
HAL Id: tel-01524856
https://hal.science/tel-01524856v1

Submitted on 19 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution à l’analyse de performance des robots
parallèles
Ranjan Jha

To cite this version:
Ranjan Jha. Contribution à l’analyse de performance des robots parallèles. Robotique [cs.RO]. Ecole
Centrale de Nantes (ECN), 2016. Français. �NNT : �. �tel-01524856�

https://hal.science/tel-01524856v1
https://hal.archives-ouvertes.fr


Ranjan JHA
Mémoire présenté en vue de l’obtention du 
grade de Docteur de l’Ecole Centrale de Nantes 

sous le label de L’Université Nantes Angers Le Mans 

École doctorale : STIM

Discipline :  Sciences pour l'ingénieur
Unité de recherche : IRCCyN

Soutenue le 7 juillet 2016

Contributions to the performance 
analysis of parallel robots 

JURY

 
Président : 

Rapporteurs : Jean-Pierre MERLET, Directeur de Recherche, INRIA 
Grigore GOGU, Professeur, IFMA

Examinateurs : 

Said ZEGHLOUL,

 

Professeur, Université de Poitiers

 
Damien CHABLAT, Directeur de Recherche, CNRS 
Guillaume MOROZ, Chargé de Recherche, INRIA 
Fabrice ROUILLIER, Directeur de Recherche, INRIA 

Invité(s) : 

Directeur de Thèse : Damien CHABLAT, Directeur de Rercheche, CNRS

Co-directeur de Thèse  : Fabrice ROUILLIER, Directeur de Recherche, INRIA, Guillaume MOROZ, Chargé de Recherche, INRIA 



Ranjan JHA

Contributions to the performance analysis of parallel robots 

Résumé 

Cette thèse apporte des contributions pour plusieurs 
problèmes associés à la planification de mouvements 
pour les robots parallèles. Ces différents problèmes sont 
classis en quatre catégories: l’analyse de l'espace de 
travail et de l'espace articulaire ; les domaines d'unicité ; 
la planification des trajectoires et l'analyse de précision. 
L'analyse de l’espace de travail et de l'espace articulaire 
différencient les régions possédant un nombre constant 
de solutions aux modèles géométrique inverses et des 
directs en utilisant une décomposition algébrique 
cylindrique.  Une méthode d’élimination utilisant des 
bases de Gröbner est utilisée pour calculer les 
singularités parallèles et sérielles des manipulateurs 
parallèles étudiés. Les surfaces caractéristiques sont 
également calculées pour définir les domaines d'unicité 
dans l'espace de travail. Une extension de la notion 
d’aspect est proposée pour les robots parallèles 
possédant plusieurs modes de fonctionnement,  
d’assemblage et  d’opération. Une méthode algébrique 
est proposé pour vérifier la faisabilité de toutes les 
trajectoires données dans l'espace de travail pour régler 
le problème bien connu qui se pose lorsqu'il existe une 
configuration singulière entre les deux postures de la 
plate-forme mobile lorsque l’on discrétise la trajectoire 
avec une approche classique. Appliquée au robot 
NaVARo, un robot parallèle possédant plusieurs modes 
d'actionnement, une interface Matlab est présentée pour 
générer sa prise d’origine et ses mouvements en utilisant 
uniquement le modèle géométrique inverse. Pour 
l’Orthoglide 5-axes, une analyse de précision est réalisée 
pour estimer l'erreur de position de l’outil associée aux 
erreurs produites par la boucle de régulation PID. Le 
modèle d’erreur proposé,  qui est basé sur les propriétés 
statiques et dynamiques de l’Orthoglide, permet d’estimer 
les erreurs de positionnement  dans l'espace cartésien. 

Mots clés 
Manipulateur parallèles, planification des trajectoires, 
décomposition cylindrique algébrique, singularités, base de 
Gröbner,  paramètres de conception, les indices de 
performance, modes d’opération

Abstract 

This doctoral thesis focuses on the different aspects 
which are associated with efficient planning of desired 
tasks for parallel robots. These different  aspects are 
mainly categorized in four parts, namely: workspace 
and joint space analysis, uniqueness domains, 
trajectory planning and accuracy analysis. The 
workspace and joint space analysis differentiate the 
regions with different number of inverse kinematic 
solutions and direct kinematic solutions using a 
cylindrical algebraic decomposition algorithm, 
respectively. The influence of design parameters and 
joint limits on the workspace boundaries for the parallel 
robots are reported.  Gr\"{o}bner based elimination 
methods are used to compute the parallel and serial 
singularities of the manipulator under study. The 
descriptive analysis of a family of delta like robots is 
presented by using algebraic tools to induce the an 
estimation about the complexity in representing the 
singularities in the workspace and the joint space. The 
generalized notions of aspects and uniqueness domains 
are defined for the parallel robot with several operation 
modes. The characteristic surfaces are also computed 
to define the uniqueness domains in the workspace. An 
algebraic method is proposed  to check the feasibility of 
any given trajectory in the workspace to address the 
well known  problem which arises when there exists a 
singular configuration between the two poses of the 
end-effectors while discretizing the path with a classical 
approach. A Framework for the control loop of a parallel 
robot with several actuation modes is presented , which 
uses only the inverse geometric model. The accuracy 
analysis focuses on the estimation of errors in the pose 
of the end effector due to the joint's errors produced by 
the PID control loop. The proposed error model, which 
is based on the static and dynamic properties of the 
Orthoglide, helps in estimating the error in the Cartesian 
workspace

Key Words 
Parallel manipulators, trajectory planning, cylindrical 
algebraic decomposition, singularities, Gröbner basis, 
design parameters, performance indices, operation 
modes
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Résumé

Cette thèse apporte des contributions pour plusieurs problèmes associés à la planification

de mouvements pour les robots parallèles. Ces différents problèmes sont classis en quatre

catégories: l’analyse de l’espace de travail et de l’espace articulaire ; les domaines d’unicité ;

la planification des trajectoires et l’analyse de précision. L’analyse de l’espace de travail et

de l’espace articulaire différencient les régions possédant un nombre constant de solutions

aux modèles géométrique inverses et directs en utilisant une décomposition algébrique cylin-

drique. Une méthode d’élimination utilisant des bases de Gröbner est utilisée pour calculer

les singularités parallèles et sérielles des manipulateurs parallèles étudiés. Les surfaces car-

actéristiques sont également calculées pour définir les domaines d’unicité dans l’espace de

travail. Une extension de la notion d’aspect est proposée pour les robots parallèles possédant

plusieurs modes de fonctionnement, d’assemblage et d’opération. Une méthode algébrique

est proposée pour vérifier la faisabilité de toutes les trajectoires données dans l’espace de

travail a fin de régler le problème bien connu qui se pose lorsqu’il existe une configuration sin-

gulière entre les deux postures de la plate-forme mobile lorsque l’on discrétise la trajectoire

avec une approche classique. Appliquée au robot NaVARo, un robot parallèle possédant

plusieurs modes d’actionnement, une interface Matlab est présentée pour générer sa prise

d’origine et ses mouvements en utilisant uniquement le modèle géométrique inverse. Pour

l’Orthoglide 5-axes, une analyse de précision est réalisée pour estimer l’erreur de position

de l’outil associée aux erreurs produites par la boucle d’asservissement (PID). Le modèle

d’erreur proposé, qui est basé sur les propriétés statiques et dynamiques de l’Orthoglide,

permet d’estimer les erreurs de positionnement dans l’espace cartésien.

Mots-clés: Manipulateur parallèles, planification des trajectoires, décomposition cylindrique

algébrique, singularités, base de Gröbner, paramètres de conception, modes d’opération.





Abstract

This doctoral thesis focuses on the different aspects which are associated with efficient plan-

ning of desired tasks for parallel robots. These different aspects are mainly categorized

in four parts, namely: workspace and joint space analysis, uniqueness domains, trajectory

planning and accuracy analysis. The workspace and joint space analysis differentiate the

regions with different number of inverse kinematic solutions and direct kinematic solutions

using a cylindrical algebraic decomposition algorithm, respectively. The influence of design

parameters and joint limits on the workspace boundaries for the parallel robots are reported.

Gröbner based elimination methods are used to compute the parallel and serial singularities

of the manipulator under study. The descriptive analysis of a family of delta like robots is

presented by using algebraic tools to induce an estimation about the complexity in repre-

senting the singularities in the workspace and the joint space. The generalized notions of

aspects and uniqueness domains are defined for the parallel robot with several operation

modes. The characteristic surfaces are also computed to define the uniqueness domains in

the workspace. An algebraic method is proposed to check the feasibility of any given tra-

jectory in the workspace to address the well known problem which arises when there exists

a singular configuration between the two poses of the end-effectors while discretizing the

path with a classical approach. A Framework for the control loop of a parallel robot with

several actuation modes is presented , which uses only the inverse geometric model. The

accuracy analysis focuses on the estimation of errors in the pose of the end effector due to

the joint’s errors produced by the PID control loop. The proposed error model, which is

based on the static and dynamic properties of the Orthoglide, helps in estimating the error

in the Cartesian workspace.

Keywords: Parallel Robots, Trajectory Planning, Cylindrical Algebraic Decomposition,

Singularities, Gröbner Basis, Design Parameters, Operation Modes, Workspace.
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Introduction

Motivation
Robots have been a reality on factory assembly lines for over twenty years. A revolution

in the field of robotics transforms the global economy for past few years, cutting the costs

of services for the people. The researchers and engineers across the world made remarkable

contributions for the efficient use of robots in the manufacturing, health, entertainment and

aeronautical sectors.This doctoral thesis focuses on the different aspects which are associ-

ated with efficient planning of desired tasks for parallel robots. These different aspects are

mainly categorized in four parts, namely: workspace and joint space analysis, uniqueness

domains, trajectory planning and accuracy analysis. The workspace and joint space analy-

sis differentiate the regions with different number of inverse kinematic solutions and direct

kinematic solutions using a cylindrical algebraic decomposition algorithm, respectively. The

influence of design parameters and joint limits on the workspace boundaries for the parallel

robots are reported. Gröbner based elimination methods are used to compute the parallel

and serial singularities of the manipulator under study. The descriptive analysis of a fam-

ily of delta like robots is presented by using algebraic tools to induce an estimation about

the complexity in representing the singularities in the workspace and the joint space. The

generalized notions of aspects and uniqueness domains are defined for the parallel robot

with several operation modes. The characteristic surfaces are also computed to define the

uniqueness domains in the workspace. An algebraic method is proposed to check the feasi-

bility of any given trajectory in the workspace to address the well known problem which

arises when there exists a singular configuration between the two poses of the end-effectors

while discretizing the path with a classical approach. A Framework for the control loop of

a parallel robot with several actuation modes is presented , which uses only the inverse

geometric model. The accuracy analysis focuses on the estimation of errors in the pose of

the end effector due to the joint’s errors produced by the PID control loop. The proposed

error model, which is based on the static and dynamic properties of the Orthoglide, helps

in estimating the error in the Cartesian workspace.

The workspace can be defined as the volume of space of the complete set of poses which

the end-effector of the manipulator can reach. Many researchers published several works

on the problem of computing these complete sets for robot kinematics. Based on the early

studies [1, 2], several methods for workspace determination have been proposed, but many

of them are applicable only for a particular class of robots. The workspace of parallel robots
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mainly depends on the actuated joint variables, the range of motion of the joints and the

mechanical interferences between the bodies of mechanism. There are different techniques

based on geometric [3, 4], discretization [5, 7, 8], and algebraic methods [9, 10, 11, 12] which

can be used to compute the workspace of parallel robot. The main advantage of the geo-

metric approach is that, it establish the nature of the boundary of the workspace [19]. Also

it allows to compute the surface and volume of the workspace while being very efficient in

terms of storage space, but when the rotational motion is included, it becomes less efficient.

Interval analysis based methods can be used to compute the workspace but the com-

putation time depends on the complexity of the robot and on the requested accuracy [8].

Discretization methods are usually less complicated and can easily take into account all kine-

matic constraints, but they require more space and computation time for higher resolutions.

The majority of numerical methods which is used to determine the workspace of parallel

manipulators includes the discretization of the pose parameters for computing workspace

boundaries [7]. There are other approaches, which are based on optimization algorithms [20]

for fully serial or parallel manipulators, analytic methods for symmetrical spherical mecha-

nisms [21].

Algebraic methods are used in [12, 11, 14, 22, 23, 24] to study planar or spatial parallel

robots. Two main steps are necessary to perform the workspace and joint space analysis.

First, the discriminant variety is computed to characterize the boundaries of the workspace

and joint space as well as the singularities. Second, the Cylindrical Algebraic Decomposition

is used to define the connected regions where there exists a constant number of real solutions

to the inverse or direct kinematic problem and no parallel or serial singularities [12, 14, 15].

A cylindrical algebraic decomposition based method is illustrated in [11, 16], which is used

to model the workspace and joint space for the 3 RPS parallel robot. The workspace analysis

for the 3RPS and delta-like family parallel manipulators are presented in a chapter of the

thesis. The cylindrical algebraic decomposition method and Gröbner based computations

are used to model the workspace in 3T & 2R1T projection spaces, where the orientation of

the mobile platform is represented by using quaternions. A certified three dimensional plot-

ting is proposed to study the shape of the workspace for different delta like manipulators.

This thesis presents the results which are obtained by applying algebraic methods for the

workspace and joint space analysis of a family of delta-like robot including complexity in-

formation for representing the singularities in the workspace and the joint space. The CAD

algorithm is used to study the workspace and joint space, and a Gröbner based elimination

process is used to compute the parallel and serial singularities of the manipulator.

For the design or the trajectory planning, the workspace of the parallel manipulator is

divided into singularity-free regions [17]. The singularities divide the workspace into aspects

and the characteristic surfaces induce a partition of each aspect into a set of regions (the

basic regions) [18]. For the parallel robots with several inverse and direct kinematic solu-

tions, the aspects are defined as the maximal singularity-free sets in the workspace or in the
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cross-product of the joint space by the workspace. An assembly mode is associated with a

solution for the Direct Kinematic Problem and a working mode for the Inverse Kinematic

Problem (IKP). Practically, a change of assembly mode may occur during the execution of a

trajectory between two configurations in the workspace which are not necessarily associated

with the same input for a given working mode. The uniqueness domains can be defined as

the maximal regions of the workspace where all the displacements of the end-effector can

be accomplished without changing of assembly mode and working mode [12].

One of the crucial steps in the trajectory planning is to check the singularity-free paths

in the workspace for the parallel manipulators. It becomes a necessary protocol to validate

the trajectory when the parallel robot is used in practical applications such as precise man-

ufacturing operations. A trajectory verification problem is presented in [25], based on some

validity criteria like whether the trajectory lies fully inside the workspace of the robot and

is singularity-free. Singularity-free path planning for the Gough-Stewart platform with a

given starting pose and a given ending pose has been addressed in [26] using the clustering

algorithm is presented in [27]. An exact method and an approximate method are described

in [28] to restructure a path close to the singularity locus into a path that avoids it while

remaining close to the original path. Due to the geometry of the mechanism, the workspace

may not cover fully the space of poses [27], hence it is necessary to analyze the workspace

of the manipulator. A procedure to automatically generate the kinematic model of parallel

mechanisms which further used for singularity free path planning is reported in [30]. An algo-

rithm for computing singularity-free paths on closed-chain manipulators is presented in [31],

also this method attempts to connect the given two non-singular configurations through a

path that maintains a minimum clearance with respect to the singularity locus at all points.

The main drawback of numerical or discretization methods is that there might be a sin-

gular configuration between two poses of the end-effectors when discretizing the path. This

thesis illustrates a technique based on some algebraic methods to check the feasibility of

any given trajectory in the workspace : it allows to write the Jacobian of the manipulator

as a function of the time and to check whether its determinant vanishes between two poses.

Also, when the trajectory meets a singularity, its location can also be computed.

The accuracy to reach the exact pose for the parallel manipulator for a given trajectory

depends on the static and dynamic parameters associated with the manipulator. Due to their

better dynamic properties, high load-carrying capacity, high accuracy and stiffness, closed

loop mechanisms are best suited for the medical robotics, high-precision and machine tool

design applications. Number of links and passive joints in the closed loop mechanism reduce

the accuracy of the manipulator. There are different factors which affect the accuracy of the

manipulator, some of them are geometrical deviations of the machine parts during their as-

sembly, mechanism motions, elastic deformations of the links and joints due to the force and

thermal expansion [32, 33]. There are several article exists on the effect of manufacturing

tolerances on the accuracy of the parallel manipulators [34]. In [35], a forward and inverse
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error bound analysis is presented to find the error bound in the pose of the end effector

for a Gough-Stewart platform when the joint error bounds are given and vice versa. The

sensitivity analysis for a three degrees-of-freedom translational parallel kinematic machine

with orthogonal linear joints is reported in [36], they have used linkage kinematic analysis

and differential vector method to study the influence of the length variation on the pose of

the end-effector.

One of the highly addressed problem associated with the end-effector pose error is the

manipulator stiffness, which defines the positioning error due to the external loading while

executing a specific task by the manipulator. A non-linear stiffness model for the manip-

ulators with the passive joints is presented in [37]. Pashkevich et al [38] proposed a novel

calibration approach for the Orthoglide based on the observations of the manipulator legs

parallelism. A larger number of contributions in the literature is available on the influence of

the statics than the influence of dynamics on computing the error in the pose of the parallel

manipulator [41, 42]. A methodology is presented in [43] to project the trajectories in the

joint space using Gröbner based elimination methods. In the final chapter of this thesis,

results associated with accuracy analysis which focuses on the estimation of error in the

pose of end effector due to the joint errors produced by the PID control loop are presented.

The proposed error model which is based on the dynamic properties (joint velocities and

acceleration) of the Orthoglide helps in estimating the error in the Cartesian workspace.

Thesis Goal and Research Problems
This thesis focuses on the different aspects which are associated with the planning of a

task for the parallel manipulators. Starting from the workspace modeling, this document

presents the singularity analysis, an algebraic method to check the feasibility of any given

trajectory and finally the accuracy analysis for the parallel manipulators. The chapters of

this thesis are based on the following problems:

Problem 1

Model the workspace and study the influence of design parameters and joint limits

on the workspace boundaries for the parallel manipulators. Also the change in the

workspace due to the different configurations or arrangements of the actuators of

the parallel manipulators.

Problem 2

Computation of the singularities and their projections with inequalities in the

Cartesian space and joint space. Defining the aspect and uniqueness domain for

manipulators with several working, assembly and operation modes.

Problem 3

Feasibility of any given trajectory using algebraic methods which ensure the

singularity-free path unlike other classical numerical techniques.
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Problem 4

Influence of static and dynamic parameters in computing the error in the pose of

the end effector. Dependency of the different parameters on the accuracy of the

parallel manipulators.

Thesis Structure
This doctoral dissertation includes mainly five chapters and the objectives of this doctoral

dissertation are stated as follows:

Chapter 1 presents the definitions of the basic terminologies and the mathematical

tools, which are used in the chapters of this thesis. The working modes, assembly modes,

aspects and uniqueness domains are illustrated using different examples, based on the avail-

able articles. Also the aspects for parallel manipulator with single IKS, multiple IKS and

operation modes are discussed. The CAD algorithm is used to study the workspace and

joint space, and a Gröbner basis elimination process is used to compute the parallel and

serial singularities of the manipulator. A brief description of these mathematical tools is

also presented in the later sections of this chapter.

Chapter 2 covers the workspace and joint space analysis for the 3RPS and delta-like

family parallel manipulators. Also, the influence of the design parameters and joint lim-

its on the workspace boundaries for the parallel manipulators are reported.The cylindrical

algebraic decomposition method and Gröbner basis computations are used to model the

workspace in 3T & 2R1T projection spaces, where the orientation of the mobile platform is

represented using quaternions. A certified three dimensional plotting is proposed to study

the shape of the workspace for different delta like manipulators.

Chapter 3 presents the singularity analysis for the previously defined mechanisms. The

Gröbner basis elimination method is used to compute the projection of the singularities in

the Cartesian space and in the joint space. The descriptive analysis of a family of delta like

robots is presented by using algebraic tools to induce an estimation about the complexity in

representing the singularities in the workspace and the joint space. The generalized notions

of the uniqueness domains is also presented for the parallel robot with several operation

modes. The effect of joint limits on these singularity surfaces are also presented in the later

sections of this chapter.

Chapter 4 is devoted to the joint space analysis and to an algebraic method to check

the feasibility of any given trajectories in the workspace. The solutions of the polynomial

equations associated with the trajectories are projected in the joint space using Gröbner

basis elimination methods and the remaining equations are expressed in a parametric form

where the articular variables are functions of the time t unlike any numerical or discretiza-

tion method. These formal computations allow to write the Jacobian of the manipulator

as a function of the time and to check if its determinant can vanish between two poses.
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Another benefit of this approach is to use a larger workspace with a more complex shape

than a cube, a cylinder or a sphere.

Chapter 5 reports the influence of static and dynamic parameters in computing the

error in the pose associated with the trajectory planning made and analyzed with the Or-

thoglide 5-axis. An error model based on the joint parameters (velocity and acceleration)

and experimental data coming from the Orthoglide 5-axis is proposed. Newton and Gröb-

ner based elimination methods are used to project the joint error in the workspace to check

the accuracy/error in the Cartesian space. For the analysis, five similar trajectories with

different locations inside the workspace are defined using fifth order polynomial equation for

the trajectory planning. It is shown that the accuracy of the robot depends on the location

of the path as well as the starting and the ending posture of the manipulator due to the

acceleration parameters.

Main Contributions

1- Workspace and joint space analysis of the 3-RPS parallel robot

The study of workspace, joint space and singularities together assists the engineers and

researchers in the efficient task planning and the selection of the particular configuration

of the manipulator for a desired task. This work reports the variations in the workspace,

singularities and joint space with respect to the design parameter ’k’ of the 3-RPS parallel

manipulator. The cylindrical algebraic decomposition method and Gröbner based compu-

tations are used to model the workspace and joint space with the parallel singularities in

3T & 2R1T projection spaces, where the orientation of the mobile platform is represented

by using quaternions. An algorithm is presented to separate the singularity surfaces for the

positive and negative values of quaternion q1 & q4 for the corresponding operation modes.

Depending on the design parameter ’k’, three different configurations of the 3-RPS parallel

manipulator are analyzed.

2- The uniqueness domains for parallel robot with several operation modes
and assembly modes

The accurate computation of the workspace and joint space for 3-RPS parallel robotic

manipulator is a highly addressed research work across the world. Researchers have proposed

a variety of methods to calculate these parameters. In the present context a cylindrical

algebraic decomposition based method is proposed to model the workspace and joint space.

It is a well know feature that this robot admits two operation modes. We are able to

find out a connected set in the joint space with a constant number of solutions for the

direct kinematic problem and the locus of the cusp points for the both operation mode. The

characteristic surfaces are also computed to define the uniqueness domains in the workspace.

A simple 3-RPS parallel with similar base and mobile platforms is used to illustrate this

method.
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3- Non-singular assembly mode changing trajectories in the workspace
for the 3-RPS parallel robot

Having non-singular assembly modes changing trajectories for the 3-RPS parallel robot is

a well-known feature. The only known solution for defining such trajectory is to encircle

a cusp point in the joint space. In this section, the aspects and the characteristic surfaces

are computed for each operation mode to define the uniqueness of the domains. Thus, we

can easily see in the workspace that at least three assembly modes can be reached for each

operation mode. To validate this property, the mathematical analysis of the determinant of

the Jacobian is done. The images of these trajectories in the joint space is depicted with

the curves associated with the cusp points.

4- An Algebraic Method to Check the Singularity-Free Paths for Parallel
Robots

Trajectory planning is a critical step while programming the parallel robots in a robotic cell.

The main problem arises when there exists a singular configuration between two poses of

the end-effectors while discretizing the path with a classical approach. This work presents

an algebraic method to check the feasibility of any given trajectories in the workspace.

The solutions of the polynomial equations associated with the trajectories are projected in

the joint space using Gröbner based elimination methods and the remaining equations are

expressed in a parametric form where the articular variables are functions of the time t

unlike any numerical or discretization method. These formal computations allow to write

the Jacobian of the manipulator as a function of the time and to check if its determinant

can vanish between two poses. Another benefit of this approach is to use a larger workspace

with a more complex shape than a cube, a cylinder or a sphere. For the Orthoglide, a

three degree of freedom parallel robot, three different trajectories are used to illustrate this

method.

5- Workspace and Singularity analysis of a Delta like family robot

Workspace and joint space analysis are essential steps in describing the task and designing

the control loop of the robot, respectively. This section presents the descriptive analysis

of a family of delta-like parallel robots using algebraic tools to induce an estimation of

the complexity in representing the singularities in the workspace and in the joint space. A

Gröbner based elimination is used to compute the singularities of the manipulator and a

Cylindrical Algebraic Decomposition algorithm is used to study the workspace and the joint

space. From these algebraic objects, we propose some certified three dimensional plotting

describing the shape of the workspace and of the joint space which will help the engineers

or researchers to decide the most suited configurations of the manipulator they should use

for a given task. Also, the different parameters associated with the complexity of the serial

and parallel singularities are tabulated, which further enhance the selection of the different

configurations of the manipulator by comparing the complexity of the singularity equations.
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6- Influence of the trajectory planning on the accuracy of the Orthoglide
5-axis

Usually, the accuracy of parallel manipulators depends on the architecture of the robot, the

design parameters, the trajectory planning and the location of the path in the workspace.

This work reports the influence of static and dynamic parameters in computing the error

in the pose associated with the trajectory planning made and analyzed with the Orthoglide

5-axis. An error model is proposed based on the joint parameters (velocity and acceleration)

and on experimental data coming from the Orthoglide 5-axis. Newton and Gröbner based

elimination methods are used to project the joint errors in the workspace and to check

the accuracy/error in the Cartesian space. For the analysis, five similar trajectories with

different locations inside the workspace are defined using fifth order polynomial equations

for the trajectory planning. It is shown that the accuracy of the robot depends on the

location of the path as well as on the starting and the ending posture of the manipulator

due to the acceleration parameters.

7- A Framework for the Control Loop of a Parallel Robot with Several Actu-
ation Modes

There have been several research works on reconfigurable parallel manipulators in the last

few years. Some robots are reconfigurable in the sense that the position of the anchor points

on the moving platform or of the actuated joints can be changed. Some problems may arise

when one intends to make a prototype and develop its control algorithms. A reconfigurable

planar parallel robot, named NaVARo, is a 3-DOF planar parallel manipulator with eight

actuation modes. This part considers a control scheme of NaVARo while taking an advantage

of multiple sensors such as motor encoders, additional absolute encoders and magnetic

sensors; which are used to determine the current assembly mode of the manipulator. A

methodology is presented to determine the home configuration of the NaVARo.



I
Definitions and Mathematical
Tools

Chapter 1 presents the definitions of the basic terminologies and the mathematical

tools, which are used in the chapters of this thesis. The working modes, assembly

modes, aspects and uniqueness domains are illustrated using different examples,

based on the available articles. Also the aspects for parallel manipulator with single

IKS, multiple IKS and operation mode are discussed. The cylindrical algebraic de-

composition method is used to study the workspace and joint space, and a Gröbner

based elimination process is used to compute the parallel and serial singularities of

the manipulator. A brief description of these mathematical tools is also presented

in the later sections of this chapter.

I.1 Parallel Robots
A parallel robot is a mechanical system with a closed-loop kinematic chain mechanism

whose end-effector is linked to the base by several independent kinematic chains. Parallel

robots can be categorized in two different type as fully parallel and non-fully parallel ma-

nipulators based on the relation between the number of chains and degree of freedom of the

end-effector.

Definition 1 A fully parallel manipulator is a mechanism that includes as many elemen-

tary kinematic chains as the mobile platform does admit degrees of freedom. Moreover, every

elementary kinematic chain possesses only one actuated joint (prismatic, pivot or kneecap).

Besides, no segment of an elementary kinematic chain can be linked to more than two bodies

[47].

Further fully parallel manipulators can be categorized in planar robots (three degrees of

freedom in the plane), and spatial robots, which do not move just within a plane. A fully

parallel planar manipulator has an end-effector with three degrees of freedom, two transla-

tions and one rotation. A review on the computation of mobility of mechanisms is presented

in [6].

The parallel architecture provides high rigidity and high payload-to-weight ratio, high

accuracy, low inertia of moving parts, high agility, and simple solution for the inverse kine-

matics problem. The fact that the load is shared by several kinematic chains results in high
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payload-to-weight ratio and rigidity.The disadvantages of the parallel manipulators are lim-

ited work volume, low dexterity, complicated direct kinematics solution, and singularities

that occur both inside and on the envelope of the work volume.

I.1.1 Create Manipulator with SIROPA

SIROPA library Provides modeling, analyzing and plotting functions for different manip-

ulators. We will use the function CreateManipulator() of SIROPA library in MAPLE

software to create the manipulator virtually, so that we can do the analysis of diffrent param-

eter associated with the manipulator. Listing 1.1 shows the code architecture of the function:

1 CreateManipulator := proc (

2 sys [ c ] : : l i s t ({ a l g e b r a i c , a l g e b r a i c=a l g e b r a i c , a l g e b r a i c <a l g e b r a i c })

3 c a r t [ c ] : : l i s t (name) ,

4 a r t i [ c ] : : l i s t (name) ,

5 p a s s i v e [ o ] : : l i s t (name) ,

6 geompars [ c ] : : l i s t (name) ,

7 spec [ o ] : : { l i s t , s e t }(name=a l g e b r a i c ) ,

8 p lo t range [ o ] : : l i s t (name=range ) ,

9 p o i n t s [ p ] : : l i s t (name=l i s t ( a l g e b r a i c ) ) ,

10 l oops [ p ] : : l i s t ( l i s t (name) ) ,

11 cha ins [ p ] : : l i s t ( l i s t (name) ) ,

12 a c t u a t o r s [ p ] : : l i s t ({ l i s t (name) ,name}) ,

13 model [ o ] : : s t r i n g := "No name " ,

14 p r e c i s i o n [ o ] : : i n t e g e r := 4 ,

15 {

16 n o r a d i c a l : : t r u e f a l s e := f a l s e

17 }

18 )

Listing I.1 – Architecture of Create Manipulator

In the Listing 1.1, there are some compulsory input for the function which are marked

as [c], and rest which are marked as [o], are optional to create the manipulator virtually

for further analysis. Points, loops, chains and actuators, these are the input parameters to

create the plot of the manipulator. The pose variables are the essential input parameters to

define the mechanism. The input parameter sys is the set of constraint equations associated

with the motion of manipulator. These constraint equations can be in the form of Euler

angle representation or quaternions [11].

This function returns a data structure of type Manipulator containing the fields, which is

given in Table I.1. Further, the values of these fields can be retrieved or changed according

to the analysis to be performed. Brief description of these fields is presented in the Table I.1.

I.1.2 Workspace and Jointspace

Workspace in general can be defined as the volume of space which the end-effector of the

manipulator can reach. The workspace of parallel robots mainly depends upon the actuated

joint variables, the range of motion of the joints and the mechanical interferences between

the bodies of mechanism. Below is the different types of workspace based on the constraint

impose on the parameters [72, 66, 69]:
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Equations a list of polynomials [p1, ..., pk]: the modelling equations

Constraints a list of strict inequalities: the constraint inequalities

PoseVariables a list of names: the variables defining the pose

ArticularVariables a list of names: the control parameters

PassiveVariables a list of names: the remaining variables

GeometricParameters a list of names: the geometric parameters

GenericEquations
a list of polynomials: the modelling equations with symbolic

geometric parameters

GenericConstraints
a list of strict inequalities: the constraint inequalities

appearing in sys

Precision an integer: the number of correct digits

PoseValues
the pose values substituted in the GenericEquations to get

the Equations

ArticularValues
the articular values substituted in the GenericEquations to

get the Equations

PassiveValues
the passive values substituted in the GenericEquations to

get the Equations

GeometricValues
the geometric values substituted in the GenericEquations to

get the Equations

DefaultPlotRanges ranges used by default for plotting if provided

Points the points coordinate of the robot

Loops the frame loops of the robot

Chains the frame chain of the robot

Actuators the actuators of the robot

Model a string: the name of the modelling

Table I.1 – Description of the fields of CreateManipulator function
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• Constant orientation workspace or Translation workspace: all possible loca-

tions of the end-effector of the robot that can be reached with a given orientation.

• Orientation workspace: all the possible orientations that can be reached while end-

effector is in a fixed location.

• Maximal workspace or Reachable workspace: all the locations of end-effector

that may be reached with at least one orientation of the platform.

• Inclusive orientation workspace: all the locations of end-effector that may be

reached with at least one orientation among a set defined by ranges on the orientation

angles. The maximal workspace is a particular case of inclusive orientation workspace

for which the ranges for the orientation angles are [0, 2π].

• Total orientation workspace: all the locations of end-effector that may be reached

with all the orientations among a set defined by ranges on the orientation angles.

• Dextrous workspace: all the locations of end-effecctor for which all orientations are

possible. The dextrous workspace is a particular case of total orientation workspace,

the ranges for the rotation angles being [0, 2π].

• Complementary workspace: it is defined by the variables of workspace as well as

jointspace, and helps in defining the trajectory.

There are different techniques based on geometric, discretization, numerical and algebraic

methods which are used to calculate the workspace of parallel robot. The main advantage of

the geometric approach is that, it establish the nature of the boundary of the workspace [19].

Also it allows the computation of the surface and volume of the workspace while being very

efficient in terms of storage space, but if the rotational motion is included, it becomes more

complex. The interval analysis based method can be used to compute the workspace but

the computation time depends on the complexity of the robot and the accuracy requested.

The ALIAS library is a good implementation for the parallel robots [8].

1 Cel lDecompos it ionPlus := proc (

2 equ : : l i s t ( a l g e b r a i c ) ,

3 ineq : : l i s t ( a l g e b r a i c ) ,

4 vars : : l i s t (name) ,

5 pars : : l i s t (name) := [

6 op ( i n d e t s ( [ equ , ineq ] , name)

7 minus {op ( vars ) }) ] ,

8 {

9 n o f a c t o r : : t r u e f a l s e := f a l s e ,

10 g b f a c t o r : : t r u e f a l s e := f a l s e ,

11 n o r e a l r o o t s t e s t : : t r u e f a l s e := f a l s e

12 }

13 )

Listing I.2 – Architecture of CellDecompositionPlus
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equ a list of polynomials and trigonometric expressions: the equations.

ineq
a list of polynomials and trigonometric expressions: the inequalities

where each & expression p stands for p>0.

vars a list of names: the variables of the system

pars[o]
a list of names: the parameters of the system; default value: the

remaining variables of equ and ineq

Table I.2 – Description of the fields of CellDecompositionPlus function

Discretization methods are usually less complex and take into account all kinematic

constraints, but require more space and computation time for higher resolutions. The ma-

jority of numerical methods which is used to determine the workspace of parallel manipula-

tors includes the discretization of the pose parameters for the determination of workspace

boundaries[7].

The workspace and joint space analysis differentiate the regions with different number

of inverse kinematic solutions and direct kinematic solutions using a cylindrical algebraic

decomposition algorithm, respectively. The CellDecompositionPlus function, shown in List-

ing 1.2, decomposes the parameter space of a parametric polynomial system into cells in

which the original system has a constant number of solutions. This function returns a data

structure the same as the one returned by the maple function RootFinding[Parametric]

[CellDecomposition][52, 56]. The main difference is that it handles trigonometric expres-

sions. The function returns a data structure that can be used for plotting the regions of

the parameter space for which the system has a given number of solutions and extract-

ing sample points in the parameter space for which the system has a given number of

solutions. The type of the output is a solution record with the following fields: Equations,

Inequalities, Filter, Variables, Parameters, DiscriminantVariety, ProjectionPolynomials, and

SamplePoints[52, 56].

The input system must satisfy the following properties:

• The number of equations is equal to or greater than the number of indeterminates.

• At most finitely many complex solutions exist for almost all complex parameter values

(i.e, the system is generically zero-dimensional).

• For almost all complex parameter values, there are no solutions of multiplicity greater

than one (i.e, the system is generically radical); in particular, the input equations are

square-free

I.2 Kinematics : IKP and DKP
Kinematics is the science of motion that treats motion without regard to the forces which

cause it. Kinematics involves the study of position, velocity, acceleration, and all higher or-

der derivatives of the position variables (with respect to time or any other variables). Hence,

the study of the kinematics of manipulators refers to all the geometrical and time-based
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properties of the motion. The two very basic problem in the study of mechanical manipula-

tion is direct kinematic problem (DKP) and inverse kinematic problem (IKP). Specifically,

given a set of joint angles or parameters, the DKP is to compute the position and orientation

of the end-effector relative to the base, also the problem can be posed as: To change the

representation of manipulator position from a joint space description into a Cartesian space

description. IKP can be posed as: given the position and orientation of the end-effector of

the manipulator, calculate all possible sets of joint angles or parameters that could be used

to attain this given position and orientation, also the problem of mapping of locations in

three-dimensional Cartesian space to locations in the robot’s internal joint space can be

termed as IKP.

For a manipulator, the relation permitting the connection of input values (q) with output

values (X) is the following:

F (q, X) = 0 (I.1)

This definition can be applied to serial or parallel manipulators. Differentiating equation

I.1 with respect to time leads to the velocity model:

A Ẋ + B q̇ = 0 (I.2)

Where,
A = ∂F

∂X
and B = ∂F

∂q

Moreover, Ẋ = [ω ċ]T , where ω and ċ represents the rotational and translational

velocities, respectively. A and B are respectively the direct-kinematics and the inverse-

kinematics matrices of the manipulator. These matrices are useful for the determination of

the singular configurations [57].

I.3 Singularities
A singularity is in general a point at which a given mathematical object is not defined,

or a point of an exceptional set where it fails to be well-behaved in some particular way.

Singularities of a robotic manipulator are important feature that essentially influence its

capabilities. Mathematically, a singular configuration may be defined as rank deficiency

of the Jacobian describing the differential mapping from the jointspace to the workspace

and vice versa. Singular configurations for parallel manipulators are particular poses of

the end-effector, for which it loses their inherent infinite rigidity, and in which the end-

effector will have uncontrollable degrees of freedom. From equation I.2, A and B are the

direct kinematics and the inverse kinematics matrices of the manipulator respectively. A

singularity occurs whenever det(A) or det(A) (or both) vanishes [57, 66]. Depending on

these three conditions, singularity can be differentiated into following three types:

• det(B) = 0 : Type1 Singularity or Serial Singularities

• det(A) = 0 : Type2 Singularity or Parallel Singularities
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• det(A) = 0 and det(B) = 0 : Type3 Singularity

• Constraint Singularities

I.3.1 Parallel Singularities

Parallel singularities occur when the determinant of the direct kinematics matrix A van-

ishes. The corresponding singular configurations are located inside the workspace. They are

particularly undesirable because the manipulator can not resist any force and control is lost.

There are mainly two issues associalted with parallel singularity, control issues where the

pose of the end-effector is no longer controllable and safety issues, where the elements of the

robot may be submitted to very large forces, causing a damage to the robot. Using the fun-

cion ParallelSingularities() of SIROPA library in MAPLE software, parallel singularity

analysis of different robot can be done efficiently.

1 P a r a l l e S i n g u l a r i r i e s := proc ( robot : : Manipulator )

2 robot a data s t r u c t u r e returned by a f u n c t i o n mechanisms .

Listing I.3 – Parallel Singularities

Figure I.1 shows the projections of singularity curve in workspace and jointspace. Fol-

lowing are the MAPLE code for computing the parallel singularity curve and its projection

in workspace and jointspace:

1 s2 := P a r a l l e S i n g u l a r i r i e s ( robot : : Manipulator )

2 s2_cart := P r o j e c t i o n ( s2 , robot :− PoseVar iab les )

3 s2_art := P r o j e c t i o n ( s2 , robot :− A r t i c u l a r V a r i a b l e s )

Listing I.4 – Projection of parallel singularities in workspace and jointspace

xy

z

ρ1ρ2

ρ3

(a) (b)

Figure I.1 – Projection of parallel singularity curves of Orthoglide in Workspace (a) and

Jointspace (b)

In the Listing 1.4, s2 is the equation associated with the parallel singularity curve,

whereas, s2_cart and s2_art are the variables associated with the projection of s2 in

workspace and jointspace respectively.
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I.3.2 Serial Singularities

Serial singularities occur when the determinant of the inverse kinematics matrix B vanishes.

When the manipulator is in such a singularity, there is a direction along which no Carte-

sian velocity can be produced. serial singularities occur on the boundary of the workspace

of a parallel manipulator. Due to serial singularities, the actuated joints velocities reach

extreme values. Serial singularity analysis of different robot can be done using the funcion

SerialSingularities() in SIROPA library.

1 S e r i a l S i n g u l a r i r i e s := proc ( robot : : Manipulator )

2 robot a data s t r u c t u r e returned by a f u n c t i o n mechanisms .

Listing I.5 – Serial Singularities

xy

z

ρ1ρ2

ρ3

(a) (b)

Figure I.2 – Projection of serial singularity curves of Orthoglide in Workspace (a) and Jointspace

(b)

Figure I.2 shows the projections of singularity curve in workspace and jointspace. Fol-

lowing are the MAPLE code for computing the parallel singularity curve and its projection

in workspace and jointspace:

1 s1 := S e r i a l S i n g u l a r i r i e s ( robot : : Manipulator )

2 s1_cart := P r o j e c t i o n ( s1 , robot :− PoseVar iab les )

3 s1_art := P r o j e c t i o n ( s1 , robot :− A r t i c u l a r V a r i a b l e s )

Listing I.6 – Projection of serial singularities in workspace and jointspace

In the Listing 1.6, s1 is the equation associated with the serial singularity curve, whereas,

s1_cart and s1_art are the variables associated with the projection of s1 in workspace

and jointspace respectively.

I.4 Assembly modes and Working modes
The algebraic elimination approach for solving the direct kinematics gives several solutions,

which refers to the several poses of the end-effector for given values of the joint coordinates.

It is therefore possible to assemble the manipulator in different ways, and these different
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configurations are known as assembly modes of the manipulator [47]. Similarly, the multiple

inverse kinematic solutions induce multiple postures for each leg of the manipulator.

P1

P2

Figure I.3 – Two assembly modes of Orthoglide

Figure I.3 shows the existence of two assembly mode, where p1 and p2 are two solutions

for DKP at particular joint value.

P P P

P P P

P P

Figure I.4 – Eight posture of orthoglide

Figure I.4 shows the existence of eight different postures for a point p, which is the

eight different solutions (joint values) for IKP. A posture changing trajectory is equivalent
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to a trajectory between two inverse kinematic solutions and an assembling mode changing

trajectory is equivalent to a trajectory between two direct kinematic solutions.

The notion of working modes was introduced in [47] for parallel manipulators with several

solutions to the inverse kinematic problem and whose matrix B is diagonal. A working mode,

denoted by Mfi is the set of robot configurations for which the sign of Bjj does not change

and does not vanish. A robot configuration is represented by the vector (X, q) [12].

Mfi =

{

(X,q) ∈ W ×Q such that sign(Bjj) = constant,

for j = 1, ..., n and detB 6= 0

}

(I.3)

Therefore, the set of working modes is obtained using all combinations of sign of each

term Bjj . Changing working mode is equivalent to changing the posture of one or several

legs. A working mode is defined in W ×Q because the terms of Bjj depend on both X and

q.

For a working mode Mfi, we have only one inverse kinematic solution. So, we can define

an application that maps X onto q:

gi(X) = q (I.4)

Then the images in W of a posture q in Q is denoted by:

g−1
i (q)=

{

X\(X, q) ∈Mfi

}

(I.5)

I.5 Operation Modes
Notion of operation mode (OM) was introduced in [58] to explain the behavior of the

DYMO robot. An operation mode is associated with a specific type of motion. For the

DYMO robot, there are five operation modes: translational, rotational, planar (two types)

and mixed motions. In the workspace W , for each operation mode, WOMj is defined such

that

• WOMj ⊂ W

• ∀X ∈ WOMj , OM is constant

For a parallel robot with several operating modes, the pose can be defined by fixing

the same number of parameters as the degree of freedom of the mobile platform. Given

an operation mode OM j , if we have a single inverse kinematic solution, we can define an

application that maps X onto q:

gj(X) = q (I.6)

Then, the images in WOMj of a posture q in the joint space Q are defined by:

g−1
j (q) = (X/(X, q) ∈ OM j) (I.7)

where g−1
j stands to be the direct kinematic problem for the operation mode j.
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I.6 Aspects and Uniqueness Domains
The notion of aspect was introduced by [59] to cope with the existence of multiple inverse

kinematic solutions in serial manipulators. The notion of aspect was defined for parallel

manipulators with single inverse kinematic solution [60] to cope with the existence of multi-

ple direct kinematic solutions. Moreover, the notion of aspect was redefined in [47] for fully

parallel manipulators with multiple inverse and direct kinematic solutions.

I.6.1 Aspect for parallel manipulators with single IKS

The aspects WAi are defined as th maximal sets such that:

• WAi ⊂ W

• WAi is connected

• ∀X ∈ WAi, det(A) 6= 0

I.6.2 Aspect for parallel manipulators with multiple IKS

The generalized aspects Aij are defined as the maximalsets in W.Q so that

• Aij ⊂ W.Q

• Aij is connected

• Aij = (X, q) ∈Mfi\ det(A) 6= 0

The projection of the generalized aspects in the workspace yields the parallel aspects WAij

so that

• WAij ⊂ W

• WAij is connected

The parallel aspects are the maximal singularity-free domains in the workspace for one given

working mode. The projection of the generalized aspects in the jointspace yields the serial

aspects QAij so that

• QAij ⊂ Q

• QAij is connected

The serial aspects are the maximal singularity-free domains in the jointspace for one given

working mode.

I.6.3 Characteristic surfaces

The characteristic surfaces were introduced in [84] to define the uniqueness domains for serial

cuspidal robots. This definition was extended to parallel robots with one inverse kinematic

solution in [17] and to parallel robots with several inverse kinematic solutions in [77, 12].

Let WAij be an aspect in the workspace, W . The characteristic surfaces, Sc(WAij), are

defined as the preimage in WAij of the boundary ∂WAij that delimits WAij .

Sc(WAij) = g−1
i (gi(∂WAij)) ∩WAij (I.8)

where:
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• gi is defined in Equation I.4

• g−1
i is a notation defined in equation I.5. Let C ⊂ Q:

g−1
i (C)=

{

X ∈ W\gi(X) ∈ C
}

(I.9)

The characteristic surfaces coincide with the pseudo-singularities when the robot admits

only two aspects in worksace for each working mode [12] and is defined by:

Sc(WAij) = g−1
i (gi(∂WAij)) (I.10)

X

Y

f

Singularity surface

Characteristic
surface

Figure I.5 – Octree model of the singularities and of the characterstic surfaces Sc1

Figure I.5 can be taken as the example of characterstic surfaces [60], which depicts

singularity surface S along with the characterstic surface Sc1 of 3-RPR planar parallel

manipulator.

I.6.4 Basic components and Basic regions

Let WAij be an aspect in the workspace, W . The basic regions of WAijk, denoted WAbijk,

k ∈ K, are defined as the connected components of the set WAij \ Sc(WAij) .

The basic regions induce a partition on WAij :

WAij = (∪k∈KWAbijk) ∪ Sc(WAij) (I.11)

Figure I.6 can be taken as the example of basic regions [60], which depicts 28 basic

regions for 3-RPR planar parallel manipulato. Also in Figure I.7, octree model of the basic

components is shown. The coincident components yield domains with 2, 4 or 6 solutions

for the direct kinematic problem : the upper one domains contain two coincident basic

components, the middle five domains are composed of four coincident domains, and the last

two domains contain six coincident basic components. Let QAbijk = g(WAbijk), QAbijk is
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f

X Y

Figure I.6 – Octree model of the basic regions

a domain in the reachable joint space Q called basic components. Let WAij an aspect in

workspace and QAij its image under g. The following relation holds:

QAij = (∪k∈KQAbijk) ∪G(Sc(WAij)) (I.12)

Six coincident
basic components

in each domain

Four coincident
basic components

in each domain

Two coincident
basic components

in each domain

r1 r2

r3

r1 r2

r3

r1 r2

r3

r1 r2

r3

r1 r2

r3

r1 r2

r3

r1 r2

r3

Figure I.7 – Octree model of the basic components
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I.6.5 Uniqueness domains

The uniqueness domains Wuil are the union of two sets:

• The set of adjacent basic regions (∪k∈KWAbijk) of the same aspect WAij whose

respective preimages are disjoint basic components, and

• the set of the characteristic surfaces Sc(WAbijk) k ∈ K ′ which separate these basic

components:

Wuil = (∪k∈KWAbijk) ∪ Sc(WAbijk) (I.13)

with K ′ ⊂ K such that

∀k1, k2 ∈ JK ′, g(WAbij1
) ∩ g(WAbij2

) = ∅

WA1

WA2

Figure I.8 – Octree model of the six uniqueness domains

Figure I.8 can be taken as the example of uniqueness domain [60], Six uniqueness domains

has been found for the 3RPR planar parallel manipulator as shown in Figure I.8.
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I.7 Non-Singular assembly mode changing trajectories
Non singular assembly mode change refers that parallel manipulator can pass from one

solution of the direct kinematics into another without crossing a singularity. It was first

reported in [61]. Earlier, it was shown that to move from one assembly-mode to another, a

3-RPR planar parallel manipulator should cross a singularity [62]. But later it was reported

that using numerical experiments, non singular change of assembly mode is possible [61].

The non-singular change of assembly mode in parallel manipulators is often associated

with the presence of cusps and the non-singular change of assembly mode is realized by

turning around a cusp point, or a cuspidal edge of the singularity surface (see for instance

[63, 64, 14, 65]). It has also been reported that non-singular change of assembly modes can

be realized by following an ’alpha curve’ (i.e. a fold curve intersecting itself transversally)

[67, 68], and that the presence of cusps is not necessary for the existence of non singular

assembly mode changes[71].
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Figure I.9 – Non-singular assembly-mode changing trajectory connecting the two assembly-

modes P1 and P2

In [18], author investigated the question of whether a change of assembly-mode must

occur or not when moving between two prescribed poses in the workspace. They defined

the uniqueness domains in the workspace as the maximal regions associated with a unique

assembly-mode and proposeda calculation scheme for 3-RPR planar parallel manipulators

using octrees. They showed that up to three uniqueness domains exist in each singularity-

free region. When the starting and goal poses are in the same singularity-free region but in

two distinct uniqueness domains, a non-singular changeof assembly-mode is necessary.

Figure I.9 shows a non-singular assembly-mode changing trajectory connecting the two

assembly-modes P1and P3 for 3-RPR parallel manipulators and is taken from [70]. To

connect the assembly-modes P1 and P3, the trajectory in the joint space encircles two cusp

points as shown in Figure I.9. Also in [70], it is verified that any path from P1 and P2

must encircle these two cusp points. In [71], it has been shown that a parallel manipulator

can execute non-singular changes of assembly modes while its joint space is free of cusp
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points and cuspidal edges. The analysis is done on two degrees of freedom manipulator and

is derived from a 3-RPR manipulator.

I.8 Standard Bases (Gröebner Bases)
The method of Gröebner bases provides a uniform approach to solving a wide range of

problems expressed in terms of sets of multivariate polynomials. The Gröebner basis gives

us a method for writing a system of algebraic equations f(x1, ..., xn) = 0 in the unknowns

x1, ..., xn with finitely many solutions into a system that has the same roots and which is

in triangular form gn(xn) = 0, gn−1(xn−1, xn) = 0, ..., g1(x1, ..., xn) = 0, called a Gröebner

basis. There are few drawbacks of Gröebner basis e.g. the calculation time of the Gröebner

basis is mainly dependent upon the number of equations and their degree and also its

calculation with real numbers is numerically unstable [72].

Groebner basis theory can be used to compute the projections πQ and πW . Let P be a set

of polynomials in the variables X = (x1, .., xn) and q = (q1, .., qn). Moreover, let V be the

set of common roots of the polynomial in P , let W be the projection of V on the workspace

and Q the projection on the joint space. It might not be possible to represent W (resp. Q) by

polynomial equations. Let W̄ (resp. Q̄) be the smallest set defined by polynomial equations

that contain W (resp. Q)[12]. A Gröebner basis P is a polynomial system equivalent to P,

satisfying some dditional specific properties. The Groebner basis of a system depends on

the chosen ordering on the monomials.

For the projection πQ, when we choose an ordering eliminating q, the Gröebner basis of P

contains exactly the polynomials defining W̄ .

For the projection πW , when we choose an ordering eliminating X, the Gröebner basis of

P contains exactly the polynomials defining Q̄.

I.9 Discriminant Variety and Cylindrical Algebraic Decomposition
The notion of discriminant variety is a generalization of the discriminant of a univariate

polynomial, describing all the critical points of the system, including singularities, solutions

of multiplicity greater than one, and solutions at infinity. It is a subset of the parameter

space of lower dimension [52, 53].

A discriminant variety has the following property: It divides the parameter space into

open, full-dimensional cells such that the number of solutions of the system sys is constant

for parameter values chosen from the same open cell. The DiscriminantVariety(sys, vars,

pars) calling sequence computes a discriminant variety of the system sys of equations and

inequalities with respect to the indeterminates vars and the parameters pars.

1 Discr iminantVar i e ty ( sys , vars , pars )

2 Discr iminantVar i e ty ( eqs , ineqs , vars , pars )

Listing I.7 – Architecture of Discriminant Variety
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sys
list of equations and strict inequalities between polynomials with rational

coefficients

vars list of names; the indeterminates

pars (optional) list of names; the parameters

eqs
list of polynomials f with rational coefficients, representing equations of

the form f = 0

ineqs
list of polynomials g with rational coefficients, representing constraint

inequalities of the form 0 < g

Table I.3 – Description of the fields of DiscriminantVariety function

The DiscriminantVariety(eqs, ineqs, vars, pars) calling sequence computes a discriminant

variety of the system

[f = 0, 0 < g]f∈eqs, g∈ineqs (I.14)

of equations and inequalities with respect to the indeterminates vars and the parameters

pars.

The input system must satisfy the following properties:

• There are at least as many equations as indeterminates.

• At least one and at most finitely many complex solutions exist for almost all com-

plex parameter values (that is, the system is generically solvable and generically zero-

dimensional).

• For almost all complex parameter values, there are no solutions of multiplicity greater

than one (that is, the system is generically radical). In particular, the input equations

are square-free.

An error occurs if one of these conditions is violated.

• The result is returned as a list of lists of polynomials in pars such that the discriminant

variety is the union of the set of solutions of the polynomials in each inner list.

• If pars is not specified, it defaults to all the names in sys that are not indeterminates.

• This command will attempt to find a minimal discriminant variety, but it may return

a proper superset in the case that it does not succeed.

• The discriminant variety is computed using Gröebner Basis techniques.

Example

1 with ( RootFinding [ Parametric ] )

2 Discr iminantVar i e ty [ a∗x^2 = 1 , b∗z+y = 0 , c∗z+y = 0 , 0 < c ] , [ x , y , z ]

3

4 Output [ [ a ] , [ c ] , [ b−c ] ]

Listing I.8 – Example of Discriminant Variety

The discriminant variety in this first example is (a, b, c) : a = 0 or b = c or c = 0.

The case a = 0 gives a solution of the first equation at infinity. In the case b = c, the second
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and third equations coincide and therefore the system becomes underdetermined and has

infinitely many solutions. Finally, the case c = 0 corresponds to a boundary case for the

inequality 0 < c.

A cylindrical algebraic decomposition of the n-dimensional real space is a partition of

the whole space into connected semi-algebraic subsets such that the cells in the partition are

cylindrically arranged, that is, the projection of any two cells onto any lower dimensional

real space is either equal or disjoint. This decomposition is called F-invariant if for any

given cell, the sign of each polynomial in F does not change over the cell. CylindricalAl-

gebraicDecompose(F, R) returns an F-invariant cylindrical algebraic decomposition of the

n-dimensional real space, where n is the number of variables in R. This assumes that R has

characteristic zero and no parameters, such that the base field of R is the field of rational

numbers [54].

The output of CylindricalAlgebraicDecompose(F, R) has several possible formats con-

trolled by the options output=piecewise, output=tree, output=list , output=cadcell and

output=rootof.In all formats, each cell provides at least two pieces of information, the in-

dex of the cell and a sample point of the cell. In the output=cadcell and output=rootof

formats, a defining semi-algebraic system (called a Tarski Formula) is also provided.Due to

the cylindicity property, cells can be organized in a hierarchical manner. This is the purpose

of output=piecewise and output=tree, whereas the other three formats are flat representa-

tions. Due to the potentially large number of cells, the output=cadcell format only shows

the name cadcell for each cell in the decomposition. However, cadcell is a type and an object

of that type can be passed to Display. It can also be passed to SamplePoints in order to

access the sample point of the cell.The output=rootof format is meant to be compatible

with the output format of the solve command.

The CellDecomposition command decomposes the parameter space of a parametric poly-

nomial system into cells in which the original system has a constant number of solutions[55].

1 Cel lDecompos it ion ( sys , vars , pars , opt ions )

2 Cel lDecompos it ion ( eqs , pos ineqs , vars , pars , opt ions )

3 Cel lDecompos it ion ( eqs , pos ineqs , nz ineqs , vars , pars , opt ions )

Listing I.9 – Architecture of Cell Decomposition

The command returns a data structure that can be used for (for example):

• Plotting the regions of the parameter space for which the system has a given number

of solutions.

• Extracting sample points in the parameter space for which the system has a given

number of solutions.

• Extracting boxes in the parameter space in which the system has a given number of

solutions.

The record returned captures information about the solutions of the system depending

on the parameter values, including:

• A discriminant variety
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sys
list of equations and strict inequalities between polynomials with rational

coefficients

vars list of names; the indeterminates

pars (optional) list of names; the parameters

eqs
list of polynomials f with rational coefficients, representing equations of

the form f = 0

posineqs
list of polynomials g with rational coefficients, representing constraint

inequalities of the form 0 < g

nzineqs
list of polynomials g with rational coefficients, representing constraint

inequations of the form g 6= 0

options
sequence of optional equations of the form keyword=value, where keyword

is either output or method

Table I.4 – Description of the fields of CellDecomposition function

• For each full-dimensional open cell, a sample point strictly in the interior of the cell;

if possible, the coordinates of the sample point are chosen to be integers

The input system must satisfy the following properties:

• The number of equations is equal to or greater than the number of indeterminates

• At most finitely many complex solutions exist for almost all complex parameter values

(that is, the system is generically zero-dimensional)

• For almost all complex parameter values, there are no solutions of multiplicity greater

than one (that is, the system is generically radical); in particular, the input equations

are square-free

I.10 Conclusions
This Chapter is dedicated to the definitions of the basic terminologies and the mathematical

tools, which are used in the chapters of this thesis. The working modes, assembly modes,

aspects and uniqueness domains are explained using different examples, based on the avail-

able articles. Also the aspect for parallel manipulator with single IKS, multiple IKS and

operation mode are discussed. The cylindrical algebraic decomposition method is used to

study the workspace and joint space, and a Gröbner based elimination process is used to

compute the parallel and serial singularities of the manipulator. A brief description of these

mathematical tools is also presented.





II
Workspace and Joint Space
Analysis

The accurate calculation of the workspace and joint space for the parallel manipu-

lators is a highly addressed research work across the world. One of the crucial steps

in the trajectory planning is to check the singularity-free paths in the workspace,

which requires the prior knowledge of the workspace for the parallel manipulators.

This chapter covers the workspace and the jointspace analysis for the 3-RPS and

delta-like family parallel manipulators. The cylindrical algebraic decomposition

method and Gröbner based computations are used to model the workspace in 3T

& 2R1T projection spaces, where the orientation of the mobile platform is rep-

resented using quaternions. A certified three dimensional plotting is proposed to

study the shape of the workspace for different delta like manipulators. Also, the

influence of the design parameters and joint limits on the workspace boundaries

for the parallel manipulators are presented.

II.1 Introduction
The workspace can be defined as the volume of space or the complete set of poses which the

end-effector of the manipulator can reach. Many researchers published several works on the

problem of computing these complete sets for robot kinematics. Based on the early studies

[1, 2], several methods for workspace determination have been proposed, but many of them

are applicable only for a particular class of robots. The workspace of parallel robots mainly

depends on the actuated joint variables, the range of motion of the joints and the mechanical

interferences between the bodies of mechanism. There are different techniques based on

geometric [3, 4], discretization [5, 7, 8], and algebraic methods [9, 10, 11, 12, 22, 23, 24]

which can be used to compute the workspace of parallel robot. The main advantage of

the geometric approach is that, it establish the nature of the boundary of the workspace

[19]. Also it allows to compute the surface and volume of the workspace while being very

efficient in terms of storage space, but when the rotational motion is included, it becomes

less efficient. Interval analysis based methods can be used to compute the workspace but

the computation time depends on the complexity of the robot and the requested accuracy

[8]. Discretization methods are usually less complicated and can easily take into account
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all kinematic constraints, but they require more space and computation time for higher

resolutions.

The majority of numerical methods which is used to determine the workspace of parallel

manipulators includes the discretization of the pose parameters for computing workspace

boundaries [7]. There are other approaches, which are based on optimization algorithms

[20] for fully serial or parallel manipulators, analytic methods for symmetrical spherical

mechanisms [21]. In [74] a method for computing the workspace boundary for manipulators

with a general structure is proposed, which uses a branch-and-prune technique to isolate a set

of output singularities, and then classifies the points on such set according to whether they

correspond to motion impediments in the workspace. A cylindrical algebraic decomposition

based method is illustrated in [11, 16], which is used to model the workspace and joint space

for the 3 RPS parallel robot.

II.2 Manipulators Under Study
There are three different mechanisms for which the workspace and the joint space analysis

are presented in this chapter. The first mechanism under the study is a three degree of free-

dom parallel mechanism which consists of three identical legs, the different arrangements

of these legs give rise to family of delta like robot. Several types of delta-like robot were

studied, few of them are Orthoglide [8, 76], Hybridglide, Triaglide [78] and UraneSX [8].

The second robot is a reconfigurable 3RPS parallel robot with variable mobile platform.

The third robot under the study is the 3RRR parallel robot, the NaVARo robot. SIROPA

library Provides modeling, analyzing and plotting functions for different manipulators. The

function CreateManipulator() of SIROPA library in MAPLE software is used to create

the manipulator virtually for analyzing the diffrent parameter associated with the manipu-

lator.

II.2.1 Orthoglide Architecture and Kinematics

The Orthoglide mechanism is driven by three actuated orthogonal prismatic joints. A simpler

virtual model can be defined for the Orthoglide, which consists of three bar links connected

by the revolute joints to the tool center point on one side and to the corresponding prismatic

joint at another side. Several assembly modes of these robots depends upon the solutions

of direct kinematic problem is shown in Fig. II.1. The point P represents the pose of corre-

sponding robot. However more than one value for the point P shows the multiple solutions

for the DKP. AiBi is equal to ρi, where ρi represents the prismatic joint variables whereas

P represents the position vector of the tool center point.

The constraint equations for the Orthoglide are:

(x− ρ1)2 + y2 + z2 = L2

x2 + (y − ρ2)2 + z2 = L2

x2 + y2 + (z − ρ3)2 = L2 (II.1)
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Figure II.1 – Configuration plot for Orthoglide robot

II.2.2 Hybridglide Architecture and Kinematics

The Hybridglide mechanism consists of three actuated prismatic joints, in which two actua-

tors are placed parallel and third one perpendicular to others two. Also the three bar links

connected by spherical joints to the tool center point on one side and to the corresponding

prismatic joint at another side. Several assembly modes of these robots depends upon the

solutions of direct kinematic problem is shown in Fig. II.2.
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Figure II.2 – Configuration plot for Hybridglide robot

The constraint equations for the Hybridglide are:

(x− 1)2 + (y − ρ1)2 + z2 = L2

(x + 1)2 + (y − ρ2)2 + z2 = L2

x2 + y2 + (z − ρ3)2 = L2 (II.2)

II.2.3 Triaglide Architecture and Kinematics

The Triaglide manipulator is driven by three actuated prismatic joints, in which all the

three actuators parallel to each other and placed in the same plane. The architecture of the

Triaglide is shown in Fig. II.3.
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Figure II.3 – Configuration plot for Triaglide robot

The constraint equations for the Triaglide are:

(x− 1)2 + (y − ρ1)2 + z2 = L2

(x + 1)2 + (y − ρ2)2 + z2 = L2

x2 + (y − ρ3)2 + z2 = L2 (II.3)

II.2.4 UraneSX Architecture and Kinematics

The UraneSX is similar to triaglide, but instead of three actuators in the same plane, they

are placed in different planes. The architecture of the UraneSX is shown in Fig. II.4.

The constraint equations for the UraneSX are:

(x− 1)2 + y2 + (z − ρ1)2 = L2

(x + 1/2)2 + (y −
√

3/2)2 + (z − ρ2)2 = L2

(x + 1/2)2 + (y +
√

3/2)2 + (z − ρ3)2 = L2 (II.4)
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Figure II.4 – Configuration plot for UraneSX robot



II.2 Manipulators Under Study 35

II.2.5 Reconfigurable 3-RPS Parallel Robot

The robot under study is the 3-RPS parallel robot with three degrees of freedom and has

been studied by many researchers [79, 80]. It is the assembly of two equilateral triangles

(the base, moving platform) by three identical RPS legs where R is a revolute passive joint,

P an actuated prismatic joint and S a passive spherical joint. Thus, the revolute joint is

connected to the fixed base and the spherical joint to the mobile platform.
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Figure II.5 – 3-RPS parallel robot

Considering the 3-RPS parallel manipulator, as shown in Fig. II.5, the fixed base con-

sists of an equilateral triangle with vertices A1, A2 and A3, and circumradius g. The moving

platform is another equilateral triangle with vertices B1, B2 and B3 and varying circum-

radius h, and circumcenter P . The two design parameters g and h are positive numbers.

Connecting each of the vertices’ pairs Ai, Bi (i = 1, 2, 3) by a limb, a rotational joint lies at

Ai and a spherical joint lies at Bi. ρi denotes the length of each limb and the adjustment

is done through an actuated prismatic joint. Thus, there are five parameters, namely g, h,

ρ1, ρ2 and ρ3. The g and h parameters (h/g=k) determine the design of the manipulator

(shown in fig. II.6) whereas the joint parameters ρ1, ρ2 and ρ3 determine the motion of the

robot. Spatial rotations in three dimensions can be parametrized using Euler angles [81],

unit quaternions [82] or dual quaternions [79]. The quaternion representation is used for

modeling the orientation as quaternions do not suffer from singularities as Euler angles do.

Moreover, to transform the trigonometric equations to algebraic equations, we may either

introduce the singularity of the transformation t = tan(α/2) or replace the angle α by two

parameters cosα and sinα with cos2
α + sin2

α−1. In addition, it is easier to represent workspace

sections with the quaternions than the dual quaternions.
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Figure II.6 – Virtual model of 3-RPS parallel manipulator with different design parameter k, k = 0.5 (a), k = 1 (b), k = 1.5 (c)
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A quaternion q is defined by

q = q1 + q2i + q3j + q4k (II.5)

The quaternion rotation matrix for the parallel robot is then

Q =









2q1
2 + 2q2

2 − 1 −2q1q4 + 2q2q3 2q1q3 + 2q2q4

2q1q4 + 2q2q3 2q1
2 + 2q3

2 − 1 −2q1q2 + 2q3q4

−2q1q3 + 2q2q4 2q1q2 + 2q3q4 2q1
2 + 2q4

2 − 1









(II.6)

with q2
1 + q2

2 + q2
3 + q2

4 = 1. The transformation from the moving frame to the fixed frame

can be described by a position vector p = OP and a 3× 3 rotation matrix R. Let u, v and

w be the three unit vectors defined along the axes of the moving frame, then the rotation

matrix can be expressed in terms of the coordinates of u, v and w as:

R =









ux vx wx

uy vy wy

uz vz wz









(II.7)

The vertices of the base triangle and mobile platform triangle are
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(II.8)

b1 =
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(II.9)

The coordinates of bi with respect to fixed frame reference are obtained by Bi = P + Rbi

for i = 1, 2, 3. Also the coordinates of the centre of the mobile platform in the fixed reference

is P = [x y z]T . The distance constraints yields:

||Ai −Bi|| = ρ2
i with i = 1, 2, 3 (II.10)

As Ai are revolute joints, the motion of the Bi are constrained in planes. This leads to the

three constraint equations:

uyh + y = 0 (II.11)

y − uyh/2 +
√

3vyh/2 +
√

3x−
√

3uxh/2 + 3vxh/2 = 0 (II.12)

y − uyh/2−
√

3vyh/2−
√

3x +
√

3uxh/2 + 3vxh/2 = 0 (II.13)

Solving with respect to x and y we get:

y = −huy (II.14)

x = h
(√

3ux −
√

3vy − 3uy + 3vx

)√
3/6 (II.15)

In Equations II.10, II.12, II.13, we substitute x, y using relations II.14 and II.15, and u, v, w

by quaternion expressions using II.6. Then (II.12) and (II.13) become q1q4 = 0. Thus, we

have either q1 = 0 or q4 = 0. This property is associated with the notion of operation mode.

To obtain the algebraic equations, we replace
√

3 by the variable S3 and add the equation

S2
3 − 3 = 0 and the constraint s3 > 0.
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II.2.6 NaVARo 3RRR Planar Parallel Robot

The NaVARo robot was introduced in [86] and illustrated in Fig. IV.12. From the classical

3-RRR parallel robot, a parallelogram is added to each leg and connected to the first limb.

A virtual model of NaVARo robot is shown in Fig. IV.13 which is used for analyzing the

different aspects associated with the robot under study. Virtually, the actuator positions

can change from the revolute joint located on Ai or Bi. This feature exists thanks to a clever

transmission system made with two clutches. The NaVARo robot admits eight actuation

modes if we assume that only one clutch can be activated in the same time per leg.

Figure II.7 – The NaVARo robot

The dimensions were chosen so that the forward kinematics of the 3-RPR robot asso-

ciated can be solved analytically. Thus, the points Ai and Ci form an equilateral triangle,

respectively, and their sides has the dimension 0.7 m and 0.35 m, respectively. The lengths of

the links AiBi and BiCi are 0.21 m for i = 1, 2, 3. Due to the parallelograms, the minimum

and maximum distance between the points Ai and Ci is 0.039 m and 0.08 m, respectively.
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Figure II.8 – The virtual model of the NaVARo robot
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II.3 Workspace Analysis of a Delta-like Family Robot
The workspace analysis allows to characterize of the workspace regions where the number of

real solutions for the inverse kinematics is constant. A CAD algorithm is used to compute

the workspace of the robot in the projection space (x, y, z) with some joint constraints taken

in account.
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Figure II.9 – Workspace plot for Orthoglide (a), Hybridglide (b), Triaglide (c) and UraneSX

(d) robot

The three main steps involved in the analysis are [16, 52, 56]:

• Computation of a subset of the joint space (resp. workspace) where the number of

solutions changes: the Discriminant Variety .

• Description of the complementary of the discriminant variety in connected cells: the

Generic Cylindrical Algebraic Decomposition (CAD).

• Connecting the cells belonging to the same connected component in the counterpart

of the discriminant variety: interval comparisons.

Table II.1 shows the number of cells corresponding to the number of solutions in the
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Table II.1 – Definition of the Workspace with CAD

WORKSPACE

Number of cells

Number of solutions 0 1 2 4 8 Total

Orthoglide 28782 1196 0 0 130 30108

Hybridglide 93292 4484 7228 4196 1164 110364

Triaglide 27708 384 464 420 400 29376

UraneSX 9918 236 36 0 0 10190

jointspace, which is the outcome of cell decomposition. The different shapes of workspace

for the delta-like robots is shown in Fig. II.9, where blue, red, yellow and green regions

correspond to the one, two, four and eight number of solutions for the IKP. A comparative

study is done on the workspace of the family of delta-like manipulator and the results are

shown in Fig. II.9. All the workspace are plotted in the rectangular box, where x ∈ [−2, 2],

y ∈ [−2, 6] and z ∈ [−2, 6], so that the shapes of these workspace can be compared. From

the Fig. II.9 it can be intuited that the Triaglide will be good selection, if the task space

is more in horizontal plane, whereas the Orthoglide is good for the three dimensional task

space.

II.4 Joint space Analysis of a Delta-like Family Robot
The Jointspace analysis predicts the feasible and non-feasible combinations of the prismatic

joint variables which are essential for the parallel robot control. The Jointspace analysis

is done using CAD. Table II.2 shows the number of cells corresponding to the number of

solutions in the jointspace, which is the outcome of cell decomposition. Also these cells

are plotted to represent the jointspace which is shown in Figure IV.16, where red region

corresponds to two solutions for the DKP. The following joint constraints are taken into

account while computing the joint space of the manipulators.

0 < ρ1 < 2L 0 < ρ2 < 2L 0 < ρ3 < 2L (II.16)

Table II.2 – Definition of the Jointspace with CAD

JOINTSPACE

Number of cells

Number of solutions 0 2 Total

Orthoglide 10509 4160 14669

Hybridglide 8917 3041 11958

Triaglide 5375 426 5801

UraneSX 50598 4006 54604
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Figure II.10 – Jointspace plot for Orthoglide (a), Hybridglide (b), Triaglide (c) and UraneSX

(d) robot

II.5 Workspace Analysis of the 3RPS Parallel robot
The workspace of the robot is a cylinder in the projection space (z, q2, q3) if there are no

joint limits on the actuated joints.

The workspace analysis can be done by dividing it into a set of aspects. The notion of

aspect, previously defined in [59] for serial robots and in [17] for parallel robot with one

operation mode can be extended for a parallel robot with several operation modes such

that:

• WAj
i ⊂ WOMj

• WAj
i is connected

• ∀X ∈ WAj
i , det(A) 6= 0 and det(B) 6= 0

In other words, an aspect WAj
i is the largest connected region without any singularity

of the OM j .

The analysis of the workspace is done in the projection space (z, q2, q3). We found out

four aspects as shown in Figure III.9. However, no further analysis is done to prove this

feature in the four dimension space. As there are several solutions for the DKP in the same

aspect, non-singular assembly mode trajectories are possible [79].

The cylindrical algebraic decomposition cannot be used alone to compute the workspace

in the projection space of z, q2, q3 because the projection of q1 or q4 induces spurious surfaces
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Figure II.11 – Aspects for OM1 with det(A) < 0 (a) and det(A) > 0 (b) and aspects for OM2

with det(A) < 0 (c) and det(A) > 0 (d)

in the space (z, q2, q3). We thus have to solve the inverse kinematic problem for each test

point with the constraint q4 > 0 for OM1 and q1 > 0 for OM2.

II.5.1 Operation Modes

Notion of operation mode (OM) was introduced in [58] to explain the behavior of the

DYMO robot. An operation mode is associated with a specific type of motion. For the

DYMO robot, there are five operation modes: translational, rotational, planar (two types)

and mixed motions. In the workspace W , for each operation mode, WOMj is defined such

that

• WOMj ⊂ W

• ∀X ∈ WOMj , OM is constant

For a parallel robot with several operating modes, the pose can be defined by fixing

the same number of parameters as the degree of freedom of the mobile platform. Given

an operation mode OM j , if we have a single inverse kinematic solution, we can define an

application that maps X onto q:

gj(X) = q (II.17)

Then, the images in WOMj of a posture q in the joint space Q are defined by:

g−1
j (q) = (X/(X, q) ∈ OM j) (II.18)

where g−1
j stands to be the direct kinematic problem for the operation mode j.
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II.5.2 Cylindrical Algebraic Decomposition

The workspace (resp. Joint space) analysis classifies the number of solutions of the para-

metric system associated with the Inverse (resp. Direct) Kinematic Problem (IKP). This

method was introduced for parallel robots in [12]. We will recall here the main steps of the

computation and the new step for a robot with several operation modes. For such operations,

both workspace as well as joint space is decomposed into cells C1,...,Ck, such that:

• Ci is an open connected subset of the workspace;

• for all pose values in Ci, the direct (resp. inverse) kinematics problem has a constant

number of solutions;

• Ci is maximal in the sense that if Ci is contained in a set E, then E does not satisfy

the first or the second condition.

• The Ci are disjoint and their complementary is a set of null measure.

The three main steps involved in the analysis are:

• Computation of a subset of the joint space (resp. workspace) where the number of

solutions changes: the Discriminant Variety [12].

• Description of the complementary of the discriminant variety in connected cells: the

Generic Cylindrical Algebraic Decomposition.

• Connecting the cells belonging to the same connected component in the counterpart

of the discriminant variety: interval comparisons.

From a general point of view, the discriminant variety is defined for any system of

polynomial equations and inequalities. The union of the Discriminant variety and of the

cells thus define a partition of the considered space. Let p1,...,p1 and q1,...,ql be polynomials

with rational coefficients depending on the unknowns X1,...,Xn, and on the parameters

U1,...,Ud. Let us consider the constructible set:

C=

{

v ∈ C
n+d, p1(v) = 0, ..., pm(v) = 0,

q1(v) 6= 0, ..., ql(v) 6= 0

}

(II.19)

If we assume that C is a finite number of points for almost all the parameter values, a

discriminant variety VD of C is a variety in the parameter space C
d such that, over each

connected open set U satisfying U ∩ VD = ∅, C defines an analytic covering. In particular,

the number of points of C over any point of U is constant.

Let us now consider the following semi-algebraic set:

S =

{

v ∈ C
n+d, p1(v) = 0, ...,

pm(v) = 0, q1(v) ≥ 0, ..., ql(v) ≥ 0

}

(II.20)

If we assume that S has a finite number of solutions over at least one real point that does

not belong to VD, then VD ∩ R
d can be viewed as a real discriminant variety of S ∩ R

\+⌈,

with the same property: over each open set U ⊂ R
⌈ such that U ∩ VD ∩ R

d = ∅, C defines
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an analytic covering. In particular the number of real points of S over any point of U is

constant. Discriminant varieties can be computed using basic and well known tools from

computer algebra such as Gröbner bases [83] and a full package computing such objects in

a general framework is available in Maple software through the RootFinding[Parametric]

package.

The CAD implemented in the SIROPA library has been used to compute the aspects

into a set of cells where algebraic equations define its boundaries and a sample point in each

one [12] for the 2PRR–RPR parallel robot. For example, the CAD can provide a formal

decomposition of the joint space in cells where the polynomials det(A) and det(B) have

a constant sign and the number for the DKP is constant [73].

II.5.3 Workspace: 3T Projection Space for OM1 and OM2

The 3-RPS parallel robot is three degrees of freedom parallel robot with two rotational [2R]

and one translational [1T] motions, but still there exist two other translational motions in

the x and y direction. These motions are termed as parasitic motions as they depend on other

existing rotational motions. A complete workspace analysis of this mechanism is possible,

only when the analysis is done in both 2R1T [pz, q2, q3] and 3T [px, py, pz] projection spaces

for OM1 and OM2. The variation in the workspace boundaries due to the design parameter

k for both the operation modes is shown in Fig. II.12. Blue and red regions corresponds

to the four number of solutions for the IKP for det(A) > 0 and det(A) < 0, respectively.

These analyses can be useful for the researchers or engineers to select the optimum value

for the design parameter such that the parasitic motions can be limited to specific values.

From Fig. II.12, it can be depicted that as the value of k increases, singularity becomes

more complex and there exists a larger area without singularities for smaller values of k.

II.6 Joint space Analysis of the 3RPS Parallel robot
The joint space analysis allows the characterization of the regions where the number of

real solutions for the direct kinematic model is constant. Using CAD, we can do this study

on sections of the joint space. The calculation for the full joint space is possible, but the

number of cells obtained is too large for the display capabilities of Maple. Without taking

into account the notion of operation mode, Figure II.13 depicts the regions with 4, 8, 12 or

16 solutions for the DKP. The maximum number for the DKP of each operation mode is 8.

Figures II.14 and II.17 show several slices of the joint space for OM1 and OM2, where

the DKP admits four and eight real solutions in the blue and red region respectively.

Cuspidal configurations are associated with second-order degeneracies that appear for

triply coalesced configurations. These configurations play an important role in the path

planning because they are directly linked to the non-singular assembly mode changing tra-

jectories [63, 70, 68, 14]. A state of the art for the computation of the cusp points is given in

[13]. Here we make use of the Jacobian criterion on the singular locus to extract the points

of multiplicity greater than or equal to three. Figures II.14 and II.17 show that the number

of cusp points is changing according to the value of ρ1. Figure II.15 depicts the locus of the



II.6
Jo

in
t

sp
a

c
e

A
n

a
lysis

o
f

th
e

3R
P

S
Pa

ra
lle

lro
b

o
t

45

0.5-0.5

0.5

py

px

-0.5

py

px

1

1

-1

-1

py

px

2

2

-2

-2

py

px

3

3

-3

-3

(a) (b) (c) (d)

0.5-0.5

0.5

py

px

-0.5

py

px

1

1

-1

-1

py

px

2

2

-2

-2

py

px

3

3

-3
-3

(e) (f) (g) (h)

Figure II.12 – Slice of workspace for OM1 with different design parameter and pz = 2, k = 0.5 (a), k = 1 (b), k = 2 (c) and k = 3 (d) for OM2 k = 0.5 (e), k

= 1 (f), k = 2 (g) and k = 3 (h). Blue and red regions corresponds to the four number of solutions for the IKP for det(A) > 0 and det(A) < 0, respectively.
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Figure II.13 – Slice of the joint space for ρ1 = 3 and the number of solution for DKP for k = 1
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Figure II.14 – Slice of the joint space for OM1 for ρ1 = 1 (a), ρ1 = 2 (b), ρ1 = 3 (c) and ρ1 = 4

(d) and the number of solution for DKP for k = 1
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Figure II.15 – Cusp points for OM1 (a) and OM2 (b) for k = 1
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Figure II.16 – Slice of the joint space for ρ1 = 1, k = 0.5 (a), ρ1 = 1, k = 1 (b), ρ1 = 1, k = 1.5

(c), ρ1 = 2, k = 0.5 (d), ρ1 = 2, k = 1 (e), ρ1 = 2, k = 1.5 (f), ρ1 = 3, k = 0.5 (g), ρ1 = 3, k = 1

(h) ρ1 = 3, k = 1.5 (i), where the DKP admits four, eight, twelve and sixteen real solutions in

the blue, red, yellow and pink region, respectively.
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Figure II.17 – Slice of the joint space for OM2 for ρ1 = 1 (a), ρ1 = 2 (b), ρ1 = 3 (c) and ρ1 = 4

(d) and the number of solution for DKP

cusp points in the joint space. These curves are obtained as the intersection of 11 surfaces

for OM1 and 8 surfaces for OM2. However, for the 3-RPS parallel robot is very difficult to

remove the multiplicity greater than two by using the saturation method as introduced in

[48].

The variation in the joint space boundaries due to the design parameter k is shown in

Figure II.16. The slice of joint space is computed for the three different values of ρ1 and k.

For ρ2 = 2, as the value of k increases the cusp points corresponding to the region with 16

numbers of solution for DKP disappears (in Fig. II.16(d), II.16(e) & II.16(f)). The increase

in the area of the joint space with an increase in the value of k, shows the more feasible

actuation sets compared with the configuration with lesser value of k.

II.7 Conclusions
This work reports the variations in the workspace and the joint space with respect to the

design parameter ’k’ of the 3-RPS parallel manipulator. The cylindrical algebraic decompo-

sition method and Gröbner based computations are used to model the workspace and joint

space with the parallel singularities in 3T & 2R1T projection spaces, where the orientation

of the mobile platform is represented using quaternions. Depending on the design param-

eter ’k’, three different configurations of the 3-RPS parallel manipulator are analyzed. A

comparative study on the workspace of different delta-like robots gives the idea about shape
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of the workspace, which further plays an important role in the selection of the manipulator

for the specific task or for the trajectory planning.





III
Aspects and Uniqueness
Domains

One of the highly addressed problem associated with the parallel manipulators is

the parallel singularities. Singularities of a robotic manipulator are important fea-

ture that essentially influence its capabilities. Mathematically, a singular configu-

ration may be defined as rank deficiency of the Jacobian describing the differential

mapping from the jointspace to the workspace and vice versa. This chapter presents

the singularity analysis for the 3-RPS parallel robot and the delta like family robot.

The Gröbner based elimination method is used to compute the projection of the

singularities in the Cartesian space and the joint space. The descriptive analysis

of a family of delta like robots is presented by using algebraic tools to induce the an

estimation about the complexity in representing the singularities in the workspace

and the joint space. The generalized notions of the uniqueness domains is also

presented for the parallel robot with several operation modes. The effect of joint

limits on these singularity surfaces are also presented in the later sections of this

chapter.

III.1 Introduction
When designing a robot, the last step is the trajectory planning. The task of the robot

is generally defined in the workspace whereas the control loop depends on the joint space

parameters. While defining the home pose of the robot, the Cartesian pose and the Joint

values of the actuators are known. If the trajectory planning is done in the workspace by

analyzing only the determinant of the Jacobian, we can reach a Cartesian pose different

from the home pose but with the same joint value. This feature is called a non-singular

assembly mode changing trajectory and stands only for the parallel robot.

For such robots, the inverse and direct kinematic problem (DKP) can have several so-

lutions. To cope up with this problem, the notion of aspects was introduced for the serial

robot in [59] and for the parallel robot in [17] and [47]. For the serial robots, the aspects

are defined as the maximal singularity-free sets in the joint space whereas in case of parallel

robots, the aspects are defined as the maximal singularity-free sets in the workspace or the

cross-product of the joint space by the workspace. However, there exists robots, referred as

cuspidal robots, which are able to change the inverse kinematic solution without passing
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through a singularity for serial robots or direct kinematic solution without passing through

a singularity for parallel robots [61, 77, 14, 79, 68]. The uniqueness domains are the con-

nected subsets of the aspects induced by the characteristic surface. The CAD algorithm is

used to study the workspace and joint space, and a Gröbner based elimination process is

used to compute the parallel and serial singularities of the manipulator.

III.2 Singularities: Delta-Like Family Robot
Singularities of a robotic manipulator are important feature that essentially influence its

capabilities. Mathematically, a singular configuration may be defined as rank deficiency of

the Jacobian describing the differential mapping from the jointspace to the workspace and

vice versa. Differentiating the constraints equations with respect to time leads to the velocity

model:

At + Bq̇ = 0 (III.1)

where A and B are the parallel and serial Jacobian matrices, respectively, t is the velocity

of P and q̇ joint velocities. The parallel singularities occur whenever det(A) = 0. The serial

singularities occur whenever det(B) = 0 From the constraint equations Eq. II.1, II.2, II.3

and II.4, the inverse kinematic equations can be derived as:

ρ1 = γ1(X)

ρ2 = γ2(X)

ρ3 = γ3(X) (III.2)

For the family of delta-like robots, it is more convenient to compute the inverse jacobian,

which can be derived by differentiating Eq. II.1, II.2, II.3 and II.4 with respect to x, y

and z

A =
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(III.3)

III.2.1 Parallel Singularities: Projection in workspace and jointspace

Parallel singularities occur when the determinant of the direct kinematics matrix A van-

ishes. The corresponding singular configurations are located inside the workspace. They are

particularly undesirable because the manipulator can not resist any force and control is

lost. Parallel singularity and its projection curve in workspace and jointspace are calculated

using the funcion ParallelSingularities() of SIROPA library in MAPLE software. Below

is the MAPLE code for calculating the singularity curves and its projection in jointspace.

1 s2 := P a r a l l e S i n g u l a r i r i e s ( robot : : Manipulator )

2 s1_cart := P r o j e c t i o n ( s1 , robot :− PoseVar iab les )
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Figure III.1 – Projection of parallel singularity curve of Orthoglide (a), Hybridglide (b),

Triaglide (c) and UraneSX (d) in workspace

3 s2_art := P r o j e c t i o n ( s2 , robot :− A r t i c u l a r V a r i a b l e s )

Listing III.1 – Projection of parallel singularity curve of delta-like robot in jointspace

Parallel singularities and their projections in workspace and joint space are computed

using a Gröbner based elimination method. This usual way for eliminating variables (see

[83]) computes (the algebraic closure of) the projection of the parallel singularities in the

workspace.

det(A)o = −8ρ1ρ2ρ3 + 8ρ1ρ2z + 8ρ1ρ3y + 8ρ2ρ3x

det(A)h = −8ρ1ρ3x + 8ρ2ρ3x− 8ρ1ρ3 + 8ρ1z − 8ρ2ρ3 + 8ρ2z + 16ρ3y

det(A)u = 4
√

3(3z − ρ1 − ρ2 − ρ3 + ρ3x + ρ2x− 2ρ1x) + 12ρ3y − 12ρ2y

det(A)t = 8ρ1z + 8ρ2z − 16ρ3z (III.4)

In the same way, one can compute (the algebraic closure of) the projection of the parallel

singularities in the joint space. Both are then defined as the zero set of some system of alge-

braic equations and we assume that the considered robots are generic enough so that both

are hypersurfaces. det(A)o, det(A)h, det(A)t and det(A)u are the parallel singularities of

Orthoglide, Hybridglide, Triaglide and UraneSX, respectively. Starting from the constraint

equations and the determinant of the Jacobian matrix, we are able to eliminate the joint

values. This elimination strategy is more efficient than a cascading elimination by means of

resultants which might introduce many more spurious solutions : singular points that are

not projections of singular points.
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Figure III.2 – Projection of parallel singularity curve of Orthoglide (a), Hybridglide (b),

Triaglide (c) and UraneSX (d) in jointspace

Figure III.2 shows the projections of singularity curve s2 in jointspace and s2_art is the

projection curve. And s2_art is the projection curve in workspace as shown in Figure III.1.

III.2.2 Serial Singularities: Projection in workspace and jointspace

Serial singularities occur when the determinant of the inverse kinematics matrix B vanishes.

When the manipulator is in such a singularity, there is a direction along which no Cartesian

velocity can be produced. Serial singularity analysis of delta-like robot is done Using the

funcion SerialSingularities() in SIROPA library.

1 s1 := S e r i a l S i n g u l a r i r i e s ( robot : : Manipulator )

2 s1_cart := P r o j e c t i o n ( s1 , robot :− PoseVar iab les )

3 s1_art := P r o j e c t i o n ( s1 , robot :− A r t i c u l a r V a r i a b l e s )

Listing III.2 – Projection of serial singularities in workspace and jointspace

Serial singularities and their projections in workspace and joint space are computed using

a Gröbner based elimination method. In Eq III.5, det(B)o, det(B)h, det(B)t and det(B)u

are the serial singularities of Orthoglide, Hybridglide, Triaglide and UraneSX, respectively.

one can compute (the algebraic closure of) the projection of the parallel singularities in the

joint space and workspace. Both are then defined as the zero set of some system of algebraic

equations and we assume that the considered robots are generic enough so that both are

hypersurfaces. Also these surfaces are shown in Figure III.3 and Figure III.4.
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Figure III.3 – Projection of serial singularity curve of Orthoglide (a), Hybridglide (b), Triaglide

(c) and UraneSX (d) in jointspace
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Figure III.4 – Projection of serial singularity curve of Orthoglide (a), Hybridglide (b), Triaglide

(c) and UraneSX (d) in workspace
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det(B)o = 8(ρ1 − x))(ρ2 − y)(ρ3 − z)

det(B)h = 8(ρ1 − y))(ρ2 − y)(ρ3 − z)

det(B)u = 8(ρ1 − z))(ρ2 − z)(ρ3 − z)

det(B)t = 8(ρ1 − y))(ρ2 − y)(ρ3 − y) (III.5)

Figure III.3 shows the projections of singularity curve s1 in jointspace and s1_art is

the projection curve. And s1_cart is the projection curve in workspace and is shown in

Figure III.4.

III.2.3 Complexity in Singularities

Table III.1 – Comparison of the different parameters associated with the parallel singularities

for the robots

PARALLEL SINGULARITIES

Projection in Workspace

Manipulators Plotting Time Degrees No.of terms Binary No. of Cells

Orthoglide 0037.827 18[10,10,10] 097 015 [02382,0272]

Hybridglide 5698.601 20[16,08,12] 119 017 [28012,1208]

Triaglide 0010.625 03[00,00,03] 002 002 [00138,0004]

UraneSX 0022.625 06[06,04,00] 015 040 [02795,0070]

In Table III.1, a comparative study of five parameters among the family of delta like

robot is presented. We have tabulated the main characteristics of the polynomials (In three

variables) used for the plots (Implicit surface) : their total degree, their number of terms

and the maximum bitsize of their coefficients. We have also reported the time (In seconds)

for plotting the implicit surface which they define and the number of cells computed by the

CAD, as well as the number of cells in the final result after gluing those that are adjacent

and belongs to the same connected component. Several functions are used which involves the

discriminant variety, Gröbner bases and CAD computations, computed in Maple 18 with a

Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz (14 Gb RAM). As can be seen fromTable III.1,

there exists higher values of all the parameters for the Hybridglide, among all manipulators

listed, which infers that it has more complex parallel singularities, whereas for the Triaglide

all the values are least which intuits the less complicated singularities. For example, the

computation times for the Hybridglyde for parallel singularities is high compared to the

one for the Othoglide, even if the surface has similar characteristics. This is due to the

geometry of the surface which is more difficult to decompose in the case of the Hybridglide

: the Cylindrical Algebraic Decomposition is described by 1208 cylindrical cells in the case

of Hybridglide while it is described by 272 cells for the Orthoglide.

In Table III.2, a comparative study of five parameters among the family of delta like

robot is presented. We have tabulated the main characteristics of the polynomials (In three
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Table III.2 – Comparison of the different parameters associated with the serial singularities for

the robots

SERIAL SINGULARITIES

Projection in Joint Space

Manipulators Plotting Time Degrees No.of terms Binary No. of Cells

Orthoglide 0005.133 18[12,12,12] 062 012 [00044,0004]

Hybridglide 0007.007 18[12,12,12] 281 017 [00158,0027]

Triaglide 0005.079 06[06,06,06] 042 007 [00077,0017]

UraneSX 0018.391 12[12,12,12] 252 151 [00392,0142]

variables) used for the plots (Implicit surface) : their total degree, their number of terms

and the maximum bitsize of their coefficients. We have also reported the time (In seconds)

for plotting the implicit surface which they define and the number of cells computed by the

CAD, as well as the number of cells in the final result after gluing those that are adjacent

and belongs to the same connected component. Several functions are used which involves

the discriminant variety, Gröbner bases and CAD computations, computed in Maple 18

with a Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz (14 Gb RAM). As can be seen from

Table III.2, there exists higher values of all the parameters for the UraneSX, among all

manipulators listed, which infers that it has more complex serial singularities, whereas for

the Triaglide all the values are least which intuits the less complicated singularities. The

computation times for plotting the serial singularities in jointspace is high compared to

others.

III.3 Parallel Singularies of 3RPS Parallel robot
Differentiating the constraints equations with respect to time leads to the velocity model:

At + Bq̇ = 0 (III.6)

where A and B are the parallel and serial Jacobian matrices, respectively, t is the velocity of

P and q̇ joint velocities. The parallel singularities occur whenever det(A) = 0. Let OM1 be

the operation mode where q1 = 0 and OM2, where q4 = 0, then SOM1 and SOM2 represent

the singularity locus and are characterized by:

SOM1 : q4(8q2q2
3q6

4 + 2q2q8
4 − 64zq6

3q4 − 96zq4
3q3

4 − 36zq2
3q5

4 − 6zq7
4

−24z2q2q2
3q2

4 − 6z2q2q4
4 − 32q2q2

3q4
4 − 10q2q6

4 + 2z3q3
4 + 96zq4

3q4

+72zq2
3q3

4 + 23zq5
4 + 16z2q2q2

3 + 10z2q2q2
4 + 8q2q4

4 − z3q4 − 36zq2
3q4

−21zq3
4 − 4z2q2 + 4zq4) = 0 (III.7)

SOM2 : q2
1(6q7

1q3 + 8q5
1q3

3 − 2zq6
1 + 36zq4

1q2
3 + 96zq2

1q4
3 + 64zq6

3

−18z2q3
1q3 − 24z2q1q3

3 − 18q5
1q3 − 16q3

1q3
3 + 2z3q2

1 + 3zq1
4 − 72zq2

1q2
3

−96zq4
3 + 18z2q1q3 + 12q3

1q3 − z3 + 3zq2
1 + 36zq2

3 − 4z) = 0 (III.8)
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q2

q3
Real singularity

Spurious singularity

(a) (b)

Figure III.5 – Singularity curves for z = 3, q1 = 0 (a) and its 2D projection under (q2, q3) (b)

The serial singularities occur whenever det(B) = 0 i.e ρ1ρ2ρ3 = 0. The common coordinates

for the both operation modes are z, q2 and q3. Figure III.5(a) represents the singularity

curve for OM1 for a fixed value of z (i.e z = 3) and Figure III.5(b) shows its projection in

the two dimensional coordinate space (q2 − q3).

q1

q2q3

q2

q3
Real singularity

Spurious singularity

(a) (b)

Figure III.6 – Singularity curves for z = 3, q4 = 0 (a) and its 2D projection under (q2, q3) (b)

Due to the redundancy of the quaternion representation there exists two triplets based on

these three coordinates to represent the same pose in the same operation mode. To overcome

this problem, we set q1 > 0 and q4 > 0. We can then depict a slice of this surface by fixing

one parameter as shown in Figures III.5(a) and III.6(a). Figures III.5(b) and III.6(b) shows

the singularity curves in the projection space z, q2 and q3, where the red curve is a real

singular locus, which represents the positive values of q4 or q1 and the green curve is a

spurious singularity curve, which represents the negative values of q4 or q1.

III.4 Influence of design parameter on Parallel Singularities
As there exists parasitic motions for 3RPS parallel robot, it is possible to analyze the

singularities in two different projection spaces, [pz, q2, q3] and [px, py, pz]. Figures III.7 &

III.8 represents the projection of parallel singularities in projection space [px, py, pz] for

OM1 and OM2, respectively. Variation in the parallel singularities surface for different

design parameter k is shown in Figures III.7 & III.8. Also the top view of these singularity

surfaces is presented to analyze the change in the singularities surface boundaries with the
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Figure III.7 – Projection of parallel singularities in projection space [px, py, pz] for OM1. Variation in the parallel singularities surface for different design

parameter k = 0.5 (a), k = 1 (b), k = 2 (c) and k = 3 (d), top view of the parallel singularities surface, k = 0.5 (e), k = 1 (f), k = 2 (g) and k = 3 (h).
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Figure III.8 – Projection of parallel singularities in projection space [px, py, pz] for OM2. Variation in the parallel singularities surface for different design

parameter k = 0.5 (a), k = 1 (b), k = 2 (c) and k = 3 (d), top view of the parallel singularities surface, k = 0.5 (e), k = 1 (f), k = 2 (g) and k = 3 (h).
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change in the value of k. As the value of k increases the connectivity in the workspace region

decreases, can be seen in Figures III.7(e-h) & III.8(e-h).

III.5 Aspect for an Operation mode
In [17], the notion of aspect is defined for parallel robots with only one inverse kinematic

solution. This notion is now extended for a parallel robot with several operation modes such

that:

• WAj
i ⊂ WOMj

• WAj
i is connected

• ∀X ∈ WAj
i , det(A) 6= 0 and det(B) 6= 0

In other words, an aspect WAj
i is the maximum connected region without any singularity

of the OM j . The analysis of the workspace is done in the projection space (z, q2, q3), and

shows the existence of four aspects as shown in Figure III.9. However, no further analysis

z

q2

q3

z

q2

q3

(a) (b)

z

q2

q3

z

q2

q3

(c) (d)

Figure III.9 – Aspects for OM1 with det(A) < 0 (a) and det(A) > 0 (b) and aspects for OM2

with det(A) < 0 (c) and det(A) > 0 (d)

is done to prove this feature in the four dimension space. As there are several solutions

for the DKP in the same aspect, non-singular assembly mode trajectories are possible.

The cylindrical algebraic decomposition (CAD) implemented in the SIROPA library has

been used to decompose an aspect into a set of cells where algebraic equations define its

boundaries [12]. The CAD provides a formal decomposition of the parameter space in cells

where the polynomials det(A) and det(B) have a constant sign[73] and the number of

solutions for the DKP is constant.
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III.6 Characterstic surfaces for an operation mode
The notion of characteristic surface was introduced in [84] to define the uniqueness domains

for serial Cuspidal robots. This definition was extended to parallel robots with one inverse

kinematic solution in [17] and with several inverse kinematic solutions in [77, 12]. In this

paper, we introduce this notion for a parallel robot with several operation modes and a

single working mode.

Let WAj
i be one aspect for the operation mode j. The characteristic surfaces, denoted by

Sj
C(WAj

i ), are defined as the preimage in WAj
i of the boundary WA

j

i that delimits WAj
i .

Sj
C(WAj

i ) = g−1
j

(

gj(WAj
i )

)

∩WAj
i (III.9)

These characteristic surfaces are the images in the workspace of the singularity surfaces.

By using the singularity and characteristic surfaces, we can compute the basic regions as

defined in [17].

Starting from the Figures III.5(a) and III.6(a), Figure III.10 depicts a slice of the sin-

gularity curves and characteristic surfaces for z = 3. We cannot factorize the polynomial

equation of the characteristic surface to separate the positive and negative values of q4 for

the OM1 and q1 for the OM2.

The basic regions WAbj
i of the operation mode j are calculated as the connected com-

ponents of the set obtained by removing the characteristic surfaces from the aspects WAj
i :

∪WAbj
i = WAj

i − Sj
C (III.10)

The singularity surfaces split the joint space in regions where the number of solutions to

(a) (b)

Figure III.10 – Singularity curves and characteristic surfaces with z = 3 for OM1 (a) OM2 (b)

the DKP is constant. We name these regions as the basic components as in [17].

The basic components are computed of the operation mode j as:

QAj
i = gj

(

WAbj
i

)

(III.11)

III.7 Uniqueness domains
we only report a slice of the workspace to define the uniqueness domains. Nevertheless, the

reader has to keep in mind that some regions are connected in the 3D space. For z = 3,
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the basic regions are computed by using the cylindrical algebraic decomposition for both

aspects and operation modes. For the computation of aspects, the CAD provides a set of

cells with a test point. To find the property of these aspect we have to solve the DKP

followed by IKP.

q2

q3

SOM1

S1

C

q2

q3

(a) (b)

Figure III.11 – Slice of an aspect for z = 3 and OM1 for det(A) > 0 (a) det(A) < 0 (b) with

basic regions in blue (reps. in red) coming from a basic component with four DKP (resp. eight)

In Figure III.17, the slice of an aspect at z = 3 and for both positive and negative values

of det(A) is shown for the operation mode OM1. Also the slice of an aspect for the operation

mode, OM2 is shown in Figure III.12, where the blue and red basic regions represents the

basic component with four and eight to the DKP. It can be observed that the red regions in

Fig. III.17a (respectively, III.12a) have a contact point which is a tangency between SOM1

and S1
C (respectively, SOM2 and S2

C). These points are the image of the cusp points in the

workspace, i.e. a triple root for the DKP.

In the slice at z = 3, there is 13 and 5 basic regions for OM1 and OM2. For OM1,

the basic regions coming from a basic component where we have 8 solutions for the DKP

are disconnected from each other. However, this feature exists only in the slice and the

basic regions are connected on the 3D space. We can note that there are curves which

intersect the base regions. These curves are the components above negative values of q1 and

q4, singularities and characteristic surfaces. One then must make use of the CAD to figure

out which curves are relevant in the projective space.

The uniqueness domains Wuj
k for the operation mode j are the union of two sets: the set

of adjacent basic regions ∪i∈I ′WAj
i of the same aspect WAj

i whose respective preimages are

disjoint basic components, and the set Sj
C(I ′) of the characteristic surfaces which separate

these basic components:

Wuj
k =

(

∪i∈I ′WAbj
i

)

∪ Sj
C (I ′) (III.12)

with I ′ ⊂ I such as ∀i1, i2 ∈ I ′, gj

(

WAbj
i1

)

∩ gj

(

WAbj
i2

)

= ∅.
The proof for the uniqueness definition is given in [17].

Figure III.13(a) represents the basic regions of OM1 for det(A) > 0 with all the unique-

ness domains shown in Figure III.13(b)-(d). The associated uniqueness domains can be
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Figure III.12 – Slice of an aspect for z = 3 and OM2 for det(A) > 0 (a) det(A) < 0 (b) with

basic regions in blue (reps. in red) coming from a basic component with four DKP (resp. eight)
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Figure III.13 – Basic regions of OM1 for det(A) > 0 (a), associated uniqueness domains
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Figure III.14 – Basic regions of OM1 for det(A) < 0 (a), associated uniqueness domains
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represented as:

Wu1
1 = WA1

1 ∪WA1
2 ∪WA1

3 ∪WA1
4 (III.13)

Wu1
2 = WA1

1 ∪WA1
2 ∪WA1

3 ∪WA1
5

Wu1
3 = WA1

1 ∪WA1
2 ∪WA1

3 ∪WA1
6

The various aspect of the operation modes are represented by WAi
j where i denotes the

operation mode and j represents the basic regions. The same illustration is shown in Fig-
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Figure III.15 – Basic regions of OM2 for det(A) > 0 (a), associated uniqueness domains
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Figure III.16 – Basic region of OM2 for det(A) < 0 or the uniqueness domain W u2
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ure III.14 for OM1 with det(A) < 0.
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12 (III.14)

Wu1
5 = WA1

8 ∪WA1
11 ∪WA1

12 ∪WA1
12

Wu1
6 = WA1

9 ∪WA1
11 ∪WA1

12 ∪WA1
12

Wu1
7 = WA1

10 ∪WA1
11 ∪WA1

12 ∪WA1
12

Similarly, Figures III.15 and III.16 represent the basic regions of OM2 and the uniqueness

domains associated for det(A) > 0 and det(A) < 0, respectively.

Wu2
1 = WA2

1 ∪WA2
2 (III.15)

Wu2
2 = WA2

1 ∪WA2
3

Wu2
3 = WA2

1 ∪WA2
4

Wu2
4 = WA2

5 ∪WA2
6

III.8 Non Singular assembly mode Trajectories
Letting z = 3, the basic regions are computed by using the cylindrical algebraic decom-

position for a given aspect. Figure III.17 shows the three basic regions’ image of basic

components with 8 solutions for the DKP and a single basic region’s image of a basic com-

ponents with 4 solutions for the DKP connects these three previous basic regions. Table III.3

presents the roots of the DKP for det(A) > 0 for a joint position in each operation mode.

For each of them, we find out that three roots have their z coordinate close to 3. A non-

singular assembly mode changing trajectory can be obtained between three basic regions

coming from eight solutions to the DKP. Due to symmetrical properties, there are also three

roots of the DKP for det(A) < 0 with z = −3. For OM1, we construct a path between P1,

P2, P3 and for OM2 between P5, P6 and P7. When a straight line between two poses cross a

singularity, we add an intermediate point as shown in Fig. III.17. The connections between

the basic regions depicted in red are the projections of the cusp points in the workspace, i.e.

the tangent between the singularity surface and the characteristic surface [12].
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Figure III.17 – Slice of an aspect for z = 3 and det(A) > 0 for OM1 (a) and OM2 (b) with in

blue (resp. in red) a basic region coming from a basic component with four DKP (resp. eight)
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Figure III.18 – Variation of det(A) along trajectory P1, P2, P3 for OM1 (a) and P5, P6, P7 for

OM2 (b)

Table III.3 – Solutions of the DKP for det(A) > 0

OM1 OM2

ρ1 = 3.90, ρ2 = 3.24, ρ3 = 3.24 ρ1 = 3.79, ρ2 = 3.24, ρ3 = 3.24

P z q2 q3 q4 P z q1 q2 q3

P1 3.01 −0.34 −0.94 0.06 P5 3.04 0.35 −0.58 −0.74

P2 3.01 −0.34 0.94 0.06 P6 3.04 0.35 0.586 −0.74

P3 3 0.85 0.0 0.53 P7 3 0.24 0.0 0.97

P4 −2.88 −0.35 0.0 0.93 P8 −3.42 0.98 0.0 0.19

The variation of the det(A) is plotted in the Figure III.18 and shows the existence of a

non-singular assembly mode changing trajectory. The image of this trajectory in the joint

space is illustrated in the Figure III.19. The projection of the cyclic trajectory defined by

(P1, P2, P3, P1) (resp. (P5, P6, P7, P5)) onto the joint space encloses three curves of cusps.

This behavior is similar to that of the 3-RPR robot described in [70] or the 3-RPS robot

in [79]. The path to connect the fourth solutions is not presented in this paper. The method

introduced in [13] is used to compute the cusp curves.
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Figure III.19 – Projection in Q of the trajectories with the cusp curves for OM1 (a) and OM2

(b)

III.9 Conclusions
In this chapter, we have studied the singularities of the 3-RPS parallel robot and delta like

family robot. The main characteristics associated with the singularities of the delta like

family robot are tabulated in Table III.1 & III.2 , which also gives some information about

the complexity of the singularities, which is an essential factor for the singularity-free path

plannings. From these data, it can be observed that the singularities associated with the

Hybridglide are complicated, whereas the structure of those associated with the Triaglide

is rather simple.

With the presented two operation modes, the aspects were set to define the maximal

singularity free region of the workspace. Each operation mode is divided into two aspects

which further show that non-singular assembly mode changing trajectories are possible. Ba-

sic regions can be defined for each operation mode by computing the characteristic surfaces.

With the knowledge of basic regions defined in the workspace, the uniqueness domains can

be illustrated in a slice of the workspace. This method can be used for the optimization of

workspace’s size or the trajectory planning.





IV
Trajectory Planning

Trajectory planning is a critical step while programming the parallel robots in a

robotic cell. The main problem arises when there exists a singular configuration

between two poses of the end-effectors while discretizing the path with a classical

approach. This Chapter presents the joint space analysis and an algebraic method

to check the feasibility of any given trajectories in the workspace. The solutions

of the polynomial equations associated with the trajectories are projected in the

joint space using Gröbner based elimination methods and the remaining equations

are expressed in a parametric form where the articular variables are functions of

time t unlike any numerical or discretization method. These formal computations

allow to write the Jacobian of the manipulator as a function of time and to check

if its determinant can vanish between two poses. Another benefit of this approach

is to use a largest workspace with a more complex shape than a cube, cylinder or

sphere.

IV.1 Introduction
One of the crucial steps in the trajectory planning is to check the singularity-free paths

in the workspace for the parallel robots. It becomes a necessary protocol to validate the

trajectory when the parallel robot is used in practical applications such as precise manu-

facturing operations. A trajectory verification problem is presented in [25] based on some

validity criteria like whether the trajectory lies fully inside the workspace of the robot and

is singularity-free. Singularity-free path planning for the Gough-Stewart platform with a

given starting pose and a given ending pose has been addressed in [26] using the clustering

algorithm is presented in [27]. An exact method and an approximate method are described

in [28] to restructure a path close to the singularity locus into a path that avoids it while

remaining close to the original path. Due to the geometry of the mechanism, the workspace

may not cover fully the space of poses [27], hence it is necessary to analyze the workspace

of the manipulator.

The workspace of a parallel robot mainly depends on the actuated joint variables, the

range of motion of the joints and the mechanical interferences between the bodies of the

mechanism. There are different techniques based on geometric tools [3, 4], discretization

[5, 7, 8], and algebraic methods [9, 10, 11, 12] which are used to compute the workspace of
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a parallel robot. An algebraic method to solve the forward kinematics problem specifically

applied to spatial parallel manipulators is described in [29]. The main advantage of the

geometric approach is that, it establishes the nature of the boundary of the workspace [19].

A procedure to automatically generate the kinematic model of parallel mechanisms which

further used for singularity free path planning is reported in [30] .

An algorithm for computing singularity-free paths on closed-chain manipulators is pre-

sented in [31], also this method attempts to connect the given two non-singular configura-

tions through a path that maintains a minimum clearance with respect to the singularity

locus at all points. The main drawback of any numerical or discretization methods is that

there might be a singular configuration between two poses of the end-effectors while dis-

cretizing the path. This chapter of the thesis illustrates a technique based on some algebraic

methods to check the feasibility of any given trajectories in the workspace : it allows to write

the Jacobian of the manipulator as a function of time and to check whether its determinant

vanishes between two poses. Also, when the trajectory meets a singularity, its location can

also be computed.

IV.2 Methodology
To ensure the non existence of a singular configurations between two poses of the end-

effector, it is necessary to express the Jacobian of the manipulator as a function of the

time. The general procedure to check the feasibility of the trajectories in the workspace as

well as a function to compute the projection of the trajectories in the joint space can be

decomposed as follows :

• Defining the constraint equations, articular and pose variables associated with the

parallel mechanism;

• Computing the singularities and their projections in the workspace and in the joint

space;

• Computing the workspace and joint space boundaries;

• Computing a parametric form of the trajectories in the Cartesian space;

• Computing the projections of the trajectories in the joint space;

• Computing the Jacobian of the manipulator as a function of the time.

By computing, we mean, by default, getting a full characterization as solutions of an

exact system of algebraic equations. By abuse of language, computing a projection might

thus mean computing the algebraic closure of the projection, for example by using classical

elimination strategies based on Gröbner bases (which thus could introduce a subset of null

measure made of spurious points).

Kinematics involves the study of the position, velocity, acceleration, and all higher order

derivatives of the position variables (with respect to time or any other parameter/vari-

ables). Hence, the study of the kinematics of manipulators refers to all the geometrical and
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time-based properties of the motion. For a translational manipulator, the set of (algebraic)

relations that connects the input values ρρρρ to the output values X will be denoted by

F (ρρρρ, X) = 0 (IV.1)

where ρρρρ is the set of all actuated joint variables and X is the set of all pose variables of

the end-effector.

For the study of manipulators, two problems must be considered: the direct kinematic

problem (DKP) and the inverse kinematic problem (IKP). Specifically, given a set of joint

values, solving the DKP consists in computing the position and the orientation of the

end-effector relatively to the base, or, equivalently to change the representation of the ma-

nipulator position from a joint space description into a Cartesian space description. Given

the position and orientation of the end-effector of the manipulator, solving the IKP problem

consists in computing all the possible sets of joint angles or parameters that could be used to

attain this position and orientation, or, equivalently, mapping locations in three-dimensional

Cartesian space to locations in the robot’s internal joint space.

When considering an algebraic modelization, the direct kinematics has basically several

solutions, which refers to the several poses of the end-effector for given values of the joint

coordinates. It is therefore possible to assemble the manipulator in different ways, and

these different configurations are known as the assembly modes of the manipulator [47].

Similarly, the multiple inverse kinematic solutions induce multiple postures for each leg of

the manipulator and is termed as the working modes of the manipulator. An analytical

relation can be given as ρ = γ(X) for IKP whereas X = β(ρ) for DKP. Differentiating

Eq. (IV.1) with respect to time leads to the velocity model:

AẊ + Bρ̇ = 0 where A =
∂F

∂X
, B =

∂F

∂ρρρρ
(IV.2)

The matrices A and B are respectively the direct-kinematics and the inverse-kinematics

Jacobian matrices of the manipulator. These matrices are used for characterizing different

kinds of singularities. The parallel singularities occur whenever det(A) = 0 and the serial

singularities occur whenever det(B) = 0. The parallel singular configurations are located

inside the workspace. They are particularly undesirable because the manipulator cannot

resist to any forces and its control is lost.

Eliminating ρ in the system F (ρ, X) = 0, det(A) = 0 by means of a Gröbner basis

computation for a suitable elimination ordering (see [83]) defines (the algebraic closure of)

the projection ξ(X) of the parallel singularities in the workspace. In the same way, one can

compute (the algebraic closure of) the projection ε(ρ) of the parallel singularities in the

joint space. Both are then defined as the zero set of some system of algebraic equations and

we assume that the considered robots are generic enough so that both are hypersurfaces.

The set of equations associated with the joint limits of the actuator χ(ρ) can also be

projected, with the same elimination method, in the workspace µ(X) as in Eq. (IV.3), where

ρmin, ρmax are the minimum and maximum values of the articular variables: χ(ρ) and µ(X)

are the crucial parameters in determining the number of assembly modes and working modes

of the parallel manipulator.
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χ(ρ) 7→ µ(X) ∀ρ ∈ (ρmin, ρmax] (IV.3)

To use algebraic tools such as Gröbner bases, we must represent the trajectories in an

algebraic form. A classical approach can be used to transform the trigonometric equations

to algebraic ones as in [75]. Equation (V.8) represents the trajectory in parametric form

within the workspace as the function of time t.

X 7→ φ(t) (IV.4)

Ψ(X, ρ, t) in Eq. (IV.5) is the system of equations which contains kinematic equations

F (ρ, X) and the parametric equations of trajectory φ(t).

Ψ(X, ρ, t) = [φ(t)−X, F(ρ, X)] (IV.5)

This system of equations is projected in the joint space as Υ(ρ, t) as shown in Eq. (IV.6)

using Gröbner based elimination method.

Ψ(X, ρ, t) 7→ Υ(ρ, t) (IV.6)

The parametric equations of the trajectory as a function of the time in the joint space

can then be obtained by solving ρ← Υ(ρ, t).

The workspace analysis allows the characterization of the workspace regions where the

number of real solutions for the inverse kinematics is constant. A cylindrical algebraic decom-

position (CAD) algorithm is used to compute the workspace of the robot in the projection

space X with joint constraints χ(ρ) taken in account [16, 52, 56].

The three main steps involved in the analysis are:

• Computation of a subset of the joint space (resp. workspace) where the number of

solutions changes: the Discriminant Variety .

• Description of the complementary of the discriminant variety in connected cells: the

Generic Cylindrical Algebraic Decomposition (CAD).

• Connection of the cells belonging to the same connected component in the counterpart

of the discriminant variety: interval comparisons.

The joint space analysis predicts the feasible and non-feasible combinations of the pris-

matic joint variables which are essential for the parallel robot control. The joint space

analysis allows the characterization of the regions where the number of real solutions for

the direct kinematic problem is constant. The joint space analysis is done using CAD, which

gives the number of cells corresponding to the number of solutions in the joint space. χ(ρ)

parameter significantly changes the number of assembly modes and working modes of the

manipulator.

Substituting φ(t) in ξ(X) (in the polynomial defining ξ(X) ) we then get ξ(φ(t)), which

defines the vanishing values of the Jacobian as a function of the time. This equation in

cos(t), sin(t) can be turned into a zero-dimensional bivariate system and its solutions can
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thus be computed exactly, either by means of a rational parametrization or by means of

isolating intervals with rational bounds that can be refined to any arbitrary precision 1.

Whatever the chosen (exact) representation for a solution, it can easily be checked if it

vanishes between the two poses of the end-effector. The solutions of ξ(φ(t))contain the sin-

gular points on the trajectory φ(t) and eventually few spurious points due to the projection

of det(A) in Cartesian space. Spurious singular points can then be differentiated from real

singular points by substituting φ(t) and the solutions of Υ(ρ, t) in det(A).

IV.3 Method Validation
We propose to validate our approach (and related tools) by checking the feasibility of three

different trajectories for the Othoglide. The first two trajectories are heart shaped planar

parametric curves and the third trajectory is a parametric curve in three dimensions.

These trajectories are fully inside the workspace and are selected such that their projec-

tions in the joint space is defined by parametric equations containing trigonometric func-

tions. In addition, we have shown that the singular and singular-free trajectories are well

discriminated, as one of the trajectory cuts the singularity surface.

IV.3.1 Manipulator Architecture and Kinematics

The manipulator under the study is an Orthoglide parallel robot with three degrees of

freedom. The mechanism is driven by three actuated orthogonal prismatic joints ρi, made

of three parallelogram connected by revolute joints to the tool center point on one side and

to the corresponding prismatic joint at another side. The assembly modes of these robots

depends on the solutions of the DKP as shown in Fig. IV.1(a). The point Pi represents

the pose of corresponding robot. However more than one value of i for the point Pi denote

multiple solutions for the DKP. AiBi is equal to ρi, where ρi represents the prismatic joint

variables whereas P represents the position vector of the tool center point.

The constraint equations for the Orthoglide with the actuated variables ρ = [ρ1, ρ2, ρ3]

and the pose variables X = [x, y, z] are:

F (ρ, X) : (x− ρ1)2 + y2 + z2 = l2

x2 + (y − ρ2)2 + z2 = l2

x2 + y2 + (z − ρ3)2 = l2 (IV.7)

where l is the leg length of the manipulator and is equal to two for all the computations.

The set of equations associated with the joint limits of the actuator χ(ρ), projected in the

workspace µ(X), are given in Eq. (IV.8). χ(ρ) plays an important role in determining the

shape of the workspace and singularity surfaces. It also affects the number of solutions for

the IKP i.e. the working modes associated with the manipulator. Figure IV.1(b) represents

the workspace of the Orthoglide. A CAD algorithm is used to compute the workspace of

1for example the functions Groebner[RationalUnivariateRepresentation] and RootFinding[Isolate] in Maple soft-

ware
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Figure IV.1 – Architecture of an Orthoglide including two assembly modes (a) Workspace plot

with χ(ρ) joint constraints (b) and Parallel singularity det(A) projected in the workspace as

ξ(X) (c) and joint space plot with χ(ρ) joint limits (d)
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Figure IV.2 – A comparison between the parallel singularity surface for an Orthoglide computed

with the joint limits µ(X) (a) without µ(X) (b)

the robot in the projection space (x, y, z), taking into account the joint constraints χ(ρ) .

Without considering the joint limits, the Orthoglide admits two assembly modes and eight

working modes [76].

χ(ρ) = [ρ1, ρ2, ρ3,−4 + ρ1,−4 + ρ2,−4 + ρ3]

χ(ρ) 7→ µ(X)

ρi 7→ x2 + y2 + z2 − 4 i = 1, 2, 3

−4 + ρi 7→ x2 + y2 + z2 − 8x + 12

−4 + ρi 7→ x2 + y2 + z2 − 8y + 12

−4 + ρi 7→ x2 + y2 + z2 − 8z + 12 (IV.8)

In the Figure IV.2(b), the yellow region (resp. green region), corresponds to the region

where the inverse kinematic model has two real solutions (resp. height).

The joint space analysis is done using CAD to find the regions where the direct kinematics

problem admits a fixed number of real solutions. For example, in Fig. IV.1(d), the red cell

corresponds to to the region where the DKP has two solutions.

There is a difference in the shape of the singularity surface, depending if we consider the

joint constraints µ(X) or not (Fig. IV.2).

det(A) = −8ρ1ρ2ρ3 + 8ρ1ρ2z + 8ρ1ρ3y + 8ρ2ρ3x

det(A) 7→ ε(ρ) det(A) 7→ ξ(X)

ε(ρ) = ρ4
1ρ2

2 + ρ4
1ρ2

3 + ρ2
1ρ4

2 + 2ρ2
1ρ2

2ρ2
3 + ρ2

1ρ4
3 +

ρ4
2ρ2

3 + ρ2
2ρ4

3 − 16ρ2
1ρ2

2 − 16ρ2
1ρ2

3 − 16ρ2
2ρ2

3 (IV.9)

In Eq. (V.5), det(A) is the parallel singularity of the Orthoglide and ξ(X) is the projec-

tion of det(A) in workspace. The mathematical expression for ξ(X) is not displayed in Eq.

(V.5) due to the lack of space. Fig. IV.1(c) shows the projection ξ(X) which is plotted with
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Figure IV.3 – Position of Trajectories 1&2 (a) Trajectory 3 (b) in the workspace of an Orthoglide

µ(X) as one of the input parameter. The degree of this characteristic surface is 18 and it

represents the singularities associated with the eight working modes.

IV.3.2 Trajectory definition in the workspace

Trajectories 1 & 2 are heart shaped parametric curves which ( Fig. IV.3(a)). Eq. (IV.10) and

Eq. (IV.11) are the mathematical definitions of Trajectory 1 and Trajectory 2, respectively.

As these equations are trigonometric equations, it is necessary to represent them in an

algebraic form. φ1(t) and φ2(t) are the parametric equations for Trajectory 1 and Trajectory

2, respectively, which are defined for t ∈ [−π, π]. From now, sin and cos are replaced by s

and c respectively to reduce the size of the expressions.

φ1(t) : x =
8

7
s3(t)

y =
13

14
c(t)− 5

14
c(2t)− 1

10
c(3t)− 1

14
c(4t)

z = 1 (IV.10)

φ2(t) : x =
4

5
s3(t)

y =
13

20
c(t)− 1

4
c(2t)− 1

20
c(3t)− 1

20
c(4t)

z = 1 (IV.11)

Trajectory 3 is a parametric curve in three dimensions. Fig. IV.3(b) represents the tra-

jectory in the workspace of the manipulator. The parametric equations of the trajectory is

defined by Eq. (IV.10). φ3(t) is the parametric equation for Trajectory 3 and is defined for

t ∈ [0, 20].

φ3(t) : x = s(t) y = c(t) z =
1

20
t (IV.12)
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Figure IV.4 – A pictorial representation of the mapping of trajectories from workspace to

joint space. Eight different pairs of trajectories, Υ1(ρ, t) & Υ2(ρ, t) in joint space are the image

of corresponding φ1(t) & φ2(t). These eight different trajectories are associated with the eight

working modes of the Orthoglide. Only one trajectory lies inside the joint space boundary due

to to the joint constraints.

In order to turn the system to an algebraic one, we add the following equations

sin(t) = sin _t cos(t) = cos _t

sin _t2 + cos _t2 = 1 (IV.13)

and we remark that this change of variables does not introduce any spurious solutions since

it is bjective (t ∈ [−π, π]).

IV.3.3 Projection in the joint space

φ1(t), φ2(t) and φ3(t) are the trajectories which are defined in the workspace. To project

these trajectories in the joint space, it is necessary to formulate a system of equations corre-

sponding to each trajectory which also consists the kinematic equations of the manipulator.

Ψ1, Ψ2 and Ψ3 are the corresponding systems of equations for the Trajectories 1, 2 and 3,

respectively (see Eq. (V.10)).

Ψ1(X, ρ, t) = [φ1(t)−X, F(ρ, X)]

Ψ2(X, ρ, t) = [φ2(t)−X, F(ρ, X)]

Ψ3(X, ρ, t) = [φ3(t)−X, F(ρ, X)] (IV.14)

Each system of is projected in the joint space as Υ1(ρ, t), Υ2(ρ, t) and Υ3(ρ, t) (see

Eq. (V.11)). By solving Υ1(ρ), Υ2(ρ) and Υ3(ρ) for ρ, we get the corresponding parametric

equations for the trajectories in the joint space, as shown in Fig. IV.4 for the Trajectories

1&2 and in Fig. IV.5 for the Trajectory 3. Eqs. (IV.16) - (IV.18) are used to plot all
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Figure IV.5 – Mapping of the Trajectory 3 from workspace to joint space. Eight different

possible solutions of Υ3(ρ, t) are marked in joint space which are the image of φ3(t). There is

only one feasible trajectory (marked as 1) lies inside the joint space boundary.

possible images of the trajectories in the joint space. All the computations are done without

considering the joint limits. As the Orthoglide has eight working mode, there exists eight

possible trajectories in the joint space ( Fig. IV.4 and Fig. IV.5 for Trajectories 1&2 and

Trajectory 3, respectively).

Ψ1(X, ρ, t) 7→ Υ1(ρ, t) ∀t ∈ [−π, π]

Ψ2(X, ρ, t) 7→ Υ2(ρ, t) ∀t ∈ [−π, π]

Ψ3(X, ρ, t) 7→ Υ3(ρ, t) ∀t ∈ [0, 20] (IV.15)

Solving Υ1(ρ, t) and Υ2(ρ, t) for ρ gives eight possible solutions ( Eq. (IV.17) for Trajec-

tory 1 and Eq. (IV.18) for Trajectory 2), which inferred eight different possible images of

Trajectory 1&2 in joint space. But from Fig. IV.4 one can see that only one trajectory lies

inside the joint space boundary for the both trajectories in workspace.

ρ1 = s(t)± 1

20

√

400s2(t)− t2 + 1200

ρ2 = c(t)± 1

20

√

400c2(t)− t2 + 1200

ρ3 =
1

20
t±
√

3 (IV.16)

Figure IV.5 shows all the possible images of Trajectory 3 in the joint space. Solving

Υ3(ρ, t) for ρ gives eight possible solutions which (Eq. (IV.16)). It can be seen in the Fig. IV.5

that only one trajectory (which is marked as 1), lies inside the joint space boundary.
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ρ1 =
8

7
s3(t)± 1

35

√

1996s6(t)− 400s8(t) + 560s6(t)c(t)− 100s4(t)c(t)− 2009s4(t) + ζ1

ρ2 = −4

7
c4(t)− 2

5
c3(t)− 1

7
c2(t) +

43

35
c(t) +

2

7
± 1

7

√

64c6(t)− 192c4(t) + 192c2(t) + 83

ρ3 = 1± 1

35

√

3200− 400c8(t)− 560c7(t) + 1204c6(t) + 1580c5(t)− 3221c4(t) + ζ2

ζ1 = 2190c3(t)− 1379c2(t)− 1320c(t) + 3988

ζ2 = 710c3(t) + 3051c2(t)− 860c(t) (IV.17)

ρ1 =
4

5
s3(t)± 1

10

√

76s6(t)− 16s8(t) + 16s6(t)c(t) + 12s4(t)c(t)− 85s4(t) + 96c3(t)− ζ3

ρ2 = −2

5
c4(t)− 1

5
c3(t)− 1

10
c2(t) +

4

5
c(t) +

1

5
± 1

5

√

16c6(t)− 48c4(t) + 48c2(t) + 59

ρ3 = 1± 1

10

√

332− 16c8(t)− 16c7(t)7 + 52c6(t) + 60c5(t)− 145c4(t) + 24c3(t) + ζ4

ζ3 = 66c2(t)− 60c(t) + 321

ζ4 = 132c2(t)− 32c(t) (IV.18)

IV.3.4 Singularity analysis

To check if there exists any singular configuration between the two poses of the end-effector

it is necessary to express the Jacobian of the manipulator as a function of the time or of some

independent variable. The proposed algebraic method enables us to write the Jacobian of

the manipulator as a function of the time and to check if its determinant vanishes between

two poses.

By substituting the values of φ1(t), φ2(t) and φ3(t) from Eq. (IV.10), Eq. (IV.11) and

Eq. (IV.12) in µ(X), we will get µ(φ1(t)), µ(φ2(t)) and µ(φ3(t)) as the determinant of the

Jacobian for Trajectory 1, Trajectory 2 and Trajectory 3 respectively (Eq. (IV.19)). Due to

the large expressions, the equations for µ1(t), µ2(t) and µ3(t) are not presented but their

roots define the singular configurations : Figures IV.8, IV.10 and IV.11 show the values of

these functions when t varies.

µ1(t) = µ(φ1(t)) ∀t ∈ [−π, π]

µ2(t) = µ(φ2(t)) ∀t ∈ [−π, π]

µ3(t) = µ(φ3(t)) ∀t ∈ [0, 20] (IV.19)

The number of solutions of Eq. (IV.19) gives the total number of singular points on the

corresponding trajectory. The solutions for µ1(t), µ2(t) and µ3(t) are shown in Eq. (IV.20).

From Eq. (IV.20) we get that there exists four solutions for µ1(t) and zero solutions for

µ2(t) and µ3(t), which confirms the presence of singular points on Trajectory 1 whereas

Trajectory 2&3 are singularity-free trajectories. Note that numerical approximations are

given for readability, but, in practice, isolating intervals with rational bounds with arbitrary

width can be computed (see section METHODOLOGY or [85, chapter 8] for more details)

so that the result is certified.
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Figure IV.6 – Representation of the trajectories with singularity surface. Trajectory 1 cuts

the parallel singularity surface ξ(X) in four points s1, s2, s3 and s4 in the workspace of the

Orthoglide. Also, it can be seen that Trajectory 2 lies inside ξ(X) as µ2(t) 6= 0 ∀t ∈ [−π, π].

t = [−1.51,−0.97, 0.97, 1.51]← µ1(t) = 0 ∀t ∈ [−π, π]

t = [0.97, 1.51]← det(A) = 0 ∀t ∈ [−π, π]

t = [ ]← µ2(t) = 0 ∀t ∈ [−π, π]

t = [ ]← µ3(t) = 0 ∀t ∈ [0, 20] (IV.20)

µ1(t) is the determinant of the Jacobian corresponding to the Trajectory 1. By solving a

zero-dimensional system of equations, it can be shown that Trajectory 1 cuts the singularity

surface in four points s1, s2, s3 and s4 (see Fig. IV.8 and Eq. (IV.20)). The image of these

points in workspace is computed by substituting the values of Eq. (IV.20) in Eq. (IV.10).

Similarly, the image of these points in joint space is computed by substituting the values of

Eq. (IV.20) in Eq. (IV.17). The obtained values are tabulated in Table IV.1. Figures IV.6

represents the Trajectory 1&2 along with singularity surface ξ(X), also, all the singular

points s1, s2, s3 and s4 are located on the singularity surface.

s1 and s2 are the spurious singular points which were introduced by the projection of

det(A) in Cartesian space. Substituting µ1(t) and φ1(t) in det(A) gives two solutions ( Eq.

(IV.20)). These two solutions s3 and s4 are the real singular points on Trajectory 1. The

variation of det(A) along Trajectory 1 is shown in Fig. IV.9.

The true singular postures s3 and s4, belonging to the singularity surface ξ(X), which

is associated with the working mode used by the Orthoglide prototype ( Fig. IV.7). µ2(t)

and µ3(t) are the determinanst of the Jacobians corresponding to the Trajectories 2&3

respectively.

The variation of µ2(t) along Trajectory 2 for t ∈ [−π, π] is shown in Fig. IV.10. Fig-

ure IV.11 represents the variation of µ3(t) for t ∈ [0, 20] along Trajectory 3. All the values
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Figure IV.7 – Representation of the real singular points s3 and s4 along with the singularity

surface ξ(X), which is associated with one working mode.
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Figure IV.8 – Variation of µ1(t) along Trajectory 1. s1, s2, s3 and s4 represents the four

solutions of µ1(t) = 0 ∀t ∈ [−π, π].
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Table IV.1 – Singular postures on Trajectory 1

Workspace Joint space

S x y z ρ1 ρ2 ρ3

S1 −1.13 0.35 1.00 0.55 1.66 2.60

S2 −0.65 0.80 1.00 0.88 2.40 2.71

S3 0.65 0.80 1.00 2.18 2.40 2.71

S4 1.13 0.35 1.00 2.83 1.66 2.60
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π

Figure IV.9 – Variation of det(A) along the Trajectory 1. s3 and s4 represents the two solutions

of det(A) = 0 ∀t ∈ [−π, π].

given in Table IV.1 are associated with the trajectories which is marked as 1 in Fig. IV.4.

These values are obtained by solving a zero-dimensional system of polynomial equations

using RootFinding:-Isolate so that the related values for sin_t and cos_t are certified.

In Table IV.1, s1 and s2 are the spurious singular points and s3 and s4 are the real

singular points on the Trajectory 1. Trajectory 2&3 are the singularity-free trajectories.

IV.4 Parallel Manipulator with Several Actuation Modes
There are many types of reconfigurable parallel manipulators. This section deals with the

determination of a control scheme for a reconfigurable parallel manipulator with different ac-

tuation schemes. It is well known that the kinetostatic performance of parallel manipulators

may change drastically in the neighborhood of parallel singularities. Parallel mechanisms

may have several solutions to their inverse kinematics problem, i.e. several working modes. It

is usually difficult to get a large singularity-free workspace for a given working mode. Hence,

one must plan the trajectory in such a way that there should be change of working mode to

avoid the singularities. These problems can be solved by introducing actuation redundancy,

which involves force control algorithms [87]. The kinetostatic performance of a planar paral-

lel mechanism, NaVARo, with variable actuation modes is presented in [86, 88]. The homing,

calibration and model-based predictive control for the 4RPR parallel architecture is shown

in [89].
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Figure IV.11 – Variation of µ3(t) along the Trajectory 3. There are no solutions for µ3(t) =

0 ∀t ∈ [−π, π].
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In [90], a 3-CRU reconfigurable parallel manipulator is presented, which can work in two

different modes, the first mode gives three degrees of freedom of pure translation motion

and another of pure rotation. Moreover, it is shown that there is a possibility of switching

between the two modes by simultaneous change of configuration of all the universal joints.

The reconfiguration analysis of a 2-DOF 3-RRRR parallel mechanism is presented in [91],

which has six operation modes, two spherical translational modes, two planar motion modes

and two sphere-on-sphere rolling modes. A reconfigurable parallel mechanism with planar

five bar metamorphic linkages is presented in [92]. A self-calibration method, which is based

on leg-end distance errors and measurement residues for the three-legged modular recon-

figurable parallel robots are presented in [93] and [95], respectively. In [96] a metamorphic

parallel mechanism is presented which can switch its motion from a 3-dof translational mo-

tion to a 3-dof orientation motion. This paper presents the actuation modes of a variable

actuation parallel manipulator, NaVARo. Besides, a framework is presented to follow any

trajectory using its inverse geometric model only.

IV.4.1 Robot under study

The NaVARo robot was introduced in [86] and illustrated in Fig. IV.12. From the classical

3-RRR parallel robot, a parallelogram is added to each leg and connected to the first limb.

A virtual model of NaVARo robot is shown in Fig. IV.13 which is used for analyzing the

different aspects associated with the robot under study. Virtually, the actuator positions

can change from the revolute joint located on Ai or Bi. This feature exists thanks to a clever

transmission system made with two clutches. The NaVARo robot admits eight actuation

modes if we assume that only one clutch can be activated in the same time per leg.

Figure IV.12 – The NaVARo robot

The dimensions were chosen so that the forward kinematics of the 3-RPR robot asso-

ciated can be solved analytically. Thus, the points Ai and Ci form an equilateral triangle,

respectively, and their sides has the dimension 0.7 m and 0.35 m, respectively. The lengths of

the links AiBi and BiCi are 0.21 m for i = 1, 2, 3. Due to the parallelograms, the minimum

and maximum distance between the points Ai and Ci is 0.039 m and 0.08 m, respectively.
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IV.4.2 Transmission System

A transmission system has been developed and mounted in each leg of the NaVARo in order

for the manipulator to be able to switch smoothly from one actuation mode to another along

a prescribed trajectory. Figure IV.14 illustrates a CAD modeling of the transmission system

of the NaVARo. This system can be seen as a double clutch system and contains: (i) a motor;

(ii) a gearhead, (iii) a motor shaft, (iv) a main shaft (in cyan), (v) a base (in yellow), (vi) a

housing (in purple) and (vii) two clutches (in brown). As a matter of fact, the two clutches

1 and 2 are electromagnetic brakes.

Each transmission system has four actuation schemes that are defined thereafter [98]:

• None of clutches 1 and 2 are active: The main shaft is free to move with respect to

the housing and the base. In that case, none of the first two revolute joints of the

corresponding legs are actuated, namely, angles θi and δi are passive, i = 1, 2, 3.

• Clutch 1 is active while Clutch 2 is not: The main shaft is fixed with respect to the

base, i.e., the link AiBi is driven thanks to the rotation of the motor shaft. In that

case, angle θi is active and angle δi is passive.
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Figure IV.13 – The virtual model of the NaVARo robot
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Figure IV.14 – The NaVARo transmission system
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• Clutch 2 is active while Clutch 1 is not: The main shaft is attached to the housing,

but is free to move with respect to the base. In that case, angle θi is passive and angle

δi is active, i = 1, 2, 3.

• Both clutches 1 and 2: The blue shaft is attached to both the base and the housing.

It means that the housing cannot move and link AiDi is fixed. In that case, link

CiEi performs a circular translation with respect to point Ai. This actuation scheme

amounts to an actuated Π joint.

Only the second and third actuation schemes of each transmission system are used in

the NaVARo prototype in order to keep the three degrees of freedom motion of the moving-

platform and to avoid any actuation redundancy and under-actuation.

The fourth mode of actuation is used to lock the robot during the actuation mode

changing or during the data transfer phases.

Table IV.2 – The eight actuation modes of the NaVARo

Actuation Mode Number Driven Links Active Links

RRR1 −RRR2 −RRR3 A1B1, A2B2, A3B3 θ1, θ2, θ3

RRR1 −RRR2 −RRR3 A1B1, A2B2, A3E3 θ1, θ2, δ3

RRR1 −RRR2 −RRR3 A1B1, A2E2, A3B3 θ1, δ2, θ3

RRR1 −RRR2 −RRR3 A1E1, A2B2, A3B3 δ1, θ2, α3

RRR1 −RRR2 −RRR3 A1B1, A2E2, A3E3 θ1, δ2, δ3

RRR1 −RRR2 −RRR3 A1E1, A2E2, A3B3 δ1, δ2, θ3

RRR1 −RRR2 −RRR3 A1E1, A2B2, A3E3 δ1, θ2, δ3

RRR1 −RRR2 −RRR3 A1E1, A2E2, A3E3 δ1, δ2, δ3

IV.4.3 Control Hardware and Software

The Control hardware of the NaVARo robot is a 1103 Dspace card [46] with a 450 Mhz

Power PC. The actuator positions are required with a frequency equal to 6 kHz and a 200

Hz low pass filter is used to compute the actuator velocity. The robot motions are controlled

thanks to a sub program working at 1 kHz. The state of the program is determined as a

function of the set of actuators used.

The dynamic effect is added to the robot control scheme to improve the classical PID

control scheme. The motor torques Γi are generated by removing the coupling between the

legs as,

Γi =J

(

θ̈+KP

(

θd
i − θi

)

+KD

(

θ̇d
i − θ̇i

)

+KI

∫ t

t0

(

θd
i − θi

)

)

(IV.21)

Where J = 0.7k.m2, ω = 14 rad.s, KP = 3ω2, KD = 3ω and KI = ω3.

IV.4.4 Sensor Placements

The NaVARo robot is equipped with three types of sensor. Incremental sensors are placed

on the shaft of the motors. Analog angle sensors are placed on the pivots Bi and Ci to have

an absolute measure of these angles. The sensors placed on the pivots Bi allow us to have
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a measure of the distance ||AiCi|| that is equivalent to consider a robot 3-RPR. Magnetic

sensors located at Fi are used for the homing robot and at Ai to set the fine leg strokes to

prevent the parallelogram is completely squashed or stretched. The location of the magnetic

sensors will be described in the Homing Section.

IV.4.5 Graphic user interface

A graphic user interface (GUI) was developed in Matlab to make first the homing and after

the motions (Fig. IV.15). When the start conditions are satisfied, the homing function can

be performed (Section IV.5) and the movements of the robots are made in Cartesian mode

(Section IV.6). The interface displays the value of the actuated and passive joints as well

as the current actuation mode. It is also possible to release the servo-motors to move the

robot by hand.

Figure IV.15 – The graphic user interface of the NaVARo robot

IV.5 Homing

IV.5.1 Introduction

The homing procedure permits the robot to reach a predefined known position by making

a set of actions. The strategy used in our case is to manually place the robot in a given

position, checking by sensors the absolute position, then start a movement to be accurately

detect magnetic sensors. To understand the process, it is necessary to recall some properties

of the robot.

IV.5.2 Direct kinematics of the 3-RPR

When the actuation mode 8 is activated, that is to say, a robot 3-RRR, has direct kinematic

model equivalent to that of a robot 3-RPR where ri = ||AiCi|| for i = 1, 2, 3. The 3-RPR

planar parallel robot with base and mobile platform admits only a maximum of four real

solutions to the direct kinematic problem (DKP) [99], shown in Fig. IV.16(a).

The orientation of the mobile platform can be found by solving a second degree polyno-
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Figure IV.16 – Joint space of 3RPR parallel mechanism (a) without joint limits (b) with

joint limits. The Red and Blue regions represents the two and four real solutions for the DKP,

respectively.

mial equation in cos(α):
(

78400 r2
1 + 78400 r2

2 + 78400 r2
3 − 96040

)

cos (α) +

160000 r4
1 − 160000 r2

1r2
2 − 160000 r2

3r2
1 + 160000 r4

2 −
160000 r2

3r2
2 + 160000 r4

3 − 98000 r2
1 − 98000 r2

2 −
98000 r2

3 + 60025 + 38416 cos (α)2 = 0 (IV.22)

As this quadratic equation depends only on cos(α), we have a maximum of four solutions.

The position x and y can be directly defined as:

x=
10

(

6
(

r2
1 +r2

3

)−3Cα
(

r2
1−r2

3

)−
√

3Sα
(

2 r2
2 − r2

3 − r2
1

)

)

105− 84Cα
(IV.23)

y=
10
√

3
(

2
(

r2
1 +2r2

2−r2
3

)−Sα
√

3
(

r2
1− r2

3

)−Cα
(

r2
1−2r2

2 +r2
3

)

)

105− 84Cα
(IV.24)

where Cα = cos(α) and Sα = sin(α). Due to the joint limits, there are only two real

solutions to the direct kinematic problem which is shown in Fig. IV.16(b) .

IV.5.3 Direct kinematics of the 3-RRR

Except for the actuation mode 8, the forward kinematics is general and there are up to 6

real solutions, or assembly modes. Solving this problem amounts to solving a polynomial of

degree 6 using the method introduced by Gosselin [99]. This cannot be realized in our old

DSpace card at the frequency of 1 kHz. However, it is possible to verify the current location

by shifting the calculation on the computer controlling the robot. In our case, MATLAB

computes all the solutions of the direct geometric model. However, only the absolute sensors

on passive joints distinguish the current assembly mode. In all cases, the resolution is generic

and comparable to the resolution of a forward kinematics of the robot 3-RPR is considering

the length ||AiCi|| or ||BiCi|| as actuated articulation knowing the angle δi or θi respectively.



IV.5 Homing 91

IV.5.4 Homing procedure

The home pose lies at the center of the workspace. The proximal link of the legs have to

be in front of the magnetic sensor. By knowing the position of this segment is equivalent to

study 3-RRR robot with the first motorized joint. To reach this configuration, we can mode

the robot in the joint space. We have defined a graphical interface for the displacement of

each actuator by addition or subtraction of 5 degrees. At each movement, a trajectory based

on a five-degree polynomial is used to have as a desired, zero speed and zero acceleration at

the starting point and ending point. Since the algorithm is based on state, a single command

can be run simultaneously. When the magnetic sensors are close to the proximal limb, a

flag associated with each sensor becomes turned on.

If the robot reaches the limits of movement of parallelograms, security robot is activated

and the power of the engine is turned off. It is necessary to move the mobile platform by

external effort to depart from this position. For this set of input values, this robot admits

two real solutions to the direct geometric model with the same position but two different

orientations. As one can not distinguish them by the only position of the proximal, we

use sensors placed on the second joint of each leg that has been previously calibrated. For

θ1 = −0.585, θ2 = −2.680 and θ3 = 1.508 , values for the position of the mobile platform x,

y and αi and the angles γi are

• x = 0, y = 0, α = 1.0471 or α = 0.0414

• δ1 = δ2 = δ3 = 1.970 or δ1 = δ2 = δ3 = 1.005

The two assembly modes for the NaVARo robot for the same position of the proximal

limbs is shown in Fig. IV.17.
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Figure IV.17 – First assembly mode of the NaVARo shown with pink colored mobile platform

and the second assembly mode shown with yellow colored mobile platform for θ1 = −0.585,

θ2 = −2.680 and θ3 = 1.508
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The homing function is to move from offset each engine separately in the same direction

and then return at a constant speed to the sensor. By identifying this position from the

home position, we move the robot by joint offset. A flow chart of this algorithm is given

in the Fig. IV.18. When homing is completed, the value encoder is initialized by setting an

offset relative to their current values.

The state of the robot is 0 when no movement or command is active. Only the PID keeps

the robot in its current position. When the state is not 0, no other command can be initiated.

Only security-related commands can interrupt the program. When transferring information

associated with a path, the movements are stopped and all clutches are active because

this is a priority process. Movement generators are written in C language for generating

movements according to the current posture and the end posture.

Figure IV.18 – Flow chart of the control loop

IV.6 Motions of the robot
To avoid solving the forward kinematics, when the boot process is complete, only Cartesian

movements are possible. To change the actuation mode, it is necessary to know how to

calculate the inverse kinematics for the first and second pivot joint of each leg. Similarly, to

avoid singular configurations, it is necessary to evaluate the Jacobian matrices by building

the position of all segments of the robot.

IV.6.1 Inverse kinematic model

For changing the actuation mode, the computation of general inverse kinematic mode is

need to switch the value of the motor incremental sensor to the current actuated joint. In

a first step, we calculate the position of Ci points depending on the position (x, y) and the

orientation α of the mobile platform.
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C1x = (x + (C1a cos(α))− (C1b sin(α))),

C1y = (y + (C1a sin(α)) + (C1b cos(α))),

C2x = (x + (C2a cos(α))− (C2b sin(α))),

C2y = (y + (C2a sin(α)) + (C2b cos(α))),

C3x = (x + (C3a cos(α))− (C3b sin(α))),

C3y = (y + (C3a sin(α)) + (C3b cos(α))), (IV.25)

where Cia and Cib are the abscissa and the ordinate of the point Ci in the moving frame,

respectively. A set of intermediate angles is needed to solve the inverse model that is shown

in Fig. IV.19.
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Figure IV.19 – Definition of the angles used to solve the inverse kinematics

First, we calculate the distance between Ai and Ci.

di =
√

(C1x − A1x)2 + (C1y − A1y)2 for i = 1, 2, 3. (IV.26)

and by the law of cosines we can determine in the triangles AiBiCi

δi = π ± arccos((l2i1 + l2i2 − d2
i )/(2li1li2)) (IV.27)

where li1 and li2 are the proximal and distal lengths

βi = ± arccos((l2i1 + d2
i − l2i2)/(2li1di)); (IV.28)

and from the position of Ci with respect to Ai

ηi = arctan(Ciy − Aiy, Cix − Aix) (IV.29)

Finally, we can evaluate the position of the proximal,

θi = ηi ± βi (IV.30)
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Knowing the current operating mode, the inverse geometric model calculates values of θi

and δi.

IV.6.2 Jacobian matrices

As NaVARO robot allows only one working mode, knowing the position of the mobile

platform and using the inverse kinematics, we can know the position of the proximal and

distal of the three legs. The kinematic modeling was introduced in [88] for this robot. The

following equation defines the velocity ṗ of the point P as a function of the three legs.

ṗ = θ̇iE(bi − ai) + δ̇iE(ci − bi) + α̇E(p− ci) (IV.31)

where

E =

[

0 −1

1 0

]

(IV.32)

and ai, bi, ci and p are the position vectors of points Ai, Bi, Ci and P and θ̇i, δ̇i and α̇ are

the joint rates θi, δi and α as it is shown in Fig. IV.19.

A generic equation was obtained in [88] to define the Jacobian matrix of NaVARO as

At = Bq̇ with t = [ṗ α̇]T q̇ = [q̇1q̇2q̇3]T (IV.33)

where q̇ is the joint rate vector which depends on the actuator that is to say the actuated

joint, ie θ̇i or δ̇i The direct and inverse Jacobian matrices are this defined

A =









(c1 − h1)T −(c1 − h1)T
E (p− c1)

(c2 − h2)T −(c2 − h2)T
E (p− c2)

(c3 − h3)T −(c3 − h3)T
E (p− c3)









(IV.34)

B = diag
[

(ci − bi)
T

E(bi − ai)
]

for i = 1, 2, 3 (IV.35)

where hi = ai if the first joint of the leg is actuated and hi = bi in the other case. To

normalize the Jacobian matrix, we use as the characteristic value, the radius r of the mobile

platform. Thus the matrix A becomes

A =









(c1 − h1)T −(c1 − h1)T
E (p− c1)/r

(c2 − h2)T −(c2 − h2)T
E (p− c2)/r

(c3 − h3)T −(c3 − h3)T
E (p− c3)/r









(IV.36)

Then, we compute the Jacobian matrix and its condition number as

J = B−1A (IV.37)

κ (J) =
1

m

√

tr (JT J) tr(JT J)−1 (IV.38)

The minimum value of κ−1 is limited to 0.1 to avoid the singular configurations during

the motions.
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IV.6.3 Actuation mode changing

Because of the design of our system, the actuation mode changing can not be done only

when the robot is stopped. When a clutch is deactivated, the connection between the motor

and a fixed reference of the robot is eliminated. Each path ends at zero speed and we expect

the robot position is stable and the convergence of the PID is done. The transition from one

actuation mode to another by activating all the clutches and then releasing the unnecessary

clutch to the desired actuation mode. When all clutches are activated, the robot becomes

over-constrained and no movement of the platform is possible. It is in this configuration

that the data encoders switches it from one mode to the other. The method is to calculate

the inverse kinematics introduced previously. First, we store the values of each actuated

joint in a vector according to the current actuation mode ǫold, then we do the same with

the new mode of actuation ǫnew. The difference between ǫold and ǫnew sets the offset that is

added on the encoder positions.

IV.6.4 Motions of the robot

When the homing is completed, it is not possible to move the robot in a joint mode. However,

the motions of the robot can be realized with two other modes. The first is with the GUI

where one can realize translational or rotational movements by pressing buttons up / down

of each axis. The conditioning of the Jacobian matrix is evaluated before each motion or

before each actuation mode changing to prohibit the motions of the robot near singular

configurations. With the second mode, we can load movements that have been generated

by another program written in Matlab. We have, for example, a program that reads a G

code and generate a file with the position, speed and acceleration sets as well as an integer

to define the associated actuation mode. It is thus possible to make a singular assembly

mode changing trajectory if the conditions defined in [97] are validated. The video of a path

example is given in [100].

IV.7 Conclusions
This chapter reports the use of algebraic methods to check the feasibility of given trajectories

in the workspace. The general method uses the projection of the polynomial equations

associated with the trajectories in the joint space using a Gröbner based elimination strategy.

There is a significant change in the shape of workspace and the singularity surfaces due to

the joint constraints. The proposed method enables us to project the joint constraints in

the workspace of the manipulator, which further helps to analyse the projection of the

singularities in the workspace with the joint constraints. Such computations ensure the

existence of a singular configuration between two poses of the end-effector unlike other

numerical or discretization methods. This paper highlights that the singularity analysis

should be done in the cross product of the workspace and joint space for parallel robots

with several assembly and working modes. The single analysis of the singularities in a

projection space can introduce spurious singularities. In fact, the algebraic tools does not

allow to distinguish the parallel singularities according to the working mode. With NaVARo
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robot, a variable actuation robot, it is possible to introduce all the problems related to the

operating principle as the loss of connection between the encoder and the frames of the

robot. A start procedure allows to identify the current assembly mode of the robot by

using magnetic sensors and absolute encoders for low accuracy. The movements sensed by

the magnetic sensors at low speed and always in the same direction can guarantee the

reproducibility of the procedure. A framework is presented to realize the trajectory that

does not use the direct geometric model, which uses only the inverse geometric model. The

redundant sensors ensure that the current method of assembly for the command is the one

used by the robot. This allows to perform assembly mode change paths and confirms that

the movement has been achieved.



V
Prospective Work: Evaluation of
the Accuracy

Usually, the accuracy of parallel manipulators depends on the architecture of the

robot, the design parameters, the trajectory planning and the location of the path

in the workspace. This chapter reports the influence of static and dynamic param-

eters in computing the error in the pose associated with the trajectory planning

made and analyzed with the Orthoglide 5-axis. An error model is proposed based

on the joint parameters (velocity and acceleration) and experimental data coming

from the Orthoglide 5-axis. Newton and Gröbner based elimination methods are

used to project the joint error in the workspace to check the accuracy/error in the

Cartesian space. For the analysis, five similar trajectories with different locations

inside the workspace are defined using fifth order polynomial equation for the tra-

jectory planning. It is shown that the accuracy of the robot depends on the location

of the path as well as the starting and the ending posture of the manipulator due

to the acceleration parameters.

V.1 Introduction
The accuracy to attain the exact pose for the parallel manipulator for a given trajectory

depends on the static and dynamic parameters associated with the manipulator. Due to the

better dynamic properties, high load-carrying capacity, high accuracy and stiffness, closed

loop mechanisms are best suited for the medical robotics, high-precision and machine tool

design applications. Number of links and passive joints in the closed loop mechanism reduces

the accuracy of the manipulator. There are different factors which affects the accuracy of

the manipulator, some of them are geometrical deviation of the machine parts during their

assembly, mechanism motion, elastic deformation of the links and joints due to the force and

thermal expansion [32, 33]. There are several article exists on the effect of manufacturing

tolerances on the accuracy of the parallel manipulators [34]. In [35], a forward and inverse

error bound analysis is presented to find the error bound in the pose of the end effector

for a Gough-Stewart platform when the joint error bounds are given and vice versa. The

sensitivity analysis for a three degrees-of-freedom translational parallel kinematic machine

with orthogonal linear joints is reported in [36]. They have used linkage kinematic analysis
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and differential vector method to study the influence of the length variation on the pose of

the end-effector.

One of the highly addressed problem associated with the end-effector pose error is the

manipulator stiffness, which defines the positioning error due to the external loading while

executing a specific task by the manipulator. A non-linear stiffness model for the manip-

ulators with the passive joints is presented in [37]. Pashkevich et al [38] proposed a novel

calibration approach for the Orthoglide based on the observations of the manipulator leg

parallelism. A numerical procedure presented in [39] , which is used to compute the pose

error due to clearances and elastic deformations along a pick-and-place trajectory of the

5R planar parallel manipulator. In [40], an error prediction model is proposed for overcon-

strained and nonoverconstrained parallel manipulators and also presents the influence of

the joint tolerance on the pose error of the manipulators. A larger number of contribu-

tions in the literature is available on the influence of the statics and robot Jacobian than

the influence of dynamics on computing the error in the pose of the parallel manipulator

[41, 42, 94]. A methodology is presented in [43] to project the trajectories in the joint space

using Gröbner based elimination methods. This paper mainly focuses on the estimation of

error in the pose of end effector due to the joint errors produced by the PID control loop.

In this article, the proposed error model which is based on the dynamic properties (joint

velocities and acceleration) of the Orthoglide helps in estimating the error in the Cartesian

workspace.

The outline of this chapter is as follows. We first introduced the direct and inverse

kinematic model of the Orthoglide with parallel singularities. In the next section we have

defined five different trajectories for the Orthoglide 5-axis, which has been developed at

IRCCyN. We then proposed the joint error model based on the joint velocities, acceleration

and joint errors which are obtained with the Orthoglide 5-axis during motions. In the later

section we have presented the estimation of the error of the end-effector pose with Newton

and Gröbner based elimination methods.

V.2 Architecture & Kinematics: Orthoglide 5-AXIS
The Orthoglide 5-axis is a hybrid parallel kinematics machine, which consists of a 3-DOF

translational manipulator (Orthoglide 3-axis) and a 2-DOF parallel spherical manipulator

(the Agile Eye 2-axis) as two of the main components [44]. The manipulator under study

is a semi industrial prototype of the Orthoglide 5-axis, which is designed and developed at

IRCCyN for the robotic team and manufactured by Symetrie [45], as shown in Fig. V.1.

Orthoglide 5-axis uses 1103 DSPACE card as a control hardware with a 933 MHz Pow-

erPC. The trajectory planning is done using Matlab and an optical fiber is used to send the

data to DSPACE card [46]. Two different types of motors are used to actuate the spherical

and translational assembly. Two Harmonic Drives FFA-20-80-H-E2048 are used to actuate

2-DOF parallel spherical manipulator, which has 3.27 rad/s as the maximum angular ve-

locity and 270 rad/s2 as the maximum angular acceleration. Orthoglide 3-axis uses three

Parvex Brushless NX430EAF coupled with Kinetic TDU 200 ball screws as actuators which
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has a maximum linear velocity is equal to 1.2 m/s and maximum acceleration of 13 m/s2.

The actuator positions are sampled at 9 KHz and actuator velocities are computed using

200 Hz low pass filter. The gravity effect is reduced using pneumatic compensator which is

mounted along the vertical axis. A constant pressure in the chamber of the cylinders allows

to apply an upward force similar to the mass of the mobile platform and part of the mass of

parallelograms. This pressure is defined by cutting the servo so that the vertical axis does

not move downwardly or upwardly.

Equation (V.1) represents the constraint equations of the Orthoglide 3-axis, which defines

the motion of three orthogonal linear actuators with l = 310mm, the actuated variables

ρρρρ = [ρ1, ρ2, ρ3] and the pose variables X = [x, y, z] :

F (ρρρρ, X) : (x− ρ1)2 + y2 + z2 = l2

x2 + (y − ρ2)2 + z2 = l2

x2 + y2 + (z − ρ3)2 = l2 (V.1)

||AiBi|| is equal to ρi, which represents the prismatic joint variables whereas X represents

the position vector of the tool center point as it is shown in the Fig. V.2. In the following

sub sections direct and inverse kinematics model are derived for the Orhoglide 3-axis.

V.2.1 Direct Kinematics Model:

The problem of determining the pose of the end-effector of the manipulator for a given value

of joint parameters is termed as a direct kinematic problem (DKP). With an algebraic model,

there are chances of getting several solutions for DKP i.e the manipulator can be assembled

in the different ways for a set of actuator values. The number of solutions for the DKP is

referred as the assembly modes of the robot. There exist two real solutions for DKP or two

assembly modes for the Orthoglide. Equation (V.2) represents the direct kinematic model

for the Orthoglide 3-axis.

Figure V.1 – Semi industrial prototype of the Orthoglide 5-Axis
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Figure V.2 – Simplified architecture of the Orthoglide for the simulation and the analysis.
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3
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1ρ2

2ρ2
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1ρ6
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1ρ4
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3 − ρ2
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2ρ4

3 + 384400(ρ4
1ρ4

2 + ρ4
1ρ2

2ρ2
3 + ρ2

1ρ4
2ρ2

3) (V.2)

Solving Eq. (V.1) for X gives two solutions corresponding to the two assembly modes

of the Orthoglide. Equation (V.2) represents only one solution which corresponds to the

required assembly modes. β(ρρρρ), the direct kinematic model is used to compute the projection

of the joint errors in the workspace of the Orthoglide [38].

V.2.2 Inverse Kinematics Model:

Similarly the problem of determining the joint actuators value for a given pose of a end-

effector is termed as a inverse kinematic problem (IKP). The number of solutions for the

IKP is referred as the working modes of the robot [47]. There exist eight real solutions

for IKP or the working modes for the Orthoglide 3-axis that can be computed using the

Eq. (V.3).
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γ(X) : ρ1 = x±
√

−y2 − z2 + 96100

ρ2 = y ±
√

−x2 − z2 + 96100

ρ3 = z ±
√

−x2 − y2 + 96100

(V.3)

V.2.3 Parallel Singularities

Singularities plays an important role while defining the trajectory for a specific task. The

error in the poses of the end-effector gradually increases when it approaches singular con-

figuration. Differentiating Eq. (V.1) with respect to time leads to the velocity model:

AẊ + Bρ̇ρρρ = 0 where A =
∂F

∂X
, B =

∂F

∂ρρρρ
(V.4)

The matrices A and B are respectively the direct-kinematics and the inverse-kinematics

Jacobian matrices of the manipulator. These matrices are used for characterizing different

kinds of singularities. The parallel singularities occur whenever det(A) = 0, i.e, the mapping

from tool velocity space to the joint velocity space is ill-conditioned and the serial singu-

larities occur whenever det(B) = 0. The parallel singular configurations are located inside

the workspace. They are particularly undesirable because the manipulator cannot resist to

any forces and its control is lost. Parallel singularities occurs when the target point and the

center of prismatic joints are lie in the same plane or when all three links parallel to each

other.

det(A) = −8ρ1ρ2ρ3 + 8ρ1ρ2z + 8ρ1ρ3y + 8ρ2ρ3x

det(A) 7→ ε(ρ) det(A) 7→ ξ(X)

ε(ρ) = ρ4
1ρ2

2 + ρ4
1ρ2

3 + ρ2
1ρ4

2 + 2ρ2
1ρ2

2ρ2
3 + ρ2

1ρ4
3 +

ρ4
2ρ2

3 + ρ2
2ρ4

3 − 16ρ2
1ρ2

2 − 16ρ2
1ρ2

3 − 16ρ2
2ρ2

3 (V.5)

In Eq. (V.5), det(A) is the parallel singularity of the Orthoglide and ξ(X) is the projec-

tion of det(A) in the cartesian space. ε(ρρρρ) is the projection of parallel singularity det(A)

in the joint space of the Orthoglide. The mathematical expression for ξ(X) is not men-

tioned in Eq. (V.5) due to the lack of space. Figure V.3 shows the projection ξ(X) in the

workspace of the Orthoglide. The Gröbner basis and cylindrical algebraic decomposition

(CAD) algorithms are used to compute and plot the workspace and parallel singularities of

the Orthoglide [48, 49]. The degree of this surface is 18 and it represents the singularities

associated with the eight working modes.

V.3 Trajectory Planning
The most simple and suitable technique for planning the trajectory for a specific task is

always to define the path in the workspace X = [x, y, z] and control loop in the joint space
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ρρρρ = [ρ1, ρ2, ρ3] of the manipulator. Equation (V.6) represents the torque control structure

for the actuators motion [44]. As it can be observed from Eq. (V.6), the torque Γi also

depends on the dynamics of the manipulator which further enhances the classical PID

control scheme.

Γi = M

(

ρ̈i + KP (ρd
i − ρi) + KI

∫ t

to

(ρd
i − ρi) + KD(ρ̇d

i − ρi)

)

for i = 1, 2, 3, (V.6)

where KP = 19200rad2/s2, KI = 512000rad3/s3

KD = 240rad/s, M = 91.6278 Kg

For the study five similar circular trajectories φ1(t), φ2(t), φ3(t), φ4(t) and φ5(t) are

defined but with the different center locations c1, c2, c3, c4 and c5, respectively, inside

the Orthoglide’s workspace. These trajectories can be seen in Fig. V.3 which are labeled as

1, 2..5 with workspace and parallel singularity surfaces. The trajectories φi(t): [τxi
, τyi

, τzi
] in

Eq. (V.8) are defined in parametric form in the Cartesian space using fifth order polynomial

equation with different center locations which is shown in Eq. (V.7).

x

y

z

1

2
3

4

5

Parallel
Singularity Surfaces

Figure V.3 – Location of the trajectories φi(t) along with the parallel singularity surfaces ξ(X).

CAD algorithm is used to plot these surfaces for a single working mode.

The execution time is set to one seconds for all the trajectories. The trajectories for

Orthoglide 5-axis are defined such that α and β are equal to zero i.e, there exists only

translational motion on xy plane with ẋmax = ẏmax = 0.45m/s and ẍmax = ÿmax = 5m/s2.
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ẍ
,ÿ
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Figure V.5 – Cartesian acceleration along the trajectories φi(t)

c1 : [cx1
, cy1

, cz1
] :→ [−80,−80,−140]

c2 : [cx2
, cy2

, cz2
] :→ [−80,−80, −80]

c3 : [cx3
, cy3

, cz3
] :→ [ 00, 00, 00]

c4 : [cx4
, cy4

, cz4
] :→ [ 80, 80, 80]

c5 : [cx5
, cy5

, cz5
] :→ [ 80, 80, 140] (V.7)

Differentiating Eq. (V.8) with respect to time gives us Cartesian velocities ˙τxi
, ˙τyi

and

˙τzi
along x, y and z direction respectively, which is shown in Eq. (V.9). Similarly, Cartesian

accelerations can be obtained by differentiating Cartesian velocities i.e, Eq. (V.9) with

respect to time.

φi(t) : τxi
= cxi

+ 40 sin(2t3(6t2 − 15t + 10)π)− x

τyi
= cyi

+ 40 cos(2t3(6t2 − 15t + 10)π)− y

τzi
= czi

− z ∀t ∈ [0, 1] (V.8)

Figure V.4 and V.5 show the plot of Cartesian velocities and accelerations, respectively,

along the trajectory φi(t). All the trajectories have the same Cartesian velocities and accel-

erations.

To project these trajectories in the joint space, it is necessary to formulate a system of

equations corresponding to each trajectory which also consists the kinematic equations of

the manipulator.

˙τxi
= 2400t2π(t2 − 2t + 1) cos(2t3(6t2 − 15t + 10)π)

˙τyi
= −2400t2π(t2 − 2t + 1) sin(2t3(6t2 − 15t + 10)π)

˙τzi
= 0 ∀t ∈ [0, 1] (V.9)
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Figure V.6 – Joint parameters values along trajectories φ1(t), φ2(t), φ3(t), φ4(t), φ5(t) Joint positions (ai) Joint velocities (bi) Joint accelerations (ci), where

i = 1, 2, 3, 4, 5 which represents different trajectories
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Ψ1, Ψ2, Ψ3, Ψ4 and Ψ5 are the corresponding systems of equations for the Trajectories

1, 2, 3, 4, and 5, respectively (see Eq. (V.10)).

Ψ1(X, ρρρρ, t) = [[τx1
, τy1

, τz1
], F (ρρρρ, X)]

Ψ2(X, ρρρρ, t) = [[τx2
, τy2

, τz2
], F (ρρρρ, X)]

Ψ3(X, ρρρρ, t) = [[τx3
, τy3

, τz3
], F (ρρρρ, X)]

Ψ4(X, ρρρρ, t) = [[τx4
, τy4

, τz4
], F (ρρρρ, X)]

Ψ5(X, ρρρρ, t) = [[τx5
, τy5

, τz5
], F (ρρρρ, X)] (V.10)

Each system of equation is projected in the joint space as Υ1(ρρρρ, t), Υ2(ρρρρ, t) and Υ3(ρρρρ, t)

(see Eq. (V.11)). By solving Υ1(ρρρρ), Υ2(ρρρρ) and Υ3(ρρρρ) for ρρρρ, we get the corresponding para-

metric equations for the trajectories in the joint space. There are two different ways to

compute these projections. The first method uses Gröbner based elimination algorithms

and the second method is to directly substitute the [τx1
, τy1

, τz1
] in inverse kinematic model

(Equation (V.3)).

Ψ1(X, ρρρρ, t) 7→ Υ1(ρρρρ, t) ∀t ∈ [0, 1]

Ψ2(X, ρρρρ, t) 7→ Υ2(ρρρρ, t) ∀t ∈ [0, 1]

Ψ3(X, ρρρρ, t) 7→ Υ3(ρρρρ, t) ∀t ∈ [0, 1]

Ψ4(X, ρρρρ, t) 7→ Υ4(ρρρρ, t) ∀t ∈ [0, 1]

Ψ5(X, ρρρρ, t) 7→ Υ5(ρρρρ, t) ∀t ∈ [0, 1] (V.11)

Solving Υ1(ρρρρ, t), Υ2(ρρρρ, t), Υ3(ρρρρ, t), Υ4(ρρρρ, t) and Υ5(ρρρρ, t) for ρρρρ gives eight possible solu-

tions for trajectories φi(t), but only one feasible solution exists which lies inside the joint

space, which corresponds to each trajectories. The first column in the Figure V.6, i.e, Fig-

ure V.6(ai) represents the joint actuator values along the trajectory φi, whereas second

and third column, i.e, Figure V.6(bi) & (ci) represents the joint velocities and accelerations,

respectively.

V.4 Error Analysis
During the execution of any given trajectory by the manipulator, there always exist some

differences between the desired actuator values and the actual actuator values at any given

instance of time. These differences are recorded by sensors which are generally attached

with the actuators. Figure V.7 shows the recorded values of the joint errors while executing

the trajectories by the Orthoglide 5-axis for the translational part.

The different parameters associated with the recorded joint errors ∆ρi along the the

trajectories φi(t) in Fig. V.7 such as maximum, minimum and mean absolute values are

presented in Table V.1. The maximum error in ρ1 is more [697 µm] for the trajectory

T5, whereas less [584.8 µm] for the trajectory T1. The mean absolute error in ρ1 is the

maximum [171.2 µm] for the trajectory T5 and minimum [125.8 µm] for the trajectory
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Table V.1 – The Minimum, Maximum and mean absolute values of joint errors along the trajectories

Errors (µm) → ∆ρ1 ∆ρ2 ∆ρ3

Trajectories ↓ Min Max Avg Min Max Avg Min Max Avg

T1 : [−80,−80,−140] −280.6 584.8 125.8 −639.1 784.0 212.1 −401.4 558.0 151.0

T2 : [−80,−80, −80] −312.7 626.6 130.6 −665.2 777.7 220.2 −424.5 529.3 159.5

T3 : [ 00, 00, 00] −272.4 663.9 149.0 −615.1 666.1 204.2 −020.2 020.2 011.5

T4 : [ 80, 80, 80] −312.6 685.9 161.2 −636.7 566.6 135.8 −572.9 410.1 167.0

T5 : [ 80, 80, 140] −314.5 697.0 171.2 −630.9 565.0 138.6 −565.5 427.2 167.7
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T1.The maximum error in ρ2 is more [784 µm] for the trajectory T1, whereas less value [565

µm] for the trajectory T5. The mean absolute error in ρ2 is the maximum [220.2 µm] for

the trajectory T2 and minimum [135.8 µm] for the trajectory T4. The maximum error in ρ3

is more [558 µm] for the trajectory T1, whereas less [020.2 µm] for the trajectory T1. The

mean absolute error in ρ3 is the maximum [167.7 µm] for the trajectory T5 and minimum

[011.5 µm] for the trajectory T3.

There may exist several factors which affect these joints errors. It has also been observed

that with the change of starting pose, accuracy of the manipulator also changes for a speci-

fied task. By comparing the data for different trajectories from Table V.1, it can be inferred

that by changing the location of the trajectories inside the workspace of the Orthoglide,

there is a significant change in the joint errors. It is difficult to choose the best suitable

location for a trajectory based on the joint errors because we should evaluate their images

in the workspace.

V.5 Error Model
One of the essential steps in computing the projection of the joint errors in the workspace

is to define a joint error model. Our proposed model is based on experimental data and the

dynamics, i.e, joint velocities and accelerations of the Orthoglide 5-axis.

∆ρi
m = k1i + k2iρ̇i + k3iρ̈i (V.12)

Equation (V.12) represents the proposed error model in which k1i, k2i and k3i have
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Figure V.7 – Joint errors in ∆ρ1 (a) ∆ρ2 (b) and ∆ρ3 (c) along the trajectories φi(t), Experi-

mental data from the Orthoglide 5-axis
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Figure V.8 – Joint error ∆ρi and proposed error model ∆ρi
m value along trajectory φ1(t):

[−80, −80, −140], φ2(t): [−80, −80, −80], φ3(t): [00, 00, 00], φ4(t): [80, 80, 140], φ5(t): [80, 80, 140]

∆ρ1 (ai)∆ρ2 (bi) ∆ρ3 (ci), where i = 1, 2, 3, 4, 5 which represents different trajectories
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Table V.2 – Maximum and mean absolute values of Cartesian position errors

Errors (mm)→ x y z

Trajectories ↓ Max Avg Max Avg Max Avg

T1 : [−80,−80,−140] 0.90 0.34 1.10 0.31 0.90 0.25

T2 : [−80,−80, −80] 0.80 0.30 0.90 0.28 0.70 0.21

T3 : [ 00, 00, 00] 0.70 0.25 0.70 0.22 0.10 0.05

T4 : [ 80, 80, 80] 1.00 0.40 0.80 0.38 0.80 0.34

T5 : [ 80, 80, 140] 2.10 0.79 2.20 0.77 1.90 0.63

constant values and represent the static error, the friction and the dynamic effect and ρ̇i

and ρ̈i are the joint velocity and acceleration, respectively for i = 1, 2, 3. The modeled error

∆ρi
m and the experimental data ∆ρi from the manipulator for joint errors are compared to

get the best suited values for k1i, k2i and k3i which minimizing the least-squares error by

using the Fit function of Maple [50].

k11 =
1

250000
k21 =

1

2000000
k31 =

1

8000000

k12 =
1

250000
k22 =

1

2000000
k32 =

33

250000000

k13 =
1

250000
k23 =

1

2000000
k33 =

121

500000000
(V.13)

The computed values k1i, k2i and k3i are shown in Eq. (V.12), by substituting these

values in Eq. (V.12), we will get Eq. (V.14), which represents the proposed error model for

the Orthoglide. More optimized algorithm can be used to compute the more appropriate

values for the constants. We can notice that only the acceleration term is different for the z

axis while for the x and y-axis, they are very similar. This means that the influence of gravity

forces is not completely compensated with the pneumatic cylinders arranged in parallel to

this axis or that they slow down the movement of the axis due to the compression of air in

the circuit.

The black dotted line in the Fig. V.8 represents the joint errors which are obtained from

the Orthogolide while executing the trajectory. The red line in the Fig. V.8 is the modeled

error, which further will be used to compute the image of the joint errors in the workspace

of the manipulator.

∆ρ1
m =

1

250000
+

1

2000000
ρ̇1 +

1

8000000
ρ̈1

∆ρ2
m =

1

250000
+

1

2000000
ρ̇2 +

33

250000000
ρ̈2

∆ρ3
m =

1

250000
+

1

2000000
ρ̇3 +

121

500000000
ρ̈3 (V.14)

V.6 Projection of Joint Errors in the Workspace
Newton method is used to compute the image of joint errors in the workspace of the ma-

nipulator. By differentiating Eq. (V.3), i.e, inverse kinematic equations and substituting
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Figure V.9 – Cartesian errors in x (a) y (b) and z (c) along the trajectories φi(t), Image of the

joint errors in the workspace of the manipulator

the values of proposed error model ∆ρi
m, i.e e1 = ∆ρ1

m, e2 = ∆ρ2
m and e3 = ∆ρ3

m in

Eq. (V.15), we will get the image of joint errors ∆x, ∆y and ∆z in the workspace of the

manipulator.

∆x2 =

(

∂x

∂ρ1

)2

e2
1 +

(

∂x

∂ρ2

)2

e2
2 +

(

∂x

∂ρ3

)2

e2
3

∆y2 =

(

∂y

∂ρ1

)2

e2
1 +

(

∂y

∂ρ2

)2

e2
2 +

(

∂y

∂ρ3

)2

e2
3

∆z2 =

(

∂z

∂ρ1

)2

e2
1 +

(

∂z

∂ρ2

)2

e2
2 +

(

∂z

∂ρ3

)2

e2
3 (V.15)

The different parameters associated with the projected joint errors in the workspace

∆x, ∆y and ∆z along the trajectories φi(t) in Fig. V.9 are presented in Table V.2. The

maximum error in x is more [2.1 mm] for the trajectory T5, whereas less [0.70 mm] for the

trajectory T3. The mean absolute error in x is the maximum [0.79 mm] for the trajectory

T5 and minimum [0.25 mm] for the trajectory T3.The maximum error in y is more [2.20

mm] for the trajectory T5, whereas less [0.70 mm] for the trajectory T3. The mean absolute

error in y is the maximum [0.77 mm] for the trajectory T2 and minimum [0.22 mm] for the

trajectory T3. The maximum error in z is more [1.90 mm] for the trajectory T5, whereas

less [0.10 mm] for the trajectory T3. The mean absolute error in z is the maximum [0.63

mm] for the trajectory T5 and minimum [0.05 mm] for the trajectory T3.
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Analysis: Influence of Location on accuracy

The five similar trajectories, labeled Ti where i ∈ [1, 2.., 5], are defined at different locations

in the workspace of the Orthoglide 5-axis. The main idea of the experiment is to study

the influence of location of the trajectory on the accuracy of the manipulator. The two

trajectories, T1 and T5, are located near the singularity surface and third trajectory, T3,

closest to the isotropic posture. The other two trajectories, T2 and T4, are in between these

trajectories as shown in Fig. V.3. Experimental data from the sensor proves that there is a

significant change in the joint errors during the execution of these trajectories. It is difficult

to choose the best suitable location for a trajectory based on joint errors because we should

evaluate their images in the workspace. The proposed error model, which is based on the

joint velocities and acceleration enables us to project the joints error in the workspace

more accurately unlike other model based on Jacobian or condition number. By analyzing

these projected errors in the workspace, We have found out that the trajectory closer to

the singularity surface, T5 admitted the maximum error and is approximately twice than

the trajectory closest to the isotropic posture, T3. The other reason for these differences

in the accuracies may be the fact that the actuator motion depends on the location of

the corresponding trajectory, while executing trajectory T3 there exists only two actuator

motion unlike in the case of execution of other trajectories.

V.7 Influence of Starting positions on the joints errors
The accuracy of the parallel manipulators depends on the architecture of the robot, the

design parameters, the trajectory planning, the location of the path in the workspace and

the starting position of the manipulator. From the previous section, we can depict that the

trajectory closer to the singularity surface admitted the maximum error and the trajectory

closest to the isotropic posture the minimum error. The proposed error model which is based

on the dynamic properties of the Orthoglide helps in estimating the error in the Cartesian

space. In this section, the influence of starting position of the manipulator on the phase

error of the end-effector is shown. The accuracy of the path in the Cartesian workspace is

studied for five similar circular trajectories at different locations and with different starting

positions (shown in Fig. V.10) for each trajectory.

V.7.1 Joints errors for different starting positions

The difference between the desired actuator values and the actual actuator values are

recorded by the sensors which are generally attached with the actuators. Figure V.11

presents the recorded values of the joint errors while executing the trajectories with dif-

ferent starting positions by the Orthoglide 5-axis. There are four different starting positions

[Ti : [0] (in blue), Ti : [π/2] (in green), Ti : [π] (in red), Ti : [3π/2] (in black)], where

i = 1, 2, 3, 4, 5, which represents different trajectories positions, chosen for each defined tra-

jectory. The different parameters associated with the recorded joint errors ∆ρi along the

trajectories φi(t) for different starting positions in Fig. V.11 such as maximum, minimum

and mean absolute values are presented in Table V.3.
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Figure V.10 – Different starting points on the trajectory to analyse the influence on the accuracy

of the Orthoglide.

From the previous results, it can be inferred that the trajectory closer to the singularity

surface admitted the maximum error and the trajectory closest to the isotropic posture the

minimum error. Further, it can be observed by analyzing the experimental data, which is

tabulated in Table V.3 that there is a significant change in the accuracy by changing the

starting position of the manipulator.

Trajectory 1: T1

The maximum error in ρ1 is more [565.9 µm] for the starting position T1 : [3π/2], whereas

less [387.1 µm] for the trajectory T1 : [π]. The mean absolute error in ρ1 is the maximum

[158.5 µm] for the trajectory T1 : [3π/2] and minimum [121.2 µm] for the trajectory T1 : [π].

The maximum error in ρ2 is more [897.8 µm] for the trajectory T1 : [π/2], whereas less value

[304.7 µm] for the trajectory T1 : [3π/2]. The mean absolute error in ρ2 is the maximum

[185.3 µm] for the trajectory T:[π] and minimum [136.2 µm] for the trajectory T1 : [0]. The

maximum error in ρ3 is more [524.6 µm] for the trajectory T1 : [π/2], whereas less [390.5

µm] for the trajectory T1 : [3π/2]. The mean absolute error in ρ3 is the maximum [151.4

µm] for the trajectory T1 : [3π/2] and minimum [112.9 µm] for the trajectory T1 : [0].

Trajectory 2: T2

The maximum error in ρ1 is more [626.6 µm] for the starting position T2 : [3π/2], whereas

less [582.5 µm] for the trajectory T2 : [π]. The mean absolute error in ρ1 is the maximum

[175 µm] for the trajectory T2 : [π] and minimum [125.5 µm] for the trajectory T2 : [0]. The
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Figure V.11 – Joint error values, ∆ρj from experimental data for different starting position [Ti : [0] (in blue), Ti : [π/2] (in green), Ti : [π] (in red), Ti : [3π/2] (in

black)] of Orthoglide 5-axis along trajectories φ1(t), φ2(t), φ3(t), φ4(t), φ5(t) for ρ1 (a) ρ2 (b) ρ3 (c), where i = 1, 2, 3, 4, 5 which represents different trajectories

and j = 1, 2, 3.
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Table V.3 – The Minimum, Maximum and mean absolute values of joint errors along the trajectories with different starting position

Errors (µm) → Starting Point ∆ρ1 ∆ρ2 ∆ρ3

Trajectories ↓ Min Max Avg Min Max Avg Min Max Avg

0 −591.5 529.3 129.7 −196.2 866.4 136.2 −396.3 506.8 112.9

T1 : π/2 −583.8 538.5 126.2 −204.9 897.8 143.5 −392.3 524.6 113.1

[−80,−80,−140] π −673.1 387.1 121.2 −655.1 765.4 185.3 −518.4 397.4 126.2

3π/2 −603.1 565.9 158.5 −769.0 304.7 172.5 −524.1 390.5 151.4

0 −297.3 586.0 125.5 −676.7 761.0 217.4 −400.5 557.4 159.4

T2 : π

2
−583.7 585.3 140.0 −195.2 888.9 148.0 −372.2 536.4 114.1

[−80,−80, −80] π −606.0 582.5 175.0 −778.1 251.5 168.5 −495.7 404.7 154.9

3π/2 −312.7 626.6 130.6 −665.2 777.7 220.2 −524.1 529.3 151.4

0 −272.9 631.2 141.7 −622.0 644.2 199.1 002.4 033.7 016.5

T3 : π/2 −707.1 551.6 145.5 −311.6 719.3 151.7 −059.0 −00.7 024.9

[ 00, 00, 00] π −697.3 236.6 147.8 −563.0 703.3 167.6 −008.9 021.2 010.3

3π/2 −662.1 592.1 197.5 −727.9 224.3 149.5 003.5 033.7 016.9

0 −309.5 669.3 158.4 −626.8 589.3 136.7 −540.7 406.3 157.3

T4 : π/2 −755.1 618.9 201.9 −401.2 631.8 128.5 −532.9 417.6 121.9

[ 80, 80, 80] π −857.3 196.3 134.6 −660.4 586.6 165.0 −477.6 544.9 135.3

3π/2 −793.9 633.2 176.0 −648.1 261.5 123.5 −419.2 529.9 150.7

0 −322.9 674.0 168.7 −619.1 552.9 140.1 −560.2 379.3 158.0

T5 : π/2 −751.6 595.0 202.9 −392.7 631.7 129.4 −559.0 419.0 122.5

[ 80, 80, 140] π −829.4 230.0 136.5 −587.6 619.0 179.2 −445.2 540.7 126.4

3π/2 −744.0 614.5 165.2 −640.1 277.7 124.7 −446.8 492.6 154.9
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maximum error in ρ2 is more [888.9 µm] for the trajectory T2 : [π/2], whereas less value

[251.5 µm] for the trajectory T2 : [π]. The mean absolute error in ρ2 is the maximum [220.2

µm] for the trajectory T:[3π/2] and minimum [148 µm] for the trajectory T2 : [π/2]. The

maximum error in ρ3 is more [557.4 µm] for the trajectory T2 : [0], whereas less [404.7 µm]

for the trajectory T2 : [π]. The mean absolute error in ρ3 is the maximum [159.4 µm] for

the trajectory T2 : [0] and minimum [114.1 µm] for the trajectory T2 : [π/2].

Trajectory 3: T3

The maximum error in ρ1 is more [631.2 µm] for the starting position T3 : [0], whereas less

[236.6 µm] for the trajectory T3 : [π]. The mean absolute error in ρ1 is the maximum [197.5

µm] for the trajectory T3 : [3π/2] and minimum [141.7 µm] for the trajectory T3 : [0]. The

maximum error in ρ2 is more [719.3 µm] for the trajectory T3 : [π/2], whereas less value

[224.3 µm] for the trajectory T3 : [3π/2]. The mean absolute error in ρ2 is the maximum

[199.1 µm] for the trajectory T:[0] and minimum [151.7 µm] for the trajectory T3 : [π/2].

The maximum error in ρ3 is more [33.7 µm] for the trajectory T3 : [0], whereas less [−0.7

µm] for the trajectory T3 : [π/2]. The mean absolute error in ρ3 is the maximum [24.9 µm]

for the trajectory T3 : [π/2] and minimum [10.3 µm] for the trajectory T3 : [π].

Trajectory 4: T4

The maximum error in ρ1 is more [699.3 µm] for the starting position T4 : [0], whereas less

[196.3 µm] for the trajectory T4 : [π]. The mean absolute error in ρ1 is the maximum [201.9

µm] for the trajectory T4 : [π/2] and minimum [134.6 µm] for the trajectory T4 : [π]. The

maximum error in ρ2 is more [631.8 µm] for the trajectory T4 : [π/2], whereas less value

[261.5 µm] for the trajectory T4 : [3π/2]. The mean absolute error in ρ2 is the maximum

[165 µm] for the trajectory T:[π] and minimum [123.5 µm] for the trajectory T4 : [3π/2].

The maximum error in ρ3 is more [544.9 µm] for the trajectory T4 : [π], whereas less [406.3

µm] for the trajectory T4 : [0]. The mean absolute error in ρ3 is the maximum [157.3 µm]

for the trajectory T4 : [0] and minimum [121.9 µm] for the trajectory T4 : [π/2].

Trajectory 5: T5

The maximum error in ρ1 is more [674 µm] for the starting position T5 : [0], whereas less

[230 µm] for the trajectory T5 : [π]. The mean absolute error in ρ1 is the maximum [202.9

µm] for the trajectory T5 : [π/2] and minimum [136.5 µm] for the trajectory T5 : [π]. The

maximum error in ρ2 is more [631.7 µm] for the trajectory T5 : [π/2], whereas less value

[277.7 µm] for the trajectory T5 : [3π/2]. The mean absolute error in ρ2 is the maximum

[179.2 µm] for the trajectory T:[π] and minimum [124.7 µm] for the trajectory T5 : [3π/2].

The maximum error in ρ3 is more [540.7 µm] for the trajectory T5 : [π], whereas less [379.3

µm] for the trajectory T5 : [0]. The mean absolute error in ρ3 is the maximum [158 µm] for

the trajectory T5 : [0] and minimum [122.5 µm] for the trajectory T5 : [π/2].

It is difficult to choose the best suitable location for a trajectory based on the joint

errors because we shouldevaluate their images in the workspace. For T3, the joint error is

minimum, as there is no motion along ρ3.
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Figure V.12 – Cartesian velocities, ρ̇i (ai) and Cartesian accelerations, ρ̈i (bi) along trajectory

φ5(t) for different starting positions [T5 : [0] (in blue), T5 : [π/2] (in green), T5 : [π] (in red),

T5 : [3π/2] (in black)].

V.7.2 Projection of Joint errors in the Cartesian space

The Cartesian velocities and accelerations along trajectory φ5(t) for the different starting

positions [T5 : [0] (in blue), T5 : [π/2] (in green), T5 : [π] (in red), T5 : [3π/2] (in black)]

is shown in Fig. V.12. Newton method is used to compute the image of joint errors in the

workspace of the manipulator. By differentiating Eq. (V.3), i.e, inverse kinematic equations

and substituting the values of proposed error model ∆ρi
m, i.e e1 = ∆ρ1

m, e2 = ∆ρ2
m and

e3 = ∆ρ3
m in Eq. (V.15), we will get the image of joint errors ∆x, ∆y and ∆z in the

workspace of the manipulator.The projected joint errors in the workspace ∆x, ∆y and ∆z

along the the trajectories φ5(t) for the different starting poisitions is shown in Fig. V.13. A

comparision of projection of joint errors in the Cartesian space for trajectories φi(t) i ∈ [1..5]

with different starting positions of the manipulator is shown in Fig. V.14.

The main aim of the experiment is to study the influence of starting position of the

trajectory on the accuracy of the manipulator. Experimental data from the sensor proves

that there is a significant change in the joint errors during the execution of these trajectories..

The proposed error model, which is based on the joint velocities and acceleration enables

us to project the joints error in the workspace more accurately unlike other model based on

Jacobian or condition number. By analyzing these projected errors in the workspace, We

have found out that the trajectory closer to the singularity surface, T5 with starting point

T5 : [π/2] admitted the maximum error and is approximately five times than the trajectory

closest to the isotropic posture, T3. The acceleration parameter in the proposed model helps

to compute the difference in the accuracy more precisely unlike other technique based on

Jacobian.
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Figure V.13 – Cartesian errors in x (a1), y (a2), z (a3) and norm (a4) along the trajectories

φ5(t) for different starting positions [T1 : [0] (in blue), T2 : [π/2] (in green), T3 : [π] (in red),

T4 : [3π/2] (in black)], Image of the joints errors in the workspace of the manipulator.
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Figure V.14 – Cartesian errors, norm, along trajectories φ1(t) (a1), φ2(t) (a2), φ3(t) (a3), φ4(t)

(a4) and φ5(t) (a5) for different starting positions [T1 : [0] (in blue), T2 : [π/2] (in green), T3 : [π]

(in red), T4 : [3π/2] (in black)], Image of the joints errors in the workspace of the manipulator.
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V.8 Conclusions
This chapter dealt with the error modeling of the Orthoglide 5-axis thanks to experimental

data associated with the trajectory planning parameters. The accuracy of the path in the

Cartesian workspace was studied for five circular trajectories with the same velocity and

acceleration profiles. The proposed joint error model which is based on the dynamic proper-

ties i.e joint velocities and acceleration of the Orthoglide helps in estimating the error in the

Cartesian workspace. We have found out that the trajectory closer to the singularity surface,

T5 admitted the maximum error and is approximately twice than the trajectory closest to

the isotropic posture, T3. Further, from the experimental results it is observed that there is

a significant change in the accuracy by changing the starting position of the manipulator.

Finally, from the analysis, it can be concluded that by selecting the appropriate location

and starting point, the accuracy of the manipulator can be enhanced significantly. Among

the five trajectories, which are defined for the analysis, trajectory T5 has approximately five

times pose error than the trajectory T3, which is closest to the isotropic posture. For a given

trajectory, we can search the optimal starting point and location for the trajectory so that

error in the pose of end effector can be minimized.

With this error model, it is possible to make the optimal path placement or to modify

the speed/acceleration settings in the trajectory generation to respect a fixed machining

accuracy. Experiments are ongoing to refine the accuracy model by changing the maximum

velocity and acceleration and relate these to physical phenomena such as frictions in the

joints. In parallel to this work, the dynamic parameters of the robot identification work is

in progress to improve the dynamic model. The encoders are also being changed because

there is noise in the velocity estimate that comes from this encoder emulation in drives.



VI
Conclusions and Future Work

VI.1 Summary
This thesis focuses on the different aspects which are associated with efficient planning of

desired tasks for parallel robots. These different aspects are mainly categorized in four parts,

namely: workspace and joint space analysis, uniqueness domains, trajectory planning and

accuracy analysis. The workspace and joint space analysis differentiate the regions with

different number of inverse kinematic solutions and direct kinematic solutions using a cylin-

drical algebraic decomposition algorithm, respectively. The influence of design parameters

and joint limits on the workspace boundaries for the parallel robots are reported. Gröb-

ner based elimination methods are used to compute the parallel and serial singularities of

the manipulator under study. The descriptive analysis of a family of delta like robots is

presented by using algebraic tools to induce the an estimation about the complexity in

representing the singularities in the workspace and the joint space. The generalized notions

of aspects and uniqueness domains are defined for the parallel robot with several operation

modes. The characteristic surfaces are also computed to define the uniqueness domains in

the workspace. An algebraic method is proposed to check the feasibility of any given tra-

jectory in the workspace to address the well known problem which arises when there exists

a singular configuration between the two poses of the end-effectors while discretizing the

path with a classical approach. A Framework for the control loop of a parallel robot with

several actuation modes is presented , which uses only the inverse geometric model. The

accuracy analysis focuses on the estimation of errors in the pose of the end effector due to

the joint’s errors produced by the PID control loop. The proposed error model, which is

based on the static and dynamic properties of the Orthoglide, helps in estimating the error

in the Cartesian workspace.

VI.2 Main Contributions

1- Workspace and joint space analysis of the 3-RPS parallel robot

This work reports the variations in the workspace, singularities and joint space with respect

to the design parameter ’k’ of the 3-RPS parallel manipulator. The cylindrical algebraic

decomposition method and Gröbner based computations are used to model the workspace

and the joint space with the parallel singularities in 3T & 2R1T projection spaces, where
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the orientation of the mobile platform is represented by using quaternions. An algorithm is

presented to separate the singularity surfaces for the positive and negative values of quater-

nion q1 & q4 for the corresponding operation modes. Depending on the design parameter

’k’, three different configurations of the 3-RPS parallel manipulator are analyzed.

2- The uniqueness domains for parallel robot with several operation modes
and assembly modes

In this contribution, we have studied the joint space and the workspace of the 3-RPS parallel

robot. The joint space analysis is conceded to define the regions where the direct kinematic

problem admits a constant number of solutions and the location of the cusp points. With

the presented two operation modes, the aspects were set to define the maximal singularity

free region of the workspace. Each operation mode is divided into two aspects which further

show that non-singular assembly mode changing trajectories are possible. Basic regions

can be defined for each operation mode by computing the characteristic surfaces. With

the knowledge of basic regions defined in the workspace, the uniqueness domains can be

illustrated in a slice of the workspace. This method can be used for the optimization of

workspace’s size or the trajectory planning.

3- Non-singular assembly mode changing trajectories in the workspace
for the 3-RPS parallel robot

This part presents a study of the joint space and workspace of the 3-RPS parallel robot and

shows the existence of non-singular assembly mode changing trajectories. First, it has been

shown that each of the two operation modes is divided into two aspects, which is a necessary

condition for knowing non-singular assembly mode changing trajectories. Moreover, it turns

out that this mechanism has a maximum of 16 real solutions to the direct kinematic problem,

eight for each operation mode. By computing the characteristic surfaces, we have shown

that we can describe the basic regions for each operation mode. We construct a path going

through several basic regions which are images of the same basic component with 8 solutions

for the DKP. The analysis of the determinant of Jacobian shows that a non-singular assembly

mode change exists for each motion type.

4- An Algebraic Method to Check the Singularity-Free Paths for Parallel
Robots

This work reports the use of algebraic methods to check the feasibility of given trajectories

in the workspace. The general method uses the projection of the solutions of the polyno-

mial equations associated with the trajectories in the joint space using a Gröbner based

elimination strategy. There is a significant change in the shape of workspace and in the

singularity surfaces due to the joint constraints. The proposed method enables us to project

the joint constraints in the workspace of the manipulator, which further helps to analyse the

projection of the singularities in the workspace with the joint constraints. Such computa-

tions ensure the existence of a singular configuration between two poses of the end-effector

unlike other numerical or discretization methods. This work highlights that the singularity
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analysis should be done in the cross product of the workspace and joint space for parallel

robots with several assembly and working modes. The single analysis of the singularities in

a projection space can introduce spurious singularities. In fact, the algebraic tools does not

allow to distinguish the parallel singularities according to the working mode.

5- Workspace and Singularity analysis of a Delta like family robot

This contribution presents the descriptive analysis of a family of delta-like parallel robots

by using algebraic tools to induce an estimation about the complexity in representing the

singularities in the workspace and the joint space. A comparative study on the workspace

of different delta-like robots gives the idea about the shape of the workspace, which further

plays an important role in the selection of the manipulator for the specific task or for the

trajectory planning. The main characteristics associated with the singularities are tabulated

in Table ??, which also gives some information about the complexity of the singularities,

which is an essential factor for the singularity-free path plannings. From these data, it can

be observed that the singularities associated with the Hybridglide are complicated, whereas

the structure of those associated with the Triaglide is rather simple.

6- Influence of the trajectory planning on the accuracy of the Orthoglide
5-axis

This contribution dealt with the error modeling of the Orthoglide 5-axis thanks to exper-

imental data associated with the trajectory planning parameters. This work reports the

influence of static and dynamic parameters on the computation of the error in the pose

associated with the trajectory planning made and analyzed with the Orthoglide 5-axis. The

accuracy of the path in the Cartesian workspace was studied for five circular trajectories

with the same velocity and acceleration profiles. The proposed joint error model which is

based on the dynamic properties i.e joint velocities and acceleration of the Orthoglide helps

in estimating the error in the Cartesian workspace. We have found out that the trajectory

closer to the singularity surface admitted the maximum error and is approximately twice

than the trajectory closest to the isotropic posture. Further, from the experimental results

it is observed that there is a significant change in the accuracy by changing the starting

position of the manipulator. Finally, from the analysis, it can be concluded that by select-

ing the appropriate location and starting point, the accuracy of the manipulator can be

enhanced significantly. Among the five trajectories, which are defined for the analysis, tra-

jectory near singularity surface has approximately five times pose error than the trajectory,

which is closest to the isotropic posture. For a given trajectory, we can search the optimal

starting point and location for the trajectory so that error in the pose of end effector can

be minimized.

With this error model, it is possible to make the optimal path placement or to modify

the speed/acceleration settings in the trajectory generation to respect a fixed machining

accuracy. Experiments are ongoing to refine the accuracy model by changing the maximum

velocity and acceleration and relate these to physical phenomena such as frictions in the

joints. In parallel to this work, the dynamic parameters of the robot identification work is
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in progress to improve the dynamic model. The encoders are also being changed because

there is noise in the velocity estimate that comes from this encoder emulation in drives.

7- A Framework for the Control Loop of a Parallel Robot with Several Actu-
ation Modes

With the NaVARo robot, a variable actuation robot, it is possible to introduce all the

problems related to the operating principle as the loss of connection between the encoder

and the frames of the robot. A start procedure allows to identify the current assembly

mode of the robot by using magnetic sensors and absolute encoders for low accuracy. The

movements sensed by the magnetic sensors at low speed and always in the same direction

can guarantee the reproducibility of the procedure. A framework is presented to realize

the trajectory that does not use the direct geometric model, which uses only the inverse

geometric model. The redundant sensors ensure that the current method of assembly for

the command is the one used by the robot. This allows to perform assembly mode change

paths and confirms that the movement has been achieved.

VI.3 Future Work

1- Workspace and singularity analysis of other higher degrees of freedom
and complex Parallel robots

The workspace and joint space analysis differentiate the regions with different number of

inverse kinematic solutions and direct kinematic solutions using cylindrical algebraic decom-

position algorithm, respectively. The influence of design parameters and joint limits on the

workspace boundaries and singularities for 3RPS and delta like family parallel robots are

presented in the Chapter 2 and 3. Gröbner based elimination methods are used to compute

the parallel and serial singularities of the parallel robots. Workspace and singularity analysis

of other similar or more complex mechanisms can be made using these methodologies and

algebraic tools.

2- Algorithm to find the connected regions in the projection spaces

The singularities divide the workspace into aspects and the characteristic surfaces induce

a partition of each aspect into the basic regions. For the parallel robots with several in-

verse and direct kinematic solutions, the aspects are defined as the maximal singularity-free

connected sets in the workspace or the cross-product of the joint space by the workspace.

The connectivity of the cells in three dimensional space using the cylindrical algebraic de-

composition algorithm can help to find these connected regions inside any projection space.

This information can help to make non singular assembly mode changing trajectories or

singularity-free path planning in the workspace.
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3- Algorithm to generate optimized singularity-free trajectory to reach from
one given pose to another within the workspace

One of the important steps in the trajectory planning is to check the singularity-free paths

in the workspace for the parallel robots. The main problem arises when there exists a

singular configuration between two poses of the end-effectors while discretizing the path

with a classical approach. In Chapter 4, a technique based on some algebraic methods

to check the feasibility of any given trajectories in the workspace is presented, it allows

to write the Jacobian of the manipulator as a function of time and to check whether its

determinant vanishes between two poses. Also, when the trajectory meets a singularity, its

location can also be computed. In the future, the same methodology with the knowledge

of the connectivity of the cells in the three dimensional space can be extended to generate

optimized singularity-free paths between the two poses, which is shown in Fig. VI.1(b). In

Fig. VI.1(a), a singularity surface of 3RPS parallel robot in [pz, q2, q3] projection space is

shown.

Singularity Surface

pz

q2

q3

Singularity Free Path

p1

p2

q2

q3

(a) (b)

Figure VI.1 – Parallel singularity surface of 3RPS parallel robot (a) The methodology can be

extended to find the optimized path between point p1 and p2 (b) which is shown in red color.

4- Influence of stiffness on the accuracy of the manipulator

One of the highly addressed problems associated with the end-effector pose error is the

manipulator stiffness, which defines the positioning error due to the external loading while

executing a specific task by the manipulator. In Chapter 5, the proposed error model which

is based on the dynamic properties (joint velocities and acceleration) of the Orthoglide helps

in estimating the error in the Cartesian workspace. This error model can be extended by

including the stiffness parameter for estimating the error in the workspace.

5- Projection of joints error in the workspace

There are some limitations to the methodology which is described in the Chapter 5, while

projecting the joints error in the workspace for parallel robots which involves the complex

equations in the analysis. One such example is shown in Fig. VI.1. The work can be extended
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for such robots by including the orientation motions to compute the projection of joints error

in the workspace.
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Figure VI.2 – The virtual model of the 3RRR robot
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A
Mathematical Expressions

A.1 Manipulator Creation
SIROPA library Provides modeling, analyzing and plotting functions for different manipu-

lators.

ORTHOGLIDE

Record[

Equations = [ρ2
1 − 2ρ1x + x2 + y2 + z2 − 4, ρ2

2 − 2ρ2y + x2 + y2 + z2 − 4, ρ2
3 − 2ρ3z + x2 +

y2 + z2 − 4], Constraints = [0 < ρ1, 0 < ρ2, 0 < ρ3, 0 < 4 − ρ1, 0 < 4 − ρ2, 0 < 4 − ρ3],

PoseVariables = [x, y, z], ArticularVariables = [ρ1, ρ2, ρ3], PassiveVariables = [],

GeometricParameters = [], GenericEquations = [(x− ρ1)2 + y2 + z2 − L2, x2 + (y −
ρ2)2 + z2 − L2, x2 + y2 + (z − ρ3)2 − L2], GenericConstraints = [0 < ρ1, 0 < ρ2, 0 < ρ3,

0 < 4− ρ1, 0 < 4− ρ2, 0 < 4− ρ3], Precision = 4, PoseValues = [], ArticularValues =

[], PassiveValues = [], GeometricValues = [L = 2], DefaultPlotRanges = [], Points

= [A1 = [2L, 0, 0], A2 = [0, 2L, 0], A3 = [0, 0, 2L], B1 = [ρ1, 0, 0], B2 = [0, ρ2, 0], B3 = [0,

0, ρ3], P = [x, y, z]], Loops = [], Chains = [[B1, P], [B2, P], [B3, P]], Actuators = [[A1,

B1], [A2, B2], [A3, B3]], Model = "Orthoglide"

]

TRIAGLIDE

Record[

Equations = [ρ2
1 − 2ρ1y + x2 + y2 + z2 − 2x − 3, ρ2

2 − 2ρ2y + x2 + y2 + z2 + 2x − 3,

ρ2
3−2ρ3y+x2+y2+z2−4], Constraints = [0 < ρ1, 0 < ρ2, 0 < ρ3, 0 < 4−ρ1, 0 < 4−ρ2, 0 <

4− ρ3], PoseVariables = [x, y, z], ArticularVariables = [ρ1, ρ2, ρ3], PassiveVariables

= [], GeometricParameters = [], GenericEquations = [(x− 1)2 + (y − ρ1)2 + z2 − L2,

(x+1)2+(y−ρ2)2+z2−L2, x2+(y−ρ3)2+z2−L2], GenericConstraints = [0 < ρ1, 0 < ρ2,

0 < ρ3, 0 < 4−ρ1, 0 < 4−ρ2, 0 < 4−ρ3], Precision = 4, PoseValues = [], ArticularValues

= [], PassiveValues = [], GeometricValues = [L = 2], DefaultPlotRanges = [], Points

= [A1 = [1, 0, 0], A2 = [-1, 0, 0], A3 = [0, 4, 0], B1 = [1, ρ1, 0], B2 = [-1, ρ2, 0], B3 = [0,

ρ3, 0], P = [x, y, z]], Loops = [], Chains = [[B1, P], [B2, P], [B3, P]], Actuators = [[A1,

B1], [A2, B2], [A3, B3]], Model = "Triaglide"

]
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HYBRIDGLIDE

Record[

Equations = [ρ2
1 − 2ρ1y + x2 + y2 + z2 − 2x − 3, ρ2

2 − 2ρ2y + x2 + y2 + z2 + 2x − 3,

ρ2
3− 2ρ3z + x2 + y2 + z2− 4], Constraints = [0 < ρ1, 0 < ρ2, 0 < ρ3, 0 < 4−ρ1, 0 < 4−ρ2,

0 < 4 − ρ3], PoseVariables = [x, y, z], ArticularVariables = [ρ1, ρ2, ρ3], PassiveVari-

ables = [], GeometricParameters = [], GenericEquations = [(x−1)2+(y−ρ1)2+z2−L2,

(x + 1)2 + (y − ρ2)2 + z2 − L2, x2 + y2 + (z − ρ3)2 − L2], GenericConstraints = [0 < ρ1,

0 < ρ2, 0 < ρ3, 0 < 4 − ρ1, 0 < 4 − ρ2, 0 < 4 − ρ3], Precision = 4, PoseValues = [],

ArticularValues = [], PassiveValues = [], GeometricValues = [L = 2], DefaultPlo-

tRanges = [], Points = [A1 = [1, 0, 0], A2 = [-1, 0, 0], A3 = [0, 0, 0], B1 = [1, ρ1, 0], B2

= [-1, ρ2, 0], B3 = [0, 0, ρ3], P = [x, y, z]], Loops = [], Chains = [[B1, P], [B2, P], [B3,

P]], Actuators = [[A1, B1], [A2, B2], [A3, B3]], Model = "Hybridglide" ]

UraneSX
Record[

Equations = [ρ2
1− 2ρ1z + x2 + y2 + z2− 2x− 3, x2 + x− 120071/40000 + y2− (173/100)y +

ρ2
2 − 2zρ2 + z2, x2 + x− 120071/40000 + y2 + (173/100)y + ρ2

3 − 2zρ3 + z2], Constraints

= [0 < ρ1, 0 < ρ2, 0 < ρ3, 0 < 4 − ρ1, 0 < 4 − ρ2, 0 < 4 − ρ3], PoseVariables = [x, y, z],

ArticularVariables = [ρ1, ρ2, ρ3], PassiveVariables = [], GeometricParameters = [],

GenericEquations = [(x−1)2+y2+(z−ρ1)2−L2, (x+1/2)2+(y−173/200)2+(z−ρ2)2−L2,

(x+1/2)2 +(y+173/200)2 +(z−ρ3)2−L2], GenericConstraints = [0 < ρ1, 0 < ρ2, 0 < ρ3,

0 < 4− ρ1, 0 < 4− ρ2, 0 < 4− ρ3], Precision = 4, PoseValues = [], ArticularValues =

[], PassiveValues = [], GeometricValues = [L = 2], DefaultPlotRanges = [], Points

= [A1 = [1, 0, 0], A2 = [-1/2, 173/200, 0], A3 = [-1/2, -173/200, 0], B1 = [1, 0, ρ1], B2 =

[-1/2, 173/200, ρ2], B3 = [-1/2, -173/200, ρ3], P = [x, y, z]], Loops = [], Chains = [[B1,

P], [B2, P], [B3, P]], Actuators = [[A1, B1], [A2, B2], [A3, B3]], Model = "UraneSX"

]

A.2 Parallel Singularities

Projection in workspace

s2Ort
w = [x10y4z4 + 3x8y6z4 + 3x8y4z6 + 3x6y8z4 + 6x6y6z6 + 3x6y4z8 + x4y10z4 + 3x4y8z6 +

3x4y6z8 + x4y4z10− 28x8y4z4 − 56x6y6z4 − 56x6y4z6 − 28x4y8z4 − 56x4y6z6 − 28x4y4z8 −
8x10y2z2 +32x8y4z2 +32x8y2z4 +80x6y6z2 +400x6y4z4 +80x6y2z6 +32x4y8z2 +400x4y6z4 +

400x4y4z6 +32x4y2z8−8x2y10z2 +32x2y8z4 +80x2y6z6 +32x2y4z8−8x2y2z10−64x8y2z2−
704x6y4z2 − 704x6y2z4 − 704x4y6z2 − 2240x4y4z4 − 704x4y2z6 − 64x2y8z2 − 704x2y6z4 −
704x2y4z6−64x2y2z8+16x10+80x8y2+80x8z2+160x6y4+1856x6y2z2+160x6z4+160x4y6+

4576x4y4z2 + 4576x4y2z4 + 160x4z6 + 80x2y8 + 1856x2y6z2 + 4576x2y4z4 + 1856x2y2z6 +

80x2z8+16y10+80y8z2+160y6z4+160y4z6+80y2z8+16z10−320x8−1280x6y2−1280x6z2−
1920x4y4− 11008x4y2z2− 1920x4z4− 1280x2y6− 11008x2y4z2− 11008x2y2z4− 1280x2z6−
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320y8−1280y6z2−1920y4z4−1280y2z6−320z8 +2560x6 +7680x4y2 +7680x4z2 +7680x2y4 +

25600x2y2z2 + 7680x2z4 + 2560y6 + 7680y4z2 + 7680y2z4 + 2560z6− 10240x4− 20480x2y2−
20480x2z2 − 10240y4 − 20480y2z2 − 10240z4 + 20480x2 + 20480y2 + 20480z2 − 16384]

s2T ri
w = [z(z2 − 4)]

s2Hyb
w = [x16z4 + 4x14y2z4 + 4x14z6 + 6x12y4z4 + 12x12y2z6 + 6x12z8 + 4x10y6z4 +

12x10y4z6+12x10y2z8+4x10z10+x8y8z4+4x8y6z6+6x8y4z8+4x8y2z10+x8z12−28x14z4−
80x12y2z4−84x12z6−72x10y4z4−156x10y2z6−92x10z8−16x8y6z4−60x8y4z6−88x8y2z8−
44x8z10 + 4x6y8z4 + 12x6y6z6 + 4x6y4z8 − 12x6y2z10 − 8x6z12 + 32x14z2 + 64x12y2z2 +

422x12z4+784x10y2z4+828x10z6−64x8y6z2+300x8y4z4+940x8y2z6+630x8z8−32x6y8z2−
64x6y6z4 +164x6y4z6 +372x6y2z8 +192x6z10−2x4y8z4 +52x4y6z6 +94x4y4z8 +40x4y2z10+

16x4z12 − 704x12z2 − 1408x10y2z2 − 3556x10z4 − 768x8y4z2 − 5016x8y2z4 − 4428x8z6 −
128x6y6z2 − 1936x6y4z4 − 3892x6y2z6 − 2096x6z8 − 64x4y8z2 − 488x4y6z4 − 1284x4y4z6 −
968x4y2z8− 320x4z10− 12x2y8z4− 28x2y6z6 + 8x2y4z8 + 32x2y2z10 + 256x12 + 1024x10y2 +

6688x10z2 + 1536x8y4 + 12480x8y2z2 + 17041x8z4 + 1024x6y6 + 8064x6y4z2 + 19724x6y2z4 +

12608x6z6 + 256x4y8 + 2368x4y6z2 + 7406x4y4z4 + 8120x4y2z6 + 2912x4z8 + 96x2y8z2 +

380x2y6z4 + 272x2y4z6 − 160x2y2z8 + 9y8z4 + 24y6z6 + 16y4z8 − 4096x10 − 12288x8y2 −
33152x8z2−12288x6y4−49024x6y2z2−43976x6z4−4096x4y6−21120x4y4z2−33496x4y2z4−
15168x4z6−1152x2y6z2−2392x2y4z4−544x2y2z6−72y6z4−96y4z6 +24576x8 +49152x6y2 +

83456x6z2 + 24576x4y4 + 71680x4y2z2 + 47376x4z4 + 4608x2y4z2 + 4256x2y2z4 + 144y4z4−
65536x6 − 65536x4y2 − 83968x4z2 − 6144x2y2z2 + 65536x4]

s2Ura
w = [4x6 − 72x4y2 + 324x2y4 + 180x5 − 1464x3y2 − 1404xy4 − 247x4 − 1386x2y2 −

783y4 − 844x3 + 7020xy2 − 438x2 − 1506y2 + 16x + 33]

Projection in Joint space

s2Ort
j = [ρ4

1ρ2
2 + ρ4

1ρ2
3 + ρ2

1ρ4
2 + 2ρ2

1ρ2
2ρ2

3 + ρ2
1ρ4

3 + ρ4
2ρ2

3 + ρ2
2ρ4

3 − 16ρ2
1ρ2

2 − 16ρ2
1ρ2

3 − 16ρ2
2ρ2

3]

s2T ri
j = [ρ4

1ρ2
2 − 2ρ4

1ρ2ρ3 + ρ4
1ρ2

3 − 2ρ3
1ρ3

2 + 2ρ3
1ρ2

2ρ3 + 2ρ3
1ρ2ρ2

3 − 2ρ3
1ρ3

3 + ρ2
1ρ4

2 + 2ρ2
1ρ3

2ρ3 −
6ρ2

1ρ2
2ρ2

3 + 2ρ2
1ρ2ρ3

3 + ρ2
1ρ4

3 − 2ρ1ρ4
2ρ3 + 2ρ1ρ3

2ρ2
3 + 2ρ1ρ2

2ρ3
3 − 2ρ1ρ2ρ4

3 + ρ4
2ρ2

3 − 2ρ3
2ρ3

3 + ρ2
2ρ4

3 +

ρ4
1 − 2ρ3

1ρ2 − 2ρ3
1ρ3 + 6ρ2

1ρ2
2 − 6ρ2

1ρ2ρ3 + 6ρ2
1ρ2

3 − 2ρ1ρ3
2 − 6ρ1ρ2

2ρ3 + 12ρ1ρ2ρ2
3 − 8ρ1ρ3

3 + ρ4
2 −

2ρ3
2ρ3 + 6ρ2

2ρ2
3 − 8ρ2ρ3

3 + 4ρ4
3 − 11ρ2

1 − 34ρ1ρ2 + 56ρ1ρ3 − 11ρ2
2 + 56ρ2ρ3 − 56ρ2

3 + 4]

s2Hyb
j = [ρ4

1ρ2
2 + ρ4

1ρ2
3 − 2ρ3

1ρ3
2 − 2ρ3

1ρ2ρ2
3 + ρ2

1ρ4
2 + 2ρ2

1ρ2
2ρ2

3 + ρ2
1ρ4

3 − 2ρ1ρ3
2ρ2

3 − 2ρ1ρ2ρ4
3 +

ρ4
2ρ2

3 + ρ2
2ρ4

3 + ρ4
1 − 2ρ3

1ρ2 + 6ρ2
1ρ2

2 − 10ρ2
1ρ2

3 − 2ρ1ρ3
2 + 28ρ1ρ2ρ2

3 + ρ4
2− 10ρ2

2ρ2
3 + 4ρ4

3 − 11ρ2
1 −

34ρ1ρ2 − 11ρ2
2 − 56ρ2

3 + 4]

s2Ura
j = [[4ρ4

1ρ2
2−8ρ4

1ρ2ρ3 +4ρ4
1ρ2

3−8ρ3
1ρ3

2 +8ρ3
1ρ2

2ρ3 +8ρ3
1ρ2ρ2

3−8ρ3
1ρ3

3 +4ρ2
1ρ4

2 +8ρ2
1ρ3

2ρ3−
24ρ2

1ρ2
2ρ2

3 +8ρ2
1ρ2ρ3

3 +4ρ2
1ρ4

3−8ρ1ρ4
2ρ3 +8ρ1ρ3

2ρ2
3 +8ρ1ρ2

2ρ3
3−8ρ1ρ2ρ4

3 +4ρ4
2ρ2

3−8ρ3
2ρ3

3 +4ρ2
2ρ4

3 +



130 Mathematical Expressions

4ρ4
1−8ρ3

1ρ2−8ρ3
1ρ3 + 24ρ2

1ρ2
2−24ρ2

1ρ2ρ3 + 24ρ2
1ρ2

3−20ρ1ρ3
2 + 12ρ1ρ2

2ρ3 + 12ρ1ρ2ρ2
3−20ρ1ρ3

3 +

10ρ4
2−20ρ3

2ρ3+24ρ2
2ρ2

3−20ρ2ρ3
3+10ρ4

3−44ρ2
1+44ρ1ρ2+44ρ1ρ3−125ρ2

2+206ρ2ρ3−125ρ2
3−119]]

A.3 Serial Singularities

Projection in workspace

s1Ort
w = [(y2 + z2 − 4)(x2 + z2 − 4)(x2 + y2 − 4)]

s1T ri
w = [(x2 + z2 − 2x− 3)(x2 + z2 + 2x− 3)(x2 + z2 − 4)]

s1Hyb
w = [(x2 + z2 − 2x− 3)(x2 + z2 + 2x− 3)(x2 + y2 − 4)]

s1Ura
w = [(x2 + y2 − 2x− 3)(40000x2 + 40000y2 + 40000x− 69200y − 120071)(40000x2 +

40000y2 + 40000x + 69200y − 120071)]

Projection in Joint space

s1Ort
j = [(ρ4

1ρ2
2 + ρ4

1ρ2
3 + 4ρ2

1ρ2
2ρ2

3 + ρ4
2ρ2

3 + ρ2
2ρ4

3 − 16ρ2
2ρ2

3)(ρ4
1ρ2

3 + ρ2
1ρ4

2 + 4ρ2
1ρ2

2ρ2
3 + ρ2

1ρ4
3 +

ρ4
2ρ2

3 − 16ρ2
1ρ2

3)(ρ4
1ρ2

2 + ρ2
1ρ4

2 + 4ρ2
1ρ2

2ρ2
3 + ρ2

1ρ4
3 + ρ2

2ρ4
3 − 16ρ2

1ρ2
2)]

s1T ri
j = [(ρ2

1 + 2ρ1ρ2 − 4ρ1ρ3 − ρ2
2 + 2ρ2

3 − 2)(ρ2
1 − 2ρ1ρ2 − ρ2

2 + 4ρ2ρ3 − 2ρ2
3 + 2)(ρ2

1 −
2ρ1ρ3 + ρ2

2 − 2ρ2ρ3 + 2ρ2
3 + 2)]

s1Hyb
j = [(ρ4

1ρ2
3−4ρ3

1ρ2ρ2
3+6ρ2

1ρ2
2ρ2

3−4ρ1ρ3
2ρ2

3+ρ4
2ρ2

3+ρ4
1+4ρ3

1ρ2+2ρ2
1ρ2

2+12ρ2
1ρ2

3−4ρ1ρ3
2−

8ρ1ρ2ρ2
3 +ρ4

2 +4ρ2
2ρ2

3 +4ρ4
3−4ρ2

1−8ρ1ρ2 +4ρ2
2−56ρ2

3 +4)(ρ4
1ρ2

3−4ρ3
1ρ2ρ2

3 +6ρ2
1ρ2

2ρ2
3−4ρ1ρ3

2ρ2
3 +

ρ4
2ρ2

3 + ρ4
1 − 4ρ3

1ρ2 + 2ρ2
1ρ2

2 + 4ρ2
1ρ2

3 + 4ρ1ρ3
2 − 8ρ1ρ2ρ2

3 + ρ4
2 + 12ρ2

2ρ2
3 + 4ρ4

3 + 4ρ2
1 − 8ρ1ρ2 −

4ρ2
2− 56ρ2

3 + 4)(ρ4
1ρ2

2− 2ρ3
1ρ3

2− 2ρ3
1ρ2ρ2

3 + ρ2
1ρ4

2 + 4ρ2
1ρ2

2ρ2
3 + ρ2

1ρ4
3− 2ρ1ρ3

2ρ2
3− 2ρ1ρ2ρ4

3 + ρ2
2ρ4

3 +

ρ4
1−2ρ3

1ρ2+6ρ2
1ρ2

2+6ρ2
1ρ2

3−2ρ1ρ3
2−4ρ1ρ2ρ2

3+ρ4
2+6ρ2

2ρ2
3+4ρ4

3−11ρ2
1−34ρ1ρ2−11ρ2

2+8ρ2
3+4)]

s1Ura
j := [(4ρ4

1−8ρ3
1ρ2−8ρ3

1ρ3+44ρ2
1ρ2

2−64ρ2
1ρ2ρ3+44ρ2

1ρ2
3−40ρ1ρ3

2+32ρ1ρ2
2ρ3+32ρ1ρ2ρ2

3−
40ρ1ρ3

3 + 10ρ4
2− 16ρ2

2ρ2
3 + 10ρ4

3 + 20ρ2
1− 20ρ1ρ2− 20ρ1ρ3 + 10ρ2

2 + 10ρ2
3− 119)(4ρ4

1− 16ρ3
1ρ2 +

20ρ2
1ρ2

2 + 8ρ2
1ρ2ρ3− 4ρ2

1ρ2
3− 8ρ1ρ3

2− 16ρ1ρ2
2ρ3 + 8ρ1ρ2ρ2

3 + 10ρ4
2− 32ρ3

2ρ3 + 56ρ2
2ρ2

3− 40ρ2ρ3
3 +

10ρ4
3 +16ρ2

1−32ρ1ρ2 +26ρ2
2−20ρ2ρ3 +10ρ2

3−119)(4ρ4
1−16ρ3

1ρ3−4ρ2
1ρ2

2 +8ρ2
1ρ2ρ3 +20ρ2

1ρ2
3 +

8ρ1ρ2
2ρ3 − 16ρ1ρ2ρ2

3 − 8ρ1ρ3
3 + 10ρ4

2 − 40ρ3
2ρ3 + 56ρ2

2ρ2
3 − 32ρ2ρ3

3 + 10ρ4
3 + 16ρ2

1 − 32ρ1ρ3 +

10ρ2
2 − 20ρ2ρ3 + 26ρ2

3 − 119)]

A.4 Reconfigurable 3RPS Parallel Robot

3RPS

Record[

Equations = [4k2q4
1 + 8k2q2

1q2
2 + 4k2q2

1q2
3 + 4k2q2

1q2
4 + 4k2q4

2 + 4k2q2
2q2

3 + 4k2q2
2q2

4 − 4k2q2
1 −

4k2q2
2 + 4kpxq2

1 + 4kpxq2
2 + 4kpyq1q4 + 4kpyq2q3 − 4kpzq1q3 + 4kpzq2q4 − 4kq2

1 − 4kq2
2 +

k2 − 2kpx + p2
x + p2

y + p2
z − ρ2

1 + 2k − 2px + 1, −2k2q2
1q2q3s3 − 2k2q3

2q3s3 − 2k2q2q3
3s3 −
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2k2q2q3q2
4s3+4k2q4

1 +5k2q2
1q2

2 +7k2q2
1q2

3 +4k2q2
1q2

4 +k2q4
2 +4k2q2

2q2
3 +k2q2

2q2
4 +3k2q4

3 +3k2q2
3q2

4 +

2k2q2q3s3 − 2kpxq1q4s3 + 2kpxq2q3s3 + 2kpyq2
1s3 + 2kpyq2

3s3 + 2kpzq1q2s3 + 2kpzq3q4s3 −
4k2q2

1 − k2q2
2 − 3k2q2

3 − 2kpxq2
1 − 2kpxq2

2 − 2kpyq1q4 − 2kpyq2q3 + 2kpzq1q3 − 2kpzq2q4 +

2kq2q3s3 − kpys3 − 4kq2
1 − kq2

2 − 3kq2
3 + k2 + kpx + p2

x + p2
y − pys3 + p2

z − ρ2
2 + 2k + px + 1,

2k2q2
1q2q3s3 + 2k2q3

2q3s3 + 2k2q2q3
3s3 + 2k2q2q3q2

4s3 + 4k2q4
1 + 5k2q2

1q2
2 + 7k2q2

1q2
3 + 4k2q2

1q2
4 +

k2q4
2 +4k2q2

2q2
3 +k2q2

2q2
4 +3k2q4

3 +3k2q2
3q2

4−2k2q2q3s3 +2kpxq1q4s3−2kpxq2q3s3−2kpyq2
1s3−

2kpyq2
3s3− 2kpzq1q2s3− 2kpzq3q4s3− 4k2q2

1 − k2q2
2 − 3k2q2

3 − 2kpxq2
1 − 2kpxq2

2 − 2kpyq1q4−
2kpyq2q3+2kpzq1q3−2kpzq2q4−2kq2q3s3+kpys3−4kq2

1−kq2
2−3kq2

3+k2+kpx+p2
x+p2

y+pys3+

p2
z−ρ2

3+2k+px+1, 2kq1q4+2kq2q3+py, −
√

(3)kq2
2 +

√

(3)kq2
3−4kq1q4+2kq2q3+

√

(3)px+py,
√

(3)kq2
2 −

√

(3)kq2
3 − 4kq1q4 + 2kq2q3 −

√

(3)px + py, q1q4,q2
1 + q2

2 + q2
3 + q2

4 − 1, s2
3 − 3],

Constraints = [0 < s3, 0 < ρ1, 0 < ρ2, 0 < ρ3], PoseVariables = [px, py, pz, q1, q2, q3,

q4], ArticularVariables = [ρ1, ρ2, ρ3], PassiveVariables = [], GeometricParameters

= [k, s3], GenericEquations = [4h2q4
1 + 8h2q2

1q2
2 + 4h2q2

1q2
3 + 4h2q2

1q2
4 + 4h2q4

2 + 4h2q2
2q2

3 +

4h2q2
2q2

4−4ghq2
1−4ghq2

2−4h2q2
1−4h2q2

2 +4hpxq2
1 +4hpxq2

2 +4hpyq1q4 +4hpyq2q3−4hpzq1q3 +

4hpzq2q4 + g2 + 2gh − 2gpx + h2 − 2hpx + p2
x + p2

y + p2
z − ρ2

1, −2h2q2
1q2q3s3 − 2h2q3

2q3s3 −
2h2q2q3

3s3− 2h2q2q3q2
4s3 + 4h2q4

1 + 5h2q2
1q2

2 + 7h2q2
1q2

3 + 4h2q2
1q2

4 + h2q4
2 + 4h2q2

2q2
3 + h2q2

2q2
4 +

3h2q4
3 + 3h2q2

3q2
4 + 2ghq2q3s3 + 2h2q2q3s3− 2hpxq1q4s3 + 2hpxq2q3s3 + 2hpyq2

1s3 + 2hpyq2
3s3 +

2hpzq1q2s3 + 2hpzq3q4s3−4ghq2
1− ghq2

2−3ghq2
3−4h2q2

1−h2q2
2−3h2q2

3−2hpxq2
1−2hpxq2

2−
2hpyq1q4−2hpyq2q3 +2hpzq1q3−2hpzq2q4−gpys3−hpys3 +g2 +2gh+gpx +h2 +hpx +p2

x +

p2
y +p2

z−ρ2
2,2h2q2

1q2q3s3 +2h2q3
2q3s3 +2h2q2q3

3s3 +2h2q2q3q2
4s3 +4h2q4

1 +5h2q2
1q2

2 +7h2q2
1q2

3 +

4h2q2
1q2

4 + h2q4
2 + 4h2q2

2q2
3 + h2q2

2q2
4 + 3h2q4

3 + 3h2q2
3q2

4−2ghq2q3s3−2h2q2q3s3 + 2hpxq1q4s3−
2hpxq2q3s3 − 2hpyq2

1s3 − 2hpyq2
3s3 − 2hpzq1q2s3 − 2hpzq3q4s3 − 4ghq2

1 − ghq2
2 − 3ghq2

3 −
4h2q2

1 − h2q2
2 − 3h2q2

3 − 2hpxq2
1 − 2hpxq2

2 − 2hpyq1q4 − 2hpyq2q3 + 2hpzq1q3 − 2hpzq2q4 +

gpys3 + hpys3 + g2 + 2gh + gpx + h2 + hpx + p2
x + p2

y + p2
z − ρ2

3, (2q1q4 + 2q2q3)h + py,

py − (1/2(2q1q4 + 2q2q3))h + (1/2(2q2
1 + 2q2

3 − 1))h
√

(3) +
√

(3)px − (1/2)
√

(3)(2q2
1 + 2q2

2 −
1)h+(3/2(−2q1q4+2q2q3))h,py−(1/2(2q1q4+2q2q3))h−(1/2(2q2

1 +2q2
3−1))h

√

(3)−
√

(3)px+

(1/2)
√

(3)(2q2
1 + 2q2

2 − 1)h + (3/2(−2q1q4 + 2q2q3))h, q1q4, q2
1 + q2

2 + q2
3 + q2

4 − 1, s2
3 − 3],

GenericConstraints = [0 < s3, 0 < ρ1,0 < ρ2, 0 < ρ3], Precision = 4, PoseValues

= [], ArticularValues = [], PassiveValues = [], GeometricValues = [g = 1, h = k],

DefaultPlotRanges = [], Points = [R1 = [g, 0, 0], R2 = [-(1/2)g, (1/2)g
√

(3), 0], R3 =

[-(1/2)g, −(1/2)g
√

(3), 0], E1 = [h(2q2
1 + 2q2

2 − 1) + px, (2q1q4 + 2q2q3)h + py,h(−2q1q3 +

2q2q4)+pz], E2 = [px−(1/2)h(2q2
1 +2q2

2−1)+(1/2(−2q1q4 +2q2q3))h
√

(3), py−(1/2(2q1q4 +

2q2q3))h+(1/2(2q2
1 +2q2

3−1))h
√

(3),pz−(1/2)h(−2q1q3+2q2q4)+(1/2(2q1q2+2q3q4))h
√

(3)],

E3 = [px− (1/2)h(2q2
1 +2q2

2−1)− (1/2(−2q1q4 +2q2q3))h
√

(3), py− (1/2(2q1q4 +2q2q3))h−
(1/2(2q2

1 + 2q2
3 − 1))h

√

(3), pz − (1/2)h(−2q1q3 + 2q2q4)− (1/2(2q1q2 + 2q3q4))h
√

(3)], P =

[px, py, pz]], Loops = [[R1, R2, R3], [E1, E2, E3], [E1, P], [E2, P], [E3, P]], Chains = [],

Actuators = [[R1, E1], [R2, E2], [R3, E3]], Model = "3RPS"

]

Parallel Singularities: Projection in [px, py, pz] for OM1

[36864p1
x6p2

y + 16384p1
x6p2

z + 196608p1
x4p4

y + 131072p1
x4p2

yp2
z + 16384p1

x4p4
z + 409600p1

x2p6
y +

458752p1
x2p4

yp2
z+40960p1

x2p2
yp4

z−32768p1
x2p6

z+393216p1
x0p8

y+917504p1
x0p6

yp2
z+1425408p1

x0p4
yp4

z+
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393216p1
x0p2

yp6
z−32768p1

x0p8
z+122880p8

xp1
y0+1146880p8

xp8
yp2

z−122880p8
xp6

yp4
z+884736p8

xp4
yp6

z+

462848p8
xp2

yp8
z +16384p8

xp1
z0−65536p6

xp1
y2+917504p6

xp1
y0p2

z−344064p6
xp8

yp4
z +507904p6

xp4
yp8

z +

65536p6
xp2

yp1
z0+16384p6

xp1
z2−49152p4

xp1
y4+458752p4

xp1
y2p2

z+1105920p4
xp1

y0p4
z−884736p4

xp8
yp6

z−
466944p4

xp6
yp8

z+98304p4
xp4

yp1
z0+49152p4

xp2
yp1

z2+131072p2
xp1

y4p2
z−49152p2

xp1
y2p4

z−393216p2
xp1

y0p6
z−

442368p2
xp8

yp8
z+65536p2

xp6
yp1

z0+49152p2
xp4

yp1
z2+4096p1

y8+16384p1
y6p2

z+24576p1
y4p4

z+32768p1
y2p6

z+

36864p1
y0p8

z + 16384p8
yp1

z0 + 16384p6
yp1

z2 − 32768p1
x5p2

z − 614400p1
x3p2

yp2
z − 229376p1

x3p4
z +

442368p1
x1p4

yp2
z−458752p1

x1p2
yp4

z−163840p1
x1p6

z+3858432p9
xp6

yp2
z+1146880p9

xp4
yp4

z−827392p9
xp2

yp6
z+

229376p9
xp8

z+3538944p7
xp8

yp2
z+4587520p7

xp6
yp4

z+2752512p7
xp4

yp6
z+196608p7

xp1
z0+417792p5

xp1
y0p2

z+

5734400p5
xp8

yp4
z+3325952p5

xp6
yp6

z−1376256p5
xp4

yp8
z−196608p5

xp2
yp1

z0−16384p3
xp1

y2p2
z+3211264p3

xp1
y0p4

z+

622592p3
xp8

yp6
z−1835008p3

xp6
yp8

z−983040p3
xp4

yp1
z0+270336pxp1

y4p2
z+688128pxp1

y2p4
z+712704pxp1

y0p6
z−

688128pxp8
yp8

z−589824pxp6
yp1

z0−1142784p1
x4p2

y−515072p1
x4p2

z−4952064p1
x2p4

y−2683904p1
x2p2

yp2
z+

280576p1
x2p4

z−7745536p1
x0p6

y−7744512p1
x0p4

yp2
z−1394688p1

x0p2
yp4

z+890880p1
x0p6

z−4444160p8
xp8

y−
14853120p8

xp6
yp2

z−5959680p8
xp4

yp4
z+3790848p8

xp2
yp6

z+577536p8
xp8

z+634880p6
xp1

y0−17617920p6
xp8

yp2
z+

6172672p6
xp6

yp4
z+8024064p6

xp4
yp6

z+2291712p6
xp2

yp8
z+427008p6

xp1
z0+1396736p4

xp1
y2−11738112p4

xp1
y0p2

z+

4270080p4
xp8

yp4
z+9056256p4

xp6
yp6

z+3459072p4
xp4

yp8
z+1281024p4

xp2
yp1

z0−55296p4
xp1

z2+126976p2
xp1

y4−
3810304p2

xp1
y2p2

z + 3151872p2
xp1

y0p4
z + 4749312p2

xp8
yp6

z + 2320384p2
xp6

yp8
z + 1281024p2

xp4
yp1

z0 −
110592p2

xp2
yp1

z2 − 126976p1
y6 − 412672p1

y4p2
z − 98304p1

y2p4
z + 817152p1

y0p6
z + 575488p8

yp8
z +

427008p6
yp1

z0−55296p4
yp1

z2+868864p1
x3p2

z+5313536p1
x1p2

yp2
z+870400p1

x1p4
z−10304000p9

xp4
yp2

z+

2934784p9
xp2

yp4
z+2984960p9

xp6
z−32475136p7

xp6
yp2

z−10727424p7
xp4

yp4
z+110592p7

xp2
yp6

z+1218560p7
xp8

z−
20926976p5

xp8
yp2

z−15396864p5
xp6

yp4
z−18315264p5

xp4
yp6

z−1218560p5
xp2

yp8
z−93696p5

xp1
z0−6999040p3

xp1
y0p2

z−
5904384p3

xp8
yp4

z − 23646208p3
xp6

yp6
z − 6092800p3

xp4
yp8

z + 187392p3
xp2

yp1
z0 − 3798528pxp1

y2p2
z −

3299328pxp1
y0p4

z−8991744pxp8
yp6

z−3655680pxp6
yp8

z+281088pxp4
yp1

z0+11957760p1
x2p2

y+5219584p1
x2p2

z+

39859200p1
x0p4

y+25253376p1
x0p2

yp2
z+2489920p1

x0p4
z+41187840p8

xp6
y+64144128p8

xp4
yp2

z+33641792p8
xp2

yp4
z−

1249280p8
xp6

z+5314560p6
xp8

y+97653760p6
xp6

yp2
z+53155456p6

xp4
yp4

z+3914752p6
xp2

yp6
z+2113408p6

xp8
z−

11957760p4
xp1

y0 + 82336512p4
xp8

yp2
z + 20189824p4

xp6
yp4

z − 4525056p4
xp4

yp6
z + 6722688p4

xp2
yp8

z −
619776p4

xp1
z0−2657280p2

xp1
y2+33338880p2

xp1
y0p2

z+3030848p2
xp8

yp4
z−9948160p2

xp6
yp6

z+6085248p2
xp4

yp8
z−

1239552p2
xp2

yp1
z0 + 46656p2

xp1
z2 + 1328640p1

y4 + 4545792p1
y2p2

z + 4844608p1
y0p4

z − 259072p8
yp6

z +

2155904p6
yp8

z−619776p4
yp1

z0+46656p2
yp1

z2−7318400p1
x1p2

z−10041728p9
xp2

yp2
z +3398656p9

xp4
z +

51172608p7
xp4

yp2
z−4644864p7

xp2
yp4

z−4038528p7
xp6

z+106693888p5
xp6

yp2
z−3360768p5

xp4
yp4

z+4038528p5
xp2

yp6
z−

1036800p5
xp8

z+75660928p3
xp8

yp2
z−36995072p3

xp6
yp4

z+20192640p3
xp4

yp6
z+2073600p3

xp2
yp8

z−6912p3
xp1

z0+

22862976pxp1
y0p2

z − 8647680pxp8
yp4

z + 12115584pxp6
yp6

z + 3110400pxp4
yp8

z + 20736pxp2
yp1

z0 −
50100480p1

x0p2
y−18447680p1

x0p2
z−116901120p8

xp4
y−64680256p8

xp2
yp2

z−15076400p8
xp4

z−55667200p6
xp6

y−
147732608p6

xp4
yp2

z − 75298880p6
xp2

yp4
z + 4904640p6

xp6
z + 33400320p4

xp8
y − 190600832p4

xp6
yp2

z −
95456160p4

xp4
yp4

z + 13939776p4
xp2

yp6
z − 3207168p4

xp8
z + 16700160p2

xp1
y0 − 104486464p2

xp8
yp2

z −
51976000p2

xp6
yp4

z+15230016p2
xp4

yp6
z−6414336p2

xp2
yp8

z+212544p2
xp1

z0−5566720p1
y2−15385664p1

y0p2
z−

16742320p8
yp4

z + 4818624p6
yp6

z − 3207168p4
yp8

z + 212544p2
yp1

z0 − 11664p1
z2 + 23255776p9

xp2
z −

6096384p7
xp2

yp2
z−13997696p7

xp4
z−117181248p5

xp4
yp2

z+13997696p5
xp2

yp4
z+2161824p5

xp6
z−198916352p3

xp6
yp2

z+

69988480p3
xp4

yp4
z−4323648p3

xp2
yp6

z+290304p3
xp8

z−67735200pxp8
yp2

z+41993088pxp6
yp4

z−6485472pxp4
yp6

z−
870912pxp2

yp8
z+96719760p8

xp2
y+26364976p8

xp2
z+128959680p6

xp4
y+44689600p6

xp2
yp2

z+23108908p6
xp4

z−
21493280p4

xp6
y+137933088p4

xp4
yp2

z+84567684p4
xp2

yp4
z−4284432p4

xp6
z−42986560p2

xp8
y+139221184p2

xp6
yp2

z+

59166084p2
xp4

yp4
z−8568864p2

xp2
yp6

z+887112p2
xp8

z+10746640p1
y0+19612720p8

yp2
z+24802348p6

yp4
z−

4284432p4
yp6

z+887112p2
yp8

z−30772968p7
xp2

z+30772968p5
xp2

yp2
z+10253376p5

xp4
z+153864840p3

xp4
yp2

z−
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20506752p3
xp2

yp4
z+381024p3

xp6
z+92318904pxp6

yp2
z−30760128pxp4

yp4
z−1143072pxp2

yp6
z−85476384p6

xp2
y−

13128192p6
xp2

z−28492128p4
xp4

y+3290112p4
xp2

yp2
z−12168153p4

xp4
z+47486880p2

xp6
y−67834368p2

xp4
yp2

z−
24336306p2

xp2
yp4

z−9497376p8
y−8386560p6

yp2
z−12168153p4

yp4
z+14489496p5

xp2
z−28978992p3

xp2
yp2

z−
43468488pxp4

yp2
z + 28005264p4

xp2
y − 18670176p2

xp4
y + 3111696p6

y]

Parallel Singularities: Projection in [px, py, pz] for OM2

[k10p4
xp4

z+2k10p2
xp2

yp4
z+k10p4

yp4
z+4k9p7

xp2
z−4k9p5

xp2
yp2

z−20k9p3
xp4

yp2
z−12k9pxp6

yp2
z−36k8p8

xp2
y−

12k8p8
xp2

z−48k8p6
xp4

y−48k8p6
xp2

yp2
z−11k8p6

xp4
z+8k8p4

xp6
y−72k8p4

xp4
yp2

z−33k8p4
xp2

yp4
z+4k8p4

xp6
z+

16k8p2
xp8

y−48k8p2
xp6

yp2
z−33k8p2

xp4
yp4

z +8k8p2
xp2

yp6
z−2k8p2

xp8
z−4k8p1

y0−12k8p8
yp2

z−11k8p6
yp4

z +

4k8p4
yp6

z−2k8p2
yp8

z−12k7p9
xp2

z +16k7p7
xp4

z +72k7p5
xp4

yp2
z−16k7p5

xp2
yp4

z−4k7p5
xp6

z +96k7p3
xp6

yp2
z−

80k7p3
xp4

yp4
z +8k7p3

xp2
yp6

z +36k7pxp8
yp2

z−48k7pxp6
yp4

z +12k7pxp4
yp6

z +144k6p1
x0p2

y +52k6p1
x0p2

z +

336k6p8
xp4

y + 116k6p8
xp2

yp2
z + 11k6p8

xp4
z + 160k6p6

xp6
y + 328k6p6

xp4
yp2

z− 28k6p6
xp2

yp4
z− 12k6p6

xp6
z−

96k6p4
xp8

y +552k6p4
xp6

yp2
z +42k6p4

xp4
yp4

z−36k6p4
xp2

yp6
z +16k6p4

xp8
z−48k6p2

xp1
y0+324k6p2

xp8
yp2

z +

84k6p2
xp6

yp4
z − 36k6p2

xp4
yp6

z + 32k6p2
xp2

yp8
z − 4k6p2

xp1
z0 + 16k6p1

y2 + 36k6p1
y0p2

z + 3k6p8
yp4

z −
12k6p6

yp6
z+16k6p4

yp8
z−4k6p2

yp1
z0+k6p1

z2+12k5p1
x1p2

z−132k5p9
xp2

yp2
z−64k5p9

xp4
z+312k5p7

xp4
yp2

z−
36k5p7

xp6
z +56k5p5

xp6
yp2

z +384k5p5
xp4

yp4
z +36k5p5

xp2
yp6

z−16k5p5
xp8

z−388k5p3
xp8

yp2
z +512k5p3

xp6
yp4

z +

180k5p3
xp4

yp6
z+32k5p3

xp2
yp8

z+8k5p3
xp1

z0+12k5pxp1
y0p2

z+192k5pxp8
yp4

z+108k5pxp6
yp6

z+48k5pxp4
yp8

z−
24k5pxp2

yp1
z0−216k4p1

x2p2
y−84k4p1

x2p2
z−720k4p1

x0p4
y−216k4p1

x0p2
yp2

z+23k4p1
x0p4

z−744k4p8
xp6

y−
588k4p8

xp4
yp2

z+187k4p8
xp2

yp4
z+64k4p8

xp6
z−96k4p6

xp8
y−1360k4p6

xp6
yp2

z+326k4p6
xp4

yp4
z+400k4p6

xp2
yp6

z+

34k4p6
xp8

z+216k4p4
xp1

y0−1452k4p4
xp8

yp2
z+214k4p4

xp6
yp4

z+432k4p4
xp4

yp6
z−114k4p4

xp2
yp8

z+20k4p4
xp1

z0+

48k4p2
xp1

y2 − 600k4p2
xp1

y0p2
z + 83k4p2

xp8
yp4

z + 176k4p2
xp6

yp6
z + 246k4p2

xp4
yp8

z + 40k4p2
xp2

yp1
z0 −

9k4p2
xp1

z2−24k4p1
y4−52k4p1

y2p2
z +31k4p1

y0p4
z +80k4p8

yp6
z +10k4p6

yp8
z +20k4p4

yp1
z0−9k4p2

yp1
z2−

4k3p1
x3p2

z+280k3p1
x1p2

yp2
z+112k3p1

x1p4
z−460k3p9

xp4
yp2

z+112k3p9
xp2

yp4
z+104k3p9

xp6
z−1136k3p7

xp6
yp2

z−
672k3p7

xp4
yp4

z − 288k3p7
xp2

yp6
z − 48k3p7

xp8
z + 164k3p5

xp8
yp2

z − 1568k3p5
xp6

yp4
z + 432k3p5

xp4
yp6

z +

48k3p5
xp2

yp8
z − 36k3p5

xp1
z0 + 472k3p3

xp1
y0p2

z − 1232k3p3
xp8

yp4
z − 1440k3p3

xp6
yp6

z + 240k3p3
xp4

yp8
z +

72k3p3
xp2

yp1
z0− 84k3pxp1

y2p2
z − 336k3pxp1

y0p4
z − 216k3pxp8

yp6
z + 144k3pxp6

yp8
z + 108k3pxp4

yp1
z0 +

144k2p1
x4p2

y+60k2p1
x4p2

z+624k2p1
x2p4

y+276k2p1
x2p2

yp2
z−8k2p1

x2p4
z+976k2p1

x0p6
y+780k2p1

x0p4
yp2

z−
120k2p1

x0p2
yp4

z − 88k2p1
x0p6

z + 560k2p8
xp8

y + 1604k2p8
xp6

yp2
z + 1008k2p8

xp4
yp4

z − 152k2p8
xp2

yp6
z −

80k2p8
xp8

z−80k2p6
xp1

y0+2036k2p6
xp8

yp2
z−1968k2p6

xp6
yp4

z−496k2p6
xp4

yp6
z+40k2p6

xp2
yp8

z−36k2p6
xp1

z0−
176k2p4

xp1
y2 + 1404k2p4

xp1
y0p2

z + 792k2p4
xp8

yp4
z − 944k2p4

xp6
yp6

z − 360k2p4
xp4

yp8
z − 108k2p4

xp2
yp1

z0 +

24k2p4
xp1

z2 − 16k2p2
xp1

y4 + 452k2p2
xp1

y2p2
z − 216k2p2

xp1
y0p4

z − 568k2p2
xp8

yp6
z − 520k2p2

xp6
yp8

z −
108k2p2

xp4
yp1

z0 + 48k2p2
xp2

yp1
z2 + 16k2p1

y6 + 44k2p1
y4p2

z − 56k2p1
y0p6

z − 40k2p8
yp8

z − 36k2p6
yp1

z0 +

24k2p4
yp1

z2−144kp1
x3p2

yp2
z−64kp1

x3p4
z +96kp1

x1p4
yp2

z−128kp1
x1p2

yp4
z−64kp1

x1p6
z +848kp9

xp6
yp2

z +

320kp9
xp4

yp4
z + 80kp9

xp2
yp6

z + 64kp9
xp8

z + 576kp7
xp8

yp2
z + 1280kp7

xp6
yp4

z + 64kp7
xp1

z0−240kp5
xp1

y0p2
z +

1600kp5
xp8

yp4
z+672kp5

xp6
yp6

z−384kp5
xp4

yp8
z−64kp5

xp2
yp1

z0−160kp3
xp1

y2p2
z+896kp3

xp1
y0p4

z+960kp3
xp8

yp6
z−

512kp3
xp6

yp8
z − 320kp3

xp4
yp1

z0 + 48kpxp1
y4p2

z + 192kpxp1
y2p4

z + 144kpxp1
y0p6

z − 192kpxp8
yp8

z −
192kpxp6

yp1
z0−36p1

x6p2
y−16p1

x6p2
z−192p1

x4p4
y−128p1

x4p2
yp2

z−16p1
x4p4

z−400p1
x2p6

y−448p1
x2p4

yp2
z−

40p1
x2p2

yp4
z + 32p1

x2p6
z − 384p1

x0p8
y − 896p1

x0p6
yp2

z − 1392p1
x0p4

yp4
z − 384p1

x0p2
yp6

z + 32p1
x0p8

z −
120p8

xp1
y0−1120p8

xp8
yp2

z+120p8
xp6

yp4
z−864p8

xp4
yp6

z−452p8
xp2

yp8
z−16p8

xp1
z0+64p6

xp1
y2−896p6

xp1
y0p2

z+

336p6
xp8

yp4
z − 496p6

xp4
yp8

z − 64p6
xp2

yp1
z0 − 16p6

xp1
z2 + 48p4

xp1
y4 − 448p4

xp1
y2p2

z − 1080p4
xp1

y0p4
z +

864p4
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z +3840p3
xp8

yp4
z +

4096p3
xp6

yp6
z +2560p3

xp4
yp8

z +960pxp1
y2p2

z +576pxp1
y0p4

z +1536pxp8
yp6

z +1536pxp6
yp8

z−36k8p4
xp2

y +

24k8p2
xp4

y − 4k8p6
y + 128k7p5

xp2
z − 256k7p3

xp2
yp2

z − 384k7pxp4
yp2

z + 1872k6p6
xp2

y + 288k6p6
xp2

z +
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624k6p4
xp4

y−720k6p4
xp2

yp2
z +176k6p4

xp4
z−1040k6p2

xp6
y +1920k6p2

xp4
yp2

z +352k6p2
xp2

yp4
z +208k6p8

y +

112k6p6
yp2

z+176k6p4
yp4

z−1120k5p7
xp2

z+1120k5p5
xp2

yp2
z+512k5p5

xp4
z+5600k5p3

xp4
yp2

z−1024k5p3
xp2

yp4
z+

16k5p3
xp6

z+3360k5pxp6
yp2

z−1536k5pxp4
yp4

z−48k5pxp2
yp6

z−4824k4p8
xp2

y−1088k4p8
xp2

z−6432k4p6
xp4

y−
752k4p6

xp2
yp2

z − 1392k4p6
xp4

z + 1072k4p4
xp6

y − 5328k4p4
xp4

yp2
z − 3816k4p4

xp2
yp4

z + 272k4p4
xp6

z +

2144k4p2
xp8

y−6352k4p2
xp6

yp2
z−4416k4p2

xp4
yp4

z+544k4p2
xp2

yp6
z−32k4p2

xp8
z−536k4p1

y0−688k4p8
yp2

z−
1352k4p6

yp4
z+272k4p4

yp6
z−32k4p2

yp8
z+1984k3p9

xp2
z−576k3p7

xp2
yp2

z−1312k3p7
xp4

z−9792k3p5
xp4

yp2
z+

1312k3p5
xp2

yp4
z − 32k3p5

xp6
z − 17088k3p3

xp6
yp2

z + 6560k3p3
xp4

yp4
z + 64k3p3

xp2
yp6

z − 5760k3pxp8
yp2

z +

3936k3pxp6
yp4

z + 96k3pxp4
yp6

z + 4176k2p1
x0p2

y + 1440k2p1
x0p2

z + 9744k2p8
xp4

y + 4176k2p8
xp2

yp2
z +

1664k2p8
xp4

z + 4640k2p6
xp6

y + 10368k2p6
xp4

yp2
z + 4784k2p6

xp2
yp4

z − 608k2p6
xp6

z − 2784k2p4
xp8

y +

15072k2p4
xp6

yp2
z +9360k2p4

xp4
yp4

z−3408k2p4
xp2

yp6
z +384k2p4

xp8
z−1392k2p2

xp1
y0+8544k2p2

xp8
yp2

z +

7696k2p2
xp6

yp4
z−768k2p2

xp4
yp6

z+768k2p2
xp2

yp8
z+464k2p1

y2+1104k2p1
y0p2

z+1456k2p8
yp4

z−784k2p6
yp6

z+

384k2p4
yp8

z−992kp1
x1p2

z−416kp9
xp2

yp2
z +800kp9

xp4
z +4416kp7

xp4
yp2

z +608kp7
xp6

z +12992kp5
xp6

yp2
z−

4800kp5
xp4

yp4
z−608kp5

xp2
yp6

z+96kp5
xp8

z+11936kp3
xp8

yp2
z−6400kp3

xp6
yp4

z−3040kp3
xp4

yp6
z−192kp3

xp2
yp8

z+

2784kpxp1
y0p2

z−2400kpxp8
yp4

z−1824kpxp6
yp6

z−288kpxp4
yp8

z−1188p1
x2p2

y−640p1
x2p2

z−3960p1
x0p4

y−
2832p1

x0p2
yp2

z − 448p1
x0p4

z − 4092p8
xp6

y − 7248p8
xp4

yp2
z − 4184p8

xp2
yp4

z − 256p8
xp6

z − 528p6
xp8

y −
11680p6

xp6
yp2

z−7072p6
xp4

yp4
z +560p6

xp2
yp6

z−448p6
xp8

z +1188p4
xp1

y0−10272p4
xp8

yp2
z−4048p4

xp6
yp4

z−
1008p4

xp4
yp6

z−1380p4
xp2

yp8
z+264p2

xp1
y2−4176p2

xp1
y0p2

z−1376p2
xp8

yp4
z−1904p2

xp6
yp6

z−1320p2
xp4

yp8
z−

132p1
y4 − 528p1

y2p2
z − 664p1

y0p4
z − 80p8

yp6
z − 452p6

yp8
z + 288k7p4

xp2
y − 192k7p2

xp4
y + 32k7p6

y −
320k6p5

xp2
z+640k6p3

xp2
yp2

z+960k6pxp4
yp2

z−3168k5p6
xp2

y−320k5p6
xp2

z−1056k5p4
xp4

y+1632k5p4
xp2

yp2
z−

320k5p4
xp4

z + 1760k5p2
xp6

y − 2688k5p2
xp4

yp2
z − 640k5p2

xp2
yp4

z − 352k5p8
y − 32k5p6

yp2
z − 320k5p4

yp4
z +

1664k4p7
xp2

z − 1664k4p5
xp2

yp2
z − 640k4p5

xp4
z − 8320k4p3

xp4
yp2

z + 1280k4p3
xp2

yp4
z − 4992k4pxp6

yp2
z +

1920k4pxp4
yp4

z+5472k3p8
xp2

y+1152k3p8
xp2

z+7296k3p6
xp4

y+576k3p6
xp2

yp2
z+1472k3p6

xp4
z−1216k3p4

xp6
y+

5568k3p4
xp4

yp2
z + 1824k3p4

xp2
yp4

z − 640k3p4
xp6

z − 2432k3p2
xp8

y + 6848k3p2
xp6

yp2
z + 6144k3p2

xp4
yp4

z −
1280k3p2

xp2
yp6

z +608k3p1
y0+704k3p8

yp2
z +1184k3p6

yp4
z−640k3p4

yp6
z−1856k2p9

xp2
z +896k2p7

xp4
z +

11136k2p5
xp4

yp2
z−896k2p5

xp2
yp4

z + 448k2p5
xp6

z + 14848k2p3
xp6

yp2
z−4480k2p3

xp4
yp4

z−896k2p3
xp2

yp6
z +

5568k2pxp8
yp2

z − 2688k2pxp6
yp4

z − 1344k2pxp4
yp6

z − 2592kp1
x0p2

y − 832kp1
x0p2

z − 6048kp8
xp4

y −
2720kp8

xp2
yp2

z−1152kp8
xp4

z−2880kp6
xp6

y−6400kp6
xp4

yp2
z +288kp6

xp2
yp4

z +960kp6
xp6

z +1728kp4
xp8

y−
8640kp4

xp6
yp2

z − 5280kp4
xp4

yp4
z + 2592kp4

xp2
yp6

z + 864kp2
xp1

y0 − 4800kp2
xp8

yp2
z − 7328kp2

xp6
yp4

z +

3072kp2
xp4

yp6
z − 288kp1

y2 − 672kp1
y0p2

z − 608kp8
yp4

z + 928kp6
yp6

z + 512p1
x1p2

z + 512p9
xp2

yp2
z −

256p9
xp4

z − 3072p7
xp4

yp2
z − 768p7

xp6
z − 7168p5

xp6
yp2

z + 1536p5
xp4

yp4
z + 768p5

xp2
yp6

z − 5632p3
xp8

yp2
z +

2048p3
xp6

yp4
z +3840p3

xp4
yp6

z−1536pxp1
y0p2

z +768pxp8
yp4

z +2304pxp6
yp6

z−864k6p4
xp2

y +576k6p2
xp4

y−
96k6p6

y +512k5p5
xp2

z−1024k5p3
xp2

yp2
z−1536k5pxp4

yp2
z +3168k4p6

xp2
y +256k4p6

xp2
z +1056k4p4

xp4
y +

192k4p4
xp2

yp2
z+512k4p4

xp4
z−1760k4p2

xp6
y+1152k4p2

xp4
yp2

z+1024k4p2
xp2

yp4
z+352k4p8

y+192k4p6
yp2

z+

512k4p4
yp4

z−1472k3p7
xp2

z+1472k3p5
xp2

yp2
z+256k3p5

xp4
z+7360k3p3

xp4
yp2

z−512k3p3
xp2

yp4
z+4416k3pxp6

yp2
z−

768k3pxp4
yp4

z−3744k2p8
xp2

y−960k2p8
xp2

z−4992k2p6
xp4

y−1536k2p6
xp2

yp2
z−640k2p6

xp4
z+832k2p4

xp6
y−

4992k2p4
xp4

yp2
z − 2784k2p4

xp2
yp4

z + 512k2p4
xp6

z + 1664k2p2
xp8

y − 5120k2p2
xp6

yp2
z − 1344k2p2

xp4
yp4

z +

1024k2p2
xp2

yp6
z − 416k2p1

y0 − 704k2p8
yp2

z − 736k2p6
yp4

z + 512k2p4
yp6

z + 960kp9
xp2

z − 256kp7
xp4

z −
5760kp5

xp4
yp2

z+256kp5
xp2

yp4
z+64kp5

xp6
z−7680kp3

xp6
yp2

z+1280kp3
xp4

yp4
z−128kp3

xp2
yp6

z−2880kpxp8
yp2

z+

768kpxp6
yp4

z − 192kpxp4
yp6

z + 1440p1
x0p2

y + 704p1
x0p2

z + 3360p8
xp4

y + 1792p8
xp2

yp2
z + 128p8

xp4
z +

1600p6
xp6

y+4736p6
xp4

yp2
z+800p6

xp2
yp4

z−576p6
xp6

z−960p4
xp8

y+7424p4
xp6

yp2
z+864p4

xp4
yp4

z−1728p4
xp2

yp6
z−

480p2
xp1

y0+4288p2
xp8

yp2
z +352p2

xp6
yp4

z−1728p2
xp4

yp6
z +160p1

y2+512p1
y0p2

z +160p8
yp4

z−576p6
yp6

z +

1152k5p4
xp2

y−768k5p2
xp4

y+128k5p6
y−512k4p5

xp2
z+1024k4p3

xp2
yp2

z+1536k4pxp4
yp2

z−2304k3p6
xp2

y−
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256k3p6
xp2

z−768k3p4
xp4

y−1920k3p4
xp2

yp2
z−512k3p4

xp4
z +1280k3p2

xp6
y−1024k3p2

xp2
yp4

z−256k3p8
y−

384k3p6
yp2

z−512k3p4
yp4

z+768k2p7
xp2

z−768k2p5
xp2

yp2
z+256k2p5

xp4
z−3840k2p3

xp4
yp2

z−512k2p3
xp2

yp4
z−

2304k2pxp6
yp2

z−768k2pxp4
yp4

z +1152kp8
xp2

y +256kp8
xp2

z +1536kp6
xp4

y +2176kp6
xp2

yp2
z +512kp6

xp4
z−

256kp4
xp6

y +1920kp4
xp4

yp2
z +1536kp4

xp2
yp4

z−512kp2
xp8

y +384kp2
xp6

yp2
z +1536kp2

xp4
yp4

z +128kp1
y0+

384kp8
yp2

z+512kp6
yp4

z−256p9
xp2

z−256p7
xp4

z+1536p5
xp4

yp2
z+256p5

xp2
yp4

z+2048p3
xp6

yp2
z+1280p3

xp4
yp4

z+

768pxp8
yp2

z + 768pxp6
yp4

z − 576k4p4
xp2

y + 384k4p2
xp4

y − 64k4p6
y + 256k3p5

xp2
z − 512k3p3

xp2
yp2

z −
768k3pxp4

yp2
z +1152k2p6

xp2
y +256k2p6

xp2
z +384k2p4

xp4
y +768k2p4

xp2
yp2

z +256k2p4
xp4

z−640k2p2
xp6

y +

768k2p2
xp4

yp2
z + 512k2p2

xp2
yp4

z + 128k2p8
y + 256k2p6

yp2
z + 256k2p4

yp4
z − 256kp7

xp2
z + 256kp5

xp2
yp2

z +

1280kp3
xp4

yp2
z +768kpxp6

yp2
z−576p8

xp2
y−256p8

xp2
z−768p6

xp4
y−1024p6

xp2
yp2

z−256p6
xp4

z +128p4
xp6

y−
1536p4

xp4
yp2

z − 768p4
xp2

yp4
z + 256p2

xp8
y − 1024p2

xp6
yp2

z − 768p2
xp4

yp4
z − 64p1

y0− 256p8
yp2

z − 256p6
yp4

z]

Parallel Singularities: Projection in [pz, q2, q3] for OM1

[s2
3−3, 4k7q1

28−48k7q1
24q4

3−64k7q1
22q6

3 +120k7q1
20q8

3 +384k7q8
2q1

30+400k7q6
2q1

32+192k7q4
2q1

34+

36k7q2
2q1

36+8k6q1
26−8k6q1

24q2
3−88k6q1

22q4
3−40k6q1

20q6
3+280k6q8

2q8
3+488k6q6

2q1
30+312k6q4

2q1
32+

72k6q2
2q1

34−8k7q1
24+16k7q1

22q2
3 +72k7q1

20q4
3−32k7q8

2q6
3−248k7q6

2q8
3−240k7q4

2q1
30−72k7q2

2q1
32+

12k5p2
zq1

24− 132k5p2
zq1

22q2
3 + 828k5p2

zq1
20q4

3 − 756k5p2
zq8

2q6
3 − 540k5p2

zq6
2q8

3 + 1140k5p2
zq4

2q1
30−

44k5p2
zq2

2q1
32 + 4k5p2

zq1
34 − 16k6q1

24 + 32k6q1
22q2

3 + 144k6q1
20q4

3 − 64k6q8
2q6

3 − 496k6q6
2q8

3 −
480k6q4

2q1
30−144k6q2

2q1
32−8k5p2

zq1
22+168k5p2

zq1
20q2

3−912k5p2
zq8

2q4
3+1808k5p2

zq6
2q6

3−1128k5p2
zq4

2q8
3+

72k5p2
zq2

2q1
30 − 12k5q1

24 + 24k5q1
22q2

3 + 108k5q1
20q4

3 − 48k5q8
2q6

3 − 372k5q6
2q8

3 − 360k5q4
2q1

30 −
108k5q2

2q1
32+16k4p2

zq1
22+96k4p2

zq1
20q2

3+240k4p2
zq8

2q4
3+320k4p2

zq6
2q6

3+240k4p2
zq4

2q8
3+96k4p2

zq2
2q1

30+

16k4p2
zq1

32 + 4k7q1
20− 16k7q8

2q2
3 − 8k7q6

2q4
3 + 48k7q4

2q6
3 + 36k7q2

2q8
3 + k5p2

zq1
20− 67k5p2

zq8
2q2

3 −
86k5p2

zq6
2q4

3 +26k5p2
zq4

2q6
3 +37k5p2

zq2
2q8

3−7k5p2
zq1

30+12k3p4
zq1

20−120k3p4
zq8

2q2
3−120k3p4

zq6
2q4

3 +

160k3p4
zq4

2q6
3+140k3p4

zq2
2q8

3−8k3p4
zq1

30+16k6q1
20−64k6q8

2q2
3−32k6q6

2q4
3+192k6q4

2q6
3+144k6q2

2q8
3−

144k4p2
zq8

2q2
3 − 192k4p2

zq6
2q4

3 + 32k4p2
zq4

2q6
3 + 64k4p2

zq2
2q8

3 − 16k4p2
zq1

30− 16k4q1
22 + 48k4q1

20q2
3 +

96k4q8
2q4

3 − 160k4q6
2q6

3 − 336k4q4
2q8

3 − 144k4q2
2q1

30 − 7k5p2
zq8

2 + 44k5p2
zq6

2q2
3 − 18k5p2

zq4
2q4

3 −
68k5p2

zq2
2q6

3 +k5p2
zq8

3 +40k5q1
20−160k5q8

2q2
3−80k5q6

2q4
3 +480k5q4

2q6
3 +360k5q2

2q8
3−16k3p4

zq8
2 +

152k3p4
zq6

2q2
3 − 24k3p4

zq4
2q4

3 − 184k3p4
zq2

2q6
3 + 8k3p4

zq8
3 + 8k3p2

zq1
20− 32k3p2

zq8
2q2

3 − 16k3p2
zq6

2q4
3 +

96k3p2
zq4

2q6
3 +72k3p2

zq2
2q8

3−8k6q8
2 +40k6q6

2q2
3−24k6q4

2q4
3−72k6q2

2q6
3−44k4p2

zq8
2 +112k4p2

zq6
2q2

3−
168k4p2

zq4
2q4

3 − 336k4p2
zq2

2q6
3 − 12k4p2

zq8
3 + 48k4q1

20 − 192k4q8
2q2

3 − 96k4q6
2q4

3 + 576k4q4
2q6

3 +

432k4q2
2q8

3 + 8k2p4
zq8

2 − 184k2p4
zq6

2q2
3 − 24k2p4

zq4
2q4

3 + 152k2p4
zq2

2q6
3 − 16k2p4

zq8
3 + 3k5p2

zq6
2 +

9k5p2
zq4

2q2
3 + 9k5p2

zq2
2q4

3 + 3k5p2
zq6

3 − 32k5q8
2 + 160k5q6

2q2
3 − 96k5q4

2q4
3 − 288k5q2

2q6
3 + 14k3p4

zq6
2 −

30k3p4
zq4

2q2
3 + 90k3p4

zq2
2q4

3 + 6k3p4
zq6

3 − 56k3p2
zq8

2 + 64k3p2
zq6

2q2
3 − 240k3p2

zq4
2q4

3 − 384k3p2
zq2

2q6
3 −

24k3p2
zq8

3 + 16k3q1
20− 64k3q8

2q2
3 − 32k3q6

2q4
3 + 192k3q4

2q6
3 + 144k3q2

2q8
3 + 4kp6

zq6
2 + 12kp6

zq4
2q2

3 +

12kp6
zq2

2q4
3 +4kp6

zq6
3 +32k4p2

zq6
2−48k4p2

zq4
2q2

3 +192k4p2
zq2

2q4
3 +16k4p2

zq6
3−48k4q8

2 +240k4q6
2q2

3−
144k4q4

2q4
3 − 432k4q2

2q6
3 + 16k2p4

zq6
2 + 192k2p4

zq4
2q2

3 − 48k2p4
zq2

2q4
3 + 32k2p4

zq6
3 − 16k2p2

zq8
2 −

208k2p2
zq6

2q2
3−144k2p2

zq4
2q4

3 +16k2p2
zq2

2q6
3−32k2p2

zq8
3−k5p2

zq4
2−2k5p2

zq2
2q2

3−k5p2
zq4

3 +4k5q6
2−

24k5q4
2q2

3 +36k5q2
2q4

3−8k3p4
zq4

2−16k3p4
zq2

2q2
3−8k3p4

zq4
3 +60k3p2

zq6
2−36k3p2

zq4
2q2

3 +324k3p2
zq2

2q4
3 +

36k3p2
zq6

3−32k3q8
2+160k3q6

2q2
3−96k3q4

2q4
3−288k3q2

2q6
3−8kp6

zq4
2−16kp6

zq2
2q2

3−8kp6
zq4

3+20kp4
zq6

2+

24kp4
zq4

2q2
3 + 84kp4

zq2
2q4

3 + 16kp4
zq6

3 − 4k4p2
zq4

2 − 8k4p2
zq2

2q2
3 − 4k4p2

zq4
3 + 16k4q6

2 − 96k4q4
2q2

3 +

144k4q2
2q4

3−20k2p4
zq4

2−40k2p4
zq2

2q2
3−20k2p4

zq4
3 +32k2p2

zq6
2 +240k2p2

zq4
2q2

3 +48k2p2
zq6

3 +2k3p4
zq2

2 +

2k3p4
zq2

3 − 12k3p2
zq4

2 − 24k3p2
zq2

2q2
3 − 12k3p2

zq4
3 + 16k3q6

2 − 96k3q4
2q2

3 + 144k3q2
2q4

3 + 5kp6
zq2

2 +

5kp6
zq2

3 − 24kp4
zq4

2 − 48kp4
zq2

2q2
3 − 24kp4

zq4
3 + 16kp2

zq6
2 + 48kp2

zq4
2q2

3 + 48kp2
zq2

2q4
3 + 16kp2

zq6
3 +
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4k2p4
zq2

2 + 4k2p4
zq2

3 − 16k2p2
zq4

2 − 32k2p2
zq2

2q2
3 − 16k2p2

zq4
3 − kp6

z + 8kp4
zq2

2 + 8kp4
zq2

3 − 16kp2
zq4

2 −
32kp2

zq2
2q2

3 − 16kp2
zq4

3]

Parallel Singularities: Projection in [pz, q2, q3] for OM2

[k(36k6q1
26q2

3 +192k6q1
24q4

3 +400k6q1
22q6

3 +384k6q1
20q8

3 +120k6q8
2q1

30−64k6q6
2q1

32−48k6q4
2q1

34+

4k6q1
38 − 72k5q1

24q2
3 − 312k5q1

22q4
3 − 488k5q1

20q6
3 − 280k5q8

2q8
3 + 40k5q6

2q1
30 + 88k5q4

2q1
32 +

8k5q2
2q1

34−8k5q1
36−72k6q1

22q2
3−240k6q1

20q4
3−248k6q8

2q6
3−32k6q6

2q8
3 +72k6q4

2q1
30+16k6q2

2q1
32−

8k6q1
34+4k4p2

zq1
24−44k4p2

zq1
22q2

3+1140k4p2
zq1

20q4
3−540k4p2

zq8
2q6

3−756k4p2
zq6

2q8
3+828k4p2

zq4
2q1

30−
132k4p2

zq2
2q1

32+12k4p2
zq1

34+144k5q1
22q2

3 +480k5q1
20q4

3 +496k5q8
2q6

3 +64k5q6
2q8

3−144k5q4
2q1

30−
32k5q2

2q1
32+16k5q1

34+72k4p2
zq1

20q2
3−1128k4p2

zq8
2q4

3+1808k4p2
zq6

2q6
3−912k4p2

zq4
2q8

3+168k4p2
zq2

2q1
30−

8k4p2
zq1

32 − 108k4q1
22q2

3 − 360k4q1
20q4

3 − 372k4q8
2q6

3 − 48k4q6
2q8

3 + 108k4q4
2q1

30 + 24k4q2
2q1

32 −
12k4q1

34−16k3p2
zq1

22−96k3p2
zq1

20q2
3−240k3p2

zq8
2q4

3−320k3p2
zq6

2q6
3−240k3p2

zq4
2q8

3−96k3p2
zq2

2q1
30−

16k3p2
zq1

32 + 36k6q8
2q2

3 + 48k6q6
2q4

3 − 8k6q4
2q6

3 − 16k6q2
2q8

3 + 4k6q1
30− 7k4p2

zq1
20 + 37k4p2

zq8
2q2

3 +

26k4p2
zq6

2q4
3 − 86k4p2

zq4
2q6

3 − 67k4p2
zq2

2q8
3 + k4p2

zq1
30− 8k2p4

zq1
20 + 140k2p4

zq8
2q2

3 + 160k2p4
zq6

2q4
3 −

120k2p4
zq4

2q6
3 − 120k2p4

zq2
2q8

3 + 12k2p4
zq1

30 − 144k5q8
2q2

3 − 192k5q6
2q4

3 + 32k5q4
2q6

3 + 64k5q2
2q8

3 −
16k5q1

30 + 16k3p2
zq1

20− 64k3p2
zq8

2q2
3− 32k3p2

zq6
2q4

3 + 192k3p2
zq4

2q6
3 + 144k3p2

zq2
2q8

3 + 144k3q1
20q2

3 +

336k3q8
2q4

3 +160k3q6
2q6

3−96k3q4
2q8

3−48k3q2
2q1

30+16k3q1
32+k4p2

zq8
2−68k4p2

zq6
2q2

3−18k4p2
zq4

2q4
3 +

44k4p2
zq2

2q6
3−7k4p2

zq8
3 +360k4q8

2q2
3 +480k4q6

2q4
3−80k4q4

2q6
3−160k4q2

2q8
3 +40k4q1

30+8k2p4
zq8

2−
184k2p4

zq6
2q2

3−24k2p4
zq4

2q4
3 +152k2p4

zq2
2q6

3−16k2p4
zq8

3 +72k2p2
zq8

2q2
3 +96k2p2

zq6
2q4

3−16k2p2
zq4

2q6
3−

32k2p2
zq2

2q8
3 + 8k2p2

zq1
30 + 72k5q6

2q2
3 + 24k5q4

2q4
3−40k5q2

2q6
3 + 8k5q8

3 + 12k3p2
zq8

2 + 336k3p2
zq6

2q2
3 +

168k3p2
zq4

2q4
3 − 112k3p2

zq2
2q6

3 + 44k3p2
zq8

3 − 432k3q8
2q2

3 − 576k3q6
2q4

3 + 96k3q4
2q6

3 + 192k3q2
2q8

3 −
48k3q1

30 + 16kp4
zq8

2 − 152kp4
zq6

2q2
3 + 24kp4

zq4
2q4

3 + 184kp4
zq2

2q6
3 − 8kp4

zq8
3 + 3k4p2

zq6
2 + 9k4p2

zq4
2q2

3 +

9k4p2
zq2

2q4
3 + 3k4p2

zq6
3 − 288k4q6

2q2
3 − 96k4q4

2q4
3 + 160k4q2

2q6
3 − 32k4q8

3 + 6k2p4
zq6

2 + 90k2p4
zq4

2q2
3 −

30k2p4
zq2

2q4
3 + 14k2p4

zq6
3 − 24k2p2

zq8
2 − 384k2p2

zq6
2q2

3 − 240k2p2
zq4

2q4
3 + 64k2p2

zq2
2q6

3 − 56k2p2
zq8

3 +

144k2q8
2q2

3 + 192k2q6
2q4

3 − 32k2q4
2q6

3 − 64k2q2
2q8

3 + 16k2q1
30 + 4p6

zq6
2 + 12p6

zq4
2q2

3 + 12p6
zq2

2q4
3 +

4p6
zq6

3−16k3p2
zq6

2−192k3p2
zq4

2q2
3 +48k3p2

zq2
2q4

3−32k3p2
zq6

3 +432k3q6
2q2

3 +144k3q4
2q4

3−240k3q2
2q6

3 +

48k3q8
3− 32kp4

zq6
2 + 48kp4

zq4
2q2

3− 192kp4
zq2

2q4
3− 16kp4

zq6
3 + 32kp2

zq8
2− 16kp2

zq6
2q2

3 + 144kp2
zq4

2q4
3 +

208kp2
zq2

2q6
3 +16kp2

zq8
3−k4p2

zq4
2−2k4p2

zq2
2q2

3−k4p2
zq4

3 +36k4q4
2q2

3−24k4q2
2q4

3 +4k4q6
3−8k2p4

zq4
2−

16k2p4
zq2

2q2
3 − 8k2p4

zq4
3 + 36k2p2

zq6
2 + 324k2p2

zq4
2q2

3 − 36k2p2
zq2

2q4
3 + 60k2p2

zq6
3 − 288k2q6

2q2
3 −

96k2q4
2q4

3 + 160k2q2
2q6

3 − 32k2q8
3 − 8p6

zq4
2 − 16p6

zq2
2q2

3 − 8p6
zq4

3 + 16p4
zq6

2 + 84p4
zq4

2q2
3 + 24p4

zq2
2q4

3 +

20p4
zq6

3+4k3p2
zq4

2+8k3p2
zq2

2q2
3+4k3p2

zq4
3−144k3q4

2q2
3+96k3q2

2q4
3−16k3q6

3+20kp4
zq4

2+40kp4
zq2

2q2
3+

20kp4
zq4

3 − 48kp2
zq6

2 − 240kp2
zq2

2q4
3 − 32kp2

zq6
3 + 2k2p4

zq2
2 + 2k2p4

zq2
3 − 12k2p2

zq4
2 − 24k2p2

zq2
2q2

3 −
12k2p2

zq4
3 + 144k2q4

2q2
3 − 96k2q2

2q4
3 + 16k2q6

3 + 5p6
zq2

2 + 5p6
zq2

3 − 24p4
zq4

2 − 48p4
zq2

2q2
3 − 24p4

zq4
3 +

16p2
zq6

2 + 48p2
zq4

2q2
3 + 48p2

zq2
2q4

3 + 16p2
zq6

3− 4kp4
zq2

2− 4kp4
zq2

3 + 16kp2
zq4

2 + 32kp2
zq2

2q2
3 + 16kp2

zq4
3−

p6
z + 8p4

zq2
2 + 8p4

zq2
3 − 16p2

zq4
2 − 32p2

zq2
2q2

3 − 16p2
zq4

3)]
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SIROPA Library

B.1 SIROPA

Analysing

ConstraintEquations
Computes the implicit equations induced by the

constraints.

Type1SingularityEquations /

SerialSingularities

Computes the implicit equations satisfied by the

singularities.

Type2SingularityEquations /

ParallelSingularities

Computes the implicit equations satisfied by the

singularities.

InfiniteEquations
Computes the equations where the manipulator has

infinitely many solutions.

ParallelCuspidal
Computes the implicit equations satisfied by the

cuspidal points

SerialCuspidal
Computes the implicit equations satisfied by the

cuspidal points

Projection Project on variables or expressions in a polynomial system.

CellDecompositionPlus
Describes the parameter space according to the number

of real roots.

NumberOfSolutionsPlus
Returns the number of real solutions of all cells

obtained by CellDecompositionPlus.

auxDVNumberOfSolutionsPlus
Auxiliary function Returns the number of real solutions on

the intersection points of the Discriminant Variety.

PseudoSingularitiesDecomposition
Computes the decomposition with pseudo-singularities of

a manipulator.

IsIntervalEmpty
Checks that a polynomial has no real roots in an open

interval.

CellGraph Computes the connexity graph of the cells of a CAD.

ImageTrajectory Display a given trajectory.

DirectInverseKinematics Returns the cells having the same antecedent.

CellArea2D
Compute the area of the cells returned CellDecomposition

or CellDecompositionPlus.

CellLocationPlus
Computes the cells of a decomposition containing the

given points.

Table B.1 – Different Functions for Analysing in SIROPA



140 SIROPA Library

Modeling

CreateManipulator Constructs a data structure of type Manipulator.

SubsPlus Substitute coherently angles in a system.

SubsParameters Specify parameter values in a Manipulator

UnassignParameters Release parameters in a Manipulator

Table B.2 – Different Functions for Modeling in SIROPA

Plotting

Plot2D Plots a system of 2 variables

PlotCurve3D Plots a curve given by implicit equations in 3 variables.

Plot3D Plots a system of 3 variables using maple internal plotting functions.

Plot3Dglsurf Plots a system of 3 variables using glsurf.

Plot3Dsurfex Plots a system of 3 variables using surfex (software based on surf).

PlotWorkspace Plot the border of a manipulator workspace

Configurations Computes the different possible positions.

PlotRobot2D Plot a planar manipulator

PlotRobot3D Plot a 3D manipulator

PlotCell3D Plot the cells returned CellDecomposition or CellDecompositionPlus

PlotCell2D Plot the cells returned CellDecomposition or CellDecompositionPlus

SetCellColors
Set colors to the numbers of solutions obtained by

NumberOfSolutionsPlus

Trajectory Display a given trajectory.

ImageTrajectory Display a given trajectory.

Table B.3 – Different Functions for Plotting in SIROPA

Plot2D

1 Plot2D := proc (

2 sys : : { a l g e b r a i c , equat ion ( a l g e b r a i c ) , l i s t ({ a l g e b r a i c , equat ion (

a l g e b r a i c ) , a l g e b r a i c <a l g e b r a i c }) , l i s t ( l i s t ({ a l g e b r a i c , equat ion ( a l g e b r a i c ) ,

a l g e b r a i c <a l g e b r a i c }) ) } ,

3 e1 : : name = range ,

4 e2 : : name = range ,

5 {

6 p o i n t s : : t r u e f a l s e := f a l s e ,

7 [ notest , d r a f t ] : : t r u e f a l s e := f a l s e

8 }

9 )

Listing B.1 – Architecture of Plot2D

Plots a system of 2 variables



B.1 SIROPA 141

Parameters

sys a list or a list of list of polynomials: the system

v1 = r1 v1 is a name of sys and r1 a range of values

v2 = r2 v2 is a name of sys and r2 a range of values

points = bool (optional)
bool is a boolean: if false, isolated points are ignored;

default value: false;

notest = b (optional)
b is a boolean; when b is true the inequality and real constraints are

ignored; default value: true;

opts (optional) arguments passed to the maple function plots:-implicitplot

Returns

A graphic: the solutions of the system.

• when sys is a polynomial, the graphic is the zeroes of this polynomial

• when sys is a list of polynomials [p1, ..., pk], the graphic is the zeroes of the system

p1 = 0 and ... and pk = 0

• when sys is a list of list of polynomials [L1, ..., Lk], the graphic is the union of the

zeroes of each system L1, ..., Lk.

PlotCurve3D

1 PlotCurve3D := proc (

2 sys : : { a l g e b r a i c , equat ion ( a l g e b r a i c ) , l i s t ({ a l g e b r a i c , equat ion ( a l g e b r a i c )

, a l g e b r a i c <a l g e b r a i c }) , l i s t ( l i s t ({ a l g e b r a i c , equat ion ( a l g e b r a i c ) , a l g e b r a i c <

a l g e b r a i c }) ) } ,

3 ineq : : l i s t ({ polynom , polynom<polynom }) := [ ] ,

4 e1 : : name = range := s o r t

5 ( [ op ( i n d e t s ( [ sys , x , y , z ] , name) ) ] )

6 [ 1 ] = −5..5 ,

7 e2 : : name = range := s o r t

8 ( [ op ( i n d e t s ( [ sys , x , y , z ] , name)

9 minus { l h s ( e1 ) }) ] )

10 [ 1 ] = −5..5 ,

11 e3 : : name = range := s o r t

12 ( [ op ( i n d e t s ( [ sys , x , y , z ] , name)

13 minus { l h s ( e1 ) , l h s ( e2 ) }) ] )

14 [ 1 ] = −5..5 ,

15 {

16 g r i d : : i n t e g e r := 30 ,

17 output : : i d e n t i c a l ( l i s t , d i s p l a y ) := ’: − di sp lay ’

18 }

19 )

Listing B.2 – Architecture of PlotCurve3D

Plots a curve given by implicit equations in 3 variables.
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Parameters

sys a list or a list of list of polynomials: the system

v1 = r1 v1 is a name of sys and r1 a range of values

v2 = r2 v2 is a name of sys and r2 a range of values

v3 = r3 v3 is a name of sys and r3 a range of values

grid = i (optional) i is an integer, the number of samples points; default value: 20.

output = keyword (optional)
keyword is either list or display: display (resp. list) returns a

graph (resp. a list).

Returns

A graphic: the solutions of the system.

• when sys is a list of polynomials [p1, ..., pk], the graphic is the zeroes of the system

p1 = 0 and ... and pk = 0

• when sys is a list of list of polynomials [L1, ..., Lk], the graphic is the union of the

zeroes of each system L1, ..., Lk.

Plot3D

1 Plot3D := proc (

2 sys : : { a l g e b r a i c , equat ion ( a l g e b r a i c ) , l i s t ({ a l g e b r a i c , equat ion (

a l g e b r a i c ) , a l g e b r a i c <a l g e b r a i c }) , l i s t ( l i s t ({ a l g e b r a i c , equat ion ( a l g e b r a i c ) ,

a l g e b r a i c <a l g e b r a i c }) ) } ,

3 ineq : : l i s t ({ polynom , polynom<polynom }) := [ ] ,

4 e1 : : name = range := s o r t

5 ( [ op ( i n d e t s ( [ sys , x , y , z ] , name) ) ] )

6 [ 1 ] = −5..5 ,

7 e2 : : name = range := s o r t

8 ( [ op ( i n d e t s ( [ sys , x , y , z ] , name)

9 minus { l h s ( e1 ) }) ] )

10 [ 1 ] = −5..5 ,

11 e3 : : name = range := s o r t

12 ( [ op ( i n d e t s ( [ sys , x , y , z ] , name)

13 minus { l h s ( e1 ) , l h s ( e2 ) }) ] )

14 [ 1 ] = −5..5 ,

15 {

16 p o i n t s : : t r u e f a l s e := f a l s e ,

17 c r o s s i n g r e f i n e : : t r u e f a l s e := f a l s e ,

18 g r i d : : i n t e g e r := 10 ,

19 border : : constant := 10^( −30) ,

20 output : : i d e n t i c a l ( l i s t , d i s p l a y ) := ’: − di sp lay ’

21 }

22 )

Listing B.3 – Architecture of Plot3D

Plots a system of 3 variables using maple internal plotting functions.
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Parameters

sys a list or a list of list of polynomials: the system

v1 = r1 v1 is a name of sys and r1 a range of values

v2 = r2 v2 is a name of sys and r2 a range of values

v3 = r3 v3 is a name of sys and r3 a range of values

points = bool (optional)
bool is a boolean: if false, isolated points are ignored;

default value: false;

grid = i (optional) i is an integer leading to a grid size i x i; default value: 20.

border = e (optional)
e is a numeric value: defines the precision on the border;

default value: 0.0001.

crossingrefine = bool (optional)
bool is a boolean: if true, the mesh follows the cross of the

different surfaces; default value: false.

output = keyword (optional)
keyword is either list or display: display (resp. list) returns

a graph (resp. a list).

Returns

A graphic: the solutions of the system.

• when sys is a polynomial, the graphic is the zeroes of this polynomial

• when sys is a list of polynomials [p1, ..., pk], the graphic is the zeroes of the system

p1 = 0 and ... and pk = 0

• when sys is a list of list of polynomials [L1, ..., Lk], the graphic is the union of the

zeroes of each system L1, ..., Lk.

Plot3Dglsurf

1 Plot3Dg l sur f := proc (

2 sys : : { a l g e b r a i c , equat ion ( a l g e b r a i c ) , l i s t ({ a l g e b r a i c , equat ion ( a l g e b r a i c )

}) , l i s t ( l i s t ({ a l g e b r a i c , equat ion ( a l g e b r a i c ) }) ) } ,

3 e1 : : name = range ,

4 e2 : : name = range ,

5 e3 : : name = range ,

6 {

7 p o i n t s : : t r u e f a l s e := f a l s e ,

8 s c a l e : : i d e n t i c a l ( const ra ined , unconstra ined ) := ’ unconstra ined ’

9 }

10 )

Listing B.4 – Architecture of Plot3Dglsurf

Plots a system of 3 variables using glsurf.
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Parameters

sys a list or a list of list of polynomials: the system

v1 = r1 v1 is a name of sys and r1 a range of values

v2 = r2 v2 is a name of sys and r2 a range of values

v3 = r3 v3 is a name of sys and r3 a range of values

points = bool (optional)
bool is a boolean: if false, isolated points are ignored;

default value: false;

scaled = keyword (optional)
keyword is one of constrained or unconstrained for the scaling;

default value: scaled = unconstrained.

Returns

A graphic: the solutions of the system.

• when sys is a polynomial, the graphic is the zeroes of this polynomial

• when sys is a list of polynomials [p1, ..., pk], the graphic is the zeroes of the system

p1 = 0 and ... and pk = 0

• when sys is a list of list of polynomials [L1, ..., Lk], the graphic is the union of the

zeroes of each system L1, ..., Lk.

PlotWorkspace

1 PlotWorkspace := proc (

2 robot : : Manipulator ,

3 spec : : seq (name=constant ) ,

4 di sp : : seq ( i d e n t i c a l ( type1 , type2 , c o n s t r a i n t s , i n f i n i t e ) ) := ( ’ type1 ’ ,

5 ’ type2 ’ , ’ c o n s t r a i n t s ’ , ’ i n f i n i t e ’ ) ,

6 vars : : { l i s t (name) , i d e n t i c a l ( a r t i c u l a r , pose ) } := ’ a r t i c u l a r ’ ,

7 ranges : : seq (name=range ) := NULL,

8 {

9 n o t e s t : : t r u e f a l s e := f a l s e

10 }

11

12 )

Listing B.5 – Architecture of PlotWorkspace

Plot the border of a manipulator workspace
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Parameters

robot a object of type Manipulator

spec
sequence of name=constant: the specification of the known variables

(the articular values or the pose values, or other)

disp (optional)
a sequence of keywords among type1, type2, constraints and infinite:

selects the graphics to plot; default value: all the keywords

vars (optional)

the display variables, that can be referred as:

one of the keyword articular or pose

a list of 2 variable names

the default value is articular

if ranges is provided, the variables superseed those of vars

ranges (optional)

a sequence of the form v1=n1..n2, v2=m1..m2 where v1, v2 are 2 variables

and n1,n2,m1,m2 are numerical values; when ranges is not specified,

the default range is taken from the field robot:-DefaultPlotRange

if it exists, and is -5..5 otherwise.

notest = b (optional)
b is a boolean; when b is true the inequality and real constraints are

ignored; default value: true;

Returns

A graphic: the solutions of the system.

• The singularities of type 1

• The singularities of type 2

• The configurations with infinitely many solutions in all the variables (including the

passive variables)

• The border induced by the constraints

PlotWorkspace

1 PlotWorkspace := proc (

2 robot : : Manipulator ,

3 spec : : seq (name=constant ) ,

4 di sp : : seq ( i d e n t i c a l ( type1 , type2 , c o n s t r a i n t s , i n f i n i t e ) ) := ( ’ type1 ’ ,

5 ’ type2 ’ , ’ c o n s t r a i n t s ’ , ’ i n f i n i t e ’ ) ,

6 vars : : { l i s t (name) , i d e n t i c a l ( a r t i c u l a r , pose ) } := ’ a r t i c u l a r ’ ,

7 ranges : : seq (name=range ) := NULL,

8 {

9 n o t e s t : : t r u e f a l s e := f a l s e

10 }

11

12 )

Listing B.6 – Architecture of PlotWorkspace

Plot the border of a manipulator workspace
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Parameters

robot a object of type Manipulator

spec
sequence of name=constant: the specification of the known variables

(the articular values or the pose values, or other)

disp (optional)
a sequence of keywords among type1, type2, constraints and infinite:

selects the graphics to plot; default value: all the keywords

vars (optional)

the display variables, that can be referred as:

one of the keyword articular or pose

a list of 2 variable names

the default value is articula

if ranges is provided, the variables superseed those of vars

ranges (optional)

a sequence of the form v1=n1..n2, v2=m1..m2 where v1, v2 are 2 variables

and n1,n2,m1,m2 are numerical values; when ranges is not specified,

the default range is taken from the field robot:-DefaultPlotRange

if it exists, and is -5..5 otherwise.

notest = b (optional)
b is a boolean; when b is true the inequality and real constraints are

ignored; default value: true;

Returns

A graphic: the solutions of the system.

• The singularities of type 1

• The singularities of type 2

• The configurations with infinitely many solutions in all the variables (including the

passive variables)

• The border induced by the constraints

B.2 Algebraic Tools

Base Algebra

Projection Project on variables or expressions in a polynomial system.

TrigonometricBasis Computes a Groebner basis of a trigonometric system.

Elimination Eliminates variables in a polynomial system.

Intersection Intersects two ideals.

Division Division of an ideal by another.

NormalForm Reduces polynomials w.r.t a Groebner basis.

InRadical Test the membership to the radical of an ideal.

Dimension Computes the dimension of a system.

SaturationIdeal Saturate an ideal by another ideal.

SaturationTest Saturate an ideal by another ideal (new method).

Saturation5 Saturate an ideal by another ideal (new method).

SaturationDirect Saturate an ideal by another ideal (direct method).

Table B.4 – Different Functions for Base Algebra
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Extra Algebra

PolynomialSaturation Saturates an ideal by a polynomial.

SizeReduction Reduces the number of polynomials.

IsHullPrime Test whether the maximal dimension component is prime.

IsHullRadical Test whether the maximal dimension component is radical.

IsProjectionProper Sufficient condition for proper projection.

PropernessDefect Computes the non properness set of a projection.

SortPolynomials Sort a list of polynomial and trigonometric expressions

FactorSystem Factorize partially a system

Hypersurfaces Factorizes components of codimension 1.

RandomSection Cuts a system with a random hypersurface

ToLatex Print the latex commands generating an expression on multiple lines.

Table B.5 – Different Functions for Extra Algebra

Trigonometric

TrigonometricSubs Substitute trigonometric variables with numerical values

TrigonometricAlgebraic Convert trigonometric and radical expressions to algebraic ones

TrigonometricAlgebraicCosSin Convert trigonometric and radical expressions to algebraic ones

TrigonometricVariables Updates trigonometric variables to algebraic ones.

TrigonometricConstants Returns the algebraic variables of trigonometric constants.

AlgebraicVariables Convert algebraic variables to trigonometric ones.

AlgebraicTrigonometric Convert algebraic systems back to trigonometric ones.

TrigonometricTanHalf
Parametrize trigonometric and radical expressions with tangent

expression

TrigonometricGcd Extract common factors of trigonometric expressions

Table B.6 – Different Functions for Trigonometric
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