∗∗∗ 1.54 [1.24, 1.91]∗∗∗
Manual workers class 1.07 [0.87, 1.31]∗∗∗ 1.94 [0.82, 4.62]∗∗∗ 1.07 [0.78, 1.45]∗∗∗ 1.06 [0.70, 1.62]∗∗∗ 1.44 [1.21, 1.73]∗∗∗
Outside the scope 1.19 [0.98, 1.43]∗∗∗ 3.10 [1.38, 6.93]∗∗∗ 1.05 [0.79, 1.39]∗∗∗ 1.02 [0.69, 1.51]∗∗∗ 1.34 [1.12, 1.61]∗∗∗

Social mobility indicator (positive)b
Low (= 0) 1 1 1 1 1
Medium 0.86 [0.77, 0.95]∗∗∗ 0.82 [0.58, 1.15]∗∗∗ 0.83 [0.71, 0.97]∗∗∗ 1.08 [0.86, 1.36]∗∗∗ 0.91 [0.82, 1.01]∗∗∗
High (> 0.59) 0.86 [0.76, 0.98]∗∗∗ 0.78 [0.50, 1.21]∗∗∗ 0.89 [0.73, 1.09]∗∗∗ 0.90 [0.70, 1.17]∗∗∗ 0.89 [0.79, 1.01]∗∗∗

Social mobility indicator (negative)b
Low (= 0) 1 1 1 1 1
High ( 6= 0) 1.32 [1.20, 1.45]∗∗∗ 1.47 [1.06, 2.04]∗∗∗ 1.21 [1.04, 1.40]∗∗∗ 1.09 [0.89, 1.35]∗∗∗ 1.41 [1.28, 1.56]∗∗∗

∗(p < 0.05), ∗∗(p < 0.01), ∗∗∗(p < 0.001)
a: observed with two-year time lag
b: transition rates between occupational classes (10 years of follow-up)
c: adjusted for occupation at the beginning, current occupational class, cumulative time spent in occupational class, positive and negative social mobility indicator and observation periods
†: age as the time-scale in Cox proportional hazards model



Table B.4 – All-cause and cause-specific mortality hazard ratios among women according to socio-professional trajectories considering an order
between occupational categories

All-cause
(n=3551)

Cardiovascular
(n=304)

Cancer
(n=1388)

External causes
(n=894)

Other causes
(n=965)

HRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI] CSHRc† [95% CI]
Occupation at beginning of follow-up
Upper class 1 1 1 1 1
Intermediary occupations 1.01 [0.81, 1.26]∗∗∗ 0.96 [0.40, 2.32]∗∗∗ 1.04 [0.72, 1.49]∗∗∗ 0.91 [0.60, 1.38]∗∗∗ 1.04 [0.71, 1.60]∗∗∗
Clerk class 1.16 [0.94, 1.44]∗∗∗ 0.95 [0.40, 2.22]∗∗∗ 1.17 [0.82, 1.66]∗∗∗ 0.95 [0.63, 1.44]∗∗∗ 1.34 [0.90, 2.00]∗∗∗
Manual workers class 1.38 [1.09, 1.74]∗∗∗ 1.36 [0.55, 3.33]∗∗∗ 1.58 [1.05, 2.23]∗∗∗ 0.98 [0.63, 1.53]∗∗∗ 1.44 [0.94, 2.21]∗∗∗

Current occupational classa
Upper class 1 1 1 1 1
Intermediary occupations 1.02 [0.80, 1.30]∗∗∗ 2.11 [0.74, 6.07]∗∗∗ 0.77 [0.54, 1.08]∗∗∗ 1.37 [0.83, 2.25]∗∗∗ 1.24 [0.71, 2.15]∗∗∗
Clerk class 0.91 [0.72, 1.15]∗∗∗ 1.28 [0.44, 3.77]∗∗∗ 0.71 [0.51, 1.00]∗∗∗ 1.48 [0.90, 2.43]∗∗∗ 0.97 [0.57, 1.65]∗∗∗
Manual workers class 0.96 [0.73, 1.25]∗∗∗ 2.04 [0.65, 6.39]∗∗∗ 0.65 [0.44, 0.97]∗∗∗ 1.50 [0.86, 2.59]∗∗∗ 1.15 [0.65, 2.04]∗∗∗
Outside the scope 1.64 [1.30, 2.07]∗∗∗ 2.12 [0.74, 6.06]∗∗∗ 1.14 [0.82, 1.61]∗∗∗ 2.04 [1.25, 3.32]∗∗∗ 2.72 1.61, 4.58]∗∗∗

Cumulative time spent in occupational class
Upper class 1 1 1 1 1
Intermediary occupations 0.97 [0.77, 1.21]∗∗∗ 1.57 [0.61, 4.04]∗∗∗ 1.11 [0.81, 1.52]∗∗∗ 0.86 [0.54, 1.35]∗∗∗ 0.65 [0.38, 1.11]∗∗∗
Clerk class 1.10 [0.90, 1.33]∗∗∗ 2.58 [1.11, 6.00]∗∗∗ 1.13 [0.86, 1.50]∗∗∗ 0.79 [0.52, 1.19]∗∗∗ 1.09 [0.73, 1.62]∗∗∗
Manual workers class 1.07 [0.87, 1.31]∗∗∗ 1.94 [0.82, 4.62]∗∗∗ 1.07 [0.78, 1.45]∗∗∗ 1.06 [0.70, 1.62]∗∗∗ 0.97 [0.63, 1.49]∗∗∗
Outside the scope 1.19 [0.98, 1.43]∗∗∗ 3.10 [1.38, 6.93]∗∗∗ 1.05 [0.79, 1.39]∗∗∗ 1.02 [0.69, 1.51]∗∗∗ 1.31 [0.89, 1.93]∗∗∗

Social mobility indicator (positive)b
Low (= 0) 1 1 1 1 1
Medium 0.86 [0.77, 0.95]∗∗∗ 0.82 [0.58, 1.15]∗∗∗ 0.83 [0.71, 0.97]∗∗∗ 1.08 [0.86, 1.36]∗∗∗ 0.82 [0.67, 1.00]∗∗∗
High (> 0.59) 0.86 [0.76, 0.98]∗∗∗ 0.78 [0.50, 1.21]∗∗∗ 0.89 [0.73, 1.09]∗∗∗ 0.90 [0.70, 1.17]∗∗∗ 0.87 [0.67, 1.13]∗∗∗

Social mobility indicator (negative)b
Low (= 0) 1 1 1 1 1
High ( 6= 0) 1.32 [1.20, 1.45]∗∗∗ 1.47 [1.06, 2.04]∗∗∗ 1.21 [1.04, 1.40]∗∗∗ 1.09 [0.89, 1.35]∗∗∗ 1.67 [1.39, 2.01]∗∗∗

∗(p < 0.05), ∗∗(p < 0.01), ∗∗∗(p < 0.001)
a: observed with two-year time lag
b: transition rates between occupational classes (10 years of follow-up)
c: adjusted for occupation at the beginning, current occupational class, cumulative time spent in occupational class, positive and negative social mobility indicator and observation periods
†: age as the time-scale in Cox proportional hazards model
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ABSTRACT 

Background 

Occupying a low socioeconomic position is associated with increased mortality risk. To disentangle 

this association, previous studies considered various dimensions of socioeconomic trajectories across 

the life-course. However, they used a limited number of stages. Here, we simultaneously examined 

various dimensions of the whole professional trajectory and its association with mortality. 

Methods 

We used a large sample (337 706 men, 275 378 women) of the data obtained by linking individuals’ 

annual occupation (collected in 1976-2002 from a representative panel of the French salaried 

population in the semi-public and private sectors) with causes of death obtained from registries. All-

cause and cause-specific hazard ratios were estimated using Cox’s regression models adjusted for the 

occupational class at the beginning of the follow-up, the current occupational class, the transition 

rates between occupational categories, and the duration of time spent in occupational categories. 

Results 

An increase in the time spent in the clerk class increased men and women’s cardiovascular mortality 

risk compared to that in the upper class (HRs: 1.59(1.14-2.20) and 2.65(1.14-6.13) for 10 years 

increase, respectively for men and women). Men with a high rate of transitions had about a 1.2-fold 

increased risk of all-cause and external-cause mortality compared to those without transitions during 

their professional life. This association was also observed for women’s all-cause mortality. 

Conclusion 

Strong associations between professional trajectories and mortality from different causes of death 

were found. Long exposure to lower socioeconomic conditions was associated with increased 



mortality risk from various causes of death. The results also suggest gradual associations between 

transition rates and mortality. 

 

What is already known on this subject? 

 Previous studies reported strong associations between socio-economic trajectories and 

mortality.  

 Most of these studies have used two or three stages of life to show these associations across 

life-course models. 

 

What this study adds? 

 We consider all stages of professional trajectory to investigate these relationships in a 

representative sample of the French salaried population of semi-public and private sectors. 

 Long-time exposure to poor socioeconomic position was strongly associated with adult 

mortality, especially for cardiovascular diseases. 

 Having more transitions during professional life was adversely associated with mortality. 

  



INTRODUCTION 

Socioeconomic inequalities in mortality, as quantified by mortality differentials between social 

groups, have been studied in many industrialized countries.[1-3] Despite the low level in mortality 

and its continuous decrease, studies conducted in the UK, US and Europe have shown that these 

inequalities are still large in some countries[4-6] and have increased over time in both men and 

women.[1,7-11] 

A large body of research has shown that mortality rates are higher among those in lower 

socioeconomic positions;[12,13] regardless of the socioeconomic indicator (occupational status, 

educational level or income).[14] Most of these studies have measured socioeconomic positions only 

at one stage of life. This approach does not consider the impact of transitions between different 

socioeconomic groups. Thus, to obtain better understanding of the relationship between health and 

socioeconomic position, various dimensions of socioeconomic trajectories, such as the evolution of 

socioeconomic position and the modality of transitions between social groups, need to be taken into 

account.[15,16] 

Although an observed individual’s social level at a given time reflects his/her social position at 

different stages of his/her past life,[17] several life-course models have been proposed in the 

literature to explain the possible association between socioeconomic status and health: critical 

period, accumulation, and social mobility models. The critical period model considers some stages or 

specific moments in life as key periods affecting health. The cumulative model hypothesises that 

mortality differentials are explained by the accumulation of all present and past working conditions, 

lifestyles and behaviours. Analyses using this model are based on the life-cumulated length of stay in 

the most disadvantaged social group. They suggest that the accumulation of poor socioeconomic 

exposure in life increases the risk of mortality.[15,18-20] The social mobility model was developed to 

take into account the modality of transitions between social groups once or several times in life. 

These models help to explain the potential impact of socioeconomic status on health. However, 



some studies point to a bias in the results due to the impact of health on socioeconomic position. 

Therefore, this reverse causation is another issue that should be taken into account.[21,22] 

The aim of this study was to examine the associations between life-course professional trajectory 

and adult mortality. Previous studies have considered two or three stages in professional life and 

used a simple classification for socioeconomic positions (low-medium-high). This paper goes further 

by considering the whole professional trajectories and all-cause and cause-specific mortality. For this 

purpose, we use life-course models on a representative sample of the French salaried population in 

the semi-public and private sectors from 1976 to 2002 to investigate the possible ways in which 

professional trajectories may be associated with adult mortality. 

METHODS 

Cosmop-DADS database 

The Cosmop-DADS database was obtained by linking the occupational life-course provided from the 

panel of the Annual Declarations of Social Data (DADS)[23] that has been regularly updated by the 

French National Institute for Statistics and Economic Studies (INSEE) since 1976, with the causes of 

death recorded by the French National Death Registry (INSERM-CépiDc). The DADS Panel contains 

the employment records of approximately 1/24th of all employees in the private and semi-public 

sectors, i.e. 80% of all paid occupations in France. Episodes of careers declared as self-employed, 

employees of the state, employees in agriculture, domestic services, extra-territorial activities, 

interns and apprentices are excluded from its scope. A deterministic record linkage using the 

following identifiers linked these two data sets: sex, date of birth, date of death and the commune of 

residence at the time of death. The matching rate was 98%. In total, the Cosmop-DADS population is 

a sample of the French population (for whom vital status and date of death are available), employed 

at least once as a salaried worker in the semi-public and private sectors between 1976 and 2002. 



The study was approved by the French data protection committee and institutional ethical review 

board: Commission Nationale de l’Informatiqueet des Libertés (CNIL) (authorisation n° 904210v1). 

Occupational classes 

Occupations were coded according to the French classification created by INSEE regarding various 

social characteristics, without any specific hierarchical order between the defined classes.[24] 

Originally, the DADS covers five classes: Craftsmen and trade-related workers; upper class; 

intermediary occupations; clerk class and manual workers class. 

Since DADS declarations are mandatory for employers, there were theoretically no missing 

occupational episodes for employees working in companies within the DADS scope. However, 

professional trajectories were not fully observed for several individuals. The first set of missing 

episodes concerned the years 1981, 1983 and 1990, which were not collected owing to 

administrative reasons. These episodes were complemented with information from the previous 

years. For the other years, some occupations could not be classified in the five occupational classes. 

These occupations were imputed using a multivariable multinomial logistic regression[25] 

incorporating sex, age and type of employment in the imputation model. 

Since regional and local authorities were not fully covered by DADS declarations before 1987, any 

occupations of this type were excluded from our professional scope. The same decision was taken for 

occupations declared in the craftsmen and trade-related workers class, as those in DADS are not 

representative of this class in the general population. 

In summary, our professional scope contained the DADS scope mentioned previously excluding 

regional and local authorities, and craftsmen and trade related workers class. Those outside this 

scope could either be working, inactive or retired. It was not possible to distinguish these different 

situations. As it is well established that inactivity is associated with an increased mortality risk,[26,27] 

any episodes outside this scope should not be ignored so the category "outside the scope" was 



added to the four other categories. This strategy induced a bias but given the structure of the data, 

building a sound imputation model would require additional assumptions for which no auxiliary data, 

such as data on employees of the public sector, were available. 

Study population 

All individuals born in the French territories for whom a salaried period was declared in Cosmop-

DADS between ages 25 and 30, excluding those working outside the study scope in their first year 

(337 706 men and 275 378 women) were included in the study (Due to the uncertainty of the vital 

status of people born outside France, they were excluded from our study population). Less than 1% 

of occupations were imputed, and in total, 22% and 30% of follow-up years were outside the study 

scope for men and women, respectively. 52% of men and 61% of women were outside the study 

scope for at least one year of their follow-up. Owing to the non-negligible number of episodes 

outside the study scope and the lack of available information for making more hypotheses about 

these episodes, a replicated analysis was carried out on a subsample of the analysed population for 

whom the first five years of their follow-up was covered by the study scope in order to ensure that 

an observed trajectory was complete (in the first five years) for the analysis (198 381 males and 

134 784 females, with fewer than 14% of follow-up years outside the study scope in total). 

Professional trajectory 

A professional trajectory may be defined as the sequence of consecutive professional positions 

occupied by an individual (Figure 1). To characterise it, three time-dependent variables were used: 

 Occupational class at each year; 

 Cumulative social class indicator, defined as individual’s length of stay in each occupational 

class. This indicator was calculated for all classes except the upper class, so the latter served 

as reference; 



 10-year social mobility indicator, defined by the transition rates between classes, excluding 

the "outside the scope" category and calculated as follows: 

number of transitions between occupational classes

duration of follow-up
× 10 

This indicator was categorised into three groups using tertiles, separately for men and 

women. 

To limit the impact of reverse causation,[21,22] occupational classes were considered with a two-

year time lag, i.e. instead of using the current occupational class, that of two years before, was taken 

into account. 

(Figure here) 

Mortality 

The Cosmop-DADS database is a sample of the French population for whom the vital status and date 

of death are available. All individuals of this sample were followed up to 2002 and the administrative 

censoring date was set at 31st December 2002. The underlying causes of death, recorded by INSERM-

CépiDc, were coded according to the International Classification of Diseases, 8th, 9th and 10th revisions 

(ICD-8, ICD-9 and ICD-10). Three broad categories of causes were specifically considered: 

cardiovascular diseases, cancer and external causes (See Appendix I). 

Statistical analysis 

Cox proportional hazards models were used to estimate all-cause hazard ratios (HRs), cause-specific 

hazard ratios [CSHs] and their 95% confidence intervals [CIs] while accounting for left truncation 

induced by the delayed entries. Age was used as the time-scale.[28] The model for each cause was 

fitted using a Cox model by censoring the participants who failed from competing cause.[29] 

Adjustment for the variables, occupational class at the beginning of the follow-up as a baseline 

covariate and the three indicators of professional trajectory as time-dependent covariates, was done 



by performing univariable analysis in the first step and then using all these covariates in a 

multivariable analysis. Considering the decrease in mortality rates over time in France, the models 

were adjusted for observation periods.  

The occupational class and the social mobility indicator were introduced into the models as 

categorical variables, and the upper class and those without any mobility between classes were 

considered as the reference categories. For the cumulative social class indicator, HRs were 

interpreted as the hazard corresponding to an increase in the time spent in an occupational class 

versus that in the upper class. These HRs were calculated for a 10-year increase. No violation of the 

proportional hazards assumptions was found according to Schoenfeld residuals.  

Proportional hazards models were conducted separately for men and women using the Survival 

package of the R software,[30] and the imputation was carried out by the IVEware software.[31] 

RESULTS 

The average number of transitions between occupational classes differed between the age 

categories. Transitions were more numerous between the ages of 25 and 44 in women and between 

the ages of 25 and 34 in men. At the beginning of the follow-up, the largest class was the clerk class 

(about 54%) in women and manual workers (about 60%) in men. For young men (25-34 years), 49.3% 

of the cumulated time spent was in the manual workers class and much less in the upper class 

(6.5%). The same magnitude was observed in young women for the clerck and the upper class (25-34 

years) (Table 1). 

During the follow-up, 12 162 (3.6%) men and 3551 (1.3%) women died. Most deaths occurred 

between the ages of 35 and 44. 48.7% of deaths among women and 39.8% of deaths among men 

occurred while individuals were outside the study scope two years before death. Most other deaths 

in men and women occurred while they were in the manual workers class and the clerk class, 

respectively (Table2). 



 

 

 

 

 

Table 1 Characteristics of study population according to occupational trajectories 

 

Average 

number of 

transitions/10 

years follow-

up 

Proportion of time spent in occupational classes 

Upper 

class 

Intermediary 

occupations 

Clerk 

class 

Manual 

workers 

class 

Outside 

the 

scope 

Total 

Men 

At the 

beginning 
0 5.5 17.3 17.7 59.5 0 100 

25-34 1.0 6.5 17.0 12.4 49.3 14.8 100 

35-44 0.9 9.6 17.8 7.4 38.4 26.8 100 

45-54 0.6 12.9 17.9 5.8 31.8 31.6 100 

55-56 0.6 15.5 18.5 5.2 28.4 32.4 100 

All ages 0.9 8.8 17.4 9.4 42.1 22.3 100 

         

Women 

At the 

beginning 
0 4.2 19.4 53.5 22.9 0 100 

25-34 0.8 4.3 17.0 41.0 16.0 21.7 100 

35-44 0.8 4.5 15.8 30.9 12.3 36.5 100 

45-54 0.6 5.5 16.6 28.1 11.4 38.4 100 

55-56 0.6 7.0 17.8 25.4 9.7 40.1 100 

All ages 0.8 4.6 16.5 35.0 13.8 30.1 100 
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Overall, the same magnitude was found for the results of the univariable and multivariable analysis, 

except for the estimated hazard ratios for the social mobility indicator, although, adjusting for all 

indicators led to some attenuation in the increased risk of death in association to professional 

trajectory indicators. Here, the results of the multivariable analysis are subsequently presented 

(those of the univariable analysis could be found in Appendix II). 

Occupation at beginning of follow-up 

Men in the manual workers class at the beginning had a higher mortality risk compared to those who 

were in the upper class (except for cancer mortality) but to a different degree depending on the 

causes of death (Table 3). In women, this association was not statistically significant (Table 4). 

Current occupational class 

Among men, being in the clerk class increased the mortality risk compared to being in the upper class 

(HRs: 1.49(1.31-1.69), 1.58(1.09-2.30), 1.50(1.16-1.93), 1.43(1.14-1.79) and 1.58(1.26-1.98) 

respectively for mortality from all causes, cardiovascular diseases, cancer, external causes and other 

causes. Among men, those in the manual workers class had an increased mortality risk compared to 

those in the upper class (HRs: 1.39(1.25-1.56), 1.43(1.03-1.99), 1.26(1.02-1.56) and 1.73(1.42-2.12) 

respectively for all-cause, cardiovascular, cancer and external-cause mortality). Those outside the 

study scope had the highest mortality risk except for cardiovascular and cancer mortality among 

women, i.e. about two to three-fold higher than the mortality risk in the upper class (Table 3 and 

Table 4).  

Cumulative time spent in occupational classes 

The cumulative time spent in occupational classes was strongly associated with men’s all-cause and 

cause-specific mortality and women’s all-cause and cardiovascular mortality, with less pronounced 

associations for men’s external-cause mortality. Among men, more time spent in an occupational 

class increased the mortality risk compared to that in the upper class. This increase in manual 



workers was associated with a 1.8-fold higher cancer mortality risk (HR: 1.75(1.48-2.06)) and that 

outside the study scope was associated with a 1.5-fold higher external-cause mortality risk (HR: 

1.46(1.19-1.77)) compared to that in the upper class. Among women, more time spent in the clerk 

class was associated with a 2.7-fold higher cardiovascular mortality risk compared to that in the 

upper class (HR: 2.65(1.14-6.13)) (Table 3 and Table 4). 

Social mobility indicator 

In the univariable analysis, an inverse association between the social mobility indicator and mortality 

was systematically found among men, and only for cancer mortality among women. Adjusting for 

other indicators changed the direction of the results, except for women’s cancer mortality.   

In multivariable analysis, the same magnitude was observed for this indicator among men and 

women except for women’s external-cause mortality, with significant results for men and women’s 

all-cause, external-cause and other causes mortality, and women’s cancer mortality. Having a high 

social mobility indicator increased the all-cause mortality risk (HRs: 1.15(1.09-1.21) and 1.13(1.04-

1.22) respectively for men and women), the other causes mortality risk (HRs: 1.23(1.12-1.34) and 

1.40(1.19-1.64) respectively for men and women) and the external-cause mortality risk (HR: 

1.17(1.08-1.28) for men) compared to not experiencing any mobility during professional life (Table 3 

and Table 4). 
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Ad-hoc sensitivity analysis 

When replicated analyses were performed on the subsample, including individuals working in the 

study scope during their first five years of follow-up, the estimated all-cause and cause-specific 

hazard ratios did not change for any of the indicators except for men’s cardiovascular mortality (See 

Appendix III).  

DISCUSSION 

Previous studies on this topic have generally considered individuals’ socioeconomic position at two 

or three stages of life including childhood (father’s socioeconomic position), entry into the labour 

market and mid-life position. To our knowledge, the present study is the first to investigate the 

association between the whole professional trajectory and all-cause mortality and within that, three 

major causes of death: cardiovascular disease, cancer and external causes. Overall, our results add to 

the existing evidence of the strong relationship between professional trajectory and all-cause 

mortality among men, with less pronounced associations among women.[13,15,16,32-36] 

Compared to previous studies, a new aspect of our study is the use of the duration of time spent in 

occupational classes as a measure of socioeconomic exposure and the transition rates between 

occupational classes as a measure for capturing the social mobility dimension.   

The three most commonly used life-course models, namely the critical period, cumulative and social 

mobility models were taken into account. Our results suggest that all three dimensions are 

associated to men’s all-cause mortality. For women, only the cumulative and the social mobility 

models were confirmed by this analysis. 

Interpretations and comparisons with other studies 

As shown in previous studies, strong associations between professional trajectories and men’s and 

women’s mortality was found.[13,15,16,32-36] However, a direct comparison with other studies 



cannot be easily made given the different occupational classifications in each country, and the fact 

that we used whole professional trajectories. 

The present study only focused on professional trajectories with no information on childhood 

circumstances. However, the individual’s first occupation is likely to be the most representative 

dimension of the end of childhood. We found that the association between the first occupation and 

mortality was strong for men’s cardiovascular and external-cause mortality. Previously, strong 

associations have also been reported between socioeconomic circumstances in childhood and 

mortality from some causes of death, such as cardiovascular diseases.[15, 32, 33, 35]  

On the other hand, for some other causes of death such as external causes and lung cancer,[35] 

stronger associations were found between socioeconomic circumstances in adulthood and adult 

mortality than those in childhood. Our results are in accordance with the literature, since in other 

studies, for some causes of death such as external causes and cancer, occupational classes found to 

be strongly linked with men’s mortality. Supplementary analysis on different cancers also reported 

the same associations or even stronger ones (for deaths by UADT cancers) (data not shown). For 

women, the results were not statistically significant.  

Another hypothesis in the literature is the putative association between the accumulation of 

exposure to different socioeconomic conditions and mortality. However, the use of only three stages 

of life limited the number of possible trajectories, so the different trajectories could be compared. By 

investigating the duration of time spent in each occupational class instead of comparing different 

trajectories, we found a strong relationship between the duration of exposure to low professional 

position and mortality.  This association was stronger for cardiovascular and cancer mortality in men 

but was significant only for all-cause and cardiovascular mortality in women. This is consistent with 

the results of previous studies.[15,16,33,37] The large mortality risk of those who stay longer in the 

low occupational categories can be explained by exposure to poor working conditions and by the fact 

that the least skilled are less likely to move upward. Furthermore, staying a long time in the same 



professional conditions could reflect a greater adherence to a professional class and its specific 

lifestyle. 

The changes between occupational categories and their dynamics were also pointed out in previous 

studies. Some studies have shown that within classes, male movers have a mortality risk situated 

between that of non-movers in their class of origin and that of their destination.[38,39] Here, we 

investigated the association between the frequency of changes between occupational classes and 

mortality. Instability in professional life may be interpreted in two ways. If instability is chosen, it 

could be the reflection of high dynamism with the ability to change and adapt to several professional 

environments. Conversely, if instability is forced, it could be due to difficulties in finding one’s place, 

to a high dependence on the work market or to personal events. We found an inverse association for 

this indicator in the univariable analysis, as it does not take into account the occupational classes 

before and after the transitions. Our results of the multivariable analysis show that subjects with high 

transition rates have an increased risk of all-cause and external-cause mortality. These results 

suggest that the instability measured is more forced than chosen, with a deleterious association on 

mortality. In a very explorative approach to disentangle the chosen and forced instability, we 

considered the following naive order of occupations from high to low level: “upper class”, 

“intermediary occupations”, “clerk class”, and “manual workers”. Although this order is not strictly 

hierarchical, upward and downward changes were studied as separate variables. The risk of mortality 

was positively associated with downward changes (for example, going from the “upper class” to the 

“clerk class”), and negatively with upward changes (for example, going from the “manual workers 

class” to the “intermediary occupations class”) (data not shown). 

Limitations 

The main limitation in this investigation is the high percentage of follow-up years outside the scope 

of the study. The decision to consider all these data in the "outside the scope" category could induce 

a bias. However, we examined a wide range of occupational sectors and the occupational stages are 



sufficiently reliable as they were collected within the context of administrative procedures. 

Furthermore, the replicated analysis on the subsample with sufficient follow-up provided almost the 

same results, which strengthens the findings.  

All participants had worked at least once between the ages of 25 and 30 and were likely to be 

healthier than the general population, so the sample should not be interpreted as representative of 

the French population. 

Finally, taking into account the individual’s occupation with a two-year time lag could reduce the 

reverse causation bias.  However, for some causes of death such as transport accidents, the problem 

of reverse causation is less likely to be a source of bias.    

Despite these drawbacks, the large size of the sample, the annual nature of the information collected 

and the causes of death coded with high precision are the major strength of this study. Using 

repeated measures of occupational category over the follow-up could provide insight into changes 

that may have occurred during a person’s professional life. To gain a better understanding of the 

complex social inequalities in mortality, future analysis should focus on models that take into 

account simultaneously all aspects of professional trajectories and mortality. Joint modelling of 

nominal occupational data and cause-specific mortality following the approach of Li et al.[40] is the 

object of an on-going project. 
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Figure Legend: 

Figure: Examples of Fictional Trajectories  

Example: Individual 2 was working in the manual workers class from 1978 till 1985. He was outside 

the scope of the study between 1986 and 2001 and finally worked in an intermediary occupation in 

2002. 

 



	



APPENDIX I 

Table I Causes of death according to International Classification of Diseases (ICD) 

Causes of death ICD-8 ICD-9 ICD-10 

Cardiovascular 

diseases 

 

390–444.1, 444.3–458, 

782.4 

390–459 I00–I99 

Cancer 140–239 140–239 C00–D48 

    

External causes E800–E999 E800–E999 V01–Y89 

ICD-8: before 1979, ICD-9: from 1979 to 1999, ICD-10: since 2000 
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