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ABSTRACT

My thesis concerns statistical characterization of spatial arrangements of fringes (active
phases) in the catalysts imaged by High Resolution Transmission Electron Microscopy
(HRTEM). The contributions proposed in this thesis are two statistical models for the
description of these HRTEM image contents.

The first model involves 2-D Fractional Brownian Field (FBF) and 2-D Auto Regres-
sive (AR) models, as well as morphological analysis of the spectra associated with these
models (ARFBF morphological analysis). Concerning FBF modeling, we propose two
methods for estimating its parameter: Log-RDWP (Log-Regression on Diagonal Wavelet
Packet spectrum) and Log-RPWP (Log-Regression on Polar representation of Wavelet
Packet spectrum). We propose a morphological method on ARFBF spectrum for de-
tecting and identifying HRTEM texture features. It is shown that the morphological
properties of spectral features make possible, a separation between different catalysts.

The second model proposed in this thesis is a generalization of FBF (GFBF) con-
structed by using convolution and modulation operators of several FBF. The textures
synthesized from GFBF model are shown to present some structural similarities with
certain fringe structures present in HRTEM images. We details association of a GFBF
to an HRTEM fringe by considering a GFBF mixture comprising an FBF and a modu-
lated version of FBF (model called CMFBF). This CMFBF has a spectral representation
associated with two poles (spectral peaks) and two Hurst parameters. The spectral peak
at zero frequency characterizes the background of the HRTEM image and the first Hurst
parameter describes the regularity of this background. The second peak and its corre-
sponding Hurst parameter is representative of the fringe structural and spectral contents.

Keywords: HRTEM image ; Active phases of catalyst ; ARFBF modeling ; Mor-
phology analysis ; K-factor GFBF modeling ; Hurst parameter estimation.
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RESUMÉ

Ma thèse porte sur la caractérisation des arrangements spatiaux de phases actives dans les
catalyseurs observés à Haute Résolution par Microscopie Électronique en Transmission
(imagerie HRMET). Les contributions de la thèse sont la proposition de deux modèles
statistiques pour analyser ces arrangements dans les images HRMET.

Le premier modèle est une intégration, par opération de convolution, des Champs
Browniens Fractionnaires (CBF) et des champs Auto-Régressifs (AR), donnant ainsi
une famille de modèles appelés ARCBF. Le modèle ARCBF requiert l’estimation d’un
paramètre de Hurst. Nous proposons à cet effet, deux méthodes d’estimation : la méth-
ode Log-RDWP (log-régression sur la diagonale du spectre des paquets d’ondelettes) et
la méthode Log-RPWP (log-régression sur la représentation en coordonnées polaires du
spectre des paquets d’ondelettes). L’analyse morphologique des spectres associés à ces
modèles (analyse spectrale morphologique ARCBF) permet de détecter et d’identifier les
attributs associés aux textures observées sur les images HRMET, attributs qui rendent
possible la discrimination de différents types de catalyseurs à partir d’observations de
leurs échantillons représentatifs.

Le second modèle est une Généralisation des CBF (GCBF) construite par convolution
de plusieurs champs CBF modulés. Nous donnons les détails de l’association d’un modèle
GCBF à une texture observée sur les images HRMET : pour une imagette donnée, cette
association se réduit au choix d’une sous-classe des GCBF consistant à la convolution
d’un CBF et d’un CBF modulé (modèle dit CMCBF). Un CMCBF admet une représen-
tation spectrale associée à deux pôles (pics spectraux) et deux paramètres de Hurst. Le
premier pic spectral est observé à la fréquence zéro et caractérise le fond de l’imagette
(arrière-plan) dont la régularité est décrite par le premier paramètre de Hurst. Le second
pic est représentatif d’une frange dont les caractéristiques sont le second paramètre de
Hurst et la fréquence de modulation bidimensionnelle. Les textures synthétisées à partir
du modèle GCBF/CMFBF admettent des contenus structurés présentant des similitudes
avec de nombreuses franges observables dans les images HRMET.

Mots clés: HRMET image; Phases actives dans les catalyseurs; Modélisation ARFBF;
Analyse morphologique; Modélisation K-factor GFBF; Estimation du paramètre Hurst.
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CHAPTER 1

General introduction

1.1 Context and motivation

My thesis aims at proposing statistical models for the analysis and characterization of
textures issued from Transmission Electron Microscopy (TEM) images. High Resolution
TEM (HRTEM) imaging is used to observe material at nano scales (nano texture struc-
tures). At these scales, we can analyze spatial arrangements of catalyst active phases
which produce fringe patterns in the HRTEM images. Characterizing these fringes is
useful for understanding the properties of the observed material. In this thesis, we have
performed statistical and morphological characterizations of structures that are observed
by HRTEM imaging systems.

The originality of my thesis is addressing a joint statistical and morphological frame-
work for deriving a characterization of HRTEM micro-textures. This framework relies
on several statistical results for texture characterization (see [8, 9, 36, 57, 81]) that are
essential in deriving texture descriptors.

With TEM micro-graphs at high resolution (namely HRTEM), dark or bright linear
patterns (fringes) (see Fig. 1.1) can be observed and correspond to active phases deposit-
ing on the catalyst support. HRTEM images present a very important texture aspect
with fringes of different natures and different orientations. We propose to use a joint
statistical and morphology model-based approach to characterize these fringes.
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Figure 1.1: Material texture structure and fringe description

1.2 Contributions

The contributions presented in this thesis include two proposed statistical models in order
to capture the spatial arrangements of fringes in the catalysts imaged by HRTEM:

• the first model involves 2-D Fractional Brownian Field (FBF) and 2-D Auto-
Regressive (AR) models, as well as the morphological spectral consideration (Auto-
Regressive Fractional Brownian Field (ARFBF) morphological analysis);

• the second model is based on convolution and modulation operators of FBF and
represents a class of K-factor Generalized Fractional Brownian Field (GFBF) that
are non-stationary and multi-fractional field models.

Both ARFBF and GFBF modeling require in practice, FBF based parameter estimations
restricted to small samples (local behavior as an FBF is the neighborhood of any given
spectral peak). Concerning these FBF based local parameter estimations, we propose
two methods that are adapted to small samples:

• Log-RDWP estimation: Log-Regression on Diagonal Wavelet Packets,

• Log-RPWP estimation: Log-Regression on Polar representation of Wavelet Packets.

These methods outperforms standard FBF parameter estimation methods and show ro-
bustness with respect to FBF sample generators.

The highlights of the thesis are the following. With ARFBF modeling:

• we obtain a fractionally regularized estimator of the texture Power Spectral Density
(PSD),

• we derive a morphological method to detect and identify the most relevant spectral
features (lobes) and finally
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• we propose a method for clustering different catalysts from the properties of de-
tected ARFBF lobes.

With GFBF modeling, we show that many textures synthesized from HRTEM texture
parameters have strong structural similarities with those of certain original HRTEM
structures.

Applications of this work are expected to have environmental impacts in terms of:

• lowering material environmental impact by using more specialized catalysts (refer-
ences [115, 71, 58, 93] are with the same goal) ;

• improving post-treatment for making standard and hybrid motors cleaner and effi-
cient, by means of a better understanding of catalysts/soot nanostructures.

1.3 Thesis outline
This thesis is organized as follows.

Chapter 2 presents HRTEM imaging which involves: 1) the Transmission Electron Mi-
croscopy (TEM) system, 2) the studied materials (soot and catalyst) and 3) the relation
between the structures of the active phase of catalyst and their observations in the spatial
and frequency domains.

Chapter 3 provides a state of the art in 1-D and 2-D statistical modelings. In par-
ticular, standard AR and FBF models are presented and their properties are highlighted.

Chapter 4 provides ARFBF and GFBF models. It also addresses parameter estima-
tion by providing Log-RDWP and Log-RPWP regression methods.

Chapter 5 addresses the application of our proposed models to HRTEM imagery. It
starts by presenting soot HRTEM texture simulation from GFBF based modeling and
synthesis. Then, an application of a convolution mixture of FBF and modulated FBF is
discussed for HRTEM catalyst texture synthesis. Finally ARFBF morphology analysis is
applied for characterizing spectral HRTEM texture contents and clustering the HRTEM
samples.

Chapter 6 provides a conclusion and draw some prospects to the work.
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CHAPTER 2

High Resolution Transmission Electron Microscopy (HRTEM)
imaging

In this chapter, we present the TEM system and high resolution images acquired by this
system. Two sample sets will be given in the following:

• First sample set: soot images, for which we have been interested in GFBF models
that are able to make synthetic soot textures generation possible from random
number generators.

• Second sample set: active phases of hydrotreating catalysts, for which we have
proposed an ARFBF approach allowing to discriminate different materials.

All TEM images presented in this work are produced at IFP Energie nouvelles, Phycics
and Analysis division, with a JEOL 2100F microscope.

2.1 Transmission Electron Microscopy (TEM)

2.1.1 Schematic description of a TEM

A TEM (see Fig. 2.1) is composed by several systems (see Fig. 2.2) which include
illuminating system, specimen manipulation system, imaging system as well as vacuum
system, with the following properties (see [22]).

• The illuminating system is composed by electron gun, condenser aperture and con-
denser lenses which include condenser lens 1 and condenser lens 2. We have the
following properties:

– condenser aperture determines the aperture of the beam and the size of the
diffraction spots,

– condenser lens 1 determines the minimum spot size on the sample,
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– condenser lens 2 determines the illuminated area of the sample and the beam
parallelism.

• The specimen manipulation system is composed by specimen port which has to:

– be thin (10 − 50 nm, where ‘nm’ denotes nanometers) and representative, as
well as

– alter the incident wave function to produce a contrast (diffraction, absorption,
phase, electric or magnetic polarization ...) and

– degrade as little as possible under the beam.

• The imaging system is composed by objective lens, intermediate lens and projector
lens. Diffraction lens transfers diffraction pattern or image of the object on the
observation screen.

• The vacuum system provides an environment in which the electrons travel.

Figure 2.1: Transmission electron microscopy (TecnaI G2 - type of MET used in IFP En-
ergies nouvelles). From "https://www.fei.com/products/tem/tecnai/?LangType=1033".

In a TEM system, samples are usually observed at magnifications of order 250000. The
resolution is limited by the data transferred by the objective lens. It ranges from about
0.1 nm to 0.3 nm. The energy of the incident electron wave ranges from 80 to 300 keV.
When the incident electron wave - which can be approximated by a plane wave - pen-
etrates the thin sample (approximately 100 nm), the coherent interaction with material
inside structure undergoes Bragg scattering. The coherent interaction changes the energy
and movement orientation of the incident electron. It is shown that different material
structuring lead to different types of interactions.
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Figure 2.2: Diagram outlining the internal components of a basic TEM system. From
"https://en.wikipedia.org".
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2.1.2 Specimen preparation

The specimen has to comply with some requirements (see [21]) for being a relevant TEM
imaging system:

• the specimen must be transparent for the electron beam, thickness of the sample
viewing area should be controlled around 100 ∼ 200nm.

• the specimen shall be representative to truly reflect certain characteristics of the
analyzed material (sample preparation must not affect these characteristics).

It is problematic to use samples with unknown compositions and thickness (see [16]).
An alternative, when dealing with a sample with multiple constituent, is the Electron
Energy Loss Spectroscopy (EELS) which allows for obtaining information on the elemen-
tary composition of a sample (see [15]) or the chemical environment (see [56]) at the
nanometer scale.

In order to produce sufficiently thin sample blocks (thickness in a few tens of nm units)
for TEM observation of catalyst support (see Fig. 2.3), transition alumina / amorphous
and silica-alumina or more scarcely silica / titania are usually used as supports of catalyst
sample preparation. The preparation is as follows:

• firstly, the sample is grinded in a mortar,

• then it is placed into suspension such as ethanol or heptane (sample is soluble in
ethanol or heptane),

• after that, one must take one drop of suspension which is treated in an ultrasonic
bath and deposit it on a copper grid coated with a holey amorphous carbon film,

• the final step consists in placing the dried grid in the microscope.

2.1.3 TEM imaging theory

Details concerning TEM image formation can be found in [20]. Fig. 2.4 illustrates
that a part of transmitted electron e− are selected in sample outlet of a circular opening
(contrast diaphragm). Two points of sample whose diffusion properties are different (type
of constituent atoms or the number of atoms with local thickness) can be discriminated.
When the thickness of thin blade t is small, the interactions between the electron e−

and the sample are very limited and the slow-down of speed of e− can be negligible. The
principle of absorption contrast for specimen observation can be said "amorphous" (dense
collection of e− without special organization but with a distance between substantially
equivalent nearest neighbors). This absorption contrast does not correspond to a real
absorption of e− in the samples but to a virtual absorption in the image because some
e− are blocked by the contrast aperture. If an e− with high energy passes near an atom
(see Fig. 2.5), then:

• after coulomb interactions between the negative charge of e− incident and the
charges located in the atom, the attractive or repulsive forces will slow or accelerate
e−;
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Figure 2.3: Specimen preparation.

Figure 2.4: Contrast absorption introduced by the diaphragm in sample outlet. t repre-
sents the thickness of thin blade. Figure provided by [22].
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Figure 2.5: Electron e−, elastic scattering (no energy change) with relatively large angle
of deviation and inelastic scattering (energy change) with small angle of deviation.

• it is considered that the isolated atom is at rest (minimum energy state), it will
acquire energy from e−.

The e− arriving near the nucleus undergoes attractive interaction corresponding to a
strong deviation. It can be considered as an elastic scattering (no energy change) with
relatively large angle of deviation (10−2 radians). The e− arriving in the e− cloud of the
atom can communicate energy (for the same mass particles). Passage of e− of the atom
in a higher level, or even expulsion generates loss of energy of e− incident. It can be con-
sidered as inelastic scattering (energy change) with small angle of deviation (10−3, 10−4

radians). Elastic effects open a beam of initially parallel incident e−. Inelastic effects
have more complex consequences for further analysis (microscopy analysis). The size of
the scattering angle is related to the density and thickness of samples, therefore it can
affect the pixels of the image (lightening and/or shading different image parts). Images
will be displayed on the imaging device after amplification and focus adjustment.

As mentioned above, because of different structures / different parts inside the sample,
when the electron beam penetrates the sample, the energy and orientation of transmission
beam change, thus the intensity of transmission is different. This irregular distribution
of the intensity is called contrast. The number of e− collected at a point of the detector
I(x, y) (I is considered as one image) is different from that collected at a neighboring
point I(x+ dx, y + dy). The contrast is defined as

C =
I(x+ dx, y + dx)− I(x, y)

I(x, y)
, (2.1)
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where I(x, y) denotes a pixel of image I.

TEM has high spatial resolution and can provide rich analytic structure information.
It is widely used to characterize nanostructure of materials, particularly heterogeneous
catalysts (see [65]). It is possible to consider supported nanoparticles as ideal systems,
because supported nanoparticles are often ideal phase objects as well as can easily be pre-
pared and observed (see [54]). TEM exists on several forms as HRTEM, STEM (Scanning
Transmission Electron Microscope), AEM (Analytical Electron Microscope)... We will
explore HRTEM for visualizing soot and catalyst nanostructure in this work.

2.1.4 HRTEM

HRTEM acquires an image by using a wide aperture to let the central spot and the
diffracted spots closest to the diffraction pattern, in addition with observing an inter-
ference between these beams. The enlarged image shows all the crystal symmetry and
periodicity properties corresponding to the cliche area of selected diffraction. The juxta-
position of aligned black and white dots with distances between rows equal the spacing
in the real crystal. The enlarged image is a projection of the atomic structures.

HRTEM imaging has some limitations as follows:

• the imaged material sample must satisfy specific positioning conditions in order to
avoid overlaps between adjacent columns of the atomic projections;

• the microscope must be able to resolve involved inter-atomic distances (various lens
aberration issues);

• visualization on the sensors of an amplitude can suffer from loss of phase informa-
tion.

The atomic columns can appear as white or black.

In practice, it’s possible to resolve up to 0.2 nm between the planes. HRMET images of
atomic structure only represent a certain projection of these structures (see [20]).

2.2 Observations of soot nanostructure by HRTEM
In the range of pollution related to transport, Diesel Particle Matter (DPM) emissions
have a significant impact on global climate change by strong absorption of solar radiation
in the atmosphere, and on health by penetrating through the human respiratory system.
Soot are produced by the incomplete combustion of the fuels. For diesel engines, DPM
emissions are limited by means of Diesel Particulate Filters (DPF). The exhaust gas is
forced through porous ceramic channels walls, wherein the particles are trapped. These
filters are very efficient (> 99% of efficiency) but some issues need to be solved on the
regeneration procedure by the vehicles. When a soot load of several grams per liter is de-
posited, a regeneration of the filter has to be done by increasing temperature and causes
fuel penalty. In the recent years, efforts to link soot nanostructure and re-activity have

33



Figure 2.6: High Resolution Transmission Electron Microscope (HRTEM) imaging. From
[20].

Figure 2.7: HRTEM image of soot.
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been done to improve DPF regeneration and HRTEM is often used to visualize the soot
nanostructure (see [112]).

A stochastic modeling based on empirical bi-variate distributions has been proposed
in [75] for soot particle structure description. This model have been applied to quali-
tatively replicate observed particle shapes and provide quantitative improvements over
older single-variable models. One model of soot particle nucleation which can predict
the classical picture of soot particle inception and the classical description of soot parti-
cle structure and growth in laminar premixed hydrocarbon flames are proposed in [33].
The density of active sites which can describe surface growth depends on the chemical
environment (see [33]). In flame environments, coronene (C24H12) and pyrene (C16H10)
molecule represent the types of soot precursor molecule. A stochastic modeling "basin-
hopping global optimization" was used to locate minima on the potential energy surface
of the molecular clusters such that its size is similar to small soot particles. Varying
soot density on this model and observing how the shape of the particle size distribution
changes can inform us on the density of nascent soot. Fig. 2.7 shows an HRTEM image
of soot. TEM-style projections of the resulting geometries of the molecule clusters are
similar to those observed experimentally in TEM images of soot particles (see [100]).

2.3 Observations of active phase of hydrotreating cat-
alysts

Catalyst is an additional substance participating in a chemical reaction and can make the
reaction occur faster and/or require less activation energy. Usually, only tiny amounts
are required. Because of non-consumption in the catalyzed reaction, catalysts can con-
tinue to catalyze the reaction of further quantities of reactant. Catalyst has active phase
and support components. Hayden and all have demonstrated the importance of initial
oxide state and particularly the active-support interactions on the final sulphided state
in a way of oxidising atmosphere or 5% H2S/H2 (at a pressure of 68 Pa) and at variable
temperature (775-875 K) (see [45]). The morphology with inter-distance between two
neighboring white/black fringes (active phase) is in relation to the quantity of oxygen
in catalyst (see [59]). Some fringes are curved with radii of curvature as high as 2 to 5
nm (see [24]), and Iwata and all proposed that this curved property may provide default
active sites (see [50]). HRTEM (High Resolution Transmission Electron Microscopy) is
used as a valuable tool for imaging the crystal structure of crystalline nanomaterials such
as catalyst at the atomic scale.

We are interested in the characterization of hydrotreating catalysts with sulphide phases
supported on alumina (see [101]) and more specially the active phases of these catalysts.
Samples are observed with Transmission Electron Microscope in bright field mode at
magnification of the order of 250000. We focus on the analysis of CoMoS sites which
produce alternations of black and white fringes as observed in Fig. 2.8 and Fig. 2.10.
CoMoS refers to a class of active phases involving Cobalt, Molybdenum and Sulphur
atomic structures. The catalytic activity and selectivity depend on the morphology of
these sites (see [73] and [101]).
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TEM in general has played a very important role in investigating micro-structure of
catalysts. Sanders and Pollack showed that TEM was the first method to demonstrate
the structure of the active phase of MoS2 in nanometric stacked lamellar sheets (see
[79, 91]). Eltzner showed that STEM also demonstrated the proximity of promoters (Ni,
Co) to molybdenum and tungsten (see [26]). We present here the HRTEM images and
the analyzed samples of two types (X and Y) of catalysts.

2.3.1 HRTEM images and sub-images of catalyst X (CatX)

Figure 2.8: HRTEM images and sub-images of CatX

Fig. 2.8 shows HRTEM images of Molybdenum sulfide sheets (black fringes) deposited
on an alumina support for catalyst X. Several sub-images of catalyst X are given in Fig.
2.9. Each HRTEM image consists of 1024× 1024 pixels. Its numerical resolution is 0.04
nm by pixel. In this work, 93 sub-images (selected fringes) containing active phases taken
from 21 HRTEM images of catalyst X are collected to form a sample database, the size of
any of these 93 sub-images ranges, in pixel coordinates, between the lower bound [89; 100]
and the upper bound [265; 270].

2.3.2 HRTEM images and sub-images of catalyst Y (CatY )

Fig. 2.10 shows HRTEM images of Molybdenum sulfide sheets (black fringes) deposited
on an alumina support for catalyst Y and several sub-images of this catalyst are given by
Fig. 2.11. Each HRTEM image consists of 1024 × 1024 pixels. Its numerical resolution
is 0.04 nm by pixel. A total of 109 sub-images (selected fringes) containing active phases
taken from 19 HRTEM images of catalyst Y are used as sample Y database, the size of any
sub-image ranges, in pixel coordinates, between the lower bound [84; 85] and the upper
bound [329; 294]. Fig. 2.12 shows an example of an HRTEM image of catalyst (left) and
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Figure 2.9: Sub-images of CatX

Figure 2.10: HRTEM images and sub-images of CatY
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Figure 2.11: Sub-images of CatY

Figure 2.12: HRTEM image and its PSD, see [34].
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its power spectral density (right) (see [34]). In the image, we can find clearly a number
of alternations of black and white fringes with a lateral extension of a few nanometers.
The stacking of the lamellar sheets in the HRTEM image has a ring (arrowed) form in
the Power Spectral Density (PSD) of the image. The spatial frequency in PSD (the right
image of Fig. 2.12) is at around 1.63 nm−1, corresponding to a period of 0.613 nm. This
period is close to the inter-distance between two neighboring white/black fringes at 0.615
nm which can be usually seen in literature (see [44]). We denote the image as I, its PSD
denoted as SI is calculated from the periodogram of the image I with size M ×N as

SI(u, v) =
|Î(u, v)|

2

M ×N
, (2.2)

where Î is the Fast Fourier Transform.

The fringe length can be defined as the lateral extension of the sheet stacks (see Fig.
2.12). Reference [17] proposed using active contour growth to measure the length of the
stacks. Because of fairly thick support, slabs in an image can be in focus, over-focused or
under-focused. This may induce measurement uncertainties for a stack. When the slabs
are orthogonal to the beam, they are invisible, apart when moiré patterns are present,
due to a crystalline support or rotation between lamellar sheets (see [83]). The quality
of the slabs in HRTEM depends not only the orientation, but also the size (larger slabs,
better quality). We observe numerous areas of a sample and the supports are disordered
materials, with a statistical approach, we will show that these images are representative
of the sample population (see Section 5.3.4).

In this work, we will study the morphology with inter-distance between two neighboring
white/black fringes and the curved property of fringes (active phase) observed in Fig. 2.9
and Fig. 2.11 with some approaches based on stochastic modeling.

2.4 Structure of fringes (active phases) of catalyst in
spatial domain and in frequency domain

An HRTEM fringe can be seen as a quasi-periodic or pseudo-periodic image pattern. As a
consequence, it is expected to be represented by a peak or a lobe in the frequency domain.

Fig. 2.13 presents the ideal structure of the active phase of catalyst in spatial domain
and its correspondence in frequency domain:

• When the fringes (active phases) are parallels, the form of the lobe in the corre-
sponding power spectral density is isotropic. We have:

* if the fringe inter-distance is constant, the lobe will result in a single frequency
point (see (1a) in Fig. 2.13), then:

- if the equal fringe inter-distance is small, the lobe is far from the zero
frequency point (higher frequency) (see (1b) in Fig. 2.13), and
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Figure 2.13: Structure of fringes: (1) parallel and constant inter-distance, (2) parallel and
non-constant inter-distance and (3) non-parallel, in spatial domain as well as in frequency
domain.

- if the equal fringe inter-distance is high, the lobe is near to the zero fre-
quency point (lower frequency);

* if the fringe inter-distance is not constant, the lobe will be wide (see (2) in
Fig. 2.13).

• When the fringes of active phase structure are not strictly parallels, the form of the
lobe in its power spectral density is anisotropic (see (3) in Fig. 2.13). We have:

* if the fringes possess the structure of different regular rays transmitted from the
same point, the main lobe direction is parallel to the vector (central DSP/black
point, center lobe/red point) and we can also denote this direction as radius
direction (see (3a) in Fig. 2.13);

* if the fringes possess a curve structure, the main lobe direction is perpendicular
to the vector (central DSP/black point, center lobe/red point) and we can
denote this direction as angle direction (see (3b) in Fig. 2.13).
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A morphological characterization of these peaks/lobes in the spectral domain can allow
us to obtain information about:

• inter fringes distance,

• regularity of spacing, when analyzing radial length of lobes and

• regularity of curvature, when analyzing tangential length of lobes.

This morphological characterization will be presented in Chapter 5. As it is carried out
on a stochastic model-based spectrum estimation, the two next chapters will concern
stochastic modeling: some generalities on stochastic modeling will be recalled in Chapter
3, whereas our contributions will be addressed in Chapter 4.
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CHAPTER 3

Generalities on stochastic modeling

3.1 Introduction

This chapter addresses generalities on stochastic modeling. Definitions and properties
presented in this chapter follows from the literature on stochastic processes and can be
found for instance in references [27], [13, 99], [102], [68], [67], [109], [64], [90, 88, 89],
[28, 29], [110, 14, 63, 96, 30, 86].

Firstly we provide description of random processes in terms of short/long memory (Sec-
tion 3.2) and self-similarity (Section 3.3) properties. Then some examples of short mem-
ory /long memory / self-similar random processes are given in continuous (Section 3.4)
and discrete (Section 3.5) times. Finally, extensions to 2-D random fields is addressed by
focusing on Fractional Brownian and Auto-Regressive fields (Section 3.6).

3.2 Short versus long memory process

3.2.1 Stationary processes

DEFINITION 1 The time series (Xt)t is said to be strictly stationary, if

FXt1 ,Xt2 ,··· ,Xtn (x1, x2, · · · , xn) = FXt1+k,Xt2+k,··· ,Xtn+k
(x1, x2, · · · , xn), (3.1)

where {t1, t2, · · · , tn} ∈ Z, k ∈ Z, n ∈ Z, and F denotes the cumulative joint distribution
function of a set of random variables.

The terms "weakly stationary", "second-order stationary", "co-variance stationary" and
"wide-sense stationary" are equivalent to describe stationarity restricted to second order
statistics in situations such that

E(Xt1) = E(Xt1+k), (3.2)
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and
Cov(Xt1 , Xt2) = Cov(Xt1+k, Xt2+k), (3.3)

for all t1, t2, k ∈ Z, the co-variances are assumed to exist.

3.2.2 Short memory process

DEFINITION 2 A second-order stationary process (Xt)t is called short memory (or
short range dependence) process, if its auto-correlation function ρk satisfies

∞∑
k=0

ρk <∞, (3.4)

with

ρk =
E[(Xt − µ)(Xt+k − µ)]

σ2
,

where µ and σ2 represent the mean and variance of the process Xt. The Auto-Regressive
Moving Average (ARMA) process (see Section 3.6.2) and Auto-Regressive Conditional
Heteroscedastic (ARCH) (see [27]) process are two standard short memory processes.

3.2.3 Long memory process

Condition Ch on a function h is defined as: for all a ∈ R, when x→∞ or x→ 0,

h(ax)

h(x)
→ 1. (3.5)

DEFINITION 3 A second-order stationary process (Xt)t is called long memory process
if it has an auto-correlation function ρk which behaves like a power function decaying to
zero hyperbolically as

ρk ∼ fρ(k)k−α, (3.6)

as k → ∞, where 0 < α < 1, ∼ represents the asymptotic equivalence and fρ(k) is a
function which changes slowly to infinity and satisfying the condition Ch given above.

In Eq. (3.6), if H = 1 − α
2
, the long memory behavior occurs when 1

2
< H < 1 (case of

Hurst parameter H which will be introduced later in the manuscript).

DEFINITION 4 In frequency domain, second-order stationary process (Xt)t is a long
memory process if its spectral density function S can be approximated by

S(λ) ∼ fS(λ)λ−2d, (3.7)

as λ→ 0+, where 0 < d < 1
2
, fS(λ) is a function which decays slowly to zero at frequency

zero and satisfying the condition Ch.
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One can note that in the definition given above, λ → 0+, λ−2d is not integrable when
d ≥ 1

2
, thus second-order stationarity cannot be obtained in this case.

In addition, Eq. (3.7) highlights a singularity (unboundedness) of the spectral density at
zero frequency. For a discrete time process, we can simply say that a process has long
memory property if its spectral density is unbounded at a finite frequency point in [0, π].
It means that ∃λ0 ∈ [0, π], such that S(λ0) is unbounded. While a process is said to be
a short memory process if its spectral density is bounded for frequencies in [0, π].

3.3 Self-similar process

Self-similarity describes certain forms of statistical dependency. The concept of long
memory and that of self-similarity or asymptotical self-similarity are not equivalent (see
[13]).

3.3.1 Continuous time self-similar process

3.3.1.1 Self-similar process in continuous time

DEFINITION 5 A real-valued stochastic process X = {X(t)}t∈R is an H Self-Similar
process (denoted as a H-SS process), if for any a > 0,

{X(at)}t∈R
D
= {aHX(t)}t∈R, (3.8)

where H > 0 and "D=" means ‘identical in finite-dimensional distributions’.

3.3.1.2 Self-similar process with stationary increments in continuous time

DEFINITION 6 A real-valued stochastic process X = {X(t)}t∈R is an H Self-Similar
process with Stationary Increments (denoted as a H-SSSI process), if X is H-SS process
and, for any any h ∈ Z,

{X(t+ h)−X(h)}t∈R
D
= {X(t)−X(0)}t∈R, (3.9)

where H > 0.

Let {X(t)}t∈R be an H-SSSI process with 0 ≤ H < 1, its increment X(t) −X(t − 1) is
denoted as a process {I(t)}t∈Z (I(t) = X(t) − X(t − 1)). Denote respectively by γX(·)
and σ2, the co-variance and variance functions of {X(t)}t∈R. The H-SSSI process X has
the following properties (see [13, 99]):

• X(0) = 0 almost surely (a.s.).

• −X(t)
D
= X(−t).

• For the H-SS process {X(t)}t∈R, the process {Y (t)}t∈R = e−tHX(et) is stationary.
While {Y (t)}t∈R is stationary, the process X(t) = tHY (ln t) t > 0 is a H-SS process.
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• for H ∈ (0, 1),

– when 0 < H < 1
2
, the process {I(t)}t∈Z is a short memory process.

– when H = 1
2
, the process {I(t)}t∈Z is uncorrelated.

– when 1
2
< H < 1, the process {I(t)}t∈Z is a long memory process.

3.3.2 Discrete time self-similar process

3.3.2.1 Self-similar process in discrete time

DEFINITION 7 A discrete strictly stationary stochastic process {X(t)}t∈Z is exactly
Self-Similar (abbreviation ‘SS’) (or Asymptotically Self-Similar denoted as ASS) if for all
t,

X(t)
D
= m1−HX(m)(t), (3.10)

with

X(m)(t) =
1

m

tm∑
k=(t−1)m+1

X(k), (3.11)

holds for all m (or m → ∞) and k = 1, 2, · · · , where m indicates the level of the aggre-
gation and 1

2
< H < 1.

3.3.2.2 Second order self-similar process in discrete time

DEFINITION 8 Let {X(t)}t∈Z be a discrete time co-variance stationary process.

• The process {X(t)}t∈Z is called exactly Second Order Self-Similar (denoted as SOSS)
if m1−HX(m)(t) has the same auto-correlation as X(t), for all m and for all t. Thus,

V ar(X(m)) = V ar(X)m2H−2, (3.12)

and
ρ
(m)
k = ρk, (3.13)

where 1
2
< H < 1, m > 1, k = 0, 1, 2, · · · , and the auto-correlation function

ρk ∼ Ck2H−2, as k →∞.

• The process {X(t)}t∈Z is called Asymptotically Second Order Self-Similar (denoted
as ASOSS) if for ∀k > 0,

lim
m→∞

ρ
(m)
k =

1

2
[(k + 1)2H − 2k2H + (k − 1)2H ]. (3.14)

In DEFINITION 7, the exact (or asymptotical) SS concerns all the finite dimensional dis-
tributions of a strictly stationary process. In DEFINITION 8, the exact (or asymptotical)
SOSS concerns only the variance and auto-correlation function of a co-variance stationary
process. Under Gaussian framework, exact SOSS (respectively ASOSS) is equivalent to
exact SS (respectively ASS).

From DEFINITION 8, the SOSS process {X(t)}t∈Z has the following properties:
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• Its auto-correlation function ρk can be expressed, for ∀k > 0, as:

ρk =
1

2
[(k + 1)2H − 2k2H + (k − 1)2H ]. (3.15)

• For 1
2
< H < 1, the SOSS process {X(t)}t∈Z exhibits long memory behavior (see

Section 3.2.3).

3.3.3 Relationships between (asymptotical) self-similarity and short/long
memory behaviors

With properties presented in Sections 3.2.2, 3.2.3 and 3.3, the following considers the
relation between self-similarity and short memory behaviors as well as long memory
behaviors.

LEMMA 1 Let {X(t)} be a co-variance stationary process, if this process is short mem-
ory as in DEFINITION 2, then it is not asymptotically second-order self-similar.

The proof is given in [63]. This proof is based on the fact that the auto-correlation
function of a short memory process decays exponentially to zero, thus it does not satisfy
the condition presented in Eq. (3.15), which means that the short memory process is not
ASOSS.

LEMMA 2 Let {X(t)} be a co-variance stationary process, if this process is long mem-
ory with 1

2
< H < 1 as is defined in DEFINITION 3, then it is asymptotically second-

order self-similar. Furthermore, under Gaussianity, the process is asymptotically self-
similar.

The proof is given in [102]. This proof is based on the fact that the auto-correlation
function ρk, for ∀k = 1, 2, . . ., with

ρk =
1

2
[(k + 1)2H − 2k2H + (k − 1)2H ], (3.16)

of a co-variance stationary long memory process decays hyperbolically, i.e.

lim
k→∞

ρk
k2H−2

= c. (3.17)

Thus a co-variance stationary long memory process is ASOSS.

LEMMA 3 Let {X(t)} be a co-variance stationary long memory process with 1
2
< H <

1. If the spectral density of the process blows up at the origin, then the process is asymp-
totically second-order self-similar. Furthermore, under Gaussianity, it is asymptotically
self-similar.

The proof is a straightforward consequence of DEFINITION 4, LEMMA 2 and LEMMA
3.
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3.4 Examples of self-similar and/or long range depen-
dence processes in continuous time

In this section, we provide some examples of self-similar and/or long range dependence
processes in continuous time.

3.4.1 Gaussian H-SSSI models - fractional Brownian motion

3.4.1.1 Brownian motion

DEFINITION 9 Process X(t), for t > 0, is called a (standard) Brownian motion if:

• X(0) = 0 a.s (almost surely).

• X(t) has independent increments.

• For each t, X(t) has a Gaussian distribution with mean equal to zero and variance
equal to t.

• E[X(t)−X(s)] = 0.

The Brownian motion is a 1
2
-SS process, however, it is not a long memory process because

of its independent increments. The standard deviation of the increment X(t+T )−X(t),
with T > 0, equals T

1
2 .

3.4.1.2 Fractional Brownian Motion (FBM)

The unique Gaussian H-SSSI model is the FBM which is presented as follows.

DEFINITION 10 The FBM XH(t) is the self-similar process with parameter H, for
0 < H < 1 defined by the following stochastic integral:

XH(t) =

∫
ωH(t, u)dX(u), (3.18)

where X(u) is the standard Brownian motion, the convergence of the integral is under
L2-norm with respect to the Lebesgue measure on the real numbers and the weight function
ωH satisfying the conditions as follows:

• ωH(t, u) = 0, for t ≤ u.

• ωH(t, u) = (t− u)H−
1
2 , for 0 ≤ u < t.

• ωH(t, u) = (t− u)H−
1
2 − (−u)H−

1
2 , for u < 0.

The following theorem is proved in [68].

THEOREM 1 The increments of FBM XH(t) with parameter H are stationary and
SS.

The FBM possesses the following properties:
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• The co-variance function of FBM which is denoted as γ(k), k ∈ Z, is proportional
to |k|2H−2 as k →∞.

• The spectral density of FBM is proportional to ω−2H−1, as ω → 0 and 0 < H < 1,
thus the FBM exhibits long memory behavior.

• FBM can be divided into three classes:

– when 0 < H < 1
2
, FBM is called an anti-persistent process,

– when H = 1
2
, FBM is called a random walk,

– when 1
2
< H < 1, FBM is called a persistent process.

• FBM is a generalization of the Brownian motion.

For H /∈ (0, 1), the FBM with Hurst exponent H can be seen as moving average version
of dX(t) where X denotes the Brownian motion defined above (see [68]). FBM XH(t)
can also be seen as a fractional derivative or integral of X(t) (see [109]).

Finally, one can note also that it exists some extensions of FBM (a mono-fractal pro-
cess) in terms of multi-fractal (or fractional) processes by letting the Hurst parameter
be itself a variable of t (instead of being a constant parameter in the case of FBM). The
reader can refer to the literature [28, 29], [67] for more details.

3.4.2 Non-Gaussian H-SSSI models

It exists an infinite number of non-Gaussian H-SSSI models that are called α stable
processes for 0 < α < 2 (see [90]). The construction of such processes starts by considering
a random variable X with alpha-stable characteristic distribution:

Φ(eiθX) =

{
e−σ

α|θ|α(1−iβ(sgnθ) tan πα
2
)+iµθ if α 6= 1,

e−σ|θ|(1+iβ
2
π
(sgnθ) ln |θ|)+iµθ if α = 1,

with

sgnθ =


1 if θ > 0,
0 if θ = 0,
−1 if θ < 0,

where σ ≥ 0, β ∈ [−1, 1] and µ ∈ R.

In general, there is no analytical close form for the probability density function f as-
sociated with Φ. However, for 0 < α < 2, this probability density function, f , can be
written asymptotically in x as:

f(x) ∝ (1 + sgn(x)β)|x|−α−1.

Merging a set of α stable random variables into a sequence, we derive a process that is
distributed as α stable in the sense that any finite sub-sequence can be seen as an α stable
distributed random vector. These processes can be used to model impulsive signals for
which the Gaussian assumption used in FBM definition is far from being relevant. Some
remarkable properties of these processes are:
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• The relationship between Hurst parameter H and α is:

– H ∈ (0, 1
α

], if 0 < α < 1;

– H ∈ (0, 1], if 1 < α < 2.

• When 0 < α < 2 and H 6= 1
α
, the linear fractal stable motion (or linear fractal Lévy

motion) is considered.

• When 0 < α < 2 and H = 1
α
, the α-stable Lévy motion is considered.

• When 1 < α < 2, the log-fractional stable motion is 1
α
-SSSI process.

• An α-stable process is said to be symmetric (and called SαS) if for ∀θ ∈ R and
σ ≥ 0:

Φ(eiθX) = e−σ
α|θ|α .

• Three famous Symmetric α-Stable (SαS) H-SSSI processes are:

– the linear fractional stable motion,

– the real harmonically fractional stable motion and

– the sub-Gaussian fractional motion.

These three SαS H-SSSI processes reduce to FBM if α = 2.

The relationship between SS process, Gaussian process, Brownian motion, FBM, α-stable
process and Lévy process (see [90, 88, 89]) can be presented as:

• A SS and Gaussian process is a FBM.

• A SS and Lévy process is an α-stable process.

• A Gaussian and Lévy process is a Brownian motion with drift.

• Brownian motion is a particular case of SS processes, Gaussian processes and Lévy
processes.

3.5 Examples of self-similar and short/long range de-
pendence processes in discrete time

In this section, we present some discrete time stochastic processes and their SS / long
memory / short memory properties.
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3.5.1 FGN process

The first level of construction of discrete time random models is to consider discrete
sampling of continuous time processes. This sampling can be followed by summations or
differencing operations. For instance, the Fractional Gaussian Noise (FGN) is the discrete
time process {X(t)}t∈Z defined by

X(t) = XH(t)−XH(t− 1), (3.19)

where {XH(t)}t∈R is a fractional Brownian motion (see Section 3.4.1). FGN is the incre-
ment sequence of the FBM process. Its properties are detailed as follows [68]:

• FGM is an exactly SS stationary Gaussian process with mean equal to zero.

• The FGN is the unique exactly SS stationary Gaussian process.

The second level of random process model construction is considering discrete time re-
cursive equations between random variables. The widest class of random processes con-
structed by this way include both short memory and long memory terms, in addition
with fractional integration/differencing terms. It is called k-factor GARMA (Gegenbauer
Auto-Regressive Moving Average) process (see [110, 38]) and it includes many standard
discrete time processes, as highlighted below.

3.5.2 k-factor GARMA process

DEFINITION 11 The k-factor Gegenbauer Auto-Regressive Moving Average (GARMA)
process {X(t)}t∈Z is defined by the recursive equation:

ΦLWL(Xt − c) = ΘLεt, (3.20)

with

WL =
k∏
i=1

(1− 2uiL+ L2)di , (3.21)

where

• L is the lag operator, also called back-shift operator, defined as LkXt = Xt−k;

• ΦL and ΘL are two polynomial functions of degree p and q, respectively, defined as:
ΦL =

∑p
i=1 φiL

i and ΘL =
∑q

j=1 θjL
j;

• c is the expectation of Xt (often assumed to equal 0);

• εt, εt−1 ... are zero-mean white noise error terms with variance σ2
ε ;

• k is the number of unbounded peaks at the frequencies fi = cos−1 ui
2π

, i ∈ {1, . . . k}, k
being a finite positive integer and the parameters fi are called Gegenbauer frequen-
cies, these parameters are associated with the long-memory behavior of the model;

• ui is the periodicity parameter specifying the frequency where the long-memory be-
havior occurs;
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• di (di ∈ R) is the fractional difference parameter, it indicates how slowly the auto-
correlation damps;

• (1 − 2uiL + L2)−di is the generating function of Gegenbauer polynomials Cd
n(u)

which is defined as

(1− 2uiL+ L2)−di =
∞∑
n=0

Cdi
n (ui)L

n, (3.22)

where d 6= 0, u is in the interval [−1, 1], Cd
n(u) is given by

Cdi
n (ui) =

[n
2
]∑

j=0

(−1)j(2ui)
n−2jΓ(di − j + n)

j !(n− 2j) !Γ(di)
(3.23)

with [n
2
] being the largest integer less than or equal to n

2
, and Γ is the special gamma

function (see [30]).

3.5.2.1 Properties

The main characteristics of the k-factor GARMA model can be summarized as follows
(see proofs in [110, 14, 63, 96, 30, 86]):

• Xt is stationary (DEFINITION 1): if all the roots of the equation ΦL = 0 lie outside
the unit circle and di < 1

2
when ui 6= 1 or di < 1

4
when |ui| = 1, i = 1, . . . k.

• Stationary Xt is long memory (see DEFINITION 3): if di > 0.

• The spectral density of the k-factor GARMA:

S(ω) = σ2 |Θ(e−jω)|2

|Φ(e−jω)|2
k∏
i=1

{4[cos(ω)− ui]}−di . (3.24)

• A k-factor GARMA process is co-variance stationary and exhibits long memory
behavior when

– ui are distinct,

– all the roots of the polynomials ΦL and ΘL are distinct and outside the unit
circle,

– and

∗ if 0 < di <
1
2
and |ui| < 1 or

∗ if 0 < di <
1
4
and |ui| = 1 for i = 1, 2, · · · , k.

• Under the co-variance stationary and long memory conditions given just above, the
k-factor GARMA process is second-order asymptotically self-similar. Furthermore,
under Gaussian framework, it is asymptotically self-similar.

We present here two particular cases of k-factor GARMA process as follows:
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• When k = 1, k-factor GARMA process reduces to a Gegenbauer ARMA (GARMA)
process (see [40]).

• When k = 1 and u = 1, k-factor GARMA process reduces to a Fractional Integrated
ARMA (ARFIMA) process (see [39, 46]).

• When k = 1, u = 1, ΦL = 1 and ΘL = 1, k-factor GARMA process reduces to a
Fractional Integrated (FI) process (see [46]).

Let us pay a particular attention to the ARFIMA and the FI processes in the two following
sub-sections.

3.5.2.2 ARFIMA process

The stochastic ARFIMA process with parameters (p, d, q) {Xt} is an extension of frac-
tional differencing FI (d) with Box-Jenkins methods ARMA (p, q).

DEFINITION 12 The ARFIMA (p, d, q) process {Xt} is defined by

ΦL5d Xt = ΘLεt, (3.25)

where ΦL and ΘL are polynomials in the backward-shift operator L, ΦL = 1−φ1L− . . . −
φpL

p and ΘL = 1− θ1L− . . . − θqLq, p, q are integers, d is real and

5d = (1− L)d

=
∞∑
k=0

Ck
d (−L)k

= 1− dL− 1

2
d(1− d)L2 − 1

6
d(1− d)(2− d)L3 − . . . , (3.26)

where d is real non-integer.

The ARFIMA process is flexible enough to explain both the short-term and certain long-
term correlation structure of a series (see [49, 60, 105, 104, 106]). On distant observations,
the effect of parameter d describes the hyperbolic decay of high-lag correlation structure,
while the effects of Φ and Θ describe the exponential decay of low-lag correlation struc-
ture. On very distant observations, the effects of Φ and Θ will be negligible.

FI and ARMA can be considered as two particular cases of ARFIMA:

• FI (d) can be also noted as ARFIMA (0, d, 0) and

• ARMA (p, q) can be also noted as ARFIMA (p, 0, q).

We present here some properties of ARFIMA (p, d, q) process:

• Stationarity (DEFINITION 1): all the roots of the equation ΦL = 1− φ1L− . . . −
φpL

p = 0 lie outside the unit circle (d < 1
2
).
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• Power Spectral density (PSD):

SX(ω) = |2 sin(
ω

2
)|−2dSARMA(ω), (3.27)

with
SARMA(ω) =

σ2
E|Θ(ejω)|2

2π|Φ(ejω)|2
, (3.28)

and
lim
ω→0

ω

2 sin(ω
2
)

= 1, (3.29)

where 0 < d < 1
2
. Thus, as ω → 0,

SX(ω) ≈ σ2
W |Θ(1)|2

2π|Φ(1)|2
|ω|−2d = SARMA(0)|ω|−2d. (3.30)

where SARMA(ω) is the PSD of ARMA process controlling the short-range depen-
dence of the process, Φ(ejω) is the AR polynomial with order p and Θ(ejω) is the
MA polynomial with order q. Similarly to FBM, ARFIMA has an infinite value
peak in the spectrum at ω = 0.

3.5.2.3 FI process

DEFINITION 13 FI (d) process Xt is defined by

Xt = 5−dεt, (3.31)

or
5d Xt = εt. (3.32)

where εt are independent identically distributed random variables with mean zero and
variance σ2

ε and 5d is the fractional-differencing operator defined by Eq. (3.26).

We present here some properties of the FI process (see [12, 95] for details). FI (d) process
(we assume for convenience that σ2

ε = 1) is such that:

• −1
2
< d < 0: short memory and anti-persistent,

• d = 0: white noise with zero correlations and constant spectral density,

• 0 < d < 1
2
: long-memory stationary process or self-similar,

• d < 1
2
: stationary,

• d = 1
2
: non-stationary.

Power Spectral Densities:

• for 0 < ω ≤ π and −1
2
< d < 1

2
,

SX(ω) = (2 sin
ω

2
)−2d, (3.33)
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• for 0 < d < 1
2
,

SX(ω) ∼ ω−2d, (3.34)

SX(ω) is a decreasing function of ω, as ω → 0, Sx(ω)→∞.

• for −1
2
< d < 0, Sx(ω) is an increasing function of ω and vanishes at ω = 0.

Co-variance function, for −1
2
< d < 1

2
:

γu = E(XtXt−u) =
(−1)u(−2d)!

(u− d)!(−u− d)!
. (3.35)

Correlation function:

• for u = 0,±1, ...,

ρu =
γu
γ0

=
(−d)!(u+ d− 1)!

(d− 1)!(u− d)!
, (3.36)

• for u = 1, 2, ...,

ρu =
d(1 + d)...(u− 1 + d)

(1− d)(2− d)...(u− d)
, (3.37)

• as u→∞,

ρu ∼
(−d)!

(d− 1)!
u2d−1, (3.38)

with

γ0 =
(−2d)!

[(−d)!]2
, (3.39)

and

ρ1 =
d

1− d
. (3.40)

The long-term persistency (d > 0) implies an hyperbolic decay of the correlation function.

To conclude this review of 1-D random processes, one can mention another class of
dependency modeling, the one involved by Markov chains. A brief description of these
models can be found in [41].

3.6 2-D stochastic modeling

In this section, we present some 2-D random field extensions for certain random processes
described in the previous sections. The 2-D stochastic fields considered are: the FBF
(Fractional Brownian Field) and the ARMA (Auto-Regressive Moving Average) field. A
presentation of other classes of random fields such as 2-D Markov models can be found
in [23, 35, 108].
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3.6.1 2-D isotropic FBF modeling

The Fractional Brownian Field (FBF) is the 2-D extension of FBM (see Section 3.4.1).
Isotropic FBF is a one-parameter model extension of FBM. Its parameter is also called
Hurst parameter, as for FBF. In the 2-D case, this parameter is representative of stochastic
regularity (texture roughness, in practice). The isotropic FBF admits one pole located
at zero frequency in spectral domain.

DEFINITION 14 The 2-D isotropic FBF with Hurst parameter H, 0 < H < 1, denoted
here as BH(x, y), is defined to be a non-stationary Gaussian zero-mean real-valued field
with auto-correlation function defined as

ρBH (x, y, s, t) = E[BH(x, y)BH(s, t)]

=
σ2
b

2
{(x2 + y2)H + (s2 + t2)H − ((x− s)2 + (y − t)2)H} (3.41)

where (s, t) ∈ Z2 and σ2
b is a constant representing the variance of a white Gaussian

noise.

Although FBF is a non-stationary process, this random process has stationary-increments
and stationary wavelet projections (see [78]).

The spectrum of FBF can then be defined by association with respect to the above
stationary FBF instances and is given by (see [78, 48, 84, 11]):

SFBF (u, v) = ξ(H)
1

(u2 + v2)H+1

= ξ(H)
1

‖(u, v)‖α
, (3.42)

with
α = 2H + 2, (3.43)

where ‖(u, v)‖ =
√
u2 + v2,

ξ(H) =
2−(2H+1)π2σ2

b

sin(πH)Γ2(1 +H)

and Γ is the standard gamma function.

Fig. 3.1 shows that the Hurst parameter represents the stochastic regularity (texture
roughness). When Hurst parameter is bigger, the texture seems to be observed closer. In
Fig. 3.1, the size of image synthesized from FBF are equal to 512× 512.

3.6.2 2-D ARMA, AR, MA modeling

Let us define a second-order stationary random field as A = {A(x, y)}, (x, y) ∈ Z2.
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Figure 3.1: FBF texture samples for different Hurst parameters H (H ∈ {0.2, 0.5, 0.8}).

DEFINITION 15 Field A is a 2-D ARMA process (see [2, 3]) if

A(x, y) +
∑

(m1,m2)∈Do
a(m1,m2)A(x−m1, y −m2)

= b0,0E(x, y) +
∑

(m1,m2)∈Di
b(m1,m2)E(x−m1, y −m2),

(3.44)

where

• Di and Do are the prediction supports associated with the input and output respec-
tively. Subsequently, we assume that the supports of the input and output match
Di = Do = D.

• E is an independent identically distributed process with zero mean (centered) and
variance equal to 1.

• {a(m1,m2)}(m1,m2)∈D and {b(m1,m2)}(m1,m2)∈D are 2-D transverse coefficients of ARMA.

Figure 3.2: Linear time invariant system.

Field A can be seen as the output of a linear time invariant system with transformation
F when E is the entry (see Fig. 3.2). When we apply 2-D z-transform (see [80]) to Eq.
(3.44), the filter transfer function is expressed in the form of a 2-D rational function of
polynomials in z1 and z2:

F (z1, z2) =
Φ(z1, z2)

Ψ(z1, z2)
, (3.45)

with
Φ(z1, z2) = b0,0 +

∑
(m1,m2)∈D

bm1,m2z
−m1
1 z−m2

2 , (3.46)
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and
Ψ(z1, z2) = a0,0 +

∑
(m1,m2)∈D

am1,m2z
−m1
1 z−m2

2 . (3.47)

The PSD (see [18, 111]) of ARMA process A is then expressed as:

SA(u, v) =
|Φ(ej2πu, ej2πv)|2

|Ψ(ej2πu, ej2πv)|2
. (3.48)

For models whose predictive support is finite, polynomials Ψ and Φ are with finite degree.
We now present various geometries of prediction support that were most commonly used
for the ARMA (resp. AR, MA) model.

We present two particular cases (AR and MA) in ARMA as follows.

3.6.2.1 AR model

DEFINITION 16 A is considered as an AR when bm1,m2 = 0, ∀(m1,m2) ∈ D. Thus
the AR is defined as:

A(x, y) = −
∑

(m1,m2)∈D

am1,m2A(x−m1, y −m2) + b0,0E(x, y). (3.49)

Figure 3.3: Quarter plan prediction supports denoted (a) DQP1 (see Eq. (3.50)) and (b)
DQP2 (see Eq. (3.51)) with finite order (M1,M2) = (2, 2) and (x, y) ∈ Z2.

Different prediction supports have been defined in [6] and can be presented as follows.

DQP1 = {0 ≤ m1 ≤M1, 0 ≤ m2 ≤M2} \ (0, 0), (3.50)
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DQP2 = {−M1 ≤ m1 ≤ 0, 0 ≤ m2 ≤M2} \ (0, 0), (3.51)

DQP3 = {−M1 ≤ m1 ≤ 0,−M2 ≤ m2 ≤ 0} \ (0, 0), (3.52)

and
DQP4 = {0 ≤ m1 ≤M1,−M2 ≤ m2 ≤ 0} \ (0, 0), (3.53)

where (M1,M2) is the 2-D AR order.

In this work, we will use two prediction supports with Quarter Plan (QP) forms re-
spectively denoted QP`, ` = 1, 2 (Fig. 3.3 shows an illustrative example of these QPs).
The 2-D AR Power Spectral Density (PSD), SAR(u, v), is then derived as the harmonic

Figure 3.4: Each row presents an original image with its corresponding synthesized image
from the corresponding AR model.

mean of the two spectra associated with prediction supports QP`, ` = 1, 2, (see [51]):

SAR(u, v) =
2SQP1(u, v)SQP2(u, v)

SQP1(u, v) + SQP2(u, v)
, (3.54)
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where

SQP`(u, v) =
σ2
e,`

|FQP`(u, v)|2
(3.55)

and
FQP`(u, v) = 1 +

∑
m=(m1,m2)∈DQP`

am,`e
−i2πum1e−i2πvm2 .

The 2-D spectrum estimated from this method is easy to compute and has good estima-
tion properties with respect to the other existing methods, see [4] for details.

Let us denote the set of AR parameters associated with QP`, ` ∈ {1, 2}, as

θQP`M1,M2
= {σ2

e,`, {am,`,m ∈ DQP`}}. (3.56)

At a fixed order, the parameters of θQP`M1,M2
, ` ∈ {1, 2}, are estimated thanks to minimiza-

tion in the least-squares sense, see [82, 3]. This procedure involves Yule-Walker equations
and it is equivalent to the maximum likelihood estimation, when the random variables
are Gaussian.

In practice, the selection of an accurate prediction support determines model perfor-
mance. Although a number of works focus on the order (M1,M2) selection, see references
[6, 1] among others, this work considers, from preliminary experimental model validation,
M1 = M2 = 10 as the order of the prediction support.

Fig. 3.4 presents two examples of images synthesized by AR. In each row, an origi-
nal image is presented at left and its corresponding AR-synthesized image is placed at
the right of the row. Fig. 3.1 shows that structures of the original images have the
same directions as the fringes observed the synthesized images. These structures are in
connection with the lobes which constitute the AR power spectral density features (see
[51]).

3.6.2.2 MA model

Field A given by Eq. (3.44) is an MA when am1,m2 = 0, ∀(m1,m2) ∈ D. Thus, we have

DEFINITION 17 An MA field A is defined by:

A(x, y) = b0,0E(x, y) +
∑

(m1,m2)∈D

bm1,m2E(x−m1, y −m2). (3.57)

The set of coefficients in MA is the set {bm1,m2}(m1,m2)∈D.

3.6.2.3 Causality

There exists several strategies for selecting AR/MA/ARMA predicting support, [62].
Example of a causal (respectively semi-causal, non-causal) prediction support is given by
Fig. 3.5 (respectively Fig. 3.6, Fig. 3.7). In Fig. 3.5, Fig. 3.6 and Fig. 3.7, the supports
DNSHP , DSC , DNC are defined by:
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Figure 3.5: Causal Non Symmetric Half Plan (NSHP) prediction support DNSHP ,
(m1,m2) ∈ Z2 and (x, y) ∈ Z2.

Figure 3.6: Semi-Causal (SC) prediction support DSC , (m1,m2) ∈ Z2 and (x, y) ∈ Z2.
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Figure 3.7: Non-Causal (NC) prediction support DNC , (m1,m2) ∈ Z2 and (x, y) ∈ Z2.

• [causal]

DNSHP =

{
(m1,m2) ∈ Z2

/
−M1 ≤ m1 ≤M1, 1 ≤ m2 ≤M2,

1 ≤ m1 ≤M1, m2 = 0

}
, (3.58)

• [semi-causal]

DSC = {(m1,m2) ∈ Z2/−M1 ≤ m1 ≤M1, 0 ≤ m2 ≤M2, (m1,m2) 6= (0, 0)}, (3.59)

• [non-causal]

DNC =

{
(m1,m2) ∈ Z2

/
−M1 ≤ m1 ≤M1,
−M2 ≤ m2 ≤M2,

(m1,m2) 6= (0, 0)

}
. (3.60)

In practice, the selection of a specific prediction support may depend on the application,
see for instance [32, 70], [61], [53, 82], [42], [55, 116].

Comparing for instance Figs. 2.9 and 2.11 with Fig. 3.1 and Fig. 3.4, the model presented
in this chapter visually provide simulations close to fringes observed on HRTEM images.
We have proposed in this thesis, some new families of parametric models exploiting the
insightful, respectively short and long memory properties of AR and FBF fields. These
models are presented in the next chapter.
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CHAPTER 4

2-D G-AR-FBF modeling and parameter estimation

The contributions proposed in this chapter concern both modeling and parameter estima-
tion issues. For modeling, we propose two extensions of the isotropic FBF. The first ex-
tension is a framework integrating 2-D AR and 2-D FBF into a new model called ARFBF.
The integration is made by means of convolution operations on discrete sequences of ran-
dom variables. This model is presented in Section 4.1. The second extension proposed
involves convolutions of several FBFs and is called K-factor GFBF: this model is pre-
sented in Section 4.2. Both extensions require concise parameter estimation on small
samples. For this purpose, we propose in Section 4.3 a new Hurst parameter estimation
method that exploits polar averaging on wavelet packet spectral densities.

4.1 2-D Auto-Regressive Fractional Brownian Field

Why a combination of AR and Fractional Brownian Fields ?

The first reason is that 2-D AR random fields are powerful tools for modeling the de-
pendencies in a small pixel neighborhood and, as such, can be considered as relevant
short-range correlation structure descriptors. AR field modeling has shown relevancy for
describing a wide class of pseudo-periodic textures and has been exploited in [7, 2, 69, 94]
for different applications such as classification, segmentation and recognition of textural
information. The spectrum of 2-D AR model can be calculated by the Harmonic Mean
(HM) method (see [51, 5]).

The second reason is that FBF describes in essence long-range correlation structures.
The Hurst exponent of FBF is also representative of stochastic regularity and can be
used to describe texture roughness. The spectral characterizations of FBF can be found
in [78, 48, 77, 84, 11].

The ARFBF model is built for the sake of exploiting both complementary short-range
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and long-range dependencies. In this respect, it is constructed so as to behave as either
2-D AR (when long-range dependencies are not observed) or FBF (when short-range de-
pendencies can be neglected). However, it is more general than a binary selection among
2-D AR or FBF: it involves, in addition with these fields, a wide range of fields showing
both strong local dependencies together with exponential spectral decays.

4.1.1 ARFBF Definition and Spectral Characterization

The 2-D ARFBF (see [98]) is defined as the convolution of AR field A (see Section 3.6.2.1)
and isotropic FBF BH (see Section 3.6.1). This 2-D ARFBF, hereafter denoted Z(x, y),
is defined as follows:

Z(x, y) = (A ∗BH) (x, y). (4.1)

In particular,

• Z behaves as an FBF when AR is a white noise;

• Z is an AR when FBF is a white noise (H = 0).

From Eq. (7.1), the spectrum associated with the non-stationary ARFBF model is

SARFBF (u, v) = SAR(u, v)SFBF (u, v). (4.2)

where SAR is the AR spectrum defined by Eq. (3.54) and SFBF is the FBF spectrum
given by Eq. (3.42).

The 2-D ARFBF parameter estimation can be performed in a joint framework by us-
ing directly SARFBF . However, knowing that the pseudo-periodic textural information
we seek is well-localized in frequency and can be dissociated from texture roughness, we
propose performing a separable parameter estimation of:

• the Hurst parameter associated with FBF near zero-frequency (under assumption
that the periodicity tacked by AR is located far from zero-frequency) and

• the set of AR parameters from the procedure described in Section 3.6.2.1, after
FBF contribution removal.

Due to this spectral based separable approach, the ARFBF modeling steps of an image
I1 can be summarized by the following procedure.
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4.1.2 ARFBF modeling procedure

Figure 4.1: Procedure of ARFBF modeling.

ARFBF modeling procedure is illustrated by the block diagram of Fig. 4.1. Let us denote
now one input image as I1. The ARFBF modeling procedure of this image is detailed as
follows:

• First step: calculate the spectrum S1 of I1 by using Harmonic analysis or by using
the wavelet packet method of [8].

• Second step: estimate, by using the Log-RPWP method presented in Section 4.3.4,
the parameter H and thus SĤ is derived.

• Third step: remove the contribution of the FBF in I1. The residual part is denoted
as I2 and its spectrum denoted as:

S2(u, v) =
S1(u, v)

SĤ(u, v)
. (4.3)

• Final step, model the residual part I2 by the 2-D AR and calculate its PSD Ŝ2 from
the AR estimated parameters (Ŝ2 is a smoothed version of S2 in general).
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4.2 2-DK-factor Generalized Fractional Brownian Fields

4.2.1 2-D K-GFBF modeling

In this section, we present a Generalized Fractional Brownian Fields (GFBF) model [11]
based on convolution of modulated fractional Brownian fields. From now on, BH0 denotes
a standard Fractional Brownian Field (Section 3.6.1).

4.2.1.1 Modulated Fractional Brownian Field BHq

The spectrum of BH0 admits a pole at the zero frequency point (see Eq. (3.42)). The
field BH0 can be modulated so as to translate its pole at a frequency point (uq, vq) ∈
[0, π]× [0, π]. This yields a random field BHq (modulated version of standard FBF BH0)
that can be written in the form:

BHq(t, s) = eiuqteivqsBH0(t, s). (4.4)

The random field BHq is centered and its auto-correlation function,

RBHq
(t, s, x, y) = E[BHq(t, s)BHq(x, y)], (4.5)

is
RBHq

(t, s, x, y) = RBH0
(t, s, x, y)eiuq(t−x)eivq(s−y). (4.6)

where 0 < Hq < 1.

This auto-correlation function involves a stationary separable exponential term multi-
plying RBH0

. Note, from the expansion of RBHq
given in Eq. (4.6), that BHq is non-

stationary: its auto-correlation function involves contributions that cannot reduce to lag
terms (t− x, s− y).

Similarly to BH0 , one can associate the spectrum SBHq to BHq , where

SBHq (u, v) = SBH0
(u− uq, v − vq), (4.7)

thus:

SBHq (u, v) = ξ(Hq)
1

((u− uq)2 + (v − vq)2)Hq+1

= ξ(Hq)
1

‖((u− uq), (v − vq))‖2Hq+2
, (4.8)

where

• ‖((u− uq), (v − vq))‖ =
√

(u− uq)2 + (v − vq)2,

•
ξ(Hq) =

2−(2Hq+1)π2σ2
b

sin(πHq)Γ2(1 +Hq)
,
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• σ2
b is a constant representing the variance of a white Gaussian noise and

• Γ is the special gamma function.

From Eq. (4.8), the spectrum SBHq is unbounded near frequency point (uq, vq) (spectral
pole with unit norm). This spectral pole is a shifted version of the pole of SBH0

. In
the neighborhood of (uq, vq), the spectrum SBHq has the same exponential decay as SBH0

around zero.

4.2.1.2 Generalized Fractional Brownian Fields BGHK
with K spectral poles

The standard fractional Brownian field BH0 admits one spectral pole located at zero fre-
quency point. Its modulated version, BHq , admits one spectral pole located at frequency
(uq, vq). The generalization to K spectral poles performed in [11] concerns the number
of poles associated with the spectral density of the fractional Brownian field.

Consider a sequence of Hurst parameters Hk ∈ {H0, H1, H2, . . . , HQ} and define a con-
volution (notation

⊗
, [52]) of K non-stationary fields B = {BHk , k = 0, 1, . . . , Q}:

BGHk
=

Q⊗
k=0

BHk , (4.9)

where

• sequence BHk is assumed to be composed with independent random fields,

• {k = 0, 1, . . . , Q} and K = Q+ 1.

Random field BGHk
is the so-called K-factor Generalized Fractional Brownian Fields

(GFBF).

From some straightforward calculus involving some properties of the convolution op-
erators, the spectrum of BGHk

, noted as SBGHk , can be written as:

SBGHk
(u, v) =

Q∏
k=0

∏Q
k=0 ξ(Hk)

((u− uq)2 + (v − vq)2)Hk+1
, (4.10)

where

•
ξ(Hk) =

2−(2Hk+1)π2σ2
b

sin(πHk)Γ2(1 +Hk)
,

• σ2
b is a constant representing the variance of a white Gaussian noise and

• Γ is the special gamma function.

From Eq. (7.4), the GFBF is associated with a spectrum admitting several poles and
those poles are not necessarily at the zero of the frequency grid. By construction, the
2-D K-factor generalized fractional Brownian fields model can admit an arbitrary number
of spectral singularity points and Hurst parameters which characterize local exponential
decays of the spectrum in several pixel neighborhoods.
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4.2.1.3 A particular sub-class of GFBF: the CMFBF

Figure 4.2: CMFBF modeling procedure.

The CMFBF (Convolution Mixture of 2-D FBF and 2-D modulated FBF) is a 2-factor
GFBF Y (x, y) defined by the convolution between a standard FBF BH0 and a modulated
FBF BH1 (see Eq. (4.4)):

Y = BH0

⊗
BH1 , (4.11)

We recall that BH0 admits a spectral pole located at frequency (0, 0) (see Eq. (3.42)) and
BH1 involves a spectral pole located at (u1, v1) (see Eq. (4.8)). As a consequence, the
spectrum SY of Y ,

SY (u, v) = SBH0
(u, v)SBH1

(u, v)

=
ξ(H0)

(u2 + v2)H0+1

ξ(H1)

((u− u1)2 + (v − v1)2)H1+1
, (4.12)

admits two spectral poles: those located at frequencies (0, 0) and (u1, v1) respectively (we
assume that (u1, v1) 6= (0, 0).

Under the assumption that (u1, v1) is not closed to (0, 0), estimation of CMFBF pa-
rameters can be reduced to 2 estimations of FBF parameters close to the frequencies of
interest, namely (u1, v1) and (0, 0). The estimation of the Hurst parameter is given in
Section 4.3. The procedure for associating a CMFBF model to a texture image I1 is
illustrated by Fig. 4.2. It involves the following steps:
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• First step, calculate the spectrum S1 of I1 by using the wavelet packet method of
[8].

• Second step, estimate, by using the Log-RPWP method presented in Section 4.3.4,
the parameter H0 and thus SĤ0

is derived.

• Third step, remove the contribution of the FBF in I1. The residual part is denoted
as I2 and its spectrum denoted as:

S2(u, v) =
S1(u, v)

SĤ0
(u, v)

. (4.13)

• Final step, model the residual part I2 as a modulated FBF, then derive the estimated
location (û, v̂) and estimated Hurst parameter Ĥ1.

4.3 Hurst parameter estimation of 2-D FBF
As highlighted in Section 4.1 and Section 4.2 above, estimation of ARFBF and GFBF
parameters can be performed locally in the spectral domain, by applying log-regression
in the neighborhood of every pole. The limited number of samples forces us to reconsider
FBF estimation procedure in a context of small samples.

Several methods exist for estimating the Hurst parameter of the 2-D Fractional Brown-
ian Field (FBF), for instance, maximum likelihood estimates (see [97, 31]), box-counting
approach (see [47]) and log-periodogram methods (see [37, 85]). These estimators have
shown relevancy mainly for large sample sizes.

In this section we propose two extensions of the wavelet packet method of [10] (dedicated
to fractional Brownian motion Hurst parameter estimation) for the sake of estimating
FBF parameters. These extensions, based on 2-D wavelet packet spectrum, are called
Log-Regression on Diagonal Wavelet Packet spectrum (Log-RDWP) and Log-Regression
on Polar representation of Wavelet Packet spectrum (Log-RPWP).

They will be shown more relevant that standard estimators [97] for robust Hurst pa-
rameter estimation.

4.3.1 Log-RDWP estimation method

The Log-RDWP estimation method [98] is based on the wavelet packet spectrum. In
the case of 2-D separable wavelets, it exists three different regression lines (horizontal,
vertical and diagonal regression lines) allowing to estimate the Hurst parameter H or
spectrum decay parameter α (see Eq. (3.43)).

In this work, the estimation method Log-RDWP uses the diagonal regression line and
relies on the following formula:

α̂Log−RDWP =
1

C

∑
j,k

log Ŝ(uj, uj)− log Ŝ(uk, uk)

log ‖(uk, vk)‖ − log ‖(uj, vj)‖
, (4.14)

69



where

• C = N !
2(N−2)! is the number of all possible combinations of the log-ratios,

• Ŝ (here ŜFBF ) denotes the spectrum estimated from the method proposed in [10],

• N is the number of considered frequencies in two dimensions,

• 0 < j < k ≤ N ,

• ‖(uk, vk)‖ =
√
u2k + v2k and

• ‖(uj, vj)‖ =
√
u2j + v2j .

4.3.2 Log-RPWP estimation method

Log-RPWP Hurst parameter estimation method [98] consists of three steps.

• In the first step, the spectrum with polar coordinates Sp is computed as,

Sp(r, θ) = T (ŜFBF (u, v)), (4.15)

where ŜFBF (u, v) is the wavelet packet spectrum ([8]), in Cartesian coordinates
(u, v), estimated from FBF samples and T is the Cartesian-to-polar transform.

• In the second step, averages are done over the angles:

Sp(ri) =
1

J

J∑
j=1

Sp(ri, θj), (4.16)

with 1 ≤ i ≤ N denoting the radial sampling index.

• In the third step, Hurst parameter H is estimated by:

ĤRPWP =
1

2C

∑
1≤i,k≤N
i<k

logSp(ri)− logSp(rk)

log rk − log ri
− 1, (4.17)

thus spectrum decay parameter α (see Eq. (3.43)) can be obtained by

α̂RPWP =
1

C

∑
1≤i,k≤N
i<k

logSp(ri)− logSp(rk)

log rk − log ri
, (4.18)

where C = N !
2(N−2)! is the number of all possible combinations of indices (i, k) such

that 0 < i < k ≤ N .
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4.3.3 Results of Hurst parameter estimation

In order to evaluate the performance of the Log-RDWP and Log-RPWP estimation meth-
ods, we generate 10 realizations of an FBF for α ∈ {2.4, 2.8, 3.2, 3.6} and for two different
image sizes: 512× 512 and 2048× 2048.

RDWPN and RPWPN mean that α is estimated by Log-RDWP method and Log-RPWP
method respectively, where N is the number of samples (see Eq. (4.14) and Eq. (4.18)).
We use the Daubechy filter for computing the WP spectrum (see [10]). The results given
in Tab. 4.1 and Tab. 4.2 are obtained with a level of decomposition equal to 7. The

Table 4.1: Mean values of estimated α̂ and their variances computed from 10 FBF real-
izations with image size equal to 512× 512.

mean square error (denoted as MSE) is computed as:

MSE(α̂) = Bias(α̂)2 + V ar(α̂), (4.19)

with

Bias(α̂) = α− α̂, (4.20)

where V ar means the variance of estimated α in 10 FBF realizations. Tab. 4.1 and Tab.
4.2 show that, for the small size images, the Log-RPWP method estimates the parameter
α better than the Log-RDWP method. For the images with a large size, the Log-RDWP
method gives comparable results to those of the Log-RPWP method. Fig. 4.3 gives one
example by using MSE to demonstrate the stability of Log-RPWP method. In this work,
we use Log-RPWP method to estimate the Hurst parameter of FBF model.
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Table 4.2: Mean values of estimated α̂ and their variances computed from 10 FBF real-
izations with image size equal to 2048× 2048.

Figure 4.3: Mean square value computed with values obtained in Tab. 4.1 and Tab.
4.2 for RDWP8 and RPWP32 (best results) with image size equal to 512 × 512 and
2048× 2048.

4.3.4 Performance of Log-RPWP Hurst parameter estimator

In the literature two 2-D Hurst parameter estimation - Log-Regression based on Poly-
Harmonic Wavelet (denoted here as Log-RPHW) and Maximum Likelihood based on
Poly-Harmonic Wavelets (denoted here as ML-PHW) - methods have been proposed in
[97]. The methods Log-RPHW and ML use isotropic poly-harmonic wavelets of [107] and
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the fact that the poly-harmonic wavelet turns out to be a whitening operator for FBF,
see [97] for details.
We experimentally demonstrate the performance of Log-RPWP Hurst parameter esti-
mator (see [98]) based on 2-D wavelet packet spectrum for the estimation of the Hurst
parameter of an image, in comparison with Log-RPHW and ML-PHW estimators pro-
posed in [97, 107]. The experimental setup concerns FBF sampling from random number
generators. Two generators are used for experimental tests: the Generator #1 of [107] is
an FBF synthesis via back-projections from PolyHarmonic wavelet coefficients and the
Generator #2 proposed by [57] is a direct spatial synthesis by imposing the covariance
structure of Eq. (3.41).

Sample FBF Log-RPWP Log-RPHW ML-PHW

H Ĥ std Ĥ std Ĥ std
0.2 0.210 0.031 0.204 0.009 0.200 0.006

Generator #1 0.4 0.427 0.020 0.392 0.012 0.392 0.009
0.6 0.643 0.039 0.600 0.010 0.597 0.007
0.8 0.877 0.017 0.792 0.006 0.793 0.004
0.2 0.156 0.018 -0.029 0.004 -0.088 0.005

Generator #2 0.4 0.424 0.026 0.264 0.014 0.226 0.010
0.6 0.579 0.033 0.452 0.024 0.362 0.035
0.8 0.815 0.048 0.415 0.029 0.313 0.023

Table 4.3: Mean values and standard deviations for estimated Hurst parameters from 10
FBF realizations.

Tab. 4.3 gives, for FBF Generators #1 and #2, the best relevant Hurst parameter
estimations for all Log-RPWP, Log-RPHW and ML-PHW, when the maximal wavelet
decomposition level is limited to 7 (sample realizations are with sizes 512× 512). Hurst
parameter estimation was realized from 10 FBF realizations and H ∈ {0.2, 0.4, 0.6, 0.8}.

One can observe from Tab. 4.3 that accuracies of Log-RPHW and ML-PHW meth-
ods are limited to the Polyharmonic FBF: this is due to that the latter is synthesized
by using the same wavelets as those involved in Log-RPHW and ML-PHW estimation
routines. However, Log-RPHW and ML-PHW methods fail to estimate Hurst parameter
of Generator #2’s FBF, which uses no a priori on a specific wavelet generating function.

In contrast to Log-RPHW and ML-PHW, the Log-RPWP method gives relevant results
whatever the generator used to derive FBF samples, as it can be seen in Tab. 4.3. In the
following experimental tests on real word data, we thus focus on Log-RPWP estimator
which guarantees robustness of the Hurst parameter estimation.
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CHAPTER 5

Application to HRTEM image characterization

In this chapter, we present several applications of the models presented in Chapters 3
and 4 for HRTEM image characterization. The first application is soot HRTEM image
texture synthesis from random field K-factor GFBF modeling. The second application is
modeling and synthesis of HRTEM image of catalyst with the convolution mixture of FBF
and modulated FBF. Let us notice that the synthesis of textures issued from HRTEM
images is a scientific domain of interest and some recent works on the subject can be
found in [103]. Of course, in these works, other models are used to synthesize textures.
The last application is morphology based discrimination of catalysts using ARFBF.

5.1 K-factor GFBF samples and Soot HRTEM tex-
tures

In this section, we generate several samples of K-factor GFBF and analyse these sam-
ples, in comparison with a soot texture. The analysis is performed here by using wavelet
packet spectrum (see [8] for details).

Different K-factor GFBF realizations are provided in Fig. 5.1. These realizations exhibit
several non-trivial structures (that do not reduce in line-wise or column-wise delineations).
In Fig. 5.1, poles and Hurst parameters are generated from random variables distributed
as Gaussian, Uniform and Gamma respectively. Poles are distributed in [0, π

2
]× [0, π

2
] and

Hurst parameters are distributed in ]0; 0.5[.

Fig. 5.2 provides spectra of GFBF textures given in Fig. 5.1. In Fig. 5.2, when poles
are very close, they fuse in one "big" pole. Poles associated with small Hurst parameters
tend to be dominated (display setup) by other poles. Spectra are estimated from images
in order to highlight the impacts of sampling and estimation. The spectra have been
computed from the wavelet packet method given in [10]. Fig. 5.2 highlights the peaks
and the exponential decay in the neighborhood of these peaks, for the synthesized tex-
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tures from GFBF EHK . A visual analysis highlights that K-factor GFBF EH21 and EH22

Figure 5.1: K-factor GFBF EHK for different values of K. Figure is originated from [10].

Figure 5.2: Wavelet spectra SWEHK of K-factor GFBF εHK texture images given in Fig.
5.1. Spectra are given in [0, π

2
]× [0, π

2
]. Figure is originated from [10].

of Fig. 5.1 present textural structures similar with some fringes observed on HRTEM
image given by Fig. 5.3 (see the zoomed versions).
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Figure 5.3: HRTEM image ITEM (top-left) and its wavelet spectrum SW ITEM (top-right).
Bottom: some Zooms (Z) on regions of image ITEM and their wavelet spectrum.

This remark is also confirmed by the spectra SWEH21 and SWEH22 given by Fig. 5.2.
Note that in Fig. 5.3, the frequency grid is [0, π] × [0, π] for SW ITEM and [0, π

2
] × [0, π

2
]

for SW I1, SW I2, SW I3 (most textural information is concentrated on the latter grid, see
for instance SW ITEM). This is consistent with the fact that fringe information are not
expected to lie in the highest frequencies.

In practice, modeling HRTEM image by a K-factor GFBF requires the estimation of
different parameters:

• the location of frequencies associated with poles and their numbers,

• the local exponential decays near those frequencies relating the Hurst parameters.

Prior to addressing the more complex and challenging K-factor GFBF parameter estima-
tion (for K > 2, closed poles can lead to confusion between a single estimated "big" pole
or 2 different "small" poles, especially when K is large and the image resolution limited),
we consider in the following sections, the analysis of a sub-class of GFBF.

5.2 Convolution mixture of FBF and modulated FBF
modeling for HRTEM catalyst texture synthesis

5.2.1 Motivation

The description of textural and spectral similitudes observed in Section 5.1 will be inves-
tigated more concisely in this section, by focusing on different HRTEM sub-images with
single or dual fringe informations. The HRTEM sub-images containing active phases
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(fringes) under consideration have been described in Section 2.3. We propose to use
the CMFBF model defined in Section 4.2.1.3 in the following, for modeling, analyzing,
and synthesizing the fringes observed in HRTEM images. We first estimate parameters
of CMFBF on real images of catalyst. Then, using these parameters, we propose to
synthesize new numerical images by means of the model.

Figure 5.4: The original image I1 (catalyst HRTEM) with its WPS (Wavelet Packet
Spectrum) S1 are given in the first row. The image I4 (row 4) has been synthesized from
CMFBF modeling of I1. The intermediate images (I2, I3) and the spectral features (S2,
S3) obtained at every step of this modeling are given for illustration. The WPS of I4 is
S4 and it shows strong similarities with S1.
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5.2.2 CMFBF modeling for catalyst HRTEM image

Denote an original HRTEM image as I1 (we consider one arbitrary sub-image contain-
ing active phases (fringes) as an input/original image) and its Wavelet Packet Spectrum
(WPS) denoted as S1. Fig. 7.1 - Row 1 provides an example of such an original HRTEM
image I1 and its WPS S1. This WPS has been computed from the wavelet packet method
given in [8].

WPS S1 of Fig. 7.1 - Row 1 highlights one peak located at zero frequency and a second
one located somewhere with exponential decay in the neighborhood of these peaks. Thus,
a CMFBF model is expected to be relevant for modeling I1. Indeed, a CMFBF model has
a spectral representation associated with two peaks: one peak located at zero frequency
and the other located elsewhere (see Section 4.2.1.3 for details). The peak at the zero
frequency corresponds to slow grey-level variations in the HRTEM image (considered as
background) and will be modeled by an FBF. Fundamentally, this peak is not represen-
tative of active phase (fringes). We use a second modulated FBF to model these fringes.

The procedure used for associating a CMFBF model to I1 is summarized by the bloc
diagram of Fig. 5.5. Details concerning the steps associated with this procedure are
given below.

5.2.2.1 Step 1: FBF modeling and suppression

A first FBF model is used to describe the peak located at zero frequency (see S1 in Fig.
7.1). We estimate the Hurst parameter denoted as H0 by using the method described in
Section 4.3. After removing the contribution of this first FBF in I1, the residual image
is denoted I2 and its WPS, denoted S2 (see Fig. 7.1 - Row 2), can be given as

S2(u, v) =
S1(u, v)

SFBF (u, v)
. (5.1)

Fig. 7.1 - Row 2 highlights that modeling the peak at the zero frequency by an FBF
is relevant: the energy of PSD S1 around the zero frequency has been almost totally
removed in S2.

5.2.2.2 Step 2: Modulated FBF parameter estimation

Consider the residual image I2 obtained after FBF suppression (previous sub-section, see
I2 and its WPS S2 in Fig. 7.1 - Row 2). The residual peak located outside the zero
frequency in S2 is associated with a modulated FBF. For estimating the Hurst parameter
associated to this modulated FBF, we

• address estimating the location of the maximum in the WPS S2, then,

• shift this peak to the zero frequency (demodulation, the demodulated image is
denoted I3 and its corresponding WPS S3 are given in Fig. 7.1 - Row 3) and,
finally,
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Figure 5.5: The complete CMFBF framework.

• estimate the Hurst parameter associated to this modulated FBF from I3 (as if I3 is
an FBF, due to the demodulation step above). We denoted this Hurst parameter
as H1.

5.2.3 Synthesis of catalyst HRTEM images from CMFBF

In this section, we present catalyst HRTEM image synthesis from CMFBF modeling as-
sociated with Hurst parameters H0 and H1 estimated by considering original catalyst
HRTEM images.

Fig. 7.1 - Row 4 presents a first example of texture synthesis by using Hurst param-
eters H0 = 0.67 and H1 = 0.23 estimated from the HRTEM image I1 modeled in Section
5.2.2. The synthesized image is denoted I4 and its WPS is denoted S4.

Fig. 5.6 and Fig. 5.7 present two other examples of synthesis from catalyst HRTEM
image CMFBF modeling. The catalyst HRTEM images are denoted im1 and im2 in
these figures. For im1, the Hurst parameters estimated are H0 = 0.15 and H1 = 0.36.
For im2, the Hurst parameters estimated are H0 = 0.60 and H1 = 0.61.

A test set consisting of 18 CatX and 8 CatY representative HRTEM images is given
by Fig. 5.8 and Fig. 5.9. The synthetic CMFBF images obtained from their modeling
provide an average of H0 and H1 parameters for CatX and CatY : this would correspond
to a representative average synthetic image of active catalyst phases.

Fig. 5.10 gives 4 synthetic CMFBF images obtained from the average of H0 and H1
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Figure 5.6: Synthesis of catalyst HRTEM image using CMFBF estimated Hurst parame-
ters H0 and H1 from im1. In the first row, the original image and its WPS; in the second
row, the residual image (after removing the FBF contribution from the original image)
and its WPS; in the third row, the demodulated version of the residual image and its
WPS. Finally, the last row presents the synthesized image with its corresponding WPS.
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Figure 5.7: Synthesis of catalyst HRTEM image using CMFBF estimated Hurst parame-
ters H0 and H1 from im2. In the first row, the original image and its WPS; in the second
row, the residual image (after removing the FBF contribution from the original image)
and its WPS; in the third row, the demodulated version of the residual image and its
WPS. Finally, the last row presents the synthesized image with its corresponding WPS.
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Figure 5.8: Selected 18 CatX HRTEM images.

Figure 5.9: Selected 8 CatY HRTEM images.

Figure 5.10: Images synthesized from an average of H0 and H1 parameters of 18 CatX
HRTEM images using CMFBF modeling and its WPS.
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Figure 5.11: Images synthesized from an average of H0 and H1 parameters of 8 CatY
HRTEM images using CMFBF modeling and its WPS.

parameters associated with the 18 CatX HRTEM images. The average estimated Hurst
parameters H0 and H1 are 0.60 and 0.41 respectively.

Fig. 5.11 gives 4 synthetic CMFBF images obtained from an average of H0 and H1

parameters with the 8 CatY HRTEM images. The average estimated Hurst parameters
H0 and H1 are 0.54 and 0.24 respectively.

In all synthesis examples provided in this section, the synthesized textures by using
Hurst parameters H0 and H1 estimated from catalyst HRTEM image presents some
structural similarities with original HRTEM image. In future work, it could be interesting
to investigate the case of multiple fringes: these fringes may require a convolution mixture
with a higher number FBF factors so as to take into account several spectral peaks.

5.3 Morphology analysis of catalyst active phase using
ARFBF modeling

In this section, we consider the application of ARFBF model to catalyst HRTEM image
characterization and discrimination. Fig. 5.12 provides the block diagram of the complete
analysis chain proposed for this purpose.

Figure 5.12: Morphology analysis procedure using ARFBF model.

5.3.1 Problem formulation

Atomic structure of active phases can be observed directly by HRTEM imaging. The
analysis of these fringes is generally composed of several steps: noise reduction, contrast
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enhancement, segmentation and morphological analysis such as length and tortuosity
measurements (see [113]).

We propose hereafter a completely different approach with characterization in the fre-
quency domain to obtain information about regularity of spacing or regularity of cur-
vature for layers of fringes. Another advantage of the frequency domain is to separate
the information associated with "superimposed" fringes with different main orientations,
which produces different spectral bumps. However, analysis in this domain is an intricate
work because of high frequency due to acquisition noise, and of low frequency due to the
catalyst support. Our approach uses wavelet filtering, suppression of catalyst support
contribution by means of an FBF modeling, and use of an AR model to smooth the
residue image corresponding to fringes. A morphological characterization of these lobes
will allow us to obtain information about inter fringes distance, regularity of spacing
observing distance variation and regularity of curvature looking at tangential length of
lobes (see Section 5.3.3).

In this section, we study sub-images containing active phases (fringes) taken from HRTEM
images of catalysts X and Y. We propose to use a model-based approach with ARFBF
model to characterize these fringes of different catalysts. We first apply our proposed
ARFBF modeling to analyze the entry image (see [98]), then apply our proposed mor-
phology method on the DSP calculated from ARFBF estimated parameters. Finally, we
use the properties of the estimated ARFBF model to distinguish different catalysts (see
Fig. 5.12).

5.3.1.1 Pre-processing - WHFR

Depending on the acquisition conditions, certain HRTEM images are affected by high
frequency disturbances induced by the alumina support of the catalyst and/or the elec-
tronic noise. An example of HRTEM image concerned by these disturbances is given by
Fig. 7.2 - Row 1 - Left Image. An harmonic analysis is applied to calculate the PSD
SI1 of the input image I1, see Fig. 7.2 - Row 1 - Middle and Right Images. In this
figure, the ‘Right-column’ images are zoomed versions of the ‘Middle-column’ images. A
pre-processing of the HRTEM image I1 is required for the removal of the high frequency
disturbances visible in SI1 .

Hereafter, we present a pre-processing of HRTEM images based on wavelet denoising,
namely Wavelet based High Frequency Removal (WHFR) (see [19, 72, 66, 25]). WHFR
processing can be defined as follows:

• Firstly, we apply a 2-D Discrete Stationary Wavelet Transform (DSWT, see [19])
to decompose the HRTEM image.

• Then, we keep the approximation coefficients and force to zero all detail coefficients.

• Finally, we apply a 2-D Inverse Discrete Stationary Wavelet Transform (IDSWT,
see [19]) to reconstruct a high-frequency-free HRTEM image.
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Figure 5.13: ARFBF modeling procedure of HRTEM image.

We apply the WHFR pre-processing to the original image I1. The image after pre-
processing is denoted I2 (see Fig. 7.2 - Row 2 - Left) and its corresponding PSD is
denoted S2 (see Fig. 7.2 - Row 2 - Middle/Right). PSD S2 obtained shows that high
frequencies are well removed with WHFR method.

5.3.2 ARFBF modeling of HRTEM image

5.3.2.1 FBF modeling and suppression

We apply an FBF modeling to estimate the Hurst parameter H from S2 and PSD SĤ
associated to I2 is derived. Removing the contribution of the FBF in I2, the spectrum of
the residual part is

Sresidual(u, v) =
S2(u, v)

SFBF (u, v)
.

The residual image is obtained and is denoted as I3 (see Fig. 7.2 - Row 3 - Left) and the
residual spectrum Sresidual(u, v) is denoted as S3 (see Fig. 7.2 - Row 3 - Middle/Right).
From S3, we can see that the peak (high energy) near the zero frequency has been almost
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totally removed, without affecting central frequency content, proof of the relevancy of
FBF assumption.

5.3.2.2 AR modeling

We apply an AR modeling to I3 (see Fig. 7.2 - Row 3 - Left). The maximum prediction
supports in this work are M1 = 10 and M2 = 10. The model is then used to compute
a smooth PSD of I3 (denoted as S∗(r, θ) in polar coordinate and S∗(u, v) in Cartesian
coordinate).

Fig. 7.2 - Row 4 - shows that the PSD calculated by using the AR model is a smooth
version of the PSD computed directly on S3. In the Fig. 7.2 - Row 4, we show PSD
both in polar (Fig. 7.2 - Row 4 - Left) and Cartesian (Fig. 7.2 - Row 4 - Middle/Right)
representations. The spectra contain one or several main bump(s) whose form(s) is (are)
associated to the active phase inside the HRTEM image I3 (also in image I1 and I2).

Let us notice that the AR spectrum in polar coordinates is not an interpolated ver-
sion of the AR spectrum in Cartesian coordinates. Indeed, Eq. (3.54) shows that it is
possible to represent the AR spectrum whatever is the support in the frequency domain.

Figure 5.14: AR modeling.

The bloc diagram of Fig. 5.14 summarizes ARFBF modeling inputs and outputs. The
next step is a morphological analysis of ARFBF estimated PSD.
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5.3.3 Morphological analysis of HRTEM ARFBF features

The spectra calculated from ARFBF model association to an HRTEM image allow us to
obtain a regularized version of input texture PSD. This regularized PSD will be used for
morphological analysis of the fringes. The morphological analysis concerns the bumps
(lobes) involved in spectral rings corresponding to local fringe features.

5.3.3.1 Morphological analysis

Figure 5.15: Estimated PSD S∗(r, θ) from AR in polar coordinate.

The objective of morphology analysis based on ARFBF modeling of active phases
aims at deriving characterizations on:

• regularity of spacing (observing distance variation) between active phases,

• regularity of curvature (looking at tangential length of lobes) of active phases.

Note that we have recalled in Fig. 2.13, the relations between lobe morphology and po-
sition in frequency domain, and fringes aspects.

In the following, we detail a morphological analysis of lobes which are present in the
polar representation of the ARFBF PSD (image S∗(r, θ) in Fig. 5.15).

5.3.3.2 Lobe detection

First lobe detection

First, we search the point P1[r
∗, θ∗] designing maximum value of S∗ and we calculate

an adaptive threshold α1 as follows:

P1 = argmax
r,θ

S∗(r, θ), (5.2)
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and
α1 = λ1S

∗(P1), (5.3)

with λ1 ∈ [0; 1]. Angle θ ∈ [0; 2× π] in practice, but because of the symmetric property,

Figure 5.16: Estimated PSD S∗(r, θ) from AR in polar coordinate and lobe detection.

in our application, θ ∈ [0; π] (see right of Fig. 5.16). For λ1 value, we chose λ1 = 0.8.
Segmentation with α1 can lead to several connected components. This issue can be easily
handled using a morphological reconstruction (see [92]) with P1 as marker.

A first lobe (see Fig. 5.16) is obtained on a binary image Q1:

Q1 = γS
∗∗

rec (P1), (5.4)

and
S∗∗(x) =

{
1, if S∗(x) > α1,
0, otherwise. (5.5)

Second lobe detection

If a second lobe is located on S∗, it can be obtained using a similar procedure. The
contribution of the first lobe is removed on S∗ using morphological dilation with disc of
radius r on Q1:

S∗1(x) =

{
S∗(x), if δr(Q1) 6= 0,
0, otherwise. (5.6)

A new threshold α2 is calculated and a binary image Q2 is obtained by:

α2 = λ2S
∗(P1), (5.7)

with λ2 ∈ [0;λ1],
P2 = argmax

r,θ
S∗1 , (5.8)

Q2 = γS
∗∗
1

rec (P2), (5.9)
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and
S∗∗1 (x) =

{
1, if S∗1(x) > α2,
0, otherwise. (5.10)

In our application, we chose λ2 = 0.6. In contrast with Q1, Q2 value is not necessarily
with non-zero value if there is no remaining significant second lobe. We limit the study to
the detection of two lobes in this experimental setup, with the knowledge that observation
of more than two layers of overlapping fringes is rare in our application.

5.3.3.3 Characterization on average spatial distance between atomic layers
G, distance variation 4G and tangential length Lθ

Average spatial distance between atomic layers G

For each lobe on images Qi, i = 1 or 2, denoting a layer of fringes, an average spa-
tial distance between atomic layers is estimated by the distance value G,

G =
Te
r∗
, (5.11)

associated to the maximum of the lobe P1 = [r∗, θ∗], Te is the period of sample (here
Te = 0.057 nm). Lobe on binary image Qi, i = 1 or 2, can be considered as an ellipse

Figure 5.17: The spectral lobe detected can be considered as an ellipse embedded in a
bounding box (rmin, rmax, θmin, θmax).

embedded in a bounding box (rmin, rmax, θmin, θmax) (see Fig. 5.17). The extension of the
lobe allows us to describe the changes in the distance between atomic layers (regularity
of spacing) and in the curvature of atomic layers (regularity of curvature).
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Distance variation 4G

The regularity of spacing can be estimated by distance variation 4G (see Eq. (5.12))
which is defined as:

4G = |Gmax −Gmin|, (5.12)

with

Gmax =
Te
rmin

, (5.13)

and

Gmin =
Te
rmax

, (5.14)

where Te = 0.057 nm.

Tangential length Lθ

The regularity of curvature can be estimated by tangential length Lθ (see Eq. (5.15))
which is defined as:

Lθ = |θmax − θmin|. (5.15)

In the next section, we present our statistical analysis for the discrimination of catalyst
active phases.

5.3.4 Statistical analysis for catalyst discrimination

Based on the geometric features described previously, a comparison between two catalysts
is presented. HRTEM images consist of 1024×1024 pixels and their numerical resolutions
are 0.057 nm by pixel. For catalyst X (CatX), 93 sub-images containing active phases are
taken from 21 HRTEM images. For catalyst Y (CatY ), 109 sub-images containing active
phases are taken from 19 HRTEM images (see Section 2.3 for details). For each sample,
we calculate geometric features distance G, distance variation 4G and tangential length
Lθ on detected lobes.

5.3.4.1 Statistical distributions of G, 4G and Lθ

Moments

The first moment Mean and the second central moment V ariance noted as µ and var
respectively can be defined as follows:

µ =
1

n

n∑
i=1

Gi, (5.16)

var =
1

n− 1

n∑
i=1

(Gi − µ)2, (5.17)
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The standard deviation noted as σ (σ2 = var) can be expressed as:

σ = (
1

n− 1

n∑
i=1

(Gi − µ)2))
1
2 , (5.18)

The third moment skewness measures the asymmetry of the probability distribution of
a real-valued random variable (here, G, 4G or Lt) about the corresponding mean value.
The positive skewness indicates that the tail on the right side is longer or fatter than
the left side.

The fourth moment (with normalization and shift) kurtosis measures the "tailedness"
of the probability distribution of real-valued random variable G, 4G or Lt. Distribution
of G, 4G or Lt with kurtosis is said to be leptokurtic (kurtosis value > 3). Infrequent
extreme deviations effecting the greater part of variance lead to a higher kurtosis.

The skewness (noted as skew) and kurtosis (noted as kurt) of G (same to 4G and
Lt) are defined as follows:

skew =
1

n

∑n
i=1(Gi − µ)3

σ3
, (5.19)

where E represents the expected value of (G− µ)3.

kurt =
1

n

∑n
i=1(Gi − µ)4

σ4
, (5.20)

where E represents the expected value of (G− µ)4.

Kernel distribution

The distribution of these results are studied by using a Kernel smoothing function fw
which is defined as follows ([87, 74, 114, 43]):

fw(x) =
1

nw

n∑
i=1

K(
x− xi
w

), (5.21)

where n is the sample size, {xi}i=1,...,n are the set of considered samples, x ∈ R, K(·) is
the kernel smoothing function and w is the bandwidth.

Tab. 5.1 gives certain informative statistics of distance G (measured in nm), distance
variation 4G (measured in nm) and tangential lengths Lθ (measured in degree) in terms
of minimum value (denoted as Min), maximum value (denoted as Max), mean value
(denoted as Mean), variance value (denoted as V ariance), third standardized moment
(denoted as Skewness) and fourth standardized moment (denoted as Kurtosis) of the
detected lobes on CatX and CatY . Catalyst (n) presents the number of samples in CatX
and CatY respectively.

The inter-distance between two neighboring white/black fringes G is close to 0.615 nm
(see [34]). In Tab. 5.1, G has almost same value for CatX and CatY (0.611 nm vs 0.593
nm), it confirms G as a physical characterization. For 4G and Lθ of CatX and Lθ of
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Catalyst (n) CatX (93) CatY (109)
Stat G Lr Lθ G Lr Lθ

Min 0.378 0.025 4.922 0.431 0.006 1.406
Max 0.744 0.377 21.094 0.692 0.169 17.930
Mean 0.611 0.141 12.088 0.593 0.085 8.807

V ariance 0.004 0.005 14.779 0.003 0.001 14.625
Skewness -1.153 1.282 0.286 -1.278 -0.092 0.238
Kurtosis 6.324 4.606 2.414 4.447 2.954 2.937

Table 5.1: Statistics of distance (see Eq. (5.11)), distance variation (see Eq. (5.12))
and tangential length (see Eq. (5.15)) features of the detected lobe of catalyst image
databases (CatX and CatY ).

Figure 5.18: Kernel distributions of distance (left), distance variation (center) and tan-
gential length (right) of the detected lobe of CatX (− in blue) and CatY (−− in red).

CatY , the positive skewness values in Tab. 5.1 indicates that the tail on the right side
is longer or fatter than that of the left side. When the skewness values are bigger, this
phenomenon will be clearer (see Fig. 5.18). In contrast, for the other cases, the tail
on the left side is longer or fatter than that of the right side (see Fig. 5.18) because of
negative skewness values.

The kurtosis measures provided "tailedness" information of the distribution of variables
G, 4G or Lθ. All kurtosis being larger than 3, one can conclude that G (for both of
CatX and CatY ) and 4G (just for CatX) distributions are far from being Gaussian. In
addition, when kurtosis are large, this implies that several outliers can be present in the
corresponding variables. These observations are confirmed by Fig. 5.18 which shows the
statistical distributions of G, 4G or Lθ for both catalysts.

5.3.4.2 Kolmogorov-Smirnov test for catalyst discrimination

In this section, we propose Kolmogorov-Smirnov (KS) test for comparing CatX and CatY
ARFBF morphology characterizations. The KS measure is given by (see [76] for details)

K = maxx(|f̂1(x)− f̂2(x)|), (5.22)
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where f̂1, f̂2 are the empirical cumulative distribution functions of catalyst datasets in-
dexed by "1" and "2". Then f̂ can be in our study the cumulative kernel distribution for
one of the three features: G, 4G and Lθ. A threshold, based on asymptotic of K, is used
to derive a decision between alternative hypotheses:

• null hypothesis (H = 0) is that the two samples are drawn from the same catalyst,
or

• H = 1 means that the test rejects the null hypothesis at the 5% significance level.

1-D Kolmogorov-Smirnov test

Tab. 5.2 highlights that 1-D Kolmogorov-Smirnov test makes a clear discrimination
between the two catalysts effective when considering parameters 4G and Lθ.

When performing 1-D Kolmogorov-Smirnov tests on sub-classes of catalysts CatX and
CatY (2 sub-classes per catalyst due to the limited number of available samples), then
the test still performs a relevant discrimination, as it can be seen in Tab. 5.3.

G 4G Lθ
Statistic Catk \ Cat` CatX CatY CatX CatY CatX CatY

H CatX 0 0 0 1 0 1
CatY 0 0 1 0 1 0

103K CatX 0 196 0 402 0 391
CatY 196 0 402 0 391 0

Table 5.2: 1-D Kolmogorov–Smirnov test of CatX and CatY .

2-D Kolmogorov-Smirnov test

Because of 1-D Kolmogorov-Smirnov test making a clear discrimination between the
two catalysts effective when considering parameters 4G and Lθ, we form a 2-D data
with these two parameters. When we address 2-D Kolmogorov–Smirnov test to discrim-
inate the two catalysts (CatX and CatY ), Tab. 5.4 confirms our proposition. When
performing 2-D Kolmogorov-Smirnov tests on sub-classes of catalysts CatX and CatY ,
Tab. 5.5 shows that the test performs a very good discrimination between sub-classes of
two different catalysts. Thus, our proposed ARFBF morphology characterization seems
to be a suitable feature-based description to separate the two sets of HRTEM images
representing active phases of the two catalysts.

A block diagram summarizing the whole ARFBF morphological characterization steps
for catalyst discrimination is given by Fig. 5.19.
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G
Stat Catmk \ Catn` Cat1X Cat2X Cat1Y Cat2Y

Cat1X 0 0 0 0
H Cat2X 0 0 1 1

Cat1Y 0 1 0 0
Cat2Y 0 1 0 0
Cat1X 0 261 261 87

103K Cat2X 261 0 348 304
Cat1Y 261 348 0 239
Cat2Y 87 304 239 0

(1)
4G

Stat Catmk \ Catn` Cat1X Cat2X Cat1Y Cat2Y
Cat1X 0 0 1 1

H Cat2X 0 0 1 1
Cat1Y 1 1 0 0
Cat2Y 1 1 0 0
Cat1X 0 130 500 413

103K Cat2X 130 0 435 413
Cat1Y 500 435 0 196
Cat2Y 413 413 196 0

(2)
Lθ

Stat Catmk \ Catn` Cat1X Cat2X Cat1Y Cat2Y
Cat1X 0 0 1 1

H Cat2X 0 0 1 0
Cat1Y 1 1 0 0
Cat2Y 1 0 0 0
Cat1X 0 239 587 435

103K Cat2X 239 0 348 261
Cat1Y 587 348 0 152
Cat2Y 435 261 152 0

(3)

Table 5.3: 1-D Kolmogorov–Smirnov test of sub-classes CatmX and CatnY of CatX and
CatY respectively, m,n ∈ {1, 2}.
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Statistic Catk \ Cat` CatX CatY

H CatX 0 1
CatY 0 0

103K CatX 0 457
CatY 457 0

Table 5.4: 2-D Kolmogorov–Smirnov test of CatX and CatY .

Stat Catmk \ Catn` Cat1X Cat2X Cat1Y Cat2Y
Cat1X 0 0 1 1

H Cat2X 0 0 1 1
Cat1Y 1 1 0 0
Cat2Y 1 1 0 0
Cat1X 0 217 652 478

103K Cat2X 217 0 457 413
Cat1Y 652 457 0 217
Cat2Y 478 413 217 0

Table 5.5: 2-D Kolmogorov–Smirnov test of sub-classes CatmX and CatnY of CatX and
CatY respectively, m,n ∈ {1, 2}.
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Figure 5.19: ARFBF modeling morphology analysis of HRTEM images of catalyst -
ARFBF modeling morphological characterization of HRTEM image of catalyst and cat-
alyst discrimination.
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CHAPTER 6

General conclusion

This thesis presents two models and their application to HRTEM textures: Auto-Regressive
Fractional Brownian Field (ARFBF) andK-factor Generalized Fractional Brownian Field
(GFBF) with a focus on a subclass of the latter, subclass defined as a mixture of 2-factor
Fractional Brownian Field (CMFBF).

The ARFBF model can characterize either stationary properties or some non-stationary
properties involved in textures. With such a model, we can address the characterization
of an HRTEM image presenting several spectral bumps or lumps as well as the rela-
tive distances and/or angles between bumps or lumps. The application of the proposed
approach (ARFBF morphological analysis) suits for the description of HRTEM images
corresponding to the observation of material microstructures at nanometer scale.

The K-factor GFBF model obtained from convolution and modulation operators over
a sequence of fractional Brownian random fields associated with an arbitrary sequence
of Hurst parameters is non-stationary and associated with several spectral poles, which
make them powerful tools for structured random field synthesis.

For estimating the Hurst parameters involved in the ARFBF or GFBF models, we have
proposed two methods based on Wavelet Packet (WP) spectrum: the Log-Regression on
Diagonal WP spectrum (Log-RDWP) and the Log-Regression on Polar representation
of WP spectrum (Log-RPWP). The Log-RPWP method provides a better estimation
performance for small size images. The relevance of our method is highlighted by com-
parisons with the literature and its application to the analysis of HRTEM images.

The first application addressed is soot HRTEM image texture synthesis from K-factor
GFBF modeling. A texture synthesized from K-factor GFBF possesses many spectral
peaks and has exponential spectral decays in the neighborhood of these peaks. Such a
spectral behavior can be observed in many structured/pseudo or quasi periodic textures
issued from material sciences. In particular, textures synthesized from K-factor GFBF
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have shown appealing structural content and similarities with some fringe structures en-
countered in HRTEM textures.

The second application deals with the CMFBF modeling of an isolated HRTEM fringe of
catalyst. The CMFBF model has a spectral representation associated with two peaks and
two Hurst parameters (H0 andH1). In HRTEM images, its peak located at zero frequency
characterizes the background through its Hurst parameter H0 and the second peak is rep-
resentative to fringes with a stochastic regularity parameter H1. The synthesized textures
by using Hurst parameters H0, H1 estimated from CMFBF modeling of catalyst HRTEM
image are shown to present some structural similarities with the original HRTEM fringes.

The last application is ARFBF morphology analysis of HRTEM images of catalyst. Our
proposed ARFBF morphological analysis gives the description of HRTEM textures cor-
responding to the observation of material micro-structures at nanometer scale and allows
for catalyst discrimination. This morphological description is based on 2-D paramet-
ric ARFBF spectrum. The obtained features encompass heterogeneous HRTEM image
background described by an FBF, active phase fringes associated with an AR model and
geometric features derived by morphology analysis of the spectral fringe information. The
proposed analysis allows to discriminate between two classes of catalysts and opens some
prospects on monitoring of active phases associated with different materials at nanoscale.

In perspective, the performance of the ARFBF and CMFBF models must be evaluated
qualitatively on several types of textures. For the K-factor GFBF model, we need to
perform a procedure for estimating all associated Hurst parameters, as well as a mor-
phological analysis method (detection of the different lobes, discussion of the choice of
associated values and their influence ...) in order to be able to apply it to the charac-
terization of materials. Then, the K-factor AR-GFBF will be studied: 1) estimation
methods of the AR model, 2) estimation of the parameters in a sequential and then joint
way and 3) application to the characterization of the images.
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CHAPTER 7

Appendix: résumé substantiel

L’objectif principal de cette thèse est la proposition de modèles statistiques pour l’analyse
et la caractérisation des images observées à Haute Résolution (échelle nanométrique) par
Microscopie Électronique en Transmission (imagerie HRMET). L’application visée est
la caractérisation des arrangements spatiaux de phases actives dans les catalyseurs afin
de comprendre les propriétés de ces matériaux. Les contributions de cette thèse sont la
proposition de deux modèles statistiques, deux méthodes d’estimation du paramètre de
Hurst et leur application aux images HRMET :

• le premier modèle ARCBF (Champ Brownien Fractionnaire Auto-Régressif) est
défini par une opération de convolution entre un Champ Brownien Fractionnaire
(CBF) et un champ Auto-Régressif (AR). Nous avons également développé une
méthode d’analyse morphologique dans le domaine fréquentiel associée au contenu
ARCBF.

• le deuxième modèle K-facteurs CBFG (Champ Brownien Fractionnaire Généralisé)
est basé sur des opérateurs de convolution et de modulation de CBF et représente
une classe des modèles non-stationnaires et de champ multifractionnaires.

• la première méthode d’estimation est la méthode Log-RDPO (Log-Régression sur
la Diagonale du spectre des Paquets d’Ondelettes),

• la deuxième méthode d’estimation est la méthode Log-RPPO (Log-Régression sur
la représentation en coordonnées Polaires du spectre des Paquets d’Ondelettes),

• ces modèles et méthodes nous ont permis de synthétiser des textures proches vi-
suellement de celles présentes dans les images HRMET et de discriminer deux types
de catalyseurs.

Le premier chapitre présente le contexte, la motivation et les contributions principales
réalisées dans cette thèse.
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Le chapitre 2 décrit principalement la modalité d’imagerie utilisée. Il est constitué de 4
sections. La section 1 présente la microscopie électronique en transmission en rappelant
les principes physiques et les contraintes de préparations des échantillons. La section 2
présente un premier ensemble d’échantillons d’images HRMET de nanostructures de par-
ticules de suie, produites par la combustion incomplète de carburants dans les moteurs
diesel. La section 3 présente un deuxième ensemble d’échantillons d’images HRMET des
phases actives de catalyseurs d’hydrotraitement. Toutes les images HRMET présentées
dans ce travail sont produites à IFP Energies nouvelles, section Physique et Analyse, avec
un microscope JEOL 2100F. Ces deux types d’images (suie et catalyseur) seront par la
suite analysées et/ou synthétisées par les modèles et méthodes d’estimation proposés. La
dernière section présente la relation entre la morphologie des phases actives des cataly-
seurs et leur observations dans le domaine spatial et fréquentiel.

Le chapitre 3 présente une étude bibliographique sur les modèles stochastiques. Pour
commencer, nous rappelons les définitions et les propriétés des processus aléatoires à mé-
moire courte, à mémoire longue et auto-similaires. Quelques exemples en temps continu
et discret sont fournis, tels que,
• en temps continu,

– le modèle Gaussien H-ASIS (processusH−Auto-Similaire avec Incréments Sta-
tionnaires) appelé communément mouvement Brownien fractionnaire,

– les modèles non-Gaussiens H-ASIS : processus α-stables pour 0 < α < 2;

• en temps discret, le processus K-facteur GARMM (Gegenbauer Auto-Régressif et
Moyenne Mobile) avec ses cas particuliers tels que le processus ARFIMM (Auto-
Régressif Fractionnaire Intégré et Moyenne Mobile) et le processus FI (Fractionnaire
Intégré).

Ensuite, nous présentons les spécificités de l’extension de certains processus aléatoires aux
champs aléatoires 2-D, notamment les CBF et les champs AR. Le paramètre de Hurst du
CBF représente la régularité stochastique (rugosité de texture). La Densité Spectrale de
Puissance (DSP) 2-D AR est calculée comme la moyenne harmonique de deux spectres
associés à deux supports de prédiction Quart de plan (QP). Le spectre 2-D estimé à partir
de cette méthode est facile à calculer et possède de bonnes propriétés d’estimation par
rapport aux autres méthodes existantes. À un ordre fixé, les paramètres du modèle AR
sont estimés grâce à la minimisation au sens des moindres carrés.

Le chapitre 4 est consacré à la présentation des modèles et des méthodes d’estimation du
paramètres de Hurst qui sont les contributions apportées par cette thèse dans le domaine
des statistiques. Il est constitué de 3 sections. La section 1 introduit le modèle ARCBF
(champ Z(x, y)) qui est la convolution (notation

⊗
) d’un champ AR A avec un CBF

BH , dans le but de décrire simultanément des dépendances à court et à long termes :

Z(x, y) =
(
A
⊗

BH

)
(x, y). (7.1)

Nous désignons par SA, le spectre d’un champ AR, et par SBH , le spectre du CBF. À
partir de l’Eq. (7.1), le spectre associé au modèle ARCBF est

SZ(u, v) = SA(u, v)SBH (u, v). (7.2)
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L’estimation des paramètres du modèle ARCBF est réalisée de manière séquentielle:
d’abord le paramètre de Hurst, puis les paramètres du modèle AR. La section 2 présente
le modèle K-facteur CBFG (BGHK

) défini par des convolutions de K CBFs modulés
(BHk), k = 1, 2, . . . , K,

BGHK
=

K⊗
k=1

BHk . (7.3)

L’ensemble de paramètres de ce modèle est {H1, H2, . . . , HK} qui est une suite de paramètres
de Hurst. Le spectre du K-facteur CBFG s’écrit de manière suivante :

SBGHK
(u, v) =

K∏
k=1

SBHk . (7.4)

Le modèle K-facteur CBFG peut admettre un nombre arbitraire de points de singularité
spectrale et de paramètres de Hurst. Nous avons étudié plus particulièrement le MCCBF
(convolution d’un CBF et d’un CBF modulé) qui est un 2-facteur CBFG. Pour finir, la
section 3 présente deux extensions de la méthode des paquets d’ondelettes pour rendre
l’estimation du paramètre de Hurst du CBF plus robuste. Les performances des deux
méthodes proposées, Log-RDPO et Log-RPPO, sont analysées de manière quantitative et
montrent une meilleure robustesse pour la méthode Log-RPPO. La méthode Log-RPPO
est alors comparée à d’autres méthodes issues de la littérature. Les résultats sont glob-
alement convaincants et soulignent l’intérêt de l’approche proposée.

Le chapitre 5 concerne les applications des modèles et méthodes d’estimation proposés aux
images HRMET. Il s’agit d’une part importante du travail dans cette thèse et représente
la partie appliquée des contributions. Ce chapitre est constitué de 3 sections. La section
1 présente la modélisation d’images HRMET de suie par le modèle K-facteur CBFG.
Les structures des textures synthétiques présentent des similitudes avec celles des images
HRMET. Il est montré qualitativement que le modèle K-facteur CBFG peut permettre
de représenter des images HRMET réelles. La section 2 est consacrée à la modélisation
des images HRMET de catalyseurs avec le modèle MCCBF, une sous-classe du modèle
K-facteur CBFG. La représentation spectrale du MCCBF est associée à deux pics. Le
pic à la fréquence zéro correspond au fond de l’image (considéré comme arrière plan) et
modélisé par un CBF de paramètre H0. Le pic situé ailleurs correspond à la phase active
(information à caractériser) et modélisé par un CBF modulé de paramètre H1. Le modèle
MCCBF est alors utilisé pour la synthèse de textures HRMET de catalyseurs (voir Fig.
7.1). La procédure utilisée est:

• Étape 1, pour l’image d’origine I1, le Spectre par Paquets d’Ondelettes (SPO) S1

est calculé.

• Étape 2, le paramètre de Hurst H0 du CBF est estimé.

• Étape 3, la contribution du CBF dans I1 est supprimée. Pour l’image résiduelle I2,
son SPO S2 = S1

SH0
. Le pic à l’origine des fréquences est bien modélisé par un CBF,

car l’énergie autour de la fréquence nulle a été presque totalement supprimée.
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• Étape 4, le paramètre de Hurst H1 du modèle CBF modulé est estimé à partir de
I2.

• Étape 5, une image est synthétisée à l’aide d’un MCCBF de paramètre {H0, H1}.
L’image synthétisée I4 et son SPO S4 présentent des similitudes avec I1 et S1.

Figure 7.1: Modèle MCCBF pour la synthèse de textures HRMET de catalyseurs.

La section 3 montre l’intérêt pratique du modèle ARCBF grâce à une analyse mor-
phologique dans le domaine des fréquences. L’application du modèle ARCBF aux images
HRMET de catalyseurs est illustrée Fig. 7.2. Sa procédure utilisée est:

• Étape 1, la DSP S1 de l’image d’origine I1 est calculée. I1 contient plusieurs hautes
fréquences qui sont induites par le support d’alumine du catalyseur et le bruit
électronique.
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• Étape 2, on applique alors un pré-traitement appelé SHFO (Suppression des Hautes
Fréquences basée Ondelette) à I1. La DSP S2 de l’image après traitement I2 est
calculée. Les hautes fréquences sont bien supprimées avec la méthode SHFO.

• Étape 3, le paramètre de Hurst H d’un CBF est estimé à partir de I2 à l’aide de
méthode Log-RPPO.

• Étape 4, la contribution du CBF dans I2 est supprimée. La DSP S3 = S2

SH
de l’image

résiduelle I3 est calculée.

• Étape 5, les paramètres d’un modèle AR d’ordre (10, 10) sont estimés à partir de
I3.

• Étape 6, la DSP (absolument continue) de I3 (noté S∗(r, θ) en coordonnées polaires
et S∗(u, v) en coordonnées cartésiennes) est calculée en utilisant les paramètres
estimés du modèle AR. S∗(u, v) est une version lisse de S3 (les S1, S2, S3 de la Fig.
7.2 sont obtenues à partir du module de la transformée de Fourier discrète 2D).

Figure 7.2: Application du modèle ARCBF aux images HRMET de catalyseurs

Nous avons ensuite réalisé une analyse morphologique à partir de S∗(r, θ) afin de décrire
des propriétés géométriques des phases actives: la distance spatiale entre couches atom-
iques G, la variation de cette distance 4G et longueur tangentielle Lθ en rapport avec les
changements d’orientation des franges. Ensuite à l’aide d’analyses statistiques (estima-
tion de densités de probabilité par la méthode à noyau et le test Kolmogorov Smirnov),
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nous avons montré qu’il était possible de distinguer les deux types de catalyseurs étudiés.

Le chapitre 6 termine cette thèse par une conclusion qui résume les contributions et
propose quelques pistes d’investigation à partir des modèles stochastiques proposés. En
conclusion, cette thèse présente des contributions en rapport avec modèles (CBF, MC-
CBF, K-facteur CBFG et ARCBF) et leur applications.

• Pour le modèle CBF, nous avons proposé deux méthodes d’estimation du paramètre
de Hurst (Log-RDPO et Log-RPPO) et la méthode Log-RPPO possède de meilleures
performances d’estimation pour les images de petites tailles par rapport à la méth-
ode Log-RDPO et un bon comportement par rapport aux méthodes de l’état de
l’art.

• A l’aide du modèle MCCBF, nous avons effectué la modélisation et la synthétise
de franges dans les images HRMET. Des similitudes entre images d’origine et les
images synthétisées montrent la pertinence du modèle.

• Pour le modèle K-facteur CBFG, des similitudes liées à la présence de franges dans
les images HRMET de suies et dans les textures synthétisées montre son intérêt
pour la synthèse de champs aléatoires structurés.

• Le modèle ARCBF a été appliqué à la caractérisation des arrangements spatiaux
dans des images HRMET de catalyseurs par la réalisation d’une méthode d’analyse
morphologique.

En perspective, les performances des modèles ARCBF et MCCBF doivent être évaluées
de manière qualitative sur plusieurs types de textures. Pour le modèle K-facteur CBFG,
nous devons réaliser une procédure d’estimation de tous les paramètres de Hurst associés,
ainsi qu’une méthode d’analyse morphologique (détection des différents lobes, discussion
les choix des valeurs associées et leur influence...) afin de pouvoir réaliser son application
à la caractérisation des matériaux. Puis, le modèle K-facteur AR-CBFG dera étudié: 1)
méthodes d’estimation du modèle AR, 2) estimation des paramètres de manière séquen-
tielle puis conjointe et 3) application à la caractérisation des images.
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