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Abstract

Estimating the pose (position and attitude) in real-time is a key function for road
autonomous vehicles. This thesis aims at studying vehicle localization performance
using low cost automotive sensors. Three kinds of sensors are considered : dead re-
ckoning (DR) sensors that already exist in modern vehicles, mono-frequency GNSS
(Global navigation satellite system) receivers with patch antennas and a front-
looking lane detection camera. Highly accurate maps enhanced with road features
are also key components for autonomous vehicle navigation. In this work, a lane
marking map with decimeter-level accuracy is considered. The localization problem
is studied in a local East-North-Up (ENU) working frame. Indeed, the localization
outputs are used in real-time as inputs to a path planner and a motion generator to
make a valet vehicle able to drive autonomously at low speed with nobody on-board
the car.

The use of a lane detection camera makes possible to exploit lane marking infor-
mation stored in the georeferenced map. A lane marking detection module detects
the vehicle’s host lane and provides the lateral distance between the detected lane
marking and the vehicle. The camera is also able to identify the type of the detected
lane markings (e.g., solid or dashed). Since the camera gives relative measurements,
the important step is to link the measures with the vehicle’s state. A refined ca-
mera observation model is proposed. It expresses the camera metric measurements
as a function of the vehicle’s state vector and the parameters of the detected lane
markings.

However, the use of a camera alone has some limitations. For example, lane markings
can be missing in some parts of the navigation area and the camera sometimes fails to
detect the lane markings in particular at cross-roads. GNSS, which is mandatory for
cold start initialization, can be used also continuously in the multi-sensor localization
system as done often when GNSS compensates for the DR drift. GNSS positioning
errors can’t be modeled as white noises in particular with low cost mono-frequency
receivers working in a standalone way, due to the unknown delays when the satellites
signals cross the atmosphere and real-time satellites orbits errors. GNSS can also be
affected by strong biases which are mainly due to multipath effect. This thesis studies
GNSS biases shaping models that are used in the localization solver by augmenting
the state vector. An abrupt bias due to multipath is seen as an outlier that has to be
rejected by the filter. Depending on the information flows between the GNSS receiver
and the other components of the localization system, data-fusion architectures are
commonly referred to as loosely coupled (GNSS fixes and velocities) and tightly
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coupled (raw pseudoranges and Dopplers for the satellites in view). This thesis
investigates both approaches. In particular, a road-invariant approach is proposed
to handle a refined modeling of the GNSS error in the loosely coupled approach since
the camera can only improve the localization performance in the lateral direction of
the road.
Finally, this research discusses some map-matching issues for instance when the
uncertainty domain of the vehicle state becomes large if the camera is blind. It
is challenging in this case to distinguish between different lanes when the camera
retrieves lane marking measurements.
As many outdoor experiments have been carried out with equipped vehicles, every
problem addressed in this thesis is evaluated with real data. The different studied
approaches that perform the data fusion of DR, GNSS, camera and lane marking
map are compared and several conclusions are drawn on the fusion architecture
choice.
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Résumé

L’estimation de la pose (position et l’attitude) en temps réel est une fonction clé
pour les véhicules autonomes routiers. Cette thèse vise à étudier des systèmes de
localisation pour ces véhicules en utilisant des capteurs automobiles à faible coût.
Trois types de capteurs sont considérés : des capteurs à l’estime qui existent déjà dans
les automobiles modernes, des récepteurs GNSS mono-fréquence avec antenne patch
et une caméra de détection de la voie regardant vers l’avant. Les cartes très précises
sont également des composants clés pour la navigation des véhicules autonomes.
Dans ce travail, une carte de marquage de voies avec une précision de l’ordre du
décimètre est considérée. Le problème de la localisation est étudié dans un repère
de travail local Est-Nord-Haut. En effet, les sorties du système de localisation sont
utilisées en temps réel comme entrées dans un planificateur de trajectoire et un
contrôleur de mouvement pour faire en sorte qu’un véhicule soit capable d’évoluer
au volant de façon autonome à faible vitesse avec personne à bord. Ceci permet de
développer des applications de voiturier autonome aussi appelées « valet de parking
».

L’utilisation d’une caméra de détection de voie rend possible l’exploitation des infor-
mations de marquage de voie stockées dans une carte géoréférencée. Un module de
détection de marquage détecte la voie hôte du véhicule et fournit la distance latérale
entre le marquage de voie détecté et le véhicule. La caméra est également capable
d’identifier le type des marquages détectés au sol (par exemple, de type continu
ou pointillé). Comme la caméra donne des mesures relatives, une étape importante
consiste à relier les mesures à l’état du véhicule. Un modèle d’observation raffiné de
la caméra est proposé. Il exprime les mesures métriques de la caméra en fonction du
vecteur d’état du véhicule et des paramètres des marquages au sol détectés.

Cependant, l’utilisation seule d’une caméra a des limites. Par exemple, les marquages
des voies peuvent être absents dans certaines parties de la zone de navigation et la
caméra ne parvient pas toujours à détecter les marquages au sol, en particulier, dans
les zones d’intersection. Un récepteur GNSS, qui est obligatoire pour le démarrage
à froid, peut également être utilisé en continu dans le système de localisation multi-
capteur du fait qu’il permet de compenser la dérive de l’estime. Les erreurs de
positionnement GNSS ne peuvent pas être modélisées simplement comme des bruits
blancs, en particulier avec des récepteurs mono-fréquence à faible coût travaillant de
manière autonome, en raison des perturbations atmosphériques sur les signaux des
satellites et les erreurs d’orbites. Un récepteur GNSS peut également être affecté par
de fortes perturbations locales qui sont principalement dues aux multi-trajets. Cette
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thèse étudie des modèles formeurs de biais d’erreur GNSS qui sont utilisés dans le
solveur de localisation en augmentant le vecteur d’état. Une variation brutale due à
multi-trajet est considérée comme une valeur aberrante qui doit être rejetée par le
filtre.
Selon le flux d’informations entre le récepteur GNSS et les autres composants du
système de localisation, les architectures de fusion de données sont communément
appelées « couplage lâche » (positions et vitesses GNSS) ou « couplage serré »
(pseudo-distance et Doppler sur les satellites en vue). Cette thèse étudie les deux
approches. En particulier, une approche invariante selon la route est proposée pour
gérer une modélisation raffinée de l’erreur GNSS dans l’approche par couplage lâche
puisque la caméra ne peut améliorer la performance de localisation que dans la
direction latérale de la route.
Enfin, cette recherche traite de certains problèmes d’ambigüité de map matching
par exemple lorsque le domaine d’incertitude de l’état du véhicule devient grand si
la caméra est aveugle. Il est en effet difficile dans ce cas de distinguer les différentes
voies lorsque la caméra récupère à nouveau des mesures de marquage de voie.
Comme de nombreuses expériences ont été effectuées avec des véhicules équipés,
chaque problème abordé dans cette thèse est évalué avec des données réelles. Les
différentes approches étudiées qui effectuent la fusion de données des différents cap-
teurs et de la carte contenant les marquages de voie sont comparées entre elles et
plusieurs conclusions sont tirées sur le choix de l’architecture de fusion.
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Chapter 1

General Introduction

Autonomous road vehicles (ARVs) have existed as prototypes and demonstration
vehicles since the 1970s. Their widespread use promises increased comfort, safety,
reduced traffic congestion, energy conservation and pollution reductions [83]. In
November 2007, the DARPA (Defense Advanced Research Projects Agency) Urban
Challenge hold in Victoria City in the USA. In this event, autonomous vehicles have
interacted with both manned and unmanned vehicles in an urban environment.
It required teams to build autonomous vehicles capable of driving in traffic (in
fact, the artificial traffic environment was with no pedestrians or bicyclists and
had no traffic lights), performing complex maneuvers such as merging, passing,
parking and negotiating intersections. Over fifty vehicles took the challenge and six
of them completed the race. Since then, many efforts have been done to improve
algorithm performance and operate autonomous car on public roads. Successful
demonstrations have been carried out.
Usually, an ARV needs to perform four kinds of tasks: localization, perception, path
planning, and control. Localization primarily refers to determining the vehicle’s
position, velocity and attitude in a map that includes the vehicle’s goals. The
perception problem is the task of making sense of vehicle’s surroundings from sensing
data. This task generally consists of detection and tracking of both dynamic objects
and road environmental static features. Path planning is the task of determining
and executing a series of actions to achieve the vehicle’s goals. Successful planning
implies a clear understanding of the effects of the vehicle’s actions on itself and its
environment. Control systems enable the vehicle to react in real time to changes in
the operational environment by following the planned moves.
Usually, expensive and redundant sensor suits are used to achieve a high level of
performance such that the system can be trusted to replace human operation. One
typical representative of ARVs is the Google’s self-driving car. The vehicle carries
a variety of sensors which include: four radars (mounted on the front and rear
bumpers, that allow the car to “see” far enough to be able to deal with fast traffic
on freeways), a 3D lidar (mounted on the top of the vehicle for object detection),
a camera (positioned near the rear-view mirror, that detects traffic lights), a RTK-
GPS, a high-grade Inertial Measurement Unit (IMU) assisted with a wheel encoder
which determines the vehicle’s location and keeps track of its movements. Although
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the cost of the sensors is going down as robotic cars become more ubiquitous, it still
remains as a barrier to their adoption in series automobiles. Low cost approaches
integrating market-ready sensors make sense in promoting the development of ARVs.
The European V-Charge project [44] is one of the approach that tries to address this
problem. In this work, the vehicle is equipped with sonars, cameras, standard GPS
receiver, odometers, accelerometers and gyroscopes to achieve autonomous driving.
In addition to the sensor suit, another crucial element for autonomous driving is the
map. In fact, most successful demonstrations make use of maps [80][134]. Digital
road maps were originally developed for route planning to find global topological
paths on the maps. For this kind of application, the road network is generally repre-
sented by a planar model and a set of connected road centerlines. Advanced Driving
Assistance System (ADAS) and autonomous driving rely on the development of more
accurate and detailed maps [20]. Advanced systems such as lane-level navigation
and autonomous driving need to plan a route more precisely. The task includes not
only the choice of which road to take, but also which lane to drive in. The map is
designed to represent lanes, lane markings, buildings, traffic signs, etc. As the accu-
racy of enhanced maps increases, the requirements on localization performance are
more and more exigent, because localization is an essential prerequisite for relating
the vehicle state with the map. The localization is not only an important input for
the planning system but also helps in perception tasks. Recently, map-aided per-
ception is intensively considered for autonomous driving because prior knowledge
makes the processing and understanding of perception data easier. [81] outlines a
map-based approach to control the region of interest for detecting the position and
orientation of traffic light with in camera images. In [108][33], map coupled with
localization is used to help in lane marking detection. [74] exploits prior map for
dynamic scene understanding. Due to the existence of detailed map, localization
and perception are linked as interdependent tasks.
This thesis aims at working out a localization system which provides in real-time an
accurate pose estimate which is used as a feedback to make navigate autonomously
a full-size valet car (Figure 1.1). In fact, the pose is used by a motion planner that
enables the car to follow a predetermined path defined by the mission to achieve. We
focus on map-aided methods to explore the feasibility of using low-cost automotive
sensors to achieve this goal.
The term “low-cost”has a two-fold meaning. Firstly, expensive sensors such as high-
end IMU, Differential GNSS and 3D laser scanners are not adopted. Instead, MEMS
inertial navigation sensors, L1-GNSS and automotive smart cameras are preferred.
Secondly, sensors that already exist on modern automobile for some ADAS or safety
functions are reused for localization with minor or non modification. These are for
instance, wheel speed sensors or yaw rate gyros.
The combination of inertial navigation systems (INS) and GNSS is ideal for vehicle
localization. INS and dead reckoning (DR) provide high frequency pose estimation
which is accurate for a short-term horizon. GNSS is an efficient mean to correct
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(a) Robotic car named IRIS of the Heudi-
asyc laboratory

(b) Autonomous valet parking vehicle from Renault
PAMU (Urban Mobility Application Platform) project

Figure 1.1: The equipped experimental vehicles used in this thesis.

this drift but it suffers from nonwhite biases and strong multipath in urban canyons.
A INS/GNSS coupled system generally provides position estimates with high avail-
ability but with an accuracy of several meters which is not enough for autonomous
driving.
Accurate and geo-referenced features maps help in improving localization when
adapted exteroceptive sensors are integrated. However, the need for an accurate
map introduces limitations on the way the localization system can be used since it
can only work in a surveyed navigation area. In addition, the performance of per-
ception sensors (like cameras) in complex outdoors environments is still challenging.
Therefore, a good solution has to consider all the factors. Firstly, the pose estima-
tion must be accurate enough to fulfill the requirements of motion planning with
high availability. Secondly, it should be not too complex to build the map and easy
to keep it up-to-date. Finally, sensors which detect map features should be robust
and close-to-market. In this thesis, we focus on a lane marking map and a lane
detection camera used initially for a Lane Departure Warning System (LDWS).
More specifically, we seek the solutions which give GNSS/DR-like availability and
vision/map-like accuracy. For this goal, the following questions need to be addressed:

1. To build an accurate camera observation model and elaborate sensor error
models that will be used in the localization solver, especially for GNSS.

2. To design localization solvers and state observers that fulfill system observ-
ability conditions.

3. To study different data fusion schemes (e.g., loosely and tightly coupled in
terms of GNSS information) and different implementations.

4. To check the consistency of the state observers since reliable confidence is
needed for monitoring the localization system.

Manuscript organization The manuscript is organized as follows.

3



Chapter 1 General Introduction

Chapter 2 covers the considered technologies for localization which include dead
reckoning, GNSS and vision/map coupled methods. The objective of this chapter is
to give a global view of available information sources for this thesis. In particular,
a camera observation model is proposed. The outdoor experimental data used in
this thesis is reported. Sensor performances are examined using the recorded data,
which give important insights in the design of the localization system.
In Chapter 3, sensor error models and data fusion filters are reminded. A loosely
coupled data fusion scheme is addressed. Particularly, the shaping models for GNSS
errors are investigated using experimental data. A widely-used autoregressive error
model is adopted. Experimental results are analyzed to validate the proposed camera
observation model and shaping models.
Chapters 4 expands the loosely coupling scheme by an enhanced GNSS error mod-
eling and a different implementation of the filter. The enhanced model is based on
an observability analysis which relies on algebraic concepts of observability. Consid-
ering that the camera measures the lateral distance, an enhanced modeling of the
GNSS error in the lateral direction is proposed. Then, the problem is addressed in
a road-oriented frame. A road invariant extended Kalman filter (EKF) is designed
to conserve the observability of the proposed state vector.
One important thing to note is the localization task becomes very challenging when
the vehicle travels into an urban environment. Performance of both aforementioned
loosely coupling approaches degrades greatly. The lower availability of the camera
measurement in this area aggravates this situation. Therefore, in Chapter 5, we
switch our focus to a scheme that tightly couples the raw measures of the GNSS
receiver. One prominent advantage of the tightly coupled approach is that the
GNSS receiver can still provide measurements for the localization system even when
the satellites in view are less than 4. In addition, the satellite raw measurements
contaminated by multipath are easier to be detected and excluded.
Chapter 6 compares the performance of the approaches proposed in Chapter 3, 4
and 5 in terms of accuracy and filter consistency. A multi-hypothesis approach is
studied to handle map matching ambiguities.
Chapter 7 concludes the thesis by highlighting the contributions and by providing
perspectives for further work.
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Chapter 2

Considered Information Sources for
Autonomous Road Vehicle
Localization

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Reference coordinate systems . . . . . . . . . . . . . . . 6
2.3 Dead reckoning . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Global navigation satellite systems . . . . . . . . . . . . 15
2.5 Digital maps . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Lane detection camera . . . . . . . . . . . . . . . . . . . 38
2.7 Experimental setup and collected data . . . . . . . . . 48
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.1 Introduction

Sensors and maps are essential information sources for vehicle navigation. Auto-
motive manufacturers are currently giving much interest to in-vehicle sensors and
sensing-based services because of their proved benefits in accidents avoidance and
higher driving efficiency. Furthermore, autonomous driving hinges on advanced sen-
sors and maps for more challenging tasks such as object detection and tracking,
scene understanding and highly accurate self-localization. In this chapter, sensing
technologies and maps that help in the vehicle localization task are highlighted.
Sensor measurements and their basic observation models are studied.
An automotive localization and navigation system for a human driver typically uses
a GNSS device to get its position data which is then correlated with a digital road
map for route planning. For a driverless vehicle, GNSS sensors also help other sen-
sory data matching with the enhanced map. The versatility and low cost of GNSS
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positioning makes it a candidate for autonomous vehicle navigation systems. How-
ever, in urban canyons or tunnels, GNSSs can loss signal or suffer from multipath.
During short-term outages of satellite, data from vehicle proprioceptive sensors like
gyrometers, accelerometers and wheel speed sensors can be used to dead reckon the
vehicle pose with an appropriate vehicle kinematic model. In the context of this
thesis, those proprioceptive sensors are referred to as dead reckoning (DR) sensors.
DR sensors usually have greater reliability and availability than GNSSs but their
estimation errors are accumulated unboundedly in long-term. For enhancing the
positioning performance, another widely adopted method is using surround sensors
(camera/radar/lidar) to extract features in view and map match them with a prior
map. We refer to this method as vision/map method. This method usually requires
a coarse estimation of the vehicle pose to ensure a fast and accurate map matching
with the enhanced map of the features.
For autonomous vehicle navigation or other safety-critical applications, there is no
single system that fulfills the reliability and availability for now. The system is al-
ways designed in a multisensor fusion framework, i.e. fusion of DR sensors, GNSSs
and vision/map sensors which often have CAN (controller area network) bus inter-
faces. The main objective of this chapter is to outline this three data sources for
the localization system. Several useful coordinate systems are firstly introduced.
Since the localization is a state estimation problem, along with the introduction of
the state-of-the-art technologies, the sensor measurements, vehicle kinematic model
and sensor observation models are developed. At the end of this chapter, the ex-
perimental platform is presented and experimental data which are used in the next
chapters are investigated.

2.2 Reference coordinate systems

Definition of reference coordinate systems is central to vehicle localization problem.
Under the multisensor fusion framework, different sub-systems produce information
in different reference coordinate systems (RCSs). For example, GNSS receivers
record data in latitude-longitude using the WGS84 (World Geodetic System 1984)
datum by default. The lane detection camera measures the lane markings in its
body frame and a road map is often defined in a local navigation coordinate system.
In this section, the useful RCSs are introduced according to three different scales,
i.e., global, local and body.

2.2.1 Global coordinates systems

To formulate the mathematics of the global satellite navigation problem, it is nec-
essary to choose a global coordinate reference system in which the states of both
the satellites and the receiver can be represented. In this formulation, it is typical
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to describe satellite and receiver states in terms of position and velocity vectors
measured in a Cartesian coordinate system. The two main Cartesian coordinate
systems are either inertial or rotating.

The Earth-Centered Inertial Coordinate System The origin of the Earth-Centered
Inertial (ECI) coordinate system is defined as coinciding with the Earth’s center of
mass, hence the name Earth-Centered. The x axis is permanently fixed in a direc-
tion relative to the celestial sphere. Its z axis is coincident with Earth’s geographical
North Polar axis, and its x−y plane coincides with the equatorial plane. The y axis
is right hand pointing. The Cartesian coordinates are used to express a location
using the ECI system. Comparing with the frames which rotate in inertial space,
the equations that describes orbital motion of objects in space are simpler in ECI
system. Therefore it is convenient to employ the ECI system to describe the motion
of the satellites using Newton’s laws. However, it is inconvenient for the Earth sur-
face application, considering that the Earth is rotating with respect to this system.
Therefore, another global Cartesian coordinate system ECEF is defined as follows.

The Earth-Centered Earth-Fixed Coordinate System As the ECI system, the
Earth-Centered Earth-Fixed Coordinate System (ECEF) also has its x − y plane
coincident with the Earth’s equatorial plane, and the z axis is defined to be normal
to the equatorial plane in the direction of the geographical North Pole. The origin is
also defined as the Earth’s center of mass. However, its x and y axis rotate with the
Earth instead of pointing in fixed directions in inertial space. The x axis points in
the direction of 0° latitude, and the y axis points in the direction of 90°E longitude.
ECEF system represents positions as an X, Y and Z Cartesian coordinates. A point
fixed on the surface of the Earth doesn’t change its coordinates in ECEF.
It is typical to transform the Cartesian coordinates to latitude (φ), longitude (λ),
and height (h). A World Geodetic System is defined to describe the Earth and to
carry out this transformation.

World Geodetic System The World Geodetic System (WGS) is a standard for
use in geodesy, cartography, and navigation [95]. It comprises a standard coordinate
system for the Earth, a standard spheroidal reference surface for raw altitude data,
and a gravitational equipotential surface that defines the nominal sea level. The
latest revision is WGS84, established in 1984 and last revised in 2004. It is the
standard physical model of the Earth used for GPS applications. One part of WGS84
is a detailed model of the Earth’s gravitational irregularities. Such information
is necessary to derive accurate satellite ephemeris information. However, we are
concerned here with estimating the latitude, longitude, and height of a GPS receiver.
For this purpose, WGS84 provides an ellipsoidal model of the Earth’s shape, as
shown in Figure 2.1. In this model, cross-sections of the Earth parallel to the
equatorial plane are circular. The equatorial cross-section of the Earth has radius
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Figure 2.1: Ellipsoidal model of Earth

6378.137 km, which is the mean equatorial radius of the Earth. In the WGS84 Earth
model, cross-sections of the Earth normal to the equatorial plane are ellipsoidal.
In an ellipsoidal cross-section containing the z-axis, the major axis coincides with
the equatorial diameter of the Earth. Therefore, the semi-major axis, a, has the
same value as the mean equatorial radius given previously. The minor axis of the
ellipsoidal cross-section shown in Figure 2.1 corresponds to the polar diameter of
the Earth, and the semiminor axis, b, in WGS 84 is taken to be 6,356.7523142 km.
Thus, the eccentricity of the Earth ellipsoid, e, can be determined by

e =
√

1− b2

a2

WGS84 takes e2 = 0.00669437999014. Locations are defined in terms of the position
on a globe using latitude and longitude values. The longitude λ is the angle made by
the projection of the user in the equatorial plane and the x-axis of ECEF frame. The
longitude ranges from -180° to 180° and positive longitudes correspond to degrees
East. The latitude φ is the angle made by the ellipsoid normal at the receiver
position with the Equator plane and ranges from -90° to 90° with positive values on
the northern hemisphere. The height h is the shortest distance between the ellipsoid
and the user. It is positive if the user is above the ellipsoid.
The output of a GPS receiver is by default latitude, longitude and height in the
WGS84 coordinate system. When testing other navigation instruments, such as
inertial navigation system (INS) with DR sensors, it is often helpful to transform

8



2.2 Reference coordinate systems

WGS84 coordinates to local navigation coordinates.

2.2.2 Local coordinate systems

East, north, up coordinate system A local East, North, Up (ENU) RCS is a
Cartesian coordinate system defined to be tangent to the Earth ellipsoid at a defined
origin. The North axis is tangent to the meridian that contains the ENU origin and
in the North direction. The East axis is normal to the North axis and is in the
positive longitudes direction. The Up axis is chosen so that the ENU is a right-
handed coordinate system (Figure 2.1). The ENU system is also known as local
navigation frame. It is widely used in the navigation tasks since it is convenient for
the computation of motion on short distances.
The localization problem is defined in the local ENU frame. GNSS receivers usually
record data in (λ, ϕ, h) using the WGS84 system. A conversion from a WGS84
Datum to ECEF coordinates (X, Y, Z) is used as an intermediate step in converting
to the ENU coordinates (x, y, z). For this thesis, the conversions among WGS84,
ECEF and ENU coordinate systems are performed by the algorithm developed in
the CityVIP project [2].

Simplified 2D local navigation system When the navigation area is flat enough,
the 3D ENU frame can be simplified into 2D coordinates by only considering East
and North axis. The frame RO in Figure 2.2 is the simplified 2D frame with xO
pointing east and yO pointing north. The localization problem is simplified into a
2D problem in this thesis.

Road-oriented frame A road-oriented frame is defined to have the same origin as
the local ENU frame and its x-axis pointing to the direction of the road in which
the vehicle is traveling. Its use will be discussed in Chapter 3.
Now, after having defined coordinate systems at the global and local scales, two
more frames of body scale need to be defined, i.e., the body frames of the vehicle
and the vision sensor (the vision sensor adopted in this thesis is a lane detection
camera with more details in Section 2.6).

2.2.3 Mobile coordinate systems

Vehicle body frame The vehicle body frame, denoted RM in Figure 2.2, is vehicle-
carried and is directly defined on the body of the mobile vehicle. Its origin is defined
at the center of the rear axis. xM is the longitudinal axis pointing forward and yM
is such that zM is upwards. It is the frame used to control the vehicle and has to be
localized in RO.

9



Chapter 2 Considered Information Sources for Autonomous Road Vehicle Localization

yM

xM

M

O

ψ

x

y

yC

xC

C
Cx

Cy

Px

xO

yO

A

B
C0

C1

L

Figure 2.2: Mobile frames. [AB] is a lane marking segment

Camera body frame The origin of the camera coordinate system is located at the
front of the vehicle after its calibration (Figure 2.2). In order to stay consistent
with the camera system conventions used in this work, zC is downward. The Lane
Departure Warning camera is often installed behind the windscreen with a position
offset (Cx,Cy). Every detected lane marking is expressed in RC . Px is a translation
from point M up to the bumper.
The localization problem is studied in the local ENU frame, hence the transformation
between these coordinate systems are defined as following.
Let denote MTC the 2D homogeneous transformation matrix mapping RC in RM :

MTC =

 1 0 P x

0 −1 0
0 0 1

 (2.1)

Let define q = (x, y, ψ)T the vehicle’s pose which includes position (x, y) and heading
angle ψ. The transformation OTM maps RM in RO:

OTM =

 cosψ −sinψ x
sinψ cosψ y

0 0 1

 (2.2)

Solving the localization problem means finding the pose vector “q” in RO. We begin
with presenting the dead reckoning method.
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2.3 Dead reckoning

In navigation, dead reckoning (DR) is the process of calculating the current pose of
the vehicle by using a previously determined pose and estimating that pose based
upon known or estimated speeds over an elapsed time course. It is originally marine
technology and now has been used in many fields, such as pedestrian dead reckoning,
air navigation, autonomous navigation in robotics and automotive navigation.
DR can be implemented with different configurations. DR with inertial navigation
systems (INSs) is widely used in localization and navigation on ground vehicles,
spacecrafts, submarine vehicles and ships [132]. For automotive navigation system,
the vehicle is often equipped with sensors that know the wheel diameter and record
wheel rotations and steering direction. These sensors are present in a modern au-
tomobile for many purposes and can be read by the navigation system from the
controller-area network (CAN) bus. Then the DR is developed with an appropriate
vehicle kinematic model.

2.3.1 Inertial navigation systems

An inertial navigation system is a navigation unit that uses motion sensors and ro-
tation sensors to continuously calculate via dead reckoning the position, orientation,
and velocity of a moving object without the need of external references. The iner-
tial measurement unit (IMU) is the main component of INS. IMUs typically contain
three orthogonal rate-gyrometers and three orthogonal accelerometers, measuring
angular velocity and linear acceleration respectively. It actuates as a sensor. INS
uses an IMU to form a self-contained navigation system which tracks the position
and orientation in three dimensions by processing signals form IMU. In the context
of this writing, the term IMU is used to refer to expensive high-end IMUs.
INS usually works with high frequency. Most INS data rates exceed 50 Hz with some
reaching into several hundreds of hertz. It is able to accurately measure the rapid
changes of angular rotation rates and linear accelerations in short term. There are
mainly two categories of INS: stable platform system and strapdown systems [132].
In stable platform type systems, the inertial sensors are mounted on a platform which
is isolated from any external rotation motion. The platform is held in alignment
with the navigation frame. In strapdown systems, the inertial sensors are mounted
rigidly onto the device and therefore output quantities measured in the body frame
rather than the navigation frame.
Stable platform and strapdown systems are both based on the same underlying
principles. Strapdown systems have reduced mechanical complexity and tend to
be physically smaller than stable platform systems. These benefits are achieved
at the cost of increased computational complexity. As the cost of computation
has decreased, strapdown systems using micro-machined electromechanical systems
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(MEMS) devices have become the dominant type of INS. The widely used inertial
sensors are gyrometers and accelerometers which are presented in the following.

2.3.1.1 Gyrometers

Gyrometers (gyros) measure the angular velocity of a system in one direction. There
are many types of gyros, like mechanical, optical and MEMS gyros. Mechanical
and optical gyros often require parts with high-precision tolerances and intricate
assembly techniques and high part counts. As a result they remain expensive. In
contrast MEMS sensors built using silicon micro-machining techniques have low part
counts and are relatively cheap to manufacture. The major disadvantage of MEMS
gyros is that they are currently far less accurate than optical devices. In [132], the
errors which arise in MEMS gyros are examined. The main sources are outlined as
follows.

White noise The output of a MEMS gyro is perturbed by some thermomechanical
noise which fluctuates at a rate much greater than the sampling rate of the sensor.
As a result the samples obtained from the sensor are perturbed by a white noise
sequence, which is simply a sequence of zero-mean uncorrelated random variables.
In this case, each random variable is identically distributed and has a finite variance.
The noise introduces a zero-mean random walk error into the integrated signal that
grows proportionally to the square root of time.

Constant bias This is the offset of the output from the true value. A constant
bias error of ε, when integrated, cause an angular error which grows linearly with
time. The bias wanders over time due to flicker noise in the electronics, the effects
of which are usually observed at low frequencies in electronic components. At high
frequencies flicker noise tends to be overshadowed by white noise. Bias fluctuations
which arise due to flicker noise are usually modeled as a random walk. In reality,
bias fluctuations do not behave as random walks (in this case, the uncertainty in
the bias would grow unboundedly as the time-span increases). In practice the bias
is constrained to be within some range, and therefore the random walk model is
only a good approximation to the true process for short periods of time. Tempera-
ture fluctuations due to changes in the environment and sensor heating also induce
movement in the bias.

Calibration errors This term refers to errors in the scale factors, alignments, and
linearities of the gyros. Such errors tend to produce bias errors that are only observed
whilst the device is turning. It is usually possible to measure and correct calibration
errors.

12



2.3 Dead reckoning

Remark 1. The relative importance of each error source varies across different gyros.
For MEMS gyros, white noise, and uncorrected bias errors either due to uncompen-
sated temperature fluctuations or an error in the initial bias estimation are usually
the most important sources of error.

More details about the notions of “white noise” and “random walk” will be intro-
duced in Chapter 3.

2.3.2 Wheel speed sensors

Angular encoders are attached to the wheels of modern automobiles. these sensors
basically measure the wheel speeds. They use a magnet and a coil of wire to generate
a signal. The rotation of the wheel induces a magnetic field around the sensors.
Wheel encoders detect angular rotation by measuring small increments of movement
by observing this signal that varies as the wheel rotates. This sensor can become
inaccurate at slow speeds. A wheel speed sensor only measures velocity in the
forward direction. The integration of Wheel speed sensors in the navigation system
applies to non-holonomic constraints on the lateral and vertical directions. These
non-holonomic constraints are effective only when the vehicle operates on a flat road
and when no side slip occurs [61].
In Europe, every new vehicle must be equipped with an Electric Stability Program
(ESP) since January 2012, and Anti-lock Braking System (ABS) has been part of
standard equipment in earlier times. These two systems contain a wealth of pro-
prioceptive sensors which are capable of measuring vehicle rotation and individual
wheel speeds. The sensors communicate with the electronic control units via CAN
bus. These sensors are used as dead reckoning sensors.

2.3.3 Vehicle kinematic model

The performance of a positioning system depends not only on the filter structure
but also on the appropriate choice of the process model for a filter. The roles of the
process models in positioning systems have been investigated in [68].
Figure 2.3 illustrates the geometry of a car-like vehicle in a turning maneuver. ρ is
the curvature radius at point M . e is the vehicle half-track. The simplest model
consists in representing the vehicle by a single oriented point. Assuming that the
vehicle has a 2D motion and that its speed and yaw rate can be measured, it conducts
to the classical unicycle model.


ẋ = v · cosψ
ẏ = v · sinψ
ψ̇ = ω

(2.3)
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Figure 2.3: Geometry of car in a turning maneuver

where v and ω are the linear and angular velocity.

The available sensor measurements are
(
vmfl, v
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fr, v
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rl , v

m
rr, ψ
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L , ψ

m
R , ω

m
)
. where vfl,

vfr, vrl, and vrr are the linear speeds of front left, front right, rear left and rear
right wheels respectively. ω is the yaw rate of the vehicle. ψL and ψR are the
steering angle of the front left and front right wheel. (m) means a measured value
of a physical quantity. According to the Ackermann steering geometry, the sensor
measurements satisfy the following relationship:


vrl = v − ω.e
vrr = v + ω.e
vfl · cos (ψl) = v − ω.e
vfr · cos (ψr) = v + ω.e

(2.4)

The input for equation (2.3) is the linear velocity v and angular velocity ω. There-
fore those measurements are redundant. Bonnifait, et al. presented data fusion
of (vfl, vfr, vrl, vrr, ψl, ψr) for outdoor localization based on Extended Kalman filter
[22]. In this work, the yaw rate was not directly measured. The redundancy are
used to reduce the effects of the unknown disturbances. In this thesis, considering
that the yaw rate is directly measured by the gyro, only part of the measurements
are used considering these low cost sensors have complex error characteristics. Our
experimental vehicle is a front-wheel drive and front-wheel steering car. Under the
assumption that the rear wheels don’t slip, the speed vector is collinear with the xM
axis. The measured linear velocity vm is calculated by:

vm = (vmrl + vmrr) /2 (2.5)

The measured yaw rate is a function of the real yaw rate of the vehicle and a bias
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εω, which is given by:

ωm = ω + εω (2.6)

An estimate of the pose q of the vehicle is provided by integrating these measure-
ments from a known initial pose. Dead reckoning can be highly accurate over short
time. However, a significant disadvantage of dead reckoning is that the errors of
the process are cumulative, since new positions are calculated solely from previous
positions. Therefore, the error in the pose grows with time. To overcome this, the
navigation system needs to integrate sensors which can directly observe vehicle pose
or part of it. GNSS receiver is an ideal choice.

2.4 Global navigation satellite systems

The term “global navigation satellite system” refers to a constellation of satellites
providing signals from space transmitting positioning and timing data with global
coverage. The basic operational idea of a GNSS is that receivers measure the time
of arrival of satellite signals and compare it to the transmission time to calculate the
signals propagation time. The propagation time is used to estimated the distances
from the GNSS receiver to the satellites. The estimated distance is the so-called
pseudorange. From the pseudorange estimates, GNSS receivers calculate position by
means of multilateration which relies on multiple satellite measurements to produce
a position fix. The accuracy of the position estimates is dependent on both the
accuracy of the pseudorange measurements and the geometry of the satellites used
in the multilateration.
At this time, there are several examples of GNSS which are fully or partially in opera-
tion: the USA’s NAVSTAR Global Positioning System (GPS), Russia’s Globalanaya
Navigatsionnaya Sputnikovaya Sistema (GLONASS), Europe’s Galileo positioning
system and China’s Beidou navigation satellite system (BDS).
The U.S. Department of Defense began the GPS project in 1973. It became fully
operational in 1995. The GPS was initially developed to fulfill U.S. military needs.
Now, it is a dual-use system that can be accessed by both military and civilian
users. GLONASS was developed contemporaneously with GPS, but suffered from
incomplete coverage of the globe until the mid-2000s. Galileo positioning system is
currently being created by the European Union and the European Space Agency.
The aim of this project is to provide an alternative high-precision global positioning
system for European nations. Galileo will start offering first services from 2016. Full
completion of the 30-satellite Galileo system is expected by 2020. China’s BDS is
still under construction and will be a global satellite navigation system consisting
of 35 satellites. BDS became operational in China in December 2011, and began
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offering services to customers in Asia-Pacific region in December 2012. It is planned
to begin serving global customers upon its completion in 2020.
Those GNSSs share some similarity: high availability, continuous, all-weather and
near-real-time microwave technique with signals through the Earth’s atmosphere.
Since GPS is the only GNSS which is fully operational and widely used in the last
decades, we overview the GNSS by taking GPS as an example.

2.4.1 Overview of the GPS

The GPS system is built around three main elements, i.e., space, control and user
segments.

Space segment In order to provide a continuous global positioning capacity, a
constellation with a sufficient number of satellites must be developed. The GPS
space segment consists of a constellation of satellites in medium Earth orbit trans-
mitting radio signals to users. The satellites are equally distributed over six orbital
planes. This arrangement ensures a minimum visibility of 4 satellites at 15 degrees
minimum elevation from virtually any point on Earth. In June 2011, the Air Force
successfully completed a GPS constellation expansion known as the “Expandable
24” which may increase GPS performance. GPS now operates as a 27-slot constel-
lation with improved coverage in most parts of the world (Figure 2.4). More details
about the orbits, coverage and performance of the GPS satellite constellation are
documented in the GPS Performance Standards [1].
The satellites provide a platform for equipment used to operate the system such
as computers, atomic clocks and radio transceivers. All operating satellites are
numbered with a space vehicle identifier (SV ID) and pseudorandom noise (PRN)
number which uniquely identifies the ranging codes that a satellite uses. One to one
correspondence between SV IDs and PRN numbers is fixed but the SV ID/PRN
number of a satellite may be changed.
The main function of the space segment are to transmit radio navigation signals and
the navigation message sent by the control segment. By using atomic clocks, the
satellites are able to transmit signals with highly stable frequency. The GPS signal
structure is detailed in section 2.4.2.1.

Control segment The GPS control segment consists of a global network of ground
facilities that track the GPS satellites, monitor their transmissions, perform anal-
yses, and send commands and data to the constellation. The current operational
control segment includes a master control station (MCS), an alternate master control
station, 12 command and control antennas, and 16 monitoring sites. The locations
of these facilities are show in Figure 2.5.
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Figure 2.4: GPS constellation. Source: [60]

The ground antennas are used to communicate with the GPS satellites. Monitor
stations track the GPS satellites as they pass overhead and collect atmospheric data,
range/carrier measurements, and navigation signals. Monitor stations channel their
observations back to the master control station in Colorado. The MCSs generate
and upload navigation messages and ensure the health and accuracy of the satellite
constellations.

User segment The GPS User Segment consists on L-band radio receivers and
antennas which receive GPS signals, determine pseudoranges and other observables,
and solve the navigation equations in order to obtain their coordinates and provide
a very accurate time.
A GPS receiver is a device capable of determining the user position, velocity and
precise time (PVT) by processing the signal broadcast by satellites. Receivers can be
categorized by their type in different ways and under different criteria. For instance,
receivers can be stand-alone, or may benefit from corrections or measurements pro-
vided by augmentation system or by receivers in the vicinity. Moreover receivers
might be generic all purpose receivers or can be built specifically having the appli-
cation in mind: navigation, accurate positioning or timing, surveying, etc. Low cost
single-frequency receiver (L1-GPS) is often adopted for an application in the field of
automobile. According to the GNSS Market Report 1 provided by European GNSS

1http://www.navipedia.net/index.php/GNSS_Market_Report
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Figure 2.5: The GPS Control Segment map. Source: [59]

agency, the automotive industry agrees on the future view of a sensors fusion with
GNSS as a core component, integrated into a car to provide enhanced positioning
capabilities to be used with various innovative applications.

2.4.2 Generation of GPS observations

The GPS is a satellite-based positioning system. In order to decide user’s position
and velocity, information on satellites position, clock time and time of transmission
of the signal etc. must be available to the user receiver. In practice, 6-12 satellites
are visible simultaneously, depending on constellation geometry and elevation cut-
off angle. GPS satellites broadcast continuously on 2 frequencies in the L-band. By
using atomic clocks, the satellites are able to transmit signals with highly stable
frequency.

2.4.2.1 Structure of GPS signal

GPS signals include ranging signals and navigation messages. The original GPS
design contains two ranging codes: the coarse/acquisition (C/A) code and the re-
stricted precision (P) code. Selective Availability (SA) is a purposeful degradation of
the GPS signal by the U.S. Government that can be imposed to restrict the full ac-
curacy of the GPS system to authorized military users. SA is part of the SPS, which
was formally implemented on 25 March 1990. The degradation was accomplished
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primarily through dithering of the satellite clock. On May 1, 2000, SA was officially
removed [121]. Hereafter, legacy GPS signal is reminded in terms of carriers, coarse
acquisition code, precision code and navigation message.

Carriers The GPS satellites transmit signals on two carrier frequencies in L band,
L1 and L2 2. They are centered at 1575.42 and 1227.6 MHz respectively. The atomic
clocks aboard the satellite produces the fundamental L-band frequency (10.23 MHz).
The L1 and L2 carrier frequencies are generated by multiplying the fundamental
frequency by 154 and 120, respectively.
GPS supplies two services, Standard Positioning Service (SPS) and Precise Posi-
tioning Service (PPS). The SPS is a positioning and timing service provided on
GPS L1 frequency and available to all GPS users. The L1 carrier contains a coarse
acquisition code (C/A code) and a navigation message. The PPS is reserved for
highly accurate military positioning, velocity, and timing service broadcast at the
L1 and L2 frequencies. Both frequencies contain a precision code (P code) ranging
signal with an encrypted navigation data message that is reserved for authorized
users. Both C/A and P code are pseudo random code. The PRN codes and the
navigation message are described as following.

Coarse acquisition code The coarse acquisition code modulates the L1 carrier
with a chipping rate of 1.023 MHz and a sequence length of 1023 bits, using a
bi-phase shift keying (BPSK) modulation technique.
The satellites transmit on the same L band frequency. Appropriate code division
multiplexing techniques allow differentiating between the satellites. C/A code is de-
signed to have high autocorrelation peak and low cross correlation peaks. Therefore,
it can provide a wide dynamic range for signal acquisition. The C/A code is the
basis for civilian GPS use.

Precision code Precision code is reserved for PPS. It consists of a unique sequence
of 2.3547× 1014 bits at 10.23 MHz. If the P code were allowed to continue without
being reset, each P code would continue without repetition for more than 38 weeks.
In practice, this overall period has been divided. Each of operational satellites or
ground transmitters gets a one-week period code. Thus, an emitted P code will
not overlap with that of any other satellite or ground transmitter. The P code is
intended for military users and can be encrypted. When it’s encrypted, it is called
Y code.
The P code is difficult to acquire because of its length. But it has the advantage
of not being ambiguous. A receiver correlator must be timed to within one P code
chip (roughly 0.1 µs ) and clocked in synchronicity in order to correlate at all. Many
military receivers start by acquiring the C/A code and then move on to P code.

2As defined by the IEEE, the L band is the 1 to 2 GHz range of the radio spectrum
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Figure 2.6: Navigation message format. Source: [111].

Navigation message As indicated in section 2.4.1, the navigation message is up-
loaded to each satellite by the GPS Control Segment for later broadcast to the user.
It is modulated on both carriers. The navigation message has a cycle time of 30
seconds at 50 bps bit rate. So, the total navigation data set is 1500 bits and it is di-
vided into 5 subframes of 6 seconds duration. Each subframe contains ten words. As
shown in Figure 2.6, the first two words of each subframe are the telemetry (TLM)
word and the C/A to P code handover word (HOW). The TLM word contains a
synchronization pattern which is necessary for the receiver to access the navigation
data. The HOW provides time information (seconds of the GPS week), allowing the
receiver to acquire the week-long P code segment.
The first subframe contains the GPS week number, the satellite clock correction
terms, and the satellite accuracy and health. The second and third subframes con-
tain necessary ephemeris parameters for computation of satellite coordinates. The
fourth and fifth subframes contain the almanac data with clock and ephemeris pa-
rameters for all available GPS satellites. They include also ionospheric correction pa-
rameters, UTC data, and particular alphanumeric information for authorized users.
The ionospheric data from subframe 4 can be used to reduce the ionospheric ef-
fect, especially for L1-GPS receiver. However, subframes 4 and 5 are not repeated
every 30 seconds. They consist of 25 pages that appear subsequently. The total
information content is available after 12.5 minutes.
Now we summarize the process of generating GPS signals. The signals are driven by
atomic clocks. The fundamental frequency is 10.23 MHz. Multiplying this frequency
by 154 and 120, the L1 and L2 carriers are created. The navigation message is added
to the C/A or P code respectively. Then the coded message is modulated to one
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Figure 2.7: GPS basic signals on L1/L2 carriers

of carriers as depicted in Figure 2.7. The C/A code is only modulated onto the L1
carrier, while the P code is modulated onto both the L1 and L2 carriers.
New navigation signals designed for civilian use are being added to the satellite con-
stellation, which are L2C, L5 and L1C3. However, users must upgrade their equip-
ment to benefit from the new signals. The L1 C/A signal will continue broadcasting
in the future.

2.4.2.2 Measure of time of flight

One of the fundamental observables of GPS system is the signal travel time be-
tween the center of the satellite transmitting antenna and the center of the receiver
antenna. It is performed by the GPS receiver and then scaled into a range mea-
surement using the signal propagation velocity. The conceptions which permit to
construct the measure of time of flying on the PRN code are reminded.
In order to determine the time of flight, the receiver keeps a copy of the code sequence
which is phase-shifted in time, i.e. the code must be generated within the receiver
channel using the same algorithm that is utilized in the satellite. The replica code
is correlated with the received code signal. Two sequences are shifted step by step
in phase until maximum correlation is achieved. This process happens in one of the
two tracking loops, which are equipped for each channel of the receiver:

• Delay lock loop (DLL): it aims at tracking and estimating the current misalign-
ment between the locally generated PRN code replica and the incoming signal,
within the tracking loops. In order to keep the local replica as “matched” as
possible with the incoming signal, the DLL provides a correction of the cur-
rent observed delay and this correction is applied to the local replica code
generators.

3http://www.gps.gov/systems/gps/modernization/civilsignals/
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• Phase Lock Loop (PLL): it tracks and estimates the current misalignment be-
tween the prompt correlator and the incoming signal phase, within the track-
ing loops. The demodulated satellite carrier phase signal is aligned with the
phase signal of the receiver’s oscillator. The carrier reconstruction technique
only works on L2 when the P code is available, or for authorized users with
access to the Y code. All GPS receivers must lock onto and track the signal’s
carrier to measure pseudoranges. A GPS receiver cannot distinguish one cy-
cle of a carrier from another. The best a receiver can do is to measure the
fractional phase and keep track of changes to the phase; the initial phase is
ambiguous by an integer number of cycles [77]. To use the carrier phase as an
observable for positioning, this unknown number of cycles must be estimated.

te is the system time when the signal left the satellite, and tr is the system time
when the signal would have reached the user receiver in the absence of errors. Thus,
gradually shifting the signal, the receiver is able to estimate the time of flight 4t
as:

4t = tr − te

GPS is a one-way ranging system which means that a clock reading at the trans-
mitter antenna is compared with a clock reading at the receiver antenna. Therefore,
satellite and receiver clock offsets need to be taken into consideration. In the fol-
lowing sections, the index u denotes a receiver dependent parameter and the index
s a satellite dependent parameter.

Effect related to clock offsets The satellites contain atomic clocks that control all
on-board timing operations, including broadcast signal generation. Although these
clocks are highly stable, the clock correction fields in the navigation data message
are sized such that the deviation between satellite time and GPS time may be as
large as 1 ms. The MCS determines and transmits clock correction parameters to
the satellites for rebroadcast in the navigation message. However, some residual
error remains. This residual clock error dts results in ranging errors that typically
vary from 0.3-4m [70], depending on the type of satellite and age of the broadcast
data. The clock offset of the receiver is denoted dtu. For a given time t, time
measurements of satellite and receiver clocks are:

ts (t) = t+ dts (t) (2.7)

tu (t) = t+ dtu (t) (2.8)

These two time scales will help to establish the relationship between the true time
of flight and the measured one.
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Measured time of flight The satellite transmits the signal in its own time reference
at time te, hence:

ts (te) = te + dts (te) (2.9)

The receiver performs the measurement at time tr in its own time reference:

tu (tr) = tr + dtu (tr) (2.10)

The measured time of flight is:

4tm = tu (tr)− ts (te) (2.11)

Inserting equation (2.9) and (2.10) into equation (2.11), one obtains the measure
time of flight in the form:

4tm = tr − te + dtu (tr)− dts (te) (2.12)

2.4.2.3 Pseudorange of the C/A code

The pseudorange ρ measured by the receiver is equivalent to the distance traveled
by the GPS signal during its measured time of flight. Let c denotes the signal speed:

ρ = c (tr − te) + c (dtu (tr)− dts (te)) (2.13)

Let R denote the geometric distance between the satellite and the receiver such that:

R = c (tr − te) =
∥∥∥ECEF (tr)xu (tr)− ECEF (tr)xs (te)

∥∥∥ (2.14)

Where xu is the receiver position vector in the ECEF frame related to the time of
reception; xs is the satellite position in the ECEF frame also related to the time of
reception of the GPS signal. The pseudorange model is simplified to:

ρ = R + c (dtu (tr)− dts (te)) (2.15)

Equation (2.15) is true only in the case that a signal evolves in a vacuum. How-
ever, the GPS signal has to pass through the Earth’s atmosphere. The PRN code
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component of the satellite signal experiences delays as it propagates through the
atmosphere, which elongates the pseudorange. The signal can also be delayed or
advanced by other effects which are detailed in the following.

Estimation errors of broadcast ephemeris To resolve the receiver position from
the pseudorange measurements, one must know satellite position and satellite clock
offsets which are provided in the navigation message. The broadcast ephemeris
are generated in two steps [111]. First, a reference ephemeris is generated based
on several days of observations from the monitor stations. Second, corrections to
the reference ephemeris are predicted by processing the discrepancies between the
reference ephemeris and the current observations at the monitor stations. Estimates
of ephemeris for all satellites are computed and uploaded to the satellites with other
navigation data message parameters for broadcast to the user. For each instant, it
is possible to estimate the satellite position ECEFxs by interpolation. The typical
magnitude of the residual error is in the range of 1-6m [70].
The residual satellite position error can be divided into components in 3 directions:
the radial direction (from the satellite toward the Earth center), the along-track
direction (the instantaneous direction of travel of the satellite), and cross-track
direction (perpendicular to the along-track and radial direction). Although the
along-track and cross-track components are more difficult for the Control Segment
to observer since its monitoring stations are on the surface of the Earth, these er-
ror components don’t project significantly onto the satellite-to-receiver line of sight
(LOS) vector. The radial error is the smallest component and it can be well moni-
tored by the Control Segment. The effective pseudorange error δXs due to ephemeris
prediction errors is on the order of 0.8m [70].

Atmospheric effects The atmosphere is a dispersive medium. Its effects are small-
est when the satellite is directly overhead since the path through the atmosphere
is the shortest. There are two layers of the atmosphere which primarily affect the
GPS signal: the ionosphere and troposphere. Their effects are recalled as follows.

Ionospheric effects The ionosphere is a dispersive medium located primarily in
the region of the atmosphere between about 70 km and 1000 km above the Earth’s
surface. Within this region, ultraviolet rays from the sun ionize a portion of gas
molecules and release free electrons. These free electrons influence electromagnetic
wave propagation, including the GPS satellite signal broadcasts. The crossing of
ionosphere causes a slower group velocity, which elongates pseudorange measurement
of the PRN code.

Tropospheric delay The troposphere is the lower part of the atmosphere that is
non-dispersive for frequencies up to 15 GHz. Within this medium, the phase and
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group velocities associated with the GPS carrier and signal information (PRN code
and navigation data) on both L1 and L2 are equally delayed with respect to free
space propagation.
The atmospheric effects are the main error sources in determining the receiver po-
sition. They are related to the environment between the receiver and the satellite
transmitter and are therefore impossible to be accurately estimated by the Control
Segment.

Relativistic effects Relativistic effects are due to the fact that there is a difference
in speed between the satellite and the receiver. It results in a dilatation of time
and a frequency offset. The relativistic effects can reach a maximum of 70ns [111].
Correcting the satellite clock for this relativistic effect results in a more accurate
estimation of the time of transmission by the user.

Complete model of the pseudorange of the C/A code When taking into account
the aforementioned degradation, the complete model of the pseudorange is presented
as follows.

ρ = R + c (dtu (tr)− dts (te)) + δXs + δiono + δtropo + δrel

where δXs is the error due to the use of broadcast ephemeris, δiono and δtropo repre-
sent respectively the range equivalents of the delays caused by the ionospheric and
tropospheric effects, and δrel represents the relativistic effects.
With the navigation message, the GPS receiver is able to know or estimate part of
the degradation. dts (te), δXs , δiono and δrel are able to be estimated by using classical
atmosphere models implemented in an open source software like the GPSTk [56].
Their estimations are denoted as d̂ts (te), δ̂Xs , δ̂iono and δ̂rel respectively.
The pseudorange measurement after applying these corrections is denoted ρc.

ρc = ρ+ d̂ts (te)− δ̂Xs − δ̂iono − δ̂rel = R + c · dtu (tr) + εpr + β (2.16)

where εpr is the residual error and β is the measurement noise.

2.4.2.4 Doppler shift

The Doppler shift is produced by relative motion between the satellite and the re-
ceiver. Doppler measurement is available in all GPS receivers as necessary to com-
pensate the Doppler shift to perform the pseudorange measurements. The Doppler
shift measurement has the advantage of being insensitive to atmospheric effects and
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accurate [90]. At the receiver antenna, the received frequency, fr, can be approxi-
mated by the classical Doppler equation as follows [70]:

fr = fe

(
1− vr • ulos

c

)
(2.17)

where fe is the satellite signal’s emission frequency, vr is the satellite-to-user relative
velocity vector, ulos is the unit vector pointing along the line of sight from the user
to the satellite, and c is the speed of propagation. • represents the dot product.
vr •ulos leads to the radical component of the relative velocity vector along the line
of sight to the satellite.
Let vs and vu denote the velocity of the satellite and of the user respectively, we
get:

vr = vs − vu (2.18)

The Doppler offset due to the relative motion is obtained form these relation as

4f = fr − fe = −fe ·
(vs − vu) • ulos

c
(2.19)

The Doppler measurement is biased by clock drifts. Suppose ˙dtu is the receiver clock
drift and ˙dts the satellite clock drift. Let denote δf the bias on the Doppler shift
due to the clocks drifts:

δf = fe
( ˙dtu − ˙dts

)
(2.20)

4f = −fe ·
(vs − vu) • ulos

c
− δf (2.21)

Let ρ̇ denotes the Doppler measurement:

ρ̇ = −c · 4f
fe

(2.22)

This allows to write the Doppler measurement in a form similar to pseudorange:

ρ̇ = (vs − vu) • ulos + c
( ˙dtu − ˙dts

)
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At the GPS L1 frequency, the maximum Doppler frequency for a stationary user
on the Earth is approximately 4 kHz, corresponding to a maximum line-of-sight
velocity of approximately 800 m/s.
Since the satellite clock drift is estimated by the control segment and can be recon-
structed from the broadcast navigation message, the corrected Doppler shift ρ̇c is
presented as follows:

ρ̇c = ρ̇− c · ˆ̇dts

ρ̇c = (vs − vu) • ulos + c · ˙dtu (2.23)

If we take now into consideration the variation of the pseudorange error εpr, equation
(2.23) becomes:

ρ̇c = (vs − vu) • ulos + c · ˙dtu + ˙εpr + βd (2.24)

where βd is the measurement noise.

2.4.2.5 GPS position fixes

By convention, the receiver provides positions corresponding to its antenna. In the
early 1980s, the National Marine Electronics Association (NMEA) developed the
NMEA 0183 standard for an interface standard to permit reliable data communica-
tion among electronic marine instruments [76]. This standard is adopted by most
GPS manufacturers. The data includes the complete PVT (position, velocity, time)
solution computed by the GPS receiver. Every GPS fix (latitude, longitude and
altitude) is converted in the working frame. If the GPS antenna is located at point
M (see Figure 2.8), we have:

{
xGPS = x
yGPS = y

(2.25)

In practice, the antenna is often translated with a lever arm (see Figure 2.8).
The homogeneous matrix expressing the frame M in the local frame is:

OTM =

 cosψ − sinψ x
sinψ cosψ y

0 0 1


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Figure 2.8: GPS antenna coordinates

The antenna position is the body frame is:

Mg =

 tx
ty
1


The antenna position in the local frame is:

OG = OTM .
Mg

Which gives:

{
xGPS = cosψ · tx − sinψ · ty + x
yGPS = sinψ · tx + cosψ · ty + y

(2.26)

For a low-cost GPS receiver operating in standalone mode, only L1 frequency C/A
code measurements are available to measure pseudoranges. They provide positioning
service with several meters accuracy. In order to improve accuracy, differential
technique is often used.

2.4.3 Differential GPS

Differential GPS (DGPS) is an enhancement to GPS that provides improved po-
sitioning or timing performance. It uses one or a network of fixed, ground-based
reference stations whose positions are accurately known. Each station is equipped
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with at least one GPS receiver, and broadcast the difference between its GPS obser-
vations and internally computed observations. The user’s receiver can correct their
GPS observations according to the broadcast data. The DGPS techniques may be
categorized in different ways: as absolute or relative differential positioning; as local
area, regional area, or wide area; and as code based or carrier based [70]. In this
thesis, we refer to DGPS as code based.
The GPS error sources discussed in section 2.4.2 are highly correlated over space and
time. The underlying premise of DGPS is that any two receivers that are relatively
close together will experience similar errors. Satellite clock errors vary slowly with
time and it is regardless of the location of the user. The pseudorange error, induced
by broadcast ephemeris, depends the LOS between the satellite and the receiver.
The LOSs of different receivers in close proximity to the same satellite are very
similar. Therefore, the difference in pseudorange errors of close receivers is very
small. In addition, the broadcast ephemeris errors change very slowly over time.
A similar system that transmits corrections from orbiting satellites instead of ground-
based transmitters is called a Wide-Area DGPS (WADGPS) or Satellite Based
Augmentation System (SBAS). Such systems use accurately-surveyed monitoring
stations to produce differential error corrections and integrity messages which are
broadcast to the users using geostationary earth orbiting satellites. Various SBASs
are implemented, such as the Wide Area Aviation System (WAAS) operated by
the United States Federal Aviation Administration and the European Geostation-
ary Navigation Overlay Service (EGNOS) operated by European Satellite Services
Provider. SBASs reach more users but ground-based systems enable quicker message
transmission and more accurate differential corrections.
By the early 1990s, researchers had shown that is was possible to improve on the
accuracy of DGPS by transmitting carrier-phase data to user receivers. This tech-
nique permits real-time highly accurate positioning even if the receivers are moving,
thus is named real-time kinematic (RTK).

2.4.4 RTK-GPS

RTK-GPS is a differential GPS technique used to enhance positioning performance.
Its origin dates back to the mid-1990s. It uses measurements of the phase of the
signal’s carrier wave, and relies on a single reference station or interpolated virtual
station to provide real-time corrections, providing up to centimeter-level accuracy.
The key feature enabling the high accuracy afforded by RTK operation is the ability
to determine the carrier-phase integer ambiguities while the user’s receiver is in
motion.
A RTK base station covers a service area spreading about 10 or 20 kilometers. The
systematic errors grows with the distance between the base station and the user’s
receiver (baseline length). In [125], virtual reference stations (VRS) simulate a local
reference station nearby the user receiver. It allows a more precise modeling of
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distance-dependent systematic errors and performing RTK positioning in reference
station networks with distances of up to 40 km. In 1985, the Radio Technical
Commission for Maritime Services (RTCM) suggested a standard format for coding
and transmitting such correction, i.e., the RTCM format, which remains the mostly
widely used.
In RTK applications, a discontinuity of the integer number of cycles may occur
because of GPS signals blockage, communications outages or constellation changes.
Consequently, the integer counter is reinitialized. The speed with which ambiguities
can be fixed again depends on several factors including the number of satellites
tracked, satellite-receiver geometry, use of pseudorange data in addition to carrier
phase, observation noise, and use of dual-frequency observations [77]. Under good
conditions, fix times can be shorter than one minute and optimally, less than 10
seconds.
As one of the most accurate positioning technologies, the RTK GNSS system is
employed as ground truth system in this thesis.

2.4.5 Precise point positioning

Precise point positioning (PPP) uses ambiguous carrier-phase measurements but
only from the user’s receiver. It needs highly accurate satellite orbit and clock in-
formation such as that provided by the international GNSS Service. PPP is able
to provide few centimeter-level accuracy in static mode and decimeter-level accu-
racy in kinematic mode. The convergence period required from a cold start to a
decimeter-level position solution, is typically about 30 minutes under normal condi-
tions. There is also the need to have uninterrupted GNSS signal availability for PPP.
Loss of tracking lock on a minimum number of satellites requires processing filter
reinitialization. The results are poorer than decimeter-level in accuracy until filter
reconvergence. PPP is a viable option wherever accurate positioning is required
and station infrastructure is not available but open sky conditions of visibility are
required in practice.

2.5 Digital maps

2.5.1 Enhanced maps for autonomous driving

Most car navigation maps represent roads with polylines which are defined by a
series of points and connected by segments. OpenStreetMap (OSM) is a typical
representative. There are three basic primitives in its data model: nodes, ways and
relations [17]. Nodes are points in space. A node can be used as a junction between
two ways or just a change in direction of a way. Ways are ordered list of nodes. They
can describe linear features such as roads and waterways. They can also be closed
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(a) Emap of the same area(b) Emap of the test site superimposed on the
Google Maps image of the area

Figure 2.9: Enhanced lane-level map. Source: [19]

to form areas such as buildings. Relations are used to model features that can’t be
described using a single node or way such as branching roads, long distance routes
or turn restrictions at junctions. Those typical car navigation maps provide mostly
topological information but with too limited geometric information and accuracy
that are not enough for lane-level navigation.
Bétaille et al. suggested an enhanced map model which provides a comprehensive
description of the road [19]. Each carriageway and each lane are described (cf. Figure
2.9a). Clothoids are exploited to follow the shape of the lane centerline. The authors
removed the crossroads considering they allow too many possible trajectories. In
addition to the geometry description, every road lane is topologically connected
to the rest of lanes. The proposed map model is applied in [122] for lane-level
navigation.
At the DARPA Urban Challenge final event, teams were provided a map in Route
Network Definition File (RNDF) format [35]. With this format, roads are split
into segments comprising one or more lanes. The lanes are approximated by a set of
waypoints as well as an optional width parameter. Some of the waypoints are labeled
as entry or exit waypoints. In addition to lanes, zones are defined to represent a
freely driveable area approximated by a bounding polygon. Figure 2.10 shows a
scenario of RNDF map. As we have mentioned, the map is not only useful for path
planning but also helps in environment perception. Huang et al. propose a multi-
sensor lane finding system in the context of DARPA Urban Challenge. The RNDF
was treated as a strong prior on the type and number of lanes, and a weak prior on
their position and geometry. The lane detection and tracking system guided their
vehicle through a 90 km course at speeds up to 40 km/h as reported in [58].
RNDF was created specifically for the artificial road network for Urban Challenge.
It was enhanced to model real world road networks in [34]. The enhanced format
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Figure 2.10: A scenario of RNDF map. The yellow, red and blue dots that create the
polygonal zone are perimeter points. Some of which are also entry and exit points to
adjacent segments. Connections between lanes are thereby represented. The dotted line is
a possible travel path. According to [35].

is called RNDFGraph. The authors claimed to have tested the map in autonomous
driving for hundreds of kilometers under real traffic conditions.

Recently Bender et al. presented lanelets [16] as a map format for autonomous vehi-
cles. A lanelet describes a lane segment which is characterized by its left and right
bound 2.11. The bounds are polylines and therefore allow for an approximation of
lane geometries. Bidirectional lanes are modeled as two lanelets and shared bounds
are represented by just one way element. Traffic rules like merge and cross behav-
ior are introduced on lanelets. The proposed map was employed for autonomous
driving on the 104 km long Bertha Benz Memorial Route in 2013 [134]. About two
thousand lanelets were annotated manually to map the test route.

In addition to the topology and geometry information in the navigation map for
autonomous vehicle, physical property of the road surface such as reflectivity is also
proposed to be mapped. In [82], the resulting map is an overhead image of the road
surface, where the image brightness corresponds to the infrared reflectivity. The
map is a 2D grid which assigns to each x-y location in the environment an infrared
reflectivity value. [124] stores location-tagged images as a map database. This map
is used to perform visual localization which means identifying the location of a query
image by comparison with images in the map.

In conclusion, we refer to maps for ARV of two types:

• Road network map which uses the waypoints of road and lane to define the
metric and topological relationships of the road network. Traffic rules are also
assigned to each road and lane.
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Figure 2.11: This image highlights a single lanelet. The roles of the bounds specify the
driving direction. Black/green/red dots, bounds and lanelets correspond to nodes, ways,
and relations defined in OSM respectively. The authors propose to use JOSM (an OSM
editor) [17] to create and edit the lanelet map. The image is according to [35].

• Environment map which is mainly feature-based such as maps of lane marking,
traffic sign and road surface reflecticity.

Recently, the generation of enhanced maps has achieved significant progress. In the
following, some mapping techniques are briefly introduced.

2.5.2 Mapping techniques for enhanced maps

Nowadays, the main method for building a detailed map is mobile mapping. Mobile
mapping is the process of collecting geospatial data from a vehicle, typically equipped
with a range of video cameras, radars, Lidar or any number of remote sensing
systems. The mobile vehicle is accurately localized mainly using a high performance
localization system (i.e. RTK-GPS coupled with IMU and vehicle odometry). Post
processing to refine the mobile mapping platform’s trajectory is often needed. All
sensors data are time-stamped and fused to georeferencing the road features such as
lane markings and traffic signs.

The enhanced map in [19] is built by a mobile mapping method. The equipped
vehicle is localized at decimeter-level by post processing and needs to drive as close
as possible to the lane centerlines. Later approaches resort to vision sensors and
coarse prior map to simplify the mapping process [?][54]. Vision sensors are used
to capture road features, such as lane markings. All roads have different types
of lane markings which are painted in a symmetrical manner and follow national
standards [3]. Lane markings have similar properties with lane centerlines. They
can be simplified to polylines or clothoids having a limited number of shape points.
The vehicle doesn’t need to follow the centerline of the road during the mobile
mapping of the lane markings. Coarse prior maps, such as Google Maps (Figure
2.9b) and OSM, provide strong priors on the existence of roads and intersections.
[?] proposes to use OSM and accurately mobile mapped lane markings with Lidar
to generate lane-level maps. Similarly, [54] exploits the road network defined in
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Figure 2.12: An example of the aerial image and the corresponding feature (lane marking)
map used in [101]. The aerial images have a resolution of 10 cm per pixel. The resulting
map is 2-dimensional. All detected lane markings are assumed to lie in one ground plane.

OSM to generate road orthographic images and a lane-level map with conventional
low-cost automotive sensors. Particularly, they proposed a method for building the
lane graph in the intersections according to the traffic rules. Both approaches are
automatic.

Mobile mapping for large areas is very time-consuming. An alternative is the use of
aerial images and visual tools to obtain the mapping points. [102] describes a method
of automated feature map generation from aerial images. Figure 2.12 displays the
aerial image and the generated lane marking map. This map was used for vehicle
localization and most of the absolute position errors are within 1 m as reported in
[101].

A new trend of mapping is crowdsourcing. OpenStreetMap is probably the most
prominent crowdsourcing project for geospatial data based on the ideas of the open
source initiative. It has grown to over 2 million registered users who collect data
using GPS devices, manual survey, aerial photography and other free sources [97].
However, it is effective mainly for building maps of road network. As automobile’s
sensing ability increases, crowdsourcing sensory data from customer road vehicles is
a very promising low-cost solution to build enhanced maps for autonomous driving
at world-wide scale [116].
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2.5.3 Map matching

The vehicle is related to the maps through a map matching process. Considering
the different kinds of maps, we classify the map matching in the literature into two
categories as follows.

Map matching in car navigation system for human drivers In this context, the
general purpose of a map matching algorithm is to identify the correct road segment
on which the vehicle is traveling and to determine the vehicle location on that seg-
ment [104]. Usually, determining which road the vehicle is traveling on is enough for
the path planning task of the navigation system. Since the direct overlay of posi-
tional data doesn’t reconcile with a digital map, advanced map matching algorithms
have been developed using different techniques such as topological analysis of spatial
road network data, probabilistic theory, Kalman filter [72], fuzzy logic [103], belief
theory [91] and interval analysis [94]. Topological reasoning and a weighting scheme
are performed to match a position with a road segment. The weighting scheme usu-
ally relies on proximity of orientation and distance. These methods share the same
idea, i.e., projecting the vehicle position onto the centerline of the roads or the lanes.
The position is often provided by a GNSS sensor or coupled with a dead reckoning
system. Those algorithms mainly deal with the road ambiguity problems in at cross
roads. The road map accuracy dominates the positioning accuracy. Therefore, map
matching can make an estimation of the positioning bias (even if the map has an
overall shift, the degraded accuracy will not influence the route guidance too much).

Map matching in the context of robotics In this context, a vision sensor creates
a local map of the surrounding environment. Then the local map is correlated with
the global feature map to localize the vehicle. This strategy has been often used
in indoor positioning [123][10], since there is no GNSS signal. The correlation is
also made by a map matching procedure. When used in outdoor localization for
autonomous vehicles, this matching process is usually performed using the iterative
closest point (ICP) algorithm [18][133][128]. An initial estimate of the relative pose
is often required [82][101], in order to prevent the result from converging to a local
minimum. In this thesis, we refer to the map matching in this context as data
association to distinguish it with the map matching in car navigation system for a
human driver. For autonomous vehicle, the data association is usually performed to
estimate the vehicle pose in a specific lane.

2.5.4 Lane marking map used in this thesis

The lane markings of the test area have been surveyed by Viametris 4 which is a
French company providing mobile mapping solutions. The mobile mapping system

4http://www.viametris.com/
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␣
Figure 2.13: Mobile mapping platform utilized by Viametris

is equipped with a RIEGL VQ450 lidar with millimeter-level accuracy. The mobile
mapping platform (Figure 2.13) itself is localized using post-processed kinematic
(PPK). The absolute error of the collected lane marking data is estimated to be
5-10cm.
The lane markings are stored in a map which is managed as a geographical database
with the open source SpatiaLite library. SpatiaLite extends the SQLite core to sup-
port spatial SQL capabilities. The map database can be managed with the Quantum
GIS (QGIS) software which is a cross-platform free and open-source desktop geo-
graphic information system (GIS) application that provides data viewing, editing
and analysis. As shown in Figure 2.14, the map contains three main layers as follows:

• links. This layer contains the lane centerlines (green polylines). These are de-
scribed in terms of connectivity by a set of nodes (red points) and in geometry
by a set of shape points (green points).

• points of interest. These points or areas represent every road contextual static
features (yellow areas). They can be for example pedestrian crossings, traffic
signs, bumpers, battery charging areas and driver pick-up points.

• link border. This map layer contains the road lane markings (white segments).
The types of the lane markings are also defined in the map. Table 2.1 lists the lane
marking types. Figure 2.15 shows the specifications of dashed markings in France.
In order to facilitate the map matching process, another layer is added to the map:
a road layer. This layer contains the carriageway centerlines expressed by a set of
polylines which are also described in terms of connectivity by a set of nodes and
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Figure 2.14: The lane marking map with QGIS interface

type solid dashed pavement barrier otherT0 T1 T’1 T2 T’2 T3 T’3 T4
index 1 2 3 4 5 6 7 8 9 10 11-15

Table 2.1: Lane marking types in the map

Figure 2.15: Types of longitudinal dashed markings on pavements in France
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in geometry by a set of shape points as the links. For each carriageway, denoted
Ri with i = 1, 2, ..., nr (nr being the total number of roads), the number of lanes
and links contained in this carriageway is defined. The road layer has been added
manually using QGIS.
The map structure used in this thesis is illustrated in Figure 2.16. The links related
to each carriageway are found by sampling the road polyline. The lane markings
(link borders) on both sides are spatially related to each lane polyline (link).
There are two main purposes of defining the road layer. The first one is to facili-
tate the definition of a road-oriented frame (see section 2.2.2). The road-oriented
frame will be used in Chapter 4. The second purpose is to assist the definition of
topologically relations between lanes which are not defined in the original map. For
example, if the vehicle is initially localized in lane 1 of road m, when the positioning
uncertainty grows, the vehicle can be aware of that there is lane 2 which is spatially
adjacent to lane 1 and the vehicle could possibly change from lane 1 to lane 2. The
definition of this topological relation is realized by relating them to the same road
segment. This topological relation is used to monitor the ambiguities between lanes
in Chapter 6 when performing a multi-hypothesis lane-level localization. In addi-
tion, the lanes belonging to different carriageways inherit the topological relations
of roads. For example the vehicle on lane 1 of road m-1 is possible to travel to lane
1 or 2 of road m at the next moment. But it is not possible to travel directly to lane
1 or 2 of road m+1 even if the two lanes (links) are spatially very close.
Figure 2.17 shows the complete map expressed in the working frame RO. The blue,
green and white lines of the zoomed part represent respectively the carriageway
centerlines, the lane centerlines and the lane markings.

2.6 Lane detection camera

For an autonomous vehicle, the environment perceiving tasks can vary from basic
functions like lane marking detection, pedestrian and moving object recognition, to a
sophisticated high dimensional world representation for traffic scene understanding.
For example in [47], the authors proposed a probabilistic generative model to reason
with the 3D scene layout as well as the location and orientation of objects in the
scene. The scene topology, geometry and traffic activities are then inferred from
video sequences.
The involved sensing technologies for environment perception mainly consist of cam-
era, radar (radio detection and ranging), ultrasonic, and lidar (light detection and
ranging). Cameras are appealing sensors as they are cheap and readily available
in modern automobiles. Figure 2.18 displays four main application scenarios of
automotive cameras: front, rear, surround and interior view [15]. In April 2014,
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Figure 2.16: Relationships between different layers of the map. Roads are connected
through their common nodes. White lines are lane markings. Green lines represent the
lane centerlines. Blue lines are carriageway centerlines.

Figure 2.17: Map used in this research. The different layers are plotted on the right
image. The bounded areas in gray are buildings imported from OpenStreetMap to show the
urban condition of the navigation area. The visualization of the map is managed using
QGraphicsScene from the Qt library (http://www.qt.io/).
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(a) Front view with lane and object detection for
longitudinal control, lane keeping, collision miti-
gation, collision avoidance, etc. Image: [46].

(b) Rear view for parking aid and collision avoid-
ance

(c) Surround view for parking and maneuvering
aid. Image: [55]

(d) Interior view for driver drowsiness monitoring

Figure 2.18: Application areas of automotive cameras

the US Department of Transportation’s National High Traffic Safety Administra-
tion (NHTSA) issued a proposed rule to require all light vehicle to have rear view
cameras in the US by the year 2018.

Among those applications, lane detection is one the most important functions which
has been extensively studied for more than twenty years. An up-to-date survey of
lane detection can be found in [12]. Lane detection supports various applications
such as lane departure warning, lane keeping assist and lane centering in autonomous
driving systems. Lane detection is also vital for understanding the traffic context.
In [23], the lane detection and tracking system outputs vehicle position in the lane,
lane position on the road, number of lanes, lane marking type and road coordinates
in the image plane. The lane detection also helps in road sign recognition by offering
road coordinates cues. Those outputs are used to feed a traffic context interpretation
block which is important for vehicle’s path planning.
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Most of existing lane detection approaches follow a common strategy composed of
different stages: perception modality, feature extraction, and model fitting. One
important difficulty for a lane detection system is the rich set of conditions that
have to be taken care of, requiring development of many different algorithms and
sub-systems. According to [12], the main sources for condition diversity are:

• Lane and road appearance diversity: lane markings are typically 0.1 meter
wide with white or yellow color, but many other variants exist such as circular
reflectors, cat’s-eyes, lanes with special colors and with variable width.

• Image clarity issues: near vehicles can create severe occlusions. And shadows
may create misleading edges and texture on the road.

• Poor visibility conditions: the system should operate, or at least identify the
condition and lower its confidence, under rain, fog, haze and night conditions.
Each such condition requires another algorithmic treatment at some processing
level.

Vision based imaging takes a leading role in the task of lane and road detection.
According to [12], there are two main reasons. Firstly, visual data is certainly the
main modality in use when human drivers are involved. Therefore, lane markings
and road boundaries are designed so that a human driver is able to see them in all
driving conditions. Secondly, cameras currently are the cheapest and most robust
modality for automotive applications. Lidar can be used to detect host vehicle
pitch and road angles in order to improve image to world correspondence. The
major obvious drawback of the lidar modality is the relatively high cost of such
a sensor. The current high cost prevents such sensors from becoming wide-spread
commodities for automotive applications. Stereo imaging poses a greater processing
challenge compared to lidar system, with increased probability of errors. Radar
sensors are useful in rural areas for resolving road boundaries [85]. However, it lacks
the resolving power to observe lane marking [88].
One of the most basic systems supported by lane detection is lane departure warning
system (LDWS). The LDWS assists the driver by providing a warning that the
vehicle is about to depart the road lane. Usually, the LDWS uses a forward looking
video camera to detected lane markings of host lane (see Figure 2.19), and issue
auditory or visual warning to the driver to indicate lane departure. For LDWS
to reduce crashes, it must operate at a certain level of performance under varying
conditions.
For a LDWS, in order to be useful, the false alarm rate should be very low, as high
rates irritate drivers and lead to system rejection. The exact amount of false alarms
acceptable by drivers is still a subject for research. Some available systems report few
false alarms per hour. For closed-loop autonomous driving features, errors should
be even several orders of magnitude lower. The robustness of the state-of-the-art
processing algorithms is still far from satisfactory and much further development is
required. Current vision based algorithm call for the use of many assumptions on
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Figure 2.19: LDWS camera utilized in this thesis. The camera is forward looking and
located behind the windscreen.

road and lane nature and lack in adaptive power compared to the average human
driver.

2.6.1 Observation model

The LDWS module detects lane boundaries, finds the road curvature, measures
position of the vehicle relative to the lanes and provides indications of unintentional
deviation from the roadway in the form of an audible rumble strip sound. The
system can detect various types of lane markings: solid, dashed. In the absence
of lane markings, the system can utilize road edges and curbs. Figure 2.20 shows
a two-lane scene, the vehicle is in the right lane. We see that the LDWS camera
used can detect and box up the pedestrians, vehicles, especially the lane markings
on both sides which are expressed by the green lines. It is important to note that
the camera used in this thesis only detects the host lane.
Lane markings are fitted with three different models: linear model, parabolic model,
and a cubic model. Take the cubic model as an example. The lane marking equation
in the camera coordinate system can be expressed by:

y = C3 · x3 + C2 · x2 + C1 · x+ C0 (2.27)

Table 2.2 displays the lane marking attributes measured by the lane detection cam-
era.

• Ctype consists of unknown, invalid, none, solid, dashed, botts’ dots, road edge
and double.

42



2.6 Lane detection camera

Figure 2.20: Illustrative scenario of lane marking detection at Compiègne

Parameter name Definition
Ctype Lane marking type
Cquality Quality of the measurement
Cdegree Model degree
C0 Position parameter
C1 Heading angle parameter
C2 Curvature parameter
C3 Curvature derivative parameter

Table 2.2: Typical lanes marking attributes

• Cquality indicates the quality of the lane marking detection, Cquality ∈ (1, 2, 3) .
• C0 is the physical distance between lane mark and camera along the lateral

direction at x = 0 (Figure 2.2). The camera extrapolate C0 from the lane
marking in its field of view.

• C1 is the heading angle of the detected lane marking in the camera frame at
x = 0.

• C2 is the curvature of the fitted lane marking at x = 0. C3 is the lane curvature
derivative at x = 0.

Since the lane marking map is represented here by polylines, the parameters that
are considered for vehicle localization are the lateral distance C0 and the heading
C1 (see Figure 2.2). Let us establish the observation model between the camera
measurement and the pose vector q.
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2.6.1.1 Camera distance observation model

In Figure 2.2, let L denote the lane marking detection located at ordinate C0 in RC .
The homogeneous coordinates of point L are CL = [0, C0, 1]T . OL =O TM ·MTC ·C L
are the homogeneous coordinates of point L in frame RO:

OL =

 P x · cosψ + C0 · sinψ + x
P x · sinψ − C0 · cosψ + y

1

 (2.28)

where Px is a translation from point M to the bumper.
With equation (2.28), we can directly get the Cartesian coordinates (xL, yL) of L in
RO: [

xL
yL

]
=
[
Px · cosψ + C0 · sinψ + x
Px · sinψ − C0 · cosψ + y

]
(2.29)

In Figure 2.2, [AB] represents the detected lane marking segment. It is extracted
from the map by data association process. The coordinates of point A and B are
(xA, yA) and (xB, yB) in RO. Vector V = (xAB, yAB)T is defined with xAB = xB−xA
and yAB = yB − yA. Point L on segment [AB] meets:{

xL = xA + λ · xAB
yL = yA + λ · yAB

(2.30)

Plugging equation (2.29) into equation(2.30), one can get:

{
Px · cosψ + C0 · sinψ + x = xA + λ · xAB
Px · sinψ − C0 · cosψ + y = yA + λ · yAB

(2.31)

In order to derive the camera observation model, different cases arise.
When xAB · yAB 6= 0, we get

P x · cosψ + C0 · sinψ + x− xA
xAB

= P x · sinψ − C0 · cosψ + y − yA
yAB

Since xAB · cosψ + yAB · sinψ 6= 0 (the detected line is not perpendicular to the
vehicle), we can derive

C0 = (P x · sinψ + y − yA) · xAB − (P x · cosψ + x− xA) · yAB
xAB · cosψ + yAB · sinψ

(2.32)
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When xAB = 0, we get C0 = Px·cosψ+x−xA

−sinψ . When yAB = 0, we can get C0 =
Px·sinψ+y−yA

cosψ
. Equation (2.32) holds in both cases.

2.6.1.2 Camera heading observation model

In Figure 2.2, let α be the slope angle of segment [AB], with α ∈ [−π/2, π/2]. We
get:

C1 =
{
α− ψ, |α− ψ| ≤ π

2
α− ψ + π · sign (ψ) , |α− ψ| > π

2
(2.33)

with ψ ∈ [−π, π].

2.6.2 Sensitivity analysis

In practice, the camera is attached to the body of the vehicle which is itself a
suspended mass. So, the 2D-world hypothesis can be easily violated. However,
when a camera is correctly installed behind the windshield, the camera roll and
yaw angles are very small and can be easily compensated by calibration and image
warping. But when the vehicle crosses a speed bumper, both the altitude and the
tilt angle of the camera frame undergo changes (see Figure 2.21). The same issue
appears when the slope of the road changes or when the vehicle accelerates or breaks.
Moreover, the height of the camera also depends on the load of the vehicle. Finally,
some calibration errors related to the camera intrinsic parameters may occur.

xC

zC

ȕ

h

įh

C

Figure 2.21: Parameter variation while climbing a speed bumper

So, it is crucial to evaluate the sensitivity of the parameters involved in the devel-
opment of lane marking measures particularly the tilt angle and the height with
respect to the road.
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2.6.2.1 Nominal model with the camera parallel to the road

In the camera frame RC , the equation of a detected lane marking can be written as
(by considering a first order Taylor’s expansion of a clothoid in the camera frame
[73]): {

y = C1 · x+ C0
z = h

(2.34)

Where C0 and C1 are respectively the lateral distance and the heading of the de-
tected lane marking and h is the height of the camera w.r.t. the road.
In the image plane, using perspective projection, we have:

{
u = f · y

x
+ u0

v = f · z
x

+ v0
(2.35)

with f the focal length, and [u0, v0]T the coordinates of the principal point.
By plugging equation (2.34) into equation (2.35), we get:

u− u0

f
= C1 + C0

x
(2.36)

and

x = h · f
v − v0

(2.37)

By plugging equation (2.36) into equation (2.37), we get:

u− C0

h
· v + C0 · v0

h
− u0 − C1 · f = 0 (2.38)

The equation of the detected lane marking [73][28], expressed in image plane is:

ap · u+ bp · v + cp = 0 (2.39)

where ap, bp and cp are the line coefficients. By comparing equation (2.38) and
equation (2.39), we get:

 C0 = −h·bp

ap

C1 = −ap·u0+bp·v0+cp

ap·f
(2.40)
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2.6 Lane detection camera

2.6.2.2 The camera is tilted downward

Let suppose that the camera is tilted downward (or upward) with an angle β. In
the camera frame RC , the equation of a detected lane marking can be written as:{

y = C1 · (x · cosβ − z · sinβ) + C0
x · sinβ + z · cosβ = h

(2.41)

We get:

 C0 = −h·bp·f+(ap·u0+bp·v0+cp−f ·bp·tanβ)·h·sinβ
ap·f ·cosβ

C1 = −ap·u0+bp·v0+cp−f ·bp·tanβ
ap·f

(2.42)

2.6.2.3 Sensitivity analysis

In this subsection, β, f , h , C0 and C1 stand for the nominal values of these five
parameters, and β + δβ, f + δf , h + δh , C0 + δC0 and C1 + δC1 are their true
values. We suppose that the range of C1 is [−0.3, 0.3] rad and the range of C0 is
[−127, 128] meters. Let study the sensitivity to β, f and h.

• Sensitivity to β


δC0
C0

= ap·C1·[tan(β+δβ)−tanβ]−bp·[sec(β+δβ)−sec(β)]
ap·C1·tanβ−bp·secβ

δC1
C1

= bp·[tan(β+δβ)−tanβ]
apC1

(2.43)

Let suppose that a straight line in the image plane meets: bp

ap
= −1. In order to see

the sensitivity clearly, an example is given in Table 2.3.

δβ
β

0.4 1 2∣∣∣ δC0
C0

∣∣∣ 0.014 0.037 0.083∣∣∣ δC1
C1

∣∣∣ 0.118 0.296 0.602
Table 2.3: Sensitivity analysis with h = 1.5m, C1 = 0.3 rad, β = 5 degree

As shown by Table 2.3, C1 is very sensitive to an error in β, but C0 is not.
• Sensitivity to f


δC0
C0

= bp·tanβ·sinβ−C1·ap

bp−C1·ap·sinβ · δf
f+δf

δC1
C1

= bp·tanβ−ap·C1
ap·C1

· δf
f+δf

(2.44)
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Taking the relationship bp

ap
= −1, and the ranges of C0 and β into consideration,

one can easily find that C0 is not sensitive to an error in f , but C1 could be very
sensitive to it.

• Sensitivity to h{
δC0
C0

= − δh
h

δC1
C1

= 0 (2.45)

In this case, the error on parameter C0 is directly related to the height variation.
As a conclusion:

• a C0 error is proportional to an error in h but δh has a variation limited to
few centimeters in normal driving conditions;

• C1 is sensitive to errors on f and β. The influence of the intrinsic parameters
of the camera is limited but the tilt angle is a crucial parameter even in normal
driving conditions.

So, we believe that C0 is an accurate measure while C1 should be used with caution.
A way to exploit it accurately could be to use an IMU providing an estimate of β or
to estimate vanishing points using computer vision[14] which are not in the scope
of this thesis.

2.7 Experimental setup and collected data

2.7.1 Experimental setup

The experimental vehicles used to evaluate the developed algorithm are equipped
Renault Fluence ZE as depicted in Figure 1.1. Figure 1.1a presents the experimen-
tal vehicle IRIS of Heudiasyc laborotary. Figure 1.1b illustrates the experimental
vehicle of the PAMU project on a test road where environmental factors are more
controllable than on public roads. Both vehicles have been used to collect data for
validating the algorithms proposed in this thesis. This section presents the data
collected by the PAMU experimental vehicle. It was equipped with an IMU Oxford
RT3000 which provided ground truth data at 100Hz rate. A CAN-bus gateway was
used to access to the wheel speed sensors and the yaw rate gyro. The measured
speeds [vm, wm] from the CAN bus were available at 50Hz. A MobilEye EyeQ2
camera was installed behind the windscreen to detect the lane markings at 10Hz.
A low-cost u-blox 6T GPS receiver with a patch antenna was used. It provided
position measurements at 5Hz with raw data.
Outdoor experiments were carried out near Paris France in May 2013. Five passages
were performed on the same road. In two of them, the ground truth system failed
when passing through a challenging urban area. Therefore, only three of tests with
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Figure 2.22: Test scene and the reference trajectory (in red color) in the local ENU
frame. The start/end points and traveling direction are indicated by the tagged time.

validated ground truth are used to analyze the proposed methods in this thesis. The
first two tests were performed in the morning. The third in the afternoon.

The traveling distance for each test was about 2km. Taking the first test as an
example, Figure 2.22 depicts the experimental trajectory. The red line stands for
the ground truth. The boxes in gray are buildings. Blacks lines are mapped lane
markings.

The vehicle starts at t = 0s and stops at t = 327s. Between t = 80s and t = 140s,
the vehicle passes in a strong urban canyon of 300 meters and the u-blox receiver
suffers from multipath around t = 123s when the vehicle is traveling in an urban
canyon environment. Figure 2.23 displays several typical scenarios recorded by the
experimental vehicle.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.23: Scenarios recorded by a webcam mounted on the experimental vehicle. The
roads of the trials consist of two lanes with mainly dashed lane markings in the center
of the road and solid lane markings on both sides, as in (a). In (b), the vehicle passes
through a roundabout with rare lane marking feature. (c) shows a typical scenario of corner
turning, the lane marking detection always fails during these moments. (d) displays the
most challenging area for our experiments where multipath effect and camera failure happen
at the same time. In (e), the vehicle arrives at a fork where the camera fails. In (f), the
camera fails to detect the highly curved lane markings. Their positions in the map are
tagged in Figure 2.22.
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2.7.2 Dead reckoning sensors

Thanks to a CAN bus gateway, the DR sensors are those already embedded in the
ABS and ESP systems of the car (we have not added any IMU nor encoders). They
are sampled at 100 Hz.
Figure 2.24 shows the measured vehicle linear speed vm and yaw rate ωm of the
three tests. The maximum speed was about 8 m/s.

2.7.3 Data of L1-GPS

Figure 2.25a displays the satellites in view for the first two tests and figure 2.25b
for the third test. Clearly the GPS satellites geometries are quite different between
the morning and the afternoon.
Figures 2.26, 2.27 and 2.28 show the GPS positioning errors. The biggest horizontal
positioning error is more than 7m which happened in test 3 when the vehicle passed
through the challenging urban area.

2.7.4 Lane detections of the camera

Figure 2.29 gives the camera measurement C0. As the vehicle was travelling in
the center of the lane, C0 is typically around 1.5 m. Although the MobilEye’s
frequency is bigger than the u-blox GPS receiver, one can notice that the continuity
of the camera measurement is worse than GPS. The non-availability of the camera
measurement mainly occurs in highly curved areas, such as roundabouts and corners.
The camera measurement plays an important role in improving the localization per-
formance, so its measurement error is investigated here. Suppose the lane marking is
perfectly extracted from the image and the lane marking segment in the map is well
matched. The error sources are mainly caused by the violation of the assumption
that the camera is parallel with the road, calibration errors of camera parameter and
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Figure 2.24: Vehicle speed and yaw rate52



2.7 Experimental setup and collected data

EastWest

North

South

60o 30o 0o

Sat ID:2

Sat ID:5

Sat ID:7

Sat ID:8

Sat ID:9
Sat ID:10

Sat ID:13

Sat ID:28

Sat ID:4

Sat ID:26

(a) Satellites in view around 10 o’clock UTC in the
morning

EastWest

North

South

60o 30o 0o

Sat ID:9

Sat ID:12

Sat ID:15

Sat ID:17

Sat ID:18

Sat ID:22

Sat ID:28

Sat ID:26

Sat ID:24

(b) Satellites in view around 14 o’clock UTC in the
afternoon

Figure 2.25: Azimuth-Elevation plot of the tracked GPS satellites during the experiments
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Figure 2.26: GPS positioning errors in the ENU frame of test 1
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Figure 2.27: GPS positioning errors in the ENU frame of test 2
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Figure 2.28: GPS positioning errors in the ENU frame of test 3
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Figure 2.29: Camera’s C0 measurements with high quality (Cquality ≥ 2 )
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camera totalnone (2) solid (3) dashed (4) double (7)

map

solid 15 757 81 45 898
dashed 172 791 5243 0 6206
pavement 100 3090 244 66 3500
barrier 3 27 16 12 58
other 55 342 651 0 1048

Table 2.4: Camera detection of lane marking type with map reference

errors of the lane marking map. Here, the referenced pose estimated by the IMU
Oxford RT3000 is used to match the detected lane marking. The reference value of
C0 is calculated by substituting the pose and the parameters of the matched mark-
ing into equation (2.32). Errors of the C0 observation is shown in Figure 2.30. Its
distribution approximates quite well a zero mean distribution. The variance is less
than 0.05 m2.
Figure 2.31 gives the type of detected lane marking classified by the camera. The
number (2, 3, 4 and 7) which represents different lane marking type is defined in
Table 2.4. The vehicle traveled mostly on a two-lane roadway with dashed marking
in the center of the road and solid marking on both sides, so the left detection is
mainly dashed and the right detection is mainly solid.
The lane marking type detection is not a location based measurement, but it is
helpful to disambiguate in which lane the vehicle is, especially for a multilane road.
Table 2.4 shows the performance of the lane type detection where 11710 samples are
studied.

2.8 Conclusion

In this chapter, several technologies for estimating the vehicle localization have been
presented and discussed. In order to achieve a low-cost solution, we will consider the
data fusion problem of DR sensors with L1-GPS, a lane marking detection camera
and a lane marking map. A new camera observation model has been be presented
and we suggest to use only the lateral position information based on a sensitivity
analysis. Outdoor experiment results carried out with an experimental vehicle have
been presented. The camera measurement, coupled with the lane marking map,
has a better accuracy than L1-GPS. Therefore, it is possible to improve the over-
all localization performance when the system exploits the camera information. A
GPS receiver being a major component for vehicle navigation, we propose to use
it as much as possible. It provides different kind of information at different level
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Figure 2.30: Camera C0 measurement errors. The ground truth of C0 is calculated by
inserting the vehicle pose estimated by RTK-GPS into equation (2.32)
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Figure 2.31: Lane markings type provided by Mobileye camera. 2,3,4 and 7 represent
“none”, “solid”, “dashed”, “double” respectively. The types that Mobileye is able to detect
is listed in table 2.4
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2.8 Conclusion

depending on the way the data fusion is handled, such as position fixes or pseudor-
anges and Dopplers. Depending on at what level the data is exchanged between the
GPS receiver and other sensors, the localization system architectures are commonly
referred to as loosely coupled, tightly coupled and ultra tightly coupled. In the
following chapter, we starts by studying a loosely coupling scheme.
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Chapter 3

GNSS Map-aided Localization with a
Loosely Coupled Scheme
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3.1 Introduction

The estimation of the pose of the vehicle in the working frame RO with enough
accuracy, availability and reliability for autonomous navigation needs the data fu-
sion of several sources of information particularly when using low cost sensors. The
problem that is addressed in this chapter is a loosely coupling data fusion scheme
which refers to the fusion of L1-GNSS position fixes with other sensors as illustrated
by Figure 3.1 (DR sensors, a forward looking camera and georeferenced lane mark-
ings). In chapter 2, the measurements of the DR sensors (gyro and wheel speed
sensors), GNSS and lane detection camera have been studied and their correspond-
ing observation models linking the measurements with the vehicle state have been
developed.
GNSS/DR data fusion has been widely studied in vehicle navigation area [22][13][45][117].
GNSS and DR systems are complementary in many aspects. DR systems are ac-
curate in short-term if they are well calibrated, but the estimation error grows
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Figure 3.1: Loosely coupled scheme

unboundedly over time. GNSS is worldwide and provides information that can
compensate the drift. However, GNSS signals are subject to outages and errors.
DR systems provide data with continuity at a high frequency for highly dynamic
vehicles. They can bridge short-term GNSS outages.
A loosely coupled GNSS/DR system is also known as cascaded filtering which means
that the estimates of the GNSS receiver and the unfiltered data of DR sensors are
fed into the navigation filter [13]. GNSS/DR sensor fusion is a nonlinear filtering
problem. The integration is often performed using Extended Kalman filtering (EKF)
[9] or Unscented Kalman Filtering (UKF) [67]. Generally, both EKF and UKF work
well for the integration of typical MEMS-based dead reckoning with GNSS and have
similar performance [92]. UKF is more robust to INS calibration errors and large
initialization errors [86][32][64] and the EKF is more computationally efficient [115].
This loosely coupled option is often chosen because of its simplicity as position fixes
are available in any standard GNSS unit. Although GNSS receiver manufacturers
provide more and more reliable solutions with the development of satellite technology
with different constellations, for a standalone solution (i.e. a solution that doesn’t
exploit other sensors or differential corrections) it is still hard to compensate for the
errors mentioned in chapter 2. The remaining errors after having applied correction
models make that L1-GNSS is not accurate enough to localize a vehicle within a
lane. In addition, prediction mechanisms in case of outages and multipath can induce
large errors which make GNSS receivers alone unavailable for the navigation task.
Recently, the integration of highly detailed maps coupled with camera is becoming
increasingly popular. Thanks to this configuration, it is possible to model GNSS
errors and to compensate them in the filter. Since we use L1-GNSS technology, this
chapter will therefore pay attention to the modeling of L1-GNSS errors.
In section 3.2, previous work related to loosely coupling GNSS with DR, camera and
digital map is surveyed. Section 3.3 reminds several useful mathematical concepts
for describing random sensor errors. The localization solver is realized by an EKF
which takes sensor errors into consideration by augmenting the state space. Thus
section 3.5 reminds Kalman filtering with shaping filter. Modeling of GNSS errors is
discussed in section 3.4. Outdoor experiments are described in section 2.7. Section
3.6 explains the practical implementation of the EKF. Section 3.7 presents the results
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and section 3.8 draws conclusion of the loosely coupled data fusion strategy.

3.2 Related work

Detailed and highly accurate maps provide prior information to the navigation tasks
and give the possibility to get a low cost self-driving capability in terms of on-board
hardware equipment. With this in mind, this section investigates hereafter several
earlier and recent approaches which use accurate digital maps coupled with camera
measurements to improve the positioning performance.
When using GNSS as a sensor in a loosely coupled fusion architecture, it provides
position and velocity information. Some simple GNSS/DR coupling solutions model
the errors of GNSS position fixes as white noises. In reality, a GNSS receiver is
affected by systematic noise that is caused by atmospheric effects which tend to
change slowly with time. In addition, the time-correlation of the errors in position
are made worse by the effects of the filter implemented in the receiver. If these
correlations are not considered, it can cause a strong degradation of the data fusion
filter. The random part of GNSS fixes can be modeled by some random process.
The modeling and estimation of GNSS position fix biases have been discussed in
many publications as [75][29][89] for instance.
A GNSS fix observation is commonly expressed as:{

xGNSS = x+ εx + βx
yGNSS = y + εy + βy

(3.1)

where εx and εy are biases on the x and y axes in the ENU frame. βx and βy are
white noises.
Now let us consider the measurements done by cameras. A camera observation
model is in general a non linear expression:

ycam = gcam (x, l) + βcam (3.2)

where ycam is the measurement vector. x is the state vector of the vehicle. l is the
vector of the lane marking parameters extracted from the digital map. βcam is a
measurement noise that is supposed centered if the camera is well calibrated. The
observation function gcam (·) changes a lot depending on the approach. The obser-
vation model of the camera/map measurement used in this thesis has been already
presented in chapter 2. It can take explicitly into account the camera position in
the body frame.
Different map models have been considered in the literature. In [75], a map made
of a grid of rectangular facets representing the roadsides is used. For each facet, its
origin, orientation, length and width are defined in the local navigation frame. By

63



Chapter 3 GNSS Map-aided Localization with a Loosely Coupled Scheme

using a front view camera, an image processing algorithm is then implemented to give
precise lateral position and orientation of the vehicle with respect to the roadside. l
corresponds to the parameters of nearest facet. This work shows the possibility and
the advantage of integrating lane boundary information which refers often to white
lane marking detections. In [89], the map is modeled by GNSS waypoints designating
lane centers, stop lines and lane markings. Dashed, solid and unstructured lane types
are denoted for each lane marking. In this approach, ycam contains the perpendicular
distance of the camera from each of the lane boundaries, the camera heading with
respect to the lane, the lane width, the lane type and the distance to the stop
line. The authors use a particle filter to augment GNSS/DR solution with camera
measurements coupled with a surveyed map. They give a demonstration of the
stability of the localization solutions used to feedback the controller of a full-size
autonomous ground vehicle. Recently, more works with similar ideas but different
configurations have been carried out, such as in [66][52][79]. In [66], a front view
camera is used to detect lane markings and zebra lines which have been charted
in the map. In [52], two lateral cameras are used to provide an assessment of the
lateral distances between the vehicle and the ego-lane markings or borders. This
information is then coupled with an accurate digital map of the road markings.
However, the modeling of GNSS errors is not considered. Particularly, the authors
of [79] propose a localization method with GNSS/DR error estimation based on
lane detection of curved lane models. A longitudinal measurement from a curve
matching is proposed. The curved parameter of the lane ahead is fitted using the
waypoint map by supposing that the waypoints and the lane markings are parallel.
The fitted waypoint curve is then transformed into the vehicle frame. However, the
impact of the uncertainty of the estimated vehicle heading on this transformation
(which introduces errors on the longitudinal measurement) is not discussed.
In regard to the modeling of εx and εy, in [75] and [79], the GNSS fixes biases are
considered constant between two samples:{

εx,k = εx,k−1
εy,k = εy,k−1

(3.3)

The authors of [75] proposed a bias management strategy to decide whether the bias
has changed.
In [89][66], the GNSS biases are modeling as:

{
εx,k = e−dt/τx · εx,k−1 + νx,k−1
εy,k = e−dt/τy · εy,k−1 + νy,k−1

(3.4)

where τx and τy are the bias’s autocorrelation time constants. dt is the elapsed time.
νx and νy are zero-mean white noise processes. This modeling of GNSS biases was
first suggested in [13]. For a loosely coupled approach which takes the modeling
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of the biases into account, the vehicle dynamic equations should be augmented by
equation (3.3) or (3.4).

In the following, let us start with theories and techniques for modeling sensor errors.

3.3 Random processes for modeling sensor errors

Random processes can represent the evolution of the uncertainties of knowledge
about physical systems [50]. For a localization system, the uncertainties come from
two aspects: uncertainties in the vehicle dynamic processes and random errors of
observations made by sensors. For a GNSS/DR coupled system, the ability of the DR
system to bridge GNSS outages depends on the DR sensor quality. The errors can
be classified into deterministic and random errors. Deterministic errors (also known
as systematic) can be removed by calibration. Random errors are often modeled
using random processes such as random constant, random walk or autoregressive
process. This is common for inertial sensors [13][93] and GNSS [89].

In this section, an overview of different random processes for stochastic modeling of
sensor errors is presented. Let {bt, t ∈ T} be a random process. T may be discrete
or continuous. The stochastic process can be characterized by specifying the n-order
joint probability density function fn (·) of the random variables bt1 , . . . , btn :

fn (bt1 , . . . , btn) (3.5)

for any finite set {t1, . . . , tn} ∈ T [65].

When modeling a stochastic error using a random process or a signal, the process is
often assumed to be stationary, i.e. its statistical quantities are invariant over time.
The strict stationarity requires the joint density functions to be invariant to a time
translation τ :

fn (bt1 , . . . , btn) = fn (bt1+τ , . . . , btn+τ ) (3.6)

The process is strictly stationary of order k, if equation (3.6) holds for n ≤ k only.
The densities of a random process at the first and second order can answer many
important questions about the process. In practice, a less demanding form which
requires equation (3.6) holds for n ≤ 2 is often used. The random process under
this condition is called weakly stationary or covariance stationary. In the following
sections, we refer to stationary process as a covariance stationary one.
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3.3.1 Autocorrelation function

A stationary process can be completely defined by its autocorrelation function spec-
ifications which describes the general dependence of the data values at one time with
the values at other times [24]. Autocorrelation is the similarity between observations
as a function of the time lag between them. It is a mathematical tool for finding
repeating patterns such as the presence of a periodic signal obscured by noise. The
autocorrelation of bt is defined as:

R̄bb (t1, t2) = E [bt1 · bt2 ] (3.7)

where E [·] is the mathematical expectation operator. If the random signal is sta-
tionary, the expectation is not dependent on t. Therefore, equation (3.7) depends
only on the difference τ = t2 − t1 and the autocorrelation can be rewritten as:

R̄bb (τ) = E [bt · bt+τ ] (3.8)

where R̄bb (τ) is the autocorrelation function of bt, t an arbitrary time and τ the time
lag. Note that the autocorrelation function is the ensemble average of the product
of bt and bt+τ . If ergodicity applies, it is often easier to compute R̄bb (τ) as a time
average instead of an ensemble average. The autocorrelation function in the form
of time average, denoted Rbb (τ), is defined as:

Rbb (τ) =
ˆ ∞
−∞

bt · bt+τdt (3.9)

When dealing with discrete time signals, the autocorrelation sequence is computed
instead of the autocorrelation function. The autocorrelation sequence Rbb (m) is
defined as

Rbb (m) = mean

 ∞∑
k=−∞

bk · bk+m

 (3.10)

where k is the sampling sequence number and m is the sampling lag.

Equation (3.10) assumes an infinite data record for calculating the autocorrelation.
In practice, only a block of N signal samples is available which is only a segment
of the signal. If the assumption that the signal is stationary and ergodic holds, for
a block of N signal samples, the autocorrelation sequence expressed by equation
(3.10) can be replaced by the sample autocorrelation [98]. For a time series of bk,
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k = 0, 1, 2, 3, ..., N − 1, the sample autocorrelation R̂bb (m) can be estimated by:

R̂bb (m) = 1
N

N−1∑
k=0

bk · bk+m (3.11)

The value of the sample autocorrelation at lag m = 0 is given as:

R̂bb (0) = 1
N

N−1∑
k=0

b2
k = σ2

b + µ2
b (3.12)

where σb and µb are the standard deviation and mean value of b, respectively.

It is important to note that, if the random signal is not ergodic, it is necessary
to distinguish between the ensemble average autocorrelation function and the time
average version. If the autocorrelation function decreases rapidly with τ , the ran-
dom process changes rapidly with time. Conversely, if the autocorrelation function
decreases slowly with τ , the process is more predictable.

For stationary processes, there is the well known Wiener-Khinchine relation defined
as:

Sbb (jω) = F [Rbb (τ)] =
ˆ +∞

−∞
Rbb (τ) · e−jωτdτ (3.13)

where F [·] indicates Fourier transform. Sbb is called the power spectral density
(PSD) function of the random process. The PSD function of the discrete signal is

Sbb
(
ejω
)

=
∞∑

m=−∞
Rbb (m) · e−jωm (3.14)

The PSD describes how the power (or variance) of a time series of measurements is
distributed in the frequency domain. In turn, the autocorrelations are also deter-
mined, respectively, by the inverse Fourier transform of the PSD, such that

Rbb (τ) = 1
2π

ˆ +∞

−∞
Sbb (jω) · ejωτdω (3.15)

Rbb (m) = 1
2π

ˆ π

−π
Sbb

(
ejω
)
· ejωmdω (3.16)
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3.3.2 White noise

In signal processing, white noise is a stationary random signal with a constant
PSD. In discrete time, white noise is a discrete signal whose samples are regarded
as a sequence of serially uncorrelated random variables with zero mean and finite
variance. A white random sequence {wn, n = 1, 2, ...} is a Markov sequence for which
the probability density function p (·) respects:

p (wk|wl) = p (wk) (k > l) (3.17)

Denoting the white noise PSD amplitude by Aw, one gets:

Sww (jω) = Sww
(
ejω
)

= Aw (3.18)

The corresponding autocorrelation function for continuous and discrete white noise
signal are respectively:

Rww (τ) = Aw
2π

ˆ +∞

−∞
ejωτdω = Aw · δ (τ) (3.19)

Rww (m) = Aw
2π

ˆ π

−π
ejωmdω = Aw · δ (m) (3.20)

where δ (·) is the delta function (Dirac-delta function δ (τ) for continuous time and
unit impulse function δ (m) for discrete time) and is defined as:

δ (τ) =
{

0
∞

τ 6= 0
τ = 0 ;

ˆ ε

−ε
δ (τ) dτ = 1 ∀ε > 0 (3.21)

δ (m) =
{

0
1

m 6= 0
m = 0 (3.22)

The autocorrelation of a white noise process indicates zero correlation for all lag
values except at lag = 0 since it involves a δ function. Therefore, a white noise
process is called sometimes a pure random process. The autocorrelation function
and PSD of a white noise process are sketched in Figure 3.2.
Taking into account the above definition of the Dirac-delta function, the variance
of a continuous white noise process is infinite. This implies that such a process is
only a theoretical concept (the process is not physically realizable). However, white
noise can be used successfully to approximate some physical processes with respect
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Sww = Sww(0) = constantRww = Sww(0)δ(0) 

τ-τ ω-ω

Figure 3.2: Autocorrelation function and PSD of a white noise process

to the bandwidth of the system. Random signals can often be modeled as filtered
or shaped white noises. It means that one can filter a white noise source to achieve
a colored noise source that is correlated in the time domain and band-limited in the
frequency domain [129]. One can achieve other time-correlated random processes
by passing a white noise through shaping filters which are discussed as follows.

3.3.3 Autoregressive process

An autoregressive (AR) process is a representation of a special kind of random
process. The name autoregressive comes from the fact that each signal sample is
regressed on the previous values of itself. The AR process can be described using a
pole-zero transfer system (H (z)) as follows:

H (z) = O (z)
I (z) = β0

1 +∑p
n=1 anz

−n (3.23)

where I (z) is the z-transform of the input Ik, O (z) is the z-transform of the output
Ok. β2

0 represents the estimated variance of the white noise input to the AR model;
p is the AR order.
Applying the inverse z-transform to equation (3.23), the AR sequential process in
the time domain is given by:

Ok = −
p∑

n=1
anOk−n + β0Ik (3.24)

There are different methods to estimate the parameters fitting an AR model to the
input data. In [93], three different methods for the estimation of AR model pa-
rameters are investigated: the Yule-Walker method, the covariance method and the
Burg’s method. The Yule-Walker method determines first the sample autocorrela-
tion sequence of the input signal (centered GNSS residual errors in our case). Then,
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the AR model parameters are optimally computed by solving a set of linear normal
equations in a least-square sense. However, the Yule-Walker method performs ad-
equately only for very long data records [63] and it may introduce a large bias in
the estimated AR coefficients, since it does not guarantee a stable solution. The co-
variance method is similar to the Yule-Walker method in minimizing the prediction
error in the least-squares sense. Burg’s method was introduced to overcome most of
the drawbacks of the other modeling techniques by providing both stable and high
resolution, especially for short data records [25]. Burg’s method tries to make the
maximum use of the data by defining both a forward and a backward prediction
error terms. As we have a limited amount of data, the Burg’s method is adopted
here to estimate the AR coefficients and the variance of the input white noise of the
autoregressive process.

3.3.4 Random walk

The random walk process results when a random sequence is integrated. A random
walk took its name by analogy with a person walking with a fixed step length
(distance) in arbitrary directions. The differential equation is:

ḃt = w (3.25)

where w is a purely random (white) signal. The equivalent discrete process is:

bk+1 = bk + wk (3.26)

Thus, for a very large number of data samples, equation (3.26) is simply:

bk+1 =
k∑
i=1

wi (3.27)

Using equation (3.26), the mean of a random walk process is computed by:

µb = E [bk+1] = E

[
k∑
i=1

wi

]
=

k∑
i=1

E [wi] = 0 (3.28)

Taking into account that wi are uncorrelated sequences, the variance is computed
as:

σ2
b = E

[
b2
k+1

]
− µ2

b = E
[
b2
k+1

]
= E

( k∑
i=1

wi

)2 =
k∑
i=1

E
[
w2
i

]
= kσ2

w (3.29)
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Figure 3.3: Block diagrams of random constant and random walk processes. According
to [48]

Therefore, the random process is not stationary since its variance is changing linearly
with the number of samples and hence the characteristics of the autocorrelation
cannot be used to completely define the process. However, it can be considered
stationary within small time intervals [6].

3.3.5 Random constant

The random constant model is also called random bias. It is both constant over
time and unpredictable for any particular experiment [71]. In this case, the sensor
error bt is defined by the following differential equation:

ḃt = 0 (3.30)

The discrete form of the above equation is represented by the difference equation:

bk+1 = bk (3.31)

Substituting equation (3.31) into equation (3.11) results in:

Rbb (m) = E
[
b2
k

]
= Rbb (0) = constant (3.32)

In the physical world, very few sensor biases remain absolutely constant. They often
change slowly with time. A remedy is to insert some process noise into each of the
state variables [129]. Therefore, the random constant model is often used is the one
of the third diagram of Figure 3.3.
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Figure 3.4: Autocorrelation of three different sequences

3.4 GNSS bias modeling

Outdoor tests have been made to collect GNSS data (a mono-frequency u-blox 6T
receiver) for a vehicle driving in normal conditions. The GNSS errors are calcu-
lated in comparison to a ground truth system (see section 2.7) with centimeter-level
accuracy. Autocorrelations of 3 different sequences of the L1-GNSS receiver (1000
samples each at 5 Hz) are shown in figure 3.4. The mean value of the GNSS fix errors
is removed for each sequence. As the shape is clearly different from a Delta-Dirac at
zero, errors are colored. Moreover, for short correlation time (smaller than 30 sec-
onds), the different curves superimpose quite well which indicates a quite repeatable
behavior which can be modeled.

Therefore, the correlation of the L1-GNSS error can be modeled by a zero-mean
white noise passing through a shaping filter to yield an output statistically similar to
the error under consideration. Let [εx, εy]T denotes the vector of GNSS errors. The
problem is to find a structure for the filter and then to estimate its parameters and
the variance of the driving noise. Moreover, GNSS errors are quite non-stationary
(even if they have a correlation from day to day at a given place since the repetition
of the satellites geometry is approximately 24 hours). So, the error model has to be
quite robust with respect to this non-stationarity.

3.4.1 Autoregressive process for modeling GNSS biases

In [89][66], AR processes are used to model GNSS biases. Here, we suggest using
the same AR structure to model GNSS bias correlation. Therefore, in this case,
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equation (3.24) becomes:{
εx,k = −∑p

n=1 ax,nεx,k−n + wx,k
εy,k = −∑p

n=1 ay,nεy,k−n + wy,k
(3.33)

where εx and εy are time-correlated errors on GNSS position fixes; wx and wy are
the input white noises. Please note that this modeling supposes that the errors are
not inter-correlated.
The following section discusses the determination of the AR model coefficients (ax
and ay), the input white noises and the AR order p.

3.4.2 Discussion on the AR order

For a autoregressive model, the choice of the order p is important. In this section,
the criteria for this choice is discussed.
There is rarely a direct physical motivation for choosing the AR model. The choice
of p has to be based on real data analysis [78]. There has been much work on ways
of making this choice with particular emphasis on automatic model selection criteria
such as Akaike information criteria (AIC) [7] and the Bayes information criterion
(BIC) [110]. Another method is to select an order which gives the optimal Akaike’s
final prediction error (FPE) [8]. A related work in modeling GNSS bias using this
strategy can be found in [36].
Normalized AIC is defined as

AIC = ln
(
det

(
1
N

N∑
t=1

e
(
t, θ̂N

) (
e
(
t, θ̂N

))T))
+ 2np

N
(3.34)

where N is the number of samples in the estimation data set. θ̂N represents the
estimated parameters. e

(
t, θ̂N

)
= ε (t)− ε̂

(
t|θ̂N

)
is the prediction error. np is the

number of estimated parameters. Normalized BIC is defined as

BIC = ln
(
det

(
1
N

N∑
t=1

e
(
t, θ̂N

) (
e
(
t, θ̂N

))T))
+ npln (N)

N
(3.35)

Akaike’s final prediction error (FPE) is defined as

FPE = det
(

1
N

N∑
t=1

e
(
t, θ̂N

) (
e
(
t, θ̂N

))T)(N + np
N − np

)
(3.36)
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Figure 3.5: Variation of AIC and BIC criteria
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Figure 3.7: AR coefficients estimation variation (Burg’s method)

Figures 3.5 and 3.6 show the variation of normalized AIC and BIC and FPE over
order 1 to 10. One can notice that there is no significant change when the order
is over 2. AIC and BIC are smaller for p = 2 than for p = 1. It means a reduced
prediction error which is worth than the added variability by estimating an addi-
tional AR parameter (the higher the AR order, the more the estimated process will
represent the property due to signal noise).
Considering the complexity and time efficiency of integrating the AR model into a
shaping filter, the study is limited up to order 2. The AR parameters are calculated
with Burg’s method. Figure 3.7 shows the variation of the AR1 (first-order AR pro-
cess) and AR2 (second-order AR process) coefficients respectively. One can notice
that the biggest variation of the AR1 coefficients is not more than 0.05%. However,
the variation of AR2 coefficients reaches nearly 40%. Even if the sequences which
we have used to identify the parameters are probably too short to estimate the AR2
parameters adequately, it is clear that the stability of an AR1 model is better. In
addition, the FPEs of AR1 and AR2 are of the same order of magnitude (10−4).
Our strategy is so to use a lower order filter but more robust to the non-stationarity
which means, in other words, an AR process of order 1.
In order to validate the shaping filter, we reverse it in offline processing by using the
following discrete time difference system:{

wx,k = εx,k + axεx,k−1
wy,k = εy,k + ayεy,k−1

(3.37)

The autocorrelations of wx and wy are given in Figure 3.8. They approximate quite
well a Delta-Dirac function. Thus, the first order AR model is good enough to get
a white driving noise that one can integrate in a Kalman filter.
Remark 2. Generally, for an autoregressive model, the more model parameters, the
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Figure 3.8: Autocorrelation of experimental signal and the inverse of the shaping filter

better the fitting result which means smaller fitting residual errors (see Figure 3.6).
However, with the growth of the parameters, more information is needed. Thus,
higher AR order results in greater parameter estimation errors or variations and
less reliability of the prediction model for a given information (see Figure 3.7).

In terms of a dynamic localization problem, the GNSS bias should be estimated
online. In the following section, we introduce how to integrate the sensor bias model
into a Kalman filter style state observer.

3.5 Kalman filtering with shaping filters

Hereafter, the Kalman filter, shaping filter and Extended Kalman filter (EKF) are
reminded. EKF is the filtering technique used in this thesis. For details about the
UKF, please refer to [67][127].

3.5.1 Kalman filter reminder

A Kalman filter is an algorithm that uses a series of measurements observed over
time, containing statistical noise and other inaccuracies, and produces estimates
of unknown variables that tend to be more precise than those based on a single
measurement alone.
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3.5 Kalman filtering with shaping filters

A linear state model is first considered. There is a process model that expresses the
transformation of the process state over time. This can be usually represented as a
linear stochastic difference equation:

xk = Axk−1 + Buk−1 +αk−1 (3.38)

where A is the state transition matrix, B is the input transition matrix, u is the
input vector, α is the process noise vector. The actual state transformation model
is partially known: process models therefore incorporate some notion of random
motion or uncertainty.

In addition, there is some form of measurement model that describes the relationship
between the process state and the measurements. This can be represented by a linear
expression:

yk = Cxk + βk (3.39)

where C is the measurement matrix, β is the measurement noise vector.

For stochastic estimation from noisy sensor measurements, the Kalman filter [69]
describes a recursive solution to the discrete-data linear filtering problem.

The process and observation noises are supposed centered which means that the
process and observation models are accurate on average. It is assumed that their
respective covariance matrices Q and R are known. We have:

E (αk) = 0, Var (αk) = Q

E (βk) = 0, Var (βk) = R

Often, α and β are supposed to be independent, but it is not mandatory. Please note
also that the Kalman filter does not require the noises to be Gaussian distributed.

P is the covariance matrix of the estimation error. It is a measure of the estimated
accuracy of the state estimate x̂.

P = E
[
(x̂− x) (x̂− x)T

]

Let denote by the subscript k|k the posterior estimates (for both state vector and
covariance matrices) at time k given observations up to and including time k. The
subscript k|k−1 corresponds to prior estimates at time k given estimates and input
vector at time k−1. One gets x̂k|k the state estimate, x̂k|k−1 the one-step prediction,
Pk|k the covariance matrix of the updated estimation error and Pk|k−1 the covariance
matrix of the one-step prediction error.
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The algorithm works in a two-steps. In the prediction step, the Kalman filter pro-
duces predicted estimates of the current state variables, along with their uncertain-
ties. It is calculated by:

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1
Pk|k−1 = APk−1|k−1AT + Q (3.40)

Once the outcome of the next measurement is observed, the innovation µk and its
covariance matrix S are calculated by:

µk = yk −Cx̂k|k−1 (3.41)

and

Sk = CPk|k−1CT + R (3.42)

The predictions x̂k|k−1 and Pk|k−1 are updated using a weighted average with µk and
Sk, with more weight being given to estimates with higher certainty. The Kalman
gain is defined by:

Kk = Pk|k−1CTS−1
k (3.43)

The Kalman filter is a state observer for which the gain K is calculated so that
the estimation is optimal under the principle of orthogonality [87]. Then, the state
update is calculated by:

x̂k|k = x̂k|k−1 + Kkµk
Pk|k = (I−KkC) Pk|k−1 (I−KkC)T + KkRKT

k

(3.44)

3.5.2 Kalman filtering with shaping filters for colored or biased
measurement errors

In the classical Kalman filtering formalism, the state equation and sensor measure-
ment are driven by additive, zero-mean, white and uncorrelated errors. As it is
difficult to estimate the driving white noises α for the system model, the matrix Q
is often considered as a weight of the prediction from the state equations relatively
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to the measurements. Correspondingly, the measurement uncertainties are critical
to a good filter operation [71]. Once a model of the colored measurements errors is
obtained, a Kalman filter with shaping filters has to be implemented.

Let suppose that the sensor errors can be approximately modeled as the output of
a white noise passing through a certain shaping filter providing a time-correlated
noise. The parameters of such a shaping filter have been estimated through the
minimization of the differences between the output of the shaping filter and the
actual noise sequence of the sensor output in a least-square sense. The residual
component is determined from a sequence of data measurements after removing its
mean value. By using a shaping filter, one can obtain a noise source with desired
characteristics from a wide-band source. If the residual error is perfectly modeled
by the shaping filter, the measurement becomes noiseless and the observation model
becomes (with a first order AR model):

{
yk = Cxk + εk
εk = A′

εk−1 +αε,k
(3.45)

with εk = A′
εk−1 +αε,k the shaping model for the colored noise and αε the driving

white noise.

In [13], the authors propose to model the measurement noise as a sum of a colored
noise with a white noise β′ that accounts for other unmodeled measurement errors,
considering that the shaping model can not perfectly represent the noise:

{
yk = Cxk + εk + β′k
εk = A′

εk−1 +αε,k
(3.46)

For a GNSS fix measurement, equation (3.46) becomes:

yGPS =
(
x
y

)
+
(
εx
εy

)
+
(
β
′
x

β
′
y

)
(3.47)

and {
εx,k = −axεx,k−1 + wx,k
εy,k = −ayεy,k−1 + wy,k

(3.48)

The design of the first order autoregressive GNSS bias expressed by equation (3.48)
has been discussed in section 3.4. In this thesis, the noise

(
β
′
x, β

′
y

)
is modeled to

have the same variance as the origin GNSS errors. This is the choice made in [96].
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The gyro drift is modeled by a random bias:{
ωmk = ψ̇k + εω,k + wω,k
εω,k = εω,k−1 + wεω ,k

(3.49)

where wω and wεω ,k are unobservable white noise.

As we will see later, the augmented state vector in our case will be:

x = [x, y, ψ, εω, εx, εy]T (3.50)

[x, y, ψ] is the state of interest and [εω, εx, εy] is the state augmentation.

3.5.3 Extended Kalman filter

The GNSS/DR/camera multisensor fusion problem is a nonlinear filtering problem.
Let us now consider a nonlinear system represented by the following equations:{

xk = f (xk−1,uk−1) +αk−1
yk = g (xk) + βk

(3.51)

The EKF exploits techniques from multivariate Taylor Series expansions to linearize
a model around a working point. The linearization can be performed around the
previous estimate or prediction:

f (xk−1,uk−1) = f
(
x̂k−1|k−1,uk−1

)
+
[
∂f
∂x

(
x̂k−1|k−1,uk−1

)] (
xk−1 − x̂k−1|k−1

)
+

o2
(
xk−1 − x̂k−1|k−1

)
g (xk) = g

(
x̂k|k−1

)
+
[
∂f
∂x

(
x̂k|k−1,uk

)] (
xk − x̂k|k−1

)
+ o2

(
xk − x̂k|k−1

)

where o2 (·) is a function for which:

lim
x→0

o2 (x)
x2 = 0

The linearization is good if the prediction error xk− x̂k|k−1 and the estimation error
xk−1 − x̂k−1|k−1 are small enough.

Let denote
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3.5 Kalman filtering with shaping filters

Ak−1 = ∂f
∂x

(
x̂k−1|k−1,uk−1

)
ǔk = f

(
x̂k−1|k−1,uk−1

)
−Ak−1x̂k−1|k−1

Ck = ∂g
∂x

(
x̂k|k−1

)
zk = yk − g

(
x̂k|k−1

)
+ Ckx̂k|k−1

Then the nonlinear system is transformed into a linear system:{
xk = Ak−1xk−1 + ǔk +αk−1
zk = Ckxk + βk

(3.52)

The prediction step is

x̂k|k−1 = Ak−1x̂k−1|k−1 + ǔk = f
(
xk−1|k−1,uk−1

)
Pk|k−1 = Ak−1Pk−1|k−1AT

k−1 + Q
(3.53)

The update step is

x̂k|k = x̂k|k−1 + Kkµk
Pk|k = (I−KkCk) Pk|k−1 (I−KkCk)T + KkRKT

k

(3.54)

with

µk = zk −Ckx̂k|k−1 = yk − g
(
x̂k|k−1

)
Kk = Pk|k−1CT

k

(
CkPk|k−1CT

k + R
) (3.55)

3.5.4 Extended Kalman filter with measured input

For some systems, the inputs are measured. The measurements noises on the inputs
have to be considered.
A nonlinear system with measured input is expressed by:


xk = f

(
xk−1,umk−1

)
+αk−1

umk−1 = uk−1 + γk−1
yk = g (xk) + βk

(3.56)

In this case, the system input uk−1 is measured with a measurement noise γk−1,
with known covariance matrix Cov

(
γk−1

)
= N. The measured input vector umk−1 is
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applied to the system. α, β, and γ are supposed to be white, centered, uncorrelated
with each other and independent of the state. Performing a Taylor extension to the
first order of function f (·) around x̂k−1|k−1 and measured input umk−1

f
(
xk−1,umk−1

)
= f

(
x̂k−1|k−1,umk−1

)
+
[
∂f
∂x

(
x̂k−1|k−1,umk−1

)] (
xk−1 − x̂k−1|k−1

)
+[

∂f
∂u

(
x̂k−1|k−1,umk−1

)]
γk−1 + o2

(
xk−1 − x̂k−1|k−1,γk−1

)
g (xk) = g

(
x̂k|k−1

)
+
[
∂f
∂x

(
x̂k|k−1,uk

)] (
xk − x̂k|k−1

)
+ o2

(
xk − x̂k|k−1

)
Let denote

Ak−1 = ∂f
∂x

(
x̂k−1|k−1,uk−1

)
Bk−1 = ∂f

∂u

(
x̂k−1|k−1,umk−1

)
Ck = ∂g

∂x

(
x̂k|k−1

)

The nonlinear equation (3.56) is linearized as:

{
xk = Ak−1xk−1 + ǔk + Bk−1γk−1 +αk−1
zk = Ckxk + βk

(3.57)

and then a linear Kalman filter can be applied with a slightly different model noise
and, in the way as before, we can use directly the non linear functions of the original
state space.

Initialize states and covariance by x = x0, P = P0. For k = 1, 2, ...., the EKF with
measured input is expressed by algorithm 3.1.

Algorithm 3.1 Extended Kalman filter with measured input
1: umk−1 ← measured inputs
2: x̂k|k−1 = f

(
xk−1|k−1,umk−1

)
3: Ak−1 = ∂f

∂x

(
x̂k−1|k−1,uk−1

)
,Bk−1 = ∂f

∂u

(
x̂k−1|k−1,umk−1

)
4: Pk|k−1 = Ak−1Pk−1|k−1AT

k−1 + Bk−1NBT
k−1 + Q

5: if Output Measurements are available then
6: yk ← sensor measurements
7: Ck = ∂g

∂x

(
x̂k|k−1

)
,µk = yk − g

(
x̂k|k−1

)
8: Kk = Pk|k−1CT

k

(
CkPk|k−1CT

k + R
)

9: x̂k|k = x̂k|k−1 + Kkµk
10: Pk|k = (I−KkCk) Pk|k−1 (I−KkCk)T + KkRKT

k

11: end if
12: Go to 1
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Filter Time Line (Unit: 0.01s)

GNSS measurement  (5 Hz) 
Camera measurement (10 Hz) 
Update

Figure 3.9: Filter time line

3.6 Localization solver

The localization solver which merges all the sensors information and the lane mark-
ing map is realized by an EKF with measured input and shaping filters for GNSS
errors and gyro biases. The wheel speed sensor measurement (vm) and gyro mea-
surement (ωm) from the CAN bus are used as measured input.

The filter is implemented as a discrete EKF triggered by the proprioceptive sensors
(typically at a sampling period of 0.01s). GNSS and camera measurements are
used as soon as they are available in a asynchronous way (see Figure 3.9 for an
illustration).

Figure 3.10 displays the structure of the localization solver: x̂ is the estimated
state and P is the estimated covariance matrix. Depending on the step, they can
correspond to predictions or updates but, in terms of implementation, there are the
same variables. As said before, the localization solver works at the frequency of the
DR sensors (from ABS and ESP systems). A unicycle model is used to dead reckon
the vehicle pose. When a GNSS fix is available, it is first validated or rejected by
an innovation gating then, if validated, it is used to update the vehicle state. When
a camera C0 measurement is available, a map matching process is performed to
find which lane marking in the map database is detected. Only when the detected
lane marking is map matched, the C0 observation model is employed. Then, the
vehicle state is updated by C0 with an innovation gating similar to the one used
for GNSS. More details about prediction, GNSS/camera corrections and innovation
gating techniques are as follows.
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Figure 3.10: Diagram of the localization solver

3.6.1 Prediction stage

The continuous state evolution model is built around a unicycle model with the
shaping models:



ẋ = vmcosψ
ẏ = vmsinψ
ψ̇ = ωm − εω
ε̇x = −εx/τx
ε̇y = −εy/τy
ε̇ω = 0

(3.58)

A CAN-bus gateway is used to access to the wheel speed sensors and to the yaw
rate gyro at 100 Hz. The prediction can be decomposed into two parts: prediction
of the state vector and prediction of the associated covariance matrix of the state
vector.

At instant k, the prediction of the state is realized by the following discrete equation:



xk|k−1 = xk−1|k−1 + Tev
m
k−1cosψk−1|k−1

yk|k−1 = yk−1|k−1 + Tev
m
k−1sinψk−1|k−1

ψk|k−1 = ψk−1|k−1 + Te(ωmk−1 − εω,k−1|k−1)
εx,k|k−1 = axεx,k−1|k−1
εy,k|k−1 = ayεy,k−1|k−1
εω,k|k−1 = εω,k−1|k−1

(3.59)

Pk|k−1 = Ak−1Pk−1|k−1AT
k−1 + Bk−1NBT

k−1 + Q (3.60)
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The Jacobian matrix Ak−1, consisting of the partial derivatives of equation (5.10)
with respect to the state vector, is given by:

Ak−1 =



1 0 −Tevk−1sinψk−1|k−1 0 0 0
0 1 −Tevk−1cosψk−1|k−1 0 0 0
0 0 1 0 0 −Te
0 0 0 ax 0 0
0 0 0 0 ay 0
0 0 0 0 0 1


(3.61)

Bk−1 is the Jacobian matrix of equation (5.10) with respect to the input vector[
vmk−1, ω

m
k−1

]T
:

Bk−1 =



Te · cosψk−1|k−1 0
Te · sinψk−1|k−1 0

0 Te
0 0
0 0
0 0


(3.62)

3.6.2 GNSS correction

The GNSS receiver provides position of the vehicle at 5Hz. If the GNSS information
is available at instant k, the state vector is updated once. By considering GNSS
biases and the lever arm of the antenna is the body frame, the observation model
expressed by equation (2.26) changes to:

{
xGNSS = cosψ · tx − sinψ · ty + x+ εx + β

′
x

yGNSS = sinψ · tx + cosψ · ty + y + εy + β
′
y

(3.63)

By denoting the GNSS measurement as yGNSS = [xGNSS, yGNSS]T , the update equa-
tions of the state vector and covariance matrix are: xk|k = xk|k−1 + KGNSS

[
yGNSS − gGNSS

(
Xk|k−1

)]
Pk|k = [I−KGNSSCGNSS] Pk|k−1 [I−KGNSSCGNSS]T + KGNSSRGNSSKT

GNSS

(3.64)

with the GNSS observation matrix:

CGNSS =
[

1 0 −tx · sinψk|k−1 − ty · cosψk|k−1 1 0 0
0 1 tx · cosψk|k−1 − ty · sinψk|k−1 0 1 0

]
(3.65)
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The covariance matrix RGNSS of measurement noise
(
β
′
x, β

′
y

)
is defined as follows

RGNSS = diag
[
σ2
xGNSS

, σ2
yGNSS

]
(3.66)

σ2
xGNSS

and σ2
yGNSS

are available from the GNSS receiver computation.
The Kalman gain is:

KGNSS = Pk|k−1CT
GNSS

[
CGNSSPk|k−1CT

GNSS + RGNSS

]−1
(3.67)

3.6.3 Camera correction

Map matching consists to determine which is the lane marking segment that the
camera has detected. In this thesis, the marking type given by the video camera is
also used to map-match the detected lane marking segment. In a first stage, a set
S of candidate segments is selected based on the following conditions:

• The lane marking type is consistent with the one estimated by the camera.
• The orientation of the segment is close to the heading of the vehicle.
• The distance d between the point L (equation (2.28)) and the candidate seg-

ment is less than the width of the road.
In a second stage, the segment s which has the minimal distance is chosen as the
map matching result:

map matched segment = argmin
s∈S
{d} (3.68)

The left and right side camera measurements are used sequentially. Camera obser-
vation function gcam (·) is defined by equation (2.32). Denoting ycam = [C0]T , the
update equations of the state vector and covariance matrix are: xk|k = xk|k−1 + Kcam

[
ycam − gcam

(
Xk|k−1

)]
Pk|k = (I−KcamCcam) Pk|k−1 (I−KcamCcam)T + KcamRcamKT

cam

(3.69)

with the observation matrix:

Ccam = ∂gcam
∂x

|x=xk|k−1 (3.70)

Kalman gain:

Kcam = Pk|k−1CT
cam

(
CcamPk|k−1CT

cam + Rcam

)−1
(3.71)

with Rcam = V ar (βcam).
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3.6.4 Innovation gating

As one can see in Figure 3.10, before using a GNSS fix to update the state vector,
an innovation gating strategy is adopted. Here, the innovation is evaluated based
on the Mahalanobis distance:

DGNSS =
(

yGNSS − gGNSS

(
xk|k−1

))T (
CGNSSPk|k−1CT

GNSS + RGNSS

)−1 (
yGNSS − gGNSS

(
xk|k−1

))
(3.72)

Only when the Mahalanobis distance is less than a rejection threshold, the GNSS
fix can be used to update the state vector and the covariance matrix. For the cam-
era measurements, the same strategy is adopted. The corresponding Mahalanobis
distance is :

Dcam =
(

ycam − gcam

(
xk|k−1

))T (
CcamPk|k−1 ·CT

cam + Rcam

)−1 (
ycam − gcam

(
xk|k−1

))
(3.73)

These integrity tests are useful to exclude GNSS outliers, wrong lane marking de-
tections and mismatches.

3.7 Experimental results

For the initialization of the state vector and the covariance matrix, there are two
modes:

• Cold start mode:

– Initialize all the elements with 0.
– Wait for a GNSS fix with valid track angle.
– Initialize the position and heading x = [xGNSS,1, yGNSS,1, ψ1, 0, 0, 0, 0, 0]T .
– Start the EKF which needs some time to converge.

• Warm start mode: initialize all the elements of the EKF with the correspond-
ing values stored by the system in the pose file when it stopped working the
last time.

– The EKF is immediately operational and works well if the vehicle has
not been moved and if the stopped duration was short (because of the
GNSS error modeling)

In this thesis, a warm start mode is adopted. The vehicle is initialized with the
reference value (provided by the ground truth system) and an enlarged covariance
matrix. The localization solver has been tested using data replay. Figure 3.11
displays the trajectory of the EKF estimates. The estimated trajectory is in 4
different colors which indicate different sensor fusion modes. There are 4 modes:
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Figure 3.11: Different sensor fusion modes for an experiment

• Mode 1 (in red): dead reckoning.
• Mode 2 (in yellow): DR coupled with camera and lane marking map.
• Mode 3 (in blue): DR coupled with GNSS.
• Mode 4 (in green): DR coupled with GNSS, camera and lane marking map.

Take mode 2 as an example, data from DR sensors is used for prediction. Camera
measurement C0 coupled with lane marking map is used to update vehicle state.
GNSS measurements are not available or rejected by the localization solver. Con-
sidering output frequency of the solver is higher than the camera update, if ycam,k−1
is used in the solver, instances between ycam,k−1 and ycam,k are considered as work-
ing in a mode with camera measurements available. The same is done for deciding
the GNSS availability. Mode 3 usually happens around the road corners where lane
marking detection fails.
Figure 3.12 shows the obtained lateral and longitudinal positioning errors (PE).
Figure 3.13 displays the heading error. The maximum of the heading error is smaller
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Lateral PE (m) Longitudinal PE (m)
I II I II

mean 1.30 0.07 1.55 -0.32
std. dev. 1.12 0.29 1.18 0.32
median 0.96 0.10 1.31 0.30
95th percentile 3.20 0.68 3.88 0.88
max 6.78 1.83 4.69 1.50

Table 3.1: Error statistics: I: u-blox; II: ENU EKF

than 5 degree. The red line is the estimated ±3σ bound. Three tests with the same
filter tuning produce comparable results which demonstrates the stability of the
localization solver.
Table 3.1 compares several accuracy metrics of the localization solver with a stan-
dalone u-blox. As expected, the lateral localization is highly improved, because the
camera observation is relative to the lateral distance between the vehicle and the
detected lane marking. The longitudinal accuracy is also improved by the camera
system due to the heading variation of the path. The 95 percentiles of lateral and
longitudinal positioning errors are both less than 1 m.
In addition to the accuracy, consistency with the estimated bound is also an impor-
tant issue for a state observer. One can get a first investigation by looking at Figures
3.12 and 3.13 in which most errors are well bounded. We will give more details about
consistency in Chapter 6 by comparing this filter with two other approaches.
Figure 3.14 displays several special cases where the vehicle arrives at intersections or
when GNSS multipath happens. Figure 3.14a shows the vehicle trajectory around
a corner. The white lines are the lane markings in the digital map. The black line
is the reference trajectory and the cyan line is standalone GNSS. One can notice
that, standalone GNSS has large but stable biases. Around t = 79s, the vehicle
begins a corner turning and loses camera measurement. The system is working in a
DR/GNSS mode. Thanks to the shaping filtered GNSS biases, the vehicle is always
localized in the correct lane.
During t = 111s-122s, the vehicle enters the urban canyon environment. Figure
3.14b depicts the estimated trajectory. The localization system loses the camera
measurement around t = 112s (The MobilEye is not able to output lane marking
estimation with Cquality > 1). The fusion mode changes from mode 4 to mode 3.
Around t = 119s, in addition to the camera measurement outage, the error of GNSS
changes greatly and the GNSS measurement is not used any more. The fusion mode
changes to mode 1. Around t = 122s, the camera retrieves lane marking detection,
the fusion mode changes from mode 1 to mode 2 and then to mode 4. One can notice
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Figure 3.12: Lateral and longitudinal positioning errors
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Figure 3.13: Heading errors.The max of the heading error doesn’t exceed 5 degree.
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(b) The vehicle is localized in the correct lane
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(c) The vehicle is localized in an incorrect lane
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Figure 3.14: Different scenarios of the localization results. The colors indicates 4 dif-
ferent working modes of the localization solver. Mode 1 (in red): dead reckoning; mode 2
(in yellow): DR coupled with camera and map yellow; mode 3 (in blue): DR coupled with
GNSS; mode 4 (in green): DR coupled with GNSS, camera and map. White lines are lane
markings. Black line is the true trajectory. GNSS trajectory is in cyan. The traveling
direction is indicated by the tagged time.
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that there is an abrupt but accurate lateral correction when the camera measurement
is available. That is due to the high accuracy of the camera measurement.

Figure 3.14c shows the result with a different threshold for the GNSS measurements.
One can notice that, during t = 111s-122s, the GNSS measurement is always used.
This results that the vehicle is localized at the wrong lane at t = 122s when the
camera measurements are mismatched. This indicates that an appropriate thresh-
old has to be chosen for GNSS measurements. This choice is generally difficult,
considering the GNSS bias due to multipath effect may change slowly and our bias
model doesn’t take it into consideration. Remedies for this critical situation should
be improving the availability of the lane marking measurement or reducing the drift
rate of the dead reckoning system but will not be discussed in this thesis which
focuses on a low-cost solution.

The result always converges toward the biased GNSS position when there is no
camera measurement for a long term. In this case a wrong map matching is possible.
A possible solution is to use the lane type information provided by the camera to
disambiguate which lane the vehicle is in when camera retrieves measurement with
a high position uncertainty. But as indicated in Table 2.4 in Chapter 2, the lane
marking type information is not reliable enough for determining the lane with only
one camera detection. We will discuss a solution using lane marking type information
in Chapter 6.

For comparison purpose, Figure 3.14d plots the estimated trajectory by a localization
solver without the shaping filter. When the system loses camera measurement, the
vehicle position converges faster to the biased GNSS fix than the result in Figure
3.14b and 3.14c.

Hereafter we look at the estimated biases using the shaping filters both for GNSS
and for the gyro.

Take test 1 as an example, Figure 3.15 demonstrates the estimated biases compared
with their reference value calculated by using a RTK-GNSS receiver. Figure 3.16
displays the errors of bias estimate with ±3σ. Around t = 122s, the GNSS bias
changes rapidly and camera measurement is not available. Therefore, it occurs
a large estimation error of GNSS bias. Generally, estimated biases have similar
dynamic than the true biases and the estimation error is well bounded.

Figure 3.17 shows the estimated gyro bias and its 3σ error bound. The gyro bias
converges to -0.003 rad/s. Since there is no ground truth for the gyro bias, we cannot
decide whether this bias is well estimated or its estimation error is well bounded.
Nevertheless we can conclude that the proposed gyro bias model is observable as
shown by the convergence of the error bound.
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Figure 3.15: Estimated biases compared to the reference
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Figure 3.16: Estimated GNSS bias errors and error bounds
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Figure 3.17: Estimated gyro bias and gyro bias error bounds

3.8 Conclusion

This chapter focused on loosely coupling GNSS with DR sensors, a lane detection
camera and a digital map containing the lanes markings. The main efforts have been
dedicated to the modeling of the non-white biases of the GNSS position fixes. A
widely used autoregressive model has been adopted. Thanks to the camera measure-
ment, the filter is able to estimate the biases using Kalman filtering with shaping
filter. A contribution is the integration and the validation of the camera observation
model proposed in Chapter 2.
The localization solver is done by an EKF with measured input. The goal of this
system is to achieve a localization system with high availability and camera-like
accuracy to make the vehicle able to navigate autonomously. The experimental
results demonstrate the feasibility of fusing the proposed camera observation model
and shaping filtering to achieve a position estimation with decimeter-level accuracy
(median value) in both lateral and longitudinal direction. The results inspire us to
perform an observability analysis and to seek to enhanced state space models.
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Enhanced GNSS errors modeling and
design of a road-invariant filter
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4.1 Introduction

Chapter 3 has demonstrated the effectiveness of the camera measurements (exploited
in a Kalman filter thanks to a refined observation model that takes into account
the exact position of the camera in the body frame) to increase the accuracy of
the localization process. GNSS fixes errors were handled thanks to autoregressive
models in both directions of the ENU frame.

Camera measurements are related to the local geometry of the road. When using a
smart camera as a MobilEye, the corrections are essentially in the lateral direction.
As shown in Figure 4.1, vehicles 0 and 1 have the same heading and lateral position
in the lane, but different longitudinal positions. C0 measurements are the same for
both vehicles (C0 relies only on vehicle lateral position in the lane for a given vehicle
heading). The observability of the GNSS error along the road axis is therefore
intuitively weak whereas it is high in the cross-track direction. The localization
problem possesses some “state invariance” with respect to road or lane rotations.
However, a state modeling in the ENU frame doesn’t reflect this invariance, because
the x-y axes rarely correspond to lateral-longitudinal directions. Therefore, this
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C0
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Figure 4.1: C0 is a lateral measurement

chapter is dedicated to study an enhanced model of the GNSS biases for this kind
of localization problem with lateral vision information.

As seen before, localization is a pose estimation problem. The estimation of an
enhanced model is feasible only when the system has suitable observability char-
acteristics [114]. The GNSS biases can be modeled by different models which are
more or less complex. So, observability conditions can be used to validate the choice
of a proposed enhanced model. Once the model has been chosen, the next step is
to design a localization solver. In our particular case, a particular problem is to
find an effective working frame which keeps the state invariance with respect to
road rotations. We will see that a working frame aligned with the road provides an
interesting solution.

This chapter is organized as follows. Section 4.2 focuses on observability conditions
to validate a proposed enhanced modeling. Section 4.3 describes a road invariant
EKF algorithm that works in a frame kept aligned with the road. Section 4.4
presents experimental results. Section 4.5 concludes this chapter.

4.2 Design of an enhanced modeling of the errors
based on observability conditions

4.2.1 Proposed enhanced modeling in a road-oriented frame

The working frame in which a localization solver is implemented plays an important
role in terms of error modeling and estimation performance. A local ENU frame
is often used, but in order to develop an enhanced modeling of GNSS bias in the
lateral direction, we propose to consider a modeling of the system in a road-oriented
Cartesian frame. A road-oriented frame is defined to have the same origin as the
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Figure 4.2: Road-oriented frame

local ENU frame but with its x-axis pointing to the direction of the road in which
the vehicle is traveling (cf. Figure 4.2).

In Chapter 3, two kinds of modeling of GNSS bias have been mentioned: a random
bias model defined by equation (3.3) and a first order autoregressive (or Markov)
model defined by equation (3.4). In [13], the combination of these two models is
used to model a gyro bias. Here, the same model is used to enhance the modeling
of GNSS bias, especially in the lateral direction.

Working in the road frame, an enhanced model can be defined as:

εy = εy1 + εy2 (4.1)

with

ε̇y1 = −εy1/τ1

ε̇y2 = 0

The physical meaning of this modeling is as follows: the autoregressive bias corre-
sponds to the filtering effect of the GNSS receiver and the random constant corre-
sponds to the bias caused by the slow varying error sources described in Chapter
2.

In the longitudinal direction, only autoregressive modeling is used considering its
weak observability. However, the error is also decomposed into two parts:

εx = εx1 + εx2 (4.2)

with

ε̇x1 = −εx1/τ1
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ε̇x2 = −εx2/τ2

The reason for this will be explained in Section 4.3.
The state vector becomes:

x = [x, y, ψ, εω, εx1, εx2, εy1, εy2]T (4.3)

where (x, y, ψ) is the 2D pose of the vehicle in the road frame; εω denotes the gyro
bias; (εx1, εx2, εy1, εy2) are GNSS errors on x and y in the road-oriented frame.
The evolution model of the state vector is different than the one of equation (3.58):



ẋ = v · cosψ
ẏ = v · sinψ
ψ̇ = ω − εω
ε̇ω = 0
ε̇x1 = −εx1/τ1
ε̇x2 = −εx2/τ2
ε̇y1 = −εy1/τ1
ε̇y2 = 0

(4.4)

In this model, first order autoregressive models with time constant τ1 and τ2 are
used to model the non-whiteness of the GNSS errors. The error in the x-direction is
split into two components (εx1 and εx2) with different decorrelation time constants
in order to manage the frame transformation when the road changes (detailed ex-
planation in Section 4.3.1).
The time constant of εy1 is supposed to be the same as the one of εx1 in order to
simplify the tuning with only one parameter.
v is the linear velocity measured by the wheel speed sensors and ω is the angular
velocity measured by the yaw rate gyro.
εx2 is modeled as an autoregressive process to guarantee the observability of the
filter, but it has a larger time constant since it is transformed from εy2, when a
road frame change is performed (and vice versa). This modeling is similar to the
modeling of accelerometers biases as done in [13] because accelerometers usually
have two kinds of biases: a first order Markov process with large time constant and
a faster changing Markov process [105].
The last equation of the model associated with εy2 plays an important role in our
localizer. Indeed, it is a random constant model as used in [75] which is well adapted
to estimate quickly the lateral bias of the GNSS fix in the road frame [13].
The exteroceptive sensors that are considered are a GNSS receiver providing position
fixes and a front-looking camera that detects lane markings. In order to study the
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structural properties of the modeling with equations easy to handle, let us suppose
that the camera and the GNSS antenna coincide with point M , the origin of the
body frame (cf. Figure 4.2).
Moreover, we consider at this stage that there is only one lane marking, locally
represented by a line [AB]. The observation model in this case is given by:

C0 = (y − yA) /cosψ (4.5)

C0 is the lateral distance measured by the camera in the body frame [119]. yA is
the ordinate of points A and B in the road-oriented frame.
The GNSS fixes with their shaping errors are linked to the state by the following
model:

{
xGNSS = x+ εx1 + εx2
yGNSS = y + εy1 + εy2

(4.6)

4.2.2 Observability concepts

In control theory, observability is a condition checking of how internal states of a
system can be inferred by knowledge of its external outputs. The observability was
first introduced by Rudolf E. Kalman for linear dynamic systems. Observability is
a necessary condition for any filtering algorithm to converge to an unbiased state
estimate. The localization system in this thesis is a nonlinear system.
Considering a nonlinear system:

Σ : ẋ = f (x,u) ,x ∈M ⊆ Rn

y = g (x) ,y ∈ Rm

with x the state vector, u the input vector, and y the measurement vector.
In order to describe its observability, the following definitions express first the con-
cepts propose by Hermann and Krener in [57], which is a geometrical approach to
observability analysis.

Definition 1. Indistinguishable states
Two states are said to be indistinguishable, if for every admissible input u (t), t0 ≤
t ≤ tend, identical outputs result:

y (t; x0) ≡ y (t; x1) for t0 ≤ t ≤ tend

The set of all points that are indistinguishable from x0 is denoted I (x0).
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For example, in Figure 4.1, if one uses only the camera, the two initial states fulfill
C0 (t; x0) ≡ C0 (t; x1) for t0 ≤ t ≤ tend, thus they are indistinguishable with respect
to C0.

Definition 2. Observability

x0 of the system Σ is observable, if I (x0) = x0. Σ is observable, if I (x) = x for all
x ∈M .

Observability is sometimes called global observability. Reconstruction of x for mea-
surement data may be possible for certain inputs u (t), t0 ≤ t ≤ tend only.

Definition 3. Local observability

System Σ is locally observable, if IN(x) = x for every open neighborhood N of
x ∈M .

Local observability is a stronger property than global observability.

Definition 4. Local weak observability

The state x0 of the system Σ is locally weakly observable, if there is some neigh-
borhood ν of x0, where IN(x0) ∩ ν = x0, for all solutions x (t) completely in any
neighborhood N of x0. System Σ is locally weakly observable, if this property holds
for all x ∈M .

The most classical method of studying the local weak observability relies on the
study of a rank condition after linearization and Lie derivatives computation [57].

There is another approach that relies on the differential algebraic concept which is
largely the work of Ritt [107]. The differential algebra has been introduced in control
theory through the works of Fliess, Glad and Ljung [41][49][40][84]. The algebraic
observability can be expressed as follows (see [113]):

Definition 5. Algebraic observability

The state of a system with known internal dynamics is said to be observable if,
and only if, there is an algebraic equation linking the state vector to the measured
output y and input u and a finite number of their time derivatives.

The following is an example.

Example. The two-dimensional single input, single output system
ẋ1 = 0
ẋ2 = u+ x2
y = x1 + x2

(4.7)
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is observable since x2 = ẏ − u and x1 = y − ẏ + u.

Algebraic observability is therefore a different way to study observability. It has
also the advantage to provide a closed form to build a state observer as soon as the
derivatives of the inputs and outputs can be estimated with a good quality. It is
equivalent to local generic observability [37].

In the following sections, we study the observability of the different components of
the state in the algebraic framework considering it provides local observability.

4.2.3 Observability analysis

The state space given by equation (3.50) is the basic modeling on which a state
observer can be built to estimate the pose of the vehicle and to merge the information
from different sensors. The last five components of the state vector with their
respective modeling act as shaping filters in the observer. The question that needs
to be answered is: are all the components of the state observable when using the
exteroceptive measurements y = [xGNSS, yGNSS, C0] and the proprioceptive ones
u = [v, w]? If a state component x1 is observable and another state component x2
can be expressed by a algebraic function of x1, y, u and their derivatives, x2 is also
observable. Observability of the vehicle heading and gyro bias are first studied by
defining ψ ∈ (−0.3, 0.3) rad in a road oriented frame (according to the range of C1
provided by MobilEye), then vehicle position and GNSS biases by the following.

Equations (4.4) and (4.5) are analytic but not algebraic. A solution is to define an
equivalent algebraic system (with algebraic functions) by introducing auxiliary state
variables [27].

Let us define two auxiliary state variables:{
x1 = cosψ
x2 = sinψ (4.8)

Since

ẋ1 = −ψ̇ · sinψ = − (ω − εω)x2

and

ẋ2 = ψ̇ · cosψ = (ω − εω)x1

equations (4.4) and (4.5) are complemented with two additional equations and ψ̇ is
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removed:

ẋ = v · x1
ẏ = v · x2
ẋ1 = −x2 (ω − εω)
ẋ2 = x1 (ω − εω)
ε̇ω = 0
ε̇x1 = −εx1/τ1
ε̇x2 = −εx2/τ2
ε̇y1 = −εy1/τ1
ε̇y2 = 0

(4.9)

and

C0 = (y − yA) /x1 (4.10)

All the functions are now rational.

4.2.3.1 Observability of the vehicle heading ψ

By taking the derivative of equation (4.10), we have:

ẏ = Ċ0 · x1 − ψ̇ · C0 · x2 (4.11)

By plugging ẏ = v · x2 and ψ̇ = ω − εω:

v · x2 = Ċ0 · x1 − (ω − εω) · C0 · x2 (4.12)

By taking now the derivative of equation (4.12), we have:

[
v̇ + 2Ċ0 (ω − εω) + ω̇ · C0

]
x2 =

[
C̈0 − C0 (ω − εω)2 − v (ω − εω)

]
x1 (4.13)

If ψ is identically null (the vehicle is traveling parallel to the lane marking) then
ψ̇ = 0 and we have εω = ω (the gyro bias is then observable). Moreover, in this
case, we have Ċ0 that is identically null and so one can observe that ψ is identically
null.
Now suppose that ψ is not null. So, x2 6= 0. From equation (4.12), we can work
out:

εω = v · x2 − Ċ0 · x1

C0 · x2
+ ω (4.14)
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C0 is physically non null because the lane markings are on the sides of the lane.
By plugging equation (4.14) into equation (4.13) and by noting that x1 = (1− x2

2)1/2,
one gets an implicit algebraic function :(

v̇ · C0 − v · Ċ0 + ω̇ · C2
0
)
x3

2 +
(
C̈0 · C0 − Ċ0

2) (1− x2
2
)3/2

+
(

2Ċ0
2 − C̈0 · C0

) (
1− x2

2
)1/2
−v ·Ċ0 ·x2 = 0 (4.15)

This expression is quite complicated. We have solved it using the symbolic solver of
Matlab
Let us denote:

f = p1x
3
2 + p2

(
1− x2

2

)3/2
+ p3

(
1− x2

2

)1/2
+ p4 · x2 (4.16)

with


p1 = v̇ · C0 − v · Ċ0 + ω̇ · C2

0

p2 = C̈0 · C0 − Ċ0
2

p3 = 2Ċ0
2 − C̈0 · C0

p4 = −v · Ċ0

One can get an explicit algebraic function which express x2 with p1, p2, p3 and p4
by using the following Matlab code:

syms x2;
syms p1 p2 p3 p4;
f = p1*x2^3+p2*(sqrt(1-x2^2))^3+p3*sqrt(1-x2^2)+p4*x2;
explicit_function=solve(f,’x2’);

The result “explicit_function” is the explicit function which expresses x2 as a function
of p1, p2, p3 and p4. Thus, we are able to find a (complicated) algebraic equation
that is not reported in this document.
Another solution is to use the implicit function theorem on simulated typical sce-
nario. This is what is done in the following section.

Theorem 1. Implicit function theorem
Let f : Rn+m → Rm be a continuously differentiable function, and let Rn+m have
coordinates (x,y). Fix a point (a,b) = (a1, . . . , an, b1, . . . , bm) with f (a,b) = c,
where c ∈ Rm. If the matrix [(∂fi/∂yi) (a,b)] is invertible, then there exists an
open set U containing a, an open set V containing b, and a unique continuously
differentiable function g: U → V such that
{(x, g(x))|x ∈ U} = {(x,y) ∈ U × V |f(x,y) = c}.
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Proposition. As equation (4.15) is non-singular when the vehicle linear or rota-
tional speeds are not null or when the vehicle accelerates or decelerates, it is possible
to get, around a working point, a function Φx2 of C0, Ċ0, C̈0, v, v̇, ω and ω̇ such as:

x2 = Φx2

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
(4.17)

Proof. Here, we give some demonstration elements using the implicit function the-
orem which gives a sufficient condition to ensure that there is such an algebraic
function.

Let be φ a real-valued function defined on a domain D such that

φ
(
C0, Ċ0, C̈0, v, v̇, ω, ω̇, x2

)
=

(
v̇ · C0 − v · Ċ0 + ω̇ · C2

0

)
x3

2 +
(
C̈0 · C0 − Ċ0

2) (1− x2
2
)3/2

+
(
2Ċ0

2 − C̈0 · C0
) (

1− x2
2
)1/2 − v · Ċ0 · x2

(4.18)

Let take a point
(
CO

0 , Ċ0
O
, C̈0

O
, vO, v̇O, ωO, ω̇O, xO2

)
∈ D, which satisfies equation

(4.15)

φ
(
CO

0 , Ċ0
O
, C̈0

O
, vO, v̇O, ωO, ω̇O, xO2

)
= 0 (4.19)

According to the implicit function theorem, if

∂φ
(
CO

0 , Ċ0
O
, C̈0

O
, vO, v̇O, ωO, ω̇O, xO2

)
∂x2

6= 0 (4.20)

then there exists a neighborhood V0
(
CO

0 , Ċ0
O
, C̈0

O
, vO, v̇O, ωO, ω̇O

)
⊂ D , an open

set W0 containing xO2 and a real valued function Φx2 : V0 → W0 such that for
any

((
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
, x2

)
∈ V0 ×W0, if φ

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇, x2

)
= 0, then

x2 = Φx2

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
. If this function exists for some neighborhoods of

x2, the observability is local and weak. Otherwise if equation (4.20) holds for all the
open sets containing x2, the observability is local.

The derivative of φ with respect to x2 is another function of x2 (which is easy to
calculate here). In order to do the observability analysis, we propose to do a realistic
simulation.

Let define a vehicle trajectory as an explicit function with time t (a sine function
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Figure 4.3: Simulated vehicle trajectory and lane marking

with a variable speed here):

x = 10t
y = sin3t+ 2
ψ = arctan (0.3cos3t)
v = 10

√
1 + 0.09cos23t

ω = −0.9sin3t/ (1 + 0.09cos23t)
C0 = − (sin3t+ 2) /cos (arctan (0.3cos3t))

(4.21)

With the lane marking equation as y = 0.

Figure 4.3 shows the simulated vehicle trajectory and the lane marking. The trajec-
tory is designed according to the capability of the camera to detect the lane marking
in its field of view. Along the trajectory, every parameter of equation 4.20 is known.
Every sample of the trajectory is the point around which the analysis is conducted.

Figure 4.4 shows the values of the derivative of equation (4.19) with respect to x2.
One can remark that, only when x2 = 0, this derivative equals 0. Otherwise, the
implicit theorem condition is verified since the derivative is different from zero.

In other words, the system observability is globally verified for this trajectory (since
there exists an algebraic function to express x2) except on a finite number of points
where x2 = 0. As shown in Figure 4.4, equation (4.20) holds for all the open sets of
[−sin (0.3) , 0[ ∪ ]0, sin (0.3)]. Therefore, we can say that

x2 = Φx2

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
(4.22)
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Figure 4.4: Derivative of simulated data

is generically observable with x2 ∈ [−sin (0.3) , 0[ ∪ ]0, sin (0.3)].

x1 =
√

1− x2
2 = Φx1

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
(4.23)

is observable.

We could repeat this procedure for many different simulated trajectories but we think
that the reported trajectory is relevant for real vehicles driving on linear roads.

ψ is determined by ψ = arcsin (x2). Thus ψ is observable in [−0.3, 0[ ∪ ]0, 0.3].

There is a particular situation when the trajectory is strictly parallel to the road.
In this case, ψ is identically null and then Ċ0 is identically null. One can therefore
observe that ψ is identically null and so ψ is observable.

Note: If C1 would be accurate enough and used to update the state vector, the
observability analysis of ψ would be simplified.

4.2.3.2 Observability of the gyro bias εω

By using equation (4.23) and (4.22) in equation (4.14), a function Φεω which gives
εω is obtained:

εω = Φεω

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
(4.24)

εω is therefore observable.
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4.2.3.3 Observability of the vehicle position (x, y) and of GNSS biases

By taking the derivative of equation (4.6), we have:

ẋGNSS = v · x1 − εx1/τ1 − εx2/τ2 (4.25)

By doing the same with equation (4.25):

ẍGNSS = v̇ · x1 − v · x2 · (ω − εω) + εx1/τ
2
1 + εx2/τ

2
2 (4.26)

Since ψ is observable and as we have a linear system with two unknowns and two
equations, we get:

εxi = Φεxi

(
C0, Ċ0, C̈0, ẋGNSS, ẍGNSS, v, v̇, ω, ω̇

)
i = 1, 2 (4.27)

So εx1 and εx2 are observable. If τ1 = τ2, εx1 and εx2 are not solvable by equations
(4.6) and (4.25). However, (εx1 + εx2) is observable.

With x = xGNSS − (εx1 + εx2) and equation (4.27), x is observable.

With y = yA + C0 · x1 and equation (4.23), y is observable.

The expression of εy1 is given as follows:

ẏGNSS = v · x2 − εy1/τ1 (4.28)

εy1 = (v · x2 − ẏGNSS) τ1 (4.29)

So εy1 is observable.

With εy2 = yGNSS − y − εy1, we can derive that εy2 is observable.

4.2.3.4 Observability conclusion

So far, we have proved that every element in the state vector X can be expressed
by an algebraic function of components of Y and U and a finite number of their
derivatives. We can consequently conclude that the state vector with its associated
state space is observable as long as the vehicle moves or accelerates.
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Road shape

Simplified road polyline
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Figure 4.5: The geometrical transformation can be performed along segments of the
simplified road polyline (in black). Nodes (black points) are the start and end points of the
polyline. Shape points (green points) define geometry between two nodes.

4.3 Road-invariant Extended Kalman filter

The observability of the state has been demonstrated in a road-oriented frame.
However, in reality, the orientation of the road changes as the vehicle moves from
one road to another or when the road orientation changes. In this thesis, orientations
are predefined for each road and the geometrical transformations are performed from
road to road considering the roads are quite straight in the experiments. As indicated
in Figure 4.5, the road can be curved. In this case, one can perform the geometrical
transformation along each segment of the simplified road polyline very frequently.
In this case, the road frame follows the orientation of the segment between two
adjacent nodes or shape points.

We are now building an EKF that estimates the pose vector of the vehicle from one
road to another, in a sequential way. This idea is inspired form the Invariant EKF
proposed by Bonnabel et al. [21].

4.3.1 Geometrical transformation from one road to another

RO denotes the local ENU frame and Ri is the working road-oriented frame, with
its x-axis pointing to the direction of road i. When the vehicle passes from road i
to road j, the working frame changes from Ri to Rj.

Let jx denote the state vector in frame Rj:

jx =
[
jx, jy, jψ,j εω,

jεx1,
jεx2,

jεy1,
jεy2

]T
(4.30)
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Figure 4.6: Geometrical transformation of the GNSS biases.

The transformation from ix to jx involves rotations and is given by equation (4.31):



jx = ix · cosα + iy · sinα
jy = −ix · sinα + iy · cosα
jψ = iψ − α
jεω = iεω
jεx1 = iεx1 · cosα + iεy1 · sinα
jεx2 = iεx2 · cosα + iεy2 · sinα
jεy1 = −iεx1 · sinα + iεy1 · cosα
jεy2 = −iεx2 · sinα + iεy2 · cosα

(4.31)

where α = θj − θi, θi and θj are respectively the orientation of road i and road j in
RO (cf. Figure 4.7). For an efficient implementation, the orientation of each road
can be stored in the map.
Figure 4.6 illustrates how the estimated biases change when the two successive roads
are orthogonal.
Let iP denote the covariance matrix estimated by the EKF in the working frame
Ri. The transformation from (

ix,i P
) to (jx,j P

) is described by the function given
in Algorithm 4.1, where sα and cα denote sinα and cosα respectively. The road
directions being deterministic, the new covariance matrix is simply the result of a
linear transformation of a random vector.
Now, the reason why the bias on ix has been modeled by two components becomes
clear. We aim at modeling the lateral bias on iy by an autoregressive process plus
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Algorithm 4.1 Function Ri2Rj_State
Input: ix, iP, θi, θj
1: α = θj − θi

2: jHi =



cα sα 0 0 0 0 0 0
−sα cα 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 cα 0 sα 0
0 0 0 0 0 cα 0 sα
0 0 0 0 −sα 0 cα 0
0 0 0 0 0 −sα 0 cα


3: jbi = [0, 0,−α, 0, 0, 0, 0, 0]T
4: jx = jHi

ix + jbi
5: jP = jHi

iP
(
jHi

)T
Output: jx, jP

a random constant to get a better estimation process (we have seen that these
two components are observable thanks to the camera measurements, when working
in the road-oriented frame). When the vehicle pose is converted from one road
frame to another, doing the inverse transformation has to give the same estimate.
Mathematically, it means that matrix jHi has to be squared such that jHi · iHj = I
(Identity matrix).

As we have

iHj =



cα −sα 0 0 0 0 0 0
sα cα 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 cα 0 −sα 0
0 0 0 0 0 cα 0 −sα
0 0 0 0 sα 0 cα 0
0 0 0 0 0 sα 0 cα



It is straightforward to check that our proposal verifies jHi · iHj = I since the
transformation matrix involves rotations (when multiplying a rotation matrix by its
inverse, one gets the identity).

Now, let us proof that if one models the bias on ix by only one component, when
the frame changes from Ri to Rj, there is no way to find a bijective transformation.
The question can be expressed as follows.

Let define
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4.3 Road-invariant Extended Kalman filter

jεy = jεy1 + jεy2

When the road frame changes from road i to road j, we have:

{
jεx = iεxcosα− iεysinα
jεy = iεxsinα + iεycosα

(4.32)

In order to find the transformation matrix, we need now to split jεy into two com-
ponents such that:

jεy1 = h (α) jεy
jεy2 = (1− h (α)) jεy

where h (·) is an unknown function of α.

The transformation matrix would be:

jH∗i =

 cosα −sinα -sinα
h (α) sinα h (α) cosα h (α) cosα
(1− h (α)) sinα (1− h (α)) cosα (1− h (α)) cosα


Thus, the inverse is obtained by setting α→ −α which gives

iH∗j =

 cosα sinα sinα
−h (−α) sinα h (−α) cosα h (−α) cosα
(h (−α)− 1) sinα (1− h (−α)) cosα (1− h (−α)) cosα



The product is

jH∗i · iH∗j =

 1 0 0
0 h (α) h (α)
0 1− h (−α) 1− h (−α)

 6= I (4.33)

Equation (4.33) proves that it is not possible to find a reversible transformation
between two frames by modeling the bias component as [εx, εy1, εy2] in a Cartesian
coordinate system.

The reversible transformation guarantees that the estimated GNSS bias properties
in the ENU frame will not change along with the transformation.

113



Chapter 4 Enhanced GNSS errors modeling and design of a road-invariant filter

4.3.2 ENU Transformation

Since the output of the filter has to be given in the ENU frame RO, algorithm
4.2 describes the state transformation, where

(
Ox, OP

)
denotes the Kalman filter

estimates expressed in the ENU frame.

Algorithm 4.2 Function Ri2RO_State
Input: ix, iP, θi

1: OHi =



cθi −sθi 0 0 0 0 0 0
sθi cθi 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 cθi 0 −sθi 0
0 0 0 0 0 cθi 0 −sθi

0 0 0 0 sθi 0 cθi 0
0 0 0 0 0 sθi 0 cθi


2: Obi = [0, 0, θi, 0, 0, 0, 0, 0]T
3: Ox = OHi

ix + Obi

4: OP = OHi
iP
(
OHi

)T
Output: Ox,OP

4.3.3 Road-invariant EKF implementation

The filter is described in algorithm 4.3. iA and iB denote the coordinates of the
detected lane marking [AB] in Ri. In this algorithm, just one detected lane is
considered but it can be easily extended to multi-lane detections.

The filter is triggered by DR sensor measurements. GNSS and camera measurements
are transformed into the road frame to perform the update by functions RO2Ri and
RO2Ri_Point. Line 12 to 15 of algorithm 4.3 monitors the change of the road
orientation. If it changes, the vehicle state is transformed in the new road frame by
function Ri2Rj_State. Finally, the Kalman estimates are transformed back to ENU
frame by the function Ri2RO_State, to provide the system output.

Hereafter, the main stages and functions used in the road-invariant EKF are de-
scribed.
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Algorithm 4.3 One loop of the Road-invariant Extended Kalman filter
1: u =Get(DR sensors measurements)
2:
(
ix,i P

)
=Predict

(
ix,i P,u

)
3: if GNSS data is available then
4:

(
OyGNSS ,ORGNSS

)
= Get(GNSS fix)

5:
(
iyGNSS , iRGNSS

)
=RO2Ri

(
OyGNSS ,ORGNSS , θi

)
6:

(
ix, iP

)
=Update_GNSS(ix, iP,iyGNSS ,iRGNSS)

7: end if
8: if Camera data is available then
9: C0 =Get(camera measurement)
10:

(
Ox,O P

)
=Ri2RO_State

(
ix,i P, θi

)
11:

(
j,OA,O B

)
=Map_Match

(
Ox,O P, C0,Map

)
12: if θi 6= θj then
13:

(
ix,i P

)
=Ri2Rj_State

(
ix,i P, θi, θj

)
14: θi = θj
15: end if
16: iA = RO2Ri_Point

(
OA, θi

)
17: iB = RO2Ri_Point

(
OB, θi

)
18:

(
ix, iP

)
=Update_Camera

(
ix, iP, C0,

iA,iB
)

19: end if
20:

(
Ox,O P

)
=Ri2RO_State

(
ix,i P, θi

)
. /*System output*/

. /*See Algorithms 4.1, 4.2, 4.4 and 4.5*/
. /*The Kalman filter functions are expressed in the text*/
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4.3.3.1 Prediction

The proprioceptive sensors are available during a sampling period Te, the function
Predict(ix,i P,u) consists in computing:

ix = f (ix,u) ⇐⇒



ix =i x+ Te · vm · cos (iψ)
iy =i x+ Te · vm · sin (iψ)
iψ = iψ + Te · (ωm − iεω)
iεω = iεω
iεx1 = a1 · iεx1
iεx2 = a2 · iεx2
iεy1 = a1 · iεy1
iεy2 = iεy2

(4.34)

and


iP = AiPAT + BNBT + Q
A = ∂f(ix,u)

∂ix , B = ∂f(ix,u)
∂u

(4.35)

with a1 = e−Te/τ1 and a2 = e−Te/τ2 . vm and ωm denote the measured inputs,
u = [vm, ωm]T . The measurement noises on v and ω are supposed to be zero-mean
independent white noises, N denotes their covariance matrix. Q is the covariance
matrix of the process noise.

4.3.3.2 GNSS update

When GNSS data is available, the measurement vector OyGNSS =
(
OxGNSS ,

O yGNSS
)

in the ENU frame RO is transformed to the working road-oriented frame Ri (see
Figure 4.7) by Algorithm 4.4. The covariance matrix ORGNSS given by the receiver
is also converted.

ORGNSS =
[
σ2
e σ2

e,n

σ2
n,e σ2

n

]
(4.36)

Algorithm 4.4 shows the transformation.
Then, a classical Kalman update step is performed to update (ix,i P) with an in-
novation gating to reject the GNSS fix outliers (e.g. multipath on close buildings).
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Algorithm 4.4 Function RO2Ri

Input: OYGNSS ,
ORGNSS , θi

1: iTO =
[

cosθi sinθi
−sinθi cosθi

]
2: iYGNSS = iTO ·O YGNSS
3: iRGNSS = iTO ·O RGNSS

(
iTO

)T
Output: iYGNSS ,

iRGNSS

M

Bias

xGNSS
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E
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Figure 4.7: GNSS fix error and frame transformation

For an accurate data fusion, the level arm of the antenna with respect to the body
frame has to be taken into account:

{
xGNSS = cosψ · tx − sinψ · ty + x+ εx1 + εx2 + β

′
x

yGNSS = sinψ · tx + cosψ · ty + y + εy1 + εy2 + β
′
y

(4.37)

4.3.3.3 Camera update

In order to update the filter with a camera measurement, the map is used as it
contains the coordinates of the lane markings. Map matching is therefore done only
when camera measurements are available. Its goal is to find the road that matches
with the detected lane marking. Since the map is defined inRO, the first step consists
in converting the estimated pose into ENU frame. Map matching is then performed
firstly to find the closest road segment by a point-to-semgent map matching (see the
structure of the map in 2.5), and the closest lane marking is chosen as the detected
lane marking as described in section 3.6.3. At this moment, the algorithm checks if
the vehicle is in a different road than the one previously matched. In this case, the
road working frame is modified and the state with its covariance matrix is converted.
It just remains to get the coordinates of the lane marking in the road frame which
is described by Algorithm 4.5 and to update the state and covariance matrix by
applying an estimation stage of the EKF. In practice, the location of the camera
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in the body frame is taken into account to get an accurate correction as in section
3.6.3.

Algorithm 4.5 Function RO2Ri_Point
Input: OA, θi

1: iTO =
[

cosθi sinθi
−sinθi cosθi

]
2: iA = iTO ·O A
Output: iA

Remark 3. Please note that, in the road-invariant EKF, the GNSS error modeling
in lateral and longitudinal directions is not symmetric. If the GNSS bias is modeled
as in Chapter 3 or in [119], there is no need to implement the EKF in the road
frame. In the published paper [119], the GNSS was modeled as the combination of a
random bias and an autoregressive bias in both lateral and longitudinal direction. In
this case, the observability is obtained when the road orientation changes. In other
words, if the vehicle drives in a very long straight road for a long time, there is no way
to distinguish between the random bias and the autoregressive in the longitudinal
direction. The road-invariant EKF proposed in this chapter is better because the
GNSS bias modeling is guaranteed to be fully observable in any situation.

Localization results are presented in the following.

4.4 Results

In this section, some simulation results are first presented. The sensor measurements
and the vehicle trajectory ground truth is defined by equation (4.21). The objective
of this study is to give a better understanding of the system observability. Then, we
will discuss real experimental results.

4.4.1 Simulation results

The gyro and GNSS errors (biases and colored noises) have been simulated. They
are denoted as

(
εtruthω , εtruthx1 , εtruthx2 , εtruthy1 , εtruthy2

)
. Figure 4.8 gives the simulated gyro

bias and its estimation error with a 3σ bound. The gyro bias is well estimated.
Figure 4.9a shows the simulated GNSS biases (in black) and their estimation (in
red). One can notice that the autoregressive biases (εx1 + εx2) and εy1 are well
estimated. In addition, the random constant bias εy2 converges well to the true
value. Figure 4.9b shows the bias estimation error with 3σ bounds.
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Figure 4.8: Estimated gyro bias compared with ground truth

These simulation results support well the observability analysis done in section 4.2.
If a GNSS random constant bias is added in the x (longitudinal) direction, Figures
4.10a and 4.10b confirm that it is not observable since the filter is not able to make
the estimation error to converge towards zero. In other words, it means that the
enhanced modeling of GNSS bias is only observable in y (lateral) direction. This
result supports the proposition of the road-invariant EKF.

4.4.2 Outdoor experimental results

The method proposed in this chapter is compared with the loosely coupled EKF
implemented in the ENU frame RO, in which the GNSS biases on x and y are mod-
eled only by first order autoregressive processes to make sure that the observability
is kept (see chapter 3). As described in Algorithm 4.3, the output of the localization
solver is converted into frame RO. So the localization performance of the two ap-
proaches can be studied in RO. Here, the results have been carried out by using data
replay and both filters have been implemented in C++ to test them with exactly
the same framework and with the same tuning.

In 4.11, the green bar indicates the orientation of the x-axis and the red bar the
y-axis. The blue lines represent polylines of the ways and the white lines are the
lane markings. The black ellipse represents the estimated confidence domain (3σ).

Table 4.1 gives global performance metrics of three tests obtained by the u-blox re-
ceiver alone, the EKF in the ENU frame (ENU EKF) and the road invariant EKF.
Lateral and longitudinal positioning errors (PEs) are analyzed and compared. One
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Figure 4.9: Simulation results
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Figure 4.11: Illustration of a road frame change from one road to another during a real
experiment. The vehicle is passing from the southeast toward road to the northeast toward
one.

Lateral PE (m) Longitudinal PE (m)
I II III I II III

mean 1.30 0.07 0.04 1.55 -0.32 -0.19
std. dev. 1.12 0.29 0.26 1.18 0.32 0.29
median 0.96 0.10 0.09 1.31 0.30 0.24
95th percentile 3.20 0.68 0.55 3.88 0.88 0.73
max 6.78 1.83 1.37 4.69 1.50 1.36

Table 4.1: Error statistics. (PE: positioning error; I: u-blox; II: ENU EKF; III: road
invariant EKF)

can notice that the localization accuracy is highly improved by using the road in-
variant EKF with 95% lateral positioning error less than 0.55m. Table 4.2 gives
the relative improvement reached by the road invariant EKF with respect to the
EKF in the ENU frame, in terms of median, 95th percentile and maximum of the
lateral and longitudinal positioning error. Figure 4.12 displays the cumulative dis-
tribution of the absolute positioning errors by the road invariant and ENU EKFs of
the three tests. The road invariant EKF gives better estimation on both lateral and
longitudinal directions.

Hereafter, only the results of the first test are taken into consideration to do a more
deep analysis. Figure 4.13 shows changes of lateral and longitudinal positioning
errors over time with ±3σ bounds by the road invariant EKF. One can notice that,
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median 95th percentile max
Lateral Positioning 10% 19% 25%
Longitudinal Positioning 20% 17% 9%

Table 4.2: Improvement by road-invariant EKF compared to the ENU EKF
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Figure 4.12: Cumulative distribution function (CDF) of the positioning lateral and lon-
gitudinal errors

the uncertainty on lateral position increases greatly when there are no lane marking
measurements. The road invariant EKF remains consistent (99.7% probability level)
for all but 5.8% of the data points. The consistence failure rate of ENU EKF is much
higher since it reaches 24.4%. Figure 4.14 shows the positioning errors over time by
the two approaches.

4.4.3 Convergence analysis of the GNSS biases

Figure 4.15 depicts the estimated standard deviation of εx1, εx2, εy1, and εy2 in RO.
It has to be noticed that they converge towards constants, except when there is no
lane marking detection. This is an experimental checking of the observability. By
looking at the biases estimates (Figure 4.16), one can see that they remain bounded
and in the order of magnitude of usual L1-GNSS errors.

Figure 4.17 shows that the sums of the estimate biases in both direction of RO match
very well the bias computed with the ground truth equipment.
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Figure 4.13: Lateral and longitudinal PE with the road invariant EKF
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Figure 4.14: Lateral/longitudinal PE by road invariant and ENU EKFs
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Figure 4.15: Estimated standard deviation of the GNSS biases

In Figure 4.18, the CDFs of GNSS biases estimation errors when using the road
invariant EKF and the ENU EKF are compared. Road invariant EKF generally
produces a smaller estimation error. This clearly indicates that the GNSS errors are
better estimated by the road invariant EKF.

4.4.4 Robustness of the Road Invariant EKF

4.4.4.1 Robustness to GNSS multipath

In Figure 4.19, the yellow box indicates a period during which a GNSS multipath
happens because of a urban canyon. For instance, during the time interval t = 120-
128s of test 1, the GNSS receiver suffers from multipath effect. The green and blue
points indicate lane marking detections on left and right sides respectively. One can
notice that unfortunately there is no lane marking measurements when the multipath
effect begins. The lateral positioning error of the road invariant EKF reaches 1.2m,
while ENU EKF reaches 1.83m, and the lateral PE of the road invariant EKF is
overall smaller than the one of the ENU EKF during the multipath effect. The
camera retrieves a lane marking measurement at the right side of the lane at t =
122.2s. The lateral PE of the road invariant EKF is quickly reduced to less than
0.5m.
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Figure 4.16: Estimated biases in RO
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Figure 4.17: Estimated biases compared to the reference
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Figure 4.18: Comparison of the CDFs of GNSS biases estimation errors when using the
road invariant EKF and the ENU EKF described in chapter 3.
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Figure 4.19: Lateral positioning error during multipath and intersection
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Figure 4.20: Lateral positioning errors with camera measurement masks

4.4.4.2 Robustness to outages of the camera lane marking measurements

Now, let us see what happens in an intersection without any camera detection.
In Figure 4.19, the blue box indicates a period during which the vehicle is passing
through an intersection. There is no lane marking detection in this kind of situation.
One can notice that the lateral positioning performance of the road invariant EKF
is much better during this period and the lateral errors remain bounded by 1m.
In order to further validate the robustness to outages of lane marking measurements,
we have simulated camera outages at t = 160-170s, 215-240s and 250-260s of test 1
(the gray boxes in Figure 4.20) when the vehicle was driving straightly (cf. Figure
2.22). Results show that the lateral positioning of the road invariant EKF is again
much better than the one of the ENU EKF. The positioning errors are less than
0.5m which indicates a lane level positioning capability.
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4.5 Conclusion

In this chapter, we have proposed an enhanced state modeling which handles well
the time-correlated errors and bias of L1-GNSS in a road frame. A road invariant
EKF algorithm has been proposed and tested. In particular, the proposed state
space model is observable and a bijective transformation between roads guarantees
the continuity of the Kalman filter estimates. Observability analysis has been used
to design the modeling of the system. The method has been tested in simulation
and validated with real outdoor data. It works much better than a localization
solver implemented in the ENU frame in terms of accuracy and consistency because
it handles a more refined modeling of the errors. The roads of the test area being
quite orthogonal with each others, we haven’t tested yet the behavior of the road
invariant EKF on roads with less varying geometries such as sinusoidal roads. This
analysis remains to be done in future work.
It has been noticed that a large estimation error occurs during t = 120-128s for both
loosely coupled approaches in constraint environments with multipath effects. In
the next chapter, a tightly coupling approach is studied to improve the performance
especially in this case of degraded environment for the propagation of the signals of
the satellites.
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5.1 Introduction

Two loosely coupled schemes using GNSS position fixes have been studied in Chapter
3 and 4. The localization system works well most of the time. The integration of
the camera measurement makes possible the estimation of GNSS biases and the
bias shaping filter bridges well the camera measurement outages in the considered
scenarios. However, when a camera measurement outage and GNSS multipath effect
happen at the same time (which is a case we encountered in our experiments several
times), the localization system has troubles to keep a lane-level accuracy before the
camera measurement is retrieved. It happens particularly in urban areas where less
than 4 reliable satellites are in view. The GNSS position fix is either not available
nor consistent if the receiver is tuned to be very sensitive which makes the engine
compute positions with satellites suffering from multipath. In this last case, if
the localization solver fails to reject the GNSS fix contaminated by unpredictable
multipath errors, the shaping filter can no more whiten the GNSS bias. Thus,
the estimated confidence of the localization solver output can be inconsistent with
respect to ground truth.
Considering the aforementioned problems, this chapter looks at a tightly coupled
approach which employs raw pseudoranges and Dopplers from each satellite in view.
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Figure 5.1: Tightly coupled scheme

In this case, GNSS measurement updates of the localization estimates can be per-
formed even when the number of visible satellites are only three or fewer. This can
improve the availability of the navigation system in degraded GNSS environments.
In addition, as the filter processes GNSS signals directly, it increases the chance of
optimal filtering performance and integrity monitoring possibilities. On the other
hand, the need to handle raw GNSS data (e.g. calculation of satellite clock correc-
tions, satellite positions and velocities from ephemeris data) complicates the design
process of a tightly coupled system [130]. For a tightly coupled scheme, the accuracy
of the range measurements plays an important role on the correctness of the position
estimate. The overall position accuracy can be improved if the measurement errors
(in particular at the pseudorange level) are accurately estimated. In a similar way
to the shaping filter studied in Chapter 3, it is expected to estimate the GNSS bias
at the pseudorange level by integrating the camera measurement.
This chapter is organized as follows. In section 5.2, works related to tightly coupling
GNSS with pseudorange bias estimation are reviewed. Section 5.3 presents the
system modeling of our approach. Section 5.4 presents experimental results and
section 5.5 concludes this chapter.

5.2 Related work and problem statement

Before 2000, the SA (Selective Availability) was the greatest source of positioning
error for civilian GPS users with an horizontal positioning error up to 100m typically.
Many earlier works on tightly coupling GPS addressed this issue of inferring the SA
systematic error with digital maps. SA made it difficult to determine which road a
car was on, particularly in areas where several ways run in parallel. This inaccuracy
could sometimes give erroneous turn information for navigation systems. Although
SA has been disabled since 2000, the idea of using digital map to compensate for
GPS errors (especially for errors on pseudoranges) is still instructive for our work.
In [120], the authors combine raw GPS pseudorange measurements, road centerline
geometry and DTM (Digital Terrain Model) data to improve the positioning quality.
A raw vehicle position is first computed using all satellites available plus height
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aiding. The effect of SA is viewed as a slowly varying bias in short term. It can be
subtracted from position measurements provided that a measure of the bias can be
made at regular intervals which is the fundamental principle of DGPS. Therefore,
road geometry-derived corrections for pseudoranges are computed by comparing
the raw position and the position snapped onto the road segments. Then, a GPS
fix is computed using the corrected pseudoranges. The authors call this strategy
virtual DGPS. However, the along track error cannot be resolved for a straight
road. An alternative way of exploiting digital maps is to use them as a heading
sensor by considering that map precision is often better than map accuracy [42]. Map
matching with a digital map gives then useful feedback to correct GNSS errors. That
is mainly because standalone GNSS accuracy was lower than the one of maps. GNSS
accuracy was so highly improved after the removal of SA. This led to a situation
where the positioning accuracy had the same level of the one as the geometry of
the digital map (e.g. several meters accuracy). New emerging strategies seeks to
integrate vision measurements and enhanced maps.

Positioning accuracy is highly dependent on the accuracy of the pseudoranges. When
integrating with vision/map coupled measurements, a pseudorange observation is
often modeled as:

ρi = Ri + c · dtu + εi + βi (5.1)

where εi is an observable bias and βi is an unobservable noise for satellite i.

In [126], the authors tightly couple pseudoranges and Dopplers with vision mea-
surements and DR sensors. εi represents a common-mode error (the atmospheric
error and the ephemeris error coming from the computed satellites positions) and
βi is mainly caused by thermal noise and multipath. εi is removed by differential
GPS technology. The authors conclude that a single visual feature measurement
at 1 Hz is able to achieve a submeter-level accuracy. In [106], the authors propose
a method for collaboratively sharing georeferenced vision measurements and GNSS
pseudoranges to calibrate pseudorange errors for each satellite in view. The advan-
tage is that this method needs no stationary reference receiver. εi is also modeled as
a common-mode error. Sharing of lane-boundary measurements can make εi fully
solvable (in the least-squares sense) for networked GNSS receivers. For a single-user
estimation problem (which is our case) and with a snapshot solver (epoch by epoch
- which is not our case since we do state filtering), the authors also prove that the
lane-boundary measurement makes it possible to estimate only the transverse part
of εi in the road. In order to make the pseudorange errors observable, the proposed
collaborative method estimates the correlated biases εi among different users that
are on different roads and can observe different part of the errors.

Under a single-user framework, the number of unknowns (pseudorange bias) grows
linearly with the number of measurements. It results that measurements are not
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enough to solve the problem as in the collaborative way. So, we model εi as a time
correlated bias and try to estimate it in a dynamic filter as suggested in [13][30]:

{
εik+1 = λεik + wε
λ = e−Te/τpr

(5.2)

In [13], the pseudorange bias is modeled as a stationary first-order autoregressive
process driven by zero-mean white noise wε. A time constant τpr = 600s is suggested
and used in [89]. Te is the sampling period. The dimension of the state of the filter is
increased by the number of visible satellites because each pseudorange measurement
noise requires a first-order shaping filter.

5.3 Tightly coupling L1-GNSS

In this section, we use a pseudorange observation model similar to equation (5.1).
εi is considered as specific to every satellite in view since the propagation paths
of GNSS signals and orbit errors are different between satellites. The basic idea
is to enhance the estimation of the pseudorange bias of the satellites in view by
integrating lane marking measurements.

5.3.1 GNSS Measurements Used in a Tightly Coupled Scheme

A L1-GNSS receiver tracks all the satellites in view. We have used a u-blox 6T
receiver with a patch antenna as mentioned in Chapter 2. It provides measurements
and navigation information with respect to each GNSS satellite in view as follows:

• Position of the satellite at the time of emission
• Velocity of the satellite at the time of emission
• Pseudorange C/A on L1
• Doppler on L1
• Signal-to-noise ratio (C/N0)
• User range accuracy (URA)

These raw data are not directly provided by the receiver. GNSS receiver raw data
and corrections are computed using the GPSTK library (see Appendix B). The
GNSS signal and the basic observation models have been introduced in Chapter 2.
Hereafter, we recall briefly how a GNSS receiver gets the above information.
The GNSS receiver uses ephemerid data to calculate the position and velocity of
the satellites. The ephemerid is broadcast in real-time through navigation messages
and contains the orbit of each satellite refreshed periodically by the control segment.
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Figure 5.2: Illustration of satellites configuration and C/N0 variation during a test

The GNSS receiver keeps a delay lock loop (DLL) for code tracking and a phase lock
loop (PLL) for carrier phase tracking (see Chapter 2). The measurements produced
by the DLL are the code pseudoranges. The Doppler shift is computed by track-
ing the frequency of the received signal and its value is immune to cycle slips [11].
C/N0 refers to the ratio of the carrier power with the noise power per unit band-
width. Higher C/N0 results in less noisy pseudorange and Doppler measurements
[26]. URA is a 1-sigma estimate of the user range error in the navigation data for the
transmitting satellite. It includes all errors for which the space and control segments
are responsible but errors introduced by the user or the transmission media are not
included [31].

When a satellite appears at the horizon, the C/N0 is in the range of 30-40 dB-Hz
and increases up to a maximum of slightly over 50 dB-Hz once the satellite is at
50-60 degrees elevation angle or higher. As shown in Figure 2.25a, there were a
total of 10 satellites in view over the outdoor experimental area for test 1. Take
the highest satellite (satellite 8) as an example, Figure 5.2b displays the variation
of its C/N0 value over time. Around t = 120s, the vehicle passes through an urban
area and so the C/N0 degrades rapidly during this period. Low C/N0 can also arise
because of unintentional interference, deliberate jamming or weak signals [51].

5.3.2 System Modeling

In this section, we present a strategy for tightly coupling the GNSS raw measure-
ments (pseudoranges and Dopplers) with the lane marking measurements. When
calculating the pseudorange and the Doppler, the position of the GNSS antenna

135



Chapter 5 GNSS map-aided localization with a tightly coupled scheme

with respect to the body frame has to be taken into account:


xa = x+ cosψ · tx − sinψ · ty
ya = y + sinψ · tx + cosψ · ty
za = z + tz

(5.3)

where [x, y, z]T is the 3D position of the vehicle, ψ is its heading, [tx, ty, tz]T is the
position of the receiver antenna in RM and xa = [xa, ya, za]T is the position of the
receiver antenna in RO. For a given satellite i, its position vector xis = [xi, yi, zi]T
at the emission time and in the working frame is reconstructed from the received
navigation message. The corresponding pseudorange is:

ρi =
√

(xa − xis)
2 + (ya − zis)

2 + (za − zis)
2 + c · dtu + εi + βi (5.4)

where ε represents the sum of the residual (non-white) errors of the pseudorange.
βi is the measurement noise.

In land vehicle applications, if the altitude changes slowly, it is often considered
constant and sometimes assumed to be known by using altitude maps [100]. In this
thesis, we look for a planar model of the system in order to have an efficient state
observer in terms of computation with a reduced number of state components. za
is considered as known from the Up coordinate of the lane segment (link) stored in
the map:

za = ha + zlane (5.5)

where ha is the height of the GNSS antenna with respect the road, which is a
constant. zlane is the Up coordinate of the lane in which the vehicle is located. zlane
is inferred using the estimated 2D position. Figure 5.3 shows the Up coordinates
mapped for each node or shape point of lane polylines.

The main sources of range errors are (cf. Figure 5.4):

• Atmospheric pseudorange residual errors εpr
• Inaccurate satellite position estimates due to the use of real-time navigation

messages εSat
• Error of the mapped altitude of the road εz
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We propose to estimate the range-error parameter εi which results from the com-
bination of εSat, εpr and εz. A first order auto-regressive shaping filter is used for
satellite i as :

ε̇i = −εi/τε + wε (5.6)

where wε is the driving noise, τε is the correlation time.

The Doppler shift is caused by the relative motion of the satellite with respect to
the receiver antenna. By defining the line-of-sight vector uilos of satellite i as

uilos =
(
xa − xis

)
/Ri (5.7)

the Doppler shift is linked to the GNSS antenna through the following equation (cf.
equation (2.24)):

ρ̇i =
(
vr − vis

)
• uilos + c ˙δtu − εi/τε + βid (5.8)

where vr = [vm · cosψ, vm · sinψ, 0]T is the velocity vector of the receiver and vis =[
ẋi, ẏi, żi

]T
is the one of satellite i. • denotes the dot product. βid is the measurement

noise. ˙δtu is the drift of the clock of the receiver. The impact of the vehicle angular
speed onto the Doppler effect, which is through the antenna lever arm, is neglected.

For efficient numerical computation, the filter estimates range equivalent values of
the receiver clock parameters:

d = c · dtu ḋ = c ˙·dtu

With n satellites in view, the full state space in the local ENU frame becomes:

x =
[
x, y, ψ, εω, d, ḋ, ε

1, · · · , εn
]T

(5.9)
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With a 2D unicycle kinematic model, a discrete evolution model is given by:

xk = f (xk−1,umk )⇔



xk = xk−1 + Te · vmk · cosψk−1
yk = yk−1 + Te · vmk · sinψk−1
ψk = ψk−1 + Te · (wmk − εω,k−1)
εω,k = εω,k−1 + αωk
dk = dk−1 + Te · ḋk−1 + αdk
ḋk = ḋk−1 + αḋk
ε1
k = a · ε1

k−1 + αε1k
...
εnk = a · εnk−1 + αεnk

(5.10)

where um = [vm, ωm]T denotes the measured input vector and Te the sampling
period.

5.3.3 Localization solver for tightly coupling GNSS
measurements

5.3.3.1 GNSS measurement validation

At time instant k, when the GNSS measurements are available, a validation step is
performed on the measurements of every satellite to avoid the use of badly tracked
satellites and to reject multipath signals.

The antenna is less sensitive to signals arriving at low elevation angles. Low elevation
angle signals can be affected by undesired reflections (multipath) and their effect
(as they arrive delayed, by the detour, as compared to the direct path signal) on
the receiver tracking loops and eventual pseudorange measurements should be mini-
mized. Let us describe now a robustification strategy to handle GNSS measurement
outliers.

For a Doppler measurement, the validation process is based on the following strategy:

• C/N0 gating: check that C/N0 is high enough (e.g. 38 dB-Hz).

• Elevation mask: the elevation angle of satellite i is calculated using xis and the
current estimate x. The elevation mask angle is usually set to 15 degrees.

• Innovation gating: check the Normalized Innovation Squared [43].

As a Doppler is in general more accurate than a pseudorange, a pseudorange is
used only when its corresponding Doppler measurement is valid. For a pseudorange
measurement, an innovation gating step is also added after having used the Doppler.
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5.3.3.2 Filter implementation

By denoting Ak = ∂f(xk−1,um
k )

∂x , Bk = ∂f(xk−1,um
k )

∂um , the tightly coupling filter is de-
scribed by Algorithm 5.1 in which the Dopplers are used at first. Additionally a
Mahalanobis distance threshold is set to reject the mismatch before using C0 to up-
date the state vector. The process is time-triggered with the CAN bus data which
has the highest rate. The latency of the GNSS receiver is neglected, in the current
implementation, since the filter runs in post-processing on recorded data with PPS
time stamping. The camera latency is also neglected since it provides essentially
lateral corrections: neglecting its latency has almost no impact on the accuracy.

Algorithm 5.1 An iteration stage of the filter
In out: x, P
1: um = [vm, ωm]T =Get (DR measurements)
2: x = f (x,um)
3: P = Ak ·P ·AT

k + Bk ·N ·BT
k + Q

4: if New GNSS data is available then
5: [ρ1,...,n, ρ̇1,···n] =Get (GNSS measurements)
6: Good_Doppler=∅ Good_Pr=∅
7: for j = 1, . . . , n do// n is the number of satellites in view
8: if (ρ̇j is valid) then // Please refer to Section 5.3.3
9: Add(ρ̇j) to the Good_Doppler list

10: end if
11: end for
12: [x,P] =Update (x,P,Good_Doppler)
13: for j = 1, . . . , n do
14: if (ρ̇j is valid ) and (innovation < Threshold) then
15: Add(ρj) to the Good_Pr list
16: end if
17: end for
18: [x,P] = Update (x,P,Good_Pr)
19: end if
20: if New camera measurements are available then
21: [C0] =Get ( camera measurements )
22: [AB]=map_match (x, C0,map)
23: if ([AB] is consistent with the vehicle state) then
24: [x,P] = Update (x,P, C0, [AB])
25: end if
26: end if

It is important to note that the filter uses a measured linear velocity vm in the
Doppler observation model (see equation (5.8)). Therefore, the estimation process
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Model noises variances Measurement noises variances
V ar (αω) = 5× 10−10 V ar (βc) ∼ N (0, 0.16)

V ar
(
αd
)

= 1× 10−3 V ar (β) = S · 10
−C/Ni

0
10

V ar
(
αḋ
)

= 1× 10−4 V ar (βd) = 0.05

V ar (αε) = 1× 10−4 V ar (γv) = 1× 10−4

V ar (γω) ∼ N (0, 2.5× 10−3)
Table 5.1: Tuning of the EKF-CN parameters (International System Units)

has correlated noises and the EKF needs to be reformulated as an EKF with cor-
related noises (EKF-CN) [99]. When using Doppler measurements to update the
state vector, the Kalman gain K is calculated as:

K =
(
P ·HT + S

)
/
(
H ·P ·HT + D ·N ·DT + R + H · S + ST ·HT

)
(5.11)

with S = Bv ·N ·DT , Nv = V ar (γv), D = ∂ρ̇i

∂vm , H = ∂ρ̇i

∂x and Bv = ∂f(xk−1,um
k )

∂vm .

The update of the covariance is

P = P−K
(
H ·P + ST

)
(5.12)

The prediction and update by camera and pseudorange follow the EKF with mea-
sured input presented before (Algorithm 3.1, page 82).

5.4 Experimental Results

The measurement noise βi in equation 5.4 is supposed to be white and zero mean
(βi ∼ N (0, σ2

i )). As it is not stationary as indicated in [5], its variance is modeled
by Wieser’s model in which the measured carrier-to-noise density ratio C/N0 is used
as a quality indicator:

σ2
i = S · 10

−C/Ni
0

10 (5.13)

where S = 60000m2Hz.

Table 5.1 specifies all the process and measurement noises.
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Figure 5.5: Longitudinal/lateral positioning errors by tightly coupling142
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Figure 5.6: Up coordinates of the experimental vehicle obtained from the map

Positioning errors are first studied. Figure 5.5 shows the lateral and longitudinal
positioning errors with estimated 3σ bounds.

Figure 5.6 shows the altitudes of the GNSS antenna computed using the map.

Figure 5.7 displays the variation of heading errors. The biggest heading error is less
than 3 degrees.

Figure 5.8 displays the estimated receiver clock bias and the corresponding 3σ
bounds of the estimation errors.

Figure 5.9 gives the estimated receiver clock bias drift and the 3σ bounds of the
estimation errors. Both clock bias and clock bias drift have converging uncertainties.

The advantage of tightly coupling GNSS is that the localization solver utilizes only
the raw measurements with high quality. As described in algorithm 5.1, the satellites
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Figure 5.7: Heading errors
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Figure 5.10: Satellite in view and the number of used satellites for test 1

in view are selected according to elevation and C/N0 and validated by innovation
gating one by one. Figure 5.10 shows the satellite in view and the number of used
satellites. There are totally 10 satellites in view, but the highest number of satellites
used at the same time is 8. This is because measurements of satellite 4 and 13 are
always rejected, due to their elevation angle under 15 degrees. One can also notice
that the number of used satellite reduces rapidly when the vehicle enters the urban
area (t = 112 -123s).
For comparison purpose, we have performed a tightly coupling EKF without using
the camera measurement. Figure 5.11 presents the cumulative distribution func-
tions of the horizontal positioning errors. The tightly coupling EKF with camera
gives the most accurate positioning. One can notice that the positioning perfor-
mance is highly improved compared with standalone GNSS, even without using the
camera measurement. This verifies the autoregressive modeling of pseudorange bias
proposed in [13]. Hereafter, we look at the estimated pseudorange biases.
For each subplot of Figure 5.12, the abscissa expresses time in seconds, the ordinate
gives every estimated bias εi in meters. The bias on every pseudorange is initialized
at zero. Measurements of satellites 4 and 13 are not used. Moreover, the measure-
ments of satellite 26 became available only after 100s and are lost after 200s. The
estimated biases are quite smooth, in the order of few meters and stay bounded
during all the trial.
A limit of the presented results is that it lacks a comparison with a ground truth
value of pseudorange biases. In order to remedy this issue, we suggest to investigate
firstly the convergence of the estimated error covariance and the consistency of the
position estimation later. Figure 3.16 displays the estimated 3σ bounds for each
satellite in view. The error bounds converge toward constants which indicates an
observable behavior.
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Figure 5.12: Estimated biases on pseudoranges. The red line for TC EKF without
camera. The black line for TC EKF.
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Figure 5.13: The estimated 3σ bounds of the error of estimated pseudorange bias

We can conclude that modeling and estimating a time correlated bias on pseudorange
of each satellite is feasible even without the camera. The integration of lane marking
measurements enhance their estimation as shown in Figures 5.11 and 5.12.

5.5 Conclusion

In this chapter, we have studied a method which merges raw GNSS measurements
(pseudoranges and Dopplers) with lane marking measurements and DR sensors. In
order to reduce the dimension of the state vector and to have a fast response to the
velocity change, the linear and angular velocity are used as measured input. The
measured linear velocity appears in the Doppler observation model, so the EKF
filter is reformulated as an EKF with correlated noise for Doppler. The vehicle is
assumed to travel on a flat surface thanks to the use of a navigation frame close
to the navigation area. The up dimension of the vehicle is considered as known
by the map. A first order autoregressive model is applied to estimate pseudorange
bias of each satellite. The state vector is significantly augmented compared to a
loosely coupled approach but stays observable thanks to the time-correlated model.
Outdoor experiments data has been used to validate the proposed method.
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6.1 Introduction

In the last three chapters, three variants of the localization solver have been studied.
This chapter is dedicated to a detailed comparison of the performance of the different
filters according to several specific metrics. The good choice of performance metrics
is usually critical for assessing a system and evaluating its application. For vehicle
localization systems, accuracy is an important metric which usually refers to statis-
tical figures of merit of the position or velocity error. In this thesis, we adopt the
definition of accuracy as defined in the SaPPART (Satellite positioning performance
assessment for road transport) project [4]. The metrics are built from statistical dis-
tributions of the errors with respect to a ground truth. For instance, the median
value and the 95th percentile of the horizontal positioning error distribution can be
chosen for accessing the horizontal positioning accuracy. Since the performance of
GNSS-based systems has a strong dependence on time and operational conditions,
the performance such as accuracy cannot be determined by a single measurement.
The sensor fusion being made by probabilistic estimators in this thesis, we propose
to evaluate the consistency of the filters by checking whether the real covariance of
the estimation error is well estimated.
Another metric is availability which refers to the percentage of time during which
a pose estimate is delivered with the required performance (e.g., required accu-
racy and consistency). For a given localization system, the higher the performance
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requirement, the lower its availability. Since confidence bounds act often as de-
cision variables for qualifying availability, a localization system has to be not too
pessimistic (otherwise the provided localization information will be declared un-
available in situations where it is, in fact, good enough for the current navigation
task). So, a good localization system is a system that provides adequate confidence
information.

Finally, the localization performance of the proposed approach is strongly influenced
by map matching and data association with the lane marking map. As we have seen
in Chapter 3, the vehicle pose estimate can be matched with an incorrect lane when
ambiguity between lanes appears. This can be seen as a loss of integrity since the
information provided to the client applications is misleading. Therefore, the system
should be designed to handle such ambiguous situations and able to inform the client
applications of this issue, in a way similar to RTK GPS when the phase ambiguity
resolution is not fixed (this is called floating RTK).

In the following sections, we first compare the accuracy and consistency of the
methods that have been studied in the last three chapters. Then, we discuss a
multi-hypothesis solution to enhance the capability of handling data association
ambiguities with the lane marking map.

6.2 Accuracy and consistency comparisons

6.2.1 Accuracy

Figure 6.1 depicts the cumulative distribution of HPEs of the aforementioned three
methods: loosely coupled ENU EKF (LC ENU EKF), tightly coupled EKF (TC
EKF) and loosely coupled road invariant EKF (LC RI EKF). Table 6.0a-6.0c lists
accuracy metrics (standard deviation, maximum, median, and 95th percentile) for
the three methods respectively.

Let us take a look at each test. For test 2 and test 3 the TC EKF and RI EKF
have similar HPE distributions. For test 1, the TC EKF is much better than the
other two methods. The improvement due to TC EKF mainly happens in the urban
canyon area (see Figure 6.2). The loosely coupled method relies heavily on the GNSS
fixes computed by the standalone GNSS receiver. When the GNSS receiver suffers
from large errors during a long time, the loosely coupled solvers outputs are closer
to the biased GNSS fixes. Inversely, the TC EKF uses raw satellite measurements
rather than filtered GNSS solutions. Errors are modeled at the pseudorange level
and measurements of each satellite are validated by an innovation gating against the
current pose estimate. Intuitively, the TC EKF can be more powerful on excluding
faulty satellite measurements as it uses information from the other sensors and from
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Figure 6.1: Plots of the cumulative distribution function (CDF) of the HPE produced by
the different methods
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(a) LC ENU EKF

test 1 test 2 test 3 global
std. dev. (m2) 0.35 0.38 0.26 0.35

max (m) 1.64 3.04 1.61 3.04
median (m) 0.52 0.56 0.35 0.47

95th percentile (m) 1.31 1.31 0.91 1.28

(b) LC RI EKF

test 1 test 2 test 3 global
std. dev. (m2) 0.24 0.29 0.24 0.26

max (m) 1.30 1.74 1.49 1.74
median (m) 0.29 0.29 0.26 0.29

95th percentile (m) 0.86 0.90 0.89 0.89

(c) TC EKF

test 1 test 2 test 3 global
std. dev. (m2) 0.15 0.29 0.27 0.24

max (m) 0.82 1.87 1.61 1.87
median (m) 0.25 0.31 0.35 0.28

95th percentile (m) 0.57 0.95 0.91 0.87

Table 6.1: HPE statistics of the three methods
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Figure 6.2: Zoom view of test 1 in the urban canyon. LC ENU EKF, LC RI EKF, TC
EKF, standalone GPS and ground truth trajectories are respectively expressed by dashed
black, red, green, cyan and solid black lines. White lines are lane markings. Clearly, the
TC EKF provides the best estimate.

the map. Result also demonstrates that the estimated trajectory (in green) keeps
close to the ground truth even in the area where heavy multipath happens.

At t = 122s, the camera retrieved lane marking measurements. The three meth-
ods have then similar performance as their trajectories are nearly overlapped. It
hints that the camera update dominates the localization performance when all the
information sources are available.

The accuracy performance is consistent among the different tests as shown in Figure
6.1 and Table 6.1. Globally speaking, TC EKF and LC RI EKF give comparable
positioning accuracy as demonstrated in right-below sub-figure of Figure 6.1.

6.2.2 Consistency

Filter consistency can be checked by constructing the normalized estimation error
squared δ2 which has to follow a Chi2 distribution under Gaussian assumption:

δ2 = (x− x̂)T P−1 (x− x̂) (6.1)

The normalized horizontal positioning error (HPE) squared e2 is defined by the 2D
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position components of the state vector:

e2 =
(
ex
ey

)T
P−1
HPE

(
ex
ey

)
(6.2)

where PHPE =
(
σ2
x σ2

xy

σ2
xy σ2

y

)
and σx, σy and σxy are estimated by the filter. ex =

x̂−xref and ey = ŷ−yref , with (xref , yref ) the ground truth of the vehicle horizontal
position and (x̂, ŷ) the estimated position.
If the model assumptions and the tuning filter are correct, then equation (6.2) follows
a χ2 distribution with two degrees of freedom (denoted χ2 (2) in the following).
In order to study the consistency of the horizontal positioning error, one usually
looks at the percentage of samples exceeding a determined threshold given by a
χ2 (2) distribution.

(
ex
ey

)T
P−1
HPE

(
ex
ey

)
> k2 (6.3)

where k2 is the predefined threshold linked to the chosen risk.
It is easy to check that equation (6.3) is equivalent to the following equation:

√
e2
x + e2

y > k

√
1

uT
e P
−1
HPEue

(6.4)

where ue =
(
ex
ey

)
/
√
e2
x + e2

y is the unit vector supporting the horizontal positioning
error .
Let us define σHPE as the standard deviation along the horizontal positioning error
vector:

σHPE =
√

1
uT

e P
−1
HPEue

(6.5)

Figure 6.3 illustrates the definition of kσHPE, where the equation of the ellipse is(
x− x̂
y − ŷ

)T
P−1
HPE

(
x− x̂
y − ŷ

)
= k2
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Figure 6.3: (x̂, ŷ) is the estimated position. (xref , yref ) is the ground truth of the vehicle
horizontal position. Here, the reference is located outside of the confidence domaine

Before looking at the consistency of the localization solver, we study first the dis-
tribution of the estimated confidence domains done by the filters (here we consider
1σHPE).
As confidence is in practice compared to a threshold to indicate “use” or “don’t use”
to the client application, it is important, in terms of availability of the positioning
information, to provide as small as possible confidence zones. We visually present
this by plotting the CDFs of the σHPE (Figure 6.4). It demonstrates that the
confidence domain produced by the loosely coupled methods is slightly tighter than
the tightly coupled one.
We have chosen to set the consistency risk at 10−2 (1%) which is a common choice in
robotics, but this value can be easily adjusted to any specific requirement. According
to χ2 (2) distribution, k2 = 9.21. In this case, the corresponding bound of the 2D
estimated position is 3.035σHPE, with σHPE being estimated in real-time by the
solver. Therefore, consistency failure happens when the real error is beyond this
3.035σHPE bound, which means√

e2
x + e2

y > 3.035σHPE (6.6)

As discussed in [39], Bayesian state filtering is often overconfident, so we are inter-
ested in studying this issue by comparing the consistency of the loosely and tightly
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Figure 6.4: CDFs of 1σHPE

Consistency failure rate
test 1 test 2 test 3 global

LC ENU EKF 41.2% 31.8% 47.1% 39.9%
LC RI EKF 9.9% 22.9% 20.5% 17.6%
TC EKF 0 3.1% 6.1% 2.9%

Table 6.2: Consistency failure rate of the three methods

coupled methods.
Figure 6.5 depicts the consistency of the loosely and tightly coupled methods. The
abscissa is the HPE:

√
e2
x + e2

y. The ordinate is the 3.035σHPE. Thus the points
in the gray area, which satisfy

√
e2
x + e2

y > 3.035σHPE, are counted to compute the
percentage of samples exceeding the determined threshold 9.21.
The consistencies for each test are listed in Table 6.2. The global failure rate of
the loosely coupled method is globally of 39.9% which indicates that the filter is
significantly overconfident (Table 6.0a). The road invariant EKF improves the failure
rate to 17.6% but remains overconfident (Table 6.0b). The tightly coupled method
reduces the integrity failure rate down to 2.9% (Table 6.0c) which is the same order
as the chosen risk (1%). The tightly coupled method is therefore more reliable than
the two other approaches. Moreover, one can notice that the confidence domain size
of the TC EKF remains lower than 2.8 meters which is important for the availability
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Figure 6.5: Consistency plots for the three tests.

of the positioning information. In other words, the TC EKF has the best consistency
while keeping the σHPE quite small.
The consistency failure rate of test 3 is bigger than the other two tests. This is
because the accuracy of the ground truth is degraded in the urban canyon area.
Figure 6.6 demonstrates this, for t = 165-170s, the vehicle was passing through the
urban canyon area along the center of the lane. The solid black line represents
the trajectory of the ground truth system, with a deviation from the lane center
although it was in the correct lane. Significant errors of the ground truth system
with the reality has not been observed in other area. We believe that the global
accuracy of the used ground truth system is in the order of tens of centimeters. The
reported consistency analysis doesn’t take into account of it and so the consistency
failure rates are certainly lower than those indicated in this section.

6.2.3 Conclusion

To resume this consistency analysis, LC RI EKF and TC EKF have comparable
confidence domains but the latter is more reliable in the sense that the ground truth
is more often included in the confidence zone. Both methods perform better than
the LC ENU EKF.
The analyses of the proposed algorithms rely on the three tests performed in an navi-
gation area mainly made of straight roads. In order to demonstrate the effectiveness
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Figure 6.6: Zoom view of test 3 in the urban canyon. White lines are lane marking. The
ground truth system (in black) is 1-meter biased in this situation.

of the proposed camera observation model and of the localization algorithms, we
present other results on more curved roads in Appendix A. The lane marking map
of this area has been made by mobile mapping based on our previous work presented
in [118]. The localization solver implements the LC ENU EKF. Results shows that
horizontal positioning performance is also highly improved compared to the stan-
dalone GNSS and sub-meter level accuracy is achieved.
Moreover, when performing the LC ENU EKF, the vehicle can encounter a situation
where the camera measurement is mismatched. In this case, the GNSS bias can not
be estimated correctly and the system has some difficulties in recovering from this
failure. In the following section, we discuss a solution to this issue.

6.3 Handling map matching ambiguities

6.3.1 Problem statement

As we have mentioned in Chapter 3, the camera observation model relies on a
data association process: a map matching must be performed to find which lane
marking in the map is detected. In our approach, an off-the-shelf lane detection
camera is adopted. We have seen its limitation near the road intersections where
no lane marking is detected. In this case, the localization system mainly relies on
fused GNSS, dead reckoning, and shaping filtered sensor errors. So data association
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Figure 6.7: White lines are lane markings. Black line is the true trajectory. GNSS
trajectory is in cyan. Blue lines (DR coupled with GNSS) and green lines (DR coupled
with GNSS, camera and map) are the estimated trajectory. Around t = 122s of test 1, the
camera measurement is mismatched with the adjacent lane when the camera retrieves lane
marking measurements.

needs to be performed on the roads at the exit of crossroads. Loosely coupling
the lane marking measurements with the map is then very challenging, because it
is difficult to distinguish a linear model (y = C1x + C0) in the lane marking map
which also contains linear segments. We have proposed to select the lane marking
which minimizes the distance between the estimated lane marking point L and
the considered lane marking in the map (see section 3.6.3). Mismatches can be
avoided by using innovation gating. Similar strategies which search the nearest lane
marking are also adopted in [75][53]. These strategies rely heavily on the current pose
estimate. If the position is highly uncertain, it is hard to avoid a mismatch. With
an EKF-based position tracking using lane markings, an incorrect data association
can localize the vehicle in the wrong lane as indicated in Figure 6.7.

Other research approaches in the literature have focused on tightly coupling vision
sensors and enhancing the feature detection algorithms such as in [101] [82][131][53].
These specially designed algorithms usually improve the availability of the feature
measurements. In [53], two lateral cameras are specially equipped to detect lane
markings. Detection of highly curved lane markings is greatly improved. Both in
[82] and [131], a 3D lidar map augmented with ground surface reflectivities is used.
The authors of [131] use a low-cost monocular camera to perform visual localization
instead of the 3D lidar used in [82]. Based on the 3D map and coarse vehicle
position, synthetics camera views are generated. The data association process with
the camera image is then handled as an image-registration problem. The data
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(a) The authors used Canny edge detection to
cluster the lane marking feature

(b) This image depicts the centroids of the
clusters which are used for point pattern
matching with the iterative closest point algo-
rithm.

(c) The vehicle position is initialized randomly
within 2m HPE.

(d) This figure demonstrates the matching re-
sult after 10 iterations of the ICP algorithm

Figure 6.8: This figure illustrates the data association process with a lane marking map
studied in [101]. From the camera image, one can have a better perception of the vehicle’s
local environment. If the lane marking is well extracted from the image, there is less
ambiguities between lanes which is a problem for us, since we use a lane detection camera
which only outputs host lane detection. Images are from [101].

association ambiguities are minimized in most cases. Figure 6.8 shows the data
association process described in [101]. The lane marking features are firstly detected.
Then the vehicle position is initialized randomly within 2m HPE to extract the lane
markings in the map and transform them into the image coordinate system. The
data association is turned into a point pattern matching problem which is solved by
an iterative closest point algorithm.

Compared to those tightly coupled (in terms of vision sensors) approaches at the
image processing level, the available information for our localization system is quite
limited. The MobilEye EyeQ2 outputs only lane marking parameters of the host
lane of the vehicle. Consequently, we don’t have a direct observation of which lane
the vehicle is currently driving in from the camera. This configuration increases
the difficulty of disambiguating lane markings of different lanes when the localiza-
tion confidence is low. The good aspect is that the host lane detection function is
proved to be quite robust. The detection of the closest markings usually leads to

162



6.3 Handling map matching ambiguities

less complex and more robust detection as argued in [53]. As observed in our exper-
imental data, the host lane detection configuration prevents most false detections.
Sophisticated multilane tracking algorithms can be found in [112], but it remains
still challenging to perform robust multilane detection and ego-lane estimation by
using a camera without a prior map.
To improve the map matching integrity with our configuration, another popular
strategy is to perform multi-hypothesis (MH) tracking. Jabbour et al. proposed
a MH approach for road tracking [62]. All the possible solutions are maintained
in situations of ambiguity and removed when they become unlikely. The main
advantages of a MH approach over a mono-hypothesis one has been argued as the
system can inform the client applications of an ambiguity and immediately outputs
a correct non-ambiguous solution without resetting the localization solver when the
current mono-hypothesis solution is declared incorrect.
Inspired by the work of Jabbour, we propose thereafter a MH approach for track-
ing different lanes when the uncertainty is high. However, compared to tracking
different roads, tracking lanes is methodologically different and generally more dif-
ficult. Here is the reason. The road tracking hypotheses are generated according
to the road connectivity defined at the intersection. The weights of incorrect hy-
potheses decrease if the roads go in different directions with respect to the correct
one when updated by the location-dependent constraint provided by the hybridized
GNSS/DR. However, lanes are usually parallel and geometrically similar (e.g. the
same width) with each other. Location-dependent constraints, such as geometrical
distances to road features, can hardly distinguish different lanes. The vehicle may
also pass from one lane to another rapidly which is not the case for road track-
ing. In addition, the considered task-critical application requires the localization to
inform of the navigation module of an ambiguity (autonomous driving should be
abandoned) and to converge to the correct solution as soon as possible. The main
advantage that we have compared to the road tracking problem discussed in [62] is
that the lane detection camera is able to detect the lane marking type.

6.3.2 Proposed solution

Here, we provide a preliminary attempt to gain insight into resolving the lane am-
biguities when exploiting the type of the detected lane markings.
Before tracking several hypotheses, we must generate them. We suggest to generate
several hypotheses when the following conditions are satisfied:

• A lane marking measurement is retrieved after a long distance without any
camera measurements. The map matching is synchronized with the camera
measurement because its goal is to find which lane marking is detected. The
camera measurement must have a high quality.

• Likelihoods of several candidate lane markings computed using C0 are com-
parable. This is a location-dependent constraint. The data structure of our
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camera
none solid dashed double

map

solid 0.0167 0.8430 0.0902 0.0501
dashed 0.0277 0.1275 0.8448 0
pavement 0.0286 0.8829 0.0697 0.0188
barrier 0.0517 0.4655 0.2759 0.2069
other 0.0525 0.3263 0.6212 0

Table 6.3: Camera detection of lane marking type with map reference

map (described in Section 2.5.4) facilitates this study, because we know the
adjacent lanes for a given lane and lane markings belong to them. We first
compute the likelihood of the nearest lane marking, then the ones of the lane
markings of the adjacent lanes. If the normalized likelihoods are in the same
order of magnitude, we trigger the MH lane tracking.

For each hypothesis and under Gaussian assumption, the geometrical likelihood is
computed as:

p
(
C0|H i

)
= ηp · e−

1
2(C0−gcam(xi))2

/(CcamPiCcam+Rcam) (6.7)

with ηp a normalizing constant and gcam (xi) is the predicted measure.
Hypotheses are generated by duplicating the current EKF estimates. EKF estimates
are xi, Pi and li. li is the map matched lane marking parameters for hypothesis i.
A weight ωi showing the relative importance of the different hypotheses is initialized
by equation (6.7). With conditional independence, the weights are updated as:

wik = ηw · wik−1 · p
(
C0, Ctype|H i

)
= ηw · wik−1 · p

(
C0|H i

)
· p
(
Ctype|H i

)
(6.8)

with ηw a normalizing constant. p (Ctype|H i) is computed using Table 2.4 (cf. page
56) which gives the observed performance of the lane marking type detection on the
used map, statistically. Table 6.3 presents the computed likelihoods.
For example, if the lane marking type of H i is dashed (type T1, T’1, T2, T’2,
T3, T’3 or T4 ) and the camera detection is also dashed, the type-like likelihood
p (Ctype|H i) is computed as

p (Ctype|H i) = likelihood (Ctype = dashed|map reference = dashed)
= 5243/6206 = 0.8448

An hypothesis is eliminated as soon as its normalized weight falls below a predefined
threshold.
Hereafter, we present the results of implementing this strategy on our experimental
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Figure 6.9: Number of hypotheses over time

data.
Figure 6.9 shows the variation of the number of hypotheses along time for test 1 (this
is the test in which a mismatch happens). As shown in Figure 6.10a, the vehicle
is initialized with a single hypothesis but with a large uncertainty (the green point
and ellipse). When the camera measurements become available after a long time
while they were not, the initial likelihoods computed by p (C0|H i) are very close
(Figure 6.11a) for the two lanes: 0.43 and 0.57. So, two hypotheses are generated
by duplicating the pose estimates. The red ellipse and trajectory represent the
hypothesis with the higher initial likelihood after the camera update, the blue one
is for the hypothesis with the lower initial likelihood. Then, we use equation (6.8)
to update the weight of each hypothesis. We have chosen a weight elimination
threshold equals to 10−15 (which is very low but useful to see the evolution of the
hypotheses). One can notice that the lane marking type information is a very strong
constraint, since the weight changes rapidly. The correct decision is made after 0.58s
of MH lane tracking.
Figure 6.10b corresponds to the area where a mismatch happened in Chapter 3 (see
Figure 3.14c). The initial likelihood of the wrong lane is bigger than the one of the
correct lane as displayed in Figure 6.11b. By using Ctype to update the weights, the
decision finally converges to the correct lane (Figure 6.11b). Figure 6.10c illustrates
another scenario in which the uncertainty increases after the vehicle performed a
corner turning (in the crossroad, the camera doesn’t provide measurements). Two
hypotheses are generated when the camera measurements come back. In this last
situation, C0 update is rejected for the hypothesis in blue due to the innovation
gating. In this case, only p (Ctype|H i) is available to update the weights. Figure
6.11c shows the evolution of the weights over time. The solution converges to the
correct lane in less than 0.5s.
In conclusion, the multi-hypothesis strategy works well in handling lane ambiguities
thanks to the lane marking type detected by the camera and the lane marking map.
This is because the two lanes are distinguishable by their lane marking types in
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(c) Behavior after a corner turning when the camera
retrieves lane detections

Figure 6.10: The bold lines are lane markings of different types. The green point and
the ellipse indicate the pose and the 3σ uncertainty domain where the mono-hypothesis is
duplicated. The black line is the ground truth. The hypothesis with higher weight is in red.
In Blue, the one with the lower weight. The red and blue ellipses are their corresponding
3σ uncertainty domains after the estimation of the first camera measurement. The filter
is the ENU EKF.
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(c) After the corner turning

Figure 6.11: Evolution of the weights. An hypothesis is killed when its weight is smaller
than 10−15.
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our experimental area. The method can’t solve the map matching ambiguity if all
the lane marking types are the same. Additionally, the vehicle didn’t perform lane
change maneuvers during the studied scenarios. This would introduce new issues
such as merging similar hypotheses.

6.4 Conclusion

Generally speaking, the tightly coupled method has the best result in terms of
accuracy and consistency. In addition, it improves the use of GNSS measurements
as we have seen that less than four satellites are used sometimes. However, the
design process is more complicated and the raw GNSS measurements have to be
available in real-time. From our point of view, the tightly coupled method is the
best when the vehicle is traveling in degraded GNSS environments, because the
filter is more powerful to exclude the raw satellite measurements contaminated by
multipath effect. In good GNSS environments, the LC RI EKF produces comparable
accuracy but worse consistency. Another benefit of the tightly coupled method is
that it can make use of the fact that the pseudorange bias of the same satellites
is spatially correlated among networked GNSS receivers. The localization solver
proposed in Chapter 5 can therefore be easily extended to a cooperative mode and
the observability can be improved if the vehicles are traveling in different directions.
A multi-hypothesis lane tracking algorithm has also been studied in a case of am-
biguity. The result shows that the data association (or map matching) ambiguity
caused by low position confidence can be successfully handled by using both C0
measurement and the lane marking type information. Although our system can
not still cover all the situations especially in degraded environments for both GNSS
and camera, the good performance in terms of consistency and the capability of
handling map matching ambiguities enable an autonomous valet vehicle to stop au-
tonomous navigation when the localization confidence is not high enough or when
a lane ambiguity occurs.
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General conclusions

This dissertation has addressed an outdoor localization problem of a full-size robo-
tized vehicle. The localization output is used as feedback information for the plan-
ning of autonomous driving. The study has been restricted to algorithms which
fuse DR sensors, a L1-GNSS receiver, a lane detection camera, and a lane marking
map. GNSS coupled with dead reckoning enables a localization system with high
frequency and availability, but its meters level accuracy is far from the required
performance for autonomous driving on constrained roads. The camera measure-
ment coupled with the lane marking map has a better accuracy but is less available.
Therefore, the objective is to fuse all the available information to get a real-time
vehicle pose estimation with GNSS/DR-like availability and camera/map-like accu-
racy. Meanwhile, the challenge is how to work out a reliable system that fulfills high
requirements with those low-cost information sources. It leads to a nonlinear state
observation problem.

The classical approach to this problem is to use an extended Kalman filter according
to a prediction-update scheme. Our first work have been devoted to the elaboration
of a vehicle kinematic model and sensor observation models especially for the camera
measurement. The lane marking map has been built by a mapping company and
experimental data were collected by running an equipped vehicle on the mapped
area. By studying the experimental data, we have observe that the proposed cam-
era observation model have decimeter-level accuracy. This is a first validation of its
effectiveness. Then, we have switched our focus on shaping filtering the non-white
GNSS and dead reckoning errors, and the design and implementation of several
localization solvers. Three localization solvers which differs with each other in er-
ror modeling (simple model and enhanced model), and fusion scheme (loosely and
tightly coupled schemes in terms of GNSS) have been studied.

The first localization solver is based on a loosely coupled scheme which integrates
a widely used autoregressive modeling for GNSS errors. This approach gives a first
validation of the feasibility of fusing our low-cost sensors and map to improve the
localization performance. The results inspire us to study how the camera mea-
surement helps in estimating the GNSS errors and whether we can implement an
enhanced error model. This motivation leads to a study of the observability property
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of the localization system. We have completed this study under the algebraic frame-
work and in a road-oriented frame which simplifies the camera observation model.
Hereafter, we have designed a road invariant localization solver to enable the en-
hanced modeling and preserve the observability of the state. Experimental results
have demonstrated its practicability and effectiveness. These two strategies follow
loosely coupled scheme, which means the filter exploits position outputs from the
GNSS receiver without paying a lot attention to its own filter. Methods under such
scheme are actually not ideal in complex environments for GNSS and camera. We
have encountered this situation repeatedly along an uneven road in dense urban en-
vironment, where the GNSS receiver suffers to heavy multipath and the camera fails
to detect lane marking at the same time. After passing out of this road section, the
position confidence is such low that it becomes very risky to reuse the camera mea-
surement. Therefore, we switched to study a tightly coupled scheme considering that
the localization filter is more able to exclude satellite measurements contaminated
by unmodeled error due to multipath effect compared to the filter implemented in
the standalone GNSS receiver. The results prove that the tightly coupling method
is indeed superior to the loosely coupled ones in a degraded environment, but at the
same time, this approach has the same performance than the loosely coupled ones
in the open-sky areas. In those areas, the position estimates delivered by the u-blox
receiver are usually quite reliable. Thus it is possible to achieve good estimations of
their biases.

We finally proposed a method to handle the data association ambiguities, which is
based on multi-hypothesis lane tracking. The lane type information proves to be
very effective in finding the correct lane in the considered experimental site.

In conclusion, our research achieves a low-cost solution to vehicle localization which
meets the high demands of autonomous driving. Even if the proposed methods have
been tested in many autonomous driving experiments with an equipped vehicle of
the Renault PAMU project, complementary tests have to be conducted in different
environments to evaluate its robustness. Working out a qualified localization system
which is accurate, provides reliable confidence bounds and is able to handle map
matching ambiguities still remains as a challenge. In the following sections, we
provide several future directions after summarizing our contributions.

Summary of the contributions

In this thesis, we have produced the following contributions:

• Outdoor experiment datasets have been collected. The experimental vehicles
are able to record and synchronize sensor data which includes data of DR
sensors, lane detection camera, GNSS and RTK-GNSS. It allows to evaluate
algorithms proposed in this thesis and in turn supports the practicability of
the widely adopted lane marking aided localization approaches.
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• In Chapter 2, we have proposed a camera observation model coupled with a
lane marking map. A sensitivity analysis to the camera parameters has been
performed. Then its effectiveness in improving the localization performance
has been validated by sensor fusion implemented both in loosely and tightly
coupled schemes.

• In Chapter 4, we have proposed an enhanced modeling of GNSS fix biases.
An observability analysis has been performed in the algebraic observability
framework. When integrating lane marking measurements for vehicle local-
ization, the observability on the cross-track direction is often better than the
one in along-track direction. The proposed localization solver, which we refer
to as road invariant EKF, is able to enhance the GNSS bias modeling in the
cross-track direction and stays observable independently of the road geome-
try. We have experimentally demonstrated that the road invariant EKF can
be used to provide a better localization performance in terms of accuracy and
consistency, compared to the localization solver which models the GNSS bias
by an autoregressive process and is implemented in the local ENU frame.

• In Chapter 5, we have presented a tightly coupling approach which integrates
GNSS measurements at the pseudorange and Dopplers level. The idea is to
model the biases on the pseudoranges which are mainly caused by the residual
atmospheric error and ephemeris error coming from the computed satellite
positions. The difficulty is that the state dimension is increased by the number
of visible satellites. So the time-correlated model has been adopted and the
proposed lane marking measurement model has been integrated to improve
the observability. Experimental results show that the estimated bias have
stable and observable behavior and the localization accuracy and consistence
is highly improved especially in the urban area.

• In Chapter 6, we have studied a multi-hypothesis lane tracking method which
succeeds in resolving the lane marking data association ambiguities in different
scenarios.

Future Directions

For the road invariant EKF, the working frame is in accordance with the heading of
the road defined in the map. The roads are represented by polylines in the map. If a
road is curved (e.g. a road with sinusoidal shape), each segment of the polyline has
a different heading. We expect to implement the road invariant EKF which changes
its working frame according to road segments in our future work. For the tightly
coupling approach, more work should be done to validate the estimated pseudorange
bias. For example, comparing the estimated bias between two vehicles running at
the same time in parallel roads. The errors on pseudoranges can also be examined
by comparing with a differential GNSS. Enhanced modeling on pseudorange errors
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Chapter 7 General conclusions

is possible to be implemented thanks to the integration of the camera measurements.
The multi-hypothesis lane tracking discussed in this thesis is preliminary, more issues
such as merge of similar hypotheses should be studied. Moreover, experiments on
roads with different geometries should be carried out to test the performance of the
proposed lane marking aided localization system.

Next, we present several future directions to improve vehicle localization, which are
inspired by the research in this thesis and still remain in the low-cost scope.

Observability improvement in the along-track direction The meter-level accu-
racy in the along-track direction is mainly due to the variation of the road heading.
In order to improve the observability in the longitudinal direction, there are two so-
lutions. Firstly, the observability can be directly improved if measurements of cross-
track feature such as stop line, zebra-line, and traffic signs can be integrated into
the localization solver. Secondly, in a networked GNSS framework, if the vehicles
are traveling in different directions, the pseudorange bias becomes observable both
in cross-track and along-track direction by sharing pseudoranges and lane marking
detections. Tightly coupling networked GNSS has a great potential to improve the
bias estimation and localization performance. In addition, a vehicle which is not
equipped with the lane detection camera can also benefit from the GNSS network.

Map-aided perception and localization The lane detection camera used in this
thesis only detects vehicle’s host lane. When the uncertainty in the cross-track di-
rection increases, ambiguity on which lane the vehicle is in appears. In order to
disambiguate lanes, innovation gating can be risky when the lateral uncertainty is
large. So we mainly rely on the type of the detected lane marking. This strategy
works in this thesis because the test road is a two-lane road mainly with dashed
lane marking in the center and solid lane marking on both sides. For a multilane
road, the lanes can be indistinguishable by the type of the lane marking. Multilane
detection and ego-lane estimation algorithm will be helpful since it provides a direct
observation on which lane the vehicle is in. Multilane detection is more challenging,
but it can be improved by exploiting the prior knowledge defined in the lane marking
map (e.g. lane number and each lane width). It relies on the localization system
to extract the prior knowledge from the feature map. This will highly improved
the robustness and availability of feature detection. The other way round, the map
may be not up-to-date and the camera detection can be quite confident under ideal
situations. In those situations, if the extracted features are inconsistent with the
detected ones, the camera detections can be used to evaluate and update the map.
It means that we can not only tightly couple the GNSS receiver, but also the camera
and even the map to improve the localization.This perspective is close to the simul-
taneous mapping and localization problem to some extend, but we emphasize the
role of the prior map in enhancing the feature detection and reducing the calculation
amount.
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Enhanced map at world-wide scale In addition to autonomous driving, the pro-
posed map-aided localization system in this thesis can also enable many lane-level
ADAS applications which are meaningful for improving our daily driving experience
in short term. Envisaging these potential good utilities, the unsolved issue is how
to build and maintain such detailed and accurate maps at large scale and with low-
cost. Solutions rely on mobile mapping platforms are generally expensive, because
the sensor suits are high-end and it needs professional company and staff to operate
them. Moreover, maps relies on those platforms can hardly have a fast update rate.
With the upgrading of market-ready automotive sensing capabilities, crowd-sourcing
the data recorded by consumer-grade road vehicles, such as GNSS trajectories, lane
marking detections, and even camera images, to build enhanced map is a potential
way. Many research institutes and technology companies have started to work on
this subject. However, the literature lacks discussions regarding this aspect. From
our point of view, more attention should be paid on general solutions for building
enhanced maps at world-wide scale.
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Appendix A

Mobile mapping and localization at
Compiègne

Outdoor experiments have been carried out in the city of Compiègne. Figure A.1
shows the experimental vehicle.

The experimental vehicle was equipped with a NovAtel RTK-GPS receiver coupled
with a SPAN-CPT IMU running at 100Hz. The system received RTCM 3.0 cor-
rections through a 3G connection from a GPS base station Septentrio PolaRx2e@
equipped with a Zephyr Geodetic antenna. This high accuracy system (few tens of
centimeter) was used during the mobile mapping process. It also provided ground
truth data for the localization method. The station was located at the research
center in Compiègne. It was the origin O of the local coordinate system (latitude
49.4◦, longitude 2.796◦, ellipsoidal height 83 m). A MobilEye camera was used to
detect the lane markings. The low-cost L1-GNSS was a u-blox 4T with a patch
antenna with no EGNOS correction.

The main purpose of this chapter is to demonstrate the effectiveness of the proposed
camera observation model and localization algorithms on curved roads. In the fol-
lowing sections, we describe the main steps that are involved in the map building
stage and the experimental results.

A.1 Lane marking map building

As the mobile mapping is done in post-processing, it is quite easy to synchronize
the RTK-GPS positioning data with the camera measurements by interpolating the
trajectory. We collect lane marking points (xL, yL) as follows:

[
xL
yL

]
=
[
Px · cosψ + C0 · sinψ + x
Px · sinψ − C0 · cosψ + y

]
(A.1)
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Camera

RTK-GPS antenna L1-GPS antenna

Figure A.1: Mobile mapping vehicle
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A.1 Lane marking map building

A.1.1 Clustering points by lanes

Lane marking points are graphically regrouped by polylines. Keeping in the map
every mapped point can provide a huge amount of data which will not be efficient
for real-time navigation particularly in the map matching stage. Therefore, the
obtained clusters of marking points are simplified. In the following, we describe the
key stages to do this simplification.

A.1.2 Polylines segmentation

We need to find the shape points of the simplified polylines. In other words, we
need to identify the segments. Between every two adjacent shape points, there is
a segment, with a certain bearing, which stands for a length of lane marking. The
Douglas–Peucker’s algorithm [38] is a well known algorithm for reducing the number
of points in a curve that is approximated by a series of points. It’s used here to find
the shape points which divide the lane marking into parts with different headings.
In this stage, the accuracy is controlled by choosing suitable tolerance which is the
maximal euclidean distance allowed between the simplified segments and the origin
points.
Let consider the example described in figure A.2. p is a set of lane marking points.
By using Douglas–Peucker’s algorithm, one can obtain shaping points ps1, ps2 and
ps3 which are three points chosen from p. For every point between ps1 and ps2, their
Euclidean distances to segment [ps1; ps2] are smaller than the tolerance, the same
stands for the points between ps2 and ps3.
If we choose a very small tolerance, the segments in a polyline can be too short, and
there can be too many shape points in the polyline. For this reason, we propose to
choose a tolerance of decimeter-level.

A.1.3 Improving map accuracy

In order to further improve the accuracy of the polylines by reducing the errors effects
due to the segmentation process, a least-squares algorithm is performed with every
point between two adjacent shape points of the segmented polyline. For instance,
in figure A.2, one can notice that every point between ps1 and ps2 is above segment
[ps1; ps2].
Let consider a polyline with n points. After n − 1 least-squares stages, n − 1 new
straight lines are formed (blue lines in Fig. A.2). It is then necessary to retrieve
the nodes (endpoints) and shape points of the new polyline. There are two cases.
The intersection of two successive lines define a new shape point (e.g. ps

′
2). By

convention, the new nodes are defined as the orthogonal projection of the previous

191



Appendix A Mobile mapping and localization at Compiègne

−1080.5 −1080 −1079.5 −1079 −1078.5 −1078  −1077.5
−1992

−1990

−1988

−1986

−1984

−1982

−1980

−1978

−1976

−1974

x (m)

y(
m

)

origin points
simplified points 
final endpoints

ps1

ps2

ps3

ps1’

ps2’

ps3’

p

Figure A.2: Illustration of the 2 stages lane marking fitting. The tolerance is 20 cen-
timeters.
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A.1 Lane marking map building

node on the new line (e.g ps′1). To come back to the example, the new polyline is[
ps
′
1; ps′2; ps′3

]
at the end of the process. It is the result that is finally stored in the

digital map.

The algorithm A.1 resumes this process.

Algorithm A.1 Polyline fitting algorithm
Input: set of points p in the working frame R0
1:
(
ps1, ... , psn

)
= dpsimplify(p, tolerance)[109]

2: for i = 2, . . . , n do
3: linei−1 ←Least_squares_fitting(points between psi−1 and psi)
4: if i 6= n then
5: ps

′
i ←intersection of linei−1 and linei

6: end if
7: end for
8: ps

′
1 ←orthogonal projection of ps1 on line1

9: ps
′
n ←orthogonal projection of psn on linen−1

Output: shape points ps′ of the polyline

A.1.4 Modifying the clustering stage

In order to perform the Douglas–Peucker’s algorithm [38], it should be noticed that
the set of points has to be linked by a function (i.e. each abscissa value must have
only one image). It means that the points in the same cluster have to be arranged in
a way that the x-coordinates are monotonically increasing or decreasing. Therefore,
lane markings sets have to be divided into subsets when this condition is not verified.
Figure A.3 gives an example.

As a conclusion, the clustering described in subsection A.1.1 is modified as follows:

• the points in one set have to physically belong to the same lane marking;

• the points in one set should meet the requirement of a function because of the
Douglas–Peucker’s algorithm;

• the points in one set should be close to each other. Indeed, when doing the
collection of lane marking points, the camera can miss some lane markings,
especially when the vehicle is making a turn. So, the distance between two
following points in one set can be high and the resulting segment between
them can be far from the real lane marking.

In practice, in order to do a good quality mapping, the lane marking points are
manually divided into suitable different clusters.
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Figure A.3: Example where consecutive points of the same lane marking are divided into
two clusters

Please note that some close lane marking detections may belong to two sides of the
same physical marking. In this case, we fit both edges of the lane marking. This
can occur when the marking is located between two adjacent lanes.

A.2 Experimental result

We performed two paths on the same road (one-way double lane). The length of the
path is 3736 m. The vehicle passed three crossroads and a fork road. During the
first path, lane marking points have been collected to build the lane marking map.
The second path is used to test the localization solver (see chapter 3). Figure A.4
shows the obtained lane marking map (blue lines).
One can notice that the blue lines are quite consistent with the lane markings on
the road. Though not all the lane markings are mapped (only one path is used for
mobile mapping and the camera also missed some lane markings, especially at the
crossroads), this map is enough to test the performance of the localization system.
A loosely coupled ENU EKF is implemented. Figure A.5 shows lateral and longitu-
dinal positioning errors. Three methods are compared: L1-GPS (green lines), DR
coupled with L1-GPS (red lines) and lane marking aided localization (black lines).
The blue/green points indicate there are good lane marking detections on left/right
side at the moment. Camera observations are available 45.9% of the time. One
can see that, first, the data fusion of GPS with DR sensors enhances the accuracy.
Second, the use of the camera with the mapped lane marking increases significantly
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A.2 Experimental result

Figure A.4: Map of a test site superimposed on an OpenStreetMap image

the performance.
Table A.1 gives performance metrics of the localization solver. 95% horizontal po-
sitioning error is less than 1.25 m.
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Figure A.5: Lateral and longitudinal positioning errors

Horizontal PE (m) Lateral PE (m) Longitudinal PE (m)
I II I II I II

mean 2.74 0.54 1.49 0.26 1.96 0.39
std. dev. 1.23 0.39 1.26 0.34 1.16 0.39
max 4.85 1.56 3.92 1.56 4.31 1.46
median 3.23 0.53 1.09 0.11 1.74 0.36
95th percentile 4.23 1.25 3.73 1.06 3.76 0.94

Table A.1: Error statistics. (PE: positioning error; I: results without map; II: results
with map)
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Appendix B

Satellite raw data acquisition

B.1 Configuring a u-blox receiver for the data
acquisition

Satellite raw data is available on special receivers with RAW option enabled. Raw
data features are available in u-blox 6 LEA-6T. The UBX-RXM-RAW message con-
tains all information needed to be able to generate a RINEX file. RINEX (Receiver
INdependent EXchange) is a standard data interchange format for raw satellite nav-
igation system data. It enables storage of pseudorange, carrier phase and Doppler
for GPS.
The data is recorded using the UCenter software. Once the u-blox receiver is con-
nected, the configuration follows the steps as shown in Figure B.1:

1. open the “message view” window
2. expand “ubx”
3. right click on “nav” then click on “enable child messages”
4. right click on “rxm” then click on “enable child messages”
5. verify the navigation mode in “cfg/nav5”
6. verify the frequency in “cfg/rate”
7. click on “send” after the modifications
8. click on “record” to start the data acquisition.

B.2 Extraction of satellite raw data

In this thesis, the localization problem is studied in a local ENU frame, therefore,
the u-blox data need to be transformed into satellite raw data in ENU frame. This
task is divided into three steps: extraction of RINEX observation data, acquisitions
of RINEX navigation data, generation of satellite raw data in ENU frame. The
process is described briefly as follows.
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Figure B.1: Configuring u-blox receiver with UCenter
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B.2 Extraction of satellite raw data

RINEX observation data TEQC (Translation, Editing and Quality Checking) is
a software run by command line in DOS/Windows DOS environment:

teqc -ublox ubx COM4_130502_100003.ubx > observation.o

where -ublox means the GPS receiver is u-blox. ubx specifies the file format of u-
blox. COM4_130502_100003.ubx is the experimental ubx file recorded by u-blox
with its Ucenter software. The result is a RINEX observation file observation.o.

RINEX navigation data When performing the u-blox data acquisition, it is more
practical to start by a cold start of the receiver (see Figure B.1, click where the
number 9 refers). In this way, the receiver records the navigation data as soon as
it is received. The navigation data is not provided anymore when the receiver has
calculated its first position. If cold start was not made, navigation files can be
recovered in another way to interpret the raw data. They are freely available on the
website of Réseau GNSS Permanent of the IGN France:

ftp ://rgpdata.ign.fr//pub/data/.

The navigation file is named by sitejjjs.aac.Z. site is the acronym for the station.
jjj is the number of the day in the year. s represents the session of the day (there
are 24 sessions per day appointed from a to x) if the file is hourly. aa is the last
two digits of the year. c represents the constellation (n for GPS, g for GLONASS).
For COM4_130502_100003.ubx which is recorded at 10 O’clock 2 May 2013, the
navigation file smne122j.13n.Z was downloaded. The principle is to download the
closest navigation file in space and time to the u-blox data acquisition.
The nomenclature of the files is detailed at the following address:

http ://rgp.ign.fr/DONNEES/type.php.

The downloaded file should be decompressed using the Rinexpresso software which
is available at the following address:

http ://rgp.ign.fr/SERVICES/outils.php.

The navigation file navigation.n is generated using Rinexpresso.

Satellite raw data in ENU frame Now, all the information is available for gen-
erating satellite raw data. The GPS Toolkit (GPSTk) is used. GPSTk is an open
source project sponsored by the Applied Research Laboratories of the University of
Texas. The GPSTk library provides for the reading and writing of data files in the
RINEX format. It also includes the capability to defined custom extended RINEX
observation types that are useful for storing intermediate quantities in RINEX-like
files. A program Rinex2ENU is developed based on GPSTk library. The satellite
raw data in ENU frame is generated by running the following command line:
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Rinex2ENU -n smne122j.13n -o observation.o -p lat0 lon0 alt0 -g

where lat0, lon0 and alt0 are the latitude, longitude and altitude coordinates in the
WGS84 frame. The output is a RINEX-like file which contains satellite raw data in
ENU frame.
An example is given as follows:

1738, 381648.199, 2,
-14398090.074, -16459636.336, 8179541.498,
340.980, -2236.210, -2240.137,
23038673.983, 2408293.179, -2226.400, 45.0,
0.000, 0.000, 0.000, 0.0,
2.00, 128953.646, 0.001,
-5.305, -4.266, 11.705, 6.719

Each field successively represents :
• GPS week, second of week, satellite ID,
• east position, north position, up position,
• east velocity, north velocity, up velocity,
• Code pseudorange on L1, Phase measurement on L1, L1 Doppler, C/N0,
• Code pseudorange on L2, Phase measurement on L2, L2 Doppler (the fields

are null here),
• URA, satellite clock bias, satellite clock drift,
• TGD, relativity bias, ionospheric bias and tropospheric bias.
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