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Chapter 1

Introduction

This document gives a global view on my research on mathematical optimization. The present chap-
ter is the entry door for this document: it highlights specific aspects that constitute the originality of
my research, gives an overview of my contributions, and summarizes four of my main contributions.
I have chosen these contributions to give a flavour on my various interests, subjects, and develop-
ments. Each of these four contributions constitutes the topic of a chapter of this document. These
contributions have opened new research perspectives, detailed in a final chapter opening to future
research.

I have written this introductive chapter to be accessible to non-experts. Its presentation is increas-
ingly technical, starting from a general discussion on my philosophy of work and going step by step
to mathematical developments. I have adopted a concise style, with few references. The interested
(or frustrated) reader should refer to the others chapters. The bibliographical entries of my publica-
tions are denoted by [Mal-*] and given at the end of Chapter 2; the other references are gathered in a
common bibliography at the end of this document.

For simplicity, I use the first person (saying “I”, or “my”) in this chapter, but all the research results
presented in this document have been obtained by team work with colleagues and students. Indeed,
I have had the chance to work with great researchers and great persons (acknowledged at the end of
Chapter 2) from who I have learnt a lot. Thus, except in the first two chapters of this document giving
a global view and making an exhaustive summary of my activities, the “we” pronoun is mainly used
throughout this document.

1.1 Overview of my research activities

My research work has multiple facets but mainly fits in mathematical optimization, which is a
branch of applied mathematics1 dealing with variational problems of the form "minimizing a quantity
subject to constraints". Mathematical optimization is currently going through a period of growth and
revitalization supported by an explosion of applications in data science and image/signal processing.
In parallel, we have been observing a constant penetration of optimization and operation research tools
in engineering in a broad sense (industry, services, and management). In this active field of research,
I have got various contributions, presented briefly in section 1.2, with a special emphasis on some of
them in section 1.3. I stay here at a higher level to highlight the originality of my work.

1Sometimes, one presents probability as "the mathematics of randomness" and statistics as "the mathematics of infor-
mation". Then I would say that optimization is "the mathematics of decision-making". J.-B. Hiriart-Urruty, one the eniment
researchers of optimization in France, says that it is "the mathematics of doing better" (with limited resources) [100].

1



1.1.1 Scientific positioning and originality

The guiding motivation of my work is to promote mathematics in action. All my research projects
and scientific interests have been driven, closely or indirectly, from applications in other scientific
domains or in industry and services. I have derived this "taste for usefulness" to the three leitmotivs
of my research:

1. motivate theoretical developments by applications,

2. unify and clarify results,

3. make tools and results accessible to non-specialists.

This philosophy has shaped the aspects that constitute my scientific originality. I am going to point
them out throughout the rest of this chapter and this document. I would like to emphasize here four
essential aspects of my research and contributions in mathematical optimization:

• I have contributions of different natures, covering all the range from theoretical analysis to
algorithmic developments and real-life applications. I give two illustrations of this aspect in
section 1.1.3.

• My contributions concern many facets of optimization: convex, nonsmooth, conic, semidefinite,
polynomial, combinatorial, Riemannian, and stochastic. They also concern various applications
in mechanics, finance, energy, and computer vision. This is detailed later in section 1.2.

• I have drawn connections between different subjects, e.g. between Riemannian optimization
and nonsmooth optimization ([Mal-26], [Mal-24]), between variational analysis and projection
algorithms (see chapter 6) or between continuous optimization and combinatorial optimization
(as developed in section 1.1.2).

• I always pay a special attention and effort to explain the main ideas behind the technical devel-
opments: in my articles, the proofs are given in a precise but intelligible way, several examples
are given to illustrate ideas, and various figures help support geometric intuition. I try to illus-
trate this aspect throughout this document.

Below, I develop further the first and third aspects; the second is detailed in section 1.2, and the fourth,
hopefully, throughout the document.

1.1.2 From continuous to combinatorial optimization

As explained above, a particularity of my work is to build connections between different aspects
of optimization or different communities. I illustrate this originality with my research on the inter-
section of continuous and combinatorial optimization, more precisely on the use of advanced convex
optimization and variational analysis on combinatorial optimization problems2. Let us start with a
general positioning.

Historically, continuous and combinatorial optimization have followed two distinct trajectories.
The study of combinatorial optimization has been intertwined with that of theoretical computer sci-
ence: the foundations of computational complexity and algorithm design blossomed around the study

2this explains the title of this document !
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of discrete optimization problems. In contrast, continuous optimization has been grounded in the
mathematical theory of convex analysis and geometry. The overlap with scientific computing has led
continuous optimization to become a basic tool in many areas of science that adopt continuous mod-
els to describe and understand natural phenomena. In the last decade, the interface between discrete
and continuous optimization has become increasingly active, partly stimulated by complex industrial
problems (Big Problems) and the proliferation of massive datasets (Big Data). The emergence of
a non-linear mixed-integer optimization community clearly positioned between the continuous and
combinatorial optimization is an illustration of the increasing interactions between the two topics.

An significant part of my research lies at this interface. To give bird-eye view on it, let me further
specify the context. Roughly speaking, combinatorial optimization problems can be formulated as
minimizing a "simple" objective function f : Rn → R (e.g. linear or quadratic) over a "complicated"
constraint set S ⊂ Rn (with discrete or nonconvex aspects).

min f(x) such that x ∈ S (1.1)

Most of the approaches to solve or approximate such problems are based on the two following foun-
dational techniques of combinatorial optimization:

• bounding (or relaxing), i.e. enlarge S to a “simpler” set P ;

• cutting, i.e. construct a hyperplane separating S and a point of P to tighten the relaxation.

These two paradigms turn out to be intrinsically linked to convex optimization. First, the notion
of separating hyperplanes is also at the heart of convex analysis, as a frequent proof technique
and in the analysis of support functions, providing theoretical advances going beyond standard lin-
ear techniques. Second, convex duality provides an automatic way (often called Lagrangian relax-
ation) to obtain lower bounds on the optimal value of (1.1) in the case when S can be expressed as
S = X ∩ {x : c(x) = 0}, where X is “easy” in terms of minimizing over it, while the constraint
c : Rn → Rm is "complicating". By construction, dual problems are convex, so that dual resolu-
tion and primal-dual relationships have a natural appeal for convex analysis and optimization. When
applied to binary quadratic problems for example, duality leads to optimization problems over the
convex cone of positive semidefinite matrices (semidefinite optimization). I further develop and il-
lustrate these ideas in a popularization article "convexity and combinatorics" in the French operations
research community newsletter [130].

I have decided to highlight in this document two main recent accomplishments in this context:

• algorithmic research on bounding: Chapter 3 presents a bounding procedure for binary
quadratic problems intersecting dynamically standard cuts and original semidefinite relaxations.

• theoretical research on cutting: Chapter 5 presents the introduction and analysis of a theory of
“cut generating functions” in integer optimization, based on convex analysis.

1.1.3 From mathematics to real-life problems

Another particularity of my research, mentioned previously, is to cover all the range from the-
oretical analysis, to algorithmic developments and real-life applications. To illustrate this, I briefly
present two examples of contributions on the two extreme sides of this range: a "pure" mathematical
contribution and an application to an industrial problem.
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Pure mathematics: spectral manifolds The spectral sets are subsets of the symmetric matrices
space Sn entirely defined by their eigenvalues, that is, that are invariant under the action of the orthog-
onal group by conjugation. They can be equivalently defined as inverse images of subsets of Rn by
the spectral function λ mapping a symmetric matrix X to its ordered eigenvalues

λ−1(M) := {X ∈ Sn : λ(X) ∈M}, for some M ⊂ Rn.

For example, if M is the Euclidean unit ball of Rn, then λ−1(M) is the Euclidean unit ball of Sn too.
Nice research has investigated which properties on a set M "lift" to the corresponding spectral set

λ−1(M). Simple examples show that everything can happen but it turns out that invariance properties
of M under permutations often correct bad behaviors. Indeed, if the set M ⊂ Rn is invariant by
permutations, then M is closed, convex, or prox-regular respectively if and only if so is λ−1(M)
([122],[Mal-22]). Note that such a lifting property also holds for algebraicity: if M is a permutation-
invariant algebraic manifold, then λ−1(M) is an algebraic manifold of Sn (see [Mal-6]).

A natural question is then the following: is it possible also to lift smooth manifolds? Hristo
Sendov and Aris Daniilidis and I answered positively to the question in general by introducing the
notion of local invariance by permutation (or local symmetry in the terminology of [Mal-6]).

Theorem 1.1.1. Consider a closed set M locally symmetric around x̄ = λ(X̄), which means that
there exists a neighborhood N of x̄ in M invariant by all the permutations fixing a vector x ∈ N .
IfM is a Ck submanifold of Rn of dimension d around x̄, then λ−1(M) is a Ck submanifold of Sn
around X̄ with dimension

dimλ−1(M) = d +
∑

1≤i<j≤m∗
|I∗i ||I∗j |, (1.2)

where {I∗1 , . . . , I∗m∗} is the so-called characteristic partition of M defined in [Mal-6, Section 2.3].

The unit Euclidean ball of Sn or the manifold of matrices of rank k provide basic illustrations
of this theorem. We established its proof in a long research report [58] that we split into two arti-
cles: [Mal-9] about characteristic properties of locally symmetric submanifolds and [Mal-6] about
the spectral manifolds themselves. Applications can be found in matrix manifold optimization (in
the construction of retractions for Riemannian optimization algorithms [Mal-12]) and in image pro-
cessing applications (in alternating projections with spectral manifolds, see e.g., the discussion of the
appendix of [Mal-21]).

Let me finish this discussion by mentioning that this work has opened several perspectives. First,
the tools we developed to prove the above theorem could be used in principle to prove the transfer of
all local properties of sets M or functions f to associated spectral sets or functions. In particular, we
could revisit our previous paper [Mal-22] and refine its main result to get the transfer of the notion
of "prox-regularity" for a fixed vector in the subdifferential. We have not built further on this line of
research. Second, the above theorem is in turn the key step in proving the lifting of central notions
for many active-set-type optimization algorithms (namely the partial-smoothness and the properties
of “identifiability” [57]). The authors of [57] were also able to simplify the proof of our theorem by
using a nice result from [148] linking the smoothness of the manifold M and the one of the squared
distance function x 7→ minz∈M ‖x− z‖22.

Real-life problem: Optimization of electricity generation at EDF Day-to-day optimization of
electricity generation is an important industrial problem that faces EDF, the French electricity board.
It consists in finding a minimal cost production schedule for the next day that satisfies the operational
constraints and that meets customers’ demand. This can be formalized as a large-scale optimization

4



problems having complex discrete subproblems: the problem is to minimize generation costs over
(separable) operational constraints and (coupling) demand constraints. EDF uses a Lagrangian duality
approach that leads to a nonsmooth convex problem that drives the solution process [74].

Optimization of electricity 
production 
Executive summary 

Every day, EdF (French Electricity Board) has to 
compute production schedules of its power plants 
for the next day. This is a difficult, large-scale, 
heterogeneous optimization problem. 

Challenge overview 

In the mid eighties, a meeting was organized 
between Inria and EdF R&D. The idea was to let 
EdF present some of their applications, to explore 
possible collaborations. Indeed, EdF has a long 
tradition of scientific work, in particular with 
academics. Their production optimization problem 
was presented among others. Its mathematical 
model was clearly established; even the relevant 
software existed, but the solution approach 
needed improvement. The mathematics at stake 
turned out to perfectly fit with Inria competences. 

Implementation of the initiative 

Collaborative work therefore started immediately. 
No difficulty appeared with administrative issues 
such as intellectual property or industrial 
confidentiality. It was a long-term research, so 
deadlines posed no problem either.  

The problem 

The solution approach is by decomposition: each 
power plant (EdF software) optimizes its own 
production on the basis of ``shadow prices'' 
remunerating it; these prices are iteratively 
updated (Inria software) so as to satisfy the 
balance equation. The working horse to compute 
the prices is a nonsmooth optimization algorithm. 
   

 

   

 
 

 

 

 

   
 

The difficulty was to join the EdF and Inria-
software. This turned out to be harder than 
expected. The model appeared as not mature 
enough and significant bugs were revealed. The 

project was basically abandoned and it is only in 
the mid nineties that intensive collaboration could 
resume on a renewed model.  

Results and achievements 

This time, the collaboration was successful and 
the new software became operational a few years 
later. This relatively long delay was due to 
necessary industrial requirements (mainly aimed 
at achieving reasonable reliability). Substantial 
improvements in cost and robustness were 
achieved. EdF is highly satisfied with this 
collaboration, which continues and will probably 
continue for many years. 
 
Current research focuses on developing more 
accurate models of the power plants, entailing 
more delicate price optimization. 
 
Several academic outcomes resulted from this 
operation: 
• to understand better and to improve highly 
sophisticated optimization methods; 
• to assess these methods in the “real world”, 
thereby introducing them for new applications; 
• to exhibit the practical merits of a mathematical 
theory (convex analysis, duality), generally 
considered so far as highly abstract (and taught 
as such in the university cursus). 

Lessons learned 

Beyond science and techniques, a lesson of this 
“success story” is that an academic-industrial 
collaboration should be undertaken with strong 
mutual esteem and confidence, in both directions. 
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Figure 1.1: Decomposition of large-scale unit-commitment problems by duality

This problem, having a huge industrial impact, is a great playground for my research in convex
analysis and optimization. I inherited this application from my PhD advisor Claude Lemaréchal;
I have contributed on several aspects presented below. I am proud to help in saving money (power
generating costs) and emission of pollution (CO2 and nuclear waste) everyday in France.

• Marginal price recovery (with Claude Lemaréchal). Dual variables computed by the nonsmooth
optimization algorithm are interpreted as marginal prices of generation schedules. A standard
convex optimization result states that dual optimal solution gives the derivative of the optimal
cost with respect to a variable demand [101]. However the EDF problem is not convex and is
modified by constraints penalizations. Questions then arise about the meaning of the computed
prices and their links with intrinsic prices. We produced an EDF internal research report on this
question in 2010. We also prepared with our EDF colleagues two popularization articles on this
successful application of optimization [93], [94].

• Stabilisation of prices (with Sofia Zaourar). Several combinatorial sub-problems of the elec-
tricity generation optimization problem cannot be solved exactly within strong time constraints.
The EDF nonsmooth optimization algorithm can efficiently handle these inexact computations
(that was the subject of a preceding contract with EDF). The issue comes from the inherent sen-
sibility of solutions computed by the inexact algorithm. We proposed a simple and cheap way
to get rid of this computational noise by adding a penalization term to control price variations.
As a result on real-life EDF problems, the new prices show 80% less of variation while staying
within the error margin of the inexact solution, see more in [Mal-10].

• Stochastic unit-commitment (with Wim van Ackooij). The next big step consisted of adding
uncertainty on the demand to capture in the model the impact of weather conditions on con-
sumption and generation by renewable sources (wind, sun). In the article [Mal-5], we develop
an innovative double decomposition (by units and by scenarios) of the resulting stochastic op-
timization problem that scales up to the large-scale heterogeneous instances of EDF (by using
the same numerical sub-routines as the deterministic version in use at EDF). Our current work
on this application is about investigating other stochastic models and associated algorithms,
including a robust optimization approach able to deal with complex forms of uncertainty [132].
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Fig. 4 Comparison of generation schedules given by our two-stage formulation and the deterministic one. a
Inflexible plant, b flexible plant, c hydro valley 1, d hydro valley 2

Table 3 Numerical results of the
algorithm versus its multi-cuts
version : ratio of the number of
iterations increase (iteration
increase), the difference of oracle
calls per stage normalized by the
total number of iterations for the
first stage (1st stage cost), and the
same difference for the second
stage (2nd stage cost)

Instance Heuristic Iteration
increase (%)

1st stage
cost (%)

2nd stage
cost (%)

Low CTI 30.0 3.66 1.95

CTD 33.3 −19.80 −5.11

RH 25.0 2.97 −1.96

allH −52.5 −9.42 −2.42

Medium CTI 44.4 0.36 6.13

CTD 330.0 4.44 −2.13

RH −38.5 0.82 1.45

allH 44.4 0.36 6.13

High CTI 52.6 −49.37 −12.61

CTD −22.2 −27.27 −6.14

RH 12.5 −1.44 0.60

allH 89.5 −50.61 −12.32

Average 45.72 −12.11 −2.20

123

Figure 1.2: Electricity generation under uncertainty: illustration of the transfer of generation from
an inflexible unit (left) to a flexible one (right) between the deterministic schedule (blue) and the
stochastic one (red)

I illustrate the latter point with a numerical experiment extracted from [Mal-5] on a stochastic unit-
commitment problem with real-life EDF data. The overall (two-stage) stochastic problem (with 50
scenarios) has 1,200,000 continuous variables, 700,000 binary variables, and more than 20,000,000
constraints – completely out of reach of existing (mixed-integer linear) solvers. Leveraging on its
two-stage structure, our double decomposition algorithm allows us to solve this giant problem in
reasonable time (i.e. with computing times comparable to those observed when solving deterministic
unit-commitment problems). It is interesting to observe the impact of uncertainty on the computed
schedules sent to units: some generation is transferred from inflexible but cheap units to expensive
but flexible units. See more information in [Mal-5], and other applications of optimization in the field
of energy in section 4.4.

1.2 Overview of my contributions

My research focus is on mathematical, algorithmic and computational aspects of optimization,
driven by problems from others domains or real-life applications. This section gives a bird-eye view
of my scientific contributions, grouped in three topics. It also contains some elements to evaluate the
impact of these contributions, and their rupture with previous state-of-the-art.

I have tried to make this section accessible to non-experts, i.e. computer scientists or mathe-
maticians, who have basic knowledge on operation research or optimization. For sake of brevity, I
have given very few references to the state-of-the-art; more complete discussions can be found in
corresponding articles.

1.2.1 Applied convex optimization

Convexity is a key property in optimization, and more generally in applied mathematics and en-
gineering, having taken on a prominent role akin to the one previously played by linearity3 . Convex
optimization, and in particular semidefinite optimization, is also used for studying and solving non-

3In an article in SIAM Review [157], R. Tyrrell Rockafellar, one of the most important researchers of the domain, wrote
"...in fact, the great watershed in optimization isn’t between linearity and nonlinearity, but convexity and nonconvexity."
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convex optimization problems. I present here my contributions in this area, with an emphasis on conic
and semidefinite optimization (which were my first themes of research).

Convex analysis for cut-generating functions The article [Mal-8] introduces a formal theory of
cut-generating functions, generalizing the famous Gomory’s cuts (whose use within mixed-integer
linear solvers reduced the computing times by a factor of 1000). Our theoretical analysis is strongly
supported by convex analysis through standard techniques and less-known properties. This research
was published in the top journal in theoretical operation research [Mal-8] and on of the most selective
conference in combinatorial optimization [Mal-31]. It is the topic of chapter 5 of this document.
Moreover, section 7.1 highlights some of the follow-up articles inspired by this work.

Conic optimization algorithms The main field of research in my early carrer was focused on a new
generation of projection-type algorithms for semidefinite optimization. After six years of research,
the chapter [Mal-34] of book Handbook of semidefinite, conic, and polynomial optimization gives a
synthetic overview of my four articles on this theme ([Mal-28], [Mal-27], [Mal-19] and [Mal-16]) to-
gether with some results that they have inspired to other researchers. In this paper, the results are put
in perspective, generalized to conic optimization, and illustrated by new applications in polynomial
optimization. Projection-type algorithms and applications quickly became an active and competi-
tive research theme: since my very first article [Mal-28] in 2004, more than 150 articles have been
published on this topic.

Applications of semidefinite optimization I have applied semidefinite optimization algorithms to
covariance matrices calibration. Such calibration problems appear in robust models for stock selec-
tion [Mal-28, Section 5], in stress testing of financial models [149], or in the construction of global
risk models from local ones – this last application was explicitly called “one of the biggest current
challenges in risk modeling” by [4]. The dual algorithm of [Mal-28] proposes an efficient response
to this challenge. I also considered applications in control, through the test of positivity of polynoms
[Mal-16], which is a generic relaxation of many linear and non-linear control problems [97]. My
paper with Didier Henrion [Mal-16] received the Charles Broyden prize of the best article of the year
2011 in the journal Optimization Methods and Software.

Semidefinite optimization for combinatorial optimization My main contribution on this subject
is the design of semidefinite optimization methods for exact resolution of combinatorial optimization
problems, through a sequence of papers: from the original idea [Mal-23], a basic deployment on a
special problem [Mal-13], a theoretical study of the new semidefinite relaxations in general [Mal-11],
the complete deployment of the approach on the simplest but the most competitive case (max-cut)
[Mal-7], a brief come-back to the special problem [Mal-4], and finally the development and distribu-
tion of the generic software [Mal-1]. The whole chapter 3 is devoted to this contribution.

1.2.2 Variational analysis: theory and algorithms

Variational analysis is a branch of applied mathematics that extends the methods arising from the
classical calculus of variations and convex analysis [158]. I have got interested in several questions in
nonsmooth analysis, in particular about spectral properties of matrix functions.

Structured nonsmooth optimization Despite powerful tools of variational analysis developed
since the 70s (see [156] in particular), the nonsmoothness is still a major difficulty of optimization.
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However a nonsmooth function often admits an underlying regularity that I exploited to establish the-
oretical properties or to design faster optimization algorithms [Mal-26], [Mal-24]. These two articles
reveal surprising connections between nonsmooth optimization algorithms and Riemannian optimiza-
tion algorithms, which were insightful for both sides of the connections.

Matrix manifold optimization Riemannian optimization has been emerging over the last decade
driven by various applications in robotics, vision, or medical imaging in particular. The article
[Mal-12] enlarges the field of potential applications by introducing practical tools for a key step of
these methods (retraction). We developped a theoretical framework to analyze known retractions and
to generate new ones by projection-like operations. The underlying ideas were inspired from recent
developments in nonsmooth optimization through the bridge revealed by [Mal-26].

Analysis and geometry of spectral functions and spectral sets The so-called spectral functions
and sets (defined only through properties of eigenvalues of matrices) frequently appear in engineering
sciences, in particular in signal and image processing. In application articles, properties of spectral
objects are often proved, by hand, for special cases. My work concerns with the automatic transfert
of variational properties to spectral functions [Mal-22] and the automatic transfert of smoothness to
spectral sets [Mal-9], [Mal-6] (presented in section 1.1.2). I also wrote a pedagogical article [Mal-15]
on variational properties of positive semidefinite matrices and sets of positive semidefinite matrices.

Nonconvex projection algorithms Alternating projection methods are very popular in imaging sci-
ences, but their theoretical study was restrained to convex settings. My contribution on this topic
was an original variational approach to prove local convergence of these methods, by-passing the
convexity-based arguments. Thus we got the first convergence analysis in a non-convex framework:
first in the smooth case [Mal-21] and then in a general case [Mal-20]. This topic is developed in
Chapter 6. Perspectives and related work are also discussed in section 7.1.

1.2.3 Optimization at work

My research has been driven, closely or indirectly, from applications in other scientific domains
or in industry and services. In particular, I have had the following four projects in direct contact with
applications. On each of these, my contributions stemming from my work and my "optimization"
point of view have led to original advances and have opened new perspectives.

Applications in machine learning and computer vision Challenging optimization learning prob-
lems have appeared with Big Data area. These learning problems are of huge scale but are also
strongly structured, often as a form of a composite objective function with "data-fidelity" term and a
"low-complexity" regularizer [54]. For example, the regularization by trace-norm (which is the sum of
the singular values of the involved matrix) enforces a low rank to optimal solutions, which is a natural
target in multi-class learning or collaborative filtering. In this case, existing (proximal) methods [24]
use at each iteration a singular value decomposition, too expensive in a large-scale setting.

We proposed in 2010 a first algorithm [Mal-33] that scales up to these large-scale learning prob-
lems with trace-norm regularization, by constructing low-rank iterates using only largest singular
value sub-computations. The links with Frank-Wolfe algorithm were later revealed by [92]. In the
meanwhile, we pushed further an application in computer vision: we improved each numerical block
of the algorithm to apply it to the image categorization challenge "imagenet". The algorithm scaled
up to tackle large scale problems in the three learning dimensions (number of examples, feature size,
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number of categories) and we obtained experimental results significantly better than competitive ap-
proaches. This work was accepted for a presentation in the most prestigious conference in computer
vision [Mal-32].

Applications in contact mechanics The simulation of mechanical dynamic systems where objects
are in contact and friction requires to solve equations with nonsmooth components. For instance,
when using the Coulomb’s friction law, these equations involve convex cones (second-order cones, or
ice-cream cones), that are treated by polyhedral approximations in the existing numerical software.
We proposed in [Mal-18] an approach to solve such computational mechanical problems by isolating
its part of convexity (to treat it apart by conic optimization) and reformulating the overall problem as a
fixed-point problem of a nonsmooth application. The new approach provides, first, a proof of existence
of a solution to the problem under natural assumptions [Mal-17] and, second, a numerical method to
solve the problem [Mal-18]. Numerical experiments on computer graphics problems showed that
this approach is surprisingly robust. It was embedded in the software Siconos, developed in my
former research team (Bipop at Inria Grenoble) and transferred to two French companies (EDF and
Schneider).

Applications in finance Practical implementation of financial mathematics reveals numerical un-
certainties that are not captured in the financial models (missing or perverted data, approximation
errors amplified by non-linearities...). Efficient and robust decision-making tools thus call for finan-
cial engineering developments based on optimization. Between 2007 and 2009, I helped the Grenoble
company RaisePartner in their software developments on these issues. In particular, my algorithm
[Mal-28] gives an efficient way to calibrate covariance matrices in the financial models, which is an
important problem in computational finance (as underlined in [4]).

Applications in electricity generation planning The electricity generation in France is managed by
the EDF’s nonsmooth optimization algorithm [74]. I have improved this algorithm on several aspects,
including a noise reducing technique [Mal-10] and a stochastic extension [Mal-5]. This important
industrial application is further discussed in section 1.1.3.

1.3 Overview of this document

This goal of this document is to give a global view of my work. The present chapter briefly
presents my research activities; the next chapter completes it with my other activities of researcher
(supervision, teaching, projects,...). The rest of the document develops four of my main contributions.
Finally, Chapter 7 concludes this work and draws some perspectives for the future.

A few criteria were used for picking a subset of contributions further detailed in the next chapters.
Basically, I chose to focus on a balanced set of self-contained results that are quite representative
of my research approach, while illustrating different facets and particularities of my contributions.
Chapters 3 and 4 are more algorithmic, about semidefinite algorithms of combinatorial optimization
and about nonsmooth optimization algorithms for energy optimization. Chapters 5 and 6 are more
mathematical, about convex analysis in discrete maths, and about variational analysis of non-convex
projections. I briefly review these contributions here in this section; interested readers should refer
to the corresponding chapters for a complete presentation to results, related work, and references.
Finally, I present follow-up research and perspectives on these topics in section 7.1.
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1.3.1 Semidefinite optimization for binary quadratic problems

Chapter 3 is the achievement of an ambitious research started in 2007 with Frédéric Roupin (Paris
XIII) on semidefinite optimization for quadratic problems with binary variables. These are combina-
torial optimization problems modeling standard graph theory problems (e.g. max-cut, max-clique,...)
and applications (e.g. in medecine [104], physics [125], computer vision [107]).

Since the 90s (see e.g. [84] and [141]), semidefinite optimization methods became an important
technique in combinatorial optimization, sustained by the generalization of interior points methods
from linear to convex optimization [140]. Despite the nice theory, the practical applications to solve
combinatorial problems have reached only partial success, due to the burden of heavy linear algebra
sub-computations in solvers. Until recent years, semidefinite programming has been mostly viewed as
a nice theoretical technique not really useful in practice in the context of combinatorial optimization.

Our research has showed that semidefinite optimization can indeed be used with great practical
efficiency in this context. Our contributions have been to introduce new semidefinite bounds and
to embed them efficiently within an exact resolution scheme. More specifically, the sequence of
contributions and the six associated papers have been the following.

• We first wanted to validate the whole approach on a specific problem. We chose the k-
cluster problem which consists in finding in a graph a subgraph of k nodes with the heaviest
weight. The first computational experiments (on relaxations [Mal-35] and on exact resolutions
[Mal-13]) were promising, as a basic implementation was already competitive with the state-
of-the-art [29].

• The article [Mal-11] presented our methodology in general: we introduced and studied a new
family of semidefinite bounds for general quadratic optimization problems with binary vari-
ables. This family of bounds shows an interesting property: we can manage the ratio of tight-
ness over computing time with a real parameter. When the parameter vanishes, the tightness
tends to the one of a standard semidefinite relaxation.

• We then focused on the most competitive special case, the max-cut problem, for which it existed
many results, test-problems, and an efficient semidefinite-based software [151]. This problem
is the "simplest" binary quadratic problem, in the sense that it has the simple formulation as an
unconstrained quadratic problem, which is a favorable situation for standard semidefinite relax-
ations and interior-point algorithms. With Nathan Krislock (post-doc with us in 2010-2012),
we came up in [Mal-7] with an efficient implementation of our bounds having an adaptative up-
dating rule of the tightness parameter and an automatic selection of strengthening inequalities.
Embedded within a branch-and-bound platform, it provides a complete software package that
outperforms the previous methods.

• We finally generalized each component of the previous max-cut algorithm to general binary
quadratic problems. We came up with the first (and so far unique) software based on semidef-
inite optimization to solve these problems to optimality. This software, called BiqCrunch, is
presented in Chapter 3, along with its basic ideas, its mathematics foundations, and tips to
efficiently use it. It has been successfully tested on a variety of combinatorial optimization
problems, such as k-cluster [Mal-4] and max-independent-set; see many results online at

http://lipn.univ-paris13.fr/BiqCrunch/

The code is publicly available online; a web interface and conversion tools are also provided.
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Figure 1.3: Illustration, on a max-cut problem (Beasley bqp250.6), of the semidefinite bounds pro-
duced by Biq Mac [151] vs ours. We see that our algorithm gets quickly in the zone of "tight" bounds
that could help to prune parts of branch-and bound tree. Drops in the curve correspond to updates of
the tightness parameter, see chapter 3.

1.3.2 Nonsmooth optimization with uncontrolled inexact information

Chapter 4 considers convex nonsmooth optimization problems where additional information with
uncontrolled accuracy is readily available. It is often the case when the objective function is itself the
output of an optimization solver, as for large-scale energy optimization problems tackled by decompo-
sition. This chapter studies how to incorporate the uncontrolled linearizations into bundle algorithms
in view of generating better iterates and possibly accelerating the methods. The article [Mal-2] pre-
sented in this chapter was the first to explicitly mention and study uncontrolled inexact information in
a context of bundle methods.

In this chapter, a convergence analysis of two (proximal and level) bundle algorithms using uncon-
trolled linearizations is developed. The technical difficulty was to handle excessive inexactness within
level bundle methods (in contrast with prox-bundle methods, where increasing the stepsize tackles ex-
cessive noise [113]). We proposed an original implicit noise attenuation rule, that gives asymptotic
convergence of the algorithm (without further boundedness assumption).

Numerical illustrations show that the bundle methods incorporating uncontrolled linearizations
can indeed speed up resolution for two stochastic optimization problems coming from energy opti-
mization (two-stage linear problems and chance-constrained problems in reservoir management). As
expected, the level bundle algorithm, fully exploiting the additional uncontrolled information in its
lower bound, works particularly well on these problems. Let us finally note that the numerical exper-
iments compare level and proximal bundle algorithms, whereas such comparisons are (surprisingly)
rare in the literature on nonsmooth optimization.
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A way to exploit uncontrolled information

For example: application to Kelley method (illustration)

Sofia Zaourar (INRIA) Uncontrolled info & nonsmooth optimization PGMO 2013 21 / 29Figure 1.4: Illustration of uncontrolled inexact linearizations. The inexact sub-linearizations at x1, x2

and x4 still improve the cutting-plane model (in red). We have convergence when the model incorpo-
rates enough controlled linearizations (as the exact linearization at x3)

1.3.3 Discrete analysis of cut-generating functions

Chapter 5 introduces the concept of "cut-generating functions" and develops a formal theory for
them, largely based on convex analysis. Cuts are a fundamental tool in mixed-integer programming,
and they have had an enormous practical impact on solvers. The theory of cut-generating functions
allows the development of a library of cuts that are independent of the structure of the problem on hand
and are cheap to generate. Gomory cuts, the most used cuts in commercial solvers, fit this framework
and indeed our theory is inspired by them.

More precisely, in this chapter, we consider the separation problem for sets X that are pre-images
of a given set S by a linear mapping X =

{
x ∈ Rn+ : Rx ∈ S

}
. Classical examples occur in integer

programming, as well as in other optimization problems such as complementarity. One would like
to generate valid inequalities that cut off some point not lying in X , without reference to the linear
mapping. To this aim, we introduce a concept "cut-generating functions" and we develop a formal
theory for them, based on convex analysis.

This chapter combines convex analysis and geometry: the study of cut-generating functions is
based on their intimate relation with the so-called "S-free" sets (see Figure 1.5 and a precise definition
Chapter 5). The article discloses several definitions for minimal cut-generating functions and maximal
S-free sets, and puts in perspective a number of existing works. The main result of the chapter
(Theorem 5.5.1) generalizes four prior results published in top journals in mathematical optimization
([68] [38][17] [18]).

Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick: Cut-generating functions
Mathematics of Operations Research xx(x), pp. xxx–xxx, c⃝200x INFORMS 7

they are convex when α ! β.

Taking r = 1 ∈ V in (13) imposes α " 1, while taking r = 1 + ε /∈ V (ε > 0) imposes α > 1/(1 + ε).
Altogether α = 1. On the other hand, letting r → −∞, the property βr " 1 imposes β ! 0.

Conversely, we easily see that, for any β ∈ [0, 1], the function

ρ(r) =

{
r for r ! 0
βr for r " 0

is sublinear and satisfies (13). Thus, the representations of V are exactly the functions of the form
ρ(r) = max {r,βr}, for β ∈ [0, 1].

This example suggests – and Lemma 3.2 will confirm – that nonuniqueness appears when V is un-
bounded. #

Example 1.2 is quite suitable for illustration, Figure 1 visualizes it for q = m = 2. The dots are the
set S = Z2 − {b}. The stripe V of the left part, called a split set , is used in the framework of disjunctive
cuts. Other neighborhoods can be considered, for example triangles (right part of the picture) as in [1].

V

SS

V

Figure 1: Two S-free sets for q = 2

With q = 1, no need for a picture and the calculations in Example 1.2 can be worked out. In this
case, X ⊂ Rn

+
is defined by a⊤x ∈ Z − b, i.e. (1) with r = −a and S = Z − {b}. The only possible S-free

neighborhoods of the origin are the segments r ∈ [−r−, r+] with

−f0 = ⌊b⌋ − b " −r− < 0 < r+ " ⌈b⌉ − b = 1 − f0 .

For a representation ρ of this segment, the equations ρ(r+) = 1 and ρ(−r−) = 1 fix in a unique way

ρ(r) =

{
r

r+
if r ! 0 ,

− r
r−

if r " 0 .

Choose the extreme values for r+ and r− to obtain

cj = ρ(−aj) =

{ aj

f0
if aj " 0 ,

−aj

1−f0
if aj ! 0 ,

which is just (7).

Finally, let us show how Gomory cuts (6) can be obtained as cgf’s.

Example 2.8 Still in Example 1.2, take q = m = 1; we want to separate the set defined by

n∑

j=1

ajxj + y = b , y ∈ Z , x ∈ Zn
+

from the origin (remember that b /∈ Z). This set has the form (1) with

q = n + 1 , R =

[
I

−a⊤

]
, S = Zn ×

(
Z − {b}

)
.

Introduce the vector π ∈ Rn+1 defined by

πn+1 := 1 and, for j = 1, . . . , n: πj :=

{
⌊aj⌋ if fj " f0 ,
⌈aj⌉ if fj > f0

Figure 1.5: Two S-free sets V for S = (−1
4 ,−1

4) + Z2

Working out unifying results in a general framework required original mathematical proofs,
largely based on geometric arguments. In particular, the chapter uses convex analysis results for
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support functions in an original way: notice that section 5.3 generalizes the correspondence between
support functions and gauge functions.

1.3.4 Variational analysis of alternating projections methods

The von Neumann’s method of "alternating projections" and its variants provide simple but effi-
cient tools to solve convex feasibility problems in engineering sciences. Such alternating projection
methods also make sense for nonconvex feasibility problems and have been used extensively (see the
references in the chapter or in [Mal-21]). In many applications, the linear convergence was observed
but not explained by the existing theory, restrained to the convex case. Aiming to explain the success
of the method in nonconvex settings, I studied during my post-doc at Cornell with Adrian Lewis the
special case of transversal smooth manifolds [Mal-21]. We developed original proof techniques based
on the variational analysis of nonsmooth coupling functions (rather than convex analysis tools as pre-
vious works). We then generalized these techniques to a more abstract nonconvex setting [Mal-20].
The convergence proof combines two ingredients (see Figure 6.1): a geometrical (transversality-like)
condition of the intersection, controlling the "angle" between the two sets at a point of the intersection,
together with a geometrical (convexity-like) property of one of the two sets, controlling the behaviour
of projections.

The "transversality" is connected to the idea of a finite collection of closed sets having "linearly
regular intersection" at a point, which is a central theoretical condition in variational analysis. We
show that it also has striking algorithmic consequences for the convergence of the alternating projec-
tion method, which converges locally to a point in the intersection at a linear rate associated with the
modulus of regularity of the intersection (see Theorem 6.5.1). As a consequence, in the case of sev-
eral arbitrary closed sets having linearly regular intersection at some point, the method of "averaged
projections" converges locally at a linear rate to a point in the intersection. Inexact versions of both
algorithms also converge linearly.

This work, in addition, sheds some new light on the correspondence between several notions of
conditioning for the feasibility problems, making connections between the sensitivity of solutions,
the smallest perturbations destroying regularity, and the speed of convergence of basic algorithms (as
illustrated on Figure 1.6).alternating projections + small angle
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Figure 1.6: Illustration of the idea of "conditioning" for feasibility problems with two linear spaces.
The drawn problem M ∩ N has a bad "condition number": (i) we have a weak error bound on the
distance to the intersection from the distances to each set (picture on the left), (ii) small perturbations
render the problem ill-posed (picture in the middle), and (iii) alternating projection converges with a
slow rate cos θ (picture on the right).
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Chapter 2

Curriculum

This chapter gathers some elements of curriculum vitae, updated in summer 2016. For more informa-
tion, visit my webpage:

http://ljk.imag.fr/membres/Jerome.Malick/

2.1 Short biography and distinctions

I am currently a CNRS “chargé de recherche” (CR1) at the Laboratoire Jean Kunztmann (LJK),
on the Grenoble campus, in the research team DAO.

My trajectory to this current situation has been as follows. I was a student of the Ecole Nor-
male Supérieure de Cachan (ENS Cachan) where I got the "agrégation" of mathematics1, and of the
engineering school of Grenoble ENSIMAG where I got a master in computer sciences and applied
mathematics. After an amazing summer internship with Michael Overton at NYU, I felt in love with
mathematical optimization, and I decided to make an PhD under the supervision of Claude Lemaréchal
(Inria, Grenoble). I defended my PhD in 2005; the two referees were Jean-Baptiste Hiriart-Urruty
(Université Paul Sabatier de Toulouse) and Adrian Lewis (Cornell University, US), and the president
of the PhD committee Anatoli Iouditski (Université Joseph Fourier de Grenoble). Then I did my post-
doc with Adrian Lewis at the Operation Research and Information Technologies department (ORIE)
of Cornell University. At the end of 2006, I joined LJK as a junior researcher (CR2) in a joint Inria-
LJK research team (Bipop). Since then, the split of my working time into the multiple facets of the
researcher job is as follows: scientific research 45%, supervision & teaching 25%, management of
research 20%, industrial relations & transfert 10%. The next sections describe these activities.

Let me quote below the scientific distinctions that I have received.

Second for CNRS bronze medal (2013) Every year, the committee of the “Section 6” of CNRS
awards one “bronze medal” to a researcher in the broad domain of theoretical information sci-
ences. I was proposed second for the bronze medal in 2013 by the committee.

Charles Broyden Prize (2011) Every year, the Charles Broyden prize is awarded to an outstanding
article in journal Optimization Methods and Software. In 2011, the paper [Mal-16] with Didier
Henrion was selected.

1The “agrégations” are ones of the most prestigious and selective civil service competitive examinations in France; the
"agrégation de mathématiques" consists in a series of written and oral exams in algebra, analysis and applied maths. I have
been eventually ranked 33th (over 320 admitted and out of 1584 candidates) at the agrégation of maths in 2002.

14

http://ljk.imag.fr/membres/Jerome.Malick/


Robert Faure Prize (2009) The French association of Operations Research (ROADEF, equivalent to
INFORMS in the US) awards every three years a prize to the most outstanding researcher under
35 years old. This prize has the name of Robert Faure, a pioneer of Operations Research in
France; see more information on the ROADEF website. It was a great pleasure and a honor for
me to receive this prize in 2009.

2.2 Supervision of young reseachers

I have (co-)supervised four post-doctoral students, four PhD students and six Master students. I
was strongly committed to each of these supervisions, for the pleasure to interact with young scientists
and the care of helping them to express their full abilities for research. Here I give some information
about what we did together and their current position.

Supervision of PhD students

• Simon Boulmier (started in Oct. 2016) – lower bounds within a local search solver

Simon is starting his PhD ("cifre" funding) while I am finishing this document. He is going to
work on exploiting bounding within a local search solver, called LocalSolver, and developed by
the company Innovation 24. I am looking forward to start this collaboration with them.

• Florent Bouchard (started in Oct. 2015) – Riemannian optimization for brainwave signals

The goal of the Florent’s PhD is to exploit brainwave signals correlated both in time and space,
for example when measures are captured on several persons simultaneously. The idea is to find
good formulations of this problem as riemannian optimization problems on matrix manifolds,
and to develop algorithms robust to the high ratio noise/signal.

Florent has two supervisors, an “applied” one(Marco Congedo, Gipsa-lab) and a “theoreti-
cal” one (myself). I am happy about how Florent entered in his PhD work; a first publication
[Mal-29] came out from his first year.

• Federico Pierucci (about to finish) – Nonsmooth optimization for machine learning

Typical machine learning problems, as collaborative filtering or multi-task classification, can be
formulated as large-scale optimization problems with a `1-penalty on the spectrum of matrices.
Conditional gradient algorithms then have good features to tackle them, but they require to
formulate problems with smooth losses. The goal of the Federico thesis is to extend these
algorithms to nonsmooth losses, using adapative smoothing techniques.

Zaid Harchaoui, Anatoli Iouditski and myself have been co-supervising the Federico’s PhD
work. An article [Mal-30] was accepted in the French conference in machine learning, and two
others are about to be submitted (to a statistics journal and to a numerical linear algebra journal).

• Sofia Zaourar (2011-2014) – Decomposition of large-scale problems

Realistic operations research applications lead to large-scale mixed-integer optimization prob-
lems out of reach from direct approaches. Some of these problems, as in network design for
example, can be treated by variable decomposition (also called Benders decomposition [83])
revealing an underlying nonsmooth optimization problem. The core of the Sofia’s PhD was
to design algorithmic accelerations of this decomposition, inspired from inexact level-bundle
methods, able to deal with discrete variables.
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I had witnessed Sofia becoming an inspired and independent researcher. Her PhD ended up
with one article alone, two articles together [Mal-10] [186], and one [Mal-2] with Welington
de Oliveira who was post-doc at that period. Sofia is now researcher at the Xerox European
Research center.

• Florent Cadoux (2006-2009) – Applications to mechanics

The numerical simulation of mechanical dynamical systems with contact and friction leads to
equations and inclusions involving the Coulomb cone (also called the second-order cone or ice-
cream cone in the optimisation community). The core of the Florent’s PhD was to tackle such
problem by extracting the underlying convexity and reformulate the problem as a fixed-point
of a nonsmooth operator. Numerical experimentation shows that this approach (using a conic
optimization engine) is suprisingly robust.

Official PhD advisors of Florent’s PhD were Claude Lemaréchal and Vincent Acary; I served
like complementary advisor on many aspects: research (we have two papers together), teaching
(Florent was my teaching assistant), and organisation (we organized the one-week workshop
CAOA2010). Florent is now INPG-ErDF researcher in optimization for electrical networks.

Supervision of post-docs

• Welington de Oliveira (2011-2012) – Nonsmooth optimization algorithms

The post-doc of Welington de Oliveira (student of Claudia Sagastizabal, Rio, Brazil) was funded
by the French company EDF and supervised by Claude Lemaréchal (Inria) and myself. We
delivered a code for their short-term electricity generation, and we were also able to conduct
academic research which ended up with two articles, one with Claude [60] and the other one
with Sofia and me [Mal-2]. Welington is currently assistant professor at Universidade do Estado
do Rio de Janeiro.

• Nathan Krislock (2010-2012) – Semidefinite optimization

I supervised the post-doctoral work of Nathan Krislock (student of Henry Wolkowicz, Univer-
sity of Waterloo, Canada) during two years. His stay allowed us to start the research and devel-
opment around our software BiqCrunch. The collaboration has brought three articles [Mal-7],
[Mal-4] and [Mal-1], and is still on-going: Nathan visited me 2 months in 2013 and in 2014.
Nathan is now assistant professor at North Illinois University, US.

• Miroslav Dudik (fall semester in 2010) – Spectral regularizers in learning

Zaid Harchaoui (at Inria Grenoble at this time) and myself invited Miro for a short post-doctoral
stay after his PhD at Princeton and before he gets hired by Yahoo Research. This stay was the
kick-off of my research on optimization algorithms for machine learning, which has led to two
articles [Mal-33] et [Mal-32].

• Marc Fuentes (2008-2009) – Numerical optimization

After his PhD with J.-B. Hiriart-Urruty (Toulouse), Marc joined Claude Lemaréchal and me to
work on proximal regularization of degenerate smooth optimization problems [Mal-14]. Ideas
developed during this post-doc have recently found a completely different application in learn-
ing [126]. Marc got an Inria research engineer position; he is now at Inria Bordeaux.
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2.3 Scientific responsibilities

Main scientific responsibilities

• Member of the board of GdR MOA (“Mathématiques de l’Optimisation et Applications”)
since 2012. Animation of the French community of continuous optimization, organization of
summer schools, and funding of workshops.

• Head of a new team at LJK, created in 2015: DAO (optimization and learning for data
science). I gathered 8 researchers of my lab LJK to make up this team with the goal of foster
exchanges, create emulation, tackle interdisciplinary challenges, and gain visibility on these
topics. The scientific positioning of the team is briefly discussed in section 7.3. More informa-
tion are on the website http://dao-ljk.imag.fr.

Other scientific responsibilities

• Associate Editor for Journal of Global Optimization, since 2010

• Member of the advisory committee of the group MODE (“Maths de l’Optimisation et de l’aide
à la DEcision”) of the french applied maths association (SMAI, equivalent to SIAM in the US),
since 2012

• Member of the Inria working group "Actions Incitatives" (2009-2011)
(selection and evaluation of projects funded by Inria)

• Member of four hiring committees: for an assistant professor in optimization/learning at Greno-
ble in 2013; for the two researchers INRA in learning at Paris in 2015; for an assistant professor
in optimization at Grenoble in 2015; for assistant professor in statistics at Grenoble in 2016.

• Member of PhD thesis committees

Jingwei Liang (Université de Caen Normandie) "Convergence rates of first-order operator
splitting methods" (2016)
Carmen Cardozo (Supélec, Paris-Saclay) "Optimisation of power system security with high
share of variable renewables" (2016)
Referee of the PhD of Alice Chiche (Paris VI) "Theory and algorithms for large-scale numer-
ical optimization problems. Applications to electricity generation managment" (2012)

Seminar, conference, and workshop organization I have co-organized the following 7 events (in
addition to those organized with GdR MOA). Click on the links in the pdf document to access to the
dedicated webpages.

• Workshop "Optimization and Statistical Learning" (one week) first edition OSL2013 and sec-
ond édition OSL2015

• Workshop TITAN "Large-scale inverse problems and optimization; Applications to image pro-
cessing and astrophysics" (2015)

• Grenoble Optimization Day GOD14 (2014)

• Workshop "Advanced optimisation methods and their applications to unit commitment in en-
ergy management" at EDF (2011)
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• Workshop "Convex Analysis, Optimization and Applications" CAOA2010 (I was Chair of both
scientific and organization committees)

• Workshop GeoLMI on the geometry and algebra of linear matrix inequalities GeoLMI2009

I have also coordinated the following three seminars and reading groups.

• OGre Seminar (Optimization, learning and applications at Grenoble) gathering people from
different Grenoble labs (LJK, LIG, Gipsa-lab, G-Scop, CEA, G2e-lab, Inria) (2015-present)

• Seminar of the teams BIPOP&CASYS of LJK (2007-2012)

• Inria reading group on optimisation and machine learning (2010-2011)

2.4 Teaching and popularization

Since my PhD, I have always taught (with pleasure!) more than 60 hours a year (except in 2006,
the year of my post-doc). I also wrote a teaching book (in French) with my two friends from ENS

Objectif Agrégation, V. Beck, J. Malick and G. Peyré
(published by Editions H&K, distributed by Vuibert)
First edition: August 2004, ISBN : 2 914010 58 3 (700 sold copies)
Second extended edition: August 2005, ISBN : 2 914010 92 3 (≥ 2200 sold copies)

I have taught courses at different levels (from undergraduate to graduate) in different universities
and engineering schools. In additional to traditional applied maths courses, I have introduced and
enhanced over time new courses closer to my research activities. My activities have covered the entire
teaching spectrum from elaborating the courses content, to practical lab manipulations, and exams.

• Numerical Optimisation (2007-present) I am in charge of teaching continuous optimization at
the Grenoble Engineering School ENSIMAG. The Master1 course consists of around 65 hours
(lectures and exercises on tables or machines) and is taken by around 100 students at each fall
semester. According to the students’ assessment in 2014, the course got the best grade among
comparable courses2.

• Mathematical programming and industrial applications (2013, 2014, and 2015) In the
Grenoble master of Computer Science, major operation research and combinatorics (around
15 students).

• Optimization and convexity (2011) Intensive course (40 students, 24h concentrated in one
week!) in the computer science master program of ENS Lyon

• Optimization for finance (2010) Applied optimization course (18h) for Master 1 students in
financial mathematics at ENSIMAG

• Teaching assistant in applied maths at Grenoble University (2003-2005). I mainly taught anal-
ysis in Licence for 64h/y.

2More specifically, it was ranked best course among mandatory courses by the students in financial mathematics, and
best course among optional courses by students in applied maths)
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Three new courses will start in fall/winter 2016 : Stochastic Optimization (in the Master of Computer
Science of Grenoble), Numerical linear algebra and optimization (in the Master of Applied Maths of
Grenoble), Convex and Distributed Optimization (in the major Data Science common to the Master
of Applied Maths and the Master of Informatics of Grenoble).

I have also had some activities at destination to a broader audience; I have tried to promote convex
optimization and convex analysis as soon as I had the opportunity :)

• Preparation of an exam for the competitive entrance to ENS Cachan in 2012 (available on line,
click here on the pdf document)

• Two popularization articles on the optimization of electricity generation:

– to the optimization community: the paper [94] explains the "unit-commitment" problem
at EDF the French electricity Board; it was published in the newsletter de Mathematical
Optimization Society.

– to a broader audience: the paper [93] explains the "success story" of the collaboration
between Inria/CNRS and EDF; it was published by European Science Foundation in a
book Mathematics and Industry: success stories.

• Invited speaker at the "colloque inter-académique des inspecteurs de maths" (2009)
I gave a tribute-lecture to convex analysis at this workshop gathering persons in charge of maths
programs and teachers evaluation in french high-schools.

• Article [130] in the newsletter of the french operation research community (2009).

2.5 Projects, fundings, and industrial contacts

Research projects

• Leader of a “PGMO” project (Gaspard Monge Program for Optimization) called "advanced
nonsmooth optimization methods for stochastic programming" (2016). I have gathered a task-
force of 4 colleagues on the application of modern nonsmooth optimization to tackle large-scale
stochastic optimization problems.

• Leader of project TITAN of the CNRS “Mastodons” Big Data Challenge (2015). The topic
of the project was optimization and learning with a special interest to image reconstruction in
astro-physics. I was the scientific coordinator of the project involving 36 researchers over 8
laboratories (in applied maths, computer science, and signal processing). Several follow-up
projects emerged from generated interactions.

• Coordinator for my lab of the ANR Project GeoLMI (2011-2015). This project focused on
polynomial optimization, and included 15 persons from 6 laboratories. I was coordinator for
my lab, and in charge of the task “semidefinite programming algorithms”.

• Leader of a Math-STIC project "LMI-SDP-2" funded by University Grenoble Alpes (2009-
2011). This ambitious project aimed at developing a new generation of semidefinite program-
ming tools for control an combinatorics; it gave birth to the software biqcrunch. The funding
supported the post-doctorial stays of Miro Dudik (Microsoft Research, NYC) et Nathan Kris-
lock (Waterloo University, Canada).
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• Leader of a GdR RO (Recherche Opérationnelle) project (2009, renewed in 2010). This small
project with 4 persons was the start of the work on exact resolution of hard combinatorial
optimization problems.

• I was an active member of the following projects:

Project "Gargantua" of CNRS (2013, renewed in 2014)
Topic: Big Data Optimization

– Khronos team of the LabEx Persyval-Lab (2014-2017)
Topic: Learning and time series

– “PGMO” project "Consistent Dual Signals and Optimal Primal Solutions" (2012-2015)
Topic: decomposition of large-scale unit-commitment optimization problems

– Project "Parsimat" funded by Grenoble University Alpes (2012-2013)
Topic: Matrix learning with spectral sparsity

– ANR project "SalaDYN" (2009-2011)
Topic: Numerical simulation of mechanical dynamical systems

– Two CNRS "PEPS" projects : "GeoLMI" (2009-2010) et "Autoélèmi" (2010-2011)
Topic: Geometry of semidefinite optimization and applications to control

– Project “CARESSE” funded by Grenoble University Alpes (2008-2010)
Topic: Graphs and dynamical networks

– ANR project “Guidage” (2005-2008)
Topic: Optimization and control for mechanics and aeronautics

Consulting activity: robust optimization for Finance I was consultant for the start-up RaisePart-
ner which provides software and expertise on numerical quantitative finance. I worked for them one
day per week during two years between 2007 and 2009. I helped them setting up robust decision-
making tools embedded in their products.

Main industrial collaboration: Optimization of EDF electricity generation park In 2009 with
Claude Lemarechal getting close to retirement, I took the lead of the collaboration with EDF. I was
in charge of two contracts with EDF (in 2009 and 2010). Since 2012, the collaboration fits in the
Program Gaspard Monge for Optimization (PGMO) framework with two projects (in 2012 and 2016).

The EDF electricity generation optimization problem is important industrial problem whose so-
lution involved much convex analysis and optimization [74]. I contributed on various aspects: EDF
internal research (with a report on marginal prices with C. Lemaréchal in 2010); improvement of their
operational algorithm ( the supervision of a master student and post-doc); academic research oriented
to energy applications ([Mal-10], [Mal-2], [Mal-5]). This resulted in helping EDF in saving money
(power generating costs) and emission of pollution (CO2 and nuclear waste). See more in section 1.2.

2.6 Publications

Here are the list of my articles published in journals and the list of publications in books or refereed
proceedings of conferences. In the two categories, the publications are ranked in inverse chronological
order. These publications are available, as preprint, on the French open access archive HAL. Links to
my HAL entries and my Google Scholar profile are on my webpage

http://ljk.imag.fr/membres/Jerome.Malick/publis.html
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I briefly present in the previous chapter 1 of this document all these 35 publications in an overview of
my research work. In next chapters 3, 4, 5, and 6, I discuss further only 10 of these articles.

Published papers

[Mal-1] N. Krislock, J. Malick, and F. Roupin. Biqcrunch: a semidefinite branch-and-bound
method for solving binary quadratic problems. To appear in ACM Transactions on Math-
ematical Software, 2016.

[Mal-2] J. Malick, S. Zaourar, and W. Oliveira. Uncontrolled inexact information within bundle
methods. To appear in EURO Journal on Computational Optimization, 2016.

[Mal-3] W. van Ackooij and J. Malick. Second-order differentiability of probability functions. To
appear in Optimization Letters, 2016.

[Mal-4] N. Krislock, J. Malick, and F. Roupin. Computational results of a semidefinite branch-and-
bound algorithm for k-cluster. Computers and Operations Research, 66:153–159, 2016.

[Mal-5] W. van Ackooij and J. Malick. Decomposition algorithm for large-scale two-stage unit-
commitment. Annals of Operations Research, 238(1):587–613, 2016.

[Mal-6] A. Daniilidis, J. Malick, and H. Sendov. Spectral (isotropic) manifolds and their dimen-
sion. Journal d’Analyse Mathématique, 128(1):369–397, 2015.

[Mal-7] N. Krislock, J. Malick, and F. Roupin. Improved semidefinite bounding procedure for solv-
ing max-cut problems to optimality. Mathematical Programming, 143(2):61–86, 2014.

[Mal-8] M. Conforti, G. Cornuéjols, A. Daniilidis, C. Lemaréchal, and J. Malick. Cut-generating
functions and s-free sets. Mathematics of Operations Research, 40, 2014.

[Mal-9] A. Daniilidis, J. Malick, and H. Sendov. On the structure of locally symmetric manifolds.
Journal of Convex Analysis, 22, 2014.

[Mal-10] S. Zaourar and J. Malick. Prices stabilization for inexact unit-commitment problems.
Mathematical Methods of Operations Research, 78(3):341–359, 2013.

[Mal-11] J. Malick and F. Roupin. On the bridge between combinatorial optimization and nonlinear
optimization: a family of semidefinite bounds for 0-1 quadratic problems leading to quasi-
newton methods. Mathematical Programming B, 140(1):99–124, 2013.

[Mal-12] P.-A. Absil and J. Malick. Projection-like retractions on matrix manifolds. SIAM Journal
on Optimization, 22(1):135–158, 2012.

[Mal-13] J. Malick and F. Roupin. Solving k-cluster problems to optimality with semidefinite pro-
gramming. Mathematical Programming B, 136:279–300, 2012. Special issue on Mixed-
Integer Nonlinear Programming.

[Mal-14] M. Fuentes, J. Malick, and C. Lemarechal. Inexact proximal algorithms for differentiable
optimization. Computational Optimization and Applications, 53:755–769, 2012.

[Mal-15] J.-B. Hiriart-Urruty and J. Malick. A fresh variational-analysis look at the posi-
tive semidefinite matrices world. Journal of Optimization Theory and Applications,
153(3):551–577, 2012.
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[Mal-16] D. Henrion and J. Malick. Projection methods for conic feasibility problems; application to
sum-of-squares decompositions. Optimization Methods and Software, 26(1):23–46, 2011.

[Mal-17] F. Cadoux and J. Malick. Existence of a fixed point of a nonsmooth function arising in
numerical mechanics. Set-Valued Analysis and Variational Analysis, 18(4), 2010.

[Mal-18] F. Cadoux, J. Malick, V. Acary, and C. Lemarechal. A formulation of the linear discrete
coulomb friction problem via convex optimization. ZAMM (Zeitschrift für Angewandte
Mathematik und Mechanik), 94(2), 2010.

[Mal-19] J. Malick, J. Povh, F. Rendl, and A. Wiegele. Regularization methods for semidefinite
programming. SIAM Journal on Optimization, 20(1):336–356, 2009.

[Mal-20] A. Lewis, D. Luke, and J. Malick. Local linear convergence for alternating and averaged
nonconvex projections. Foundations of Computational Mathematics, 9:485–513, 2009.

[Mal-21] A.S. Lewis and J. Malick. Alternating projections on manifolds. Mathematics of Opera-
tions Research, 33(1):216–234, 2008.

[Mal-22] A. Daniilidis, A. Lewis, J. Malick, and H. Sendov. Prox-regularity of spectral functions
and spectral sets. Journal of Convex Analysis, 15(3), 2008.

[Mal-23] J. Malick. Spherical constraint in Boolean quadratic programming. Journal of Global
Optimization, 39(4), 2007.

[Mal-24] A. Daniilidis, W. Hare, and J. Malick. Geometrical interpretation of proximal-type algo-
rithms in structured nonsmooth optimization. Optimization, 55(5):481–503, 2006.

[Mal-25] A. Daniilidis and J. Malick. Filling the gap between lower-C1 and lower-C2 functions.
Journal of Convex Analysis, 12(2), 2005.

[Mal-26] J. Malick and S.A. Miller. Newton methods for convex minimization : connection
among U-lagrangian, Riemannian Newton and SQP methods. Mathematical Program-
ming, 104(3), 2005.

[Mal-27] J. Malick and H. Sendov. Clarke generalized Jacobian of the projection onto the cone of
positive semidefinite matrices. Set-Valued Analysis, 14(3):273–293, 2006.

[Mal-28] J. Malick. A dual approach to semidefinite least-squares problems. SIAM Journal on
Matrix Analysis and Applications, 26, Number 1:272–284, 2004.

Book chapters, conference proceedings

[Mal-29] F. Bouchard, L. Korczowski, J. Malick, and M. Congedo. Approximate Joint Diagonal-
ization within the Riemannian Geometry Framework. European Signal Processing Con-
ference (Eusipco), 2016.

[Mal-30] F. Pierucci, Z. Harchaoui, and J. Malick. A smoothing approach for composite conditional
gradient with nonsmooth loss. Conférence française d’apprentissage CAp, 2013. Research
Report RR-8662, INRIA Grenoble, July 2014.
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[Mal-31] M. Conforti, G. Cornuéjols, A. Daniilidis, C. Lemaréchal, and J. Malick. Cut-generating
functions. In Michel Goemans and Jose Correa, editors, Integer Programming and Combi-
natorial Optimization (IPCO), volume 7801 of Lecture Notes in Computer Science, pages
123–132. Springer Berlin Heidelberg, 2013.

[Mal-32] Z. Harchaoui, M. Douze, M. Paulin, M. Dudik, and J. Malick. Large-scale classification
with trace-norm regularization. IEEE Conference on Computer Vision & Pattern Recogni-
tion (CVPR), 2012.

[Mal-33] M. Dudik, Z. Harchaoui, and J. Malick. Lifted coordinate descent for learning with trace-
norm regularization. International Conference on Artificial Intelligence and Statistics
(AISTATS), 2012.

[Mal-34] D. Henrion and J. Malick Projection methods in conic optimization. Chapter of the
Handbook of semidefinite, conic and polynomial optimization, edited by M. Anjos and J.B.
Lasserre. Springer, International Series in Operations Research & Management Science,
volume 166, 2012.

[Mal-35] J. Malick and F. Roupin. Numerical study of semidefinite bounds for the k-cluster problem.
In Electronics Notes of Discrete Mathematics, pages 399–406. Elsevier, 2010. ISCO’10,
International Symposium on Combinatorial Optimization.

Co-authors All the above publications are the results of a team work with colleagues or students:

• researchers in French universities or research units:

Vincent Acary (research associate – Inria Grenoble)
Vincent Beck (assistant professor – Orléan University)
Florent Cadoux (researcher – Grenoble)
Marco Congedo (researcher – CNRS Grenoble)
Marc Fuentes (research engineer – Inria, Bordeaux)
Didier Henrion (senior researcher – LAAS CNRS)
Jean-Baptiste Hiriart-Urruty (professor – Université de Toulouse)
Claude Lemaréchal (senior researcher – Inria Grenoble)
Gabriel Peyré (senior researcher – ENS Ulm, Paris)
Frédéric Roupin (professor – Paris XIII)

• researchers in foreign universities

Pierre-Antoine Absil (professor – Université de Louvain-la-Neuve, Belgique)
Michele Conforti (professor – Université de Padova, Italie)
Gérard Cornuéjols (professor – Carnegie Mellon University, USA)
Aris Daniilidis (professor – Universidad de Chile)
Zaid Harchaoui (professor – University of Washington, US)
Warren Hare (professor – University of British Columbia)
Nathan Krislock (assistant Professor – University of North Illinois)
Adrian Lewis (professor – Cornell University)
Russel Luke (professor – Göttinberfg Universität, Germany)
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Welington de Oliveira (assistant professor – Universidade do Estado do Rio de Janeiro)
Janez Povh (assistant Professor – Maribor, Slovenia)
Franz Rendl (professor – Universität Klagenfurt)
Hristo Sendov (professor – London University)
Angelika Wiegele (assistant Professor – Universität Klagenfurt)

• researchers in compagnies

Wim van Ackooij (researcher – EDF)
Mathijs Douze (researcher – Facebook, France)
Miroslav Dudik (researcher – Microsoft Research, NYC, USA)
Grace Hechme-Doukopoulos (researcher – EDF Research, France)
Sandrine Brignol-Charousset (head of PGMO, France)
Scott Miller (researcher – Numerica Corp., USA)
Sophie Volle (CEO of RaisePartner SAS)
Sofia Zaourar-Michel (researcher – Xerox European Research Center)

I wish to acknowledge at this occasion the passion and talent they have put in our joint work. I have
learn a lot, interacting with them (and not only about science !). I am aware of this luxury of our job:
we can choose those you want to work with.

24



Chapter 3

Semidefinite optimization for binary
quadratic problems

This chapter is the achievement of a line of research started in 2007 with Frédéric Roupin (Paris
XIII) on semidefinite optimization for quadratic problems with binary variables. More precisely, this
chapter corresponds to the article [Mal-1] with Frédéric Roupin and Nathan Krislock (now at North
Illinois University) to appear in ACM Transaction on Mathematical Software, augmented with short
parts of [Mal-11], [Mal-7], and [Mal-4].

3.1 Introduction: binary quadratic problems and solvers

3.1.1 Binary quadratic optimization problems

We consider binary quadratic optimization problems, i.e., (nonconvex) optimization problems
with a quadratic objective, quadratic constraints, and 0–1 variables. A binary quadratic problem with
mI inequality constraints and mE equality constraints has the following mathematical formulation:





maximize zTS0z + sT0 z
subject to zTSiz + sTi z ≤ ai, i ∈ {1, . . . ,mI}

zTSiz + sTi z = ai, i ∈ {mI + 1, . . . ,mI +mE}
z ∈ {0, 1}n

(3.1)

where the Si’s are real symmetric n × n matrices (possibly Si = 0), the si’s are vectors in Rn,
and the ai’s are real numbers. Many optimization problems in the sciences, operations research, or
engineering are expressed as binary quadratric problems, such as, in medicine [104], in physics [125],
in space allocation [7], in computer vision [107], or in computational biology [76].

Three examples of classical combinatorial optimization problems that can be expressed as prob-
lem (3.1) are Max-Cut, Max-k-Cluster, and Max-Independent-Set. In the Max-Cut problem (see, e.g.,
[84, 151]), we are given an edge-weighted graph with n vertices, and the objective is to maximize
the total weight of the edges between a subset of vertices and its complement; this problem can be
stated as:

(Max-Cut)
maximize

∑
ij wijzi(1− zj)

subject to z ∈ {0, 1}n.
(3.2)

In the Max-k-Cluster problem, we are given an edge-weighted graph with n vertices and a natural
number k, and the objective is to find a subgraph of k nodes having maximum total edge weight; this
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problem can be stated as:

(Max-k-Cluster)
maximize 1

2

∑
ij wijzizj

subject to
∑n

i=1 zi = k
z ∈ {0, 1}n.

(3.3)

In the Max-Independent-Set (MIS) problem (see, e.g., [187]), we are given a graph G = (V,E) with
vertex weights wi, and the objective is to maximize the total weight of the vertices in an independent
set (a set S of vertices having no two vertices joined by an edge in E); this problem can be stated as:

(MIS)
maximize

∑
iwizi

subject to zizj = 0, ∀(i, j) ∈ E
z ∈ {0, 1}n.

(3.4)

These three problems, and more generally binary quadratic problems, are NP-hard and are often
difficult to solve in practice.

This chapter introduces BiqCrunch, an exact solver for general binary quadratic (biq) optimization
problems. Extensive numerical experiments show that BiqCrunch is the current state-of-the-art for
several difficult binary quadratic optimization problems. The source code is available online and
distributed under the GNU General Public License, version 3.

The remainder of the introduction sketches the existing solvers and the contributions of
BiqCrunch. The mathematical foundations of BiqCrunch are presented in Section 3.3, its algorith-
mic description in Section 3.4, and finally advanced techniques for improving its performance in
Section 3.5. Further information is available on the BiqCrunch website:

http://lipn.univ-paris13.fr/BiqCrunch/

3.1.2 Existing solvers for binary quadratic optimization

Binary quadratic programming is included in the broader class of mixed-integer nonlinear pro-
gramming [43, 44, 56]. Thus problem (3.1) could be handled directly by using mixed-integer non-
linear programming solvers, such as the commercial solvers BARON [161], LocalSolver, Gurobi,
and IBM/CPLEX, as well as the noncommercial solvers SCIP [1] and Bonmin [35]. However these
mixed-integer nonlinear programming solvers do not fully exploit the quadratic form of the objective
function and the constraints in problem (3.1), except in preprocessing phases.

In contrast, another widely used technique for solving binary quadratic problems is to add lin-
earization variables to formulate problem (3.1) as a binary linear programming problem; see, e.g.,
[167]. The advantage of this approach is the possibility of using all the available efficient tools for
integer linear programming. However, for hard combinatorial problems, it is often necessary to go be-
yond standard linear bounds and work with tighter bounds. For example, for graph problems that are
very sparse, linear-based solvers that take advantage of the sparsity and the geometric properties of un-
derlying problems usually perform well; however for small dense problems, they can perform poorly.

The quadratic nature of the objective function and the constraints of problem (3.1) implies that we
can use semidefinite relaxations of problem (3.1) to get tight bounds (see, e.g., [84, 121, 147, 168]).
Currently, there are three types of semidefinite-based solvers for binary quadratic problems. The
first type is semidefinite branch-and-bound methods specialized for solving specific subclasses of
problems (3.1), such as the semidefinite solver of [9] for graph bisection problems, and the Biq Mac
solver of [151] for the Max-Cut problem (3.2). The second type of semidefinite-based solvers is the
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quadratic convex reformulation for mixed-integer quadratic problems [29, 30, 81] which uses semidef-
inite bounds at the root node to give a boost to linear programming based branch-and-bound methods.

The third type of semidefinite-based solvers are standard branch-and-bound methods replacing
linear programming solvers with semidefinite programming solvers, such as SCIP-SDP [82, 131].
SCIP-SDP solves general mixed-integer semidefinite programming (MISDP) problems, which implies
that it is able to solve generic binary quadratic problems after making a suitable transformation of
the problem to an MISDP. SCIP-SDP uses a standard branch-and-bound approach where bounds are
obtained by solving the SDP relaxation that is obtained by simply relaxing the integer constraints—
this SDP relaxation is then solved by a standard SDP solver, such as an interior-point method. SCIP-
SDP must use several safe-guards against failures to solve the SDP relaxation due to the loss of
strict feasibility that can occur when branching, and is limited to solving only small to medium-
sized problems.

3.1.3 BiqCrunch, a free solver for binary quadratic problems

In this chapter, we introduce BiqCrunch, an open-source code for solving binary quadratic opti-
mization problems to optimality. BiqCrunch is a branch-and-bound algorithm using generic or specific
heuristics to compute lower-bounds and an original adaptive bounding procedure to compute upper-
bounds. The bounding procedure automatically adjusts several parameters to efficiently produce a
wide range of tightness levels from rough bounds to tight semidefinite-quality bounds.

BiqCrunch is of particular interest for solving hard problems which are very difficult to solve
using linear-bounds. BiqCrunch therefore complements the currently available software packages
mentioned in the previous section. Generally speaking, the set of problems for which linear-bounds
underperform are the problems best-suited for the BiqCrunch solver. Compared to other semidefinite-
based solvers, BiqCrunch offers a flexible and efficient bounding procedure that can produce a range
of bounds with a varying degree of tightness.

The BiqCrunch solver is available as:

• an open-source code for solving problem (3.1);

• specific versions of the software for different standard combinatorial problems;

• a simple online interface.

The BiqCrunch solver is written in C (and uses a Fortran library). The distribution also includes
converters and heuristics written in C and Python. The code is developed using established numer-
ical tools, namely: basic linear algebra functions in LAPACK [3] or the Intel Math Kernel Library
(MKL), the nonlinear optimization routine L-BFGS-B [133, 188], and the branch-and-bound plat-
form BOB [55].

We have conducted extensive computational tests on classical NP-hard combinatorial problems,
known to be difficult to solve even for many medium-sized instances. As discussed the results in sec-
tion 3.6, the computational results provide strong evidence that BiqCrunch is among the best solvers
for solving to optimality combinatorial optimization problems.

3.1.4 Outline of the chapter

The material of this chapter accompanies the public release of the BiqCrunch code by providing
a complete description of the solver and how to use it. We first present some basic information and
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examples on how to use BiqCrunch in Section 3.2; a complete description is available in the user man-
ual that is distributed with BiqCrunch. The mathematical foundations of BiqCrunch are presented in
Section 3.3 where we will recall the standard strengthened semidefinite bounds for problem (3.1) and,
motivated by the desire to have semidefinite quality bounds without the inherent computational cost
of the standard bounds, we will describe the original semidefinite bounds that are used in BiqCrunch.
The two main algorithmic ingredients are then described in Section 3.4: the generic heuristic for com-
puting feasible solutions (i.e., lower bounds) and the efficient procedure for computing upper bounds.
In addition, we provide an analysis of the theoretical convergence of the semidefinite bounding pro-
cedure. n In Section 3.5, we discuss the parameters of the code and the advanced use of BiqCrunch.
Finally, we report some numerical comparisons in Section 3.6.

3.2 BiqCrunch in practice, examples, illustrations

The latest version of the BiqCrunch code is available from the BiqCrunch webpage. Installation
instructions are included with the source code. We have made the installation straightforward, only
requiring a C compiler, a Fortran compiler, and either LAPACK or the Intel MKL.

Once BiqCrunch has been installed, it can be run from the command-line as follows.

$ biqcrunch [-v 1] <INSTANCE> <PARAMETERS>

The optional parameter -v is the verbosity; <INSTANCE> is the input file in the BiqCrunch format;
<PARAMETERS> is a parameters file which can be one of the files provided with the code, or a user’s
own file.

This section provides some information about the format of the input file (in Section 3.2.1) and
examples on how to use BiqCrunch (in Sections 3.2.2 and 3.2.3). We refer to the user manual for
complete information on installing and running BiqCrunch, and to Section 3.5 for a discussion of the
parameters.

3.2.1 Matrix formulation and input file format

We describe briefly here the matrix formulation of the binary quadratic problem (3.1) on which
the BiqCrunch input file format is based. First we introduce the usual inner product of two matrices
and the associated norm (sometimes called the Frobenius norm), respectively defined by

〈X,Y 〉 = trace(XTY ) =
∑

ij

XijYij and ‖X‖F =
√
〈X,X〉 =

√∑

ij

X2
ij .

Since zTSiz = 〈Si, zzT 〉, this inner product allows us to rewrite the quadratic terms zTSiz + sTi z of
problem (3.1) as linear terms 〈Qi, Z〉 where

Z =

[
zzT z
zT 1

]
and Qi =

[
Si

1
2si

1
2s
T
i 0

]
.

Thus, the binary quadratic problem (3.1) can be reformulated as:




maximize 〈Q0, Z〉
subject to 〈Qi, Z〉 ≤ ai, i ∈ {1, . . . ,mI}

〈Qi, Z〉 = ai, i ∈ {mI + 1, . . . ,mI +mE}
Z =

[
zzT z
zT 1

]
, z ∈ {0, 1}n .

(3.5)
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Note that the objective function and the constraints are now linear with respect to Z, and that the only
non-convexity of the problem lies in the form of Z, which is a rank-one matrix with 0–1 entries.

BiqCrunch requires the objective value of (3.5) to be integer for any feasible solution. This cor-
responds to having integers on the diagonal of Q0 and integers divided by two on the off-diagonal
entries of Q0. BiqCrunch takes advantage of this feature by pruning the branch-and-bound search tree
when the computed bound is strictly less than β+ 1, where β is the objective value of the current best
feasible solution; see Section 3.4.1. To use BiqCrunch with fractional data, one should first multiply
the coefficients by the smallest common denominator to make them integers.

The matrix formulation in problem (3.5) is used in the input format of the solver. The BiqCrunch
format is similar to the widely used sparse SDPA format in semidefinite optimization; see [181].
Roughly speaking, it consists of specifying general parameters (m, n, type of constraints, etc.) and
describing the matrices Qi in a sparse matrix format. The BiqCrunch solver stores the input problem
matrices in this sparse format in memory to keep its memory requirements small. The main difference
between the BiqCrunch format and the sparse SDPA format is that the first line of a BiqCrunch input
file indicates if the problem is a maximization problem (using +1) or a minimization problem (using
−1). Moreover the BiqCrunch format uses a block of size n+ 1 to represent the positive semidefinite
matrix and a diagonal block of slack variables (for inequality constraints). The BiqCrunch file format
is fully described and illustrated in the user manual. We also give an example in the next section.

To write a BiqCrunch file, a user would need to have a good understanding of the SDP relaxation
and how to write it in SDPA format. This was a major barrier to being able to use BiqCrunch before
we created an lp2bc converter. To simplify the use of BiqCrunch, we provide two types of converters
to the BiqCrunch format:

1. A converter from the so-called LP format to the BiqCrunch format: lp2bc.

2. Specific converters for each problem class; for example mc2bc to convert Max-Cut problems
and kc2bc to convert Max-k-Cluster problems.

These conversion tools are described in the user manual. In the next two sections, we give examples of
the use of BiqCrunch to solve a generic problem specified in the LP format, and a Max-Cut problem
specified in a standard sparse format.

Let us emphasize that BiqCrunch works directly on problem (3.5) given by theQi’s and ai’s. This
is in contrast with CPLEX (version 12.1) and Gurobi (version 5.6), which both preprocess the entries
and in particular convexify binary quadratic problems to work with positive semidefinite matrices.
Such automatic reformulations or convexifications are not always efficient as they can negatively
affect the solution process. (Smarter convexifications use semidefinite optimization, as exploited in
[29, 30]). In BiqCrunch there is no reformulation phase and no data preprocessing phase. The user
has complete control over the problem and the way it is modeled. We give some advice on how to
enhance the problem formulation in Section 3.5.3.

3.2.2 Example with the LP converter

We give an illustration of running BiqCrunch on a simple test problem, using the converter
from the human-readable LP format of IBM/CPLEX to the BiqCrunch format. Consider the binary
quadratic problem 




maximize z1z2 + 2z1z3

subject to z1 + z2 + z3 ≤ 2
(z1, z2, z3) ∈ {0, 1}3
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whose optimal solution is (1, 0, 1). We describe this problem in the LP format as a file called
example.lp containing the following lines:

maximize
z1*z2 + 2 z1*z3

subject to
z1 + z2 + z3 <= 2

binary
z1 z2 z3

end

The lp2bc converter is called by the command line

$ lp2bc.py example.lp > example.bc

and generates the following file in BiqCrunch format:

# List of binary variables:
# 1: z1
# 2: z2
# 3: z3
1 = max problem
1 = number of constraints
2 = number of blocks
4, -1
2.0
0 1 1 2 0.5
0 1 1 3 1.0
1 1 1 4 0.5
1 1 2 4 0.5
1 1 3 4 0.5
1 2 1 1 1.0

The BiqCrunch format is similar to the sparse SDPA format and defines the problem by specifying
the coefficient matrices Qi, which constraints are inequalities, and the right-hand-side values ai of all
the constraints. For a complete description of the BiqCrunch format, see the BiqCrunch User’s Guide
which is available on the BiqCrunch website.

We solve now the problem using BiqCrunch (with default parameters) by executing

$ biqcrunch example.bc generic.param

We obtain the following command-line output:

Output file: example.bc.output
Input file: example.bc
Parameter file: generic.param
Node 0 Feasible solution 2
Nodes = 1
Root node bound = 2.84
Maximum value = 2
Solution = { 1 3 }
CPU time = 0.0074 s
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This output reports the result of running of BiqCrunch on this instance. At the root node of the
branch-and-bound search tree, the computed bound is 2.84, and, since the optimal value is integer,
this gives an effective upper-bound of 2. The generated solution was z1 = z3 = 1 and z2 = 0 with
objective value 2, which proves that it is an optimal solution. Thus there was only one node in the
branch-and-bound search. More detailed output information is given in the output file.

3.2.3 Example with the Max-Cut converter

We give an illustration of using BiqCrunch to solve a Max-Cut problem on a simple graph, using
the converter mc2bc to create a BiqCrunch input file from a graph file. Let us consider the following
graph, drawn in the figure and described in a file graph.txt. The first line of graph.txt records
the number of nodes and number of edges in the graph and the following lines record the list of edges,
each written as the triple i j wij . Note that each edge in this graph has a weight of 1.

7 12
1 2 1
1 3 1
1 5 1
2 5 1
2 6 1
3 4 1
3 5 1
3 6 1
4 6 1
4 7 1
5 6 1
6 7 1

1

2
3

4

5
6

7

Using the mc2bc converter, we compute a maximal cut for this graph using BiqCrunch as follows:

$ mc2bc.py graph.txt > maxcut.bc
$ biqcrunch maxcut.bc maxcut.param

BiqCrunch returns the following output giving us a maximum cut which we have represented in the
figure. The nine edges between the black nodes and the white nodes are a maximal cut.

Output file: maxcut.bc.output
Input file: maxcut.bc
Parameter file: maxcut.param
Node 0 Feasible solution 9
Nodes = 1
Root node bound = 9.91
Maximum value = 9
Solution = { 1 4 5 6 }
CPU time = 0.0075 s

1

2
3

4

5
6

7
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3.3 Mathematical foundations

In this section, we give a theoretical description of the bounds used by BiqCrunch. We start by
recalling some basic facts about semidefinite bounds in Section 3.3.1, then we present the special
semidefinite bounds used by BiqCrunch in Section 3.3.2.

We refer the interested reader to the books [162] and [6] for more information, including historical
perspectives, about semidefinite programming in the context of combinatorial optimization.

3.3.1 Semidefinite relaxations

We first introduce some notation and briefly describe the standard semidefinite bounds for the
binary quadratic problem (3.1) written as its matrix form as problem (3.5). The presentation of bounds
in the next section becomes more straightforward when the problem is reformulated using {−1, 1}
variables. We apply the change of variables between z ∈ {0, 1}n and x ∈ {−1, 1}n defined by
z = 1

2(x+ e), where e is the vector of all ones. This can be written as

[
z
1

]
= U

[
x
1

]
with U =

[
1
2In

1
2e

0 1

]

and therefore, in the matrix formulation (3.5)

Z = UXUT where X =

[
xxT x
xT 1

]
.

Since U is invertible, this transformation works the opposite way as well. Observe now that the binary
constraints xi ∈ {−1, 1} (or x2

i = 1) can be formulated as diag(xxT ) = e. A formulation in {−1, 1}
variables of problem (3.5) is





maximize 〈UTQ0U,X〉
subject to 〈UTQiU,X〉 ≤ ai, i ∈ {1, . . . ,mI}

〈UTQiU,X〉 = ai, i ∈ {mI + 1, . . . ,mI +mE}
diag(X) = e

X =

[
xxT x
xT 1

]
.

(3.6)

In BiqCrunch, the matrices UTQiU are formed directly from Qi when reading the data, without
explicitly forming the matrix U .

Let us now simplify notation by introducing a ∈ RmI , b ∈ RmE+n+1 and the two mappings

A : Sn+1 → RmI and B : Sn+1 → RmE+n+1

to gather all the inequality constraints of problem (3.6) as A(X) ≤ a and all the equality con-
straints as B(X) = b (those defined by UTQiU together with the diagonal constraints). Defining
Q = UTQ0U , problem (3.1) can be written as the following optimization problem with respect to X
positive semidefinite (denoted X � 0) and rank-one:





maximize 〈Q,X〉
subject to A(X) ≤ a,B(X) = b

X � 0, rank(X) = 1.
(3.7)
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The basic semidefinite relaxation is then obtained by dropping the rank-one constraint on X:




maximize 〈Q,X〉
subject to A(X) ≤ a,B(X) = b

X � 0.
(3.8)

Since problem (3.1) is equivalent to problem (3.7), the optimal value of problem (3.8) provides an
upper bound on the optimal value of problem (3.1). As in linear programming, we can further tighten
the bound by adding valid inequalities to problem (3.7) before relaxing. There exist many problem-
dependent or generic inequality families in our framework; see, e.g., the textbook [69] or early refer-
ences as [16, 95].

In BiqCrunch, we use the triangle inequalities, defined for 1 ≤ i < j < k ≤ n+ 1 by

Xij +Xik +Xjk ≥ −1, Xij −Xik −Xjk ≥ −1,

−Xij +Xik −Xjk ≥ −1, −Xij −Xik +Xjk ≥ −1.

These inequalities correspond to the fact that for x ∈ {−1, 1}n+1, it is not possible to have exactly one
of three products {xixj , xixk, xjxk} equal to −1, nor is it possible to have all three of the products
equal to −1. These inequalities are particularly interesting in our framework, for two reasons. There
are 4

(
n+1

3

)
of them, which is large but still manageable. Given X , we can evaluate all of them and

efficiently find the most violated ones. Moreover, they are known to give good results for semidefinite
relaxations in general (see, e.g., [9, 95, 159]).

Ideally we would like to add all the triangle inequalities to problem (3.8) to get the tightest possible
bound of this type. However, the cost of doing so is very high, so the relaxation incorporating all the
triangle inequalities is rarely used (see, e.g., the numerical comparisons of [159]). In BiqCrunch we
iteratively identify a subset of useful inequalities, as in [151]. The idea is to select the most promising
active inequalities using the current approximate solution. The management of inequalities will be
precisely described in Algorithm 2.

For a subset of triangle inequalities I, we let AI : Sn → R|I| be the corresponding linear function
describing the inequalities in this subset. We end up with the following strengthened SDP relaxation
of problem (3.1):

(SDPI)





maximize 〈Q,X〉
subject to A(X) ≤ a,B(X) = b

AI(X) ≥ −e
X � 0.

(3.9)

Note that the maximum is finite and attained if the problem is feasible. This follows from the fact
the feasible set is included in the set of correlation matrices (X � 0 and diag(X) = e) which is
well-known to be compact (see, e.g., [Mal-23, Theorem 1] or more complete studies as [116, 117]).

3.3.2 Adjustable semidefinite bounds

In this section, we define and sketch the main properties of the semidefinite bounds that are used
by BiqCrunch. We refer to [Mal-11] for the background, the motivation and the theory behind the
family of adjustable semidefinite bounds.

Recall that the nonnegative part X+ of a symmetric matrix X is computable via an eigenvalue
decomposition X = V Diag(σ)V T (with the vector of eigenvalues σ ∈ Rn, and an orthogonal matrix
V ∈ Rn×n) by

X+ = V Diag(max{σ, 0})V T .
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Note that X+ is the orthogonal projection of X onto the set of positive semidefinite matrices [98].
The nonpositive part X− is defined similarly. We will need the following property:

〈X,X+〉 = ‖X+‖2F . (3.10)

Let I be a set of inequalities and define Ω := RmI+ × RmE+n+1 × R|I|+ . For any dual variables
(λ, µ, ν) ∈ Ω, we define the positive semidefinite matrix

XI(λ, µ, ν) := [Q−A∗(λ)−B∗(µ) +A∗I(ν)]+ (3.11)

where A∗, B∗, and A∗I are the adjoints of the linear operators A, B, and AI representing the con-
straints. For example, for λ ∈ RmI ,

A∗(λ) =

mI∑

i=1

λiU
TQiU.

Furthermore, for a parameter α > 0, we introduce FαI (λ, µ, ν) defined for (λ, µ, ν) ∈ Ω by

FαI (λ, µ, ν) :=
1

2α
‖XI(λ, µ, ν)‖2F +aTλ+ bTµ+ eT ν +

α

2
(n+ 1)2. (3.12)

Up to a change of sign and a slight change of notation, FαI corresponds to the function Θ in [Mal-11].
Using the current notation, Theorem 3 of [Mal-11] reads as follows.

Theorem 3.3.1. For a set of inequalities I, a parameter α > 0, and any (λ, µ, ν) ∈ Ω, we have that
FαI (λ, µ, ν) is an upper bound on the optimal value of the semidefinite relaxation (3.9) and therefore
on the optimal value of the binary quadratic problem (3.1).

The question now is how to choose parameters to get these bounds FαI (λ, µ, ν) as tight as possible.
For fixed α and I, the tightest bounds can be obtained by minimizing FαI over (λ, µ, ν) ∈ Ω. The
smoothness of FαI is the key property that allows it to be efficiently minimized. Theorem 2 of [Mal-11]
states that the function FαI is convex and differentiable on Ω, and we have explicit expressions of its
partial gradients. In particular, if X = 1

αXI(λ, µ, ν), then we have

∇λFαI (λ, µ, ν) = a−A (X) ,

∇µFαI (λ, µ, ν) = b−B (X) , (3.13)

∇νFαI (λ, µ, ν) = e+AI (X) .

Thus, we can minimize FαI using any first-order optimization algorithm that can handle nonnegativity
constraints. We could also use the so-called second-order semismooth Newton method [150] since it
is possible to show that∇FαI is semismooth using properties of the projection [·]+ (see, e.g., [32]).

For its simplicity and robustness, BiqCrunch uses a quasi-Newton method (more specifically, a
projected BFGS with Wolfe line-search), which lies between first-order and second-order methods.
The properties guaranteeing convergence (see, e.g., [36, Theorem 4.9]) hold here, as FαI is convex
and differentiable with Lipschitz gradient. A simple proof of this basic result is given in [Mal-1].

Lemma 3.3.2. For given α and I, the gradient ∇FαI , as an operator from Ω to RmI+mE+n+1, is
Lipschitz continuous with Lipschitz constant L/α, where L is a constant that depends on the norms
of A, B and AI and their adjoints.
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In addition to minimizing FαI for fixed α and I, we have two ways to get tighter bounds. Firstly,
adding violated triangle inequalities to I enlarges the space Ω which allows us to further minimize
FαI . Secondly, decreasing the parameter α also yields tighter bounds. Theorem 4 of [Mal-11] shows
that α controls the tightness of the bound, in that smaller values of α give tighter bounds. In practice,
special attention should be paid to decreasing α, since Lemma 3.3.2 relates α to the smoothness of FαI ,
indicating that when α is small, the gradient can have a sharp behavior, and therefore minimizing FαI
could become ill-conditioned.

The semidefinite bounding procedure presented in the next section efficiently combines these three
levers (minimizing FαI , adding inequalities, and decreasing α). Its convergence analysis is studied in
Section 3.4.4. Later in Section 3.5.1, practical advice is given on how to adjust key parameters to
compute bounds efficiently (with a good ratio of tightness to computing time).

3.4 Algorithmic description

BiqCrunch is a branch-and-bound algorithm, implemented using the branch-and-bound platform
BOB [55] which automatically handles the management of subproblems. The BOB platform only
requires the following functionalities to be implemented:

1. a bounding procedure (producing an upper bound),

2. a heuristic for generating a feasible solution (producing a lower bound),

3. a method for generating subproblems (branching).

In this section, we provide details about how each of these are implemented in BiqCrunch. We
consider the binary quadratic subproblem of the current node of the branch-and-bound tree (with a
slight abuse of notation, we consider it to be problem (3.1) and use the same notation as before). At
iteration k of the bounding procedure, the algorithm brackets the optimal value as

βk ≤ optimal value of the binary quadratic problem ≤ Fk, (3.14)

where βk is the best lower bound given by the heuristics (described in Section 3.4.2), and Fk is the
upper bound of the bounding procedure (described in Section 3.4.1). Using the fact that we know that
the optimal value of problem (3.1) is integer, we have that

if Fk < βk + 1, then we prune the node of the branch-and-bound tree, (3.15)

since all feasible solutions of the subproblem have an objective value no better than βk. If this is not
the case, we need to explore the branch-and-bound tree further. The different branching strategies that
are available in BiqCrunch are described in Section 3.4.3. Finally, Section 3.4.4 provides a theoretical
analysis of the convergence of our semidefinite bounding procedure.

3.4.1 Semidefinite bounding procedure

We first turn our attention to the bounding procedure used by BiqCrunch and its computational
aspects. We start by emphasizing that no SDP problem is solved during the bounding procedure, which
is a major difference compared to semidefinite-based procedures used by other software packages,
such as Biq Mac or SCIP-SDP. Our bounding procedure can be very fast to run if the node is easy to
prune, but is also able to provide tighter more expensive bounds if necessary.
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The key numerical ingredient of the bounding procedure of BiqCrunch is the algorithm that mini-
mizes the bounding function (3.12) for a given set of inequalities I and a given tightness parameter α.
We use the projected quasi-Newton software L-BFGS-B [133, 188] (with default parameters, ex-
cept for nitermax, minNiter, and maxNiter; see Section 3.5.1). The quasi-Newton solver calls
a subroutine that computes the value of the bounding function (3.12) and its gradient (3.13) at the
current point (λ, µ, ν). This computation boils down to the computation of XI(λ, µ, ν) as defined
in equation (3.11), which, in turn, reduces to computing the positive eigenvalues and corresponding
eigenvectors of the symmetric matrix [Q−A∗(λ)−B∗(µ) +A∗I(ν)] for which we use the routine
DSYEVR of the package MKL (or LAPACK, if MKL is not available). Note that the eigendecomposition
computed here is also used in the heuristic for computing feasible solutions (see Section 3.4.2).

Algorithm 1 Semidefinite bounding algorithm of BiqCrunch
1: Data: alpha0 > 0; tol0 > 0; 0 < scaleAlpha, scaleTol < 1
2: Initialize parameters: k ← 1, β1 ← −∞, ε1 ← tol0, α1 ← alpha0.
3: Initialize variables: I0 ← ∅, λ0 ← 0 ∈ RmE+n+1,
4: µ0 ← 0 ∈ RmI , F0 ← +∞.

5: while Fk ≥ βk + 1 do
6: Minimize the function FαkIk−1

using a quasi-Newton method:
7: Starting from (λk−1, µk−1, νk−1), compute (λk, µk, ν̂k) such that (3.16) holds.
8: if withCuts then
9: Run inequality update subroutine to get Ik (and associated multipliers νk)

10: end if
11: Update the upper bound: Fk ← FαkIk−1

(λk, µk, ν̂k) = FαkIk (λk, µk, νk).
12: Update the lower bound: run Algorithm 3 to get β, and update βk ← max{βk−1, β}
13: if Card(Ik − Ik−1) ≤ minCuts or αk has not changed for maxNAiter iterations then
14: αk+1 ← max{minAlpha, scaleAlpha · αk}, εk+1 ← max{minTol, scaleTol · εk}
15: else
16: αk+1 ← αk, εk+1 ← εk
17: end if
18: Run the heuristic in Algorithm 3
19: end while

The semidefinite bounding procedure of BiqCrunch is described in Algorithm 1. Given a set of
inequalities Ik−1 and tightness parameter αk, BiqCrunch runs a quasi-Newton algorithm on FαkIk−1

:
it is warm-started from the previous (λk−1, µk−1, νk−1) and it computes a solution (λk, µk, ν̂k) of
`∞-tolerance εk:

max

{∥∥∥
[
a−A (Xk)

]
−

∥∥∥
∞
,
∥∥∥b−B (Xk)

∥∥∥
∞
,
∥∥∥
[
e+AI (Xk)

]
−

∥∥∥
∞

}
< εk, (3.16)

where Xk = 1
αk
XIk−1

(λk, µk, ν̂k). We stop the bounding procedure when the value of the bound is
less than βk + 1; in practice, we also stop it when it is likely that a bound less than βk + 1 is not
attainable within a reasonable amount of time. It is important to note that the bounding procedure
may be stopped anytime and will return a valid upper-bound for problem (3.1) (by Theorem 3.3.1).

The remainder of the bounding procedure consists of updating parameters. Algorithm 1 interlaces
the decrease of αk and εk with the management of the set of inequalities Ik (by Algorithm 2 that
we describe below). The idea is to reduce the tightness parameter αk when we can no longer make
good progress by adding inequalities. We reduce αk and εk when the number of violated triangle
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inequalities is lower than the threshold minCuts, or when they have not been reduced for maxNAiter
iterations.

Having a lot of enforced inequalities is both good and bad: the more inequalities the better the
bound, but on the other hand it increases the number of dual variables that must be optimized over in
the quasi-Newton method. BiqCrunch updates the set of enforced inequalities by Algorithm 2. First,
it gets rid of εk-inactive triangle inequalities for Xk (i.e., the indices i such that (ν̂k)i is zero and
Ai(Xk) + 1 > εk). Second, it adds a predefined number of the most violated inequalities to improve
the bound as quickly as possible. Once the set Ik is updated, Algorithm 2 generates νk such that

Xk =
1

αk
XIk(λk, µk, νk)

and
Fk = FαkIk (λk, µk, νk) =

αk
2
‖Xk‖2 +aTλk + bTµk + eT νk +

αk
2

(n+ 1)2. (3.17)

Algorithm 2 Inequality update subroutine of the bounding procedure
1: Data: (at iteration k of the bounding procedure) Ik−1, ν̂k, Xk, εk and Xk−1

2: Remove the triangle inequalities that are not εk-active:

I−k−1 ← {i ∈ Ik−1 : (ν̂k)i = 0 and Ai(Xk) + 1 > εk } .

3: Add the most-violated triangle inequalities:

Let i1, . . . , i` be the indices i 6∈ Ik−1 such that Ai(Xk) + 1 ≤ gapCuts < 0, ordered
such that Ai1(Xk) ≤ · · · ≤ Ai`(Xk). Let

I+
k−1 ← {i1, . . . , iK} , where K = min{`, cuts}.

4: Update the set of inequalities: Ik ←
(
Ik−1 \ I−k−1

)
∪ I+

k−1.
5: Initialize the multipliers for added inequalities to zero:

for each i ∈ Ik, (νk)i ←
{

(ν̂k)i if i ∈ Ik−1,

0 if i 6∈ Ik−1.

3.4.2 Heuristics: options and generic semidefinite heuristic

BiqCrunch uses heuristics for generating feasible solutions for problem (3.1). The best feasible
solution found provides the lower bound βk in (3.14). This lower bound is used to prune parts of the
branch-and-bound search tree according to the rule (3.15).

BiqCrunch allows the use of three types of heuristics:

1. root-node heuristic (called once before starting the branch-and-bound method),

2. bound heuristic (called each iteration of the bounding procedure),

3. node heuristic (called at the end of bounding procedure).
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These three type of heuristics can all be the same or be completely different; they can also depend
on the type of problem that is being solved. We include several specific heuristics in the BiqCrunch
release for Max-Cut, Max-k-cluster, and Maximum-Independent-Set. Users can also specify their
own heuristics for their problems of interest as explained in Section 3.5.2. By default, the generic
BiqCrunch solver uses an empty heuristic for the root-node heuristic and a semidefinite heuristic for
both the bound heuristic and the node heuristic.

The generic semidefinite heuristic of BiqCrunch is presented in Algorithm 3. It is based on the
celebrated Goemans-Williamson heuristic for Max-Cut [84] using randomly generated hyperplans
and a factorization of the optimal semidefinite solution computed by the bounding procedure, called
X̂ here. From a factorization X̂ = WW T with W ∈ R(p+1)×m and a random unit vector v ∈ Rm, a
{0, 1}-vector z is generated from the sign of the inner-product of v with the ith row of W . Then the
feasibility of this {0, 1}-vector z for problem (3.1) is tested. The best lower bound is updated if z is
both feasible and improves the objective value. Note that, contrary to [84], we do not need to compute
a Cholesky factorization of X̂ , since a factorization is already available from the bounding proce-
dure (which computes an eigendecomposition of the matrix, see Section 3.4.1). Since this process is
computationally inexpensive, this is repeated for several random v and different z.

At the end of the semidefinite heuristic, we also add a simple “1-opt” local-search. This local-
search routine returns a solution that is locally optimal, in the sense that changing any variable from
zero to one, or from one to zero, does not result in a better feasible solution. Note that for some
problems (Max-k-Cluster for example), this local-search does not make sense since it cannot produce
feasible points; in this case, a parameter local_search allows us to disable it.

Algorithm 3 Generic semidefinite heuristic for finding feasible solutions
1: for many iterations do
2: Generate a random unit vector v
3: for i = 1, . . . , n do
4: if zi is a fixed variable then zi ← fixed value of zi

5: else zi ←
{

0, if vT rowi(W ) < 0

1, otherwise
6: end if
7: end for

Test of improvement:
8: if z is feasible for problem (3.1) and zTS0z + sT0 z > β then ẑ ← z and β ← zTS0z + sT0 z
9: end if

10: end for
11: if ẑ is feasible for problem (3.1) then
12: while ẑ is not locally optimal do ẑ ← a strictly better local solution
13: end while
14: end if

3.4.3 Branching strategies

BiqCrunch provides three branching strategies, each of which can be selected by changing the
value of the parameter branchingStrategy in the input parameter file. The branching rule uses
the optimal semidefinite solution given by the semidefinite bounding procedure, as follows. First we
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extract the last column x̂ of X̂ and define ẑ = 1
2(x̂ + e). Then we choose a variable zi to branch on,

using one of the following three strategies:

1. least-fractional: a variable zi for which ẑi is furthest from 1
2 is selected;

2. most-fractional: a variable zi for which ẑi is closest to 1
2 is selected;

3. closest-to-one: a variable zi for which ẑi is closest to 1 is selected.

The most-fractional branching strategy is used as the default in BiqCrunch.
Branching on variable zi creates two new subproblems, one where zi is fixed to 0 and the other

where zi is fixed to 1. These subproblems correspond to nodes in the branch-and-bound search tree.
When branching occurs, two nodes are created and added to this search tree. The BOB branch-and-
bound platform [55] automatically selects the subproblem having the weakest bound to be the next
subproblem to branch on; in the case of a tie, BOB selects the subproblem that is lower in the search
tree (i.e., having more variables fixed); if the subproblem is already near the bottom of the search tree
(i.e., where all variables are fixed), BOB switches to a depth-first-search traversal of that subtree.

3.4.4 Convergence of the semidefinite bounding procedure

In this section, we study the theoretical convergence of Algorithm 1, the semidefinite bounding
procedure of BiqCrunch. We assume that it runs an infinite number of iterations: more precisely, we
set maxNIter = +∞, minAlpha = 0, minTol = 0, and we suppose that β is small enough that
the loop will not stop. In this case, the two tightness parameters vanish (αk → 0 and εk → 0 ). In
addition, since the number of sets of inequalities is finite, there exists a set of inequalities I that is
visited an infinite number of times. With this setting, the following theorem shows that the bounds
Fk converge (Property (i) ) and that we know the limit, under a technical boundedness assumption
(Property (ii) ). This result is related to Theorem 4 of [Mal-11] (which is a theoretical convergence of
ideal bounds under a strict feasibility assumption) and Theorem 1 of [Mal-7] (which is a similar result
for the specific version of BiqCrunch for Max-Cut).

Theorem 3.4.1. Let (Xk, λk, µk, νk, Ik, Fk)k be the sequence of iterates generated by the bounding
algorithm. Let I be a set of inequalities such that there exist infinitely many Ik = I. Assume that
the feasible set of the binary quadratic optimization problem (3.1) in nonempty, so that there exists an
optimal solution to (3.1). Then the following properties hold:

(i) The sequence of the bounds (Fk)k converges; its limit F̄ is a bound for the optimal value
of (3.9). A subsequence of the primal iterates (Xk)k converges; its limits X̄ is feasible for (3.9).

(ii) If moreover the sequence of dual variables (λk, µk, νk)k is bounded, then F̄ is the optimal value
of (3.9), and X̄ is an optimal solution of (3.9).

Proof. The assumption that the feasible set of the initial problem (3.1) is nonempty yields that the
feasible sets of its reformulations (3.6) and (3.7) and its relaxations (3.8) and (3.9) are nonempty as
well. For this proof, we denote by K the (infinite) set of indexes such that Ik = I for k ∈ K.

Let us start the proof of Property (i) by noting that, from (3.16), the diagonal entries of Xk for all
k are bounded by ε1:

‖e− diag(Xk)‖∞ ≤ ‖b−B(Xk)‖∞ < εk ≤ ε1 for all k. (3.18)
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Since Xk � 0, the determinant of its submatrix with indices {i, j} is nonnegative:

det

(
(Xk)ii (Xk)ij
(Xk)ij (Xk)jj

)
= (Xk)ii(Xk)jj − (Xk)

2
ij ≥ 0.

By (3.18), the diagonal entries (Xk)ii and (Xk)jj lie between [1− ε1, 1 + ε1], and therefore we have
(Xk)

2
ij ≤ (1 + ε1)2. The norm of Xk is thus bounded:

‖Xk‖2F =
∑

(Xk)
2
ij ≤ (1 + ε1)2(n+ 1)2 for all k. (3.19)

The boundedness of the subsequence (Xk)k∈K implies that we can further extract a converging
subsequence; we denote its limit by X̄ . The closedness of the set of positive semidefinite matrices
yields that X̄ � 0. Notice also that (3.16) implies B

(
X̄
)
− b = 0, [A

(
X̄
)
− a]− = 0, and [e +

AI
(
X̄
)
]− = 0, since εk → 0. Thus we have that the limit matrix X̄ is feasible for (3.9).

Let us now turn to the other part of Property (i), that (Fk)k converges to a bound of (3.9). Fix k;
we are going to show first that Fk+1 cannot be significantly larger than Fk. Start by observing in
Algorithm 2 that we have Fk+1 = F

αk+1

Ik (λk+1, µk+1, ν̂k+1), by definition of νk and Ik. This implies
that Fk+1 ≤ F

αk+1

Ik (λk, µk, νk), since the quasi-Newton algorithm with Wolfe line-search can only
decrease the objective value (see [36, Chap.1]). Using the definition (3.12) of the bounds, we write

Fk+1 ≤ 1

αk+1
‖XIk(λk, µk, νk)‖2 /2 + aTλk + bTµk + eT νk + αk+1(n+ 1)2/2

= FαkIk (λk, µk, νk) +

(
1

αk+1
− 1

αk

)
‖XIk(λk, µk, νk)‖2 /2 + (αk+1 − αk)(n+ 1)2/2

= Fk +

(
α2
k

αk+1
− αk

)
‖Xk‖2 /2 + (αk+1 − αk)(n+ 1)2/2

If αk+1 = αk, this inequality is simply Fk+1 ≤ Fk. If αk+1 = scaleAlpha · αk, this reads

Fk+1 ≤ Fk +
αk
2

(1− scaleAlpha)

scaleAlpha

(
‖Xk‖2−scaleAlpha(n+ 1)2

)
.

In both cases, this yields, using again (3.19),

Fk+1 ≤ Fk+Cαk with C =
1

2

(1− scaleAlpha)

scaleAlpha
(n+1)2

(
(1+ε1)2−scaleAlpha

)
> 0. (3.20)

This bound on the growth of Fk enables us to argue, as follows, that the sequence converges. Let
us repeat the above bounding for ` > k: let k1, . . . , kp be the p indices k ≤ ki < k + ` such that
αki+1 = scaleAlpha · αki ; from repeated application of inequality (3.20), and using the fact that
Fk+1 ≤ Fk when αk+1 = αk, we obtain

Fk+` ≤ Fk + C
(
αk1 + αk2 + · · ·+ αkp

)

= Fk + C
(
αk + scaleAlpha · αk + · · ·+ scaleAlphap−1 · αk

)

≤ Fk + C

(
1

1− scaleAlpha

)
αk.

Taking `→+∞ and then k→+∞ above, we get lim supk→+∞ Fk ≤ lim infk→+∞ Fk, hence the
sequence (Fk)k converges; let us call its limit F̄ .
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Recall now that Theorem 3.3.1 implies that Fk, for all k ∈ K, is an upper bound for (3.9) (since
Ik = I for k ∈ K). Since F̄ is obviously also the limit of the subsequence (Fk)k∈K , F̄ is an upper
bound for (3.9) as well. Thus we have Property (i):

〈Q, X̄〉 ≤ the optimal value of (3.9) ≤ F̄ . (3.21)

We prove now Property (ii). We start by observing that, for a given k, we have by (3.10)

〈Q−A∗(λk)−B∗(µk) +A∗I(νk), Xk〉 = αk ‖Xk‖2

which in turn yields

〈Q,Xk〉 = αk ‖Xk‖2 +〈A∗(λk), Xk〉+ 〈B∗(µk), Xk〉 − 〈A∗I(νk), Xk〉
= αk ‖Xk‖2 +λTkA(Xk) + µTkB(Xk)− νTk AI(Xk).

Combining this equation with (3.17), we get

Fk−〈Q,Xk〉 =
αk
2

((n+1)2−‖Xk‖2)+λTk (a−A(Xk))+µ
T
k (b−B(Xk))+ν

T
k (e+AI(Xk)). (3.22)

Notice that the three inner products in the above equation can be bounded with (3.16) as follows:

|λTk (a−A(Xk))| ≤ ‖λk‖ εk, |µTk (b−B(Xk))| ≤ ‖µk‖ εk, and |νTk (e+AI(Xk))| ≤ ‖νk‖ εk.

We use now the additional assumption that the sequence (λk, µk, νk)k is bounded and we conclude that
the three terms vanish when k → +∞. Recall (3.19) which implies that the term αk

2 ((n+1)2−‖Xk‖2)
also goes to zero when k → +∞. Therefore, we can pass to the limit in (3.22) when k → +∞ with
k ∈ K and we get F̄ = 〈Q, X̄〉. Therefore, by equation (3.21), F̄ is the optimal value of (3.9) and X̄
is optimal. �

Property (ii) of this theorem says that, under a boundedness assumption, the bounding procedure
eventually solves the SDP relaxation (3.9) as Fk approximates the optimal value andXk approximates
an optimal solution. Thus this result theoretically supports what we observe in practice: once a “good"
set of inequalities is “identified," the algorithm solves the corresponding SDP relaxation. However,
the bounding procedure is not meant to be just another SDP solver: it combines fast initial iterations
(αk large for small k) and the ability to gain more and more tightness (αk small for large k). The
bounding procedure is therefore primarily designed to compute efficient bounds inside a branch-and-
bound routine; solving the SDP relaxation to optimality is not necessary.

It turns out that the bounding procedure has good observed convergence and returns high-quality
bounds within a reasonable amount of time. For instance, a convergence curve on a Max-Cut problem
is given in Figure 1.3 in Chapter 1. Such convergence is typical of what we have observed in our
numerical experiments, for max-cut and other combinatorial problems. For another illustration, we
plot the convergence of our bounding procedure in Figure 3.1 on a k-cluster problem.

The numerical comparison of [Mal-11] for k-cluster between this bounding procedure (with the
triangle inequalities disabled) and two standard SDP solvers solving (SDP∅) shows that this bounding
procedure has a better ratio of tightness to computing time. Recall also that SDP bounds are shown in
[159, Sec. 4.3] to be superior to linear programming bounds for large-scale k-cluster – which confirms
the fact reported in [30] that linear programming approaches are not efficient for large-scale k-cluster.

In this chapter, we do not report further numerical comparisons of our bounding procedure with
standard SDP, LP or QP bounds; we refer the computational studies of previous papers (in particular
[28, 30, 159, Mal-11] for k-cluster). We focus here on solving problems to optimality. The tight-
ness and the efficiency of our bounds will be illustrated indirectly by the numerical results on exact
resolution presented in section 3.6.
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Figure 3.1: Time/bound plot of the bounding procedure on a k-cluster problem, with n = 160, edge
density 25%, k = 80, which has optimal value 1026. Sharp decreases corresponds to decrease of α.

3.5 Improving the performance

As described in the previous section, BiqCrunch can theoretically solve any binary quadratic prob-
lem. In practice we can improve the performance of BiqCrunch for specific problems by:

1. adjusting the parameters of BiqCrunch,

2. providing specific heuristics to produce better feasible solutions,

3. strengthening the problem formulation to obtain better upper bounds.

In the BiqCrunch package, we have provided different versions of BiqCrunch, each of which has been
adapted to solve specific problems with tailored heuristics and parameter files. In the rest of this
section we discuss each of the above three items.

3.5.1 Parameters

The parameters of BiqCrunch are listed in Table 3.1. These parameters are specified in a
biq_crunch.param file that must be provided when running the solver. BiqCrunch provides
parameter files with the default parameters, as well as parameter files that have been adjusted for
Max-Cut, Max-k-Cluster, and Max-Independent-Set.

For most problems, these parameters do not need to be modified. Nevertheless, some of them
are crucial to the performance of BiqCrunch for specific instances. The most important parameter is
alpha0 which determines the initial value of αk in Algorithm 1. For problems that do not require a
semidefinite approach to obtain good bounds (for instance when linear programming relaxations are
known to be efficient), alpha0 could be set to a higher value to reduce the computing time when
evaluating each node. For more difficult problems (when weak relaxations are not efficient), alpha0
should be set to a lower value to have tighter initial bounds when evaluating each node.
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The gapCuts and cuts parameters are also important since they can be adjusted to find the right
trade-off between adding too many or too few cuts. Typically, we want to avoid adding many cuts that
are only violated by a small amount. By default BiqCrunch only adds at most cuts = 500 triangle
inequalities each iteration that each have a violation of at most gapCuts = −0.05.

We recommend to users who are looking for better performance to adjust the three key parame-
ters (alpha0, gapCuts, and cuts) in the following way: set the “root” parameter to 1 and use the
verbose command-line option (“-v 1”), then do tests with different instances of your problem and in-
spect the output files. A useful rule of thumb is that if the values of the parameters nitermax or cuts
are reached when evaluating the root node then the three parameters should be adjusted accordingly.

parameter definition / role default value
alpha0 initial value of α 1e-1
scaleAlpha scaling value of α 0.5
minAlpha minimum value of α 5e-5
tol0 initial value of tolerance ε for L-BFGS-B 1e-1
scaleTol scaling value of tolerance ε for L-BFGS-B 0.95
minTol minimum value of the tolerance ε for L-BFGS-B 1e-2
nitermax maximum number of iterations per call of L-BFGS-B 2000
minNiter minimum number of L-BFGS-B calls 12
maxNiter maximum number of L-BFGS-B calls 100
maxNAiter maximum number of L-BFGS-B calls with fixed α 50
withCuts use the triangle inequalities 1
gapCuts minimum violation of added cuts (inequalities) -5e-2
cuts maximum number of cuts to add per iteration 500
minCuts minimum number of violated cuts to reduce α and ε 50
scaling pre-scale the constraints 1
heur_1 use the root-node heuristic 1
heur_2 use the bound heuristic 1
heur_3 use the node heuristic 1
seed random number generator seed 2016
local_search use the local search 1

0: Branch on least-fractional variable
branchingStrategy 1: Branch on most-fractional variable 1

2: Branch on variable that is closest to one
root just evaluate root node (no branch-and-bound) 0
time_limit limit on computing time (in seconds) 0 (i.e., no time limit)
soln_value_provided user is providing a known feasible solution value 0
soln_value the value of a known feasible solution 0

Table 3.1: BiqCrunch main parameters

3.5.2 Problem-specific heuristics

The generic heuristic (described in Section 3.4.2) can be substituted with heuristics tailored for
specific problems. In the BiqCrunch directory, there are several “problems/<PROBLEM>” folders
for different optimization problems, and a “problems/user” directory where users can create their
own heuristics. For a new heuristic to be called by BiqCrunch, one just has to create a directory in the
problems/ directory that contains their heur.c file; upon compiling BiqCrunch, a biqcrunch
executable will be created in the location of the heur.c file.
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3.5.3 Strengthening bounds with additional constraints

BiqCrunch does not perform any reformulation or preprocessing of the input problem. The user
has complete control over the formulation of their problem. This allows users to try different for-
mulations of the same problem, such as adding redundant constraints to strengthen the semidefinite
relaxation and obtain tighter bounds.

Adding linear or quadratic constraints that are redundant for the binary quadratic problem (3.1)
does not change its set of optimal solutions, nor its optimal value, but may result in tighter bounds.
This is because, with each additional constraint the space of dual multipliers Ω increases, resulting
in possibly smaller upper bounds of problem (3.1). In this section, we discuss a set of strengthening
constraints that we recommend adding to the formulation of a problem to be solved by BiqCrunch.

Suppose problem (3.1) has a linear constraint sT z = a. For instance, the
∑n

i=1 zi = k constraint
in the Max-k-Cluster problem is an example of such a linear constraint. The product constraints are
the valid quadratic constraints generated from sT z = a:

zis
T z − zia = 0, i = 1, . . . , n.

Introducing quadratic constraints by multiplication is a well-known technique; see [167] for the gen-
eral approach and [128] for the semidefinite case. It was shown [78] that adding any number of
redundant quadratic constraints results in semidefinite bounds that are never better than the one ob-
tained by adding these product constraints (see also [96] for an early study of this question). These
product constraints therefore form an optimal set of redundant quadratic constraints.

In practice, adding these constraints to the formulation of problem (3.1) often significantly im-
proves the tightness of the bounds computed by BiqCrunch and reduces the overall computing time.
As an illustration, we consider solving a problem with n = 20 binary variables, a random quadratic
objective function, and the cardinality constraint

∑n
i=1 zi = 10. First we solve the problem without

the product constraints.

$ tools/lp2bc.py randprob.lp > randprob.bc
$ problems/generic/biqcrunch randprob.bc biq_crunch.param
Output file: randprob.bc.output
Input file: randprob.bc
Parameter file: biq_crunch.param
Node 0 Feasible solution 30
Node 1 Feasible solution 95
Node 1 Feasible solution 108
Node 2 Feasible solution 109
Nodes = 27
Root node bound = 113.54
Maximum value = 109
Solution = { 2 3 4 5 8 11 12 13 14 19 }
CPU time = 0.2050 s

Next we solve the same problem after having added the product constraints.

$ tools/lp2bc.py randprob_prod.lp > randprob_prod.bc
$ problems/generic/biqcrunch randprob_prod.bc biq_crunch.param
Output file: randprob_prod.bc.output
Input file: randprob_prod.bc
Parameter file: biq_crunch.param
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Node 0 Feasible solution 30
Node 1 Feasible solution 109
Nodes = 1
Root node bound = 109.96
Maximum value = 109
Solution = { 2 3 4 5 8 11 12 13 14 19 }
CPU time = 0.0169 s

We notice that the root node bound is much tighter with the product constraints. In this case, the
root node bound was tight enough to be able to solve the problem without branching. On the other
hand, without the product constraints, 27 nodes of the branch-and-bound search tree are visited before
solving the problem. Including such product constraints often significantly improves the performance
of BiqCrunch.

3.6 Numerical illustrations

We have conducted extensive computational tests on classical NP-hard combinatorial problems.
Results on Max-Cut and Max-k-Cluster are available in [Mal-7] and [Mal-4], respectively, and the
BiqCrunch website reports the latest results available on other problems. These computational results
provide strong evidence that BiqCrunch is among the best solvers for solving to optimality combina-
torial optimization problems that can be formulated using quadratic terms.

To give an idea of the performance of BiqCrunch, we provide in this section parts of the numerical
experiments of [Mal-7] and [Mal-4], on the comparisons against the best existing methods of the two
problems Max-Cut and Max-k-Cluster. We invite the interested reader to visit the BiqCrunch website:

http://lipn.univ-paris13.fr/BiqCrunch

to access the entire dataset of problems and the full numerical results of our tests. We will continue to
post the complementary results on the website in our further developments.

3.6.1 Illustrations for Max-Cut, comparisons with Biq Mac

There exist efficient methods for solving Max-Cut and binary quadratic problems, such as the ones
of [145] and [29]. However, the numerical tests of [151] show that the results of the other methods are
dominated by the method called "Biq Mac" presented in this paper. Thus we only compare BiqCrunch
to this method.

We have compiled and run both BiqCrunch and the Biq Mac code (kindly provided by the authors)
on the same machine (Dell T-7500, using a single core, with 4 GB of memory, running a Linux OS),
and have used the same libraries (i.e., MKL) and compilation flags for both codes. We furthermore
consider two versions of the codes depending on the branching strategies "least-fractional" or "most-
fractional", as described in section 3.4.3. For the sake of simplicity, we use the same terminology (R2)
and (R3) as in [151]. We use 328 test problems in the Biq Mac Library; we refer to [151, Section 6]
for a description of the data set.

We have run 328 test-problems for almost 1600 hours of computing time. We observed that 241
out of the 328 problems are solved strictly faster by using our solver, which is around 75% of the
test-problems. When considering only the “hard problems” (those that Biq Mac does not solve at
the root node), this percentage increases to 85% (226 out of 269). We also report aggregated results
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Figure 3.2: Performance profile curves for the two versions of BiqCrunch and two versions of Biq Mac
on the 328 max-cut problems of the Biq Mac Library. The higher the better!

on Figure 3.2: we use a performance profile1 (see [70]) to show that both of our methods dominate
both of the Biq Mac methods in terms of speed, and also robustness, since the curves for our methods
are constantly above the ones for Biq Mac.

3.6.2 Illustration on Max-k-Cluster, comparisons with QCR

The best existing methods to solve the Max-k-Cluster problem to optimality are

• the semidefinite method of [Mal-13], which is a precursor of the method presented here using
the same branch-and-bound structure but using basic semidefinite bounds (without dynamic
control of α, ε and without triangle inequalities);

• the quadratic convex reformulation (QCR) of [30] which first convexifies the objective function
of the problem and then uses the state-of-the-art IBM/CPLEX mixed-integer convex quadratic
solver (we use CPLEX 12.6 for the experiments). Since the best convexifying parameters of the
initial problem are obtained by solving the semidefinite relaxation (SDPI) (we use CSDP [37]
for the experiments), the QCR and our method use the same (tight) bound at the root node of
the branch-and-bound tree. However, the tightness of the QCR bounds deteriorates when going
down in the search tree.

We have compared BiqCrunch with these two methods on the same machine (Dell Intel Xeon
1For each problem p ∈ P the set of problems, we define tmin

p as the minimum time required to solve p over all the solvers.
Then, for each solver, we consider the performance profile function θ(τ) = 1

|P|
∣∣{p ∈ P : tp ≤ τtmin

p

}∣∣, for τ ≥ 1, where
tp is the time required for the solver to solve problem p. The function θ is therefore a cumulative distribution function, and
θ(τ) represents the probability of the solver to solve a problem from P within a multiple τ of the minimum time required
by all solvers considered.
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CPU E31270 3.40 GHz, using a single core, with 8GB of memory and running a Linux OS), after
having tuned their parameters to reach the best performance. We have used the the most challenging
test-problems publicly available; their parameters are the size of the graph n, the value of k, and the
graph density d. We have a total of 360 instances with n = 80, 100, 120, 140, 160. The instances with
n = 80, 100 have already been used in previous articles, such as [28, 30, Mal-13]; we call them the
standard instances. We call the instances with n = 120, 140, 160 the larger instances. As far as we
are aware, it is the first time that numerical results are reported for n = 140 and n = 160.

Table 3.2 reports the comparison BiqCrunch with the two other methods in terms of CPU time
and number of nodes of the search tree to reach optimality for the standard problems. Note that the
reported times for QCR are the ones of CPLEX 12.6 (single threaded). The dual variables needed
to convexify the problem are obtained by CSDP [37]; but the computing times of CSDP are not
considered in the reported CPU time as they are usually insignificant (about 0.4 seconds for n = 80
and 0.9 for n = 100). Table 3.2 shows that BiqCrunch clearly outperforms the two other methods
in terms of time spent to solve to optimality and number of nodes in the branch-and-bound tree.
Regarding memory issues, the two first methods use a small amount of memory (less than 4 MB)
whereas the third featuring CPLEX uses up to 6 GB. In view of this first experiment comparing the
best methods on the standard instances, we now focus only on our method to solve larger problems.

n k d(%)

80 20 25
50
75

40 25
50
75

60 25
50
75

mean

100 25 25
50
75

50 25
50
75

75 25
50
75

mean

(b) BiqCrunch

nodes time

3.4 3.2
7.4 6.1

13.8 9.5
1.4 1.1
1.0 0.8
6.6 8.0
1.0 1.1
1.0 0.8
1.0 0.7

4.1 3.5

20.6 31.3
35.0 41.6
30.6 32.3

3.4 5.3
25.4 46.1

1.4 2.1
1.0 1.9
1.8 3.8
1.0 1.6

13.4 18.5

(c) [Mal-13]

nodes time

11650 94.5
41857 323.1

102948 1002.4
1544 13.1
2806 24.6

19789 195.7
148 1.3
302 2.7

1123 11.2

20241 185.4

127901 2207.1
303648 5543.0

1180710 19661.2
9328 164.9

211308 3923.5
27099 514.2

455 8.0
2018 39.7
1958 38.7

207158 3566.7

(d) [30]

nodes time

170658 39.9
536648 125.0

1827452 407.4
26597 8.6
34148 9.6

231620 55.2
946 0.6

5128 3.1
5754 3.4

315439 72.5

5680415 1882.8
19164583 6684.9
44336562 14275.8

415340 153.6
5156390 2182.2
514822 203.1
10261 5.1

108962 37.3
14956 6.5

8378032 2825.7

Table 3.2: For the standard k-cluster problems: for the three best existing methods, we compare the
averaged number of nodes and CPU time (s) for each triple (n, k, d).

For the second experiment, we consider the larger instances and report in Table 3.3 the average
number of nodes and time required for our solver to solve each set of five problems. We emphasize
that our solver does not need to visit a lot of nodes in the branch-and-bound search tree; for example,
we have found that 55% of the problems with size n ≤ 120 are solved at the root of the branch-and-
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n k d(%)

120 30 25
50
75

60 25
50
75

90 25
50
75

140 35 25
50
75

70 25
50
75

105 25
50
75

160 40 25
50
75

80 25
50
75

120 25
50
75

(b) rudy instances

nodes time (s)

119.4 315.8
194.2 425.1
422.2 889.8
59.8 198.5
85.8 263.2
43.0 143.0
1.8 6.8

22.2 96.9
1.0 3.0

366.2 1165.8
1063.4 2888.6
1558.6 4079.5

134.2 543.0
780.6 3035.3
52.2 202.9
2.6 14.1

11.0 61.5
6.6 34.8

744.6 2856.4
11325.4 37565.2

8050.6 26302.6
395.4 1835.2
993.4 4654.5

3829.0 18653.9
31.4 219.8
17.4 143.4
9.8 82.2

(c) other instances

nodes time (s)

16.6 36.0
39.4 83.1
62.2 119.5
12.2 28.3
27.4 69.4
41.8 93.0

1.0 2.9
1.0 2.7
1.0 2.6

131.0 445.1
383.0 964.7
485.0 1279.8
54.2 216.5

298.6 1133.0
155.8 571.7

1.4 7.5
7.4 39.8
3.0 19.1

235.4 1023.6
858.6 3280.1

1132.2 3997.8
73.4 401.6

479.8 1908.6
1425.0 6288.9

1.4 9.5
2.2 16.7
4.2 31.7

Table 3.3: For the larger Max-k-Cluster problems: the averaged number of nodes and CPU time
for each triple (n, k, d). The first column concerns with the instances generated by the graph
generator rudy, and the second column with the random instances generated by Amélie Lam-
bert and available online on her webpage. Data sets and entire results are available online at
http://lipn.univ-paris13.fr/BiqCrunch/results.

bound tree. Our algorithm is also able to solve unstructured k-cluster problems of sizes n = 140 and
n = 160, for which, as far as we are aware, no numerical results have been reported in the literature.

Let us point out the significant differences in the performance of the algorithm for problems of
the same size. In particular, we notice that problems are harder when k is small, and that, in this
case, they are harder again when d increases from 25% to 75%, which is due to the presence of many
near-optimal k-clusters for larger density graphs (consequently, even if the bound is tight, it is hard to
prune nodes in the search tree since the evaluations of many nodes are almost the same).

The bottomline is that n = 160 is the largest size of unstructured k-cluster problems to be solved to
optimality within a reasonable amount of time on a single-threaded machine. This highlights the need
of a multi-threaded version of BiqCrunch, which is the first point in the perspectives of section 7.1.
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3.7 Conclusion

In this chapter, we have introduced BiqCrunch, an exact solver for general binary quadratic prob-
lems. The main feature of BiqCrunch is its ability to dynamically set the tightness of its bounding
procedure (node by node), using adjustable semidefinite bounds. The bounding procedure automati-
cally adjusts from cheap/poor bounds to expensive/good bounds as needed.

Since BiqCrunch uses high-quality bounds, the number of nodes visited throughout the branch-
and-bound process is relatively small. Thus, BiqCrunch can perform well on problems which are
difficult to solve by methods based on linear bounds. BiqCrunch complements other exact methods by
expanding on the types of problems that we can now efficiently solve. BiqCrunch also complements
heuristic methods by providing tight bounds that give an accurate measure of the suboptimality of the
solutions generated by such methods. BiqCrunch can also benefit from high-quality heuristic solutions
since having such solutions can further reduce the number branch-and-bound nodes visited.

The source code for BiqCrunch is now publicly available. We hope it is a valuable resource to
those interested in solving binary quadratic problems. With feedback from the community, we look
forward to continuing to improve the code and expanding the range of problems that can be efficiently
solved by BiqCrunch.
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Chapter 4

Nonsmooth optimization with
uncontrolled inexact information

This chapter is about nonsmooth optimization algorithms, a research topic inherited from my PhD
advisor Claude Lemaréchal. More precisely, this chapter corresponds to the article [Mal-2] on the
joint work with Welington de Oliveira (now at Universidade do Estado do Rio de Janeiro) and Sofia
Zaourar (now with Xerox Research). Note that this work also impacted the main work of the Sofia’s
PhD thesis [186] on a nonsmooth approach to a classical technique of operation research, the Benders
decomposition.

4.1 Introduction: context, problem, and contributions

4.1.1 Nonsmooth minimization with an (inexact) oracle

We consider nonsmooth optimization problems of the form

f∗ := inf
x∈X

f(x) , (4.1)

with a convex function f : Rn → R; and a (nonempty) polyhedral set X ⊂ Rn, and we assume that
the infimum is finite (f∗ > −∞). Typically, the nonsmoothness of f comes after a maximization, i.e.
when f itself is the result of an inner optimization problem

f(x) = sup
u∈U

h(u, x) (4.2)

where h(u, ·) are convex for each u lying in a set U . Such nonsmooth objective functions appear in
Lagrangian relaxation (see e.g. [119]), in stochastic optimization with recourse (see e.g. [166]), or in
Benders decomposition (see e.g. [83]).

For a fixed accuracy η ≥ 0, a so-called (lower) η-oracle of f provides, for a point x ∈ X as an
input, an approximate value and an approximate linearization

{
fx ∈ R such that f(x)− η ≤ fx ≤ f(x),

gx ∈ Rn such that fx + g>x (· − x) ≤ f(·).
(4.3)

If the oracle error is null (η = 0), the oracle returns the exact value fx = f(x) and a subgradient
gx ∈ ∂f(x). For some problems, as in large-scale stochastic optimization or in combinatiorial opti-
mization, computing exact information on f is expensive, or even out-of-reach, whereas computing
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some inexact information (η > 0) is still possible. For example, when f is given by (4.2), any ū ∈ U
gives an inexact value and an approximate linearization of f at a given x ∈ X . Indeed, the convexity
of h(u, ·) yields

h(ū, x) + g>(z − x) ≤ h(ū, z) ≤ f(z), for any g ∈ ∂xh(ū, x).

So we have inexact information on f by taking

fx = h(ū, x) and gx = g ∈ ∂xh(ū, x). (4.4)

In this case, an η-oracle maximizes h(·, x) over U up to the tolerance η, i.e., computes ū ∈ U
satisfying f(x)− η ≤ h(ū, x) ≤ f(x) so that (4.4) gives the η-information (4.3).

Among the nonsmooth optimization methods to solve problems (4.1) with f known by an oracle
(4.3), are the bundle-type methods: the Kelley method [102, 111], proximal bundle methods [102],
level bundle methods [120], generalized bundle methods [80], and doubly stabilized bundle methods
[62]. Initially devellopped for exact oracles (η = 0), these methods have been extended to handle
inexact oracles (η > 0) and to solve (4.1) up to an accuracy of η. Complete convergence analysis of
these methods exists; roughly speaking, under some assumptions, the iterates xk are an η-minimizing
sequence

f∗ ≤ lim inf f(xk) ≤ f∗ + η. (4.5)

We refer to [99] and [169] for first articles, [185] for an inexact version of the Kelley method, [77]
for an inexact level method, [113] and [60] for inexact proximal bundle methods, and [59] for inexact
level methods with vanishing errors.

4.1.2 Inexact oracle... and more

For some optimization problems as above with an η-oracle, there is in fact additional uncontrolled
information on f , which is already available or cheap to get.

A typical example is in combinatorial optimization when f has the form (4.2), with a discrete set
U and with a Lagrangian function h (see e.g. [119]). In this case, exact or approximate resolution
schemes produce “good” feasible points ū ∈ U , that give, in turn, linearizations of f by (4.4) – but
with uncontrolled accuracy, so that this cannot be used for an oracle with fixed accuracy η. For in-
stance, when (4.2) is solved by a branch-and-bound algorithm, feasible solutions are generated during
the exploration of the branch-and-bound tree, but only the final one, the optimal solution, is used
by the oracle to generate (4.3). The (uncontrolled) information (4.4) produced by the intermediate
feasible solutions is not used, whereas it is available for free and possibly fine (since nearly optimal
solutions are usually obtained soon in the branch-and-bound process). It is the same situation when
we have cheap heuristics computing solutions that are "good" in practice (sometimes with probabilis-
tic guarantees) but without the (deterministic) guarantee required for an η-oracle. We will consider in
section 4.4 an energy optimization problem with such an efficient specific heuristic; other examples
include p-median problems [25] and unit-commitment problems (see e.g. the recent review [170]).

Another type of example of cheap uncontrolled information appears in two-stage stochastic linear
problems (see e.g. [166], and applications to energy problems in [185] and [61]). In this case, the
function has a form (4.2) with separable terms corresponding to linear maximization subproblems

f(x) = c>x+
N∑

i=1

πifi(x) with fi(x) = sup
W>u≤q

(hi − Tx)>u, (4.6)
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for given N , πi, hi, T , W and q (details to come in section 4.4). Computing exact information on f
requires to solve the N linear optimization subproblems, which is costly when N is large. Solving
only a fraction of these subproblems (say 10%) still gives inexact uncontrolled information on f .
Indeed if we compute ūi an optimal solution giving fi(x), then we can also use it to under-approximate
other terms fj(x) (since the feasible sets are the same, we have (hj − Tx)>ūi ≤ fj(x)). Thus, for a
given fraction of solved problems, we have an inexact linearization but with an unknown accuracy.

We formalize the situation where we can compute controlled information together with some
uncontrolled inexact information by assuming that we have

an oracle with accuracy bounded by η ≥ 0, and
a "cutting-plane generator" adding linearizations with uncontrolled accuracy.

(4.7)

This abstract cutting-plane generator should be seen as an external module, having the previous bundle
of linearizaions as an input, and adding other linearizations without calling the η-oracle. There is no
other requirement on the generator: it can use information already available, call heuristics, or even run
optimization algorithms. For example, in our numerical experiments, the cutting-plane generators will
add inexact (uncontrolled) linearizations produced during a fixed number of iterations of a standard
bundle method using heuristics.

Note that the situation (4.7) does not fit in the context of "on-demand accuracy oracles" of [59]
where the oracle both requires and provides more information. Note also that the cutting-plane gener-
ator is different from the multi-cuts techniques used to accelerate cutting-plane methods in operation
research (see e.g. [65] in "column generation", [129] for the Benders decomposition of mixed-integer
programming, and [160] in stochastic programming). Contrary to our cutting-plane generator, these
techniques usually add several "controlled" cuts. In this context, our approach can be seen as an
uncontrolled multi-cut technique.

In the two situations mentioned in this section (Lagrangian relaxations of combinatorial opti-
mization problems, and decompositions of stochastic optimization problems), obtaining uncontrolled
bundle information and calling the cutting-plane generator are often of neglectable computational cost
compared to the cost of calling the (controlled) oracle. A wise practitioner can therefore be tempted
to use the uncontrolled bundle information inside of his bundle method. The goal of this chapter is to
serve as an incentive to follow this meaningful practical intuition, as it establishes that incorporating
uncontrolled bundle information can help in practice and is also consistent in theory.

4.1.3 Using uncontrolled linearizations in bundle methods

Assume that we are at iteration k of a bundle method solving (4.1), and that we have a family of
linearizations

f̄i(·) := fxi + g>xi(· − xi)
(
≤ f(·)

)
(4.8)

associated to points {xi} ⊂ X . In this chapter, we consider that some of these linearizations (indexed
by Jηk ) were given by the oracle, (so they are inexact up to the oracle error f(xi)− η ≤ fxi ≤ f(xi)
for all i ∈ Jηk ), and that the others (indexed by Ju

k ) were created by the cutting-plane generator (so
we do not known and do not control their inexactness). Bundle methods use available linearizations
to create the so-called cutting-plane model of f , which is

f̌k(·) := max
i∈Jηk ∪ Ju

k

f̄i(·) ( ≤ f(·) ). (4.9)

This model is used to compute the next iterate xk+1 by solving a convex quadratic programming
problem. In proximal bundle algorithms (see e.g. [102]), xk+1 is the proximal point of f̌k given
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a "prox-parameter" tk > 0 and the “stability center” x̂k; the quadratic optimization problem is the
following:

min
x∈X

f̌k(x) +
1

2tk
‖x− x̂k‖2 ⇐⇒





minx,r r + 1
2tk
‖x− x̂k‖2

s.t. f̄i(x) ≤ r, ∀ i ∈ Jηk ∪ Ju
k

x ∈ X, r ∈ R .
(4.10)

In level bundle algorithms (see e.g. [120]), xk+1 is the projection of the current stability center x̂k
onto the level set of "level parameter" f lev

k

Xk :=
{
x ∈ X : f̌k(x) ≤ f lev

k

}
=
{
x ∈ X : f̄i(x) ≤ f lev

k for all i ∈ Jηk ∪ Ju
k

}
; (4.11)

the quadratic optimization problem is the following:

min
x∈Xk

1

2
‖x− x̂k‖2 ⇐⇒





minx
1
2‖x− x̂k‖2

s.t. f̄i(x) ≤ f lev
k ∀ i ∈ Jηk ∪ Ju

k

x ∈ X.
(4.12)

In both cases, it is clear that using more information gives a more precise model, so would possibly
lead to computation of better iterates since the model (4.9) using all the information (max on both
Jηk and Ju

k ) is obviously always above the model of f that would restrict the max to Jηk only. Admit-
tedly, in practice using the complete model (4.9) rather than ignoring uncontrolled information makes
quadratic programming problems (4.10) and (4.12) larger and then more difficult to solve. This is
partly compensated by the ever-growing performance of (specific or even general-purpose) linear-
quadratic programming solvers. Anyway, this drawback does not really hold in the case of expensive
oracles – which is the situation we consider in this chapter. Thus, there is a clear practical interest to
consider as much information as possible when solving (4.1) with bundle methods: richer information
can accelerate numerical methods at a neglectable cost, so that the overall computing time is lower
than using only the controlled information. This will be illustrated in section 4.4.

There is nevertheless a theoretical argument against using the uncontrolled information in the
model. Up to our understanding, the convergence results of bundle methods do not extend in a
straightforward way for handling general models (4.9). Standard proofs of convergence use indeed
that iterates are computed using a cutting-plane model with “controlled” linearizations, produced by
an oracle with bounded or vanishing accuracy (η → 0); see e.g. [77], [113], and [59]. In our situation,
the call of the cutting-plane generator makes us lose control on the construction of the cutting-plane
model and therefore on the next iterate.

The only analysis which is generic enough to cover uncontrolled linearizations is the recent article
[60] on the convergence of various forms of proximal bundle methods. So we start with considering,
in section 4.2, a proximal bundle algorithm using the cutting-plane generator which is a trivial exten-
sion of the standard inexact proximal method of [113] and whose analysis is an instantiation of the
generic analysis of [60]. Numerical experiments show that this proximal algorithm does accelerate
the convergence with the help of uncontrolled linearizations added by a cheap cutting-plane generator.
However this algorithm may not fully capture the uncontrolled information: the prox-parameter tk in
(4.10) ties the next iterate to the stability center x̂k, so that the step can be small even when the model
is reasonably rich due to the added uncontrolled linearizations. This feature is inherent to proximal
algorithms.

In contrast, level bundle method would better benefit from additional uncontrolled inexact infor-
mation: richer cutting-plane models would tend to generate useful lower bounds, and then the level
set Xk would better approximate the solution set, and the next iterate would better approximate a
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solution. However, to our knowledge, there is no level bundle method which we could build on to
introduce uncontrolled information: the level counterpart of [113] able to deal with bounded accuracy
η-oracle in the general case has not been developed yet, because of the difficulty of setting up a noise
attenuation without direct control on the step (operated by tk in proximal methods). In particular,
our situation does not fit in the recent analysis of [59] that features oracles with varying accuracy but
controlling the error (and driving it to zero), nor in [173] that assumes the oracle to have uniformly
bounded errors on a compact feasible set X .

4.1.4 Contributions, structure, and notation

This chapter presents two inexact bundle algorithms (proximal and level) incorporating (already
available or cheap to compute) uncontrolled bundle information. We formalize the additional infor-
mation as produced by an external module (the cutting-plane generator of (4.7)) producing inexact
linearizations without known or bounded accuracy. In section 4.2, we consider a proximal bundle
algorithm using this cutting-plane generator, which is simple (in the sense that is a trivial extension
of the standard inexact proximal method of [113]) and has a simple analysis (in the sense that it is an
instantiation of the generic analysis of proximal methods of [60]). We introduce in section 4.3 a new
inexact level bundle algorithm using the cutting-plane generator which is an extension of the limited-
memory proximal level algorithm [41] with an implicit noise attenuation step. This is the first level
algorithm able to handle inexact oracles without assuming compactness of the feasible setX or a van-
ishing error; this is the main technical contribution of this chapter. Finally, in section 4.4, we present
and discuss computational illustrations on stochastic optimization problems coming from energy op-
timization: two-stage linear problems (arising in the planning of hydro-electric power generation,
see [185] and [61]) and joint chance-constrained optimization problems (arising in cascaded reservoir
management, see e.g. [173]). For these problems, we show that the methods save computational time
in using both controlled and uncontrolled information.

Before moving to these developments, we finish this introduction by recalling some notation and
terminology of bundle algorithms.

Aggregate linearizations. We will see that the optimality conditions of the quadratic problems (4.10)
and (4.12) introduce the "aggregated subgradients" ĝk ∈ ∂f̌k(xk+1)+NX(xk+1), which will have a
role in the stopping tests. They define in turn the so-called “aggregate linearizations”, denoted with
the convenient notation “−k” borrowed from [60],

f̄−k(·) := f̌k(xk+1) + ĝ>k (· − xk+1) . (4.13)

It can be proved (see e.g. [59, Prop. 3.2]) that f̄−k is indeed a linearization

f̄−k(x) ≤ f̌k(x) ≤ f(x) for all x ∈ X . (4.14)

We also define the “aggregate linearization error” by

êk := fx̂k − f̄−k(x̂k). (4.15)

Bundle compression. The linearizations used in f̌k are possibly numerous and imprecise. It is
interesting to be able to work with a limited memory and to somehow extract the useful part from
all linearizations. In bundle algorithm terminology, this is called “bundle compression”, which is a
desirable property in general [102], and thus even more in our context where it would make sense
to compress uncontrolled bundle information. In theory we can compress a lot in the algorithms
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presented in this chapter: as usual for bundle methods, the current controlled linearization and the
aggregate linearization are sufficient to guarantee convergence.

Descent test. The two bundle methods presented in this chapter have a descent step which is the
technical point bringing convergence without compactness of X . The stability center x̂k is updated
if the observed decrease is at least a fraction of the predicted decrease

vk = fx̂k − f̌k(xk+1). (4.16)

More specifically, we use the following descent test

fxk+1
≤ fx̂k − κfvk , with κf ∈ (0, 1) . (4.17)

4.2 Proximal bundle method using uncontrolled information

This section explains how the usual inexact bundle method extends easily to deal with uncontrolled
bundle information: Algorithm 4 below is a version of the inexact proximal algorithm of [113] using
the cutting-plane generator to incorporate uncontrolled bundle information.

At iteration k of this algorithm, optimality conditions of the quadratic proximal subproblem (4.10)
can be written with the help of the (simplicial) Lagrange multipliers αi associated to the constraints
f̄i(x) ≤ r, as

−x+ x̂k − tk
∑

i∈Jηk∪ Ju
k

αigi ∈ NX(x).

The unique solution xk+1 can thus be written as a “subgradient step” along ĝk ∈ ∂f̌k(xk+1) +
NX(xk+1) with specified stepsize tk

xk+1 = x̂k − tkĝk . (4.18)

Combined with (4.13), this yields that the aggregate linearization error êk defined in (4.15) and the
predicted decrease νk of (4.16) are connected by vk = ek + tk‖ĝk‖2.

Excessive inexactness is handled in a standard way: we employ the "noise attenuation" rule pro-
posed by [113], consisting in increasing sharply tk whenever êk is overly negative. More precisely, if
êk < −κatttk ‖ĝk‖2, we set tk = 10tk and solve again (4.10) to obtain another iterate. Otherwise (i.e.,
êk ≥ −κatttk ‖ĝk‖2), the algorithm performs like a classical proximal bundle method. We implement
this using an extra binary variable na indicating noise attenuation. After noise attenuation, tk does
not decrease until a new descent step is performed (see line 20). Though it deals with the coarse in-
formation (Ju

k 6= ∅), the convergence of the algorithm still fits into the generic bundle scheme analysis
of [60].

Theorem 4.2.1 (Convergence of inexact proximal bundle). Set the tolerances to zero in Algorithm 4.
Then the sequences testing optimality {êk + ĝ>k x̂k} and {ĝk} become “nonpositive”, in the sense that
there exists a subsequence (indexed by I) such that:

lim sup
k∈I

êk + ĝ>k x̂k ≤ 0 and lim
k∈I
‖ĝk‖ = 0 .

Furthermore, the iterates {x̂k} generate an η-minimizing sequence, i.e. (4.22) holds. Thus Algorithm
4 terminates after finitely many steps with an approximate solution if the tolerances tolg, and tole are
strictly positive.
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Algorithm 4 Usual inexact proximal bundle method using cutting plane generator
1: Choose x1 ∈ X , and set x̂1 ← x1

2: Choose stopping tolerances, tole ≥ 0 and tolg ≥ 0
3: Select κf , κatt ∈ (0, 1) and t1 ≥ t̄ > 0
4: (fx1

, gx1
)← η-oracle(x1), set ĝ1 ← gx1

and ê1 ← 0
5: Jη1 ← {1}, Ju

0 ← ∅ and na← 0

6: for k = 1, 2, . . . do
7: Ju

k ←cutting-plane-generator(x̂k, J
η
k , J

u
k−1) . introduction of uncontrolled linearizations

8: Solve (4.10) to get xk+1 and compute ĝk
9: Set êk ← vk − tk ‖ĝk‖2

10: if êk + ĝ>k x̂k ≤ tole and ‖ĝk‖ ≤ tolg then . stopping test
11: return x̂k and fx̂k

12: end if
13: if êk < −κatttk ‖ĝk‖2 then . (noise) attenuation
14: na← 1, tk ← 10tk, and go back to line 8
15: end if
16: (fxk+1

, gxk+1
)← η-oracle(xk+1) . call η-oracle

17: if fxk+1
≤ fx̂k

− κfvk then
18: x̂k+1 ← xk+1, na← 0 and choose tk+1 ≥ t̄ . descent step
19: else
20: x̂k+1 ← x̂k and update tk:

{
tk+1 ∈ [t̄, tk] if na = 0
tk+1 = tk if na = 1

21: end if
22: Choose Jηk+1 ⊃ {k + 1,−k} . bundle compression
23: end for

Proof. The algorithm fits into the algorithmic pattern 4.2 of [60], and roughly speaking the conver-
gence comes from the use of the η-oracle at descent steps. More specifically, we apply the generic
convergence result of Theorems 6.11 and 4.4 of [60]; let us check their assumptions one by one:

• The oracle error is uniformly bounded by η (for iterates xj with j ∈ Jηk ), and thus satisfies (6.8)
of [60].

• The cutting-plane model (4.9) satisfies f̌k ≤ f , i.e., equation (4.10) in [60].

• We have (3.8) of [60] by setting `k = fx̂k .

• The prox-parameter updating rule is of the type (6.14) of [60].

• Equation (6.11) in [60] holds trivially for fx̂k − fxk+1
as effective decrease.

• We have (6.16) of [60] (specifically, with αk = 0 and βk = κatt in there).

Thus Algorithm 4 satisfies all the assumptions (6.15) and (6.16) of [60, Theorem 6.11]. This opens
the way to apply [60, Theorem 4.4], which in turn states that having a subsequence I such that
lim supk∈I(êk + ĝ>k x̂k) ≤ 0 and limk∈I ĝk = 0 gives the convergence up to η, which is the desired
conclusion. �

We report numerical illustrations of this algorithm in section 4.3.2. They show that using uncon-
trolled linearizations within this algorithm leads to less iterations and lower CPU time than using only
controlled linearizations. However we see on (4.18) that the algorithm may not exploit completely the
added uncontrolled linearizations: xk+1 is tied to x̂k by the explicit prox-parameter tk, which could
prevent the algorithm from making big steps in case of rich cutting-plane model. Such behavior would
not appear with level bundle method.
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4.3 Level method using uncontrolled information

This section presents a level bundle algorithm dealing with an η-oracle and a cutting-plane genera-
tor introducing uncontrolled linearizations, as in (4.7). When disregarding the cutting-plane generator,
this algorithm turns out to be the first level method able to deal with inexact η-oracles in general; in
this way, it can be seen as the level counterpart of the proximal bundle method of [113]. The algorithm
is presented in section 4.3.1, its convergence is stated in section 4.3.2 and analyzed in section 4.3.3.
Its numerical behaviour is illustrated in section 4.4.

4.3.1 An inexact proximal-descent level bundle method

To avoid any compactness assumption, we consider a proximal-descent version of level bundle
method, inspired from the one of [41]. At iteration k of this algorithm, optimality conditions of the
projection problem (4.12) can be written, with the help of the Lagrange multipliers αi ≥ 0 associated
to the constraints f̄i(x) ≤ f lev

k , as

−x+ x̂k −
∑

i∈Jηk∪ Ju
k

αi gi ∈ NX(x).

Introducing the “stepsize”
µk :=

∑

i∈Jηk∪ Ju
k

αi,

we observe that xk+1, the unique solution of the above optimality conditions, can be written as the
“subgradient step” along a direction ĝk ∈ ∂f̌k(xk+1) +NX(xk+1)

xk+1 = x̂k − µkĝk such that µk(f̌k(xk+1)− f lev
k ) = 0. (4.19)

The (inexact) upper bound is given by the η-oracle at the stability center (fup
k = fx̂k ). When µk > 0,

the predicted decrease (4.16) then corresponds to the level depth

vk = fup
k − f lev

k ,

and the aggregate linearization error is related to it, as

êk = vk − µk‖ĝk‖2 . (4.20)

To see this, notice from (4.19) that µk > 0 ensures that f̌k(xk+1) = f lev
k and, therefore

êk = fx̂k − (f̌k(xk+1) + ĝ>k (x̂k − xk+1)) = fx̂k − f lev
k − µk‖ĝk‖2 = vk − µk‖ĝk‖2 .

We emphasize that we do not control the stepsize µk in level bundle methods, in contrast with
proximal bundle methods where we can choose the prox-parameter tk giving the stepsize. This poses
a technical difficulty for handling excessive inexactness within level methods. In Algorithm 4, as in
other inexact proximal bundle methods, tk is increased when the noise is excessively large compared
to ĝk (see line 13 in Algorithm 4); this can not be done directly in an inexact level method. So we
propose in Algorithm 5 an implicit noise attenuation rule, combined with the level attenuation rule.
The idea is simple: we do not allow the depth vk to decrease if the noise is excessive (see line 21). We
will prove in the key proposition 4.3.7 that this simple idea makes µk to go to infinity in presence of
noise, such that either a new descent step is generated, or the algorithm terminates.
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Algorithm 5 New inexact proximal level method using cutting-plane generator
1: Choose x1 ∈ X , v1 > 0, and set x̂1 ← x1

2: Choose tol∆ ≥ 0, tole ≥ 0 and tolg ≥ 0
3: Select κl, κf , κatt ∈ (0, 1)
4: Choose a threshold µlarge > 0
5: (fx1 , gx1)← η-oracle(x1), set ĝ1 ← gx1 and ê1 ← 0
6: Set fup

1 ← fx1
, f low

1 ← −∞, ∆1 ← +∞, Jη1 ← {1}, Ju
0 ← ∅

7: for k = 1, 2, . . . do
8: Ju

k ←cutting-plane-generator(x̂k, J
η
k , J

u
k−1) . introduction of uncontrolled linearizations

9: Update f lev
k ← fup

k − vk and Xk ←
{
x ∈ X : f̌k(x) ≤ f lev

k

}

10: if ∆k ≤ tol∆ or (êk ≤ tole and ‖ĝk‖ ≤ tolg) then . stopping test
11: return x̂k and fx̂k

= fup
k

12: end if
13: Run a quadratic optimization software on problem (4.12)
14: if Xk is empty then
15: f low

k ← f lev
k , ∆k ← fup

k − f low
k , vk ← min{νk, κl∆k} . lower bound

16: Go back to line 9
17: else
18: Get xk+1 and µk, and compute ĝk using (4.19)
19: êk ← vk − µk ‖ĝk‖2
20: end if
21: if µk > µlarge and êk ≥ −κattµk ‖ĝk‖2 then . (level+noise) attenuation
22: vk ← vk

2 , and go back to line 9
23: end if
24: (fxk+1

, gxk+1
)← η-oracle(xk+1) . call η-oracle

25: if fxk+1
≤ fx̂k

− κfvk then
26: x̂k+1 ← xk+1, fup

k+1 ← fx̂k+1
and f low

k+1 ← f low
k . descent step

27: ∆k+1 ← fup
k+1 − f low

k+1 and vk+1 ← min{vk, κl∆k+1}
28: else
29: x̂k+1 ← x̂k, ∆k+1 ← ∆k, vk+1 ← vk, fup

k+1 ← fup
k and f low

k+1 ← f low
k

30: end if
31: Choose Jηk+1 ⊃ {k + 1,−k} . bundle compression
32: end for
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In practice, the projection onto Xk (problem (4.12)) is solved by a quadratic programming solver
(at line 18 of Algorithm 5). If Xk is nonempty, the solver provides xk+1 and µk, from which we deduce
ĝk by (4.19). If Xk is empty, the solver raises a flag of infeasibility and we exploit this information by
updating the lower bound for the optimal value f∗: observe indeed that when Xk is empty, there holds

f lev
k < f̌k(x) ≤ f(x) for all x ∈ X ,

so that we can set f low
k = f lev

k (see line 15). At each iteration of Algorithm 5, we thus have a lower
bound f low

k and an inexact upper bound fup
k such that

f low
k ≤ f∗ ≤ fup

k + η. (4.21)

4.3.2 Convergence result

We have the following theorem stating the convergence of Algorithm 5, which is of the same vein
as Theorem 4.2.1 for Algorithm 4.

Theorem 4.3.1 (Convergence of inexact proximal level). Set the tolerances to zero in Algorithm 5.
Then the sequences testing optimality {∆k = fup

k − f low
k }, {êk} and {ĝk} become “nonpositive”, in

the sense that

• either the sequence {∆k} tends to be nonpositive: lim ∆k ≤ 0,

• or there exists a subsequence (indexed by I) such that: lim infk∈I êk ≤ 0 and limk∈I ‖ĝk‖ = 0.

Furthermore, the iterates {x̂k} generate an η-minimizing sequence, i.e.

f∗ ≤ lim inf f(x̂k) ≤ f∗ + η. (4.22)

Thus Algorithm 5 terminates after finitely many steps with an approximate solution if the tolerances
tol∆, tolg, and tole are strictly positive.

The next section is devoted to the proof of this theorem. We will say that the algorithm converges
up to η when (4.22) holds. Note that there are two ways to stop the algorithm (see line 10): the usual
criterion based on the gap ∆k = fup

k − f low
k

lim ∆k ≤ 0 =⇒ convergence up to η (4.23)

and a second one inspired from [41] based on the aggregated error and subgradients to deal with
unbounded feasible sets. The next two lemmas explain these two stopping tests and their consistency.

Lemma 4.3.2 (Nonpositivity of ∆k and convergence). If lim ∆k ≤ 0, then the sequence {x̂k} satisfies

f∗ − η ≤ lim fx̂k ≤ f∗ ≤ lim inf f(x̂k) ≤ f∗ + η . (4.24)

Furthermore, if at some iteration k we have ∆k ≤ 0, then we have in fact

f∗ − η ≤ fx̂k ≤ f∗ ≤ f(x̂k) ≤ f∗ + η . (4.25)
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Proof. Note first that the η-oracle properties imply that, for all k,

f∗ − η ≤ f(x̂k)− η ≤ fx̂k , (4.26)

so that fup
k = fx̂k satisfies (4.21). We see that {fup

k = fx̂k} is nonincreasing (line 26), {f low
k } is

nondecreasing (line 15), and so {∆k} is nonincreasing (line 27). The nonincreasing sequence {fx̂k}
is bounded from below thus converges and lim fx̂k ≥ f∗ − η. Similarly the nondecreasing {f low

k }
is bounded from above by f∗, thus it also converges and lim f low

k ≤ f∗. Writing lim ∆k ≤ 0 as
lim fx̂k − lim f low

k ≤ 0 we obtain

f∗ − η ≤ lim fx̂k ≤ f∗. (4.27)

Now passing to the limit-inf in (4.26) and adding η, we also have

f∗ ≤ lim inf f(x̂k) ≤ lim fx̂k + η ≤ f∗ + η.

Combining this inequalities with (4.27) gives the announced inequalities (4.24).
The argument leading to the second inequality (4.25) is the same as above. For a fixed k, (4.26)

and ∆k ≤ 0 give f∗ − η ≤ fx̂k ≤ f∗, and adding η to (4.26) yields

f∗ ≤ f(x̂k) ≤ fx̂k + η ≤ f∗ + η .

Combining the inequalities gives (4.25). �

Lemma 4.3.3 (Vanishing aggregate errors and convergence). For the sequences {x̂k}, {êk} and {ĝk}
generated by Algorithm 5, we have, for all x ∈ X ,

f(x̂k) ≤ f(x) + êk + η − ĝ>k (x− x̂k). (4.28)

Assume that {x̂k} is bounded and there exists a subsequence indexed by I such that

lim inf
k∈I

êk ≤ 0 and lim
k∈I
‖ĝk‖ = 0. (4.29)

Then the algorithm converges up to η.

Proof. Fix x ∈ X . The inequality (4.28) comes from (4.13) as follows:

f(x) ≥ f̄−k(x)

= f̌k(xk+1) + ĝ>k (x− xk+1)

= f̌k(xk+1) + ĝ>k (x̂k − xk+1) + ĝ>k (x− x̂k)
= f̄−k(x̂k) + ĝ>k (x− x̂k)
= fx̂k − (fx̂k − f̄−k(x̂k)) + ĝ>k (x− x̂k)
= fx̂k − êk + ĝ>k (x− x̂k)
≥ f(x̂k)− η − êk + ĝ>k (x− x̂k).

We also get the upper bound

f∗ ≤ f(x̂k) ≤ f(x) + êk + η + ‖ĝk‖ ‖x− x̂k‖ .

Passing to the lim inf , (4.29) together with the boundedness of {x̂k} yields

f∗ ≤ lim inf
k∈I

f(x̂k) ≤ f(x) + η.

Taking the infimum over x ∈ X gives (4.22). �
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4.3.3 Convergence proof

To prove Theorem 4.3.1, we adapt the usual rationale of convergence proof of bundle methods,
by considering the two cases of infinitely many and finitely many descent steps (line 26). We show
that in both cases one of the two stopping tests is active, which guarantees in turn that the algorithm
converges up η (by (4.23) and Lemma 4.3.3). The technical challenge is to handle, first, a fixed
inexactness in a level method and, second, the uncontrolled cutting-plane model. We note that this
proof of convergence differs from the one of [41].

We start with a remark about the level depth vk. Looking at lines 15, 22 and 27, we see that {vk}
is nonincreasing, and that if vk ≥ 0 then êk ≥ −µk ‖ĝk‖2. We also notice that vk can be negative only
if so is ∆k, and then (4.23) holds. Therefore, we consider that vk ≥ 0 in the remainder of the section.

We will also need the index setA of the iterations requiring a noise attenuation (line 22). The fol-
lowing lemma studies the situation of infinitely many of such attenuations. The following proposition
treats the first case of infinitely many descent steps.

Lemma 4.3.4 (Infinitely many attenuations). If A contains infinitely many indices, then (4.29) holds
with I = A. If the sequence {x̂k} is furthermore bounded, then the algorithm converges up to η.

Proof. Recall that vk = êk + µk ‖ĝk‖2 by (4.20). If k ∈ A, then we have

vk = êk + µk ‖ĝk‖2 ≥ (1− κatt)µk ‖ĝk‖2 ≥ (1− κatt)µlarge ‖ĝk‖2 ≥ 0.

If the set A is infinite, then we have vk → 0, and therefore ‖ĝk‖ → 0 by the above inequality. By
(4.20), this yields that êk → 0 and then we have (4.29) with I = A. As a result, if the sequence {x̂k}
is bounded, we can invoke Lemma 4.3.3 and get that {x̂k} is η-minimizing. �

Proposition 4.3.5 (Infinitely many descent steps). Suppose there are infinitely many descent steps
(line 26). Then the algorithm converges up to η.

Proof. Let us index the descent steps by `. More precisely k(`) denotes the `th descent iteration, and
j(`) = k(`+ 1)−1 the last iteration before the (`+ 1)th. Note that x̂k(`) is the `th (different) stability
center, and that x̂k(`) = x̂j(`). The descent test (4.17) gives the inequality

fxk(`) − fxk(`+1)
≥ κfvj(`) ≥ 0 .

Summing over ` we get

fxk(0) − lim
`
fxk(`+1)

≥ κf
∞∑

`=0

vj(`) .

Since lim` fxk(`+1)
≥ f∗ − η > −∞, we get that the series converges and then

lim
`
vj(`) = 0. (4.30)

By monotonicity of vk, we thus have limk vk = 0. Let us distinguish now three cases:

(i)A finite (ii)A infinite and {x̂k}k bounded (iii)A infinite and {x̂k}k unbounded

In the case (i), for k large enough, we have vk = κl∆k, and then limk ∆k = 0. Thus, (4.23) holds
and the proof is over. In the case (ii), we can use Lemma 4.3.4 which gives (4.29) and that {x̂k}
is η-minimizing. So let us focus on the case (iii), and let us prove by contradiction that {x̂k} is still
η-minimizing.
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Suppose that there exists ε > 0 such that f(x̂k) > f∗ + η + ε for all k large enough. This yields
that there exists x̃ ∈ X such that f(x̂k(`)) ≥ f(x̃) + η + ε/2 for all large `. Then (4.28) applied to
k = j(`) gives

ĝ>j(`)(x− x̂k(`)) ≤ f(x) + η − f(x̂k(`)) + êj(`) for allx ∈ X ,

which yields
ĝ>j(`)(x̃− x̂k(`)) ≤ êj(`) − ε/2 .

Using this inequality and (4.20), we develop
∥∥x̂k(`+1) − x̃

∥∥2
=
∥∥x̂k(`) − µj(`)ĝj(`) − x̃

∥∥2

=
∥∥x̂k(`) − x̃

∥∥2
+
∥∥µj(`)ĝj(`)

∥∥2
+2µj(`)ĝ

>
j(`)(x̃− x̂k(`))

=
∥∥x̂k(`) − x̃

∥∥2
+µj(`)[µj(`)

∥∥ĝj(`)
∥∥2

+2ĝ>j(`)(x̃− x̂k(`))]

≤
∥∥x̂k(`) − x̃

∥∥2
+µj(`)[µj(`)

∥∥ĝj(`)
∥∥2

+2êj(`) − ε]
≤
∥∥x̂k(`) − x̃

∥∥2
+2µj(`)[vj(`) − ε/2] .

As lim` vj(`) = 0 by (4.30), we have for all ` large enough vj(`) ≤ ε/2 and then
∥∥x̂k(`+1) − x̃

∥∥2 ≤
∥∥x̂k(`) − x̃

∥∥2

which contradicts the fact that {x̂k} is unbounded. Hence, (4.22) must hold. �

We consider now the second case of finitely many descent steps. We start with a lemma stating
that null iterates get further away from the last stability center.

Lemma 4.3.6 (After a last descent step). If x̂k = x̂k−1 = x̂, f lev
k ≤ f lev

k−1 and vk = vk−1, then we
have

‖xk+1 − x̂‖2 ≥ ‖xk − x̂‖2 +
(1− κf )2

‖gxk‖2
v2
k.

Proof. The bundle management of line 31 incorporates two pieces in the model f̌k: the k-th lineariza-
tion f̄k and the aggregate linearization f̄−k. Both bring some information, as follows. First, since
f̄−(k−1) ≤ f̌k and f lev

k ≤ f lev
k−1, we have that the level set Xk is included in the "aggregate level set”

X−(k−1) := {x ∈ X : f̄−(k−1)(x) ≤ f lev
k−1}, and therefore that xk+1 ∈ X−(k−1). It can be proved

(see e.g. [59, Prop. 3.2]) that the aggregate level-set produces the same iterate that Xk−1; in other
words,

xk = PXk−1
(x̂) = PX−(k−1)

(x̂) and (x̂− xk)>(x− xk) ≤ 0 for all x ∈ X−(k−1) . (4.31)

Thus, we have (x̂−xk)>(xk+1−xk) ≤ 0 and developing ‖xk+1 − x̂‖2 = ‖xk+1 − xk + (xk − x̂)‖2,
the inequality gives

‖xk+1 − x̂‖2 ≥ ‖xk − x̂‖2 + ‖xk − xk+1‖2 . (4.32)

Now since f̄k ≤ f̌k and xk+1 ∈ Xk, we have fxk + g>xk(xk+1 − xk) ≤ f lev
k , which gives

fxk − f lev
k ≤ ‖gxk‖ ‖xk+1 − xk‖ . (4.33)

Iteration k is not a descent iteration: the converse of line 25 reads fxk ≥ fx̂ − κfvk−1. Recalling that
f lev
k = fx̂ − vk and vk = vk−1, this yields fxk − f lev

k ≥ (1− κf )vk. Together with (4.33), this gives

‖xk+1 − xk‖ ≥
(1− κf )

‖gxk‖
vk.

which ends the proof with (4.32). �
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Proposition 4.3.7 (Finitely many descent steps). Suppose that Algorithm 5 generates only finitely
many descent steps. Then the algorithm converges up to η.

Proof. Let us consider first two easy cases. If lim ∆k ≤ 0 then (4.23) holds, and the proof is over.
If A has infinitely many indices, we can conclude with Lemma 4.3.4 together with the fact that the
sequence {x̂k} is constant for k large enough.

Let us focus on the case where there exists ∆̄ > 0 such that ∆k ≥ ∆̄ for all k, and there is
eventually no noise attenuation (A has finitely many indices). For k large enough, the stability center
is fixed (denoted x̂) and the depth is also fixed (at v̄ > 0).

We claim that the sequence ‖xk+1 − x̂‖ is not bounded. For sake of a contradiction, suppose that
it is bounded. Then the η-subgradients are bounded (by a constant Λ) by [102, Prop. XI.4.1.2]. Apply
Lemma 4.3.6; since the vk and the f lev

k are fixed, the sequence {‖xk+1− x̂‖}k increases by a constant
factor (1− κf )2v̄2/Λ2 at each iteration. This contradicts the boundedness.

We claim now that µk →∞. In view of a contradiction, suppose that {µk} is bounded: let µ̄ > 0
be such that µk ≤ µ̄ for all k large enough. Using (4.20) we have that

µkvk = µkêk + µ2
k‖ĝk‖2 ≥ −µkη + µ2

k‖ĝk‖2 ≥ −µ̄η + ‖xk+1 − x̂‖2 .
As {vk} is nonincreasing, we have that µ̄v0 ≥ µkvk ≥ −µ̄η + ‖xk+1 − x̂‖2 , contradicting that
‖xk+1 − x̂‖2 →∞. Hence, µk →∞.

Since there is eventually no noise attenuation, we have (see line 21)

êk < −κattµk ‖ĝk‖2 < 0 for all k large enough.

By definition of êk in (4.15), we have that êk ≥ f(x̂k) − η − f̄−k(x̂k) ≥ −η, from (4.3) and (4.14).
This yields ‖ĝk‖2 ≤ η/(κattµk). Since µk → ∞, we get that ĝk → 0. Hence, (4.29) holds with I
being all the large indices. Since the sequence {x̂k} is finite (thus bounded), we can conclude with
Lemma 4.3.3. �

Remark 4.3.8 (More sophisticated versions). We emphasize that the important point of the above
proofs was to control the linearization error at descent steps. As a consequence, we could add a test
in the algorithm to stop the oracle whenever we detect that the descent test will be false. This version
of the algorithm would be proved to be convergent with the exact same proof.

We could also cover the case of "upper oracles" in the terminology of [dOSL14]. The algorithm
could indeed deal with controllable linearizations overestimating the function by no more than a
constant ηg > 0. The same convergence proof would result in a convergence to an (η + ηg)-solution.

4.4 Numerical illustration on energy optimization

We illustrate the efficiency of our approach on two classes of energy optimization problems: two-
stage stochastic programming problems (with publicly available data sets) and chance-constrained op-
timization problems arising from cascaded reservoir management (with real-life data). Each following
subsection treats one family of problems for which we consider an exact oracle and a cutting-plane
generator incorporating uncontrolled linearizations. Our goal here is not to obtain the best compu-
tational results for these problems, but to show that using the uncontrolled bundle information can
speed-up computations.

Specifically, we compare Algorithm 4 and Algorithm 5 using cutting-plane generators to their
basic versions not using any additional uncontrolled linearizations (Ju

k = ∅ for all k). We have
implemented these algorithms in MATLAB (using the Gurobi solver for LP and QP problems); we
name them as follows
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• u-P: Algorithm 4, the proximal bundle using uncontrolled information,

• P: Algorithm 4 with Ju
k = ∅, the standard proximal bundle algorithm,

• u-L: Algorithm 5, the level bundle using uncontrolled information,

• L: Algorithm 5 with Ju
k = ∅, the (new) level algorithm.

Notice that the comparison between level and proximal bundle algorithms are (surprisingly) rare; an
exception is [62]. In particular, in section 5.1.4 of [dS15], tests are reported with tuning parameters of
proximal and level bundle methods. Here we set the parameters of the algorithms according to these
tests: for both algorithms, we take κf = 0.1 and κatt = 0.99 ; for Algorithm 4, we take t1 = 10,
t̄ = 10−6, and the update rule of Section 5.1.2 of [dS15] (with a = 2) for tk ; for Algorithm 2, we
take κl = 0.2 and µlarge = 5.

Since the controlled oracle is exact (η = 0), the four methods converge to the exact solution. The
algorithms are compared by measuring the number of calls to the exact oracle and the total CPU time
to reach the stopping test. We use the relative stopping tolerance

tole = tol∆ = 10−5(1 + f(x̂k)) and tolg = 10−4(1 + f(x̂k)).

These experiments were performed on a computer with Intel(R) Core(TM), i3-3110M CPU 2.40, 4G
(RAM), under Windows 8, 64Bits.

We also compare the speed and robustness of the algorithms globally on all the problems by using
performance profiles [70]. For each algorithm, we plot the proportion of problems that it solved within
a factor of the time required by the best algorithm. More precisely, if we denote by tA(p) the time
spent by algorithm A to solve problem p and t∗(p) the best time for solving problem p, then the
proportion of problems solved by A within a factor τ is

θA(τ) =
number of problems p such that tA(p) ≤ τ t∗(p)

total number of problems
.

4.4.1 Two-stage stochastic linear optimization problems

Problem and instances description. Two-stage stochastic linear problems arise in the planning of
hydro-electric power generation; see e.g. [185] and [61] for applications to the New Zealand and
Brazilian electricity system. The problem can be formulated as (4.1) with

X = {x ∈ Rn+ : Ax = b} and f(x) = c>x+
N∑

i=1

πifi(x)

where c ∈ Rn, A ∈ Rm1×n and b ∈ Rm1 are such that the set X is bounded. Also,

fi(x) := min
y∈Rn2+

q>y s.t. Tx+Wy = hi (4.34)

is the so-called recourse function associated with the i-th scenario hi ∈ Rm2 (which has a probability
πi > 0). In these problems, the vectors hi are the only uncertainty parameters and are normally
distributed. The dual linear problem of (4.34) is

fi(x) = sup
W>u ≤q

(hi − Tx)>u. (4.35)
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We use the set of two-stage stochastic linear test-problems that have been used by several authors
including [63, 142, 166]). The set is available online on the webpage of István Deák1. The data set
consists in 7 families of problems of different sizes; we call them F1 to F7. A family of problems is
given by the data (c, A, b, q, T,W ) along with a generator of appropriate scenarios, which takes as an
input the number of scenarios N , and returns (πi, hi) for i = 1, . . . , N . For each family, we have 7
problems corresponding to N ∈ {100, 200, 500, 800, 1000, 1200, 1500}.

Oracles and cutting-plane generator. Computing exact information on f requires solving the N
linear optimization subproblems (4.34)-(4.35). Solving only a fraction of these subproblems still gives
inexact information on f : the optimal solution ūi giving fi(x) can also be used to under-approximate
other terms fj(x) (since the dual feasible sets are the same, we have (dj − Tix)>ūi ≤ fj(x)). Thus
we are in the situation (4.7) with

• an exact oracle providing the value f(x) and a subgradient g ∈ ∂f(x) (η = 0) by solving
exactly the N subproblems (4.35);

• an uncontrolled oracle by solving 10% of the subproblems (4.35) and taking a feasible solution
of the remaining subproblems. This oracle is about 90% times faster than the fine one, but we
do not know its accuracy.

• a cutting-plane generator consisting in running several iterations of a bundle method using only
the uncontrolled oracle (with the same stopping test and a maximum of 100 iterations).

Numerical results. Table 4.1 presents the performances of the four algorithms on the 49 test-
problems. It reports the number of (exact) oracle calls and CPU time (in minutes) required to reach
convergence. Each entry is the average over the seven instances of the family, except for the last line
which is the grand total over the 49 instances. This table shows that adding uncontrolled linearization
does speed up significantly the two algorithms: we observe 25% less oracle calls and 10% less CPU
time between L and u-L, and 39.4% and 28.6% between P and u-P.

# oracle calls CPU time (min)
N L P u-L u-P L P u-L u-P
F1 19 25 13 11 1.2 1.7 1.0 0.8
F2 25 39 19 25 2.9 4.6 2.5 3.2
F3 37 56 23 30 2.5 3.7 1.8 2.2
F4 39 62 31 35 3.3 5.1 2.9 3.0
F5 38 63 36 39 4.5 7.1 4.5 4.7
F6 57 81 37 51 4.8 6.2 4.2 5.4
F7 59 68 47 49 6.7 7.9 6.1 6.6

Total 1928 2768 1440 1678 3.0h 4.2h 2.7h 3.0h

Table 4.1: Comparison of the four algorithms with respect to the number of oracle calls and the global
CPU time to get convergence. Each entry is the average over the seven instances of the family, except
for the last line which is the grand total over the 49 instances.

The decrease of oracle calls is more important than the one of CPU time because of the additional
time taken by the calls of the cutting-plane generator and by solving larger quadratic subproblems.
We still observe a decrease of CPU time in all our instances, even if the uncontrolled linearizations
may have a poor accuracy. We also note that the decrease is more important for proximal algorithm

1http://www.uni-corvinus.hu/index.php?id=26637
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than the level one. This is due to the fact that the level algorithm without uncontrolled information
(L) does already well: we see that the CPU times of L are comparable to the ones of u-P.
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Figure 4.1: Performance profiles of the four methods over the 49 instances

For these problems, the best method in terms of both oracle calls and CPU time is u-L, the level
method using the uncontrolled cutting-plane generator. Figure 4.1 confirms this by showing the per-
formance profile of all solvers with respect to oracle calls (the plot for CPU time is similar). Since
its curve is always higher, u-L clearly dominates the other methods in terms of speed and robustness.
The value at τ = 1 indicates that u-L is the best to solve around 70% of the 49 problems; it also solves
all the problems within a factor τ ≈ 1.5 of the best method.

We finish with a remark about the influence of the accuracy of the uncontrolled oracle. We note
indeed that we can adjust the accuracy of the uncontrolled oracle in this situation by changing the
percentage of subproblems (4.35) solved. In the reported experiments, we choose to solve 10% of
the subproblems because we found out that it provides a good compromise between performance
of the overall algorithm and computational burden of the external module. We mention here that,
during preliminary tests, we observed that solving fewer subproblems (e.g. 1% of all subproblems)
tends to increase of the total number of exact oracle calls and to give higher CPU times to solve the
overall problem. On the other hand, we also observed that solving more subproblems (e.g. 20% of
all subproblems) tends to decrease of the number of exact oracle calls, but with higher total CPU
costs (since the uncontrollable oracle becomes more expensive). In general, the efficient choice of the
percentage of problems solved depends on the problem’s data, such as variance of the random vectors
and number of considered scenarios.

4.4.2 Chance-constraint optimization problems

Problem and instances description. Joint chance-constrained optimization problems appear in cas-
caded reservoir management in presence of probabilistic guarantees that volumes in the reservoirs
remain within bounds see e.g. [173]. With a target probability p ∈ (0, 1), these constraints can be ex-
pressed as P[g(y) ≥ ξ] ≥ p where ξ ∈ Rn represents the random vector of water inflows (of associate
probability measure P) and g : Rm → Rn is an affine mapping. The associated optimization problem
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can be written (see more precisely [177, Eq.(15)]) as

min
y∈Y,v∈V

q>y s.t. g(y) ≥ v , (4.36)

where Y is a bounded polyhedron and V the set of points satisfying the probability constraint.
When considering finitely many scenarios {ξ1, . . . , ξN} with associated probability {π1, . . . , πN}
(see e.g. [166, Chap. 4], [64, Chap. 6]), V can be expressed as the following feasibility set

V =
{
v ∈ Rn : ∃ z ∈ {0, 1}N, π>z ≤ 1− p, (1− zi)ξi ≤ v − b zi, i = 1, . . . , N

}

where b ∈ Rn is defined component-wise by bj := min1≤i≤N ξij . Then the dual problem has the form
(4.1) with

X = Rn+ and f(x) := −(h(x) + d(x))

where h(x) is the optimal value of a mere linear programming problem (since Y is a polyedron and g
is affine)

h(x) := min
y∈Y

q>y − x>g(y)

and d(x) is the optimal value of a (large-scale) mixed-binary linear problem

d(x) :=





min
v∈Rm, z∈{0,1}N

x>v

s.t. ξi(1− zi) ≤ v − b zi, i = 1, . . . , N
π>z ≤ 1− p .

(4.37)

Here we use the instances described in [177] and [173] constructed from real-life data on
the French hydro-valley Isère (provided to us by EDF, the French Electricity Board). For N ∈
{50, 100, 150, 200, 250} and p ∈ {80%, 90%}, three different scenario samples are randomly gen-
erated, and as a result, we get thirty different associated instances.

Oracles and cutting-plane generator. The bulk of the work of an exact oracle for f is to solve the
mixed-binary linear optimization problem (4.37) to optimality, which is expensive as N grows. On
the other hand, we have an easy way to produce feasible solutions, as follows. To any binary point
z̃ ∈ {0, 1}N satisfying π>z̃ ≤ 1− p we associate the vector ṽ ∈ Rn such that

ṽj := max
i∈{l: zl=0}

ξij for all j = 1, . . . , N . (4.38)

Observe then that the pair (ṽ, z̃) is feasible for (4.37). Accordingly, dx := x>ṽ is an upper approxi-
mation for d(x), which in turn provides a (cheap but imprecise) approximation for f(x)

fx := −(h(x) + dx) ≤ f(x) .

The recent work [172] proposes a fast heuristic (denoted Heuristic h1 therein) to compute a good
candidate z̃ (and therefore ṽ as above) to approximate a solution of problem (4.37). Thus we are in
the situation (4.7) with

• an exact oracle providing the value f(x) and a subgradient g ∈ ∂f(x) (η = 0) by solving
exactly the subproblem (4.37) with Gurobi;

• an uncontrolled oracle using the heuristic of [172] and (4.38);

• a cutting-plane generator consisting in running several iterations of a bundle method using only
the uncontrolled oracle (with the same stopping test and a maximum of 100 iterations).
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Numerical results. Table 4.2 reports the number of (exact) oracle calls and CPU time (in minutes)
required to reach convergence, for the four algorithms over the 30 test-problems. Each entry is the
average over the instances with same N and p, except for the last line which is the grand total over
the 30 instances.

# oracle calls CPU time (min)
N p L P u-L u-P L P u-L u-P
50 0.8 18 32 13 13 0.6 0.9 0.4 0.4
50 0.9 18 18 11 9 0.4 0.4 0.3 0.2

100 0.8 19 24 12 15 2.9 3.5 1.7 1.6
100 0.9 19 19 11 21 1.3 1.1 0.7 1.2
150 0.8 19 24 11 20 12.8 12.0 6.2 7.9
150 0.9 18 24 8 18 2.4 3.6 1.2 2.1
200 0.8 20 19 13 23 24.2 20.2 12.1 12.6
200 0.9 19 22 10 6 5.6 5.7 3.2 1.4
250 0.8 18 32 15 15 48.9 45.6 29.9 28.0
250 0.9 19 36 12 40 17.0 26.1 5.3 20.5

Total 558 751 346 543 5.8h 6.0h 3.0h 3.8h

Table 4.2: Comparison of the four algorithms with respect to oracle calls and global CPU time to get
convergence. Each entry is the average over the three instances, except for the last line which is the
grand total over the 30 instances.

The figures show that introducing uncontrolled linearizations reduces both the number of oracle
calls and the CPU time for both proximal and level algorithms. This improvement is even more
significant than for the two-stage problems: the reduction of CPU times is of 47% for u-L and 36%
for u-P.

We also see that u-L is more efficient u-P, both in CPU time and number of oracle calls. In fact
u-L makes a better use of uncontrolled information added by the cutting-plane generator: L and P are
comparable in terms of CPU time whereas u-L is faster than u-P (by more than 20%). The performance
profiles of Figure 4.2 confirm that u-L is the fastest and most robust among the four methods.
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Figure 4.2: Performance profiles of the four methods on the 30 instances.
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4.5 Conclusions

This chapter analyzes two bundle algorithms (a proximal one and a level one) handling cheap
uncontrolled inexact linearizations, incorporated by an abstract cutting-plane generator. Beside the
formalisation and the emphasis on uncontrolled bundle information, the main technical contribution
of this chapter is the challenging convergence analysis of the level algorithm. This algorithm extends
[41] to handle inexact η-oracles and to use the general uncontrolled cutting-plane model generator.
The key feature of this algorithm is a novel noise attenuation rule, that can be seen as an implicit
version of the one of [113]. Numerical experiments on two energy optimization problems show that
including cheap uncontrolled information can decrease the CPU time to reach optimality, and that the
level algorithm, fully exploiting the additional information, works particularly well on these problems.

To our knowledge, this chapter is the first one to consider cheap uncontrolled inexact information
within bundle methods and to show the interest to use it. A recent preprint [175] builds on this line
of research in a context of Benders decomposition. Note finally that we consider here an extreme
case of a cutting-plane generator with no control at all on the linearizations. More sophisticated and
subtle ways to incorporate cheap information should be possible, as for exemple using "adaptative
oracles". Such inexact oracles would interact with the bundle algorithm (though accuracy parameters
as in [59] but not only) and would be able to choose between several available approximation schemes
with increasing accuracy and increasing cost (as for example the three specific heuristics of [25] for a
combinatorial problem). A general study of smart and communicating oracles goes beyond the scope
of this work and deserves special research and developments.
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Chapter 5

Cut-generating functions

This chapter presents to the joint work with the "task force", as called by Claude Lemaréchal: we in-
vited in Grenoble three colleagues, Aris Daniilidis (University of Chile), Gérard Cornuéjols (Carnegie
Mellon University), and Michele Conforti (University of Padoue, Italy), for a long research stay in
Spring 2011, with the ambitious objective to connect convex analysis and cutting theory in discrete
optimization. This fruitful visit has led to two publications [Mal-8] and [Mal-31] about a formal
theory of cut-generating functions, generalizing the famous Gomory’s cuts

5.1 Introduction

In this chapter, we consider sets of the form

X = X(R,S) :=
{
x ∈ Rn+ : Rx ∈ S

}
, (5.1a)

where
{
R = [r1 . . . rn] is a real q × n matrix ,
S ⊂ Rq is a nonempty closed set with 0 /∈ S . (5.1b)

In other words, our setX is the intersection of a closed convex cone with a pre-image by a linear map-
ping. This model goes back to [106], where S was a finite set: constraints Rx = b were considered
for several righthand sides b. Here, we rather consider a general (possibly infinite) set S and a varying
constraint matrixR. The closed convex hull ofX does not contain 0 (see Lemma 5.2.1 below) and we
are then interested in separating 0 from X: we want to generate cuts, i.e. inequalities that are valid
for X , which we write as

c>x > 1 , for all x ∈ X . (5.2)

5.1.1 Motivating examples

Our first motivation comes from (mixed) integer linear programming.

Example 5.1.1 (An integer linear program). Let us first consider a pure integer program, which con-
sists in optimizing a linear function over the set defined by the constraints

Dz = d ∈ Rm , z ∈ Zp+ . (5.3)

Set n := p−m, assume the matrix D to have full row-rank m and select m independent columns (a
basis). The corresponding decomposition z = (x, y) into non-basic and basic variables amounts to
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writing the above feasible set as the intersection of Zn × Zm with the polyhedron

P :=
{

(x, y) ∈ Rn+ × Rm+ : Ax+ y = b
}

(5.4)

for suitable m× n matrix A and m-vector b.
Relaxing the nonnegativity constraint on the basic variables y, we obtain the classical corner

polyhedron [87], namely the convex hull of
{

(x, y) ∈ Zn+ × Zm : Ax+ y = b
}
.

This model has the form (5.1) if we set

q = n+m, R =

[
I
−A

]
, S = Zn ×

(
Zm − {b}

)
, (5.5)

where Zm − {b} denotes the translation of Zm by the vector −b. Assuming b /∈ Zm, the above S is a
closed set not containing the origin.

For m = 1, (5.4) has a single constraint

n∑

j=1

ajxj + y = b , y ∈ Z , x ∈ Zn+ ;

the celebrated Gomory cut [86] is

∑

j:fj6f0

fj
f0
xj +

∑

j:fj>f0

1− fj
1− f0

xj > 1 , (5.6)

where fj = aj − bajc and f0 = b − bbc. Inequality (5.6) is valid for the corner polyhedron and cuts
off the basic solution (x = 0, y = b). In the x-space Rn, this inequality is a cut as defined in (5.2).
We will demonstrate in Example 5.2.8 how to recover such a cut from our formalism.

Except for the translation by the basic solution (0, b), S is quasi instance-independent. This is
actually a crucial feature; it determines the approach developed in this chapter, namely cut-generating
functions to be developed below. �

Example 5.1.2 (A mixed-integer linear program). In our integer program (5.3), let us now relax not
only nonnegativity of the basic variables but also integrality of the non-basic variables: the corner
polyhedron is further relaxed to the convex hull of

{
(x, y) ∈ Rn+ × Zm : Ax+ y = b

}
.

We are still in the context of (5.1) with

q = m, R = −A , S = Zm − b ;

this is the model considered in [2] for m = 2, and in [38] for general m. Other relevant references are
[17, 18, 68, 88, 106].

This type of relaxation can be used when (5.3) becomes a mixed-integer linear program

Dz = d ∈ Rm , z > 0 , zj ∈ Z , j ∈ J ,

where J is some subset of {1, . . . , p}. Extract a basis as before and choose a subset of basic variables
indexed in J ; call m′ 6 m the number of rows in this restriction and b′ ∈ Rm′ the resulting restriction
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of b (in other words, ignore a number m −m′ of linear constraints). Relax nonnegativity of the m′

remaining basic variables, as well as integrality of the non-basic variables indexed in J . This results
in (5.1), with

q = m′ , R = −A , S = Zm
′ − b′ .

Any cut for this set X is a fortiori a valid inequality for the original mixed-integer linear program.
When m′ = 1, a classical example of such inequalities is

∑

j:aj>0

aj
f0
xj −

∑

j:aj<0

aj
1− f0

xj > 1 . (5.7)

Actually, Gomory’s mixed-integer cuts [86] combine (5.6) for the integer non-basic variables with the
above formula for the continuous ones. �

Model (5.1) occurs in other areas than integer programming and we give another example.

Example 5.1.3 (Complementarity problem). Still using P of (5.4), let

E ⊂ {1, 2, . . . ,m} × {1, 2, . . . ,m} and C := {y ∈ Rm+ : yiyj = 0 , (i, j) ∈ E}

(in this chapter, ⊂ stands for inclusion and ( for strict inclusion).
The set of interest is then P ∩ (Rn × C). It can be modeled by (5.1) where

q = m, R = −A , S = C − b .

Cuts have been used for complementarity problems of this type, for example in [108]. �

We will retain from these examples the dissymetry between S (a very particular and highly struc-
tured set) and R (an arbitrary matrix). Keeping this in mind, we will consider that (q, S) is given and
fixed, while (n,R) is instance-dependent data: our cutting problem can be viewed as parametrized by
(n,R). This point of view is natural for the last two examples; but some pre-processing (to be seen in
Example 5.2.8) is needed to apply it to Example 5.1.1: by (5.5), S does depend on the data through
its dimension q, which depends on n.

5.1.2 Introducing cut-generating functions

To generate cuts in the present situation, it would be convenient to have a mapping, taking in-
stances of (5.1) as input, and producing cuts as output. What we need for this is a function

Rq 3 r 7→ ρ(r) ∈ R

which, applied to the columns rj of a q × n matrix R (an arbitrary matrix, with an arbitrary number
of columns) will produce the n coefficients cj := ρ(rj) of a cut (5.2). We stress the fact that ρ must
assign a number ρ(r) to any r ∈ Rq: the function ρ is defined on the whole space.

Thus, we require from our ρ to satisfy

x ∈ X =⇒
n∑

j=1

ρ(rj)xj > 1 , (5.8)

for every instance X of (5.1). Such a ρ can then justifiably be called a cut-generating function (CGF).
The notation ρ refers to representation, which will appear in Definition 5.2.6 below. One of the most
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well-known cut-generating functions in integer programming is the so-called Gomory function [86],
which we presented in Examples 5.1.1 and 5.1.2. The corresponding cuts can be generated quickly,
so they are a powerful tool in computations; indeed, they drastically speed up integer-programming
solvers [31].

So far, a CGF is a rather abstract object, as it lies in the (vast!) set of functions from Rq to R; but
the following observation allows a drastic reduction of this set.

Remark 5.1.4 (Dominating cuts). Consider in (5.2) a vector c′ with c′j 6 cj for j = 1, . . . , n; then
c′>x 6 c>x whenever x > 0. If c′ is a cut, it is tighter than c in the sense that it cuts a bigger portion
of Rn+. We can impose some “minimal” character to a CGF, in order to reach some “tightness” of the
resulting cuts. �

With this additional requirement, the decisive Theorem 5.2.3 below will show that a CGF can be
imposed to be convex positively homogeneous (and defined on the whole of Rq; positive homogeneity
means ρ(tr) = tρ(r) for all r ∈ Rq and t > 0). This is a fairly narrow class of functions indeed,
which is fundamental in convex analysis. Such functions are in correspondence with closed convex
sets and in our context, this correspondence is based on the mapping ρ 7→ V defined by

V = V (ρ) :=
{
r ∈ Rq : ρ(r) 6 1

}
, (5.9)

which turns out to be a cornerstone: via Theorem 5.2.5 below, (5.9) establishes a correspondence
between the CGF’s and the so-called S-free sets. As a result, cut-generating functions can alternatively
be studied from a geometric point of view, involving sets V instead of functions ρ. This situation,
common in convex analysis, is often very fruitful. With regard to Remark 5.1.4, observe that V (ρ)
increases when ρ decreases: small ρ’s give large V ’s. However the converse is not true because the
mapping in (5.9) is many-to-one and therefore has no inverse. A first concern will therefore be to
specify appropriate correspondences between (cut-generating) functions and (S-free) sets.

5.1.3 Scope of the chapter

The aim of the chapter is to present a formal theory of minimal cut-generating functions and
maximal S-free sets, valid independently of the particular S. Such a theory would gather and
synthetize a number of papers dealing with the above problem for various special forms for S:
[2, 17, 18, 38, 68, 127] and references therein. For this, we use basic tools from convex analysis
and geometry. Readers not familiar with this field may use [103] (especially its Chap. C) for an ele-
mentary introduction, while [101, 156] are more complete.

The chapter is organized as follows.
Section 5.2 states more accurately the concepts of CGF’s and S-free sets.
Section 5.3 studies the mapping (5.9). We show that the pre-images of a given V (the representations
of V ) have a unique largest element γV and a unique smallest element µV ; in view of Remark 5.1.4,
the latter then appears as the relevant inverse of ρ 7→ V (ρ).
In Section 5.4, we study the correspondence V ↔ µV . We show that different concepts of mini-
mality come into play for ρ in Remark 5.1.4. Geometrically they correspond to different concepts
of maximality for V .
We also show in Section 5.5 that these minimality concepts coincide in a number of cases.
Finally we have a conclusion section, with some suggestions for future research.

The ideas in Sections 5.2 and 5.3 extend in a natural way the earlier works mentioned above.
However, Sections 5.4 and 5.5 contain new results.
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5.2 Cut-generating functions: definitions and first results

We begin with making sure that our framework is consistent. We will use conv (X) [resp.
conv (X)] to denote the convex hull [resp. closed convex hull] of a set X .

Lemma 5.2.1. With X given as in (5.1), 0 /∈ conv (X).

Proof. Assume X 6= ∅, otherwise we have nothing to prove. Since 0 does not lie in the closed set S,
there is ε > 0 such that s ∈ S implies ‖s‖1 > ε; and by continuity of the mapping x 7→ Rx, there is
η > 0 such that ‖x‖1 > η for all x ∈ X ⊂ Rn+. This means

‖x‖1 =
n∑

j=1

|xj | =
n∑

j=1

xj > η , for all x ∈ X .

In other words, the hyperplane
∑

j xj > η separates 0 from X , hence from conv (X). �

Remember that we are interested in functions ρ satisfying (5.8) for any (n,R) in (5.1). There are
too many such functions, we now proceed to specify which exactly are relevant.

5.2.1 Sublinear cut-generating functions suffice

The following lemma, inspired from Claim 1 in the proof of [17, Lem. 23], is instrumental for our
purpose.

Lemma 5.2.2. Let ρ be a CGF. For all sets of K vectors rk ∈ Rq and nonnegative coefficients αk, the
following relation holds:

K∑

k=1

αkrk = 0 =⇒
K∑

k=1

αkρ(rk) > 0 .

Proof. Call e ∈ Rq the vector of all ones and α ∈ RK the vector of αk’s; take t > 0 and define the
vectors in RK+q

x :=

[
0
e

]
, d :=

[
α
0

]
, so that x+ td =

[
tα
e

]
∈ RK+q

+ .

Then pick s ∈ S; make an instance of (5.1) with n = K + q and R :=
[
r1 . . . rK |D(s)

]
, where the

q × q matrix D(s) is the diagonal matrix whose diagonal is the vector s. Observing that

R(x+ td) = t
∑

k

αkrk +D(s)e = s ,

x+ td is feasible in the resulting instance of (5.1a): (5.8) becomes

t
K∑

k=1

αkρ(rk) > 1− z ,

where z is a fixed number gathering the result of applying ρ to the columns ofD(s). Letting t→ +∞
proves the claim. �
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Now we introduce some notation. The domain and epigraph of a function ρ : Rq → R ∪ {+∞}
are

dom ρ :=
{
r ∈ Rq : ρ(r) < +∞

}
and epi ρ :=

{
(r, z) ∈ Rq+1 : z > ρ(r)

}
.

If dom ρ is the whole of Rq (i.e., ρ(r) is a finite real number for all r ∈ Rq), we say that ρ is finite-
valued; a convex finite-valued function is continuous on Rq. A function is said to be sublinear if it is
convex and positively homogeneous; or equivalently if its epigraph is a convex cone. The conical hull
cone (epi ρ) of epi ρ is the set of nonnegative combinations of points (r, z) ∈ epi ρ:

r =
K∑

k=1

αkrk , z =
K∑

k=1

αkzk , with zk > ρ(rk) , αk > 0 , k = 1, . . . ,K ,

whereK is an arbitrary integer. This conical hull is itself the epigraph of a sublinear function ρ̄, called
the sublinear hull of ρ. Its value at r is the smallest possible of the above z’s:

ρ̄(r) := inf
{ K∑

k=1

αkρ(rk) :
K∑

k=1

αkrk = r, αk > 0
}
. (5.10)

Of course ρ̄ 6 ρ; in the spirit of Remark 5.1.4, our next result establishes that a CGF can be improved
by taking its sublinear hull.

Theorem 5.2.3. If ρ is a CGF, then ρ̄ of (5.10) is nowhere −∞ and is again a CGF.

Proof. Express every r ∈ Rq as a nonnegative combination:
∑

k αkrk− r = 0, hence (Lemma 5.2.2)∑K
k=1 αkρ(rk) + ρ(−r) > 0 and ρ̄(r) > −ρ(−r) > −∞.
Then take an instance R = [rj ]

n
j=1 of (5.1b). If it produces X = ∅ in (5.1a), there is nothing to

prove. Otherwise fix x̄ ∈ X .
Any positive decomposition rj =

∑
k αj,krj,k of each column of R satisfies

s̄ := Rx̄ =
n∑

j=1

x̄jrj =
n∑

j=1

x̄j

K∑

k=1

αj,krj,k = R+x+ ,

where x+ ∈ RnK denotes the vector with coordinates αj,kx̄j > 0 and R+ the matrix whose nK
columns are rj,k. Then R+ is a possible instance of (5.1b) and R+x+ = s̄ ∈ S, so the CGF ρ separates
x+ from 0:

1 6
∑

j,k

ρ(rj,k)
(
αj,kx̄j) =

n∑

j=1

( K∑

k=1

αj,kρ(rj,k)
)
x̄j . (5.11)

Apply the definition of an infimum: for each ε > 0 we can choose our decompositions (rj,k, αj,k)
so that

K∑

k=1

αj,kρ(rj,k) 6 ρ̄(rj) + ε , for j = 1, . . . , n

which yields with (5.11)

1 6
n∑

j=1

(
ρ̄(rj) + ε

)
x̄j =

n∑

j=1

ρ̄(rj)x̄j + ε

n∑

j=1

x̄j .

Since ε is arbitrarily small – while x̄ is fixed – we see that ρ̄ does satisfy (5.8). �

In view of Remark 5.1.4, Theorem 5.2.3 allows us to restrict our attention to CGF’s that are sub-
linear; and their domain is the whole space by definition. We are now in a position to explain the use
of the operation (5.9) in our context.
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5.2.2 Cut-generating functions as representations

From now on, a CGF ρ will always be understood as a (finite-valued) sublinear function. By
continuity and because ρ(0) = 0, V (ρ) in (5.9) is a closed convex neighborhood of 0 in Rq. Besides,
its interior and boundary are respectively

int (V (ρ)) = {r ∈ V : ρ(r) < 1} , bd (V (ρ)) = {r ∈ V : ρ(r) = 1} . (5.12)

This follows from the Slater property ρ(0) = 0 (see, e.g., [103, Prop. D.1.3.3]); it can also be checked
directly:

by continuity, ρ(r̄) < 1 implies ρ(r) 6 1 for r close to r̄;
by positive homogeneity, ρ(r̄) = 1 implies ρ(r) = 1 + ε for r = (1 + ε)r̄.

The relevant neighborhoods for our purpose are the following:

Definition 5.2.4 (S-free set). Given a closed set S ⊂ Rq not containing the origin, a closed convex
neighborhood V of 0 ∈ Rq is called S-free if its interior contains no point in S: int (V ) ∩ S = ∅. �

Let us make clear the importance of this definition.

Theorem 5.2.5. Let the sublinear function ρ : Rq → R and the closed convex neighborhood V (of
0 ∈ Rq) satisfy (5.9). Then ρ is a CGF for (5.1) if and only if V is S-free.

Proof. Let V be S-free; in view of (5.12), ρ(r) > 1 for all r ∈ S. In particular, take a q × n matrix
R, x ∈ X of (5.1a) and set r := Rx ∈ S. Then, using sublinearity,

1 6 ρ(Rx) = ρ
( n∑

j=1

xjrj

)
6

n∑

j=1

xjρ(rj) ;

ρ is a CGF.
Conversely, suppose V is not S-free: again from (5.12), there is some r1 ∈ S such that ρ(r1) < 1.

Take in (5.1b) the instance (n,R) = (1, [r1]). Then 1 ∈ X (r1 ∈ S), so c1 := ρ(r1) < 1 cannot be a
cut. �

This allows a new definition of CGF’s, much more handy than the original one:

Definition 5.2.6 (CGF as representation). Let V ⊂ Rq be a closed convex neighborhood of the origin.
A representation of V is a finite-valued sublinear function ρ such that

V =
{
r ∈ Rq : ρ(r) 6 1

}
. (5.13)

We will say that ρ represents V .
A sublinear cut-generating function for (5.1) is a representation of an S-free set. �

A finite-valued sublinear function ρ represents a unique V = V (ρ), well-defined by (5.13). One
easily checks monotonicity of the mapping V (·):

ρ 6 ρ′ =⇒ V (ρ) ⊃ V (ρ′) . (5.14)

Conversely, one may ask whether a given closed convex neighborhood of the origin V always has
a representation. In fact, (5.13) fixes via (5.12) the value ρ(r) = 1 on the boundary of V ; whether
this set of prescribed values can be extended to make a sublinear function on the whole of Rq is not
obvious. This will be the subject of Section 5.3, where we will see that this is indeed possible; there
may even be infinitely many extensions, and we are interested in the small ones. Now we illustrate
the material introduced so far with some examples.

76



5.2.3 Examples

We start with a simple 1-dimensional example supporting the claim that the mapping ρ → V of
(5.13) is many-to-one – or equivalently that a given V may have several representations.

Example 5.2.7. With q = 1, consider V = ] −∞, 1]. In R1, the positively homegeneous functions
have the form

ρ(r) =

{
αr for r > 0
βr for r 6 0 ;

they are convex when α > β.
Taking r = 1 ∈ V in (5.13) imposes α 6 1, while taking r = 1 + ε /∈ V (ε > 0) imposes

α > 1/(1 + ε). Altogether α = 1. On the other hand, letting r → −∞, the property βr 6 1 imposes
β > 0.

Conversely, we easily see that, for any β ∈ [0, 1], the function

ρ(r) =

{
r for r > 0
βr for r 6 0

is sublinear and satisfies (5.13). Thus, the representations of V are exactly the functions of the form
ρ(r) = max {r, βr}, for β ∈ [0, 1].

This example suggests – and Lemma 5.3.2 will confirm – that nonuniqueness appears when V is
unbounded. �

Example 5.1.2 is quite suitable for illustration, Figure 5.1 visualizes it for q = m = 2. The dots
are the set S = Z2 − {b}. The stripe V of the left part, called a split set, is used in the framework
of disjunctive cuts. Other neighborhoods can be considered, for example triangles (right part of the
picture) as in [2].
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they are convex when α ! β.

Taking r = 1 ∈ V in (13) imposes α " 1, while taking r = 1 + ε /∈ V (ε > 0) imposes α > 1/(1 + ε).
Altogether α = 1. On the other hand, letting r → −∞, the property βr " 1 imposes β ! 0.

Conversely, we easily see that, for any β ∈ [0, 1], the function

ρ(r) =

{
r for r ! 0
βr for r " 0

is sublinear and satisfies (13). Thus, the representations of V are exactly the functions of the form
ρ(r) = max {r,βr}, for β ∈ [0, 1].

This example suggests – and Lemma 3.2 will confirm – that nonuniqueness appears when V is un-
bounded. #

Example 1.2 is quite suitable for illustration, Figure 1 visualizes it for q = m = 2. The dots are the
set S = Z2 − {b}. The stripe V of the left part, called a split set , is used in the framework of disjunctive
cuts. Other neighborhoods can be considered, for example triangles (right part of the picture) as in [1].

V

SS

V

Figure 1: Two S-free sets for q = 2

With q = 1, no need for a picture and the calculations in Example 1.2 can be worked out. In this
case, X ⊂ Rn

+
is defined by a⊤x ∈ Z − b, i.e. (1) with r = −a and S = Z − {b}. The only possible S-free

neighborhoods of the origin are the segments r ∈ [−r−, r+] with

−f0 = ⌊b⌋ − b " −r− < 0 < r+ " ⌈b⌉ − b = 1 − f0 .

For a representation ρ of this segment, the equations ρ(r+) = 1 and ρ(−r−) = 1 fix in a unique way

ρ(r) =

{
r

r+
if r ! 0 ,

− r
r−

if r " 0 .

Choose the extreme values for r+ and r− to obtain

cj = ρ(−aj) =

{ aj

f0
if aj " 0 ,

−aj

1−f0
if aj ! 0 ,

which is just (7).

Finally, let us show how Gomory cuts (6) can be obtained as cgf’s.

Example 2.8 Still in Example 1.2, take q = m = 1; we want to separate the set defined by

n∑

j=1

ajxj + y = b , y ∈ Z , x ∈ Zn
+

from the origin (remember that b /∈ Z). This set has the form (1) with

q = n + 1 , R =

[
I

−a⊤

]
, S = Zn ×

(
Z − {b}

)
.

Introduce the vector π ∈ Rn+1 defined by

πn+1 := 1 and, for j = 1, . . . , n: πj :=

{
⌊aj⌋ if fj " f0 ,
⌈aj⌉ if fj > f0

Figure 5.1: Two S-free sets for q = 2

With q = 1, no need for a picture and the calculations in Example 5.1.2 can be worked out. In
this case, X ⊂ Rn+ is defined by a>x ∈ Z − b, i.e. (5.1) with r = −a and S = Z − {b}. The only
possible S-free neighborhoods of the origin are the segments r ∈ [−r−, r+] with

−f0 = bbc − b 6 −r− < 0 < r+ 6 dbe − b = 1− f0 .

For a representation ρ of this segment, the equations ρ(r+) = 1 and ρ(−r−) = 1 fix in a unique way

ρ(r) =

{
r
r+

if r > 0 ,

− r
r−

if r 6 0 .

Choose the extreme values for r+ and r− to obtain

cj = ρ(−aj) =

{ aj
f0

if aj 6 0 ,
−aj
1−f0 if aj > 0 ,
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which is just (5.7).
Finally, let us show how Gomory cuts (5.6) can be obtained as CGF’s.

Example 5.2.8. Still in Example 5.1.2, take q = m = 1; we want to separate the set defined by

n∑

j=1

ajxj + y = b , y ∈ Z , x ∈ Zn+

from the origin (remember that b /∈ Z). This set has the form (5.1) with

q = n+ 1 , R =

[
I
−a>

]
, S = Zn ×

(
Z− {b}

)
.

Introduce the vector π ∈ Rn+1 defined by

πn+1 := 1 and, for j = 1, . . . , n: πj :=

{
bajc if fj 6 f0 ,
daje if fj > f0

and its scalar product π>r =
∑n

j=1 πjxj + y with r = (x, y) ∈ Rn+1. Then define

V :=
{
r : bbc − b 6 π>r 6 dbe − b

}
. (5.15)

The assumption b /∈ Z implies that (0, 0) ∈ int (V ); therefore V is a closed convex neighborhood
of the origin. Furthermore, V is S-free: in fact, b + π>r is an integer for every r = (x, y) ∈ S and
therefore it cannot be strictly between the two consecutive integers bbc and dbe. We claim that any
representation of V produces Gomory cuts.

Call ej the jth unit vector of Rn, so that the n columns of R are

rj =

(
ej
−aj

)
.

Direct calculations give

π>rj =

{
bajc − aj = −fj if fj 6 f0 ,
daje − aj = 1− fj if fj > f0 .

For each j = 1, . . . , n, consider three cases.

(i) If π>rj > 0 (which implies fj > f0), there is t > 0 such that tπ>rj = dbe − b > 0, namely

t =
dbe − b
π>rj

=
dbe − b
daje − aj

=
1− f0

1− fj
.

(ii) If π>rj < 0 (which implies 0 < fj 6 f0), there exists likewise t > 0 such that tπ>rj =
bbc − b < 0, therefore

t =
f0

fj
.

(iii) If π>rj = 0 (which implies aj ∈ Z), trj ∈ V for any t > 0.
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In (i) and (ii), the computed value of t puts trj on the boundary of V . Let ρ represent V ; then by
(5.12) and positive homogeneity, ρ(rj) = 1

t ρ(trj) = 1
t in cases (i), (ii) and ρ(rj) = 0 in case (iii).

Altogether,

ρ(rj) =





fj
f0

if fj 6 f0 ,
1−fj
1−f0 if fj > f0

for j = 1, . . . , n; we recognize Gomory’s formula (5.6).
As mentioned after Definition 5.2.6, the n values ρ(rj) can be extended to make a sublinear

function on the whole of Rn+1. This will be confirmed in the next section but can be accepted here,
thanks to the simple form (5.15) of V : a stripe orthogonal to π. Indeed, the above calculations are
designed so as to construct ρ(r) = 1 for each r such that π>r = dbe − b > 0 as in (i) [resp.
π>r = bbc − b < 0 as in (ii)]. Then ρ(r) is given by positive homogeneity for any r such that
π>r 6= 0; and ρ ≡ 0 on π⊥. �

5.3 Largest and smallest representations

In this section, we study the representation operation introduced in Definition 5.2.6. The main
result is that our closed convex neighborhood V has a largest and a smallest representation. This
result was already given in [19, 47, 184], with weaker assumptions in the latter work (which came to
our knowledge only after [Mal-8] was completed). Here we emphasize the geometric counterpart of
the result, we put the proof of [19] in perspective, and we take advantage of our stricter assumptions
to develop finer results that will be useful in sequel.

5.3.1 Some elementary convex analysis

First recall some basic theory (see, e.g., [103, Chap. C]), which will be central in our development.
In what follows, V will always be a closed convex neighborhood of 0 ∈ Rq.

A common object in convex analysis is the gauge

Rq 3 r 7→ γV (r) := inf {λ > 0 : r ∈ λV } , (5.16)

a (nonnegative) finite-valued sublinear function. Applying for example [103, Thm. C.1.2.5] with the
notation (x,C, r) replaced by (r, V, 1), we obtain the relation

V =
{
r ∈ Rq : γV (r) 6 1

}
.

Thus γV represents V ; this first confirms that Definition 5.2.6 is consistent.
Another fundamental object is the support function of an arbitrary set G ⊂ Rq, defined by

Rq 3 r 7→ σG(r) := sup
d∈G

d>r . (5.17)

This function is easily seen to be sublinear, to grow when G grows, and to remain unchanged if G is
replaced by its closed convex hull: σG = σconv (G). Besides, it is finite-valued if (and only if) G is
bounded.

Conversely, every (finite-valued) sublinear function σ is the support function of a (bounded) closed
convex set, unambiguously defined by

G = Gσ :=
{
d ∈ Rq : d>r 6 σ(r) for all r ∈ Rq

}
(5.18)
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(note: Gσ is closed and convex because it is an intersection of half-spaces; actually, Gσ is just the
subdifferential of σ at 0). We then say that σ supports Gσ. The correspondence σ ↔ G defines a
one-to-one mapping between finite-valued sublinear functions and bounded closed convex sets (the
mapping σ 7→ G of (5.18) extends to sublinear functions in R ∪ {+∞} but such an extension is not
needed here).

Remark 5.3.1 (Primal-dual notation). Equation (5.17) involves two variables, d and r, both written
as column-vectors; nevertheless, they lie in two mutually dual spaces. In this chapter, we keep going
back and forth between these two spaces; even though they are the same Rq, we make a point to
distinguish between the two. The notation r, V , . . . [resp. d, G, . . . ] will generally be used for primal
elements [resp. for dual ones]. Most of the time, we will deal with support functions σG(r) of dual
sets; but we will also consider the support function σV (d) of our primal neighborhood V . �

Being finite-valued sublinear, the gauge of V supports a compact convex set, obtained by replac-
ing σ by γV in (5.18). Since γV > 0, we guess from positive homogeneity that this set is just the
polar of V : {

d ∈ Rq : d>r 6 γV (r) for all r ∈ Rq
}

={
d ∈ Rq : d>r 6 1 for all r ∈ V

}
=: V ◦ .

(5.19)

Write (5.19) as V ◦ =
{
d ∈ Rq : σV (d) 6 1

}
to see that σV represents V ◦; thus, the support function

of V is the gauge of V ◦, so that the polar of V ◦ is V itself: (V ◦)◦ = V . These various properties are
rather classical, see for example [103, Prop. C.3.2.4, Cor. C.3.2.5], with (d,C, s) replaced by (r, V, d).

Now remember Example 5.2.7: V may have several representations. Any such representation ρ
supports a set Gρ and we will see that the polar of Gρ is again V itself; Gρ is a pre-image of V for the
polarity mapping. We thus obtain a new concept: a prepolar of V is a set G such that

G◦ :=
{
r ∈ Rq : σG(r) 6 1

}
= V ,

or equivalently σG represents V .
The property (V ◦)◦ = V means that the standard polar V ◦ is itself a prepolar – which is somewhat

confusing; and it turns out to be the largest one (Corollary 5.3.3 below); or equivalently, its support
function σV ◦ = γV turns out to be the largest representation of V . The main result of this section
states that V has also a smallest prepolar, or equivalently a smallest representation (Proposition 5.3.6
below); keeping Remark 5.1.4 in mind, this is exactly what we want. This result is actually [19,
Thm. 1]; here we use elementary convex analysis and we insist more on the geometric aspect.

5.3.2 Largest representation

Introduce the recession cone V∞ of V . Using the property 0 ∈ V , it can be defined as

V∞ = {r ∈ Rq : tr ∈ V for all t > 0} =
⋂

λ>0

λV ,

and the second relation shows that V∞ is closed; taking in particular λ = 1 shows that

V∞ ⊂ V . (5.20)

One then easily sees from (5.16) that γV (r) = 0 if r ∈ V∞. Yet, for any other representation ρ of V ,
(5.13) just imposes ρ(r) 6 0 at this r and we may a priori have ρ(r) < 0: the possible representations
of V may differ on V∞; see Example 5.2.7 again. We make this more precise.
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Lemma 5.3.2 (Representations and recession cone). For all representations ρ of the closed convex
neighborhood V ,

ρ(r) 6 0 ⇐⇒ r ∈ V∞ and ρ(r) < 0 =⇒ r ∈ int (V∞) .

Besides, all representations coincide on the complement of int (V∞) in Rq.
Proof. By positive homogeneity, ρ(r) 6 0 implies ρ(tr) 6 0 < 1 (hence tr ∈ V ) for all t > 0; this
implies r ∈ V∞. Conversely, ρ(r) > 0 implies ρ(tr) > 1 for t large enough: using 0 ∈ V again, r
cannot lie in V∞.

To prove the second implication, invoke continuity of ρ: if ρ(r) < 0, ρ is still negative in a
neighborhood of r, this neighborhood is contained in V∞.

Besides, take a half-line emanating from 0 but not contained in V∞; it certainly meets the boundary
of V , at a point r̄ which is unique (see, e.g., [103, Rem. A.2.1.7]). By (5.12), every representation
ρ satisfies ρ(r̄) = 1; and by positive homogeneity, the value of this representation is determined all
along the half-line. In other words, all possible representations of V coincide on the complement
W of V∞; and by continuity, they coincide also on the closure of W , which is the complement of
int (V∞). �
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Lemma 3.2 (Representations and recession cone) For all representations ρ of the closed convex
neighborhood V ,

ρ(r) ! 0 ⇐⇒ r ∈ V∞ and ρ(r) < 0 =⇒ r ∈ int (V∞) .

Besides, all representations coincide on the complement of int (V∞) in Rq.

Proof. By positive homogeneity, ρ(r) ! 0 implies ρ(tr) ! 0 < 1 (hence tr ∈ V ) for all t > 0; this
implies r ∈ V∞. Conversely, ρ(r) > 0 implies ρ(tr) > 1 for t large enough: using 0 ∈ V again, r cannot
lie in V∞.

To prove the second implication, invoke continuity of ρ: if ρ(r) < 0, ρ is still negative in a neighborhood
of r, this neighborhood is contained in V∞.

Besides, take a half-line emanating from 0 but not contained in V∞; it certainly meets the boundary
of V , at a point r̄ which is unique (see, e.g., [17, Rem. A.2.1.7]). By (12), every representation ρ satisfies
ρ(r̄) = 1; and by positive homogeneity, the value of this representation is determined all along the half-
line. In other words, all possible representations of V coincide on the complement W of V∞; and by
continuity, they coincide also on the closure of W , which is the complement of int (V∞). "

φ

ρ = γV

0

V

V∞

ρ ! γV ≡ 0

ψ

Figure 2: All representations coincide except in int (V∞)

Figure 2 illustrates the difference between the recession cone (where the gauge is “maximal”) and
the rest of the space (where it is the representation). Altogether, the gauge appears as the largest
representation:

Corollary 3.3 (Maximality of the gauge) All representations ρ of V satisfy ρ ! γV , with equality
on the complement of int (V∞).

Geometrically, all prepolars G are contained in the polar of V :

G◦ = V =⇒ G ⊂ V ◦ .

In particular, V has a unique representation ρ = γV (and a unique prepolar V ◦) whenever int (V∞) = ∅.

Proof. Just apply Lemma 3.2, observing from (16) that the gauge is nonnegative.

Geometrically, the inequality between support functions becomes an inclusion: the set G supported
by ρ is included in the set V ◦ supported by γV (see, e.g., [17, Thm. C.3.3.1]). "

The next subsection will use the support function σV . It is positive on Rq\{0}, and even more: for
some ε > 0, V contains the ball B(ε) centered at 0 of radius ε, hence

ε∥d∥ = σB(ε)(d) ! σV (d) for all d ∈ Rq . (21)

Then V ◦ is bounded since the relation σV (d) ! 1 implies ∥d∥ ! 1/ε.

3.3 Smallest representation. The previous subsection dealt with polarity in the usual sense, view-
ing the gauge as a special representation. However, we are rather interested in small representations.
Geometrically, we are interested in small prepolars, and the following definitions are indeed relevant:

{
Ṽ ◦ :=

{
d ∈ V ◦ : d⊤r = σV (d) = 1 for some r ∈ V } ,

V̂ ◦ :=
{
d ∈ V ◦ : σV (d) = 1

}
.

(22)

From (12), V̂ ◦ ̸= ∅ if V has a boundary, i.e. if V ̸= Rq. Obviously, Ṽ ◦ ⊂ V̂ ◦. Besides, (21) implies
that the two sets are bounded. There is a slight difference between the two, suggested by Figure 2 and

Figure 5.2: All representations coincide except in int (V∞)

Figure 5.2 illustrates the difference between the recession cone (where the gauge is “maximal”)
and the rest of the space (where it is the representation). Altogether, the gauge appears as the largest
representation:

Corollary 5.3.3 (Maximality of the gauge). All representations ρ of V satisfy ρ 6 γV , with equality
on the complement of int (V∞).

Geometrically, all prepolars G are contained in the polar of V :

G◦ = V =⇒ G ⊂ V ◦ .
In particular, V has a unique representation ρ = γV (and a unique prepolar V ◦) whenever int (V∞) =
∅.
Proof. Just apply Lemma 5.3.2, observing from (5.16) that the gauge is nonnegative.

Geometrically, the inequality between support functions becomes an inclusion: the set G sup-
ported by ρ is included in the set V ◦ supported by γV (see, e.g., [103, Thm. C.3.3.1]). �

The next subsection will use the support function σV . It is positive on Rq\{0}, and even more:
for some ε > 0, V contains the ball B(ε) centered at 0 of radius ε, hence

ε‖d‖ = σB(ε)(d) 6 σV (d) for all d ∈ Rq . (5.21)

Then V ◦ is bounded since the relation σV (d) 6 1 implies ‖d‖ 6 1/ε.
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5.3.3 Smallest representation

The previous subsection dealt with polarity in the usual sense, viewing the gauge as a special
representation. However, we are rather interested in small representations. Geometrically, we are
interested in small prepolars, and the following definitions are indeed relevant:

{
Ṽ ◦ :=

{
d ∈ V ◦ : d>r = σV (d) = 1 for some r ∈ V } ,

V̂ ◦ :=
{
d ∈ V ◦ : σV (d) = 1

}
.

(5.22)

From (5.12), V̂ ◦ 6= ∅ if V has a boundary, i.e. if V 6= Rq. Obviously, Ṽ ◦ ⊂ V̂ ◦. Besides, (5.21)
implies that the two sets are bounded. There is a slight difference between the two, suggested by
Figure 5.2 and specified on Figure 5.3, where the dashed line represents them both. We see that d1

lies in V̂ ◦ but not in Ṽ ◦; and d2 lies in both. On this example, V̂ ◦ is closed but Figure 5.5 will show
that it need not be so. Although quite similar, we introduce the two sets for technical reasons, when
proving that they have the same closed convex hull – which is our required smallest prepolar.
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specified on Figure 3, where the dashed line represents them both. We see that d1 lies in V̂ ◦ but not in
Ṽ ◦; and d2 lies in both. On this example, V̂ ◦ is closed but Figure 5 will show that it need not be so.
Although quite similar, we introduce the two sets for technical reasons, when proving that they have the
same closed convex hull – which is our required smallest prepolar.

eV ◦

d2

V

0

V∞

d1

Figure 3: Activity in V ◦

Lemma 3.4 The sets in (22) satisfy Ṽ ◦ ⊂ V̂ ◦ ⊂ cl
(
Ṽ ◦). It follows that V̂ ◦ and Ṽ ◦ have the same closed

convex hull. In particular, Ṽ ◦ ̸= ∅ whenever V̂ ◦ ̸= ∅.

Proof. The first inclusion is clear. To prove the second inclusion, recall two properties:

– the domain dom ∂σV of a subdifferential is dense in the domain domσV of the function itself: see, e.g.,
[17, Thm. E.1.4.2];

– the subdifferential ∂σV (d) is the face of V exposed by d: see, e.g., [17, Prop.C.3.1.4].

Thus, d /∈ Ṽ ◦ implies ∂σV (d) = ∅; in other words, Ṽ ◦ ⊃ dom ∂σV . Taking closures,

cl Ṽ ◦ ⊃ cl (dom ∂σV ) ⊃ domσV ;

the required inclusion follows, since the last set obviously contains V̂ ◦.

It follows from the second inclusion that

conv
(
V̂ ◦) ⊂ conv

(
cl

(
Ṽ ◦)) .

On the other hand, the first inclusion implies that conv
(
V̂ ◦) (a closed set) contains the closure of Ṽ ◦:

cl
(
Ṽ ◦) ⊂ conv

(
V̂ ◦). This inclusion remains valid by taking the closed convex hulls:

conv
(
cl

(
Ṽ ◦)) ⊂ conv

(
V̂ ◦) ;

the two sets coincide. The last statement is clear since the closure of the empty set is the empty set. !
To help understand this construction, consider the polyhedral case, say V = conv {pi}i + cone {ri}i.

Then the linear program defining σV (d)

– has no finite solution if some d⊤ri is positive, i.e. if d /∈ (V∞)◦,
– is solved at some extreme point pi otherwise.

In this situation, the two sets in (22) coincide and are closed; they are a union of hyperplanes of equation
d⊤pi = 1 (facets of V ◦), for pi describing the extreme points of V . Besides, the polar V ◦ is defined by

d⊤pi " 1 , and d⊤ri " 0 .

Example 3.5 For later use, we detail the calculation on a simple instance. Take for V the polyhedron
of Figure 4, defined by the three inequalities

φ " 1 , ψ " 1 , ψ " 2 + φ ;

here (φ,ψ) denotes a primal point in R2 we take row-vectors for typographical convenience). The two
extreme points p1 = (1, 1) and p2 = (−1, 1) of V define the two segments (facets of V ◦) [A, B] and [B, C].

As for V ◦, it has first the two constraints d⊤pi " 1 (yielding the above two segments). Besides, the
two extreme rays r1 = (0, −1) and r2 = (−1, −1) of V∞ make two more constraints d⊤ri " 0, so that V ◦

is the convex hull of A, B, C and 0. If V had a fourth constraint, say ψ # −1, then 0 would be moved
down to D = (0, −1) – and enter Ṽ ◦ and V̂ ◦. !

Figure 5.3: Activity in V ◦

Lemma 5.3.4. The sets in (5.22) satisfy Ṽ ◦ ⊂ V̂ ◦ ⊂ cl
(
Ṽ ◦
)
. It follows that V̂ ◦ and Ṽ ◦ have the

same closed convex hull. In particular, Ṽ ◦ 6= ∅ whenever V̂ ◦ 6= ∅.
Proof. The first inclusion is clear. To prove the second inclusion, recall two properties:
– the domain dom ∂σV of a subdifferential is dense in the domain domσV of the function itself: see,

e.g., [103, Thm. E.1.4.2];
– the subdifferential ∂σV (d) is the face of V exposed by d: see, e.g., [103, Prop. C.3.1.4].
Thus, d /∈ Ṽ ◦ implies ∂σV (d) = ∅; in other words, Ṽ ◦ ⊃ dom ∂σV . Taking closures,

cl Ṽ ◦ ⊃ cl (dom ∂σV ) ⊃ domσV ;

the required inclusion follows, since the last set obviously contains V̂ ◦.
It follows from the second inclusion that

conv
(
V̂ ◦
)
⊂ conv

(
cl
(
Ṽ ◦
))
.

On the other hand, the first inclusion implies that conv
(
V̂ ◦
)

(a closed set) contains the closure of Ṽ ◦:
cl
(
Ṽ ◦
)
⊂ conv

(
V̂ ◦
)
. This inclusion remains valid by taking the closed convex hulls:

conv
(

cl
(
Ṽ ◦
))
⊂ conv

(
V̂ ◦
)

;

the two sets coincide. The last statement is clear since the closure of the empty set is itself. �
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To help understand this construction, consider the polyhedral case, say V = conv {pi}i +
cone {ri}i. Then the linear program defining σV (d)

has no finite solution if some d>ri is positive, i.e. if d /∈ (V∞)◦,
is solved at some extreme point pi otherwise.

In this situation, the two sets in (5.22) coincide and are closed; they are a union of hyperplanes of
equation d>pi = 1 (facets of V ◦), for pi describing the extreme points of V . Besides, the polar V ◦ is
defined by

d>pi 6 1 , and d>ri 6 0 .12 Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick: Cut-generating functions
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p1

φ

p2

ψ

V

C

B

A

Figure 4: Constructing Ṽ ◦ or V̂ ◦

The closed convex hull thus revealed deserves a notation, as well as its support function: we set

V • := conv
(
Ṽ ◦) = conv

(
V̂ ◦) and µV := σV • = σeV ◦ = σbV ◦ . (23)

For example in Figure 4, V • is the triangle conv{A, B, C}. In fact, the next result shows that µV is the
small representation we are looking for. From now on, we assume V ̸= Rq, otherwise V • = ∅, µV ≡ −∞;
a degenerate situation, which lacks interest anyway.

Proposition 3.6 (Smallest representation) Any ρ representing V ̸= Rq satisfies ρ ! µV .

Geometrically, V • is the smallest closed convex set whose support function represents V .

Proof. Our assumption implies that neither V̂ ◦ nor Ṽ ◦ is empty (recall Lemma 3.4). Then take an

arbitrary d in Ṽ ◦. We have to show that d⊤r " ρ(r) for all r ∈ Rq; this inequality will be transmitted to
the supremum over d, which is µV (r).

Case 1. First let r be such that ρ(r) > 0. Then r̄ := r/ρ(r) lies in V , so that d⊤r̄ " σV (d) = 1. In

other words, d⊤r̄ = d⊤r
ρ(r) " 1, which is the required inequality.

Case 2. Let now r be such that ρ(r) " 0, so that r ∈ V∞ by Lemma 3.2. Since d ∈ Ṽ ◦, we can take
rd ∈ V such that d⊤rd = 1. Being exposed, rd lies on the boundary of V : by (12), ρ(rd) = 1.

By definition of the recession cone, rd + tr ∈ V for all t > 0 and, by continuity of ρ, ρ(rd + tr) > 0 for
t small enough. Apply Case 1:

d⊤rd + td⊤r = d⊤(rd + tr) " ρ(rd + tr) " ρ(rd) + tρ(r) ,

where we have used sublinearity. This proves the required inequality since the first term is 1 + td⊤r and
the last one is 1 + tρ(r).

The geometric counterpart is proved just as in Corollary 3.3. #
Thus, V does have a smallest representation, which is the support function of V •. Piecing together

our results, we can now fully describe the polarity operation.

3.4 The set of prepolars. First of all, it is interesting to link the two extreme representa-
tions/prepolars introduced so far, and to confirm the intuition suggested by Figure 4:

Proposition 3.7 Appending 0 to V • gives the standard polar:

γV = max
{
µV , 0

}
i.e. V ◦ = conv

(
V • ∪ {0}

)
= [0, 1]V • .

Proof. For r ∈ V∞, γV (r) = 0, while µV (r) " 0 (Proposition 3.6). For r /∈ V∞, Lemma 3.2 gives
γV (r) = µV (r) > 0 because γV and µV are two particular representations.

Altogether, the first equality holds. Its geometric counterpart is [17, Thm. C.3.3.2]; and because V • is
convex compact, its closed convex hull with 0 is the sets of αd + (1 − α)0 for α ∈ [0, 1]. #

In summary, the set of representations – or of prepolars – is fully described as follows:

Figure 5.4: Constructing Ṽ ◦ or V̂ ◦

Example 5.3.5. For later use, we detail the calculation on a simple instance. Take for V the polyhe-
dron of Figure 5.4, defined by the three inequalities

φ 6 1 , ψ 6 1 , ψ 6 2 + φ ;

here (φ, ψ) denotes a primal point in R2 we take row-vectors for typographical convenience). The
two extreme points p1 = (1, 1) and p2 = (−1, 1) of V define the two segments (facets of V ◦) [A,B]
and [B,C].

As for V ◦, it has first the two constraints d>pi 6 1 (yielding the above two segments). Besides,
the two extreme rays r1 = (0,−1) and r2 = (−1,−1) of V∞ make two more constraints d>ri 6 0,
so that V ◦ is the convex hull of A, B, C and 0. If V had a fourth constraint, say ψ > −1, then 0
would be moved down to D = (0,−1) – and enter Ṽ ◦ and V̂ ◦. �

The closed convex hull thus revealed deserves a notation, as well as its support function: we set

V • := conv
(
Ṽ ◦
)

= conv
(
V̂ ◦
)

and µV := σV • = σ
Ṽ ◦ = σ

V̂ ◦ . (5.23)

For example in Figure 5.4, V • is the triangle conv{A,B,C}. In fact, the next result shows that µV is
the small representation we are looking for. From now on, we assume V 6= Rq, otherwise V • = ∅,
µV ≡ −∞; a degenerate situation, which lacks interest anyway.

Proposition 5.3.6 (Smallest representation). Any ρ representing V 6= Rq satisfies ρ > µV .
Geometrically, V • is the smallest closed convex set whose support function represents V .

Proof. Our assumption implies that neither V̂ ◦ nor Ṽ ◦ is empty (recall Lemma 5.3.4). Then take an
arbitrary d in Ṽ ◦. We have to show that d>r 6 ρ(r) for all r ∈ Rq; this inequality will be transmitted
to the supremum over d, which is µV (r).

Case 1. First let r be such that ρ(r) > 0. Then r̄ := r/ρ(r) lies in V , so that d>r̄ 6 σV (d) = 1.
In other words, d>r̄ = d>r

ρ(r) 6 1, which is the required inequality.
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Case 2. Let now r be such that ρ(r) 6 0, so that r ∈ V∞ by Lemma 5.3.2. Since d ∈ Ṽ ◦, we can
take rd ∈ V such that d>rd = 1. Being exposed, rd lies on the boundary of V : by (5.12), ρ(rd) = 1.

By definition of the recession cone, rd+tr ∈ V for all t > 0 and, by continuity of ρ, ρ(rd+tr) > 0
for t small enough. Apply Case 1:

d>rd + td>r = d>(rd + tr) 6 ρ(rd + tr) 6 ρ(rd) + tρ(r) ,

where we have used sublinearity. This proves the required inequality since the first term is 1 + td>r
and the last one is 1 + tρ(r).

The geometric counterpart is proved just as in Corollary 5.3.3. �

Thus, V does have a smallest representation, which is the support function of V •. Piecing together
our results, we can now fully describe the polarity operation.

5.3.4 The set of prepolars

First of all, it is interesting to link the two extreme representations/prepolars introduced so far, and
to confirm the intuition suggested by Figure 5.4:

Proposition 5.3.7. Appending 0 to V • gives the standard polar:

γV = max
{
µV , 0

}
i.e. V ◦ = conv

(
V • ∪ {0}

)
= [0, 1]V • .

Proof. For r ∈ V∞, γV (r) = 0, while µV (r) 6 0 (Proposition 5.3.6). For r /∈ V∞, Lemma 5.3.2
gives γV (r) = µV (r) > 0 because γV and µV are two particular representations.

Altogether, the first equality holds. Its geometric counterpart is [103, Thm. C.3.3.2]; and because
V • is convex compact, its closed convex hull with 0 is the sets of αd+ (1− α)0 for α ∈ [0, 1]. �

In summary, the set of representations – or of prepolars – is fully described as follows:

Theorem 5.3.8. The representations of V (a closed convex neighborhood of the origin) are the finite-
valued sublinear functions ρ satisfying

σV • = µV 6 ρ 6 γV = σV ◦ = max {0, µV } . (5.24)

Geometrically, the prepolars of V , i.e. the sets G whose support function represents V , are the sets
sandwiched between the two extreme prepolars of V :

G◦ = V ⇐⇒ V • ⊂ conv (G) ⊂ V ◦ = conv
(
V • ∪ {0}

)
= [0, 1]V • .

Proof. In view of Corollary 5.3.3 and Propositions 5.3.6, 5.3.7, we just have to prove that a ρ sat-
isfying (5.24) does represent V . Indeed, if r ∈ V then ρ(r) 6 γV (r) 6 1; if r /∈ V , then
1 < µV (r) 6 ρ(r). The geometric counterpart is again standard calculus with support functions. �

We end this section with a deeper study of prepolars, which will be useful in the sequel. The
next result introduces the polar cone (V∞)◦. When G is a cone, positive homogeneity can be used to
replace the righthand side “1” in (5.19) by any positive number, or even by “0”: in particular,

V ◦∞ := (V∞)◦ = {r ∈ Rq : σV∞(r) 6 0} . (5.25)

The notation V ◦∞ is used for simplicity, although it is somewhat informal; (V∞)◦ and (V ◦)∞ differ,
the latter is {0} since V ◦ is bounded.
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Lemma 5.3.9 (Additional properties of prepolars). With the notation (5.22), (5.23), (5.25),
(i) V ◦∞ is the closure of domσV ,

(ii) R+V̂
◦ = R+V

• = R+V
◦ = domσV .

Proof. First of all, let d /∈ V ◦∞: there is r ∈ V∞ (R+r ∈ V ) and d>r > 0; then d>(tr) → +∞ for
t → +∞ and σV (d) cannot be finite, i.e. d /∈ domσV . Thus, domσV ⊂ V ◦∞; hence cl (domσV ) ⊂
V ◦∞ because V ◦∞ is closed.

To prove the converse inclusion, take r /∈ (domσV )◦: there is d such that σV (d) < +∞ and
d>r > 0. Then d>(tr) → +∞ when t → +∞; if r were in V∞, then tr would lie in V and σV (d)
would be +∞, a contradiction. Thus we have proved V∞ ⊂ (domσV )◦. Taking polars and knowing
that domσV is a cone, V ◦∞ ⊃ (domσV )◦◦ = cl (domσV ) (see [103, Prop. A.4.2.6]). This proves (i).

To prove (ii), observe first that V̂ ◦ ⊂ V • ⊂ V ◦ ⊂ domσV ; and because domσV is a cone,

R+V̂
◦ ⊂ R+V

• ⊂ R+V
◦ ⊂ domσV . (5.26)

On the other hand, take 0 6= d ∈ domσV , so that σV (d) > 0 by (5.21) and 1
σV (d)d ∈ V̂ ◦: d ∈ R+V̂

◦.

Since 0 also lies in R+V̂
◦, we do have domσV ⊂ R+V̂

◦; (5.26) is actually a chain of equalities. To
complete the proof, observe from Proposition 5.3.7 that R+V

◦ = R+V
•. �
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Theorem 3.8 The representations of V (a closed convex neighborhood of the origin) are the finite-valued
sublinear functions ρ satisfying

σV • = µV ! ρ ! γV = σV ◦ = max {0, µV } . (24)

Geometrically, the prepolars of V , i.e. the sets G whose support function represents V , are the sets
sandwiched between the two extreme prepolars of V :

G◦ = V ⇐⇒ V • ⊂ conv (G) ⊂ V ◦ = conv
(
V • ∪ {0}

)
= [0, 1]V • .

Proof. In view of Corollary 3.3 and Propositions 3.6, 3.7, we just have to prove that a ρ satisfying
(24) does represent V . Indeed, if r ∈ V then ρ(r) ! γV (r) ! 1; if r /∈ V , then 1 < µV (r) ! ρ(r). The
geometric counterpart is again standard calculus with support functions. "

We end this section with a deeper study of prepolars, which will be useful in the sequel. The next
result introduces the polar cone (V∞)◦. When G is a cone, positive homogeneity can be used to replace
the righthand side “1” in (19) by any positive number, or even by “0”: in particular,

V ◦
∞ := (V∞)◦ = {r ∈ Rq : σV∞(r) ! 0} . (25)

The notation V ◦
∞ is used for simplicity, although it is somewhat informal; (V∞)◦ and (V ◦)∞ differ, the

latter is {0} since V ◦ is bounded.

Lemma 3.9 (Additional properties of prepolars) With the notation (22), (23), (25),

(i) V ◦
∞ is the closure of domσV ,

(ii) R+V̂ ◦ = R+V • = R+V ◦ = domσV .

Proof. First of all, let d /∈ V ◦
∞: there is r ∈ V∞ (R+r ∈ V ) and d⊤r > 0; then d⊤(tr) → +∞ for

t → +∞ and σV (d) cannot be finite, i.e. d /∈ domσV . Thus, domσV ⊂ V ◦
∞; hence cl (domσV ) ⊂ V ◦

∞
because V ◦

∞ is closed.

To prove the converse inclusion, take r /∈ (domσV )◦: there is d such that σV (d) < +∞ and d⊤r > 0.
Then d⊤(tr) → +∞ when t → +∞; if r were in V∞, then tr would lie in V and σV (d) would be +∞,
a contradiction. Thus we have proved V∞ ⊂ (domσV )◦. Taking polars and knowing that domσV is a
cone, V ◦

∞ ⊃ (domσV )◦◦ = cl (domσV ) (see [17, Prop.A.4.2.6]). This proves (i).

To prove (ii), observe first that V̂ ◦ ⊂ V • ⊂ V ◦ ⊂ domσV ; and because domσV is a cone,

R+V̂ ◦ ⊂ R+V • ⊂ R+V ◦ ⊂ domσV . (26)

On the other hand, take 0 ̸= d ∈ domσV , so that σV (d) > 0 by (21) and 1
σV (d)d ∈ V̂ ◦: d ∈ R+V̂ ◦. Since

0 also lies in R+V̂ ◦, we do have domσV ⊂ R+V̂ ◦; (26) is actually a chain of equalities. To complete the
proof, observe from Proposition 3.7 that R+V ◦ = R+V •. "

φ

v

eP ◦ = bP ◦

1

u

d

V = P

r(d)

ψ

Figure 5: Trouble appears if the neighborhood has no asymptote

Beware that really pathological prepolars can exist, Figure 5 illustrates a well-known situation. Its left
part displays the parabolic neighborhood V = P ⊂ R2 defined by the constraint ψ ! 1− 1

2φ
2. A direction

d = (u, v) with v > 0 exposes the point r(d). When v ↓ 0, the component of r(d) along d (namely φ)
goes to +∞, which does bring trouble. Computing r(d) is an exercise resulting in

σP (d) = σP (u, v) =

⎧
⎨
⎩

0 if d = 0 ,

v + u2

2v if v > 0 ,
+∞ if v ! 0 ;

(27)

two phenomena are then revealed.

Figure 5.5: Trouble appears if the neighborhood has no asymptote

Beware that really pathological prepolars can exist, Figure 5.5 illustrates a well-known situation.
Its left part displays the parabolic neighborhood V = P ⊂ R2 defined by the constraint ψ 6 1− 1

2φ
2.

A direction d = (u, v) with v > 0 exposes the point r(d). When v ↓ 0, the component of r(d) along
d (namely φ) goes to +∞, which does bring trouble. Computing r(d) is an exercise resulting in

σP (d) = σP (u, v) =





0 if d = 0 ,
v + u2

2v if v > 0 ,
+∞ if v 6 0 ;

(5.27)

two phenomena are then revealed.
First, V̂ ◦ is defined by the equation

v +
u2

2v
= 1 , i.e. 2(v2 − v) + u2 = 0 .

This is an ellipse passing through the origin (right part of Figure 5.5); yet 0 cannot lie in V̂ ◦, since
σP (0) = 0 6= 1. Thus, P̂ ◦ is not closed and, more importantly, 0 ∈ P •.
The second phenomenon is a violent discontinuity of σP at 0. In fact, fix α > 0 and let dk =(
α
k ,

1
k2

)
; then dk → 0, while σP (dk)→ α2

2 , an arbitrary positive number.
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Both phenomena are due to (local) unboundedness of σP on its domain, which is thus not closed;
if (uk, vk) ∈ domσP tends to any (u, 0) with u 6= 0, then σP (uk, vk) → +∞. Ruling out such a
behaviour brings additional useful properties:

Corollary 5.3.10 (Safe prepolars). If 0 /∈ V •, then

R+V̂
◦ = R+V

• = R+V
◦ = domσV = V ◦∞ (5.28)

and intV∞ 6= ∅ (the polar V ◦∞ is a so-called pointed cone).

Proof. When 0 /∈ V •, R+V
• is closed ([103, Prop. A.1.4.7]). Then apply Lemma 5.3.9: by (ii)

domσV is closed and (5.28) follows from (i).
Now we separate 0 from V •: there is some r such that σV •(r) < 0. By continuity of the finite-

valued convex function σV • , this inequality is still valid in a neighborhood of r: σV • 6 0 over some
nonzero ball B around r. By Lemma 5.3.9(ii),

σV ◦∞(d) = σR+V •(d) = sup
t>0

sup
d∈V •

td>r = sup
t>0

tσV •(d) ,

so that σV ◦∞ enjoys the same property: by (5.25), B is contained in (V ◦∞)◦. Proposition A.4.2.6 of
[103] finishes the proof. �

Property (5.28) means closedness of domσV and is rather instrumental. We mention another
simple assumption implying it:

Proposition 5.3.11. If V = U + V∞, where U is bounded, then domσV = V ◦∞.

Proof. The support function of a sum is easily seen to be the sum of support functions: σV = σU +
σV∞ . Every d ∈ V ◦∞ then satisfies σV (d) = σU (d), a finite number when U is bounded. �

Let us put this section in perspective. The traditional gauge theory defines via (5.16), (5.19) the
polarity correspondence V ↔ V ◦ for compact convex neighborhoods of the origin. We generalize it
to unbounded neighborhoods, whose standard gauge is replaced via Definition 5.2.6 by their family
of representations. Each representation ρ, which may assume negative values, gives rise to ∂ρ(0)
– which we call a prepolar of V . Theorem 5.3.8 establishes the existence of a largest element (the
usual polar V ◦) and of a smallest element (V •) in the family of (closed convex) prepolars of V .
Gauge theory is further generalized in [184], in which 0 may lie on the boundary of V . Our stricter
framework allows a finer analysis of the smallest prepolar; in particular, the property 0 /∈ V • helps
avoiding nasty phenomena.

5.4 Minimal CGF’s, maximal S-free sets

Remembering Remark 5.1.4, our goal in this section is to study the concept of minimality for
CGF’s. Geometrically, we study the concept of maximality for S-free sets. In fact, the two concepts
are in correpondence via (5.14); but a difficulty arises because the reverse inclusion does not hold in
(5.14). As a result, several definitions of minimality and maximality are needed.

86



5.4.1 Minimality, maximality

In our quest for small CGF’s, the following definition is natural.

Definition 5.4.1 (Minimality). A CGF ρ is called minimal if the only possible CGF ρ′ 6 ρ is ρ itself.
�

Knowing that a CGF ρ represents V (ρ) and that µV (ρ) 6 ρ represents the same set, a minimal CGF

is certainly a smallest representation:

ρ is a minimal CGF =⇒ ρ = µV (ρ) = σV (ρ)• . (5.29)

In addition, V (ρ) must of course be a special S-free set when ρ is minimal. Take for example S =
{1} ⊂ R, V = [−1,+1]; then ρ(r) := |r| is the smallest (because unique) representation of V but is
not minimal: ρ′(r) := max {0, r} is also a CGF, representing V ′ =]−∞,+1].

From (5.14), a smaller ρ describes a larger V ; so Definition 5.4.1 has its geometrical counterpart:

Definition 5.4.2 (Maximality). An S-free set V is called maximal if the only possible S-free set
V ′ ⊃ V is V itself. �

The two objects are indeed related:

Proposition 5.4.3. If V is a maximal S-free set, then its smallest representation µV is a minimal CGF.

Proof. Take a CGF ρ′, representing the S-free set V ′ = V (ρ′). If ρ′ 6 µV , then V ′ ⊃ V ; and if V is
maximal, V ′ = V . Then ρ′ > µV = µV ′ by Proposition 5.3.6. �

Besides, these objects do exist:

Theorem 5.4.4. Every S-free set is contained in a maximal S-free set. It follows that there exists a
maximal S-free set and a minimal CGF.

Proof. Let V be an S-free set. In the partially ordered family (F,⊂) of all S-free sets containing V ,
let {Wi}i∈I be a totally ordered subfamily (a chain) and define W := ∪i∈IWi. Clearly, W is a
neighborhood of the origin; its convexity is easily established, let us show that its closure is S-free.

Remember from [103, Thm. C.3.3.2(iii)] that the support function of a union is the (closure of the)
supremum of the support functions:

σint (W ) = σW = cl
(

sup
i∈I

σWi

)
= cl

(
sup
i∈I

σint (Wi)

)
= σ∪i int (Wi) .

Having the same support function, the two open convex sets int (W ) and ∪i int (Wi) coincide: r ∈
int (W ) means r ∈ int (Wi) for some i; because Wi is S-free, r /∈ S and our claim is proved. Thus,
the chain {Wi} has an upper bound in F; in view of Zorn’s lemma, F has a maximal element.

Now (5.1b) implies that a ball centered at 0 with a small enough radius is S-free; and there exists
a maximal S-free set containing it. Proposition 5.4.3 finishes the proof. �

The maximal S-free sets can be explicitly described for some special S’s: Zq [127], the intersec-
tion of Zq with an affine subspace [17], with a rational polyhedron [18], or with an arbitrary closed
convex set [14, 134]. Unfortunately, the “duality” between minimal CGF’s and maximal S-free sets
is deceiving, as the two definitions do not match: the set represented by a minimal CGF need not be
maximal. In fact, when ρ is linear, the property introduced in Definition 5.4.1 holds vacuously: no
sublinear function can properly lie below a linear function. Thus, a linear CGF ρ is always minimal;

87
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In addition, V (ρ) must of course be a special S-free set when ρ is minimal. Take for example S = {1} ⊂ R,
V = [−1, +1]; then ρ(r) := |r| is the smallest (because unique) representation of V but is not minimal:
ρ′(r) := max {0, r} is also a cgf, representing V ′ =] − ∞, +1].

From (14), a smaller ρ describes a larger V ; so Definition 4.1 has its geometrical counterpart:

Definition 4.2 (Maximality) An S-free set V is called maximal if the only possible S-free set V ′ ⊃ V
is V itself. !

The two objects are indeed related:

Proposition 4.3 If V is a maximal S-free set, then its smallest representation µV is a minimal cgf.

Proof. Take a cgf ρ′, representing the S-free set V ′ = V (ρ′). If ρ′ " µV , then V ′ ⊃ V ; and if V is
maximal, V ′ = V . Then ρ′ # µV = µV ′ by Proposition 3.6. !

Besides, these objects do exist:

Theorem 4.4 Every S-free set is contained in a maximal S-free set. It follows that there exists a maximal
S-free set and a minimal cgf.

Proof. Let V be an S-free set. In the partially ordered family (F , ⊂) of all S-free sets contain-
ing V , let {Wi}i∈I be a totally ordered subfamily (a chain) and define W := ∪i∈IWi. Clearly, W is a
neighborhood of the origin; its convexity is easily established, let us show that its closure is S-free.

Remember from [17, Thm. C.3.3.2(iii)] that the support function of a union is the (closure of the)
supremum of the support functions:

σint (W ) = σW = cl
(
sup
i∈I

σWi

)
= cl

(
sup
i∈I

σint (Wi)

)
= σ∪i int (Wi) .

Having the same support function, the two open convex sets int (W ) and ∪i int (Wi) coincide: r ∈ int (W )
means r ∈ int (Wi) for some i; because Wi is S-free, r /∈ S and our claim is proved. Thus, the chain {Wi}
has an upper bound in F ; in view of Zorn’s lemma, F has a maximal element.

Now (1b) implies that a ball centered at 0 with a small enough radius is S-free; and there exists a
maximal S-free set containing it. Proposition 4.3 finishes the proof. !

The maximal S-free sets can be explicitly described for some special S’s: Zq [20], the intersection of Zq

with an affine subspace [4], with a rational polyhedron [5], or with an arbitrary closed convex set [21, 2].
Unfortunately, the “duality” between minimal cgf’s and maximal S-free sets is deceiving, as the two
definitions do not match: the set represented by a minimal cgf need not be maximal. In fact, when ρ is
linear, the property introduced in Definition 4.1 holds vacuously: no sublinear function can properly lie
below a linear function. Thus, a linear cgf ρ is always minimal; yet, a linear ρ represents a neighborhood
V (ρ) (a half-space) which is S-free but has no reason to be maximal. See Figure 6: with n = 1, the set
V = ] − ∞, 1] (represented by ρ(x) = x) is {2}-free but is obviously not maximal.

0

V

S = {2}1

Figure 6: A linear cgf is always maximal

A more elaborate example reveals the profound reason underlying the trouble: for an S-free set W
containing V , µW need not be comparable to µV .

Example 4.5 In Example 3.5, take for S the union of the three lines with respective equations

φ = 1 , ψ = 1 , ψ = 2 + φ ,

so that V is clearly maximal S-free.

Figure 5.6: A linear CGF is always maximal

yet, a linear ρ represents a neighborhood V (ρ) (a half-space) which is S-free but has no reason to be
maximal. See Figure 5.6: with n = 1, the set V = ] −∞, 1] (represented by ρ(x) = x) is {2}-free
but is obviously not maximal.

A more elaborate example reveals the profound reason underlying the trouble: for an S-free set
W containing V , µW need not be comparable to µV .

Example 5.4.5. In Example 5.3.5, take for S the union of the three lines with respective equations

φ = 1 , ψ = 1 , ψ = 2 + φ ,

so that V is clearly maximal S-free.16 Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick: Cut-generating functions
Mathematics of Operations Research xx(x), pp. xxx–xxx, c⃝200x INFORMS

V •
t

At

W •

Vt rA

rC

B

C
At

B

C

Figure 7: The mapping V !→ V • is not monotonic

Now shrink V to Vt (left part of Figure 7) by moving its right vertical boundary to φ ! 1 − t. Then A
is moved to At =

(
1

1−t , 0
)
; there is no inclusion between the new V •

t = conv{At, B, C} and the original
V • = conv{A, B, C}; this is the key to our example.

Let us show that µVt is minimal, even though Vt is not maximal. Take for this a cgf ρ ! µVt , which
represents an S-free set W ; by (14), W ⊃ Vt. We therefore have

σW • = µW ! ρ ! µVt = σV •
t

, i.e., W • ⊂ V •
t

and we proceed to show that equality does hold, i.e. the three extreme points of V •
t do lie in W •.

– If At /∈ W •, the right part of Figure 7 shows that W • is included in the open upper half-space. Knowing
that

W =
(
W •)◦

=
{
r : d⊤r ! 1 for all d ∈ W •} ,

this implies that W∞ has a vector of the form rA = (ε, −1) (ε > 0); W cannot be S-free.

– If C /∈ W •, there is rC ∈ R2 such that C⊤rC > σW •(rC) = µW (rC) (we denote also by C the 2-vector
representing C). For example rC = (−2, 0) ∈ bd (V ) (see the right part of Figure 7), so that

C⊤rC = 1 > σW •(−2, 0) = µW (−2, 0) .

By continuity, µW (−2 − ε, 0) ! 1 for ε > 0 small enough. Since µW represents W , this implies that
(−2 − ε, 0) ∈ W ; W (which contains Vt) is not S-free.

– By the same token, we prove that B ∈ W • (the separator rB = (0, 1) ∈ bd (V ) does the job).

We have therefore proved that W • = V •
t , i.e µW = µVt , i.e. µVt is minimal. "

The next section makes a first step toward a theory relating small cgf’s and large S-free sets.

4.2 Strong minimality, asymptotic maximality. First, let us give a name to those minimal
cgf’s corresponding to maximal S-free sets.

Definition 4.6 (Strongly minimal cgf) A cgf ρ is called strongly minimal if it is the smallest rep-
resentation of a maximal S-free set.

The strongly minimal cgf’s can be characterized without any reference to the geometric space.

Proposition 4.7 A cgf ρ is strongly minimal if and only if, for every cgf ρ′,

ρ′ ! max {0, ρ}
[
= γV (ρ) = σV (ρ)◦

]
=⇒ ρ′ # ρ . (30)

Proof. Take first a maximal V . Every cgf ρ′ ! γV represents an S-free set V ′, which contains V –
see (13) – so that V ′ = V by maximality, i.e. ρ′ represents V as well; hence ρ′ # µV by Proposition 3.6.
Thus, ρ(= µV ) satisfies (30).

Let now ρ satisfy (30), we have to show that V := V (ρ) is maximal. Taking in particular ρ′ = µV in
(30) shows that ρ must equal µV . Let V ′ ⊃ V be S-free; we have (V ′)◦ ⊂ V ◦, i.e.

γV ′ = σ(V ′)◦ ! σV ◦ = γV = max {0, ρ} .

Now ρ′ := γV ′ is a cgf, so ρ′ # ρ = µV by (30); by Theorem 3.8, ρ′ represents not only V ′ but also V ,
i.e. V ′ = V : V is maximal. "

Figure 5.7: The mapping V 7→ V • is not monotonic

Now shrink V to Vt (left part of Figure 5.7) by moving its right vertical boundary to φ 6 1 − t.
Then A is moved to At =

(
1

1−t , 0
)
; there is no inclusion between the new V •t = conv{At, B,C} and

the original V • = conv{A,B,C}; this is the key to our example.
Let us show that µVt is minimal, even though Vt is not maximal. Take for this a CGF ρ 6 µVt ,

which represents an S-free set W ; by (5.14), W ⊃ Vt. We therefore have

σW • = µW 6 ρ 6 µVt = σV •t , i.e., W • ⊂ V •t

and we proceed to show that equality does hold, i.e. the three extreme points of V •t do lie in W •.
If At /∈ W •, the right part of Figure 5.7 shows that W • is included in the open upper half-space.
Knowing that

W =
(
W •
)◦

=
{
r : d>r 6 1 for all d ∈W •

}
,

this implies that W∞ has a vector of the form rA = (ε,−1) (ε > 0); W cannot be S-free.
If C /∈ W •, there is rC ∈ R2 such that C>rC > σW •(rC) = µW (rC) (we denote also by C the
2-vector representing C). For example rC = (−2, 0) ∈ bd (V ) (see the right part of Figure 5.7), so
that

C>rC = 1 > σW •(−2, 0) = µW (−2, 0) .

By continuity, µW (−2 − ε, 0) 6 1 for ε > 0 small enough. Since µW represents W , this implies
that (−2− ε, 0) ∈W ; W (which contains Vt) is not S-free.
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By the same token, we prove that B ∈W • (the separator rB = (0, 1) ∈ bd (V ) does the job).
We have therefore proved that W • = V •t , i.e µW = µVt , i.e. µVt is minimal. �

The next section makes a first step toward a theory relating small CGF’s and large S-free sets.

5.4.2 Strong minimality, asymptotic maximality

First, let us give a name to those minimal CGF’s corresponding to maximal S-free sets.

Definition 5.4.6 (Strongly minimal CGF). A CGF ρ is called strongly minimal if it is the smallest
representation of a maximal S-free set.

The strongly minimal CGF’s can be characterized without any reference to the geometric space.

Proposition 5.4.7. A CGF ρ is strongly minimal if and only if, for every CGF ρ′,

ρ′ 6 max {0, ρ}
[
= γV (ρ) = σV (ρ)◦

]
=⇒ ρ′ > ρ . (5.30)

Proof. Take first a maximal V . Every CGF ρ′ 6 γV represents an S-free set V ′, which contains V –
see (5.13) – so that V ′ = V by maximality, i.e. ρ′ represents V as well; hence ρ′ > µV by Proposition
5.3.6. Thus, ρ(= µV ) satisfies (5.30).

Let now ρ satisfy (5.30), we have to show that V := V (ρ) is maximal. Taking in particular
ρ′ = µV in (5.30) shows that ρ must equal µV . Let V ′ ⊃ V be S-free; we have (V ′)◦ ⊂ V ◦, i.e.

γV ′ = σ(V ′)◦ 6 σV ◦ = γV = max {0, ρ} .

Now ρ′ := γV ′ is a CGF, so ρ′ > ρ = µV by (5.30); by Theorem 5.3.8, ρ′ represents not only V ′ but
also V , i.e. V ′ = V : V is maximal. �

In Section 5.3 we have systematically developed the geometric counterpart of representations;
this exercise can be continued here. In fact, the concept of minimality involves two properties from a
sublinear function:

it must be the smallest representation of some neighborhood V – remember (5.29),
this neighborhood must enjoy some maximality property.

In view of the first property, a CGF can be imposed to be not only sublinear but also to support a
set that is a smallest prepolar. Then Definition 5.4.1 has a geometric counterpart: minimality of
ρ = µV = σV • means

G′ ⊂ V • and (G′)◦ is S-free =⇒ G′ = V •, i.e. (G′)◦ = V .
[ρ′ = σG′ 6 ρ] [ρ′ is a CGF] [ρ′ = ρ]

Likewise for Definition 5.4.6: strong minimality of ρ = γV = σV ◦ means

G′ ⊂ V ◦ and (G′)◦ is S-free =⇒ G′ ⊃ V •, i.e. (G′)◦ ⊂ V .
[ρ′ = σG′ 6 γV ] [ρ′ is a CGF] [ρ′ > ρ]

These observations allow some more insight into the (·)• operation:

Proposition 5.4.8. Let ρ = µV = σV • be a minimal CGF. If an S-free set W satisfies W • ⊂ V •,
then W = V .
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Proof. The smallest representation ρ′ := µW = σW • of the S-free set W is a CGF; and from mono-
tonicity of the support operation, ρ′ 6 ρ. Then minimality of ρ implies ρ′ = ρ, i.e. W • = V •, an
equality transmitted to the polars: W = (W •)◦ = (V •)◦ = V . �

This result confirms that non-equivalence between minimal CGF’s and maximal S-free sets comes
from non-monotonicity of the mapping V 7→ V • – or of V 7→ µV . To construct Example 5.4.5, we
do need a W ⊃ V such that W • 6⊂ V •.

Then comes a natural question: how maximal are the S-free sets represented by minimal CGF’s?
For this, we introduce one more concept:

Definition 5.4.9. An S-free set V is called asymptotically maximal if every S-free set V ′ ⊃ V satisfies
V ′∞ = V∞.

It allows a partial answer to the question.

Theorem 5.4.10 (Minimal⇒ asymptotically maximal). The S-free set represented by a minimal CGF

is asymptotically maximal.

Proof. Let µV be a minimal CGF and take an S-free set V ′ ⊃ V . Introduce the set G := V •∩
(
V ′∞
)◦.

Inclusions translate to inequalities between support functions:

σG 6 σV • = µV (5.31)

and we proceed to prove that this is actually an equality. Let us compute the set W := G◦ represented
by σG. The support function of an intersection is obtained via an inf-convolution (formula (3.3.1) in
[103, Chap. C)] for example): σG(·) is the closure of the function

r 7→ inf
{
σV •(r1) + σ(V ′∞)◦(r2) : r1 + r2 = r

}
.

In this formula, σV • = µV and the support function of the closed convex cone
(
V ′∞
)◦ is the indicator

of its polar V ′∞: the above function is

r 7→ inf
{
µV (r1) : r1 + r2 = r, r2 ∈ V ′∞

}
.

Now use (5.12): because σG represents W , to say that r ∈ int (W ) is to say that the above
infimum is strictly smaller than 1, i.e. that there are r1, r2 such that

r1 + r2 = r, r2 ∈ V ′∞, µV (r1) < 1 i.e. r1 + r2 = r, r2 ∈ V ′∞, r1 ∈ intV .

In a word:
int (W ) = V ′∞ + int (V ) ⊃ int (V ) 3 0 ,

where we have used the property 0 ∈ V ′∞. Remembering the inclusion V ⊂ V ′ and the definition of
a recession cone, we also have

int (W ) = V ′∞ + int (V ) ⊂ V ′∞ + int (V ′) ⊂ V ′∞ + V ′ ⊂ V ′ .

Altogether, 0 ∈ int (W ) ⊂ int (V ′). As a result, W (= G◦) is an S-free closed convex neighborhood
of the origin: its representation σG is a CGF and minimality of µV = σV • implies with (5.31) that
σG = σV • .

By closed convexity of both sets V • and G = V • ∩
(
V ′∞
)◦, this just means G = V •, i.e.(

V ′∞
)◦ ⊃ V •. By polarity, V ′∞ ⊂

(
V •
)◦

= V (invoke Theorem 5.3.8). The cone V ′∞, contained
in the neighborhood V , is also contained in its recession cone: V ′∞ ⊂ V∞. Since the converse inclu-
sion is clear from V ′ ⊃ V , we have proved V ′∞ = V∞: V is asymptotically maximal. �
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5.5 Favourable cases

Despite Example 5.4.5, a number of papers have established the equivalence between maximal
S-free sets and minimal CGF’s, for various forms of S. This equivalence is indeed known to hold in a
number of situations:
(a) when S is a finite set of points in Zq − b; see [106] and more recently [68];
(b) when S is the intersection of Zn with an affine space; this was considered in [38] and [17];
(c) when S = P ∩ (Zq − b) for some rational polyhedron P ; this was considered in [18, 68].

Accordingly, we investigate in this section the question: when does minimality imply strong min-
imality? So we consider an S-free set V , whose smallest representation µV = σV • is minimal, hence
V is asymptoticaly maximal (Theorem 5.4.10); we want to exhibit conditions under which V is max-
imal. We denote by L = (−V∞) ∩ V∞ the lineality space of V (the largest subspace contained in the
closed convex cone V∞) and our result is the following.

Theorem 5.5.1. Suppose 0 ∈ S := conv (S). A minimal µV is strongly minimal whenever one of the
following two properties (i) and (ii) holds:
(i) V∞ ∩ S∞ = {0} (in particular S bounded),

(ii)
(ii)1 S = U + S∞ with U bounded, and
(ii)2 V∞ ∩ S∞ = L ∩ S∞.

This theorem generalizes the above-mentioned results: (i) is a weakening of (a) and (ii) weakens
(b) or (c). Note that (ii)2 generalizes (i) (to an unbounded V∞ ∩ S); the price to pay is assumption
(ii)1, whose role is to exclude an asymptotic behaviour of S similar to that of P in Figure 5.5 (see
Proposition 5.3.11).

However, the interesting point does not lie in the above assumptions (a) – (ii). Recalling that the
whole issue lies in unboundedness of V , our proof of Theorem 5.5.1 uses Theorem 5.4.10 as follows.
Starting from an S-free set V which is asymptotically maximal but not maximal, we construct a
sequence of neighborhoods V k satisfying V k

∞ ) V∞. Then V k is not S-free: there is some rk ∈
S ∩ int (V k); see Figure 5.8.
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V∞
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V k
∞
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Figure 8: Constructing in S an unbounded sequence “tending to” V

Obtaining rk and uk is a fairly complicate operation, which we divide into a series of lemmas. For a
reason that will appear in (39) below, we may assume 0 /∈ V •. Then we enlarge V to V k by chopping off
a bit of V • as follows. Take an extreme ray R+dV of V ◦

∞. By (28), its intersection with V • is a nonempty
segment [dV , tV dV ], with 1 ! tV < +∞. Given a positive integer k, we introduce the open neighborhood
of [dV , tV dV ]:

Nk := [dV , tV dV ] + B
(
0,

1

k

)
=

⋃

1!t!tV

B
(
tdV ,

1

k

)
, (32)

where B(d, δ) is the open ball of center d and radius δ. We remove Nk from V •, thus obtaining a set C,
closed hence compact; its convex hull

Gk := conv C , with C := V •\Nk =
{

d ∈ V • : ∥d − tdV ∥ " 1

k
for all t ∈ [1, tV ]

}
(33)

is convex compact. Figure 9 illustrates our construction.

V •

R+Gk

Nk

tV dVdV

Figure 9: Chopping off V • near an extreme ray

Note for future use that the distance from every d ∈ [dV , tV dV ] to C does not exceed 1/k; and the
same holds for Gk ⊃ C. Formally:

∀d̄ ∈ [dV , tV dV ] , ∃dk ∈ Gk such that ∥dk − d̄∥ ! 1

k
. (34)

Remark 5.2 The above construction would become substantially simpler, and Nk would reduce to the
open ball B

(
dV , 1

k

)
, if V • ∩ R+dV reduced to a singleton, i.e. if tV = 1; but this property need not hold

when σV is not continuous.

To make a counterexample, start from the parabola of Figure 5. We already know that σP (dk) can
tend to any nonnegative value when dk → 0. However 0 ∈ P •; alternatively, the domain of σP is not
closed. In fact, we need a discontinuous sublinear function which is locally bounded on its domain – and
this requires three variables. Thus, we first bound σP by defining

f(d) := 1 +

{
σP (d) if σP (d) ! 1 ,
+∞ otherwise

(the “1+” appearing above is just aimed at getting 0 in the interior of V ). Although no longer positively
homogeneous, f is still convex, its domain is the compact convex set P •, on which 1 ! f ! 2; when

Figure 5.8: Constructing in S an unbounded sequence “tending to” V

Besides, our construction is organized in such a way that V k “tends to” V and, by non-maximality
of V , rk is unbounded but “tends to” V . More precisely,

the cluster points of the normalized sequence {rk} lie in S∞ ∩ V∞.

Decomposing rk = `k + uk along L and L⊥, we also prove that uk is unbounded but “tends to”
S ∩ L⊥, more precisely
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the cluster points of the normalized sequence {uk} lie in S∞ ∩ L⊥.

We believe that these are key properties of non-maximal S-free sets. Having established them, the
whole business is to find appropriate assumptions under which existence of our unbounded sequences
is impossible; (a) – (ii) above are such ad hoc assumptions.

Obtaining rk and uk is a fairly complicate operation, which we divide into a series of lemmas.
For a reason that will appear in (5.39) below, we may assume 0 /∈ V •. Then we enlarge V to V k by
chopping off a bit of V • as follows. Take an extreme ray R+dV of V ◦∞. By (5.28), its intersection with
V • is a nonempty segment [dV , tV dV ], with 1 6 tV < +∞. Given a positive integer k, we introduce
the open neighborhood of [dV , tV dV ]:

Nk := [dV , tV dV ] +B
(

0,
1

k

)
=

⋃

16t6tV
B
(
tdV ,

1

k

)
, (5.32)

where B(d, δ) is the open ball of center d and radius δ. We remove Nk from V •, thus obtaining a set
C, closed hence compact; its convex hull

Gk := convC , with C := V •\Nk =
{
d ∈ V • : ‖d− tdV ‖ >

1

k
for all t ∈ [1, tV ]

}
(5.33)

is convex compact. Figure 5.9 illustrates our construction.
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Obtaining rk and uk is a fairly complicate operation, which we divide into a series of lemmas. For a
reason that will appear in (39) below, we may assume 0 /∈ V •. Then we enlarge V to V k by chopping off
a bit of V • as follows. Take an extreme ray R+dV of V ◦

∞. By (28), its intersection with V • is a nonempty
segment [dV , tV dV ], with 1 ! tV < +∞. Given a positive integer k, we introduce the open neighborhood
of [dV , tV dV ]:

Nk := [dV , tV dV ] + B
(
0,

1

k

)
=

⋃

1!t!tV

B
(
tdV ,

1

k

)
, (32)

where B(d, δ) is the open ball of center d and radius δ. We remove Nk from V •, thus obtaining a set C,
closed hence compact; its convex hull

Gk := conv C , with C := V •\Nk =
{

d ∈ V • : ∥d − tdV ∥ " 1

k
for all t ∈ [1, tV ]

}
(33)

is convex compact. Figure 9 illustrates our construction.

V •

R+Gk

Nk

tV dVdV

Figure 9: Chopping off V • near an extreme ray

Note for future use that the distance from every d ∈ [dV , tV dV ] to C does not exceed 1/k; and the
same holds for Gk ⊃ C. Formally:

∀d̄ ∈ [dV , tV dV ] , ∃dk ∈ Gk such that ∥dk − d̄∥ ! 1

k
. (34)

Remark 5.2 The above construction would become substantially simpler, and Nk would reduce to the
open ball B

(
dV , 1

k

)
, if V • ∩ R+dV reduced to a singleton, i.e. if tV = 1; but this property need not hold

when σV is not continuous.

To make a counterexample, start from the parabola of Figure 5. We already know that σP (dk) can
tend to any nonnegative value when dk → 0. However 0 ∈ P •; alternatively, the domain of σP is not
closed. In fact, we need a discontinuous sublinear function which is locally bounded on its domain – and
this requires three variables. Thus, we first bound σP by defining

f(d) := 1 +

{
σP (d) if σP (d) ! 1 ,
+∞ otherwise

(the “1+” appearing above is just aimed at getting 0 in the interior of V ). Although no longer positively
homogeneous, f is still convex, its domain is the compact convex set P •, on which 1 ! f ! 2; when

Figure 5.9: Chopping off V • near an extreme ray

Note for future use that the distance from every d ∈ [dV , tV dV ] to C does not exceed 1/k; and
the same holds for Gk ⊃ C. Formally:

∀d̄ ∈ [dV , tV dV ] , ∃dk ∈ Gk such that ‖dk − d̄‖ 6
1

k
. (5.34)

Remark 5.5.2. The above construction would become substantially simpler, and Nk would reduce to
the open ball B

(
dV ,

1
k

)
, if V • ∩ R+dV reduced to a singleton, i.e. if tV = 1; but this property need

not hold when σV is not continuous.
To make a counterexample, start from the parabola of Figure 5.5. We already know that σP (dk)

can tend to any nonnegative value when dk → 0. However 0 ∈ P •; alternatively, the domain of σP is
not closed. In fact, we need a discontinuous sublinear function which is locally bounded on its domain
– and this requires three variables. Thus, we first bound σP by defining

f(d) := 1 +

{
σP (d) if σP (d) 6 1 ,
+∞ otherwise

(the “1+” appearing above is just aimed at getting 0 in the interior of V ). Although no longer posi-
tively homogeneous, f is still convex, its domain is the compact convex set P •, on which 1 6 f 6 2;
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when dk ∈ P • tends to 0, f(dk) can tend to any value in [1, 2]. To complete the construction, we take
the so-called perspective of f :

R2 × R 3 (d,w) 7→ σ(d,w) :=





wf
(
d
w

)
if w > 0 ,

0 if (d,w) = (0, 0) ,
+∞ otherwise

whose positive homogeneity is clear. Actually, σ is known to be convex and to support a closed convex
set V ; see [103, § B.2.2] (in particular Remark 2.2.3), where our (d,w) is called (x, u). Besides, the
property f > 1 implies that V is a neighborhood of the origin; remember (5.21).

Now take (d,w) ∈ V̂ ◦ ⊂ domσ, so that d′ :=
(
d
w

)
∈ dom f and w > 0. Then use positive

homogeneity:

1 = σ(d,w) =⇒ 1

w
= σ(d′, 1) = f(d′) ∈ [1, 2] =⇒ w > 1

2
.

Thus, V̂ ◦ is separated from the origin (by the hyperplane w > 1
2 ) and this property is transmitted

to its closed convex hull V •. On the other hand, σ inherits the discontinuities of f . In fact, choose
α ∈ [1, 2] and construct a sequence {dk} in dom f tending to 0, such that f(dk) → α. Since
σ(dk, 1) = f(dk) > 0, positive homogeneity gives

σ
( dk
f(dk)

,
1

f(dk)

)
= 1 , hence

( dk
f(dk)

,
1

f(dk)

)
∈ V̂ ◦ .

Pass to the limit: ( dk
f(dk)

,
1

f(dk)

)
→
(

0,
1

α

)
∈ cl V̂ ◦ ⊂ V • .

Since α was arbitrary in [1, 2], the intersection of V • with the ray {0} × R+ contains the whole
segment {0} × [1

2 , 1]. �

Viewing Gk of (5.33) as a prepolar, we set

V k := (Gk)◦ .

Of course, V • ⊃ Gk+1 ⊃ Gk and V ⊂ V k+1 ⊂ V k. The closed convex neighborhood V k enjoys all
of the properties listed in Section 5.3, in particular those coming from 0 /∈ Gk.

Lemma 5.5.3 (Enlarging V∞). Assume 0 /∈ V •; let R+dV be an extreme ray of V ◦∞ and assume that
R+dV ( V ◦∞ (R+dV is properly contained in V ◦∞). Given an integer k > 0, construct Nk, Gk, V k as
above. Then Gk 6= ∅ for k large enough (say k > k0) and

(i) V∞ ( V k
∞ for k > k0,

(ii) ∩k>k0V k = V .

Proof. If Gk were empty for all k, we would have V • ⊂ Nk for all k, hence V • would reduce to
[dV , tV dV ]. In view of (5.28), this would imply R+dV = V ◦∞, which our assumption rules out.

Every d ∈ Gk is a convex combination
∑

i αidi with each di in V •\Nk ⊂ V ◦∞. None of these
di’s can lie in [dV , tV dV ] ⊂ Nk, and none of their convex combinations either because of extremality
of R+dV . We conclude that

Gk ∩ [dV , tV dV ] = ∅ . (5.35)

Now, we see from Theorem 5.3.8 that

R+(V k)• ⊂ R+G
k ⊂ R+(V k)◦ ;
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but from Proposition 5.3.7, this is actually a chain of equalities:

R+(V k)• = R+G
k . (5.36)

Besides, (V k)• ⊂ Gk ⊂ V •, hence 0 /∈ (V k)• and we can apply (5.28) to V k. Then we write
(
V k
∞
)◦

= R+(V k)•

= R+G
k

( R+V
•

= V ◦∞ .

[(5.28)]

[(5.36)]

[consequence of (5.35)]

[(5.28) again]

Thus, (V k
∞
)◦ ( V ◦∞, which implies (i) since polarity is an involution between closed convex cones.

To prove (ii), take r̄ in ∩kV k; we have to prove that r̄ ∈ V (the other inclusion being obvious). If
r̄ /∈ V there is a separating hyperplane d̄: σV (d̄) < d̄>r̄. Normalizing d̄ via (5.28), we have altogether

r̄ ∈
⋂

k

V k , d̄ ∈ V̂ ◦ , d̄>r̄ > 1 ; (5.37)

but σGk represents V k, so (5.37) gives

σGk(r̄) 6 1 < d̄>r̄ , hence d̄ /∈ Gk .

Then d̄ ∈ V • ∩Nk for all k (large enough), i.e. d̄ ∈ [dV , tV dV ]. Introduce dk ∈ Gk from (5.34):

‖dk − d̄‖ 6
1

k
and d>k r̄ 6 σGk(r̄) 6 1 .

Passing to the limit, d̄>r̄ 6 1; a contradiction to (5.37). Therefore r̄ ∈ V . �

Now we assume the existence of an S-free set W containing V ; it satisfies in particular

W • ⊂W ◦ ⊂ V ◦ = [0, 1]V • . (5.38)

If W • ⊂ V •, this W is of no use to disprove maximality of V (Proposition 5.4.8). We are therefore
in the situation

W • 6⊂ V • , which implies from (5.38): 0 /∈ V • . (5.39)

Thus, W • contains some points out of V •. The key argument for our analysis is that one of these
points lies on an extreme ray of V ◦∞ – which will be the dV of Lemma 5.5.3, crucial to construct the
unbounded sequence {rk} of Figure 5.8.

Lemma 5.5.4 (Constructing an appropriate extreme ray). Let W ⊃ V satisfy (5.39). There is an
extreme ray R+dV of V ◦∞ such that the set Nk defined by (5.32) satisfies W ◦ ∩ Nk = ∅ for k large
enough.

Proof. From (5.39), we are in the framework of Corollary 5.3.10; Figure 5.10 is helpful to follow
the proof. If Ŵ ◦ ⊂ V • then W • = conv

(
Ŵ ◦
)
⊂ V •, contradiction. So there is e ∈ Ŵ ◦ (hence

σW (e) = 1) which does not lie in V •; because V ⊂ W , i.e. σV 6 σW , this e satisfies σV (e) < 1
(otherwise σV (e) = 1, hence e ∈ V̂ ◦ ⊂ V •).

Then construct de := 1
σV (e)e ∈ V̂ ◦ (remember (5.21): σV (e) > 0). For every e′ ∈ [0, e], the

segment [e′, de] contains e. Being a convex set, V • cannot contain such an e′ (otherwise it would
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Thus, (V k
∞

)◦ ! V ◦
∞, which implies (i) since polarity is an involution between closed convex cones.

To prove (ii), take r̄ in ∩kV k; we have to prove that r̄ ∈ V (the other inclusion being obvious). If
r̄ /∈ V there is a separating hyperplane d̄: σV (d̄) < d̄⊤r̄. Normalizing d̄ via (28), we have altogether

r̄ ∈
⋂

k

V k , d̄ ∈ V̂ ◦ , d̄⊤r̄ > 1 ; (37)

but σGk represents V k, so (37) gives

σGk(r̄) ! 1 < d̄⊤r̄ , hence d̄ /∈ Gk .

Then d̄ ∈ V • ∩ Nk for all k (large enough), i.e. d̄ ∈ [dV , tV dV ]. Introduce dk ∈ Gk from (34):

∥dk − d̄∥ ! 1

k
and d⊤

k r̄ ! σGk(r̄) ! 1 .

Passing to the limit, d̄⊤r̄ ! 1; a contradiction to (37). Therefore r̄ ∈ V . "
Now we assume the existence of an S-free set W containing V ; it satisfies in particular

W • ⊂ W ◦ ⊂ V ◦ = [0, 1]V • . (38)

If W • ⊂ V •, this W is of no use to disprove maximality of V (Proposition 4.8). We are therefore in the
situation

W • ̸⊂ V • , which implies from (38): 0 /∈ V • . (39)

Thus, W • contains some points out of V •. The key argument for our analysis is that one of these points
lies on an extreme ray of V ◦

∞ – which will be the dV of Lemma 5.3, crucial to construct the unbounded
sequence {rk} of Figure 8.

Lemma 5.4 (Constructing an appropriate extreme ray) Let W ⊃ V satisfy (39). There is an
extreme ray R+dV of V ◦

∞ such that the set Nk defined by (32) satisfies W ◦ ∩ Nk = ∅ for k large enough.

Proof. From (39), we are in the framework of Corollary 3.10; Figure 10 is helpful to follow the

proof. If Ŵ ◦ ⊂ V • then W • = conv
(
Ŵ ◦) ⊂ V •, contradiction. So there is e ∈ Ŵ ◦ (hence σW (e) = 1)

which does not lie in V •; because V ⊂ W , i.e. σV ! σW , this e satisfies σV (e) < 1 (otherwise σV (e) = 1,

hence e ∈ V̂ ◦ ⊂ V •).

Ŵ ◦ e

de

b̄

V •B

bj0

Figure 10: The extreme ray R+bj0 contains some point in V •\W •

Then construct de := 1
σV (e)e ∈ V̂ ◦ (remember (21): σV (e) > 0). For every e′ ∈ [0, e], the segment

[e′, de] contains e. Being a convex set, V • cannot contain such an e′ (otherwise it would contain e as
well). As a result, the compact convex sets V • and [0, e] can be separated: there is ℓ ∈ Rq (appropriately
scaled) such that

max
{
0, e⊤ℓ

}
< 1 < min

d∈V •
d⊤ℓ . (40)

Observe that

1 > e⊤ℓ = σV (e)d⊤
e ℓ > 0 . (41)

Now introduce the closed convex set

B :=
{
b ∈ V ◦

∞ : b⊤ℓ = 1
}

.

Figure 5.10: The extreme ray R+bj0 contains some point in V •\W •

contain e as well). As a result, the compact convex sets V • and [0, e] can be separated: there is ` ∈ Rq
(appropriately scaled) such that

max
{

0, e>`
}
< 1 < min

d∈V •
d>` . (5.40)

Observe that
1 > e>` = σV (e)d>e ` > 0 . (5.41)

Now introduce the closed convex set

B :=
{
b ∈ V ◦∞ : b>` = 1

}
.

Clearly, R+B ⊂ V ◦∞. Conversely, apply (5.28): every nonzero d ∈ V ◦∞ can be scaled to some td ∈ V •.
By (5.40), td>` > 1, then d can be scaled again to td/(td>`), which lies in B. We have shown

R+B = V ◦∞ . (5.42)

By (5.28), every b ∈ B can be obtained by scaling some d ∈ V̂ ◦: b = td; and t = 1
d>` ∈ ]0, 1[ by

(5.40). This means that
B ⊂ ]0, 1[ V̂ ◦ ⊂ V ◦ ; (5.43)

B is therefore bounded (and closed because V ◦∞ is closed), hence compact.
Using (5.41), scale e to b̄ := 1

e>`e ∈ B and express b̄ =
∑

j αjbj as a convex combination of
extreme points bj of B (Minkowski’s Theorem). Then

σW (b̄) =
1

e>`
σW (e) =

1

e>`
> 1 .

By convexity of σW , there is some j0 such that σW (bj0) > 1 (we may have σW (bj0) = +∞).
Altogether, we have exhibited

bj0 extreme in B and satisfying 1 < σW (bj0) .

Extremality of bj0 in B implies extremality of the ray R+bj0 in R+B, i.e. in V ◦∞ because of (5.42).
The intersection of W ◦ with this extreme ray is some [0, dW ] (dW may be 0) which, by definition of
a polar, does not contain bj0 . Since b>j0` = 1 (because bj0 ∈ B), d>` < 1 for all d ∈ [0, dW ]. Then,
(5.40) shows that [0, dW ] and [dV , tV dV ] are separated.

As a result, the two compact sets W ◦ and [dV , tV dV ] are disjoint. If there were dk ∈ W ◦ ∩ Nk

for all k, then the bounded sequence {dk} would have some cluster point d∗; but W ◦ is closed: d∗

would lie in W ◦ ∩ [dV , tV dV ], contradiction. �
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The set B constructed in the above proof is a so-called basis of the pointed cone V ◦∞. The case
σW (bj0) = +∞, dW = 0 corresponds to a W as in Figure 5.5; it occurs in Figure 5.10. This latter
picture is still helpful to follow the next proof. Recall that L is the lineality space of V .

Proposition 5.5.5. Assume 0 ∈ S = conv (S). If a minimal CGF ρ represents the S-free set V = V (ρ)
which is not maximal, then V k exists as described by Lemma 5.5.3. There is rk ∈ V k∩S, decomposed
as rk = `k + uk with `k ∈ L and uk ∈ L⊥, such that

for some K ⊂ N , lim
k∈K
‖rk‖ = +∞ and lim

k∈K
‖uk‖ = +∞ .

Proof. If all of the S-free sets W containing V satisfy W • ⊂ V •, then V is maximal (Proposition
5.4.8). Thus, there is an S-free set W ⊃ V satisfying (5.39) and we can construct dV as in Lemma
5.5.4.

If R+dV = V ◦∞, then V̂ ◦ = V • = {dV } and V ◦ = [0, dV ] (Proposition 5.3.7): the S-free set V ,
represented by σV ◦ , is the half-space {r : d>V r 6 1}, which separates 0 from S; this is ruled out by
assumption.

Otherwise, R+dV ( V ◦∞: we can apply Lemma 5.5.3 and construct the sequence of neighborhoods
V k. By minimality of µV , V k cannot be S-free (Lemma 5.5.3(i) and Theorem 5.4.10): there exists rk

lying
in intV k, hence from (5.12)

1 > σGk(rk) , (5.44)

and in S, hence rk /∈ intW : σW •(rk) > 1; since W • is compact,

∃ek ∈W • such that e>k r
k > 1 . (5.45)

Now we claim that there is δ > 0 such that

tkek ∈ V • ∩Nk , for some tk > 1 + δ and all k large enough . (5.46)

Using (5.28), scale ek (nonzero from its definition) to tkek ∈ V •; and note from (5.38) that tk > 1.
Then (5.45) implies that tkek /∈ Gk: otherwise

1 6 e>k rk 6 tke>k rk 6 σGk(rk)

by definition of a support function; this contradicts (5.44). It follows that tkek ∈ V • ∩Nk, which is
far from W • (Lemma 5.5.4); (5.46) is proved.

Now we can conclude. First, let d̄ ∈ [dV , tV dV ] be a cluster point of the bounded sequence
{tkek}. Next, use (5.46), (5.45), (5.44) to write for all d ∈ Gk

1 + δ 6 tk 6 tke>k rk = (tkek − d)>rk + d>rk < (tkek − d)>rk + 1 .

This holds in particular for d = dk stated in (5.34):

δ < (tkek − dk)>rk . (5.47)

Then we obtain with the Cauchy-Schwarz inequality

δ < ‖tkek − d̄+ d̄− dk‖ ‖rk‖ 6
(
‖tkek − d̄‖+

1

k

)
‖rk‖ .

Furthermore, decompose rk = `k + uk in (5.47) and observe that both e>k `
k and d>k `

k are 0 (`k ∈ L
while ek and dk lie in V ◦∞ ⊂ L⊥). So (5.47) gives also

δ < (tkek − dk)>uk 6
(
‖tkek − d̄‖+

1

k

)
‖uk‖ .

Both statements are proved since there is K ⊂ N such that limk∈K ‖tkek − d̄‖ = 0. �
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As suggested in the beginning of this section, proving Theorem 5.5.1 is now easy. An S-free set
represented by a minimal CGF will be automatically maximal under any assumption contradicting the
existence of our unbounded sequences.

Proof. of Theorem 5.5.1 Construct the sequences {rk} and {uk} of Proposition 5.5.5.

Case (i): Extract a cluster point r̂ of the normalized subsequence {rk}k∈K : for some K ′ ⊂ K,

lim
k∈K′

rk

‖rk‖ = r̂ .

Then take an arbitrary M > 0. We know that M/‖rk‖ 6 1 if k is large enough in K ′ so, because
both 0 and rk lie in V k ∩ S,

M

‖rk‖r
k ∈ V k ∩ S , for large enough k ∈ K ′ .

By closedness, this implies Mr̂ ∈ S, hence r̂ ∈ S∞ because M is arbitrary. The same argument
using Lemma 5.5.3(ii) gives r̂ ∈ V∞.

Let us sum up. If V is not maximal, then V∞ ∩ S∞ contains a vector r̂ of norm 1; this contra-
dicts (i).

Case (ii): Write uk = rk − `k ∈ V k −L = V k +L ⊂ V k + V∞ ⊂ V k. Then proceed as in Case (i):
extract a cluster point û of

{
uk

‖uk‖
}
K

and argue that M
‖uk‖u

k ∈ V k ∩ L⊥ to exhibit

û ∈ V∞ ∩ L⊥ and ‖û‖ = 1 . (5.48)

Besides, uk is the projection onto L⊥ (a linear operator) of rk ∈ S ⊂ U + S∞; hence

uk ∈ ProjL⊥U + ProjL⊥S∞ .

By (ii)1, ProjL⊥U is a bounded set, so our cluster direction û lies in ProjL⊥S∞:

û = ŝ− ˆ̀, for some ŝ ∈ S∞ and ˆ̀∈ L .

Use (5.48):

S∞ 3 ŝ = û+ ˆ̀∈ V∞ + L = V∞ ;

then use (ii)2:

ŝ ∈ V∞ ∩ S∞ = L ∩ S∞ .

As a result, û = ŝ− ˆ̀ lies in L; use (5.48) again: û ∈ L ∩ L⊥ cannot have norm 1.
Thus, in this case also, V has to be maximal. �

Let us insist once more: the core of our proof is Proposition 5.5.5. Then (i) and (ii) appear
as ad hoc assumptions to contradict the existence of the stated unbounded sequences; other similar
assumptions might be designed.
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5.6 Conclusion and perspectives

In this chapter, we have laid down some basic theory toward studying the cutting paradigm for
sets of the form (5.1). We have introduced for this the concept of cut-generating functions, which
allowed us to put in perspective an abundant literature devoted to S-free sets. We have revealed the
discrepancy between minimality and maximal S-freeness; and we have recovered existing theorems
[17, 18, 38, 68, 106], dealing with mere minimality, exhibiting the intrinsic arguments allowing their
proofs. Our theory necessitated a generalization of the polarity correspondence to certain unbounded
sets; we have conducted it via a systematic exploitation of the correspondence between sublinear
functions and closed convex sets.

This theoretical work opens a crucial question: do CGF’s do generate all possible cuts ? (i.e., is
(5.8) able to produce all possible c’s satisfying (5.2)). This turns out to be a tough nut to crack, we
conclude with some considerations for future research concerning it. The following counter-example
shows that the answer is no in general.

Example 5.6.1 (CGF’s need not generate all cuts). In R2, take S = (0, 1) ∪
{

(Z,−1)
}

. The left part
of Figure 5.11, drawn in the S-space, clearly shows that, if the unit-vector (1, 0) lies in the recession
cone of an S-free set V , then it lies on the boundary of this cone.
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6. Conclusion and perspectives. In this paper, we have laid down some basic theory toward
studying the cutting paradigm for sets of the form (1). We have introduced for this the concept of cut-
generating functions, which allowed us to put in perspective an abundant literature devoted to S-free
sets. We have revealed the discrepancy between minimality and maximal S-freeness; and we have recov-
ered existing theorems [18, 8, 4, 12, 5], dealing with mere minimality, exhibiting the intrinsic arguments
allowing their proofs. Our theory necessitated a generalization of the polarity correspondence to cer-
tain unbounded sets; we have conducted it via a systematic exploitation of the correspondence between
sublinear functions and closed convex sets.

A number of questions arise from this theoretical work. Some are suggested by Section 3:

Question 1. Given a convex compact set G, can we detect whether it is the minimal prepolar of V := G◦?
and if not, can we compute (G◦)•?

Question 2. Knowing that our generalization of polarity goes along with that of [23], linking the two
works should certainly be instructive. For example, we define the prepolar by (23), which looks quite
different from the set Q in [23, Prop. 5.1]. Yet the two sets have to coincide, at least when 0 ∈ intV ;
can this be clarified? and can we explain what happens when when 0 becomes a boundary point of
V ? Also: does this other definition help answering Question 1?

These are limited to pure convex analysis; concerning the cgf theory itself, some other questions have a
concrete interest:

Question 3. Is it possible to characterize exactly the S-free sets represented by minimal cgf’s? a converse
form of Theorem 4.10 should be desirable.

Question 4. One might want to consider more general models. For example, it should not be too difficult
to replace the “ground set” Rn

+
of (1a) by some other closed convex cone; say the cone of positive semi-

definite matrices, which would open the way toward cutting SDP relaxations. Another generalization
would be inspired by the approach of [14] of Example 1.1: there, X has the form{

x ∈ Zn
+ : −Ax ∈ Zm − b

}
;

S = Zm − b lies in a smaller space but the ground set Zn
+

is no longer convex, so sublinear cgf’s are
now ruled out. Instead, cgf’s in this context are subadditive, periodic, and satisfy a certain symmetry
condition [15].

Question 5. Perhaps the most crucial question is whether cgf’s do generate all possible cuts, i.e., whether
(8) is able to produce all possible c’s satisfying (2). This turns out to be a tough nut to crack, we
conclude the paper with some considerations for future research concerning it.

The following counter-example shows that the answer to Question 5 is no in general.

Example 6.1 (cgf’s need not generate all cuts) In R2, take S = (0, 1) ∪
{
(Z, −1)

}
. The left

part of Figure 11, drawn in the S-space, clearly shows that, if the unit-vector (1, 0) lies in the recession
cone of an S-free set V , then it lies on the boundary of this cone.

η
ψ

V
c

X

φ ξ

Figure 11: Not all cuts are obtained from a cgf

Now take the identity matrix for R: in the x = (ξ, η)-space, X reduces to the singleton (0, 1) in R2

(right part of Figure 11). It can be separated from the origin by the cut η ! ξ + 1, obtained with
c = (−1, 1)⊤. Knowing that the first column of R is r1 = (1, 0)⊤, a cgf ρ producing this c must therefore
have ρ(r1) = −1. In view of Lemma 3.2, (1, 0) lies in the interior of V∞; but we have seen that no V can
satisfy this. "

Negative cj ’s are therefore troublesome, a general sufficiency theorem is out of reach. To eliminate
cj < 0, we can restrict the class of instances:

Figure 5.11: Not all cuts are obtained from a CGF

Now take the identity matrix for R: in the x = (ξ, η)-space, X reduces to the singleton (0, 1) in
R2 (right part of Figure 5.11). It can be separated from the origin by the cut η > ξ + 1, obtained with
c = (−1, 1)>. Knowing that the first column of R is r1 = (1, 0)>, a CGF ρ producing this c must
therefore have ρ(r1) = −1. In view of Lemma 5.3.2, (1, 0) lies in the interior of V∞; but we have
seen that no V can satisfy this. �

Negative cj’s are therefore troublesome, a general sufficiency theorem is out of reach. To eliminate
cj < 0, we can restrict the class of instances:

Proposition 5.6.2. If the recession cone of conv (X) is the whole of Rn+, then every cut c lies in Rn+.

Proof. Each basis vector ej of Rn lies in
[
conv (X)

]
∞: picking some x ∈ X ,

c>(x+ tej) = c>x+ tcj > 1 for all t > 0 ;

let t→ +∞ to see that cj > 0. �

This result might suggest that the trouble in Example 5.6.1 is due to the difference between the
recession cones of conv (X) and of the ground set Rn+ in (5.1a). However, the assumption introduced
in Proposition 5.6.2 does not suffice, as even cj = 0 brings trouble. In fact, make a “more nonlinear”
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variant of Example 5.6.1: instead of the horizontal line ψ = −1, take for S the curve ψ = −1/|φ|
(φ 6= 0). This leaves X = {(0, 1)} unchanged; c = (0, 1)> is a cut and a CGF ρ generating it has
ρ(r1) = 0; this ρ represents a set V (ρ) which has (R+, 0) in its recession cone. Being a neighborhood
of the origin, V (ρ) contains A := (0,−ε) for small enough ε > 0; also, B := (r, 0) ∈ V (ρ)∞ ⊂
V (ρ) for all r > 0 (see Figure 5.12); by convexity, the whole segment [A,B] lies in V (ρ), which
therefore cannot be S-free.
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Proposition 6.2 If the recession cone of conv (X) is the whole of Rn
+
, then every cut c lies in Rn

+
.

Proof. Each basis vector ej of Rn lies in
[
conv (X)

]
∞: picking some x ∈ X ,

c⊤(x + tej) = c⊤x + tcj ! 1 for all t ! 0 ;

let t → +∞ to see that cj ! 0. "
This result might suggest that the trouble in Example 6.1 is due to the difference between the recession

cones of conv (X) and of the ground set Rn
+ in (1a). However, the assumption introduced in Proposition

6.2 does not suffice, as even cj = 0 brings trouble. In fact, make a “more nonlinear” variant of Example
6.1: instead of the horizontal line ψ = −1, take for S the curve ψ = −1/|φ| (φ ̸= 0). This leaves
X = {(0, 1)} unchanged; c = (0, 1)⊤ is a cut and a cgf ρ generating it has ρ(r1) = 0; this ρ represents
a set V (ρ) which has (R+, 0) in its recession cone. Being a neighborhood of the origin, V (ρ) contains
A := (0, −ε) for small enough ε > 0; also, B := (r, 0) ∈ V (ρ)∞ ⊂ V (ρ) for all r > 0 (see Figure 12); by
convexity, the whole segment [A, B] lies in V (ρ), which therefore cannot be S-free.

φ

A

B

ψ

Figure 12: Trouble appears when V∞ is an asymptote of S

In these two examples, the conical hull of the rj ’s does not cover the whole of S. In fact, S contains
points that can be reached by no x ∈ Rn

+
; these points have nothing to do with the problem, so forcing

V not to contain them is unduly demanding. Then one may ask whether cgf’s are able to describe
all possible cuts, for all possible instances such that S ⊂ cone (r1, . . . , rn). This is an open question.
Here we limit ourselves to a reasonably simple sufficiency result, proved with the help of a “comfortable”
assumption; it motivated the generalization obtained recently in [11].

Theorem 6.3 Let an instance of (1) be as described by Proposition 6.2 and assume

cone (r1, . . . , rn) :=
{ n∑

j=1

λjrj : λj ! 0, j = 1, . . . , n
}

= Rq .

Then every cut can be obtained from a cgf.

Proof. Let c ∈ Rn
+ and set

J+ :=
{
j ∈ {1, . . . , n} : cj > 0

}
, J0 :=

{
j ∈ {1, . . . , n} : cj = 0

}
.

Then introduce in Rq the vectors
r′
j :=

rj

cj
, for j ∈ J+

and the polyhedron

V := G + K , with

{
G := conv {r′

j : j ∈ J+} ,
K := cone {rj : j ∈ J0} .

Claim 1 : V is a neighborhood of the origin. In fact, our assumption means that Rq = cone (G) + K:
every d̄ ∈ Rn has the form

d̄ = t̄ḡ + k̄ , with t̄ ! 0 , ḡ ∈ G , k̄ ∈ K .

Then compute σV

(
d̄
)

for nonzero d̄.

– Case 1: t̄ = 0. Fixing g ∈ G so that g + tk̄ ∈ V for all t ! 0, we have

σV

(
d̄
)

= σV

(
k̄
)

! k̄⊤(
g + tk̄

)
= k̄⊤g + t∥k̄∥2 , for all t > 0 ;

let t → +∞ to see that σV

(
d̄
)

= +∞.

Figure 5.12: Trouble appears when V∞ is an asymptote of S

In these two examples, the conical hull of the rj’s does not cover the whole of S. In fact, S
contains points that can be reached by no x ∈ Rn+; these points have nothing to do with the problem,
so forcing V not to contain them is unduly demanding. Then one may ask:

whether CGF’s are able to describe all possible cuts,
for all possible instances such that S ⊂ cone (r1, . . . , rn)?

Here we prove this result in the reasonably simple case, limiting ourselves to the use of a “comfort-
able” assumption; this result motivated the generalization obtained recently in [53].

Theorem 5.6.3. Let an instance of (5.1) be as described by Proposition 5.6.2 and assume

cone (r1, . . . , rn) :=
{ n∑

j=1

λjrj : λj > 0, j = 1, . . . , n
}

= Rq .

Then every cut can be obtained from a CGF.

Proof. Let c ∈ Rn+ and set

J+ :=
{
j ∈ {1, . . . , n} : cj > 0

}
, J0 :=

{
j ∈ {1, . . . , n} : cj = 0

}
.

Then introduce in Rq the vectors
r′j :=

rj
cj
, for j ∈ J+

and the polyhedron

V := G+K , with
{
G := conv {r′j : j ∈ J+} ,
K := cone {rj : j ∈ J0} .

Claim 1: V is a neighborhood of the origin. In fact, our assumption means that Rq = cone (G) +K:
every d̄ ∈ Rn has the form

d̄ = t̄ḡ + k̄ , with t̄ > 0 , ḡ ∈ G , k̄ ∈ K .

Then compute σV
(
d̄
)

for nonzero d̄.
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Case 1: t̄ = 0. Fixing g ∈ G so that g + tk̄ ∈ V for all t > 0, we have

σV
(
d̄
)

= σV
(
k̄
)
> k̄>

(
g + tk̄

)
= k̄>g + t‖k̄‖2 , for all t > 0 ;

let t→ +∞ to see that σV
(
d̄
)

= +∞.
Case 2: t̄ > 0. Scale d̄ to t̄−1d̄ ∈ G+K = V to obtain σV

(
d̄
)
> t̄−1‖d̄‖2 > 0.

Altogether, we have proved that σV
(
d̄
)
> 0 for all d̄ 6= 0, i.e. 0 ∈ int (V ).

Claim 2: V is S-free. Take r̄ ∈ int (V ). For ε > 0 small enough, r̄ + εr̄ ∈ V :

(1 + ε)r̄ =
∑

j∈J+
βjr
′
j +

∑

j∈J0
µjrj , with βj , µj > 0,

∑

j∈J+
βj = 1 .

Divide by 1 + ε and set αj = βj/(1 + ε), λj = µj/(1 + ε) to get

r̄ =
∑

j∈J+
αjr
′
j +

∑

j∈J0
λjrj , , for αj , λj > 0 ,

n∑

j=1

αj < 1 .

Introduce the vector x̄ ∈ Rn whose coordinates are

x̄j :=





αj
cj

if j ∈ J+ ,

λj if j ∈ J0, .

Observe that x̄ > 0 and that

Rx̄ =
n∑

j=1

x̄jrj =
∑

j∈J+

αj
cj
rj +

∑

j∈J0
λjrj = r̄ .

If r̄ ∈ S then x ∈ X by definition (5.1a); but

c>x̄ =
∑

j∈J+
cj
αj
cj

=
∑

j∈J+
αj 6

n∑

j=1

αj < 1

and x cannot lie in X if c is a cut. We have proved that int (V ) ∩ S = ∅, i.e. that V is S-free.

Conclusion: We have proved that the gauge γV is a CGF; besides
for j ∈ J0, rj is a direction of recession of V : γV (rj) = 0 = cj ;
for j ∈ J+, the property r′j ∈ V gives

1 > γV (r′j) =
1

cj
γV (rj) , hence γV (rj) 6 cj .

In summary, γV is a CGF dominating the cut c. �

The argument of this theorem is quite rudimentary. A few months after [Mal-8], the above com-
fortable assumption was dropped in [53] which proved the consistency under the assumption that S
is included in the conic hull of R. This completely answers to one of the main open question raised
here. Several other questions and perpectives are discussed in Chapter 7.
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Chapter 6

Variational analysis of alternating
projections methods

This chapter corresponds to the article [Mal-20] in collaboration with A. Lewis (Cornell University)
et R. Luke (Universitat Gottingen), published in Foundations of Computational Mathematics (which
is one of the best journal in applied maths).

6.1 Introduction

An important theme in computational mathematics is the relationship between “conditioning” of
a problem instance and speed of convergence of iterative solution algorithms on that instance. A clas-
sical example is the method of conjugate gradients for a positive definite system of linear equations:
the relative condition number of the associated matrix gives a bound on the linear convergence rate.
More generally, Renegar [152, 153] showed that the rate of convergence of interior-point methods for
conic convex programming can be bounded in terms of the “distance to ill-posedness” of the program.

In studying the convergence of iterative algorithms for nonconvex minimization problems or non-
monotone variational inequalities, we must content ourselves with a local theory. A suitable analogue
of the distance to ill-posedness is then the notion of “metric regularity”, fundamental in variational
analysis. Loosely speaking, a constraint system, such as a system of inequalities, for example, is met-
rically regular when, locally, we can bound the distance from a trial solution to an exact solution by
a constant multiple of the error in the equation generated by the trial solution. The constant needed
is called the “regularity modulus”, and its reciprocal has a natural interpretation as a distance to ill-
posedness for the equation [72]. While not appropriate as a universal condition on general variational
systems [138], metric regularity is often a reasonable assumption for constraint systems.

This philosophy suggests understanding the speed of convergence of algorithms for solving con-
straint systems in terms of the regularity modulus at a solution. Recent literature focuses in particular
on the proximal point algorithm (see for example [79, 105]). A unified approach to the relationship
between metric regularity and the linear convergence of a family of conceptual algorithms appears
in [114].

We here study a very basic algorithm for a very basic problem. We consider the problem of finding
a point in the intersection of several closed sets, using the method of averaged projections: at each
step, we project the current iterate onto each set, and average the results to obtain the next iterate.
Global convergence of this method for convex sets was proved in 1969 in [12]. Here we show, in
complete generality, that this method converges locally to a point in the intersection of the sets, at a
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linear rate governed by an associated regularity modulus. Our linear convergence proof is elementary:
although we use the idea of the normal cone, we apply only the definition, and we discuss metric
regularity only to illuminate the rate of convergence.

Finding a point in the intersection of several sets is a problem of fundamental computational
significance. In the case of closed halfspaces, for example, the problem is equivalent to linear pro-
gramming. We mention some nonconvex examples below.

Our approach to the convergence of the method of averaged projections is standard, see e.g. [22]:
we identify the method with von Neumann’s alternating projections algorithm [179] on two closed
sets (one of which is a linear subspace) in a suitable product space. A nice development of the classical
method of alternating projections in the convex case may be found in [66]. The convergence of the
method for two intersecting closed convex sets was proved in [42], and linear convergence under
a regular intersection assumption was proved in [22], strengthening a classical result of [91]. Our
algorithmic contribution is to show that, assuming linear regularity, local linear convergence does
not depend on convexity of both sets, but rather on a good geometric property (such as convexity,
smoothness, or more generally, “amenability ” or “prox-regularity”) of just one of the two.

One consequence of our convergence proof is an algorithmic demonstration for the “exact ex-
tremal principle” of [137] (see also [136, Theorem 2.8]). This result, a unifying theme in [136],
asserts that if several sets have linearly regular intersection at a point, then that point is not “locally
extremal”: that is, translating the sets by sufficiently small vectors cannot render the intersection
empty locally. To prove this result, we simply apply the method of averaged projections, starting from
the point of regular intersection. In a further section, we show that inexact versions of the method of
averaged projections, closer to practical implementations, also converge linearly.

The method of averaged projections is a conceptual algorithm that might appear hard to imple-
ment on concrete nonconvex problems. However, the projection problem for some nonconvex sets is
relatively easy. A good example is the set of matrices of some fixed rank: given a singular value de-
composition of a matrix, projecting it onto this set is immediate. Furthermore, nonconvex alternating
projection algorithms and analogous heuristics are quite popular in practice, in areas such as inverse
eigenvalue problems [48, 49], pole placement [143, 182], information theory [171], low-order control
design [89, 90, 144] and image processing [23, 180]. Previous convergence results on nonconvex
alternating projection algorithms have been uncommon, and have either focussed on a very special
case (see for example [48, Mal-21]), or have been much weaker than for the convex case [52, 171].
For more discussion, see [Mal-21].

Our results primarily concern R-linear convergence: we show that our sequences of iterates con-
verge, with error bounded by a geometric sequence. In a final section, we employ a completely
different approach to show that the method of averaged projections, for prox-regular sets with regular
intersection, has a Q-linear convergence property: each iteration guarantees a fixed rate of improve-
ment. In a final section, we illustrate these theoretical results with an elementary numerical example
coming from signal processing.

Our interest here is not in the development of practical numerical methods. Notwithstanding
linear convergence proofs, basic alternating and averaged projection schemes may be slow in practice.
Rather we aim to study the interplay between a simple, popular, fundamental algorithm and a variety
of central ideas from variational analysis. Whether such an approach can help in the design and
analysis of more practical algorithms remains to be seen.
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6.2 Notation and definitions

We fix some notation and definitions. Our underlying setting throughout this work is a Euclidean
space E with corresponding closed unit ball B. For any point x ∈ E and radius ρ > 0 , we write
Bρ(x) for the set x+ ρB.

Consider first two sets F,G ⊂ E. A point x̄ ∈ F∩G is locally extremal [136] for this pair of sets if
there exists a constant ρ > 0 and a sequence of vectors zr → 0 in E such that (F+zr)∩G∩Bρ(x̄) = ∅
for all r = 1, 2, . . .. In other words, restricting to a neighborhood of x̄ and then translating the sets by
arbitrarily small distances can render their intersection empty. Clearly x̄ is not locally extremal if and
only if

0 ∈ int
(

((F − x̄) ∩ ρB)− ((G− x̄) ∩ ρB)
)

for all ρ > 0.

For recognition purposes, it is easier to study a weaker property than local extremality. We say that
two sets F,G ⊂ E have linearly regular intersection at the point x̄ ∈ F ∩ G if there exist constants
α, δ > 0 such that for all points x ∈ F ∩Bδ(x̄) and z ∈ G ∩Bδ(x̄), and all ρ ∈ (0, δ], we have

αρB ⊂ ((F − x) ∩ ρB)− ((G− z) ∩ ρB).

(In [115] this property is called “strong regularity”.) By considering the case x = z = x̄, we see that
linear regularity implies that x̄ is not locally extremal. This “primal” definition of linear regularity is
often not the most convenient way to handle linear regularity, either conceptually or theoretically. By
contrast, a “dual” approach, using normal cones, is very helpful.

Given a set F ⊂ E, we define the distance function and (multivalued) projection for F by

dF (x) = d(x, F ) = inf{‖z − x‖ : z ∈ F}
PF (x) = argmin{‖z − x‖ : z ∈ F}.

The normal cone to a closed set F ⊂ E at a point x̄ ∈ F is

NF (x̄) =
{

lim
i
ti(xi − zi) : ti ≥ 0, xi → x̄, zi ∈ PF (xi)

}
.

The centrality of this idea in variational analysis is described at length in [50, 136, 158]). This con-
struction dates back to [137]: see [158, Chapter 6 Commentary] and [136, Chapter 1 Commentary] for
a discussion of the equivalence between this definition and that of [158, p. 199]. Notice two properties
in particular. First,

z ∈ PF (x) ⇒ x− z ∈ NF (z). (6.1)

Secondly, the normal cone is a “closed” multifunction: for any sequence of points xr → x̄ in F ,
any limit of a sequence of normals yr ∈ NF (xr) must lie in NF (x̄). Indeed, the normal cone is the
smallest cone satisfying the two properties. Note also NF (x) = {0} ⇐⇒ x ∈ intF .

Normal cones provide an elegant alternative approach to defining linear regularity. A family of
closed sets F1, F2, . . . Fm ⊂ E has linearly regular intersection at a point x̄ ∈ ∩iFi, when the only
solution to the system

m∑

i=1

yi = 0, with yi ∈ NFi(x̄) (i = 1, 2, . . . ,m)

is yi = 0 for i = 1, 2, . . . ,m (cf. the “exact extremal principle” of [136, Theorem 2.8]). In the case
m = 2, this condition can be written

NF1(x̄) ∩ −NF2(x̄) = {0}, (6.2)
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and it is equivalent to our previous definition (see [115, Corollary 2], for example). We also note that
this condition appears throughout variational-analytic theory. For example, it guarantees the crucial
inclusion (see [135, Theorem 1] and also [158, Theorem 6.42])

NF1∩...∩Fm(x̄) ⊂ NF1(x̄) + · · ·+NFm(x̄).

For convex F1 and F2, condition (6.2) asserts the nonexistence of a separating hyperplane. More
generally, linear regularity was introduced in [135] as the “generalized nonseparation property”. The
notion of a “linear regular” family of convex sets [20] is also related, though the definition we use
here is local.

We will find it helpful to quantify the notion of linear regularity (cf. [115]). A straightforward
compactness argument shows the following result.

Proposition 6.2.1 (quantifying linear regularity). A collection of closed sets F1, F2, . . . , Fm ⊂ E
have linearly regular intersection at a point x̄ ∈ ∩Fi if and only if there exists a constant k > 0 such
that the following condition holds:

yi ∈ NFi(x̄) (i = 1, 2, . . . ,m) ⇒
√∑

i

‖yi‖2 ≤ k
∥∥∥
∑

i

yi

∥∥∥. (6.3)

We define the condition modulus cond(F1, F2, . . . , Fm|x̄) to be the infimum of all constants k > 0
such that property (6.3) holds. Since ‖·‖2 is convex, we notice that vectors y1, y2, . . . , ym ∈ E always
satisfy the inequality ∑

i

‖yi‖2 ≥
1

m

∥∥∥
∑

i

yi

∥∥∥
2
, (6.4)

which yields

cond(F1, F2, . . . , Fm|x̄) ≥ 1√
m
, (6.5)

except in the special case when NFi(x̄) = {0} (or equivalently x̄ ∈ intFi) for all i = 1, 2, . . . ,m; in
this case the condition modulus is zero.

One goal of this chapter is to show that, far from being of purely analytic significance, linear
regularity has central algorithmic consequences, specifically for the method of averaged projections
for finding a point in the intersection ∩iFi. Given any initial point x0 ∈ E, the algorithm proceeds
iteratively as follows:

zin ∈ PFi(xn) (i = 1, 2, . . . ,m)

xn+1 =
1

m
(z1
n + z2

n + · · ·+ zmn ).

Our main result shows, assuming only linear regularity, that providing the initial point x0 is sufficiently
near x̄, any sequence x1, x2, x3, . . . generated by the method of averaged projections converges lin-
early to a point in the intersection ∩iFi, at a rate governed by the condition modulus.

6.3 Linear and metric regularity

The notion of linear regularity is well-known to be closely related to another central idea in vari-
ational analysis: “metric regularity”. A concise summary of the relationships between a variety of
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regular intersection properties and metric regularity appears in [115]. We summarize the relevant
ideas here.

Consider a set-valued mapping Φ: E →→ Y, where Y is a second Euclidean space. The inverse
mapping Φ−1 : Y →→ E is defined by x ∈ Φ−1(y) ⇔ y ∈ Φ(x), for x ∈ E and y ∈ Y. For vectors
x̄ ∈ E and ȳ ∈ Φ(x̄), we say Φ is metrically regular at x̄ for ȳ if there exists a constant κ > 0 such
that all pairs (x, y) ∈ E×Y sufficiently near (x̄, ȳ) satisfy the inequality

d(x,Φ−1(y)) ≤ κd(y,Φ(x)).

The infimum of all such constants κ is called the modulus of metric regularity of Φ at x̄ for ȳ, denoted
reg Φ(x̄|ȳ). See [158, Chapter 9G] for a discussion.

Intuitively, metric regularity gives a local linear bound for the distance to a solution of the con-
straint system y ∈ Φ(x) (where the vector y is given and we seek the unknown vector x), in terms of
the the distance from y to the set Φ(x). The modulus is a measure of the sensitivity or “conditioning”
of the constraint system y ∈ Φ(x). To take one simple example, if Φ is a single-valued linear map,
the modulus of regularity is the reciprocal of its smallest singular value. In general, variational anal-
ysis provides a powerful calculus for computing the regularity modulus. In particular, we have the
following formula (see [135, Theorem 8] and [158, Theorem 9.43]):

1

reg Φ(x̄|ȳ)
= min

{
d(0, D∗Φ(x̄|ȳ)(w)) : w ∈ Y, ‖w‖ = 1

}
, (6.6)

where D∗ denotes the “coderivative”.
We now study these ideas for a particular mapping, highlighting the connections between metric

and linear regularity. As in the previous section, consider closed sets F1, F2, . . . , Fm ⊂ E and a point
x̄ ∈ ∩iFi. We endow the space Em with the inner product

〈
(x1, x2, . . . , xm), (y1, y2, . . . , ym)

〉
=
∑

i

〈xi, yi〉,

and define set-valued mapping Φ: E→→ Em by

Φ(x) = (F1 − x)× (F2 − x)× · · · × (Fm − x).

Then the inverse mapping is given by Φ−1(y) = ∩i(Fi − yi), for y ∈ Em, and finding a point in the
intersection ∩iFi is equivalent to finding a solution of the constraint system 0 ∈ Φ(x). By definition,
the mapping Φ is metrically regular at x̄ for 0 if and only if there is a constant κ > 0 such that the
following strong metric inequality holds:

d
(
x,
⋂

i

(Fi − zi)
)
≤ κ

√∑

i

d2(x, Fi − zi) for all (x, z) near (x̄, 0). (6.7)

Furthermore, the regularity modulus reg Φ(x̄|0) is just the infimum of those constants κ > 0 such that
inequality (6.7) holds.

To compute the coderivativeD∗Φ(x̄|0), we decompose the mapping Φ as Ψ−A, where, for points
x ∈ E, we define Ψ(x) = F1×F2×· · ·×Fm andAx = (x, x, . . . , x). The calculus rule [158, 10.43]
yields D∗Φ(x̄|0) = D∗Ψ(x̄|Ax̄)−A∗. Then, by definition,

v ∈ D∗Ψ(x̄|Ax̄)(w) ⇔ (v,−w) ∈ Ngph Ψ(x̄, Ax̄),
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and since gph Ψ = E× F1 × F2 × · · · × Fm, we deduce

D∗Ψ(x̄|Ax̄)(w) =

{
{0} if wi ∈ −NFi(x̄) ∀i
∅ otherwise

and hence

D∗Φ(x̄|0)(w) =

{
−∑iwi if wi ∈ −NFi(x̄) ∀i

∅ otherwise.

From the coderivative formula (6.6) we now obtain

1

reg Φ(x̄|0)
= min

{∥∥∥
∑

i

yi

∥∥∥ :
∑

i

‖yi‖2 = 1, yi ∈ NFi(x̄)
}
, (6.8)

where, as usual, we interpret the right-hand side as +∞ if NFi(x̄) = {0} (or equivalently x̄ ∈ intFi)
for all i = 1, 2, . . . ,m. Thus the regularity modulus agrees exactly with the condition modulus that
we defined in the previous section: reg Φ(x̄|0) = cond(F1, F2, . . . , Fm|x̄). It is well-known [115]
that linear regularity is equivalent to the strong metric inequality (6.7).

6.4 Clarke regularity and refinements

“Clarke regularity” is a basic variation-geometric property of sets, shared in particular by closed
convex sets and smooth manifolds. We next study a slight refinement, crucial for our development.
In the interest of maintaining as elementary approach as possible, we use the following definition of
Clarke regularity, easy to interpret geometrically in terms of certain angles.

Definition 6.4.1 (Clarke regularity). A closed set C ⊂ Rn is Clarke regular at a point x̄ ∈ C if,
for all δ > 0, any two points u, z sufficiently near x̄ with z ∈ C, and any point y ∈ PC(u), satisfy
〈z − x̄, u− y〉 ≤ δ‖z − x̄‖ · ‖u− y‖.

Remark 6.4.2. This property is equivalent to the standard notion of Clarke regularity [158, Definition
6.4]. To see this, suppose the property in the definition holds. Consider any unit vector v ∈ NC(x̄),
and any unit “tangent direction” w to C at x̄. By definition, there exists a sequences ur → x̄, yr ∈
PC(ur), and zr → x̄ with zr ∈ C, such that

vr =
ur − yr
‖ur − yr‖

→ v

wr =
zr − x̄
‖zr − x̄‖

→ w.

By assumption, given any δ > 0, for all sufficiently large r we have 〈vr, wr〉 ≤ δ, and hence 〈v, w〉 ≤
δ. Thus 〈v, w〉 ≤ 0, so Clarke regularity follows, by [158, Corollary 6.29]. Conversely, if the property
described in the definition fails, then for some δ > 0 and some sequences ur → x̄, yr ∈ PC(ur), and
zr → x̄ with zr ∈ C, we have

〈 ur − yr
‖ur − yr‖

,
zr − x̄
‖zr − x̄‖

〉
≥ δ for all r.

Then any cluster points v and w of the two sequences of unit vectors defining the above inner product
are respectively an element of NC(x̄) and a tangent direction to C at x̄, and satisfy 〈v, w〉 > 0,
contradicting Clarke regularity.
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The property we need for our development is an apparently-slight modification of Clarke regular-
ity, again easy to interpret geometrically.

Definition 6.4.3 (super-regularity). A closed set C ⊂ Rn is super-regular at a point x̄ ∈ C if, for
all δ > 0, any two points u, z sufficiently near x̄ with z ∈ C, and any point y ∈ PC(u), satisfy
〈z − y, u− y〉 ≤ δ‖z − y‖ · ‖u− y‖.

An equivalent statement involves the normal cone.

Proposition 6.4.4 (super-regularity and normal angles). A closed set C ⊂ Rn is super-regular at
a point x̄ ∈ C if and only if, for all δ > 0, the inequality 〈v, z − y〉 ≤ δ‖v‖ · ‖z − y‖ holds for all
points y, z ∈ C sufficiently near x̄ and all vectors v ∈ NC(y).

Proof Super-regularity follows immediately from the normal cone property described in the propo-
sition, by property (6.1). Conversely, suppose the normal cone property fails, so for some δ > 0 and
sequences of distinct points yr, zr ∈ C approaching x̄ and unit normal vectors vr ∈ NC(yr), we have,
for all r = 1, 2, . . ., 〈

vr,
zr − yr
‖zr − yr‖

〉
> δ.

Fix an index r. By definition of the normal cone, there exist sequences of distinct points ujr → yr
and yjr ∈ PC(ujr) such that

lim
j→∞

ujr − yjr
‖ujr − yjr‖

= vr.

Since limj y
j
r = yr, we must have, for all sufficiently large j,

〈 ujr − yjr
‖ujr − yjr‖

,
zr − yjr
‖zr − yjr‖

〉
> δ.

Choose j sufficiently large to ensure both the above inequality and the inequality ‖ujr − yr‖ < 1
r , and

then define points u′r = ujr and y′r = yjr .
We now have sequences of points u′r, zr approaching x̄ with zr ∈ C, and y′r ∈ PC(u′r), and

satisfying 〈 u′r − y′r
‖u′r − y′r‖

,
zr − y′r
‖zr − y′r‖

〉
> δ.

Hence C is not super-regular at x̄. �

Super-regularity is a strictly stronger property than Clarke regularity, as the following result and
example make clear.

Corollary 6.4.5 (super-regularity implies Clarke regularity). At any point in a closed set C ⊂ Rn,
super regularity implies Clarke regularity.

Proof Suppose the point in question is x̄. Fix any δ > 0, and set y = x̄ in Proposition 6.4.4. Then
clearly any unit tangent direction d toC at x̄ and any unit normal vector v ∈ NC(x̄) satisfy 〈v, d〉 ≤ δ.
Since δ was arbitrary, in fact 〈v, d〉 ≤ 0, so Clarke regularity follows by [158, Cor 6.29]. �

Example 6.4.6. Consider the following function f : R → (−∞,+∞], taken from an example in
[164]:

f(t) =





2r(t− 2r) (2r ≤ t < 2r+1, r ∈ Z)
0 (t = 0)
+∞ (t < 0).
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This function has Clarke-regular epigraph at (0, 0), but an exercise shows it is not super-regular there.
Indeed, a minor refinement of this example (smoothing the set slightly close to the nonsmooth points
(2r, 0) and (2r, 4r−1)) shows that a set can be everywhere Clarke regular, and yet not super-regular.

Super-regularity is a common property: indeed, it is implied by two well-known properties, that
we discuss next. Following [158], we say that a set C ⊂ Rn is amenable at a point x̄ ∈ C when there
exists a neighborhood U of x̄, a C1 mappingG : U → R`, and a closed convex setD ⊂ R` containing
G(x̄), and satisfying the constraint qualification

ND(G(x̄)) ∩ ker(∇G(x̄)∗) = {0}, (6.9)

such that
C ∩ U = {x ∈ U : G(x) ∈ D}.

In particular, if C is defined by C1 equality and inequality constraints and the Mangasarian-Fromovitz
constraint qualification holds, then C is amenable.

Proposition 6.4.7 (amenable implies super-regular). If a closed set C ⊂ Rn is amenable at a point
in C, then it is super-regular there.

Proof Suppose the result fails at some point x̄ ∈ C. Assume as in the definition of amenability
that, in a neighborhood of x̄, the set C is identical with the inverse image G−1(D), where the C1

map G and the closed convex set D satisfy the condition (6.9). Then by definition, for some δ > 0,
there are sequences of points yr, zr ∈ C converging to x̄ and unit normal vectors vr ∈ NC(yr)
satisfying 〈vr, zr−yr〉 > δ‖zr−yr‖ for all r = 1, 2, . . .. Since the normal cone mappingND is outer
semicontinuous relative to D [158, Proposition 6.6], it is easy to check the condition

ND(G(yr)) ∩ ker(∇G(yr)
∗) = {0},

for all sufficiently large r, since otherwise we contradict assumption (6.9). Consequently, using the
standard chain rule [158, Exercise 10.26(d)], we deduce NC(yr) = ∇G(yr)

∗ND(G(yr)), so there
are vectors ur ∈ ND(G(yr)) such that ∇G(yr)

∗ur = vr. The sequence (ur) must be bounded, since
otherwise, by taking a subsequence, we could suppose ‖ur‖ → ∞ and ‖ur‖−1ur approaches some
unit vector û, leading to the contradiction

û ∈ ND(G(x̄)) ∩ ker(∇G(x̄)∗) = {0}.

For all sufficiently large r, we now have 〈∇G(yr)
∗ur, zr − yr〉 > δ‖zr − yr‖, and by convexity

of D, since ur ∈ ND(G(yr)), we have 〈ur, G(zr)−G(yr)〉 ≤ 0. Adding these two inequalities gives

〈ur, G(zr)−G(yr)−∇G(yr)(zr − yr)〉 < −δ‖zr − yr‖.

But as r → ∞, the left-hand side is o(‖zr − yr‖), since the sequence (ur) is bounded and G is C1.
This contradiction completes the proof. �

A rather different refinement of Clarke regularity is the notion of “prox-regularity”. Following
[146, Thm 1.3], we call a set C ⊂ E is prox-regular at a point x̄ ∈ C if the projection mapping PC is
single-valued around x̄. (In this case, clearly C must be locally closed around x̄.) For example, if, in
the definition of an amenable set that we gave earlier, we strengthen our assumption on the map G to
be C2 rather than just C1, the resulting set must be prox-regular. Without this strengthening, however,
notice the set {(s, t) ∈ R2 : t = |s|3/2} is amenable at the point (0, 0) (and hence super-regular there),
but is not prox-regular there.
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Proposition 6.4.8 (prox-regular implies super-regular). If a closed set C ⊂ Rn is prox-regular at a
point in C, then it is super-regular there.

Proof If the results fails at x̄ ∈ C, then for some δ > 0, there exist sequences of points yr, zr ∈ C
converging to the point x̄, and a sequence of normal vectors vr ∈ NC(yr) satisfying the inequality
〈vr, zr − yr〉 > δ‖vr‖ · ‖zr − yr‖. By [146, Proposition 1.2], there exist constants ε, ρ > 0 such that

〈 ε

2‖vr‖
vr, zr − yr

〉
≤ ρ

2
‖zr − yr‖2

for all large r. This gives a contradiction, since ‖zr − yr‖ ≤ δε
ρ eventually. �

We digress briefly to discuss relationships between super-regularity and other notions in the litera-
ture. First note the following equivalent definition, which is an immediate consequence of Proposition
6.4.4, and which gives an alternate proof of Proposition 6.4.8 via “hypomonotonicity” of the truncated
normal cone mapping x 7→ NC(x) ∩B for prox-regular sets C [146, Thm 1.3].

Corollary 6.4.9 (approximate monotonicity). A closed set C ⊂ Rn is super-regular at a point x̄ ∈ C
if and only if, for all δ > 0, the inequality 〈v−w, y− z〉 ≥ −δ‖y− z‖ holds for all points y, z ∈ C
sufficiently near x̄ and all normal vectors v ∈ NC(y) ∩B and w ∈ NC(z) ∩B.

If we replace the normal cone NC in the property described in the result above by its convex hull, the
“Clarke normal cone”, we obtain a stronger property, called “subsmoothness” in [13]. Similar proofs
to those above show that, like super-regularity, subsmoothness is a consequence of either amenability
or prox-regularity. However, subsmoothness is strictly stronger than super-regularity. To see this,
consider the graph of the function f : R→ R defined by the following properties: f(0) = 0, f(2r) =
4r for all integers r, f is linear on each interval [2r, 2r+1], and f(t) = f(−t) for all t ∈ R. The graph
of f is super-regular at (0, 0), but is not subsmooth there.

In a certain sense, however, the distinction between subsmoothness and super-regularity is slight.
Suppose the set F is super-regular at every point in F ∩ U , for some open set U ⊂ Rn. Since super-
regularity implies Clarke regularity, the normal cone and Clarke normal cone coincide throughout
F ∩ U , and hence F is also subsmooth throughout F ∩ U . In other words, “local” super regularity
coincides with “local” subsmoothness, which in turn, by [13, Thm 3.16] coincides with the “first order
Shapiro property” [163] (also called “near convexity” in [165]) holding locally.

6.5 Alternating projections with nonconvexity

Having reviewed or developed over the last few sections the key variational-analytic properties that
we need, we now turn to projection algorithms. In this section we develop our convergence analysis of
the method of alternating projections. The following result is our basic tool, guaranteeing conditions
under which the method of alternating projections converges linearly. For flexibility, we state it in a
rather technical manner. For clarity, we point out afterward that the two main conditions, (6.11) and
(6.12), are guaranteed in applications via assumptions of linear regularity and super-regularity (or in
particular, amenability or prox-regularity) respectively.

Given any sets F,C ⊂ E, an alternating projection sequence is any sequence of points {xj} in E
satisfying the condition

x2n+1 ∈ PF (x2n) and x2n+2 ∈ PC(x2n+1) (n = 0, 1, 2, . . .), (6.10)

or the same property with F and C interchanged.
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Theorem 6.5.1 (linear convergence of alternating projections). Consider the closed
sets F,C ⊂ E, and a point x̄ ∈ F . Fix any constant ε > 0. Suppose for some constant c′ ∈ (0, 1), the
following condition holds:

x ∈ F ∩ (x̄+ εB), u ∈ −NF (x) ∩B
y ∈ C ∩ (x̄+ εB), v ∈ NC(y) ∩B

}
⇒ 〈u, v〉 ≤ c′. (6.11)

Suppose for some constant δ ∈ [0, 1−c′
2 ) the following condition holds:

y, z ∈ C ∩ (x̄+ εB)
v ∈ NC(y) ∩B

}
⇒ 〈v, z − y〉 ≤ δ‖z − y‖. (6.12)

Define a constant c = c′ + 2δ < 1. Then for any initial point x0 ∈ C satisfying ‖x0 − x̄‖ ≤ 1−c
4 ε,

any alternating projection sequence {xj} for the sets F and C must converge with R-linear rate
√
c

to a point x̂ ∈ F ∩ C satisfying the inequality ‖x̂− x0‖ ≤ 1+c
1−c‖x0 − x̄‖.

Sketch proof

The geometry controls the asymptotical improvement:

N

! θ
strong regularity

PN (x)

PMPN (x)

M

x

x̄

super regularity

! π

2

For x ∈M near x̄,
∥PMPN (x) − PN (x)∥
∥PN (x) − x∥

is not much larger than cos θ

Figure 6.1: Geometry controls convergence: illustration in the case of two manifolds M and N

Proof Assume property (6.10). By the definition of the projections we have

‖x2n+3 − x2n+2‖ ≤ ‖x2n+2 − x2n+1‖ ≤ ‖x2n+1 − x2n‖. (6.13)

Clearly we therefore have
‖x2n+2 − x2n‖ ≤ 2‖x2n+1 − x2n‖. (6.14)

We next claim

‖x2n+1 − x̄‖ ≤ ε
2 and

‖x2n+1 − x2n‖ ≤ ε
2

}
⇒ ‖x2n+2 − x2n+1‖ ≤ c‖x2n+1 − x2n‖. (6.15)

To see this, note that if x2n+2 = x2n+1, the result is trivial, and if x2n+1 = x2n then x2n+2 = x2n+1

so again the result is trivial. Otherwise, we have

x2n − x2n+1

‖x2n − x2n+1‖
∈ NF (x2n+1) ∩B

while
x2n+2 − x2n+1

‖x2n+2 − x2n+1‖
∈ −NC(x2n+2) ∩B.
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Furthermore, using inequality (6.13), the left-hand side of the implication (6.15) ensures

‖x2n+2 − x̄‖ ≤ ‖x2n+2 − x2n+1‖+ ‖x2n+1 − x̄‖
≤ ‖x2n+1 − x2n‖+ ‖x2n+1 − x̄‖ ≤ ε.

Hence, by assumption (6.11) we deduce

〈 x2n − x2n+1

‖x2n − x2n+1‖
,
x2n+2 − x2n+1

‖x2n+2 − x2n+1‖
〉
≤ c′,

so
〈x2n − x2n+1, x2n+2 − x2n+1〉 ≤ c′‖x2n − x2n+1‖ · ‖x2n+2 − x2n+1‖.

On the other hand, by assumption (6.12) we know

〈x2n − x2n+2, x2n+1 − x2n+2〉 ≤ δ‖x2n − x2n+2‖ · ‖x2n+1 − x2n+2‖
≤ 2δ‖x2n − x2n+1‖ · ‖x2n+2 − x2n+1‖,

using inequality (6.14). Adding this inequality to the previous inequality then gives the right-hand
side of (6.15), as desired.

Now let α = ‖x0 − x̄‖. We will show by induction the inequalities

‖x2n+1 − x̄‖ ≤ 2α
1− cn+1

1− c <
ε

2
(6.16)

‖x2n+1 − x2n‖ ≤ αcn <
ε

2
(6.17)

‖x2n+2 − x2n+1‖ ≤ αcn+1. (6.18)

Consider first the case n = 0. Since x1 ∈ PF (x0) and x̄ ∈ F , we deduce ‖x1−x0‖ ≤ ‖x̄−x0‖ =
α < ε/2, which is inequality (6.17). Furthermore,

‖x1 − x̄‖ ≤ ‖x1 − x0‖+ ‖x0 − x̄‖ ≤ 2α <
ε

2
,

which shows inequality (6.16). Finally, since ‖x1 − x0‖ < ε/2 and ‖x1 − x̄‖ < ε/2, the implication
(6.15) shows

‖x2 − x1‖ ≤ c‖x1 − x0‖ ≤ c‖x̄− x0‖ = cα,

which is inequality (6.18).
For the induction step, suppose inequalities (6.16), (6.17), and (6.18) all hold for some n. Inequal-

ities (6.13) and (6.18) imply
‖x2n+3 − x2n+2‖ ≤ αcn+1 <

ε

2
. (6.19)

We also have, using inequalities (6.19), (6.18), and (6.16)

‖x2n+3 − x̄‖ ≤ ‖x2n+3 − x2n+2‖+ ‖x2n+2 − x2n+1‖+ ‖x2n+1 − x̄‖

≤ αcn+1 + αcn+1 + 2α
1− cn+1

1− c ,

so

‖x2n+3 − x̄‖ ≤ 2α
1− cn+2

1− c <
ε

2
. (6.20)
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Now implication (6.15) with n replaced by n + 1 implies ‖x2n+4 − x2n+3‖ ≤ c‖x2n+3 − x2n+2‖,
and using inequality (6.19) we deduce

‖x2n+4 − x2n+3‖ ≤ αcn+2. (6.21)

Since inequalities (6.20), (6.19), and (6.21) are exactly inequalities (6.16), (6.17), and (6.18) with n
replaced by n+ 1, the induction step is complete and our claim follows.

We can now easily check that the sequence (xk) is Cauchy and therefore converges. To see this,
note for any integer n = 0, 1, 2, . . . and any integer k > 2n, we have

‖xk − x2n‖ ≤
k−1∑

j=2n

‖xj+1 − xj‖

≤ α(cn + cn+1 + cn+1 + cn+2 + cn+2 + · · · )

so
‖xk − x2n‖ ≤ αcn

1 + c

1− c ,

and a similar argument shows

‖xk+1 − x2n+1‖ ≤
2αcn+1

1− c . (6.22)

Hence xk converges to some point x̂ ∈ E, and for all n = 0, 1, 2, . . . we have

‖x̂− x2n‖ ≤ αcn
1 + c

1− c and ‖x̂− x2n+1‖ ≤
2αcn+1

1− c . (6.23)

We deduce that the limit x̂ lies in the intersection F ∩C and satisfies the inequality ‖x̂−x0‖ ≤ α1+c
1−c ,

and furthermore that the inequality

‖x̂− xr‖ ≤ α(
√
c)r

1 + c

1− c

holds for all r = 0, 1, 2, . . ., so the convergence is R-linear with rate
√
c. �

We can now prove our key result. To apply Theorem 6.5.1 to alternating projections between
a closed and a super-regular set, we make use of the key geometric property of super-regular sets
(Proposition 6.4.4).

Theorem 6.5.2 (alternating projections with a super-regular set). Consider closed sets F,C ⊂ E and
a point x̄ ∈ F ∩ C. Suppose C is super-regular at x̄ (as holds, for example, if it is amenable or
prox-regular there). Suppose furthermore that F and C have linearly regular intersection at x̄: that
is, NF (x̄) ∩ −NC(x̄) = {0}, or equivalently, the constant

c̄ = max
{
〈u, v〉 : u ∈ NF (x̄) ∩B, v ∈ −NC(x̄) ∩B

}
(6.24)

is strictly less than one. Fix any constant c ∈ (c̄, 1). Then any alternating projection sequence with
initial point sufficiently near x̄ must converge to a point in F ∩ C with R-linear rate

√
c.

Proof Let us show first the equivalence between c̄ < 1 and linear regularity. The compactness of the
intersections between normal cones and the unit ball guarantees the existence of u and v achieving
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the maximum in (6.24). Observe then that 〈u, v〉 ≤ ‖u‖ ‖v‖ ≤ 1. The cases of equality in the
Cauchy-Schwarz inequality permits to write

c̄ = 1 ⇐⇒ u and v are colinear ⇐⇒ NF (x̄) ∩ −NC(x̄) 6= {0},

which corresponds to the desired equivalence.
Denote the alternating sequence {xj}. We can suppose x0 ∈ C. Fix any constant c′ ∈ (c̄, c) and

define δ = c−c′
2 . To apply Theorem 6.5.1, we just need to check the existence of a constant ε > 0

such that conditions (6.11) and (6.12) hold. Condition (6.12) holds for all sufficiently small ε > 0,
by Proposition 6.4.4. On the other hand, if condition (6.11) fails for all sufficiently small ε > 0, then
there exist sequences of points xr → x̄ in the set F and yr → x̄ in the set C, and sequences of vectors
ur ∈ −NF (xr)∩B and vr ∈ NC(yr)∩B, satisfying 〈ur, vr〉 > c′. After taking subsequences, we can
suppose ur approaches some vector u ∈ −NF (x̄)∩B and vr approaches some vector v ∈ NC(x̄)∩B,
and then 〈u, v〉 ≥ c′ > c̄, contradicting the definition of the constant c̄. �

Corollary 6.5.3 (improved convergence rate). With the assumptions of Theorem 6.5.2, suppose the
set F is also super-regular at x̄. Then the alternating projection sequence converges with R-linear
rate c.

Proof Inequality (6.15), and its analog when the roles of F and C are interchanged, together show
‖xk+1 − xk‖ ≤ c‖xk − xk−1‖ for all sufficiently large k, and the result then follows easily, using an
argument analogous to that at the end of the proof of Theorem 6.5.1. �

In the light of our discussion in the previous section, the linear regularity assumption of Theorem
6.5.2 is equivalent to the metric regularity at x̄ for 0 of the set-valued mapping Ψ: E→→ E2 defined by
Ψ(x) = (F −x)× (C−x), for x ∈ E. Using equation (6.8), the regularity modulus is determined by

1

reg Ψ(x̄|0)
= min

{
‖u+ v‖ : u ∈ NF (x̄), v ∈ NC(x̄), ‖u‖2 + ‖v‖2 = 1

}
,

and a short calculation then shows

reg Ψ(x̄|0) =
1√

1− c̄ . (6.25)

The closer the constant c̄ is to one, the larger the regularity modulus. We have shown that c̄ also
controls the speed of linear convergence for the method of alternating projections applied to the sets
F and C.

Inevitably, Theorem 6.5.2 concerns local convergence: it relies on finding an initial point x0

sufficiently close to a point of linearly regular intersection. How might we find such a point? One
natural context in which to pose this question is that of sensitivity analysis. Suppose we already
know a point of linearly regular intersection of two closed sets, but now want to find a point in the
intersection of two slight translations of these sets. The following result shows that, starting from the
original point of intersection, the method of alternating projections will converge linearly to the new
intersection.

Theorem 6.5.4 (perturbed intersection). Given any closed sets F,C ⊂ E and any point x̄ ∈ F ∩ C,
suppose the assumptions of Theorem 6.5.2 hold. Then for any sufficiently small vector d ∈ E, any
alternating projection sequence for the sets d+ F and C, with the initial point x̄, must converge with
R-linear rate

√
c to a point in the set (d+ F ) ∩ C ∩Bρ(x̄), where ρ = 1+c

1−c‖d‖.
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Proof As in the proof of Theorem 6.5.2, if we fix any constant c′ ∈ (c̄, c) and define δ = c−c′
2 , then

there exists a constant ε > 0 such that conditions (6.11) and (6.12) hold. Suppose the vector d satisfies

‖d‖ ≤ (1− c)ε
8

<
ε

2
.

Since

y ∈ (C − d) ∩ (x̄+
ε

2
B) and v ∈ NC−d(y)

⇒ y + d ∈ C ∩ (x̄+ εB) and v ∈ NC(y + d),

we deduce from condition (6.11) the implication

x ∈ F ∩ (x̄+ ε
2B), u ∈ −NF (x) ∩B

y ∈ (C − d) ∩ (x̄+ ε
2B), v ∈ NC−d(y) ∩B

}
⇒ 〈u, v〉 ≤ c′.

Furthermore, using condition (6.12) we deduce the implication

y, z ∈ (C − d) ∩ (x̄+
ε

2
B) and v ∈ NC−d(y) ∩B

⇒ y + d, z + d ∈ C ∩ (x̄+ εB) and v ∈ NC(y + d) ∩B,
⇒ 〈v, z − y〉 ≤ δ‖z − y‖.

We now apply Theorem 6.5.1 with the set C replaced by C − d and ε replaced by ε
2 . We deduce that

any alternating projection sequence for the sets F and C−d, starting at the point x0 = x̄−d ∈ C−d,
converges with R-linear rate

√
c to a point x̂ ∈ F ∩ (C − d) satisfying the inequality ‖x̂ − x0‖ ≤

1+c
1−c‖x0 − x̄‖. The theorem statement then follows by translation. �

Lack of convexity notwithstanding, more structure sometimes implies that the method of alternat-
ing projections converges Q-linearly, rather than just R-linearly, on a neighborhood of point of linearly
regular intersection of two closed sets. One example is the case of two manifolds [Mal-21].

6.6 Inexact alternating projections

Our basic tool, the method of alternating projections for a super-regular set C and an arbitrary
closed set F , is a conceptual algorithm that may be challenging to realize in practice. We might
reasonably consider the case of exact projection on the super-regular set C: for example, in the next
section, for the method of averaged projections, C is a subspace and computing projections is trivial.
However, projecting onto the set F may be much harder, so a more realistic analysis allows relaxed
projections.

We sketch one approach. Given two iterates x2n−1 ∈ F and x2n ∈ C, a necessary condition for
the new iterate x2n+1 to be an exact projection on F , that is x2n+1 ∈ PF (x2n), is

‖x2n+1 − x2n‖ ≤ ‖x2n − x2n−1‖ and x2n − x2n+1 ∈ NF (x2n+1).

In the following result we assume only that we choose the iterate x2n+1 to satisfy a relaxed version of
this condition, where we replace the second part by the assumption that the distance

dNF (x2n+1)

( x2n − x2n+1

‖x2n − x2n+1‖
)

from the normal cone at the iterate to the normalized direction of the last step is sufficiently small.
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Theorem 6.6.1 (inexact alternating projections). With the assumptions of Theorem 6.5.2, fix any con-
stant γ <

√
1− c2, and consider the following inexact alternating projection iteration. Given any

initial points x0 ∈ C and x1 ∈ F , for n = 1, 2, 3, . . . suppose x2n ∈ PC(x2n−1) and x2n+1 ∈ F
satisfies

‖x2n+1 − x2n‖ ≤ ‖x2n − x2n−1‖ and dNF (x2n+1)

( x2n − x2n+1

‖x2n − x2n+1‖
)
≤ γ.

Then, providing x0 and x1 are sufficiently close to x̄, the iterates converge to a point in F ∩ C with
R-linear rate √

c
√

1− γ2 + γ
√

1− c2 < 1.

Sketch proof. Once again as in the proof of Theorem 6.5.2, we fix any constant c′ ∈ (c̄, c) and define
δ = c−c′

2 , so there exists a constant ε > 0 such that conditions (6.11) and (6.12) hold. Define a vector

z =
x2n − x2n+1

‖x2n − x2n+1‖
.

By assumption, there exists a vector w ∈ NF (x2n+1) satisfying ‖w − z‖ ≤ γ. Easy manipulation
then shows that the unit vector ŵ = ‖w‖−1w satisfies 〈ŵ, z〉 ≥

√
1− γ2. As in the proof of Theorem

6.5.1, assuming inductively that x2n+1 is sufficiently close to both x̄ and x2n, since ŵ ∈ NF (x2n+1),
and

u =
x2n+2 − x2n+1

‖x2n+2 − x2n+1‖
∈ −NC(x2n+2) ∩B,

we deduce 〈ŵ, u〉 ≤ c′.
We now see that, on the unit sphere, the arc distance between the unit vectors ŵ and z is no more

than arccos(
√

1− γ2), whereas the arc distance between ŵ and the unit vector u is at least arccos c′.
Hence by the triangle inequality, the arc distance between z and u is at least

arccos c′ − arccos(
√

1− γ2),

so
〈z, u〉 ≤ cos

(
arccos c′ − arccos(

√
1− γ2)

)
= c′

√
1− γ2 + γ

√
1− c′2.

Some elementary calculus shows that the quantity on the right-hand side is strictly less than one.
Again as in the proof of Theorem 6.5.1, this inequality shows, providing x0 is sufficiently close to x̄,
the inequality

‖x2n+2 − x2n+1‖ ≤
(
c
√

1− γ2 + γ
√

1− c2
)
‖x2n+1 − x2n‖,

and in conjunction with the inequality ‖x2n+1− x2n‖ ≤ ‖x2n− x2n−1‖, this suffices to complete the
proof by induction. �

6.7 Local convergence for averaged projections

We return to the problem of finding a point in the intersection of several closed sets via averaged
projections. Given sets F1, F2, . . . , Fm ⊂ E, an averaged projection sequence is any sequence of
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points {xj} in E satisfying

xj+1 ∈
1

m

m∑

i=1

PFi(xj) (j = 0, 1, 2, . . .).

We apply our previous results to the method of averaged projections via the well-known reformulation
of the algorithm as alternating projections on a product space. This leads to the main result of this
section, Theorem 6.7.2, which shows linear convergence in a neighborhood of any point of linearly
regular intersection, at a rate governed by the associated regularity modulus.

We begin with a characterization of linearly regular intersection, relating the condition modulus
with a generalized notion of angle for several sets. Such notions, for collections of convex sets, have
also been studied recently in the context of projection algorithms in [67].

Proposition 6.7.1 (characterization of linear regularity). Closed sets F1, F2, . . . , Fm ⊂ E have lin-
early regular intersection at a point x̄ ∈ ∩iFi if and only if the optimal value c̄ of the optimization
problem

maximize
∑

i

〈ui, vi〉

subject to
∑

i

‖ui‖2 ≤ 1,
∑

i

‖vi‖2 ≤ 1

∑

i

ui = 0

ui ∈ E, vi ∈ NFi(x̄) (i = 1, 2, . . . ,m)

is strictly less than one. Indeed, we have

c̄2 =





0 (x̄ ∈ ∩iintFi)

1− 1

m · cond2(F1, F2, . . . , Fm|x̄)
(otherwise).

(6.26)

Proof When x̄ ∈ ∩iintFi, the result follows by definition. Henceforth, we therefore rule out that
case.

For any vectors ui, vi ∈ E (i = 1, 2, . . . ,m), by Lagrangian duality and differ entiation we obtain

max
ui

{∑

i

〈ui, vi〉 :
∑

i

‖ui‖2 ≤ 1,
∑

i

ui = 0
}

= min
λ∈R+, z∈E

max
ui

{∑

i

〈ui, vi〉+
λ

2

(
1−

∑

i

‖ui‖2
)

+ 〈z,
∑

i

ui〉
}

= min
λ∈R+, z∈E

{λ
2

+
∑

i

max
ui

{
〈ui, vi + z〉 − λ

2
‖ui‖2

}}

= min
λ>0, z∈E

{λ
2

+
1

2λ

∑

i

‖vi + z‖2
}
rockafellar − wets− 1998 = min

z∈E

√∑

i

‖vi + z‖2

=

√√√√
m∑

i=1

∥∥∥vi −
1

m

∑

j

vj

∥∥∥
2

=

√∑

i

‖vi‖2 −
1

m

∥∥∥
∑

i

vi

∥∥∥
2
.
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Consequently, c̄2 is the optimal value of the optimization problem

maximize
∑

i

‖vi‖2 −
1

m

∥∥∥
∑

i

vi

∥∥∥
2

subject to
∑

i

‖vi‖2 ≤ 1

vi ∈ NFi(x̄) (i = 1, 2, . . . ,m).

By homogeneity, the optimal solution must occur when the inequality constraint is active, so we obtain
an equivalent problem by replacing that constraint by the corresponding equation. By equation (6.8)
and the definition of the condition modulus, the optimal value of this new problem is

1− 1

m · cond2(F1, F2, . . . , Fm|x̄)

as required. �
Consequence for averaged projections

Method of averaged projections

zM ∈ PM (x)

zN ∈ PN (x)

x ← 1

2
(zN + zM )

N

M ∩ N

M
PM (x0)

x0

PN (x0)

Corollary (linear convergence of averaged projections)

For any closed M, N ⊂ Rn, if strong regularity holds at x̄ ∈M ∩N , then
starting with x0 near x̄, averaged projections converges linearly to M ∩N

Figure 6.2: Convergence of averaged projections for two sets M and N

Theorem 6.7.2 (linear convergence of averaged projections). Suppose closed sets F1, F2, . . . , Fm ⊂
E have linearly regular intersection at a point x̄ ∈ ∩iFi. Define a constant c̄ ∈ [0, 1) by equation
(6.26), and fix any constant c ∈ (c̄, 1). Then any averaged projection sequence with initial point
sufficiently near x̄ converges to a point in the intersection ∩iFi, with R-linear rate c (and if each set
Fi is super-regular at x̄, or in particular, prox-regular or amenable there, then the convergence rate
is c2). Furthermore, for any sufficiently small perturbations di ∈ E for i = 1, 2, . . . ,m, any averaged
projection sequence for the sets di + Fi with the initial point x̄ converges linearly to a nearby point
in the intersection, with R-linear rate c.

Proof In the product space Em with the inner product

〈(u1, u2, . . . , um), (v1, v2, . . . , vm)〉 =
∑

i

〈ui, vi〉,

we consider the closed set F =
∏
i Fi and the subspace L = {Ax : x ∈ E}, where the linear

map A : E → Em is defined by Ax = (x, x, . . . , x). Notice Ax̄ ∈ F ∩ L, and it is easy to check
NF (Ax̄) =

∏
iNFi(x̄) and

L⊥ =
{

(u1, u2, . . . , um) :
∑

i

ui = 0
}
.
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Hence F1, F2, . . . , Fm have linearly regular intersection at x̄ if and only if F and L have linearly
regular intersection at the point Ax̄. This latter property is equivalent to the constant c̄ in Theorem
6.5.2 (with C = L) being strictly less than one. But that constant agrees exactly with that defined by
equation (6.26), so we show next that we can apply Theorem 6.5.2 and Theorem 6.5.4.

To see this note that, for any point x ∈ E, we have the equivalence

(z1, z2, . . . , zm) ∈ PF (Ax) ⇔ zi ∈ PFi(x) (i = 1, 2, . . . ,m).

Furthermore a quick calculation shows, for any z1, z2, . . . , zm ∈ E,

PL(z1, z2, . . . , zm) =
1

m
(z1 + z2 + · · ·+ zm).

Hence in fact the method of averaged projections for the sets F1, F2, . . . , Fm, starting at an initial point
x0, is essentially identical with the method of alternating projections for the sets F and L, starting at
the initial point Ax0. If x0, x1, x2, . . . is a possible sequence of iterates for the former method, then
a possible sequence of even iterates for the latter method is Ax0, Ax1, Ax2, . . .. For x0 sufficiently
close to x̄, this latter sequence must converge to a point Ax̂ ∈ F ∩L with R-linear rate c, by Theorem
6.5.2 and its corollary. Thus the sequence x0, x1, x2, . . . converges to x̂ ∈ ∩iFi at the same linear
rate. When each of the sets Fi is super-regular at x̄, it is easy to check that the Cartesian product F is
super-regular at Ax̄, so the rate is c2. The last part of the theorem follows from Theorem 6.5.4. �

Applying Theorem 6.6.1 to the product-space formulation of averaged projections shows in a similar
fashion that an inexact variant of the method of averaged projections will also converge linearly.

Remark 6.7.3 (linear regularity and local extremality). In the language of [136], that we have proved
algorithmically that if closed sets have linearly regular intersection at a point, then that point is not
“locally extremal”.

Remark 6.7.4 (alternating versus averaged projections). For a feasibility problem for two super-
regular sets F1 and F2, assume that linear regularity holds at x̄ ∈ F1∩F2 and set κ = cond(F1, F2|x̄).
Theorem 6.7.2 gives a bound on the rate of convergence of the method of averaged projections as

rav ≤ 1− 1

2κ2
.

Notice that each iteration involves two projections: one onto each of the sets F1 and F2. On the other
hand, Corollary 6.5.3 and (6.25) give a bound on the rate of convergence of the method of alternating
projections as

ralt ≤ 1− 1

κ2
,

and each iteration involves just one projection. Thus we note that our bound on the rate of alternating
projections ralt is always better than the bound on the rate of averaged projections rav. From the
perspective of this analysis, averaged projections seems to have no advantage over alternating pro-
jections, although our proof of linear convergence for alternating projections needs a super-regularity
assumption not necessary in the case of averaged projections.

6.8 Prox-regularity and averaged projections

If we assume that the sets F1, F2, . . . , Fm are prox-regular, then we can refine our understanding
of local convergence for the method of averaged projections using a completely different approach,
explored in this section.
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Proposition 6.8.1. Around any point x̄ at which the set F ⊂ E is prox-regular, the squared distance
to F is continuously differentiable, and its gradient∇d2

F = 2(I − PF ) has Lipschitz constant 2.

Proof This result corresponds essentially to [146, Prop 3.1], which yields the smoothness of d2
F

together with the gradient formula. This proof of this proposition also shows that for any sufficiently
small δ > 0, all points x1, x2 ∈ E near x̄ satisfy the inequality

〈x1 − x2, PF (x1)− PF (x2)〉 ≥ (1− δ)‖PF (x1)− PF (x2)‖2

(see “Claim” in [146, p. 5239]). Consequently we have

‖(I − PF )(x1)− (I − PF )(x2)‖2 − ‖x1 − x2‖2
= ‖(x1 − x2)− (PF (x1)− PF (x2))‖2 − ‖x1 − x2‖2
= −2〈x1 − x2, PF (x1)− PF (x2)〉+ ‖PF (x1)− PF (x2)‖2
≤ (2δ − 1)‖PF (x1)− PF (x2)‖2 ≤ 0,

provided we choose δ ≤ 1/2. �

As before, consider sets F1, F2, . . . , Fm ⊂ E and a point x̄ ∈ ∩iFi, but now let us suppose
moreover that each set Fi is prox-regular at x̄. Define a function f : E→ R by

f =
1

2m

m∑

i=1

d2
Fi . (6.27)

This function is half the mean-squared-distance from the point x to the set system {Fi}. According
to the preceding result, f is continuously differentiable around x̄, and its gradient

∇f =
1

m

m∑

i=1

(I − PFi) = I − 1

m

m∑

i=1

PFi (6.28)

is Lipschitz continuous with constant 1 on a neighborhood of x̄. The method of averaged projections
constructs the new iterate x+ ∈ E from the old iterate x ∈ E via the update

x+ =
1

m

m∑

i=1

PFi(x) = x−∇f(x), (6.29)

so we can interpret it as the method of steepest descent with a step size of one when the sets Fi are all
prox-regular. To understand its convergence, we return to our linear regularity assumption.

The condition modulus controls the behavior of normal vectors not just at the point x̄ but also at
nearby points.

Proposition 6.8.2 (local effect of condition modulus). Consider closed sets F1, F2, . . . , Fm ⊂ E hav-
ing linearly regular intersection at a point x̄ ∈ ∩Fi, and any constant k > cond(F1, F2, . . . , Fm|x̄).
Then for any points xi ∈ Fi sufficiently near x̄, any vectors yi ∈ NFi(xi) (for i = 1, 2, . . . ,m) satisfy
the inequality √∑

i

‖yi‖2 ≤ k
∥∥∥
∑

i

yi

∥∥∥.
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Proof If the result fails, then we can find sequences of points xri → x̄ in Fi and sequences of vectors
yri ∈ NFi(x

r
i ) (for i = 1, 2, . . . ,m) satisfying

√∑

i

‖yri ‖2 > k
∥∥∥
∑

i

yri

∥∥∥

for all r = 1, 2, . . .. Define new vectors

uri =
1√∑
j ‖yrj‖2

yri ∈ NFi(x
r
i )

for each index j = 1, 2, . . . ,m and r. Notice
∑

i ‖uri ‖2 = 1 and ‖∑i u
r
i ‖ < 1

k . For each i = 1, 2, . . . ,
the sequence u1

i , u
2
i , . . . is bounded, so after taking subsequences we can suppose it converges to some

vector ui ∈ E, and since the normal cone NFi is closed as a set-valued mapping from Fi to E, we

deduce ui ∈ NFi(x̄). But then we have
∑

i ‖ui‖2 = 1 and ‖∑i ui

∥∥∥ ≤ 1
k , contradicting the definition

of the modulus cond(F1, F2, . . . , Fm|x̄). �

The size of the gradient of the mean-squared-distance function f , defined by equation (6.27), is
closely related to the value of the function near a point of linearly regular intersection. To be precise,
we have the following result.

Proposition 6.8.3 (gradient of mean-squared-distance). Consider prox-regular sets F1, F2, . . . , Fm ⊂
E having linearly regular intersection at a point x̄ ∈ ∩Fi, and any constant k >
cond(F1, F2, . . . , Fm|x̄). Then on a neighborhood of x̄, the mean-squared-distance function

f =
1

2m

m∑

i=1

d2
Fi

satisfies the inequalities
1

2
‖∇f‖2 ≤ f ≤ k2m

2
‖∇f‖2. (6.30)

Proof Consider any point x ∈ E sufficiently near x̄. Equation (6.28) implies ∇f(x) = 1
m

∑
i yi,

where yi = x − PFi(x) ∈ NFi(PFi(x)) for each i = 1, 2, . . . ,m. By definition, we have f(x) =
1

2m

∑
i ‖yi‖2. Using inequality (6.4), we obtain

m2‖∇f(x)‖2 =
∥∥∥

m∑

i=1

yi

∥∥∥
2
≤ m

m∑

i=1

‖yi‖2 = 2m2f(x)

But since x is sufficiently near x̄, so are the projections PFi(x), so

2mf(x) =
∑

i

‖yi‖2 ≤ k2
∥∥∥
∑

i

yi

∥∥∥
2

= k2m2‖∇f(x)‖2.

by Proposition 6.8.2. The result now follows. �

A standard argument now gives the main result of this section.
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Theorem 6.8.4 (Q-linear convergence for averaged projections). Consider prox-regular sets
F1, F2, . . . , Fm ⊂ E having linearly regular intersection at a point x̄ ∈ ∩Fi, and any constant
k > cond(F1, F2, . . . , Fm|x̄). Then, for any averaged projection sequence {xj} with initial point x0

sufficiently near x̄, the mean-squared-distance

f =
1

2m

m∑

i=1

d2
Fi

is reduced by at least a constant factor at each iteration:

f(xj+1) ≤
(

1− 1

k2m

)
f(xj) (j = 0, 1, 2, . . .).

Proof Consider any point x ∈ E near x̄. The function f is continuously differentiable around the
minimizer x̄, so the gradient ∇f(x) must be small, and hence the new iterate x+ = x−∇f(x) must
also be near x̄. Hence, as we observed after equation (6.28), the gradient ∇f has Lipschitz constant
one on a neighborhood of the line segment [x, x+]. Consequently, a standard argument in optimization
(see [139]) leads to

f(x+)− f(x) ≤ −1

2
‖∇f(x)‖2 ≤ − 1

k2m
f(x),

using Proposition 6.8.3. �

A simple induction argument now gives an independent proof in the prox-regular case that the
method of averaged projections converges linearly to a point in the intersection of the given sets.
Specifically, the result above shows that mean-squared-distance f(xk) decreases by at least a constant
factor at each iteration, and Proposition 6.8.3 shows that the size of the step ‖∇f(xk)‖ also decreases
by a constant factor. Hence the sequence (xk) must converge R-linearly to a point in the intersection.

Comparing this result to Theorem 6.7.2 (linear convergence of averaged projections), we see that
the predicted rates of linear convergence are the same. Theorem 6.7.2 guarantees that the squared
distance to the intersection converges to zero with R-linear rate c2 (for any constant c ∈ (c̄, 1)).
The argument gives no guarantee about improvements in a particular iteration: it only describes the
asymptotic behavior of the iterates. By contrast, the argument of Theorem 6.8.4, with the added
assumption of prox-regularity, guarantees the same behavior but with the stronger information that
the mean-squared-distance decreases monotonically to zero with Q-linear rate c2. In particular, each
iteration must decrease the mean-squared-distance.

6.9 Numerical example

In this final section, we give a numerical illustration showing the linear convergence of alternating
and averaged projections algorithms. Some major problems in signal or image processing come down
to reconstructing an object from as few linear measurements as possible. Several recovery proce-
dures from randomly sampled signals have been proved to be effective when combined with sparsity
constraints (see for instance the recent developments of compressed sensing [45],[71]). These op-
timization problems can be cast as linear programs. However for extremely large and/or nonlinear
problems, projection methods become attractive alternatives. In the spirit of compressive sampling
we use projection algorithms to optimize the compression matrix. This speculative example is meant
simply to illustrate the theory rather than make any claim on real applications.
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We consider the decomposition of images x ∈ Rn as x = Wz where W ∈ Rn×m (n < m) is a
“dictionary” (that is, a redundant collection of basis vectors). Compressed sensing consists in linearly
reducing x to y = Px = PWz with the help of a compression matrix P ∈ Rd×n (with d � n); the
inverse operation is to recover x (or z) from y. Compressed sensing theory gives sparsity conditions
on z to ensure exact recovery [45],[71]. Reference [45] in fact proposes a recovery algorithm based
on alternating projections (on two convex sets). In general, we might want to design a specific sensing
matrix P adapted to W , to ease this recovery process. An initial investigation on this question is [75];
we suggest here another direction, inspired by [46], where averaged projections naturally appear.

Candes and Romberg [46] showed that, under orthogonality conditions, sparse recovery is more
efficient when the entries |(PW )ij | are small. One could thus use the componentwise `∞ norm of
PW as a measure of quality of P . This leads to the following feasibility problem: to find U = PW
such that UU> = I and with the infinity norm constraint ‖U‖∞ ≤ α (for a fixed tolerance α). The
sets corresponding to these constraints are given by

L = {U ∈ Rd×m : U = PW},
M = {U ∈ Rd×m : UU> = I},
C = {U ∈ Rd×m : ‖U‖∞ ≤ α}.

The first set L is a subspace, the second setM is a smooth manifold while the thirdC is convex; hence
the three are prox-regular. Moreover we can easily compute the projections. The projection onto the
linear subspace L can be computed with a pseudo-inverse. The manifold M corresponds to the set
of matrices U whose singular values are all ones; it turns out that naturally the projection onto M is
obtained by computing the singular value decomposition of U , and setting singular values to 1 (apply
for example Theorem 27 of [Mal-21]). Finally the projection onto C comes by shrinking entries of
U (specifically, we operate min{max{uij ,−α}, α} for each entry uij). This feasibility problem can
thus be treated by projection algorithms, and hopefully a matrix U ∈ L ∩M ∩ C will correspond to
a good compression matrix P .
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Figure 1: Convergence of averaged projection algorithm for designing com-
pression matrix in compressed sensing.

References

[1] F.J. Aragón Artacho, A.L. Dontchev, and M.H. Geoffroy. Convergence
of the proximal point method for metrically regular mappings. ESAIM
Proceedings, 17:1–8, 2007.

[2] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Alternat-
ing minimization and projection methods for nonconvex problems.
arXiv:0801.1780v1 11 Jan 2008.
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Figure 6.3: Convergence of averaged projection algorithm for designing compression matrix: plot of
10 log10 f(Uk) vs the iteration number k.

To illustrate, we generate random entries (normally distributed) of the dictionary W (size
128 × 512, redundancy factor 4) and of an initial iterate U0 ∈ L. (In practice, since the theory only
guarantees local convergence, we would need a heuristic to find an initial iterate.) We fix α = 0.1
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and run the averaged projection algorithm, thereby computing a sequence of Uk that appear to be con-
verging, as hoped, to a feasible solution to our problem. Furthermore the convergence appears linear:
Figure 6.9 shows

10 log10 f(Uk) with f(U) = d2
L(U) + d2

M (U) + d2
C(U)

for each iteration k. We observe f(Uk+1)/f(Uk) < 0.9627 for all k, suggesting the expected local
Q-linear convergence. Random examples are interesting for our simple test of averaged projections:
the challenging question of checking a priori the linear regularity of the intersection of the three sets
is open, but randomness seems to prevent irregular solutions, providing α is not too small. So in this
situation, we would hope that the algorithm will converge locally linearly; this is indeed what the
numerical results in Figure 6.9 suggest. We note furthermore that we tested iterated projections on
this problem (involving three sets, so not explicitly covered by Theorem 6.5.2). We observed that the
method still appears locally linearly convergent in practice, and again, that the rate is better than for
averaged projections.
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Chapter 7

Conclusion, perspectives

7.1 Summary of presented contributions and perspectives

This document presents an excerpt from the research results that I have obtained since I received
my PhD in November 2005. Chapter 1 gives an overview of my research activities, and explains their
originality. Chapter 2 lists all my activities as a researcher, in the form of an extended curriculum
vitæ. In the following chapters, I have chosen to focus on four contributions, each one illustrating
a different aspect of my research. These contributions concern four subtopics: (i) semidefinite re-
laxations of combinatorial optimization problems, (ii) nonsmooth optimization algorithms for energy
optimization, (iii) cut-generating functions in discrete optimization, and (iv) variational analysis of
alternating projections. To conclude on these contributions, I would like to briefly put them here in a
more general perspective and discuss some further research to which they gave birth.

Semidefinite optimization for binary quadratic problems Chapter 3 presents a semidefinite-
based algorithm for solving binary quadratic optimization problems to optimality, which is the
achievement of our research on practical use of semidefinite optimization for combinatorial problems.
The resulting software called BiqCrunch is presented in this chapter, along with its basic ideas, its
mathematical foundations, tips to efficiently use it, and illustrative numerical comparisons. BiqCrunch
is freely available through the GNU Public License, version 3.0, as open source software available for
non-commercial use. Distributing our code was a important milestone, but not the end of the story:
several projects have started to improve it and enlarge its potential applications. I mention here four
of them, ranked in an increasing degree of difficulty.

• Parallelization. Splitting the computation on N nodes would bring much more than a division
by N of computing times: by generating more feasible solutions, we have more chances to
improve the upper bound and then to prune parts of the branch-and-bound tree. Parallelization is
possible with the branch-and-bound platform [55] used by BiqCrunch, but a number a technical
details need to be addressed (in our own implementation and in the interface of the two codes).

• Specific version for QAP. We aim at attacking a "monster" of combinatorial optimization: the
quadratic assignment problem [8]. This is a (NP-hard) problem which is hard to solve in prac-
tice; getting good results on it would definitely draw much attention and interest to our solver.
Preliminary experiments show that computed semidefinite bounds are tight but that our solver
has difficulties to find the optimal solution. We have identified two issues: 1) the binary search
tree is unbalanced and 2) the used heuristics are not efficient enough.
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• Integrating general cuts. The strengthening cuts manipulated by BiqCrunch are the so-called
triangular inequalities that have a theoretical meaning from copositive optimization and a prac-
tical one as they are known to be very efficient for semidefinite relaxations in general. It would
be great if an additional family of cuts could be specified by an advanced user (in the same way
as already possible for heuristics). This brings however difficult questions on the selection of
cuts and their dynamic management.

• Treating continuous variables. Semidefinite relaxation make a fundamental use of (the quadratic
nature of the constraints and) the binary nature of the variables [147]. How to efficiently handle
continuous variables in BiqCrunch is not clear; this would open a large field of applications.

Nonsmooth optimization with uncontrolled inexact information Chapter 4 presents convex non-
smooth optimization algorithms (prox- or level-bundle methods) able to take advantage of readily
available additional linearizations with uncontrolled accuracy. There has been an active research on
the use of inexact information within bundle methods and nonsmooth optimization; we refer for ex-
ample to the foundational paper [60] unifying the convergence analysis of inexact proximal bundle
methods. However all existing articles considered a bounded or vanishing inexactness. Our article
[Mal-2] presented in this chapter was the first to explicitly mention and study uncontrolled inexact
oracles in a context of bundle methods. It led to further reflexions by colleagues about uncontrolled
oracles in discrete cases [175] and more recently to the continuous case with upper-oracles [174]. To
me, the most exciting perspective opened by the development of this chapter is the design and analysis
of asynchronous algorithms for stochastic optimization; I briefly described it below.

In parallel computing, a computational problem is solved by multiple agents that concurrently
solve simpler subproblems and exchange information. In asynchronous computing, each agent can
compute with the information it has, even if the latest information from other agents has not yet
arrived. Asynchronism is extremely important to the efficiency and resilience of parallel computing.
Today, the majority of optimization algorithms are still singled-threaded, and most of the already-
parallelized algorithms are synchronous. For example, big problems in stochastic optimization are
heavily structured, often amenable to parallel computing by standard decomposition schemes (e.g.
by scenarios [155], by production units [74], or even both [Mal-5]). However existing optimization
algorithms exploiting this decomposability are all synchronous. We have here a vast playground for
distributed computing; this will be further developed in the next section.

Bundle methods are particularly well-suited for asynchronous generalizations: outdated informa-
tion provided by a late agent can indeed be considered as uncontrolled linearization and treated as
such by similar techniques as the one developed here. I have started investigating these questions
with Welington de Oliveira. We are also considering with Franck Iutzeler an asynchronous version of
the so-called progressive hedging algorithm [155] for multistage stochastic optimization. We believe
that there is a bright future for applications of such distributed optimization algorithms to stochastic
energy optimization problems (electricity generation, transport, and distribution, where uncertainty is
due to intermittent renewable energy sources).

Cut-generating functions Chapter 5 introduces the theory of cut-generating functions, unifying a
number of existing works on S-free sets, and recovering the celebrated Gomory cuts. This is a unique
research, with developments both in discrete mathematics and in convex analysis, with a beautiful
synergy between the two. Our ambition was to write a foundational paper in the intersection of
discrete and continuous optimization with exciting potential use in mixed-integer software. This work
opened several new perspectives which has already inspired strong follow-up papers, including [53],
[112], and [183]. A number of theoretical questions indeed arise; let us mention some of them.
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• Consistency. An important question is whether cut-generating functions do generate all possible
cuts. This was formalized as open problem in [Mal-8], and a few months after its publication,
the authors of [53] proved the conjecture. This is discussed in the conclusion of Chapter 5.

• Generalizations. One might want to consider a more general set X with a similar structure as
(5.1a). For example, the first option is to replace the “ground set” Rn+ by some other closed
convex cone, opening the way toward cutting mixed-integer conic problems. The recent article
[112] goes in this direction for second-order cones. Another generalization would be inspired
by the situation of Example 5.1.1: there, X has the form

{
x ∈ Zn+ : Ax ∈ Zm − b

}
; the set

S = Zm − b lies in a smaller space but the ground set Zn+ is no longer convex, so sublinear
cut-generating functions are now ruled out (see section 5.2). Instead, cut-generating functions
in this context are subadditive, periodic, and satisfy a certain symmetry condition [88]. The
recent article [183] studies the case of integers variables x; there is still work to do to cover the
general case of cut-generating functions in this framework.

• Related convex analysis questions. A couple of questions come naturally from section 5.3.
Given a convex compact set G, can we detect whether it is the minimal prepolar of V := G◦?
Could we link our "prepolar" (defined by (5.23)) with the sets studied in [184] ? These questions
are limited to pure convex analysis and are basic enough to possibly find corollaries in other
branches of mathematics.

Variational analysis of alternating projections methods Chapter 6 gives new insight to the study
of alternating projection algorithms and establishes the first (linear) convergence guarantees in ab-
sence of convexity. The original proof techniques are based on the variational analysis of nonsmooth
coupling functions (rather than convex analysis tools as all the previous works). The convergence
proofs combine two ingredients:

(i) a geometrical (transversality-like) condition of the intersection, controlling the "angle" between
the two sets at a point of the intersection;

(ii) a geometrical (convexity-like) property of one of the two sets, controlling the behaviour of
projections.

The corresponding article [Mal-20] has opened a new line of research on non-convex projections
methods; it has got around 100 citations, seven years later. In particular, the local convergence results
have been further refined and extended in several papers (see e.g. [10], [21]) by lightening one of the
two assumptions (i) and (ii) above. On one hand, the idea is to strengthen (ii) to get rid of the limitation
of the transversality (i): for example, [5] proposes a new concept called non-tangential intersection
point for manifolds; [73] shows that local linear convergence holds with no transversality assumption
when the two sets are semi-algebraic and bounded. On the other hand, the opposite idea is to remove
(ii): for example, [73] proves convergence under only the transversality assumption using the slope
of a natural nonsmooth coupling function; [34] studied converge of a broad family of alternating
algorithms (proximal alternating linearized minimization algorithm for solving a class of nonconvex
and nonsmooth minimization problems) using another non-degeneracy assumption (building on [11]).

The above-mentionned assumption is called Kurdyka-Lojasiewicz: roughly speaking, it allows to
turn estimates on the norm of (sub)gradients of a function f into estimates on the values of f itself.
Thus the assumption (or its variants [110] or extensions [33]) plays a key role in the analysis of first-
order methods in non-convex setting. I would be curious to know if there exist connections between
them and the metric regularity (for minimization problems), which is the assumption that I have used
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so far in my research on non-convex algorithms. Another research direction would be to combine
these assumptions and related techniques with standard convex complexity analysis of algorithms (see
e.g. [139]) in order to get rates of convergence towards stationary points or local minima. This topic
and, more generally nonconvex optimization1, are becoming an active research area in the machine
learning community, see e.g. [123], [124] and [110].

7.2 Personal research perspectives

All my publications contains openings and perspectives for future research; some of them, related
to the material presented in this document, are presented in the previous section. There is work
there for several years! Besides, some new research directions have recently drawn my curiosity and
attention, in view of their huge potential usefulness. I would like to put an emphasis in this section on
two of them, that will attract my work and attention in a near future. Their presentation goes in two
stages: a contextual positioning and a brief description of my related projects.

7.2.1 Probability-constrained optimization in action

Context: Facing uncertainty in optimization Data uncertainty is an inherent feature of optimiza-
tion problems and has to be taken into account in optimization and decision-making tools. Uncertainty
can come from noisy data (e.g. from high-volatility financial markets), unreliable data (e.g. imprecise
ratings in collaborative filtering), or uncertain predictions (e.g. different scenarios in forecasting). A
typical example is the recent trend in electricity generation: the growing incorporation of renewable
energy sources (wind, solar) in the electricity park has dramatically increased the level of uncertainty
when optimizing electricity generation [170]. The two main ways to model uncertainty are:

• Robust optimization (see e.g. [26]). Assuming that the uncertain variable ξ has a given uncer-
tainty set (ξ ∈ Ξ), we optimize the worst possible situation over Ξ:

{
minx max

ξ∈Ξ
f(x, ξ)

g(x, ξ) ≤ 0 for all ξ ∈ Ξ
(7.1)

• Stochastic optimization (see e.g. [160]): Assuming that the random variable ξ has a given
probability law (ξ ∼ P known, or partly known up to parameters or from observations), we
want a solution with a good expected objective value. This gives typically problems of the
form: {

minx E[f(x, ξ)]
P[g(x, ξ) ≤ 0] ≥ p (7.2)

for a defined safety level p ∈ [0, 1]. For example, p = 1 means that the constraint should be
satisfied almost-surely.

When facing an uncertain optimization problem, modeling is as important as solving the resulting
optimization problem. In recent years, considerable progress has been made due to a better under-
standing of modeling issues and the development of new algorithms, as those based on randomization

1see also the recent NIPS workshops on optimization, e.g. in 2014 http://opt-ml.org/oldopt/opt14/
invited.html or in 2016 https://sites.google.com/site/nonconvexnips2016/home
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techniques or those based on bundle methods. But the gap between theoretical promises and numerical
tractability is still large.

For example, modeling uncertainty with probability constraints as in (7.2) is attractive, as attested
by the applications in fields as diverse as energy, telecommunications, or chemical engineering; see
references in the textbook [166]. However optimization problems having such constraints are very
hard to solve in general, for both theoretical and computational reasons. First, the analytical prop-
erties of the probability function x 7→ P[g(x, ξ) ≤ 0] such as differentiability or convexity are not
immediately derived from nominal properties of g. Second, numerical approximations of the values
(and the gradients, when available) of these functions require heavy noisy computations.

Project: theory and algorithms of probability-constrained optimization The aim of this research
project, with my colleague from EDF Wim van Ackooij, is to reduce the gap between what we can
model and what we can solve in stochastic optimization. With a special interest to probability con-
straints, we will consider several theoretical and algorithmic questions (e.g getting out of the con-
vex setting of bundle algorithms for probability-constrainted problems [173, 178]) and application-
oriented theoretical questions (e.g. expand the differentiability or convexity properties of probability
functions [172, 176], [Mal-5]).

Let us detail one of these mathematical questions with practical impact when solving (7.2): the
possible convexity of the the feasible set of (7.2). All existing results about the convexity of such
a set are restricted to special separable problems or under restrictive assumptions. For example, a
celebrated result by András Prékopa2 asserts convexity of the feasible set provided g is jointly quasi-
convex and ξ admits a density with generalized concavity properties. The restrictive assumption
here is that the quasi-convexity of g, which fails many situation of interests (as a linear constraint
A(ξ)x ≤ b). It would be useful to have a result of "eventual convexity" guaranteeing that the set
{x : P[g(x, ξ) ≤ 0] ≥ p} is convex for all p > p∗, where p∗ is a threshold that could be estimated or
even computed. We are working to establish such a result without restrictive assumptions.

7.2.2 Distributed optimisation, from decomposable algorithms to efficient systems

Context: enter in the Big Data era The explosion of data collection and processing systems has
triggered a lot of research and developments towards the exploitation of huge amounts of information.
Because of the data size, every elementary operation such as storage, communication, and, most im-
portantly, processing has to be looked into again in the light of the physical limitations and bottlenecks
of computing systems. An effort has been conducted both in the industry and academia to redefine
paradigms and good practices concerning large-scale data processing, for example with Google’s
MapReduce (2004), Apache’s Hadoop (2009) and Spark (2014) systems. Parallel computing for nu-
merical linear algebra have a (relatively!) long history and distributed computing for machine learning
is an emerging hot topic. For example, Spark’s MLlib library already contains ready to use machine
learning algorithms, including some basic optimization algorithms (like stochastic gradient descent3).

Mathematical optimization is experiencing a similar shift of paradigm to face big data challenges.
Optimization algorithms indeed face new challenges raised by the explosion in size and complexity
of optimization problems; notably when dealing with large-scale inverse problems that arise in signal
processing, medical imaging, and machine learning. Distributed optimization algorithms have re-

2While working on this conclusion chapter, I heard that András Prékopa passed away. I would like to pay a tribute here
to his pioneer work on probability functions and his special interest to applications.

3https://spark.apache.org/docs/1.1.0/mllib-guide.html
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cently emerged to decompose computation in a tractable, parallel, or distributed manner over clusters
(see e.g ADMM [40] or the random coordinate descent methods for big data optimization [154]).

Project: theory and algorithms for distributed computing in optimization I will put parts of
my work and attention on scalable optimization algorithms taking advantage of the development of
distributed computing. The goal is to reduce the gap between mathematical optimization algorithms
and efficient distribution of computation. Among the many numerical difficulties, let us mention:

• The distribution of optimization problems is obtained at the expense of an important increase in
the problem size, which directly reduces the convergence speed of the associated algorithm.

• Parallel and distributed algorithms require variables (if not data) transmission between workers
and an eventual coordinator; these exchanges can be costly in terms of time delay or storage
and usually present an important practical bottleneck. Also, it is highly likely that some trans-
missions and/or computations fail at some point (e.g. hardware failures in the cluster).

• Synchronism can be a burden in such systems with many potentially heterogeneous workers:
waiting for everyone of them to finish computing before assigning new tasks is limiting. Algo-
rithms should also be adapted to deal with computations made using outdated data.

These questions should be looked at with a special attention to properly leverage on the specificities
of optimization (e.g., optimization problems themselves are strongly structured, and advanced opti-
mization algorithms have the ability to self-heal from one iteration to another, or the ability to handle
inexact computations, see e.g. [60]).

I will team up with passionate colleagues (and good friends) from Grenoble to contribute on this
multidisciplinary domain. In particular, I am very happy to have Nabil Layaida in my committee,
perfect allegory of this research project. We all aim at investigating design, complexity analysis, high-
performing implementations, and real deployment of distributed advanced optimization algorithms.

7.3 Team research perspectives

My personal research projects, presented in the previous two sections, are part of the more general
research direction of my team. Last year indeed, I created a new team in my lab LJK, DAO "optimiza-
tion and learning for data science", gathering brilliant researchers on optimization, machine learning,
statistics and their interplay. In this section, I present DAO and our research perspectives.

DAO research team Data science aims at extracting information from heterogeneous, dynamical,
or massive data-bases. The scientific challenges cover all the processing chain from data collection
to analysis and interpretation. Thus a domain "data science" has recently emerged as a unifying
scientific discipline blending techniques and theories from many scientific fields including information
theory, computer science and mathematics. Expected impacts on science, economy and society are of
paramount importance. LJK has a top-level research on mathematical methods of data science as well
as expertise in some applications (e.g. computer vision, or oceanic flow modeling).

The objective of the new LJK team is to structure the activity on mathematical methods for data
science on the interplay between mathematical optimization and machine learning. We want to gather
researchers, foster exchanges, attract students, solidify collaborations, and highlight successful re-
search. Recent publications, as well as a selection of research projects are given on the team’s web-
site http://dao-ljk.imag.fr.
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Figure 7.1: Cloud of words from the document of creation the research team DAO at LJK

DAO research perspectives As a team, DAO has several research projects on the interplay between
mathematical optimization and statistical learning, ranging from theoretical analysis of problems and
algorithms to their numerical applications on real-life data. I highlight three main directions on which
my personal projects take part.

• Stochastic algorithms in force. Stochastic optimization is a key subject in DAO on various as-
pects: e.g. stochastic optimal control and approximation [118], efficient algorithms to stochastic
two-stage optimization problems [Mal-5], modelisation of dependency in temporal series [51],
as well as adaptative monte-carlo methods [15]. Our first research direction is thus to capitalize
on this rich background to push further the develop of stochastic methods for data science ap-
plications. My personal project on probability-constrained optimization fits into this dynamic.

• Turning large-scale data sets into interpretable statistical models. This research direction is
twofold. First, we aim at proposing new theoretically and computationally solid techniques for
a wide class of statistical problems. This is to be done by building a new framework based on
computable risk bounds for analysis [85, 109] and efficient numerical implementation of convex
optimization methods. Second, we will work on improving the scalability of optimization al-
gorithms to solve large-scale statistical inference problems. We will pursue the development of
advanced, computationally-cheap first-order optimization techniques [92] or distributed primal-
dual algorithms [27] capable of solving corresponding large-scale data science problems.

• Understand and optimize over networks. People, devices, and data are getting more or more
connected. These networks have different scales and tightness: from micro and dense (clusters),
meso and more loose (grid computing), up to macro and complex (social networks). In view of
the increasing complexity of the data and interplay between the agents, computing and process-
ing over these networks has to be performed by adapted decentralized algorithms. In addition,
it is often interesting to consider stochastic versions of distributed algorithms; for exemple,
splitting large-scale datasets and processing randomly chosen batches is a popular technique in
machine learning [39]. The goal of this research is to develop and analyze efficient methods
retrieving and computing information over graphs, or performing learning from data scattered
over a network [27], let it be physical (databases spread over different physical places) or vir-
tual (in the case of high performance computing). My personal project on efficient distributed
optimization fits into this more general project.
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