
HAL Id: tel-01522826
https://hal.science/tel-01522826

Submitted on 15 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concurrency in Transactional Memory
Vincent Gramoli

To cite this version:
Vincent Gramoli. Concurrency in Transactional Memory. Distributed, Parallel, and Cluster Comput-
ing [cs.DC]. UPMC - Sorbonne University, 2015. �tel-01522826�

https://hal.science/tel-01522826
https://hal.archives-ouvertes.fr

Concurrency in Transactional Memory

Thèse d’habilitation à diriger des recherches presented to

UPMC - Sorbonne University

in the subject of

Computer Science

by

Vincent Gramoli

on

July 6th, 2015

Jury
Albert COHEN Senior Researcher, INRIA Referee
Tim HARRIS Senior Researcher, Oracle Labs Referee
Maged MICHAEL Senior Researcher, IBM Watson Research Center Referee
Anne-Marie KERMARREC Senior Researcher, INRIA Examiner
Gilles MULLER Senior Researcher, INRIA Examiner
Pierre SENS Professor, UPMC Examiner

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Transaction . 3
1.3 Data Type Implementation . 3
1.4 Chip Multiprocessors . 4
1.5 Roadmap . 5

2 Transactional Memory: A Mature Technology 6
2.1 Integration in Programming Languages . 6 [56]

2.1.1 Transaction support in C/C++ . 7
2.1.2 Transaction support in Java . 8

2.2 Leveraging Multicores . 9 [46]
2.2.1 Leveraging the concurrency of multicore platforms 11
2.2.2 On the reasons why STM can be more than a research toy 12

2.3 Leveraging Manycores . 13 [64]
2.3.1 A transactional memory for manycore platforms 13
2.3.2 Managing contention in a distributed environment 16

2.4 Conclusion . 18

3 Identifying Concurrency Limitations 19
3.1 Measuring Schedule Acceptance . 19 [65]

3.1.1 Preliminaries . 19
3.1.2 Schedules and concurrency . 20

3.2 Rejected Concurrency Schedules . 21 [60]
3.2.1 Using transactions or locks to synchronize a list-based set 21
3.2.2 Schedule acceptance depending on synchronization 23

3.3 No One-Size-Fits-All TM Algorithm . 23 [77]
3.3.1 Some transaction semantics . 23
3.3.2 The inherent limitation of transactions . 24

3.4 Conclusion . 25

4 Enhancing Concurrency 26
4.1 Relaxing the Transactional Model . 26 [54]

4.1.1 The elastic transaction model . 26
4.1.2 Advantages of elastic transactions . 27

4.2 Combining Transactional Models . 29 [61]
4.2.1 Snapshot transaction . 29
4.2.2 Reusability . 30

4.3 Rethinking Applications . 33 [33]
4.3.1 Optimism vs. pessimism . 33
4.3.2 A speculation-friendly tree . 36

4.4 Conclusion . 37

5 Conclusion and Future Work 38

i

Abstract

This document is presented in fulfilment of the degree of Habilitation à Diriger des Recherches and
aims at presenting, in a coherent form, my main scientific results, collaborations and supervision
of research during the last 8 years in the domain of transactional memory where I have sought to
contribute to the advancement of research, and the future perspectives that my contribution leads to.
The document comprises three main chapters that are summarized as follows.

For the last decade, manufacturers have increased the number of processors, or cores in most com-
putational devices rather than their frequency. To increase the performance of applications, one must
write concurrent programs, programs divided into subroutines that cores can execute simultaneously,
a task considered very difficult. My contribution has been to facilitate the adoption of transaction, a
synchronization abstraction to simplify concurrent programming. First, I contributed to the integra-
tion of transactional memory (TM) in two mainstream programming languages and demonstrated
empirically that software TM could leverage multicore and manycore platforms. Second, I defined
concurrency as a metric capturing the variety of sequences of shared memory accesses a concurrent
program exports and exploited this metric to identify a concurrency limitation that is inherent to
the transaction abstraction. Third, I proposed a solution to overcome this concurrency limitation,
developed a polymorphic transactional memory offering multiple transaction models for both expert
and novice programmers, and proposed a redesign of a transactional data structure to improve the
performance of applications using software transactional memory.

My research results open up three research directions related to the systematic comparison of
synchronization techniques, the generalization of the structure redesign principles to a larger class of
concurrent data structures and the definition of contention that has become a predominant cause of
performance drop.

ii

Acknowledgments

I am grateful to the members of my HDR jury: Albert Cohen, Tim Harris and Maged Michael for having
accepted to review my HDR thesis and having actively participated to my defence. I wish to thank
the examiners, Anne-Marie Kermarrec and Pierre Sens who examined my work and Gilles Muller for
chairing the jury.

I am grateful to my collaborators, colleagues and students, who contributed to the results presented
in this thesis. First, I wish to thank Dr. Crain, Dragojevic, Harmanci, Letia, Ravi who were all PhD
students at the time of our collaboration and who all contributed to advancing the research presented
here along with completing successfully their PhD degree. Second, my co-authors and friends for all
the fruitful discussions we had on the topic of transactional memory including Pascal Felber, Rachid
Guerraoui, Hagit Attiya, Petr Kuznetsov and Alessia Milani.

I would like to thank my wife, children and family for supporting my research over these 11 last
years.

iii

1. Introduction

Modern processors are not faster than the processors we used fifteen years ago.1 For the last decade,
manufacturers have increased the number of processors, or cores, in most computational devices rather
than their frequency. This trend led to the advent of chip multiprocessors that offer nowadays between
tens [146] to a thousand cores on the same chip [121].

Concurrent programming, which is the art of dividing a program into subroutines that cores execute
simultaneously, is the only way for developers to increase the performance of their software. These
multicore machines adopt a concurrent execution model where, typically, multiple threads synchronize
with each other to exploit cores while accessing in-memory shared data. To continue the pace of
increasing software efficiency, performance has to scale with the amount of concurrent threads accessing
shared data structures. The key is for new synchronization paradigms to not only leverage concurrent
resources to achieve scalable performance but also to simplify concurrent programming so that most
programmers can develop efficient software.

As it is often the case when facing such performance challenges, researchers attempted to weaken the
targeted consistency to improve performance, hence defining relaxed consistency criteria [132] and con-
sidering that data structures remain correct despite violating some invariants. For example, the queue of
the Intel R© Threading Building Blocks library is considered correct even though it violates the first-in-first-
out (FIFO) specification of a queue. Similarly, a recent relaxed stack was designed to achieve scalability
on an Intel machine comprising 80 cores [45]. Finally, the java.util.ConcurrentLinkedQueue.size()
is documented as being “not so useful” in concurrent programs as it may return an incorrect result.

The drawback of consistency relaxation is to make concurrent programming a difficult task only
reserved to experts. Liskov reminded recently the importance of encapsulation in programming
languages [93], this lets Bob reuse straightforwardly an Abstract Data Type (ADT) designed by Alice.
Encapsulation has been extensively used to make “sequential” object oriented programs reusable [114].
The reason of this reusability, is that the ADT exposes a simple semantics that Bob can reason about when
designing his application, even without understanding how the type was implemented. In a concurrent
context, this simple semantics is provided by Concurrent Data Types (CDTs) and can be described as
a sequential specification that is easy to reason about. As soon as a concurrent data structure stops
guaranteeing the sequential specification of the type it was expected to implement, it becomes difficult
for Bob to understand if the slightly different implemented type is still well-suited for his application.

Transactional memory has been instrumental in simplifying concurrent programming. Protecting
the operations offered by a sequential implementation of a type with classic transactions guarantees that
the resulting concurrent implementation will be atomic (i.e., linearizable [91]), hence ensuring that any
execution of the concurrent implementation is equivalent to one that satisfies the sequential specification
of the original type. In other words, if Alice delimits with transactions the pop and push operations of a
sequential implementation of a queue type, then the resulting concurrent implementation is guaranteed
to implement a queue type as well—its FIFO property being preserved. Bob does not have to be an
expert in concurrent programming to know whether Alice’s queue can be used in his application. In
particular, Bob does not have to look at Alice’s code if he uses transactional memory to develop his
concurrent application based on Alice’s library.

Transactional memory is, however, not always efficient. First hardware transactional memories
(HTMs) are limited by the hardware and require a software fall-back mechanism to guarantee that
transactions can execute in software when they cannot be fully executed in hardware. Second, soft-
ware transactional memories (STMs) raised some doubts about their capability to leverage multicore
machines [27], not to mention manycore machines. Part of our research was to clarify these folklore

1The iPad Air 2 processor runs as fast (1.5 GHz) as the Willamette-based Pentium 4 processor from November 2000.

1

believes with more recent experiments [46, 64]. We observed, however, that the transaction concept at
the heart of any transactional memory suffers from an inherent expressiveness limitation. We showed
that this limitation translated into concurrency limitations in simple data structure workloads [60, 61],
hence outlining a real performance concern that could affect the adoption of transactions.

To address this issue, we proposed a novel synchronization paradigm that slightly changes the classic
notion of transactional memory to offer multiple transactions to the programmers [54, 59–61]. The key
idea is to relax the semantics of the transaction without affecting the consistency of the application by
proposing multiple transaction forms with different semantics. It allows an expert programmer, say Alice,
to exploit the inherent concurrency of her application by choosing the appropriate transaction semantics
in her application. By preserving the sequential specification of the type our, so-called polymorphic,
solution guarantees that Bob can straightforwardly reuse Alice’s concurrent data type. Moreover, our
polymorphic solution allows a novice programmer like Bob to use the default transaction semantics,
hence retaining the simplicity of transactions.

To improve performance a step further, we worked at relaxing the data structure invariants in
addition to offering relaxed transactional models [33–35, 59]. Again by never relaxing the consistency
of the implemented type we preserve the simplicity of concurrent programming. As opposed to type
invariants, data structure invariants simply impose requirements on the layout of the data. By relaxing
data structure invariants, we violate the step complexity of data structures during transient periods of
high contention to boost the performance. In fact, by not enforcing threads to restructure the data layout
upon concurrent updates, we are able to restrict the contention to localized subparts of the structure,
hence offering a solution to design efficient transactional data structures.

1.1 Contributions
This document presents my main research contributions over the last 8 years. The work presented here
is the result of collaborations with colleagues from Université de Neuchâtel and EPFL in Switzerland,
Université de Rennes 1 and INRIA in France, and NICTA and University of Sydney in Australia. In
particular, this includes results from the work of 5 PhD students that I helped supervising and who all
successfully graduated. My contributions are as follows:

1. My first contribution was to help making the notion of transactional memory mainstream [46,56,59,
64,75,76]. First, I contributed with multiple partners to the design of the first transactional memory
stack by developing benchmarks to test programming language supports [75] and evaluate their
performance [59], by developing transaction support with a Java compiler [76] and by testing the
support of transactional memory in the TM branch of GNU gcc [56]. Second, I tested extensively
the performance of STM with manual and compiler instrumentations, and explicit and transparent
privatizations on multicores [46] and with message passing on top of non-cache-coherent machines,
also called manycores [64].

2. My second contribution is the identification of concurrency limitations in transactional memory [60,
65, 66, 77]. First, I defined the concept of input schedule that was instrumental in designing a
concurrency metric to compare (i) the concurrency one could obtain from different transactional
algorithms [65] and (ii) the concurrency one could obtain from implementations synchronized
with transactions and locks [66]. Second, I identified differences among existing transactional
memory algorithms by using a unit-testing framework [77] but showed that, regardless of the
semantics of these algorithms, there exist workloads where transactions cannot offer a level of
concurrency as high as locks [60].

3. My third contribution is a solution to improve the performance of transactional applications [33,
54, 61, 63]. First, I proposed a relaxed transactional model to bypass the concurrency limitation of

2

transactions in some search data structure applications [54]. Second, I investigated techniques to
compose relaxed transactions with each other [63] and to combine multiple relaxed transactional
semantics within the same transactional memory, so called polymorphic [61]. Third, I proposed to
improve concurrency further by rethinking data structures to reduce the size of the transactions
and relaxing the data structure invariants to minimize contention [33].

These contributions helped making transactional memory an off-the-shelf tool suitable for differently
skilled programmers. In particular, transactional memory is now integrated in programming languages,
it offers scalable performance in various applications both on multicores and manycores. Our poly-
morphic transactional memory improves the performance of classic transactional memories without
annihilating simplicity and our redesign of an existing data structure in the context of (polymorphic)
transactional memory opens up new research directions.

1.2 Transaction
The transaction abstraction comprises the mechanisms used to synchronize the accesses to data shared
by concurrent threads or processes. The abstraction dates back to the 70’s when it was proposed in the
context of databases to ensure the consistency of shared data [50]. This consistency was determined with
respect to a sequential behavior through the concept of serializability [123]: concurrent accesses need to
behave as if they were executing sequentially. Since then, researchers have derived other variants (like
isolation [134] and opacity [73]) applicable to different transactional contexts.

The transaction abstraction was considered for the first time as a programming language construct
in the form of guards and actions in [105]. Then it was adapted to various programming models, e.g.,
Argus [104], Eden [9] and ACS [69]. The first hardware support for a transactional construct was pro-
posed in [98]. It basically introduced parallelism in functional languages by providing synchronization
for multiple memory words. Later, the notion of transactional memory was proposed in the form of
hardware support for concurrent programming to remedy the difficulties of using locks, e.g., priority
inversion, lock-convoying and deadlocks [89].

Software transactions were originally designed as a reusable and composable solution to execute a
set of shared memory accesses fixed prior to the execution [133]. Later, they were applied to handle the
case where the control flow was not predetermined [88]. Bob’s transaction can invoke the transactions
of Alice without risking to deadlock during an execution [80].

There are various programming issues with the use of STM (e.g., ensuring weak or strong atomicity,
support for legacy binary code, etc). The alternative concurrency programming approaches like fine-
grained locking or lock-free techniques are, however, not easier to use. Such comparisons have already
been discussed in [54, 68, 78, 88, 122, 133] and our work does not focus on this aspect. For example,
Pankratius and Adl-Tabatabai performed a case study on programming teams who developed parallel
programs from scratch using either locks or transactions. They showed that it was easier to read the
code based on transactions than the one based on locks [122].

1.3 Data Type Implementation
ADTs are reusable as they promote (a) extensibility when an ADT is specialized through, for example,
inheritance by overriding or adding new methods, and (b) composability when two ADTs are combined
into another ADT whose methods invoke the original ones. Key to this reusability is that there is no
need to know the internals of an ADT to reuse it: its interface suffices. With the latest technology
development of multi-core architectures many programs are expected to scale with a large number of
cores: ADTs need thus to be shared by many threads, hence becoming what we call concurrent data
types (CDTs).

3

We consider the set data type as a running example as it is a simple data type and can be easily
generalized into a multi-set or a collection and a dictionary or a map data type. For the sake of simplicity,
the states of the set data type are all finite subsets of Z. For any v ∈ Z, the set data type exports
insert(v) that adds v to the set and returns true if v was not already present, otherwise it returns false;
remove(v) that deletes v from the set and returns true if v was present, otherwise it returns false; and
contains(v) that returns true if v is present or false otherwise. The sequential specification of the set
is detailed later (§§§3.1.1).

As we are interested by concurrency, we chose a simple concurrency-friendly data structure [137] to
implement the set data type, a sorted linked list. This sorted linked list that implements the set data
type serves as a running example, referred to as a list-based set in the sequel. We design two sentinel
nodes: the first element of the list head, storing value −∞, and the last element of the list tail, storing
value +∞. Initially, when the set is empty, head.next = tail.

1.4 Chip Multiprocessors
To measure the performance of software transactional memory, we use common muticore machines
with cache coherence as well as less conventional manycore machines without cache coherence. A
manycore is a processor that embeds a large number of simpler cores than a multicore to maximize overall
performance while minimizing energy consumption [20]. The backbone of a manycore is a network-
on-chip, which interconnects all cores and carries the memory traffic. Every core has private caches,
however, a manycore might have either a limited or no hardware cache coherence at all. Therefore, this
on-die interconnection network provides the programmer with efficient message passing. In order to
increase the memory bandwidth, a manycore processor is connected to multiple memory controllers [2].
These controllers provide both the private and the (non-coherent) shared memory of the cores.

All experiments that led to the results presented in the remainder were run on the machines listed
in Table 1. The Intel Xeon machine uses the QuickPath Interconnect for the MESIF cache coherence
protocol to access the distant socket L3 cache faster than the memory. The latency of access to the L1D
cache is 4 cycles, to the L2 cache is 10 cycles and to the L3 cache is between 45 and 300 cycles depending
on whether it is a local or a remote access [95]. The latency of accesses to the DRAM is from 120 to 400
cycles. The Sun Microsystems UltraSPARC T2 features 64 hardware threads running on 8 cores, thanks
to simultaneous multi-threading, at 1.165 GHz. This machine has 32 GB of memory and runs Solaris 10.

We used three different AMD machines all with AMD Opterons. For inter-socket communication,
these machines rely on AMD’s HyperTransport and feature the HyperTransport Assist [32] probe filter
that acts as a directory in order to reduce the cache-coherence traffic. The first AMD machine comprises
4 sockets of 16 cores with 128GB of memory, the second one has 8 sockets of 6 cores also with 128 GB
while the third one has 4 sockets of 4 cores with 4GB of memory. The AMD machines use HyperTransfer
with a MOESI cache coherence protocol for inter-socket communication, they have a slightly lower
latency to access L1 and L2 caches and a slightly higher latency to access the memory [29] than the Intel
Xeon machine.

The Intel Single-chip Cloud Computer (SCC) [92] is an experimental manycore platform that embeds
48 non-cache-coherent cores on a single die. Its architecture represents a 6× 4 bidimensional mesh of
tiles, each tile comprising two x86 cores. Every core has 32 KB of L1 cache, a separate 256 KB L2 cache,
and provides one globally accessible atomic test-and-set register. In addition, each tile has 16 KB of
SRAM, called the message passing buffer (MPB), for implementing message passing. Finally, the SCC
processor includes 4 memory controllers, with a total of 32 GB of memory. Every core uses a partition
of this memory as its local RAM and the remaining can be allocated as shared memory. An important
characteristic of the SCC is the lack of hardware cache coherence. The coherence of the shared memory
and the MPB must be handled in software. We use the SCC with the default performance settings:
533/800/800 MHz for core/mesh/memory frequencies, respectively.

4

Man. Processor Archi. #HW th. #cores #sockets Memory GHz Reference $ Coherence
AMD Opteron CISC 64 64 4 128 GB 1.4 [59] yes
AMD Opteron CISC 48 48 8 128 GB 2.1 [64] yes
AMD Opteron CISC 16 16 4 8 GB 2.2 [46] yes
Intel Xeon CISC 32 16 2 132 GB 2.1 [43, 59] yes
Intel SCC CISC 48 48 1 32 GB 0.53 [64] no
Sun UltraSPARC T2 RISC 64 8 1 32 GB 1.165 [59, 61] yes

Tilera TileGx RISC 36 36 1 32 GB 1.2 [64] tunable

Table 1: The multicore/manycore configurations used in our experiments, with the manufacturer, the
processor, the type of architecture, the number of hardware threads, cores and sockets, the memory,
the clock frequency, the publications where the experiments appeared and whether they support cache
coherence

The Tilera TILE-Gx36TM [138] is a manycore platform that offers both cache coherence and message
passing in hardware. The TILE-Gx36 features 36 identical processor cores (tiles) interconnected with
Tilera’s on-chip network. The TILE-Gx is a chip multiprocessor whose architecture is similar to the
one of Figure 2(b). Each tile runs at 1.2 GHz and is a full-featured processor, including integrated L1
(64 KB) and L2 (256 KB) caches. The TILE-Gx family incorporates Tilera’s DDCTM technology (dynamic
distributed cache) that implements efficient cache coherence. In short, the L2 caches of all tiles are
globally accessible, thus forming a distributed LLC that is kept consistent using a directory that is
partitioned across all tiles.

The environment can be thus modeled as a fully distributed system whose nodes, which represent
cores, are fully connected and can communicate with each other using asynchronous messages. We
assume that the communication links between nodes are reliable. In addition, we assume that nodes
are uniquely identified and non-faulty in that they respect their code specification and do not crash.
Note also that this model is sufficiently general to capture both homogeneous and heterogeneous
manycores [19].

1.5 Roadmap
We first introduce transactional memory as a programming paradigm that evolved from a research toy
to a mature technology ported to multicore and manycore computers and integrated into compilers
to help programmers design software that exploit the growing computational resources of modern
machines (§2). We however reason formally about the concurrency of transactional software and identify
limitations that are inherent to the classic transactional model (§3). To address this concurrency limitation
while guaranteeing consistency, we propose alternative transactional models and a new method to
design transaction-based data structures (§4). Finally, we envision comparing other synchronisation
techniques by extending our concurrency model to other synchronisation techniques, by generalizing
our method of designing transaction-based data structures to the method of designing concurrent data
structures and by measuring their performance (§5).

5

2. Transactional Memory: A Mature Technology

Transactional memory (TM) was proposed in the form of hardware support for concurrent programming
to remedy the difficulties of using locks, e.g., priority inversion, lock-convoying and deadlocks [89].
Since the advent of chip multiprocessors, the very notion of transactional memory has become an active
topic of research2. Hardware implementations of transactional systems [89] turned out to be limited
by specific constraints the programmer could only “abstract away” from using unbounded hardware
transactions. Purely hardware implementations are however complex solutions that most industrials are
no longer exploring. Instead, a hybrid approach was adopted by implementing a best-effort hardware
component that needs to be complemented by software transactions [39].

2.1 Integration in Programming Languages [56]

Programming with transactions shifts the inherent complexity of concurrent programming to the imple-
mentation of the transaction semantics that must be achieved once and for all. Thanks to transactions,
writing a concurrent application follows a divide-and-conquer strategy where experts have the complex
task of writing a live and safe transactional system with an unsophisticated interface so that the novice
programmer simply has to write a transaction-based application, namely, delimit regions of sequential
code, typically using a transaction{...} block.

Transactional memory executes in hardware, software, or as a combination of the two. Because
transaction block constructs are typically provided at the programming language level, transactional
memory support spans the complete computer stack, from applications to hardware, encompassing
language extensions, compilers, libraries, transactional memory runtime, and operating system. The
VELOX project3, a 3-year European research project starting in 2008 and entitled An Integrated Approach
to Transactional Memory on Multi and Many-core Computers, led to the development of a transactional
memory stack spanning hardware, compiler and application levels. As a scientific manager of this
project, my roles at EPFL and the University of Neuchâtel were to develop benchmarks to test the
integration of transactions at all the levels of the stack, to design a new transactional model and to
integrate the transaction language constructs in a Java compiler.

As Figure 1 illustrates, the transactional memory stack resulting from the VELOX project consists of
several basic components. To better exploit transactional memory, system libraries must be adapted
to execute speculatively inside transactions despite performing potentially unsafe operations (for
example, I/O). Where applicable, a developer can also replace locks with transactions within libraries
for better performance. The transactional memory runtime is the transactional memory integrated
stack’s central component. It implements the transactional memory’s synchronization logic. Operating
system extensions can help improve transactional memory’s performance for some tasks relating to the
system as a whole (scheduling, for example), in particular because transactional workloads coexist with
traditional workloads.

Language extensions and APIs are the most visible aspects of transactional memory for programmers.
Although programmers could add transactional memory support to applications using explicit library
calls or declarative mechanisms (such as annotations), this approach is not satisfactory for large systems.
This support relies on coding conventions, can lead to intricate code and is often error prone. At
the other end of the spectrum, automated source or binary code instrumentation work on simple
examples, but are difficult to extend to realistic code. Adding new language constructs with well-
defined semantics is the soundest approach for importing transactional memory support into existing

2http://www.cs.wisc.edu/trans-memory/biblio/list.html.
3http://www.velox-project.eu.

6

http://www.velox-project.eu

Figure 1: The transactional memory stack supports two families of programming languages: C/C++
and Java and the associated tool chains and libraries; the VELOX project has studied a set of crosscutting
research challenges to drive the design and development of the stack components

languages. Compiler support is necessary for implementing an efficient transactional memory stack in a
way that is transparent to the programmer. For instance, it lets us identify transactional load and store
operations on shared data and map them to the underlying transactional memory without requiring the
programmer to explicitly mark these operations. Typically, this transparency relieves the programmer
from the burden of instrumenting manually each read and write access within all the nested functions of
her transaction, which has two main disadvantages: (i) it makes the program error-prone due to manual
instrumentation, (ii) it limits optimizations as the compiler has no insight on the transaction access
pattern. In the VELOX project, we have developed programming language extensions, by concentrating
primarily on C/C++ and Java.

2.1.1 Transaction support in C/C++

The first attempts to support TM in production compilers led to the definition of dedicated transactional
language constructs in a C++ specification draft [141], resulting originally from the collaboration of Intel,
IBM and Sun Microsystems, acquired later by Oracle. This draft describes the constructs to delimit a
compound statement that is identified by the compiler as a transaction, in addition to resulting subtleties.
For several years, this specification had been reviewed and discussed by academics and industrials on
the tm-language mailing list4, for the sake of language expressiveness and compliance with existing TM

4http://groups.google.com/group/tm-languages.

7

http://groups.google.com/group/tm-languages

systems and other languages.
On the C/C++ side, my task in the VELOX project was to help Red Hat identifying bugs in the TM

branch of gcc5 before it could be released mainstream as part of v4.7. At that time, there existed other
compilers with TM support like the prototype DTMC6 [55] and the Intel R© C++ STM compiler [120]
(icc)7. In C, a transaction is simply delimited using the block

__tm_atomic{ ... }

while in C++ a transaction is delimited by a __transaction{ ... } block where __transaction{
(or equivalently __transaction[[atomic]]{) indicates the point in the code where the corresponding
transaction should start. The closing bracket } indicates the point in the code where the corresponding
transaction commit should be called. Within this block, memory accesses are instrumented by the
compiler to call the transactional read and writewrappers. More precisely, the binary files, produced
by the compiler, call a dedicated TM runtime library through an appropriate application binary interface
(ABI) specified in [96]. This ABI is used for both C and C++ and has been optimized for the Linux OS
and x86 architectures to reduce the overhead of the TM calls and to allow fast accesses to thread-specific
metadata shared by existing TMs.

Transaction nesting, which consists in enclosing a transaction block into another, is allowed and
the [[outer]] keyword is explicitly used to indicate that a transaction cannot be nested inside another.
Generally, it is not allowed to redirect the control flow to some point in the context of a transaction,
but exceptions can be raised within the context of transaction to redirect the control-flow outside the
transaction context by propagating the exception.

Irrevocable transactions do not execute speculatively and are used to execute actions that cannot
be rolled back once executed, this is typically necessary in cases where an action has some exter-
nal side-effects like I/O have. Attributes in C++1x-style indicate whether the transaction executes
speculatively as by default __transaction[[atomic]]{} or has to execute without being aborted
__transaction[[relaxed]]{}, say in irrevocable mode. Only irrevocable transactions can execute calls
with irrevocable side-effects, and for example

[[transaction_unsafe]] void fire_missile{};

declares a fire_missile function that can only be called in an irrevocable transaction. The attribute
[[transaction_safe]] void do_work{}; is especially used to indicate the opposite, that function
do_work does not have to be called in an irrevocable transaction and can execute speculatively as part of
a transaction prone to abort.

2.1.2 Transaction support in Java

On the Java side, we supported transactions by adding an atomic block construct to declare transactions
and a few extra keywords to handle operations such as explicit abort and retry. We have developed
and released an open source transactional compiler, TMJava8, that was used successfully for exception
handling with transactional memory [76]. TMJava processes Java source code with transactional
constructs atomic{...} and generates pure Java classes that will subsequently be instrumented by
the Deuce framework [99] to produce a transactional application whose conflicts are detected at the
granularity of the field, rather than the object itself.

Initially, annotations and bytecode instrumentation helped supporting TM in Java to instrument
transactional accesses either at load-time or statically, prior to execution. Multiverse9 and Deuce [99] are

5http://www.velox-project.eu/software/gcc-tm.
6http://www.velox-project.eu/software/dtmc.
7http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/.
8http://www.tmware.org/tmjava.
9http://multiverse.codehaus.org.

8

http://www.velox-project.eu/software/gcc-tm
http://www.velox-project.eu/software/dtmc
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://www.tmware.org/tmjava
http://multiverse.codehaus.org

two such JVM agents that instrument transactional accesses of the annotated bytecode resulting from a
concurrent program.

Multiverse distinguishes @TransactionalObject and @TransactionalMethod annotations that ap-
ply respectively to Java objects and methods. All instance methods of an annotated object are thus
instrumented transactions and annotated methods allow to specify which methods of a non-annotated
object are transactions. Additionally, annotating a method of an already annotated objects allows to
differentiate explicitly read-only methods from update methods using @Transactional(readonly =
true). Such differentiation is useful for the underlying TM to optimize the validation of a read-only
transaction that commits.

Deuce instruments methods annotated with the @Atomic keyword and uses a clear interface a TM
should provide: begin (namely init), read (namely onReadAccess), write (namely onWriteAccess),
commitmethods and additional beforeReadAccess and abort (namely rollback) methods. The current
distribution features classical transactions of state-of-the-art software TMs developed collaboratively
like TL2 [40], LSA [125], NOrec [36] but also E -STM [54] that combines classical and elastic transactions.

The aforementioned bytecode instrumentation frameworks could not consider an arbitrary com-
pound statement as a transaction because they were constrained by the annotation mechanism. As a
consequence, obtaining a close interaction between transactional memory and a compiler-generated
code such as exception handling was difficult, if not impossible.

To fully support TM in Java, we developed a precompiler, TMJava, that remedies this limitation by
extending Java with transactional blocks. More specifically, TMJava supports the __transaction{...}
language construct in Java and outputs a purely Java annotated program whose bytecode gets instru-
mented using a backend instrumentation framework like Deuce. TMJava has been instrumental to
apply TMs to coordinated exception handling in Java [76]. In this case, the failure atomicity guaranteed
by transactions is useful for recovering from an inconsistent state even in a concurrent environment.

Since March 2012, TM has been supported in probably the mostly deployed compiler collection, gcc,
and TMJava allows to add support for transactions in Java. Other languages support transactions as
well. For example, the Glasgow Haskell Compiler provides support for transactions in Haskell [81]
while Multiverse offers support for TM in Java and has been used in Scala [24]. While TM has been
integrated in a complete stack spanning software, operating systems and hardware, it generally requires
a software component to avoid the limitation of hardware and this software component induces
significant overheads. It is thus crucial to measure the inherent cost of software transactional memory to
understand whether it can truly leverage chip multiprocessors.

2.2 Leveraging Multicores [46]

A study on the performance of software transactions questioned their ability to leverage multicore
architectures [27, 28]. In particular, this study showed empirically that applications synchronized
with STM perform worse than the corresponding sequential applications without synchronization and
running sequentially, and concluded that STM is only a “research toy”. We revisited these results in the
light of a systematic research effort we conducted to understand the causes of performance variation in
concurrent executions. Our conclusions were surprisingly different from the observations of the initial
study as we concluded that the same applications synchronized with STM actually outperforms the
corresponding sequential applications in various settings on existing chip multiprocessors [46].

Many research papers have already reported that STM performance scale with the increasing number
of threads on various benchmarks [4, 5, 10, 26, 40–42, 47, 53, 78, 87, 103, 107, 108, 120, 125–127, 134, 136].
Most of this work, however, does not compare STM to sequential code, thus ignoring the fundamental
question of whether STM can be a viable option for actually speeding up the execution of applications
on multicore machines. The STAMP macro-benchmark suite was used to test STM performance against

9

sequential performance [26]. STAMP consists of 8 different applications, summarized at the top of
Table 2, that can be configured with a series of parameters to define real-world workloads. The evaluation
of STAMP showed that STM outperforms sequential code, but only using a hardware simulator. We
recently explored the speedup of synchronisation techniques over sequential performance, but without
evaluating compiler instrumentation or privatization techniques [59].

The previous study [28] was the first to focus on the comparison of STM performance against
sequential performance on real hardware. To this end, they used a micro-benchmark as well as three of
the STAMP transactional applications, (i) kmeans for partition-based clustering, (ii) vacation for booking
flights, rooms and cars, and (iii) genome for gene sequencing. All these experiments were performed
using up to 8 threads on a quad-core hyper-threaded CPU. After getting the details of experimental
settings from the authors, we noticed that their experiments did not use the default STAMP parameters.
By contrast, the configurations they used significantly increase the contention in the three tested STAMP
applications, by reducing the size of the shared data in kmeans and vacation and reducing the fraction
of read-only transactions in genome.

Overheads of software transactional memory. Software transactional memory is not a panecea. In
particular, there exist three forms of overheads:

1. Synchronization costs. Each read (or write) of a memory location from inside a transaction is
performed by a call to an STM routine for reading (or writing) data. With sequential code, these
accesses are performed by a single CPU instruction. STM read and write routines are significantly
more expensive than corresponding CPU instructions as they, typically, have to maintain book-
keeping data about every access. Most STMs check for conflicts with other concurrent transactions,
log the access, and in case of a write, log the current (or old) value of the data, in addition to reading
or writing the accessed memory location. Some of these operations use expensive synchronization
instructions and access shared metadata, which further increases their costs. All of this reduces
single-threaded performance when compared to sequential code.

2. Compiler over-instrumentation. To use an STM, programmers need to insert STM calls for start-
ing and ending transactions in their code and replace all memory accesses from inside transactions
by STM calls for reading and writing memory locations. This process, called instrumentation, can
be manual, when the programmers manually replace all memory references with STM calls, or
can be performed by an STM compiler. With a compiler, programmers only need to specify which
sequences of statements have to be executed atomically, by enclosing them in transactional blocks.
The compiler generates code that invokes appropriate STM read/write calls. While using an STM
compiler significantly reduces programming complexity, it can degrade performance of resulting
programs (when compared to manual instrumentation) due to over-instrumentation [27, 49, 149].
Basically, the compiler cannot precisely determine which instructions indeed access shared data
and hence has to instrument the code conservatively. This results in unnecessary calls to STM
functions, reducing the performance of the resulting code.

3. Transparent privatization. Making certain shared data private to a certain thread is known as
privatization. Privatization is typically used to allow non-transactional accesses to some data,
either to improve performance by avoiding costs of STM calls when accessing private data or to
support legacy code. Using privatization with unmodified STM algorithms (that use invisible
reads) can result in various race conditions [135]. There are two different approaches to avoiding
such race conditions: (1) a programmer marks transactions that privatize data, so the STM can
safely privatize data only for these transactions or (2) the STM ensures that all transactions safely
privatize data. We call the first approach explicit and the second transparent. Explicit privatization
places additional burden on the programmer, while transparent privatization incurs sometimes

10

Benchmark
suite

Workload description

STAMP bayes: bayesian networks structure learning
genome: gene sequencing
intruder: network intrusion detection
kmeans: partition-based clustering
labyrinth: shortest-distance maze routing
ssca2: efficient graph construction
vacation: travel reservation system emulation
yada: Delaunay mesh refinement

Synchrobench hash table implementation of a set
sorted linked list implementation of a set
skip list implementation of a set
red-black tree implementation of a set

STMBench7 read-dominated large synthetic benchmark with 10% write operations
read/write large synthetic benchmark with 60% write operations
write-dominated large synthetic benchmark with 90% write operations

Table 2: Benchmarks used for evaluating Software Transactional Memory on multicores

high runtime overheads [149]. In particular, with explicit privatization no transaction pays any
additional cost if it does not use privatization, while with transparent privatization all transactions
are impacted. This cost can be high, especially in cases when no data is actually being privatized.

2.2.1 Leveraging the concurrency of multicore platforms

We now present our methodology to re-evaluate the performance of software transactional memory on
top of multicore platforms. Our goal was to compare STM performance to sequential code using (i) a
larger set of benchmarks and (ii) a real hardware that supports higher levels of concurrency than the
previous study [28]. To this end, we experimented all ten workloads of the STAMP (v0.9.10) benchmark
suite [26], four workloads of an early version of the C/C++ Synchrobench benchmark suite [59], and
three different STMBench7 [74] workloads to evaluate STM performance on both large and small scale
workloads, as summarized in Table 2. We also considered two hardware platforms—the UltraSPARC T2
CPU machine and the 4 quad-core AMD Opteron x86 CPU machine we presented in Table 1.

Finally, we evaluated a state-of-the-art STM algorithm, SwissTM [47]. but also executed experiments
with TL2 [40], McRT-STM [127] and TinySTM [53] to confirm our observations. In addition, we were
provided with the Bartok STM [1, 82] performance results on a subset of STAMP by Tim Harris at that
time at Microsoft Research. SwissTM [47] is a word-based and time-based STM that uses a variant of
two-phase locking for concurrency control and invisible reads, similar to TL2 [40] and TinySTM [53].
It detects write/write conflicts eagerly to abort rapidly a transactions that is likely doomed to abort
but detects read/write conflicts lazily to limit unnecessary aborts. It also uses a shared counter for
contention management similar to Greedy [71] to aborts transactions that performed less work but
avoids short transactions to update this counter.

We implemented privatization support in SwissTM using a simple validation barriers scheme
described in [109]. To ensure safe privatization, each thread, after committing a transaction t0, waits
for all other concurrent transactions to detect the changes to shared data performed by t0. Basically,
the thread waits for all concurrent threads to commit, abort or validate before executing application
code after the transaction. None of the benchmarks we use requires privatization, which means that we
measure the worst case: namely, supporting transparent privatization only incurs overheads, without

11

STM Speedup Manual instr. Compiler instr. Manual instr. Compiler instr.
Explicit priv. Explicit priv. Transparent priv. Transparent priv.

Hardware Hw threads avg min max avg min max avg min max avg min max
Sun SPARC 64 9.1 1.4 29.7 - - - 5.6 1.2 23.6 - - -
Intel x86 16 3.4 0.54 9.4 3.1 0.8 9.3 1.8 0.34 5.2 1.7 0.5 5.3

Table 3: Summary of the STM speedups over sequential code on multicore architectures

the performance benefits of reading and writing privatized data outside of transactions as in [131].
We used Intel’s C/C++ STM compiler [120, 127] for generating compiler instrumented benchmarks,
however, Intel’s C/C++ STM compiler only generates x86 code thus we were not able to use it for our
experiments on SPARC. The compiler simplifies the job of a programmer who only has to mark atomic
blocks of code. To be exhaustive we consider all combinations of privatization and compiler support for
STM.

All of these experiments confirm our general conclusions that STM performs well on a wide range of
workloads. More precisely, our results, summarized in Table 3, show that STM with manual instrumen-
tation and explicitly privatization outperforms sequential code in all the benchmarks on both hardware
configurations, except high contention write-dominated STMBench7 workload on x86; by up to 29 times
on SPARC with 64 concurrent threads and by up to 9 times on x86 with 16 concurrent threads.

Compiler over-instrumentation does reduce STM performance, but does not impact its scalability.
With such an instrumentation and explicit privation, STM outperforms sequential code in all STAMP
benchmarks with high contention and in all but one micro-benchmark; by up to 9 times with 16 concur-
rent threads on x86. Support for transparent privatization impacts STM scalability and performance
more significantly, but with manual instrumentation and transparent privation, STM still outperforms
sequential code in all benchmarks on SPARC and in all but two high contention STMBench7 workloads,
one high contention STAMP benchmark and one micro-benchmark on x86. STM with manual instru-
mentation and transparent privatizations outperforms sequential code by up to 23 times on SPARC with
64 concurrent threads and 5 times on x86 with 16 threads. Even when both transparent privatization
and compiler instrumentation are used (and even though we used relatively standard techniques for
both), STM still performs well, outperforming sequential code in all but two high contention STAMP
benchmarks and one micro-benchmark (3 out of 14 workloads), by up to 5 times with 16 concurrent
threads on x86.

2.2.2 On the reasons why STM can be more than a research toy

We believe that the reasons for such considerable difference between STM performance in our experi-
ments and in the previous study [28] are three-fold:

1. Workload characteristics. After getting the details of experimental settings of [28] from the authors,
we noticed that their experiments did not use the default STAMP workloads. Configurations used
in [28] significantly increase the contention in all three STAMP benchmarks, by reducing the size
of the shared data in kmeans and vacation and reducing the fraction of read-only transactions
in genome. Speculative approaches to concurrency, such as STM, do not perform well with very
high contention workloads, which is confirmed by our experiments, in which STM has the lowest
performance in very high contention benchmarks (e.g., kmeans high and STMBench7 write). By
contrast, to evaluate the impacts of workload characteristics on the performance, we ran STAMP
workloads from [28].

2. Different hardware. We used hardware configurations with the support for more hardware threads—
64 and 16 hardware threads in our experiments compared to 8 in [28]. This lets STM perform

12

better as there is more parallelism at the hardware level to be exploited. Also, our x86 machine
does not use hyper-threading, a feature that consists of running multiple hardware threads on
a single Intel core, while the one used in [28] uses a quad-core hyper-threaded CPU. Hardware
thread multiplexing in hyper-threaded CPUs can degrade performance when compared to the
machine supporting the same number of hardware threads without multiplexing.

3. More efficient STM. We believe that part of the performance difference comes from a more efficient
STM implementation. The results of [47] suggest that SwissTM has better performance than TL2,
which has comparable performance to the IBM STM used in [28].

To summarize, our experiments show that STM indeed outperforms sequential code in most config-
urations and benchmarks, offering already now a viable paradigm for concurrent programming. These
results are important as they support initial hopes about the good performance of STM, and motivate
further research in the field.

In its software form, called STM [133], the transaction paradigm can be implemented without
requiring any specific hardware support: at least in principle. In practice, this is not entirely true because
STMs do typically assume multicore architectures and rely on an underlying cache-coherent system.

2.3 Leveraging Manycores [64]

Recently, manufacturers started producing manycore processors, with the idea of increasing the number
of cores placed on a single die while decreasing their complexity for enhanced energy consumption [19,
138]. Contemporary manycores comprise a range from few to a thousand cores [121]. This scale shift
motivated manufacturers to experiment with processors without cache coherence [92] and requires now
new programming techniques [30, 97]. The main reason to radically rethink or avoid cache coherence
is that it incurs core-to-core traffic [111] that gets amplified when multiple cores synchronize [23, 38].
This traffic boils down to performance drops in existing systems so that they require either drastic
synchronization changes [22, 51] or synchronization via message passing instead of shared memory [14]
for their performance to scale up even sometimes to only 32 cores. As existing STMs build on top
of shared memory and rely on the underlying cache coherence, they cannot be ported on these non-
coherent platforms. In this section, we present our solution, called TM2C, by presenting an extended
version of our original work [64].

2.3.1 A transactional memory for manycore platforms

We proposed a novel transactional-memory protocol, called TM2C, standing for Transactional Memory
for Many-Cores [64]. TM2C provides a simple transactional interface to the programmer of concurrent
applications and does not require a coherent memory interface from the architecture. TM2C is the
first TM system tailored for non-coherent many-core processors. TM2C capitalizes the low latency
of on-die message passing and the absence of coherence overhead by exploiting visible reads and
allowing the detection of conflicts whenever a transaction attempts to override some data read by
another transaction. Thus, TM2C anticipates the conflict resolution, otherwise deferred to the commit
phase of the reading transaction. TM2C can be seen as a distributed transactional memory (DTM), a
paradigm often used on top of real networks, but in contrast to the network-on-chip of manycores,
high latency networks typically require to pipeline asynchronous reads (inherently invisible) to achieve
reasonable performance. TM2C is weakly atomic [110] in that the transactionally accessed data should
not be concurrently accessed by non-transactional code.

13

cache

core

cache

core

LLC

cache

core

cache

core

LLC

cache

core

cache

core

LLC

cache

core

cache

core

LLC

m
em
ory

m
em
orym

em
or
y

m
em
or
y

(a) Four interconnected symmetric multi-processors (SMPs)

cache

core

cache

core

cache

core

m
em
ory

cache

core

cache

core

cache

core

cache

core

cache

core

cache

core

cache

core

cache

core

cache

core

m
em
or
y

(b) A chip multi-processor (CMP)

Figure 2: High-level architecture of (a) multicore and (b) manycore

Internals. First, we implemented a message-passing library for the communication in TM2C. This
library allocates two cache lines for every two-node combination 〈i, j〉. One is used as a buffer for x
sending messages to j while the other is used for the messages of j to i. The library does not use atomic
operations: the cores (or nodes) synchronize by spinning on a flag (one word of the cache-line buffer). To
send a message, a node checks the flag to see whether the buffer is free and when it is free, the node
writes the message and updates the flag to indicate that the buffer contains a message.

A transactional request, such as a read, corresponds to a library-based message to the node responsi-
ble for this address. This message includes the opcode of the request (e.g., TX_READ), some contention
management metadata, and the transactional memory address that the request wants to access. The
shared memory used by the TM can either be a memory region of the non-coherent shared memory that
the hardware provides, or a partitioned global address space (PGAS). In the case of non-coherent shared
memory, which is the default one, the DTM protects the shared memory by granting read or write locks
to transactional requests before they can proceed accessing the address. In the case of PGAS, each DTM
node, apart from being responsible of protecting a partition of the memory, also keeps the only copy of
the actual memory in its local memory. A non-conflicting transactional read includes the actual data
in the response. Similarly, a transactional write includes the data to be written in the request message.
Upon a successful commit of the transaction, the DTM nodes write these data, that have been buffered
on the server side, to the PGAS memory.

Reads. Transactional reads work with early-lock acquisition and therefore the system operates with
visible reads. Early acquisition suggests that a transaction has to acquire the corresponding read-lock
before proceeding to the actual read. The visibility of reads is an outcome of the early acquisition: every
transaction is able to “see” the reads of the others due to the read-locks. The motivation behind this
design decision is twofold. First, manycores provide fast message-passing mechanisms and tend to limit
the cache-coherence support. Taking this into account, the overhead of performing synchronous read
validation is acceptable. On a cluster, the higher messaging latency would make a synchronous solution
prohibitive. Second, visible reads are often problematic for affecting the cache behavior of the system
in traditional TM [36] because reading requires to acquire a lock which might translate into additional
cache misses [23]. In TM2C this is not the case due to the use of message passing rather than cache

14

coherence. The visibility of reads does not require changes to local memory objects (e.g., locks), instead
it uses a distributed lock service to acquire the corresponding locks by communicating with a remote
node. Additionally, visible reads are necessary for starvation-free contention management. Without
the read visibility, the write-after-read conflict detection is deferred to a validation phase typically just
before the commit. If a conflict is then detected, it is too late to perform conflict resolution because
the writing transaction has already committed the new values, i.e., it made the writes visible to other
transactions. As a result, the reader would be aborted, potentially leading to starvation.

Writes. Transactional write is the operation used to write to a memory object within the context of a
transaction. TM2C implements writes with lazy-lock acquisition and deferred writes10. Every write
operation is buffered and the locks are actually acquired once the commit phase is reached. We chose
lazy-lock acquisition for two reasons. If two transactions conflict, one has to write on the memory
object. Therefore, if a transaction holds a write-lock for a long time, it increases the probability that a
(read-after-write or write-after-write conflict might appear. Lazy write acquisition reduces the time that
the write-locks are being held. Moreover, deferred writes allow write-lock batching: requesting the
locks for multiple memory objects in a single message, which can significantly reduce the number of
messages and improve performance.

DTM servers. The DTM servers receive requests as library messages. The servers keep the trans-
actional metadata (i.e., the read/write-locks) in a sequential hash table maintained by each DTM:
read/write-lock entries are inserted using the requested address as the key. A transactional request
from node R, for address K, on node N proceeds with the following steps:

1. N accesses the hash table. If there is no existing entry for address K, an entry is inserted with the
requested access rights provided to R.

2. Otherwise, N checks whether the request of R generates a conflict with the existing access rights.
If it does not11, the entry of K is updated to reflect the access rights given to R.

3. Otherwise, N uses the contention manager (CM) to decide whether the transaction of R, or the
existing transaction(s) have to be aborted. If the CM decides to abort R, then the entry in the hash
table remains unchanged.

4. Otherwise, after the existing transaction(s) have been aborted, the entry is updated with the new
access rights.

Using a dynamic data structure instead of a fixed array of metadata has an important benefit.
TM2C is able to support byte-level granularity for conflict detection, because the size of the hash-table
structure does not depend on the granularity, but only on the number of entries that have been inserted.
Accordingly there is no overhead if the granularity is a byte, a cache line, or a whole page.

Dedicated resources vs. multitasking with run-to-completion. In TM2C, the application and the
distributed transactional memory (DTM) services of TM2C are independent: the application executes
transactions by requesting data accesses, while the DTM decides whether an access can be granted.
Both services are fully distributed and could either both be deployed on the same cores or nodes, all
exploiting each node but at different time slots, or deployed on distinct nodes, concurrently exploiting
different nodes. The former deployment strategy thus leads to multitasking while the latter leads to
dedicating cores to services.

10The strategy of deferring writes is also known as write-back.
11The only such case is when K is being read and the new request is a read as well.

15

Our initial design used multitasking to allow both the application and the DTM system to run on
every node. A user-space library, called libtask12, was used for this implementation. We preferred
libtask over POSIX threads because it offers significantly cheaper context switches. Libtask is a simple
coroutine library that gives the programmer the illusion of threads, but the operating system sees only
a single kernel thread. The multitasking approach suffers however from an important limitation: the
scheduling of node j can potentially affect the execution of node i, where j , i. Node j is executing some
application code while node i tries to complete a service request that involves node j. The request is
not served until j completes its application computation. As a result, there is an additional delay that
increases the latency of the service operation.

As a manycore provides a large number of simple cores, assigning a dedicated role to each core better
exploits parallelism. As a follow-up to this observation, we engineered a second deployment strategy in
which disjoint sets of cores are dedicated to hosting distinct services. This solution overcomes the issues
of multitasking by avoiding timing dependencies between the application and the DTM. The nodes
dedicated to the same service (e.g., DTM) do not need to communicate with each other. This leads to a
complete decoupling among the DTM and the application cores, respectively.

2.3.2 Managing contention in a distributed environment

Implementing contention management on top of a manycore is a difficult problem because it is hard to
guarantee that every transaction will eventually commit if the memory is not coherent. Existing CMs,
designed for multicores, are generally centralized [71,128,129] and are not applicable to message passing
as they either rely on a global counter (e.g., Greedy, PublishedTimestamp, Timestamp), randomization
(e.g., KinderGarten), or on constantly changing priorities that become inaccurate when conflict resolution
gets propagated in an asynchronous system (e.g., Eruption, Karma, Polka).

Take the contention manager Greedy that we choose for multicore (§§§2.2.1) as an example. Greedy
prioritizes transactions using timestamps, which represent the times at which transactions started. Upon
a conflict, the youngest conflicting transactions are aborted in favor of the oldest one to guarantee that
every transaction commits eventually, possibly after having aborted several times. In a distributed
system, the lack of a global clock prevents us from implementing Greedy as different nodes of the
system do not have a way of taking consistent timestamps. Typically, the transaction with the most
advanced clock might obtain a lower priority even though it starts first.

Now, consider a message passing variant of Greedy, namely Offset-Greedy, that estimates timestamps
based on time offsets. When a transaction starts, it acquires a timestamp tstart using the local clock of the
node on which the transaction executes. Offset-Greedy then takes the following steps whenever a node
performs a transactional operation:

1. The transaction takes a new local timestamp tcurrent and calculates the time offset since the begin-
ning of the transaction (toffset = tcurrent − tstart).

2. The transaction sends the request to the responsible core running the distributed transactional
memory algorithm, piggybacking toffset.

3. The distributed transactional memory algorithm takes a local timestamp t′current and uses the toffset
from the request to estimate the timestamp of the transaction according to its own local clock
(testimate = t′current − toffset).

4. The request is normally processed.

In the presence of conflicts, Offset-Greedy uses the estimated timestamps to order transactions (as
Greedy does). However, Offset-Greedy does not guarantee starvation-freedom. The offset calculation

12http://swtch.com/libtask/.

16

http://swtch.com/libtask/

technique does not take into account the message delays in computing the offset. As the DTM load
impacts the message delay, nodes can obtain inconsistent views of timestamps. As a result, if a conflict
emerges concurrently on two DTM nodes with inconsistent views, both transactions might be aborted
by Offset-Greedy. This scenario could lead to livelocks where transactions repeatedly abort each other.

We propose a distributed contention manager, FairCM, that guarantees that every transaction
eventually commits. Visible reads allow us to use contention management in a way similar to STMs, yet
fully decentralized, to guarantee that all transactions eventually commit.

FairCM is fair regarding the effective transactional time of each node. FairCM prioritizes the
transactions using the cumulative time spent on successful transaction attempts. Upon conflict, the
node that has spent most time is aborted. If two nodes have the same number of committed transactions,
then their identifiers are used as tie-breakers. So, if a transaction proceeds as follows:

Start→Abort1 →Restart1 →Abort2 →Restart2→Commit

then only the duration from Restart2 to Commit will be added to the cumulative time. Upon a conflict,
the transaction on the node with the lowest cumulative time has the highest priority. FairCM guarantees
that every transaction eventually commits. Note that in the unlikely case where two nodes have the
same effective transactional time, the nodes’ ids are used as tie-breakers to deterministically resolve the
conflict.

Evaluation on multicores and manycores. We experiment with TM2C using a hash table and a linked
list benchmarks from an early version of C/C++ Synchrobench [59] as well as on a bank and a MapRe-
duce synthetic applications. The bank application uses transactions for transferring and computing
the balance of bank accounts. Bank was first used to evaluate shared memory STMs [87]. It features
potentially long read-only transactions summing the amount of all 1024 bank accounts and short update
transactions accessing only a couple of bank accounts to transfer amounts. We designed the MapReduce
application to take a text file as the input and counts the number of occurrences of each letter. TM2C
takes the role of allocating chunks of the file to cores and of updating the total statistics atomically, thus
removing the need for a centralized master node.

We used three architectures for our experiments, two manycore and one multicore architectures:
the 48-core Intel SCC, the 36-core Tilera TileGx and the 48-core AMD Opteron depicted in Table 1. We
observed that the number of nodes that must be dedicated to the DTM service heavily depends on
the considered workload. We evaluated the performance variation of the bank application. The peak
performance on the TileGx occurs around 12 service cores whereas the SCC and the Opteron seem
to have optimal performance around 16 cores. Interestingly, these numbers represent 1

3 of the total
number of cores present on each machine: 12 out of 36 on the TileGx and 16 out of 48 on the SCC and
the Opteron. As a result of these observations, we set TM2C to dedicate by default twice as many cores
to the DTM service as to the application service.

To capture the overall benefits of writing concurrent programs with TM2C on many-cores, we
compare the performance of the transactional code against the performance of the bare sequential code
on the 48-core SCC. For the MapReduce benchmark we dedicated only one core to host the DTM service
while the remaining 47 cores executed the application. In this case, TM2C outperforms sequential code
by up to 39 times for 4 KB chunks on an operating system with a 4 KB-sized page. On the Synchrobench
hash table benchmark varying from 20% to 50% updates, the transactional implementation outperforms
sequential code by 30 times. Moreover, as writes to the shared memory are more expensive than reads,
we observed that a higher update ratio would lead to lower performance but the performance drop of
the sequential version using a single memory controller is more important than TM2C that leverages all
memory controllers, thus mitigating the penalties induced by the write operations.

We also compared TM2C on the SCC, the TileGx and the Opteron using the bank application, the
hash table, and the linked-list benchmarks. Overall, all results closely follow the trends of the latencies

17

of message passing we observed on these platforms. In other words, the TileGx results outperform the
Opteron results that outperform, in turn, the SCC results. When comparing a centralized variant of
TM2C that exploits multicore cache coherence, we could observe that the performance on AMD Opteron
would be higher than the one on Tilera TileGx. We also observed using these two TM2C variants that, as
expected, a traditional TM implementation seems more suitable for cache-coherent multicore platforms
like the AMD Opteron whereas a DTM seems more suitable for manycore platforms like the Tilera
TileGx, as it provides similar performance under normal contention and significantly better performance
and scalability under high contention.

To conclude, even though we did not use any compiler support for distributed transactional memory,
TM2C demonstrates that TM can provide a simple transactional interface to programmers, guaranteeing
the eventual successful termination of all their transactions, while hiding the complex architectural
communication features, like caches, off-chip interconnect, or network-on-chip. In addition, a TM can
leverage the message passing latency of the underlying platform to outperform the bare sequential code
(running on a single core) and to scale with the number of cores. Its portability allows it to be deployed
on non-cache-coherent machines with limited support of atomic operations (e.g., test-and-set). Its
performance can scale with the level of concurrency of manycore machines to significantly outperform
sequential performance.

While the development of a transactional memory can be quite intricate depending on the underlying
support (cache-coherence, hardware message passing), when it is properly developed, it simplifies the
task of writing a concurrent program by simply requiring the programmer to write sequential code and
identify regions of code that should execute atomically, the transactions.

2.4 Conclusion
TM appeared in the 90’s, started becoming a technology following the hype cycle when multicores were
announced by manufacturers around 2003, and seems to have reached maturity today. The advent of
multicores served as a technology trigger for TM to get rapid momentum from 2003, when the first
dynamic STM [88] was proposed, and to 2008, when it seemingly reached a peak of inflated expectations.
During that period the first edition of a book on the topic was published [79], the first workshop on the
topic, the ACM SIGPLAN Workshop on Transactional Computing13, started, a major correctness criterion for
TM was defined [72] and the first hybrid TMs combining hardware and software were proposed [37,102].
From 2008 till 2010, skepticism appeared in a through of disillusionment, first when researchers called
STM a “research toy” [27], then with the cancellation of the manufacturing project of the Sun Rock
processor with HTM support and finally with the cancellation of the Microsoft STM.NET project aiming
at supporting STM in .NET.

Since 2010, we have followed a phase of enlightenment with the first transactional memory stack [56],
the TM support in gcc v4.7 in 2012, new performance evaluations showing that STM could, afterall,
leverage multicores [46] and the appearance of Hardware Transactional Memory in the IBM Blue-
Gene/Q [142]. It seems now that we have reached a plateau of productivity, as transactional memory is
available to the large public through the Intel Haswell and the IBM Power processors [116]. Although
transactional memory is now a well-established programming paradigm, it is not a panacea. In particu-
lar, we illustrate in the sequel the concurrency limitation inherent to transactional memory (§3) and the
solution we proposed to address it (§4).

13http://transact2015.cse.lehigh.edu/.

18

http://transact2015.cse.lehigh.edu/

3. Identifying Concurrency Limitations

In this section we show that in their classic form, transactions prevent us from extracting the same
level of concurrency possible with more primitive synchronization techniques on some workloads. Not
surprisingly, researchers have been exploring relaxations of the classic transaction model [106, 118, 124]
that enable more concurrency. Nevertheless, it proved challenging to do so while keeping the simplicity
of the original model, namely, its ability to (i) preserve the original sequential code and (ii) compose
applications devised by different programmers, possibly with different skills. Perhaps more surprisingly,
we show here that this limitation is actually inherent to the transaction concept but not to the way it is
used.

3.1 Measuring Schedule Acceptance [65]

We distinguish the notions of type and its implementation that relies typically on a separate data
structure. We then define the concurrency metric of an implementation as the amount of schedules it
accepts. This definition, inspired by the analysis of parallelism in database concurrency control [84, 148]
is the key to compare the concurrency obtained when synchronizing the same sequential code with
different techniques. This work extends our previous notion of input acceptance, originally designed
for transactional memory [65], and reuses some of the notions we introduced in [66].

3.1.1 Preliminaries

System. We assume an asynchronous shared-memory system in which n processes p1, . . . , pn, where
n ∈ N, communicate by invoking operations on objects of some abstract type so that each operation
executes a sequence of accesses on shared base objects before returning their response [85]. An access,
a ∈ Φ on a base object x is either a read r(x) that returns the value of x, a write w(x, ∗) that returns ok
or a read-modify-write rmw(x, ∗, ∗) that returns true or false.

Types. A type τ is a tuple 〈Π, Γ, Q, ι, ∆〉where Π is the set of possible operations, Γ is the set of possible
returned values, Q is a set of states, ι ∈ Q is an initial state and ∆ ⊆ Q×Π×Q× Γ is a transition that
given a state and an operation determines the possible operation responses and resulting states. A τ′-set
type is a type S with operations Π = {insert(e ∈ τ′), delete(e ∈ τ′), contains(e ∈ τ′)} that apply to
the states Q = (τ′)∗ of a set of object of some given type τ′. (We use the subscript τ to refer to the sets
Π, Γ, Q, ∆ and initial state ι of the specific type τ, e.g., Πτ) The sequential specification of a set type S is
defined by its transitions {q, π, q′, r} ∈ ∆ as depicted in Table 4. Later we will present other types like a
snapshot type (§§§3.3.2) and a dictionary type (§§§4.3.2).

π insert(e) delete(e) contains(e)
e ∈ q r = false∧ q′ = q r = true∧ q′ = q \ {e} r = true∧ q′ = q
e < q r = true∧ q′ = q ∪ {e} r = false∧ q′ = q r = false∧ q′ = q

Table 4: The sequential specification of the τ′-set type with q the current state, π =
{insert(e), delete(e), contains(e)}, e ∈ τ′, r the returned value and q′ the resulting state

Implementations. A sequential implementation Sτ of a type τ is a mapping from Πτ to a set of possible
sequences of accesses such that for all π ∈ Πτ we have Sτ(π) = {〈σ,≺σ〉}. The reason why each

19

operation π is not mapped to a single sequence is because the sequence of accesses depends on the state
of the type when the operation executes. A concurrent implementation Cτ of a sequential implementation
Sτ of type τ is a mapping S(Πτ) 7→ C(S(Πτ)) where for all seq = 〈σ,≺σ〉 ∈ S(Πτ), Cτ(seq) = 〈γ,≺γ〉
such that σ ⊆ γ and ≺σ⊆≺γ. Intuitively, function Cτ has a set of accesses acc(Cτ) = γ that consists of
accesses α and other accesses γ \ α to metadata based objects used to prevent data races upon execution
of the concurrent implementation. During an execution of a concurrent implementation Cτ , an access in
σ returns a value in ret(Cτ), a metadata access in γ \ σ returns a value in ret(Cτ)∪ {⊥} and an operation
returns value in Γτ ∪ {⊥} because both metadata accesses and operations can return a special value ⊥
indicating that the access or the operation aborts.

3.1.2 Schedules and concurrency

We consider three types of events, the invocations inv(Πτ) of operations Πτ as well as their responses
coupled with their corresponding returned values, resp(Πτ)× (Γτ ∪ {⊥}), and the base object accesses
of these operations coupled with their returned values acc(Cτ)× (ret(Cτ) ∪ {⊥}). We assume that all
accesses execute instantaneously, hence we do not distinguish their invocation from their response and
two accesses cannot be concurrent.

Executions. An execution α is a sequence of events α = 〈E,≺α〉. We assume that executions are well-
formed: (i) no process invokes a new operation (resp. access) before the previous operation (resp. access)
returns, and (ii) no operation returns before all its accesses return or some of its accesses returned ⊥, in
which case the operation returns ⊥.

Let α|pi (resp. α|Π) denote the subsequence of an execution α restricted to the events of process pi
(resp. events of operations π ∈ Π). An operation is complete in α if its invocation event is followed by a
response event. Execution α is complete if every operation is complete in α. The committed execution of
α is a complete execution α′ = committed(α) such that for any operation π ∈ α, the returned value of π
is ret(π) , ⊥ (or equivalently for any event a ∈ α, its returned value is ret(a) , ⊥).

Correctness. Executions α and α′ are equivalent if for every process pi, α|pi = α′|pi. An operation π
precedes another operation π′ in an execution α, denoted π →α π′, if the response of π occurs before the
invocation of π′. Two operations are concurrent if neither precedes the other. An execution is sequential if
it has no concurrent operations. A sequential execution α is legal if for every object x, every read of x in
α returns the latest written value of x.

Let a history be a committed execution. A complete history H is linearizable with respect to an object
type τ if there exists a sequential high-level history S equivalent to H such that (i)→H⊆→S and (ii) S is
consistent with the sequential specification of type τ. A history H is linearizable if it can be completed
(by adding matching responses to a subset of incomplete operations in H and removing the rest) to
a linearizable history [12, 91]. We only consider correct implementations, hence all the histories of a
concurrent implementation we consider are linearizable with respect to the type τ.

Schedules. The schedule σ = 〈Eσ,≺σ〉 is exported by an execution α if it is the sequence of the committed
execution α′ = committed(α) = 〈Eα′ ,≺α′〉without returned values. More formally, we define a projection
p from all events Eα′ to the events of Eσ such that if e ∈ Eα′ , (i) either e is an invocation and p(e) = e ∈ Eσ

or (ii) e = 〈r, v〉 is a response/value pair and p(e) = r ∈ Eσ but v < Eσ and the order of events
is preserved under the projection: for all pairs of events e, e′ ∈ Eα′ we have e ≺α′ e′ if and only if
p(e) ≺σ p(e′).

Concurrency. We say that an implementation accepts a schedule σ, if it contains a complete execution
α that exports schedule σ. Otherwise we say that the implementation rejects the schedule σ. We measure

20

the amount of concurrency provided by a concurrent implementation C as the set of schedules it accepts.
More precisely, we say that an implementation C allows for more (resp. strictly more) concurrency than
another implementation C′ if the amount of schedules exported by the executions of C is larger (resp.
strictly larger) than the amount of schedules exported by the executions of C′.

Our concurrency definition helps comparing multiple implementations of the same data type. It
builds upon the notion of input acceptance, in that the concurrency measures the variety of schedules
imposed by the environment that an implementation accepts. Note that concurrency differs from
permissiveness [70]. In fact, a multiversion transactional memory achieves high permissiveness and
low concurrency if it accepts a single schedule but produces many histories by randomly choosing
return values among the correct ones. Based on our concurrency metric, we can now compare a
transaction-based implementation and a lock-based implementation of a list-based set.

3.2 Rejected Concurrency Schedules [60]

In this section, we show the concurrency limitation of transactions by comparing them to fine-grained
locks. We propose an example of a schedule that is accepted by a lock-based implementation but cannot
be accepted by any transactional memory algorithm.

Algorithm 1 Sequential and concurrent (transactional and lock-based) implementations of contains

1: seq-contains(val)p:
2: int result;
3: node ∗prev, ∗next;
4: curr = set→head;
5: next = curr→next;
6: while next→val < val do
7: curr = next;
8: next = curr→next;
9: result = (next→val == val);

10: return result;

11: tx-contains(val)p:
12: int result;
13: node ∗prev, ∗next;
14: curr = set→head;
15: transaction {
16: next = curr→next;
17: while next→val < val do
18: curr = next;
19: next = curr→next;
20: result = (next→val == val);
21: }
22: return result;

23: lk-contains(val)p:
24: int result;
25: node_lk ∗prev, ∗next;
26: lock(&set→head→lock);
27: curr = set→head;
28: lock(&curr→next→lock);
29: next = curr→next;
30: while next→val < val do
31: unlock(&curr→lock);
32: curr = next;
33: lock(&next→next→lock);
34: next = curr→next;
35: unlock(&curr→lock);
36: result = (next→val == val);
37: unlock(&next→lock);
38: return result;

3.2.1 Using transactions or locks to synchronize a list-based set

To make our point that the expressiveness of transaction is limited we consider a set type τ imple-
mented with a sorted linked list data structure, also called a list-based set, and more precisely its
contains ∈ Πτ operation. Consider Algorithm 1 that depicts a contains operation of a sequential
implementation (seq-contains operation on the left) and two concurrent implementations: one based
on transaction (tx-contains in the middle), the other based on locks (lk-contains on the right). We
omit the pseudocode of operations delete and insert of each implementation but assume that each
sequential operation is not synchronised, each transactional operation is simply enclosed in a trans-
action and each lock-based operation uses hand-over-hand locking or lock-coupling [16] as described

21

elsewhere [90, Ch.9].

process p1 process p2 process p3
inv(contains(4))

r(h)
r(x)

inv(insert(1))
r(h)
r(x)
w(h)

resp(insert)
inv(insert(4))

r(h)
r(n)
r(x)
r(z)
r(t)
w(z)

resp(insert)
r(z)
r(m)

resp(contains)

Table 5: A typical list-based set schedule where three processes execute contains(4), insert(1) and
insert(4), respectively, on a set type with initial state {2,3}; this schedule is rejected by transaction-based
concurrent implementations Cτ whereas it can be accepted by a lock-based concurrent implementation
C′τ

A transaction delimits a region of accesses to shared locations and protects the set of locations that is
accessed in this region. By contrast, a (fine-grained) lock generally protects a single location even though
it is held during a series of accesses. This is a crucial difference between transactions and locks in terms
of expressiveness and concurrency. Table 5 depicts a hypothetical schedule exported by the execution of
a concurrent list-based set implementation, where time increases from top to bottom. This schedule
could result from a sorted linked list implementation of an integer set type with initial state {2, 3} and
processes p1, p2 and p3, executing a contains(4), an insert(1) and an insert(4), respectively, of a
concurrent implementation Cτ . (We omitted some linked list accesses in Figure 1 for the sake of clarify
in the presentation.)

Process p1 starts first by reading the two first nodes of the sorted linked list, the head h and the node
x with value 2 and keeps the address of the tail node t. Now, process p1 gets preempted and process
p2 reads the two first nodes, h and x, before realizing that value 1 should be inserted between these
two nodes. Then, p2 allocates a new node n with value 1 whose successor is set to node x with value 2.
These are private steps of p2 not depicted here for simplicity as the new node n is not reachable from
the linked list yet. The new node n becomes reachable only after p2 writes h for the head’s successor to
points to n. After p2’s insertion returns, process p3 traverses the list by reading all the nodes, including
the new node n, until the tail node t, and inserts a new node, say m, with value 4 between z and t.
Finally, process p1 reads the value of z at the address it stored previously, reads m and t, and returns as
soon as it observes that it reached the end of the list.

22

3.2.2 Schedule acceptance depending on synchronization

While Table 5 shows only a schedule without depicting the input or returned values, we can easily
observe that the two insertions successfully added new nodes and the contains succeeded in finding
value 4, hence they should all return true. We can deduce also that at the end of this execution the data
structure is a sorted list of nodes h, n, x, z, m, t. Given the values we assumed, the final state of the set
this list implements is {1, 2, 3, 4}. We can thus represents a history (where we omit returned value) as:

H = r(h)1, r(x)1, r(h)2, r(x)2, w(h)2, r(h)3, r(n)3, r(x)3, r(z)3, r(t)3, w(z)3, r(z)1, r(m)1.

Finally, assuming that every read on a location returns the last written value at that location, we can
conclude that the history is linearizable as there exists an equivalent sequential history S that respects
the sequential specification of the set type where the insert(1)2 returns true, then the insert(4)3

returns true and finally the contains(4)1 returns true as well.
Interestingly, the schedule exported by the execution ofH cannot be accepted with a classic (opaque)

transactional memory. Consider the contains operation of the transaction-based concurrent implemen-
tation Cτ depicted in Figure 1 and let π1 denote the transactional contains of process p1, and let π2 and
π3 denote the transactional insert of p2 and p3, respectively. Operation π1 starts before reading the
next pointer of the head node. Hence when the next pointer of the head node gets updated by π2, then
a conflict is detected between the two transactions of the two first processes. Finally, π3 writes the next
pointer of z that gets then read by π1, hence there is another conflict that should be detected between
π3 and π1. The two conflicts indicate that in a possible equivalent sequential history S we would need
π1 →S π2 and π3 →S π1. Finally, as π2 →H π3, we should have π2 →S π3 that leads to a contradiction,
meaning that there cannot be any equivalent sequential execution.

3.3 No One-Size-Fits-All TM Algorithm [77]

It is important to notice that the aforementioned expressiveness limitation is not related to a particular
consistency criterion but to the transaction abstraction itself. We used a common consistency criterion,
called opacity, offered by many transactional memory algorithms, to show this limitation, however,
other transactional memories offer different semantics. In this section, we illustrate our results [77]
obtained while testing the semantics of existing STM libraries with our unit-testing framework, called
TMunit [75].

3.3.1 Some transaction semantics

Here are examples of correctness properties that are often targeted by transactional memories:

• Serializability is a consistency criterion [123] that has been extensively used to characterize trans-
actional database systems. Serializability requires that any execution of the system, usually
involving transactions with reads and writes, must appear equivalent to an execution where all its
transactions (i.e., corresponding sequences of reads and writes) would have executed sequentially.

• Linearizability was defined for non-transactional operations of various types [91]. The application
of linearizability to transactional operations, formally defined earlier (§§§3.1.2), requires that
all executions restricted to committed transactions must be equivalent to an execution where
transactions would be executed sequentially and where non-concurrent transactions must be in
the same (real-time) order.

• Opacity aims at preventing transactions from accessing inconsistent states that would result in
division-by-zero errors or infinite loops [72]. Opacity requires that all committed and aborted
transactions appear as if they were executed atomically in an order satisfying the real-time

23

order (like linearizability applied to reads and writes), this ordering requirement is often called
strictness [18]. Opacity also requires that all transactions including aborted ones access only
consistent system states at any time.

• Single global-lock atomicity (SGLA) is a criterion simple to reason with as it describes the se-
mantics of transactions to be as if every transaction acquires a single global lock for its whole
execution [113].

• Virtual world consistency requires that all committed transactions appear as if they were executed
atomically in an order satisfying the order of non-concurrent transactions and that all transactions
including aborted ones access only consistent system states at any time. Hence, this criterion is
weaker than opacity as it allows the set of all transactions (aborting and committing) to not appear
as executed atomically, as long as the subset of committed transactions does so [94].

We tested a series of 6 distinct transactional memories against semantic tests that outlined discrep-
ancies among the transactional memories [77]. Interestingly, we noticed that transactional memory
algorithms may be overly conservative due to their inherent design, because they are object-based hence
protecting with a granularity defined by the size of the considered objects. Others, like SwissTM [47],
would be overly conservative in some situations to obtain higher performance in other situations by
having a lock protecting multiple memory locations, hence being a source of false sharing. Some, like
TL2 [40], would abort in case of a write access on x concurrent with a read-only transaction that reads the
freshly written value of x, even though this may not be necessary. Finally, we confirmed that WSTM [78]
violates opacity and virtual-world consistency: Since opacity and virtual-world consistency both require
that linearizability of reads and writes be satisfied and that transactions do not interfere with aborting
transactions whereas WSTM is known to let a write interfere with an ongoing reading transaction.

3.3.2 The inherent limitation of transactions

Even though existing transactional algorithms offer different semantics, it is noteworthy that our expres-
siveness limitation is not tied to a particular consistency criterion but actually stems from the transaction
syntax regardless of its semantics. Consider a snapshot type [6] whose transitions {q, π, q′, r} ∈ ∆ are
depicted in Table 6 rather than a set type in the execution example of Table 5. A τ′-snapshot type exports
an update(i, e) operation that writes value e ∈ τ′ at the element at index i ∈ N and a scan operation
that collects an instantaneous view of all the values.

π scan() update(i, e)
q r = q ∧ q′ = q r = ok∧ q′[i] = e ∧ ∀j , i : q′[j] = q[j]

Table 6: The sequential specification of the τ′-snapshot type with q the current state, π =
{scan(), update(i, e)}, i ∈N, e ∈ τ′, r the returned value and q′ the resulting state

Replace accordingly in Table 5 the contains operation by a scan operation and the two insert
operations by two update operations. (Note that one can use a linked list to implement a snapshot
type simply by considering that each node maintains an index i and an associated value e, the update
may add a new node or replace the value of an existing node and the scan returns the values of all the
indices present in the list as we will describe later in the right-hand side of Algorithm 2.) This resulting
new execution α′ is not correct: the π1 = scan observes the π3 = update of p3 but not the π2 = update
of p2 whereas the latter completes before the former starts. In other words, we have a historyH where
π2 →H π3. Hence the condition (1) of linearizability (§§§3.1.2) should ensure instead that the changes
of p2 be visible from the scan operation or, said differently, that π2 →S π1 in a supposedly equivalent

24

sequential history S. This leads to a contradiction as the same sequential history should have π3 →S π1,
hence H violates linearizability.

To conclude, the crux of the problem stems from the fact that classic transactions are oblivious
to the operation they protect: they have to adopt an overlying conservative technique to protect an
operation by enclosing it while ignoring the semantics corresponding to this operation. Example of how
transactions can be split within an operation will be given later (§§4.3).

3.4 Conclusion
The aforementioned concurrency limitation is inherent to the classic transaction model. In particular,
this problem cannot be addressed simply by relaxing the consistency criterion a particular transactional
memory ensures because this same transaction memory would not be usable to implement any method
that requires a stronger consistency criterion. As we explore below, an alternative transaction model
with a combination of transactions of different forms can be designed to bypass this limitation while
retaining the simplicity of transactions (§§4.1, §§4.2). Although this alternative model seems necessary
to achieve good performance, we will see that this may not be sufficient and it might be necessary
sometimes to rethink the application itself (§§4.3).

25

4. Enhancing Concurrency

One can view the concurrency limitation of transactions as the price of bringing concurrency to the
masses and making it possible for average programmers to write parallel programs that use shared data.
However, some programmers are concurrency experts and these might find it frustrating not to be able
to use their skills for enhancing performance. We show that this price can be avoided by combining
multiple transaction forms of distinct semantics.

4.1 Relaxing the Transactional Model [54]

As we described with the example of transactionalizing a contains and a scan, the crux of the limitation
of transaction is that they cannot exploit the semantics of the application. In this section, we present
our elastic transaction model that we proposed to take the semantics of some applications, like search
structures, into account. While not presented here, we obtained better performance than with the
classic model in different programming languages (C/C++ and Java) and on various architectures
(our manycore SCC [64], on our UltraSPARC T2 [61] and on our 16-core AMD machine [54]). Upon
conflict detection, an elastic transaction might drop what it did so far within a separate transaction that
immediately commits, and resumes its computation within a new transaction, which might itself be
elastic. Just like for a regular transaction, the programmer must simply delimit the blocks of code that
represent elastic transactions.

4.1.1 The elastic transaction model

Differently from most transaction models, during its execution, an elastic transaction can be cut (by the
elastic transactional memory) into multiple regular transactions, depending on the conflict it encountered
at runtime. More specifically, upon conflict detection an elastic transaction decides whether it can cut
itself; if so it commits the past accesses as if they were part of a regular transaction before resuming into
a continuation transaction until it encounters a new conflict or commits. A cut is prohibited if during
the interval where the elastic transaction executes a pair of consecutive accesses on two locations, these
two locations get individually updated. Only in this rare case does the elastic transaction abort. In other
cases, a cut could cause the elastic transaction to execute a constant number of additional accesses before
committing the past ones. In a sense, these few extra accesses can be viewed as a partial roll-back that is
the price to pay to avoid aborting the elastic transaction.

Consider the previous example (Table 5). The programmer, say Alice, has simply to label the
transaction of the contains with the keyword “elastic” so that the schedule of Table 5 gets accepted
by the list-based set implementation. Then, the aforementioned historyH (§§§3.2.2) can be viewed as
another historyH′ that results from the combination of several pieces:

H′ = r(h)1, r(x)1
s1

, r(h)2, r(x)2, w(h)2, r(h)3, r(n)3, r(x)3, r(z)3, r(t)3, w(z)3, r(z)1, r(m)1
s2

.

In H′, the elastic transaction of the contains operation has been cut into two transactions s1 and s2.
Crucial to the correctness of this cut, no two modifications on x and z have occurred between r(x)s1 and
r(z)s2 . Otherwise the transaction would have to abort. Now that Alice has the choice between using
an elastic transaction or a classic transaction, she can also improve the concurrency of her program
when compared to a classic transactional program. In fact, it is easy to see that the schedules rejected
by elastic transactions would also be rejected if, in the same implementation, these transactions were
opaque (§§§3.3.1), hence elastic transactions allow Alice to derive an implementation that allows for
strictly more concurrency than with classic transactions.

26

Algorithm 2 Elastic transaction contains and classic transaction scan

1: tx-contains(val)p:
2: int result;
3: node ∗prev, ∗next;
4: curr = set→head;
5: transaction(elastic) {
6: next = curr→next;
7: while next→val < val do
8: curr = next;
9: next = curr→next;

10: result = (next→val == val);
11: }
12: return result;

13: tx-scan(collection)p:
14: int result;
15: node ∗prev, ∗next;
16: curr = set→head;
17: transaction(normal) {
18: next = curr→next;
19: while next→val , set→tail→val do
20: curr = next;
21: next = curr→next;
22: result = result∪ {curr→val}
23: }
24: return result;

Elastic transactions cannot, however, be used in all cases and it is the task of Alice to decide when
she can use elastic transactions for the program to remain correct. For example, consider the code of a
scan operation on a snapshot object. Recall that as part of the snapshot type, this scan operation must
return an instantaneous snapshot of all elements present as depicted in Table 6. The elastic transaction
cannot be used to protect the scan operation as it could violate linearizability of the snapshot object.
To illustrate this violation, consider again the example of Table 5 where the contains is replaced by a
scan labelled as an elastic transaction and the two inserts are replaced with updates labelled as classic
(opaque) transactions.

As the elastic transaction is oblivious to the operation semantics, the history will, as in historyH′,
be as if the elastic transaction cut itself into two sub-transactions s1 and s2. This cut would, however,
allow the π1 = scan operation to observe the π3 = update by process p3, but not the π2 = update
by process p2, hence implying that an equivalent sequential history S should have π3 →S π1 and
π2 9S π1, however, π2 →H′ π3 would violate condition (1) of linearizability. In other words, the scan
would return an inconsistent snapshot including a recently updated element but not the older updated
element, hence violating the sequential specification of the snapshot type. If, instead, Alice delimits
the scan operation as a “normal” transaction, as depicted in the right-hand side of Figure 2, then the
scan would execute as a classic transaction that is opaque and the incorrect schedule would be rejected,
because one of the three transactions would abort. Note that a novice programmer, say Bob, can always
safely use classic transactions in place of elastic transactions, if unsure.

It is interesting to note that the cuts of elastic transactions enable more concurrency than what
an expert programmer could do with classic transactions. First, the cuts are dynamically tried at
runtime depending on the interleaving of accesses. As this interleaving is generally non-deterministic, a
programmer cannot just split transactions prior to execution and ensure correct executions.

4.1.2 Advantages of elastic transactions

Other transactional models also allow the programmer to reason in terms of the implemented type to
ignore read-write conflicts as long as there are no conflicts between operations. Commutativity [100,130,
144], a binary relation over operations, was extensively used to increase inter-transaction concurrency.

The consistency criterion called multi-level serializability [145] applies to operations at different
levels of abstraction, thus expressing the impact low level reads and writes may have on the higher-level
operations that comprise them. More precisely, `-level serializability is defined recursively assuming
that any history is 0-level serializable. A history that is `-level serializable and in which we can find a

27

transaction i

insert(x)
 insert(y)

r(h)
 r(n)
 r(h)
 w(h)
 w(n)
r(t)
r(n)

transaction j
2

1

0

Figure 3: A history where operations are represented at different levels of semantics.

serialization of level `+ 1 operations by commuting level ` operations, is also (`+ 1)-level serializable.
Identifying two operations that commute at level ` is thus used to define an `+ 1 level serialization.

Consider, using Weikum’s hierarchy [145], a list-based set execution involving two inserts as
depicted in Figure 3. The two transactions i and j appear at level 2 of this hierarchy, the integer set
operations called by transactions i and j appear at level 1 and the read and write operations they called
appear at level 0. The history is neither 2-level nor 1-level serializable because of two dependencies:
between r(h)i and w(h)j and between r(n)j and w(n)i, however, both would safely commit if i was
elastic. In fact, elastic transactions commute operations that would not commute with multi-level
serializability by exploiting the interleaving information obtained at runtime.

Alternatively, the programmer can exploit commutativity on search structures using transaction
models like open nesting [118, 119, 140] and transactional boosting [86] or parallelization models
dedicated to irregular applications, like the Galois system [101]. These models are flexible as they let
the programmer define additional abstractions other than set or dictionary types, however, they all
require the programmer to specify explicitly the commutativity of operations and abort handlers with
appropriate compensate actions. These abort handlers could be as long as the transactions themselves,
hence, making programming with these transaction models potentially error prone.

Elastic-opacity. As soon as a transactional memory system offers elastic transaction, it can no longer
guarantee opacity. We defined a new consistency criterion that is satisfied by elastic transactions called
elastic opacity. It applies to high level operations that require weaker guarantees than the previous
proposed criteria. In short, elastic-opacity assumes a model with two types of transactions, elastic and
normal, and requires that if we cut elastic transactions into smaller sub-transactions, then we obtain
an execution composed of normal transactions and sub-transactions that is opaque. Elastic-opacity
guarantees operation atomicity at the application level, its goal is to enhance concurrency by relaxing
the unnecessary atomicity provided at the read/write level. Hence, elastic-opacity is a strictly weaker
consistency criterion than opacity.

There are various ways of implementing elastic opacity (and an elastic transactional memory). One
can exploit existing functions that extend the interface of the transactional memory system: light
reads [7], unit-load [53] and early release [88]. Early release can be used explicitly by the program-
mer to indicate from which point of the transaction all conflicts involving its read of a given location
can be ignored [88]. View transactions [7] propose light-read as a language construct that provides a
lightweight version of read operation similar to a unit-read. It comes in complement to view-pointers
used to keep track of read locations forming a critical view the transaction has to revalidate. We im-
plemented the elastic transaction model with unit-loads and observed better performance than with
our own implementation of elastic transaction, E -STM. The drawback is that we had to change the
sequential code of the application.

28

We implemented E -STM, an elastic transactional memory library in C/C++ and Java and ported
it on our manycore SCC [64], on our UltraSPARC T2 [60] and on our 16-core AMD Opteron [54].
We observed higher performance than classic transactional memory libraries, like TinySTM [53] and
LSA [125], implemented in the corresponding language [54, 64, 77]. Elastic opacity was shown sufficient
to implement a linearizable list-based set [54] and we believe that the same proof could be generalized
to other search structures. The elastic transaction model improves concurrency for a certain kind of
semantics but cannot be used in all applications. One can expect that other models can fit other desirable
semantics, hence allowing to achieve even higher concurrency and possibly higher performance. We
actually present below a single polymorphic transactional memory system that offers three transaction
models suited for different semantics. For these different transactions to access the same shared data, it
is however crucial to make sure that transactions do not violate the semantics of one another.

4.2 Combining Transactional Models [61]

To illustrate the feasibility of combining multiple transaction semantics in the same transactional memory
system, we implemented a polymorphic STM, namely PSTM, in Java. PSTM offers transactions with
different semantics to the programmer while guaranteeing that all transactions can access concurrently
the same shared data without violating the semantics of each other.

Intuitively, the more semantics a polymorphic transactional memory system provides, the more
control it gives to experts, allowing them to potentially boost performance even more. The opacity
semantics of classic transactions benefits the novice programmer as it is always safe to use. The elastic
transactions can bring added performance in search structures (§§4.1). Thus, it seems interesting to
complement these two semantics with additional ones. Typically, a scan operation of a snapshot object,
as we previously described on the right-hand side of Algorithm 2, could benefit from a semantics that
allows concurrent updates to overwrite the elements it reads.

4.2.1 Snapshot transaction

In the database context, a transaction can ignore some conflicts yet ensure snapshot isolation as this
property allows a transaction to commit provided that the values it has written have not been overwrit-
ten [52]. In some snapshot isolated databases, the programmer can statically Select For Update to
avoid the write-skew problem [17] where two transactions read memory locations before they update
distinct locations among the previously read ones: both transactions read the same value while one
should not. Such a construct makes the reads visible without distinction at runtime. In the context
of transactional memory, the programmer can statically call specific actions within a transaction to
differentiate protected read calls [31].

Instead, we defined a snapshot transaction as a transaction semantics or form that allows read-only
operations to run concurrently with updates. Similarly, to elastic and classic transactions, using a
snapshot transaction simply requires to delimit a region of code (and instrument in the same way all
the accesses within this region). Unlike explicit memory access calls (e.g., early release), defining a
new transaction allows us to require that snapshot transactions be read-only. In particular, snapshot
transactions are immune to the write-skew problem because after reading concurrently they can never
update disjoint subsets of these data.

A snapshot transaction is particularly appealing for protecting an operation that returns a result
that depends on numerous elements of a data type, like a Java Iterator. As an example, a snapshot
transaction implementing a size operation is depicted in Algorithm 3.

At first glance, providing as many forms as possible in a single toolbox system may seem the key
solution to help develop concurrent applications once and for all, the challenge lies however in the
mixture of these semantics. Mixing these semantics requires to let them access the same shared data

29

concurrently. In fact, it is crucial that the semantics of each individual transaction is not violated by the
execution of concurrent transactions of potentially different semantics.

Algorithm 3 Java pseudocode of the size() operation with snapshot transactions
1: public int size():
2: transaction(snapshot) {
3: int n = 0
4: Node〈E〉 curr = head
5:
6: while curr , null do
7: curr = curr.getNext()
8: n++
9: return n

10: }

Combination of snapshot and elastic transactions. To obtain a highly concurrent snapshot semantics,
we exploit multi-version concurrency control that lets snapshot transactions commit while concurrent
(elastic or classic) updates commit. The implementation of this snapshot transaction is to exploit a
global counter and a version number per written value, so that the transaction can fetch the counter at
start time and decide while reading new locations to return a value that has an appropriate (not too
recent) version consistent with this start time. The combination of the snapshot with classic and elastic
transactions in the same application requires, however, to make sure all updates (elastic and classic)
record the current value (as a backup) before overriding it.

The combination problem might even be subtler if a relaxed transaction ignores a conflict that in-
volves a concurrent stronger transaction that cannot ignore it. Typically, elastic and opaque transactions
handle this issue for read-write conflicts by requiring that only the reading transaction decides upon the
conflict resolution. Unlike writes, reads are idempotent so that the semantics of the writing transaction is
never altered by the outcome of the conflict resolution. Our solution relies on (1) having invisible reads
so that the writing transaction does not observe the conflict and (2) enforcing commit-time validation so
that the reading transaction always detects the conflict. Note that it would not be possible for a relaxed
transaction to ignore a write-write conflict that cannot be ignored by a strong transaction, so PSTM
enforces that one of the two write-write conflicting transactions aborts, however, it does not enforce that
the strong transaction always abort in such cases, otherwise it would be unfair.

4.2.2 Reusability

Abstract data types (ADTs) promote (a) extensibility when an ADT is specialized through, for example,
inheritance by overriding or adding new operations, and (b) composability when two ADTs are combined
into another ADT whose operations invoke the original ones. Key to this reusability is that there is
no need to know the internals of an ADT to reuse it: its interface suffices. With the latest technology
development of multicore architectures many programs are expected to scale with a large number of
cores: ADTs need thus to be shared by many threads, translating into concurrent data types (CDTs).
CDTs are however usually not reusable: the programmer can hardly build upon them. Some of the
problems that prevent Bob from reusing the CDTs of Alice’s library are called inheritance anomalies [112],
however, we showed that it may not be desirable to remedy these particular anomalies [67], thus we
concentrate on the more general reusability problem.

The extensibility issue. A first challenge is to guarantee that Bob can extend Alice’s type with new
operations without having to change Alice’s code. In Java, the ConcurrentLinkedQueue type of the

30

JDK 7 exports an inconsistent size operation. The problem comes from the fact that this CDT aims at
implementing the non-blocking algorithm from Michael and Scott designed to provide efficient offer
(i.e., push) and poll (i.e., pop) [117] but aims also at implementing the Collection type including a size
operation for a neat integration in the Java API. On the one hand, a size operation is useful to count the
number of elements comprised in this collection: although size remains optional, various Collection
CDTs do provide it. On the other hand, the algorithm of Michael and Scott was optimized to export
non-blocking offer and poll without aiming at supporting a size operation or allowing extensibility.
This lack of extensibility, which is inherent to the synchronization used, led expert programmers
to implement a non-atomic size operation. In other words, the resulting CDT does not satisfy the
sequential specification of the Collection type.

Specifically, this size consists of traversing the underlying linked list from the head to the tail while
elements are pushed at the head and popped at the tail. Assume that some elements are moved from
the tail to the head, one after the other, so that the size s changes by ±1. As the size operation does
not protect the head and the tail of the queue, it simply ignores any of these moved elements and can
return an incorrect value way smaller than s− 1. Precisely because predicting the outcomes of this size
requires to understand the implementation internals, the resulting CDT is not reusable. We reported
this ConcurrentLinkedQueue issue to the JSR166 expert group in May 2010. Following up our report,
this unexpected behavior has been warned in the documentation of the class ConcurrentLinkedQueue
on the JSR166 site since revision 1.54 and the issue was still present in the JDK 7. Since then other
researchers unaware of this warning observed the same problem [25].

This size problem simply illustrates the more general lack of extensibility. One may think of using
ArrayBlockingQueue to obtain a correct size that returns the current value of a counter, however, such
a size implementation requires to modify all insertion and removal operations to make them adjust the
counter. Apart from the size example, a programmer would have similar problems as soon as she tries
to extend these CDTs with, for example, a scan operation to obtain a new kind of queue-snapshot type.

The composition issue. A second challenge is the composition of the semantics. Bob can directly nest
Alice’s elastic transactions into another transaction thus guaranteeing atomicity and deadlock-freedom
of its own operation as depicted in Figure 4. Typically, Bob may use various semantics for his transaction
while enclosing Alice’s, choosing between labelling his transaction as elastic, snapshot, or classic. For
example, one can imagine that Alice provides an elastic contains(x) that Bob composes into a snapshot
containsAll(C) operation that returns successfully only if all elements of a collection C are present.
For the sake of safety, we decided that the strongest semantics of the involved transactions, in this case
the snapshot one, applies to all. Following the same idea, a novice, unaware of the various semantics,
will always obtain a safe composite transactional operation by omitting the semantics that will be
classic (opaque) by default. This opaque semantics will automatically be conveyed to inner transactions
whatever semantics these inner transactions had initially.

Note that we investigated more formally the composition of relaxed transactions [63] but the
composition of transactions of different semantics remains a hard problem and it is unclear whether
our safe approach is better suited than an approach favoring concurrency. In particular, deciding upon
which semantics to apply for a composite transaction that nests transactions of incomparable semantics
remains, as far as we know, an open question.

A typical example of composition bug that affects other synchronisation technique is due to the
use of locks for synchronization in Java CDTs is the java.util.Vector class of Java 1.4.2. As noted
earlier [57, 143], the Vector class, which is a widely used abstraction that is supposed to be thread-safe,
suffered from a critical issue related to one of its constructors. Upon constructing a new Vector based
on an existing Collection c of objects, an ArrayOutOfBoundsException could be raised. The reason is
that between the time the size of the collection c is computed and the time c gets converted into an
array, a concurrent update could modify the size of the collection c. This problem had been reported and

31

B	

A	

Alice Bob

remove(f1)

create(f2)

rename(f1, f2)

Figure 4: Bob composes Alice’s component operations remove and create into a new operation rename

fixed in later versions of the JDK but illustrates the difficulty of composition with other synchronisation
techniques.

The polymorphic transaction methodology. Figure 3 illustrates how to exploit our polymorphic trans-
action methodology to cope with the ConcurrentLinkedQueue issue and to propose an alternative
ReusableLinkedQueue easy to reason about. It requires that the operations pop and push accessing mu-
table shared variables use no explicit synchronizations besides transactions. In this particular example,
the size variable is used to count all elements as a sequential size operation delimited with a transaction
of the snapshot form.

The resulting implementation is inherently extensible. The snapshot transaction form guarantees
that all shared read accesses of the size operation, including the one to getNext(), return values
present at a common point in time between the invocation and the response of size. To this end, the
implementation associates a version to each value written by any transaction, a snapshot transaction
records the highest version at start time and identifies the correct value to return upon reading based
on the associated version. In particular, all updates to mutable shared variables are tracked using
metadata so that size can detect that a field of ReusableLinkedQueue is being or has been overridden
by a concurrent operation (e.g., offer or poll) and choose to return an older version of the field or
to abort (if no suitable version exists). Note that one could have safely omitted the snapshot form
parameter here (@Transactional) hence adopting the default opaque semantics instead, however, if
such a semantics does not use multiversion concurrency control then it would limit concurrency by
often aborting the size or its potential conflicting updates.

The aforementioned java.util.Vector composition issue can be easily fixed using our polymor-
phic transaction methodology that instruments all transactional shared accesses (including to the
Collection). The obtained ReusableOldVector simply consists of the original constructor placed into
the init operation that is annotated with a keyword @Transactional(form=OPAQUE) [61]. To evaluate
the performance of our methodology, we also implemented a ReusableVector CDT by converting all the
synchronized operations of the java.util.Vector of the JDK 7 (hence the name ReusableOldVector
for the fix of the version 1.4.2) into sequential operations annotated using the opaque transactional
wrapper. Under contention, the ReusableVector is slower than the original Vector, in turn, slower
than the non-synchronized sequential version of the Vector (running sequentially). Under read-only
workloads, ReusableVector outperforms Vector. Another advantage of our transactions is that each
operation, be it private (e.g., ensureCapacityHelper) or public (e.g., ensureCapacity) can be annotated
as a transaction. In contrast, nesting locks may lead to deadlocks when a programmer encapsulates in a
synchronized block a call to an external operation already using synchronized.

Deadlock freedom. A large body of work aimed at simplifying concurrent object-oriented program-
ming. However, most of it inherits the problem of lock-based programs as they rely on locks or monitors
like Guava [13]. In particular, SCOOP allows to specify an object accessed by a different process as

32

separate [115]. SCOOP was ported to Java [139] but is not inherently deadlock-free [147].
The first TM to handle concurrency in a dynamic control flow redirects speculative accesses to

Java object copies [87, 88]. Lightweight transactions were suggested to avoid copying entire objects by
using a mapping of addresses to word-sized ownership records [78] before field-based instrumentation
was proposed [99]. Two interesting ways to bypass the concurrency limitations (§§3.2) of TMs are to
use abstract locks—in open nesting [118] and transactional boosting [86]—that protect the abstraction
during the execution of a type operation. The issue of such solutions is that upon abort, another lock
acquirement may be needed by a compensating operation to undo the effects of the operation, which
may lead again to deadlocks [119].

The way we avoid these deadlock situations in the polymorphic transaction methodology is by
adopting an optimistic strategy where a transaction acquires the locks only when it is guaranteed to
commit.

Results. Using our polymorphic transaction methodology, we implemented three reusable types (i.e.,
queue, set and map) implemented with four data structures (i.e., linked list, skip list, hash table and
array), synchronized with PSTM and tested them against lock-based and non-blocking alternative
implementations from the Java Development Kit (including the java.util.concurrent library) and
classic transaction-based implementations on our UltraSPARC T2 and our 64-core AMD Opteron
machines (cf. Table 1). On some workloads, our implementation speeds up the alternative solution
that relies on the Java copyOnWrite for synchronization by 2.4× on average, and the existing reusable
pessimistic lock-based solution by 4.7× on average at the highest level of parallelism we had at our
disposal (64 hardware threads). Moreover, our solution outperforms techniques relying on common
monomorphic STMs by up to a factor of 8.6× on 64 threads but we observed that non-blocking but
non reusable techniques from the JDK (especially the implementation in Java of the Michael and Scott
queue [117]) could be 3× faster than our PSTM-based queue. We consider this difference in performance
to be part of the price to pay for reusability.

Polymorphic transactional memory allows an expert programmer to tune the performance of her
library while the novice programmer can reuse it almost as simply as a sequential library because the
library satisfies the sequential specification of the targeted type. To efficiently reuse a transactional
library, however, it is sometimes necessary to be a knowledgable programmer to understand the
library implementation before properly adapting the use of transactions to the library to maximize its
concurrency, as we explain below.

4.3 Rethinking Applications [33]

In this section, we propose to rethink the application that is synchronized with transactions to maximize
concurrency. Given what we have proposed so far, one may be tempted to think that writing a highly
concurrent transactional data structure simply requires to design a sequential data structure with
polymorphic transactional delimiters. As we explain now, however, one can gain in concurrency even
further by designing a data structure keeping in mind that transactions should be as short as possible to
favor concurrency. Below we present the speculation-friendly tree we designed to minimize transaction
size [33].

4.3.1 Optimism vs. pessimism

The programmer should keep in mind whether the implementation she is targeting is optimistic or
pessimistic. A pessimistic implementation captures what can be achieved using classic conservative locks

33

2
1

abort

restart

commit

h

1

↺
↺ spin

spin

Figure 5: A balanced search tree whose complexity, in terms of the amount of accessed elements, is
(left) proportional to h in a pessimistic execution and (right) proportional to the number of restarts in
an optimistic execution

like mutexes, spinlocks, reader-writer locks. In contrast, an optimistic implementation proceeds specula-
tively and may roll back in the case of conflicts, e.g., relying on classical TMs, like TinySTM [53], or more
relaxed forms of optimistic techniques, such as “lazy” synchronization [83] and elastic transactions [54].

To illustrate the difference between optimistic and pessimistic implementations, consider the example
of Figure 5 depicting their step complexity when traversing a tree of height h from its root to a leaf node.
On the left, steps are executed pessimistically, potentially spinning before being able to acquire a lock,
on the path converging towards the leaf node. On the right, steps are executed optimistically and some
of them may abort and restart, depending on concurrent thread steps. The pessimistic execution of
each thread is guaranteed to execute O(h) steps (possibly spinning at times, waiting on locks), yet the
optimistic one may need to execute Ω(hr) steps, where r is the number of restarts. Note that r depends
on the probability of conflicts with concurrent transactions that depends, in turn, on the transaction
length and h. When implementing a tree using TM, although it is clear that a transaction must be
aborted before violating the type (e.g., set) implemented by this tree (e.g., inserting k successfully in a
set while k was already present), it is unclear whether a transaction must be aborted if there is a risk that
it unbalances slightly the tree (e.g., making the largest paths from the root to a leaf strictly more than
twice larger than the shortest path from the root to a leaf).

Large vs. small transactions. In this section, we focus our attention on the structural invariant of
existing binary tree libraries, namely the balance, and enlighten the impact of their restructuring, namely
the rebalancing, on contention.

Binary trees provide logarithmic access time complexity given that they are balanced, meaning that
among all downward paths from the root to a leaf, the length of the shortest path is not far apart the
length of the longest path. Upon tree update, if their difference exceeds a given threshold, the structural
invariant is broken and a rebalancing is triggered to restructure accordingly. This threshold depends
on the considered algorithm: AVL trees [3] do not tolerate the longest length to exceed the shortest
by 2 whereas red-black trees [15] tolerate the longest to be twice the shortest, thus restructuring less
frequently. Yet in both cases the restructuring is triggered immediately when the threshold is reached to
hide the imbalance from further operations.

Generally when writing an algorithm using transactions, one takes an existing tree algorithm and
encloses each of its operations within an opaque transaction to obtain a concurrent tree whose operations
are guaranteed atomic (i.e., linearizable), however, the obtained concurrent transactions likely conflict
(i.e., one accesses the same location another is modifying), resulting in the need to abort one of these
transactions, leading to a significant waste of efforts. This is in part due to the fact that enclosing an

34

successful update operation (i.e., a successful insert or a remove operation) into a transaction boils
down to enclosing four phases in the same transaction:

1. the modification of the type state,

2. the corresponding structural adaptation,

3. a check to detect whether the invariant risks to be violated and

4. the potential rebalancing if needed.

Note that it is easy to find a schedule rejected by a tree implementation synchronized with classic
(opaque) transactional memory, even though this schedule could seemingly have been exported by a
correct execution. Consider an insert(k) and a delete(k) concurrently executed by two processes.
Assume that insert(k) executes its steps (1)-(3) and has to rebalance but then gets delayed before it
can execute step (4). If the delete(k) executes its steps (1) and (2), then the step (4) tentatively updating
node with key k again, will create a cycle in the conflict graph of low level reads and writes. Although
this would not violate the linearizability of the set type implemented by this tree, the aforementioned
schedule will be typically rejected by classic transactional memory implementations for the same reason
as why the previous schedule involving the contains operation was rejected (§§3.2).

A transaction-based red-black tree. An example of a tree implementation rejecting these correct
schedules is the transaction-based binary search tree developed by Sun Microsystems and other re-
searchers. It was extensively used to evaluate transactional memories [26, 40, 46, 53, 86, 88, 149]. This
library relies on the classical red-black tree algorithm that bounds the step complexity of pessimistic
insert/delete/contains of the set type (cf. Table 4). It has been slightly optimized for transactions by
removing sentinel nodes to reduce false-conflicts, and we are aware of two benchmark-suite distributions
that integrate it, STAMP [26] and Synchrobench [59].

Each of its update transactions encloses all four phases given above even though phase (1) could be
decoupled from phases (3) and (4) if transient violations of the balance invariant were tolerated. Such a
decoupling is appealing given that phase (4) is subject to conflicts. The reason for this is that in phase
(4), the algorithm balances the tree by executing rotations starting from the position where a node is
inserted or deleted and possibly going all the way up to the root. A rotation consists of replacing the
parent node where the rotation occurs by one of its children and adding this parent node to one of its
subtrees. Not only do these modifications create conflicts with other transactions but a node cannot be
safely accessed concurrently by an abstract transaction (or an operation) and a rotation, otherwise the
abstract transaction might miss the node it targets while being rotated downward. Similarly, rotations
cannot access common nodes as one rotation may unbalance the others.

Moreover, the red-black tree does not allow any abstract transaction to access a node that is con-
currently being deleted from the abstraction because phases (1) and (2) are tightly coupled within the
same transaction. If this was allowed the abstract transaction could end up on the node that is no longer
part of the tree. Fortunately, if the modification operation is a deletion then phase (1) can be decoupled
from the structural modification of phase (2) by simply marking the targeted node as logically deleted
in phase (1), effectively removing it from the set abstraction prior to unlinking it physically in phase
(2). This improvement is important as it lets a concurrent abstract transaction travel through the node
concurrently being logically deleted in phase (1) without conflicting. Making things worse due to the
“all or nothing commit/abort” semantics of transactions, without decoupling these four phases, having
to abort within phase (4) would typically require the three previous phases to restart as well. Finally,
without decoupling, only contains operations are guaranteed to not conflict with each other. With
decoupling, insert/delete/contains do not conflict with each other unless they terminate on the
same node.

35

To conclude, for the transactions to preserve the linearizability of the type and invariants of such a
tree algorithm, they typically have to keep track of a large read set and write set, i.e., the sets of accessed
memory locations that are protected by a transaction. Possessing large read/write sets increases the
probability of conflicts and thus reduces concurrency. This is especially problematic in trees because the
distribution of nodes in the read/write set is skewed so that the probability of the node being in the set
is much higher for nodes near the root (e.g., the root is guaranteed to be in the read set).

4.3.2 A speculation-friendly tree

We proposed a speculation-friendly binary search tree that implements a dictionary type, with multiple
key-value pairs. As depicted in Table 7, the dictionary type with transitions {q, π, q′, r} is similar to
the set type depicted previously in Table 4, except that each key is unique whereas each element is a
key-value pair. In short, the novelty of this tree is to reduce the size of transactions compared to the
red-black tree from Sun Microsystems by decoupling the tree rotation.

π update(k, v) delete(k) get(k)
〈k, ∗〉 ∈ q r = true∧ q′ = (q \ {〈k, ∗〉}) ∪ {〈k, v〉} r = true∧ q′ = q \ {〈k, ∗〉} r = v ∧ q′ = q
〈k, ∗〉 < q r = true∧ q′ = q ∪ {〈k, v〉} r = false∧ q′ = q r = ⊥∧ q′ = q

Table 7: The sequential specification of the τ′-dictionary type with q the current state, π =
{update(k, v), delete(k, v), get(k)}, k ∈ τ′, r the returned value and q′ the resulting state

The motivation for rotation decoupling stems from two separate observations: (i) a rotation is tied to
the modification that triggers it, hence the process modifying the tree is also responsible for ensuring
that its modification does not break the balance invariant and (ii) a rotation affects different parts of the
tree, hence an isolated conflict can abort the rotation performed at multiple nodes. In response to these
two issues we introduce a dedicated rotator thread responsible for performing structural adaptations,
allowing abstract transactions to complete faster and we distribute the rotations into multiple (node-
)local transactions. Note that our rotating thread is similar to the collector thread proposed by Dijkstra
et al. [44] to garbage collect stale nodes.

In our speculation-friendly tree, deciding when to perform a rotation is done based on local balance
information. This local rotation was introduced in [21] and works as follows: left-h (resp. right-h) is a
node-local variable to keep track of the estimated height of the left (resp. right) subtree. local-h (also a
node-local variable) is always 1 larger than the maximum value of left-h and right-h. If the difference
between left-h and right-h is greater than 1 then a rotation is triggered. After the rotation these values are
updated accordingly based on the type of rotation performed. Since these values are local to the node
the estimated heights of the subtrees might not always be accurate. The propagate operation (described
in the next paragraph) is used to update the estimated heights. Using the propagate operation and local
rotations, the tree is guaranteed to be eventually balanced [21, 24].

The rotating thread executes continuously a depth-first traversal to propagate the balance informa-
tion. Although it might propagate outdated height information due to concurrency, in the absence of
concurrent modifications, the tree becomes eventually balanced. The only requirement to ensure balance
when using propagations and local rotations is that a node knows when it has an empty subtree (i.e.,
when node.` is ⊥, node.left-h must be 0). This requirement is guaranteed by the fact that a new node is
always added to the tree with left-h and right-h set to 0 and that these values are updated when a node is
removed or a rotation takes place. Each propagate operation is performed as a sequence of distributed
transactions each acting on a single node. Such a transaction first travels to the left and right child nodes,
checking their local-h values and using these values to update left-h, right-h, and local-h of the parent

36

node. As a single rotator thread is used and no type operations access these three values, they never
conflict with the propagation, meaning that no synchronization is necessary.

Empirical measures of step complexity. To get a rough idea of the effect of decoupling update oper-
ations on the step complexity of classical transactional balanced trees we have counted the maximal
number of reads necessary to complete typical insert/delete/contains or update/delete/get op-
erations. Note that this number includes the reads executed by the transaction each time it aborts in
addition to the read set size of the transaction obtained at commit time.

Update 0% 10% 20% 30% 40% 50%
AVL tree 29 415 711 1008 1981 2081

Sun red-black tree 31 573 965 1108 1484 1545
Speculation-friendly tree 29 75 123 120 144 180

Table 8: Maximum number of transactional reads per operation on three 212-sized balanced search trees
as the update ratio increases

We evaluated the aforementioned red-black tree, an AVL tree, and our speculation-friendly tree on
our 48-core AMD Opteron machine listed in Table 1 using the same TM algorithm, TinySTM-CTL, i.e.,
with lazy acquirement [53]. We used Synchrobench [59] workloads with from 0% to 50% update while
keeping the expectation of the tree sizes fixed to 212 during the experiments by performing an insert and
a remove with the same probability. Table 8 depicts the maximum number of transactional reads per
operation observed among 48 concurrent threads as we increase the update ratio, i.e., the proportion of
insert/remove operations over contains operations.

For all three trees, the transactional read complexity of an operation increases with the update ratio
due to the additional aborted efforts induced by the contention. Although the red-black and the AVL
trees objective is to keep the complexity of pessimistic accesses O(log2 n) (proportional to 12 in this
case), where n is the tree size, the read complexity of optimistic accesses grows significantly as the
contention increases (14×more at 10% update than at 0%, where there are no aborts).

Our resulting speculation-friendly tree outperforms previous transaction-based AVL and red-black
trees by being transiently unbalanced to reduce contention during contention peaks, yet we showed,
in an extended version of our original work [33], that O(n2) elementary steps rebalance the tree when
contention stops. In particular, the speculation-friendly tree is shown correct, reusable and speeds up a
transaction-based travel reservation application by up to 3.5× on our 48-core AMD Opteron (cf. Table 1)
running Linux 2.6.32. Besides for binary search trees, reducing transactions of skip list was also found
particularly efficient [48].

4.4 Conclusion
While transactions can be made more concurrent to respond to the needs of performance required by
experts and simplicity required by novices, using transactions still has some cost. First, a well-engineered
library that is not reusable may offer better performance than reusable alternatives. Second, enhancing
concurrency of transactions require to design a polymorphic transactional memory raising questions
on the semantic resulting from nested transactions of different semantics—while we only scratched
the surface of this problem, this semantics still has to be specified carefully. Finally, the performance
of reusable libraries can further be improved by making sure that the application is tuned to allow
for reducing conflicts among transactions, hence, rethinking the sequential code is another important
ingredient to maximize performance of transactional applications.

37

5. Conclusion and Future Work

The research we conducted contributed to facilitate the adoption of transactional memory. First, our
benchmarking of transactional memory against sequential code allowed us to conclude that software
support for transactional memory was a viable solution to compensate hardware limitations while
exploiting modern chip multiprocessors, including multicore and manycore platforms. Second, we
identified concurrency limitations inherent to the transaction abstraction essentially due to its obliv-
iousness to the application semantics. Finally, we proposed solutions to overcome these issues by
proposing a new abstraction, polymorphic transaction, that helps programmers boost the performance
of their applications. Transactional memory can now be used by differently skilled programmers to
write efficient and simple concurrent programs.

As future work, we envision the study of synchronization, data structures and contention. First,
with the introduction of new synchronization techniques comes the question of the choice of the ideal
synchronization technique. While we have started comparing experimentally software transactional
memory libraries against other synchronization techniques [59] there is a long way before one can
identify the best synchronization technique depending on the targeted performance and simplicity. A
possible direction is to draw a profile of applications based on selected characteristics to automate the
choice of synchronization depending on performance observed in the past with similar applications [62].

Second, our relaxation of the balanced tree invariant (§§4.3) could be generalized to other data
structures to lower contention as our preliminary results on skip lists indicated [35, 43]. Most of the
sequential data structure algorithms have structural invariants that can be relaxed without affecting
correctness. By maintaining this correctness, the simplicity to reason about the implemented specification
is preserved. By relaxing the structural invariants one can adjust the asymptotic complexity of the
structure to reduce contention and gain in performance.

Third, we reasoned formally about concurrency to find new ways of deriving better performance,
however, we omitted important metrics, like contention that becomes a major cause of performance drop
as new machines keep offering a growing amount of processing cores. Several notions of contention
have been recently defined, the most prominent ones being probably the point contention [11] and the
interval contention [8], however, they may be too rough to precisely analyze the amortized complexity
one can expect from a concurrent data structure [58].

38

References

[1] M. Abadi, T. Harris, and M. Mehrara. Transactional memory with strong atomicity using off-the-
shelf memory protection hardware. In PPoPP, 2009.

[2] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. H. Lipasti. Achieving predictable
performance through better memory controller placement in many-core cmps. In ISCA, pages
451–461, 2009.

[3] G. Adelson-Velskii and E. M. Landis. An algorithm for the organization of information. In Proc. of
the USSR Academy of Sciences, volume 146, pages 263–266, 1962.

[4] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. E. Saha. Unlocking concurrency: Multicore program-
ming with transactional memory. ACM Queue, 4(10), Dec 2006.

[5] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Shpeisman. Compiler
and runtime support for efficient software transactional memory. In PLDI, 2006.

[6] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared
memory. J. ACM, 40(4):873–890, Sept. 1993.

[7] Y. Afek, A. Morrison, and M. Tzafrir. Brief announcement: view transactions: transactional
model with relaxed consistency checks. In Proc. of the 29th Annual ACM SIGACT-SIGOPS Symp. on
Principles of Distributed Computing, 2010.

[8] Y. Afek, G. Stupp, and D. Touitou. Long lived adaptive splitter and applications. Distributed
Computing, 15(2):67–86, 2002.

[9] G. Almes, A. Black, E. Lazowska, and J. Noe. The eden system: A technical review. IEEE Trans. on
Software Engineering, SE-11(1):43–59, 1985.

[10] M. Ansari, C. Kotselidis, I. Watson, C. Kirkham, M. Luján, and K. Jarvis. Lee-tm: A non-trivial
benchmark suite for transactional memory. In ICA3PP, 2008.

[11] H. Attiya and A. Fouren. Algorithms adapting to point contention. Journal of the ACM (JACM),
50(4):444–468, 2003.

[12] H. Attiya and J. Welch. Distributed Computing. Fundamentals, Simulations, and Advanced Topics. John
Wiley & Sons, 2004.

[13] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java without data races. In OOPSLA,
pages 382–400, 2000.

[14] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schupbach, and
A. Singhania. The multikernel: a new OS architecture for scalable multicore systems. In SOSP,
pages 29–44, 2009.

[15] R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms. Acta Informatica
1, 1(4):290–306, 1972.

[16] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees, pages 129–139. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988.

39

[17] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In SIGMOD, pages 1–10, 1995.

[18] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[19] S. Borkar. Thousand core chips: a technology perspective. In DAC, pages 746–749, 2007.

[20] S. Borkar and A. A. Chien. The future of microprocessors. Commun. ACM, 54(5):67–77, May 2011.

[21] L. Bougé, J. Gabarro, X. Messeguer, and N. Schabanel. Height-relaxed AVL rebalancing: A unified,
fine-grained approach to concurrent dictionaries. Technical Report RR1998-18, ENS Lyon, 1998.

[22] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Morris, and N. Zeldovich.
An analysis of linux scalability to many cores. In OSDI, 2010.

[23] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-scalable locks are dangerous.
In Proceedings of the Linux Symposium, 2012.

[24] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical concurrent binary search tree. In
PPoPP, pages 257–268, 2010.

[25] J. Burnim, G. Necula, and K. Sen. Specifying and checking semantic atomicity for multithreaded
programs. In ASPLOS, pages 79–90, 2011.

[26] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional applica-
tions for multi-processing. In IISWC, pages 35–46, 2008.

[27] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chatterjee. Software
transactional memory: Why is it only a research toy? Queue, 6:46–58, 2008.

[28] C. Cascaval, C. Blundell, M. M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chatterjee. Software
transactional memory: why is it only a research toy? Commun. ACM, 51(11):40–46, 2008.

[29] J. Chen and W. Watson III. Multithreading performance on commodity multi-core processors.
http://usqcd.jlab.org/usqcd-docs/qmt/multicoretalk.pdf.

[30] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S. Adve, N. P.
Carter, and C.-T. Chou. Denovo: Rethinking the memory hierarchy for disciplined parallelism.
PACT, pages 155–166, 2011.

[31] C. Cole and M. Herlihy. Snapshots and software transactional memory. Sci. Comput. Program.,
58(3):310–324, 2005.

[32] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache hierarchy and
memory subsystem of the amd opteron processor. Micro, IEEE, 30(2):16–29, 2010.

[33] T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly binary search tree. In PPoPP, pages
161–170, 2012.

[34] T. Crain, V. Gramoli, and M. Raynal. A contention-friendly binary search tree. In Euro-Par, pages
229–240, 2013.

[35] T. Crain, V. Gramoli, and M. Raynal. No hot spot non-blocking skip list. In ICDCS, pages 196–205,
2013.

40

http://usqcd.jlab.org/usqcd-docs/qmt/multicoretalk.pdf

[36] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining STM by abolishing ownership
records. In PPoPP, pages 67–78, 2010.

[37] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid transactional
memory. In ASPLOS, pages 336–346, 2006.

[38] T. David, R. Guerraoui, and V. Trigonakis. Everything you always wanted to know about
synchronization but were afraid to ask. In SOSP, pages 33–48, 2013.

[39] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial hardware
transactional memory implementation. In ASPLOS, pages 157–168, 2009.

[40] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC, pages 194–208, 2006.

[41] D. Dice and N. Shavit. What really makes transactions faster? In Transact, 2006.

[42] D. Dice and N. Shavit. TLRW: Return of the read-write lock. In Transact, 2009.

[43] I. Dick, A. Fekete, and V. Gramoli. Logarithmic data structures for multicores. Technical Report
697, University of Sydney, 2014.

[44] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. On-the-fly garbage
collection: an exercise in cooperation. Commun. ACM, 21(11):966–975, 1978.

[45] M. Dodds, A. Haas, and C. M. Kirsch. A scalable, correct time-stamped stack. In POPL, pages
233–246, 2015.

[46] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui. Why STM can be more than a research toy.
Commun. ACM, 54(4):70–77, 2011.

[47] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching transactional memory. In PLDI, pages
155–165, 2009.

[48] A. Dragojević and T. Harris. STM in the small: Trading generality for performance in software
transactional memory. In EuroSys, pages 1–14, 2012.

[49] A. Dragojević, Y. Ni, and A.-R. Adl-Tabatabai. Optimizing transactions for captured memory. In
SPAA, 2009.

[50] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency and predicate
locks in a database system. Commun. ACM, 19:624–633, 1976.

[51] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Compact and concurrent memcache with
dumber caching and smarter hashing. Proc. 10th USENIX NSDI, 2013.

[52] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making snapshot isolation serializ-
able. ACM Trans. Database Syst., 30(2):492–528, June 2005.

[53] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of word-based software transac-
tional memory. In PPoPP, pages 237–246, 2008.

[54] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In DISC, pages 93–108, 2009.

[55] P. Felber, T. Riegel, C. Fetzer, M. Süsskraut, U. Müller, and H. Sturzrehm. Transactifying applica-
tions using an open compiler framework. In TRANSACT, 2007.

41

[56] P. Felber, E. Rivière, W. Moreira, D. Harmanci, P. Marlier, S. Diestelhorst, M. Hohmuth, M. Pohlack,
A. Cristal, I. Hur, O. Unsal, P. Stenström, A. Dragojevic, R. Guerraoui, M. Kapalka, V. Gramoli,
U. Drepper, S. Tomi?, Y. Afek, G. Korland, N. Shavit, C. Fetzer, M. Nowack, and T. Riegel. The
velox transactional memory stack. IEEE Micro, 30(5):76–87, Sept 2010.

[57] C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for atomicity: Static checking and
inference for Java. ACM Trans. Program. Lang. Syst., 30, 2008.

[58] J. Gibson and V. Gramoli. Why non-blocking operations could be selfish. Technical report, Uni-
versity of Sydney, 2015. http://sydney.edu.au/engineering/it/~gramoli/pubs/contention.
pdf.

[59] V. Gramoli. More than you ever wanted to know about synchronization: Synchrobench, measuring
the impact of the synchronization on concurrent algorithms. In PPoPP, pages 1–10, 2015.

[60] V. Gramoli and R. Guerraoui. Democratizing transactional programming. Commun. ACM, 57(1):86–
93, 2014.

[61] V. Gramoli and R. Guerraoui. Reusable concurrent data types. In ECOOP, pages 182–206, 2014.

[62] V. Gramoli, R. Guerraoui, and A.-M. Kermarrec. Profiling transactional applications. In Proceedings
of the International Conference on Networked Systems, 2015.

[63] V. Gramoli, R. Guerraoui, and M. Letia. Composing relaxed transactions. In IPDPS, 2013.

[64] V. Gramoli, R. Guerraoui, and V. Trigonakis. TM2C: A software transactional memory for many-
cores. In EuroSys, pages 351–364, 2012.

[65] V. Gramoli, D. Harmanci, and P. Felber. On the input acceptance of transactional memory. Parallel
Processing Letters (PPL), 20(1), 2010.

[66] V. Gramoli, P. Kuznetsov, and S. Ravi. Brief announcement: From sequential to concurrent:
Correctness and relative efficiency. In PODC, pages 241–242, 2012.

[67] V. Gramoli and A. E. Santosa. Why inheritance anomaly is not worth solving. In ICOOOLPS,
pages 6:1–6:12, 2014.

[68] D. Grossman. The transactional memory / garbage collection analogy. SIGPLAN Not., 2007.

[69] R. Guerraoui, R. Capobianchi, A. Lanusse, and P. Roux. Nesting actions through asynchronous
message passing: the ACS protocol. In ECOOP, volume 615 of LNCS, pages 170–184, 1992.

[70] R. Guerraoui, T. A. Henzinger, and V. Singh. Permissiveness in transactional memories. In DISC,
pages 305–319, 2008.

[71] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional contention managers.
In PODC, 2005.

[72] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPoPP, pages
175–184, 2008.

[73] R. Guerraoui and M. Kapalka. Principles of Transactional Memory. Morgan&Claypool, 2010.

[74] R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7: a benchmark for software transactional
memory. In EuroSys, pages 315–324, 2007.

42

http://sydney.edu.au/engineering/it/~gramoli/pubs/contention.pdf
http://sydney.edu.au/engineering/it/~gramoli/pubs/contention.pdf

[75] D. Harmanci, P. Felber, V. Gramoli, and C. Fetzer. TMunit: Testing software transactional memories.
In 4th ACM SIGPLAN Workshop on Transactional Computing, 2009.

[76] D. Harmanci, V. Gramoli, and P. Felber. Atomic boxes: Coordinated exception handling with
transactional memory. In ECOOP, volume 6813 of LNCS, pages 634–657, Jul 2011.

[77] D. Harmanci, V. Gramoli, P. Felber, and C. Fetzer. Extensible transactional memory testbed. J. of
Parallel and Distributed Computing, 70(10):1053–1067, March 2010.

[78] T. Harris and K. Fraser. Language support for lightweight transactions. In OOPSLA, 2003.

[79] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2Nd Edition. Morgan and Claypool
Publishers, 2nd edition, 2010.

[80] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions. In
PPoPP, pages 48–60, 2005.

[81] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions. In
PPoPP, pages 48–60, 2005.

[82] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory transactions. In PLDI, 2006.

[83] S. Heller, M. Herlihy, V. Luchangco, M. Moir, and N. Scherer III, William N.and Shavit. A lazy
concurrent list-based set algorithm. In OPODIS, pages 3–16, 2005.

[84] M. Herlihy. Apologizing versus asking permission: optimistic concurrency control for abstract
data types. ACM Trans. Database Syst., 15(1):96–124, 1990.

[85] M. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):123–149, 1991.

[86] M. Herlihy and E. Koskinen. Transactional boosting: A methodology for highly-concurrent
transactional objects. In PPoPP, pages 207–216, 2008.

[87] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing software transac-
tional memory. In OOPSLA, pages 253–262, 2006.

[88] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory for
dynamic-sized data structures. In PODC, pages 92–101, 2003.

[89] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free data
structures. In ISCA, pages 289–300, 1993.

[90] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauffman, 2008.

[91] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
TOPLAS, 12:463–492, July 1990.

[92] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N. Borkar,
G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl,
S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson. A 48-core IA-32 message-passing processor
with DVFS in 45nm CMOS. In ISSCC, pages 108–109, 2010.

[93] P. Hyman. In honor of Alan Turing. Commun. ACM, 55(9):20–23, 2012.

43

[94] D. Imbs and M. Raynal. Virtual world consistency: A condition for stm systems (with a versatile
protocol with invisible read operations). Theor. Comput. Sci., 444:113–127, July 2012.

[95] Intel. Performance analysis guide - Intel developer zone, 2008. http://software.intel.com/
sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf.

[96] Intel Corporation. Intel transactional memory compiler and runtime application binary interface,
May 2009.

[97] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel. Cohesion: a hybrid memory
model for accelerators. In Proceedings of the 37th annual international symposium on Computer
architecture, ISCA ’10, pages 429–440, New York, NY, USA, 2010. ACM.

[98] T. Knight. An architecture for mostly functional languages. In LFP, pages 105–112, 1986.

[99] G. Korland, N. Shavit, and P. Felber. Deuce: Noninvasive software transactional memory. Transac-
tions on HiPEAC, 5(2), 2010.

[100] H. F. Korth. Locking primitives in a database system. J. ACM, 30(1):55–79, 1983.

[101] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew. Optimistic
parallelism requires abstractions. In PLDI, pages 211–222, 2007.

[102] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional memory. In
PPoPP, pages 209–220, 2006.

[103] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum, and M. Olszewski. Anatomy of a
scalable software transactional memory. In Transact, 2009.

[104] B. Liskov. The argus language and system. In Distributed Systems: Methods and Tools for Specification,
An Advanced Course, volume 190 of LNCS, pages 343–430, 1985.

[105] B. Liskov and R. Scheifler. Guardians and actions: linguistic support for robust, distributed
programs. In POPL, pages 7–19, 1982.

[106] N. A. Lynch. Multilevel atomicity a new correctness criterion for database concurrency control.
ACM Trans. Database Syst., 8, 1983.

[107] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive software transactional memory. In
DISC, 2005.

[108] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer III, and M. L. Scott.
Lowering the overhead of software transactional memory. In Transact, 2006.

[109] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable techniques for transparent privatization in
software transactional memory. In ICPP, 2008.

[110] M. Martin, C. Blundell, and E. Lewis. Subtleties of transactional memory atomicity semantics.
IEEE Comput. Archit. Lett., 5, 2006.

[111] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip cache coherence is here to stay. Commun.
ACM, 55(7):78–89, 2012.

[112] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented concurrent
programming languages. In Research directions in concurrent object-oriented programming, pages
107–150. MIT Press, 1993.

44

http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

[113] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L. Hudson, B. Saha, and A. Welc.
Practical weak-atomicity semantics for java STM. In Proceedings of the Twentieth Annual Symposium
on Parallelism in Algorithms and Architectures, pages 314–325, 2008.

[114] B. Meyer. Reusability: The case for object-oriented design. IEEE Software, 4(2):50–64, 1987.

[115] B. Meyer. Systematic concurrent object-oriented programming. Commun. ACM, 36(9):56–80, Sept.
1993.

[116] M. Michael. Overview of Power HTM, 2014. Personal communication at the 6th Workshop on the
Theory of Transactional Memory.

[117] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. In PODC, pages 267–275, 1996.

[118] J. E. B. Moss. Open nested transactions: Semantics and support. In Workshop on Memory Performance
Issues, 2006.

[119] Y. Ni, V. Menon, A.-R. Abd-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B. Moss, B. Saha, and
T. Shpeisman. Open nesting in software transactional memory. In PPoPP, New York, NY, USA,
2007. ACM.

[120] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits, J. Cownie, R. Geva, S. Kozhukow,
R. Narayanaswamy, J. Olivier, S. Preis, B. Saha, A. Tal, and X. Tian. Design and implementation of
transactional constructs for c/c++. In OOPSLA, 2008.

[121] U. of Glasgow. Scientists squeeze more than 1,000 cores on to computer chip, 2010. http:
//goo.gl/KdBbW.

[122] V. Pankratius and A. Adl-Tabatabai. Software engineering with transactional memory versus
locks in practice. Theory Comput. Syst., 55(3):555–590, 2014.

[123] C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26(4):631–653,
1979.

[124] A. Reuter. Concurrency on high-traffic data elements. In PODS, pages 83–92, 1982.

[125] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with eager validation. In DISC, pages
284–298, 2006.

[126] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional memory with scalable time bases. In
SPAA, 2007.

[127] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh, and B. Hertzberg. Mcrt-stm: a high
performance software transactional memory system for a multi-core runtime. In PPoPP, 2006.

[128] W. Scherer and M. Scott. Contention management in dynamic software transactional memory. In
PODC Workshop on Concurrency and Synchronization in Java Programs, 2004.

[129] W. N. Scherer, III and M. L. Scott. Advanced contention management for dynamic software
transactional memory. In PODC, pages 240–248, 2005.

[130] P. M. Schwarz and A. Z. Spector. Synchronizing shared abstract types. ACM Trans. Comput. Syst.,
2(3):223–250, 1984.

45

http://goo.gl/KdBbW
http://goo.gl/KdBbW

[131] M. L. Scott, M. F. Spear, L. Dalessandro, and V. J. Marathe. Delaunay triangulation with transac-
tions and barriers. In IISWC, 2007.

[132] N. Shavit. Data structures in the multicore age. Commun. ACM, 54(3):76–84, 2011.

[133] N. Shavit and D. Touitou. Software transactional memory. In PODC, 1995.

[134] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer, D. Grossman, R. L. Hudson, K. F.
Moore, and B. Saha. Enforcing isolation and ordering in STM. In PLDI, 2007.

[135] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott. Privatization techniques for software
transactional memory. In PODC, 2007.

[136] M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas, and M. L. Scott. Nonblocking transac-
tions without indirection using alert-on-update. In SPAA, 2007.

[137] H. Sutter. Choose concurrency-friendly data structures. Dr. Dobb’s Journal, 33(7), July 2008.

[138] Tilera TILE-Gx. http://www.tilera.com/products/processors/TILE-Gx_Family, 2014.

[139] F. A. Torshizi, J. S. Ostroff, R. F. Paige, and M. Chechik. The SCOOP concurrency model in Java-like
languages. In CPA, pages 7–24, 2009.

[140] I. L. Traiger. Trends in system aspects of database management. In ICOD, pages 1–21, 1983.

[141] Transactional Memory Specification Drafting Group. Draft specification of transactional language
constructs for C++, 2009. http://software.intel.com/file/21569.

[142] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera, and M. Michael.
Evaluation of Blue Gene/Q hardware support for transactional memories. In PACT, pages 127–136,
2012.

[143] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multithreaded programs. IEEE Trans.
Softw. Eng., 32(2):93–110, 2006.

[144] W. E. Weihl. Commutativity-based concurrency control for abstract data types. IEEE Trans.
Comput., 37(12):1488–1505, 1988.

[145] G. Weikum. A theoretical foundation of multi-level concurrency control. In PODS, pages 31–43,
1986.

[146] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C.-C. Miao,
J. Brown, and A. Agarwal. On-chip interconnection architecture of the tile processor. IEEE Micro,
27(5):15–31, 2007.

[147] S. West, S. Nanz, and B. Meyer. A modular scheme for deadlock prevention in an object-oriented
programming model. In ICFEM, pages 597–612, 2010.

[148] M. Yannakakis. Serializability by locking. J. ACM, 31(2):227–244, 1984.

[149] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-H. S. Lee. Kicking the tires of
software transactional memory: why the going gets tough. In SPAA, pages 265–274, 2008.

46

	Introduction
	Contributions
	Transaction
	Data Type Implementation
	Chip Multiprocessors
	Roadmap

	Transactional Memory: A Mature Technology
	Integration in Programming Languages--0.8emgrayADP10
	Transaction support in C/C++
	Transaction support in Java

	Leveraging Multicores--0.8emgrayDFGG11
	Leveraging the concurrency of multicore platforms
	On the reasons why STM can be more than a research toy

	Leveraging Manycores--0.8emgrayGGT12
	A transactional memory for manycore platforms
	Managing contention in a distributed environment

	Conclusion

	Identifying Concurrency Limitations
	Measuring Schedule Acceptance--0.8emgrayGHF10
	Preliminaries
	Schedules and concurrency

	Rejected Concurrency Schedules--0.8emgrayGG14
	Using transactions or locks to synchronize a list-based set
	Schedule acceptance depending on synchronization

	No One-Size-Fits-All TM Algorithm--0.8emgrayHGFF10
	Some transaction semantics
	The inherent limitation of transactions

	Conclusion

	Enhancing Concurrency
	Relaxing the Transactional Model--0.8emgrayFGG09
	The elastic transaction model
	Advantages of elastic transactions

	Combining Transactional Models--0.8emgrayGG14b
	Snapshot transaction
	Reusability

	Rethinking Applications--0.8emgrayCGR12
	Optimism vs. pessimism
	A speculation-friendly tree

	Conclusion

	Conclusion and Future Work

