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Foreword
In this memoir, I only mention my works after my PhD thesis. Hence I will

not reference any article on quantum statistics even if they were published
after my defence.

The "habilitation à diriger des recherches" is usually a way to weave all
the works of the former years into a narrative, to gather them into a single
coherent tale, be it roundabout and unpredictable at times ; to summarise,
in a global plan. There is none.

My work post-thesis stems from chance encounters. It might be just a
problem I have heard of during a seminar, that I think I can solve. Or it
might be a longer collaboration with someone whose subjects I like.
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There were also many regrets during those years, unfulfilled projects,
because of laziness or perfectionism. Ranging from a study on the effect of
boarding on the success at competitive examination, to ideas on the Brownian
map. The only such project I shall briefly mention in these notes is about data
analysis and acquisition in FLIM-FRET, where I have never delivered on my
promises. . . Those years have taught me to look for more collaborations so
that stakes may be shared.

The first part of the manuscript dwells on two instances of my “mercenary”
work, where I solve a problem and never look back : one is related to ancilla-
driven quantum computing, the other to comparing Markov chains.

The second part gathers questions around imaging in science, and more
generally spatially organised data. Thus, it has mainly a statistical flavour.
I speak about fluorescence microscopy, and questions motivated by MRI. I
have needed to correct the known (wrong) rates for estimating finite mixtures
when working on microscopy. The MRI, on the other hand, has inspired in-
vestigations on compressed sensing with constraints, projection on measures
spaces, and ultra-fast clustering algorithms that do not percolate.

The third part deals with stochastic geometry, in the widest sense. I view
the geometry, and especially the metric structure, of any random object as a
part of the field. The first work here consists in proving the existence of Gibbs
measures for T -tessellations. The second shows that an improper Poisson line
process has enough symmetries and hyperbolic behaviour to be a SIRSN as
defined by Aldous, in any dimension.

I will start the memoir with short one-sentence summaries of each impor-
tant result, with reference to the corresponding article.
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Résultats
Résultat 1 Result 1
La fidélité d’une porte quantique non-
idéale dans le modèle de calcul quantique
avec ancilla est bornée supérieurement
par une fonction strictement décroissante
de l’intrication des qubits concernés avec
le reste du registre.

The fidelity of an inaccurate quantum
gate in ancilla-driven quantum compu-
tation is upper bounded by a decreasing
function of the entanglement between the
qubits that are acted on and the remain-
der of the register.

Morimae and J. Kahn (2010)

Résultat 2 Result 2
Si K et L sont deux noyaux de Mar-
kov réversibles stochastiquement mono-
tones sur un espace partiellement or-
donné, avec la même distribution d’équi-
libre, et satisfont une inégalité de com-
paraison – une nouvelle relation d’ordre
partiel – alors la chaîne de Markov asso-
ciée à K mélange plus vite que celle as-
sociée à L à tout instant en variation to-
tale, L2 et séparation, entre autres, pour
de bonnes conditions initiales.

If K and L are two reversible stochasti-
cally monotone Markov kernels on a par-
tially ordered space, and they satisfy a
comparison inequality – a new partial or-
der – then the Markov chain with kernel
K mixes faster than the Markov chain
with kernel L at all times in total vari-
ation and L2 distances, and separation,
among others.

J. Fill and J. Kahn (2013, Corollary 3.3)

Résultat 3 Result 3
Parmi les chaînes de vie et de mort sur
{0, . . . , n} qui convergent vers la distribu-
tion uniforme depuis l’état initial 0, celle
uniforme – une chance sur deux d’aller à
gauche ou à droite, ou de rester sur place
aux extrémités – majorise à tout instant
toutes les autres. Elle mélange donc plus
vite dans de nombreux sens.
La seule exception classique est au sens
du temps de mélange de Lovász-Winkler
quand n est impair, auquel cas la chaîne
la plus rapide est aussi identifiée.

The uniform birth-and-death chain – one
chance in two to go right and left, or
stay at endpoints – majorizes at all
times any other birth-and-death chain on
{0, . . . , n}. Hence it mixes faster in many
senses.
The only classical exception are Lovász-
Winkler mixing times when n is even, in
which case the fastest chain is also given.

J. Fill and J. Kahn (2013, Theorems 4.3 and 6.5)
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Résultat 4 Result 4
Ajouter un pas à une chaîne de Markov
ne ralentit pas le mélange, dans un cer-
tain nombre de cas particuliers.

Extra updates do not delay mixing for
several Markov chains.

J. Fill and J. Kahn (2013, Section 8)

Résultat 5 Result 5
Le clustering récursif par plus proches
voisins est extrêmement rapide et permet
une réduction de dimension qui conserve
le signal intéressant en IRM fonction-
nelle.

Recursive nearest neighbour clustering
is extremely fast and reduces dimension
while preserving the relevant signal in
functional MRI.

Hoyos-Idrobo et al. (2016)

Résultat 6 Result 6
Le test du maximum de vraisemblance
est relativement efficace pour détermi-
ner le nombre d’espèces en un pixel
d’une image FLIM-FRET. La distance de
transport permet de déterminer la simi-
litude entre différents pixels.

Maximum likelihood ratio test is compar-
atively efficient for finding the number of
species in a pixel of a FLIM-FRET im-
age. The transportation distance allows
to measure similarity between pixels.

Heinrich, Jonas Kahn, et al. (2011) and Heinrich, Pisfil, et al. (2014)

Résultat 7 Result 7
La vitesse minimax d’estimation d’une
loi de mélange à m composantes au
plus, localement autour d’un mélange à
m0 composantes, est en n−1/(4(m−m0)+2)

sous des conditions de régularité et
d’identifiabilité. Donc la vitesse globale
est en n−1/(4m−2).

The optimal local minimax rate of esti-
mation of a finite mixture with at most
m components around a mixture with
m0 components is n−1/(4(m−m0)+2), un-
der sufficient regularity and identifiabil-
ity conditions. Hence the global minimax
rate of estimation of a finite mixture with
at most m components is n−1/(4m−2).

Heinrich and Jonas Kahn (2015, Theorems 3.2 et 3.3)

Résultat 8 Result 8
Il existe des estimateurs qui convergent
non uniformément à vitesse n−1/2 vers
toutes les lois de mélange fini.

There are estimators that converge non-
uniformly at rate n−1/2 to all finite mix-
ing distributions.
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Heinrich and Jonas Kahn (2015, Theorem 3.5)

Résultat 9 Result 9
Un voyageur de commerce reliant des
points tirés proportionnellement à π1−1/d

approche une densité π par des courbes
continues. Il est aussi possible d’appro-
cher une probabilité π par des tirages
sous contraintes par un algorithme géné-
ral de projection sur des mesures. Une
application parmi d’autres est l’acquisi-
tion compressée sous contraintes, en vi-
sant une densité adaptée à la paire de
bases acquisition/compression.

A travelling salesman connecting points
sampled according to π1−1/d converges to
a density π with continuous curves. A
more general projection algorithm may
be used to approach a probability π
by sampling under very general con-
straints. As a typical application, com-
pressed sensing under acquisition con-
straints is considered, pairing acquisi-
tion/compression bases to determine the
target π.

Chauffert, Ciuciu, Jonas Kahn, and P. Weiss (2014), Chauffert, Ciuciu, Jonas Kahn, and
P. Weiss (2016), and Boyer et al. (2016)

Résultat 10 Result 10
On ne peut construire que o(akkk) mo-
saïques en T différentes sur k droites don-
nées, pour tout a. Aussi les modifications
Gibbsiennes de la mosaÏque en T complè-
tement aléatoires existent si l’énergie est
bornée inférieurement par le nombre de
segments.

There are at most o(akkk) different
T -tessellations on k given lines, for
any a. Hence Gibbsian modifica-
tions of the CRTT (Completely Ran-
dom T -Tessellation) exist if the energy
is bounded from below by the number of
lines.

Jonas Kahn (2014)

Résultat 11 Result 11
Les géodésiques du processus de droites
de Poisson impropre génère un SIRSN en
toute dimension.

The geodesics of the improper Poisson
line process are a SIRSN (scale-invariant
random spatial network) in any dimen-
sion.

Jonas Kahn (2015)
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Presentation
1 Mercenary work

1.1 Ancilla

1.1.1 Quantum computing basics

Quantum computing (Nielsen and Chuang, 2010) consists in using di-
rectly quantum objects and phenomena for computation. In some cases, the
calculations can be much faster than with any classical computer.

One of the first ideas of possible uses for quantum computing has been
simulating quantum systems (Feynman, 1982), which is likely exponentially
slow on classical computers. Deutsch and Jozsa (1992) and Simon (1997)
have devised quantum algorithms solving in polynomial time some problems
with an oracle, where classical computers need exponential time under the
same conditions.

But interest has really spiked with Shor’s (1994) algorithm, that allows
integer factorisation and discrete log calculation in polynomial time, and
Grover’s (1996) algorithm, that allows unstructured search in square root
time.

There are several different models of quantum computing, that is sets of
resources (the equivalent of bits in classical computing) and available opera-
tions (logic gates in classical), with which the computation must be run. Any
physical realisation of the model “only” needs to implement these resources
and operations. All those models are universal and equivalent, meaning that
any algorithm written for one model may be translated up to a polynomial
cost for use in another model, such as the quantum Turing machine (Deutsch,
1985).

The first model consists in a quantum gates circuit, where qubits are
stored in a register and quantum gates may be applied directly on any qubit
or qubit pair. Experimentally, it might be hard to maintain entanglement
between all the qubits in the register.

More recently, one-way quantum computation (Raussendorf and Briegel,
2001) has been devised as another model. Here, the qubits are initially
all entangled together in some cluster state, and the computation is carried
out simply by measuring individual qubits. Entanglement propagates effects
to the other qubits. This method clearly separates the preparation of the
resource from the computation itself.

Ancilla-driven quantum computation (Anders et al., 2010) may be seen as
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an intermediate model between the two. The qubits are stored in a register,
as in a quantum circuit, but no gate is applied directly on any pair of qubits.
Instead, each qubit may be entangled with an ancilla, and operating on the
ancilla acts on the qubit in the register.

More formally, a quantum object is associated with a complex Hilbert
space H, and a pure state – we shall only use pure states – is a norm-one
element on the Hilbert space. Any element of this space will be denoted with
the ket notation |·〉, and the adjoint linear form will be denoted with the bra
notation 〈·|.

For a qubit, the Hilbert space is C2. We write |0〉 and |1〉 for two vectors of
a fixed orthonormal basis in C2. We call it the computational basis. Another
orthonormal basis is defined as:

|+〉 =
1√
2

(|0〉+ |1〉) ,

|+〉 =
1√
2

(|0〉 − |1〉)

A quantum state may evolve unitarily, that is |ψ〉 7→ U |ψ〉 with U a
unitary operator on H. Alternatively, we may measure it and project it on
an orthonormal basis of H. If {|φi〉}1≤i≤d(H) is such a basis, the quantum
state |ψ〉 becomes |φi〉 with probability ‖〈ψi|φ〉‖2.

We will use the following two unitary evolutions:
— the Hadamard gate Ĥ acts on a qubit via Ĥ |0〉 = |+〉 and Ĥ |1〉 = |−〉.
— the Controlled-Z gate (CZ) acts on a qubit pair via ĈZ = |00〉 〈00| +
|01〉 〈01|+ |10〉 〈10| − |11〉 〈11|.

We show on which qubit we act by adding indices to the operator. For
example, ĤA would be a Hadamard gate applied to the ancilla A.

Entanglement between two or several quantum objects mean that gener-
ally a system consisting of several quantum objects should be seen as a single
big object. It is not enough to know each of the small objects to know the
state of the system. This is because the Hilbert space associated to the big
object is the tensor product of those of the small objects. Yet, many norm-1
vectors cannot be written as a direct product of states on the small objects.
A typical example of a pair of entangled qubits is:

1√
2

(|0〉 |0〉+ |1〉 |1〉) . (1)

We may quantify entanglement through the reduced density matrix ρA =
TrB

(
|φ〉A⊗B 〈φ|A⊗B

)
, where |φ〉A⊗B is the quantum state of the two possibly
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entangled subsystems A and B, and where TrB is the partial trace on B.
The reduced density matrix is a nonnegative trace-1 matrix. If there is
no entanglement, that is if |φ〉A⊗B = |φ〉A ⊗ |φ〉B, then ρA = |φ〉A 〈φ|A.
Maximally entangled states such as (1) yield ρA = 1

dimA
1A. More generally

we may evaluate entanglement between a qubit and another system as, on a
scale from 0 to 1:

S = 2
(
1− Tr(ρ2

A)
)
. (2)

1.1.2 Ancilla-driven quantum computation

The ancilla-driven quantum computation model consists of:
— a register with N qubits.
— an ancilla of one qubit.
— being able to apply a Hadamard gate to any qubit in the register.
— being able to entangle any qubit R in the register with the ancilla A

through the operator Ê = ĤAĤRĈZAR.
— being able to measure the ancilla in all bases, or equivalently, being

able to rotate the ancilla at will and to measure it in the computational
basis.

Indeed, implementing all unitary transformations on a qubit, plus all en-
tanglement operations on pair of qubits, yield a universal quantum computer
(Anders et al., 2010). Ancilla-driven quantum computation allow both oper-
ations, as illustrated in Figure 1.

1.1.3 Entanglement and fidelity of inaccurate quantum gates

In practice, rotations, measurements and gates E are never absolutely
exactly implemented. How do the errors on the gates propagate to the states?

With Tomoyuki Morimae, we have studied the case when measurements
(applied at stages (c) and (g) in Figure 1) are inaccurate: the projection axis
is rotated by ε, that is we get the answer 1 for cos(ε/2) |1〉 + sin(ε/2) |0〉 if
we measure in the computational basis.

Let F be the mean quantum fidelity of the gate, defined as F = E
[
|〈φ|ψ〉|2

]
,

where |φ〉 is the expected state in the register, and |ψ〉 the random state we
really get. An ideal gate has fidelity 1, and fidelity is nonnegative.

This mean fidelity may depend on the initial state of the register. For a
given ε, it may even be 1 if we are lucky. But there is no lucky case if the
qubit on which we act is entangled with the remainder of the register:
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Figure 1 – Yellow circles are register qubits. Top line: a single-qubit rotation.
(b) The ancilla (green square) is coupled to the qubit we want to rotate (say,
the bottommost one) through the interaction E, which is represented by the
black zigzag line. (c) After the interaction, the ancilla is projected onto a
certain direction (represented by the solid black arrow). (d) The measure-
ment backaction rotates the bottommost qubit of the register by the desired
angle. Bottom line: a two-qubit entangling gate. (f) The ancilla (green
square) is coupled to two qubits (say, the two bottommost ones) through the
interaction E, which is the same as the interaction used in the top line. The
interaction is represented by the black zigzag line. (g) After the interaction,
the ancilla is projected (solid black arrow). (h) The measurement backaction
causes the desired entangling gate between the two bottommost qubits of the
register.
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Theorem 1.1. (Morimae and J. Kahn, 2010) With the above notations,
a measurement inaccuracy ε and with S the entanglement (2) between one
qubit and the remainder of the register, the fidelity of both the rotation of that
qubit, and of its entanglement operation, is bounded by

F ≤ 1− S sin2 ε

2
.

Since quantum computing requires entanglement between qubits in the
register to be efficient, this proves that inaccuracies in the measurement op-
erators will have consequences. However, they may be mitigated in practice
through the use of quantum error codes.

Let us mention that we have similar results for the other to implement
ancilla-driven quantum computation with only one operation, that is the

̂CZ + SWAP gate instead of ĈZ. The relevant way to quantify entangle-
ment is slightly harder in that case, and requires to consider entanglement
between pairs and the remainder of the register.

1.2 Comparison inequalities for Markov chains

1.2.1 How to quantify convergence speed

Markov chains are random walks on a finite space with each step depend-
ing only on the present position. They are flexible, so they are often used as
models in science. They are easy to analyse, so benefit from a large theory.
They are easy to implement on a computer, and efficient for many problems.

A Markov chain is defined through a finite state space X and a Markov
kernel K on X , also called transition matrix. A Markov kernel is a matrix
with indices in X 2, with nonnegative entries, and such that

∑
y∈X K(x, y) = 1

for all x ∈ X . The K(x, y) entry is the probability that, if the Markov chain
is on x, it will be on y after the next step.

Unless otherwise specified, we assume the Markov chains are homoge-
neous, meaning that the kernel K does not depend on time. Thus, if σ is
the initial probability distribution on X , the probability distribution after t
steps is σKt. In a few cases, however, we shall work with inhomogeneous
Markov chains, with kernel Kt depending on time. We will always write xt
for the random value the Markov chain attains at time t.

We may depict a Markov chain as a graph whose vertices are the elements
of X , and with directed edges from x to y with weight K(x, y) if and only if
it is nonzero. If the graph is connected and aperiodic, the Markov kernel has
a unique stationary probability distribution π, that is πK = π. Moreover,
the corresponding Markov chain converges to π for all initial distribution.
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The Markov kernel acts on the left on functions on X in L2(π). The reason
why the L2 norm is chosen with respect to π is so that the adjointK∗ becomes
the time reversal for the Markov chain. In particular, a Markov chain with
self-adjoint kernel is reversible. Locally, π(x)K(x, y) = π(y)K(y, x).

A natural question is to quantify the speed of the convergence to π.
The usual way relies on the eigenvalues of K. The vector (1, . . . , 1) is a

right eigenvector with eigenvalue 1. Perron-Frobenius ensures that all other
eigenvalues have modulus at most one. If the Markov chain is aperiodic, these
modulus are less than one. We write 1 = β1 > |β2| ≥ |β3| ≥ · · · ≥

∣∣β|X |∣∣
for the eigenvalues, and Vi for the corresponding left eigenvectors. We may
now write σ = ci(σ)Vi in this basis. So that σKt = π +

∑|X |
i=2 Vici(σ)βti .

Hence, for any reasonable metric, such as the total variation norm, we get
d(σKt, π) = O(βt2). The value 1 − |β2| is the spectral gap. The higher the
spectral gap, the faster the chain converges, asymptotically.

The main weakness of this estimate is that it is asymptotic. One of
the main uses of estimating convergence speeds is knowing when to stop a
Monte Carlo Markov chain (MCMC) sampling (Hastings, 1970): we follow
the Markov chain for a while, and the final value should approximate sam-
pling directly according to the stationary distribution π. Alternatively, we
might want to estimate the expectation πf of a function f with respect to π,
and we use 1

T

∑T
t=1 f(xt) for a big enough T . But what does "big enough"

mean? The asymptotic speed of convergence is no help here. A naive non-
asymptotic form of the eigenvalue bound yields a multiplicative constant |X |,
that is, the size of the state space, which is usually very pessimistic. The
more precise bounds require full knowledge of the spectrum and eigenvectors
(Diaconis, 1988, for example).

The cutoff phenomenon Diaconis (1996) is a clear example of the pes-
simism of the eigenvalue bound. Quite often, especially for very symmetrical
Markov chains, the total variation distance between the stationary distribu-
tion and the distribution after t steps will be almost 1 until some T , after
which it decreases exponentially and is close to 0 after T + o(T ) steps. In
other words, the Markov chain attains the asymptotic regime at time T , and
does not mix beforehand. Knowing this T becomes the relevant practical
question, rather than knowing the rate of exponential decay. That is the
meaning of the famous result that seven riffle-shuffles are needed to shuffle
52 cards.

Joulin, Ollivier, et al. (2010), for example, give bounds for any time under
hypotheses on the discrete Ricci curvature of the chain. These conditions
can be checked for locally, hence easily. However, they constrain strongly the
Markov chain.

To give a precise estimate of the mixing speed, we need a reference di-
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vergence. Most often it will be the total variation distance dTV (σ, π) =
supA∈B(X ) π(A) − σ(A). Two common other choices would be L2(π), which
works well with spectral methods, and the separation sup 1 − σi

πi
, which is

linked to strong stationary times (Diaconis and J. A. Fill, 1990).
When π is uniform, we may use majorization (Marshall and Olkin, 1979)

to deal simultaneously with all these divergences, and the some. If v and w
are two sequences of N numbers with the same sum, we say that v majorizes
w if the sum of the k largest numbers in v is bigger than the sum of the k
largest numbers in w, for all 1 ≤ k ≤ N . Indeed, many divergences between
the uniform π and σ are Schur-convex functions of σ, meaning that if ρ1

majorizes ρ2, then d(π, ρ1) ≥ d(π, ρ2). These divergences include all the Lp
for p ≥ 1, the separation, Hellinger distance, Kullback divergence K(σ, π)
and Kullback divergence K(π, σ).

Lovász and Winkler (1995) have defined a very different measurement
of mixing speed, motivated by the use of MCMC in sampling; namely, a
stopping time. Specifically, let us consider all stopping times T such that XT

has distribution π. It can be shown that the expectation of T is minimal if
and only if there is a halting state x, that is a state such that if Xt = x, then
T = t. This minimal expectation E [T ] = Tmix is the Lovász-Winkler mixing
time. There are several constructions of optimal stopping times, and there
are practical ways to approach π without knowing the whole Markov chain.

J. Fill and J. Kahn (2013) have designed a criterion showing that a
Markov chain mixes faster than another with the very strong meaning that,
for any finite time, the distance from π to the distribution of the quick chain
is lower than the distance to the distribution of the slow chain. We require
some monotony properties.

1.2.2 Basic properties of comparison inequalities

From now on, the space X is endowed with a partial order. All scalar
products are with respect to the stationary distribution π. Moreover, “Y
mixes faster than Z for d” has the strong meaning: for all times t, d(π, Yt) ≤
d(π, Zt).

Let K, M and F be respectively (i) the set of all Markov kernels on X
with stationary distribution π, (ii) the set of nonnegative monotone functions
on X , (iii) the set of stochastically monotone kernels in K, that is such that
for any f ∈ M, we still have Kf ∈ M. Equivalently, if x ≤ y, then
the probability distribution of the Markov chain after one step starting at
y stochastically dominates that starting at x: K(x,D) ≥ K(y,D) for all
down-sets D, that is such that if z ≤ w and w ∈ D, then z ∈ D.
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Comparison inequalities are the partial order on K defined as K � L if
〈Kf |g〉 ≤ 〈Lf |g〉 for all f, g ∈M. Comparison inequalities are quite stable:
Proposition 1.2 (J. Fill and J. Kahn, 2013, Propositions 2.3 et 2.9).

1. If K � L, then K∗ � L∗.
2. If Kn � Ln for all n and Kn → K and Ln → L, then K � L.
3. If K0 � L0 et K1 � L1, then for all 0 ≤ λ ≤ 1:

λK0 + (1− λ)K1 � λL0 + (1− λ)L1.

4. If X0 ∪ X1 is a partition of X with the induced partial orders and sta-
tionary distributions, and if Ki � Li on Xi for i = 0, 1, then if K (resp.
Y ) is the direct sum of K0 and K1 (resp. L0 and L1), we have K � L.

5. If K1, . . . , Kt and L1, . . . , Lt, and their adjoints are all in F , and if
Ki � Li for all 1 ≤ i ≤ t, then K1 . . . Kt � L1 . . . Lt and both kernels
are in F .

I have mentioned the last property to show that comparison inequalities
can still be useful without reversibility. In a number of cases, we need that
the time-reversed Markov chain be monotone, rather than the Markov chain
itself. However reversible chains are easier to work with, and we state the
following theorems under this hypothesis.

1.2.3 General speed comparisons

Comparison inequalities easily entail that if Y has kernel K and Z has
kernel L, both reversible in F , with K � L and a shared initial distribution
π̂ such that π̂/π is nonincreasing, then Y dominates Z. Indeed, the indicator
of a down-set D is a nonincreasing function, so that

P [Yt ∈ D] = 〈Kt1D|
π̂

π
〉 ≤ 〈Lt1D|

π̂

π
〉 = P [Zt ∈ D] .

We can notice that P [Yt = ·] /π(·) is nonincreasing for all t under these condi-
tions. Domination then implies that P [Zt = ·] /π(·) majorizes P [Yt = ·] /π(·).
So that:
Theorem 1.3 (J. Fill and J. Kahn, 2013, Corollaires 3.3 et 3.7).

If K and L are reversible, in F , and K � L, and if π̂/π is nonincreasing,
then the Markov chain Y with kernel K mixes faster than the Markov chain
Z with kernel L, in total variation, in separation and in L2. If moreover, π
is uniform, then Y mixes faster than Z in all Lp with p ≥ 1, in Hellinger
distance and in Kullback divergence.

A trick allows to get the latter result for L2 with merely K2 � L2 and
both K2 and L2 stochastically monotone, rather than K and L.
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1.2.4 Adding steps do not delay mixing

(Peres and Winkler, 2013) have wondered whether adding steps could de-
lay the mixing of a Markov chain. Intuitively, the answer should be negative,
and they have proved it for the special case of monotone spin systems with
total variation distance. On the other hand, Holroyd (2011) has provided
counter-examples to the general case.

Adding means comparing an inhomogeneous Markov chain to another
where some steps Kt have been replaced with the identity kernel I, which
translates as not moving.

Proposition 1.2 shows that comparison inequalities behave well with in-
homogeneous Markov chains. Notice that skipping a step, that is the identity
kernel I, is always in F . Thus, it is enough to show that I � Kt and that
these Kt are all reversible and in F . Under theses conditions, for good initial
conditions, Theorem 1.3 immediately yields that extra steps can only speed
up mixing in total variation, L2 and separation.

We may carry out this strategy in the following cases, the last of which
generalizes Peres and Winkler (2013):

Proposition 1.4 (J. Fill and J. Kahn, 2013, Theorems 8.3, 8.5 and 8.6).
Adding extra steps do not delay mixing if the initial distribution π̂ is such

that π̂/π is nonincreasing and either:
— The state space X is totally ordered and π is uniform.
— The state space X is the set of permutations with Bruhat order, and

the steps are chosen among the following Ki: we sort the adjacent i
and i+ 1 with probability p, and anti-sort them with probability 1− p.

— The state space X is a set of spin configurations: on each vertex of a
graph (V,E), there is an element of the partially ordered set S. The
order on X is the product of the orders on each vertex. Moreover, we
require the equilibrium distribution π to be monotone, meaning that the
distribution of the state of a vertex conditionally on the state of all
other vertices is monotone in the state of all other vertices. We also
require that those conditional laws πv satisfy 〈f |g〉πv ≥ 〈f |1〉πv〈g|1〉πv
for all f, g ∈ M. Finally the steps have the following form: choose a
vertex v and set its state according to πv.

1.2.5 Birth-and-death chains

A birth-and-death chain is a Markov chain on X = {0, 1, . . . , n} where
on each step, either we do not move, or we move to an adjacent integer. All
chains in this section start from zero, and are reversible.
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The stationary distribution π is uniform if and only if K is symmetric.
In such a case, K2 is always monotone, even if K is not.

We call uniform chain the symmetric Markokv chain with kernel U given
by U(i, i + 1) = 1/2 and U(0, 0) = U(n, n) = 1/2. A short calculation show
that U2 � K2. Hence the distribution σt of the uniform chain is majorized
by that of any symmetric birth-and-death chain.

Ad hoc methods allow to generalize the result:

Theorem 1.5 (J. Fill and J. Kahn, 2013, Theorem 4.3). If X is a symmetric
Markov chain, then πt, the distribution after t steps starting from 0, majorizes
σt the distribution after t steps of the uniform Markov chain, for all t.

Hence, the uniform chain mixes faster than any other chain for all the
divergences controlled via majorization.

The uniform chain also has the lowest Lovász-Winkler mixing time if n is
even. But not if n is odd. As a counter-example, if n = 1, an optimal stopping
time for the uniform chain is just to stop after the first step, with expectation
1. On the other hand, with the symmetric chain with K(0, 1) = 1, we may
stop at time zero with probability 1/2, and stop at time 1 otherwise. The
final XT does follow the uniform law, and E [T ] = 1

2
.

More generally, a stopping time is optimal if XT has law π and there is
a halting state. For birth-and-death chains, such conditions are met by T
defined as: draw j according to π and stop the chain when j is hit. Indeed,
n is a halting state for T . Hence:

Tmix =
n∑
i=0

πiTi,

where Ti is the hitting time of i starting from 0. If π is uniform, a few
calculations yield

Tmix =
n−1∑
k=0

(k + 1)(n− k)

pk
,

with K(i, i+ 1) = pi. After optimisation:

Theorem 1.6. The birth-and-death chain on X = {0, . . . , n} starting from
0 with lowest Lovász-Winkler mixing time Tmix is:
— the uniform chain if n is even.
— if n is odd, then:

pk =

{
1− θn if k is even,
θn if k is odd,

(k = 0, . . . , n− 1), (3)
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with, for all m:

θm−1 :=
1

6

[√
(m2 + 2)(m2 − 4)− (m2 − 4)

]
. (4)

Up to restriction to monotone kernels for some of them, part of these
results can be generalized to non-uniform stationary distributions.

2 Images in science
Natural sciences generate many data with spatial organisation, often on

a regular grid. They are not always images stricto sensu. Either because
the spatial organisation is not that of the data, but that of the target, as in
MRI where we observe a Fourier transform of the target image. Or because
the data at a point in space (pixel or voxel) is not only an intensity, a single
number. Such a pixel may either contain information relevant by itself, or
data to be analysed further. An example of relevant data could be the absence
or presence of molecules at that point, for several types simultaneously. Data
yet to be analysed could be a sequence of arrival times whose characteristic
times are the target information, as in FLIM-FRET fluorescence imaging.
An intermediate case could be the time series of a brain voxel in functional
MRI.

In all these cases, data analysis and optimisation of the acquisition yield
original statistical questions. Relevant techniques may stem both from image
analysis (after all, signal processing with non-artistic aims is a branch of
statistics) and from more general parametric or non-parametric statistics.

What follows is a miscellanea of themes I have encountered when trying to
work with experimentalists, be it their original problems or the mathematical
problems they have generated.

Section 2.1 describes fluorescence lifetime imaging and fluorescence reso-
nance energy transfer (FLUM-FRET), and the data it produces. We mention
a few analysis methods and a few suggestions to analyse them. In particular,
on each pixel, we have to estimate the parameters of a probability mixture.
Section 2.2 deals with the optimal rates of estimation of these parameters,
correcting the wrong rates in the literature.

In Section 2.4, we speak about compressed sensing in MRI, its physi-
cal constraints, and suggest further applications for the algorithms we have
developed with that problem in mind.

In Section 2.3, we are interested in ultra-fast clustering algorithms when
there spatial correlations, as in functional MRI.
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2.1 Protein-protein interaction measurement with FLIM-
FRET

The rise of fluorescence microscopy has been induced by Chalfie et al.
(1994), who has managed to include the DNA of the GFP (green fluorescent
protein) in the DNA of any protein of a cell. This allows to add a small
fluorescent part to any protein the cell makes, and the experimentalist hopes
it will not alter its function. It is then possible to see where these proteins
go in a living cell.

Many tricks and improvements give access to other possibly subtle data
(Lakowicz, 2013), such as the diffusion coefficients of the protein at a given
scale. We will look into Förster (1948) fluorescence resonance energy transfer,
or FRET.

FRET is an energy transfer between a fluorescent donor whose emission
frequency is the excitation frequency of a fluorescent acceptor. This transfer
happens only if the donor and acceptor are very close, less than 10 nanometres
away. Hence if two proteins are conjugated respectively with the donor and
the acceptor, and such a transfer is observed somewhere in the cell, the two
proteins are very close at that point. This is an indicator of an interaction
between the two proteins.

One of the more accurate ways to detect FRET is by observing fluores-
cence lifetime (FLIM), which may be done by time-correlated single pho-
ton counting (Duncan et al., 2004). More precisely, an excited fluorescent
molecule may decay in several ways, one of which is emitting a photon: this
is fluorescence. All decay modes are either strictly quantum, and hence have
a half-life, or linked to a sufficiently random environment to have a half-life,
too. Hence, if a fluorescence photon is emitted, it will be after an exponential
time with natural parameter λ. FRET adds a decay mode. Hence, if λD is
the parameter without FRET, and λF is the parameter of FRET itself at
the distance between the two molecules, then the parameter with FRET is
λDA = λD + λF .

If we use mean lifetimes instead of the natural parameters of exponentials,
we get τDA = 1

τ−1
D +τ−1

F

. The mean fluorescence lifetime of the donor decreases
when FRET occurs. Its scale is 10−9 seconds. Experimentally, we send a laser
pulse at the excitation frequency of the donor, and the microscope detects
individually photons emitted by the donor, with a precision of 10−11 seconds
(Waharte et al., 2006). Mathematically, we get samples from the lifetime
distribution of the donor.

Observations are made with a confocal microscope: a small volume is
observed, then we move the observation point. Moving on a grid, we get a
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sequence of lifetimes at each pixel in an image. However, the volumes are big
relatively to the molecules, so that there are never only interacting molecules.
Specifically, the intensity at time t after a laser pulse will be

I(t) = I0 +
∑
i

Iπi exp

(
− t

τi

)
, (5)

where I0 is a known constant noise, I is the total intensity of the donor
immediately after the pulse, which is proportional to the number of donor
molecules in the volume, and πi is the proportion of donor molecules in
context i: typically, i is either «far from the acceptor», or «close to the
acceptor». But there may be other influences. The τi are the corresponding
mean lifetimes.

Since the τi depend on the environment, they are not assumed to be
known. The first relevant question is to know whether the lifetimes are gener-
ated by a mono-exponential (probably no interaction) or a multi-exponential.
Heinrich, Jonas Kahn, et al. (2011) show that a simple likelihood ratio test
is at least ten times more efficient than a chi-squared test for this task.

More generally, the aim is to estimate the proportions of the different
mean lifetimes at each point. Without any a priori knowledge, like the mean
lifetime without acceptor, this estimation of the parameters of a mixture
is an extremely difficult problem. We determine optimal rates in the next
section. Let us just note that if the mean lifetimes are ten times closer in
a bi-exponential, then we need 106 as many data to get the same relative
precision. . .

Traditional estimation methods by biologists (L2 fit of curves. . . ) can
certainly be improved. More fundamentally, we deal with an “image”. We
should be able to denoise the parameter estimation like a general image.
Maybe even directly share date between different pixels. As soon as we have
a good similarity measure between pixels, or small pixel patches, we may
use non-local means between the patches, for example. This would greatly
increase effective data per pixel.

Heinrich, Pisfil, et al. (2014) show that the transportation distance be-
tween empirical probabilities at each pixel is a somewhat robust similarity
measure.

Other possible improvements stem from modifications to experimental
methods allowed by better analysis, as Rebafka (2009) exemplifies. She had
shown how to study lifetimes despite pile-up. Pile-up is the following: when
two photons are emitted after the same laser pulse, the second is not detected.
Hence the distribution of lifetimes change, and is no longer a mixture of
exponentials, but in a known way. Before her work, experimentalists would
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just use low intensities to ensure this case seldom happens, and use formulas
with exponentials. Her methods allow the use of higher intensities, and hence
quicker acquisition. Similarly a physical model photobleaching, which stops
for a long time fluorescence of molecules that have been lit too much, would
allow observing the cell longer.

2.2 Optimal estimation rates for finite mixtures

2.2.1 Mixtures

With the motivation of estimating fluorescence mean lifetimes (5), I have
looked into the literature on estimating mixture parameters. It turns out the
optimal rates are wrong. Here are the corrections.

A mixture is a probability law of the form:

P (·, G) =

∫
P (·, θ)dG(θ), (6)

where G is the mixing distribution, a probability law on the space Θ of
parameters θ, and where F (·, θ) are probability laws on the same space for
all θ.

Mixtures are mostly used in three cases. First, in classification, where
each data point has to be labelled as belonging to a group (McLachlan and
Peel, 2000), a generative approach consists in assuming that each group
generates data with distribution F (·, θ) for different θ. Then the law of the
unlabelled data is the mixture distribution.

Second, and this might be the most usual case, mixtures are just used
because their flexibility allows a good representation of heterogeneous data.
In such a case, the statistician wants to approach the mixture density P (·, G),
the distribution of the data (Genovese and Wasserman, 2000, par exemple).

Third, and that is our case of interest, the process generating the data
can be directly mapped to a mixture, and the parameters of interest are the
parameters of the mixture itself: we want to know the mixing density G
rather than the mixture P .

This problem is much harder than the second. We can typically estimate
P at parametric rate n−1/2, multiplied by a polylog if G does not have finite
support. On the other hand, an example of estimation of G is the deconvo-
lution, where G is a true function, and P (·, θ) is the law of the convolution
noise shifted by θ. In that case, estimation rate is logarithmic.

From now on, we deal only with finite mixtures, so that G is a finite
sum of Dirac delta. We write Gm for the set of mixing distributions with
exactly m components, and G≤m for the set of mixing distributions with at
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most m components. Unless otherwise stated, we assume that we know that
the true mixture has at most m components. Moreover, we assume that P
is a probability law on R, and write f(·, θ) for the corresponding density,
and F (·, θ) for the repartition function. Moreover, we assume that the set of
parameters Θ is a compact in R.

What follows may probably be generalised to spaces other than R, or for
a multi-dimensional Θ. Non-compactness would require strengthening the
identifiability conditions, however.

A good distance between mixing distributions is the (L1) transportation
distance, which removes any identifiability problems:

W (G1, G2) = sup
|f |Lip≤1

∫
Θ

f(θ)d(G1 −G2)(θ), (7)

where ‖·‖Lip is the Lipschitz semi-norm. We write WG(ε) for the ε-radius
ball around G, in transportation distance.

Known rates were n−1/4, which is strange since deconvolution, an infinite
mixture identification, has logarithmic rate. Usually, when the rate does
not depend on the number of parameters, it will be the same for an infinite
number of parameters. We now solve the paradox.

2.2.2 Minimax rate

Let us give some intuition first. The observations are the empirical repar-
tition function Fn. The Dvoretzky-Kiefer-Wolfowitz ensures that the distance
to the true repartition function F decreases like n−1/2:

‖Fn − F‖∞ ≈ n−1/2. (8)

We consider Ĝn the minimum distance estimator by Deely and Kruse
(1968):

‖F (·, Ĝn)− Fn‖∞ = inf
G∈G≤m

‖F (·, G)− Fn‖∞. (9)

The triangle inequality and remark (8) ensure that the mixture F (·, Ĝn)
converges to the true mixture F at rate n−1/2. Hence, we may bound the
convergence rate of Ĝn to G if we can control W (G1, G2) by a function of
‖F (G1)− F (G2)‖∞.

Suppose now that G is close to a given G0 with m0 components, so that
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G may be written as:

G =

m0∑
i=1

Ji∑
j=1

πjδθi+εnhj ,

Ji∑
j=1

πj = πi +O(εn).

Then a Taylor expansion in θ yields

F (·, G) =
K∑
k=0

εkn

m0∑
i=1

(
Ji∑
j=1

πjh
k
j

k!

)
F (k)(·, θi) +O(εK+1

n ), (10)

where the F (k) are derivatives with respect to θ.
We see that we can expect the distance between F (·, G1) and F (·, G2)

to scale like εK+1
n if we can ensure that the following moments be equal:∑Ji,1

j=1

πj,1h
k
j,1

k!
=
∑Ji,2

j=1

πj,2h
k
j,2

k!
for all i ≤ m0 and all k ≤ K.

We have 2Ji parameters for the component i, namely πj and hj for j ∈
[1, Ji], we want at least two different solutions to a set of (K + 1) equations,
namely

∑
πjh

k
j = ck for k ∈ [0, K]. This happens for K + 2 ≤ 2Ji. Since at

least one component of G must be close to each component θi of G0, there
are at most Ji = (m −m0 + 1) components that are close to θi. Hence the
distance between the mixtures corresponding to G1 and G2 near G0 will be
at least of order ε−(2(m−m0)+1)

n .
Moreover, we may expect that the distance between G1 and G2 be of

the same order as hj, that is εn. Injecting the distance (8), we obtain an
estimation rate n−

1
4(m−m0)+2 .

To make the above rigorous, we need to ensure that:
— the problem is smooth enough in θ to take the needed derivatives.
— a k-strong identifiability condition for k big enough is satisfied, namely:

for all finite set of distinct θj, the equality∥∥∥∥∥
k∑
p=0

∑
j

αp,jF
(k)(·, θj)

∥∥∥∥∥ = 0

implies αp,j = 0 for all p and j. Indeed, it ensures that (near)-equality
of moments is necessary for (near)-equality of distributions in the ex-
pansion (10).
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— IfW (G1, G2)� εn, then ‖F (·, G1)− F (·, G2)‖ ≥ δW (G1, G2)2(m−m0)+1

is still true for δ depending only on G0. This allows to deal with Gi that
converge to G0 along the same lines asymptotically. Taylor expansions
require more care, and must be written by grouping components in a
tree-like fashion. It works.

— No estimator is better, up to a multiplicative constant. This requires
some regularity assumptions, such as having some expectations like
Eθ1
∣∣∣f (p)(·,θ2)
f(·,θ3)

∣∣∣q be finite.

Using compactness of Θ to go from local to global, we finally get:

Theorem 2.1 (Heinrich and Jonas Kahn, 2015, Theorems 3.2 et 3.3). Under
(explicit) sufficient regularity conditions, the minimax estimation rate around
G0 with m0 components in the space G≤m of finite mixtures with at most
m ≥ m0 components is n−

1
4(m−m0)+2 . That is, denoting by Ĝn any sequence

of estimators, and εn = n
− 1

4(m−m0)+2
+κ pour un κ > 0:

∞ > lim inf
n→∞

inf
Ĝn

sup
G1∈Gm∩WG0

(εn)

n1/(4(m−m0)+2) EG1

[
W (G1, Ĝn)

]
> 0.

Under the same hypotheses, the global minimax rate of estimation on Gm is
n−1/(4m−2).

We may notice several points when reading the theorem. First, the rate
gets worse when they are more components. Hence, it is natural that the
rate for infinite mixtures is non-parametric.

Second, it is the uncertainty on the number of components that slows es-
timation. The worst case is when a mixture with many components is close
to a single-component mixture. Many components can look like many differ-
ent components by equalizing their moments. Note that the problem does
not appear when the true mixture has few components, but when the true
mixture is sufficiently close, for a given n, to a mixture with few components.

When the number of components is known, that is m = m0, we obtain a
n−1/2 rate. This is not surprising, since locally we are in a classical parametric
case. But this motivates the study of pointwise convergence rates.

2.2.3 Pointwise rate and interpretation

Under identifiability conditions, there are estimators of the number of
components of a mixture, such that, for any fixed G, the estimator is exact
with probability 1 − εn, with εn � n−1/2. Indeed, the asymptotic rate is

23



faster than any polynomial. An example of such an estimator is, with Gn,m

the minimum distance estimator in G≤m and some 1
2
> κ > 0:

m̂ = m̂n = inf
{
m ≥ 1 : ‖F (·, Ĝn,m)− Fn‖∞ ≤ n−1/2+κ

}
. (11)

Now, if we know the number of components, the estimation can be done
at rate n−1/2. So that

Theorem 2.2 (Heinrich and Jonas Kahn, 2015, Theorem 3.5). Under suf-
ficient regularity conditions (less than in Theorem 2.1), there are estimators
such that for any finite mixing distribution G ∈ G<∞, the estimator converges
to G at rate n−1/2:

EG
[
W (Ĝn, G)

]
= C(G)n−1/2, (12)

where C(G) depends only on G.

At first sight, Theorems 2.1 and 2.2 may seem to contradict each other.
Minimax and pointwise rates are seldom different in statistics, so that it may
be worth dwelling on the meaning of this difference.

Minimax and pointwise differ by uniformity. Any point may be ap-
proached at rate n−1/2, but the moment when the asymptotic regime is at-
tained depends on the point. Hence the worst case among all points, or all
points in a small ball, may not be n−1/2. Another way to interpret this lack
of uniformity is to notice that the constant C(G) in the risk (12) explodes
when G gets close to a G0 with fewer components.

The practical consequence is that, if two components of a mixture are very
close, a huge number of observations are necessary to get a good estimate
of the mixing distribution. It is easier to find the number of components,
and the lower moments. But if N data points are necessary to tell G1 from
G2 with probability 0.9, and the two mixtures have three well-separated
components, we need 1010N to tell apart mixtures where the θi are divided
by 10. Most often impossible in practice.

Hence, if an experimentalist has a choice, by choosing a marker, say, then
it might be worth to ensure that the components are well-separated, even if
there are less data points.

2.3 Functional MRI

The title of this section might be slightly misleading. It refers to my
exchanges with Gaël Varoquaux, and I will mention another idea at the
end. Most of the section, however, deals with Recursive Nearest neighbour
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Agglomeration. The aim of the algorithm is quick dimension reduction for
spatially organised data. It can certainly be applied outside MRI.

Functional MRI allows high-resolution observation of the brain, with
about 105 or 106 voxels nowadays (Zalesky et al., 2014). The activity of
the brain at each voxel is measured as a time series. The easiest analysis
starts with replacing each time series by a standardised mean activity during
the observation time.

We then get an image with 106 voxels, for each subject and each repetition
of each task. The final aim is to determine active areas for a given task, or to
distinguish subjects according to their health, for example. In any case, the
images are the input of other algorithms, such as an independent component
analysis, or a classification algorithm.

Those algorithms get very slow and memory-hungry for such huge in-
puts. Reducing dimension is therefore useful. Here, we mean reducing to
104 dimensions, and keeping most of the signal, not summarizing in three
parameters. But we need dimension reduction algorithms that are fast and
faithful.

A classical method that is a priori efficient relies on random projections.
We project the state space with dimension n on a random subspace with
dimension k, with k � n. Projection is very fast, and Johnson and Linden-
strauss (1984) lemma ensures that the L2 distances are approximately main-
tained. However, random projections do not take th structure of images into
account: they are usually piecewise continuous, and using this information
might enhance results. A yet bigger downside is the lack of interpretabil-
ity: each projection axis is distributed over the whole image, and the image
cannot be directly rebuilt from the projections.

Thirion et al. (2015) have thus tried to devise a clustering method on
voxels. Voxels are gathered into “super-voxels”. They are a way to compress
data with little loss, and allow direct computation on the compressed data.
The following heuristics give an idea of what is expected of such an algorithm.

We observe Y = X + ε, where Y and X are functions from Ω to R and
Ω is typically a subset of Z3. We write X and Y as vectors of Rn, with
Xω = X(ω). The ground truth X is assumed to be L-Lipschitz, say for
the graph distance. The noise ε is assumed to be Gaussian with variance
σ2, independent for each ω. Assume that the clustering Φ yields a partition
(C1, . . . , Ck) of Ω that is independent of the data. We write i(ω) for the i
such that ω ∈ Ci, and X̄i = 1

|Ci|
∑

ω∈Ci Xω.
Then Φ : Rn → Rk and (ΦY )i =

√
|Ci|Ȳi. Hence ΦY is a Gaussian vector

with variance σ2 and mean
√
|C|X̄, coordinate-wise. We denote by Φ† the
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pseudo-inverse of Φ, and pull the projection back in the original space Rn:

Φ†ΦYω = Ȳi(ω)

= X̄i(ω) +
1

|Ci|
∑

χ∈Ci(ω)

εχ. (13)

We quantify fidelity by comparing ‖X‖2
2 and ‖ΦY ‖2

2:

‖ΦY ‖2
2 =

∑
|Ci| X̄2

i + ε2
i

=
∑
ω

X2
ω −

(
X2
ω − X̄2

i(ω)

)
+ F

= ‖X‖2
2 + F −

∑
i

|Ci|Vari(X) (14)

where F has a χ2(k) distribution, and Vari(X) is the intra-cluster variance
of X, that is Vari(X) = 1

|Ci|
∑

ω∈Ci(X(ω)− X̄i(ω))
2.

We then notice that:
— The expression (13) highlights the super-voxels, and interpretation as

local means.
— Consequently, the clustering has a denoising effect. It may be lower for

the proposed algorithms, since they depend on the data.
— Many kernel methods (Rahimi and Recht, 2007) only depend on the

distances between subjects. That is, if Y α and Y β are observations cor-
responding to subjects α and β, we only need to maintain

∥∥Y α − Y β
∥∥.

Hence, only the differences between Y must be L-Lipschitz, which is a
priori less demanding.

— All individuals Y α are projected on the same clusters. Hence maybe a
James-Stein estimator on all ΦY α

i may improve denoising.
— A good algorithm must have a good fidelity (14), hence the intra-cluster

variance must be small.
— Since this variance is bounded from above by L2 Diam(Ci)

2, and Diam(Ci) ≤
|Ci|, a good algorithm should probably have small clusters.

— Similarly, if the clusters are d-dimensional balls, then Diam(Ci) is of
order |Ci|1/d. A good algorithm should yield “compact” clusters.

— A good algorithm should gather similar voxels: this corresponds to
lowering L within the cluster.

26



(a) Original (b) single-
linkage

(c) average-
linkage

(d)
complete-
linkage

(e) Ward (f) SLIC (g) ReNA

Figure 2 – Approximation of an MRI image obtained with various
feature grouping algorithms

Original First 
 iteration

Second 
 iteration

Third 
 iteration

Compressed

Figure 3 – Illustration du principe de ReNA: The white lines represent
the edges of the graph. The algorithm considers each voxel in the original
image as a cluster. From now on, for each iteration, the nearest clusters
are merged, yielding a reduced graph, until the desired number of clusters is
found.

Figure 2 depicts the result of several clustering algorithms; giant compo-
nents are clearly bad. Percolation must be avoided.

Ward (1963) clustering directly aims at minimizing intra-cluster variance.
Hence its good practical results are not surprising. However, its complexity
is O(n2), and it is too slow for the targeted applications.

At the other extreme, single-linkage clustering (Gower and Ross, 1969)
may be computed extremely fast. But there is a giant component and much
information is lost when averaging.

Hence the proposition of Recursive Nearest Neighbour Algorithm (ReNA),
illustrated in Figure 3. At each step, each cluster is merged with a neigh-
bouring cluster, that is a cluster with which it shares an edge in Zd. This
constraint ensures spatial coherence. The cluster with which it is merged is
the closest datawise, that is the one that minimizes

∣∣X̄i − X̄j

∣∣.
The calculation is linear in the number of initial voxels, whatever the final

number of clusters.
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In practice, there is no percolation, and the clusters all have a similar
size. The algorithm fulfills our intuitive specifications.

Experimentally, fidelity is high. As expected, further calculations are
much faster. Thanks to the denoising, the results are sometimes even better
than on the raw data.

The other methods in Hoyos-Idrobo et al. (2016) are either much slower,
or lose too much information, at least for some uses. A striking example is
independent component analysis with random projections. Since the “inde-
pendent components” are spatially localised and the random projections are
not, the results are awful.

2.3.1 Perspectives

I would like to prove theoretically that there is no percolation. The closest
result I know is that by Teng and Yao (2007), on the percolation of the k-
nearest neighbour graph on a Poisson point process.

Another classical use for functional MRI data is looking for functional
connectivity: finding areas of the brain that work simultaneously. In such a
case the time series on each voxel are not summarised with just a number,
but rather the covariance matrix between regions of interest is computed,
integrating over all the voxels in each region. A state, such as “healthy
subject at rest”, is modelled by a probability law on covariance matrices.
The aim is to get a diagnostic by labelling the covariance matrix of a subject
by a model. We thus need efficient models.

Traditionally, neurobiologists would use models like Σ = Σ∗ + dΣ, where
dΣ is a random variable (Fair et al., 2007, par exemple). But the correlation
matrix is a non-negative matrix, and this positivity is not guaranteed in
such models. Among my projects with Gaël Varoquaux, I would like to see
what we gain by modelling the random part as a tangent vector to Σ on the
positive semi-definite manifold.

2.4 Compressed sensing with physical constraints

2.4.1 Initial motivation: MRI acquisition

Most signals have a structure, meaning they can be sparsely represented
in a basis (for example) known beforehand. That is, the biggest coefficients
in the basis carry almost all the information, all the L2 norm of the signal.
However, we do not know beforehand which coefficients are big.

Candès, Romberg, and Tao (2006) have shown that it was possible to
rebuild a sparse signal with only a few measurements. Those measurements
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are linear forms along axes “without any relation” with the signal, like random
projections. This is the start of compressed sensing theory. Lustig, Donoho,
and Pauly (2007) have soon applied it to MRI.

However, the theory assumes that each measurement is chosen indepen-
dently of the others. In real applications, physical constraints seldom allow
such freedom. Most often, the measurements must be taken in a given basis.
Moreover, and that is the main difference, successive measurements must
follow a smooth path: if the measurement basis elements are indexed by an
image, the chosen measurements must follow at least a continuous path, or
its discretization.

Let us fix the notation and give a typical theorem.
We start with an orthogonal matrix e A0 = [a1| . . . |an]∗, where the ai

are basis vectors. We extract from A a random measurement matrix A =
[aJ1| . . . |aJm ]∗, where the Ji are i.i.d. variables in [1, n]. We observe y = Ax
and want to find x. Since the number of measurements m is (much) smaller
than the dimension of the space, the linear equation has many solutions. We
use the following estimator:

x̄ ∈ Argmin
Ax=y

‖x‖1 . (15)

If there is noise or if the sparsity is not perfect, the equality should be relaxed,
and we should use an estimator like LASSO, but the main ideas stay the same.

Theorem 2.3 (Chauffert, Ciuciu, Jonas Kahn, and P. Weiss, 2014; Bigot,
Boyer, and P. Weiss, 2016, Theorem 3.1). Assume that x is s-sparse, i.e.
there are only s nonzero components among n. Let πk = ‖ak‖2∞∑n

i=1 ‖ai‖2∞
. If the

number of measurements m satisfy:

m ≥ Cs

(
n∑
i=1

‖ai‖2
∞

)
log
(n
ε

)
,

with C > 0 a universal constant, then x̄ = x with probability 1− ε.

In MRI, the signal should be sparse in a wavelets basis, with matrix Ψ,
and the measurement is made in the Fourier basis, with matrix F. So that
A0 = F∗Ψ. We may then show that ‖ai‖2

∞ ∝ log(n). Hence O(s log(n)2)
Fourier coefficients are enough to rebuild exactly an s-sparse image.

Notice that the L1 norm is a relaxation of the L0 norm and allow a fast
calculation of the minimizer.

Usually, those theorems are written with a uniform choice of the coordi-
nates to be measured, and the number of necessary coefficients depends on
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the coherence nmax1≤k≤n ‖ak‖2. However, the coherence is high between the
Fourier and wavelets basis, of order n. The practical method of drawing more
often coherent coordinates was known, and this theorem is a formalisation
of it.

We would like to draw the samples according to the target density π.
As already stated, in MRI, we measure Fourier transforms of the image, or
rather of a part of space, not necessarily at integer frequencies. Moreover,
successive measurements are made along a curve in the Fourier space, with
finite speed and acceleration. Therefore, we cannot draw samples according
to independent coordinates. A first step toward a realistic acquisition model
is to sample along a continuous path.

2.4.2 Travelling salesman as a variable density sampler

An easy way to get a continuous path when we know to draw random
points is to connect them. Moreover, intuitively, each point brings new in-
formation, so that we would like to connect as many points as possible with
as short a path as possible. Hence the idea of using the travelling salesman
solution to connect points drawn according to a specific density.

Let XN = {xi}1≤i≤N be an i.i.d. N -sample with law π̃. Let γN : [0, 1]→
Ω be the constant-speed parametrisation of the travelling salesman between
the N points, where Ω is a compact convex set in Rd. Let ΠN = (γN)∗λ[0,1] be
the pushforward measure on Ω of the Lebesgue measure on [0, 1]. Intuitively,
the weight of a volume is proportional to the length of its intersection with
the travelling salesman. We want to approximate π, that is, we want that
ΠN converges to π when N goes to infinity.

How should we choose the distribution π̃ of the points XN? A first idea
would be to draw them according to π, but that would be wrong. We must
take the distance between points into account.

Let us clarify the idea by looking at a small cube. The number of points
in the small cube Nc is proportional to π̃, which is approximately a constant
in the small cube. The typical distance between two points in the small
cube scales like N−1/d

c . The travelling salesman usually connects nearby
points, hence the points within the small cube, and is scale-invariant. So
that the expected length of the travelling salesman in the small cube scales
like NcN

−1/d
c ∝ π̃1−1/d.

This heuristic could be applied to many algorithms building curves from
points, such as a greedy algorithm. For the travelling salesman, it can be
made rigorous by using subadditivity of an associated process and the asymp-
totic estimate of the length of a travelling salesman by Beardwood, Halton,
and Hammersley (1959). We get:

30



Theorem 2.4 (Chauffert, Ciuciu, Jonas Kahn, and P. A. Weiss, 2013, Theo-
rem 3.1). Let π be a density on a compact set Ω in Rd. Let π̃ = π(d−1)/d∫

Ω π(d−1)/d(x)dx
.

Then, π̃⊗n-almost surely with respect to the sequence of points {xi}i∈N, the
distribution of the travelling salesman converges weakly to π:

ΠN −−−⇀
N→∞

π π̃⊗np.s.

Notice that we require π to be a density. However, if the target density
has atoms, we may simply spend some time there without moving.

Numerical simulations show good reconstructions. However, the physical
constraints of MRI are not yet all taken into account: we have allowed infinite
acceleration. A first idea would be to project the travelling salesman curve
on the set of curves satisfying MRI constraints (Chauffert, P. Weiss, et al.,
2016). This is easy numerically, but we might not converge to the target
density any more.

Another approach is to directly project on the target density on the space
of constraints. This is the subject of the next section.

2.4.3 Projection on measures sets

We broaden the framework. In MRI, we look for the pushforward measure
of a curve with constraints, that is a subset of all possible curves. This yields
a subsetMN of Radon measure on R3. We want to approximate π with an
element in this set.

More generally, how can we project π on a subset MN of the Radon
measures on Ω ⊂ Rd ? Chauffert, Ciuciu, Jonas Kahn, and P. Weiss (2016)
define the projection as a solution to the following variational problem:

µ∗N=̂ inf
µ∈MN

‖h ? (µ− π)‖2
2 , (16)

where h is a kernel in L2(Ω), and ? is the convolution. This formulation
allows both theoretical results and a numerical implementation.

A good kernel h must define a norm Nh(µ) = ‖h ? µ‖2
2 on the space M

of signed measures bounded in total variation on Ω. Thus, if π ∈MN , then
π is the only solution to the variational problem (16).

If h is continuous, so that h ? µ ∈ L2(Ω), then the norm condition is
equivalent to h having all nonzero Fourier coefficients. In such a case, Nh is
a metrisation of the weak topology on balls inM, and in particular on the
set of probability measures. Since we are dealing with probability measures,
MN is bounded in total variation. Hence, ifMN is also weakly closed, then
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the problem (16) has at least one solution. In particular, if MN is a set
of pushforward measures {p∗γ : p ∈ P} with P a set of parametrisations
p : X → Ω, and if P is compact for the pointwise convergence topology,
then the problem (16) has at least one solution. This will be the case for all
examples below.

To see why this definition of projection is convenient, let us write, with
Ω the torus:

〈h ? (µ− π)|h ? (µ− π)〉22 = 〈H ? (µ− π)|µ− π〉
= 〈Hµ|µ〉 − 2〈Hµ|π〉+ 〈Hπ|π〉,

with Ĥ(ξ) = |ĥ|(ξ)2 for all ξ ∈ Zd. In particular, if MN only contains
measures on N points pi, with weight 1/N on each of them, minimising (16)
is equivalent to minimising the following attraction-repulsion equation:

min
p∈MN

1

2N2

N∑
i=1

N∑
j=1

H(pi − pj)−
1

N

N∑
i=1

∫
Ω

H(x− pi)dx. (17)

If H has a minimum at zero, the first term is a repulsion term between points,
and the second term is an attraction term to π. Teuber et al. (2011) have
suggested the use of this equation with H(x) = ‖x‖2 and N independent
points for a halftoning algorithm.

In general, it is hard to find a global minimum to such an equation.
For example, if we set Ω to be the sphere S2 and π the uniform measure,
we get Thomson’s (1904) problem, consisting in finding the minimal energy
configuration of N electrons on a sphere. It is still an open problem.

However, finding a critical point is “easy”. The attraction-repulsion equa-
tion (17) is continuous in pi if H is nice, and stays continuous if we discretize
the integral, yielding a function J(p). So that we may use a projected gradi-
ent descent and reach a critical point, according to:

Theorem 2.5 (Chauffert, Ciuciu, Jonas Kahn, and P. Weiss, 2016, Corol-
laire 2). If H is definable in an o-minimal structure, and has a continu-
ous L-Lipschitz gradient, and if C is a closed set definable on an o-minimal
structure, then the following sequence converges to a critical point of the
attraction-repulsion functional J(p):

p(k+1) ∈ PC
(
p(k) − γ∇J(p(k))

)
with 0 < γ < N

3L
.
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This theorem is a special case of a very general theorem by Attouch,
Bolte, and Svaiter (2013). I will not give a precise definition of functions and
sets definable on an o-minimal structure (Coste, 2000), but they include all
polynomial of elementary functions, their compositions, their level sets. . .

Ideally, what would we require ofMN to get good properties?
To approximate any measure π by a sequence of measures in the sequence

ofMN , a necessary and sufficient condition is that
⋃
NMN be weakly dense

in the probability laws on Ω, at least if theMN are nested. The convergence
rate may be bounded via control in transportation distance if h is L-Lipschitz,
that is Nh(µ− π) ≤ LW1(µ, π).

In particular, if theMN are sets of N Dirac deltas with weight 1/N , the
convergence rate is at worst LN−1/d.

More generally, we need to approximate MN by a set An of discrete
measures if we want to apply the projected gradient algorithm. That is
always possible for the Hausdorff distance. In practice, however, the set An
might be hard to make explicit or compute with. In the examples below, it
is well-behaved. Moreover, since An plays the part of C in Theorem 2.5, it
has to be definable on an o-minimal structure.

The projected gradient descent algorithm on An always finds a critical
point of the original problem (16), and can run with n = 105 points in a few
days on current computers. The results are much faster with n = 103 points.

We illustrate the flexibility of the algorithm by giving a few examples of
projection setsMN and a few possible applications.

— The set of N Dirac deltaMN = { 1
N

∑
δpi : pi ∈ Ω}.

— The curves with non necessarily isotropic constraints on speed, accel-
eration, upper derivatives, that can be encoded as Sobolev balls:

MN =

{
1

N
p∗λ[0,N ] : p ∈ (Wm,q([0, N ]))d, p([0, N ]) ⊂ Ω,∀1 ≤ j ≤ m,

∥∥∥p(j)∥∥∥
q
≤ αj

}
,

where λ is the Lebesgue measure and q ∈ [1,∞] and the αj are nonneg-
ative real numbers. In this case, we write ∆t = N

n
, and use the discrete

derivative operator (Ds)i = (si − si−1)/∆t, with adapted boundary
conditions:

An =
{
s ∈ Rn·d,∀1 ≤ i ≤ n, si ∈ Ω and ∀1 ≤ j ≤ m,

∥∥Djs
∥∥
q

∆t ≤ αj

}
.

— The sets of k segments covered at constant speeds, each in time N
k
:

MN =

{
1

N

k∑
b=1

(lb)∗λ[0, N
kN
k

] : lb : [0,
N

k
]→ Ω, lb(

N

k
t) = tx1

b + (1− t)x2
b

}
.
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In this case, discretising each segment with m = n
N

points, we use:

An =

{
q ∈ Rn·d : ∀1 ≤ i ≤ n, si ∈ Ω and qj = qi +

j − i− 1

m− 2
(qi+m−1 − qi)

∀i ∈
{

1,m+ 1, 2m+ 1, . . . ,
N

k
m+ 1

}
and i ≤ j ≤ i+m− 1

}
.

— Of course Equation (17) can be generalised to use weights on the pi.

As for applications:
— The initial motivation was MRI. Projection on curves in Sobolev balls

and on segments can both be applied, the latter being easy to imple-
ment on real MRI scanners. Figures 4 and 5 give an idea of the effi-
ciency. Results for high resolution imaging are even more impressive,
and Boyer et al. (2016) show figures.

— Just art. Halftoning is used by printers. Moreover, drawing a grey-level
image with just one line is a promising technique. See the Girl with a
Pearl Earring in Figure 6.

— The algorithm may be used to deconvolve isolated spikes. Candès and
Fernandez-Granda (2014) give an algorithm for exact reconstruction
of sufficiently distant spikes after convolution. However the algorithm
is excruciatingly slow as soon as the underlying space is of dimension
more than 1. We may alternate on gradient descent in Equation (17)
and projection on the space of spikes to get solutions, in any dimension
d.

2.4.4 Perspectives

I intend to go on collaborating with Pierre Weiss and those around him.
A new PhD student has started working on those subjects.

Apart from the above applications, others would include singularity de-
tection. Moreover, there are both purely numerical questions, like how to
accelerate the algorithms, and a few purely mathematical questions.

An easy problem mixing both would be to project in transportation dis-
tance, which is a very natural distance for measures.

A more ambitious goal would be to find under what conditions a low
transportation distance between the target density π and the sample yields
direct guarantees of compressed sensing using the sample. Obviously, the
general case does not hold, since a regular grid is just downsampling.
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(a) (b) (c)

(d) (e) (f)

Figure 4 – Classical sampling schemes (a-c) and sampling schemes obtained
with the projection algorithm (d-f). Top: (a): independent drawing; (b):
radial lines; (c): spiral. Second line: centre zoom. Third ligne: (d): iso-
lated points; (e): segments of variable length; (f): admissible curves fo MRI.
Bottom: centre zoom. Corresponding reconstruction results in Figure 5.
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(a) SNR=17.7 dB (b) SNR=15.4 dB (c) SNR=13.2 dB

(d) SNR=18.3 dB (e) SNR=18.0 dB (f) SNR=18.0 dB

Figure 5 – Reconstructions for the sampling schemes in Figure 4 on a classical
test image.
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Figure 6 – Girl with a Pearl Earring by Vermeer (1665). Projection on a
Sobolev ball W 1,∞, with N = 150000 points. Result after 10000 iterations

37



Moreover, all critical points attained in practice are similar, meaning that
the distance to the target density is about the same, for all starting points of
the algorithm. Understanding the phenomenon looks hard and significant:
when the number of points in the sample increases, do all critical points have
a value close to the minimum value? Or at least, do their basins of attraction
cover almost all the space?

3 Stochastic geometry and random metric spaces
Stochastic geometry is the study of random objects in a space with a

geometry, often in their geometric aspects. It might be studying the shape of
a Voronoi cell in the tessellation generated by a Poisson point process in Rd,
or wonder whether a point process with marks that are radius-1 circles per-
colates, for example. Knowing how information can be transmitted between
sensors in a network or characterise a rock by its pores are two examples
of practical problems that stochastic geometry is well-suited to formalise.
Stoyan, Kendall, and Mecke (1996) give a good introduction to the field.

Some objects of stochastic geometry generate their own geometry: think
of a graph between points connected if they are close enough. The graph
yields a metric space on its vertices. In general, stochastic geometry gives
easy ways to build geometric metric spaces. This point of view allows to
include in the field of stochastic geometry the study of random metric spaces
generated by topological or combinatorial means, like the Brownian map.
We will only mention it briefly for comparison purposes.

In Section 3.1, we count T -tessellations on a fixed number of lines, so that
we may prove existence of some Gibbs measures on these tessellations. They
allow flexible modelisation of landscapes such as plots of land.

In Section 3.2, we explain the notion of a SIRSN (scale-invariant random
spatial network) that Aldous (2014) introduced to model road networks. The
improper Poisson line process is a SIRSN. Moreover it generates a random
metric space that is interesting in itself.

3.1 T -tessellations

T -tessellations are tessellations of a (convex compact to make it easy)
subset of the plane W whose vertices are all of degree three with a flat angle,
that is, are T -shaped. They look like plots of land, and Kiêu et al. (2013)
have made the model with this motivation.

The first models of T -tessellations are special cases of polygonal Markov
fields by Arak, Clifford, and Surgailis (1993). Those fields are a very general
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model of a random geometric planar graph, whose nice properties allow exact
sampling. However Kiêu et al. (2013) wished for a more flexible model, with
Gibbs measures on a good underlying model.

The underlying model they choose is the completely random T -tessellation.
We may intuitively define it as: adding a segment does not depend on the
tessellation, as long as we still have a T -tessellation. Slightly more precisely,
if T is a T -tessellation, if s is a segment and if T +{s} is still a T -tessellation,
then the ratio of the probability densities p(T+{s})

p(T )
does not depend on T . The

clearest way to write the definition relies on the Papangelou kernel, and is
similar to a Poisson process.

A consequence is that the probability density of a tessellation is given
by the probability density of the lines that support the segments of the
tessellation, and this density is given by of a Poisson line process. We give a
complete description of this Poisson line process in Section 3.2.1 and give here
only the intuition: it’s throwing lines completely at random. The number of
lines that hit the finite volume W is a Poisson variable of parameter λ, the
intensity.

It is not obvious that this measure µ on tessellations is finite, however,
so it might be impossible to normalise it and get a probability measure.
Indeed, each configuration of Poisson lines has a weight multiplied by the
number of different T -tessellations it supports. We say that k lines support
a T -tessellation T if T is a union of segments that are all supported by the
lines, and exactly one segment is supported by each line. This number of
T -tessellations on k lines must not be too high on average. We now bound
the worst case by combinatorial means, and it turns out it is sufficient.

More precisely, suppose that for any set of k lines in generic position,
there are at most N (k) = o(akkk) different T -tessellations supported by
those lines, for all a > 0. Then the total variation of the non-normalised
measure we have described is:

|µ| ≤
∞∑
k=0

e−λ
λk

k!
N (k)

=
∞∑
k=0

o((aλe)k) <∞.

We may prove it by combinatorial means:

Theorem 3.1 (Jonas Kahn, 2014, Theorem 2.1). The number of T -tessellations
supported on k lines is bounded from above thus, for any ε > 0:

N (k) ≤ Ck

(
k

(ln k)1−ε

)k−k/(ln k)

,
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where C depends only on ε.

Idea of proof. The idea is to label each line (in the support) of a T -tessellation
with enough information to rebuild the tessellation. The number of different
T -tessellations on those lines is then bounded by the number of different sets
of labels.

We give a simplified version. We choose an axis that is not parallel to any
line in T , nor to the borders of the domain W , and we call it the time axis.
We say that a segment of a tessellation is born at its minimum time point
and dies at its maximum time point. It is now enough to label each line with
the birth time of its segment, and the number of murders committed by its
segment, that is the number of other segments that die when they intersect
this segment. The rebuilding process is illustrated in Figure 7.

Now, a segment can only be born on the border or when crossing an other
segment, hence a line: that is at most k possibilities for each segment, hence
kk total. Moreover, each segment only dies once, and it can be killed only be
the border or a line. The numbers of murders for all lines then correspond
to putting k objects in (k+ 1) boxes, hence

(
2k+1
k

)
≤ 4k possibilities. So that

N (k) ≤ (4k)k.
This bound is not enough for our needs. Getting Theorem 3.1 requires

smarter labelling, that we merely mention now. We need to forget a well-
chosen subset of the birth times, add other information similar to the number
of murders, and go back and forth along the time axis.

This combinatorial bound is essentially optimal: if we choose a grid with
k/(ln k) vertical lines and k − k/(ln k) horizontal lines, it is easy to see that
there are at least

(
k

ln k

)k−k/(ln k) different T -tessellations on those lines. Just
take the vertical segments to have maximal length, and there are k/(ln k)
different possible positions for each horizontal segment.

However, we may hope that an analysis that takes into account the typical
position and geometry of random lines could give a much lower mean number
of T -tessellations on k lines. Indeed, imagine the following heuristic: suppose
we already have k + 1 segments. In how many ways can the last segment be
added? One for each interval between two segments that its line crosses, that
is one plus the number n of segments the line crosses. Hence the segment
length should be of order 1/n, with 1 the diameter ofW . Now the probability
that a segment crosses a line is proportional to the length of the segment.
Hence typically 1/n for each line. So that each line should cross about k/n
segments. Hence n =

√
k. There are about

√
k ways to set the last segment,

hence we expect about
√
k
k
different T -tessellations.

Making the above rigorous is probably very hard. . .
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(a) (b)

(c)

M= 1

M= 0

(d)

M= 0

(e) (f)

Figure 7 – (a) is the tessellation to be rebuilt. We start knowing the lines,
the birth times (b) and the numbers of murders. We move along the time
axis and prolongate the live segments (c). When two segments cross (d), we
kill the one with zero murders left and decrease the other’s counter by 1 (e).
At the end of the pass, we get the tessellation (f).
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3.2 Improper Poisson line process

3.2.1 SIRSN and definitions

In what follows, B(x, r) is the Euclidean ball with centre x and radius r.
Aldous (2014) has introduced the notion of a SIRSN (scale-invariant ran-

dom spatial network) as an abstraction of road networks and maps as they
can be used on the Internet. Hence the definition:

1. A user wants to go from a point A to a point B. Hence a SIRSN
consists in a route R(x1, x2) between each pair of points x1, x2 in Rd,
such that R(x1, x2) = R(x2, x1). Each route is random and almost
surely unique. A route is a finite-length path.

2. When we move a map, or rotate it, its appearance stays roughly the
same. Similarly, zooming makes smaller roads appear. Hence a SIRSN
must be statistically equivariant under translation, rotation and scal-
ing: if N (x1, . . . , xk) is the network of routes between pairs of xi in
a finite set x1, . . . , xk ∈ Rd, and if R is Euclidean similarity, then the
networks N (Rx1, . . . ,Rxk) and RN (x1, . . . , xk) follow the same law.

3. A good network allows to join two points without too many detours.
Hence, if D1 is the length of the route between two points at Euclidean
distance 1, then E [D1] <∞.

4. A good road network is built without too many roads at each scale.
Moreover, routes follow the bigger roads, except near the parking slots.
Therefore, let us consider {Ξn}n∈N nested Poisson point processes (de-
fined below) with intensity n, that is such that Ξn ⊂ Ξn+1. We write
Ξ =

⋃
n Ξn. Then the following long-distance network F has finite

intensity p(1), that is, finite mean length per unit volume:

F =
⋃

x1,x2∈Ξ

(
R(x1, x2) \ (B(x1, 1) ∪B(x2, 1))

)
. (18)

Let us make the last requirement clearer. The use of Poisson point processes
is a technical device to work with only countably many routes. Morally, we
require that all the routes between all the pairs of points in space, use only
exactly the same (motor)ways except maybe when they are close to their
starting or final point.

Those few properties already have a huge effect on any model that satisfy
them. For example, Aldous (2014) has shown that there are singly-infinite
paths, whose every subset is part of a route, but there are no doubly-infinite
paths, that is paths with no end whose every subset is part of a route. On
the other hand, it is not easy to build an explicit SIRSN. Aldous (2014) has
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built a suitable hierarchical model in R2, but it is not very natural since
invariance is added by symmetrising the whole process as a last step, so that
each realisation has long-range dependences. It was the only known example.

The definition suggests a general way to produce a potential SIRSN: we
start from a good random metric on Rd, and the routes are the corresponding
geodesics. If the random metric is invariant under similarities, we obtain
automatically Property 2. Property 4 is a kind of hyperbolicity: the geodesics
get closer. Now, random metric objects are most often hyperbolic (Gromov,
2003, for example).

Aldous (2014) has suggested two such random metrics. We will dwell on
one of them: the improper Poisson line process.

Intuitively, we throw lines uniformly at random in Rd, and mark them
with a well-chosen random speed. There are more and more “slow” lines, so
that those lines are dense in Rd. The metric is the minimum time to drive
from one point to the other while respecting the speed limits. Strangely
enough, there are such continuous paths connecting any two points even in
dimension 3 or more, even if the lines do not cross.

To state the above rigorously, we start by recalling that a Poisson point
process on a measured space (X, µ) is a random set of points in X such that,
if we write N(B) for the number of points in B:

— If the Bi are measurable and disjoint, then the N(Bi) are independent.
— N(Bi) is a Poisson variable with parameter µ(Bi).
We may also parametrise the set of lines in Rd by a H, so that the

Lebesgue measure on the parameter space of any set of lines be invariant by
any isometry of Rd. For example in two dimensions, this space of parameters
is H = [0, π[×R, where the first parameter is the angle of the line with the
abscissas, and the second parameter is the algebraic distance of the line to
the origin of a specified frame.

We may then see a line l with a speed v as an element (l, v) ofH×R+. The
improper Poisson line process Π is the image of the Poisson point process on
H×R+ with the measure with density (γ − 1)v−γ with respect to Lebesgue.
We require γ > d.

With this notation, there are almost surely locally Lipschitz paths ξ :
[0, T ]→ Rd between each pair of points a and b in Rd such that:

— ξ(0) = a and ξ(T ) = b.
— For almost all t ∈ [0, T ], either ξ′(t) = 0, or ξ follows a line in Π, that

is there is a v ≥ |ξ′(t)| such that(ξ(t) + ξ′(t)R, v) ∈ Π.
We call such a path a Π-path.
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We may then define the metric on Rd given by the infimum of the T of
such paths connecting a and b. We call it the Π-distance, or the time Tab
needed to go from a to b, to pursue the road analogy.

Similarly, we speak of Π-ball, Π-diameter, etc.
We have thus defined a rnadom metric space. The power law on speeds

ensures scale invariance up to a multiplicative constant. Hence the law of
the geodesics stay the same when zooming.

Some further notation: Lξ is the support of a Π-path ξ, that is the
set of lines in Π that ξ follows for a nonzero Euclidean length: L(ξ) =
{l ∈ Π : m1(l ∩ ξ(0, T )) > 0} wherem1 is the one-dimensional Hausdorff mea-
sure, and ξ : [0, T ]→ Rd.

3.2.2 Properties

Kendall (2014) has obtained important results on this process: first, it is
indeed a geodesic metric space. Moreover, in dimension 2, the geodesics are
almost everywhere unique, the geodesics are locally of finite mean-length, and
the subnetwork obtained from the routes connecting points of an independent
Poisson point process has finite length in a compact set. The latter properties
establish a weak form of Property 4 of a SIRSN.

We first further our understanding of the process by comparing the radius
of balls in the Euclidean metric and the random metric:

Theorem 3.2 (Jonas Kahn, 2015, simplified version of Theorems 3.1 and
5.1 and their proofs). There is a T1 such that, for all 1

2
> ε > 0, for all

x ∈ Rd, for all radii r, with probability at least 1− ε:

Tx,r=̂ sup
y,z∈B(x,r)

Ty,z

≤ Tr

(
ln

1

ε

) 1
γ−1

with

Tr = r
γ−d
γ−1T1.

In particular, the Π-diameter of a Euclidean ball with radius r has all expo-

nential moments, and more. For all δ < T
1

γ−1
r :

E
[
exp

(
δT γ−1

x,r

)]
<∞.

The exponent γ − 1 in the moment cannot be improved.

On the other hand, the Euclidean diameter of a Π-ball with radius r has
finite expectation.
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Property 3 of a SIRSN is a consequence of the last part of the theorem.
Moreover, the two controls together entail that the random metric space

generated by Π is homeomorphic to Rd.
We notice that Euclidean balls are very tightly controlled in Π-distance,

whereas the control of Π-balls in Euclidean distance is much looser. Indeed,
since the probability that a line with speed v is close to a point x scales like
v−(γ−1), the maximum polynomial moment of the Euclidean diameter of the
Π-ball cannot be better than γ − 1. This is linked to the fractal nature of
the process.

Almost sure uniqueness of geodesics in dimension 2 has been obtained by
Kendall (2014). Notice that the “almost sure” is not for all points simulta-
neously: the cut-locus is not empty.

In dimension at least 3, we get uniqueness via the technical notion of
many directions, which formalises the idea that a set of lines close to a given
point x have so many different unit vectors that the only way to touch them
all with a finite path is to touch them near x.

Definition 3.3 (Jonas Kahn, 2015, Definitions 4.3 and 4.4). For a set of
lines L = {lj}j∈J and a subset X of Rd, a L-tour in X is a continuous curve
f in X such that for all j ∈ J , there is a tj such that f(tj) ∈ lj. The tour
is finite if f is rectifiable, else it is infinite.

A Π-path ξ has many directions near a point x if, for all ε > 0, all
Lξ-tours in Rd \B(x, ε) are infinite.

The point of the notion is that, if ξ has many directions near x, then all
closed finite Lξ-tours contain x. Moreover:

Lemma 3.4 (Jonas Kahn, 2015, Lemme 4.6). Let d ≥ 3. Let l be a fixed line
independent on Π. Almost surely, for all x ∈ l, for all y 6∈ l, the geodesics
gxy all have many directions near x.

The proof of the lemma is quite technical since it applies simultaneously
to uncountably many points whereas it is not true for all points in Rd.

Since the lines in Π come from a Poisson point process, each line l is
independent of Π \ {l}, which follows the same law as Π. Noticing that
almost surely all geodesics between x and y are supported by the same lines,
Lemma 3.4 implies that the ends of each segment of a geodesic are contained
in all the other geodesics, and hence that they are the same. This yields
Property 1 of a SIRSN.

The last property of a SIRSN, Property 4, follows from the pigeonhole
principle.
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To establish Equation (18), we bound the total intersection length of all
geodesics between pair of points of Ξ, minus radius-1 balls around their ends,
with the ball B(0, 1

3
). This length is ` = m1(F ∩ B(0, 1

3
)), where m1 is the

Hausdorff measure.
If x or y are in the ball B(0, 2

3
), the intersection of gxy \(B(x, 1) ∪B(y, 1))

with B(0, 1
3
) is empty. Hence the geodesics gxy that contribute to ` have the

following form, illustrated in Figure 8:
— x and y are outside B(0, 2

3
).

— They hit B(0, 2
3
) for the first time at a point s on the corresponding

sphere.
— They hit B(0, 1

3
) for the first time at a point u on the corresponding

sphere.
— They hit B(0, 1

3
) for the last time at a point v on the corresponding

sphere.
— They hit B(0, 2

3
) for the last time at a point z on the corresponding

sphere.
Hence the geodesic gxy must cross twice the border, that is B(0, 2

3
) \

B(0, 1
3
), once between s and u, and once between v and z. Each of these

crossings has Euclidean length at least 1
3
.

On the other hand, Theorem 3.2 gives a tight probabilistic bound on the
Π-distance T between s and z. We also can bound with high probability the
number of lines faster than 1

6T
that hit the ball B(0, 2

3
). Let us write V for

the intersection of those lines with B(0, 2
3
), which is a set of dimension 1.

The intersection of gxy with lines slower than 1
6T

has length at most 1
6
. So

that gxy intersects the fast lines between s and u on a length at least 1
6T
, and

again between v and z. As a consequence, the set of pair of points (t, w) ∈ V2

with t on the geodesic gxy between s and u and w on gxy between v and z,
has a two-dimensional Hausdorff measure of 1

36
at least.

Since we can bound the measure of V2, we can find a finite set {gi} of
geodesics such that any other geodesic gxy intersects a gi between s and u,
and between w and z. By uniqueness of the geodesics, it coincides with gi

between u and v. So that F ∩ B(0, 1
3
) is the union of the intersection of

the finite number of geodesics gi with B(0, 1
3
). Precise calculations yield a

moment with exponential form:

Theorem 3.5 (Jonas Kahn, 2015, Theorem 6.1). Let γ > d ≥ 2. Let
` = m1(F ∩ B(0, 1

3
)) be the length of the long-distance network in B(0, 1

3
).

For all ε < εmax, with probability 1− ε, this length is less than C(ln(C1/ε))
2,

where the constants εmax, C and C1 only depend on γ and d. Hence the
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x

y

s

u

v

zB(0, 1
3)

B(0, 2
3)

Figure 8 – The geodesic from x to y hits B(0, 2
3
) for the first time at s and

the last time at z. It hits B(0, 1
3
) for the first time at u and the last time at

v.
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x

y

s

u

v

z

w

t

Figure 9 – Close parallel curves in the figure agree. They are separated to
make the figure more readable. The three thin black lines are the fast lines.
The light dashed lines and black dotted curves are a family of geodesics {gi}.
The solid curve connecting x and y is the geodesic gxy.
The geodesic gxy has a common point t with the black dotted geodesic on
a fast (black) line when first crossing the border, and another w when last
crossing the border. Hence thay agree between u and v.
Any other geodesic contributing to ` would meet one of the geodesics in the
family {gi} in the same way.
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moment, for all δ <
√
C,

E
[
exp

(
δ
√
`
)]

<∞. (19)

In particular, ` has finite mean, and the improper Poisson line process is a
SIRSN.

3.2.3 Connections

Since the improper Poisson line process is a random metric space, it might
be worth to compare it with the Brownian map (Le Gall, 2014, for example).

The Brownian map is a random metric on the sphere S2. It is still home-
omorphic to S2, but has Hausdorff dimension 4. Its behaviour is very hy-
perbolic: the set of all points in the inside of all its geodesics has Hausdorff
dimension 1. Moreover its cut-locus starting from a point is a tree with
dimension 2.

The improper Poisson line process is a random metric on Rd. It is home-
omorphic to Rd. Its Hausdorff dimension is (dγ − d)/(γ − d), which is larger
than d. Notice that for d = 2 and γ = 3, we get the dimensions of the Brow-
nian map. Moreover, if we can prove that any geodesic can be approximated
by geodesics between points of the process Ξ, the set of all points in the
inside of all its geodesics has Hausdorff dimension 1. I have no idea about
the cut-locus.

3.2.4 Perspectives

I would like to check that the Brownian plane, that is the Gromov-
Hausdorff tangent cone to the Brownian map, is a SIRSN. Specifically, since
the definition of a SIRSN requires a map from R2 into the space of interest,
I would like to prove it for a well-chosen limit of the random triangulations
mapped to the plane through circle packing. Invariances in particular should
be easy to get.

Besides, what happens if we drop something else than lines, with scaled
sizes. Do we still get a SIRSN?

Is there a universal SIRSN?
If there is, what happens if the elements are dropped in other spaces

than the Euclidean space, such as a sphere? What kind of metric space do
we obtain if we drop scale invariance, and change the proportion of fast lines?
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