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Equations dispersives et dissipatives et quelques applications en écologie
Ce mémoire d’habilitation présente mes principaux résultats en trois chapitres dis-
tincts.
Le premier concerne les équations aux dérivées partielles non-linéaires dispersives de
la forme

ut + f (u)x − (−∂ 2
x )
α/2u= 0.

Le problème de Cauchy y est étudié à travers une méthode de forme normale et des
inégalités de dispersion. Deux propriétés de prolongement unique sont quant à elles
établies via une inégalité de Carleman et une estimée de Bourgain.
La prise en compte de la viscosité et de la visco-élasticité fait l’objet du second chapitre.
Décrite mathématiquement par un opérateur A tel que 〈A u, u〉 > 0, on y démontre
la dissipation ainsi que la stabilité de l’énergie. La convergence vers la solution en-
tropique de la loi de conversion hyperbolique

ut + f (u)x = 0,

est également prouvée.
Dans le troisième chapitre, complétement indépendant des deux premiers, on se fo-
calise sur la modélisation des plantes et de leur environnement. Les interactions entre
les plantes, les pathogènes et les ravageurs y sont dressées.

Dispersive and dissipative equations and some applications in ecology
This report presents my main results in three separate chapters.
The first one is about nonlinear dispersive partial differential equations of the form

ut + f (u)x − (−∂ 2
x )
α/2u= 0.

The Cauchy problem is studied through a method of normal form and dispersion in-
equalities. Two unique continuation properties are established via a Carleman inequal-
ity and an estimate of Bourgain.
The consideration of the viscosity and viscoelasticity is the subject of the second chap-
ter. Described mathematically by an operatorA such that 〈A u, u〉> 0, one shows the
dissipation and the stability of the energy. The convergence to the entropy solution of
the hyperbolic conversion law

ut + f (u)x = 0,

is also proved.
In the third chapter, completely independent of the first two, we focus on the modeling
of plants and their environment. The interactions between plants, pathogens and pests
are drawn up.
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INTRODUCTION

1. Nonlinear dispersives PDEs

We are interested in dispersive equations of Korteweg-de Vries type of the form

ut + f (u)x − Aα/2ux = 0, (0.1)

where A := −∂ 2
x ,α≥ 1. For f (u) = u2/2, this includes the well-known Korteweg-

de Vries equation (α= 2) and the Benjamin-Ono one (α= 1).
Due to the nonlinearity f (u)x depending on a spatial derivative, and therefore
the difficulty of proving the locally Lipschitz character, to study the Cauchy
problem, more particularly global existence and continuity with respect to ini-
tial data, remains a challenging problem.
One approach is to use dispersion inequalities as

||u(t)||L∞(R) ®
||u0||L1∩Hs

(1+ |t|)1/(α+1)
.

This reflects the decay of solutions, due to the dispersion, i.e. the separation
of Fourier modes which travel at different speeds [Mam08, Mam10a, Mam14,
CGM15b]. Such inequality is deduced from the dispersion relation: the solu-
tion of the linearized equation around 0 is written in the form of an oscillating
integral (via the Fourier transform in space)

u(x , t) =
1

2π

∫ +∞

−∞
ei(ξα+1 t+xξ)û0(ξ)dξ,

and a stationary phase lemma leads to the conclusion.
When the solution is defined on a bounded domain, it becomes difficult to
obtain such inequality. A change of viewpoint can be useful. For example,



INTRODUCTION 4

when f (u) = u2/2, there exists a change of variables v = Λu locally invertible,
from which the equation (0.1) becomes

vt − Aα/2vx = f̃ (v),

and a study of this new equation allows extending the existence of solutions of
(0.1) [Mam09a, Mam12b, Mam14]. This method is based on Poincaré’s theory
of normal form.

Another important question about the well-posedness concerns the unique-
ness of solutions. It can be written as follows:

let u(x , t) = 0 for all (x , t) ∈ Ω× I where Ω× I ⊂ R× [0, T], then u≡ 0?

When I = [0, T] and Ω compact, an appropriate analytical expansion was pro-
posed by Bourgain. Thanks to the Paley-Wiener theorem, it is possible to write

û(ξ+ iσ, t) = ei(ξ+iσ)α+1 t û0(ξ+ iσ),

and decay conditions on the initial datum u0 lead to a positive conclusion
[Mam09b, Mam10b]. This assumption can be weakened by taking I × Ω an
open subset of [0, T]×R. It is then necessary to determine a Carleman esti-
mate of the form

∫

|u|2eψ(x ,t)d xd t ®
1
τα+1

∫

|ut + f (u)x − Aα/2ux |2eψ(x ,t)d xd t,

where ψ is a convex function. Thus, when the right hand side is bounded, it
is enough that τ goes to infinity so that u vanishes [Mam12a, Mam13a].

2. Damped nonlinear dispersive PDEs

Taking account of dissipation of energy in the equations reflects the damping of
the waves due, for example, to the Coriolis force, or mangrove forests... From
a mathematical point of view, the dissipation can be written

ut + f (u)x −δAα/2ux + εA u= 0,

with 〈A u, u〉 > 0. Thus, multiplying the equation by u and integrating over
space, it comes

d
d t
||u||2L2 = −ε〈A u, u〉 ≤ 0,

and the L2−norm is decreasing while it was preserved in the purely dispersive
case (0.1). The study of the space

H := {u : R→ R; 〈A u, u〉< +∞}
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is then essential. Relevant choices of damping, for example A (u) = −ux x ,
provide continuous and compact injection properties in L∞, for which H is
an algebra. This enables to clearly define the nonlinearity f (u)x . Therefore,
one can build operators, e.g.

×A (u)(ξ) = 1l{ξ≤N}ξ
2û(ξ), orA (u) = −

∫ +∞

0

g(s)ux x(t − s)ds,

which, in addition to damp the L2−norm, stabilize the energy [CGM15a, DMP15].
Formally, when ε and δ go to 0, the following hyperbolic conservation law

is found
ut + f (u)x = 0

for which there is a unique entropy solution. It is then possible to prove this
convergence when the nonlinearity f is convex and when the dissipation is
large compared to the dispersion (δ� ε) [BCM14, BCM15b, BCM15a].

3. Multiscale modeling in botany

Current European prerogatives aim to reduce by 50% the amount of pesticides
used to control pathogens and pests. A more respectful management of the en-
vironment through a better understanding of how plants and its epidemics at
different scales of time and space is high-priority. For this purpose, we develop
a plant-pathogen-pest modeling methodology at different spatial and temporal
scales. While at the scale of a plant, a precise architectural view can be used, it
becomes far more costly at a larger scale. Advection-reaction-diffusion equa-
tions then translate densities. These models are particularly well suited to the
anthropic crops, such as vines.
It raises significant questions in the context of a more sustainable agricultural
practice:

• how to improve the accuracy of models, including how nutrients, once
collected, are redistributed throughout the plant? Thus, according to
the osmotic transport assumption, the distribution of sucrose (C) via the
pressure of the phloem (P) is driven by a nonlinear transport equation
[MS15]

Ct =∇ · (C(d∇P)) + f (C);

• how the dynamics of the plant interacts with airborne diseases? At the
local scale, the spread of spores (U) occurs along a cone of radius r whose
generator is the direction (d) of the wind [MBC+10]

U(t,α)' exp(−βd)
α− r(α)
α
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whereas at the plot level, a reaction-diffusion equation is used [BCLM12,
MBLC14]

Ut =∇ · (d∇U)−δU + f ;

• how pests invade the fields? The adult pests (A) move across the land-
scape according to complex perceptions mechanisms, taking into account
the resources (energy U , egg laying P) [BPM+15]

At =∇ · (d∇A)− v∇A− eAU + f (P, A).

4. Numerical schemes and softwares development

We developed several computer codes as well with the aim to be easily reusable
by non-specialists.

Due to their dispersive nature, which generates oscillations, and nonlin-
earity, which generates blow-up in finite time, we favor spectral methods com-
bined with adaptive time schemes and fixed point iterations [Mam07, HMM09,
Mam13b, MZ14]. These codes are used to study instabilities of Kadomtsev-
Petviashvili solutions, and to illustrate the effects of dampings on Korteweg-de
Vries solutions.

1D KdV type!
damped !

stochastic!

scale! method! language'

spectral!
finite differences!

spectral!
compact schemes!

spectral!

Python'

Python'

Fortran'90'

2D KP type !
damped!

3D KP type !

Figure 1: Numerical development environment to solve nonlinear dispersive
equations.
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Designed to be used by biologists, we develop a multiscale paradigm to
simulate plant growth and the interactions with pathogens and pests. Friendly
graphical interfaces were developed and the plant model was ported in the
plateform OpenAlea [MBC+10, BCLM12, MBLC14, BPM+15, MS15].

phloem!

plant!

plot!

landscape!

scale! method! language'

finite elements!
finite differences!

discrete elements!

finite volumes!
finite differences!

finite volumes!
finite differences!

Freefem++'
gmsh'

C,Python'

C,Python,R'
OpenAlea'

C,Python,R'

Figure 2: Numerical development environment of the multiscale ecological
modeling.
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CHAPTER 1

NONLINEAR DISPERSIVE PDES

Consider an irrotationnal flux of homogeneous incompressible fluid filling a
volume −h ≤ z ≤ η(x , y, t) [MT99, Whi74, Lan03, LS06, Mam07]. From
Newton’s second law, there exists ϕ a velocity potential such that

∆ϕ = 0 if − h< z < η(x , y, t) (1.1)

satisfying the dynamic boundary conditions at the free surface


















ϕt +
1
2
|∇ϕ|2

−
T
ρ0

ηx x(1+η2
y) +ηy y(1+η2

x)− 2ηx yηxηy

(1+η2
x +η2

y)3/2
= 0 if z = η(x , y, t)

ηt +ϕxηx +ϕyηy −ϕz = 0 if z = η(x , y, t)

and the no-penetration condition at the bottom

ϕz = 0 if z = −h. (1.2)

Assume that η = O (a), where a is the typical wave amplitude. Weakly trans-
verse, small amplitude, long wavelength regime is expressed as

α=
a
h
� 1, β =

h2

k2
� 1, γ=

k2

l2
� 1 (1.3)

and is described by the change of variables

ϕ(x , y, z, t) =
gka

c
eϕ(

x
k

,
y
l

,
z
h
+ 1,

c
k

t),

η(x , y, t) = aeη(
x
k

,
y
l

,
c
k

t),

where c =
p

gh denotes the typical velocity.
To solve the Laplace equation (1.1), we look for ϕ as a series expansion

ϕ(x , y, z, t) =
∞
∑

n=0

fn(x , y, t)zn.
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If we denote f := f0, an asymptotic expansion of ϕ with respect to β gives

ϕ(x , y, z, t) = f −
�

β

2
fx x +

βγ

2
f y y

�

z2

+

�

β2

24
fx x x x +

β2γ+ βγ2

24
fx x y y +

β2γ2

24
f y y y y

�

z4 +O (β3)

Then, for w := fx , the following Boussinesq system is derived [Bou71]






ηt + ((1+αη)w)x −
β

6
wx x x + γw y y = O

�

α2 + β2 + γ2
�

ηx +wt +αwwx − β
�

1
2

wx x t +σηx x x

�

= O
�

α2 + β2 + γ2
�

.

If we restrict ourself to waves moving from left to right w.r.t. the x−direction,
this system can be simplified to the Kadomtsev-Petviashvili equations [KP70]

�

ηt +ηx +
3
2
αηηx + (

1
6
−
σ

2
)βηx x x

�

x
+
γ

2
ηy y = O

�

α2 + β2 + γ2
�

, (1.4)

or its regularized version
�

ηt +ηx +
3
2
αηηx − (

1
6
−
σ

2
)βηx x t

�

x
+
γ

2
ηy y = O

�

α2 + β2 + γ2
�

. (1.5)

Equations (1.4) are called KP-I if σ > 1/3, KP-II if σ < 1/3, and equation (1.5)
is called regularized KP-II (or KP-BBM-II) if σ < 1/3.

Remark 1.1 In 1−dimension, we find the well-known Korteweg-de Vries equa-
tion [KdV95]

ηt +ηx +
3
2
αηηx + (

1
6
−
σ

2
)βηx x x = 0,

and the Benjamin-Bona-Mahony equation [BBM72]

ηt +ηx +
3
2
αηηx − (

1
6
−
σ

2
)βηx x t = 0.

In the following, we present some results about the nonlinear dispersive
equations. To simplify the readings, we consider the Cauchy problem

ut + Aα/2ut + ux +
�

uρ+1

ρ + 1

�

x
= 0 (1.6)

u(x , t = 0) = u0(x), (1.7)

where A= −∂ 2
x and α≥ 1.
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1.1 Summary of well-posedness

The free evolution (St)t∈R is given by

Stu=
1

2π

∫ +∞

−∞
eiξx+i ξ

1+ξα t
bu(ξ)dξ

and satisfies thanks to the Sobolev embedding:

Lemma 1.2 For s > 1/2, and u ∈ H s(R), we have

||Stu||s ® ||u||s,

and
||St

�

(1+ Aα/2)−1(uρux)
�

||s ® ||u||ρ+1
s .

Then it is enough to prove that the solution of the initial value problem is the
unique fixed point of the mild formulation [LP09, Tao05]

Φu(t) = Stu0 −
∫ t

0

St−τ

�

(1+ Aα/2)−1(uρux)
�

(τ)dτ.

Theorem 1.3 Let ρ ≥ 1, s > 1/2 and u0 ∈ H s(R). Then there exist T '
1/||u0||ρs > 0 and a unique solution u ∈ C ([−T, T]; H s(R)) solution of the initial
value problem (1.6)-(1.7) with u0 as initial datum.
Moreover, the solutions u and v starting from u0 and v0 respectively, satisfies for
t ∈ [−T, T],

||u(t)− v(t)||s ® ||u0 − v0||s.

To extend the time of existence, we notice by multiplying equation (1.6) by
u and integrating over space, that the following quantity is conserved: for all
t ∈ R,

||u(t)||α/2 = ||u0||α/2.

Theorem 1.4 Let α≥ 1 and u0 ∈ Hα/2(R). Then the initial value problem (1.6)-
(1.7) is globally well-posed.

Indeed, the Duhamel formulation is written

||u(t)||s =

�

�

�

�

�

�

�

�

�

�

Stu0 −
∫ t

0

St−τ

�

(1+ Aα/2)−1(uρux)
�

dτ

�

�

�

�

�

�

�

�

�

�

s

® ||u0||s +
∫ t

0

||u||ρ∞||u||sdτ,
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then Brezis-Gallouët’s inequality [BG80] gives

||u(t)||s ® ||u0||s +
∫ t

0

�

1+
Æ

log(1+ ||u||s)
�

||u||sdτ.

Gronwall’s lemma implies that for t ∈ R

||u(t)||s ≤ eCeC t
, (1.8)

whereas for t ∈ [−T, T]
||u(t)||s ≤ C ||u0||s. (1.9)

Remark 1.5 To solve the standard initial value problem

ut − Aα/2ux + uρux = 0, (1.10)

a regularization is needed. Either parabolic [Iór90, Tem97, TM71]

ut + uρux − Aα/2ux − εux x = 0,

in such way that the free evolution (St)t∈R is given by

Stu=
1

2π

∫ +∞

−∞
eiξx+iξα+1 t−εξ2 t

bu(ξ)dξ

and satisfies:

Lemma 1.6 For r, s ≥ 0, and u ∈ H s(R), we have

||Stu||r+s ®
�

1+
�

1
2εt

�r�1/2

||u||s,

and

||Stu
ρux ||s = ||Stu

ρux ||(s−1)+1 ®
�

1+
�

1
2εt

��1/2

||u||ρ+1
s .

Or, another way is to use the Bona-Smith regularization [BS75]

ut + (1− ε∂ 2
x )
−1
�

uρux − Aα/2ux

�

= 0.

In this case, the semi-group is written as

Stu=
1

2π

∫ +∞

−∞
eiξx+i ξ

α+1 t
1+εξ2

bu(ξ)dξ.
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Lemma 1.7 For s ≥ 0, and u ∈ H s(R), we have

||Stu||s ® ||u||s,

and
||St(1− ε∂ 2

x )
−1 f (u)x ||s ® || f (u)||s.

The unique fixed point of the mild formulation is obtained for a time independent
of ε and we take the limit as ε goes to 0.
By means of Bourgain’s spaces and bilinear smoothing estimates, the well-posedness
can be extended (e.g. α= 2, H s(R) with s > −3/4) [Bou93b, CKS+03, KPV96].
Global well-posedness needs the two first conserved quantities: for all t ∈ R,

N(t) := ||u(t)||2L2 = N0,

and

E(t) :=

∫ +∞

−∞
(A1/2u)2 −

uρ+2

(ρ + 1)(ρ + 2)
d x = E0.

Theorem 1.8 Suppose ρ < 4. Let u0 ∈ H1(R). Then the initial value problem
(1.10) is globally well-posed.

Indeed, we deduce from the Gagliardo-Nirenberg inequality that

||u||21 = ||u||2L2 + ||A1/2u||2L2 = N0 + E0 +

∫ +∞

−∞

uρ+2

(ρ + 1)(ρ + 2)
d x

® 1+ ||A1/2u||ρ/2L2 ||u||
(ρ+4)/2
L2 ® 1+ ||A1/2u||ρ/2L2 ,

which is finite while ρ < 4.

1.2 Normal form and large time existence

Based on Poincaré’s theory of normal form, we can find a change of variable
improving inequality (1.8) [Arn83, Sha85, Tzv04]. Assume ρ = 1 and x ∈ T,
we define v = Λu as

Λu := u−
1
2

∑

k 6=k1∈Z∗
eikx ik/(1+ |k|α)

σ(k1) +σ(k− k1)−σ(k)
bu(k1)bu(k− k1) = u+Λ1(u, u),

and σ(k) = ik/(1+ kα) is the relation dispersion.
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Proposition 1.9 [Mam09a, Mam12b, Mam14] Assume α≥ 1.

i. For all k 6= k1 ∈ Z∗, we have

|σ(k1) +σ(k− k1)−σ(k)|¦ |kk1(k− k1)|.

ii. There exists δ,δ′ > 0 (small enough), such that for all v ∈ Bδ, there exists
a unique u ∈ Bδ′ with v = Λu.

The inverse function theorem is applied to define this local change of variable
since for all ϕ ∈ C∞(T)

〈dΛ(u) , ϕ〉= ϕ + 2Λ1(u,ϕ),

and dΛ is continuous from H s(T) to itself and dΛ(0) = Id.
This new unknown v is solution of the nonlinear PDE

vt + (1+ Aα/2)−1vx = g(v),

where g is a trilinear operator obtained by direct computation

vt + (1+ Aα/2)−1vx = (Λu)t + (1+ Aα/2)−1(Λu)x

= −
1
2

∑

k 6=k1 6=k2∈Z∗
eikx ik/(1+ |k|α) k1/(1+ |k1|α

σ(k1) +σ(k− k1)−σ(k)
bu(k2)bu(k1 − k2)bu(k− k1).

Note that
u2(x) =

∑

k 6=k1∈Z∗
eikx

bu(k1)bu(k− k1).

A study of the mild solution, i.e.

ψv(t) = St v0 −
∫ t

0

St−τg(v)dτ,

allows to conclude.

Theorem 1.10 [Mam09a, Mam12b, Mam14] Let s > 1/2. There exists ε > 0
small enough such that if u0 ∈ H s(T) with ||u0||s ≤ ε, then the unique solution
u ∈ C ([−T 2, T 2]; H s(T)) of the Cauchy problem (1.6)-(1.7) with T ' 1/||u0||s =
ε−1, satisfies for |t| ≤ T 2,

||u(t)||s ® ||u0||s.

Remark 1.11 This method remains true to the standard equation with α≥ 2

ut − Aα/2ux + uux = 0,

but does not apply when α < 2. In this case, for k 6= k1 ∈ Z∗
�

�

�

�

kk1

σ(k1) +σ(k− k1)−σ(k)

�

�

�

�

is not bounded from above.



1.3. DISPERSION AND GLOBAL WELL-POSEDNESS 15

1.3 Dispersion and global well-posedness

Let us come back to x ∈ R. In this case, it is possible to have help from de-
creasing properties of the free evolution. The decay of this semi-group, given
by an oscillating integral, is estimated using Van der Corput’s lemma and Riesz-
Thorin’s interpolation [Alb86, HN99, Ste93, Ste86, Str74].

Lemma 1.12 [Mam08, Mam10a, Mam14] Let s = 2α − 1/2. Then for u0 ∈
Lp(R)∩H s(R), we have for all time t ∈ R

||Stu0||Lq =

�

�

�

�

�

�

�

�

�

�

1
2π

∫ +∞

−∞
eiξx+i ξ

1+ξα t
Òu0(ξ)dξ

�

�

�

�

�

�

�

�

�

�

Lq

=
�

�

�

�

�

�F−1(ei ξ
1+ξα t) ∗ u0

�

�

�

�

�

�

Lq

®
||u0||Lp∩Hs

(1+ |t|)
1−2/q
α+1

,

where 1/p+ 1/q = 1 and

1≤ p ≤ 2 if α≥ 2

1< p ≤ 2 if α < 2.

This last condition is deduced from the Mikhlin-Hörmander theorem, the op-
erator (1+ Aα/2)−1∂x being bounded in Lp(R) with 1 ≤ p ≤ 2, resp. 1 < p ≤ 2
if α≥ 2, resp. α < 2.

Remark 1.13 For the standard equation

ut − Aα/2ux + uρux = 0,

we have for α≥ 1, and u0 ∈ Lp(R), for all t ∈ R,

||Stu0||Lq =

�

�

�

�

�

�

�

�

�

�

1
2π

∫ +∞

−∞
eiξx+iξα+1 t

Òu0(ξ)dξ

�

�

�

�

�

�

�

�

�

�

Lq

®
||u0||Lp

(1+ |t|)
1−2/q
α+1

.

When α≥ 1, the (α+1)−th derivative of the function σ(ξ) = ξα+1+ξx/t is uni-
formly bounded from below whereas the (α+ 1)−th derivative of the regularized
function σ(ξ) = ξ/(1+ ξα) + ξx/t goes to 0 as ξ→∞.

To take care of the nonlinearity, we write according to Duhamel’s formulation

||u(t)||Lq =

�

�

�

�

�

�

�

�

�

�

Stu0 −
∫ t

0

St−τ

�

(1+ Aα/2)−1(uρux)
�

dτ

�

�

�

�

�

�

�

�

�

�

Lq

®
||u0||Lp∩Hs

(1+ |t|)
1−2/q
α+1

+

∫ t

0

||uρ+1||Lp∩Hs

(1+ |1+ t −τ|)
1−2/q
α+1

dτ.
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Let NT = supt∈[0,T](1+ |t|)
1−2/q
α+1 ||u(t)||Lq . Thus, according to the Leibniz rule,

NT ® ||u0||Lp∩Hs + Nρ
T

∫ T

0

(1+ |t|)
1−2/q
α+1

(1+ |1+ t −τ|)
1−2/q
α+1 (1+ |τ|)ρ

1−2/q
α+1

dτ,

The time integral is uniformly bounded as soon as ρ > α+ 1.

Theorem 1.14 [Mam08, Mam10a, Mam14] Let ρ ≥ α + 2. Then there exists
ε > 0 such that for u0 ∈ Lp∩H s(R), of norm smaller than ε, there exists a unique
global in time solution u ∈ C (R, Lp ∩H s(R)) of (1.6)-(1.7) and ∀t ∈ R,

||u(t)||Lq ®
||u0||Lp∩Hs

(1+ |t|)
1−2/q
α+1

.

Remark 1.15 Concerning the KP-BBM equation [Mam08] (or the KP equations
[HNS99])

ut − ux x t + ux + uρux + ∂
−1
x uy y = 0

the 2D−oscillatory integral

Stu=
1
(2π)2

∫ +∞

−∞

∫ +∞

−∞
e

iξ1 x+iξ2 y+i
ξ1+ξ

2
2/ξ1

1+ξα1
t
Òu0(ξ1,ξ2)dξ1dξ2

is reduced to the 1D−oscillatory integral using the change of variables ξ2 =
fξ2

r

|ξ1|(1+ξ2
1)

|t| ,

�

�

�

�

�

∫ |t|δ

−|t|δ

∫ +∞

−∞
e

iξ1 x+iξ2 y+i
ξ1+ξ

2
2/ξ1

1+ξα1
t
Òu0(ξ1,ξ2)dξ1dξ2

�

�

�

�

�

=

�

�

�

�

�

p
πeiπ/4

|t|1/2

∫ |t|δ

−|t|δ

q

|ξ1|(1+ ξ2
1)e

i xξ1−i
ξ1

1+ξ2
1

t+i y2

4t2
(ξ1+ξ3

1)dξ1

�

�

�

�

�

® |t|
−1+5δ

2 .

Note that the operator (1+Aα/2)−1∂x is not bounded in L1(R2) but in Lp(R2) with
1< p < +∞.

Stochasticity in the dispersion was recently introduced for nonlinear Schröd-
inger equations [ASS13, dBD10, DT11, CG15]. It models the case where the
linear oscillations is driven by a Brownian motion instead of linearly with re-
spect to time. Let W (t) be a standard real valued Wiener process associated to
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the probability space (Ω,F ,P) and the stochastic basis (Ω,F ,P, (Ft)t≥0). Let
us being a random Fs− variable valued in H1

x(R). For t > s, the solution u of

du− dAα/2u+ ux ◦ dW = 0

u(s) = us,

is written in Fourier variable as

bu(t,ξ) = e
−iξ

1+ξα (W (t)−W (s))
bus(ξ).

Due to the definition of the Wiener process being such that

W (t)−W (s)∼
p

t − sN (0, 1) and independent,

the average decay rate of the solution of the stochastic dispersive equation is
twice as slow as those for equation with deterministic dispersion (see Fig. 1.1).
Indeed, we have

E (||Stu0||L∞) = E (||u0||L1)E
�

|W (t)−W (s)|−
1
α+1

�

®
E (||u0||L1)

|t − s|
1

2(α+1)

.

Theorem 1.16 [CGM15b] Let ρ ≥ 2(α + 1) + 2. Then there exists ε > 0 such
that for u0 ∈ Lp ∩H s(R), of norm smaller than ε, there exists a unique global in
time solution u ∈ L1 (Ω;C (R, Lp ∩H s(R))) of

du− dAα/2u+ ux ◦ dW + uρux d t = 0

and ∀t ∈ R,

E(||u(t)||Lq)®
E(||u0||Lp∩Hs)

(1+ |t|)
1−2/q
2(α+1)

.

1.4 Unique continuation property

We wonder if, given two solutions u(x , t) = v(x , t) on a domain Ω of R×R+,
then u≡ v. In other words, if u(x , t) = 0 on a domain Ω of R×R+, do u≡ 0?
Suppose Ω is an open subset of R× [0, T]. Then we prove:

Theorem 1.17 [Mam12a, Mam13a] Let u ∈ C (0, T ; H s(R)) with s ≥ 4 such
that u≡ 0 in Ω. Then u≡ 0 in R× [0, T].

The proof is based on the following Carleman estimates [Car33, SS87]:
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Figure 1.1: On the left, comparison of the solution of the deterministic (- -)
and stochastic (—) BBM equation starting from the same initial datum at time
t = 800. On the right, decay rate of the deterministic L∞−norm (- -) and
expectation of the L∞−norm (—) with respect to time.

Lemma 1.18 Let us denote

L := ∂t − cA∂x + f (x , t)∂x ,

with c ∈ R and f ∈ L∞(R× [0, T]), and

Bδ :=
�

(x , t) ∈ R2; x2 + t2 < δ2
	

.

Then for all Φ ∈ C∞(Bδ),τ > 0 such that

|| f ||L∞
ταδ2

≤
1
2

,

we have

τα+1

∫

Bδ

|Φ|2e2τΨd xd t +ταδ2

∫

Bδ

|Φx |2e2τΨd xd t ®
∫

Bδ

|LΦ|2e2τΨd xd t,

where Ψ(x , t) = (x −δ)2 +δ2 t2.

Assuming that the solution u of L u = 0 is such that u ≡ 0 in {x < |t|} ∩ Bδ,
then using the fact that Ψ describes an ellipse, we have

Ψ(0,0) = δ2 and Ψ(x , t)< δ2 elsewhere .
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Thus there exist ε > 0 such that

Ψ(x , t)≤ δ2 − ε in Bδ
Ψ(x , t)> δ2 − ε in Bη ⊂ Bδ,

and the Carleman estimate becomes, for (un)n a regularizing sequence,

τα+1e2τ(δ2−ε)

∫

Bη

|un|2d xd t ® e2τ(δ2−ε)

∫

Bδ

|L un|2d xd t.

It is enough that τ goes to +∞ to conclude. This local result remains true for
any curvature {x < µ(t)} thanks to the change of variables

ex = x −µ(t) + |t|, et = t,

and it is extended using moving plane method [DM98, Hör76, Nir57].

Remark 1.19 Unique continuation properties can be proved for the KP equations
using the following Carleman estimates:

Lemma 1.20 Let δ > 0 and Bδ := {(x , y, t) ∈ R3; x2 + y2 + t2 < δ2}. Then for
all Φ ∈ C∞(Bδ), Ψ(x , y, t) = (x −δ)2/2+ (y −δ)2/2+δ2 t2 and τ > 0 with

i.
|| f1||2∞
τ3δ2

+
|| f2||2∞
τ2δ2

�

1+
1
τ2

�

≤
1
4

,

we have

τ4δ2

∫

Bδ

|Φ|2e2τΨd xd yd t ®
∫

Bδ

|LrKPΦ|2e2τΨd xd yd t,

forLrKP := ∂x t−∂x x x t+c1∂x x+c2∂x x x x+c3∂x y+c4∂x x x y+∂y y+ f1(x , y, t)∂x+
f2(x , y, t)∂x x .

ii.
|| f1||2∞
τδ2

+
|| f2||2∞(1+ c2

1/δ
2)

τ2
≤

1
4

,

we have

τ2δ2

∫

Bδ

|Φ|2e2τΨd xd yd t ®
∫

Bδ

|LKPΦ|2e2τΨd xd yd t,

forLKP := ∂x t+γ∂x x x x+c1∂x x+c2∂x y+∂y y+ f1(x , y, t)∂x+ f2(x , y, t)∂x x .
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The rest of the proof is dealt with similarly in three steps: first in the subset
{(x < |t|, y < |t|)} , then to any curvature {(x < µ1(t), y < µ2(t))} , and finally
extended to the whole domain.

Let us suppose now that the solution is compactly supported. Then:

Theorem 1.21 [Bou97, Pan05, Mam09b, Mam10b] Let u ∈ C (0, T ; H s(R))
with s ≥ 4 such that for all t ∈ [0, T], u(t) is compactly supported. Then u
vanishes identically.

To explain the proof, let us consider the linear equation

ut − Aα/2ux = 0.

Since u is compactly supported, the Fourier transform in space has a bounded
analytic expansion thanks to the Paley-Wiener theorem, given by

|bu(ξ+ iσ, t)|=
�

�

�ei(ξ+iν)α+1 t
Òu0(ξ+ iν)

�

�

�= etImσ|Òu0(ξ+ iν)|< +∞. (1.11)

The fundamental estimate lies on the fact that the Fourier transform of a func-
tion with compact support is decreasing but not as fast as a exponential func-
tion. More precisely, we have:

Lemma 1.22 [Bou97] Let Φ ∈ C∞0 (R) with

suppΦ ⊆ [−B, B]

For all Q > 0, R > 0, there exists |ξ| > R such that for all |ν| ≤ B−1(1 +
| log(|Φ(ξ)|)|)−1

bΦ(ξ)¦ bΦ ∗ bΦ ∗ · · · ∗ bΦ(ξ+ iν),

and
|bΦ(ξ+ iν)|>

1
2
|bΦ(ξ)|>

1
2

e−|ξ|/Q.

This last inequality can be written as

|ξ| ≥ R+Q| log(|bΦ(ξ)|)|,

thus, we can choose ξ large enough, i.e. R,Q > B, and ν' 1/ξ so that, as soon
as α > 1,

tImσ = t
�

ξαν− ξα−2ν2 + . . .
�

−→ξ→+∞ +∞

and the boundedness of (1.11) is contradicted if u is not zero.
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Remark 1.23 Actually, it is enough that there exists one time t1 ∈ [0, T] such
that u(t1) is compactly supported.

In dimension greater than 2, the last lemma can be written as follows:

Lemma 1.24 Let Φ ∈ C∞0 (R
n) with

suppΦ ⊆ [−B, B]n

For all Q > 0, R > 0, there exists ξ ∈ Rn with for 1 ≤ j ≤ n, |ξ j| > R such that
for all ν ∈ Rn with for 1≤ j ≤ n, |ν j| ≤ B−1(1+ | log(|Φ(ξ)|)|)−1

|bΦ(ξ+ iν)|>
1
2
|bΦ(ξ)|>

1
2

e−
∑n

j=1 |ξ j |/Q.

Applying to the Kadomtsev-Petviashvili equations

(ut + ux x x + uux)x + suy y = 0,

it comes

|bu(ξ1 + iν1,ξ2 + iν2, t)|= e
(3ξ2

1ν1−ν3
1)+s

2ξ1ξ2ν2
ξ2

1+ν
2
1 |Òu0(ξ1 + iν1,ξ2 + iν2)| .

Only if s = 1, it is possible to choose ξ1 and ξ2 large and ν1 ' 1/ξ1,ν2 = 0, so
that bu goes to infinity [Pan05]. At the opposite, if ν1 = 0, it remains

ξ2ν2

ξ1

which can be large if ξ2 � ξ1 with |ξ1| and |ξ2| greater than R [EP11]. To
prove the unique continuation property, it has to be showed that one direction
can be favored.

1.5 Perspectives

• It seems possible to generalize the fundamental lemma of Bourgain for
functions without compact support. In particular, we could favor one
direction by adjusting the rate of decay of the solution, and thereby jus-
tify this unique continuation property of KP. To deal with compactly sup-
ported solutions, we can consider pseudo-dispersion [RH93, Ros94].

• Recent works [LPS14, LPS15] are interesting in the behavior of low-
dispersive effects, i.e. 0 < α < 1. It seems interesting to see when these
dispersive effects occur and how they can converge to the hyperbolic
conservation law.
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• As continuation of the work done for the stochastic BBM equation, we
focus on the dispersive properties of stochastic Korteweg-de Vries equa-
tion, and try to show how the dispersion is affected. Note that the initial
value problem for Korteweg-de Vries equations with modulated disper-
sion was addressed recently in [CG15].
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CHAPTER 2

DAMPED NONLINEAR DISPERSIVE PDES

In some situations, the viscosity, which can influence the wave propagation and
dissipate the wave energy, has to be included in the model description. When
the viscous effects are taking into account, the Newton second law provides
the following Navier-Stokes equation, for u= (u1, u2, u3)

§

ρ(ut + u · ∇u)− ν∆u+∇p = −ρg−→z if − h≤ z ≤ η(x , y, t)
∇ · u = 0 if − h≤ z ≤ η(x , y, t)

with the dynamic boundary conditions at the free surface






















(−pI + ν(∇u+ (∇u)t)) · −→n =

T
ηx x(1+η2

y) +ηy y(1+η2
x)− 2ηx yηxηy

(1+η2
x +η2

y)3/2
if z = η(x , y, t)

ηt + u1ηx + u2ηy − u3 = 0 if z = η(x , y, t)
u3 = 0 if z = −h.

One difficulty lies in the fact that there is no potential function ϕ solution of
the Laplace equation such that u = ∇ϕ. If, as in Chapter 1 we restrict ourself
to small amplitude long waves (see 1.3), we can obtain the following viscous
KdV equations

ηt +ηx + eαηηx + eβηx x x − eγAη= 0,

where
Aη= ηx x [Whi74],

or

Aη=
∫ t/α

0

ηx(x + y, t)
p

y
d y [LM15],

or

Aη=
∫ t

0

ηt(x , s)
p

t − s
ds [Dut09, KM75].
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In the following, we present some results concerning the initial value prob-
lem

ut + f (u)x − ux x t −A u = 0 (2.1)

u(x , 0) = u0(x), (2.2)

with 〈A u, u〉> 0.

2.1 Frequency damping

DefineA by its Fourier symbolÔA u(ξ) = γ(ξ)bu(ξ), with γ(ξ)≥ 0, for all ξ ∈ R
[OS70]. Then, we note by multiplying (2.1) by u and integrating over space
that

d
d t
||u||2L2 = −2||u||2H 1

γ
,

where
H s
γ

:=
�

u : R→ C; ||γ(ξ)s/2bu(ξ)||L2 < +∞
	

is the natural space of study of the Cauchy problem. This space satisfies some
properties of injection:

Proposition 2.1 [CGM15a] Let s > 0.

i. If 1/γs ∈ L1(R), thenH s
γ
(R) ,→ L∞(R) continuously.

ii. If γ1(ξ)≥ γ2(ξ), thenH s
γ1
(R) ,→H s

γ2
(R) compactly.

iii. If 1/γs ∈ L1(R) and for all ξ,ξ1 ∈ R,
p

γ(ξ)≤
p

γ(ξ− ξ1)+
p

γ(ξ1) then
H s
γ
(R) is an algebra.

Remark 2.2 When γ(ξ) = ξ2, the space H s
γ
(R) is the classical Sobolev space

H s(R).

In the same way the well-posedness of the initial value problem (1.6) is
proved, if the damping is larger enough, i.e.γ(ξ)≥ ξ2, the semi-group becomes
regularizing and a fixed point of the mild formulation can be done.

Lemma 2.3 [CGM15a] For r, s ≥ 0, and u ∈ H s(R), we have

||Stu||H r+s
γ
®
�

1+
�

1
2εt

�r�1/2

||u||H s
γ
,

where

Stu=
1

2π

∫ +∞

−∞
eiξx+iξα+1 t−γ(ξ)t

bu(ξ)dξ.
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On the other hand, parabolic or Bona-Smith regularization can be performed
to prove the well-posedness in H1(R) for any functions γ.

Theorem 2.4 [CGM15a] Let u0 ∈ H1(R)∩H 1
γ
(R). Then there exist T ' 1

||u0||H1∩H 1
γ

and a unique solution u ∈ C ([−T, T]; H s(R) ∩ H 1
γ
(R)) solution of the initial

value problem (2.1)-(2.2) with u0 as initial datum.

Remark 2.5 Smoothing effects using Bourgain’s spaces can be proved to obtain
well-posedness whenA = (−∆)s [Ven11, Ven10].

The decay rate can be estimated as the quotient of the two norms H1(R)
andH 1

γ
(R):

Proposition 2.6 We define

G(t) :=
||u(t)||H 1

γ

||u(t)||H1

.

Then

i. ||u(t)||2H1 = e−2
∫ t

0 G2(s)ds||u0||2H1 ,

ii. ||u(t)||2H 1
γ
= G2(t)e−2

∫ t
0 G2(s)ds||u0||2H1 .

iii. In particular, ||u(t)||H1 →t→+∞ 0 iff t → G(t) /∈ L2
t (0,+∞).

The advantage of this frequency approach is the opportunity to build suit-
able dampings, in the sense that since we are focusing on long waves problem,
it is necessary to reduce low frequencies (see Fig. 2.1).

2.2 Dissipation with memory

The disadvantage of the preceding method lies in the instantaneous regular-
ization of the solution. To avoid this non-physical phenomenon, using memory
effect offers a finite speed of regularization without loss of stability [Daf70].
Consider the Burgers-BBM equation [Wan97, Wan14, WY97], for x ∈ Ω, a
bounded domain of R,

ut + ux − ux x t − ux x = 0 (2.3)

complemented with the Dirichlet boundary condition

u|∂Ω = 0.
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Figure 2.1: On the left, solution of the damped equation with γ(ξ) = 1 (—),
γ(ξ) = 1/(1+ |ξ|)2 (- -) and γ(ξ) = 1Iξ≤N/2 (-·-) starting from the same initial
datum (—) at time t = 20. On the right, decay of the H1−norm with respect
to time.

Then
d
d t
||u||2H1 = −2||u||2H1 ,

and the Poincaré inequality gives

||u(t)||2H1 ≤ e−κt ||u0||2H1 , κ > 0.

Define now the equation with memory

ut + ux − ux x t −
∫

g(s)ux x(t − s)ds+ uρux = 0. (2.4)

Here ρ ∈ N is a fixed constant, while g is a bounded convex summable function
on [0,∞) of total mass 1. This function g has the explicit form

g(s) =

∫ ∞

s

µ(y) d y,

where µ : R+ = (0,∞) → [0,∞), the so-called memory kernel, is a non-
increasing absolutely continuous summable function of total mass g(0) > 0.
Equation (2.4) can be interpreted as a memory relaxation of the Burgers-BBM
model (2.3), which is formally recovered when ρ = 1 and the kernel g col-
lapses into the Dirac mass at zero. It is also worth noting that the memory
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term provides a more realistic description of the Fick law. In particular, it pre-
vents the infinite propagation speed of regularization [Daf70].
In order to explain the difficulties encountered, an enlightening example is
provided by a comparison between the classical heat equation

ut − ux x = 0

and its memory relaxation, i.e. the Gurtin-Pipkin equation [GP68]

ut −
∫ ∞

0

g(s)ux x(t − s) ds = 0.

In the first case, the exponential stability is almost trivial, whereas the expo-
nential stability of the Gurtin-Pipkin model has been proved only in recent
years [GNP01, GP06]. Similarly, we obtain for the equation (2.4):

Theorem 2.7 [DMP15] Let µ be the memory kernel with

µ′(s) +δµ(s)≤ 0, (2.5)

for some δ > 0 and almost every s ∈ R+. There exist a strictly positive constant
ω, depending on µ and the domain Ω, and an increasing positive function Qρ,
depending on µ, Ω and ρ such that

‖u(t)‖2
H ≤Qρ(E(0))e

−ωt .

The result is based on the energy identity

d
d t
‖u(t)‖H1 +

δ

2
‖η‖2

M −
1
2

∫ ∞

0

µ′(s)‖ηx(s)‖2 ds ≤ 0,

where the phase spaceH = H1
0(I)×M is endowed with the norm

‖(u,η)‖2
H = ‖u‖

2
H1 + ‖η‖2

M ,

and the so-called memory space is M = L2
µ
(R+; H1

0(I)) of square summable
H1

0 -valued functions on R+ with respect to the measure µ(s)ds.

2.3 Hyperbolic convergence

The dispersion and the dissipation can be viewed as a correction of the hyper-
bolic conservation law

ut + f (u)x = 0. (2.6)
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To solve (2.6) with a first order Euler scheme

u(x + h)− u(x)
h

= ux +
h
2

ux x +O (h2)

is equivalent to solve

uεt + f (uε)x = εu
ε
x x , with ε =

h
2

.

And, it is known [Kru70, Whi74] that the sequence (uε)ε converges, when ε
goes to 0, to the unique entropy solution defined by

η(u)t + q(u)x ≤ 0 in D ′(R).

To increase the consistency, we can use the following second order scheme

u(x + h)− u(x − h)
h

= ux −
h2

6
ux x x +O (h4),

and the equivalent equation is

uδt + f (uδ)x = −δuδx x x with δ =
h2

6
.

Unfortunately, this equation is dispersive, which produces oscillations and there-
fore the sequence (uδ)δ does not converge to the entropy solution as δ goes to
0 [LL83]. Combining both methods, we obtain

uε,δt + f (uε,δ)x = −εuε,δx x −δuε,δx x x .

Three cases are possible:

i. δ� ε2, oscillations are prevailing and there is no convergence [LL83];

ii. δ � ε2 (or δ � ε if one contents oneself to progressive wave [PR07]),
the sequence (uε,δ)ε,δ converges to the entropy solution as ε,δ go to 0
[Sch82];

iii. δ = Cε2, the sequence converges to a solution, not necessarily entropy
[HL97].

To regularize the numerical scheme, Von Neumann [vNR50, LN99, CL98, KW08]
proposed a pseudo-dissipation. In the same spirit, Brenier and Levy [BL00]
suggested a pseudo-dispersion. We can combine both as follows

ut + f (u)x = εh(ux)x +δg(ux x)x , (2.7)

where h(u)u≥ 0.
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Theorem 2.8 [BCM14, BCM15b] Assume that

| f (i)(u)| ® |u|α f +1−i for 0≤ i ≤ 2

|g( j)(u)| ® |u|αg+1− j for 0≤ j ≤ 7

|h(k)(u)| ® |u|αh+1−k for 0≤ k ≤ 6,

with
h′(u)≥ C0 > 0.

Define

α :=
§

min(α f ,αg ,αh) if ||u||4 < 1
max(α f ,αg ,αh) if ||u||4 ≥ 1

with αg ≥ 1. Let u0 ∈ H4(R) with

||u0||
αg

4 ®
ε

δ
. (2.8)

There exists T = T (1/||u0||4) > 0 such that there exists a unique solution u ∈
C ([−T, T], H4(R)) of the initial value problem (2.7) with u0 as initial datum.

Restrictions on u0 and h come from the computation of the Sobolev norm:

d
d t
||u||4 ≤ ||u||α+2

4 +

∫ +∞

−∞
u2

5x

�

−εh′(ux) +δux x x g ′′(ux x)
�

d x

≤ ||u||α+2
4 +

∫ +∞

−∞
u2

5x

�

−εC0 +δ||u||
αg

4

�

d x . (2.9)

If the right-hand-side of (2.9) is negative, Gronwall’s lemma implies that the
H4−norm is bounded on [0, T]. It is enough that the right-hand-side of (2.9)
is negative for the initial datum, which is equivalent to inequality (2.8), to be
preserved with respect to time.

As for linear dissipation and dispersion, there exist regimes for which the
convergence to the entropy solution is true.

Theorem 2.9 [BCM14, BCM15a] Suppose h(u) = u. Let ε > 0 and f : R→ R
be a convex flux function with f ′′(u)® (1+ |u|β).

i. If g(u) = −u2, we choose δ = o(ε5/2) and 0≤ β < 1/2.

ii. If g(u) = −|u|, we choose δ = o(ε2) and 0≤ β < 3.

Then the family solutions (uε,δ) of (2.9) converges to the entropy solution of (2.6).
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We prove that there exists a bounded measure µ≤ 0 [DiP85] such that

η(u)t + q(u)x −→ µ in D′(R× (0, T ))

for an arbitrary convex function η and η′ f ′ = q′ (we assume η′,η′′,η′′′ to be
bounded functions on R). The main trick is to rewrite the entropy equality in
the form

η(u)t + q(u)x = µ1 +µ2 +µ3 +µ
−
4 +µ

+
4

where

µ1 := ε (η′(u)ux)x , µ2 := −ε η′′(u)u2
x , µ3 := −δ (η′(u)u2

x x)x ,

µ−4 := −δ η′′(u)u−x u2
x x , µ+4 := δ η′′(u)u+x u2

x x .

Thus we can prove:

Lemma 2.10 The solution {uε,δ} satisfies

i. {ε u2
x} is bounded in L1([0, T]×R).

ii. {ε ux} → 0 when ε→ 0 in L2([0, T]×R).

iii. {δu−x u2
x x}, where u−x = max(0,−ux), is bounded in L1([0, T]×R).

iv. {δu+x u2
x x} → 0, where u+x = max(0, ux) when ε→ 0 in L1([0, T]×R).

v. {δu2
x x} → 0 when ε→ 0, in L1([0, T]×R).

Application to combustion. The understanding of the small-scales mecha-
nisms occurring during the shock front formation is one of the major chal-
lenges in gas combustion. For such flows in which the ram pressure dominates
thermal quantities, the gas equations reduce to the viscous Burgers equation
[Whi74, ZZMR02, TD10].
We devote ourselves to investigating the following modified Burgers equation
with space-and time-dependent viscosity [TMB15]

ut + uux = (νux)x .

The viscosity ν(x , t) depends explicitly on an active scalar field θ (x , t) that
obeys an advection-diffusion equation

θt + uθx = Dθx x .

The scalar θ refers to the local mass-fraction of the heaviest component in the
binary gas mixture and satisfies 0 ≤ θ ≤ 1, and D refers to the diffusion co-
efficient. The coupling between these two equations is operated through the
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relationship ν=
∑3

j=0 a jθ
j, where the coefficients a j depends on the gas type.

It is found that surprisingly for all conditions at Rν > 1, where the initial kine-
matic viscosity ratio is defined by Rν = νmax/νmin, i.e. for waves becoming more
and more viscous in average (Fig. 2.2):

i. a steeper maximum gradient in the shock transition zone,

ii. velocity spectra extended toward the finest small-scales,

iii. a enhanced energy dissipation rate at the time of peak energy dissipation.

These results will be useful to the understanding of small-scales dynamics for
one-dimensional shocks propagating in multi-component gas mixtures where
noticeable active scalar effects are present.

(A)

(B) (C)

Figure 2.2: (A) Shock profiles at time t∗, (B) velocity spectra at time t∗ and
(C) energy dissipation rate with respect to time.
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2.4 Perspectives

• Damping can be viewed as a control term to stabilize the system. We are
interested in the manner in which one can build its damping (wavemaker,
porous domains. . . ).

• The study about the memory kernel we carried out is a first step. It is
important to show that the equation with memory converges to the one
without memory as the kernel goes to the Dirac mass. The third step
consists of studying the forced equation [CR04, Ghi88, Ghi94, Gou00].
To do this it is necessary to add a weighted distribution between the
classical diffusion and the memory to control the nonlinear force terms.

• Up to now, there is no or few numerical methods (except Gear schemes
for fractional derivatives) to solve PDE with memory. It seems crucial to
develop efficient methods that can simulate many memory kernels.

• One of our objectives is to prove the convergence to the entropy solution
of the hyperbolic conservation law with nonlinear dissipation. In this
case, it is necessary to add a weak linear compensation. In the same
spirit, we are dealing with the convergence in the case of a non-convex
nonlinearity.
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CHAPTER 3

MULTISCALE MODELING IN BOTANY

In a context of climate change and respect for the environment, it is important
to develop mathematical modeling of plants and their habitats. Scales of time
and space being often incompatible with our way of life, it is essential to de-
velop appropriate models. The interactions between plant, climate and man
are more relevant than ever. Modeling is a key approach to improve the under-
standing of host-pathogen-pest dynamical interactions, to rank known factors
that initiate the development of an epidemic and to test strategies to control
and reduce its spread.

landscape!

plot!

plant!

phloem/xylem!

multiscale !
modeling!

individual!

population!

Figure 3.1: Multiscale paradigm.
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3.1 Plant growth

Our approach is based on the existence of a dynamic discrete model coupling
the growth of a vine stock and the development of powdery mildew. The 3D
plant architecture is described as a multiscale object [GC98] made of a trunk,
branches, themselves made of secondary branches . . . themselves made of
leaves and fruits (Fig. 3.2).

Multiscale Tree Graph!

Tree!

Main axes !
(trunk, asthes,!
branches)!

leaves!

fruits!

Internodes!

Figure 3.2: Multiscale profile of a plant.

Like all living beings, the plant growth is based on available resources and
climate. As soon as the threshold, depending on accumulated resources, is
reached, new branches, leaves or fruits are born. Both shoots growth and area
of leaf surface satisfy a logistic equation function of resources (Fig. 3.3). The
appearance and growth of secondary shoots is highly dependent on the vigor of
the plant. The development of secondary shoots is stimulated by shoot topping
[CCN+08, CSR+08, DBP07, VGGC+11, BCLM12].

The description can be more accurate, especially for the accumulation and
transport of resources across the plant. From simple summation of fresh and
warm temperatures [BCLM12], the distribution via the phloem–xylem is more
complex. According to the osmotic hypothesis [M2̈6, M2̈7, M3̈0, Hor58], the
mass balance conservation of the sucrose concentration C is written, for x ∈ Ω
and t > 0 [CF73, FTC75, SH14, TH03, MS15]











e
E
∂t P −∇ ·

�

e
µ
(k∇P)

�

− LR (ψ− P + RT C)− VsU = 0

e∂t C −∇ ·
�

e
µ

C (k∇P)
�

− U = 0,
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seed! bud !
break! internodes! flowering!

Mechanical growth!

Markov growth!

p1! p2! p3!
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( 
) 

Figure 3.3: Schematic representation of the plant growth: mechanical (above)
and stochastic (below) .

with Neumann conditions on the domain boundary

∂nP(t, x) = 0, (3.1)

and on the transverse boundaries

∂nC(t, x) = 0, (3.2)

with initial data

P(0, x) = P0(x) and C(0, x) = C0(x). (3.3)

Boundary conditions on entrance and exit are translated by source and sink
terms

U =











eU in Ωl the loading area (source)

−
eU
C∗

C in Ωu the unloading area (sink)

0 elsewhere.

Here eU denotes a loading rate and C∗ a reference sucrose concentration. This
system is integrated from Darcy’s law over phloem thickness e and pressure P
with non constant viscosity µ. LR denotes the radial hydraulic conductivity, ψ
the xylem hydrostatic pressure, R the gas constant T the temperature, Vs the
partial molal volume of sucrose and phloem Young’s modulus is E (Fig. 3.4).
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Theorem 3.1 [MS15] Assume

0< dmin <
k(x , t)
µ(x , t)

< dmax < +∞.

Let (P0, C0) ∈ H4(Ω)× H4(Ω) be positive initial datum. Then there exists T > 0
and a unique weak solution (P, C) ∈ C (0, T ; H4(Ω))×C (0, T ; H4(Ω)) of initial-
boundary values problem.
Moreover if parameters E, e, LR, T,ψ,Vs, eU , C∗ are positive and chosen such that

LRRT −
Vs
eU

C∗
> 0.

Then, for all time t ≥ 0 and a.e. x ∈ Ω,

P(t, x)≥ 0 and C(t, x)≥ 0.

Figure 3.4: Evolution with respect to time of the sucrose concentration (C) at
left and the pressure (P) at right.

3.2 Pathogen spread

Current strategies for crop protection generate complex and controversial is-
sues both on the human health and the environment. Growers are now con-
strained to significantly reduce the use of fungicides (Directive 1107/2209/
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EU). The high success of controlling plant pathogens through pesticide ap-
plications has limited the amount of attention paid to influence of cultural
practices or alternative control methods. Over the past 30 years, strategies for
crop protection relying on the use of pesticides have generated complex and
controversial issues both concerning the human health and the environment.
Consequently, low-pesticide systems based on innovative control methods need
to be developed and their performance to be evaluated [AGB+13].

The temperature and the leaf age are recognized as the driving force for
the development of the pathogen, while wind factors dictate spore dispersal.
In our model, the dynamics of the pathogen development on leaves is split
into infection, colony growth, and dispersion. At each time step, a quantity
of spores is released, depending on wind intensity, colony size, and dispersed
within a cone given by wind direction. The spore density decreases, first as
an exponential dilution with axial distance to the source, and then linearly
according to the radial position within the cone. The quantity of spores caught
by a leaf depends on its distance from the source, and is proportional to its
surface area (Fig. 3.5).

This very detailed Individual Based Model (IMB) is a complex discrete
mechanistic architectural model at the plant scale, which explicitly incorpo-
rates both the host growth and the development and dispersion of the pathogen.

spores! infection! colonies! sporulation!
€ 

I(t) = I0(T)exp(−τa)

€ 

Q = δ exp(γC)

€ 

C'(t) = β(T)C 1− C
Cmax

$ 

% 
& 

' 

( 
) 

€ 

Qt =QdSexp(−d cid)
α − r(α)

α

Figure 3.5: Schematic representation of the pathogen propagation.

One control method could rely on modification of plant growth and archi-
tecture by using architectural diversity and cultural practices. Evidences of epi-
demic variations attributed to modifications of canopy porosity and susceptibil-
ity in main pathosystems and on their effects on pathogen processes such as in-
fection and dispersion have recently been reviewed. Indeed, a sensitivity anal-
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ysis identifies the factors favoring or restricting the spread of disease. This sen-
sitivity analysis, with respect to various crop practices (e.g. shoot topping day,
cut height), plant architecture (organs length, vigor, distance between shoots),
powdery mildew properties (infection day, dispersal coefficients) and climate
(year, temperature, wind) indicates the interest of these parameters variability.
Among other things, plant vigor and climatic conditions can strongly modify
the disease dynamics. Also, to reduce the disease, it is better to lengthen the
branches and to treat the plant as soon as possible (Fig. 3.6).

6% (0.3%)!26% (1.7%)!14% (1.6%)!58% (8.5%)!

Figure 3.6: Number (surface) of diseased leaves in a not treated plant (in
black) and a plant with one fungicide treatment at flowering (in red).

The model strengthens observed experimental results about the effects of
the rate of leaf emergence and of the number of leaves at flowering on the
severity of the disease. But it also underlines strong variations of the dynamics
of the disease depending on the vigor and indirectly on the climatic scenarii by
altering the synchronism between the disease and the production of susceptible
organs [DMRC10, DBP07, CMB15].

3.3 The plot scale

Epidemiological models taking into account the crop growth and susceptibility
are particularly important to study perennial plants for which experiments are
difficult to set up. The host population shows a high degree of spatial struc-
ture at the field level (culture in rows or individual vine, topped or not) and
at individual plant level (various pruning types) exhibits rapid changes of sus-
ceptibility over time and is subjected to a high degree of human interference
during its development [CCC09, VGGC+11].

At first glance, the easiest way would be to describe each plant of the plot as
in Sections 3.1 and 3.2. To obtain accurate observation, one has to know every
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leaf, every source of infection and every spore. This count becomes very ex-
pensive and this method is not reasonable. The model presented here includes
ontogenic resistance (organ development age-related resistance) as well as bi-
ologically relevant parameters for plant growth and pathogen development
based on the IBM model. The unit considered for the description of the patho-
logical state of the leaves surface is the leaf area index (LAI) defined here
as the leaf area (expressed in terms of square metres) in a one metre square
section of ground area. The disease cycle is the following (see Fig. 3.7 for
a schematic representation of the model): susceptible leaves (denoted by S)
inoculated with spores first become latent (L), then turn infectious (I) and
produce spores during some infectious period after which they are removed
(R) as they cannot be infected again. In addition, susceptible leaves become
resistant (T ) to inoculation because of their age. This leads to the following
compartmental submodel for LAIs, defined by a system of ODEs [MBLC14]


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










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

















































d
d t

S(x , t) = −a (eSδSUS + eLδLUL)
S(x , t)
N(x , t)

+αN(x , t)
�

1−
N(x , t)
k(x , t)

�

−
1
m

S(x , t)

d
d t

L(x , t) = a (eSδSUS + eLδLUL)
S(x , t)
N(x , t)

−
1
j
L(x , t)

d
d t

I(x , t) =
1
j
L(x , t)−

1
i

I(x , t)

d
d t

R(x , t) =
1
i

I(x , t)

d
d t

T (x , t) =
1
m

S(x , t).

Parameter a is defined as the average size of infected area created by a single
spore. We notice that the total LAI is denoted by N = S+ L+ I +R+ T follows
a logistic law

d
d t

N(x , t) = αN(x , t)
�

1−
N(x , t)
k(x , t)

�

.

The airborne spores are torn off from the colonies on the leaves as the conse-
quence of air turbulence and travel in the air according to a diffusion process.
Hence it is assumed that the distribution of the airborne spores emitted by a
single lesion at the origin obeys a Gaussian density with a variance increasing
linearly in time [Die79, KMK27, Thi77, VdBZM88b, VdBZM88c, VdBZM88a].
Once emitted from a colony, spores may remain trapped within the canopy
and disperse at short range or escape the canopy and disperse at long range
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[Ayl99]. Therefore, the concentration of airborne spores US and UL obey the
following advection-reaction-diffusion equations
§

∂t US(x , t) = ∇ · (DS∇US(x , t))−δSUS(x , t) + γ f I(x , t)
∂t UL(x , t) = ∇ · (DL∇UL(x , t))−δLUL(x , t) + γ(1− f )I(x , t)− V · ∇UL

where the right-hand terms are the spores source terms with V the velocity of
the daily dominant wind on the spores above the canopy. Spores are produced
by unit of infectious leaves area I at rate γ > 0. Each emitted spore has a
probability f (N) in [0, 1] to be short-range dispersed and thus a probability
(1− f (N)) to be long-range dispersed.

δS deposition rate of short-
range dispersal! US!

δL deposition rate of long-
range dispersal! UL!

1/m susceptible !
period!

T! S!
ek δk Uk/N 

infection rate!

L!
1/j latency 

period! I!
1/i infectious 

period!

R!

Figure 3.7: Flow chart of the plant-pathogen system.

Theorem 3.2 [BCLM12, MBLC14] Under compatibility conditions for US and
UL at the each boundaries of Ω, i.e. the continuity of spores densities and fluxes
[US] = 0, [UL] = 0 and [DS∇US] = 0, [DL∇UL] = 0, the system is globally well-
posed.
Moreover (US, UL, S, L, I , R, T ) converges a.e. to (0,0, 0,0, 0, R∗, T ∗) with R∗(x)+
T ∗(x) = k(x).

Spatial heterogeneity can be generated with changes over time. The model
allows generating plots or patches within plots which differ in phenology, growth
rate, crop management and training system for various climatic scenarii which
can differently impact plant and pathogen growth. The effects of individual
plant and crop heterogeneities on pathogen or disease spread have rarely been
explicitly taken into account in epidemiological models.



3.3. THE PLOT SCALE 41

Remark 3.3 Spatial heterogeneity was introduced into a reaction-diffusion on a
periodic monodimensional domain with alternating favourable and unfavourable
patches [SKT86, KKTS03, KKS10]. Numerical simulations showed then that the
expansion again converges towards a travelling periodic wave with a speed de-
pending on the direction of propagation and maximal along the rows. Decreasing
the scale of fragmentation without changing the pattern of heterogeneity decreases
the spreading speed. These results have been confirmed by a mathematical anal-
ysis [BHR05].

The model is able to retrieve the main characteristics of the system:

i. a host growing during the whole season with time evolution in suscepti-
bility;

ii. a crop highly structured in rows with potential heterogeneities of plant
growth and susceptibility within and between plots.

These characteristics can be modified by cultural management. Simulations
are performed to test the effect of crop spatial heterogeneities, within and be-
tween plots, on the disease spread. Heterogeneities considered here are the
plant growth (vigour, earliness), susceptibility (susceptible vs resistant, treated
vs untreated) and the spatial arrangements (patches vs rows). The main ef-
fect on disease reduction is obtained by arrangement in rows of susceptible
and fully resistant plants, and applying an early fungicide treatment (Fig. 3.8)
[AGB+13, STSA10, MBLC14].
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Figure 3.8: Temporal evolution of the total diseased surface area (A) and (C)
for early inoculated plot (day 119, year 2004). Fungicide treatment depends
on the date of application (flowering or topping) and distance covered by the
disease when fungicide is applied at topping (blue) or at flowering (red) (B).
Vines are distributed either in patches or in rows according to levels of suscep-
tibility (susceptible vs. resistant) (C and D). Disease spread (D) indicates the
distance covered by the disease depending on the structure in patches (blue)
or in rows (red).

3.4 Pest dynamics

Regarding pest management, developing alternative methods requires exten-
sive knowledge of pest colonisation processes and persistence strategies. Be-
cause insect pest populations are known to be greatly influenced by landscape
features [JF97], experimenting crop protection strategies carries the ecologi-
cal engineering endeavors at the agro-ecosystem scale. At this scale, levers for
action consist in landscape modifications concerning, e.g. crop rotation pat-
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terns, fields size and geometry or semi-natural habitat networks. Modeling ap-
proaches enable us to test in silico the modifications of the landscape structure
and composition in order to assess its putative relationship with the popula-
tion dynamics. From a theoretical point of view, we consider pest distribution
across the agricultural mosaic as an emerging pattern resulting from interac-
tions between the pest and landscape features. Some of these interactions
take place at the population scale and result in landscape dependent growth
and death rates, carrying capacities or migration rates [SK97]. Still, other in-
teractions such as resource perception, energy allocation, spatial memory or
optimal foraging strategies, inherently occur at the individual scale and can
be determinant of the pest population distribution. We propose to account
for foraging processes and their determinants in order to ensure the popula-
tion model a strong dependence on the resource distribution on the landscape.
In heterogeneous environments, foraging relies on informed movements re-
quiring both perceptive and navigational abilities. It determines, among other
things, how individuals aggregate in space, i.e. habitat selection depending on
resource distribution [HM14, NGR+08]. The type of resources searched is of-
ten closely related to the energy supply of the forager, dealt with as a latent
metabolic variable. Here we focus on feeding and laying resources.

The cabbage root fly Delia radicum L. is an important pest of Brassicaceous
crops, very common species in temperate regions [Fin89]. This insect, which
develops through distinctive larval, pupal, and adult stages, is active from April
to October. In April, adult flies emerge from diapausing pupae, the resistant
stage for the cold season. Adults oviposit on the ground close to plant stems
or directly on stems, and after hatching, larvae develop inside the root causing
damage. Before ovipositing in Brassica crops, adults need to mate and to feed
on owers from hedgerows and field-banks. Both resources affect the energy
supply either positively (i.e. feeding) or negatively (i.e. ovipositing) and hence,
impact population dynamics (Fig. 3.9).

We built a stage-structured demographical model composed of four ODEs
and one PDE spatialised to account for agricultural landscape heterogeneity
and adult fly ability to disperse through a diffusion term. Landscape depen-
dence is described via two individual-scale processes of resource use. First we
introduce perception kernels of landscape features to define a spatially hetero-
geneous diffusion. Secondly, we add an energetic dimension, denoted by U ,
in which adult flies evolve depending on the landscape element (i.e. feeding
or oviposition sites). Therefore two kinds of individual-landscape interactions,
namely resource perception and energy supply management, were included
as additional driving forces of the spatial population dynamics. The popula-
tion model is characterised by five developmental stages: diapausing pupae
(PD), non-diapausing pupae (PN ), adults (A), eggs (E) and larvae (L) and the
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Figure 3.9: Synthetic view of the pest model: diapausing pupae (PD), non-
diapausing pupae (PN ), eggs (E), larvae (L) and adults (A). The solid arrows
represent conversion between state variables (with associated coefficients γi, j).
The black arrows cycle occurs 2-3 times during the season. The solid blue
arrow conversion occurs only once a year, at the beginning of the season. The
dashed black arrow represents new individuals creation by eggs laying (with
associated coefficientσ). The red dotted arrows represent mortality rates (ωi).

population dynamics is governed by [BPM+15]:
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d
d t

PD(x , t) = −γPD ,A(θ )PD −ωPD
PD

∂

∂ t
A(x , t, U) = γPD ,A(θ )PD + γPN ,A(θ )PNγPD ,A(θ )PD − γA,.A−ωAA

+∇x · (D∇xA)− C · ∇UA

d
d t

E(x , t) = σ(x ,θ )A− γE,L(θ )E −ωE E

d
d t

L(x , t) = γE,L(θ )E − γL,PD
(θ )L −ωL L

d
d t

PN (x , t) = γL,PN
(θ )L − γPN ,APN −ωPN

PN .

A global sensitivity analysis evaluates the impact of both the individual-
scale processes on the population dynamics. This exploration demonstrated
the biological relevance of the model according to field observations and the-
oretical expectations. Our key finding is that resource perception and energy
supply management appear as significant as the demographic component re-
garding the resulting dynamics of the pest. Building on its acute multiscale
landscape dependence, this model reveals particularly efficient to investigate
the putative relationships between agricultural landscape features and pest
outbreaks.
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Figure 3.10: Simulated spatial distribution of the Delia radicum adults across
the agricultural landscape at two dates in the activity season 2010-2011 (see
Fig. 4.8).

3.5 Perspectives

• It is observed in nature that the wavefront of the disease has a tendency
to speed up. A better integration of local turbulence (i.e. Navier-Stokes)
and the capillary effects (i.e. dispersion) is essential to improve our mod-
els. Also more direct processes of foraging (i.e. advection) and the con-
sideration on a random behavior of flies is examined.

• The implementation of other pathosystems (apple scab, wheat septoria,
downy mildew) is another outlook.
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CHAPTER 4

NUMERICAL SCHEMES AND

SOFTWARES DEVELOPMENT

Through these various studies, we developed several computer codes as well
with the aim to be easily reusable by non-specialists.

Require!
C,	
  Python,	
  VTK	
  (optional)!

Solvers!
1.  Multidimensional dispersives equation !

(damped and stochastic)!

2.  Multiscale botany !
(phloem, plant, plot, landscape)!

User interface!
simulation, output management!

Figure 4.1: General structure of the development environment.
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4.1 Dispersive and Dissipative waves

Spectral methods are very suitable to the discretization of such equations,
the nonlinearity, the derivatives and the anti-derivative being easily treated
[Waz01, KS12]. To preserve the conservation laws, high order schemes are re-
quired. The obtained nonlinear system is then solve using fixed point method
[Mam07, HMM09, Mam13b, MZ14].
For example, let us consider the 3+ 1−dimension KP equations

ut − Aα/2ux +A u+ uρux + a∂ −1
x uy y + b∂ −1

x uzz = 0.

Let∆t > 0 be the step of the time discretization, and set tn = n∆t. For n ∈ N,
we denote by bun an approximation of bu(ξ1,ξ2,ξ3, tn) and by un an approxima-
tion of u(x , y, z, tn). By denoting by m ≥ 1 a maximal number of iterations of
the fixed point iterations, a predictor-corrector algorithm is encoded as follows:

• Set bu0,m := ... := bu0,1 := bu0,0 := Òu0.

• For n= 0,1, ..., compute:

bun+1,0 := bun,m +∆t



−iξ1

Ú

(
up+1

n,m

p+ 1
) + i(ξα+1

1 − a
ξ2

2

ξ1
− b
ξ2

3

ξ1
)bun,m



 ,

• For r = 0,1, ..., m− 1,

bun+1,r+1 := bun,m +
∆t
2



−iξ1

Û

(
up+1

n+1,r

p+ 1
) + i(ξ3

1 −
ξ2

2

ξ1
a−

ξ2
3

ξ1
b)bun+1,r

−iξ1

Ú

(
up+1

n,m

p+ 1
) + i(ξ3

1 −
ξ2

2

ξ1
a−

ξ2
3

ξ1
b)bun,m



 .

The iterations are stopped in one of the two following cases:

• when
‖un+1,r+1−un+1,r‖l2(Ω)

‖un+1,0‖l2(Ω)
≤ τ, with τ > 0 a fixed tolerance. We then set

un+1 := un+1,r+1;

• or when r = m−1. Here, we set un+1 := un+1,m. We mention that the step
∆t can be reduced in this case, in order to improve the previous relative
error.

To capture various phenomena appearing in the evolution of these equations,
e.g. blow-up in finite time, an adaptive time step is used to improve the relative
error. A python interface was built to compute (1+ 1) and (2+ 1)−dimension
dispersive-dissipative equation. Concerning the (3+1)−D, the code is written
in fortran to speed up the computation.
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Remark 4.1 [CGM15b] As regards stochastic equations

du− dAα/2u+ ux ◦ dW + uρux d t = 0,

the definition of the Stratonovich integral has to be used for the time discretiza-
tion. This integral

∫ T

0
u(t) ◦ dWt is defined as the limit in probability of the sum

N
∑

n=1

u(tn+1) + u(tn)
2

(W (tn+1)−W (tn)).

Thus, for consistent numerical computations on long time intervals, the Cranck-
Nicolson method will be used:

(1+ ξ2)(bun+1 − bun) + iξ
bun+1 + bun

2
∆Wn +

iξ∆t
2





×up+1
n+1

p+ 1
+
×up+1

n

p+ 1



= 0

where ∆Wn = (W (tn+1) −W (tn)). The Stratonovich integral is used since Itô’s
formulation is not suitable for the discretization of these stochastic pdes. Indeed,
Itô’s integral is explicitly defined as

N
∑

n=1

u(tn)(W (tn+1)−W (tn)),

and an explicit discretization of the equations implies a loss of conservation laws.
Note also that, contrary to the deterministic case, the Crank-Nicolson scheme ap-
plied to stochastic differential equations is of order 1 (Fig. 4.2).
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Figure 4.2: Order of convergence of the Crank-Nicolson scheme with respect
to ∆t for the determistic (- -) and stochastic (—) BBM equation.
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Application to the study of KP instabilities. It consists of investigating, in di-
verse contexts, the blow-up in finite time, the dispersion, the solitonic behavior
and the transverse instabilities [HMM09, Mam13b] of the solution of

(ut + ux + uρux + ux x x)x + auy y + buzz = 0, a = ±1, b = ±1.

The propagation of localized initial data

u0(x) = α(1− 2sx2)e−s(x2+y2+z2), α, s ∈ R∗+,

shows here that the effect of negative transverse directions is much less reg-
ularizing, the discrete solution of the Cauchy problem blows up in finite time
for a weaker nonlinearity [dBS97, dBS96, Sau93, Sau95] (Fig. 4.3).
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Figure 4.3: Blow-up of the solution of the KP-I equation (A and B) and disper-
sion of the solution of the KP-II equation (C and D) with a nonlinearity u2ux .
(A) and (C) represents the L∞−norm of the solution.

The numerical transverse instabilities of the line-soliton

Φc(x , t) =
�

(p+ 1)(p+ 2)
2

c
�1/p

sech2/p
�

p
p

c
2
(x − c t)

�

,
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is investigating around a perturbation of the velocity

c(y, z) := c(1+ ε cos(
2πy
λy
+

2πz
λz
))

with λy ,λz > 0, and ε > 0 is a fixed small value. We observe a stronger form of
instability in the sense that solutions, initially close to solitary waves, becomes
unstable [APS97, RT08, RT12] but may blow up in finite time [Liu02, Liu00].
Similarly, we deal with the transverse instability of the profile of the Zaitsev
traveling waves [Zai83]

ψc(x , y, t) = 12α2 1− β cosh(αx −ωt) cos(δ y)
(cosh(αx −ωt)− β cos(δ y))2

,β =

√

√δ2 − 3α4

δ2

3α4 < δ2 ,ω=
δ2 +α4

α
, c =

ω

α
.

Once again, the negative transverse direction generates instabilities (Fig. 4.4).
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Figure 4.4: Solitonic to solitonic behavior of large amplitude solution of KP-I
(A). Transverse instabilities of the Zaitsev soliton under the 3D-KP flow.

4.2 Plant-Pathogen-Pest interactions

Plant growth and airborne spread. We develop our own code (written in C
and Python languages) which simulates the mechanistic plant growth and its
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interaction with an airborne pathogen. However, to share it with the largest
number (including biologists), the code was ported in OpenAlea [MBC+10].
This plateform offers efficient 3D visualization tools that are easily non-specialist
user accessible and benefits from a user support service [PDKB+08]. Two mod-
ules, simulating the vine stock growth and the powdery mildew propagation,
are integrated in OpenAlea. A friendly user interface is devised to facilitate
numerical simulations of the model, and to facilitate the investigation of the
spatial distribution of the disease (Fig. 4.5).

Figure 4.5: Vinoid interface under OpenAlea.

Phloem-Xylem transport. We describe the numerical discretization used to
approximate the pressure and the carbohydrate concentration given by the
equations (3.1)-(3.1) [MS15]. To simulate large space and time realistic multi-
dimensional phloem trees, the CFL condition of the proposed scheme should
not be too restrictive.
To deal with the nonlinearity, the equation (3.1)

∂t C −∇C ·
�

k
µ
∇P

�

− C∇ ·
�

k
µ
∇P

�

−
U
e
= 0

is split in two parts, for x ∈ Ω and t ∈ [0, T]

(

∂t C
1/2 −

�

k
µ
∇P

�

· ∇C1/2 −
U
e
= 0

C1/2(x , 0) = C0(x).
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(

∂t C − C∇ ·
�

k
µ
∇P

�

= 0

C(x , 0) = C1/2(x , T ),

and the change of variables eC = log(C) is applied to the second equation to
obtain

∂t
eC −∇ ·

�

k
µ
∇P

�

= 0.

Let n ∈ N∗. We denote Pn, respectively Cn the approximation at time tn = n∆t
of the pressure P, respectively the carbohydrate concentration C . Letϕ1,ϕ2,ϕ3

be test functions in H1. Finite elements method in space is used, while the time
discretization is obtained with a semi-implicit scheme (Fig. 4.6):

• Set P0, C0 and N ∈ N∗.

• For n= 1 to N

〈
Cn+1/2 − Cn

∆t
,ϕ1〉 − 〈

�

k
µ
∇Pn

�

· ∇Cn,ϕ1〉 − 〈
Un

e
,ϕ1〉 = 0

eCn+1/2 = log(Cn+1/2)

〈
eCn+1 − eCn+1/2

∆t
,ϕ2〉+ 〈

k
µ
∇Pn+1,∇ϕ2〉+

∫

∂Ω

k
µ
∂nPn+1ϕ2 = 0

〈
Pn+1 − Pn

∆t
,ϕ3〉+ 〈

E
µ

k∇Pn+1,∇ϕ3〉 −
∫

∂Ω

E
µ

k∂nPn+1ϕ3

−〈
ELR

e
(ψ− Pn + RT Cn,ϕ3〉 − 〈

VsU
n

e
,ϕ3〉 = 0

Cn+1 = exp(eCn+1).

The proposed semi-implicit scheme has the benefit of explicit and implicit
schemes in the sense that it is uncondionnally stable without solving nonlinear
iterations at each time step. It is implemented using the software FreeFem++.

Remark 4.2 The finite element method is here preferred because our phloem and
xylem database are in this format.
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Figure 4.6: Finite elements mesh built from an image of the Te Matua Ngahere,
symbol of New Zealand.

Pathogen spread at the plot scale. The numerical method has several con-
straints: it needs to preserve the positivity and the geometry of the domain
(e.g. the row structure of the vineyards) and to simulate a large number of het-
erogeneous plants. Once again, we prefer unconditionally stable semi-implicit
scheme combining an upwind method for the convection and a finite volume
method for the diffusion [BPM+15].
A python interface was built to compute small plot. Nevertheless, a supercom-
puter was used for very large plot (> 6000 plants).

Parcelle !

Y. Mammeri, Amiens, 11/15 !
8!

2 plots of 50 rows (12 000 plants), 
random coefficents,!

5 random infectious sources, 1 barrier!

Ref : Mammeri et al., 2015 !Figure 4.7: Spread of diseased leaves density (M) throw a plot made of 12OOO
plants.
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Pest landscape invasion. We proceed as above for the resolution of the sys-
tem, except that the diffusion is solved by ADI method [MBLC14]. This choice
is justified by the spatialised population data obtained from a geomatic two-
year survey in an agricultural area of Brittany (Fig. 4.8).

Figure 4.8: Map of the agricultural area with locations of Brassica crops.
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Equations dispersives et dissipatives et quelques applications en écologie
Ce mémoire d’habilitation présente mes principaux résultats en trois chapitres dis-
tincts.
Le premier concerne les équations aux dérivées partielles non-linéaires dispersives de
la forme

ut + f (u)x − (−∂ 2
x )
α/2u= 0.

Le problème de Cauchy y est étudié à travers une méthode de forme normale et des
inégalités de dispersion. Deux propriétés de prolongement unique sont quant à elles
établies via une inégalité de Carleman et une estimée de Bourgain.
La prise en compte de la viscosité et de la visco-élasticité fait l’objet du second chapitre.
Décrite mathématiquement par un opérateur A tel que 〈A u, u〉 > 0, on y démontre
la dissipation ainsi que la stabilité de l’énergie. La convergence vers la solution en-
tropique de la loi de conversion hyperbolique

ut + f (u)x = 0,

est également prouvée.
Dans le troisième chapitre, complétement indépendant des deux premiers, on se fo-
calise sur la modélisation des plantes et de leur environnement. Les interactions entre
les plantes, les pathogènes et les ravageurs y sont dressées.

Dispersive and dissipative equations and some applications in ecology
This report presents my main results in three separate chapters.
The first one is about nonlinear dispersive partial differential equations of the form

ut + f (u)x − (−∂ 2
x )
α/2u= 0.

The Cauchy problem is studied through a method of normal form and dispersion in-
equalities. Two unique continuation properties are established via a Carleman inequal-
ity and an estimate of Bourgain.
The consideration of the viscosity and viscoelasticity is the subject of the second chap-
ter. Described mathematically by an operatorA such that 〈A u, u〉> 0, one shows the
dissipation and the stability of the energy. The convergence to the entropy solution of
the hyperbolic conversion law

ut + f (u)x = 0,

is also proved.
In the third chapter, completely independent of the first two, we focus on the modeling
of plants and their environment. The interactions between plants, pathogens and pests
are drawn up.
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