
HAL Id: tel-01484198
https://hal.science/tel-01484198v3

Submitted on 20 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel computational techniques for mapping and
classification of Next-Generation Sequencing data

Karel Brinda

To cite this version:
Karel Brinda. Novel computational techniques for mapping and classification of Next-Generation
Sequencing data. Information Theory [cs.IT]. Université Paris-Est, 2016. English. �NNT :
2016PESC1027�. �tel-01484198v3�

https://hal.science/tel-01484198v3
https://hal.archives-ouvertes.fr

Thèse en vue de l’obtention du titre de
Docteur de l’Université Paris-Est

Spécialité : Informatique
École doctorale : MSTIC

Novel computational techniques for mapping and
classifying Next-Generation Sequencing data

Karel Břinda

Soutenue le 28 novembre 2016

Jury:

Directeur de thèse Gregory Kucherov, DR CNRS LIGM Université Paris-Est, France
Co-encadrant de thèse Valentina Boeva, CR INSERM Institut Cochin, France

Rapporteur Veli Mäkinen, Professeur University of Helsinki, Finland
Rapporteur Sven Rahmann, Professeur Universität Duisburg-Essen, Germany

Président du jury Dominique Lavenier, DR CNRS IRISA/INRIA Rennes, France
Examinateur Paola Bonizzoni, Professeure Università Degli Studi di Milano-Bicocca, Italy
Examinateur Guillaume Blin, Professeur LaBRI Université Bordeaux, France
Examinateur Denis Mestivier, Professeur Université Paris-Est, France

2

Acknowledgements

I would like to thank my PhD supervisors, Gregory Kucherov and Valentina Boeva, for
bringing me into the fascinating world of bioinformatics, and for their guidance, support,
and all the exciting discussions during last three years.

I am very thankful to the members of my committee, namely Veli Mäkinen, Sven
Rahmann, Dominique Lavenier, Paola Bonizzoni, Guillaume Blin, and Denis Mestivier
for their time and extensive feedback. I am grateful to all people who helped me with
corrections of this thesis, mainly Gregory Kucherov, Valentina Boeva, Sven Rahman, Pavel
Heller, Kamil Salikhov, and Brian Arnold.

I express a great deal of thanks to my family: my wife Markéta, Mom Ivana, Dad
Karel and sister Romana. This thesis could not exist without their never-ending support,
love and patience. Thank you!

I thank my research collaborators, namely Kamil Salikhov, Maciek Sykulski, Simone
Pignotti and Mikhail Dubov for great teamwork. I am greatly thankful to Philippe Gam-
bette and Paul Morel for their help with French administration at the beginning of my
PhD.

During my PhD I had the possibility to work at three different research institutes:
LIGM Université Paris-Est, Institut Curie, and Institut Cochin, where I met people from
various countries, coming from diverse cultural backgrounds, speaking different languages
and working on a wide spectrum of scientific subjects. I am very grateful for this opportu-
nity and I really appreciate all the discussions with Manar Quamhieh, Fadhela Kerdjoudj,
Safa Hamdoun, Zakaria Chemli, Pavel Heller, Sonja Hiltunen, Francesco Dolce, and An-
thony Labarre at LIGM; Andrei Zinovyev, Maria Kondratova, Emmanuel Barillot, Inna
Kuppertstein, Tatiana Popova, Frederic Jarlier, and Elsa Bernard at Institut Curie; and
Gwenneg Kerdivel and Marie-Ange Calmejane at Institut Cochin.

Finally, I would like to acknowledge a support by the ABS4NGS grant and by Labex
Bézout of the French gouvernment (program Investissement d’Avenir).

i

ii

Abstract
Novel computational techniques for mapping and classifying

Next-Generation Sequencing data
Since their emergence around 2006, Next-Generation Sequencing technologies have been
revolutionizing biological and medical research. Quickly obtaining an extensive amount of
short or long reads of DNA sequence from almost any biological sample enables detecting
genomic variants, revealing the composition of species in a metagenome, deciphering can-
cer biology, decoding the evolution of living or extinct species, or understanding human
migration patterns and human history in general. The pace at which the throughput
of sequencing technologies is increasing surpasses the growth of storage and computer
capacities, which creates new computational challenges in NGS data processing.

In this thesis, we present novel computational techniques for read mapping and tax-
onomic classification. With more than a hundred of published mappers, read mapping
might be considered fully solved. However, the vast majority of mappers follow the same
paradigm and only little attention has been paid to non-standard mapping approaches.
Here, we propound the so-called dynamic mapping that we show to significantly improve
the resulting alignments compared to traditional mapping approaches. Dynamic mapping
is based on exploiting the information from previously computed alignments, helping to
improve the mapping of subsequent reads. We provide the first comprehensive overview of
this method and demonstrate its qualities using Dynamic Mapping Simulator, a pipeline
that compares various dynamic mapping scenarios to static mapping and iterative refer-
encing.

An important component of a dynamic mapper is an online consensus caller, i.e.,
a program collecting alignment statistics and guiding updates of the reference in the
online fashion. We provide Ococo, the first online consensus caller that implements a
smart statistics for individual genomic positions using compact bit counters. Beyond its
application to dynamic mapping, Ococo can be employed as an online SNP caller in various
analysis pipelines, enabling SNP calling from a stream without saving the alignments on
disk.

Metagenomic classification of NGS reads is another major topic studied in the the-
sis. Having a database with thousands of reference genomes placed on a taxonomic tree,
the task is to rapidly assign a huge amount of NGS reads to tree nodes, and possibly
estimate the relative abundance of involved species. In this thesis, we propose improved
computational techniques for this task. In a series of experiments, we show that spaced
seeds consistently improve the classification accuracy. We provide Seed-Kraken, a spaced
seed extension of Kraken, the most popular classifier at present. Furthermore, we suggest
ProPhyle, a new indexing strategy based on a BWT-index, obtaining a much smaller and
more informative index compared to Kraken. We provide a modified version of BWA that
improves the BWT-index for a quick 𝑘-mer look-up.

iii

iv

Résumé
Nouvelles techniques informatiques pour la localisation et la

classification de données de séquençage haut débit

Depuis leur émergence autour de 2006, les technologies de séquençage haut débit ont
révolutionné la recherche biologique et médicale. Obtenir instantanément une grande
quantité de courtes ou longues lectures de presque tout échantillon biologique permet de
détecter des variantes génomiques, révéler la composition en espèces d’un métagénome,
déchiffrer la biologie du cancer, décoder l’évolution d’espèces vivantes ou disparues, ou
mieux comprendre les schémas de la migration humaine et l’histoire humaine en général.
La vitesse à laquelle augmente le débit des technologies de séquençage dépasse la croissance
des capacités de calcul et de stockage, ce qui crée de nouveaux défis informatiques dans le
traitement de données de séquençage haut débit.

Dans cette thèse, nous présentons de nouvelles techniques informatiques pour la lo-
calisation (mapping) de lectures dans un génome de référence et pour la classification
taxonomique. Avec plus d’une centaine d’outils de localisation publiés, ce problème peut
être considéré comme entièrement résolu. Cependant, une grande majorité de programmes
suivent le même paradigme et trop peu d’attention a été accordée à des approches non-
standards. Ici, nous introduisons la localisation dynamique dont nous montrons qu’elle
améliore significativement les alignements obtenus, par comparaison avec les approches
traditionnelles. La localisation dynamique se fonde sur l’exploitation de l’information
fournie par les alignements calculés précédemment, afin d’améliorer les alignements des
lectures suivantes. Nous faisons une première étude systématique de cette approche et
démontrons ses qualités à l’aide de Dynamic Mapping Simulator, une pipeline pour com-
parer les différents scénarios de la localisation dynamique avec la localisation statique et
le «référencement itératif».

Une composante importante de la localisation dynamique est un calculateur online de
consensus, c’est-à-dire un programme qui collecte des statistiques des alignements pour
guider, à la volée, les mises à jour de la référence. Nous présentons Ococo, calculateur
du consensus online qui maintient des statistiques des positions génomiques individuelles
à l’aide de compteurs de bits compacts. Au-delà de son application à la localisation
dynamique, Ococo peut être utilisé comme un calculateur online de SNP dans divers
pipelines d’analyse, ce qui permet de prédire des SNP à partir d’un flux sans avoir à
enregistrer les alignements sur disque.

La classification métagénomique de lectures d’ADN est un autre problème majeur
étudié dans la thèse. Étant donné des milliers de génomes de référence placés sur un
arbre taxonomique, le problème consiste à affecter rapidement aux nœuds de l’arbre une
énorme quantité de lectures NGS, et éventuellement estimer l’abondance relative des es-
pèces concernées. Dans cette thèse, nous proposons des techniques améliorées pour cette
tâche. Dans une série d’expériences, nous montrons que les graines espacées améliorent
la précision de la classification. Nous présentons Seed-Kraken, extension du logiciel pop-

v

vi

ulaire Kraken utilisant les graines espacées. En outre, nous introduisons ProPhyle, une
nouvelle stratégie d’indexation basée sur la transformée de Burrows-Wheeler (BWT), qui
donne lieu à un indice beaucoup plus compact et plus informatif par rapport à Kraken.
Nous présentons une version modifiée du logiciel BWA qui améliore l’index BWT pour la
localisation rapide de 𝑘-mers.

Papers, posters and presentations

[1] [2] [3] [4] [5]

Papers

i) K. Břinda, V. Boeva, and G. Kucherov. “Dynamic read mapping and online consensus
calling for better variant detection.”
url:http://arxiv.org/abs/1605.09070

ii) K. Břinda, M. Sykulski, and G. Kucherov. “Spaced seeds improve k-mer-based
metagenomic classification.” In: Bioinformatics 31.22 (2015), pp. 3584–92.
doi:10.1093/bioinformatics/btv419

iii) K. Břinda, V. Boeva, and G. Kucherov. “RNF: a general framework to evaluate NGS
read mappers.” In: Bioinformatics 32.1 (2015).
doi:10.1093/bioinformatics/btv524

iv) K. Břinda. “Languages of lossless seeds”. In: Electronic Proceedings in Theoretical
Computer Science 151 (2014), pp. 139–150.
doi:10.4204/EPTCS.151.9

Posters

i) K. Břinda, V. Boeva, and G. Kucherov. “RNF: a general framework to evaluate NGS
read mapper.” Conference “HitSeQ 2015”, Dublin (Ireland), July 10–11, 2015.

ii) K. Břinda, V. Boeva, and G. Kucherov. “RNF: a method and tools to evaluate NGS
read mappers.” Conference “RECOMB 2015”, Warsaw (Poland), April 12–15, 2015.

iii) M. Sykulski, K. Břinda, and G. Kucherov. “Spaced seeds improve metagenomic
classification.” Conference “RECOMB 2015”, Warsaw (Poland), April 12–15, 2015.

Presentations

i) K. Břinda, K. Salikhov, S. Pignoti, and G. Kucherov. “ProPhyle: a memory efficient
BWT-based metagenomic classifier using 𝑘-mer propagation.” Workshop “SeqBio
2016”, Nantes (France), November 18, 2016.

ii) K. Břinda, K. Salikhov, S. Pignoti, M. Sykulski, and G. Kucherov. “BWT-based
indexing structure for metagenomic classification.” Seminar at INRIA/Irisa Rennes,
Rennes (France), July 7, 2016.

vii

http://arxiv.org/abs/1605.09070
http://dx.doi.org/10.1093/bioinformatics/btv419
http://dx.doi.org/10.1093/bioinformatics/btv524
http://dx.doi.org/10.4204/EPTCS.151.9

viii Papers, posters and presentations

iii) K. Břinda, K. Salikhov, M. Sykulski, and G. Kucherov. “BWT-based indexing struc-
ture for metagenomic classification.” Student Conference “Quantitative Genomics
2016”, London (UK), June 6, 2016.

iv) K. Břinda, K. Salikhov, M. Sykulski, and G. Kucherov. “Indexing structures for
metagenomic classification.” International workshop “Data Structures in Bioinfor-
matics”, Bielefeld (Germany), February 23–24, 2016.

v) K. Břinda, V. Boeva, and G. Kucherov. “Dynamic read mappers.” International
Workshop “Algorithmics, Bioinformatics and Statistics for NGS data analysis 2015”,
Paris (France), June 22–23, 2015.

vi) K. Břinda, V. Boeva, and G. Kucherov. “Dynamic read mappers.” Workshop “SeqBio
2014”, Montpellier (France), November 4–5, 2014.

vii) K. Břinda. “Languages of lossless seeds.” International conference “Automata and
Formal Languages 2014”, Szeged (Hungary), May 27–29, 2014.

Other works
i) P. Červenka, K. Břinda, M. Hanousková, P. Hofman, and R. Seifert. “Blind Friendly

Maps: Tactile Maps for the Blind as a Part of the Public Map Portal (Mapy.cz).” In:
Computers Helping People with Special Needs: 15th International Conference, ICCHP
2016, Linz, Austria, July 13-15, 2016, Proceedings, Part II, pp. 131–138.
doi:10.1007/978-3-319-41267-2_18

ii) K. Břinda, P. Červenka, R. Seifert, and P. Hofman. “Blind Friendly Maps.” Poster
at international conference “Sensory issues and Disability: Touch to learn, touch to
communicate”, Paris (France), March 17–19, 2016.
url:https://hal.archives-ouvertes.fr/hal-01289174

http://dx.doi.org/10.1007/978-3-319-41267-2_18
https://hal.archives-ouvertes.fr/hal-01289174

Contents
I Introduction 1

1 Context, motivation and contributions 5

2 DNA sequencing 9

3 Main techniques of pairwise sequence comparison 17

4 Data structures for NGS data analysis 33

II Dynamic read mapping 37

5 Context and motivation 41

6 RNF: a framework to evaluate NGS read mappers 43

7 Ococo: the first online consensus caller 49

8 DyMaS: a dynamic mapping simulator 53

9 Discussion 63

III 𝑘-mer-based metagenomic classification 69

10 Overview 73

11 Spaced seeds for metagenomics 81

12 ProPhyle: a BWT-based metagenomic classifier 99

13 Discussion 111

IV Conclusions 113

V Appendices 117

A Languages of lossless spaced seeds 121

B Read Naming Format specification 133

ix

x CONTENTS

Part I

Introduction

1

3

Contents - Part I
1 Context, motivation and contributions 5

1.1 Motivation of our work . 5
1.2 Our contributions . 6

2 DNA sequencing 9
2.1 General approach . 9
2.2 First methods for DNA sequencing . 10
2.3 Next-Generation Sequencing methods . 10

2.3.1 Sequencing technologies producing short reads 12
2.3.2 Sequencing technologies producing long reads 13

2.4 Read simulation . 13

3 Main techniques of pairwise sequence comparison 17
3.1 Alignment-based methods . 18

3.1.1 Alignment using dynamic programming 19
3.1.2 Heuristics for aligning a sequence against a database 20
3.1.3 Heuristics for genome-to-genome alignments 20
3.1.4 Read mapping . 20

3.2 Alignment-free methods . 29
3.3 Spaced seeds . 30

4 Data structures for NGS data analysis 33
4.1 Hash tables . 33
4.2 Classical full-text indexes . 33
4.3 BWT-index . 34

4

Chapter 1

Context, motivation and
contributions

1.1 Motivation of our work

Since their emergence around 2006, Next-Generation Sequencing (NGS) technologies have
been revolutionizing biological and medical research. Rapidly obtaining an extensive
amount of so-called reads, i.e., sequenced fragments of DNA, from almost any biological
sample enables studies has never been possible before. Let us start with several motivating
examples of scientific areas, where NGS methods provided a deep insight.

Detecting genomic variants associated to diseases. With the state-of-the-art se-
quencing technologies, it is possible to quickly and cheaply detect mutational variants
present in a population, in an organism, or sometimes even in a single cell. Variant detec-
tion is usually a prior step to genome-wide association studies connecting genetic variants
to traits [6, 7, 8]. Then catalogs of variants related to specific genetic diseases can be cre-
ated. Similarly, we can also associate genomic variants in bacteria to antibiotic resistance
and rapidly detect the resistance directly from sequencing data [9, 10].

When a high-quality reference sequence is available, detecting genomic variants usually
proceeds by read mapping, a procedure based on fast alignment of NGS reads against the
reference using similarity search. Genomic variants then can be deduced from differences
between the computed alignments and the reference.

Studying metagenomes. Using classification methods on sequencing data, we can re-
veal the composition of species in a metagenome, i.e., an environmental sample containing
genomes of many individual organisms. The human microbiome project [11] and the TARA
ocean project [12, 13, 14] are the most famous examples, but many other metagenomes
have been studied, e.g., metagenomes of cities [15] or households [16]. In addition to
the composition, we can also study functions of metagenomes and their properties. For
instance, it has been shown that vast majority of unique genes in the human body are
microbial [17].

Deciphering cancer biology. DNA sequencing has enhanced our understanding of
specific biological processes in cancer, which was nearly impossible before. Cancer cells
mutate very quickly and form various subclones, such that cancer behaves more like a set

5

6 CHAPTER 1. CONTEXT, MOTIVATION AND CONTRIBUTIONS

of diseases than a single disease alone. One of the main scientific goals is to mathematically
describe individual subclones of cancer, distinguish “driver” mutations from “passenger”
ones, and predict future behaviour and reaction of the tumor to drugs [18].

Many methods for studying cancer rely on high quality read mapping as mutations
important in the context of a specific cancer type can be often very infrequent in reads
covering a given position and present in certain subclones only. Quality of alignments
reported by a mapper strongly affects results of the analysis pipelines.

Clarifying human history and migration patterns. Since ancient biological sam-
ples are sequencable with state-of-the-art methods [19, 20], DNA sequencing can provide
deep insights to human history. Richard III. [21], Albert I. [22], Louis XVII [23], or Tu-
tankhamun [24] are examples of famous historical figures already studied using sequencing.
Note that the techniques used in such studies are very relevant also for criminology [25].

Sequencing allows to better study ancient microbiomes, for example human pathogens
[26, 27]. It helped to better characterize plague epidemics [28, 29, 30, 31] or revealed in-
teresting information about eating habits in various historical epochs from calcified dental
plaque [32].

Demographic history of human and its close relatives belongs to other widely studied
topics [33, 34]. Sequencing has been used, for instance, to study Denisovans [35], Neander-
tals [36, 37, 38, 39, 40, 41], Aboriginal Australians [42], Native Americans [43], Romans
[44] or British [45], to name at least several examples.

Ancient samples are very sensitive to contamination. Thus, it is important to cor-
rectly identify sequences which do not come from the ancient sample itself, but from the
environment around.

1.2 Our contributions
In this thesis, we present several computational contributions in domains of read mapping
and metagenomic classification. These methods are relevant in all the examples presented
above and can be useful in different phases of analysis pipelines.

Read mapping. To improve alignments of NGS reads, we suggest to use an approach
called dynamic read mapping that is an improvement of the standard mapping approach
with correction of the reference sequence according to alignments computed so far. First,
we present RNFtools, a framework for comparative analyses of different alignments tech-
niques (Chapter 6). The entire framework is based on a novel format for naming simu-
lated NGS reads (Appendix B). Then we study the problem of online consensus calling
and provide the first online consensus caller operating directly on a stream of alignments
(Chapter 7). Indeed, every dynamic mapper needs to perform consensus calling in an
online fashion to decide whether and how to update the reference. Finally, we show that
dynamic mapping provides alignments of superior quality compared to static mapping
(Chapter 8). In a pipeline called Dynamic Mapping Simulator, we proceed with simulat-
ing different dynamic mapping scenarios by iterative calling of existing static mappers,
and by comparing the resulting alignments using RNFtools. In the supplement, we also
provide new theoretical results about lossless spaced seeds for read mapping (Appendix A).

Metagenomic classification. Metagenomic classification is classification of reads from
an environmental sample. We improve existing methods for assignment of reads to a

1.2. OUR CONTRIBUTIONS 7

taxonomic tree, which can be a prior step to abundance estimation or sequence assembly.
First we show that metagenomic classification can be strongly improved using spaced

seeds and we provide Seed-Kraken, a spaced-seed modification of the most popular classi-
fier (Chapter 11). Then we introduce out own 𝑘-mer based classifier implementing a novel
BWT-indexing structure specifically designed for 𝑘-mers placed in a tree (Chapter 12).

8 CHAPTER 1. CONTEXT, MOTIVATION AND CONTRIBUTIONS

Chapter 2

DNA sequencing

DNA sequencing is the process of determining the nucleotide sequence in DNA
molecules. During the last 40 years, various sequencing techniques were devel-
oped ranging from the original Sanger sequencing to modern Next-Generation
Sequencing methods. In this chapter, we provide a short overview of the most
popular sequencing technologies and tools for their simulation. For a detailed
review, see [46].

2.1 General approach

The general approach for sequencing is similar for all technologies. Until today, it remains
hard to sequence the entire DNA molecule as a whole so the methods usually rely on
sequencing fragments of copies of the original molecule. The sequencing process can be
understood as “reading” these fragments and encoding the obtained information to data
files, usually textual.

Generally speaking, this “reading” consists of obtaining a technology-specific signal
characterizing the DNA fragment and recoding this signal to a sequence of letters of the
DNA alphabet (so-called base calling), possibly providing also information about reliability
of individual letters (Figure 2.1). Exact steps of the entire process vary in individual
technologies. For instance, the resulting signal can have various forms such as a function
of electrical current or a series of photographies. The resulting DNA strings, commonly
called reads, may not fully correspond to the original DNA molecule since individual steps
of the process introduce sequencing errors.

To design algorithms for read processing, we need to well understand properties and
particularities of the technologies. The main parameters are statistical distribution of
read length, statistical properties of sequencing errors (probabilities of individual types
of errors, their common patterns, etc.), sequencing biases (e.g., coverage bias), amount
of produced data within a single sequencing experiment, or reliability of provided base
qualities. Moreover, some technologies are capable to provide reads in pairs proximal in
the original DNA (so-called paired-end and mate-pair sequencing).

Also different data are obtained based on the type of sequencing such as whole genome
sequencing (WGS), whole exome sequencing (WES), target sequencing (TS), whole tran-
scriptome shotgun sequencing (WTSS, RNA-seq), methylation sequencing (MeS, BS-seq),
and others [48].

9

10 CHAPTER 2. DNA SEQUENCING

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

A. Short Read Mapping Problem

1) Data: Each next-generation sequencing platform

implements a different technology, but the workflow can

be illustrated by a brief summary of the Illumina method

(see Fig. 1). First, genomic DNA is sheared into fragments
that can be size-selected to obtain a template library of
uniformly short DNA fragments. Platform-specific adapter

sequences are then attached to both ends of the fragments,

which allow them to be attached to a solid surface. Through

a local PCR amplification step, many copies of each tem-

plate molecule are produced in a tightly clustered location

on the surface. These molecules emit a signal during the

sequencing reaction that is strong enough to be detected by

the optical system of the instrument. During sequencing,
every molecule is cyclically extended by a single base, and

all clusters are read in parallel before the cycle is repeated.

A base-calling algorithm determines individual bases from

raw signal data, to which quality scores are assigned. Since

the precise meaning and range of quality scores is platform

dependent, here we assume that a higher quality score

indicates a lower likelihood of the base call being incorrect.

In paired-end sequencing, both ends of the original DNA
fragment are sequenced, and the instrument keeps track of

this pairing information.

2) Solving the Inverse Problem: The first step in the ana-

lysis of NGS data is to determine where in the genome each

of the short reads originated [Fig. 1, step (d)]. The obvious

criteria for mapping such a read to a genomic location is

sequence similarity. Due to sequencing errors and genuine

differences between the reference genome and the se-

quenced organism, a read might not match its correspond-

ing location in the reference genome exactly. We therefore

need an alignment method that permits some number of

mismatches, insertions, and deletions. Although older

alignment software such as BLAST [7] or BLAT [49] can be

used to map short reads to a reference genome, those
methods are simply too slow. The sheer amount of data,

sometimes comprising billions of short reads that have to be

aligned to a large (e.g., mammalian) genome, has required

innovative new algorithms that run orders of magnitude

faster, at least for the specialized problem of short-read

alignment to a fixed reference genome. In order to be most

useful, these algorithms should also exploit additional in-

formation associated with the experimental protocol, such
as read pairing information, and take into account

technology-specific error profiles.

In the case of paired-end reads, we expect the two mates
to map at a distance and orientation that is consistent with

the library fragment length and the relative sequencing

direction, respectively. In the formalization of the read

mapping problem below, however, we ignore pairing infor-

mation on reads and treat the mates as independent single-
end reads. In Section VII-A we describe strategies to

incorporate the additional constraints imposed by paired-

end information.

Because the DNA strand from which a read originates

is unknown, either the read sequence itself or its reverse

complement may be mapped to the reference genome. In

Fig. 1. Workflow of next-generation sequencing. (a) Genomic DNA is sheared into fragments, and platform-specific adapter sequences (blue)

are then attached. After amplification on a solid surface (b), the sequence of nucleotides is ‘‘read out’’ (c) from signals emitted when a base is

added to the complement of a template strand. A read mapping algorithm then must find (d) the genomic origin of the resulting reads.

Canzar and Salzberg: Short Read Mapping: An Algorithmic Tour

| Proceedings of the IEEE 3

Figure 2.1: Illustration of the sequencing process on example of the Illumina
platform. ©2015 IEEE. Reprinted, with permission, from [47].

2.2 First methods for DNA sequencing

The first method for DNA sequencing was developed in 1977 by Frederick Sanger. Based
on the chain-termination method, his technique enabled to obtain a list of occurrences of
each of four nucleotides in the DNA molecule. The original approach was later strongly
improved and commercialized by Applied Biosystems, which introduced in 1987 the first
automatic sequencing machine. Sanger sequencing remained to be the main method for
the next 25 years after its development. Even today, with Next-Generation sequencing
technologies available, it still finds its use, especially for validation of results.

Sanger sequencing can provide reads of length up to approximately 1, 000 bp [51] with
an extremely low error rate ranging from 0.00001 to 0.0001 [52]. Highly limited speed
and the overall cost per basepair remain to be the main disadvantages of Sanger-like
approaches.

2.3 Next-Generation Sequencing methods

Research of sequencing technologies was strongly accelerated in the 1990s when sequencing
the human genome was set as a priority scientific goal and Human Genome Project (HGP)
launched. Even though the entire human genome was sequenced using traditional methods
[53, 54], it became obvious that these methods were too slow and costly for whole genome
sequencing, thus unsuitable for massive sequencing of many living organisms. Indeed,

2.3. NEXT-GENERATION SEQUENCING METHODS 11

SOLiD

GA II

MiSeq

PGM

GS Junior

‘Sanger’

GS FLX

Proton

PacBio RS

Lex Nederbragt (2012‐2016)

h4p://dx.doi.org/10.6084/m9.figshare.100940

Hiseq

2000/2500

Hiseq X

NextSeq 500

Hiseq2500 RR

Hiseq 4000

MinION

MiniSeq

S5/S5XL

Figure 2.2: Development in sequencing technologies. Overview of existing sequenc-
ing platforms and their throughput per run and typical length of resulting reads, namely:
ABI Sanger, Illumina (GA, HiSeq, MiSeq, MiniSeq, and NextSeq), Ion Torrent (PGM,
Proton, and S5/S5XL), SOLiD, 454 (GS FLX and GS Junior), Oxford Nanopore (Minion),
and PacBio (PacBio RS). ©2016 Lex Nederbragt. Reprinted from [49].

the overall expenses of HGP are estimated to $2.7 billion. As a result, a huge effort was
invested into research of completely new technologies, which could provide rapid highly
parallel sequencing.

First such novel technologies were introduced in 2005 [51], and they are commonly
referred as Next-Generation Sequencing (NGS), second generation sequencing or massive
parallel sequencing. They immediately revolutionized genomic research as they enabled
to instantly obtain millions of reads. The first Solexa sequencers provided reads of length
25 bp only [55], but even such reads permitted successful single-nucleotide polymorphism
(SNP) calling. In course of time, the short-read technologies (Illumina, SOLiD, 454, or
Ion Torrent) became mature enough and they nowadays provide reads of length <400 bp
(with exception of 454 with slightly longer reads) with a relatively low error rate.

The introduction of long-read technologies in 2011, providing reads of length >10, 000 bp,
is surely another important milestone. These technologies, mainly represented by PacBio
and Oxford Nanopore, are sometimes referred separately as third generation sequencing.
The associated error rate >0.10 (sometimes even >0.25) makes the data analysis even

12 CHAPTER 2. DNA SEQUENCING

Figure 2.3: Sequencing progress vs. compute and storage. A doubling of sequencing
output every 9 months has outpaced and overtaken performance improvements within
the disk storage and high-performance computation fields. From [50]. Reprinted with
permission from AAAS.

more challenging and also computationally highly intensive.

2.3.1 Sequencing technologies producing short reads

Illumina. Illumina (originally named Solexa) was released in 2006 [51] and has ulti-
mately become a technology dominating the market [46]. Its state-of-the-art sequencers
can produce reads of length 100 bp to 300 bp and paired-end reads are supported. Its
overall error rate is very low; the most common errors are substitutions with a typical rate
0.005 and 0.010 for first and second end of a pair, respectively [56, 57]. The error rate
increases towards the ends of the reads, but the errors can be relatively easily corrected
[58, 59, 60, 61].

Ion Torrent. The Ion Torrent sequencing platform, first released in 2010 [51], can pro-
duce reads of length up to 400 bp. The most frequent errors are indels, which appear with
rate 0.03 [62], whereas substitution errors are by order of magnitude less frequent. As the
error rate can be improved by quality clipping, some publications (e.g, [46, 63]) mention
the improved error rate 0.01.

SOLiD. SOLiD sequencers were introduced in 2006 [51]. They can produce reads up
to 100 bp with very low error rate <0.001, possibly paired-end. A particularity of SOLiD
sequencers is the used alphabet. Opposed to the other technologies, reads are encoded in
color (di-nucleotide) space [64], i.e., transitions between adjacent nucleotides are stored
instead of the nucleotides itself. A major advantage of this encoding is the fact that
sequencing errors can be distinguished from single-nucleotide variants. While the former
is observed as a single mismatch, the latter causes two adjacent mismatches. On the other

2.4. READ SIMULATION 13

hand, read mappers without explicit support for SOLiD are not applicable, which strongly
limits its usage.

454. 454 sequencers were first introduced in 2005 [51]. According to produced data, 454
lies on the border between short and long read technologies. They provide reads of length
up to 1, 000 bp (depending on exact sequencer type) with error rate about 0.01, of which
the majority are indels [46, 63]. Paired-end reads are supported.

2.3.2 Sequencing technologies producing long reads

Pacific Bioscience. The PacBio sequencing technology provides reads of length up to
20, 000 bp with error rate ranging from 0.11 to 0.15 [65]. A major advantage of PacBio is
the fact that errors are distributed randomly, therefore, they are easier to be distinguished
from genomic variants. Note that short reads can be used for their correction (see, e.g.,
[66]).

Oxford Nanopore. Oxford Nanopore produces very special sequencers, distinct from
the other technologies in many aspects. First of all, Nanopore sequencers have a size of a
smart phone, which makes them the most mobile sequencers on the market.

The technology itself is based on decoding electrical signals from protein pores, which
are embedded in an electrically resistant polymer membrane. Voltage created across this
membrane causes pass of DNA molecules through the membrane in a single direction. The
associated changes in electrical current on the pores are recorded and exact sequence of
nucleotides decoded from them.

Properties of Oxford Nanopore data strongly depend on the specific choice of the used
chemistry with many possible combinations. Obtained reads can be up to 200, 000 bp
long [46] with a typical error rate about 0.12, mainly represented by indels [46]. The most
error-prone step of the sequencing process is decoding the electrical signal, mainly because
it is hardly possible to maintain a constant speed of DNA molecule passage during the
sequencing. Therefore, especially homopolymeric regions are hard to be sequenced (thus
decoded [67]) correctly.

Oxford Nanopore sequencing is currently a rapidly developing technology, providing
data of constantly increasing quality. The associated high error rate remains to be the
major disadvantage in practical applications. Nevertheless, the high mobility and compar-
atively low prices compensate for this drawback and make Oxford Nanopore a very per-
spective technology, highly suitable for “point-of-care” disease detection, field pathogen
detection, civil and army protection, water quality surveillance [68], real-time disease
surveillance (e.g, of Ebola [69]), or for sequencing in the space [70, 71]. Other partic-
ularities of the technology are a so-called selective sequencing (ReadUntil) [72], i.e., fast
skipping molecules out-of-interest in order to accelerate sequencing, and direct methylation
sequencing [73].

2.4 Read simulation

To evaluate methods for NGS data analysis, we need to realistically simulate reads. First
of all, it is the only approach ensuring that we know the ground truth (reads’ true origin in
the genome, positions of sequencing errors, variants present in the genome, etc.). Second,
real sequencing experiments are usually time demanding and costly.

14 CHAPTER 2. DNA SEQUENCING

Have reference sequence?

One individual or several?

Genomic variants?

Which technology?

Start

No reference sequence

Variants No variants Variants No variants

Reference sequence

Genomics Metagenomics

SOLiDIonTorrent

Nanopore PacBioSOLiD

IonTorrent

Illumina

Illumina

Sanger 454

PacBio

PacBio SOLiD Sanger

454Illumina IonTorrent

454

Sanger

SOLiD

Illumina

IonTorrent

454

� ART
� AFG
� CuReSim
� MetaSim
� simhtsd
� simNGS

� ART
� CuReSim

� CuReSim

� ReadSim � EAGLE
� FASTQSim
� ReadSim

� DWGSIM
� FASTQSim
� wgsim

� BEAR
� EAGLE
� DWGSIM
� FASTQSim

� MetaSim � 454sim
� ART
� CuReSim
� Flowsim
� MetaSim
� simhtsd

� pbsim

� FASTQSim � FASTQSim � Grinder

� BEAR
� GemSim
� Grinder
� Mason
� NeSSM

� BEAR
� FASTQSim
� GemSim
� Grinder
� Mason
� NeSSM
� pIRS

� BEAR
� FASTQSim

� BEAR
� EAGLE
� GemSim
� Grinder
� Mason

� Grinder
� Mason

� BEAR
� DWGSIM
� EAGLE
� FASTQSim

� GemSim
� Grinder
� Mason
� pIRS

� SimSeq
� SInC
� wgsim

� XS

Illumina

� MetaSim

454

Sanger

Figure 2.4: Decision tree for the selection of an appropriate read simulator.
This tree contains most of the state-of-the-art simulators from this chapter. It enables
to quickly exclude unsuitable simulators and take a list of candidates supporting the
specified sequencing technology and type of the simulation. A final simulator should be
selected after comparing simulators’ properties described in [74, 75] (such as categories
of simulated variants). Reprinted by permission from Macmillan Publishers Ltd: Nature
Reviews Genetics [75], ©2016.

Many sequencing technologies are available nowadays and every technology has proper
characteristics, usually also depending on experimental conditions. As a result, many
simulators have been developed and it is a non-trivial task to select an appropriate one. To
do so, we should consider the following aspects. A simulator can be either multipurpose
(e.g., WGsim), or specifically tuned for a particular technology (e.g., PBsim [76]). It
can support different types of sequencing, e.g., whole-genome sequencing, metagenomic
sequencing, RNA-seq, or BS-seq. Simulators can be further categorized based on types

2.4. READ SIMULATION 15

of variants that they introduce, from those supporting only SNPs and small indels (e.g.,
WGsim) to simulators introducing chromosomal duplications or large scale variations (e.g.,
pIRS [77]). Alternatively, a dedicated tool outside the read simulator itself can be used for
this task (e.g., Mason Variator [78], RSVSim [79], SCNVSim [80], or SNP Mutator1). A
good simulator should also support diploid simulations, i.e., introduce two sets of variants
to the reference sequence.

Fidelity of simulation is strongly determined by the employed statistical model; e.g.,
for sequencing errors, sequencing biases (e.g., coverage bias), or base qualities. Models
can range from uniform distributions of mismatches (e.g., WGsim) to advanced models
learning large set of parameters from alignments of real reads (e.g., ART [81]).

Besides the simulated sequences themselves, various information about simulation
should be stored. Unfortunately, almost every read simulator uses own proper way to
store sequencing errors, variants, reads’ genomic coordinates, etc. To solve this issue, we
have developed the RNF format. For more information, see Chapter 6.

Here we provide a comprehensive list of existing read simulators. For more detailed
information, please see two recently published reviews [74, 75]. Decision tree in Figure 2.4
(adopted from [75]) is currently the best existing guide for selecting the appropriate read
simulator.

Exhaustive list of read simulators

1. Multipurpose simulators. These tools are designed for a wider class of technolo-
gies.

i) Short reads. Artificial FASTQ generator [82], DWGsim2, FASTQSim [83],
Mason [78], SeqMaker [84], and WGsim3.

ii) Long reads. FASTQSim [83], Loresim 24, Loresim5, ReadSim6, and SiLiCO
[85].

2. Simulators for a particular technology. They are specifically tuned for a single
technology.

i) 10x Genomics. LRSIM [86].
ii) Illumina ART-Illumina [81], EAGLE7, GemSim [87], pIRS [77], SInC [88],

SimNGS8, SimHTDS9, and Wessim [89].
iii) Oxford Nanopore. NanoSim [90] and NanoSimH10 (a modified version of

NanoSim).
iv) PacBio. LongISLND [91], PBSim [76], PBLibSim11, randomreads (part of

[92]), and SimLoRD [93].
1https://github.com/CFSAN-Biostatistics/snp-mutator
2http://github.com/nh13/dwgsim
3http://github.com/lh3/wgsim
4https://github.com/gt1/loresim2
5https://github.com/gt1/loresim
6https://sourceforge.net/projects/readsim/
7https://github.com/sequencing/EAGLE
8http://www.ebi.ac.uk/goldman-srv/simNGS/
9https://sourceforge.net/projects/simhtsd/

10https://github.com/karel-brinda/NanoSimH/
11https://github.com/ethanagbaker/pblibsim

https://github.com/CFSAN-Biostatistics/snp-mutator
http://github.com/nh13/dwgsim
http://github.com/lh3/wgsim
https://github.com/gt1/loresim2
https://github.com/gt1/loresim
https://sourceforge.net/projects/readsim/
https://github.com/sequencing/EAGLE
http://www.ebi.ac.uk/goldman-srv/simNGS/
https://sourceforge.net/projects/simhtsd/
https://github.com/karel-brinda/NanoSimH/
https://github.com/ethanagbaker/pblibsim

16 CHAPTER 2. DNA SEQUENCING

v) Roche 454. 454sim [94], ART-454 [81], FLOWSIM [95], simhtsd12, and Wessim
[89].

vi) IonTorrent. CuReSim [96].
vii) SOLiD. ART-SOLiD [81]; DWGsim, and WGsim.

3. Simulators of particular data. They are designed for other experiment types
than whole-genome sequencing.

i) Metagenomic simulators. BEAR [97], FASTQSim [83], Grinder [98], Gem-
Sim [87], Mason [78], MetaSim [99], and NeSSM [100] (also a GPU version
exists).

ii) RNA-seq simulators. BEERS [101], DWGsim, Flux [102], PSIM [103], rlsim
[104], RNASeqReadSimulator13, RSEM [105], and SimSeq [106].

iii) BS-seq simulators. BSSim, DNemulator [107], Sherman14, and WGBS Suite
[108].

4. Miscellenaous
Gargammel [109] simulates ancient DNA. XS [110] simulates formats of FASTQ
files of various sequencing platforms (e.g., read names) and also reference sequences
(instead of taking existing ones). GenFrag [111], Celsim [112], and FASIM [113] are
historical predecessors of modern read simulators.

12https://sourceforge.net/projects/simhtsd/
13https://github.com/davidliwei/RNASeqReadSimulator
14http://www.bioinformatics.babraham.ac.uk/projects/sherman/

https://sourceforge.net/projects/simhtsd/
https://github.com/davidliwei/RNASeqReadSimulator
http://www.bioinformatics.babraham.ac.uk/projects/sherman/

Chapter 3

Main techniques of pairwise
sequence comparison

In this chapter, we summarize the main alignment-based and alignment-free
techniques for pairwise sequence comparison, with a particular emphasis on
those which are relevant for read mapping (studied in Part II) and metagenomic
classification (studied in Part III).

Pairwise sequence comparison is in the core of many problems in computational bi-
ology and computer science. Let us mention several of them to illustrate some typical
applications.

1. Mapping of NGS reads. To map NGS reads to a reference genome, modern
mappers proceed by searching the most similar regions in the reference [47].

2. Taxonomic classification of NGS reads. Reads sequenced from a metagenome
are classified to taxonomic clades [114]. This classification is done based on quick
estimates of similarity between the reads and the reference genomes placed within a
taxonomic tree.

3. Homologous regions detection. Homologs, i.e., regions descending from a com-
mon ancestor, are usually detected based on sequence similarity. They are widely
studied within evolutionary biology.

4. Genome assembly. Many genome assemblers proceed by building a graph of
prefix-suffix overlaps between NGS reads and enumerating paths in this graph [115].

5. Phylogenetic inference. Phylogenetic trees and networks illustrate evolution his-
tory of species, languages [116, 117], or even manuscripts [118] and stories [119].
Phylogenies are usually inferred from similarities between individual sequences.

6. Detection of duplicate web pages. Before adding a new web page into the index,
search engines need to quickly verify whether a highly similar document has not been
already indexed [120].

There exist two different general approaches to sequence comparison. Alignment based
methods aim at identification of edit operations transforming one sequence into another
(or their segments), while alignment-free methods quickly estimate the similarity of the
sequences based on their composition.

17

18 CHAPTER 3. MAIN TECHNIQUES OF PAIRWISE SEQUENCE COMPARISON

3.1 Alignment-based methods

The biological interest in sequence comparison started with the study of homologs, i.e.,
regions descending from a common ancestor. To do so, it was necessary to handle the
notion of sequence similarity mathematically and sequence alignment [121] techniques
have been studied.

Sequence alignment can be viewed as a search of transformations of multiple input
sequences into a single sequence called consensus, which should be maximally similar to all
the original sequences. Such a transformation consists of a series of modifications (usually
letter-by-letter) such as a match (keep the letter), a mismatch (edit the letter), an insertion
(insert a letter), or a deletion (delete the letter), from a predefined list. Every operation is
associated with a certain integer cost (called score of the operation) defined by a scoring
system. Our goal is to minimize the sum of the costs of all performed transformations
(a so-called alignment score). A single transformation from an input sequence to the
consensus can be described using a so-called Compact Idiosyncratic Gapped Alignment
Report string (CIGAR) (see, e.g, [122]).

Pairwise sequence alignment is the sequence alignment of two sequences. In this par-
ticular case, we can simply reduce it to a transformation of the first sequence into the
second one. From now on, we will consider pairwise alignments only.

The approach considering a transformation of the entire input sequence to the entire
output sequence is called global alignment as it captures the global similarity between the
sequences. In practice, we often are more interested in local similarities corresponding to
the transformations of a substring to a substring. In such a case, we talk about a so-called
local alignment. It can be viewed as a global alignment after deleting some prefix or/and
some suffix from both of the input sequences (this operation is usually called clipping).
To sum up, when doing local alignment, we search a score-maximizing transformation of
arbitrary substring of the first sequence to an arbitrary substring of the second sequence.
Similarly we define also a semiglobal alignment, where either a prefix or a suffix is deleted
from each sequence, but not both at the same time.

A wise choice of an appropriate scoring system is the basic precondition for obtaining
biologically relevant results. Many different scoring systems exist, often specific to partic-
ular tasks (e.g., homology search of short sequences, or alignment of Illumina NGS reads).
Two simplest systems are derived from the Hamming distance (match 1, mismatch −1,
no insertions or deletions allowed), and from the the edit distance (match 1, mismatch
−1, insertion −1, deletion −1). Even though these systems can be very useful in simple
applications, more complex systems are usually needed for NGS data.

In more general scoring systems, the scores for substitutions and matches are usually
defined using a substitution matrix (score matrix, scoring matrix) 𝑀 , where 𝑀u�u� is the
score of the substitution 𝑎 → 𝑏. Several standard substitution matrices have been designed,
based on different evolution and sequencing models (see, e.g., [123]). These matrices
are typically symmetrical, as for instance BLOSUM62 [123] or PAM120 [124]; but not
necessarily [125]. As follows from theory [124], every linear scoring system defined using
a substitution matrix directly corresponds to a model with independent mutations with
exact frequencies. These frequencies can be derived from the substitution matrix; and on
opposite, for given frequencies of mutations, such a matrix can be constructed (see, e.g.,
[121, Chapters 1 and 2]). In consequence, under the widely accepted simplified models, the
best scoring systems uses a substitution matrix computed from the substitution frequencies
observed in good alignments.

3.1. ALIGNMENT-BASED METHODS 19

Good scoring systems should also support insertion and deletions. Their score is usually
defined using an affine function of their length so, for instance, starting a new insertion is
more expensive than its extension.

3.1.1 Alignment using dynamic programming

The original methods for sequence alignment from the 1970s and 1980s fully relied on
dynamic programing. These methods are also the only ones which can find the optimal
solutions. Needleman–Wunsch algorithm [126] solves the problem of the global alignment,
Smith-Waterman algorithm finds the optimal local alignment [127], and Gotoh algorithm
[128] finds the optimal alignment for a scoring system with the affine gap penalties. All
three algorithms are often referred jointly as Smith-Waterman-Gotoh algorithms.

The 𝑂(𝑚 ⋅ 𝑛) space and time complexity of the Smith-Waterman-Gotoh algorithms
make them hardly applicable for long sequences such as mammalian reference genomes.
In the following sections, we present various specialized heuristics for individual use-cases
(such as alignment of NGS reads). Since these heuristics use the Smith-Waterman-Gotoh
algorithms on certain small subproblems (e.g., ranking and comparing heuristically found
alignments), we need their high-performance implementations and several techniques for
speeding them up are widely used.

A first technique is based on exploiting properties of the modern CPUs. The imple-
mentations can be heavily cache-optimized and use the Single Instruction - Multiple Data
(SIMD) instruction sets such as SSE2 or AVX2.

A second technique uses a restriction of the dynamic programming to a strip of width
𝑘 around its diagonal in the dynamic programming table. Then the space and memory
complexities decrease to 𝑂(𝑚 ⋅ 𝑘). The resulting algorithms, usually referred as Striped-
Smith-Waterman-Gotoh [129], are suitable only for a limited, but in practice frequent,
class of applications such as score computation in read mapping of Illumina reads, where
certain upper bounds on deletions and insertions lengths can be established.

A third technique, based on using bit-parallel algorithms, is usually feasible only for
simple score systems. The most prominent example is the edit distance, which can be
computed in the bit-parallel way using the Myers bit-parallel algorithm [130], or using
some of its modified versions [131, 132]. Another option is to quickly filter sequences
with too low edit distance (using, e.g., shifted Hamming distance algorithm [133]) prior
to the standard alignment. Besides Myers algorithm, many other bit-parallel algorithms
with subtle differences have been designed; see, e.g., Wu-Manber algorithm [134], Hyyrö
algorithm [135], or a particular bit-parallel algorithm for integer weights [136].

Many libraries provide implementation of the Striped-Smith-Waterman-Gotoh algo-
rithms for the standard architectures, namely AAlign [137], ALP&FALP [138], Diago-
nalSW1, Edlib [139], ksw from klib2, Parasail [140], Seqan [141], SSW Library [142], and
SWPS 3 [143]. There exist also several implementations for special computational infras-
tructure, namely for GPUs (CUDASW++ [144, 145, 146], GSWABE [147], MASA [148],
NVbio3 SW# [149], SWCuda [150]), for OpenMP (MASA [148]), and for Intel Xeon Phi
(SWAPHI [151, 152]). GPU implementations exist also for Myers [153] and Wu–Manber
[154, 155, 156] algorithms.

1https://sourceforge.net/projects/diagonalsw/
2https://github.com/AttractiveChaos/klib
3https://nvlabs.github.io/nvbio/

https://sourceforge.net/projects/diagonalsw/
https://github.com/AttractiveChaos/klib
https://nvlabs.github.io/nvbio/

20 CHAPTER 3. MAIN TECHNIQUES OF PAIRWISE SEQUENCE COMPARISON

3.1.2 Heuristics for aligning a sequence against a database

In the 1980s, many influential large genomic and protein databases emerged (e.g., Gen-
Bank in 1982, European Nucleotide Archive in 1982, DNA Data Bank of Japan in 1986).
Searching in these database was very time-consuming since the dynamic-programming
algorithms scaled very badly with the amount of data.

The problem was partially alleviated by the programs FASTP [157] from 1985 (for
searching protein sequences) and FASTA [158] from 1988 (for searching nucleotide se-
quences). Both of these programs have been eventually distributed within a single software
package called FASTA. Remark that the FASTA format has its roots in this project. The
FASTA project improved heuristics from [159] and finally provided easy to use package
enabling relativelly fast querying even on IBM PC. Indeed, matching of several hundreds
short amino-acid sequences against the entire National Biomedical Research Foundation
library was a matter of minutes [157].

BLAST (Basic Local Alignment Search Tool), one of the most influential tools of com-
putational biology ever, was published in 1990 [160] and quickly became a leading program
for sequence comparison, staying extremely popular until today. At the time of writing
this thesis, the original BLAST paper [160] has already more than 60,000 citations on
Google Scholar whereas the main FASTA paper [158] has approximately 12,000. Com-
pared to FASTA, BLAST provided a significant speed-up, high sensitivity, and rigorous
statistical characterizations of reported alignments such as estimates on the 𝐸-value (as
the first program).

Since the first release, BLAST has been continuously improved, see, e.g., Gapped
BLAST [161], PSI BLAST [161], MegaBLAST [162, 163], or Magic-BLAST4. Also, its
database is regularly updated (see its current version5).

3.1.3 Heuristics for genome-to-genome alignments

Much attention has been also devoted to genome-to-genome alignments. Since this prob-
lem is not directly related to this thesis, we provide only a list of several examples of
programs that have been developed for this task: MUMmer [164], MUMmer 2 [165],
AVID [166], BLASTZ [167], LAGAN [168], MUMmer 3 [169], LASTZ [170], Cgaln [171],
FEAST [172], and LAST [173, 174].

3.1.4 Read mapping

Introduction. After the completion of the human genome in 2003 [184], a huge effort
was invested into the development of new methods for sequencing and the Next-Generation
Sequencing emerged. These technologies, sometimes also called massive parallel sequenc-
ing technologies, are able to massively sequence genomes and produce extremely huge
amounts of so-called reads, i.e., sequenced fragments of the genome (see Chapter 2).

Even the first sequencers, producing reads of length 25 bp only, enabled detecting
genomic variants. This could be done by aligning the reads to a reference sequence of a
high quality, followed by looking at the differences. To do a rapid alignment of millions
of short NGS reads, completely new algorithm had to be designed. Indeed, BLAST [160],
already a very popular tool at this time, appeared to be simply too inefficient for this
task (see Figure 3.1). The original heuristics (e.g., ELAND) were rather simple and often

4ftp://ftp.ncbi.nlm.nih.gov/blast/executables/magicblast
5ftp://ftp.ncbi.nlm.nih.gov/blast/db/

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/magicblast
ftp://ftp.ncbi.nlm.nih.gov/blast/db/

3.1. ALIGNMENT-BASED METHODS 21

employing either hash-tables (for example, Fasta [21],
BLAST (Basic Local Alignment Search Tool) [22], BLAT
(BLAST-like Alignment Tool) [23], MAQ [24], and Novoa-
lign [25]) or suffix arrays with the Burrows-Wheeler trans-
form (for example, STAR (Spliced Transcripts Alignment
to a Reference) [26], BWA (Burrows-Wheeler Aligner) [27]
and Bowtie [28]).
In addition to these optimized data structures, algo-

rithms adopted different search methods to increase
efficiency. Unlike Smith-Waterman and Needleman-
Wunsch, which compare and align two sequences dir-
ectly, many tools (such as FASTA, BLAST, BLAT,
MAQ, and STAR) adopt a two-step seed-and-extend
strategy. Although this strategy cannot be guaranteed
to find the optimal alignment, it significantly increases
speeds by not comparing sequences base by base.
BWA and Bowtie further optimize by only searching
for exact matches to a seed [25]. The inexact match
and extension approach can be converted into an exact
match method by enumerating all combinations of
mismatches and gaps.
In addition to changing search strategies, algorithms

adjusted to larger datasets by first organizing the query,
the database, or both. This involves an upfront computa-
tional investment but returns increased speed as datasets

grow larger. For example, some algorithms (BLAST,
FASTA, and MAQ) first build indexes for query se-
quences before scanning the database. On the database
side, some algorithms (such as BLAST and MAQ) for-
mat the database into compact binary files, whereas
others (such as BLAT, Novoalign, STAR, BWA, and
Bowtie) build an offline index. STAR, BWA, and Bowtie
in particular can significantly reduce the marginal map-
ping time (the time it takes to map a single read), but re-
quire a relatively large period of time to build a fixed
index. In general, we find a negative correlation between
the marginal mapping time and the time to construct
the fixed index, making BWA, Bowtie, and STAR better
suited to handle progressively larger NGS datasets
(Fig. 3a). Much like the expansion phase observed in the
S-curve trajectories that produce Moore’s law, many of
these algorithms have been refined to improve perform-
ance. For example, BLAST has been heavily optimized
for different datasets, producing HyperBLAST [29],
CloudBLAST [30], DynamicBlast [31], and mBLAST
[32], to name a few. In the case of mBLAST, researchers
involved in the Human Microbiome Project commis-
sioned the optimization of the algorithm so that the ana-
lyses could be performed on a reasonable time scale.
Nevertheless, many of these alignment algorithms are

Human

lo
g1

0
(I

nd
ex

 +
 a

lig
n)

 ti
m

e
(s

)
lo

g1
0

(I
nd

ex
 +

 a
lig

n)
 ti

m
e

(s
)

BLAST

FASTA

FASTA

Maq

Maq

Bowtie

Bowtie

BWA

BWA

Novoalign

Novoalign

STAR

STAR

BLAT

BLAT

7.0

7

6

5

4

3

2

Index time
Align time
Dynamic programming
Initial indexing
Next-gen indexing

1970 1980 1990 2000 2010

Yeast

Published year

NW SW

BLAST

a b

2.0 2.5 3.0 3.5 4.0 4.5 5.0

1.5

1.0

0.5

0.0

-0.5

-1.0

log10 Running time (s)

lo
g1

0
P

ea
k

R
A

M
 (

G
b)

S. aureus
R. sphaeroides
Human chr 14
B. impatiens

Velvet (2008)
Gossamer (2011)
Minia (2012)
SGA (2012)
Sparse assembler (2012)6.5

6.0

5.5

5.0

4.5

4.0

Fig. 3 a Multiple advances in alignment algorithms have contributed to an exponential decrease in running time over the past 40 years. We
synthesized one million single-ended reads of 75 bp for both human and yeast. The comparison only considers the data structure, algorithms,
and speeds. There are many other factors, such as accuracy and sensitivity, which are not discussed here, but which are covered elsewhere [25].
Initial alignment algorithms based on dynamic programming were applicable to the alignment of individual protein sequences, but they were
too slow for efficient alignment at a genome scale. Advances in indexing helped to reduce running time. Additional improvements in index and
scoring structures enabled next generation aligners to further improve alignment time. A negative correlation is also observed between the initial
construction of an index and the marginal mapping time per read. b Peak memory usage plotted against the running time for different genome
assemblers on a log-log plot. Assembler performance was tested using multiple genomes, including Staphylococcus aureus, Rhodobacter sphaeroides,
human chromosome 14, and Bombus impatiens. Data were obtained from Kleftogiannis et al. [33]

Muir et al. Genome Biology (2016) 17:53 Page 5 of 9

Figure 3.1: Three generations for programs for read alignment. Illustration of run-
ning times of three generations of programs for alignments of 75 bp long reads simulated
from human and yeast genomes. The first generation contains dynamic programming-
based algorithms (Smith-Waterman [127] and Needelman-Wunsch [126]), the second gen-
eration BLAST-like programs (FASTA [158], BLAST [160] and BLAT [175]), the third
generation comprises read mappers based on hash tables (MAQ [176] and NovoAlign),
suffix array (STAR [177]), and BWT-index (BWA-backtrack [178] and Bowtie [179]). Re-
mark that BWA-backtrack, Bowtie and MAQ are already obsolete and have been replaced
in practice by a new generation of read mappers such as BWA-MEM [180] and Bowtie 2
[181]. ©2016 Muir et al., CC BY 4.0, adapted from [182].

relied on fast similarity search up to a fixed Hamming distance, usually one or two. The
first generation of read mappers did not support insertions and deletions at all.

Almost immediately, a great boom of NGS read mappers started (see Figure 3.2).
Since then, sequencing technologies are constantly improving and authors of read mappers
must well react on this development. Many tools were release at a specific state of NGS
technologies and became quickly obsolete. Only several tools have managed to stay modern
until today, thanks to their good design and regular adaptation for modern data, e.g., the

22 CHAPTER 3. MAIN TECHNIQUES OF PAIRWISE SEQUENCE COMPARISON

Figure 3.2: Timeline with NGS read mappers. Up-to-date version of a timeline with
NGS read mappers from [183]. DNA mappers are displayed in blue, RNA-seq mappers
in red, miRNA mappers in green, and BS-seq mappers in purple. ©N. A. Fonseca, http:
//www.ebi.ac.uk/~nf/hts_mappers/ .

BWA [180, 185, 178] and Bowtie [179, 181] families of mappers.
A small revolution in read mapping has been raised recently by technologies such

as Oxford Nanopore or PacBio. They produce long reads with high rates of sequencing
errors, which have significantly changed the initial conditions of the read mapping problem.
Mapping of long reads is now a very challenging task targeted by many research teams.

Note that release of SAM/BAM format [122] is an important milestone of read map-
ping. Before that, tools produced data in proper output formats, which required particular
ad-hoc scripts for conversion in the analysis pipelines.

Challenges. There are several factors that make mapping a challenging task in practice.
Genome sequences are highly repetitive and often contain several regions equally similar
to a read [186]. Employing a sequencing technology producing long or paired-end reads
can alleviate but not completely eliminate this difficulty. Reliability of mapping strongly
depends on how much the sequenced genome differs from the reference. Close individ-
uals (such as those of the same species) usually differ only weakly and highly variable
regions tend to be rare. For distant individuals, evolutionary events (such as genomic

http://www.ebi.ac.uk/~nf/hts_mappers/
http://www.ebi.ac.uk/~nf/hts_mappers/

3.1. ALIGNMENT-BASED METHODS 23

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

most computing grids. This explains why the BWT-based

FM-index, first implemented in the Bowtie and BWA read

mappers, was adopted almost immediately by large num-

bers of users.

The second prerequisite for the widespread use of
mapping software is accuracy. On the one hand, the true

origin of a read is expected to lie in the set of candidate

positions returned by the software. On the other hand, a

large number of false positive alignments will essentially

hide the true origin from downstream analysis. To map

reads with high accuracy, the underlying (error) model

must take into account the specifics of the sequencing

technology as well as additional data provided by the in-
strument, such as read pairing information and base

quality values. The confidence that the mapper has found

the true origin of a read should be reflected by the mapping

quality, a valuable piece of information that some down-

stream analyses rely upon.

Third, the usability of the software plays a significant

role in its adoption. Typically, scientists who develop and

write alignment software and those who run the software
have very different backgrounds and skills. Thus, software

must be easy to use and well documented, ideally pro-

viding some form of user support. For the most popular

software packages, user networks have emerged to provide

support to one another.

Fourth, maintenance is absolutely critical for a package

to maintain its usefulness. Although less glamorous than

the original development work, maintenance is required to
keep up with changes in sequencing technology, changes

in underlying operating systems, and the ever-changing

ways in which sequence data is used. For example, the

leading aligners in 2009 were optimized for read lengths of

35 bp, which was the standard length at the time. This

quickly increased to 75 and then 100 bp, and more recently
jumped to 300 bp with the new (but lower throughput)

MiSeq instrument. Aligners had to modify their seed

lengths and other internal methods in order to adjust to

these longer reads. At the same time, many users continue

to use older, shorter read technology, requiring alignment

developers to maintain older versions of their systems

simultaneously with the new versions.

As human sequencing work increases, the limitations
of using a single reference genome have become apparent.

In the near future, we are likely to see additional reference

human genomes representing subpopulations or ethnic

groups, which in turn may facilitate the analysis of per-

sonal genomes [4]. As these become available, it may be

useful (see, e.g., [101]) to align reads to multiple genomes

simultaneously. This in turn could eliminate the bias to-

wards a single reference and thus improve the accuracy of
read mapping. The growing gap between sequencing capa-

city and computing power, however, needs be filled by

clever (mapping) algorithms, that scale sublinearly with

genomic data size. The redundancy inherent in collections

of genomes can be exploited by storing similarities and

variations in a compressed format on which alignment

algorithms might operate directly [77].

In the near future, alignment algorithms will not only
have to cope with exponentially increasing data volumes,

Fig. 16. Methods at leaves of a tree that branches along algorithmic design decisions. The hierarchical structure roughly reflects the

organization of Sections II–V.

Canzar and Salzberg: Short Read Mapping: An Algorithmic Tour

20 Proceedings of the IEEE |

Figure 3.3: Indexing strategies for read mapping. ©2015 IEEE. Reprinted, with
permission, from [47].

rearrangements or gene duplications) may cause more substantial differences between the
two genomes making it impossible to deduce the true origin of some reads using similarity
search.

Sequencing errors constitute another major obstacle. Their rate strongly depends on
the employed technology – from Illumina HiSeq producing reads of 100 bp with about 1%
of errors to PacBio SMRT and Oxford Nanopore producing reads of up to several tens of
thousand bp with about 15% of errors – and on the experimental conditions. Furthermore,
some reads may come from regions absent in the reference sequence or may result from
contamination by DNA from other genomes. Such reads should be detected and annotated
by the mapper, i.e. marked as unaligned or as aligned with low quality. Finally, the sheer
volume of input data makes of mapping a computationally demanding task constraining
the choice of the underlying algorithm. For instance, whole genome sequencing projects
of the human genome of 3 Gbp often use more than 30× coverage.

Algorithmic overview. Modern read mappers usually compute an index for the ref-
erence sequence and then map a stream of the reads against this index. They usually
proceed by a so-called seed-and-extend paradigm. For every read, the mappers identifies
regions highly similar to the reference (the seeding step) and then it extends them into
full alignments (the extending step). The mapper then reports one or several best suiting
alignments of the read, usually accompanied by the alignment score and the mapping
quality (the probability that the reported alignment position is wrong).

Two basic indexing approaches are widely used in mapping. In the first approach
(implemented, e.g, in NovoAlign6, SHRiMP 2 [187], or BFAST [188]), the mapper stores a
hash table (for the seeding step) and the reference (for the extending step, which is done
usually using the (Striped-)Smith-Waterman-Gotoh algorithms). The hash-table-based

6http://www.novocraft.com/products/novoalign/

http://www.novocraft.com/products/novoalign/

24 CHAPTER 3. MAIN TECHNIQUES OF PAIRWISE SEQUENCE COMPARISON

mappers are usually very sensitive, but occupy a lot of memory. The second approach relies
on compressed full-text indexes [189], usually on the BWT-index [190] (see Section 4.3).
This single structure can be used both for seeding and extending. Moreover, the associated
memory footprint is small compared to hash tables, so advantages of BWT-based mappers
are obvious and a majority of the most popular state-of-the-art mappers belong to this
group, e.g., BWA-MEM [180], Bowtie 2 [181] or GEM [191]. For a tree of popular indexing
strategies, see Figure 3.3.

Many different techniques for seeding exist [192, 193, 194]. They can be based, e.g.,
on shared contiguous 𝑘-mers of fixed length (e.g., MAQ [176]), shared spaced 𝑘-mers de-
fined by a spaced seed (e.g., SHRiMP 2 [187]), shared spaced 𝑘-mers of variable lengths
defined by an adaptive spaced seed (e.g., LAST [173]), or maximum exact matches (e.g.,
BWA-MEM [180]), to mention at least several examples. To conclude the indexing strate-
gies, let us remark that the traditional seeding techniques work well with the short-read
technologies, but become insufficient for long reads with a high rate of sequencing errors.
This calls for novel seeding approaches [195, 196] or even for aligning the Nanopore signal
directly to the reference without base calling7.

Features of mappers. According to supported technologies, mappers can be classified
to short read mappers (e.g., BWA-backtrack [178]), long read mappers (e.g., GraphMap
[195]), and those which can deal well with both types of reads (e.g., BWA-MEM [180]).
Another distinction can be done according to the type of produced alignments. Mappers
can detect local alignments (e.g., Bowtie 2 [181]), or global alignments (e.g., Bowtie 2
[181]), or switch automatically between the both types of alignments (e.g., BWA-MEM
[180]). Many particular types of reads may require a special treatment, e.g., RNA-seq
reads, BS-seq reads, or reads in color space. Support for these types of reads is another
important feature.

Two modes of mapping exist, all-mapping and best-mapping. The all-mapping mode
is based on reporting all alignments having similar score to the best alignment, or on
reporting all alignments with a score within a certain threshold (e.g., with edit distance
≤ 3). Mapping in the best-mapping mode aims at finding the best alignment only. The
latter approach can save computational time, but many relevant alignments might be
missed. To report reliable mapping qualities, the mapper has to compute at least two best
alignments in any case.

Many other features would deserve a discussion (techniques of parallelization, support
for pair-end and mate-pair reads, support for SNPs, ways of treatment of alternative and
decoy sequences, etc.). For more information about them, please see specialized reviews
(e.g., [197], [198], [199], and notably [47]).

BWA-MEM as an example of a mapper. BWA-MEM [180] is nowadays one of the
most popular mappers so we use it as an example of a good mapper. Its success stems
from an well-designed algorithm working well for many sequencing technologies, from its
highly efficient implementation, and from a good availability and portability of the code.
Moreover, BWA-MEM has a a very intuitive interface, comprehensible documentation,
and perfect user support. Anecdotically, the BWA-MEM’s manuscript [180] was rejected
and it exists only as an arXiv preprint until today.

The underlying indexing engine (used also in BWA-backtrack [178] and BWA-SW

7http://simpsonlab.github.io/2015/04/08/eventalign/

http://simpsonlab.github.io/2015/04/08/eventalign/

3.1. ALIGNMENT-BASED METHODS 25

[185]) is based on a high-quality implementation of BWT-index [190], that was originally
adopted from BWT-SW [200] and subsequently highly optimized.

The BWA-MEM mapping algorithm proceeds by the following steps. It first identifies
maximum exact matches (MEM) for every suffix of a read, which are then used as seeds.
Too long seeds are shortened, close seeds are chained together, and certain shorter chains
are filtered out. Subsequently, the Smith-Waterman algorithm is used to extend the seeds
and to connect those seeds, which are proximal in the reference. BWA-MEM automatically
chooses between global and local alignment, preferring global. If paired-end reads are
used, a special pairing strategy is used to favor alignments in a correct distance – this
distance is computed on-the-fly from first high-quality alignments. As the last step, the
best computed alignments are reported.

List of mappers. Here we provide a list of mappers existing at the time of writing this
thesis. First we mention the mappers, which use classical approaches (majority of popular
tools belong to this category). Then we enlist the mappers designed for special data (e.g.,
for BS-seq), the mappers using special computational approaches (e.g., graph mappers),
and the mappers designed for special computational infrastructures (e.g., GPU mappers).

Our list is complementary to other existing lists, e.g., to the list on Wikipedia8, the list
on OmicsTools9, to the list maintained by N. A. Fonseca10), or to the list in [201]. Note
that mappers are sorted in a descending order with respect to the year of the corresponding
publication (or a preprint).

1) Standard read mappers.

i) BWT-based. The standard read mappers based on BWT-index (FM-index), on
suffix arrays, or on suffix trees are: LAMSA [202], MUMdex Aligner [203], ERNE 2
[204], Mapper [205]; ALPHALPHA [206], GRyCAP [207], YARA [208]; ARYANA
[209], BWA-PSSM [210]; CUSHAW 3 [211, 212], HPG Aligner [213], RandAl [214];
BWA-MEM [180]; Isaac Genome Alignment Software [215], Masai [216], NucBase
[217]; BatMis [218], BLASR [219], Bowtie 2 [181], GEM [220, 191, 221], CUSHAW2
[222]; LAST [173]; BWA-SW [185]; Bowtie [179], BWA-backtrack [178], SOAP 2
[223], and OASIS [224].
CLC Mapper [225], DAMAPPER-BWT11, GENALICE MAP12, TMAP13, and
Vmatch14 are not accompanied by any manuscript.

ii) Hash table based. The standard mappers based on hash tables are PEMapper
[226]; FSVA [227], GraphMap [195], Hobbes 3 [228], MECAT [229], NanoBLASTer
[230], NextGENe Sequence Alignment tool [231]; AMAS [232], BitMapper [233],
GensearchNGS [234], JVM [235], merAligner [236], rHAT [237], SNPwise [238];
HIVE-Hexagon [239], Hobbes 2 [240], LRD [241] Mosaik [242], MrsFAST-Ultra
[243]; SEME [244], Subread [245], SRmapper [246]; ERNE [247], Hobbes [248],
RazerS3 [249], rRNA [250, 251], SeqAlto [252], YAHA [253], WHAM [254]; AGILE

8https://en.wikipedia.org/wiki/List_of_sequence_alignment_software#Short-Read_Sequence_
Alignment

9https://omictools.com/read-alignment-category
10http://www.ebi.ac.uk/~nf/hts_mappers/
11https://github.com/gt1/damapper_bwt
12http://www.genalice.com/product/genalice-map/
13https://github.com/iontorrent/TS/tree/master/Analysis/TMAP
14http://www.vmatch.de/

https://en.wikipedia.org/wiki/List_of_sequence_alignment_software#Short-Read_Sequence_Alignment
https://en.wikipedia.org/wiki/List_of_sequence_alignment_software#Short-Read_Sequence_Alignment
https://omictools.com/read-alignment-category
http://www.ebi.ac.uk/~nf/hts_mappers/
https://github.com/gt1/damapper_bwt
http://www.genalice.com/product/genalice-map/
https://github.com/iontorrent/TS/tree/master/Analysis/TMAP
http://www.vmatch.de/

26 CHAPTER 3. MAIN TECHNIQUES OF PAIRWISE SEQUENCE COMPARISON

[255], SHRiMP 2 [187], SNAP [256], Stampy [257]; FANGS [258], GSNAP [259],
GASSST [260], MrsFAST [261], Q-Pick [262], REAL [263]; BFAST [188], GNUmap
[264], MapNext [265], MOM [266], MPSCAN [267], MrFAST [268, 269], PASS
[270], PerM [271], ProbeMatch [272], RazerS [273], SHRiMP [274]; MAQ [176],
RMAP [275, 276], SeqMap [277], SOAP [278], ZOOM [279]; GMAP [280], YASS
[281]; SSAHA 2 [282]; PRIMEX [283]; BLAT [175]; SSAHA [284].
Anfo15, BitMapper 2-CPU16, DAMAPPER17, ELAND, ISAAC 218, NovoAlign19,
Ngmlr20, and SMALT21 do not have any manuscript.

iii) Others. Hybrid-index based mappers, HIA [285] and YOABS [286], combine both
hash tables and a BWT-based indexes. Mappers Slider II [287] and Slider [288]
use merge sorting. Tanoti22 is built on top of BLAST [160].

2) Mappers for special data. RNA-seq reads are spliced, in BS-seq reads every non-
methylated C is converted to T, and color reads use a completely different encoding.
All these types of reads call for special mapping techniques.

i) RNA-seq reads. The following mappers are specifically designed for RNA-seq
data: HPG Aligner [289], POMP [290], RapMap [291]; BBmap [92], ContextMap 2
[292, 293], HISAT [294]; FANSe 2 [295], JAGuaR [296]; CRAC [297], OLego
[298], STAR [177], TopHat 2 [299]; ContextMap [300], FANSe [301], OSA [302],
PASSion [303], RNASEQR[304]; ABMapper [305], RUM [101], SOAPsplice[306];
GSNAP [259], HMMSplicer [307], MapSplice [308], PALMapper [309], SpliceMap
[310], Supersplat [311]; CASHX [312]; QPALMA [313]; SSAHA 2 [282]; SSAHA
[284]; EST_GENOME [314].
Mappers HISAT 223 and ReadsMap24 do not have any manuscript. For a compar-
ison of RNA-seq read mappers, see [315] and [316].

ii) BS-seq reads. The following mappers are specifically designed for BS-seq data:
BRAT-nova [317], WALT [318]; Bison [319], GPU-BSM [320], TAMeBS [321]; Bat-
Meth [322] (it support also SOLiD reads), BISS [323], Merman [324] (a component
of the BSmooth package), RRBSMAP [325], Segemehl [326]; Bismark [327]; PASH
3 [328]; BSMAP [329], RMAPBS [276], VerJInxer [330], and BSmapper25. The
following standard mappers support BS-seq mapping: PEMapper [226], ERNE 2
[204], HPG-Methyl [331], GNUMAP-bs [332], PASS-bis [333], BRAT-BW [334],
ERNE [247], LAST [107], GSNAP [259], legacy versions of MrsFAST [261], and
NovoAlign. These pipelines use other mappers to map BS-seq reads: Bisulfighter
[335], BS-Seeker 2 [336], MethylCoder [337], BS-Seeker [338], and B-Solana [339]
(for SOLiD reads). There also exist several comparison of BS-seq read mappers
[340, 341, 342, 343]. Especially [343] can be highly recommended. Mapping of
BS-seq reads brings many problems, e.g., it is hard to choose a reference [344].

15https://bioinf.eva.mpg.de/anfo/
16http://home.ustc.edu.cn/~chhy/BitMapper2.html
17https://github.com/gt1/DAMAPPER
18https://github.com/Illumina/isaac2
19http://www.novocraft.com/products/novoalign/
20https://github.com/philres/ngmlr
21http://www.sanger.ac.uk/science/tools/smalt-0
22http://www.bioinformatics.cvr.ac.uk/tanoti.php
23https://github.com/infphilo/hisat2
24http://www.softberry.com/berry.phtml?topic=products
25https://sourceforge.net/projects/bsmapper/

https://bioinf.eva.mpg.de/anfo/
http://home.ustc.edu.cn/~chhy/BitMapper2.html
https://github.com/gt1/DAMAPPER
https://github.com/Illumina/isaac2
http://www.novocraft.com/products/novoalign/
https://github.com/philres/ngmlr
http://www.sanger.ac.uk/science/tools/smalt-0
http://www.bioinformatics.cvr.ac.uk/tanoti.php
https://github.com/infphilo/hisat2
http://www.softberry.com/berry.phtml?topic=products
https://sourceforge.net/projects/bsmapper/

3.1. ALIGNMENT-BASED METHODS 27

iii) Complete genomics reads. We are aware only of SirFAST [345] and RTG
Core26.

iv) MiRNA. Tailor [346]; MicroRazerS [347]; PatMaN [348]; NovoAlign. For an
evalutation of methods, see [349].

v) Color space reads. Many nucleotide space mappers support also color space,
namely CUSHAW 3 [211, 212], Mosaik [242]; drFAST [350], SHRiMP 2 [187], X-
MATE [351]; mrFAST-CO [261], SToRM [352]; BFAST [188], Bowtie [179], BWA-
backtrack [178], PerM [271], SHRiMP [274]; MAQ [176], ZOOM [279]. Mappers
supporting only the color space are RNA-MATE [353] and SOCS [354].

vi) CRISPR. We are aware only of CRISPRAlign [355].

vii) Mapping to protein references. While the vast majority of read mappers is de-
signed for DNA-DNA alignment, in certain biological applications read alignment
against a protein reference or a protein-coding DNA reference may be needed.
This problem is algorithmically partially different from DNA-DNA read mapping
because an alphabet of higher cardinality is used (note that there are 20 distinct
amino acids in genetic code) and reads must be translated to 6 different frames
(3 in each direction). Alphabet reduction may used to increase sensitivity or to
decrease memory requirements. Reduction scheme is usually derived empirically.
There exist currently three tools which can be called read mappers to a protein
reference, namely DIAMOND [356], RAPSearch2 [357], and RAPSearch [358]

viii) Aligning of unaligned reads. There exists a class of methods for treating reads,
which could not be mapped using standard techniques [359, 360, 361].

3) Special computational approaches. Here we provide a list of mappers, which use
non-traditional algorithms for read mapping,

i) Graph mappers. Among researcher, there is a wide consensus that the tra-
ditional concept of sequences as reference structures has become insufficient [362,
363]. As a solution, references sequences could be replaced be reference graphs
(sometimes also called variation graphs) as they can aleviate most of the prob-
lems, for instance, substantially more reads get mapped perfectly [363].
Generalization of mapping and variant calling algorithms is not straightforward
and belongs to the main challenges of the current bioinformatics. For instance,
even simple concepts such as genomic intervals become difficult to handle [364].
Mapping to graphs in complicated to well formalize mathematically [365, 366].
Also indexing graphs is highly challenging from algorithmic point of view [367,
368].
The first step from linear references to graph references are the SNP-tolerant map-
pers Mosaik [242], mrsFAST-Ultra [243], VATRAM [369, 370], SNPwise [238],
GSNAP [259] and NovoAlign. They allow to incorporate a database of SNPs
into the reference (e.g., dbSNP[371]). Slightly more variation can be encoded into
so-called bubbles in BWBBLE [372]. GenomeMapper [373] aligns reads to a set
of similar genomes representing the graph. [372] Then there exist two mappers
aligning reads to de-Bruijn graphs, BGREAT [374] and deBGA [375].

26https://github.com/RealTimeGenomics/rtg-core

https://github.com/RealTimeGenomics/rtg-core

28 CHAPTER 3. MAIN TECHNIQUES OF PAIRWISE SEQUENCE COMPARISON

Two recently introduced mappers proceed by aligning reads to reference graphs,
inferring a new high-quality reference sequence, and remap all reads to the ob-
tained reference. Gramtools [376] uses a dedicated method for mapping reads to
a population graph. Then it infers a new linear reference, and remaps reads to
this reference. A similar approach is used in CHIC Aligner27. The main concep-
tual difference from Gramtools is a usage of a so-called kernel string, i.e., a string
created from an LZ77-based index of concatenated references. The reads are first
mapped to the kernel strings using an arbitrary standard mapper and the obtained
alignments are used for inferring the new reference.
The most promising project, which is still under developments, is a mapper sup-
porting general graphs called VG28. For further information on methods for map-
ping to graphs, see [362].

ii) Dynamic mapping. Dynamic mapping, i.e., an approach when the reference
sequence is continuously updated based on already computed alignments, has been
little studied so far and only two partial experimental solutions with naive mapping
algorithms are available [377, 378]. See Part II for our work on this topic.

iii) Compressive mapping. Compressive mapping [379, 380] aims at sublinear scal-
ing with growing genomic data sets.

iv) Mapping using MinHash. Another interesting direction of read mapping ex-
ploits MinHash sketches [381, 120] which are a generalization of minimizers [382].
To the best of our knowledge, there are currently only five mappers using this ap-
proach, namely MashMap[383] (a mapper for Oxford Nanopore and PacBio reads),
Minimap [384] (a mapper for Oxford Nanopore reads), BALAUR [385] (a privacy
preserving read mapper), VATRAM [369, 370] (an experimental variant tolerant
mapper), and Minialign29 (a mapper derived from Minimap).

v) Numerical mapping. Read mapping could proceed by Fourier transform and
compute the alignment in the frequency domain [386], similarly to what is widely
used, e.g., for image registration [387] (image registration can be viewed as a
certain analogy of read mapping). Only few works [388, 389, 390] considered such
an approach and no real mapper using this approach exists so far.

vi) Real-time mapping. Real-time mapping aims at mapping reads during the
process of their sequencing. To the best of our knowledge, HiLive [391] is currently
the only mapper supporting such a mode.

4) Mappers for special computational infrastructures

i) GPU (Graphic Processing Unit). The mappers using Graphical Processing
Units are GPU BWA-MEM [392]; CUDAlign 4.0 [393], MAPSEQ-G [394]; Arioc
[395], GRyCAP [207]; BWA-meth [396], CUDAlign 3.0 [397], CUSHAW2-GPU
[398], GPU-BSM [320] (a mapper for BS-seq data), MaxSSmap [360], PEANUT
[399], RAMICS [400]; NextGenMap [401], SOAP3-dp [402], G-DNA [403], Masher
[404]; BarraCUDA [405, 406], CUSHAW [407], G-Aligner [408], GPU-BWT [409],
SOAP3 [410]; SARUMAN [411]; CUDAlign [412], GPU-RMAP [413], and MUM-

27https://www.cs.helsinki.fi/en/gsa/chica/
28https://github.com/ekg/vg
29https://github.com/ocxtal/minialign

https://www.cs.helsinki.fi/en/gsa/chica/
https://github.com/ekg/vg
https://github.com/ocxtal/minialign

3.2. ALIGNMENT-FREE METHODS 29

merGPU [414]. BitMapper 230 has not been published, yet. For a review of GPU
mappers, see [415]

ii) MapReduce. The following mappers use MapReduce: SparkBWA [416]; BigBWA
[417]; DistMap [418] (a toolkit supporting 9 different mappers); SEAL [419],
CloudAligner [420]; CloudBurst [421]; and BlastReduce [422].

iii) MPI (Message Passing Interface). mpiBWA31, pBWA [423] and pFANGS
[424] parallelize BWA-MEM, BWA-backtrack [178] and FANGS [258], using MPI
respectively. pMap32 can parallelize Bowtie [179], BWA-backtrack [178], GSNAP
[259], MAQ [176], RMAP [275], and SOAP [278]. G-DNA [403] is a GPU-based
mapper with a support for parallelization using MPI.

iv) FGPA (Field-Programmable Gate Array). The FGPA mappers are FHAST
[425]; FGPA-SRA [426]; Shepard [427]; and VelociMapper33.

v) Others. Read mapping with PIM (Processing in Memory) has been studied in
[428] and [429]. The B-MIC [430] and MICA [431] mappers exploit MICA (Many
Integrated Core Architecture). RAMPS [432] and Convey BWA [433] were devel-
oped for the Convey HC-2 hybrid core computing system. Also particular accel-
erated variant BWA-MEM for this system has been published [434].

Note that several toy mappers, mostly unsuitable for practical applications, have been
developed within Topcoder Marathon Match DNAS134.

3.2 Alignment-free methods

Alignment-free methods estimate the similarity of sequences from their composition in
words or patterns, usually 𝑘-mers. These approaches, studied from 1980’s [435], have
become very popular for NGS data processing for several reasons. First, they are much
more computationally efficient than the alignment-based techniques. Second, they can
compare unknown sequences provided that we know their composition. For instance, we
can compare two genomes based on their 𝑘-mer compositions computed directly from NGS
reads without their assembling. Similarly, a composition of an evolution ancestor can be
derived from the composition of its descendants, which can be useful, e.g., in taxonomic
classification of NGS reads.

Most of alignment-free methods work with so-called frequency dictionaries, i.e., com-
pare two sequences using distances between vectors of abundancies of all their subwords,
or between vectors of abundancies of the subwords of a fixed length 𝑘 called 𝑘-mers. These
vectors are usually referred to frequency vectors. Many different distances exist, see, e.g.,
[436, 437, 438] for more information. Some of them even take into account the qualities
of individual bases [439, 440]. Note that for a large enough 𝑘 (but still much shorter than
the original sequence), the frequency vectors contain sufficient information to reconstruct
the original sequence (see, e.g, [441]). Alignment-free methods are related to machine
learning, especially kernel methods (see, e.g., [442]). Remark that stringology techniques
can be applied to compute machine learning kernels [443].

30http://home.ustc.edu.cn/~chhy/BitMapper2.html
31https://github.com/fredjarlier/mpiBWA
32http://bmi.osu.edu/hpc/software/pmap/pmap.html
33http://www.timelogic.com/catalog/799/velocimapper
34http://goo.gl/7W7Nn2

http://home.ustc.edu.cn/~chhy/BitMapper2.html
https://github.com/fredjarlier/mpiBWA
http://bmi.osu.edu/hpc/software/pmap/pmap.html
http://www.timelogic.com/catalog/799/velocimapper
http://goo.gl/7W7Nn2

30 CHAPTER 3. MAIN TECHNIQUES OF PAIRWISE SEQUENCE COMPARISON

In our work, the traditional alignment-free methods are hardly applicable for two
practical reasons. First, even though many efficient methods for computing frequency
vectors through 𝑘-mer counting have been recently published (e.g., [444, 445, 446, 447,
448, 449, 450, 451, 452, 453]), obtained dictionaries would still occupy too much memory
for 𝑘’s of practical interest (usually ≥ 15). Second, associated massive operations with
floating point numbers are very expensive. Both problems become more critical when we
need to compare a sequence to many sequences at the same time (e.g., in metagenomic
classification of NGS reads against a large database of thousands of reference genomes and
their taxonomic ancestors). Therefore, we have to give up on frequency vectors and to
rely only on the information whether a given 𝑘-mer is present in a sequence, or not. The
resulting indexes, either simple hash tables (such as in Kraken [454]) or advanced full-text
indexes (such as in ProPhyle [Chapter 12]), are extremely fast and provide reasonable
memory footprints. We elaborate more on this in Part III.

Up to now, we considered methods for arbitrary biological sequences. Now let us have
a look at the relation of read mapping to alignment-free techniques. This has been recently
formalized [455, 456] through a concept of pseudoalignments. The central idea is that in
many real scenarios, we only need to know in which sequence – a genome, a chromosome,
or a transcript – the read originates from but we can relax on computing its precise position
in that sequence. Pseudoalignments can be then computed very efficiently, much faster
than alignments. Indeed, we can, for instance, match very quickly reads’ 𝑘-mers against
a colored de-Bruijn graph [455].

Part III is related to the concept of pseudoalignments in the following way. Prophyle,
the metagenomic classifier which we present in Chapter 12, classifies reads to a taxonomic
tree by matching them against a collection of 𝑘-mer sets, assigned to individual nodes of
the tree. This collection-based approach is partially similar to transcript de-Bruijn graphs
[455]. In addition to computing the pseudoalignments, we also study how to estimate a
score of the corresponding alignment (which we do not compute) using the hit count or
the coverage criterion in combination with spaced seeds (see Chapter 11).

3.3 Spaced seeds

Many 𝑘-mer-based methods for sequence comparison, both alignment-based and alignment-
free, can be improved using so-called spaced 𝑘-mers. While “traditional” contiguous 𝑘-mers
are taken as substrings of length 𝑘 from the original string, spaced 𝑘-mers are extracted
using a bit-mask specifying positions of letters to be taken. For instance, let us consider
a string ACGCC⋯ and a bit-mask 1101. Then, instead of 𝑘-mers ACG, CGC, GCC; we can
work with spaced 𝑘-mers AC-C, CG-C, … The bit-masks used for this purpose are usually
referred to spaced seeds and they are traditionally encoded using ‘#’ or ‘1’ for matching
positions, and ‘-’ or ‘0’ for “joker” positions. The number of #’s is called the weight and
the seed’s length is called the span. So the seed from the example can be also written
as ##-# and it has span 4 and weight 3. Within this framework, contiguous 𝑘-mers are
generated using spaced seeds consisting of #’s only so, for instance, 𝑘-mers of length 3
correspond to spaced seed ### with span and weight both equal to 3.

Spaced seeds first appeared in 2000s as a concept improving seed-and-extend sequence
comparison in lossless [457, 458] and lossy [459] settings (for a general information about
seeding techniques, see, e.g., [193] and and the references therein). Later they were shown
to improve alignment-free methods as well, e.g., estimation of phylogenetic distances [460,
461], metagenomic classification [3], or string kernels for machine learning [462, 463, 464].

3.3. SPACED SEEDS 31

Many extensions of spaced seeds were suggested, e.g., vector seeds [465], indel seeds [466],
subset seeds [467], neighbor seeds [468, 469], or adaptive seeds [173]. For readers inter-
ested in this domain, we recommend Laurent Noé’s exhaustive list of seed literature [470]
(currently containing 150 papers).

Whereas the processing of contiguous 𝑘-mers is usually straightforward, as the only
parameter is 𝑘 and many indexing strategies are available (e.g., BWT-index), spaced seeds
bring two challenges: designing good seeds and indexing spaced 𝑘-mers. We elaborate on
this below.

Many bioinformatics programs use variants of spaced seeds, e.g., PatternHunter [459,
471, 472] and YASS [281] for similarity search; Zoom [279], ELAND, BFast [188], Perm
[271], PLAST [473], SToRM [352], LAST [173], SHRiMP 2 [187], Seed BLAST [474],
SASS [475], Diamond [356], GraphMap [195] and WALT [318] for similarity search and
read alignment, or seed-Kraken [3] and CLARK-S [476] for metagenomic classification.
From the perspective of the final program, a spaced seed is usually a parameter, which is
either specified by the user or is hardcoded in the program. The seed should be carefully
designed using some method described below or using some specialized program for seed
design, such as Iedera [477] and RasBhari [478].

We now briefly overview main classes of spaced seeds and associated computational
problems.

Seeds for lossless text filtration. Spaced seeds for lossless text filtration are formal-
ized using so-called (𝑚, 𝑘)-problem. For a given 𝑚 and 𝑘, a seed 𝑄 solves the (𝑚, 𝑘)-
problem if it can detect strings in Hamming distance ≤ 𝑘 among strings of length 𝑚. For
a precise mathematical definition of the (𝑚, 𝑘)-problem, see Appendix A. The efficiency of
lossless filtration is measured by the selectivity, which corresponds to number the weight
of the seeds. Roughly speaking, our aim is to maximize this value in order to reduce the
false positive rate of the resulting filter.

Lossless seeds were first introduced in [457, 458]. It was shown [479, 480] that deciding
whether a seed solves an (𝑚, 𝑘)-problem is an NP-complete task. Asymptotic properties
of optimal lossless seeds, i.e., those with maximal possible weight, were described in [481,
482] and [483, 484]. Various mathematical objects were shown to be related to lossless
spaced seeds, namely perfect rulers [485, 486], quadratic residues [487] (for their usage
within the lossy framework, see [488]), or Steiner systems [489].

From the practical viewpoint, lossless seeds are of less importance than lossy seeds,
but they have remarkable mathematical properties. It has been observed [481, 482, 490,
4, 489] that good seeds tend to be very regular, often being a repetition of a short pattern.
As we show in Appendix A, this regular structure is a consequence of the fact that lossless
seeds form regular languages generated by certain de-Bruijn graphs. Periodic seeds are
useful in practice as they simplify their indexing. This fact is exploited, e.g., in mappers
PerM [271], LAST [173] and WALT [318].

Seeds for lossy text filtration. Lossy seeds were first introduced in PatternHunter
[472, 471, 459]. While lossless seeds guarantee that all strings up to a specified Hamming
distance will be found by filtration, lossy seeds may miss a fraction of them, but the
associated false positive rate can be kept under control. This property is desirable in
practice, therefore, most of the seed-based mappers mentioned at the beginning of this
section use lossy seeds. A seed extension of BLAST, called Seed BLAST [474], uses this
approach as well.

32 CHAPTER 3. MAIN TECHNIQUES OF PAIRWISE SEQUENCE COMPARISON

The efficiency of lossy filtration is measured by two parameters called sensitivity and
selectivity, where the former measures the rate of false negatives and the latter the rate of
false positives. While the sensitivity of a seed can be roughly estimated from its weight,
the computation of the sensitivity is a complicated task (see, e.g., [491, 492] and the
references therein). Moreover, this number depends on the used probabilistic model (e.g.,
Bernoulli). Various methods for its estimation for different probabilistic models have been
studied see, e.g., [493, 494, 495].

It has been shown that sensitivity correlates with the so-called overlapping complexity
[496], which can be easily computed. Programs SpEED [496] and RasBhari [478] exploit
this property in combination with the hill climbing algorithm.

In addition to SpEED and RasBhari, there exist two more tools, Iedera [477] and
Mandala [497]. In particular, Iedera can be highly recommended as it implements various
probabilistic models and provides a good performance in designing spaced seeds of different
types.

Seeds for classification. Spaced seeds have a potential to improve 𝑘-mer-based clas-
sification methods, notably kernel-based methods [464] and alignment-free metagenomic
classification. In Chapter 11, [3] we show that spaced seeds combined with the hit number
and the coverage improve the accuracy of metagenomic classification.

Design of seeds for classification has not been much studied, yet. It can be based on
maximization of the Pearson or Spearman correlation between alignment score, and the
number of hits or the coverage. Such a design is supported, e.g., by Iedera [477].

Methods for alignment-free phylogeny estimation using spaced 𝑘-mers [460, 461] are
related to the classification problem because they also implicitly rely on estimates of
alignment score from the hit count. Note that metagenomic classification has also been
studied from the viewpoint of discriminative spaced 𝑘-mers [498].

Clustering. Spaced seeds have also been used for clustering of NGS reads [499] in or-
der to reduce time and memory requirements of genome assembly. The authors of [499]
provided a method to design so-called block spaced seeds for the purpose of clustering.

Chapter 4

Data structures for NGS data
analysis

In this chapter, we shortly present main data structures relevant to our work.
In general, selecting an appropriate data structure and its implementation is
a non-trivial task. The choice of data structure may strongly influence the
performance of the program as well as obtained results. This choice has to be
done carefully and take into account properties of the underlying problem and
possible size of the data (e.g., many programs are intentionally limited to run
on model genomes such as the human genome).

4.1 Hash tables

A hash table is a data structure to represent associative arrays storing collections of
(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pairs. The value of the hash function applied to the key is used as the index
in the table. Hash tables have been widely studied in computer science, and various
hashing schemes are known in the literature. Several mainstream libraries for hash tables
are widely used in bioinformatics, such as khash (part of klib1), std::unordered_map
(part of the C++ standard library), boost::unordered_map (part of Boost2), or Google
SparseHash3.

4.2 Classical full-text indexes

In this section, we present two classical text indexes: suffix trees and suffix arrays. Even
though we do not use them directly in our software, they are predecessors of the BWT-
index which has probably been the most widely used index in bioinformatics for the last
years. Both of them constitute an index for a text string 𝑇 supporting string matching
queries: retrieve all occurrences of a given pattern 𝑃 in 𝑇 . The number of occurrences of
𝑃 in 𝑇 is usually denoted by 𝑜𝑐𝑐.

Suffix tree. Suffix tree [500] is one of the most studied data structures in stringology.
The suffix tree is defined as the compacted trie of all suffixes of the input string. Suffix

1https://github.com/attractivechaos/klib
2http://www.boost.org/
3https://github.com/sparsehash/sparsehash

33

https://github.com/attractivechaos/klib
http://www.boost.org/
https://github.com/sparsehash/sparsehash

34 CHAPTER 4. DATA STRUCTURES FOR NGS DATA ANALYSIS

trees can be constructed in linear time and space such that searching for a pattern 𝑃 can
then be done in time 𝑂(|𝑃 |), and reporting all occurrences of 𝑃 in time 𝑂(|𝑃 | + 𝑜𝑐𝑐).

As a pointer-based structure, the suffix trees need 𝑂(𝑛) computer words but 𝑂(𝑛 log(𝑛))
bits of memory. Unfortunately, the resulting memory requirements are so high that suffix
trees are now rarely used in real programs. One of a few exceptions is, e.g., MUMmer
[169]. To illustrate the memory problem on a practical example, MUMmer would need
more than 45 GB for the human genome (in practice, MUMmer fails to run on the human
genome due to limits on the maximal string length). For more information and references
on suffix trees, we refer e.g. to [500],[501, Chapter 8]. Other variants of suffix trees have
been studied such as compressed suffix tree, truncated suffix tree, or affix trees.

Suffix array. Suffix array [502] is another very popular data structure. Unlike suffix
trees, suffix arrays are widely used in practice but still suffer from high memory con-
sumption. It has been shown in [503] that every algorithm that uses the suffix tree can
systematically be replaced by an algorithm that uses a particular variant of suffix arrays
so that it solves the same problem with the same time complexity. Therefore, suffix arrays
are capable to fully replace suffix trees in practical applications.

The suffix array is a permutation of the positions of 𝑇 taken in the lexicographical
order of corresponding suffixes. Searching for a pattern 𝑃 corresponds to identifying those
suffixes of 𝑇 which have 𝑃 as a prefix. Since the suffixes are sorted lexicographically,
the suffixes prefixed by 𝑃 are consecutive in the suffix array and form an interval. Its
borders 𝐿u� and 𝑅u� can be found by binary search, with time complexity 𝑂(|𝑃 | log(|𝑇 |)).
If we are provided the longest common prefix array (LCP) (i.e., the array of lengths of
two consecutive prefixes after their sorting), the complexity of search can be reduced to
𝑂(|𝑃 | + log |𝑇 |) [502].

Several variants of suffix arrays have been introduced such as dynamic suffix arrays
[504] or spaced suffix arrays [505]. For an overview of state-of-the-art methods of suffix
array construction see [505]. Implementations suitable for practical purposes are, e.g.,
SDSL-Lite [506], libdivsufsort4, or QSufSort [507, 508].

4.3 BWT-index

Burrows-Wheeler transform. The Burrows-Wheeler transform [509] (commonly ab-
breviated as BWT) is a textual transform widely used for compression (e.g., in bzip25) and
for indexing, in particular in the so-called BWT-index (e.g., in BWA [178]). These appli-
cations of the Burrows-Wheeler transform (BWT) are possible thanks to its reversibility
and properties of the resulting strings such as grouping identical letters together.

To transform a string, a special character ‘$’ is appended to its end and all its cyclic
shifts are sorted lexicographically. The last column of the matrix having these shifts in
its rows (the so-called Burrows-Wheeler matrix) is the resulting BWT. The BWT can be
easily extracted from the suffix array constructed with any of the algorithms from the
previous section.

Many aspects of BWT have been studied including its relations to combinatorics on
words [510] (e.g., relations to Sturmian words [511], to palindromic richness [512], to
balance properties of words [513], or to the Gessel-Reutenauer transformation [514]), its

4https://github.com/y-256/libdivsufsort
5http://www.bzip.org/

https://github.com/y-256/libdivsufsort
http://www.bzip.org/

4.3. BWT-INDEX 35

statistical properties (e.g., entropy [515]), or its combinatorial relationship with suffix
arrays [516].

Specific variants and generalizations have been considered such as bijective BWT [517,
518, 519]; dynamic BWT [520], or bi-directional BWT [521]. For BWT construction
algorithms specifically designed for NGS data, we refer to [522, 523, 524]. For additional
general information about BWT, see [525] and references therein.

BWT-index. The BWT-index [190] (sometimes also called FM-index) is a full-text
index combining BWT and suffix arrays. It has been shown [190] that with the BWT
string 𝐵, a table 𝑂(𝑎, 𝑖) storing the number of occurrences of each letter 𝑎 in the prefix
of 𝐵 of length 𝑖, and a table 𝐶(𝑎) storing multiplicities of letter 𝑎 in 𝐵, it is possible to
simulate the pattern search in the suffix array. Starting with the entire interval of the
suffix array corresponding to the empty pattern, we obtain the resulting interval in |𝑃 |
steps by processing 𝑃 right-to-left. The intervals of the suffix array are updated according
the the following formula:

𝐿u�u� = 𝐶(𝑎) + 𝑂(𝑎, 𝐿u� − 1) + 1
𝑅u�u� = 𝐶(𝑎) + 𝑂(𝑎, 𝑅u�)

However, the positions of pattern occurrences have still to be retrieved from the resulting
interval 𝐿u� , … , 𝑅u� of the BWT. This can be done using the suffix array. The main trick of
the BWT-index is sampling the 𝑂 and suffix arrays, leading to a smaller memory footprint
compared to normal suffix arrays.

Many libraries implement the BWT-index, e.g., Seqan [141], SDSL-lite [506], or nvbio6

(GPU implementation). A number of NGS read mappers are based on BWT-indexes (see
Section 3.1.4) providing some efficient implementations. The implementations from BWA
[178] (partially based on [200]) and Bowtie [179] are particularly popular choices.

Note that many variants of the BWT-index have been suggested including BWT-index
for graphs [367, 368], BWT-index of alignments [526, 527], bi-directional BWT-index [528,
529, 530], relative BWT-index [531], or dynamic BWT-index [532].

6https://nvlabs.github.io/nvbio/fmindex_page.html

https://nvlabs.github.io/nvbio/fmindex_page.html

36 CHAPTER 4. DATA STRUCTURES FOR NGS DATA ANALYSIS

Part II

Dynamic read mapping

37

39

Contents - Part II
5 Context and motivation 41

5.1 Introduction . 41
5.2 Our contributions . 42

6 RNF: a framework to evaluate NGS read mappers 43
6.1 Introduction . 43
6.2 Methods . 44

6.2.1 Read Naming Format (RNF) . 44
6.2.2 RNFtools . 46

6.3 Results . 47
6.4 Conclusion . 47

7 Ococo: the first online consensus caller 49
7.1 Introduction . 49
7.2 Methods . 49

7.2.1 Consensus calling algorithm . 49
7.2.2 Compact representation of variant statistics 50
7.2.3 Update strategies . 51

7.3 Implementation and availability . 51

8 DyMaS: a dynamic mapping simulator 53
8.1 Introduction . 53
8.2 Methods . 55

8.2.1 Simulation algorithm . 55
8.2.2 Iterative referencing . 56

8.3 Implementation . 56
8.4 Evaluation . 57
8.5 Results . 58

9 Discussion 63

40

Chapter 5

Context and motivation

5.1 Introduction

High-throughput sequencing technologies (Next-Generation Sequencing, commonly ab-
breviated NGS) made available terabases of DNA sequence data coming from numerous
de-novo and resequencing experiments.

A central computational problem in NGS data analysis is inferring the original DNA
sequence of an individual from a large set of NGS reads, i.e., short sequence fragments
generated by a sequencing machine. This task is usually solved by mapping reads to
a high-quality reference sequence or by a computationally expensive genome assembly
algorithm.

Here we study genotyping by sequencing when a reference sequence is available. A typ-
ical pipeline for inferring the genotype of a sequenced individual consists of the following
steps (see, e.g, [533, 534]). Reads obtained from a sequencer are mapped to the reference
sequence and low quality alignments are discarded. Aligned reads are further sorted and
possibly locally re-assembled or re-aligned around indels in order to better distinguish
SNPs from indels. Systematic biases in base qualities can be further removed from the
reads in a base quality recalibration step. Then, variants are called (either for each indi-
vidual separately or jointly for a group of them) and genotype likelihoods inferred. At the
final step, variant qualities are recalibrated, and variants filtered and annotated.

In such a pipeline, read mapping is a crucial step affecting overall results. The ultimate
goal of a read mapper [199, 198] is to align NGS reads or their parts to their “true origin”
in the reference genome, inferring their positions and occurred variants. To achieve this
goal, each read is aligned to the most similar region(s) in the reference determined by the
alignment scores.

There are several factors that make mapping a challenging task in practice. Genome
sequences are highly repetitive and often contain several regions equally similar to a read.
Employing a sequencing technology producing long or paired-end reads can alleviate but
not completely eliminate this difficulty. Reliability of mapping strongly depends on how
much the sequenced genome differs from the reference. Close individuals (such as those of
the same species) usually differ only weakly and highly variable regions tend to be rare.
For distant individuals, evolutionary events (such as genomic rearrangements or gene
duplications) may cause more substantial differences between the two genomes making it
impossible to deduce the true origin of some reads using similarity search. Sequencing
errors constitute another major obstacle. Their rate strongly depends on the employed
technology – from Illumina HiSeq producing reads of 100 bp with about 1% of errors to

41

42 CHAPTER 5. CONTEXT AND MOTIVATION

PacBio SMRT and Oxford Nanopore producing reads of up to several tens of thousand bp
with about 15% of errors – and on the experimental conditions. Furthermore, some reads
may come from regions absent in the reference sequence or may result from contamination
by DNA from other genomes. Such reads should be detected and annotated by the mapper,
i.e. marked as unaligned or as aligned with low quality. Finally, the sheer volume of input
data makes of mapping a computationally demanding task constraining the choice of
the underlying algorithm. For instance, whole genome sequencing projects of the human
genome of 3 Gbp often use more than 30× coverage.

As a consequence of the above, practical read mappers must represent a fine-tuned
trade-off between memory requirements, speed and sensitivity, and incorporate specific
characteristics of target sequencing technologies. The software must be highly optimized,
parallelized, and well-debugged. Today, most common practical mappers include BWA-
MEM [180], Bowtie 2 [181], GEM [191], LAST [173], and NovoAlign. These mappers align
reads coming in a stream, in the online fashion, against a fixed reference sequence. Since
the reference is unchanging, we call such an approach static mapping.

Despite a great deal of work on mapping techniques and a large number of existing map-
pers (see Chapter 3), the mapping process remains error prone and often produces wrong
placement of reads, partial mappings, or incorrectly considers reads as non-mappable.
Furthermore, another inherent drawback of static mapping is the bias introduced by al-
leles which differ between the reference and sequenced genomes as alleles present in the
reference tend to be favored in the alignment of reads. This may seriously affect the results
of the analysis [535].

We propose a dynamic read mapping approach that significantly improves read align-
ment accuracy. The general idea of dynamic mapping is to continuously update the
reference sequence on the basis of previously computed read alignments. Even though
this concept already appeared in the literature, we believe that our work provides the first
comprehensive analysis of this approach

5.2 Our contributions
In Chapter 6, we provide a generic format Read Naming Format (RNF) for assigning read
names with encoded information about original positions an associated software pack-
age RNFtools. This toolkit is particularly designed for comparison of different mapping
approaches and we use it later for evaluation of dynamic mapping.

In Chapter 7, we present Ococo, the first consensus caller capable to process input
reads in the online fashion from an unsorted SAM/BAM stream. The resulting algorithm,
supporting substitution updates, uses a compact statistics scheme based on small bit
counters. An online consensus caller is a required componed for dynamic mapping.

In Chapter 8, we introduce DyMaS, a dynamic mapping simulator that mimics dif-
ferent dynamic mapping scenarios and enables to evaluate their benefits. We show that in
all alternatives, dynamic mapping results in a much better accuracy than static mapping.

Chapter 6

RNF: a general framework to
evaluate NGS read mappers

We present a generic format Read Naming Format (RNF) for assigning read
names with encoded information about original positions. Furthermore, we
present an associated software package RNFtools containing two principal
components. MIShmash applies one of popular read simulating tools (among
DWGsim, ART, Mason, CuReSim, etc.) and transforms the generated reads
into RNF format. LAVEnder evaluates then a given read mapper using simu-
lated reads in RNF format. A special attention is payed to mapping qualities
that serve for parametrization of ROC curves, and to evaluation of the effect
of read sample contamination. RNFtools is available from http://github.
com/karel-brinda/rnftools and RNF specification from http://github.
com/karel-brinda/rnf-spec.

6.1 Introduction
The number of Next-Generation Sequencing (NGS) read mappers has been rapidly growing
during the last years. Then, there is an increasing demand of methods for evaluation and
comparison of mappers in order to select the most appropriate one for a specific task. The
basic approach to compare mappers is based on simulating NGS reads, aligning them to
the reference genome and assessing read mapping accuracy using a tool evaluating if each
individual read has been aligned correctly.

As we have seen in Chapter 2.4, there exist many read simulators (e.g., ART [81],
CuReSim [96], DNemulator [107], DWGsim1, FASTQSim [83], FLOWSIM [95], GemSIM
[87], Mason [78], PBSIM [76], pIRS [77], SInC [88], WGsim2, XS [110]) as well as many
evaluation tools (e.g., CuReSimEval, DWGsim_eval, MAF3, RABEMA [536], Seqsuite4,
Teaser [537], WGsim_eval, etc.). However, each read simulator encodes information about
the origin of reads in its own manner. This makes combining tools complicated and makes
writing ad-hoc conversion scripts inevitable.

Here we propose a standard for naming simulated NGS reads, called Read Naming
Format (RNF), that makes evaluation tools for read mappers independent of the tool

1http://github.com/nh13/dwgsim
2http://github.com/lh3/wgsim
3http://github.com/vsbuffalo/maf
4http://cbrc3.cbrc.jp/~martin/seg-suite/

43

http://github.com/karel-brinda/rnftools
http://github.com/karel-brinda/rnftools
http://github.com/karel-brinda/rnf-spec
http://github.com/karel-brinda/rnf-spec
http://github.com/nh13/dwgsim
http://github.com/lh3/wgsim
http://github.com/vsbuffalo/maf
http://cbrc3.cbrc.jp/~martin/seg-suite/

44 CHAPTER 6. RNF: A FRAMEWORK TO EVALUATE NGS READ MAPPERS

used for read simulation. Furthermore, we introduce RNFtools, an easily configurable
software, to obtain simulated reads in RNF format using a wide class of existing read
simulators, and also to evaluate NGS mappers.

Simulation of reads. A typical read simulator introduces mutations into a given refer-
ence genome (provided usually as a FASTA file) and generates reads as genomic substrings
with randomly added sequencing errors. Different statistical models can be employed to
simulate sequencing errors and artefacts observed in experimental reads. The models
usually take into account CG-content, distributions of coverage, of sequencing errors in
reads, and of genomic mutations. Simulators can often learn their parameters from an
experimental alignment file.

At the end, information about origin of every read is encoded in some way and the
reads are saved into a FASTQ file.

Evaluation of mappers. When simulated reads are mapped back to the reference se-
quence and possibly processed by an independent post-processing tool (remapping around
indels, etc.), an evaluation tool inputs the final alignments of all reads, extracts infor-
mation about their origin and assesses if every single read has been aligned to a correct
location (and possibly with correct edit operations). The whole procedure is finalized by
creating a summarizing report.

Various evaluation strategies can be employed (see, e.g., introduction of [96]). Final
statistics usually strongly depend on the definition of a correctly mapped read, mapper’s
approach to deal with multi-mapped reads and with mapping qualities.

Existing read naming approaches. Depending on the read simulator, information
about the read’s origin is either encoded in its name, or stored in a separate file, possibly
augmented with information about the expected read alignment. While WGsim encodes
the first nucleotide of each end of the read in the read name, DWGsim and CuReSim
encode the leftmost nucleotide of each end. Unfortunately, these read naming schemes were
specifically designed for particular sequencing technologies and single evaluation strategies,
therefore they are not suitable as generic formats. ART produces SAM and ALN alignment
files, MASON creates SAM files, and PIRS makes text files in its own format.

6.2 Methods
We have created RNF, a standard for naming simulated reads. It is designed to be robust,
easy to adopt by existing tools, extendable, and to provide human-readable read names.
It respects a wide range of existing sequencing technologies as well as their possible future
evolution (e.g., technologies producing several “subreads”). We then developed a utility
for generating RNF-compliant reads using existing simulators, and an associated mapper
evaluation tool.

6.2.1 Read Naming Format (RNF)

Read tuples. Read tuple is a tuple of sequences (possibly overlapping) obtained from
a sequencing machine from a single fragment of DNA. Elements of these tuples are called
reads. For example, every “paired-end read” is a read tuple and both of its “ends” are
individual reads in our notation.

6.2. METHODS 45

Coor 12345678901-2345678901234567890123456789

Source 1 - reference genome
chr 1 ATGTTAGATAA-GATAGCTGTGCTAGTAGGCAGTCAGCCC
chr 2 ttcttctggaa-gaccttctcctcctgcaaataaa

Source 2 - generator of random sequences

READS:
r001 ATG-TAGATA ->
r002/1 TTAGATAACGA ->
r002/2 <- TCAG-CGGG
r003/1 tgcaaataa ->
r003/2 gaa-gacc-t ->
r004 ATAGCT............TCAG ->
r005 GTAGG ->

<- agacctt
<- TCGACACG

r006 ATATCACATCATTAGACACTA

(a) Simulated reads
r. tuple LRN SRN

r001 sim__1__(1,1,F,01,10)__[single-end] #1
r002 sim__2__(1,1,F,04,13),(1,1,R,31,39)__[paired-end] #2
r003 sim__3__(1,2,F,09,17),(1,2,F,25,33)__[mate-pair] #3
r004 sim__4__(1,1,F,15,36)__[RNA-seq-spliced],C:[6=12N4=] #4
r005 sim__5__(1,1,R,15,22),(1,1,F,25,29),(1,2,R,05,11)__[chimeric] #5
r006 rnd__6__(2,0,N,00,00)__[rand-contamin] #6

(b) Long and short read names

Figure 6.1: Examples of RNF reads. Examples of simulated reads (in our definition
read tuples) and their corresponding RNF names, which can be used as read names in
the final FASTQ file: a single-end read (r001); a paired-end read (r002); a mate-pair read
(r003); a spliced RNA-seq read (r004); a chimeric read (r005); and a random contaminating
read with unspecified coordinates (r006).

To every read tuple, two strings are assigned: a short read name (SRN) and a long read
name (LRN). SRN contains a hexadecimal unique ID of the tuple prefixed by ’#’. LRN
consists of four parts delimited by double-underscore: i) a prefix (possibly containing
expressive information for a user or a particular string for sorting or randomization of
order of read tuples), ii) a unique ID, iii) information about origins of all segments (see
below) that constitute reads of the tuple, iv) a suffix containing arbitrary comments or
extensions (for holding additional information). Preferred final read names are LRNs. If
an LRN exceeds 255 (maximum allowed read length in SAM), SRNs are used instead and
a SRN–LRN correspondence file must be created.

Segments. Segments are substrings of a read which are spatially distinct in the reference

46 CHAPTER 6. RNF: A FRAMEWORK TO EVALUATE NGS READ MAPPERS

and correspond to individual lines in a SAM file5 Thus, each read has an associated chain
of segments and we associate a read tuple with segments of all its reads.

Within our definition, a “single-end read” (Fig. 6.1, r001) consists of a single read with
a single segment unless it comes from a region with genomic rearrangement. A “paired-end
read” or a “mate-pair read” (Fig. 6.1, r002 and r003) consists of two reads, each with one
segment (under the same condition). A “strobe read” consists of several reads. Chimeric
reads (i.e., reads corresponding to a genomic fusion, a long deletion, or a translocation;
Fig. 6.1, r005) have at least two segments.

For each segment, the following information is encoded: leftmost and rightmost 1-based
coordinates in its reference, ID of its reference genome, ID of the chromosome and the
direction (’F’ or ’R’). The format is:
(genome_id,chromosome_id,direction,L_coor,R_coor).

Segments in LRN are recommended to be sorted with the following keys: source,
chromosome, L_coor, R_coor, direction. When some information is not available (e.g.,
the rightmost coordinate), zero is used (’N’ in case of direction; Fig. 6.1, r006).

Extensions. The basic standard can be extended for specific purposes by extensions.
They are part of the suffix and encode supplementary information (e.g., information about
CIGAR strings, sequencing errors, or mutations).

6.2.2 RNFtools

We also developed RNFtools, a software package associated with RNF. It has two principal
components: MIShmash for read simulation and LAVEnder for evaluation of NGS read
mappers. RNFtools has been created using Snakemake [538], a Python-based Make-like
build system. All employed external programs are installed automatically when needed.
The package also contains a lightweight console tool rnftools which can, in addition,
be used for conversion of existing data and transformation of RNF coordinates using a
LiftOver chain file.

MIShmash. MIShmash is a pipeline for simulating reads using existing simulators
and combining obtained sets of reads together (e.g., in order to simulate contamination
or metagenomic samples). Its output files respect RNF format, therefore, any RNF-
compatible evaluation tool can be used for evaluation.

LAVEnder. LAVEnder is a program for evaluating mappers. For a given set of BAM
files, it creates an interactive HTML report with several graphs. In practice, mapping
qualities assigned by different mappers to a given read are not equal (although mappers
tend to unify this). Moreover, even for a single mapper, mapping qualities are very data-
specific. Therefore, results of mappers after the same thresholding on mapping quality are
not comparable. To cope with this, we designed LAVEnder to use mapping qualities as
parameterization of curves in ‘sensitivity-precision’ graphs (like it has been done in [180]).

5Since spliced RNA-seq reads (Fig. 6.1, r004) are usually reported in single lines in SAM, we recommend
to keep them in single RNF segments without splitting even though they might be considered spatially
distinct.

6.3. RESULTS 47

#c
or

re
ct

ly
 m

ap
pe

d
re

ad
s

/ #
re

ad
s

w
hi

ch
 s

ho
ul

d
be

 m
ap

pe
d

Correctly mapped reads in all reads which should be mapped

FDR in mapping (#wrongly mapped reads / #mapped reads)

 BWA-MEM
 BWA-SW

 Bowtie2
 Yara

50 %

60 %

70 %

80 %

90 %

100 %
10-4 10-3 10-2 10-1 100

(a) ROC curves for all mappers.

P
ar

t o
f a

ll
re

ad
s

(%
)

BWA-MEM

FDR in mapping (#wrongly mapped reads / #mapped reads)

Unmapped correctly
Unmapped incorrectly
Thresholded correctly

Thresholded incorrectly
Multimapped

Mapped, should be unmapped
Mapped to wrong position

Mapped correctly

0 %

20 %

40 %

60 %

80 %

100 %
10-2 10-1

(b) Categories of reads for a single mapper.

Figure 6.2: Contamination experiment. All LAVEnder graphs have false discovery
rate on 𝑥-axis and use mapping quality as the varying parameter for plotted curves.

6.3 Results
To test the entire framework and verify its functionality, we simulated 200, 000 single-end
reads from human and mouse genomes (100, 000 from HG38, 100, 000 from MM10) by
DWGsim using MIShmash and mapped them using Bowtie 2 [181], BWA-MEM [180],
BWA-SW [185], and YARA [208] to HG38. Then we evaluated the obtained alignments
using LAVEnder (Figure 6.2). This experiment revealed that YARA copes with contami-
nation better than Bowtie 2 [181], BWA-MEM [180], and BWA-SW [185]. In particular,
the ability to distinguish contamination was demonstrated to be very low in case of the
BWA family.

6.4 Conclusion
We designed the RNF format and proposed it as a general standard for naming simulated
NGS reads. We developed RNFtools consisting of MIShmash, a pipeline for read simula-
tion, and LAVEnder, an evaluation tool for mappers, both following the RNF convention
(thus inter-compatible). Currently, MIShmash has a built-in interface with the following
existing read simulators: ART, CuReSim, DWGsim, Mason, and WGsim.

We expect that authors of existing read simulators will adopt RNF naming convention
as it is technically simple and would allow them to extend the usability of their software.
We also expect authors of evaluation tools to use RNF to make their tools independent of
the used read simulator.

48 CHAPTER 6. RNF: A FRAMEWORK TO EVALUATE NGS READ MAPPERS

Chapter 7

Ococo: the first online consensus
caller

We present Ococo, the first online consensus caller. Ococo reads alignments
in an unsorted SAM/BAM stream and, employing compact statistics using
small bit counters, decides about single-nucleotide updates of the reference
sequence. The updates are reported in the online fashion using unsorted VCF.
Ococo is available from http://github.com/karel-brinda/ococo, BioConda
and Homebrew Science.

7.1 Introduction

A dynamic mapper has to collect statistics about previously mapped reads. When this
statistics accumulates a sufficient evidence of a difference at a certain locus between se-
quenced and reference genomes, an update of the reference is reported that triggers a
corresponding update of the index. This process is the same as the usual consensus calling
except that it has to be performed in the online (streamed) fashion. In Chapter 9 we
provide further remarks on the biological relevance of the consensus and on the effect of
ploidy.

Here, we consider consensus calling as SNP calling using reads coming from a single
individual. SNP calling is a widely studied problem (see, e.g., [539, 176, 540, 541, 287,
533, 542, 543, 544, 545, 546]) but to the best of our knowledge, all published solutions are
offline, i.e, all reads have to be aligned and sorted prior to the calling step. Variants are
inferred from differences between aligned reads and the reference and are usually stored
in VCF format [547] together with confidence scores. They are then filtered in order to
keep only those which are reliable enough, in particular those which do not correspond to
sequencing errors. After that, they are incorporated into the original reference to obtain
the consensus.

7.2 Methods

7.2.1 Consensus calling algorithm

Regular offline variant callers usually operate by sliding a small window through the
genome and keeping in memory information (read alignments, mapping qualities, base

49

http://github.com/karel-brinda/ococo

50 CHAPTER 7. OCOCO: THE FIRST ONLINE CONSENSUS CALLER

Incoming A-counter C-counter G-counter T-counter Sum
base bin dec bin dec bin dec bin dec

010 2 110 6 001 1 010 2 11 Initial state
C 010 2 111 7 001 1 010 2 12 C-counter incr.
T 010 2 111 7 001 1 011 3 13 T-counter incr.
C 001 1 011 3 000 0 001 1 5 All counters bit-

shifted to right
001 1 100 4 000 0 001 1 6 C-counter incr.

Figure 7.1: Internal statistics of an online consensus caller. This example shows
how 3-bit counters keep reduced truncated pileup information for a single position. The
counters with initial values (2, 6, 1, 2) are incremented after nucleotides C, T, C have been
received for this position. After receiving C and T, the corresponding counters have been
simply incremented. Then, after receiving C, all counters are bit-shifted before the C-
counter is incremented.

qualities) collected within individual windows. After variants are detected, their signifi-
cance scores are computed using the underlying statistical model.

In online consensus calling, reads come from a stream and can map to random positions,
therefore our “window” must be the entire genome. As a consequence, we can afford storing
only a limited information about processed read alignments. Ococo only deals with single-
nucleotide replacement updates, other types of updates will be considered in Discussion.
Ococo supports two distinct working modes of an online consensus caller. In the real-time
mode, suitable for dynamic mapping, updates are computed and incorporated into the
reference after processing every read. In the batch mode, reads are processed in batches
and updates are made after processing all reads of a batch, which can be an appropriate
solution, e.g, for the hybrid approach (see Discussion).

7.2.2 Compact representation of variant statistics

As opposed to traditional offline consensus callers, an online caller can keep only a very
reduced information about alignments. As a result, a space associated with a single
position must be limited to a few bytes if we want to keep the statistics in RAM.

For example, in the case of human genome and 6 GB of dedicated RAM (note that the
caller is likely to run jointly with other programs such as a read mapper), only up to two
bytes per position can be used by the consensus caller. If indels are not considered, the
full statistics should contain four integer counters per position, one per nucleotide. Our
solution is to keep only most significant bits of each counter. If a counter is saturated
but should be incremented, we first bit-shift all the four counters to the right losing the
rightmost (least significant) bit, and then increment the counter. An example is given in
Fig. 7.1. This mechanism makes it possible to compute nucleotide frequencies in a limited
space and, as a side effect, to filter out sequencing errors that are expected to be randomly
distributed. At the beginning of the calling procedure, counters are initialized according
to the reference sequence (if it is provided), then counters are updated according to the
read nucleotides aligned at the corresponding position.

7.3. IMPLEMENTATION AND AVAILABILITY 51

7.2.3 Update strategies

When a counter is incremented, we have to decide whether this triggers an update. We
propose two different strategies for updates, a majority strategy and a stochastic strategy.
For the sake of simplicity and speed, both strategies consider genomic positions indepen-
dently and take the decision on the basis of the counters associated with the position. This
approach can be potentially improved, at the cost of an additional time, by considering a
small window and using Bayesian inference (see, e.g., [539, 545]) to decide on updates.

Let 𝐶(u�)
u� be the value of the 𝛼-counter at position 𝑗 for a nucleotide 𝛼 ∈ {𝐴, 𝐶, 𝐺, 𝑇 }

and let 𝐶(u�) = ∑u�∈{u�,u�,u�,u�} 𝐶(u�)
u� .

Majority strategy. The reference sequence at position 𝑗 is updated to 𝛼 once the
condition 𝐶(u�)

u� ≥ 1
2𝐶(u�) holds, i.e., 𝛼 reaches the majority at this position. This strategy

results in a moderate number of updates which tend to vanish when the updating process
reaches saturation. On the other hand, this strategy may not be flexible enough to avoid
the alignment bias.

Stochastic strategy. When a counter is incremented, a new base at the corresponding
position is drawn randomly from current counter values: the base is set to 𝛼 with proba-
bility u�(u�)

u�
u�(u�) . Note that each sequencing error present in a read causes an increment of the

corresponding counter and can, with a small probability, flip the corresponding nucleotide
in the reference. Therefore, small fluctuations of the reference sequence can occur even
in the hypothetical case of the reference being equal to the sequenced genome. However,
a major advantage of this strategy is the reduction of the alignment bias. For diploid or
polyploid genomes, the reference will be constantly oscillating between all variants. On the
downside, this strategy may generate a large number of updates resulting in a significant
overhead.

Note that neither of these two strategies depends on a particular counting mechanism,
therefore they can be potentially used with a more complex and expressive statistics.

7.3 Implementation and availability
Ococo1 supports single-nucleotide updates, and implements both stochastic and majority
update strategies as well as both real-time and batch modes. The software is implemented
in C++ and can be integrated into a genomic pipeline or linked directly to a mapper as
a library. It can be installed also using the Homebrew Science2 and BioConda3 package
systems.

Ococo currently supports three counters configurations: 16, 32, and 64 bits per position
corresponding to 3, 7, and 15 bits per a single nucleotide counter, respectively. Updates
in the reference sequence can be either recorded using “unsorted VCF” or can be directly
incorporated in a FASTA file (possibly memory-mapped).

1http://github.com/karel-brinda/ococo
2http://brew.sh/homebrew-science/
3http://bioconda.github.io

http://github.com/karel-brinda/ococo
http://brew.sh/homebrew-science/
http://bioconda.github.io

52 CHAPTER 7. OCOCO: THE FIRST ONLINE CONSENSUS CALLER

Chapter 8

DyMaS: a dynamic mapping
simulator

To evaluate the benefits of dynamic mapping, we developed DyMaS (Dynamic
Mapping Simulator), a software pipeline that mimics different dynamic map-
ping scenarios. We applied the pipeline to compare dynamic mapping with
the conventional static mapping and, on the other hand, with the so-called
iterative referencing – a computationally expensive procedure computing an
optimal modification of the reference that maximizes the overall quality of all
alignments. We conclude that in all cases, dynamic mapping results in a much
better accuracy than static mapping, approaching the accuracy of iterative
referencing. The DyMaS pipeline and the all other scripts and files from this
chapter are available from http://github.com/karel-brinda/dymas.

8.1 Introduction

In the course of mapping, read alignments computed so far provide a useful information
about allelic differences between sequenced and reference sequences, which can be a helpful
guide for adjusting future mappings, or can even call for remapping previously mapped
reads. In this chapter, we study the dynamic mapping approach when the reference
sequence is continuously updated based on already computed alignments, and show that
this can significantly improve the quality of mapping. Fig. 8.1 provides an illustration
to this idea. The general goal of our work is to analyse the pros and cons of dynamic
mapping and to provide accurate quantitative estimates supporting our analysis.

Design and implementation of dynamic mapping constitute a difficult task. One major
obstacle is that the underlying index data structure for the reference sequence must sup-
port dynamic updates. There are two main types of indexing structures used by modern
mappers. The first one relies on full-text indexes, in particular on BWT-index [548], and
is used, among others, by the BWA family [178, 185, 180], GEM [191], or Bowtie 2 [181].
Another group is based on hash tables and includes such mappers as SHRiMP2 [187],
PerM [271], NovoAlign, BFast [188], StamPy [257], and others. Generally speaking, hash
table-based structures require a much larger memory space and, therefore, projects dealing
with large data (such as whole eukaryotic genomes) usually use mappers of the first group.
On the other hand, BWT-index hardly lends itself to dynamic updates. One attempt to
implement dynamic updates of BWT-index was made in [532, 520, 504], another approach

53

http://github.com/karel-brinda/dymas

54 CHAPTER 8. DYMAS: A DYNAMIC MAPPING SIMULATOR

…AGCCAATAATGACGTGAAATCCGTGGTAGCCTGTAGC…
 AGCCGTGGTAGCCTG
 AAGACGTGAAAGCGG
 ACGTGAAAGCCGTGG
…AGCCAATAATGACGTGAAAGCCGTGGTAGCCTGTAGC…
 TGAAAGCCGTGGTAG
 CGTAAAGCGGTGGT

Initial REF

read mapped

read mapped

read mapped

REF updated T→G

read mapped

read mapped

Figure 8.1: Demonstration of idea of dynamic mapping. In dynamic mapping,
reference sequence is updated according to already mapped reads. In this example, aligned
reads suggest that the base at the highlighted position is G rather than T, and the reference
is corrected as soon as G is supported by sufficiently many reads. To guide the updates,
a dynamic mapper must be equipped with an online consensus caller distinguishing SNPs
and sequencing errors. Disagreements between aligned reads and the reference (sequencing
errors, SNPs and indels) are highlighted in red and updates of the reference in blue.

was studied in [531]. In both cases, provided implementations are only experimental and
cannot be considered as ready-to-use tools for large-scale dynamic mapping. A dynamic
𝑘-mer-based index has very recently been proposed in [549].

Another important component of dynamic mapping is online consensus calling which
guides the updates of the reference. An online consensus caller must support quick updates
of the reference after new read alignments have been computed. This requires keeping,
in a compact form, a genome-wide statistics of possible variants, such as a truncated
pileup information. Finally, a dynamic mapper may have to support remapping of already
mapped reads.

Dynamic mapping has been little studied so far and only two partial experimental
solutions with naive mapping algorithms are available [377, 378]. Program DynMap
[377] implements a data structure specifically designed for mapping reads to a dynam-
ically updated sequence. Unfortunately, space complexity of DynMap is linear in the
number of reads which makes it hardly applicable to contemporary sequencing technolo-
gies. Manuscript [378] (apparently unpublished) is the first attempt to systematically
analyse the benefit and the overhead of dynamic mapping using a simple dedicated tool
(https://github.com/jpritt/fm-update). With an index based on dynamic suffix ar-
ray [504], the accuracy of dynamic mapping has been compared to iterative referencing,
depending on the mutation rate, read length, number of reads and sequencing error rate.
The author of [378] also considered the problem of statistics reduction and suggested to
use coverage vectors in order to take only first 𝑘 reads for each base of the reference.

In this chapter, we present a software pipeline for simulating various alternatives of
dynamic mapping. We then provide a comparative analysis of different dynamic mapping
scenarios on several datasets simulated from bacterial genomes, using the previously devel-
oped RNFtools framework [2]. Obtained results show that dynamic mapping can provide
a significant improvement of the accuracy of read alignment compared to traditional map-
ping approaches. The pipeline software and the results of our experiments are available
from http://github.com/karel-brinda/dymas.

https://github.com/jpritt/fm-update
http://github.com/karel-brinda/dymas

8.2. METHODS 55

Iterations:
S
et

of
a
ll

re
ad

s

(A) SM

1

(B) Sim. DM-ideal

1................................1,000,000

(C) Sim. DM

1............20

(D) Sim. DM-remap

1..........20

(E) IR

1...4

Figure 3. Simulation of dynamic mapping. This schematic view shows how dynamic mapping and iterative
referencing are simulated in Dynamic Mapping Simulator using a static mapper alone. Subsets of reads to be mapped
in individual iterations are shown by vertical lines. In static mapping (SM) (3A), all reads are mapped in a single
iteration. Figure 3B illustrates an ideal, but not feasible, simulation when consensus is called after each new read is
mapped. In practice, reads are processed by batches (Figure 3C,3D). Dynamic mapping (DM) with (3D) and without
(3B,3C) remapping is simulated using nesting or disjoint subsets of reads, respectively. Figure 3E illustrates iterative
referencing (IR). In all scenarios 3B - 3E, each iteration is followed by consensus calling and index rebuilding.

One technical point here is that if indel updates are supported by the procedure, the coordinates of
downstream loci can be shifted, which would require a transformation of alignments of r1, . . . , ri from the
coordinate system of Gi−1 to that of Gi. We will focus on this point in Discussion.

The above approach faithfully simulates dynamic mapping without remapping (i.e. without reconsidering
previously computed read alignments), however it cannot be used in practice since the computationally
demanding index rebuilding has to be performed too many times. To overcome this obstacle, we observe that at
every iteration i, new updates can be reported only at positions covered by the newly mapped read ri. We can
then partition reads into t batches Q1, . . . , Qt, for some t� p, such that the alignments of any two reads from
the same batch do not overlap. This can be achieved, e.g., by assigning only dissimilar reads to the same batch.
Now the algorithm works in t iterations and at iteration i ∈ {1, . . . , t}, all the reads from batch Qi are mapped,
which makes the whole procedure fast enough.

In practice, however, computing such batches is a complex task in itself, and instead of fully avoiding overlaps,
we minimize them. We choose t large enough and partition reads into t equal-size batches Q1, . . . , Qt (Fig. 3C).
If the average coverage per iteration Ci satisfies

Ci =

∑
r∈Qi length(r)

length(G)
� 1

for every i ∈ {1, . . . , t}, then overlaps are rare.
Until now, we considered dynamic mapping without remapping. To measure the potential effect of remapping,

we slightly modify the previous algorithm. At iteration i, instead of Qi, we map the whole set Q1 ∪ . . . ∪Qi (see
Fig. 3D). Note that such an algorithm simulates the ideal situation when a dynamic mapper remaps all reads
which can be better aligned after an update of the reference.

To summarize, dynamic mapping is simulated as follows. Given a set of reads and a reference genome G, we
define Ci, compute corresponding number of iterations t and randomly split reads into batches Q1, . . . , Qt of
nearly equal size. Then, every iteration consists of three steps: re-building the index according to the current
version of the reference, mapping reads, and calling consensus. Depending on whether we choose to perform
remapping or not, mapping step i involves Q1 ∪ . . . ∪Qi or Qi respectively.

6/21

Figure 8.2: Simulation of dynamic mapping. This schematic view shows how dynamic
mapping and iterative referencing are simulated in Dynamic Mapping Simulator using a
static mapper alone. Subsets of reads to be mapped in individual iterations are shown
by vertical lines. In static mapping (SM) (A), all reads are mapped in a single iteration.
Figure B illustrates an ideal, but not feasible, simulation when consensus is called after
each new read is mapped. In practice, reads are processed by batches (Figure C,D). Dy-
namic mapping (DM) with (D) and without (B,C) remapping is simulated using nesting
or disjoint subsets of reads, respectively. Figure E illustrates iterative referencing (IR). In
all scenarios B – E, each iteration is followed by consensus calling and index rebuilding.

8.2 Methods

8.2.1 Simulation algorithm

Suppose that we have a reference genome 𝐺 and a set of reads 𝑅 = {𝑟1, … , 𝑟u�} that have
to be mapped to 𝐺. A dynamic mapping can be simulated using a static mapper and
an off-line consensus caller by iterating 𝑝 times the following algorithm. Let 𝐺u� be the
reference genome obtained after iteration 𝑖, where 𝑖 ∈ {1, … , 𝑝}, and let 𝐺0 = 𝐺. At
iteration 𝑖, we build an index for the reference 𝐺u�−1, map read 𝑟u� to 𝐺u�−1, call consensus
from alignments of 𝑟1, … , 𝑟u�, and build a new reference 𝐺u� (see Fig. 8.2B). The difference
with the truly dynamic mapping is that instead of modifying the reference index after
mapping a new read, we rebuild it from scratch.

One technical point here is that if indel updates are supported by the procedure, the
coordinates of downstream loci can be shifted, which would require a transformation of
alignments of 𝑟1, … , 𝑟u� from the coordinate system of 𝐺u�−1 to that of 𝐺u�. We will focus
on this point in Discussion.

The above approach faithfully simulates dynamic mapping without remapping (i.e.
without reconsidering previously computed read alignments), however it cannot be used
in practice since the computationally demanding index rebuilding has to be performed too
many times. To overcome this obstacle, we observe that at every iteration 𝑖, new updates
can be reported only at positions covered by the newly mapped read 𝑟u�. We can then
partition reads into 𝑡 batches 𝑄1, … , 𝑄u�, for some 𝑡 ≪ 𝑝, such that the alignments of any
two reads from the same batch do not overlap. This can be achieved, e.g., by assigning

56 CHAPTER 8. DYMAS: A DYNAMIC MAPPING SIMULATOR

only dissimilar reads to the same batch. Now the algorithm works in 𝑡 iterations and at
iteration 𝑖 ∈ {1, … , 𝑡}, all the reads from batch 𝑄u� are mapped, which makes the whole
procedure fast enough.

In practice, however, computing such batches is a complex task in itself, and instead of
fully avoiding overlaps, we minimize them. We choose 𝑡 large enough and partition reads
into 𝑡 equal-size batches 𝑄1, … , 𝑄u� (Fig. 8.2C). If the average coverage per iteration 𝐶u�
satisfies

𝐶u� =
∑u�∈u�u�

length(r)
length(G)

≪ 1

for every 𝑖 ∈ {1, … , 𝑡}, then overlaps are rare.
Until now, we considered dynamic mapping without remapping. To measure the po-

tential effect of remapping, we slightly modify the previous algorithm. At iteration 𝑖,
instead of 𝑄u�, we map the whole set 𝑄1 ∪ … ∪ 𝑄u� (see Fig. 8.2D). Note that such an
algorithm simulates the ideal situation when a dynamic mapper remaps all reads which
can be better aligned after an update of the reference.

To summarize, dynamic mapping is simulated as follows. Given a set of reads and
a reference genome 𝐺, we define 𝐶u�, compute corresponding number of iterations 𝑡 and
randomly split reads into batches 𝑄1, … , 𝑄u� of nearly equal size. Then, every iteration
consists of three steps: re-building the index according to the current version of the refer-
ence, mapping reads, and calling consensus. Depending on whether we choose to perform
remapping or not, mapping step 𝑖 involves 𝑄1 ∪ … ∪ 𝑄u� or 𝑄u� respectively.

8.2.2 Iterative referencing

To analyze the contribution of dynamic mapping, we compare it to static mapping and, on
the other hand, to the so-called iterative referencing [550]. Iterative referencing (sometimes
called iterative read mapping or iterative remapping) consists in repeatedly mapping all
reads followed by consensus calling, see Fig. 8.2E. Thus, each update of the reference is
inferred from all read alignments spanning this locus, and the whole mapping procedure
is iterated until the convergence of the reference is reached. Clearly, iterative indexing is a
costly method, unfeasible for large datasets, as the index building and the mapping of the
whole read set has to be performed several times. On the other hand, iterative indexing
tends to produce an optimal variant of the reference that maximizes the overall quality
of all alignments. Therefore, in our work we use iterative referencing as a reference for
evaluating the quality of dynamic mapping. Various forms of iterative referencing have
previously been used in [551, 552, 553, 554, 555, 556, 557, 558, 559, 560].

8.3 Implementation
We developed Dynamic Mapping Simulator1, a pipeline for comparative evaluation of
three mapping methods: static mapping, dynamic mapping (with or without remapping),
and iterative referencing (Fig. 8.3).

For a given reference genome, reads with mutations and sequencing errors are simulated
by RNFtools [2] using DWGsim2. Obtained reads are then distributed into FASTQ files
for individual iterations (see Fig. 8.2). Each iteration starts with a mapping step (using
BWA-MEM [180] or Bowtie 2 [181]) producing a BAM file. At the consensus calling step,

1http://github.com/karel-brinda/dymas
2https://github.com/nh13/DWGSIM

http://github.com/karel-brinda/dymas
https://github.com/nh13/DWGSIM

8.4. EVALUATION 57

a VCF file with updates is created. Two ways of calling consensus have been implemented.
One way is calling consensus using Ococo (see the previous section) directly from unsorted
BAM files coming from the mapper. An alternative way is sorting the alignments and
producing a pileup file using SAMtools [122], followed by consensus calling via an ad
hoc Python script. Finally, reported updates are incorporated into the reference using
BCFtools [561] and the index is rebuilt.

Note that consensus calling using Ococo is much faster since it avoids the time-
demanding sorting step, however it supports only substition updates. In calling from
pileup, deletions and insertions are additionally supported, but the simulation may be
slightly less accurate as alignments are processed in the increasing order of starting posi-
tions which differs from the order of the original stream. Furthermore, before the evalua-
tion step, read coordinates encoded in RNF names (see below) must be recoded into the
current coordinate system in accordance with obtained liftOver chain files.

The entire pipeline is implemented using Snakemake [538] with SMBL (Snakemake
Bioinformatics Library3). Each component (read mapping, pileup computation, consensus
calling, etc.) has a standalone easily modifiable Python class. In several auxiliary scripts,
GNU Parallel [562] has been used.

8.4 Evaluation

To compare the three mapping methods (static mapping, dynamic mapping, iterative ref-
erencing), we use the RNFtools framework [2]. Within this approach, names of simulated
reads store information about their position in the reference. Comparing these coordinates
with those reported by mapper allows us to evaluate the correctness of the mapping.

Given a set of BAM files corresponding to iterations of dynamic mapping and iterative
referencing, RNFtools creates:

• Data files for all iterations containing the amount of reads of different categories as
a function of the threshold on mapping quality.

• Graphs visualizing progressive updates of the ROC curve through individual itera-
tions (see Fig. 8.4A).

• Graphs displaying fractions of different categories of reads processed in individual
iterations (see Fig. 8.4B).

• Interactive HTML report with all previous data and figures.

All graphs have false discovery rate (FDR) on their 𝑥-axes. A lower FDR corresponds to
a higher threshold on mapping quality, hence a larger number of reads that do not pass
quality filtering.

Correctness of an alignment is estimated with respect to its leftmost coordinate. De-
pending on the tolerance provided to RNFtools, fully-aligned or partially aligned reads
can be considered correctly aligned. This allows us to distinguish different consequences
of dynamic mapping on the reported alignments.

3https://github.com/karel-brinda/smbl

https://github.com/karel-brinda/smbl

58 CHAPTER 8. DYMAS: A DYNAMIC MAPPING SIMULATOR

Experiment Reference genome Contaminating genome

Exp. 1 Borrelia garinii (NC_017717.1) (no contamination)
length 905,534 bp
coverage 10× (91,856 reads)

Exp. 2 Mycobacterium tuberculosis (NC_018143.2) Borrelia garinii (NC_017717.1)
length 4,411,709 bp length 905,534 bp
coverage 10× (447,481 reads) coverage 5× (45,928 reads)

Exp. 3 Neisseria meningitidis (NC_017513.1) Borrelia garinii (NC_017717.1)
length 2,184,862 bp length 905,534 bp
coverage 10× (221,616 reads) coverage 5× (45,928 reads)

Exp. 4 Solibacter usitatus (NC_008536.1) Borrelia garinii (NC_017717.1)
length 9,965,640 bp length 905,534 bp
coverage 10× (1,010,810 reads) coverage 5× (45,928 reads)

Table 8.1: Experiments conducted with Dynamic Mapping Simulator.

8.5 Results

Experimental setup and representation of results. To evaluate the effect of dy-
namic mapping, we applied our Dynamic Mapping Simulator in a series of four experiments
(Table 8.1). Each experiment focused on a specific reference genome. In all experiments ex-
cept one, we considered, in addition, “contamination” reads coming from another genome.
This allowed us to analyze the consequences of sample contamination by other genomes
as well as presence of reads issued from regions absent in the reference sequence.

Experiment 1 evaluates different modes of dynamic mapping on a short genome without
any contamination. Experiment 2 highlights the impact of contamination. Experiments 3
and 4 focus on two particular types of bacterial genomes, namely a highly repetitive genome
(Neisseria meningitidis) and a long genome (Solibacter usitatus, 10.0 Mbp), respectively.

Within each experiment, we measured the mapping performance for different modes:
static mapping, dynamic mapping and iterative referencing with or without remapping,
with or without calling deletions, with or without calling both insertions and deletions
(indels). The performance of each mapping strategy is represented by a ROC curve on a
chart relating the fraction of incorrectly mapped reads (false discovery rate) to the fraction
of correctly mapped reads among all reads that should be mapped (Fig. 8.5 and Fig. 8.4A).
This ’sensitivity-precision’ curve uniformly represents the mapping quality on the whole
range of parameters and independently of the specific scoring system, score threshold and
other involved specific parameters [2]. We also partition reads in eight categories based
on whether they are mapped or unmapped correctly (Fig. 8.4B).

• Reads that should be mapped are subdivided into categories Mapped correctly (mapped

8.5. RESULTS 59

Mapping
(BWA-MEM / Bowtie2)

Unsorted BAM

Alignment sorting
(SAMtools)

Sorted BAM Pileup calling
(SAMtools)

Pileup

Offline consensus
calling

(ad hoc Python script)

VCF

Update of
the reference

(BCFtools)

LiftOver
Chain file

FASTA
Reference sequence

Read simulation
(RNFtools with

DWGsim)
FASTQFASTA

Sequenced genome

FASTA
Contamination

Simulation using
OCOCOSimulation using

ad hoc script

Online consensus
calling

(OCOCO)

STOP
Last iteration?

Figure 8.3: Dynamic Mapping Simulator: overview of the pipeline. Reads are
selected for mapping as illustrated in Fig. 8.2. Reference sequence is repeatedly corrected
according to the consensus called from already mapped reads. If insertion or deletion
updates are allowed, LiftOver Chain file is used to update RNF coordinates in read names.

to correct position, passed quality filter), Mapped to wrong position (mapped to incorrect
position, passed quality filter), Multimapped (multiple reported alignments passed qual-
ity filter including the correct alignment), Thresholded incorrectly (should be mapped
but was discarded by quality filter), Unmapped incorrectly (incorrect assignment of flag
‘unmapped’).

• Reads that should not be mapped (i.e. coming from contamination) are split into
Unmapped correctly (correct assignment of flag ‘unmapped’), Mapped, should be unmapped
(mapped and passed quality filter), Thresholded correctly (mapped but filtered out).

Technically, in the case of dynamic mapping and iterative referencing, a run of the
pipeline produces a set of BAM files, each file storing results of an individual iteration of
the mapping algorithm. The final result is considered the one of the last iteration.

Analysis of the results. We provide a comprehensive comparative view of different
scenarios of dynamic mapping and iterative referencing, contrasted with the regular static
mapping (Fig. 8.5). The first immediate observation is that for each experiment, all curves
have a similar shape and can be ordered to have a strictly increasing performance. This
supports the observation that their difference is only due to the quality of the reference
sequence.

As expected, both dynamic mapping and iterative referencing are significantly better
than static mapping. In the first approximation, iterative referencing and dynamic map-
ping with remapping provide comparable results, with iterative referencing being slightly
superior. The latter is natural, as iterative referencing uses all read alignments to make
decisions about updates, while dynamic mapping uses only a part of them. On the other
hand, results of dynamic mapping without remapping are significantly worse than those of
dynamic mapping with remapping. This means that many reads processed in the begin-
ning of the mapping process are inaccurately aligned, which significantly affects the overall
results. Thus, correction of those alignments appears an essential step for improving the
mapping procedure.

We observe from that indel updates bring a consistent improvement (Fig. 8.5). More-
over, even supporting deletions alone leads to a more accurate mapping, and accounting for
both deletions and insertions of events improves the accuracy even further. Note however
that supporting indels by a truly dynamic mapper runs into a hard algorithmic problem

60 CHAPTER 8. DYMAS: A DYNAMIC MAPPING SIMULATOR

of dynamic updates of the underlying data structure and online consensus calling (see
Introduction and Discussion).

We found that contamination of read data by sequences from another genome did not
have any qualitative consequences on the results. When contamination was introduced,
qualities of all runs had been decreased comparably.

Technical observations. We also experimented with using Bowtie 2 as a mapping
subroutine. A particularity of Bowtie 2 is that it has both global and local alignment
modes, whereas BWA-MEM performs only local alignment. This allowed us to compare
the impact of these modes on the results of the pipeline. Our conclusion is that dynamic
mapping should be used in combination with a local alignment algorithm. In the case of
global alignment, starting and ending bases of a read tend to be aligned incorrectly in
highly mutated regions, which causes statistics corruption and, as a consequence, wrong
updates resulting in a damaged reference.

Usage of per-base alignment qualities which has been shown to decrease the amount
of false positives in updates [563] has not provided any improvement in our experiments.
However, this might be because we do not simulate structural variants for which such a
recalibration can improve the accuracy of calling.

We also compared the effect of different amount of statistics stored by a consensus
caller (see section above on consensus caller). We found that the default Ococo option of
16 bits per position did not produce a loss of accuracy compared to the option of 32 bits
per position (data not shown).

Detailed reports. Full data, HTML reports, and detailed information about performed
experiments can be found in directories Experiments and Reports at http://github.com/
karel-brinda/dymas.

http://github.com/karel-brinda/dymas
http://github.com/karel-brinda/dymas

8.5. RESULTS 61

(A)

#c
or

re
ct

ly
 m

ap
pe

d
re

ad
s

/ #
re

ad
s

w
hi

ch
 s

ho
ul

d
be

 m
a

pp
ed

Dynamic mapping with remapping

FDR in mapping(#wrongly mapped reads / #mapped reads)

Iterations

00000
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019

80 %

85 %

90 %

95 %

100 %

10-2 10-1

#c
or

re
ct

ly
 m

ap
pe

d
re

ad
s

/ #
re

ad
s

w
hi

ch
 s

ho
ul

d
be

 m
a

pp
ed

Iterative referencing

FDR in mapping(#wrongly mapped reads / #mapped reads)

Iterations

00000
00001
00002
00003
00004

80 %

85 %

90 %

95 %

100 %

10-2 10-1

(B)

P
ar

t o
f a

ll
re

ad
s

(%
)

Static mapping

FDR in mapping(#wrongly mapped reads / #mapped reads)

70 %

75 %

80 %

85 %

90 %

95 %

100 %

10-2 10-1

P
ar

t o
f a

ll
re

ad
s

(%
)

Dynamic mapping with remapping

FDR in mapping(#wrongly mapped reads / #mapped reads)

70 %

75 %

80 %

85 %

90 %

95 %

100 %

10-2 10-1

P
ar

t o
f a

ll
re

ad
s

(%
)

Iterative referencing

FDR in mapping(#wrongly mapped reads / #mapped reads)

Unmapped correctly
Unmapped incorrectly
Thresholded correctly

Thresholded incorrectly
Multimapped

Mapped, should be unmapped
Mapped to wrong position

Mapped correctly

70 %

75 %

80 %

85 %

90 %

95 %

100 %

10-2 10-1

Figure 8.4: Detailed report of a selected run of Experiment 3. Pipelines have been
run using BWA-MEM mapping algorithm, with the option of indel calling. Reads were
simulated with sequencing error rate 0.02 from mutated Neisseria meningitidis genome
(mutation rate 0.07) with coverage 10× and contaminated by reads from Borrelia garinii
with coverage 5×. (A) Comparison of ROC (Receiver Operating Characteristic) curves
of all iterations of simulated dynamic mapping with remapping (left) and of iterative
referencing (right). (B) Categories of reads after static mapping, dynamic mapping with
remapping, and iterative referencing. Fractions of different categories of reads depending
on the level of precision (false discovery rate) for static mapping (left), dynamic mapping
with remapping (center) and iterative referencing (right).

62 CHAPTER 8. DYMAS: A DYNAMIC MAPPING SIMULATOR

80

85

90

95

100

10-2 10-1#c
or

re
ct

ly
 m

ap
pe

d
re

ad
s

/ #
re

ad
s

w
hi

ch
 s

ho
ul

d
be

 m
a

pp
ed

Experiment 1

FDR (#wrongly mapped reads / #mapped reads)

SM
DM (noremap)

DM
DM (dels)

DM (indels)
IR

IR (indels)
80

85

90

95

100

10-2 10-1#c
or

re
ct

ly
 m

ap
pe

d
re

ad
s

/ #
re

ad
s

w
hi

ch
 s

ho
ul

d
be

 m
a

pp
ed

Experiment 2

FDR (#wrongly mapped reads / #mapped reads)

SM
DM (noremap)

DM
DM (dels)

DM (indels)
IR

IR (indels)

80

85

90

95

100

10-2 10-1#c
or

re
ct

ly
 m

ap
pe

d
re

ad
s

/ #
re

ad
s

w
hi

ch
 s

ho
ul

d
be

 m
a

pp
ed

Experiment 3

FDR (#wrongly mapped reads / #mapped reads)

SM
DM (noremap)

DM
DM (dels)

DM (indels)
IR

IR (indels)
80

85

90

95

100

10-2 10-1#c
or

re
ct

ly
 m

ap
pe

d
re

ad
s

/ #
re

ad
s

w
hi

ch
 s

ho
ul

d
be

 m
a

pp
ed

Experiment 4

FDR (#wrongly mapped reads / #mapped reads)

SM
DM (noremap)

DM
DM (dels)

DM (indels)
IR

IR (indels)

Figure 8.5: Comparison of mapping strategies. Comparison of static mapping
(SM), dynamic mapping without calling indels (DM), with calling deletions (DM (dels)),
with calling indels (DM (indels)), without remapping (DM (noremap)), and iterative ref-
erencing without calling indels (IR), with calling deletions (IR (dels)), with calling indels
(IR (indels)) for every experiment.

Chapter 9

Discussion

Consensus sequence and ploidy Even though consensus is primarily used as a techni-
cal mean to obtain better alignments, the consensus sequence has a biological significance.
If the sequenced genome is haploid, the final consensus tends to correspond to this genome.
If it is diploid, the consensus will only contain one variant nucleotide of each SNP, or can
even contain none of them if both variants are supported by approximately equal num-
bers of reads. However, an online consensus calling algorithm can be extended to support
diploid genomes as well, provided that ambiguous bases are supported by the mapping
algorithm and the underlying index (similarly, e.g., to [259] or [243]). The consensus would
then be updated to an ambiguous nucleotide if two distinct variants have been observed
at this position.

Non-substitution updates Updates other than substitutions (insertions, deletions,
segment reversals, etc.) are difficult to support in dynamic mapping for two main rea-
sons. Firstly, they entail changes in genomic coordinates, and therefore either all reported
alignments have to be translated into the coordinate system of the final consensus se-
quence (which may require local realignment of reads), or differences between the original
reference sequence and the current consensus have to be continuously recorded in a dedi-
cated data structure allowing the retrieval of original coordinates. Secondly, appropriate
counters and calling algorithms have to be designed for each type of updates.

If we are limited to deletions only, these problems can be solved by using a padded
reference sequence (see, e.g., [564]) and introducing specific counters for deletions. Then,
deletions are treated in consensus calling in the same way as mismatches, after extending
the nucleotide alphabet by an additional letter ‘*’. If both insertions and deletions have to
be supported, the algorithm becomes much more difficult to implement. Using a padded
reference allows one to only support insertions at positions from a pre-specified list (by
introducing ‘*’ at these positions), or at positions where a deletion has previously been
made. A full support of insertions of arbitrary length and occurring at arbitrary positions
remains an open problem that is still awaiting a practical algorithmic solution.

Databases of SNPs SNP databases such as dbSNP [371] can be incorporated into
dynamic mapping in two ways. We can either use an SNP database to set initial values
of online consensus caller counters, or restrict the updates only to SNPs recorded in the
database. Restricting possible updates would reduce the computational complexity of the
whole algorithm and would improve the accuracy of processing those updates by keeping

63

64 CHAPTER 9. DISCUSSION

a richer variant statistics and improving indel calling. Note that this approach can be
viewed as a particular case of path projection, see section Reference graphs.

Pileup information As a side product of dynamic mapping, a simplified pileup infor-
mation can be obtained (for more information about the pileup format, see SAMtools
documentation [122]). Therefore, NGS methods supporting pileup as input format (such
as those of [565, 566]) can be combined with dynamic mapping in order to avoid expensive
steps of alignment sorting and pileup calling. Note that while dynamic mapping causes
a constant-factor slow-down of the mapping step – from time 𝑡 to time 𝑘𝑡, where 𝑘 is a
deceleration constant specific to each dynamic mapping algorithm – the sorting step has
𝑛 log(𝑛) time complexity, where 𝑛 is the number of reads, which often makes this step the
most time demanding of the pipeline.

In the Ococo online consensus calling algorithm (see Methods), several pieces of in-
formation are lost compared to the “standard pileup” (as produced by SAMtools): in-
formation about base qualities and alignment qualities, order of bases (only counts are
kept), distinction of strands (forward or reverse), deletions and insertions. Moreover, the
pileup is truncated when the counter capacity is lower than the maximal coverage in the
experiment.

At the price of an additional memory consumption, the counting mechanism can be
modified to recover the distinction of strands (via doubling all counters) and the count of
deletions (via adding a specific counter for deletions, see section Non-substitution updates).
Truncating can be avoided in Ococo already now by setting the size of counters large
enough.

Hybrid approach Many computational pipelines are deployed on clusters of many
nodes, which enables to combine online consensus calling with static mapping in a sim-
ilar way as dynamic mapping without remapping has been simulated. More specifically,
one particular node would be assigned to collect alignments from mapping nodes and to
call consensus online in the batch mode. Another node, in charge of maintaining the in-
dex, could iteratively retrieve the current consensus, rebuild the index and distribute it
to mapping nodes. Such a hybrid approach (combining dynamic mapping and iterative
referencing) remains to be verified in practice.

Sequencing in streaming mode Most of existing sequencers are technically possible
to be run in a streaming mode, and several studies [567, 568, 569, 570, 571, 572] already
considered the streaming mode in various tasks. Moreover, practical software solutions
for streaming sequencing have already been proposed [573].

In the context of dynamic mapping, streaming sequencing can be particularly benefi-
cial, as produced reads can be directly piped to a dynamic mapper. Then the sequencing
can be kept on until the internal statistics gets saturated and the consensus sequence be-
comes stable enough. After these combined sequencing and mapping steps, only a certain
amount of last reported alignments should be used for the subsequent analysis. The reason
is that, as follows from the comparison of dynamic mapping with and without remapping
(Fig. 8.5), reads mapped to a mature consensus are aligned more accurately.

Detection of somatic cancer mutations Somatic cancer mutations are often very
underrepresented in the reads as tumor samples are contaminated by normal cells and, on
the other hand, somatic mutations are often specific to particular subclones of the tumor.

65

Therefore, frequencies of somatic cancer mutations can be even lower than the sequencing
error rate, which makes their accurate detection very hard (see, e.g., [574]). To deal with
this issue, normal (control) samples need to be sequenced in addition to tumor samples
to allow for a comparative analysis – see, e.g., papers [575, 576, 577, 578, 579, 565, 574,
580] on detecting single-nucleotide variants or papers [581, 582, 565, 566] on copy-number
abberations.

To deal with low mutation frequencies, methods have to rely on high-quality align-
ments. As we showed in our work, dynamic mapping can produce significantly more
accurate alignments, which results in a better identification of somatic mutations proxi-
mal to SNPs. Note that cancer SNV databases such as COSMIC [583] can be incorporated
into dynamic mapping, as it was with SNP databases (see section Databases of SNPs).

Low somatic mutation frequencies make it necessary to employ a high sequencing
coverage which in turn results in a longer processing time because of the slow alignment
sorting step. However, this step can be avoided by working directly with the simplified
pileup (see section on Pileup information).

Long reads Sequencing technologies producing long reads, such as Pacific Biosciences
single-molecule real-time sequencing or Oxford Nanopore sequencing, have recently emerged.
Compared to traditional NGS platforms such as Illumina MiSeq or HiSeq, they produce
considerably longer reads with higher rates of errors, especially indels. This situation
calls for new algorithms specifically designed for long reads, and dynamic mapping can be
helpful in several ways here.

Some methods of long read correction (see, e.g., [584]) proceed by aligning short reads
to long reads, possibly in a way similar to iterative referencing (see, e.g., [558]). Within
these alignment-based methods, dynamic mappers have a great potential to improve the
mapping step. However, considering the type of errors in long reads, indel updates have
to be supported by the mapper (see section Non-substitution updates).

Another perspective is applying dynamic mapping of long reads. Unfortunately, con-
sensus calling from long read alignments appears to be a hard problem even in the offline
setting, due to observed error profiles. For instance, genome assembly algorithms apply
sophisticated techniques based on partial order graphs to obtain a good consensus (see,
e.g., [585]). In order to adapt dynamic mapping to long reads, update strategies in online
consensus calling have to be significantly improved, in particular a single update decision
has to take into account counter information at multiple positions. This approach requires
a better statistical modeling and deserves further research.

Guided genome assembly If a high quality reference genome is not available, the ap-
proach based on read mapping and variant calling cannot be applied directly. Instead, a
computationally expensive genome assembly (see, e.g., [115]) becomes unavoidable. Nev-
ertheless, when a reference genome for a related species is available, it can be exploited in
order to speed up the assembly process or to improve the quality of produced assemblies.
This approach is known as reference-guided assembly or assisted assembly. Either a single
[586, 587, 588] or multiple [589] reference genomes are used as references for auxiliary
read alignment to create contigs, or a reference helps to combine assembled contigs [590,
591, 592, 593]. In those approaches where mapping of or to contigs is employed, dynamic
mapping can help in a similar way to what was discussed in section Long reads (contigs
can be viewed as a special case of long reads).

66 CHAPTER 9. DISCUSSION

Phylogenetic inference A class of methods of phylogenetic inference relies on read
mapping. In those methods, reads are mapped to one or multiple references, SNP posi-
tions are extracted and a phylogenetic tree is reconstructed, typically using a maximum
likelihood technique. It has been shown [594] that even in the case of relatively low degree
of divergence between queried and reference sequences, the mapping bias can cause inaccu-
rate estimations of the distance which results in incorrect tree topologies. The correction
capacity of dynamic mapping could reduce this bias and produce better phylogenetic dis-
tances, which constitutes a promising application of dynamic mapping.

Reference graphs As the traditional concept of sequences as reference structures has
become insufficient [362], reference graphs (sometimes also called variation graphs) appear
to be a more appropriate model than reference sequences. Therefore, new techniques of
mapping to reference graphs [373, 372, 365, 367, 366, 374, 294, 522], as well as implemen-
tations of reference graphs [595, 596, 597] are now a subject of intensive research.

Since state-of-the-art graph mappers (such as VG1 with GCSA2[522] as indexing com-
ponent) are still experimental and no dynamic mapper has been developed so far, a hypo-
thetical dynamic graph mapper can now be studied only from a theoretical viewpoint. Two
ways of combining dynamic mapping and mapping to reference graphs can be considered:
path projection and dynamic graphs.

In the path projection approach, a fixed graph reference is projected onto a linear
sequence. According to observed variants, the reference sequence is updated in such a
way that it still corresponds to some path in the graph reference. Therefore, this can be
considered as a form of dynamic mapping with a restricted set of allowed updates specified
by the graph reference. Decisions about updates can be done stochastically, similar to
stochastic consensus calling described in the Methods section. In such an approach, the
probability of a path to be selected should reflect the fraction of reads already mapped to
this path and their mapping qualities.

Implementing path projection requires a dynamic mapper with a particular online con-
sensus caller working with a graph reference. Instead of collecting statistics for individual
bases, it should collect statistics for paths in the graph. The main advantage of this ap-
proach is that it can be built on top of a mapping algorithm working with linear references
(such as BWA or Bowtie2). Note that very dissimilar parallel paths in the graph could
be decomposed into several smaller graphs to prevent extensive updates of the linearized
sequence.

In the dynamic graphs approach, the reference graph itself is updated according to
reads mapped so far. The graph is either extended by incorporating all observed variants
as new paths, or modified within the same topology, or both. In the first case, online
consensus calling can be completely avoided if all observed differences are incorporated
to the graph. However, all sequencing errors would then get included, which might result
in a massive growth of the graph. In the second case, an online consensus caller could be
similar to Ococo but with a support for reference graphs. In both cases, the underlying
graph structure and the corresponding index must support updates.

Future work Implementing an efficient dynamic mapper remains an open problem, how-
ever most critical ingredients of such an implementation have already been developed. An
online consensus calling algorithm has been implemented in the Ococo program within our

1https://github.com/vgteam/vg

https://github.com/vgteam/vg

67

work, and a promising dynamic 𝑘-mer index called SkipPatch has been recently reported
in [549]. Altogether, implementing a dynamic mapper limited to substitution updates and
“restricted” indel updates (see paragraph Non-substitution updates) appears nowadays as
a challenging but mainly engineering task.

Several other algorithmic problems remain open when more general updates are con-
sidered. The main open problem is to design a more complex framework to maintain
variation statistics in compact space through the mapping procedure, including informa-
tion about arbitrary-length insertions and large-scale variants (inversions, transpositions,
etc.). A related problem is to define an optimal strategy for reference updates, based
on the collected statistics. This may involve building an appropriate probabilistic model,
generalizing the stochastic strategy we considered in this work.

With a fully dynamic mapper available, the improvement of alignment quality will
have to be evaluated for different tasks, such as variant calling, somatic mutation analysis,
reference guided assembly, phylogenetic inference, or processing long reads. Several new
perspectives of NGS data processing will open up, such as real-time mapping or real-time
reference-based variant calling.

It would be also interesting to explore applications of online consensus calling other
than dynamic mapping, e.g. to a distributed implementation of mapping with specific
processor nodes dedicated to correcting the reference and rebuilding the index (see Hybrid
approach).

68 CHAPTER 9. DISCUSSION

Part III

𝑘-mer-based metagenomic
classification

69

71

Contents - Part III
10 Overview 73

10.1 Introduction . 73
10.2 State-of-the-art . 75

10.2.1 Read classifiers . 75
10.2.2 Abundance estimators . 78
10.2.3 Metagenome distance estimators . 79

10.3 Goal of our work . 80

11 Spaced seeds for metagenomics 81
11.1 Introduction . 81
11.2 Preliminaries . 82
11.3 Results . 83

11.3.1 Binary classification . 83
11.3.2 Correlation of counts with alignment quality 87
11.3.3 Correlation on real genomes . 89
11.3.4 Large-scale experiments . 91

11.4 Conclusions . 95

12 ProPhyle: a BWT-based metagenomic classifier 99
12.1 Introduction . 99
12.2 General requirements on metagenomic classifiers 100
12.3 Design of ProPhyle . 101

12.3.1 Key algorithmic ideas . 101
12.3.2 ProPhyle index . 103
12.3.3 ProPhyle classification algorithm . 106

12.4 Results . 107

13 Discussion 111

72

Chapter 10

Overview

Metagenomics is a powerful approach to the study of environmental samples.
In this chapter, we provide an overview of state-of-the-art metagenomic meth-
ods.

10.1 Introduction

The advent of high-throughput sequencing technologies (Next-Generation Sequencing,
commonly abbreviated to NGS) revolutionized metagenomics, by avoiding the need of
cloning the DNA and thus greatly facilitating the obtention of metagenomic samples, at the
same time drastically decreasing its price. Early examples of metagenomic projects include
the analysis of samples of seawater [598, 599], human gut [17], or soil [600]. Present-day
metagenomic studies focus on various bacterial, fungal or viral populations, exemplified by
the Human Microbiome project [601] that investigates microbial communities at different
sites of human body.

Modern metagenomics deals with vast sequence datasets. On the one hand, metage-
nomic samples (metagenomes) obtained through NGS are commonly measured by tens or
even hundreds of billions of bp [602, 603]. These sequences generally come from a number
of different species, some of which either have a previously sequenced reference genome,
or have a related sequenced species sufficiently close phylogenetically to determine this re-
lationship by sequence comparison. Other sequences, however, may come from organisms
that have no sufficiently close relatives with sequenced genomes, or from DNA fragments
that show no significant similarity with any available genomic sequence. The metagenomic
classification problem is to assign each sequence of the metagenome to a corresponding
taxonomic unit, or to classify it as ‘novel’ (Figure 10.1).

A way to improve the accuracy of metagenomic classification is to match the metage-
nome against as large set of known genomic sequences as possible. With many thousands
of completed microbial genomes available today, modern metagenomic projects match
their samples against genomic databases of tens of billions of bp [454].

Alignment-based classifiers [114] proceed by aligning metagenome sequences to each of
the known genomes from the reference database, in order to use the best alignment score as
an estimator of the phylogenetic “closeness” between the sequence and the genome. This
could be done with generic alignment program, such as BLAST [161], BLASTZ [167], or
BLAT [175]. While this approach can be envisaged for small datasets (both metagenome
and database) and is actually used in such software tools as Megan [604] or PhymmBL

73

74 CHAPTER 10. OVERVIEW

Figure 10.1: Metagenomic classification. From a given environment (A), a biological
sample containing genetic material is extracted (B) and sequenced (C). The obtained
NGS reads (D) are then assigned to a taxonomic tree or classified as ‘novel’ (E). The
assignments can be performed either by aligning reads to the reference genomes (alignment-
based methods), or based on the composition of 𝑘-mers in the reads and in the reference
genomes (alignment-free methods).

[605] (see [114] for more information), it is unfeasible on the scale of modern metagenomic
projects. On the other hand, there exists a multitude of specialized tools for aligning NGS
reads – BWA [178], Novoalign1, GEM [220], Bowtie [179] and many others (see their list in
Chapter 3) – which perform alignment at a higher speed and are adjusted to specificities
of NGS-produced sequences. Still, aligning multimillion read sets against thousands of
genomes remains computationally difficult even with optimized tools. Furthermore, read
alignment algorithms are usually designed to compute high-scoring alignments only, and
are often unable to report low-quality alignments. As a result, a large fraction of reads
may remain unmapped [606].

Several techniques exist to reduce the computational complexity of this approach. One
direction is to pre-process the metagenomic sample in order to assemble reads into longer
contigs, potentially improving the accuracy of assignment. Assembly of metagenomic
reads has been a subject of many works (see [607]) and remains a fragile approach, due to
its error-proneness and high computational complexity. Overall, it appears feasible mostly
for small-size projects with relatively high read coverage.

To cope with increasingly large metagenomic projects, alignment-free methods have
recently come into use. These methods do not compute read alignments, thus do not come
with benefits of them, such as gene identification. Alignment-free sequence comparison is
in itself an established research area, reviewed in a recent dedicated special issue [608].
Most of alignment-free comparison methods are based on the analysis of words, usually of
fixed size (𝑘-mers), occurring in input sequences. A popular approach is to compute the
distance between frequency vectors of all 𝑘-mers in each of the sequences. In the context
of metagenomics, however, when one of the sequences is short (NGS read), the analysis is
based on the shared 𝑘-mers, without taking into account their multiplicities in reference
genomes. This is also dictated by the prohibitive computational cost of computing and
storing 𝑘-mer multiplicities for metagenomics-size data.

Two recently released tools – LMAT [610] and Kraken [454] – perform metagenomic

1http://www.novocraft.com/

http://www.novocraft.com/

10.2. STATE-OF-THE-ART 75

k-mers

Read

Index

queries

Figure 10.2: 𝑘-mer index for alignment-free metagenomic classification. An index
is built from a user-specified taxonomic tree and the set of reference genomes placed in
the leaves of the tree. When a 𝑘-mer is queried, the index retrieves either a single node in
the tree (e.g., Kraken [454]), or a list of nodes (e.g., ProPhyle [Chapter 12]), or a list of
nodes with weights (e.g., Vowpal Wabbit [609]).

classification of NGS reads based on the analysis of shared 𝑘-mers between an input read
and each genome from a pre-compiled database. Given a taxonomic tree involving the
species of the database, these tools “map” each read to a node of the tree, thus reporting
the most specific taxon or clade the read is associated with. Mapping is done by sliding
through all 𝑘-mers occurring in the read and determining, for each of them, the genomes
of the database containing the 𝑘-mer (Figure 10.2). Based on obtained counts and tree
topology, algorithms [610, 454] assign the read to the tree node “best explaining” the
counts.

10.2 State-of-the-art
Several other similar tools were published shortly after LMAT [610] and Kraken [454].
Here, we provide a short description of programs related to our work. We categorize
them into three categories: read classifiers contains programs assigning individual reads;
abundance estimators includes tools computing abundancies at some taxonomic level (e.g.,
at the level of species); metagenome distance estimators comprises utilities estimating
distances between metagenomes from NGS reads directly, without any classification.

More information about these tools and useful comparative analyses can be found in
dedicated studies [606, 611, 612, 613, 614, 615] from which especially [606] can be highly
recommended. An in-depth overview of state-of-the-art has been published recently [603].
As an exhaustive list of papers, we also recommend the online list of papers and programs
maintained by Jonathan Jacob [616].

10.2.1 Read classifiers

i) Alignment-free read classifiers

• Kraken [454]. Kraken was the first tool enabling ultra-fast classification of
large read sets against a taxonomic tree and it became a standard reference
program for evaluation of metagenomic classification methods. Therefore, we
describe it in more details than the other methods.
Using a large hash table, Kraken stores LCA (lowest common ancestor) for each
𝑘-mer from the source database. The highly cache-optimized index enables to

76 CHAPTER 10. OVERVIEW

quickly retrieve the LCA node for any queried 𝑘-mer. Classification then pro-
ceeds in two steps. Positions of all read’s 𝑘-mers are identified in the tree, the
heaviest root-to-node path is detected and the read is then assigned to this
node. When multiple nodes with equally heavy paths exist, the read is assigned
to their LCA. The default Kraken index for 2,787 bacterial genomes from the
RefSeq database with 𝑘-mers of length 31 occupies 75 GB RAM, but approxi-
mately 120 GB is required for its construction. The performance reported on its
website is higher than a million of assigned reads per second on a single core.
Compared to other methods, Kraken approach has two main advantages: it is
extremely fast, and it enables index sampling. The superior performance of
Kraken is mainly due its simplicity and perfect cache optimization (e.g., 𝑘-mers
sharing the same minimizer are placed at proximal positions in memory). Since
the main data structure is a hash table of 𝑘-mers, its sampling is easy, based on
keeping only a fraction of the original entries. This can reduce Kraken memory
footprint several folds. For instance, the Mini-Kraken database [454], containing
every 19th 𝑘-mer, requires 4 GB RAM only.

• LMAT [610]. LMAT implements an approach similar to Kraken. It also ex-
ploits LCAs and classifies reads based on shared 𝑘-mers. In addition to Kraken,
it incorporates a more precise statistical model with score normalization using
node-specific probabilities of random assignments. Moreover, LMAT is capable
to create an index of the most informative 𝑘-mers. Nevertheless, its huge mem-
ory requirements do not allow its usage on vast majority of computers or even
clusters. Indeed, the original version required 619 GB for the basic database of
prokaryotic genomes. Recently, a new version called LMAT-ML has been pre-
sented [617]. It builds a small marker library such that LMAT can be run on
computers with 24 GB RAM.

• ProPhyle [Chapter 12]. ProPhyle is our metagenomic classifier, algorithmi-
cally similar to Kraken. It uses an index based on Burrows-Wheeler transform,
which is smaller and more expressive at the same time.

• Seed-Kraken [3, Chapter 11]. Seed-Kraken is our extension of the Kraken
classifier. It improves the original approach using spaced seeds. The entire
algorithm works similar to Kraken, with an exception of a minor modification in
the assignment algorithm required by non-existence of canonical spaced 𝑘-mers
for asymmetrical seeds. Seed-Kraken provides a better ‘selectivity-sensitivity’
trade-off than Kraken, but at a price of lower speed.

• Centrifuge [618]. Centrifuge is a classifier based on BWT-index (implementa-
tion from Bowtie2 [181]). Using the NucMer algorithm [169] for detecting sim-
ilar sequences, Centrifuge binarizes the taxonomic tree and propagates shared
sequences up. Then it creates a highly compressed BWT-index. For instance,
for a database of 4,300 prokaryotic genome, the reported index size is 4 GB only.
However, the small size of the index is achieved by a lossy compression in the
step of merging similar sequences.
To classify reads, Centrifuge first finds sufficiently long exact matches between
the read and the index, and computes species-level scores as squared lengths
of obtained matches. From this information, assignments at other taxonomic
levels can be obtained. Using the EM-algorithm, Centrifuge can also estimate
abundancies at any taxonomic rank.

10.2. STATE-OF-THE-ART 77

• Kaiju [619]. Kaiju classifies reads at the protein level using BWT-index. It
proceeds by translating reads into six possible reading frames, which are then
split at stop codons. For the obtained fragments, Kaiju detects maximum ex-
act matches with the database and reports the LCA of taxons with the longest
matches. As protein coding genes occupy only small part of genomes, the re-
sulting index can be extremely compact. Kaiju the memory footprint is only
6 GB for the default database of bacterial, archaeal, and viral protein sequences
in RefSeq.

• CLARK [620]. CLARK is a method based on sequence classification into
predefined groups using discriminative 𝑘-mers and it does not make use of taxo-
nomic trees. After building the database that is basically a hash table, CLARK
matches 𝑘-mers from a read against this database. Memory usage of the stan-
dard version is fully comparable to Kraken, since approximately 70 GB RAM is
used for a basic database of 2,752 bacterial genomes for genus level and 164 GB
RAM is needed for index construction.
A light version of CLARK called CLARK-l consumes 3 GB during classification
and 4 GB during index construction. Recently, another modification of CLARK
called CLARK-S, has been introduced [476]. The major conceptual difference
is the usage of spaced seeds (hence, discriminative spaced 𝑘-mers). Memory
requirements of CLARK-S are comparable to CLARK.

• One Codex [621]. One Codex is a web platform for read classification using an
algorithm similar to Kraken, also based on matching 𝑘-mers of length 31. The
main difference from Kraken is a larger database containing 40,000 microbial
genomes.

• CoMeta [622]. CoMeta assigns reads to taxonomic trees based on the cover-
age criterion (see the next chapter for more details). The underlying indexing
structure relies on Bloom filters. In the paper, experiments are performed with
distinct 𝑘-mer lengths (from 15 to 30) and, for instance, bacterial database for
𝑘 = 30 results in an index of size 40 GB.

• Vowpal Wabbit for metagenomics [609]. The authors implemented a large
scale machine learning-based linear classifier. They showed that, with 𝑘-mers of
length ≤ 12, such a method can be competitive in speed and accuracy to other
state-of-the-art approaches presented here.

• SMART [623]. SMART aims at high scalability using a MapReduce searching
strategy. It builds a database of 𝑘-mers of length 30, which is then stored us-
ing 256 hash-tables (𝑘-mers are distributed according to first four bases). Read
classification proceeds with 𝑘-mer matching in 256 parallel instances, merging
results, and the final read assignment. Note that the program is capable to
account for one mismatch in 𝑘-mer matching. Integrating the entire NCBI Gen-
bank, SMART searches in the largest database from all classifiers presented in
this section. Due to high memory and CPU requirements, the program can be
set up on big clusters only.

ii) Alignment-based read classifiers

• MetaPhlAn [624, 625]. MetaPhlAn is a read classifier based on Bowtie2 [181].
It builds a database of strongly conserved clade‐specific sequences from 3,000
bacterial reference genomes, where clades can be of different taxonomic levels.

78 CHAPTER 10. OVERVIEW

MetaPhlAn 2 extends the database to 17,000 different genomes, including viral
and eukaryotic ones.

• MEGAN [626, 604]. MEGAN4 is an integrative platform, which supports
also metagenomic classification. Every read is assigned to the LCA of genomes
it has been previously mapped to using BLAST [160].

• MetaPhyler [627]. MetaPhyler builds a database from 31 phylogenetic marker
genes. Then it uses BLASTX [160] to map reads to these sequence. Based on
the obtained alignments, particular scores are to used to decide about the final
taxonomy assignments.

iii) Assembly-based read classifiers

• MetaCluster-TA [628]. MetaCluster-TA exploits the idea of assembling con-
tigs in order to increase the annotation performance. It first assembles so-called
virtual contigs, which are composed of reads coming from the same genome,
but not necessarily from proximal regions. Using BLASTN [160], the obtained
contigs are then clustered, merged and annotated.

iv) Read classifiers combining multiple other classifiers

• WeVote [629]. WeVote is a method for metagenomic classification based on
weighted voting. The program calls other classifiers implementing 𝑘-mer-based,
marker-based and naive-similarity based approaches, and decides on the final
read’s classification based on the assignments obtained from these tools.

• CSSS [630, 631]. Exploiting the nearest neighbor algorithm, CSSS classifies
sequences using scores obtained from other alignment-based and alignment-free
tools. The final score is computing using adaptive weighting.

• PhymmBL [632, 605]. PhymmBL is a hybrid classifier combining interpolated
Markov models [633] with BLAST [160].

10.2.2 Abundance estimators

i) Alignment-free abundance estimators

• GOTTCHA [634]. GOTTCHA first builds a database of 𝑘-mers of length
24 specific for a fixed taxonomic rank. Then, by breaking into non-overlapping
𝑘-mers and with use of BWA [178], it matches reads against this database and
computes abundancies for individual taxonomic levels.

• Kallisto [455]. Though originally developed for RNA-seq quantification [456],
Kallisto can be also used for abundance estimation for metagenomic datasets
at various taxonomic levels [455]. The tool is easy to use and highly efficient,
with memory footprint of approximately 60 GB for a database of 2,300 bacterial
genomes. Kallisto does not annotate individual reads nor takes taxonomic trees
into account.

• Bracken [635]. Using Bayesian approach, Bracken estimates species abundan-
cies from Kraken read assignments. The tool has been developed as a reaction
to [455].

• MetaPalette [636]. Using linear mixture models, MetaPalette derives abun-
dancies from 𝑘-mer frequencies computed from the entire read sets.

10.2. STATE-OF-THE-ART 79

ii) Alignment-based abundance estimators

• MEGAN CE [637]. MEGAN CE is a major revision of MEGAN, a tool
for metagenomic classification described above. Instead of BLAST, it aligns
reads using DIAMOND [356], a program for mapping reads to protein databases.
Moreover, it provides a server application called MeganServer.

• BIB [638]. BIB performs Bayesian identification of strain abundancies from
NGS reads using Bowtie 2 [181]. Index construction proceeds by detection of
strain-specific core genomes and building a read mapping index. The former
is done by the clustering of strains and multiple sequence alignment. To com-
pute abundancies, BIB maps reads to the obtained core genomes and estimates
frequencies of individual strains from the obtained alignments.

• SLIMM [639]. Given a set of references for an individual taxonomic group of
interest, SLIMM starts with building a non-redundant database. YARA [208]
or another read mapper is then used to map all reads to that database. The
classification procedure takes the obtained alignments, excludes insufficiently
covered genomes, and moves every read mapped to multiple genomes to their
LCA. Finally, SLIMM computes abundancies based on the read assignments
from alignments.

• MetaScope [475]. MetaScope uses SSAS, a dedicated spaced-seed-based read
mapper, to align reads to Genbank reference genomes. Then it re-assigns those
reads aligned to multiple genomes using weighted LCA, and creates an overview
XML file. MetaScope is not publicly available, yet.

• WGSQuikr [640]. WGSQuikr computes frequencies of 𝑘-mers of length 7 in
a database of bacterial genomes, and then derives a vector of abundancies by
solving a system of linear equations in Matlab.

• MetaFlow [641]. MetaFlow introduces a sophisticated method of abundance
estimation from BLAST alignments. The problem is reduced to matching of
bipartite graphs constructed from the provided alignments, which is then solved
using min-cost network flows.

10.2.3 Metagenome distance estimators

• Simka [642]. Simka was developed to simplify the analysis of large metagenomic
datasets coming from the Tara ocean project [14]. Their processing is complicated
by the fact that reference sequences are not available for a vast majority of ocean
genomes. As a consequence, large metagenomic data sets have to be analyzed with-
out any reference database in hand. To deal with this obstacle, Simka proceeds with
𝑘-mer based methods comparing metagenomic read sets and provides a well-scaling
method to compute various ecological distances.

• MASH [643]. MASH is a 𝑘-mer-based method to estimate metagenome distances
using MinHash ([381, 120]), a technique based on locality-sensitive hashing. Gener-
ally speaking, the program estimates the Jaccard index of two metagenomic datasets
with moderate memory and CPU requirements.

• MetaFast [644]. First, MetaFast estimates the similarity of pairs of metagenomes
using de-Bruijn graphs. It constructs the de-Bruijn graphs from the input metagenomes,

80 CHAPTER 10. OVERVIEW

detects non-branching paths, merges the resulting graphs into a single one, and then
extracts sufficiently big components that are used to compute the metagenome sim-
ilarity.

• kWIP [645]. kWIP is a program to estimate the genetic relatedness of species from
NGS reads using 𝑘-mer weighted inner products. First, kWIP counts 𝑘-mers in all
datasets, stores them in a probabilistic data structure, and computes population-
wide aggregated 𝑘-mer frequencies. Finally, it computes the similarity as inner
products of frequencies vectors, normalized by Shannon entropy.

10.3 Goal of our work
In our work, we improve 𝑘-mer-based methods for metagenomic classification. Specifically,
we consider the problem of assigning NGS reads to a taxonomic tree, i.e., the approach
used by Kraken [454], LMAT [610], Centrifuge [618], CLARK [620], One Codex [621],
CoMeta [622], Kaiju [619], and SMART [623].

In Chapter 11, we demonstrate that spaced seeds can strongly improve the precision
of metagenomic classification. We provide a comparative analysis of several measures (hit
count, Jaccard index, and coverage) combined with contiguous and spaced 𝑘-mers. We
introduce Seed-Kraken, a modification of Kraken using spaced seeds, and show that it
significantly improves the classification precision compared to Kraken.

In Chapter [Chapter 12], we provide ProPhyle, a 𝑘-mer-based metagenomic classifier
using BWT-index. The strategy is based on a bottom-up propagation of k-mers in the tree,
assembling contigs at each node and matching using a standard full-text search. Unlike
Kraken, this method provides lossless 𝑘-mer indexing and the resulting index is several
folds smaller than Kraken’s one.

Chapter 11

Spaced seeds for metagenomics

We show that the metagenomics classification based on the analysis of shared
𝑘-mers can be improved by using spaced 𝑘-mers rather than contiguous 𝑘-
mers. We support this thesis through a series a different computational exper-
iments, including simulations of large-scale metagenomic projects. We also
present Seed-Kraken, a modification of the Kraken classifier using spaced
seeds. Scripts and programs used in this study, as well as supplementary
material, are available from http://github.com/gregorykucherov/spaced-
seeds-for-metagenomics.

11.1 Introduction

The idea of using spaced 𝑘-mers goes back to the concept of spaced seeds for seed-and-
extend sequence comparison [459, 458]. There, the idea is to use as a seed (i.e. local
match triggering an alignment) a sequence of matches interleaved with “joker positions”
holding either matches or mismatches. The pattern specifying the sequence of matches
and jokers is called the spaced seed. Remarkably, using spaced seeds instead of contiguous
seeds significantly improves the sensibility-selectivity trade-off with almost no incurred
computational overhead. This has been first observed in [459] and then extended and
formally analysed in a series of further works, see [477, 192] and references therein.

Recently, it has been reported in several works that spaced seeds bring an improvement
in alignment-free comparison as well. In [460], it is shown that comparing frequency vectors
of spaced 𝑘-mers (𝑘-mers obtained by sampling must-match positions of one or several
spaced seeds), as opposed to contiguous 𝑘-mers, leads to a more accurate estimation
of phylogenetic distances and, as a consequence, to a more accurate reconstruction of
phylogenetic trees. In [461], the authors studied another measure – the number of pairs
of matching (not necessarily aligned) spaced 𝑘-mers between the input sequences – and
showed that it provides an even better estimator of the phylogenetic distance. In [464], it
is shown that the number of hits of appropriately chosen spaced seeds in aligned sequences
and their coverage (i.e. the total number of matched positions covered by all hits) provides
a much better estimator for the alignment distance than the same measures made with
contiguous seeds. From a machine learning perspective, works [462, 463] show that spaced
seeds provide better string kernels for SVM-based sequence classification, confirmed by
experiments with protein classification (see also [464]).

In this work, we show that using spaced 𝑘-mers significantly improves the accuracy
of metagenomic classification of NGS reads as well. To support this thesis, we consider

81

http://github.com/gregorykucherov/spaced-seeds-for-metagenomics
http://github.com/gregorykucherov/spaced-seeds-for-metagenomics

82 CHAPTER 11. SPACED SEEDS FOR METAGENOMICS

different scenarios. As a test case, we first study the problem of discriminating a read
between two genomes, i.e. determining which of the two genomes is “phylogenetically
closer” to the read. We then analyse the correlation between the quality of an alignment
of a read to a genome and the seed count for this read, defined either as the number of
hits or as the coverage. This analysis provides an insight into how well one can estimate
the similarity between a read and a genome out of 𝑘-mer occurrences. Finally, we make
a series of large-scale metagenomic classification experiments with Kraken software [454]
extended by the possibility of dealing with spaced seeds. These experiments demonstrate
an improved classification accuracy at the genus and family levels caused by the use of
spaced seeds instead of contiguous ones.

11.2 Preliminaries

A spaced seed is a binary pattern over symbols # and - denoting match and joker respec-
tively. For example, seed #-## specifies a match followed by either match or mismatch
followed by two consecutive matches. A seed acts as a mask for comparing short oligonu-
cleotides, for example sequences gaat and gcat differ at the 2nd position, but they match
via seed #-## as the 2nd position is masked out. The number of #’s in a seed, called
weight, defines the number 𝑘 of matching nucleotides. In the above example, 𝑘 = 3 and
the matching (spaced) 𝑘-mer is gat. In a slightly different terms, a seed is a pattern that
specifies a small part of a gapless alignment seen as a binary sequence of matches and
mismatches. For example, seed #-## occurs in (or hits, as usually said) any alignment
containing a match followed by another two matches shifted by one position.

When spaced seeds are used for sequence alignment within the seed-and-extend paradigm
[192], a pair of matching 𝑘-mers (or, sometimes, a matching sequence of several closely
located 𝑘-mers) indicates a potential alignment of interest in which the two 𝑘-mers are
aligned together. When spaced seeds are used for alignment-free sequence comparison
[608], the goal is to estimate the similarity of two sequences based on the number of
matching 𝑘-mers, with no or limited information about their positions in one or both
sequences. This measure can be formalized in several different ways.

In the context of metagenomic classification of NGS reads, the goal is to estimate
the evolutionary distance between a short read and a long sequence (genome), which can
be modeled by the best alignment score of the read against the sequence. Due to large
genome size and large number of reference genomes involved in computations, one of the
constraints is to avoid keeping track of positions of 𝑘-mers in genomes. We can only afford
constructing an index to quickly answer queries whether or not a 𝑘-mer occurs in a given
genome, without information on its positions. On the other hand, 𝑘-mer positions in the
query read can be included to the analysis. Therefore, we have to derive our estimation
from the number of 𝑘-mers shared between the read and the genome, together with their
positions in the read alone.

One simple estimator is the number of 𝑘-mers in the read that occur in the target
genome1, we call this measure the hit number. However, one may want to favor cases
when matching 𝑘-mers cover a larger part of the read, vs. those with matching 𝑘-mers
clumped together due to overlaps. This leads to the concept of coverage [464], earlier used
in seed-based alignment algorithms as well [646, 647]. The coverage is the total number
of positions covered by all matching 𝑘-mers. For example, consider seed #-## and read

1Here identical u�-mers occurring at distinct positions in the read are considered distinct.

11.3. RESULTS 83

gaatcagat. Assume the seed hits at positions 1,4,6, i.e. 𝑘-mers g-at, t-ag and a-at
occur in the target genome (joker symbol is shown for the sake of clarity). Here, the hit
number is 3, and the coverage is 7 as seven positions are covered by hits, namely positions
1,3,4,6,7,8,9. Hit number and coverage are two estimators studied in this work.

11.3 Results

11.3.1 Binary classification

From the machine learning viewpoint, hit number and coverage can be viewed as instances
of kernel functions for sequence data (see e.g. [648]). Our first step was to compare their
capacity w.r.t. a simple binary classification task. Assume the (impractical) case when
our database contains only two genomes. Given a read, we have to decide which of the
two genomes the read is closer to. How good can we be at that? Which kernel works
better for this task? And are spaced seeds better than contiguous seeds here?

Classifying aligned reads

As mentioned in Introduction, the “distance” of a read to a genome translates naturally
to the score of the best alignment of the read to the genome. Given two genomes, we want
to tell which of them is closer to a given read.

Consider alignments 𝐴u�, 𝐴u� of a random read to the two genomes, and assume they
are gapless and have mismatch probabilities 𝑝u�, 𝑝u� respectively, with 𝑝u� < 𝑝u�. Throughout
this paper the read length is set to 100, a typical length of Illumina read. Therefore,
the alignments can be thought of as random binary strings of length 100 of matches and
mismatches, with mismatch probabilities 𝑝u� and 𝑝u� respectively. Given a seed, we compute
two counts 𝐶u� and 𝐶u� on alignments 𝐴u� and 𝐴u� respectively, where by ‘count’ we mean,
unless otherwise stated, either the hit number or the coverage. For example, if the seed
is #-## and the alignment 111101111 (1 stands for match and 0 for mismatch), then the
hit number is 3 and the coverage is 7. Note that in this model, common (spaced) 𝑘-mers
are assumed to occur necessarily at the same position in the read alignment, although
in reality, a 𝑘-mer of the read may not be aligned with the same 𝑘-mer in the genome.
However, in this first experiment, we abstract from this fact.

If 𝐶u� > 𝐶u� (resp. 𝐶u� < 𝐶u�), then we report a correct (resp. incorrect) classification,
otherwise a tie is reported. By iterating this computation, we estimate the probability of
correct/incorrect classification for each parameter set.

The results are presented in Tables 11.1a,11.1b,11.1c. In all cases, spaced seeds show a
better classification power. In some cases, the difference is striking: for example, if we want
to discriminate between alignments with mismatch probabilities 0.1 and 0.2 (Table 11.1b)
using seeds of weight 22, then a spaced seed yields 86% of correct classifications (coverage
count), whereas the contiguous seed correctly classifies only 65% of cases, whereas the
fraction of incorrect classifications is essentially the same. The results also show a slight
edge of the coverage count over the hit number, which suggests the superiority of the latter
that will be confirmed later on in other experiments.

Classifying unaligned reads

Let us now turn to a more practical setting, where we want to classify reads coming from
a genome 𝐺 between two other genomes 𝐺1 and 𝐺2 based on the phylogenetic closeness.

84 CHAPTER 11. SPACED SEEDS FOR METAGENOMICS

(a) u�u� = 0.05, u�u� = 0.1

contiguous spaced
weight Hits Cover Hits Cover

16 .85/.14 .85/.14 .87/.11 .88/.11
18 .84/.14 .85/.14 .87/.12 .88/.11
20 .83/.15 .84/.15 .87/.12 .87/.12
22 .82/.16 .83/.15 .86/.12 .87/.12
24 .80/.16 .81/.15 .85/.12 .87/.12

(b) u�u� = 0.1, u�u� = 0.2

contiguous spaced
weight Hits Cover Hits Cover

16 .86/.09 .87/.09 .93/.05 .94/.05
18 .81/.08 .81/.08 .91/.05 .92/.05
20 .74/.07 .74/.07 .89/.05 .90/.05
22 .65/.06 .65/.06 .85/.05 .86/.05
24 .55/.04 .56/.04 .79/.04 .81/.05

(c) u�u� = 0.2, u�u� = 0.3

contiguous spaced
weight Hits Cover Hits Cover

16 .40/.06 .40/.06 .63/.07 .64/.07
18 .28/.04 .28/.03 .50/.05 .50/.05
20 .18/.02 .18/.02 .37/.03 .37/.03
22 .12/.01 .12/.01 .25/.02 .26/.02
24 .08/.00 .08/.00 .17/.01 .18/.01

Table 11.1: Classification of aligned reads. Each entry contains a
pair “Probability of correct classification/Probability of incorrect classifica-
tion”. The remaining fraction estimates the probability of a tie. Spaced
seeds used for hit number: ###-##-#-#---#-#-#--#--##### (weight 16), ####-
##--##--#--#-#-#-##-#### (weight 18), #####-###---##--#--#-#-#-##-####
(weight 20), ######--####----#--##-#-#--####### (weight 22),
#######--####----#--##-#-#--######## (weight 24). Spaced seeds used for coverage:
###-###--#-#--#-##--##### (weight 16), ###-#--###-##--#-#--###-#### (weight 18),
###-#-##-#-##--##--###-#-##### (weight 20), ####-##-#-#-##-###-#-#--##--#####
(weight 22), ####-##-#-#-##-###-#-#---###--###### (weight 24).

11.3. RESULTS 85

To study this, we implemented the following experimental setup. Using DWGsim
read simulator2, we generate single-end Illumina-like reads from genome 𝐺. In all ex-
periments, we assumed 1% of base mutations (substitutions only), and 2% of sequencing
errors (DWGsim options -e 0.02 -r 0.01 -R 0). Given a seed, (contiguous or spaced)
𝑘-mers of 𝐺1 and 𝐺2 are indexed to support existence queries only. For each read, all
𝑘-mers are queried against 𝐺1 and 𝐺2 and corresponding counts 𝐶1 and 𝐶2 are com-
puted. If 𝐶1 > 𝐶2 (resp. 𝐶1 < 𝐶2), the read is classified to be closer to 𝐺1 (resp. 𝐺2),
otherwise a tie is reported. Besides considering absolute counts (hit number and cover-
age), we also considered hit number normalized by the number of distinct 𝑘-mers in the
corresponding genome (computed at the indexing stage). This measure approximates the
Jaccard index [499] and reflects the Bayesian probability of seeing a 𝑘-mer relative to the
“𝑘-mer-richness” of genomes.

Note that the counts are here computed relative to the whole genome, as it is done in
the approach of [610, 454] (see Introduction). This means that the 𝑘-mers occurring in the
read are looked up in the whole genome, without guarantee, however, that these 𝑘-mers
are closely located in the genome and contribute to the same read alignment. This makes
the seed weight an important parameter, as seeds of low weight may result in a high read
count which does not evidence any alignment of the read, due to random character of the
𝑘-mer hits.

We experimented with bacterial genomes belonging to Mycobacterium genus. Mem-
bers of this genus present low interspecies genetic variability and their phylogeny remains
uncertain [649].

If 𝐺 coincides with one of 𝐺1, 𝐺2, i.e. reads have to be classified between its source
genome and another genome, then all estimators correctly classify nearly all reads as soon
as 𝐺1 and 𝐺2 are genomes of distinct species. For example, classifying reads obtained
from Mycobacterium tuberculosis (H37Rv, acc. NC_018143) against M. tuberculosis itself
and M.avium (104, NC_008595) led to more than 99% of correct classifications for all
estimators.

The case when 𝐺 is distinct from 𝐺1, 𝐺2 appears more interesting. It corresponds
to the real-life situation when reads to be classified can come from a genome that is not
represented in the database. Here we expect our procedure to determine whether 𝐺 is
phylogenetically closer to 𝐺1 or to 𝐺2.

For example, we classified M.vanbaalenii (PYR-1, NC_008726) reads against M.smeg-
matis (MC2 155, NC_018289) and M.gilvum (PYR-GCK, NC_009338) genomes. Alter-
native phylogenies given in [649, Fig.1-4] imply different evolutionary relationships among
these three species. Our results, shown in Table 11.2, suggest that M.vanbaalenii is closer
to M.gilvum than to M.smegmatis. For non-normalized hit number and coverage estima-
tors, this conclusion is supported by seeds of weight 16 or more, while weight 14 supports
the opposite conclusion. This is due to spurious hits that become dominating when the
weight drops to 14, and to the larger size of M.smegmatis genome (6.99 Mbp) compared
to M.gilvum (5.62 Mbp). This effect is corrected by Jaccard index due to normalization
by the number of distinct 𝑘-mers (6.09 M for M.smegmatis vs. 4.96 M for M.gilvum for
the spaced seed of weight 14). Overall, we observe a significantly sharper discrimination
produced by spaced seeds compared to contiguous seeds.

We also performed a series of experiments with the large and genetically variable
Bacillus genus. Table 11.3 shows a demonstrative experiment with members of Bacillus
cereus group: B.thuringiensis (serovar konkukian 97-27, NC_005957), B.anthracis (Ames,

2https://github.com/nh13/DWGSIM

https://github.com/nh13/DWGSIM

86 CHAPTER 11. SPACED SEEDS FOR METAGENOMICS

weight
14 16 18 20 22

contig hit nb 52/41 39/48 24/37 11/24 07/17
contig cover 54/42 44/47 25/37 11/24 06/17

contig Jaccard 30/70 35/61 23/42 11/26 06/18
spaced hit nb 51/40 34/47 20/40 12/32 08/23
spaced cover 53/42 39/51 21/42 12/32 08/25

spaced Jaccard 28/72 32/66 20/50 11/33 08/27

Table 11.2: Classification of unaligned reads. Classification of Mycobacterium van-
baalenii reads against Mycobacterium smegmatis and Mycobacterium gilvum genomes.
Each entry contains a pair “Fraction (in %) of reads classified closer to M.smegmatis
/ Fraction of reads classified closer to M.gilvum”.

weight
14 16 18 20 22

contig hit nb 83/14 81/11 79/09 77/08 76/08
contig cover 78/17 80/12 79/09 77/08 76/08

contig Jaccard 87/13 87/11 85/09 83/08 82/08
spaced hit nb 83/13 82/11 80/09 79/09 79/08
spaced cover 80/15 81/11 80/09 79/09 79/08

spaced Jaccard 88/12 88/11 85/09 84/08 84/08

Table 11.3: Classification of unaligned reads. Classification of Bacillus thuringiensis
reads against Bacillus anthracis and Bacillus cereus genomes. Each entry contains a pair
“Fraction (in %) of reads classified closer to B.anthracis / Fraction of reads classified closer
to B.cereus ”.

11.3. RESULTS 87

weight
14 16 18 20 22

contig hit nb 47/40 24/25 04/07 0.9/3.8 0.3/2.4
contig cover 49/46 24/25 04/07 0.9/3.8 0.3/2.4

contig Jaccard 37/62 24/30 04/08 0.8/4.0 0.3/2.6
spaced hit nb 49/33 22/27 04/10 1.0/5.4 0.4/3.3
spaced cover 53/39 23/27 04/10 1.0/5.4 0.5/3.3

spaced Jaccard 41/59 22/35 04/10 0.9/4.6 0.4/3.5

Table 11.4: Classification of unaligned reads. Classification of Bacillus licheniformis
reads against Bacillus anthracis and Bacillus pumilus genomes. Each entry contains a
pair “Fraction (in %) of reads classified closer to B.anthracis / Fraction of reads classified
closer to B.pumilus ”.

NC_003997), and B.cereus (ATCC 14579, NC_004722). The three bacteria are close to
the point of being considered to be different lineages of a single B.cereus species [650]. The
results provide a strong support that the B.thuringiensis strain is closer to the B.anthracis
strain than to the B.cereus strain, which agrees with phylogenies reported in the literature
[651]. Indeed, the B.thuringiensis strain and the B.anthracis strain have a much higher
pairwise identity rate than the former has with the B.cereus strain (estimated DNA-DNA
hybridization distance 81% vs. 45%, as computed by GGDC [652]).

However, for species with low sequence similarity, a large majority of reads may have no
hits to either genome, and only a small fraction of reads may reveal a significant difference
in distance. This situation is illustrated in Table 11.4 showing the results of classifi-
cation of B.licheniformis (ATCC 14580, NC_006270) reads against B.anthracis (Ames,
NC_003997) and B.pumilus genomes (SAFR-032, NC_009848). The results support a
higher similarity of B.licheniformis to B.pumilus than to B.anthracis, but the difference is
revealed on a very small fraction of reads. The conclusion, however, is significant as those
reads represent the majority of reads having any hits to one of the genomes. As with the
previous example, this result is confirmed by previously reported phylogenies [651].

In all our experiments reported in this section, spaced seeds showed a better classi-
fication capacity. The difference is especially significant in “nontrivial” cases involving
relatively dissimilar genomes, such as those illustrated by Tables 11.2 and 11.4. While the
difference between hit number and coverage estimators appeared insignificant (in agree-
ment with results of Section 11.3.1), the Jaccard index generally provides a more distinct
discrimination and, combined with a spaced seed, appears to be the best estimator.

11.3.2 Correlation of counts with alignment quality

In metagenomic projects, reads to be classified do not necessarily come from genomes
stored in the database, but can come from genomes of other species. These species can be
genetic variants of species of the database, such as different strains of the same bacteria,
but can also come from organisms represented in the database only at the rank of genus
or family, or may even have no representatives at all at low taxonomic ranks. Therefore,
an accurate mapping of a read to a corresponding clade requires not just assigning it to
the appropriate sampled genome, but estimating its distances to each of the genomes in
order to locate its position within the whole taxonomic tree.

With this motivation, we turned to the question how well the measured counts correlate

88 CHAPTER 11. SPACED SEEDS FOR METAGENOMICS

minimal identity

ra
nk

 c
or

re
la

tio
n

0.75

0.80

0.85

0.90

0.95

0.5 0.6 0.7 0.8 0.9 1.0

seed.weight=16

###−###−−#−#−−#−##−−##### cover
###−##−#−#−−−#−#−#−−#−−##### hits
################ cover
################ hits

minimal identity

ra
nk

 c
or

re
la

tio
n

0.75

0.80

0.85

0.90

0.95

0.5 0.6 0.7 0.8 0.9 1.0

seed.weight=18

###−#−−###−##−−#−#−−###−#### cover
####−##−−##−−#−−#−#−#−##−#### hits
################## cover
################## hits

minimal identity

ra
nk

 c
or

re
la

tio
n

0.75

0.80

0.85

0.90

0.95

0.5 0.6 0.7 0.8 0.9 1.0

seed.weight=20

###−#−##−#−##−−##−−###−#−##### cover
#####−###−−−##−−#−−#−#−#−##−#### hits
#################### cover
#################### hits

minimal identity

ra
nk

 c
or

re
la

tio
n

0.75

0.80

0.85

0.90

0.95

0.5 0.6 0.7 0.8 0.9 1.0

seed.weight=22

####−##−#−#−##−###−#−#−−##−−##### cover
######−−####−−−−#−−##−#−#−−####### hits
###################### cover
###################### hits

minimal identity

ra
nk

 c
or

re
la

tio
n

0.75

0.80

0.85

0.90

0.95

0.5 0.6 0.7 0.8 0.9 1.0

seed.weight=24

####−##−#−#−##−###−#−#−−−###−−###### cover
#######−−####−−−−#−−##−#−#−−######## hits
######################## cover
######################## hits

Figure 11.1: Correlation between score and hit counts. Spearman’s rank correlation
between score and counts, depending on the minimal identity rate.

11.3. RESULTS 89

with the alignment score. For a fixed minimal identity rate 𝑝u�u�, we randomly sampled
gapless alignments of length 100 with identity rate from interval [𝑝u�u�..1], and collected
pairs (number of mismatches, count), where, as before, ‘count’ stands for either the number
of hits or the coverage of a given seed. For these data, we computed Spearman’s rank
correlation.

Results are presented on plots in Figure 11.1. They show that when the identity rate
of alignments takes a large range of values (minimal id rate smaller than ≈ 0.9), spaced
seeds yield a significantly higher correlation than contiguous seeds, for both hit-number
and coverage counts. Furthermore, the coverage count slightly outperforms the hit-number
count, especially for spaced seeds and larger weights.

For high-similarity alignments, however, the picture changes: the coverage count loses
its performance, with its correlation value sharply decreasing. Furthermore, the correlation
of hit-number goes down as well for spaced seeds, while it continues to grow for contiguous
seeds ending up by reaching and even slightly outperforming the one for spaced seed. This
is due to a larger span of spaced seeds and to their combinatorial properties that cause
the hit number values to be less sharply concentrated at certain values, and therefore to
be less well correlated with the number of mismatches.

In conclusion, while spaced seeds provide a much better estimator for alignments whose
quality ranges over a large interval, for high-quality alignments (> 90% of identity), the
hit number of contiguous seed becomes a better estimator. The superiority of hit-number
over coverage for high-quality alignments has also been reported in [464]. Along with
Spearman’s correlation, we also made an analysis of mutual information computed on the
same data (data not shown) that confirmed the above conclusions.

11.3.3 Correlation on real genomes

To validate the conclusions of the previous section in a real-life metagenomics framework
and to analyse more closely how well different counts for a read correlate with the best
alignment of the read to a real genomic sequence, we implemented another series of ex-
periments.

Given a genome 𝐺, we generated a set of Illumina-like single-end reads by selecting
random substrings of 𝐺 of length 𝐿 (𝐿 = 100) and introducing 𝑘 mismatch errors, with 𝑘
drawn randomly between 1 and 20 for every read. For each read, we computed the counts
– hit number and coverage – with respect to genome 𝐺 under a given seed, similar to
Section 11.3.1. Collected data have then been analysed.

This experimental setup has been applied to Mycobacterium tuberculosis genome, a
typical result (seed weight 20) is shown in Figure 11.2. Each plot shows the density of
reads for each pair (number of mismatches, count), depending on the seed (contiguous
or spaced) and count (hit-number or coverage). Spearman’s and Pearson’s correlation
coefficients are shown for each plotted dataset.

The plots clearly illustrate the advantage of spaced seeds over contiguous seeds for
estimating the alignment quality. Plots for contiguous seeds are more blurred whereas
plots for spaced seeds demonstrate a better correlation between the two values. This is
confirmed by the absolute values of Spearman’s rank correlation coefficient that are signif-
icantly higher for spaced seeds, indicating a better statistical dependence. This is further
illustrated in Figure 11.3 which shows the same data through the average curve and 95%
confidence band. It confirms that spaced seeds produce a dependence with lower deviation
from the mean, compared to contiguous seeds.

90 CHAPTER 11. SPACED SEEDS FOR METAGENOMICS

5 10 15 20

0
20

40
60

80

####################, w 20

Pearson's correlation: −0.818
Spearman's rank correlation: −0.8625

Mismatches

N
um

be
r

of
 h

its

5 10 15 20

0
20

40
60

80
10

0

####################, w 20

Pearson's correlation: −0.8725
Spearman's rank correlation: −0.8678

Mismatches

C
ov

er
ag

e

5 10 15 20

0
10

20
30

40
50

60
70

#####−−#−##−#−##−−##−#−###−###, w 20

Pearson's correlation: −0.8357
Spearman's rank correlation: −0.926

Mismatches

N
um

be
r

of
 h

its

5 10 15 20

0
20

40
60

80
10

0

#####−−#−##−#−##−−##−#−###−###, w 20

Pearson's correlation: −0.9232
Spearman's rank correlation: −0.9328

Mismatches

C
ov

er
ag

e

Figure 11.2: Hit number and coverage vs. number of mismatches. Hit number
(left plots) and coverage (right plots) depending on the number of mismatches in ran-
domly generated reads. Seed is shown above the plot, and Spearman’s and Pearson’s
correlations are shown below. Grayscale shows the density of reads. Experiments made
on M.tuberculosis genome.

11.3. RESULTS 91

Comparing hit-number and coverage estimators, we observe that coverage yields a
slightly better Spearman correlation and a significantly better Pearson correlation, due
to a convex shape of the dependence, compared to the more straight dependence for the
coverage.

This analysis has been done for several other bacterial genomes, producing similar
results. Plots for other genomes and other seed weights can be found at https://github.
com/gregorykucherov/spaced-seeds-for-metagenomics.

11.3.4 Large-scale experiments

In order to validate the advantage of spaced seeds in large-scale metagenomic projects,
we modified Kraken software [454] to make it work with spaced seeds rather than with
contiguous seeds only. The limitation of this comparison is that it only allows estimating
the effect of using spaced seeds combined with the Kraken algorithm, and within its
implementation. On the other hand, this procedure allows us to estimate the effect of
spaced seeds in an unbiased manner, by keeping unchanged all other factors that might
influence the results.

Our extended implementation, that we call Seed-Kraken, allows the user to specify a
spaced seed as a parameter. For a set of genomes, a database of spaced 𝑘-mers matching
the seed is constructed, which is later used to classify reads through the original Kraken
algorithm. Since Kraken uses 𝑘-mer counting Jellyfish program [444] as the 𝑘-mer indexing
engine, we had also to modify Jellyfish to allow it to deal with spaced 𝑘-mers.

Integration of spaced seed into Kraken required a minor modification of the way Kraken
deals with complementary sequences. In Kraken, complementary 𝑘-mers have a single
representative in the index, the lexicographical smallest of the two. With spaced seeds,
dealing with complementary sequencing is more delicate, as the complement of a spaced
𝑘-mer does not match the same seed but its inverse. To cope with this, we modified Kraken
to index each distinct 𝑘-mer. We then processed each read in direct and complementary
directions separately and select the one which produced more hits. Compared to original
Kraken, this procedure takes more index space (additional ∼ 5% in practice) and doubles
𝑘-mer query time.

We compared the performance of Kraken and Seed-Kraken on several datasets. First,
we performed experiments with three simulated metagenomes HiSeq, MiSeq, and simBA-
5 introduced in the original work [454], each containing 10,000 sequences. Furthermore,
we created a dataset from Human Microbiome Project data by randomly selecting 50,000
sequences from SRS011086 Tongue dorsum metagenomic sample3. Here we only report on
results for MiSeq and HMPtongue datasets and refer to the supplementary material for a
complete account including results for HiSeq and simBA-5. MiSeq is a merge of Illumina
reads of 10 bacterial genomes, and HMPtongue is a random sample of real Illumina whole-
metagenome sequences.

Due to resource limitations, the database we used in MiSeq experiments was half of
the size of the Kraken’s default database (which requires 75 GB of RAM). Our database
was obtained by choosing a single representative strain of each bacteria species, except
for the species from HiSeq and MiSeq metagenomes for which all strains were included.
Overall, this represented 915 genomes of total size 3.3 GB. For HMPtongue dataset, this
database was extended with a subset of HMP reference library, 0.8 GB in total, including
references for the selected 50,000 sequences.

3http://hmpdacc.org/HMSCP/

https://github.com/gregorykucherov/spaced-seeds-for-metagenomics
https://github.com/gregorykucherov/spaced-seeds-for-metagenomics
http://hmpdacc.org/HMSCP/

92 CHAPTER 11. SPACED SEEDS FOR METAGENOMICS

Figure 11.3: Hit number and coverage vs. number of mismatches. Same data as
in Figure 11.2 shown with averages and 95% confidence intervals

11.3. RESULTS 93

Figure 11.4: Seed-Kraken vs. Kraken. Sensitivity/precision of Seed-Kraken (circle
points) and original Kraken (cross points) for HMPtongue and MiSeq datasets and three
taxonomic levels: species, genus and family. Triangle points correspond to Seed-Kraken
run on contiguous seed of weight 24 and 31, plotted to highlight the effect of the change
in the assignment algorithm.

94 CHAPTER 11. SPACED SEEDS FOR METAGENOMICS

For each metagenomic dataset, we measured the sensitivity (percentage of correctly
classified reads out of all reads) and precision (percentage of correct classifications out of
all classifications) of Kraken and Seed-Kraken at three taxonomic levels: species, genus
and family. In each case, this has been done with seeds of different weights between 20
and 31, and for each weight, Seed-Kraken has been run on a few different spaced seeds
(see Conclusions).

Figure 11.4 shows sensitivity-precision ROC-curves (Receiver Operating Characteris-
tic) for Seed-Kraken, and for the unmodified Kraken. In the case of Seed-Kraken, the
“best performing” seed is charted for each weight. Furthermore, triangle points corre-
spond to Seed-Kraken run on contiguous seeds, plotted in order to measure the effect of
our modification in dealing with complementary sequences.

At the levels of genus and family, spaced seeds consistently show a better sensitivity-
precision trade-off, with the sensitivity increase of about 2 percentage points for MiSeq
and 3-5 points for HMPtongue, for a given precision rate. The results of Seed-Kraken with
contiguous seeds (triangle points) confirm that this improvement is due to the use of spaced
seeds and not to our slight modification of the assignment algorithm due to complementary
sequences. For small weights (20-22), a spaced seed achieves simultaneously a better
sensitivity and a better precision than the contiguous seed of the same weight. When the
weight grows, the increment in precision disappears reaching the level of the contiguous
counterpart, or sometimes coming down below it. However, this is largely compensated
by the increase in sensitivity.

For the species level, the picture turns out to be more involved. Here we observe
that due to the small modification of the assignment algorithm, Seed-Kraken run with
contiguous seeds (triangle points) shows a modified behavior compared to Kraken. Specif-
ically, we observe a drop in precision and a gain in sensitivity, and those are different for
MiSeq and HMPtongue datasets. The reason for this is that Seed-Kraken makes more
species-level classifications than Kraken but at the same time, makes more inaccurate
assignments to a closely related organism (typically, different strain of the same bacteria),
which eventually leads to a lower precision. This phenomenon has a bigger impact for rich
databases (HMPtongue experiment) compared to “sparse” databases where each species is
represented by few organisms (MiSeq). As for the contribution of spaced seeds, we observe
an improved sensitivity-precision trade-off here as well. Compared to Seed-Kraken applied
to contiguous seeds, this improvement is small for MiSeq but significant for HMPtongue,
which shows a correction capacity of spaced seeds w.r.t. erroneous assignments to close
strains. Compared to the original Kraken, we obtain a sensitivity increment of about 1%
which becomes smaller (MiSeq) or completely disappears (HMPtongue) when the seed
weight grows.

As mentioned earlier, the spaced seed corresponding to each plotted Seed-Kraken point
has been selected out of a few (usually two to four) seeds tried. The full list of seeds applied
in experiments and corresponding results can be found in the supplementary material.
Here we just mention that for large weights (24 and more) the span of the seed becomes
an important factor, with seeds of large span showing a drop in sensitivity and best seeds
being those with relatively few jokers.

Building a Seed-Kraken limited database takes approximately 1 hour on a server with
20 CPU cores, and the resulting size is 26 GB for seed of weight 24, which compares to the
25 GB for original Kraken. The classification running times are longer than for original
Kraken by a factor of 3 to 5.

11.4. CONCLUSIONS 95

11.4 Conclusions
Through a series of computational experiments, we showed that spaced seeds significantly
improve the accuracy of metagenomic classification of short NGS reads. The superiority of
spaced seeds for different variants of alignment-free sequence comparison has been recently
demonstrated by other authors as well [462, 463, 460, 464]. In this work, we specifically
focused on the metagenomics setting characterized by very large volumes of data, both
in terms of the number of reads and the size of genomic database. This quantity of
data precludes using some alignment-free comparison techniques, and leaves room only
for highly time- and space-efficient approaches. Note also that in our setting, we have
to compare short sequences (reads) with long ones (whole genomes), which makes an
important difference with problems considered in [460, 464, 461]. For example, in the
framework of metagenomic classification, it is hardly conceivable taking into account 𝑘-
mer frequencies [460], as this information would be computationally difficult to utilize.

Another improvement considered in [460, 464, 461] is to use multiple seeds, i.e. sev-
eral seeds simultaneously instead of a single one. This extension is known to bring an
advantage in seed-and-extend sequence alignment [653, 472], and [460, 464] show that this
improvement applies to alignment-free comparison as well. However, each seed requires
to build a separate index for database genomic sequences, and therefore it appears com-
putationally difficult to use multiple seeds in metagenomics, unless some new indexing
techniques are designed for this purpose.

In our work, we studied three estimators: hit number, coverage and Jaccard index.
Hit number and coverage behave similarly in classification (Section 11.3.1), but Jaccard
index generally improves on them in the case of mapping to real genomes (Section 11.3.1),
due to the correction w.r.t. the 𝑘-mer-richness. Considered as an estimator of alignment
quality (Section 11.3.2, 11.3.3), coverage provides a certain advantage over hit number.
More subtle estimators can be considered as well, e.g. by taking into account the position
of 𝑘-mer in the read (reflecting the sequencing error rate), and this provides an issue for
further study.

Designing efficient seeds for metagenomic classification is another important issue that
goes beyond the present study. Note that optimal spaced seeds for seed-and-extend align-
ment are generally not optimal for alignment-free 𝑘-mer-based comparison [464]. In [464],
the authors designed (sub-)optimal seeds maximizing the Pearson correlation between
hit-number/coverage count and the alignment quality. Their solution is implemented in
Iedera software4 (http://bioinfo.lifl.fr/yass/iedera) [477]. On the other hand, recent work
[488] introduces quadratic residue seeds (QR-seeds) for seed-and-extend alignment, which
present a good performance and have the advantage of easy design, avoiding the computa-
tionally expensive enumeration of Iedera. In our work, we used both Iedera and QR-seeds
adapted to our setting. We observed that in most cases, Iedera seeds are superior (being
designed specifically for our task) but in a few cases, QR-seeds demonstrated equal or even
better performance5. This may be due to their large span (cf. supplement material) for
which applying Iedera is computationally costly.

We now summarize the main contributions of our work.

• We showed that spaced seeds can drastically improve the success rate of binary
classification of alignments into two categories, each defined by a specific mismatch

4The latest version of Iedera performs design for Spearman correlation as well.
5E.g. best results of Table 11.4 for weights 14-18 were obtained with QR-seeds.

http://bioinfo.lifl.fr/yass/iedera

96 CHAPTER 11. SPACED SEEDS FOR METAGENOMICS

rate. Here the classification is done through “querying” an alignment using a seed
as a mask and reporting whether the seed applies at a given position. For example,
in discriminating between alignments of length 100 with mismatch rate 0.2 and 0.3,
a spaced seed of weight 16 achieves 63% of success while a contiguous seed of the
same weight achieves only 40% (Table 11.1c).
Recently, spaced seeds have been shown to define more efficient kernels for SVM
classification of both protein [462] and nucleotide (RNA) sequences [464]. Compared
to these works, here we demonstrate the superiority of spaced seeds in a very simple
classification setting, where sequences have to be classified according to identity rate,
without a training stage and without resorting to SVM machinery.

• We showed experimentally that spaced seeds allow for a better classification of NGS
reads coming from a genome 𝐺 between two other genomes 𝐺1 and 𝐺2 of the same
genus. Here reads are classified according to the phylogenetic distance between 𝐺
and 𝐺1 and 𝐺 and 𝐺2 respectively. We established that in this task, Jaccard index
provides an advantage over hit-number and coverage which is especially important
for seeds of small weight.

• We studied how well different estimators (coverage/hit-number combined with spaced/-
contiguous seed) correlate with the alignment quality, by measuring Spearman’s rank
correlation coefficient and mutual information coefficient. Here again, we observed a
significantly better correlation produced by spaced seeds, but only when the align-
ment quality varies over a sufficiently large range, starting from identity rate around
0.9 or below. On the other hand, if only high-quality alignment are targeted (id rate
at least 0.9) then the correlation produced by spaced seeds becomes lower, with hit-
number measure over a contiguous seed eventually becoming the best for alignments
of id rate about 0.95 or more.

• We also measured the correlation produced on real genomes within the metagenomic
classification approach of [610, 454]. For this, we assumed that the “closeness” of
a read to a genome is characterized by the quality of the alignment (in our case,
the number of mismatches), and computed the correlation produced by different
counts on simulated reads. These experiments confirmed the superiority of spaced
seeds as well. Moreover, they showed that coverage combined with spaced seeds
provides the best option, leading to the highest Spearman’s correlation but also to
a significantly higher Pearson’s correlation. The latter means that this estimator
induces a dependency closer to linear, which can be a useful feature for classification
algorithms.

• Finally, we compared spaced and contiguous seeds through large-scale metagenomics
experiments. We modified Kraken software [454] to make it work with spaced seeds,
without modifying the core classification algorithm or any other parts of the software,
with the only exception being the way the complementary sequences are dealt with.
With just replacing contiguous seeds by spaced seeds, Kraken showed a consistent
improvement of specificity/sensitivity trade-off at genus and family levels and a
dataset-dependent improvement at the species level.

Real data experiments of Sections 11.3.1, 11.3.3 have been done using SnakeMake [538].

Overall, all our experiments corroborate the thesis of better performance of spaced
seeds for metagenomic classification. Many further questions are raised by this work. Our

11.4. CONCLUSIONS 97

results remain to be explained with more rigorous probabilistic arguments, similarly to
how it has been done for spaced seeds applied to seed-and-extend paradigm [654]. While
there are obvious similarities between the two applications, the underlying “mechanisms”
seem to be different. One sign of this difference is that optimal spaced seeds for the two
problems are not the same, as mentioned earlier.

Experiments with Kraken (Section 11.3.4) give a strong evidence that spaced seeds
can improve the classification accuracy in real-life large-scale metagenomic projects. One
further improvement would be to implement coverage and Jaccard measures that showed,
in general, a better performance compared to the hit number. Introducing spaced seeds
rises new issues, such as the construction of an efficient index of the database, or adapt-
ing the algorithm of computing the most likely node of the taxonomic tree from counts
produced by individual genomes, i.e. leaves of the tree. These questions are a subject for
future work.

98 CHAPTER 11. SPACED SEEDS FOR METAGENOMICS

Chapter 12

ProPhyle: a metagenomic
classifier based on
Burrows-Wheeler transform

In this chapter, we present ProPhyle, a highly efficient method for 𝑘-mer-based
metagenomic classification using BWT-index. We show that ProPhyle pro-
vides a more expressive index than Kraken [454], with a much smaller mem-
ory footprint. The resulting classification method supports multiple similarity
measures and different modes of classification. All programs and scripts are
available from http://github.com/karel-brinda/prophyle.

12.1 Introduction

Kraken [454], currently the most widely used tool for metagenomic classification, suffers
from a series of problems, which often directly follow from its minimalistic algorithm
design.

First, Kraken requires an extremely large amount of RAM (e.g., 120 GB for index con-
struction of the default bacterial database). Even though Kraken’s memory requirements
may look moderate comparing to, e.g., LMAT (requiring 619 GB), they still exclude its
usage on standard computers or even on modestly equipped clusters. The main bottle-
neck, the large memory required during the index construction, is a direct consequence of
using 𝑘-mer counting and cannot be easily alleviated. The problem is deeply rooted in the
approach of Kraken as it relies on LCAs, which has to be computed for all 𝑘-mers. This
algorithmic task itself is hardly solvable in a small memory (𝑘-mer’s LCA is a “global”
information that cannot be computed “locally” within the tree). Even with a precom-
puted index, Kraken still requires more than 75 GB for classification as every single 𝑘-mer
occupies 12 bytes in the Kraken’s hash table.

Second, Kraken uses an insufficiently expressive index. For each 𝑘-mer, it represents its
LCA only, which appears to be too rough and may result in inaccurate classifications. For
instance, Kraken often assigns reads to high taxonomic levels. Unfortunately, this effect
is hardly visible from standard comparisons as they provide averaged statistics for entire
metagenomes (e.g., [606]), rather than consider individual members of the metagenome.
Therefore, it might be unclear how reliable Kraken can be on data from a user-provided
metagenome with a particular composition. This drawback is directly inherited from the

99

http://github.com/karel-brinda/prophyle

100 CHAPTER 12. PROPHYLE: A BWT-BASED METAGENOMIC CLASSIFIER

simplified index and cannot be easily corrected in Kraken.
Here we present ProPhyle, a 𝑘-mer-based classification method using BWT-index with

lossless property. ProPhyle avoids the presented drawbacks of Kraken and provides a
highly efficient and accurate method, which is suitable to be run even on laptops. As we
discuss later, many aspects of this method can be easily improved so the characteristics
presented in this chapter are likely to be improved in near future. Before describing the
method itself, we first provide a list of properties which we believe that a good metagenomic
classifier should have.

12.2 General requirements on metagenomic classifiers
We observe that metagenomic classification strongly resembles read mapping. The latter
is already a deeply studied problem with well-developed standards and methodologies.
Here, we provide a list of properties which we consider highly desirable for metagenomic
classifiers.

1. Low memory requirements. The classifier should run on a standard PC equipped
with a reasonable amount of RAM. With the emergence of mobile sequencers (e.g.,
Oxford Nanopore – Minion), this requirement appears even more urgent. We strongly
believe that a “point-of-care” taxonomic classification will become a very common
task soon, e.g., in the contexts of disease surveillance, water contamination detection,
or agriculture.

2. Ease of usage. The classifier should be provided as a single easily installable pro-
gram that performs all steps of the classification process: downloading the taxonomy
and the reference genomes, building the index, and performing the classification. It
should also support user-specified taxonomies (e.g., user-provided phylogenetic tree).

3. Support for standard bioinformatics formats. The classifier should support
standard bioinformatics formats. In particular, it should provide the output in SAM
[122] and load taxonomies in Newick/NHX. Note that even though the initial purpose
of SAM format was storing alignments, its flexibility enables us to use it for many
other types of reads’ annotations, including the assignments to a taxonomic tree.

4. Automatic level detection vs. fixed taxonomic level. The classifier should
allow fixing the taxonomic level at which the reads would be assigned. It should
also support its automatic detection (i.e., when a read is not specific enough, it is
assigned on a node on some higher level).

5. Support for assignment quality. Similarly to mapping quality in read mapping,
assignment quality should be provided with every taxonomic with assignment. In
fact, two distinct quality measures can be considered in this case. For classification
at a fixed level of taxonomic tree, a horizontal assignment quality would express the
probability that the read should be assigned to another node on the same level. In
case of classification with automatically detected level, a vertical assignment quality
(expressing reliability of level selection) should be computed as well.

6. Best hit vs. all hits. If possible, the classifier should be capable to work in two
different modes. The best-hit mode should quickly retrieve the node maximizing the
underlying measure. The all-hits mode should report all hits whose score is close

12.3. DESIGN OF PROPHYLE 101

A) B) C)

!"" ""# "#!

"""

"#"

!!" !"" ""# "#!

"""

"#"

!!"

>contig_1
AACCGA
>contig_2
CCC
>contig_3
CGC

Figure 12.1: Assembly procedure in ProPhyle. Contigs are greedily assembled from
a set of 𝑘-mers. A) From a given set of 𝑘-mers, first a vertex-centric de-Bruijn graph
is constructed. B) Until the graph is empty, new contigs are assembled. Iteratively, a
random vertex is selected as a seed of the new contig and then greedily extended to both
directions. Whenever a node is used, it is immediately removed from the graph. C) Each
obtained contig is stored as a separate sequence with the same FASTA file.

enough to the best node. While the best-hit computation is faster, the all-hits mode
can help to improve the accuracy of quantitative methods working with provided
assignments.

7. Updating prior probabilities. As an option, the prior probabilities of assign-
ments to individual nodes should be automatically continuously adjusted according
to assignments computed so far.

12.3 Design of ProPhyle
In addition to the requirements of the previous section, we impose two more properties
that Prophyle should satisfy. First, the index should be lossless, i.e., it should be capable
to retrieve an exhaustive list of genomes that the queried 𝑘-mer occurs in. Then, we want
to support several distinct measures including the Jaccard index and the coverage criterion
(see the Chapter 11).

Even though we originally intended to use spaced seeds since we have shown that they
significantly improve the classification accuracy, we did not find any space efficient index
structure for spaced 𝑘-mers. So we had to eventually relax on this idea in ProPhyle and
the final method works with contiguous 𝑘-mers only.

12.3.1 Key algorithmic ideas

Representing a collection of 𝑘-mer sets using a BWT-index. Designing a 𝑘-mer
index for a metagenomic classifier (Figure 10.2) often corresponds to the task of creating
a data structure capable to store and retrieve a list of nodes for every 𝑘-mer from the
reference database, thus, a specific variant of an associative array. For instance, Kraken
index stores the lowest common ancestors of each 𝑘-mer in the database, so such a node
list contains exactly one node for every 𝑘-mer.

The most straightforward strategy to represent such associative arrays is based on
using hash-tables, but this leads to huge memory footprints (e.g., Kraken uses 12 bytes
per 𝑘-mer). In order to solve this obstacle, we suggest to replace hash-tables by BWT-
indexes [190], similarly to what was done for read mappers in 2009 [178, 179, 223].

102 CHAPTER 12. PROPHYLE: A BWT-BASED METAGENOMIC CLASSIFIER

Reference	genomes

Roots	inducing	this	k-mer forest5 6

2

7 8

3

4

1

Reference	genomes	containing	k-mer K

Resulting	k-mer forest

Figure 12.2: Example of a 𝑘-mer forest. A 𝑘-mer 𝐾 occurs in reference genomes
associated with leaves 4, 7, and 8. The subtrees rooted by nodes 3 and 4 form the minimal
set of subtrees containing 𝐾 in all leaves, hence the forest highlighted in blue is the 𝑘-mer
forest of 𝐾. In Prophyle, we represent such a forest using a list of roots of the contained
trees/ We can then retrieve all genomes containing 𝐾 (nodes 4, 7, 8 in this example).
Since LCA of nodes 4, 7 and 8 is the root in this example (node 1), genomes at nodes 5
and 6 would be false positives in Kraken-like approaches.

Let us briefly describe how BWT-indexes can help in our situation. To summarize, we
have a tree and sets of 𝑘-mers in its nodes (in the leaves and also in the internal nodes).
The exact strategy of distribution of 𝑘-mers to the nodes of the tree is specific to each
individual classifier, being strongly related to the classifier’s read assignment algorithm.
Nevertheless, regardless of the exact distribution strategy, we observe that individual nodes
often contain overlapping 𝑘-mers. Roughly speaking, this a consequence of the fact that
overlapping 𝑘-mers are often specific to the same genomes or the same taxonomic clade
(with the exception of low-complexity regions). We strongly exploit this property in our
indexing structure.

We use the following scheme. First, at every individual node, we assemble contigs from
all its associated 𝑘-mers. The assembly procedure is performed as a greedy enumeration
of disjoint paths in a vertex-centric de-Bruijn graph built from the 𝑘-mers assigned to the
node. See Figure 12.1 for an illustrative example. The resulting contigs have the property
that they contain a 𝑘-mer 𝐾 as a substring if and only if 𝐾 was a member of the original
𝑘-mer set at that node. When the assembly is finished for all nodes, we concatenate all
the obtained contigs from all the nodes. We continue by creating a BWT-index [190] for
the resulting long string. In addition to the bare BWT-index, we have also to keep track
of the positions of contig borders and of the starting positions of segments corresponding
to the individual nodes. Note that a similar approach has been used for de-Bruijn graph
representation [655, 656].

Querying a 𝑘-mer starts by the standard BWT-index search procedure followed by
translating the obtained locations to nodes. Then for every obtained node, we have to
verify whether the localized 𝑘-mer is situated outside contig borders, otherwise the node
would be a false positive. Finally, we report the node as a true match.

The presented indexing structure is lossless in that sense that it retrieves a precise list
of nodes for every 𝑘-mer. Note that this approach is not limited to trees, it can be used
basically for arbitrary systems of 𝑘-mer sets. As we will show later on real experiments,
the resulting footprint of this index is low provided that many 𝑘-mers are overlapping

12.3. DESIGN OF PROPHYLE 103

(within the individual 𝑘-mers sets to be indexed).

𝑘-mer forests and their construction using 𝑘-mer propagation. As it was men-
tioned above, different classifiers associate 𝑘-mers with nodes of the taxonomic tree differ-
ently, based on the model used for classification and the heuristic for score computation.
To achieve a good accuracy, we want to distribute 𝑘-mers in such a way that we could
fully reconstruct 𝑘-mer sets of individual genomes (lossless property). Note that this is
impossible with the LCA representation in Kraken. If we leave all 𝑘-mers in the leaves,
the more frequent 𝑘-mers would occupy too much space in the resulting index and also
classification would be slower as assignments on higher levels would have to be slowly
computed from the level of leaves.

We introduce a representation called a 𝑘-mer forest that solves our problem. Within
this concept, we associate each 𝑘-mer 𝐾 with a minimal set of subtrees of the taxonomic
tree such that the leaves of these subtrees are the genomes containing 𝐾 and every leaf of
each of these subtrees contains 𝐾. See Figure 12.2 for an example.

In addition to the lossless property, a major advantage of this representation is the low
memory requirements for its construction. Using an algorithm called 𝑘-mer propagation,
the 𝑘-mer forest can be computed in a series of local modifications of a tree with 𝑘-mer
sets in its nodes. Whereas Kraken has to store all 𝑘-mers in memory to compute their
lowest common ancestors, we need to store in memory at one moment only a small number
of 𝑘-mers specific to a local small subtree.

The 𝑘-mer propagation is a bottom up approach. We start with a tree, which has
𝑘-mers in its leaves (they contain 𝑘-mers of individual genomes). Then we propagate the
𝑘-mers from leaves to higher levels. A node can be processed when all of its children have
already been processed. Processing a single node proceeds by computing the intersection
of children 𝑘-mers sets, subtracting the intersection from all these sets, and assigning the
intersection at to the node.

12.3.2 ProPhyle index

Overview. ProPhyle uses an indexing structure based on the ideas of Section 12.3.1.
First, we propagate 𝑘-mers from individual genomes bottom-up along the taxonomic tree,
assemble contigs, and merge them into a single reference FASTA file. Then we build a
BWT-index from this reference such that querying a 𝑘-mer proceeds by the full-text using
the index and the retrieved sequence names are translated into nodes. The entire process
is illustrated in Figure 12.3.

Assembly and 𝑘-mer propagation. Assembly and 𝑘-mer propagation are performed
using a C++ program called prophyle-assembler, which is used recursively on all nodes in
the tree. The program loads sequences from several FASTA files, extracts 𝑘-mer sets, com-
putes their intersection, assembles it into contigs (see below), and finally removes, using
re-assembling, the intersecting 𝑘-mers from the children FASTA files (see Figure 12.4).

We parallelize the entire 𝑘-mer propagation process using GNU Make (with the -j
parameter). Dependencies in the input Makefile (automatically generated) mirror the
taxonomic tree so the entire task is highly parallelizable. prophyle-assembler is first
called on the lowest nodes and continues to the root. Most of the computational time is
spent on lowest nodes as a majority of 𝑘-mers do not propagate at all, or by a single level
only.

104 CHAPTER 12. PROPHYLE: A BWT-BASED METAGENOMIC CLASSIFIER

GAAACGA ACGCGG

AA,	AC,	
CG,	GA

AC,	CC,	GC

GA,	AA CC

AC,	CG

GAA CC

ACG

>n1
ACG
>n2
GAA
>n3
GC

BWT-index
FASTA	file

Figure 12.3: Schematic overview of 𝑘-mer propagation and index FASTA con-
struction in ProPhyle. First, 𝑘-mers are propagated bottom-up and assembled into
contigs. Then contigs from all nodes are placed into a single FASTA file, which is finally
used to construct a BWT-index.

BWA BWT-index. For the full-text search, we used the BWA implementation [178] of
BWT-index [190] and adapted it for our purposes. We selected BWA because it is a tool
with a comprehensible high-quality code, which is well-debugged, highly optimized (being
one of the fastest implementation of BWT-index), well-documented, and at the same time
having a reasonable memory footprint.

The construction of BWT-index is performed by BWA directly, whereas querying is
implemented in prophyle-index, a dedicated tool. It reduces the BWA memory memory
footprint by loading only certain parts of the index. By calling low-level BWA functions
only, prophyle-index can quickly retrieve all nodes containing a contig containing a
queried 𝑘-mer. The matching procedure can work in two different modes.

In the restarted search mode, querying every new 𝑘-mer results in a sequence of 𝑘
operations on the BWT-index (standard search with BWT-index [190]). In addition to
BWA index files, no other information needs to be precomputed, but the matching is
relatively slow.

In the rolling window approach, we exploit the fact that a query of a 𝑘-mer can be
computed from the query of the previous 𝑘-mer, since they have an overlap of 𝑘 − 1
letters. First we extend the suffix array interval using a so-called 𝑘-LCP bit-array (defined
as 𝑘-LCP[𝑖] = 1 ⟺ LCP[𝑖] ≥ 𝑘 − 1, where LCP denotes longest common prefix array),
which corresponds to removing a single character of the searched pattern, followed by
adding a new character to the query using the standard BWT-index technique. The rolling
window is approximately 5× faster compared to the restarted search in our experiments,
but the 𝑘-LCP bit-array must be computed in advance and loaded into memory before
matching. More detailed information about the rolling window approach will appear soon
[657].

12.3. DESIGN OF PROPHYLE 105

!"##$!%&'()'*$

+

,'-".'-$!%&'()'*$+/

!"##$!%&'()'*$

0

,'-".'-$!%&'()'*$0/

!"##$!%&'()'*$

1

,'-".'-$!%&'()'*$1/

!""#$%&#'
23*'()'.*453

63'7$8"##$!%&'()'*9

(

:))'&;#'

Figure 12.4: Scheme of 𝑘-mer propagation at a single node. First, full 𝑘-mer sets are
loaded from all children nodes. Then, intersection of all these sets is computed and saved
as a full 𝑘-mer set at the current node. Finally, the obtained intersection is subtracted
from full 𝑘-mer sets of the children nodes so that reduced 𝑘-mer sets are obtained and
saved on disk. This scheme is recursivelly applied to all nodes of the taxonomic tree so
𝑘-mers shared between all nodes are propagated bottom-up. For the leaves, full 𝑘-mer sets
are specified by the FASTA files of genomes. All newly created 𝑘-mers sets are stored in
FASTA files as greedily assembled contigs containing only these 𝑘-mers (see Figure 12.1).

106 CHAPTER 12. PROPHYLE: A BWT-BASED METAGENOMIC CLASSIFIER

!"#$%&'(!"#$%&'(&)(* !"#$%&'(&+,- ./0 !"#$%&'(&+,- .10

!"#$%&'(&2(

!"#$%&'(&!&34*)

File Command File description Size (bits per
bp)

index.fa contigs from u�-mer propagation 8+
index.fa.pac bwa fa2pac packed merged contigs with rev. compl. 4
index.fa.bwt [1] bwa pac2bwtgen BWT string 4
index.fa.bwt [2] bwa bwtupdate BWT string and sampled OCC array 8
index.fa.k.klcp prophyle-index index u�-LCP array and its sampling 4
index.fa.sa bwa bwt2sa sampled suffix array 8

Figure 12.5: ProPhyle BWT-index construction process and the resulting files.
Yellow and blue nodes correspond to auxiliary files and final index files, respectively.
The input index.fa file is obtained from the 𝑘-mer propagation step. First, we convert
it to index.fa.pac, a file containing all contigs merged together, merged with a reverse
complement of this long string. This resulting string is encoded using 2 bits per nucleotide
encoding. In the next step, we compute Burrows-Wheeler of this string and store it as
index.fa.bwt. This file is then extending by appending the sampled OCC array to its
end. Finally, 𝑘-LCP array and sampled suffix array are computed (possibly in parallel
using prophyle-index index).

Figure 12.5 describes the individual steps of ProPhyle BWT-index construction in-
cluding the exact commands.

We end this section by summarizing main steps of index construction.

1. Assign 𝑘-mers of individual reference sequences to leaves of the taxonomic tree

2. Propagate 𝑘-mers

3. Construct the main FASTA file

4. Construct the BWT-index

5. Construct the 𝑘-LCP array

12.3.3 ProPhyle classification algorithm

We have developed the first prototype of the ProPhyle assignment algorithm. For every
read, based on assignments of its individual 𝑘-mers provided by the index, it decides on
the assignment to a node of the taxonomic tree, which are then reported in the SAM
format [122]. The classifier currently supports two measures, the hit count like Kraken
[454] and the coverage criterion like CoMeta [622]. It can work both in the best-hit and
the all-hits modes. The program can also emulate the Kraken assignment algorithm.

12.4. RESULTS 107

12.4 Results
We built a ProPhyle index comprising 2,787 bacterial genomes from the RefSeq database
[658] for 𝑘-mers of length 31, and we compared it to the Kraken index constructed from the
same database of genomes (Table 12.1, Figure 12.6). The memory footprint of ProPhyle
was measured using GNU Time. We used a computer with 24 cores and 64 GB RAM.
Since Kraken’s requirements exceed computational resources available in our laboratory,
we could not compare both programs directly. Therefore, we present values from Kraken
website though we are aware of the fact that they were obtained on a much stronger
computer.

We observe that memory requirements of ProPhyle are very moderate compared to
Kraken. The decrease from 120 GB to 13 GB of the index construction footprint corre-
sponds to 9× memory reduction. The observed difference is mainly a consequence of the
fact that 𝑘-mer propagation is local.

The querying footprint of 14.2 GB results from memory allocation for BWT, sampled
SA and 𝑘-LCP (in sum 13.2 GB), and from small caches (which we have, however, man-
aged to partially reduce). With the current implementation, we compress more than 5×
compared to Kraken, which uses approximately 75 GB.

We see that ProPhyle memory requirements allow the metagenomic classification to
be performed on standard PC or even laptops, which was the main goal of our work.
Moreover, the ProPhyle index is much more expressive than the index of Kraken.

The ProPhyle index construction takes more than 4 hours, mainly due to the slow
BWT construction. The first step, 𝑘-mer propagation, is well-parallelized and takes only
20 minutes. The other steps currently use non-parallelized algorithms, nevertheless, their
parallelization is feasible (see Chapter 13) and we expect that the index construction time
could be decreased to approximately 2 hours, which would be fully comparable to Kraken
(1.5 hours on a high-performance computer).

Query speed of ProPhyle is measured in terms of reads per minute (RPM), the time
required for loading the index into memory is excluded from this statistics (similarly to
the methodology from [454]). We observe that the rolling window with 681, 000 RPM
provides more than 5× speed-up over restarted search with approximately 120, 000 RPM.
Compared to Kraken, the rolling window is still approximately 2× slower. Nevertheless,
this slowdown is compensated by low memory requirements and a higher expressiveness
of the index.

It is also instructive to look at characteristics of the obtained contigs. Even though their
number is relatively high (24 million), they are still relatively long (331 bp in average).
The total number of represented 𝑘-mers (approximately 7 billions) corresponds to the
lower bound on the total length of contigs. Since the current total length is approximately
8 Gbp, we could not diminish index size using a better assembly algorithm by more than
10%. Therefore, the greedy assembly is a successful strategy for this problem.

108 CHAPTER 12. PROPHYLE: A BWT-BASED METAGENOMIC CLASSIFIER

100

101

102

103

104

105

106

107

108

109

1010

50 100 150 200 250 300 350 400 450 500

Fr
eq
ue
nc
y

Trees	in	a	forest

Figure 12.6: Histogram of 𝑘-mer forests in the resulting ProPhyle index. The
index was built from the RefSeq database [658] comprising 2,787 bacterial genomes for
𝑘-mers of length 31. The index contains 5, 621, 116, 493 distinct canonical 𝑘-mers. A vast
majority of them (5, 091, 088, 664; 91%) have a 𝑘-mer forest of size 1; 275, 641, 073 𝑘-mers
a forest of size 2; 102, 645, 143 𝑘-mers a forest of size 3; etc.

12.4. RESULTS 109

A) Index construction performance

Step Elapsed Memory CPU
time peak usage

ProPhyle index construction 4 h 28 m 13.0 GB N/A
FASTA construction 27 m 10.2 GB N/A

𝑘-mer propagation 20 m 10.2 GB 1609%
FASTA merging 7 m 0.1 GB 81%

BWT & OCC construction 2 h 20 m 11.2 GB N/A
fa2pac 02 m 6.1 GB 60%
pac2bwtgen 2 h 16 m 4.4 GB 100%
bwtupdate 02 m 11.2 GB 53%

𝑘-LCP & SA construction 1 h 41 m 13.0 GB 136%
Kraken index construction♢ ≈1 h 32 m ≈120.0 GB N/A

B) Index querying performance

Method Index performance Memory peak
ProPhyle – rolling window 681, 031 RPM 14.2 GB
ProPhyle – restarted search 122, 650 RPM 12.4 GB
Kraken♢♦ ≈1, 300, 000 RPM ≈75.0 GB

C) Index files

File Description Size
bwt BWT string + OCC array 7.5 GB
klcp 𝑘-LCP bitvector 1.9 GB
sa sampled suffix array 3.8 GB
ann textual list of contigs 1.0 GB

D) Contig statistics

Category Value
Total length of all contigs 7, 993, 453, 766 bp
Average contig length 331 bp
Median contig length 70 bp
Number of contigs 24, 170, 781
Number of represented 𝑘-mers 7, 268, 330, 336
Number of distinct 𝑘-mers 5, 621, 116, 493

♢ Values are taken from https://ccb.jhu.edu/software/kraken/MANUAL.html. Measured
on a different computer with higher performance, and with a slightly different version of
the same bacterial database.

♦ Kraken’s RPM comprises also read assignment.

Table 12.1: Characteristics of the resulting ProPhyle index and comparison to
Kraken. The index was built from the RefSeq database [658] comprising 2,787 bacterial
genomes for 𝑘-mers of length 31. The computation was performed on a machine with
Intel® Xeon® CPU E5-2630 v2 @ 2.60GHz, 24-cores, and 64 GB RAM.

https://ccb.jhu.edu/software/kraken/MANUAL.html

110 CHAPTER 12. PROPHYLE: A BWT-BASED METAGENOMIC CLASSIFIER

Chapter 13

Discussion

Spaced seeds. We demonstrated that spaced seeds provide better estimators of align-
ment score than contiguous 𝑘-mers and that they can strongly improve the metagenomic
classification. The main obstacle preventing the usage of spaced seeds in practice is the
lack of compact indexes for spaced 𝑘-mers and hash tables are too memory consuming in
many scenarios. Even though some recent works [659] have shown a promising direction,
no good implementation exists so far.

Classification with ProPhyle. We introduced the ProPhyle classifier and showed that
it uses 9× less memory for index construction than Kraken, and approximately 5× less
memory for classification. A lower speed of classification is a direct consequence of a better
compression of the index, and of the fact that the resulting 𝑘-mer index is, unlike Kraken,
lossless, i.e., it can retrieve all genomes in which a 𝑘-mer occurs.

The current version of ProPhyle is still experimental and, in particular, the component
responsible for read assignments is still a prototype, awaiting the upcoming C++ reimple-
mentation Nevertheless, we are confident that the resulting classification method will be
more accurate than Kraken as we avoid the “LCA distortion”.

Optimizing ProPhyle. The current ProPhyle methods can be refined in many dif-
ferent directions. Query speed, memory footprint, and sensitivity are characteristics in a
trade-off. Index construction is out of this trade-off and it can be strongly improved due
to the lack of parallelization in most of index construction steps.

1. Speed of index construction.

• Parallel index construction. The most time-demanding step of index con-
struction is currently the computation of BWT (see Table 12.1). Even though
methods for its parallel construction exist [524, 660, 368], they are not planned
to be incorporated in BWA [661]. Similarly, sampled suffix array and 𝑘-LCP
array construction could be parallelized [657, 661].

2. Index size.

• Binarized tree. During the 𝑘-mer propagation step, the tree can be binarized
in order to improve compression (more 𝑘-mers could then be propagated up).
“prophyle-assembler” could run a hierarchical clustering based on numbers of

111

112 CHAPTER 13. DISCUSSION

shared 𝑘-mer between children nodes and output a new topology of the con-
sidered subtree. A similar method is used in Centrifuge [618]. We suppose
that the resulting index would be smaller, but more fragmented and therefore
slightly slower.

• Sampled node-id array. In the standard BWT-index search procedure,
strings are located in a suffix array. Then it is necessary to translate these
suffix array coordinates to standard coordinates, which is done using a sampled
suffix array.
As we are using standard BWT-index in the heart of our method, we are inter-
nally retrieving exact coordinates of 𝑘-mers in the reference (i.e., in the sequence
of merged contigs). Nevertheless, this information is used only for determin-
ing the node id and checking whether the 𝑘-mer does not span the border of
contigs (in such a case, it is a false positive). In fact, we could relax on pre-
cise coordinates and replace the sampled suffix array by sampled node-id array,
which could reduce the ProPhyle memory footprint. However, a space efficient
method for excluding 𝑘-mers on borders still would need to be designed.

• Compression of BWT. BWA uses uncompressed representation of BWT
strings. Its compression (implemented, e.g., in SGA [662]) could lead to better
memory footprints.

3. Sensitivity.

• Approximate 𝑘-mer matching. Currently, 𝑘-mers are required to have exact
matches to the reference sequence that are accounted in hit number or other
measures. We could relax on this requirement and introduce a certain error
tolerance (similarly to SMART [623]). For instance, if a 𝑘-mer is not found
in the index but the previous was, we can correct (replace) its last letter by a
nucleotide that would make the new 𝑘-mer exist in the database. This strategy
might improve accuracy and sensitivity for reads with sequencing errors or
mutations.

Part IV

Conclusions

113

Conclusions

In this thesis, we studied methods for mapping and classifying Next-Generation Sequencing
data. Let us summarize the main presented results.

We provided the first comprehensive study of dynamic read mapping (Part II). We also
developed the first online consensus caller called Ococo (Chapter 7) and a simulator of
dynamic mapping (Chapter 8). Using this simulator, we performed a comparative analysis
of dynamic mapping, standard static mapping and iterative referencing (Chapter 8).

We studied methods for metagenomic classification (Part III) and provided the first
comprehensive study about spaced seeds for this task (Chapter 11). Moreover, we plugged
spaced seeds into Kraken, the most popular metagenomic classifier nowadays (Chapter 11).
We developed ProPhyle, a metagenomic classifier based on a novel usage of BWT-index
for 𝑘-mer indexing (Chapter 12).

Dynamic read mapping. We studied the problem of dynamic read mapping, i.e., map-
ping with continuously updated reference sequence on the basis of previously computed
read alignments. To compare dynamic mapping to other mapping approaches (static map-
ping and iterative referencing), we developed the RNFtools toolkit (Chapter 6). Then we
provided Dynamic Mapping Simulator (Chapter 8), a pipeline for comparative evaluation
of three mapping methods: static mapping, dynamic mapping (with or without remap-
ping), and iterative referencing. Using Dynamic Mapping Simulator and RNFtools, we
showed that the dynamic mapping approach can notably improve read alignment and
variant calling (Chapter 8).

We also developed Ococo (Chapter 7), the first online consensus caller since such a
component must be present in every dynamic mapper. The program calls the consensus,
using compact statistics based on approximate counting, directly from a stream of un-
sorted alignments. Beyond its application to dynamic mapping, Ococo can be employed
as an online SNP caller in various analysis pipelines, enabling calling SNPs from a stream
without saving the alignments on disk. In particular, this approach can be useful in
combination with the Oxford Nanopore real-time sequencing.

Metagenomic classification. In Chapter 11, we provided a thorough study of spaced
seeds for metagenomic classification. The presented results explain how the hit count and
the coverage combined with contiguous and spaced 𝑘-mers can influence the sensitivity and
the accuracy of the resulting classification. The central idea is that classification quality
depends on how well we can estimate the alignment score. We show that better estimates
are obtained with spaced 𝑘-mers rather than contiguous 𝑘-mers.

The methods that metagenomic classifiers use, usually correspond to assigning a read
to the node maximizing one of these measures (possibly normalized by the number of the
𝑘-mers at the node). The 𝑘-mer sets for leaves are usually computed directly from the

115

116

provided genomes. Since the genomes at internal nodes (corresponding to the evolution
ancestors) typically cannot be provided, their composition usually has to be deduced from
the genomes at the leaves. Nevertheless, the information about 𝑘-mers at individual nodes
is usually distorted due to technical limitations of the indexes.

For instance, Kraken classifies reads based on the hit count. With regard to Kraken in-
dexing scheme and its assignment algorithm, the information about 𝑘-mer sets is distorted
in the following way. Each 𝑘-mer is moved to its LCA and subsequently redistributed back
to the all nodes descending this LCA. In consequence, the Kraken method can work well
only for genomes and clades very little influenced by this 𝑘-mer redistribution. Indeed,
reads often tend to be assigned at high taxonomic levels. Unfortunately the Kraken paper
does not provide much insight into this problem so it remains unclear for what type of
data the Kraken assignments are reliable.

We believe that ProPhyle, which we present in Chapter 12, can alleviate these problems
as it retrieves exact information about the 𝑘-mer occurrences. Moreover, the employed
indexing scheme, based on a BWT-index, strongly reduces the associated memory foot-
print, and allows to construct the index and to classify the reads on laptops. Metagenomic
classification on laptops has become even more important nowadays, in the era of mobile
sequencers.

Part V

Appendices

117

119

Contents - Part V
A Languages of lossless spaced seeds 121

A.1 Introduction . 121
A.2 Preliminaries . 123
A.3 Lossless seeds . 124
A.4 Single seed and single hit problem . 125

A.4.1 Functions shu� and (𝑙, 𝑘)-valid bi-infinite words 125
A.4.2 subshifts of (𝑙, 𝑘)-valid words . 127
A.4.3 Decomposition into subshifts of finite type 129

A.5 Conclusion . 131

B Read Naming Format specification 133
B.1 Terminologies and concepts . 133
B.2 Read tuple names . 135

B.2.1 Read tuple ID . 135
B.2.2 SRN – Short Read Name . 135
B.2.3 LRN – Long Read Name . 135

B.3 SRN–LRN correspondence file . 137
B.4 Extensions . 137

120

Appendix A

Languages of lossless spaced seeds

A.1 Introduction
The annual volume of data produced by the Next-Generation Sequencing technologies
has been rapidly increasing; even faster than growth of disk storage capacities. Thus,
new efficient algorithms and data-structures for processing, compressing and storing these
data, are needed.

Similarity search represents the most frequent operation in bioinformatics. In huge
DNA databases, a two-phase scheme is the most widely used approach to find all occur-
rences of a given string up to some Hamming or Levenshtein distance. First of all, most
of dissimilar regions are discarded in a fast filtration phase. Then, in a verification phase,
only “hot candidates” on similarity are processed by classical time-consuming algorithms
like Smith-Waterman [127] or Needleman-Wunsch [126].

Algorithms for the filtration phase are often based on so-called seed filters which make
use of the fact that two strings of the same length 𝑚 being in Hamming distance 𝑘 must
necessarily share some exact patterns. We can represent these patterns as strings over the
alphabet {#, -} called seeds, where the “matching” symbol # corresponds to a matching
position and the “joker” symbol - to a matching or a mismatching position.

For example, for two strings of length 15, matching within two errors (so-called (15, 2)-
problem), the shared patterns are ##-#--##-# or #####. For illustration, if we consider
that two strings match as ===X=====X===== (where the symbols = and X represent respec-
tively matching and a mismatching positions), then the corresponding seed positions can
be following:

===X=====X=====
.##-#--##-#....
....#####......

As the second seed is the longest possible contiguous seed in this case, we easily observe
the advantage of spaced seeds in comparison to contiguous seeds; for the same task, we
can find spaced seeds with higher number of #’s (so-called weight).

Two basic characteristics of seeds are selectivity and sensitivity. Selectivity measures
restrictivity of the filter created from the seed. In general, higher weight implies better
selectivity of the filter. Lossless seeds are those seeds having full sensitivity. They are
easier to handle mathematically on one hand, but attain lower weight on the other hand.
Therefore, lossy seeds are more suitable for practical purposes since a small decrease in
sensitivity can be compensated by considerable improvement of selectivity.

121

122 APPENDIX A. LANGUAGES OF LOSSLESS SPACED SEEDS

Literature. The idea of lossless seeds was originally introduced by Burkhardt and
Karkkäinen [458]. Let us remark that lossy spaced seed appeared in the same time in
the PatterHunter program [459]. Possible generalization of lossless seeds was studied by
Kucherov et al. [482]. The authors studied seed families and the case when more hits of a
given seed are required (the pattern is shared at more positions). They proved that for a
fixed number 𝑘 of errors, optimal seeds (i.e., seeds with highest possible weight among all
seeds solving the problem) must asymptotically satisfy 𝑚−𝑤(𝑚) ∈ Θ(𝑚 u�

u�+1), where 𝑤(𝑚)
denotes the maximal possible weight of a seeding solving the (𝑚, 𝑘)-problem. They also
started a systematic study of seeds created by repeating of short patterns. Afterwards, the
results on asymptotic properties of optimal seeds were generalized by Farach-Colton et al.
[484]. Computational complexity of optimal seed construction was derived by Nicolas and
Rivals [479].

Further, the theory on lossless seed was significantly developed by Egidi and Manzini.
First, they studied seeds designed from mathematical objects called perfect rulers [485,
486]. The idea of utilization of some type of “rulers” was later independently extended by
KB [490] (cyclic rulers) and Edigi and Manzini [489] (difference sets). In [489], these ideas
were extended also to seed families. Let us mention that cyclic rulers and difference sets
mathematically correspond to each other. Edigi and Manzini [487] also showed possible
usage of number-theoretical results on quadratic residues for seed design.

In practice, seeds often find their use in short-read mapping in mappers based on
the seed-and-extend paradigm (for more details on read mapping, see for example [197]).
ZOOM [279] and PerM [271] are examples of such mappers, which utilize lossless seeds.

A list of papers on spaced seed is regularly maintained by Noé [470].

Our object of study. One of the most important theoretical aspects of lossless seeds
are their structural properties. Whereas good lossy seeds usually show irregularity, one
can observe that good lossless seeds are often repetitions of short patterns ([482, 271, 490,
489]). The question whether optimal seeds can be constructed in all cases by repeating
patterns (being short with respect to seed length) remains open (see [490, Conjecture 1]).
Its answering could have practical impacts on bioinformatical software tools development
since the search space of programs for lossless seeds design could be significantly cut and
also indexes in programs using lossless seeds for approximate string matching could be
more memory efficient ([271]).

Results. In this paper, we follow and further develop ideas from [490]. First we trans-
form the problem of seed detection into another criterion (Theorem 1). Then we prove
that the sets of seeds obtained after fixing the parameters:

• the number of allowed errors 𝑘;
• the seed margin ℓ, which is the difference between the size 𝑚 of compared strings

and the seed length 𝑠;
coincide with languages of some sofic subshifts. Therefore, those sets of seeds are recog-
nized by finite automata. We also show how these sofic subshifts can be decomposed into
subshifts of finite type. These results provide a new view on lossless seeds and explain
their periodic properties.

A.2. PRELIMINARIES 123

A.2 Preliminaries
Combinatorics on words. An alphabet 𝒜 = {𝑎0, … , 𝑎u�−1} is a finite set of symbols
called letters. A finite sequence of letters from 𝒜 is called a finite word (over 𝒜). The
set 𝒜∗ of all finite words (including the empty word 𝜀) provided with the operation of
concatenation is a free monoid. The concatenation is denoted multiplicatively. If 𝑤 =
𝑤0𝑤1 ⋯ 𝑤u�−1 is a finite word over 𝒜, we denote its length by |𝑤| = 𝑛 and use the symbol
|𝑤|u� for the number of occurrences of the letter 𝑎 ∈ 𝒜 in 𝑤. We deal also with bi-infinite
sequences of letters from 𝒜 called bi-infinite words w = ⋯w−2w−1|w0w1w2 ⋯ over 𝒜.
The sets of all bi-infinite words over 𝒜 is denoted by 𝒜ℤ.

A finite word 𝑤 is called a factor of a word u (u being finite or bi-infinite) if there
exist words 𝑝 and 𝑠 (finite or one-side infinite) such that u = 𝑝𝑤𝑠. We say that the word
𝑤 is a prefix of u if 𝑝 = 𝜀, and a suffix of u if 𝑠 = 𝜀. For given indexes 𝑖 and 𝑗, the symbol
u[𝑖, 𝑗] denotes the factor uu�uu�+1 ⋯uu� if 𝑖 ≤ 𝑗, or 𝜀 if 𝑖 > 𝑗. A concatenation of 𝑘 words 𝑤
is denoted by 𝑤u�. The set of all factors of a word u (u being finite or bi-infinite) is called
the language of u and denoted by ℒ(u). Its subset ℒ(u) ∩ 𝒜u� containing all factors of u
of length 𝑛 is denoted by ℒu�(u).

Let us remark that this notation will be used extensively in the whole text. For
instance w[2, 5]-4 denotes the word created by concatenation of the factor w2w3w4w5
of a bi-infinite word w and the word ----. Similarly, for a finite word 𝑣 of length 𝑛, by
⋯ --|𝑣--⋯ we denote the bi-infinite word u such that for all 𝑖 ∈ {0, … , 𝑛 − 1}(uu� = 𝑤u�)
and for all 𝑖 ∈ ℤ {0, … , 𝑛 − 1}(uu� = -). For more information about combinatorics on
words, we can refer to Lothaire I [663].

Symbolic dynamics. Consider an alphabet 𝒜. We define a shift operation 𝜎 as
[𝜎(u)]u� = uu�+1 for all 𝑖 ∈ ℤ. The map 𝜎 is invertible, and for all 𝑘 ∈ ℤ, the power
𝜎u� is defined by composition. The map 𝜎 is continuous on 𝒜ℤ, therefore, (𝒜ℤ, 𝜎) is a
dynamical system, which is called a full shift.

A bi-infinite word u ∈ 𝒜ℤ avoids a set of finite words 𝑋 if ℒ(u) ∩ 𝑋 = ∅. By 𝑆u�
we denote the set of all bi-infinite words that avoid 𝑋 and we call it a subshift. If 𝑋 is a
regular language, 𝑆u� is called sofic subshift; if 𝑋 is finite, 𝑆u� is called a subshift of finite
type. The language ℒ(𝑆) of a subshift 𝑆 is the union of languages of all bi-infinite words
from 𝑆. By ℒu�(𝑆) we denote the set ℒ(𝑆) ∩ 𝒜u�.

It holds that a set 𝑆 ⊆ 𝒜ℤ is a subshift if and only if it is invariant under the shift
map 𝜎 (that means 𝜎(𝑆) = 𝑆) and it is closed with respect to the Cantor metric on 𝒜ℤ,
which is defined as

𝑑(u,v) = {
0 if u = v,
2−u� if u ≠ v, where 𝑠 ∶= min {|𝑖| ∣ uu� ≠ vu�} .

A labeled graph over an alphabet 𝒜 is a structure 𝐻 = (𝑉 , 𝐸, 𝑠, 𝑡, ℎ), where 𝑉 is a finite
set of vertices, 𝐸 is a finite set of edges, 𝑠 ∶ 𝐸 → 𝑉 is a surjective source map, 𝑡 ∶ 𝐸 → 𝑉
is a target map, and lab ∶ 𝐸 → 𝒜 is a labeling function. A word w (w being finite of
bi-infinite) is a path in 𝐻 if 𝑡(wu�) = 𝑠(wu�+1) for all indexes 𝑖. A label lab(w) of the path
w is defined by (lab(w))u� = lab(wu�) for all indexes 𝑖. For a given graph 𝐻, we denote by
Σu� the set of all bi-infinite paths in 𝐻.

It holds that a subshift 𝑆 is sofic if and only if there exists a labeled graph 𝐻 such that
𝑆 = Σu�. Moreover, 𝑆 is of finite type if and only if there exists such strongly connected
graph. General theory of subshifts is very well summarized in [664].

124 APPENDIX A. LANGUAGES OF LOSSLESS SPACED SEEDS

A.3 Lossless seeds
The binary alphabet 𝒜 = {#, -} is called seed alphabet and from now on, we will consider
only this alphabet. Every finite word over this alphabet is a seed. The weight of a seed 𝑄
is the number of occurrences of the letter # in 𝑄.

Definition 1. Let 𝑚 and 𝑘 be positive integers. Every set {𝑖1, … , 𝑖u�} ⊆ {0, … , 𝑚 − 1}
is called error combination of 𝑘 errors. A seed 𝑄 such that |𝑄| < 𝑚 detects an error
combination {𝑖1, … , 𝑖u�} at position 𝑡 ∈ {0, … , ℓ} if for all 𝑗 ∈ {0, … , |𝑄| − 1} it holds
(𝑄u� = # ⟹ 𝑗 + 𝑡 ∉ {𝑖1, … , 𝑖u�}) .

The implication expresses the fact that there cannot be any mismatch at positions
of the “’matching” symbol #. Bi-infinite or finite words over the seed alphabet can be
compared using the following relation.

Definition 2. On the sets 𝒜u� for all 𝑛 ∈ ℕ and 𝒜ℤ, we define the relation ⪯ as:

𝑢 ⪯ 𝑣 ⟺ (𝑢u� = # ⟹ 𝑣u� = #) holds for all posible indexes 𝑖.

The relation ⪯ is reflexive, transitive, and weakly anti-symmetric, hence it is a partial
order. Then we define a seed analogy of the logical function OR applied on bi-infinite words
and producing, again, a bi-infinite word.

Definition 3. Consider 𝑘 bi-infinite words u(1), … ,u(u�) over 𝒜. We define a 𝑘-nary
operation ⊕ as:

(⊕(u(1), … ,u(u�)))u� = {
if (u(u�))u� = # for some 𝑗 ∈ {1, … , 𝑘},
- otherwise

for all 𝑖 ∈ ℤ.

Using the operations 𝜎 and ⊕, we can easily decide if a specific error combination is
detected by a seed at a given position, or not. The following theorem will be crucial for
seed analysis in the rest of the text.

Theorem 1. Let 𝑚 and 𝑘 be positive integers and 𝑄 be a seed such that |𝑄| < 𝑚. Denote
w ∶= ⋯ --|-ℓ𝑄-- ⋯. Then 𝑄 detects an error combination {𝑖1, … , 𝑖u�} ⊆ {0, … , 𝑚 − 1} at
a position 𝑡 ∈ {0, … , 𝑚 − |𝑄|} if and only if

(⊕(𝜎u�1(w), … , 𝜎u�u�(w))ℓ−u� = -. (A.1)

Proof. 𝑄 detects {𝑖1, … , 𝑖u�} at position 𝑡 if

∀𝑗 ∈ {0, … , |𝑄| − 1} ∶ 𝑄u� = # ⟹ 𝑗 + 𝑡 ∉ {𝑖1, … , 𝑖u�}.

This is equivalent to ∀𝑝 ∈ {𝑖1, … , 𝑖u�}(wu�−u�+ℓ = -), which is equivalent to (A.1).

Corollary 1 (of Theorem 1). A seed 𝑄 does not detect an error combination {𝑖1, … , 𝑖u�} ⊆
{0, … , 𝑚 − 1} at any position 𝑡 if and only if

(⊕(𝜎u�1(w), … , 𝜎u�u�(w))[0, ℓ] = #ℓ+1, (A.2)

where w = ⋯ --|-ℓ𝑄-- ⋯ and ℓ = 𝑚 − |𝑄|.

A.4. SINGLE SEED AND SINGLE HIT PROBLEM 125

Now we can distinguish more ways of usage seeds. The basic case is the so-called single
seed and single hit problem when the given seed is required to detect every combination
of 𝑘 errors at least at one position. Nevertheless, we can also utilize families of seeds
such that every error combination of 𝑘 errors must be detected by some seed from the
given family. In both cases, we could also require multiple hits, which means that every
combination of 𝑘 errors would have to be detected by given seed or members of seed
families at least at ℎ distinct positions for some fixed ℎ.

In the rest of this text, we study only the case of one seed and one hit, however, the
results hold for the other cases. In all cases, Theorem 1 and Corollary 1 are the basic tools
for studying seeds as languages of some subshifts.

A.4 Single seed and single hit problem

First let us introduce a rigorous definition of the basis case (single seed and single hit).

Definition 4. A seed 𝑄 solves the (𝑚, 𝑘)-problem if every error combination of 𝑘 errors
is detected by 𝑄 at some position 𝑡 ∈ {0, … , ℓ}.

A verification if a given seed 𝑄 solves an (𝑚, 𝑘)-problem, can be done directly using
Corollary 1. Now we define sets of seeds for which we will later show that they coincide
with languages of some subshifts.

Definition 5. For given ℓ and 𝑘, the set of all seeds such that each seed 𝑄 solves the
(|𝑄| + ℓ, 𝑘)-problem is denoted by Seed ℓ

u�.

Example 1.

Seed 3
2 = {𝜀, #, -, #-, -#, --, #--, -#-, --#, ---, #--#, #---, -#--, --#-, ---#, ----, …}

As a simple consequence of Corollary 1, we get a full characterization of all seeds
solving (𝑚, 1)-problems ([490, Theorem 5]).

Proposition 1. Seed ℓ
1 = {𝑄 ∈ 𝒜∗ | #ℓ+1 is not a factor of 𝑄}

Proof. Denote v = ⋯ --|-ℓ𝑄--⋯ and ℓ = 𝑚 − |𝑄|. Then from Corollary 1 follows that:
𝑄 solves the (𝑚, 1)-problem ⟺ ∀𝑖 ∈ ℤ ((𝜎u�(v))[0, ℓ] ≠ #ℓ+1) ⟺ 𝑄 does not contain
#ℓ+1.

Nevertheless, describing sets Seed ℓ
u� for 𝑘 > 1 is a more complicated task as we will see

below. Let us mention that in the case of two errors, Corollary 1 corresponds to the Laser
method [490, Section 4.1] as we illustrate in the following example.

Example 2. Consider a seed 𝑄 = ##-#-----#-## of length 14 and the (19, 2)-problem.
In Figure A.1 we show a corresponding schematic table. Denote w ∶= ⋯ --|-5𝑄-- ⋯. The
words ⊕(𝜎u�(w), 𝜎u�(w)) occur diagonally. It is easily seen from Corollary 1 that 𝑄 does
not detect the error combination {5, 13} since ℓ = 5 and (⊕(𝜎5(w), 𝜎13(w)))[0, 5] = #6.

A.4.1 Functions shu� and (ℓ, 𝑘)-valid bi-infinite words

Inspired by Corollary 1, we define functions 𝑠ℎu� which check the criterion given by (A.2)
globally on bi-infinite words.

126 APPENDIX A. LANGUAGES OF LOSSLESS SPACED SEEDS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- # - - - - - - # - #

0 - - - - - # # - # - - - - - - # - # # - - - - -
1 - - - - - # # - # - - - - - - # - # # - - - - -
2 - - - - - # # - # - - - - - - # - # # - - - - -
3 - - - - - # # - # - - - - - - # - # # - - - - -
4 - - - - - # # - # - - - - - - # - # # - - - - -
5 #
6 #
7 - - - - - - # # - # - - - - - - # - # # - - - - -
8 #
9 - - - - - - # # - # - - - - - - # - # # - - - - -
10 - - - - - - # # - # - - - - - - # - # # - - - - -
11 - - - - - - # # - # - - - - - - # - # # - - - - -
12 - - - - - - # # - # - - - - - - # - # # - - - - -
13 - - - - - - # # - # - - - - - - # - # # - - - - -
14 - - - - - - # # - # - - - - - - # - # # - - - - -
15 #
16 - - - - - - # # - # - - - - - - # - # # - - - - -
17 #
18 #

- - - - - # # - # - - - - - - # - # # - - - - -
- - - - - # # - # - - - - - - # - # # - - - - -
- - - - - # # - # - - - - - - # - # # - - - - -
- - - - - # # - # - - - - - - # - # # - - - - -
- - - - - # # - # - - - - - - # - # # - - - - -

Figure A.1: Demonstration of the laser method. Laser method used for the (19, 2)-
problem and the seed 𝑄 = ##-#------#-## from Example 2.

Definition 6. Consider a positive integer 𝑘. We define a function shu� ∶ (𝒜ℤ)u� →
ℕ0 ∪ {+∞} as:

shu�(u(1), … ,u(u�)) = sup
u�1,…,u�u�∈ℤ

sup
u�∈ℕ0

{𝑝 | v[0, 𝑝 − 1] = #u�, where v = ⊕ (𝜎u�1(u(1)), … , 𝜎u�u�(u(u�)))} .

(A.3)
We extend the range of the function shu�(⋅, … , ⋅) to (𝒜∗)u�. Finite words 𝑤 are trans-

formed into bi-infinite words v as v ∶= ⋯ --|𝑤-- ⋯.

Informally said, 𝑠ℎu�(u(1), … ,u(u�)) is equal to

• a finite 𝑠 ∈ ℕ0 if after arbitrary “aligning” of the words followed by the logical OR
operation (in the Laser method the diagonal bi-infinite words), each run of #’s has
length at most 𝑠 and the value 𝑠 is attained for some “alignment”;

• +∞ if there exists an “alignment” with run of infinitely many #’s (e.g.,

sh2(⋯ 𝑣𝑣|𝑣𝑣 ⋯ , ⋯ 𝑤𝑤|𝑤𝑤 ⋯)

with 𝑣 = ##- and 𝑤 = #--).

A.4. SINGLE SEED AND SINGLE HIT PROBLEM 127

It is readily seen that every function 𝑠ℎu� is symmetric and shift invariant with respect
to all variables. The next observations show how to make lower and upper estimates on
its value.

Observation 1 (Lower estimate). Let u(1), … ,u(u�) be bi-infinite words. If

⊕(𝜎u�1(u(1)), … , 𝜎u�u�(u(u�)))

has a factor #u� for some 𝑖1, … , 𝑖u�; then

shu�(u(1), … ,u(u�)) ≥ 𝑝.

Observation 2 (Upper estimate). Let u(1), … ,u(u�),v(1), … ,v(u�) be bi-infinite words such
that u(1) ⪯ v(1), … ,u(u�) ⪯ v(u�), where ⪯ is the relation from Definition 2. Then
shu�(u(1), … ,u(u�)) ≤ shu�(v(1), … ,v(u�)).

Bi-infinite words for which the 𝑠ℎu� function is bounded by some ℓ, will be the “bricks”
our subshifts. Their factors 𝑄 are exactly seeds solving (|𝑄| + ℓ, 𝑘)-problems.

Definition 7. A bi-infinite word u satisfying shu�(u, … ,u) ≤ ℓ is called (ℓ; 𝑘)-valid bi-
infinite word. By V ℓ

u� we denote the set of all (ℓ; 𝑘)-valid words.

Lemma 1. A seed 𝑄 solves an (|𝑄| + ℓ, 𝑘)-problem if and only if it is a factor of an
(ℓ, 𝑘)-valid bi-infinite word.

Proof. ⟹ : The word w ∶= ⋯ --|-ℓ𝑄--⋯ ∈ V ℓ
u� is an (ℓ, 𝑘)-valid word. must be (ℓ, 𝑘)-

valid since otherwise 𝑄 would not solve the (|𝑄| + ℓ, 𝑘)-problem by Corollary 1.

⟸ : For a contradiction assume that there exists a factor 𝑄 of a bi-infinite word u, which
does not solve the (|𝑄| + ℓ, 𝑘)-problem. Let the non-detected error combination be
{𝑖1, … , 𝑖u�}. Denote w = ⋯ --|-ℓ𝑄--⋯.
We use shift invariance of shu� and Observation 2 to get

shu�(w, … ,w) ≤ shu�(u, … ,u) ≤ ℓ. (A.4)

Since 𝑄 does not detect the error combination {𝑖1, … , 𝑖u�}, it follows from Corollary 1
that

(⊕(𝜎u�1(w), … , 𝜎u�u�(w))[0, ℓ] = #ℓ+1.

Nevertheless, this gives us a lower estimate on shu�(w, … ,w) – it must be bigger
than or equal to ℓ + 1 which is contradicting (A.4).

A.4.2 Subshifts of (ℓ, 𝑘)-valid words

The property of (ℓ, 𝑘)-validity is preserved under the shift operation. Moreover, the sets
V ℓ

u� are subshifts. To prove it, we need to find a criterion for verifying (ℓ, 𝑘)-validity based
on comparing finite factors of a given bi-infinite word.

Lemma 2. Let u be a bi-infinite word over the seed alphabet 𝒜. Then the following
statements are equivalent:

1. u is (ℓ; 𝑘)-valid;

128 APPENDIX A. LANGUAGES OF LOSSLESS SPACED SEEDS

2. each 𝑘-tuple (𝑣(1), … , 𝑣(u�)) of factors of u of length ℓ + 1 satisfies

shu�(𝑣(1), … , 𝑣(u�)) ≤ ℓ;

3. each 𝑘-tuple (𝑤(1), … , 𝑤(u�)) of factors of u of length ℓ + 1 satisfies

⊕(𝑤(1), … , 𝑤(u�)) ≠ #ℓ+1. (A.5)

Proof. We prove three implications.

1 ⟹ 2: Consider any factors 𝑣(1), … , 𝑣(u�). Find their positions 𝑖1, … , 𝑖u� in u.
Since

⋯ --|𝑣(1)--⋯ ⪯ 𝜎u�1(u), … , ⋯ --|𝑣(u�)--⋯ ⪯ 𝜎u�u�(u),

we obtain from the assumption, shift invariance of shu�, and Observa-
tion 2 that it holds

shu�(𝑣(1), … , 𝑣(u�)) ≤ shu�(u, … ,u) ≤ ℓ

which is what we wanted to prove.

2 ⟹ 3: It is an easy consequence of the definition of the shu� function.

3 ⟹ 1: For a contradiction assume that u is not (ℓ, 𝑘)-valid; i.e., there exist
integers 𝑖1, … , 𝑖u� such that ⊕(𝜎u�1(u), … , 𝜎u�1(u))[0, ℓ] = #ℓ+1. There-
fore, the equation (A.5) does not hold for the factors 𝑤(1) ∶= u[𝑖1, 𝑖1 +
ℓ], … , 𝑤(u�) ∶= u[𝑖u�, 𝑖u� + ℓ].

In Example 2, such words 𝑤(1) and 𝑤(2) of length ℓ + 1 are ##-#-- and --#-##.
Similarly, 𝑣(1) and 𝑣(2) can be again ##-#-- and --#-##, but also for example -##-#- and
#-##--.

The main consequence of Lemma 2 is the fact that every seed must be constructed
from reciprocally compatible tiles of length ℓ + 1. To describe this property, we define a
relation of compatibility on the set 𝒜ℓ+1.

Definition 8. For given ℓ and 𝑘, we define the 𝑘-nary compatibility relation C ℓ
u� on 𝒜ℓ+1

as
C ℓ

u�(𝑣(1), … , 𝑣(u�)) ⟺ shu�(𝑣(1), … , 𝑣(u�)) ≤ ℓ.

Corollary 2. Let u be a bi-infinite word over the seed alphabet 𝒜. The word u is (ℓ, 𝑘)-
valid if and only if ∀𝑣(1), … , 𝑣(u�) ∈ ℒℓ+1(u) (C ℓ

u�(𝑣(1), … , 𝑣(u�))) .

Now let us prove that (ℓ, 𝑘)-valid words really form subshifts. We only need to show
that (ℓ, 𝑘)-valid words are exactly those created from compatible “tiles”.

Lemma 3. Every set V ℓ
u� is a subshift.

Proof. Take 𝑋 ∶= {𝑥 ∈ 𝒜∗ | ∃{𝑣(1), … , 𝑣(u�)} ⊆ ℒℓ+1(𝑥) (¬C ℓ
u�(𝑣(1), … , 𝑣(u�)))} . The set

𝑋 contains all finite words containing some incompatible factors. Then it follows from
Corollary 2 that 𝑆u� = V ℓ

u�.

Example 3. Even though the seeds 𝑄(1) = ##-#-- and 𝑄(2) = --#-## solve the (11, 2)-
problem, the seed 𝑄 = 𝑄(1)--𝑄(2) does not solve the (19, 2)-problem, as we have seen in
Example 2. The reason is that, by Lemma 2, 𝑄(1) and 𝑄(2) are not compatible. Therefore,
any seed �̃� of the form �̃� = 𝑄(1)-u�𝑄(2) for any 𝑝 ∈ ℕ0, cannot solve the (|�̃�| + 5, 2)-
problem.

A.4. SINGLE SEED AND SINGLE HIT PROBLEM 129

u�(1) = u�0 u�1 … u�ℓ
u�(2) = u�1 u�2 … u�ℓ+1

⋱
u�u�−ℓ−2 u�u�−ℓ−1 … u�u�−2

u�(u�−ℓ) = u�u�−ℓ−1 u�u�−ℓ … u�u�−1
u� = u�0 u�1 u�2 … u�u�−ℓ−2 u�u�−ℓ−1 u�u�−ℓ … u�u�−1

Figure A.2: Domino-game-like principle. The words 𝑣(1), … , 𝑣(u�−ℓ) must belong to
the same generating set 𝐺.

A.4.3 Decomposition into subshifts of finite type

From Example 3 follows that the subshift V ℓ
u� of all (ℓ, 𝑘)-valid words is not necessarily

of finite type. Nevertheless, it must be a union of subshifts of finite type because we
can construct maximal families of reciprocally compatible words of length ℓ + 1 and then
design seeds by domino-game-like principle (see Figure A.2).

Definition 9. For given positive integers ℓ and 𝑘, a subset 𝐺 of 𝒜ℓ+1 is called (ℓ, 𝑘)-
generating set if the following conditions are satisfied:

1. for all 𝑣(1), … , 𝑣(u�) ∈ 𝐺, it holds C ℓ
u�(𝑣(1), … , 𝑣(u�));

2. it cannot contain any other word from 𝒜ℓ+1.

Let us remark that every generating set 𝐺 is closed with respect to the logical shift with
the filling symbol -. It means that after taking arbitrary word from the set 𝐺, removing
its first (or last), and concatenating - to end (or beginning), we get again a word from 𝐺.

It easily seen that every generating set 𝐺 fully determines a subshift of finite type,
which we denote by 𝑆(𝐺).

Definition 10. Consider a seed 𝑄 and an (ℓ, 𝑘)-generating set 𝐺. By 𝑆(𝐺), we denote
the subshift 𝑆u� of finite type given by 𝑋 = 𝒜ℓ+1\𝐺. We say that a seed 𝑄 is generated
by 𝐺 if 𝑄 ∈ ℒ(𝑆(𝐺)).

We could easily prove that every bi-infinite word can be created using some generating
set as the following observation states.

Observation 3. For every (ℓ, 𝑘)-valid bi-infinite word u, there exists an (ℓ, 𝑘)-generating
set 𝐺 such that u ∈ 𝑆(𝐺).

Example 4. Continue with the setting from Example 1. Consider the only one (3, 2)-
generating set 𝐺 = {#--#, #---, -#--, --#-, ---#, ----}. Since 𝑆(𝐺) is of finite type, we
can find a strongly connected labeled graph 𝐻 such that 𝑆(𝐺) = Σu�, where Σu� is the set
of all bi-infinite paths in 𝐻. This graph also determines a finite automaton recognizing
the set ℒ(𝑆(𝐺)). We can create such automaton using a de-Bruijn graph and setting the
initial state -ℓ+1, nevertheless, it is not minimal as it is shown in Figure A.3.

Theorem 2. Every set Seed ℓ
u� is a regular language.

Proof. There can be only finite number of (ℓ, 𝑘)-generating sets; denote them 𝐺1, … , 𝐺u�.
It follows from Observation 3 that 𝑆(𝐺1) ∪ … ∪ 𝑆(𝐺u�) = V ℓ

u� and, from Lemma 1, we
know that ℒ(V ℓ

u�) = Seed ℓ
u�.

For every 𝑖 ∈ {1, … , 𝑑}, the set 𝑆(𝐺u�) is a subshift of finite type, so every set ℒ(𝑆(𝐺u�))
is a regular language. Since the set Seed ℓ

u� is a union of finitely many regular languages,
it is a regular language.

130 APPENDIX A. LANGUAGES OF LOSSLESS SPACED SEEDS

#--- ---#

-#-- --#-

#--#

-

#

-

-

#
-

-

#

-

(A) A graph created as a de-Bruijn
graph from the set of vertices u�.

1

23

#

-

-

-

(B) The previous graph after minimiza-
tion.

Figure A.3: Seed graphs. Labeled graphs for the subshift 𝑆(𝐺) given by the unique (3, 2)-
generating set 𝐺 = {#--#, #---, -#--, --#-, ---#, ----}. Both graphs 𝐻 must satisfy
Σu� = 𝑆(𝐺). Every such graph 𝐻 determines a deterministic recognizing automaton for
the set ℒ(Σu�).

Remark 1. For 𝑘 = 2 and arbitrary positive ℓ, we can derive all generating sets. Let
𝑉 = {𝑤(1), … , 𝑤(u�)} denote the set of all seeds of length ℓ+1 solving the (2ℓ+1, 𝑘)-problem.
Consider a graph 𝑅 given by the adjacency matrix

(𝑀u�)u�,u� = {
0 if C ℓ

2(𝑤(u�), 𝑤(u�)),
1 otherwise.

Then the generating sets are maximal independent sets (maximal with respect to inclusion)
in the graph 𝑅. Similar derivation can be made for cases with 𝑘 > 2 using hypergraphs.

Example 5. Let 𝑘 = 2. For ℓ ∈ {1, … , 4}, all seeds solving (ℓ+1, 2)-problems are mutually
compatible, which means that there exists an unique (ℓ, 2)-generating set. We list them out
in the following table.

ℓ 𝐺
1 {--}
2 {#--, -#-, --#, ---}
3 {#--#, #---, -#--, --#-, ---#, ---}
4 {##---, -##--, --##-, ---##, #-#--, -#-#-, --#-#, #--#-, -#--#, #---#,

#----, -#---, --#--, ---#-, ----#, -----}

Example 6. Let 𝑘 = 2 and ℓ = 5. By Remark 1, we find the graph 𝑅. We can partially
simplify this graph. We can say that two vertices 𝑣 and 𝑤 in this graph are equivalent if
∀𝑥 ∈ 𝑉 (C ℓ

u�(𝑥, 𝑣) ⟺ C ℓ
u�(𝑥, 𝑤)). Then we can put equivalent vertices into one vertex

A.5. CONCLUSION 131

𝑃1 𝑃2

𝑃3

𝑃5

𝑃4

𝑃6

𝑃0

Figure A.4: Sets of equal seeds. Graph of sets of equal seeds for searching (5, 2)-
generating sets in Example 6.

and we obtain the graph in Figure A.4, where

𝑃0 = {------ ; -----# , ----#- , ---#-- , --#--- , -#---- , #----- ;
----## , ---##- , --##-- , -##--- , ##---- ;
---#-# , --#-#- , -#-#-- , #-#--- ;
--#--# , -#--#- , #--#-- ; -#---# , #---#- ;
#---## ; ##---# ; #----# },

𝑃1 = {#--#-# }, 𝑃2 = {--##-# , -##-#- , ##-#-- },
𝑃3 = {-##--# , ##--#- }, 𝑃4 = {-#--## , #--##- },
𝑃5 = {--#-## , -#-##- , #-##-- }, 𝑃6 = {#-#--# }.

We can observe that 𝑃1, 𝑃2, and 𝑃3 can be obtained by mirroring from 𝑃6, 𝑃5, and
𝑃4, respectively. By finding maximal independent sets in the graph in Figure A.4, we get
all (5, 2)-generating sets:

𝐺1 = 𝑃0 ∪ 𝑃1 ∪ 𝑃3 ∪ 𝑃5, 𝐺2 = 𝑃0 ∪ 𝑃1 ∪ 𝑃3 ∪ 𝑃6,
𝐺3 = 𝑃0 ∪ 𝑃2 ∪ 𝑃4 ∪ 𝑃6,
𝐺4 = 𝑃0 ∪ 𝑃1 ∪ 𝑃4 ∪ 𝑃6.

A.5 Conclusion
We have found a new criterion for errors detection by seeds (Theorem 1). From this crite-
rion we have proven that lossless seeds coincide with languages of certain sofic subshifts,
therefore, they are recognized by finite automata (Theorem 2). We have shown that these
subshifts are fully given by the number of allowed errors 𝑘 and the seed margin ℓ and that
they can be further decomposed into subshifts of finite type.

These facts explain why periodically repeated patterns often appear in lossless seeds.
This is caused by the fact that these patterns correspond to cycles in the recognizing
automata (which correspond to cyclic seeds from [482]). Nevertheless, it remains unclear
what is the upper bound on the length of cycles to obtain optimal seeds. For problems
with two errors, it was conjectured in [490, Conjecture 1] that to obtain some of optimal
seeds, it is sufficient to consider only patterns having length at most ℓ + 1.

132 APPENDIX A. LANGUAGES OF LOSSLESS SPACED SEEDS

Appendix B

Read Naming Format specification

This chapter provides a standard for naming simulated Next-Generation Se-
quencing (NGS) reads in order to make read simulators and mapper evalu-
ation tools inter-compatible. The current version is available from https:
//github.com/karel-brinda/rnf-spec.

Genome 1

Genome 2

Genome n

Read simulator Reads Alignment
Mapper

evaluation
tool

Report

FASTA

FASTQ BAM TXT/HTMLRNF
decoding

RNF
encoding

Mapper

Read simulation Mapper evaluation

B.1 Terminologies and concepts
Read tuple. A tuple of sequences (possibly overlapping) obtained from a sequencing

machine from a single fragment of DNA.

Reads. Members of a read tuple. For example, every “paired-end read” is a read tuple
and both of its “ends” are individual reads in our notation.

Segments. Substrings of a read which are spatially distinct in the reference. They
correspond to individual lines in a SAM file [122]. Thus, each read has an associated
chain of segments and we associate a read tuple with segments of all its reads.
Remarks:

- A “single-end read” consists of a single read with a single segment unless it
comes from a region with genomic rearrangment

- A “paired-end read” or a “mate-pair read” consists of two reads, each with one
segment (under the same condition).

- A “strobe read” consists of several reads.
- A chimeric read (i.e., read corresponding to a genomic fusion, a long deletion,

or a translocation) has at least two segments.

133

https://github.com/karel-brinda/rnf-spec
https://github.com/karel-brinda/rnf-spec

134 APPENDIX B. READ NAMING FORMAT SPECIFICATION

Coor 12345678901234-5678901234567890123456789

Source 1 - reference genome

chr 1 ATGTTAGATAA-GATAGCTGTGCTAGTAGGCAGTCAGCCC

chr 2 ttcttctggaa-gaccttctcctcctgcaaataaa

Source 2 - generator of random sequences

READS:

r001 ATG-TAGATA ->

r002/1 TTAGATAACGA ->

r002/2 <- TCAG-CGGG

r003/1 tgcaaataa ->

r003/2 gaa-gacc-t ->

r004 ATAGCT............TCAG ->

r005 GTAGG ->

<- agacctt

<- TCGACACG

r006 ATATCACATCATTAGACACTA

(A) Simulated reads
r. tuple LRN SRN

r001 sim__1__(1,1,F,01,10)__[single-end] #1
r002 sim__2__(1,1,F,04,14),(1,1,R,31,39)__[paired-end] #2
r003 sim__3__(1,2,F,09,17),(1,2,F,25,33)__[mate-pair] #3
r004 sim__4__(1,1,F,15,36)__[spliced],C:[6=12N4=] #4
r005 sim__5__(1,1,R,15,22),(1,1,F,25,29),(1,2,R,05,11)__[chimeric] #5
r006 rnd__6__(2,0,N,00,00)__[random-contamination] #6

(B) Long and short read names

Figure B.1: Example of RNF names. Simulated read tuples and their corresponding
RNF names which can be used as read names in the final Fastq files:
- single-end read (r001);
- paired-end read (r002);
- mate-pair read (r003);
- spliced RNA-seq read (r004);
- chimeric read (r005);
- random contaminating read with unspecified coordinates (r006).

- RNA-seq spliced reads are not considered to be spatially distinct.

Simulator of NGS reads. A program which creates artificial simulated reads from one
or more (possibly random) reference genomes.

Evaluation tool of NGS mappers. A program which evaluates alignments of simu-
lated NGS reads with known original genomic positions. It assesses if each individual
read is aligned correctly. Finally it usually creates overall statistics.

1-based coordinate system. A coordinate system where the first position has number
1 and intervals are closed (the same system is used by the SAM format [122]).

B.2. READ TUPLE NAMES 135

B.2 Read tuple names
To every read tuple, two names are assigned: Short read name (SRN) and Long read name
(LRN).

SRN contains a hexademical unique read tuple ID prefixed by ‘#’.
LRN consists of four parts delimited by double-underscore:

i) a prefix (possibly containing expressive information for a user or a particular string
for sorting or randomization of order of tuples),

ii) the read tuple ID,

iii) information about origins of all segments that constitute reads of the tuple,

iv) a suffix containing arbitrary comments or extensions (for holding additional informa-
tion).

Preferred final read names are LRNs. If an LRN exceeds 255 (maximum allowed read
length in SAM[122]), SRNs are used instead and a SRN–LRN correspondence file must be
created.

B.2.1 Read tuple ID

It is a positive integer, which is unique within a single file with genomic data. These IDs
are assigned continuously from 1. Zero is reserved for “not available”.

B.2.2 SRN – Short Read Name
Matching regular expression:
\#([0-9a-f]+)

SRN consists of read tuple ID prefixed by ‘#’. It is displayed as zero padded hex-
adecimals in lowercase such that all SRNs share the same string length within a single
file.

B.2.3 LRN – Long Read Name
Matching regular expression:
^([!-?A-^`-~]*)__([0-9a-f]+)__([!-?A-^`-~]+)__([!-?A-^`-~]*)$

LRN consists of four double-underscore-delimited parts: i) prefix part, ii) read tuple
ID, iii) segmental part, iv) suffix part.

Prefix part
Matching regular expression:
^[!-?A-^`-~]*$

It can be an empty string, a string containing expressive “visual” information for the
user (e.g., for easy distinguishing random reads from the others), or a string used for ran-
domization of read tuples (randomly taken prefix and read tuples sorted in lexicographical
order).

Length of all prefix parts within a single file must be equal.

136 APPENDIX B. READ NAMING FORMAT SPECIFICATION

Read tuple ID part
Matching regular expression:
^[0-9a-f]+$

It displays read tuple ID as hexadecimals in lowercase. All read tuple ID parts are zero
padded such that they all share the same string length within a single file.

Segmental part
Matching regular expression:
^(?:(\([0-9FRN,]*\))(?:,(?!$)|$))+$

Segmental part consists of one or more comma-delimited segments.

Segment

Matching regular expression:
^\(([0-9]+),([0-9]+),([FRN]),([0-9]+),([0-9]+)\)$

Every segment is parenthesized and consists of five comma-delimited values: i) genome
ID, ii) chromosome ID, iii) direction, iv) leftmost coordinate, and v) rightmost coordinate.

Genome ID ID (positive integer) of the source genome (a randomly
generated genome, a genome saved in a FASTA file, etc.) or
zero for “not available”.

All numbers of genomes are displayed as decimals and
they are zero padded such that they all share the same string
length within a single file.

Chromosome ID ID (positive integer) of the source chromosome or zero for “not
available”.

All numbers of chromosomes are displayed as decimals
and they are zero padded such that they all share the same
string length within a single file.

IDs are assigned continuously from 1, order chromosomes
is the same as in the file, where the genome is saved. In case
of a random genome, zero should be used.

Direction Direction in the reference genome.

‘F’ = forward direction
‘R’ = reverse direction
‘N’ = not available

For random reads, ‘N’ should be used.
Leftmost coordinate The leftmost coordinate of the segment in the reference in 1-

based coordinate system or zero for “not available”.
Rightmost coordinate The rightmost coordinate of the segment in the reference in

1-based coordinate system or zero for “not available”.

B.3. SRN–LRN CORRESPONDENCE FILE 137

Suffix part

Matching regular expression:
^(?:((?:[a-zA-Z0-9]+:){0,1})\[([!-?A-Z\\^`-~]*)\](?:,(?!$)|$))+$

It contains arbitrary number of comma-delimited comments and extensions in any
order.

Comment

Matching regular expression:
^\[([!-?A-Z\\^`-~]*)\]$

Comments are displayed as square-bracketed strings. They can contain, e.g., informa-
tion about the simulated technology or the program used for simulation.

Extension
Matching regular expression:
^([A-Za-z0-9]+):\[([!-?A-Z\\^`-~]*)\]$

An extension consist of an extension’s code, a colon, and a square-bracketed extension’s
content. Extensions can supplement the basic set of information provided in segmental
part. Some of them are part of this standard, see Section B.4.

B.3 SRN–LRN correspondence file

To encode information about correspondence between SRN and LRN, a special file is
created. Its file name is formed of prefix of the FASTQ file(s) and .sl suffix.

Examples:
Read files SRN-LRN correspondence file
reads_se.fq reads_se.sl
reads_se.fastq reads_se.sl
reads_pe.1.fq, reads_pe.2.fq reads_pe.sl

It is a tab delimited file with two columns (containing SRN and the corresponding
LRN). File is sorted by read tuple ID.

B.4 Extensions

Extensions can supplement the basic set of information provided in the segmental part
(Section B.2.3).

C – CIGAR strings

Extension’s code

C

138 APPENDIX B. READ NAMING FORMAT SPECIFICATION

Extension’s content
Matching regular expression:
^(?:([0-9]+[=XIDNSHPM]+)(?:,(?!$)|$))+$

Specification

The extension can be used to encode edit operations using CIGAR (Compact Idiosyncratic
Gapped Alignment Report) strings as they are defined with the SAM specification1.

CIGAR strings should be provided in the same order as their corresponding segments
in the segmental part (Section B.2.3). Adjacent edit operations should be different.

Example

demonstration__004__(1,1,F,16,40),(1,1,R,140,150)__C:[6=14N5=,11=],[spliced-PE-read]

1https://samtools.github.io/hts-specs/SAMv1.pdf

https://samtools.github.io/hts-specs/SAMv1.pdf

Bibliography

[1] K. Břinda, V. Boeva, and G. Kucherov. “Dynamic read mapping and online con-
sensus calling for better variant detection”. In: arXiv preprints (2016). url: http:
//arxiv.org/abs/1605.09070 (cit. on p. vii).

[2] K. Břinda, V. Boeva, and G. Kucherov. “RNF: a general framework to evaluate
NGS read mappers.” In: Bioinformatics 32.1 (2016), pp. 136–9. doi: 10.1093/
bioinformatics/btv524 (cit. on pp. vii, 54, 56–58).

[3] K. Břinda, M. Sykulski, and G. Kucherov. “Spaced seeds improve k-mer-based
metagenomic classification.” In: Bioinformatics 31.22 (2015), pp. 3584–92. doi: 10.
1093/bioinformatics/btv419 (cit. on pp. vii, 30–32, 76).

[4] K. Břinda. “Languages of lossless seeds”. In: Electronic Proceedings in Theoretical
Computer Science 151 (2014), pp. 139–150. doi: 10.4204/EPTCS.151.9 (cit. on
pp. vii, 31).

[5] P. Červenka et al. “Blind Friendly Maps”. In: Computers Helping People with Special
Needs: 15th International Conference, ICCHP 2016, Linz, Austria, July 13-15,
2016, Proceedings, Part II. 2016, pp. 131–138. doi: 10.1007/978-3-319-41267-
2_18 (cit. on p. vii).

[6] E. T. Cirulli and D. B. Goldstein. “Uncovering the roles of rare variants in com-
mon disease through whole-genome sequencing”. In: Nature Reviews Genetics 11.6
(2010), pp. 415–425. doi: 10.1038/nrg2779 (cit. on p. 5).

[7] B. E. Stranger, E. A. Stahl, and T. Raj. “Progress and Promise of Genome-Wide
Association Studies for Human Complex Trait Genetics”. In: Genetics 187.2 (2011),
pp. 367–383. doi: 10.1534/genetics.110.120907 (cit. on p. 5).

[8] M. T. Maurano et al. “Systematic Localization of Common Disease-Associated
Variation in Regulatory DNA”. In: Science 337.6099 (2012), pp. 1190–1195. doi:
10.1126/science.1222794 (cit. on p. 5).

[9] P. Bradley et al. “Rapid antibiotic-resistance predictions from genome sequence
data for Staphylococcus aureus and Mycobacterium tuberculosis”. In: Nature Com-
munications 6 (2015), p. 10063. doi: 10.1038/ncomms10063 (cit. on p. 5).

[10] K. Schmidt et al. “Identification of bacterial pathogens and antimicrobial resistance
directly from clinical urines by nanopore-based metagenomic sequencing”. In: Jour-
nal of Antimicrobial Chemotherapy (2016), dkw397. doi: 10.1093/jac/dkw397 (cit.
on p. 5).

[11] Human Microbiome Project Consortium. “Structure, function and diversity of the
healthy human microbiome.” In: Nature 486.7402 (2012), pp. 207–14. doi: 10.
1038/nature11234 (cit. on p. 5).

139

http://arxiv.org/abs/1605.09070
http://arxiv.org/abs/1605.09070
http://dx.doi.org/10.1093/bioinformatics/btv524
http://dx.doi.org/10.1093/bioinformatics/btv524
http://dx.doi.org/10.1093/bioinformatics/btv419
http://dx.doi.org/10.1093/bioinformatics/btv419
http://dx.doi.org/10.4204/EPTCS.151.9
http://dx.doi.org/10.1007/978-3-319-41267-2_18
http://dx.doi.org/10.1007/978-3-319-41267-2_18
http://dx.doi.org/10.1038/nrg2779
http://dx.doi.org/10.1534/genetics.110.120907
http://dx.doi.org/10.1126/science.1222794
http://dx.doi.org/10.1038/ncomms10063
http://dx.doi.org/10.1093/jac/dkw397
http://dx.doi.org/10.1038/nature11234
http://dx.doi.org/10.1038/nature11234

140 BIBLIOGRAPHY

[12] S. Sunagawa et al. “Structure and function of the global ocean microbiome”. In:
Science 348.6237 (2015), pp. 1261359–1261359. doi: 10.1126/science.1261359
(cit. on p. 5).

[13] J. R. Brum et al. “Patterns and ecological drivers of ocean viral communities”. In:
Science 348.6237 (2015), pp. 1261498–1261498. doi: 10.1126/science.1261498
(cit. on p. 5).

[14] C. de Vargas et al. “Eukaryotic plankton diversity in the sunlit ocean”. In: Science
348.6237 (2015), pp. 1261605–1261605. doi: 10.1126/science.1261605 (cit. on
pp. 5, 79).

[15] E. Afshinnekoo et al. “Geospatial Resolution of Human and Bacterial Diversity
with City-Scale Metagenomics”. In: Cell Systems 1.1 (2015), pp. 72–87. doi: 10.
1016/j.cels.2015.01.001 (cit. on p. 5).

[16] Y.-S. Jeon, J. Chun, and B.-S. Kim. “Identification of Household Bacterial Com-
munity and Analysis of Species Shared with Human Microbiome”. In: Current Mi-
crobiology 67.5 (2013), pp. 557–563. doi: 10.1007/s00284-013-0401-y (cit. on
p. 5).

[17] J. Qin et al. “A human gut microbial gene catalogue established by metagenomic
sequencing”. In: Nature 464.7285 (2010), pp. 59–65. doi: 10.1038/nature08821
(cit. on pp. 5, 73).

[18] K. A. Lipinski et al. “Cancer Evolution and the Limits of Predictability in Precision
Cancer Medicine”. In: Trends in Cancer 2.1 (2016), pp. 49–63. doi: 10.1016/j.
trecan.2015.11.003 (cit. on p. 6).

[19] L. Orlando, M. T. P. Gilbert, and E. Willerslev. “Reconstructing ancient genomes
and epigenomes”. In: Nature Reviews Genetics 16.7 (2015), pp. 395–408. doi: 10.
1038/nrg3935 (cit. on p. 6).

[20] E. Hagelberg, M. Hofreiter, and C. Keyser. “Ancient DNA: the first three decades”.
In: Philosophical Transactions of the Royal Society B: Biological Sciences 370.1660
(2014), pp. 20130371–20130371. doi: 10.1098/rstb.2013.0371 (cit. on p. 6).

[21] T. E. King et al. “Identification of the remains of King Richard III”. In: Nature
Communications 5.5631 (2014), p. 5631. doi: 10.1038/ncomms6631 (cit. on p. 6).

[22] M. H. Larmuseau et al. “Biohistorical materials and contemporary privacy concerns-
the forensic case of King Albert I”. In: Forensic Science International: Genetics 24
(2016), pp. 202–210. doi: 10.1016/j.fsigen.2016.07.008 (cit. on p. 6).

[23] E. Jehaes et al. “Mitochondrial DNA analysis of the putative heart of Louis XVII,
son of Louis XVI and Marie-Antoinette”. In: European Journal of Human Genetics
9.3 (2001), pp. 185–190. doi: 10.1038/sj.ejhg.5200602 (cit. on p. 6).

[24] Z. Hawass et al. “Ancestry and Pathology in King Tutankhamun’s Family”. In:
JAMA: The Journal of the American Medical Association 303.7 (2010), p. 638.
doi: 10.1001/jama.2010.121 (cit. on p. 6).

[25] M. Kayser. “Forensic DNA Phenotyping: Predicting human appearance from crime
scene material for investigative purposes”. In: Forensic Science International: Ge-
netics 18 (2015), pp. 33–48. doi: 10.1016/j.fsigen.2015.02.003 (cit. on p. 6).

[26] A. M. Whatmore. “Ancient-Pathogen Genomics: Coming of Age?” In: mBio 5.5
(2014), e01676–14–e01676–14. doi: 10.1128/mBio.01676-14 (cit. on p. 6).

http://dx.doi.org/10.1126/science.1261359
http://dx.doi.org/10.1126/science.1261498
http://dx.doi.org/10.1126/science.1261605
http://dx.doi.org/10.1016/j.cels.2015.01.001
http://dx.doi.org/10.1016/j.cels.2015.01.001
http://dx.doi.org/10.1007/s00284-013-0401-y
http://dx.doi.org/10.1038/nature08821
http://dx.doi.org/10.1016/j.trecan.2015.11.003
http://dx.doi.org/10.1016/j.trecan.2015.11.003
http://dx.doi.org/10.1038/nrg3935
http://dx.doi.org/10.1038/nrg3935
http://dx.doi.org/10.1098/rstb.2013.0371
http://dx.doi.org/10.1038/ncomms6631
http://dx.doi.org/10.1016/j.fsigen.2016.07.008
http://dx.doi.org/10.1038/sj.ejhg.5200602
http://dx.doi.org/10.1001/jama.2010.121
http://dx.doi.org/10.1016/j.fsigen.2015.02.003
http://dx.doi.org/10.1128/mBio.01676-14

BIBLIOGRAPHY 141

[27] K. M. Harkins and A. C. Stone. “Ancient pathogen genomics: insights into timing
and adaptation”. In: Journal of Human Evolution 79 (2015), pp. 137–149. doi:
10.1016/j.jhevol.2014.11.002 (cit. on p. 6).

[28] G. Morelli et al. “Yersinia pestis genome sequencing identifies patterns of global
phylogenetic diversity”. In: Nature Genetics 42.12 (2010), pp. 1140–1143. doi: 10.
1038/ng.705 (cit. on p. 6).

[29] Y. Cui et al. “Historical variations in mutation rate in an epidemic pathogen,
Yersinia pestis”. In: Proceedings of the National Academy of Sciences 110.2 (2013),
pp. 577–582. doi: 10.1073/pnas.1205750110 (cit. on p. 6).

[30] D. M. Wagner et al. “Yersinia pestis and the Plague of Justinian 541–543 AD: a
genomic analysis”. In: The Lancet Infectious Diseases 14.4 (2014), pp. 319–326. doi:
10.1016/S1473-3099(13)70323-2 (cit. on p. 6).

[31] C. P. Andam et al. “Microbial Genomics of Ancient Plagues and Outbreaks”. In:
Trends in Microbiology xx (2016), pp. 1–13. doi: 10.1016/j.tim.2016.08.004
(cit. on p. 6).

[32] C. J. Adler et al. “Sequencing ancient calcified dental plaque shows changes in
oral microbiota with dietary shifts of the Neolithic and Industrial revolutions”. In:
Nature Genetics 45.4 (2013), pp. 450–455. doi: 10.1038/ng.2536 (cit. on p. 6).

[33] M. Slatkin and F. Racimo. “Ancient DNA and human history”. In: Proceedings of
the National Academy of Sciences 2016.23 (2016), pp. 1–8. doi: 10.1073/pnas.
1524306113 (cit. on p. 6).

[34] J. G. Schraiber and J. M. Akey. “Methods and models for unravelling human evo-
lutionary history”. In: Nature Reviews Genetics November (2015). doi: 10.1038/
nrg4005 (cit. on p. 6).

[35] M. Meyer et al. “A High-Coverage Genome Sequence from an Archaic Denisovan
Individual”. In: Science 338.6104 (2012), pp. 222–226. doi: 10.1126/science.
1224344 (cit. on p. 6).

[36] K. Prüfer et al. “The complete genome sequence of a Neanderthal from the Altai
Mountains.” In: Nature 505.7481 (2014), pp. 43–9. doi: 10.1038/nature12886
(cit. on p. 6).

[37] “Partial Genetic Turnover in Neandertals: Continuity in the East and Popula-
tion Replacement in the West”. In: Molecular Biology and Evolution 29.8 (2012),
pp. 1893–1897. doi: 10.1093/molbev/mss074 (cit. on p. 6).

[38] R. E. Green et al. “A draft sequence of the Neandertal genome.” In: Science (New
York, N.Y.) 328.5979 (2010), pp. 710–22. doi: 10.1126/science.1188021 (cit. on
p. 6).

[39] R. E. Green et al. “The Neandertal genome and ancient DNA authenticity”. In:
The EMBO journal 28.17 (2009), pp. 2494–2502. doi: 10.1038/emboj.2009.222
(cit. on p. 6).

[40] A. W. Briggs et al. “Targeted retrieval and analysis of five Neandertal mtDNA
genomes”. In: Science 325.1095-9203 (Electronic) (2009), pp. 318–321. doi: 10.
1126/science.1174462 (cit. on p. 6).

[41] R. E. Green et al. “Analysis of one million base pairs of Neanderthal DNA.” In:
Nature 444.7117 (2006), pp. 330–6. doi: 10.1038/nature05336 (cit. on p. 6).

http://dx.doi.org/10.1016/j.jhevol.2014.11.002
http://dx.doi.org/10.1038/ng.705
http://dx.doi.org/10.1038/ng.705
http://dx.doi.org/10.1073/pnas.1205750110
http://dx.doi.org/10.1016/S1473-3099(13)70323-2
http://dx.doi.org/10.1016/j.tim.2016.08.004
http://dx.doi.org/10.1038/ng.2536
http://dx.doi.org/10.1073/pnas.1524306113
http://dx.doi.org/10.1073/pnas.1524306113
http://dx.doi.org/10.1038/nrg4005
http://dx.doi.org/10.1038/nrg4005
http://dx.doi.org/10.1126/science.1224344
http://dx.doi.org/10.1126/science.1224344
http://dx.doi.org/10.1038/nature12886
http://dx.doi.org/10.1093/molbev/mss074
http://dx.doi.org/10.1126/science.1188021
http://dx.doi.org/10.1038/emboj.2009.222
http://dx.doi.org/10.1126/science.1174462
http://dx.doi.org/10.1126/science.1174462
http://dx.doi.org/10.1038/nature05336

142 BIBLIOGRAPHY

[42] A. Bergström et al. “Deep Roots for Aboriginal Australian Y Chromosomes”. In:
Current Biology (2016), pp. 1–5. doi: 10.1016/j.cub.2016.01.028 (cit. on p. 6).

[43] P. Skoglund and D. Reich. “A genomic view of the peopling of the Americas”. In:
Current Opinion in Genetics & Development 41 (2016), pp. 27–35. doi: 10.1016/
j.gde.2016.06.016 (cit. on p. 6).

[44] K. Eaton et al. Museum of London Report on the DNA Analyses of Four Roman
Individuals. Tech. rep. 2015, pp. 1–23 (cit. on p. 6).

[45] S. Schiffels et al. “Iron Age and Anglo-Saxon genomes from East England reveal
British migration history.” In: Nature communications 7 (2016), p. 10408. doi:
10.1038/ncomms10408 (cit. on p. 6).

[46] S. Goodwin, J. D. McPherson, and W. R. McCombie. “Coming of age: ten years of
next-generation sequencing technologies”. In: Nature Reviews Genetics 17.6 (2016),
pp. 333–351. doi: 10.1038/nrg.2016.49 (cit. on pp. 9, 12, 13).

[47] S. Canzar and S. L. Salzberg. “Short Read Mapping: An Algorithmic Tour”. In:
Proceedings of the IEEE (2015), pp. 1–23. doi: 10.1109/JPROC.2015.2455551
(cit. on pp. 10, 17, 23, 24).

[48] J. K. Kulski. “Next-Generation Sequencing — An Overview of the History, Tools,
and “Omic” Applications”. In: Next Generation Sequencing - Advances, Applications
and Challenges. InTech, 2016, pp. 3–60. doi: 10.5772/61964 (cit. on p. 9).

[49] L. Nederbragt. Developments in NGS. Tech. rep. 2016. doi: 10.6084/m9.figshare.
100940.v9 (cit. on p. 11).

[50] S. D. Kahn. “On the future of genomic data.” In: Science (New York, N.Y.) 331.6018
(2011), pp. 728–9. doi: 10.1126/science.1197891 (cit. on p. 12).

[51] L. Liu et al. “Comparison of Next-Generation Sequencing Systems”. In: Journal of
Biomedicine and Biotechnology 2012 (2012), pp. 1–11. doi: 10.1155/2012/251364
(cit. on pp. 10–13).

[52] M. Kircher and J. Kelso. “High-throughput DNA sequencing - concepts and limi-
tations”. In: BioEssays 32.6 (2010), pp. 524–536. doi: 10.1002/bies.200900181
(cit. on p. 10).

[53] J. C. Venter. “The Sequence of the Human Genome”. In: Science 291.5507 (2001),
pp. 1304–1351. doi: 10.1126/science.1058040 (cit. on p. 10).

[54] E. S. Lander et al. “Initial sequencing and analysis of the human genome.” In:
Nature 409.6822 (2001), pp. 860–921. doi: 10.1038/35057062 (cit. on p. 10).

[55] E. R. Mardis. “Next-Generation Sequencing Platforms”. In: Annual Review of Ana-
lytical Chemistry 6.1 (2013), pp. 287–303. doi: 10.1146/annurev-anchem-062012-
092628 (cit. on p. 11).

[56] M. Schirmer et al. “Illumina error profiles: resolving fine-scale variation in metage-
nomic sequencing data”. In: BMC Bioinformatics 17.1 (2016), p. 125. doi: 10.
1186/s12859-016-0976-y (cit. on p. 12).

[57] M. Schirmer et al. “Insight into biases and sequencing errors for amplicon sequenc-
ing with the Illumina MiSeq platform”. In: Nucleic Acids Research 43.6 (2015),
e37–e37. doi: 10.1093/nar/gku1341 (cit. on p. 12).

[58] H. Li. “BFC: correcting Illumina sequencing errors”. In: Bioinformatics 31.17 (2015),
pp. 2885–2887. doi: 10.1093/bioinformatics/btv290 (cit. on p. 12).

http://dx.doi.org/10.1016/j.cub.2016.01.028
http://dx.doi.org/10.1016/j.gde.2016.06.016
http://dx.doi.org/10.1016/j.gde.2016.06.016
http://dx.doi.org/10.1038/ncomms10408
http://dx.doi.org/10.1038/nrg.2016.49
http://dx.doi.org/10.1109/JPROC.2015.2455551
http://dx.doi.org/10.5772/61964
http://dx.doi.org/10.6084/m9.figshare.100940.v9
http://dx.doi.org/10.6084/m9.figshare.100940.v9
http://dx.doi.org/10.1126/science.1197891
http://dx.doi.org/10.1155/2012/251364
http://dx.doi.org/10.1002/bies.200900181
http://dx.doi.org/10.1126/science.1058040
http://dx.doi.org/10.1038/35057062
http://dx.doi.org/10.1146/annurev-anchem-062012-092628
http://dx.doi.org/10.1146/annurev-anchem-062012-092628
http://dx.doi.org/10.1186/s12859-016-0976-y
http://dx.doi.org/10.1186/s12859-016-0976-y
http://dx.doi.org/10.1093/nar/gku1341
http://dx.doi.org/10.1093/bioinformatics/btv290

BIBLIOGRAPHY 143

[59] E.-C. Lim et al. “Trowel: a fast and accurate error correction module for Illumina
sequencing reads”. In: Bioinformatics 30.22 (2014), pp. 3264–3265. doi: 10.1093/
bioinformatics/btu513 (cit. on p. 12).

[60] Y. Heo et al. “BLESS: Bloom filter-based error correction solution for high-throughput
sequencing reads”. In: Bioinformatics 30.10 (2014), pp. 1354–1362. doi: 10.1093/
bioinformatics/btu030 (cit. on p. 12).

[61] Y. Heo et al. “BLESS 2: accurate, memory-efficient and fast error correction method”.
In: Bioinformatics 32.15 (2016), pp. 2369–2371. doi: 10.1093/bioinformatics/
btw146 (cit. on p. 12).

[62] L. M. Bragg et al. “Shining a Light on Dark Sequencing: Characterising Errors in
Ion Torrent PGM Data”. In: PLoS Computational Biology 9.4 (2013), e1003031.
doi: 10.1371/journal.pcbi.1003031 (cit. on p. 12).

[63] T. C. Glenn. “Field guide to next-generation DNA sequencers.” In: Molecular ecol-
ogy resources 11.5 (2011), pp. 759–69. doi: 10.1111/j.1755-0998.2011.03024.x
(cit. on pp. 12, 13).

[64] H. Breu. A Theoretical Understanding of 2 Base Color Codes and Its Application to
Annotation, Error Detection, and Error Correction. Tech. rep. Applied Biosystems,
2010. url: http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/
documents/generaldocuments/cms_058265.pdf (cit. on p. 12).

[65] A. Rhoads and K. F. Au. “PacBio Sequencing and Its Applications”. In: Genomics,
Proteomics & Bioinformatics 13.5 (2015), pp. 278–289. doi: 10.1016/j.gpb.2015.
08.002 (cit. on p. 13).

[66] L. Salmela and E. Rivals. “LoRDEC: accurate and efficient long read error correc-
tion”. In: Bioinformatics 30.24 (2014), pp. 3506–3514. doi: 10.1093/bioinformatics/
btu538 (cit. on p. 13).

[67] J. Duda, W. Szpankowski, and A. Grama. “Fundamental Bounds and Approaches
to Sequence Reconstruction from Nanopore Sequencers”. In: arXiv preprints (2016).
url: http://arxiv.org/abs/1601.02420 (cit. on p. 13).

[68] B. Tan et al. “Next-generation sequencing (NGS) for assessment of microbial water
quality: current progress, challenges, and future opportunities”. In: Frontiers in
Microbiology 6.SEP (2015). doi: 10.3389/fmicb.2015.01027 (cit. on p. 13).

[69] J. Quick et al. “Real-time, portable genome sequencing for Ebola surveillance”. In:
Nature 530.7589 (2016), pp. 228–232. doi: 10.1038/nature16996 (cit. on p. 13).

[70] A. B. R. McIntyre et al. “Nanopore sequencing in microgravity”. In: npj Micrograv-
ity 2.June (2016), p. 16035. doi: 10.1038/npjmgrav.2016.35 (cit. on p. 13).

[71] S. L. Castro-Wallace et al. “Nanopore DNA Sequencing and Genome Assembly
on the International Space Station”. In: bioRxiv preprints (2016). doi: 10.1101/
077651. url: http://biorxiv.org/lookup/doi/10.1101/077651 (cit. on p. 13).

[72] M. Loose, S. Malla, and M. Stout. “Real-time selective sequencing using nanopore
technology”. In: Nature Methods 13.9 (2016), pp. 751–754. doi: 10.1038/nmeth.
3930 (cit. on p. 13).

[73] J. T. Simpson et al. “Detecting DNA cytosine methylation using nanopore sequenc-
ing”. In: Nature Methods January (2017), pp. 1–7. doi: 10.1038/nmeth.4184 (cit.
on p. 13).

http://dx.doi.org/10.1093/bioinformatics/btu513
http://dx.doi.org/10.1093/bioinformatics/btu513
http://dx.doi.org/10.1093/bioinformatics/btu030
http://dx.doi.org/10.1093/bioinformatics/btu030
http://dx.doi.org/10.1093/bioinformatics/btw146
http://dx.doi.org/10.1093/bioinformatics/btw146
http://dx.doi.org/10.1371/journal.pcbi.1003031
http://dx.doi.org/10.1111/j.1755-0998.2011.03024.x
http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_058265.pdf
http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_058265.pdf
http://dx.doi.org/10.1016/j.gpb.2015.08.002
http://dx.doi.org/10.1016/j.gpb.2015.08.002
http://dx.doi.org/10.1093/bioinformatics/btu538
http://dx.doi.org/10.1093/bioinformatics/btu538
http://arxiv.org/abs/1601.02420
http://dx.doi.org/10.3389/fmicb.2015.01027
http://dx.doi.org/10.1038/nature16996
http://dx.doi.org/10.1038/npjmgrav.2016.35
http://dx.doi.org/10.1101/077651
http://dx.doi.org/10.1101/077651
http://biorxiv.org/lookup/doi/10.1101/077651
http://dx.doi.org/10.1038/nmeth.3930
http://dx.doi.org/10.1038/nmeth.3930
http://dx.doi.org/10.1038/nmeth.4184

144 BIBLIOGRAPHY

[74] M. Zhao, D. Liu, and H. Qu. “Systematic review of next-generation sequencing sim-
ulators: computational tools, features and perspectives”. In: Briefings in Functional
Genomics (2016), elw012. doi: 10.1093/bfgp/elw012 (cit. on pp. 14, 15).

[75] M. Escalona, S. Rocha, and D. Posada. “A comparison of tools for the simulation
of genomic next-generation sequencing data”. In: Nature Reviews Genetics 17.8
(2016), pp. 459–469. doi: 10.1038/nrg.2016.57 (cit. on pp. 14, 15).

[76] Y. Ono, K. Asai, and M. Hamada. “PBSIM: PacBio reads simulator - Toward
accurate genome assembly”. In: Bioinformatics 29.1 (2013), pp. 119–121. doi: 10.
1093/bioinformatics/bts649 (cit. on pp. 14, 15, 43).

[77] X. Hu et al. “pIRS: Profile-based illumina pair-end reads simulator”. In: Bioinfor-
matics 28.11 (2012), pp. 1533–1535. doi: 10.1093/bioinformatics/bts187 (cit.
on pp. 15, 43).

[78] M. Holtgrewe. Mason – A Read Simulator for Second Generation Sequencing Data.
Tech. rep. October. Berlin: Institut für Mathematik und Informatik, Freie Univer-
sität Berlin, 2010, p. 18 (cit. on pp. 15, 16, 43).

[79] C. Bartenhagen and M. Dugas. “RSVSim: an R/Bioconductor package for the
simulation of structural variations”. In: Bioinformatics 29.13 (2013), pp. 1679–1681.
doi: 10.1093/bioinformatics/btt198 (cit. on p. 15).

[80] M. Qin et al. “SCNVSim: somatic copy number variation and structure variation
simulator”. In: BMC Bioinformatics 16.1 (2015), p. 66. doi: 10.1186/s12859-
015-0502-7 (cit. on p. 15).

[81] W. Huang et al. “ART: A next-generation sequencing read simulator”. In: Bioinfor-
matics 28.4 (2012), pp. 593–594. doi: 10.1093/bioinformatics/btr708 (cit. on
pp. 15, 16, 43).

[82] M. Frampton and R. Houlston. “Generation of Artificial FASTQ Files to Evaluate
the Performance of Next-Generation Sequencing Pipelines”. In: PLoS ONE 7.11
(2012), e49110. doi: 10.1371/journal.pone.0049110 (cit. on p. 15).

[83] A. Shcherbina. “FASTQSim: platform-independent data characterization and in
silico read generation for NGS datasets.” In: BMC research notes 7.1 (2014), p. 533.
doi: 10.1186/1756-0500-7-533 (cit. on pp. 15, 16, 43).

[84] Shifu Chen et al. “SeqMaker: A next generation sequencing simulator with vari-
ations, sequencing errors and amplification bias integrated”. In: 2016 IEEE In-
ternational Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016,
pp. 835–840. doi: 10.1109/BIBM.2016.7822634 (cit. on p. 15).

[85] E. A. G. Baker et al. “SiLiCO: A Simulator of Long Read Sequencing in PacBio and
Oxford Nanopore”. In: bioRxiv preprints (2016), pp. 1–3. doi: 10.1101/076901.
url: http://biorxiv.org/lookup/doi/10.1101/076901 (cit. on p. 15).

[86] R. Luo et al. “LRSim: a Linked Reads Simulator generating insights for better
genome partitioning”. In: (2015), pp. 1–3. doi: 10 . 1101 / 103549. url: http :
//biorxiv.org/content/early/2017/01/26/103549 (cit. on p. 15).

[87] K. E. McElroy, F. Luciani, and T. Thomas. “GemSIM: general, error-model based
simulator of next-generation sequencing data”. In: BMC Genomics 13.1 (2012),
p. 74. doi: 10.1186/1471-2164-13-74 (cit. on pp. 15, 16, 43).

http://dx.doi.org/10.1093/bfgp/elw012
http://dx.doi.org/10.1038/nrg.2016.57
http://dx.doi.org/10.1093/bioinformatics/bts649
http://dx.doi.org/10.1093/bioinformatics/bts649
http://dx.doi.org/10.1093/bioinformatics/bts187
http://dx.doi.org/10.1093/bioinformatics/btt198
http://dx.doi.org/10.1186/s12859-015-0502-7
http://dx.doi.org/10.1186/s12859-015-0502-7
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1371/journal.pone.0049110
http://dx.doi.org/10.1186/1756-0500-7-533
http://dx.doi.org/10.1109/BIBM.2016.7822634
http://dx.doi.org/10.1101/076901
http://biorxiv.org/lookup/doi/10.1101/076901
http://dx.doi.org/10.1101/103549
http://biorxiv.org/content/early/2017/01/26/103549
http://biorxiv.org/content/early/2017/01/26/103549
http://dx.doi.org/10.1186/1471-2164-13-74

BIBLIOGRAPHY 145

[88] S. Pattnaik et al. “SInC: an accurate and fast error-model based simulator for SNPs,
Indels and CNVs coupled with a read generator for short-read sequence data.” In:
BMC bioinformatics 15.1 (2014), p. 40. doi: 10.1186/1471-2105-15-40 (cit. on
pp. 15, 43).

[89] S. Kim, K. Jeong, and V. Bafna. “Wessim: a whole-exome sequencing simulator
based on in silico exome capture”. In: Bioinformatics 29.8 (2013), pp. 1076–1077.
doi: 10.1093/bioinformatics/btt074 (cit. on pp. 15, 16).

[90] C. Yang et al. NanoSim: nanopore sequence read simulator based on statistical
characterization. Tech. rep. 2016. doi: 10.1101/044545 (cit. on p. 15).

[91] B. Lau et al. “LongISLND: in silico sequencing of lengthy and noisy datatypes”.
In: Bioinformatics 32.24 (2016), pp. 3829–3832. doi: 10.1093/bioinformatics/
btw602 (cit. on p. 15).

[92] J. Marić. “Long Read RNA-seq Mapper”. PhD thesis. University of Zagreb, 2015
(cit. on pp. 15, 26).

[93] B. K. Stöcker, J. Köster, and S. Rahmann. “SimLoRD: Simulation of Long Read
Data”. In: Bioinformatics 32.17 (2016), pp. 2704–2706. doi: 10.1093/bioinformatics/
btw286 (cit. on p. 15).

[94] F. Lysholm, B. Andersson, and B. Persson. “An efficient simulator of 454 data
using configurable statistical models”. In: BMC Research Notes 4.1 (2011), p. 449.
doi: 10.1186/1756-0500-4-449 (cit. on p. 16).

[95] S. Balzer et al. “Characteristics of 454 pyrosequencing data–enabling realistic sim-
ulation with flowsim”. In: Bioinformatics 27.15 (2011), pp. 2171–2171. doi: 10.
1093/bioinformatics/btr384 (cit. on pp. 16, 43).

[96] S. Caboche et al. “Comparison of mapping algorithms used in high-throughput
sequencing: application to Ion Torrent data.” In: BMC genomics 15 (2014), p. 264.
doi: 10.1186/1471-2164-15-264 (cit. on pp. 16, 43, 44).

[97] S. Johnson et al. “A better sequence-read simulator program for metagenomics.” In:
BMC bioinformatics 15 Suppl 9.Suppl 9 (2014), S14. doi: 10.1186/1471-2105-
15-S9-S14 (cit. on p. 16).

[98] F. E. Angly et al. “Grinder: a versatile amplicon and shotgun sequence simulator”.
In: Nucleic Acids Research 40.12 (2012), e94–e94. doi: 10.1093/nar/gks251 (cit.
on p. 16).

[99] D. C. Richter et al. “MetaSim—A Sequencing Simulator for Genomics and Metage-
nomics”. In: PLoS ONE 3.10 (2008), e3373. doi: 10.1371/journal.pone.0003373
(cit. on p. 16).

[100] B. Jia et al. “NeSSM: A Next-Generation Sequencing Simulator for Metagenomics”.
In: PLoS ONE 8.10 (2013), e75448. doi: 10.1371/journal.pone.0075448 (cit. on
p. 16).

[101] G. R. Grant et al. “Comparative analysis of RNA-Seq alignment algorithms and the
RNA-Seq unified mapper (RUM)”. In: Bioinformatics 27.18 (2011), pp. 2518–2528.
doi: 10.1093/bioinformatics/btr427 (cit. on pp. 16, 26).

[102] T. Griebel et al. “Modelling and simulating generic RNA-Seq experiments with
the flux simulator”. In: Nucleic Acids Research 40.20 (2012), pp. 10073–10083. doi:
10.1093/nar/gks666 (cit. on p. 16).

http://dx.doi.org/10.1186/1471-2105-15-40
http://dx.doi.org/10.1093/bioinformatics/btt074
http://dx.doi.org/10.1101/044545
http://dx.doi.org/10.1093/bioinformatics/btw602
http://dx.doi.org/10.1093/bioinformatics/btw602
http://dx.doi.org/10.1093/bioinformatics/btw286
http://dx.doi.org/10.1093/bioinformatics/btw286
http://dx.doi.org/10.1186/1756-0500-4-449
http://dx.doi.org/10.1093/bioinformatics/btr384
http://dx.doi.org/10.1093/bioinformatics/btr384
http://dx.doi.org/10.1186/1471-2164-15-264
http://dx.doi.org/10.1186/1471-2105-15-S9-S14
http://dx.doi.org/10.1186/1471-2105-15-S9-S14
http://dx.doi.org/10.1093/nar/gks251
http://dx.doi.org/10.1371/journal.pone.0003373
http://dx.doi.org/10.1371/journal.pone.0075448
http://dx.doi.org/10.1093/bioinformatics/btr427
http://dx.doi.org/10.1093/nar/gks666

146 BIBLIOGRAPHY

[103] S.-m. Lee et al. “PSIM: pattern-based read simulator for RNA-seq analysis”. In:
Multimedia Tools and Applications 74.16 (2015), pp. 6465–6480. doi: 10.1007/
s11042-014-2108-x (cit. on p. 16).

[104] B. Sipos et al. “Realistic simulations reveal extensive sample-specificity of RNA-seq
biases”. In: arXiv preprints (2013), pp. 1–8. url: http://arxiv.org/abs/1308.
3172 (cit. on p. 16).

[105] B. Li et al. “RNA-Seq gene expression estimation with read mapping uncertainty”.
In: Bioinformatics 26.4 (2010), pp. 493–500. doi: 10 . 1093 / bioinformatics /
btp692 (cit. on p. 16).

[106] S. Benidt and D. Nettleton. “SimSeq: a nonparametric approach to simulation
of RNA-sequence datasets”. In: Bioinformatics 31.13 (2015), pp. 2131–2140. doi:
10.1093/bioinformatics/btv124 (cit. on p. 16).

[107] M. C. Frith, R. Mori, and K. Asai. “A mostly traditional approach improves align-
ment of bisulfite-converted DNA.” In: Nucleic acids research 40.13 (2012), e100.
doi: 10.1093/nar/gks275 (cit. on pp. 16, 26, 43).

[108] O. J. L. Rackham et al. “WGBSSuite: simulating whole-genome bisulphite sequenc-
ing data and benchmarking differential DNA methylation analysis tools”. In: Bioin-
formatics 31.14 (2015), pp. 2371–2373. doi: 10.1093/bioinformatics/btv114
(cit. on p. 16).

[109] G. Renaud et al. “gargammel: a sequence simulator for ancient DNA”. In: Bioin-
formatics (2016), btw670. doi: 10.1093/bioinformatics/btw670 (cit. on p. 16).

[110] D. Pratas, A. J. Pinho, and J. M. O. S. Rodrigues. “XS: a FASTQ read simulator.”
In: BMC research notes 7 (2014), p. 40. doi: 10.1186/1756-0500-7-40 (cit. on
pp. 16, 43).

[111] M. L. Engle and C. Burks. “GenFrag 2.1: new features for more robust fragment
assembly benchmarks”. In: Bioinformatics 10.5 (1994), pp. 567–568. doi: 10.1093/
bioinformatics/10.5.567 (cit. on p. 16).

[112] G. Myers. “A dataset generator for whole genome shotgun sequencing.” In: Proceed-
ings of the Seventh International Conference on Intelligent Systems for Molecular
Biology (1999), pp. 202–10 (cit. on p. 16).

[113] C. G. Hur et al. “FASIM: Fragments assembly simulation using biased-sampling
model and assembly simulation for microbial genome shotgun sequencing”. In: Jour-
nal of Microbiology and Biotechnology 16.5 (2006), pp. 683–688 (cit. on p. 16).

[114] S. S. Mande, M. H. Mohammed, and T. S. Ghosh. “Classification of metagenomic
sequences: methods and challenges”. In: Briefings in Bioinformatics 13.6 (2012),
pp. 669–681. doi: 10.1093/bib/bbs054 (cit. on pp. 17, 73, 74).

[115] M. Pop. “Genome assembly reborn: recent computational challenges”. In: Briefings
in Bioinformatics 10.4 (2009), pp. 354–366. doi: 10.1093/bib/bbp026 (cit. on
pp. 17, 65).

[116] Q. D. Atkinson and R. D. Gray. “Curious parallels and curious connections–phylogenetic
thinking in biology and historical linguistics.” In: Systematic biology 54.4 (2005),
pp. 513–26. doi: 10.1080/10635150590950317 (cit. on p. 17).

http://dx.doi.org/10.1007/s11042-014-2108-x
http://dx.doi.org/10.1007/s11042-014-2108-x
http://arxiv.org/abs/1308.3172
http://arxiv.org/abs/1308.3172
http://dx.doi.org/10.1093/bioinformatics/btp692
http://dx.doi.org/10.1093/bioinformatics/btp692
http://dx.doi.org/10.1093/bioinformatics/btv124
http://dx.doi.org/10.1093/nar/gks275
http://dx.doi.org/10.1093/bioinformatics/btv114
http://dx.doi.org/10.1093/bioinformatics/btw670
http://dx.doi.org/10.1186/1756-0500-7-40
http://dx.doi.org/10.1093/bioinformatics/10.5.567
http://dx.doi.org/10.1093/bioinformatics/10.5.567
http://dx.doi.org/10.1093/bib/bbs054
http://dx.doi.org/10.1093/bib/bbp026
http://dx.doi.org/10.1080/10635150590950317

BIBLIOGRAPHY 147

[117] A. Kitchen et al. “Bayesian phylogenetic analysis of Semitic languages identifies an
Early Bronze Age origin of Semitic in the Near East”. In: Proceedings of the Royal
Society B: Biological Sciences 276.1668 (2009), pp. 2703–2710. doi: 10.1098/rspb.
2009.0408 (cit. on p. 17).

[118] A. C. Barbrook et al. “The phylogeny of The Canterbury Tales”. In: Nature 394.6696
(1998), pp. 839–839. doi: 10.1038/29667 (cit. on p. 17).

[119] J. J. Tehrani. “The phylogeny of Little Red Riding Hood.” In: PloS one 8.11 (2013),
e78871. doi: 10.1371/journal.pone.0078871 (cit. on p. 17).

[120] A. Z. Broder. “Identifying and Filtering Near-Duplicate Documents”. In: Combina-
torial Pattern Matching: 11th Annual Symposium, CPM 2000 Montreal, Canada,
June 21–23, 2000 Proceedings. 2000, pp. 1–10. doi: 10.1007/3-540-45123-4_1
(cit. on pp. 17, 28, 79).

[121] R. Durbin et al. Biological Sequence Analysis. Cambridge: Cambridge University
Press, 1998, p. 366. doi: 10.1017/CBO9780511790492 (cit. on p. 18).

[122] H. Li et al. “The Sequence Alignment/Map format and SAMtools.” In: Bioinfor-
matics 25.16 (2009), pp. 2078–9. doi: 10.1093/bioinformatics/btp352 (cit. on
pp. 18, 22, 57, 64, 100, 106, 133–135).

[123] S. Henikoff and J. G. Henikoff. “Amino acid substitution matrices from protein
blocks.” In: Proceedings of the National Academy of Sciences 89.22 (1992), pp. 10915–
10919. doi: 10.1073/pnas.89.22.10915 (cit. on p. 18).

[124] S. F. Altschul. “Amino acid substitution matrices from an information theoretic
perspective”. In: Journal of Molecular Biology 219.3 (1991), pp. 555–565. doi: 10.
1016/0022-2836(91)90193-A (cit. on p. 18).

[125] T. Muller, S. Rahmann, and M. Rehmsmeier. “Non-symmetric score matrices and
the detection of homologous transmembrane proteins”. In: Bioinformatics 17.Suppl
1 (2001), S182–S189. doi: 10.1093/bioinformatics/17.suppl_1.S182 (cit. on
p. 18).

[126] S. B. Needleman and C. D. Wunsch. “A general method applicable to the search for
similarities in the amino acid sequence of two proteins”. In: Journal of Molecular
Biology 48.3 (1970), pp. 443–453. doi: 10.1016/0022-2836(70)90057-4 (cit. on
pp. 19, 21, 121).

[127] T. F. Smith and M. S. Waterman. “Identification of common molecular subse-
quences.” In: Journal of molecular biology 147.1 (1981), pp. 195–7. doi: 10.1016/
0022-2836(81)90087-5 (cit. on pp. 19, 21, 121).

[128] O. Gotoh. “An improved algorithm for matching biological sequences”. In: Journal
of Molecular Biology 162.3 (1982), pp. 705–708. doi: 10.1016/0022-2836(82)
90398-9 (cit. on p. 19).

[129] M. Farrar. “Striped Smith-Waterman speeds database searches six times over other
SIMD implementations”. In: Bioinformatics 23.2 (2007), pp. 156–161. doi: 10.
1093/bioinformatics/btl582 (cit. on p. 19).

[130] G. Myers. “A fast bit-vector algorithm for approximate string matching based on
dynamic programming”. In: Journal of the ACM 46.3 (1999), pp. 395–415. doi:
10.1145/316542.316550 (cit. on p. 19).

http://dx.doi.org/10.1098/rspb.2009.0408
http://dx.doi.org/10.1098/rspb.2009.0408
http://dx.doi.org/10.1038/29667
http://dx.doi.org/10.1371/journal.pone.0078871
http://dx.doi.org/10.1007/3-540-45123-4_1
http://dx.doi.org/10.1017/CBO9780511790492
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1073/pnas.89.22.10915
http://dx.doi.org/10.1016/0022-2836(91)90193-A
http://dx.doi.org/10.1016/0022-2836(91)90193-A
http://dx.doi.org/10.1093/bioinformatics/17.suppl_1.S182
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/0022-2836(82)90398-9
http://dx.doi.org/10.1016/0022-2836(82)90398-9
http://dx.doi.org/10.1093/bioinformatics/btl582
http://dx.doi.org/10.1093/bioinformatics/btl582
http://dx.doi.org/10.1145/316542.316550

148 BIBLIOGRAPHY

[131] K. Fredriksson. “Row-wise Tiling for the Myers’ Bit-Parallel Approximate String
Matching Algorithm”. In: 2003, pp. 66–79. doi: 10.1007/978-3-540-39984-1_6
(cit. on p. 19).

[132] K. Kimura, A. Koike, and K. Nakai. “A bit-parallel dynamic programming algo-
rithm suitable for DNA sequence alignment.” In: Journal of bioinformatics and
computational biology 10.4 (2012), p. 1250002. doi: 10.1142/S0219720012500023
(cit. on p. 19).

[133] H. Xin et al. “Shifted Hamming distance: A fast and accurate SIMD-friendly filter to
accelerate alignment verification in read mapping”. In: Bioinformatics 31.10 (2014),
pp. 1553–1560. doi: 10.1093/bioinformatics/btu856 (cit. on p. 19).

[134] S. Wu and U. Mamber. “Agrep - a fast approximate pattern matching tool”. In:
Proceedings of the Winter 1992 USENIX Conference San Francisco USA. Berkeley.
1992, pp. 153–162 (cit. on p. 19).

[135] H. Hyyrö. “A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit
Distances”. In: Nordic Journal of Computing 10.1 (2003) (cit. on p. 19).

[136] J. Loving, Y. Hernandez, and G. Benson. “BitPAl: a bit-parallel, general integer-
scoring sequence alignment algorithm”. In: Bioinformatics 30.22 (2014), pp. 3166–
3173. doi: 10.1093/bioinformatics/btu507 (cit. on p. 19).

[137] K. Hou, H. Wang, and W.-c. Feng. “AAlign: A SIMD Framework for Pairwise Se-
quence Alignment on x86-Based Multi-and Many-Core Processors”. In: 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). May. IEEE,
2016, pp. 780–789. doi: 10.1109/IPDPS.2016.115 (cit. on p. 19).

[138] S. Sheetlin et al. “ALP & FALP: C++ libraries for pairwise local alignment E
-values”. In: Bioinformatics 32.2 (2015), btv575. doi: 10.1093/bioinformatics/
btv575 (cit. on p. 19).

[139] M. Šošić and M. Šikić. “Edlib: a C/C++ library for fast, exact sequence align-
ment using edit distance”. In: Bioinformatics (2017), p. 070649. doi: 10.1093/
bioinformatics/btw753 (cit. on p. 19).

[140] J. Daily. “Parasail: SIMD C library for global, semi-global, and local pairwise se-
quence alignments”. In: BMC Bioinformatics 17.1 (2016), p. 81. doi: 10.1186/
s12859-016-0930-z (cit. on p. 19).

[141] A. Döring et al. “SeqAn an efficient, generic C++ library for sequence analysis.”
In: BMC bioinformatics 9 (2008), p. 11. doi: 10.1186/1471-2105-9-11 (cit. on
pp. 19, 35).

[142] M. Zhao et al. “SSW library: an SIMD Smith-Waterman C/C++ library for use in
genomic applications.” In: PloS one 8.12 (2013), e82138. doi: 10.1371/journal.
pone.0082138 (cit. on p. 19).

[143] A. Szalkowski et al. “SWPS3 – fast multi-threaded vectorized Smith-Waterman for
IBM Cell/B.E. and ×86/SSE2”. In: BMC Research Notes 1.1 (2008), p. 107. doi:
10.1186/1756-0500-1-107 (cit. on p. 19).

[144] Y. Liu, D. L. Maskell, and B. Schmidt. “CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units”. In: BMC
Research Notes 2.1 (2009), p. 73. doi: 10.1186/1756-0500-2-73 (cit. on p. 19).

http://dx.doi.org/10.1007/978-3-540-39984-1_6
http://dx.doi.org/10.1142/S0219720012500023
http://dx.doi.org/10.1093/bioinformatics/btu856
http://dx.doi.org/10.1093/bioinformatics/btu507
http://dx.doi.org/10.1109/IPDPS.2016.115
http://dx.doi.org/10.1093/bioinformatics/btv575
http://dx.doi.org/10.1093/bioinformatics/btv575
http://dx.doi.org/10.1093/bioinformatics/btw753
http://dx.doi.org/10.1093/bioinformatics/btw753
http://dx.doi.org/10.1186/s12859-016-0930-z
http://dx.doi.org/10.1186/s12859-016-0930-z
http://dx.doi.org/10.1186/1471-2105-9-11
http://dx.doi.org/10.1371/journal.pone.0082138
http://dx.doi.org/10.1371/journal.pone.0082138
http://dx.doi.org/10.1186/1756-0500-1-107
http://dx.doi.org/10.1186/1756-0500-2-73

BIBLIOGRAPHY 149

[145] Y. Liu, B. Schmidt, and D. L. Maskell. “CUDASW++2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and virtualized
SIMD abstractions”. In: BMC Research Notes 3.1 (2010), p. 93. doi: 10.1186/
1756-0500-3-93 (cit. on p. 19).

[146] Y. Liu, A. Wirawan, and B. Schmidt. “CUDASW++ 3.0: accelerating Smith-
Waterman protein database search by coupling CPU and GPU SIMD instructions”.
In: BMC Bioinformatics 14.1 (2013), p. 117. doi: 10.1186/1471-2105-14-117
(cit. on p. 19).

[147] Y. Liu and B. Schmidt. “GSWABE: faster GPU-accelerated sequence alignment
with optimal alignment retrieval for short DNA sequences”. In: Concurrency and
Computation: Practice and Experience 27.4 (2015), pp. 958–972. doi: 10.1002/
cpe.3371 (cit. on p. 19).

[148] E. F. De O. Sandes et al. “MASA: A Multiplatform Architecture for Sequence
Aligners with Block Pruning”. In: ACM Transactions on Parallel Computing 2.4
(2016), pp. 1–31. doi: 10.1145/2858656 (cit. on p. 19).

[149] M. Korpar and M. Sikic. “SW#-GPU-enabled exact alignments on genome scale”.
In: Bioinformatics 29.19 (2013), pp. 2494–2495. doi: 10.1093/bioinformatics/
btt410 (cit. on p. 19).

[150] S. a. Manavski and G. Valle. “CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment”. In: BMC Bioinformatics
9.Suppl 2 (2008), S10. doi: 10.1186/1471-2105-9-S2-S10 (cit. on p. 19).

[151] Y. Liu and B. Schmidt. “SWAPHI: Smith-waterman protein database search on
Xeon Phi coprocessors”. In: 2014 IEEE 25th International Conference on Application-
Specific Systems, Architectures and Processors. IEEE, 2014, pp. 184–185. doi: 10.
1109/ASAP.2014.6868657 (cit. on p. 19).

[152] Y. Liu et al. “SWAPHI-LS: Smith-Waterman Algorithm on Xeon Phi coprocessors
for Long DNA Sequences”. In: 2014 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2014, pp. 257–265. doi: 10.1109/CLUSTER.2014.
6968772 (cit. on p. 19).

[153] A. Chacón et al. “Thread-cooperative, bit-parallel computation of levenshtein dis-
tance on GPU”. In: Proceedings of the 28th ACM international conference on Super-
computing - ICS ’14. New York, New York, USA: ACM Press, 2014, pp. 103–112.
doi: 10.1145/2597652.2597677 (cit. on p. 19).

[154] H. Li et al. “A fast CUDA implementation of agrep algorithm for approximate
nucleotide sequence matching”. In: Proceedings of the 2011 IEEE 9th Symposium
on Application Specific Processors, SASP 2011 (2011), pp. 74–77. doi: 10.1109/
SASP.2011.5941082 (cit. on p. 19).

[155] T. T. Tran, M. Giraud, and J. S. Varré. “Bit-parallel multiple pattern matching”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics) 7204 LNCS.PART 2 (2012),
pp. 292–301. doi: 10.1007/978-3-642-31500-8_30 (cit. on p. 19).

[156] T. T. Tran, Y. Liu, and B. Schmidt. “Bit-parallel approximate pattern matching:
Kepler GPU versus Xeon Phi”. In: Parallel Computing 54 (2016), pp. 128–138. doi:
10.1016/j.parco.2015.11.001 (cit. on p. 19).

http://dx.doi.org/10.1186/1756-0500-3-93
http://dx.doi.org/10.1186/1756-0500-3-93
http://dx.doi.org/10.1186/1471-2105-14-117
http://dx.doi.org/10.1002/cpe.3371
http://dx.doi.org/10.1002/cpe.3371
http://dx.doi.org/10.1145/2858656
http://dx.doi.org/10.1093/bioinformatics/btt410
http://dx.doi.org/10.1093/bioinformatics/btt410
http://dx.doi.org/10.1186/1471-2105-9-S2-S10
http://dx.doi.org/10.1109/ASAP.2014.6868657
http://dx.doi.org/10.1109/ASAP.2014.6868657
http://dx.doi.org/10.1109/CLUSTER.2014.6968772
http://dx.doi.org/10.1109/CLUSTER.2014.6968772
http://dx.doi.org/10.1145/2597652.2597677
http://dx.doi.org/10.1109/SASP.2011.5941082
http://dx.doi.org/10.1109/SASP.2011.5941082
http://dx.doi.org/10.1007/978-3-642-31500-8_30
http://dx.doi.org/10.1016/j.parco.2015.11.001

150 BIBLIOGRAPHY

[157] D. Lipman and W. Pearson. “Rapid and sensitive protein similarity searches”. In:
Science 227.4693 (1985), pp. 1435–1441. doi: 10.1126/science.2983426 (cit. on
p. 20).

[158] W. R. Pearson and D. J. Lipman. “Improved tools for biological sequence compar-
ison.” In: Proceedings of the National Academy of Sciences of the United States of
America 85.8 (1988), pp. 2444–8. doi: 10.1073/pnas.85.8.2444 (cit. on pp. 20,
21).

[159] W. J. Wilbur and D. J. Lipman. “Rapid similarity searches of nucleic acid and
protein data banks.” In: Proceedings of the National Academy of Sciences 80.3
(1983), pp. 726–730. doi: 10.1073/pnas.80.3.726 (cit. on p. 20).

[160] S. F. Altschul et al. “Basic local alignment search tool”. In: Journal of Molecular
Biology 215.3 (1990), pp. 403–410. doi: 10.1016/S0022-2836(05)80360-2 (cit. on
pp. 20, 21, 26, 78).

[161] S. Altschul. “Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs”. In: Nucleic Acids Research 25.17 (1997), pp. 3389–3402. doi:
10.1093/nar/25.17.3389 (cit. on pp. 20, 73).

[162] A. Morgulis et al. “Database indexing for production MegaBLAST searches”. In:
Bioinformatics 24.16 (2008), pp. 1757–1764. doi: 10 . 1093 / bioinformatics /
btn322 (cit. on p. 20).

[163] Z. Zhang et al. “A greedy algorithm for aligning DNA sequences.” In: Journal
of computational biology : a journal of computational molecular cell biology 7.1-2
(2000), pp. 203–14. doi: 10.1089/10665270050081478 (cit. on p. 20).

[164] A. L. Delcher et al. “Alignment of whole genomes”. In: Nucleic Acids Research
27.11 (1999), pp. 2369–2376. doi: 10.1093/nar/27.11.2369 (cit. on p. 20).

[165] A. L. Delcher et al. “Fast algorithms for large-scale genome alignment and compar-
ison.” In: Nucleic acids research 30.11 (2002), pp. 2478–2483. doi: 10.1093/nar/
30.11.2478 (cit. on p. 20).

[166] N. Bray, I. Dubchak, and L. Pachter. “AVID: A global alignment program.” In:
Genome research 13.1 (2003), pp. 97–102. doi: 10.1101/gr.789803 (cit. on p. 20).

[167] S. Schwartz et al. “Human – Mouse Alignments with BLASTZ”. In: Genome Re-
search 13.1 (2003), pp. 103–107. doi: 10.1101/gr.809403. (cit. on pp. 20, 73).

[168] M. Brudno et al. “LAGAN and Multi-LAGAN: Efficient Tools for Large-Scale Mul-
tiple Alignment of Genomic DNA”. In: Genome Research 13.4 (2003), pp. 721–731.
doi: 10.1101/gr.926603 (cit. on p. 20).

[169] S. Kurtz et al. “Versatile and open software for comparing large genomes.” In:
Genome biology 5.2 (2004), R12. doi: 10.1186/gb-2004-5-2-r12 (cit. on pp. 20,
34, 76).

[170] R. S. Harris. “Improved pairwise alignment of genomic DNA”. PhD thesis. Penn-
sylvania State University, 2007 (cit. on p. 20).

[171] R. Nakato and O. Gotoh. “Cgaln: fast and space-efficient whole-genome alignment”.
In: BMC Bioinformatics 11.1 (2010), p. 224. doi: 10.1186/1471-2105-11-224
(cit. on p. 20).

http://dx.doi.org/10.1126/science.2983426
http://dx.doi.org/10.1073/pnas.85.8.2444
http://dx.doi.org/10.1073/pnas.80.3.726
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1093/bioinformatics/btn322
http://dx.doi.org/10.1093/bioinformatics/btn322
http://dx.doi.org/10.1089/10665270050081478
http://dx.doi.org/10.1093/nar/27.11.2369
http://dx.doi.org/10.1093/nar/30.11.2478
http://dx.doi.org/10.1093/nar/30.11.2478
http://dx.doi.org/10.1101/gr.789803
http://dx.doi.org/10.1101/gr.809403.
http://dx.doi.org/10.1101/gr.926603
http://dx.doi.org/10.1186/gb-2004-5-2-r12
http://dx.doi.org/10.1186/1471-2105-11-224

BIBLIOGRAPHY 151

[172] A. K. Hudek and D. G. Brown. “FEAST: Sensitive local alignment with multiple
rates of evolution”. In: IEEE/ACM Transactions on Computational Biology and
Bioinformatics 8.3 (2011), pp. 698–709. doi: 10.1109/TCBB.2010.76 (cit. on
p. 20).

[173] S. M. Kiełbasa et al. “Adaptive seeds tame genomic sequence comparison.” In:
Genome research 21.3 (2011), pp. 487–93. doi: 10.1101/gr.113985.110 (cit. on
pp. 20, 24, 25, 31, 42).

[174] M. C. Frith and R. Kawaguchi. “Split-alignment of genomes finds orthologies more
accurately.” In: Genome biology 16.1 (2015), p. 106. doi: 10.1186/s13059-015-
0670-9 (cit. on p. 20).

[175] W. J. Kent. “BLAT—The BLAST-Like Alignment Tool”. In: Genome Research
12.4 (2002), pp. 656–664. doi: 10.1101/gr.229202 (cit. on pp. 21, 26, 73).

[176] H. Li, J. Ruan, and R. Durbin. “Mapping short DNA sequencing reads and calling
variants using mapping quality scores.” In: Genome research 18.11 (2008), pp. 1851–
1858. doi: 10.1101/gr.078212.108 (cit. on pp. 21, 24, 26, 27, 29, 49).

[177] A. Dobin et al. “STAR: Ultrafast universal RNA-seq aligner”. In: Bioinformatics
29.1 (2013), pp. 15–21. doi: 10.1093/bioinformatics/bts635 (cit. on pp. 21,
26).

[178] H. Li and R. Durbin. “Fast and accurate short read alignment with Burrows-
Wheeler transform”. In: Bioinformatics 25.14 (2009), pp. 1754–1760. doi: 10.1093/
bioinformatics/btp324 (cit. on pp. 21, 22, 24, 25, 27, 29, 34, 35, 53, 74, 78, 101,
104).

[179] B. Langmead et al. “Ultrafast and memory-efficient alignment of short DNA se-
quences to the human genome.” In: Genome biology 10.3 (2009), R25. doi: 10.
1186/gb-2009-10-3-r25 (cit. on pp. 21, 22, 25, 27, 29, 35, 74, 101).

[180] H. Li. “Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM”. In: arXiv preprints (2013), p. 3. url: http://arxiv.org/abs/1303.3997
(cit. on pp. 21, 22, 24, 25, 42, 46, 47, 53, 56).

[181] B. Langmead and S. L. Salzberg. “Fast gapped-read alignment with Bowtie 2.” In:
Nature methods 9.4 (2012), pp. 357–9. doi: 10.1038/nmeth.1923 (cit. on pp. 21,
22, 24, 25, 42, 47, 53, 56, 76, 77, 79).

[182] P. Muir et al. “The real cost of sequencing: scaling computation to keep pace with
data generation”. In: Genome Biology 17.1 (2016), p. 53. doi: 10.1186/s13059-
016-0917-0 (cit. on p. 21).

[183] N. A. Fonseca et al. “Tools for mapping high-throughput sequencing data”. In:
Bioinformatics 28.24 (2012), pp. 3169–3177. doi: 10 . 1093 / bioinformatics /
bts605 (cit. on p. 22).

[184] International Consortium Completes Human Genome Project. Tech. rep. 2003. doi:
10.1517/phgs.4.3.241.22688 (cit. on p. 20).

[185] H. Li and R. Durbin. “Fast and accurate long-read alignment with Burrows-Wheeler
transform”. In: Bioinformatics 26.5 (2010), pp. 589–595. doi: 10.1093/bioinformatics/
btp698 (cit. on pp. 22, 25, 47, 53).

http://dx.doi.org/10.1109/TCBB.2010.76
http://dx.doi.org/10.1101/gr.113985.110
http://dx.doi.org/10.1186/s13059-015-0670-9
http://dx.doi.org/10.1186/s13059-015-0670-9
http://dx.doi.org/10.1101/gr.229202
http://dx.doi.org/10.1101/gr.078212.108
http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://arxiv.org/abs/1303.3997
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1186/s13059-016-0917-0
http://dx.doi.org/10.1186/s13059-016-0917-0
http://dx.doi.org/10.1093/bioinformatics/bts605
http://dx.doi.org/10.1093/bioinformatics/bts605
http://dx.doi.org/10.1517/phgs.4.3.241.22688
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1093/bioinformatics/btp698

152 BIBLIOGRAPHY

[186] T. J. Treangen and S. L. Salzberg. “Repetitive DNA and next-generation sequenc-
ing: computational challenges and solutions”. In: Nature Reviews Genetics 13.1
(2011), pp. 36–46. doi: 10.1038/nrg3117 (cit. on p. 22).

[187] M. David et al. “SHRiMP2: Sensitive yet Practical Short Read Mapping”. In: Bioin-
formatics 27.7 (2011), pp. 1011–1012. doi: 10.1093/bioinformatics/btr046 (cit.
on pp. 23, 24, 26, 27, 31, 53).

[188] N. Homer, B. Merriman, and S. F. Nelson. “BFAST: An Alignment Tool for Large
Scale Genome Resequencing”. In: PLoS ONE 4.11 (2009), e7767. doi: 10.1371/
journal.pone.0007767 (cit. on pp. 23, 26, 27, 31, 53).

[189] G. Navarro and V. Mäkinen. “Compressed full-text indexes”. In: ACM Computing
Surveys 39.1 (2007), 2–es. doi: 10.1145/1216370.1216372 (cit. on p. 24).

[190] P. Ferragina and G. Manzini. “Opportunistic data structures with applications”. In:
Proceedings 41st Annual Symposium on Foundations of Computer Science. IEEE
Comput. Soc, 2000, pp. 390–398. doi: 10.1109/SFCS.2000.892127 (cit. on pp. 24,
25, 35, 101, 102, 104).

[191] S. Marco-Sola et al. “The GEM mapper: fast, accurate and versatile alignment by
filtration”. In: Nature Methods 9.12 (2012), pp. 1185–1188. doi: 10.1038/nmeth.
2221 (cit. on pp. 24, 25, 42, 53).

[192] D. G. Brown. “A survey of seeding for sequence alignment”. In: Bioinformatics
Algorithms: Techniques and Applications. 2008 (cit. on pp. 24, 81, 82).

[193] D. G. Brown, M. Li, and B. Ma. “A tutorial of recent developments in the seeding
of local alignment.” In: Journal of bioinformatics and computational biology 2.4
(2004), pp. 819–42. doi: 10.1142/S0219720004000983 (cit. on pp. 24, 30).

[194] H. Xin et al. “Optimal seed solver: optimizing seed selection in read mapping”.
In: Bioinformatics 32.11 (2016), pp. 1632–1642. doi: 10.1093/bioinformatics/
btv670 (cit. on p. 24).

[195] I. Sović et al. “Fast and sensitive mapping of nanopore sequencing reads with
GraphMap”. In: Nature Communications 7 (2016), p. 11307. doi: 10.1038/ncomms11307
(cit. on pp. 24, 25, 31).

[196] R. Rabatin, B. Brejová, and T. Vinař. “Using Sequence Ensembles for Seeding
Alignments of MinION Sequencing Data”. In: arXiv preprints (2016), pp. 1–10.
url: http://arxiv.org/abs/1606.08719 (cit. on p. 24).

[197] H. Li and N. Homer. “A survey of sequence alignment algorithms for next-generation
sequencing”. In: Briefings in Bioinformatics 11.5 (2010), pp. 473–483. doi: 10.
1093/bib/bbq015 (cit. on pp. 24, 122).

[198] P. Ribeca. “Short-Read Mapping”. In: Bioinformatics for High Throughput Sequenc-
ing. New York, NY: Springer New York, 2012, pp. 107–125. doi: 10.1007/978-1-
4614-0782-9_7 (cit. on pp. 24, 41).

[199] K. Reinert et al. “Alignment of Next-Generation Sequencing Reads”. In: Annual
Review of Genomics and Human Genetics 16.1 (2015), p. 150504161622003. doi:
10.1146/annurev-genom-090413-025358 (cit. on pp. 24, 41).

[200] T. W. Lam et al. “Compressed indexing and local alignment of DNA”. In: Bioinfor-
matics 24.6 (2008), pp. 791–797. doi: 10.1093/bioinformatics/btn032 (cit. on
pp. 25, 35).

http://dx.doi.org/10.1038/nrg3117
http://dx.doi.org/10.1093/bioinformatics/btr046
http://dx.doi.org/10.1371/journal.pone.0007767
http://dx.doi.org/10.1371/journal.pone.0007767
http://dx.doi.org/10.1145/1216370.1216372
http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1038/nmeth.2221
http://dx.doi.org/10.1038/nmeth.2221
http://dx.doi.org/10.1142/S0219720004000983
http://dx.doi.org/10.1093/bioinformatics/btv670
http://dx.doi.org/10.1093/bioinformatics/btv670
http://dx.doi.org/10.1038/ncomms11307
http://arxiv.org/abs/1606.08719
http://dx.doi.org/10.1093/bib/bbq015
http://dx.doi.org/10.1093/bib/bbq015
http://dx.doi.org/10.1007/978-1-4614-0782-9_7
http://dx.doi.org/10.1007/978-1-4614-0782-9_7
http://dx.doi.org/10.1146/annurev-genom-090413-025358
http://dx.doi.org/10.1093/bioinformatics/btn032

BIBLIOGRAPHY 153

[201] L. J. Quan. “Accurate alignment of sequencing reads from various genomic origins”.
PhD thesis. National University of Singapore, 2014 (cit. on p. 25).

[202] B. Liu, Y. Gao, and Y. Wang. “LAMSA: fast split read alignment with long approxi-
mate matches”. In: Bioinformatics 2 (2016), btw594. doi: 10.1093/bioinformatics/
btw594 (cit. on p. 25).

[203] P. A. Andrews et al. “MUMdex: MUM-based structural variation detection”. In:
bioRxiv preprints (2016). doi: 10.1101/078261. url: http://biorxiv.org/
content/biorxiv/early/2016/09/30/078261.full.pdf (cit. on p. 25).

[204] N. Prezza et al. “Fast, accurate, and lightweight analysis of BS-treated reads with
ERNE 2”. In: BMC Bioinformatics 17.S4 (2016), p. 69. doi: 10.1186/s12859-
016-0910-3 (cit. on pp. 25, 26).

[205] E. V. i Zorita. Statistical models for genome sequence mapping. Tech. rep. Master
thesis. 2016. url: https://upcommons.upc.edu/bitstream/handle/2117/
97991/thesis_EE_ezorita.pdf (cit. on p. 25).

[206] M. Vyverman et al. “A Long Fragment Aligner called ALFALFA”. In: BMC Bioin-
formatics 16.1 (2015), p. 159. doi: 10.1186/s12859-015-0533-0 (cit. on p. 25).

[207] J. Salavert et al. “Fast inexact mapping using advanced tree exploration on back-
ward search methods”. In: BMC Bioinformatics 16.1 (2015), p. 18. doi: 10.1186/
s12859-014-0438-3 (cit. on pp. 25, 28).

[208] E. Siragusa. “Approximate string matching for high-throughput sequencing”. PhD
thesis. Free University, 2015 (cit. on pp. 25, 47, 79).

[209] M. Gholami et al. “ARYANA: Aligning Reads by Yet Another Approach”. In: BMC
Bioinformatics 15.Suppl 9 (2014), S12. doi: 10.1186/1471-2105-15-S9-S12 (cit.
on p. 25).

[210] P. Kerpedjiev et al. “Adaptable probabilistic mapping of short reads using position
specific scoring matrices”. In: BMC Bioinformatics 15.1 (2014), p. 100. doi: 10.
1186/1471-2105-15-100 (cit. on p. 25).

[211] Y. Liu, B. Popp, and B. Schmidt. “CUSHAW3: Sensitive and Accurate Base-Space
and Color-Space Short-Read Alignment with Hybrid Seeding.” In: PloS one 9.1
(2014), e86869. doi: 10.1371/journal.pone.0086869 (cit. on pp. 25, 27).

[212] J. González-Domínguez, Y. Liu, and B. Schmidt. “Parallel and Scalable Short-Read
Alignment on Multi-Core Clusters Using UPC++”. In: PLOS ONE 11.1 (2016),
e0145490. doi: 10.1371/journal.pone.0145490 (cit. on pp. 25, 27).

[213] J. Tarraga et al. “Acceleration of short and long DNA read mapping without loss of
accuracy using suffix array”. In: Bioinformatics 30.23 (2014), pp. 3396–3398. doi:
10.1093/bioinformatics/btu553 (cit. on p. 25).

[214] N. S. Vo et al. “RandAL: a randomized approach to aligning DNA sequences to
reference genomes”. In: BMC Genomics 15.Suppl 5 (2014), S2. doi: 10.1186/1471-
2164-15-S5-S2 (cit. on p. 25).

[215] C. Raczy et al. “Isaac: ultra-fast whole-genome secondary analysis on Illumina
sequencing platforms”. In: Bioinformatics 29.16 (2013), pp. 2041–2043. doi: 10.
1093/bioinformatics/btt314 (cit. on p. 25).

http://dx.doi.org/10.1093/bioinformatics/btw594
http://dx.doi.org/10.1093/bioinformatics/btw594
http://dx.doi.org/10.1101/078261
http://biorxiv.org/content/biorxiv/early/2016/09/30/078261.full.pdf
http://biorxiv.org/content/biorxiv/early/2016/09/30/078261.full.pdf
http://dx.doi.org/10.1186/s12859-016-0910-3
http://dx.doi.org/10.1186/s12859-016-0910-3
https://upcommons.upc.edu/bitstream/handle/2117/97991/thesis_EE_ezorita.pdf
https://upcommons.upc.edu/bitstream/handle/2117/97991/thesis_EE_ezorita.pdf
http://dx.doi.org/10.1186/s12859-015-0533-0
http://dx.doi.org/10.1186/s12859-014-0438-3
http://dx.doi.org/10.1186/s12859-014-0438-3
http://dx.doi.org/10.1186/1471-2105-15-S9-S12
http://dx.doi.org/10.1186/1471-2105-15-100
http://dx.doi.org/10.1186/1471-2105-15-100
http://dx.doi.org/10.1371/journal.pone.0086869
http://dx.doi.org/10.1371/journal.pone.0145490
http://dx.doi.org/10.1093/bioinformatics/btu553
http://dx.doi.org/10.1186/1471-2164-15-S5-S2
http://dx.doi.org/10.1186/1471-2164-15-S5-S2
http://dx.doi.org/10.1093/bioinformatics/btt314
http://dx.doi.org/10.1093/bioinformatics/btt314

154 BIBLIOGRAPHY

[216] E. Siragusa, D. Weese, and K. Reinert. “Fast and accurate read mapping with
approximate seeds and multiple backtracking”. In: Nucleic Acids Research 41.7
(2013), e78–e78. doi: 10.1093/nar/gkt005 (cit. on p. 25).

[217] J. Dufourt et al. “NucBase, an easy to use read mapper for small RNAs”. In: Mobile
DNA 4.1 (2013), p. 1. doi: 10.1186/1759-8753-4-1 (cit. on p. 25).

[218] C. Tennakoon, R. W. Purbojati, and W. K. Sung. “BatMis: A fast algorithm for
k-mismatch mapping”. In: Bioinformatics 28.16 (2012), pp. 2122–2128. doi: 10.
1093/bioinformatics/bts339 (cit. on p. 25).

[219] M. J. Chaisson and G. Tesler. “Mapping single molecule sequencing reads using
basic local alignment with successive refinement (BLASR): application and theory.”
In: BMC bioinformatics 13 (2012), p. 238. doi: 10.1186/1471-2105-13-238 (cit.
on p. 25).

[220] G. G. Faust and I. M. Hall. “GEM: crystal-clear DNA alignment”. In: Nature Meth-
ods 9.12 (2012), pp. 1159–1160. doi: 10.1038/nmeth.2256 (cit. on pp. 25, 74).

[221] S. Marco-Sola and P. Ribeca. “Efficient Alignment of Illumina-Like High-Throughput
Sequencing Reads with the GEnomic Multi-tool (GEM) Mapper”. In: Current Pro-
tocols in Bioinformatics. Vol. 2015. June. Hoboken, NJ, USA: John Wiley & Sons,
Inc., 2015, pp. 11.13.1–11.13.20. doi: 10.1002/0471250953.bi1113s50 (cit. on
p. 25).

[222] Y. Liu and B. Schmidt. “Long read alignment based on maximal exact match seeds.”
In: Bioinformatics 28.18 (2012), pp. i318–i324. doi: 10.1093/bioinformatics/
bts414 (cit. on p. 25).

[223] R. Li et al. “SOAP2: an improved ultrafast tool for short read alignment”. In: Bioin-
formatics 25.15 (2009), pp. 1966–1967. doi: 10.1093/bioinformatics/btp336
(cit. on pp. 25, 101).

[224] C. Meek, J. M. Patel, and S. Kasetty. “OASIS: an online and accurate technique
for local-alignment searches on biological sequences”. In: Proceedings of the 29th
international conference on Very large data bases - Volume 29 (2003), pp. 910–921
(cit. on p. 25).

[225] White paper on CLC read mapper. Tech. rep. CLC bio, 2012. url: http://www.
clcbio.com/files/whitepapers/whitepaper-on-CLC-read-mapper.pdf (cit.
on p. 25).

[226] H. R. Johnston et al. “PEMapper and PECaller provide a simplified approach to
whole-genome sequencing.” In: Proceedings of the National Academy of Sciences of
the United States of America (2017), p. 201618065. doi: 10.1073/pnas.1618065114
(cit. on pp. 25, 26).

[227] S. Liu, Y. Wang, and F. Wang. “A Fast Read Alignment Method based on seed-
and-vote for Next Generation Sequencing”. In: BMC Bioinformatics 17.220 (2016).
doi: 10.1186/s12859-016-1329-6 (cit. on p. 25).

[228] J. Kim, C. Li, and X. Xie. “Hobbes3: Dynamic generation of variable-length signa-
tures for efficient approximate subsequence mappings”. In: 2016 IEEE 32nd Inter-
national Conference on Data Engineering (ICDE). IEEE, 2016, pp. 169–180. doi:
10.1109/ICDE.2016.7498238 (cit. on p. 25).

http://dx.doi.org/10.1093/nar/gkt005
http://dx.doi.org/10.1186/1759-8753-4-1
http://dx.doi.org/10.1093/bioinformatics/bts339
http://dx.doi.org/10.1093/bioinformatics/bts339
http://dx.doi.org/10.1186/1471-2105-13-238
http://dx.doi.org/10.1038/nmeth.2256
http://dx.doi.org/10.1002/0471250953.bi1113s50
http://dx.doi.org/10.1093/bioinformatics/bts414
http://dx.doi.org/10.1093/bioinformatics/bts414
http://dx.doi.org/10.1093/bioinformatics/btp336
http://www.clcbio.com/files/whitepapers/whitepaper-on-CLC-read-mapper.pdf
http://www.clcbio.com/files/whitepapers/whitepaper-on-CLC-read-mapper.pdf
http://dx.doi.org/10.1073/pnas.1618065114
http://dx.doi.org/10.1186/s12859-016-1329-6
http://dx.doi.org/10.1109/ICDE.2016.7498238

BIBLIOGRAPHY 155

[229] C.-L. Xiao et al. “MECAT: an ultra-fast mapping, error correction and de novo
assembly tool for single-molecule sequencing reads”. In: bioRxiv preprints (2016),
pp. 1–32. doi: 10.1101/089250 (cit. on p. 25).

[230] M. R. Amin, S. Skiena, and M. C. Schatz. “NanoBLASTer: Fast alignment and
characterization of Oxford Nanopore single molecule sequencing reads”. In: 2016
IEEE 6th International Conference on Computational Advances in Bio and Medical
Sciences (ICCABS) (2016), pp. 1–6. doi: 10.1109/ICCABS.2016.7802776 (cit. on
p. 25).

[231] NextGENe. Next Generation Sequencing Software for Biologists. User’s Manual.
Tech. rep. 2016. url: http://www.softgenetics.com/PDF/NextGENe_UsersManual_
web.pdf (cit. on p. 25).

[232] N. H. Tran and X. Chen. “AMAS: optimizing the partition and filtration of adaptive
seeds to speed up read mapping”. In: IEEE/ACM Transactions on Computational
Biology and Bioinformatics (2015), pp. 1–1. doi: 10.1109/TCBB.2015.2465900
(cit. on p. 25).

[233] H. Cheng et al. “BitMapper: an efficient all-mapper based on bit-vector computing”.
In: BMC Bioinformatics 16.1 (2015), p. 192. doi: 10.1186/s12859-015-0626-9
(cit. on p. 25).

[234] B. Wolf et al. “DNAseq Workflow in a Diagnostic Context and an Example of a
User Friendly Implementation”. In: BioMed Research International 2015 (2015),
pp. 1–11. doi: 10.1155/2015/403497 (cit. on p. 25).

[235] Y. Yang and J. Liu. “JVM: Java Visual Mapping tool for next generation sequencing
read.” In: Advances in experimental medicine and biology 827 (2015), pp. 11–8. doi:
10.1007/978-94-017-9245-5_2 (cit. on p. 25).

[236] E. Georganas et al. “merAligner: A Fully Parallel Sequence Aligner”. In: 2015 IEEE
International Parallel and Distributed Processing Symposium. IEEE, 2015, pp. 561–
570. doi: 10.1109/IPDPS.2015.96 (cit. on p. 25).

[237] B. Liu et al. “rHAT: fast alignment of noisy long reads with regional hashing”.
In: Bioinformatics 32.11 (2016), pp. 1625–1631. doi: 10.1093/bioinformatics/
btv662 (cit. on p. 25).

[238] S. S. Tithi, L. S. Heath, and L. Zhang. “SNPwise: A SNP-aware short read aligner”.
In: 7th International Conference on Bioinformatics and Computational Biology
(BICoB). August. 2015, pp. 1–7 (cit. on pp. 25, 27).

[239] L. Santana-Quintero et al. “HIVE-Hexagon : High-Performance , Parallelized Se-
quence Alignment for Next-Generation Sequencing Data Analysis”. In: PLoS ONE
9.6 (2014). doi: 10.1371/journal.pone.0099033 (cit. on p. 25).

[240] J. Kim, C. Li, and X. Xie. “Improving read mapping using additional prefix grams”.
In: BMC Bioinformatics 15.1 (2014), p. 42. doi: 10.1186/1471-2105-15-42 (cit.
on p. 25).

[241] L. P. Dinu, R. T. udor Ionescu, and A. I. Tomescu. “A rank-based sequence aligner
with applications in phylogenetic analysis”. In: PloS one 9.8 (2014), e104006. doi:
10.1371/journal.pone.0104006 (cit. on p. 25).

[242] W. P. Lee et al. “MOSAIK: A hash-based algorithm for accurate next-generation se-
quencing short-read mapping”. In: PLoS ONE 9.3 (2014). doi: 10.1371/journal.
pone.0090581 (cit. on pp. 25, 27).

http://dx.doi.org/10.1101/089250
http://dx.doi.org/10.1109/ICCABS.2016.7802776
http://www.softgenetics.com/PDF/NextGENe_UsersManual_web.pdf
http://www.softgenetics.com/PDF/NextGENe_UsersManual_web.pdf
http://dx.doi.org/10.1109/TCBB.2015.2465900
http://dx.doi.org/10.1186/s12859-015-0626-9
http://dx.doi.org/10.1155/2015/403497
http://dx.doi.org/10.1007/978-94-017-9245-5_2
http://dx.doi.org/10.1109/IPDPS.2015.96
http://dx.doi.org/10.1093/bioinformatics/btv662
http://dx.doi.org/10.1093/bioinformatics/btv662
http://dx.doi.org/10.1371/journal.pone.0099033
http://dx.doi.org/10.1186/1471-2105-15-42
http://dx.doi.org/10.1371/journal.pone.0104006
http://dx.doi.org/10.1371/journal.pone.0090581
http://dx.doi.org/10.1371/journal.pone.0090581

156 BIBLIOGRAPHY

[243] F. Hach et al. “mrsFAST-Ultra: a compact, SNP-aware mapper for high perfor-
mance sequencing applications.” In: Nucleic acids research (2014), pp. 1–7. doi:
10.1093/nar/gku370 (cit. on pp. 25, 27, 63).

[244] S. Chen, A. Wang, and L. M. Li. “SEME: A Fast Mapper of Illumina Sequencing
Reads with Statistical Evaluation”. In: Journal of Computational Biology 20.11
(2013), pp. 847–860. doi: 10.1089/cmb.2013.0111 (cit. on p. 25).

[245] Y. Liao, G. K. Smyth, and W. Shi. “The Subread aligner: fast, accurate and scalable
read mapping by seed-and-vote”. In: Nucleic Acids Research 41.10 (2013), e108–
e108. doi: 10.1093/nar/gkt214 (cit. on p. 25).

[246] P. M. Gontarz, J. Berger, and C. F. Wong. “SRmapper: A fast and sensitive genome-
hashing alignment tool”. In: Bioinformatics 29.3 (2013), pp. 316–321. doi: 10.1093/
bioinformatics/bts712 (cit. on p. 25).

[247] N. Prezza et al. “ERNE-BS5: Aligning BS-treated sequences by multiple hits on a
5-letters alphabet”. In: 2012 ACM Conference on Bioinformatics, Computational
Biology and Biomedicine, BCB 2012 (2012), pp. 12–19. doi: 10.1145/2382936.
2382938 (cit. on pp. 25, 26).

[248] A. Ahmadi et al. “Hobbes: Optimized gram-based methods for efficient read align-
ment”. In: Nucleic Acids Research 40.6 (2012), pp. 1–11. doi: 10 . 1093 / nar /
gkr1246 (cit. on p. 25).

[249] D. Weese, M. Holtgrewe, and K. Reinert. “RazerS 3: Faster, fully sensitive read
mapping”. In: Bioinformatics 28.20 (2012), pp. 2592–2599. doi: 10.1093/bioinformatics/
bts505 (cit. on p. 25).

[250] F. Vezzi et al. “rNA: A fast and accurate short reads numerical aligner”. In: Bioin-
formatics 28.1 (2012), pp. 123–124. doi: 10.1093/bioinformatics/btr617 (cit.
on p. 25).

[251] A. Policriti, A. I. Tomescu, and F. Vezzi. “A randomized Numerical Aligner (rNA)”.
In: Journal of Computer and System Sciences 78.6 (2012), pp. 1868–1882. doi:
10.1016/j.jcss.2011.12.007 (cit. on p. 25).

[252] J. C. Mu et al. “Fast and accurate read alignment for resequencing”. In: Bioin-
formatics 28.18 (2012), pp. 2366–2373. doi: 10.1093/bioinformatics/bts450
(cit. on p. 25).

[253] G. G. Faust and I. M. Hall. “YAHA: Fast and flexible long-read alignment with
optimal breakpoint detection”. In: Bioinformatics 28.19 (2012), pp. 2417–2424. doi:
10.1093/bioinformatics/bts456 (cit. on p. 25).

[254] Y. Li, J. M. Patel, and A. Terrell. “WHAM: A High-Throughput Sequence Align-
ment Method”. In: ACM Transactions on Database Systems 37.4 (2012), pp. 1–39.
doi: 10.1145/2389241.2389247 (cit. on p. 25).

[255] S. Misra et al. “Anatomy of a hash-based long read sequence mapping algorithm
for next generation DNA sequencing”. In: Bioinformatics 27.2 (2011), pp. 189–195.
doi: 10.1093/bioinformatics/btq648 (cit. on p. 26).

[256] M. Zaharia, W. Bolosky, and K. Curtis. “Faster and More Accurate Sequence Align-
ment with SNAP”. In: arXiv preprints (2011), pp. 1–10. url: http://arxiv.org/
abs/1111.5572 (cit. on p. 26).

http://dx.doi.org/10.1093/nar/gku370
http://dx.doi.org/10.1089/cmb.2013.0111
http://dx.doi.org/10.1093/nar/gkt214
http://dx.doi.org/10.1093/bioinformatics/bts712
http://dx.doi.org/10.1093/bioinformatics/bts712
http://dx.doi.org/10.1145/2382936.2382938
http://dx.doi.org/10.1145/2382936.2382938
http://dx.doi.org/10.1093/nar/gkr1246
http://dx.doi.org/10.1093/nar/gkr1246
http://dx.doi.org/10.1093/bioinformatics/bts505
http://dx.doi.org/10.1093/bioinformatics/bts505
http://dx.doi.org/10.1093/bioinformatics/btr617
http://dx.doi.org/10.1016/j.jcss.2011.12.007
http://dx.doi.org/10.1093/bioinformatics/bts450
http://dx.doi.org/10.1093/bioinformatics/bts456
http://dx.doi.org/10.1145/2389241.2389247
http://dx.doi.org/10.1093/bioinformatics/btq648
http://arxiv.org/abs/1111.5572
http://arxiv.org/abs/1111.5572

BIBLIOGRAPHY 157

[257] G. Lunter and M. Goodson. “Stampy: A statistical algorithm for sensitive and fast
mapping of Illumina sequence reads”. In: Genome Research 21.6 (2011), pp. 936–
939. doi: 10.1101/gr.111120.110 (cit. on pp. 26, 53).

[258] S. Misra et al. “FANGS: High Speed Sequence Mapping for Next generation Se-
quencers Sanchit”. In: Proceedings of the 2010 ACM Symposium on Applied Com-
puting - SAC ’10. New York, New York, USA: ACM Press, 2010, p. 1539. doi:
10.1145/1774088.1774419 (cit. on pp. 26, 29).

[259] T. D. Wu and S. Nacu. “Fast and SNP-tolerant detection of complex variants and
splicing in short reads.” In: Bioinformatics 26.7 (2010), pp. 873–81. doi: 10.1093/
bioinformatics/btq057 (cit. on pp. 26, 27, 29, 63).

[260] G. Rizk and D. Lavenier. “GASSST: global alignment short sequence search tool”.
In: Bioinformatics 26.20 (2010), pp. 2534–2540. doi: 10.1093/bioinformatics/
btq485 (cit. on p. 26).

[261] F. Hach et al. “mrsFAST: a cache-oblivious algorithm for short-read mapping.”
In: Nature methods 7.8 (2010), pp. 576–7. doi: 10.1038/nmeth0810-576 (cit. on
pp. 26, 27).

[262] T. Huynh, M. Vlachos, and I. Rigoutsos. “Anchoring millions of distinct reads
on the human genome within seconds”. In: Proceedings of the 13th International
Conference on Extending Database Technology - EDBT ’10 (2010), p. 252. doi:
10.1145/1739041.1739074 (cit. on p. 26).

[263] K. Frousios et al. “REAL: an efficient REad ALigner for next generation sequenc-
ing reads”. In: Proceedings of the First ACM International Conference on Bioinfor-
matics and Computational Biology (2010), pp. 154–159. doi: 10.1145/1854776.
1854801 (cit. on p. 26).

[264] N. L. Clement et al. “The GNUMAP algorithm: Unbiased probabilistic mapping of
oligonucleotides from next-generation sequencing”. In: Bioinformatics 26.1 (2009),
pp. 38–45. doi: 10.1093/bioinformatics/btp614 (cit. on p. 26).

[265] H. Bao et al. “MapNext: a software tool for spliced and unspliced alignments and
SNP detection of short sequence reads.” In: BMC genomics 10 Suppl 3.Suppl 3
(2009), S13. doi: 10.1186/1471-2164-10-S3-S13 (cit. on p. 26).

[266] H. L. Eaves and Y. Gao. “MOM: maximum oligonucleotide mapping”. In: Bioinfor-
matics 25.7 (2009), pp. 969–970. doi: 10.1093/bioinformatics/btp092 (cit. on
p. 26).

[267] E. Rivals et al. “Mpscan: Fast localisation of multiple reads in genomes”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 5724 LNBI (2009), pp. 246–260. doi:
10.1007/978-3-642-04241-6_21 (cit. on p. 26).

[268] C. Alkan et al. “Personalized copy number and segmental duplication maps using
next-generation sequencing.” In: Nature genetics 41.10 (2009), pp. 1061–1067. doi:
10.1038/ng.437 (cit. on p. 26).

[269] H. Xin et al. “Accelerating read mapping with FastHASH.” In: BMC genomics 14
Suppl 1.1 (2013), S13. doi: 10.1186/1471-2164-14-S1-S13 (cit. on p. 26).

[270] D. Campagna et al. “PASS: a program to align short sequences”. In: Bioinformatics
25.7 (2009), pp. 967–968. doi: 10.1093/bioinformatics/btp087 (cit. on p. 26).

http://dx.doi.org/10.1101/gr.111120.110
http://dx.doi.org/10.1145/1774088.1774419
http://dx.doi.org/10.1093/bioinformatics/btq057
http://dx.doi.org/10.1093/bioinformatics/btq057
http://dx.doi.org/10.1093/bioinformatics/btq485
http://dx.doi.org/10.1093/bioinformatics/btq485
http://dx.doi.org/10.1038/nmeth0810-576
http://dx.doi.org/10.1145/1739041.1739074
http://dx.doi.org/10.1145/1854776.1854801
http://dx.doi.org/10.1145/1854776.1854801
http://dx.doi.org/10.1093/bioinformatics/btp614
http://dx.doi.org/10.1186/1471-2164-10-S3-S13
http://dx.doi.org/10.1093/bioinformatics/btp092
http://dx.doi.org/10.1007/978-3-642-04241-6_21
http://dx.doi.org/10.1038/ng.437
http://dx.doi.org/10.1186/1471-2164-14-S1-S13
http://dx.doi.org/10.1093/bioinformatics/btp087

158 BIBLIOGRAPHY

[271] Y. Chen, T. Souaiaia, and T. Chen. “PerM: efficient mapping of short sequencing
reads with periodic full sensitive spaced seeds”. In: Bioinformatics 25.19 (2009),
pp. 2514–2521. doi: 10.1093/bioinformatics/btp486 (cit. on pp. 26, 27, 31, 53,
122).

[272] Y. J. Kim et al. “ProbeMatch: Rapid alignment of oligonucleotides to genome
allowing both gaps and mismatches”. In: Bioinformatics 25.11 (2009), pp. 1424–
1425. doi: 10.1093/bioinformatics/btp178 (cit. on p. 26).

[273] D. Weese et al. “RazerS - Fast read mapping with sensitivity control”. In: Genome
Research 19.9 (2009), pp. 1646–1654. doi: 10.1101/gr.088823.108 (cit. on p. 26).

[274] S. M. Rumble et al. “SHRiMP: Accurate mapping of short color-space reads”. In:
PLoS Computational Biology 5.5 (2009), pp. 1–11. doi: 10.1371/journal.pcbi.
1000386 (cit. on pp. 26, 27).

[275] A. D. Smith, Z. Xuan, and M. Q. Zhang. “Using quality scores and longer reads
improves accuracy of Solexa read mapping.” In: BMC bioinformatics 9 (2008),
p. 128. doi: 10.1186/1471-2105-9-128 (cit. on pp. 26, 29).

[276] A. D. Smith et al. “Updates to the RMAP short-read mapping software”. In: Bioin-
formatics 25.21 (2009), pp. 2841–2842. doi: 10.1093/bioinformatics/btp533
(cit. on p. 26).

[277] H. Jiang and W. H. Wong. “SeqMap: Mapping massive amount of oligonucleotides
to the genome”. In: Bioinformatics 24.20 (2008), pp. 2395–2396. doi: 10.1093/
bioinformatics/btn429 (cit. on p. 26).

[278] R. Li et al. “SOAP: Short oligonucleotide alignment program”. In: Bioinformatics
24.5 (2008), pp. 713–714. doi: 10.1093/bioinformatics/btn025 (cit. on pp. 26,
29).

[279] H. Lin et al. “ZOOM! Zillions of oligos mapped.” In: Bioinformatics 24.21 (2008),
pp. 2431–7. doi: 10.1093/bioinformatics/btn416 (cit. on pp. 26, 27, 31, 122).

[280] T. D. Wu and C. K. Watanabe. “GMAP: A genomic mapping and alignment pro-
gram for mRNA and EST sequences”. In: Bioinformatics 21.9 (2005), pp. 1859–
1875. doi: 10.1093/bioinformatics/bti310 (cit. on p. 26).

[281] L. Noé and G. Kucherov. “YASS: enhancing the sensitivity of DNA similarity
search.” In: Nucleic acids research 33.Web Server issue (2005), W540–3. doi: 10.
1093/nar/gki478 (cit. on pp. 26, 31).

[282] Zemin Ning et al. “The SSAHA trace server”. In: Proceedings. 2004 IEEE Com-
putational Systems Bioinformatics Conference, 2004. CSB 2004. Csb. IEEE, 2004,
pp. 519–520. doi: 10.1109/CSB.2004.1332490 (cit. on p. 26).

[283] M. Lexa and G. Valle. “PRIMEX: Rapid identification of oligonucleotide matches
in whole genomes”. In: Bioinformatics 19.18 (2003), pp. 2486–2488. doi: 10.1093/
bioinformatics/btg350 (cit. on p. 26).

[284] Z. Ning, A. J. Cox, and J. C. Mullikin. “SSAHA: A fast search method for large
DNA databases”. In: Genome Research 11.10 (2001), pp. 1725–1729. doi: 10.1101/
gr.194201 (cit. on p. 26).

[285] J. Choi et al. “HIA: a genome mapper using hybrid index-based sequence align-
ment”. In: Algorithms for Molecular Biology 10.1 (2015), p. 30. doi: 10.1186/
s13015-015-0062-4 (cit. on p. 26).

http://dx.doi.org/10.1093/bioinformatics/btp486
http://dx.doi.org/10.1093/bioinformatics/btp178
http://dx.doi.org/10.1101/gr.088823.108
http://dx.doi.org/10.1371/journal.pcbi.1000386
http://dx.doi.org/10.1371/journal.pcbi.1000386
http://dx.doi.org/10.1186/1471-2105-9-128
http://dx.doi.org/10.1093/bioinformatics/btp533
http://dx.doi.org/10.1093/bioinformatics/btn429
http://dx.doi.org/10.1093/bioinformatics/btn429
http://dx.doi.org/10.1093/bioinformatics/btn025
http://dx.doi.org/10.1093/bioinformatics/btn416
http://dx.doi.org/10.1093/bioinformatics/bti310
http://dx.doi.org/10.1093/nar/gki478
http://dx.doi.org/10.1093/nar/gki478
http://dx.doi.org/10.1109/CSB.2004.1332490
http://dx.doi.org/10.1093/bioinformatics/btg350
http://dx.doi.org/10.1093/bioinformatics/btg350
http://dx.doi.org/10.1101/gr.194201
http://dx.doi.org/10.1101/gr.194201
http://dx.doi.org/10.1186/s13015-015-0062-4
http://dx.doi.org/10.1186/s13015-015-0062-4

BIBLIOGRAPHY 159

[286] V. L. Galinsky. “YOABS: yet other aligner of biological sequences–an efficient lin-
early scaling nucleotide aligner”. In: Bioinformatics 28.8 (2012), pp. 1070–1077.
doi: 10.1093/bioinformatics/bts102 (cit. on p. 26).

[287] N. Malhis and S. J. M. Jones. “High quality SNP calling using Illumina data at
shallow coverage”. In: Bioinformatics 26.8 (2010), pp. 1029–1035. doi: 10.1093/
bioinformatics/btq092 (cit. on pp. 26, 49).

[288] N. Malhis et al. “Slider–maximum use of probability information for alignment of
short sequence reads and SNP detection”. In: Bioinformatics 25.1 (2009), pp. 6–13.
doi: 10.1093/bioinformatics/btn565 (cit. on p. 26).

[289] I. Medina et al. “Highly sensitive and ultrafast read mapping for RNA-seq analysis.”
In: DNA research : an international journal for rapid publication of reports on genes
and genomes (2016), dsv039. doi: 10.1093/dnares/dsv039 (cit. on p. 26).

[290] S. Saha and S. Rajasekaran. “POMP: a powerful splice mapper for RNA-seq reads”.
In: Proceedings of the 7th ACM International Conference on Bioinformatics, Com-
putational Biology, and Health Informatics - BCB ’16. New York, New York, USA:
ACM Press, 2016, pp. 414–421. doi: 10.1145/2975167.2975210 (cit. on p. 26).

[291] A. Srivastava et al. “RapMap: a rapid, sensitive and accurate tool for mapping
RNA-seq reads to transcriptomes”. In: Bioinformatics 32.12 (2016), pp. i192–i200.
doi: 10.1093/bioinformatics/btw277 (cit. on p. 26).

[292] T. Bonfert et al. “ContextMap 2: fast and accurate context-based RNA-seq map-
ping”. In: BMC Bioinformatics 16.1 (2015), p. 122. doi: 10.1186/s12859-015-
0557-5 (cit. on p. 26).

[293] T. Bonfert and C. C. Friedel. Prediction of Poly(A) Sites by Poly(A) Read Mapping.
Vol. 12. 1. 2017, e0170914. doi: 10.1371/journal.pone.0170914 (cit. on p. 26).

[294] D. Kim, B. Langmead, and S. L. Salzberg. “HISAT: a fast spliced aligner with
low memory requirements”. In: Nature Methods 12.4 (2015), pp. 357–360. doi: 10.
1038/nmeth.3317 (cit. on pp. 26, 66).

[295] C.-L. Xiao et al. “FANSe2: A Robust and Cost-Efficient Alignment Tool for Quan-
titative Next-Generation Sequencing Applications”. In: PLoS ONE 9.4 (2014),
e94250. doi: 10.1371/journal.pone.0094250 (cit. on p. 26).

[296] Y. S. Butterfield et al. “JAGuaR: Junction alignments to genome for RNA-seq
reads”. In: PLoS ONE 9.7 (2014). doi: 10.1371/journal.pone.0102398 (cit. on
p. 26).

[297] N. Philippe et al. “CRAC: an integrated approach to the analysis of RNA-seq
reads.” In: Genome biology 14.3 (2013), R30. doi: 10.1186/gb-2013-14-3-r30
(cit. on p. 26).

[298] J. Wu et al. “OLego: Fast and sensitive mapping of spliced mRNA-Seq reads using
small seeds”. In: Nucleic Acids Research 41.10 (2013), pp. 5149–5163. doi: 10.
1093/nar/gkt216 (cit. on p. 26).

[299] D. Kim et al. “TopHat2: accurate alignment of transcriptomes in the presence of
insertions, deletions and gene fusions”. In: Genome Biology 14.4 (2013), R36. doi:
10.1186/gb-2013-14-4-r36 (cit. on p. 26).

http://dx.doi.org/10.1093/bioinformatics/bts102
http://dx.doi.org/10.1093/bioinformatics/btq092
http://dx.doi.org/10.1093/bioinformatics/btq092
http://dx.doi.org/10.1093/bioinformatics/btn565
http://dx.doi.org/10.1093/dnares/dsv039
http://dx.doi.org/10.1145/2975167.2975210
http://dx.doi.org/10.1093/bioinformatics/btw277
http://dx.doi.org/10.1186/s12859-015-0557-5
http://dx.doi.org/10.1186/s12859-015-0557-5
http://dx.doi.org/10.1371/journal.pone.0170914
http://dx.doi.org/10.1038/nmeth.3317
http://dx.doi.org/10.1038/nmeth.3317
http://dx.doi.org/10.1371/journal.pone.0094250
http://dx.doi.org/10.1371/journal.pone.0102398
http://dx.doi.org/10.1186/gb-2013-14-3-r30
http://dx.doi.org/10.1093/nar/gkt216
http://dx.doi.org/10.1093/nar/gkt216
http://dx.doi.org/10.1186/gb-2013-14-4-r36

160 BIBLIOGRAPHY

[300] T. Bonfert et al. “A context-based approach to identify the most likely mapping
for RNA-seq experiments.” In: BMC bioinformatics 13 Suppl 6.Suppl 6 (2012), S9.
doi: 10.1186/1471-2105-13-S6-S9 (cit. on p. 26).

[301] G. Zhang et al. “FANSe: an accurate algorithm for quantitative mapping of large
scale sequencing reads”. In: Nucleic Acids Research 40.11 (2012), e83–e83. doi:
10.1093/nar/gks196 (cit. on p. 26).

[302] J. Hu et al. “OSA: A fast and accurate alignment tool for RNA-Seq”. In: Bioin-
formatics 28.14 (2012), pp. 1933–1934. doi: 10.1093/bioinformatics/bts294
(cit. on p. 26).

[303] Y. Zhang et al. “PASSion: A pattern growth algorithm-based pipeline for splice
junction detection in paired-end RNA-seq data”. In: Bioinformatics 28.4 (2012),
pp. 479–486. doi: 10.1093/bioinformatics/btr712 (cit. on p. 26).

[304] L. Y. Chen et al. “RNASEQR-a streamlined and accurate RNA-seq sequence anal-
ysis program”. In: Nucleic Acids Research 40.6 (2012), pp. 1–12. doi: 10.1093/
nar/gkr1248 (cit. on p. 26).

[305] S. K. Lou et al. “ABMapper: A suffix array-based tool for multi-location searching
and splice-junction mapping”. In: Bioinformatics 27.3 (2011), pp. 421–422. doi:
10.1093/bioinformatics/btq656 (cit. on p. 26).

[306] S. Huang et al. “SOAPsplice: Genome-wide ab initio detection of splice junctions
from RNA-Seq data”. In: Frontiers in Genetics 2.JULY (2011), pp. 1–12. doi:
10.3389/fgene.2011.00046 (cit. on p. 26).

[307] M. T. Dimon, K. Sorber, and J. L. DeRisi. “HMMSplicer: A Tool for Efficient and
Sensitive Discovery of Known and Novel Splice Junctions in RNA-Seq Data”. In:
PLoS ONE 5.11 (2010). doi: 10.1371/journal.pone.0013875 (cit. on p. 26).

[308] K. Wang et al. “MapSplice: Accurate mapping of RNA-seq reads for splice junction
discovery”. In: Nucleic Acids Research 38.18 (2010), pp. 1–14. doi: 10.1093/nar/
gkq622 (cit. on p. 26).

[309] G. Jean et al. RNA-seq read alignments with PALMapper. SUPP.32. 2010, pp. 1–37.
doi: 10.1002/0471250953.bi1106s32 (cit. on p. 26).

[310] K. F. Au et al. “Detection of splice junctions from paired-end RNA-seq data by
SpliceMap”. In: Nucleic Acids Research 38.14 (2010), pp. 4570–4578. doi: 10.1093/
nar/gkq211 (cit. on p. 26).

[311] D. W. Bryant et al. “Supersplat-spliced RNA-seq alignment”. In: Bioinformatics
26.12 (2010), pp. 1500–1505. doi: 10.1093/bioinformatics/btq206 (cit. on p. 26).

[312] N. Fahlgren et al. “Computational and analytical framework for small RNA pro-
filing by high-throughput sequencing”. In: RNA 15.5 (2009), pp. 992–1002. doi:
10.1261/rna.1473809 (cit. on p. 26).

[313] F. De Bona et al. “Optimal spliced alignments of short sequence reads”. In: Bioin-
formatics 24.16 (2008), pp. i174–i180. doi: 10.1093/bioinformatics/btn300 (cit.
on p. 26).

[314] R. Mott. “EST_GENOME: a program to align spliced DNA sequences to unspliced
genomic DNA”. In: Comput Appl Biosci 13.4 (1997), pp. 477–478. doi: 10.1093/
bioinformatics/13.4.477 (cit. on p. 26).

http://dx.doi.org/10.1186/1471-2105-13-S6-S9
http://dx.doi.org/10.1093/nar/gks196
http://dx.doi.org/10.1093/bioinformatics/bts294
http://dx.doi.org/10.1093/bioinformatics/btr712
http://dx.doi.org/10.1093/nar/gkr1248
http://dx.doi.org/10.1093/nar/gkr1248
http://dx.doi.org/10.1093/bioinformatics/btq656
http://dx.doi.org/10.3389/fgene.2011.00046
http://dx.doi.org/10.1371/journal.pone.0013875
http://dx.doi.org/10.1093/nar/gkq622
http://dx.doi.org/10.1093/nar/gkq622
http://dx.doi.org/10.1002/0471250953.bi1106s32
http://dx.doi.org/10.1093/nar/gkq211
http://dx.doi.org/10.1093/nar/gkq211
http://dx.doi.org/10.1093/bioinformatics/btq206
http://dx.doi.org/10.1261/rna.1473809
http://dx.doi.org/10.1093/bioinformatics/btn300
http://dx.doi.org/10.1093/bioinformatics/13.4.477
http://dx.doi.org/10.1093/bioinformatics/13.4.477

BIBLIOGRAPHY 161

[315] P. G. Engström et al. “Systematic evaluation of spliced alignment programs for
RNA-seq data.” In: Nature methods 10.12 (2013), pp. 1185–91. doi: 10.1038/
nmeth.2722 (cit. on p. 26).

[316] G. Baruzzo et al. “Simulation-based comprehensive benchmarking of RNA-seq
aligners”. In: Nature Methods 14.2 (2016), pp. 135–139. doi: 10.1038/nmeth.4106
(cit. on p. 26).

[317] E. Y. Harris, R. Ounit, and S. Lonardi. “BRAT-nova: fast and accurate mapping
of bisulfite-treated reads”. In: Bioinformatics 32.17 (2016), pp. 2696–2698. doi:
10.1093/bioinformatics/btw226 (cit. on p. 26).

[318] H. Chen, A. D. Smith, and T. Chen. “WALT: fast and accurate read mapping for
bisulfite sequencing”. In: Bioinformatics (2016), btw490. doi: 10.1093/bioinformatics/
btw490 (cit. on pp. 26, 31).

[319] D. Ryan and D. Ehninger. “Bison: bisulfite alignment on nodes of a cluster”. In:
BMC Bioinformatics 15.1 (2014), p. 337. doi: 10.1186/1471-2105-15-337 (cit.
on p. 26).

[320] A. Manconi et al. “GPU-BSM: A GPU-based tool to map bisulfite-treated read”.
In: PLoS ONE 9.5 (2014). doi: 10.1371/journal.pone.0097277 (cit. on pp. 26,
28).

[321] R. Sun, Y. Tian, and X. Chen. “TAMeBS: A sensitive bisulfite-sequencing read
mapping tool for DNA methylation analysis”. In: Proceedings - 2014 IEEE Inter-
national Conference on Bioinformatics and Biomedicine, IEEE BIBM 2014 (2014),
pp. 176–181. doi: 10.1109/BIBM.2014.6999148 (cit. on p. 26).

[322] J.-Q. Lim et al. “BatMeth: improved mapper for bisulfite sequencing reads on DNA
methylation”. In: Genome Biology 13.10 (2012), R82. doi: 10.1186/gb-2012-13-
10-r82 (cit. on p. 26).

[323] H. Q. Dinh et al. “Advanced methylome analysis after Bisulfite deep sequencing:
An example in Arabidopsis”. In: PLoS ONE 7.7 (2012). doi: 10.1371/journal.
pone.0041528 (cit. on p. 26).

[324] K. D. Hansen et al. “BSmooth: from whole genome bisulfite sequencing reads to
differentially methylated regions”. In: Genome Biology 13.10 (2012), R83. doi: 10.
1186/gb-2012-13-10-r83 (cit. on p. 26).

[325] Y. Xi et al. “RRBSMAP: A fast, accurate and user-friendly alignment tool for re-
duced representation bisulfite sequencing”. In: Bioinformatics 28.3 (2012), pp. 430–
432. doi: 10.1093/bioinformatics/btr668 (cit. on p. 26).

[326] C. Otto, P. F. Stadler, and S. Hoffmann. “Fast and sensitive mapping of bisulfite-
treated sequencing data”. In: Bioinformatics 28.13 (2012), pp. 1698–1704. doi: 10.
1093/bioinformatics/bts254 (cit. on p. 26).

[327] F. Krueger and S. R. Andrews. “Bismark: A flexible aligner and methylation caller
for Bisulfite-Seq applications”. In: Bioinformatics 27.11 (2011), pp. 1571–1572. doi:
10.1093/bioinformatics/btr167 (cit. on p. 26).

[328] C. Coarfa et al. “Pash 3.0: A versatile software package for read mapping and
integrative analysis of genomic and epigenomic variation using massively parallel
DNA sequencing.” In: BMC bioinformatics 11.1 (2010), p. 572. doi: 10.1186/1471-
2105-11-572 (cit. on p. 26).

http://dx.doi.org/10.1038/nmeth.2722
http://dx.doi.org/10.1038/nmeth.2722
http://dx.doi.org/10.1038/nmeth.4106
http://dx.doi.org/10.1093/bioinformatics/btw226
http://dx.doi.org/10.1093/bioinformatics/btw490
http://dx.doi.org/10.1093/bioinformatics/btw490
http://dx.doi.org/10.1186/1471-2105-15-337
http://dx.doi.org/10.1371/journal.pone.0097277
http://dx.doi.org/10.1109/BIBM.2014.6999148
http://dx.doi.org/10.1186/gb-2012-13-10-r82
http://dx.doi.org/10.1186/gb-2012-13-10-r82
http://dx.doi.org/10.1371/journal.pone.0041528
http://dx.doi.org/10.1371/journal.pone.0041528
http://dx.doi.org/10.1186/gb-2012-13-10-r83
http://dx.doi.org/10.1186/gb-2012-13-10-r83
http://dx.doi.org/10.1093/bioinformatics/btr668
http://dx.doi.org/10.1093/bioinformatics/bts254
http://dx.doi.org/10.1093/bioinformatics/bts254
http://dx.doi.org/10.1093/bioinformatics/btr167
http://dx.doi.org/10.1186/1471-2105-11-572
http://dx.doi.org/10.1186/1471-2105-11-572

162 BIBLIOGRAPHY

[329] Y. Xi and W. Li. “BSMAP: whole genome bisulfite sequence MAPping program.”
In: BMC bioinformatics 10.1 (2009), p. 232. doi: 10.1186/1471-2105-10-232
(cit. on p. 26).

[330] M. Zeschnigk et al. “Massive parallel bisulfite sequencing of CG-rich DNA frag-
ments reveals that methylation of many X-chromosomal CpG islands in female
blood DNA is incomplete.” In: Human molecular genetics 18.8 (2009), pp. 1439–48.
doi: 10.1093/hmg/ddp054 (cit. on p. 26).

[331] J. Tárraga et al. “A parallel and sensitive software tool for methylation analysis
on multicore platforms”. In: Bioinformatics 31.19 (2015), pp. 3130–3138. doi: 10.
1093/bioinformatics/btv357 (cit. on p. 26).

[332] C. Hong et al. “Probabilistic alignment leads to improved accuracy and read cov-
erage for bisulfite sequencing data”. In: BMC Bioinformatics 14.1 (2013), p. 337.
doi: 10.1186/1471-2105-14-337 (cit. on p. 26).

[333] D. Campagna et al. “PASS-bis: A bisulfite aligner suitable for whole methylome
analysis of Illumina and SOLiD reads”. In: Bioinformatics 29.2 (2013), pp. 268–270.
doi: 10.1093/bioinformatics/bts675 (cit. on p. 26).

[334] E. Y. Harris et al. “BRAT-BW: Efficient and accurate mapping of bisulfite-treated
reads”. In: Bioinformatics 28.13 (2012), pp. 1795–1796. doi: 10.1093/bioinformatics/
bts264 (cit. on p. 26).

[335] Y. Saito, J. Tsuji, and T. Mituyama. “Bisulfighter: accurate detection of methylated
cytosines and differentially methylated regions”. In: Nucleic Acids Research 42.6
(2014), e45–e45. doi: 10.1093/nar/gkt1373 (cit. on p. 26).

[336] W. Guo et al. “BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing
data.” In: BMC genomics 14 (2013), p. 774. doi: 10.1186/1471-2164-14-774
(cit. on p. 26).

[337] B. Pedersen et al. “MethylCoder: Software pipeline for bisulte-treated sequences”.
In: Bioinformatics 27.17 (2011), pp. 2435–2436. doi: 10.1093/bioinformatics/
btr394 (cit. on p. 26).

[338] P.-Y. Chen, S. Cokus, and M. Pellegrini. “BS Seeker: precise mapping for bisulfite
sequencing”. In: BMC Bioinformatics 11.1 (2010), p. 203. doi: 10.1186/1471-
2105-11-203 (cit. on p. 26).

[339] B. Kreck et al. “B-SOLANA: An approach for the analysis of two-base encoding
bisulfite sequencing data”. In: Bioinformatics 28.3 (2012), pp. 428–429. doi: 10.
1093/bioinformatics/btr660 (cit. on p. 26).

[340] A. Chatterjee et al. “Comparison of alignment software for genome-wide bisulphite
sequence data”. In: Nucleic Acids Research 40.10 (2012). doi: 10.1093/nar/gks150
(cit. on p. 26).

[341] H. Tran et al. “Objective and Comprehensive Evaluation of Bisulfite Short Read
Mapping Tools”. In: Advances in Bioinformatics 2014 (2014), pp. 1–11. doi: 10.
1155/2014/472045 (cit. on p. 26).

[342] G. Kunde-Ramamoorthy et al. “Comparison and quantitative verification of map-
ping algorithms for whole-genome bisulfite sequencing”. In: Nucleic Acids Research
42.6 (2014), e43–e43. doi: 10.1093/nar/gkt1325 (cit. on p. 26).

http://dx.doi.org/10.1186/1471-2105-10-232
http://dx.doi.org/10.1093/hmg/ddp054
http://dx.doi.org/10.1093/bioinformatics/btv357
http://dx.doi.org/10.1093/bioinformatics/btv357
http://dx.doi.org/10.1186/1471-2105-14-337
http://dx.doi.org/10.1093/bioinformatics/bts675
http://dx.doi.org/10.1093/bioinformatics/bts264
http://dx.doi.org/10.1093/bioinformatics/bts264
http://dx.doi.org/10.1093/nar/gkt1373
http://dx.doi.org/10.1186/1471-2164-14-774
http://dx.doi.org/10.1093/bioinformatics/btr394
http://dx.doi.org/10.1093/bioinformatics/btr394
http://dx.doi.org/10.1186/1471-2105-11-203
http://dx.doi.org/10.1186/1471-2105-11-203
http://dx.doi.org/10.1093/bioinformatics/btr660
http://dx.doi.org/10.1093/bioinformatics/btr660
http://dx.doi.org/10.1093/nar/gks150
http://dx.doi.org/10.1155/2014/472045
http://dx.doi.org/10.1155/2014/472045
http://dx.doi.org/10.1093/nar/gkt1325

BIBLIOGRAPHY 163

[343] J. Tsuji and Z. Weng. “Evaluation of preprocessing, mapping and postprocessing
algorithms for analyzing whole genome bisulfite sequencing data”. In: Briefings in
bioinformatics August (2015), bbv103. doi: 10.1093/bib/bbv103 (cit. on p. 26).

[344] P. Wulfridge et al. “Choice of reference genome can introduce massive bias in bisul-
fite sequencing data”. In: bioRxiv preprints (2016), pp. 1–31. doi: 10.1101/076844.
url: http://biorxiv.org/lookup/doi/10.1101/076844 (cit. on p. 26).

[345] D. Lee et al. “Fast and accurate mapping of Complete Genomics reads”. In: Methods
79-80.2 (2015), pp. 3–10. doi: 10.1016/j.ymeth.2014.10.012 (cit. on p. 27).

[346] M. T. Chou et al. “Tailor: A computational framework for detecting non-templated
tailing of small silencing RNAs”. In: Nucleic Acids Research 43.17 (2015). doi:
10.1093/nar/gkv537 (cit. on p. 27).

[347] A.-K. Emde et al. “MicroRazerS: rapid alignment of small RNA reads”. In: Bioin-
formatics 26.1 (2010), pp. 123–124. doi: 10.1093/bioinformatics/btp601 (cit.
on p. 27).

[348] K. Prüfer et al. “PatMaN: Rapid alignment of short sequences to large databases”.
In: Bioinformatics 24.13 (2008), pp. 1530–1531. doi: 10.1093/bioinformatics/
btn223 (cit. on p. 27).

[349] M. Ziemann, A. Kaspi, and A. El-Osta. “Evaluation of microRNA alignment tech-
niques”. In: RNA 22.8 (2016), pp. 1120–1138. doi: 10.1261/rna.055509.115 (cit.
on p. 27).

[350] F. Hormozdiari et al. “Sensitive and fast mapping of di-base encoded reads”. In:
Bioinformatics 27.14 (2011), pp. 1915–1921. doi: 10 . 1093 / bioinformatics /
btr303 (cit. on p. 27).

[351] D. L. A. Wood et al. “X-MATE: A flexible system for mapping short read data”. In:
Bioinformatics 27.4 (2011), pp. 580–581. doi: 10.1093/bioinformatics/btq698
(cit. on p. 27).

[352] M. Gîrdea et al. “Designing Efficient Spaced Seeds for SOLiD Read Mapping”. In:
Advances in Bioinformatics 2010 (2010), pp. 1–12. doi: 10.1155/2010/708501
(cit. on pp. 27, 31).

[353] N. Cloonan et al. “RNA-MATE: A recursive mapping strategy for high-throughput
RNA-sequencing data”. In: Bioinformatics 25.19 (2009), pp. 2615–2616. doi: 10.
1093/bioinformatics/btp459 (cit. on p. 27).

[354] B. D. Ondov et al. “Efficient mapping of Applied Biosystems SOLiD sequence data
to a reference genome for functional genomic applications”. In: Bioinformatics 24.23
(2008), pp. 2776–2777. doi: 10.1093/bioinformatics/btn512 (cit. on p. 27).

[355] M. Rho et al. “Diverse CRISPRs evolving in human microbiomes”. In: PLoS Ge-
netics 8.6 (2012). doi: 10.1371/journal.pgen.1002441 (cit. on p. 27).

[356] B. Buchfink, C. Xie, and D. H. Huson. “Fast and sensitive protein alignment using
DIAMOND.” In: Nature methods 12.1 (2015), pp. 59–60. doi: 10.1038/nmeth.3176
(cit. on pp. 27, 31, 79).

[357] Y. Zhao, H. Tang, and Y. Ye. “RAPSearch2: A fast and memory-efficient protein
similarity search tool for next-generation sequencing data”. In: Bioinformatics 28.1
(2012), pp. 125–126. doi: 10.1093/bioinformatics/btr595 (cit. on p. 27).

http://dx.doi.org/10.1093/bib/bbv103
http://dx.doi.org/10.1101/076844
http://biorxiv.org/lookup/doi/10.1101/076844
http://dx.doi.org/10.1016/j.ymeth.2014.10.012
http://dx.doi.org/10.1093/nar/gkv537
http://dx.doi.org/10.1093/bioinformatics/btp601
http://dx.doi.org/10.1093/bioinformatics/btn223
http://dx.doi.org/10.1093/bioinformatics/btn223
http://dx.doi.org/10.1261/rna.055509.115
http://dx.doi.org/10.1093/bioinformatics/btr303
http://dx.doi.org/10.1093/bioinformatics/btr303
http://dx.doi.org/10.1093/bioinformatics/btq698
http://dx.doi.org/10.1155/2010/708501
http://dx.doi.org/10.1093/bioinformatics/btp459
http://dx.doi.org/10.1093/bioinformatics/btp459
http://dx.doi.org/10.1093/bioinformatics/btn512
http://dx.doi.org/10.1371/journal.pgen.1002441
http://dx.doi.org/10.1038/nmeth.3176
http://dx.doi.org/10.1093/bioinformatics/btr595

164 BIBLIOGRAPHY

[358] Y. Ye, J.-H. Choi, and H. Tang. “RAPSearch: a fast protein similarity search tool
for short reads”. In: BMC Bioinformatics 12.1 (2011), p. 159. doi: 10.1186/1471-
2105-12-159 (cit. on p. 27).

[359] X. Peng et al. “Re-alignment of the unmapped reads with base quality score”. In:
BMC Bioinformatics 16.Suppl 5 (2015), S8. doi: 10.1186/1471-2105-16-S5-S8
(cit. on p. 27).

[360] T. Turki and U. Roshan. “MaxSSmap: a GPU program for mapping divergent short
reads to genomes with the maximum scoring subsequence”. In: BMC Genomics 15.1
(2014), p. 969. doi: 10.1186/1471-2164-15-969 (cit. on pp. 27, 28).

[361] K. Katoh and M. C. Frith. “Adding unaligned sequences into an existing alignment
using MAFFT and LAST”. In: Bioinformatics 28.23 (2012), pp. 3144–3146. doi:
10.1093/bioinformatics/bts578 (cit. on p. 27).

[362] T. Marschall et al. “Computational pan-genomics: status, promises and challenges”.
In: Briefings in Bioinformatics (2016), bbw089. doi: 10.1093/bib/bbw089 (cit. on
pp. 27, 28, 66).

[363] A. M. Novak et al. “Genome Graphs”. In: 94040 (2017), pp. 1–26. doi: 10.1101/
101378 (cit. on p. 27).

[364] K. D. Rand et al. “Coordinates and Intervals in Graph-based Reference Genomes”.
In: (2016), pp. 1–10 (cit. on p. 27).

[365] B. Paten, A. Novak, and D. Haussler. “Mapping to a Reference Genome Structure”.
In: arXiv preprints (2014). url: http://arxiv.org/abs/1404.5010 (cit. on pp. 27,
66).

[366] A. M. Novak et al. “Canonical, stable, general mapping using context schemes”.
In: Bioinformatics (2015), btv435. doi: 10.1093/bioinformatics/btv435 (cit. on
pp. 27, 66).

[367] J. Siren, N. Valimaki, and V. Makinen. “Indexing Graphs for Path Queries with
Applications in Genome Research”. In: IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics. Lecture Notes in Computer Science 11.2 (2014),
pp. 375–388. doi: 10.1109/TCBB.2013.2297101 (cit. on pp. 27, 35, 66).

[368] J. Sirén. “Indexing Variation Graphs”. In: 2017 Proceedings of the Ninteenth Work-
shop on Algorithm Engineering and Experiments (ALENEX). Philadelphia, PA:
Society for Industrial and Applied Mathematics, 2017, pp. 13–27. doi: 10.1137/
1.9781611974768.2 (cit. on pp. 27, 35, 111).

[369] B. Kramer et al. VATRAM: VAriant Tolerant ReAd Mapper. Tech. rep. Dortmund,
2015. doi: 10.17877/DE290R-16435 (cit. on pp. 27, 28).

[370] J. Quedenfeld and S. Rahmann. “Variant tolerant read mapping using min-hashing”.
In: arXiv preprints (2017), pp. 1–19. url: http://arxiv.org/abs/1702.01703
(cit. on pp. 27, 28).

[371] S. T. Sherry et al. “dbSNP: the NCBI database of genetic variation.” In: Nucleic
acids research 29.1 (2001), pp. 308–11. doi: 10.1093/nar/29.1.308 (cit. on pp. 27,
63).

[372] L. Huang, V. Popic, and S. Batzoglou. “Short read alignment with populations of
genomes”. In: Bioinformatics 29.13 (2013), pp. i361–i370. doi: 10.1093/bioinformatics/
btt215 (cit. on pp. 27, 66).

http://dx.doi.org/10.1186/1471-2105-12-159
http://dx.doi.org/10.1186/1471-2105-12-159
http://dx.doi.org/10.1186/1471-2105-16-S5-S8
http://dx.doi.org/10.1186/1471-2164-15-969
http://dx.doi.org/10.1093/bioinformatics/bts578
http://dx.doi.org/10.1093/bib/bbw089
http://dx.doi.org/10.1101/101378
http://dx.doi.org/10.1101/101378
http://arxiv.org/abs/1404.5010
http://dx.doi.org/10.1093/bioinformatics/btv435
http://dx.doi.org/10.1109/TCBB.2013.2297101
http://dx.doi.org/10.1137/1.9781611974768.2
http://dx.doi.org/10.1137/1.9781611974768.2
http://dx.doi.org/10.17877/DE290R-16435
http://arxiv.org/abs/1702.01703
http://dx.doi.org/10.1093/nar/29.1.308
http://dx.doi.org/10.1093/bioinformatics/btt215
http://dx.doi.org/10.1093/bioinformatics/btt215

BIBLIOGRAPHY 165

[373] K. Schneeberger et al. “Simultaneous alignment of short reads against multiple
genomes.” In: Genome biology 10.9 (2009), R98. doi: 10.1186/gb-2009-10-9-r98
(cit. on pp. 27, 66).

[374] A. Limasset et al. “Read mapping on de Bruijn graphs”. In: BMC Bioinformatics
17.1 (2016), p. 237. doi: 10.1186/s12859-016-1103-9 (cit. on pp. 27, 66).

[375] B. Liu et al. “deBGA: read alignment with de Bruijn graph-based seed and exten-
sion”. In: Bioinformatics 32.21 (2016), pp. 3224–3232. doi: 10.1093/bioinformatics/
btw371 (cit. on p. 27).

[376] S. Maciuca et al. “A Natural Encoding of Genetic Variation in a Burrows-Wheeler
Transform to Enable Mapping and Genome Inference”. In: 2016, pp. 222–233. doi:
10.1007/978-3-319-43681-4_18 (cit. on p. 28).

[377] C. S. Iliopoulos et al. “An algorithm for mapping short reads to a dynamically
changing genomic sequence”. In: Journal of Discrete Algorithms 10 (2012), pp. 15–
22. doi: 10.1016/j.jda.2011.08.006 (cit. on pp. 28, 54).

[378] J. Pritt. Efficiently Improving the Reference Genome for DNA Read Alignment.
Tech. rep. 2013 (cit. on pp. 28, 54).

[379] D. Yorukoglu et al. “Compressive mapping for next-generation sequencing”. In:
Nature Biotechnology 34.4 (2016), pp. 374–376. doi: 10.1038/nbt.3511 (cit. on
p. 28).

[380] B. Berger, N. M. Daniels, and Y. W. Yu. “Computational biology in the 21st
century”. In: Communications of the ACM 59.8 (2016), pp. 72–80. doi: 10.1145/
2957324 (cit. on p. 28).

[381] A. Broder. “On the resemblance and containment of documents”. In: Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171). IEEE
Comput. Soc, 1997, pp. 21–29. doi: 10.1109/SEQUEN.1997.666900 (cit. on pp. 28,
79).

[382] M. Roberts et al. “Reducing storage requirements for biological sequence compari-
son”. In: Bioinformatics 20.18 (2004), pp. 3363–3369. doi: 10.1093/bioinformatics/
bth408 (cit. on p. 28).

[383] A. Shrikumar et al. “A fast approximate algorithm for mapping long reads to large
reference databases”. In: (2017), pp. 1–16. doi: 10.1101/103812 (cit. on p. 28).

[384] H. Li. “Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences”. In: Bioinformatics 32.14 (2016), pp. 2103–2110. doi: 10.1093/
bioinformatics/btw152 (cit. on p. 28).

[385] V. Popic and S. Batzoglou. “Privacy-Preserving Read Mapping Using Locality Sen-
sitive Hashing and Secure Kmer Voting”. In: bioRxiv preprints (2016), p. 046920.
doi: 10.1101/046920. url: http://biorxiv.org/content/early/2016/04/03/
046920.abstract%20http://biorxiv.org/lookup/doi/10.1101/046920 (cit. on
p. 28).

[386] M. Glunčić and V. Paar. “Direct mapping of symbolic DNA sequence into frequency
domain in global repeat map algorithm.” In: Nucleic acids research 41.1 (2013),
pp. 1–17. doi: 10.1093/nar/gks721 (cit. on p. 28).

http://dx.doi.org/10.1186/gb-2009-10-9-r98
http://dx.doi.org/10.1186/s12859-016-1103-9
http://dx.doi.org/10.1093/bioinformatics/btw371
http://dx.doi.org/10.1093/bioinformatics/btw371
http://dx.doi.org/10.1007/978-3-319-43681-4_18
http://dx.doi.org/10.1016/j.jda.2011.08.006
http://dx.doi.org/10.1038/nbt.3511
http://dx.doi.org/10.1145/2957324
http://dx.doi.org/10.1145/2957324
http://dx.doi.org/10.1109/SEQUEN.1997.666900
http://dx.doi.org/10.1093/bioinformatics/bth408
http://dx.doi.org/10.1093/bioinformatics/bth408
http://dx.doi.org/10.1101/103812
http://dx.doi.org/10.1093/bioinformatics/btw152
http://dx.doi.org/10.1093/bioinformatics/btw152
http://dx.doi.org/10.1101/046920
http://biorxiv.org/content/early/2016/04/03/046920.abstract%20http://biorxiv.org/lookup/doi/10.1101/046920
http://biorxiv.org/content/early/2016/04/03/046920.abstract%20http://biorxiv.org/lookup/doi/10.1101/046920
http://dx.doi.org/10.1093/nar/gks721

166 BIBLIOGRAPHY

[387] B. Zitová and J. Flusser. “Image registration methods: a survey”. In: Image and
Vision Computing 21.11 (2003), pp. 977–1000. doi: 10.1016/S0262- 8856(03)
00137-9 (cit. on p. 28).

[388] J. Lorenzo-Ginori et al. “Digital Signal Processing in the Analysis of Genomic
Sequences”. In: Current Bioinformatics 4.1 (2009), pp. 28–40. doi: 10 . 2174 /
157489309787158134 (cit. on p. 28).

[389] A. Tapinos et al. “Alignment by numbers: sequence assembly using compressed
numerical representations”. In: bioRxiv preprints (2014), p. 011940. doi: 10.1101/
011940. url: http://biorxiv.org/lookup/doi/10.1101/011940 (cit. on p. 28).

[390] J. Duda. “Distortion-Resistant Hashing for rapid search of similar DNA subse-
quence”. In: arXiv preprints (2016), pp. 1–5. url: http://arxiv.org/abs/1602.
05889 (cit. on p. 28).

[391] M. S. Lindner et al. “HiLive – Real-Time Mapping of Illumina Reads while Sequenc-
ing”. In: Bioinformatics (2016), btw659. doi: 10.1093/bioinformatics/btw659
(cit. on p. 28).

[392] E. J. Houtgast et al. “An Efficient GPU-Accelerated Implementation of Genomic
Short Read Mapping with BWA-MEM”. In: ACM SIGARCH Computer Architec-
ture News 44.4 (2017), pp. 38–43. doi: 10.1145/3039902.3039910 (cit. on p. 28).

[393] E. F. O. Sandes et al. “CUDAlign 4.0: Incremental Speculative Traceback for Exact
Chromosome-Wide Alignment in GPU Clusters”. In: IEEE Transactions on Parallel
and Distributed Systems 9219.c (2016), pp. 1–1. doi: 10.1109/TPDS.2016.2515597
(cit. on p. 28).

[394] P. Wojciechowski et al. “G-MAPSEQ – a new method for mapping reads to a ref-
erence genome”. In: Foundations of Computing and Decision Sciences 41.2 (2016).
doi: 10.1515/fcds-2016-0007 (cit. on p. 28).

[395] R. Wilton et al. “Arioc: high-throughput read alignment with GPU-accelerated
exploration of the seed-and-extend search space”. In: PeerJ 3 (2015), e808. doi:
10.7717/peerj.808 (cit. on p. 28).

[396] B. S. Pedersen et al. “Fast and accurate alignment of long bisulfite-seq reads”. In:
arXiv preprints 00.00 (2014), pp. 1–2. url: http://arxiv.org/abs/1401.1129
(cit. on p. 28).

[397] E. F. D. O. Sandes et al. “CUDAlign 3.0: Parallel biological sequence comparison in
large GPU clusters”. In: Proceedings - 14th IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing, CCGrid 2014 (2014), pp. 160–169. doi:
10.1109/CCGrid.2014.18 (cit. on p. 28).

[398] Y. Liu and B. Schmidt. “CUSHAW2-GPU: Empowering faster gapped short-read
alignment using GPU computing”. In: IEEE Design and Test 31.1 (2014), pp. 31–
39. doi: 10.1109/MDAT.2013.2284198 (cit. on p. 28).

[399] J. Köster and S. Rahmann. “Massively parallel read mapping on GPUs with the q
-group index and PEANUT”. In: PeerJ 2 (2014), e606. doi: 10.7717/peerj.606
(cit. on p. 28).

[400] I. A. Wright and S. A. Travers. “RAMICS: Trainable, high-speed and biologically
relevant alignment of high-throughput sequencing reads to coding DNA”. In: Nu-
cleic Acids Research 42.13 (2014). doi: 10.1093/nar/gku473 (cit. on p. 28).

http://dx.doi.org/10.1016/S0262-8856(03)00137-9
http://dx.doi.org/10.1016/S0262-8856(03)00137-9
http://dx.doi.org/10.2174/157489309787158134
http://dx.doi.org/10.2174/157489309787158134
http://dx.doi.org/10.1101/011940
http://dx.doi.org/10.1101/011940
http://biorxiv.org/lookup/doi/10.1101/011940
http://arxiv.org/abs/1602.05889
http://arxiv.org/abs/1602.05889
http://dx.doi.org/10.1093/bioinformatics/btw659
http://dx.doi.org/10.1145/3039902.3039910
http://dx.doi.org/10.1109/TPDS.2016.2515597
http://dx.doi.org/10.1515/fcds-2016-0007
http://dx.doi.org/10.7717/peerj.808
http://arxiv.org/abs/1401.1129
http://dx.doi.org/10.1109/CCGrid.2014.18
http://dx.doi.org/10.1109/MDAT.2013.2284198
http://dx.doi.org/10.7717/peerj.606
http://dx.doi.org/10.1093/nar/gku473

BIBLIOGRAPHY 167

[401] F. J. Sedlazeck, P. Rescheneder, and A. von Haeseler. “NextGenMap: fast and
accurate read mapping in highly polymorphic genomes”. In: Bioinformatics 29.21
(2013), pp. 2790–2791. doi: 10.1093/bioinformatics/btt468 (cit. on p. 28).

[402] R. Luo et al. “SOAP3-dp: Fast, Accurate and Sensitive GPU-Based Short Read
Aligner”. In: PLoS ONE 8.5 (2013). doi: 10.1371/journal.pone.0065632 (cit. on
p. 28).

[403] W. Frohmberg et al. “G-DNA – a highly efficient multi-GPU/MPI tool for aligning
nucleotide reads”. In: Bulletin of the Polish Academy of Sciences: Technical Sciences
61.4 (2013), pp. 989–992. doi: 10.2478/bpasts-2013-0106 (cit. on pp. 28, 29).

[404] A. Abu-Doleh et al. “Masher: Mapping Long(er) Reads with Hash-based Genome
Indexing on GPUs”. In: Proceedings of the International Conference on Bioinfor-
matics, Computational Biology and Biomedical Informatics - BCB’13. New York,
New York, USA: ACM Press, 2013, pp. 341–350. doi: 10.1145/2506583.2506641
(cit. on p. 28).

[405] P. Klus et al. “BarraCUDA - a fast short read sequence aligner using graphics
processing units”. In: BMC Research Notes 5.1 (2012), p. 27. doi: 10.1186/1756-
0500-5-27 (cit. on p. 28).

[406] W. B. Langdon et al. “Improving CUDA DNA Analysis Software with Genetic
Programming”. In: Proceedings of the 2015 on Genetic and Evolutionary Compu-
tation Conference - GECCO ’15. New York, New York, USA: ACM Press, 2015,
pp. 1063–1070. doi: 10.1145/2739480.2754652 (cit. on p. 28).

[407] Y. Liu, B. Schmidt, and D. L. Maskell. “CUSHAW: a CUDA compatible short read
aligner to large genomes based on the Burrows-Wheeler transform”. In: Bioinfor-
matics 28.14 (2012), pp. 1830–1837. doi: 10.1093/bioinformatics/bts276 (cit.
on p. 28).

[408] M. Lu et al. “High-performance short sequence alignment with GPU acceleration”.
In: Distributed and Parallel Databases 30.5-6 (2012), pp. 385–399. doi: 10.1007/
s10619-012-7099-x (cit. on p. 28).

[409] J. S. Torres et al. “Using GPUs for the Exact Alignment of Short-Read Genetic
Sequences by Means of the Burrows-Wheeler Transform”. In: IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 9.4 (2012), pp. 1245–1256.
doi: 10.1109/TCBB.2012.49 (cit. on p. 28).

[410] C.-M. Liu et al. “SOAP3: ultra-fast GPU-based parallel alignment tool for short
reads”. In: Bioinformatics 28.6 (2012), pp. 878–879. doi: 10.1093/bioinformatics/
bts061 (cit. on p. 28).

[411] J. Blom et al. “Exact and complete short-read alignment to microbial genomes
using Graphics Processing Unit programming”. In: Bioinformatics 27.10 (2011),
pp. 1351–1358. doi: 10.1093/bioinformatics/btr151 (cit. on p. 28).

[412] E. F. O. Sandes and A. C. M. de Melo. “CUDAlign: Using GPU to Accelerate the
Comparison of Megabase Genomic Sequences”. In: Proceedings of the 15th ACM
SIGPLAN symposium on Principles and practice of parallel programming - PPoPP
’10. Vol. 45. 5. New York, New York, USA: ACM Press, 2010, p. 137. doi: 10.
1145/1693453.1693473 (cit. on p. 28).

http://dx.doi.org/10.1093/bioinformatics/btt468
http://dx.doi.org/10.1371/journal.pone.0065632
http://dx.doi.org/10.2478/bpasts-2013-0106
http://dx.doi.org/10.1145/2506583.2506641
http://dx.doi.org/10.1186/1756-0500-5-27
http://dx.doi.org/10.1186/1756-0500-5-27
http://dx.doi.org/10.1145/2739480.2754652
http://dx.doi.org/10.1093/bioinformatics/bts276
http://dx.doi.org/10.1007/s10619-012-7099-x
http://dx.doi.org/10.1007/s10619-012-7099-x
http://dx.doi.org/10.1109/TCBB.2012.49
http://dx.doi.org/10.1093/bioinformatics/bts061
http://dx.doi.org/10.1093/bioinformatics/bts061
http://dx.doi.org/10.1093/bioinformatics/btr151
http://dx.doi.org/10.1145/1693453.1693473
http://dx.doi.org/10.1145/1693453.1693473

168 BIBLIOGRAPHY

[413] A. M. Aji, L. Zhang, and W. C. Feng. “GPU-RMAP: Accelerating short-read map-
ping on graphics processors”. In: Proceedings - 2010 13th IEEE International Con-
ference on Computational Science and Engineering, CSE 2010 (2010), pp. 168–175.
doi: 10.1109/CSE.2010.29 (cit. on p. 28).

[414] M. C. Schatz et al. “High-throughput sequence alignment using Graphics Process-
ing Units.” In: BMC bioinformatics 8 (2007), p. 474. doi: 10.1186/1471-2105-8-
474 (cit. on p. 29).

[415] M. S. Nobile et al. “Graphics processing units in bioinformatics, computational
biology and systems biology”. In: Briefings in Bioinformatics May (2016), bbw058.
doi: 10.1093/bib/bbw058 (cit. on p. 29).

[416] J. M. Abuín et al. “SparkBWA: Speeding Up the Alignment of High-Throughput
DNA Sequencing Data”. In: PLOS ONE 11.5 (2016), e0155461. doi: 10.1371/
journal.pone.0155461 (cit. on p. 29).

[417] J. M. Abuín et al. “BigBWA: approaching the Burrows–Wheeler aligner to Big Data
technologies”. In: Bioinformatics (2015), btv506. doi: 10.1093/bioinformatics/
btv506 (cit. on p. 29).

[418] R. V. Pandey and C. Schlötterer. “DistMap: A Toolkit for Distributed Short Read
Mapping on a Hadoop Cluster”. In: PLoS ONE 8.8 (2013), e72614. doi: 10.1371/
journal.pone.0072614 (cit. on p. 29).

[419] L. Pireddu, S. Leo, and G. Zanetti. “Seal: A distributed short read mapping and
duplicate removal tool”. In: Bioinformatics 27.15 (2011), pp. 2159–2160. doi: 10.
1093/bioinformatics/btr325 (cit. on p. 29).

[420] T. Nguyen, W. Shi, and D. Ruden. “CloudAligner: A fast and full-featured MapRe-
duce based tool for sequence mapping.” In: BMC research notes 4.1 (2011), p. 171.
doi: 10.1186/1756-0500-4-171 (cit. on p. 29).

[421] M. C. Schatz. “CloudBurst: highly sensitive read mapping with MapReduce.” In:
Bioinformatics 25.11 (2009), pp. 1363–9. doi: 10.1093/bioinformatics/btp236
(cit. on p. 29).

[422] M. C. Schatz. BlastReduce: high performance short read mapping with MapReduce.
Tech. rep. 2008 (cit. on p. 29).

[423] P. Darren et al. “Speeding Up Large-Scale Next Generation Sequencing Data Anal-
ysis with pBWA”. In: Journal of Applied Bioinformatics & Computational Biology
1 (2012), pp. 1–6. doi: 10.4172/2329-9533.1000101 (cit. on p. 29).

[424] S. Misra et al. “pFANGS: Parallel high speed sequence mapping for next genera-
tion 454-roche sequencing reads”. In: Proceedings of the 2010 IEEE International
Symposium on Parallel and Distributed Processing, Workshops and Phd Forum,
IPDPSW 2010 (2010). doi: 10.1109/IPDPSW.2010.5470894 (cit. on p. 29).

[425] E. B. Fernandez et al. “FHAST: FPGA-Based Acceleration of Bowtie in Hardware”.
In: IEEE/ACM Transactions on Computational Biology and Bioinformatics 12.5
(2015), pp. 973–981. doi: 10.1109/TCBB.2015.2405333 (cit. on p. 29).

[426] Y. Chen, B. Schmidt, and D. L. Maskell. “A hybrid short read mapping accelerator”.
In: BMC Bioinformatics 14.1 (2013), p. 67. doi: 10.1186/1471-2105-14-67 (cit.
on p. 29).

http://dx.doi.org/10.1109/CSE.2010.29
http://dx.doi.org/10.1186/1471-2105-8-474
http://dx.doi.org/10.1186/1471-2105-8-474
http://dx.doi.org/10.1093/bib/bbw058
http://dx.doi.org/10.1371/journal.pone.0155461
http://dx.doi.org/10.1371/journal.pone.0155461
http://dx.doi.org/10.1093/bioinformatics/btv506
http://dx.doi.org/10.1093/bioinformatics/btv506
http://dx.doi.org/10.1371/journal.pone.0072614
http://dx.doi.org/10.1371/journal.pone.0072614
http://dx.doi.org/10.1093/bioinformatics/btr325
http://dx.doi.org/10.1093/bioinformatics/btr325
http://dx.doi.org/10.1186/1756-0500-4-171
http://dx.doi.org/10.1093/bioinformatics/btp236
http://dx.doi.org/10.4172/2329-9533.1000101
http://dx.doi.org/10.1109/IPDPSW.2010.5470894
http://dx.doi.org/10.1109/TCBB.2015.2405333
http://dx.doi.org/10.1186/1471-2105-14-67

BIBLIOGRAPHY 169

[427] C. Nelson et al. “Shepard: A fast exact match short read aligner”. In: Tenth ACM/IEEE
International Conference on Formal Methods and Models for Codesign (MEM-
CODE2012). IEEE, 2012, pp. 91–94. doi: 10.1109/MEMCOD.2012.6292304 (cit. on
p. 29).

[428] D. Lavenier, J.-F. Roy, and D. Furodet. “DNA mapping using Processor-in-Memory
architecture”. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). IEEE, 2016, pp. 1429–1435. doi: 10.1109/BIBM.2016.7822732 (cit. on
p. 29).

[429] J. Kim et al. Genome Read In-Memory (GRIM) Filter: Fast Location Filtering in
DNA Read Mapping using Emerging Memory Technologies. Tech. rep. 2017. url:
https://people.inf.ethz.ch/omutlu/pub/GRIM-genome-read-in-memory-
filter_psb17-poster.pdf (cit. on p. 29).

[430] Y. Cui et al. “B-MIC : An Ultrafast Three-Level Parallel Sequence Aligner”. In:
Interdisciplinary Sciences: Computational Life Sciences 8.28 (2016). doi: 10.1007/
s12539-015-0278-5 (cit. on p. 29).

[431] R. Luo et al. “MICA: A fast short-read aligner that takes full advantage of Many
Integrated Core Architecture (MIC)”. In: BMC Bioinformatics 16.Suppl 7 (2015),
S10. doi: 10.1186/1471-2105-16-S7-S10 (cit. on p. 29).

[432] C. Nelson et al. “RAMPS: A Reconfigurable Architecture for Minimal Perfect Se-
quencing”. In: IEEE Transactions on Parallel and Distributed Systems 27.10 (2016),
pp. 3029–3043. doi: 10.1109/TPDS.2015.2513053 (cit. on p. 29).

[433] Convey Computer Burrows-Wheeler Aligner Personality. Tech. rep. 2011. url:
http://media.marketwire.com/attachments/201110/30059_BWADatasheet.
pdf (cit. on p. 29).

[434] N. Ahmed et al. “Heterogeneous hardware/software acceleration of the BWA-MEM
DNA alignment algorithm”. In: 2015 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2015 (2016), pp. 240–246. doi: 10.1109/ICCAD.
2015.7372576 (cit. on p. 29).

[435] B. E. Blaisdell. “A measure of the similarity of sets of sequences not requiring
sequence alignment.” In: Proceedings of the National Academy of Sciences 83.14
(1986), pp. 5155–5159. doi: 10.1073/pnas.83.14.5155 (cit. on p. 29).

[436] S. Vinga and J. Almeida. “Alignment-free sequence comparison–a review”. In:
Bioinformatics 19.4 (2003), pp. 513–523. doi: 10.1093/bioinformatics/btg005
(cit. on p. 29).

[437] K. Song et al. “New developments of alignment-free sequence comparison: Mea-
sures, statistics and next-generation sequencing”. In: Briefings in Bioinformatics
15.3 (2014), pp. 343–353. doi: 10.1093/bib/bbt067 (cit. on p. 29).

[438] S. Vinga. “Information theory applications for biological sequence analysis”. In:
Briefings in Bioinformatics 15.3 (2014), pp. 376–389. doi: 10.1093/bib/bbt068
(cit. on p. 29).

[439] M. Comin, A. Leoni, and M. Schimd. “Clustering of reads with alignment-free
measures and quality values.” In: Algorithms for molecular biology : AMB 10 (2015),
p. 4. doi: 10.1186/s13015-014-0029-x (cit. on p. 29).

http://dx.doi.org/10.1109/MEMCOD.2012.6292304
http://dx.doi.org/10.1109/BIBM.2016.7822732
https://people.inf.ethz.ch/omutlu/pub/GRIM-genome-read-in-memory-filter_psb17-poster.pdf
https://people.inf.ethz.ch/omutlu/pub/GRIM-genome-read-in-memory-filter_psb17-poster.pdf
http://dx.doi.org/10.1007/s12539-015-0278-5
http://dx.doi.org/10.1007/s12539-015-0278-5
http://dx.doi.org/10.1186/1471-2105-16-S7-S10
http://dx.doi.org/10.1109/TPDS.2015.2513053
http://media.marketwire.com/attachments/201110/30059_BWADatasheet.pdf
http://media.marketwire.com/attachments/201110/30059_BWADatasheet.pdf
http://dx.doi.org/10.1109/ICCAD.2015.7372576
http://dx.doi.org/10.1109/ICCAD.2015.7372576
http://dx.doi.org/10.1073/pnas.83.14.5155
http://dx.doi.org/10.1093/bioinformatics/btg005
http://dx.doi.org/10.1093/bib/bbt067
http://dx.doi.org/10.1093/bib/bbt068
http://dx.doi.org/10.1186/s13015-014-0029-x

170 BIBLIOGRAPHY

[440] M. Comin and M. Schimd. “Fast comparison of genomic and meta-genomic reads
with alignment-free measures based on quality values”. In: BMC Medical Genomics
9.S1 (2016), p. 36. doi: 10.1186/s12920-016-0193-6 (cit. on p. 29).

[441] N. N. Bugaenko, A. N. Gorban, and M. G. Sadovsky. Maximum Entropy Method in
Analysis of Genetic Text and Measurement of its Information Content. 1998. doi:
10.1023/A:1009637019316 (cit. on p. 29).

[442] B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computational Biology.
MIT Press, 2004 (cit. on p. 29).

[443] D. Belazzougui and F. Cunial. “A Framework for Space-Efficient String Kernels”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 9133. 2015, pp. 13–25. doi:
10.1007/978-3-319-19929-0_2 (cit. on p. 29).

[444] G. Marçais and C. Kingsford. “A fast, lock-free approach for efficient parallel count-
ing of occurrences of k-mers”. In: Bioinformatics 27.6 (2011), pp. 764–770. doi:
10.1093/bioinformatics/btr011 (cit. on pp. 30, 91).

[445] P. Melsted and J. K. Pritchard. “Efficient counting of k-mers in DNA sequences
using a bloom filter”. In: BMC Bioinformatics 12.1 (2011), p. 333. doi: 10.1186/
1471-2105-12-333 (cit. on p. 30).

[446] G. Rizk, D. Lavenier, and R. Chikhi. “DSK: k-mer counting with very low memory
usage”. In: Bioinformatics 29.5 (2013), pp. 652–653. doi: 10.1093/bioinformatics/
btt020 (cit. on p. 30).

[447] S. Deorowicz, A. Debudaj-Grabysz, and S. Grabowski. “Disk-based k-mer counting
on a PC.” In: BMC bioinformatics 14.1 (2013), p. 160. doi: 10.1186/1471-2105-
14-160 (cit. on p. 30).

[448] R. S. Roy, D. Bhattacharya, and A. Schliep. “Turtle: Identifying frequent k-mers
with cache-efficient algorithms”. In: Bioinformatics 30.14 (2014), pp. 1950–1957.
doi: 10.1093/bioinformatics/btu132 (cit. on p. 30).

[449] Q. Zhang et al. “These Are Not the K-mers You Are Looking For: Efficient Online
K-mer Counting Using a Probabilistic Data Structure”. In: PLoS ONE 9.7 (2014),
e101271. doi: 10.1371/journal.pone.0101271 (cit. on p. 30).

[450] S. Deorowicz et al. “KMC 2: fast and resource-frugal k-mer counting”. In: Bioin-
formatics 31.10 (2015), pp. 1569–1576. doi: 10.1093/bioinformatics/btv022
(cit. on p. 30).

[451] Y. Li and XifengYan. “MSPKmerCounter: A Fast and Memory Efficient Approach
for K-mer Counting”. In: arXiv preprints (2015), pp. 1–7. url: http://arxiv.
org/abs/1505.06550 (cit. on p. 30).

[452] M. R. Crusoe et al. “The khmer software package: enabling efficient nucleotide se-
quence analysis”. In: F1000Research (2015), pp. 1–12. doi: 10.12688/f1000research.
6924.1 (cit. on p. 30).

[453] A.-A. Mamun, S. Pal, and S. Rajasekaran. “KCMBT: a k -mer Counter based
on Multiple Burst Trees”. In: Bioinformatics 32.18 (2016), pp. 2783–2790. doi:
10.1093/bioinformatics/btw345 (cit. on p. 30).

http://dx.doi.org/10.1186/s12920-016-0193-6
http://dx.doi.org/10.1023/A:1009637019316
http://dx.doi.org/10.1007/978-3-319-19929-0_2
http://dx.doi.org/10.1093/bioinformatics/btr011
http://dx.doi.org/10.1186/1471-2105-12-333
http://dx.doi.org/10.1186/1471-2105-12-333
http://dx.doi.org/10.1093/bioinformatics/btt020
http://dx.doi.org/10.1093/bioinformatics/btt020
http://dx.doi.org/10.1186/1471-2105-14-160
http://dx.doi.org/10.1186/1471-2105-14-160
http://dx.doi.org/10.1093/bioinformatics/btu132
http://dx.doi.org/10.1371/journal.pone.0101271
http://dx.doi.org/10.1093/bioinformatics/btv022
http://arxiv.org/abs/1505.06550
http://arxiv.org/abs/1505.06550
http://dx.doi.org/10.12688/f1000research.6924.1
http://dx.doi.org/10.12688/f1000research.6924.1
http://dx.doi.org/10.1093/bioinformatics/btw345

BIBLIOGRAPHY 171

[454] D. E. Wood and S. L. Salzberg. “Kraken: ultrafast metagenomic sequence classi-
fication using exact alignments.” In: Genome biology 15.3 (2014), R46. doi: 10.
1186/gb-2014-15-3-r46 (cit. on pp. 30, 73–76, 80, 82, 85, 91, 96, 99, 106, 107).

[455] L. Schaeffer et al. “Pseudoalignment for metagenomic read assignment”. In: Bioin-
formatics (2017), pp. 1–9. doi: 10.1093/bioinformatics/btx106 (cit. on pp. 30,
78).

[456] N. L. Bray et al. “Near-optimal probabilistic RNA-seq quantification.” In: Nature
biotechnology (2016). doi: 10.1038/nbt.3519 (cit. on pp. 30, 78).

[457] S. Burkhardt and J. Kärkkäinen. “Better Filtering with Gapped q-Grams”. In:
Combinatorial Pattern Matching. Vol. 56. 1. 2001, pp. 73–85. doi: 10.1007/3-
540-48194-X_6 (cit. on pp. 30, 31).

[458] S. Burkhardt and J. Karkkäinen. “Better Filtering with Gapped q-Grams”. In:
Fundamenta Informaticae 56.1-2 (2003), pp. 51–70 (cit. on pp. 30, 31, 81, 122).

[459] B. Ma, J. Tromp, and M. Li. “PatternHunter: faster and more sensitive homology
search”. In: Bioinformatics 18.3 (2002), pp. 440–445. doi: 10.1093/bioinformatics/
18.3.440 (cit. on pp. 30, 31, 81, 122).

[460] C.-A. Leimeister et al. “Fast alignment-free sequence comparison using spaced-
word frequencies”. In: Bioinformatics 30.14 (2014), pp. 1991–1999. doi: 10.1093/
bioinformatics/btu177 (cit. on pp. 30, 32, 81, 95).

[461] B. Morgenstern et al. “Estimating evolutionary distances between genomic se-
quences from spaced-word matches”. In: Algorithms for Molecular Biology 10.1
(2015), p. 5. doi: 10.1186/s13015-015-0032-x (cit. on pp. 30, 32, 81, 95).

[462] T. Onodera and T. Shibuya. “The Gapped Spectrum Kernel for Support Vector
Machines”. In: Machine Learning and Data Mining in Pattern Recognition. 2013,
pp. 1–15. doi: 10.1007/978-3-642-39712-7_1 (cit. on pp. 30, 81, 95, 96).

[463] M. Ghandi et al. “Enhanced Regulatory Sequence Prediction Using Gapped k-mer
Features”. In: PLoS Computational Biology 10.7 (2014), e1003711. doi: 10.1371/
journal.pcbi.1003711 (cit. on pp. 30, 81, 95).

[464] L. Noé and D. E. Martin. “A Coverage Criterion for Spaced Seeds and Its Applica-
tions to Support Vector Machine String Kernels and k -Mer Distances”. In: Journal
of Computational Biology 21.12 (2014), pp. 947–963. doi: 10.1089/cmb.2014.0173
(cit. on pp. 30, 32, 81, 82, 89, 95, 96).

[465] B. Brejová, D. G. Brown, and T. Vinař. “Vector seeds: An extension to spaced
seeds”. In: Journal of Computer and System Sciences 70.3 (2005), pp. 364–380.
doi: 10.1016/j.jcss.2004.12.008 (cit. on p. 31).

[466] D. Mak, Y. Gelfand, and G. Benson. “Indel seeds for homology search”. In: Bioin-
formatics 22.14 (2006), e341–e349. doi: 10.1093/bioinformatics/btl263 (cit. on
p. 31).

[467] “On Subset Seeds for Protein Alignment”. In: IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics 6.3 (2009), pp. 483–494. doi: 10.1109/TCBB.
2009.4 (cit. on p. 31).

http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://dx.doi.org/10.1093/bioinformatics/btx106
http://dx.doi.org/10.1038/nbt.3519
http://dx.doi.org/10.1007/3-540-48194-X_6
http://dx.doi.org/10.1007/3-540-48194-X_6
http://dx.doi.org/10.1093/bioinformatics/18.3.440
http://dx.doi.org/10.1093/bioinformatics/18.3.440
http://dx.doi.org/10.1093/bioinformatics/btu177
http://dx.doi.org/10.1093/bioinformatics/btu177
http://dx.doi.org/10.1186/s13015-015-0032-x
http://dx.doi.org/10.1007/978-3-642-39712-7_1
http://dx.doi.org/10.1371/journal.pcbi.1003711
http://dx.doi.org/10.1371/journal.pcbi.1003711
http://dx.doi.org/10.1089/cmb.2014.0173
http://dx.doi.org/10.1016/j.jcss.2004.12.008
http://dx.doi.org/10.1093/bioinformatics/btl263
http://dx.doi.org/10.1109/TCBB.2009.4
http://dx.doi.org/10.1109/TCBB.2009.4

172 BIBLIOGRAPHY

[468] M. Csűrös and B. Ma. “Rapid Homology Search with Two-Stage Extension and
Daughter Seeds”. In: COCOON 2005 - Eleventh International Computing and Com-
binatorics Conference. Vol. Springer L. 2005, pp. 104–114. doi: 10.1007/11533719_
13 (cit. on p. 31).

[469] M. Csuros and B. Ma. “Rapid Homology Search with Neighbor Seeds”. In: Algo-
rithmica 48.2 (2007), pp. 187–202. doi: 10.1007/s00453-007-0062-y (cit. on
p. 31).

[470] L. Noé. Spaced seeds bibliography. Tech. rep. url: http://www.lifl.fr/~noe/
spaced_seeds.html (cit. on pp. 31, 122).

[471] M. Li et al. “PatternHunter II: highly sensitive and fast homology search.” In:
Genome informatics. International Conference on Genome Informatics 14.03 (2003),
pp. 164–75. doi: 10.1142/S0219720004000661 (cit. on p. 31).

[472] M. Li et al. “Patternhunter II: highly sensitive and fast homology search.” In:
Journal of bioinformatics and computational biology 2.3 (2004), pp. 417–39. doi:
10.1142/S0219720004000661 (cit. on pp. 31, 95).

[473] V. H. Nguyen and D. Lavenier. “PLAST: parallel local alignment search tool for
database comparison”. In: BMC Bioinformatics 10.1 (2009), p. 329. doi: 10.1186/
1471-2105-10-329 (cit. on p. 31).

[474] M. Startek et al. “Efficient alternatives to PSI-BLAST”. In: Bulletin of the Polish
Academy of Sciences: Technical Sciences 60.3 (2012), pp. 495–505. doi: 10.2478/
v10175-012-0063-0 (cit. on p. 31).

[475] B. Buchfink, D. H. Huson, and C. Xie. “MetaScope - Fast and accurate identification
of microbes in metagenomic sequencing data”. In: arXiv preprints (2015), pp. 1–12.
url: http://arxiv.org/abs/1511.08753 (cit. on pp. 31, 79).

[476] R. Ounit and S. Lonardi. “Higher classification sensitivity of short metagenomic
reads with CLARK-S”. In: bioRxiv preprints (2016). doi: 10.1101/053462. url:
http://biorxiv.org/lookup/doi/10.1101/053462 (cit. on pp. 31, 77).

[477] G. Kucherov, L. Noé, and M. Roytberg. “A unifying framework for seed sensitivity
and its application to subset seeds”. In: Journal of Bioinformatics and Computa-
tional Biology 04.02 (2006), pp. 553–569. doi: 10.1142/S0219720006001977 (cit.
on pp. 31, 32, 81, 95).

[478] L. Hahn et al. “RasBhari: optimizing spaced seeds for database searching, read map-
ping and alignment-free sequence comparison”. In: arXiv preprints (2015), pp. 1–17.
url: http://arxiv.org/abs/1511.04001 (cit. on pp. 31, 32).

[479] F. Nicolas and E. Rivals. “Hardness of Optimal Spaced Seed Design”. In: Combi-
natorial Pattern Matching. Vol. 74. Lecture Notes in Computer Science 5. Springer
Berlin Heidelberg, 2005, pp. 144–155. doi: 10.1007/11496656_13 (cit. on pp. 31,
122).

[480] F. Nicolas and E. Rivals. “Hardness of optimal spaced seed design”. In: Journal of
Computer and System Sciences 74.5 (2008), pp. 831–849. doi: 10.1016/j.jcss.
2007.10.001 (cit. on p. 31).

[481] G. Kucherov, L. Noé, and M. Roytberg. “Multi-seed Lossless Filtration”. In: Com-
binatorial Pattern Matching. 2004, pp. 297–310. doi: 10.1007/978-3-540-27801-
6_22 (cit. on p. 31).

http://dx.doi.org/10.1007/11533719_13
http://dx.doi.org/10.1007/11533719_13
http://dx.doi.org/10.1007/s00453-007-0062-y
http://www.lifl.fr/~noe/spaced_seeds.html
http://www.lifl.fr/~noe/spaced_seeds.html
http://dx.doi.org/10.1142/S0219720004000661
http://dx.doi.org/10.1142/S0219720004000661
http://dx.doi.org/10.1186/1471-2105-10-329
http://dx.doi.org/10.1186/1471-2105-10-329
http://dx.doi.org/10.2478/v10175-012-0063-0
http://dx.doi.org/10.2478/v10175-012-0063-0
http://arxiv.org/abs/1511.08753
http://dx.doi.org/10.1101/053462
http://biorxiv.org/lookup/doi/10.1101/053462
http://dx.doi.org/10.1142/S0219720006001977
http://arxiv.org/abs/1511.04001
http://dx.doi.org/10.1007/11496656_13
http://dx.doi.org/10.1016/j.jcss.2007.10.001
http://dx.doi.org/10.1016/j.jcss.2007.10.001
http://dx.doi.org/10.1007/978-3-540-27801-6_22
http://dx.doi.org/10.1007/978-3-540-27801-6_22

BIBLIOGRAPHY 173

[482] G. Kucherov, L. Noe, and M. Roytberg. “Multiseed Lossless Filtration”. In: IEEE/ACM
Transactions on Computational Biology and Bioinformatics 2.1 (2005), pp. 51–61.
doi: 10.1109/TCBB.2005.12 (cit. on pp. 31, 122, 131).

[483] M. Farach-Colton et al. “Optimal Spaced Seeds for Faster Approximate String
Matching”. In: Automata, Languages and Programming. 2005, pp. 1251–1262. doi:
10.1007/11523468_101 (cit. on p. 31).

[484] M. Farach-Colton et al. “Optimal spaced seeds for faster approximate string match-
ing”. In: Journal of Computer and System Sciences 73.7 (2007), pp. 1035–1044. doi:
10.1016/j.jcss.2007.03.007 (cit. on pp. 31, 122).

[485] L. Egidi and G. Manzini. “Spaced Seeds Design Using Perfect Rulers”. In: String
Processing and Information Retrieval. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 32–43. doi: 10.1007/978-3-642-24583-1_5 (cit. on
pp. 31, 122).

[486] L. Egidi and G. Manzini. “Spaced Seed Design Using Perfect Rulers”. In: Funda-
menta informaticae 131 (2014), pp. 187–203. doi: 10.3233/FI-2014-1009 (cit. on
pp. 31, 122).

[487] L. Egidi and G. Manzini. “Better spaced seeds using Quadratic Residues”. In: Jour-
nal of Computer and System Sciences 79.7 (2013), pp. 1144–1155. doi: 10.1016/
j.jcss.2013.03.002 (cit. on pp. 31, 122).

[488] L. Egidi and G. Manzini. “Multiple seeds sensitivity using a single seed with
threshold.” In: Journal of bioinformatics and computational biology 13.4 (2015),
p. 1550011. doi: 10.1142/S0219720015500110 (cit. on pp. 31, 95).

[489] L. Egidi and G. Manzini. “Design and analysis of periodic multiple seeds”. In:
Theoretical Computer Science 522 (2014), pp. 62–76. doi: 10.1016/j.tcs.2013.
12.007 (cit. on pp. 31, 122).

[490] K. Břinda. Lossless seeds for approximate string matching. 2013 (cit. on pp. 31,
122, 125, 131).

[491] B. Ma and M. Li. “On the complexity of the spaced seeds”. In: Journal of Computer
and System Sciences 73.7 (2007), pp. 1024–1034. doi: 10.1016/j.jcss.2007.03.
008 (cit. on p. 32).

[492] B. Ma and H. Yao. “Seed optimization for i.i.d. similarities is no easier than optimal
Golomb ruler design”. In: Information Processing Letters 109.19 (2009), pp. 1120–
1124. doi: 10.1016/j.ipl.2009.07.008 (cit. on p. 32).

[493] U. Keich et al. “On spaced seeds for similarity search”. In: Discrete Applied Mathe-
matics 138.3 (2004), pp. 253–263. doi: 10.1016/S0166-218X(03)00382-2 (cit. on
p. 32).

[494] G. Kucherov, L. Noe, and Y. Ponty. “Estimating seed sensitivity on homogeneous
alignments”. In: Proceedings. Fourth IEEE Symposium on Bioinformatics and Bio-
engineering. IEEE, 2004, pp. 387–394. doi: 10.1109/BIBE.2004.1317369 (cit. on
p. 32).

[495] K. P. Choi and L. Zhang. “Sensitivity analysis and efficient method for identifying
optimal spaced seeds”. In: Journal of Computer and System Sciences 68.1 (2004),
pp. 22–40. doi: 10.1016/j.jcss.2003.04.002 (cit. on p. 32).

http://dx.doi.org/10.1109/TCBB.2005.12
http://dx.doi.org/10.1007/11523468_101
http://dx.doi.org/10.1016/j.jcss.2007.03.007
http://dx.doi.org/10.1007/978-3-642-24583-1_5
http://dx.doi.org/10.3233/FI-2014-1009
http://dx.doi.org/10.1016/j.jcss.2013.03.002
http://dx.doi.org/10.1016/j.jcss.2013.03.002
http://dx.doi.org/10.1142/S0219720015500110
http://dx.doi.org/10.1016/j.tcs.2013.12.007
http://dx.doi.org/10.1016/j.tcs.2013.12.007
http://dx.doi.org/10.1016/j.jcss.2007.03.008
http://dx.doi.org/10.1016/j.jcss.2007.03.008
http://dx.doi.org/10.1016/j.ipl.2009.07.008
http://dx.doi.org/10.1016/S0166-218X(03)00382-2
http://dx.doi.org/10.1109/BIBE.2004.1317369
http://dx.doi.org/10.1016/j.jcss.2003.04.002

174 BIBLIOGRAPHY

[496] L. Ilie, S. Ilie, and A. M. Bigvand. “SpEED: Fast computation of sensitive spaced
seeds”. In: Bioinformatics 27.17 (2011), pp. 2433–2434. doi: 10.1093/bioinformatics/
btr368 (cit. on p. 32).

[497] J. Buhler, U. Keich, and Y. Sun. “Designing seeds for similarity search in genomic
DNA”. In: Journal of Computer and System Sciences 70.3 (2005), pp. 342–363. doi:
10.1016/j.jcss.2004.12.003 (cit. on p. 32).

[498] R. Ounit and S. Lonardi. “Higher Classification Accuracy of Short Metagenomic
Reads by Discriminative Spaced k-mers”. In: Algorithms in Bioinformatics. 15th
Inter. Springer Berlin Heidelberg, 2015, pp. 286–295. doi: 10.1007/978-3-662-
48221-6_21 (cit. on p. 32).

[499] E. Bao et al. “SEED: efficient clustering of next-generation sequences”. In: Bioin-
formatics 27.18 (2011), pp. 2502–9. doi: 10.1093/bioinformatics/btr447 (cit.
on pp. 32, 85).

[500] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 2007 (cit. on pp. 33, 34).

[501] V. Makinen et al. Genome-Scale Algorithm Design. Cambridge: Cambridge Uni-
versity Press, 2015. doi: 10.1017/CBO9781139940023 (cit. on p. 34).

[502] U. Manber and G. Myers. “Suffix Arrays: A New Method for On-Line String
Searches”. In: SIAM Journal on Computing 22.5 (1993), pp. 935–948. doi: 10.
1137/0222058 (cit. on p. 34).

[503] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. “Replacing suffix trees with en-
hanced suffix arrays”. In: Journal of Discrete Algorithms 2.1 SPEC. ISS. (2004),
pp. 53–86. doi: 10.1016/S1570-8667(03)00065-0 (cit. on p. 34).

[504] M. Salson et al. “Dynamic extended suffix arrays”. In: Journal of Discrete Algo-
rithms 8.2 (2010), pp. 241–257. doi: 10.1016/j.jda.2009.02.007 (cit. on pp. 34,
53, 54).

[505] A. M. S. Shrestha, M. C. Frith, and P. Horton. “A bioinformatician’s guide to the
forefront of suffix array construction algorithms.” In: Briefings in bioinformatics
15.2 (2014), pp. 138–54. doi: 10.1093/bib/bbt081 (cit. on p. 34).

[506] S. Gog et al. “From Theory to Practice: Plug and Play with Succinct Data Struc-
tures”. In: 2014, pp. 326–337. doi: 10.1007/978- 3-319-07959- 2_28 (cit. on
pp. 34, 35).

[507] N. J. Larsson and K. Sadakane. Faster suffix sorting. Tech. rep. 1999 (cit. on p. 34).
[508] N. J. Larsson and K. Sadakane. “Faster suffix sorting”. In: Theoretical Computer

Science 387.3 (2007), pp. 258–272. doi: 10.1016/j.tcs.2007.07.017 (cit. on
p. 34).

[509] M. Burrows and D. J. Wheeler. A Block-sorting Lossless Data Compression Algo-
rithm. Tech. rep. 1994 (cit. on p. 34).

[510] G. Rosone and M. Sciortino. “The Burrows-Wheeler Transform between Data Com-
pression and Combinatorics on Words”. In: The Nature of Computation. Logic,
Algorithms, Applications: 9th Conference on Computability in Europe, CiE 2013,
Milan, Italy, July 1-5, 2013. Proceedings. 2013, pp. 353–364. doi: 10.1007/978-
3-642-39053-1_42 (cit. on p. 34).

http://dx.doi.org/10.1093/bioinformatics/btr368
http://dx.doi.org/10.1093/bioinformatics/btr368
http://dx.doi.org/10.1016/j.jcss.2004.12.003
http://dx.doi.org/10.1007/978-3-662-48221-6_21
http://dx.doi.org/10.1007/978-3-662-48221-6_21
http://dx.doi.org/10.1093/bioinformatics/btr447
http://dx.doi.org/10.1017/CBO9781139940023
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1016/S1570-8667(03)00065-0
http://dx.doi.org/10.1016/j.jda.2009.02.007
http://dx.doi.org/10.1093/bib/bbt081
http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://dx.doi.org/10.1016/j.tcs.2007.07.017
http://dx.doi.org/10.1007/978-3-642-39053-1_42
http://dx.doi.org/10.1007/978-3-642-39053-1_42

BIBLIOGRAPHY 175

[511] S. Mantaci, A. Restivo, and M. Sciortino. “Burrows–Wheeler transform and Stur-
mian words”. In: Information Processing Letters 86.5 (2003), pp. 241–246. doi:
10.1016/S0020-0190(02)00512-4 (cit. on p. 34).

[512] A. Restivo and G. Rosone. “Burrows–Wheeler transform and palindromic richness”.
In: Theoretical Computer Science 410.30-32 (2009), pp. 3018–3026. doi: 10.1016/
j.tcs.2009.03.008 (cit. on p. 34).

[513] A. Restivo and G. Rosone. “Balancing and clustering of words in the Burrows–Wheeler
transform”. In: Theoretical Computer Science 412.27 (2011), pp. 3019–3032. doi:
10.1016/j.tcs.2010.11.040 (cit. on p. 34).

[514] M. Crochemore, J. Désarménien, and D. Perrin. “A note on the Burrows–Wheeler
transformation”. In: Theoretical Computer Science 332.1-3 (2005), pp. 567–572.
doi: 10.1016/j.tcs.2004.11.014 (cit. on p. 34).

[515] G. Manzini. “An analysis of the Burrows—Wheeler transform”. In: Journal of the
ACM 48.3 (2001), pp. 407–430. doi: 10.1145/382780.382782 (cit. on p. 35).

[516] G. Kucherov, L. Tóthmérész, and S. Vialette. “On the combinatorics of suffix
arrays”. In: Information Processing Letters 113.22-24 (2013), pp. 915–920. doi:
10.1016/j.ipl.2013.09.009 (cit. on p. 35).

[517] M. Kufleitner. “On Bijective Variants of the Burrows-Wheeler Transform”. In: arXiv
preprints (2009), p. 15. url: http://arxiv.org/abs/0908.0239 (cit. on p. 35).

[518] J. Y. Gil and D. A. Scott. “A Bijective String Sorting Transform”. In: arXiv
preprints (2012), pp. 1–16. url: http://arxiv.org/abs/1201.3077 (cit. on
p. 35).

[519] J. W. Daykin and W. Smyth. “A bijective variant of the Burrows–Wheeler Trans-
form using V-order”. In: Theoretical Computer Science 531 (2014), pp. 77–89. doi:
10.1016/j.tcs.2014.03.014 (cit. on p. 35).

[520] M. Salson et al. “A four-stage algorithm for updating a Burrows–Wheeler trans-
form”. In: Theoretical Computer Science 410.43 (2009), pp. 4350–4359. doi: 10.
1016/j.tcs.2009.07.016 (cit. on pp. 35, 53).

[521] D. Belazzougui et al. “Versatile Succinct Representations of the Bidirectional Burrows-
Wheeler Transform”. In: vol. 250345. 2013, pp. 133–144. doi: 10.1007/978-3-642-
40450-4_12 (cit. on p. 35).

[522] J. Siren. “Burrows-Wheeler Transform for Terabases”. In: 2016 Data Compression
Conference (DCC). IEEE, 2016, pp. 211–220. doi: 10.1109/DCC.2016.17 (cit. on
pp. 35, 66).

[523] P. Bonizzoni et al. “A New Lightweight Algorithm to compute the BWT and the
LCP array of a Set of Strings”. In: arXiv preprints (2016), pp. 1–18. url: http:
//arxiv.org/abs/1607.08342 (cit. on p. 35).

[524] Y. Liu, T. Hankeln, and B. Schmidt. “Parallel and Space-Efficient Construction of
Burrows-Wheeler Transform and Suffix Array for Big Genome Data”. In: IEEE/ACM
Transactions on Computational Biology and Bioinformatics 13.3 (2016), pp. 592–
598. doi: 10.1109/TCBB.2015.2430314 (cit. on pp. 35, 111).

[525] D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler Transform: Data
Compression, Suffix Arrays, and Pattern Matching. Boston, MA: Springer US,
2008, p. 353. doi: 10.1007/978-0-387-78909-5 (cit. on p. 35).

http://dx.doi.org/10.1016/S0020-0190(02)00512-4
http://dx.doi.org/10.1016/j.tcs.2009.03.008
http://dx.doi.org/10.1016/j.tcs.2009.03.008
http://dx.doi.org/10.1016/j.tcs.2010.11.040
http://dx.doi.org/10.1016/j.tcs.2004.11.014
http://dx.doi.org/10.1145/382780.382782
http://dx.doi.org/10.1016/j.ipl.2013.09.009
http://arxiv.org/abs/0908.0239
http://arxiv.org/abs/1201.3077
http://dx.doi.org/10.1016/j.tcs.2014.03.014
http://dx.doi.org/10.1016/j.tcs.2009.07.016
http://dx.doi.org/10.1016/j.tcs.2009.07.016
http://dx.doi.org/10.1007/978-3-642-40450-4_12
http://dx.doi.org/10.1007/978-3-642-40450-4_12
http://dx.doi.org/10.1109/DCC.2016.17
http://arxiv.org/abs/1607.08342
http://arxiv.org/abs/1607.08342
http://dx.doi.org/10.1109/TCBB.2015.2430314
http://dx.doi.org/10.1007/978-0-387-78909-5

176 BIBLIOGRAPHY

[526] J. C. Na et al. “FM-index of alignment: A compressed index for similar strings”.
In: Theoretical Computer Science 638 (2016), pp. 159–170. doi: 10.1016/j.tcs.
2015.08.008 (cit. on p. 35).

[527] J. C. Na et al. “FM-index of Alignment with Gaps”. In: arXiv preprints (2016).
url: http://arxiv.org/abs/1606.03897 (cit. on p. 35).

[528] T. W. Lam et al. “High throughput short read alignment via bi-directional BWT”.
In: 2009 IEEE International Conference on Bioinformatics and Biomedicine, BIBM
2009 (2009), pp. 31–36. doi: 10.1109/BIBM.2009.42 (cit. on p. 35).

[529] G. Kucherov, K. Salikhov, and D. Tsur. “Approximate String Matching Using a
Bidirectional Index”. In: Combinatorial pattern matching. Vol. 8486. Elsevier B.V.,
2014, pp. 222–231. doi: 10.1007/978-3-319-07566-2_23 (cit. on p. 35).

[530] C. Pockrandt, M. Ehrhardt, and K. Reinert. “Constant-time and space-efficient uni-
directional and bidirectional FM-indices using EPR-dictionaries”. In: arXiv preprints
(2016), pp. 1–13. url: http://arxiv.org/abs/1608.02413 (cit. on p. 35).

[531] D. Belazzougui et al. “Relative FM-Indexes”. In: String Processing and Information
Retrieval, 21st International Symposium, SPIRE 2014, Ouro Preto, Brazil, Octo-
ber 20-22, 2014. Proceedings. Lecture No. Springer International Publishing, 2014.
Chap. Relative F, pp. 52–64. doi: 10.1007/978-3-319-11918-2_6 (cit. on pp. 35,
54).

[532] W. Gerlach. “Dynamic FM-Index for a Collection of Texts with Application to
Space-efficient Construction of the Compressed Suffix Array”. PhD thesis. Bielefeld
University, 2007 (cit. on pp. 35, 53).

[533] M. a. DePristo et al. “A framework for variation discovery and genotyping using
next-generation DNA sequencing data”. In: Nature Genetics 43.5 (2011), pp. 491–
498. doi: 10.1038/ng.806 (cit. on pp. 41, 49).

[534] G. A. Van der Auwera et al. “From FastQ Data to High-Confidence Variant Calls:
The Genome Analysis Toolkit Best Practices Pipeline”. In: Current Protocols in
Bioinformatics. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013, pp. 11.10.1–
11.10.33. doi: 10.1002/0471250953.bi1110s43 (cit. on p. 41).

[535] D. Y. C. Brandt et al. “Mapping Bias Overestimates Reference Allele Frequencies
at the HLA Genes in the 1000 Genomes Project Phase I Data”. In: G3:
Genes|Genomes|Genetics 5.5 (2015), pp. 931–941. doi: 10.1534/g3.114.015784
(cit. on p. 42).

[536] M. Holtgrewe et al. “A novel and well-defined benchmarking method for second
generation read mapping.” In: BMC bioinformatics 12.1 (2011), p. 210. doi: 10.
1186/1471-2105-12-210 (cit. on p. 43).

[537] M. Smolka et al. “Teaser: Individualized benchmarking and optimization of read
mapping results for NGS data”. In: Genome Biology 16.1 (2015), p. 235. doi: 10.
1186/s13059-015-0803-1 (cit. on p. 43).

[538] J. Köster and S. Rahmann. “Snakemake-a scalable bioinformatics workflow engine”.
In: Bioinformatics 28.19 (2012), pp. 2520–2522. doi: 10.1093/bioinformatics/
bts480 (cit. on pp. 46, 57, 96).

[539] G. T. Marth et al. “A general approach to single-nucleotide polymorphism discov-
ery”. In: Nature Genetics 23.4 (1999), pp. 452–456. doi: 10.1038/70570 (cit. on
pp. 49, 51).

http://dx.doi.org/10.1016/j.tcs.2015.08.008
http://dx.doi.org/10.1016/j.tcs.2015.08.008
http://arxiv.org/abs/1606.03897
http://dx.doi.org/10.1109/BIBM.2009.42
http://dx.doi.org/10.1007/978-3-319-07566-2_23
http://arxiv.org/abs/1608.02413
http://dx.doi.org/10.1007/978-3-319-11918-2_6
http://dx.doi.org/10.1038/ng.806
http://dx.doi.org/10.1002/0471250953.bi1110s43
http://dx.doi.org/10.1534/g3.114.015784
http://dx.doi.org/10.1186/1471-2105-12-210
http://dx.doi.org/10.1186/1471-2105-12-210
http://dx.doi.org/10.1186/s13059-015-0803-1
http://dx.doi.org/10.1186/s13059-015-0803-1
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1038/70570

BIBLIOGRAPHY 177

[540] R. Li et al. “SNP detection for massively parallel whole-genome resequencing.” In:
Genome research 19.6 (2009), pp. 1124–32. doi: 10.1101/gr.088013.108 (cit. on
p. 49).

[541] D. C. Koboldt et al. “VarScan: variant detection in massively parallel sequencing of
individual and pooled samples.” In: Bioinformatics 25.17 (2009), pp. 2283–5. doi:
10.1093/bioinformatics/btp373 (cit. on p. 49).

[542] R. Nielsen et al. “Genotype and SNP calling from next-generation sequencing data”.
In: Nature Reviews Genetics 12.6 (2011), pp. 443–451. doi: 10.1038/nrg2986 (cit.
on p. 49).

[543] C. A. Albers et al. “Dindel: accurate indel calls from short-read data.” In: Genome
research 21.6 (2011), pp. 961–73. doi: 10.1101/gr.112326.110 (cit. on p. 49).

[544] F. Xu et al. “A fast and accurate SNP detection algorithm for next-generation
sequencing data.” In: Nature communications 3 (2012), p. 1258. doi: 10.1038/
ncomms2256 (cit. on p. 49).

[545] E. Garrison and G. Marth. “Haplotype-based variant detection from short-read
sequencing”. In: arXiv preprints (2012), p. 9. url: http://arxiv.org/abs/1207.
3907 (cit. on pp. 49, 51).

[546] R. A. Farrer et al. “Using False Discovery Rates to Benchmark SNP-callers in
next-generation sequencing projects”. In: Scientific Reports 3 (2013), pp. 1–6. doi:
10.1038/srep01512 (cit. on p. 49).

[547] P. Danecek et al. “The variant call format and VCFtools”. In: Bioinformatics 27.15
(2011), pp. 2156–2158. doi: 10.1093/bioinformatics/btr330 (cit. on p. 49).

[548] P. Ferragina and G. Manzini. “Indexing compressed text”. In: Journal of the ACM
52.4 (2005), pp. 552–581. doi: 10.1145/1082036.1082039 (cit. on p. 53).

[549] N. Gupta et al. “Efficient Index Maintenance Under Dynamic Genome Modifica-
tion”. In: arXiv preprints (2016), pp. 1–12. url: http://arxiv.org/abs/1604.
03132 (cit. on pp. 54, 67).

[550] A. Ghanayim and D. Geiger. Iterative Referencing for Improving the Interpretation
of DNA Sequence Data. Tech. rep. Israel: Computer Science Department, Technion,
2013 (cit. on p. 56).

[551] B. E. Dutilh, M. A. Huynen, and M. Strous. “Increasing the coverage of a metapop-
ulation consensus genome by iterative read mapping and assembly”. In: Bioinfor-
matics 25.21 (2009), pp. 2878–2881. doi: 10.1093/bioinformatics/btp377 (cit.
on p. 56).

[552] T. D. Otto et al. “Iterative correction of reference Nucleotides (iCORN) using sec-
ond generation sequencing technology”. In: Bioinformatics 26.14 (2010), pp. 1704–
1707. doi: 10.1093/bioinformatics/btq269 (cit. on p. 56).

[553] I. J. Tsai, T. D. Otto, and M. Berriman. “Improving draft assemblies by iterative
mapping and assembly of short reads to eliminate gaps”. In: Genome Biology 11.4
(2010), R41. doi: 10.1186/gb-2010-11-4-r41 (cit. on p. 56).

[554] B. E. Dutilh et al. “Iterative Read Mapping and Assembly Allows the Use of a More
Distant Reference in Metagenome Assembly”. In: Handbook of Molecular Microbial
Ecology I. Vol. I. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011, pp. 379–385.
doi: 10.1002/9781118010518.ch43 (cit. on p. 56).

http://dx.doi.org/10.1101/gr.088013.108
http://dx.doi.org/10.1093/bioinformatics/btp373
http://dx.doi.org/10.1038/nrg2986
http://dx.doi.org/10.1101/gr.112326.110
http://dx.doi.org/10.1038/ncomms2256
http://dx.doi.org/10.1038/ncomms2256
http://arxiv.org/abs/1207.3907
http://arxiv.org/abs/1207.3907
http://dx.doi.org/10.1038/srep01512
http://dx.doi.org/10.1093/bioinformatics/btr330
http://dx.doi.org/10.1145/1082036.1082039
http://arxiv.org/abs/1604.03132
http://arxiv.org/abs/1604.03132
http://dx.doi.org/10.1093/bioinformatics/btp377
http://dx.doi.org/10.1093/bioinformatics/btq269
http://dx.doi.org/10.1186/gb-2010-11-4-r41
http://dx.doi.org/10.1002/9781118010518.ch43

178 BIBLIOGRAPHY

[555] H. Tae et al. “Improved variation calling via an iterative backbone remapping and
local assembly method for bacterial genomes”. In: Genomics 100.5 (2012), pp. 271–
276. doi: 10.1016/j.ygeno.2012.07.015 (cit. on p. 56).

[556] C. Hahn, L. Bachmann, and B. Chevreux. “Reconstructing mitochondrial genomes
directly from genomic next-generation sequencing reads–a baiting and iterative
mapping approach.” In: Nucleic acids research 41.13 (2013), e129. doi: 10.1093/
nar/gkt371 (cit. on p. 56).

[557] K. McElroy, T. Thomas, and F. Luciani. “Deep sequencing of evolving pathogen
populations: applications, errors, and bioinformatic solutions”. In: Microbial Infor-
matics and Experimentation 4.1 (2014), p. 1. doi: 10.1186/2042-5783-4-1 (cit.
on p. 56).

[558] T. Hackl et al. “proovread: large-scale high-accuracy PacBio correction through
iterative short read consensus”. In: Bioinformatics 30.21 (2014), pp. 3004–3011.
doi: 10.1093/bioinformatics/btu392 (cit. on pp. 56, 65).

[559] B. M. P. Verbist et al. “VirVarSeq: a low-frequency virus variant detection pipeline
for Illumina sequencing using adaptive base-calling accuracy filtering”. In: Bioin-
formatics 31.1 (2015), pp. 94–101. doi: 10.1093/bioinformatics/btu587 (cit. on
p. 56).

[560] H. Ode et al. “Quasispecies Analyses of the HIV-1 Near-full-length Genome With
Illumina MiSeq”. In: Frontiers in Microbiology 6.November (2015), pp. 1–11. doi:
10.3389/fmicb.2015.01258 (cit. on p. 56).

[561] H. Li. “A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data”.
In: Bioinformatics 27.21 (2011), pp. 2987–2993. doi: 10.1093/bioinformatics/
btr509 (cit. on p. 57).

[562] O. Tange. “GNU Parallel: the command-line power tool”. In: ;login: The USENIX
Magazine 36.1 (2011), pp. 42–47 (cit. on p. 57).

[563] H. Li. “Improving SNP discovery by base alignment quality”. In: Bioinformatics
27.8 (2011), pp. 1157–1158. doi: 10.1093/bioinformatics/btr076 (cit. on p. 60).

[564] P. J. A. Cock et al. “SAM/BAM format v1.5 extensions for de novo assemblies”. In:
bioRxiv preprints (2015), p. 020024. doi: 10.1101/020024. url: http://biorxiv.
org/lookup/doi/10.1101/020024 (cit. on p. 63).

[565] D. C. Koboldt et al. “VarScan 2: somatic mutation and copy number alteration dis-
covery in cancer by exome sequencing.” In: Genome research 22.3 (2012), pp. 568–
76. doi: 10.1101/gr.129684.111 (cit. on pp. 64, 65).

[566] V. Boeva et al. “Control-FREEC: a tool for assessing copy number and allelic
content using next-generation sequencing data”. In: Bioinformatics 28.3 (2012),
pp. 423–425. doi: 10.1093/bioinformatics/btr670 (cit. on pp. 64, 65).

[567] C. T. Brown et al. “A Reference-Free Algorithm for Computational Normalization
of Shotgun Sequencing Data”. In: arXiv preprints (2012), pp. 1–18. url: http:
//arxiv.org/abs/1203.4802 (cit. on p. 64).

[568] A. Roberts and L. Pachter. “Streaming fragment assignment for real-time analysis
of sequencing experiments”. In: Nature Methods 10.1 (2012), pp. 71–73. doi: 10.
1038/nmeth.2251 (cit. on p. 64).

http://dx.doi.org/10.1016/j.ygeno.2012.07.015
http://dx.doi.org/10.1093/nar/gkt371
http://dx.doi.org/10.1093/nar/gkt371
http://dx.doi.org/10.1186/2042-5783-4-1
http://dx.doi.org/10.1093/bioinformatics/btu392
http://dx.doi.org/10.1093/bioinformatics/btu587
http://dx.doi.org/10.3389/fmicb.2015.01258
http://dx.doi.org/10.1093/bioinformatics/btr509
http://dx.doi.org/10.1093/bioinformatics/btr509
http://dx.doi.org/10.1093/bioinformatics/btr076
http://dx.doi.org/10.1101/020024
http://biorxiv.org/lookup/doi/10.1101/020024
http://biorxiv.org/lookup/doi/10.1101/020024
http://dx.doi.org/10.1101/gr.129684.111
http://dx.doi.org/10.1093/bioinformatics/btr670
http://arxiv.org/abs/1203.4802
http://arxiv.org/abs/1203.4802
http://dx.doi.org/10.1038/nmeth.2251
http://dx.doi.org/10.1038/nmeth.2251

BIBLIOGRAPHY 179

[569] P. Melsted and B. V. Halldorsson. “KmerStream: streaming algorithms for k-mer
abundance estimation”. In: Bioinformatics 30.24 (2014), pp. 3541–3547. doi: 10.
1093/bioinformatics/btu713 (cit. on p. 64).

[570] Q. Zhang, S. Awad, and C. Brown. Crossing the streams : a framework for streaming
analysis of short DNA sequencing reads. 2015. doi: 10.7287/peerj.preprints.
890.v1 (cit. on p. 64).

[571] M. D. Cao et al. “Scaffolding and Completing Genome Assemblies in Real-time
with Nanopore Sequencing”. In: bioRxiv preprints (2016). doi: 10.1101/054783.
url: http://biorxiv.org/lookup/doi/10.1101/054783 (cit. on p. 64).

[572] M. D. Cao et al. “Streaming algorithms for identification of pathogens and antibiotic
resistance potential from real-time MinIONTM sequencing”. In: GigaScience 5.1
(2016), p. 32. doi: 10.1186/s13742-016-0137-2 (cit. on p. 64).

[573] M. D. Cao et al. “Realtime analysis and visualization of MinION sequencing data
with npReader”. In: Bioinformatics 32.5 (2016), pp. 764–766. doi: 10 . 1093 /
bioinformatics/btv658 (cit. on p. 64).

[574] M. Gerstung et al. “Reliable detection of subclonal single-nucleotide variants in
tumour cell populations”. In: Nature Communications 3 (2012), p. 811. doi: 10.
1038/ncomms1814 (cit. on p. 65).

[575] R. Goya et al. “SNVMix: predicting single nucleotide variants from next-generation
sequencing of tumors.” In: Bioinformatics 26.6 (2010), pp. 730–6. doi: 10.1093/
bioinformatics/btq040 (cit. on p. 65).

[576] A. Roth et al. “JointSNVMix: a probabilistic model for accurate detection of so-
matic mutations in normal/tumour paired next-generation sequencing data.” In:
Bioinformatics 28.7 (2012), pp. 907–13. doi: 10.1093/bioinformatics/bts053
(cit. on p. 65).

[577] C. T. Saunders et al. “Strelka: accurate somatic small-variant calling from se-
quenced tumor-normal sample pairs.” In: Bioinformatics 28.14 (2012), pp. 1811–7.
doi: 10.1093/bioinformatics/bts271 (cit. on p. 65).

[578] D. E. Larson et al. “SomaticSniper: identification of somatic point mutations in
whole genome sequencing data.” In: Bioinformatics 28.3 (2012), pp. 311–7. doi:
10.1093/bioinformatics/btr665 (cit. on p. 65).

[579] E. Bareke et al. “A novel mathematical basis for predicting somatic single nu-
cleotide variants from next-generation sequencing”. In: Proceedings of the ACM
Conference on Bioinformatics, Computational Biology and Biomedicine - BCB
’12. BCB ’12. New York, New York, USA: ACM Press, 2012, pp. 533–535. doi:
10.1145/2382936.2383012 (cit. on p. 65).

[580] J. Bian et al. “SNVHMM: predicting single nucleotide variants from next generation
sequencing.” In: BMC bioinformatics 14.1 (2013), p. 225. doi: 10.1186/1471-
2105-14-225 (cit. on p. 65).

[581] J. F. Sathirapongsasuti et al. “Exome sequencing-based copy-number variation
and loss of heterozygosity detection: ExomeCNV”. In: Bioinformatics 27.19 (2011),
pp. 2648–2654. doi: 10.1093/bioinformatics/btr462 (cit. on p. 65).

[582] V. Boeva et al. “Control-free calling of copy number alterations in deep-sequencing
data using GC-content normalization”. In: Bioinformatics 27.2 (2011), pp. 268–269.
doi: 10.1093/bioinformatics/btq635 (cit. on p. 65).

http://dx.doi.org/10.1093/bioinformatics/btu713
http://dx.doi.org/10.1093/bioinformatics/btu713
http://dx.doi.org/10.7287/peerj.preprints.890.v1
http://dx.doi.org/10.7287/peerj.preprints.890.v1
http://dx.doi.org/10.1101/054783
http://biorxiv.org/lookup/doi/10.1101/054783
http://dx.doi.org/10.1186/s13742-016-0137-2
http://dx.doi.org/10.1093/bioinformatics/btv658
http://dx.doi.org/10.1093/bioinformatics/btv658
http://dx.doi.org/10.1038/ncomms1814
http://dx.doi.org/10.1038/ncomms1814
http://dx.doi.org/10.1093/bioinformatics/btq040
http://dx.doi.org/10.1093/bioinformatics/btq040
http://dx.doi.org/10.1093/bioinformatics/bts053
http://dx.doi.org/10.1093/bioinformatics/bts271
http://dx.doi.org/10.1093/bioinformatics/btr665
http://dx.doi.org/10.1145/2382936.2383012
http://dx.doi.org/10.1186/1471-2105-14-225
http://dx.doi.org/10.1186/1471-2105-14-225
http://dx.doi.org/10.1093/bioinformatics/btr462
http://dx.doi.org/10.1093/bioinformatics/btq635

180 BIBLIOGRAPHY

[583] S. A. Forbes et al. “COSMIC: exploring the world’s knowledge of somatic mutations
in human cancer.” In: Nucleic acids research 43.Database issue (2015), pp. D805–
11. doi: 10.1093/nar/gku1075 (cit. on p. 65).

[584] D. Laehnemann, A. Borkhardt, and A. C. McHardy. “Denoising DNA deep sequenc-
ing data-high-throughput sequencing errors and their correction.” In: Briefings in
bioinformatics 17.1 (2016), pp. 154–79. doi: 10.1093/bib/bbv029 (cit. on p. 65).

[585] N. J. Loman, J. Quick, and J. T. Simpson. “A complete bacterial genome assembled
de novo using only nanopore sequencing data”. In: Nature Methods 12.8 (2015),
pp. 733–735. doi: 10.1038/nmeth.3444 (cit. on p. 65).

[586] M. Pop et al. “Comparative genome assembly.” In: Briefings in bioinformatics 5.3
(2004), pp. 237–48 (cit. on p. 65).

[587] T. Rausch et al. “A consistency-based consensus algorithm for de novo and reference-
guided sequence assembly of short reads”. In: Bioinformatics 25.9 (2009), pp. 1118–
1124. doi: 10.1093/bioinformatics/btp131 (cit. on p. 65).

[588] K. Schneeberger et al. “Reference-guided assembly of four diverse Arabidopsis
thaliana genomes”. In: Proceedings of the National Academy of Sciences 108.25
(2011), pp. 10249–10254. doi: 10.1073/pnas.1107739108 (cit. on p. 65).

[589] S. Gnerre et al. “Assisted assembly: how to improve a de novo genome assembly
by using related species”. In: Genome Biology 10.8 (2009), R88. doi: 10.1186/gb-
2009-10-8-r88 (cit. on p. 65).

[590] F. Vezzi, F. Cattonaro, and A. Policriti. “e-RGA: enhanced Reference Guided As-
sembly of Complex Genomes”. In: EMBnet.journal 17.1 (2011), p. 46. doi: 10.
14806/ej.17.1.208 (cit. on p. 65).

[591] J. Nijkamp et al. “Integrating genome assemblies with MAIA”. In: Bioinformatics
27.13 (2011), pp. i433–i439. doi: 10.1093/bioinformatics/btq366 (cit. on p. 65).

[592] G. G. Silva et al. “Combining de novo and reference-guided assembly with scaf-
fold_builder”. In: Source Code for Biology and Medicine 8.1 (2013), p. 23. doi:
10.1186/1751-0473-8-23 (cit. on p. 65).

[593] E. Bao, T. Jiang, and T. Girke. “AlignGraph: algorithm for secondary de novo
genome assembly guided by closely related references”. In: Bioinformatics 30.12
(2014), pp. i319–i328. doi: 10.1093/bioinformatics/btu291 (cit. on p. 65).

[594] F. Bertels et al. “Automated Reconstruction of Whole-Genome Phylogenies from
Short-Sequence Reads”. In: Molecular Biology and Evolution 31.5 (2014), pp. 1077–
1088. doi: 10.1093/molbev/msu088 (cit. on p. 66).

[595] A. Dilthey et al. “Improved genome inference in the MHC using a population
reference graph”. In: Nature Genetics 47.6 (2015), pp. 682–688. doi: 10.1038/ng.
3257 (cit. on p. 66).

[596] N. Nguyen et al. “Building a Pan-Genome Reference for a Population”. In: Journal
of Computational Biology 22.5 (2015), pp. 387–401. doi: 10.1089/cmb.2014.0146
(cit. on p. 66).

[597] Global Alliance for Genomics and Health: Human Genome Variation Map (HGVM)
Pilot Project. 2016 (cit. on p. 66).

http://dx.doi.org/10.1093/nar/gku1075
http://dx.doi.org/10.1093/bib/bbv029
http://dx.doi.org/10.1038/nmeth.3444
http://dx.doi.org/10.1093/bioinformatics/btp131
http://dx.doi.org/10.1073/pnas.1107739108
http://dx.doi.org/10.1186/gb-2009-10-8-r88
http://dx.doi.org/10.1186/gb-2009-10-8-r88
http://dx.doi.org/10.14806/ej.17.1.208
http://dx.doi.org/10.14806/ej.17.1.208
http://dx.doi.org/10.1093/bioinformatics/btq366
http://dx.doi.org/10.1186/1751-0473-8-23
http://dx.doi.org/10.1093/bioinformatics/btu291
http://dx.doi.org/10.1093/molbev/msu088
http://dx.doi.org/10.1038/ng.3257
http://dx.doi.org/10.1038/ng.3257
http://dx.doi.org/10.1089/cmb.2014.0146

BIBLIOGRAPHY 181

[598] J. C. Venter. “Environmental Genome Shotgun Sequencing of the Sargasso Sea”.
In: Science 304.5667 (2004), pp. 66–74. doi: 10.1126/science.1093857 (cit. on
p. 73).

[599] E. Karsenti et al. “A Holistic Approach to Marine Eco-Systems Biology”. In: PLoS
Biology 9.10 (2011), e1001177. doi: 10.1371/journal.pbio.1001177 (cit. on
p. 73).

[600] T. M. Vogel et al. “TerraGenome: a consortium for the sequencing of a soil metagenome”.
In: Nature Reviews Microbiology 7.4 (2009), pp. 252–252. doi: 10.1038/nrmicro2119
(cit. on p. 73).

[601] J. Peterson et al. “The NIH Human Microbiome Project”. In: Genome Research
19.12 (2009), pp. 2317–2323. doi: 10.1101/gr.096651.109 (cit. on p. 73).

[602] Anon. “Metagenomics versus Moore’s law”. In: Nature Methods 6.9 (2009), pp. 623–
623. doi: 10.1038/nmeth0909-623 (cit. on p. 73).

[603] X. Zhang et al. “Reading the Underlying Information From Massive Metagenomic
Sequencing Data”. In: Proceedings of the IEEE (2016), pp. 1–15. doi: 10.1109/
JPROC.2016.2604406 (cit. on pp. 73, 75).

[604] D. H. Huson et al. “Integrative analysis of environmental sequences using MEGAN4”.
In: Genome Research 21.9 (2011), pp. 1552–1560. doi: 10.1101/gr.120618.111
(cit. on pp. 73, 78).

[605] A. Brady and S. Salzberg. “PhymmBL expanded: confidence scores, custom databases,
parallelization and more”. In: Nature Methods 8.5 (2011), pp. 367–367. doi: 10.
1038/nmeth0511-367 (cit. on pp. 74, 78).

[606] S. Lindgreen, K. L. Adair, and P. P. Gardner. “An evaluation of the accuracy and
speed of metagenome analysis tools”. In: Scientific Reports 6 (2016), p. 19233. doi:
10.1038/srep19233 (cit. on pp. 74, 75, 99).

[607] H. Teeling and F. O. Glockner. “Current opportunities and challenges in microbial
metagenome analysis–a bioinformatic perspective”. In: Briefings in Bioinformatics
13.6 (2012), pp. 728–742. doi: 10.1093/bib/bbs039 (cit. on p. 74).

[608] S. Vinga. “Editorial: Alignment-free methods in computational biology”. In: Brief-
ings in Bioinformatics 15.3 (2014), pp. 341–342. doi: 10.1093/bib/bbu005 (cit. on
pp. 74, 82).

[609] K. Vervier et al. “Large-scale machine learning for metagenomics sequence classifi-
cation”. In: Bioinformatics 32.7 (2016), pp. 1023–1032. doi: 10.1093/bioinformatics/
btv683 (cit. on pp. 75, 77).

[610] S. K. Ames et al. “Scalable metagenomic taxonomy classification using a reference
genome database”. In: Bioinformatics 29.18 (2013), pp. 2253–2260. doi: 10.1093/
bioinformatics/btt389 (cit. on pp. 74–76, 80, 85, 96).

[611] R. J. Randle-Boggis et al. “Evaluating techniques for metagenome annotation using
simulated sequence data”. In: FEMS Microbiology Ecology 92.7 (2016), fiw095. doi:
10.1093/femsec/fiw095 (cit. on p. 75).

[612] D. O. Ricke, A. Shcherbina, and N. Chiu. “Evaluating performance of metagenomic
characterization algorithms using in silico datasets generated with FASTQSim”. In:
bioRxiv (2016), p. 046532. doi: 10.1101/046532. url: http://biorxiv.org/
content/early/2016/03/31/046532.abstract (cit. on p. 75).

http://dx.doi.org/10.1126/science.1093857
http://dx.doi.org/10.1371/journal.pbio.1001177
http://dx.doi.org/10.1038/nrmicro2119
http://dx.doi.org/10.1101/gr.096651.109
http://dx.doi.org/10.1038/nmeth0909-623
http://dx.doi.org/10.1109/JPROC.2016.2604406
http://dx.doi.org/10.1109/JPROC.2016.2604406
http://dx.doi.org/10.1101/gr.120618.111
http://dx.doi.org/10.1038/nmeth0511-367
http://dx.doi.org/10.1038/nmeth0511-367
http://dx.doi.org/10.1038/srep19233
http://dx.doi.org/10.1093/bib/bbs039
http://dx.doi.org/10.1093/bib/bbu005
http://dx.doi.org/10.1093/bioinformatics/btv683
http://dx.doi.org/10.1093/bioinformatics/btv683
http://dx.doi.org/10.1093/bioinformatics/btt389
http://dx.doi.org/10.1093/bioinformatics/btt389
http://dx.doi.org/10.1093/femsec/fiw095
http://dx.doi.org/10.1101/046532
http://biorxiv.org/content/early/2016/03/31/046532.abstract
http://biorxiv.org/content/early/2016/03/31/046532.abstract

182 BIBLIOGRAPHY

[613] M. A. Peabody et al. “Evaluation of shotgun metagenomics sequence classification
methods using in silico and in vitro simulated communities”. In: BMC Bioinfor-
matics 16.1 (2015), p. 363. doi: 10.1186/s12859-015-0788-5 (cit. on p. 75).

[614] H. Vinje et al. “Comparing K-mer based methods for improved classification of 16S
sequences”. In: BMC Bioinformatics 16.1 (2015), p. 205. doi: 10.1186/s12859-
015-0647-4 (cit. on p. 75).

[615] Pavlopoulos et al. “Metagenomics: Tools and Insights for Analyzing Next-Generation
Sequencing Data Derived from Biodiversity Studies”. In: Bioinformatics and Biol-
ogy Insights (2015), p. 75. doi: 10.4137/BBI.S12462 (cit. on p. 75).

[616] J. Jacob. Pipelines for pathogen identification. Tech. rep. 2016. url: https://goo.
gl/IFCLdm (cit. on p. 75).

[617] S. N. Gardner et al. “Searching more genomic sequence with less memory for fast
and accurate metagenomic profiling”. In: bioRxiv preprints (2016). doi: 10.1101/
036681. url: http://biorxiv.org/lookup/doi/10.1101/036681 (cit. on p. 76).

[618] D. Kim et al. “Centrifuge: rapid and sensitive classification of metagenomic se-
quences”. In: Genome Research 26.12 (2016), pp. 1721–1729. doi: 10.1101/gr.
210641.116 (cit. on pp. 76, 80, 112).

[619] P. Menzel, K. L. Ng, and A. Krogh. “Fast and sensitive taxonomic classification
for metagenomics with Kaiju”. In: Nature Communications 7 (2016), p. 11257. doi:
10.1038/ncomms11257 (cit. on pp. 77, 80).

[620] R. Ounit et al. “CLARK: fast and accurate classification of metagenomic and ge-
nomic sequences using discriminative k-mers”. In: BMC Genomics 16 (2015). doi:
10.1186/s12864-015-1419-2 (cit. on pp. 77, 80).

[621] S. S. Minot, N. Krumm, and N. B. Greenfield. “One Codex: A Sensitive and Ac-
curate Data Platform for Genomic Microbial Identification”. In: bioRxiv preprints
(2015), p. 027607. doi: 10.1101/027607. url: http://biorxiv.org/lookup/
doi/10.1101/027607 (cit. on pp. 77, 80).

[622] J. Kawulok and S. Deorowicz. “CoMeta: Classification of Metagenomes Using k-
mers”. In: PLOS ONE 10.4 (2015), e0121453. doi: 10 . 1371 / journal . pone .
0121453 (cit. on pp. 77, 80, 106).

[623] A. Y. Lee, C. S. Lee, and R. N. Van Gelder. “Scalable metagenomics alignment
research tool (SMART): a scalable, rapid, and complete search heuristic for the
classification of metagenomic sequences from complex sequence populations”. In:
BMC Bioinformatics 17.1 (2016), p. 292. doi: 10.1186/s12859-016-1159-6 (cit.
on pp. 77, 80, 112).

[624] N. Segata et al. “Metagenomic microbial community profiling using unique clade-
specific marker genes”. In: Nature Methods 9.8 (2012), pp. 811–814. doi: 10.1038/
nmeth.2066 (cit. on p. 77).

[625] D. T. Truong et al. “MetaPhlAn2 for enhanced metagenomic taxonomic profiling”.
In: Nature Methods 12.10 (2015), pp. 902–903. doi: 10.1038/nmeth.3589 (cit. on
p. 77).

[626] D. H. Huson et al. “MEGAN analysis of metagenomic data”. In: Genome Research
17.3 (2007), pp. 377–386. doi: 10.1101/gr.5969107 (cit. on p. 78).

http://dx.doi.org/10.1186/s12859-015-0788-5
http://dx.doi.org/10.1186/s12859-015-0647-4
http://dx.doi.org/10.1186/s12859-015-0647-4
http://dx.doi.org/10.4137/BBI.S12462
https://goo.gl/IFCLdm
https://goo.gl/IFCLdm
http://dx.doi.org/10.1101/036681
http://dx.doi.org/10.1101/036681
http://biorxiv.org/lookup/doi/10.1101/036681
http://dx.doi.org/10.1101/gr.210641.116
http://dx.doi.org/10.1101/gr.210641.116
http://dx.doi.org/10.1038/ncomms11257
http://dx.doi.org/10.1186/s12864-015-1419-2
http://dx.doi.org/10.1101/027607
http://biorxiv.org/lookup/doi/10.1101/027607
http://biorxiv.org/lookup/doi/10.1101/027607
http://dx.doi.org/10.1371/journal.pone.0121453
http://dx.doi.org/10.1371/journal.pone.0121453
http://dx.doi.org/10.1186/s12859-016-1159-6
http://dx.doi.org/10.1038/nmeth.2066
http://dx.doi.org/10.1038/nmeth.2066
http://dx.doi.org/10.1038/nmeth.3589
http://dx.doi.org/10.1101/gr.5969107

BIBLIOGRAPHY 183

[627] B. Liu et al. “MetaPhyler: Taxonomic profiling for metagenomic sequences”. In:
2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
IEEE, 2010, pp. 95–100. doi: 10.1109/BIBM.2010.5706544 (cit. on p. 78).

[628] Y. Wang et al. “MetaCluster-TA: taxonomic annotation for metagenomic data
based on assembly-assisted binning”. In: BMC Genomics 15.Suppl 1 (2014), S12.
doi: 10.1186/1471-2164-15-S1-S12 (cit. on p. 78).

[629] A. A. Metwally et al. “WEVOTE: Weighted Voting Taxonomic Identification Method
of Microbial Sequences”. In: bioRxiv preprints (2016), pp. 1–22. doi: 10.1101/
054205. url: http://biorxiv.org/lookup/doi/10.1101/054205 (cit. on p. 78).

[630] I. Borozan, S. Watt, and V. Ferretti. “Integrating alignment-based and alignment-
free sequence similarity measures for biological sequence classification”. In: Bioin-
formatics 31.9 (2015), pp. 1396–1404. doi: 10.1093/bioinformatics/btv006 (cit.
on p. 78).

[631] I. Borozan and V. Ferretti. “CSSSCL: a python package that uses combined se-
quence similarity scores for accurate taxonomic classification of long and short se-
quence reads.” In: Bioinformatics 32.3 (2016), pp. 453–5. doi: 10.1093/bioinformatics/
btv587 (cit. on p. 78).

[632] A. Brady and S. L. Salzberg. “Phymm and PhymmBL: metagenomic phylogenetic
classification with interpolated Markov models”. In: Nature Methods 6.9 (2009),
pp. 673–676. doi: 10.1038/nmeth.1358 (cit. on p. 78).

[633] S. L. Salzberg et al. “Microbial gene identification using interpolated Markov mod-
els.” In: Nucleic acids research 26.2 (1998), pp. 544–8. doi: 10.1093/nar/26.2.544
(cit. on p. 78).

[634] T. A. K. Freitas et al. “Accurate read-based metagenome characterization using a
hierarchical suite of unique signatures”. In: Nucleic Acids Research (2015), pp. 1–
14. doi: 10.1093/nar/gkv180 (cit. on p. 78).

[635] J. Lu et al. “Bracken: Estimating species abundance in metagenomics data”. In:
bioRxiv preprints (2016), pp. 1–14. doi: 10.1101/051813. url: http://biorxiv.
org/lookup/doi/10.1101/051813 (cit. on p. 78).

[636] D. Koslicki and D. Falush. MetaPalette: A K-mer painting approach for metage-
nomic taxonomic profiling and quantification of novel strain variation. Tech. rep.
2016. doi: 10.1128/mSystems.00020-16 (cit. on p. 78).

[637] D. H. Huson et al. “MEGAN Community Edition - Interactive Exploration and
Analysis of Large-Scale Microbiome Sequencing Data”. In: PLOS Computational
Biology 12.6 (2016), e1004957. doi: 10.1371/journal.pcbi.1004957 (cit. on
p. 79).

[638] S. C. Bayliss et al. “Bayesian identification of bacterial strains from sequencing
data”. In: Microbial Genomics 2.8 (2016), pp. 1–16. doi: 10.1099/mgen.0.000075
(cit. on p. 79).

[639] T. H. Dadi, B. Y. Renard, and H. Lothar. “SLIMM : Species Level Identification
of Microorganisms from Metagenomes”. In: PeerJ Preprints (2016), pp. 1–9. doi:
10.7287/peerj.preprints.2378v1 (cit. on p. 79).

[640] D. Koslicki, S. Foucart, and G. Rosen. “WGSQuikr: Fast Whole-Genome Shotgun
Metagenomic Classification”. In: PLoS ONE 9.3 (2014), e91784. doi: 10.1371/
journal.pone.0091784 (cit. on p. 79).

http://dx.doi.org/10.1109/BIBM.2010.5706544
http://dx.doi.org/10.1186/1471-2164-15-S1-S12
http://dx.doi.org/10.1101/054205
http://dx.doi.org/10.1101/054205
http://biorxiv.org/lookup/doi/10.1101/054205
http://dx.doi.org/10.1093/bioinformatics/btv006
http://dx.doi.org/10.1093/bioinformatics/btv587
http://dx.doi.org/10.1093/bioinformatics/btv587
http://dx.doi.org/10.1038/nmeth.1358
http://dx.doi.org/10.1093/nar/26.2.544
http://dx.doi.org/10.1093/nar/gkv180
http://dx.doi.org/10.1101/051813
http://biorxiv.org/lookup/doi/10.1101/051813
http://biorxiv.org/lookup/doi/10.1101/051813
http://dx.doi.org/10.1128/mSystems.00020-16
http://dx.doi.org/10.1371/journal.pcbi.1004957
http://dx.doi.org/10.1099/mgen.0.000075
http://dx.doi.org/10.7287/peerj.preprints.2378v1
http://dx.doi.org/10.1371/journal.pone.0091784
http://dx.doi.org/10.1371/journal.pone.0091784

184 BIBLIOGRAPHY

[641] A. Sobih, A. I. Tomescu, and V. Mäkinen. “MetaFlow: Metagenomic Profiling
Based on Whole-Genome Coverage Analysis with Min-Cost Flows”. In: Research
in Computational Molecular Biology: 20th Annual Conference, RECOMB 2016,
Santa Monica, CA, USA, April 17-21, 2016, Proceedings. 2016, pp. 111–121. doi:
10.1007/978-3-319-31957-5_8 (cit. on p. 79).

[642] G. Benoit et al. “Multiple comparative metagenomics using multiset k -mer count-
ing”. In: PeerJ Computer Science 2 (2016), e94. doi: 10.7717/peerj-cs.94 (cit.
on p. 79).

[643] B. D. Ondov et al. “Mash: fast genome and metagenome distance estimation using
MinHash”. In: Genome Biology 17.1 (2016), p. 132. doi: 10.1186/s13059-016-
0997-x (cit. on p. 79).

[644] V. I. Ulyantsev et al. “MetaFast: fast reference-free graph-based comparison of
shotgun metagenomic data.” In: Bioinformatics 32.18 (2016), pp. 2760–7. doi: 10.
1093/bioinformatics/btw312 (cit. on p. 79).

[645] K. D. Murray et al. “kWIP: The k-mer Weighted Inner Product, a de novo estimator
of genetic similarity”. In: bioRxiv preprints (2016), pp. 1–15. doi: 10.1101/075481.
url: http://biorxiv.org/lookup/doi/10.1101/075481 (cit. on p. 80).

[646] L. Noé and G. Kucherov. “Improved hit criteria for DNA local alignment”. In: BMC
bioinformatics 5.1 (2004), p. 149. doi: 10.1186/1471-2105-5-149 (cit. on p. 82).

[647] G. Benson and D. Y. F. Mak. “Exact Distribution of a Spaced Seed Statistic
for DNA Homology Detection”. In: String Processing and Information Retrieval.
Vol. 5280 LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 282–
293. doi: 10.1007/978-3-540-89097-3_27 (cit. on p. 82).

[648] A. Ben-Hur et al. “Support vector machines and kernels for computational biol-
ogy”. In: PLoS Computational Biology 4.10 (2008). doi: 10.1371/journal.pcbi.
1000173 (cit. on p. 83).

[649] E. Tortoli. “Phylogeny of the genus Mycobacterium: many doubts, few certainties.”
In: Infection, genetics and evolution : journal of molecular epidemiology and evo-
lutionary genetics in infectious diseases 12.4 (2012), pp. 827–31. doi: 10.1016/j.
meegid.2011.05.025 (cit. on p. 85).

[650] E. Helgason et al. “Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—
One Species on the Basis of Genetic Evidence”. In: Applied and Environmental
Microbiology 66.6 (2000), pp. 2627–2630. doi: 10.1128/AEM.66.6.2627-2630.
2000 (cit. on p. 87).

[651] L. Alcaraz et al. “Understanding the evolutionary relationships and major traits of
Bacillus through comparative genomics”. In: BMC Genomics 11.1 (2010), p. 332.
doi: 10.1186/1471-2164-11-332 (cit. on p. 87).

[652] A. F. Auch et al. “Digital DNA-DNA hybridization for microbial species delineation
by means of genome-to-genome sequence comparison”. In: Standards in Genomic
Sciences 2.1 (2010), pp. 117–134. doi: 10.4056/sigs.531120 (cit. on p. 87).

[653] Y. Sun and J. Buhler. “Designing Multiple Simultaneous Seeds for DNA Similarity
Search”. In: Journal of Computational Biology 12.6 (2005), pp. 847–861. doi: 10.
1089/cmb.2005.12.847 (cit. on p. 95).

http://dx.doi.org/10.1007/978-3-319-31957-5_8
http://dx.doi.org/10.7717/peerj-cs.94
http://dx.doi.org/10.1186/s13059-016-0997-x
http://dx.doi.org/10.1186/s13059-016-0997-x
http://dx.doi.org/10.1093/bioinformatics/btw312
http://dx.doi.org/10.1093/bioinformatics/btw312
http://dx.doi.org/10.1101/075481
http://biorxiv.org/lookup/doi/10.1101/075481
http://dx.doi.org/10.1186/1471-2105-5-149
http://dx.doi.org/10.1007/978-3-540-89097-3_27
http://dx.doi.org/10.1371/journal.pcbi.1000173
http://dx.doi.org/10.1371/journal.pcbi.1000173
http://dx.doi.org/10.1016/j.meegid.2011.05.025
http://dx.doi.org/10.1016/j.meegid.2011.05.025
http://dx.doi.org/10.1128/AEM.66.6.2627-2630.2000
http://dx.doi.org/10.1128/AEM.66.6.2627-2630.2000
http://dx.doi.org/10.1186/1471-2164-11-332
http://dx.doi.org/10.4056/sigs.531120
http://dx.doi.org/10.1089/cmb.2005.12.847
http://dx.doi.org/10.1089/cmb.2005.12.847

BIBLIOGRAPHY 185

[654] Louxin Zhang. “Superiority of Spaced Seeds for Homology Search”. In: IEEE/ACM
Transactions on Computational Biology and Bioinformatics 4.3 (2007), pp. 496–
505. doi: 10.1109/tcbb.2007.1013 (cit. on p. 97).

[655] R. Chikhi et al. “On the Representation of de Bruijn Graphs”. In: Research in Com-
putational Molecular Biology: 18th Annual International Conference, RECOMB
2014, Pittsburgh, PA, USA, April 2-5, 2014, Proceedings. Vol. 8394 LNBI. 2014,
pp. 35–55. doi: 10.1007/978-3-319-05269-4_4 (cit. on p. 102).

[656] R. Chikhi et al. “On the Representation of De Bruijn Graphs”. In: Journal of
Computational Biology 22.5 (2015), pp. 336–352. doi: 10.1089/cmb.2014.0160
(cit. on p. 102).

[657] K. Salikhov. “Efficient data structures for storing and indexing DNA sequences”.
To appear in 2017. PhD thesis. Université Paris-Est (cit. on pp. 104, 111).

[658] T. Tatusova et al. “RefSeq microbial genomes database: new representation and
annotation strategy”. In: Nucleic Acids Research 42.D1 (2014), pp. D553–D559.
doi: 10.1093/nar/gkt1274 (cit. on pp. 107–109).

[659] T. Gagie, G. Manzini, and D. Valenzuela. “Compressed Spaced Suffix Arrays”. In:
arXiv preprints (2014), pp. 1–9. url: http://arxiv.org/abs/1312.3422 (cit. on
p. 111).

[660] H. Wang et al. “BWTCP: A Parallel Method for Constructing BWT in Large
Collection of Genomic Reads”. In: High Performance Computing: 30th International
Conference, ISC High Performance 2015, Frankfurt, Germany, July 12-16, 2015,
Proceedings. 2015, pp. 171–178. doi: 10.1007/978-3-319-20119-1_13 (cit. on
p. 111).

[661] H. Li. Private communication. 2016. url: https://sourceforge.net/p/bio-
bwa/mailman/message/35190726/ (cit. on p. 111).

[662] J. T. Simpson and R. Durbin. “Efficient de novo assembly of large genomes using
compressed data structures.” In: Genome research 22.3 (2012), pp. 549–56. doi:
10.1101/gr.126953.111 (cit. on p. 112).

[663] Combinatorics on words. 2nd ed. Cambridge: Cambridge University Press, 1997.
doi: 10.1017/CBO9780511566097 (cit. on p. 123).

[664] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Vol. 37.
Cambridge: Cambridge University Press, 1995. doi: 10.1017/CBO9780511626302
(cit. on p. 123).

http://dx.doi.org/10.1109/tcbb.2007.1013
http://dx.doi.org/10.1007/978-3-319-05269-4_4
http://dx.doi.org/10.1089/cmb.2014.0160
http://dx.doi.org/10.1093/nar/gkt1274
http://arxiv.org/abs/1312.3422
http://dx.doi.org/10.1007/978-3-319-20119-1_13
https://sourceforge.net/p/bio-bwa/mailman/message/35190726/
https://sourceforge.net/p/bio-bwa/mailman/message/35190726/
http://dx.doi.org/10.1101/gr.126953.111
http://dx.doi.org/10.1017/CBO9780511566097
http://dx.doi.org/10.1017/CBO9780511626302

	I Introduction
	Context, motivation and contributions
	Motivation of our work
	Our contributions

	DNA sequencing
	General approach
	First methods for DNA sequencing
	Next-Generation Sequencing methods
	Sequencing technologies producing short reads
	Sequencing technologies producing long reads

	Read simulation

	Main techniques of pairwise sequence comparison
	Alignment-based methods
	Alignment using dynamic programming
	Heuristics for aligning a sequence against a database
	Heuristics for genome-to-genome alignments
	Read mapping

	Alignment-free methods
	Spaced seeds

	Data structures for NGS data analysis
	Hash tables
	Classical full-text indexes
	BWT-index

	II Dynamic read mapping
	Context and motivation
	Introduction
	Our contributions

	RNF: a framework to evaluate NGS read mappers
	Introduction
	Methods
	Read Naming Format (RNF)
	RNFtools

	Results
	Conclusion

	Ococo: the first online consensus caller
	Introduction
	Methods
	Consensus calling algorithm
	Compact representation of variant statistics
	Update strategies

	Implementation and availability

	DyMaS: a dynamic mapping simulator
	Introduction
	Methods
	Simulation algorithm
	Iterative referencing

	Implementation
	Evaluation
	Results

	Discussion

	III k-mer-based metagenomic classification
	Overview
	Introduction
	State-of-the-art
	Read classifiers
	Abundance estimators
	Metagenome distance estimators

	Goal of our work

	Spaced seeds for metagenomics
	Introduction
	Preliminaries
	Results
	Binary classification
	Correlation of counts with alignment quality
	Correlation on real genomes
	Large-scale experiments

	Conclusions

	ProPhyle: a BWT-based metagenomic classifier
	Introduction
	General requirements on metagenomic classifiers
	Design of ProPhyle
	Key algorithmic ideas
	ProPhyle index
	ProPhyle classification algorithm

	Results

	Discussion

	IV Conclusions
	V Appendices
	Languages of lossless spaced seeds
	Introduction
	Preliminaries
	Lossless seeds
	Single seed and single hit problem
	Functions shk and (l,k)-valid bi-infinite words
	subshifts of (l,k)-valid words
	Decomposition into subshifts of finite type

	Conclusion

	Read Naming Format specification
	Terminologies and concepts
	Read tuple names
	Read tuple ID
	SRN – Short Read Name
	LRN – Long Read Name

	SRN–LRN correspondence file
	Extensions

