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Location data is ubiquitous in many aspects of our lives. We are witnessing an increasing usage of this kind of data by a variety of applications. As a consequence, information systems are required to deal with large datasets containing raw data in order to build high level abstractions. Semantic Web technologies offers powerful representation tools for pervasive applications. The convergence of location-based services and Semantic Web standards allows an easier interlinking and annotation of trajectories.

In this thesis, we focus on modeling mobile object trajectories in the context of the Semantic Web. First, we propose an ontology that allows the representation of generic episodes. Our model also handles contextual elements that may be related to trajectories. Second, we propose a framework containing three algorithms for automatic annotation of trajectories. The first one detects moves, stops, and noisy data; the second one is able to compress generic time series and create episodes that resumes the evolution of trajectory characteristics; the third one exploits the linked data cloud to annotate trajectories with geographic elements from OpenStreetMap.

As results of this thesis, we have a new ontology that can represent spatiotemporal phenomena at different levels of granularity. Moreover, our framework offers three novel algorithms for trajectory annotation. The movestop-noise detection method is able to deal with irregularly sampled traces and do not depend on external data of the underlying geography; our time series compression method is able to find values that summarize a series at the same time that too small segments are avoided; and our spatial annotation algorithm explores linked data and the relationships among concepts to find relevant types of spatial features to describe the environment where the trajectory took place.

Un Framework pour l'Annotation Automatique des Trajectoires Sémantiques Résumé: Les données de localisation sont présentes dans plusieurs aspects de notre vie. Nous assistons à une utilisation croissante de ce type de données par une grande variété d'applications. En conséquence, les systèmes d'information doivent construire des abstractions de haut niveau pour traiter de grands volumes de données brutes. La convergence des services de localisation et des standards de la Web sémantique peut faciliter les taches d'interconnexion et d'annotation des trajectoires.

Dans cette thèse, nous nous concentrons sur la modélisation de trajectoires dans le contexte du Web sémantique. Nous proposons une ontologie pour représenter des épisodes génériques. Notre modèle couvre aussi des éléments contextuels qui peuvent être liés à des trajectoires. Nous proposons un framework basé sur trois algorithmes d'annotation des trajectoires. Le premier détecte les mouvements, les arrêts et les données manquantes; le deuxième est utilisé pour compresser des séries temporelles et créer des épisodes caractéristiques de l'évolution de la trajectoire; le troisième exploite les données liées pour annoter les trajectoires en s'appuyant notamment sur OpenStreetMap.

Une de nos contributions est une nouvelle ontologie qui peut représenter des phénomènes spatiotemporels avec différents niveaux de granularité. Notre méthode de détection de mouvement-arrêt-bruit est capable de traiter des traces échantillonnées irrégulièrement et ne dépend pas des données externes; notre méthode de compression des séries temporelles est capable de construire un résumé en évitant les segments trop courts; notre algorithme d'annotation spatiale exploite des données liées et des relations entre concepts pour extraire des types pertinents d'entités spatiales afin de décrire l'environnement où la trajectoire a eu lieu. 1.2 Overview of the data flow from raw trajectory data to representations of movement in higher abstractions levels. . . . . . 4
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When location data (generally latitude and longitude in a given Coordinate

Reference System (CRS) is constantly collected and associated with the instant in time when it was sampled, we have a trajectory. From photos to sports activities, the presence of this kind of data at different levels of granularity is constantly growing. Therefore, there is a need for novel data structures, The variety and complexity of spatiotemporal data have led to the establishment of an interdisciplinary field called Computational Movement Analysis devoted to studying the development and application of computational techniques for capturing, processing, managing, structuring, and ultimately analyzing data describing movement phenomena, both in geographic and abstract spaces, aiming for a better understanding of the processes governing that movement [START_REF] Laube | Computational Movement Analysis[END_REF]].

Trajectory data mining shows itself as an important area of research that is usually subdivided into more specific procedures that are required to transform raw location data into useful knowledge about trajectories. Many authors have provided definitions of what can constitute a trajectory data mining framework. [START_REF] Laube | Computational Movement Analysis[END_REF] delimits movement mining into four groups: segmentation and filtering, similarity and clustering, movement patterns, exploratory analysis and visualization. [START_REF] Zheng | Trajectory Data Mining: An Overview[END_REF] describes a more detailed framework containing elements such as preprocessing, indexing and retrieval, uncertainty, pattern mining, outlier/anomaly detection, classification, as well as ways of modeling trajectories.

Another field that has experience growth in the last few years is the Semantic Web. The increasing adoption of semantic web technologies has changed the way information is made available on the web. As we can see, the web of documents is going toward the web of data, where machines are able to understand and reason about the connections among the entities of a dataset and also their interactions with entities from different datasets, thus enabling the development of smarter applications.

Semantic Web technologies offers powerful representation facilities and reasoning techniques for pervasive applications and are rapidly gaining attention towards facing a range of issues such as data and knowledge modelling, querying, reasoning, service discovery, privacy and provenance [START_REF] Ye | Semantic web technologies in pervasive computing: A survey and research roadmap[END_REF]]. The growth of geolocation capabilities embedded in smart phones, smart watches, tablets, and even glasses has facilitated the development of intelligent mobile systems for the acquisition of data. The convergence of these technologies with Semantic Web standards allows the easy acquisition, interlinking, and annotation of information about trajectories. The management, modeling, and analysis of such data provide many challenges related to its integration with existing systems. Therefore, the multidimensional and multifaceted aspects of geolocated data should be taken into account due to their rich semantics.

In the context of trajectory data mining, this thesis is positioned in the earlier stages of the process. More specifically, we deal with issues in the modeling, preprocessing and annotation stages that are vital for further development and smart applications by exploring statistic properties of trajectories and using the Semantic Web infrastructure and standards. Figure 1.2 shows the general process explored in this thesis. 

Core Issues

A vast amount of work can be found in the literature proposing new approaches to bridge the gap between trajectory representation and Semantic Web technologies, mainly regarding the representation with ontologies [START_REF] Baglioni | An Ontology-Based Approach for the Semantic Modelling and Reasoning on Trajectories[END_REF][START_REF] Camossi | Semantic-based Anomalous Pattern Discovery in Moving Object Trajectories[END_REF][START_REF] Hu | A Geoontology Design Pattern for Semantic Trajectories[END_REF], Parent et al. 2013, van Hage et al. 2009a[START_REF] Wannous | Modelling Mobile Object Activities Based on Trajectory Ontology Rules Considering Spatial Relationship Rules[END_REF][START_REF] Yan | Trajectory Ontologies and Queries[END_REF][START_REF] Yan | Semantic Trajectories: Computing and Understanding Mobility Data[END_REF]. However, as noticed by Fileto et al. [2015a], the development and the evaluation of efficient and effective methods for enriching movement data with ontologies and knowledge bases such as Linked Open Data collections is still an open research challenge.

Structuring trajectories into periods of stops and moves has been proved to be a fundamental task [START_REF] Spaccapietra | A conceptual view on trajectories[END_REF]. This is even more noticeable as research in trajectory analysis has been mostly focused on the annotation of stops rather than on the parts of trajectories where movement actually happens. However, different criteria can be used to segment trajectories [START_REF] Buchin | Segmenting trajectories: A framework and algorithms using spatiotemporal criteria[END_REF][START_REF] Sander | A framework for trajectory segmentation by stable criteria[END_REF], expanding the possibilities of structuring moving object traces beyond the stop-move model. In fact, viewing a trajec-1.1. Core Issues tory as a sequence of moves and stops can be the first step towards a more complex model of trajectories that some applications require.

Regarding the stop-move segmentation problem, we observe that the major methods for identifying these events rely on the assumption that trajectories are sampled at regular intervals of time. This assumption allows the application of algorithms based on clustering methods in order to identify points that have been recorded at near locations, and therefore may characterize a stop. However, this assumption may not be true in many applications due to a variety of reasons, such as periods of GPS failure, noisy measurements, the sampling strategy of the device or application or even pre-processing steps where the original trajectory is modified to contain less points in order to have a smoother trace and save storage.

This concern is supported if we take the work of [START_REF] Andrienko | Basic Concepts of Movement Data[END_REF],

for instance, where the authors tries to define what is a trajectory and how it can be observed. Diverse ways of movement recording are listed, namely time-based, when positions are recorded at regular intervals of time, which is the assumption considered by the majority of methods; change-based, when positions are recorded only when the object moves; location-based, when the location is collected only if the object approaches a specific location, e.g. near a sensor; event-based, when the moving object performs a specific action, e.g. making a call; and various combinations of these methods. While most state-of-the-art methods of stop detection deal mainly with the time-based recording strategy, we observe that some applications may prefer to store trajectories following the change-based approach. Another possibility is that these applications may make modifications to the captured data to eliminate near points. In this scenario, algorithms that rely on clustering near points for stay-point detection would fail.

Once periods of movement, stop and noise are identified, a usual step in a

Chapter 1. Introduction data mining workflow consists in aggregating data about some characteristics of a trajectory. This process is crucial for reducing the amount of data to analyze and being able to build representations in higher abstraction levels.

Due to its temporal essence, many trajectory attributes can be represented as time series, which a vast body of research has been established long before the trajectory analysis field. Time series compression techniques can help in building smaller representations of some trajectories characteristics. More specifically, this technique can be helpful to find homogeneous periods along trajectories where a single value can summarize a group of measurements without decreasing too much the correlation between the original and compressed versions of the data.

The issue that we have identified in these algorithms is that many of them does not yield constant approximations, instead they return a set of lines that best fit parts of the original time series according to a maximum error parameter. Additionally, considering a directed graph model as it is the case with Semantic Web ontology instances, it is possible to benefit of storage savings if a single tuple can be reused several times, i.e. if a tuple is linked to more than one other tuple. Choosing a set of values that approximates as many points as possible for the entire time series instead of just segments of it is then a desirable characteristic of a compression algorithm that we explore in this thesis.

Another point that needs further attention is about linking trajectories to the underlying geography where it happens. This is important to enable a better explanation about the behavior of a moving object. As noticed by [START_REF] Laube | The Low Hanging Fruit is Gone -Achievements and Challenges of Computational Movement Analysis[END_REF], "one challenge for understanding movement in its context lies in the difficulty of accessing the comprehensive data required for such studies". For this problem, Semantic Web technologies may help as they make easier data integration not only by shared vocabularies, but also through federated que-ries that are capable of retrieving results from different database endpoints.

We explore the interlinking of vocabularies and datasets in a scenario of trajectory enrichment with geographic features around it. For this we have used ontologies that have been built around the OpenStreetMap project for aiding the annotation process.

Considering the problems of structuring trajectory data (segmentation problem) and linking trajectories to context information, we identify that there is still a gap in research for representing structural properties of trajectories and contextual data. On the other hand, structuring spatiotemporal data in the form of episodes has been proven to be a natural approach [START_REF] Mountain | Modelling human spatio-temporal behaviour: A challenge for location-based services[END_REF], Parent et al. 2013[START_REF] Pelekis | Mobility Data Management and Exploration[END_REF]. For this reason, we conceived a model that is flexible enough to represent different aspects of traces and also enables the linkage of trajectories and the underlying geography. The ability of representing spatiotemporal data in different granularity levels and with varying temporal and spatial extents was a core issue that has been addressed in this thesis.

Contributions

In this thesis, we describe a series of contributions for the automated annotation of trajectories built around an extensible framework and data model for trajectory management in the context of the Semantic Web. The following points summarizes our contributions:

We present our model by means of an ontology called Semantic Trajectory Episodes (STEP). Ontologies provide an expressive formalism for representing data and, additionally, we see an increasing availability of datasets containing location information [START_REF] Patroumpas | Towards GeoSpatial Semantic Data Management: Strengths, Weaknesses, and Challenges Ahead[END_REF]] for a variety of resources that can potentially be used to enrich trajectories.

Chapter 1. Introduction

Among the advantages of choosing a Semantic Web approach with ontologies for modeling and implementing our solution, we can highlight the possibility of integrating different data sources through federated queries, a transparent data model, support to machine reasoning by inference and the integration of data and metadata. We have focused on

proposing a high-level data model for representing trajectory episodes and contextual elements with multiple levels of granularity and different options of representation of spatial and temporal extents as well as the ability of expressing quantitative and qualitative semantic descriptions.

A framework based on the proposed ontology that serves as an interface between applications and our data model. The framework has three main algorithms for automatic annotation of trajectories:

- 

Thesis outline

The remainder of the thesis is organized as follows:

In chapter 2, the relevant general information about the thesis subject and related technologies is explored. We start by giving an overview of the Semantic Web and trajectory models in section 2.1, we focus on the technologies of the Semantic Web stack in subsection 2.1.1 and then discuss some of the most important works on trajectory models in subsection 2.1.2. Works that lie in the intersection between Semantic Web and trajectories, specifically the ones that propose ontologies, are also discussed.

Still in chapter 2, section 2.2 is devoted to the presentation of trajectory annotation algorithms. More specifically, we discuss stop detection methods in subsection 2.2.1, time series compression in subsection 2.2.2, and trajectory annotation with intersecting spatial geographic features in subsection 2.2.3.

The contributions of this thesis are concentrated in chapter 3. First, we present the STEP ontology in section 3.1 and discuss its evolution and current state. We also make a comparison with other data models in terms of their capabilities of representing episodes, contextual elements, granularity, and flexible episode extents.

The section 3.2 presents the architecture of the STEP framework and its preprocessing methods. The three main algorithms present in the framework are presented in subsection 3. In this chapter, we review fundamental concepts that form the groundwork of this thesis. The technologies that form the Semantic Web stack are briefly explained, followed by trajectory data models that have relevant impact on moving objects research. We give special attention to models that are tailored for Semantic Web applications, i.e. ontologies. In the second part, we look back to trajectory annotation methods, specifically for the ones related to stop identification, time series approximation and spatial context annotation.

Semantic Web and Trajectory Models

Semantic Web

The World Wide Web has experienced many changes in all of its aspects. The widespread of Internet connection to many parts of the globe that were hard to reach not long time ago associated with a decrease in manufacturing costs of connected devices has changed the way we use this global network. These changes reach a level where the Web can be considered a vital tool for the daily activities of some people. This increasing usage of tools and services based on the Web is assisted in great part by technological advances in its infrastructure and the development of standards.

The first idea of the web network has been conceived by Berners-Lee [1989] and since its embryonic stage it is based on nodes and links. Nodes can represent, for instance, documents, people, software modules, projects, or any other concept, while links can also have different meanings, e.g. dependency, composition, participation, usage, reference and so on. The idea of interlinking that made possible to navigate in a non linear way among resources in the Web was called hypertext, a term coined by [START_REF] Nelson | A File Structure for the Complex, the Changing, and the Indeterminate[END_REF].

The concrete implementation of hyperlinks have been introduced by the HyperText Markup Language (HTML) and constitute the main format that composed the first document-oriented resources in the Web. However, the first web pages consisted basically of static content without much interaction between the client-side (mostly user's browsers) and the server-side (the content providers). The only small level of interaction of web pages were restricted interactions that had only effects in the currently displayed resource through the combination of Javascript, Cascading Style Sheets (CSS), and Document

Object Model (DOM) manipulations.

Further development of server-side technologies have enabled the usage of messages to the server which call applications capable of building HTML documents dynamically, creating an output more tailored in response to a specific request rather than retrieved from a previously stored file. This change in the way users consume web resources has allowed the raise of the Social Web, or Web 2.0.

An orientation towards metadata has always been part of the Web [Guns 2013]. This is evident with the usage of the meta tag in HTML, which provides a way of identifying the author of a document as well as its keywords, description, among other attributes. Rudimentary metadata support for links is also possible through the rel attribute of hyperlinks. However, these feature are rather weak in terms of semantic description to be useful for smart applications as they accept generic, arbitrary values that are not standardized.

Still in the realm of web documents, other initiatives addressed the inclusion of metadata to pages. Examples of these projects are the microformat 1 and the microdata 2 standards. The common objective of these specifications have always been to include more semantic information to documents and the entities referenced in them.

In an effort to create resources on the Web that are not only humanreadable but also machine-readable, the Semantic Web approach (also referred as the Web of Data or Linked Data) has emerged as an alternative organization of resources on the Web. [START_REF] Bizer | Linked Data -The Story So Far[END_REF] summarizes the Linked Data as "using the Web to create typed links between data from different sources.

These may be as diverse as databases maintained by two organisations in different geographical locations, or simply heterogeneous systems within one organisation that, historically, have not easily interoperated at the data level".

Berners-Lee [2006] have introduced a set of best practices for publishing and interlinking structured data on the Web, that later became the Linked Data principles, as follows:

1 www.microformats.org 2 https://html.spec.whatwg.org/multipage/microdata.html 1. Use Universal Resource Identifier (URI) as names for things.

2. Use Hypertext Transfer Protocol (HTTP) URIs, so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards.

4. Include links to other URIs, so that they can discover more things.

The first Linked Data principle advocates using URI references to identify, not just Web documents and digital content, but also real world objects and abstract concepts [START_REF] Heath | Linked Data: Evolving the Web into a Global Data Space[END_REF], and the fact of using HTTP URIs (second principle) comes from the fact that the current infrastructure of the Web should support the access to the entities as their description. The third principle advises that, once a resource is found by its URI, it should be represented by using an agreed standard. The last principle concerns the essence of linked data, which is the easy discovery of new information by following links on the data set that is being first explored. This also encourages the utilization and spreading of popular vocabularies for defining the semantics of these links.

A visualization of the Semantic Web stack is shown in Figure 2.1 where we can observe the concepts and abstractions of the stack along with some examples of specifications and solutions that implement the corresponding concept. As we have mentioned, the web platform is the base of the technologies that build the rest of the Semantic Web stack. In this basic building block, URIs are used to identify an abstract or physical resource. When a URI is linked to a retrievable resource, it can also be called as Uniform Resource

Locator (URL).

The Resource Description Framework (RDF) 3 is the recommended stan- However, an exception is made to subject and object resources, which can be represented as blank nodes, i.e. nodes that do not have a specified URI. Furthermore, object resources can also represent literals like strings, numbers or boolean values.

RDF Schema (RDFS) is a semantic extension of RDF that provides mechanisms for describing groups of related resources and the relationships between these resources [START_REF] Brickley | RDF Schema 1.1 -W3C Recommendation[END_REF] One of the main benefits of the Linked Data paradigm is the standardized data representation and access, which makes integrating data from different sources easier compared to integration from proprietary Web 2.0 APIs [START_REF] Heath | Linked Data: Evolving the Web into a Global Data Space[END_REF]. In order to access the data sets available in the Semantic Web, the standard query language SPARQL Protocol and RDF Query Language (SPARQL) has been established. At the time of this writing, SPARQL is composed by two language specifications, one for querying5 and other for updating 6 the contents of a data set. Other yet to be standardized layers compose the rest of the Semantic Web stack. The Proof layer executes the rules and the Trust layer provides an assurance of confidence whether to trust the given proof or not.

Ontologies define the concepts and relationships used to describe an area of interest. This term is also interchangeably used with the term "vocabularies" as there is not clear division between them [W3C 2015]. They are used to classify the terms that can be used in a particular application, characterize possible relationships, and define possible constraints on using those terms.

There are now tens of billions of facts spanning hundreds of linked datasets on the Web covering a wide range of topics [START_REF] Vandenbussche | Linked Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on the Web[END_REF] dell et al. 1992] and point-set topological spatial relations [START_REF] Egenhofer | Point-set topological spatial relations[END_REF]. At the time of this writing, the GeoSPARQL standard is composed by two namespaces: geo23 and geof24 .

Temporal Modeling

The spatial aspect is one of the main elements when creating semantic web applications. However, other facet is equally important for the development of spatiotemporal applications. In the following, we discuss the relevance of some works that help modeling temporal characteristics.

The general standard for data and time is the ISO 8601 [START_REF] Iso | Data Elements and Interchange Formats: Information Interchange: Epresentation of Dates and Times[END_REF]], which specifies a format for representing dates, times, durations, time intervals, and time zones. However, the standard does not assign any specific meaning to elements of the date/time to be represented, letting the meaning dependent of the context of its use.

Allen [1983] have defined a set of relationships that can take place between two temporal intervals that became known as the Allen's interval algebra.

Considering the inverses of these relations, there are a total of thirteen ways in which an ordered pair of intervals can be related. These relationships, illustrated in Figure 2.4, are the following:

X before Y: interval X takes place before interval Y with some time between them;

X meets Y: interval X happens exactly before interval Y, they meet in time because there is no gap between them;

X overlaps Y: interval X starts before Y and they have some time in common, then X ends and Y continues; X equal Y: X and Y share both starting and finishing times. 

Trajectory Models

In this section, we present some important works regarding trajectory modeling. The term Semantic Trajectory has been used for referring to models that can be used to enrich trajectories beyond latitude, longitude and timestamp information. Semantic Trajectories do not necessarily refer to the Semantic Web, however, there is an intersection in some cases where Semantic

Web tools are used to model trajectories.

One of the most influential works in trajectory modeling is the one by [START_REF] Spaccapietra | A conceptual view on trajectories[END_REF] where the authors elicit some requirements for trajectory modeling. First, three kinds of trajectories are identified: i) metaphorical trajectory, consisting in changes of a time varying attribute of an entity, e.g.

the career trajectory of a person or the price for a stock; ii) naïve trajectory, consisting in geographic trajectories that are not defined in terms of spatial coordinates, and iii) spatiotemporal trajectory, consisting in changes of position in a 2D or 3D space of an object. Then, two facets of trajectories are defined: the geometric facet -the spatiotemporal recording of the position of the traveling point -and the semantic facet -the information that conveys the application-oriented meaning of the trajectory and its related characteristics. [START_REF] Spaccapietra | A conceptual view on trajectories[END_REF] also gives a generic characterization of semantics of trajectories. The main conceptualization of their work consist in defining trajectories as a sequence of stops and moves as can be seen in Figure 2. et al. 2008].

Semantic Trajectory Ontologies

The Stop/Move model have then inspired works that translated similar ideas into ontologies. [START_REF] Baglioni | An Ontology-Based Approach for the Semantic Modelling and Reasoning on Trajectories[END_REF], for instance, have proposed an ontological approach for semantic modeling and reasoning on trajectories where the authors highlighted the need of transforming raw traces into high level representations, i.e. semantic trajectories. The authors have formulated OWL DL axioms for identifying malicious behavior in a recreational game activity based on the duration and location of stops. The same strategy was followed in [START_REF] Baglioni | Towards Semantic Interpretation of Mo-vement Behavior[END_REF] for the specification of touristic activities, however, the aim was the detection of frequent patterns. Similarly, [START_REF] Renso | How you move reveals who you are: understanding human behavior by analyzing trajectory data[END_REF] Examples of interactions are: encounter, approaching, guiding-following, visiting, route choosing, attraction, flocking, aggregation, and trail formation.

Behaviors could be, for instance, exploring (when the visitor has a route choosing interaction and stops at information points), socializing (when the visitor presents an encounter interaction located at some crossroad or path), and disturbing (when a visitor is located at a park feature with forbidden access). The available dataset came from three different information sources. A questionnaire that recorded visitor characteristics; a set of point coordinates captured by GPS receivers given to the visitors; and a dataset containing the path network and the locations of access points. These patterns are identified thanks to subclass reasoning through predefined axioms such as the following:

Disturbing ≡ visitor_has_interaction some (Visiting and

(is_located_at some Park_Feature and (has_Accesibility_level has Forbidden))).

Predefined description logic axioms have also been used by [START_REF] Camossi | Semantic-based Anomalous Pattern Discovery in Moving Object Trajectories[END_REF] to identify anomalous behavior of ship trajectories. A generic ontology called Moving Object Ontology is presented and specialized to the maritime surveillance domain. The authors show a pattern discovery workflow based Trajectories can also be modeled as a sequence of events. van Hage et al.

[2012] propose such approach to represent ship trajectories using the generic Simple Event Model (SEM) [START_REF] Robert Van Hage | Design and use of the Simple Event Model (SEM)[END_REF] shown in Figure 2.7. The authors argue that events are central elements in the representation of data from a variety of domains such as history, cultural heritage, geography and multimedia. In the case of trajectories, stops and moves are considered as events that can be further detailed with sub-events.

Ontology design patterns have emerged to help to cope with problems faced when reusing third-party ontologies. According to [START_REF] Gangemi | Ontology Design Patterns[END_REF], some issues that may arise in these cases is related to "limited assistance in using unfriendly logical structures, some large, hardly comprehensible ontologies, and a bunch of good practices that must be discovered from the literature". [START_REF] Gangemi | Ontology design patterns for semantic web content[END_REF] coined the term ontology design pattern, which This relationship is enforced by logic axioms encoded in the ontology.

A framework supported by ontologies is presented by [START_REF] Vandecasteele | From Movement Data to Objects Behavior Using Semantic Trajectory and Semantic Events[END_REF]. By reusing the ideas of [START_REF] Yan | Trajectory Ontologies and Queries[END_REF] (the separation of geometric, geographic, and domain ontologies as shown in Figure 2.6), the authors represent trajectories with GeoRSS Simple ontology 26 and OWL:Time instances, besides using Geonames and the Geopolitical ontology 27 . An ontology was created containing the terms related to the maritime domain. Human knowledge encoded in the form of semantic rules written in SWRL automatically create semantic events that are represented using the Simple Event Model ontology.

The authors have evaluated their framework by annotating vessel trajectories with "speeding down" and "speeding up" events based on the speed of each trajectory point. In another example, they have created rules that create a new semantic event each time the vessel changes its heading by a predefined threshold generating thus a "suspicious heading change" event. Authors also present a general architecture for semantic enrichment and analysis of movement data. They propose an algorithm that takes preprocessed segments containing a user stops and posts in social media and matches them to geographic features based on the distance and textual similarity. An

Figure 2.9: The Baquara² ontology overview [Fileto et al. 2015b] innovative aspect of Baquara² is the introduction of explicit constructs to express hierarchical relations among segments. This allows the representation of trajectories at different levels of details and the analysis of traces at varying granularities.

Other trajectory models

Besides ontology-based models, we highlight in this section some important modeling solutions for trajectories as some models can be easily transformed into ontologies. We also explore conceptualizations that allow the representation of segments of trajectories into episodes.

One of the first definitions of episodes in the area of trajectory analysis is presented in the work of [START_REF] Mountain | Modelling human spatio-temporal behaviour: A challenge for location-based services[END_REF], where "an episode represents a discrete time period for which the user's spatiotemporal behavior was relatively homogeneous". Other authors have used similar concepts such as

Segment of Interest (SoI) [Braga 2012],
Segment [START_REF] Hu | A Geoontology Design Pattern for Semantic Trajectories[END_REF], Nogueira et al. 2014], or SemanticSubtrajectory [START_REF] Bogorny | CONSTAnT -A Conceptual Data Model for Semantic Trajectories of Moving Objects[END_REF] to represent parts of trajectories that share common characteristics.

In the work of [START_REF] Guc | ] Raf Guns. Tracing the origins of the semantic web[END_REF], trajectories are semantically enriched by two types of annotations: episodes and trips where the former describes homogeneous sections of the trajectory and the latter serves to group a sequence of episodes on a higher semantic level. However, they do not present a concrete conceptual data model. There is a strong assumption that episodes partition leaves no gaps in the annotation, implying that there are annotations for the entire extent of the trajectory, which is frequently not the case in many real world applications.

A conceptual model has been proposed by [START_REF] Andrienko | An eventbased conceptual model for context-aware movement analysis[END_REF] and also extends the work of [START_REF] Spaccapietra | A conceptual view on trajectories[END_REF] by focusing on the concepts of events and spatiotemporal context. In this model, stops and moves are particular types of spatial events. The building blocks of this model are the Event is the action performed by the mover. [START_REF] Andrienko | An eventbased conceptual model for context-aware movement analysis[END_REF] argue that movement behaviors can only be understood by considering the relations that happen between moving objects and the environment in which they move. They define what elements constitute the spatiotemporal context as complex and heterogeneous physical space, in which characteristics vary from place to place and change over time; complex and heterogeneous physical time, in which day differs from night, summer from winter and so on; static and dynamic objects existing in space; events occurring over time.

The CONceptual model of Semantic TrAjecTories (CONSTAnT) model [START_REF] Bogorny | CONSTAnT -A Conceptual Data Model for Semantic Trajectories of Moving Objects[END_REF]] is another conceptual model for semantic trajectories that has been recently presented. The model focus on describing the mo- The authors of CONSTAnT also show some examples of instances of their model. For example, it is possible to represent a trajectory of a person that is visiting Rome with the goal of attending an event and makes a visit to the Coliseum to see a photographic exhibition. In this case, CONSTAnT allows representing a semantic trajectory with a subtrajectory corresponding to the visit in a touristic place and link it to an event that might be happening there. Besides, the authors also show in the example the possibility of linking weather information to specific points of the subtrajectory.

In section 3.1 we are going to revisit some of these models to put them into the perspective of the ontology that we propose in this thesis. More specifically, we are going to compare related works in terms of segmentation support, granularity, context, and extent representation.

Trajectory Annotation

In this section, we review relevant works dedicated to the annotation of moving objects' trajectories that are directly related to the algorithms that we propose in this thesis. The term "annotation" is rather general and can be the objective of many steps in trajectory analysis. We give an overview of the main tasks on trajectory analysis and focus on the ones that propose segmentation and compression methods. Some time series compression algorithms are also briefly explored as many trajectory attributes can be expressed as the evolution of values in time (e.g. speed, direction, acceleration).

Hägerstrand [1970] was one of the first works that have dealt with the specification of paths of individuals in time-space. His ideas have originated the concept of space-time cube, a 3D representation of movement where space is usually depicted in the 𝑥 and 𝑧 axis and time is represented in the 𝑦 vertical axis, space-time prism, a visual estimative of an individual's mobility given its constraints, and ultimately giving the basis for the Time Geography field. Thanks to the advances in computational representation of space-time cubes and prisms that followed, Miller [2005] proposed a measurement theory for Time Geography that formalized many of these concepts, which provided foundations for querying and analyzing movement data.

Some basic characteristics of movement have been elicited by [START_REF] Andrienko | Basic Concepts of Movement Data[END_REF], that divided attributes according to whether they can be expressed in time instants or intervals. At a given moment (i.e. instant in time)

we can measure the time stamp itself, the position of the entity in space, the movement's direction, the speed of the movement, the moving object's change of the direction (turning angle), the acceleration, among other examples. As overall characteristics, [START_REF] Andrienko | Basic Concepts of Movement Data[END_REF] cite attributes that can be computed over the whole trajectory of a part of it, such as its shape, traveled distance, duration, and various statistics over these characteristics.

It is also of interest the relationships among trajectories. Being from the same moving object or from distinct entities, possible analysis include similarity measures, spatial and temporal relations like co-incidence in space and/or time in many forms (ordered and unordered colocation, full or partial co-existence in time, full or lagged co-incidence in space-time). A similar classification has also been explored by [START_REF] Dodge | Towards a taxonomy of movement patterns[END_REF] as primitive movement parameters that can be used to calculate primary and secondary derivatives.

Movement traces and their derivate attributes are the main inputs for a series of processes that constitute a trajectory enrichment workflow. Many processing phases are needed to transform raw trajectories into useful records for applications. Figure 2.11 shows an overview of the process from raw sensor measurements, passing through trajectory reconstruction, aggregation, transformation, data mining, among other tasks. This chain generates knowledge about the data that can be used by applications.

A number of trajectory definitions can be used to express the many steps that are needed to fulfill the semantic enrichment pipeline. Spaccapietra et al.

[2013] argue that usually there is a movement track representing the whole lifespan of an object that may originate trajectories, which are the segments of an object's movement that are of interest for a given application. Still according to [START_REF] Spaccapietra | Trajectories and Their Representations[END_REF], among the possible representations of a trajectory, one can have a continuous, discrete, or stepwise representation, being the latter the result of the implementation of a step function that maps a As has been previously discussed, episodes have constantly appear in the literature as a reasonable concept to represent relevant parts of trajectories and their corresponding annotations [START_REF] Mountain | Modelling human spatio-temporal behaviour: A challenge for location-based services[END_REF][START_REF] Guc | ] Raf Guns. Tracing the origins of the semantic web[END_REF][START_REF] Yan | Semantic Trajectories: Computing and Understanding Mobility Data[END_REF], Parent et al. 2013, Spaccapietra et al. 2013, Fileto et al. 2015a]. Episodes can play roles as either the output of annotation algorithms or as the input of more complex processes. Trajectory preprocessing tasks such as noise filtering, stay point detection, trajectory compression, and trajectory segmentation [START_REF] Zheng | Trajectory Data Mining: An Overview[END_REF]] are examples of steps that may have episodes as the resulting outputs of algorithms.

Chapter 2. State-of-the-Art Figure 2.12: Trajectory computing platform [START_REF] Yan | Semantic Trajectories: Mobility Data Computation and Annotation[END_REF] Most compression methods concentrates in the geometric features of a trajectory, e.g. the Ramer-Douglas-Peucker algorithm [START_REF] Ramer | An iterative procedure for the polygonal approximation of plane curves[END_REF]], by iteratively removing trajectory points and verifying if some error threshold is not violated. The aim of such methods is representing the general shape of the original trace with a small amount of points.

Other compression methods are focused on trajectory attributes such as speed and direction. [START_REF] Potamias | Sampling Trajectory Streams with Spatiotemporal Criteria[END_REF], for instance, have proposed approximation techniques for online compression by constructing safe areas for the last updated point and then checking if new points fall within the safe area.

The size and shape of the safe area vary according to predefined thresholds for speed and direction.

The transportation network has been explored for building compressed representations of trajectories as proposed by [START_REF] Schmid | Semantic trajectory compression[END_REF], [START_REF] Richter | Semantic trajectory compression: Representing urban movement in a nutshell[END_REF]. In their work, reference points of the transportation network replaces trajectory points after they pass through a map matching process.

These reference points can be streets, public transport stations and lines, among other elements of spatial context as well as references to the movement pattern on the network expressed in natural language, e.g. "straight".

An important task similar to compression in its methods but not necessarily with the objective of reducing the storage requirements of trajectories is the segmentation task, that refers to the process of partitioning movement data into multiple episodes, with the goal of simplifying or changing the representation of the trajectory into something that is more meaningful or easier to analyze [START_REF] Laube | Computational Movement Analysis[END_REF]. By this definition, we can conclude that segmentation is a concept that encompasses compression but may serve to other tasks such as clustering and classification. For this reason, we consider that trajectory annotation is in most cases a segmentation process being the exceptions the cases where the annotation concerns the whole trajectory.

Relevant works in this direction have been recently presented, for instance, by [START_REF] Buchin | Finding long and similar parts of trajectories[END_REF]2013] In the following subsections, we review some methods directly related to the algorithms proposed in this thesis. The focus of these methods are the semantic segmentation of trajectories based on stops, moves, and noisy data, generic time series segmentation that can be applied to the numeric temporal evolution of any trajectory attribute, and the annotation of segments of trajectories with spatial context data.

Stops identification

We can observe that many of the proposed segmentation strategies rely on some assumptions about the gathered data and, in some cases, additional external data is used to assist the algorithms. The Stops and Moves of Trajectories (SMoT) method presented by Alvares et al. [2007] define stops as the trajectory points that intersect "candidate stops", i.e. a previously defined set of polygons and minimum time durations. A major disadvantage of this approach is the need for manually selecting candidate stop polygons as well as the minimal time duration needed to consider each region as a stop. Putting a hard threshold on the duration of stop may cause the algorithm to miss important stops that have a time duration close to the threshold.

The Point-of-Interest Extraction (PIE) algorithm [de Graaff and Keulen 2016] uses the underlying geography polygons but it also considers reductions in speed, changes in direction and the accuracy of each GPS point. Whereas speed and direction can be easily computed from trajectory points, the availability of accuracy, while very important to assess the signal quality, is not commonly stored by most applications. This factor imposes an important obstacle to use this method with trajectories captured by third-party applications. [START_REF] Palma | A clustering-based approach for discovering interesting places in trajectories[END_REF] proposed the Clustering-Based Stops and Moves of Trajectories (CB-SMoT) algorithm. The premise of CB-SMoT is that the moving object's speed decreases significantly when an interesting place is being visited (therefore, it is a stop). However, another important assumption is that the recording device keeps storing points even when the object is stopped so the stops can be characterized as regions where there is a greater spatial density of points. [START_REF] Yan | A hybrid model and computing platform for spatio-semantic trajectories[END_REF] propose a model and computing platform for abstracting trajectories at different levels starting with basic abstractions (e.g. stop, moves) to enriched higher-level abstractions (e.g. office, shop). In the first layer of their computing platform, trajectories are smoothed with a Gaussian kernelbased local regression model and outliers are identified by velocities thresholds according to domain knowledge (e.g. car, human, cycle etc.).

In their Trajectory Structure Layer, the identification of stops and moves is performed by the means of a method for determining a speed threshold based on the type of moving object and the underlying movement area. For each GPS point of a given moving object, the speed threshold is determined by a function of the moving object's average speed and the average speed of other moving objects in that position. For calculating the latter, the space is divided into a grid and an average speed is calculated for each cell. The dynamic speed threshold function is shown in Equation 2.1.

∆ 𝑠𝑝𝑒𝑒𝑑 = 𝑚𝑖𝑛{𝛿 1 × objectAvgSpeed, 𝛿 2 × positionAvgSpeed} (2.1)
Their algorithm receives two coefficients of speed thresholds (𝛿 1 and 𝛿 2 ), which are used in Equation 2.1, and a minimal stop duration (𝜏 ) as parameters.

We can identify some differences from our method. First, using the non-robust average speed may difficult correct identification of stops if there is a large range of speeds in a single trajectory. Second, while there were an effort to dynamically set speed thresholds, this has not been done to the stop duration, which is still defined as an absolute value (e.g. 15 minutes). Third, although not discussed in their work, maintaining the spatial grid updated with the average speed of each cell may be a computational expensive procedure and the granularity of this grid has also not been explored. Furthermore, the authors follow the assumption that GPS data is sampled with uniform frequency along trajectories.

Time Series Segmentation

Considering the spatio-temporal nature of trajectories, it is easy to notice that many aspects of a moving object's trajectory are derived from the relationship of these factors and can be expressed as a series of values ordered by time, i.e. a time series. These trajectories characteristics such as speed, acceleration, and elevation are essential to the analysis of the movement dynamics. Therefore, methods for abstracting time series constitute an important task in trajectory modeling and analysis. Usually, the output of time series compression methods can be easily adapted to construct trajectory episodes.

The task of finding homogeneous periods in temporal data can be differentiated according to either the analysis happen with a group of series (constituting in dimensionality reduction task) or if it is performed with only a single data stream (leading to compression and filtering) [START_REF] Papadimitriou | Dimensionality reduction and filtering on time series sensor streams[END_REF]]. Time series compression can also be considered as a one-dimensional clustering problem and are often referred to as segmentation as it can be used for creating an accurate approximation of time series, by reducing its dimensionality while retaining its essential features [START_REF] Esling | Time-series data mining[END_REF].

Diverse possibilities of time series representations have been proposed.

This task plays the important role of preserving the most relevant features of a given time series at the same time that it prioritizes using the least amount of storage as possible. Basically, the types of representation can be divided into two categories: non-data adaptive and data adaptive [START_REF] Wang | Experimental comparison of representation methods and distance measures for time series data[END_REF].

The main difference between the two is that in non-data adaptive methods a common representation is selected for every time series in a set in order to minimize the global reconstruction error, whereas in data adaptive the structure of each individual series is considered. While the first one is usually more efficient in terms of computational time, the second gives results that are more similar to the input signal in most cases.

In the following, we briefly explain some of the representation methods that are later compared in the evaluation of our algorithm ANBA. Piecewise Aggregated Approximation (PAA) [START_REF] Yi | Fast Time Sequence Indexing for Arbitrary Lp norms[END_REF]Faloutsos 2000, Keogh et al. 2001a] is one of the most basic and fast segmentation algorithms. It consists in Then, the mean value of the data falling within a frame is calculated and a vector of these values becomes the data reduced representation. Figure 2.13

shows one example of this segmentation method.

Piecewise Linear Segmentation (PLS) [START_REF] Shatkay | Approximate queries and representations for large data sequences[END_REF]] is a widely used method for representing time series. Three important approaches to achieve such representation are constantly cited in the literature. Keogh et al. [2001b] give a concise definition of these three strategies:

Sliding Window: The segment is grown until it exceeds some error bound. The process repeats with the next data point not included in the newly approximated segment.

Top-Down: The time series is recursively partitioned until some stopping criteria is met.

Bottom-Up: Starting from the finest possible approximation, segments are merged until some stopping criteria is met.

In order to find the approximate value between two extreme points of each segment, two main strategies can be followed: linear interpolation or linear regression. While the first one just connects a line from the first to the last point, the later calculates the best fitting line that minimizes the least squared error for the intermediate points, which is more computationally expensive than the first option. In a recent survey, [START_REF] Aghabozorgi | Time-series clustering -A decade review[END_REF] have reviewed these methods among other data representation proposals. The authors highlight that PAA is extremely fast, running in 𝑂(𝑛) time, but it is not data adaptive. PLS have a 𝑂(𝑛𝑙𝑜𝑔𝑛) complexity for the bottom-up approach (the most efficient of the three approaches [START_REF] Esling | Time-series data mining[END_REF]). The disadvantage of PLS in the perspective of this thesis is the fact that the generated segments are not a constant value, actually the output of PLS methods are a series of pairs of points in the form (𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 ), which need further adaptation of its output for defining trajectory episodes. In the comparison performed in Section 3.3.2, we take the median value of each segment to mitigate this issue.

Spatial Annotation

Annotating trajectories with its spatial features is a basic and important task.

For many applications, this allows building higher level abstractions that describe the spatial context of the path besides the simple latitude and longitude information. [START_REF] Yan | Semantic Trajectories: Mobility Data Computation and Annotation[END_REF] have proposed a classification of spatial annotation types according to the geometric shape of the element to be annotated. Regions of interest, or semantic regions, are identified in their framework as the result of the spatial join between trajectory and land use data. As a result of this process, it is possible to have a general coarse-grained view of the movement in terms of visited places.

Their Trajectory annotation with RoIs algorithm works by receiving as input a trajectory and a set of semantic regions. These regions can be either in free form (e.g. OpenStreetMap polygons), or in a grid-like format, which is the case of the Swisstopo 28 dataset used in their framework. The algorithm then proceeds to compute the intersection among the inputted trajectory and all episodes and create tuples in the form <region, entering time, leaving time, type of region> that is after attached to the trajectory.

The authors highlight that the spatial join can be computed only for selected episodes depending on requirements. However, this aspect is not further explored. Moreover, it is implicit that all intersections of the trajectory and polygons or grid cells are computed regardless of the type of geographic feature of metadata associated to the external data, which may increase pro-cessing time. We note that while this can be useful to annotate episodes in a parameter-free setting and to discover information previously unknown, it is desirable to allow some kind of filtering for the cases of applications that are only concerned with a well-defined set of types of regions.

Chapter 3 In this chapter, we explain in detail the STEP ontology and framework.

Contributions Contents

First, each ontology entity is described as well as their possible relationships.

Then, the general architecture of the STEP framework is shown followed by three main algorithms for trajectory automatic annotation, namely the Stop-Move-Noise, Adaptive Natural Breaks Approximation, and Intersection-based Spatial Annotation with OpenStreetMap data.

STEP Ontology

Trajectory acquisition, management, and processing are important tasks for many applications that deal with spatiotemporal data. In order to perform these tasks effectively, it is important to rely on flexible structures. Many data models have been proposed for representing spatiotemporal traces. However, modeling trajectory characteristics and context information is still a challenge.

In this section, we introduce the STEP ontology (Semantic Trajectory Episodes) for trajectory enrichment. In order to model this domain, we structure trajectories and related contextual data in terms of semantic episodes that allow describing various characteristics of the traces and context along time and space dimensions. We demonstrate the usage of the STEP ontology for enriching raw trajectories and show how the proposed model may be useful for trajectory analysis tasks. We focus on the task of structuring moving object data taking into consideration its internal characteristics as well as the external context that surrounds the trajectory.

Requirements

In the development of ontology design patterns [START_REF] Gangemi | Ontology design patterns for semantic web content[END_REF]], it is prescribed the description of Generic Use Cases (GUC) to guide pattern creation. The concept of GUCs is linked to the idea of formulating competency questions, which are queries that a domain expert may run in a knowledge base and have a satisfactory answer if the data is structured following the ontology that is being designed. Although we have not developed an ontology design pattern, we have chosen this approach as starting point for building our ontology. In the following, we present the main competency questions that guided the development. For this exercise, we take the example of a trajectory collected during a running workout as depicted in Figure 3.1.

How was the evolution of a given trajectory characteristic (e.g. speed, acceleration)?

What was the runner's top speed?

What was the trajectory's general shape? Does the person run in circles or was it a "back and forth" run?

How was the weather during the workout?

What relevant geographic features were nearby?

What are the topological relationship between the trajectory and a given geographic feature (a park or a river)?

Did the runner passed by some of its friends?

From the above competency questions, we can better define the scope of the desired data model. First, we need to represent what is "inside" the trajectory, i.e. what can be extracted from the elements that form the trace (for the case when a GPS is the source of information, these elements are latitude, longitude, and timestamps). It is also important to store information that spans some time interval (e.g. moments of high speed and moments of low speed) as well as events that might be represented as a single instant (e.g.

the top speed is a single moment of the trajectory).

At the same degree of importance, we also notice the need for structuring information about features located in the surroundings of the trajectory as there may be strong links among them and the moving object's path. Making these links are important to move beyond the trajectory [START_REF] Laube | The Low Hanging Fruit is Gone -Achievements and Challenges of Computational Movement Analysis[END_REF]] in analysis tasks. The types of possible context data are very diverse, ranging from the kind of activity that was performed (e.g. running, commuting), the transportation means (e.g. car, public transport, bike, foot), the weather conditions, which Points or Regions of Interest were visited and how they were visited (what was the topological relationship between the Point or Region and the trajectory, e.g. cross, next, around).

To sum up the requirements about context data, we can identify two kinds of contextual information. First, the ones that are independent from the trajectory, e.g. the temperature, atmospheric pressure, the day of the week, the city where the trajectory took place. Second, information that relates All of this information can have different levels of details. For some applications, simply expressing that the weather was sunny or rainy is enough, but for others, a more precise information may be important. For this reason, the ontology should allow the representation of data in different levels of granularity. [START_REF] Ilarri | Semantic management of moving objects: A vision towards smart mobility[END_REF], for instance, argue that the semantic information attached to a trajectory should be represented at different levels of detail and it should be possible to easily commute from one to another based on the query requirements and existing privacy constraints.

Although not among practical queries for end users, additional metadata that may help in the preprocessing tasks can also be of interest for algorithms.

For instance, data quality aspects like accuracy and sampling rate should be able to be represented with our ontology, for instance, to give an indication about the quality of other trajectory characteristics calculated from raw measurements.

In Figure 3.2, we show an example of features that can be expressed by episodes with temporal extents, namely speed, temperature, topological relations, and direction. Although not exhaustive, this arrangement of information shows the usefulness of a representation that allows multiple layers of information to be combined. We can notice the need for representing both interval-based and instant-based episodes (e.g. the top speed information is an instant-based episode opposed to the remaining episodes). Another important aspect is the presence of qualitative and quantitative data, e.g. direction versus temperature. Also, some slots with diagonal lines represent periods of time without information about the feature in question. This can happen due to low quality or absence of positional data, or may of uninteresting for the application. This ontology have also introduced the concept of Key Points. These points are identified in space and time through Location and Timestamp attributes and may be used to represent important application-specific features of segments. For instance, due to the inherent loss of information, caused by qualitative transformation of raw data, a developer could store the highest and lowest quantitative value of a given characteristic for one or more segments.

The QualiTraj ontology

In this case, there would be two additional points for each Segment with labels such as Highest speed and Lowest speed and their respective values.

These points would be represented by the optional relationship has_point.

Although the Key Point entity gives a great flexibility to the user regarding which kind of quantitative information she wants to store, each segment must be linked to at least two points represented by the relationships start_point The QualiTraj model is focused on the description of qualitative aspects of trajectories. However, many of the requirements presented in section 3.1.1 are not addressed by this ontology. For instance, there is no support for a multilevel description of movement characteristics, as well as not entities to represent contextual elements. Moreover, the Coefficient entity can be considered as too restrictive, limiting the application possibilities to domain of time series representation. Another issue that we can highlight from QualiTraj concerns its lack of reuse of other available vocabularies for time and space concepts, for instance. These deficiencies have been addressed in the development of the STEP ontology, presented in the next section.

STEP: Semantic Trajectory Episodes

Based on the requirements presented in Section 3.1.1 and the previous work on semantic trajectories, we introduce in this section the STEP ontology for structuring trajectory and context into spatiotemporal episodes. A graphical representation of STEP is shown in Figure 3.8. We have used the Graffoo notation [START_REF] Falco | Modelling OWL ontologies with Graffoo[END_REF]] and then transformed it into an OWL file. The offi- Having a RawTrajectory can be helpful for visualization purposes or if one wants to retrieve all trajectory fixes, but it may also lead to a heavy usage of storage space. Although we have left this possibility opened in the model, we have used the RawTrajectory class in practice only as a way of creating key points that are later explained for spatiotemporal extents. As a solution for the problem of representing all trajectory points in the RawTrajectory, one can store only significant points (after having computed all episodes that depend on all raw points) for plotting the spatial footprint of the moving object. This can be achieved by trajectory simplification methods, e.g. the Ramer-Douglas-Peucker algorithm [START_REF] Ramer | An iterative procedure for the polygonal approximation of plane curves[END_REF]].

We used a terminology similar to the ontology design pattern for semantic trajectories proposed by [START_REF] Hu | A Geoontology Design Pattern for Semantic Trajectories[END_REF] the Library for Quantity Kinds and Units 33 or an equivalent ontology may be linked to QuantitativeValue instances in order to represent the measurement unit that have been used to express the value. This also avoids constructions like "50 km/h" as a value of a quantitative value, which would make queries harder to be constructed as the value would be mixed with the units in natural language.

Not all episodes can be described with literal values. Therefore, another option to give a semantic description to an Episode is through the Qualita-tiveDescription class. For instance, one can use this class to represent that, for a given episode, there were an increase of the speed. This is not a quantitative information, so it is not suitable for a QuantitativeValue instance. In this case, it is advisable to create an extension of QualitativeDescription that could better represent this data. Additionally, other qualitative data could be created for this case, e.g. Decrease, Steady. This kind of modeling allows the extension of the ontology to user-defined datatypes. Figure 3.
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shows examples of such extension with a small ontology that classifies stops and moves with subclasses of modes of transportation.

The Extent class allows to specify spatial and/or temporal limits for an

Episode. Three subclasses can be used for representing extents, namely Spa-tialExtent, TemporalExtent, and SpatiotemporalExtent.

Spatial extents are used in cases where only the geometric aspect of the represented episode matters to the application. For instance, one could create episodes to describe land use data where the semantic description would be the type of usage and the extent would be a SpatialExtent specifying the limits where that usage is valid. We made SpatialExtent as superclass of sf:Geometry (see Figure 3.6), thus allowing that any Geometry subclass can be used to represent spatial extents, e.g. Point, Line String, Surface, etc. Usually, different extents cannot overlap regarding episodes of the same FeatureOfInterest. Situations like defining one Episode during which the speed was 30𝑘𝑚/ℎ for the first 5 minutes, and another Episode stating that the speed was 40𝑘𝑚/ℎ for the first 3 minutes, for instance, does not make sense in the real world. However, it would be normal to have two temporal extents with different specializations (interval and instant). For example, an episode that represents the top speed of a moving object can overlap an interval-based episode that represent the average speed over a time interval (see Figure 3.2).

The property relatesTo was added to make possible relating an episode to a contextual element. This is especially important for representing topological relations of trajectories. For instance, an episode of passing next to a park would have the topological relation "next to" as a semantic description and the relatesTo property would link this episode to an instance of the park where the moving object has passed by. This property can also be used to model relations among one trajectory with trajectories of other moving objects, as these can be considered as contextual elements.

It can be useful for some applications to store global values that are valid for an entire trajectory or for the entirety of a contextual element. In the first version of STEP (Figure 3.5), it has been suggested that a FeatureOfInterest was created and linked to an Episode without a hasExtent relating it to any Extent. Then, the global attribute value would be normally represented by one of the SemanticDescription subclasses. This was done because the property hasSemanticDescription had a cardinality restriction (min 1), which would force each FeatureOfInterest to have a SemanticDescription.

However, this constraint was removed in order to simplify the addition of descriptions that range the entire trajectory. Now, a SpatiotemporaElement can have a FeatureOfInsterest (e.g. "Average speed") having a direct link to a description. 

Updates on the STEP ontology

As we can notice from the description of the entities and Figure 3.5, the first version of the STEP ontology is general enough to represent a large variety of spatiotemporal information from several domains. However, it still did not cover some desired requirements for trajectory modeling. Its main deficiency is the lack of explicit support for granularity levels. This has been corrected

in the version shown in Figure 3.8 and are detailed in the following.

KeyPoint is now a subclass of SpatiotemporalExtent, allowing a more direct definition of point-like events. In the previous version, it was necessary to create an instance of SpatiotemporalExtent that would have KeyPoint through the hasPoint property. This case is still useful for representing relevant information inside an episode (e.g. the top speed during an interval).

The new object properties coarserThan and finerThan allows the creation of hierarchies of episodes. Both are transitive, meaning that if Episode A is coarser than Episode B which is coarser than Episode C, then it can be inferred that Episode A is coarser than Episode C. Additionally, coarserThan is the inverse of finerThan (owl:inverseOf).

SpatiotemporalElement is introduced. It has subclasses Trajectory and

ContextualElement and concentrates the hasFeature property domain. The relatesTo property changed its range to SpatiotemporalElement, which allows linking a trajectory to other trajectories easily (e.g. expressing that a trajectory crosses another one).

The property hasSemanticDescription can link a SpatiotemporalElement directly to a qualitative description of quantitative value without needing the creation of an Episode. This is useful for representing attributes that are valid for the entire span of the spatiotemporal element. This change removes the restriction of creating at least one episode with the same extent of the trajectory as has been discussed in the previous section. 

Structuring Trajectories with STEP

Having defined our ontology, we now show some possibilities to instantiate it in order to represent trajectories and contextual information.

Creating episodes depends on what Features of Interest are important for each application. Usually, episodes of a Feature of Interest will be constructed by following some algorithm that takes the trajectory and/or external context data, does some computation based on some criteria, and records the episodes in the triple store following the STEP ontology specification, as it is the case of the second part of this thesis that deals with automatic annotation algorithms.

In the following, we exemplify the creation of episodes that represent the speed evolution of a moving object and some geographic features located around its trajectory. These Features of Interest are good examples of des- cribing internal aspects of trajectories as well as contextual data that comes from other data sources. At this point, we show a rather naive approach to speed segmentation as our focus in this section to explore STEP episodes. A more effective solution will be presented in the following sections of the thesis.

To create episodes that represent speed, one can calculate the speed at each point of the trajectory by computing the approximate distance between two pairs of latitude and longitude using the Harvesine formula to calculate distance and the sampling interval between points to calculate the elapsed time. Then, speed data can be distributed into bins of equal size ranging from the minimum speed to the maximum speed. Then, each speed value can be classified into its respective bin.

To give a simple example, consider that we have the following speeds (in meters per second): [4, 1, 0.5, 2.9, 1, 1.7, 1.5, 1.5]. The minimum speed is 0.5𝑚/𝑠 and the maximum speed is 4𝑚/𝑠. If we want to have five equally spaced bins, we take the range (difference between the maximum and minimum values), which is 3.5, and divide by 5, which gives an increment of 0.7 (the width of each bin). Therefore, each speed value is going to fit into one of the following bins: [0.5 to 1.2), [1.2 to 1.9), [1.9 to 2.6), [2.6 to 3.3), and [3.3 to 4]. This allows the clustering of similar speeds, which causes a reduction in the number of episodes. While this is an illustrative example of a quite simple method, a better procedure, more data adaptive, is presented later in this thesis.

The discretization also allows the qualitative representation of data. For instance, considering that speed values are normalized among trajectories, one could assign labels like "slow", "average", and "fast" for the bins.

In another example, consider that we have an algorithm that identifies the topological relationship between a trajectory and geographic features (e.g. intersect, touch). The output of this method could be used to create episodes as shown in Figure 3.9, which uses the trajectory of Figure 3.1 to express possible instances of STEP that represent geographic relations between a trajectory and its context. A more elaborated discretization method and contextual annotation procedure are presented in our framework in later chapters.

Querying Episodes

In this part, we demonstrate how a graph containing instances of the STEP ontology can be queried in order to answer questions related to those that have been described in the requirements of section 3.1.1. For instance, Listing ?foi rdfs:label "Speed"@en ;

:hasEpisode ?ep1 ;

:hasEpisode ?ep2 ;

:hasEpisode ?ep3 ;

:hasEpisode ?ep4 .

?ep1 :hasSemanticDescription "slow" ;

:hasSpatiotemporalExtent ?extent1 .

?ep2 :hasSemanticDescription "very high" ;

:hasSpatiotemporalExtent ?extent2 .

?ep3 :hasSemanticDescription "slow" .

:hasSpatiotemporalExtent ?extent3 .

?ep4 :hasSemanticDescription "very high" ;

:hasSpatiotemporalExtent ?extent4 .

?extent1 :hasEndingPoint ?end1 .

?extent2 :hasStartingPoint ?start2 .

?extent2 :hasEndingPoint ?end2 .

?extent3 :hasStartingPoint ?start3 .

?extent3 :hasEndingPoint ?end3 .

?extent4 :hasStartingPoint ?start4 .

FILTER(?end1 < ?start2 && ?end2 < ?start3 && ?end3 < ?start4) } Listing 3.1: SPARQL query to detect a speed pattern

The query in Listing 3.1 assumes that the episodes have been labeled in a range between "very high" and "slow". In this example, we search for trajectories that present a pattern of slowing down and going very fast twice. We enforce temporal sequence with the filter expression, which restrict solutions to only those that evaluate to true.

Another query example is shown in Listing 3.2 and it is related to contextual data. In this example, we ask the following question: "How much of people's workouts takes place near parks?". To answer this, a query similar to Listing 3.2 could be formulated. Taking as example the instances of Figure 3.9, this query would return the following pairs of KeyPoints: (KP1, KP2)

and (KP3, KP4) as starting and ending points, respectively.

PREFIX : <purl.org/net/step#> .

SELECT ?startingPoint, ?endingPoint WHERE { ?trajectory :hasFeature ?foi .

?foi rdfs:label "Topological relations"@en ;

:hasEpisode ?episode .

?park rdfs:label "Park" .

?episode :relatesTo ?park ;

:hasSemanticDescription "nearby" ;

:hasStartingPoint ?startingPoint ;

:hasEndingPoint ?endingPoint .

}

Listing 3.2: Query for retrieving the points of the trajectory during which a park was nearby.

Then, a simple algorithm would be able to calculate how much time was spent around parks. It is important to notice that we have used rdfs:label to match nodes. Other approach could be using domain ontologies (e.g. types of geographic features) instead of matching against the "park" string. These types of queries can reveal some preferences of a person regarding the places where he or she generally goes to exercise, for example.

In the following example, we compare the same query written using the Baquara² and STEP ontologies (see Listing 3.3). The query is the same presented in Fileto et al. [2015b] described as "Select the social media user's trails with at least one stop to visit a mountain called Corcovado in the city of Rio, followed by one stop in a marketplace, where he/she does at least one finer stop in a restaurant".

This example shows the differences in representing the granularity of the two models, which can be considered equivalent. The main difference lies in the fact that Baquara² uses an order attribute that should be attached to an entity. While this can be automatically computed at annotation time, we believe that our approach of using the timestamps of each episodes is more efficient as it uses an information that is intrinsic to the episodes in question.

If dates are stored as XSD datetime format, direct comparison is supported by the SPARQL standard. On the other hand, using a literal value such as "order" may raise problems if episodes should be reorganized due to the inclusion of a new episode, for instance.

In Listing 3.4, we show a query that has been described by Bogorny et al.

[2014] as "How many tourist trajectories stayed at the Colosseum when it was raining and there was a photographic exhibition?". We verify that, despite the differences between CONSTAnT and STEP the query can be equally answered by both models.

However, our ontological approach allows us to reuse concepts from other ontologies and enables referencing real world entities in a unique way. For instance, pointing to dbo:Colosseum assures that we are referencing the tourist attraction in Rome, and not some restaurant or night club that may have the same name. It can also be argued that the SPARQL query is more readable, although this is a rather subjective judgment. 

Evaluation

Comparing models can be a subjective task because some modeling solutions may seem simplistic but, at the same time, they can be sufficient for a range of applications, while other solutions may be complex and suited for specific application needs. We have selected some criteria to compare trajectory conceptual models and ontologies based on the features that our model has that differs most from others. While this should not be used to rank the STEP ontology above other proposals, it serves to show that our model gathers a adaptable to new application needs.

In the case of CONSTAnT, subtrajectories have a disadvantage of limiting this kind of segmenting only for trajectory related attributes. Therefore, contextual elements must always be linked to some subtrajectory, while it could be more interesting to give the opportunity of representing this information independently.

STEP provides a higher level of organization with features of interest that is not present in SEM. This also provides a way of expressing global attributes that are harder to represent with SEM. For instance, how one could represent the average speed of a trajectory in SEM? While this is not impossible, this

shows that SEM is more tailored to represent qualitative aspects like "speeding up" or "slowing down", for example.

Granularity

As defined by [START_REF] Hornsby | Modeling moving objects over multiple granularities[END_REF], "granularity refers to the notion that the world is perceived at different grain sizes". In our context, granularity refers to the power of expressing different levels of detail of episodes both in time and space and it is advisable that the trajectories' semantic information should be represented at different levels of detail [START_REF] Ilarri | Semantic management of moving objects: A vision towards smart mobility[END_REF]].

The representation of diverse granules of information is then an important requirement for trajectory modeling and spatiotemporal phenomena in general [START_REF] Almeida | Aggregating spatio-temporal phenomena at multiple levels of detail[END_REF]].

The Baquara² and SEM ontologies are the only current models that provide constructs for representing hierarchies of segments. In Baquara², a trajectory, trail or episode may have a father and one or more children. Additionally, movement segments of Baquara² should contain numeric information regarding their level (the distance between the segment and its farthest father). In the case of SEM, an Event may have sub-events. In STEP, we also support hierarchy of episodes through the coarser and finer properties, that are transitive and inverse.

Extent

This criteria is related to the support of representing different kinds of temporal and spatial extents and their possible combinations. The most important type of extent in trajectory modeling is the spatiotemporal one, i.e.

the ability of defining the locations and timestamps in the trajectory where some homogeneous criteria is met. However, a model that separates these two components of spatiotemporal extent can benefit of expanding the possibilities of representation that do not involve one of temporal or spatial aspects.

The ontology of [START_REF] Baglioni | An Ontology-Based Approach for the Semantic Modelling and Reasoning on Trajectories[END_REF][START_REF] Nowack | The Semantic Web -Not a piece of cake[END_REF] focuses entirely in stops, thus, it is only possible to associate a place (through the is_at property). Also, a Stop may be associated to a Time entity, but this is not the case of a

Move. The Spatiotemporal Ontology of [START_REF] Yan | Trajectory Ontologies and Queries[END_REF] have expanded the possibilities of defining extents by combining spatial and temporal ontologies to provide concepts for describing phenomena with time-varying geometry. While this proposal opens up a wide range of possibilities, when they integrate this ontology with their Trajectory Ontology, it is specified that a stop is limited to a combination of point-like geometry and time interval (⊆ ∃ℎ𝑎𝑠𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦.𝑃 𝑜𝑖𝑛𝑡 ∩ ∃ℎ𝑎𝑠𝑇 𝑖𝑚𝑒.𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙) and a move is a list of Time-Points (point and instant combination), therefore, it is not possible to express more complex extents for these episodes (e.g. defining a stop as a region instead of a point).

In Baquara², we have that a Movement Segment is a tuple containing geometry, initial and final positions of the corresponding subsequence, and a time span. It is not clear from their work how this is modeled into the ontology as the authors present these attributes in an abstract way. If these properties can be instantiated independently in the annotation process, then their approach is similar to ours for this criteria.

The extent of Subtrajectories are delimited by start and end time in CONSTAnT, thus, defining the extent of this entity as a temporal interval.

The model also allows linking a Subtrajectory to one or more Semantic Points.

This idea is close to the KeyPoint concept of STEP and allows a finer representation of trajectory events. A drawback of this conceptual model is the difficulty of expressing aggregated data, e.g. average speed during a given segment.

Our STEP model allows the representation of episodes in a way that each episode can have an extent that can be of three different main types: spatialonly, temporal-only, or spatiotemporal, as described in subsection 3.1.3. Moreover, we have followed an approach similar to [START_REF] Yan | Trajectory Ontologies and Queries[END_REF] in terms of reusing other ontologies and composing the extent of episodes based on a combination of concepts. However, we have left the possibilities opened for any combination of GeoSPARQL's Geometry and OWL:Time's TemporalEntity.

Context

It is natural that the spatial context takes greater attention in trajectory modeling. The conceptual model of [START_REF] Spaccapietra | A conceptual view on trajectories[END_REF] already proposed to link begin, end and stops to spatial objects representing the corresponding location in terms of application objects. Nevertheless, contextual information may span a wider range of possibilities as the spatio-temporal context consists of the space, time and other objects positioned in the space and/or time [START_REF] Andrienko | An eventbased conceptual model for context-aware movement analysis[END_REF].

It is important to note that, for the matter of the comparison in Table 3.1, we consider that a model supports context representation if there is some concept beyond locating trajectory points in time and space because, in some cases, we verify that some extension of the ontology is needed to represent the relationship of the trajectory with contextual elements.

In the work of [START_REF] Yan | Trajectory Ontologies and Queries[END_REF], the representation of contextual elements is delegated to Geography and Application ontologies that can vary according to the domain. While the modularization is an important characteristic, we believe that it is possible to provide generic entities to enrich trajectories with contextual information. These generic entities can also serve as an extension point if mode complex ontologies are needed, but they can be sufficient in some cases.

The CONSTAnT model counts with a more advanced support for contextual elements when compared to other trajectory-specific models as it provides

an Event class that is able to express more information about a place. However, this link to a place instance limits its extent to a spatial entity.

One advantage of the STEP model is that ContextualElement can have episodes with their corresponding extents that are completely independent from any trajectory instance. This allows the representation of spatiotemporal phenomena that can be later linked to trajectories or can coexist in a decoupled manner but can be matched in querying time. A similar feature is only identified in SEM due to its lightweight characteristic. Moreover, diverse contextual element can be represented, e.g. weather, places of interest, other trajectories, having the structure of episodes with flexible extents and semantic descriptions.

Type and availability

We have also classified each mode either as a conceptual model, ontology or design pattern in order to identify the status of implementation of the ideas of their respective authors. This is also important because the models that are modeled as ontologies count with a controlled standardized formal vocabulary.

Lastly, it is important to notice that, due to the power of extensibility of ontologies, a simple ontology extension or new version can solve some model deficiencies.

Another point that can speed up adoption of a model by an applica-tion is its online availability. This applies only for ontological models in 

STEP Framework

The STEP framework proposed in this thesis serves as a bridge between the STEP ontology and the automatic annotation algorithms. This layer consists basically into a mapping of the ontology entities into classes that follow the object oriented paradigm and a series of general purpose utility methods that help the application of annotation algorithms. An overview of the framework can be viewed in Figure 3.10 where the highlighted modules represent the parts that have been implemented in this thesis.

Our framework contains a preprocessing layer that handles raw GPS data, i.e. a sequence of tuples consisting in latitude, longitude, and timestamp records. The current version of the framework works with the popular GPS Exchange Format (GPX) 35 file format but it can easily adapted to consume other formats like TCX, CSV, etc. From this simple sequence of tuples, our preprocessing layer computes the following attributes of each point:

time duration from previous point in seconds by the simple difference of timestamps between the two points.

distance from previous point in meters by the haversine formula, a function that computes the distance between two points in a sphere, as defined in Equation 3.1. 

(︃ √︃ sin 2 (︂ 𝜙 2 -𝜙 1 2 )︂ + cos(𝜙 1 ) cos(𝜙 2 ) sin 2 (︂ 𝜆 2 -𝜆 1 2 )︂ )︃ (3.1)
elevation in meters of each point retrieved by the Shuttle Radar Topography Mission (SRTM) 36 , as a way to provide a more accurate elevation data.

speed in meters per second by the relation between the traveled distance and the time spent to traverse two points.

acceleration in meters per second squared by the difference of speed between each point and its previous neighbor. heading in degrees, the direction towards the object is theoretically moving at each timestamp, its values ranges from 0 to 360.

turning angle in degrees. We have that, for a triad of successive points 𝑝 𝑖-1 , 𝑝 𝑖 , 𝑝 𝑖+1 , the turning angle consists on the angle formed by these three points where 𝛾 is the angle having 𝑝 𝑖 as vertex (see Figure 3.11).

The triangle edges are equivalent to the distances 𝑝 𝑖-1 𝑝 𝑖 , 𝑝 𝑖 𝑝 𝑖+1 , and 𝑝 𝑖-1 𝑝 𝑖+1 . We have applied the Rule of Cosines for unknown angles (Equation 3.2) to find the angle between two successive GPS points.

𝛾 = arccos

(︂ 𝑝 𝑖-1 𝑝 𝑖 2 + 𝑝 𝑖 𝑝 𝑖+1 2 -𝑝 𝑖-1 𝑝 𝑖+1 2 2 × 𝑝 𝑖-1 𝑝 𝑖 × 𝑝 𝑖 𝑝 𝑖+1 )︂ (3.2)
Other utility methods of the framework include, for instance, array manipulation procedures to group sequential values, e.g. given an array like [1,2,[START_REF] Ye | Semantic web technologies in pervasive computing: A survey and research roadmap[END_REF]4,[START_REF] Brickley | RDF Schema 1.1 -W3C Recommendation[END_REF]16,17,[START_REF] W3c | Ontologies -W3C[END_REF]50,51,52,53,54,55], the method returns the a series of pairs containing the limits of contiguous groups, e.g. [[1, 4], [START_REF] Brickley | RDF Schema 1.1 -W3C Recommendation[END_REF][START_REF] W3c | Ontologies -W3C[END_REF], [50,55]].

This procedure is essential to find which points of the trajectory delimit the episodes created by the framework.

Another important auxiliary procedure of the STEP framework consists in creating intermediate instances of object-oriented representation of the trajectory points in the form of the RawTrajectory concept and its components.

This method takes a raw GPX representation and create a RawTrajectory object that serves as a container for the points that delimit the episodes crea-ted by the framework. Similarly, our framework also have the ability of taking a time series and creating a FeatureOfInterest concept. The framework has been implemented in the Python 3.5 language and the following main packages: pandas 37 , numpy 38 , gpxpy 39 , srtm 40 shapely 41 , overpy 42 , rdflib 43 , among others.

In the Object-Graph-Mapping layer (see Figure 3.10), each class representing a STEP ontology entity contains a method for outputting a JSON representation of it as well as a triplify() function that returns an intermediate representation of the graph of triples that can be then serialized to a Semantic Web compatible file format such as n3, RDF/XML, turtle, etc. or loaded to a triple store. It is interesting to notice that the nested structure of object is returned for both of these methods, i.e. if the triplify() function of an Episode is called, all of its components (semantic descriptions and extents) are returned by triggering its respective triplify() methods. That way, only one call to a FeatureOfInterest object is enough to retrieve a graph of all the episodes that compose that object. That way, applications have multiple options of consuming the output of automatic annotation algorithms.

The STEP framework can be compared to SeMiTri (Semantic Middleware for Trajectories) [START_REF] Yan | SeMiTri: A Framework for Semantic Annotation of Heterogeneous Trajectories[END_REF] as both have been devised to serve as a single system that concentrates different algorithms that may work together eventually. One important difference is that we provide an object-graph interface that maps the STEP ontology to classes that can be used by applications. As can be observed from related work, it is thus necessary to make assumptions about the collected data before proposing an approach to trajectory segmentation. The main assumption of our method is that points are not sampled with the same frequency during the entirety of the trajectory.

Therefore, we consider the existence of a spatial filter that discards redundant points or stops recording points when the object is not moving. Also, we consider that the sampling rate is approximately constant when the object is moving, i.e. new points are recorded at near equally spaced interval of times.

This has been noted in our previous work [Nogueira et al. 2014], but we did not consider noisy trajectory segments nor used robust statistic measures.

An example of the spatial filter can be seen in Listing Listing 3.5: Java code for getting position updates only if the moving object has moved for at least 10 meters.

Another important difference in our method is that the notion of stop in other works is usually related to the identification of Regions of Interest allowing the classification of a point as a stop even when there is movement, while in our work we aim to identify moments where an actual stop took place. Moreover, in this stage we do not consider using external contextual data (e.g. the polygons of adjacent geographic features) or additional sensor data (e.g. GPS accuracy) as we do not link stops to Points or Regions of Interest and, in the second case, we favor to use trajectory attributes that can be computed only from the raw spatiotemporal data, i.e. latitude, longitude, and timestamps.

Exploratory Data Analysis

An important initial task when analyzing a dataset is verifying the relationships among the variables. The output of this analysis allows to highlight the relationships of variables that tends to better explain the dataset variability. A useful statistic method for such kind of analysis is the verification of correlation strength among variables. We are going to use the trajectory shown in Figure 3.12 as illustrative example of the MSN method for detection of moves, speed and noise segments.

This trajectory was recorded in a controlled manner in order to have two stops of a few seconds and two periods of noise that have been simulated by turning off the smartphone GPS for a few seconds.

For each pair of sequential points in the trajectory of Figure 3.12, we can calculate the speed, distance and duration between points as shown in seconds, and a fairly constant speed until there is a peak of 42 seconds in the duration series. At the same moment, we can observe that the speed drops to a value near zero while the distance remains unchanged. This characterizes a stop. Some seconds later in the example trajectory, it is possible to notice another peak in duration at the same time of a peak in the distance between points that are not followed by a decrease in speed. This characterizes a period of noise. In the remaining of the trajectory, another stop and another noise period can be noticed.

The conclusions achieved in the example have been confirmed by an exploratory study of the Spearman correlation of some trajectory characteristics (see Equation 3.3). We have chosen this measure because it is more resistant than the Pearson coefficient as it diminishes the importance of extreme scores by first ranking the two variables and then correlating the ranks instead of the actual values [START_REF] Myers | Research Design and Statistical Analysis[END_REF]. The advantage of Spearman correlation over Pearson's is shown in Figure 3.14.

𝑟 𝑠 = 1 - 6 ∑︀ 𝑑 2 𝑖 𝑛(𝑛 2 -1) (3.3) 
Tables 3.2, 3.3, and 3.4 show aggregated statistics of the Spearman correlation among some movement attributes of 2226 trajectories, which were collected from a widely used third-party mobile application. Walking and running activities ranging from 2 to 42 kilometers in the cities of Grenoble (France) and Barcelona (Spain) were randomly selected. From this data, we can observe that the pairing between speed and duration is the one that presents the strongest correlation. In this case, a strong negative correlation indicates that when the values of duration increase, the values of speed tend to decrease and vice-versa, which is what one can expect given the previously explained assumptions about the data.

From the experiments performed with the described trajectories, we can conclude that there is a negative correlation between the values of speed and duration that characterizes a stop. For the noisy cases, there is no pair of variables that helps the classification. Thus, we make use of the assumption that the points are recorded at near constant distance intervals most of the time. Additionally, we propose a subprocedure to identify consecutive points showing unrealistic movement behavior based on the angle between points.

Outlier Labeling Rule

Based on the exploratory data study, we can approach the classification of moves, stops and noise as an outlier detection problem. In order to identify the outliers in time series, we use the modified z-score proposed by [START_REF] Iglewicz | Volume 16: How to Detect and Handle Outliers[END_REF]. The usage of this method is motivated by the poor performance of other popular measures like the standard deviation and the mean in the presence of outliers.

An indicator of the robustness of a statistic is its breakdown point, i.e.

the maximum proportion of outlier data points that can be inserted into the dataset before the statistic gives a wrong result. The mean is known to have a breakdown point of 0% because, for instance, if just one value of a given series is set to infinity, the series' mean goes to infinity. On the other hand, the median (the central point of a series) is a statistic measure with a high breakdown point. Using the same concept of the previous example, the median value of a series is only affected if more than 50% of the data would be set to infinity.

Another estimator that is easily modified in the presence of outliers is the standard deviation, as it takes into consideration the squared distance from the mean for each value. According to Huber and Ronchetti [2009], the most useful ancillary estimate of scale is the Median Absolute Deviation (MAD) (see Equation 3.4), which is the median of absolute distances from the series median. The constant scale factor 1.4826 makes the MAD unbiased at the

𝑍 𝑖 = 𝑌 𝑖 - Ȳ 𝑠 (3.5)
Iglewicz and Hoaglin [1993] recommend using the modified z-score shown in Equation 3.6 where each element of a series is subtracted from the median (x), multiplied by a factor to make the MAD consistent at the normal distribution (0.6745). As a final recommendation from the authors, points having modified z-scores with an absolute value greater than 3.5 have a high probability of being outliers [NIST/SEMATECH 2012]. Besides the advantage of using the MAD statistic in what concerns it being more robust to outliers than the standard deviation, it is also adequate for application in populations that do not fit perfectly a Gaussian distribution [START_REF] Gorard | Revisiting a 90-year-old Debate: The Advantages of the Mean Deviation[END_REF]], which is the case for real world GPS track datasets.

𝑀 𝑖 = 0.6745(𝑥 𝑖 -x) MAD (3.6)
As an example of the advantage of using MAD, consider the following set without any outlier 𝑥 = {6. 27, 6.34, 6.25, 6.31, 6.28} with mean x = 6.29, median x = 6.28, and standard deviation 𝜎 𝑥 = 0.03. Now, considering the introduction of an outlier, the set becomes 𝑥 ′ = {6. 27, 6.34, 6.25, 63.1, 6.28} with mean x′ = 17.64, median x′ = 6.28, and standard deviation 𝜎 𝑥 ′ = 22.72.
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We can compute the ordinary z-scores for the two sets as defined in Equation 3.5 and get 𝑍 𝑥 = {-0.6, 1.58, -1.2, 0.63, -0.31} and 𝑍 𝑥 ′ = {-0.5, -0.5, -0.5, 1.99, -0.5}. Using the popular threshold of 2.5 to label a value as an outlier would not identify the outlier introduced in 𝑥 ′ . Both sets have the same 𝑀 𝐴𝐷 = 0.04 and if we compute the absolute distance (AD) from the median, we get the following results: 𝐴𝐷 𝑥 = {0.01, 0.06, 0.03, 0.03, 0} and 𝐴𝐷 𝑥 ′ = {0.01, 0.06, 0.03, 56.8, 0}. Finally, applying Equation 3.6 to both sets yields: 𝑀 𝑥 = {-0.22, 1.34, -0.67, 0.67, 0} and 𝑀 𝑥 ′ = {-0.22, 1.34, -0.67, 1277, 0}. We can notice that the outlier in the second set highly exceeds the recommended threshold of 3.5.

The MSN algorithm

Considering a trajectory 𝜏 = {(𝑠 1 , 𝑡 1 ), (𝑠 2 , 𝑡 2 ), ...(𝑠 𝑛 , 𝑡 𝑛 )}, where each position

𝑠 𝑖 = (𝑙𝑎𝑡, 𝑙𝑜𝑛
) is a pair of latitude and longitude coordinates, and each time instant 𝑡 𝑖 is represented by a timestamp, for each pair of points (𝑠 𝑖 , 𝑡 𝑖 ), (𝑠 𝑖+1 , 𝑡 𝑖+1 ), we compute its spatial distance, duration, speed, and turning angle. Then, we store these values in their respective time series 𝑆 𝜏 , 𝑇 𝜏 , 𝑉 𝜏 , 𝐴 𝜏 , having as index the same timestamps of the raw trajectory 𝜏 . For 𝐴 𝜏 , a turning angle consists on the angle formed by three neighboring points as has been described in Equation 3.2 and Figure 3.11.

Considering the above computed time series, we are able to formulate an algorithm (see Algorithm 1) for determining which instants of the trajectory are likely to be stops or moves, as well as which segments have a degree of uncertainty that makes this classification impossible. The algorithm's input are the time series representing the spatial distances (𝑆 𝜏 ), the durations (𝑇 𝜏 ), the speed (𝑉 𝜏 ), and the turning angle (𝐴 𝜏 ) between points besides the thresholds 𝜖 𝑠 , 𝜖 𝑡 , and 𝜖 𝑣 representing the modified z-score limits for distance, duration, and speed, respectively. Additionally, we have included a minimum turning angle parameter (𝜃) to improve the noise detection following the intuition that it is improbable for a moving object to take successive turns with small angles, and a random uniform jitter (𝜌) to avoid the MAD breakdown point.

As the trajectory's sampling rate is assumed to be performed at nearly constant distance only while the object is moving and locations are not retained while the object is stopped, the problem can be summarized into searching for outliers into the time series as they are expected to have relevant gaps characterizing periods of either stops or noise. These gaps in time coincide with decreases in speed for the cases of stops as can be observed by the negative correlation between these two variables.

In order to better explain the MSN algorithm, we consider the example trajectory of Figure 3.12. We have set the following values for the parameters in this example: 𝜖 𝑠 = 𝜖 𝑣 = 3.5, 𝜖 𝑡 = 5, 𝜃 = 45.

We can see in Algorithm 1 that the first part in MSN is to identify potentially erroneous points, for which we use the general term "noise". This first classification, shown in lines 2-8, identifies the points having relative long distances. In the example (Figure 3.15), three points are identified in this phase. They have distances of about 17, 28, and 55 meters, while the median distance of all pairs of sequential trajectory points is 11 meters. for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑀 𝑠 ) do:

5: if 𝑀 𝑠 [𝑖] > 𝜖 𝑠 then ◁ Get long distances 6:
Append 𝑖 to 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 7:

end if

8:
end for 9:

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 = [ ] 10:
for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴 𝜏 ) do:

11: if 𝐴 𝜏 [𝑖] < 𝜃 and 𝐴 𝜏 [𝑖 + 1] < 𝜃 then ◁ Get sharp turning angles 12:
Append 𝑖 and 𝑖 + 1 to 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 𝑀 𝑡 = ModifiedZScore(𝑇 𝜏 , 𝑀 𝐴𝐷 𝑡 , t)

22:

for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑀 𝑡 ) do:

23: if 𝑀 𝑡 [𝑖] > 𝜖 𝑡 then ◁ Get long durations 24:
Append 𝑖 to 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 25:

end if

26:

end for

27:

𝑉 𝜏 = ln 𝑉 𝜏 ◁ Natural log of speed 28:

𝑠𝑝𝑒𝑒𝑑 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 = [ ] 29:
𝑀 𝑣 = ModifiedZScore(𝑉 𝜏 , 𝑀 𝐴𝐷 𝑣 , ṽ) 30:

for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑀 𝑣 ) do:

31: if 𝑀 𝑣 [𝑖] < -𝜖 𝑣 then ◁ Get slow speeds 32:
Append 𝑖 to 𝑠𝑝𝑒𝑒𝑑 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 𝑚𝑜𝑣𝑒 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 = 𝑐𝑙𝑒𝑎𝑛 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 -𝑠𝑡𝑜𝑝 𝑖𝑛𝑑𝑒𝑥𝑒𝑠

37:

return 𝑛𝑜𝑖𝑠𝑒 𝑖𝑛𝑑𝑒𝑥𝑒𝑠, 𝑠𝑡𝑜𝑝 𝑖𝑛𝑑𝑒𝑥𝑒𝑠, 𝑛𝑜𝑖𝑠𝑒 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 38: end procedure Figure 3.16: Time series of turning angles. There are no group of consecutive angles with less than 45 degrees, therefore no direction outliers are identified.

The second step of noise classification consists in verifying the turning angles (lines 9-15). We account for the fact that only one sharp angle in a trajectory may represent a movement of "turning back", while two consecutive sharp angles is less likely to happen and can be considered as a potential noisy segment. For that reason, we test for neighbor points and move the iteration one step further if at least a pair like this is found. This case is not present in the example trajectory as can be seen in Figure 3.16. There is no group of points as vertices of angles of less than 45 degrees.

Once the noisy points are identified (the union of distance and direction outliers), the second part of the MSN algorithm consists in labeling potential stops by removing the noisy points and analyzing modified z-scores. Lines 19-26 show the first step, which is designed to identify long time gaps.

We have observed that the time series of duration between points may contain repeated values in more than 50% of the data. In these cases, the MAD value is always equal to zero (Equation 3.4), which causes a division by zero in the modified z-score computation (Equation 3.6). To avoid this, we add a small amount of random uniform noise to the duration series (line [START_REF] W3c | W3C Semantic Web Interest Group: Basic Geo (WGS84 lat/long) Vocabulary[END_REF]. The value to be added is randomly selected from a interval, e.g. [-0.5, 0.5), corresponding to the 𝜌 variable in Algorithm 1. For instance, the time series {4, 5, 5, 6, 6} may become {4.02, 5. 19, 4.97, 6.37, 5.97}, which is enough to avoid the MAD being set to zero and does not have an impact on the determination of stops as a half-second change can be considered as negligible in our context.

After adding the small jitter to durations, we apply the same procedure as the one applied to find the distance outliers. However, we have set the modified z-score threshold to 5 in order to avoid false positives. Figure 3.17 should be applied to approximately normally distributed datasets, however, for the trajectories considered in this work, speed data has demonstrated to be positively skewed in general. In order to normalize speed data, the natural logarithm was applied as taking the log of the data can restore symmetry in this case [START_REF] Zumel | Practical data science with R. Manning Publications Co[END_REF]. Figure 3.18 shows the importance of this transformation to find slow speed outliers. In Figure 3.18b, it is possible to see that two points have speeds relatively slower (0.23𝑚/𝑠 and 0.29𝑚/𝑠) while the median speed value for the example trajectory is 2.1𝑚/𝑠.

Successive points having speeds lower than the specified threshold 𝜖 𝑣 are special cases because they can be classified either as stops or moves depending on the interpretation of who analyses the data. In the first case, considering these points as stops brings the risk of classifying a long period of slow movement as a stop, which would make the spatial extent of the stop greater than normal. On the other hand, due to the accuracy of GPS acquired positions, the sequence may actually represent a period where the object was stationary.

A possible approach for these cases could involve analyzing more variables.

For instance, one could define a threshold to the number of contiguous points with low speed where sequences having more points than the threshold are considered as moves. We left this task as a future work.

Finally, we define as stops the points that have present both slow speed and long durations. Figure 3.19 shows these two variables with their respective thresholds. According to our algorithm, the points located in the lower right quadrant have a high probability of being stops. Figure 3.20 shows all points with their classification as either move, stop, or noise.

Evaluation

Due to the assumptions about the trajectory sampling strategies (constant sampling versus spatial filtering), it is difficult to make a comparison with related work by running all algorithms with the same set of trajectories. In this evaluation, we focus on analyzing the theoretical performance of other stop classification methods and we highlight the main differences from our work. et al. 2015]. In this work, we propose a segmentation strategy based on variance changes of a unidimensional set of values where the objective is to identify intervals with near homogeneous values. With the method presented in this section, we focus rather on the classification of a time series in few classes instead of finding linear segments that better fit the time series as it has been done in our previous work [Nogueira et al. 2014, Nogueira andMartin 2014] where we have used PLS and represented the time series segments in the QualiTraj ontology.

Fisher-Jenks Natural Breaks

In order to achieve the classification of a time series into a set of classes, we propose using the Fisher-Jenks Natural Breaks algorithm with an optional step to automatically determining the number of classes and two additional steps that helps in avoiding overfitting the approximated series and therefore avoids creating more segments. The Fisher-Jenks algorithm was proposed by [START_REF] Jenks | Optimal data classification for choropleth maps[END_REF] and is an evolution of the Jenks-Caspall algorithm [START_REF] Jenks | Error on Choroplethic Maps: Definition, Measurement, Reduction[END_REF] as the first one did not guarantee an optimal solution. Although [START_REF] Fisher | On grouping for maximum homogeneity[END_REF] was the responsible of the method's mathematical soundness, this algorithm is usually refereed as "Jenks Natural Breaks" [START_REF] Slocum | Thematic cartography and geovisualization[END_REF]]. The Fisher-Jenks algorithm benefits from the fact that any optimal partition is equal to the sum of optimal partitions of subsets of the data, as demonstrated by [START_REF] Fisher | On grouping for maximum homogeneity[END_REF], to reduce the search space and not have to search through all possible combinations.

Intended for choosing different colors for choropleth maps [START_REF] Andrienko | Choropleth Maps : Classification Revisited[END_REF], the objective of the Fisher-Jenks algorithm is to find break points in a univariate dataset with the goal of minimizing intraclass variance while maximizing inter-class variance. This is done by introducing a measure of error, e.g. the Absolute Distance from the Class Median (ADCM), and calculating the sum of ADCM for subsets of the data. For instance, given the set {2, 3, 4, 10, 12, 15, 20, 21} and a number of classes equals to 3, the Fisher-Jenks algorithm would return the break points 2, 10, 20, 21, which are enough to infer the subset intervals: {{2, 3, 4}, {10, 12, 15}, {20, 21}}, being this configuration the one that has the smallest intraclass variation and greatest inter-class variability.

The ANBA algorithm

The name ANBA is inspired by the Natural Breaks found by the if 𝑚𝑖𝑛 𝑔𝑣𝑓 is defined then 𝐴𝑉 = Merge Candidate Approximations(𝐶𝐴𝑉 , 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡) For instance, consider that the list of CAVs is {2, 2.4, 3.5} and 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡 = 0.5. Then, as it is a case of a pair of close values, the final AV is set to {2.2, 3.5}. Now, suppose that CAV = {2, 2.4, 2.7, 3.5} and 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡 = 0.5.

The first three elements from CAV violates the minimum specified distance, therefore they are substituted by {2, 2.5}. The final AV is {2, 2.5, 3.5}.

The last step of ANBA is approximating the points to AVs (lines 13 to 18).

For each point of the time series, its distance from all AVs is computed and the shortest one is chosen. In this part, the minimum segment time constraint is taken into consideration, i.e. if a segment would have a duration shorter than 𝑚𝑖𝑛 𝑡𝑖𝑚𝑒, and it is part of a different class compared to its right and left neighbors, we approximate this segment to the preceding point's class instead.

This avoids isolated segments with negligible durations. For instance, if in a given point of time series the values drops enough to be classified by another class and then rises again, it will not be relevant enough to create a new segment.

Introducing 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡 and 𝑚𝑖𝑛 𝑡𝑖𝑚𝑒 has the potential to influence the GVF of the final result. As these two parameters may cause the displacement of points from the median of its corresponding class, causing a decrease of the correlation between the original data and the output.

Considering that a time series have 𝑛 points to be divided into 𝑘 classes, there are known algorithms to compute the natural breaks in 𝑂(𝑘 × 𝑛 × log(𝑛))

[Hilferink 2013]. In the cases of ANBA-gvf, this procedure can significantly increase running time due to the multiple calls of Fisher-Jenks. The steps of merging the CAVs is proportional to the number of classes 𝑘, 𝑂(𝑘), and approximating AVs is done in 𝑂(𝑛 2 ) as first the values are approximated and then reevaluated to find short duration segments. Specifically for this last step, there is still room for improvement that can be subject of future work.

Figure 3.21 shows the main steps of the ANBA process in an example time series computed from the speed evolution of a real trajectory. The following parameters have been used for this example: 𝑚𝑖𝑛 𝑔𝑣𝑓 = 0.5, 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡 = 0.5, 𝑚𝑖𝑛 𝑡𝑖𝑚𝑒 = 7 seconds. While the first parameter is the most abstract, the other ones heavily depends on the application domain. We considered that variations of less than 0.5m/s were not interesting for this specific case. For the 𝑚𝑖𝑛 𝑡𝑖𝑚𝑒 argument, we have selected the 90 𝑡ℎ percentile of the whole time series (in this case, 7 seconds) to avoid choosing a too arbitrary value.

In Figure 3.21a, we can see the original data used in the example and the smoothed version that is considered as actual input for the ANBA algorithm.

Smoothing input signals is not required, therefore we do not enforce the application of any specific method. However, it is advisable to smooth out values in order to eliminate peaks according to a previous analysis of the dataset.

As can be noticed in Figure 3.21a, the original data has been changed just enough for discard abrupt changes of values. In this case, a exponential weighted moving average with a span of 5 data points has been applied to smooth out the peaks in the signal.

The first part of ANBA algorithm, which defines the number of classes It is important to highlight that, in the example above, the parameters have been set in a way to have a representation of the input signal in a higher level of granularity. Therefore, the small variability in speed that can be observed mostly in the middle of the trajectory have been ignored in the ANBA output. In another configuration, changing the 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡 parameter to a higher value (or omitting it) would not lead to merging the two upper CAVs and some of the speed variations in this part could have been represented, for instance. Figure 3.22 illustrates this difference, where we can also notice the impact in the number of segments (48 vs 7).

Evaluation

We have evaluated our method with a real dataset acquired from a third-party mobile application. The subset used for the experiments comprise 106 time series of the speed of trajectories captured between July 2015 and August 2016. Table 3.6 summarizes the dataset characteristics: duration in seconds, It is hard to define equivalent parameters for a fair comparison through all algorithms as either the quantity and meaning of arguments varies across the considered methods. Moreover, we show the results for a singular set of parameters for each method. Therefore, the comparison made in this section has the objective of validating the viability of the ANBA method for time series clustering but it is not exhaustive in terms of variation of parameters. For the testing dataset used in this thesis, we have set the following parameters: Before applying the ANBA algorithm, the data was smoothed by an exponentially weighted moving average [START_REF] Roberts | Control Chart Tests Based on Geometric Moving Averages[END_REF]] with span = 5 (the same as in the example of Figure 3.21) in order to remove abnormal peaks caused by GPS inaccuracies. As a final step for all methods, the stops calculated by the MSN algorithm have been reincorporated to the approximated signal, but the time for computing the move, stop and noise segments of trajectories have not been taken into consideration.

For the testing dataset, we have observed that the number of classes chosen to achieve a minimum GVF of 0.5 was 3 classes in most cases. More specifically, when 𝑚𝑖𝑛 𝑔𝑣𝑓 was set to 0.5, the chosen number of classes was equal to 3 in 85% of cases. To determine this number, running the ANBA algorithm for one trajectory would make 4 calls (3 for finding the number of classes and another one to run the algorithm with the supplementary steps).

Four classes was enough to achieve GVF of 0.5 in only 3%, five classes in 9%, and only one case 6 classes were needed for the classification. This is the reason for selecting 3 as the number of classes for the cases when GVF was not used. Running the ANBA algorithm with these two possible set-ups allow us to analyze the impact of the Goodness of Variance Fit procedure that constitutes the first step of ANBA when 𝑚𝑖𝑛 𝑔𝑣𝑓 is preferred over 𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠.

In order to compare the different algorithms, we have select the following 

𝑟(𝑌, Ŷ ) 2 = ∑︀ 𝑖 ( Ŷ𝑖 -Ȳ ) 2 ∑︀ 𝑖 (𝑌 𝑖 -Ȳ ) 2 (3.8)
The Root Mean Squared Error (RMSE) is defined in Equation 3.9 and it gives an information similar to the correlation. It measures the similarity between two series by calculating the mean difference point by point. It considers the square of each difference in order to punish more the bigger errors. The measure unit that it outputs is the same as the series in question, e.g. meters/seconds. Therefore, it complements the comparison given by the Pearson's Correlation. The RMSE is defined in Equation 3.9. The Sliding-Window algorithms had their worst performance in correlation and number of segments, being average in terms of RMSE and showed a good performance in running time. The Bottom-Up strategies also had mostly average performance in all metrics.

As for the two versions of the ANBA algorithm, they have achieved the worst RMSE (also with the widest confidence intervals) with a mean of approximately 0.6𝑚/𝑠. The mean values for all metrics and methods are shown in Table 3.7. Their correlation results showed a good performance, being near the mark of 80%. The small number of generated segments in an interesting aspect of the algorithm and it is even more important when put into perspective with the good correlation, as it is of interest to balance these two metrics).

The most different results of the two ANBA versions was observed in the execution time. This can be explained by the multiple calls to Fisher-Jenks algorithm that are made in the ANBA-gvf as opposed to just one call in ANBA-n. As all other metrics of the two versions did not suffered a high impact, a strategy that can be recommended for this dataset is to run the ANBA-gvf version with a small subset to find the most recurrent number of classes for the desired level of GVF and then run the ANBA-n version for all dataset instances.

One advantage of ANBA is that it may save some storage space in a Semantic Web setting where the time series approximation should be saved in a triple store. For instance, if two approximate values are enough to discretize a time series of 20 segments, only two entities representing each value have to be created and only the extent of each segment have to be individually specified.

The combination of the extent instances with the corresponding approximate value instance by relationships would form the final series representation in the triple store. To achieve this result, the output of other algorithms like PAA and PLS would have to be modified because they generally yield different values even for segments near to each other. The ANBA method provides this advantage out-of-the-box because of the characteristics of Fisher-Jenks algorithm and also because of the merging procedure of approximate values.

ISA: Intersection-based Spatial Annotation

Automatic annotation of trajectories with spatial features is highly dependent on the application domain. For instance, a public transport application is probably more concerned with entities like bus stops, street names, and railway lines than an application about tourism which by its turn may be more interested in the location of museums, landmarks, and hotels.

In most of the related literature, the efforts done with this kind of annotation aims the identification of Regions of Interest (RoIs) of a moving object when it is not moving. In the work of [START_REF] Yan | SeMiTri: A Framework for Semantic Annotation of Heterogeneous Trajectories[END_REF], the authors propose an algorithm for trajectory annotation with RoIs. However, no standard format of external data is mentioned, a rather limited dataset is used (Swisstopo from Switzerland) and, from what can be inferred of their work, all intersections are computed features disregarding the type of polygons. This last aspect can be specially time consuming for long trajectories.

An extensive data source of geographical information can be found in the There are many ways of accessing OSM data for usage in third-party applications. One can directly download XML files containing specific areas or even the entire "planet" file, which has 52GB at the time of this writing. There is also a REST API that allow retrieving and modifying the OSM database by authenticated users.

A number of other APIs are also available mainly with read-only access to OSM data. A prominent one is the Overpass API 46 along with its domainspecific language Overpass QL. This initiative also features Overpass Turbo 47 , a web-based tool for querying and visualizing OSM data.

In the context of the Semantic Web, an important project is the Linked-GeoData (LGD). LinkedGeoData (LGD) consists in translating OSM data originally stored in a relational database into RDF triples following a lightweight ontology [START_REF] Stadler | LinkedGeo-Data: A Core for a Web of Spatial Open Data[END_REF]]. The project proposes two different namespaces: lgd 48 and lgdo 49 in order to separate instances from the ontology. The mapping from OSM data to RDF is performed based on the unique IDs of OSM features. For instance, the Eiffel Tower has ID 5013364 in OSM and it is represented as the resource lgd:way5013364 in LGD.

The LinkedGeoData ontology was built through a semi-automated process that consisted on the creation of tag mappers that match specified tag patterns to transformation functions written in Java for creating RDF descriptions. For instance, a tag mapper could specify that the OSM features containing the tag {amenity: school} had to be mapped to the lgdo:School concept or, in a more general case, any feature containing the tag key tourism had to be mapped to the lgdo:TourismThing concept in the LGD ontology.

Taking into consideration the large variety of tags in OSM, this mapping tags in the OSM Wiki 53 , the authors have conceptualized a directed graph containing OSM keys and tags, lexical descriptions, relationships between tags, general internal links, and links to Wikipedia pages. More importantly for our case, the OSN graph also contains links to equivalent classes in the LGD ontology.

By linking the spatial annotation episodes to OSN vocabulary, it is possible to benefit from the semantic similarity rankings between the tags created with the help of co-citation algorithms. For instance, it becomes possible to infer that different geographic features tagged with 𝑤𝑎𝑡𝑒𝑟𝑤𝑎𝑦 = 𝑟𝑖𝑣𝑒𝑟 and 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = 𝑙𝑎𝑘𝑒 have some level of similarity as both concepts are related to the concept 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = 𝑤𝑎𝑡𝑒𝑟.

In the STEP framework, we have implemented the ISA algorithm for retrie- The ISA method starts with the verification of the presence of keys informed by the user. If one or more keys are inputted, we check if they should be expanded. In the positive case, a query in the OSN RDF graph is performed to retrieve all other terms that are related to each of the informed keys.

For instance, if the inputted keys variable contains only the leisure key and the expand option is enabled, this query would return 53 new keys. However, some of these new keys does not have a semantic value -e.g. opening hours, addr:housenumber, contact:website -therefore, we have incremen-on their tags.

When no keys are specified in the parameters, all intersecting OSM features are retrieved. At the end of this process, an Overpass QL query is built according to the choices of the user, that reflect in the regular expression that is used in Overpass QL query. Listing 3.7 shows an example that matches OSM ways and relations that intersect the line defined with the poly keyword and have at least one of the keys leisure, natural, or landuse. An equivalent query, in SPARQL, is shown in Listing 3.8 and can be sent to LinkedGeoData endpoints. It is worth noticing that this is the only procedure that depends on the availability of an external server. For the case of other queries shown in this section, only a RDF dump of the OSN and a serialization of the LGD ontology are sufficient to perform the filtering of relevant tags.

In the cases when no keys are given as parameters, all intersecting OSM features are returned. However, some filtering process is still necessary. Once the intersecting features are retrieved, each one is verified to check if at least one of its tags have a corresponding concept mapped in OSN and if that concept have an exact match in the LGD ontology. This process is similar to the one performed in the keys expansion procedure and helps in maintaining only features that have a defined semantic meaning in the context of the LGD ontology, which we adopted to measure the significance of OSM tags.

Once OSM features have been retrieved and filtered, the ISA algorithm computes the intersection between the trajectory and each feature polygon.

As OSM ways are represented by nodes, we create polygons based on the latitude and longitude data. A variable buffer can applied to the polygon in order to both compensate GPS accuracy errors and consider features not directly crossed by the moving object. The default length of this buffer was set to 20 meters, but it can be freely changed.

The final result of the ISA method retrieves the OSM features that reach at least one of the two criteria represented by the Minimum Temporal Intersection Threshold and the Minimum Spatial Intersection Threshold. These are parameters that range from 0 to 1 and represent the percentage that each feature must meet to be considered as relevant. This avoids the selection of OSM features where the moving object has passed quickly or has barely touched. where the keys 𝑙𝑒𝑖𝑠𝑢𝑟𝑒, 𝑛𝑎𝑡𝑢𝑟𝑎𝑙, and 𝑙𝑎𝑛𝑑𝑢𝑠𝑒 have been used as filtering criteria (see Listings 3.7 and 3.8). For each of these features, it is then calculated how long the moving object has stayed in it both in terms of distance and duration.

The park (1) in Figure 3.25, has around 30% of coverage both in time and distance. All other features also does not show a big difference between distance and duration coverages. The building (2) has 4%, feature 3 has 2%, the grass field (4) has 4%, feature 5 has 1%, another park ( 6) has around 34% of coverage, a strip of wood (7) has 43%, the river (8) has 34%, and the residential block (9) covers about 32% of the trajectory space and time.

Table 3.8 have the detailed proportions of each feature regarding the example trajectory.

In the example of Figure 3.25, with 𝛿 𝑡 and 𝛿 𝑠 both set to 20%, only features 1, 6, 7, 8, and 9 are considered as relevant. In this case, the relevant features correspond to two parks, a wood, a river, and a residential area.

With the output of the spatial annotation algorithm, it is possible to create instances of the STEP ontology. The OSM features can be seen as contextual Listing 3.9: Except of RDF/XML file automatically generated by the STEP framework.

In Figure 3.26, it is possible to see some examples of OSM features that are selected in different situations. For these cases, no keys have been informed to the ISA algorithm and the spatial and temporal thresholds have both been set to 0.2, meaning that at least 20% of the trajectory's duration and distance should be intersected by an OSM feature in order to that feature to be considered as relevant.

It is also shown the LGD ontology concepts that have been identified based on the OSM tags. It is possible to notice that the LGD concepts also helps to describe the spatial context, besides serving its role of filtering important categories of geographical features, such as parks, forests, beaches, farms, vineyards, etc. Some aspects of these algorithms can be further improved in future work. First, it relies on the input of the tags keys of interest, excluding the tag values. Depending on the application, the semantic information can be more valuable in the tag value instead of the tag key. This has not been done due to limitations in the Overpass API, that do not accept complex regular expressions at the time of this writing.

Regarding the intersection among polygons and trajectory, the method has room for improvement if one considers the types of features by their semantic similarity. For instance, a group of three features with respective tags: 𝑙𝑎𝑛𝑑𝑢𝑠𝑒 = 𝑓 𝑜𝑟𝑒𝑠𝑡, 𝑙𝑎𝑛𝑑𝑢𝑠𝑒 = 𝑔𝑟𝑎𝑠𝑠, and 𝑙𝑎𝑛𝑑𝑢𝑠𝑒 = 𝑤𝑜𝑜𝑑 as the algorithm is concerned only with individual polygons, this group of semantic related features may not achieve the thresholds set by the user but they would still be important for describing the trajectory's spatial context.

Another aspect is the previous knowledge about the tag keys that should be informed by the user. Considering that this algorithm can be scaled to a large number of trajectories, it can be extended to infer which kinds of tag keys and values are more frequent and recommend tags that seems to be more relevant. However, this recommendation should be validated by domain experts. This is partially solved by the keys expansion mechanism aided by the filtering process that relies on the LGD ontology, but is can further studied how upper ontologies such as DOLCE 54 or OpenCyc 55 can help in identifying more adequate concepts for a particular domain. 

Conclusions

The trending increase in production of large volumes of spatiotemporal data calls for innovative methods of building representations of trajectory data in higher abstractions levels. Trajectory annotation is a critical task at the initial steps of any intelligent system for data mining and knowledge discovery about trajectory datasets. The selection, adaptation or creation of a data model is another important factor to ponder before implementing such systems.

In this thesis we have dealt initially with the challenge of representing spatiotemporal phenomena encompassing trajectories and its contextual elements in an ontological approach. The STEP ontology has been proposed and compared to relevant works in the area. We believe that the STEP on- We argue that ontologies are similar to software artifacts in that they may have their own life cycle and are subject to evolution. This means that the distribution aspect of an ontology should not be overlooked. Therefore, we have made efforts to make the STEP ontology available not only in this thesis, but also in adequate channels like its namespace 56 , website 57 and the Linked Open Vocabularies repository 58 . Although none of these services are assured to be available every time, it is expected that the ontology continues to be publicly available.

Regarding the usage of Semantic Web technologies for spatiotemporal analysis, it is important to notice that the same advances of relational databases is in terms of performance are not yet present in spatially enabled triple stores [START_REF] Patroumpas | Towards GeoSpatial Semantic Data Management: Strengths, Weaknesses, and Challenges Ahead[END_REF]]. This relevant issue should be taken into account for production-ready systems, where a hybrid solution can be a viable option.

In order to bridge the gap between raw trajectories, annotation algorithms, and semantic graphs based on our ontology, we have devised the STEP framework, which is composed by a graph-object mapping layer that enables the creation of STEP instances that can later be transformed and serialized into triples. Besides, the framework also allows a central point for accessing preprocessing and annotation algorithms that can reuse the output of other methods present in the STEP framework.

One method proposed in this thesis is the Move-Stop-Noise detection al-56 http://purl.org/net/step 57 http://talespaiva.github.io/step/ 58 http://lov.okfn.org/dataset/lov/vocabs/step gorithm, that is tailored to trajectories that have been sampled at irregular intervals of time or have been preprocessed to eliminate redundant points at near locations. This characteristic violates a basic assumption made by stateof-the-art algorithms for stay point detection and have motivated our work to fill this gap. Besides, the MSN method has also been designed to be independent of external data (e.g. the underlying geographic features) and is free of parameters in terms of time and space, i.e. there is no need of defining hard thresholds such as specifying that a stop has to be equal of greater than 10 seconds, for instance. Conversely, the parameters used in our method are informed as absolute numbers as proposed by robust outlier discovery that can be adapted if needed.

Many of trajectory attributes can be expressed as time series. Based on this, we have proposed a new time series compression method that innovates in searching for a reduced set of values that can be used to reconstruct a previously compressed series with relevant correlation with the original signal.

As discussed by [START_REF] Esling | Time-series data mining[END_REF], it is desirable for a data representation proposal for time series to allow significant reduction of the data dimensionality, emphasize on fundamental shape characteristics on both local and global scales, have low computational cost for computing the representation, have a good reconstruction quality from the reduced representation, and be insensitive to noise or have implicit noise handling. We have presented the ANBA method that covers these requirements.

We argue that after removing noise from trajectories by using the MSN method, the time-based attributes of trajectories such as speed can be slightly smoothed to remove white noise. Then this signal can be inputted to the ANBA algorithm in order to construct episodes based on either an absolute number of classes or a relative parameter in the ranging from 0 to 1 related to the degree of similarity between the input series and the resulting episodes.

Although having compared the ANBA method with PAA and PLS, we cannot affirm that this method is better for all kinds of time series for two main reasons: first, it has been tested with datasets of limited size between 200 and 400 observations. Second, only datasets of one domain have been used

(spatiotemporal time series). Further testing should be carried with classical datasets. e.g. electrocardiogram time series, if one wants to generalize the method for any kind of time series.

Complementing the contributions of this thesis, we have included the Intersection-based Spatial Annotation algorithm in our framework. This algorithm explores the relationships among OpenStreetMap tags issued from the Open Semantic Network [START_REF] Ballatore | Geographic Knowledge Extraction and Semantic Similarity in OpenStreetMap[END_REF]. We have demonstrated that our method allows the discovery of new tags taking into consideration an initial set of keys informed by the user and is also capable of creating a high level description of the environment where the trajectory took place based on its spatial join with OSM polygons.

Future Work

The results accomplished in this thesis allows some future developments in both improving the current results and extending the proposed framework.

Ontologies, like software, are living artifacts subject to change. It is natural for ontologies to evolve to cover more use cases and to be linked to other ontologies. For instance, at the time of this writing, the W3C's Spatial Data on the Web Working Group (SDWWG) 59 is actively developing a new version of the OWL:Time ontology. Therefore, the STEP ontology is likely to be extended as new applications use it.

The STEP framework has the potential to evolve to contain more semantic trajectory related algorithms focused on segmentation and enrichment proce- Regarding the detection of stop, move, and noise episodes, it can be envisaged the application of other algorithms, notably supervised learning ones, as the algorithm proposed in this thesis takes advantage only of statistical properties of individual trajectories. For the practical usage of the supervised approach, it is needed some amount of training data, which brings the necessity of previous manually annotate trajectory data with known labels as input for the algorithms. Therefore, a tool for visually annotate trajectories with stop, move, and noise segments can be an interesting contribution. This may improve results by specializing the algorithms for a heterogeneous scenario where various devices capture positional data using their own sampling rate.

This idea can also be extended for building other types of episodes.

In the context of time series representation, the comparison with other state-of-the-art algorithms can be interesting. For instance, compression by Discrete Wavelet Transform with Haar wavelets and its derivation Adaptive Piecewise Constant Approximation (APCA). In fact, the final output of ANBA is more similar to APCA than the other compared methods, but due to APCA's complex implementation [START_REF] Aghabozorgi | Time-series clustering -A decade review[END_REF]], this has not been done yet. As discussed in its evaluation, further comparisons with other methods as well as with other datasets should be performed to better assess the ANBA approximation results. Moreover, the algorithm has been designed for off-line processing, therefore, further work with streaming scenarios can be envisaged. Furthermore, the step of approximating AVs, which is done in 𝑂(𝑛 2 ) can be improved for reducing its computational complexity.

In The intersection of long times and slow speed are probably stops

In [START_REF] Orellana | Developing an Ontology of Interactions for characterizing Pedestrian Movement Behaviour[END_REF]: stops = df_clean.iloc [np.intersect1d(long_duration_indexes, slow_speed_indexes)] stops

Relation between duration and speed

Out [START_REF] Orellana | Developing an Ontology of Interactions for characterizing Pedestrian Movement Behaviour[END_REF]: 
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Figure 1 . 1 :

 11 Figure 1.1: Examples of applications that deal with sportive trajectories

Figure 1 . 2 :

 12 Figure 1.2: Overview of the data flow from raw trajectory data to representations of movement in higher abstractions levels.

  An algorithm to detect stops, moves and noisy points in trajectories with sampling strategy based on the changes of position of the moving object. Our algorithm, called Stop, Move, and Noise (MSN) classification uses robust statistic measurements to identify outliers of distance, turning angle, time interval, and speed between points and determine in which of the three states each trajectory point belongs; -A method for approximating a time series based on the variability of its values. We propose a new time series compression algorithm called Adaptive Natural Breaks Approximation (ANBA) that finds a set of classes that provides a constant approximation of a series in a way that the intraclass variation of values is minimized and the interclass variation is maximized; -An algorithm for enriching trajectories with OpenStreetMap data complements the automatic annotation capabilities of the STEP 1.3. Thesis outline framework. We present the Intersection-based Spatial Annotation (ISA) algorithm, a method that explore the relationships of crowdsourced tags of OpenStreetMap features for selecting what types of geographic contextual element might be relevant for trajectory annotation.
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 21 Figure 2.1: The Semantic Web stack (adapted from [Nowack 2009])
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 24 Figure 2.4: Allen's Interval Algebra.
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 25 Figure 2.5: Conceptual view of trajectories[START_REF] Spaccapietra | A conceptual view on trajectories[END_REF] 
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 27 Figure 2.7: The Simple Event Model ontology [van Hage et al. 2009b]
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 228 Figure 2.8: The trajectory design pattern proposed by[START_REF] Hu | A Geoontology Design Pattern for Semantic Trajectories[END_REF] 

Fileto

  et al. [2015b] presented the ontology Baquara², an evolution of the Baquara ontology created by[START_REF] Fileto | Baquara: A Holistic Ontological Framework for Movement Analysis using Linked Data[END_REF]. The proposed framework consists in a domain independent ontology that provides a conceptual model to enrich data and support knowledge-based queries for movement analysis.In Baquara², a moving object's position sequence is composed by movement segments. These segments can represent trails (time-ordered sequences of posts in social media), trajectories, or episodes (e.g. stops and moves). The movement segments of Baquara² are tuples containing type, geometry, initial and final positions, time span, possible references to hierarchical relationship with other segments (father, previous, next, level), order, and annotations.

  following entities: Spatial Object are things having one or more positions in space, Event have a position in time, Spatial Event are things that have positions in space and time, Static Spatial Object have only one position in space, Mover is something which position changes over time, and Moving
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 210 Figure 2.10: The CONSTAnT conceptual model for semantic trajectories [Bogorny et al. 2014]
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 211 Figure 2.11: Overview of a trajectory enriching process[START_REF] Marketos | Trajectory Collection and Reconstruction[END_REF] 

  , Alewijnse et al. [2014]. Zheng [2015] identifies three types of segmentation: time interval-based, shape-based, and semanticbased. The first one refers to breaking down trajectories according to time gaps among them. The second one focuses on spatial characteristics, e.g. direction change, or line simplification methods. The third one is more flexible according to the application, e.g. by transportation means, stay points, among other criteria.
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 213 Figure 2.13: Example of Piecewise Aggregated Approximation of a time series

  Figure 2.14: Different approaches of Piecewise Linear Segmentation
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 31 Figure 3.1: Trajectory of a runner. The person started the workout in a park, run next to a river, and then returned to the park.
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 32 Figure 3.2: An example of multi-layered representation of trajectory and context based on episodes. Features of Interest are represented in the y axis and time is in x axis.

  Our first efforts in building an ontology for trajectory representation was done in the QualiTraj ontology[Nogueira and Martin 2014, Nogueira et al. 2014], which was built to express qualitative data of time-based characteristics of trajectories. The main QualiTraj entities are shown in Figure 3.3. Basically, the ontology is able to describe a trajectory that may have many profiles. Each Profile represents a dynamic characteristic of a Trajectory (e.g. speed, acceleration, direction) and is the entry point to the qualitative representation of the evolution of this characteristic over time. It was also added the Global Attribute entity linked to Profile in order to represent relevant information about the whole evolution of any trajectory or contextual element characteristic (e.g. the average speed of a trajectory). Each Profile is composed by a sequence of Segments, which are qualitative representations of relevant changes of the characteristic over time. The kind of change is stored in the Qualitative Value (e.g. "Increase", "Decrease", "Steady"). The Coefficient serves to store the angle of the segment
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 33 Figure 3.3: The QualiTraj ontology
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 34 Figure 3.4: Example of abstract speed evolution of a trajectory.
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 35 Figure 3.5: First version of the STEP ontology[START_REF] Nogueira | Querying semantic trajectory episodes[END_REF] 

  for representing spatiotemporal points. Basically, a RawTrajectory may have a series of fixes and each Fix is composed by a Point and a time Instant. We have reused the Simple Features ontology 30 from the Open Geospatial Consortium for general geometries and the W3C's OWL:Time 31 for referring to instants and intervals of time. The other relationship that a Trajectory has is through the hasFeature property, which has a FeatureOfInterest as domain. This concept repre-60 Chapter 3. Contributions sents the relevant aspects that an application using the STEP ontology wants to observe from two different sources of information: the agent's trajectories and the context elements. In the current version, Trajectory and Contex-tualElement were transformed into subclasses of the class Spatiotempora-lElement as shown in Figure 3.8. By also linking ContextualElements to FeatureOfInterest through the hasFeature property, we simplify the ontology and make sure that the same structures (Episodes) can be used for both sources. In summary, one Trajectory or ContextualElement may have multiple FeaturesOfInterest, and each FeatureOfInterest may have many Episodes. Episodes are the smallest semantic unity of the STEP ontology. This concept encapsulates values that a Feature of Interest may assume during the observed trajectory or contextual element together with an optional extent that delimits where and/or when that observation is valid. An Episode should have at least one SemanticDescription, which can be a quantitative value or a qualitative description. QuantitativeValue can be associated with different datatypes by xsd:anySimpleType (e.g. boolean, int, float) defined in the XML Schema 32 . However, letting only literal values to be associated are not enough to give rich semantics to Episodes. For this reason, a qu:Unit from
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 36 Figure 3.6: Part of the Simple Features ontology that defines Geometry subclasses.
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 37 Figure 3.7: Part of the OWL:Time ontology that defines TemporalEntity subclasses.
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 38 Figure 3.8: Overview of the STEP ontology. Concepts from other ontologies are indicated by their namespaces and dotted rectangles, diamond-shaped nodes are datatypes, notes represent class restrictions.
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 39 Figure 3.9: An excerpt example of STEP ontology instances. The Feature of Interest in this case is the topological relations of the trajectory and nearby geographic features.
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 310 Figure 3.10: Overview of the STEP framework. The colored blocks were implemented during this thesis.
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 311 Figure 3.11: For each three points of a trajectory, we calculate the angle formed by them to get the turning angle.

3. 3

 3 .1 MSN: Move-Stop-Noise ClassificationIn this section, we describe a way of creating episodes based on the detection of stops and moves during a single trajectory. Detecting periods of movement and its absence is a fundamental segmentation criteria and it has been vastly explored[START_REF] Otavio Alvares | A model for enriching trajectories with semantic geographical information[END_REF][START_REF] Palma | A clustering-based approach for discovering interesting places in trajectories[END_REF][START_REF] Yan | A hybrid model and computing platform for spatio-semantic trajectories[END_REF][START_REF] Antonio | DB-SMoT: A direction-based spatio-temporal clustering method[END_REF][START_REF] De | Automated semantic trajectory annotation with indoor point-of-interest visits in urban areas[END_REF]. Applications dealing with real world data also have to deal with noisy measurements which, in some cases, makes it impossible to determine the actual state of the moving object. Although some related work have considered the presence of noise in trajectories, they usually handle this by previous smoothing or by using additional data that is not always available.The characteristics of trajectory data can vary broadly according to sensor's physical components, sampling rate, algorithmic post-processing, environmental conditions, among other factors. The conjunction of these elements may result in trajectories with different levels of quality even for traces captured by the same device. Therefore, this facet of spatio-temporal data research disfavor the possibility of proposing a universal method for detecting stops and moves as well as trajectory segmentations based on other criteria.
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 312 Figure 3.12: An example trajectory.
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 313 Figure 3.13. In this Figure, we can observe some interesting characteristics based on previous knowledge about this particular trajectory. The trajectory starts with distances of about 10 meters between points, durations of 5 to 7
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 313 Figure 3.13: Speed, distance, and duration between points of the example trajectory.
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 3 Figure 3.14: Two cases demonstrating the better performance of Spearman correlation over Pearson correlation in (a) nonlinearity of relationship and (b) presence of outliers.
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 315 Figure 3.15: The density plot of distances in (a) and the three trajectory points with long distances in (b)

  Move-Stop-Noise classification algorithm 1: procedure MoveStopNoise(𝑆 𝜏 , 𝑇 𝜏 , 𝑉 𝜏 , 𝐴 𝜏 , 𝜖 𝑠 , 𝜖 𝑡 , 𝜖 𝑣 , 𝜃, 𝜌) 𝑀 𝑠 = ModifiedZScore(𝑆 𝜏 , 𝑀 𝐴𝐷 𝑠 , s)

Figure 3 .

 3 Figure 3.17: Distribution plot of slightly "jittered" durations where two outliers are identified.

  shows the distribution of durations for the example trajectory. Two long durations are identified having 40 and 42 seconds while the median duration of the entire trajectory is around 5 seconds.The complement of stop identification (lines 27-34) regards the analysis of the trajectory speed. The Outlier Labeling Rule of[START_REF] Iglewicz | Volume 16: How to Detect and Handle Outliers[END_REF] 
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 318 Figure 3.18: Difference of speed data before and after natural logarithmic transformation. Also, the outlier threshold is shown in (b)

Figure 3 . 19 :

 319 Figure 3.19: Modified z-scores of speed and duration with their thresholds.

  Fisher- Jenks method. A disadvantage of the Fisher-Jenks algorithm is the need of previously informing the number of classes, which hinders its generalization to the automatic segmentation of potentially diverse datasets. To overcome this drawback of the Fisher-Jenks algorithm, we have included in our method an optional initial step for finding a reasonable number of classes for an individual time series based on a more abstract parameter. Once the optimal breaks are found, the output of Fisher-Jenks algorithm is used to segment the time series into classes. After that, we use each class median as a Candidate Approximate Value (CAV) for the corresponding class and then possibly merge CAVs to define the final Approximate Values (AV). At last, each original input value is approximated to its nearest AV. The two additional steps of merging CAVs and approximate the original points to AVs are influenced by two parameters of ANBA. As a result, we are able to discretize any series into a reduced set of segments without losing its general shape. A high level representation of the ANBA algorithm is presented in Algorithm 2. A Python implementation of the algorithm is also available in Appendix B.The first optional part of ANBA consists in setting the number of classes to 1 (the minimum possible value), running the Fisher-Jenks algorithm iteratively and assessing the output's Goodness of Variance Fit (GVF), increasing the number of classes by 1 in the next iteration if needed (case the minimum GVF informed by the user has not been reached with the current number of classes). Thus, a target GVF can substitute the original parameter of the Fisher-Jenks algorithm (number of classes) and this procedure is not executed if a target GVF is not informed. This way, instead of receiving the number of classes, the algorithm receives a real number in the interval [0, 1] where 0 represents the least resemblance with the original signal and 1 means that the final output should be identical to the original time series. The GVF value is defined in Equation3.7 where SDCM stands for Squared Deviations from the Class Mean and SDAM stands for Squared Deviations from the Array Mean. shown in the next subsection, we differentiate the two ways of using ANBA by ANBA-n when the number of classes are informed beforehand, hence discarding the need of the GVF verification procedure, and ANBA-gvf when the number of classes are not inputted and the multiple calls to Fisher-Jenks may be executed.In Algorithm 2, we consider 𝑡𝑠 a given time series, 𝑚𝑖𝑛 𝑔𝑣𝑓 the minimum goodness of variance fit, 𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 the number of classes, 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡 the minimum distance between two AVs, and 𝑚𝑖𝑛 𝑡𝑖𝑚𝑒 the minimum duration of a segment. The only obligatory parameters are 𝑡𝑠 and one of either 𝑚𝑖𝑛 𝑔𝑣𝑓 or 𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠. If 𝑚𝑖𝑛 𝑔𝑣𝑓 is inputted by the user, the algorithm executes the lines from 3 to 10 in order to find the number of classes that satisfies the target GVF as previously explained.Having defined the number of classes, the Fisher-Jenks algorithm is executed (line 10), which returns the natural breaks of values. The minimum and maximum values are also returned along with the breaks, allowing the creation of ranges that delimit the classes. 106 Chapter 3. Contributions Algorithm 2 ANBA: Adaptive Natural Breaks Approximation 1: procedure ANBA(𝑡𝑠, 𝑚𝑖𝑛 𝑔𝑣𝑓, 𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡, 𝑚𝑖𝑛 𝑡𝑖𝑚𝑒) 2:

( a )

 a Raw speed data and its smoothed version. (b) Breaks and medians (CAVs).(c) Final AV and a first approximation.(d) Final representation after eliminating points with duration less than 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡.
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 321 Figure 3.21: Stages of the ANBA process from the raw data to the approximation in an example speed time series extracted from a trajectory.
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 322 Figure 3.22: Differences in level of detail with two and three approximate values

PLS-

  𝑚𝑎𝑥 𝑒𝑟𝑟𝑜𝑟: 1m/s PAA -𝑝𝑎𝑎 𝑠𝑖𝑧𝑒: the number of segments is defined as a function of the total duration of the trajectory to result in one segment per minute. ANBA -𝑚𝑖𝑛 𝑑𝑖𝑠𝑡: 1m/s 3.3. Automatic Annotation Algorithms 113 -𝑚𝑖𝑛 𝑡𝑖𝑚𝑒: 90% percentile of the time between points -𝑚𝑖𝑛 𝑔𝑣𝑓 : 50% (only for ANBA-gvf) -𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠: 3 (only for ANBA-n)

  metrics: the Pearson's Correlation, the Root Mean Squared Error (RMSE), the running time, and the number of generated segments. The running time has been taken as the best of three consecutive runs of each algorithm for each trajectory. The Pearson's correlation, also known as Pearson product-moment corre-lation coefficient (Equation 3.8), takes values in the range [-1, 1] and measures how close two series are to each other where the stronger the correlation, the closer the values is to 1. As the values are ranked, it actually determines the level to which two variables are proportional to each other.

Figure 3 .

 3 Figure 3.23 shows a summary of the tests performed. PAA is the baseline in terms of running time (being far superior to other methods) and number of segments (as it is a function of its parameters). However, PAA has the worst performance regarding the correlation and an average performance in RMSE. The Top-Down algorithms have shown the best results for correlation and RMSE, however, they generate a high number of segments and also had a bad performance in running time. This clearly shows the trade-off between correlation and RMSE versus the number of segments and running time, which is valid for all methods.

Figure 3 .

 3 Figure 3.23: Methods considered in the evaluation. paa: Piecewise Aggregate Approximation, tdi: Top-Down with Interpolation, tdr: Top-Down with Regression, bui: Bottom-Up with Interpolation, bur: Bottom-Up with Regression, swi: Sliding Window with Interpolation, swr: Sliding Window with Regression, anba-n, anba-gvf : Adaptive Natural Breaks Approximation with number of classes and GVF, respectively. RMSE is in meters per seconds and running time is in seconds.

  ving OSM features based on the intersection of a trajectory with its geographic context. Additionally, the user has the option of filtering which types of features are selected based on OSM tag keys. The data flow of the algorithm is pictured in Figure3.24 where the shaded parallelograms represent the parameters of the ISA algorithm. Please notice that some elements of the Figure have been duplicated to avoid edge overlapping. A Python implementation of the ISA algorithm is also available in Appendix C.
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 37 Example of Overpass API query that retrieve all ways and relations intersecting the geometry specified in the 𝑝𝑜𝑙𝑦 field. The tags are selected by a regular expression.

Figure 3 .

 3 Figure 3.25 shows an example of polygons returned by the Overpass API

  (a) A trajectory in Grenoble, France. (b) A trajectory in Rio de Janeiro, Brazil.(c) A trajectory in Brescia, Italy.

Figure 3 . 26 :

 326 Figure 3.26: Some example trajectories along with the features selected by the ISA algorithm and the corresponding LinkedGeo-Data concepts.

  tology is flexible enough to represent trajectories in different applications and it concentrates a series of features that are only partially covered by other models up to this date. We have focused on building a model that is capable of representing generic episodes in a hierarchy composed by Features of Interest and episodes in different granularity levels, relating contextual element to individual episodes, expressing qualitative and quantitative values for segments as well as for entire trajectories and contextual elements. Moreover, by allowing different types of extent representations, namely temporal, spatial, and spatiotemporal, we enforce the flexibility aspect of the ontology to adapt to different uses.

  59 http://www.opengeospatial.org/projects/groups/sdwwg 4.2. Future Work 135 dures. It can also be extended beyond annotation and include more complex methods of spatiotemporal data mining. Mobility profile building regarding dynamic aspects of trajectories and spatial relations with geographical features, for instance, is a possible activity that involves the evolution of both the data model and the algorithms presented in this thesis.
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  In practice, these roles define the origins and targets of Property

	entities.
	Another important standard at the models layer of the Semantic Web
	stack is the Web Ontology Language (OWL) 4 , which uses RDFS to provide
	an implementation of a description logic capable of expressing more complex
	general statements about individuals, classes and properties [Simperl et al.
	2013]. OWL have introduced a new way of forming classes from other classes,
	properties and instances; the classification of properties into object properties

. It makes possible to specify vocabularies by using constructs related to classes and properties. RDFS specifies that a generic Resource, which can be subclassed by Container, Class or Literal, can be a member of other Resources. The Classes, which can be subclassed by other classes or datatypes, can also have the roles range and Chapter 2. State-of-the-Art domain.

and data properties that denote resources and literals as values, respectively; a richer set of statements linked to properties that allows expressing, for instance, equivalence or transitiveness; new properties about instances to represent their relationships among them, for instance, whether two resources represent the same individual.

  ]. Excerpt of the GeoSPARQL vocabulary. The red dotted line represents a hasGeometry relationship, all other links represent subclassing relationships.

	Chapter 2. State-of-the-Art Chapter 2. State-of-the-Art
	articles to an ontology. 1994], which is also compatible with Region Connection Calculus (RCC) [Ran
	2.1.1.1 Geospatial Semantic Web
	Many of these dataset share common vocabularies that are most popular than other in the Semantic Web. As examples of widely used ontologies, we can cite Dublin Core 14 , a set of vocabulary terms used in order to describe the re-sources, such as videos, images, web pages, etc.; Friend of a Friend (FOAF) 15 , a vocabulary to describe the relations among Agents in a social network; Simple Knowledge Organization System (SKOS) 16 , an OWL ontology used to represent controlled vocabularies, taxonomies and thesauri; geo 17 , an RDF vocabulary for representing latitude, longitude and altitude information in the World Geodetic System 1984 (WGS84); Geonames 18 , an ontology describing more than 10 million geographic features all over the world with information such as names of places in various languages, elevation, population, postal codes, etc.; OWL:Time 19 , an ontology of temporal concepts such as instants and intervals, together with information about durations, and descriptions of The Semantic Web technologies have provided new ways of structuring, reu-sing, and accessing data in general. For geographic data, it made some pro-blems approachable and make new challenges emerge [Kuhn et al. 2014], ma-king a real paradigm shift in this area. Janowicz et al. [2012] identifies two major problems in geospatial semantics: how geographic information should be modeled in an information ontology, and how geographic entities can be semantically linked to other kinds of information with related meaning. In Figure 2.2, we can see the state of the Linked Open Data cloud and the interlinks among its datasets. It is possible to notice that a considerable part of this network is composed by databases containing information related to geographic entities. In 2011, at least 31 open data sets were available in the web containing more than six billion triples 21 without taking into consideration the links from other non-geographic related data sets. One of the first approaches to model geospatial data in the Semantic Web was the Basic Geo (WGS84 lat/long) Vocabulary [W3C 2003]. This initiative provided a minimalistic RDF vocabulary for describing points with latitude, longitude, and altitude properties from the WGS84 reference datum specifi-cation. Geo OWL, inspired by GeoRSS [OGC 2006], have been proposed as a more comprehensive geospatial ontology [Lieberman et al. 2007]. This work Figure 2.3: Open Geospatial Consortium (OGC) and W3C are prominent organizati-ons that have been pushing the development of geospatial standards in the last few years as illustrated by their collaboration in the Spatial Data on the Web Working Group 22 . OGC have proposed GeoSPARQL, a standard for re-presenting geospatial data in RDF and an extension to SPARQL for querying geospatial data. Figure 2.3 depicts part of the GeoSPARQL vocabulary, where the main classes representing geometries are shown. The SpatialObject class, that Figure 2.2: Linked Open Data cloud as of August 2014 Schmachtenberg et al. [2014] date and time; and DBpedia 20 , a mapping of the main contents of Wikipedia has focused mainly in the definition of properties like geo:featurename, represents everything that can have a spatial representation, also have object
	14 http://purl.org/dc/elements/1.1/ properties that express topological relations among spatial objects such as geo:featuretype, geo:relationship, geo:floor, and geo:radius. Subclas-15 http://xmlns.com/foaf/0.1/ 16 http://www.w3.org/2004/02/skos/core# contains, crosses, inside, and other relations based on the Dimensionally ses for point, line string, polygon and envelope have also been addressed in 17 http://www.w3.org/2003/01/geo/wgs84_pos# 18 http://www.geonames.org/ontology# this extension. Extended nine-Intersection Model (DE-9IM) pattern [Clementini et al. 1993;
	19 http://www.w3.org/2006/time#
	20 http://dbpedia.org/resource/
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 3 1. At the time of this writing, only the SEM and STEP ontolo-

	gies are readily available, i.e. they can be found and downloaded, for in-
	stance, from the Linked Open Vocabularies [Vandenbussche et al. 2016] repo-
	sitory (http://lov.okfn.org/dataset/lov/vocabs/sem and http://lov.
	okfn.org/dataset/lov/vocabs/step) besides their respective websites.

Table 3 .

 3 5 shows a general comparison of the main algorithms for stop drawback of MSN is the fact that it relies on the comparison of data points relatively to the rest of the dataset. For instance, to identify a large time gap correctly, it is necessary to the majority of other time gaps to have a short time, which is not surprising because we base our method on outlier detection for approximately normally distributed data. However, if the trajectory contains a large quantity of noise, the method may fail in recognizing stops. This can be avoided by a preprocessing step to assess the level of noise before applying the MSN algorithm and tries to alleviate the noise or diagnose that the level of erroneous data makes further analysis inviable.Regarding algorithm complexity, the MSN method can be implemented in 𝑂(𝑛 + 𝑚) considering a raw trajectory with 𝑛 points before noise removal and 𝑚 points after noise removal. In the worst case, 𝑛 = 𝑚 (no points are discarded in the noise classification phase), thus, the complexity is 𝑂(2𝑛).
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A

  The next step (line 11) consists in calculating the CAV for each class and then verifying if the CAVs have distances greater than 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡 from each other. The output of the subprocedure Merge Candidate Approximations may be the same as the medians if all median values are distant from each other by a distance equal or greater than 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡. Otherwise, there may exist two cases for median values that are too close: a pair, or three or more median values. For the first case, the mean between the two values are taken into consideration as approximate value. In the second case, a range starting from the minimum CAV to the maximum CAV of the subset is generated with the 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡 serving as step. In this case, the last CAV is not always present in the selected values.

		3.3. Automatic Annotation Algorithms	107
	13:	𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 = Approximate each 𝑡𝑠 point to its nearest AV
	14:	for 𝑝𝑜𝑖𝑛𝑡 in 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 do
	15:	if 𝑝𝑜𝑖𝑛𝑡 duration <= 𝑚𝑖𝑛 𝑡𝑖𝑚𝑒 then
	16:	Change point class to the class of a neighbor approximated point
	17:	end if
	18:	end for
	19:	return 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
	20: end procedure
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 3 

		6: Dataset summary
		duration	length number of points
	mean	1938 3738.84	323.48
	standard deviation	742 651.84	48.39
	minimum	949 2219.94	207
	25% percentile	1526 3278.85	293.5
	50% percentile	1860 3772.37	320.5
	75% percentile	2073 4152.92	366.75
	maximum	5340 6961.6	399
	length in meters, and number of points.	

Table 3 . 7 :

 37 Mean value of metrics for the testing dataset.

			Chapter 3. Contributions
		rmse correlation time segments
	paa	0.486	0.685 0.016	14.594
	anba-n	0.632	0.777 0.446	18.934
	bur	0.525	0.779 1.294	20.509
	anba-gvf 0.600	0.787 1.116	21.302
	bui	0.464	0.813 0.540	25.689
	swr	0.531	0.721 0.572	26.057
	tdr	0.371	0.866 6.283	30.453
	swi	0.482	0.758 0.216	35.321
	tdi	0.230	0.939 2.777	56.708

Regression, bui: Bottom-Up with Interpolation, bur: Bottom-Up with Regression, swi: Sliding Window with Interpolation, swr: Sliding Window with Regression, anba-n, anba-gvf : Adaptive Natural Breaks Approximation with number of classes and GVF, respectively. RMSE is in meters per seconds and running time is in seconds.

  OpenStreetMap 44 (OSM) project, which have as objective to build a free geo-

	𝑟𝑖𝑣𝑒𝑟.
	graphic database of the world [Bennett 2010]. It includes a numerous variety
	of geographic entities such as streets, footpaths, buildings, waterways, bea-
	ches, parks, administrative boundaries, land use, etc. Based on volunteered
	geographic information, the OpenStreetMap (OSM) databased can be chan-
	ged by any individual and is constantly evolving, consisting in one of the
	largest collaborative database of geographic features on the web.
	The OSM data model is based on three data structures -nodes, ways, and
	relations -and a tagging system. Nodes represent specific points characteri-
	zed by latitude and longitude. Ways connect a set of nodes that constitute
	linear features and area boundaries. Relations can be used to group a set of
	elements (nodes, ways, and/or other relations) optionally attributing roles to
	the involved elements. Moreover, relations can be used to describe different
	relationships among elements, for instance, multiple ways representing streets
	can be members of a relation that constitutes a bus route, in another example,
	a relation can be used to model a complex feature composed by more than one
	way, constituting a multipolygon (e.g. an archipelago). Additionally, relations
	can be employed to specify features that are not rendered in usual maps, such
	as turn restrictions on streets that are more useful for routing services.
	Besides the primitive data structures, another vital part of OSM's data
	model is its tagging system. Tags are key-value pairs that can be associated
	with any node, way or relation. There is no formal enforcement on which tags
	can be used and how they are used, meaning that anyone can create a new
	tag when needed. However, the community of contributors generally consults
	the OSM Wiki 45 where guidelines are described for the most popular tags.
	Examples of tags are: ℎ𝑖𝑔ℎ𝑤𝑎𝑦 = 𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑎𝑚𝑒𝑛𝑖𝑡𝑦 = 𝑝𝑎𝑟𝑘𝑖𝑛𝑔, 𝑤𝑎𝑡𝑒𝑟𝑤𝑎𝑦 =

Table 3 . 8 :

 38 Feature tags, duration ratio, and distance ratios regarding the example trajectory. Example of polygons retrieved by queries on Overpass API elements and OSN concepts can be easily linked to these elements as they follow a well-defined link structure, e.g. for the tag 𝑤𝑎𝑡𝑒𝑟𝑤𝑎𝑦 = 𝑟𝑖𝑣𝑒𝑟𝑏𝑎𝑛𝑘, the corresponding OSN link is http://spatial.ucd.ie/lod/osn/term/k: waterway/v:riverbank. An example of RDF code generated by the STEP framework can be seen in Listing 3.9.

	Feature OSM tags	Duration ratio Distance ratio
	{'leisure': 'park',	29.11%	30.28%
	'name': 'Parc Paul Mistral'}		
	{'leisure': 'sports centre',	4.29%	3.96%
	'name': 'Halle Clemenceau'}		
	{'landuse': 'forest'}	2.09%	1.74%
	{'landuse': 'grass'}	4.19%	4.34%
	{'leisure':'sports centre',	0.82%	0.77%
	'name': 'Palais des Sports'}		
	{'leisure': 'park',	33.4%	35.3%
	'name': "Parc des Berges de l'Isère"}		
	{'natural': 'wood'}	42.48%	43.82%

{'natural': 'water', 'name': "L'Isère"} 34.83% 34.29% {'landuse': 'residential', 'name': 'Châtelet Abbaye Jouhaux'} 32.48% 32.66% Figure 3.25: rdf:resource="http://spatial.ucd.ie/lod/osn/term/k:leisure/v:park"/> </rdf:Description>
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  longitude distance duration speed acceleration heading angle elevation timestamp idx z_duration

	201607							201607	
	04	45.190511 5.764833 10.05	42	0.24	0.28	298	177.37 216	04	17 4.719597
	16:11:38							16:11:38	
	201607							201607	
	04	45.189882 5.760566 11.73	40	0.29	0.37	174	177.17 214	04	
	16:15:38							16:15:38	
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1.1 Examples of applications that deal with sportive trajectories . Chapter 3. Contributions set of features that is only partially covered by other models. Furthermore, some of the criteria cannot be categorized as a Yes/No question, but in a more detailed scale. This comparison is summarized in Table 3.1 and we detail each criteria in the following. 

Segmentation

This criteria refers to the ways of expressing parts of trajectories that are provided by the model to the user. The chosen term per se is not important (i.e. either events, episodes, subtrajectories can be considered semantically similar), but how the model allows a user to select specific trajectory segments to add some semantic information to it.

We can observe that some models have a limited power of expressing trajectory segments, namely the ones that provide only the fundamental two concepts of Stop and Move. While these concepts form the basis of trajectory analysis, this limitation is useful for application that are more concerned with the periods of stop. On the other hand, models that provide more generic entities like Events, Episodes, and Subtrajectories can be considered more normal distribution [START_REF] Rousseeuw | Robust statistics for outlier detection[END_REF].

𝑀 𝐴𝐷 = 1.4826 × 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑌 𝑖 -Ỹ |) (3.4) Besides its superiority, the MAD is not yet largely used in some fields, as noticed by [START_REF] Leys | Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median[END_REF]. In the same work, the authors recommend using "the median plus or minus 2.5 times the MAD method for outlier detection".

In our work, we use the modified z-score, which also uses the MAD and it is based on the z-score (see Equation 3.5), which uses the non-robust statistics mean ( Ȳ ) and standard deviation (𝑠). detection in the literature. As advantages of our method, we can point out the independence of external data, the usage of characteristics that can be completely extracted from the trajectory points, the robustness of statistic methods involved, and the handling of noise.

By not relying on the polygons of the underlying geography, our method is adequate to trajectories that are not in a constrained space, being able to identify stops also in free space. Also, apart from the minimum turning angle in degrees, an important aspect of MSN is that the other threshold parameters are not based on metric quantities, e.g. distance in meters or duration in seconds, instead, the outlier labeling rule allows the usage of more 120 Chapter 3. Contributions process can also be viewed as a filtering mechanism if we consider that only tags that hold important semantic value are selected. In this sense, features containing no tags or only informative tags like name, source, comment, note, etc. can be discarded as they have no important semantic information about the feature (e.g. whether it is a building, a park, a river, etc.).

At the time of this writing, there are two ways of directly querying the

LGD database apart from direct downloads of data dumps. The first possibility is a Virtuoso endpoint 50 and the other one is a web-based interface 51 . Both

LGD endpoints allows the submission of SPARQL queries, however, for spatial queries, Virtuoso built-in functions 52 should be used as this triple store's version do not support OGC's GeoSPARQL standard for spatial queries yet.

Despite the focus of this thesis being the annotation of trajectories with technologies suited for the Semantic Web stack, not all use cases could be successfully tested with LGD services due to servers temporary unavailability and due to the fact that LGD data is based on periodic dumps of OSM data,

i.e data on LGD does not always reflect the most up-to-date version of OSM.

Although we have implemented the working solution using the Overpass API, we also show equivalent SPARQL queries on LGD that would achieve the same results. Another option for querying OSM is Linked Open Street Map (LOSM), proposed by [START_REF] Ragone | Exposing Open Street Map in the Linked Data cloud[END_REF] and in a beta version at the time of this writing.

In our automatic annotation algorithm, we enrich trajectories based on OSM geographic features with relevant tags. In order to achieve this, we have used the Open Semantic Network (OSN) RDF dataset proposed by [START_REF] Ballatore | Geographic Knowledge Extraction and Semantic Similarity in OpenStreetMap[END_REF]. By exploring the hyperlinks among the pages that describe OSM 122 Chapter 3. Contributions Compute movement attributes:

In [START_REF] Ye | Semantic web technologies in pervasive computing: A survey and research roadmap[END_REF]:

Plot the trajectory:

In 

Noise labeling

Analysis of distance between points

Statistics about distance:

In [START_REF]all_keys = keys + expanded_keys osm_features = osm.get_spatial_features(gpx[END_REF]:

Modified zscore computation:

In [START_REF]SaintMartind'Hères None {'wikipedia': 'fr:SaintMartind'Hères', 'addr... 278498 MULTILINESTRING[END_REF]:

Abnormal distance(s):

In [12]:

Distribution of modifiedzscore of distances:

Out 

Analysis of angles between points

In [14]: 

Sharp angles:

In [START_REF] Brickley | RDF Schema 1.1 -W3C Recommendation[END_REF]:

Out [START_REF] Brickley | RDF Schema 1.1 -W3C Recommendation[END_REF]: In [START_REF] W3c | W3C Semantic Web Interest Group: Basic Geo (WGS84 lat/long) Vocabulary[END_REF]: Compute movement attributes:

Analysis of speed

The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload

In [START_REF] Clementini | A Small Set of Formal Topological Relationships Suitable for End-User Interaction[END_REF]: Smooth the speed data, set speed zero for stops and noise indexes to null:

In In the first case, the algorithm tests the GVF (Goodness of Variance Fit) for increasing number of classes until it reaches the desired value of GVF.

The second option would inform the number of classes directly, which corresponds to skipping the GVF procedure previously explained.

The user can additionally define a min_diff value that is used to avoid two or more approximative values to be too close. In this example, we set min_diff to 1, which means that at there should be a difference of at least 1 m/s.

In [START_REF] Renso | How you move reveals who you are: understanding human behavior by analyzing trajectory data[END_REF]:

Procedure to find the optimal number of classes:

In [START_REF] Parent | Conceptual Modeling for Traditional and Spatio-Temporal Applications: The MADS Approach[END_REF]: gvf = 0.0 nclasses = 1 data_copy = np.copy(data.fillna(0)) while gvf < min_gvf: gvf = anba.goodness_of_variance_fit(data_copy, nclasses) nclasses += 1 print("{0} classes are needed to represent the input with a GVF of {1}%".format(nclasses, min_gvf*100))

Calling the FisherJenks algorithm:

In [START_REF] Orellana | Developing an Ontology of Interactions for characterizing Pedestrian Movement Behaviour[END_REF]: breaks = anba.jenks(data_copy, nclasses) breaks = np.sort(list(set(breaks))) breaks

Finding the median values within each group delimited by the natural breaks:

In [START_REF] Gangemi | Ontology Design Patterns[END_REF]: In [START_REF] Ye | Semantic web technologies in pervasive computing: A survey and research roadmap[END_REF]: In [7]: ', 'shop', 'natural', 'building', 'fishing', 'landuse', 'boundary', 'sport', 'playground', 'tourism', 'harbour', 'waterway', 'route', 'highway', 'amenity', 'shelter', 'man_ made'] In [9]