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mouvements théâtraux expressifs
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One of the main challenges in computer character animation is to design compelling
characters capable of creating a more intuitive, engaging and entertaining interaction with
a user. Whereas we play with these animated characters, observe them or control them, the
quality of the interaction and our level of engagement strongly depend on how believable
we consider these characters to be.

The notion of believability, and consequently of believable characters, comes from the
traditional arts (film, theater, drama, literature, etc.) and describes the property of a synthetic
character to engage in consistent, life-like and comprehensible behavior in such a manner as
to provide the illusion of life [171]. Once we perceive an animated character as having a life
of its own, we suspend all judgment about the implausibility of what we see and perceive in
favor of our experience and interaction with this character. By doing so, natural responses –
inherent to human-to-human social behavior and interaction – as engagement and empathy
will emerge [22].

Although the idea of believability is not new – it was brought into the computer anima-
tion and artificial intelligence fields by [17] at the beginning of the nineties –, it still remains
a highly subjective concept for which there is no generally agreed or precise definition. Nev-
ertheless, among the existing definitions and characterizations of believability [163, 171, 195,
168], effective emotional communication is a recurrent element and it is often defined as one
of the most important qualities of believable characters. An animated character that is able
to perceive and interpret the emotions of others and to express emotions in an appropriate
and comprehensible manner, it is most likely perceived as believable since the expression of
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emotions relates to the perception of most complex internal processes as personality, mind,
intentions, desires, etc.

Humans receive and send emotional information through a variety of channels: prosody,
eye gaze, facial expressions, posture, and body motion. For animated characters, movement
is the principle means of communication and interaction within the virtual world they in-
habit [25]; hence they portray emotional information through movement and the way we
perceive and understand them has everything to do with how they move. Based on these
ideas, the quest for believability has sent researches into two different paths: one pragmatic
approach, hereinafter referred as computer animation, whose main goal is to generate phys-
ically realistic animated characters (i.e., characters that look and move like humans); and
other, hereinafter referred as affective computing, that seeks to understand and exploit the
power behind human emotional communication to facilitate and improve human-machine
interaction. However, visually realistic characters are not necessarily perceived as believ-
able; and building a system that successfully discriminates emotion from one or several
channels does not imply that the same system can convey comprehensible emotion-related
information to a user.

1.1 Motivation and Main Challenges

The work I present here lies in the intersection of these two research fields. Founded on
recent studies that show the importance of body motion in the perception of emotion; and
in the successful traditionally animated characters that illustrated how accurate emotional
cues can be incorporated into body movement, I aim to generate physically plausible and ex-
pressive body motions for virtual characters through data-driven methods. This goal poses
significant research challenges:

1. Define a significant motion corpora: The human body has hundreds of degrees of
freedom and can perform an extensive variety of movements of diverse complexity.
From simple tasks many of us do not consciously think about as walking, pointing
and grasping to motions that require high precision and self-control as artistic gym-
nastics and acrobatics. All of this while implicitly communicating emotions, intentions,
desires, etc. Data-driven generation of expressive body motions requires the construc-
tion of a motion corpora that accounts for the motion patterns we wish to replicate
on the synthesized motions. More precisely, it must comprise body motions on which
emotions can be easily recognized, and thus measured and modeled.

2. Build a model that accounts for the cues that are indicative of the expression of af-
fect and emotions: Despite its high-dimensionality and complexity, human motion
is extremely redundant, correlated and coordinated. Thus, it is possible to extract a
simpler and low-dimensional motion representation that abstracts out the unneeded
complexity while preserving all the dynamic and kinematic motion cues that charac-
terize the effective communication of affect. Additionally, as many of these cues are
not directly observable but are rather encoded in the execution of the action itself, the
resulting motion model should remove as much action-dependent information as pos-
sible while preserving all affect-related cues.
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3. Synthesize new expressive bodily motions based on a motion model: Once a low-
dimensional motion model has been define, new expressive bodily motions can be
produced. Under this type of motion model, the synthesis of whole-body movements
generally involves two stages: i.) generation of a sequence of observations in low-
dimensional space; ii.) a mapping that relates those observations to high-dimensional
full-body space, while retaining all emotion-related features. The resulting sequence
of observations usually depends on a set of constraints and control signals provided to
the synthesis algorithm.

4. Evaluate quantitative and qualitatively the resulting animations: The quality of the
synthesized expressive bodily motions needs to be assessed through objective and sub-
jective measures. The former determines whether the resulting motions exhibit the
same kinematic and statistical patterns than the examples comprised in the motion
capture database; the latter assess the perception of the generated expressive motions
in comparison with those produced by a real human.

1.2 Contributions of Thesis

The overall objective of the work presented herein is to contribute to the creation of more
compelling and expressive animated characters. To achieve this goal, we first define a new
motion capture corpora inspired by the performing arts (theater, pantomime, mime, etc.).
Our aim is to capture bodily motions that are especially crafted to communicate meaning
and emotion to an audience. As findings reported by the psychology research community
[205, 234, 32] underline the importance of body extremities in the discrimination of biolog-
ical motion and emotional states, we then propose to characterize and synthesize expres-
sive bodily motions through the spatio-temporal trajectories of six main joints in the human
body: head, wrists, feet and pelvis. This claim is further supported by previous applications
of such representation to motion compression [239], motion retrieval [145] and performance
animation [51]. The suitability of this representation as well as the quality of the synthesized
motions are assessed through a perceptual study and two quantitative methods: automatic
classification of affect and divergence measures computed from empirically estimated prob-
ability distributions.

Our contribution are as follow:

• A new motion capture dataset consisting of a theatrical scenario in which a magician
performs three different magic tricks. This database also includes examples of loco-
motion and short improvisation sketches. Five actors performed these five motion
sequences under four emotional states (happiness, stress, sadness, relaxedness) and
the neutral condition. A total of two-hundred and seventy-five motion examples, with
durations ranging from 7 to 78 s., were recorded.

• A simple and intuitive, yet powerful, low-dimensional parameterization of expressive
bodily motions. We validate and evaluate the relevance and suitability of this parame-
terization within two studies, which quantify the loss of affective information we may
induce when only a limited subset of spatio-temporal trajectories are considered in-
stead of whole body information.
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• A motion synthesis approach in which new expressive bodily motions are generated by
randomly sampling from the low-dimensional space spanned from the end-effectors
and pelvis trajectories. Furthermore, we show that once a set of expressive trajecto-
ries has been generated, a simple multi-chain Inverse Kinematics controller suffices
to synthesize whole-body expressive motions. This model generates motions that pre-
serve the expressiveness of the examples while overcoming the semantic content of the
movement (all the information related to the functional behavior depicted in the mo-
tion, e.g., a gait cycle, grasping an object,...). Thus, it is possible to isolate and measure
the expressive content only.

• A qualitative and quantitative evaluation of the synthesized and reconstructed mo-
tions. We evaluate the expressive content of the resulting motions within three studies:
a perceptual study in which both the synthesized end-effector trajectories and the re-
constructed whole-body motion are compared with those displayed by a real human;
a classification experiment in which the performance of a classifier trained on real hu-
man data is tested on the synthesized motions; and a distance-based measure in which
the statistical and stylistic similarity between the ground-truth data and the synthe-
sized motions is assessed.

1.3 List of Relevant Publications

The following publications were produced based on the research presented in this thesis:

1. Pamela Carreno-Medrano, Sylvie Gibet, and Pierre-François Marteau. “Synthèse de
mouvements humains par des méthodes basées apprentisage : un état de l’art”. In:
Revue Électronique Francophone d’Informatique Graphique 8.1 (2014)

2. Pamela Carreno-Medrano, Sylvie Gibet, Caroline Larboulette, and Pierre-François
Marteau. “Corpus Creation and Perceptual Evaluation of Expressive Theatrical Ges-
tures”. In: Intelligent Virtual Agents - 14th International Conference, IVA 2014, Boston, MA,
USA, August 27-29, 2014. Proceedings. 2014, pp. 109–119

3. Virginie Demulier, Elisabetta Bevacqua, Florian Focone, Tom Giraud, Pamela Carreno,
Brice Isableu, Sylvie Gibet, Pierre De Loor, and Jean-Claude Martin. “A Database of
Full Body Virtual Interactions Annotated with Expressivity Scores”. In: Proceedings
of the Ninth International Conference on Language Resources and Evaluation (LREC-2014),
Reykjavik, Iceland, May 26-31, 2014. 2014, pp. 3505–3510

4. Pamela Carreno-Medrano, Sylvie Gibet, and Pierre-François Marteau. “End-effectors
trajectories: An efficient low-dimensional characterization of affective-expressive body
motions”. In: 2015 International Conference on Affective Computing and Intelligent Interac-
tion, ACII 2015, Xi’an, China, September 21-24, 2015. 2015, pp. 435–441

5. Sylvie Gibet, Pamela Carreno-Medrano, and Pierre-François Marteau. “Challenges for
the Animation of Expressive Virtual Characters: The Standpoint of Sign Language and
Theatrical Gestures”. In: Dance Notations and Robot Motion, 1st Workshop of the Anthro-
pomorphic Motion Factory, at LAAS-CNRS, Toulouse, France, 13-14 November, 2014. 2016,
pp. 169–186



1.3 – List of Relevant Publications 5

6. Pamela Carreno-Medrano, Sylvie Gibet, and Pierre-François Marteau. “From Expres-
sive End-Effector Trajectories to Expressive Bodily Motions”. In: Proceedings of the 29th
International Conference on Computer Animation and Social Agents. CASA ’16. Geneva,
Switzerland: ACM, 2016, pp. 157–163
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Chapter 2
A Motion Model Based on

End-Effector Trajectories

Contents
2.1 Low-Dimensional Motion Space and Motion Model Based on End-

Effector Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Methodology and Outline of This Thesis . . . . . . . . . . . . . . . . . . . . 15

Animating virtual articulated human characters whose movements are perceived as ex-
pressive is a difficult task for mainly three reasons. First, the human body is a complex
mechanism composed of hundred of bones and muscles and capable of executing complex
spatio-temporal motion patterns. Even though animated characters are represented as sim-
plified abstractions of this mechanism, generating varied, compelling and humanly plausi-
ble motions for those simplified representations remains an open challenge [10, 57]. Second,
despite the extensive research on the important role of human body motion in expressing
emotions and other affective phenomena done during the past decade [8, 136], there is still
a limited and incomplete understanding about what aspects of movement, also called mo-
tion features or motion qualities, have the most significant impact on the perception and
expression of emotion and affect. Furthermore, since human motion is conditioned by fac-
tors such as individual characteristics, personality, cultural constructs, among others [138,
240], it is difficult to isolate, extract and analyze the motion features that are mainly related
to the expression of emotion-related information. Last but not least, there is a one-to-many
correspondence between emotions and movements. That is, the same emotional state can be
communicated through a large choice of kinematically distinct movements [211]. Thus, de-
termining the motion cues that are common to different bodily expressions of the same emo-
tional state and hence should be considered and mimicked when animating an expressive
virtual character is still an open challenge [78]. We find then that animating a virtual human
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character with expressive movements supposes to: i.) identify the fundamental movement
aspects and parameters that should be used to generate perceptually expressive motions
and ii.) determine how these aspects are mapped to and control the simplified articulated
mechanism used to represent a character’s body. Furthermore, the resulting motions should
preserve the naturalness and visual appeal human observers usually associate to other hu-
mans’ movement [250].

Due to the complex, high-dimensional, and dynamic nature of human motion, several
assumptions have to be made in order to facilitate the analysis and inference of the relation-
ships between emotions and the characteristic changes they produce in body movement. We
highlight below the two most common assumptions found in the literature.

The first assumption relates to where the knowledge of what makes human motion ex-
pressive can be found. Two main approaches can be identified:

• The first one has its foundations on psychology studies and supposes that movement
aspects important for the generation of expressive motions can be determined by ana-
lyzing how humans perceive emotions via different types of visual stimuli [8, 56, 255].
The identified motion patterns are then used to build computational models that can
be invoked by an user to generate novel expressive motions [192]. The intuition behind
this approach is that by using perceptually validated motion aspects to guide the gen-
eration of the character’s movements, the perceptual and expressive qualities of the
new motions will be ensured. There are three main limitations associated to this kind
of methods: i.) most of the motion patterns identified in this manner are of qualita-
tive nature and an additional effort is needed in order to translate them into concrete
numerical parameters that can be applied to particular body movements [131, 268], ii.)
an additional motion model is required in order to constrain the synthesized motions
to the space of humanly plausible and visually appealing motions, and iii.) movement
qualities sufficient for an accurate emotion perception may not be sufficient for the
generation of new expressive motions [211].

• The second approach applies data-driven techniques based on machine learning meth-
ods to examples of expressive motion capture data in order to automatically determine
and learn what movement aspects characterize the expressiveness in the captured data
[78, 211]. The relevant motion qualities are determined either by estimating the differ-
ences between the emotionally expressive and non-expressive realizations of the same
kinematic action [79] or by separating what is being done (content) from how it is be-
ing done (expressiveness) [232]. The main advantages of this approach are that the
relationship between the emotion-related motion qualities and numerical motion pa-
rameters is automatically determined by the machine learning methods and that the
generated motions are guaranteed to be visually appealing and respect implicit human
motion constraints such as joint limits. However, this kind of models highly depend on
the dataset of expressive motions [78, 106] and are hard to interpret and understand.

The second assumption supposes that the knowledge and motion qualities obtained by
analyzing a particular type of motor behavior such as human locomotion [16] or a deter-
mined kinematic action, e.g., knocking motion [197], generalize to all other possible body
movements. However, motion aspects related to the expression of emotions can be con-
founded by the characteristics of the studied movement or motor behavior itself [58, 101].
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Thus, in order to infer and establish more general principles and characteristics of emotional
body expressions, it is of critical importance to study and analyze much broader movement
classes [205].

To ask a human observer to rate hundreds of examples of expressive motions seems to be
an inefficient and tedious way of determining which motion qualities relate to a particular
emotional state across different motion classes. To do the same through machine learning
methods will require a large amount of sufficient and consistent training examples, since the
number of samples required to adequately cover and describe human motion space increases
exponentially as a function of dimensionality. Furthermore, the complexity and computa-
tional cost associated to such methods will considerably increase with the dimensionality
and heterogeneity of the dataset used during training [258]. Fortunately, despite the high-
dimensionality and complexity of the observed human motion space, it has been shown that
due to the bio-mechanical and functional constraints ruling human motion, e.g., legs ands
arm operate in a coordinate way in most cases [210], most human movements have an intrin-
sic representation in a lower-dimensional space [73]. We believe that this low dimensional
space can be used:

i.) to efficiently characterize and analyze diverse examples of kinematically distinct ex-
pressive human motions;

ii.) to determine the motion cues indicative of expressed emotions; and

iii.) to animate expressive virtual characters.

The definition, validation, and use of this low-dimensional space represent the main con-
tributions of this thesis.

In the following sections we detail how by incorporating expert-knowledge and known
results on different research areas (i.e., human perception of emotion and biological motion,
motion synthesis and automatic recognition of affect), we define a low-dimensional motion
space that we believe successfully characterizes expressive motions. This low-dimensional
space is both intuitive and easy to analyze, and can be directly used to control a virtual
character’s body. We then briefly describe the validation, synthesis and evaluation method-
ologies adopted in the work presented in this thesis. We end this chapter with the outline of
this dissertation.

2.1 Low-Dimensional Motion Space and Motion Model Based on
End-Effector Trajectories

The task of recovering meaningful low-dimensional structures hidden in high-dimensional
data is known as dimensionality reduction [225]. An extensive number of dimensionality
reduction methods can be found in the literature. From the simple and widely used Princi-
pal Component Analysis (PCA) to more complex and powerful methods such as Gaussian
Process Dynamical Models (GPDM) [258]. Each of them makes different assumptions about
the relationship between the high-dimensional data and the low-dimensional representa-
tion, provides or not a function mapping points in low-dimensional space to their respective
pre-images in the original high-dimensional representation, and produces low-dimensional
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representations with different purposes [26]. For instance, a low-dimensional representation
that takes into consideration the class membership of the high-dimensional data points will
be considerably different from another low-dimensional representation which purpose is to
maximize the variance of the projected data.

In this thesis, instead of determining a low-dimensional space through standard and
ready-to-use dimensionality reduction methods as the ones we just briefly reviewed, we
propose to define such space based on expert-knowledge about: i.) the expression of emo-
tions via body movements and ii.) the available character’s motion generation and control
techniques. We believe that the resulting low-dimensional space will be suitable for both
the analysis and generation of novel emotionally expressive motions. We have chosen this
course of action because of the following reasons:

• A particularity of working with expressive bodily motions is that the motion features
we seek to infer and generalize are usually embedded in an intricate manner in the
execution of the motion itself and in their own have small spatio-temporal significance
[78, 114]. Thus, it is likely that the minimal number of free variables needed to rep-
resent the original high-dimensional data within the resulting low-dimensional space
will be determined and associated to the motor behavior within the motion example
rather than to the emotional stated conveyed by the expresser. Therefore, if we ap-
ply whatsoever standard dimensionality reduction method to a highly heterogeneous
dataset of expressive human motions, it might happen that:

i.) the resulting low-dimensional space will be determined by the motor behaviors
in the dataset rather than by their expressive content, and

ii.) the number of free variables necessary to define a low-dimensional space that
accounts, with minimal information loss, for the motion features and qualities in
which we are interested will considerable increase with the size and heterogeneity
of the high-dimensional data.

For these reasons, we believe that such low-dimensional space should be better de-
fined using the motion dimensions and features that have been consistently reported
as critical for the expression and perception of emotions. By doing so, we ensure that
the dimensionality of this space will be independent of the size and heterogeneity of
the original high-dimensional data and that the new representation likely contains the
information we are interested to study and analyze.

• Recent studies on the perception of emotion from bodily motions have pointed out that
although human observers seem to process expressive movements as a whole [205],
different body regions convey different amounts of emotion-related information and
motion features [187]. Thus, it might not be necessary to process and analyze the entire
body in order to determine the motions aspects the most salient to the perception and
generation of expressive bodily motions [78]. A low-dimensional space that accounts
for the spatio-temporal patterns of the most meaningful and informative body parts
can be used instead.

• Independently of the manner in which the motion cues that are relevant for the per-
ception and expression of emotions and affect are inferred, we still need to define how



2.1 – Low-Dimensional Motion Space and Motion Model Based on End-Effector
Trajectories 11

those qualities might be used and/or applied during the generation of new expressive
bodily motions. By choosing a low-dimensional representation that contains most, if
not all, of these relevant motions cues and that at the same time can be directly used to
control the motion synthesis process, the additional effort of defining the relation be-
tween motion qualities and motion synthesis parameters [131] is not longer necessary.
The choice of such representation can be also guided by our knowledge of the differ-
ent motion synthesis and control techniques commonly used in character animation
applications.

The low-dimensional space that we propose consists of the spatio-temporal trajectories
of both the extremities of the limbs of a human-like character, i.e., head, hands and feet, and
the equivalent of the human pelvis in the character’s body, i.e., the root joint. The extremities
motion, hereinafter called end-effector trajectories, simultaneously account for the kinematic
and motion-mediated structural information (i.e., how body limbs move with respect to each
other) of a movement [240]. Furthermore, as we will discuss it later in this thesis, the posi-
tion of a limb’s extremity determines in large part the orientation of other joints within the
chain [145, 236], e.g., hand position determines the orientation of elbow and shoulder. The
root joint trajectory provides information about the motion path described by the animated
character while traveling and moving in world space. Additionally, both the root and feet
trajectories describe the character’s lower-body motion behavior.

Below we detail and discuss the expert-knowledge on which we based our choice of
low-dimensional representation. We survey results from three different research areas: per-
ception of biological motion and emotions, automatic recognition of affect and motion syn-
thesis.

2.1.1 The Importance of End-Effector Trajectories in Perception of Biological
Motion and Emotions

Regardless of the high-dimensional and redundant nature of human body, studies about the
perception of biological motion have shown that human observers seem to effortlessly rec-
ognize and extract information about human motion from sparse body representations [27].
Point-light (PL) displays [124] are one of the most common sparse representations used in
perceptual studies. They consist of only a handful of markers attached to the head and main
joints of the body. Since their introduction by Johansson [124] in 1973, PL displays have
been proven to contain enough information to make possible for humans the determination
of gender [240], affective states [7], and the identity of individuals [241]. These results indi-
cate, from a perceptual standpoint, that: i.) there exists a simple, yet rich, low-dimensional
representation that accounts for all relevant motion information [240] and ii.) it is possible to
parameterize human motion and all the nuanced affect information conveyed by it through
a limited set of motion trajectories, i.e, a spatial subset of body joints [80, 187].

Several studies have aimed to determine which are the main parts of the human body
from which cues, also referred to as features, that are critical for the perception of biological
motion and emotions are extracted. End-effectors are often among this group. Ekman and
Friesen advocated that head motion provides strong cues about the nature of an emotion
(whether the moving subject conveys anger, fear, sadness, etc.) [72, 131]. This claim was
further confirmed by the work done in [18]. Beck et al. [18] conducted a user study in which
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the effect of head position in the interpretation of emotional body language was studied.
They changed head positions across bodily depictions of six different emotions in a Nao
robot. They found that changing head position does indeed affect the expressiveness of the
analyzed emotion displays. For instance, moving the head down decreased arousal and
valence ratings, while moving the head up produced the opposite effect. Furthermore, they
confirmed that head position has a strong effect on the correct interpretation of emotion
displays. Anger displays were interpreted as happiness or excitement when the head was
up and pride displays with the head down were instead labeled as anger.

There is evidence suggesting to a great extent that hand-arm movements are most sig-
nificant when distinguishing between affective expressions [255]. This claim has been vali-
dated by diverse studies. Pollick et al. [197] successfully conveyed different emotional states
through arm and hand drinking and knocking movements only. Observers recognized all
emotions above chance level. Hietanen and collegues [116] reported that affective expres-
sions can be decoded from hand movements used during Finish sign language communi-
cation by human observers having no knowledge of the language itself. Sawada et al. [216]
observed that hand-arm trajectories considerably differ between motions expressing differ-
ent emotional states. For instance, happy motions are characterized by indirect arm-hand
trajectories, while sad movements include slow and weak hand-arm trajectories.

Rather than studying the importance on individual body parts, other studies have fo-
cused on determining which particular joints and/or body parts receive more attention from
human observers. There is consistent evidence that head and arm-hand movements are of
significant importance for human observers when distinguishing between emotional states.
Montepare and colleagues [178] were one of the first ones to suggest the influence of head
and arm motion on the perception of emotion from gait. This observations was later con-
firmed by the work presented in [205]. Roether et al. [205] analyzed and identified emotion-
specific posture and movement features critical for the perception of emotion from gait ex-
amples. They found that those critical features depend only on a small number of joints
rather than on the whole body. Specifically, they identified head and arms trajectories as the
most important sources of information for perception of emotion and automatic analysis of
expressive bodily motions, even when movements of the entire body are presented.

Finally, although feet trajectories have not yet been identified as important sources of
information for the expression and perception of affect and emotional states, several studies
have advocated for their influence in the perception of biological motion. Thurman and col-
leagues [234] aimed to reveal the key features human observers use to discriminate biological
motion stimuli. They found that human observers strongly relied in features extracted from
the lower-body kinematics (feet trajectories). Similarly, van Boxtel et al. [32] identified feet
and hand trajectories as the most consistently critical motion sources used by observers for
action discrimination.

2.1.2 The Importance of End-Effector Trajectories in Automatic Recognition of
Affect and Emotions

Automatic recognition of affect and emotional states is another of the research areas inter-
ested in identifying a low-dimensional representation that is the most salient for the infer-
ence of affective and emotional states from bodily movements [211]. The identification of this
space will not only make easier the discrimination between distinct affective and emotional
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states, but it will also shed some light on our understanding of how humans perceive and
express emotions via body movements. Results provided by several previous works on au-
tomatic recognition of affect from body motion support our hypothesis of using end-effector
trajectories to define such low-dimensional space.

A survey of the most recent literature on automatic recognition of affect reveals that head
and hand trajectories are among the bodily cues the most frequently and successfully used
[105]. Bernhardt et al. reported 50% recognition rates on upper-body functional movements
(knocking motion) depicting neutral, happy, angry and sad emotional states. Their classifier
was trained using four kinematic features (maximum distance, average speed, acceleration
and jerk) computed from hand trajectory only. Bouënard et al. [29] analyzed expressive
percussion gestures and found that a reduced dimensional representation consisting of mo-
tion features computed from hand trajectories was sufficient for accurately classifying new
expressive percussion gestures. Glowinski and colleagues [95] found that it is possible to de-
fine a minimal representation of expressive upper-body movements by analyzing the kine-
matic qualities of head and hand trajectories. The resulting representation was later used
to determine meaningful groups of emotions. Similarly, several studies [103, 131, 218] indi-
cated that through the analysis of simple head movements and the way they are performed
it is possible to obtain above chance recognition rates in a person-dependent context.

Rather than investigating automatic recognition of affect and emotions from isolated
body parts (e.g., hand and head) movements, Sadamani et al. [213] focused on whole body
expressions of affect. Through a combination of hidden Markov models (HMM), Fisher score
representation and supervised principal component analysis (SPCA), they obtained a mini-
mal discriminative representation of expressive bodily motions. A thorough analysis of this
minimal representation revealed that hands and head trajectories are the most informative
joints for affective full-body movement recognition.

2.1.3 The Importance of End-Effector Trajectories in Computer Character Ani-
mation

In computer character animation, task-based motion editing and synthesis is one of the most
commonly used approaches [250] for the generation of novel body movements. In this ap-
proach, the animation system aims to automatically generate or modify a body motion such
that a set of constraints provided by a user are respected. Due to their easy specification
and intuitive use, end-effector trajectories are one of the most commonly employed types
of constraints. They can simultaneously specify the spatio-temporal as well as expressive
properties that should be present in the resulting motion [198]. For instance, [28] used hands
trajectories as the input of a hybrid motion control system that generated upper-body per-
cussion motions. Aubry and colleagues [9] also used hands trajectories as the control signal
of their a synthesis system.

Motion reconstruction, also known as performance animation, is one the most successful
examples of motion generation via end-effector trajectories. In this particular application,
devices such as inertial sensors [161], accelerometers [230], 3D motion sensors [132] and
retro-reflective markers [51] are used to record and specify the trajectories of head, hands,
feet and pelvis that define the desired motion. From this information, it is possible to gener-
ate full body motions that smoothly follow the specified trajectories and exhibits the correct
temporal variations [50].
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End-effector trajectories have also been successfully employed in other character anima-
tion related areas. In motion indexation and retrieval, Krüger and colleagues [145] showed
how a feature set consisting of end-effector trajectories is sufficient to characterize, index and
query full body motions. The authors compared end-effector trajectories against richer mo-
tion representations (e.g, end-effector trajectories plus the trajectories of elbows, knees, and
one chest joint) using two of the largest motion capture databases publicly available: CMU
[42] and HDM05 [180]. They found that the use of richer representations give little or not ad-
vantage over the use of end-effector trajectories. In motion compression, Tournier et al. [239]
observed that it is possible to recover, with minimal information loss, whole-body poses and
motions by specifying only the end-effectors and root positions of a skeleton structure as
input.

2.1.4 Discussion

The perception of emotion and the automatic affect recognition literatures consistently re-
ported the importance of head and hand trajectories. We observe that in isolation or com-
bined, both body joints provide enough cues to make the distinction between different emo-
tional states possible for human observers and automatic classifiers. Furthermore, we found
also that even though full body information has been used to define a low-dimensional space
through a combination of either automatic dimensionality reduction and stochastic model-
ing [213] or nonlinear mixture model and sparse regression [205], it is the features extracted
from hands and head trajectories that later emerged as the most salient [205, 213].

It is important to notice that although lower-body motion (i.e., feet and pelvis trajecto-
ries) have not received as much attention as head and hands trajectories in both emotion
perception and automatic emotion recognition literatures, they remain key elements in the
specification of full-body biological motion [32, 234]. This claim is supported by previous
work on motion synthesis, compression and retrieval [132, 145, 239], in which feet and pelvis
trajectories are critical for indexing, reconstructing and synthesizing full body motions. Fur-
thermore, results reported by [145] indicate that richer representations that include more
body joints do not entail higher accuracy in the specification of highly diverse human poses
and motions.

Based on this evidence, we believe that a low-dimensional representation consisting on
end-effector trajectories will simultaneously provide:

• i.) most of the motion qualities necessaries for ensuring and enhancing the perception,
recognition and generation of emotional content;

• ii.) all the spatio-temporal specifications needed for generating and reconstructing ex-
pressive whole body motions; and

• iii.) an intuitive, comprehensible, and useful motion representation that can be em-
ployed for the analysis and control of diverse expressive motion classes (non-periodic
movements, goal-oriented actions, performing arts motions, among others).
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2.2 Methodology and Outline of This Thesis

We hypothesize that a low-dimensional space defined by the spatio-temporal trajectories of
five end-effectors (i.e., hands, head and feet) and the pelvis, also referred to as root joint, is
both sufficient and suitable for the analysis and generation of expressive bodily motions. In
order to assess the validity of our hypothesis, we propose the following methodology:

1. Qualitative and quantitative measures of how informative are end-effector trajec-
tories with respect to whole-body motions: To say that the end-effector trajectories
are suitable for the analysis of expressive bodily motions suppose that the selected
representation accounts for most of the motion features and qualities that are indica-
tive of the expressed emotional states. Furthermore, this implies that when compared
to the original motion representation (whole-body motions), our low-dimensional pa-
rameterization should provide results closer to the ones obtained from whole body
representations. Inspired by this idea, we proposed and conducted:

i.) A user study in which we measured how observers’ perception of emotions
changed according to the type of visual stimuli (end-effector trajectories or whole-
body motions) presented to them. The study design, the motion capture database
we employed and the results we obtained are all discussed in Chapter 3.

ii.) A quantitative evaluation in which the performance of an automatic affect classi-
fier trained on different subsets of motion features was analyzed and compared.
Within this evaluation we considered the fact that the motion features computed
from other joint combinations might be as informative as those computed from
end-effector trajectories. Hence, we analyzed two cases: a.) features from the
proposed low-dimensional representation against features from whole body rep-
resentation and b.) features from the proposed low-dimensional representation
against features subsets automatically determined via feature selection methods.
A detailed description and discussion of the motion features employed for clas-
sification, the feature selection method we used and the classification tasks on
which all representations were evaluated is presented in Chapter 4.

2. Generation of novel expressive bodily motions and assessment of the quality of the
generated motions: The use of a low-dimensional motion representation implies that
a mapping function between high-dimensional full-body space and low-dimensional
trajectory space needs to be defined. This mapping should preserve all motion cues
indicative of expressed emotions that are present in the low-dimensional representa-
tion. Furthermore, in order to assess whether the proposed low-dimensional represen-
tation generalizes beyond the movements in which it has been primarily tested, it is
necessary to evaluate full body motions generated from novel end-effector and pelvis
trajectories. To do so, we have proposed and implemented:

i.) An inverse-kinematic based mapping model. Since the geometry and configu-
ration of an anthropomorphic limb is quite dependent on the limb’s extremity
position [145], herein referred to as end-effector, we generate full-body motions
by defining an inverse kinematic controller for each limb within the character’s
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body. Each controller determines the best sequence of poses such that the end-
effector trajectory used as control signal is followed as smoothly and closely as
possible by the corresponding limb.

ii.) A re-sampling scheme that can generate novel end-effector and pelvis trajecto-
ries while preserving the underlying emotional content. The main principle be-
hind the proposed re-sampling scheme is the generation of random, semantically
empty, trajectories that considerable differ from the original low-dimensional ob-
servations. That is, trajectories that are independent of the motor behaviors ob-
served in the MoCap database.5 By evaluating the full body motions from those
trajectories, we can have an initial assessment about the generalization capabili-
ties of the proposed low-dimensional representation.

Once we have defined a function that maps end-effector and pelvis trajectories to full
body motions and a re-sampling scheme that generates novel low-dimensional trajec-
tories, the next step is the evaluation of the generated and reconstructed motions. To
do so, we proposed and conducted one qualitative and two quantitative evaluations.
In each evaluation we considered three movement generation sources: original MoCap
database, motions reconstructed from end-effector trajectories issued from the MoCap
database and motions generated using re-sampled trajectories. The three evaluations
consisted on:

i.) A user study in which we measure the impact of the movement sources on the
perception of emotion.

ii.) A first quantitative evaluation in which we compared the recognition rates of an
automatic affect classifier tested on motions generated from the three sources we
listed above.

iii.) A second quantitative evaluation in which we measured the statistical similarity
between: a.) MoCap database and motions reconstructed from end-effector tra-
jectories issued from the MoCap database and b.) MoCap database and motions
generated using re-sampled trajectories.

The inverse-kinematic based mapping model, the re-sampling scheme, and the evalua-
tions designs and their results are presented and discussed in Chapter 5.
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As it was stated in the introduction of this thesis, the purpose of working with expressive
bodily motions is to make virtual characters look more alive, believable and engaging in the
eyes of the humans interacting with them. In this context, emotions and any other affective
phenomena (e.g., affect, mood, feelings, attitudes, etc. [217]) are the ideal means to indicate
that characters have an inner state and, to some extent, a life of their own.

In a very broad sense, emotions can be defined as a set of mechanisms that facilitates an
individual’s adaptation to his constantly changing surroundings [217]. This implies that the
individual makes internal judgments on the environment, his self and the other individuals,
and responses through changes in his state and/or his behaviors. All of this is done accord-
ingly to the individual’s goals, beliefs and well-being [101, 120]. These internal changes and
responses often have external manifestations visible and recognizable to others. Such man-
ifestations can be intentional or not, and constitute important signals for social interactions
and communication [68]. Hence, both emotions and affective expressions are important ele-
ments in the generation of compelling and successful human-character interactions.
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Evidence from many diverse tasks [7, 56, 197, 205, 216, 255] has shown that humans are
capable to identify the external manifestations of emotions and affective phenomena from
bodily expressions in the absence of other channels such as facial and vocal cues [8]. As
it was previously stated, movement is the main means of communication and interaction
for animated characters, which explains our interest in the expression of emotions through
body motions. However, working with expressive motions suppose an understanding of
how body movements are quantitatively and qualitatively modified when an individual is
experiencing an emotion.

Emotions as well as the way in which they are expressed or signaled through body mo-
tions remain highly subjective and complex open problems. In order to gather an under-
standing about bodily expressions of emotions, the recording of the movements and emo-
tions of interest through different devices and technologies is the most common approach.
In this chapter, we briefly review the existing and available expressive motion corpora and
describe the corpus on which all the work presented in this thesis was done.

3.1 Emotions, Elicitation and Categories of Expressive Bodily
Movements

Recording motion corpora for the analysis and synthesis of body motions expressing emo-
tions and other affective phenomena requires a careful design and raises important ques-
tions: how to describe and represent the emotions or affective states of interest?, what kind of
movements or motor behaviors to record?, how many subjects need to be recorded?, should
emotions be elicited, felt or portrayed? All these important elements should be taken into
consideration when building a new expressive motion corpora. Similarly, these elements
can be also used to analyze and determine the suitability of existing corpora. In this section,
we review the emotion models and theories most frequently employed for the study of ex-
pressive bodily motions. Furthermore, we discuss the variety of body movements found in
the existing motion corpora as well as the procedures used to gather this type of data.

3.1.1 Emotion Theories

Several theories on the definition and categorization of emotions have been proposed by
psychologists and other emotion researchers. Here we review the models most commonly
used in the construction of expressive motion corpora and computational modeling of emo-
tions. A larger overview of the different emotion models and taxonomies can be found in
[217, 214].

Discrete or categorical model

First postulated on Darwin’s book The expression of emotion in man and the animals, this model
argues that there is a limited number of basic or fundamental emotions. Each of this basic
emotions has its own elicitation conditions and its own physiological, expressive, and be-
havioral patterns [217]. Most complex, nonbasic emotions are made up of blends of these
fundamental emotions. The most popular set of basic emotions was proposed by Ekman
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[71] and consists of anger, happiness, sadness, surprise, disgust and fear. Many of the cur-
rent research on emotion perception and recognition has predominantly focused on this cat-
egorization.

Dimensional or continuous model

Emotions are described in terms of a continuum spanned by a few independent dimensions.
One of the most popular examples of these dimensional models is the circumplex model of
affect proposed by Russel [207]. This is a two-dimensional model in which emotions can be
easily defined and differentiated by their position along the pleasantness-unpleasantness
(valence) and active-passive (arousal or activation) dimensions. This allow researchers to
easily differentiate positive and negative emotions of different levels of intensity and acti-
vation [217]. Models with additional dimensions such as dominance [173], attention, action
tendency [20], among other have been also proposed. Since dimensional models focus on
the subjective component of emotions, verbal and categorical labels can be easily mapped to
the continuous space.

3.1.2 Categories of Expressive Bodily Movements

Both Atkinson [8] and Gross et al. [101] suggested that there are two ways in which emotions
can be expressed through bodily movements. First, we have what [8] referred as to expressive
actions, namely movements that are direct manifestations of one’s internal emotional state.
Expressive actions can be sometimes motivated by the deliberate need of communicating
emotions and affective content [20]. Some of these expressive actions have been adopted as
conventional gestures with an emblematic meaning. For example shaking a fist or raising
one’s arms are motions people commonly associate to anger and joy respectively. Second,
we find what [101] denoted as non-emblematic movements. That is, everyday movements or
actions that are performed in an emotional way. In other words, motions motivated by
goals other than to communicate affective content are modulated and modified in such a
manner that an emotional state is expressed and recognized. An example of non-emblematic
movements is a slumped walk that might suggest a sad state.

Existing expressive motion corpora consider one of these two approaches. They consist
of either movements associated with the expression of an emotion (expressive actions) or
movement behaviors in which we can study what kind of modifications are characteristic of
a particular emotional state (non-emblematic movements). A more thorough classification
is possible if we take into consideration the spontaneity and naturalism of the expressive
motions. Both Bazinger et al. [15, 14] and Cowie et al. [58] defined three major categories of
emotional expressive corpora:

• Natural emotional expressions occurring in everyday life settings. The researcher
does not directly control or influence the recorded emotion expressions. Motion cor-
pora belonging to this case can contain both expressive actions or non-emblematic
movement behaviors.

• Portrayed emotional gestures where expressions are produced upon instructions. Ex-
pressers are asked to produce motions in which emotions can be easily recognized
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by external observers. Movements can be performed freely or the expresser is told
precisely what to do and how to do it. We find in this category the aforementioned
conventional gestures often referred as to emotion archetypes.

• Induced emotional expressions, also called felt experience enacting, are a combination
of induction methods and movements deliberatively communicating affect. Expressers
– often trained laypersons or professional actors – are asked to produce plausible and
believable expressive motions occurring in a controlled setting. The researcher uses
elicitation techniques in order to facilitate the enacting of the expressive motions [14].
Most of the motion corpora belonging to this category contain non-emblematic move-
ment behaviors.

3.1.3 Induction Methods

Induction methods, also known as mood induction procedures (MIP) can be used to elicit
specific emotional responses and changes that can entail the generation of expressive bodily
motions. These changes are usually of long duration [93], thus the interest of employing
these techniques during motion recordings sessions in which subjects are asked to perform
different movements several times for distinct emotional states. However, since the elicited
states are of medium intensity [93], MIP alone not always produce distinguishable realiza-
tions of expressive motions. Hence, when used in the construction of expressive motion
corpora, they are usually coupled with the researcher’s explicit instruction. In this manner,
expressers are more likely to produce spontaneous yet recognizable expressive movements.
Here we present the techniques the most widely known and used.

• Velten MIP: one of the first and most used techniques. Subjects are asked to read
a number of statements (approx. 60) describing either positive or negative self-
evaluations, somatic states or situations in which the intensity of the emotional state is
constantly increasing [93, 262]. Subjects are then asked to try to feel the mood described
by these statements.

• Music MIP: subjects listen to mood-suggestive musical pieces after being instructed
to try to get into the emotional state called to their mind by the music. There exit
two variants of this method: (a) the experimenter chooses, from some standardized
options, which kind of music to use for the intended emotions and/or moods; (b)
the subject chooses the piece of music that he or she finds to be the most suitable for
eliciting the intended mood [262].

• Films MIP: it is one of the most efficient and simplest techniques. Subjects are pre-
sented with extracts from films to stimulate their imagination and facilitate their im-
mersion on the intended mood. As for the music method, standard lists are employed
to choose the best film extract for each intended mood. This technique is analogous to
story-based MIP [262], in which films are replaced with some narrative or short story.
In both techniques subject are asked to get involved and try to identify them-selves
with the situation and the mood being suggested by the film extract or short story .

• Imagination MIP: also called autobiographical memory [93]. Subjects are asked to
vividly recall and imagine situations from their lives that had evoked the desired emo-
tion. In addition, they are usually asked to write down the imagined event and to
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elaborate on the original perceptions, thoughts, feelings, sensations and affective reac-
tions [93, 262].

• Combined techniques: with the aim of increasing the effectiveness of the mode induc-
tion, several researches have combined two or more of the aforementioned procedures.
The general idea is to associate two complementary methods. The first method will in-
duce the intended mood, while the second will create a convenient atmosphere for
maintaining the intended mood for as long as possible [93]. Velten-Imagination MIP
and Velten-Music MIP are some examples of these combinations.

One of the main concerns when using mood induction procedures is the nature of the
changes observed in the expresser after the elicitation has taken place. Researchers fre-
quently debate whether these changes are indeed produced by the induced mood or are
instead motivated by the subconscious desire of the expresser to comply with the experi-
ment and researcher demands [262]. Other important issues are the duration of the induced
mood and the specificity of the intended mood. There is evidence suggesting that the use of
mood induction procedures can give rise to emotional states other than the intended emo-
tion. Hence, is it possible that the changes we observe in the expresser, in particular the
expressive motions, have been amplified, attenuated or inhibited by other emotional states
[93, 262]. Similarly, it was found that the duration of the induced mood is proportional to
the type of induction procedure and to the intended emotion. In particular, it seems that
the changes due to negative emotions last longer than those of positive states. Furthermore,
several studies found that the effect due to the Velten technique tends to be less stable and
lasting than other techniques such as films and imagination MIP [93].

In order to address these issues, most of the expressive motion corpora used for the anal-
ysis, recognition and synthesis of expressive motions have been recorded using trained lay
or professional actors who knew the purpose of the recordings. Thus, the changes and ex-
pressive motions showed by an expresser are mostly due to the explicit instruction of the
experimenter and their nature is not longer a problem. Induction mood procedures are used
to facilitate the enacting of an emotion and to make the changes and motions associated to
it more authentic and believable [14]. In the same manner, since the intended emotions have
been precisely defined and framed, the experimenter can be almost sure that the changes
observed in the expresser movements are certainly due to the target emotional state. Hence,
the specificity of the intended emotion is not longer an issue. Finally, since actors are enact-
ing emotional states rather than truly ’feeling’ them, the duration of the induced mood is not
a critical issue anymore. It is important to remark however, that if the experimenter aims to
analyze expressive motions produced in a natural setting, all the concerns listed above will
still apply.

3.2 Existing Databases

With gestures and movements being increasingly exploited in advanced interactive systems,
the number of existing motion corpora, hereinafter called Motion Capture (MoCap) databases,
has considerably grown in the last few years. Different MoCap databases have been de-
signed and recorded with the purpose of studying plausible and believable human motor
behaviors. In the context of this thesis, we have identified two main categories of MoCap
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corpora: general purpose databases and expressive motion databases. Since this thesis is in-
terested in the analysis and synthesis of expressive whole-body motions, we briefly survey
the MoCap databases that belong to the first category before presenting a detailed discussion
about those considered among the second category.

3.2.1 General Purpose Databases

Most of the MoCap databases in this category have been designed to analyze, classify or syn-
thesize believable and high-quality human motions. They have been used in many different
domains such as sport sciences, biometrics (action or person identification), and data-driven
character animation. Among all the databases belonging to this category we can identify
those publicly available and that are largely used by the academic research community:
HDM05 [180] provided by the Max Planck Institute, CMU MoCap from Carnegie-Mellon
University [42], Human Motion Database (HMD) created by the University of Texas at Ar-
lington [102, 246], KUG [121] created by Korea University, KIT whole-body motion database
[134] provided by Karlsruhe Institute of Technology, NUS MOCAP a data-driven character
animation database [188] from National University of Singapore, among others.

These databases contain a wide range of human movements within different categories
of themes, including locomotion, sport activities, and everyday life motions. Some of them
include few style variations directly instructed to the actors, or induced from different emo-
tional states. However, they were not built from a profound reflection on how to represent
both the expressiveness in the movements induced by various factors (personality, emo-
tional state, gender), and the meaningful expressions conveyed by body movements [58].
Moreover, they do not usually contain multiple repetitions of various movements with dif-
ferent affects for several subjects. These repetitions are necessary for a robust understanding
of the patterns and expressive cues common to several expressers and different motions, and
that should be reproduced when animating emotionally expressive characters.

3.2.2 Expressive Motion Databases

Recently an increased interest for expressive variations of body movements has led to the de-
sign and construction of several emotionally expressive movement databases. Many of them
have been designed to study human perception of emotions in different contexts such as hu-
man communication [14, 104, 38], music and dance performances [41], narrative scenarios
[254], daily actions such as knocking [197], etc. Others have been created to train automatic
affect and emotion classifiers. These databases are usually characterized by a fixed number
of individual actions, multiple repetitions by action and emotional state, and a large number
of expressers [165, 130]. Similarly, the character animation domain has also created expres-
sive databases to study the effect of emotionally expressive motion on game characters [75]
and how the emotional content present in body motions is affected by the type of embod-
iment [172] and by different motion re-use techniques such as motion editing and motion
blending [187].

Since all these databases have been designed with a particular functionality and modality
(e.g., body, face, or both) in mind [58], many of them might not be suitable for the synthesis
of expressive whole-body motions. For instance, FABO [104] and GEMEP [14] databases
contain only upper-body motions recorded with 2D cameras, which make them not suitable
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for animating 3D virtual characters and synthesizing whole-body motions. Other databases
such as the Glagow corpus [165] and the dataset proposed by Volkova and colleagues [254]
provide the 3-dimensional data necessary for animating virtual characters, but focus mainly
on movements necessitating only the upper-body.

Seeing that our aim is to animate virtual characters, we need full-body movement record-
ings of high-quality such as the one obtained from maker-based motion capture systems
and which involve full-body movements. Hence, we focus our review on expressive motion
databases containing whole-body motions and that might be suitable for both the validation
of the motion model proposed in this thesis and the generation of new expressive bodily
motions. Table 3.1 lists all the databases fulfilling the aforementioned criteria. Each one of
them is catalogued according to: number of expressers and samples, category of movements
(see Section 3.1.2) and specific body actions, emotional states, number of samples, function,
modality (e.g., body, face, speech, or multimodal), availability and labeling of emotional
content.

Most of the MoCap databases listed in Table 3.1 have been developed to answer specific
research questions. Hence, their design is based on methodological choices oriented and
constrained by these questions [14]. For example, the UCLIC acted database [138] needed
body motions conventionally associated to specific emotional states, i.e., emotion portrayals,
in order to ensure recognition across different cultures. In the same manner, the expressive
corpora designed by Aristidou et al. [4, 5] and later analyzed through Laban notation is
mainly composed of dance motions, since the Laban notation system was specially devel-
oped for writing and analyzing the structure and expressivity of this kind of movements
[147].

In this thesis, we aim to study, from a quantitative perspective, how body motions change
and are modulated by the internal emotional state of the expresser. In this manner, we will
be able to generate character body animations that convey the idea of more believable and
emotionally rich virtual characters. This implies that MoCap databases in which emotions
are expressed through specific gestures and/or movements, such as raising the arms as an
indication of joy, are not suitable for our work (e.g., [75, 129, 187]. Similarly, we want to gen-
erate whole-body motions in which all body limbs are equally involved during movement,
hence we need a database containing such type of body motions. Among the databases
listed in Table 3.1, five of the them fulfill this requirement: UCLIC games [137], USC Cre-
ativeIT [174], Emilya [87], Karg et al., Roether et al. [205], and Aristidou et al. [5]. However,
only the two first are publicly available. UCLIC games [137] is not suitable because the body
motions it contains are strongly influenced and constrained by the context in which they
were recorded, i.e., Wii games. In the case of USC CreativeIT [174], further requirements
need to be considered.

An additional, yet crucial, aspect when working with body expressions of emotional
states it that the quality and intensity of those expressions may be influenced by numerous
distinct factors such as the expresser’s personality, gender, culture, age, and idiosyncrasy;
the context, the mood induction procedure (if used), the body movement itself, etc. USC
CreativeIT [174] database design is based on dyadic interactions. Hence, the expressive
motions, and consequently emotional states, contained in this database might differ to those
observed in a single expresser scenario. Namely, since USC CreativeIT [174] consists mostly
of interactive communication scenarios, it is possible that many of the expressive bodily
motions in this database were mainly generated to accompany speech and thus are strongly
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Samples Available Data Labeling

MPI [253]
8 am-
ateur
actors

Natural body ex-
pressions in narra-
tive scenarios

Study expressive
motions in a close
to natural context

Amusement, joy,
pride, relief, sur-
prise, anger, disgust,
fear, sadness, shame,
neutral

1400 Yes Body Intended
emotion

UCLIC
Games
[137]

11 non-
actors

Natural body ex-
pressions. Actors
played Wii games

Automatic recogni-
tion of emotional
body expressions

Concentrating, frus-
trated, defeated,
triumphant

36 Yes Body 8 ob-
servers

UCLIC
acted
[138]

13 non-
actors

Portrayed emo-
tional expressions
freely chosen

Study cross-
cultural differences
on emotion per-
ception

Anger, sadness, fear,
happiness 183 Yes Body Intended

emotion

Emilya
[87]

11 lay ac-
tors

Induced emo-
tional expressions
for daily actions:
walking, sitting
down, knocking,
lifting, throwing,
moving objects

Study emotion
expression on
non-emblematic
movements (daily
actions)

Joy, anger, panic,
fear, anxiety, sadness,
shame, pride, neutral

9031 No Body Intended
emotion

USC Cre-
ativeIT
[174]

19 pro-
fessional
actors

Induced emo-
tional expressions.
Improvisation per-
formances based
on two-sentences
exercises and
para-phrases

Study of human
expressive be-
havior in dyadic
interactions

PAD dimensional
model. Performance
ratings: interest,
naturalness

59 Yes
Body
Speech

15 anno-
tators

Continued on next page
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Aristidou
et al. [4,
5]

6 pro-
fessional
dancers

Induced emo-
tional expressions
of non-emblematic
movements

Characterization
and automatic
recognition of af-
fect using Laban
notation

Afraid, angry, an-
noyed, excited, happy,
pleased, satisfied, re-
laxed, tired, miserable,
sad, bored

74 No Body Intended
emotion

Roether
et al.
[205]

25 non-
actors

Induced emo-
tional expressions
of non-emblematic
movements (gait)

Identification of
emotion-specific
cues in human gait

Neutral, anger, fear,
happiness, sadness 380 No Body Intended

emotion

Kapur et
al. [129]

5 non-
actors

Portrayed emo-
tional motion
freely chosen

Automatic classi-
fication of emo-
tionally expressive
body motions

Sadness, joy, anger,
fear

500 No Body Intended
emotion

Karg et al.
[130]

13 male
non-
actors

Portrayed emo-
tional motions.
Non-emblematic
movements (gait)

Recognition of af-
fect through gait
patterns

Sadness, anger, happi-
ness, neutral. Affec-
tive states along the
PAD dimensions.

1300 No Body Intended
emotion

Normoyle
et al. [187]

1 profes-
sional ac-
tor

Portrayed emo-
tional motions
freely chosen

Study the impact
of motion edition
on emotionally ex-
pressive motions

Sadness, surprise,
anger, disgust, fear,
happiness

60 No Body Intended
emotion

Ennis et
al. [75]

8 profes-
sional ac-
tors

Portrayed emo-
tional motions

Study which cues
(body, face or both)
are better indica-
tors of emotion

Sadness, anger, fear,
happiness 96 No Body

Face
Intended
emotion

Table 3.1: Affective body movement databases. PAD stands for Pleasantness-Arousal-Dominance dimensional model of affect.
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influenced by factors inherent to human-to-human interaction and interlocution. This
kind of gestures and body expressions of emotions are out of the scope of this thesis. Sim-
ilarly, MPI database [253] consists of body motion recorded in the context of narration sce-
narios. Hence, the body movements in this database are likely of co-verbal nature, i.e., body
actions performed mostly by the hands and the arms and that are complementary to speech.
Furthermore, since all expressers were seated on a stool during the recording sessions, the
resulting body motions involve only the upper-body.

In order to ensure that the movement patterns we analyze and synthesize are indeed
associated to the emotional state of the expresser, we need to standardize and control the
expressive motions we consider [14, 58]. Furthermore, from a technical point of view, we
need high-quality motion data with a well defined and known bio-mechanical model. This
model will facilitate the purely kinematic approach we have adopted for the synthesis of
whole-body motions. Finally, a big part of the work done in this thesis aims to prove and
validate the suitability of end-effector trajectories for the characterization and generation of
emotionally expressive whole-body motions. Hence, we need a MoCap database whose de-
sign and content facilitates the evaluation of this model. This new database should be large
enough and include a significant number of different expressers – also referred to as subjects
or actors –, emotional states and motor behaviors (movement classes). In this way, we can
measure whether the proposed model is invariant to subjective (actors) and objective (move-
ment class) factors. For all these reasons, we decided to develop our own expressive corpora.
In the remainder of this chapter we introduce the design, methodology and evaluation of the
MoCap database used in our work.

3.3 Design of a Theater-Based Motion Capture Database

As it was pointed out, none of the expressive MoCap database publicly available seems to
be suitable for the type of motion model and application defined in this thesis; mostly be-
cause they were designed with a different purpose. Nonetheless, they are the product of
a profound reflection and understanding of the issues that arise when studying how emo-
tional states affect bodily expression. For this reason, several of the choices made during
the design and development of our corpus are based on the work done during the defini-
tion and construction of the existing expressive corpora as well as on lessons provided by
the computer animation community. Similarly, many other choices are underpinned by the
methodological validation approach proposed in this thesis.

We propose a new motion capture database of expressive body motions in which all
emotion-related content and any additional meaning are solely conveyed through body mo-
tion. The requirements considered in the design of our database are:

• several expressers (different ages, experience, gender),

• different motor behaviors, i.e., actions and motion sequences in which all body limbs
are used,

• several repetitions for each expressive motion and emotional state,

• high-quality and high-dimensional data with few, close to none, artifacts,
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• expressive variations rather than emotion portrayals,

• plausible yet recognizable expressive motions for each target emotional state,

• and a standardized and controlled capture protocol such that the perceived variations
are due to emotional states rather than to other non-controlled factors.

Building a new motion capture database of expressive bodily motions requires a careful
selection of the movements to be performed, the emotional states to be expressed, and the
subjects to be recorded. Furthermore, it is crucial to define both the category of expressive
motions we wish to record and the procedure we will use for gathering them, i.e., natural ex-
pressions, induction techniques or acted motions. Below we present and explain the design
criteria we employed as well as the reasons and motivations behind it.

3.3.1 Why Create a Motion Corpora Inspired by Theater?

Identifying and producing expressive bodily motions can be a highly subjective and context-
dependent process. Movements that are meaningful for an observer in a particular situation
can also be considered as plain and with no specific emotion by a different observer. When
looking for possible sources of expressive motions, the performing arts (theater, pantomime,
dance, magic, mime, etc.) might be a good starting point, since their prime goal is to create
visually believable characters capable of communicating meaning and emotion to an audi-
ence.

In his work on character animation, Neff [183] suggests also that "the performing arts
literature offer arguably the most comprehensive analysis of expressive character movement
available". He then shows how elements from specific fields of performing arts such as
traditional animation, actor training (theater) and movement theory can be used to animate
convincing virtual characters. Among these fields, we think that theater, and hence theatrical
body movements, can be of interest and employed as a source of inspiration for both the
synthesis of virtual character movements and the understanding of emotionally expressive
human movements. The reasons behind this idea are threefold:

• First, in the creation of theater it is required to develop a deep understanding of "the
language of gesture and movement" [151], because it is through movement that an
actor transforms feelings, emotions, intentions, and passions into performance and
meaning. By studying and analyzing theatrical body motions it is possible to gain a
more practical insight into how meaning and emotions are encoded through move-
ment.

• Second, in stage every movement is deliberately chosen and executed to arouse an
emotions in the audience [183], and thus ensure that every character in scene to be
perceived as believable. By using theatrical movements as the knowledge base of a
character movement synthesis system, it is likely that a virtual character will also be
thought of as believable.

• Finally, previous work on both character animation and the design of expressive mo-
tion corpora has shown that: (a) theater can be used as a model for the design and
development of believable human characters [194, 174, 183], (b) valuable emotional
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databases can be recorded from actors using theatrical techniques [76, 38], and (c) the-
ater can provide some insight into how humans, specially actors, use their expressive
behavior to convey the idea of believable and livable characters [174].

3.3.2 From Physical Theater to a Magician Scenario

Theater in its simplest definition is the branch of performing arts concerned with live, and
most of the time, collaborative performances. Actors present reality-based or imaginary-
based experiences and stories to an audience through a combination of gestures, movement,
speech and other performing arts’ elements such as dance, music and sound [191, 193, 233].
Among all the existing forms of theater, we mainly focus on physical theater.

Physical theater is a form of theater born from a tradition of mime and physical expres-
sion [152]. Contrary to the Stanislavsky system in which expressiveness is achieved once
the actor has established the proper internal and psychological state [183], physical theater
practitioners enact expressiveness through their body and its movement. Thus, the body
and its movement are both the center of attention and the center of the theater making pro-
cess [181]. Emotional states and any other affective phenomenon are channeled through the
body rather than through any other modality like face or speech [39].

Physical theater accentuates the actor’s body and its expressive capabilities. It is through
these two elements that the audience will connect with the imaginative world developed in
stage. Hence, physical theater seeks to understand movement, its laws and how the slight-
est nuance of physical movement affects meaning [39, 152]. As psychologist and emotion
researchers have done during the last years, physical theater theorists (e.g., Decroux, Lecoq,
Meyerhold, among others) have also addressed the relationship between body movement
and emotions for years. Through their practical and empirical work, they have found that
bodies reflect and project inner life and that emotions are linked to specific somatic patterns.
Thus, they can be successfully conveyed through the right physical configuration [39, 183].

Our interest on this particular form of theater comes from the closeness between its prin-
ciples and the objectives of this thesis. By exploiting some of the key elements and ideas
behind the theory and practice of physical theater, we will be in measure of analyzing and
generating good examples of expressive bodily motions. Furthermore, we will go a step
forward towards the creation of more livable and believable virtual characters.

We have borrowed three key ideas from the training process on physical theater for the
definition of the main content in our MoCap database. These three ideas are: the expressive
body, the corporal mime and the neutral mask. In its original definition, the neutral mask allows
to detach face and speech from the body. This latter emerges then as the only means of
expression, i.e., the expressive body, and every movement becomes powerfully revealing [39].
Similarly, corporal mime makes reference to the art of bodily movements. The actor-mime is
constrained by silence and can only make him-self understood through his body. The same
body, the expressive body, creates the illusion of a living universe and allows the audience
to see what is invisible to the eye: the hidden meaning and the inner-life of the character
portrayed by the actor [152]. Furthermore, through the work of the neutral mask and corporal
mime, physical theater explores how alterations of postures and motion can provide notions
of an emotional state to the external observer. The definitions and applications we present
here come from our understanding and interpretation as gathered from the reading of three
major books on the theory and practice of physical theater: Dymphan Callery’s book Through
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the Body: a Practical Guide to Physical Theatre [39], Theatre of Movement and Gesture [152] and
The Moving Body: Teaching Creative Theatre [151] by Jacques Lecoq.

Based on these principles, we developed a theatrical scenario in which each expresser,
hereinafter called actor, will perform as a mime-magician. That is, based on a combination
of the neutral mask and corporal mime principles, we will ask each actor to only use his/her
body movements when conveying ideas, emotional states, meanings, etc., to an imaginary
audience. The magician context was inspired by the Cirque du Soleil spectacle’s Kooza and
comes from the idea that a magician is an artist of misdirection. During a magician perfor-
mance, the entire body is used to both engage, captivate and at the same time mislead the
senses of the spectator [125], [167]. Therefore, we consider it an interesting trial case for the
kind of expressive movements we are interested in and for applying physical theater ideas.

The mime-magician scenario consists of three common and known magic tricks: the dis-
appearing box, pulling a rabbit from a hat, and taking scarves from an empty jacket. Each magic
trick involves three stages:

• Introduction, the magician makes his appearance and introduces himself to the public.

• Preparation, the magician shows to the public each object he is going to use. A box
and a scarf for the first trick, a top hat for the second, and a jacket for the last one. This
stage ends when the magician invokes his magical powers with his wand.

• Results and bowing, the magician shows the result of his trick and makes a bow to the
audience.

Since the whole scenario was conceived to start in any random order, the body motions
of the first and last stages are common to all magic tricks. In the second stage, the mime-
magician uses his body to convey the physical properties of the objects needed for his magic
trick. These movements, also referred as to actions, are different among all three magic
tricks. The proposed scenario has in total three sequences that can be decomposed into 17
individual semantic actions.

The interest of working with three different sequences which have few common mo-
tions between them is two-fold. Since all actors will perform the same scenario for all target
emotional states, we can use them to measure how well the end-effector trajectories motion
model registers the patterns of expressive cues that are common to several actors when en-
acting certain emotions. Cowie et al. [58] argued that expressive cues used to characterize
the motion patterns related with the expression of emotions are also affected by the type of
motion executed by an expresser. Thus, by considering movements not common to all se-
quences, we can get some insight into the suitability of the proposed motion model for the
generation of distinct expressive whole-body motions.

3.3.3 Expressed Emotions and Actors

In general, as showed in Table 3.1, the set of emotions included in the existing expressive
motion corpora corresponds to the basic emotions proposed by Ekman [71]. However, from
a practical point of view, some of these emotional states, e.g., surprise, disgust or fear, are
not suitable for the type of content and scenario we have chosen. We decided to select a sub-
set of emotional states based on the circumplex model of affect proposed by Russell [207]
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instead. Namely, four emotional states: happiness, sadness, stress, and relaxedness were se-
lected based on their activation and valence levels. The goals motivating this choice are: (a)
a more detailed evaluation of the similarities and contrasts between the kinematic patterns
exhibited by the chosen categories, and (b) a more precise measure of the suitability of the
proposed motion model for different emotional states, e.g., we can identify if end-effector
trajectories characterize emotional states opposed on activation and arousal equally well for
example. We also included a fifth state, neutral, so as to define a baseline expression. This
state is associated to the performances in which no emotion was intended and represents the
intersection point between arousal and valence dimensions.

With a scenario and a set of emotional states already defined, the next step is to determine
what kind of expressers should be recorded. There are two main categories: skilled actors
and untrained expressers. The choice between them depends on both the procedure used
for gathering the expressive bodily motions and the content to be recorded [14]. Since our
scenario is based on physical theater and requires expressers to use only their bodies to
convey emotional states and meaning, we require acting skills and a good awareness and
control of the body. Hence, we have narrowed the set of possible expressers to skilled and
experienced actors only.

One of the main concerns when working with skilled actors is that of the naturalness
and spontaneity of the emotionally expressive motions. Researchers fear that acted motions
will be far from natural and thus the observed patterns related to the expression of emotion
will not be of use for real-life applications. However, working with acted motions brings
numerous advantages such as the number of repetitions and variations that can be recorded
for each emotional state, the quality of the recordings, the control of extraneous factors, and
the systematic study of movement-related elements contributing to the expression of emo-
tions [14, 87]. Previous studies on the design of expressive corpora [38, 15] found that the
combination of acting skills and mood induction procedures will induce, at least to a certain
extent, real affect in the actor and facilitate the enacting of emotions. Consequently, the re-
sulting expressive motions are likely to show significant variations closer to naturalistic data
rather than exaggerated prototypical patterns. Hence, by using induction mood procedures
it is possible to achieve a compromise between data naturalness and the advantages of acted
data [58]. For all these reasons, we decided to use both skilled actors and induction mood
procedures during the recording of our MoCap database.

3.4 Building the Corpus of Expressive Theatrical Motions: First
Capture

To produce a high-quality motion capture database that can be used for the analysis and
synthesis of expressive body motions requires of a carefully designed capture protocol. In
this section we review the controlled environment in which the data was gathered as well as
how the recording sessions and elicitation procedure took place.

3.4.1 Technical Setup

The understandability and expressiveness of whole-body motions require accuracy and high
definition in the recording of captured motion. A Qualisys [200] motion capture system com-
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posed of 8 Oqus400 cameras was used. An additional video camera was placed such as to
record the actor’s upper-body. Both the MoCap data and the video recordings were auto-
matically synchronized by the capture software. All full-body actions and hand movements
inside a 2.5m×2m×2m volume were recorded. A total of 64 passive markers were placed on
the body of the actor including 5 markers on each hand and 2 facial markers. The markers on
the hands enabled capturing all the grasping movements involved in a magic performance,
and the facial markers gave a more accurate idea of the direction of the head of the actor. We
used a 200Hz capture frequency to correctly capture hand motion, since this kind of motion
requires a higher accuracy.

3.4.2 Number of Actors and Repetitions

Since the suitability of end-effector trajectories is going to be statistically estimated through
automatic classification, numerous repetitions of each sequence performed by several sub-
jects are needed. Each magic trick was recorded three times per emotional state. In addition,
the most representative actions (8 in total) were selected among the initial 17 (see second col-
umn in Table 3.3). For each selected action, 2 sequences of 5 repetitions per emotional state
were recorded. Actors did not receive instructions on how to express the emotions so as to
avoid prototypes. They were however asked to use only body movements, to always remain
inside the capture volume, and to respect the order of actions within a magic trick sequence.
In this first capture session, two skilled amateur actors, a woman with dance experience and
a man trained in theatrical improvisation were recorded.

We believe that theatrical motions are not only interesting for conveying emotional states,
but are also perceptually perceived as spatially and temporally richer than the human move-
ments found in the existing motion capture databases. In order to validate this hypothesis
we asked our two actors to perform eight additional bodily actions in a neutral emotional
state. These motions were selected after surveying the most recurrent actions among all the
databases surveyed in Section 3.2. Three repetitions for each selected action were recorded.
As result we obtained 123 motion capture files for each actor. Specifically we have:

Emotion
Sequence/Action Type

Magician
sequences

Magician
actions

Daily actions Subtotal

Happiness 18 160 0 178
Neutral 18 160 48 226

Relaxedness 18 160 0 178
Sadness 18 160 0 178
Stress 18 160 0 178

Subtotal 90 800 48 938

Table 3.2: Count of motion sequences and actions in first recording session across emotion
categories (both actors included).
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3.4.3 Emotion Elicitation and Recording Procedure

Each recording session took place as follows: first, a video of each magic trick was presented
to the actors the day before the capture. This made possible for the actors to learn the actions,
perform more fluently and show less hesitation between actions. Second, on the day of the
capture, the actors were asked to perform each magic trick several times before we started
to record. By doing so, we could correct all possible doubts about how each gesture should
be performed. Third, an emotional state was randomly chosen and the emotion elicitation
was done using an imagination mood induction procedure. During the elicitation process,
each actor was instructed to remember an emotional event in their lives that corresponded
to the selected emotion. Actors were then asked to perform the whole scenario, i.e., the 3
sequences plus the 8 individual actions for the elicited state. After all recordings for a given
emotion were captured, a debriefing was done to re-establish the initial emotional state of
the actor. Lastly, actors were asked to perform the common actions in a neutral state.

3.5 A First Evaluation

Three perceptual experiments were performed to validate the suitability of the chosen sce-
nario, and the effectiveness and efficiency of the experimental motion capture protocol de-
scribed above. This first perceptual evaluation gave us an initial idea about the usability of
the produced MoCap data for the analysis and synthesis of expressive body motions. We
were aiming to answer the following questions:

1. Do observers perceive theatrical actions as being more kinematically significant than
more common actions? Do people perceive theatrical movements as motions convey-
ing more information?

2. Can observers associate the spatio-temporal variations introduced through the elicita-
tion of emotional states to one of the five selected emotions? If they can do so, how
expressive do they find the theatrical motions?

3.5.1 Stimuli Creation

For the theatrical scenario, one realization of the eight most significant individual actions and
of two magic tricks were chosen per emotion and per actor. We selected also one realization
for each daily action. Table 3.3 lists the selected stimuli.

All stimuli were played on a stick-like character representation (see Figure 3.1). We chose
this kind of representation as we did not want to convey any additional information about
the avatar’s gender and appearance that might influence the categorization of the selected
emotions. Additionally, previous studies have shown that this type of representation does
not stop observers from perceiving any emotional state at any intensity [7, 172].

For the theatrical and common actions, individual video clips of the same duration (10s)
were created at 25Hz. For the magic trick sequences videos of 42s were produced. The char-
acter was displayed in the center of the screen, facing forward at the beginning of each clip.
Video clips were presented at 1280x1024 resolution. A total of 116 videos were generated.
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Daily actions Theatrical actions Sequences
Lifting Show empty jacket The disappearing box
Waving Take scarves out of jacket Taking scarves from an empty jacket
Kicking Invoke magic with wand
Hand shake Show box disappeared
Walking Cover box
Knocking Invoke magic with hand
Throwing Introduction bow
Punching Final bow

Table 3.3: Motion stimuli used for the first perceptual study

Figure 3.1: Stick-like character representation, marker set and posture examples

3.5.2 Participants and Duration of Each Study

Twenty participants took part in the studies we will detail in the remaining of this section,
a total of 100 different individuals contributed to our experiments. Participants came from
various educational backgrounds and were all naive to the purpose of the experiment. They
only knew they would watch some avatar videos and answer a few questions about what
they perceived from those videos. Detailed information about the gender and age distribu-
tion of each group of participants and the duration of each study are presented in Table 3.4.

Study Gender Mean age Duration
Daily actions vs theatrical motions 11M, 9F 24.0+10.0 15
Individual theater actions (emotions
male actor)

10M, 10F 23.5+6.0 40

Individual theater actions (emotions
female actor)

15M, 5F 23+7.0 40

Magician sequences (emotions male
actor)

13M, 7F 21.6+7.5 15

Magician sequences (emotions female
actor)

13M, 7F 25.0+13.0 15

Table 3.4: Information about each study’s participants and duration in minutes
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3.5.3 First Experiment: Everyday Life Movements vs. Skilled Theatrical Move-
ments

In our first experiment we wished to determine whether observers perceived theatrical
movements as kinematically richer than more common bodily actions. Additionally, we
wished to investigate whether participants regarded theatrical actions as motions convey-
ing more information compared to common actions.

For this study, we presented participants with 32 video clips of 10s duration, depicting 8
daily actions and 8 theatrical movements for each actor. Participants viewed each video clip
in a random order and could play it as many times as they wished. They were asked to rate
on a scale of 1-7 whether the performed action was considered as current, spontaneous and
habitual (1 on the scale) or as skilled, meaningful and elaborated (7 on the scale).

Since the answers of the participants were nominal variables, we did not think the data
fits the assumptions of an ANOVA. Results for this study were analyzed using Kruskal-
Wallis one-way of variance and paired T-Tests for all post-hoc analyses. We found that the
gender of the participants and actors had no effect on the ratings of daily and theatrical ac-
tions. A significant difference (H = 158.5377, 1d. f , p < 0.001) between the mean rank scores
of the two types of actions was found. As we confirmed a significant divergence between
the two categories of gestures, we were then interested in identifying which particular mo-
tions were considered more kinematically significant and conveying more information. The
results of the Kruskal-Wallis test (H = 270.15, 15d. f , p < 0.001) were significant; the mean
ranks scores of 7 of our 8 theatrical gestures were significantly different among the 16 dif-
ferent movements presented to the participants. For common daily actions, we found that
kicking and punching gestures were perceived as the most kinematically significant actions
among the everyday motions. A possible reason for this could be that both actions are con-
sidered more sportive actions than everyday motions, thus a higher kinematic variance can
be attributed to them. Mean rank scores for both categories and for the 16 gestures are shown
in Figure 2.

Figure 3.2: Mean ranks scores for each category and each one of the sixteen presented actions
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3.5.4 Second and Third Experiment: Perception of Emotion in Isolated Actions
and Sequences

In this study, we take into account the fact that emotional states might be expressed dif-
ferently by each subject and that such states might be more easily recognized over longer
stimuli. For this reason, we used 4 separated groups. Two groups rated the emotions of
our male character and female character over the theater individual actions, and the 2 other
groups did the same over the sequences.

We wished to determine whether the 5 emotions portrayed in our theatrical motions
could be recognized among a 6 non-forced-choice list of emotions (the 5 emotions already
listed plus the other option). Additionally, we wished to investigate the intensity with which
each emotion was perceived.

For the individual actions, we presented participants with 8 video clips of 10s, represent-
ing our 8 theatrical actions (see. Table 3.3 for a detailed list) in each one of the 5 emotional
states, where each actions was presented twice. Participants viewed each video clip in a ran-
dom order as many times as they wished and were asked to choose an emotion among the
6 possible options (also randomly presented). They were also asked to rate the intensity of
the selected emotion on a scale from 1 (not intense) to 7 (very intense)

For the magic trick sequences, we followed the same methodology applied in the eval-
uation of individual actions. However instead of using short videos of a unique action, we
presented participants with a whole realization of a magic trick. For this study only the
recordings of the disappearing box and taking scarves from an empty jacket were considered.

Results for these studies were analyzed using standard analysis of variance (ANOVA)
and paired T-Tests for all post-hoc analysis. As done in [75], we calculated and analyzed
the accuracy rate for emotion, i.e., how many stimuli were correctly recognized for each
intended emotion by participant. We found no effect of participants and actors gender on
the accuracy of emotion identification.

For the individual actions experiment we found a main effect of emotion (F =
18.68, 4d. f , p < 0.001). Post-hoc tests showed that the 5 emotional states were recognized
with means ranging from 29% to 64%. The most accurately identified emotions were stress
and sadness. No main effect of actor gender and type of action were found. However, an
interaction between these 2 factors was shown as significant (F = 2.81, 7d. f , p < 0.007).
This interaction might be due to both actors having different acting qualities for each type of
emotion and action.

For the sequences experiment we also found a main effect of emotion (F = 6.04, 4d. f , p <
0.001). Post-hoc tests showed that the 5 emotional states were recognized with means rang-
ing from 40% to 70%. Contrary to the individual actions experiment, in this study par-
ticipants were more accurate in emotion categorization. This could be explained by the
length of the stimuli presented to participants. We found that the most accurately iden-
tified emotional states were stress and sadness, followed by relaxedness, happiness and neu-
tral. As for the individual actions, no main effect for actor gender and action type were
found. However, an interaction between the emotion and actor factors was again observed
(F = 4.75, 4d. f , p < 0.001). We believe this interaction might be due to the acting qualities of
our two actors.

To have a better insight of where the miscategorizations happened, the confusion ma-
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Isolated gestures
Correct answer Relaxedness Happiness Neutral Sadness Stress Other
Relaxedness 29.22% 13.44% 28.13% 14.06% 5% 10.16%
Happiness 16.41% 35.31% 16.72% 2.03% 16.09% 13.44%
Neutral 17.03% 18.44% 38.91% 5% 10.16% 10.47%
Sadness 8.44% 1.56% 15.63% 49.84% 8.91% 15.63%
Stress 2.81% 6.72% 5.47% 2.34% 64.69% 17.97%

Sequences
Correct answer Relaxedness Happiness Neutral Sadness Stress Other
Relaxedness 50.63% 10% 13.13% 11.88% 4.38% 10%
Happiness 11.88% 52.50% 13.75% 1.25% 13.75% 6.88%
Neutral 20% 19.38% 40% 3.13% 7.5% 10%
Sadness 11.88% 1.88% 13.75% 53.13% 1.88% 17.50%
Stress 8.13% 7.50% 6.88% 2.50% 70.63% 4.38%

Table 3.5: Confusion matrices for first perceptual study.

trices of both studies is shown in Table 3. For both studies, the accuracy rate of the par-
ticipants is above chance (20%) and the results obtained for neutral and sadness emotional
states are consistent with previous works [75, 271]. Additionally, stress, an emotional state
that is not frequently used, has the highest recognition rate. However, the happiness and
relaxedness emotional states were frequently misclassified between them or with the neutral
state. We think possible reasons for this could be the proximity of these 3 emotional states
in the circumplex model [207], the utilization of actions whose sole purpose is not to convey
emotional cues, and confusions in the actors interpretation of the target emotional state. Fur-
thermore, as we are using motions that are already spatially and temporally rich, we think it
is also possible that the variations added by those 3 emotional states were perceived by the
participants as indistinct.

To identify possible significant differences in the intensity of the emotional states,
Kruskal-Willis tests were applied. We found no difference between the emotional intensities
portrayed for both actors and for each action or sequence. For both studies, the emotions
rated as the most intense are those the most accurately categorized (H = 30.82, 4d. f , p <
0.001 for the individual actions and H = 14.09, 4d. f , p < 0.001 for the sequences).

3.5.5 Discussion

We have proposed a new motion capture corpus composed of 17 theater-inspired actions, in
the context of a mime-magician performance, into which emotional variations were added.
Three perceptual studies were conducted in order to validate the suitability and usability of
this new MoCap database as well as the relevance of the capture protocol. We found that
theatrical bodily actions can be globally considered more skilled, meaningful and elabo-
rated movements compared to more common daily actions. We also established that for the
selected theatrical scenario, emotional states can be successfully elicited in the laboratory
setting, and most importantly that our recognition results are significantly close to those
of previous studies in which archetype emotion portrayals and more complete visual clues
were used [172]. However, this first perceptual study also points out some shortcomings on
the recording protocol and the definition and elicitation of the intended emotional states.
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First, when comparing the recognition rates between individual actions and sequences
we find that observers were in general less accurate when presented with short individual
actions. They also showed much more uncertainty if we consider the percentage of stimuli
rated as belonging to other emotional states. Discussions with the observers posterior to
the study pointed us to the fact that isolating actions from a scenario defined in term of
long sequences removes important context information. It seems that since the observers
could not place the meaning of the individual actions, they found harder to perceive the
emotional states conveyed through them. Additionally, since actors were asked to make
pauses between each repetition of an individual action, it is possible that they were not able
to sustain and enact the same emotional state with the same fluidity and intensity as they
did for the magician sequences.

Second, a deeper analysis of the misclassification rates showed that, independently of
the type of stimuli (e.g., actions or sequences), raters had more difficulties perceiving the nu-
ances differentiating the happiness, relaxedness and neutral states between them. We observe
also that sadness, an emotional state that is frequently reported as one of the best recognized
from whole-body stimuli [7, 197], was often labeled as depicting other, non-listed, emotional
state. Since actors were only asked to remember a past-experience in which they felt sad or
happy for example, it is possible that some ambiguities on the interpretation of the intended
emotional state appeared. It is likely that by better describing and contextualizing each in-
tended emotion, through short scenarios for example, actors will be able to enact the kind of
nuances we wish to study.

Finally, this first evaluation showed that theater-inspired motions seem to be perceived
differently and as kinematically richer than other more common body motions. However,
we still do not know if emotions are conveyed more clearly through this kind of motions.
Depictions of emotional states thorough more common actions such as walking are needed
in order to assess if there is any difference on the perception of emotions from theatrical
motions. Additionally, since we have only recorded two actors, it is not possible to determine
the influence in the perception of the expressiveness of theatrical motions of factors such as
acting skills, gender and personal style. For all these reasons, we decided to carry a second
set of recordings in which the number of actors was increased and more common bodily
motions were added.

3.6 Extending the Corpus with New Actors and Sequences

To validate the motion model proposed in this thesis through automatic classification of af-
fect supposes to have a sufficiently large learning dataset at disposition. This dataset should
not only provide observations of the type of phenomenon we expect the classifier to discrim-
inate, but also contain a wide range of non-emotion related conditions in which the general-
ization of the end-effector trajectories can be easily tested. For instance, we are interested in
observing how this motion parameterization behaves with elements that might influence the
expressive content of body motions such as different types of actions/motor behaviors and
subject-dependent properties, including identity, gender and expressive capabilities. Taking
this into consideration and in the light of the aforementioned shortcomings, we introduced
two main changes in our recording protocol:

1. In addition to the three sequences already defined in the magician scenario, we de-
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cided to include one walk motion at least one minute long and a short improvisation
sketch freely chosen by each actor. The former will allow us to compare our results to
previous work, since locomotion, in particular walking, has been extensively studied
in both perception and automatic recognition of affect/emotions. The latter sequence
will provide us with measurements about the end-effector trajectories behavior on con-
siderably different movement behaviors. Combined, we can use them to evaluate the
expressiveness of the actors and the benefits of using motions inspired by theatrical
scenarios.

2. Five additional actors (two females and three males, ranging in age from 38 to 54)
were asked to perform the five motion sequences already defined. Once again, actors
were asked to convey both emotions and meaning solely through body motions. To
facilitate the enacting of all emotions during the sequences, a combined induced mood
procedure was defined. We used a story-based and imagination-based mood induc-
tion procedures. Five short stories related to the magician scenario were created (listed
in Appendix A). The stories were used to better contextualize and reduce ambiguity
on actors understanding of each intended emotion. The intent behind the imagina-
tion mood induction procedure was to facilitate the enacting of the target emotion all
along the scenario, i.e., the magician sequences, the walk motion and the improvisation
sketch.

Each actor came separately for a unique motion capture session. All actor’s motions
were recorded at a rate of 200 frames per second with a Qualysis motion capture system
[200] consisting of nine cameras. Actors wore a manually defined marker-set containing
a total of seventy-five passive markers. Each motion capture session took approximately
four hours. For each actor, we recorded three repetitions of each magician sequence, one
example of the walking motion, and one repetition of the improvisation sketch for each
emotional state. We recorded a total of 275 motion sequences, with 55 motions for each
actor and for each emotional state. For a more detailed description of the motion capture
database content see Table 3.6. The duration of motion sequence is variable and depends
on the type of sequence, the expressed motion and the actor. Motion sequences have an
average duration of 35± 12 seconds. After the collection of the motion capture data, all gaps
in the marker trajectories – caused either by occlusion or by going pass the capture volume
– were filled using a combination of the reconstruction procedure described in [182] and
classic spatio-temporal interpolation.

3.7 Second User Study

Previous studies confirm that an average human can recognize the affective content – more
precisely the emotional states – conveyed by someone else’s body motion with high accuracy,
even when impoverished stimuli are used. However, most of these studies have focused
on gait motion, dance and/or musical performances, portrayed representations, co-verbal
gestures, and everyday actions.

There are noticeable differences between the nature of the body motions we present in
this thesis and those that are commonly used in the computer animation and affective com-
puting fields. Since expressive bodily motions are highly subjective, it is necessary to quali-
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Emotion
Sequence Type

Magician scenario Walk motion Improvisation Subtotal
Happy 45 5 5 55
Neutral 45 5 5 55
Relaxed 45 5 5 55

Sad 45 5 5 55
Stressed 45 5 5 55
Subtotal 225 25 25 275

Table 3.6: Count of motion sequences in database across emotion categories and type of
sequence

tatively validate whether the extended version of our database: (a) contains actual examples
of expressive bodily movements, and (b) can be used for investigating and building motion
models capable of generating equally expressive bodily motions. For this purpose, we de-
signed and conducted a second user study that not only determined the expressiveness of
the sequences in the databases, but also provided us with a basis for accuracy comparison
against automatic affect classification models. Furthermore, the aforementioned perceptual
evaluation was also used to qualitatively measure the impact of displaying only the infor-
mation carried by end-effectors and pelvis trajectories on the perception of the intended
emotions.

3.7.1 Motion Sequence Representation and Stimuli

Since the movement of the body joints recurrently employed when recording whole-body
actions can not be directly measured, each posture in our database is initially represented
as a vector V ∈ R3×m of 3D Cartesian positions, with m = 72 being the number of passive
markers used during the MoCap recording sessions. Nonetheless, since at least two passive
markers were placed near each one of the body joints of interest, it is possible to obtain a
simpler and more concise representation from each posture V.

Accordingly, we now describe a motion, M = (X1, X2, ..., XT), as a sequence of T pos-
tures, where Xt ∈ R3×n with 1 ≤ t ≤ T corresponds to the simplified skeletal representation
computed from V. This skeletal representation consists of n = 27 body joints whose 3D
Cartesian positions are approximated by the average position across all markers placed at
immediate proximity of the target joints. For example, the position of the knee joint corre-
sponds to the average of the two passive markers placed at each side of the Tibia’s proximal
end. Figure 3.3 shows both representations, the original and the resulting posture, V and X.

One of the main contribution of this thesis is a motion model for the synthesis of ex-
pressive bodily motions that is based only on a subset of manually selected body joints, i.e.,
end-effectors and pelvis trajectories. In order to perceptually evaluate the proposed model,
two possible body-representation stimuli were defined:

• A full-body stimuli based on skeletal representation X (see image on the right in Fig-
ure 3.3), hereinafter called whole body representation.
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Figure 3.3: Body representations. Left image corresponds to marker-set used during the
second motion capture sessions (called posture V). Right image corresponds to the skeletal
representation (called posture X) computed from V.

• A partial-body stimuli Z ∈ R3×6, with Z ⊂ X, also referred to as end-effectors rep-
resentation, in which only the trajectories of a subset of six body joints consisting of
head, hands, feet and pelvis trajectories were shown (see Figure 3.4).

Figure 3.4: Partial body representation Z. Only the 3-dimensional trajectories of head, hands,
feet, and pelvis joint are considered.
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3.7.2 User Study Design

To correctly assess the relationship between body representation and participants’ accuracy
rates, both stimuli were evaluated separately. More precisely, participants were randomly as-
signed to either the whole-body or the partial-body condition. In this way, we discarded any
possible carry-over effect between representations and guaranteed that participants would
remain naive to one of the main purposes of the study.

Although participants would rate motion sequences for only one body-representation
stimuli, watching and evaluating all motion sequences in the database would have required
at minimum two and a half hours (275 videos with an average duration of 35 s.) non-stop.
Hence, to avoid the effects of boredom and fatigue in participants, the number of sequences
to evaluate was reduced to 125. Only one repetition for each one of the 5 sequence examples
in the database was considered by actor and emotion (5 sequences × 5 emotions × 5 actors
= 125). The selected sequences were then randomly assigned to one of five groups. The
assignment was done so that each participant rated 25 sequences in total and all emotions
were depicted in each group. Since participants’ accuracy rates would be later compared to
those reported by an affect automatic classifier, we decided to add two additional constraints
to the random assignment of the selected sequences into groups. Each group would include
at least two different sequences and two actors. In this way, the conditions under which the
classifier and participants accuracies would be compared were, to some extent, analogous.
With these additional constraints each participant rated 5 sequences for each emotional state.
Table 3.7 shows a detailed description of the 5 groups.

Video clips at 30 fps were created for each selected sequences; one for each body rep-
resentation. For each video clip, the character representation was placed at the center of a
3D virtual space and facing the virtual camera at approximately 45◦. For the partial-body
stimuli, we displayed the 3D position of the selected joints along with the trace of their re-
spective trajectories as shown in Figure 3.4. Although technically we defined 5 groups, we
had 10 groups in total. For each group listed in Table 3.7, we created two further subgroups:
one containing the full-body stimuli only and another for the partial-body representation.

Group Actors and
Sequences

Emotions Total trials

A GR: 1, 3, 4
GA: 1, 3

All 25

B GR: 2, 5
GA: 2, 4, 5

All 25

C PP: 1, 2
SLM: 1, 2, 5

All 25

D PP: 3, 4, 5
SLM: 3, 4

All 25

E LC: 1-5 All 25

Table 3.7: Groups used during perceptual evaluation. Actors and sequences were randomly
assigned to each group. Sequences and actors are identified as follow: magician sequences
(1-3), walking motion (4), improvisation (5), females actors (GR, SLM), and male actors (GA,
LC, PP).
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A total of 200 participants, 98 women and 102 men, ranging in age from 21 and 75, were
recruited through Amazon Mechanical Turk (MTuk) service [55]. They were randomly as-
signed to one of the ten groups. The same participant could no rate the sequences of more
than one group. We had 20 participants by group.

Before starting the experiment, participants were presented with a general description of
the task they would perform. They were informed that each video clip depicted the body
movement performed by an actor under different emotional states. They were also told
that for each video clip they would be asked to answer four questions about the expressive
content and the motion qualities they perceived in the actor’s movement. The questions they
were asked to answer for each video clip are:

1. "Which of the five (5) listed emotions do you think is conveyed through the motion?" A forced-
choice question was used since we were only interested in assessing whether the se-
quences in the database effectively conveyed the target emotions.

2. "How deeply does the motion express the emotion?" Participants were asked to rate the
intensity of the emotion on a scale from 1 (very lightly) to 7 (very deeply).

3. "How do you qualify the emotion conveyed in the video?" Participants were asked to rate
the arousal and valence components of the emotion perceived for each movement on
a scale from 1 (lethargic/negative) to 7 (energetic/positive).

4. "How difficult was to rate this motion?" Using a 7-point scale, participants rated how dif-
ficult it had been to estimate both the emotion and motion qualities from the observed
sequence. This question provided an additional measure of the expressive quality of
the motions in the database as well as of the information that might have been lost
with the partial-body stimuli.

The user study consisted of two stages. First, during the training stage, participants were
presented with one video clip, different from those being later evaluated, for each emotional
state. The aim of this stage was to allow the participants to familiarize with the type of
representation they would rate as well as with the questions and the course of the exercise.
Second, during the testing stage, participants were presented with the 25 video clips they
would rate. For both stages, the video clips were presented in random order. Participants
could watch each video clip as many times as they wished. However, once they moved
forward to the next video clip, they could not longer go back and change their answers. The
exercise took in average between 20 and 40 minutes.

3.7.3 Improving Data Quality Through Outliers Detection

One of the main concerns when using crowd-sourcing services such as Amazon Mechanical
Turk is how to ensure the quality of the answers submitted by the participants. Since the
participants are not longer in a controlled environment and within the reach of the experi-
menter, it becomes harder to ensure that the participants understand the task they are asked
to accomplish and that they do it with the care, diligence and seriousness expected by the
experimenter [265].

Several strategies have been adopted in order to evaluate the quality of the answers sub-
mitted by MTurk workers as well as to guarantee, to some extent, that all participants follow
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and perform the study as the experimenter expect them to do. The most common and popu-
lar strategy are catch trails. That is, questions with obvious answers are presented at specific
points during the perceptual study. Since they are simple questions, any participant should
be able to answer them correctly. If the participants fail to answer them, we can assume
they were not paying attention to the questions or answering them randomly, thus we can
discard their answers from the study’s results [190]. However, a recent study showed that
catch trials questions can influence participants answers and change the manner in which
they approach the task [111]. Hauser et al. [111] found that when exposed to catch trials, par-
ticipants change their response behavior to a more systematic thinking approach in order to
not be tricked again. Since the aim of this user study was to find how well the actors’ mo-
tions conveyed the elicited emotional states, rather than how well participants could answer
our questions, we decided to favor spontaneous answers. Hence, we adopted a different ap-
proach in order to evaluate and ensure the quality of the answers used later on our analysis.

Feng and colleagues [81] suggested to use inter-rater agreement measures to automat-
ically detect outlier participants and improve the general quality of the collected answers.
Once all agreement coefficients have been computed, the authors proposed to identify which
participants are outliers through the analysis of the empirical distribution of the agreement
scores. We adopted a modified version of this approach. More precisely, outliers are iden-
tified using the Tukey’s method [243]. That is, all participants whose agreement score lie
outside a determined interval are considered as outliers. The exact outlier detection algo-
rithm is presented below:

Data: Ag: Answers of participants in group g, Pg: List of participants in group g
Result: Og, set of outliers in group g
for vp ∈ Ag do // Answers given by participant p

Define Vg as the majority vote answers of Ag\{p};
Compute and store kappap(vp, Vg) // Cohen’s kappa coefficient between vp and Vg ;

end
Compute first, Q1, and third, Q3, quantiles for all kappa coefficients of group g;
/* Tukey’s method */

Define accepted interval I = [(Q1)− k× (Q3 −Q1), (Q3) + k× (Q3 −Q1)], k = 1.5 ;
Define Og = {} as set of outliers in group g;
for p ∈ Pg do // Each participant p in Pg

if kappap not in I then
/* Add p to O */

O = O ∪ {p};
end

end
Algorithm 1: Algorithm used to detect outliers among all participants in user study.

The outlier detection algorithm was applied to each one of the ten groups (see Table 3.7)
used during the perceptual evaluation. Among 200 participants who took part of the study,
a total of 10 were estimated as outliers by Algorithm 1; one for each group. Hence, the results
presented in the next section were computed using the answers of 190 participants.
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3.8 Second Evaluation Results

In this section we review and analyze the results obtained for the second user study in which
we evaluated the extension of our MoCap database. We also present and discuss how par-
ticipants performed when presented with end-effector trajectories only.

3.8.1 Analysis of Participants’ Emotion Predictions

We start by analyzing the effect of intended emotions, also referred as to true label, on par-
ticipant predictions 1. That is, given all the predictions of type l̂, for l̂ ∈ {neutral, sadness,
happiness, stress, relaxedness}, we compute and analyze the proportion of predictions asso-
ciated to each one of the intended emotions for each participant. This first analysis shows us
whether emotions were unambiguously recognized as well as where misjudgments might
have happened. We analyzed separately each representation.

Bar charts of the predictions of neutral, sadness, happiness, stress and relaxedness for
each intended emotion, averaged over the participants, are shown in Figure 3.5 for whole-
body stimuli and Figure 3.6 for partial-body, i.e., end-effector trajectories, stimuli. Two sets
of five one-way repeated measures ANOVA were performed, one set for type of stimuli.
Each one of the ANOVA analysis tested the main effect of intended emotions on the par-
ticipant’s predictions. That is, for example, whether most of the happiness predictions were
indeed associated to stimuli whose intended emotion was happiness.

We evaluated the following null hypothesis:

H0(l̂): The means of the participants’ predictions of label l̂ for different intended emotions are
equal. For l̂ ∈ {neutral, sadness, happiness, stress, relaxedness}.

Table 3.8 show the resulting F-statistics, p-values and effect sizes (η2). At first glance,
we note that all ANOVAs analysis showed a significant difference between the proportion
of predictions associated to each intended emotion since all p-values are below the level of
significance we established, α = 0.05. We also observe that according to the interpretation of
effect sizes2 suggested by [54] and summarized in [140], in most of the cases, the intended
emotion had a large effect, i.e., η2 > 0.26 on the participants predictions l̂. Hence, we can
reject the null hypothesis H0(l̂) for both type of stimuli.

1By predictions we make reference to the emotion label selected for each one of the videos rated by a partici-
pant.

2Small effect: 0.01 ≤ η2 < 0.06, medium effect: 0.06 ≤ η2 < 0.14 and large effect: η2 ≥ 0.14.
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(a) Proportions of Neutral answers by
intended emotions.
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(b) Proportions of Sadness answers by
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(c) Proportions of Happiness answers by
intended emotions.
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(d) Proportions of Stress answers by
intended emotions.
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(e) Proportions of Relaxedness answers by
intended emotions.

Figure 3.5: Proportion of answers obtained for each emotional state for whole-body representation.
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Predictions(l̂): Neutral Sadness Happiness Stress Relaxedness

H0(l̂) whole
body

F(4, 376) = 14.569 71.033 95.959 43.523 22.043
p-value = < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
η2 = 0.349 0.658 0.702 0.579 0.491

H0(l̂) partial
body

F(4, 376) = 4.350 14.213 38.364 17.771 29.251
p-value = 0.001 < 0.001 < 0.001 < 0.001 < 0.001
η2 = 0.184 0.429 0.594 0.405 0.603

Table 3.8: F-statistics3, p-values and effect size (η2) results from one-way repeated mea-
sures ANOVA’s for main effect of intended emotion. Both representations are consid-
ered. Greenhouse-Geisser correction was used when sphericity assumption was violated.
P-values indicating a significant difference at level of significance α = 0.05 are highlighted.

We performed Tukey-HSD post-hoc test with Bonferroni corrections in order to identify
the significant differences from the ANOVA’s tests. Results are presented in Figure 3.5 for
whole-body stimuli and Figure 3.6 for partial-body, i.e., end-effector trajectories, stimuli. The
labels above each bar indicate the levels of significance at which the differences among the
average predictions for each intended emotion are statistically important. Labels should be
interpreted as follows:

Label Interpretation
**** p-value < 0.0001
*** p-value < 0.001
** p-value < 0.01
* p-value < 0.05

ns
p-value > 0.05 (No significant
difference)

Table 3.9: Equivalence of labels used from Figure 3.5 to Figure 3.9 to indicate statistically
significant differences.

For whole-body stimuli, we find that the highest percentage of happiness, sadness and
stress predictions are significantly different at p < 0.0001 and indeed associated to vi-
sual stimuli conveying happiness, sadness and stress respectively. We also observe that most
misjudgments happened between stimuli conveying emotional states that share the same
arousal levels. More precisely, both Figures 3.5c and 3.5d show that among all intended
emotions, stimuli conveying stress were more frequently labeled as happiness and conversely
stimuli depicting happiness were more often judged as conveying stress. A similar tendency
is observed between sadness and relaxedness. However, we also find that these two emotional
states are often judged as neutral, that is, as conveying no emotion.

3Since we have 5 emotional states and 95 subjects for each representation (i.e., full-body or partial-body),
the degrees of freedom of the F-statistics presented here correspond to: d femotion = 5 − 1 = 4 and d ferror =
(5− 1)(95− 1) = 376.



3.8
–

Second
Evaluation

R
esults

47

Neu
tra

l

Sad
ne

ss

Hap
pin

es
s

Stre
ss

Rela
xe

dn
es

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ns

w
er

pr
op

or
tio

ns

ns

*

ns ns
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(c) Proportions of Happiness answers by
intended emotions.

Neu
tra

l

Sad
ne

ss

Hap
pin

es
s

Stre
ss

Rela
xe

dn
es

s
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ns

w
er

pr
op

or
tio

ns

****

****

ns

****

(d) Proportions of Stress answers by
intended emotions.
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(e) Proportions of Relaxedness answers by
intended emotions.

Figure 3.6: Proportion of answers obtained for each emotional state for partial body (end-effectors and pelvis trajectories) represen-
tation.
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In particular, both Figures 3.5a and 3.5e show that there is no statistically significant
difference between the number of relaxedness predictions associated to stimuli conveying a
neutral or relaxedness state, and vice-versa. Our hypothesis regarding this finding is that as
suggested by [205], speed plays a significant role on emotion classification and stimuli con-
veying either sadness, relaxedness or a neutral emotional states were, from a visual perspective,
often matched on speed, hence making their discrimination from body motion only much
more difficult. Coupled with the similarities in speed profiles, it is also possible that our ac-
tors did not generated equally recognizable and emotionally expressive body movements for
these three emotional states, which resulted in very different stimuli belonging to the same
target emotion. Unfortunately, because of the manner in which our study was designed,
we can not determine if actors played a substantial role in the observer’s misjudgments,
sometimes exceeding the effect of intended emotions.

The results obtained from the evaluations of partial-body stimuli, i.e., end-effector tra-
jectories show, to some extent, a similar tendency. We observe that the highest percentage
of happiness, sadness and stress predictions are associated with stimuli depicting these three
emotional states. However, it seems that participants were much more prone to errors in
their predictions when presented with end-effector trajectories alone. For example, we can
see that although they accurately identified a higher activation on stimuli depicting stress
with respect to low activation emotional states (sadness and relaxedness for instances), they
could not correctly predict the difference between happiness and stress (see Figure 3.6c) along
the pleasantness axis. Similarly, relaxedness predictions were frequently attributed to the sad-
ness emotional states (see Figure 3.6e). This suggests that representations of end-effector tra-
jectories alone hindered the participant’s capacity to accurately judge differences along the
valence axis. Hence, it is possible that motions cues necessary for the distinction between
possive and negative emotional states might not be longer present in our partial-body stim-
uli. Lastly, in the case of neutral predictions, results shown in Figure 3.6a suggest that partic-
ipants were merely guessing most of the time and could not categorized the particularities
of neutral expressions with respect to other intended emotions.

3.8.2 The Effect of Representation and Emotion on Participants’ Ratings

The main and interaction effects of motion representation, i.e., whole-body or partial-body
stimuli, and intended emotion on the perception of emotionally expressive body movements
were evaluated using mixed two-way repeated measures ANOVA. Since each participant
only rated the videos belonging to one of the two possible motion representations, we de-
fined representation as a between-subject factor and intended emotion as a within-subject factor.
Five ANOVA’s tests were performed on the average accuracy, intensity, valence, arousal and
difficulty ratings reported by participants. Using the notation proposed by [211], we list
below the null hypotheses evaluated in this user study:

H0(1, i): The means of the participants’ ratings of i for whole-body and end-effector trajectories
stimuli are equal.

H0(2, i): The means of the participants’ ratings of i for the different intended emotions are
equal.
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H0(3, i): Representation type and intended emotion are independent factors and no interaction
between the two is present on the participants’ ratings of i.

With i = {accuracy, intensity, valence, arousal, difficulty}. Table 3.10 list the resulting F-
statistics (degrees of freedom are explained in the corresponding footnote), p-values and
effect sizes (η2). Effects and interactions were evaluated at a significant level of α = 0.05.

Ratings(i): Accuracy Intensity Valence Arousal Difficulty

Representation
H0(1, i)

F(1, 188)= 54.308 0.9157 2.477 29.732 1.028
p-value = < 0.001 0.339 0.117 < 0.001 0.311
η2 = 0.224 0.005 0.013 0.136 0.005

Intended emotion
H0(2, i)

F(4, 752) = 34.918 19.553 71.452 193.713 16.298
p-value = <0.001 < 0.001 < 0.001 < 0.001 < 0.001
η2 = 0.406 0.293 0.502 0.713 0.201

Intended emotion ×
representation
H0(3, i)

F(4, 752) = 2.951 2.181 14.16 12.981 2.545
p-value = 0.019 0.069 < 0.001 < 0.001 0.045
η2 = 0.061 0.045 0.175 0.136 0.059

Table 3.10: F-statistics4, p-values and effect size (η2) results from two-way repeated mea-
sures ANOVA’s for main effect of intended emotion and representation. Greenhouse-Geisser
correction was used when sphericity assumption was violated. P-values indicating a signif-
icant difference at level of α = 0.05 are highlighted.

Representation and Interactions

Contrary to what was expected, we observe that representation, i.e., whole-body or end-
effector trajectory stimuli, has a significant effect only on accuracy and arousal ratings.
Hence, we can only reject the null hypotheses H0(1, accuracy) and H0(1, arousal). We ob-
serve also that the main effect of representation is large on participant’s accuracy (η2 > 0.16)
but medium (0.06 < η2 < 0.16) on arousal ratings. In the one hand, the large effect on
accuracy indicates that the visual stimuli presented to the observers was crucial for their
perception of expressive movements and emotions. In the other hand, the medium effect
on arousal ratings suggests that representation alone can not account for all the variability
observed on the perception of the activation and kinematic patterns of our expressive mo-
tions. To further analyze and identify the significant differences detected by the ANOVA
tests, we applied once again Tukey-HSD paired tests with Bonferroni correction on accuracy
and arousal ratings.

In the case of participants’ accuracy, the main differences are observed on the perception
of motions depicting sadness, happiness, and the neutral state. As showed in Figure 3.7a, we
find that the recognition rates of these three emotional states decreased between the two
types of representations. This effect is much more significant for sad movements and for the

4Knowing that the answers of 190 subjects were analyzed, the degrees of freedom of these F-statistics are:
a.) representation is a between-subjects factor with 2 levels (i.e., whole body or partial body): d frepresentation =
2− 1 = 1 and d ferror1 = 190− 2 = 188, b.) intended emotion is a within-subjects factor with 5 levels (i.e., neutral,
happiness, etc.): d femotion = 5− 1 = 4 and d ferror2 = d femotion × d ferror1 = 752, and c.) the interaction between
these two factors: d finteraction = d frepresentation × d femotions = 4 and d ferror2 = 752.
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neutral state. The former showed a loss of accuracy of approximately 20%, while the latter
was not longer recognized above chance level for the end-effector trajectories stimuli. Hap-
piness accuracy also decreased, but it remained the best recognized emotional state among
participants. Conversely, arousal ratings for partial-body stimuli (i.e., end-effector trajecto-
ries) showed an increase for the neutral, sadness and relaxedness emotional states with respect
to whole-body representations. Arousal ratings for happiness and stress remained the same
across the two type of representations, indicating that emotional states characterized by low-
activation seem to be perceived as more energetic when representations with reduced body
information are employed.

Although ANOVA tests reported that representation only had a significant effect on accu-
racy and arousal ratings, we find that interactions between this factor and intended emotion
were tested as statistically significant at p<0.05 for four of the five dependent variables we
analyze. Thus, we reject the following null hypotheses: H0(3, accuracy), H0(3, valence),
H0(3, arousal), and H0(3, di f f iculty). This interaction registered, in average, a medium ef-
fect size (η2 ≈ 0.107), indicating that the interplay between the type of representation and
the intended emotion is responsible for approximately 10% of the variability observed on
participants’ perception of expressive bodily emotions. Since the effects of this interaction
on accuracy and arousal ratings were already discussed, we focus hereinafter on the analysis
of valence and difficulty ratings.

Follow-up post-hoc paired Tukey-HSD tests with Bonferroni corrections on valence rat-
ings over emotion and representation reported statistically significant differences (p<0.01)
between the average valence rating of sadness and happiness (see Figure3.7c). We find that va-
lence ratings of motions depicting happiness registered a significant decrease between whole-
body and end-effector trajectories stimuli. Conversely, sadness motions were rated with a
higher valence level when depicted through end-effector trajectories. Since observers were
much more accurate on the recognition of these two emotional states (see Figure 3.7a) than
for the other intended emotions, it is likely that their perception of the differences between
them was considerably impaired by the change of representation. Hence, when presented
with end-effector trajectories alone, participants were less accurate on the perception of both
happiness and sadness as well as on their judgments about the pleasantness level associated
to these two emotions. This claim is supported by the absence of significant differences be-
tween the valence ratings of neutral, stress and relaxedness emotional states for both stimuli.
Namely, it seems that participants could not accurately decode the nuances, along the va-
lence axis, necessary to distinguish between these three emotional states and resorted to rate
them equally for both stimuli as can be seen in Figure 3.7c.

Although an ANOVA test indicated a significant interaction between the type of repre-
sentation and intended emotion on difficulty ratings, pairwise post-hoc tests found no sig-
nificant differences (p>0.05). Contrary to what was expected, the perception of emotionally
expressive body motions was rated as equally difficult for both representations and all emo-
tional states (see Figure 3.7e). Given the decrease on observers’ accuracy when presented
with end-effector trajectories, we expected higher difficulty values for this type of represen-
tation over all emotional states. After looking at the effect sizes reported for representation,
intended emotions, and their interaction on difficulty ratings (last column of Table 3.10), we
can see that these three factors combined account only for approximately 21% of the vari-
ability in the participants’ difficulty assessments.
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Figure 3.7: Mixed two-way ANOVA (intended emotion, representation) accuracy and other ratings for all participants. Significant
differences were labeled following the convention listed in Table 3.9.
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This indicates that other factors not considered during the ANOVA test (e.g., actors ex-
pressiveness, type of motions, errors in decoding emotions by participants [101]) might need
to be analyzed in order to understand and explain the variability observed on participants’
difficulty ratings.

Intended Emotion

Intended emotion has a significant effect on the participants’ perception of expressive move-
ments for all ratings i. Hence, we reject the null hypotheses H0(1, i) for all dependent vari-
ables. Similarly, the main effect of intended emotion is large (η2 > 0.16) in all cases, indicat-
ing that the conveyed emotion was a critical factor on participants’ accuracy and ratings on
intensity, difficulty, arousal and valence for all visual stimuli.

Follow-up post-hoc analysis show that accuracy for all emotional states is above chance
level (20%) for whole-body stimuli. However, only four of the five emotional states reported
recognition rates superior to chance for the end-effector trajectories stimuli. Significant pair-
wise differences between participants’ accuracy were found at a Bonferroni corrected signif-
icant level of p < 0.01 for most of the intended emotions. We observe for instance that for
both representations, happiness registered the highest accuracy rate followed, in no particular
order, by sadness and stress. No significant difference (p>0.05) between the accuracy rates of
relaxedness and the neutral state were found for both representations. This suggests that ob-
servers found the same difficulties when trying to distinguish stimuli conveying these two
emotional states from each other. A closer look at the proportion of stimuli labeled as either
relaxedness or neutral (see Figures 3.5a and 3.5e for body representation, and Figures 3.6a and
3.6e for end-effector trajectories representation) show this is indeed the case. In other words,
the accuracy and misclassification rates for these two emotional states are significantly close.

The pairwise differences on intensity ratings with respect to the intended emotion were
found to be only significant (p < 0.05) for happiness and sadness on whole-body stimuli,
and for happiness alone on end-effector trajectories. This indicates, as found in a previous
study [75], that the body movements perceived as being the most expressive are the more
easily recognized. This claim might explain why no significant differences on intensity rat-
ings (p>0.05) were found for the emotional states the less accurately recognized (stress, neu-
tral and relaxedness). We highlight that neither the type of representation or the interaction
between this factor and intended emotion were found statistically significant for intensity
ratings. This suggests that both the changes on participants’ accuracy and the inexistent
difference between the intensity ratings for both representations might be due to errors and
discrepancies in the manner in which our actors encoded the different intended emotions
through their movements.

A similar pattern was observed on the pairwise differences of valence ratings. For whole-
body stimuli, we observe that both happy and sad movements have valence ratings signifi-
cantly different (p<0.001) from each other and from the other intended emotions. This might
be due to the fact that both happiness and sadness were more accurately recognized than
other emotional states, making their assessment along the valence much easier and accu-
rate for participants. No significant difference between the ratings of neutral, relaxedness and
stress were observed. For partial-body stimuli, i.e., end-effector trajectories, only two pair-
wise differences were found as significant (p<0.001): happiness-sadness and happiness-stress.
It seems that most of the cues used by our observers to assess valence ratings from emotion-
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ally expressive body motions are not longer present or encoded in a visual representation
containing only end-effector trajectories.

Pairwise differences on difficulty ratings were only significant (p<0.01) for the emotional
states the best recognized. More precisely, we observe that difficulty ratings for happiness and
sadness were substantially smaller than those of the other intended emotions for the whole-
body representation. Similarly, we find that when presented with end-effector trajectories
only, participants frequently (p<0.001) judged the perception of motions depicting happiness
as less difficult than for the other intended emotions. This indicates that the more recogniz-
able the expressive motions, the smaller the difficulty rating participants would attribute to
it.

Post-hoc analysis of arousal ratings with respect to the intended emotion showed that
for whole-body stimuli there are significant differences (p<0.0001) for almost all pairwise
comparisons. This result is consistent with the findings reported by [197], which indicates
that there is a direct relation between the corresponding activation of perceived emotional
states and the kinematic information observed on body motions. Additionally, we find that
there is no notable difference between the arousal ratings of neutral and relaxedness emotional
states. This result support our claim about the reasons behind the confusion in the perception
of these two emotional states. That is, since neutral and relaxed motions are kinematically
very similar, it is both hard to distinguish, and to perceive and rate the subtle differences of
activation between them. In the case of end-effector trajectories, we find that the pairwise
differences on arousal ratings follow the same pattern than those on participants’ accuracy
rates. Namely, arousal ratings for happiness and sadness are significantly different (p<0.0001)
in the light of other emotional states. However, it seems that most of the confusions on
participants’ perceptions of the intended emotions are due to ambiguities on arousal ratings.
In particular we found that our observers did not perceive differences between the activation
levels of the following pairs: neutral-relaxedness, neutral-stress and relaxedness-stress.

3.8.3 The Effect of Gender

In Section 3.8.2 it was mentioned that although representation and emotion explained a con-
siderable portion of the variability observed in the participants’ perception and ratings of
expressive movements, there might be additional factors having an influence in our results.
A recent study found that women and men perceive affective movements differently. Males
surpass women on the recognition of happy actions, whereas females are better at perceiving
hostile and non-expressive actions [227]. Hence, we decided to investigate the effect of gen-
der on the perception of intended emotions for the two types of visual stimuli used in this
study. In order to simplify the analysis and interpretations of the possible effects, we con-
ducted two sets of two-way ANOVA tests. Namely, we separated our results by gender and
performed two-way ANOVA’s with representation and intended emotion as between and
within factors respectively. Accuracy, difficulty, arousal, valence and intensity ratings were
evaluated separately. Once again, we adopt the notation proposed by [211] to formulate the
null hypotheses we aim to test:

HG
0 (1, i): The means of the G participants’ ratings of i for whole-body and end-effector trajec-

tories stimuli are equal.
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HG
0 (2, i): The means of the G participants’ ratings of i for the different intended emotions are

equal.

HG
0 (3, i): Representation type and intended emotion are independent factors and no interaction

between them is present on the G participants’ ratings of i.

with i = {accuracy, intensity, valence, arousal, difficulty} and G = {male, f emale}.

Ratings(i): Accuracy Intensity Valence Arousal Difficulty

Representation
Hmale

0 (1, i)

F(1, 93) = 20.089 0.052 0.556 10.625 4.993
p-value = < 0.001 0.818 0.457 0.002 0.027
η2 = 0.177 0.001 0.005 10.253 0.051

Intended emotion
Hmale

0 (2, i)

F(4, 372) = 21.947 8.336 36.126 77.599 16.185
p-value = <0.001 < 0.001 < 0.001 < 0.001 < 0.001
η2 = 0.469 0.293 0.504 0.625 0.168

Intended emotion
× representation
Hmale

0 (3, i)

F(4, 372) = 2.83 1.719 10.19 3.575 0.965
p-value = 0.024 0.152 < 0.001 0.007 0.419
η2 = 0.107 0.052 0.235 0.075 0.041

(a) ANOVA results for male participants

Ratings(i): Accuracy Intensity Valence Arousal Difficulty

Representation

H f emale
0 (1, i)

F(1, 93) = 35.052 1.41 9.968 20.487 0.132
p-value = < 0.001 0.236 0.002 < 0.001 0.717
η2 = 0.262 0.015 0.098 0.181 0.001

Intended emotion

H f emale
0 (2, i)

F(4, 372) = 13.913 11.885 35.635 122.449 12.746
p-value = <0.001 < 0.001 < 0.001 < 0.001 < 0.001
η2 = 0.359 0.326 0.534 0.810 0.261

Intended emotion
× representation
H f emale

0 (3, i)

F(4, 372) = 2.101 2.377 5.212 11.951 2.899
p-value = 0.080 0.051 < 0.001 < 0.001 0.031
η2 = 0.076 0.094 0.148 0.377 0.115

(b) ANOVA results for female participants

Table 3.11: F-statistics 5, p-values and effect size (η2) results from two-way repeated mea-
sures ANOVA’s for main effect of intended emotion and representation. Analysis was done
on males (top table) and females (bottom table) separately. Greenhouse-Geisser correction
was used when sphericity assumption was violated. P-values indicating a significant differ-
ence at level of α = 0.05 are highlighted.

From the ANOVA results summarized in Table 3.11, there is a significant interaction of
representation and intended emotion in the males’ accuracy, arousal, and difficulty ratings;
hence we reject the null hypotheses Hmale

0 (3, i) for i ∈ {accuracy, arousal, valence} and retain
the remaining two null hypotheses Hmale

0 (3, i) for i{intensity, di f f iculty}.

5Knowing that the answers of an equal number of males and females (95) were analyzed, the degrees of
freedom of these F-statistics are: a.) representation is a between-subjects factor with 2 levels (i.e., whole body or
partial body): d frepresentation = 2− 1 = 1 and d ferror1 = 95− 2 = 93, b.) intended emotion is a within-subjects
factor with 5 levels (i.e., neutral, happiness, etc.): d femotion = 5− 1 = 4 and d ferror2 = d femotion × d ferror1 = 372,
and c.) the interaction between these two factors: d finteraction = d frepresentation × d femotions = 4 and d ferror2 = 372.
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Figure 3.8: Mixed two-way ANOVA (intended emotion, representation) accuracy and other ratings for male participants. Significant
differences were labeled following the convention listed in Table 3.9.
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For the female participants in turn, no significant interaction was found for accuracy
and intensity ratings, hence we reject H f emale

0 (3, i) for i ∈ {valence, arousal, di f f iculty} and
retain H f emale

0 (3, i) for i ∈ {accuracy, intensity}.
The intended emotion was found statistically significant for all ratings of both males

and females (p<0.001). There are, in turn, differences in the main effect of representation
between females and males. Whereas representation has a significant effect on males’ ac-
curacy, arousal and difficulty ratings, it was only found as significant on females’ accuracy,
valence and arousal ratings. Hence we reject the following null hypothesis: Hmale

0 (1, i) for
i ∈ {accuracy, arousal, di f f iculty}, H f emale

0 (1, i) for i ∈ {accuracy, arousal, valence} and
HG

0 (2, i) for all ratings on both males and females. For the remaining hypotheses, we did not
find enough evidence to reject them in favor of the alternative hypotheses.

Bar charts of average ratings for each type of representation are shown in Figure 3.8
for males and in Figure 3.9 for females. Significant pair-wise differences between the same
intended emotion for both type of representations are labeled using the notation described
in Table 3.9. A thorough analysis of the differences observed between males and females on
the perception of emotionally expressive body motions is discussed below.

For the interactions common to both genders, i.e., valence and arousal, we observe that,
in average, females increased their valence ratings when presented with end-effector tra-
jectories (see Figure 3.9c). In the contrary, males would either rate emotions in the same
manner for both representations or decrease their ratings, in particular for happy motions
(see Figure 3.8c). Pair-wise post-hoc Tukey-HSD tests showed that, for whole-body stimuli,
both males and females could correctly assess the differences between the valence levels of
sadness and happiness (p<0.0001). However, they perceived no difference among the other
three emotional states. We observe also that women noted sadness with smaller valence val-
ues than males and that males assigned greater valence ratings to happiness than females.
This suggests that, as reported by [227], males are indeed more accurate on the perception of
positive emotions such as happiness, while females are better at perceiving negative emotions
such as sadness.

Both females and males were, in average, less accurate in their appreciations of arousal
ratings when presented with end-effector trajectories. However, females would frequently
assign, with respect to the whole-body representations, higher arousal values to partial-body
stimuli than males. This can be seen on the three pair-wise significant differences (p<0.01)
found for females (see Figure 3.9d) against one significant difference (p<0.01) on males’ rat-
ings (see Figure 3.8d). An interesting result shows that they both agreed on their perceptions
about the activation level of happy motions across representations. This might be due to hap-
piness being the emotional state the best recognized by both females and males.

Although intended emotion was found to have a main effect on intensity ratings, pair-
wise post-hoc tests showed that, in the case of whole-body representations, only intensity
ratings for movements depicting happiness were found as significantly different for both fe-
males and males (p<0.05). This can be due to happiness being the best recognized emotional
state for both type representations. In the case of end-effector trajectories, only males per-
ceived happiness as being more expressively compelling than the other intended emotions
(p<0.001). Females, in turn, did not perceive differences on the expressiveness of the in-
tended emotions for this type of representation.
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Figure 3.9: Mixed two-way ANOVA (intended emotion, representation) accuracy and other ratings for female participants. Signifi-
cant differences were labeled following the convention listed in Table 3.9.
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Regarding difficulty ratings, we observe that, for whole-body stimuli, both females and
males agreed on happiness being easier to recognize (p<0.01) with respect to neutral and re-
laxedness. However, only females found that making the distinction between happiness and
stress was equally simple (p<0.001). No significant difference between sadness and happiness
difficulty ratings was found for both males and females. In the case of end-effector trajec-
tories representation, only females find happiness equally easy to recognize (p<0.05) in the
light of the other intended emotions. This finding is supported by the small difference be-
tween the accuracy rates reported for happiness across all representations (see Figure 3.9a).
In the contrary, as suggested by the loss of accuracy reported by males in Figure 3.8a, males
found that the perception of emotions from end-effector trajectories is equally difficulty for
all intended emotions.

Finally, post-hoc pairwise Tukey-HSD test with Bonferroni corrections on accuracy rates
show that sadness and happiness are the two emotional states the best perceived from the mo-
tions in our database (p<0.05). We observe also that, in the case of happy motions, females
seemed to be less sensible to the change of representation than males (see Figures 3.8a and
3.9a). Futhermore, while females recognized neutral examples better than males, males were
much more accurate on the perception of motions conveying stress. However, no significant
difference was found between the accuracy rates of motions conveying neutral, relaxedness
and stress for both females and males. This suggests that either our observers could not
decode the subtle differences between these three emotional states, or that the motions pro-
duced by our actors did not account for all the nuances necessary to distinguish between
them.

3.9 Summary and General Discussion

In this chapter, a new motion capture (MoCap) database inspired by three of the key ideas of
physical theater theory: the expressive body, the corporal mime and the neutral mask, was described
and evaluated. This database was designed and built for both the analysis and synthesis of
emotionally expressive bodily motions.

The proposed database consists of 5 different motion sequences: i.) three magic tricks:
the disappearing box, pulling a rabbit from a hat, and taking scarves from an empty jacket, ii.) lo-
comotion examples, and iii.) improvisation sketches. These sequences were performed by
7 laypersons under 5 emotional states: happiness, sadness, stress, relaxedness, and neutral. A
combined mood induction procedure (story-based and imagination-based MIP) was used in
order to facilitate the enacting of the selected emotions.

Two different user studies were conducted in order to validate the expressive content
of the proposed database. Additionally, one of these studies was also employed to assess
whether emotion perception was still feasible when only end-effectors and pelvis trajectories
were displayed. The results obtained from this perceptual evaluation represented a first
validation of the parameterization of expressive bodily motions proposed in this thesis.

The analysis of the results obtained from both studies shows that the expressive content
conveyed by the motion sequences in our database was recognized above chance level (20%)
with overall recognition rates of 53% for the first study and 38% for the second one. The dif-
ference between the recognition rates of the first and second user studies might be explained
by the changes we later introduced in the second study. Namely, the other option was not
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longer available among the possible answers, participants simultaneously rated motions of
two different actors rather than one single actor as it was done in the first study, and the angle
at which the animated character was displayed also changed. For both studies we found that
happiness, sadness, and stress were among the best recognized emotional states. Relaxedness
and neutral states, although recognized above chance level, were often confounded either
with each other or with sadness.

Despite reporting recognition rates above chance level, we observed that the motion se-
quences within our database were less accurately recognized than movements considered in
the databases surveyed in Section 3.2. We have identified three possible reasons:

i.) We have included two emotional states, i.e., relaxedness and stress, that are not often
considered when investigating the perception of emotions from motion and/or when
designing expressive MoCap corpora. Thus, there is little knowledge whether addi-
tional contextual factors (e.g., who the character is, where she/he is, what her/his
current task is) and visual cues such as facial expressions, gaze direction, etc. [85], are
needed for a more accurate identification of these two emotions [105].

ii.) Gunes et al. [105] pointed out that the understanding of the action being performed
is critical for emotion perception from human body motion. It is likely that partici-
pants had a harder time trying to identify and understand the actions involved in the
magician sequences and improvisation sketches. Thus, they were less accurate to as-
cribe the intended emotional states to the motion clips they were presented with. This
claim is further supported by the results reported in [67], which suggests that there is a
hierarchy of action recognition. For instance, the recognition of locomotion and func-
tional daily movements as the ones found in the databases [87, 205, 130] is easier than
the recognition of less fundamental motions such as social, artistic, and instrumental
actions.

iii.) Actors were given a short scenario that helped them to better contextualize, interpret,
and enact each of the intended emotions in the database. This kind of induction mood
procedures privilege more natural and spontaneous expressive motions over more eas-
ily recognized movements [14]. As result, accuracy rates for this kind of expressive mo-
tion are often lower with respect to the ones reported for portrayed and acted motion
databases [7, 75, 129, 187].

The perceptual evaluation of the proposed low-dimensional motion parameterization
showed that although observers were less accurate in their judgments, 4 of the 5 intended
emotional state were still recognized above chance level. Furthermore, we observed that
happiness remained the best recognized emotional state, followed stress and sadness. Overall,
we found that the emotional states characterized by lower arousal levels were the most af-
fected by the change of representation. They were perceived as being more active, which in
turn resulted in lower precision rates for happiness and stress predictions. Nonetheless, we
notice that the chosen low-dimensional representation still encodes (with little loss) motion
cues salient to the perception of emotion via bodily motions.
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Motivated by the intuition that a good low-dimensional parameterization of expressive
bodily motions should also provide good results in emotion recognition, in this chapter,
we describe how, by means of an automatic affect classification model, we quantitatively
validate the relevance and suitability of the motion model proposed in this thesis.

We address the following hypothesis:

"If the spatio-temporal trajectories of a manually selected subset of body joints (i.e., end-effectors and
pelvis) encode most of the motion variability related to the expression of affect, the performance of an
automatic affect classification model trained on features computed from trajectories should be close to

the recognition rates obtained from: (a) human observers, and (b) the same classification model
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trained either on an automatically selected subset of features or on features computed using the
entire body".

The reasons behind this hypothesis are two-fold:

i.) The learning and posterior performance of a classifier are inherently determined by
how the instances on which the classifier is trained and tested are represented. The
better the representation separates the data, the easier it will be for a classifier to es-
tablish the boundaries between classes. Thus, if the same classifier shows similar per-
formances on two distinct representations with equal or different dimensionality (e.g.,
manually selected subset vs. automatically selected subset or manually selected subset
vs. whole set), it is because there is no significant loss of information when only the
manually selected subset is considered.

ii.) Human motion is a highly correlated and redundant type of multidimensional data,
which is actually constrained to a lower dimensional representation. An experimental
evaluation based on classification results can help us to define a simpler motion model
with negligible loss of affect-related information

In this chapter we describe the experimental protocol used in the validation of the afore-
mentioned hypothesis. We review the challenges associated to the classification of motion
examples as well as the approach we adopted for the definition of alternative body joint
subsets.

4.1 Related Works

During the last decade there has been a growing interest in the automatic classification of
affect and emotions based on bodily expressions. This growth has been driven by various
advances (e.g., affordable devices for 2D and/or 3D body tracking) and demands (e.g., less
controlled and more naturalistic interaction environments) made in the human-machine in-
teraction domain [105].

Previous work on automatic recognition of affect from movements vary in terms of many
different aspects: the manner in which emotions are represented (categorical [129] or di-
mensional models [130]), the number of subjects considered, the type (acted [129] or non-
acted [215]) and kinematic variability (fixed and specified trajectories [21] or unconstrained
movements [213]) in the movements to classify, the nature of the movements being ana-
lyzed (dance [41], theater gestures [220], daily actions [88], etc.), the classification approach
(discriminative [130] and/or generative models [89]), and the manner in which movements
are represented (feature [242] or model based [213]). Furthermore, the developed classifi-
cation models are built so as to be person-specific (classifier trained and tested in the same
subject) or interpersonal (training and testing samples come from different subjects), and
movement-dependent (training and testing samples belong to the same motor behavior)
or movement-invariant (testing samples belong to motor behaviors non observed during
training). Nonetheless, all the approaches found in the existing literature aim to engineer a
classification model whose generalization and recognition capabilities are the highest.
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In this thesis, rather than designing and building a classification model with improved
accuracy and generalization, we aim to analyze and study the behavior of a standard clas-
sification method when trained in different feature subsets. Particularly, we seek to eval-
uate from an automatic classification standpoint how informative is the proposed low-
dimensional motion representation when compared with the entire body and/or automati-
cally determined feature subsets. For this reason, in this section we briefly review the pre-
vious classification studies that are closer to the approach discussed in this chapter. We
highlight the aspects of motion representation and feature design, data dimensionality, pre-
diction models, subject and movement invariance and learning databases inspired by the
performing arts. More complete and general reviews on automatic affect classification from
movement can be found in [105, 131, 136].

In the literature, we can identify two main approaches to movement modeling for affect
classification: feature-based and generative model based. While the former approximates
motion data through a discrete number of features, the latter aims to estimate the stochas-
tic process from which the observed movements were generated [211]. Feature-based ap-
proaches are frequently privileged because of their simplicity, interpretability and low com-
putational cost. Furthermore, expert-knowledge can be easily incorporated into the choice
of features used to represent the movement data.

A large variety of features can be computed from movement data. In general, the four
following approaches are commonly used for defining the feature-based space in which clas-
sification is done: i.) Data analysis and modeling methods such as functional analysis [212]
are used to automatically extract features relevant to affect classification. ii.) Manually-
selected features frequently inspired by an understanding of the type of movements to an-
alyze during classification, e.g., [129, 131, 251, 260]. iii.) High-level descriptors inspired by
motion notation systems [4, 60, 88, 220, 242] such as Laban [147], body action and posture
(BAP) [60], or multi-level body movement notation system (MLBNS) [86]. iv.) Manually-
selected features grounded in psychological studies about the perception and expression of
affect and emotion via bodily movements [20, 95].

The feature space defined through any of the last three approaches can often exhibit
high-dimensionality and/or information redundancy, which in turn can result in poor gen-
eralization capabilities. Hence, transforming and reducing the feature space can improve
classification results as well as provide an additional insight into the most salient features
for the recognition and expression of affect. This transformation can be achieved through
either dimensionality reduction techniques such as principal component analysis (PCA) [95,
126] and linear discriminant analysis (LDA) [130], or feature selection techniques such as
filter [20] or wrapper [88] methods.

Once a compact feature base representation has been defined, a classification model that
maps the selected features to affective or emotional states needs to be chosen. Traditional
classifiers such as Support Vector Machines (SVM) [21, 213], Neural Networks (ANN) [215],
Naive Bayes (NB) [130] and Nearest Neighbors (NN) [129] are among the most used. Random
Forest (RF) methods [34] in particular have gained an increased interest in automatic classi-
fication of affect [4, 88, 242, 260] during the last years. They are not only easy to tune and
computationally cheap, but also capable of defining complex class boundaries and known
to achieve the best recognition performance [47, 82]. Furthermore, they can also be used as a
feature selection method.

A major challenge in designing affect automatic classifiers for body motions is the large
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amount of variability in human movement. A robust affect classifier should be able to rec-
ognize and generalize to different subjects and movement classes. To guarantee good gen-
eralization capabilities to several subjects, the common approach is to apply a double clas-
sification procedure. That is, a first classifier identifies the subject and a second classifier
determines the emotional state conveyed by the subject’s movement [131]. A similar ap-
proach is adopted for enhancing movement invariance. For instance, Bernhardt et al. [21]
used Hidden Markov Models (HMM) to determine the action being performed and then em-
ployed a SVM classifier to identify the emotional state. Recently, Aristidiou and colleagues
[4] achieved good movement generalization through the combination of a overlapping slid-
ing window approach and a majority vote schema. The overlapped windows provided a
good estimation of the temporal dynamics of the movements within the sequence and the
majority vote smoothed the classifier predictions.

Finally, expressive motion corpora inspired by the performing arts have been lately used
to train and test affect classifiers. For instance [4] used contemporary dance motions per-
formed by 6 different professional dancers, [242] employed orchestra conductor gestures
recorded during 8 different rehearsals, and [220] used the improvisation performances of 10
professional theater actors.

4.2 The Challenges of Motion Classification

A motion sequence M can be formally defined as a multidimensional time series or sequence
of length T and dimensionality D – with D being determined by the type of body representa-
tion (e.g., full-body or end-effectors representation) – to which an emotion label is associated.
Given L as a the set of emotion labels, the task of motion sequence classification is to learn a
classifier C, which is a function mapping a motion sequence M to a class label l ∈ L, written
as:

C : M→ l, l ∈ L (4.1)

However, as any other time series, a motion sequence is characterized by being large
in data size, variable in length and high-dimensional [90]; making its classification through
standard methods a difficult task. As presented by [267], there are three major challenges in
time series classification:

• There are no explicit or standard features to represent time series and most of the com-
monly used classifier models (e.g., decision trees, support vector machines, neural net-
works, etc.) only take a vector of features as input data.

• Although the existing literature offers a wide range of techniques for extraction and
selection of features, selecting an adequate approach is far from trivial. Aspects as
number of samples, nature of the data, computational cost and dimensionality have to
be taken into consideration.

• Besides a good performance, one often aims to get an interpretable classifier. However,
any possible interpretation mainly depends on how the time series is represented.
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An additional challenge, proper to sequences of bodily expressive motions, is that the
phenomenon we wish to characterize and discriminate is not directly measurable from the
motion sequence. Instead, the affective content is encoded in the action or behavior being
executed and whichever representation we chose, it must account for this somehow hidden
information.

We can see then that in order to accurately classify a time series, the choice of represen-
tation is of fundamental importance. A good representation should not only capture the
nuances we seek to classify, but should also reduce, if redundancy exits, the dimensional-
ity of the data. The existing approaches for time series classification can be divided into
two large categories: those on which the classifiers are adapted to work with this type of
data, distance-based models belong to this category since similarity metrics can be adapted
to work with time series; and those on which the time series are transformed to an equiv-
alent representation such that the existing classification models can be directly used, such
as feature-based and model-based classifiers. We refer readers to [90, 267, 157] for a further
exposition about this topic.

Between those two categories, we decided to use a feature-based model in which each mo-
tion sequence is transformed into a set of features vectors of fixed-length. The motivations
behind this choice are:

• The interpretability of the resulting classifier. Numerous standard classifiers such as
Random Forest, Kernel Rigde Regression, Support Vector Machines with a linear ker-
nel, etc. offer an insight into the importance and relevance of all features in the separa-
tion among classes.

• The simpler and more understandable assumptions made by this kind of model.
Feature-based models benefit from an a priori knowledge of the kind of phenomenon
one is trying to explain and classify. Furthermore, in the case of expressive motion clas-
sification, feature-based movement representations can also be used to examine which
motion aspects should be considered when generating new expressive motions.

• The suitability of this approach to the computations necessary to prove our hypothesis.
State-of-the-art feature selection techniques can be directly used to generate the feature
subsets against which we wish to compare the proposed parameterization.

• Its simplicity and low computational cost.

• Previous studies on the perception and automatic recognition of affect offer a good
insight into the set of features that can be used to correctly characterize sequences of
expressive body motions.

• We can use a discriminative classification model as our affect classifier. This type of
models is known to provide better classification results than generative approaches
such as Hidden Markov Models (HMM) [213].

4.3 Feature-Based Representation of Motion Sequences

We look for a set of features, also referred to as cues, suitable for the classification of af-
fective content embedded in expressive bodily motions. The selected features should not
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only maximize the differences between distinct emotional states, but also minimize the vari-
ability (i.e., the action, subject’s style, etc.) among the motions depicting the same emotion.
Additionally, they should be independent of the functional behavior described by the body
movements we analyze and easily computed for whichever motion representation we use.

4.3.1 Lessons From Psychology: How Humans Perceive Emotions?

When considering body motion as a visual modality in non-verbal and affective communi-
cation, Dittrich and Atkinson [68] highlighted three main sources of relevant information: i.)
posture, also called form, and its changes over time (e.g., the position of body parts relative
to themselves and to the whole body); ii.) kinematics (quantities related to how people move
their bodies, e.g., velocity and acceleration); and iii.) dynamics (motion specified in terms of
mass and forces). Each one of these sources can be in turn characterized by a large number
of potentially relevant features.

To consider all possible features that previous perceptual studies have reported to be
correlated with the perception and expression of emotion through body motions proves to
be an inefficient approach. Not only we will increase the already high dimensionality of
the data, but we will also be confronted with attributes that are not meaningful to the type
of motion behaviors we study in this thesis (for example, elbow flexion and stride length
are mainly relevant when considering gait patterns [130, 205]) and that are not possible to
compute from the low-dimensional representation we are trying to validate (features such as
hand-to-shoulder distance or shoulder orientation’s axis [63] can not be defined when only
end-effector trajectories are used). Since the recordings in our MoCap database only provide
us with two of these three main classes of information (standard motion capture devices do
not provide mass and force information), we have narrowed the set of possible features to
posture and kinematics cues only.

Although there is compelling evidence of the importance of kinematics [62] and form
[56] information in emotion perception from body motion, the contribution and relative im-
portance of cues defined from both sources remain unclear. Some authors [149, 117] sug-
gest that form information can be instrumental in the recognition of biological motion and
more sophisticated tasks such as emotion perception [63], while motion information may
be partially redundant to form information and only used to resolve inconsistencies. Other
authors [7, 197, 216] suggest that the kinematics of body motion – either from whole body or
specific body parts – are at least sufficient in providing cues for the perception of emotional
expressions. They support this assertion through results reported by perceptual studies in
emotion perception in which human observers were presented with stimuli for which form
information was substantially reduced [7, 197]. This claim seems in agreement with other
psychological findings which state that certain emotions such as fear and disgust can not be
distinguished if kinematic information is missing [56, 99]. Furthermore, findings by Pollick
et al. [197] point also that the activation dimension in the circumplex model of affect [207]
seems to relate directly with kinematic information.

A recent study by Atkinson and colleagues [6] determined that observers rely on both
form and kinematic information during emotion perception. The authors demonstrated that
there is a substantial reduction on emotion classification accuracy from whole-body motion
when patch-light and full-light stimuli were inverted and/or played backwards. The effect
was stronger on patch-light displays, which attests to the importance of form-related cues in
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emotion perception. Nevertheless, even when both stimulus manipulation where combined,
observers accuracy was still above chance level. The authors concluded that kinematics
information alone can help to distinguish basic emotions from whole-body motions [68].
From this and since form information is considerable diminished when end-effector and
pelvis trajectories are used, we decided to characterize the motion sequences in our database
through kinematic-related features only.

4.3.2 Motion Sequences as Ensembles of Kinematic Features

Among all the features that can be used to characterize the kinematic qualities of body move-
ments, we have decided to represent motion sequences through velocity, acceleration, and jerk.
They have been systematically reported as relevant in the perception of emotions from body
movements. For example, Sawada et colleagues [216] showed that arm movements made
with the intention of conveying certain emotions mainly varied in their velocity, accelera-
tion, and displacement. Similarly, [59] and [205] observed that changes of velocity in gait
motions are affected by emotional states. Moreover, recent studies in automatic classifica-
tion of affect have reported high accuracy levels for emotion portrayals [129], non-stylized
body motions [21], and stylized dance motions [40] with classifiers trained on these kine-
matic features or on qualitative cues (e.g., Laban notation components) derived from them.
It seems then that velocity, acceleration, and jerk are not only good for affect discrimination,
but they are also consistent among different body movements (e.g., gait, dance, daily arm
motions, etc.). Hence they can be easily applied to the theatrical movements in our database
and for both full-body and end-effector trajectories representations.

When characterizing motion trajectories, specially end-effector trajectories, it has been
shown that the kinematic qualities (e.g., velocity) along a trajectory are explicitly constrained
by the geometric properties (e.g., curvature) of the trajectory itself [252]. For example, in a
curved motion, portions with high curvature will entail a reduction of velocity and a change
in direction [83]. Both [95] and [208] observed that curvature had a significance influence in
the clustering of emotion portrayals and in the generation of affective-like motions for non-
anthropomorphic robots respectively. To capture this relation between the kinematic and
geometric properties of a motion trajectory, we have included curvature in the set of features
that characterize our motion sequences.

Mathematically speaking, the features we have chosen have straightforward definitions.
Velocity, acceleration and jerk correspond to the first up to third derivatives of position over
time. Curvature, in turn, measures how fast a curve is turning or equivalently how much a
point deviates from following a straight line. Nevertheless, when used to characterize body
motion and joint trajectories, they provide us with good approximations of the different
motion qualities that might define the underlying emotional states we wish to classify. For
example, velocity informs us about the level of energy with which a body joint followed its
trajectory, with the highest values being related to emotions like joy and anger, while the
lowest values correspond to sadness and boredom. In the same manner, acceleration and jerk
account respectively for the smoothness and fluidity of the motion described by any body
joint, i.e., if the motion was sudden or sustained. Curvature, although being related with
the three kinematic qualities we have just described, partially accounts for the form and
geometric properties of the trajectory itself.
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4.3.3 A Global Classification From A Local Representation

Given a motion M = (X1, X2, ..., XT) of T body postures, each posture Xt with 1 ≤ t ≤ T is
a vector of 3D Cartesian coordinates. Namely, Xt = (xi,t, ..., xn,t), where n corresponds to the
number of body joints recorded during the MoCap sessions (n = 27 in our MoCap database)
and xi,t = (xi,t, yi,t, zi,t). Thus Xt ∈ R3×n, ∀t ∈ {1, .., T} and xi,t ∈ R3, ∀i ∈ {1, .., n}. Deter-
mining the chosen features for each posture Xt ∈ M consist in computing velocity (Eq. 4.2),
acceleration (Eq. 4.3), jerk (Eq. 4.4), and curvature (Eq. 4.5) for each one of the n joints in the
i-th body posture. Since MoCap data corresponds to regularly sampled time series data, we
can approximate each feature by taking the finite differences between neighboring postures
according to the following equations:

~̇xi,t =
xi,t+1 + xi,t−1

2∆t
(4.2)

~̈xi,t =
xi,t+1 − 2xi,t + xi,t−1

∆t2 (4.3)

...
~x i,t =

−xi,t−2 + 2xi,t−1 − 2xi,t+1 + xi,t+2

2∆t3 (4.4)

κi,t =
‖~̇xi,t × ~̈xi,t‖
‖~̇xi,t‖3

(4.5)

Before computing all kinematic features, we applied a Gaussian filter of order=0 and
σ = 10 on all joint positions data. We did so as to smooth out most of the noise introduced
when markers’ gaps were filled and joints’ centroids were determined by averaging clusters
of markers.

Although we have now a set of descriptors that might account for the underlying phe-
nomenon we seek to classify, i.e., the emotion-related variations in whole-body motions, we
have incurred in a considerable increase of dimensionality. In our initial representation, we
had that each posture Xt corresponded to a vector in Rn×3 with n = 27. A motion M would
be then defined in a space RD, with D = n × 3× T and T being the motion duration and
variable among all motions. Now, if we consider the features derived from all n joints, we
have that each posture is represented by a feature vector Ft defined in Rn×10 – velocity, ac-
celeration and jerk are 3D vectors and curvature is a scalar – and a motion M is now defined
in a feature space of dimensionality d = n × 10 × T, with d ≈ 3 × D. Since most of the
standard classifiers have problems dealing with datasets for which the number of samples
to classify is significantly smaller than the dimensionality of the samples, i.e., p � d, where
p is the number of samples in the dataset, we have adopted a different approach. This new
way of generating feature vectors will provide us in addition with the fixed-length samples
necessary for the type of classifier we use.

Given a motion M of length T postures, a motion chunk Ci ⊂ M is a sampling of length
w ≤ T of contiguous postures from M, that is:

Ci = (Xi, Xi+1, ..., Xi+w−1) f or 1 ≤ i ≤ T − w + 1 (4.6)
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Motion chunks are generated through overlapping sliding windows. That is, given a user-
defined subsequence length w (in frames) and an overlap ratio r with 0.0 ≤ r < 1.0 1, all
possible motion chunks can be built by "sliding a window" across M. A motion chunk Ci of
length w is defined every time the "window" has slided w× (1− r) frames forward, that is,
any two contiguous motion chunks are w× (1− r) frames apart from each other. A graphi-
cal representation of two motion chunks being defined and the sliding window approach is
presented in Figure 4.1.

Figure 4.1: Motion chunks C1, C3, C5, ..., CT−4 are defined using a sliding window of length
w = 4 frames and an overlap r = 0.5. That is, at each iteration, the "window" (in blue) slides
forward 4 × (1 − 0.5) = 2 frames along the motion sequence M. Two contiguous motion
chunks share an overlap (in aquamarine) that is 2 frames long. Prediction can be done at
sequence, motion chunk and overlap level.

Motion chunks provide us with a partial solution to the dimensionality problem since they
increase the number of samples in our dataset. They also solve the problem of classifiers in-
put, since they all correspond to an equal fixed-length vector; the classifiers can then be
trained and tested at the motion chunk level rather than at motion sequence level. However,
the problem of p � d (i.e., the number of samples is considerable smaller than the dimen-
sionality of the feature space) remains; in their initial representation, i.e, as a fixed-length
subsequence of w contiguous postures, a motion chunk is a vector defined in Rn×3×w. If we
represent them in feature space, Ci = (Fi, Fi+1, ..., Fi+w−1), a motion chunk is now a feature
vector in Rn×10×w. Fortunately, it is still possible to further discretize our feature vectors
such that their dimensionality is considerably reduced while preserving the kinematic and
temporal patterns characterizing the emotion-related content in the motion examples.

1Note that in order to limit the redundancy between successive motion chunks, r cannot be large.
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Rather than registering the exact values of velocity, acceleration, jerk, and curvature during
a time interval, we are interested in how these quantities evolve along time. The variations
and tendencies of these quantities can be captured by statistical measures such as the mean
and the standard deviation. Consequently, we can redefined the representation of a motion
chunk Ci into feature space as follow:

• Compute velocity, acceleration, jerk, and curvature for all Xt ∈ Ci, with t ∈ {i, ..., i + w−
1}.

• For all 3D descriptors, compute their magnitudes.

• Compute mean and standard deviation for the magnitudes of each descriptor.

• Define feature vector ci ∈ R8×n associated to Ci from descriptors means and standard
deviations.

Considering the feature vectors derived as described above would give rise to a new fea-
ture space of dimensionality at most d = 216 (27 joints × 4 features × 2 statistical measures)
if all body joints are taken into consideration. With this approach, we have a fixed-length
feature vector which dimensionality is considerably lower than the number of samples in
the dataset.

Beyond the "mathematical" reasons that motivated our choice of subsampling each mo-
tion sequence into a finite set of overlapping motion chunks, this approach also allows us
to capture both the short and long terms variations due to the emotion-related characteris-
tics of the motion, while smoothing possible fluctuations coming from noise still present in
the data. Furthermore, since we are interested in measuring the suitability of end-effector
trajectories for the synthesis of expressive bodily motion, regardless of the semantic ele-
ments of the motion, a sliding window supposes no prior knowledge about the structure
of the expressive motion data. Furthermore, it will likely smooth out variations related to
the transitions between semantic actions while preserving the underlying affective content.
Additionally, this new representation preserves the temporal context necessary for the clas-
sification of motion sequences and provides us with a means to classify a motion example at
different granularity levels.

We recall that a motion sequence M is associated to a class label l which corresponds to
the emotional state elicited when the motion was recorded. All motion chunks subsampled
from this motion, Ci ⊂ M, are immediately associated to the same class label l. Thus, it
is possible to make a prediction about a motion sequence’s label based on the individual
predictions made by a classifier for motion chunks Ci from M. It suffices to apply a ma-
jority vote scheme on Ci’s predictions. Similarly, since overlapping windows are used, it is
possible to have b 1

1−rc predictions every w × (1− r) frames and apply the same majority
vote scheme on the overlapped segments [4]. With this procedure, we can make predictions
on motions sequences as we will do on stream data. Figure 4.1 depicts the different granu-
larity levels in a motion sequence at which it is possible to make predictions about one or
several emotional states conveyed along the motion example M. The majority vote scheme
used for determining motion and overlap labels will be presented further in this chapter (see
Section 4.5).
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4.4 Classification Model and Feature Subsets Definition

We aim to quantify how much information might be lost when only features computed from
partial-body representations we manually selected (e.g., end-effector trajectories) are used.
To do so, we will compare the performance of a classifier trained on: the whole feature
set, subsets automatically defined by some feature selection method, henceforward referred
as to ranked group, and subsets manually built, hereinafter called adhoc group. The idea
of comparing ranked group against adhoc group comes from common knowledge about
the bio-mechanical constraints governing the human body. We know for example that el-
bow motion is clearly not independent from hand motion [9] or legs ands arm operate in
a coordinate way in most cases [210]. These and other constraints suggest that it may exist
one or several subsets of joints and consequently of feature subsets, other than the ones we
manually defined, that may be equally useful in the construction of a good affect classifier.
Automatic feature selection methods are the means we chose to uncover these alternative
subsets.

4.4.1 An Overview of Feature Selection

Feature selection aims to choose a small subset of relevant features from the original set ac-
cording to some relevance measure. e.g., correlation, accuracy, Information Gain, etc. The
potential benefits of working with the resulting subset are: an improved prediction perfor-
mance, lower computational cost, a lower risk at over-fitting the learning models, the dimen-
sionality reduction, a simpler model easier to understand, and better data interpretability
[229]. Feature selection methods can be roughly grouped into three main categories: filters,
wrappers and embedded methods [107]. Filter methods are independent of the classification
model. They score features on a particular metric calculated directly from the data (e.g.,
Pearson’s correlation coefficient, entropy, etc.) and seek to filter out those descriptors that
seem to be not useful, i.e., those whose scores are below some established threshold [69].
Although filter methods are computationally simple and fast, and can easily scale to very
high-dimensional datasets, they exhibit two main drawbacks: i.) redundancy between fea-
tures is not taken into account, thus descriptors that are individually relevant may lead to
worse classification performance when compared to other types of feature selection tech-
niques [209]; ii.) dependency between features is ignored, two features that are not individ-
ually relevant may become relevant together [107]. Contrary to filter methods, both wrapper
and embedded techniques make use of the classification model during feature subset deter-
mination and take into account feature dependencies. However they do it differently. In one
hand, wrapper methods aim to find a subset of features that maximize the classifier’s perfor-
mance. The selection algorithm searches for a good subset of features using the classification
model as a black box that evaluates the usefulness of possible optimal subsets [107]. Thus,
wrapper methods are usually tailored to a specific classification algorithm [209]. In the other
hand, embedded methods do not separate the learning process from the feature selection part,
hence the internal structure of the classifier plays a crucial role on the search of an optimal
subset of features [148]. For example, decision trees such as Classification and Regression
Tress-CART [36] have a built-in mechanism to perform variable selection [107]. Both wrap-
pers and embedded methods interact with the target classification algorithm during feature
selection and potentially achieve better results since they do not make assumptions of fea-
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ture independence as filter methods do.

We are interested in automatically generating subsets of features, and implicitly subsets
of body joints, useful for both the construction of a good affect classifier and the quantita-
tive comparison with our manually selected subsets. Only after comparing the adhoc group
against feature subsets containing highly informative predictors, we will be in measure of
evaluating its suitability. Thus we focus our interest on wrappers and embedded methods, since
they both consider the interaction with the classification model during the selection process.
Both wrappers and embedded methods share the ability of taking into account feature depen-
dencies thus yielding more compact subsets of features. They also have a higher risk of
over-fitting when small amounts of training data are available [209]. They potentially suffer
of high variance and small changes in the training data lead to large changes in the resulting
feature subset [244]. However, there are also strong differences between them. Wrapper meth-
ods are slower and more computationally intensive, since they typically need to evaluate a
cross-validation scheme at every interaction in order to obtain an estimate of the usefulness
of a possible optimal subset [148]. Embedded methods, in the contrary, are more efficient and
make a better use ot the available data by not needing to split the training data into training
and validation sets [107]. Although our strategy of generating motion chunks from all the ex-
amples in the MoCap database allow us to increase the number of samples in the dataset, due
to the temporal correlation and dependency among chunks issued from the same sequence,
we are constrained to split the data into training and testing set at the level of motion se-
quences instead of at chunk level. Thus, we are still limited by the amount of available data
and we will benefit from a feature selection method that makes the most efficient use of it.
Hence, we have decided to use an embedded method coupled with a forward selection strategy
[148] for the definition of the subsets of features belonging to what we have referred to as
ranked group.

Among the embedded methods, decision trees such as CART are one of the most success-
ful and thus attractive techniques at our disposition. Decision Trees can model arbitrarily
complex relations, as it is the case for body motion and emotions, without prior assump-
tions, handle heterogeneous and noisy data, and deal with feature redundancy [162]. They
are scale invariant and robust to outliers, missing values and errors in labels. Nonetheless,
decision trees, as all embedded methods, are prone to high-variance and thus a change in
the data will produce an entirely different model. Fortunately, feature selection is a special
case of the model selection problem and thus it benefits from the regularization effect pro-
duced by ensemble methods [244]. That is, by combining a set of simple base learners, e.g.,
decision trees, the strengths of the base learners are preserved while reducing their variance
and their instability. Random Forest, henceforth RF, is one of the most suitable and up-to-date
ensemble method to be applied on decision trees, since its learning principle seems to work
especially well for high-variance, low-bias models, such as trees [110]. RF is not only known
for its ability to provide robust and accurate models [245], but also has previously produced
good results in the recognition of affect from bodily motions [88, 260]. Most importantly, RF
intrinsically preserves the feature selection mechanisms of decision trees and can be used
both as a feature selection method and as a classifier. For these reasons we chose to use RF
as both feature selection method and classifier.
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4.4.2 Empirical Reasons for Using Random Forests

Before explaining in detail the principles and mechanisms behind the Random Forest learning
algorithm, we would like to present some experimental results and additional practical rea-
sons for which we chose RF not only as the method to use in the definition of ranked feature
subsets but also as our automatic affect classifier model.

In the results we published in [44], we compared the performances of two different clas-
sifiers models Linear Discriminant Analysis (LDA) and SVM when trained either on whole-
body features – all 216 features – or on features computed end-effector trajectories only, that
is, only 40 features were considered. We obtained similar performances for both models,
however a more detailed inspection of LDA’s behavior when the model complexity was
iteratively increased (see Figure 4.2) showed that the difference between the training and
testing error rates raised with the number of features considered in the representation of the
learning samples. Thus, LDA seems to over-fit the training data and generalize poorly to the
independent testing set. This might be due to the reduced number of samples compared to
the number of predictors representing them. In the contrary, as will be explained in the next
section, two of the most attractive features of RF model are its low-variance and its capacity
to handle high-dimensional data.
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Figure 4.2: Behavior of the test sample (green curves) and training sample (red curves) er-
ror rates as LDA’s model complexity, i.e, number of predictors, is increased. Results cor-
respond to motion chunk predictions and were estimated using 10 repetitions of stratified
5-fold cross-validation on LC actor’s data.

Although SVM has been successfully used in the classification of affect from body motion
cues [21, 130], a good SVM classifier depends on the choice of its hyper-parameters [19], e.g.,
kernel function, cost parameter C, etc. In the context of our application, this implies that for
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each subset in either adhoc or ranked group, an additional internal parameter search should
be performed before estimating the classifier’s generalization error. As we have already
mentioned, although the motion chunks strategy increases the number of observations in the
learning set, there is a temporal correlation to be considered when splitting the observations
into training and testing sets. Thus, the amount of data we have at our disposition might not
be sufficient to do both parameter search and generalization error estimation. RF, conversely,
has been reported to be less sensitive to its hyper-parameters than SVM and good results can
be obtained with default values [158]. Finally, being based on decision trees, RF is much more
easier to interpret than SVM.

4.4.3 Random Forest and Feature Subsets

Proposed by L. Breiman in 2001 [34], RF is a very popular and effective learning model that
has been repeatedly reported to be: (a) extremely successful as a general purpose classifi-
cation and regression approach, (b) easy to train and tune, and (c) able to deal with small
sample sizes and high-dimensional feature spaces without overfitting [23]. The three main
essential ingredients in Random Forest are: bagging, the CART-split criterion and un-pruned
randomized trees. Bagging or bootstrap aggregation [35] is a general aggregation technique
which generates bootstrap samples (i.e., samples are randomly drawn with replacement)
from the original dataset, builds a base learner for each sample, and use their averaged vote
to predict new data. The CART-split criterion is used in the construction of the individual
randomized trees to choose the best binary split. At each node of the tree, the best split is
selected by optimizing an impurity measure. The smaller the impurity index associated to
each node t, the purer the node and the better the predictions for all samples falling into
t. Thus, when building a tree in the forest, RF learning algorithm seeks to maximize the
impurity decrease which is equivalent to minimize the generalization error [162]. Following
the nomenclature and definitions given in [162], the decrease of impurity of a binary split on
feature fi is formally defined as:

∆i( fi, t) = i(t)− pLe f ti(tLe f t)− pRighti(tRight) (4.7)

where pLe f t (resp. pRight) corresponds to the proportion
NtLe f t

Nt
(resp.

NtRight
Nt

) of learning
samples (Nt) falling into node t and going either to the left (NtLe f t ) or to the right (NtRight ), and
i(t) denotes an impurity measure. The most common impurity criterion used for growing
trees inside a RF is the Gini index:

iG(t) =
|L|

∑
k=1

p(lk | t)(1− p(lk | t)) (4.8)

where L is the set of possible labels, |L| corresponds to its cardinality, and p(lk | t) =
Nlk
Nt

is the probability of label lk in node t. The Gini-based impurity criterion iG(t) measures
how often a randomly chosen sample would be incorrectly classified if it were randomly
labeled according to the distribution P(L | t) [162]. Particularly, it is zero when node t
has observations only from one class, and it attains its maximum when classes are perfectly
equally [245].
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In standard trees, each node is split using the best optimized split along all d features.
Once the tree has grown to the desired depth, its nodes are pruned. That is, nodes that
degrade the generalization error – estimated in an independent validation set – are sequen-
tially removed until the optimal tree is found [162]. In a randomized tree, as the ones used as
base learners in RF, each node is split using the best among a subset of predictors randomly
selected at that node. Similarly, trees are grown un-pruned [158].

An additional characteristic of RF is its out-of-bag (OOB) error. For each bootstrap train-
ing sample, and consequently each randomized tree, about one third of the observations in
the dataset are left out and can be considered as an internal validation set [30]. The OOB
error is simply the average error obtained when the observations in the training dataset are
predicted using the trees for which they are OOB. See Figure 4.3 2 for a graphical description
of the RF internal learning algorithm.

Figure 4.3: Graphical representation of the RF model’s learning algorithm taken from [30].
Note how all main elements (bagging, split-criterion, randomized tree and OOB) are com-
bined together in the construction of the resulting RF.

Recall that at each step in the construction of either a standard or randomized tree ϕh, an
exhaustive search for the split that achieves the maximum impurity decrease is done. Under
this procedure, the impurity decrease due to a split on a specific feature fi for 1 ≤ i ≤ d
indicates the relative importance of fi in the tree ϕh. In the context of RF, Breiman proposed
to evaluate the importance of a feature fi for the prediction of the label l by computing
the weighted impurity decrease p(t)∆i( fi, t) for all nodes where the feature fi was used as
optimal split, averaged over all trees ϕh (for h ∈ {1, ..., H}, with H as the total number of
trees in the RF model) in the forest [162, 245]. Formally and following the definition provided

2 Consent to use this figure was granted by John Wiley and Sons under license 3861801463020.
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in [162], the measure of a features’s importance (FI) is defined as follows:

FI( fi) =
1
H

H

∑
h=1

∑
t∈ϕh

1( ft = fi)[p(t)∆i( fi, t)] (4.9)

where p(t) is the proportion Nt
N of observations reaching node t and 1( ft = fi) denotes

if feature fi was used for splitting node t. If the Gini index is used as impurity criterion, this
measure of variable importance is called Mean Decrease Gini, henceforth MDG.

RF implicitly provides us with a relative feature ranking, based on Eq. 4.9, that incor-
porates interactions of any order between features. However, in order to produce smaller
predictor subsets, it is necessary to combine RF’s ranking with either a backward or forward
selection strategy (i.e, feature are iteratively eliminated or added until the optimal feature
subset is found) [98]. We have decided to use a forward selection approach based on the
work done by [91]. In this approach, MDG variable importance is computed only at the ini-
tialization of the algorithm and then the predictors are iteratively added according to their
relative importance until all d variables are considered. Note that we aim to automatically
generate subsets of the most important predictor and of the same cardinality than those be-
longing to the adhoc group. The approach can be summarized as follows:

• Compute the RF scores of variable importance and rank variables according to it.

• Define a feature subset using the k first most important variables, for all k ∈ ϑr.

where ϑr = {1, 16, 24, 32, 40, 48, 64, 80, 128, 216} corresponds to the set of cardinalities we
want to consider in the ranked group. Correspondingly, the adhoc group comprises only
features computed from the body joints listed in Table 4.1 (ϑa denotes the cardinalities of
these subsets).

ϑa Features from:
24 Head, hands
32 Head, hands, pelvis
40 Head, hands, toes
48 Head, hands, toes, pelvis
64 Head, elbows, hands, pelvis,

toes
80 Head, elbows, hands, pelvis,

knees, toes

Table 4.1: Joint and number of features for ad-hoc group.

The subsets in adhoc group were defined by iteratively adding body end-effectors and
other joints which might help us to constrain the synthesized bodily motions to the space of
plausible body postures. The synthesis methods propose in this thesis will be described in
Chapter 5.
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4.5 Sequence and Overlap Predictions

As mentioned earlier, the motion chunk strategy described in Section 4.3.3 allow us to make
emotion predictions at three deferent levels: sequence, motion chunk, and overlap. Making
predictions at sequence level is necessary if we want to compare the classifier’s performance
with the base line provided by the perceptual studies described and analyzed in Chapter 3.
Indeed, in both studies annotators were asked to rate the emotional content for the whole
motion sequences rather than for individual actions. Similarly, analyzing the classifier’s
recognition rates at the overlap level (as we will see in Section 4.8.1) provides a continuous
stream of emotion predictions that give us some insight into whether the elicited emotion
was sustained and effectively conveyed along the sequence.

To predict a sequence’s label, we need a means to combine the predictions made for all
motion chunks extracted from the same sequence. Similarly, to predict an overlap’s label, the
predictions of all the b 1

1−rc (for 0.0 ≤ r < 1.0) contiguous motion chunks for which w× (1− r)
frames (where w denotes the sliding window’s length) are common need to be considered.
Loosely speaking, the majority vote scheme we propose to use for making label predictions
at sequence level consists on averaging the confidence levels provided by the RF classifier
across all the motion chunks belonging to the same motion sequence. The class label associ-
ated to the highest confidence level is taken as final prediction. Overlaps’ predictions are
determined in the same way. The only difference is that for each overlap, we only consider
the motion chunks common to it.

Formally, the majority vote scheme we have adopted can be formulated as follows: sup-
pose that motion chunks’ predictions correspond to the decisions made by a set of experts
E = {C(C1), ..., C(CP)} (where P is the number of motion chunks in a sequence M and C(Ci)
stands for the prediction made by the classifier C about the motion chunk Ci) about the class
l ∈ L to which a sequence M should belong. Based on the literature about classifier fu-
sion, depending on the type of output provided by the experts, there are different strategies
to combine their decisions [269]. Random Forest can supplies us with what [269] denoted as
measurement level or type 3, that is, it produces a |L|-dimensional vector [ωi,l1 , ..., ωi,l|L| ]

T

in which ωi,lk represents an approximation of the degree of belief (or confidence level) the
feature vector ci computed from the the i-th motion chunk Ci ⊂ M comes from the class lk.
Given these measures, it is possible to determine a new estimate or prediction common to
all experts, i.e., to all motion chunks as follows [269]:

[ωE,l1 , ..., ωE,l|L| ] =

[
1
P

P

∑
i=1

ωi,lk , with k = 1, .., |L|
]

(4.10)

Thus, the final decision made by the set of experts E, and consequently the label associ-
ated to the sequence M from which all P motion chunks were extracted, is given by:

E(M) = l∗ = arg max
l∈L

(ωE,l) (4.11)

Decisions about overlaps’ predictions are made in the same way. The only difference is
that for each overlap, the set of experts E will comprise only predictions of the motion chunks
common to it.
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4.6 Classification Tasks

Between the first and second set of MoCap recordings, we introduced significant differences
in the emotion elicitation procedure, the capture protocol and the actors’ recruitment pro-
cess. Thus, in order to test the classifier under homogeneous conditions, all the affect clas-
sification tasks to be described focus on the motion data recorded during the second Mocap
sessions. The data is as follows:

• 5 actors (3 men and 2 women)

• 5 distinct motion examples: three magician sequences, one walk, and one free impro-
visation exercise. All sequences have different time durations.

• 3 trials for each magician sequence. A single trial for the other two types of motion
sequences.

• Trials were recorded for each of the 5 emotion classes: happiness, sadness, relaxedness,
neutral, stressed. Thus, our learning dataset comprises in total 275 motion sequences.

Each one of the 5 recorded actors in our dataset can be considered as a Random Process
from which some instances3 of expressive bodily motion are known. Thus, each motion
sequence corresponds to one of these known instances. According to the way in which the
learning dataset is partitioned into training and testing sets, we can define different emotion
classification tasks [130]. Each task will evaluate, under different settings, the suitability (i.e.,
how much expressive information is preserved) and generalization capabilities to different
subjects and movements of the motion model we propose in this thesis. We distinguish three
possible main tasks, with two of them being further divided into two sub-tasks:

• Single subject or person-dependent recognition: the motion data produced by an
actor is considered as a whole learning dataset in itself, i.e., motion observations for
the same subject are included in both the training and testing sets. This is the simplest
task, since it allows the classifier to learn the style in which the subject expressed each
emotional state. This task is performed for all 5 subjects.

• Within subject classification: we take all the subjects together as learning dataset, i.e.,
motion instances for all the subjects are included in both the training and testing sets.
This might be a significantly more difficult task, since the classifier will be exposed to
all the within class variability due to the actor. Although actors were asked to perform
the same type of sequences and submitted to the same elicitation procedure for the
same target emotion, it is very likely that depictions of the same emotional state vary
considerably from actor to actor.

• Between subject classification: also known as leave-one-subject-out. All the data pro-
duced by a single subject is considered as test set and the classifier is trained on the
remaining subjects’ data. This is the hardest task, since we ask the classifier to recog-
nize the affective state of a completely unknown actor. This task not only evaluates the
overall generalization capability of the low-dimensional model we propose, but is also

3Also referred to as observations or samples
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the closest to the perceptual study described in Chapter 3 and used as base line. We
can run 5 instances of this classification task since our learning dataset contains data
from 5 different actors.

Our database comprises 5 different motions sequences, 3 of them count with several
repetitions by emotional state, belong to the same semantic context, i.e., a magician’s per-
formance, and share up to 3 individual actions. Furthermore, due to the temporal correla-
tion between the motion chunks issued from the same motion sequence, training and testing
dataset partitions are done at sequence level. That is, cross-validation splits are defined on
a learning dataset with 275 instances only. In this context both single and within subject
classification tasks can be further divided as follows:

• One sequence out: all the repetitions for all emotional states of a single sequence ex-
ample are considered as testing set. Each classifier is then trained on the examples of
the other 4 sequences. We rotate through all sequences, which results in 5 instances of
either the single or within subject classification task. This partitioning of the learning
dataset allows us to measure, to some extent, how well a classifier trained on either
a subset from the ranked group or adhoc group generalizes to unseen types of actions
and/or sequences. In other words, we measure the movement-dependency of the clas-
sifier.

• One repetition out: one example of each sequence for affective state makes part of the
testing set. This is the simplest task setting at hand, since all subjects and sequence
types are seen by the classifier during its training. Together with the perceptual study,
it provides a base line for evaluating and comparing the classifier’s performance in the
other more difficult and complex tasks.

To summarize, both adhoc and ranked groups will be compared in 5 different classifica-
tion tasks and their performance will be measured at 2 different levels (see Table 4.2). These
tasks measure not only how much information might be lost when manually selected subset
of body joints are used to characterize expressive bodily motion, but also the action-based
and actor-based generalization capabilities of both subsets groups. Furthermore, we can also
quantitatively evaluate the relevance of our database and the type of actions (inspired from
physical theater) within it.

Main Task Sub-tasks Performance levels
Single subject recognition One sequence out Sequence
Within subject recognition One repetition out Motion chunk
Between subject recognition None

Table 4.2: Different classification tasks and dataset granularities on which adhoc
and ranked groups will be compared.

4.7 Experimental Setup

In this section we will describe in detail how the emotion recognition framework we have
just introduced is evaluated. The classifier’s performance will be evaluated using recogni-
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tion rates, also called accuracy rates, on a separate testing set. Since we do not count with
a large learning set, we will use repeated cross-validation for the definition of the training
and testing sets as well as for the estimation of the expected test accuracy of our classifier.
Depending on the task at hand, we will use either stratified K-fold cross-validation 4 on class
labels or leave-one-out cross-validation 5 on sequence types and/or actors.

We signal to the reader that we are using cross-validation as the means to asses the per-
formance of a same classifier algorithm trained on different variable subsets rather than to
fit and choose the best model. We do so for the following reasons: (a) our aim is to measure
the differences in performance when using predictor subsets defined either automatically or
manually, not to select the best affect classification model, and (b) we dispose of a very lim-
ited amount of data and to perform both model selection and model assessment will require
to carry out a nested cross-validation procedure [143] in which the training set might be too
small to characterize the subtle variations related to affect expression.

In their book The Elements of Statistical Learning Hastie et al. [110] provided general guide-
lines in regard to the correct way to carry out cross-validation in a context similar to ours. We
have adapted their algorithm to our specific case. The exact procedure is presented below:

In this procedure, the way in which the learning dataset (denoted as Ω in the algorithm)
is divided into K-folds depends on the classification task being considered. For assessing the
classifier performances in both single subject and within subject recognition, we apply strati-
fied K-fold cross-validation when working on the one-repetition-out sub-task as suggested by
[143]. Specifically, we stratify the dataset according to emotion labels and sequence types.
The dataset is then randomly split into K folds in such a way that each fold contains the
same proportion of the different stratified tuples. We found that by setting the number of
folds equal to 3, we will obtain a test set with an example by emotion and by sequence type
for either one actor or all of them. In the same way, when working on between subject recogni-
tion, or one sequence out for either one or all subjects, we use a leave-one-out cross-validation
split pattern. The dataset will be split according to the actor or sequence type categories.
In both cases, this division results in 5 folds, since there are 5 different actors and 5 dis-
tinct sequences (see Table 4.3 for a summary of the cross-validation schemes used in each
classification task).

An additional step we consider before computing feature rankings and training affect
classifiers is feature standardization. Since we are working with different higher order
derivatives of position or geometric quantities, each feature fi ∈ cj have a different order
of magnitude. We use the classical centering and scaling procedure: f ′i = ( fi− µi)/σi, where
µi and σi are the mean and standard deviation of feature fi over the training observations.
The standardization ’learned’ on the training set is then applied to the test observations pre-
vious classification.

The classification tasks summarized in Table 4.2 are evaluated and analyzed in four dif-
ferent contexts. There are:

1. Emotion categorization from different feature subsets: we consider the recognition

4The learning data is partitioned into K equal sized fold such that each fold contains roughly the same pro-
portions of class labels. A single fold is retained as the test data and the remaining K-1 folds are used as training
data.

5All instances of a given sequence (e.g., improvisation sketches) or actor are used as testing data. The remain-
ing 4 sequences/actors’ data is used as training data
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Data: Ω: original dataset, ϑr: cardinalities in ranked group, Γ: feature subsets in adhoc
group, n_rep: number of runs of cross-validation procedure, d: original dataset
dimensionality

Result: Average accuracies and confusion matrices for all elements of ϑr and Γ
for J from 1 to n_rep do

Divide dataset Ω into K-folds;
for I from 1 to K do

Define set T as dataset Ω with the I-th fold;
Define set S as the I-th fold of the dataset X;
Build RF model f ′ = f (T, d);
Compute ranking of all d features in Ω;
for all θ ∈ ϑr do

Define T′ as set T with only first θ features selected from ranking;
Define S′ as set S with only first θ features selected from ranking;
Build RF model f ′ = f (T′, ω);
Apply f ′ on S′ and store accuracy and confusion matrix;

end
Calculate average accuracies and confusion matrices for all elements of ϑr
across folds;
Repeat the same procedure for all γ subsets in Γ;
Calculate average accuracies and confusion matrices for subsets in Γ across
folds;

end
Calculate average accuracy and confusion matrices for both ϑr and Γ across all
repetitions

end
Algorithm 2: Cross-validation procedure used for comparing adhoc and ranked groups on
each one of the classification tasks listed in Sec. 4.6

rates of the same classifier model, i.e, RF, trained on each of the subsets in adhoc and
ranked groups. The goal is to determine whether the first part of the hypothesis: "The
accuracy rates of a classifier trained on features computed from the proposed low-dimensional
motion representation are close to the rates obtained from the same classifier trained on fea-
tures computed from the entire body and/or automatically selected feature subsets, i.e., ranked
group", holds and to quantify the possible loss of affect-related information we might
have introduced when considering features from end-effector trajectories only.

2. Comparison with human performance: Emotional states are abstract concepts that
are highly subjective and require human validation. In this experiment human evalu-
ation is used as a basis for accuracy comparison. We aim to determine two things: (i)
whether our classifier, independently of the dataset representation employed during
learning, performs at least as well as human annotators did/do, and (ii) whether hu-
mans can still recognize affect from impoverished body motion representations as the
one obtained when only end-effector trajectories are visualized.

3. Sliding window parameters effects: We use overlapping sliding windows, and con-
sequently what we referred to as motion chunks, as a means to capture both the local
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Task Cross-Validation Scheme
Single subject recognition:
one sequence out

Leave-one-out (5 folds)

Within subject recognition:
one sequence out

Leave-one-out (5 folds)

Single subject recognition:
one repetition out

Stratified 3-folds

Within subject recognition:
one repetition out

Stratified 3-folds

Between subject recognition Leave-one-out (5 folds)

Table 4.3: Cross-validation schemes used to split learning dataset into training and testing
sets for each classification task.

and global patterns encoding the emotional content present in a sequence. They also
provide a temporal context for the classification of the motion examples. However, this
approach depends on two parameters: the window size w and the overlap percentage
r. A window too small might not be able to register the long-term fluctuations related
to emotion expression, whereas a window too large will considerably reduce the num-
ber of samples in the learning dataset and important information might be lost when
feature discretization is applied. In the same way, a low overlap percentage might not
provide enough context for sequence classification, while a high percentage will pro-
duce motion chunks too similar between them and consequently overestimate the true
classifier accuracy. We seek to study the effect of these two parameters in the classifier
recognition rates.

4. Model hyper-parameters effects: There are two main hyper-parameters to specify
when working with RF: (1) the number of trees to grow in the forest, n_trees, and
(2) the number of features to consider in the search of a node’s optimal split, m_try. In
this experiment we aim to analyze how sensitive are both the features subsets gener-
ated using RF variable importance ranking and the estimated test accuracies to these
hyper-parameters.

4.8 Results

In this section we present the results obtained for the 2 of the 4 experiments outlined in
Sec. 4.7. Results obtained for the analysis of sliding window and RF parameters are pre-
sented in Appendix B and Appendix C respectively. All experiments were carried out using
the free machine learning library scikit-learn [219] and the RF implementation developed by
[162]. For all experiments we will mainly analyze the average micro accuracy rate obtained
from all subsets in both adhoc and ranked groups. These average rates have been estimated
through ten repetitions of the cross-validation schemes presented in Table 4.3. When study-
ing the effect of both RF and sliding window parameters, we will focus on between subject
and within subject one sequence out classification tasks, since they both account for the gener-
alization capabilities of the end-effector motion model we propose. We will also observe if a



4.8 – Results 83

classifier trained on feature subsets coming from both adhoc and ranked groups is invariant
to the differences among the sequences and actors in the learning set.

4.8.1 Emotion Categorization from Different Feature Subsets

For this experiment motion chunks and their corresponding feature vectors, ci, were com-
puted using a window of w = 500 frames length and an r = 50% overlap. Both parameters
were defined based on our knowledge about the MoCap database we used. An 500 frames
window represents the average duration of an individual action in the magician sequences
(approx. 2.5 s.), and an 50% overlap provides enough temporal correlation for the classifica-
tion of a sequence, while making contiguous motion chunks different enough from each other.
Results were computed using a RF model with default hyper-parameters (ntrees = 500,
mtyr =

√
d) [34]. For the estimation of ranked subsets, d was equal to the initial dimensions

of the motion chunks, i.e., 216 features. However, during classification, d changed accord-
ing to the cardinality of the feature subset being evaluated. Figure 4.5 shows the average
behavior of test sample accuracy for both motion chunks and sequences as the feature subsets
representing the observations on our MoCap database changed.

At a large scale, we notice that emotion recognition performance for motion chunks was
systematically lower than for sequences, independently of the classification task and the
feature subset group. If we analyze the stream of emotion labels, as shown in Figure 4.4,
generated for a sequence through the classification of all overlapping segments, we observe
that although the conveyed emotional state takes precedence over the other possible emo-
tions, there are moments along the sequence in which the classifier judged that a change of
emotion took place. This implies that, although coming from the same motion sequence,
motion chunks placed near and along the regions in which a change of emotion might have
taken place had a higher chance to be misclassified. Thus, it seems reasonable that the clas-
sifier’s accuracy on motion chunks is always lower compared to the classification of whole
motion sequences. Also, averaging the confidence interval values along the sequence filters
part of the misclassification noise.

The continuous change of the classifier’s predictions along the same motion sequence
suggests that although actors were encouraged to maintain the same emotional state for
the whole sequence duration, there were moments in time for which their affective state
unconsciously changed or drifted away. Furthermore, since the motion sequences in our
database are considerable long and combine several distinct actions, it also possible that: (a)
some temporal segments are characterized by few or none body motion activity – such as
the preparation of an individual action or the transition between two different actions –, and
hence the classifier tried to attribute an emotional state to a non-expressive segment; (b) or
our feature-based representation failed to capture and separate the affect-related variations
present in some motion chunks from the semantic-related content of the action being played.
A thorough analysis of this scenario is done in Section 4.8.4.

If we look back at Figure 4.5 (results for adhoc and ranked groups are presented at the left
and right respectively), we observe also how accuracy rates decrease while the complexity
of the classification tasks increases. Note for example how for both feature subset groups the
recognition rates on sequences varies from 0.78± 0.01 (Figures 4.5a and 4.5b) in the simplest
task (single subject one repetition out classification) to 0.46± 0.02 (adhoc group, Figure 4.5i)
and 0.48± 0.02 (ranked group, Figure 4.5j) for the most difficult task (between subject clas-
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(a) Predictions for a magician sequence (box trick) conveying happiness.

(b) Predictions for a magician sequence (rabbit trick) conveying stress.

(c) Predictions for a magician sequence (box trick) conveying relaxedness.

(d) Predictions for a magician sequence (box trick) in neutral state.

(e) Predictions for a magician sequence (rabbit trick) conveying sadness.

Figure 4.4: Stream of predictions generated for five different sequences for LC actor. Color
code is as follows: neutral: dark blue, sadness: light blue, happiness: green, stress: orange, and
relaxedness: brown.

sification). However, it is important to notice that the average recognition rates obtained
for both adhoc and ranked groups in the latter task are consistent with previous studies (ap-
prox. 45%− 50%) [20, 130] for which no action or actor identification was performed ahead
of emotion recognition. Similarly, our results are comparable to the human recognition rates
reported in Chapter 3 and discussed in detail in Section 4.8.5.
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(a) Single subject one repetition out for adhoc
group
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(b) Single subject one repetition out for ranked
group
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(c) Within subject one repetition out for adhoc
group
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(d) Within one repetition out for ranked
group
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(e) Single subject one sequence out for adhoc
group
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(f) Single subject one sequence out for ranked
group
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(g) Within subject one sequence out for adhoc group
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(h) Within subject one sequence out for ranked
group
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(i) Between subject for adhoc group
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(j) Between subject for ranked group

Figure 4.5: Behavior of test sample accuracy for both motion chunks (blue curves) and se-
quences (green curves). Accuracy rates are presented for each one of the classification tasks
defined in Sec. 4.6. Results for adhoc group are presented on the left. Similarly, results for
ranked group are presented on the right.

Overall, we observe in Figure 4.5 that the performance of a classifier trained on feature
subsets defined in the adhoc group, i.e., using end-effector trajectories, is relatively close to
the performance of the same classifier while trained on the subsets defined through the pro-
cedure described in Section 4.7, i.e., ranked group. As shown in Table 4.4, for four of the five
classification tasks considered in this experiment, the average accuracy for all subsets in ad-
hoc group is within one standard deviation of the mean accuracy rate reported for the subsets
of same cardinality belonging to the ranked group. For the remaining task, i.e, within subject
one-sequence-out, the accuracy rate of the adhoc group is within two standard deviations of
its counterpart’s mean accuracy rate.

Task Level Avg. accuracy
adhoc

Avg. accuracy
ranked

Relative
difference

Single subject one
repetition out

Motion chunk 0.549± 0.018 0.542± 0.015 0.007± 0.005
Sequence 0.776± 0.013 0.777± 0.012 0.005± 0.003

Within subject
one repetition out

Motion chunk 0.538± 0.023 0.548± 0.022 0.010± 0.002
Sequence 0.743± 0.020 0.761± 0.027 0.020± 0.010

Single subject one
sequence out

Motion chunk 0.471± 0.019 0.462± 0.009 0.012± 0.005
Sequence 0.598± 0.017 0.616± 0.008 0.018± 0.010

Within subject
one sequence out

Motion chunk 0.468± 0.015 0.473± 0.019 0.007± 0.005
Sequence 0.568± 0.020 0.605± 0.023 0.036± 0.013

Between subject
Motion chunk 0.350± 0.008 0.361± 0.009 0.017± 0.006
Sequence 0.462± 0.022 0.478± 0.018 0.019± 0.015

Table 4.4: Average accuracy and relative accuracy differences for both motion chunks and
sequences. Only common cardinalities, i.e., ϑr ∩ ϑa = {24, 32, 40, 48, 64, 80}, between adhoc
and ranked groups are considered. Results are presented for all classification tasks.
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Figure 4.6: Correlation matrix between features in adhoc group (rows) and features in ranked group (columns) for cardinality 24.
Observations for all actors, sequences and emotions were considered during the computation of the correlation coefficients. Features
on ranked group were defined based on the average feature ranking obtained for both between subject (a) and within subject one
sequence out (b) classification tasks.
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Figure 4.6 suggests that the close similarity between the accuracy rates of both feature
subset groups can be explained by the high correlation and information redundancy be-
tween body joints and limbs. To evaluate this similarity, we built and analyzed the corre-
lation matrix between features in adhoc and ranked groups. More precisely, we computed
Pearson’s correlation coefficient between the 24 features selected as the most important using
RF-based variable ranking and their equivalent in the adhoc group, i.e., features computed
only from head and hands trajectories. Coefficients were estimated for both the average
rankings generated during the between subject (Figure 4.6a) and within subject one sequence
out (Figure 4.6b) cross-validation procedures. As it can be observed on Figure 4.6, most of
the features on both groups share between moderate (coefficients around ±0.5) to strong
(coefficients above ±0.8) linear relationships, which indicates the strength of the association
between both feature subsets. Thus, it is likely that both feature subsets explain the same
amount of variation related to the expression of emotions.

In order to determine whether the differences between the average accuracy rates ob-
tained for both adhoc and ranked groups are statistically significant, we conducted paired
statistical tests on common cardinalities, i.e., ϑr ∩ ϑa = {24, 32, 40, 48, 64, 80}. However, for
each classification task we measured at most of k-folds × 10 repetitions of recognition per-
formances for each feature subset (see Tablename 4.3 for a remainder of the number of folds
defined for each classification task.). Thus, we count with a limited number of samples of
two random variables6 whose differences do not usually respect the assumptions required
by the widely used parametric paired t-tests [64]. Following the advice provided by [64], we
employed instead Wilcoxon Signed-Ranks statistical test.

The Wilcoxon signed-ranks test is a non-parametric alternative to the paired t-test with
no assumptions about the population’s probability distribution. It ranks the differences in
performance of two classifiers (one classifier by feature subset in adhoc and ranked groups)
for each test dataset, ignoring the signs, and compares the ranks of the positive and the
negative differences. If the difference between the positive and negative ranks approximates
zero, within the limits of random variability, the null hypothesis cannot be rejected.

In the context of our work, we aim to evaluate if the same classification model performs
equally well for both feature groups. Formally we state the following hypothesis:

H0 : OAranked −OAadhoc = 0 Feature subset’s performances are not different

H1 : OAranked −OAadhoc 6= 0 Feature subset’s performances are different

where OAranked and OAadhoc represent average accuracy for subsets of same cardinality in
ranked and adhoc groups respectively. That is, we compare each common cardinality in-
dependently on both motion chunks and sequences predictions. Differences between feature
subset groups are considered significant at p < 0.01. Table 4.5 shows the p−values obtained
for each classification task and each cardinality. Conditions for which the null hypothesis
could not be rejected are highlighted. We observe that for at least half of the conditions we
evaluated, we failed to reject the null hypothesis, thus we do not have evidence to suggest
that there is a significant difference between the performance of the feature subsets belong-
ing to ranked group and their equivalent/images in the adhoc group.

6Accuracies for each subset group are considered as random variables
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Task Level Subsets cardinalities
24 32 40 48 64 80

Single subject one
repetition out

Motion chunk 0.48 5.1e−10 0.46 1.5e−3 1.3e−9 2.7e−5
Sequence 0.55 0.86 0.14 0.17 1.0 0.15

Within subject one
repetition out

Motion chunk 1.1e−5 1.3e−4 3.2e−6 1.6e−6 1.3e−5 6.6e−4
Sequence 0.47 7.3e−7 0.02 0.15 1.6e−5 3.3e−3

Single subject one
sequence out

Motion chunk 3.7e−3 0.14 0.01 1.6e−4 0.27 0.15
Sequence 0.06 0.01 0.93 0.78 0.27 0.03

Within subject one
sequence out

Motion chunk 0.28 0.99 4.7e−7 0.16 4.9e−4 1.2e−7
Sequence 0.09 0.01 4.1e−6 0.09 1.1e−4 3.2e−8

Between subject Motion chunk 0.85 8.6e−10 4.2e−7 3.5e−8 4.2e−12 0.08
Sequence 0.23 2.1e−8 0.15 0.21 2.4e−8 0.42

Table 4.5: Significant levels (p-values) for difference of average accuracy rate between adhoc
and ranked subsets of same cardinality. Two-tailed Wilcoxon Signed-Ranks statistical test at
α = 0.01 level of significance was employed. Conditions for which no significant difference
was found are highlighted.

4.8.2 Effect of Actor on Classifier’s Accuracy

If we carefully observe the average accuracy reported for single subject one repetition out
classification task (Figures 4.5a and 4.5b) we find that the standard deviation for both feature
groups is significantly high even after performing 10 repetitions of their respective cross-
validation scheme. This suggests that, among the five subjects whose data is used for the
classifier training and testing, there might be some actors for whom the boundaries between
the different classes were not well defined. This fact might explain the substantial decrease
on the RF classifier’s performance, as shown in Figures 4.5i and 4.5j, when presented with
the between subject classification task.

A detailed representation of the performance reported by the classifier for each actor on
the single subject one repetition out task is depicted in Figure 4.7. Observe that for all combina-
tions of feature subset groups and representations (i.e., motion chunks and sequences), there
is a significant difference, approximately 30%, between the actors for which the highest (GR
and GA) and lowest (PP) performances were registered. In this task there are not unknown
sources of variation during the test stage, i.e., the classifier has seen examples of all sequences
and all actor-dependent information throughout its training. Thus, the substantial difference
of accuracy showed by the classifier when trained and tested on each actor’s data suggests
that although all actors were submitted to the same emotion elicitation procedure, some of
them were much less expressive and eventually showed mixed interpretations of the target
emotional states.
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(a) Motion chunk accuracy for adhoc group
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(b) Sequence accuracy for adhoc group
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(c) Motion chunk accuracy for ranked group
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(d) Sequence accuracy for ranked group

Figure 4.7: Behavior of average accuracy on test set for each one of the five actors whose
data makes part of the learning dataset. Each curve corresponds to one actor. Both motion
chunks (left) and sequences (right) were considered for both feature groups. Measurements
were obtained from single subject one repetition out classification task.
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4.8.3 Effect of Sequence on Classifier’s Accuracy

Until now we have seen that the accuracy results obtained for the feature subsets computed
from end-effector trajectories are relatively close to those obtained from the automatically
defined feature subsets (see Figure 4.5). We have also seen that although actors expressed the
same emotional states in different manners, the adhoc group reached accuracy rates similar
to those obtained for the ranked group. Furthermore, both feature groups exhibited the
same behavior with respect to the five actors; emotions for actors GA, GR and SLM were
better recognized than emotions for actors PP and LC. Nonetheless, we still do not know
whether end-effector trajectories preserve equally well the affective content in all types of
body movements.

Our database has three main types of body sequences: magician tricks, walk examples
and short improvisation sketches. Although the magician tricks belong to the same scenario,
there are at least 4 distinct actions in each one of them. Similarly, all improvisation sketches
contain different body movements since they were freely chosen by each actor. Since we
are validating the proposed end-effector representation by means of automatic classification
of affect, we can assess the generalization capabilities to different body movements of the
end-effector trajectories through the evaluation of the classifier’s action dependency. More
precisely, we can gather a general understanding about how the proposed motion model
generalizes to notably different body movements by analyzing the RF classifier’s perfor-
mance when the test set contains actions that are kinematically and semantically different
from the examples seen by the classifier during its training.

Two of the classification tasks described in Section 4.6 provide this information: single
subject one sequence out and within subject one sequence out. However, in the case of the former
task, the results obtained when all observations of each sequence example were used as test
set are likely over-optimistic. The classifier might have adjusted itself to the particularities
of each actor, rather than learned class boundaries which are action-independent. Hence-
forth, we based our analysis on the results obtained from the within subject one sequence out
classification task.

Figure 4.8 shows the average accuracy registered from the RF classifier for each feature
subsets’ group and for each sequence example. At first glance, we can observe that the body
motions in the disappearing box trick obtained the highest accuracy rate for both adhoc and
ranked group. Similarly, this sequence is also the best recognized among all magician tricks.
We find also that the average accuracy rate for all magician tricks is relatively the same
(around 65%) between the feature subsets computed from the end-effector trajectories and
those determined through feature selection techniques.

Interestingly, there is a particular pattern common to both feature groups: the recognition
rates for the magician and walking examples are much more higher than those obtained for
the improvisation sequences. This behavior can be due to several factors:

• Both feature groups generalize well to body movements coming from the same con-
text and exhibiting the same co-articulation and amount of motion quantity between
body’s limbs. Both the magician sequences and the walking examples required actors
to move arms and legs simultaneously and to make displacements around the space.
In contrast, three of the five improvisation sequences only employed the arms and did
not involve body displacements on ground space.
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(a) Sequence accuracy for adhoc group
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(b) Sequence accuracy for ranked group

Figure 4.8: Behavior of average accuracy when each one of the five sequence examples was
individually employed as test set. Green, red, blue, yellow and cyan curves correspond to each
one of the sequence examples. The black curve depicts the average accuracy registered for
all sequences in magician scenario, i.e., box, rabbit and scarves. Measurements were obtained
from within subject one sequence out classification task.

• It might be possible that the kinematic features we used to represent body joints’ tra-
jectories failed to abstract the motion cues related to the expression of affect from those
inherent to the movement being performed. A detailed discussion and analysis of this
issue will be presented in Section 4.8.4.

• There are differences of emotion expression between actors. As we saw in Section 4.8.2,
it seems that some actors were less expressive than others. It is highly probable that
this difference was even more accentuated on actions freely chosen by the actors.

In conclusion, as long as the body motions and/or actions, for which we seek to classify
emotion-related content, employ the same body’s limbs during their execution, the end-
effector motion parameterization can successfully characterize and preserve their expressive
content.

4.8.4 Analysis of Emotion Misclassification

Among the five tasks on which adhoc and ranked feature subsets were evaluated, between
subject and within subject one sequence out are the two scenarios that provide us with greater
insight into the generalization capabilities of the motion model we proposed. The former
shows us how well the proposed low-dimensional representations preserves the expressive
content of movements performed by different subjects, while the latter investigates its suit-
ability to movements/motor behaviors of diverse types. In this section we present a de-
tailed discussion of the classification performance of both tasks for all emotional states. We
focus on the confusion matrices obtained for the feature subsets of equal cardinality, i.e.,
ϑr ∩ ϑa = {24, 32, 40, 48, 64, 80}. Confusion matrices from the within subject one sequence out
task are presented in Table 4.6 and, and those obtained from the between subject task can be
seen in Table 4.7.
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At large scale, we note that sadness and happiness are the emotions with the highest accu-
racy rates for both tasks and feature groups. This suggests that the expressions of these two
emotions were well distinguished among actors and sequences. They are then followed, in
no particular order, by relaxedness and stress. After looking carefully to the misclassification
patterns associated to these two emotions in Table 4.6, we can see that they were often la-
beled as sadness and happiness respectively. This suggests that emotions sharing the same
activation level were not correctly separated by the RF classifier. Thus, independently of
the feature subsets used to represent all the observations in the learning set, the RF classi-
fier seems to be much better at separating emotions along the activation axis than emotions
placed at the extremes of the valence axis. A possible reason for this could be the choice
of kinematic quantities as three of the four features that characterize joint trajectories. This
claim is supported by the work of Pollick and colleagues [197]. They showed that, for natu-
ral arm movements like knocking and drinking, the activation of perceived affect is directly
related to the movement kinematics. Thus, our features might not provide enough informa-
tion for separating emotions along the valence/pleasantness axis.

In the case of within subject one sequence out task, the main difference between adhoc
and ranked groups lays in the results obtained for the neutral state. From the left side of
Table 4.6, it is clear that for all subsets belonging to adhoc group, the neutral state was never
recognized above chance level (20%). This suggests that information necessary for the cor-
rect discrimination of this state was missing from the features computed from end-effector
trajectories. If we look carefully to the first row of the individual confusion matrices shown
in Table 4.6, we observe that the neutral state was frequently misclassified as either sadness or
relaxedness. It seems then that a RF classifier trained on information extracted from the end-
effector trajectories can accurately recognize the differences of the neutral state with respect
to highly activated emotions (happiness and stress), but fails to discriminate it from emotional
states with low activation and opposed along the valence dimension. In [197, 205], authors
suggested that pleasantness information might be directly related to relations between the
different limb segments. It is highly probable that this information was implicitly preserved
for body joints others than the end-effectors, which will explain why ranked subsets per-
formed relatively better on the discrimination of the neutral state than the adhoc subsets.
However, even for ranked feature subsets, the recognition rates for the neutral state remain
the lowest among all intended emotional states (around 29%).
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0.17 0.36 0.06 0.09 0.32
0.0 0.92 0.0 0.02 0.06
0.05 0.04 0.71 0.18 0.02
0.01 0.15 0.17 0.62 0.05
0.02 0.37 0.04 0.04 0.53

average rate: 0.59
(a) Adhoc subset: 24 features

0.23 0.33 0.12 0.05 0.27
0.0 0.93 0.0 0.0 0.07
0.01 0.05 0.78 0.10 0.06
0.0 0.16 0.23 0.58 0.03
0.02 0.29 0.12 0.06 0.51

average rate: 0.61
(b) Ranked subset: 24 features

0.18 0.38 0.11 0.05 0.28
0.0 0.91 0.0 0.04 0.06

0.03 0.04 0.75 0.14 0.04
0.01 0.15 0.22 0.60 0.03
0.01 0.32 0.04 0.04 0.59

average rate: 0.61
(c) Adhoc subset: 32 features

0.28 0.31 0.09 0.04 0.28
0.0 0.92 0.0 0.0 0.08
0.01 0.04 0.82 0.08 0.05
0.0 0.16 0.21 0.60 0.03
0.02 0.31 0.12 0.06 0.49

average rate: 0.62
(d) Ranked subset: 32 features

0.18 0.46 0.05 0.07 0.24
0.0 0.96 0.0 0.0 0.04

0.03 0.06 0.75 0.10 0.07
0.00 0.18 0.19 0.57 0.06
0.0 0.30 0.07 0.04 0.59

average rate: 0.61
(e) Adhoc subset: 40 features

0.28 0.31 0.10 0.01 0.30
0.0 0.92 0.0 0.0 0.08

0.02 0.03 0.86 0.04 0.05
0.0 0.16 0.18 0.61 0.05

0.02 0.31 0.08 0.04 0.55
average rate: 0.64

(f) Ranked subset: 40 features

0.18 0.42 0.06 0.05 0.29
0.01 0.96 0.00 0.01 0.02
0.0 0.04 0.82 0.06 0.08

0.01 0.16 0.17 0.61 0.05
0.02 0.30 0.06 0.03 0.59

average rate: 0.64
(g) Adhoc subset: 48 features

0.29 0.30 0.10 0.0 0.31
0.0 0.93 0.0 0.0 0.07

0.02 0.02 0.87 0.04 0.05
0.00 0.16 0.18 0.61 0.05
0.02 0.34 0.08 0.04 0.52

average rate: 0.64
(h) Ranked subset: 48 features

0.18 0.42 0.08 0.03 0.29
0.01 0.96 0.0 0.01 0.02
0.00 0.04 0.81 0.08 0.07
0.00 0.19 0.20 0.56 0.05
0.00 0.28 0.11 0.02 0.59

average rate: 0.62
(i) Adhoc subset: 64 features

0.29 0.32 0.11 0.00 0.28
0.00 0.94 0.0 0.0 0.06
0.02 0.03 0.87 0.04 0.04
0.01 0.14 0.16 0.64 0.05
0.02 0.32 0.06 0.05 0.55

average rate: 0.66
(j) Ranked subset: 64 features

0.19 0.40 0.10 0.01 0.30
0.0 0.95 0.0 0.02 0.03

0.02 0.04 0.87 0.03 0.04
0.00 0.17 0.18 0.57 0.08
0.00 0.29 0.13 0.0 0.58

average rate: 0.63
(k) Adhoc subset: 80 features

0.30 0.31 0.12 0.0 0.27
0.0 0.94 0.0 0.0 0.06

0.01 0.03 0.87 0.04 0.05
0.01 0.14 0.14 0.66 0.05
0.02 0.31 0.07 0.04 0.56

average rate: 0.66
(l) Ranked subset: 80 features

Table 4.6: Confusion matrices for within subject one sequence out classification task. Only
common cardinalities, i.e., ϑr ∩ϑa = {24, 32, 40, 48, 64, 80}, between adhoc and ranked groups
are considered. Individual confusion matrices list emotions in the order neutral, sadness,
happiness, stress, and relaxedness.
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0.17 0.38 0.12 0.15 0.18
0.16 0.79 0.0 0.0 0.05
0.02 0.09 0.68 0.17 0.04
0.06 0.12 0.39 0.35 0.08
0.09 0.36 0.10 0.16 0.29

average rate: 0.46
(a) Adhoc subset: 24 features

0.19 0.39 0.08 0.17 0.17
0.07 0.84 0.0 0.02 0.07
0.03 0.06 0.68 0.15 0.08
0.06 0.14 0.38 0.29 0.13
0.14 0.40 0.08 0.14 0.24

average rate: 0.45
(b) Ranked subset: 24 features

0.18 0.36 0.14 0.11 0.21
0.20 0.66 0.0 0.02 0.12
0.02 0.05 0.68 0.14 0.11
0.03 0.09 0.5 0.28 0.10
0.11 0.31 0.12 0.09 0.37

average rate: 0.43
(c) Adhoc subset: 32 features

0.23 0.36 0.07 0.14 0.20
0.08 0.80 0.0 0.03 0.09
0.03 0.07 0.71 0.12 0.07
0.08 0.12 0.34 0.34 0.12
0.21 0.34 0.09 0.09 0.27

average rate: 0.47
(d) Ranked subset: 32 features

0.24 0.27 0.08 0.16 0.25
0.10 0.75 0.0 0.02 0.13
0.03 0.04 0.67 0.16 0.10
0.13 0.08 0.38 0.37 0.02
0.21 0.26 0.15 0.08 0.30

average rate: 0.47
(e) Adhoc subset: 40 features

0.28 0.31 0.07 0.14 0.20
0.09 0.80 0.0 0.03 0.08
0.03 0.04 0.74 0.10 0.08
0.10 0.10 0.36 0.30 0.14
0.29 0.28 0.08 0.08 0.27

average rate: 0.48
(f) Ranked subset: 40 features

0.26 0.24 0.13 0.11 0.26
0.14 0.73 0.0 0.02 0.11
0.04 0.02 0.70 0.12 0.12
0.15 0.06 0.38 0.36 0.06
0.28 0.24 0.12 0.07 0.29

average rate: 0.47
(g) Adhoc subset: 48 features

0.26 0.31 0.08 0.14 0.21
0.12 0.77 0.0 0.03 0.08
0.04 0.03 0.77 0.09 0.07
0.10 0.10 0.37 0.28 0.15
0.26 0.27 0.08 0.08 0.31

average rate: 0.48
(h) Ranked subset: 48 features

0.20 0.36 0.11 0.12 0.21
0.18 0.73 0.0 0.02 0.07
0.03 0.04 0.71 0.15 0.07
0.12 0.09 0.38 0.34 0.07
0.23 0.29 0.09 0.12 0.27

average rate: 0.45
(i) Adhoc subset: 64 features

0.27 0.29 0.08 0.14 0.22
0.15 0.75 0.0 0.03 0.07
0.05 0.03 0.79 0.08 0.05
0.11 0.10 0.37 0.31 0.11
0.28 0.23 0.09 0.07 0.33

average rate: 0.49
(j) Ranked subset: 64 features

0.28 0.32 0.11 0.13 0.16
0.20 0.75 0.0 0.02 0.03
0.05 0.04 0.79 0.07 0.05
0.11 0.09 0.37 0.34 0.09
0.21 0.28 0.09 0.09 0.33

average rate: 0.50
(k) Adhoc subset: 80 features

0.31 0.29 0.08 0.14 0.18
0.15 0.77 0.0 0.02 0.06
0.03 0.03 0.79 0.08 0.07
0.12 0.11 0.38 0.31 0.08
0.28 0.26 0.08 0.06 0.32

average rate: 0.50
(l) Ranked subset: 80 features

Table 4.7: Confusion matrices for between subject classification task. Only common car-
dinalities, i.e., ϑr ∩ ϑa = {24, 32, 40, 48, 64, 80}, between adhoc and ranked groups are con-
sidered. Individual confusion matrices list emotions in the order neutral, sadness, happiness,
stress, and relaxedness.
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Compared to the results obtained for within subject one sequence out task (see Table 4.6),
between subject classification (see Table 4.7) is characterized by an overall decrease on the
classifier’s accuracy for both adhoc and ranked subsets. Nevertheless, we find the same
tendency on the observed recognition rates. Sadness and happiness are the best recognized
emotions, followed by stress and relaxedness. Similarly, we observe that the rates for happiness
and sadness are relatively close (around 70%− 80%) to those registered by previous studies
in which between subject classification of emotional states was performed ([4, 20, 260]).

The neutral state reports anew the lowest accuracy rate and keeps being frequently mis-
classified as either sadness or relaxedness. However, contrary to the within subject one se-
quence out task, we find that the inverse behavior took place for the between subject task.
That is, relaxedness and sadness misclassification as neutral went from none to approximately
25%− 30% for both feature groups. This fact can be due to: (a) the inability of the selected
kinematic features to capture the different nuances of emotions lying along the pleasantness
axis, or (b) the subject bias. As it was discussed in Section 4.8.2, some actors showed mixed
interpretations of the five target emotional states and even though they were tested against
their own referential (see Figure 4.7), the classifier reporter considerably lower accuracy rates
for them. Hence, it is possible that by training the classifier on such distinct examples for the
same class, the RF model could not effectively separate them.

The considerable gap between the recognition rates for each emotional state makes dif-
ficult to reach a final conclusion about the generalization capabilities – to both actions and
subjects – of the proposed motion model. However, since the same behavior is observed
on the subsets defined through feature selection techniques, it is possible to say that, in the
context of the current conditions and limitations, features computed from end-effector tra-
jectories seem to provide the same amount of information about the expressive content of
different movement and for different subjects.

4.8.5 Comparison with Human Perceptual Evaluation

During the training of our classifier, we used the elicited emotions as ground truth data.
We then evaluated the classifier’s overall behavior as well as the relevance of end-effector
trajectories in function of these annotations. If the classifier is able to accurately predict a
high proportion of these ground truth labels, we consider it is a good predictor of the affec-
tive state contained in body movements. Similarly, if features extracted from end-effector
trajectories produce also accurate predictions, we rate it as a good motion parameterization
of expressive motions. However, we cannot forget that the recognition of emotional states
from bodily motions is by definition an extremely subjective task, since humans interpret,
perceive and convey emotions differently one from another. For this reason, we decided
to use human evaluation as a base line for assessing both the classifier’s accuracy and the
suitability of the motion model proposed in this thesis.

The comparison between humans and the RF classifier is possible since the features on
which the latter has been trained were computed using the same body representations pre-
sented to the human participants as described in Chapter 3-Section 3.7. Results obtained for
both the human observers and the RF classifier are summarized and presented in the form
of confusion matrices in Table 4.8 and Table 4.9 respectively. We consider both the whole-
body and end-effector trajectories (head, hands, feet, and pelvis) representations. The classifier
results come from the between subject classification task, since it is the task that approaches
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the most to the conditions in which human raters were evaluated.
At a large scale, we observe the same overall behavior for both representations and fea-

tures sets. Sadness and happiness are the two best recognized emotional states, followed by
stress and relaxedness. The neutral state, although recognized above chance level in three of
the four cases, is the state in which both humans and the classifier were the less accurate. We
find also that emotional states are particularly well discriminated along the arousal/activa-
tion axis. However, most of the misclassification for both humans and the classifier happen
at the pleasantness/valence level. More precisely, happiness is more often mixed with stress
than with any other emotional state. The same pattern is observed between sadness and re-
laxedness. These results suggest that: (a) the depictions/expressions of happiness and sadness
were consistent among actors, thus making their discrimination much more easier for both
humans and the classifier; (b) the gap between the accuracy rates of sadness and happiness,
and the other emotional states (i.e., stress, relaxedness, and neutral state) reported by the RF
classifier (see Table 4.9) can be due to the differences among actors and their interpretations
of these three elicited emotions rather than to the kinematic features we selected.

0.23 0.22 0.17 0.11 0.27
0.16 0.45 0.08 0.10 0.21
0.10 0.06 0.57 0.16 0.11
0.15 0.13 0.22 0.36 0.14
0.22 0.19 0.19 0.10 0.30

average rate: 0.38
(a) Perceptual study: whole-body stimuli

0.13 0.18 0.28 0.20 0.21
0.14 0.26 0.13 0.14 0.33
0.06 0.10 0.46 0.29 0.09
0.11 0.15 0.27 0.32 0.15
0.12 0.17 0.30 0.20 0.21

average rate: 0.28
(b) Perceptual study: end-effector

trajectories

Table 4.8: Confusion matrices from perceptual study described in Section 3.7 in Chapter 3,
i.e., whole-body stimuli (left) and end-effector trajectories (right). Emotions are listed in the
order neutral, sadness, happiness, stress, and relaxedness.

0.31 0.30 0.08 0.14 0.17
0.13 0.76 0.00 0.02 0.09
0.04 0.02 0.77 0.10 0.07
0.12 0.09 0.39 0.30 0.10
0.28 0.25 0.08 0.04 0.35

average rate: 0.49
(a) Classifier: whole-body features

(cardinality 216)

0.26 0.24 0.13 0.11 0.26
0.14 0.73 0.0 0.02 0.11
0.04 0.02 0.70 0.12 0.12
0.15 0.06 0.38 0.36 0.06
0.28 0.24 0.12 0.07 0.29

average rate: 0.47
(b) Classifier: end-effectors features

(cardinality 48)

Table 4.9: Confusion matrices for classifiers trained on body representations that are equiv-
alent to those presented during the perceptual study described in Section 3.7. Emotions are
listed in the order neutral, sadness, happiness, stress, and relaxedness.

The average recognition rates between human observers (Table 4.8a) and the RF classifier
(Table 4.9a), for the whole-body representation, show that the classifier was, in average, 11%
much more accurate than humans. A possible explanation for this is the lack of a training
stage for the human observers who rated our database. Contrary to other classifier-human
comparisons in which raters saw between 10 [129] to 60 [130] trials by emotional state, due to
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the long duration of the motion sequences in our database, we presented each rater with at
most 5 examples for each emotional state. Thus, human observers had fewer opportunities
to grasp the particularities of the actors, sequences and emotions than the classifier.

After comparing the average rates for the end-effector trajectories representation, we ob-
served the same behavior. This time however, the RF classifier (see Table 4.9a) outperforms
by 19% the human observers (see Table 4.8b). In addition to the lack of training for the
human observers, it seems that, from a perceptual point of view, end-effector trajectories
alone do not provide as much affect-related information to humans as they do to a classifier.
This impairment of human observer’s capacity to discriminate affect when presented with
end-effector trajectories only can be explained by the few or none structural and body-form
information provided by this type of visual stimuli. More precisely, in spite of previous
perceptual studies showing that humans can still recognize emotions from coarse body rep-
resentations such as point-light displays [6, 197], it seems that supplementary form informa-
tion is still needed for sophisticated tasks such as an accurate recognition of emotional states
[6]. Nonetheless, we highlight that human observers were still able to recognize 4 of the 5
elicited emotional states above chance.

In addition to the analysis of the difference of overall performance between human ob-
servers and our RF classifier model, we are also interested in studying how raters’s accuracy
was influenced by sequences and actors. We wish to determine if the sequences and actors
for which the classifier was the most accurate are those who reported the highest perception
rates. Figure 4.9 and Figure 4.10 show the recognition rates obtained from human observers
for each one of the five examples of motion sequences and each one of the five actors in the
MoCap database respectively. For the whole-body representation, we observe that, contrary
to the results obtained from the classifier (see Figure 4.8), the walk examples were the se-
quence for which emotions were the most accurately recognized. The box trick, rabbit trick
and the improvisation sketches follow closely. The sequence that reported the lowest accu-
rate rate is scarves trick. In the case of end-effector trajectories stimuli (see Figure 4.9b), the
relative order between motion sequences given by the human observers’ rates is closer to
the one obtained from the RF classifier (see Figure 4.8b). Both the improvisation sketches
and the scarves trick are the motion examples for which emotion recognition seems to be the
hardest. In general, we find that the relative ordering of the magician sequences is common
to both classifiers and human annotators, and that whereas the classifier performs its best on
the theatrical gestures, the human observers seem to be more adept at recognizing emotions
from less elaborated body motions; possibly because humans are more "trained" at decoding
and understanding locomotion movements [67].
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(b) End-effector trajectories stimuli

Figure 4.9: Accuracy rates reported by human observes for each one of the five examples of motion sequences in the MoCap database
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Figure 4.10: Accuracy rates reported by human observes for each one of the five actors in the MoCap database
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With respect to the influence of the actors, in the case of whole-body stimuli (see Fig-
ure 4.10a), it seems that human observers perceived the same differences in the actors’ ex-
pressiveness than the RF classifier (see Figure 4.7). The actors GR, GA, and SLM reported
higher accuracy rates in comparisons to the other two actors LC and PP. This result con-
firms, to some extent, our previous assumptions. It is possible that the substantial decrease
in the classifier’s accuracy during the between subject tasks and the low perception rates re-
ported by the raters are due to how differently the actors interpreted and conveyed the same
elicited emotion. Thus, since the variance within the examples of the same emotional state
is so large, both the classifier and the human observers made more mistakes in their judg-
ments. Finally, other than a slight increase in the recognition rates obtained for LC actor,
we observe the same relative differences between actors expressiveness in the end-effector
trajectories stimuli (see Figure 4.10b).

4.9 Summary

This chapter presented the classification protocol used to quantitatively validate the suit-
ability of end-effectors trajectories for the parameterization of expressively body motions.
After taking into consideration the technical challenges associated to the classification of
time series: variable length, high-dimensionality, and ease of interpretation, a feature-based
representation of motion sequences was defined. In this representation, the spatial-temporal
trajectories of all body joints were characterized by three kinematic (velocity, acceleration,
jerk) and one geometric (curvature) quantities. The choice of this representation was moti-
vated by previous studies showing the importance of kinematic information in the percep-
tion of emotion from body movements. Furthermore, the chosen quantities could be easily
computed from whole (all body joints) or partial (end-effector trajectories) body representa-
tions, which made the evaluation of the proposed motion model much more easier. We later
detailed how fixed-length feature vectors were estimated from the four kinematic quantities
describing the 3D trajectory of each body joint.

The main idea behind the use of automatic affect classification was to compare the per-
formance of a single classifier when trained on two different groups of features. The first
group consisted of features computed from end-effector trajectories only, whereas the sec-
ond group comprised subsets of features automatically defined from all body joints. Since
features subsets were to be defined, a brief review of the main approaches on automatic fea-
ture selection was presented. From then on, given the context of our study and the limited
amount of data to use during learning and testing, it was argued that the combination of an
ensemble classifier and a forward selection strategy would yield good results. A theoretical
and empirical justification for the selection of Random Forest as the ensemble classifier to be
used was then presented.

After introducing and describing the classifier, feature-based representation, and the fea-
ture selection procedure to be used, we presented a thorough description of the five classi-
fication tasks on which the relevance of end-effector trajectories was to be evaluated. These
tasks, as a whole, provided us with enough information about the generalization capabilities
of the motion model proposed in this thesis. We evaluated general behavior of a classifier
trained on end-effector trajectories when different sequences of actions and actors were used
as test sets. Similarly, we evaluated their robustness to different classification settings such
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as classifier hyper-parameters and windows’ lengths and overlaps (see Appendices B and
C). Finally, we compared the overall classifier performance, for the whole-body and the end-
effector trajectories against the recognition rates obtained from a user study.

4.10 Discussion

The analysis of the accuracy rates obtained for both adhoc and ranked groups show that, in
the majority of the cases, the performance of a classifier trained on end-effector trajectories-
related information could not be judged statistically different, at a significant level of
α = 0.01, from the their equivalent in the ranked group (see Table 4.5). For the cases in which
the differences were found to be significant, we observed that the recognition rates obtained
from the feature subsets in adhoc group were usually within one standard deviation (Ta-
ble 4.4) of the accuracy rates registered by the ranked group. We observed also that when
comparing the average recognition rates obtained in the most difficult of all the classifica-
tion task we evaluated, i.e., between subject task, for the largest cardinalities of each group
– 80 features for the adhoc group and 216 (whole-body) for the ranked group –, there was
only a slight decrease (2% approx.) in the classifier’s overall accuracy (see Table 4.9). Thus,
we can conclude that the first part of the hypothesis which stated that: "the performance of
a classifier trained on features computed form the proposed low-dimensional motion representation
is close to the performance obtained for the same classifier trained using features computed from the
entire-body or feature subsets automatically selected" was confirmed by our results.

The second part of our hypothesis stated that the classifier’s accuracy rates when trained
on end-effector trajectories should be close to the rates obtained during a perceptual study.
In Section 4.8.5, we pointed out that both feature groups, in particular the adhoc group,
outperformed human observers for both stimuli. We hypothesize that this noteworthy dif-
ference was due to the few examples shown to the observers in comparison to the dozens
seen by the classifiers during its training phase. Nonetheless the second part of our hy-
pothesis was also confirmed and we can conclude that, from a quantitative point of view,
end-effector trajectories preserve most of the information related to the expression of affect
in body motions.

A detailed analysis of the individual recognition rates of both classifier and user study
pointed out that there were notable differences among emotions, actors and sequences. We
observed that for both classifier and raters, sadness and happiness recognition rates were at
least two times larger than the rates obtained for the other emotional states. In the case of the
RF classifier, since most of the misclassification happened along the pleasantness/valence
axis, we hypothesized that this difference was due to our decision of using only kinematic
features as representations of body joints trajectories. However, after observing the same
pattern in the user study, it seems that the consistent differences between the recognition
rates of the five distinct emotional states can be due to differences in actors performances.
Instead of a lack of discriminative power for both the RF classifier and the chosen features,
it seems that actors showed different expressiveness capacities, and understood and inter-
preted the elicited emotions differently. This claim is sustained by the differences between
actors recognition rates shown in Figures 4.7 and 4.10. We also found significant differences
on the accuracies of both classifiers and raters across sequences. However, these differences
were not consistent between the two of them. The classifier highest rates came from exam-
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ples of the magician sequences, while the user study highest rates were observed for the
walk and improvisation examples.

The strength of end-effector trajectories performance was also tested under different pa-
rameters of the classification protocol (see Appendices B and C) described in this chapter.
The results obtained for different parameterizations of the sliding window – method used
in the definition of feature vectors – and of the RF hyper-parameters indicated that, from an
automatic classification perspective, both our experimental setup and the end-effector trajec-
tories were already at their best performance. However, from a feature selection standpoint,
it seemed that the procedure used in the definition of the ranked group can still be improved
and thus yield smallest and more informative feature subsets. Nonetheless, the optimization
of a feature selection approach is beyond the objectives of this chapter.
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One of the main objectives of this thesis is to generate expressive motions for virtual
human-like characters. By motion we refer to the specification of a character’s posture
through time and space. The resulting motion should not only look natural and plausible
but also satisfy some user-defined constraints such as follow a specific path in space, exhibit
a particular style pattern, e.g., emotion-related content, or respect a determined postural
configuration, e.g., raise one arm during half of the motion.

As already mentioned, in character motion synthesis, virtual characters are usually rep-
resented as skeletons, i.e., articulated bodies. An articulated body is in turn defined as a
hierarchical structure composed of rigid objects, called links – analogous to human bones –
connected together by joints. A joint is the component concerned with motion since it allows
some degree of relative movement between two rigid segments. Thus, in a broad sense, an-
imating a virtual character comes to define the 3D transformations that need to be applied
to each one of the joints in the character’s skeleton such that a determined configuration, i.e.,
posture, is attained.



106 Chapter 5 – Motion Synthesis through Inverse Kinematics and a Random Walk

The definition of an articulated body as a hierarchical structure suppose that: (a) all links
or bones have at most one parent and any number of children, (b) any translation and/or
rotation on the i-th joint affects the translation and rotation of any joint placed later in the
articulated body, and (c) there is at least one bone with no children further in the hierarchy;
this bone is identified as end-effector.

A character’s skeleton can be decomposed into multiple and simpler articulated bodies,
hereinafter referred to as articulated chains. A chain can be built for each end-effector in the
character’s body by moving back through the skeleton, going from parent to parent, until the
start of the chain (the root) is reached. Head, hands and feet are some of the most common
end-effectors. Figure 5.1 shows an example of a character’s skeleton and the articulated chains
that can be defined from it.

Right foot 

Figure 5.1: Example of virtual character’s skeleton and articulated chains that can be defined
from it. Head, hands and feet are the corresponding end-effectors.

Formally, an articulated chain B is composed of n joints. The configuration of B at frame
t is defined by both the rotation vector Qt = (q1, ..., qn) ∈ SO(3)n, where qi is the unit
quaternion [179] that defines the orientation of the i-th joint, and the translation x1,t of the
chain’s root joint:

Xt = (x1,t, Qt) (5.1)

Given this formulation, generating an articulated body’s motion can be reduced to solve
either the forward or inverse kinematics problem. The former amounts to compute, at each
time step t, the resulting posture once the root’s translation x1,t and the rotation vector Qt
have been set. The latter describes the process of determining an appropriate configuration
for which the end-effectors move to a desired position or follow a determined trajectory over
time.

In this chapter we briefly review the existing approaches to generate articulated body
motions that exhibit expressive and/or stylistic content. We then describe the synthesis
approach implemented in this thesis as well as the quantitative and qualitative evaluations
of the motions generated with this approach.
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5.1 Synthesis of Expressive Body Motions: a Survey

In the context of expressive motion synthesis, in addition to determine the appropriate skele-
tal configuration at each frame, we are also interested in modulating how this configuration
changes over time. By doing so, we expect to accurately convey emotion-related content to
the user with whom/who the virtual character might interact.

We have identified two main approaches for the generation of expressive motions 1: rule-
based methods, also known as procedural animation, and example-based methods. In this section
we review the main principles behind these two approaches as well as several examples.

5.1.1 Rule-based methods

Rule-based methods propose an ensemble of motion generation and editing rules that specify
how a set of motion parameters can be mapped to emotionally expressive body motions.
These rules are often guided by a perceptual standpoint and reflect a thorough understand-
ing of the motion characteristics employed by human observers when perceiving and de-
coding affect and emotions. Methods belonging to this category generate new motions by
solving variants of the inverse kinematics problem. Several examples can be found in both
the affective computing and computer animation literature.

Using a parameterization based on results found in the psychology literature, Hartmann
and colleagues [109] defined six qualitative parameters: overall activation, spatial intent,
temporal extent, fluidity, power, and repetition, in order to specify gesture expressiveness.
These high-level parameters are latter mapped into low-level animation parameters that
modify according to some rules of equivalence defined by the authors the wrist control tra-
jectories and the body postures provided by an inverse kinematics analytical solver. This
system has been extensively used for analyzing emotion-related gesture expressiveness in
human users [169] and for synthesizing expressive gestures for embodied conversational
agents [186].

The EMOTE model for effort and shape, developed by Chi et al. [52], uses components
of the Laban Movement Analysis system to control the form and the execution of qualitative
aspects of movements. These parameters are mapped to low-level movement rules that are
then applied to independently defined underlying movements. The underlying movements
were generated by a combination of key-poses, interpolation, and inverse kinematics.

Neff and colleagues [184, 185] propose a supporting software system for creating ex-
pressive character animations. This system uses key aspects of expressive movements (the
amplitude of the motion, the amount of muscular tension, a particular class of posture, etc.)
inspired by the study of artistic performance literature. These aspects, called movement
properties, provide handles to specify expressive movements, a character’s movement style,
and to edit and refine an animation. Two levels of representation are employed: a lower-
level or base representation that specifies the motion of a single joint or group of joints, and
a higher-level that incorporates ideas from the arts literature and defines the structure of a
motion. Higher-level parameters map to lower-level parameters through a script created by
an animator. Final animations are created by defining key-poses and transitioning between
them according to the lower and higher level parameters provided by the animator.

1Also referred to as stylistic motions in the computer animation domain.
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Finally, Alaoui and colleagues [1, 2] measured different motion qualities in order to char-
acterize the dance motions of a user interacting with an artistic installation. The author then
defined a set of rules that mapped the measured qualities to the movement and behavior
of two non-anthropomorphic physical systems. The mapping rules were manually defined
according to the physical parameters and properties of each representation.

5.1.2 Example-based methods

Example-based methods use existing expressive motion examples to guide the editing and syn-
thesis process. The examples encode the motion features that need to be present in a motion
sequence so as to be categorized and/or perceived as expressive and/or stylistic. It is worth
to notice that methods belonging to this category employ a more vague definition of expres-
sive motions. They often refer to motion style rather than to emotions or any other affective
phenomena, and define it as the particular manner in which a motion/action is performed.
Therefore emotionally expressive motions are considered as a particular case of motions with
style. Studies belonging to this category generate new motions by implicitly solving the
forward kinematics problem. Within this category we have identified four main groups:
motion blending, component models, style translation techniques, and stochastic generative
models.

Motion Blending

New motions are generated through weighted interpolation of structurally similar (i.e., mo-
tions that depict the same action with different styles) but distinctive motion examples. Mod-
els within this group have to solve the inverse motion interpolation problem: given the val-
ues of a set of predefined control parameters, a set of motion examples and their blending
weights have to be found so that the new motion follows the control parameters [250]. Dif-
ferent manners of determining blending weights and their mapping to control parameters
have been proposed along the years.

Rose et al. [206] were the first to propose motion blending as a way to generate whole-
body motions that exhibit emotional expressiveness. They proposed to build a space of
different styles and variations (adverbs) for a single action (verbs). To do so, sets of similar,
but distinct motion examples were parameterized through adverbs. A combination of radial
basis functions and low order polynomial was used to determine the blend weights as well
as the mapping between them and the adverbs. A similar method in which motion style
is controlled with semantically meaningful commands (e.g., ’do the same, but more sadly’)
analogous to adverbs was propose by Forger et al. [84]. They introduced a correspondence
between calculated motion features and high-level natural language commands. Given a
desired style, the corresponding motion features are computed. The system, through an
iterative and interactive process, automatically defines and tunes the necessary interpolation
weights so that the resulting motion best exhibits the desired features.

Other motion blending approaches seek to learn the function that maps control parame-
ters to interpolation weights. For instance, in [238] motion examples are labeled using Laban
(LMA) Effort dimensions: flow, weight, time and space; the LMA annotations serve as con-
trol parameters. A blend motion is created for each pair of kinematically similar examples.
The blend is then annotated using LMA parameters. By doing so, a parametric non-linear
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function between the blending weights and the LMA parameter values of the blended mo-
tion is learned. This function quantifies how changes in the interpolation weights influence
the style of the blended motion. The learned model can then be used to apply a variety of
styles to other pre-recorded yet unseen motions. In another study, Ma and colleagues [164]
use a Kriging model to determine the blending weights to use during interpolation. The
proposed model takes as input a set of latent variation parameters that parameterize and
control the style and variation of a predefined joint group. Furthermore, they introduce an
additional mapping between user-defined constraints and the latent variation parameters;
this mapping is in turn approximated through a Bayesian network.

Component Models

Introduced by [247], component models see human motion as the combination of many dif-
ferent, sometimes mutually independent, motion components. Some of them relate to the
content of the motion, the identity of the performer of the motion, the style (the particular
manner of the motion) or any other element that determines the motions being performed.
New motions are generated by exchanging, merging and interpolating one or several com-
ponents according to some high-level constraints or control parameters. Different methods,
most of them coming from the statistics field, have been employed/proposed to obtain these
so-called motion components.

Urtasun et al. [248] make the assumption that motions can be represented as linear sums
of principal components that encapsulate and preserve most of the nuances and patterns
found in the motion examples [202]. Following this idea, [248] propose to build a motion
space by applying Principal Component Analysis (PCA) on examples of several subjects
performing walking and jumping motions at different speeds and lengths. This space de-
fines all possible motions that can be generated for a new actor. Given an example from an
unseen subject, synthesized motions at different walking speeds or jumping lengths can be
generated by projecting the new example into the PCA space and computing the respective
sum coefficients. These coefficients are determined as functions of the distance between the
projected motion and the motions within the PCA space.

Shapiro and colleagues [221] propose an interactive method for generating stylistic mo-
tions. They employ another linear model, Independent Component Analysis (ICA), to sep-
arate data motion into visually meaningful components called style components. New mo-
tions are generated using the style components that a user interactively identifies as suitable
for the synthesized motion. Extensions to the use of ICA for motion decomposition have
been proposed by [133] and [160]. While [133] proposed to apply ICA to body parts’ mo-
tion rather than to the whole body movement as done by [221], [160] used a modified ICA
procedure in order to obtain a better definition of the motion components related to style.

Rather than letting the decomposition method to determine the number of components
underlying a motion, He et al. [112] suggested that human movement is composed of three
main mutually independent elements: content (the intrinsic properties of the motion being
performed), identity (all properties inherent to the performer of the motion), and style (the
particular manner in which a motion is performed). These three components can be obtained
through a combination of non-linear dimensionality reduction techniques and multi-linear
tensor analysis. In the one hand, non-linear dimensionality reduction extracts the content of
the motion while simultaneously preserving the geometry of the underlying manifold and
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a direct mapping from low-to-high dimensional space. On the other hand, multi-linear ten-
sor analysis decomposes multiple orthogonal factors which represent the motion variations
related to style and identity components. New motions are then generated by exchanging,
merging and interpolating one, two or all factors according to some user-defined constraints.

Style Translation

Style translation is the process of transforming an input motion into a new style while pre-
serving its original content [119]. This transformation is estimated via the analysis of the
differences between realizations of the same content in two different styles, e.g., a neutral
and sad walk. This approach usually involves two main stages: i.) spatio-temporal align-
ment between the two motions [114] and ii.) modeling the stylistic differences. The main
difference between the different implementations of style translation principles lies in this
latter stage.

For instance, Amaya et al. [3] employ ideas from signal processing to compute emotional
transformations that capture the differences between a neutral and emotional movement
with respect to speed (timing) and spatial amplitude (range). These transformations are
then applied to existing neutral motions in order to produce the same motions, but with an
emotional quality. Hsu et al. [119] propose to use Linear Time Invariant (LTI) models to
learn the differences between the input and output styles. Once the LTIs’ parameters have
been estimated from the training data, the model translates new motions with simple linear
transformations. The resulting motion retains its content, but differs in its style of execution.
In the work done by Xia and colleagues [266], differences between input and output styles
are approximated through an online learning algorithm that builds a series of local mixtures
of autoregressive models. Once the models parameters are estimated from the training data,
the poses in the input motion are transformed to the desired output style with simple linear
transformations. A particularity of the method proposed by [266] is that local regression
models are build on the fly from the closest examples of each input pose in the database.
Finally, Etemad and colleagues [79] use an ensemble of Gaussian RBF neural networks to
model the differences between neutral and stylistic motion sequences. Prior to training the
neural networks, time warping and principal components analysis are used. The trained
model is capable of translating the learned styles to neutral input sequences.

Stochastic Generative Models

Another category of approaches used for editing and/or synthesizing stylistic motions is
that one of stochastic generative models. That is, statistical models that capture the data’s es-
sential structure, i.e, the spatial and temporal variations defining both content and style. The
appeal behind these models is justified by their capacity to generate motions distinct from
the training data and from the increased number of motion variations that can be obtained
with a small number of hidden variables [176]. Generative models that implicitly estimate of
a low-dimensional hidden space and its corresponding mapping to high-dimensional move-
ment space are among the most used. Below we discuss some of the most popular models
belonging to this group.

Brand et al. [33] used Hidden Markov Models (HMM) to learn motion patterns from a
highly varied set of motion captures. A multidimensional style variable that can be used to
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vary the HMM parameters was added to the the standard HMM model. While the hidden
states of the trained HMMs capture the content of the motion, the style variables model
the differences between motions. The resulting models can be used to apply a given style
to a motion sequence, to generate new sequences by doing a random walk on the trained
HMMs, or to create new styles by interpolating or extrapolating within the space defined by
the multidimensional style variables. Other extensions of HMM models for the generation
of stylistic motions sequences were proposed by [235] and [211].

Motion textures [156] and Motion graphs++ [176] are stochastic adaptations of a motion
graph [142]. Motion sequences are segmented into motion textons [156] or morphable mo-
tion primitives [176] that capture repetitive patterns within the MoCap database. Each mo-
tion texton or morphable motion primitive represents a node within the motion graph and is
used to approximate a local generative model. The local models represent all the style vari-
ations observed for a given texton or primitive. Li et al. [156] used linear dynamic systems
to estimate them, while Min et al. [176] employed a combination of functional data analysis
and Gaussian Mixture Models (GMM). The weight associated to each edge in the motion
graph corresponds to the transition probability between textons or primitives. Whereas new
motion stylistic variations can be obtained via probabilistic sampling, new motion sequences
are generated via graph walks.

Taylor and colleagues [232] proposed to use Conditional Restricted Boltzmann Machines
(CRBM), a deep neural network model, for exact inference and generation of stylistic hu-
man movements. They later added a set of style variables to gate the connections between
the different layers within the neural network model [231]. By doing so, a much more pow-
erful generative model was obtained. This new model allows controlled transitioning and
blending of different styles. Specifically, a change in the style variable induces a change in
the effective weights of the network. Thus, changing these style-based variables during gen-
eration induces natural transitions between different styles and permits interpolation and
extrapolation of styles observed in the training data [231]. Recently, Holden et al. [118] pro-
posed a deep learning framework for the motion synthesis and editing. In this framework,
a convolutional autoencoder and a deep feedforward neural network are combined. The
resulting model generates new stylistic motions by combining the style of one motion with
the timing of another.

Finally, Gaussian Processes [201] have been used to imbue IK solutions with the style
variations present in a MoCap database [100] and to generate new motion sequences that
combine variations related to factors such as style, identity and content [259].

5.1.3 Discussion

As it was previously stated, this thesis lies in the intersection of two research domains: affec-
tive computing and computer animation. The generation of believable and expressive animated
characters is a common interest between these two domains. However, while the affective
computing domain supports most of its work on a profound study and understanding of
what makes human motions to be perceived as emotionally expressive, computer animation
rather strives to generate human motions as visually rich and detailed as those observed in
MoCap databases. Thus, we observe that the affective computing domain favors rule-based
synthesis methods, whereas most of the work done in computer animation belongs to the
example-based category.
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Each approach has its own merits and drawbacks. In the one hand, the strength behind
ruled-based methods lies in their capacity to offer much better control and in the flexibil-
ity and variability of the motions that can be obtained. However, these motions are often
described as stiff and less visually appealing. Furthermore, the definition of the relations
and rules that map control parameters to motion features and motion features to emotional
states is a complex task [131]. On the other hand, example-based methods are capable of
generating novel movements with a high level of details and a great realism. Given a Mo-
Cap database containing examples of perceptually validated expressive motions, we can be
sure that the novel movements generated from these examples will be equally expressive.
Nevertheless, the flexibility and variability of example-based methods entirely depends on
the richness and vastness of the labeled dataset used in these approaches. Furthermore,
example-based methods often provide a very limited control over the possible output mo-
tions and styles, and can be rarely used to analyze and understand what exactly makes a
motion to be perceived as expressive.

In order to benefit from the strengths and advantages of both approaches, while address-
ing their shortcomings, we propose to combine their main principles. Namely, we intro-
duce a synthesis system in which the control and flexibility of the rule-based methods, and
the visual appeal of the example-based techniques are combined. First, we propose to use
end-effector trajectories as control signals. They are intuitive, easy to specify (e.g., through
low-cost motion capture systems such as the Kinect sensor), and provide high-level control
since there is a direct relationship between the input parameters and the resulting motion.
Furthermore, since they will be extracted and/or generated from a labeled and perceptually
validated dataset, we preserve most of the visual appeal of example-based methods. Second,
we propose to use a procedural method (inverse kinematics) as the function that maps end-
effector trajectories to whole-body motions. By doing so, we retain the control and flexibility
of the rule-based approaches and decrease the dependency of the example-based methods
on the motion database.

5.2 Mapping from End-Effector Trajectories to Whole Body Mo-
tions

When high-dimensional data has to be generated using only low-dimensional control signals
(e.g., end-effector trajectories), two types of approaches are usually privileged: data-driven
reconstruction methods [230, 49, 161] and Inverse Kinematics solvers [236, 12]. In the former,
example postures closely approximating the trajectories described by the control signals are
retrieved from a large MoCap database. Those examples are later used to build local models
capable of producing continuous and smooth whole body motions. The resulting move-
ments exhibit the same stylistic characteristics of the examples contained in the database.

In the latter approach, an iterative optimization solver computes the motion, posture by
posture, for which the end effectors follow as smoothly and accurately as possible the con-
trol signals. Other than the knowledge about the hierarchical representation of the human
body and its degrees of freedom, an IK solver has no prior information about the stylistic
characteristics of the motions to be produced. Thus, if the resulting bodily motion exhibits
stylistic variations related to a particular emotional state, it is because the relevant expres-
sive cues were encoded in the control signals. For this reason, an IK-based solver has been



5.2 – Mapping from End-Effector Trajectories to Whole Body Motions 113

adopted as part of the synthesis method presented in this thesis.

In this section, we introduce the theoretical formulation of the inverse kinematics prob-
lem as well as the most common solution approach. We then outline what are the main
challenges associated to the generation of full-body posture and how we address them in
our synthesis approach.

5.2.1 Theoretical Background on Inverse Kinematics

Given the rotation vector Q and the root position x1 associated to the articulated chain B,
it is possible to define F as the forward kinematic operator used to compute the pose of
the end-effector associated to B. Although an end-effector’s pose is usually defined by an
orientation and a position, in this thesis we are only interested in the end-effector’s position.
Thus z ∈ R3 and determines what we referred to as task space:

F : R3 × SO(3) 7−→ R3 (5.2)
(x1, Q) 7−→ z (5.3)

Inverse Kinematics (IK) can be defined as the problem of controlling an articulated chain
through the specification of a target positions for the chain’s end-effector. That is, IK aims to
find a rotation vector Q such that z reaches a desired configuration zd. Hence zd corresponds
to the control signal that guides the inverse kinematics process and whose dimensionality is
much lower than the dimensionality of (x1, Q) combined.

For simplicity we summarize hereinafter the forward kinematics operator by z = F (Q).
IK can be then formulated as the following non-linear inverse problem:

Q = F−1(zd) (5.4)

Solving this inverse problem (5.4) is not an easy task. Since the function F is non-linear,
there may not always be a solution or there may not be a unique (best) solution [37]. The
most direct approach for solving the IK problem would be to obtain a closed-form solution
for Equation 5.4. However, even in well-behaved situations, this kind of solution cannot be
generally achieved. Furthermore, the larger and more complex the articulated chain we aim
to control, the smaller the likelihood of finding an analytical solution [261]. Therefore, the IK
problem is commonly solved through numerical approximation.

The most popular numerical approach consists on linearizing the IK problem about the
current configuration Q using the Jacobian matrix J. Then it is possible, through a simple
iterative scheme, to converge towards the desired target zd by computing small variations
δQ of the rotation vector Q. This approach ensures (most of the times) that the regulation
from z to zd. Formally, the IK problem can be reformulated as follows:

δQ = −λJ−1
Q (zd −F (Q)) (5.5)

δQ = −λJ−1
Q δz (5.6)
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where δz is the desired change on the end-effector’s configuration, J−1
Q is the inverse of

the Jacobian of the articulated chain B evaluated around the current configuration Q, and λ
is a scalar quantity which defines the rate of convergence. The iterative scheme we have just
mentioned amounts to the following algorithm:
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Data: zd: target configuration, Q: current rotation vector
repeat

Compute δz = zd −F (Q);
Calculate J for current Q;
Invert JQ;
Calculate δQ using Equation 5.6;
Compute new configuration Q += δQ;

until F (Q) is sufficiently close to zd;
Algorithm 3: Iterative solution of the IK problem through Jacobian inverse methods.

Although the Jacobian solution is fairly easy to implement, the Jacobian matrix may not
be square or invertible, and difficulties might arise when the articulated chain is highly re-
dundant (i.e., it has more degrees of freedom than are necessary to specify a target for the
end-effector). Because of this, J−1

Q is usually replaced by some generalized inverse J†
Q ap-

proximation:

δQ = −λJ†
Qδz (5.7)

Some of the generalized inverses proposed along the years are: Jacobian transpose [264],
Singular Value Decomposition (SVD) [166], the pseudo-inverse also known as the Moore-
Penrose inverse of the Jacobian, the damped pseudo-inverse [256], among others. The main
differences among all these approximations of the Jacobian’s inverse are their convergence
rate and their behavior around singularities, i.e., situations in which no changes in the rota-
tion vector Q achieve the desired change in the chain’s end-effector configuration.

Since the number of degrees of freedom in a character’s articulated body is most of the
times greater than the dimensionality of target space, the number of solutions to the IK
problem is usually infinite. Therefore, although the Jacobian inverse approach provides us
with a minimal norm solution [261], it is possible that the resulting body configuration may
not look as humanly natural and plausible as we expect them to be. Fortunately, this same
redundancy can be exploited for adding secondary constraints or tasks that will reduce the
space of possible solutions selected by the Jacobian approach to a smaller and more desirable
set.

These additional constraints or tasks can be added through a projection operator (In −
J†

QJQ) that allows us to project them on the null-space of J, that is, the components of the
secondary task that do not change the end-effector’s configuration are selected. Hence, the
new solutions is given by:

δQ = −λJ†
Qδz + (In − J†

QJQ)∇H(Q) (5.8)

where In is an n× n identity matrix and the function H(Q) is a cost function to be mini-
mized and subject to satisfy the primary configuration task (δz ≈ 0). This null-space method
has been extensively used, notably to enforce joint limits [270], avoid singular configurations
[94], control the position of a character’s center of mass [31] or to assign priorities to different
tasks [12, 270].
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5.2.2 Main Challenges of IK-Based Synthesis of Whole-Body Motions

When using inverse kinematics for the generation of whole-body postures and/or whole-body
motions several challenges need to be addressed. Here we outline the main three aspects
that we consider are crucial for the generation of expressive bodily motions from expressive
end-effector trajectories:

CH1 Generating whole-body postures using inverse kinematics supposes to specify and han-
dle multiple end-effector configurations simultaneously. In the case of articulated body
models such as the one presented in Figure 5.1, at least five different target configura-
tions, one for each arm and leg, and one for the head, need to be provided to the
synthesis system. It might happen that all or some of these targets, also referred to as
constraints, conflict with each other and cannot be satisfied at the same time. Thus, a
strategy for solving these conflicting situations is necessary.

CH2 Due to the excess of degrees of freedom in a character’s articulated body, motions gen-
erated via purely procedural techniques such as IK are often considered as mechanical
and unusual. Additional constraints such as explicit bio-mechanical joint limits are
necessary in order to enhance the realism of the synthesized motions.

CH3 Our aim is the generation of whole-body motions that convey the internal emotional
state of a virtual character. Hence, it is crucial that all features associated to the
emotion-related content embedded in the end-effector trajectories can be successfully
preserved during the IK reconstruction. Furthermore, these features should also prop-
agate through the character’s whole-body posture and the resulting motion.

In the remaining of this section, we present and describe the simple yet powerful inverse
kinematics implementation we have used as the function doing the mapping from expressive
end-effector trajectories (low-dimensional space Rd) to expressive full-body postures (high-
dimensional space RD).

5.2.3 Controlling Articulated Chains Independently

When multiple end-effector tasks are defined, there are two main strategies for the formu-
lation of the inverse kinematics problem. In the first strategy, all the joints in the character’s
articulated body are involved in the satisfaction of all tasks or constraints [12, 270]. In the sec-
ond one, the character’s skeleton is partitioned into several articulated chains or joint groups
not necessarily independent from each other (i.e., they can share common body joints). Each
articulated chain is dedicated to specific tasks and has an IK solver associated to it [24, 146,
222, 236].

Although the first approach is often preferred for its capacity to preserve the synergy
among joint groups, it requires a higher computational cost (the Jacobian matrix is larger and
hence its inversion requires more operations) and a more detailed, sometimes expert, control
of the priority between multiple, occasionally opposing, constraints. For instance, if both
arms must reach configurations on opposite directions, it is necessary to determine which
end-effector has a higher priority. Suppose for instance that the right arm target is considered
as more important, hence the left arm target is taken into consideration through its projection
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into the Jacobian’s null space (see Equation 5.8). However, with the increase of the number of
constraints, the instability around singularities of the Jacobian inverse approach is harder to
solve [12] or avoid [270]. Furthermore, the priorities among all tasks need to be determined
a priori the IK computations. This suppose to either define heuristics that will automatically
determine the relative importance among all constraints as done in [224] or to manually set
them [12].

Conversely, when applied to human-like articulated bodies, such as the one considered
in this thesis, the second approach makes the computations easier and simpler [48]. This is
mainly due to the reduction of both the number of dimensions in the Jacobian matrix and the
sum of constraints to be considered at each step. Additionally, since it is possible to define
which joints we wish to consider for each articulated chain, a more efficient and detailed con-
trol can be applied [153, 150]. However, it is still necessary to define the order in which each
articulated chain must be treated. Fortunately, Choi et al. [53] pointed out that finding an in-
verse kinematic solution for multiple chains, each one with an end-effector target associated
to it, does not require any priority assignment between the chains as long as all constraints
remain attainable. As we will show later, this is the case when the end-effector tasks as-
signed to each chain are generated using examples from an expressive MoCap database. For
all of these reasons, we have decided to adopt a multi-chain inverse kinematics approach for
the generation of whole-body expressive motions.

In this thesis we have defined five articulated chains, one for each limb in the charac-
ter’s body. Figure 5.2 shows the five selected chains and their corresponding end-effector
segments (highlighted in red) as well as the number of degrees of freedom associated to all
joints within each chain.

Right foot 

Figure 5.2: Articulated chains and DOF controlled through IK. Red segments indicate end-
effector associated to each articulated chain. Degrees of freedom of each joint are indicated
as follows: green dots = 1 DOF, pink dots = 2 DOF, and light-blue dots = 3 DOF.

From Figure 5.2, we observe that both right and left leg chains have 12 DOF, left and right
arm chains have 15 DOF each, and the head-torso chain has 17 DOF. We find also that there
is one common joint (the body’s root joint) between the legs and head-torso chains and one
common joint (the upper-torso joint) between the three upper-body articulated chains. This
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implies that the angular increases computed for these two body joints might differ among
the different articulated chains sharing them. To solve this problem, we have adopted an
approach based on the weighted sum of the different angular increments.

Given an initial configuration Q of the character’s articulated body, we compute and
store the corresponding inverse kinematics solution for each chain with respect to this initial
configuration. Once angular changes have been computed for all body joints, we average all
the angular increments computed for the root and upper-torso joints respectively. We then
update the character’s body configuration and repeat the same process until all the targets
have been attained or new targets have been specified. For the implementation used in all
our experiments, we have associated the same weight (w=1) to all articulated chains have
a body joint in common. Nonetheless, these weights can eventually be tuned in function of
the movements to be generated.

5.2.4 Constraining the IK Solution to the Space of Plausible Human Postures

When using inverse kinematics, the representation of the motion range of each joint within
the character’s body is fundamental to obtain natural and plausible animations for human
characters [270].

There are two main approaches for including joint limits into the IK solution process. In
the first and most classical approach, a cost function H(Q) is designed to be minimal when
the body joints’ orientations are within safe configurations and maximal when these orien-
tations are beyond or at the vicinity of the joint limits [135, 94, 159]. In the second approach,
also known as clamping, joints’ orientations are treated independently. Each orientation is
clamped back within its valid range of motion whenever the orientation change computed
by IK moves it beyond its validity domain [12, 203].

We have identified two essential differences between these two ways of reinforcing joint
limits. The first difference relates to the application domain. Whereas the first approach
is mostly used in robotics (e.g., [170]) where articulated bodies have less DOFs, the second
one is frequently employed in character animation (e.g., [12]). The second difference lies on
their integration within the IK computation process. When the first approach is used, joint
limits are considered during the computation of the small variations δQ to be applied on the
current chain configuration Qt. This is done through the projection operator introduced in
Equation 5.8. Conversely, the clamping approach is considered (most of the times) as a post-
processing step. That is, after the new configuration Qt+1 = Qt + δQ has been determined,
the orientation qi associated to the i-th joint is tested against its validity domain, if qi violates
this domain, we replace it with the closest valid orientation. Both approaches constrain the
IK solutions to more natural postures, however the first approach is harder to implement
when joints with more than one degree of freedom are considered. As this is the case when
working with virtual human characters, we focus hereinafter on clamping approaches only.

The implementation of the clamping approach depends on both the number of degrees
of freedom associated to each body joint and the rotation parameterization being used [11].
Joints with one or two degrees of freedom are commonly parameterized using Euler angles.
That is, each DOF has associated an independent axis of rotation and the range of motion
around this axis is determined by a rotation angle θ. These joints are the easiest to constrain,
since joint limits can be independently specified for each degree of freedom [11]. It suffices to
define a minimum, θmin, and a maximum, θmax, rotation angles. As long as θmin ≤ θ ≤ θmax,
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no clamping is necessary. However, if it is not the case, θ is set to the closest limit, i.e.,
θ = θmin or θ = θmax.

Joints with 3 DOF, also known as ball-and-socket joints, are harder to model and con-
strain, since we cannot longer assume that all degrees of freedom are independent [11]. For-
tunately, for the purpose of defining a range of motion a simple yet intuitive decoupling
can be applied. Namely, the orientation of a ball-and-socket joint can be though of as being
composed of two motions: (a) a swing motion that controls the direction of the limb directly
attached to the joint, and (b) a twist motion that lets the limb attached to the joint rotate about
itself [13]. Each of these two motions can be then independently constrained. On one hand,
the twist component can be parameterized using Euler angles. Hence, its valid range of mo-
tion can be defined and constrained by an [θmin, θmax] interval as done for simple 1 DOF
joints. On the other hand, the range of motion of the swing component can be expressed as
a region in a 3D space [97, 270]. Joint limits are reinforced as follows: we test whether the
current swing orientation is within the defined region, if it is not the case, we find the closest
projection on the 3D valid region. Cylinders [270], ellipses [97], implicit surfaces [115], and
reach cones [263] are some of the approaches that have been proposed to approximate the
valid region of the swing orientation.

Although several authors have argued about the suitability of the swing-twist decomposi-
tion of ball-and-socket joints [13, 97, 270], we opted for using simple Euler angle constraints
for each one of the 15 ball-and-socket joints in our character’s articulated body [237, 261]
(see Figure 5.2). We did so for two practical reasons. First, in order to model a proper valid
region for the swing motion of a ball-and-socket joint, it is necessary to record valid motions
of maximal amplitude [115]. Unfortunately, at the moment we were recording our MoCap
data we did not take this requirement into consideration. Second, we tried to define the
swing region based on anatomical observations on body joints’ range of motions. However,
we found that the resulting motions exhibited frequent singularities and discontinuities that
could considerably hinder the perception and evaluation of emotion-related content.

Determining Valid Joint Limits from MoCap Data

As it was mentioned, we have decided to model joints limits through simple Euler angles.
These limits are obtained from all the MoCap examples used as learning set and ground
truth data by the synthesis tasks later described in this chapter. For each one of 56 DOF in
our character’s body, we defined an [θmin, θmax] interval using the approach introduced in
[74] and summarized in Algorithm 4:
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Data: Θ = (θ1, ..., θn): angle values associated to the i-th degree of freedom
Result: [θmin, θmax]: valid angle interval for the i-th degree of freedom
Set D = [];
Set n = |Θ|;
Sort Θi in ascending order;
for j from 0 to n− 1 do

Set k = (j + 1) mod n;
if Θ[k] > Θ[j] then

D[j] = Θ[k]−Θ[j];
else

D[j] = Θ[k] + 2π −Θ[j];
end

end
Set m = index of max(D);
θmin = Θ[(m + 1) mod n];
θmax = Θ[m];

Algorithm 4: Algorithm used to determine the range of motion of each degree of freedom.

Once all valid intervals have been computed with Algorithm 4, after each IK iteration
we bound the resulting rotation vector Q, if necessary, using the clamping scheme described
for joints with 1 DOF. Although this way of managing joint limits works well most of the
times, we are aware that some resulting posture might still look as unusual to human ob-
servers. This is due to the lack of mutual constraints between: i.) the DOFs that belong to
the same body joint [261] or ii.) neighboring body joints (e.g., shoulders and elbows) whose
movements are not completely independent from each other [9].

An Additional Constraint: Elbow Trajectory

The major difficulty of solving an inverse kinematics problem for human-like figures stems
from the excessive number of DOFs associated with this type of model. Whereas our char-
acter’s body model has 56 DOFs in total, we currently count with only five constraints, i.e.,
five end-effector target positions, for manipulating the character’s articulated body. The in-
clusion of joint limits helped to considerably reduce the span of the solution space, however
there are still some explicit redundancies that required additional constraints.

First mentioned by Korein et al. [139], one explicit redundancy in the human model is
the "elbow circle" shown in Figure 5.3. Namely, even though the shoulder and the wrist
are firmly and correctly positioned, it is still possible to move the elbow along a circle with
its axis being defined by the straight line connecting the shoulder and the wrist [153]. In
analytical and simpler models of the upper-limbs, this extra degree of freedom is parame-
terized with the so-called swivel angle whose value can be easily determined using standard
Euclidean vector operations [127].

However, since our character’s arm chains count with more degrees of freedom than the
arm models for which analytical solutions can be computed, we have adopted a different
approach. We decided to add an additional constraint to both arm chains instead. Namely,
at each time step, we provide both a target position for the arm’s end-effector (hand) and the
elbow joint. We then use the same IK controller associated to the arm articulated chain to
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Figure 5.3: Explicit redundancy of the arm linkages

determine the orientation changes δQ that best accomplishes both tasks.

Although we consider that both tasks are complementary and thus have the same prior-
ity, we still need to define their relative importance. To do so, we have adopted a weighting
strategy as done in [236]. This strategy is frequently used for the animation and position-
ing of human-like articulated bodies and consists in assigning to each task a weight which
defines its importance with respect to the other tasks. In this manner, the IK solver finds
a compromise in the satisfaction of both tasks. It has been argued that with this strategy
none of the tasks is exactly satisfied [12]. However, we found that the overall patterns of the
arm motions obtained through this strategy visually preserve the emotion-related content
we are interested in. In our current implementation we have empirically assigned weights
of [0.6, 0.4] to hand and elbow targets respectively.

5.3 Trajectory Generation by Re-sampling in Target Space

In the previous two chapters, we showed that both human observers and an automatic affect
classifier could recognize the expressive content embedded in the body motions contained
in our MoCap database. They did so when presented with either whole-body motions or
end-effector trajectories. We also saw that, from the standpoint of automatic classification of
affect, features computed from end-effector trajectories preserve and encode most of the con-
tent related with the expression of emotions. However, as pointed out by Cowie et al. [58],
the features used to quantify and estimate expressive behavior might also be affected by the
movements being performed. Thus, to further evaluate the suitability (i.e., its robustness
and independence from the action being performed) of the proposed motion model and its
applicability to the generation of expressive whole-body motions, we need to produce and
analyze new samples of expressive end-effector trajectories. These new samples should de-
scribe movements sufficiently different from those available in the MoCap database, while
preserving all motion patterns related to the emotions and affective phenomena of interest.
One way to achieve this goal is to adopt a random walk on the manifold defined by our
MoCap database. We argue that trajectories generated in such a manner (i.e., by switching
randomly from one observed state to another at a unit time) are, as far as possible, decor-
related from the semantic actions and sequences contained in the database, but hopefully
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preserve the motion cues that are indicative of expressed emotions. Hence, we have decided
to support the generation of new expressive end-effector trajectories and consequently new
whole-body motions on data-driven animation techniques and statistical models (particu-
larly re-sampling schemes). The reasons behind this choice are three fold:

• Statistical methods are powerful tool for encoding and modeling motion specific in-
formation such as expressive content. Given a limited number of known observations
(i.e., motion examples in a MoCap database), they can efficiently infer information
about: i.) the statistics of the features salient to body motions expressing a particular
emotional state, and ii.) the data generation process from which the expressive move-
ments under study were issued.

• Data-driven methods provide us with the means to generate plausible expressive mo-
tions since they make use of observations of the corresponding phenomenon in the real
world. In other words, the desired expressive behavior has been directly measured on
real subjects. These knowledge can then be used to support the generation of equally
expressive end-effector trajectories

• The progress made on data-driven character animation during the last years has shown
how the combination of data and powerful statistical models can bring realistic results
(e.g.,[51, 118, 155]). By learning what are the bodily expressions associated to a partic-
ular emotional state it is possible to infer new expressive motions (e.g., [33]).

Among the large spectrum of available statistical models, we have chosen bootstrap re-
sampling as an efficient and fast way of generating new expressive end-effector trajectories.
The particularity of this approach is that since new trajectories are generated in a random
manner, we can ensure that: i.) they are sufficiently different from the observed trajecto-
ries, ii.) the semantic significance and dependency associated to known human actions is
not longer present, and iii.) the underlying motion patterns associated to the expression of
emotion and observed in the examples are still present in the novel re-sampled trajectories.
In other words, we go beyond the semantic and meaning inherent to human motion and
completely focus on what make a movement to be perceived as expressive.

The fundamental principle of bootstrap methods is very simple: generate new samples
from the set of known observations (i.e., MoCap end-effector trajectories) such that the sta-
tistical information of the underlying population and distribution can be inferred [110] (i.e.,
the features salient to the expression and/or perception of an emotional state are still present
in the new samples). Before introducing the re-sampling approach we have used, we briefly
review the challenges of bootstrap methods on time-dependent data such as motion data.

5.3.1 Bootstrap on Time Series

Since their introduction by Effron [70] in 1979 a wide range of bootstrap methods have been
proposed. In the context of this thesis, we loosely classify them according to the type of data
of interest. If the data is a random sample from an unknown probability distribution, i.e.,
independent and identically distributed random variables, new bootstrap samples can be
simply generated by either sampling the data randomly with replacement or by sampling
an approximated parametric model of the data’s probability distribution F [108]. Conversely,
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when working with dependent data, e.g., time series, normal bootstrap methods as the ones
already mentioned are not longer suitable. Methods that take into account the dependence
structure of both the data and its generation process are needed instead.

Formally, a time series (X1, X2, ..., Xn) can be defined in turn as a realization of an un-
known d-dimensional stochastic process {Xt}t∈T. That is, given a probability space (Ω,F, P),
so that Ω is the sample space, F the σ-algebra of events, and P the probability measure of
F, a stochastic process on (Ω,F, P) with state space Rd and ordered with respect to a time
index set T corresponds to a collection of random variables {Xt}t∈T such that Xt takes val-
ues in Rd for each t ∈ T. Furthermore, since the end-effector trajectories in our database are
equispaced in time, {Xt}t∈T corresponds to a discrete-time stochastic process, i.e., T ≡N.

Although we know that there is a temporal dependency on the observed time series and
consequently in the stochastic process that generated them, it is possible to assume that this
dependency is local in time. That is, the probability of the next state taken by Xt will be
conditional only on the previous states closer in time. In other words, we can assume then
that the discrete-time stochastic process {Xt}t∈T follows a general Markovian structure and
can be further characterized as a discrete-time Markov process.

Formally speaking, a discrete-time Markov process is defined as follows: we assume that an
integer p > 0 exists such that, for all t ∈ T, the state of the process {Xt}t∈T at time t depends
only on the p previous states, i.e., for every t ∈ T and for every Borel set A ⊂ Rd,

P(Xt+1 ∈ A|Xj, j ≤ t) = P(Xt ∈ A|Xj, t− p + 1 ≤ j ≤ t) (5.9)

That is, for any series of observations in discrete time, each future state, given the entire
past and the present state of the process, depends only on the p present states [61]. This
dependency is captured by the transition probability function listed in Equation (5.9).

When the time series generating process is approximated by a Markov process, bootstrap
methods can be resumed to the estimation of the Markov transition density (5.9) through
non-parametric methods [108]. New bootstrap samples, (X̂1, X̂2, ..., X̂N), are generated by
starting at an arbitrary state and then sampling the generating process implied by the esti-
mated transition probability [108, 196].

Among the existing bootstrap methods for Markov processes, we have decided to work
with the re-sampling procedure proposed by Monbet et al. [177] Local Grid Bootstrap (LGB).
Our choice was motivated by its capacity to: i) better capture the time dependence structure
of a time series, ii) generate sequences whose length may be chosen independently from
the length of the observed sequences, and iii) produce unobserved states within the new
sequences.

5.3.2 Local Grid Bootstrap for Time Series Re-sampling

Given an observed time series (Xi)i∈{1,··· ,T}, LGB resampling algorithm generates a new
time series (X̂i)i∈{1,··· ,N} where the length N may be chosen independently from the length
T of the observed time series. To do so, it assumes that the Markov process {Xt}t∈T can
be further approximated by a strictly stationary p-order Markov chain {Yt}t>p with Yt =

(Xt, Xt−1, ..., Xt−p+1) ∈ Rdp. This chain, in addition to the transition distribution with con-
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tinuous function Fy(x) = P(Xt+1 ≤ x|Yt = y)2, admits also a stationary distribution with
continuous function F(y) = P(Yt < y)3 which determines the likelihood of reaching the
state Yt at any future time. Since the state space in our case is Euclidean, both the stationary
and transition distributions are approximated respectively by kernel estimates density Kd
and Kdp.

Under the LGB re-sampling scheme each new observation X̂t+1 is obtained by assigning
probabilities (stationary and transition probabilities) to a finite subset of convenient states
and sampling this subset according to these discrete probability masses. The assigned prob-
abilities correspond to the density kernel estimates Kd and Kdp computed using a bandwidth
parameter hT previously defined. The finite subset of convenient states from which each new
observation X̂t+1 is obtained is defined by: i.) the successors (V̂Yt)+ of the observed neigh-
bors, within a ratio of width σT, V̂Yt of the last sampled state Ŷt = {X̂t, X̂t−1, · · · , X̂t−p+1},
and ii.) the points of a local grid with discretization step ∆g and edge length σg around these
successors. See Figure 5.4 for a visual representation of the subset we have just described.

Figure 5.4: Local grid bootstrap procedure

Formally, the LGB re-sampling procedure may be defined as follows:
Initialization step
Let Ŷt = {X̂t, X̂t−1, ..., X̂t−p+1} denote the state of the generated sequence at time t. An

initial state Ŷ1, the kernel bandwidth parameter hT, the width σT of the neighborhood of
a given state and the grid parameters ∆g (discretization step) and σg = (edge length) are
selected.

Step t:

• Let us suppose that the state Ŷt is already sampled. The neighborhood V̂Yt of Ŷt is
defined by the set of observed Yl ∈ {Y|d(Y, Ŷt) ≤ σT/2}. Define I[V̂Yt] the set of time
index such that for all l ∈ I[V̂Yt], Yl ∈ V̂Yt. Furthermore, the image (V̂Yt)+ of V̂Yt is
defined by (V̂Yt)+ = {Xl+1, l ∈ I[V̂Yt]} ⊂ Rd.

2Xt+1 ≤ x means Xi,t+1 ≤ xi ∀i ∈ {1, · · · , d}.
3Yt < y means Yi,t ≤ yi ∀i ∈ {1, · · · , dp}.
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• A grid Gt = {gt
1, · · · , gTt

g
} is built by discretizing a cube of Rd with grid step ∆g and

edge length σg. The cube is centered on the barycenter of (V̂Yt)+ and the edge length
σg is defined such that the cube includes at least all the elements of (V̂Yt)+. Let us

denote GY(t)
T = (V̂Yt)+ ∪ Gt.

• Let J be a discrete random variable taking its values in I[GY(t)
T ] = {k ∈ N, Xk ∈

GY(t)
T }, with probability mass function given by:

P(J = k) =
p(Ŷt, Xk+1)

∑j∈I[GY(t)
T ]

p(Ŷt, Xj+1)
, ∀k ∈ I[GY(t)

T ] (5.10)

p(Ŷt, Xk+1) = ∑
i∈I[V̂Yt]

Kd

(
Xk+1 − Xi+1

hT

)
Kdp

(
Ŷt −Yi

hT

)
(5.11)

where Kd and Kd p are the local density kernel estimates of the transition and stationary
density probability functions around GY(t)

T .

• The sampled state at time t + 1 is such that X̂t+1 = XJ ; namely X̂t+1 is randomly
sampled according to the probability mass function (5.11)

The discrete probability mass p(Ŷt, Xk+1) may be considered as transition probabilities
between Ŷt and XJ . It depends both on the density of the original sequence around XJ and
on the density of the observed state around Ŷt. As the kernels Kd and Kdp are continuous
on Rd and Rdp respectively, it is possible to assign probabilities to unobserved points of the
grid and consequently to sample observed and unobserved states.

5.3.3 Application of LGB Re-sampling to Motion Data

In Chapter 4 it was mentioned that a motion sequence can be seen as a multidimensional
time series which takes its values in the space of human plausible postures. Similarly, since
postures evolve smoothly along time, there is a temporal dependence in human motion that
must be preserved and accounted for when generating both expressive end-effector trajecto-
ries and expressive whole-body motions. Fortunately, as shown by the classification results
discussed in Chapter 4, when working with expressive bodily motions, end-effector trajec-
tories provide almost the same temporal information than whole body motion sequences.
Hence, as long as a bootstrap method suitable for time series is applied on the known obser-
vations of end-effector trajectories, we should be able to obtain temporally coherent whole-
body motions. It suffices to apply our IK implementation on the new bootstrap samples.
From this, it follows that the observed end-effector trajectories can also be considered as
time series and the LGB re-sampling procedure can be applied on them.

Trajectory Concatenation

Although the end-effector trajectories on which the LGB re-sampling scheme will be applied
correspond to several realizations of the same semantic sequence, i.e., any magician trick,
it is highly probable that each realization started and ended at a slightly different location
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in space. Hence, there may be regions for which not many observations are available and
the kernel estimates Kd and Kdp are not robust. These regions are thus rarely or even never
explored during the re-sampling process.

In order to enhance LGB transition probabilities at such regions, closed and continuous
end-effector trajectories are necessary. Such trajectories can be produced by smoothly tran-
sitioning between the beginning and end postures issued from each motion in our database.
Namely, given all the motion sequences from which end-effector trajectories will be ex-
tracted, we automatically generate transition motions between the end of the first motion
and the beginning of the second one, the end of the second motion and the beginning of the
third one, and so on.

For transitioning from motion M = (X1, · · · , XT) to motion M′ = (X′1, · · · , X′S) we
have used a simplified version of the procedure proposed by Kovar et al. [142]. Instead of
automatically determining the best transition point between M and M‘ and then blending
the 2L + 1 frames around this point as shown in Figure 5.5a, we have decided to blend the
last L frames of M with the first L frames of M‘ (see Figure 5.5b).

(a) Blending around best transition point
proposed by [142]

(b) Transition between the end and beginning of
the two motions M and M‘

Figure 5.5: Transitions procedures between two motions M and M‘. Top figure depicts the
original procedure proposed by Kovar et al. [142], bottom figure illustrates the simplified
version we have adopted.

The transition is then generated as follows:

1. We align motion M‘ with respect to M using the rigid 2D transformation Gθ,x0,y0 that
minimizes the squared distance between M′ and the last L frames in M. The Gθ,x0,y0

transformation rotates all body joint positions about the vertical z-axis by θ degrees
and then translates it by (x0, y0).
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Given two character postures X = (x1, · · · , xn) and X‘ = (x′1, · · · , x′n) 3D Cartesian
space (i.e., X, X′ ∈ R3×n), with xi = (xi, yi, zi) and x′i = (x′i , y′i, z′i), the 2D transforma-
tions Gθ,x0,y0 is computed as follows [142]:

θ = arctan
∑i wi(xiy

′
i − x

′
iyi)− 1

∑i wi
(x̄ȳ′ − x̄′ȳ)

∑i wi(xix
′
i + yiy

′
i)−

1
∑i wi

(x̄x̄′ + ȳȳ′)
(5.12)

x0 =
1

∑i wi
(x̄− x̄′ cos(θ)− ȳ′ sin(θ)) (5.13)

y0 =
1

∑i wi
(ȳ + x̄′ sin(θ)− ȳ′ cos(θ)) (5.14)

where all barred terms are defined in the same way, e.g., x̄ = ∑i wixi. In our imple-
mentation all n joints positions were attributed the same weight wi = 1/n.

2. For each two corresponding frames Xi∈{T−L,··· ,T}, X′ j∈{1,··· ,L}, we apply linear interpo-
lation on root positions and spherical linear interpolation on joint rotations. Interpola-
tion weights correspond to L evenly spaced values between [0, 1].

Once all motion transitions have been generated, the continuous end-effector and pelvis
trajectories necessary for LGB re-sampling are computed using the forward kinematics op-
erator F (Equation 5.2) on each one of the five articulated chains we previously defined (see
Figure 5.2).

5.3.4 Overview of the Trajectory Generation Process

From Sections 5.3.2 and 5.3.3 we observe that the generation of expressive end-effector tra-
jectories by re-sampling consists on a two-step process (see Figure 5.6). Given a set of n
motions M = {M1, M2, ..., Mn} expressing the same emotional state, we first generate con-
tinuous and closed trajectories by transitioning between every two contiguous motions, e.g.,
from M1 to M2, from M2 to M3, and so on. Second, we apply LGB re-sampling procedure
in order to generate new expressive end-effector trajectories of length N. It is important
to notice that since we have decomposed the animated character’s body into several artic-
ulated chains, we can consider the end-effector trajectories of each articulated chain (e.g.,
head, right arm, or left arm) or a group of articulated chains (e.g., lower-body chains) as the
observed sequence X = (Xi)i∈{1,··· ,T} on which LGB re-sampling is applied. Hence, during
the synthesis process a LGB re-sampling module is defined and adapted for each articulated
chain or group of chains of interest as shown in Figure 5.6.

An important aspect of the synthesis process we have just described is the number of
hyper-parameters to set and their influence in the resulting sampled end-effector trajecto-
ries. In the one hand, the duration K (on frames) of a transition motion should be such as to
ensure a smooth change from one motion sequence to another and to preserve all emotion-
related content. In the other hand, although the LGB re-sampling scheme makes few strong
assumptions about the data, also referred to as observed sequence, and its generating pro-
cess, it still requires to define several sensitive hyper-parameters. For instance, since the
transition probabilities used to approximate the data-generating process by a Markov chain
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Figure 5.6: Overview of end-effector trajectory synthesis process. Two main steps are in-
volved: i) motion transitioning and ii) application of LGB re-sampling scheme.

are estimated through kernel-based density estimators, the choice of the kernel bandwidth
hT is very important. Whereas a bandwidth too small will result in an undersmoothed esti-
mate, a value too large will produce an oversmoothed density estimate [257]. Furthermore,
even if a near to optimal choice of kernel bandwidth hT is made, the density estimates may
also be sensitive to the choice of the width of the local neighborhood of the current state σT.
Hence, Monbet et al. [177] suggest to adapt both σT and hT such as to find nmin number of
neighbors and to consider a minimum of v observations during the averaging process of the
kernel estimation.

The grid step ∆g and the grid edge length σg are also sensitive parameters. They both
determine the number of unobserved states included at each sampling step. When choosing
these two parameters we must consider the following observations made by Monbet et al.
[177]: i) when the ratio σg

∆g
tends to zero, the number of unobserved states tends also to zero

and ii) if σg is large compared to the kernel width hT, the probability of sampling unobserved
states is too small. Both σg and ∆g should be chosen such as both the probability of reaching
unobserved states and the number of accessible states at each sample step are sufficiently
large [177].

In the following section we detail the tasks used to determine whether both the IK-based
motion reconstruction and the proposed trajectory synthesis process generate expressive
whole-body motions. We also explain how all aforementioned parameters were defined
and which insights guided our choices.

5.4 Synthesis Tasks

We have introduced a synthesis approach based on two main components: expressive
end-effector trajectories and an inverse kinematics based mapping from low-dimensional
(i.e., end-effector and pelvis trajectories) to high-dimensional space (i.e., full-body motions).
Specifically, we have argued that:

i) the end-effector trajectories we have selected, i.e., head, hands, feet, and pelvis, encode
most of the patterns necessary for conveying affective content through motion, and
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ii) given a set of those expressive trajectories, equally expressive bodily motions can be
obtained by applying IK controllers on a set of articulated chains. Each chain seeks to
follow its respective end-effector’s trajectory.

In order to validate those two components, we propose two distinct yet complementary
synthesis tasks: motion reconstruction and motions from sampled trajectories. In the first task, we
seek to evaluate whether the proposed IK implementation generates motions that are similar
to those from which the end-effector trajectories guiding the reconstruction were extracted.
Through the second task, we wish to assess if the whole-body motions obtained from the
randomly sampled trajectories exhibit the same affect-related patterns than the motions in
our database. Both tasks are considered for each one of the five emotional states we analyzed
in this thesis, i.e., happiness, neutral, relaxedness, sadness, and stress.

The aforementioned tasks are implemented using the data from a single actor. We do so
in order to reduce as much as possible any confounding effect that might influence the quan-
titative and qualitative validation of both tasks and the two components of the proposed
synthesis approach. The data we use accounts to 24 motion sequences from the magician
scenario: 6 sequences depicting happiness, 6 realizations for the neutral state, 4 sequences
for relaxedness, 5 sequences for sadness, and 3 examples for stress.

5.4.1 Motion Reconstruction

Following the results discussed in Chapter 4, we found that end-effector trajectories contain
enough information such as to produce classification results similar to those obtained when
employing the trajectories of all joints within the actors’ body representation. However, so
far we have not yet assessed how this information propagates to full-body motions obtained
from those trajectories. The motion reconstruction task aims to provide some insight about
this issue.

Specifically, we seek to evaluate the quality of the whole-body motions reconstructed
through the combination of observed end-effector trajectories and IK-based motion con-
trollers. This evaluation is based on the qualitative and quantitative similarity of the
emotion-related content of the original motion M and its reconstructed image M̂.

Original 

motion

End-e ector 

trajectories

IK mapping by

articulated chain

Right foot 

Figure 5.7: Reconstruction task

In this task we proceed as shown in Figure 5.7. For each motion M we extract the tra-
jectories of the end-effectors associated to each one of the articulated chains enumerated in
Section 5.2.3. That is, the head trajectory for the head-torso chain, left and right hand trajec-
tories for the left and right arm chains respectively, left and right foot trajectories for the left
and right leg chains respectively, and the root joint trajectory as well. Additionally, as ex-
plained in Section 5.2.4, we consider also the elbow trajectories for both arm chains in order
to further constraint the space of possible solutions. Each trajectory is expressed with respect
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to the coordinate frame system associated to its respective articulated chain; all trajectories
are invariant to the position of the character’s body in world space.

Once all target trajectories have been defined, we compute the reconstructed motion M̂,
posture by posture, for which the articulated chains follow as smoothly and accurately as
possible the extracted trajectories. We have then that the motion M̂ is the result of apply-
ing the IK controllers associated to all articulated chains for each target state zd as listed in
Equation (5.4).

5.4.2 Synthesis of New Motions Using Sampled Trajectories

Although the motion reconstruction task is a means to measure how expressive are the full-
body motions generated from expressive end-effector trajectories, we cannot forget that the
trajectories we use are readily obtained from motion sequences whose affective content is
known and validated. To fully assess whether expressive end-effector trajectories are indeed
a convenient motion model for generating new expressive body movements, it is necessary
to produce new trajectories and evaluate the whole-body motions obtained from them. We
propose to do so through the motions from sampled trajectories task.

In this task, new expressive end-effector trajectories are generated for each target emo-
tional state using the procedure described and depicted respectively in Section 5.3.4 and
Figure 5.6 respectively. Once we have obtained target trajectories for each one of the articu-
lated chains listed in Section 5.2.3, we proceed to generate a new motion, posture by posture,
using the propose IK-based mapping. The main difference between our two synthesis tasks
lies in the origin of the end-effector trajectories guiding the synthesis process. All the steps
involved in this synthesis task are illustrated in Figure 5.8.
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Figure 5.8: Steps involved in the motions from sampled trajectories task.

Experimental Setup for the Generation of New End-Effector Trajectories

For each targeted emotional state, transition motions are generated using the last and first
L = 250 frames of any two contiguous motion sequences M and M′ respectively. This value
was selected such as to ensure that all individual actions within any magician sequence are
completed before and after transitioning from one sequence to another. Namely, by using
transitions of 250 frames long we are sure of transitioning between the end and beginning
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of the bows the magician makes to the public at the introduction and conclusion of each
sequence.

In order to produce the trajectories necessaries to control the IK controller associated to
each articulated chain, each new time series generated by LGB re-sampling scheme consists
of four processes characterized respectively by: the 3D head, the 6D right elbow-hand, the
6D left elbow-hand, the 6D+3D lower body trajectories. Each of these processes is indepen-
dently re-sampled according to the LGB procedure for which Xt corresponds to the 3D or
6D trajectories. In the case of the leg chains, we have decided to sample them together in
order to guarantee the character’s stability during motion. Additionally, since the motion
of the character’s body root joint highly depends on the leg chains displacement and vice-
versa, every time a new state is sampled, the corresponding root’s position is taken from the
observed sequence X = (Xi)i∈{1,··· ,T} associated to the character’s lower-body motion.

The order of the Markov process representing each observed sequence has been empir-
ically adjusted to p = 1 for the 6D elbow-hand and 6D+3D lower-body trajectories, and to
p = 3 for the 3D head trajectories. This choice was made based on the density of the area
explored by each articulated chain and so that the synthesized trajectories were reliable and
smooth enough after considering the number of points and their dimensionality by emo-
tional state.

For each process the grid parameter σg is locally adjusted so as to maintain between 50
and 100 observations inside the neighborhood V̂Yt. The parameter hT is set up to σg/3,
which seems to nicely fit with the implementation of a grid (hypercube covering the image
V̂Yt)+) that has 3 subdivisions along each of the 3 or 6 dimensions that are considered. A
Kd-tree is used to index p.d dimensional samples collected along the observed end-effector
trajectories. The search for the neighborhood of the current Ŷt, which conditions the algo-
rithmic complexity of the method, is near logarithmic with the size of the data as far as p.d is
sufficiently small, basically below 20.

For each emotional state re-sampled end-effector trajectories of N = 30000 frames are
generated. Figure 5.9 shows for the emotional state happiness the observed and re-sampled
3D submanifolds obtained from the head, right hand and right foot trajectories.

5.5 Quantitative Evaluation

In the character animation domain, in particular for data-driven approaches, quantifying the
resemblance or similarity between two or more motions is of great importance. Not only is
a key step for popular methods and applications such as motion graphs [113, 142, 154] and
motion retrieval [128, 141], but it is also required for evaluating the performance and quality
of the motions produced by a determined method [199, 204].

Similarity metrics can also be useful to represent the characteristics inherent to a partic-
ular set of motion sequences, e.g., different ways of performing the same logical action or
different logical actions expressing the same affective content, and to consequently deter-
mine if a given motion exhibits such characteristics [189, 249]. In this thesis we are interested
in this latter application of similarity metrics. Specifically, we wish to objectively evaluate
whether the motion sequences obtained from the two aforementioned synthesis tasks share
the same patterns associated with the expression of affect we found in the ground truth data.
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(a) Observed trajectories

(b) Sampled trajectories

Figure 5.9: Observed (top) and sampled (bottom) 3D submanifolds obtained from the trajec-
tories, from left to right, of: head, right hand and right foot.

To measure the resemblance between two or more motions requires to define: i.) a way
of encoding the attributes upon which the similarity will be measured, and ii.) a metric that
specifies how the comparison will be made [144, 249]. Furthermore, the selected encoding
should not only emphasize the important motion components on which we are interested,
e.g., emotion, but also abstract out any other element that is not significant for the motion
comparison, e.g., action or actor dependent information. In the same manner, the chosen
metric or distance function should also account for all the aspects we expect to find are com-
mon to the two motion sequences being compared. For instance, common metric functions
such as the Euclidean distance on joint positions and/or angles can successfully capture the
structural similarity between two motions, but fail to determine if both motion are logically
or contextually analogous [128]. As it has been mentioned all along this thesis, our aim is
to generate emotionally expressive body movements. Hence, both the encoding and metric
functions employed for assessing the motions obtained from the aforementioned synthesis
tasks must account for the variations due to the expression of emotions and affect.

The results presented and discussed in Chapter 4 showed that the motion features (veloc-
ity, acceleration, jerk, and curvature) we used to represent joint trajectories and consequently
motion sequences successfully encoded most of the underlying affective content. Thus, we
have decided to use the same encoding when comparing the ground truth and synthesized
motion sequences. Similarly, we have decided to use automatic affect classification and an
information theory divergence measure as our metric functions. The classification-based
metric will helps us to determine whether the synthesized motions belong to the affective
space defined by the ground truth data. The divergence similarity metric will quantify how
different are the affect-related variations observed in the ground truth data from those found
in the synthesize motions.
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5.5.1 Classification Similarity Measure

This metric function aims to determine whether the bodily movements generated by the
motion reconstruction and motions from sampled trajectories synthesis tasks are recognized by
an automatic classifier trained on the training dataset, i.e., the sequences from which the
end-effector trajectories used on both tasks were extracted. Furthermore, by analyzing the
recognition rates obtained from the classifier we will not only evaluate the quality of the
generated motions, but also provide an initial answer to the following questions:

i.) how well does the expressive content encoded in the end-effector trajectories propa-
gate through the whole character’s body?,

ii.) how expressive are the end-effector trajectories generated by the re-sampling scheme
previously described?, and

iii.) how expressive are the motions generated through the combination of end-effector
trajectories re-sampling and IK reconstruction?

Evaluation Design and Setup

As we have already mentioned, end-effector trajectories are independently re-sampled from
each other in the motions from sampled trajectories synthesis task. While this choice provides
us with a more detailed and efficient control of the character’s articulated body and a richer
vocabulary of possible motions to synthesize [122, 123], it also complexifies the use of au-
tomatic affect classification as a quantitative evaluation metric. On the one hand, the co-
articulation and synergy between articulated chains observed in the ground truth data is not
longer present in the resulting motions (since the re-sampling is achieved chain by chain).
On the other hand, the features’ relationships implicitly learned and employed by the clas-
sifier when trained on feature vectors containing information for all body joints are also
missing in the synthesized motions. Thus, it is likely that the classifier’s performance will
be influenced by this structural difference between the ground truth data and the generated
whole body movements.

For this reason we have decided to employ a different classifier for each synthesis task.
For the motion reconstruction task, which preserves all synergies and dependencies between
articulated chains, a RF classifier with default parameters (n_tress = 500, m_try=

√
p, with

p being the number of features used to represent each observation) is used. For the motions
from sampled trajectories synthesis task, a combined classifier model is employed instead. Both
classifiers follow the same classification procedure described in Chapter 4. That is, motion
chunks and their respective feature vectors are computed for each motion sequence in the
training and testings datasets, and sequences labels are estimated by averaging the proba-
bilistic predictions provided by the classifier across all motion chunks belonging to the same
motion. Default motion chunk parameters are used, i.e., window_size= 500 frames and over-
lap= 250 frames.

The combined classifier model extends the principle of independent articulated chains
into the classification procedure we have just summarized. Instead of generating a unique
feature vector for motion chunk, we associate a feature vector to each one of the chains for
which end-effector trajectories are sampled. Only the body joints that belong to a given
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articulated chain are considered when computing the chain’s feature vector for the current
motion chunk. We train then a RF classifier with default parameters for each controlled chain
(i.e., head, right and left arms) or group of chains (i.e., lower-body). The final label predicted
for a determined motion chunk is computed using the same majority vote scheme we employ
for sequence label prediction (see Section 4.5). Different weights could be used for each
individual classifier. For instance the classifier associated to the right arm chain might be
more informative for right-handed subjects than for left-handed ones.

Below we present and discuss the results obtained when using the MoCap data and
synthesize motions as training and testing sets respectively.

Classification Results: Motion Reconstruction Task

Table 5.1 (bottom) shows the confusion matrices obtained when using the motions generated
by the motion reconstruction task as testing set. Left matrix correspond to recognition rates
obtained on motion chunks, while right matrix shows the rates reported by the classifier on
whole motion sequences. Results were obtained using features computed for all body joints
(i.e., 216 features in total) and stratified 3-fold cross-validation. For each fold we excluded
during training the corresponding original motion of each reconstructed sequence in the
testing set. We have also included the results obtained when performing stratified 3-fold
cross-validation on MoCap data only (top matrices in Table 5.1).

0.63 0.03 0.13 0.05 0.16
0.03 0.90 0.0 0.0 0.07
0.14 0.01 0.83 0.01 0.01
0.35 0.06 0.25 0.24 0.10
0.30 0.17 0.07 0.03 0.43

average rate: 0.61
(a) Confusion matrix (%) for motion chunks

extracted from ground truth data.

0.93 0.0 0.0 0.0 0.07
0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.60 0.0 0.23 0.17 0.0
0.13 0.0 0.0 0.0 0.87

average rate: 0.79
(b) Confusion matrix (%) for ground truth

motion sequences.

0.63 0.02 0.17 0.04 0.14
0.03 0.76 0.0 0.01 0.20
0.10 0.01 0.85 0.04 0.0
0.36 0.08 0.28 0.20 0.08
0.28 0.11 0.10 0.02 0.48

average rate: 0.58
(c) Confusion matrix (%) for motion chunks
extracted from generated motions (motion

reconstruction task).

1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.67 0.0 0.33 0.0 0.0
0.0 0.25 0.0 0.0 0.75

average rate: 0.75
(d) Confusion matrix (%) for generated

motions (motion reconstruction task).

Table 5.1: Confusion matrices (%) for ground truth data (top) and movements generated by
motion reconstruction synthesis task (bottom). Emotions are listed in the order neutral, sadness,
happiness, stress, and relaxedness.

At a large scale, we observe that for four of the target emotional states, i.e, neutral, sad-
ness, happiness, and relaxedness, the synthesized motion sequences were recognized above
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chance level with an 75% average recognition rate (see Table 5.1d). The reconstructed mo-
tions conveying stress were instead labeled as either neutral or happy motions. However, from
Table 5.1b we find that the classifier was also unsuccessful to accurately recognize ground
truth motions conveying stress above chance level. It is probable that, in both cases, the clas-
sifier’s difficulty to distinguish stress from the other emotional states was due to the limited
number of examples available within the learning dataset; we could only use three exam-
ples in total. We observe also that the differences between synthesized and original motions
change according to the target emotional state. For instance, while the accuracy rates of se-
quences conveying happiness increased for the synthesized motions (100%) with respect to
the ground truth data (93%), the opposite happened for the relaxedness state. Namely, the
accuracy rates registered by the classifier for the synthesized motions (75%) decreased with
respect to the original motions (87%). No difference was found on the accuracy rates on
synthesized and original motion sequences conveying sadness.

Although the average recognition rate across classes decreased of 3% and 4% for mo-
tion chunks and sequences respectively, we find that the automatic recognition rate of the
generated movements is still high and demonstrates that end-effector trajectories encoded
sufficient expressive information. Similarly, this first result proves that, from a quantita-
tive perspective, a simple IK-reconstruct suffices to propagate affective content through the
animated character’s body and thus generate emotionally expressive bodily motions. We
believe that recognition rates for the reconstructed motions can be increased with the im-
provement of our IK reconstruction procedure.

Classification Results: Motions from Sampled Trajectories Task

Since a unique re-sampled end-effector trajectory was generated for each articulated chain
controlled during the motion from sampled trajectories task, we present only recognition rates
registered for motion chunks. The combined classifier model we previously described was
trained using all motion sequences belonging to the ground truth data. Once again, we used
feature vectors containing information from all body joints (i.e., 27 joints, 216 features in to-
tal). Recognition rates listed in Table 5.2b were obtained by testing the classifier on motion
chunks extracted from the 30000-frames long generated sequences. For making the compari-
son with MoCap data possible, accuracy rates on the ground truth data were obtained using
the same combined classifier and a stratified 3-fold cross-validation procedure. Results ob-
tained for motion chunks are listed in Table 5.2a.

From Table 5.2b we observe that motion chunks from all target emotional states were rec-
ognized above chance level at an average recognition rate of 60%. After comparison with the
results obtained on ground truth data only and reported in Table 5.1a, we find that: i.) the
average recognition rate across all class decreased only by 3% and ii.) misclassification pat-
terns between the two confusion matrices are considerably different. For instance, although
relaxedness is recognized above chance level (39%) for the motion chunks obtained from the
generated motions, it is also labeled as neutral for 50% of the cases with respect to the 24%
of the cases reported by the ground truth data. Similarly, motion chunks conveying the neu-
tral state are often labeled as happiness rather than relaxedness as it was observed on ground
truth data. These changes can be due to either differences in the re-sampled end-effector
trajectories or noise introduced by the IK reconstruction procedure.

To gather more information and a better understanding of the reasons behind the
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0.68 0.04 0.10 0.02 0.16
0.02 0.88 0.0 0.0 0.10
0.13 0.01 0.84 0.02 0.0
0.34 0.07 0.26 0.28 0.05
0.24 0.17 0.07 0.03 0.49

average rate: 0.63
(a) Confusion matrix (%) for motion chunks

extracted from ground truth data.

0.54 0.0 0.32 0.04 0.10
0.10 0.73 0.06 0.03 0.08
0.0 0.0 1.0 0.0 0.0
0.33 0.0 0.30 0.34 0.03
0.50 0.0 0.10 0.01 0.39

average rate: 0.60
(b) Confusion matrix (%) for motion chunks

extracted from generated motions (motion from
sampled trajectories task).

Table 5.2: Confusion matrices (%) for ground truth data (left) and movements generated by
motions from sampled trajectories synthesis task (right). Results were obtained at motion chunk
level with combined classifier. Emotions are listed in the order neutral, sadness, happiness,
stress, and relaxedness.

changes we previously mentioned, we trained a RF with default parameters on end-effector
trajectories only and tested it against the re-sampled end-effector trajectories. A total of 48
features were used to encode all motion chunks, i.e., features were computed from head, hands,
feet, and pelvis joints. We also computed recognition rates on ground truth data only using
anew stratified 3-fold cross-validation. Confusion matrices obtained for both classification
scenarios are listed below:

0.65 0.03 0.14 0.04 0.14
0.03 0.91 0.0 0.01 0.05
0.11 0.01 0.84 0.03 0.01
0.40 0.08 0.26 0.21 0.05
0.25 0.16 0.07 0.01 0.51

average rate: 0.62
(a) Confusion matrix (%) for motion chunks
extracted from ground truth end-effector

trajectories.

0.58 0.0 0.28 0.06 0.08
0.09 0.73 0.05 0.05 0.08
0.0 0.0 0.99 0.0 0.01

0.25 0.0 0.26 0.46 0.03
0.38 0.0 0.10 0.02 0.50

average rate: 0.65
(b) Confusion matrix (%) for motion chunks

extracted from re-sampled end-effector
trajectories.

Table 5.3: Confusion matrices (%) for ground truth data (top) and movements generated by
motion reconstruction synthesis task (bottom). Emotions are listed in the order neutral, sadness,
happiness, stress, and relaxedness.

A careful comparison between the confusion matrices listed in Table 5.3 indicates that
whereas the changes on the classification patterns of motion chunks conveying relaxedness may
be due to noise or artifacts introduced by the IK reconstruction procedure, this is not the case
for motion chunks belonging to the neutral state. It seems that re-sampled trajectories for the
latter emotional state are frequently considered as conveying happiness, which explains why
32% of the whole-body motion chunks belonging to the neutral synthesized sequences were
labeled as conveying happiness. Nevertheless, the results listed in Table 5.2b and Table 5.3
indicate that re-sampled trajectories for most of the target emotional states are as expressive
as the ground truth data. Furthermore, whole-body motions generated from re-sampled
end-effector trajectories are as expressive as the motions found in the ground truth data.
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5.5.2 A Divergence-Based Similarity Measure

Although our classification results indicate that both synthesis tasks generate motions that
are congruent with the target emotional states contained in our database, we wished to
further measure the similarity between the affective content encoded in the generated se-
quences and the ground truth data. Inspired by recent work done in motion retrieval [226]
in which motions are compared based on their content and variations rather than their nu-
merical proximity, we have a similarity measure based on information theory metrics.

Statistically speaking, the expressive content of a motion can be described and quantified
by estimating the probability distributions of the features considered as the most salient
during emotion and affect discrimination. By comparing the estimates of the ground-truth
data to those of the synthesized motions, it is possible to have a quantitative measure of their
similarity.

When measuring the similarity between two probability distributions P and Q, relative
entropy measures such as the Kullback-Leibler (KL) divergence are widely used. However, KL
divergence is non-symmetric, i.e., DKL(P||Q) 6= DKL(Q||P), and has no upper-bound, which
makes it harder to interpret. For these reasons, the Jensen-Shannon (JS) divergence measure
has been used instead. Let P denote the space of all probability distributions defined over a
discrete set of events Ω. The JS divergence is a function P ×P → R defined by:

DJS(P, Q) =
1
2

DKL(P||M) +
1
2

DKL(Q||M) (5.15)

where DKL(P, Q) = 1
2 ∑x∈Ω P(x) log P(x)

Q(x) and M(x) = 1
2 P(x) + 1

2 Q(x) is the mean distribu-
tion. The JS divergence is equal to zero (0) only if the distributions are identical, and therefore
are indistinguishable, and reaches its maximum value of one (1) if the two distributions do
not overlap, thus showing that there is not similarity between them. Thus, the closer the JS
score is to zero (0), the more the affective content that is conveyed by both the ground truth
data and the synthesized motions is similar.

In our case, the probability distributions P and Q are associated to two distinct move-
ment generation sources. For each salient feature f ∗i , we compute the distribution P using
the motions from the first generation source and the distribution Q using the motions from
the second source. Both distributions are empirically estimated through 1-dimensional his-
tograms. We then proceed to compute DJS(P, Q).

Selection of the Most Salient Features

One of our main goals has been to show that end-effector trajectories are a sufficient low-
dimensional representation that can be used as control signal for the synthesis of expressive
motions. Hence, it is important that the comparison between MoCap and synthesized mo-
tions is made on a subset of features considered as the most salient when characterizing the
expression of affect and emotions. This will show that the affective content encoded in the
target trajectories is also present in the synthesized motions and exhibits the same patterns
than the ground truth data.

Supported by the results presented in Chapter 4 which indicate that a sufficiently small
set features can characterize the emotional content in human movement, we have decided
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to use only a limited number of such features when computing the JS divergence score be-
tween the ground-truth data and the synthesized motions. This set can be defined through
an automatic feature selection procedure. The procedure – similar to the one employed in
Chapter 4 – uses a RF model as the base classifier of a wrapper algorithm in which a recursive
backward elimination strategy selects the most salient features.

Data: X: dataset, α: set of possible hyper-parameters, d: number of least important
features to remove, n_rep: number of runs for each ranking

Result: tuple (α∗, p∗)
Divide dataset X into K-folds;
for I from 1 to K do

Define set L as dataset X without the I-th fold;
Define set T as the I-th fold of the dataset X;
for αm from 1 to |α| do

selected = all features in dataset X;
n = |selected|;
while n>0 do

Define L′ as set L with selected features on it;
Define T′ as set T with selected features on it;
for i from 0 to n_rep do

Build statistical model f ′ = f (L′, αm);
Store ranking from f ′;
Apply f ′ on T′ and store test error;

end
Calculate average ranking and test error;
Remove from selected the d least important features according to average
ranking;
n = |selected|;

end
end
Calculate average test error for each point (n, αm) across K folds;
Define the pair (p∗, αm) with minimal test average error as the optimal test error
model;

end
Algorithm 5: Cross-validation procedure for parameter selection.

The selection procedure described below is based on the work done by [228] and has
been extended to deal with the selection of RF hyper-parameters. The essential idea of this
procedure is to redefine the problem of feature selection and hyper-parameter fitting as a
problem of parameter selection. It seeks the tuple (p∗, n_trees∗, m_try∗), where the number
of trees, n_trees∗, and the fraction of variables to consider during a split, m_try∗, define the
optimal RF model, and p∗ corresponds to the smallest number of features to consider when
quantitatively comparing ground truth and synthesized motions.

The optimal tuple∗ is determined by cross-validation, and when a final set of features to
use for motion comparison is required, one trains the RF classifier with hyper-parameters
n_trees∗ and m_try∗ on all the data, ranks the features, and applies the same recursive elim-
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ination procedure until only the most important p∗ features are left. The optimal tuple is
selected based on the smallest average test error across folds. The specific steps of the cross-
validation procedure are listed in Algorithm 5.

Since the final goal of this procedure is to select the smallest possible feature subset,
we have decided to also consider other tuples for which the error rates are within the
one standard error rule (1 S.E) during the selection of the optimal parameters tuple∗. If
possible, a substitute for the optimal tuple with a smaller number of features is selected
such that it does not lead to a significant increase in the error rate. The feature selection
procedure starts with the initial 216 features and uses motion chunks defined by a sliding
window of 500−frames length and with an overlap between any two contiguous motion
chunks of 250-frames. A total of 20 different RF models are tested; a model for each possible
combination of the following hyper-parameters: n_trees = {400, 800, 1200, 1600, 2000} and
m_try =

√
p, log2(p), 0.1875× p, 0.4× p, with p being the current dimensionality of the fea-

ture vectors computed from motion chunks. At each iteration the number of features to be con-
sidered decreases by 4. Results depicted in Figure 5.10 have been obtained through stratified
5-fold cross-validation. The optimal tuple and the substitute model selected using the 1 S.E
are (n_trees = 1200, m_try = log2(p), p = 180) and (n_trees = 1200, m_try =

√
p, p = 164)

respectively.
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Figure 5.10: Error rates obtained during parameter selection procedure. Each colored line
indicates the changes on the error rate of different RF model as the number of features de-
creased. n_trees = number of trees, m_try = fraction of total features to be considered during
a split.
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JS Divergence Scores for Generated Motions

One-dimensional histograms are used to empirically approximate the probability distribu-
tions of each one of the p∗ = 164 features selected as the most important. Figure 5.11 depicts
one-dimensional histograms computed for the two most salient features for each emotional
state. The number of bins used by each histograms is automatically determined using the
procedure described in [223]. Using JS divergence measure, histograms are compared bin-
by-bin, i.e., only pairs of bins with the same index are compared. The weighted average of
the 164 divergence measures has been defined as the final similarity score between the two
motions. The weights associated to the individual JS divergence scores correspond to the
importance feature measures computed by the RF classifier and associated to the features
for which the JS scores are computed. In this way, the contribution of all features into the
final similarity score is directly proportional to their importance.

JS divergence measures were computed for three evaluation scenarios:

• Similarity base-line: Before comparing the MoCap ground truth data and the mo-
tions generated by each synthesis task, it is necessary to define an initial baseline score
by emotional state. These scores will provide us with a reference against which com-
pare the divergence scores obtained for each synthesis task. A leave-one-out cross-
validation procedure has been used for that purpose. For each target emotional state,
ni− 1 sequences are used to define the empirical probability distribution P while the re-
maining sequence represents the distribution Q; ni indicates the number of sequences
belonging to the i-th emotional state. Both distributions are computed for each one
of the 164 most salient features. JS divergence measure is applied on P and Q for all
possible ni − 1 combinations. The similarity score for each affective state corresponds
to the average JS measure across all folds.

• Ground truth data (MoCap) vs. motions generated by the motion reconstruction task
(Task 1): Since there is a one-to-one correspondence between ground truth sequences
and generated motions – end-effector trajectories from MoCap sequences guided the
IK reconstruction of each generated motion –, it is possible that the JS scores obtained
by comparing all MoCap motions against all generated motions are overoptimistic. For
this reason, we decided to employ the same leave-one-out cross-validation procedure
than the previous scenario. However, the remaining sequence used to approximate the
distribution Q is taken from the generated motions rather than from the MoCap data.
The similarity score for each emotional state corresponds to the average JS measure
across all fold.

• Ground-truth data (MoCap) vs. motions generated from re-sampled trajectories
(Task 2): Sequences are separated by emotional state. In this third scenario the prob-
ability distributions P and Q are computed from MoCap data and the motions gener-
ated by the synthesized trajectories and the IK controllers respectively. It is possible
that the divergence scores obtained for this scenario are slightly smaller than those ob-
tained from the other two evaluation scenarios. This is due to the number of sequences
used to empirically approximate the distribution Q in each scenario. While in the first
and second scenario only one motion sequence (a unique realization of a magician
trick) with an average duration of 4000 frames is used, in the third and last scenario we
are using an 30000-frames long sequence.
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(a) Neutral

(b) Sadness

(c) Happiness

(d) Stress

(e) Relaxedness

Figure 5.11: Histograms generated for the two most important features: pelvis and lower-
torso joints’ average velocity for each emotional state. Histograms were computed for each
movement generation source: ground truth data (red), motion reconstruction task (green), and
motions from re-sampled trajectories task (blue).
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Scenario Neutral Sadness Happiness Stress Relaxedness
Base line 0.144 0.134 0.132 0.117 0.131
MoCap vs. Task 1 0.157 0.158 0.153 0.123 0.152
MoCap vs. Task 2 0.084 0.0978 0.0840 0.0905 0.160

Table 5.4: Jensen-Shannon divergence measures for each emotional state.

Table 5.4 lists the results we obtained for the three evaluation scenarios we just described.
We observed that for both types of synthesized motions the divergence measures are at the
same time close to the base line and to the lower-bound of the Jensen-Shannon measure. Thus,
as measured by the 164 features used to characterize the affective content within the differ-
ent motions, the generated whole body movements are significantly similar to the ground
truth data from which end-effector trajectories were extracted. From the first and second
row in Table 5.4, we notice also that our IK-based mapping from end-effector trajectories to
whole body motions (second row) resulted only in an average increase of 0.017 with respect
to the divergence scores of ground truth data (first row). This indicates that although some
noise might have been introduced during the mapping, most of the variations related to the
expression of affective content through bodily motions are successfully encoded by the end-
effector trajectories and propagated by the IK mapping. We can conclude then that from a
quantitative standpoint both the proposed motion model, i.e., expressive end-effector trajec-
tories and the designed synthesis approach generate emotionally expressive body motions.

5.6 Qualitative Evaluation: User Study

Human interpretation of emotionally expressive body movements although intuitive can
also be highly subjective. Because of this, in addition to the quantitative evaluation of both
synthesis tasks, subjective measures are needed. These measures assess whether the per-
ception of affect and emotions changes in the light of the source from which the motions to
evaluate are obtained.

Specifically we have conducted a user study in which participants rated the emotional
content and expressiveness of: i) the motions performed by an actor and used both as learn-
ing dataset and ground truth data, ii) the IK reconstruction generated for each sequence
in the learning dataset (first synthesis task), and iii) the motions obtained from re-sampled
expressive end-effector trajectories (second synthesis task). The results obtained from the
first set of motions, i.e., learning set, provide us with a base-line of perceived expressiveness
against which we can compare the perception rates obtained for the synthetically generated
motions. The design and results observed for this subjective evaluation are discussed below.

5.6.1 User Study Design

For this new user study, we have employed the same questionnaire used for the evaluation of
our MoCap database extension (see Section 3.7.2). In this questionnaire – composed of four
different questions – participants are asked to assess the expressiveness and affect-related
content of a group of motions. For each motion to be evaluated, participants are first asked
to select, among five options, which emotion is being displayed by the animated character;
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second, they are asked to rate from 1 to 7 the intensity with which the emotion is being
conveyed; third, using the same scale, the participants rate the current motion along the
valence-arousal axes; and finally, we asked them to assess, from 1 to 7, the difficulty of
evaluating such motion.

For this study 10 video clips at 30 fps were created for each movement generation source,
i.e., MoCap, IK reconstruction or re-sampled end-effector trajectories. For the MoCap source,
2 realizations by emotional state were randomly selected among the 24 available sequences.
In the case of the stimuli belonging to the IK reconstruction source, video clips were gener-
ated by applying the already described IK controllers on the the end-effector trajectories of
each one of the 10 realizations representing the MoCap source.

The stimuli associated to the last generation source, i.e., re-sampled end-effector trajec-
tories, were obtained through a two-step process. First, for each emotional state, a group
of motion candidates (approximately 4 candidates by emotion) was generated by selecting
several motion segments from the 30000 frames long synthesized motion sequences. These
segments were considered to be good examples of each target emotional state. Second, two
annotators were asked to choose the two most expressive motion segments by emotional
state. Videos for which there was a complete agreement between the annotators were auto-
matically selected. If there was no agreement, we randomly selected one or two videos from
the lists provided by the annotators for each emotional state. We found that there was no
agreement for only the second stimuli for the neutral state.

To correctly assess the effect of movement generation source on the perception of emo-
tional states, each source was evaluated separately. More precisely, participants were ran-
domly assigned to either the MoCap, IK reconstruction, or re-sampled end-effector trajec-
tories condition. In this way, we sought to discard any possible carry-over effect between
generation sources and guaranteed that participants would remain naive to the main pur-
poses of the study. Our user study has intended emotion as a within-subject factor, whereas
movement generation source is considered as a between-subject factor instead.

In our previous studies, participants often remarked that assessing emotional states from
the motions we presented to them was harder because they had no base line against to which
make comparisons/judgments. It seems that although a training stage was added to show
the spectrum of possible expressive movements, this information was not sufficient. For
this reason, we have introduced a slight modification into the dynamics of the user study
design we proposed in Chapter 3. We eliminated the training stage and instead of showing
each video clip once, participants were asked to rate the same video twice. Video clips were
presented in random order, however we made sure that all video clips belonging to one con-
dition were rated once before showing any video a second time. Through this modification,
we expect to provide enough information to make the task less complex while avoiding, at
the same time, any possible lingering learning effect.

A total of 72 participants took part in this new user study. In total, we had 35 women
and 37 men, ranging in age from 22 and 69 years old. Since we have three movement gen-
eration sources to be evaluated separately, 24 participants were randomly assigned to each
source; the same participant could not be appointed to more than one source. Once again,
we used Amazon Mechanical Turk (MTurk) [55] as an intermediate platform for recruiting
participants and conducting our study. Since each video clip was rated twice, each partic-
ipant was presented with 20 videos in total. A consent form was electronically signed by
each participant prior to the start of the survey. Participants took in average approximately
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25 minutes to answers all questions. As done in Chapter 3, participants considered as out-
liers were detected using the procedure already detailed in Section 3.7.3. That is, participants
whose agreement score within their group was outside a determined interval were marked
as outliers. Among the initial 72 participants, only 2 outliers were detected; one belonged to
the IK reconstruction group, the other to the re-sampled end-effector trajectories group.

5.6.2 The Effect of Movement Generation Source and Intended Emotion

Two-way repeated measures ANOVA was used to evaluate the main and interaction effects
of intended emotion and movement generation source on the perception of emotionally ex-
pressive body movements. In this analysis, emotion and generation source where modeled
as within-subject and between-subject factors respectively. Five ANOVAs tests were per-
formed on the average accuracy, intensity, valence, arousal, and difficulty ratings across par-
ticipants. Following the same notation used in Chapter 3, we list below the null hypotheses
evaluated in this study:

H0(1, i): The means of the participants’ ratings of i for the different intended emotions are
equal.

H0(2, i): The means of the participants’ ratings of i for the different movement generation
sources are equal.

H0(3, i): Movement generation source and intended emotion are independent factors and no
interaction between the two is present on the participants’ ratings of i.

With i = {accuracy, intensity, valence, arousal, difficulty}. Table 5.5 list the resulting F-
statistics, p-values and effect sizes (η2). Effects and interactions were evaluated at a signifi-
cant level of α = 0.05. P-values indicating a significant difference were highlighted.

In agreement with our previous user studies and as it is listed in Table 5.5, we found that
the intended emotion has a significant effect in all cases (p < 0.0001); hence we reject the
null hypotheses H0(1, i) for i ∈ {accuracy, intensity, valence, arousal, difficulty}. This effect is
large in size (η2 > 0.16), which suggests that the variance observed on participants’ ratings is
mostly due to the affective content conveyed through the character’s motion. Furthermore,
this detected main effect indicates that both synthesis tasks successfully encoded the differ-
ences between the intended emotions in the generated whole-body motions. Thus, from a
perceptual point of view, it seems that as long as expressive end-effector trajectories guide
the synthesis process, affective content is still successfully conveyed and perceived in the
synthesized motions.

The effect of the movement generation source and the paired differences in the partic-
ipants’ ratings of accuracy, intensity, arousal and difficulty with respect to this factor (see
Figures 5.12a, 5.12b, 5.12d, and 5.12e) were found no significant since the corresponding p-
values are greater than α = 0.05. Therefore, we retain the four null hypotheses H0(2, i) for
i ∈ {accuracy, intensity, arousal, difficulty}, which state that the average ratings of movements
from different generation sources are equal. However, since a significant effect of genera-
tion source on valence ratings was found (p < 0.05), we reject H0(2, valence) in favor of the
alternative hypothesis.
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Ratings(i): Accuracy Intensity Valence Arousal Difficulty

Intended emotion
H0(1, i)

F(4, 268) = 40.158 26.159 22.484 146.168 19.141
p-value = <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
η2 = 0.775 0.639 0.586 0.874 0.477

Generation source
H0(2, i)

F(2, 67) = 0.627 1.392 4.424 0.319 1.016
p-value = 0.538 0.256 0.015 0.728 0.368
η2 = 0.018 0.040 0.117 0.009 0.029

Intended emotion ×
generation source
H0(3, i)

F(8, 268) = 1.146 1.087 1.749 0.663 1.554
p-value = 0.332 0.372 0.099 0.684 0.139
η2 = 0.054 0.071 0.098 0.044 0.084

Table 5.5: F-statistics4, p-values and effect size (η2) results from two-way repeated measures
ANOVA’s for main effect of intended emotion and representation. Greenhouse-Geisser cor-
rection was used when sphericity assumption was violated. P-values indicating a significant
difference at level of α = 0.05 are highlighted.

The effects of generation source are of small size (0.01 ≤ η2 < 0.06) for accuracy, in-
tensity, arousal and difficulty ratings, and of medium size (0.06 ≤ η2 < 0.14) for valence
ratings. This suggests although the movement generation source is responsible for a very
limited portion of the variability observed in the participants’ recognition of the intended
emotions and in their perception of intensity, difficulty and activation movement qualities,
some differences observed on valence ratings might still be due to the generation source
factor. Follow-up post-hoc paired Tukey-HSD tests with Bonferroni corrections on valence
ratings over intended emotion and generation source reported that the most significant ef-
fect of generation source is due to the differences in the average valence ratings of the neutral
state (p < 0.01). From Figure 5.12c, we observe indeed that the average valence rating for
the pair (neutral, re-sampled trajectories) is significantly smaller than the value reported by the
pair (neutral, MoCap). However, since there is no difference between the recognition rates ob-
tained for the neutral state for both MoCap and re-sampled trajectories sources – both sources
registered an average recognition rate of 13% for this emotional state as shown in Table 5.6
–, it seems that the differences on valence ratings had little impact on the perception and
recognition of emotionally expressive bodily motions belonging to this intended emotional
state.

4Knowing that the answers of 70 subjects were analyzed, the degrees of freedom of these F-statistics are: a.)
generation source is a between-subjects factor with 3 levels (i.e., MoCap, reconstructed motions, motions from
re-samples trajectories): d fsource = 3− 1 = 2 and d ferror1 = 70− 3 = 67, b.) intended emotion is a within-subjects
factor with 5 levels (i.e., neutral, happiness, etc.): d femotion = 5− 1 = 4 and d ferror2 = d femotion × d ferror1 = 268,
and c.) the interaction between these two factors: d finteraction = d fsource × d femotions = 8 and d ferror2 = 268.
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(a) Accuracy ratings.
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(b) Intensity ratings.
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(c) Valence ratings.
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(d) Arousal ratings.
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(e) Difficulty ratings.

Figure 5.12: Average participants’ ratings (mean ± standard error) for the three movement generation sources: MoCap, IK recon-
struction, and re-sampled end-effector trajectories. Each bar shows the average rating obtained across all examples conveying the same
intended emotion. Significant pair-wise differences between the levels of movement generation source are indicated by "∗" and
follow the convention introduced in Table 3.9.
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Since we retained four of the five null hypothesis on the effects of generation source
and found that the other paired differences between valence ratings obtained for the same
intended emotion across the different generation sources reported p-values greater than α =
0.05 (see happiness, sadness, stress and relaxedness ratings on Figure 5.12c), we conclude that
the movements generated with the proposed synthesis tasks are perceived very similarly to
the original motions executed by the human actor. Consequently, it seems that the small
differences in the recognition of the intended emotions and perception of intensity, arousal,
difficulty, and valence of the original motions versus the synthesized movements are likely
due to chance.

Finally, regarding our third set of null hypotheses H0(3, i) on the interaction of move-
ment generation source and intended emotion, we found no significant effect (p > 0.05) on
participants’ accuracy, intensity, valence, arousal, and difficulty ratings. Hence, we retain
the five null hypotheses H0(3, i) for i ∈ {accuracy, intensity, valence, arousal, difficulty}, which
state that intended emotion and movement generation source factors are independent and
that when they are combined they have no effect on the mean participants’ ratings.

5.6.3 A Closer Look at the Effect of Intended Emotion

The significant effects detected by the ANOVA tests indicate that intended emotion has
the strongest impact on participants’ perception of expressive movements for all dependent
variables, i.e., ratings. Although this result demonstrates that the proposed synthesis tasks
are capable of generating movements that seem to be as expressive as the motions executed
by a human performer, we still wished to analyze the overall behavior of participants’ rat-
ings for each one of the generation sources of interest and intended emotions. By doing so,
we seek to determine if there are emotions or movement qualities on which the proposed
synthesis approach has a stronger effect.

Figure 5.13 summarizes the results obtained from the follow-up post-hoc analysis with
respect to the intended emotions for each movement generation source. Significant pairwise
differences (p < 0.05) between the participants’ ratings for each intended emotion are in-
dicated by grey boxes. Similarly, the white boxes indicate no significant differences and the
black boxes represent the matrices diagonal.

Regarding the accuracy rates obtained for each intended emotion, we found that only
four of the five target emotional states were recognized above chance level (20%). Indepen-
dently of the movement source from which the visual stimuli were obtained, the neutral state
was not perceived as intended, that is as conveying no particular expressive content. From
Table 5.6, we observe that the neutral state was often labeled as either happiness, relaxedness,
or stress. Similarly, for all movement generation sources, happiness and stress registered the
highest recognition rates, followed by sadness and relaxedness. This indicates that movements
with higher activation were better recognized than those with lower activation levels, i.e.,
sadness and relaxedness. A careful analysis of the confusion matrices registered by all move-
ment generation sources shows that participants often misclassified stimuli within the same
activation level but with opposite valence. For instance stress and happiness were frequently
mixed up and sadness was often labeled as relaxedness.

The pairwise differences on intensity ratings with respect to intended emotion were
found to be only significant (p < 0.05) for happiness for both MoCap and re-sampled trajectories
sources, and for the (happiness, neutral) and (happiness, stress) pairs for the IK reconstructed
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(b) Intensity ratings for all movement sources.
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(c) Valence ratings for all movement sources.
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(d) Arousal ratings for all movement sources.
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(e) Difficult ratings for all movement sources.

Figure 5.13: Significant pair-wise differences between emotions’ accuracy, intensity, valence,
arousal, and difficulty ratings for each movement generation source. The grey boxes indicate
significant differences between emotions’ ratings at p < 0.05 and the white boxes indicate
that there is no significant difference, i.e., p > 0.05.
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0.13 0.05 0.38 0.15 0.29
0.15 0.32 0.03 0.09 0.41
0.02 0.02 0.69 0.18 0.09
0.11 0.04 0.18 0.56 0.11
0.11 0.07 0.30 0.18 0.34

average rate: 0.41
(a) MoCap source.

0.11 0.04 0.39 0.26 0.20
0.14 0.40 0.08 0.05 0.33
0.03 0.02 0.53 0.33 0.09
0.11 0.10 0.22 0.43 0.14
0.10 0.13 0.23 0.18 0.36

average rate: 0.37
(b) IK reconstruction source.

0.13 0.11 0.16 0.36 0.24
0.14 0.32 0.03 0.09 0.42
0.03 0.05 0.65 0.26 0.01
0.08 0.04 0.25 0.50 0.13
0.07 0.14 0.34 0.17 0.28

average rate: 0.38
(c) Re-sampled end-effector trajectories source.

Table 5.6: Confusion matrices from user study on the effect of movement generation source
on emotion perception. Emotions are listed in the order neutral, sadness, happiness, stress, and
relaxedness.

motions. A closer look at the average intensity ratings obtained for each intended emotion
(see Figure 5.13b) shows that the highest intensity rates were indeed assigned to the stimuli
belonging to the most easily recognized emotional state (happiness) independently of the gen-
eration source. This results is in agreement with the patterns we observed in our previous
perceptual studies (see Section 3.8.2).

When analyzing the significant pairwise differences of valence ratings with respect to
intended emotion, we found two patterns common to all movement generation sources: i.)
valence differences were easier to identify among stimuli with high activation as indicated
by the p-values (p < 0.05) obtained from the paired-t-test between happiness and stress, and
ii.) the significant difference between happiness and sadness valence rates we observed in our
previous perceptual studies was still present on the movements issued from the three gen-
eration sources. We observed also an interesting relationship between the valence ratings
of motions issued from the MoCap and re-sampled trajectories sources and the misclassifica-
tion of stimuli belonging to the neutral emotional state. A closer look to both Figure 5.13c
(left matrix) and Table 5.6a, shows that a significant pairwise difference between the valence
ratings obtained for the neutral and stress emotional states for the MoCap source resulted in
a higher misclassification of neutral stimuli as either happiness or relaxedness. Conversely,
the significant difference between the neutral and happiness valence ratings for the re-sampled
trajectories source (see right matrix on Figure 5.13c) produced the opposite misclassification
pattern, i.e., neutral stimuli were instead labeled as either stress or relaxedness. This claim is
further supported by the confusion matrix associated to IK reconstructed motions. Since no
significant difference was found with respect to the neutral target emotion, stimuli belonging
to this category were equally misclassified as happiness, stress, or relaxedness. This indicates
that the combination of both expressive end-effector trajectories and IK whole-body recon-
struction preserve partially the cues participants employ when rating the different valence
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levels (i.e., low and high). Consequently the small differences observed on the perception
of the intended emotional states for the IK reconstructed and re-sampled trajectories gen-
eration sources with respect to MoCap generation source might be explained by a loss of
information in this motion quality.

Post-hoc analysis of arousal ratings with respect to the intended emotion for each gener-
ation source showed the same set of statistically significant differences for all sources. That
is, happiness and sadness activation ratings were consistently found higher and lower with re-
spect to the other intended emotions (see Figures 5.12d and 5.13d). This indicates that both
synthesis tasks provided the same kinematic information observed in the motions obtained
from the MoCap generation source.

Finally, when analyzing any possible significant difference of difficulty ratings with re-
spect to intended emotion we found that: i.) for both MoCap and re-sampled trajectories
sources, happiness was consistently labeled as the easiest emotional state to analyze and rate,
ii.) for motions issued from IK reconstruction source only the difficulty ratings between sad-
ness and stress were significantly different, and iii.) stimuli generated from re-sampled tra-
jectories that convey sadness were rated as less difficult than stimuli expressing either stress
or neutral state. However, although sadness was often rated as less difficult to perceive than
stress, Table 5.6 shows that the latter was better recognized than the former across all move-
ment generation sources.

5.7 Summary and General Discussion

A novel motion synthesis approach for the generation of emotionally expressive body mo-
tions was proposed in this chapter. This approach focuses in the use of expressive end-
effector trajectories and comprises two main elements: i.) an inverse kinematics implementa-
tion that maps end-effector trajectories to whole body motions, and ii.) a re-sampling scheme
that generates novel expressive end-effector trajectories while preserving all the kinematic
patterns associated with the expression of affect and emotions.

After surveying the work done by the affective computing and computer animation do-
mains on the generation of expressive and/or stylistic body motions, two main approaches
were identified: rule-based and example-based methods. We then argued that the motion
synthesis method we propose benefits from the strengths and advantages of these two ap-
proaches, while addressing their respective shortcomings. In the one hand, by using end-
effector trajectories issued from a labeled and validated MoCap database as control signals,
we simultaneously preserve most of the visual appeal intrinsic to the exampled-based meth-
ods and the much better and intuitive control offered by the rule-based approach. On the
other hand, our use of a purely procedural method, i.e., inverse kinematics, to map end-
effector trajectories to whole body motions provide us with the flexibility inherent to the
rule-based approach while decreasing the dependency of the example-based approach on
the MoCap database.

The chapter then presented a detailed description and discussion of the two fundamental
ideas behind our IK implementation: i.) the division of the character’s articulated body
into five independently controlled joint groups, herein called articulated chains and ii.) the
combination of joint limits and multiple tasks for the arm chains as a means of constraining
the space of possible solutions to more natural and humanly plausible postures. We then
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proceeded to review the challenges behind the use of re-sampling schemes on temporally
dependent data such as motion data and the reasons behind the choice of LGB as our re-
sampling schema.

The performance of the proposed synthesis approach was tested using two complemen-
tary tasks. Whereas the first task, herein called motion reconstruction, was useful to assess the
capacity of our IK-based mapping and how well emotion-related cues propagated through
the character’s body, the second task, referred to as motions from sampled trajectories, allowed
us to evaluate the re-sampling scheme and the suitability of end-effector trajectories as a
motion model for the generation of expressive body motions. Automatic affect classifica-
tion and an information theory divergence measure were used to quantitatively compare
the generated motions against the ground truth data. Similarly, a user study was conducted
to determine whether the source from which expressive body motions were obtained, i.e.,
MoCap data, IK reconstruction, or re-sampled trajectories, had an effect on the perception of
the intended emotional states.

For the quantitative evaluations we found that: i.) the accuracy rates obtained for the
synthesized motions are very close to the rates observed for the ground truth data. In par-
ticular we observed that the synthesized motions depicting happiness, sadness and the neutral
state were the best recognized. ii.) The divergence measure between the ground truth data
and the synthesized motions are close to zero, which indicates that the features used to quan-
tify the underlying affective content present the same statistics (distributions) for the three
movement generation sources. We found anew that depictions of happiness, sadness and the
neutral state reported the best divergence scores. iii.) The kinematic features (velocity, acceler-
ation, jerk, and curvature) we used to characterized expressive content seem to be robust and,
to some extent, independent from the action (i.e., semantic content) being analyzed.

For the qualitative evaluation we found that movement generation source factor had no
significant effect in 4 of the 5 ratings we analyzed (i.e., accuracy, intensity, arousal, and dif-
ficulty). Hence, synthesize motions were perceived as expressive as the ground truth data.
In the case of valence ratings, we found that the pleasantness rates attributed to stimuli con-
veying the neutral state were lower for the motions generated from re-sampled trajectories,
than for the other generations sources. For the other emotional states, no significant effect
of generation source was found. An interesting finding of this perceptual study is the fact
that whole body motions with no apparent semantic meaning (i.e., motions generated from
randomly re-sampled trajectories) were still perceived as being emotionally expressive. This
indicates, that independently of the motion class being studied, end-effector trajectories are
sufficient to describe affective content. Hence, they can be used as control signal for the
generation of expressive whole-body motions.
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In this thesis, a low-dimensional motion parameterization consisting of end-effectors
(i.e., head, hands, and feet) and pelvis, also referred to as root joint, trajectories was
proposed. Based on results from three different research areas: perception of emotion and
biological motion, automatic recognition of affect and emotions, and computer character animation,
we argued that the proposed representation was suitable and sufficient for the analysis
and generation of expressive bodily motions. A computational and perceptual analysis
of expressive MoCap movements was carried out in order to assess the validity and
convenience of our main hypothesis and arguments. The principle behind our analysis and
the work presented in this thesis was the following:

"If the proposed low-dimensional representation is indeed suitable for the study and generation of
expressive bodily motions, the computational and perceptual evaluation of such representation

should provide results close (or as good as) the ones obtained when information of the entire body is
available and used."

In the following, we summarize our main contributions as well as some interesting di-
rections for the continuation of the work presented in this thesis.

6.1 Contributions

There are three main contributions arising from this work. Firstly, a new motion capture
database was specifically designed for the purpose of this thesis. This database contains ex-
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amples from different motion classes (i.e., periodic movements, functional behaviors, spon-
taneous motions, and theater-inspired motion sequences) performed by several actors. This
diversity was notably useful to determine the determine the generalization capabilities of
the proposed low-dimensional motion representation. Secondly, a user study and automatic
classification framework were designed and used in order to perceptually and quantitatively
assess the amount of emotion-related information still conveyed and encoded in the pro-
posed representation. We observed that although slightly differences in performance were
found with respect to the cases in which the entire body was used, our proposed repre-
sentation preserves most of the motion cues salient to the expression of affect and emotions.
Lastly and most importantly, we have proposed a simple motion synthesis system able to: i.)
reconstruct whole-body motions from the proposed low-dimensional representation and ii.)
produce novel end-effector and pelvis expressive trajectories. A quantitative and qualitative
evaluation of the generated whole body motions shows that these motions are as emotion-
ally expressive as the movements recorded from human actors. These main contributions
are discussed in more detail below.

6.1.1 A New Motion Capture Database Designed Using Principles from Physical
Theater Theory (Chapter 3)

In the context of this thesis, we required a database suitable for both the analysis and syn-
thesis of emotionally expressive bodily motions. That is, a database that comprises among
other technical and theoretical requirements: several subjects, different types of movements
in which all body limbs are employed, several emotional states and various repetitions for
each possible combination of motor behavior and emotional state.

After reviewing the existing and publicly available databases, we determined that none
of them was fully appropriate for our work. Mainly because they were designed with a dif-
ferent purpose in mind. However, after studying their design principles, we found two com-
mon elements that latter served us in the definition and construction of the MoCap database
we proposed: i.) the use of mood induction procedures and skilled actors [14] and ii.) the
interest on theater-inspired scenarios and theater actor training theory [38, 174].

Inspired by these two elements, we designed and recorded a MoCap expressive database
that borrowed some theoretical precepts and ideas from a particular way of doing theater
known as physical theater. Specifically, we devised a mime-magician scenario in which skilled
actors were asked to only use their bodies to channel meaning and express emotions. In this
scenario, each actor embodied a magician during performance. Three magician tricks: the
disappearing box, pulling a rabbit from a hat, and taking scarves from an empty jacket, were to be
performed under one of the following emotional states: happiness, sadness, stress, relaxedness,
and neutral. A combined mood induction procedure (story-based and imagination-based
MIP) was used in order to facilitate the enacting of the selected emotional states.

The mime-magician scenario was further extended with two more sequences: a locomo-
tion example and an freely chosen improvisation sketch. By doing so, we enlarged the num-
ber of movement classes available in our database and provided a means to assess whether
theater inspired scenarios are better recognized and hence more suitable for the analysis and
generation of expressive bodily motions.

The proposed database includes in total: 7 actors (3 women and 4 men), 5 emotional
states, 3 repetitions for each magician trick by emotional state and actor, 1 repetition of the
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locomotion example and improvisation sketch by emotional state (only 5 actors performed
these sequences), and 5 repetitions of a selected number of actions within the magician sce-
nario for each emotional state (these recordings are available for 2 actors only).

Two user studies were carried out to evaluate the human perception of the proposed
database. We found that the perception of the recorded expressive motions was significantly
influenced by the emotional states we asked the actors to convey via their body movements
and that all emotional states were recognized largely above chance level.

6.1.2 A Qualitative and Quantitative Evaluation of the Proposed Low-
Dimensional Motion Parameterization (Chapters 3 and 4)

By definition low-dimensional representations hidden in high-dimensional data are often
selected so as to highlight and preserve most of the relevant information embedded in the
original data [26]. This implies that by measuring how much information is lost with respect
to the initial high-dimensional representation, we can obtain an estimate of the quality of the
selected low-dimensional representation.

Our main interest was to define a low-dimensional representation that preserves most of
the emotion-related content encoded in the initial bodily motion examples and thus could
be used for generating new expressive bodily motions. In order to assess if the proposed
low-dimensional representation met this criteria, we designed two evaluation procedures
to determine how much expressive information is preserved by the end-effector and pelvis
trajectories in comparison with the entire body. Data from our database was used for both
evaluations.

The first evaluation corresponded to a user study in which observers were asked to rate
and recognize the emotional content conveyed by two distinct visual displays of the same
body movements. One display showed the entire body using a stick-figure representation,
whereas the other one depicted the 3-dimensional trajectories of hands, head, feet and pelvis.
Both displays were evaluated separately. This user study provided us with: i.) a qualitative
estimate of the quality and suitability of the selected low-dimensional representation and
ii.) a base line for the automatic affect classifier used in our quantitative evaluation. In this
study, motion examples of 5 actors and all movement classes were used.

The second evaluation was of a quantitative nature. An automatic affect classifier (Ran-
dom Forest) was tested using two different groups of features. The first group consisted
of features computed using the proposed low-dimensional representation, whereas the sec-
ond group comprised features from the entire body and feature subsets automatically deter-
mined via feature selection techniques. In order to carry out this evaluation procedure, we
proposed have a systematic approach for transforming variable-length and temporal depen-
dent motion data to feature-based and fixed-length vectorial representations.

Overall the results of the perceptual study indicated that although observers’ accuracy
was impaired when presented with end-effectors and pelvis trajectories only, they still rec-
ognized 4 of the 5 emotional states above-chance (20 % recognition rate). Nonetheless,
as shown by contribution 6.1.3 (Chapter 5), this impairment was not longer present when
whole-body motions were generated from the observed end-effectors and pelvis trajectories
via the proposed inverse mapping.

From the quantitative evaluation we found that the chosen class of classifier (i.e., Ran-
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dom Forest) exhibited the same behavior independently of the subset of features used to
summarize the motion data. In other words, features subsets computed from the proposed
low-dimensional representation seem to provide the same amount of information about the
expressive content of different motion classes for different subjects than features computed
either from the entire body or automatically determined via feature selection techniques.

The results obtained from both evaluation studies allowed us to conclude that, in the
context of the work done in this thesis, the selected low-dimensional representation pro-
vides sufficient emotion-related information for the perception and automatic recognition
of emotion states from bodily motions. Furthermore, as reported by Krüger and colleagues
[145], we observed that richer and more complex representations give little or no advantage
over the use of end-effector and pelvis trajectories.

6.1.3 A Validated Motion Synthesis Approach for the Generation of Novel Bod-
ily Expressive Motions (Chapter 5)

Contribution 6.1.2 showed own end-effectors and pelvis trajectories encode most of the mo-
tion cues salient to the expression and recognition of emotions and affect. However, since
our primary objective was the generation of expressive bodily motions, a motion synthesis
approach was proposed in order to assess how expressive are the bodily motions generated
either from observed or synthesized low-dimensional trajectories.

The motion synthesis approach we have proposed consists of two main components:

• A set of independent inverse kinematics controllers that map the low-dimensional rep-
resentation to high-dimensional full body motions. A controller is associated to each
limb, also called articulated chain, in the character’s body. Joint limits and elbow tra-
jectories are used during reconstruction in order to constrain the generated motions to
the space of human plausible body postures.

• A re-sampling scheme that generates new random end-effector trajectories while pre-
serving the underlying emotional content. The synthesized trajectories are both spatio-
temporally and semantically different than those observed in the training MoCap
database. Hence, they can be used to further evaluate the suitability of the proposed
low-dimensional representation for the generation of bodily motions belonging to dif-
ferent movement classes.

The expressiveness of motion generated via the proposed synthesis approach was veri-
fied both qualitatively and quantitatively. A user study was used as qualitative validation.
Observers were asked to rate the emotional content conveyed by motions issued from three
different sources: MoCap database, motions reconstructed from observed end-effectors and
pelvis trajectories and motions generated from synthesized trajectories. We found that the
movement generation source had no statistically significant effect on the perception of emo-
tion.

The same classification schema used in contribution 6.1.2 and a similarity measure based
on information-theory literature were used as quantitative evaluation. First, we compared
the recognition rates of the RF classifier when tested on motions generated from the three
sources we listed above. Second, we measured the statistical similarity between: a.) MoCap
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database and motions reconstructed from observed end-effector trajectories and b.) MoCap
database and motions generated using re-sampled trajectories. We observed no significant
difference in the classifiers performance as well as a consequential similarity between the
synthesized and observed (MoCap) bodily motions.

Both qualitative and quantitative results led us to conclude that end-effectors are pelvis
trajectories are certainly an interesting low-dimensional representation of expressive bodily
motions. Furthermore, it can be used for both the study and the generation of such motions.

6.1.4 Concluding Remarks

In a recent survey, Gunes and colleagues [105] highlighted the fact that there is an unlimited
vocabulary of body postures and motions with combinations of movements of various body
parts that can be employed to communicate and express emotions. In order to categorize,
analyze and understand what are the bodily motion cues permeating all different move-
ment depictions of the same emotional state will require to collect and study a considerable
amount of motion data.

Through our work, we have proven that is possible to focus on low-dimensional, yet
meaningful, motion representation that will facilitate such task. This representation will not
only reduce the amount of data required to characterized the space of expressive human
poses and motions, but it will also simplify the acquisition of such data. Since we are inter-
ested in a reduced set of 3-dimensional trajectories, low-cost and less invasive technologies
such as the Kinect [175] sensor can be used. A further advantage of the proposed repre-
sentation is the definition of a compact space suitable for the recognition and generation of
novel expressive bodily motions. Furthermore, our low-dimensional representation shows
that the number of critical informative body joints for emotion recognition is quite low and
that better engineered features can be computed only from these joints (i.e., end-effectors
and pelvis joint).

6.2 Perspectives and Future Work

In this section, we propose several directions for the continuation of the work presented in
this thesis. The improvements and potential research topics herein listed concern the three
research domains in which most of our work is based: emotion perception, automatic affect
recognition, and character animation.

6.2.1 Application to Other Motion Classes and Databases

One of the main barriers to the development of reliable models for the analysis and genera-
tion of expressive bodily motions is that most of the existing approaches are thought, built
and tested using a particular dataset of motion data. Furthermore, most of the times these
dataset contains examples of one single motor behavior such as human gait and a limited
number of emotional states. Thus, it is hard to determine how well these models generalize
to other motion classes, emotions, and applications.

Since the proposed low-dimensional representation consists of 3-dimensional trajecto-
ries frequently found in the existing motion datasets, it is quite straightforward to test its
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suitability on larger sets of motor behaviors and emotions. Both the proposed automatic
classification scheme and motion synthesis approach can be easily applied on datasets such
as Emilya [87] or the dance examples used by [4].

6.2.2 A Further Evaluation of the Expressive Quality and Believability of the
Synthesized Motions

The perceptual studies conducted in the context of this thesis aimed to determine whether
the different motion generation sources had any significant effect on the perception of the
selected 5 emotional states: neutral, happiness, sadness, stress and relaxedness. In order words,
we wished to evaluate how expressive were the bodily motions generated using end-effector
trajectories. Although our results show that no significant difference was found, we believe
that a further evaluation is necessary in order to determine the believability of the generated
motions and thus of the animated character. Such evaluation must be conducted on both the
original and synthesized motions, since it is possible that the proposed motion parameteri-
zation and synthesis approach might induce a change on the perception of such quality.

An additional issue raised by the results obtained in these perceptual studies is the na-
ture of the motion data to be used when synthesizing expressive bodily motions. Although
we found that the emotional states conveyed by the both original and synthesized motions
were distinguished above chance level, the recognition rates remained low in comparison
to studies in which much more exaggerated motions were used [7, 187]. This might suggest
that whereas expressive bodily motions obtained under more naturalistic settings are desir-
able for application such as automatic affect recognition [136], more elaborated depictions
might be needed when animating believable and easily understood virtual characters. A
perceptual study in which naturalistic bodily motions are compared to more exaggerated
movements might provide some insight into which kind of stimuli must be used when ani-
mating believable virtual characters.

6.2.3 Improved Mapping from the Proposed Low-Dimensional Representation
to High-Dimensional Space

The function mapping from end-effector trajectories to whole-body motions is one of the key
elements of the motion synthesis approach proposed in this thesis. This mapping must: i.)
preserve and correctly propagate the expressive content encoded in the end-effector trajec-
tories used as control signals, and ii.) ensure that the resulting bodily motions lie within the
space of humanly plausible and biological movements.

Although the inverse kinematics controllers we used to approximate this mapping pro-
vides an efficient and flexible control over the resulting motions, additional constraints (joint
limits and elbow trajectories) were needed in order to enhance the solutions provided by this
mapping. Nonetheless, we observed that the generated motions might still suffer from vi-
sual artifacts inherent to both the redundancy of the articulated chains being controlled and
the use of purely procedural synthesis techniques.

We believe that deep learning techniques represent an interesting direction for the im-
provement of this mapping function. Specifically, convolutional networks have been shown
to successfully encode within the hidden units the bio-mechanical constraints governing hu-
man motion [118]. By combining this type of network and a generation scheme as the one
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recently proposed by the deep generative network WaveNet [66], we believe it is possible to
generate biologically correct and visually appealing whole-body motions that closely follow
the control signal and exhibit the intended emotional content.

6.2.4 Controlled Generation of Expressive End-Effector Trajectories

In Chapter 5, we showed that whole-body motions generated from expressive end-effectors
trajectories were perceptually and quantitatively rated as expressive as MoCap data. Fur-
thermore, we used a re-sampling scheme in order to generate novel expressive end-effectors
trajectories. However, the user had no control over the motion path described by these tra-
jectories.

Real-world applications for character animation must offer some control over the pos-
sible motion outcomes [250] to the user. Fortunately, end-effector trajectories represent an
intuitive parameterization of the motions to be generated. Based on this, it is possible to
extend the synthesis approach we proposed by combining two existing computer animation
techniques: style transfer and performance animation.

First, the user is asked to specify the end-effector trajectories that best characterize the
desired whole-body motion via low-cost sensors as done in previous performance animation
methods [51, 132, 230]. These trajectories do not contain emotion-related content. Second,
the user determines the emotional state to be conveyed by the resulting expressive bodily
motions. Third, using an adapted implementation of the existing style transfer approaches
[119, 266], the input (non expressive) end-effector trajectories are modified according to the
spatio-temporal patterns associated with the desired emotional state. Finally, the resulting
expressive bodily motion is obtained by applying our inverse kinematic mapping controllers
to the transformed end-effector trajectories.

6.2.5 Perceptually Guided Generation of End-Effectors Trajectories

As mentioned earlier, there are two main approaches commonly employed to determine
and replicate the motion features salient to the expression of emotions via bodily motions:
computational data-driven and perceptual guided studies. Whereas the former are often
complex, computational expensive and highly dependent on the data used during the train-
ing/configuration stage, the latter are based on subjective and empirical observations not
easily mapped and applied to new data [78]. However, as shown throughout this thesis and
in the recent work done in [77], it is possible to combine the main principles behind these
two approaches and produce simple, intuitive, yet powerful models.

Based on this idea, the generation of new expressive end-effectors could be enhanced
through an iterative application in which expert users modify the spatio-temporal charac-
teristics (e.g., form, timing, symmetry, etc.) of initially non expressive trajectories so as to
produce a whole body motion that conveys certain emotional state. Through this appli-
cation and a assessment based on a user study, it is possible to determine the perceptual
significance and impact of different transformations as well as a sufficient number of motion
features that can be generalized to across different motion classes.
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Appendix A
Scenarios for Story-Based Mood

Induction Procedure

During the second set of recordings, five short stories related to the magician scenario were
created. Each story contextualized and described each one of the following intended emo-
tional states: neutral, happiness, sadness, stress and relaxedness.

Neutral State

After a pleasant night of sleep and a good breakfast, you are ready to start your daily training
routine. You start taking all you need (your hat, jacket, wand, scarfs...). It is a sunny day and
you are thinking about what have to do today. You are ready to practice the first magic trick
of your show.

Happiness

It is your last performance of the day and you feel great. You have been in already two
shows and everything went as you planned. Both audiences were so overly enthusiastic and
joyed with your performance, that the theater’s owner proposed to hire you for the main
spectacle of the next session. Moreover, you received the phone call you were expecting for
the last three weeks: you have been nominated to the best magician award of the year. You
hear your name been called, you are excited and more than ready for your show.

Stress

You are taking part in the European Annual Magician Competition of this year. You are
competing for your place at the semifinal. You have seen the performance of your concurrent
and it seems he has been given a very good score. Plus, he seemed to master the magic trick
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you have been struggling with for the last couple of months and specially prepared for the
competition. You hear your name been called, it’s your turn to perform in front of the jury
and a crowded audience. You feel the pressure on you as this is your last chance to make it
to the semifinal.

Sadness

You are getting ready for your show, the one that you used to perform with your partner on
stage. But this one (your best friend) died recently in an accident. You can’t stop thinking
about him, how much you miss him and how hard will be to perform without him.

Relaxedness

You are in the last part of you show. The audience is enthusiastic with your performance.
Your friends are waiting for you backstage, you are all going to have dinner in your favorite
restaurant. You prepare yourself for the last trick, the first you learned and the one you
master the most.
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Appendix B
Effects of Sliding Window Parameters

on Classification Results

One of the main elements in our classification pipeline is the manner in which motion chunks
and, consequently, feature vectors are defined. The former are computed using a overlapped
sliding window approach and the latter are the result of averaging the kinematic features
computed along this window. Thus, the window parameters, i.e., its length and the over-
lap percentage between two contiguous windows, might have a significant impact on the
classification results obtained for each task and in the validation of our hypothesis.

In order to study the effect of these two parameters, we have followed the same pro-
cedure described in Algorithm 2 for all combinations of three possible window’s lengths:
{250, 500, 750} frames, and four possible overlap percentages: {0.0, 0.25, 0.50, 0.75}. As in the
previous section, we fixed the RF model hyper-parameters to the default values ntrees = 500
and mtry =

√
p. Our analysis is centered on the results obtained for between subject and

within subject one sequence out classification tasks, since these are the tasks in which both the
generalization of the RF classifier and the features computed from end-effector trajectories
are truly assessed.

FiguresB.1 and B.2 show the results obtained for between subject and within subject one
sequence out tasks respectively. At first glance, we observe that there is no significant dif-
ference in chunk accuracy for all parameter combinations and for both adhoc and ranked
feature groups. It is in the sequences accuracy’s rates where changes due to window param-
eters are observed. Hence, our analysis is centered on sequence predictions only.

For both classification tasks similar tendencies are observed. In one hand, we find that,
besides its impact on the resulting number of samples in the learning dataset, the percent-
age of overlap between contiguous motion chunks seems to have no significant effect on the
recognition rates registered for both types of feature subsets. On the other hand, we observe
that the relative difference between the recognition rates of the adhoc group and those of the
ranked group, although small, systematically increases with the sliding window’s length.
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(a) Motion chunks of 250 frames with
zero overlap
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(b) Motion chunks of 250 frames with
25% overlap
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(c) Motion chunks of 250 frames with
50% overlap
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(d) Motion chunks of 250 frames with
75% overlap
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(e) Motion chunks of 500 frames with
zero overlap
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(f) Motion chunks of 500 frames with
25% overlap
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(g) Motion chunks of 500 frames with
50% overlap
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(h) Motion chunks of 500 frames with
75% overlap
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(i) Motion chunks of 750 frames with
zero overlap
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(j) Motion chunks of 750 frames with
25% overlap
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(k) Motion chunks of 750 frames with
50% overlap
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(l) Motion chunks of 750 frames with
75% overlap

Figure B.1: Behavior of accuracy curves for both motion chunks (yellow and light blue) and sequences (red and dark blue) as the
sliding window parameters change. Results were obtained from within subject one sequence out task and depict both adhoc (red and
yellow curves) and ranked (light and dark blue curves) feature groups.
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(a) Motion chunks of 250 frames with
zero overlap
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(b) Motion chunks of 250 frames with
25% overlap
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(c) Motion chunks of 250 frames with
50% overlap
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(d) Motion chunks of 250 frames with
75% overlap
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(e) Motion chunks of 500 frames with
zero overlap
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(f) Motion chunks of 500 frames with
25% overlap
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(g) Motion chunks of 500 frames with
50% overlap
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(h) Motion chunks of 500 frames with
75% overlap
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(i) Motion chunks of 750 frames with
zero overlap
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(j) Motion chunks of 750 frames with
25% overlap
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(k) Motion chunks of 750 frames with
50% overlap
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(l) Motion chunks of 750 frames with
75% overlap

Figure B.2: Behavior of accuracy curves for both motion chunks (yellow and light blue) and sequences (red and dark blue) as the
sliding window parameters change. Results were obtained from between subject task and depict both adhoc (red and yellow curves)
and ranked (light and dark blue curves) feature groups.
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That is, as the number of frames to summarize into a feature vector increases, it seems
that the features computed from end-effector trajectories only do not preserve as much
affect-related content as we first expected. If we look carefully to the accuracy curves of
the ranked group (dark blue) across all possible window lengths, we find the same tendency
on the classifier’s accuracy. However, it seems that the automatic feature selection procedure
attenuates much better this effect than end-effector trajectories.

The reduction on accuracy as the window length increases can be explained by how fea-
tures vectors are defined. Recall that after computing velocity, acceleration, jerk and curvature
for all frames contained in a window (i.e., motion chunk), we proceed then to compute the
average and standard deviation of their norms. By averaging across long durations (e.g.,
750 frames ≈ 3.8 s ), we are considerable smoothing out all those small variations related
to the expression of emotion. Thus, the resulting feature vectors contain less affective in-
formation, which makes their classification much more harder. Finally, we observe that the
results obtained from 250-frames and 500-frames windows, independently of the overlap
percentage, are considerable close. This suggests that the optimal window length value may
be contained in this interval.
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Appendix C
Effect of Random Forest

Hyper-Parameters on Classification
Results

An automatic classification model can be seen as a generic function that has been tuned to
the particularities of each problem on which it is applied. This tuning process involves two
main elements: the training observations and the model’s hyper-parameters. The training
dataset shows to the classifier what kind of information we want to recognize. The hyper-
parameters help the model to determine class boundaries that will generalize well to unseen
observations.

When working with a Random Forest classifier, there are two hyper-parameters to which
the performance of the model may be sensible at: the number of trees to grow in the forest,
often referred to as mtrees, and the number of randomly selected features to analyze during
the search of a node’s optimal split, often referred to as mtry. These two parameters may also
influence the variable importance measures internally computed by the RF model. Hence,
before using RF for feature selection, classification, or both, it is widely common to do a non-
exhaustive search of the best set of hyper-parameters. However, this additional step would
have supposed to further subdivide our already limited dataset into training, validation and
testing sets, or to use computationally expensive cross-validation nested procedures as those
describe in [143].

In the original paper on RF written by L. Breiman [34], the author proposed to use the
OOB estimate during the hyper-parameters search. Nevertheless, due to the temporal corre-
lation between feature vectors coming from the same sequence, our oob estimates are overly
optimistic and could lead us to a set of hyper-parameters that might produce a model with
poor prediction at the test observations and that yields subsets of non-informative features
during feature selection. We adopted a different approach instead. We have used the default
model’s hyper-parameters, mtrees = 500 and mtry =

√
p, for all our experiments. We have
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then run all our classification tasks using different combinations of hyper-parameters. We
have tested three possible number of trees {500, 1500, 2500} and the three potential choices
of mtry suggested by Breiman [34] {

√
p

2 ,
√

p,
√

p× 2}.
We present and analyze the results obtained for both within subject one sequence out (see

Figure C.1) and between subject (see Figure C.2) classification tasks. RF Classifier has been
trained and tested on feature vectors computed using 500-frames long motion chunks with
50% overlap percentage between them. It is important to notice that for each set of hyper-
parameters, the same RF model configuration was used both for the definition of features
subsets in ranked group and for the posterior recognition of emotional states. That is, the
same set of parameters was used each time the classier was trained and tested on each one
of the feature subsets of interest.

Several authors [23, 30] suggest that increasing the number of trees will lead to more
accurate and reliable predictions. However, both Figures C.1 and C.2 show that the num-
ber of trees grown in the forest has negligible impact on the classifier’s accuracy for both
feature groups. This suggests that the performance of feature subsets based on end-effector
trajectories is invariant to this hyper-parameter. Furthermore, both motion chunks and se-
quences predictions show the same tendencies and average recognition rates as the number
of trees increases. Thus, it seems that our RF classification model has already reached its best
behavior with the default ntrees = 500 value.

When working with a RF classifier it has been shown that its performance depends on
the correlation between any two trees in the forest and the strength of each individual tree.
These two aspects are completely determined by the choice of the mtry hyper-parameter.
As stated by Breiman in [34]: "reducing its value reduces both the correlation and the strength.
Increasing its value increases both". Similarly, it has been also reported that the usefulness of
RF as a feature ranking method is also strongly influenced by this hyper-parameter [96]. For
example, in the scenario in which many informative predictors are available, a large value
can potentially ignore important by weak predictors. In the contrary, a small value might
give them a higher chance to be selected. Hence, mtry should be carefully defined.

After a thorough inspection of both Figure C.1 and Figure C.2, we notice indeed a slight
but systematic increase on the accuracy of sequence predictions for both feature groups as
mtry changes. All the same, the overall effect is so small that we can considerate it as negligi-
ble. Even if we tune this parameter’s value, it seems highly probable that the global accuracy
of RF as a classification model will not change. This fact confirms our choice of mtry =

√
p

as the value to be used when assesing the difference of accuracy between any two feature
subsets. Nevertheless, Figure C.1 also indicates that the relative difference between the ad-
hoc and the ranked group systematically changes as mtry increases. This can be explained
by a change in the ranking of features and consequently in the feature subsets defined in the
ranked group.
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(a) ntrees = 500, mtry =
√

p
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(b) ntrees = 500, mtry =
√

p
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(c) ntrees = 500, mtry = 2×√p
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(d) ntrees = 1500, mtry =
√

p
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(e) ntrees = 1500, mtry =
√

p
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(f) ntrees = 1500, mtry = 2×√p
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(g) ntrees = 2500, mtry =
√

p
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(h) ntrees = 2500, mtry =
√

p
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Figure C.1: Behavior of accuracy curves for both motion chunks (yellow and light blue curves) and sequences (red and dark blue
curves) for different combinations of RF hyper-parameters. Results were obtained from within subject one sequence out task and
depict both adhoc (red and yellow curves) and ranked (light and dark blue curves) feature groups.
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Figure C.2: Behavior of accuracy curves for both motion chunks (yellow and light blue curves) and sequences (red and dark blue
curves) for different combinations of RF hyper-parameters. Results were obtained from between subject task and depict both adhoc
(red and yellow curves) and ranked (light and dark blue curves) feature groups.
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The changes on the global ranking of features may be induced by: (a) noisy features
that are deemed as important when small values of mtry are used, (b) an important correla-
tion between features, or (c) an increase in the number of weak features considered as good
candidates when a larger mtry value is used and that combined seem to produce better pre-
dictions than stronger features alone [30]. Ultimately, the results depicted in Figure C.1 and
Figure C.2 show that our choice of default parameter for the RF classifier was appropriate in
the context our of application. More importantly, accuracy rates obtained for the adhoc group,
i.e., features of subsets extracted from end-effector trajectories, are robust to the choice of RF
hyper-parameters.
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