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Abstract

Massive amounts of data are being generated, collected and processed all the time. A considerable portion
of them are sampled from objects with geometric structures. Such objects can be tangible and ubiquitous
in our daily life. Inferring the geometric information from the data, however, is not always an obvious task.
Moreover, it’s not a rare case that the underlying objects are abstract and of high dimension, where the data
inference is more challenging.

This thesis studies two problems on geometric data analysis. The first one concerns metric reconstruction
for filamentary structures. We in general consider a filamentary structure as a metric space being close to
an underlying metric graph, which is not necessarily embedded in some Euclidean spaces. Particularly, by
combining the Reeb graph and the mapper algorithm, we propose a variant of the Reeb graph, which not
only faithfully recovers the metric of the filamentary structure but also allows for efficient implementation
and convenient visualization of the result.

Then we focus on the problem of shape comparison. In this part, we study the stability properties of some
recent and promising approaches for shape comparison, which are based on the notion of functional maps.
Our results show that these approaches are stable in theory and potential for being used in more general
setting such as comparing high-dimensional Riemannian manifolds.

Lastly, we propose a pipeline for implementing the functional-maps-based frameworks under our stability
analysis directly on point cloud data. Though our pipeline is experimental, it undoubtedly extends the range
of applications of these frameworks.
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CHAPTER 1

Introduction

Data play a role that is becoming increasingly important nowadays. Massive amounts of data are being gener-
ated, gathered and processed in various areas such as scientific research, economic activities, manufacturing
productions all the time.

Perhaps data come with geometric structures are the most familiar to us. As a matter of fact, our percep-
tion system takes in and analyzes geometric data everyday. For example, looking at the scattering blue points
in Figure 1.1(a), probably people would outline the skeleton of the point cloud and draw the red curves in
mind. If the perception system is fed multiple objects like in Figure 1.1(b), then a more complicated task
is accomplished–people would easily discriminate the two shapes and highlight the red bump of the second
one as a prominent difference in mind.

(a) Outlining a shape (b) Di↵erentiating two shapes

Figure 1.1: (a) scattering points with a filamentary structure, which is approximated by the red curves. (b)
a sphere and a deformed one, the deformation in-between can be visually captured.

However, these geometric data inferences are limited in several aspects. First of all, our perception
system outputs only qualitative results. When differentiating shapes, we can tell where the difference is,
but can’t describe quantitatively how large it is. Besides, though we are able to comfortably deal with
low-dimensional objects such as those depicted in Figure 1.1, we have trouble even visualizing objects of
dimension more than 3, not to mention outlining or comparing. Moreover, our perception system can not
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process abstract inputs directly. If the plots in Figure 1.1 are replaced with tables listing the coordinates of
the points, we can hardly see anything meaningful there.

Fortunately, with the aid of computers, we are able to quantitatively process complex and abstract data.
However, computers are not gifted with a perception system. It is then critical to develop methods that
guide the computers to efficiently infer information from data. Approaches have been taken for data infer-
ence from various perspectives. For example, dimension reduction algorithms [Belkin 2003, Lafon 2004,
Tenenbaum 2000b] attempt to project high-dimensional data into low-dimension spaces for visualization;
clustering algorithms [Planck 2006, Lloyd 1982, Ester 1996, Comaniciu 2002] separate data into groups of
a relatively small number; and more recent frameworks of topological data analysis [Edelsbrunner 2002,
Zomorodian 2005, Carlsson 2009, Chazal 2012] enable extracting data that are not embedded in an Eu-
clidean space.

In this thesis, we study two problems on geometric data inference respectively related to the perception
tasks illustrated in Figure 1.1.

The first problem is metric reconstruction for filamentary structures. An intuitive example of data sam-
pled from a filamentary structure is the blue point cloud in Figure 1.1(a), which looks like some graph, say,
the red curves. We assume that the given filamentary structure X is a metric space (not necessarily embed-
ded in some Euclidean space as the example) that is close with respect to the so-called Gromov-Hausdorff
distance to an unknown metric graph1. And our goal is to construct a metric graph that is close to X in the
Gromov-Hausdorff distance. We propose a new method to address this question in a rigorous mathematical
framework. This method relies on the Reeb graph and so-called Mapper algorithm, which are soon to be
introduced.

As a result of our investigation to the first problem, we develop a method to construct a metric graph G
that is guaranteed to be close to X . In general, The metric of X is impossible to be fully reconstructed by G.
How to evaluate and visualize the parts of X which are less well approximated by the resulting graph is then
a natural follow-up problem. Though there is a natural map between X and G constructed by our method, it
is still a challenging problem. For instance, naive point-to-point comparison is unstable due to noisy data in
practice. Motivated by this, the second problem is about comparing two geometrical objects associated by a
map.

This is indeed a vast and difficult problem. Our contribution to it is different than that to the first one:
instead of proposing a new model/method, we consider some recent and promising methods on comparing
3D shapes that are potentially applicable in the general setting, say, comparing Riemannian manifolds of
higher dimensions. With the understandings obtained from analyzing the chosen methods, we take some
experimental approach based on them to the general problem. Especially, our main effort is devoted to
analyzing the stability properties of the chosen methods. More precisely, the goal is to understand how the
outputs of the method change with respect to perturbations on the inputs and/or the parameters. Investigating
the stability of a method not only verifies its robustness in theory, but also provides valuable insights for
implementations.

In the following we give a brief overview of the methods involved in this thesis.

1A metric graph is a graph endowed with a metric.
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Reeb Graphs

Let f be a real-valued continuous function defined on a topological space X . We then define a relation on X
with respect to f : for x, y 2 X , we let x ⇠f y if and only if f(x) = f(y) and x, y are in the same connected
component of the pre-image f�1

(f(x)). The Reeb Graph (originally proposed in [Reeb 1946]) of f is then
defined as the quotient space X\ ⇠f . For the point of view of level-set of f , for any a 2 R, we decompose
the subset f�1

(a) = {x 2 X : f(x) = a} into one or more connected components, and then collapse each
component into a point in the quotient space (see Figure 1.2 for an illustration).

f f

Reeb graph MapperX

a

Figure 1.2: Illustrations of the Reeb graph (on the left of X) and the output of the mapper algorithm (on the
right of X) with respect to the same function f . The cover used in the mapper algorithm is the 4 intervals
colored differently to the right-most.

Under some regularity conditions, the Reeb graph is a 1-dimensional structure, making interpreting re-
sults convenient. Besides, the Reeb graph is defined upon a function on X instead of upon X itself. This
property allows the users to view X through the lens of different functions. In the recent decades, its ca-
pability of encoding both the geometrical and the topological features of shapes is appreciated in the area
of computer graphics, say, shape comparison [Hilaga 2001, Escolano 2013], skeleton extraction [Ge 2011]
(see [Biasotti 2008] for a survey).
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Mapper Algorithm

Many works studying variations on the Reeb graph have been proposed, such as the extend Reeb
graphs [Biasotti 2000, Escolano 2013], the contour trees [Pascucci 2003, Van Kreveld 2006, Carr 2003] and
so on. A generalization of the Reeb graph–the mapper algorithm [Singh 2007] also falls into this category.
The mapper algorithm takes in a continuous function f on X as an input. Instead of directly collapsing the
connected components of the level-set of each single point a 2 f(X), the algorithm considers a cover of
f(X), the image of f . By a cover we mean a collection of open sets {Ui}i2� such that f(X) ⇢

[

i2�
Ui. For

any Ui, let f�1
(Ui) =

[

↵2⇤
i

V ↵
i , where V ↵

i ’s are the connected components of f�1
(Ui). In the output of the

mapper algorithm, each set V ↵
i is represented as a node. An edge connects two nodes if the intersection of

the corresponding sets is non-empty. A triangle is added among three nodes if the three corresponding sets
are intersecting, likewise a tetrahedron is created in the case of four sets intersecting. In general, a k-simplex
is added to the output if there exist k � 1 sets have a common non-empty subset. Thus the output of the
mapper algorithm is not necessarily a graph. In general it is a so-called abstract simplicial complex (see the
definition in Section 2.3.2).

The mapper algorithm is more of a qualitative analysis tool for high-dimensional data set. The main aim
of this algorithm is to robustly capture and easily visualize the topological structure of the input data.

Functional Maps

In [Ovsjanikov 2012], the authors propose a functional representation of a map between two shapes. Given
two shapes M and N and a map T : M ! N , a functional map, TF , is a pull-back induced by T . Namely,
given a real-valued function w 2 F(N), we define TF (w) = w � T 2 F(M). Therefore TF is a map
from F(N) to F(M). The first benefit of this representation is that TF is a linear operator between the
two function spaces. In fact, by definition of TF , TF (↵f + �g) = (↵f + �g) � T = ↵f � T + �g � T =

↵TF (f) + �TF (g), where ↵,� 2 R and f, g 2 F(N).
This linearity property indicates that TF admits a (potentially infinite) matrix representation. Suppose

that {'N
i }, { M

j } form a basis of F(N) and of F(M) respectively. Let w =

X

i=1

ai'
N
i and accordingly

TF (w) =

X

j=1

bj 
M
j , then there exists a unique matrix CT such that CTa = b holds for any w, where

a = (a1, a2, · · · , an, · · · ) and b = (b1, b2, · · · , bn, · · · ). We then call CT the matrix representation of TF

with respect to basis {'N
i } and { M

j }.
Especially, the authors take the first kM and kN eigenfunctions of the Laplace-Beltrami operators on M

and N respectively as approximations to the full bases of the function spaces, and obtain a compact matrix
representation of CT which is of dimension kM ⇥ kN .

Geometrically, truncating the eigenbasis in this way amounts to putting a low-frequency filter on the
function space. In discrete setting, M and N are usually represented by m and n discrete points. Thus the
function spaces are respectively vector spaces of dimension m and n, and TF is a m ⇥ n matrix. Using
above scheme, TF is then approximated by a kM ⇥ kN matrix CT written in the truncated bases. It has been
validated empirically that for a pair of shapes with m,n ⇠ 10

4, kM , kN ⇠ 10

2 are sufficient to obtain a
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reasonable approximation.

Shape Difference Operators

Based on the functional map, in [Rustamov 2013] the authors propose a framework to encode the differ-
ences between shape with so-called shape difference operators. Let h·, ·iF(M) and h·, ·iF(N) be two in-
ner products on the function spaces F(M) and F(N) respectively. In general, the equality hf, giF(N) =

hTF (f), TF (g)iF(M) doesn’t hold for all f, g 2 F(N). The key observation of [Rustamov 2013] is that by
the Riesz representation theorem and the linearity of TF , there always exist a self-adjoint linear operator on
the function space F(N), S such that hf, S(g)iF(N) = hTF (f), TF (g)iF(M).

This operator compensating the differences between the two inner products in some sense also captures
the differences between the shapes induced by TF (and equivalently T ), and is called the shape difference
operator. Particularly, in [Rustamov 2013], for each of the shapes M and N , two typical function spaces and
the associated inner products are discussed, resulting in two types of shape difference operators that capture
differences between M and N from separated aspects.

On the other hand, it is also interesting to study the gap between hf, giF(N) and hTF (f), TF (g)iF(M).
The framework of [Ovsjanikov 2013] constructs a functional to measure the gap at any function f : F (f) =
hT

F

(f),T
F

(f)iF(M)

hf,fiF(N)
for a specified inner product, which is one of the two considered in [Rustamov 2013]. By

maximizing the functional, the authors identify a function at which the gap is the largest. Moreover, a multi-
scale framework is presented there by putting an extra constraint on the maximization. This constraint is
related to the truncated function basis mentioned before. Particularly, the authors force f to be spanned by
the first k eigenfunctions of the Laplace-Beltrami operator on N and generate a collection of maximizers
corresponding to different k’s.

1.1 Contributions

This thesis consists of two major parts: the first part (chapter 2) investigates the problem of metric reconstruc-
tion for filamentary structures and the second part (chapter 3 and chapter 4) studies the stability properties
of the shape difference operators and presents an empirical method to perform the functional-map-based
frameworks directly on point cloud data.

Chapter 2: Particularly, given a geodesic space2
(X, dX), we study the Reeb graph of the distance function

to a point. A distance function to x 2 X is defined as d(y) = dX(x, y), which is the distance in X from x
to y. The same Reeb graph has been studied in [Ge 2011] as a tool for capturing a 1-dimension skeleton of
some general data. We further define a metric on the Reeb graph of the distance function so that it’s as well a
metric graph. We prove that this metric graph is well-approximating X in the sense of the Gromov-Hausdorff
distance.

From the practical point of view, data usually come as discrete points sampled from the underlying metric
space X . We incorporate the idea of the mapper algorithm to construct a variant of the Reeb graph called
↵-Reeb graph, with which it is more convenient to deal with the discrete sampling points in practice. And

2see Section 2.3.1 for the definition
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theoretically, the ↵-Reeb graph not only enjoys similar guarantees on the metric approximation as the Reeb
graph, but also comes with certain topological guarantees.

Overall, we conclude that the ↵-Reeb graph is a reliable approximation of X in both geometrical and
topological sense. The above are results of a collaboration with F. Chazal and J. Sun, which have been
published in Discrete and Computational Geometry [Chazal 2015].

Our framework assumes that the input X is already a (discrete) metric space. In many cases, the raw data
are discrete isolated points sampled from some underlying metric space X . It’s then appealing to study how
accurately we can recover the metric of X with the sampling points. In this chapter we study in a special case
where X is a metric graph embedded in an Euclidean space. We assure that under some technique conditions
on X and the sampling density, the metric we recover from the sampling points is well-approximating the
ground truth.

Chapter 3: As mentioned above, the second problem considered in this thesis is about comparing geo-
metrical objects associated by a map. We notice that similar approaches have been made in the area of
computer graphics. Particularly, the map-based shape analysis frameworks based on the functional map
seem promising approaches to this problem. Though the original formulations are proposed for shapes, i.e.,
2-dimensional Riemannian manifolds, they can naturally be defined for Riemannian manifolds of arbitrary
dimension.

In this chapter, we concentrate on stability analysis of two frameworks–the shape difference operators
and the map analysis and visualization from [Ovsjanikov 2013]. More generally, we assume that the inputs
are two n-dimensional Riemannian manifolds M,N and a map T : M ! N . We verify two type of stability
properties: one is with respect to perturbations on the input manifolds and the other is with respect to the
changing scale, which is peculiar to the latter framework.

The results of this chapter are obtained in collaboration with F. Chazal and M. Ovsjanikov. The
manuscript is soon to be submitted.

Chapter 4: The functional-map-based frameworks are usually proposed to analyze 3D shapes, i.e., 2-
dimensional Riemannian manifold embedded in R3. The 3D shapes can be nicely approximated and repre-
sented by polygon meshes. Implementing these frameworks on meshes are obvious and efficient. In a more
general setting, where the input are Riemannian manifolds of dimension higher than 2 or embedded in a
Euclidean of dimension higher than 3, the implementation is not straightforward any more.

In this chapter, we propose a pipeline for dealing with data in the most primitive form–point cloud data
(PCD). The idea is to construct counterparts in the PCD setting of the ingredients necessary in the mesh
setting. To test our method, we perform the functional-map-based frameworks with our pipeline on point
clouds sampled from 3D shapes. The results are compared to the ones obtained from the mesh setting.
Empirically, the pipeline works well with the test data and shows robustness with respect to noisy data.

At the end, we emphasize that the work in this chapter is exploratory and experimental. The experimental
results suggest that this direction is worth further exploration and requires corresponding theoretical analyses.

The work presented in this chapter is obtained in collaboration with F. Chazal and M. Ovsjanikov. The
manuscript is in preparation.



CHAPTER 2

Approximation for Filamentary Structures
Using Reeb-Type Graphs

2.1 Introduction

With the advance of sensor technology, computing power and the Internet, massive amounts of geometric
data are being generated and collected in various areas of science, engineering and business. As they are
becoming widely available, there is a real need to analyze and visualize these large scale geometric data
to extract useful information out of them. In many cases these data are not embedded in Euclidean spaces
and come as (finite) sets of points with pairwise distance information, i.e. (discrete) metric spaces. A large
amount of research has been done on dimensionality reduction, manifold learning and geometric inference
for data embedded in (possibly high dimensional) Euclidean spaces and assumed to be concentrated around
low dimensional manifolds [Belkin 2003, Lafon 2004, Tenenbaum 2000b]. However, the assumption of data
lying on a manifold may fail in many applications. In addition, the strategy of representing data by points in
an Euclidean space may introduce large metric distortions as the data may lie in highly curved spaces, instead
of in flat Euclidean space raising many difficulties in the analysis of metric data. In the past decade, with
the development of topological methods in data analysis, new theories such as topological persistence (see,
for example, [Edelsbrunner 2002, Zomorodian 2005, Carlsson 2009, Chazal 2012]) and new tools such as
the Mapper algorithm [Singh 2007] have given rise to new algorithms to extract and visualize geometric and
topological information from metric data without the need of an embedding into an Euclidean space. In this
chapter we focus on a simple but important setting where the underlying geometric structure approximating
the data can be seen as a branching filamentary structure i.e., more precisely, as a metric graph which is a
topological graph endowed with a length assigned to each edge. Such structures appear naturally in various
real-world data such as collections of GPS traces collected by vehicles on a road network, earthquakes
distributions that concentrate around geological faults, distributions of galaxies in the universe, networks of
blood vessels in anatomy or hydrographic networks in geography just to name a few. It is thus appealing to
try to capture such filamentary structures and to approximate the data by metric graphs that will summarize
the metric and allow convenient visualization.

2.1.1 Overview

In this chapter we address the metric reconstruction problem for filamentary structures. The input of our
method and algorithm is a metric space (X, dX) that is assumed to be close with respect to the so-called
Gromov-Hausdorff distance dGH to a much simpler, but unknown, metric graph (G0, dG0

). Our algorithm
outputs a metric graph (G, dG) that is proven to be close to (G0, dG0

) in both geometry and topology. Our
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approach relies on the notion of Reeb graph (and some variants of it introduced in Section 2.4) and our main
theoretical results are stated in the following two theorems.

Theorem 2.5 [Recovery of Geometry]. Let (X, dX) be a compact connected geodesic space, let r 2 X
be a fixed base point such that the metric Reeb graph (G, dG) of the function d = dX(r, .) : X ! R is a
finite graph. If for a given " > 0 there exists a finite metric graph (G0, dG0

) such that dGH(X,G0
) < " then

we have

dGH(X,G) < 2(�1(G) + 1)(17 + 8NE,G0
(8"))"

where NE,G0
(8") is the number of edges of G0 of length at most 8" and �1(G) is the first Betti number of G,

i.e. the number of edges to remove from G to get a spanning tree. In particular if X is at distance less than
" from a metric graph with shortest edge larger than 8" then dGH(X,G) < 34(�1(G) + 1)".

Note that �1(G)  �1(X) and thus dGH(X,G) is upper bounded by the quantities depending only on
the input X .

Theorem 2.7 [Recovery of Topology]. Let (X, dX) be a compact connected path metric space and
(G0, dG0

) is a metric graph so that dGH(X,G0
) < ". Let r 2 X , ↵ > 60" and I = {[0, 2↵), (i↵, (i +

2)↵)|1  i  m} covers the segment [0,Diam(X)] such that the 2↵-Reeb graph G associated to I and the
function d = dX(r, .) : X ! R is a finite graph. If no edges of G0 are shorter than L and no loops of G0 are
shorter than 2L with L � 32↵+ 9", then we have G and G0 are homotopy equivalent.

Approximating the Reeb graph (G, dG) from a neighborhood graph is usually not obvious. If we compute
the Reeb graph of the distance function to a given point defined on the neighborhood graph we obtain the
neighborhood graph itself and do not achieve our goal of representing the input data by a simple graph.
See Table 2.1. It is then appealing to build a two dimensional complex having the neighborhood graph as
1-dimensional skeleton and use the algorithm of [Harvey 2010, Parsa 2013] to compute the Reeb graph of
the distance to the root point. Unfortunately adding triangles to the neighborhood graph may widely change
the metric between the data points on the resulting complex and significantly increase the complexity of the
algorithm. We overcome this issue by introducing a variant of the Reeb graph, the ↵-Reeb graph, inspired
from [Singh 2007] and related to the recently introduced notion of graph induced complex [Dey 2013a], that
is easier to compute than the Reeb graph but also comes with approximation guarantees (see Theorem 2.6).
As a consequence our algorithm runs in almost linear time (see Section 2.8).

Raw data usually do not come as geodesic spaces. They are given as discrete sets of points (and thus
not connected metric spaces) sampled from the underlying space (X, dX). Moreover in many cases only
distances between nearby points are known. A geodesic space (see Section 2.3.1 for a definition of geodesic
space) can then be obtained from these raw data as a neighborhood graph where nearby points are connected
by edges whose length is equal to their pairwise distance. The shortest path distance in this graph is then
used as the metric. In our experiments we use this new metric as the input of our algorithm. Particularly, in
Section 2.7 we study a special case that the underlying metric space (X, dX) is a metric graph embedded in
a d-dimensional Euclidean space Rd and data are sampled from (X, dX). Our result shows that the metric of
a certain neighboring graph built on the sampling points well approximates dX under proper conditions on
X and the sampling density.
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2.2 Related Works

Approximation of data by 1-dimensional geometric structures has been considered by different communities.
In statistics, several approaches have been proposed to address the problem of detection and extraction of
filamentary structures in point cloud data. For example Arial-Castro et al [Arias-Castro 2006] use multi-
scale anisotropic strips to detect linear structure while [Genovese 2009, Genovese 2012] and more recently
[Genovese 2014] base their approach upon density gradient descents or medial axis techniques. These meth-
ods apply to data corrupted by outliers embedded in Euclidean spaces and focus on the inference of individual
filaments without focus on the global geometric structure of the filaments network.

In computational geometry, the curve reconstruction problem from points sampled on a curve in
an Euclidean space has been extensively studied and several efficient algorithms have been proposed
[Amenta 1998, Dey 2000, Dey 2001]. Unfortunately, these methods restrict to the case of simple embed-
ded curves (without singularities or self-intersections) and hardly extend to the case of topological graphs.
In a more intrinsic setting where data come as finite abstract metric spaces, [Aanjaneya 2012] propose an
algorithm that outputs a topologically correct (up to a homeomorphism) reconstruction of the approximated
graph. However this algorithm requires some tedious parameters tuning and relies on quite restrictive sam-
pling assumptions. When these conditions are not satisfied, the algorithm may fail and not even outputs a
graph. Compared to the algorithm of [Aanjaneya 2012], our algorithm not only comes with metric guaran-
tees but also whatever the input data is, it always outputs a metric graph and does not require the user to
choose any parameters. Closely related to our approach is the data skeletonization algorithm proposed in
[Ge 2011] that computes the Reeb graph of an approximation of the distance function to a root point on a
2-dimensional complex built on top of the data whose size might be significantly larger than a neighboring
graph. The algorithm of [Ge 2011] also always output a graph but it does not come with metric guaranties.
Recently, Bauer, Ge and Wang [Bauer 2014] define a metric based on the function for Reeb graph and show
it is stable under Gromov-Hausdorff distance. The implementation of our algorithm relies on the Mapper
algorithm [Singh 2007], that provides a way to visualize data sets endowed with a real valued function as a
graph, where the considered function is the distance to the chosen root point. However, unlike the general
Mapper algorithm, our methods provides an upper bound on the Gromov-Hausdorff distance between the
reconstructed graph and the underlying space from which the data points have been sampled.

In theoretical computer science, there is much of work on approximating metric spaces us-
ing trees [Bǎdoiu 2007, Abraham 2007, Chepoi 2008] or distribution of trees [Dhamdhere 2006,
Fakcharoenphol 2004] where the trees are often constructed as spanning trees possibly with Steiner points.
Our approach is different as our reconstructed graph or tree is a quotient space of the original metric space
where the metric only gets contracted (see Proposition 2.2). Finally we remark that the recovery of fila-
ment structure is also studied in various applied settings, including road networks [Chen 2010, Tupin 1998],
galaxies distributions [Choi 2010].
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2.3 Preliminaries

2.3.1 Metric Spaces

A metric space is a pair (X, dX) where X is a set and dX : X ⇥ X ! R is a non-negative map such
that for any x, y, z 2 X , dX(x, y) = 0 if and only if x = y, dX(x, y) = dX(y, x) and dX(x, z) 
dX(x, y) + dX(y, z).

A continuous path (or curve) �, is a continuous map from I , a real interval, to X . A path is called simple
if it is not self-intersecting, or equivalently � is an injective map. The length of a path can be induced by the
metric space (X, dX)

Definition 2.1 Let I = [a, b] be an interval. A partition of I is a finite sequence of point in I such that
a = t0  t1  t2  · · ·  tk = b. Let � be the set of all partitions of I . Then the length of �, L(�) is
defined as

L(�) = sup

{t0,t1,...,t
k

}⇢�

kX

i=1

dX(�(ti�1),�(ti))

We call (X, dX) a path metric space if the distance between any pair of points is equal to the infimum of
the length of the continuous curves joining them. Hereinafter we only consider compact path metric spaces,
which are geodesic according to the following theorem (see also [Gromov 2002]).

Theorem 2.1 [Hopf-Rinow Theorem] If (X, dX) is a complete, locally compact path metric space, then:

• Closed balls are compact, or ,equivalently, each bounded, closed domain is compact.

• Each pair of points can be joined by a minimizing geodesic.

A non-geodesic metric space is illustrated in Figure 2.1.

(0, 0)

(1.0)

Figure 2.1: A metric space that is not geodesic: let X = R2\(12 , 0), and dX be the euclidean metric. The
distance between point (0, 0) and (1, 0) is 1, however there doesn’t exist a continuous curve joining them of
lenth 1.

Two compact metric spaces (X, dX) and (Y, dY ) are isometric if there exits a bijection � : X ! Y that
preserves the distances, i.e., for any x, x0 2 X , dY (�(x),�(x0)) = dX(x, x0). The set of isometry classes of
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compact metric spaces can be endowed with the Gromov-Hausdorff distance that can be defined using the
following notion of correspondence (see [Burago 2001]).

Definition 2.2 Let (X, dX) and (Y, dY ) be two compact metric spaces. Given " > 0, an "-correspondence
between (X, dX) and (Y, dY ) is a subset C ⇢ X ⇥ Y such that: i) for any x 2 X there exists y 2 Y such
that (x, y) 2 C; ii) for any y 2 Y there exists x 2 X such that (x, y) 2 C; iii) for any (x, y), (x0, y0) 2 C,
|dX(x, x0) � dY (y, y0)|  ".

Definition 2.3 The Gromov-Hausdorff distance between two compact metric spaces (X, dX) and (Y, dY ) is
defined by

dGH(X,Y ) =

1

2

inf{" � 0 : there exists an "-correspondence between X and Y }

It follows obviously from the definitions that two metric spaces are isometric if and only if the Gromov-
Hausdorff distance between them is zero.

Neighboring Graphs on Point Clouds in Rd In many applications, many metric spaces are isomet-
rically embedded in Rd. Sampling from an embedded metric space results in a collection of points
˜X = {x1, x2, · · · , xn} ⇢ Rd. No information about the underlying metric space can be inferred from

solely the isolated points, thus a first step towards processing ˜X is to build connections between points. Usu-
ally, we build a neighboring graph on top of ˜X by connecting points being close to each other in a certain
criterion. Now that ˜X is a subset of Rd, the Euclidean distance is available for measuring closeness between
points. Hereinafter we denote the Euclidean distance between x and y by kx � yk. Based on the Euclidean
distances, two typical neighboring graph constructions are defined as the following

Definition 2.4 Given an integer k, we denote the set of the nearest k neighborhoods of xi among ˜X\xi
by N(xi, k). The k-nearest graph on top of ˜X is then constructed by connecting xi to xj if and only if
xi 2 N(xj , k) or xj 2 N(xi, k).

Additionally, the mutual k-nearest graph is constructed by connecting xi to xj if and only if xi 2
N(xj , k) and xj 2 N(xi, k).

Definition 2.5 Given a positive constant �, the �-neighborhood graph of ˜X is constructed by connecting xi
to xj if and only if kxi � xjk  ".

There certainly exists many other graph constructions for a point cloud. Starting with a graph R =

(

˜X,E) embedded in Rd, a metric on ˜X is induced by the graph and we denote it by dR, whose definition is
actually a discrete version of the definition of curve length 2.1.

Definition 2.6 Given a pair of points x, y 2 ˜X ⇢ Rd, let P = (x1, x2, · · · , xi) be a path in R = (

˜X,E)

such that x1 = x, xi = y and (xj , xj+1) 2 E, 81  j  i � 1.
A metric dR :

˜X ⇥ ˜X ! [0,+1) is then defined as:

dR(x, y) = inf

P2�

i�1X

j=1

kxj � xj+1k
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where � is the set of all possible paths connecting x to y in R.

It follows from the above definition and the triangle inequality that dR(x, y) � kx�yk for any x, y 2 ˜X .

Metric Graphs A graph G = (V,E) is obtained by taking a finite set of vertices, V , and joining some of
them by edges, which are elements of the edge set E. A metric segment of length a (a > 0) is a metric space
isometric to an interval [0, a] ⇢ R. A metric graph is then a graph whose edges are metric segments.

Equivalently, a metric graph is also seen as a graph with a length assigned to each of its edges. Such a
length assignment naturally induces a metric on G, we then denote the metric by dG : G ⇥ G ! R. For any
two points g1, g2 2 G (they are not necessarily elements of V ), dG(g1, g2) is the length of the shortest path
between them along edges of G.

As we will mention soon, the goal of this part of our work is to approximate filamentary metric spaces
with certain graphs. Especially, we consider filamentary metric spaces that are close to metric graphs in
Gromov-Hausdorff distance (see definition 2.3).

2.3.2 Topology

After introducing the geometrical notions, we give a brief review of topological notions that will be involved
in Section 2.6.

It is well-known that a metric on a space induces topological properties such as open sets. In fact, let
B(x, r) be the open ball centered at x 2 X with radius r, i.e., B(x, r) = {y : dX(x, y) < r}. The set of all
the open balls in X forms a basis of a topology on space X . Denote the topology by ⌧X , then (X, ⌧X) is a
topological space induced by the metric dX .

Homotopy Equivalence We first introduce the homotopic relationship between functions from a topolog-
ical space (X, ⌧X) to (Y, ⌧Y ).

Definition 2.7 Two continuous functions f1, f2 from X to Y are homotopic if and only if there exists a
continuous function H : X ⇥ [0, 1] ! Y , such that H(x, 0) = f1(x) and H(x, 1) = f2(x)

Then we define homotopy equivalence between topological spaces.

Definition 2.8 Two topological spaces X and Y are homotopy equivalent if and only if there exists two
continuous functions f : X ! Y and g : Y ! X such that f � g (resp., g � f ) is homotopic to idY (resp.,
idX ), which is the identity map.

Especially, if a topological space X is homotopy equivalent to a one-point space Y = {y}, then we call
X a contractible space. From the point view of homotopy, cycles are the only non-trivial topological features
in a graph. In fact, one can classify graphs with the number of circles(A simple illustration of the following
theorem is in Figure 2.2.):

Theorem 2.2 [Homotopy Classification of graphs] Any connected graph G = (V,E) is homotopy equiv-
alent to a wedge of |E| � |V | + 1 circles, where |V | (resp., |E|) is the cardinality of V (resp., E).
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G1 G2

Figure 2.2: The black part of G1 is contractible to the black point in G2. After adding two red edges, G1 is
no longer contractible and is homotopy equivalent to a wedge of 2 cycles as G2.

The number of cycles of a graph, |E| � |V | + 1, is also known as the first betti number �1(G) of G ,i.e.,
the rank of the first homology group of G. Roughly speaking, one need to remove at least �1(G) edges from
G to obtain an acyclic graph, i.e., a tree.

Abstract Simplicial Complex An abstract simplicial complex � is a family of non-empty sets that satisfies
if A 2 � and B ⇢ A, then B 2 �.

Covering and Nerve Let V = {Vj}j2J be a finite open covering of space X , meaning that X =

S
j2J Vj

and J is a finite indexing set.
The nerve of the covering V is a simplicial complex N(V) whose vertex set is the indexing set J , and

vertices {j1, j2, · · · , jk+1} span a k�simplex in N(V) if and only if Vj1 \ Vj2 \ · · · \ Vj
k+1 6= ;.

The following Nerve lemma asserts that the homotopy type of X is possibly recovered by a good cover.

Lemma 2.1 [Nerve Lemma] Let V = {Vj}j2J be a finite open covering of X . If the intersection of any
subset of V is either empty or contractible, then the nerve of V , N(V), is homotopy equivalent to the union
of X .

2.4 Reeb-type Graph

In this section, we describe a construction to build a Reeb-type graph for approximating a metric space
(X, dX). Let (X, dX) be a compact geodesic space and let r 2 X be a fixed base point. Let d : X ! R be
the distance function to r, i.e., d(x) = dX(r, x). The set of points in X with distance to r equal to d(x) is
then the pre-image of d(x), i.e., d�1

(d(x)).

The Reeb graph. Define relation x ⇠ y if and only if d(x) = d(y) and x, y are in the same path connected
component of d�1

(d(x)). This relation is an equivalence relation. The quotient space G = X/ ⇠ is called
the Reeb graph of d.

We denote by ⇡ : X ! G the quotient map. Notice that ⇡ is continuous and as X is path connected, G
is path connected. The function d induces a function d⇤ : G ! R+ that satisfies d = d⇤ � ⇡. A relation on
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G is defined by: for any g, g0 2 G, g G g0 if and only if d⇤(g)  d⇤(g0) and there exist a continuous path �
in G connecting g to g0 such that d � � is non decreasing, makes G a partially ordered set.

The ↵-Reeb graphs. Computing or approximating the Reeb graph of (X, d) from a finite set of point
sampled on X is usually a difficult task. To overcome this issue we also consider a variant of the Reeb graph
that shares very similar properties to the Reeb graph. This variant is closely related to the graph constructed
by the Mapper algorithm introduced in [Singh 2007] making its computation much easier than the Reeb
graph (see Section 2.8).

Let ↵ > 0 and let I = {Ii} be a covering of the range of d by open intervals of length at most ↵. The
transitive closure of the relation x ⇠↵ y if and only if d(x) = d(y) and x, y are in the same path connected
component of d�1

(Ii) for some interval Ii 2 I is an equivalence relation that is also denoted by ⇠↵. The
quotient space G↵ = X/ ⇠↵ is called the ↵-Reeb graph 1 of d.

We denote by ⇡ : X ! G↵ the quotient map. Notice that ⇡ is continuous and as X is path connected,
G↵ is path connected. The function d induces a function d⇤ : G↵ ! R+ that satisfies d = d⇤ � ⇡. The
relation on G↵ is defined by: for any g, g0 2 G↵, g G

↵

g0 if and only if d⇤(g)  d⇤(g0) and there exist a
continuous path � in G↵ connecting g to g0 such that d � � is non decreasing, makes G↵ a partially ordered
set.

Notice that without making assumptions on X and d, in general G and G↵ are not finite graphs. However
when the number of path connected components of the level sets of d is finite and changes only a finite
number of times then the Reeb graph turns out to be a finite directed acyclic graph. Similarly, when the
covering of X by the connected components of d�1

(Ii), Ii 2 I is finite, the ↵-Reeb graph also turns out
to be a finite directed acyclic graph. This happens in most applications and for example when (X, dX) is a
finite simplicial complex or a compact semialgebraic (or more generally a compact subanalytic space) with
d being semi-algebraic (or subanalytic).

All the results and proofs presented in Section 2.5 are exactly the same for the Reeb and the ↵-Reeb
graphs. In the following paragraph and in Section 2.5, G denotes indifferently the Reeb graph or an ↵-Reeb
graph for some ↵ > 0. We also always assume that X and d (and ↵ and I) are such that G is a finite graph.

2.4.1 Metrics on Reeb and ↵-Reeb Graphs.

Let us define the set of vertices V of G as the union of the set of points of degree not equal to 2 with the
set of local maxima of d⇤ over G, and the base point ⇡(r). The set of edges E of G is then the set of the
connected components of the complement of V . Notice that ⇡(r) is the only local (and global) minimum
of d⇤: since X is path connected, for any x 2 X there exists a geodesic � joining r to x along which d is
increasing; d⇤ is thus also increasing along the continuous curve ⇡(�), so ⇡(x) cannot be a local minimum of
d⇤. As a consequence d⇤ is monotonic along the edges of G. We can thus assign an orientation to each edge:
if e = [p, q] 2 G is such that d⇤(p) < d⇤(q) then the positive orientation of e is the one pointing from p to
q. Finally, we assign a metric to G. Each edge e 2 E is homeomorphic to an interval to which we assign a
length equal to the absolute difference of the function d⇤ at two endpoints. The distance between two points
p, p0 of e is then |d⇤(p) � d⇤(p0)|. This makes G a metric graph (G, dG) isometric to the quotient space of

1strictly speaking we should call it the ↵-Reeb graph associated to the covering I but we assume in the sequel that some covering
I has been chosen and we omit it in notations
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the union of the intervals isometric to the edges by identifying the endpoints if they correspond to the same
vertex in G. Note that d⇤ is continuous in (G, dG) and for any p 2 G, d⇤(p) = dG(⇡(r), p). Indeed this is a
consequence of the following lemma.

Lemma 2.2 If � is a path joining two points p, p0 2 G such that d⇤ � � is strictly increasing then � is a
shortest path between p and p0 and dG(p, p0) = d⇤(p0) � d⇤(p).

Proof: As d⇤ � � is strictly increasing, when � enters an edge e by one of its end points, either it exits at the
other end point or it stops at p0 if p0 2 e. Moreover � cannot go through a given edge more than one time. As
a consequence � can be decomposed in a finite sequence of pieces e0 = [p, p1], e1 = [p1, p2], · · · , en�1 =

[pn�1, pn], en = [pn, p0] where e0 and en are the segments joining p and p0 to one of the endpoint of the edges
that contain them and e1, · · · , en�1 are edges. So, the length of � is equal to (d⇤(p1) � d⇤(p)) + (d⇤(p2) �
d⇤(p1)) + · · · + (d⇤(p0) � d⇤(pn)) = d⇤(p0) � d⇤(p) and dG(p, p0)  d⇤(p0) � d⇤(p).

Similarly any simple path joining p to p0 can be decomposed in a finite sequence of pieces e00 =

[p, p01], e
0
1 = [p01, p

0
2], · · · , e0k�1 = [p0k�1, p

0
k], e

0
k = [p0k, p

0
] where e00 and e0k are the segments joining p

and p0 to one of the endpoint of the edges that contain them, and e01, · · · , e0k�1 are edges. Now, as we do not
know that d⇤ is increasing along this path, its length is thus equal to |d⇤(p01) � d⇤(p)| + |d⇤(p02) � d⇤(p01)| +
· · · + |d⇤(p0) � d⇤(p0n)| � d⇤(p0) � d⇤(p). So, dG(p, p0) � d⇤(p0) � d⇤(p). ⇤

2.5 Reconvery of Geometry

The goal of this section is to provide an upper bound of the Gromov-Hausdorff distance between X and G,
and we conclude our result as the following theorem:

Theorem 2.5 [Recovery of Geometry]. Let (X, dX) be a compact connected geodesic space, let r 2 X
be a fixed base point such that the metric Reeb graph (G, dG) of the function d = dX(r, .) : X ! R is a
finite graph. If for a given " > 0 there exists a finite metric graph (G0, dG0

) such that dGH(X,G0
) < " then

we have
dGH(X,G) < 2(�1(G) + 1)(17 + 8NE,G0

(8"))"

where NE,G0
(8") is the number of edges of G0 of length at most 8" and �1(G) is the first Betti number of G,

i.e. the number of edges to remove from G to get a spanning tree. In particular if X is at distance less than
" from a metric graph with shortest edge larger than 8" then dGH(X,G) < 34(�1(G) + 1)".

We decompose our proofs into two parts: the first one (theorem 2.3) asserts that the Gromov-Hausdorff
distance between X and G only depends on the first Betti number �1(G) of G and the maximal diameter M
of the level sets of ⇡; and the rest part that estimates an upper bound of M is given in Section 2.5.1

Theorem 2.3 dGH(X,G) < (�1(G) + 1)M where dGH(X,G) is the Gromov-Hausdorff distance between
X and G, �1(G) is the first Betti number of G and M = supp2G{diam(⇡�1

(p))} is the supremum of the
diameters of in the level sets of ⇡.

Remark that as �1(G)  �1(X), from the above theorem, dGH(X,G) is upper bounded by the quantities
depending only on the input X . The proof of Theorem 2.3 is deduced from two propositions comparing the
distances between pairs of points x, y 2 X and their images ⇡(x),⇡(y) 2 G whose proofs rely on the notion
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of merging vertex. A vertex v 2 V is called a merging vertex if it is the end point of at least two edges e1
and e2 that are pointing to it according to the orientation defined in Section 2.4. Geometrically this means
that there are at least two distinct connected components of ⇡�1

(d�1
⇤ (d⇤(v)� ")) that accumulate to ⇡�1

(v)
as " > 0 goes to 0. The set of merging vertices is denoted by Vm. We have

Lemma 2.3 The cardinality of Vm is at most �1(G) where �1(G) is the rank of the first homology group of
G.

Proof: The result follows from classical persistence homology theory [Edelsbrunner 2010]. First remark
that, as ⇡(r) is the only local minimum of d⇤, the sublevel sets of the function d⇤ : G ! R+ are all path
connected. Indeed if ⇡(x),⇡(y) 2 G are in the same sublevel set d�1

⇤ ([0,↵]), ↵ > 0, then the images by
⇡ of the shortest paths in X connecting x to r and y to r are contained in d�1

⇤ ([0,↵]) and their union is a
continuous path joining ⇡(x) to ⇡(y). As a consequence, the 0-dimensional persistence of d⇤ is trivial. So
as we increase the ↵ value, no merging vertices serve as connecting two different connected components.
Thus, each merging vertex in Vm creates at least a cycle that never dies as G is one dimensional and does not
contain any 2-dimensional simplex. Thus |Vm|  �1(G). ⇤

The following lemma shows that a shortest path in G is the projection of a shortest path in X as long as
it does not meet a merging vertex and allow to prove proposition 2.1 below.

Lemma 2.4 Let p, p0 2 G and let � : [d⇤(p), d⇤(p0)] ! G be a strictly increasing path going from p to p0

that does not contain any point of Vm in its interior. Then for any x0 2 ⇡�1
(p0)

T
cl(⇡�1

(�(d⇤(p), d⇤(p0)))
where cl(.) denotes the closure, there exists a shortest path � connecting a point x of ⇡�1

(p) to x0 such that
⇡(�) = � and dX(x, x0) = d(x0) � d(x) = d⇤(p0) � d⇤(p) = dG(p, p0).

Proof: First assume that p0 is not a merging point. Let �0 : [0, d(x0)] ! X be any shortest path between
r and x0 and let � be the restriction of �0 to [d⇤(p), d(x0)] = [d⇤(p), d⇤(p0)]. If the infimum t0 of the set
I = {t 2 [d⇤(p), d⇤(p0)] : ⇡(�(t0)) 2 �, 8t0 � t} is larger than d⇤(p), then there exists an increasing
sequence (tn) that converges to t0 such that ⇡(�(tn)) 62 �. As a consequence �(t0) is a merging point; a
contradiction. So t0 = d⇤(p) and �(d⇤(p)) intersects ⇡�1

(p) at a point x.
Now if p0 is a merging point, as x0 is chosen in the closure of ⇡�1

(�(d⇤(p), d⇤(p0)), for any sufficiently
large n 2 N one can consider a sequence of points x0n 2 ⇡�1

(�(d⇤(p0) � 1/n)) that converges to x0 and
apply the first case to get a sequence of shortest path �n from a point xn 2 ⇡�1

(p) and x0n. Then applying
Arzelà-Ascoli’s theorem (see [Dieudonné 1960] 7.5) we can extract from �n a sequence of points converging
to a shortest path � between a point x 2 ⇡�1

(p) and x0.
To conclude the proof, notice that from Lemma 2.2 we have dG(p, p0) = d⇤(p0)� d⇤(p) = d(x0)� d(x).

Since � is the restriction of a shortest path from r to x we also have dX(x, x0) = d(x0) � d(x). ⇤
Notice that from Lemma 2.2, � is a shortest path and the parametrization by the interval [d⇤(p), d⇤(p0)]

can be chosen to be an isometric embedding.

Proposition 2.1 For any x, y 2 X we have

dX(x, y)  dG(⇡(x),⇡(y)) + 2(�1(G) + 1)M

where M = supp2G{diam(⇡�1
(p))} and �1(G) is the first Betti number of G.
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Proof: Let � be a shortest path between ⇡(x) and ⇡(y). Remark that except at the points ⇡(x) and ⇡(y)
the local maxima of the restriction of d⇤ to � are in Vm. Indeed as � is a shortest path it has to be simple, so
if p 2 � is a local maximum then p has to be a vertex and � has to pass through two edges having p as end
point and pointing to p according to the orientation defined in 2.4. So p is a merging point.

Since � is simple and Vm is finite, � can be decomposed in at most |Vm| + 1 connected paths along the
interior of which the restriction of d⇤ does not have any local maxima. So along each of these connected
paths the restriction of d⇤ can have at most one local minimum. As a consequence, � can be decomposed
in a finite number of continuous paths �1, �2, · · · , �k with k  2(|Vm| + 1), such that the restriction of d⇤
to each of these path is strictly monotonic. For any i 2 {1, · · · , k} let pi and pi+1 the end points of �i with
p1 = ⇡(x) and pk+1 = ⇡(y). We can apply Lemma 2.4 to each �i to get a shortest path �i in X between a
point xi 2 ⇡�1

(pi) and a point in yi+1 2 ⇡�1
(pi+1) such that ⇡(�i) = �i and dX(xi, yi+1) = dG(pi, pi+1).

The sum of the lengths of the paths �i is equal to the sum of the lengths of the path �i which is itself equal
to dG(⇡(x),⇡(y)). Now for any i 2 {1, · · · , k}, since ⇡(xi) = ⇡(yi) we have dX(xi, yi)  M and xi and
yi can be connected by a path of length at most M (x1 is connected to x and yk+1 is connected to y. Gluing
these paths to the paths �i gives a continuous path from x to y whose length is at most dG(⇡(x),⇡(y)) +
kM  dG(⇡(x),⇡(y)) + 2(|Vm| + 1)M . Since from Lemma 2.3, |Vm|  �1(G), we finally get that
dX(x, y)  dG(⇡(x),⇡(y)) + 2(�(G) + 1)M . ⇤

Proposition 2.2 The map ⇡ : X ! G is 1-Lipschitz: for any x, y 2 X we have

dG(⇡(x),⇡(y))  dX(x, y).

Proof: Let x, y 2 X and let � : I ! X be a shortest path from x to y in X where I ⇢ R is a closed
interval. The path ⇡(�) connects ⇡(x) and ⇡(y) in G.

We first claim that there exists a continuous path � contained in ⇡(�) connecting ⇡(x) and ⇡(y) that
intersects each vertex of G at most one time. The path � can be defined by iteration in the following way.
Let v1, · · · vn 2 V be the vertices of G that are contained in ⇡(�) \ {⇡(x),⇡(y)} and let �0 = ⇡(�) : J0 !
G, J0 = I . For i = 1, · · ·n let t�i = inf{t : �i�1(t) = vi} and t+i = sup{t : �i�1(t) = vi} and define
�i as the restriction of �i�1 to Ji = Ji�1 \ (t�i , t

+
i ). The path �i is a connected continuous path (although

Ji is a disjoint union of intervals) that intersects the vertices v1, v2, · · · , vi at most one time. We then define
� = �n : J = Jn ! G where J ⇢ I is a finite union of closed intervals. Notice that � is the image by ⇡ of
the restriction of � to J and that �(t) 2 {v1, · · · vn} only if t is one of the endpoints of the closed intervals
defining J .

Now, for each connected component [t, t0] of J , �((t, t0)) is contained in ⇡�1
(e) where e is the edge of

G containing �([t, t0]). As a consequence,

dG(⇡(�)(t),⇡(�)(t
0
)) = |d⇤(⇡(�)(t)) � d⇤(⇡(�)(t

0
))|

= |d(�(t)) � d(�(t0))|.

Recalling that d(�(t)) = dX(r, �(t)) and d(�(t0)) = dX(r, �(t0)) and using the triangle inequality we get
that |d(�(t)) � d(�(t0))|  dX(�(t), �(t0)). To conclude the proof, since � is a geodesic path we just need
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to sum up the previous inequality over all connected components of J :

dX(x, y) �
X

[t,t0]2cc(J)

dX(�(t), �(t0))

�
X

[t,t0]2cc(J)

dG(⇡(�)(t),⇡(�)(t
0
)) � dG(⇡(x),⇡(y))

where cc(J) is the set of connected components of J . ⇤
The proof of Theorem 2.3 now easily follows from Propositions 2.1 and 2.2.
Proof: (of Theorem 2.3) Consider the set C = {(x,⇡(x)) : x 2 X} ⇢ X ⇥ G. As ⇡ is surjec-

tive this is a correspondence between X and G. It follows from Propositions 2.1 and 2.2 that for any
(x,⇡(x)), (y,⇡(y)) 2 C,

|dX(x, y) � dG(⇡(x),⇡(y))|  2(�1(G) + 1)M

So C is a 2(�1(G) + 1)M -correspondence and dGH(X,G)  (�1(G) + 1)M . ⇤

2.5.1 Bounding the Diameter M

The two following lemmas allow to bound M , the diameter of the level sets of ⇡.

Lemma 2.5 Let (G, dG) be a connected finite metric graph and let r 2 G. We denote by dr = dG(r, .) :

G ! [0,+1) the distance to r. For any edge e ⇢ G, the restriction of dr to e is either strictly monotonic or
has only one local maximum. Moreover the length l = l(e) of e is upper bounded by two times the difference
between the maximum and the minimum of dr restricted to e.

Proof: Let l be the length of E and let t 7! e(t), t 2 [0, l], be an arc length parametrization of E. Since
E is an edge of G, for t 2 [0, l] any shortest geodesic �t joining r to e(t) must contain either x1 = e(0)
or x2 = e(l). If it contains x1 then for any t0 < t the restriction of �t between r and e(t0) is a shortest
geodesic containing x1 and if it contains x2 then for any t0 > t the restriction of �t between r and e(t0) is a
shortest geodesic containing x2. Moreover in both cases, the function dr is strictly monotonic along �. As a
consequence, the set I1 = {t 2 [0, l] : a shortest geodesic joining r to e(t) contains x1} is a closed interval
containing 0. Similarly the set I2 = {t 2 [0, l] : a shortest geodesic joining r to e(t) contains x2} is a closed
interval containing l and [0, l] = I1 [ I2. Moreover dr is strictly monotonic on e(I1) and on e(I2). As a
consequence I1 \ I2 is reduced to a single point t0 that has to be the unique local maximum of dr restricted
to E.

The second part of the lemma follows easily from the previous proof: the minimum of dr restricted to
E is attained either at x1 or x2 and dr(e(t0)) = dr(x1) + t0 = dr(x2) + l � t0 is the maximum of dr
restricted to E. We thus obtain that 2t0 = l+(dr(x2)� dr(x1)). As a consequence if dr(x1)  dr(x2) then
l/2  t0 = dr(e(t0)) � dr(x1); similarly if dr(x1) � dr(x2) then l/2  l � t0 = dr(e(t0)) � dr(x2). ⇤

Proposition 2.3 Let (G, dG) be a connected finite metric graph and let r 2 G. For ↵ > 0 we denote by
NE(↵) the number of edges of G of length at most ↵. For any d > 0 and any connected component B of the
set Bd,↵ = {x 2 G : d � ↵  dG(r, x)  d+ ↵} we have

diam(B)  4(2 +NE(4↵))↵
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r

d � ↵

4↵

B

Figure 2.3: Tightness of the bound in Lemma 2.3: there are 3 edges of length at most 4↵ and the diameter of
B is equal to 20↵. The range of the distances from r to the points on the red curve is [d � ↵, d+ ↵].

Proof: Let x, y 2 B and let t 7! �(t) 2 B be a continuous path joining x to y in B. Let E be an edge
of G that does not contain x or y and with end points x1, x2 such that � intersects the interior of E. Then
��1

(E) is a disjoint union of closed intervals of the form I = [t, t0] where �(t) and �(t0) belong to the set
{x1, x2}. If �(t) = �(t0) we can remove the part of � between t and t0 and still get a continuous path between
x and y. So without loss of generality we can assume that if � intersects the interior of E, then E is contained
in �. Using the same argument as previously we can also assume that if � goes across E, it only does it one
time, i.e. ��1

(E) is reduced to only one interval. As a consequence, � can be decomposed in a sequence
[x, v0], E1, E2, ·, Ek, [vk, y] where [x, v0] and [vk, y] are pieces of edges containing x and y respectively
and E1 = [v0, v1], E2 = [v1, v2]·, Ek = [vk�1, vk] are pairwise distinct edges of G contained in B. It
follows from Lemma 2.5 that the lengths of the edges E1, · · ·Ek and of [x, v0] and [vk, y] are upper bounded
by 4↵. As a consequence the length of � is upper bounded by 4(k + 2)↵ which is itself upper bounded by
4(NE(4↵)+2)↵ since the edges E1, · · ·Ek are pairwise distinct. It follows that dG(x, y)  4(NE(4↵)+2)↵.
⇤

The example of Figure 2.3 shows that the bound of Lemma 2.3 is tight.

Lemma 2.6 Let X and Y be compact geodesic metric spaces and C ⇢ X ⇥ Y be an "0�correspondence
between them. Assume (x0, y0) 2 C(X,Y ), we define functions dx0(.) = dX(x0, .) and dy0(.) = dY (y0, .)
in X and Y respectively. Then for any path �x in X connecting xa, xb 2 X , we can find a path �y in Y such
that its end points, ya, yb, are corresponding to xa, xb. And further more:

[miny2�
y

dy0(y),maxy2�
y

dy0(y)] ⇢ [minx2�
x

dx0(x) � 2"0,maxx2�
x

dx0(x) + 2"0]

Proof: Let " > "0 > 0 and u, l be the maximum and minimum of dx0 restricted to �x. Since C is an "0-
correspondence for any x 2 �x there exists a point (x, y) 2 C such that dx0(x)�"0  dy0(y)  dx0(x)+"

0.
As illustrated in Figure 2.4, the set of points y obtained in this way is not necessarily a continuous path from
ya to yb. However one can consider a finite sequence x1 = xa, x2, · · · , xn = xb of points in �x such that
for any i = 1, · · ·n � 1 we have dX(xi, xi+1) < " � "0. If (xi, yi) 2 C then we have dY (yi, yi+1) <
" � "0 + "0 = ". As a consequence, since l � " < l � "0 < dy0(yi) < u + "0 < u + " the shortest geodesic
connecting yi to yi+1 in G remains in the set d�1

y0 ([l � 2", u + 2"]) and connecting these geodesics for all
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Figure 2.4: The path correspondence between two metric spaces X and Y .

i = 1, · · · , n � 1 we get a continuous path from ya to yb in d�1
r ([l � 2", u + 2"]). Now decreasing " to "0,

we finish the construction. ⇤
As a corollary, we have the following theorem.

Theorem 2.4 Let (G, dG) be a connected finite metric graph and let (X, dX) be a compact geodesic metric
space such that dGH(X,G) < " for some " > 0. Let x0 2 X be a fixed point and let dx0 = dX(x0, .) :

X ! [0,+1) be the distance function to x0. Then for d � ↵ � 0 the diameter of any connected component
L of d�1

x0
([d � ↵, d+ ↵]) satisfies

diam(L)  4(2 +NE(4(↵+ 2")))(↵+ 2") + "

where NE(4(↵ + 2")) is the number of edges of G of length at most 4(↵ + 2"). In particular if ↵ = 0 and
8" is smaller that the length of the shortest edge of G then diam(L) < 17".

Proof: Let "0 > 0 be such that dGH(X,G) < "0 < ". Let C ⇢ X ⇥G be an "0-correspondence between
X and G and (x0, r) 2 C. we denote by dr = dG(r, .) : G ! [0,+1) the distance function to r in G. Let
xa, xb 2 L and let (xa, ya), (xb, yb) 2 C. There exists a continuous path � ✓ L joining xa to xb. Following
lemma 2.6, we get a continuous path from ya to yb in d�1

r ([d � ↵� 2"0, d+ ↵+ 2"0]). It then follows from
Proposition 2.3 that dG(ya, yb)  4(2 +NE(4(↵+ 2")))(↵+ 2") and since C is an "0-correspondence (and
so an "-correspondence), dX(xa, xb) < 4(2 +NE(4(↵+ 2")))(↵+ 2") + ". ⇤

From Theorems 2.4 and 2.3 we obtain the following results for the Reeb and ↵-Reeb graphs.

Theorem 2.5 Let (X, dX) be a compact connected path metric space, let r 2 X be a fixed base point such
that the metric Reeb graph (G, dG) of the function d = dX(r, .) : X ! R is a finite graph. If for a given
" > 0 there exists a finite metric graph (G0, dG0

) such that dGH(X,G0
) < " then we have

dGH(X,G) < (�1(G) + 1)(17 + 8NE,G0
(8"))"
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Figure 2.5: X and X1 are metric spaces that are both close to the metric graph G0 with respect to the
Gromov-Hausdorff distance. The ↵-Reeb graph, G, captures the stable topological features and ignores the
unstable ones like the small holes in X1.

where NE,G0
(8") is the number of edges of G0 of length at most 8". In particular if X is at distance less than

" from a metric graph with shortest edge length larger than 8" then dGH(X,G) < 17(�1(G) + 1)".

Theorem 2.6 Let (X, dX) be a compact connected path metric space. Let r 2 X , ↵ > 0 and I be a finite
covering of the segment [0,Diam(X)] by open intervals of length at most ↵ such that the ↵-Reeb graph G↵

associated to I and the function d = dX(r, .) : X ! R is a finite graph. If for a given " > 0 there exists a
finite metric graph (G0, dG0

) such that dGH(X,G0
) < " then we have

dGH(X,G↵) < (�1(G↵) + 1)(4(2 +NE,G0
(4(↵+ 2")))(↵+ 2") + ")

where NE,G0
(4(↵ + 2")) is the number of edges of G0 of length at most 4(↵ + 2"). In particular if X is at

distance less than " from a metric graph with shortest edge length larger than 4(↵+2") then dGH(X,G↵) <
(�1(G↵) + 1)(8↵+ 17").

2.6 Recovery of Topology

In this section, we consider the the ↵-Reeb graph G of a distance function d : X ! R, and show the
following theorem which asserts that G recovers some topology of X .
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Theorem 2.7 Let (X, dX) be a compact connected path metric space and (G0, dG0
) is a metric graph so that

dGH(X,G0
) < ". Let r 2 X , ↵ > 60" and I = {[0, 2↵), (i↵, (i + 2)↵)|1  i  m} covers the segment

[0,Diam(X)] such that the ↵-Reeb graph G associated to I and the function d = dX(r, .) : X ! R is
a finite graph. If no edges of G0 are shorter than L and no loops’ lengths of G0 are shorter than 2L with
L � 32↵+ 9", then we have G and G0 are homotopy equivalent.

First we note that under the assumption of dGH(X,G0
)  ", X and G0 are not necessarily homotopy

equivalent. For example, in Figure 2.5 we assume that dGH(X,G0
)  ", then dGH(X1, G0

)  " as long as
the perimeters of the two small holes in X1 are both less than ". Nevertheless, X and X1 are not homotopy
equivalent since X is contractible while X1 is not.

On the other hand, we usually care less about smaller topological features such as the holes in X1,
since they can be mixed with noisy features introduced in the real data acquisition. One of the important
properties of the mapper algorithm is that it provides a way to extract robust (opposite to the small unstable)
topological features in the data. Inheriting this property, the ↵-Reeb graph G in Figure 2.5 manages to
capture the homotopy type of X and negates the two small loops of X1.

The above observations motivate our setting in this section, we assume that the sizes of the topological
features, i.e., the length of the shortest edges and circles, of the underlying G0 is bounded from below and
that X is allowed to have unstable small features as long as dGH(X,G0

)  ". And then we prove that the
↵-Reeb graph is capable of capturing the topology of G0.

Our strategy of proving Theorem 2.7 is to construct some open covers for X and G0 and relate the ↵-
Reeb graph G and the graph G0 to the nerves of the open covers. Specifically, we construct an initial open
cover V0 of X whose nerve N(V0) is homotopy equivalent to G. Then we obtain a new open cover ˜V of X
by merging certain elements in V0 while preserving the homotopy type of the nerve of the open cover, i.e.,
N(V0) and N(

˜V) are homotopy equivalent. Based on the open cover ˜V , we construct an open cover ˜U for
G0 whose nerve N(

˜U) is isomorphic to N(

˜V) as graphs and at the same time is homotopy equivalent to G0.
In the following, we describe the constructions of the above open covers for X and G0 and show the above
claimed relations between them.

Since dGH(X,G0
) < ", there exists an "-correspondence between the two spaces, denoted C(X,G0

). For
any subset V ⇢ X , denote C(V ) = {g0 : (x, g0) 2 C(X,G0

), x 2 V }, and similarly for any subset U ⇢ G0,
denote C(U) = {x : (x, g0) 2 C(X,G0

), g0 2 U}. We call C(V ) and C(U) are the correspondence set of
V and U respectively under C(X,G0

). Recall that r 2 X is the root point. Choose a point gr 2 C(r) and
define a distance function b : G0 ! R by b(g) = dG0

(gr, g). Let N = {gn1 , gn2 , · · · , gnp

} be the vertices of
G0, i.e., N is the set of vertices whose degree is not equal to two. From the hypotheses of the above theorem,
the distance between any pair of vertices gn

i

, gn
j

with i 6= j is larger than L. For convenience, we also
add into the vertices of G0 the remaining local maximal/minimal points of the distance function b, which we
denote using M = {gm1 , · · · , gmq

}. Note any newly added vertex gm
i

2 M is of degree two. We call the
graph G0 before adding the vertices in M the original G0, and the edges in the original G0 the original edges
of G0. An original edge of G0 contains at most one vertex in M and thus can be split into at most two edges
in G0.
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2.6.1 Construction of Open Cover for X

We start with the following open cover of X . For each Ik 2 I, denote Vk = d�1
(Ik). Vk may have several

connected components, which can be listed in an arbitrary order. Denote V l
k the l-th connected component of

Vk. Then V0 = {V l
k}k,l is an open cover of X . Since at most two elements in I are overlapped, the nerve of

V0, denoted N(V0), is a graph. The following lemma states that any loop in the nerve N(V0) is large, which
is useful for the proof of Theorem 2.7. We say an open set V l1

k1
2 V0 is lower than the open set V l2

k2
2 V0 if

k1 < k2 and is higher than V l2
k2

if k2 > k1.

Lemma 2.7 Let V l
k and V i

j are the lowest vertex and the highest vertex of a loop respectively in the nerve
N(V0). Then under the hypotheses of Theorem 2.7, we have j � k � 15.

Proof: First notice that j > k. Let x1 2 V l
k \ d�1

(k↵, (k + 1)↵) and x2 2 V i
j \ d�1

((j + 1)↵, (j + 2)↵).
From the hypotheses of the lemma, there are two different paths �1,�2 connecting x1 to x2 so that �1 \
d�1

((k + 1)↵, (j + 1)↵) and �2 \ d�1
((k + 1)↵, (j + 1)↵) are in the different connected components of

d�1
((k + 1)↵, (j + 1)↵). Choose gi 2 G0 from C(xi) for i = 1, 2. Following Lemma 2.6, the path �i in X

for i = 1, 2 traces out a simple path �i in G0 connecting g1 to g2 so that �i lies in b�1
(k↵� ", (j +2)↵+ ").

One can verify that �1 and �2 are two different paths due to the fact that �1 and �2 pass through different
connected components of d�1

((k + 1)↵, (j + 1)↵) and thus form a loop in G0, denoted �. We have b(�) ⇢
(k↵� ", (j + 2)↵+ ").

We claim the range of the function b restricted to any loop, in particular �, covers an interval with the
length at least L

2 . If the claim holds, then we have (j � k + 2)↵+ 2" � L
2 , which implies j � k � 15 from

the hypothesis L � 32↵ + 9" of Theorem 2.7. Indeed, if � contains at least two vertices in N , then it is
obvious that the range of the function b restricted to � covers an interval the length at least L

2 as any original
edge of G0 is longer than L. Now consider the case where � contains one vertex in N , say ga. If � does not
contain gr, then there is exactly one local maximum on �, say gb. If � contains gr, let gb = gr. The removal
of ga and gb cuts � into two pieces. Along either piece, the function b has at most one local maximum. As
the length of � is longer than 2L. We have b(�) covers an interval with length longer than L/2. Finally, if �
contains no vertex in N , then G0 is a single loop � and the claim obviously holds. ⇤

In the following, we modify this open cover by merging while preserving the homotopy type of its nerve.
The main purpose of the merging operation is make it easy to relate the open cover of X to the open cover
of G0 as constructed in Section 2.6.2. The merging operation is done in two steps.

For any vertex g 2 M [ N of G0, we construct a connected open set V (g) as the union of a subset
of the open cover V0 as follows. If b(g) � ↵

2 , then there exists a unique positive integer k0 s.t. k0 ↵2 
b(g) < (k0 + 1)

↵
2 . Let k = bk0+1

2 c � 1 � 0, and one can verify that (k +

1
2)↵  b(g)  (k +

3
2)↵.

Therefore for all x 2 C(g), d(x) 2 [(k +

1
2)↵ � ", (k +

3
2)↵ + "] ⇢ Ik. Moreover C(g) is contained

in V l
k ⇢ Vk for some l. Indeed, if not, assume x1, x2 2 C(g) with xi 2 V i

k for i 2 {1, 2}. By the
definition of V i

k , the geodesic connecting x1 and x2 must pass through a point x0 outside of Vk, which means
dX(xi, x0) � |d(xi) � d(x0)| � ↵

2 � ". Then dX(x1, x2) � ↵ � 2" which contradicts to the fact that
dX(x1, x2)  dG0

(g, g) + "  ". Now we construct the open set V (g) as the union of the elements in the
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V

Va Vb

l

x1 x2

(j + 2)↵

(j + 1)↵

Figure 2.6: V with two lower neighborhoods.

open cover V0 having non-empty intersection with V l
k , i.e.,

V (g) =
[

V 2V0 and V \V l

k

6=;

V.

In the case where b(g) < ↵
2 , we construct the open set V (g) = V0 [ V1 = d�1

([0, 3↵)). Note in both cases,
V (g) is a connected open set of X . We abuse the notation and also denote V (g) the subset of V0 whose
union is the open set V (g). What V (g) represents will be clear from the context. For convenience, we call
V l
k containing C(g) the center of V (g). Note that it is possible that V (g) = V (g0) for two different vertices

g, g0.
Now we obtain an intermediate open cover of X

V = {V (g) : g 2 M [ N}
[

{V 2 V0 : V /2 V (g), 8g 2 M [ N}

Note as a set, V does not have duplicated elements, i.e., if V (g) = V (g0) for g 6= g0, then V only contains
one copy of V (g). We call an open set V (g) 2 V for any g 2 M [N critical and the remaining ones regular.
The following two lemmas describe the properties of the critical open sets and the regular open sets.

Lemma 2.8 Under the hypotheses of Theorem 2.7, we have for any vertex g 2 M [ N ,
i) d(V (g)) ⇢ [s↵, (s+ 4)↵] for some integer s � 0, and
ii) for any point x 2

S
V 2V0\V (g) V and any gx 2 C(x) ⇢ G0, dG0

(g, gx) � ↵
2 � 2".

Proof: The claim (i) is obvious from the construction of V (g). We now prove claim (ii). In the case where
b(g) < ↵

2 , for any x 2
S

V 2V0\V (g) V , we have d(x) > 3↵ and b(gx) > 3↵ � ". Thus dG0
(g, gx) �

|b(gx) � b(g)| > 3↵ � " � ↵
2 > ↵

2 � 2". Now consider the case where b(g) � ↵
2 . Assume V l

k is the
center of V (g). If d(x) 62 Ik, then dX(x, y) � ↵

2 � " for any point y 2 C(g) from the construction of
V (g), which implies dG0

(gx, g) � ↵
2 � 2". Otherwise d(x) 2 Ik. Then x is not in V l

k and the geodesic
from x to any point y 2 C(g) must pass x0 /2 Vk. This implies that dX(x, y) > dX(x0, y) � ↵

2 � " and
dG0

(gx, g) � dX(x, y) � " � ↵
2 � 2". This proves the lemma. ⇤

Lemma 2.9 For any regular open set V 2 V , V is also an open set in V0. Moreover, under the hypotheses
of Theorem 2.7, it is of degree two in the nerve of N(V0) with one neighboring vertex higher than V and one
neighboring vertex lower than V .
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Proof: We prove the lemma by contradiction. Assume V 2 V0 \
S

g2M[N V (g) has two neighboring
vertices, say Va, Vb, which are lower than V . Without loss of generality, assume d(V ) ⇢ Ij and d(Va) and
d(Vb) are subsets of Ij�1. Let xa 2 Va and xb 2 Vb such that (j � 1)↵ < d(xa), d(xb) < j↵. As Va and Vb

both have non-empty intersection with V , there exist a path in d�1
((j�1)↵, (j+2)↵). Now let l = inf{s :

there exists a path connecting xa, xb in d�1
((j�1)↵, s]

T
(V [Va [Vb)}. We have (j+1)↵  l < (j+2)↵

as Va, Vb are disconnected.
We can choose two points x1, x2 2 V [ Va [ Vb from a path connecting xa and xb such that d(x1) =

d(x2) = l � 2", and x1, x2 are disconnected in d�1
([l � 2", l))

T
(V [ Va [ Vb) but are connected by a

path, say �, in d�1
([l � 2", l])

T
(V [ Va [ Vb). Obviously dX(x1, x2) � 2(l � (l � 2")) = 4". Let

gi 2 C(xi) for i = 1, 2. Then b(gi) 2 [l � 3", l � "] for i = 1, 2 and dG0
(g1, g2) � dX(x1, x2) � " � 3".

Following Lemma 2.6, the path � traces out a simple path in G0 denoted � connecting g1 and g2 which lies
in b�1

(l � 4", l + 2"). We claim � must contain a vertex gc in M [ N . If not,

dG0
(g1, g2) = |b(g1) � b(g2)|

 |b(g1) � d(x1) + d(x2) � b(g2)|
 |(b(g1) � b(gr)) � (d(x1) � d(r))| + |(d(x2) � d(r)) � (b(g2) � b(gr))|
= |dG0

(g1, gr) � dX(x1, r)| + |dG0
(g2, gr) � dX(x2, r)|

 2"

This contradicts to the fact that dG0
(g1, g2) � 3". From the construction of �, there exists a point g 2 � so that

dG0
(g, gc)  " and there exists a point x 2 � \ C(g). Then for any point xc 2 C(gc), we have dX(x, xc) 

2". For any vertex x0 2 V \ d�1
(l), since x0 and x are connected in d�1

([l � 2", l])
T
(V [ Va [ Vb),

dX(x0, x)  25" from Theorem 2.4, and therefore dX(x0, xc)  27". However, since x0 2 V which is
regular, x /2 V (gc). From Lemma 2.8, we have dX(x0, xc) � ↵

2 � 2" > 27". This is a contradiction.
Therefore V can not have more than one neighboring vertices that are lower than V .

Using a similar argument we can also prove that V can not have more than one neighboring vertices that
are higher than V . ⇤

We now perform a second step of merging. Two critical open set V (g1) and V (g2) in N(V) are said to
be close if there is a simple path � in the nerve N(V0) connecting the center V l1

k1
of V (g1) and the center V l2

k2
of V (g2) so that � consists of at most 4 edges. If there is a regular open set along the above path, we say this
regular open set connects the critical open sets V (g1) and V (g2).

We have the following properties for two close critical open sets.

Lemma 2.10 Under the hypotheses of Theorem 2.7, we have

(i) for any two vertices gn1 , gn2 2 N , V (gn1) and V (gn2) can not be close;

(ii) for any gm 2 M , there exists at most one gn 2 N such that V (gm) and V (gn) are close;

(iii) if V (gm1) and V (gm2) are close for any two vertices gm1 , gm2 2 M , then there must exist a vertex
gn 2 N such that at least one of V (gm1) and V (gm2) is close to V (gn). Moreover, there is a path in
N(V0) of at most 5 edges connecting the center of V (gn) to the center of V (gm

i

) for any i = 1, 2.
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Proof: Let V p
j , V

q
k are the centers of V (g1) and V (g2) respectively for g1, g2 2 N [ M . If V (g1) and

V (g2) are close, then |k � j|  4. Assume j  k. Then for any x1 2 C(g1) and x2 2 C(g2), there is
a path in d�1

((j↵, (k + 2)↵)) connecting x1 and x2. Note that k + 2 � j  6. We claim that V (g1) and
V (g2) are not close provided that dG0

(g1, g2) > 12↵+ 9". Indeed, since dG0
(g1, g2) > 12↵+ 9", the range

of the function b restricted to any path connecting g1 and g2 in G0 covers an interval of the length at least
6↵ + 4.5". This implies that the range of the function d restricted to any path in X connecting x1 and x2
covers an interval of the length at least 6↵+ 0.5". This means that V (g1) and V (g2) can not be close. Since
dG0

(gn1 , gn2) � L > 12↵+ 9↵, V (gn1) and V (gn2) are not close. This proves (i).
Assume V (gm) is close to both V (gn1) and V (gn2) with gn1 , gn2 2 N . We have dG0

(gn1 , gn2) 
dG0

(gm, gn1) + dG0
(gm, gn2)  24↵+ 18" < L, which means gn1 = gn2 . This proves (ii).

We now prove (iii). Since at most one vertex in M is added into an original edge of G0, any path in
G0 connecting gm1 and gm2 passes through at least one vertex from N . Furthermore, let � be a geodesic
in G0 connecting gm1 and gm2 . If � passes more than one vertices in N , dG0

(gm1 , gm2) � L > 12↵ + 9",
which contradicts to the fact that V (gm1) and V (gm2) are close. Therefore � contains exactly one vertex in
N . Denote this vertex by gn. Let V l1

k1
and V l2

k2
be the centers of V (gm1) and V (gm2) respectively, and � be

the simple path from V l1
k1

to V l2
k2

in N(V0) so that � consists of at most 4 edges, or equivalently at most five
elements in V0.

Recall V (gn) consists of a subset of V0. We claim that � must pass through an element in V (gn).
If the claim holds, it is easy to verify that at least one of V (gm1) and V (gm2) is close to V (gn). In

addition, if we let V l
k be the center of V (gn), then there is a path in N(V0) with as most 5 edges connecting

V l
i

k
i

and V l
k for any i = 1, 2. This proves (iii).

It remains to show the above claim. We prove by contradiction. If we let

V (�) = {V 2 V0 : V is on the path of �},

then V (gn) as a subset of V0 does not intersect with V (�). We have C(gm1) and C(gm2) are contained in
V l1
k1

and V l2
k2

respectively. For any x1 2 C(gm1) and any x2 2 C(gm2), there is a path � in X connecting
x1 and x2 so that � is contained in

S
V 2V (�) V . From Lemma 2.8, for any x 2 � and any gx 2 C(x),

dG0
(gx, gn) � ↵

2 � 2". From the construction in the proof of Theorem 2.4, the path � can trace out a simple
path �0 in G0 connecting gm1 and gm2 so that for any point g 2 �0, dG0

(g, gn) � ↵
2 � 3". This means that �

and �0 form a loop in G0. Since � is contained in
S

V 2V (�) V , d(�) is contained in an interval with the length
of 6↵, which implies that b(�0) is contained in an interval with the length of 6↵ + 4". Thus the length of �0

is at most 2(6↵ + 4") as it passes through at most one vertex in N . Since � is a geodesic in G0 connecting
gm1 and gm2 , the length of the above loop is at most 4(6↵ + 4"), which contradicts to the hypotheses of
Theorem 2.7. This proves the above claim. ⇤

We say ga, gb 2 M [ N are equivalent, denoted ga ⇠c gb, if there exists a finite sequence ga =

g1, g2, ..., gk = gb such that V (gi) and V (gi+1) are close for any i = 1, · · · , k � 1. This is an equivalence
relation. From Lemma 2.10 (iii), if an equivalence class contains at least two vertices in M [ N , it must
contain a vertex in N . We have the following lemma

Lemma 2.11 Under the hypotheses of Theorem 2.7, an equivalence class contains at most one vertex from
N .
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Proof: If not, assume gn1 6= gn2 and gn1 ⇠c gn2 . Let gn1 = g1, g2, ..., gk = gn2 be a sequence so that V (gi)
and V (gi+1) are close for any i = 1, · · · , k�1. WLOG, we can further assume gi 2 M for i = 2, · · · , k�1.

We first show that k > 5. Assume not. let V li

k
i

be the center of V (gi) for i = 1, · · · , k. From
Lemma 2.10 (iii), there is a path in N(V0) with at most 2 ⇥ 5 = 10 edges connecting V l1

k1
to V l5

k5
. Thus

for any x1 2 C(gn1) and any x2 2 C(gn2), there is a path � in X connecting x1 and x2 so that d(�)
is contained in an interval with the length at most 12↵. The path � traces out a path � in G0 connect-
ing gn1 and gn2 so that b(�) is contained in an interval with the length at most 12↵ + 4", which implies
dG0

(gn1 , gn2)  2(12↵+ 4"). This contradicts to the hypothesis concerning the lengths of the edges in G0.
Now we assume k > 5. Since V (g3) and V (g4) are close and g3, g4 2 M , from Lemma 2.10 (iii), there

exists a gn 2 N so that V (gn) is close to at least one of V (g3) and V (g4). Assume V (gn) is close to V (g3).
If V (gn) 6= V (gn1), we obtain a sequence of g01 = gn1 , g

0
2 = g2, g03 = g3, g04 = gn so that V (g0i) and V (g0i+1)

are close for any i = 1, · · · , 3. If V (gn) 6= V (gn2), we obtain a sequence g01 = gn, g02 = g3, · · · g0k�1 = gn2

so that V (g0i) and V (g0i+1) are close for any i = 1, · · · , k � 2. In either case, the new sequence has a length
less than k. Similarly, we can obtain a shorter sequence if V (gn) is close to V (g4). One can keep shortening
the sequence so that its length is no longer than 5, which however has been proven to be impossible. This
proves the lemma. ⇤

Now we are ready to further merge the open sets in V to obtain the final open cover ˜V of X as follows.
For any vertex gn 2 N of G0, Let ˜V (gn) be the subset of V consisting of (1) V (gn), and (2) any critical
open set V (g) ⇢ V with g ⇠c gn, and (3) any regular open set V ⇢ V connecting two critical open sets
which are equivalent to gn. We abuse the notation and also denote ˜V (gn) the open set of the union of the
open sets in ˜V (gn). What ˜V (gn) represents will be clear from the context. Let ˜VN = {V 2 V : V 2
˜V (gn) for some gn 2 N}. The open cover ˜V =

˜V1 [ ˜V2 [ ˜V3 of X consists of three types of open sets:

(1) ˜V1 = { ˜V (gn) : gn 2 N};

(2) ˜V2 = {V (g) : g 2 M and V (g) 6⇢ ˜VN}

(3) ˜V3 = {V 2 V : V is regular and V 6⇢ ˜VN}.

Figure 2.7 shows different types of elements in ˜V . We summarize the properties for the open cover ˜V in the
following corollary, which follows from Lemma 2.8, Lemma 2.9, Lemma 2.10, and Lemma 2.11.

Corollary 2.1 Under the hypotheses of Theorem 2.7, the open sets in ˜V satisfy the following properties.

• ˜V (g1) and ˜V (g2) are disjoint for two different g1, g2 2 N .

• For any two open sets ˜V1, ˜V2 2 ˜V1 [ ˜V2, any path in the 1-skeleton of the nerve N(

˜V) connecting
˜V1, ˜V2 consists of at least two elements from ˜V3.

• Any open set ˜V 2 ˜V3 is also a regular element in V and thus an element in V0. Moreover any point
g 2 C(

˜V ) ⇢ G0 is at least ↵
2 � 2" away from any vertex of G0.

Proposition 2.4 Under the hypotheses of Theorem 2.7, N(

˜V) and N(V0) are homotopy equivalent.
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N(V)N(V0)

N(Ṽ)

V (gm1)

V (gn1)

V (gn2)

V (gm2)

in Ṽ1

in Ṽ2

in Ṽ3

Figure 2.7: Illustration of the merging strategy: From top-left to top-right (First step): We select the unions
of open sets from V0 based on the critical points w.r.t. b(g) in G0 and merge them respectively; From top-
right to bottom-left (Second step): We further merge the unions which are mutually close. Bottom-right: the
nerve of the merging result N(

˜V).

Proof:

We obtain the elements in the open covering ˜V by merging a subset of open sets in V0. Think of any
element ˜V 2 ˜V as a subset of V0. The nerve N(V0) restricted to ˜V is a subgraph of N(V0), whose vertex
set is ˜V and edge set includes the edges in N(V0) with both endpoints in ˜V . We call this subgraph the nerve
of ˜V , denoted N(

˜V ). The nerve of N(

˜V) as a topological space is the quotient space N(V0)/
S

Ṽ 2Ṽ N(

˜V ).
From Proposition 0.17 in [Hatcher 2002], it is sufficient to show that N(

˜V ) is a tree for any ˜V 2 ˜V .

For ˜V 2 ˜V2 [ ˜V3, N(

˜V ) is obviously a tree. Consider ˜V 2 ˜V1. There exists a gn 2 N so that
V (gn) ⇢ ˜V (gn) 2 ˜V . Let V t

s be the center of V (gn). For any gm 2 M and V (gm) ⇢ ˜V (gn), if let vt0s0 be
the center of V (gm), from Lemma 2.10, |s � s0| < 5. Therefore, if V i

l is the element in ˜V with the smallest
sub-index and V j

h is the element in ˜V with the largest sub-index, then we have |h� l|  5+5+2+2 = 14.
From Lemma 2.7, there is no loop in the subgraph N(

˜V ). This proves the proposition. ⇤
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2.6.2 Construction of Open Cover for G

0

In this section, we construct an open cover G0 based on the open cover ˜V of X . For an open set V 2 V0,
we construct a connected open set UV ⇢ G0 so that C(V ) ⇢ UV as follows. Let l = min{d(V )} and
u = max{d(V )}. We have u � l  2↵. Let ¯U = b�1

([l � 2", u + 2"]), and then C(V ) ⇢ ¯U . Since
u � l + 4" < 2↵ + 4" < L

4 , one can verify that there is no loop in ¯U and thus ¯U consists of a set of
trees. We claim C(V ) is contained in one of the trees. Indeed, for any two g1, g2 2 C(V ), we have
l � " < b(g1), b(g2) < u + ". Now let xi 2 V so that gi 2 C(xi) for i = 1, 2. Let � be a path in V
connecting x1 and x2. Following Lemma 2.6, � can trace out a path � in ¯U connecting g1 and g2, which
implies that C(V ) is contained in a tree in ¯U . Let UV denote that tree. Let U0 = {UV : V 2 V0}. It is
obvious that U0 is an open cover of G0. We now merge the elements in U0 to construct a new open cover
according to the way in which the elements in V0 are merged to obtain ˜V . Specifically, from our construction
of ˜V , any open set ˜V 2 ˜V is the union of a subset of open sets in V0. We also denote this subset using ˜V . Let
UṼ = {UV : V 2 ˜V ⇢ V0}. We also denote UṼ is the open set of the union of the open sets in UṼ .

Consider an open set ˜V 2 ˜V3. As it is also a regular open set in V and thus an open set in V0, d( ˜V ) =
(p↵, (p+2)↵) for some integer p > 0. From Corollary 2.1, any point in C(

˜V ) is at least ↵
2 �2" away from any

vertex in M[N and any point in UṼ is at least ↵
2 �4" away from any vertex in M[N . Thus UṼ is a segment

in G0 without any branches. We shrink UṼ to obtain a new open set ˜UṼ = UṼ \b�1
(p↵+2", (p+2)↵�2"),

which is also a segment in G0. For any open set ˜V 2 ˜V1 [ ˜V2, let ˜UṼ = UṼ . Thus we obtain

˜U = { ˜UṼ :

˜V 2 ˜V}.

One can verify that ˜U is an open cover of G0. Moreover we have the following two lemmas which relate the
nerve N(

˜V) to G0.

Proposition 2.5 Under the hypotheses of Theorem 2.7, the nerve N(

˜V) and the nerve N(

˜U) are isomorphic
as graphs.

Proof: It suffices to prove the following three claims.

• Claim (i): For any two ˜Vi, ˜Vj 2 ˜V1 [ ˜V2, ˜UṼ
i

\ ˜UṼ
j

= ;.

Any path in N(

˜V) connecting ˜Vi and ˜Vj must pass through at least two open sets in ˜V3, which are
regular open sets in V . From Lemma 2.9, any regular set has two neighbors in the nerve N(V) one
lower and one higher, WLOG, assume ˜Vi is higher than ˜Vj . We have inf{d(x) : x 2 ˜Vi} � ↵ +

sup{d(x)|x 2 ˜Vj}, which implies inf{b(g)|g 2 ˜UṼ
i

} � ↵+sup{b(g)|g 2 ˜UṼ
j

}�2" > sup{b(g)|g 2
˜UṼ

j

}. Thus ˜UṼ
i

\ ˜UṼ
j

= ;.

• Claim (ii): For any two ˜Vi, ˜Vj 2 ˜V3, ˜Vi \ ˜Vj = ; if and only if ˜UṼ
i

\ ˜UṼ
j

= ;.

If ˜Vi \ ˜Vj 6= ;, assume ˜Vi is the only neighboring vertex in the nerve N(V) higher than ˜Vj . Let
d( ˜Vj) = (p↵, (p + 2)↵) and d( ˜Vi) = ((p + 1)↵, (p + 3)↵). Choose a point x from ˜Vi \ ˜Vj so that
d(x) = (p+ 3

2)↵. We have C(x) 2 ˜UṼ
i

\ ˜UṼ
j

, which shows ˜UṼ
i

\ ˜UṼ
j

6= ;.

If ˜Vi \ ˜Vj = ;. Let d( ˜Vi) = (p↵, (p+ 2)↵) and d( ˜Vi) = (q↵, (q + 2)↵). If |p � q| � 2, it is obvious
that ˜UṼ

i

\ ˜UṼ
j

= ;. Now assume that q � p  1, which forces the shortest path connecting ˜Vi and
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˜Vj in N(

˜V) must pass through some open set ˜V 2 ˜V1 [ ˜V2. By Lemma 2.8, for any gi 2 C(

˜Vi)

dG0
(gi, g) � ↵

2 � 2" and for any gj 2 C(

˜Vj) dG0
(gj , g) � ↵

2 � 2" for any vertex g 2 M [N such that
V (g) 2 ˜V . Thus dG0

(gi, gj) � ↵� 4", which implies ˜UṼ
i

\ ˜UṼ
j

= ;.

• Claim (iii): For any ˜Vi 2 ˜V1 [ ˜V2 and any ˜Vj 2 ˜V3, ˜Vi \ ˜Vj = ; if and only if ˜UṼ
i

\ ˜UṼ
j

= ;.

First assume that ˜Vi and ˜Vj have a non-empty intersection. As ˜Vj 2 ˜V3, it is a regular open set in
V which has one higher neighboring vertex and one lower neighboring vertex in N(V0). Since ˜Vj is
regular, we have d( ˜Vj) = (p↵, (p+ 2)↵) for some integer p > 0. We know ˜Vi consists of a subset of
open sets in V0 and let V 2 ˜Vi be the open set in V0 so that V \ ˜Vj 6= ;. WLOG, assume V is the
higher neighboring vertex of ˜Vj and we have d(V \ ˜Vj) � ((p + 1)↵, (p + 2)↵). We choose a point
in x 2 ˜Vj \ V so that d(x) = (p + 2)↵ � 4". Since b(C(x)) ⇢ ((p + 2)↵ � 5", (p + 2)↵ � 3"),
C(x) 2 ˜UṼ

j

\ ˜UṼ
i

and thus ˜UṼ
i

\ ˜UṼ
j

6= ;.

Second assume ˜Vi \ ˜Vj = ;. If any path in the nerve N(

˜V) connecting ˜Vi and ˜Vj passes through some
open set in ˜V1 [ ˜V2, then we are done based on Claim (i). Now assume there is a path � in the nerve
N(

˜V) connecting ˜Vi and ˜Vj only passing through open sets in ˜V3. Since any open set in ˜V3 is a regular
set in V , the worst scenery is that � contains no intermediate open sets. In this worst scenery, due to
the shrinking operation on ˜UṼ

j

, one can verify that ˜UṼ
i

\ ˜UṼ
j

= ;.

⇤

Proposition 2.6 Under the hypotheses of Theorem 2.7, N(

˜U) is homotopy equivalent to G0.

Proof: As we have proved, ˜U is an open covering of G0. Since any edge on the original G0 has a length
longer than L, one can verify that any element of ˜U contains no loop and thus is a tree, and in particular is
contractible. Furthermore, the union of any two elements of ˜U does not contains a loop. This means that if
two elements of ˜U intersect with each other, their intersection is connected and thus contractible. Following
from Nerve lemma, we have N(

˜U) is homotopy equivalent to G0. ⇤
Proof of Theorem 2.7. From Proposition 2.4, Proposition 2.5, Proposition 2.6, it remains to show that the
nerve N(V0) is homotopy equivalent to the ↵-Reeb graph G. Indeed, we represent each node V l

k in N(V0)

using a copy of the interval Ik. If V l1
k1

and V l2
k2

with k1 < k2 are the endpoints of an edge in N(V0), then
we glue the upper half of Ik1 to the lower half of Ik2 . We identify any two points which are glued together
directly or indirectly. By definition, the ↵-Reeb graph is the quotient space of the disjoint union of these
intervals. From Lemma 2.7, there are more than one node between the top node and the bottom node of any
loop in N(V0). Thus, we have a one-to-one correspondence between the loops in N(V0) and the loops in the
↵-Reeb graph. This proves the theorem.

2.7 Metric Reconstruction from Discrete Sampling

In the previous sections, we propose constructions of Reeb-type graphs for a given metric space (X, dX)

which is supposed to be close to an underlying metric graph (G0, dG0
) in the Gromov-Hausdorff distance. Our

theoretical analysis shows that the Reeb-type graph approximation is both geometrically and topologically
reliable under certain conditions.
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Figure 2.8: 3 types of close-self-intersection.

In practice, however, we usually only have access to a finite collection of isolated discrete points ˜X
sampled from X and need to build a metric dX̃ on top of it. In general, it’s unlikely to recover dX exactly with
a finite sampling. Therefore it’s necessary to understand the distortion between dX and its approximation
dX̃ , i.e., the Gromov-Hausdorff distance between metric spaces (X, dX) and (

˜X, dX̃).
Particularly, in this section we consider a case in which (X, dX) = (G, dG) is a finite metric graph

embedded in a d�dimensional Euclidean space Rd. And we let ˜X = {x1, x2, ..., xn} ⇢ G ⇢ Rd be an
"�sampling as defined below.

Definition 2.9 An "�sampling of the embedded metric graph (G, dG) is a finite set of points ˜X =

{x1, x2, x3, · · · , xn} 2 G ⇢ Rd, such that for any g 2 G, there exists at least one x 2 ˜X satisfying
dG(g, x)  ".

With a positive parameter �, we construct a �-neighborhood graph (see definition 2.5), R� = (

˜X,E�),
on top of ˜X with parameter � > 0, and we denote the metric induced by R� as in definition 2.6 by dX̃,�.

On the other hand, since ˜X ⇢ G, restricting the graph metric dG to ˜X give rise to another metric on ˜X .
The main goal of this section is to provide a uniform upper bound for dX̃,�(x, y)�dG(x, y). Similar analysis
on smooth manifolds of dimension higher than 1 is conducted in [Bernstein 2000]. We in this section study
the 1-dimensional case, which requires some different treatments.

2.7.1 Regularity Conditions.

The graph metric is intrinsic and independent of the ambient space. The sampling points, on the other hand,
carry no information about the intrinsic metric. This fact arises difficulties in approximating graph metric
with the sampling points. We illustrate a typical difficulty with the three singular cases of graphs embedded
in R2 in Figure 2.8. In each case, the red point and the blue point are distant in the graph but close in R2.
Without prior knowledge about the graph metric, we probably end up creating a shortcut from the red points
to the blue ones, therefore introduce significant distortions in metric approximation.

If the red point and the blue point are arbitrarily close to each other in the ambient space while keeping
distant in the graph, then by no means can we avoid introducing the distortions. From this point of view, we
propose some regularity conditions to exclude the singular situations.
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To do that, we first introduce the reach of a manifold M embedded in Rd. Given a point x 2 Rd and a
set A ⇢ Rd, the distance from x to A is defined as the infimum of the distances from x to points in A, i.e.,
d(x,A) = inf

y2A
kx � yk. The medical axis of M , denoted by med(M), is defined as the following:

Definition 2.10 The medical axis of M is the set of points which have more than one nearest neighborhoods
in M , i.e.,

med(M) = {x 2 Rd
: there exist at least two points y1, y2 2 M such that

d(x,M) = kx � y1k = kx � y2k}

And finally we define the reach of M :

Definition 2.11 The reach of M is the infimum of the distances from a point in M to the medical axis of M :

reach(M) = inf

p2M
d(p,med(M))

It’s routine to assume that reach(M) is lower bounded by a positive constant in the study of approxi-
mating intrinsic geometric quantities with sampling points from the ambient space, however in the case of
metric graph this condition is too restrictive. For example, the reach of the second and the third graphs in
Figure 2.8 are zero due to the existences of sharp corners at the green points. Thus instead of bounding the
global reach of G, we bound the reaches of some specified subgraphs of G from below.

Let Vd be the vertex set of G (i.e. vertices of degree not equal to 2) and Vl be the middle points of
self-loops in G. We call Vd the original vertex set of G and Va = Vd [ Vl the augmented vertex set of G.
We break the self-loops into edges from the middle points of the loop, i.e., the points in Vl. Formally, the
augmented edge set Ea is defined as

Ea =

[

i

{(vi, vj) : vi, vj 2 Va and there is no other vertex in the geodesic connecting vi to vj .}

We regularize a metric graph G embedded in Rd with the following conditions on the augmented vertex
set Va and the augmented edge set Ea of G. These conditions depend on three positive parameters b, ⌧ and
�, whose roles are clear in the context.

Condition 2.1 1. For any edge e 2 Ea, the reach of e is not smaller than ⌧ , where ⌧ is a positive
constant.

2. For any two edges e1, e2 2 Ea, if e1 \ e2 = ;, then reach(e1 [ e2) � ⌧ .

3. For any v 2 Va, let V (v) = {v} [ {w 2 Va : (v, w) 2 Ea} and E(v) = {(v, w) : w 2 V (v), w 6= v}
(see figure 2.9). Denote the geodesic ball of radius r centered at v by B(v, r) = {g 2 G : dG(g, v) 
r}. For any two edges in e1, e2 2 E(v), reach[(e1

S
e2)\

[

w2e1\e2
B(w, r)] � �r holds for some

positive constant � 2 (0, 1].

4. No edges in Ea are shorter than b, where b is a positive constant.
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Figure 2.9: V (v) = {w1, w2, w3}, E(v) = {e1, e2, e3, e4}

The first three conditions exclude the singular cases illustrated in Figure 2.8 with sufficiently large ⌧ and
�. First, thanks to condition 1, the reach of a single edge is lower bounded, meaning that if two points are
distant in graph then they are distant in the ambient space. Secondly, condition 2 assures two non-intersecting
edges is well-separated in Euclidean space, and therefore the case in the middle is prevented. Lastly,condition
3 takes care of the singularity between two incident edges such as the case in the right panel of Figure 2.8.

2.7.2 Upper-bound of |dG � dH |.

Instead of directly comparing dX̃,� and dG, we further construct two more metrics on ˜X as auxiliaries. We
start with constructing a graph H = (

˜X,EH) on ˜X with parameter � > 0 as the following:

EH = {(xi, xj) : dG(xi, xj)  �, xi, xj 2 ˜X} (2.1)

Then two metrics dH , dS are defined on top of EH with respect to two measurements on the edges.

dH(x, y) = min

Q

kX

i=2

kxi�1 � xik

dS(x, y) = min

Q

kX

i=2

dG(xi�1, xi)

where Q = (x1, x2, · · · , xk) varies over all paths along EH connecting x = x1 to y = xk.
In the following, we present a uniform upper bound for |dG(x, y)�dH(x, y)|. And then in Section 2.7.3,

a uniform upper bound for |dH(x, y) � dX̃,�(x, y)| is given. Combining them we arrive at an upper bound
for |dG(x, y) � dX̃,�(x, y)|.

Since |dH(x, y) � dG(x, y)|  |dS(x, y) � dG(x, y)| + |dH(x, y) � dS(x, y)|, we estimate |dH(x, y) �
dG(x, y)| in two steps. In step 1, we asserts that if the sampling density is high enough (or equivalently " is
small enough), then dS = dG.
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Figure 2.10: Illustration of Lemma 2.7

Proposition 2.7 Let G be a metric graph satisfying condition 2.1, and ˜X be an "�sampling of G. Va, Ea are
the augmented vertex set and augmented edge set of G. The lengths of the augmented edges in G are lower
bounded by b as defined in conditions 2.1. If parameter � is such that b > � � 4", then dS(x, y) = dG(x, y),
8x, y 2 ˜X .

Proof: It follows from the triangle inequality that dS(x, y) � dG(x, y). Thus it remains to prove
dG(x, y) � dS(x, y).

Let � be the geodesic from x to y in G, we prove that � is identical to a connected path in H . We sort
points in � \ ˜X = (x, x2, x3, · · · , y) so that dG(x, x)  dG(x, x2)  dG(x, x3)  · · · dG(x, y). We claim
that for any two consecutive points xi, xi+1, dG(xi, xi+1)  �, i.e., xi and xi+1 are connected in H .

Denote by � the geodesic between xi, xi+1. If there are two vertices, say v, v0 2 Va, be in the interior
of � (see Figure 2.10(a)). Then dG(xi, xi+1) � dG(v, v0) � b > � � 4". As a consequence, there must
be another sample x0 between v, v0: otherwise let g be the middle point of the geodesic between v and v0,
and the nearest sampling point to g is of distance larger than b

2 > 2", violating the assumption that ˜X is
an "�sampling. On the other hand, according to the construction of (x, x2, · · · , y), there is not another
sampling point between the consecutive points xi�1, xi, and therefore there is at most one vertex in Va in the
interior of �.

If there exists exactly one vertex of Vd (of degree larger than 2) between xi and xi+1. As mentioned
above, there is not a sampling point in the interior �. Let x0 be the sampling point that is closest to v and
not in the interior of � (as depicted in Figure 2.10(b)). With the same argument before, dG(xi, x0)  2" and
dG(xi+1, x0)  2", meaning that dG(xi, xi+1)  4"  �.

If there is no vertex in Vd between xi and xi+1. Let g be the middle point of geodesic from xi to xi+1.
Since ˜X is an "�sampling, dG(xi, xi+1)  dG(g, xi) + dG(g, xi+1)  2" < �.

Noticing that (x, x2, x3, · · · , y) is a path in graph H connecting x to y, we have dS(x, y)  dG(x1, x2)+
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dG(x2, x3) + ...+ dG(xk�1, xk) = dG(x1, xk) = dG(x, y), which finishes the proof. ⇤
Then we proceed to bound |dH(x, y) � dS(x, y)|. A lemma by Herbert Federer [Federer 1959] as the

following is repeatedly used in our analysis.

Lemma 2.12 [Federer] Let K be a manifold embedded in Rd, and reach(K) = ⌧ > 0. Let K� be a �-offset
of K, i.e., K�

=

[

x2K
{y 2 Rd

: kx� yk  �}. For any � < ⌧ , the map ⇧� : K� ! K is ⌧
⌧���lipschitz. (⇧�

maps each point in K� to its projection in K.)

Applying Federer’s lemma to a sub-graph whose reach is bounded from below by ⌧ , we have the follow-
ing corollary.

Corollary 2.2 Let K be a geodesically convex sub-graph of G, reach(K) = ⌧ > 0. Then for any two points
x, y on K, if kx � yk = l < 2⌧ , then dG(x, y)  ⌧

⌧� l

2

kx � yk.

Proof: We consider a parameterization of the straight line segment from x to y in Rd such that s(0) =
x, s(l) = y. The whole segment s([0, l]) is contained in K

l

2 since that for any point p in this segment,
kp � xk + kp � yk = l. Now let a partition of [0, l] be 0 = t0 < t1 < ... < tn = l, with Federer’s lemma
we have k⇧

l

2
(s(ti+1)) � ⇧

l

2
(s(ti))k  ⌧

⌧� l

2

kti+1 � tik. Adding up both side of the inequality, we obtain

dG(x, y)  ⌧
⌧� l

2

kx � yk. ⇤

Proposition 2.8 Let G be a metric graph satisfying condition 2.1 and ⌧, b be the constants involved in the
condition. Let diam(G) be the diameter of graph G, i.e., diam(G) = max

g1,g22G
dG(g1, g2). |Vd| is the

cardinality of the original vertex set of G. dS and dG are metrics induced by graph H with parameter � as
in definition 2.1. If � < min{⌧, b}, then we have

0  dS(x, y) � dH(x, y)  �

2⌧
diam(G) + (2 +

X

v2V
d

(deg(v) � 1))�

Proof: Let P = (x1, ..., xk) be a path in H connecting two points x = x1 and y = xk such that dH(x, y)
is realized by P . We can further assume that P is a simple path in H . It follows from the definition of dH
that the path realizing the minimal length between x and y must be simple, otherwise one can remove loops
without increasing the path lengths.

Let �i be the geodesic connecting xi�1 and xi in G. Following the construction of H , the length of �i is
not more than �. We first claim that there must not be any point xj with j � i + 1 in �i (including the end
points xi�1, xi): otherwise, let xj be on �i, then dG(xi�1, xj)  dG(xi�1, xi)  �, meaning that we can
directly connect xi�1, xj to reduce the length of P . (see Figure 2.11(a) for an illustration). That contradicts
the optimality of P .

A corollary of this observation is that, a point v 2 Vd (the vertex set of G with degree larger than 2) is
contained in at most deg(v) � 1 pieces of geodesic �i. Particularly we analyze the case of deg(v) = 3 as
shown in Figure 2.11(b). Let �i be the first geodesic containing v, and then we consider the position of xi+1:
it can’t be in �i as proven before, moreover it can’t be in the edge containing xi�1 and v, otherwise it will be
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Figure 2.11: Illustrations for the proof of proposition 2.8.

in the geodesic of some �k, k  i � 1. thus it either jumps to the third branch or stays in the same edge with
xi and dG(xi+1, v) > dG(xi, v).

• If it’s the former case, then v is contained by 2 geodesics: �i and �i+1. We claim that v can’t be
contained by �j , j � i + 2. That is because that neither of xj�1, xj can be in the tripod formed by
xi�1, xi, xi+1 and v. thus �j must contains one of the three geodesics: �i, �i+1 and the one connecting
xi�1, xi+1. In either case we can show that we can connect one of xi�1, xi, xi+1 with one of xj , xj�1,
and again that contradicts the optimality of P .

• If it’s the latter case, then similarly we can prove that v can’t be crossed by �j , j � i+ 1.

For the case deg(v) > 3, the analysis is the same (see Figure 2.11(c) for a situation that deg(v) = 4 and v is
crossed by 3 geodesics).

We classify all the segments (xi�1, xi), i = 2, 3, · · · k into three types. Note that since (xi�1, xi) are
connected in H , dG(xi�1, xi)  � < b. Thus it follows the same arguments in the proof of proposition 2.9
that �i, 8i can not pass more than 1 vertices in the augmented vertex set Va.

• Type A: There is no vertex in �i.

• Type B: There is exactly one vertex of Vd, the original vertex set of G, in �i.

• Type C: There is exactly one vertex of Vl, the set of middle points of self-loops in G, in �i.

For (xi�1, xi) in type A, we have dG(xi�1, xi)  � < ⌧ . Following lemma 2.2, we have dG(xi�1, xi) 
⌧

⌧� �

2

kxi�1 � xik, meaning that dH(xi�1, xi)  dS(xi�1, xi)  ⌧
⌧� �

2

dH(xi�1, xi).

For (xi�1, xi) in type B, we have � � dG(xi�1, xi) � kxi�1�xik � 0, thus 0  dG(xi�1, xi)�kxi�1�
xik  �. Since the simple path can’t pass v more than deg(v) � 1 times, the number of segments of type B
is then upper-bounded by

X

v2V
d

(deg(v) � 1).

In the last case, since P is a simple path in H connecting x and y, P at most pass two vertices in Vl.
Notice that each vertex in Vl corresponds to a self-loop of G, if there are 3 vertices in Vl on the geodesic
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between x and y, then there must be at least one self-loop contains neither x nor y, meaning that P is not
simple. To conclude, there are at most two segments falling into type C, for each of them, say (xj , xj+1),
0 < dG(xj , xj+1) � kxj � xj+1k  �

Lastly, since for any path dH(P )  dS(P ), dH(x, y)  dS(x, y), 8x, y 2 ˜X . On the other hand, let P =

PA
S
PB

S
PC be a decomposition of path P regarding the above classification, then dS(PA) � dH(PA) 

dS(PA) � ⌧��/2
⌧ dS(PA)  �

2⌧ dS(P )  �
2⌧ dG(x, y)  �

2⌧ diam(G). Similarly dS(PB) � dH(PB) X

v2V
d

(deg(v) � 1)�, and dS(PC) � dH(PC)  2�

Putting them together, we have

0  dS(x, y) � dH(x, y)  �

2⌧
diam(G) + (2 +

X

v2V
d

(deg(v) � 1))�

⇤
Combing proposition 2.7 and 2.8, we prove the following:

Proposition 2.9 Let G be a metric graph embedded in Rd satisfying condition 2.1, and ˜X be an "-sampling
of G. Let H be a graph constructed with parameter � as in definition 2.1. diam(G) is the diameter of G and
Vd is the original vertex set of G. ⌧, b are parameters defined in condition 2.1. If min{⌧, b} > � � 4", then

|dG(x, y) � dH(x, y)|  �

2⌧
diam(G) + (2 +

X

v2V
d

(deg(v) � 1))�, 8x, y 2 ˜X

.

2.7.3 Upper-bound of |dH � dX̃,�|

Fixing � = 4", it follows from proposition 2.9 that if " tends to 0, then dH(x, y) converges to dG(x, y) for
any x, y 2 ˜X . However in the practice, we can’t construct graph H directly since the metric dG is unknown.
In the following, we prove that if G satisfies condition 2.1, then we can approximate dG with metric of the
Rips graph constructed on ˜X with a proper parameter.

Before proceeding, we claim the following lemma which are used repeatedly in the proof of the upcoming
theorem.

Lemma 2.13 Let x, y be two points lying on the same edge e 2 E whose reach is at least ⌧ > �. If
kx � yk  �/2, then dG(x, y)  �.

Proof: This lemma is essentially a rephrase of corollary 2.2, e is obviously a geodesically convex
sub-graph of G, thus if kx � yk  �/2, dG(x, y)  ⌧

⌧��/4kx � yk  2�
3 < �. ⇤

Theorem 2.8 G is a metric graph satisfying conditions 2.1, ˜X is an "�sampling of G, � is a positive
parameter such that min{b, ⌧} > �, where b, ⌧ and � below are constants defined in conditions 2.1.

Then for any two points x, y in X , if kx � yk  �
2�+2�, then dG(x, y)  �.
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Proof: For the sake of clarity, in the proof we let c = �
2�+2 < 1/2. We assume that x, y are on the edges

e1, e2 2 Ea, where Ea is the augmented edge set of G, respectively.
The problem is analyzed on the following several cases:

1. e1 \ e2 = ;.

If e1 \ e2 = ;, we claim kx � yk > c�: due to condition 2.1, reach(e1 [ e2) � ⌧ > �. We let
m = inf

x12e1,x22e2
kx1 � x2k and assume that x01 2 e1, x02 2 e2 satisfy kx01 � x02k = m (the existences

are assured by that e1 [ e2 is compact). The interior of the Euclidean ball centered at the middle point
between x01 and x02 with radius m

2 is not intersecting with e1 [ e2, otherwise we can find another pair
of points whose Euclidean distance is smaller than m, contradicting to the assumption on (x01, x

0
2).

Therefore the center of the ball, rc, must be on the medial axis, meaning that kx� yk � kx01 � x02k =

kx01 � rck + kx02 � rck � ⌧ + ⌧ = 2⌧ > 2� > c�.

2. e1 \ e2 6= ;.

We first deal with the case in which e1 and e2 are identical, the latter two cases are illustrated in
Figure 2.12.

To avoid heavy notations, we denote e1 [ e2 by U and define Ba = {g 2 G : dG(g, va)  r} where
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r =

c�
2� (similarly define Bb and Bc with respect to vb and vc as illustrated in Figure 2.12).

(a) e1 = e2.
Equivalently x, y are on the same edge with positive reach larger than ⌧ and kx � yk  c�.
Directly by corollary 2.2 we know that dG(x, y)  ⌧

⌧�kx�yk/2kx � yk  ⌧
⌧�c�/2c�  c

1�c/2� 
2
3� < �.

(b) e1 \ e2 = {va, vb}.
First, if x, y 2 U\(Ba [ Bb), then it follows from condition 2.1 that kx � yk > 2�r = c�.
Secondly if x, y 2 Ba [ Bb: either x, y are in the same geodesic ball, say Ba, then dG(x, y) 
2

c�
2� =

c�
�  �

2 < �; or x 2 Ba and y 2 Bb, then given dG(va, vb) � b > �, kva � vbk > �/2.
Thus kx � yk � kva � vbk � kx � vak � ky � vbk > �/2 � c�

� = c�.
Lastly, without loss of generality, we let x 2 U\(Ba [ Bb) and y 2 Ba. If dG(x, va) > �, by
lemma 2.13, kx�vak > �/2. Obviously kva�yk  r =

c�
2� , so kx�yk � kx�vak�kva�yk >

�/2 � c�
2� > c�.

Now we assume dG(x, va)  � and dG(x, va) + dG(va, y) > �. Following corollary 2.2 one has
kx�vak � ⌧�d

G

(x,v
a

)/2
⌧ dG(x, va) � ⌧��/2

⌧ (��dG(va, y)) � ⌧��/2
⌧ (�� c�

2� ). On the other hand
ky � vak  c�

2� .
Then it amounts to proving

⌧ � �/2

⌧
(� � c�

2�
) � c�

2�
> c�

.
Reorganizing, we have the following equivalent form:

⌧ � �/2

⌧
> (

⌧ � �/2

2�⌧
+

1

2�
+ 1)c

.
The left-hand-side of the above inequity is not smaller than (�� �/2)/� = 1/2 (as ⌧ � �), while
the right-hand-side is smaller than (1 + 1/�)c = 1/2, thus the inequality is verified, meaning
that kx � yk � kx � vak � ky � vak > c� given dG(x, y) > �.

(c) e1 \ e2 = va. First if x, y 2 U\Ba, then by the first regular condition, kx � yk > 2�r = c�.
Secondly if x, y 2 Ba, dG(x, y)  2r =

c�
� < �/2 < �.

The last scenario is x 2 U\Ba and y 2 Ba, which is obviously identical to the last scenario in
the case of e1 \ e2 = {va, vb}.

⇤
Equipped with the above propositions, we conclude the main theorem of this section as the following:

Theorem 2.9 If metric graph G satisfies conditions 2.1, ˜X is an "�sampling of G, if there exists a parameter
� such that 4"  � < �

2�+2 min{⌧, b}. Then the Rips graph with parameter � induces a metric on ˜X , dX̃,�,
as in definition 2.5 satisfying:

0  dG(x, y) � dX̃,�(x, y)  (2 + 2/�)�

2⌧
diam(G) + (

X

v2V
d

(deg(v) � 1) + 2)(2 + 2/�)�
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.

Proof: Let � = (2 + 2/�)�, and build a graph H with � as in definition 2.1. Then � satisfies conditions
in proposition 2.9 thanks to � = (2 + 2/�)� < (2 + 2/�) �

2�+2 min{⌧, b} = min{⌧, b} and � > � � 4".

Therefore we have |dG(x, y) � dH(x, y)|  �
2⌧ diam(G) + (

X

v2V
d

(deg(v) � 1) + 2)�.

We argue that R� is a subgraph of H . In fact, if xi, xj are connected in R�, then kxi � xjk  �,
according to theorem 2.8, dG(xi, xj)  (2 + 2/�)� = �, therefore xi, xj are connected in H .

The last step is to prove that dX̃,�(x, y) � dH(x, y). Indeed if x, y are connected in G, then following
the proof of proposition 2.7 we have x, y are connected with a path P = (x1, x2, · · · , xk) in H where
dG(xi, xi+1)  4", 81  i  k � 1. On the other hand, since kxi � xi+1k  dG(xi, xi+1)  4"  �, P is
also a path in R�, therefore x, y are connected in both H and R�. Now that R� ⇢ H , any path connecting
them in R� must connect them in H . Following the definitions of dX̃,� and dH , we have dX̃,�(x, y) �
dH(x, y). Putting them together, we finish the proof. ⇤

Gromov-Hausdorff Distance between (G, dG) and (

˜X, dX̃,�). As a corollary, we derive a bound for the
Gromov-Hausdorff distance between (G, dG) and (

˜X, dX̃,�). To start with, we construct a correspondence
between points the two metric spaces: C ⇢ G ⇥ ˜X . For x 2 ˜X ⇢ G, we let (x, x) 2 C. For each g 2 G,
we let x(g) = {x 2 ˜Xs.t.dG(x, g) = min

y2X̃
dG(y, g)} and add (g, x(g)) to C.

For any g1, g2, since ˜X is an "-sampling of G, we have dG(gi, x(gi))  ", i = 1, 2. It follows from
theorem 2.9 that

|dG(g1, g2) � dX̃,�(x(g1), x(g2))|

 |dG(g1, g2) � dG(x(g1), x(g2))| + |dG(x(g1), x(g2)) � dX̃,�(x(g1), x(g2))|

 |dG(g1, g2) � dG(g1, x(g2))| + |dG(g1, x(g2)) � dG(g(x1), x(g2))|

+

(2 + 2/�)�

2⌧
diam(G) +

X

v2V
d

(deg(v) � 1)(2 + 2/�)�

 dG(g2, x(g2)) + dG(g1, x(g1)) +
(2 + 2/�)�

2⌧
diam(G) + (

X

v2V
d

(deg(v) � 1) + 2)(2 + 2/�)�

 2"+
(2 + 2/�)�

2⌧
diam(G) + (

X

v2V
d

(deg(v) � 1) + 2)(2 + 2/�)�

After all, we obtain that if the assumptions of theorem 2.9 are satisfied, then

dGH(

˜X,G)  "+
(1 + 1/�)�

2⌧
diam(G) + (

X

v2V
d

(deg(v) � 1) + 2)(1 + 1/�)�

This bound of the Gromov-Hausdorff distance between (G, dG) and (

˜X, dX̃,�) suggests two facts that
impact the quality of approximation: one is the sampling density and the other is the regularity of the un-
derlying graph G. Higher sampling density (or equivalently smaller ") allows for a smaller �: as the bound
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Figure 2.14: Illustration of the different steps of the algorithm for computing ↵-Reeb graph. In the disjoint
union of copies of intervals, the subintervals marked with same labels are identified in the ↵-Reeb graph.

suggests, if " tends to zero, we are guaranteed to recover the underling metric dG. On the other hand, the
larger � and ⌧ are, the smaller the bound is. Stated differently, we need denser sampling for approximating
the metric of a graph with less regularity.

2.8 Algorithm

In this section, we describe an algorithm for computing the ↵-Reeb graph for some ↵ > 0. We assume the
input of the algorithm includes a neighboring graph X = (V,E), a function l : E ! R+ specifying the
edge length and a parameter ↵. In the applications where the input is given as a set of points together with
pairwise distances, i.e., a finite metric space, one can generate the neighboring graph X as a Rips graph of
the input points with the parameter chosen as a fraction of ↵. We assume X is connected as one can apply
the algorithm to each connected component otherwise.

Our algorithm, whose different steps are illustrated in Figure 2.14, can be described as follows. In the first
step, we fix a node of X as the root r and then obtain the distance function d : V ! R+ by computing d(v)
as the graph distance from the node v to r. In the second step, we apply the Mapper algorithm [Singh 2007]
to the nodes V with filter d to construct a graph ˜G. Specifically, let I = {(i↵, (i + 1)↵), ((i + 0.5)↵, (i +
1.5)↵)|0  i  m} so that

S
I
k

2I Ik covers the range of the function d. We say an interval Ik1 2 I is lower
than another interval Ik2 2 I if the midpoint of Ik1 is smaller than that of Ik2 . Now let Vk = d�1

(Ik) and
V l
k be the lth component of Vk Then of {V l

k}k,l is a cover of H and the graph ˜G constructed by the Mapper
algorithm is the 1-skeleton of the nerve of that cover. Namely, each node in ˜G represents an element in
{V l

k}k,l. Two nodes V l1
k1

and V l2
k2

are connected with an edge if V l1
k1

\ V l2
k2

6= ;. In fact, when we check if
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V l1
k1

\ V l2
k2

6= ;, we only need to check if their vertices are overlapped or not as we assume the lengths of the
edges in H are fractions of ↵.

In the final step, we represent each node V l
k in ˜G using a copy of the interval Ik. As mentioned in the

Section 2.4, ↵-Reeb graph is a quotient space of the disjoint union of those copies of intervals. Specifically,
for an edge in ˜G, let V l1

k1
and V l2

k2
be its endpoints. Then Ik1 and Ik2 must be partially overlapped. We

identify the overlap part of these two intervals. After identifying the overlapped intervals for all edges in ˜G,
the resulting quotient space is the ↵-Reeb graph. Algorithmically, the identification is performed as follows.
We split each copy of internal Ik into two by adding a point in the middle. Now think of it as a graph with
two edges and label one of them upper and the other lower. Notice that two overlapped intervals Ik1 and Ik2
can not be exactly the same. One must be lower than the other. To identify their overlapped part, we identify
the upper edge of the lower interval with the lower edge of the upper interval.

The time complexity of the above algorithm is dominated by the computation of the distance function in
the first step, which is O(|E| + |V | log |V |). The computation of the connected components in the second
step is O(|V | log |V |) based on union-find data structure. In the final step, there are at most O(|V |) number
of the copies of the intervals. Based on union-find data structure, the identification can also be performed in
O(|V | log |V |) time.

2.9 Experimental Results

In this section, we illustrate the performances of our algorithm in different applications.

2.9.1 Earthquake Data

The first data set was obtained from USGS Earthquake Search [EarthquakeSearch ]. It consists of earthquake
epicenter locations collected, between 01/01/1970 and 01/01/2010 in the rectangular area between latitudes
-75 degrees and 75 degrees and longitude -170 degrees and 10 degrees with magnitude greater than 5.0.

This raw earthquake data set contains the coordinates of the epicenters of 12790 earthquakes that are
mainly located around geological faults. We follow the procedure described in [Aanjaneya 2012] to remove
outliers and randomly sampled 1600 landmarks. Finally, we computed a neighboring graph from these
landmarks with parameter 4. The length of an edge in this graph is the Euclidean distance between its
endpoints. For each connected component, we fix a root point and compute the graph distance function d
to the root point as shown in Figure 2.15(a). We also set ↵ = 4 and apply our algorithm to the above data
to obtain the ↵-Reeb graph. In general, the ↵-Reeb graph is an abstract metric graph. In this example, for
the purpose of visualization, we use the coordinates of the landmarks to embed the graph into the plane as
follows. Recall that for a copy of interval Ik representing the node V l

k in ˜G, we split it into two by adding
a point in the middle. We embed the endpoints of the interval to the landmarks of the minimum and the
maximum of the function d in V l

k , and the point in the middle to the landmark of the median of the function d
in V l

k . Figure 2.15(b) shows the embedding of the ↵-Reeb graph. Note this embedding may introduce metric
distortion, i.e., the Euclidean length of the edge may not reflect the length of the corresponding edge in the
↵-Reeb graph.
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(a) (b)

Figure 2.15: Earthquake data - (a) The distance functions d on each connected components. The value
increases from cold to warm colors. (b) The reconstructed ↵-Reeb graph.

2.9.2 GPS Data

The second data set is that of 500 GPS traces tagged “Moscow” from OpenStreetMap [Openstreetmap ].
Since cars move on roads, we expect the locations of cars to provide information about the metric graph
structure of the Moscow road network. We first selected a metric "-net on the raw GPS locations with
" = 0.0001 using furthest point sampling. Then, we computed a neighboring graph from the samples with
parameter 0.0004. Again for each connected component, we fix a root point and compute the graph distance
function d to the root point as shown in Figure 2.16(a). Set ↵ also equals 0.0004 and compute the ↵-Reeb
graph. Again, we use the same method as above to embed the ↵-Reeb graph into the plane, as shown in
Figure 2.16(b).

To evaluate the quality of our ↵-Reeb graph for each data set, we computed both original pairwise
distances, and pairwise distances approximated from the constructed ↵-Reeb graph. For GPS traces, we
randomly select 100 points as the data set is too big to compute all pairwise distances. We also evaluated the
use of ↵-Reeb graph to speed up distance computations by showing reductions in computation time. Only
pairs of points in the same connected component are included because we obtain zero error for the pairs of
vertices that are not. Statistics for the size of the reconstructed graph, error of approximate distances, and
reduction in computation time are given in Table 2.1.

2.9.3 GPS Data with Crossing

The third data set we consider is also obtained from GPS traces. Roads are often split so that cars in different
directions run in different lanes. In particular, this is the true for highways. In addition, when two roads cross
in GPS coordinates, they may bypass through a tunnel or an evaluated bridge and thus the road network
itself may not cross. Such directional information is contained in the GPS traces. We encode this directional
information by stacking several consecutive GPS coordinates to form a point in a higher dimensional space.
In this way, we obtain a new set of points in this higher dimension space. Then we build a neighboring
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(a) (b)

Figure 2.16: GPS data - (a) The distance functions d on each connected components. The value increases
from cold to warm colors. (b) The reconstructed ↵-Reeb graph.

#OP #OE #N #E GRT ODT ADT Mean Median
GPS traces 82541 313415 21644 21554 46.8 15.27 0.96 6.5% 5.3%
Earthquake 1600 26996 147 137 0.32 1.12 0.01 14.1% 12.5%

Table 2.1: #OP (#OE, #N, #E) stands for the number of original points (original edges, nodes, edges in
↵-Reeb graph). The graph reconstruction time (GRT) is the total time of computing distance function and
reconstructing the graph. The original (ODT), respectively approximate (ADT), distance computation time
shows the total time of computing these distances using the original, respectively reconstructed, graph. All
times are in seconds. The last two columns show the mean and median metric distortions.

graph for this new set of points based on L2 norm and apply our algorithm to recover the road network. In
particular, although the paths intersect at the cross in GPS coordinates, the road network does not and this
should be detected by our algorithm.

To test the above strategy, we extract those GPS traces from the above “Moscow” dataset which pass
through a highway crossing as shown in Figure 2.17(a). Since GPS records the position based on time, we
resample the traces so that the distances between any two consecutive samples is the same among all traces.
Then we apply the above algorithm to the resampled traces. Figure 2.17(c) and (d) show the reconstructed
graph which recovers the road network of this highway crossing.
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(a) (b)

(c) (d)

Figure 2.17: (a) GPS traces passing through a highway crossing in Moscow. (b) The distance function. (c)
and (d)The reconstructed ↵-Reeb graph viewed from two perspectives.





CHAPTER 3

On Stability of Shape Difference Operators

3.1 Introduction

Shape comparison is a fundamental problem in geometry processing. In the most general setting,
this problem consists of encoding and quantifying similarities and differences across pairs or collec-
tions of shapes. This can be especially useful for shape retrieval [Tangelder 2008, Bai 2012], interpola-
tion [Xu 2006, Von-Tycowicz 2015], or visualization [Praßni 2010]. However, even when a map between
shapes is given, encoding and visualizing the differences between them are still challenging. Approaches
based on the point-to-point correspondences usually suffer issues such as sensitivity to noise, difficulty of
selecting an appropriate scale of analysis and inconvenient visualization. The discrete nature of point corre-
spondences is one of the major reasons of these issues.

N

M
T

f1

V (f1)

f2

V (f2)

(a) (b)

k = 30 k = 50 k = 100
T

N

Ñ

M

Figure 3.1: (a) Given shapes M,N and T a map between them, V is one of the shape difference operators
formulated in [Rustamov 2013]. Intuitively, f2, which is supported in a region that undergoes deformation
via T , is significantly distorted by V . Whereas f1, being supported in area-preserved region, remains the
same after V acting on it. (b) We perturb one of the shapes, N , to ˜N and generate indicators with the multi-
scale framework of [Ovsjanikov 2013]. Two types of consistency are evidenced: horizontally, the scale k
increases from 30 to 100, yet the indicators of each rows highlight nearly the same areas; vertically, at each
scale, the indicators are stable with respect to the changes of the input shapes.

The framework of functional maps, which is introduced in [Ovsjanikov 2012], alleviates the issues to
some extent by converting point-to-point correspondences into linear operators across function spaces on
each of the shapes. As demonstrated in [Ovsjanikov 2012], the functional map is a compact, informative
representation and suitable to incorporate with tools from spectral analysis.
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In this chapter, we present theoretical analyses for two frameworks based on the notion of functional map.
Given a pair of shapes M,N and a map T : M ! N , the framework of [Rustamov 2013] encodes differences
between shapes into a pair of linear operators (so-called shape difference operators) acting on function spaces
on N . The other framework, proposed in [Ovsjanikov 2013], is for map analysis and visualization. In the
same setting as above, this framework generates a collection of multi-scale indicators, which are functions
on N highlighting areas that deformed by T . As we will show later, the latter framework can be unified into
the first one. Thus our analyses are essentially all performed on the shape difference operators.

The theoretical formulation of the shape difference operators is well-established, yet associated stability
analyses remain absent. In practice, we observe robustness of these frameworks. For example, in Fig-
ure 3.1(b), we feed the framework of [Ovsjanikov 2013] two pairs of meshed shapes: a meshed bumpy
sphere M compared to two spheres N with distinct mesh structures, and generate indicators at three differ-
ent scales. Two types of consistency are evidenced: horizontally, the scale k increases from 30 to 100, yet
the indicators of each rows highlight nearly the same areas; vertically at each scale, though the input meshes
of N are distinct, the resulting indicators are comparable.

It is then appealing to study the stability properties of the shape difference operators. As hinted by
the above numerical results, two types of stability properties are worth considering: one is with respect to
perturbations of input shapes in both [Rustamov 2013] and [Ovsjanikov 2013], and the other one is regarding
the changes in scale, which is peculiar to the framework of [Ovsjanikov 2013].

Though all the above frameworks assume that M and N are 3D shapes, i.e., 2-dimensional Riemannian
manifolds embedded in R3, the formulations are actually well-defined when M and N are Riemannian
manifolds of an arbitrary dimension. This fact allows for potentials of these frameworks in dealing with
objects beyond shapes. From this point of view, in our analyses, we assume that M and N are smooth
Riemannian manifold of dimension n.

How to exploit such potentials in practical applications, however, is another interesting yet challenging
problem. For example, the above frameworks have so far only constructed on triangle meshes that are
only available when dealing with 3D shapes. For manifolds that are of intrinsic dimension more than 2 or
embedded in Rd with d � 4, the implementations are not obvious. In Chapter 4, we initiate our exploration
to this problem by comparing shapes in a more primitive setting, where only discrete sampling points from
the shapes are given.

3.1.1 Overview

We assume that M and N are two connect compact, smooth, n-dimensional Riemannian manifolds without
boundary, endowed with metrics gM and gN . And let a map T : M ! N be a smooth map between them.

In [Rustamov 2013], the authors introduce a pair of self-adjoint operators acting on real-value func-
tions on N , each of which captures one type of differences between the two shapes regarding T . Par-
ticularly, for one of the shape difference operators – V as illustrated in Figure 3.1, a functional proposed
in [Ovsjanikov 2013] evaluates the deviation from a function f on N to its image V f (we will verify this
connection at the beginning of Section 3.6). The maximizer of this functional is supposed to highlight the
most deformed regions under map T . Instead of searching for the global maximizer, the authors maximize
this functional within the space spanned by the first k eigenfunctions of the Laplace-Beltrami operator on N ,
and the maximizer is viewed as an indicator at scale k. By changing the scale k, a collection of indicators
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and a sequence of the corresponding maxima are then obtained, allowing the users to select output(s) at one
or more scales for better understandings. (see Figure 3.2 for an illustration)

1.1929 1.4423 1.5673

1.6061 1.6683 1.7345

N

M T k = 20 k = 60 k = 100

k = 120 k = 160 k = 200

Figure 3.2: Stability across ranges of scales: the indicators from k = 20 to 100 consistently highlight the
hip of the horse, meanwhile the ones from k = 120 to 200 highlight the root of its front right leg. The
corresponding quantitative measurements of the distortions of the indicators are marked to the top-left of
each shapes.

As mentioned before, we provide stability analyses regarding two type of perturbations.

• Perturbations with respect to the input manifolds: We start by introducing a model in Section 3.4
characterizing perturbations on the input manifolds. Then in Section 3.5, we discuss the stability of
the two different shape difference operators under our perturbation model.

• Perturbations with respect to the changes in scale: As mentioned above, the multi-scale framework
depends on a collection of subdomains (in [Ovsjanikov 2013], that is, the spaces spanned by the first
k eigenfunctions, with k = 1, 2, · · · ) in which we maximize a specified functional. However in
Section 3.6.1, we demonstrate that the original subdomain construction indexed by k is not suitable
for stability analysis and construct a new one which is closely related to the original but controlled by
a continuous C. Then further in Section 3.6, we verify this stability with respect to this continuous
scale C.

Especially, we extend the framework of [Ovsjanikov 2013] in Section 3.6.5 by adapting the other shape
difference operator to it, which enables visualizing another type of shape differences other than the area-
based one. And we as well prove that this extension enjoys a similar stability property as the original one.

Finally, in Section 3.7, we demonstrate numerical experiments that reflect the stability in practice.
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3.2 Related Work

The two frameworks we analyze in this chapter are based on the notion of functional maps, which has
been a key ingredient of various applications in geometry processing, to name a few, analyzing maps be-
tween shapes [Huang 2014], vector field processing [Azencot 2013, Azencot 2014] and image segmenta-
tion [Wang 2013].

Perturbation analysis has a long and rich history. In this chapter, we perform perturbation analysis on both
shape difference operators (which are linear operators, see [T 1995] for an introduction of perturbation anal-
ysis on them) and a spectral method based on such operators. The spectral methods have long been applied
in various areas: spectral clustering [von Luxburg 2006], shape analysis [Reuter 2006] and so on. Besides
demonstrating practical usefulness of the spectral methods, providing theoretical justifications is attracting
more and more research interests. Theoretical guarantees for spectral clustering algorithms often stem from
Cheeger’s inequality, which is powerful if there exists a significant spectral gap. Assuming such a gap, several
works [Kwok 2013, Lee 2012, Louis 2012, Oveis Gharan 2014, Dey 2014] present theoretical guarantees on
the quality (measured by some graph conductance) of the output of the respective algorithms. It is worth
noting that the above works only concern a single object, while in this paper, we study pairwise objects.
From this point of view, our work has a similar flavor to the ones by Mémoli [Mémoli 2009, Mémoli 2011],
who proposes metrics among shapes based on spectral invariant and discusses their robustness with respect
to perturbations on the input shapes.

Beyond spectral methods, in geometric and topological data analysis, several approaches have been
proposed for guaranteeing stability of the data processing and analysis techniques. In particular, stability
has been theoretically proven in many works on estimating geometric quantities. In [Mitra 2004], the au-
thors analyze both effects of practical and theoretical facts on the accuracy of normal estimation process.
In [Mérigot 2011], it is assured that the sharp feature detection algorithm there is stable with respect to
Hausdorff noise. In the same noise model, the stability of the curvature measures is proven under certain
conditions in [Chazal 2009]. Similar problems are also actively studied in the community of topological data
analysis (TDA). The stability of persistence diagram is verified in [Cohen-Steiner 2007], which lays down a
solid theoretical foundation for further research in TDA. Some more recent developments in TDA come with
stability assurance as well, for example the notion of distance to a measure [Chazal 2014].

A rich body of research has been devoted to provide such analysis for convergence properties of vari-
ous discrete Laplacian operator. In [Wardetzky 2005, Xu 2007, Dey 2010] the converging behaviors of the
cotangent Laplacian operators on meshes to the underlying Laplace-Beltrami operators are investigated from
diverse perspectives. While in [Belkin 2009, Liu 2012, Hein 2007, Dey 2013b], similar problems are con-
sidered in a different setting, where the discrete Laplacian operators are built on point clouds.

3.3 Preliminaries

We first give a brief review of concepts about differential geometry and the (weighted) Laplace-Beltrami
operators on manifolds. We refer the readers to [Grigoryan 2000] for a more detailed introduction (especially
to the latter topic).

Then we briefly take a review over the functional-maps-based frameworks, which are the main focuses



3.3. Preliminaries 51

in this chapter.

3.3.1 Differential Geometry

We start by defining a smooth n-dimensional manifold M . Roughly speaking, a n-dimensional manifold is
a topological space that locally resembles an Euclidean space of dimension n. To give a precise definition,
we introduce a chart on M :

Definition 3.1 A n-dimensional chart is a couple (U, h) where U is an open subset of M and h : U ! Rn

is homeomorphism between U and an open subset of Rn.

We call M a C-manifold of dimension n if M is a Hausdorff topological space with countable bases and
each point of M belongs to a n-dimensional chart. Furthermore, we define a smooth atlas which consists of
smooth, compatible charts.

Definition 3.2 A smooth atlas of M is a family of charts {(Ui, hi)}i2� such that

• M is covered the open sets Ui, i 2 �, i.e., M ⇢
[

i2�
Ui

• Denote by hij the transition map between chart (Ui, hi), (Uj , hj), i.e., hij = hj �h�1
i : hi(Ui\Uj) !

hj(Ui \ Uj). For any pair of i, j 2 � satisfying Ui \ Uj 6= ;, the transition map hij is a smooth
function (note that the domain and the image of hij are both subsets of Rn).

Two smooth atlases are compatible if and only if their union is a smooth atlas. A smooth structure on M
is the union of all compatible atlases. A smooth n-dimensional manifold is then a C-manifold endowed with
a smooth structure.

Now we consider a point x 2 M and a chart (U, h) such that U contains x. This chart induces a local
coordinate system (x1, x2, · · · , xn), where xi is the i-th coordinate function of h(y) 2 Rn, where y 2 U .
The following notions from Riemannian geometry is introduced with a local coordinate system, however,
most of them are independent of the selection of the local coordinate systems.

Tangent Spaces A function f : M ! R is smooth if for any x 2 M , there exists a chart (U, h) such
that function f � h�1

: Rn ! R is smooth. We denote the set of smooth functions on M by C1
(M). The

tangent space at a point x 2 M , TxM , is a set of mappings {⌘ : C1
(M) ! R} such that

• ⌘ is a linear functional on C1
(M);

• 8f, g 2 C1
(M), ⌘(fg) = ⌘(f)g(x) + ⌘(g)f(x).

It is well-known that TxM is a n-dimensional linear space, and that, in chart, { @
@xi

��
x
}ni=1 form a basis of

TxM .
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Riemannian Metrics A Riemannian manifold is a manifold M endowed with a Riemannian metric, gM ,
which is a family of {gM (x)}x2M such that at any point x, gM (x) is a symmetrical, positive definite and
bilinear form on the tangent space TxM , i.e., gM (x) : TxM ⇥ TxM ! R+.

A metric gM at x gives rise to an inner product on TxM : for ⌘, ⇠ 2 TxM , h⌘, ⇠ig
M

(x) = gM (x)(⌘, ⇠).

The length of ⌘ is then defined as
q

h⌘, ⌘ig
M

(x). Particularly, in the local coordinate system gM admits a

matrix representation, whose (i, j)-th element, gi,j , equals h @
@xi

, @
@xj

ig
M

(x). Matrix [gi,j ] is invertible, and
we denote by [gi,j ] its inverse matrix.

The matrix of a single metric gM is depending on the choice of the local coordinate system. Interestingly,
we obtain some invariance when taking another metric into consideration. Let gM and g̃M be two metrics on
M . Provided a local coordinate system (x1, x2, · · · , xn), we denote by [g] and [g̃] the matrices of gM and g̃M
in this system. Now assumed that another local coordinate system is obtained by letting (y1, y2, · · · , yn) =
F (x1, x2, · · · , xn), where F : Rn ! Rn is a smooth map. The matrices with respect to y is denoted
as [g]y and [g̃]y. It follows from lemma 3.12 in [Grigoryan 2000] that [g] = J(F )

T
[g]yJ(F ) and [g̃] =

J(F )

T
[g̃]yJ(F ), in which J(F ) is the Jacobian matrix of F . Hence we have the following invarance:

det[g]y
det[g̃]y

=

det(J(F )

T
[g]J(F ))

det(J(F )

T
[g̃]J(F ))

=

det[g]
det[g̃]

, (3.1)

which suggests the ratio of determinants of the metrics is invariant to the changes of the local coordinate
systems.

Gradient Given f 2 C1
(M), its gradient at x is defined as rg

M

f =

nX

i,j=1

gi,j
@f

@xj
@

@xi
. It’s obvious that

rg
M

f is spanned by { @
@xi

}, thus it is also a tangent vector in TxM . For a lighter notation, we write rg
M

f as
rf and by hrf,rgig

M

we always mean hrg
M

f,rg
M

gig
M

, i.e., the inner product of the function gradients
are defined upon the metric.

Riemannian Measure A Riemannian metric gM induces a volume (also known as a Riemannian mea-
sure), ⌫M , on the family of all measurable subsets of M . The following theorem assures the existence and
uniqueness of ⌫M . We refer the reader to [Grigoryan 2000] for a detailed proof (see theorem 3.11 in that
book).

Theorem 3.1 For any Riemannian manifold (M, gM ), there exists a unique measure ⌫M on ⇤(M) (the
family of all measurable sets in M ) such that, in any chart U ,

d⌫M =

q
det[gi,j ]d� (3.2)

where [gi,j ] is the matrix of gM and � is the Lebesgue measure in U .

The following proposition characterizes how a perturbation on the metric on a manifold affects the asso-
ciated volume and gradient norm.
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Proposition 3.1 Let gM and g̃M be two metrics on a n-dimensional manifold M , and ⌫M , ⌫̃M be the volumes
induced by them respectively. If there exists a constant a � 1 such that for any point x 2 M and any
⌘ 2 TxM , the following inequality holds:

a�1  h⌘, ⌘ig
M

h⌘, ⌘ig̃
M

 a (3.3)

, then
a�n/2d⌫̃M  d⌫M  an/2d⌫̃M (3.4)

and for any f 2 C1
(M),

a�1  hrf,rfig
M

hrf,rfig̃
M

 a (3.5)

Proof: To prove inequality 3.4, we show that the a�n  det[g]
det[g̃]  an, where [g] and [g̃] are matrices of

gM and g̃M in a common local coordinate system.
The invariance of Equation 3.1 allows us to pick freely a local coordinate system without affecting the

ratio of the determinants . We then consider {e1, e2, · · · , en}, an orthonormal basis of TxM , in which the
matrix representation of g̃M is an identity matrix. Thus we have det[g̃] = 1, and in the following we bound
det[g]. Let [g] be the matrix of gM (x) in basis {e1, e2, · · · , en}. If there exist an eigenvalue of [g], �,
that is larger than a, then we let u be the associated eigenvector and ⌘ =

Pn
i=1 u

iei. As a consequence,
h⌘, ⌘ig

M

= uT [g]u = � > a. Since [g̃] is an identity matrix, we have h⌘, ⌘ig̃
M

= 1 and the ratio h⌘,⌘i
g

M

h⌘,⌘i
g̃

M

exceeds a, which contradicts the assumption 3.3. On the other hand, since gM (x) is positive definite, thus
all its eigenvalues are positive and not larger than a. Thus the determinant of [g], which equals the product
of all the eigenvalues, is not larger than an. As a consequence of Equation 3.2, we have d⌫M  an/2d⌫̃M .
The other side of inequality 3.4 can be proven in the same way.

To prove inequality 3.5, we notice that the definition of rf depends on the matrix of metric, thus we
need to do some transformation. We consider df = [gi,j ]rf , which is independent of g. Then we have
hrf,rfig

M

= ([gi,j ]rf,rf) = ([gi,j ][gi,j ]rf, [gi,j ]rf) = ([gi,j ]df, df) = hdf, dfig�1
M

and correspond-
ingly hrf,rfig̃

M

= hdf, dfig̃�1
M

.
We use the same basis (e1, e2, · · · , en) of TxM as above. For g̃M , in this basis [g̃i,j ] and its inverse [g̃i,j ]

are identity matrices. As we’ve proven that all eigenvalues of [gi,j ] don’t exceed a, we have the smallest
eigenvalue of [gi,j ] is at least a�1. Therefore we derive that hrf,rfig

M

= hdf, dfig�1
M

 ahdf, dfig̃�1
M

=

ahrf,rfig̃
M

The other side of inequality 3.5 is proven symmetrically. ⇤

Weighted Riemannian Manifold For a Riemannian manifold (M, gM ), besides the volume (or the Rie-
mannian measure) induced by gM , we can define other measures. For example, a measure µM on M defined
by dµM = ⇢d⌫N . where ⇢ is a smooth positive-value function on M . Such a measure is a weighted version
of the volume ⌫M , and it gives rise to a weighted Riemannian manifold.

Definition 3.3 A weighted Riemannian manifold is a triple (M, gM , µM ), where gM is Riemannian metric
inducing a volume ⌫M and there exists a positive smooth function ⇢ such that dµM = ⇢d⌫M .

Particularly, if ⇢ is a constant function: ⇢(x) = 1, 8x 2 M , then µM is the volume induced by gM .
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Function spaces In this part we introduce some function spaces on (weighted) Riemannian manifolds. We
denote the set of all real-value functions on M by F(M). The set of smooth functions on M , C1

(M), is
obviously a subset of F(M).

Let µM be a measure on (M, gM ) (not necessarily a volume), by L2
µ(M) we denote the function space

in which all functions have finite square norm with respect to µM , i.e.,

L2
µ(M) = {f 2 F(M) :

Z

M
f2dµM < 1}

A special subspace of L2
µ(M) with smoothness constraints is H1

0,µ(M), which is defined on top of
H1

µ(M):

H1
µ(M) = {f :

Z

M
f2

+ hrf,rfig
M

dµM < 1}

H1
0,µ(M) is the closure of all infinitely differentiable functions in H1

µ that is compactly supported by M .
An alternative understanding of H1

0,µ(M) is the following:

H1
0,µ(M) = {f : f 2 H1

µ(M) and f
��
@M

= 0}.

Inner Products After introducing L2
µ(M) and H1

0,µ(M), we define two inner products on them respec-
tively, which are crucial in formulating the shape difference operators (Section 3.3.5).

The first inner product takes in two functions of L2
µ(M) and returns a real-number:

hf, giL2
µ

=

Z

M
fgdµM , f, g 2 L2

µ(M) (3.6)

And we define the second inner product on function space H1
0,µ(M):

hf, giH1
0,µ

=

Z

M
hrf,rgig

M

dµM , f, g 2 H1
0,µ(M) (3.7)

3.3.2 The Laplace-Beltrami Operator

We denote the Laplace-Beltrami operator on manifold (M, gM ) by �M .

Definition 3.4 Given a smooth Riemannian manifold (M, gM ) of dimension n, �M : C1
(M) ! C1

(M)

is an operator on C1
(M), which in a local coordinate system (x1, x2, · · · , xn) is defined as:

�M =

nX

i,j=1

1p
detg

@

@xi
�p

detggi,j
@

@xj
�

We call (',�) an eigensolution if it satisfies the following eigen equation. Especially ' 2 C1
(M) is

called an eigenfunction matching an eigenvalue � 2 R.

�M'+ �' = 0 (3.8)
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It is well-known that the Laplace-Beltrami operator is self-adjoint and negative semidefinite. Thus in any
eigensolution, � is guaranteed to be a non-negative real number. As we assume M to be a compact manifold,
the set of eigenvalues is discrete and infinite. Thus we can sort the eigenvalues with an ascending order so
that 0  �1  �2  �3  · · · and denote the associated eigenfunctions by '1,'2,'3, · · · .

The Green’s first identity states:
Z

M
hru,rvig

M

d⌫M +

Z

M
u�Mvd⌫M =

Z

@M
urv · ndsM (3.9)

where u, v 2 C1
(M), @(M) is the boundary of M , and n is the unit normal vector field to @M defined

at each point on @M . Since we assume M to be boundaryless, the right hand side of Equation 3.9 is zero,
resulting in the following:

For any smooth functions u, v on manifold M which is compact and without boundary.
Z

M
u(��M )vd⌫M =

Z

M
hru,rvig

M

d⌫M (3.10)

Considering two eigenfunctions, 'i,'j associated to distinct eigenvalues �i,�j , it follows from Equa-
tion 3.10 that

Z

M
'i(�j'j)d⌫M =

Z

M
'i(��M )'jd⌫M =

Z

M
hr'i,r'jig

M

d⌫M

=

Z

M
'j(��M )'id⌫M =

Z

M
'j(�i'i)d⌫M .

Therefore we have
R
M 'i'jd⌫M = 0 for �i 6= �j .

For each eigenvalue �i, the functions satisfying �M'+�i' = 0 form a linear function space. If �i is of
multiplicity 1, then this space is of dimension 1, which is spanned by {'i}. If �i is of multiplicity more than
1, the corresponding function space might be of dimension k > 1. In this case, with Gram Schmidt method
we can always find {'l

i}l=1,··· ,k forms a basis of this k-dimension space and
R
M 'k1

i '
k2
i d⌫M = 0, 1  k1 6=

k2  k.
In fact, the eigenfunctions the Laplace-Beltrami operator form a basis of L2

⌫(M). According to above
arguments, we always assume that the basis is orthogonal. Moreover, by simply rescaling 'i so thatR
M '2

i d⌫M = 1, we obtain an orthonormal basis of L2
⌫(M).

Proposition 3.2 Let {'i}i�1 be an orthonormal basis of L2
⌫(M) consisting of eigenfunctions to �M' +

�' = 0. For any function u 2 L2
⌫(M), it admits a eigendecomposition u =

P
i�1 ai'i, ai =

R
M u'id⌫M .

And we have Z

M
u2d⌫M =

X

i�1

a2i (3.11)

If we further assume that u is differentiable, then
Z

M
hru,ruig

M

d⌫M =

X

i�1

a2i�i (3.12)
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Proof: Assuming that u =

X

i�1

ai'i, we have
R
M u'jd⌫M =

R
M

X

i�1

ai'j'jd⌫M . It follows the

orthonormality of the basis that
R
M u'jd⌫M = aj .

Similarly,
R
M u2d⌫M =

R
M (

X

i

ai'i)
2d⌫M =

Z

M
a2i

X

i�1

'2
i d⌫M =

X

i�1

a2i as
R
M 'i'jd⌫M = 0 and

R
M '2

i d⌫M = 1.
The Equation 3.12 follows from Equation 3.10:

R
M hru,ruig

M

d⌫M =

R
M u(��M )ud⌫M =

R
M (

X

i�1

ai'i)(

X

i�1

ai�i'i)d⌫M =

X

i�1

a2i�i ⇤

Weighted Laplace-Beltrami Operator We have defined a weighted Riemannian manifold (M, gM , µM )

(see definition 3.3), where µM = ⇢⌫M . A weighted Laplace-Beltrami operator is defined as:

�M,µ =

nX

i,j=1

1

⇢

1p
detg

@

@xi
�
⇢
p

detggi,j
@

@xj
�

(3.13)

Notice that if ⇢ = 1, then �M,µ boils down to �M .
Equation 3.10 is still valid with respect to the weighted Laplace-Beltrami operator, but with a change of

measures.
Z

M
u(��M,µ)vdµM =

Z

M
hru,rvig

M

dµM (3.14)

3.3.3 Functional Maps

The framework of functional maps is introduced in [Ovsjanikov 2012], which converts point correspon-
dences between two manifolds to function correspondences between function spaces on the manifolds.

Let M and N be two smooth manifolds and T be a map from M to N . A functional map, TF , is a
pull-back induced by T . Namely, given a real-value function w 2 F(N), we define TF (w) = w � T 2
F(M). Therefore TF is a map from F(N) to F(M). Below we review two important properties of TF :
informativeness and linearity.

First we claim that if T is bijective, then it can be fully recovered by TF . In fact, for any point a 2 N ,
let �a(x) be an indicator function on N such that �a(x) equals 1 if x = a and �a(x) = 0 otherwise. By
construction, g = TF (�a) satisfies that g(y) equals 1 if T (y) = a and 0 otherwise. Since that T is bijective,
there exist a unique b such that T (b) = a ,thus g is also an indicator function but on M . After all, for each
a 2 N , we search for a point b 2 M such that TF (�a)(b) equals 1. Such a point b is unique and satisfies
T (b) = a, meaning that we can completely recover T with TF .

Secondly, TF is a linear map across the two function spaces, i.e., for any ↵,� 2 R and f, g 2 F(N),
we have TF (↵f + �g) = ↵TF (f) + �TF (g). This linearity property indicates that TF admits a (potentially
infinite) matrix representation. Suppose that {'N

i }, { M
j } form a basis of F(N) and of F(M) respectively.

Let w =

X

i=1

ai'
N
i and accordingly TF (w) =

X

j=1

bj 
M
j , then there exists a unique matrix CT such that
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CTa = b holds for any w, where a = (a1, a2, · · · , an, · · · ) and b = (b1, b2, · · · , bn, · · · ). We then call CT

the matrix representation of TF with respect to basis {'N
i } and { M

j }.
In practice, we usually consider {'N

i }, { M
j } as eigenbasis of the Laplace-Beltrami operator on N

and M respectively. And then truncation on each basis is taken, say, we only take the first kN and kM
eigenfunctions on each shape. Then CT is a kM by kN matrix instead of an infinite-dimensional one. More
importantly, we can control the rank of this matrix representation to reach a trade-off between accuracy
and complexity. The authors of [Ovsjanikov 2012] show that hundreds of eigenfunctions are enough to
reconstruct a reasonable functional map between meshed shapes that consist of tens of thousands of vertices.

3.3.4 Map Analysis

Based on the functional maps, the authors of [Ovsjanikov 2013] present a multi-scale framework to detect
and visualize the area-distortions induced by maps T : M ! N . Unlike the approaches which perform
comparisons via point correspondences, this framework analyzes the function correspondences, which are
easily converted from the point-to-point maps with the above functional map framework.

The key ingredient of this framework is a functional that measures area-distortions induced by transform-
ing a function w 2 L2

(N) to L2
(M) with the functional map, TF :

E(w) =

R
M TF (w)2d⌫MR

N w2d⌫N
(3.15)

As discussed in [Ovsjanikov 2013], if E(w) is large, then w is supposed to take high absolute value
within the areas where measure are less preserved when mapped from M to N via T .

Therefore, it is natural to search for functions such that E(w) is large. Instead of maximizing E(w) in
L2
⌫(N), a multi-scale approach is taken by forcing w to reside in a subspace of L2

⌫(N) spanned by the first k
eigenfunctions of �N , the Laplace-Beltrami operator on N . We define S(k) as the following

S(k) = span{'i}ki=1,where 'i is the i-th eigenfunction of �N . (3.16)

The constrained optimization problem considered in [Ovsjanikov 2013] is then:

maxE(w) s.t. w 2 S(k) (3.17)

The advantage of choosing such a collection of subdomains {S(k)}k2N+ is multi-fold: (1) the span
space is easy to construct and the associated constrained optimization is straightforward to solve; (2) the
feasible solutions are spanned by low-frequency eigenfunctions, which are fit for the visualization purpose
and stable with respect to noises of input discrete shapes. (3) the flexibility of choosing k provides a multi-
scale understanding of the problem. As demonstrated in Figure 3.2, the regions highlighted by w⇤ become
more and more localized as k, the dimension of spanned space, increases.

3.3.5 Shape Difference Operators

Another map-based approach for shape comparison is proposed in[Rustamov 2013], where a pair of Shape
Difference Operators is introduced.
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The area-based shape difference operator, V : L2
⌫(N) ! L2

⌫(N), is defined as a linear operator such that
for any f, g in square-integrable space L2

⌫(N) = {f :

R
N f2d⌫N < +1},

Z

N
fV (g)d⌫N =

Z

M
TF (f)TF (g)d⌫M (3.18)

Note that unless T is an area-preserving map, equation
R
N fgd⌫N =

R
M TF (f)TF (g)d⌫M doesn’t hold

for any pair of f, g 2 L2
(N), V captures the difference and compensates the discrepancy.

With respect to a different inner product, h, iH1
0,⌫

, the conformal-based shape difference operator, R :

H1
0,⌫(N) ! H1

0,⌫(N), is a linear operator such that for any f, g in Sobolev space H1
0,⌫(N),

Z

N
hrf,rR(g)ig

N

d⌫N =

Z

M
hrTF (f),rTF (g)ig

M

d⌫M (3.19)

It follows from the Riesz representation theorem that V,R exist and are unique. Moreover, thanks to
the commutative properties of inner products 3.6 and 3.7, V and R are as well self-adjoint operators, i.e.,R
N fV (g)d⌫N =

R
N gV (f)d⌫N and

R
N hrf,rR(g)ig

N

d⌫N =

R
N hrg,rR(f)ig

N

d⌫N hold for any f, g
residing in the corresponding domains.

Particularly, the authors of [Rustamov 2013] prove that T is locally area-preserving if and only if V is
an identity operator. That proof (of theorem 1 therein) applies to the case where M and N are Riemannian
manifolds of dimension n. Regarding R, the author of [Schumacher 2013] shows that if the dimensions of
M,N are n = 2, then T is a conformal map if and only if R is an identity operator, and if n > 2 then T is
an isometric map if and only if R is an identity operator. Therefore, regardless of the dimension of the input
Riemannian manifolds, the shape difference operators are well-defined and both carry information about the
deviation from T to an isometric map.

3.4 Perturbation Model and Bounded-distortion Condition

As mentioned in Section 3.1, one of the main results in this chapter is the stability analyses of the shape
difference operators with respect to perturbations on the input manifolds. In this section, we propose our
perturbation model and a bounded-distortion condition throughout our analyses.

3.4.1 Perturbation Model

Let M be a connected, compact, smooth, n-dimensional manifold without boundary endowed with a Rie-
mannian metric gM . And let ⌫M be the volume induced by gM . We first define (a, b)-closeness between
Riemannian structures on the same smooth manifold, where a, b are positive constants not smaller than 1.

We now introduce our model for characterizing perturbations on the input shapes.

Definition 3.5 A Riemannian manifold (N, g̃N , ⌫̃N ) is a-close to another one (N, gN , ⌫N ) if the following
holds: For any x 2 N and any tangent vector ⌘ in TxN , the tangent plane at x: a�1  h⌘,⌘i

g

h⌘,⌘i
g̃

 a holds for
a constant a � 1.
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Definition 3.6 A weighted Riemannian manifold (N, gN , µN ) is b-close to a Riemannian manifold
(N, gN , ⌫N ) if the following holds: µN is obtained by perturbing ⌫N (the volume induced by gN ) with
⇢N : dµN = ⇢Nd⌫N . And b�1  ⇢N  b holds for a constant b � 1.

It is clear that the a, b-closeness characterizes perturbations on the metric and on the measure, respec-
tively. Combining them together, a weighted Riemannian manifold, (N, g̃N , µ̃N ), is said to be (a, b)-close
to a Riemannian manifold (N, gN , ⌫N ) if

• (N, g̃N , µ̃N ) is b-close to the corresponding Riemannian manifold (N, g̃N , ⌫̃N ).

• (N, g̃N , ⌫̃N ) is a-close to (N, gN , ⌫N ).

Intuitively, we view (N, g̃N , µ̃N ) as a perturbed version of (N, gN , ⌫N ). It is obvious that (1, 1)-
closeness implies that the two are identical.

The smooth function ⇢M is usually modeled as a sampling density on manifold M . The second restriction
on two Riemannian metrics might seem a bit abstract. We describe it in a special case, where M is a 2-
dimensional manifold and M1 = (M, gM ), M2 = (M, g̃M ) are two Riemannian manifolds embedded in
the same Euclidean space R3. Assume that there exists � : M1 ! M2 that is a diffeomorphism. Let
x 2 M1 ⇢ R3 and y = �(x) 2 M2, which are both in R3. If gM , g̃M satisfy the above condition, then the
tangent plane of M1 at x is parallel to the one of M2 at y. On the other hand, the differentiation of � gives
rise to a push-forward between the tangent planes: a tangent vector v 2 TxM1 is mapped to D(�)v 2 TyM2.
Due to the fact that M1,M2 are both embedded in R3, the inequality is re-written as:

a�1 
hv, vigR3

hD(�)v,D(�)vigR3
 a

where gR3 is the Euclidean metric. In the other words, denote the matrix representation of D(�) by A, then
the eigenvalues of ATA both lie in the interval [a�1, a].

The following proposition characterizes the quantitative relationships between (M, gM , ⌫M ) and
(M, g̃M , µ̃M ).

Proposition 3.3 If (M, g̃M , µ̃M ) is (a, b)-close to (M, gM , ⌫M ), then for any smooth function w on M .

a�1  hrw,rwig
M

hrw,rwig̃
M

 a,

and
a�n/2b�1dµ̃M  d⌫M  an/2bdµ̃M .

Proof: The first inequality has been proven in Proposition 3.1.
Regarding the second one, again thanks to Proposition 3.1, a�n/2d⌫̃M  d⌫M  an/2d⌫̃M . By defi-

nition ??, we have d⌫M � a�n/2dµ̃M = a�n/2⇢�1
M d⌫̃M � a�n/2b�1dµ̃M . And similarly we obtain that

d⌫M  an/2bdµ̃M , which finishes the proof. ⇤
We always consider (M, gM , ⌫M ) as the original input Riemannian manifold and (M, g̃M , µ̃M ) as a

perturbed one. The magnitudes of the perturbations on the metric and on the measure are controlled by
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constants a and b separately. If (M, g̃M , µ̃M ) is (1, b)-close to (M, gM , ⌫M ), then g̃M = gM . On the other
hand, if the former is (a, 1)-close to the latter, then the perturbation is purely on metric. However in this
case, according to Proposition 3.3, the measure is perturbed as well. Lastly, if the former are (1, 1)-close to
the latter, then they are obviously isometric.

It’s worth noting that our perturbation model assumes only the basic smoothness of g̃M and ⇢M without
more restrictive constraints such as bounded higher-order derivatives, thus it allows to include a large class
of perturbed manifolds.

Now let (M, gM , ⌫M ) and (N, gN , ⌫N ) be a pair of original Riemannian manifolds, and we perturb
them to (M, g̃M , µ̃M ) and (N, g̃N , µ̃N ), which are (aM , bM )-close and (aN , bN )-close to the original ones
respectively. We then study how the shape difference operators constructed from the perturbed pair deviate
from the ones constructed from the original pair.

3.4.2 Bounded-distortion Condition

Throughout our analyses in the coming sections of this chapter, we assume the input Riemannian mani-
folds, (M, gM , ⌫M ) and (N, gN , ⌫N ), together with the map T between them satisfy the following bounded-
distortion condition.

Condition 3.1 (Bounded-distortion) Let TF be the functional map induced by T : (M, gM , ⌫M ) !
(N, gN , ⌫N ), the area and conformal distortion induced by TF (or equivalently by T ) are bounded:

For any w 2 L2
⌫(N),

Z

M
TF (w)

2d⌫M  BT

Z

N
w2d⌫N

For any w 2 H1
0,⌫(N),

Z

M
hrTF (w),rTF (w)ig

M

d⌫M  DT

Z

N
hrw,rwig

N

d⌫N

where BT and DT are finite positive constants.

The bounded-distortion condition rules out singular maps which can be meaningless, for example, a map
T that maps M to a single point of N . Though we only regularize the distortions between the original input
Riemannian manifolds, the following proposition assures the boundness of distortions between a perturbed
pair.

Proposition 3.4 (M, g̃M , µ̃M ), (N, g̃N , µ̃N ) are respectively (aM , bM )-close and (aN , bN )-close to
(M, gM , ⌫M ) and (N, gN , ⌫N ), which are smooth Riemannian manifolds of dimension n. If
(M, gM , ⌫M ), (N, gN , ⌫N ) and T satisfy condition 3.1, then the distortion between the perturbed manifolds
are bounded as the follows:

For any w 2 L2
µ̃(N),

Z

M
TF (w)

2dµ̃M  ˜BT

Z

N
w2dµ̃N

For any w 2 H1
0,µ̃(N),

Z

M
hrTF (w),rTF (w)ig̃

M

dµ̃M  ˜DT

Z

N
hrw,rwig̃

N

dµ̃N

where ˜BT = (aMaN )

n/2bMbNBT , ˜DT = (aMaN )

1+n/2bMbNDT and n is the dimension of the manifolds.
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Proof: According to Proposition 3.3, we have a�n/2
M b�1

M dµ̃M  d⌫M  an/2M bMdµ̃M and
a�n/2
N b�1

N dµ̃N  d⌫N  an/2N bNdµ̃N . Since TF (w)2 and w2 are both non-negative on, it follows from
condition 3.1 that:

Z

M
TF (w)

2dµ̃M 
Z

M
TF (w)

2an/2M bMd⌫M  an/2M bMBT

Z

N
w2d⌫N

 an/2M bMBT

Z

N
w2an/2N bNdµ̃N = (aMaN )

n/2bMbNBT

Z

N
w2dµ̃N

=

˜BT

Z

N
w2dµ̃N .

The second inequality is proven in the same way:
Z

M
hrTF (w),rTF (w)ig̃

M

dµ̃M 
Z

M
aM hrTF (w),rTF (w)ig

M

dµ̃M

 aM

Z

M
hrTF (w),rTF (w)ig

M

an/2M bMd⌫M

 a1+n/2
M bMDT

Z

N
hrw,rwig

N

d⌫N

 a1+n/2
M a1+n/2

N bMbNDT

Z

N
hrw,rwig̃

N

dµ̃N

=

˜DT

Z

N
hrw,rwig̃

N

dµ̃N .

⇤
As we will demonstrate soon, condition 3.1 implies that both the shape difference operators, V and R,

are bounded operators, i.e., their operator norms are finite. An important fact revealed by Proposition 3.4 is
that if the operators constructed from the original pair of Riemannian manifolds are bounded, then the ones
constructed from a perturbed pair are still bounded as long as the perturbations are finite.

3.5 Stability of the Shape Difference Operators

As in this chapter we are concentrating on Riemannian manifolds, for the sake of simplicity, from now on we
denote by M the original Riemannian manifold (M, gM , d⌫M ) and by ˜M the perturbed one (M, g̃M , µ̃M ),
unless stated otherwise.

The map T between manifolds is preserved while Riemannian structures are perturbed, and it induces
two area-based shape difference operators, V and ˜V , such that:

Z

N
fV (g)d⌫N =

Z

M
TF (f)TF (g)d⌫M , 8f, g 2 L2

⌫(N) (3.20)
Z

N
f ˜V (g)dµ̃N =

Z

M
TF (f)TF (g)dµ̃M , 8f, g 2 L2

µ̃(N) (3.21)

The stability of the area-based shape difference operator is stated in the following theorem:
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Theorem 3.2 Let M,N be two smooth n�dimensional Riemannian manifolds, and T be a map from M to
N . Let ˜M be (aM , bM )-close to M and ˜N be (aN , bN )-close to N . If aM , aN , bM and bN are finite real
numbers not smaller than 1, then L2

⌫(N) = L2
µ̃(N). Moreover, if M,N and T satisfy condition 3.1, we have

the following convergence:

lim

a
M

,a
N

,b
M

,b
N

!1+

Z

N
(V g � ˜V g)2d⌫N = 0

Proof: We first prove L2
⌫(N) = L2

µ̃(N) so that ˜V g is well-defined for g 2 L2
⌫(N). According to

Proposition 3.3, we have a�n/2
N b�1

N dµ̃N  d⌫N  an/2N bNdµ̃N . Then for any f 2 L2
⌫(N),

R
N f2dµ̃N 

R
N f2an/2N bNd⌫N = an/2N bN

R
N f2d⌫N < 1, therefore L2

⌫(N) ⇢ L2
µ̃(N). On the other hand, one can

similarly verify that L2
µ̃(N) ⇢ L2

⌫(N), which implies L2
⌫(N) = L2

µ̃(N).
For f 2 L2

⌫(N) = L2
µ̃(N), it follows from the triangle inequality that

|
Z

N
fV fd⌫N �

Z

N
f ˜V fd⌫N |

 |
Z

N
fV fd⌫N �

Z

N
f ˜V fdµ̃N | + |

Z

N
f ˜V fdµ̃N �

Z

N
f ˜V fd⌫N |

:= |P1| + |P2|

Then we estimate P1 and P2 separately. According to Proposition 3.3, measures ⌫M (resp.⌫N ) and
µ̃M (resp.µ̃N ) satisfy

a�n/2
M b�1

M dµ̃M  d⌫M  an/2M bMdµ̃M

and
a�n/2
N b�1

N dµ̃N  d⌫N  an/2N bNdµ̃N .

Thus, we have

P1 =

Z

M
TF (f)

2d⌫M �
Z

M
TF (f)

2dµ̃M ( by definitions of V, ˜V )

� (1 � an/2M bM )

Z

M
TF (f)

2d⌫M ( since a�n/2
M b�1

M dµ̃M  d⌫M )

And similarly P1  (1�a�n/2
M b�1

M )

R
N TF (f)2d⌫M . Noticing that 0 

R
M TF (f)2d⌫M  BT

R
N f2d⌫N <

1 as f 2 L2
⌫(N), we have |P1| vanishes as aM , bM ! 1

+.
Regarding P2, we define two complementary subsets of N with respect to f : I+ = {x 2 N :

f(x) ˜V f(x) � 0} and I� = {x 2 N : f(x) ˜V f(x) < 0}.

P2 =

Z

I+
f ˜V f(dµ̃N � d⌫N ) +

Z

I�
f ˜V f(dµ̃N � d⌫N )

 (1 � a�n/2
N b�1

N )

Z

I+
f ˜V fdµ̃N + (1 � an/2N bN )

Z

I�
f ˜V fdµ̃N
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And we obtain the lower bound similarly:

P2 =

Z

I+
f ˜V f(dµ̃N � d⌫N ) +

Z

I�
f ˜V f(dµ̃N � d⌫N )

� (1 � an/2N bN )

Z

I+
f ˜V fdµ̃N + (1 � a�n/2

N b�1
N )

Z

I�
f ˜V fdµ̃N

If
R
I+ f ˜V fdµ̃N ,

R
I� f ˜V fdµ̃N are both finite, then P2 vanishes as aN , bN tend to 1. In fact, by the

formulation of ˜V , both f and ˜V f are functions in L2
µ̃(N), thus it follows from the Cauchy-Schwarz inequality

that |
R
I± f ˜V fdµ̃N | 

qR
I± f2dµ̃N

R
I±(

˜V f)2dµ̃N 
qR

N f2dµ̃N

R
N (

˜V f)2dµ̃N < 1.

To summarize,
R
f(V f � ˜V f)d⌫N ! 0 for any f 2 L2

⌫(N) = L2
µ̃(N). Given f, g 2 L2

⌫(N), since both
V and ˜V are self-adjoint operators, direct computation shows that

4

Z

N
f(V g � ˜V g)d⌫N =

Z

N
(f + g)(V � ˜V )(f + g)d⌫N �

Z

N
(f � g)(V � ˜V )(f � g)d⌫N

As f + g, f � g 2 L2
⌫(N), it follows immediately that for any pair of f, g,

R
N f(V g� ˜V g)d⌫N vanishes

as aM , bM , aN , and bN converge to 1 simultaneously. Especially we let f = V g � ˜V g 2 L2
⌫(N), and

conclude that lim

a
M

,a
N

,b
M

,b
N

!1+

R
N (V g � ˜V g)2d⌫N = 0. ⇤

Similar stability guarantee holds for the conformal shape difference operators as well. We start with
defining the conformal shape difference operators for both pairs of manifolds.

Z

N
hrf,rR(g)ig

N

d⌫N =

Z

M
hrTF (f),rTF (g)ig

M

d⌫M , 8f, g 2 H1
0,⌫(N) (3.22)

Z

N
hrf,rR(g)ig̃

N

dµ̃N =

Z

M
hrTF (f),rTF (g)ig̃

M

dµ̃M , 8f, g 2 H1
0,µ̃(N) (3.23)

The following theorem suggests that as aM , bM , aN , bN converge to 1 simultaneously, the norm of the
gradient of ˜Rf � Rf converges to zero.

Theorem 3.3 Let M,N and ˜M, ˜N be smooth n-dimensional manifolds under the same assumptions of
Theorem 3.2, then for any f 2 H1

0,⌫(N), ˜Rf is well-defined. Moreover, we have

lim

a
M

,b
M

,a
N

,b
N

!1+

Z

N
hr(Rf � ˜Rf),r(Rf � ˜Rf)ig

N

d⌫N = 0

This theorem is proven with the same idea of proving Theorem 3.2, we refer the readers to Section 3.8
for a detailed proof.

Remark 3.1 Our proofs for theorems 3.2 and 3.3 do not require the involved manifolds to be compact
or boundaryless. The stability properties proven in this section are valid for any smooth n-dimensional
Riemannian manifolds and maps satisfying condition 3.1.
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3.6 Stability of the Shape Difference Operators in a Multi-Scale Framework

In this section, we study the stability properties of the shape difference operators in the framework
of [Ovsjanikov 2013], where they are employed in a multi-scale way. The main results of this section are
Theorem 3.4 and Theorem 3.6, of which the proofs heavily depend on properties of the (weighted) Laplace-
Beltrami operators introduced in Section 3.3.2, thus we follow the assumptions there and emphasize that in
this section, (N, gN ) is a connected, compact, smooth, n-dimensional Riemannian manifold without bound-
ary.

We start by pointing out the connection between the multi-scale framework and the shape difference
operators. Recall that definition 3.15 defines a functional measuring the area distortion induced by T for a
given function w 2 L2

⌫(N). Given a pair of manifolds M,N and a map T : M ! N , let V be the area-based
shape difference operator. It follows directly from Definition 3.18 that:

E(w) =

R
M TF (w)2d⌫MR

N w2d⌫N
=

R
N wV (w)d⌫NR

N w2d⌫N

Since V is a positive-definite self-adjoint operator acting on L2
⌫(N), the maximum of E(w) within

L2
⌫(N) is simply the L2-norm of V . The framework of [Ovsjanikov 2013] computes the constrained norm

of V with respect to a special collection of subdomains of L2
⌫(N) – the function spaces spanned by the first

several eigenfunctions of the LB operator on N . In general, given a subdomain ⌦ of L2
⌫(N), the maximum

of E(w) constrained in ⌦ provides a quantitative characterization of to what extent V can distort functions
in ⌦. The maximizer (which we call the indicator after), w⇤, is a function in ⌦ that is the most distorted by
V .

3.6.1 An Alternative Collection of Multi-scale Subdomains

Recall that in Section 3.3.4, we review the subdomain constructed at scale k: S(k) = span{'1,'2, · · · ,'k},
where 'i is the i-th eigenfunction of the LB operator on N. Despite several advantages listed in Section 3.3.4,
this subdomain construction suffers issues that are rooted in its discrete nature and is not suitable for our
stability analysis.

First, we don’t have a general criterion of selecting k. In general, he spectrum varies across shapes that
are not isometric to each other, therefore we need to choose k according to the spectrum of the Laplace-
Beltrami operator on the given input shape N .

Second, it can lead to confusing results when the truncation isn’t done appropriately. If a eigenvalue
is of multiplicity more than 1, then as discussed in Section 3.3.2, there might be a subspace spanned by
the eigenfunctions associated to this eigenvalue, which is of dimension more than 1. Though we argue that
we can pick a orthogonal basis for this subspace, there doesn’t exist a natural order for this basis functions
(since the associated eigenvalues are the same) and thus we order them arbitrarily. Now if we truncate in
the middle of this subspace, the resulting subdomain S(k) carries the randomness of the ordering. Therefore
the constrained norm with respect to the space spanned by the first several eigenfunctions is not even well-
defined, In practice, we observe instability in the more subtle case of analyzing conformal differences (see
Figure 3.3).
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NM

T

l = 10 l = 11 l = 12

Figure 3.3: Indicators with respect to conformal shape difference operator depicted on the N at scale
l = 10, 11 and 12. �9 < �10 < �11 ⇡ �12 < �13. �11 is numerically close to �12 (their difference is of
order 10�5), causing the instability in the indicator functions.

Lastly, since k is an integer, since �k+1 � �k can be large, small, or even 0, it is difficult to analyze the
changes from S(k) to S(k + 1), though this is the minimal perturbation in discrete scales already.

To overcome these issues, we construct a new collection of multi-scale subdomains which evolves con-
tinuously. We notice that if ('i,�i) is an eigensolution to �N' + �' = 0, then �

R
N 'i�N'id⌫N =

�i
R
N '2

i d⌫N . Moreover, thanks to the orthogonality of the eigenbasis {'i}i�1, it’s straightforward to verify
that for any w 2 span{'1,'2, · · · ,'k}, �

R
N w�Nwd⌫N  �k

R
N w2d⌫N

It’s then natural to consider the following multi-scale subdomains controlled by a continuous parameter
C:

A(C) = {w :

Z

N
w(��N )wd⌫N  C

Z

N
w2d⌫N} (3.24)

In fact, thanks to the Green formula 3.10, A(C) can be equivalently defined as:

A(C) = {w :

Z

N
hrw,rwig

M

d⌫N  C

Z

N
w2d⌫N}

From this point of view, this expression suggests that (the normalized) Dirichlet’s energy of w 2 A(C)

is upper-bounded by C. In general, a small C prohibits large variations of w over a short distance with a
global control of the magnitude of the gradient of w, therefore it forces w 2 A(C) to be smooth.

Proposition 3.5 If C � �k, then S(k) is a proper subset of A(C).

Proof: It follows from the construction that if C � �k, then S(k) is a subset of A(C). We further argue that
S(k) is a proper subset: let w" = (1 � ")'1 + "'k+1, then w 62 S(k). Notice that since N is connected,
�1 = 0, thus for " sufficiently close to 0, w" 2 A(�k). ⇤

3.6.2 Stability with respect to the Changes in Scale

We first investigate the stability with respect to the changes in scale, which only involves the original input
manifolds M and N . As demonstrated in Figure 3.1 and 3.2, the results show consistency of the areas on
N highlighted by the indicators across a range of scales. It is then attempting to validate the stability of the
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indicators. However, it is not always the case. For example, imagine that we deform the bottom of shape M
in Figure 3.1 so that the deformation from M to N is symmetrical. In this case, at every scale, the maximum
of E(w) is realized by two indicators wt, wb which highlight respectively the top and the bottom of shape
N , therefore we will no longer observe consistency in indicators. We then turn to study the stability of the
maxima with respect to the changes in scale.

Instead of the original collection of subdomains S(k) indexed by the integer k, we consider the new
collection of multi-scale subdomains A(C) that is controlled by the continuous parameter C. As mentioned
before, the maximum of E(w) constrained in a subdomain of L2

⌫(N) is a constrained norm of V . For
subdomain A(C), we define:

kV kC = max E(w) s.t. w 2 A(C)

Let C go through interval [0,+1), then we obtain a curve (C, kV kC). The following theorem justifies
its continuity.

Theorem 3.4 Given two connected compact smooth Riemannian manifolds M and N , and a map T between
them. If M,N, T satisfy condition 3.1, then for any positive constant C > 0, C 0

= C + " > 0, we have:
��kV kC0 � kV kC

��  4BT

p
|"|/C + 2BT |"|/C.

We first prove an auxiliary lemma.

Lemma 3.1 Under the same assumptions of Theorem 3.4, for any w0, w1 2 L2
⌫(N) such that neitherR

N w2
0d⌫N nor

R
N (w0+w1)

2d⌫N is zero, the absolute difference between E(w0+w1) and E(w0) is bounded
as below:

|E(w0 + w1) � E(w0)|  4BT

p
r + 2BT r

where BT is the constant in condition 3.1 and r =

R
N

w2
1d⌫NR

N

w2
0d⌫N

.

Proof: We estimate the difference by two parts:

|E(w0 + w1) � E(w0)| 
����E(w0 + w1) �

R
M TF (w0 + w1)

2d⌫MR
N w2

0d⌫N

����+
����

R
M TF (w0 + w1)

2d⌫MR
N w2

0d⌫N
� E(w0)

����

:= P1 + P2

For P1, direct computation shows:

P1  BT

Z

N
(w0 + w1)

2d⌫N

����
1R

N w2
0d⌫N

� 1R
N (w0 + w1)

2d⌫N

����

 BT
2|
R
N w0w1d⌫N | +

R
N w2

1d⌫NR
N w2

0d⌫N

 2BT

qR
N w2

0d⌫N
R
N w2

1d⌫NR
N w2

0d⌫N
+BT

R
N w2

1d⌫NR
N w2

0d⌫N

 2BT

p
r +BT r
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The third line follows from the Cauchy-Schwarz inequality applied on w0 and w1 which are both in L2
⌫(N).

P2 is bounded in the same way:

P2 
����

R
M TF (2w0w1 + w2

1)d⌫MR
N w2

0d⌫N

����


2|
R
M TF (w0)TF (w1)d⌫M | +BT

R
N w2

1d⌫NR
N w2

0d⌫N

 2BT

qR
N w2

0d⌫N
R
N w2

1d⌫NR
N w2

0d⌫N
+BT

R
N w2

1d⌫NR
N w2

0d⌫N

 2BT

p
r +BT r

Putting them together yields |E(w0 + w1) � E(w0)|  4BT
p
r + 2BT r, where r =

R
N

w2
1d⌫NR

N

w2
0d⌫N

⇤
We then prove Theorem 3.4:
Proof: We first consider " > 0, i.e., C 0 > C. By definition, A(C) ⇢ A(C 0

), thus kV kC0 � kV kC � 0.
We then estimate the upper bound for the difference. Given w 2 A(C + "), our strategy is to construct a
function w̄ 2 A(C), such that |E(w) � E(w̄)| is bounded.

If w itself lies in A(C), then it’s trivial to set w̄ = w. We now consider w 2 A(C + ")\A(C). We
assume that

R
N w(��N )wd⌫N = (C + �)

R
N w2d⌫N , where 0 < �  ". Since E(w) = E(cw), 8c 6= 0,

without loss of generality, we further assume that w =

P
i�1 ai'i and

P
i�1 a

2
i = 1, where ('i,�i) is the

i-th eigensolution to �N'+ �' = 0. According to Proposition 3.2, the constraint on w can be written as:
X

i�2

a2i�i = C + �.

Let b1 be a real number satisfying b21 � a21 = �/C and b1a1 � 0. The existence of b1 is assured by the
fact that a1 is finite (in fact |a1|  1). Then we set w̄ = b1'1 +

P
i�2 ai'i. Direct computation shows thatR

N w̄(��N )w̄d⌫N =

P
i�2 a

2
i�i = C + � and

R
N w̄2d⌫N = b21 +

P
i�2 a

2
i = b21 + 1 � a21 = 1 +

�
C =

C+�
C =

1
C

R
N w̄(�DN )w̄d⌫N , meaning that w̄ 2 A(C).

Thanks to lemma 3.1, |E(w) � E(w̄)| = |E(w) � E(w + w̄ � w)|  4BT
p
r + 2BT r, where r =R

N (w̄ � w)2d⌫N/
R
N w2d⌫N = (b1 � a1)2. Without loss of generality, we assume that a1, b1 � 0, thus

b1 =

p
a21 + �/C > a1. Moreover, b1 � a1 =

p
a21 + �/C � a1 =

�/Cp
a21+�/C+a1


p
�/C. Therefore

r  �/C  "/C. Now assuming that w⇤ is the maximizer of E(w) constrained in A(C + "), the above
derivation shows that there exists a w̄⇤ 2 A(C) such that |E(w⇤

)�E(w̄⇤
)|  4BT

p
"/C +2BT "/C. That

implies kV kC+" � kV kC  E(w⇤
) � E(w̄⇤

)  |E(w⇤
) � E(w̄⇤

)|  4BT

p
"/C + 2BT "/C.

Regarding the case " < 0, i.e., C 0 < C. We simply replace C and C + " in the previous analysis
with C � " and C, respectively. With identical derivations, for each w 2 A(C), we construct a function
w̄ 2 A(C � �) such that |E(w)�E(w̄)| = |E(w)�E(w+ w̄�w)|  4BT

p
r+2BT r, where r  |"|/C.

Similarly, we have kV kC � kV kC+"  4BT

p
|"|/C + 2BT |"|/C for " < 0.

Putting them together, we finish the proof of this theorem. ⇤
Notice that BT is in fact an upper-bound for the constrained norms, i.e., kV kC  BT , 8C > 0. Thus the

inequality proven in Theorem 3.4 only makes sense when " is close to zero. On the other hand, the inequality
suggests that for a perturbation of fixed magnitude |"|, the larger C is, the more stable kV kC is.
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3.6.3 Stability With Respect To Perturbed Input Manifolds

In this section, we fix the scale C and add perturbations on M and N . As in Section 3.5, we perturb M and
N to ˜M and ˜N , which are (aM , bM )-close and (aN , bN )-close to the unperturbed ones respectively. V and
˜V are the corresponding area-based shape difference operators defined in Equation 3.20 and 3.21.

In order to define the constrained norm for ˜V , we first construct the corresponding functional ˜E(w),
which is obtained by changing measures in E(w).

˜E(w) =

R
N w ˜V (w)dµ̃NR

N w2dµ̃N
=

R
M TF (w)2dµ̃MR

N w2dµ̃N
(3.25)

The corresponding subdomain ˜A(C) can be written with respect to the weighted Laplace-Beltrami op-
erator (see definition 3.13). We denote by ˜

�N the Laplace-Beltrami operator on the weighted manifold
(N, g̃N , µ̃N ) and define

˜A(C) = {w :

Z

N
w(� ˜

�N )wdµ̃N  C

Z

N
w2dµ̃N}} (3.26)

One advantage of our construction of subdomains is that it allows to associate subdomains with respect to
different manifolds. Particularly we observe the following interleaved structures between A(C) and ˜A(C):

Lemma 3.2 Let ˜N be a n�dimensional Riemannian manifold that is (aN , bN )-close to N , the two collec-
tions of subdomains defined in 3.24 and 3.26 are interleaved:

A(C) ⇢ ˜A(Ca1+n
N b2N ) ⇢ A(Ca2+2n

N b4N )

Proof: For w 2 A(C), it follows from the definition 3.24 that
R
N hrw,rwig

N

d⌫N  C
R
N w2d⌫N .

According to Proposition 3.3, we have
Z

N
hrw,rwig̃

N

dµ̃N 
Z

N
aN hrw,rwig

N

dµ̃N


Z

N
aN hrw,rwig

N

an/2N bNd⌫N

 Ca1+n/2
N bN

Z

N
w2d⌫N

 Ca1+n/2
N bN

Z

N
w2an/2N bNdµ̃N

 Ca1+n
N b2N

Z

N
w2dµ̃N .

meaning that w 2 ˜A(Ca1+n
N b2N ), thus A(C) ⇢ ˜A(Ca1+n

N bN ). Similarly we can derive the other inclusion
relationship. ⇤

On the other hand, the functionals, E(w) and ˜E(w) are as well related to each other.

Lemma 3.3 For any w 2 L2
⌫(N) satisfying E(w) > 0 , the ratio of ˜E(w) to E(w) is two-sided bounded:

a�n/2
M a�n/2

N b�1
M b�1

N  ˜E(w)/E(w)  an/2M an/2N bMbN
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Proof: According to Proposition 3.3, we have

a�n/2
M b�1

M dµ̃M  d⌫M  an/2M bMdµ̃M

and
a�n/2
N b�1

N dµ̃N  d⌫N  an/2N bNdµ̃N

And by definition:

˜E(w) =

R
M TF (w)2dµ̃MR

N w2dµ̃N


R
M TF (w)2a

n/2
M bMd⌫M

R
N w2a�n/2

N b�1
N d⌫N

 an/2M an/2N bMbNE(w).

Symmetrically, the other side is bounded:

˜E(w) =

R
M TF (w)2dµ̃MR

N w2dµ̃N
�

R
M TF (w)2a

�n/2
M b�1

M d⌫M
R
N w2an/2N bNd⌫N

� a�n/2
M a�n/2

N b�1
M b�1

N E(w).

⇤
Based on the above constructions of ˜A(C) and ˜E(w), the constrained norm in the perturbed case is

defined as k ˜V kC = max

˜E(w) s.t. w 2 ˜A(C). The main result of this section is stated in the following
theorem, which claims that at each fixed scale C, the constrained norm is stable with respect to perturbations
on the manifolds.

Theorem 3.5 Let M,N be two connected compact smooth n�dimensional Riemannian manifolds without
boundary, and T be a map from M to N . Let ˜M (resp. ˜N) be a smooth manifold that is (aM , bM )-close
(resp.(aN , bN )�close) to M (resp.N). V and ˜V are the area-based shape difference operators constructed
with M,N and ˜M, ˜N respectively. If M,N, T satisfy condition 3.1, then at any fixed scale C, the following
convergence is valid:

lim

a
M

,b
M

,a
N

,b
N

!1+
k ˜V kC = kV kC

Proof: Given a fixed scale C > 0, we denote C1 = Ca�1�n
N b�2

N and C2 = Ca1+n
N b2N . Let u1 2

A(C1), u2 2 A(C2) and v 2 ˜A(C) be functions satisfying E(u1) = kV kC1 , E(u2) = kV kC2 and ˜E(v) =
k ˜V kC .

Thanks to lemma 3.2, we have A(C1) ⇢ ˜A(C), thus according to lemma 3.3:

k ˜V kC
kV kC1

=

˜E(v)

E(u1)
�

˜E(u1)

E(u1)
� a�n/2

M a�n/2
N b�1

M b�1
N

.
On the other hand, as ˜A(C) ⇢ A(C2), we have:

k ˜V kC
kV kC2

=

˜E(v)

E(u2)


˜E(v)

E(v)
 an/2M an/2N bMbN
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Lastly, Putting the above two inequalities together, we have

a�n/2
M a�n/2

N b�1
M b�1

N kV kC1  k ˜V kC  an/2M an/2N bMbNkV kC2

It follows from Theorem 3.2 that

��kV kC2 � kV kC1

��  4BT

r
C2 � C1

C1
+ 2BT

C2 � C1

C1

Obviously, letting aN , bN tend to 1, we have kV kC2 ! kV kC1 . Moreover, as aM , bM tend to 1 as well,
according to the squeeze theorem we have

lim

a
M

,b
M

,a
N

,b
N

!1+
k ˜V kC = kV kC

⇤

Remark 3.2 M,N, T satisfying condition 3.1 guarantees that kV kC1 and kV kC2 are finite. The finiteness
of k ˜V kC is assured by Proposition 3.4.

3.6.4 Approximating kV kC

By investigating the behavior of operator within the continuously evolving subdomains A(C), we have more
stable and richer understanding of V than we’ve got from S(k). However, in practice, calculating kV kC
is far from being obvious. Since neither E(w) nor A(C) is convex, there is no guarantee on achieving the
global optimum with constraint A(C).

For the sake of consistency, we denote by kV kk the maximum of E(w) within subdomain S(k) . As
discussed in [Ovsjanikov 2013], computing kV kk in the case where M and N are finite discrete meshed
shapes is straightforward and is solved with an eigen-decomposition of a k by k matrix.

First note that the construction of A(C) and S(k) are closely related. The following proposition quanti-
fies this relationship.

Proposition 3.6 Let M,N and T be a pair of manifolds and a map between them, which satisfy condi-
tion 3.1. Let �k,�k+1 be two consecutive eigenvalues of the LB operator on N, the constrained norms with
respect to A(�k) and S(k) satisfy the following inequality:

0  kV k�
k

� kV kk  4BT

p
�k/�k+1 + 2BT�k/�k+1

Proof: First of all, as shown in Preposition 3.5, S(k) is a proper subset of A(�k), which proves the
left-side inequality.

Regarding the right-side inequality, we assume that w is the maximizer realizing kV k�
k

and decompose
it into the eigenbasis:w =

P
i�1 ai'i. Now let w̄ =

P
ik ai'i, obviously w̄ 2 S(k) and therefore E(w̄) 

kV kk.
We then estimate the difference E(w)�E(w̄), according to lemma 3.1, it’s upper-bounded by 4BT

p
r+

2BT r, where r =

P
i�k+1 a

2
i /

P
i�1 a

2
i . As w 2 A(�k), it follows that �k

P
i�1 a

2
i �

P
i�1 a

2
i�i �
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P
i�k+1 a

2
i + �i � �k+1

P
i�k+1 a

2
i , thus r  �k/�k+1. Plugging it back, we have kV k�

k

� kV kk 
E(w) � E(w̄)  4BT

p
�k/�k+1 + 2BT�k/�k+1. ⇤

As a direct corollary, if �k/�k+1 ⇡ 0, then kV kk is a good approximation of kV k�
k

.
It’s worth noting that this proposition indicates a general criterion of choosing k: it’s preferable to choose

k such that the gap between �k and �k+1 is significant. And as we will discuss soon, this proposition suggests
that if the spectral gap is significant, then the maximizer realizing kV kk is a nice candidate of the initial guess
for iterative algorithms maximizing E(w) constrained in A(�k).

Secondly, a major obstacle of optimizing within A(C) is that it is of infinite dimension. Even in the
discrete case, the problem scale is still determined by the number of points, which can range in the tens or
hundreds of thousands. The following proposition suggests that there is a trade-off between complexity and
accuracy:

Proposition 3.7 For a fixed parameter C, let " > 0 and �l+1 be the smallest eigenvalue of the LB operator
on N such that C  "�l+1. Let

kV kC,l = maxE(w) s.t. w 2 A(C) \ S(l) (3.27)

, then kV kC � kV kC,l is of order
p
".

Proof: Let function w 2 A(C) satisfies E(w) = kV kC . We assume that w =

P
i�1 ai'i, and let w̄ beP

il ai'i. Then obviously E(w) � kV kC,l  E(w) � E(w̄), because w̄ 2 A(C) \ S(l) as well.
Repeating the proof of Proposition 3.6, we have kV kC � E(w̄)  4BT

p
r + 2BT r, where r =P

i�l+1 a
2
i /

P
i�1 a

2
i . Similarly we can deduce that r  C/�l+1  ", therefore kV kC � kV kC,,l 

4BT
p
"+ 2BT ". ⇤

Optimization of problem 3.27 is then conducted in a space of limited dimension, l, which is controlled
by the users.

A brief summary: Before we proceed to analyze the stability properties of the conformal shape difference
operators under this multi-scale framework, we make a brief review of the following results on the area-based
shape difference operators.

• Section 3.6.2: (C, kV kC) is a continuous curve and always above point sets {(�k, kV kk)}+1
k=1. In

Figure 3.4, the black curve is continuous and always above the blue points.

• Section 3.6.3: As ˜M converges to M and ˜N converges to N , any point (C, k ˜V kC) on the black curve
in Figure 3.4 converges to point (C, kV kC) on the red dashed one.

• Section 3.6.4: Discussion on the optimization problem: maxE(w) s.t. w 2 A(C).

3.6.5 Analysis for the Conformal Shape Difference Operator

In essence, with functional E(w), the framework of [Ovsjanikov 2013] casts the problem of extracting in-
formation on shape (manifold) differences as a series of constrained optimization problems. The functional
evaluates how the area-based shape difference operator distorts functions living in L2

⌫(N).
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�1 = 0 �k �k+1

(�k, kV kk) :

(C, kV kC) :

(C, kṼ kC) :
## aM , bM , aN , bN ! 1

C· · · · · · · · ·

k · kC

Figure 3.4: Curves representing constrained norms with respect to different subdomains construction and
input manifolds, due to Proposition 3.6, if C = �k ⌧ �k+1, then the difference between kV kC and kV kk is
well-bounded.

Note that the framework of [Rustamov 2013] introduces two shape difference operators which encode
different types of differences between shapes (manifolds), a natural extension of the multi-scale framework
of [Ovsjanikov 2013] is to construct parallel functionals and subdomains with respect to the conformal shape
difference operators, R.

Given a pair of manifolds M,N , and a map T between them, we define a functional, F , acting on
H1

0,⌫(N) (the domain of the conformal shape difference operator) as the following:

F (w) =

R
N hrw,rR(w)ig

N

d⌫NR
N hrw,rwig

N

d⌫N
=

R
M hrTF (w),rTF (w)ig

M

d⌫MR
N hrw,rwig

N

d⌫N
. (3.28)

The second inequality follows from the definition of R.
The following lemma about F (w) is a counterpart of lemma 3.1.

Lemma 3.4 Let M,N be two connected compact smooth Riemannian manifolds, and T be a map between
them. If M,N, T satisfy condition 3.1, and for any w0, w1 2 H1

0,⌫(N) such that neither w0 nor w0 + w1 is
a constant function on N , then the difference between F (w0 + w1) and F (w0) is bounded as below:

|F (w0 + w1) � F (w0)|  4DT

p
s+ 2DT s

where DT is the constant in condition 3.1 and s =
R
N

hrw1,rw1ig
N

d⌫
NR

N

hrw0,rw0ig
N

d⌫
N

.

On the other hand, modifying the multi-scale subdomain construction is necessary to suit the new func-
tional. Let kRkC = maxF (w) s.t. w 2 A(C), and in the following we prove that kRkC0

= kRkC , 8C 0 >
C > 0. In fact, given C 0 and a function on the boundary of A(C 0

), repeating the proof of Theorem 3.4, we
find another function w̄ lying in A(C) and w � w̄ is a constant function. According to lemma 3.4, we have
F (w) = F (w̄) since

R
N hr(w � w̄),r(w � w̄)ig

N

d⌫N = 0. Therefore, kRkC = kRkC0 if we use A(C) as
the multi-scale constraint.
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To solve this issue, we construct a new subdomain, Aconf
(C), which is orthogonal to the space spanned

by constant functions.

Aconf
(C) = A(C) \ {w :

Z

N
wd⌫N = 0} (3.29)

and let kRkC = maxF (w) s.t. w 2 Aconf
(C).

It’s worth noting that if C < �2, the first non-zero eigenvalue of ��N , then Aconf
(C) = ;. That follows

from Proposition 3.2: let w =

X

i�1

ai'i, since
R
N wd⌫N = 0, a1 = 0 . Therefore

R
N w(��N )wd⌫N =

X

i�2

a2i�i �
X

i�2

a2i�2 � �2
X

i�2

a2i = �2

Z

N
w2d⌫N . In the other words, if C < �2, then A(C) \ {w :

R
N wd⌫N = 0} is empty. Thus C must be at least �2 so that kRkC is well-defined. In practice, it is more

convenient to maximize F (w) in the subdomains spanned by finite number of eigenfunctions. Following the
same arguments above, we modify S(k) to obtain Sconf

(k) = span{'2,'3, · · · ,'k}, where k is at least 2.
With the above formulations, we validate the stability of R with respect to the changes in scale.

Theorem 3.6 Let M,N be two connected compact smooth Riemannian manifolds with boundary, and T be
a map between them. Let �2 be the second eigenvalue (as well as the first non-zero eigenvalue) of ��N . If
M,N, T satisfy condition 3.1, then for C > �2, C 0

= C + " > �2 we have:

��kRkC0 � kRkC
��  4DT

s
�2|"|

(C � �2)(C � |"|) + 2DT
�2|"|

(C � �2)(C � |"|)

Then we consider perturbations on the input manifolds. As before, we denote by ˜M and ˜N the perturbed
version of M and N . The perturbed conformal shape difference operator, ˜R, is defined in Equation 3.23.
The associated functional, ˜F (w), is defined as the following:

˜F (w) =

R
M hrTF (w),rTF (w)ig̃

M

dµ̃MR
N hrw,rwig̃

N

dµ̃N
. (3.30)

Accordingly, we define ˜Aconf
(C) =

˜A(C) \ {
R
N wdµ̃N = 0} and k ˜RkC = max

˜F (w) s.t. w 2 ˜Aconf
(C).

Unfortunately, the strategy of proving Theorem 3.5 doesn’t work in the case of the conformal shape
difference operators. That is because the interleaved structure described in lemma 3.2 is not guaranteed
between the new subdomains Aconf

(·) and ˜Aconf
(·): a function satisfying

R
N wd⌫N = 0 doesn’t necessarily

fulfill
R
N wdµ̃N = 0 simultaneously.

3.7 Experimental Results

In this section, we demonstrate experimental results that are related to our theoretical analyses. We con-
duct all the experiments on meshed shapes, i.e., discrete polygon surfaces embedded R3. To start with,
we show in the discrete case how to approach a local maximum of the constrained optimization problem
maxE(w) s.t. w 2 A(C), which is discussed in Section 3.6.4. Then the extension proposed in Section 3.6.5
is applied to detect and visualize conformal differences between a pair of shapes induced by a given map.
Lastly, we demonstrate how the frameworks based on the shape difference operators react to perturbations
on input shapes.
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3.7.1 Approximating kV kC

Now suppose that we are given a pair of meshed shapes, we demonstrate how to search for a local optimum
of the constrained non-linear optimization with the barrier function method. Let M,N be two meshed shapes
consisting of vM and vN vertices respectively, and let LM (resp., LN ) and AM (resp., AN ) be the stiffness
matrix and the matrix of area elements for M(resp.N) (see [Pinkall 1993]). The functional map TF induced
by T is represented by a matrix P 2 Rv

M

⇥v
N in the discrete setting. Let �k 2 Rv

N

⇥k be a matrix whose
columns are the first k eigenvectors solved by LNf = �ANf .

Then calculating kV kC in this setting is equivalent to maximize the following function:

max

fTP TAMPf

fTANf
, s.t.

fTLNf

fTANf
 C

Based on that a barrier function is constructed

G(�, f) = �fTP TAMPf

fTANf
� �log(C � fTLNf

fTANf
)

As suggested in Proposition 3.6, we take the maximizer of E(w) constrained in S(k) as the initial guess for
minimizing G(1, f). After obtaining f1 as a local minimizer, we take it as the initial guess for G(

1
2 , f). The

iteration continuous until there is no more significant improvement or � is sufficient small. Optimizing 3.27
is done with an extra constraint that f = �

T
l a, where a 2 Rl.

Proposition 3.7 suggests that as l tends to infinity, the optimum of problem 3.27 converges to kV kC . We
illustrate this claim by comparing a bumped sphere M with a sphere N (the same pair as in Figure 3.1), the
indicators with respect to different constraints are depicted on N in Figure 3.5.

3.9765 4.00773.4329 3.9998 4.0167

S(37) A(�
37

)\S(145) \S(325) \S(430)

Figure 3.5: We compare a bumped sphere to a sphere (the same as in Figure 3.1) and plot on the sphere
the (local) maximizers different constraints (note that only the left-most one is a global maximizer). The
middle three are locally optimized by taking the constraints as intersection of A(�37) and S(l), where l =
145, 325, 430. The eigenvalues involved are: �37 = 2.3857,�145 = 8.3682,�325 = 16.6667, and �430 =

20.0167.

As mentioned in Section 3.6.1, both subdomains S(k) and A(C) are designed to control the Dirichlet’s
Energy of feasible solutions. The difference between them is that in the former case the energy is controlled
by truncating high frequency components while in the latter case high frequency components are allowed but



3.7. Experimental Results 75

with implicit bounds on their weights. Figure 3.6 demonstrates this difference intuitively. In this experiment,
we compute the local maxima/maximizers of kV kC with different scales C range from 0.5 to 2.

Figure 3.6: The X-axis indicates the index of eigenvalues/eigenfunctions, and the Y-axis represents the ratio
kX

i=1

a2i /
X

i�1

a2i .

Recall that the L2-norm of a function can be written as sum of square magnitudes of projections (see
Proposition 3.2), i.e.,

R
N u2d⌫N =

X

i�1

a2i , where ai =

R
N u'id⌫N and 'i is the i-th eigenfunction of

the Laplace-Beltrami operator on N . Now we compute for k = 1 ⇠ 300, the portion of L2-norm of the
local maximizer expressed in the span space S(k). The X-axis of Figure 3.6 reads the index of eigenval-

ues/eigenfunctions, and the Y-axis reads the ratio
kX

i=1

a2i /
X

i�1

a2i . It’s obvious that the four local indicators

are well-expressed by the first 300 eigenfunctions (with �300 = 15.2029). The blue curve indicates that the
local maximizer at C = 0.5 is almost fully spanned by the first 50 eigenfunctions, whereas the purple curve
indicates that the first 50 only represent around 75 percents of the norm of the one at C = 2.

3.7.2 Capturing Conformal Differences

In Section 3.6.5 we introduce a framework to analyze and visualize conformal differences, which can’t be
captured by the original framework in [Ovsjanikov 2013]. A simple example is demonstrated in Figure 3.7,
where the map T from M to N is an area-preserving map. Therefore E(w) = 1 for any function w and
analysis based on E(w) doesn’t provide any information about the differences between the two surfaces.
On the other hand, we maximize F (w) in Sconf

(50), and plot the indicator on N (see the right plot of
Figure 3.7). It is obvious that this indicator highlights the regions where changes in angles take place.

In practice, we also observe stability of the multi-scale framework based on the conformal shape differ-
ence operator. We compare again the two horses in Figure 3.2, and plot the indicators that maximize F (w)
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M N

k = 50

T

Figure 3.7: T : M ! N is an area-preserving map. The conformal indicator at scale k = 50 captures and
highlights the areas undergo conformal deformations.

within subdomains Sconf
(k) = span{'2, · · · ,'k}. The indicators at the scale k ranging from 50 to 500 are

depicted in Figure 3.8. The evolution of highlighted areas is quite stable, reflecting the stability of that the
conformal shape difference operator with respect to the changes in scale.

k = 50 k = 70 k = 100

k = 200 k = 300 k = 500

M

N

T

Figure 3.8: Indicators with respect to the conformal shape difference operator at k ranging from 50 to 500.

In general, the conformal differences between shapes are less intuitive to imagine and more subtle to
capture. Thus this extension based on the conformal shape difference operator helps to provide a more
complete picture for users to understand the distortions between shape induced by a given map.

3.7.3 Stability of the Area-based Shape Difference Operators

At the beginning of this chapter, we’ve shown in Figure 3.1 the robustness of the multi-scale framework in
different senses. Here we consider more complicated shapes than deformed spheres.

The first example is demonstrated in Figure 3.9, we compare the two horses in Figure 3.8, but with
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different meshes of horse N . At the same scale k = 50, the indicators with respect to different meshed N ’s
are similar to each other, which all consistently highlight the hip of the horse.

(a) Original N (b) Densified (c) Simplified

1.2897 1.2947 1.2857

Original M

T

Figure 3.9: Indicators at scale k = 50 with different meshes. We densify the original shape (mesh-a) by
adding points in the body of the horse (mesh-b) and simplify it by down-sampling the limbs (mesh-c). The
corresponding distortion measurements are marked to the top-left.

Besides changing the mesh structure, we perturb the input meshes by disturbing the vertices. In
this example, the vertices are especially perturbed along the normal direction so that the point-to-point
correspondences are roughly preserved. We first compute the mean distance of edges of each mesh:
¯dM = 0.0144, ¯dN = 0.0141, and the vertex normal vectors. Given a parameter �, we perturb a point p
of mesh M to p0 = p + � ¯dMxp · np, where xp is a one-dimensional random variable distributed normally
with mean 0 and variance 1, and np is the unit normal vector at vertex p. And we use the original mesh
connectivity to connect perturbed points, since they are in a one-to-one correspondence to the unperturbed
points.

We perturb both M and N in the same manner, and consider 4 choices of �: 0, 0.1, 0.5, 1.0. At each
level of perturbations, we generate indicators with respect to the area-based shape difference operator at 3
scales k = 20, 50, 200. The results are shown in Figure 3.10. We observe that when � = 0.1, the indicators
are well consistent with the ones of the first row. In fact, even when � = 0.5, meaning that the standard
deviation of the perturbations is half the mean distance, the indicators are still reasonable. At the end, we
also notice that in the most noisy row, the indicator at k = 200 deviates from the ground-truth significantly
while the first two at k = 20, 50 are still relevant. As we mentioned before, as k increases, the corresponding
indicator is supposed to be more and more localized. The high-frequency indicators are more sensitive to the
noises.

3.8 Proofs for Theorems in Section 3.6.5

Proof of Theorem 3.3 Proof: We first prove H1
0,⌫(N) = H1

0,µ̃(N) so that ˜Rg is well-defined for g 2
H1

0,⌫(N). Since (N, gN , ⌫N ) and (N, g̃N , µ̃N ) are on top of the same smooth topological manifold N , they
share the same boundary of N . Therefore if f is zero on the boundary of the former, then it is zero on the
boundary of the latter.

We now prove if
R
N f2

+ hrf,rfig
N

d⌫N < 1, then
R
N f2

+ hrf,rfig̃
N

dµ̃N < 1 and vice
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versa. First according to Proposition 3.3, we have a�n/2
N b�1
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smooth function f, a�1
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Then we estimate P1, P2 and P3 separately. According to Proposition 3.3, measures ⌫M (resp.⌫N ) and
µ̃M (resp.µ̃N ) satisfy

a�n/2
M b�1

M dµ̃M d⌫M  an/2M bMdµ̃M

a�n/2
N b�1

N dµ̃N d⌫N  an/2N bNdµ̃N .

and for any smooth functions fM , fN on M and N respectively,

a�1
M hrfM ,rfM ig̃

M

 hrfM ,rfM ig
M

 aM hrfM ,rfM ig̃
M

a�1
N hrfN ,rfN ig̃

N

 hrfN ,rfN ig
N

 aN hrfN ,rfN ig̃
N
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The lower bound of P1 is estimated in the same way, and we have
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Noticing that 0 
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And we obtain the lower bound similarly:
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on I+ and I� are both finite, then P2 vanishes as aN , bN tend to 1. In
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Schwarz inequality that
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Lastly, we argue that P3 vanishes as aM , aN , bM and bN tend to 1. Since the metric defines a symmetrical
inner products on the tangent spaces, we have hrf,r ˜Rfig̃
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As f+g, f�g 2 H1
0,⌫(N), it follows immediately that for any pair of f, g,
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Proof of lemma 3.4 Proof: We estimate the difference by two parts:
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The third line follows from the Cauchy-Schwarz inequality applied on w0 and w1 which are both in L2
⌫(N).

P2 is estimated in the same way, and the bound is identical:
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Putting them together yields |F (w0 + w1) � F (w0)|  4DT
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Proof of Theorem 3.6 Proof: The strategy of this proof is similar to the one for Theorem 3.4.
We first consider the case of " > 0, i.e., C 0 > C > �2. By definition, Aconf

(C) ⇢ Aconf
(C 0

), thus
kRkC0 � kRkC � 0. We then estimate the upper bound for the difference. Given w 2 Aconf

(C + "), our
strategy is to construct a function w̄ 2 Aconf

(C), such that |E(w) � E(w̄)| is uniformly bounded.
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If w itself lies in Aconf
(C), then it’s trivial to set w̄ = w. We now consider the case w 2 Aconf
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Let b2 be a real number satisfying b22 �a22 = �/(C ��2) and b2a2 � 0. The existence of b2 is assured by
the fact that a2 is finite (in fact |a2|  1). Then we set w̄ = b2'2 +
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Regarding the case " < 0, i.e., C > C 0 > �2. We simply replace C and C + " in the previous
analysis with C � " and C. With identical derivations, for each w 2 Aconf

(C), we construct a function
w̄ 2 Aconf
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.
Putting them together, we finish the proof of Theorem 3.6. ⇤
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k = 20 k = 50 k = 200

� = 0

� = 0.1

� = 0.5

� = 1.0

M N

Figure 3.10: Four pairs of meshed shapes are compared, � indicates the strength of perturbations added on
each of the shapes in the same row. At each row, three indicators are plotted on mesh N , which are obtained
by maximizing E(w) within S(20), S(50) and S(200) respectively. Note that the human poses in the second
column stand with their backs towards us, thus the highlighted areas are the hip and the right elbow.



CHAPTER 4

functional-maps-based Frameworks on
Point Cloud Data

4.1 Introduction

The framework of the functional map and most of its follow-ups are proposed to deal with problems about
3D shapes, i.e., 2-dimensional Riemannian manifold embedded in R3. Besides the fact that 3D shapes are
ubiquitous in both theory and application, the other reason might be that in practice, 3D shapes can be well-
approximated by polygon meshes, which allow people to estimate geometric quantities of the underlying
shape from the discrete data. For example, the eigenbases with respect to the Laplace-Beltrami operators are
heavily utilized in the frameworks related to the functional maps. Approximating this operator on a meshed
shape is well-studied and solved by reliable and efficient methods (e.g., the cotangent scheme proposed
in [Pinkall 1993]).

However, as we mentioned in Chapter 3, the frameworks of [Ovsjanikov 2012, Ovsjanikov 2013,
Rustamov 2013] can be naturally adapted to a more general setting where the intrinsic dimension of in-
put manifolds is not necessarily 2. Stated differently, these frameworks are potentially suitable for analyzing
objects of higher dimensions. Constructing polygon meshes, unfortunately, is not straightforward in this
more abstract setting. Moreover, only considering 2-dimensional manifolds, we would encounter the same
problem when the manifolds are embedded in an Euclidean space of dimension more than 3. Even in the
very original setting, generating mesh on top of a bunch of sampling points is not trivial. For instance, noises
are sort of inevitable in the data acquisition, sometimes they give rise to locally non-manifold structures and
thus make mesh generation a challenging task.

Due to the above limitations, in this chapter we consider implementing the above mentioned functional-
maps-based frameworks on data in a more primitive form–point cloud data (PCD). There are nice works on
approximating geometric quantities with PCD. The framework of [Belkin 2009] approximates the Laplace-
Beltrami operator in PCD sampled from a general d-dimensional Euclidean space. However, this approach
and a later one [Liu 2012] both rely on reconstructing local mesh structure. Rather than falling back to build
some specific structures to associate input points, we build simply k-nearest neighborhood (k-NN) graphs
on the input PCD, and for all necessary ingredients for implementing the functional-maps-based frameworks
that are computed with meshes, we propose a pipeline to construct their counterparts on top of the k-NN
graphs.

Among the ingredients, perhaps a reliable approximation to the Laplace-Beltrami operator is the most
important. The top candidate for our pipeline is the graph Laplacian, whose convergence to the Laplace-
Beltrami operator on the underlying manifold has been well studied (see [Belkin 2008, Hein 2007]). And
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it has been wildly applied in practice, say, spectral clustering [von Luxburg 2006], dimensional reduc-
tion [Belkin 2002, Tenenbaum 2000a]. However, it’s not so popular in the area of geometry processing,
one of the main reasons is the lack of robustness: for example, in practice it is not clear how a graph Lapla-
cian varies with respect to different k for k-NN graphs, not to mention that we are unlikely to approximate
the underlying Laplace-Beltrami operator with graph Laplacian based on naive graph construction such as
k-NN over finite sampling points.

'9 '10 '11 '12
k = 50

M N

YX

Figure 4.1: Left: We compare a pair of meshed shapes M and N and a pair of PCD X and Y , and generate
indicators from the mesh setting (top) and the PCD setting (bottom) both at scale ks = 50; Right: the ninth
to the twelfth eigenfunction of the Discrete LB operator on mesh (top) and those of the Graph Laplacian on
PCD (bottom).

On the other hand, the most important observation in this chapter is that despite its instablility when
applied in analyzing a single object, in the context of the functional-maps-based frameworks where objects
are analyzed in pair, the results gained with the graph Laplacian are surprisingly stable. Figure 4.1 shows
parts of the eigenfunctions on a horse generated from the mesh setting and from our PCD setting, where two
rows are distinct from each other. However, the indicators generated from the two settings are comparable.

It is worth noting that our approach is empirical: our pipeline design is inspired by results on the con-
vergence of the graph Laplacians in [Hein 2007]. The results characterize the limit behavior of the graph
Laplacian as the size of sample tends to infinity and are proven under certain technique conditions on the
underlying manifolds and the sampling density, which can hardly be guaranteed in practice.

In the experimental section, we show the relevance and robustness of applying the functional-maps-based
frameworks with our pipeline directly on PCD. Our pipeline is fit for point clouds sampled from Euclidean
spaces of dimension more than 3, yet in this chapter we exhibit results generated from 3D shapes, so that we
can compare our results to the ones from the mesh setting.

4.2 Pipeline for PCD

Before we present our pipeline, we quickly check the necessary ingredients for implementing the frameworks
of functional maps [Ovsjanikov 2012], shape difference operators [Rustamov 2013] and map analysis and
visualization [Ovsjanikov 2013].
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In the mesh setting, for an input meshed shape M consisting of nM vertices, we need to compute WM and
AM , which are both nM ⇥ nM matrices. WM is a stiffness matrix such as the standard cotangent weighted
matrix. The formulation of WM with the cotangent scheme [Pinkall 1993] is illustrated in figure 4.2.

W

M

(i, j) = 1
2(cot↵ + cot�)

v

i

v

j

↵

�

v

i

v

j

↵

W

M

(i, j) = 1
2cot↵

(a) (b)

Figure 4.2: (a) WM (i, j) for an edge (vi, vj) that is shared by two triangles. (b) WM (i, j) for an boundary
edge that belongs to a single triangle. If vi, vj are not connected by an edge, then W (i, j) = 0. Notice that
in a mesh, an edge is at most shared by two triangles.

AM is a diagonal matrix, whose (i, i)-th entry is assigned with the area element of the i-th vertex. To
compute AM (i, i), we use the mixed Voronoi cell proposed in [Meyer 2003]. We collect all the triangles
in the mesh containing vertex vi. Each triangle contributes a part to the area element of vi: if it’s an acute
triangle, then the contribution is one third of its area; if it is a right or an obtuse triangle, the contribution is
one half of its area when vi is opposite to the longest edge and one quarter of its area otherwise.

The discrete approximation of the Laplace-Beltrami operator is then given as A�1
M WM . To compute the

eigenfunctions, we solve the eigenequation WMf = �AMf . (We refer the readers to [Botsch 2010] for an
introduction to general mesh processing. )

Now suppose we are given a point cloud X = {x1, x2, · · · , xn} consisting of n points, and X is sampled
from the same smooth shape that is approximated by M . In the following we present how we compute the
counterparts AX and WX in the PCD setting.

Building Connectivity In the mesh setting, the polygons, say, triangles, govern connections among the
discrete vertices. While in the PCD case, there are two common ways to construct a graph on top of a
point cloud: (1) the "�neighborhood graph construction and (2) the k�nearest neighborhood (k-NN) graph
construction. We choose the latter over the former due to two reasons: firstly we can control the sparsity
of the output graphs by intuitively tuning k; Secondly, we might face the situations where the points are
non-uniformly sampled from a underlying Riemannian manifold. In such a situation, the parameter " might
be difficult to pick so that the resulting graph is connected (meaning that " is not too small) and properly
sparse (meaning that " is not too large).
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Building Weighted Graphs Fixing an integer k, we first build a k-NN graph on X, and denote the graph
by GX = (X,EX), where the edge set EX = {(xi, xj), xi 2 N(xj , k) or xj 2 N(xi, k)} and N(xi, k) is
the set of the nearest k neighborhoods of xi among X\xi.

Then we turn this k-NN graph into a weighted graph. Typically, we use the Gaussian kernel to assign a
weight to each of the connected edges in the k-NN graph above:

KX(i, j) =

(
exp(�kxi � xjk2/2t2) if (xi, xj) 2 EX

0 otherwise
(4.1)

t is a parameter of KX to be determined. We in practice let t be
|X|X

i=1

X

x
j

2N(x
i

,k)

kxi � xjk
k|X| , which is

depending on the scale of X .
let DX(i) =

1
deg(i)

X

(i,j)2E
X

KX(i, j), where deg(i) is the degree of vertex xi in graph GX . Then we

normalize KX with the DX(i)0s:
˜KX(i, j) =

KX(i, j)

DX(i)DX(j)
(4.2)

Building graph Laplacian There are various ways of defining a graph Laplacian, We use the unnormlized
weighted graph Laplacian with respect to ˜KX constructed above:

WX(i, j) =

8
><

>:

� ˜KX(i, j) if i 6= j
X

j

˜KX(i, j) if i = j (4.3)

Estimating Weighted Measures In the mesh setting, to each vertex p, we associate an area element,
which is positively correlated to the sum of the areas of triangles around that point. In the point could setting,
however, how to an compute area element is not clear because the surface is not regularly tessellated with
polygons.

In our pipeline, to each sampling point xi, we assign the multiplicative inverse of the sampling den-
sity estimation at xi. There is a considerable amount of literature on density estimation from sampling,
especially we chose the framework of [Biau 2011], which estimates the sampling density at point xi 2 Rd

proportionally to:
⇢(xi) / (

X

x
j

2N(x
i

,k
n

)

kxi � xjk2)�
d

2

The kn in the subscript is a parameter related to n, the total number of sampling points. The convergence
of the estimator to the underlying density is assured under some conditions, one of which is that kn !
1, kn/n ! 0 as n ! 1. In practice, we simply let kn be the same as k in our k-NN graph construction.
Therefore we obtain these quantities as a by-product of constructing the k-NN graph.

Since we mostly consider 2-dimensional Riemannian manifolds embedded in R3. AX is then obtain by
letting AX(i, i) = (

X

x
j

2N(x
i

,k)

kxi � xjk2)
3
2 .
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At the end, we view the graph Laplacian WX as a counterpart of the stiffness matrix in the mesh setting
and A�1

X WX as an approximation to the Laplace-Beltrami operator, and compute the eigenfunctions by
solving WXf = �AXf .

4.2.1 Rationale of Our Pipeline

According to one of the main results proposed in [Hein 2007] (see ’Main Result’ at the beginning of section
3.3 there, in the case of ’unnormalized’ with � = 1), the graph Laplacian constructed in Equation 4.3 is
viewed as an approximation of �⇢�1

�. From this point of view, the motivation of AX above is clear: since
this approximation is affected by the sampling density, we let A�1

X be an approximation of ⇢ so that A�1
X WX

is an approximation of �.
In fact, both AX and AM from different settings work in a similar way. To see this, we illustrate the

area elements in figure 4.3. We assume that all the points are sampled in a flat local area. First we consider
the mesh case, if the sampling is uniform, then the area elements are equal to each other. However, the area
element of point v1 (the area circled by the blue segments) is larger than that of point v2 (area circled by
the red segments). The unbalance in area distribution compensates the effect of the non-uniform sampling:
obviously the sampling density around point v1 is smaller than that around v2. In the point cloud setting, we
plot the 7-nearest neighborhoods of x1 and x2 and connect them with edges in different colors. It is easy to
see that the AX(1, 1) > AX(2, 2), which mimics the relationship between the area element of v1 and of v2.

Triangle Mesh Point Cloud

v1

v2

x2

x1

M X

Figure 4.3: Left: the area elements in AM compensate the effect of non-uniform sampling density round
points v1, v2 2 M : larger element is assigned to the point locating in an area with lower sampling density;
Right: the counterpart of AM in our pipeline, AX , that functions in a similar way.

On the other hand, as proven in [Bernstein 2000], under certain sampling condition, the metric induced
by the graph (especially by the kNN graph) converges to the intrinsic manifold metric with high probability.

Again we emphasize that our construction is experimental without rigorous theoretical guarantees. The
convergence results in [Hein 2007] is proven under several technique conditions, which in our case are not
satisfied.
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4.3 Experimental Results

A brief review of the three functional-maps-based frameworks has been given in Section 3.3.3, Section 3.3.4
and Section 3.3.5. In this section, we discuss the how to perform these frameworks with only point clouds
sampled from interested shapes. We assume that a map T is from a source shape SS to a target shape ST .
Let a mesh M(resp.N) and a point cloud X(resp.Y ) be two representations of SS(resp.ST ). The map
T in the discrete case is simply a point-to-point correspondence from M to N (or from X to Y ). And
the corresponding functional map TF is a pull back from the function space on N(resp.Y ) to the one on
M(resp.X).

In Section 4.3.1, we compute the low-rank approximations of TF with truncated eigenbasis on both SS

and ST and compare the results generated with M,N to those generated with X,Y .
After that, we turn to the frameworks of multi-scale map analysis and the shape difference operators.

We induce TF with the known point-to-point correspondence T and use it in the following discrete settings.
Therefore, in the mesh setting, the optimization problem of 3.17 is:

maxE(w) =
TF (w)TAMTF (w)

wTANw
s.t. w 2 span{�N1 ,�N2 , · · · ,�Nk

s

}

where �Ni is the i-th eigenvector of A�1
N WN . We call in this section the maximizer the area-based indicator

at scale ks.
And we write the functional with respect to the conformal shape difference operator as the following (see

equation 3.28)

maxF (w) =
TF (w)TWMTF (w)

wTWNw
s.t. w 2 span{�N2 , · · · ,�Nk

s

}

Note that the constraint is different. We then call the maximizer the conformal indicator at scale ks.
As described in Section 4.2, we compute AX ,WX as the counterparts of AM ,WM in our pipeline.

Therefore by replacing them with AX ,WX , we are able to apply this framework on PCD.
The main target of our experiments is to demonstrate the relevance and empirical robustness of im-

plementation of the functional-maps-based frameworks on PCD with the pipeline proposed in section 4.2.
Especially, we run test on several collections of shapes. The ground truths of the differences among shapes
within each of the collections are visually intuitive, and we use the results from the meshed setting as ground
truths.

4.3.1 Functional Maps on PCD

As shown in Figure 4.4, we are given two meshed horses M and N and a list of point-to-point correspon-
dences T from M to N . Let X and Y be the vertex set of M and N respectively. Each horse consists of
8431 vertices, thus all the function spaces related in this experiment are vector spaces of dimension 8431.
Since a functional map is a linear operator across the function spaces on different shapes, it is a 8431⇥ 8431

matrix, which is inconvenient for analysis. In the following we compute low-rank approximations of it in
different ways.

We start with meshes M and N . The first 100 eigenfunctions of WMf = �AMf and WNf = �ANf are
solved as the truncated bases on M and N respectively. Based on these truncated eigenbases, we approximate
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and represent the functional map with a 100⇥100 matrix CT . With the full information of T , TF is faithfully
represented as a permutation matrix. Thus CT is explicitly expressed as

CT (i, j) = hTF (�
N
i ),�Mj iM , 1  i, j  100

where �Ni is the i-th eigenvector on N and �Mj is the j-th eigenvector on N .
On the other hand, it is also possible to compute CT with much less information. As shown in the top-left

of Figure 4.4, 6 pairs of landmarks in correspondences are selected. Following the idea in [Ovsjanikov 2012],
we minimize k�MCT � CT�NkFro with constraints that the 6 delta functions supported by the landmarks
are preserved by CT and denote by CLM the minimizer.

Regarding the point clouds X and Y , we apply the pipeline in Section 4.2 with two k-NN graphs with
k = 15 and k = 40. The eigenvectors are solutions to WXf = �AXf and WY f = �AY f , and the following
procedures are exactly the same as in the mesh setting.

T

T

F

Mesh PCD: 40-NN graph. PCD: 15-NN graph.

M(resp.X)

N(resp.Y )

M

Y Y

Figure 4.4: Top-left: two shapes with different representations–M,N are meshes and X,Y are point clouds;
six pair of landmarks are selected in correspondences (red balls). Top-right: quantitative evaluations of
functional maps approximated with different conditions and in different settings. Bottom: transforming the
function f depicted in the top-left panel with functional maps approximated with landmarks in the three
settings: mesh, PCD with 40-NN graph and PCD with 15-NN graph.

To evaluate the qualities of approximations with respect to different settings and methods, we employ the
method from [Ovsjanikov 2012] to convert an approximated functional map, C 0, to a point-to-point map T 0.
For each point p on M , the Euclidean distance from the ground truth T (p) to T 0

(p) (which are both on N )
is computed. The chart in Figure 4.4 shows comparison of functional maps approximated in different ways.
A point (e, c) on that chart reads 100 ⇥ c% of the vertices satisfying kT (p) � T 0

(p)k  e. As expected,
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with the ground truth T , the approximations are significantly more accurate than the ones without. And the
approximation from the mesh setting is more accurate than the other two from the PCD setting. With the
ground truth, the approximations in the PCD setting with different k are indistinguishable in this chart. In
the more challenging situation, we observe that the using 40-NN graph results in a better approximation that
is closer to the one with mesh information.

More intuitively, in the top-left of Figure 4.4, we plot a function f and TF (f) on N and M respectively.
The bottom row shows how f is transformed by functional maps computed with only landmark correspon-
dences in different settings (for an easier comparison, we render all results with the mesh N ). Again the one
regarding the 40-NN graph is closer to the mesh result, and visually the function is well transformed to Y
(see the middle of the bottom row of 4.4). The result regarding the 15-NN graph, however, is not satisfying.

4.3.2 Selection of k for k-NN

In our PCD pipeline, the only parameter to be determined by the users is k, the number of nearest neighbor-
hoods for constructing k-NN graphs. Usually we choose the same k for all point clouds analyzed in pair (or
in collection). The previous experiment seems to suggest large k is more preferable. In the following we
compare the selections from a different point of view.

For the sake of consistency, we consider the same pair of shapes as in Section 4.3.1 and follow the
notations there. Recall that we analyze and extend a framework for detecting and highlighting the differences
between shapes induced by a given map in Section 3.6. In this experiment we implement this method with
our pipeline and especially we build k-NN graphs on the input point clouds with different k.

As before, the results obtained with meshed shapes M and N are seen as ground truths. Regarding the
point clouds X and Y , we build k-NN graphs with k = 15, 25 and 40.

First of all, we compare the area-based and the conformal indicators shown in the left part of Figure 4.5.
All the indicators are computed at a uniform scale ks = 50. The area-based indicators along the left-most
column are consistent, meaning that the results from the PCD with different parameters are relevant and
consistent. Regarding the conformal case, the one of 15-NN graph fails to capture the right area, whereas the
left two with larger k manage to highlight the right hind leg.

Secondly, we take a look at the corresponding eigenfunctions in the right part of Figure 4.5. As mentioned
in Section 4.1, one of the issues of applying graph Laplacian in geometry processing is its instability, which
is evidenced in the plot. Judging from this short window (only four eigenfunctions from the ninth to the
twelfth are plotted), we notice that when the number of nearest neighborhoods changes from 15 to 25, the
eigenfunctions are distinct. The last two rows are more stable with respect to a change of k, yet they are still
dissimilar to the top row. Moreover, we plot eigenfunctions associated with relatively small eigenvalues, the
divergences are more prominent as we pick the ones of higher frequencies.

Lastly, we make some remarks on the selection of k for k-NN. From the implementation point of view, a
smaller k results in a sparser graph, which expedites the computation. However, because of the presence of
noise, small k would bring instability into the construction and therefore into the result (as discussed above
and shown in Section 4.3.1). In the subsequent experiments, we select k = 40. As will be shown, this
parameter works well in analyzing other collections of shapes.
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'9 '10 '11 '12Area-based Conformal

Mesh

15-NN

25-NN

40-NN

Figure 4.5: Comparison of different k for constructing k-NN graphs. The left-most two columns depict
area-based and conformal indicators generated with meshes and k-NN graphs with respect to k = 15, 25, 40,
the scales of all the indicators are fixed as ks = 50. The right part shows part of the eigenfunctions on N
(mesh) and on Y (PCD), which are visually distinguishable.

4.3.3 Reliability of PCD Setting in Multi-scale Framework

We’ve observed consistency between the results from the mesh setting and the PCD setting in Figure 4.1 at
a single scale, now we go for multiple scales. Two near-isometric human poses in comparison are depicted
in Figure 4.6(a). The top row (Figure 4.6(b), (d)) shows the indicators generated with mesh inputs: part (b)
shows area differences and part (d) shows conformal differences. From left to right, the corresponding scales
are respectively ks = 20, 60, 180.

Again we take the vertices from the meshes as the input point clouds. In Figure 4.6(c) and (e) are the
corresponding results from the PCD setting. In the case of area distortion detection, the indicators in (b) and
(c) match well. Though the stability of the conformal based multi-scale framework with respect to perturbed
inputs is not proven in theory (see the discussion in Section 3.6.5), the outcomes regarding the conformal
differences show some consistency: the highlighted areas evolve in the same pattern along rows (d) and (e)
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(b) (d)

(e)(c)

(a)

T

PCD

MESH

Figure 4.6: (a) shapes in comparison; Top-row on the right: indicators generated from the mesh setting–(b)
are the area-based ones and (c) are the conformal ones. Bottom-row on the right: indicators generated from
the PCD setting–(c) are the area-based ones and (e) are the conformal ones. In each quadrant, the scales of
the indicators are ks = 20, 60, 180, and increasing from left to right.

4.3.4 Analyzing Shape Collections

The above experiments shows the stability of the shape difference operators for analyzing maps between a
single pair of shapes in a multi-scale way. Now we perform a higher level analysis about recovering the
intrinsic structure of a collection of shapes. As we prove in Section 3.5, the shape difference operators on
their own are stable with respect to perturbations on input shapes. To demonstrate that, we repeat one of the
experiments in [Rustamov 2013] (see figure 3 on page 7 there), but in the PCD setting.

Given a collection of shapes with pairwise correspondences, our goal is to recover a reasonable layout
in the intrinsic shape space. Two collections of shapes with different structures are considered–deformed
spheres and galloping horses. In each collection we select the first shape as the base shape and construct
both shape difference operators with maps from all shapes to the base shape. After approximating the area-
based (resp. conformal) shape difference operators, we vetorize and embed them into R2 with the PCA
algorithm.

The top row of Figure 4.7 depicts the embeddings for the deformed spheres. Both layouts uncover the
grid structure of the original shape collection. The results in [Rustamov 2013] suggest that in both the area-
based and the conformal cases, the variances of the first two principle components are both close to 50
percents. Regarding our result: (1) Area-based case: though the sum of percentages add up to almost 100,
the grid is unbalanced and stretched along the direction of the first principle component; (2) Conformal case:
balance preserved, the shapes of the first and the second rows are not well differentiated, suggesting that the
operators generated in the PCD setting fail to capture the small differences.
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PCA layout for the area-based

Shapes in dataset, indexed left

to right and top to bottom

shape di↵erence operators.

PCA layout for the conformal

shape di↵erence operators.

Figure 4.7: PCA plots of the two shape difference operators.

The bottom row shows the layouts for the galloping horse sequence. As demonstrated in the left panel,
the sequence consists of two circles of continuous movements of the horse. Our results successfully capture
the circular structure of the sequence: depicted in the layout, point i is close to point i+12 (i = 1, 2, · · · , 12).
The group of i = 1, · · · 12 and the group of i = 13, · · · , 24 each form a circle. The result also reveals the
fact that there is more conformal distortions than area distortions in this data, as the range of layout in the
right panel is larger than that in the middle one.

Overall, we conclude from these experiments that although the results from the PCD setting is not as
accurate as those from the mesh setting, they capture most of the desired information hidden in the data.
Considering that we start from a much coarser understanding of the input shapes , these results are non-
trivial and remarkable.

4.3.5 Non-uniformly Sampled Data

In the previous experiments, the point clouds are nearly uniformly sampled from the underlying shapes and
clean without noises or outliers. In this section, we test our method with more tricky data.
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In order to test the robustness of the pipeline with respect to non-uniform sampling, a collection of
synthetic data is generated as in Figure 4.8. There are two pairs of shapes: S,B and S0, B0. The former pair
is uniformly sampled, while in S0, B0, the densified half is triply denser than the unperturbed half. Below the
shapes are area-based indicators generated with 4 possible maps between spheres S, S0 and bumped spheres
B,B0. Obviously the four indicators all highlight the correct area, regardless of how the sampling densities
are perturbed.

S S 0 B B0

T : B ! S T : B0 ! S 0 T : B0 ! S T : B ! S 0

Figure 4.8: Top row: S is a uniformly sampled sphere and S0 is generated by tripling sampling density
on the east half of S. B0 is generated by densifying B in the same fashion. Bottom row: The area-based
indicators at scale ks = 50, the point clouds in comparison are marked below.

Further more, we take noisy point clouds into consideration. For the sake of simplicity, we only add
noises to Y , therefore we can use the same map inherited from the mesh setting (though it is not surjective
any more).

We first randomly select np points in Y . Then for p from these np points, we perturb p = (px, py, pz) 2
R3 to (px + dx, py + dy, pz + dz) where dx, dy, dz are one-dimension random variables distributed nor-
mally with mean 0, and standard deviation dY (dY is the mean length of edges in mesh N ). Repeating the
displacements r times for each p, we enlarge Y to Y 0 with npr more points.

In this experiment, three pairs of PCD are involved: human poses (12500 points), horses (8431 points)
and cats (7207 points). In Figure 4.9, all the area-based indicators are computed at scale ks = 50. The
right-most two columns are indicators with respect to noisy point clouds regrading the target shape and the
parameters (np, r) we use to generate the random noises are marked below the corresponding point clouds.
Compared to the second column, where the point clouds Y are unperturbed, the indicators from noisy data
are fairly robust. Note that the number of added noisy points to each point cloud is at least 3000, which is
not ignorable in any case. The noisy points are clearly visible in the figure.
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Figure 4.9: Robustness of results from the PCD setting with respect to noisy point clouds: X and Y are the
original point clouds extracted from meshes. Y 0

i , i = 1, 2 are noisy versions of Y , which are generated with
the parameters marked below. The functions plotted on Y, Y 0

1 and Y 0
2 are area-based indicator at the same

scale ks = 50.

Particularly, we find in the horse case that the indicator on Y 0
2 is a bit off–it also highlights a part of the

horse back, while the one on Y 0
1 (to which 1000 more noisy points added than to Y 0

2) is more consistent. We
interpret this by comparing the ways noises are distributed: in Y 0

1 , the noisy points are more decentralized,
whereas in Y 0

2 , more points are generated around each of the selected point in Y . Thus the sampling density
is more distorted in Y 0

2 , resulting in a less consistent indicator.

4.4 Limitation and Perspective

In this section, we show some limitations and perspectives of the pipeline proposed and empirically tested
above.
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4.4.1 Limitations

First, we point out some limitations of our pipeline. The first one is about scale. The way we build connec-
tivity among points determines that the resulting graph is insensitive to local changes across objectives. On
one hand, it gives rise to robustness with respect to noisy data or even outliers (as shown in the last example
in Section 4.3). On the other hand, it makes detecting differences of finer scales (i.e., larger ks) between
objectives difficult. In fact, as shown in Figure 4.7, the conformal shape difference operators from the PCD
setting can’t clearly differentiate the conformal changes between deformed spheres in the first and the sec-
ond row depicted in the top-left panel. Plus, this limitation is the reason we fix the scale ks relatively small
(mostly ks = 50).

The second limitation is that when the reach (see definition 2.11) of underlying shape is small, it is tough
to capture the right geometric information with the k-NN graphs. That is because the k-NN graphs are
constructed with purely extrinsic information–the Euclidean distance between points. If there exist points
that are distant on the shape but close in the ambient space, then the k-NN graph will connect them and
introduce distortions.

N and Y M X

T

MESH

F

T

PCD

F

Figure 4.10: The low-rank approximation of the functional from a cat shape to a lion shape is computed
with 50 eigenvectors on the cat and 150 eigenvectors on the lion. The superscripts indicate in which setting
T ·
F is produced. The function visualized on the cat is transformed to M and X with respective functional

maps. Defects are evidenced on the tip of the left hind paw in X , where the values of TPCD
F f are distorted

as the left hind paw is close to the front part of the lion.

A typical example is illustrated in Figure 4.10. In the left-most panel of this figure, we plot a function f
on N and on Y (which are the same as being rendered on the mesh). And then we repeat the procedures of the
experiment in Section 4.3.1 and compute low-rank approximation of TF with the ground truth map T from
M(resp.X) to N(resp.Y ). The transformed functions, TMESH

F f and TPCD
F f are plotted respectively on

M and X . The left hind paw of X is supposed to be in cold color (like the left hind paw of M ), however, we
observe that the tip of the paw close to the abdomen is rendered with a warmer color, meaning that TPCD

F f
is problematic in this area. Obviously, this defect is due to the huddled pose of the lion, which makes the
points belonging to the abdomen and to the limbs tough to be differentiated in the k-NN graphs.

4.4.2 Beyond Shapes

Then we demonstrate the potential of applying the functional-maps-based frameworks in a more abstract
setting. In all the experiments above, we consider point clouds sampled from closed shapes embedded in
R3. Nevertheless, our theoretical analysis applies for any pair of manifolds without constraint on its intrinsic
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or embedding dimension. We now give an example showing one key advantage of our pipeline–we need no
prior information about the object manifolds, and built everything from merely points.

We re-visit a classic example from [Tenenbaum 2000a], where a point cloud sampled from a Swiss-
roll embedded in R3 is processed. The goal there is to unfold the Swiss-roll into R2 so that local dis-
tance are as preserved as possible. It’s then demonstrated that by applying the Isomap algorithm proposed
in [Tenenbaum 2000a] we obtain a significantly improved result than using other algorithm like MDS.

In our experiment, we obtain two embeddings in R2, YIsomap and YMDS (see respectively the top-left
and the bottom-left of Figure 4.11), from applying Isomap and MDS on the point cloud data consists of 1000
points Xsw (in the middle of Figure 4.11) sampled from a Swiss-roll embedded in R3. With the ground truth
of the unfolding, we can visualize and compare the two embeddings YIsomap, YMDS as being colored in the
left of Figure 4.11.

Now assume that we only have point-to-point correspondences between Xsw and YIsomap(resp.YMDS).
Our goal is to compare the two embeddings in R2 and figure out where the algorithms have problem in
unfolding. Still we construct 40-NN graphs on the three point cloud data, and then get two pairs of shape
difference operators by comparing Xsw to YIsomap(resp.YMDS).

By comparing the constrained norms of both operators with respect to the first 40 eigenvalues of the
source PCD–Xsw, we observe a clear distinction in the conformal-based case, as shown in the right part of
Figure 4.11. The constrained norm of RMDS , constructed from the difference between Xsw and Ymds is far
larger than the other one (7x).

Furthermore, the corresponding conformal indicator highlights where distortions take place when map-
ping from Xsw to Ymds.

The results indeed match the ground truth. First, we observe dramatic difference in conformal-based
case because if an algorithm preserve the intrinsic two-dimension structure of the Swiss-roll, then the edge
connection should also be preserved. In this sense, we can conclude that the MDS algorithm is outperformed
by the Isomap in this task as it connects pairs of points which are far away in the original embedding. Second,
the red points marked out on the right of Figure 4.11 are actually mapped closely to their antipodal points,
thus they are reasonably problematic points. The red points marked out in the isomap side, are close to the
boundary of the original embedding.
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Figure 4.11: Xsw 2 R3 is a point cloud sampled from a swiss roll. YIsomap(resp.YMDS) is the embedding
of Xsw in R2 generated with the Isomap (resp. MDS) algorithm. The three point clouds are colored with
the ground truth. On the right are the conformal indicator computed by comparing the two embeddings
with Xsw respectively. The constrained norms suggest that there are more distortions introduced by the
embedding regarding the MDS algorithm in this case, and the indicators manages to capture the problematic
parts.



CHAPTER 5

Conclusion and Perspectives

In this thesis, we study two problems on geometric data analysis–metric reconstruction for filamentary struc-
tures and shape comparison, and contribute in both theory and practice. Our investigation also raises some
interesting questions and open perspective for future research. In the following, we quickly list a few of them
that might be of particular interest.

Metric Reconstruction for Filamentary Structures In theory, we propose the ↵-Reeb graph and show
that the (↵-)Reeb graph of the distance function is an appropriate tool for approximating a filamentary struc-
ture, especially from the metric reconstruction point of view.

Still, there are many open problems following. For instance, with another base point, we obtain a new
distance function and thus a new (↵-)Reeb graph. Can we gain more information about the filamentary
structure by comparing/combining (in some sense) these two graphs?

Stability Analysis on Functional-maps-based Frameworks We prove in the general case where M,N
are Riemannian manifolds of dimension n that the shape difference operators and the associated multi-scale
framework is stable in different senses.

Notice that the functional-maps-based frameworks take in a trio (M,N, T ) as an input. The missing part
of perturbations on the input is then about T . In fact a perturbation analysis with respect to T is of practical
importance, because in the discrete setting T is combinatorial and sensitive to noises.

Performing Functional-maps-based Frameworks on PCD As shown in the experiments, our pipeline is
easy to implement, and put less constraints on the inputs. We perform the functional-maps-based frameworks
with our pipeline on some point clouds from 3D shapes and obtain results that are relevant and robust. And
undoubtedly this combination extends the range of potential applications. Though there exists deficiencies
due to the extrinsic nature of our approach, it is still a nice complementary to the more delicate analysis
methods.

It’s worth noting that this approach is purely experimental and without any theoretical guarantee. Giving
theoretical guarantees for the PCD setting is both appealing and challenging.
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Titre : Deux contributions à l’analyse géométrique de données : approximation de structures

filamentaires et stabilité des approches fonctionnelles pour la comparaison de formes.

Mots clés : graphe de Reeb, rapprochement métrique, carte fonctionnelles, perturbation (mathématiques).
Résumé : En ce moment même, d’énormes quantités de données sont générées, collectées et analysées. Dans
de nombreux cas, ces données sont échantillonnées sur des objets à la structure géométrique particuliére. De
tels objets apparaissent fréquemment dans notre vie quotidienne. Utiliser ce genre de données pour inférer la
structure géométrique de tels objets est souvent ardue. Cette tâche est rendue plus difficile encore si les objets
sous-jacents sont abstraits ou encore de grande dimension.
Dans cette thèse, nous nous intéressons à deux problèmes concernant l’analyse géométrique de données. Dans
un premier temps, nous nous penchons sur l’inférence de la métrique de structures filamentaires. En supposant
que ces structures sont des espaces métriques proches d’un graphe métrique nous proposons une méthode,
combinant les graphes de Reeb et l’algorithme Mapper, pour approximer la structure filamentaire via un
graphe de Reeb. Notre méthode peut de plus être facilement implémentée et permet de visualiser simplement
le résultat.
Nous nous concentrons ensuite sur le probléme de la comparaison de formes. Nous étudions un ensemble
de méthodes récentes et prometteuses pour la comparaison de formes qui utilisent la notion d’applications
fonctionnelles. Nos résultats théoriques montrent que ces approches sont stables et peuvent être utilisées dans
un contexte plus général que la comparaison de formes comme la comparaison de variétés Riemanniennes de
grande dimension.
Enfin, en nous basant sur notre analyse théorique, nous proposons une généralisation des applications fonc-
tionnelles aux nuages de points. Bien que cette généralisation ne bénéficie par des garanties théoriques, elle
permet d’étendre le champ d’application des méthodes basées sur les applications fonctionnelles.

Title: Two contributions to geometric data analysis: filamentary structures approximations,

and stability properties of functional approaches for shape comparison.

Keywords: Reeb graph, metric approximation, functional maps, perturbation analysis.
Abstract: Massive amounts of data are being generated, collected and processed all the time. A considerable
portion of them are sampled from objects with geometric structures. Such objects can be tangible and
ubiquitous in our daily life. Inferring the geometric information from such data, however, is not always an
obvious task. Moreover, it is not a rare case that the underlying objects are abstract and of high dimension,
where the data inference is more challenging.
This thesis studies two problems on geometric data analysis. The first one concerns metric reconstruction
for filamentary structures. We in general consider a filamentary structure as a metric space being close to
an underlying metric graph, which is not necessarily embedded in some Euclidean spaces. Particularly, by
combining the Reeb graph and the Mapper algorithm, we propose a variant of the Reeb graph, which not only
faithfully approximates the metric of the filamentary structure but also allows for efficient implementation and
convenient visualization of the result.
Then we focus on the problem of shape comparison. In this part, we study the stability properties of some
recent and promising approaches for shape comparison, which are based on the notion of functional maps. Our
results show that these approaches are stable in theory and potential for being used in more general setting
such as comparing high-dimensional Riemannian manifolds.
Lastly, we propose a pipeline for implementing the functional-maps-based frameworks under our stability
analysis on unorganised point cloud data. Though our pipeline is experimental, it undoubtedly extends the
range of applications of these frameworks.
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