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Résumé

Dans la plupart des applications actuelles, le cahier des charges pour la synthèse d’une loi de
commande est un amalgame de contraintes fréquentielles et temporelles. Par exemple, la prise
en compte de contraintes sur les fonctions de sensibilité s’accompagne souvent de contraintes
temporelles sur les sorties qui doivent rester dans un intervalle prescrit au cours de l’évolution
du système.

La synthèse d’une loi de commande satisfaisant aux contraintes fréquentielles est possible en
utilisant les techniques de synthèse H∞. Ces techniques reposent sur la détermination d’une solu-
tion optimale au problème de minimisation des normes H∞ des fonctions de transfert de synthèse
considérées. Les paramètres du contrôleur structuré considéré sont alors les variables de décision
du problème. Des développements récents de ces méthodes de synthèse permettent désormais de
formaliser des contraintes fréquentielles multiples et de natures variées sur des modèles de syn-
thèse multiples. Un exemple d’application de cette nouvelle méthode est la détermination d’une
loi de contrôle robuste stabilisant des configurations ou points de fonctionnements multiples.

En revanche, la formalisation de contraintes temporelles comme un ensemble de contraintes
fréquentielles est complexe et requiert un réglage fastidieux de paramètres. Les contraintes
fréquentielles qui en résultent peuvent par ailleurs entrer en conflit avec d’autres contraintes pré-
existantes et rendre le problème de synthèse plus complexe. L’exemple considéré de contrainte
temporelle est l’appartenance d’une variable de sortie à un intervalle donné. Une approche
possible pour prendre en compte simultanément des contraintes temporelles et fréquentielles est
de synthétiser un contrôleur dit nominal satisfaisant seulement les contraintes fréquentielles. La
sortie du contrôleur est ensuite modifiée de manière appropriée via une méthode dédiée dès que la
contrainte temporelle n’est pas satisfaite. Ces techniques d’adaptation de la sortie du contrôleur
sont regroupées sous le terme d’“approches évolutionnaires” dans une frange de la littérature
dédiée au contrôle sous contraintes. Elles offrent une solution viable en pratique au problème du
contrôle sous contraintes fréquentielles et temporelles mais n’offrent en principe pas de garantie
sur la satisfaction de la contrainte temporelle et peuvent déstabiliser la boucle fermée si des
précautions ne sont pas prises. D’autre part, la performance est souvent dégradée.

L’approche OIST (Output to Input Saturations Transformation) est l’une de ces “approches
évolutionnaires”. Elle a été proposée dans le but de garantir qu’une variable de sortie reste dans
un intervalle prescrit au cours de l’évolution du système considéré. Son principe repose sur la
transformation de la contrainte de sortie en saturations sur l’entrée de manière à contraindre
l’évolution de la sortie contrainte sans trop impacter la performance du système. Cette méthode
a été initialement proposée pour les systèmes non-linéaires. Elle ne peut cependant pas être
appliquée sous sa forme actuelle aux systèmes incertains, aux systèmes dont l’état n’est pas
entièrement mesuré et/ou ayant des sorties à non-minimum de phase à contraindre.

Ce travail de thèse propose une formulation de la méthode OIST dans le cas linéaire. Des
résultats sont établis concernant le choix des paramètres de la méthode afin de garantir l’absence
de chevauchement des bornes de la saturation. La satisfaction de la contrainte de sortie est
ainsi garantie en cas d’application de la méthode. Dans le cas des systèmes à minimum de
phase, la stabilité asymptotique de l’origine est démontrée en utilisant un compensateur anti-
windup additionnel. Des résultats intéressants en terme de performance sont observés lors de
l’utilisation d’un tel compensateur. La méthode est ensuite étendue pour prendre en compte la
présence d’incertitudes et la méconnaissance de certains états. La satisfaction d’une contrainte
sur une sortie en utilisant la méthode OIST alors que le vecteur d’état est mesuré seulement en
partie nécessite de connaître des bornes garanties sur le vecteur d’état à chaque instant. Dans
cette optique, la théorie des observateurs par intervalles est étudiée et utilisée dans ce travail.

En tant que problème annexe, une nouvelle approche est proposée pour la construction



d’observateurs par intervalles. Une approche par optimisation non-lisse directement inspirée du
problème de synthèse de contrôleurs structurés est proposée afin de déterminer le changement
de coordonnées invariant adéquat pour que la dynamique du système considéré soit coopérative
dans les nouvelles coordonnées. Les résultats numériques obtenus sont comparés en simulation
aux méthodes existantes.

Pour finir, les méthodes développées au cours de ce travail sont appliquées au contrôle at-
mosphérique d’un modèle simplifié de lanceur flexible. La variable contrainte dans ce problème
est l’incidence du lanceur qui doit rester minimale afin de limiter les forces aérodynamiques et
une possible destruction de la structure du lanceur. Ce problème s’avère être compliqué par la
présence de rafales de vent qui est une entrée inconnue du système.

Mots-clés: contrôle sous contraintes de sortie, systèmes linéaires, systèmes incertains, obser-
vateur par intervalles, synthèse de contrôleur structuré



Abstract

In many real world applications, specifications related to the control design are a mixture of
frequency- and time-domain requirements. For example, in addition to usual sensitivity-related
constraints, it may be expected that output signals belong to prescribed intervals.

As far as frequency-domain constraints are concerned, solutions to the control design problem
under this type of constraints can be obtained using H∞-based techniques. These techniques rely
on the minimization of the H∞-norm of appropriately defined and weighted transfer functions
in which the controller is a design parameter. Recent advances in this field of research allow the
design of structured controllers such that multiple frequency-domain requirements are met for
multiple models. This can for example be used to tackle problems where a single controller has
to stabilize multiple working points or configurations.

However, time-domain constraints like admissible operating sets on a given state or output
variable are difficult to formalize as frequency-domain constraints. This requires trial-and-error
fine tuning design constraints through weightings selection which is a tricky task in most cases.
Also, constraints conflicting with pure frequency-domain constraints may arise from such refor-
mulation. Consequently, some output-constrained control approaches propose to neglect these
time-domain constraints when designing the nominal controller. Then, the controller output is
modified whenever the constraint is violated using an additional appropriately defined structure.
These are called evolutionary strategies in the related literature. These techniques offer a viable
solution to the output-constrained control design problem but often lack guarantees on the ac-
tual satisfaction of the constraint or even of the resulting closed-loop stability. Also, performance
may be degraded.

The Output to Input Transformation (OIST) approach counts amongst these evolutionary
techniques. It was proposed to enforce a time-domain constraint of the admissible operating
set type on a single output variable. Using an appropriate transformation, saturations on the
control input are formalized such that the considered output variable belongs to the expected
operating interval. It was originally proposed for non-linear systems. However, in its current
form, this approach cannot be applied to uncertain systems, to systems with incomplete state
measurements or with non-minimum phase constrained outputs.

In this thesis, a reformulation of OIST in the linear framework is proposed. Results con-
cerning the method design coefficients are obtained to guarantee satisfaction of the time-domain
constraint. In the minimum phase case, guarantees on the global asymptotic stability of the
closed-loop in the presence of the obtained control saturations are obtained using an anti-windup
compensator. Next, extensions to the incomplete state measurements and uncertain cases are
proposed. Enforcing an output constraint through the OIST technique when the full state is
unmeasured is possible provided that each component of the state vector lies in a known interval
at each time. Therefore, interval observers are studied and used here.

A new approach to the design of interval observers is also proposed as a side problem. A non-
smooth optimization technique inspired by the structured controller synthesis problem is used to
find a time-invariant state-coordinate transform such that the considered system is cooperative
in the new coordinates. This is a key step in designing interval observers.

Finally, an application to the atmospheric flight control of a simplified flexible launch vehicle
model is presented. The angle of attack of the launch vehicle is constrained to stay in a prescribed
interval to avoid structural overload and potential damages. This proves to be a very challenging
problem when extreme wind conditions are taken into consideration.

Keywords: output-constrained control, linear systems, uncertain systems, interval observer,
structured controller design





Notations

blkdiag Block-diagonal matrix of the considered matrices
diag Diagonal matrix of the considered real parameters
dim Dimension operator, e.g. dim (Rn) = n
d Differential operator
eig Vector of the eigenvalues of the considered matrix
Fl/Fu Lower/Upper LFT
‖•‖2 H2-norm
‖•‖∞ H∞-norm
In Identity matrix of size n
j Imaginary unit
ker Kernel operator, e.g. for A ∈ Rn then ker (A) = {v ∈ Rn s.t. Av = 0n}
Lfσ Lie derivative of σ in the direction of f
rank Rank of the considered matrix
s Laplace transform variable
A Matrix notation
A−1 Matrix inverse (if it exists)
A> Matrix transpose
Am×n Matrix of Rm×n
Aij Matrix A ∈ Rm×n element at row i and column j
A+ max (A,0)
A− A+ −A
0m×n Null matrix of size m by n
∂i Partial derivative operator with respect to the i-th element
Re Real part of the considered complex number
I (R) Set of intervals of R
R Set of real numbers
Rn Set of real vectors with dimension n
Rm×n Set of real matrices with dimensions m× n
R+ Set of positive real numbers
R− Set of negative real numbers
R? Set of non-null real numbers
Z Set of integers
Z+ = N Z ∩ R+ (natural integers)
(G) System notation
Tu→y(s) Transfer function from input u to output y (MIMO)
T ?(s) Adjoint operator of SISO transfer function T (s)
z Z-transform variable
x Vector notation





Acronyms

GES Global Exponential Stability
GUAS Global Uniform Asymptotic Stability
IPR Internally Positive Representation
ISS Input-to-State Stable
IQC Integral Quadratic Constraints
LFR Linear Fractional Representation
LFT Linear Fractional Transformation
LMI Linear Matrix Inequalities
LPV Linear Parameter-Varying
LTI Linear Time-Invariant
LTV Linear Time-Varying
MPC Model Predictive Control
MRAW Model Recovery Anti-Windup
ODE Ordinary Differential Equation
OIST Output to Input Saturation Transformation
OISTeR OIST extension for Robustness
SCT State-Coordinate Transformation
SCorpIO State-Coordinate transformation Optimisation for Interval Observers
SMAC Systems Modeling, Analysis and Control





Legend

To improve the readability of this manuscript – which contains cumbersome equations in some
of its chapters – icons are used to highlight the most important notions. While reading these
parts only, it is possible to grasp the main contributions of this work. The icons are described
below along with their intended meaning.

This is an important notion or result. Reading this statement is mandatory to
understand the considered problem.

This is a key notion or result. Reading this statement is mandatory to understand
the contributions.

This is a contribution of this thesis.
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Chapter 1

Constrained control of linear systems

This is the introductory chapter of this thesis work. The main problems considered in
this manuscript are introduced. They are concerned with the atmospheric control of
an uncertain flexible launch vehicle. More specifically, the difficulty comes from the
time-domain constraint on the angle of attack which should remain below a critical
value so as to ensure nominal performance of the launch vehicle. Also, specifications
require that frequency-domain properties are satisfied for example on the closed-loop
margins or flexible modes attenuation. Hence, the atmospheric control of the launch
vehicle is a mixed frequency/time-domain constrained control problem. This type of
problem is frequently met when designing a control law for any given linear system
under time-domain constraints which motivates the proposition of generic results. A
state of the art of the different fields of research involved is proposed and the major
contributions of this thesis are introduced.

This chapter is organized in the following manner. First, a general introduction to the
considered problem is proposed in 1.1. Then, a state of the art of the different problems
involved is given in 1.2. The contributions of this thesis work are listed in 1.3 before
detailing the manuscript outline in 1.4.
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1.1. General introduction

1.1 General introduction
Control systems have become a must in most applications with the increased complexity of pro-
cesses and devices. For example, in spite of their own physiological complexity, using the human
brains, nerves and muscles to guide a launch vehicle at hypersonic speed on the right trajec-
tory is fanciful. This is however largely within the reach of an on-board computer controlling
well-designed actuators. The design of control systems is a complex task. The objective of such
system is to force the behaviour of the controlled process to behave in a nominal fashion. For
example, it is expected that the barges represented in Fig. 1.4 do not collide with the waterway
banks. This requires a precise modelling of the considered system and the formulation of clear
specifications to be satisfied by the obtained closed-loop. As such, control design problems are
most of the time dealing with constraints either in the frequency- or time-domain.

Frequency-domain constraints arise whenever a frequency-domain representation of the sys-
tem is possible. This is the case when linear modelling of the system is obtained by linearising
the “true” non-linear dynamics at a given working point. In the launch vehicle case, this cor-
responds to linearising the non-linear dynamics over a short period of time during which the
mass and speed of the launch vehicle can be considered constant. Nonetheless, to account for
the lack of measurements on these speed and mass parameters, a specific parameter-dependent
modelling can be used to represent various situations which may arise at a given instant of the
flight. Frequency-domain constraints are used whenever the control system should enforce spe-
cific frequency-domain properties such as closed-loop margins or closed-loop poles location. Of
course, the designed control law should comply with the frequency-domain constraints for all
possible values of the model parameters.

Time-domain constraints are generally an easier notion to grasp since they are directly related
to simulation or experimentation depending on the development status of the system. Examples
of time-domain constraints are plentiful, even in our very own life experience: for the ball and
beam system, the constraint is to keep the ball on the beam; for your own bank account, the
constraint is to never hit overdraft to avoid extra charges. According to Fig. 1.1, I seem to do it
quite well or I do not seem to be in much of a caring or sparing mood over the considered period of
time. From a control design point of view, time-domain constraints are however generally hard to
satisfy since they directly depend on simulation results hence on the simulation parameters, most
notably the considered class of disturbance inputs signals. In other words: different techniques
than the ones used to enforce frequency-domain requirements are required and they highly depend
on the designer choices: which signals are used in simulation, which ODE solver, etc.

As the title of this thesis suggests, we are concerned with control design problems subject to
both types of constraints. Since the approaches dealing with each type of constraints are different,
this requires some study to appropriately select each method and see how they can interact to
enforce the considered constraints. An appropriate strategy to deal with mixed frequency-/time-
domain constrained control design problems is first to design a controller which satisfies the
frequency-domain requirements and then to modulate the resulting control input whenever the
time-domain constraints are not met. This is the so-called evolutionary strategy [Goodwin 01]
chosen in this work. More details on existing strategies are given in Chapter 3. In the following
paragraphs, we introduce various realistic examples of constrained control to further detail the
problematic.

Atmospheric control of a flexible launch vehicle The atmospheric control of a launch
vehicle such as Ariane 5 (see Fig. 1.2) is quite a challenge. During the ascent, the structure of
the launcher is exposed to an important aerodynamic stress culminating at the point of maximum
dynamic pressure which occurs a few seconds after launch. This stress can be destructive or at
least degrade the launcher performance in terms of trajectory. The amount of structural stress
depends on the angle of attack which is the angle of the launch vehicle with respect to the
incoming air flow. The angle of attack itself is possibly disturbed by wind gusts which are
mostly unpredictable and which amplitude is not known with precision.

Moreover, due to its size and to the used materials (aluminium and composite), the launch
vehicle structure is excited in the same way as a guitar string. More precisely, this results in
the presence of flexible modes at rather low frequencies which act as disturbances on the output
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Operation #

0 10 20 30 40 50 60

0

Figure 1.1: Balance of my bank account over 63 operations. Almost amplitude-constant cyclic
events appear (salary and rent) and overdraft is nearly hit once. I do not seem to be currently
in a sparing mood or I am perhaps expecting short-term expenses.

Figure 1.2: Ariane 5 launch vehicle before launch (left) and just after engines ignition (right). –
Credits: DLR/Thilo Kranz (CC-BY 3.0) 2013.
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1.1. General introduction

Figure 1.3: Example of an overhead crane in a quarry in Belgium. – Credits: Jean-Pol Grand-
mont (CC-BY 3.0) 2013.

measurements and can in turn be fed and excited by the control law if the designer is not careful.
This results in a series of frequency-domain flexible modes roll-off specifications which add to the
expected closed-loop stability and other requirements dealing for example with the sloshing of
ergols. The time-domain constraint is obvious: since the aerodynamic stress on the structures is
directly linked to the angle of attack, a maximal admissible value α is set on the angle of attack
α which should satisfy:

− α(t) ≤ α(t) ≤ α(t), ∀t ∈ R+ (1.1)

at all instants. Uncertainties are also introduced in the modelling to account for the difficulty
to evaluate the mass as well as the aerodynamic and thrust performances of the launch vehicle.
Also, the flexible modes dynamics are not exactly known and are approximated by uncertain
2-D systems for each flexible mode.

The designed controller should comply with the frequency- and time-domain constraints for
all values of the uncertain parameters or at least for critical values of these parameters. This
is covered in Chapters 2 and 6. Specifically, a robust controller is designed using an H∞-
based technique and its output is modulated through application of the extended OIST/OISTeR
approach (see [Burlion 12] and Chapters 4 and 5). This results in both types of constraints
being satisfied. Due to the complexity of the problem and the novelty of some of the involved
approaches, simplified models of the launch vehicle are however used in this work.

Swaying mitigation strategy for overhead cranes Overhead cranes are commonly used
whenever massive loads must be displaced by translation between two distant points. They are
often used to unload/load containers in ports or sometimes in quarries as illustrated in Fig. 1.3.
They can be composed of very high structures under which the load is suspended. Also, they
may reach high speeds to minimize load or unload times so as to increase the rate of ships of
reduce the docking fees for the shipowners. This can result in dangerous swaying or falling of
the load transported under the overhead crane.

The objective is to displace a load from a point A to a point B. An appropriate tracking
controller should comply with both frequency- and time-domain constraints. Frequency-domain
constraints are formulated to attenuate the cable flexibilities which can be excited by the con-
troller. Time-domain constraints are concerned with improving the tracking precision and speed
or to ensure that the maximum swaying angle remains below a given value such that collisions
are avoided especially during the phases of acceleration or deceleration.

A non-linear model of an overhead crane system is used in Chapter 3, 3.4 to illustrate the
OIST approach in the non-linear case. In this example, the time-domain constraint is specified
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Figure 1.4: Barges in tight waterways. – Credits: Pline (CC-BY 3.0) 20102 and F. Lamiot (CC
BY 3.0) 2010.

on the angle between the load and the vertical axis and OIST is used to enforce the constraint.

Automated barge control Waterways have been used for centuries to move huge charges
over long distances. The network is quite dense in Europe especially along rivers or even along
completely artificial waterways such as the Canal du Midi in the South-West of France. The
development of automated barges could be an interesting project to give a new birth to this
decaying means of transportation which probably requires a reduced amount of fossil fuels in
comparison with dozens of trucks. Within our introductory work however, this example is used
to further illustrate the constrained control problem in a very meaningful manner.

In this case of application, the control problem is quite clear: the objective is to follow the
banks of the river and eventually avoid collision with incoming barges. The first part of the
objective is a typical time-domain constrained control problem: the part of the barge closest to
one bank should never touch that bank! This is probably a more difficult problem than expected
due to the inertia of such massive boats especially when loaded. Considering this system allows a
physical interpretation of the OIST approach introduced in [Burlion 12], recalled in Chapter 3 and
improved/extended in Chapters 4 and 5. Supposing that the barge can be reduced to a single
point and that the existing controller proves to be efficient in terms of tracking performance
but fails to enforce the time-domain constraint3, the OIST approach consists in saturating the
ship rudder angle such that the time-domain constraint is enforced4 and the nominal tracking
performance is not degraded much.

1.2 State of the art
First, a state of the art of the atmospheric control of a flexible launch vehicle is proposed.
Then, reference is made to the chapters where the resources related to the involved theories are
presented.

1.2.1 Atmospheric control of a flexible launch vehicle
Due to the complexity of the atmospheric control of launch vehicles, a rich literature is avail-
able on the subject. Most articles are concerned with robust control due to the presence of
uncertainties in the modelling dynamics. As already mentioned in the general introduction, the
complexity of the problem also depends on the presence of flexible modes which are likely to be
excited by an ill-dimensioned control law.

2https://commons.wikimedia.org/w/index.php?curid=10981465
3In other words: the barge hits the bank.
4In other words: the barge does not hit the bank.
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1.3. Contributions

In [Knoblauch 12], H∞-based synthesis is used in parallel with tuned elliptic filters to obtain
a controller which satisfies the flexible modes roll-off requirement. The use of elliptic filters allows
to filter the flexible modes dynamics on sufficiently large frequency intervals to account for the
presence of uncertainties in those dynamics. This requires a good practical knowledge of the
launch vehicle model as well as on elliptic filters. The authors in [Dubanchet 12] use guardian
maps to analyse closed-loop stability and determine a set of admissible control gains such that
the closed-loop dynamics satisfies to the prescribed requirements. The normalized co-prime
factorization approach combined with LQG/LTR additions is exploited in [Abbas-Turki 07] to
design a gain-scheduled controller for a time-varying model of the launch vehicle. In [Ganet 10],
the design of the controller is performed using an LPV methodology with an illustration on an
industrial benchmark of the flexible launch vehicle. Design techniques involving H∞ criteria have
been explored in various articles including [Alazard 03, Voinot 03b] and [Scorletti 10]. Robustness
analysis – which can be useful to determine critical values of the uncertain parameters vector θ
– using µ-analysis techniques has been studied in [Imbert 01] and µ-synthesis in [Imbert 01].

1.2.2 Theoretical resources
As far as the control theories involved in this work are concerned, it has been chosen to present
the related states of the art in the relevant chapters. Those are listed here for reference.

• Output constrained control: this is a major subject in this thesis work. A study of existing
techniques is proposed in 3.2.2, Chapter 3. Especially, the differentiation between cautious,
evolutionary and tactical strategies is documented and explained;

• Interval observers: the relevant resources are presented in details in B.2, Chapter B;

• Robust control: existing methods to the robust control of uncertain linear and non-linear
systems are presented in 2.1.3, Chapter 2. The H∞-based approaches are introduced
in 2.1.4 to which the considered multi-models multi-objectives technique belongs.

1.3 Contributions
In this section, an overview of the different contributions of this thesis work is proposed. For
complete details on each contribution please refer to the referenced chapters and literature.

1.3.1 Linear OIST formulation
In this thesis, the choice is made to first design a structured controller against frequency-domain
requirements using H∞-based control synthesis and then to consider an evolutionary5 strategy
to enforce (with guarantees) the time-domain constraint by acting on the controller output yK .
As explained in the introductory section of Chapter 4, it is chosen to consider the OIST strategy
introduced in [Burlion 12] and presented in Chapter 3 which consists in saturating the controller
output signal whenever the time-domain constraint is violated so as to restrict the admissible
set of trajectories at each given instant of time:

u = satuu (yK) (1.2)
Another interest of the approach is that it remains applicable in the presence of bounded

unknown input disturbances d with known bounds
[
d,d

]
. The OIST strategy is illustrated in

Fig. 1.5.
The first major contribution of this thesis consists in applying the OIST strategy to the

output-constrained control of linear time-invariant systems. This results in the formulation of
explicit iterative expressions of the control saturations involved in this strategy. The current ma-
jor limitations of the transformation are also formally identified, namely the risk of overlap of the
obtained saturations and the lack of information on stability in the presence of saturations. This
contribution is presented in the first part of Chapter 4 and has been covered in [Chambon 15c]
and [Chambon b].

5In the sense of [Goodwin 01].
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Figure 1.5: Informal illustration of the OIST evolutionary strategy. Top: nominal controller (no
OIST); Bottom: with OIST saturations in the loop, the constraint is satisfied (in orange).

1.3.2 OIST saturations overlap mitigation and closed-loop stability
analysis

The efficiency of the OIST approach depends on the fine selection of design parameters named κ
and the closed-loop stability analysis in the presence of the proposed saturations. Following the
formulation of explicit expressions in the linear case, the second contribution is the proposition
of proven solutions to avoid saturations overlap and to ensure closed-loop stability.

As illustrated in Chapter 4, saturations overlap can lead to violating the time-domain con-
straint even when applying OIST. Also, stability of the resulting closed-loop is not ensured due
to the presence of saturations. By appropriately selecting the coefficients κ and by introducing
an anti-windup compensator, both problems are solved for minimum phase systems. This con-
tribution is developed in Chapter 4 following the reformulation in the linear case. This was also
covered in [Chambon 15c] and [Chambon b].

1.3.3 OIST extension for Robustness

OIST has been developed assuming that the considered system model is known and that its full
state vector x is measured and perfectly known. A major contribution of this thesis is to extend
OIST to systems with incomplete state vector measurements C 6= In and for which the lack of
knowledge on some parameters values are modelled by bounded uncertainties θ.

Using an appropriately designed interval observer, an extension of OIST – named OISTeR –
is proposed to account for the presence of these uncertainties and to fill the lack of information on
the state vector. In short, this so-called extension for robustness uses bounds x and x on the state
vector x provided by the interval observer to obtain fully determined – yet more conservative –
saturations such that the time-domain constraint is satisfied for all possible values of the vector
of uncertainties θ. In this extension, saturations overlap is also avoided using appropriately
defined parameters κ in a similar manner as in Chapter 4. This recent contribution was hinted
in [Chambon 15a] and is detailed in Chapter 5.
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1.3.4 Application to simplified models of the launch vehicle
The various contributions are illustrated on small theoretical models in each of the concerned
chapters. In Chapter 6, those are illustrated on simplified models of the launch vehicle. First a
robust observer-based controller is synthesized usingH∞-based control design to illustrate control
law synthesis against frequency-domain requirements and in the presence of uncertainties. Next,
OIST is applied to achieve the time-domain constraint on the angle of attack in the flexible launch
vehicle case with no uncertainty. Finally, OISTeR is implemented on a rigid launch vehicle model
with incomplete state measurements. Due to these models being non-minimum phase, specific
measures are taken to avoid divergence upon saturation of the controller output. To increase
performance of the interval observer, a reduced-order interval observer is also tested.

Details on the implementation of the contributions on the considered simplified launch vehicle
models are given in Chapter 6 along with simulation results. Related publications include [Cham-
bon 15a] and [Chambon 15d]. Due to the complexity of the problem, more complex models of
the launch vehicle are not used but will be considered in future works. Especially, the use of
the interval observer design technique detailed in Chapter 7 will be mandatory when considering
additional flexible modes dynamics or in the presence of uncertain parameters.

1.3.5 Non-smooth optimization-based approach to linear interval ob-
server design

The extension of OIST to the case of models containing uncertain parameters has been obtained
by using an interval observer which is a dynamic system providing bounds x and x on the
original system state x. In the literature, interval observer are usually designed by starting from
a classical observer and by expressing the resulting dynamics in new coordinates. The objective
is to obtain a so-called cooperative system in the new coordinates. The change of coordinates
is obtained through a transformation matrix P which determination is capital to obtain the
cooperativity property. Existing determination methods provide either a time-varying or time-
invariant transformation matrix.

In the case of a time-invariant state-coordinate transformation (SCT), existing methods are
not very flexible and do not allow to include complex control-related constraints in the design
of the interval observer or, more precisely, of the underlying classical observer. An additional
contribution of this thesis is to propose a control-oriented SCT design approach. The resulting
control design problem is solved using an appropriately chosen optimization algorithm. Exten-
sions of the approach are proposed to simultaneously synthesize a structured controller and an
interval observer on the resulting closed-loop.

This contribution is presented in Chapter 7. Related publications include [Chambon 16]
and [Chambon 15b].

1.4 Dissertation outline
This manuscript is divided into three parts. Part II provides information on existing theories
and required materiel to understand the contributions of this work. The main contributions of
this thesis with regard to frequency- and time-domain constrained control of linear systems are
exposed in Part III before concluding in Part IV.

Part II: Preliminaries

Chapter 2: Multi-models multi-objectives robust structured controller design

In this chapter, the multi-models multi-objectives structured controller design method intro-
duced in [Apkarian 07, Apkarian 14] is applied to robust control. It is shown how to enforce
frequency-domain requirements on a family of critical systems through the design of a structured
controller. The critical systems are representative of the original system uncertainties. A specific
controller structure based on a reduced-order classical observer and an estimated state feedback

10
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is presented. An additional dynamic Youla parameter is used to account for the possibly limited
number of degrees of freedom.

Chapter 3: Introduction to OIST

In this chapter, the Output to Input Saturations Transformation (OIST) theory introduced
in [Burlion 12] is presented. This approach aims at enforcing a time-domain constraint on a
non-linear system output. It relies on the introduction of well-defined saturations on the existing
nominal control law such that the considered output signal belongs to the expected interval. The
saturations are derived using the notion of relative degree of the constrained output with respect
to the control input. The approach is illustrated on a simple non-linear crane model.

Part III: Frequency- and time-domain constrained control of linear sys-
tems

Chapter 4: Reformulation of OIST output constrained control approach in the linear
framework

This chapter aims at describing the reformulation of the OIST approach when considering linear
systems. As presented in Chapter 3, the OIST theory was originally introduced for non-linear
systems. In this chapter, two undocumented problems of the OIST approach are also tackled,
namely the possible saturations overlap problem as well as closed-loop stability analysis. Solu-
tions are provided to both subjects. An appropriate definition of the OIST design parameters
solves the overlap problem. In the case of minimum phase constrained outputs, asymptotic sta-
bility of the origin is obtained using an additional anti-windup compensator which also leads to
improved performance. These results are then illustrated on the linear ball and beam model.

Chapter 5: Extension of OIST to the incomplete measurements and uncertain cases

An extension of the OIST approach as presented in Chapter 4 is introduced in this chapter to
account for potential robustness issues. Original results were issued on known non-linear or linear
systems with complete state measurements. In realistic applications however, the state vector
is rarely known and uncertainties appear when modelling the dynamics. The purpose of OIST
extension for Robustness (OISTeR) is to account for such cases. Using an appropriately defined
interval observer, the notions of output constraint and propagated bounds are generalized. The
output constraint is then enforced by applying the original OIST approach on these new concepts.
A saturations overlap mitigation procedure is also proposed. Illustrations on theoretical examples
are presented.

Chapter 6: Application to the atmospheric control of a linear uncertain flexible
launch vehicle model

In this chapter, the main contributions of this thesis are applied to the atmospheric control of a
simplified launch vehicle. The objective is to maintain the angle of attack of the launcher below
a critical value. This is a challenging problem since the transfer to constrain is non-minimum
phase.

First, a robust observer-based controller is synthesized using the multi-models multi-objectives
synthesis technique described in Chapter 2. Then, the OIST approach to output-constrained con-
trol from Chapter 4 is applied to enforce the time-domain constraint in the absence of uncertain
parameters. Last but not least, the OISTeR method from Chapter 5 is applied to enforce the
considered time-domain constraint on the rigid launch vehicle in the absence of complete mea-
surements of the state vector.

Satisfying results are obtained and some practical methods are presented to overcome the
challenge caused by the non-minimum phase property. These methods are expected to offer
valuable hints on how to improve both the OIST and OISTeR approaches in the near future.
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Chapter 7: Development of a non-smooth optimisation-based approach to design
linear interval observers

In this chapter, a new linear interval observer design method is introduced. Similarly to existing
interval observer design methods6, this relies on a time-invariant SCT. Using an appropriate re-
formulation of the SCT determination problem into a structured control design problem, the SCT
can be numerically determined by solving an optimisation problem. Additional control-oriented
requirements such as optimisation of the interval observer tightness x − x can be formulated.
The optimisation problem is solved using the same multi-model multi-objectives control design
technique than in Chapter 2. This is illustrated on examples inspired by the existing literature.
Comparatively to existing time-invariant SCT determination methods, our method performs bet-
ter. Additionally, for a given unstable system, the same approach is applied to simultaneously
design a controller and an interval observer of the closed-loop.

Part IV: Conclusion
Chapter 8: Discussion

The main contributions of this thesis are recalled here. Existing limitations of the results are
highlighted and hints on possible improvements are given. Previously unmentioned possible
cases of application of the contributions are discussed. Future works related to the frequency-
and time-domain constrained control of linear systems are mentioned.

6See Chapter B for example.
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Chapter 2

Multi-models multi-objectives robust structured
controller design

Many control design techniques exist to design an appropriate controller. In the case
of robust control, the challenge is to design a stabilizing controller over a set Θ of
uncertainties θ. Also, to reduce the problem complexity, use an existing satisfying
structure or reduce the controller order, the controller may be chosen structured.
The structured controller problem has been solved for H∞-based control design
using appropriate non-smooth non-convex optimisation methods in [Apkarian 06].
More recently [Apkarian 07], a multi-models multi-objectives approach has been
proposed where the models and objectives can be considered independently when
formulating the synthesis problem. In this chapter, the latter method is applied to
the synthesis of a robust structured controller. A specific observer-based structure
with Youla augmentation is considered. This chapter is based on results presented
in [Chambon 15a].

An introduction to robust control is proposed in 2.1 with notations and a state of the
art of existing robust control design techniques. The multi-models multi-objectives
structured controller design approach introduced in [Apkarian 07, Apkarian 14] is then
applied to the specific problem of robust control design in 2.2. In 2.3, an example
of a possible structure for a robust controller is presented, namely the observer-based
structure with Youla parameter augmentation. This is done in prevision of the examples
in Chapter 6 where such structure is considered. Conclusions are then given in 2.4.
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2.1. Introduction to robust control

2.1 Introduction to robust control
The presence of uncertainties is inherent to any problem dealing with the representation of a
real-world system. The purpose of inserting such uncertainties in the modelling of systems is to
obtain a more faithful representation of the system state evolution. Also, unknown disturbances
may be present which effects cannot be underestimated. As far as control design is considered,
the presence of uncertainties and disturbances requires using specific approaches. These are
numerous and based on various mathematical theories.

In this section, it is proposed to draw a state of the art of robust control theory, especially of
the techniques dealing with the minimisation of H∞ norms. Relevant notions related to linear
systems theory are first recalled.

2.1.1 Linear systems theory prerequisites

2.1.1 (a) Representations of LTI systems

The dynamics of an LTI system can be represented in various ways. The more common repre-
sentations are the state-space representation and the transfer function.

Time-domain representation Let x ∈ Rn the vector of states, that is the vector of variables
describing the system evolution. In most cases, the dynamics equation describing this evolution
are non-linear in x and external variables acting on the system. For small intervals of variation
of these variables and of the initial condition x0 (also called a working point) the dynamics can
be often described by the following linear differential equation:

(G)
{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(2.1)

which is the state-space representation of the considered system (G). The matrices A, B, C and
D are called the state-space matrices and are of appropriate dimensions. The vectors u ∈ Rl
and y ∈ Rm are respectively the vectors of inputs and outputs.

For better clarity, the inputs vector u is often divided between design inputs w (in control
design problems), disturbance inputs d and control inputs u (abuse of notation). The outputs
vector y is often divided between design outputs z (in control design problems) and measurements
y (notation abuse).

The state-space representation is a time-domain representation in the sense it describes the
evolution of the state variables x over a period of time. Using the Laplace transform, the state-
space representation (2.2) can equivalently be expressed in the frequency-domain.

Sometimes, the state-space matrices may depend on unknown parameters, also called uncer-
tainties. The uncertainties are represented by a vector θ belonging to a subset Θ of Rq. In this
case, the state-space representation in (2.2) becomes

(G)
{
ẋ(t) = A (θ)x(t) + B (θ)u(t)
y(t) = C (θ)x(t) + D (θ)u(t)

(2.2)

Frequency-domain representation Using the Laplace transform, the transfer function from
U(s) to Y (s) is given by:

G(s) = Y (s)
U(s) = D + C (sI−A)−1 B (2.3)

where s is the Laplace transform variable. Equivalently, the transfer function can be denoted

G =
[

A B
C D

]
as in [Boyd 91]. The quadruplet (A,B,C,D) is called a realisation of G(s). This

realisation is said to be minimal if (A,B) is controllable and (C,A) is observable (see 2.1.1 (c)).
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Linear Fractional Transformation The Linear Fractional Transformation (LFT) is an op-
eration used to connect two systems through feedback. This is particularly useful when designing
controllers since the notion of closing the loop can be expressed as an LFT.

Let consider a system (P) such that it describes the relation between input signals w and u
and output signals z and y:[

Z(s)
Y (s)

]
= P(s)

[
W (s)
U(s)

]
=
[
P11(s) P12(s)
P21(s) P22(s)

] [
W (s)
U(s)

]
(2.4)

Let also consider the following control law:

U(s) = K(s)Y (s) (2.5)

which acts as an output feedback where K =
[

AK BK
CK DK

]
. Then, the lower Linear Fractional

Transformation of (P) and (K), denoted Fl (P,K), is given by the transfer function from W (s)
to Z(s):

Fl (P,K) = P11 + P12K (I−P22K)−1 P21 (2.6)

If minimal realisations of P(s) and K(s) are given by:

P(s) =
[
P11(s) P12(s)
P21(s) P22(s)

]
=
[
D11 D12
D21 D22

]
+
[
C1
C2

]
(sI−A)−1 [B1 B2

]
(2.7)

and

K(s) = DK + CK (sI−AK)−1 BK (2.8)

then, a possible realisation1 of Fl (P,K) is:

Fl (P,K) = DCL + CCL (sI−ACL)−1 BCL (2.9)

where

ACL =
[
A + B2 (I−DKD22)−1 DKC2 B2 (I−DKD22)−1 CK

BK (I−D22DK)−1 C2 AK + BK (I−D22DK)−1 D22CK

]
BCL =

[
B1 + BK (I−DKD22)−1 DKD21

BK (I−D22DK)−1 D21

]
CCL =

[
C1 + D12 (I−DKD22)−1 DKC2 D12 (I−DKD22)−1 CK

]
DCL = D11 + D12 (I−DKD22)−1 DKD21

(2.10)

It can be noted that the internal stability of the closed-loop of (P) with (K) is equivalent
to the stability of ACL. The upper LFT, denoted Fu is defined in a similar manner when
considering an interconnection with the first inputs and outputs rather than the last ones.

As far as the notion of Linear Fractional Representation (LFR) is considered, it is mostly
used in the presence of uncertainties where the objective is to obtain a θ-free minimal realisation
M(s) of a given uncertain system (G). In the case of parametric uncertainties and for a given
vector θ the LFT of LFR M and ∆ = diag (θ) equals (G):

G (θ, s) = Fu (M,∆) (2.11)

where M is a θ-free realisation. This is commonly referred to as an M-∆ modelling. LFRs
can be computed using for example the SMAC Toolbox [Magni 06, Onera 16]. Commonly used
upper and lower LFTs are illustrated in Fig. 2.1.

1Which is not necessarily a minimal realisation.
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Figure 2.1: Examples of commonly used LFTs. Left: upper-LFT with a matrix parameter ∆
describing a fixed value of the vector of uncertainties θ. Right: lower-LFT with a dynamic
controller structure for synthesis purposes.

2.1.1 (b) Control systems norms

The definitions of the H2 and H∞-norms of a system are presented here for future reference.

Signals norms Let consider a signal x with an analytic Laplace transform X(s) in Re(s) ≥ 0.
If this Laplace transform is square-integrable (i.e. X(s) ∈ H2), the following norm can be
defined:

‖X‖2 =

√
1

2π

∫ +∞

−∞
‖X(jω)‖2 dω (2.12)

Also, let define the ∞-norm:

‖X‖∞ = sup
Re(s)≥0

‖X(s)‖ = sup
ω
‖X(jω‖ (2.13)

It is noted X(s) ∈ H∞ if X(s) is analytic in Re(s) ≥ 0 such that ‖X‖∞ ≤ ∞.

Maximum singular value For a linear system with transfer function G(s), the singular values
are defined as the square roots of the eigenvalues of the operator G?(jω)G(jω) where G?(jω)
denotes the adjoint of G(jω).

If A ∈ Rn×n is the state matrix obtained by using the state-space representation of this
system, the maximum singular value equals the square root of the maximum eigenvalue of AA>:

σmax (A) =
√
λmax

(
AA>

)
(2.14)

H2-norm Let consider a linear system with transfer function G(s). The H2-norm is defined
as:

‖G(s)‖2 =
√∫ +∞
−∞ tr (G? (jω) G (jω)) dω

= supU(s)∈H∞
‖Y (s)‖2
‖U(s)‖∞

(2.15)

where tr is the trace operator. The H2-norm provides information on the system output energy
when disturbed by a white noise such that U? (jω) U (jω) = I.
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H∞-norm Let consider a linear system with transfer function G(s). The H∞-norm is defined
as:

‖G(s)‖∞ = supω σmax (G (jω))

= supU(s)∈H2

‖Y (s)‖2
‖U(s)‖2

(2.16)

This norm is a measure of the maximal gain of the frequency response G (jω).

2.1.1 (c) Control systems properties

In this section, some definitions related to control systems properties are introduced. Especially,
before applying any control (resp. estimation) strategy, it is important to check that the system
is controllable (resp. observable). Note that this is often taken for granted in this thesis that
these verifications have been performed.

In the following, the linear system (G) with the state-space representation in (2.2) is con-
sidered. In this case, u are the control inputs and y are the measurements outputs. The set of
eigenvalues of A ∈ Rn×n is denoted eig(A).

Definition 2.1 (Controllability).
(G) is said to be controllable if the following matrix

C =
[
B AB A2B . . . An−1B

]
(2.17)

has full row rank, i.e. rank (C) = n.

A weaker notion than controllability is stabilizability. It is not used in this work. The ob-
servability is defined in a similar way except that the measurements matrix C is now considered.

Definition 2.2 (Observability).
(G) is said to be observable if the following matrix

O =


C

CA
CA2

...
CAn−1

 (2.18)

has full row rank, i.e. rank (O) = n.

A weaker notion than observability is detectability. It allows to formulate results even in the
presence of unobservable states.

Definition 2.3 (Detectability).
(G) is said to be detectable if all the unobservable states are stable.

In practice, the detectability property can be proven using the following lemma.

Lemma 2.4 (Popov-Belevitch-Hautus detectability lemma).
Let A ∈ Rn×n and C ∈ Rm×n respectively the state and measurements matrices of a linear
system. The pair (A,C) is detectable if and only if ∀λ ∈ C such that λ ∈ eig(A) and
Re (λ) ≥ 0:

rank
([

(λI−A)> C>
])

= n (2.19)
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2.1.2 Relevant notations for robust control
In this chapter, we consider uncertain linear time-invariant systems with disturbance inputs. A
typical state-space representation for such system is given by:

(G)


ẋ = A (θ)x + Bu (θ)u + Bw (θ)w
y = Cy (θ)x + Dy,u (θ)u + Dy,w (θ)w
z = Cz (θ)x + Dz,u (θ)u + Dz,w (θ)w

x(0) = x0

(2.20)

where x ∈ Rn, y ∈ Rm, z ∈ RN , u ∈ Rl is the control input and w ∈ RN is the combination
of unknown disturbance and design inputs. Note these inputs are possibly repeated such that
z and w have the same dimension. It is common in the control design community to make the
distinction between the actual measurements vector y and the design outputs z. The design
transfer functions Tw→z(s) are then used to formulate control design requirements as explained
later. The considered disturbances are either state or measurements disturbances depending on
the definitions of Bw and Dy,w. The vector of uncertainties is denoted θ ∈ Θ where Θ is a subset
of Rq. The uncertain parameters θ are considered to be time-invariant in the entire manuscript.
For a given θ ∈ Θ, the equivalent transfer function for the state-space representation in (2.20) is
obviously given by:

[
Z(s)
Y (s)

]
=

[
Dz,w (θ) + Cz (θ) [sI−A (θ)]−1 Bw (θ) Dz,u (θ) + Cz (θ) [sI−A (θ)]−1 Bu (θ)
Dy,w (θ) + Cy (θ) [sI−A (θ)]−1 Bw (θ) Dy,u (θ) + Cy (θ) [sI−A (θ)]−1 Bu (θ)

]
[
W (s)
U(s)

]
= T(s,θ)

[
W (s)
U(s)

]
(2.21)

If a more specific structure is not specified, dynamic controllers are given by the following
state-space representation:

(K)
{
ẋK = AKxK + BKuK

yK = CKxK + DKuK
(2.22)

where x ∈ RnK , uK ∈ Rm and yK ∈ Rl. This quite generic controller is structured in the sense
of the fixed order nK chosen for the state vector xK . More precise structures can be specified as
is notably done in 2.3. The notation K (s,p) is also used where p is a vector of design parameters.
For example:

K (s,p) = K (s,AK,BK,CK,DK) = DK + CK (sI−AK)−1 BK (2.23)
The loop is then closed using the following relations as also illustrated in Fig. 2.2:{

uK = y

u = yK
(2.24)

In this chapter, the notation ‖•‖ refers to the H∞ or H2-norm. In case these norms are
limited on a prescribed frequency interval Ω, these are denote ‖•‖Ω.

2.1.3 State of the art
The notion of robust control refers to the control design approaches which are robust – i.e. which
performance is not degraded more than a predefined level of expectation – to the presence of
uncertainties and/or unknown disturbances in the modelling of the considered control system.
The most common hypothesis coming with such approaches is that the uncertainties and dis-
turbances are found within a given set. For example, it is often supposed that an uncertain
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+
+

(K) (2.22)

(G) (2.20)v yu

yK uK

w

z

Figure 2.2: Closed-loop of (2.20) with (2.22) resulting from the relations in (2.24).

parameter θ lies within the interval
[
θ, θ
]
. In this section, a non-exhaustive list of robust control

design methods is proposed. As far as H∞-based control design techniques are concerned, they
are tackled in the next section.

Sliding mode control is a non-linear control technique which consists in applying a discontin-
uous input signal to the considered non-linear system. Literature involved with describing this
concept include [Utkin 92, Utkin 93, Lu 97]. The sliding mode approach is robust to parametric
uncertainties since it is basically a switching control law and does not require precise information
on the system dynamics. The LQG/LTR (Linear Quadratic Gaussian/Loop-Transfer Recovery)
control approach introduced in [Kwakernaak 69] and rediscovered in [Doyle 81, Stein 87] was
proposed as a remedy to the lack of robustness of the traditional LQG optimal control design
method. However, the main drawback of traditional LQG/LTR control design is that it can
overly degrade performance. A procedure was proposed in [Ravanbod 12] which improves per-
formance and allows to tune PID structures. More recently, passivity-based control (PBC) as
been introduced and developed in [Ortega 01, Ortega 02, Rodríguez 03]. It is aimed at consider-
ing the system energy in the control design procedure rather than the input and output signals
nature and properties. Other approaches include Lyapunov Function Redesign. As explained
in [Khalil 02], this consists in using a Lyapunov function on the nominal model (θ = 0) to derive
a Lyapunov function for the uncertain dynamics (θ 6= 0).

As far as the robust control of LPV systems is concerned, interesting resources include the
works in [Poussot-Vassal 08] where the robust control of an LPV automotive model is explored
and [Briat 15] which stands as an extensive source of information on LPV and time-delay systems.
Note that a quite extensive bibliographical study on robust control is available in [Poussot-
Vassal 08].

2.1.4 H∞-based approaches
In the linear case, robust control techniques involving H∞-norm optimization of given transfers
has been a buzzing field of research since the 1980’s. First works [Zames 81, Francis 84b, Fran-
cis 84a] considered the use of the sensitivity functions and led to the definition of the robustness
principle. The mixed sensitivity problem was introduced in [Kimura 84]. It introduced addi-
tional weightings in the H∞ norms of the sensitivity function which allowed to consider broader
classes of systems namely those with pure integrators. The standard H∞ problem, which is
basically a disturbance rejection problem in its simplest form, was introduced in [Doyle 84]. A
solution using a state-space approach was provided. The standard problem theory was then
unified in [Francis 87]. Solutions to this problem were proposed and successively improved
in [Glover 88, Doyle 89]. They are based on the resolution of Riccati equations and lead to
controllers with the same order as the controlled system. Additional works proposed more prac-
tical approaches such as the loop-shaping procedure in [McFarlane 92] or proposed to exploit the
structure of the uncertainties such as the singular structured value method in [Doyle 82].

In most of these works, a solution to the problem was generally obtained by solving high-order
Riccati equations. The article [Doyle 89] provided a solution to theH∞ andH2 standard problem
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for MIMO systems based on the resolution of an Algebraic Riccati equation (ARE). Alternatives
to the Riccati equations were later introduced in the form of LMIs-based techniques [Gahinet 94,
Iwasaki 94]. Complete references on the subject include [Boyd 94] and [Zhou 96].

In practice, structured controller with limited order in regard of the original system are often
sought for. This leads to an optimisation problem for which the cost functional is non-smooth
non-convex. In spite of the existence of approaches based on LMIs [El Ghaoui 97] or bene-
fiting from the separation principle inherent to the observer-based structure [Zasadzinski 07],
more recent methods [Apkarian 06, Burke 06] focus on finding a local optimal solution using
non-smooth optimisation-based algorithms. In [Apkarian 07], the approach proposed in [Ap-
karian 06] has been extended to account for the presence of H∞-norm requirements on limited
frequency intervals only. These works led to [Apkarian 15] where the set of critical models for
robust controller synthesis is dynamically generated in the case of parametric uncertainties. The
multi-models multi-objectives technique described and used in this Chapter has been proposed
in [Apkarian 13, Apkarian 14].

2.2 Multi-models multi-objectives structured controller de-
sign approach

In this section, the multi-model multi-objective H∞-based approach introduced in [Apkarian 07]
is exposed. After formulating the usual control design problem using LFTs, it is shown that
it is equivalent to an optimization problem. In the case where the controller is structured and
multiple models and requirements are considered, this optimization problem is non-linear, non-
convex and non-smooth. Using existing works, a local solution to this optimization problem can
be found.

2.2.1 Considered multi-models multi-objectives synthesis problem
The problem considered in this chapter is to design a structured controller (K) (2.22) for the
system (G) (2.20) against some control requirements formulated to constrain the closed-loop dy-
namics as well as some prescribed transfers norms. Robustness with respect to the uncertainties
θ ∈ Θ and disturbances in w ∈ RN must be ensured. Informally speaking, this means that the
control requirements should be enforced for all uncertainties θ in the subset Θ ⊂ Rq and for the
considered class of input disturbance signals. In the case of uncertain systems, the necessity to
consider multiple models can easily be grasped.

To begin with, let consider a LFR of (G). Such linear fractional representation corresponds
to a minimal representation of the considered model where the dependency in the uncertainties
can be eliminated. These uncertainties are then gathered in a specific external ∆ block. Linear
Fractional Representations can be computed using for example the SMAC Toolbox [Magni 06,
Onera 16]. Let consider the following LFR:Z∆(s)

Z(s)
Y (s)

 =

P11(s) P12(s) P13(s)
P21(s) P22(s) P23(s)
P31(s) P32(s) P33(s)

 W∆(s)
W (s)
U(s)


= P(s)

W∆(s)
W (s)
U(s)

 (2.25)

where ∆ ∈ Rn∆×n∆ – with n∆ ≥ q – is such that the upper-LFT Fu (P(s),∆) equals T(s,θ)
in (2.21) for a given θ ∈ Θ. The corresponding ∆ block is thus denoted ∆θ. Note that using
appropriate transformations, it can be ensured that

σ (∆θ) ≤ 1 (2.26)

We denote B (∆) = {∆θ : σ (∆θ) ≤ 1}. Then, using the LFT framework, “closing the loop”
for a fixed θ as in (2.24) is performed using the lower-LFT of Fu (P(s),∆θ) and K(s,p):
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P(s) (2.25)

∆θ

K(s,p)

u

w∆ z∆

y

w z

Figure 2.3: Illustration of the upper and lower LFTs as considered in (2.27). Variable blocks for
different values of θ and different controller state-space matrices are represented in orange color.

Z(s) = Fl (Fu (P(s),∆θ) ,K(s,p)) W(s) (2.27)
These successive transformations are illustrated in Fig. 2.3 for ∆θ corresponding to a given

θ ∈ Θ. In control design problems, the block K(s,p) is the one to compute or “tune” against
control requirements.

Any control design problem corresponds to tuning K(s,p) such that some specifications
are satisfied. In the presence of uncertainties, these specifications should also be enforced for
all θ ∈ Θ. In the following, two types of constraints are considered: the ones which can be
expressed as common constraints on the H2 or H∞-norm of prescribed transfers and the ones
which cannot.

2.2.1 (a) Transfer norm constraints and priorities

When using H∞-based approaches, specifications are expressed as frequency-domain constraints
on the H2 of H∞-norms of user-defined design transfers Twi→zi (s,K(s,p),∆θ) for i ∈ N? with
i ≤ N . A typical feasibility problem is to find p such that a set of constraints on the H2 or
H∞-norms of considered design transfers are satisfied:

‖Twi→zi
(s,K(s,p),∆θ)‖ ≤ 1, ∀i ∈ N? s.t. i ≤ N (2.28)

However, more specific and complex problems are sometimes considered where priority is
given to some constraints. The norm constraint may also be expressed on a limited frequency
range Ω. The following terminology is used whether the norm should be minimized (objective)
or driven below the unit (constraint):

Objective : minpmaxi,θ∈Θ {‖Twi→zi
(s,K(s,p),∆θ)‖Ω}

Constraint : maxi,θ∈Θ {‖Twi→zi (s,K(s,p),∆θ)‖Ω} ≤ 1
(2.29)

Using works in [Apkarian 07, Apkarian 13, Apkarian 14], it appears that aggregating these
objectives is not necessary as would be required using conventional H∞-based design techniques.
Hence, we can speak of a multi-objectives approach. As far as the vector of uncertainties is
concerned, it can be argued that the number of considered objectives and constraints in (2.31)
is potentially infinite due to θ ∈ Θ, with Θ a subset of Rq. This results in the impossibility to
formalize the conditions in an optimization algorithm.

A possible approach is to use the notion of critical case. Using a limited number of so-
called critical cases, the constraints in (2.31) can be formalized in an optimization program

23



2.2. Multi-models multi-objectives structured controller design approach

at the cost of losing any guarantee on the whole subset Θ. In the presence of uncertainties,
critical cases correspond to values of θ (hence of ∆θ) for which H∞ worst-case performance
max∆θ∈B(∆) ‖Fu (P(s),∆θ)‖∞ is achieved. Since the following equality stands [Roos 10]:

max
∆θ∈B(∆)

‖Fu (P(s),∆θ)‖∞ = max
∆θ∈B(∆), ω∈R+

σ (Fu (P (jω) ,∆θ)) (2.30)

then multiple critical models are obtained for given ranges of the frequency ω. A solution to
this optimisation problem was obtained and is detailed in [Roos 10]. It is based on results from
the µ-analysis field which are not detailed here, this being out of scope. Good references to
µ-analysis theory include [Packard 93, Ferreres 99].

As a consequence, only a limited number of critical cases Θc = {θ1, . . . ,θr} can be considered,
corresponding to H∞ worst-case performance over certain ranges of frequencies. Using these
critical models for the considered critical θ values, a limited number of objectives and constraints
is obtained:

Objective : minpmaxi,j
{∥∥T jwi→zi

(s,K(s,p))
∥∥

Ω
}

Constraint : maxi,j
{∥∥T jwi→zi

(s,K(s,p))
∥∥

Ω
}
≤ 1

(2.31)

where 1 ≤ j ≤ r and Thwi→zj
(s,K(s,p)) denotes the transfer function from input wi to output

zi for θ = θj and a given design parameters vector p. Multiple critical models are hereby
considered hence the denomination of multi-models design technique.

2.2.1 (b) Other constraints

Other types of constraints can also be considered when designing a controller. These constraints
cannot always be expressed as conditions on the norms of given transfer functions. They include
constraints on:

• closed-loop stability;

• Controller dynamics stability;

• Margins at specified loop openings.

Finding appropriate design parameters p such that the constraints in (2.31) and 2.2.1 (b) are
fulfilled is an optimization problem. It is formalizin the following section.

2.2.2 Final formulation as an optimization problem
In the previous section, the notion of multi-objectives multi-models structured controller syn-
thesis problem has been clarified in the case of uncertain systems. The resulting optimization
problem is now formally presented.

Problem 2.5 (Multi-objectives multi-models structured controller design optimization prob-
lem [Apkarian 07, Apkarian 15]).
Let p the vector of design parameters. Solve:

minimize f(p)
subject to g(p) ≤ c, c ∈ R

(2.32)

where f(p) = maxi fi(p), g(p) = maxj gj(p) are aggregates of either transfer norms con-
straints 2.2.1 (a) (possibly on frequency-limited ranges) or other constraints 2.2.1 (b).

This is the most generic way of representing the structured controller design problem tak-
ing multiple models and multiple requirements into account. By construction, f and g are
non-smooth functions of the design parameters p due to the presence of the max aggregating
function. Also, the constraints fi and gj for given indices i and j can be non-smooth as is the
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case with constraints on the H∞-norm of design transfers. Moreover, as already tackled in [Ap-
karian 06], the optimization Problem 2.5 is non-convex as soon as a structured controller K (s,p)
is considered in stead of a full-order controller. In conclusion, Problem 2.5 is a non-smooth non-
convex program. Theoretical approaches to provide a local solution to this problem have been
proposed notably in [Apkarian 06, Apkarian 07, Apkarian 15] and are not detailed here. Based
on these works, a dedicated solver was implemented in [MATLAB 14]. Examples of application
of this technique include [Gahinet 13].

2.3 Introduction to observer-based controllers with Youla
parameter augmentation

In this section, an example of a viable structure for the controller is presented, namely the
observer-based controller structure. After enumerating the pros for such structure, it is shown
how to obtain a proper formulation of this controller structure fit for synthesis. In case more
degrees of freedom are required, it is shown how to introduce a so-called Youla parameter which
adds dynamics to the pre-existing classical observer dynamics. This structure will be used
in 6.2 to illustrate the multi-models multi-requirements design technique on the uncertain flexible
launch vehicle example.

2.3.1 Choosing an observer-based structure for the controller
As mentioned in the previous section 2.2, any controller structure can be considered for synthesis
against the considered requirements. The advantages of structuring the controller are numerous:

• this reduces the order of the controller thus facilitating its implementation;

• This can provide a precise physical interpretation to the controller internal signals instead
of a black-box interpretation of the synthesized controller;

• This allows the use of existing structures which have proven satisfying based on experience
and testing;

• This is expected to facilitate further operations required on the synthesized controller.

As far as the aerospace application in 6.2, Chapter 6 is concerned, the choice is made to
consider an observer-based structure. Similarly to many aerospace problems, the considered
linear models representing the launch vehicle are obtained from linearising the original non-linear
model at prescribed working points. The control law covering the evolution of the dynamics
between these working points is then obtained through interpolation which results in the control
law being gain-scheduled [Voinot 03a]. An observer-based structure is expected to facilitate
the interpolation of the structuring observer and feedback gains as mentioned in [Alazard 03,
Stilwell 97]. Also, it gives a physical interpretation to the controller internal signal since the rigid
body dynamics of the launch vehicle is observed and can be interpreted.

2.3.2 Presentation of the observer-based structure
In this section, the observer-based structure is presented. From a nominal model obtained for
nominal value θn of the uncertain parameters in (2.20), a reduced-order classical observer is first
designed. Then, a feedback gain fed by the observed reduced-order state is designed. Finally,
to anticipate the lack of degrees of freedom in the resulting structure, an augmentation by a
dynamic Youla parameter is considered.

2.3.2 (a) Considered nominal model

To design the dynamics of the classical observer, it is decided to consider nominal values of the
uncertain parameters in θ. The system dynamics in (2.20) is then evaluated for this nominal
vector of parameters θn. The choice for the nominal vector θn depends on the considered
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problem. In the general case, if the vector of uncertain parameters can be bounded by two
quantities θ and θ such that

θ ≤ θ ≤ θ
then a possible choice for θn is

θn = θ − θ
2

As proposed, let evaluate the considered uncertain system in (2.20) for θ = θn. This results
in the following state-space representation for the nominal model:

(Gn)
{
ẋn = Anxn + Bn,uu + Bn,ww

yn = Cn,yxn + Dn,uu + Dn,ww
(2.33)

where An = A (θn), Bn,u = Bu (θn), Bn,w = Bw (θn), Cn,y = Cy (θn), Dn,u = Bu (θn)
and Dn,w = Dw (θn). This can be equally obtained using the upper-LFT of P(s) with ∆θn

:
Fu (P(s),∆θn

).

A note on rigid/flexible dynamics In aerospace/aeronautical applications, recent advances
have allowed the use of new, lighter, materials. Also, the considered structures size have increased
as is the case with wings or deployable solar panels. This has resulted in an increased impact
of the flexibilities on the structures and especially on the control of the systems featuring such
structures.

In the launch vehicle case, as will be detailed in 6.2, the flexible modes do not impact the rigid
body dynamics of the system, that is its trajectory in the considered frame. However, they act
as a disturbance on the measurements through the Cy matrix. From a dynamics representation
point of view, this means that the matrix An is block-diagonal:

An =
[
A1

n 0
0 A2

n

]
(2.34)

From an observer-based controller point of view, observing the flexible modes would be equiv-
alent to re-injecting the disturbances in the control loop with is not desired. The determining
dynamics is of course the rigid body dynamics which models the trajectory of the system in
the considered frame. This motivates using a reduced-order classical observer rather than a
full-order observer in the design of the considered observer-based controller. Hence, only the
following dynamics is observed and serves as the nominal model on which the classical observer
is built:

ẋ1
n = A1

nx
1
n + B1

n,uu+ B1
n,ww (2.35)

where x1
n ∈ Rn1 . In the launch vehicle case, the vector y ∈ Rm gives a measure of the rigid-

body variables disturbed by the bending modes dynamics. This vector is used as an input
to the classical observer considered in the next section. Additional synthesis requirements can
be considered to reject the measurements noises and improve the control performance of the
closed-loop.

2.3.2 (b) Reduced-order classical observer

As already mentioned, only the part of the state related to rigid body dynamics (2.35) is observed.
The following reduced-order classical observer is thus considered:

(
Ĝn

)
˙̂
x1
n =

(
A1

n − LC1
n,y

)
x̂1
n + B1

n,uu+ Ly

ŷ = C1
n,yx̂

1
n

(2.36)

where L ∈ Rn1×m is the observer-gain to be designed and C1
n,y represents the n1 first columns

of Cn,y. In the following section, the observer state x1
n is used in the feedback-loop to stabilize

the system.
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Figure 2.4: Left: observer-based controller structure; Right: LFT used for structured controller
synthesis purposes

2.3.2 (c) Resulting observer-based structure

In the previous section, a classical observer was built on top of the uncertain disturbed plant
measurements y. Only part of the dynamics, the rigid body part to be precise, is observed. As
a consequence, the vector x̂1

n is an estimate of the true rigid body state x1. This estimate is
based on a nominal model corrected by the uncertain disturbed plant measurements.

The observer-based structure then uses this estimate to obtain the feedback loop considering
a static-state feedback gain Kf ∈ Rl×n1 :

u = −Kf x̂1
n (2.37)

Similarly to the observer gain L, the feedback gain Kf is a design parameter. The controller
structure resulting from the classical observer in (2.36) and the feedback gain in (2.37) is repre-
sented on the left side of Fig. 2.4. The considered design parameters L and Kf are highlighted
in orange. From a controller synthesis perspective, these parameters are externalized using the
following LFR for the inner controller structure:

(PK)


A1

n
[
0n1×m In1 B1

n,u
] 0l×n1

−C1
n,y

In1

  0l×m 0l×n1 Il
Im 0m×n1 0m×l

0n1×m 0n1×n1 0n1×l


 (2.38)

where we have used the common state-space partitioning representation of [Boyd 91]. The inputs
to (PK) are respectively y, ul and yK = u. Its outputs are respectively u, y− ŷ and x̂1

n. Using
the LFR in (2.38), the controller structure in Fig. 2.4 is obtained through two successive lower-
LFTs (or equivalently through one LFT after applying an appropriately defined block diagonal
operator on the design parameters):

K (s,p) = U(s)
Y(s) = Fl (Fl (PK(s),Kf ) ,L)

= Fl (PK(s),blkdiag (L,Kf ))
(2.39)

where p =
[
L Kf

]
. From a multi-model synthesis approach and with slight modifications of the

LFR in (2.25) and LFT in Fig. 2.3 using K (s,p) as in (2.39), the synthesis models for different
values of θ ∈ Θc can be obtained via LFT as illustrated on the right side of Fig. 2.4.

2.3.2 (d) Reduced-order vs. degrees of freedom: the Youla augmentation

In the previous section, the structure for a typical observer-based controller has been detailed.
Two static gains, respectively the observer gain L ∈ Rn1×m and Kf ∈ Rl×n1 have been intro-
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duced. These are the design parameters which will be tuned against multiple requirements on
multiple synthesis models. The total number of variables considered in this control synthesis
problem is thus equal to (m+ l)n1 where m is the number of measurements outputs, l the num-
ber of control inputs and n1 the order of the classical observer (or, practically speaking, of the
considered system rigid body dynamics).

Depending on the original system order, the number of variables mentioned above may be
insufficient in terms of degrees of freedom. For example, requirements related to attenuating the
bending modes may be hard to fulfil without giving more degrees of freedom than the (m+ l)n1
variables resulting from choosing static observer and feedback gains. A solution to enrich the
dynamics of the studied controller is to consider an augmented controller based on the original
observer-based controller and a dynamic Youla parameter Q(s). The Youla-Kuc̆era parametriza-
tion was originally introduced for transfer functions in [Youla 76a, Youla 76b, Kuc̆era 80] to
parametrize the whole set of stabilizing controllers for a given plant. Formulations were later
proposed using state-space representations [Nett 84]. Modern resources on the subject in-
clude [Kuc̆era 11, Colaneri 97, Antsaklis 05].

In our case, based on a stabilizing controller for two given gains L and Kf , the Youla dynamic
parameter Q(s) can be used to increase the considered observer-based controller without desta-
bilizing the closed-loop. Hence, the number of degrees of freedom increases without changing the
core structure or introducing undesired instabilities in the closed loop.

Similarly to any dynamic system, the Youla parameter can be represented by the following
state-space representation:

(Q)
{
ẋQ = AQxQ + BQuQ

yQ = CQxQ + DQuQ
(2.40)

where xQ ∈ RnQ is the selected order for the Youla parameter. In the considered case, the
following interconnections are considered:

uQ = y − ŷ
u = yQ −Kf x̂1

n

(2.41)

The controller structure resulting from the classical observer in (2.36), the feedback gain
in (2.37) and the Youla dynamic parameter (Q) is represented on the left side of Fig. 2.5.
Similarly to the static gains L and Kf , (Q) is a design parameter and is highlighted in orange
on the figure. For synthesis purposes, it can be externalized using an appropriate LFR for the
inner controller structure:

(
PQ

K

)


A1
n

[
0n1×m In1 −B1

n,u B1
n,u
]

0l×n1

−C1
n,y

In1

−C1
n,y




0l×m 0l×n1 −Il Il
Im 0m×n1 0m×l 0m×l

0n1×m 0n1×n1 0n1×l 0n1×l
Im 0m×n1 0m×l 0m×l


 (2.42)

where we have used the same state-space partitioning representation as previously. The inputs
to
(
PQ

K

)
are respectively y, ul, yK = u and yQ. Its outputs are respectively u, y − ŷ, x̂1

n and
uQ = y − ŷ. Using the LFR in (2.42), the controller structure in Fig. 2.5 is obtained through
three successive lower-LFTs:

K (s,p) = U(s)
Y(s) = Fl

(
Fl
(
Fl
(
PQ

K(s), (Q)
)
,Kf

)
,L
)

= Fl
(
Fl
(
PQ

K(s), (Q)
)
,blkdiag (L,Kf )

) (2.43)

where p =
[
AQ BQ CQ DQ Kf L

]
. From a multi-models synthesis approach and with

slight modifications of the LFR in (2.25) and LFT in Fig. 2.3 using K (s,p) as in (2.43), the
synthesis models for different values of θ ∈ Θc can be obtained via LFT as illustrated on the
right side of Fig. 2.5.
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2.3.3 Conclusions on the augmented observer-based structure
In this section, the observer-based structure with Youla parameter augmentation has been pre-
sented. This structure has been chosen in order to give a physical meaning to the control
signals and especially to the controller state. Also, it is expected to simplify the development
of gain-scheduled controllers. The Youla dynamic parameter is used to increase the number of
decision variables in the optimisation problem resulting from the formulation of control design
requirements.

The controller obtained depends on three design parameters L, Kf and (Q). Using appro-
priate Linear Fractional Representations, these parameters can be externalized as illustrated
in Figs. 2.4 and 2.5. They can then be optimised solving a multi-models multi-requirements
optimization problem as presented in 2.2.

In 6.2, Chapter 6 the problem of designing a control law for a flexible launch vehicle against
frequency- and time-domain specifications is tackled. The observer-based structure is used and
optimized through a multi-models multi-requirements approach.

2.4 Concluding remarks
In this chapter, the structured controller design method proposed in [Apkarian 07, Apkarian 14]
has been applied to the robust control of an uncertain linear system. Multiple models obtained
for critical values of the vector of uncertainties θ are considered for synthesis on which multi-
ple frequency-domain requirements are expressed. The resulting optimization problem is then
solved using non-smooth optimization-based techniques. In the recent work [Apkarian 15], the
same approach is used but where the critical models are determined automatically within the
optimization loop. This further reduces the involvement of the designer in the challenging task
of determining these critical models.

The observer-based controller structure with a Youla parameter has also been detailed. In
the launch vehicle control problem, a reduced-order observer is used upon noticing that the only
useful dynamics to be observed is the rigid body dynamics. The proposed controller structure
takes this into account. Application to the atmospheric control of the uncertain flexible launch
vehicle is considered in Chapter 6 where it is shown that achieving a time-domain constraint on
the angle of attack is tedious task when tuning frequency-domain requirements only. This mo-
tivates considering an additional output-constraint control technique. Using such evolutionary
technique, it is possible to use the synthesized structured controller obtained through the syn-
thesis described in this chapter and yet achieve the expected output constraint. This is detailed
in the following chapter and in Chapters 4 and 5.
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Chapter 3

Introduction to OIST

In this chapter, the Output to Input Saturation Transformation (OIST ) introduced
in [Burlion 12] for non-linear systems is presented. This transformation is used to
enforce a time-domain constraint on a considered system output. It proposes to
introduce a saturation on a pre-existing control law. Here, a specific class of non-linear
minimum phase systems is considered where the state derivative depends linearly
on the input. The notion of relative degree is used to derive the expressions of the
time-varying saturations to apply to the control.

The required notations and definitions are recalled in 3.1. The motivations for sat-
urating the control signal to enforce an output constraint are identified in 3.2 using
a simplified non-linear crane model. The transformation is then formally introduced
in 3.3 and applied to the crane control problem in 3.4.
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3.1. Notations and definitions

3.1 Notations and definitions
In this section, generic notations and definitions are introduced. Let x ∈ Rn and 1 ≤ i ≤ n. The
partial derivative operator with respect to the i-th element of x is denoted ∂i = ∂

∂xi
.

Definition 3.1 (C1-class form).
Let σ a mapping from Rn to R. It is said to be of class C1 if ∀i ∈ N? s.t. i ≤ n, ∂iσ exists
and is continuous.

In the following, the notation σ ∈ C1 (Rn,R) for a C1 form is used.

Definition 3.2 (Ck-class mapping).
Let f a mapping from Rn to Rm and k ≥ 1. It is said to be of class Ck if ∀(i, j) ∈ N? × N?
s.t. i ≤ m, j ≤ k, djf i exists and is continuous, where d denotes the differential operator.
In case this is true for any k ≥ 1, f belongs to C∞ (Rn,Rm).

Let now introduce the definition of the Lie derivative.

Definition 3.3 (Lie derivative of a C1 form).
Given σ ∈ C1 (Rn,R) and f ∈ C∞ (Rn,Rn), the Lie derivative of σ in the direction of f is
denoted Lfσ and is defined by

Lfσ =
n∑
i=1

f i∂iσ

The definition of the Lie derivative is used to define the relative degree of a variable with
respect to the input of a dynamic non-linear system.

Definition 3.4 (Relative degree).
Let consider the following non-linear dynamics

ẋ = f(x) + g(x)u

where x ∈ Rn, u ∈ R and (f , g) ∈ C∞ (Rn,Rn). Let α = σ(x) where σ ∈ Ck (Rn,R) with
k ∈ Z?+. The variable α is said to be of relative degree k with respect to u if ∀x ∈ Rn,
∀i ∈ Z+ s.t. 1 < i ≤ k,

LgLk−if σ(x) = 0 and LgLk−1
f σ(x) 6= 0

The set of intervals of R is denoted I(R).

3.2 Motivations for a new approach to output-constrained
control

The control of dynamic systems under constraints is a challenging task. Constraints may be
expressed in the frequency- or time-domain on the system inputs, state or outputs. In this
chapter and section, light is shed on the output-constrained control problem. More specifically,
to ensure a non-linear system remains in a nominal operating mode, it may be necessary to
ensure that some of its outputs remain in a given interval over time.

Example 3.5. In the ball-and-beam example, the nominal operating mode is characterized by
the ball rolling on the beam. If one measures the position of the ball on the beam, a reasonable
output constraint to remain in this operating mode is to ensure the ball position belongs to the
interval defined by the beam length. ♣
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Figure 3.1: Simplified crane viewed as a pendulum on a cart.

In this section, an example is introduced in 3.2.1 to highlight the necessity to introduce
such constraints in some control problems. A review of the state of the art of state- and output-
constrained control is presented in 3.2.2. Finally, reasons for proposing a new approach to handle
such constraints are detailed in 3.2.3.

3.2.1 An example: non-linear crane control
A simple non-linear crane model is considered in this section. This illustrates the motivations
of designing new approaches to consider output constraints. The crane model and notations are
inspired from the cart-pole examples in [Olfati-Saber 01, Section 5.4, p. 136] and [Spong 96].

Equations of motion The considered system is represented in Fig. 3.1. The notations and
their numerical values are recorded in Table 3.1.

Notation Description Numerical value
(O;X,Y ) Inertial frame of reference -

m1 Cart mass 0.5 kg
m2 Pendulum mass 0.4 kg
l2 Pendulum length (center of mass) 0.6 m
I2 Pendulum mass moment of inertia 0.006 kg.m2

q1 Cart position abscissa q1(0) = −10 m
q2 Pendulum angle q2(0) = 0
F External force to set the cart in motion -

Table 3.1: Description of the notations in Fig. 3.1 and numerical values used in simulation.

The mass of the pendulum is supposed to be located in one point. A no-slip hypothesis is
also made. It is supposed that the whole state is measured (positions and velocities). Using the
laws of motion, the following relations are obtained, where (G) denotes the system:

(G)
{

(m1 +m2) q̈1 +m2l2 cos (q2)q̈2 −m2l2 sin (q2)q̇2
2 = F

m2l2 cos (q2)q̈1 +
(
I2 +m2l

2
2
)
q̈2 +m2gl2 sin (q2) = 0

(3.1)

Using results in [Olfati-Saber 01, Section A.5, p. 291], the crane system inertia matrix

M =
[

M11 M12(q2)
M12(q2) M22

]
components are given by
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M11 = m1 +m2

M12(q2) = m2l2 cos (q2)
M22 = m2l

2
2 + I2

(3.2)

The inertia matrix only depends on q2, hence q1 is said to be the external variable and q2
the shape variable of the system. This allows to rewrite (3.1) in the following form

(G)
{

M11q̈1 + M12(q2)q̈2 + h1(q, q̇) = F

M12(q2)q̈1 + M22q̈2 + h2(q, q̇) = 0
(3.3)

where q =
[
q1 q2

]> is called the vector of generalized coordinates and

h1(q, q̇) = −m2l2 sin (q2)q̇2
2

h2(q, q̇) = m2gl2 sin (q2)
(3.4)

Partial feedback linearization Using a similar approach to [Chung 95, Spong 96], a partial
feedback linearization is now performed using adequate rewriting of (3.3). Let consider the
following partially linearizing feedback law

F =
(

M11 −
M12(q2)2

M22

)
u− M12(q2)

M22
h2 (q, q̇) + h1 (q, q̇) (3.5)

where u is the new control input. Using this feedback law, the dynamics in (3.3) may be rewritten
in the following form [Spong 96]:

(Gl)


q̇1 = p1

ṗ1 = u

q̇2 = p2

ṗ2 = −γ1 sin (q2)− γ2 cos (q2)u

(3.6)

where γ1 = m2l2g
I2+m2l22

and γ2 = m2l2
I2+m2l22

. In the existing literature [Chung 95, Spong 96], this form
is used to design a control law u (q, q̇).

Considered nominal control law The typical case study suggested in [Burlion 12] supposes
that a control law – which will be called nominal – has already been designed and stabilizes the
studied system. In this section, the nominal control law is introduced on the partially linearized
form in (3.6). The following control law is considered:

u = −k1q1 − k2p1 + k3 cos (q2)p2 (3.7)

where the parameters ki, i ∈ [1 . . . 3] are positive real numbers and are set to the following values
for simulations:

k1 = 0.25, k2 = 1, k3 = 1 (3.8)

The control law in (3.7) is a slight adaptation of the control laws used in [Chung 95, Spong 96]
to stabilize an unstable cart-pole system to the origin. In [Chung 95], local exponential stability
is proved as well as convergence of the system energy to some fixed design value. The purpose
being illustrative only, these results are not detailed here.

Note that more complex control strategies could be figured out using approaches in [Spong 96,
Olfati-Saber 01]. This is not covered here since a simple control strategy is convenient enough
to illustrate the new proposed approach to output-constrained control.
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Figure 3.2: non-linear crane model simulation results using the nominal control law. Top:
nominal control law, see (3.7); Bottom: (Gl) state, see (3.6).

Simulation results The system (Gl) in (3.6) is now simulated in closed-loop with the control
law proposed in (3.7). The numerical values are given in Table 3.1 and (3.8). The initial condition
is set to

(
q1,p1, q2,p2

)
=
[
−10 0 0 0

]
and the system is simulated over 20s. The simulation

results are shown in Fig. 3.2. It can be observed that the control law stabilizes the system to the
origin. The oscillations of the pendulum may however be considered important with a maximum
angle of 15◦. It may be off-specifications for some applications for example if the load is an open
tank containing a fluid.

Introducing an output constraint Considering the crane control example, control law de-
sign specifications may require to limit the reachable set of a system output. This can be formu-
lated as a time-domain constraint on the considered output which will be denoted α = σ(x) ∈ R.
Examples of such constraints have been represented in Fig. 3.3:

• in the top figure, a time-invariant constraint is set on α = p1 which corresponds to a speed
limit profile. Mathematically speaking, the following should be ensured:

0 ≤ α = σ(x) = p1 ≤ p1, ∀t

where p1 describes the maximum allowable speed. This constrains the maximum allowable
speed of the cart;
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Figure 3.3: Illustration of the type of considered constraints (in red). Signals values violating
the constraint are represented in magenta.

• in the bottom figure, a time-varying constraint is set on α = q2. Mathematically speaking,
the following should be ensured:

q2(t) ≤ α = σ(x) = q2 ≤ q2(t), ∀t

where q2(t) and q2(t) describe the bounds set on q2. This constrains the pendulum ad-
missible inclinations.

Other constraints on other variables could also be imagined. Note that in these examples,
the output constraint is also a state constraint. Using the control law in (3.7), the constraints
informally specified in Fig. 3.3 are violated as simulation shows. Still informally, three control
philosophies can be considered to achieve satisfaction of the considered time-domain constraints:

• Cautious: modify the control law so as not to reach the constraints;

• Evolutionary: keep the already designed control law and use an additional signal to com-
pensate for the overly demanding control signal in case the constraints are violated;

• Tactical: design a new control law using techniques which handle time-domain constraints;

A more formal state of the art is now presented to review the existing techniques which take
state or output constraints into account.

3.2.2 State of the art of output-constrained control
Because of their direct influence on the closed-loop stability, input constraints are a well-studied
subject in control theory. Also, non-linear constraints like input saturations are often faithful
representations of real-world phenomena which must be considered when designing a control law.
This is for example the case of planes elevators which tilt is limited due to physical constraints.
Different strategies have been considered to account for such constraints in the control design.
In [Goodwin 01, Rojas 02, De Dona 02], the authors classified the possible strategies in three
major categories:
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• Cautious strategies which consist in designing the control law such that the constraints are
not triggered.

Example 3.6. In the saturated control case, a cautious control law is designed such that
the saturations are never reached. ♣

Despite being easy to implement, such strategies often result in a loss of control performance
and efficiency, the control law not being allowed to linger on the saturation;

• Evolutionary1 approaches which are based on a control law violating the constraints but
which bring additional information to mitigate the consequences of this violation.

Example 3.7. In the saturated control case, an example of an evolutionary approach is
the anti-windup design which consists in augmenting the controller dynamics whenever the
saturations are met. ♣

Such strategies are harder to implement but have been widely studied in the literature
during the past few years due to their practical interest;

• Tactical strategies which consider the constraints in the design of the control law. They
are tightly related to the optimisation field.

Example 3.8. In the saturated control case, a tactical strategy would minimize some
performance criteria (e.g. the steady-state tracking error) subject to the presence of satu-
rations on the actuators. ♣

Such strategies are widely documented but are in general more complex to use than the
other strategies.

As far as the output-constrained problem is concerned, the same families of strategies can be
identified. In [Gilbert 91, Rojas 02] the relationship between a constrained output and an induced
constrained input was studied in the case of known discretized linear systems. Consequently, a
time-domain constraint on an output can be achieved by acting on the control input using the
aforementioned approaches.

Cautious strategies Such strategies include the so-called low-gain control strategy presented
in [Lin 93] in the linear framework. Since global asymptotic stability cannot be obtained in non-
degenerated cases whatever the control, the authors propose to achieve semi-global exponential
stability only. The existence of control feedbacks achieving this type of stability is then shown. As
already mentioned however, such approaches can lead to control laws showing poor performance.

Evolutionary strategies Anti-windup design for saturated systems is the most representative
example of such evolutionary strategies. The presence of saturations is a well-tackled problem
in linear control design since a saturated control law may induce divergence of the loop. Recov-
ering from such a degraded situation is fanciful in most cases without additional tools to avoid
divergence. An overview of anti-windup techniques and remaining challenges is proposed in [Tar-
bouriech 09] while modern anti-windup synthesis is extensively covered in [Zaccarian 01]. An
LMI-based approach is presented in [Grimm 03] for both analysis and synthesis of the anti-windup
closed-loop. In the case of non-linear systems, the literature is less abundant, as also underlined
in [Tarbouriech 09]. In the case of the specific class of Euler-Lagrange systems, an anti-windup
scheme is proposed in [Morabito 04]. A more general approach is presented in [Teo 09] where
the authors propose to use gradient projection to modify the controller update law whenever a
constraint is active on the control.

The anti-windup design has also been used to enforce state and output constraints through
its action on the control input. In [Rojas 02], a limiting circuit with a predicting stage is
introduced between the controller output and the control input. A saturation and non-linear

1The term has nothing to do with the class of evolutionary algorithms in optimisation. Aside note: the use of
such algorithms in control would rather fit in a tactical approach.
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mapping function are used to compute an allowed control action whenever the state-constraint
is violated. In [Turner 02], an output violation compensator is used in an additional feedback
loop to satisfy the output constraint as far as possible. LMI-based theorems inspired from the
existing anti-windup synthesis literature are also proposed. However, the use of anti-windup in
the state/output-constrained case does not offer guarantees to the effective satisfaction of the
constraints.

In the case of non-linear tracking systems, reference governors can be considered [Gilbert 02].
The basic idea is to modify the tracking reference so as to satisfy the state constraints whenever
getting near the boundary of the admissible set.

The approach proposed in [Burlion 12] and presented in this chapter for non-linear systems
is of the evolutionary type. It is based on the transformation of an output constraint into
saturations on the control input using information on the output relative degree with respect
to the control input. It was applied to a sub-problem of the image-based automatic landing of
an UAV2 in [Burlion 13]. The authors used the technique to maintain points of interest in the
camera field of view during the approach and landing phases of the UAV. Reformulation in the
linear case with a closed-loop stability proof was performed in [Chambon 15c] and [Chambon b]
and is presented in Chapter 4. An extension of OIST to account for uncertainties and incomplete
state measurements is proposed in Chapter 5.

Tactical strategies This family of strategies is closely related to optimal control problems.
In [De Dona 02], a distinction is made between fixed horizon optimal control and receding horizon
optimal control, also called model predictive control (MPC). Fixed horizon approaches are not
very robust to unmodelled events while receding horizon ones are more robust by dynamically
determining the optimal control over a finite amount of time. The underlying optimisation
problem can consider constraints on the state and outputs of the system. The MPC research
field has been very active in the last years in the non-linear world also [Findeisen 07] and real
world applications are already reported [Qin 03]. These methods can however be heavier to
implement than anti-windup.

A more exotic approach is presented in [Tee 09] for non-linear SISO systems in strict feedback
form. The authors use a specific type of Lyapunov functions, called Barrier Lyapunov functions,
which have the property to grow towards infinity when the system state approaches a pre-defined
set of finite values. This helps to design a control law enforcing state constraints.

For linear systems, other tactical approaches exist like iterative feedback tuning [Gevers 02]
or simulation-based non-smooth optimisation [Apkarian 11]. They optimise the controller per-
formance under state or output constraints. Fulfilment of the constraints is checked using time-
domain response with respect to a class of input and/or disturbance signals. Like the anti-windup
approach, such strategies do not offer certificates on the actual satisfaction of the considered
time-domain constraints for any type of input signal.

3.2.3 A new approach to the output-constrained control problem
The crane control problem presented in 3.2.1 illustrated that, given a control law, additional time-
domain constraints considered later in the synthesis may not be achieved. From an application
point of view, this may occur when the control law is designed according to some specifications
which are later updated or which are prioritized in the control design.

This motivates using either a cautious or evolutionary strategy to refine the control law
actually used. A study of the available literature on constrained control in 3.2.2 has shown
that cautious strategies can lead to degraded performance in comparison with evolutionary ap-
proaches. As far as evolutionary strategies are concerned, a big proportion of the literature is
dedicated to linear systems. Also, there does not seem to exist approaches which certifies that
the time-domain constraint will actually be satisfied whatever the input or disturbance signals.

This motivates the work in [Burlion 12]. A new evolutionary approach is proposed to the
output-constrained problem of non-linear systems.

2Unmanned Aerial Vehicle
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Figure 3.4: Informal illustration of the OIST evolutionary strategy. Left: nominal controller (no
OIST); Right: with OIST saturations in the loop, the constraint is satisfied (in orange).

3.3 Output to input saturation transformation
In this section, the new approach proposed in [Burlion 12] to enforce an output constraint is pre-
sented in the non-linear case. This approach is called Output to Input Saturation Transformation
and will be referred to using the acronym OIST.

The approach belongs to the class of evolutionary strategies [Goodwin 01]. A control law
is used to enforce specific properties on the unconstrained closed-loop. Whenever the output
constraint is violated, saturations are activated on the control input as illustrated in Fig. 3.4.
This is an attempt to retrieve in the non-linear framework a relationship between a constrained
output and a constrained input as unveiled in [Gilbert 91].

3.3.1 Considered class of non-linear systems and constraints
Let consider the following single-input continuous-time non-linear system:

(G)


ẋ = f(x) + g(x)u
y = x

x(0) = x0

(3.9)

where x ∈ Rn, u ∈ R and (f , g) ∈ C∞ (Rn,Rn) × C∞ (Rn,Rn). The crane model used in 3.2
belongs to this class of non-linear models since its partially linearized dynamics in (3.6) can
easily be expressed in the form of (3.9). Another example of such model is the basic flight
combat aircraft model considered in [Burlion 12].

Considering the control of the system in (3.9), the design of an appropriate control signal u is
subject to fulfilling specific objectives. Local stability, time-response performance or overshoot
limitation are examples of constraints the control should satisfy. In [Burlion 12], an additional
type of constraint, generically called output constraint and denoted K is introduced:

Definition 3.9 (Output constraint).
Let denote α := σ (x) the considered system output where σ ∈ Ck (Rn,R)a. Let Ωα(t) =
[α(t), α(t)] ∈ I(R) where α(t) and α(t) are sufficiently smoothb time-varying unidimensional
signals satisfying

α(t) < α(t), ∀t ∈ R+

The considered output α is said to satisfy the constraint K(Ωα) if

α(t) ∈ Ωα(t), ∀t ∈ R+

aThe integer k is the relative degree with respect to u, see Assumption 3.13.
bThis notion will be specified later on.

Further, the system in (3.9) is supposed to be minimum phase [Isidori 95]. This allows to
state global results as far as stability in the presence of saturations is concerned. The non-
minimum-phase case is discussed in 3.3.5.
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Assumption 3.10 (Minimum-phase system).
The non-linear system {

ẋ = f(x) + g(x)u
α = σ(x)

is supposed to be minimum-phase.

The definition of nominal control law is now introduced. The concept of nominality is used
to remain coherent with its interpretation in the saturated control case. Hence, the notion refers
to the control law applied when the output constraint is satisfied.

Definition 3.11 (Nominal control law).
The control law u(y) is said to be nominal if it achieves the desired control design objectives
(including closed-loop stability) to the exception of K(Ωα). In other words, there may exist
t ∈ R+ s.t.

α(t) = σ (x) /∈ Ωα(t)

The values taken by the output signal α using the nominal control law are not certified to
belong to the interval Ωα at all times. This motivates developing an evolutionary approach to
enforce the time-domain constraint while keeping the considered nominal control law.

3.3.2 Output constraint to input saturation problem formulation
In [Burlion 12], it is proposed to enforce an output constraint as described in Definition 3.9 by
introducing time-varying saturations on the system input signal u. The idea is to constrain the
set of admissible control signal values to consequently restrict the resulting set of output signal
values. The problem of finding the adequate saturations is now formally introduced.

Problem 3.12 (Output constraint to input saturation problem).
Let consider system (G) in (3.9) with α = σ(x) ∈ R the constrained output. Let K(Ωα)
a time-domain constraint and u a known nominal control law. Design two signals u and u
such that the closed-loop

ẋ = f(x) + g(x)u
y = x

x(0) = x0

α = σ(x)

u ∈
[
u
(
x,Ωα(t), Ω̇α(t), . . .

)
, u
(
x,Ωα(t), Ω̇α(t), . . .

)]
(3.10)

satisfies K(Ωα), i.e.
α(t) ∈ Ωα(t), ∀t ∈ R+

The transformation of the output constraint K(Ωα) into saturations (u, u) fulfilling the con-
straint relies on the knowledge of the system dynamics, the expected bounds Ωα(t) and the form
σ. Such transformation is now proposed.

3.3.3 Proposed transformation (OIST)
The ability to derive control saturations from a constraint impacting an output clearly depends
on how this output variable depends on the control input. In the following, such dependence is
ensured by making an assumption on the relative degree of α with respect to u.
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Assumption 3.13 (Assumption on the relative degree of α wrt. u).
The constrained output α = σ(x) with σ ∈ Ck (Rn,R) is supposed to be of relative degree
k ∈ Z?+ with respect to the control input u.

Hence, according to Definition 3.4, the k-th differential of α = σ(x) is given by

α(k)(t) = Lkfσ(x) + LgLk−1
f σ(x)u (3.11)

where LgLk−1
f σ(x) 6= 0, ∀x ∈ Rn. This dependence in u of the k-th differential of α will be used

to derive the expressions of the saturations to apply to the control input. Prior to this, a new
definition is introduced to pave the way for a constructive lemma which will be used to obtain
those expressions.

Definition 3.14 (Propagated bounds).
Let κ =

[
κ1 . . . κk

]
∈ Rk+ a vector of positive constants and let suppose the output

constraint bounds (α(t), α(t)) are functions of Ck (R+,R). Let define α0(t) = α(t), α0(t) =
α(t) and, ∀i ∈ N? s.t. i ≤ k:

αi(t) = κi
(
αi−1(t)− α(i−1)(t)

)
+ ˙︷ ︷
αi−1(t)

αi(t) = κi
(
αi−1(t)− α(i−1)(t)

)
+

˙︷ ︷
αi−1(t)

(3.12)

These are called propagated bounds in the sense they propagate the expected bounds α(t)
and α(t) up to the k-th differential of α.

The coefficients in κ are degrees of freedom which selection is discussed later. Prior to using
the propagated bounds to achieve the time-domain constraint, it is required that the considered
output signal α derivatives initially satisfy these bounds:

Assumption 3.15 (Assumption on the initial satisfaction of the propagated bounds).
It is assumed that

∀i ∈ N s.t. i ≤ k, α(i)(0) ∈ Ωiα(0)

where Ωiα(t) = [αi(t), αi(t)] , ∀t.

The definition of propagated bounds is used in the following lemma which is the true backbone
of the transformation:

Lemma 3.16 (Propagated bounds lemma).
Let suppose Assumptions 3.13 and 3.15 are satisfied. Let define propagated bounds as in
Definition 3.14, ∀i ∈ N s.t. i ≤ k. Then,

α(k)(t) ∈ [αk(t), αk(t)] = Ωkα(t), ∀t ∈ R+ ⇒ α(t) ∈ [α(t), α(t)] = Ωα(t), ∀t ∈ R+

Proof. The proof is performed iteratively for a fixed k. Let j such that 1 ≤ j ≤ k. Suppose
that α(k)(t) ∈ [αk(t), αk(t)] , ∀t ⇒ α(j)(t) ∈

[
αj(t), αj(t)

]
, ∀t where the propagated bounds are

defined as in Definition 3.14. It is also supposed that Assumption 3.15 is satisfied. Only the
lower bound is considered. The demonstration is similar in the upper bound case. Suppose

∃t2 > 0, α(j−1)(t2) < αj−1(t2) (3.13)

then, since α(j−1)(0) ∈ Ωj−1
α (0) and, by continuity of α(j−1) and αj−1

∃t1, 0 < t1 < t2,
{

α(j−1)(t1) = αj−1(t1)

∀t ∈ [t1, t2] , α(j−1)(t) ≤ αj−1(t)
(3.14)
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But, using the recurrence hypothesis, the definition of αj(t) and the fact that ∀t, κj(t) ≥ 0,
one obtains, ∀t ∈ [t1, t2],

α(j)(t) ≥ αj(t)

≥ κj(t)
(
αj−1(t)− α(j−1)(t)

)
+ ˙︷ ︷
αj−1(t)

≥ ˙︷ ︷
αj−1(t)

(3.15)

hence, using the property of integrals,

∫ t2
t1
α(j)(λ)dλ ≥

∫ t2
t1

˙︷ ︷
αj−1(λ)dλ

α(j−1)(t2)− α(j−1)(t1) ≥ αj−1(t2)− αj−1(t1)
(3.16)

which contradicts (3.13). In other words

∀t > 0, α(j−1)(t) ≥ αj−1(t) (3.17)

which proves the lemma, by recursion.

Hence, by enforcing constraints on the k-th differential of α, which depends on the control
input u as shown in (3.11), the constraint K(Ωα) can be enforced. Supposing that LgLk−1

f σ (x) >
0, ∀x, the k-th propagated bound expression is then used to derive saturations on u, using (3.11)
and Lemma 3.16:

u(x) =
αk(t)− Lkfσ (x)
LgLk−1

f σ (x)
, u(x) =

αk(t)− Lkfσ (x)
LgLk−1

f σ (x)
(3.18)

where LgLk−1
f σ (x) is certified to be non-null by Definition 3.4.

Remark 3.17. In case LgLk−1
f σ (x) < 0, ∀x then the expressions of u and u are exchanged

in (3.18). �

Remark 3.18. In case k = 0 and supposing α can be expressed as α(t) = σ(x) + σu(x)u with
σu(x) > 0, ∀x and α(0) ∈ Ωα(0) then applying the transformation gives

u(x) = α(t)− σ(x)
σu(x) , u(x) = α(t)− σ(x)

σu(x) (3.19)

In case σu(x) < 0, ∀x then Remark 3.17 applies. �

3.3.4 A solution to the output-constrained problem using OIST
In the previous section, a transformation of the output constraint into input saturations has been
performed. The notion of propagated bounds in Definition 3.14 introduces design parameters κ
which selection is however not detailed. In this section, this parameters selection is commented.
Also, a solution to Problem 3.12 using OIST is formally stated.

First, the notion of overlapping signals used later in the chapter is introduced.

Definition 3.19 (Overlapping signals).
Two unidimensional signals s(t) and s(t) are said to overlap if ∃t1 > 0, δ > 0 such that
∀t < t1, s(t) ≤ s(t) and ∀t ∈ [t1, t1 + δ[, s(t) > s(t).

Example 3.20. The notion of overlap is illustrated in Fig. 3.5 for two unidimensional signals
s(t) and s(t). ♣
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t
0

s(t)

s(t)

s(t)

t1 t1 + δ

t
0

s(t)

s(t)

s(t)

Figure 3.5: Left: example of two overlapping signals, overlap starts at time t1 and stops at t1 +δ.
Right: the represented signals do not overlap over the represented interval of time.

For Lemma 3.16 to be applicable, the propagated bounds signals must not overlap. In our
case, saturations overlap occurs when considering non-symmetrical time-varying constraints α(t)
and α(t) or in the presence of unknown disturbances as described later in Pb. 3.26.

For now, it must be ensured that ∀i ∈ N s.t. i ≤ k, αi(t) < αi(t). This can be obtained
by choosing the constant coefficients in κ “big enough”. Prior to this thesis work, this was the
only constructive rule to obtain these coefficients. More precisions on that aspect are given in
Chapter 4.

Remark 3.21. It was mentioned in [Burlion 12] that choosing a time-varying κ may help to
avoid propagated bounds overlap. However, no constructive rules were elaborated in this case.
A thorough study on the subject is performed in Chapter 4 where time-varying expressions are
derived for the first time in the linear case, thus ensuring no propagated bounds overlap. �

Remark 3.22. In the case k = 0, saturations do no overlap if α(t) < α(t), ∀t. There is no degree
of freedom. Hence, the designer should define the expected bounds on α carefully especially if
they depend on external variables. �

The main result in [Burlion 12] is now stated. This offers a solution to Problem 3.12 in the
case of an undisturbed certain system with fully measured state.

Theorem 3.23 (A solution to Problem 3.12).
Let assume 3.13 and 3.15 are satisfied with k ≥ 1. Let define propagated bounds as in
Definition 3.14 where the constant design parameters κ are chosen big enough such that
propagated bounds overlap does not occur. If one chooses

u(t,x) =
αk(t)− Lkfσ(x)
LgLk−1

f σ(x)
, u(t,x) =

αk(t)− Lkfσ(x)
LgLk−1

f σ(x)
(3.20)

then α(t) ∈ Ωα(t), ∀t if u is forced to stay in [u, u].

Proof. Straightforward using the definition of propagated bounds (3.12) and Lemma 3.16.

Remark 3.24. This is important to note that no stability result is stated in this theorem. More
precisely, if Assumption 3.10 is not satisfied, then the system internal state may diverge. This is
discussed in 3.3.5. �

Remark 3.25. In case k = 0, the control saturations are adapted as mentioned in Remark 3.18.
�

3.3.5 Remarks on the proposed approach
In this section, a few hints are given on how more complex problems could be considered in
the non-linear case. Note that these problems are considered more thoroughly in the linear
framework in Chapter 4.

43



3.3. Output to input saturation transformation

A warning on stability It is well-known in control systems stability analysis that the intro-
duction of saturations in the control loop, even time-invariant and decorrelated from the system
state, can destabilise the closed-loop in most cases. As far as OIST is concerned and in the case
of non-minimum phase systems, the internal zero dynamics will diverge upon saturation of the
control input. This is exposed in 4.6.2 for linear systems.

Consequently, no general stability result was provided in this chapter. In the case of minimum
phase systems, global asymptotic stability can be proved using appropriate anti-windup loops.
This is done in Chapter 4 for linear minimum phase systems. As far as non-linear systems are
concerned, evaluating the zero dynamics is more tricky and no general result can be stated.

Robust output-constrained problem In [Burlion 12], another problem, called robust output
constraint problem is formulated. This considers the case where the system is disturbed by an
unknown input signal:

(G)


ẋ = f(x) + g(x)u+ g2(x)d
y = x

x(0) = x0

(3.21)

where d ∈ Rm is an unknown disturbance and g2 ∈ C∞ (Rm,Rn). It is supposed that d(t)
is bounded by known sufficiently smooth vectors d(t) and d(t) at all times. Problem 3.12
reformulates into

Problem 3.26 (Robust output constraint to input saturation problem).
Let consider the system (G) in (3.21) with α = σ(x) ∈ R the constrained output. Let
K(Ωα) a time-domain constraint and u a known nominal control law. Design two signals u
and u such that the closed-loop



ẋ = f(x) + g(x)u+ g2(x)d
y = x

x(0) = x0

α = σ(x)

u ∈
[
u
(
x,Ωα(t), Ω̇α(t), . . . ,d(t),d(t),d(1)(t),d(1)(t), . . .

)
,

u
(
x,Ωα(t), Ω̇α(t), . . . ,d(t),d(t),d(1)(t),d(1)(t), . . .

)]
(3.22)

satisfies K(Ωα) i.e.
α(t) ∈ Ωα(t), ∀t ∈ R+

A solution to this problem is proposed in the linear case in Chapter 3.

The output-feedback case The OIST approach has been presented in the case where the
whole state is known. This allows to determine the control saturations which are functions of
the state as shown in (3.18).

In case the whole state is not measured, the author suggests to use a specific form of observer
namely framers (also called interval observers). Framers are used to obtain certified bounds on
the system state which would then be used in the propagated bounds expressions. Typically,
they provide two signals x(t) and x(t) such that

x(t) ≤ x(t) ≤ x(t), ∀t (3.23)

where x is the considered system state. In the non-linear case, building framers is non-trivial.
Consequently, most works [Raïssi 12, Efimov 13f, Efimov 13d] consider specific classes of non-
linear systems. As far as the linear framework is concerned, designing interval observers is now
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well documented as shown in Chapter B. A solution to the output-constrained output-feedback
problem is provided in Chapter 5 in the linear case.

3.4 Illustration on the crane problem
In this section, application of OIST is illustrated on the crane example presented in 3.2. The
model in (3.6) is considered in closed-loop with the control law in (3.7). The whole state is sup-
posed to be measured. The system is considered to be undisturbed and with known parameters.

Considered time-domain constraint A time-domain constraint is set on the pendulum
angle, i.e. α = q2. The reason for considering such constraint is to avoid dangerous swaying
of the load modelled by the pendulum. This is representative of real life applications: the load
could be an open tank containing some liquid. Let define

α(t) = −β1 + 2β2
π arctan(t− β3)

α(t) = β1 − 2β2
π arctan(t− β3)

(3.24)

with β1 = 0.0436, β2 = 0.0175 and β3 = 5 for simulation. This constraint is equal to the one
used to illustrate a time-varying constraint in Fig. 3.3. Using the control law in (3.7), one can
see that the constraint is not enforced. Hence, implementing the OIST approach is proposed.
Note that the constraints specified in (3.24) are symmetric, satisfy to the required smoothness
assumptions and can be easily differentiated:

α̇(t) = 2β2
π

1
1+(t−β3)2

α̇(t) = −α̇(t)

α̈(t) = − 2β2
π

2(t−β3)
(1+(t−β3)2)2

α̈(t) = −α̈(t)

(3.25)

Relative degree and assumptions Considering Definition 3.4 and (3.6), the constrained
output α = q2 is of relative degree 2 with respect to u. Also, Assumption 3.15 is fulfilled when
using the initial condition x0 =

[
−10 0 0 0

]>.
Propagated bounds and design parameters Let α0(t) = α(t), α0(t) = α(t) and, using
Definition 3.14, one obtains the following propagated bounds

α1(t) = κ1 (α(t)− q2) + α̇(t)

α1(t) = κ1 (α(t)− q2) + α̇(t)
α2(t) = κ2κ1 (α(t)− q2) + [κ1 + κ2] (α̇(t)− p2) + α̈(t)

α2(t) = κ2κ1 (α(t)− q2) + [κ1 + κ2]
(
α̇(t)− p2

)
+ α̈(t)

(3.26)

where the constant parameters κ1 and κ2 are chosen “big enough” to avoid saturations overlap
as explained in 3.3.4.

Resulting saturations Before formulating the control saturations similarly to what was ob-
tained in (3.18), it must be ensured that LgLk−1

f σ(x) 6= 0, ∀x:

Assumption 3.27 (OIST saturations validity).
It is supposed that the pendulum angle value satisfies to

q2(t) ∈
]
−π2 ,

π

2

[
, ∀t
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(Gl)
sat(u)u

u(x)

u(x)

u(x) x

κ1, κ2, α, α, . . .

Figure 3.6: Simplified representation of the interconnection used in simulation

Considering the initial simulation results in Fig. 3.2 which were obtained with the control
law in Eq. (3.7), the assumption is already satisfied. Under Assumption 3.27, the following
saturations are obtained:

u(x) = −α2+γ1 sin (q2)
γ2 cos (q2)

u(x) = −α2+γ1 sin (q2)
γ2 cos (q2)

(3.27)

where, according to Remark 3.17, the fact that −γ2 cos (q2) < 0, ∀q2 ∈
]
−π2 , π2

[
has been

considered.

Simulation results The model in (3.6) is simulated over 20s in closed-loop with the control
law in (3.7) and the time-varying saturations in (3.27). The design parameters κ1 and κ2 are
respectively set to 5 and 10. A simplified representation of the interconnection is drawn in
Fig. 3.6.

The simulation results are represented in blue in Fig. 3.7 to 3.9. The results obtained without
inserting the saturations in the loop are represented in magenta. The lower (resp. upper) bounds
and saturations are represented in green (resp. red).

The results in Fig. 3.9 show that it is possible to constrain the pendulum angle in the time-
domain using the presented Output to Input Saturation Transformation. It is interesting to note
in Fig. 3.8 that the introduction of saturations on the control law increases the time-response of
the system. This is a well-known behaviour of saturated systems. A trade-off can be identified:
for less restrictive bounds on the considered output, a better time-response can be achieved and
vice versa. Also, for a given constraint, better time-responses can be achieved by appropriately
selecting κ. Figure 3.7 shows that the control law is saturated whenever its value would result
in violating the output constraint.

Influence of κ Choosing the appropriate values for the design constants κ can be tricky.
These parameters were introduced in Definition 3.14. Apart from having to choose them strictly
positive, not much was said. This comes from the fact that this choice is quite problem-dependent.
In the crane control problem, what is observed is that, for a fixed κ1, the bigger κ2 the shorter
the time-response for α. This comes from the fact that more magnitude is allowed to the control.
Similar results are observed for a fixed κ2. This is illustrated in Fig. 3.10 where each parameter
is varied while the other is kept constant. A color scale is used to identify the value chosen for
the considered coefficient in each simulation.

3.5 Conclusion
The Output to Input Saturation Transformation initially introduced in [Burlion 12] has been
presented in this chapter. This is a new approach to design a control law which satisfies a time-
domain output constraint. In comparison with the existing literature, this method belongs to
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Figure 3.7: Control law obtained in simulation along with considered saturations (obtained
through OIST).
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Figure 3.9: Focus on α = q2; the output constraint is represented.
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the evolutionary strategies class [Goodwin 01]. Using an assumption on the relative degree of
the considered output with respect to the control input, time-varying saturations are obtained
and applied to a pre-existing stabilizing control law. Some remarks have been made on the type
of stability achieved and hints have been formulated on how to solve more complex problems.
The whole approach has been applied to a simplified non-linear crane control problem with
a constraint on the admissible pendulum angle. A brief study of the impact of the design
parameters on the time-response has been performed on this example.

This chapter concludes the preliminary part of this thesis. The contributions are now pre-
sented starting with the reformulation of the evolutionary OIST approach in the linear framework.
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Part III

Contributions to frequency- and
time-domain constrained control

of linear systems





Chapter 4

Reformulation of OIST output constrained con-
trol approach in the linear framework

As illustrated in Chapter 2, a non-smooth optimization-based technique can be
used to synthesize an appropriate structured controller with respect to prescribed
frequency-domain requirements. Enforcing time-domain constraints is more difficult
and requires trial-and-error tuning of the frequency-domain requirements. OIST was
introduced for non-linear systems in [Burlion 12] to enforce a time-domain constraint
on an output variable. However, the closed-loop stability in the presence of the
designed saturations needs to be studied and an inappropriate choice of the design
parameters κ can lead to saturations overlap. After reformulating the approach in
the linear framework, these problems are tackled with theoretical guarantees. This
chapter is based on results presented in [Chambon 15c] and [Chambon b].

Reasons are given in 4.1 for choosing the OIST evolutionary approach. Notations and
definitions are introduced in 4.2. A case study is used in 4.3 to illustrate the existing
problems of the original formulation. Then, the reformulation of OIST in the linear
framework is proposed in 4.4 along with solutions to the aforementioned problems. The
approach is illustrated on a simple example in 4.5. Then, some miscellaneous remarks
are made in 4.6 before concluding in 4.7.
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4.1. Selection of an output-constrained control approach

4.1 Selection of an output-constrained control approach
The different strategies to deal with output or state constraints through an appropriate definition
or modification of the control law have been presented in 3.2.2. Three main strategies have been
identified, following the classification proposed in [Goodwin 01]:

• Cautious: the control law is designed using trial-and-error such that the constraints are
satisfied;

• Evolutionary: the nominal control law is compensated using an additional structure when-
ever the constraints are violated;

• Tactical: the constraints are formalized in the control law design procedure.

The reasons for considering the evolutionary OIST approach introduced in [Burlion 12] and
presented in Chapter 3 are now detailed. The primary reason for not considering a cautious
strategy has been mentioned in Chapter 3: such strategies often lead to a loss of performance
and efficiency of the control law since they forbid the constrained output (or state) to actually
linger on the constraint.

In the previous chapter, an efficient procedure for designing structured controller against
frequency-domain requirements has been presented. This procedure can be used to solve many
control problems, especially those met in the aerospace industry. However, time-domain con-
straints on an output or state cannot be easily enforced using such H∞-based techniques. Hence
an additional evolutionary strategy needs to be considered where the nominal control law satisfies
the frequency-domain constraints and is compensated whenever the time-domain output/state
constraint is violated. Within the evolutionary strategies mentioned in 3.2.2, the OIST ap-
proach is expected to offer guarantees on the actual satisfaction of the constraint contrary to
the anti-windup-based techniques [Turner 02]. In comparison with the cautious strategies, the
obtained performance is expected to be much better especially when considering the addition of
an anti-windup compensator [Herrmann 10].

Considering a tactical strategy such as MPC would required reformulating the frequency-
domain specifications of the H∞ control design problem in an appropriate cost functional. This
is not the purpose of this thesis work which considers a specific family of control design approaches
adapted to the considered specifications. Also, using ad hoc techniques such as [Apkarian 11] only
offers guarantees on the families of input signals considered in the simulation-based non-smooth
optimization.

In this work, it is chosen to consider an evolutionary approach to the output-constrained
control problem. More precisely, the OIST approach [Burlion 12] is considered since it offers
guarantees on the satisfaction of the considered output constraint. Also, it can be used on
top of existing control design strategies such as the one presented in Chapter 2. The works
originating in the OIST approach have mainly considered non-linear systems. In the linear case,
detailed expressions of the considered saturations can be obtained. Also, open problems were
left undocumented such as the potential saturations overlap or the closed-loop stability analysis
problems. The purpose of this chapter is thus twofold: first, the OIST approach is reformulated
in the linear case and second, solutions to the existing undocumented problems are theorised for
the first time.

4.2 Notations and definitions
The notion of overlap of two signals has been introduced in Definition 3.19. The same definition
holds in this chapter. The notion of cyclic permutation is used to shorten the iterative expressions
obtained later in this chapter. It is defined as follows:

Definition 4.1 (Cyclic permutation of length k on the elements of a vector s ∈ Rk).
Let s =

[
s1 . . . sk

]
∈ Rk. The cyclic permutation of length k on the elements of s is

denoted σ and defined as:
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σ : Rk → Rk

v 7→ σ (v)
(4.1)

where σ (v) =
[
σ (s1) . . . σ (sk)

]
and

σ (si) =
{
si−1 if 1 < i ≤ k
sk if i = 1

(4.2)

As a reminder, the saturation and deadzone functions applied to a variable x ∈ Rn and
respectively denoted satxx (x) and Dzxx (x) for two saturations x and x in Rn are related by:

satxx (x) = x−Dzxx (x) (4.3)

In the following, we define functions which will be used as differentiable approximates of non-
differentiable functions such as the absolute value or max functions. Some properties of these
approximates are also derived. First the Lambert function is defined:

Definition 4.2 (Lambert function).
Let F the function defined by F (x) = xex, ∀x ∈ R. The inverse function of F is the Lambert
function denoted W0(y) which fulfils F (W0 (y)) = W0 (y) eW0(y) = y.

The Lambert function is used to define the following constants:

c1 = 1
2W0

( 1
e

)
+ 1

2

c2 = c1 − tanh (c1) c1
(4.4)

Using these constants, let define the following functions:

fabs : R → R

x 7→ tanh (x)x+ c2

fmax : R× R → R

(x, y) 7→ 1
2 [x+ y + fabs (x+ y)]

g : R× R → R

(x, y) 7→ fmax (fabs (x) , fabs (y))

(4.5)

It is observed that these functions satisfy to ordering properties with respect to the functions
they approximate. This is summed up in the following proposition.

Proposition 4.3 (Approximating functions (4.5) properties).
The functions defined in (4.5) satisfy the following properties:

• fabs and fmax are differentiable over R;

• g is differentiable over R× R;

• fabs (x) ≥ |x|, ∀x ∈ R;

• fmax (x, y) ≥ max (x, y), ∀ (x, y) ∈ R× R.

Proof. First, let f(x) = (2x− 1)e2x. Then, f(c1) = W0
( 1

e
)

eW0( 1
e )e = 1

e × e = 1 by definition of
the Lambert function. Second, using the basics of real analysis on the function h(x) defined by
∀x, h(x) = fabs (x)− |x|, the inequalities in Proposition 4.3 are achieved. As far as the function
fmax is concerned, the same study is performed using the following equality: ∀(x, y), max(x, y) =
1
2 [x+ y + |x− y|].
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Figure 4.1: Representation of the absolute value function (in black) and its differentiable ap-
proximate fabs (in blue) over the interval [−3, 3].

The functions definitions in (4.5) are extended to the multidimensional case x ∈ Rn in an
element-wise manner. Proposition 4.3 remains valid in that case. The absolute value function
and its approximate fabs are represented in Fig. 4.1.

4.3 Case study: an illustration of existing problems
To introduce the considered output-constrained problem and the OIST approach, a simple lin-
earised ball and beam system is considered in this section. The objective is to maintain the
ball on the beam even in the presence of disturbances. A linear controller has been synthesized
but does not achieve the mentioned output constraint. Violation of the considered time-domain
constraint motivates the use of a dedicated evolutionary1 method. In this case, guarantees on
the constraint satisfaction are expected whichever the considered state disturbance signal and
the OIST approach is selected. However, previously undocumented problems related to the di-
rect application of the method as presented in [Burlion 12] or Chapter 3 arise which motivates
bringing guarantees to the OIST method.

4.3.1 Considered ball and beam model
The considered problem is the position tracking of a ball on a beam in the presence of heavy
disturbance. The considered system and notations are illustrated in Fig. 4.2.

The beam is actuated using a lever arm and the objective is to drive the system from r0 = 0.5m
to the setpoint rs = 0.6m. An unknown disturbance force d is eventually applied to the ball
acceleration. The disturbance signal used in simulation is represented in plain blue in Fig. 4.3(a).
It is supposed that bounds are known for this disturbance at each time. The state vector of the

system is given by x =
[
r
ṙ

]
and the measurements vector by y = x. The constrained output is

given by:

α = Cαy = Cαx (4.6)

with Cα =
[
1 0

]
. It corresponds to the ball position on the beam.

The reason for monitoring this variable is quite obvious. The beam length is limited to
L = 1m which means that even a theoretically stabilizing control law can result in the ball
falling off the beam especially in the presence of a disturbance. An example of a time-domain
requirement to avoid such behaviour is to satisfy 0.1 ≤ α(t) ≤ 0.9 (in meters), ∀t. More exotic
time-varying requirements can also be considered as illustrated below. The system state-space
representation is given by:

1See the definition of an evolutionary approach in Chapter 3, 3.2.
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Figure 4.2: Ball and beam system representation. Thick dots indicate fixed axes of rotation.
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(a) In blue, considered state disturbance d (in sim-
ulation). Known bounds d and d on this signal are
represented in black.
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black) is not considered during the controller synthe-
sis.

Figure 4.3: Considered disturbance signal and constrained output initial simulation.
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A =
[
0 1
0 0

]
, B =

[
0 0

−0.21 1

]
, C = I2, D =

[
0 0
0 0

]
(4.7)

where the inputs are respectively the control input u and the disturbance input d. As far
as the nominal control design is concerned, a state-feedback controller with integral action is
implemented to achieve steady-state accuracy. The considered controller state-space matrices
are given by

AK = −1.5779, BK =
[
0.0322 0.2339

]
, CK = −0.0644, DK =

[
−0.3156 −2.0937

]
(4.8)

where uK = ys − y with ys =
[
rs 0

]>.
This dynamic controller stabilizes the system and yields good results on rs-setpoint track-

ing. However, using this controller, the ball position represented in dashed-dotted red line in
Fig. 4.3(b) violates the time-varying time-domain requirement represented in black lines. In
practice, the ball falls off the beam.

4.3.2 Application of the original OIST method
Since the controller has already been designed, an evolutionary approach is proposed to enforce
the considered time-domain requirement illustrated in Fig. 4.3(b). Guarantees on the actual
satisfaction of the requirement are expected for any disturbance signal with known bounds and
the OIST approach as presented in [Burlion 12] and Chapter 3 is thus chosen.

4.3.2 (a) Study of the relative degree

The relative degree Definition 3.4 still holds in the linear case. A brief study of the constrained
output α expression shows that it is of relative degree k = 2 with respect to the control input u
and l = 2 with respect to the disturbance input d. This means that the second derivative of α,
denoted α(2), depends on both u and d, see (3.11):

α(2) = CαA2x+ CαABuu+ CαABdd (4.9)

4.3.2 (b) Propagated bounds definition

Using Definition 3.14 of the propagated bounds and considering constant design parameters κ1
and κ2, the following expressions are obtained:

α0 = α

α0 = α

α1 = κ1 (α−Cαx) + α̇

α1 = κ1 (α−Cαx) + α̇

α2 = κ1κ2 (α−Cαx) + (κ1 + κ2) (α̇−CαAx) + α̈

α2 = κ1κ2 (α−Cαx) + (κ1 + κ2)
(
α̇−CαAx

)
+ α̈

(4.10)

4.3.2 (c) Resulting control saturations

The control saturations are coherent with the expressions given in (3.18). Using (4.9), the control
saturations which allow to satisfy the necessary condition in Lemma 3.16 are given by:

u = 1
CαABu

[
αk −CαAx+ |CαABd|max

(
|d|, |d|

)]
u = 1

CαABu

[
αk −CαAx− |CαABd|max

(
|d|, |d|

)] (4.11)
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(a) Time-domain requirement (in black) and simula-
tion results for the regulated variable α. The dashed-
dotted red line is obtained when using the nominal
controller and the plain red line is obtained when us-
ing OIST as in [Burlion 12] and Chapter 3.
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(b) Control signal (in red) and control saturations ob-
tained using OIST as in [Burlion 12] and Chapter 3.
Overlap starts around t1 = 73s.

Figure 4.4: Case study: simulation results w/ (plain red) or w/o (dashed-dotted red) OIST in
the loop, with κ1 = 1 and κ2 = 0.6.

4.3.2 (d) Design parameters selection

As mentioned in Chapter 3, it was proposed in [Burlion 12] to choose the coefficients κ1 and κ2
in (4.10) as constants. In the presence of a time-varying requirement or disturbances, it was also
hinted that choosing them “big enough” was preferable to avoid control saturations overlap2.
For illustrative purposes, the values κ1 = 1 and κ2 = 0.6 are used in simulation.

4.3.2 (e) Simulation results and conclusions

A simulation of the system in closed-loop with the controller in (4.8) and the saturations expres-
sions in (4.11) (i.e. u = satuu (yK)) is performed over 100s. The disturbance profile in Fig. 4.3(a)
and the time-domain constraint in Fig. 4.3(b) are considered. The simulation results are shown
in Fig. 4.4 where the dashed-dotted red line refers to the results without using OIST and the
plain red line refers to the results when introducing the saturations in the feedback loop.

At first, it seems that the constrained output satisfies the requirement. However, when paying
closer attention, it appears that violation of this constraint occurs at time t = 75s. This results
from the two control saturations overlap starting at time t1 as illustrated in Fig. 4.4(b). Such
behaviour could be avoided by increasing the values of κ1 and κ2 as illustrated in plain blue line
in Fig. 4.5 where the simulation was performed using κ1 = 1 and κ2 = 10. Another solution is to
consider time-varying coefficients as hinted in [Burlion 12] and Chapter 3. The first solution is fast
to implement in practice but may lead to exceedingly demanding control saturations and offers
no guarantee if a different requirement or disturbance signal is considered. The second solution
is safer and offers guarantees but is harder to implement. Also, guarantees on the closed-loop
stability in the presence of saturations are expected. These previously undocumented subjects
are discussed in this chapter as main contributions.

4.4 Reformulation of OIST in the linear framework
In this thesis work, the considered systems are linear. The OIST approach was initially intro-
duced in [Burlion 12] for non-linear systems and could be used straightforwardly without much
modification. However, in the linear case, iterative expressions on the system matrices as well
as interesting results related for example to the closed-loop stability, can be obtained. This

2Refer to Definition 3.19 for a precise definition of the notion.
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Figure 4.5: In plain blue line: additional simulation with κ1 = 1 and κ2 = 10. The considered
requirement is enforced at all times but with no guarantee.

motivates a complete reformulation of the OIST approach despite the core principle remaining
identical. This reformulation was initiated in [Chambon 15c] and [Chambon b] and is detailed
in this section.

4.4.1 Considered class of linear systems and requirement
In this section, we consider a known linear time-invariant system (G) described by the following
state-space representation:

(G)
{
ẋ = Ax + Buu + Bdd

y = x + Ddd
(4.12)

where A ∈ Rn×n, B =
[
Bu Bd

]
∈ Rn×m and D =

[
0n×1 Dd

]
∈ Rn×m. The state vector is

denoted x ∈ Rn and the measurements vector is denoted y ∈ Rn. The input vector concatenates
the single control input u ∈ R and the unknown inputs which are denoted d ∈ Rm−1. These
unknown inputs can be used to model either state or measurements disturbances. Since no
particular assumption has been made on the state-matrix A, (G) might be an unstable system.
Let consider it is stabilized using the following dynamic controller (K):

(K)
{
ẋK = AKxK + BKuK

yK = CKxK + DKuK
(4.13)

where xK ∈ RnK , uK = y − ys for ys an optional set-point vector and u = yK in the nominal
case, that is before introducing any saturation or anti-windup compensator as is the consequence
of using the OIST approach. Note that the closed-loop consisting of system (G) and controller
(K) is well-posed in any case since it is supposed that Du = 0. To illustrate the purpose of the
OIST methodology selected in 4.1, the considered controller is supposed to have been designed
prior to considering any time-domain requirement on an output variable. This is typical of an
evolutionary approach as already highlighted in Chapter 3. If needed, other types of approaches
are referenced in 3.2.2.

The objective in this chapter is to enforce a time-domain constraint on a given output variable.
This may be an element of the output vector y or a combination of such elements. To consider
the more general case, let introduce the matrix Cα ∈ R1×n. The considered constrained output
is denoted α and is defined by

α = Cαy
= Cαx+ CαDdd

= Cαx+ Dαd

(4.14)
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where Dα = CαDd ∈ R1×m−1. Note that the case Dα 6= 0 is very conservative, hence, the
application of OIST to such case may be very difficult. This is discussed in Chapter 6 where
a practical solution is also proposed. The output constraint considered on α is similar in every
way to the Definition 3.9 given in Chapter 3. It is named K (Ωα) where Ωα(t) = [α(t), α(t)] is
an interval of R for two time-varying design signals α(t) and α(t) such that

α(t) ≤ α(t), ∀t ∈ R+ (4.15)

These two design signals are also supposed to be sufficiently smooth where this notion will
be specified later. Enforcing the time-domain constraint K (Ωα) consists in keeping α in Ωα at
all times. This is formalized in 4.4.2. However, prior to stating the considered problems, some
assumptions were made which were necessary to obtain guarantees on the reformulated OIST
approach. Using these assumptions, a solution was obtained and is detailed in 4.4.3. Subsequent
works aim at reducing the number and conservativeness of these assumptions.

Assumption 4.4 (Converging requirement signals).
The time-domain requirement signals α and α are supposed to converge towards constant
values denoted by:

lim
t→+∞

α(t) = α?, lim
t→+∞

α(t) = α? (4.16)

where α? ≤ α?.

This assumption is used to study the system equilibrium reachability when proving the asymp-
totic stability of the closed-loop. In practice, this assumption means that the output constraint
can be considered static after some time. This is realistic since either the expected requirement
should be given during a limited amount of time as is the case with the atmospheric flight of
a launch vehicle or the expected requirement is already constant to mitigate the effects of a
perturbation during the whole “lifetime” of the considered system.

The following assumption defines how the considered constrained output relates to the inputs
u and d. This is determining in the application of OIST.

Assumption 4.5 (Relative degree of the constrained output wrt inputs).
Let (k, l1, . . . , lq) ∈ Nq+1 such that 0 ≤ li ≤ k, for 1 ≤ i ≤ q and q ≤ m− 1. It is supposed
the constrained output variable α is of relative degree k (resp. li) with respect to u (resp.
the disturbance input di).

Note that for a given index i, the relative degree li may be null. This corresponds to the case
of measurements disturbances in case the matrix Dα in (4.14) is non-null. State disturbances
are thus characterized by li ≥ 1. Also, the disturbances with a relative degree greater than k are
not considered since they will not impact the method, hence q ≤ m− 1.

The next assumption is done to obtain simpler expressions in 4.6. It is not mandatory and
mostly considered for presentation purposes.

Assumption 4.6 (Relation satisfied by the relative degrees).
It is supposed that the non-null relative degrees considered in Assumption 4.5 satisfy to the
relation

2li > k, ∀i s.t. 1 ≤ i ≤ q (4.17)

Also, it is supposed that measurement disturbances (li = 0) do not impact the state
dynamics. This means that Bdi = 0n where Bdi denotes the i-th column of Bd.

Let, ∀i s.t. 1 ≤ i ≤ q: Di =
[
di ḋi . . . di

(k−li)
]>
∈ Rk−li+1.

These vectors are supposed to be bounded by known bounds and, similarly to Assumption 4.4,
these bounds are supposed to converge.
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Assumption 4.7 (Bounded disturbances with known converging bounds).
Let i ∈ N such that 1 ≤ i ≤ q. There exists known time-varying continuous vectors Di and
Di in Rk−li+1 such that

Di(t) ≤ Di(t) ≤ Di(t), ∀t (4.18)

or, more precisely,

di
(j)(t) = Dij

(t) ≤ di(j)(t) ≤ Dij(t) = di
(j)(t), ∀j s.t. 0 ≤ j ≤ k − li, ∀t (4.19)

Also, these vectors are supposed to converge towards vectors Di
? and Di

?:

lim
t→+∞

Di(t) = Di
?, lim

t→+∞
Di(t) = Di

? (4.20)

where Di
? =

[
di
? 0 . . . 0

]
and Di

? =
[
di
? 0 . . . 0

]
.

This assumption brings information on the disturbance which may be conservative if the
disturbance is not modelled very well. In practice, the most common considered bounds are of
the form Di

? and Di
? since not much is usually known on the variations of the disturbances.

The next assumptions are concerned with the closed-loop stability of the saturated system.
They are extensively used in 4.4.4.

Assumption 4.8 (Finite energy disturbance).
The disturbance d is supposed to be of finite energy: ‖d‖ < +∞.

This will mainly be used to prove asymptotic stability. The controller (K) was introduced to
stabilize the considered system. The type of stability as well as the equilibrium are specified in
the following assumption.

Assumption 4.9 (Stabilizing controller (K)).
The controller (K) in (4.13) is supposed to asymptotically (resp. exponentially) stabilize
(G) in (4.12) to the origin x? = 0, under Assumption 4.8 (resp. d = 0). The controller
state at the equilibrium is denoted x?K and x?K = 0.

Note that in this assumption, it is supposed that the asymptotic equilibrium is the origin.
This is not conservative in the sense that a translation of this equilibrium can easily be performed
when considering a non-null set-point.

The next assumption is the most conservative. It restricts the class of systems on which
the approach can be applied with guarantees. This considered class of systems is the class of
minimum phase systems:

Assumption 4.10 (Minimum phase system (G)).
The zeros of the SISO transfer function Tu→α (s) from the control input u to the constrained
output variable α are supposed to be with strictly negative real part.

Of course, the transformation can still be applied on non-minimum-phase systems but with
unexpected results and at the cost of the global guarantee on the closed-loop stability or satisfac-
tion of the constraint. Due to the unstable zeros, the system state may diverge upon saturation
of the control input. For slowly unstable zeros, stability may be preserved but violation of the
requirement will undoubtedly occur. This results from Proposition 4.32 not being satisfied in
the non-minimum phase case. This is illustrated and studied in 4.6.2.

In this section, we described the considered system and made some assumptions which will
be necessary to reformulate the OIST approach as well as to demonstrate stability results. In the
following section, the considered problems are formally introduced to which the OIST approach
is proposed as a solution.
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4.4.2 Considered problems statements
The main problem tackled in this chapter is an output-constrained control problem using a
new evolutionary approach [De Dona 02] based on introducing saturations on the stabilizing
controller output [Burlion 12]. However, it was stated in the conclusions of 4.3 that applying
this transformation does not come with guarantees on the actual satisfaction of the constraint or
worse, on the resulting closed-loop stability. The formulation of the considered problems reflects
these aspects:

Problem 4.11 (Output constrained control problem using OIST).
Find two saturating signals [u(t), u(t)] and a domain C0 such that for two given design
signals α(t) and α(t) fulfilling α(t) ≤ α(t), ∀t ∈ R+, the constrained output α satisfies the
constraint K (Ωα):

α(t) ∈ Ωα(t) = [α(t), α(t)] , ∀t ∈ R+ (4.21)

for the system (G) in (4.12) in closed-loop with controller (K) in (4.13) and the saturations:

ẋ(t) = Ax(t) + Buu(t) + Bdd(t)
y(t) = x(t) + Ddd(t)
α(t) = Cαx(t) + Dαd(t)
ẋK(t) = AKxK(t) + BKy(t)
yK(t) = CKxK(t) + DKy(t)

u(t) = satu(t)
u(t) (yK(t))

x0 ∈ C0

(4.22)

where it is supposed that Assumptions 4.4 to 4.10 are satisfied.

One may note that the problem of saturations overlap which was raised in 4.3 has not been
addressed. This motivates the following remark.
Remark 4.12 (Saturations overlap mitigation subproblem). As commented in 4.3.2 (e), find-
ing a solution to Problem 4.11 implicitly requires that this solution guarantees the absence of
saturations overlap. �

The purpose of the Output to Input Saturation Transformation (OIST) approach is to find
the expressions of u(t) and u(t) such that the constraint on the output α is actually enforced.
In practice, the “saturation” on the output α is transformed into a saturation on the control
input. However, as mentioned in 4.3, the introduction of saturations in the closed-loop can lead
to instabilities since saturating the input is equivalent to opening the stabilizing loop. Thus,
another problem must be considered when applying OIST:

Problem 4.13 (Closed-loop stability using OIST).
Guarantee that the origin of the saturated closed-loop in (4.22) is asymptotically stable.

A solution to Problem 4.11 is proposed in the next section where the reformulation of OIST
in the linear framework along with results on saturations overlap mitigation are proposed. Prob-
lem 4.13 is tackled in 4.4.4. A solution is obtained which proves the global asymptotic stability
of the system in (4.22) using the control saturations obtained in 4.4.3.

4.4.3 OIST with saturations overlap avoidance
The OIST approach introduced in [Burlion 12] for non-linear systems is now reformulated in
the linear case for systems of the form (4.12) and fulfilling to Assumptions 4.4 to 4.10. This
approach brings a solution to Problem 4.11 with guarantees on non-overlapping of the saturations
as highlighted in Remark 4.12. For the first time, this thesis work describes in details how to
choose the OIST design parameters time-varying such that saturations overlap is avoided.
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4.4.3 (a) From the constrained output to the input: using the relative degree

Using Assumption 4.5, the dependency of the constrained output α with respect to u and d can
be highlighted. Under Assumption 4.6, the expression of the k-th derivative of α is given by:

α(k)(t) = CαAkx(t) + CαAk−1Buu(t) +
q∑

i=1,li=0
Dαid

(k)
i (t) +

q∑
i=1,li 6=0

k∑
j=li

CαAj−1Bdid
(k−j)
i (t)

(4.23)
where Bdi refers to the i-th column of Bd. Note that due to the matrix Dα the k-th α-derivative
depends on the k-th derivatives of the elements of d with respect to which it has a null relative
degree. Hence, indicating li = 0 is in fact superfluous. By Definition 3.4 of the relative degree,
the k-th derivative of α hence depends on the control input u.

Example 4.14 (Application to a simple example). Let consider a stable system of the form (4.12)
with d =

[
d1 d2

]> and α = Cαx+Dαd ∈ R is of relative degree k = 2 with respect to u, l1 = 0
with respect to d1 (measurement disturbance) and l2 = 1 with respect to d2 (state disturbance).
It is supposed that Cα =

[
1 0

]
and, in coherence with Assumption 4.6, Bd1 = 0n. Using (4.12),

determination of the expression of α̈ is straightforward:

α̈ = CαA2x+ CαABuu+ d̈1 + CαABd2d2 + CαBd2ḋ2 (4.24)

which is consistent with (4.23). ♣

In the next section, we show how the time-domain constraint expressed on the output α can
be translated into a necessary condition on α(k) using (4.23). Since the latter depends on the
control input u, that necessary condition is in turn expressed as saturations on u in 4.4.3 (c).

4.4.3 (b) Propagated bounds: definition and a lemma

Considering Problem 4.11, the objective is to ensure that the constrained variable α satisfies
α(t) ∈ Ωα(t), ∀t. We now show how adequate constraints on the successive derivatives of α can
be used to fulfil this requirement. Let consider a vector of known positive time-varying signals

κ(t) =
[
κ1(t) . . . κk(t)

]> ∈ Rk+ (4.25)

These signals will be the design parameters of the method. Contrary to what was considered
in Chapter 3, these coefficients are now considered time-varying by default. The notion of
propagated bounds was already defined in 3.3.3, Definition 3.14. These propagated bounds are
used to propagate the interval constraint Ωα(t) to the successive derivatives of α. The definition
is recalled here where time-varying design parameters κ(t) are now used.

Definition 4.15 (Propagated bounds).
Let κ(t) =

[
κ1(t) . . . κk(t)

]
∈ Rk+ a vector of adequately smootha positive time-varying

signals and let suppose the output constraint signals (α(t), α(t)) are functions of Ck (R+,R).
Let define α0(t) = α(t), α0(t) = α(t) and, ∀i ∈ N? s.t. i ≤ k:

αi(t) = κi(t)
(
αi−1(t)− α(i−1)(t)

)
+ ˙︷ ︷
αi−1(t)

αi(t) = κi(t)
(
αi−1(t)− α(i−1)(t)

)
+

˙︷ ︷
αi−1(t)

(4.26)

These are called propagated bounds in the sense they propagate the expected bounds α(t)
and α(t) up to the k-th differential of α.

aSee Remark 4.16.

Remark 4.16. By adequately smooth, it is understood that, ∀i ∈ N+ s.t. i ≤ k, κi(t) ∈
Ck−i (R+,R+). �
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Prior to recalling the core lemma and for the OIST approach to be applicable, Assump-
tion 3.15 still needs to be satisfied. Basically, satisfying this assumption means that the initial
value of the constrained output and its derivatives should belong to the intervals composed by
the propagated bounds:

∀i ∈ N s.t. i ≤ k, α(i)(0) ∈ Ωiα(0) (4.27)

where Ωiα(t) = [αi(t), αi(t)] , ∀t. Fulfilling this assumption provides a solution for the initial
admissible domain C0 introduced in Problem 4.11. This can be considered an aside problem but
should not be underestimated. Failing to satisfy this assumption can lead to unexpected results
even in the absence of implementation error.

Lemma 3.16 remains applicable. For the sake of clarity, it is recalled here:

Lemma 4.17 (Propagated bounds lemma).
Let suppose Assumptions 4.5 and 3.15 are satisfied. Let define propagated bounds as in
Definition 4.15, ∀i ∈ N s.t. i ≤ k. Then,

α(k)(t) ∈ [αk(t), αk(t)] = Ωkα(t), ∀t ∈ R+ ⇒ α(t) ∈ [α(t), α(t)] = Ωα(t), ∀t ∈ R+

Proof. See the proof of Lemma 3.16 in 3.3.3.

Remark 4.18. Note this Lemma is still valid when introducing more conservative bounds β
j
(t)

and βj(t) on α(j)(t), i.e. satisfying for any given i such that 1 ≤ i ≤ k:

αi(t) ≤ βi(t), βi(t) ≤ αi(t), ∀t (4.28)

Also note these more conservative bounds are not necessarily defined by an iterative relation
as in (4.26). �

This lemma was directly inspired by Assumption 4.5 which led to (4.23) where the dependence
on u is highlighted. It provides a necessary condition to enforce the time-domain constraint on
the considered constrained output α. Since α(k) depends on the control input, this condition is
equivalent to keeping u in the interval [u(t), u(t)], ∀t where u and u are appropriately-defined
saturations. Of course, this is subject to knowing the system state as well as bounds on the
disturbance signals, which is supposed in the whole section as by the definition of the output signal
y and Assumption 4.7. The deduction of the control saturations from (4.23) and Lemma 4.17 is
performed in the next section.

4.4.3 (c) Resulting expressions of the control saturations

Using the relative degree Definition 3.4, an expression of α(k) in function of the control input
u has been obtained in (4.23). Also, it was shown that satisfying a necessary condition on α(k)

leads to fulfilling the time-domain constraint α(t) ∈ Ωα(t), ∀t. With a slight transformation,
this necessary condition can thus be expressed in the form of saturations to apply to the control
input u.

First, under Assumption 4.5, there is CαAk−1Bu 6= 0. For the time-being, let also suppose
that CαAk−1Bu > 0. Considering Lemma 4.17 and (4.23), and supposing that the expressions
of αk(t) and αk(t) as defined in (4.26) for i = k are known ∀t, the saturations to apply to the
control input u such that the necessary condition is satisfied can be obtained. In this undisturbed
case, i.e. for d = 0, these saturations are given by:

u(t) = 1
CαAk−1Bu

[
αk(t)−CαAkx(t)

]
u(t) = 1

CαAk−1Bu

[
αk(t)−CαAkx(t)

] (4.29)

In the more general case where d 6= 0, the saturations expressions depend on the disturbance
and cannot be determined straightforwardly. However, using Assumption 4.7 which supposes
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that the disturbance vector d and its derivatives3 are bounded with known bounds, the following
saturations are obtained:

u(t) = 1
CαAk−1Bu

[
αk(t)−CαAkx(t) +

∑q
i=1,li=0 |Dαi|max

(∣∣∣di(k)(t)
∣∣∣ , ∣∣∣di(k)(t)

∣∣∣)
+
∑q
i=1,li 6=0

∑k
j=li

∣∣CαAj−1Bd
∣∣max

(∣∣∣di(k−j)(t)∣∣∣ , ∣∣∣di(k−j)(t)∣∣∣)]
u(t) = 1

CαAk−1Bu

[
αk(t)−CαAkx(t)−∑q

i=1,li=0 |Dαi|max
(∣∣∣di(k)(t)

∣∣∣ , ∣∣∣di(k)(t)
∣∣∣)

−∑q
i=1,li 6=0

∑k
j=li

∣∣CαAj−1Bd
∣∣max

(∣∣∣di(k−j)(t)∣∣∣ , ∣∣∣di(k−j)(t)∣∣∣)]
(4.30)

Note that by definition of Dα, bounds on the k-th derivatives of the elements of d are only
required for the elements di with li = 0.

Example 4.19 (Illustration of the resulting control saturation). Let consider the model intro-
duced in Example 4.14 under Assumption 4.7. Let find a solution to Pb. 4.11 for two given
design signals α(t) and α(t). Using the expression of α̈ in (4.24), Definition 4.15 of the propa-
gated bounds and applying the transformation of the output constraint into control saturations,
the following expressions are obtained:

u = 1
CαABu

[
α2 −CαA2x+ max

(∣∣∣d(2)
1

∣∣∣ , ∣∣∣d(2)
1

∣∣∣)+ |CαABd2|max
(∣∣d2

∣∣ , ∣∣d2
∣∣)

+ |CαBd2|max
(∣∣ḋ2

∣∣ , ∣∣∣ḋ2

∣∣∣)]
u = 1

CαABu

[
α2 −CαA2x−max

(∣∣∣d(2)
1

∣∣∣ , ∣∣∣d(2)
1

∣∣∣)− |CαABd2|max
(∣∣d2

∣∣ , ∣∣d2
∣∣)

− |CαBd2|max
(∣∣ḋ2

∣∣ , ∣∣∣ḋ2

∣∣∣)]
(4.31)

where CαABu 6= 0 by definition of the relative degree with k = 2 and CαABu is supposed to
be positive. The obtained expressions are coherent with (4.30). ♣

To be appropriately defined, the saturations in both (4.29) and (4.29) should not overlap,
i.e. they should satisfy u(t) > u(t), ∀t. Saturations overlap can be caused by choosing non-
symmetrical time-varying constraint signals α(t) and α(t) and/or due to the presence of bounded
unknown disturbances as is the case in Problem 4.11. The presence of bounded unknown distur-
bances effectively led to more conservative saturations as shown in (4.30).

Saturations overlap can be avoided using appropriately defined time-varying design param-
eters κ(t). This was mentioned in Chapter 3, Remark 3.21. It was also mentioned that no
constructive rules existed on how to choose these parameters. New results on that subject are
presented in 4.4.3 (e).

Remark 4.20. In case CαAk−1Bu < 0 and to avoid loss of generality, proper re-ordering of
u(t) and u(t) is required. For a given signal yK , the saturating operator can be defined as follows:

satu(t)
u(t)(yK)(t) = max(min(u(t), u(t)),min(yK(t),max(u(t), u(t)))) (4.32)

�

Before tackling the overlap problem, it can be noted that the saturations expressions in (4.30)
depend on the quantities αk(t) and αk(t) which expression has not be specified yet. This is
presented in the next section.

3Up to the relative degree li for element di.
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4.4.3 (d) Explicit formulation of the propagated bounds

The control input saturations obtained in (4.30) depend on the propagated bounds αk(t) and
αk(t) as defined in (4.26) for i = k. Since the relative degrees of α with respect to the components
of d are supposed to be smaller than k in Assumption 4.5 this means that the propagated bounds
can depend on d which is an unknown quantity. This motivates a more thorough study of the
propagated bounds expressions. We start by considering the case in Example 4.14 to show that
explicit expressions can be derived from the iterative propagated bounds definition:

Example 4.21 (Explicit expressions of the propagated bounds). Let consider the case introduced
in Example 4.14. Considering the iterative definition of the propagated bounds in (4.26), we
obtain, for the lower propagated bounds:

α0 = α

α1 = κ1 (α−Cαx− d1) + α̇

α2 = κ2
(
α1 −CαAx−CαBd2d2 − ḋ1

)
+ α̇1

= (κ1κ2 + κ̇1) (α−Cαx− d1) + (κ1 + κ2)
(
α̇−CαAx− ḋ1

)
+ α̈− (κ1 + κ2) CαBd2d2

(4.33)
where the time-varying design parameters κ1 and κ2 are defined in a later section. Similar
expressions are obtained for the upper bounds. As expected, α2 and α2 depend on the unknown
signals d1 and d2. This makes the determination of the control input saturations in (4.31)
impossible to apply in their current form.

Before introducing more conservative expressions in place of the propagated bounds, note
that the expressions in (4.33) can be written as

α1 = u1
0 (α−Cαx− d1) +

(
α̇−CαAx− ḋ1

)
+ CαAx+ ḋ1

= U1 {A−Ox−D1}+ CαAx+ ḋ1 − V 1
2D2

α2 = u2
0 (α−Cαx− d1) + u2

1
(
α̇−CαAx− ḋ1

)
+
(
α̈−CαA2x− d̈1

)
+ CαA2x

+d̈1 − v2
0d2

= U2 {A−Ox−D1}+ CαA2x+ d̈1 − V 2
2D2

(4.34)

where

A =
[
α α̇ α̈

]>
O =

[
Cα CαA CαA2]>

D1 =
[
d1 ḋ1 d̈1

]> ∈ R3

D2 =
[
d2 ḋ2

]> ∈ R2

U1 =
[
u1

0 1 0
]

=
[
κ1 1 0

]
U2 =

[
u2

0 u2
1 1

]
=

[
κ1κ2 + κ̇1 κ1 + κ2 1

]
V 1

2 =
[
0 0

]
V 2

2 =
[
v2

2,0 0
]

=
[
u2

1CαBd2 0
]

(4.35)

As will be highlighted hereafter, iterative expressions link the row vectors U2 and U1 and
the vectors V 2

2 and V 1
2. Also, using the resulting explicit expressions and Assumption 4.7 and

considering Remark 4.18, more conservative expressions of the propagated bounds will be derived
to account for the unknown signals in D1 and D2. ♣
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Following a similar procedure than in Example 4.21, for any j ∈ N? such that j ≤ k, let
introduce the following vectors:

U j =
[
uj0 . . . ujk

]
∈ R1×(k+1)

V j
i =

[
vji,0 . . . vji,k−li

]
∈ R1×(k−li+1), ∀i ∈ N? s.t. i ≤ q and li 6= 0

(4.36)

where

• ujj = 1;

• ∀m > j, ujm = 0;

• ∀m > max (−1, j − li − 1) , vji,m = 0;

• vli+1
i,0 = ulili−1CαAli−1Bdi.

Interestingly enough, it is also obtained that since u1
0 = κ1 then uj+1

j =
∑j+1
w=1 κw, ∀j s.t.

0 ≤ j < k. Let also consider the following matrices:

A =
[
α

︷̇︷
α . . . (α)(k)

]>
∈ Rk+1

A =
[
α

︷̇︷
α . . . (α)(k)

]>
∈ Rk+1

O =
[
Cα CαA . . . CαAk

]> ∈ R(k+1)×n

(4.37)

The expressions in (4.34) are then generalized and the following explicit expressions are
obtained for the propagated bounds αj and αj at step j:

αj = U j
{
A−Ox−∑q

i=1,li=0 DαiDi

}
+ CαAjx+

∑q
i=1,li=0 Dαidi

(j) −∑q
i=1,li 6=0 V

j
iDi

αj = U j
{
A−Ox−∑q

i=1,li=0 DαiDi

}
+ CαAjx+

∑q
i=1,li=0 Dαidi

(j) −∑q
i=1,li 6=0 V

j
iDi

(4.38)
Using this formulation of the propagated bounds coupled to their iterative definition in (4.26),

the vectors U j and V j
i (for i ∈ N?, i ≤ q) are given by the following iterative expressions:

U0 =
[
1 0 . . . 0

]
∀j s.t. 1 ≤ j ≤ k, U j = κjU

j−1 + U̇
j−1 + σ

(
U j−1)

∀j s.t. 0 ≤ j ≤ l, V j
i =

[
0 . . . 0

]
∀j s.t. l < j ≤ k V j

i = κj
(
V j−1
i + CαAj−li−1 [Ali−1Bdi . . . A2li−jBdi 0 . . . 0

])
+V̇ j−1

i + σ
(
V j−1
i

)
+
[∑j−li−1

w=0 uj−1
li−1−wCαAli−1+wBdi 0 . . . 0

]
(4.39)

where σ is the cyclic permutation of length k + 1 on the elements of U j−1 (resp. V j−1
i ), as

defined in Definition 4.1.
As illustrated in Example 4.21, the explicit expressions of the propagated bounds in (4.38)

depend on the unknown but bounded4 quantities Di. The consequence is that the control
saturations detailed in (4.30) cannot be made explicit and implemented in a control algorithm.

However, as mentioned in Remark 4.18, the propagated bounds Lemma 4.17 is still applicable
in the case more conservative bounds β

j
and βj are considered:

αj ≤ βj , αj ≥ βj , ∀j ∈ N? s.t. j ≤ k, ∀t (4.40)

4See Assumption 4.7.
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Contrary to the original propagated bounds, these new bounds β
j
and βj are however not

defined iteratively but deduced from the original propagated bounds expressions. Using Assump-
tion 4.7, the following is obtained for a given j ∈ N?:

β
j

= U j {A−Ox}+
∣∣U j

∣∣∑q
i=1,li=0 |Dαi|max

(∣∣Di

∣∣ , ∣∣Di

∣∣)+ CαAjx

+
∑q
i=1,li=0 |Dαi|max

(∣∣∣di(j)∣∣∣ , ∣∣∣di(j)∣∣∣)+
∑q
i=1,li 6=0

∣∣∣V j
i

∣∣∣max
(∣∣Di

∣∣ , ∣∣Di

∣∣)
βj = U j

{
A−Ox

}
−
∣∣U j

∣∣∑q
i=1,li=0 |Dαi|max

(∣∣Di

∣∣ , ∣∣Di

∣∣)+ CαAjx

−∑q
i=1,li=0 |Dαi|max

(∣∣∣di(j)∣∣∣ , ∣∣∣di(j)∣∣∣)−∑q
i=1,li 6=0

∣∣∣V j
i

∣∣∣max
(∣∣Di

∣∣ , ∣∣Di

∣∣)
(4.41)

By convention, it is also chosen β0 = α0 = α and β0 = α0 = α. Note these expressions are not
differentiable. In the next section, it will be required to obtain differentiable design coefficients
κ motivating the use of differentiable over-approximating functions of max and |•|. These new
expressions are now illustrated on the example.

Example 4.22 (Illustration of the new – conservative – propagated bounds). From the ex-
pressions of the propagated bounds in (4.33), the following more conservative expressions are
obtained:

β0 = α

β1 = κ1 (α−Cαx) + α̇+ |κ1|max
(∣∣d1

∣∣ , ∣∣d1
∣∣)

β2 = (κ1κ2 + κ̇1) (α−Cαx) + (κ1 + κ2) (α̇−CαAx) + α̈+ |κ1κ2 + κ̇1|max
(∣∣d1

∣∣ , ∣∣d1
∣∣)

|κ1 + κ2|max
(∣∣ḋ1

∣∣ , ∣∣∣ḋ1

∣∣∣)+ |κ1 + κ2| |CαBd2|max
(∣∣d2

∣∣ , ∣∣d2
∣∣)

(4.42)
which is consistent with (4.41). Similar expressions are obtained for the upper bounds. Note
that bounds on d1 and d2 were supposedly known in Example 4.19 under Assumption 4.7. ♣

Using these new expressions for the propagated bounds, the control input saturations are
redefined. Using a slight abuse of notation where u and u now refer to the new saturations, the
following is obtained:

u(t) = 1
CαAk−1Bu

[
β
k
(t)−CαAkx(t) +

∑q
i=1,li=0 |Dαi|max

(∣∣∣di(k)(t)
∣∣∣ , ∣∣∣di(k)(t)

∣∣∣)
+
∑q
i=1,li 6=0

∑k
j=li

∣∣CαAj−1Bdi
∣∣max

(∣∣∣di(k−j)(t)∣∣∣ , ∣∣∣di(k−j)(t)∣∣∣)]
u(t) = 1

CαAk−1Bu

[
βk(t)−CαAkx(t)−∑q

i=1,li=0 |Dαi|max
(∣∣∣di(k)(t)

∣∣∣ , ∣∣∣di(k)(t)
∣∣∣)

−∑q
i=1,li 6=0

∑k
j=li

∣∣CαAj−1Bdi
∣∣max

(∣∣∣di(k−j)(t)∣∣∣ , ∣∣∣di(k−j)(t)∣∣∣)]
(4.43)

Now that the saturations expressions have been fully detailed, one has to ensure that there
is no overlap. Saturations overlap is a consequence of considering conservative bounds on the
unknown disturbances and the possible variations of the output constraint. Consequences of
saturations overlap was highlighted in the case study in 4.3. It was shown that the time-domain
requirement cannot be enforced with guarantees in the presence of saturations overlap. A solution
to mitigate this phenomenon and obtain guarantees on the solution to Problem 4.11 is described
in the next section.

4.4.3 (e) Saturations overlap mitigation

To mitigate propagated bounds and saturations overlap, the quantities βj−βj can be considered.
It is shown that factorization by κj in these expressions is possible. Through proper definition
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of the design coefficients in κ, overlap can thus be avoided. In the case j = k, additional terms
also appear as a consequence of the saturations expressions obtained in (4.43).

A formal study of saturations overlap is now proposed. Let ∆0 = β0 − β0 = α − α and,
∀j ∈ N? s.t. j ≤ k, ∆j = βj − βj . Using (4.41), the following expression is obtained for ∆j :

∆j = U j
{
A−A

}
− 2

∣∣U j
∣∣ q∑
i=1,li=0

|Dαi|max
(∣∣Di

∣∣ , ∣∣Di

∣∣)
− 2

q∑
i=1,li=0

|Dαi|max
(∣∣∣di(j)∣∣∣ , ∣∣∣di(j)∣∣∣)− 2

q∑
i=1,li 6=0

∣∣∣V j
i

∣∣∣max
(∣∣Di

∣∣ , ∣∣Di

∣∣) (4.44)

In its current state, this expression cannot be factorized by κj nor is differentiable. However,
let suppose κj ≥ 0, ∀t and let use the following inequalities where the function fabs is defined
in (4.5):

∣∣∣κjU j−1 + U̇ j−1 + σ
(
U j−1)∣∣∣ ≤ κj

∣∣U j
∣∣+
∣∣∣U̇ j−1 + σ

(
U j−1)∣∣∣

≤ κjfabs
(
U j
)

+ fabs

(
U̇
j−1 + σ

(
U j−1)) (4.45)

and similar inequalities in the case of V j
i . Using these inequalities, a conservative differentiable

under-approximation of ∆j is obtained which can be factorized by κj :

∆j ≥ ∆̂j = κjλ
d
j + λnj (4.46)

where λdj and λnj only depend on the coefficents κl such that 1 ≤ l < j:

λdj = U j−1 {A−A
}
− 2fabs

(
U j−1)∑q

i=1,li=0 |Dαi| g
(
Di,Di

)
−2
∑q
i=1,li 6=0 fabs

(
V j−1
i + CαAj−li−1H1

)
g
(
Di,Di

)
λnj =

[
U̇
j−1 + σ

(
U j−1)] {A−A

}
− 2fabs

(
U̇
j−1 + σ

(
U j−1))∑q

i=1,li=0 |Dαi| g
(
Di,Di

)
−2
∑q
i=1,li=0 |Dαi| g

(
di

(j),di
(j)
)

−2
∑q
i=1,li 6=0 fabs

(
V̇
j−1
i + σ

(
V j−1
i

)
+ H2i

)
g
(
Di,Di

)
H1 =

[
Ali−1Bdi . . . A2li−jBdi 0 . . . 0

]
H2i =

[∑j−li−1
w=0 uj−1

li−1+wCαAli−1+wBdi 0 . . . 0
]

(4.47)
where fabs and g are the differentiable approximates defined in (4.5). Propagated bounds and
saturations overlap does not occur if the quantities ∆j remain positive which is satisfied if ∆̂j is
itself positive, ∀j ≤ k − 1. For j = k, one has to consider the difference u − u. This is recalled
in the following lemma:

Lemma 4.23 (Propagated bounds/Saturations overlap avoidance).
Propagated bounds and saturations overlap is avoided if

• ∀j ∈ N such that j ≤ k − 1, ∆̂j > 0, ∀t;

• For j = k, ∀t:
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∆̂k > 2
q∑

i=1,li=0
|Dαi|max

(∣∣∣d(k)
i

∣∣∣ , ∣∣∣d(k)
i

∣∣∣)

+ 2
q∑

i=1,li 6=0

k∑
j=li

∣∣CαAj−1Bdi
∣∣max

(∣∣∣di(k−j)(t)∣∣∣ , ∣∣∣di(k−j)(t)∣∣∣) (4.48)

Considering the expression of ∆̂j in (4.46), the necessary condition exposed in Lemma 4.23
to avoid propagated bounds and saturations overlap can be achieved by appropriately choosing
the coefficients κj in κ. Since the vectors U j and V j

i depend on time-derivatives of these design
coefficients κ, the fact that ∆̂j up to j = k−1 is differentiable is capital. This was also illustrated
in Example 4.21. Note however that the coefficient κk needs not be differentiable which is the
case in Theorem 4.24.

In the following theorem, a suitable expression of the design coefficients in κ is presented.
This is a main contribution of this thesis work: for the first time, time-varying coefficients are
defined to bring guarantees to the OIST approach.

Theorem 4.24 (Design coefficients selection guaranteeing saturations overlap avoidance).
Let κ̆ =

[
κ̆1 . . . κ̆k

]> ∈ R?k+ a vector of strictly positive constants. Propagated bounds
and saturations overlap is avoided if

• α < α, ∀t (as assumed in Problem 4.11) and λd1 6= 0, ∀t;

• ∀j ∈ N? such that j ≤ k − 1, ∆̂j > 0 is satisfied by choosing, ∀t:

κj =
κ̆j − λnj
λdj

(4.49)

where κ̆j is chosen such that κ1 >
1
2 , ∀j > 1: κj > 1 and λdj+1 6= 0, ∀t;

• For j = k, one ensures u− u > 0 by choosing, ∀t:

κk = 1
λdk

κ̆k − λnk + 2
q∑

i=1,li=0
|Dαi|max

(∣∣∣d(k)
i

∣∣∣ , ∣∣∣d(k)
i

∣∣∣)

+2
q∑

i=1,li 6=0

k∑
j=li

∣∣CαAj−1Bdi
∣∣max

(∣∣∣di(k−j)(t)∣∣∣ , ∣∣∣di(k−j)(t)∣∣∣)
 (4.50)

where κ̆k is chosen such that κk > 1
2 , ∀t.

Remark 4.25. Note that this theorem is more conservative than the original Problem 4.11 as
far as α and α are concerned. Indeed α and α should be chosen such that λd1 6= 0 otherwise κ1
in (D.7) may be undefined. This is completely related to the way the coefficients are defined in the
proposed theorem. This is the reason why no stronger assumption is considered in Problem 4.11.

�
Remark 4.26. To derive the inequalities in (4.45), it was supposed that κj ≥ 0. The necessary
conditions proposed in Theorem 4.24 are however more strict since it is prescribed that κ̆ is
chosen such that κ1 >

1
2 , κk >

1
2 and κj > 1 for any other j. This has to do with guaranteeing

closed-loop stability. This is discussed in the proof of Proposition 4.32 in 4.4.4. �
Proof. Proving Theorem 4.24 is straightforward using Lemma 4.23 and considering (4.46) and
(4.43).
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The design procedure introduced in Theorem 4.24 for the coefficients in κ is now illustrated
on Example 4.22.

Example 4.27 (Time-varying design coefficients κ for overlap mitigation). Considering the more
conservative propagated bounds defined in (4.42) and using the inequalities in (4.45), expressions
of the form (4.46) are obtained:

∆̂0 = α− α
∆̂1 = κ1

(
α− α− 2g

(
d1, d1

))
+ α̇− α̇

∆̂2 = κ2λ
d
2 + λn2

λd2 = κ1 (α− α) + α̇− α̇− 2κ1 max
(∣∣d1

∣∣ , ∣∣d1
∣∣)− 2 max

(∣∣ḋ1
∣∣ , ∣∣∣ḋ1

∣∣∣)
−2 |CαBd2|max

(∣∣d2
∣∣ , ∣∣d2

∣∣)
λn2 = κ̇1 (α− α)− 2κ1

(
α̇− α̇

)
+ α(2) − α(2) − 2 |κ̇1|max

(∣∣d1
∣∣ , ∣∣d1

∣∣)− 2κ1 max
(∣∣ḋ1

∣∣ , ∣∣∣ḋ1

∣∣∣)
−2κ1 |CαBd2|max

(∣∣d2
∣∣ , ∣∣d2

∣∣)
(4.51)

Supposing α and α are such that α−α− 2g
(
d1, d1

)
6= 0, the following design coefficients can

be used to avoid saturations overlap:

κ1 = κ̆1−α̇+α̇
α−α−2g(d1,d1)

κ2 =
κ̆2−λn

2 +2 max
(∣∣d(2)

1

∣∣,∣∣∣d(2)
1

∣∣∣)+2
∑2

j=1|CαAj−1Bd2|max
(∣∣d(2−j)

2

∣∣,∣∣∣d(2−j)
2

∣∣∣)
λd

2

(4.52)

where κ̆1 and κ̆2 are constants chosen such κ1 >
1
2 , λ

d
2 6= 0 and κ2 >

1
2 . ♣

In this section a saturations overlap mitigation procedure was proposed for the first time. In
the case study 4.3 it was shown that applying the OIST approach as proposed in [Burlion 12]
without precautions in the choice of the design parameters could lead to a loss of guarantees
on the constraint satisfaction. This results from the lack of knowledge on the disturbances and
output constraint signals α and α variations. The same consequences would be witnessed when
applying the control saturations obtained in (4.43) with poorly chosen coefficients κ.

In Theorem 4.24, the coefficients κ were thus precisely defined such that saturations overlap
does not occur. They are time-varying by construction. The new design parameters κ̆ are
constants and easier to choose. They could be determined using optimization techniques. This
is tackled later in this chapter, see 4.6.1.

In the next section, a solution to Problem 4.11 is formally stated. Potential limits to this
solution are also raised which motivates studying closed-loop stability with more details in 4.4.4.

4.4.3 (f) Conclusion: a solution to Problem 4.11

The problem of satisfying a time-domain constraint K (Ωα) on a considered output α was for-
malized in Problem 4.11. A solution to this problem was developed for non-linear systems
in [Burlion 12]. In 4.4.3, the extension to linear systems was detailed – which is characterized by
more explicit expressions – following works in [Chambon 15c] and [Chambon b].

It was shown that by using the relative degree of the considered constrained output α with
respect to the control input u and by defining so-called propagated bounds then saturations on
the control are obtained such that the time-domain constraint is fulfilled. However, due to the
conservativeness introduced by considering the bounds on the disturbance signal d and to the
possibly time-varying constraint signals α and α, saturations overlap can occur as illustrated in
the case study 4.3. This results in losing any guarantees obtained through the method. Using
appropriate expressions for the method’s coefficients κ as detailed in Theorem 4.24, it was shown
that saturations overlap can be avoided.

72



Chapter 4. OIST: LTI systems reformulation

Theorem 4.28 (Output constrained control Problem 4.11 guaranteed solution using OIST).
Let consider the system (G) in (4.12) in closed-loop with the controller (K) in (4.13). Let
α the constrained output and K (Ωα) the considered time-domain constraint. Let suppose
Assumptions 4.4 to 4.10 are satisfied.

If the control input u is such that

u = satuu (yK) , ∀t (4.53)

where

• u and u are given in (4.43);

• The propagated bounds expressions are detailed in (4.41);

• The design parameters κ are chosen as in Theorem 4.24,

then α ∈ Ωα, ∀t.

This theorem is a solution to Problem 4.11 using the Output to Input Saturation Transforma-
tion approach. However, inserting saturations in the control loop is known to be unsafe as far as
closed-loop stability is concerned [Tarbouriech 11] since saturating the control input corresponds
to “opening” the loop.

Remark 4.29 (Closed-loop stability in the presence of OIST saturations). In Theorem 4.28,
the proposed solution does not guarantee the system closed-loop stability. It may happen that
the time-domain constraint is actually satisfied but the system state diverges. This depends on
the open-loop behaviour of the system and its controller. In this case, additional structures like
anti-windup compensators are often considered to recover from such degraded situation. This is
the purpose of the next section. �

4.4.4 Guaranteed closed-loop stability using OIST
In the previous section, a solution to Problem 4.11 was proposed. Using appropriately defined
control saturations, the time-domain constraint K (Ωα) was enforced. However, as mentioned
in Remark 4.29, the introduction of saturations in the closed-loop could potentially lead to the
controller or system state divergence.

This was formalized in Problem 4.13. Obviously, the proposed solution to Problem 4.11 does
not fulfil the expected guarantees of Problem 4.13. Additional theories are thus considered in
this section to propose a common solution to both Problems 4.11 and 4.13.

4.4.4 (a) Miscellaneous results on the control saturations

Prior to studying the closed-loop stability, miscellaneous results are presented. First, it may
be noted that the control saturations in (4.43) depend on the system state x. Thus, it may be
difficult to prove any stability result in the presence of such saturations. However, it is shown that
this dependency can be removed using an appropriate transformation. Second, a study of the
reachability of the system origin is proposed. It is indeed expected that the desired equilibrium
can be reached in the presence of the considered control saturations.

State-free saturations Considering the expressions of the control saturations in (4.43) and
of the propagated bounds in (4.41) for j = k, it is interesting to note that only one term depends
on the state-vector x. Let denote this term Koist. It is defined by

Koist = UkO
CαAk−1Bu

∈ R1×n, ∀t (4.54)

Then, let define the two following saturating signals:
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v = u+Koistx+
∑q
i=1,li=0 |KoistDdi|max

(∣∣di∣∣ , ∣∣di∣∣)
v = u+Koistx−

∑q
i=1,li=0 |KoistDdi|max

(∣∣di∣∣ , ∣∣di∣∣) (4.55)

Using the following equality (with x = y by assumption):

satuu (yK) = satu+Koisty
u+Koisty

(yK +Koisty)−Koisty (4.56)

and noting that v ≥ u + Koisty, v ≤ u + Koisty, applying state-free saturations through the
following input signal:

v = satvv (yK +Koisty) (4.57)

still allows to satisfy the necessary condition in Lemma 4.17. Since the termKoistx compensates
the state-dependent quantity in u (resp. u), the saturations are state-free and only depend on
design parameters and signals. Thus, closed-loop stability analysis is expected to be easier to
perform.

Remark 4.30 (New saturations overlap mitigation). To mitigate the overlap of the new satu-
rations, the coefficient κk is adapted accordingly in Th. 4.24. In particular, it must be ensured
that v − v > 0, ∀t, i.e.

u− u− 2
q∑

i=1,li=0
|KoistDdi|max

(∣∣di∣∣ , ∣∣di∣∣) > 0 (4.58)

from which κk is deduced. �

Using the original formulation and saturations, the closed-loop system dynamics was given
by

ẋ = Ax+ Busatuu (yK) + Bdd (4.59)

Using the newly define signal v and the corresponding saturations in (4.55), the closed-loop
system dynamics becomes

ẋ = [A−BuKoist]x+ Busatvv (yK +Koisty)−BuKoistDdd+ Bdd (4.60)

These new state-free saturating signals v and v are considered in the following sections to
obtain guarantees on the closed-loop stability.

Admissible asymptotic equilibrium In the previous sections, expressions have been ob-
tained for the control saturations and design parameters κ. Under Assumptions 4.4, 4.7 and 4.9,
it can be shown that these quantities converge towards constant values. Studying these final
values gives information on the admissible asymptotic equilibrium. In practice, whenever an
equilibrium is not reachable, this is a result of the control input sticking to a saturation. In this
section, expressions of the limits of the aforementioned quantities are derived.

Considering Theorem 4.24 along with Assumptions 4.4 and 4.7, it can be observed that the
time-varying design signals κ in (D.7) converge towards constant values. This results in the
vectors U j and V j

i defined in (4.39) (for i ∈ N?, i ≤ q and j ∈ N, j ≤ k) and Koist to converge
to constant finite values U j,?, V j,?

i and K?
oist. Consequently, as far as the saturations in (4.55)

are concerned and using Assumption 4.9, they tend towards finite values v? and v? (supposing
that k > 0):
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v? = 1
CαAk−1Bu

[
β?
k

+
∑q
i=1,li 6=0

∣∣∣CαAk−1Bdi

∣∣∣max
(∣∣di?∣∣ , ∣∣∣di?∣∣∣)]

+
∑q
i=1,li=0 |K?

oistDdi|max
(∣∣di?∣∣ , ∣∣∣di?∣∣∣)

v? = 1
CαAk−1Bu

[
β
?

k −
∑q
i=1,li 6=0

∣∣∣CαAk−1Bdi

∣∣∣max
(∣∣di?∣∣ , ∣∣∣di?∣∣∣)]

−∑q
i=1,li=0 |K?

oistDdi|max
(∣∣di?∣∣ , ∣∣∣di?∣∣∣)

β?
k

= U j,?A? +
∣∣U j,?

∣∣∑q
i=1,li=0 |Dαi|max

(∣∣Di
?
∣∣ , ∣∣∣Di

?
∣∣∣)

+
∑q
i=1,li 6=0

∣∣∣V j,?
i

∣∣∣max
(∣∣Di

?
∣∣ , ∣∣∣Di

?
∣∣∣)

β
?

k = U j,?A? −
∣∣U j,?

∣∣∑q
i=1,li=0 |Dαi|max

(∣∣Di
?
∣∣ , ∣∣∣Di

?
∣∣∣)

−∑q
i=1,li 6=0

∣∣∣V j,?
i

∣∣∣max
(∣∣Di

?
∣∣ , ∣∣∣Di

?
∣∣∣)

(4.61)

The unsaturated control converges towards

v? = CKxK
? + DK (x? + Ddd

?) = 0 (4.62)

under the previously mentioned assumptions. In the following assumption, it is given under
which conditions this equilibrium v? = 0 is an admissible asymptotic equilibrium.

Proposition 4.31 (Admissible asymptotic equilibrium).
Let suppose Assumptions 4.4, 4.7 and 4.9 are satisfied. In the non-restrictive case where
x? = 0, this is an admissible asymptotic equilibrium if

v? = 0 ∈ [v?, v?] (4.63)

For the practitioner, note that the expressions of v? and v? in (4.61) can be determined when
applying the transformation since they depend on known design parameters only.

Now we have tackled the admissible equilibrium problem, the problem of guaranteeing closed-
loop stability can be studied. First, the closed-loop representation is detailed using the state-free
saturations obtained in (4.55). Second, an anti-windup loop is considered in addition to the
feedback loop to guarantee the closed-loop asymptotic stability.

4.4.4 (b) Closed-loop representation

The system (4.12) in closed-loop with controller (4.13) and state-free saturations (4.55) is given
by the following state-space representation:



ẋ(t) = [A−BuKoist(t)]x(t) + Buv(t) + (Bd −BuKoist(t)Dd)d(t)
y(t) = x(t) + Ddd(t)
ẋK(t) = AKxK(t) + BKy(t)
yK(t) = CKxK(t) + DKy(t)

v(t) = satv(t)
v(t) (yK(t) +Koist(t)y(t))

α(t) = Cαx(t) + Dαd(t)

(4.64)

The stability of this system is studied in the next section.

4.4.4 (c) Guaranteeing the closed-loop stability with an anti-windup approach

Due to the presence of a dynamic controller and saturations, unexpected closed-loop behaviour
is expected. Anti-windup techniques have been widely studied and used to avoid behaviours like
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controller state divergence. Some of these techniques are presented in [Kapoor 98, Tarbouriech 09,
Grimm 03]. The approach proposed in [Menon 06] and [Herrmann 10] deals with a specific class
of non-linear systems to which the system presented in (4.64) belongs. In this article, the anti-
windup framework is used to enforce the closed-loop stability of the system in (4.64) where
the time-varying gain Koist and saturations are respectively given by (4.54) and (4.55). This
provides an answer to Problem 4.13.

Similarly to [Herrmann 10], the function f (x, t) = Koist(t)x(t) which is linear in our case
is the main difficulty in proving the stability in the presence of saturations. First, as in [Her-
rmann 10, Assumption 1, p. 1470], the stability of the open-loop system ẋ = [A−BuKoist(t)]x
is studied.

Proposition 4.32 (Open-loop stability).
The open-loop system described by

ẋ = [A−BuKoist(t)]x (4.65)

is GES.

Proof. The proof is inspired by [Herrmann 10]. A complete proof is presented in A.1.

The following Lemma will be used in the proof of the main Theorem 4.34 which brings a
solution to Problem 4.13.

Lemma 4.33 (f (x, t) is Lipschitz).
∀x(t) ∈ Rn, ∀t, the function f (x, t) = −Koist(t)x(t) is Lipschitz (with respect to x).
Moreover, −Koist(t)x(t) is K1-Lipschitz, where K1 = maxt ‖Koist(t)‖ ∈ R.

Proof. Let ∀x ∈ Rn, ∀t, f(x, t) = −Koist(t)x(t). Then, ∀x ∈ Rn, ∂f
∂x (x, t) = −Koist(t). Since

Koist(t) is continuous ∀t by definition of the coefficients κ and continuity of the vectors Di(t)
and Di(t) for i ∈ N?, i ≤ q (see Assumption 4.7), the function f is continuously differentiable
with respect to the state x. This implies that Koist(t)x(t) is a Lipschitz continuous function
with respect to x.

To ensure asymptotic stability of the saturated closed-loop, it is necessary to use an additional
anti-windup loop. Considering the system in (4.64), the following anti-windup compensator with
state xa ∈ Rn is introduced:

(Ga)



ẋa(t) = Axa(t) + Buua(t)
ya(t) = xa(t)

ua(t) = −Koist(t)ya(t)−Dzv(t)
v(t) (yK(t) +Koist(t)y(t))

ẋ1
K(t) = AKx

1
K(t) + BKya(t)

v1(t) = −CKx
1
K(t)− [DK +Koist(t)]ya(t)

(4.66)

The control v is then modified into

v(t) = satv(t)
v(t) (u(t) +Koist(t)y(t) + v1(t))

= satv(t)
v(t)
(
CKx

2
K(t) + DK (y(t)− ya(t)) +Koist(t) (y(t)− ya(t))

) (4.67)

where ẋ2
K = AKx

2
K + BK (y − ya). The main result of this section is the following theorem

which ensures stability of the origin of the system in closed-loop with the saturated nominal
controller and the anti-windup compensator (4.66). Both this theorem and its proof are inspired
by [Menon 06] and [Herrmann 10].
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Figure 4.6: Illustration of the closed-loop with anti-windup compensator where v and v are
obtained through application of OIST. Global asymptotic stability is guaranteed under the con-
sidered assumptions.

Theorem 4.34 (Guaranteed closed-loop stability, Problem 4.13).
If Assumptions 4.4 to 4.10 are satisfieda (resulting in Theorem 4.24 and Proposition 4.32),
the origin of the closed-loop system consisting of the following system

ẋ = [A−BuKoist]x+ Buv + [Bd −BuKoistDd]d (4.68)

where the time-varying saturations are given in (4.55) – the control law v in (4.67) and the
anti-windup compensator given in (4.66) is GAS.

aAnd excluding the pathological case where d is a non-converging finite energy distribution, which is not
a realistic physical case.

Proof. A complete proof is available in A.2.

Following works in [Herrmann 10], an additional anti-windup compensator was considered.
This allowed to obtain results on the closed-loop stability in the presence of the saturations
obtained applying OIST. An illustration of the system in closed-loop with the anti-windup com-
pensator and saturating block is given in Fig. 4.6. This is the typical structure obtained when
implementing OIST on a linear system.

Remark 4.35 (In practice: an anti-windup compensator is not mandatory!). In Theorem 4.34,
the use of an anti-windup compensator is theoretically necessary to obtain guarantees on the
stability of the origin. However, in practice, such compensator is not always required when
applying OIST. In that case, slightly different performance results may be observed. A compar-
ison of the performance results obtained using an anti-windup compensator or not is performed
on the application, see 4.5. Informally speaking, it appears that when using an anti-windup
compensator then the constrained output is “allowed” to linger on the constraint such that the
nominal behaviour is recovered “as much as possible”. �

It may appear that Theorem 4.34 is obtained at the cost of many conservative assumptions.
However, the most critical one is Assumption 4.10 which is directly related to the system dynam-
ics and not to external signals such as disturbances. In the presence of a non-minimum phase
system, global asymptotic stability cannot be achieved. This is discussed in 4.6.2.
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4.4.5 Conclusions on the reformulation
In this section, the reformulation of the OIST approach initially introduced to enforce time-
domain constraints on non-linear systems has been proposed. The considered system must
satisfy Assumptions 4.4 to 4.10. The limitations of the transformation which were raised in 4.3
have been tackled. More precisely:

• using appropriate expressions of the design coefficients κ in Theorem 4.24, saturations
overlap can be avoided;

• This allowed to formulate a solution to the constrained output control Problem 4.11 in
Theorem 4.28;

• Using an anti-windup compensator, the global asymptotic stability of the origin of the
considered systems was guaranteed in Theorem 4.34.

Of course, some problems remain open. First, it was supposed all along the reformulation
that the whole state is measured and known. Second, the system model was supposed to be
known with no uncertain parameters or dynamics. Also, we only considered the case where
Tu→α(s) is a minimum-phase transfer. This allowed to obtain an interesting result as far as
asymptotic stability is considered. However, closed-loop stability cannot be guaranteed in the
case of non-minimum phase transfers and it is expected that only local stability can be achieved
for such systems. This motivates the study in 4.6.2.

Before switching to extensions of the OIST approach, the theoretical results obtained in this
chapter are applied to the ball and beam model which served as a case study.

4.5 Application to the ball and beam model
The ball and beam example which served as a case study in 4.3 to illustrate existing limitations
to the OIST approach is considered again. This time, the results obtained in Theorem 4.28 are
used to avoid saturations overlap and guarantee satisfaction of the time-domain constraint on
the ball position. The state-space representation in (4.7) is considered. Prior to the application
of the method, a formal review of the assumptions is performed.

4.5.1 Formal review of the assumptions
The assumptions in 4.4.1 are reviewed in the case of the ball and beam system introduced in 4.3.1:

• the considered time-domain requirement signals α and α are represented in Fig. 4.3(b)
converge towards α? = 0.55m and α? = 0.65m respectively. Assumption 4.4 is satisfied;

• The constrained output variable is of relative degree k = 2 with respect to the control
input u and l = 2 with respect to the disturbance d. Assumption 4.5 is satisfied;

• Assumption 4.6 is obviously satisfied since 2l > k;

• The disturbance d is known to be bounded by the signals d and d represented in black in
Fig. 4.3(a) which converge towards d? = −0.05 and d? = −d?. Hence, Assumption 4.7 is
satisfied;

• The disturbance signal used in simulation converges towards zero and takes finite values.
Assumption 4.8 is satisfied in simulation;

• The controller (K) considered in (4.8) asymptotically stabilizes the unconstrained ball and
beam system. Assumption 4.9 is fulfilled;

• Last but not least, the transfer between the control input u and the constrained output α
(ball position) is minimum phase since
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Tu→α(s) = −0.21
s2 (4.69)

Assumption 4.10 is thus satisfied.

Remark 4.36. Note that the set-point rs = 0.6 m (and ṙs = 0 m/s) is not the origin of the
system (it is still a feasible equilibrium). However, using some transformation equivalent to a
translation and choosing a non-null initial condition, one can obtain a set-point on the origin of
the system. Hence Theorem 4.34 and its proof are still valid if using an appropriately designed
anti-windup compensator. �

The approach detailed in 4.4 is now applied to this system.

4.5.2 OIST implementation, guaranteed with no overlap
Using the results developed in 4.4 and considering α = 0.1 m, α = 0.9 m, the following expressions
are obtained for the successive ∆̂i(t):

∀t,


∆̂0(t) = 0.8

∆̂1(t) = κ1(t)λd1(t) + λn1 (t)

∆̂2(t) = κ2(t)λd2(t) + λn2 (t)

(4.70)

where

λd1(t) = α(t)− α(t)

λn1 (t) = α̇− α̇
λd2(t) =

[
κ1(t) 1 0

] {
A(t)−A(t)

}
λn2 (t) =

[
κ̇1(t) κ1(t) 1

] {
A(t)−A(t)

} (4.71)

Then, the values of the design signals κi(t) are deduced from these expressions and Theo-
rem 4.24:

κ1(t) = κ̆1−λn
1 (t)

λd
1(t)

κ2(t) = κ̆2−λn
2 (t)+2|CαABd|max(|d(t)|,|d(t)|)

λd
2(t)

(4.72)

where κ̆ =
[
κ̆1 κ̆2

]
=
[
0.5 5

]
are chosen such that the conditions in Th. 4.24 are satisfied. It

is then possible to obtain saturations on the control signal. Note that CαABu = −0.21 < 0 in
this example so the operator in (4.32) is used to obtain the adequate saturations.

4.5.3 Guaranteed closed-loop stability
In this example, the controller is stable and using an anti-windup compensator is not necessary.
For illustrative purposes and to illustrate the action of such structure, an anti-windup is however
designed following results in 4.4.4. The time-varying coefficient Koist(t) is defined as follows:

Koist(t) = U2(t)O
CαABu

(4.73)

where U2(t) =
[
κ2(t)κ1(t) + κ̇1(t) κ1(t) + κ2(t) 1

]
and O =

[
Cα CαA CαA2]>. The

simulation results w/ or w/o an anti-windup structure in the loop are compared in 4.5.4 (b).

4.5.4 Simulations and results
Using the data in 4.5.2, simulations are performed over 100s. The disturbance signal used in
simulation is shown in Fig. 4.3(a).
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Figure 4.7: System state and regulated variable α = r simulation results.
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Figure 4.8: Control signal and OIST design parameters κ(t) simulation results.

4.5.4 (a) Simulation results w/o anti-windup compensation

The simulation results are represented in Figs. 4.7 and 4.8. The data are represented in dashed-
dotted red when considering the nominal control law only (no saturations), in plain red when
considering OIST with constant coefficients (see the case study in 4.3) and in plain blue when
the saturations obtained using OIST are introduced in the closed-loop and the OIST coefficients
are chosen time-varying as in Theorem 4.24, see (4.72). As mentioned in 4.3, the synthesized
controller is not efficient enough and the ball falls off the beam. Using OIST and the knowledge
on the disturbances bounds, the time-domain constraint is satisfied and nominal performance
is recovered whenever the constraint is not violated. Note that the proposed approach leads to
some conservatism due to the lack of knowledge on d, especially around t = 45s. Also, some
conservatism could be introduced by using differentiable upper-approximates of the absolute
value and maximum functions.

Contrary to the constant coefficients case, it can be noted in Fig. 4.7(b) that the use of time-
varying coefficients as defined in Theorem 4.24 offers guarantees on the time-domain requirement
satisfaction at all times. This results from the saturations not overlapping in this case, whatever
the choice of κ̆.
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Figure 4.9: Comparison of the simulation results obtained w/ (plain blue) or w/o (dashed-dotted
blue) an anti-windup.

It appears in Fig. 4.8(a) that the control law variations are much sharper in the saturated
cases. This is a trade-off required for complying with the time-domain requirement. Optimization
of the constants κ̆ may help to obtain less demanding although satisfying control laws, see 4.6.1.

4.5.4 (b) Comparison of simulation results w/ or w/o anti-windup compensation

In the previous section, satisfying results were obtained without using an anti-windup structure
in the feedback loop. The influence of such structure is illustrated in Fig. 4.9. The simulation
results obtained with (resp. without) the anti-windup in the feedback loop are represented in
plain (resp. dashed-dotted) blue. It appears that the use of an anti-windup allows the control
law to stay longer on the saturations. This results in the regulated variable sticking to the time-
domain requirement limits. In an informal way, this means that the nominal performance is less
degraded since the control law tries to copy the original control as much as possible. In a more
formal way, this means that the anti-windup compensator improves performance.

4.5.4 (c) Conclusions on the simulation results

The results obtained in simulation are highly satisfactory. Using time-varying design parameters
in the OIST approach as proposed in Theorem 4.24, a time-domain requirement on a given
regulated variable can be fulfilled with guarantees. Moreover, the closed-loop stability is ensured
as demonstrated in 4.4.4. In practice, using an anti-windup compensator is not mandatory.
However, it has been observed in the illustrating example that the regulated variable sticks to
the requirement bounds to copy the original system response as much as possible when using
such compensator. As a conclusion, using an anti-windup compensator improves performance.

4.6 Miscellaneous remarks
In this section, miscellaneous remarks on the OIST method are presented. It is shown how the
design parameters κ̆ can be optimized with respect to a pre-defined cost function. Also, the
consequence of applying OIST on non-minimum phase systems is illustrated.

4.6.1 An approach to OIST design coefficients optimization
Choosing the design coefficients in κ can be tricky. On simple examples (like the double integra-
tor), a trade-off appears between performance and control energy. For big values of the design
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coefficients, performance is improved (the constrained output is allowed to linger on the satura-
tions) but this can result in demanding control inputs with inappropriate swaying. Considering
an optimization procedure for these coefficients can be a good option to avoid such behaviours.

In this thesis work we have tested the AMPL modelling language [Fourer 02] coupled to the
IPOPT optimizer [Wächter 06] to find an optimal value of the coefficients in κ with respect to
a prescribed cost functional. The IPOPT package can be used to find a local solution xs to the
following type of problems:

min f (x)
x ∈ Rn
s. t. g ≤ g (x) ≤ g

x ≤ x ≤ x

(4.74)

where g and g denote the bounds on the constraints function g (x) and x and x denote the
bounds on the variable. The cost functional is denoted f . In this dissertation, the considered
illustrating model is the disturbed double integrator:

ẋ1 = x2

ẋ2 = u+ d
(4.75)

where d is the disturbance and u the control input. For simulations, the signal d(t) = e−0.25t sin (2t)
is used as the disturbance. Bounds d and d on this disturbance are supposed to be known. They
are given by:

d(t) = −e−0.25t, d(t) = e−0.25t (4.76)

The system is initialised at x0 =
[
1
0

]
. The nominal control law is given by u = −x1 −

x2. A time-domain constraint is set on x2: this state variable should belong to the interval
[α = −0.3, α = 0.3]. Application of OIST as detailed in 4.4 leads to the following saturations:

u(t) = κ(t) (α− x2(t)) + max
(
|d(t)| ,

∣∣d(t)
∣∣)

u(t) = κ(t) (α− x2(t))−max
(
|d(t)| ,

∣∣d(t)
∣∣) (4.77)

and the control input signal is modified accordingly: u = satuu (−x1 − x2). To avoid saturations
overlap, the design coefficient κ ∈ R is chosen as follows:

κ(t) =
κ̆+ 2 max

(
|d(t)| ,

∣∣d(t)
∣∣)

α− α (4.78)

where κ̆ is a strictly positive constant to determine. It is decided to optimize this constant κ̆
with respect to the following cost functional:

f (xu,xc, uc) = W1
T

N

N−1∑
i=0

(xc,i − xu,i)> (xc,i − xu,i) +W2
T

N

N−1∑
i=0

u2
c,i (4.79)

where W1 and W2 are appropriate weightings, T is the simulation final time, N is the number
of samples (0 ≤ i ≤ N − 1), xu is the state of the system in closed-loop with the nominal law
uu = −xu,1−xu,2 and xc is the state of the system in closed-loop with uc = satuu (−xc,1 − xc,2).
Another constraint is set on the saturated control uc so as to eliminate fast variations of the
input signal: −10 ≤ N

T (uc,i − uc,i−1) ≤ 10 for 1 ≤ i ≤ N −1. The following numerical values are
chosen before optimization of κ̆ – N = 2000, T = 20s, W1 = W2 = 1 – and the Euler integration
scheme is selected to formulate the dynamical constraints. The resulting code expressed in the
AMPL formalism is presented in C.1. The problem is then solved using the IPOPT optimizer
and the following result is obtained:

κ̆opt = 14.225 (4.80)
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Figure 4.10: OIST applied to the double integrator using the optimal value of κ̆ returned by
AMPL/IPOPT as described in 4.6.1.

Using this optimal value for the design coefficient κ̆, the double integrator is simulated over
20s in closed-loop with the unconstrained nominal law (in dashed-dotted red) and the saturated
law (in blue). The simulation results are represented in Fig. 4.10.

Using AMPL/IPOPT, an optimal value of the OIST design coefficient κ̆ considering a specific
cost functional has been obtained for the double integrator example. Satisfying simulation results
are obtained since the output constraint is satisfied and the control input is not too demanding.
This illustrative example shows that the OIST design parameters can be optimized using existing
optimal control design techniques. This augurs future works in optimal automated tuning of the
OIST coefficients.

4.6.2 A challenge: the non-minimum phase case
The reformulation of OIST in the linear framework was possible thanks to some assumptions.
Especially, the difficult case of a non-minimum transfer between the control input u and the
constrained output α was set aside in Assumption 4.10. In this section, two non-minimum phase
systems are considered to illustrate the consequences of applying OIST without considering the
zero dynamics. Especially, in that case, the achieved stability is local only but two behaviours
are identified depending on the speed of the unstable zero dynamics.

Let consider the following stable transfer between the control input u and the constrained
output α:

T slow
u→α(s) = −3.9 (s− 0.1)

s2 + s+ 0.26 = K (s− z1)
s2 + s+ 0.26 (4.81)

This transfer zero dynamics is unstable. However, this is a slow dynamics since its zero equals
z1 = 0.1. The second system zero dynamics is also unstable but has a fast zero dynamics with
z1 = 10:

T fast
u→α(s) = −0.039 (s− 10)

s2 + s+ 0.26 (4.82)

Both systems have a DC gain of 1.5. In simulation, they are excited with the following input
signal:
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Figure 4.11: OIST applied to the NMP system in (4.81) with a slow zero dynamics.

u(t) =
{

0.4 if t ∈ [5, 15]
0 otherwise (4.83)

and are initialized at x0 = 0. The output α is constrained to stay in [α, α] where α = −0.3 and
α = 0.5. Application of the Output to Input Saturation Transformation leads to

u = 1
K [κ1 (α− α)− α̇]

u = 1
K [κ1 (α− α)− α̇]

(4.84)

where it is supposed that the state x is known hence α̇ = CαAx is known. Also, it is chosen
κ1 = 1. Note that K < 0 which explains the actual expressions of the saturations in (4.84). Let
Koist = 1

K (κ1α+ α̇). Using the interconnection in Fig. 4.6, note that A−BKoist has positive
eigenvalues which theoretically explains the observed divergence.

The simulation results are represented in Fig. 4.11 (resp. Fig. 4.12) for T slow
u→α(s) (resp.

T fast
u→α(s)). The simulated signals are represented in blue when OIST is used to limit the control

input and in dashed-dotted red in the unconstrained case. The bounds are represented in black
(dashed line for the lower bound).

The simulation results in Fig. 4.11 show that when the zero dynamics is slow then the stability
of the saturated closed-loop is ensured on a quite large set of constrained trajectories. Of course,
divergence still occurs if greater values of the input signal are selected like u(t) = 0.5 for t ∈ [5, 15].

On the contrary, when the zero dynamics is fast, divergence occurs even for small violations
of the constraint. This is illustrated in Fig. 4.12 where only parts of the signals are represented.

In this section, we have illustrated the influence of unstable zero dynamics when solving the
constrained-output problem using OIST. Informally, two behaviours have been identified: if the
zero dynamics is slow then the stability of the closed-loop can be ensured on a quite large set
of trajectories. In the other case, if the zero dynamics is fast, divergence occurs even for small
violations of the time-domain constraint.

In practice, this means that OIST is still applicable “as is” in the presence of slow unstable
zeros. Of course, the stability can only be local. This can be studied using common stability
analysis techniques which are left for future works.

4.7 Conclusions
In this chapter, the OIST approach to output constrained control design introduced in [Burlion 12]
for non-linear systems has been reformulated for linear systems. Existing problems such as the
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Figure 4.12: OIST applied to the NMP system in (4.82) with a fast zero dynamics.

risk of saturations overlap have been detailed in 4.3. In 4.4, the reformulation in the linear
framework has been described. Considering this type of systems has allowed to formulate it-
erative expressions to determine the different parameters used in the transformation. Details
have been brought on how to appropriately select the method design coefficients κ so as to avoid
saturations overlap. Another major contribution of this chapter is the demonstration of global
asymptotic stability of the origin for minimum phase transfers Tu→α(s) when using an additional
anti-windup compensator. The Output to Input Saturation Transformation has been successfully
applied to the ball and beam example, preventing the ball from falling off the beam.

In 4.6, some additional subjects have been tackled. Notably, it has been illustrated on a
simple example that techniques commonly used amongst the optimal control community can be
implemented to optimally tune the method design coefficients κ against a cost functional and
additional constraints. This is promising as far as the applicability of the method to real-life
constrained control problems is concerned. A clear perspective of this work is to consider more
complex cases of application as well as the use of other optimizers to compare their performance
on the considered problem. In the same section, the impact of non-minimum phase behaviours
has also been illustrated for the unaccustomed reader.

As far as the perspectives of the method itself are concerned, an automated design of the
saturations could be of interest. The involvement required to be familiar with the method as
well as the complexity of the expressions currently hinders its applicability quite a bit.

In the next chapter, the OIST approach is extended to the case of uncertain systems with
incomplete state measurements. This problem is complex and the expressions of the saturations
obtained in 4.4 can no longer be applied due to the lack of knowledge on x. This requires the
use of additional theories to provide sufficient information on the system state hence on the
considered constrained output.
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Chapter 5

Extension of OIST to the incomplete measure-
ments and uncertain cases

In the previous chapter, the OIST approach to enforce a time-domain constraint
on a given output, initially introduced for non-linear systems in [Burlion 12] has
been reformulated in the linear framework. Additional results related to saturations
overlap mitigation and closed-loop stability analysis have been detailed. However, the
considered class of system, namely LTI systems with full state measurements, is rather
limited in view of the problems encountered in practice.

In this chapter, the OIST extension for Robustness (OISTeR) is presented to account
for the possible presence of uncertainties in the considered model. Also, the case
of systems for which the whole state is not measured is considered. The extension
is based on the use of interval observers. The reader unfamiliar with such systems
may find useful information in Chapter B. This work is quite novel and has not yet
been published. However, hints on how to propose an extension to the original OIST
approach for linear systems were already proposed in [Chambon 15d] as well as in the
perspectives of [Chambon 15c].

The chapter is organised as follows. The motivations for extending the OIST approach
as proposed in Chapter 4 are detailed in 5.1. Then, the problem of enforcing a time-
domain constraint on a considered uncertain LTI system output is stated in 5.2. To
solve this problem, the OIST extension for Robustness is introduced in 5.3. The ap-
proach is then applied on various examples in 5.4 before concluding in 5.5 on future
perspectives for this extension.

5.1 Motivations for an extension of OIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Extended problem statement: taking robustness into account . . . . . . . . . . 86
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5.1. Motivations for an extension of OIST
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plement for the lack of knowledge on the system and controller state vectors.

5.1 Motivations for an extension of OIST

The Output to Input Saturation Transformation (OIST) approach was introduced in [Burlion 12]
as a new evolutionary technique to enforce a time-domain constraint on a non-linear system out-
put α with pre-existing control law u. This approach has been presented in details in Chapter 3
for non-linear systems only as in the originating works.

In Chapter 4, the approach has been reformulated in the case of linear systems. Additional
contributions have been proposed amongst which guarantees on the absence of overlap for the
obtained saturations u and u to apply to the pre-existing so-called nominal control law. Using
an additional anti-windup compensator, global asymptotic stability of the origin was also proved
in the case of minimum phase systems.

In both the originating works and first contributions of this thesis however, the state x ∈ Rn
of the original system (4.12) has been supposed to be measured. Eventually, the measurements
y = x+ Ddd have at worst been supposed to be disturbed by an external unknown signal d. It
remains that the state vector current value x is directly accessible for use in the OIST approach
as detailed in both Chapters 3 and 4. In Chapter 4, this knowledge of the possibly disturbed
system state vector x resulted in the expressions for the saturations to depend in x as made
evident in (4.41) and (4.43).

However, when considering more practical cases, the state vector x is rarely entirely measured.
Also, most systems dynamics depend on uncertain parameters which have not been taken into
account in the current OIST approach. This motivates extending OIST to these complex cases
where fewer information on the system dynamics are available. A solution is to compensate for
the lack of knowledge on the state vector value by using an observer. More precisely, an interval
observer is introduced to provide guaranteed bounds x and x on the state vector value x. This
is illustrated in Fig. 5.1.

5.2 Extended problem statement: taking robustness into
account

In Chapter 4, robustness with respect to uncertainties was not considered. The considered class
of systems in 4.4.1 was the class of known linear time-invariant systems with full-measured state.
In this section, this considered class is broadened to uncertain linear time-invariant systems with
partially measured state. This is a more realistic representation of systems commonly met in
practice. The OIST problems initially formulated for linear systems in 4.4.2 is then updated to
apply to this broader class of systems.
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Chapter 5. OISTeR: extension to the incomplete measurements and uncertain cases

5.2.1 Extension of the considered class of linear systems
In this chapter, uncertain linear time-invariant systems are considered in the continuous-time
framework. The following generic state-space representation is considered throughout this chap-
ter:

(G)


ẋ = A (θ)x + Buu + Bd (θ)d
y = C (θ)x + Du (θ)u + Dd (θ)d

x(0) = x0

(5.1)

where x ∈ Rn, y ∈ Rl, u ∈ R is the control input and d ∈ Rm−1 is the unknown vector of
disturbances inputs. In comparison with the class considered in the initial formulation of OIST,
see (4.12) in Chapter 4, this representation now includes uncertainties through vector θ ∈ Θ
where Θ ⊂ Rq. This vector of uncertainties is supposed to be bounded as guaranteed by the
following assumption made for future introduction of an interval observer:

Assumption 5.1 (Bounded vector of uncertainties θ).
There exist two known vectors θ and θ in Θ ⊂ Rq such that

θ ≤ θ ≤ θ (5.2)

Also, for θ ∈ Θ, it is supposed that the system (5.1) is well-posed, i.e. its state-space matrices
are well-defined:

Assumption 5.2 (Well-posed system (5.1)).
System (5.1) state-space matrices are well-defined ∀θ ∈ Θ.

Remark 5.3. Under Assumptions 5.1 and 5.2, there exist appropriately defined bounding ma-
trices such that:

A ≤ A (θ) ≤ A

Bd ≤ Bd (θ) ≤ Bd

C ≤ C (θ) ≤ C

Du ≤ Du (θ) ≤ Du

Dd ≤ Dd (θ) ≤ Dd

, ∀θ ∈
[
θ,θ

]
(5.3)

�

As far as the initial condition x0 is concerned, it is not necessarily known however, similarly
to Assumption B.10, bounds x0 and x0 are supposed to be known for this vector. Also, as
in Assumption 4.7, the unknown vector of disturbance inputs d is supposed to be bounded by
known bounds d and d.

Depending on the properties of the state matrix A (θ), system (G) might be unstable or
its performance may fall short of the designer expectations. To solve these control problems, a
dynamic controller (K) with fixed order nK is introduced:

(K)


ẋK = AKxK + BKuK

yK = CKxK + DKuK

xK(0) = 0
(5.4)

where xK ∈ Rn, uK ∈ Rm and the state-space matrices are of appropriate dimensions. The
design of this structured controller is discussed later on in this chapter. It was also discussed in
Chapter 2 where the synthesis was performed against multiple requirements on multiple models
to account for critical values the vector of uncertainties θ. The nominal loop is closed using the
conventional relations:
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{
uK = y

u = yK + v
(5.5)

where v is an external control input signal which use will be highlighted later on. Let make the
following assumption which ensures that 1−DKDu 6= 0 and is thus invertible:

Assumption 5.4 (Closed-loop well-posedness).
The closed-loop consisting of the uncertain LTI system (5.1), the structured dynamic con-
troller (5.4) and the interconnection (5.5) is supposed to be well-posed. In other words, the
following real quantity is invertible:

1−DKDu (θ) 6= 0, ∀θ ∈ Θ (5.6)

This results in the following state-space representation for the closed-loop:

Ẋ =
[

A (θ) + Bu∆u (θ) DKC (θ) Bu∆u (θ) CK
BKC (θ) + BKDu (θ) ∆u (θ) DKC (θ) AK + BKDu (θ) ∆u (θ) CK

]
X

+
[
Bu Bd (θ) + Bu∆u (θ) DKDd (θ)
0 BKDd (θ) + BKDu (θ) ∆u (θ) DKDd (θ)

] [
v
d

]
= AX (θ)X + BX,vv + BX,d (θ)d

(5.7)

where X =
[
x
xK

]
and ∆u (θ) = [1−DKDu (θ)]−1. The initial condition is set to X0 =[

x0
0

]
. This representation will be used when designing an interval observer on the closed-loop

as explained in 5.3 and 7.4.
Similarly to the problem tackled in Chapters 3 and 4, the objective is to satisfy a time-domain

requirement K (Ωα) on a given output α = Cαx. Note that this time it may not be possible to
evaluate α depending on what is unmeasured. Given two possibly time-varying signals α(t) and
α(t) such that α(t) ≤ α(t), ∀t ∈ R+ and Ωα(t) = [α(t), α(t)], the objective is to fulfil:

α(t) ∈ Ωα(t), ∀t ∈ R+ (5.8)

Using the closed-loop state X, let define CXα =
[
Cα 01×nK

]
. The constrained output is

equivalently defined by α = CXαX and the time-domain constraint K (Ωα), see Definition 3.9
corresponds to satisfying

α(t) ≤ CXαX ≤ α(t), ∀t ∈ R+ (5.9)

Satisfying Assumptions 4.4 to 4.9 is still relevant. Small adjustment is however made for
Assumption 4.9 where the controller should stabilize a family of models rather than only one
model due to the presence of uncertainties θ:

Assumption 5.5 (Updated Assumption 4.9 on controller (K)).
The controller (K) in (5.4) is supposed to asymptotically (resp. exponentially) stabilize (G)
in (5.1) for any θ ∈ Θ to the origin x? = 0, under Assumption 4.8 (resp. d = 0). The
controller state at the equilibrium is denoted xK? and xK? = 0.

Remark 5.6. In practice, the controller (K) is designed to stabilize a limited number of critical
models, which is discussed in Chapter 2. �
Remark 5.7. Assumption 5.5 basically means that AX (θ) is Hurwitz ∀θ. �

More precisions on these assumptions will be given in 5.3. In the next section, the original
output constrained OIST-based control Problem 4.11 is updated in consideration of the broader
class of systems (5.1).
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5.2.2 Extended OIST problem statement
The OIST approach is an evolutionary approach [De Dona 02] based on introducing saturations
on the controller output such that the values taken by the constrained output α remain in an
admissible set. The problem of finding the adequate saturations has been formalized as Prob-
lem 4.11. This formulation is now updated to account for the broader class of considered systems,
namely uncertain linear time-invariant systems with no specific constraint on the measurements
matrix C (θ). Comments are made below for this rather different formulation in comparison
with Problem 4.11.

Problem 5.8 (System (5.1) output constrained control problem using OISTeR).
Find two saturating signals [v(t), v(t)] and a domain C0 such that for two given design
signals α(t) and α(t) satisfying α(t) ≤ α(t), ∀t ∈ R+, the constrained output α satisfies the
constraint K (Ωα):

α(t) ∈ Ωα(t) = [α(t), α(t)] , ∀t ∈ R+ (5.10)

for the system (G) in (5.1) in well-poseda closed-loop with controller (K) in (5.4) and the
saturations obtained with OISTeR:

ẋ(t) = A (θ)x(t) + Buu(t) + Bd (θ)d(t)
y(t) = C (θ)x(t) + Du (θ)u(t) + Dd (θ)d(t)
α(t) = Cαx(t)
ẋK(t) = AKxK(t) + BKy(t)
yK(t) = CKxK(t) + DKy(t)
u(t) = yK(t) + v(t)

v(t) = satv(t)
v(t) (0)

x0 ∈ C0

(5.11)

where it is supposed that Assumptions 4.4 to 4.10 and in 5.2.1 are satisfied.
aSee Assumption 5.4.

This formulation is different from the original formulation in Problem 4.11. It can be noted
that the output yK of the controller is no longer saturated. The external input v introduced
in (5.5) is used as the new saturated input. This comes from the choice to consider the closed-loop
in the application of OIST rather than just the original system for which the controller output is
saturated. When the conditions on α are met, the input v is set to 0 and the closed-loop behaves
nominally. A corrective signal is otherwise applied. This new formulation is a contribution of
this thesis. As highlighted later in 5.3.3, v(t) and v(t) depend on the closed-loop state hence are
part of this closed-loop.

Similarly to Problem 4.11, this statement implicitly requires the designed saturating signals
v(t) and v(t) not to overlap. Also, the stability Problem 4.13 is still critical since the introduction
in the closed-loop of saturations depending on the system state can lead to instabilities. However,
in the newly considered problem, stability must be ensured over a family of systems rather than
on one system only, due to the presence of uncertainties:

Problem 5.9 (Closed-loop stability using extended OIST).
Guarantee that the origin of the saturated closed-loop in (D.21) is asymptotically stable
∀θ ∈ Θ.

The OIST approach initially described for known LTI systems in Chapter 4 is extended to
uncertain LTI systems with incomplete state vector measurements following a similar explanation
path. A solution to Problem 5.8 is thereby provided. It makes use of interval observers which
are described in Chapter B and additional results from Chapter 7 are used. Finding a solution
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to Problem 5.9 is still a perspective for future works at the time of writing. However, in the case
of systems with incomplete measurements and no uncertainty, the proof of stability is expected
to be quite similar to the one in A.2.

5.3 OIST extension for Robustness (OISTeR)
In this section, the Output to Input Saturation Transformation presented in Chapters 3 and 4 is
extended to the case of uncertain LTI systems (5.1) with incomplete measurements of their state
vector x. Contrary to the previously studied case, the considered constrained output expression
α = Cαx can no longer be differentiated. The obtained expression (4.23) would indeed depend
on x which cannot be evaluated.

Interestingly enough, the proposed framework is quite similar in its assumptions to the interval
observer theory. Assumption 4.7 is reminiscent of assumptions made to evaluate bounds on
a given system state vector. Also, obtaining such guaranteed bounds on the state vector is
interesting within the OIST approach since it allows to bound the quantity Cαx and to formalize
the time-domain constraint on these bounds rather than on the unknown quantity α. This is the
core of the OIST generalization which is now described in details.

5.3.1 Interval observer of the closed-loop and differentiability issues
In this section, an interval observer is introduced on the closed-loop dynamics obtained in (D.19).
Differentiability issues related to the chosen structure for the interval observer are tackled. They
are critical within the OIST framework since successive differentiations of the time-domain con-
straint are required (see Chapter 4). Also, some details are given on why the interval observer
is designed on top of the closed-loop rather than on the initial system.

5.3.1 (a) Interval observer of the closed-loop

Let consider the following system which was obtained in (D.19) by considering system (5.1) in
closed-loop with the controller (5.4) and (5.5):

Ẋ = AX (θ)X + BX,vv + BX,d (θ)d (5.12)

Considering Assumption 5.1, it appears that the vector of uncertainties θ is bounded. Let
consider a fixed nominal value θn ∈

[
θ,θ

]
⊂ Θ for this vector. For example, θn = θ−θ

2 is an
admissible nominal value. The system in (5.12) can be rewritten as:

Ẋ = AX,nX + ∆AX (θ)X + BX,vv + BX,d (θ)d
= AX,nX + BX,vv + f (X,d, θ)

(5.13)

where AX,n = AX (θn), ∆AX (θ) = AX (θ)−AX,n and

f (X,d, θ) = ∆AX (θ)X + BX,d (θ)d (5.14)

Using the notations in Remark 5.3, the definitions of matrices AX and BX,d in (D.19),
Assumption 4.7 and Lemma 1 in [Efimov 13e], the quantity in (5.14) can be bounded:

f
(
X,X,d,d

)
≤ f (X,d, θ) ≤ f

(
X,X,d,d

)
(5.15)

where the bounding quantities are given by:

f
(
X,X,d,d

)
= ∆AX

+X+ −∆AX
+
X− −∆AX

−X
+ + ∆AX

−
X
−

+BX,d
+d+ −BX,d

+
d− −BX,d

−d
+ + BX,d

−
d
−

f
(
X,X,d,d

)
= ∆AX

+
X

+ −∆AX
+X

− −∆AX
−
X+ + ∆AX

−X−

+BX,d
+
d

+ −BX,d
+d
− −BX,d

−
d+ + BX,d

−d−

(5.16)
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The interval observer structure is now properly introduced. Using Assumption 5.5, it can be
observed that AX,n is Hurwitz by evaluating AX (θ) at θ = θn. Also, let consider the following
assumption which is reminiscent of Assumption B.17:

Assumption 5.10 (Known SCT to ensure cooperativity of (D.19)).
Let AX,n = AX (θn) where AX (θ) is defined in (D.19). There exists P ∈ R(n+nK)×(n+nK)

such that PAX,nP−1 is Metzler. This matrix is Hurwitz by constructiona.
aAX (θ) evaluated at θ = θn is Hurwitz.

In practice, such matrix P is rarely known or is hard to determine by hand. The simultaneous
design of the controller (K) and appropriate SCT matrix P is discussed in 5.3.2 based on the
approach initiated in [Chambon 16], see Chapter 7. Let denote MZ = PAX,nP−1. The state-
coordinate change Z = PX is considered. Under Assumption 5.10 and using Definition B.11,
the following system is proposed as a candidate interval observer for (D.19):

Ż = MZZ + PBX,vv + g
(
Z,Z,d,d

)
Ż = MZZ + PBX,vv + g

(
Z,Z,d,d

)
Z0 = P+X0 −P−X0

Z0 = P+X0 −P−X0

X = T+Z −T−Z

X = T+Z −T−Z

(5.17)

where T = P−1, X0 =
[
x0
0

]
, X0 =

[
x0
0

]
and

g
(
Z,Z,d,d

)
= P+f

(
T+Z −T−Z,T+Z −T−Z,d,d

)
−P−f

(
T+Z −T−Z,T+Z −T−Z,d,d

)
g
(
Z,Z,d,d

)
= P+f

(
T+Z −T−Z,T+Z −T−Z,d,d

)
−P−f

(
T+Z −T−Z,T+Z −T−Z,d,d

) (5.18)

This interval observer is a candidate only since condition (3) in Definition B.11 may not be
satisfied even if P and (K) comply with (1) and (2).

5.3.1 (b) Differentiability issues

Due to the presence of the max function in the definitions of f and f in (5.16), the dynamics
in (5.17) are not differentiable. This will be crucial in 5.3.3 when differentiation of the constraints
will be required. In 4.2, the functions fabs and fmax have been introduced as approximates of
the absolute value and max functions respectively. By definition, for a given vector X ∈ Rn,
X+ = max (X,0). Using both fabs and fmax, bounding approximates of max (X,0) can be
obtained. Let consider the two following C∞ (R,R) functions:

fm (x) = 1
2 (x+ x tanh (x))

fp (x) = 1
2 (x+ x tanh (x) + c2)

, ∀x ∈ R (5.19)

where c2 is defined in 4.4. Let consider the element-wise C∞ (Rn,Rn) counterparts fm (x) and
fp (x) for x ∈ Rn:

[fm (x)]i = fm (xi)
[fp (x)]i = fp (xi)

, ∀x ∈ Rn, ∀i ∈ N? s.t. i ≤ n (5.20)

Then, it is observed that the function max (x,0) which is C0 only can be bounded by two
C∞ functions.
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Figure 5.2: In red, the differentiable functions fm and fp defined in (5.19) are appropriate bounds
of the max (x, 0) non-differentiable function (in blue).

Proposition 5.11 (C∞ bounds of the C0 function max (x,0)).
Let x ∈ Rn. Then the operator x+ = max (x,0) can be bounded by the two following C∞
functions:

fm (x) ≤ x+ ≤ fp (x) (5.21)

where fm (x) and fp (x) are defined in (5.20). Consequently, by definition of x− = x+−x,
the following inequalities are also satisfied:

fm (x)− x ≤ x− ≤ fp (x)− x (5.22)

Proof. Straightforward using real analysis on R?+ and R?−.

This proposition and especially the inequalities in (5.21) are illustrated in Fig. 5.2. The
bounds are represented in red while the non-differentiable function max (x, 0) is represented in
blue.

Using the functions fm and fp applied to Z, Z, d or d, it is possible to obtain differen-
tiable approximates of the non-differentiable functions g and g in (5.16). Let denote g∞ and
g∞ these functions which are C∞ by property of the hyperbolic tangent function. It can be
straightforwardly verified that the following inequalities are satisfied:

g∞
(
Z,Z,d,d

)
≤ g

(
Z,Z,d,d

)
g∞

(
Z,Z,d,d

)
≥ g

(
Z,Z,d,d

) , ∀
(
Z,Z,d,d

)
(5.23)

With a small abuse of notation where we use Z and Z as the new system state, this leads to
a new candidate interval observer for the closed-loop (D.19):

Ż = MXZ + BZ,vv + g∞
(
Z,Z,d,d

)
Ż = MXZ + BZ,vv + g∞

(
Z,Z,d,d

) (5.24)

where BZ,v = PBX,v. This interval observer is more conservative in the sense that less precise
bounds on g in (5.14) are used. Also, this is a candidate interval observer since condition (3) in
Definition B.11 may be even harder to satisfy than for the original candidate (5.17). This time
however, the dynamics is differentiable which is required in theory to apply OIST. Of course, the
dynamics remains non-linear. This motivates using a more compact notation for this candidate
interval observer (5.24). More precisely, it can be noted that the functions g∞ and g∞ depend
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in
(
Z,Z

)
and

(
d,d

)
in an independent fashion. This comes from (5.16) where we have isolated

in blue the quantities in f and f which depend on X and X and in red the quantities which
depend on d and d. This allows us to write:

ζ̇ = h1 (ζ) + BZ,vv + h2 (D) (5.25)

where ζ =
[
Z
Z

]
, D =

[
d

d

]
and h1 and h2 are non-linear although C∞ functions defined as the

following mappings:

h1 : R2(n+nK) → R2(n+nK), h2 : R2(m−1) → R2(n+nK) (5.26)

This is formalised in the following proposition.

Proposition 5.12 (Candidate non-linear differentiable interval observer of (D.19)).
The following non-linear system

(
Gz,]){ ζ̇ = h1 (ζ) + BZ,vv + h2 (D)

ζ0 =
[
Z0 Z0

]> (5.27)

where ζ ∈ R2(n+nK), D =
[
d

d

]
and h1 and h2 are C∞ mappings is a candidate interval

observer of the closed-loop (D.19) with

Z =
[
In+nK

0(n+nK)×(n+nK)
]
ζ

Z =
[
0(n+nK)×(n+nK) In+nK

]
ζ

X = T+Z −T−Z

X = T+Z −T−Z

(5.28)

for T = P−1 where P is such that PAX,nP−1 is Metzler (see Assumption 5.10).

The problem of satisfying condition (3) in Definition B.11 is discussed in 5.3.2 where the
synthesis of the structured dynamic controller and the appropriate SCT is considered.

5.3.1 (c) Justification of the choice of an interval observer on the closed-loop

Up to now, the choice for considering an interval observer on the closed-loop has not be explained.
A conventional interval observer on the original system could indeed be designed as in B.3.
However, such interval observer would depend on the original system measurements vector y and
potentially on successive derivatives of this vector. This would invariably lead to the unknown
components of the state to be re-injected in the expressions of the OIST saturations as detailed
in 5.3.3. This is illustrated in the following example.

Example 5.13. Let consider the following simple system for illustrative purposes:{
ẋ1 = −x1 + x2

ẋ2 = −2x2 + d+ u
(5.29)

where d is an unknown disturbance such that d ≤ d ≤ d, ∀t ∈ R+ where d and d are known signals.
Only x1 is supposed to be measured hence C =

[
1 0

]
. Let suppose α = x1 hence Cα = C.

Note that this system is cooperative hence a trivial interval observer could be designed. In most
cases however, an additional degree of freedom is required to be able to constrain the convergence
speed of the observer. Hence, let consider the conventional approach exposed in B.3 for interval
observer design. Let L the classical observer gain such that:

˙̂x = (A− LC) x̂+ Ly (5.30)
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is stable and cooperative or, in other words, such that (A− LC) is Hurwitz Metzler. The
observation error dynamics is thus given by:

ė = (A− LC) e+ Bdd (5.31)

and an interval observer of this system is trivially obtained as:

ė = (A− LC) e+ Bdd

ė = (A− LC) e+ Bdd
(5.32)

Consequently, bounds on the original state vector x are respectively given by x = x̂+ e and
x = x̂ + e. In section 5.3.3, the notion of generalized propagated bounds will be introduced to
account for the fact that x is no longer known contrary to guaranteed bounds [x,x]. Similarly
to the original OIST approach detailed in 4, these generalized propagated bounds are iteratively
defined and depend on the following quantities:

βm = Cαx, βp = Cαx (5.33)

and their successive derivatives. Noting that

ẍ = ë+ (A− LC)2
x̂+ (A− LC) Ly + LCẋ (5.34)

it may happen for systems with k ≥ 2 that the propagated bounds depend on the original system
state and especially on its unmeasured components (red term). On the contrary, the state vector
of an interval observer on the closed-loop1 does not depend on the measurements vector y. ♣

Considering an interval observer on the closed-loop requires to simultaneously design the con-
troller and an appropriate time-invariant SCT such that the closed-loop state matrix is Metzler
in the new coordinates. This is considered in the next section.

5.3.2 Simultaneous structured controller/time-invariant SCT synthe-
sis

The simultaneous design of a dynamic structured controller and an interval observer on the
resulting closed-loop is discussed in 7.4. However, in the current case, the considered interval
observer is non-linear as highlighted in Proposition 5.12. Using (5.24) results in the following
tightness Ed dynamics, where Ed = 1

2
(
Z −Z

)
:

Ėd = MXEd + 1
2
[
g∞

(
Z,Z,d,d

)
− g∞

(
Z,Z,d,d

)]
(5.35)

The functions g∞ and g∞ are non-linear in Z and Z. In practice, this means that this model
cannot be used as a synthesis model in the approach presented in Chapter 7. More precisely,
contrary to the known case, no constraint can be set on the interval

[
Z,Z

]
in the considered

uncertain case. The condition (3) to qualify (5.27) as an interval observer can thus only be
verified during the analysis and not during the synthesis.

5.3.3 Description of the OIST extension
In this section, the extension of the OIST theory to be applicable to systems of the form (5.1)
is considered. Using the interval observer in Proposition 5.12 and synthesized in 5.3.2, the
time-domain constraint on the unknown quantity α = CXα is translated into two time-domain
constraints on known quantities depending on the bounding variablesX andX. The saturations
v and v are then determined using a similar transformation as the original OIST.

It appears that this new approach is in fact a generalization of the existing OIST as presented
in Chapter 4. For systems with a fully measured state, the expressions derived in the current
chapter can be simplified into their counterparts in Chapter 4.

1A design method of interval observers on closed-loops is proposed in Chapter 7.
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5.3.3 (a) Generalized time-domain constraint

As extensively mentioned at the beginning of this chapter and in previous chapters dealing with
OIST, the objective is to enforce a time-domain constraint as defined in Definition 3.9 on a given
output α = Cαx. In (5.9), the considered output has been appropriately redefined to refer to
the closed-loop state X. The time-domain constraint is thus to ensure CXαX ∈ [α, α].

However, it has been argued that this quantity cannot be evaluated in most cases since
C (θ) 6= In. As a consequence, the approach proposed in Chapter 4 cannot be applied in this
case. The solution is to express the time-domain constraint on known guaranteed bounds of
CXαX. Such bounds can be obtained using the interval observer proposed in Proposition 5.12
and designed in 5.3.2. Indeed, using such observer, the following is obtained:

CXα
+X −CXα

−X ≤ CXαX ≤ CXα
+X −CXα

−X (5.36)

where X and X are determined from the known interval observer state vector κ.

Remark 5.14. In most cases where the constraint concerns an element of the state vector X,
the matrix CXα is either non-negative or negative. Consequently, simpler expressions are often
obtained in (5.36) since CXα

− = 0 (respectively CXα
+ = 0) in that case. �

Using the guaranteed bounds obtained in (5.36), it is observed that by enforcing two con-
straints on these guaranteed bounds then the initial constraint can be satisfied:{

CXα
+X −CXα

−X ≥ α

CXα
+X −CXα

−X ≤ α
, ∀t ∈ R+ ⇒ α ≤ CXαX ≤ α, ∀t ∈ R+ (5.37)

which motivates the following definition of a generalized time-domain output constraint, inspired
by Definition 3.9:

Definition 5.15 (Generalized output constraint K (Ωα)).
Let α = CXαX the considered system (5.1) constrained output. Let Ωα(t) = [α(t), α(t)]
where α(t) and α(t) are sufficiently smooth time-varying unidimensional signals satisfying

α(t) ≤ α(t), ∀t ∈ R+ (5.38)

Let suppose an interval observer has been designed from the candidate system in Propo-
sition 5.12 such that bounds are known on the system state vector X ∈

[
X,X

]
. The

considered output α = CXαX is said to satisfy the constraint K (Ωα) if{
CXα

+X −CXα
−X ≥ α

CXα
+X −CXα

−X ≤ α
, ∀t ∈ R+ (5.39)

This is called a generalization of Definition 3.9 since in case the state vector X is known then
the initial definition is retrieved.

Remark 5.16. Note that the generalized output constraint in (5.39) is infeasible in case the
signals α and α are chosen such that

α− α ≤
(
CXα

+ + CXα
−) (X −X) (5.40)

which can be conservative especially in case α depends on unmeasured states. On the contrary,
the condition α− α > 0 is retrieved if α depends on measured states only. �

5.3.3 (b) Generalized propagated bounds and Lemma

As extensively covered in Chapters 3 and 4, the OIST approach relies on the relative degree
(see Definition 3.4) of the regulated variable α with respect to the control input. Upon differ-
entiation of the constraints and constrained output α, the dependency in the control input is
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uncovered from which the saturations are deduced. The same procedure is applied here with
slight differences however.

Let define βm = σm (ζ) and βp = σp (ζ) where ζ is the state vector from the interval observer
in Proposition 5.12 and the functions σm and σp are defined as the following mappings:

σm : R2(n+nK) → R, σp : R2(n+nK) → R (5.41)

with their expressions given by:

σm (ζ) = CXα
+X −CXα

−X

=
(
CXα

+T+ + CXα
−T−

)
Z −

(
CXα

+T− + CXα
−T+)Z

=
[
CXα

+T+ + CXα
−T− −CXα

+T− −CXα
−T+] ζ

= Σmζ

σp (ζ) = CXα
+X −CXα

−X

=
(
CXα

+T+ + CXα
−T−

)
Z −

(
CXα

+T− + CXα
−T+)Z

=
[
−CXα

+T− −CXα
−T+ CXα

+T+ + CXα
−T−

]
ζ

= Σpζ

(5.42)

where different notations are used. Using the work in 5.3.1 (b) dealing with differentiability
issues affecting the dynamics of the interval observer, it appears that the functions σm and σp
are C∞ functions of the variable ζ. As a reminder, the dynamics of the interval observer is given
by:

ζ̇ = h1 (ζ) + BZ,vv + h2 (D) (5.43)

where h1 and h2 are C∞ functions. Before detailing the expressions of the successive derivatives
of βm and βp, Assumption 4.5 must be reviewed in view of the considered generalized constraints.
Since α is not directly considered anymore, the important information is not its relative degree
with respect to v but rather the relative degree of βm and βp with respect to v. The relative
degree with respect to d and d is also studied. As a result, it is observed that the newly
obtained assumption is less demanding in terms of knowledge on the unknown disturbance input
d. Especially, Assumption 4.7 can be heavily simplified as a result.

Assumption 5.17 (Relative degree of the generalized output constraint wrt the control
input v).
Let k ∈ N. It is supposed the generalized output constraint functions βm and βp are of
relative degree k with respect to v.

Contrary to the case considered in Chapter 4, the generalized output constraint functions
do not depend on d but on its bounds d and d. This comes from the fact that these functions
are determined from the interval observer dynamics. In Chapter 4, the bounds were defined in
function of the original system dynamics. Consequently, Assumption 4.7 is no longer required.
This new formulation based on an interval observer can also be used when the knowledge on the
disturbance is very limited and Assumption 4.7 is not satisfied.

The expressions of the k-th derivative and i-th derivatives of βm and βp for the natural
integer i < k are now detailed under Assumption 5.17. They are used in the definition of the
so-called generalized propagated bounds which is reminiscent of Definition 4.15. Finding an
explicit expression for these derivatives is hard but some resources [Daoutidis 89] [Isidori 95,
Chapter 5] give a hint on how to formalise such problems using relative degree properties and
Lie derivatives. For i ∈ N such that i < k, we have:

β
(i)
m = Lih1

σm (ζ) +
∑i−1
j=0

dj

dtj

(
LILi−1−j

h1
σm (ζ)h2 (D)

)
β

(i)
p = Lih1

σp (ζ) +
∑i−1
j=0

dj

dtj

(
LILi−1−j

h1
σp (ζ)h2 (D)

) (5.44)
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and, for i = k where k is the relative degree of βm and βp wrt v (see Assumption 5.17):

β
(k)
m = Lkh1

σm (ζ) + LBZ,vLk−1
h1

σm (ζ) v +
∑k−1
j=0

dj

dtj

(
LILk−1−j

h1
σm (ζ)h2 (D)

)
β

(k)
p = Lkh1

σp (ζ) + LBZ,vLk−1
h1

σp (ζ) v +
∑k−1
j=0

dj

dtj

(
LILk−1−j

h1
σp (ζ)h2 (D)

)
(5.45)

where Lfσ is the notation for the Lie derivative of σ in the direction f as defined in Definition 3.3.
The original Definition 4.15 of the propagated bounds assumed that the quantity α was known
and that its derivatives could be expressed in function of the known system state vector x as
in (4.23). This is not the case here which motivates the following definition of so-called generalized
propagated bounds. Note that the original definition is retrieved if the state vector X is known.
Similarly to the original definition, the introduction of design parameters κ is also considered.

Definition 5.18 (Generalized propagated bounds).
Let κ(t) =

[
κ1(t) . . . κk(t)

]
∈ Rk+ a vector of adequately smootha positive time-varying

signals and let suppose the output constraint signals (α(t), α(t)) are functions of Ck (R+,R).
Let define β0(t) = α(t), β0(t) = α(t) and, ∀i ∈ N? s.t. i ≤ k:

β
i
(t) = κi(t)

(
β
i−1(t)− β(i−1)

m (t)
)

+
˙︷ ︷

β
i−1(t)

βi(t) = κi(t)
(
βi−1(t)− β(i−1)

p (t)
)

+
˙︷ ︷

βi−1(t)
(5.46)

where βm = σm (ζ) and βp = σp (ζ) (5.42). These are called generalized propagated bounds
in the sense they generalize the Definition 4.15 of propagated bounds to the case where the
state vector X is not fully measured.

aSee Remark (4.16).

Originally (see Chapter 4) the propagated bounds are determined to obtain a reformulated
time-domain constraint on the k-th derivative of α. In the current case, α is not known con-
trary to the guaranteed bounds βm and βp furnished by the interval observer considered in
Proposition 5.12. Consequently, the propagated bounds are used to enforce the reformulated
time-domain constraint respectively on the k-th derivatives of βm and βp. Since these are guar-
anteed bounds on the value of α, the original time-domain constraint K (Ωα) is enforced. This
is the informal explanation of the content of the following Lemma.

Lemma 5.19 (Generalized propagated bounds lemma).
Let define the generalized propagated bounds as in Definition 5.18. Let suppose Assump-
tion 5.17 is satisfied and that ∀i ∈ N such that i ≤ k, β(i)

m (0) ≥ β
i
(0) and β(i)

p (0) ≤ βi(0).
Then,

 β
(k)
m ≥ β

k

β
(k)
p ≤ βk

, ∀t ∈ R+ ⇒
{

βm ≥ β0 = α

βp ≤ β0 = α
, ∀t ∈ R+

⇒ α ≤ CXαX ≤ α, ∀t ∈ R+ ⇒ α(t) ∈ Ωα(t), ∀t ∈ R+ (5.47)

Proof. The proof is similar to the proof of Lemma 4.17 but considering two different expressions
for the upper and lower bounds expressions. In fact, the proof can be achieved by stating that βm
should lie in

[
β0,+∞

[
and βp in

]
−∞, β0

]
and by applying Lemma 4.17 on each constraint.

Using this Lemma, the dependence on v highlighted in (5.45) can be used to achieve the
generalized time-domain constraint K (Ωα) defined in Definition 5.15. Using the first necessary
condition in (5.47), saturations v(t) and v(t) can be derived respectively from the inequality
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β
(k)
m ≥ β

k
and β(k)

p ≤ βk. Since these expressions depend on known quantities only, the resulting
saturations are fully determined. The expressions of these saturations are detailed in the next
section.

5.3.3 (c) Resulting control saturations on the external control input v

Using Lemma 5.19 and the dependence on v2 of the k-th derivatives of βm and βp (see (5.45)), the
saturations v and v which are used to compensate for the violation of the time-domain constraint
K (Ωα) in (D.21) are given in (5.48) for positive values of LBz,vLk−1

h1
σm (ζ) and LBz,vLk−1

h1
σp (ζ).

To explicitly determine these expressions, it is supposed that
∑k−1
j=0

dj

dtj

(
LILk−1−j

h1
σm (ζ)h2 (D)

)
and

∑k−1
j=0

dj

dtj

(
LILk−1−j

h1
σp (ζ)h2 (D)

)
do not depend on v.

v = 1
LBz,vL

k−1
h1

σm(ζ)

[
β
k
− Lkh1

σm (ζ)−∑k−1
j=0

dj

dtj

(
LILk−1−j

h1
σm (ζ)h2 (D)

)]
v = 1

LBz,vL
k−1
h1

σp(ζ)

[
βk − Lkh1

σp (ζ)−∑k−1
j=0

dj

dtj

(
LILk−1−j

h1
σp (ζ)h2 (D)

)] (5.48)

where LBz,vLk−1
h1

σm (ζ) 6= 0 and LBz,vLk−1
h1

σp (ζ) 6= 0 under Assumption 5.17. The saturations
depend on the k-th derivatives of the generalized propagated bounds βm and βp. Note this is very
difficult to determine a general explicit expression of these propagated bounds in the considered
extended case. This can be done on a case-by-case basis only.

Remark 5.20. The saturations expressions have been obtained in (5.48) for positive values of
the quantities LBz,vLk−1

h1
σm (ζ) and LBz,vLk−1

h1
σp (ζ). In case these quantities are negative, the

easiest approach is to adapt the definition of the constrained output α such that they become
positive. This is considered in the example proposed in 5.4.1 where α is chosen equal to −x1
such that CXαTMXPBX,v is positive. �

The problem of saturations overlap raised in 4.3 is still present in the considered case. For
known LTI systems with full state measurements, the problem has been solved in 4.4.3 (e)
and more precisely in Theorem 4.24. A similar result in proposed in the next section for the
considered extended case. The results are expressed in a slightly more generic form due to the
lack of explicit expressions as highlighted above.

5.3.3 (d) Control saturations overlap mitigation

As in Chapter 4, let consider the quantity ∆j = βj − βj for j ∈ N such that j ≤ k. Using the
Definition 5.18 of the generalized propagated bounds, the following is obtained:

∆j = κi

(
βj−1 − βj−1 − β

(i−1)
p + β(i−1)

m

)
+

˙︷ ︷
βi−1 −

˙︷ ︷
β
i−1 (5.49)

Contrary to the case studied in Chapter 4 where the propagated bounds depend both on
β(j−1) = α(j−1), the upper and lower propagated bounds are not defined in a “symmetric” way,
that is, β

j
depends on β(j−1)

m and βj on β(j−1)
p . For Lemma 5.19 to be applicable, this means

that ∆j should satisfy to the following inequalities:

∆j > β(j)
p − β(j)

m , ∀j ∈ N s.t. j ≤ k (5.50)
This is formalized in the following lemma. More attention is dedicated to the specific case of

j = k where it should be ensured that v − v ≥ 0 for the saturations expressions in (5.48).

Lemma 5.21 (Propagated bounds/Saturations overlap mitigation).
Propagated bounds and saturations overlap is mitigated if:

• ∀j ∈ N such that j ≤ k − 1, ∆j > β
(j)
p − β(j)

m , ∀t;

2Under the relative degree Assumption 5.17.
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• For j = k, ∀t:

∆k ≥ max

β(k)
p − β(k)

m ,Lkh1
σp (ζ)− Lkh1

σm (ζ) +
k−1∑
j=0

dj

dtj
(
LILk−1−j

h1
σm (ζ)h2 (D)

)

−
k−1∑
j=0

dj

dtj
(
LILk−1−j

h1
σp (ζ)h2 (D)

) (5.51)

Note that Lemma 4.23 is retrieved if the original system is supposed to be known with full
state measurements since in that case β(j)

p − β(j)
m = 0. Considering the generic expression of

∆j in (5.49), the necessary condition exposed in Lemma 5.21 to avoid generalized propagated
bounds and saturations overlap can be achieved by appropriately choosing the coefficients κj in
κ. Since h1 and h2 are differentiable following the transformations in 5.3.1 (b), all quantities in
∆j are differentiable.

In the following theorem, a suitable expression is obtained for the design coefficients in κ.
Similarly to Theorem 4.24, this is a main contribution of this thesis work which allows to enforce
a time-domain constraint with guarantees on the resulting saturations overlap mitigation.

Theorem 5.22 (Design coefficients selection guaranteeing saturations overlap mitigation).
Let κ̆ =

[
κ̆1 . . . κ̆k

]> ∈ R?k+ a vector of strictly positive constants. Generalized propagated
bounds (5.46) and saturations (5.48) overlap is mitigated if

• α−α > βp−βm, ∀t or, in a more explicit form: α−α >
(
CXα

+ + CXα
−) (X −X),

∀t which was already mentioned in Remark 5.16

• ∀j ∈ N? such that j ≤ k − 1, ∆j > β
(j)
p − β(j)

m is satisfied by choosing, ∀t:

κj =
κ̆j −

˙︷ ︷
βj−1 +

˙︷ ︷
β
j−1 + β

(j)
p − β(j)

m

βj−1 − βj−1 − β
(j−1)
p + β

(j−1)
m

(5.52)

• For j = k, ones ensures v − v ≥ 0 by choosing, ∀t:

κk =
κ̆k −

˙︷ ︷
βk−1 +

˙︷ ︷
β
k−1 + Π

βk−1 − βk−1 − β
(k−1)
p + β

(k−1)
m

(5.53)

where

Π = max

β(k)
p − β(k)

m ,Lkh1
σp (ζ)− Lkh1

σm (ζ) +
k−1∑
j=0

dj

dtj
(
LILk−1−j

h1
σm (ζ)h2 (D)

)

−
k−1∑
j=0

dj

dtj
(
LILk−1−j

h1
σp (ζ)h2 (D)

) (5.54)

Proof. Straightforward considering Lemma 5.21 and the expression of ∆j in (5.49).

The saturations overlap procedure exposed for the first time in 4.4.3 (e) has been extended
to the more complex considered case. Appropriate definitions of the design coefficients in κ has
been proposed to mitigate the occurrence of saturations overlap. This offers guarantees on the
satisfaction of the considered time-domain output constraint K (Ωα) when applying OIST.
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α α

X

X

(
Gz,]) (5.12)

d d θ θ

α

Figure 5.3: Systems interconnection resulting from the solution to Problem 5.8 proposed in
Theorem 5.23.

In the next section, the solution to Problem 5.8 is formally stated.

5.3.3 (e) Conclusion: a solution to Problem 5.8

In the certain LTI case with full state measurements, a solution to the output constrained
control problem have been proposed in Theorem 4.28. In this chapter and more precisely in 5.3,
the OIST approach has been extended to account for uncertain LTI systems with partial state
measurements.

It has been shown that by using an interval observer of a specific form (see Proposition 5.12)
then the unknown constrained output signal α can be bounded by known certified quantities. By
extending the definition of propagated bounds (see Definition 5.18) and considering an updated
propagated bounds lemma (see Lemma 5.19), it has been shown that the time-domain constraint
K (Ωα) can be enforced. Expressions of design coefficients ensuring no saturations overlap have
also been obtained in Theorem 5.22. These results are summed up in the following theorem.

Theorem 5.23 (Output constrained control Problem 5.8 guaranteed solution using OIST).
Let consider the well-poseda closed-loop in (D.19) where v is an external input signal. Let
α = CXαX the constrained output and K (Ωα) the considered time-domain constraint. Let
suppose Assumptions 4.4, 4.8, 5.1, 5.5 and 5.17 are satisfied.

If the external control input v is chosen such that

v = satvv (0) , ∀t (5.55)

where

• v and v are given in (5.48);

• The generalized propagated bounds expressions are detailed in (5.46);

• The design parameters in κ are chosen as in Theorem 5.22;

• The bounds on the stateX are obtained using the interval observer in Proposition 5.12,

then α ∈ Ωα, ∀t.
aSee Assumptions 5.2 and 5.4.

The resulting interconnection of the considered systems is represented in Fig. 5.3. On this
figure, the dependence of the interval observer dynamics on θn and the bounding matrices in (5.3)
is illustrated by the vectors θ and θ bounding the vector of uncertainties θ.

5.3.3 (f) A note on closed-loop stability

In the chapter dedicated to reformulating the original OIST approach in the linear framework3,
new results were stated as far as closed-loop stability is concerned. In Theorem 4.34, it has been

3See Chapter 4.
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stated that the origin of the considered constrained system in closed-loop with the considered
controller and the saturations provided by OIST is globally asymptotically stable.

In this chapter, the facts that the considered system is perfectly modelled by the dynamics
and that the state vector x is completely known have been dismissed. This has led to a general-
isation of the original OIST theory based on the introduction of an additional system qualified
as an interval observer. According to Theorem 5.23 and Fig. 5.3, the main problem is now to
demonstrate the stability of this interval observer in closed-loop with the corrective input signal
v = satvv (0) (see Problem 5.9). Since the interval observer copies the dynamics of the original
system for a nominal θn value of the uncertain parameters, the case of non-minimum phase
control input to constrained output transfers remains unchanged: global asymptotic stability
cannot be obtained for such systems. Also, a precise analysis of the interval observer stability is
required as per Definition B.11.

These are left as perspectives for future works.

5.3.4 Conclusions on the OIST extension
In this section, an extension to the OIST approach has been proposed, resulting in Theorem 5.23.
The initial OIST theory was proposed in [Burlion 12] and reformulated for LTI systems in
Chapter 4 following works in [Chambon 15c] and [Chambon 16]. However, the reformulation
supposed that the considered system state was fully measured and did not consider the case of
uncertain systems.

The purpose of the OIST extension for Robustness (OISTeR) is to propose a generalisation
of OIST in the case of uncertain systems with partially measured states. The notion of “gen-
eralization” has been extensively used in the development of the new method. This is indeed
interesting to note that in case the system state vector is known and the system is certain then
similar results to the ones proposed in Chapter 4 are obtained.

In the new approach, a quite innovative way (within the OIST theory) of integrating the
saturations obtained through OIST application has been considered. Typically, a new input
signal v has been considered and defined as v = satvv (0) where v and v are the saturations
obtained through OISTeR. The system input is then defined by u = yK +v. Also, due to the fact
that the measurements vector y derivatives may depend on unmeasured states, the closed-loop
has been considered in the design of the introduced interval observer rather than the original
system. To simultaneously design the controller and the interval observer on the closed-loop, the
numerical approach proposed in 7.44 has been used.

As mentioned in introduction, the approach is quite recent. Perspectives to improve the
method and obtain theoretical guarantees are listed in 5.5. Before that, in the next section, the
OISTeR approach is applied to various theoretical examples to illustrate how a time-domain con-
straint can be enforced on an output even in the presence of uncertainties or partially measured
state.

5.4 Examples
The OIST extension for Robustness approach introduced in 5.3 is applied on two theoretical
examples specially built to satisfy some structural hypotheses. A more realistic application
is considered in Chapter 6 where the launch vehicle model is non-cooperative and subject to
incomplete state vector measurements.

5.4.1 Second-order LTI system with incomplete state measurements
In this example, the OISTeR approach is illustrated on a known non-cooperative system with
incomplete state measurements, that is a system for which C 6= In. First, a stabilizing dynamic
controller (K) is determined along with the appropriate SCT matrix P such that the system is
cooperative in the new coordinates. Then, OISTeR is applied to enforce a given time-domain
constraint on an output α.

4See Chapter 7.
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Figure 5.4: In blue: disturbance signal d used in simulation, in black: known bounds d and d.

Considered model Let consider a known LTI non-cooperative system described by the fol-
lowing state-space representation:

(G)


ẋ = Ax+ Buu+ Bdd

y = Cx
x0 = 0

(5.56)

where the considered matrices are defined by:

A =
[
−1 − 1

2
0 0

]
, Bu =

[
0
1

]
, Bd =

[
0
1

]
, C =

[
1 0

]
(5.57)

Note that A is not Metzler5 hence (G) is non-cooperative. The initial system state is supposed
to be known hence x0 and x0 equal x0.

In simulation, the system is initialized at x0 = 0. The disturbance input d is supposed to be
bounded by two known signals d and d represented in black color in Fig. 5.4. In simulation, the
signal d represented in blue in the same figure is used.

The considered constrained output is initially defined by α = x1 = Cαx with Cα =
[
1 0

]
.

It is expected that the output signal α should remain within [−0.1, 0.8]. However, this further
leads to the quantity CXαAXBX,v being negative, where the matrices are defined in the following
paragraph. This would make the application of Lemma 5.19 difficult in the determination of the
saturations v and v expressions. Hence, it chosen to consider α = −x1 i.e. Cα =

[
−1 0

]
and

the time-domain constraint is modified in consequence: α = −0.8 and α = 0.1.

Stabilizing controller and transformation matrix synthesis A dynamic controller (K)
with nK = 1 is chosen in this example. The corresponding state-space representation is given
in (5.4) and the loop is closed using the following relations:

u = yK + v, uK = y (5.58)

where v is the new control input which will be driven in the OIST methodology to enforce the
considered time-domain constraint on α. The closed-loop dynamics is defined by:

Ẋ =
[
A + BuDKC BuCK

BKC AK

]
X +

[
Bu
0

]
v +

[
Bd
0

]
= AXX + BX,vv + BX,dd

(5.59)

which is coherent with the dynamics obtained in (D.19) for a well-posed known system with
Du = 0. Note that the matrix AX is still not Metzler. Supposing there exists P such that
MX = PAXP−1 is Metzler, an interval observer can easily be found on the following system
where Z = PX:

5See Definition B.1.
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Ż = MXZ + PBX,vv + PBX,dd (5.60)

Using Lemma B.12, the unknown quantity PBX,dd is bounded by the following vectors:

(PBX,d)+
d− (PBX,d)− d ≤ PBX,dd ≤ (PBX,d)+

d− (PBX,d)− d (5.61)

Note that due to the fact that the original system is known then the interval observer is a
linear system. As per Proposition 5.12, it is given by:

Ż = MXZ + PBX,vv + (PBX,d)+
d− (PBX,d)− d

Ż = MXZ + PBX,vv + (PBX,d)+
d− (PBX,d)− d

Z(0) = P+X0 −P−X0

Z(0) = P+X0 −P−X0

X = T+Z −T−Z

X = T+Z −T−Z

(5.62)

where X0 =
[
x0
0

]
, X0 =

[
x0
0

]
and T = P−1. The determination of the transformation matrix

P is discussed below. The tightness of the interval
[
Z,Z

]
as provided by the interval observer

in (5.62) can be evaluated by considering the dynamics of Ed = 1
2
(
Z −Z

)
:

Ėd = MXEd + 1
2

[
(PBX,d)+ + (PBX,d)−

] (
d− d

)
(5.63)

From a design point of view, this dynamics is not linear in the design parameter P since it de-
pends on the quantities (PBX,d)+ and (PBX,d)−. An additional synthesis constraint (see below)
can be considered such that (PBX,d)− = 0. In that case, the dynamics of Ed is characterized
by:

Ėd = MXEd + 1
2PBX,d

(
d− d

)
(5.64)

As far as the controller synthesis is concerned, the approach presented in Chapter 7, 7.4 is
applied. The following numerical results are obtained:

(K)
{

ẋK = −5.698xK + −2.975y
yK = 22.15xK + 13.5y

(5.65)

and

P =

−0.1875 0.3281 −0.7139
−0.2268 0.1776 0.2497

0.3485 0.0458 0.5366

 (5.66)

OISTeR application With the addition of the controller state variable, the output variable
α can be defined as α = CXαX where CXα =

[
−1 0 0

]
. Then, considering that CXα

+ = 0
and CXα

− = |CXα|, the interval observer in (5.62) provides the following bounds for α:

CXαX ≤ CXαX ≤ CXαX (5.67)

or, in the new coordinates:

CXα
(
T+Z −T−Z

)
≤ CXαX ≤ CXα

(
T+Z −T−Z

)
(5.68)

Let βm = CXα
(
T+Z −T−Z

)
and βp = CXα

(
T+Z −T−Z

)
. These quantities are of

relative degree k = 2 with respect to v. Using Definition 5.18 of generalized propagated bounds
and Lemma 5.19 where
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β̇m = CXα
(
T+MXZ −T−MXZ

)
+ CXα

(
T+PBX,dd−T−PBX,dd

)
β̇p = CXα

(
T+MXZ −T−MXZ

)
+ CXα

(
T+PBX,dd−T−PBX,dd

)
β̈m = CXα

(
T+MX

2Z −T−MX
2Z
)

+ CXαAXBX,vv

+CXα
(
T+MXPBX,dd−T−MXPBX,dd

)
+ CXα

(
T+PBX,dḋ−T−PBX,dḋ

)
β̈p = CXα

(
T+MX

2Z −T−MX
2Z
)

+ CXαAXBX,vv

+CXα
(
T+MXPBX,dd−T−MXPBX,dd

)
+ CXα

(
T+PBX,dḋ−T−PBX,dḋ

)
(5.69)

the following saturations are obtained and applied to the nominally null input signal v:

v = 1
CXαAXBX,v

[
β2 −CXα

(
T+MX

2Z −T−MX
2Z
)

−CXα
(
T+MXPBX,dd−T−MXPBX,dd

)
−CXα

(
T+PBX,dḋ−T−PBX,dḋ

)]
v = 1

CXαAXBX,v

[
β2 −CXα

(
T+MX

2Z −T−MX
2Z
)

−CXα
(
T+MXPBX,dd−T−MXPBX,dd

)
−CXα

(
T+PBX,dḋ−T−PBX,dḋ

)]
(5.70)

As far as OISTeR design parameters κ1 and κ2 are concerned, they are chosen according to
Theorem 5.22 to avoid saturations overlap as exposed in Lemma 5.19. The constants κ̆1 and κ̆2
are chosen such that κ̆1 = 2 and κ̆2 = 10.

Simulation results The system in (5.56) is simulated in closed-loop with (5.65) and the sat-
urations obtained in the previous paragraph applied to the corrective input signal v as described
in the OISTeR theory. The simulation is performed over 30s. Simulation results are shown in
Figs. 5.5 and 5.6.

The closed-loop system (5.59) state is represented in Fig. 5.5(a) either in the presence of
the saturated corrective input signal v (plain blue line) or not (dashed blue line). The output
constraint is represented in red in Fig. 5.5(b) along with the constrained output signal α = −x1
in blue (plain: w OISTeR, dashed: w/o OISTeR). It can be observed that the corrective signal
v = satvv (0) produced by OISTeR and represented in blue in Fig. 5.6(a) allows to satisfy the
output constraint. As expected, this signal equals zero when the constraint is satisfied and
is modified by the OISTeR saturations in the other case. In conclusion, it can be said that
the output constraint is enforced through using Lemma 5.19 but at the cost of a very precise
knowledge of bounds on the disturbance d.

The OISTeR design parameters are represented in Fig. 5.6(b). Using these parameters defined
as in Th. 5.22 saturations overlap is avoided.

Conclusions The OISTeR approach has been successfully applied to the LTI model with in-
complete state measurements in (5.56). Using an appropriately defined corrective input signal
v = satvv (0), the output constraint has been enforced despite the lack of knowledge on state
x2. As illustrated in Fig. 5.5(b), the output constraint is enforced on the bounds provided by
the interval observer hence on all possible trajectories for the disturbance signals d such that
d ≤ d ≤ d.

These are interesting results. However, the approach is quite conservative: it requires a very
tight interval

[
X,X

]
which is achieved either by an appropriate SCT design method or by

reducing the interval
[
d, d
]
which is representative of the knowledge on the disturbance. Future

works will be dedicated to reducing the conservatism of the approach.
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Figure 5.5: State and constrained output α simulation results.

0 10 20 30 40 50

v

-25

-20

-15

-10

-5

0

5

10

15

20

25

(a) Control input v (in blue) and saturations obtained
through application of OISTeR (in black).

0 10 20 30 40 50

κ
1

2

4

6

8

10

0 10 20 30 40 50

κ
2

4.94

4.96

4.98

5

5.02

(b) OISTeR time-varying design parameters chosen as
in 5.22 to avoid saturations overlap.

Figure 5.6: Corrective input v and OISTeR design parameters simulation results.
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Figure 5.7: In blue: disturbance signal d used in simulation, in black: known bounds d and d.

5.4.2 Second-order uncertain cooperative LTI system
This example illustrates the method on a cooperative uncertain LTI system. The cooperativity
hypothesis allows to consider P = I in Assumption 5.10 for an appropriately defined controller.
This is detailed below.

Considered model Let consider an uncertain LTI cooperative6 system characterized by the
following state-space representation:

(G)


ẋ = M (θ)x+ Buu+ Bdd

y = Cx
x0 = 0

(5.71)

where the state-space matrices are given by:

M (θ) =
[

0.1 1
2 + θ −3

]
, Bu =

[
1
0

]
, Bd =

[
0
1

]
, C =

[
1 0

]
(5.72)

where θ ∈ [−1, 1] is the only uncertain parameter. The matrix M (θ) is Metzler (see Defini-
tion B.1) but is not Hurwitz for some values of θ, for example θ = 0. The disturbance signal d
considered in simulation is represented in blue in Fig. 5.7 along with the known bounds d and d
which are represented in black.

As indicated in (5.71), the system initial condition is set to 0 in simulation. It is supposed
to be known hence the bounding vectors x0 and x0 both equal 0.

The considered constrained output is given by α = x2 = Cαx with Cα =
[
0 1

]
. The

objective is to maintain this output signal in the interval [α, α] with α = −0.3 and α = 0.5.
Since the system is unstable, a controller is first designed to stabilize it for all possible values

of the uncertainty θ. A multi-models multi-requirements approach as presented in Chapter 2
for uncertain linear systems is used. Since the original system is already cooperative, note that
building an interval observer for this system is trivial and does not require more specific attention.
Especially, no additional matrix P needs to be synthesized.

Stabilizing controller synthesis After some trial and error, a static controller DK ∈ R is
chosen. Considering a dynamic controller with nK = 1 does not improve the synthesis results
much and is thus discarded. This results in the following control law:

u = yK + v = DKy + v (5.73)
The closed-loop dynamics is thus given by:

Ẋ = [M (θ) + BuDKC]X + Buv + Bdd

= MXX + ∆MX (θ)X + Buv + Bdd
(5.74)

6See Def. B.3 of a cooperative system (continuous-time).
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where X = x and ∆MX (θ) =
[
0 0
θ 0

]
. Note that there exists ∆MX =

[
0 0
1 0

]
such that

−∆MX ≤ ∆MX ≤ ∆MX. Using [Efimov 13e, Lemma 1], the quantity ∆MX (θ)X can thus
be bounded in the following manner:

−∆MX

(
X

+ +X−
)
≤∆MX (θ)X ≤∆MX

(
X

+ +X−
)

(5.75)

It can be noted that the dynamics in (5.74) is cooperative ∀θ ∈ [−1, 1], ∀DK ∈ R. Building an
interval observer on such cooperative systems is trivial. According to [Efimov 13e], the following
system is an interval observer for (5.74):

Ẋ = MXX −∆MX

(
X

+ +X−
)

+ Buv + Bdd

Ẋ = MXX + ∆MX

(
X

+ +X−
)

+ Buv + Bdd

X(0) = x0

X(0) = x0

(5.76)

where it is used that Bd
− = 0. Using the results in 5.3.1 (b), a differentiable version of this

interval observer can be obtained by noting that:

∆MX

(
X

+ +X−
)
≤ ∆MX

(
fp
(
X
)

+ fp (X)
)
−∆MXX

−∆MX

(
X

+ +X−
)
≥ −∆MX

(
fp
(
X
)

+ fp (X)
)

+ ∆MXX
(5.77)

This results in more conservative yet differentiable bounds being obtained on ∆MX (θ)X.
With a slight abuse of notation whereX is the state of the newly defined differentiable dynamics,
the following is an interval observer for the closed-loop dynamics in (5.74):

Ẋ = MXX −∆MX
(
fp
(
X
)

+ fp (X)
)

+ ∆MXX + Buv + Bdd

Ẋ = MXX + ∆MX
(
fp
(
X
)

+ fp (X)
)
−∆MXX + Buv + Bdd

(5.78)

The tightness of the interval
[
X,X

]
which bounds X can be evaluated by considering the

following non-linear dynamics, where Ed = 1
2
(
X −X

)
:

Ėd = MXEd + ∆MX
(
fp
(
X
)

+ fp (X)
)
−∆MXX + 1

2Bd
(
d− d

)
(5.79)

As far as the controller synthesis is concerned, nine “critical” models are considered. Values
θi of θ for these critical models are chosen in the following set:

Θc = {θi|θi = −1 + 0.25i, 0 ≤ i ≤ 8} (5.80)

The static controller synthesis is performed over these critical models such that the closed-
loop is stable, the H2-norm

∥∥ 1
0.3Td→X(s)

∥∥
2 is less than the unity and MX is Metzler. Since the

matrix BuDKC only impacts MX11, the latter condition is trivial. Nonetheless, the approach
presented in Chapter 7, 7.4 is used to perform the synthesis. The following numerical value is
obtained for the controller gain:

DK = −13.8978 (5.81)

OISTeR application The objective is to keep x2 in the interval [α, α]. Note that since
Cα =

[
0 1

]
then Cα+ = Cα and Cα− = 0. Also, as mentioned in the previous paragraph,

since the system is cooperative for all values of θ then bounds X and X on the closed-loop state
are trivially computed using the interval observer in (5.78). Hence:

CαX ≤ CαX ≤ CαX (5.82)
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According to 5.3.3 (a) and Definition 5.15, the output constraint can be satisfied by fulfilling
the following generalized output constraint:{

CαX ≥ α
CαX ≤ α

, ∀t ∈ R+ (5.83)

Let βm = CαX and βp = CαX. These quantities are of relative degree k = 2 with respect
to v. Using the Definition 5.18 of generalized propagated bounds and Lemma 5.19 where

β̇m = CαMXX −Cα∆MX
(
fp
(
X
)

+ fp (X)
)

+ Cα∆MXX + CαBdd

β̇p = CαMXX + Cα∆MX
(
fp
(
X
)

+ fp (X)
)
−Cα∆MXX + CαBdd

β̈m = γm,2 + Cα
[
MX −∆MX

(
∇fp

(
X
)

+∇fp (X)
)

+ ∆MX
]
Buv

= γm,2 + CαVm

(
X,X

)
Buv

β̈p = γp,2 + Cα
[
MX + ∆MX

(
∇fp

(
X
)

+∇fp (X)
)
−∆MX

]
Buv

= γp,2 + CαVp

(
X,X

)
Buv

(5.84)

the following saturations are obtained and applied to the nominally null input signal v:

v = 1
CαVm(X,X)Bu

(
β2 − γm,2

)
v = 1

CαVp(X,X)Bu

(
β2 − γp,2

) (5.85)

where γm,2 and γp,2 are defined in (5.86) and β2, β2 are the propagated bounds expressions for
k = 2. As far as OISTeR design parameters κ1 and κ2 are concerned, they are chosen according
to Theorem 5.22 to avoid saturations overlap as exposed in Lemma 5.21. The constants κ̆1 and
κ̆2 are chosen such that κ̆1 = 1 and κ̆2 = 6.

γm,2 = CαMX
2X −CαMX∆MX

(
fp
(
X
)

+ fp (X)
)

+ CαMX∆MXX + CαMXBdd

−Cα∆MX∇fp
(
X
) [

MXX + ∆MX
(
fp
(
X
)

+ fp (X)
)
−∆MXX + Bdd

]
−Cα∆MX∇fp (X)

[
MXX −∆MX

(
fp
(
X
)

+ fp (X)
)

+ ∆MXX + Bdd
]

+Cα∆MXMXX −Cα∆MX
2 (fp (X)+ fp (X)

)
+ Cα∆MX

2X

+Cα∆MXBdd+ CαBdḋ

γp,2 = CαMX
2X + CαMX∆MX

(
fp
(
X
)

+ fp (X)
)
−CαMX∆MXX + CαMXBdd

+Cα∆MX∇fp
(
X
) [

MXX + ∆MX
(
fp
(
X
)

+ fp (X)
)
−∆MXX + Bdd

]
+Cα∆MX∇fp (X)

[
MXX −∆MX

(
fp
(
X
)

+ fp (X)
)

+ ∆MXX + Bdd
]

−Cα∆MXMXX + Cα∆MX
2 (fp (X)+ fp (X)

)
−Cα∆MX

2X

−Cα∆MXBdd+ CαBdḋ
(5.86)

Simulation results The system in (5.71) is simulated in closed-loop with (5.81) and the sat-
urations obtained in the previous paragraph applied to the corrective input signal v as described
in the OISTeR theory. The simulation takes place over 30s and the uncertain parameter θ is
chosen in Θc as defined in (5.80). Simulation results are shown in Figs. 5.8 and 5.9.

The closed-loop system (5.74) state is represented in Fig. 5.8(a) either in the presence of the
saturated corrective input signal v (plain line) or not (dashed line). It can be observed that
the output-constraint on x2 (in red) is satisfied whichever the value of θ ∈ Θc. The corrective
input v is represented in Fig. 5.8(b) along with the applied saturations. As already noted, this
signal equals 0 whenever the output constraint is satisfied. In this case, the closed-loop behaves
nominally. Whenever the output constraint is violated, the OISTeR saturations introduce a
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Figure 5.8: State and control input v simulation results for θ ∈ Θc.

corrective signal on the controller output. Using the notion of generalized propagated bounds
and Lemma 5.19, the bounds on the state provided by the interval observer are guaranteed to
satisfy the output constraint as illustrated in Fig. 5.8(a). Hence, the constraint is satisfied for
all values of θ ∈ [−1, 1].

The generalized propagated bounds and design parameters obtained using OISTeR are rep-
resented in Fig. 5.9. It can be checked in simulation that the following relations are satisfied as
required to avoid saturations overlap (see Lemma 5.21): β1−β1 > β̇p−β̇m and β2−β2 > β̈p−β̈m.

Conclusions In conclusion, OISTeR has been successfully applied to the cooperative uncer-
tain LTI model in (5.71) with incomplete state measurements. Using an appropriately defined
corrective input signal v = satvv (0), the output constraint has been enforced for all values of
θ in [−1, 1]. In fact, the constraint is enforced on the interval observer state which provides
guaranteed bounds on the closed-loop state vector X. Through this application, it appears
that applying OISTeR is roughly equivalent to applying OIST on an interval observer of the
closed-loop.

Despite these interesting results, it appears that the approach is quite conservative. The
interval observer interval

[
X,X

]
should be very tight. A good knowledge of the disturbance

can help improve the tightness. On the contrary, a poor definition of the bounds can lead to the
output constraint being violated from the beginning. OISTeR cannot be applied in this case.

These observations result from the novelty of the proposed results. Future works should focus
on reducing the conservatism.

5.5 Comments on the extension and perspectives
In this chapter, an extension of the Output to Input Saturation Transformation has been proposed
to account for the possible presence of uncertainties in the considered model and the lack of
information on the state vector value. This is based on the interval observer theory presented
in Chapter B and on the numerical method presented in Chapter 7 to simultaneously design a
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Figure 5.9: OISTeR design parameters and generalized propagated bounds simulation results.

structured controller along with such interval observer on the resulting closed-loop.
As already mentioned, the results presented in this chapter are new and the OISTeR approach

should be considered as work in progress. More precisely, a rigorous stability analysis of the
resulting system in Theorem 5.23 is a clear short term perspective for future works. The solution
provided for minimum phase systems in Chapter 4 to bring guarantees to closed-loop stability
by considering an anti-windup compensator should be updated to account for these new results.
It is expected to be quite straightforward in the absence of uncertain parameters. Moreover
systems with BX,v depending on θ could be considered, which was not the case in this study.

Longer-term works should focus on reducing the conservatism of the method. As illustrated
in the examples in 5.4, the method requires the interval observer to provide an interval

[
X,X

]
as

tight as possible of the expected value of the state vectorX. This also depends on the knowledge
of the input disturbance d: if the known bounds d or d are not close enough to the actual value
of the disturbance signal then the method may not be applicable. Maybe considering stochastic
approaches to estimate the interval

[
X,X

]
with a certain degree of confidence would help reduce

this conservatism at the cost of theoretical guarantees, though achieving more satisfying results
in practice. Considering time-varying SCT (see B.4.1) rather than time-invariant SCT (see B.4.2)
should improve the tightness of the interval but lead to more complex expressions due to the
dependence of the transformation matrix P on time. Another long-term extension of OISTeR is
to provide a similar approach to output-constrained control in the case of LTV and LPV systems.
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Chapter 6

Application to the atmospheric control of a linear
uncertain flexible launch vehicle model

In this chapter, the main contributions of this thesis work are applied to simplified
models of the longitudinal motion of a flexible launch vehicle. Depending on the
considered contribution, flexible modes, uncertainties and knowledge of the state
vector value may or may not be considered. Note that some numerical values may be
missing in this chapter for confidentiality purposes. This chapter is based on results
presented in [Chambon 15a] and [Chambon 15d].

The launch vehicle model is introduced in 6.1. The equations of the longitudinal mo-
tion are presented along with the flexible modes dynamics and uncertain parameters.
A state-space representation is deduced. Then, a robust observer-based controller is
synthesized in 6.2 following works in Chapter 2. The problem of output-constrained
control is then considered in 6.3 where the contributions in Chapters 4 and 5 are suc-
cessively applied. Conclusions and perspectives are drawn in 6.4.
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6.1. Linear launch vehicle model

6.1 Linear launch vehicle model
The longitudinal launch vehicle model used in this chapter is based on existing models commonly
used for the design of control laws during atmospheric flight. This model is extensively described
in [Ganet 10] prior to investigating LPV control techniques. Other interesting resources using
this model include [Renault 08, Saunois 09, Scorletti 10]. A similar model was used within the
PIROLA initiative dedicated to evaluating robust control approaches for the control of launch
vehicles and resulting from a cooperation between the CNES, ONERA and other partners [Clé-
ment 01, Imbert 03, Voinot 03b]. The model and notations are described in the next section.
For reference, a simplified representation of the launch vehicle is represented in Fig. 6.1.

G

X

Z

ż

ψ

V

α

β

d

Figure 6.1: Simplified representation of the considered launch vehicle (longitudinal motion).

6.1.1 Notations and non-linear modelling of the rigid body dynamics
Only the longitudinal motion of the launch vehicle is considered. Let define the following nota-
tions which are also used in Fig. 6.1:

• V denotes the relative velocity of the launch vehicle with respect to the incoming air flow.
This is the norm of the corresponding relative velocity vector;

• α denotes the angle of attack, that is the angle between the relative velocity vector and
the main axis of the rigid body. Note that this angle value is exaggerated in Fig. 6.1 since
it is rarely greater than a few degrees in nominal operation;

• ψ refers to the launch vehicle attitude, that is the angle between the considered frame
(G,X)-axis and the main rigid body axis;

• ż denotes the drift velocity along (G,Z)-axis;

• β is the thruster control angle;

• d is the wind speed norm.
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As far as control theory is concerned, the rigid body motion can be described by the dynamic

evolution of the state vector x =

ψψ̇
ż

. This motion can be controlled through the thruster angle

β and is potentially disturbed by wind gusts of speed d. As stated in further sections, the critical
output variable is α which evolution should be constrained.

Using Newton’s second law, the dynamic evolution of the launch vehicle attitude ψ is given
by:

ψ̈ = K1 sin (β) +A6 sin (α) (6.1)

where A6 is a coefficient evaluating the aerodynamic efficiency and K1 a coefficient describing
thrust efficiency. Both coefficients are uncertain with their values respectively lying in ΩA6 =[
A6, A6

]
and ΩK1 =

[
K1,K1

]
. Their values depend on the considered working point (propulsion

and aerodynamic efficiencies vary over time) as well as on the launch vehicle configuration. The
dynamic evolution of the transverse drift speed ż is given by:

z̈ = a1 sin (ψ) + a2 (ż − d) + a3 sin (β) (6.2)

where the coefficients a1 to a3 are known and negative. Note that the launch vehicle attitude
depends on the angle of attack α. Its expression is made explicit after linearising the model.

6.1.2 Linear rigid body dynamics
By supposing that the attitude and angle of attack remain small during the motion, it is possible
to linearise the model in (6.1) and (6.2). Upon linearisation, the attitude evolution is described
by:

ψ̈ = K1β +A6α

= K1β +A6
(
ψ + ż−d

V

) (6.3)

where it has been noted that the angle of attack can be expressed as follows in the linear case:

α = ψ + ż − d
V

(6.4)

where the relative speed norm V is fixed and known for a given working point. In a similar way,
the linearised drift velocity dynamics is given by:

z̈ = a1ψ + a2 (ż − d) + a3β (6.5)

This can be formalised using the state-space representation which describes the dynamic

evolution of the rigid body state vector x1 =

ψψ̇
ż

 with respect to time.

(G)



ẋ1 =

 0 1 0
A6 0 A6

V
a1 0 a2

x1 +

 0 0
−A6

V K1
−a2 a3

[d
β

]

z =
[
1 0 1

V
0 0 1

]
x1 +

[
− 1
V 0

0 0

] [
d
β

]
y =

[
1 0 0
0 1 0

]
x1

(6.6)

where y =
[
ψ

ψ̇

]
is the measurements vector and z =

[
α
ż

]
.

However, due to the presence of the uncertain parameters A6 and K1, the state-space repre-
sentation in (6.6) is the representation of an uncertain system. To simplify modelling for con-
troller synthesis purposes, this state-space representation can be made parameter-independent
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using an appropriately defined LFR M. Then, uncertain models are obtained through M-∆

interconnection where the block ∆ is representative of a given vector of uncertainties θ =
[
A6
K1

]
.

An example of such LFR is given by:

(M)



ẋ1 =

 0 1 0
An6 0 An

6
V

a1 0 a2

x1 +

 0 0 0 0
pA6A

n
6 pK1K

n
1 −A

n
6
V Kn

1
0 0 −a2 a3



w1
w2
d
β



z1
z2
α
ż

 =


1 0 1

V
0 0 0
1 0 1

V
0 0 1

x1 +


0 0 − 1

V 0
0 0 0 1
0 0 − 1

V 0
0 0 0 0



w1
w2
d
β


[
ψ

ψ̇

]
=

[
1 0 0
0 1 0

]
x1

(6.7)

where An6 = A6 + A6−A6
2 and Kn

1 = A6 + K1−K1
2 are called the nominal parameters values and

pA6 = An
6−A6
An

6
, pK1 = Kn

1 −K1
Kn

1
. The rigid body dynamics state matrix is denoted A1

n. Note that
this model does not depend on the uncertain parameters A6 and K1 anymore but rather on the
known nominal values An6 and Kn

1 and on new known parameters pA6 and pK1 .
The new inputs and outputs highlighted in red in the nominal model in (6.7) are used to

inject uncertainties through a conventional M−∆ LFT interconnection:

w1 = ∆A6z1

w2 = ∆K1z2
(6.8)

where ∆A6 and ∆K1 are in [−1, 1]. A more general way of writing this interconnection is through
using the LFT notation:

G(θ, s) = Fu (M(s),∆) (6.9)

where ∆ = diag (∆A6 ,∆K1) for values of ∆A6 and ∆K1 which are representative of the current

value of the vector of uncertainties θ =
[
A6
K1

]
. Using such interconnection, the whole family of

uncertain models can be obtained from a single known LFR and information on the range of the
uncertainties.

6.1.3 Flexible modes
Due to its big dimensions and to the materials used, vibrations can propagate inside the launch
vehicle structure. High-frequency modes are naturally attenuated within the vehicle structure.
However, low-frequency modes are badly damped. These modes can be destructive if re-injected
into the system through a badly designed control law. In this chapter, the first five flexible modes
are considered as is usually done in the literature [Alazard 03]. Let j ∈ N? such that j ≤ 5. The
five flexible modes can be modelled by the following linear dynamics:

q̈j + 2φjωj q̇j + ω2
j qj = −ω2

jPchT (j)β (6.10)

where:

• qj is j-th modal coordinate;

• ωj is the considered flexible mode frequency;

• φj is a damping coefficient;

• Pc is a parameter related with thrust and is considered constant;
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Figure 6.2: Bode diagram of the transfer from β to ψf .

• hT (j) is an uncertain parameter.

These flexible modes interact with the rigid body dynamics through the measurements vector
y and thus through the considered control law β = K(s)y:

ψf = ψ −∑5
j=1 hcl(j)qj

ψ̇f = ψ̇ −∑5
j=1 hGy(j)q̇j

(6.11)

where ψ and ψ̇ are the corresponding rigid body states and hcl and hGy are uncertain parameters

describing this interaction between the flexible modes and measurements. Let yf =
[
ψf
ψ̇f

]
. In

the following, the notation y is used either to refer to the rigid body measurements in case no
flexible mode is considered or to yf in case flexible modes are present. The influence of the
flexible modes on the open-loop frequency-response is illustrated in Fig. 6.2 where the Bode
diagram of the transfer from β to ψf is represented.

The number of uncertainties rises to 27, composed of 2 parametric uncertainties on the rigid
body dynamics and 5 uncertainties on each of the 5 considered flexible mode dynamics. Using
both the rigid body dynamics (state vector x1) and the flexible modes dynamics (state vector
x2), a possible LFR is given by:

(M)


ẋ =

[
A1

n 0
0 A2

n

]
x + Bn,ββ + Bn,ww

z = Czx + Dz,ββ + Dz,ww

y = Cyx + Dy,ββ + Dy,ww

(6.12)

where A1
n and A2

n are the nominal state matrices related to each dynamics, x =
[
x1

x2

]
∈ R13 in

case 5 flexible modes are considered, w =
[
w∆
d

]
∈ R28 and z =

z∆
α
ż

 ∈ R29. Matrices Bn,w,
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6.2. Nominal observer-based controller synthesis

Cz and Dz,w are obtained in a similar manner than in 6.1.2. For a given vector of uncertainties
θ ∈ R27 corresponds a diagonal matrix ∆θ ∈ R27×27 which is used to obtain the uncertain model
from the LFR in (6.12):

G (θ, s) = Fu (M(s),∆θ) (6.13)

Additional control synthesis inputs and outputs can be eventually appended to the w and z
vectors depending on the considered requirements (e.g. requirements on sensitivity functions).
Note that the dynamics in (6.12) is reminiscent of the LFR considered in Chapter 2, section 2.3
for structured controller design purposes.

6.1.4 Control system properties
The launch vehicle rigid body dynamics is unstable while the flexible modes dynamics are stable.

The rigid body dynamics is observable when considering the output vector y =
[
ψf
ψ̇f

]
and output

controllable when considering the control input β.

6.1.5 Constrained output: the angle of attack
The angle of attack is a critical variable when considering the atmospheric flight of the launch
vehicle. Indeed, this variable describes the evolution of the angle between the launch vehicle
rigid body axis and the incoming air flow. Given the speeds of the launch vehicle which are
supersonic and even hypersonic during the atmospheric flight, the angle of attack must remain
below a critical value |α(t)| ≤ α, ∀t to minimize the aerodynamic load on the structure. If the
controller fails to keep the angle of attack below this critical value, structural damage may occur,
leading to the loss of the launch vehicle and its payload.

This motivates considering the angle of attack α as a constrained output on which a time-
domain constraint K (Ωα) is set:

α(t) ∈ Ωα = [−α, α] , ∀t (6.14)

As a reminder, the angle of attack is given by the following expression:

α = ψ + ż − d
V

(6.15)

where V is the norm of the launcher relative speed with respect to the air flow and d is the
unknown wind disturbance. This problem is complex since the constrained output depends on
the unknown variable d. Also, due to the presence of flexible modes at rather low frequencies
(around 10 rad/s), a careful design of the control law is required using appropriate frequency-
domain specifications. These specifications are described in the next section where a structured
observer-based controller is designed.

6.2 Nominal observer-based controller synthesis
As detailed in 6.1, the launch vehicle model is subject to some uncertainties on its parameters.
The rigid body dynamics depends on two uncertain parameters A6 andK1 respectively describing
the aerodynamic and thrust efficiency. The flexible modes dynamics depend on 5 uncertain
parameters for each of the 5 considered flexible modes. These uncertainties are a real challenge
in the determination of a control law fulfilling the expected frequency-domain and time-domain
performance.

In Chapter 2, a recent approach to structured controller synthesis based on non-smooth non-
convex optimization has been applied to the robust control of a system with uncertainties. Also,
the specific observer-based structure has been presented as a possible structure for the robust
controller to tune. The use of multiple models to account for different critical values of the vector
of uncertainties θ has been explained.
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Chapter 6. Application to the control of a flexible launch vehicle model

In this section, the approach detailed in Chapter 2 is applied to the robust atmospheric
control of the considered flexible launch vehicle.

6.2.1 Controller structure
The considered controller structure is the observer-based structure described in Chapter 2. The
observation stage of the controller is aimed at estimating the rigid body dynamics. A dynamic
Youla parameter (Q) is also considered to augment the controller dynamics and offer more
degrees of freedom. In this example, the Youla parameter is chosen of order nQ = 3 resulting in
a controller of order nK = 6.

The observer-based structure augmented by a dynamics Youla parameters (Q) is recalled
here for clarity purposes. Its state-space representation is given by:

(K)



˙︷ ︷[
x̂1
n

xQ

]
=

[
A1

n − LC1
n,y −B1

n,βKf −B1
n,βDQC1

n,y B1
n,βCQ

−BQC1
n,y AQ

] [
x̂1
n

xQ

]
+
[
B1

n,βDQ + L
BQ

]
uK

yK =
[−Kf −DQC1

n,y CQ
] [x̂1

n

xQ

]
+ DQuK

(6.16)

where AQ ∈ R3×3, BQ ∈ R3×2, CQ ∈ R1×3, DQ ∈ R1×2, Kf ∈ R1×3 and L ∈ R3×2 are the
design parameters to tune. The loop is then closed using the relations β = yK and uK = y.

6.2.2 Synthesis models and requirements
In this section, some precisions are brought to describe the models and requirements used for
synthesis of the observer-based controller.

Synthesis models Six synthesis models are considered. The first one describes the nominal
rigid body dynamics of the launch vehicle and is obtained using an upper-LFT of the model
in (6.7) with the null matrix 02×2. The resulting model is used to constrain the location of the
closed-loop poles.

Five models incorporating the flexible modes dynamics are then considered. They are ob-
tained by LFT of the LFR in (6.12) and appropriately defined matrices ∆ ∈ R27×27 corresponding
to critical values of the vector of uncertainties θ. The first model is the nominal model obtained
for ∆ = 027×27 and the other four models are obtained using diagonal matrices ∆ to select crit-
ical values of the uncertain parameters. Constraints related to margins, flexible modes roll-off
and disturbance rejections are formulated on these models.

Note that these models were used to draw the Bode diagram in Fig. 6.2. The influence of
the flexible modes on the open-loop gain response is clearly visible in this figure, justifying the
introduction of a roll-off constraint.

Requirements The following synthesis requirements are stated on the considered synthesis
models:

• constraint on the closed-loop dynamics of the rigid model using a statement on the maximal
admissible frequency and minimal admissible decay of the poles;

• Closed-loop margins constraint on the nominal and critical flexible launch vehicle models,
expressed at the controller output;

• flexible modes roll-off gain constraint on the nominal and critical flexible launch vehicle
models, expressed at the controller output:
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6.2. Nominal observer-based controller synthesis

∥∥∥W (s)TwyK
→zyK

∥∥∥
∞
≤ 1 (6.17)

where W (s) is an appropriately defined weight and wyK
and zyK

are analysis I/Os injected
at the controller output yK ;

• Disturbance rejection constraint on the nominal flexible launch vehicle model:

‖Wα(s)Td→αWr‖∞ ≤ 1 (6.18)

where Wα(s) and Wr are appropriately defined weights.

Additional specifications are often formulated on the launch vehicle control law such as min-
imizing the cumulated deflection of the thruster or taking amplitude and rate saturations of
the thruster into account. These are not considered in the current state of this work as they
cannot directly be implemented in the form of a linear problem or they result from time-domain
simulations. Additional tools are required to take such specifications into account which is a
perspective for future works.

Synthesis The synthesis is performed on the considered synthesis models against the frequency-
domain requirements using the systune procedure [Apkarian 07, Apkarian 15] from the Matlab
Robust Control Toolbox [MATLAB 14]. All the requirements are considered as objectives, fol-
lowing the terminology used in Chapter 2, or as soft constraints, following the terminology
in [Apkarian 14]. Two random restarts are used to improve the local minimum reached and the
maximum number of iterations is set to 2000. A local solution with a maximum normalized
achieved objective (or soft constraint) value of 0.98 is obtained in under 140s.

The observer-based controller obtained is tested in the next section both in the frequency-
and time-domain.

6.2.3 Frequency-domain and simulation results
In this section, frequency-domain related plots of the obtained results are analysed. The system
is also simulated in closed-loop with the obtained controller.

Frequency-domain plots Let consider the following SISO transfer function for a given vector
of uncertainties θ:

Tβ→yK
(θ, s) = −K(s)Gβ→y (θ, s) (6.19)

where Gβ→y (θ, s) is the SIMO transfer from β to y =
[
ψf
ψ̇f

]
. The Nichols and Bode diagrams

of the open-loop transfer Tβ→yK
(θ, s) are represented in Fig. 6.3 for the different critical vectors

of uncertainties θ in Θc.
The results shown in the Nichols chart in Fig. 6.3(a) show that the gain and phase margins are

respected for all considered critical models. Also, the flexible modes are appropriately damped.
It can be noted that the first flexible mode is phase-controlled due to its low frequency while the
following modes are gain-controlled. In view of these results, the synthesised controller satisfies
to the frequency-domain requirements considered in 6.2.2.

Simulation results The system is simulated over 100s in closed-loop with the observer-based
controller synthesized in 6.2.2. In this simulation, the considered disturbance signal is illustrated
in Fig. 6.4. This is a typical wind profile used at a given working point to evaluate the influence
of a potential wind gust on the atmospheric control of the launch vehicle. The values are hidden
for confidentiality purposes but wind speed as high as 40m/s and greater are reached.

The angle of attack and control law obtained in simulation for different values of the vector
of uncertainties θ taken in the critical set Θc are shown in Fig. 6.5. Note that the system and
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(b) Bode diagram.

Figure 6.3: Nichols and Bode diagram of the open-loop transfer Tβ→yK
(θ, s) in (6.19). The rigid

model frequency responses are represented in blue. Other curves are for critical values of θ ∈ Θc.
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Figure 6.4: Wind profile used in simulation to evaluate the influence of a wind gust (occurring
at around t = 70s).
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(a) Simulation of the angle of attack for different val-
ues of θ ∈ Θc. A typical time-domain constraint is
illustrated in black dashed line.
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(b) Control law obtained in simulation for different
values of θ ∈ Θc.

Figure 6.5: Simulation results using the synthesised observer-based controller.
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6.3. Illustration of output-constrained control

controller states simulation results are not very useful and have been omitted for brevity. The
angle of attack is however a critical variable as already highlighted in 6.1.5.

From these simulations results, it can be seen that the considered wind disturbance is well-
rejected. The flexible modes are well-attenuated and are not excited by the control law. The
angle of attack reaches acceptable maximum values.

The dashed black line in Fig. 6.5(a) illustrates a typical time-domain constraint on the angle
of attack as often stated in the specifications. It is thus stated that the absolute value of the
angle of attack should remain below a given critical value. Using trial-and-error tuning of the
frequency-domain requirements, it is possible to reduce the maximal angle of attack at the cost
of gain and phase margins as well as flexible modes damping. Also, as shown in Chapter 4, such
trial-and-error-based cautious approaches are conservative in the sense that the resulting control
law is constrained such that the time-domain constraint is not triggered. Improved performance
could be obtained with a control law which would allow the angle of attack to stay on the
constraint.

6.2.4 Conclusions
In this section, the synthesis of a structured observer-based controller has been performed for
the atmospheric control of an uncertain flexible launch vehicle. The approach proposed in Chap-
ter 4 has been applied to account for the different critical models resulting from the uncertain
dynamics. Satisfying results are obtained in both the frequency- and time-domain. The wind
disturbance is appropriately rejected to limit the angle of attack.

The controller structure is eventually adapted in the following section which is dedicated
to illustrating the methods developed in Chapters 4 and 5 for output-constraint control. The
specifications and, consequently, the requirements are however kept identical to achieve similar
performance on the rigid and flexible – when considered – dynamics alike.

In the following, application of OIST and OISTeR is considered to enforce a time-domain
constraint such as the one illustrated in Fig. 6.5(a).

6.3 Illustration of output-constrained control
In this section, the contributions exposed in Chapters 4 and 5 are applied to simplified models
of the launch vehicle. The model used is the one in 6.1 but with some modifications.

It has been stated in the previous section that enforcing a time-domain constraint on the
angle of attack α is difficult and relies on tedious trial-and-error tuning of the frequency-domain
requirements. In this section, the OIST and OISTeR approaches are applied to avoid such tedious
work and to guarantee satisfaction of the time-domain constraint.
Remark 6.1 (Non-minimum phase transfer Tβ→α(s)). Before applying OIST, it appears that
the transfer from the control input β to the angle of attack α is non-minimum phase. This
transfer indeed has a slow positive zero zp ≈ 0.05. As illustrated in 4.6.2, slow zeros are not
necessarily a problem as long as the control is not saturated for a long time. In the current
state of the approaches, guaranteed stability results can however not be formulated. A practical
approach to deal with such case is hinted in 6.3.1. �

6.3.1 Application of OIST to the flexible launch vehicle
A model of the flexible launch vehicle with 5 flexible modes and no uncertainty is considered
for application of OIST. Satisfying results are obtained using a mixture of OIST and OISTeR to
mitigate the conservativeness of some of the expressions.

6.3.1 (a) Considered model: no uncertainty, 5 flexible modes with complete mea-
surements

In this example, no uncertainty is considered and the first 5 flexible modes are included in the
model. The combined rigid body and flexible modes dynamics is given by the following state-
space representation:
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(G2)


ẋ =

[
A1

n 0
0 A2

n

]
x+ Bn,ββ + Bn,dd

= Anx+ Bn,ββ + Bn,dd

y = x

(6.20)

where x =
[
ψ ψ̇ ż q1 q̇1 . . . q5 q̇5

]> ∈ R13 and Bn,d is deduced from Bn,w in (6.12).
The state matrix A is not Hurwitz and has two unstable poles. Note the flexible modes dynamics
are stable. It can be noted that (G2) is controllable.

6.3.1 (b) Considered controller

The following dynamic control law is initially considered:
β = yK

ẋK = AKxK + BKy

yK = CKxK + DKy

(6.21)

where xK ∈ R5. For X =
[
x
xK

]
, the closed-loop dynamics is given by:

Ẋ =
[
An + Bn,βDK Bn,βCK

BK AK

]
X +

[
Bn,d

0

]
d (6.22)

The controller synthesis is performed under the following frequency-domain requirements:

• the closed-loop poles should lie within
[
−200, 1.10−7];

• Appropriate disturbance rejection: ‖WαTd→α(s)Wr‖∞ ≤ 1 for two appropriately defined
weights Wα and Wr;

• Gain and phase margins of the feedback loop at yK should respectively equal 4dB and 20◦;

• The flexible modes are appropriately attenuated using a −6dB gain roll-off requirement.

A satisfying controller is obtained. However, as illustrated in dashed blue line in Fig. 6.8(b),
the time-domain requirement α ∈ [−2.5◦, 2.5◦] is not satisfied using this controller. This moti-
vates using an evolutionary approach to output-constrained control such as OIST (see Chapter 4).

6.3.1 (c) OIST application

A time-domain constraint is considered to ensure that the angle of attack remains in a limited
interval [−2.5◦, 2.5◦]. In this example, it is considered that the whole state x is known hence
the OIST approach as detailed in Chapter 4 can be applied to enforce the considered time-
domain constraint. Elements of the OISTeR approach are also used to reduce the conservatism
introduced by the bounds on the unknown disturbance.

Output constraint The angle of attack α can be expressed as a linear function of the state
x and disturbance input d:

α = C1
αx+ D1

αd (6.23)

where C1
α =

[
1 0 1

V 01×10
]
and D1

α = 1
V . Using this definition, it appears that the quantity

C1
αBn,β is negative which is a problem in the application of a mixed OIST/OISTeR strategy as

explained below and in Remark 5.20. From this point, the following output is considered which
corresponds to the opposite of the angle of attack:

α̃ = Cαx+ Dαd (6.24)
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6.3. Illustration of output-constrained control

where Cα = −C1
α and Dα = −D1

α. Using this new output variable α̃, the quantity CαBn,β is
now (strictly) positive.

Enforcing the output constraint α̃ ∈ [−α,−α] using OIST as described in Chapter 4 is
equivalent to satisfying:

Cαx−Dαmax
(
|d| ,

∣∣d∣∣) ≥ −α
Cαx+ Dαmax

(
|d| ,

∣∣d∣∣) ≤ −α
(6.25)

This is particularly conservative due to the null relative degree of α̃ with respect to the
disturbance input d. In particular, this would required that α − α > 2Dαmax

(
|d| ,

∣∣d∣∣) > 0
which is very demanding. To reduce this conservatism, some results presented within Chapter 5
can be used. More particularly, a more precise bounding of α̃ can be used:

Cαx+ Dαd ≤ α̃ ≤ Cαx+ Dαd (6.26)
where it is used that Dα is a positive real. This is a much less conservative bounding than the
one in (6.25). Let define:

βm = Cαx+ Dαd

βp = Cαx+ Dαd
(6.27)

which are reminiscent of quantities involved in the generalized output constraint introduced in
Definition 5.15 in Chapter 5 to the exception that the plant state x is known. The corresponding
generalized output-constraint is to ensure that{

βm ≥ −α
βp ≤ −α

(6.28)

which can be achieved under Lemma 5.19 and application of OIST and OISTeR as detailed in
Chapters 4 and 5. It can be noted that βm and βp are of relative degree 1 with respect to the
control input β. The following first derivatives of βm and βp are obtained using the original
system dynamics in (6.20):

β̇m = CαAx+ CαBn,ββ + CαBn,dd+ Dαḋ

β̇p = CαAx+ CαBn,ββ + CαBn,dd+ Dαḋ
(6.29)

By definition of the relative degree, the quantity CαBn,β is non-null. Also, due to the new
choice of constrained output α̃ = −α, this quantity is positive. Note that both β̇m and β̇p
depend on the unknown disturbance d. To obtain applicable saturations, the quantity CαBn,dd
is bounded as follows:

|CαBn,dd| ≤ |CαBn,d|max
(
|d| ,

∣∣d∣∣) (6.30)

Generalized propagated bounds Since a mixed OIST/OISTeR approach is used, the notion
of generalized propagated bounds is required as defined in Definition 5.18. Let β0 = −α and
β0 = −α. The relative degree of βm and βp with respect to u equals 1 hence, the following is
considered:

β1 = κ1

(
β0 − βm

)
+ β̇0

β1 = κ1
(
β0 − βp

)
+ β̇0

(6.31)

where the design parameter κ1 is given below. Under Lemma 5.19, the following is satisfied:{
β̇m ≥ β1

β̇p ≤ β1
, ∀t ∈ R+ ⇒

{
βm ≥ β0

βp ≤ β0
(6.32)

where the dependence of β̇m and β̇p on β can be used to obtained the OIST saturations on the
control input.
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Resulting control saturations Using Lemma 5.19, the following saturations on the control
input β are obtained:

β = 1
CαBn,β

[
β1 −CαAx−Dαḋ+ |CαBn,d|max

(
|d| ,

∣∣d∣∣)]
β = 1

CαBn,β

[
β1 −CαAx−Dαḋ− |CαBn,d|max

(
|d| ,

∣∣d∣∣)] (6.33)

where CαBn,β > 0. The expression of the design coefficient κ1 is obtained using Theorem 5.22
where the condition to fulfil is u − u > 0. Let κ̆1 = 0.2. Saturations overlap is avoided for κ1
chosen as follows:

κ1 =
κ̆1 + 2 |CαBn,d|max

(
|d| ,

∣∣d∣∣)+ Dα

(
ḋ− ḋ

)
α− α−Dα

(
d− d

) (6.34)

Introduction of an anti-windup The transfer from the control input β to α̃ is non-minimum
phase: of the two zeros z1 and z2, one is slow unstable with 0 < z2 ≤ 0.5. When trying to improve
the performance using an anti-windup as in Chapter 4, divergence of the saturated system is
invariably witnessed. This comes from the fact that Proposition 4.32 is not satisfied. Indeed,
when considering the proof of Proposition 4.32 in A.1 it appears that the matrix A−Bn,βKoist(t)
is unstable for the considered non-minimum phase transfer.

In this example, a workaround is used which offers a practical approach to using OIST with
non-minimum phase transfers Tβ→α̃(s). Let consider the original non-minimum phase transfer
Tβ→α̃(s):

Tβ→α̃(s) = K (s+ z1) (s− z2)
(s− p1) (s− p2) (s− p3) (6.35)

where z1 > 0 and z2 > 0. Let also consider a slightly modified expression of this transfer such
that its zeros are all real negative:

Tmpβ→α̃(s) = K (s+ z1) (s+z2)
(s− p1) (s− p2) (s− p3) (6.36)

Both transfer functions in (6.35) and (6.36) can be expressed as state-space representations
in the companion canonical form. In the case of (6.35), a state-coordinate matrix T is also
obtained to retrieve the state-space representation in the original coordinates. Using matrix T,
the companion form of the transfer function in (6.36) can be expressed in the original coordinates
which leads to the following state-space representation:{

η̇ = A1
nη + B1

n,ββ

yη = Cmp
α η

(6.37)

where B1
n,β is the part of the input matrices impacting the rigid body motion. The resulting

equivalent transfer function Cmp
α

(
sI−A1

n
)−1 B1

n,β is minimum phase.
The anti-windup is then designed using the data of this minimum phase transfer. Equa-

tions (4.66) and (4.67) are used to obtain the following compensator and updated controller
dynamics: 

ẋa = Anxa + Bn,βv1 −Bn,β

(
yK − satββ (yK)

)
ya = xa

v1 = −Kmp
oist(t)xa

v2 = ya

(6.38)

where xa ∈ R13 is the anti-windup compensator state, satββ (yK) is the OIST stage output and
Kmp

oist is defined as:
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Figure 6.6: Example 6.3.1: considered interconnection of the designed anti-windup (6.38) and
controller (6.40).

Kmp
oist(t) =

κ1(t)Cmp
α + Cmp

α An

Cmp
α Bn,β

(6.39)

The controller inputs and outputs are modified consequently to avoid state divergence upon
saturations of the system input:

(K)
{
ẋK = AKxK + BK (y − v2)
yK = CKxK + DK (y − v2) + v1

(6.40)

The anti-windup and controller interconnection is illustrated in Fig. 6.6.

6.3.1 (d) Simulation results

The model considered in 6.3.2 (a) is simulated over 500s using the custom wind profile represented
in Fig. 6.7 with its known bounds in black lines. The constrained output α is expected to satisfy
the constraint α ∈ [α, α] where α = −α = 2.5◦. This is equivalently translated as a constraint on
α̃. The simulations are performed w/ or w/o the OIST stage in the loop (resp. plain and dashed
blue line in the figures). With OIST in the loop, two simulations are also performed: w/ or w/o
the anti-windup compensator and compensated controller provided in (6.38) and (6.40) (resp.
plain blue and plain red line in the figures). The design coefficient κ1 is chosen as in (6.34) with
κ̆1 = 0.2 w/o the anti-windup compensator and κ̆1 = 0.1 w/ the compensator. These different
choices are made to avoid peaking when saturating the control input upon violation of the output
constraint. Simulation results are represented in Figs. 6.8 and 6.9. It can be seen in Fig. 6.8(b)
that the original controller does not satisfy the considered time-domain requirement (the dashed
blue line crosses the constraint which is represented in black).

The results shown in Fig. 6.8 are satisfying. The introduction of OIST saturations in the loop
helps to satisfy the considered time-domain constraint on output α̃. Note that the constraint is
enforced at the cost of some conservatism as can be seen in Fig. 6.8(b) where the gap between the
actual α̃ value and the constraint is caused by the lack of knowledge on the disturbance input d.
More precisely, this is due to the difference d− d which is obviously not null. The introduction
of the anti-windup compensator (6.38) in the loop slightly increases the performance. Overall,
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Figure 6.7: Custom wind profile used in simulation for the examples related to output-constrained
control.
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(a) State simulation results w/ (resp. w/o) OISTeR
in the loop in plain (resp. dashed) blue. Results with
the anti-windup compensator in (6.38) are represented
in red.
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(b) In plain (resp. dashed) blue line: constrained out-
put α̃ simulation results w/ (resp. w/o) OISTeR in
the loop. In red: with the anti-windup compensator
in the loop.
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(c) In plain (resp. dashed) blue line: control input u
simulation results w/ (resp. w/o) OISTeR in the loop.
In red: with the anti-windup compensator.

Figure 6.8: Example 6.3.1: state, constrained output and control input simulation results w/ or
w/o OIST in the loop and w/ or w/o an anti-windup compensator in the saturated case.
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Figure 6.9: Example 6.3.1: design coefficient κ1 and control input β simulation results.

the control law saturates for shorter periods of time. The practical modification brought to
account for the non-minimum phase transfer Tβ→α̃(s) is mandatory to avoid divergence upon
saturation. Using the original transfer defined by the matrix Cα in lieu of Cmp

α in the anti-
windup compensator definition (6.38) leads to controller and system states divergence. Note
that the constant κ̆1 is chosen small (< 0.2 in both cases, i.e. w/ or w/o the anti-windup
compensator). This helps to avoid peaking upon saturation of the control signal.

The time-varying design coefficient κ1 and the saturated control input β along with the OIST
saturations are represented in Fig. 6.8 in both the w/ and w/o anti-windup compensator cases.
The low value chosen for κ̆1 helps to avoid peaking of the control law when activation of a
saturation upon violation of the output constraint.

6.3.1 (e) Conclusions

In this section, the OIST approach to output-constrained control has been successfully applied
to the flexible launch vehicle with no uncertainty and a known state vector x. The dynamic
controller (K) did not initially satisfy the time-domain requirement on the angle of attack. After
application of OIST, this requirement is enforced using the appropriately defined control input
signal β = satββ (yK). Performance is slightly increased using an appropriately defined anti-
windup compensator: using a practical modification of the initially non-minimum phase transfer
Tβ→α̃(s) the matrix A − Bn,βK

mp
oist(t) is ensured to be Hurwitz ∀t. Also, some elements of

OISTeR were used to reduce the conservatism of the original OIST approach for transfers with
relative degree 0 with respect to the disturbance input d.

Long-term approaches should focus on a theoretical approach to applying OIST on non-
minimum phase transfers so as to obtain a sufficiently wide basin of attraction. In the next
section, OISTeR is applied to the output-constrained control of the rigid launch vehicle model
with incomplete state measurements.

6.3.2 Application of OISTeR to the rigid launch vehicle model
A model of the rigid launch vehicle with incomplete state measurements is considered for ap-
plication of OISTeR. In this example, satisfying results are obtained when using a particular
reduced-order interval observer which helps reducing the inherent OISTeR conservatism.

6.3.2 (a) Considered model: no uncertainty, rigid with incomplete measurements

In this example, no uncertainty nor flexible mode is considered. The rigid body dynamics is
given by the following state-space representation:

(G3)
{
ẋ = Ax+ Bββ + Bdd

y = Cx
(6.41)
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where x =

ψψ̇
ż

 ∈ R3 and y =
[
ψ

ψ̇

]
. The matrix A = A1

n is not Hurwitz with two unstable

real poles. The matrices Bβ and Bd are appropriately defined matrices deduced from Bn,β and
Bn,w in (6.12). As stated in 6.1.4, (G3) is output controllable. This means there exists a static
gain K ∈ R1×2 such that A−BβKC is Hurwitz. This is used in the following.

6.3.2 (b) Output-feedback static controller

The system being output controllable, the following control law is considered:

β = −Ky + v (6.42)

where K ∈ R1×2 is such that A − BβKC is Hurwitz and v is the corrective input introduced
with the OISTeR approach in Chapter 5. This results in the following closed-loop dynamics:

ẋ = (A−BuKC)x + Bβv + Bdd

= Mx + Bβv + Bdd

y = Cx
(6.43)

It is supposed that bounds
[
d, d
]
are known ∀t on the unknown disturbance d. The following

notations are considered for future use:

M = A−BβKC =
[
M11 M12
M21 M22

]
(6.44)

where M11 ∈ R2×2, M12 ∈ R2×1, M21 ∈ R1×2 and M22 ∈ R.

6.3.2 (c) OISTeR application

The objective is still to constrain the angle of attack such that α ∈ [α, α], ∀t. This time however

the problem is more difficult since it is supposed that only y =
[
ψ

ψ̇

]
=
[
x1
x2

]
is known and not

the whole state vector x. Especially, the value of the state x3 = ż is unknown. This motivates
using the OISTeR approach to enforce the time-domain constraint on α.

For similar reasons as those stated in 6.3.1, the actual considered constrained output is
α̃ = −α. This allows a proper definition of the saturations provided by OISTeR. More details
are given on the subject in Remark 5.20.

Reduced-order interval observer Unsatisfying results were obtained when considering an
interval observer on the whole state x. This resulted from the difficulty to design an inter-
val observer which provided a sufficiently tight interval. A natural workaround is to exploit
the knowledge on parts of the state vector x and use a reduced-order interval observer on the
remaining state variables. Reduced-order interval observers have been for example considered
in [Efimov 13c].

In the considered case, a reduced-order interval observer is designed on x3 = ż. Let write
(G3) in (6.41) in the following form:

(G3)
{
ẏ = M11y + M12x3 + Bβ,1v + Bd,1d

ẋ3 = M22x3 + M21y + Bβ,2v + Bd,2d
(6.45)

where the input matrices are appropriately defined. Noting that M22 ∈ R is Hurwitz (by
definition of the model) and Metzler1, the following system is an interval observer of x3:

ẋ3 = M22x3 + M21y + Bβ,2v + Bd,2d

ẋ3 = M22x3 + M21y + Bβ,2v + Bd,2d
(6.46)

1A real number is a degenerated form of Metzler matrix.
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Figure 6.10: Example 6.3.2 reduced-order interval observer of state x3. The input vector y is

the measurements vector
[
x1
x2

]
=
[
ψ

ψ̇

]
.

where it is used that Bd,2 ∈ R+. It is supposed in simulation that the initial state x3(0) is
known and x3(0) = x3(0) = x3(0) = 0. The reduced-order interval observer block diagram is
represented in Fig. 6.10.

Generalized output-constraint The original constraint K (Ωα) is expressed on the angle of
attack α and can be easily transposed to the update constrained output α̃. Using (6.4), α̃ = −α
depends on y and x3 in the following manner:

α = Cα,1y + Cα,2x3 + Dαd (6.47)

where Cα,1 =
[
−1 0

]
, Cα,2 = − 1

V and Dα = 1
V . Using the interval observer state

[
x3
x3

]
, the

constrained output in (6.47) can be bounded by the two following quantities:

βm = Cα,1y + Cα,2x3 + Dαd

βp = Cα,1y + Cα,2x3 + Dαd
(6.48)

where it is used that Cα,2 < 0 and Dα > 0. The generalized output-constraint is thus to ensure
that {

βm ≥ −α
βp ≤ −α

(6.49)

which can be achieved under Lemma 5.19 and application of OISTeR as detailed in Chapter 5.
In the present case, the relative degree of βm and βp with respect to v is equal to 1. The following
first derivatives are obtained using the reduced-order interval observer dynamics in (6.46) and
the original system dynamics in (6.45):

β̇m = Cα,1M11y + Cα,2M22x3 + Cα,2M21y + Cα,2Bβ,2v + Cα,2Bd,2d+ Dαḋ

β̇p = Cα,1M11y + Cα,2M22x3 + Cα,2M21y + Cα,2Bβ,2v + Cα,2Bd,2d+ Dαḋ
(6.50)

where it has been noted that Cα,1M12 = 0 and Cα,1Bd,1 = 0. Also, by definition of the relative
degree, the quantity Cα,2Bβ,2 is non-null.

Generalized propagated bounds The generalized propagated bounds are defined as in Def-
inition 5.18. Let β0 = −α and β0 = −α. The relative degree of βm and βp with respect to v
equals 1 hence, the following is also used:

β1 = κ1

(
β0 − βm

)
+ β̇0

β1 = κ1
(
β0 − βp

)
+ β̇0

(6.51)
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where κ1 is a design parameter defined later. Under Lemma 5.19, the following is satisfied:{
β̇m ≥ β1

β̇p ≤ β1
, ∀t ∈ R+ ⇒

{
βm ≥ β0

βp ≤ β0
(6.52)

where the dependence of β̇m and β̇p on v can be used to obtained the OISTeR saturations on
the corrective signal v.

Resulting control saturations Using Lemma 5.19, the following saturations on the corrective
input signal v are obtained:

v = 1
Cα,2Bβ,2

[
β1 − (Cα,1M11 + Cα,2M21)y −Cα,2M22x3 −Cα,2Bd,2d−Dαḋ

]
v = 1

Cα,2Bβ,2

[
β1 − (Cα,1M11 + Cα,2M21)y −Cα,2M22x3 −Cα,2Bd,2d−Dαḋ

]
(6.53)

where Cα,2Bβ,2 > 0. The expression of the design coefficient κ1 is obtained using Theorem 5.22.
The condition is that v − v > 0. Let κ̆1 = 0.1. Saturations overlap is mitigated for κ1 chosen as
follows:

κ1 =
κ̆1 −Cα,2M22 (x3 − x3)−Cα,2Bd,2

(
d− d

)
+ Dα

(
ḋ− ḋ

)
α− α+ Cα,2 (x3 − x3)−Dα

(
d− d

) (6.54)

6.3.2 (d) Simulation results

The model considered in 6.3.2 (a) is simulated over 500s using the same disturbance input d as
in the previous example (see Fig. 6.7). The initial condition is set to x0 = 0. The constrained
output α is expected to satisfy the constraint α ∈ [α, α] where α = −α = 3◦. This is equivalently
translated into a constraint on α̃. The design coefficient κ1 is chosen as in (6.54) with κ̆1 = 0.1.
Simulation results are represented in Figs. 6.11 and 6.12 for both the unconstrained system
(dashed blue line) and the system in closed-loop with the OISTeR saturations (plain blue line).
It can be seen in Fig. 6.11(b) that the original controller β = −Kx does not satisfy the considered
time-domain requirement.

The results shown in Fig. 6.11 are highly satisfactory. Despite the lack of knowledge on x3
the output constraint is enforced thanks to using a reduced-order interval observer. As visible
in Fig. 6.11(b), this results in some conservatism which adds to the lack of knowledge on the
disturbance. However, using the information on ψ and ψ̇ given by the measurements vector
y, this conservatism is reduced in comparison with using a full-order interval observer on the
complete state vector x. Note that the constant κ̆1 = 0.1 is chosen small such that the saturated
corrective input signal variations are smoother than for greater values (e.g. κ̆1 = 1).

The time-varying design coefficient κ1 and the corrective input v along with the OISTeR
saturations v and v are represented in Fig. 6.12.

As mentioned previously, the low value chosen for κ̆1 helps to obtain a quite smooth corrective
input signal v. For greater values of κ̆1, peaking artefacts can be observed at the times of
saturation. This illustrates the challenges faced by the control designer when tuning the design
coefficients in κ as already mentioned in Chapters 4 and 5.

6.3.2 (e) Conclusions

In this section, OISTeR has been successfully applied to the rigid body dynamics of the considered
launch vehicle. The static controllerK initially used did not satisfy the time-domain requirement
on the angle of attack. After application of OISTeR, this requirement is enforced using the
appropriately defined corrective input signal v = satvv (0).

However, the considered model does not take any uncertainty into account. A short-term
perspective is thus to apply a similar approach to the uncertain rigid body dynamics of the launch
vehicle. The coefficients A6 and K1 respectively describing aerodynamic and thrust efficiency
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u simulation results w/ (resp. w/o) OISTeR in the
loop. In the OISTeR case, the control input is given
by β = −Kx+ v.

Figure 6.11: Example 6.3.2: state, constrained output and control input β = −Kx+v simulation
results.
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would be the uncertain parameters in that case. Also, it can be noted that a specific approach
has been used to reduce OISTeR conservatism and use the available data in y. A reduced-interval
observer has been implemented and produces satisfying results. A medium-term perspective is to
generalize such approach and update the conservative expressions obtained in Chapter 5. On the
long term, extension of the OISTeR to LPV/LTV systems could be applied to multiple working
points of the launch vehicle model.

6.4 Conclusions and perspectives
The main contributions of this thesis work have been successfully applied to different simplified
models of the launch vehicle. As far as the output-constrained control problem is concerned,
satisfying results have been obtained when considering the OIST and OISTeR approaches. Prac-
tical approaches have also been proposed to answer for the non-minimum phase property of the
transfer between the control input β and the constrained output describing the evolution of the
angle of attack α.

However, as already underlined in the different sections, the considered models are simplified
to allow application of the OIST and OISTeR methods which are still conservative in their current
forms. Future works should focus on reducing this conservatism so as to apply these methods on
more complex models. Also, the extension of OISTeR to the LPV and LTV cases should allow
to consider multiple working points for the launch vehicle model. A gain-scheduled approach
of the OISTeR saturations could be an option to take into account the variation of the model
parameters over time.
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Chapter 7

Development of a non-smooth optimization-based
approach to design linear interval observers

The theory of linear interval state-observers has been used in Chapter 5 without
much details on the design approaches. For a given system, as far as the design
of such interval observers is considered, they are often deduced from a provisional
cooperative system. For any dynamical system, its cooperative representation can
be obtained by considering a state-coordinate transformation (SCT). Two strategies
exist: the SCT is chosen either time-varying or time-invariant. In the time-invariant
case, determining an appropriate SCT remains difficult. Also, the existing approaches
rely on parameters which selection impact the obtained solution. This motivates
considering a new method to determine a time-invariant SCT such that the studied
system is cooperative in the new coordinates. This method is called SCorpIO. This
chapter is based on results presented in [Chambon 15b, Chambon 16] and [Chambon a].

Existing time-invariant SCT determination methods are presented in 7.1 along with
their drawbacks. This motivates the development of a new determination method
called SCorpIO. This new approach is introduced in 7.2 based on the reformulation of
the original SCT determination problem into a control design problem. Application of
the new method is illustrated in 7.3 where comparisons with the existing techniques are
also proposed. In 7.4 it is shown that this new approach can be used to simultaneously
stabilize a system and design an interval observer on the closed-loop as required in
Chapter 5. Conclusions and perspectives are then drawn in 7.5.
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7.1. Motivations for a new interval observer design method

7.1 Motivations for a new interval observer design method

The field of research dedicated to linear interval state-observers has been very active in the past
few years. The unfamiliar reader may refer to Chapter B for detailed information on the subject.
The objective of such dynamical systems is to provide a non-statistical estimate of the interval
in which the state x of the studied system (G) lies. This is particularly useful in the case where
the system is disturbed by an unknown signal d on which bounds d and d are known.

Theoretically speaking, a definition of a linear interval observer is given in [Cacace 15, Defi-
nition 4, p. 1667]1. This is a quite general definition which makes no assumption on the original
system dynamics. In particular, (G) could be non-cooperative and unstable. An interval ob-
server is defined as a stable system and its property is to keep ordering of the estimated bounds
x and x on the state x. A practical solution to design an interval observer2 is first to obtain
a stable dynamics through using a Luenberger observer with gain L and then to design the
interval observer on the inherent observation error e = x − x̂. In the worst case, the observa-
tion error dynamics is not cooperative but cooperativity3 can be enforced using an appropriate
state-coordinate transformation defined by a matrix P.

Methods to determine appropriate matrices P (SCT matrix) and L (classical observer gain)
are listed in B.4. Two main strategies can be identified: either the SCT is chosen time-
varying [Mazenc 11] or time-invariant [Raïssi 12].

In this section, the time-invariant strategy is recalled. The different methods are presented
and their main limitations are identified. This motivates the development of a new time-invariant
SCT determination method.

7.1.1 Notations and main concepts reminder
In this chapter, linear systems are considered both in the continuous-time and discrete-time
frameworks. In the first case, systems are referred to using (G) while the notation (F) is used
in the second case. The state-space representations of the considered systems are given by:

(G)


ẋ(t) = Ax(t) + Buu(t) + Bdd(t)
y(t) = Cx(t) + Duu(t) + Ddd(t)
x(0) = x0

t ∈ R+

(7.1)

(F)


x(t+ 1) = Ax(t) + Buu(t) + Bdd(t)

y(t) = Cx(t) + Duu(t) + Ddd(t)
x(0) = x0

t ∈ N

(7.2)

where x ∈ Rn, y ∈ Rm, u ∈ Rl is the control input and d ∈ Rk is an unknown input. It is
supposed that two vectors x0 and x0 are known such that x0 ≤ x0 ≤ x0. Also, it is supposed
that bounds d and d on the unknown input signal d are known. No assumption is made on A.
The worst case where A is non-Hurwitz non-Metzler is thus considered.

In the continuous-time case, considering the interval observer definition in [Cacace 15], the
system composed of

• the Luenberger observer with observer gain L;

• The interval observer on the observation error expressed in new coordinates ez = Pe;

1It is also recalled in Definition B.11.
2As also detailed in B.3.
3See Definition B.3.
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• and the following reverse state-coordinate transformation:
e(t) = T+ez(t)−T−ez(t)

e(t) = T+ez(t)−T−ez(t)
x(t) = x̂(t) + e(t)
x(t) = x̂(t) + e(t)

(7.3)

is an interval observer for (G)4. The notion of cooperative system is used to formulate this result.
A similar result can be obtained in the discrete-time case. However, this result is obtained at
the cost of the following assumption:

Assumption 7.1 (Known state-coordinate transformation).
Let A ∈ Rn×n and C ∈ Rm×n. ∃P ∈ Rn×n and L ∈ Rn×m such that P (A− LC) P−1 is
Hurwitz Metzler (Schur non-negative in the discrete-time case).

To determine appropriate matrices P and L, different methods have been proposed. In case
P and L are chosen time-invariant, these methods are recalled in 7.1.2.

Using the interval observer in (B.22), two additional dynamical systems are defined to describe
the dynamics of the two following quantities:

Ed = 1
2
(
ez − ez

)
Em = 1

2
(
ez + ez

) (7.4)

which are used to define what can informally be called as the “quality” of the interval observer.
The vector Ed is used to quantify the tightness of the interval

[
ez, ez

]
around the actual tra-

jectory ez of the interval observer of the observation error expressed in the new coordinates.
The quantity Em refers to the mean of the interval. These quantities are characterized by the
following dynamics:

Ėd = MEd + 1
2

{
[P (Bw − LDw)]+ + [P (Bd − LDd)]−

}(
d− d

)
Ed(0) = 1

2
(
ez(0)− ez(0)

)
Ėm = MEm + 1

2P (Bd − LDd)
(
d+ d

)
Em(0) = 1

2
(
ez(0) + ez(0)

)
(7.5)

7.1.2 Time-invariant strategy to interval observer design
As underlined in Assumption 7.1, the objective is to find two constant matrices P and L such
that M = P (A− LC) P−1 is Hurwitz Metzler. In this section, three methods are presented to
determine these matrices in the continuous-time case. They are either trivial or were proposed
in the literature.

7.1.2 (a) Real-constrained pole placement (trivial solution)

This trivial approach is motivated by noticing that diagonal matrices satisfy to the definition of
a Metzler matrix5. Let consider the following assumption:

Assumption 7.2 (Real-constrained pole placement: observability condition).
The pair (A,C) is either:

• observable;

4See Proposition B.24.
5See Definition B.1.
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7.1. Motivations for a new interval observer design method

• or detectable with real unobservable eigenvalues.

Note that the mentioned form of detectability is stronger than pure detectability for which
the unobservable stable modes can be complex. Then, the matrix L is chosen such that A −
LC only has negative real eigenvalues. This can be obtained using any usual pole placement
technique where the targeted poles are real negative. Choosing P as the matrix of the right-
hand eigenvectors leads to M = P (A− LC) P−1 being diagonal. Consequently, M is a Metzler
matrix.

Lemma 7.3 (Real-constrained pole placement method).
Let L ∈ Rn×m such that A − LC is Hurwitz and eig (A− LC) ∈ Rn. Let P the matrix of
right-hand eigenvectors of A− LC. Then

M = P (A− LC) P−1 (7.6)

is diagonal Hurwitz hence is Metzler.

A detailed procedure on how to apply Lemma 7.3 is given in Fig. 7.1.

7.1.2 (b) Resolution of a Sylvester equation

This approach is presented in B.4.2 as an example of a time-invariant SCT determination method
and is recalled here. It comes from rewriting the following equality

M = P (A− LC) P−1 (7.7)

in the form of a Sylvester equation:

−MP + PA = PLC = QC (7.8)

where M and Q = PL are user-defined parameters and P is the variable.

Lemma 7.4 (Sylvester equation resolution method).
Let M ∈ Rn×n such that it is Hurwitz Metzler and has no common eigenvalues with A. Let
Q ∈ Rn×m. Then the following Sylvester equation

−MP + PA = QC (7.9)

has a unique solution P ∈ Rn×n. Choosing L = P−1Q, M = P (A− LC) P−1 is Hurwitz
Metzler by construction.

As already mentioned in Chapter B, Sylvester equations can be solved using algorithms
described in [Golub 79] or [Bartels 72]. A detailed procedure on how to apply Lemma 7.4 is
given in Fig. 7.2.

7.1.2 (c) Constructive lemma based on the Sylvester equation

In [Raïssi 12] a constructive lemma was proposed to find a solution to the Sylvester equation
in (7.8) without actually solving it:

Lemma 7.5 (Constructive method to solve the Sylvester equation, inspired by [Raïssi 12]).
Let M ∈ Rn×n a Metzler matrix and L ∈ Rn×m such that A−LC have the same eigenvalues.
If there exists two vectors e1 and e2 such that the pairs (A− LC, e1) and (M, e2) are
observable then

P = O2
−1O1 and Q = PL (7.10)

satisfy the Sylvester equation in (7.8) where
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O1 =

 e1
...

e1 (A− LC)n−1

 , O2 =

 e2
...

e2Mn−1

 (7.11)

Proof. See [Raïssi 12, Lemma 1, p. 261].

Contrary to the method proposed in 7.1.2 (b), the eigenvalues of M need to be precisely
placed on the same location than the eigenvalues of A−LC. Typical structures to construct M
include the one presented in the following example.
Example 7.6 (Metzler matrix M construction example, inspired by [Raïssi 12]). Let consider
matrices A ∈ R3×3, L ∈ R3 and C ∈ R1×3 such that

eig (A− LC) =
[
−1 −4 +

√
3j −4−

√
3j
]

Then the following matrix M is Metzler and has the same eigenvalues than A− LC:

M =

−3 2 0
0 −3 2
2 0 −3

 (7.12)

♣
A detailed procedure on how to apply Lemma 7.5 is given in Fig. 7.3.

7.1.2 (d) A note on the discrete-time case

In the discrete-time case, the methods described above can still be applied as long as the differing
properties of the matrix M are respected. In particular, this matrix must be chosen Schur non-
negative which further restricts the set of admissible eigenvalues of A− LC.

7.1.3 Limitations of the time-invariant SCT determination methods
In the previous section, strategies were presented to compute an appropriate time-invariant
state-coordinate transformation such that a given dynamics is cooperative (and stable) in the
new coordinates. These strategies are based on pole placement techniques as well as on specific
equation resolution methods. Some limitations to these techniques can be identified:

1. the real-constrained pole placement approach 7.1.2 (a) is a bit too trivial. Placing poles on
real negative quantities can result in very large observation gains L which are inappropriate
in most cases;

2. The Sylvester-equation based approach 7.1.2 (b) relies too much on the definition of the
expected Metzler matrix M (and eventually the additional parameter Q), the selection of
which is left to the control theorist. Designing a Metzler matrix with prescribed eigenvalues
is difficult in the general case especially when the eigenvalues should be complex conjugates;

3. The requirement for the dynamics to be cooperative in the new coordinates is entirely left
to an appropriate choice for P. The simultaneous design of P and L could spread this
constraint on both matrices to achieve better results;

4. Absolutely no consideration is given to the rejection of disturbances or additional control
requirements other than pole placement whatsoever.

These limitations do not mean these techniques are not viable ones, their power relying on
their ease of use. However, in more complex cases where precise control requirements should also
be considered on the observer dynamics, these approaches may fail to return appropriate results.
There comes the SCorpIO design method which, although being more complex to implement,
provides a solution to this kind of problem and overcomes the identified limitations of the existing
techniques. This new method is introduced and detailed in the next section. Detailed examples
of application are presented in 7.3 and a comparison in simulation with the existing techniques
is provided.
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Input: observable matrices (A,C), vector p ∈ Rn− of targeted poles.
Output: matrices P and L such that M = P (A− LC) P−1 is Hurwitz diagonal (hence Metzler)
Procedure:

1. Pole placement: compute L such that eig (A− LC) = p;

2. Right-hand eigenvectors: compute the right-hand eigenvectors or A− LC;

3. Stacking: stack the eigenvectors in the matrix P;

4. Conclusion: M is Hurwitz diagonal hence is Hurwitz Metzler.

Figure 7.1: Procedure to obtain a Hurwitz Metzler matrix by using real pole placement

Input: observable matrices (A,C), targeted Hurwitz Metzler matrix M such that eig (M) 6=
eig (A), and unconstrained matrix Q ∈ Rn×m.
Output: matrices P and L such that M = P (A− LC) P−1 is Hurwitz Metzler
Procedure:

1. Sylvester equation: given M and Q, solve −MP + PA = QC in P;

2. Observer gain: let L = P−1Q;

3. Conclusion: M is Hurwitz Metzler by construction.

Figure 7.2: Procedure to obtain a Hurwitz Metzler matrix by solving a Sylvester equation

Input: observer gain L and targeted Hurwitz Metzler matrix M such that eig (M) =
eig (A− LC).
Output: matrix P such that M = P (A− LC) P−1 is Hurwitz Metzler
Procedure:

1. Pole placement: determine the observer gain L such that A − LC has the desired eigen-
values;

2. Metzler matrix determination: choose a Metzler matrix M such that it has the same
eigenvalues than A− LC;

3. Observability: find e1 and e2 such that (A− LC, e1) and (M, e2) are observable;

4. Transformation: let P = O2
−1O1 where O1 and O2 are defined in (D.57);

5. Conclusion: M is Hurwitz Metzler by construction.

Figure 7.3: Procedure to obtain a Hurwitz Metzler matrix by using the constructive Lemma 7.5
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7.2 Introduction to SCorpIO: a new time-invariant SCT-
based design method

According to the previous section, the main criticism addressed to the existing time-invariant
SCT-based methods is the lack of an automated method. Hence, choosing appropriate parameters
for these methods is critical. Also, the design of P and L is never simultaneous which could
restrict the set of admissible solutions.

In this section, a new method is introduced to determine a time-invariant SCT. It is called
SCorpIO for State-Coordinate Transformation Optimization for Interval Observers. Using this
approach, the matrices P and L are simultaneously computed and the involved parameters are
easier to choose. Interestingly enough, control-oriented requirements can also be formulated to
constrain the observer dynamics through appropriate tuning of the observer gain L.

The original problem is first presented. It is then reformulated into a control design problem
in 7.2.2. Using a non-smooth optimization-based approach inspired by the structured controller
design field, a solution to this problem is proposed in 7.2.3.

7.2.1 Problem statement
The problem of designing an interval observer was tackled in Chapter B. It involves determining
an appropriate state-coordinate transformation. In this case, a time-invariant state-coordinate
transformation is considered. The original problem statement is recalled here:

Problem 7.7 (Time-invariant SCT determination problem (continuous-time)).
Considering (G) in (7.1), let suppose the pair (A,C) is detectable. Find P ∈ Rn×n and
L ∈ Rn×m such that

M = P (A− LC) P−1 (7.13)

is Hurwitz Metzler.

Remark 7.8. In the discrete-time case, the matrix M must be Schur non-negative. �

Using the definition of a Metzler matrix, a first reformulation of Problem 7.7 into a conditional
problem on the coefficients of M is proposed:

Problem 7.9 (Coefficients-based formulation of Problem 7.7 (continuous-time)).
Considering (G) in (7.1), let suppose the pair (A,C) is detectable. Find P ∈ Rn×n and
L ∈ Rn×m such that

−Mij = −
[
P (A− LC) P−1]

ij
≤ 0, ∀ (i, j) s.t. 1 ≤ i 6= j ≤ n (7.14)

and A− LC is Hurwitz.

Remark 7.10. In the discrete-time case, the inequality in matrix (7.14) must be satisfied ∀ (i, j)
and A− LC should be Schur stable. �

In terms of control theory, the n (n− 1) inequalities in (7.14) are reminiscent of the stabil-
isation conditions on n (n− 1) “fictitious” unidimensional systems with their unique real pole
located at −Mij or, equivalently, their state-matrix equal to −Mij . This motivates the following
reformulation into a structured control design problem.

7.2.2 Reformulation into a structured control design problem
It appears that enforcing the structural property for M to be Metzler can be viewed as a struc-
tured control design problem as hinted by the inequalities in (7.14). This is highlighted in the
following proposition:
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Proposition 7.11 (Equivalent control design problem (continuous-time)).
Considering (G) in (7.1), let suppose the pair (A,C) is detectable. Let denote ∀ (i, j) ∈
(N?)2, ∀P ∈ Rn×n and ∀L ∈ Rn×m

Mij (P,L) =
[
P (A− LC) P−1]

ij
(7.15)

If the system defined by the following dynamics

(Gm)
{
ẋl = (A− LC)xl
ẋij = −Mij (P,L)xij ∀i 6= j

(7.16)

is Hurwitz stable for a pair (Ps,Ls) then M = Ps (A− LsC) Ps
−1 is Hurwitz Metzler.

Proof. The proof of this proposition is straightforward when considering the Definition B.1 of a
Metzler matrix. Obviously, enforcing the stability of system (Gm) in (7.16) is equivalent to

• determining L such that A− LC is Hurwitz;

• and determining P and L such that −Mij (P,L) is negative ∀i 6= j.

If a solution is found to this stabilization problem then M is definitely Hurwitz Metzler.

The n(n − 1) states xij ∈ R are informally called “fictitious” states since they do not have
any physical meaning.

Remark 7.12. In the discrete-time case, n2 “fictitious” states are considered since the diagonal
elements of matrix M should also be positive to comply with the Definition B.2 of a non-negative
matrix. However, due to the Definition of Schur stability, using Proposition 7.11 would result in
−Mij (P,L) lying in [−1, 1], ∀ (i, j) which does not comply with the definition of non-negativity.
In that case, (Gm) in (7.16) is replaced by the following dynamics, ∀t ∈ N:

(Fm)
{
xl(t+ 1) = (A− LC)xl(t)
xij(t+ 1) = f (−Mij (P,L))xij ∀ (i, j)

(7.17)

where f : R→ R is a linear function mapping
[
−Mij, 0

]
onto [−1, 1] with Mij a design parameter:

f(x) = 2
Mij

x+ 1 (7.18)

Using this function has proved to be effective in practice. From an algorithmic point of view,
this means that if x /∈

[
−Mij , 0

]
then f(x) /∈ [−1, 1] and reciprocally. Note that an homographic

function mapping ]−∞, 0] onto [−1, 1] could be used such as

f(x) = 1
x− 1

2
+ 1 (7.19)

but it is observed in practice that the optimization-based algorithm described below often fails to
converge when using such function. This motivated using a mapping function on a finite interval
such as (7.18). �

7.2.3 Non-smooth optimization-based approach
Using an appropriate reformulation, the original Problem 7.7 of finding a time-invariant SCT such
that the observation error dynamics is cooperative in the new coordinates has been formalized
as a control design problem in Proposition 7.11.

Hence, the objective is now to find a pair (P,L) such that the system (Gm) in (7.16) is
stable. This is a pure control design problem. Additionally, other constraints can be formalized.
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For example, it may be expected that the observation error dynamics6 satisfies some rejection
properties with respect to the disturbance input d. Also, it is interesting to constrain the
dynamics of the interval observer by enforcing rejection constraints on the dynamics of the
interval tightness Ed in (7.5). Note this dynamics depends on the problem variables P and
L through a non-linear max function which cannot be handled by the considered optimisation
technique. Structural constraints like P (Bd − LDd) ∈ Rn×k+ can raise this limitation.

These informally introduced constraints can be formalized into a multi-models multi-objectives
optimization problem. An example of such problem is given below for the described typical re-
quirements. Additional user-defined requirements can however be introduced depending on the
considered application.

Problem 7.13 (Typical SCorpIO problem).
Solve the following optimization problem:

min maxP,L

{
‖We(s)Td→e (s,L)‖2 ,

∥∥∥WEd
(s)T

d−d→Ed
(s,P,L)

∥∥∥
2

}
subject to

{
(Gm) in (7.16) is Hurwitz stable

P (Bd − LDd) ∈ Rn×k+

(7.20)

where We(s) and WEd
(s) are appropriately defined frequency-dependent weightings and the

usual notation for transfer functions is used.

In the following remark, it is explained why this is a multi-models and multi-objectives
optimization problem.

Remark 7.14. Since the transfers functions Td→e(s) and Td−d→Ed
(s) extracted from the models

in (B.18a) and (7.5) respectively and the system (Gm) in (7.16) are defined by different dynamics,
this justifies the multi-models characterization of the problem. Obviously, multiple requirements
are also defined which justifies the multi-objectives characterization. �
Remark 7.15. In the discrete-time case, the optimization problem in (D.61) becomes

min maxP,L

{
‖We(z)Td→e (z,L)‖2 ,

∥∥∥WEd
(z)T

d−d→Ed
(z,P,L)

∥∥∥
2

}
subject to

{
(Fm) in (7.17) is Schur stable

P (Bd − LDd) ∈ Rn×k+

(7.21)

where the weightings are appropriately redefined. �
This kind of problem is reminiscent of the multi-models multi-objectives structured control

design problem tackled in Chapter 2. Truly, any optimization algorithm designed to solve (D.61)
can be used. In this thesis however, algorithms from the structured control design field were
used, more precisely those based on H∞ techniques. Related works are recalled here for the
non-specialised reader only interested in interval observers.

The synthesis of full-order controllers through H∞ methods has been widely studied and used
in the past two decades. Solutions to the problem of H∞ synthesis in the case of MIMO systems
were provided for example in [Doyle 89] and [Scherer 90]. When considering controllers with a
fixed order much lower than the original plant, the problem of finding a controller is a non-convex
optimization problem. A local solution to this problem was proposed in [Apkarian 06] and im-
plemented in consecutive works [Gahinet 11]. Other implementations for computing fixed-order
controllers include [Burke 06]. More recent works [Apkarian 07, Gahinet 12, Apkarian 13, Ap-
karian 14] consider the case of finding a controller satisfying to multiple requirements on multiple
models, eventually on limited frequency ranges. Considering these control-design techniques, it
is possible to solve the minimization problems in (D.61).

Remark 7.16. The same techniques can be used in the discrete-time framework to solve the
minimization problem in (7.21). �

6See system (Ge) in (B.18a).
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Figure 7.4: Disturbance signal d used in the simulation of (7.22).

The use of these control-design techniques to solve Problem 7.13 is now illustrated on various
examples, both from the continuous- and discrete-time frameworks.

7.3 Examples and comparisons
In this section the methods presented both in this chapter and Chapter B are illustrated on
various examples. This methods are used to determine a state-coordinate transformation such
that a given dynamics is cooperative in the new coordinates. Both the continuous-time and
discrete-time frameworks are considered. A comparison of these approaches is also proposed in
simulation.

7.3.1 Continuous-time examples
7.3.1 (a) Stable sixth-order system

The SCorpIO approach is first illustrated on a stable sixth-order system inspired by [Mazenc 11].

Model The considered system is given by the following state-space representation:

(G)
{
ẋ = Ax+ Buu

y = Cx+ d
(7.22)

where x ∈ R6, u = sin(t) and d is an unknown measurements disturbance with known bounds:

d = −2 ≤ d(t) ≤ 1 = d, ∀t ∈ R+ (7.23)

In simulation, a random number generator with limited range is used to simulate the distur-
bance as illustrated in Fig. 7.4. The system state-space matrices are given by:

A =


−1 1 0 0 −1 0
−1 −2 0 −1 0 1
−2 0 −3 −2 0 0
−1 0 −2 −3 0 1
−1 0 2 0 −4 0
−1 −1 0 1 0 −1

 , Bu =


−18
−13
−5
−4
−10

22

 , C =
[
1 0 0 0 0 0

]
(7.24)

Matrix A is Hurwitz hence the system is stable. In simulation, the initial condition is chosen
equal to x0 =

[
20 10 6 20 30 40

]>. In practice, the initial condition is supposed to
be unknown but lies in the known interval

[
x0,x0

]
where x0 = 50

[
1 1 1 1 1 1

]> and
x0 = −x0.
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The objective is to design an interval observer on this system. In [Mazenc 11], a time-varying
SCT was considered to obtain a cooperative observation error in the new coordinates. Here, a
time-invariant SCT is considered first. As detailed in Chapter B, a classical observer is used. It
is initialised at x̂0 = 06. The observation error dynamics is thus defined by:

(Ge)
{
ė = (A− LC) e− Ld
e0 = x0 − x̂0

(7.25)

where L ∈ R6 is the observer gain and e0 lies in
[
e0, e0

]
=
[
x0 − x̂0,x0 − x̂0

]
. Note the dynamics

in (7.25) is not cooperative whatever the choice of L since A is not Metzler.
Similarly to Assumption 7.1, let suppose there exists P ∈ R6×6 such that M = P (A− LC) P−1

is Metzler. Then, the following system is an interval observer for the observation error dynam-
ics (7.25) in the new coordinates ez = Pe:

(
Gz,]

e
)


ėz = Mez + (PL)+
d− (PL)− d

ėz = Mez + (PL)+
d− (PL)− d

ez(0) = P+e0 −P−e0

ez(0) = P+e0 −P−e0

(7.26)

Bounds on the state vector x are then easily determined using the relations in (7.3). The
next paragraphs are dedicated to the determination of matrices P and L.

SCorpIO The objective is to find P and L such that matrix A − LC is Hurwitz (i.e. (Ge)
in (7.25) is stable) and M = P (A− LC) P−1 is Metzler. To do so, the approach presented
in 7.2.3 is applied and the problem is reformulated in the form of the typical SCorpIO optimiza-
tion Problem 7.13. The following requirements are considered:

(1) transformation matrices maximum elements value: |Pij | ≤ 4, |Tij | ≤ 4, ∀ (i, j). This is used
to avoid ill-conditioned matrices especially for the matrix T which is used to get back in
the original coordinates;

(2) Metzler matrix condition: Mij ≥ 0, ∀i 6= j;

(3) Maximum M elements value: Mij ≤ 200 = Mij , ∀ (i, j). This reduces the set of admissible
solutions. In practice, it is observed that introducing this constraint helps the considered
optimization algorithm7 to converge;

(4) Closed-loop stability: the system (7.25) should be stable when d = 0 with the following
constraint on the state matrix eigenvalues: Re (eig (A− LC)) ∈ [−100,−0.5];

(5) Interval tightness:
∥∥∥ 1

0.7Td−d→Ed
(s,P,L)

∥∥∥
2
≤ 1;

(6) Ed linear dependence in PL condition: PL ∈ Rn+.

Note that conditions (1) to (4) can easily be expressed as a stabilizing condition on an
augmented fictitious system similar to (7.16):

(Gm)



ẋl = (A− LC)xl
ẋ1
ij = − (Tij + 4)x1

ij ∀ (i, j)

ẋ2
ij = − (Tij − 4)x2

ij ∀ (i, j)

ẋ3
ij = −Mijx

3
ij ∀i 6= j

ẋ4
ij = − (Mij − 200)x4

ij ∀ (i, j)

(7.27)

7In this memoir, the systune function from the Robust Control Toolbox [MATLAB 14] is used.
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These constraints are translated in the Robust Control Toolbox [MATLAB 14] framework and
the optimization Problem 7.13 is locally solved using systune. The code sample for this example
is given in C.2.1. The following numerical results are obtained:

L =


1.0592
−1.3366
−1.2349

0.2844
−1.1056
−0.5405

 , P =


−0.0639 −0.2526 −0.0267 0.1132 −0.0068 0.0152
−0.7485 0.1513 −0.7132 0.6471 0.3764 −0.6409

0.1596 0.0721 0.0259 −0.1766 −0.1214 0.2299
1.2550 −0.7795 1.4395 2.0105 1.1983 −0.2951
0.4576 −0.5743 −0.7134 0.5622 2.1349 −0.1253
−0.5726 0.0851 −0.2180 −0.3714 −0.5836 0.1634

 (7.28)

Note that PL ∈ R6
+ hence it satisfies (6). The resulting matrix is Hurwitz Metzler:

M =


−1.4526 0.2863 0.2218 0.0000 0.0002 0.0004

0.0001 −2.1836 0.1270 0.1011 0.0614 0.2945
0.0568 0.2193 −0.8111 0.2328 0.0486 0.4070
0.0265 0.0358 0.0005 −3.6816 0.0004 2.8285
0.0333 0.2929 0.0001 1.5194 −4.8914 0.8313
0.7067 0.0003 0.0920 0.2071 0.6954 −2.0389

 (7.29)

Other time-invariant SCT determination methods In this example, the matrix M is
expected to have poles at these locations:

pM =
[
−4.7 −4.6 −2.1 −1.2 −1.1 −0.3

]
(7.30)

1. Sylvester equation resolution: see B.5.2 for the numerical results;

2. Real-constrained pole placement: as explained in 7.1.2 (a), this technique is based on the
diagonalization of A− LC. The following numerical results are obtained:

L =


−0.0000
−1.2981
−1.1800
−1.0496
−0.0981
−0.3113

 , P =


−2.5932 1.9801 −9.9547 −12.1661 −3.7046 2.7530
−2.8007 2.1553 −9.4734 −12.2466 −4.6679 2.8031

1.6458 −0.1905 1.6282 −1.5989 −0.8662 1.6268
−20.6249 −16.3609 −11.6690 17.8681 7.3660 −7.5362

19.8606 16.2310 10.4293 −16.7563 −6.8485 5.2526
0.0250 0.4350 0.6878 −0.9352 −0.0068 −0.7146


(7.31)

and M = diag (pM ) up to numerical errors.

3. Lemma 7.5-based approach: the constructive Lemma 7.5 is used. The observability condi-
tion is satisfied with the following vectors:

e1 =
[
1 0 0 0 0 0

]
, e2 =

[
1 1 0 0 0 0

]
(7.32)

The following matrix M is chosen:

M =


−4.7000 1.0000 1.0000 1.0000 1.0000 1.0000

0 −4.6000 1.0000 1.0000 1.0000 1.0000
0 0 −2.1000 1.0000 1.0000 1.0000
0 0 0 −1.2000 1.0000 1.0000
0 0 0 0 −1.1000 1.0000
0 0 0 0 0 −0.3000

 (7.33)

and the poles of the classical observer are placed at pM using the following observer gain:
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L =


−0.0000
−1.2981
−1.1800
−1.0496
−0.0981
−0.3113

 (7.34)

Then, using the definitions of O1 and O2 and P = O2
−1O1, the following numerical results

are obtained:

P =


0.5183 0.0135 −0.2614 −0.2652 0.0159 0.0607
0.4817 −0.0135 0.2614 0.2652 −0.0159 −0.0607
0.7678 −0.0868 0.1875 −0.2260 −0.3072 0.1648
0.0183 0.0676 −0.5454 0.4758 0.0920 −0.5624
0.8023 0.5856 0.3072 −0.5223 −0.2770 0.3342
−0.0034 −0.0589 −0.0931 0.1266 0.0009 0.0967

 (7.35)

Time-varying SCT determination, for comparison Please refer to B.4.1 for a detailed
explanation of the method and to B.5.1 for the numerical results.

Simulations The system in (7.22) is simulated over 40s along with the interval observer de-
signed using the techniques presented in both this chapter and Chapter B. The simulation results
are shown in Fig. 7.5. The system state is represented in plain blue while the interval observer
state is represented in plain red when using the SCorpIO design method. The bounds obtained
using existing techniques are represented in black.

These simulations show that the proposed technique is a viable interval observer design ap-
proach. In comparison with the existing techniques which produce time-invariant SCTs, our
technique provides better results. This is closely related to the fact that control-oriented require-
ments can actually be enforced using the considered optimization-based approach: the obtained
interval is tighter thanks to appropriate disturbance rejection and constraints on the transforma-
tion matrices elements. Also, the poles of the classical observer can be constrained to accelerate
the dynamics. Of course, better results could be obtained when using the existing techniques by
choosing a more appropriate vector pM . This shows however that the ability to simultaneously
tune P and L is interesting since this reduces the need to use trial-and-error-based studies.

When compared to the method presented in [Mazenc 11], our approach performs slightly worse
especially in terms of convergence speed. This could be improved by setting stricter constraints
on the pole location at the cost of a bigger interval. In terms of interval tightness, both approaches
are comparable with a small advantage to the time-varying SCT-based one. However, this does
not contradict our objective to design an efficient time-invariant SCT determination method.

7.3.1 (b) Unstable third-order system

The same study is now performed on an unstable third-order system inspired by [Raïssi 12].
Contrary to the previous example where the disturbance was a measurements disturbance, a
state disturbance is now considered.

Model The considered system is given by the following state-space representation:

(G)
{
ẋ = Ax+ Bdd

y = Cx
(7.36)

where x ∈ R3 and d is an unknown yet bounded state disturbance with known bounds:

d = −1 ≤ d(t) ≤ 1 = d, ∀t ∈ R+ (7.37)

The signal d(t) = sin(2t) is used in simulation. The system state-space matrices are given by:
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system state Real-constrained pole placement, 7.1.2 (a)
SCorpIO, 7.2 Sylvester equation resolution, B.4.2
Time-varying SCT, B.4.1 Sylvester equation lemma, 7.1.2 (c)
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Figure 7.5: System (7.22) simulation with a comparison of bounds obtained using various interval
observer design methods.
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A =

 2 0 0
1 −4

√
3

−1 −
√

3 −4

 , Bd =

−1
0
1

 , C =
[
1 0 0

]
(7.38)

Matrix A has the following eigenvalues
[
2,−4±

√
3j
]
. Hence, the system (G) is unstable.

Moreover, the system is detectable only since the couple of complex eigenvalues is not observable
although stable. In simulation, the initial condition is chosen equal to x0 =

[
−2 1.5 −1

]>.
In practice, the initial condition is supposed to be unknown but it is known to lie in the interval[
x0,x0

]
where x0 = −2

[
1 1 1

]
and x0 = −x0.

Once again, the theory of linear interval state-observers presented in Chapter B is applied.
A classical observer is used and initialised at x̂0 = 03. The observation error dynamics is given
by the following representation:

(Ge)
{
ė = (A− LC) e+ Bdd

e0 = x0 − x̂0
(7.39)

where L ∈ R3 is the observer gain and e0 lies in
[
e0, e0

]
=
[
x0 − x̂0,x0 − x̂0

]
. Similarly to the

previous example, note that the dynamics in (7.39) is not cooperative whatever the choice of L.
Under Assumption 7.1, there exists P ∈ R3×3 such that M = P (A− LC) P−1 is Metzler.

Consequently, the following system is an interval observer for the observation error dynam-
ics (7.39) in the new coordinates ez = Pe:

(
Gz,]

e
)


ėz = Mez + (PBd)+
d− (PBd)− d

ėz = Mez + (PBd)+
d− (PBd)− d

ez(0) = P+e0 −P−e0

ez(0) = P+e0 −P−e0

(7.40)

Bounds on the state vector x are then easily determined using the reverse SCT in (7.3). The
next paragraphs are dedicated to the determination of matrices P and L.

SCorpIO Similarly to the previous example, the problem of finding appropriate matrices P
and L is reformulated in the form of the typical SCorpIO optimization Problem 7.13. In this
case, the following requirements are considered:

(1) transformation matrices maximum elements value: |Pij | ≤ 2, |Tij | ≤ 2, ∀ (i, j);

(2) Metzler matrix condition: Mij ≥ 0, ∀i 6= j;

(3) Maximum M elements value: Mij ≤ 5 = Mij , ∀ (i, j);

(4) Closed-loop stability: the system (7.39) should be stable when d = 0 with the following
constraint on the state matrix eigenvalues: Re (eig (A− LC)) ∈ [−∞,−0.9];

(5) Interval tightness:
∥∥∥ 1

0.1Td−d→Ed
(s,P,L)

∥∥∥
2
≤ 1;

(6) Ed linear dependence in PBd condition: PBd ∈ R3
−. This time, better results are obtained

when looking for a negative matrix PBd.

Once again, the optimization Problem 7.13 is locally solved using systune. The following
numerical results are obtained:

L =

 2.9804
−0.1465
−0.4002

 , P =

0.1422 −0.1322 −0.3850
0.3617 0.9009 0.2673
0.3271 −0.2566 0.2634

 (7.41)

Note that PBd ∈ R3
− hence (6) is satisfied. The resulting matrix M is Hurwitz Metzler:

149



7.3. Examples and comparisons

M =

−2.7655 0.9214 0.0000
0.0000 −3.0898 5.0000
1.7529 0.0000 −3.1251

 (7.42)

Other time-invariant SCT determination methods

1. Sylvester equation resolution: in this case, the basic lyap function fails to provide a solution
due to A and M sharing identical eigenvalues (cf. detectability hypothesis);

2. Real-constrained pole placement: since the complex eigenvalues are unobservable, this
means that the observer gain L cannot be used to obtain real negative eigenvalues. Hence,
this trivial method is not applicable in that case;

3. Lemma 7.5-based approach: the constructive Lemma 7.5 is used. The observability condi-
tion is satisfied with the following vectors:

e1 =
[
1 0 1

]
, e2 =

[
1 1 0

]
(7.43)

Similarly to what is proposed in [Raïssi 12], the following matrix M is chosen:

M =

−3 2 0
0 −3 2
2 0 −3

 (7.44)

and the poles of the classical observer are placed at
[
−1,−4±

√
3j
]
using the following

observer gain:

L =

3
0
0

 (7.45)

Then, using the definitions of O1, O2 and P = O2
−1O1, the following numerical results

are obtained:

P =

 0.4085 0.8660 0.5000
0.5915 −0.8660 0.5000
−0.0915 0.0000 −1.0000

 (7.46)

Time-varying SCT determination, for comparison To determine a time-varying SCT,
the approach presented in B.4.1 is applied. Let consider the observer gain (7.45). The following
Jordan form J is obtained for A− LC such that P (A− LC)P−1 = J where

J =

−4.0000 1.7321 0
−1.7321 −4.0000 0

0 0 −1.0000

 , P =

0.5577 0 1.4142
0.1494 −1.4142 0
1.0801 0 0

 (7.47)

Let ω = 1.7321. Then, the matrix η(t) is given by

η(t) =

cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

 (7.48)

which leads to the time-varying SCT matrix P(t) = η(t)P and

Ξ =

−4 0 0
0 −4 0
0 0 −1

 (7.49)

where Ξ = P (A− LC) P−1 + ṖP−1, see Proposition B.26.
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Simulations The system in (7.36) is simulated over 15s along with the interval observer de-
signed using the techniques presented above. Since the system is unstable, the state is not
represented. However, the simulations results for the observation error and its bounds obtained
for each technique are shown in Fig. 7.6. The observation error is represented in blue in each case
and the bounds are either represented in red when using the matrices obtained with SCorpIO or
in black for the other methods.

This example shows that SCorpIO is still a viable solution even in this quite particular case
where the system is unstable and part of its dynamics is unobservable. The results obtained
in terms of interval tightness and rapidity are comparable to the ones obtained by applying
Lemma 7.5. In this case also, the time-varying SCT based on [Mazenc 11] remains more efficient.

In short, our objective to design a viable solution for the simultaneous design of time-
invariant matrices P and L against both mathematical and control requirements is fulfilled
in the continuous-time framework.

7.3.2 Discrete-time application example
An illustration of the SCorpIO approach is now proposed in the discrete-time framework. The
following example is inspired by [Efimov 13e].

Model The considered discrete-time system is given by the following state-space representa-
tion:

(F)
{
xt+1 = Axt + Bdd

yt = Cxt
(7.50)

where the time sampling equals Ts = 1, xt ∈ R5, yt ∈ R2 and d is an unknown disturbance lying
in [−1, 1]. In simulation, a random number generator with limited range and sampling time Ts
is used as illustrated in Fig. 7.7. The system state-space matrices are given by:

A =


−0.54 0.45 0.36 0 0

0.63 0.45 0.18 0.36 0
0.09 0.45 0.27 0.09 0.18

0 0 0.25 0.25
√

2 −0.25
√

2
0 0 0 0.25

√
2 0.25

√
2

 , B =


−1

0
0
0
1

 , C =
[
1 0 0 0 0
0 0 0 1 0

]
(7.51)

Matrix A is Schur hence the system is Schur stable. In simulation, the initial condition
is chosen equal to x0 =

[
−0.3 −0.5 0.6 0.9 −0.2

]>. In practice, the initial condition is
supposed to be unknown but lies in the known interval

[
x0,x0

]
where x0 =

[
1 1 1 1 1

]
and x0 = −x0. Following the conventional interval observer design approach, the observation
error dynamics is characterized by:

(Fe)
{
et+1 = (A− LC) et + Bdd

e0 = x0 − x̂0
(7.52)

where L ∈ R5×2 is the observer gain and e0 lies in
[
e0, e0

]
=
[
x0 − x̂0,x0 − x̂0

]
.

Let suppose there exists P ∈ R5×5 such that M = P (A− LC) P−1 is non-negative. Then,
the following system is an interval observer for the observation error dynamics (7.52) in the new
coordinates ez = Pe:

(
Fz,]

e
)


ezt+1 = Mezt + (PBd)+
d− (PBd)− d

ezt+1 = Mezt + (PBd)+
d− (PBd)− d

ez0 = P+e0 −P−e0

ez0 = P+e0 −P−e0

(7.53)

Bounds on the initial state vector xt are then determined using the reverse SCT (7.3). The
determination of matrices P and L is tackled in the next section.
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Figure 7.6: System (7.39) simulation with a comparison of estimates and bounds obtained using
various interval observer design methods.
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Figure 7.7: Disturbance signal d used in the simulation of (7.50).
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SCorpIO The same approach is repeated once again to determine both matrices P and L.
This time however, since the synthesis models are discrete-time, the modification of the approach
proposed in Remark 7.12 is applied. That is, the matrix M is ensured to be Schur-stable and
non-negative by stabilizing8 the fictitious system (Fm) in (7.17). The following constraints are
considered in the synthesis:

(1) transformation matrices maximum elements value: |Pij | ≤ 1, |Tij | ≤ 1, ∀ (i, j);

(2) Non-negativity condition: Mij ≥ 0, ∀ (i, j);

(3) Maximum M elements value: Mij ≤ 100 = Mij , ∀ (i, j);

(4) Schur stability: the system (7.52) should be Schur-stable when d = 0;

(5) Interval tightness:
∥∥∥ 1

0.1Td−d→Ed
(z,P,L)

∥∥∥
2
≤ 1;

(6) Ed linear dependence in PBd condition: PBd ∈ R5
+.

The resulting optimization problem is locally solved using systune. The following numerical
results are obtained:

L =


−0.5883 −0.2396

0.5828 0.1432
−0.0946 −0.1807

0.2500 0.4680
−0.2729 0.2966

 , P =


0.5337 −0.0263 −0.8468 0.2105 0.6709
−0.4339 0.4129 0.0089 −0.3391 0.0108
−0.8118 −0.4898 0.8313 0.0561 −0.3900
−0.5149 −0.9126 −0.0566 −0.5979 −0.5149

0.1910 −0.8036 −0.0500 −0.5300 0.1936

 (7.54)

It is observed that PBd ∈ R5
+. The resulting matrix M is Schur-stable and non-negative:

M =


0.0000 0.0025 0.0243 0.0196 0.1543
0.1948 0.0228 0.0013 0.0100 0.0000
0.1524 0.0005 0.0000 0.2183 0.0107
0.5809 0.0001 0.0209 0.7039 0.0000
0.3599 0.0000 0.1170 0.0064 0.2807

 (7.55)

Other time-invariant SCT determination methods In the following, pole placement is
performed considering the following expected eigenvalues vector:

pM =
[
0.1 0.3 0.5 0.7 0.9

]
(7.56)

Indeed, in the discrete-time case, a matrix is Schur if its eigenvalues are in the unit circle and
non-negative if all its entries are positive. Choosing real eigenvalues simplifies the selection of
the targeted Schur non-negative matrix M. In practice, the following observer gain is obtained
using pole placement:

L =


−1.1993 −0.2234

0.6217 0.2992
−0.0161 0.2228
−0.0205 −0.4136
−0.0333 0.4069

 (7.57)

1. Real-constrained pole placement: this method is equivalent to diagonalizing matrix A. The
following SCT matrix P is obtained:

P =


−0.4816 −1.3788 −0.8972 −0.5748 0.0763
−0.3375 −0.5564 0.0284 0.9356 −0.9400
−0.1471 −0.9124 0.8567 0.2861 −0.2092

0.5944 −1.4806 −0.7589 −0.4881 0.2457
−0.1690 0.0094 0.1658 0.2565 1.1357

 (7.58)

8In the Schur sense.
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2. Lemma 7.5-based approach: the targeted Schur non-negative matrix M is chosen as

M =


0.1000 1.0000 1.0000 1.0000 1.0000

0 0.3000 1.0000 1.0000 1.0000
0 0 0.5000 1.0000 1.0000
0 0 0 0.7000 1.0000
0 0 0 0 0.9000

 (7.59)

The observability condition in Lemma 7.5 is satisfied with the following vectors:

e1 =
[
1 0 0 0 0

]
, e2 =

[
1 1 0 0 0

]
(7.60)

Using the definitions of O1 and O2 and P = O2
−1O1, the following numerical result is

obtained:

P =


0.7205 −0.0775 −0.0914 −0.0533 −0.0037
0.2795 0.0775 0.0914 0.0533 0.0037
0.0876 0.1087 0.0797 0.0507 0.0016
0.0203 0.0582 0.0379 0.0242 −0.0032
0.0041 0.0116 0.0076 0.0048 −0.0006

 (7.61)

In simulation, this method returns inappropriate results and is discarded from now on.

Simulations The system in (7.50) is simulated over 60s along with the interval observer (7.53)
where P and L are obtained using the presented design techniques. The simulation results are
shown in Fig. 7.8. The system state is represented in blue and the bounds are represented in
red when using SCorpIO design techniques and in dashed black when using the real-constrained
pole placement technique.

This example shows that SCorpIO is an adequate approach to the design of interval observers
in the discrete-time framework. The results are satisfying in comparison with other working time-
invariant SCT determination approaches.

7.4 Extension to the design of interval observers on closed-
loops

Problem 7.13 is entirely dedicated to designing an interval observer on a given system which is
the observation error system (B.18a) in the general case. We have shown in 7.2 that solving this
problem is possible using a control-oriented optimization technique. This led to the formulation
of a new interval observer design technique named SCorpIO. However, considering a classical
observer to be able to design an interval observer is not a must. This approach was just proposed
as a fast and easy technique to ensure stability of the dynamics from which the interval observer
dynamics is deduced.

In Chapter 5, we have shown that using the data from an interval observer for a given system
in closed-loop with a synthesized controller can be used to enforce a time-domain constraint on
this system. This led to an extension of the OIST approach to uncertain systems and systems
with partially measured states – a major contribution of this thesis.

The design of an interval observer on such closed-loop systems is critical. In this section,
we show that the method introduced in 7.2 can tackle this challenging problem. Only the
continuous-time case is considered but application to the discrete-time case is straightforward.

7.4.1 Interval observer of the closed-loop
Let consider the possibly unstable LTI system in (7.1). To stabilize this system, the following
dynamical controller is considered:
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system state
SCorpIO, 7.2
Real-constrained pole placement, 7.1.2 (a)
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Figure 7.8: System (7.50) simulation with a comparison of estimates and bounds obtained using
various interval observer design methods.
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(K)


ẋK = AKxK + BKuK

yK = CKxK + DKuK

xK(0) = 0
(7.62)

where xK ∈ RnK , uK ∈ Rm and yK ∈ Rl. This controller is considered in closed-loop with
system (G) in (7.1), i.e.:

u = yK + v, uK = y (7.63)
where v ∈ Rl is an exogenous set-point signal. Let suppose the closed-loop is well-posed:

Assumption 7.17 (Closed-loop well-posedness).
It is supposed the closed-loop consisting of system (G) (7.1), controller (K) (7.62) and
interconnection (7.63) is well-posed.

The matrix Il −DKDu is thus invertible and the closed-loop dynamics is given by:

Ẋ =
[

A + Bu (Il −DKDu)−1 DKC Bu (Il −DKDu)−1 CK
BKC + BKDu (Il −DKDu)−1 DKC AK + BKDu (Il −DKDu)−1 CK

]
X

+
[
Bu Bd + Bu (Il −DKDu)−1 DKDd
0 BKDd + BKDu (Il −DKDu)−1 DKDd

]
W

= AXX + BX,vv + BX,dd
(7.64)

whereX =
[
x
xK

]
∈ Rn+nK andW =

[
v
d

]
. For a stabilizing (K), the matrix AX is Hurwitz. Let

denote (GX) the dynamical system in (7.64) with initial condition X0 =
[
x0
0

]
. Considering the

definition of an interval observer in [Cacace 15] and supposing the disturbance input d and initial
condition X0 are bounded, an interval observer for (GX) is given in new coordinates XZ = PX
by

ẊZ = PAXP−1XZ + (PBX,d)+
d− (PBX,d)− d+ PBX,vv

ẊZ = PAXP−1XZ + (PBX,d)+
d− (PBX,d)− d+ PBX,vv

XZ(0) = P+X0 −P−X0

XZ(0) = P+X0 −P−X0

(7.65)

where P ∈ R(n+nK)×(n+nK) is such that MX = PAXP−1 is Metzler. Contrary to the original
problem, a classical observer is not required here since the interval observer is directly built on
a cooperative representation of the closed-loop. This is notably used in Chapter 5 to avoid the
dependency of the derivatives of the constrained output α in the measurements vector y. The
interval tightness Ed = 1

2
(
XZ −XZ

)
is then characterized by the following dynamics:

Ėd = MXEd + 1
2

[
(PBX,d)+ + (PBX,d)−

] (
d− d

)
(7.66)

which can be made linear in the design parameter P by structuring P such that PBX,d ∈
R(n+nK)×k

+ . In the next section, the problem of finding P and (K) such that the system in (7.65)
is an interval observer for (GX) is formally stated.

7.4.2 Problem statement
The Problem 7.7 of finding a time-invariant SCT such that a given system is cooperative in the
new coordinates is reformulated in the newly considered case. The decision variables are now P
and the controller (K).
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Problem 7.18 (Time-invariant SCT determination problem (closed-loop)).
Considering (GX) in (7.64) under Assumption 7.17, find P ∈ R(n+nK)×(n+nK) and (K)
given in (7.62) such that

MX = PAXP−1 (7.67)

is Hurwitz Metzler where

AX =
[

A + Bu (Il −DKDu)−1 DKC Bu (Il −DKDu)−1 CK
BKC + BK (Il −DKDu)−1 DKC AK + BKDu (Il −DKDu)−1 CK

]
(7.68)

Similarly to Proposition 7.11, this problem can be viewed as a stabilization problem on the
following system:

(Gm)
{
ẋl = AXxl

ẋij = −MXij (P,AK,BK,CK,DK)xij ∀i 6= j
(7.69)

where MXij (P,AK,BK,CK,DK) =
[
PAXP−1]

ij
with AX defined in (7.68) and 1 ≤ i 6= j ≤

n + nK . Again, additional control requirements can be added to enforce specific properties on
the considered dynamics, especially disturbance d rejection.

Problem 7.19 (Typical SCorpIO problem (closed-loop)).
Solve the following optimisation problem:

min maxP,(K)

{
‖WK(s)Td→yK

(s, (K))‖2 ,
∥∥∥WEd

(s)T
d−d→Ed

(s,P, (K))
∥∥∥

2

}
subject to

{
(Gm) in (7.69) is Hurwitz stable

PBX,d ∈ R(n+nK)×k
+

(7.70)

where WK(s) and WEd
(s) are appropriately defined frequency-dependent weightings and

the usual notations for transfer functions is used.

A local solution to this optimization problem can be obtained using the structured control
design techniques mentioned in 7.2.3. This is illustrated in the next section.

7.4.3 Example
The SCorpIO approach for closed-loops in continuous-time as presented in 7.4 is applied on a
simple example. Both the controller (K) and state-coordinate transform matrix P are synthesized
to simultaneously stabilize the original system and design an interval observer on the resulting
closed-loop.

7.4.3 (a) Model

Let consider the LTI system in (7.1) where the state-space matrices are given by:

A =
[
1 −1
2 −3

]
, B =

[
Bd Bu

]
=
[
0 0
1 1

]
, C =

[
1 0

]
, D = 01×2 (7.71)

and x0 = 02. A unidimensional state disturbance d is considered. In simulation, the signal
represented in Fig. 7.9 is used. Its known upper and lower bounds are represented on the same
figure.

The state matrix A is non-Hurwitz non-Metzler with its eigenvalues equal to −1±
√

2j. Hence,
the considered system is unstable. Also, to build an interval observer on this system, a SCT is
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Figure 7.9: Disturbance signal d used in simulation. Known bounds on this signal are represented
in black.

required. A controller (K) as in (7.62) is considered with nK = 1 and the loop is closed using
the relations in (7.63). We denote X =

[
x1 x2 xK

]> where x is the system state and xK is
the controller state. Also, Xz = PX. The simultaneous synthesis of P and (K) is now covered.

7.4.3 (b) Application of SCorpIO

The objective is to find (K) and P such that the system in (7.71) in closed-loop with (K) is stable
and its state-matrix MX = PAXP−1 is Metzler in the new coordinates XZ = PX. Satisfying
disturbance d rejection properties are also expected. A complete list of synthesis requirements
is now detailed. Then, it is shown that it can be formalized as an optimization problem such as
Problem 7.13.

The design variables which are optimized are P ∈ R(n+nK)×(n+nK) and the controller matrices
(AK,BK,CK,DK). All other variables are defined from these two design parameters: T = P−1

and MX = PAXP−1 where AX is defined in (7.68).
The following constraints are considered:

(1) transformation matrices maximum elements value: |Pij | ≤ 4, |Tij | ≤ 4, ∀ (i, j). This is used
to avoid ill-conditioned matrices especially for the matrix T which is used to get back in
the original coordinates;

(2) Metzler matrix condition: MXij ≥ 0, ∀i 6= j;

(3) Maximum MX elements value: MXij ≤ 50 = Mij , ∀ (i, j). This reduces the set of admissible
solutions. In practice, it is observed that introducing this constraint helps the considered
optimization algorithm9 to converge;

(4) Closed-loop stability: the system (7.71) in closed-loop with controller (K) should be stable
with the following constraint on the state matrix eigenvalues: Re (eig (AX)) ∈ [−50,−0.01];

(5) Interval tightness:
∥∥∥2T

d−d→Ed
(s,P, (K))

∥∥∥
2
≤ 1;

(6) Linear dependence in P condition: PBX,d ∈ R(n+nK)
+ .

Following a scheme similar to the one described in Proposition 7.11, conditions (1) to (4)
can easily be expressed as a stabilizing condition on a fictitious system:

(Gm)



ẋl = AXxl

ẋ1
ij = − (Tij + 4)x1

ij ∀ (i, j)

ẋ2
ij = − (Tij − 4)x2

ij ∀ (i, j)

ẋ3
ij = −MXijx

3
ij ∀i 6= j

ẋ4
ij = −

(
MXij − 50

)
x4
ij ∀ (i, j)

(7.72)

This is implemented in C.2.2 and commented with more details.
9In this work, the systune function from the Robust Control Toolbox [MATLAB 14] is used.
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Remark 7.20. In practice, when using Matlab, P is of type realp on which minimum and
maximum values for each elements can be set:

> P.Minimum = -4;
> P.Maximum = 4;

Also, since BX,d =

0
1
0

 in this example, condition (6) can be enforced using:

> P.Minimum(:,2) = 0;

Code samples for the SCorpIO approach are given in C.2.2. �

The resulting optimization problem is now formalized. It appears that it can be solved using
the control-oriented non-smooth optimization-based algorithms presented in 7.2.3. The problem
being non-smooth non-convex, the solution obtained using [Apkarian 13] is locally optimal.

Problem 7.21 (Example: resulting SCorpIO problem).
Solve the following optimisation problem:

min maxP,(K)

{∥∥∥2T
d−d→Ed

(s,P, (K))
∥∥∥

2

}

subject to


(Gm) in (7.72) is Hurwitz stable
Re (eig (AX)) ∈ [−50,−0.01]

PBX,d ∈ R(n+nK)
+

(7.73)

7.4.3 (c) Results and simulation

Problem 7.21 is solved using the systune function from the Robust Control Toolbox [MAT-
LAB 14] based on [Apkarian 07, Apkarian 13, Apkarian 14]. The following local optimal solution
is obtained:

AK = −6.309, BK = 0.6664, CK = −31.42, DK = 5.796 (7.74)

P =

−0.2329 0.2500 −1.8527
−0.2500 0.0000 0.3383
−0.0000 0.0000 −2.1678

 (7.75)

This results in the following value for the matrix MX which is the resulting interval observer
state matrix (7.65):

MX =

−2.0686 0.0000 0.0000
1.0000 −0.8333 0.0000
0.0001 5.7783 −5.4070

 (7.76)

As expected, this matrix is Hurwitz Metzler, hence the system in (7.65) is a valid interval
observer candidate for the system described by (7.71). Also PBX,d ∈ R3

+ hence the system (7.66)
is linear in the design matrix P.

The resulting closed-loop and interval observer are simulated over 40s with the disturbance
d in Fig. 7.9 and v = 0. The simulation results are represented in Fig. 7.10.

The simulation results are quite satisfactory. Tighter intervals could be obtained in the new
coordinates by not constraining the maximum admissible value of the elements of T = P−1. This
is beneficial when getting back in the original coordinates is not required by the application.

Note that in this case, it is not possible to compare the SCorpIO method with the ones
presented in 7.1.2 since the latter were not designed for both synthesizing controllers and interval
observers on the resulting closed-loops.
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(a) Closed-loop state in the original coordinates (in
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0 5 10 15 20 25 30 35 40

X
z
,1

-0.05

0

0.05

0.1

0 5 10 15 20 25 30 35 40

X
z
,2

-0.05

0

0.05

0.1

0 5 10 15 20 25 30 35 40
X

z
,3

-0.05

0

0.05

0.1

(b) Closed-loop state in the new coordinates Xz =
PX (in blue). Bounds obtained using the interval ob-
server are represented in black.

Figure 7.10: Simulation results for the system (7.71) in closed-loop with (7.74) and the designed
interval observer (7.65).

7.5 Conclusions
In this chapter, existing methods to determine time-invariant state-coordinate transformations
such that a given system is cooperative in the new coordinates have been recalled. It has been
shown that these methods, despite of their ease of use, are not very flexible. They rely on the
fine tuning of design parameters on which the obtained solution depends. Also, matrices L and
P are designed separately which could reduce the set of admissible solutions.

Consequently, a new approach named SCorpIO has been introduced. It relies on the refor-
mulation of the structural Metzler constraint on the state matrix M into a stabilization problem
as presented in Proposition 7.11. The advantage of such reformulation is to allow simultaneous
design of P and L. Also, additional control requirements can be considered in the synthesis for
example to enforce disturbance rejection constraints. The reformulation leads to an optimization
problem which can be solved using existing control-oriented techniques such as [Apkarian 07]
and implemented in [Apkarian 13, Apkarian 14]. With slight modifications, the approach can
also be applied in the discrete-time case. Using a similar approach, a solution has been proposed
to the simultaneous design of a structured controller and an interval observer on the resulting
closed-loop. Examples were presented in both cases.

The main drawback of the method is that it is much more complex to implement than the
existing ones. Also, in the presence of high-order models, the amount of models and requirements
explodes which can hinder the performance of the optimizing algorithm in terms of computation
time and repeatability of the obtained local solution. The development of dedicated algorithms
(instead of using approaches specifically dedicated to control design) could help raise these re-
strictions.

The SCorpIO approach has been used in Chapter 5 to design interval observers on closed-loop.
This allowed to extend OIST to the case of systems with partially measured state vectors.
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Chapter 8

Contributions and perspectives

In this chapter, the main contributions presented in Part III are recalled. It gives a final
overview of how the problem of designing a control law satisfying to both frequency-
domain and time-domain requirements has been tackled. Of course, the different the-
ories which were presented have their limitations. These are recalled along with some
hints for future developments.
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8.1. Multi-models multi-objectives robust control design technique

8.1 Multi-models multi-objectives robust control design tech-
nique

The structured controller synthesis method introduced in [Apkarian 07] and applied to multi-
models multi-objectives structured controller synthesis in [Apkarian 14] has been considered in
Chapter 2 for the synthesis of a robust observer-based controller. For a given uncertain LTI
system, it has been shown how to build synthesis models for critical values of the vector of
uncertainties θ. The observer-based controller structure has been detailed. Through using an
additional dynamic Youla parameter, it has been shown how to increase the number of degrees
of freedom in the structure. The approach is then applied to the synthesis of an observer-based
controller. An example of application to the launch vehicle system is proposed in 6.2. The
difficulty to enforce a given time-domain constraint is discussed in the same section.

8.2 Linear OIST formulation
In this thesis work, considering our ability to synthesize effective controllers against frequency-
domain requirements, it has been decided to consider an evolutionary strategy [Goodwin 01] to
solve the problem of output-constrained control. More precisely, the OIST approach introduced
in [Burlion 12] for non-linear systems and recalled in Chapter 3 has been considered.

This approach is based on the transformation of the output constraint α into saturations
on the input. Consequently, the considered output trajectory is forced to satisfy the constraint
by limiting the set of admissible input signals. The time-varying and state-dependent input
saturations are appropriately defined using information on the relative degree of α with respect
to the control input u as well as the notion of propagated bounds. This notion is used in
Lemma 4.17 to enforce the time-domain constraint through using the dependence of a derivative
of well-defined order of α on u.

The first contribution related the OIST approach is its reformulation in the linear framework
for known systems with complete state measurements, leading to Theorem 4.28. Especially,
considering linear systems leads to explicit iterative expressions of the propagated bounds and
thus of the input saturations. However, as illustrated in 4.3, the output constraint cannot be
guaranteed whenever these saturations overlap. Saturations overlap is caused by an inappropriate
selection of the OIST design coefficients κ. Also, the introduction of saturations in the closed-loop
can lead to a loss in performance at best and to instability at worst. The following contributions
are concerned with both problems.

8.3 OIST saturations overlap mitigation and closed-loop
stability analysis

As mentioned previously, saturations overlap is a critical problem when applying OIST. Sat-
urations overlap is due to the presence of unknown disturbances with known bounds. The
disturbance input is indeed replaced by its known bounds in the expression of the saturations
which leads to some conservatism and, possibly, to saturations overlap. It has been observed
that a naive way to avoid saturations overlap is to increase the coefficients values in κ. A more
formal solution was however required.

A major contribution of this work is the formulation of Theorem 4.24 which appropriately
defines the OIST design coefficients κ such that saturations overlap is avoided at all times. It
is based on an appropriate time-dependent selection of these coefficients which are forced to
increase whenever saturations overlap could occur.

The second problem was concerned with the possible performance degradation, or worse,
destabilisation of the system in closed-loop with the constrained control. Using results from
the anti-windup literature [Herrmann 10], the global asymptotic stability of the origin of the
system in closed-loop with the saturated nominal controller has been proven in Theorem 4.34,
for minimum-phase transfers only. It relies on the introduction of an appropriately defined Model
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Recovery Anti-Windup (MRAW). It has been observed in simulation that the use of an AW also
improves performance, as expected, since the output is allowed to linger on the time-domain
constraint.

The contributions presented in Chapter 4 and recalled in 8.2 and 8.3 have been published
in [Chambon 15c] and [Chambon b]. However, some limitations to these contributions can be
mentioned:

• the considered class of linear systems is quite limited since their dynamics are supposed to
be well known and with complete state measurements. This problem is tackled in Chapter 5
as recalled in the following section;

• The results concerned with stability analysis are valid for minimum phase systems only;

• An automated procedure for the tuning of design coefficients could improve the applicability
of the method especially in the case of high-dimensional systems.

The contributions to the OIST theory are under implementation in the SMAC toolbox [On-
era 16].

8.3.1 Non-minimum phase systems
In the case of minimum phase systems, global asymptotic stability of the origin has been proven
in Theorem 4.34. However, in case some zeros of the transfer Tu→α(s) from the control input
u to the constrained output α are unstable, it has been observed in 4.6.2 that the origin of the
saturated closed-loop is locally stable at best. This is due to the OIST approach itself:

• for minimum phase systems, Proposition 4.32 is applicable;

• For non-minimum phase systems, the system ẋ = [A−BuKoist(t)]x is unstable by defi-
nition of Koist(t). Consequently, whenever the saturations are active, the term BuKoist(t)
is no longer cancelled in the dynamics and the system diverges.

Informally speaking and depending on the real part of the unstable zero, it may be possible
to recover from this diverging behaviour as observed in 4.6.2. However, a formal solution to
this problem is not available yet. It is expected that the stability set of such systems may be
enlarged by appropriately choosing an anti-windup compensator. Hints on how to synthesise
such compensator are given in [Biannic 11].

8.3.2 Automated tuning of the design coefficients
The OIST approach currently suffers from the complexity of the saturations expressions especially
in the case of high-order systems for which the relative degree of α with respect to u may be
large. In practice, this results in some difficulty to tune the coefficients κ̆ which influence can
be hard to identify but still dramatically influence the simulation results by shaping the control
saturations.

In 4.6.1, an example of such automated design procedure was illustrated in the case of a
very simple double integrator example. This procedure is based the AMPL environment which
allows to formalize non-linear optimization problems. Using an appropriate cost functional and
the IPOPT solver, an optimal solution κ̆opt has been obtained on this simple example.

Perspectives include considering more complex examples as well as cost functions. A com-
parison between different solvers could also be of interest as well as propositions of extensions to
the OISTeR approach.

8.4 OIST extension for Robustness
As highlighted in Chapter 4 and 8.2, the OIST approach can only be applied to systems with
no uncertainties and with complete state measurements. In Chapter 5, an extension – named
OISTeR – of the OIST approach has been proposed for the first time to account for robustness
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issues due to the presence of uncertainties. The case of incomplete state measurements has also
been treated.

The core of the OISTeR approach is to consider known guaranteed bounds on the possible
unknown constrained output α when transforming the constraint into saturations on the input.
These bounds are provided by an interval observer. The concepts of generalized output con-
straint and generalized propagated bounds are then introduced, leading to a reformulation of the
propagated bounds lemma in Lemma 5.19. It is interesting to note that this is truly a general-
ization of the original OIST approach since the original expressions are retrieved whenever it is
supposed that the state is completely known.

The OISTeR approach is quite novel and is currently subject to some limitations amongst
which even stronger applicability issues than the OIST approach. A more problematic issue is
the conservatism of the method. Its implementation in the SMAC toolbox [Onera 16] is however
already considered.

8.4.1 Conservatism issues
As illustrated in 5.4, the OISTeR approach is conservative. Especially, it requires both the
interval observer to provide a very tight estimation and a good knowledge of the disturbance.
This conservatism is also induced by the bounds provided in Lemma 1 [Efimov 13e] which are
guaranteed bounds but can overestimate the bounds on the state vector. Different approaches
are now hinted to reduce this conservatism.

First, it can be noted that only time-invariant SCT have been used. As illustrated in Chap-
ter 7, interval observers based on time-varying SCT provided tighter intervals in general. The
main drawback of using such transformation within the OISTeR theory would be the time-varying
aspect of the transformation. This would required rewriting the generalized propagated bounds
and saturations expressions to account for the dependency on time. More complex expressions
would be obtained as a result.

Second, a stochastic approach to interval estimation could be used. Using approaches based
on confidence intervals, it may be possible to reduce the conservatism at the cost of guarantees
on the constraint satisfaction, leading to an interesting trade-off in terms of applicability.

8.4.2 Stability issues
The OISTeR approach is very recent and, contrary to the OIST approach in Chapter 4, a formal
stability analysis has not yet been conducted. More precisely, the stability of the interval observer(
Gz,]) (5.12) in closed-loop with the OISTeR saturations (5.48) should be analysed. This is
particularly critical in the case of non-minimum phase systems where the stability can only be
local. Introducing an anti-windup compensator as in Chapter 4 would be an interesting study
both to improve the performance and enlarge the stability domain in the case of a non-minimum
phase system.

8.5 Non-smooth optimization-based approach to linear in-
terval observer design

It was possible in Chapter 5 to extend the OIST approach to uncertain linear systems by con-
sidering guaranteed bounds on the system state as provided by an interval observer. The design
of interval observers on linear systems is well-documented as detailed in Chapter B. The most
common approaches rely on a state-coordinates transformation (SCT) which is either chosen
time-varying or time-invariant. In the time-invariant case, methods have been proposed in the
literature to determine an appropriate SCT.

It appears that these methods are easy to implement. The expected result, namely a Metzler
state matrix, should however be provided along with other design parameters. Finding a Metzler
matrix with given eigenvalues can be hard especially in the complex case. Also, it is not possible
to include control-oriented requirements in the determination of the SCT which can lead to very
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poor simulation results. For high-order systems, applying these methods is expected to be even
harder.

The SCorpIO approach aims at proposing an alternate method to the existing ones. It
relies on the reformulation of the mathematical problem of finding P and L such that M =
P (A− LC) P−1 is Hurwitz Metzler into a control design problem. The problem is then solved
using a non-smooth optimization-based approach dedicated to structured controller design. The
advantages of the approach is that it allows to formulate control requirements to further constrain
the interval observer dynamics. Also, matrices P and L are synthesized simultaneously contrary
to existing methods. An extension to the design of interval observers on closed-loops is proposed,
where the matrices P and controller (K) are simultaneously tuned.

The main limitation of the SCorpIO method is that it is quite complex to apply with control-
oriented requirements rather than pure mathematical ones. The computation time also increases
a lot with the system dimension. The contributions presented in Chapter 7 and recalled in this
section have been published in [Chambon 15b], [Chambon a] and [Chambon 16].

8.5.1 Dedicated optimization algorithm
The SCorpIO approach relies on the Matlab procedure systune [MATLAB 14] which is dedi-
cated to structured controller synthesis. The reformulation of the Metzler mathematical problem
into a control design problem is purely fictitious. The development of a dedicated algorithm even-
tually based on non-smooth optimization methods to the problem of finding an appropriate SCT
could both simplify the application of the method and reduce the computational time. This
could be an aside improvement in following versions of the systune macro, if manageable.

8.5.2 Non-linear operations on decision variables
In Chapter 7, it is discussed how the tightness Ed = 1

2 (x− x) of the interval observer can
be turned into a control design requirement. However, this requires enforcing PBd to be non-
negative (or negative) to obtain a dynamics which is linear in the problem variable P. Otherwise,
the dynamics would depend non-linearly in P through the term max (PBd,0). This type of
term cannot be considered when using the systune procedure which does not implement the
max operation on variables of type realp.

8.6 Application to the linear flexible launch vehicle
Results from Chapters 2 to 5 are applied to simplified models of the flexible launch vehicle
in Chapter 6. Satisfying results are obtained. The transfer from the control input β to the
angle of attack α (constrained output) being non-minimum phase, a specific approach is used
in the application of OIST, more specifically when considering the addition of an anti-windup
compensator to improve performance. A reduced-order interval observer is considered in the
application of OISTeR to the rigid launch vehicle so as to reduce the conservatism of the approach.
This hints some improvements for future developments of the method.

Future works should focus on further reducing the conservatism. More complex models of
the launch vehicle could be considered upon developments of the OIST and OISTeR approaches.
More precisely the LPV case could be considered where the model parameters are varied over
time to account more faithfully for the evolution of the system.

8.7 Further developments
As far as the OIST approach is concerned, the class of systems considered in Chapter 4 has
been extended in Chapter 5 to account for the presence of uncertainties and incomplete state
measurements. Further developments should focus on considering LTV and LPV systems. Also,
a formulation of OISTeR for non-linear systems would be an interesting addition.

Considering the SCorpIO approach, it could be extended to compute an appropriate SCT
such that a given LTV system is cooperative at all times in the new coordinates. An hybrid
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systems approach could be considered where the matrix P changes at selected instants, the
problem being to analyse the cooperativity of the system between those instants. A scheduled
approach where the matrix P is parametrized with respect to the time could also be explored.
Such approach would then be integrated within OISTeR to design the required interval observer
on the considered LTV system.
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Appendix A

Proofs related to OIST reformulation

A.1 Proof of Proposition 4.32
Considering (4.57) and the system in (4.64), this problem is equivalent to studying the stability
of the system ẋ(t) = Ax(t) + Buu(t) in closed-loop with v(t) = 0 or u(t) = −Koist(t)x(t) (and
d(t) = 0). The transfer function between u and the regulated variable α is given by

α = Tu→α(s)

= sm+p1s
m−1+...+pm−1s+pm

sn+d1sn−1+...+dn−1s+dn
u

(A.1)

with k = n−m (see Assumption 4.6). Theoretically speaking, a minimum state-space represen-
tation of this transfer can be represented in the canonical form which can in turn be expressed as
a chain of integrators augmented by the considered transfer zero dynamics, see [Hu 12, Chapter
4]. The chain of integrators is given by

︷̇︷
α = α̇

...
˙︷ ︷

α(k−2) = α(k−1)

˙︷ ︷
α(k−1) = α(k)

= −Uk(t)Ox+ CαAkx

(A.2)

where the last equality is obtained by observing that u = −Koist(t)x (and d = 0). Let ∀j ∈ N
such that j ≤ k−1, γj = α(j) +U j(t)Ox−CαAjx and Γ =

[
γ0 . . . γk−1

]
∈ Rk. Using (4.26)

and (4.38) with null disturbances, the chain of integrators in (A.2) can be re-written as

Γ̇ =



−κ1 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
−κk−1 1

0 . . . 0 −κk

Γ

= AΓΓ

(A.3)

This is completed by the zero dynamics as shown in [Hu 12, Chapter 4] which results in the
open-loop transfer in (A.1) being equivalent to the following state-space representation

˙︷ ︷[
Γ
Z

]
=
[

AΓ 0
AZΓ AZ

] [
Γ
Z

]
(A.4)
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where

AZ =



0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 1
−pm −pm−1 . . . −p2 −p1

 (A.5)

and AZΓ is the null matrix except for the coefficient AZΓ (n− k, 1) = 1. Considering Assump-
tion 4.10, AZ eigenvalues are with strictly negative real parts. As far as the dynamics in (A.4)
is concerned, the following candidate Lyapunov positive definite function is considered

V (Γ,Z) = 1
2Γ>Γ + ε

2Z
>Z (A.6)

where ε is a positive constant. Then

V̇ (Γ,Z) = Γ>AΓΓ + εZ>AZZ + εZ>AZΓΓ (A.7)

where, using the logarithmic function concavity and the fact that ∀i ∈ N? s.t. i ≤ k, γi−1γi ≤
|γi−1γi|:

Γ>AΓΓ = −∑k−1
i=0 κi+1γ

2
i +

∑k−1
i=1 γi−1γi

≤ −∑k−1
i=0 κi+1γ

2
i + 1

2
∑k−1
i=1 γ

2
i + 1

2
∑k−2
i=0 γ

2
i

Γ>AΓΓ ≤ −Γ>DVΓΓ

≤ −Γ>diag
(
κ1 − 1

2 , κ2 − 1, . . . , κk−1 − 1, κk − 1
2
)
Γ

(A.8)

so that DVΓ is a positive definite diagonal matrix upon adapted selection of the positive time-
varying coefficients κi(t). In the same vein

εZ>AZΓΓ ≤ εν

2

(
AZΓ

>Z
)>

AZΓ
>Z + ε

2νΓ>Γ (A.9)

where ν is a positive constant. It comes that

V̇ (Γ,Z) ≤ −Γ>DVΓΓ + ε

2νΓ>Γ + ε
(
Z>AZZ + ν

2Z
>
(
AZΓAZΓ

>
)
Z
)

(A.10)

Using the notations λmin(M) and λmax(M) to denote the minimal and maximal real parts of
the eigenvalues of the matrix M , it is observed that

Z>AZZ + ν

2Z
>
(
AZΓAZΓ

>
)
Z ≤ λmax(AZ)Z>Z + ν

2λmax

(
AZΓAZΓ

>
)
Z>Z (A.11)

and

− Γ>DVΓΓ + ε

2νΓ>Γ ≤ −λmin (DVΓ) Γ>Γ + ε

2νΓ>Γ (A.12)

By choosing ν = − λmax(AZ)
λmax(AZΓAZΓ>) > 0 (since AZΓAZΓ

> is positive semi-definite) and ε =
νλmin(DVΓ) > 0 and by observing that the eigenvalues of AZ are with strictly negative real
parts (see Assumption 4.10) and DVΓ is a positive definite matrix, one obtains

V̇ (Γ,Z) ≤ − 1
2λmin(DVΓ)Γ>Γ + 1

2λmax(AZ)Z>Z
≤ −min

(
λmin(DVΓ),− 1

ελmax(AZ)
)
V (Γ,Z)

≤ −k1V (Γ,Z)

(A.13)

where k1 > 0. Also note that V̇ (0, 0) = 0. As a consequence, the candidate function V is a
Lyapunov function and the open-loop system ẋ = [A−BuKoist(t)]x is GES.
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A.2 Proof of Theorem 4.34
First, considering Proposition 4.31, the origin is a reachable equilibrium of the system in closed-
loop with the saturated control signal. Thus, it is of some interest to study the asymptotic
stability of this equilibrium. Using (4.3), the state equation in (D.15) can be re-written as

ẋ(t) = Ax(t) + Bu

[
−Koist(t)xa(t) + CKxK(t) + DK (y(t)− xa(t))−Dzv(t)

v(t) (v(t))
]

+ Bdd(t)
(A.14)

when considering the anti-windup system (4.66) and the modified control law (4.67). Using a
similar approach than in [Kapoor 99], let define ex(t) := x(t)− xa(t). It follows that

ėx(t) = (A + BuDK) ex(t) + BuCKxK(t) + Bdd(t) + BuDKDdd(t)
ẋK(t) = AKxK(t) + BKex(t) + BKDdd(t)

(A.15)

Let X =
[
ex xK

]> and W = d, then

Ẋ =
[
A + BuDK BuCK

BK AK

]
X +

[
Bd + BuDKDd

BKDd

]
d

= AXX + BXW

(A.16)

Under Assumptions 4.7 and 4.8, ‖W ‖2 is finite and ‖W ‖ is bounded. It follows that ‖X‖2 is
finite and ‖X‖ converges to zero. In case W = 0, the state X converges exponentially to zero.
Replacing v in (4.66) by its expression in (4.67), one obtains the following equation:

ẋa(t) = [A−BuKoist(t)]xa(t)

−BuDzv(t)
v(t) (Koist(t)ex(t) +Koist(t)Ddd(t) + DKex(t) + DKDdd(t) + CKxK(t)) (A.17)

Considering Proposition 4.32, the open-loop system ẋa = [A−BuKoist(t)]xa(t) is expo-
nentially stable. Thus, for some positive definite function V (xa), there exists by the converse
Lyapunov theorem, see [Khalil 02], constants αi, 1 ≤ i ≤ 4, such that

α1 ‖xa‖2 ≤ V (xa) ≤ α2 ‖xa‖2∥∥∥∂V (xa)
∂xa

∥∥∥ ≤ α3 ‖xa‖
∂V (xa)
∂xa

[Axa −BuKoist(t)xa] ≤ −α4 ‖xa‖2
(A.18)

Since, by (A.17):

V̇ (xa) = ∂V (xa)
∂xa

[Axa −BuKoist(t)xa]

− ∂V (xa)
∂xa

BuDzv(t)
v(t) (Koist(t)ex(t) + DKex(t) + CKxK(t) + (DK +Koist(t)) Ddd(t)) (A.19)

it comes

V̇ (xa) ≤ −α4 ‖xa‖2

+ α3 ‖xa‖ ‖Bu‖
∥∥∥Dzv(t)

v(t) (Koist(t)ex(t) + DKex(t) + CKxK(t) + (DK +Koist(t)) Ddd(t))
∥∥∥

(A.20)

First, using Lemma 4.33 and ex := x−xa, it is observed that sinceKoist(t)x is K1-Lipschitz
then
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‖Koist(t)ex‖ ≤ K1 ‖ex‖ , ∀t (A.21)

Second, by property of the deadzone function,
∥∥∥Dzv(t)

v(t) (v(t))
∥∥∥ ≤ ‖v(t)‖ , ∀t. It comes that

V̇ (xa) ≤ −α4 ‖xa‖2 + α3 ‖Bu‖ ‖xa‖ {[K1 + ‖DK‖] (‖ex‖+ ‖Dd‖ ‖d‖) + ‖CK‖ ‖xK‖}
≤ −α4 ‖xa‖2 + α3 ‖Bu‖ ‖xa‖

[
K1 +

∥∥[DK CK
]∥∥] ‖X‖

+α3 ‖Bu‖ ‖xa‖
[
K1 +

∥∥[0 DK
]∥∥] ‖Dd‖ ‖W ‖

(A.22)
Using k1 > 0 and k2 > 0 such that

k1 ≥ α3 ‖Bu‖
[
K1 +

∥∥[DK CK
]∥∥] ∈ R

k2 ≥ α3 ‖Bu‖
[
K1 +

∥∥[0 DK
]∥∥] ‖Dd‖ ∈ R

(A.23)

then (A.22) becomes

V̇ (xa) ≤ −α4 ‖xa‖2 + ‖xa‖ [k1 ‖X‖+ k2 ‖W ‖] (A.24)

Applying the inequality 2ε ‖xa‖ ‖X‖ ≤ ε2 ‖xa‖2 + ‖X‖2

ε2 for ε > 0, (A.24) is re-written as

V̇ (xa) ≤ −α4 ‖xa‖2 + 1
2k

2
1ε

2
1 ‖xa‖2 + 1

2k
2
2ε

2
2 ‖xa‖2 + k2

1
2ε2

1
‖X‖2 + k2

2
2ε2

2
‖W ‖2

≤
(
−α4 + 1

2k
2
1ε

2
1 + 1

2k
2
2ε

2
2
)
‖xa‖2 + k2

1
2ε2

1
‖X‖2 + k2

2
2ε2

2
‖W ‖2

≤ −α5 ‖xa‖2 + k2
1

2ε2
1
‖X‖2 + k2

2
2ε2

2
‖W ‖2

(A.25)

where α5 = α4 − 1
2k

2
1ε

2
2 − 1

2k
2
2ε

2
2 > 0 if the constants ε1 and ε2 are chosen small enough so that

α4 >
1
2k

2
1ε

2
1 + 1

2k
2
2ε

2
2. Using [Isidori 99, Lemma 10.4.2, p. 21], V is thus an ISS-Lyapunov function

for the system

ẋa = f1

(
xa,

[
X
W

])
(A.26)

where f1 is a non-linear function adequately defined. According to [Isidori 99, Theorem 10.4.1,
p. 21], the system in (A.26) is thus ISS. At the beginning of this proof, it has been shown that
– for a specific class of bounded finite energy disturbance d – ‖X‖2 is finite and ‖X‖ converges
to zero. Using a similar approach to the previous case, there exists VX and strictly positive
constants β1, β2 such that V̇X(X) ≤ −β1 ‖X‖2 + β2 ‖W ‖2. This function is an ISS-Lyapunov
function to the following system

Ẋ = f2 (X,W ) (A.27)

where f2 is a linear function adequately defined. Using [Isidori 99, Theorem 10.5.2, p. 34], it
is possible to conclude that the cascade of systems in (A.28) is ISS. The cascade is illustrated
in Fig. A.1. Note that in case d = 0 and using [Isidori 99, Corollary 10.5.3, p. 35], the origin
(xa,X) = (0, 0) is GAS for the cascade. ẋa = f1

(
xa,

[
X
W

])
Ẋ = f2 (X,W )

(A.28)

Using the relation between ISS and CICS property, as stated in [Terrell 09, Theorem 16.4,
p. 373], it comes that the cascade in (A.28) is CICS. Hence, using the theorem in [Sontag 89]
(where CIBS property is a weaker property than CICS), the origin (xa,X) = (0, 0) is GAS for
the cascade. This concludes the proof.
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(A.27)

(A.26) xa

W
X

W

Figure A.1: Illustration of the interconnections in the cascade described by (A.28).
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Appendix B

Introduction to linear interval state-observers

Interval state-observers are a recent addition to the class of set-membership methods.
They allow the deterministic framing of a disturbed system state in case bounds on
the disturbances are known. To qualify as an interval observer, a system should satisfy
to some conditions which are difficult to enforce without making choices in the design.
More precisely, the design of interval observers is facilitated when the initial system
is cooperative. This motivates finding an appropriate state-coordinate transformation
such that any non-cooperative system is cooperative in the new coordinates. In this
chapter, the linear interval state-observer design based on a classical observer and
state-coordinate transformation is presented.

Notations and definitions are recalled in B.1. A non-exhaustive state of the art of
interval observers and interval observer design is presented in B.2. Then, linear interval
observer design using a classical observer and a state-coordinate transformation (SCT)
is tackled in B.3. The two different strategies to enforce cooperativity, namely time-
varying and time-invariant SCT, are detailed in B.4 and applied on a simple example
in B.5.
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B.1. Notations and definitions

B.1 Notations and definitions
If not otherwise stated, the indices (i, j, k, l,m, n) are integers in N. The ordering operators <,
>, ≤ and ≥ are understood component-wise, i.e. if ∀X ∈ Rm×n, ∀Y ∈ Rm×n, L (X,Y) stands
for one of these comparison operators applied to X with respect to Y, then:

∀ (i, j) ∈ N× N, i ≤ m, j ≤ n, [L (X,Y)]ij = L (Xij ,Yij) (B.1)

Known time-varying upper- and lower-bound on a possibly unknown time-varying signal
x(t) ∈ Rn are denoted x(t) and x(t). These satisfy the following inequalities:

∀t ∈ R (or N), x(t) ≤ x(t) ≤ x(t) (B.2)

The maximum and minimum operators are defined component-wise, i.e. if A ∈ Rm×n then:

∀ (i, j) ∈ N× N, i ≤ m, j ≤ n, [max (A,0m×n)]ij = max (Aij , 0) (B.3)

Let A ∈ Rm×n, then the following notations are used: A+ := max (A,0m×n) and A− :=
A+−A. Definitions related to linear system dynamics properties are now introduced. They will
be useful to design interval observers on linear systems, both in the continuous- and discrete-time
cases. This is commented in B.3.

Definition B.1 (Metzler matrix).
Let A ∈ Rn×n. The matrix A is said to be Metzler if

∀i 6= j, Aij ≥ 0 (B.4)

In other words, the off-diagonal elements of a Metzler matrix are positive. In case the diagonal
elements are also positive, the matrix is said to be non-negative:

Definition B.2 (Non-negative matrix).
Let A ∈ Rn×n. The matrix A is said to be non-negative if

∀ (i, j) , Aij ≥ 0 (B.5)

The notion of cooperative system is extensively used when designing interval observers as is
shown in B.2. Such systems have interesting properties as far as trajectory ordering is considered.
In the two following definitions, an autonomous linear time-invariant system with state matrix
A and state x is considered:

(G) ẋ(t) = Ax(t) ∀t ∈ R+ (continuous-time framework) (B.6a)

(F) x(t+ 1) = Ax(t) ∀t ∈ N (discrete-time framework) (B.6b)

Definition B.3 (Cooperative system, continuous-time [Mazenc 11]).
The system (G) in (B.6a) is said to be cooperative if A is Metzler.

Remark B.4. Let consider the system (G) in (B.6a). Let x0 ≤ x0 two ordered initial conditions
and x(t) (resp. x(t)) the two resulting trajectories. Then,

x(t) ≤ x(t), ∀t ∈ R+ (B.7)

�
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Figure B.1: Simulation results for the cooperative system (G1) in (B.8a) (left) and trajectories
comparison (right).

Remark B.5. Let consider a continuous-time linear system with n states, m outputs and l
inputs. It is said to be cooperative if A is Metzler, B ∈ Rn×l+ , C ∈ Rm×n+ and D ∈ Rm×l+ . Note
that a cooperative continuous-time system is also a positive system. �

To illustrate the notion of cooperativity, a simple example is now introduced where two
second-order systems are considered. One of these systems is cooperative while the other is not.
This illustrates Remark B.4 where it is stated that a cooperative system preserves ordering of
its trajectories with respect to the initial condition and inputs.

Example B.6 (Comparison of second-order cooperative and non-cooperative systems). To il-
lustrate Remark B.4, let consider the two following second-order linear systems:

(G1) ẋ =
[
−1 1

1
2 −1

]
x+

[
1
0

]
u (B.8a)

(G2) ẋ =
[
−1 1
− 1

2 −1

]
x+

[
1
0

]
u (B.8b)

with initial condition x0 =
[
4 0

]>1. According to Definition B.1 and Remark B.5, (G1) is a
cooperative system while (G2) is not. Let consider two ordered inputs u(t) and u(t) such that
u(t) ≤ u(t), ∀t ∈ R+. In simulation, the following signals are considered:

u(t) = −0.1 + sin (0.5t)
u(t) = 0.5 + sin (0.5t)

, ∀t (B.9)

The time-response of both systems in (B.8a) and (B.8b) is then simulated using successively
u(t) and u(t) as the input signal. The state vector is respectively denoted xi(t) (in black color in
the figures) and xi(t) (in magenta) for i ∈ {1, 2}. The simulation results are shown in Fig. B.1
and B.2. In these figures, the trajectories difference xi(t)−xi(t) has been represented in blue in
the right plots. As symbolized by the red color in Fig. B.2, system (G2) does not keep partial
ordering of the inputs.

♣
In the discrete-time case, a similar definition of a cooperative system can be formulated. The

main difference lies in the nature of the state matrix A:
1Note that the initial condition is supposed to be known here. Similar results would be obtained using ordered

initial conditions.
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Figure B.2: Simulation results for the non-cooperative system (G2) in (B.8b) (left) and trajec-
tories comparison (right).

Definition B.7 (Cooperative system, discrete-time [Efimov 13e]).
The system (F) in (B.6b) is said to be cooperative if A is non-negative.

Remark B.8. Note that contrary to the continuous-time case, a cooperative discrete-time sys-
tem is not a positive system. In the discrete-time case, a system is positive if and only if its
state-matrix is non-negative with at least one positive entry [Germani 07]. �

Remark B.9. Similarly to Remark B.5 let consider a discrete-time linear system with n states,
m outputs and l inputs. It is said to be cooperative if A is non-negative, B ∈ Rn×l+ , C ∈ Rm×n+
and D ∈ Rm×l+ . �

The definition of a linear interval observer is now introduced. It is inspired by the definition
given in [Cacace 15]. Non-linear formulations are also given for example in [Mazenc 11]. The
following linear systems are considered:

(G)


ẋ(t) = Ax(t) + Buu(t) + Bdd(t)
y(t) = Cx(t) + Duu(t) + Ddd(t)
x(0) = x0

, t ∈ R+ (B.10a)

(F)


x(t+ 1) = Ax(t) + Buu(t) + Bdd(t)

y(t) = Cx(t) + Duu(t) + Ddd(t)
x(0) = x0

, t ∈ N (B.10b)

where x ∈ Rn, y ∈ Rm, u ∈ Rl is a known input and d(t) ∈ Rk is an unknown disturbance input.
An interval observer for the system (G) can be designed if some information on the unknown
signal d are available. This justifies the following assumption where bounds on the unknown
signal and the initial condition are supposed to be known.

Assumption B.10 (Known bounds).

• There exists two known bounds d ∈ Rn and d ∈ Rn such that

d(t) ≤ d(t) ≤ d(t), ∀t (B.11)
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• The initial condition x0 is supposed to be bounded by two known bounds

x0 ≤ x0 ≤ x0 (B.12)

The definition of a linear interval observer for linear time-invariant systems is now formally
introduced. Note this definition is not constructive and only gives the properties required for a
system to qualify as an interval observer of another system.

Definition B.11 (Linear interval observer [Cacace 15, Definition 4, p. 1667]).
Consider a system (G) as in (B.10a) (resp. (B.10b)) where u(t) and d(t) are piecewise
continuous. Suppose the unknown disturbance input signal d(t) and the initial condition x0
satisfy to Assumption B.10. Then, the dynamical system

(
G]
)


ż(t) = A]z(t) + B]uu(t) + B]d
[
d(t)
d(t)

]
∈ R2n

[
x(t)
x(t)

]
= C]z(t) where rank

(
C]
)

= 2n
(B.13)

(resp. z(t + 1) = . . .) associated with the initial condition z0 =
(
C]>C]

)−1 [
x0 x0

]>,
where the newly defined matrices are of appropriate dimensions, is a linear interval observer
for the system (G) in (B.10a) (resp. (B.10b)) if

(1)
(
G]
)
is ISS;

(2) For any x0, x0, x0 in Rn satisfying to Assumption B.10, the solutions of (B.10a)
(resp. (B.10b)) and (B.13) with respectively x0 and z0 as initial conditions are defined
∀t ∈ R+ (resp. N) and fulfil

x(t) ≤ x(t) ≤ x(t), ∀t (B.14)

(3) If
∥∥d(t)− d(t)

∥∥ is uniformly bounded ∀t ∈ R+ (resp. N) then ‖x(t)− x(t)‖ is also
uniformly bounded ∀t ∈ R+ (resp. N) and if d(t) = d(t), ∀t ∈ R+ (resp. N) then
‖x(t)− x(t)‖ → 0.

It was shown in [Gouzé 00] that cooperative linear systems admit interval observers with a
block-diagonal A]. This means that the bounds dynamics are independent and can be expressed
as the states of two independent linear systems:

(
G]
)

ẋ(t) = A]

1x(t) + B]u,1u(t) + B]d,1
[
d(t)
d(t)

]
ẋ(t) = A]

2x(t) + B]u,2u(t) + B]d,2
[
d(t)
d(t)

] (B.15)

The result is still valid with minor modifications in the discrete-time case. In the case of
an original linear system with no uncertain parameter, it is possible to obtain linear interval
observers with dynamics as in (B.15) by using an appropriate state-coordinate transformation.

Prior to recalling the common approach to interval observers design in B.3, a state of the art
is now presented to suitably recall the origins and main contributions to the interval observer
theory.

B.2 State of the art
Interval observer methods belong to the wide class of estimation techniques and to the subclass of
bounded error or set-membership estimation techniques. While estimation techniques often make
assumptions on the types of state and measurement noise signals (e.g. Gaussian distributions),
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most set-membership methods only require assumptions on the bounds of these noises. The
consequence is that such methods do not provide an estimate of the state but estimates of
bounds on the state. These bounds are guaranteed as long as the modelling bounds on the
considered noise signals are satisfied.

The main set-membership approaches are mentioned in [Raïssi 10]. To summarize, two main
techniques can be identified:

• interval analysis applied to state bounding [Jaulin 02, Raïssi 04, Kieffer 06]. These methods
are based on a prediction/correction mechanism similar to the Kalman filter. An enclosure
of the state is computed at each time using validated numerical integration. The obtained
set is then contracted by discarding inconsistent trajectories. These methods are not used
in this thesis. A lot of information on applied interval analysis can be found for example
in [Jaulin 01];

• Closed-loop interval observers, which are considered here.

Closed-loop observers are so-called in reference to the measurements of the system being
taken into account at each time instant in the determination of the estimate. In the case of
interval observers, the measurements as well as the known bounds on the noise signals are used
to compute bounds on the considered system state. An interval observer is basically the reunion
of two dynamical systems, each one observing either the upper or lower bound of the considered
system state. This is formalized in Definition B.11. Note that designing reduced-order interval
observer to estimate bounds on some components of the state vector is possible using the same
definition.

Initial studies [Gouzé 00] (also recalled in [Mazenc 11, Theorem 1, p. 141]) focused on a
very particular class of systems, namely cooperative systems. As illustrated in Example B.6,
such systems have the interesting property to have ordered trajectories with respect to the
initial conditions and forcing input [Smith 95, Farina 00]. This allows straightforward design of
interval observers since a copy of the initial system with only minor modifications will qualify.
However, only considering the class of cooperative system is a quite restrictive hypothesis: not
every dynamical system has its state-matrix being Metzler or non-negative (see Definitions B.3
and B.7).

This motivated more recent studies in which non-cooperative systems are also considered.
Two main approaches can be identified to design interval observers on non-cooperative systems:

• an approach based on Internally Positive Representations (IPR);

• Approaches based on State-Coordinate Transformations (SCT).

The class of positive systems is a subclass of cooperative systems. This is the core of the first
approach proposed in [Cacace 15] where the notion of Internally Positive Representations [Ca-
cace 12, Cacace 14, Germani 10] of a system is used. The article first describes the design of an
IPR-based positive observer using the internally positive representation of the studied system.
Then, it is proved in [Cacace 15, Theorem 11] that a reunion of two such observers with adequate
inputs is an interval observer for the studied system. More complex designs implying coordinate
changes are also discussed in this article when some hypotheses are not satisfied.

The other approaches are based on classical observers and state-coordinate transformations.
First, a classical observer is designed to stabilize the system dynamics. This results in an obser-
vation error. Then, a state-coordinate transformation is determined such that the observation
error dynamics is cooperative in the new coordinates. An interval observer is then designed on
this cooperative system. In [Mazenc 11], based on results from [Mazenc 10], the authors proposed
a time-varying state-coordinate transformation in the case of time-invariant exponentially stable
linear systems. The transformation is based on the real Jordan canonical form determination
of the system state matrix. In [Raïssi 12], a time-invariant state-coordinate transformation was
proposed for a class of non-linear systems. The problem of finding a transformation such that
the state matrix is Metzler is formalized as the solution of a Sylvester equation.

More recently, extensions of these SCT-based approaches have been proposed to accommodate
for more complex situations. In [Mazenc 12b], the time-varying SCT is applied to the case of
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continuous-time systems with discrete-time outputs. Discrete-time systems are considered for
example in [Efimov 13a] where the time-invariant SCT is adapted to this case. The authors also
extend the positive representation approach to such systems and show that the resulting design
gains can be found using LMIs. In [Mazenc 12a, Mazenc 14], time-varying interval observers
are proposed for discrete-time systems. In [Efimov 11, Efimov 13f], it is shown how to achieve
stabilization of an uncertain non-linear system using interval observers. The technique can
also be applied to LPV and LTV systems. The design of interval observers for continuous-
time LPV systems is also tackled in [Chebotarev 15] where the authors consider an additional
performance criteria in the design. An LMI-based design is proposed in [Wang 15] for a specific
class of LPV systems. As far as LTV systems are concerned, the time-invariant SCT is extended
in [Efimov 13d]. As mentioned in [Thabet 14b], the method is however not applicable in most
realistic cases. The authors then extend the time-varying SCT approach to LTV systems and
propose a methodology for practical implementation. Interval observers are also applied to
systems with time-varying delays in [Efimov 13b] and input delay in [Polyakov 13]. Other
resources on interval observers for time-delayed systems include [Efimov 13c], [Mazenc 12c] and
references therein.

More exotic problems implying interval observers are also reported. In [Moisan 10], a robust
interval observer is developed to estimate bounds on the variables of an uncertain chaotic system.
In [Briat 16], a method is proposed to design optimal peak-to-peak interval observers both in
the continuous- and discrete-time frameworks.

Examples of application of interval observers include fault detection [Raïssi 10, Thabet 14a],
bioreactors and bioprocesses monitoring [Alcaraz-Gonzalez 02, Goffaux 09, Moisan 09] and engine
air-fuel ratio estimation and control [Efimov 15]. In [Chambon 15d], an interval observer is used
in the application of an output-constrained control design method for output-feedback systems.
This is a main contribution of this thesis as described in Chapter 5. This work also triggered some
new results on how to compute the state-coordinate transformation [Chambon 15b, Chambon 16].
This is another main contribution of this thesis as explained in Chapter 7.

In conclusion, interval observers theory has attracted the research community attention in
the past few years. This has resulted in an increasing number of publications with multiple fields
of application. The reader interested in finding more information and resources on this active
field of research may consult the resources [Dinh 14, Efimov 16].

B.3 Interval observer design
In this section, the design of an interval observer for a given linear time-invariant system is
described in details. As briefly mentioned in [Mazenc 10] and recalled in [Efimov 13f] and B.1,
there exists various means of defining the structure of an interval observer. Depending on the
form of A], the dynamics of the two underlying systems may be intertwined. However, as already
mentioned, cooperative linear systems admit interval observers with block-diagonal A] which is
used in the following.

B.3.1 Signal vector ordering: a lemma
The property of cooperative systems is to keep the order of trajectories when ordered inputs are
applied to them. Hence, it is first required to order the considered inputs which is done using
an existing lemma.

Lemma B.12 (Bounds on Ax(t) knowing bounds on x(t) [Efimov 13d, Lemma 1]).
Let x ∈ Rn for which bounds are known: x(t) ≤ x(t) ≤ x(t), ∀t. Let A ∈ Rm×n a constant
matrix such that A = A+ −A− by definition. Then, ∀t ∈ R+ (or N),

A+x(t)−A−x(t) ≤ Ax(t) ≤ A+x(t)−A−x(t) (B.16)

Proof. As mentioned in [Efimov 13d], the proof is straightforward once noticing that

Ax(t) =
(
A+ −A−

)
x(t)

183



B.3. Interval observer design

and using the bounds on x(t).

Remark B.13. In case the matrix A depends on a set of real parameters Θ bounded by Θ
and Θ, one may express parameters-free bounds A and A on the matrix A (Θ) itself. In this
case, Lemma B.12 has a more complex formulation which can be found in [Efimov 13e, Lemma
1] for example. This is however not considered in this chapter where the matrix A is neither
time-varying nor parameter-dependent. �

B.3.2 Classical observer and observation error

As seen in Definition B.11, a system must fulfil three conditions to qualify as an interval observer
for another dynamical system. Obviously, these conditions are difficult to satisfy without more
information on the structure of the system to be observed. In particular, in case the system
is unstable, achieving condition (1) or (3) is fanciful. A solution would be to restrict the class
of considered systems to stable systems only. To avoid such restrictive assumption, a strategy
proposed in [Mazenc 11] amongst other works is to consider a classical observer and to design
the interval observer on the resulting observation error dynamics. Using both the classical and
interval observers, one then determines bounds on the initial system state as detailed in B.3.5.
To be able to stabilize the classical observer dynamics, the following detectability assumption is
made:

Assumption B.14 (Initial system detectability).
System (G) in (B.10) is detectable. In case it is observable, then the whole dynamics of the
classical observer can be placed.

Let (G) a system with realisation (B.10) and satisfying to Assumptions B.10 and B.14. Let
consider a classical observer on system (G) with the following dynamics:

(
Ĝ
)

˙̂x(t) = (A− LC) x̂(t) + (Bu − LDu)u(t) + Ly(t)
ŷ(t) = Cx̂(t) + Duu(t)
x̂(0) = x̂0

, t ∈ R+ (B.17a)

(
F̂
)

x̂(t+ 1) = (A− LC) x̂(t) + (Bu − LDu)u(t) + Ly(t)
ŷ(t) = Cx̂(t) + Duu(t)
x̂(0) = x̂0

, t ∈ N (B.17b)

where L ∈ Rn×m is the observer gain. Thanks to Assumption B.14, it is possible to find L
such that A − LC is Hurwitz. Let choose L accordingly. Due to the lack of knowledge on the
unknown input d(t) the observation of system (G) state by the observer

(
Ĝ
)
in (B.17) results

in an observation error e(t) := x(t)− x̂(t) which dynamics satisfies the following equation.

(Ge)
{
ė(t) = (A− LC) e+ (Bd − LDd)d(t)
e(0) = x0 − x̂0

, t ∈ R+ (B.18a)

(Fe)
{
e(t+ 1) = (A− LC) e+ (Bd − LDd)d(t)

e(0) = x0 − x̂0
, t ∈ N (B.18b)

Using such classical observer allows to satisfy condition (1) in Definition B.11. Condition (3)
can be enforced through fine selection of the observer gain L.
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B.3.3 From the observation error to a cooperative system
In the previous section, a classical observer has been introduced to avoid restrictive assumptions
on the initial system dynamics. Designing an interval observer on such stable classical observer
is expected to be easier since conditions (1) and (3) in Definition B.11 can be enforced through
fine selection of L.

However, the second necessary condition (2) is more challenging. It would be satisfied if
A−LC was Metzler2 since any system of the form (B.15) with Metzler state matrix A]

1 = A]
2 =

A− LC satisfies (2). Thus, the question is the following: is it always possible to choose L such
that A − LC is Hurwitz Metzler? In the affirmative, then satisfying (2) is straightforward for
any classical observer of any detectable system. Finding such matrix L is however delusive as
illustrated in this trivial example:

Example B.15 (Find L such that A−LC is Hurwitz Metzler). Let A =
[
−1 −1
0 −2

]
, C =

[
1 0

]
and let parametrize the observer gain L =

[
l1
l2

]
where (l1, l2) ∈ R2. Then,

A− LC =
[
−1− l1 −1
−l2 −2

]
which is never a Metzler matrix ∀ (l1, l2). ♣

A similar example can be provided in the discrete-time case where this is not possible to find
L such that A− LC is non-negative.

As seen in this trivial example, it may not be possible to find a matrix L such that A−LC is
Hurwitz Metzler. Two different assumptions are now introduced to allow definition of an interval
observer on system (Ge) in (B.18a). Although the resulting interval observers share the same
structure, the family of considered systems is reduced in the first case (strong assumption) while
additional techniques are required to deal with the second case (weak assumption). Two such
techniques are presented in B.4.

Strong assumption In this case, it is supposed that no state-coordinate transformation (SCT)
is required to determine a Metzler matrix M = A− LC.

Assumption B.16 (Cooperative observation error dynamics: strong assumption).
Let A ∈ Rn×n and C ∈ Rm×n. ∃L ∈ Rn×m such that A − LC is Hurwitz Metzler/Schur
non-negative.

This assumption is strong in the sense that all systems may not satisfy it, even trivial ones as
in Example B.15. For a system (G) which matrices A and C satisfy to Assumption B.16, there
exists a cooperative stable observation error dynamics (B.18a).

Weak assumption In this case, it is supposed that a state-coordinate transformation (SCT)
has been determined such that M = P (A− LC) P−1 is Metzler. Existing techniques to deter-
mine such SCT are presented in B.4.

Assumption B.17 (Cooperative observation error dynamics: weak assumption).
Let A ∈ Rn×n and C ∈ Rm×n. ∃P ∈ Rn×n and L ∈ Rn×m such that P (A− LC) P−1 is
Hurwitz Metzler/Schur non-negative.

This assumption is weak in the sense that it does not refer to the system dynamics. However,
it raises computational problems since an additional matrix P of size n×n must be determined.

Remark B.18. The transformation matrix P is considered to be time-invariant in Assump-
tion B.17. Using a time-varying matrix P, a slightly different formulation is obtained. This is
tackled in B.4. �

2Non-negative in the discrete-time case.
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Remark B.19. The considered matrix P is a state-coordinate transformation matrix. If
xz = Px then the state-matrix of system (Ge) in (B.18a) equals P (A− LC) P−1 in the new
coordinates. �

For a system (G) whose matrices A and C satisfy to Assumption B.17, there exists a coop-
erative stable observation error dynamics (B.18) in the new coordinates.

Example B.20 (Find P and L such that P (A− LC) P−1 is Hurwitz Metzler). Let A and C

as defined in Example B.15. We saw that @L such that A− LC is Metzler. Let P =
[
0 −1
1 0

]
.

Then,

P (A− LC) P−1 =
[
−2 l2

1 −1− l1

]
and, choosing for example l1 = 4 and l2 = 1, one obtains that P (A− LC) P−1 is Hurwitz
Metzler. ♣

This approach allows to consider systems which do not satisfy to Assumption B.16. However,
determining an appropriate matrix P is rarely as easy as in Example B.20. Existing numerical
methods include those presented in B.4 while a new method is introduced in Chapter 7.

B.3.4 Interval observer of the observation error dynamics
In B.3.2, the observation error dynamics (B.18) was expressed both in the discrete- and continuous-
time frameworks. An interval observer on the observation error dynamics is now introduced.

Under Assumption B.16 Under Assumptions B.14 and B.16, there exists L ∈ Rn×m such
that A − LC is Hurwitz Metzler. Let choose this L which means that the observation error
dynamics in (B.18) is cooperative up to its input matrix.

Proposition B.21 (Interval observer of the observation error, Assumption B.16).
Under Assumptions B.10a, B.14 and B.16, and by Definition B.11, the following system is
an interval observer for the system (Ge) in (B.18a):

(
G]

e
)


ė(t) = (A− LC) e(t) + [Bd − LDd]+ d(t)− [Bd − LDd]− d(t)

ė(t) = (A− LC) e(t) + [Bd − LDd]+ d(t)− [Bd − LDd]− d(t)
e(0) = e0

e(0) = e0

, t ∈ R+

(B.19)
where Lemma B.12 is used to bound the unknown vector (Bd − LDd)d(t).

aWhich also implies that two vectors e0 and e0 such that e0 ≤ e(0) ≤ e0 are known.

Respectively, in the discrete-time case, the following system is an interval observer for the
system (Fe) in (B.18b):

(
F]e
)

e(t+ 1) = (A− LC) e(t) + [Bd − LDd]+ d(t)− [Bd − LDd]− d(t)

e(t+ 1) = (A− LC) e(t) + [Bd − LDd]+ d(t)− [Bd − LDd]− d(t)
e(0) = e0

e(0) = e0

, t ∈ N

(B.20)
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Under Assumption B.17 Under Assumptions B.14 and B.17, there exists two matrices P ∈
Rn×n and L ∈ Rn×m such that P (A− LC) P−1 is Hurwitz Metzler. Let choose these P and
L which means that the observation error dynamics in (B.18) are cooperative (up to the input
matrix) in the new coordinates ez = Pe:

(
Gz

e
){ ėz(t) = P (A− LC) P−1ez + P (Bd − LDd)d(t)

ez(0) = Pe(0)
, t ∈ R+ (B.21a)

(
Fz

e
){ ez(t+ 1) = P (A− LC) P−1ez + P (Bd − LDd)d(t)

ez(0) = Pe(0)
, t ∈ N (B.21b)

Proposition B.22 (Interval observer of the observation error, Assumption B.17).
Under Assumptions B.10a, B.14 and B.17, and by Definition B.11, the following system is
an interval observer for system

(
Gz

e
)
in (B.21a):

(
Gz,]

e
)


ėz(t) = P (A− LC) P−1ez(t) + [P (Bd − LDd)]+ d(t)
− [P (Bd − LDd)]− d(t)

ėz(t) = P (A− LC) P−1ez(t) + [P (Bd − LDd)]+ d(t)
− [P (Bd − LDd)]− d(t)

ez(0) = P+e0 −P−e0

ez(0) = P+e0 −P−e0

(B.22)

where Lemma B.12 is used to bound the unknown vector P (Bd − LDd)d(t).
aWhich also implies that two signals ez(0) and ez(0) such that ez(0) ≤ ez(0) ≤ ez(0) are known.

Respectively, in the discrete-time case, the following system is an interval observer for system(
Fz

e
)
in (B.21b):

(
Fz,]

e
)


ez(t+ 1) = P (A− LC) P−1ez(t) + [P (Bd − LDd)]+ d(t)
− [P (Bd − LDd)]− d(t)

ez(t+ 1) = P (A− LC) P−1ez(t) + [P (Bd − LDd)]+ d(t)
− [P (Bd − LDd)]− d(t)

ez(0) = P+e0 −P−e0

ez(0) = P+e0 −P−e0

(B.23)

Remark B.23. These formulations are valid only with a time-invariant matrix P. A different
formulation is obtained in case of a time-varying SCT. This is tackled in B.4.1. �

B.3.5 Interval observer of the initial system state vector
In the previous section, the following were obtained:

(1) e(t) and e(t) such that e(t) ≤ e(t) ≤ e(t), ∀t, under Assumptions B.10, B.14 and B.16;

(2) ez(t) and ez(t) such that ez(t) ≤ ez(t) ≤ ez(t), ∀t, under Assumptions B.10, B.14 and B.17.

This information is now used to determine bounds on the initial system state vector x. In the
second case (2), it is first necessary to apply the reverse state-coordinate transformation while
taking care to keep the signals ordering. To this end, Lemma B.12 is used where T = P−1:{

e(t) = T+ez(t)−T−ez(t)

e(t) = T+ez(t)−T−ez(t)
(B.24)
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Then, in both cases, the two signals e(t) and e(t) are such that

e(t) ≤ e(t) ≤ e(t), ∀t (B.25)

Using the definition of the observation error e(t) and the estimated state vector x̂(t), bounds
of the initial system state x are obtained, under Assumptions B.10, B.14 and B.16 (or B.17):

x̂(t) + e(t) =: x(t) ≤ x(t) ≤ x(t) := e(t) + x̂(t), ∀t (B.26)

Hence the following proposition:

Proposition B.24 (Interval observer of the state vector, Assumption B.17).
Under Assumptions B.10, B.14 and B.17 the reunion of

• system
(
Ĝ
)
in (B.17a);

• system
(
Gz,]

e
)
in (B.22);

• the reverse state-coordinate transformation in (B.24);

• the state bounds determination relations in (B.26),

is an interval observer for the system (G) in (B.10a) if the condition (3) in Definition B.11
is satisfied.

Note that this interval observer can be written in the following compact form which is remi-
niscent of the one proposed Definition B.11:

(
G]
)

=



˙︷ ︷ x̂(t)
ez(t)
ez(t)

 =

A− LC 0n 0n
0n P (A− LC) P−1 0n
0n 0n P (A− LC) P−1

 x̂(t)
ez(t)
ez(t)



+

Bu − LDu L 0n×k 0n×k
0n×l 0n×m [P (Bd − LDd)]+ − [P (Bd − LDd)]−

0n×l 0n×m − [P (Bd − LDd)]− [P (Bd − LDd)]+



u(t)
y(t)
d(t)
d(t)


[
x(t)
x(t)

]
=

[
In T+ −T−
In −T− T+

] x̂(t)
ez(t)
ez(t)


(B.27)

A similar proposition is derived under Assumption B.16 for which the reverse state-coordinate
transformation is useless. Using the discrete-time formulations of the assumptions and equations,
a similar proposition is obtained for discrete-time systems.

B.3.6 Conclusions on interval observer design
This concludes the design of an interval observer for a given system (G) or (F). In this sec-
tion, two assumptions, B.16 and B.17, were gradually considered to allow for the construction
of interval observers as defined in Definition B.11. Indeed, to facilitate the design of interval
observers it is often supposed that there exists a matrix L and eventually a matrix P such that
the considered observation error dynamics – see (B.18a) or (B.18b) – is cooperative.

In most cases, contrary to Example B.20, determining appropriate matrices P and L is not
trivial and requires specific methods. In the following section, two of these methods are presented.
They were introduced along with the interval observer theory. The first method considers a time-
varying SCT and was proposed in [Mazenc 11] while the second method proposes a time-invariant
SCT and is documented for example in [Raïssi 12]. More methods are presented in Chapter 7
for comparison with the method introduced in the same chapter.
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B.4 Two different strategies to enforce cooperativity
In B.3.3, assumptions were made to satisfy (2) in Definition B.11. Both suppose that the de-
sign matrices have been finely chosen such that the observation error state matrix in (B.18) is
(Hurwitz) Metzler:

• in the first case, Assumption B.16 restricts the class of considered systems to be able to
enforce cooperativity by choosing an appropriate observer gain L;

• In the second case, Assumption B.17 proposes that a state-coordinate transformation ez =
Pe can be determined such that the transformed state matrix is Metzler.

Restricting the class of systems is not a good solution since even a trivial system such as in
Example B.15 cannot be considered. In the literature, a state-coordinate transformation is thus
applied. However, Assumption B.17 gives no constructive rule to determine matrices P and L
such that M = P (A− LC) P−1 is Hurwitz Metzler. It was also suggested in Remark B.18 that
the matrix P may be chosen time-varying. A warning was issued in Remark B.23 on the fact
that a different formulation of the interval observer is obtained in that case (see B.4.1).

Two existing techniques are presented in this section to determine P and L. The aim is not
to provide a comparison of these techniques. Variations and comparisons of these methods are
rather detailed in Chapter 7.

The first method was introduced in [Mazenc 11] following works in [Mazenc 10]. It is based on
a time-varying state-coordinate transformation. The second method is documented in [Raïssi 12]
and considers a time-invariant transformation.

B.4.1 Time-varying state-coordinate transformation
In first approach, let consider continuous-time systems only. As mentioned in Remark B.23, the
interval observer expression in (B.22) is not valid since P depends on the time. This comes from
the fact that if ez = Pe then

ėz = Ṗe+ Pė

=
[
ṖP−1 + P (A− LC) P−1] ez (B.28)

which is denoted ėz = Ξez later on. The same relation is obtained for the upper bound. This
leads to the following formulation of an interval observer in the case where a time-varying state-
coordinate transformation is used:

(
Gz,]

e
)


ėz(t) = Ξez(t) + [P (Bd − LDd)]+ d(t)− [P (Bd − LDd)]− d(t)

ėz(t) = Ξez(t) + [P (Bd − LDd)]+ d(t)− [P (Bd − LDd)]− d(t)
ez(0) = P(0)+e0 −P(0)−e0

ez(0) = P(0)+e0 −P(0)−e0

(B.29)

The problem of finding the adequate state-coordinate transformation is now formulated.

Problem B.25 (Time-varying state-coordinate transformation determination).
Given A ∈ Rn×n and C ∈ Rm×n such that Assumption B.14 is satisfied, determine P(t) ∈
Rn×n, ∀t ∈ R+ and L ∈ Rn×m such that

Ξ = P (A− LC) P−1 + ṖP−1 (B.30)

is Hurwitz Metzler.

A solution to this problem was proposed in [Mazenc 11] using a transformation of the initial
matrix A−LC into its real Jordan canonical form. The following explanation is entirely credited
to [Mazenc 11, Theorem 2, p. 142] and its proof.
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B.4. Two different strategies to enforce cooperativity

Supposing that ė = (A− LC) e with A−LC Hurwitz, let consider the change of coordinates
Y = Pe such that Ẏ = JY where J is the real Jordan canonical form of A− LC:

J =


J1 0 . . . 0

0 J2
. . .

...
...

. . . . . . 0
0 . . . 0 Js

 ∈ Rn×n (B.31)

where the first r matrices are associated with the r real eigenvalues (of multiplicity ni):

Ji =


−µi 1 . . . 0

0 −µi
. . .

...
...

. . . . . . 1
0 . . . 0 −µi

 ∈ Rni×ni , 1 ≤ i ≤ r (B.32)

and the last matrices are associated with the complex conjugate eigenvalues (of multiplicity mi):

Ji =



Γi I2 0 . . . 0

0 Γi I2
. . .

...
...

. . . . . . . . . 0

0
. . . . . . I2

0 . . . . . . 0 Γi


∈ R2mi×2mi , r + 1 ≤ i ≤ s (B.33)

where Γi =
[
−κi ωi
−ωi −κi

]
∈ R2×2 is the real matrix with eigenvalues −κi + jωi and −κi − jωi.

Then, let consider the coordinate transformation ξ = η(t)Y where

η(t) =


Iq 0 . . . 0

0 Nr+1(t)
. . .

...
...

. . . . . . 0
0 . . . 0 Ns(t)

 (B.34)

with q =
∑r
i=1 ni and

Ni(t) =


Ωi(t) 0 . . . 0

0 Ωi(t)
. . .

...
...

. . . . . . 0
0 . . . 0 Ωi(t)


for r + 1 ≤ i ≤ s where Ωi(t) =

[
cos (ωit) − sin (ωit)
sin (ωit) cos (ωit)

]
. Then ξ̇ = Ξξ where Ξ is Metzler

Hurwitz and satisfies (B.30).

Proposition B.26 (Real Jordan canonical form approach).
Let L ∈ Rn×m such that A − LC is Hurwitz. Let P(t) = η(t)P where η(t) is defined
in (B.34) and P transforms A−LC into J as defined in (B.31). Then the matrix Ξ defined
as

Ξ = P (A− LC) P−1 + ṖP−1 (B.35)

is Hurwitz Metzler.

A detailed procedure on how to apply Proposition B.26 is given in Fig. B.3.
The main comment that can be made on this method is that it is based on a strong theoretical

background. Also, there are not much design parameters since only the observer gain L must
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Appendix B. Introduction to linear interval state-observers

Input: detectable matrices (A,C) and stabilizing observer gain L such that A−LC is Hurwitz.
Output: time-varying matrix P(t) and Ξ such that Ξ = P (A− LC) P−1 + ṖP−1 is Hurwitz
Metzler
Procedure:

1. Jordan canonical form: determine P such that P (A− LC) P−1 = J where J is the
Jordan canonical form in (B.31). Note this can be obtained using usual eigenstructure
determination algorithms;

2. Eigenvalues ordering by type (optional): adapt the obtained expressions of P and J such
that the real eigenvalues come first on the diagonal of J and the complex eigenvalues come
last;

3. Time-varying Metzler transformation: construct η(t) as in (B.34) using J eigenvalues;

4. Resulting transformation matrix: define P(t) = η(t)P ;

5. Conclusion: Ξ = P (A− LC) P−1 + ṖP−1 is Hurwitz Metzler.

Figure B.3: Procedure to obtain a Hurwitz Metzler matrix through time-varying state-coordinate
transformation.

be chosen prior to applying the method. This is done easily for example using pole placement
techniques. Complex eigenvalues are also tackled efficiently. However, the method can be hard to
implement in practice due to the time-varying property of the transformation. Also, it is based
on a transformation into a Jordan canonical form which is known to be numerically unstable in
the case of high order or badly-conditioned systems. Application of this method is illustrated
in B.5.1.

Remark B.27. In the discrete-time case, the state-coordinate transformation is used to obtain
a non-negative observation error dynamics in the new coordinates. A similar transformation to
the one presented in this section can be used. This is presented in [Mazenc 12a, Mazenc 14]. �

B.4.2 Time-invariant state-coordinate transformation
In the continuous-time case, the following problem is considered when looking for a time-invariant
SCT:

Problem B.28 (Time-invariant state-coordinate transformation determination).
Given A ∈ Rn×n and C ∈ Rm×n such that Assumption B.14 is satisfied, determine P ∈
Rn×n and L ∈ Rn×m such that

M = P (A− LC) P−1 (B.36)

is Hurwitz Metzler.

A solution to this problem can be obtained by solving a Sylvester equation. This was docu-
mented in [Raïssi 12]. By rewriting (B.36) as

−MP + PA = PLC

it appears that this is equivalent to a Sylvester equation where P is the variable if PL is set to
a design value Q:

Proposition B.29 (Sylvester equation resolution approach).
Let M ∈ Rn×n such that it is Hurwitz Metzler and has no common eigenvalues with A. Let
Q ∈ Rn×m. Then the following Sylvester equation
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B.5. Example of application of the SCT strategies

Input: observable matrices (A,C), targeted Hurwitz Metzler matrix M such that eig (M) 6=
eig (A), and unconstrained matrix Q ∈ Rn×m.
Output: matrices P and L such that M = P (A− LC) P−1 is Hurwitz Metzler
Procedure:

1. Sylvester equation: given M and Q, solve −MP + PA = QC in P;

2. Observer gain: let L = P−1Q;

3. Conclusion: M is Hurwitz Metzler by construction.

Figure B.4: Procedure to obtain a Hurwitz Metzler matrix by solving a Sylvester equation

−MP + PA = QC (B.37)

has a unique solution P ∈ Rn×n with M = P (A− LC) P−1 where L = P−1Q.

Remark B.30. For Proposition B.29 to be applicable, the couple (A,C) must be observable.
In case it is only detectable then M and A share the unobservable eigenvalues. �

The Sylvester equation (B.37) can be solved using algorithms such as [Golub 79] or [Bar-
tels 72]. A detailed procedure on how to apply Proposition B.29 is given in Fig. B.4.

Some comments can already be formulated on this method. The main advantage is its ease
of use. The main drawback is that its applicability depends on the definition of two design
parameters which selection is far from being obvious. In particular, one has to propose M such
that it is Hurwitz Metzler. In case of great dimensions and if specific eigenvalues are targeted,
e.g. couples of complex numbers, this is quite a challenge. Moreover, the impact of the choice of
Q is difficult to evaluate. Application of this method is illustrated in B.5.2.

Remark B.31. In the discrete-time case, M should be chosen Schur non-negative. �

B.5 Example of application of the SCT strategies
Let consider the example proposed in [Mazenc 11]. The considered system is represented by a
continuous-time linear model with measurement disturbance. Its state space matrices are defined
as:

A =


−1 1 0 0 −1 0
−1 −2 0 −1 0 1
−2 0 −3 −2 0 0
−1 0 −2 −3 0 1
−1 0 2 0 −4 0
−1 −1 0 1 0 −1

 , B =


−18 0
−13 0
−5 0
−4 0
−10 0

22 0

 , C =
[
1 0 0 0 0 0

]
, D =

[
0 1

]

(B.38)
and the resulting state-space representation is

(G)


ẋ = Ax+ B

[
u
d

]
y = Cx+ D

[
u
d

] (B.39)

where u(t) = sin(t) and d ∈ R is an unknown signal such that d = −2 ≤ d(t) ≤ 1 = d, ∀t. In
simulation, this disturbance signal will be modelled by a uniform random number generator with
bounds d and d. This is illustrated in Fig. B.5. Using the Popov-Belevitch-Hautus Lemma 2.4,
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Figure B.5: Disturbance signal used for simulations.

it is observed that the pair (A,C) is detectable hence Assumption B.14 is satisfied. The initial
condition is chosen at x0 =

[
20 10 6 0 30 40

]> for simulation purposes. As far as initial-
izing the interval observer, the elements of the initial condition are supposed to belong to the
interval [0, 40]. Hence,

x0 = 0, x0 =
[
40 40 40 40 40 40

]> (B.40)
and Assumption B.10 is satisfied. Simulations are run overs 20s. An interval observer is used to
determine bounds on the system state. A time-varying and time-invariant SCT are considered.
The results obtained using both methods are now detailed.

B.5.1 Time-varying SCT
The approach detailed in B.4.1 is used. Although the initial system is stable, the observer gain
proposed in [Mazenc 11] is used to fasten its dynamics:

L =


0.7397
−0.4220
−1.4424

1.2362
−0.9692

1.2417

 (B.41)

Using the Matlab eig and cdf2rdf routines, the real Jordan canonical form is obtained:

J =


−4.6575 0.7571 0 0 0 0
−0.7571 −4.6575 0 0 0 0

0 0 −1.1170 0.8945 0 0
0 0 −0.8945 −1.1170 0 0
0 0 0 0 −1.0000 0
0 0 0 0 0 −2.1906

 ,

P =


0.3777 −0.3009 −0.2765 0.2941 1.1237 −0.0641
1.1645 −0.4724 1.5862 1.6869 0.4770 −0.3188
−1.7446 −2.5520 −0.6411 1.5977 0.8470 −1.5023

3.0045 2.2481 −0.3290 −0.7563 −0.7794 −1.2633
3.1327 2.6106 1.5664 −2.6106 −1.0442 0.5221
1.1655 −0.2357 1.1227 −1.0985 −0.6441 1.1206

 (B.42)

Let ω1 = 0.7571 and ω2 = 0.8945. Then, the matrix η(t) is given by

η(t) =


cos (ω1t) − sin (ω1t) 0 0 0 0
sin (ω1t) cos (ω1t) 0 0 0 0

0 0 cos (ω2t) − sin (ω2t) 0 0
0 0 sin (ω2t) cos (ω2t) 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (B.43)
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Figure B.6: State simulation (in blue) and bounds (in black) obtained using a time-varying SCT.
The lower bound is represented in dashed line.

which results in the following state-coordinate transformation matrix:

P = η(t)P

and

Ξ =


−4.6575 0 0 0 0 0

0 −4.6575 0 0 0 0
0 0 −1.1170 0 0 0
0 0 0 −1.1170 0 0
0 0 0 0 −1.0000 0
0 0 0 0 0 −2.1906


This concludes the procedure. Using these results, the system and interval observer are

simulated. Simulation results are shown in Fig. B.6.
The results show that the obtained interval observer is very efficient. The initial interval

size is due to the lack of knowledge on the initial condition x0 and the conservativeness of the
coordinate change. The observation error does not reduce to zero after convergence due to the
lack of knowledge on the disturbance signal d.

B.5.2 Time-invariant SCT
The approach detailed in B.4.2 is used. Following the procedure in Fig. B.4, two matrices M
and Q are defined first:

M =


−5 1 1 1 1 1
0 −4.5 1 1 1 1
0 0 −2 1 1 1
0 0 0 −1.5 1 1
0 0 0 0 −1.2 1
0 0 0 0 0 −1

 , Q =


2.0
−1.0

1.5
−1.5

1.0
−2.0

 (B.44)

Note that M is chosen with real eigenvalues which are simpler to consider.
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Figure B.7: State simulation (in blue) and bounds (in black) obtained using a time-invariant
SCT. The lower bound is represented in dashed line.

Remark B.32. The choice of both M and Q is quite sensitive. Different values, for example
Q =

[
1 2 3 4 5 6

]> may result in very poor interval observers. �

Then, the Sylvester equation (B.37) is solved using the Matlab lyap routine. The following
transformation matrix is obtained:

P =


−3.3968 −0.0833 −3.7396 2.8355 2.6310 −5.0547
−2.8800 −0.0916 −2.1429 3.3640 2.0985 −4.6087
−8.5216 −0.0935 −7.4180 7.4651 4.5924 −10.1148

1.2569 −0.3391 1.6531 −1.6455 −0.3959 −0.5058
−0.6916 −0.0677 −1.1805 0.9952 0.5327 −2.6374

2.4000 2.0000 1.2000 −2.0000 −0.8000 0.4000

 (B.45)

which results in the following observer gain L = P−1Q:

L =


1.2000
−1.4668
−2.3973
−0.2509
−0.4168

0.2381

 (B.46)

This concludes the procedure. Using these results, the system and interval observer are
simulated. Simulation results are shown in Fig. B.7.

In comparison with the time-varying state-coordinate transformation, one can observe that
the interval obtained is bigger. However, the result is satisfactory as far as Definition B.11
is concerned. Also, this example shows that initializing the method described in B.4 is more
challenging than expected. Indeed, the fine selection of the two design matrices M and Q is
crucial to obtain satisfying results.
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B.6. Conclusion

B.6 Conclusion
In this appendix, the theory and design of linear interval state-observers for linear systems have
been recalled for the reader who is unfamiliar with these notions. In the chosen approach, a
classical observer is used to stabilize the potentially unstable dynamics of the original system.
Then, a state-coordinate transformation is applied to transform the resulting observation error
system into a cooperative system. These choices allow the design of a system complying with
Definition B.11. As far as the state-coordinate transformation is concerned, two different trans-
formations were presented, based on existing results: time-varying transformation [Mazenc 11]
or time-invariant transformation [Raïssi 12]. Both transformations were illustrated on a simple
example.
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Appendix C

Code samples

C.1 Chapter 4
AMPL/IPOPT code.

1 ####################
2 ### PARAMETERS ###
3

4 param N = 2000;
5

6 param x10 = 1; param x20 = 0;
7 param x1f = 0; param x2f = 0;
8

9 param alpmin = -0.3; param alpmax = 0.3;
10

11 param weightuco = 1;
12 param weightalp = 1;
13

14 # Final time
15 param tf = 20;
16

17 # dmin and dmax, deul is a signal modelling the disturbance in the Euler
integration scheme

18 param dmin {0..N}; # data
19 param dmax {0..N}; # data
20 param deul {0..N}; # data
21

22 ###################
23 ### VARIABLES ###
24

25 # States (unconstrained then constrained)
26 var x1un {0..N}; #, default x10;
27 var x2un {0..N}; #, default x20;
28 var x1co {0..N}; #, default x10;
29 var x2co {0..N}; #, default x20;
30

31 # Kappa
32 var kb1, >=0, <= 1000, default 1;
33 var kappa {0..N};
34

35 # Unconstrained/constrained control
36 var uco {0..N-1};
37



C.1. Chapter 4

38 ###################
39 ### OBJECTIVE ###
40 minimize cout: weightalp * tf/N * sum {i in 0..N-1} (x1co[i]-x1un[i])^2 +

weightalp * tf/N * sum {i in 0..N-1} (x2co[i]-x2un[i])^2 + weightuco * tf/N
* sum {i in 0..N-1} uco[i]^2;

41

42 #####################
43 ### CONSTRAINTS ###
44 subject to x1uninit: x1un[0] = x10;
45 subject to x2uninit: x2un[0] = x20;
46 subject to x1coinit: x1co[0] = x10;
47 subject to x2coinit: x2co[0] = x20;
48

49 ### DYNAMICAL CONSTRAINTS: Euler Scheme
50 subject to x1undyn {i in 0..N-1}: x1un[i+1] = x1un[i] + tf/N*x2un[i];
51 subject to x2undyn {i in 0..N-1}: x2un[i+1] = x2un[i] - tf/N*(x1un[i]+x2un[i])

+ tf/N*deul[i];
52

53 subject to x1codyn {i in 0..N-1}: x1co[i+1] = x1co[i] + tf/N*x2co[i];
54 subject to x2codyn {i in 0..N-1}: x2co[i+1] = x2co[i] + tf/N*uco[i] + tf/N*deul

[i];
55

56 ### KAPPA CONSTRAINTS
57 subject to kappadyn {i in 0..N}: kappa[i] = (kb1 + 2*max(abs(dmin[i]),abs(dmax[

i]))) / (alpmax - alpmin);
58

59 ### CONTROL CONSTRAINTS
60 subject to ucosat {i in 0..N-1}: uco[i] = max(min(kappa[i]*(alpmin-x2co[i]) +

max(abs(dmin[i]),abs(dmax[i])),kappa[i]*(alpmax-x2co[i]) - max(abs(dmin[i])
,abs(dmax[i]))),min(-x1co[i]-x2co[i],max(kappa[i]*(alpmin-x2co[i]) + max(
abs(dmin[i]),abs(dmax[i])),kappa[i]*(alpmax-x2co[i]) - max(abs(dmin[i]),abs
(dmax[i])))));

61

62 subject to ucodyn {i in 0..N-2}: -10 <= (uco[i+1] - uco[i])*N/tf <= 10;
63

64 ###################
65 ### DATA ###
66

67 data;
68

69 for {i in 0..N} {
70 let dmin[i] := -exp(-0.25*i*tf/N);
71 let dmax[i] := exp(-0.25*i*tf/N);
72 let deul[i] := exp(-0.25*i*tf/N)*sin(2*i*tf/N);
73 }
74

75 ###################
76 ### SOLVE ###
77

78 ############# SOLVING OPTIONS ##############
79

80 #option solver ipopt;
81

82 option ipopt_options "max_iter=10000";
83

84 solve;
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85

86

87 ###### OUTPUT SCREEN
88

89 display x1uninit, x2uninit, x1coinit, x2coinit;
90 #display x1unfin, x2unfin, x1cofin, x2cofin;
91

92 printf: " # cout = %24.16e\n", cout;
93 printf: " # N = %d\n", N;
94 printf: " # kb1 = %24.16e\n", kb1;
95 printf: " # tf = %24.16e\n", tf;
96 printf: " # Data\n";
97 printf{i in 0..N-1}: " %24.16e %24.16e %24.16e %24.16e %24.16e %24.16e %24.16e

%24.16e %24.16e %24.16e %24.16e %24.16e %24.16e %24.16e %24.16e\n",
98 i*tf/N, x1un[i], x2un[i], x1co[i], x2co[i], -x1un[i]-x2un[i], uco[i], dmin[i],

dmax[i], deul[i], kappa[i], x1undyn[i], x2undyn[i], x1codyn[i], x2codyn[i];
99 printf: " %24.16e %24.16e %24.16e %24.16e %24.16e %24.16e %24.16e %24.16e

%24.16e %24.16e %24.16e\n",
100 tf, x1un[N], x2un[N], x1co[N], x2co[N], -x1un[N]-x2un[N], uco[N-1], dmin[N],

dmax[N], deul[N], kappa[N];#, x1unfin, x2unfin, x1cofin, x2cofin;
101

102 end;

C.2 Chapter 7

C.2.1 Example 7.3.1 (a) SCorpIO Matlab code
This code illustrates the application of the SCorpIO approach as presented in 7.2 to the continuous-
time example introduced in 7.3.1 (a), as inspired by [Mazenc 11].

1 %% Model
2 A = [-1 1 0 0 -1 0;
3 -1 -2 0 -1 0 1;
4 -2 0 -3 -2 0 0;
5 -1 0 -2 -3 0 1;
6 -1 0 2 0 -4 0;
7 -1 -1 0 1 0 -1];
8 Bu = [-18;-13;-5;-4;-10;22];
9 B = [zeros(6,1) Bu];

10 C = [1 0 0 0 0 0];
11 D = [1 0];
12 Dw = D(:,1);
13

14 % State-space representation
15 sys = ss(A,B,C,D);
16

17 % Dimensions
18 nx = length(A);
19 ny = size(C,1);
20 nu = size(Bu,2);
21 nw = 1;
22

23 % Controller dimension configuration
24 nk = 1;
25

26 % M_ij maximum value
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27 mvmax = 2e2;
28

29 % |P_ij| and |T_ij| maximum value
30 PTmax = 4;
31

32 %% Tunable parameters
33 % Observer gain definition with preliminary initialisation
34 L0 = place(A,C,-abs(real(eig(A)))+1i*imag(eig(A))).;
35 L = realp(L ,L0);
36

37 % SCT matrix
38 P = realp(P ,eye(nx));
39

40 % Maximum element condition on P
41 if PTmax > 0
42 P.Minimum = -PTmax;
43 P.Maximum = PTmax;
44 end
45

46 % Additional definitions
47 T = eye(nx)/P;
48 M = P*(A-L*C)/P;
49 PL = P*L;
50

51 %% Synthesis models
52 % Observation error dynamics (new coordinates)
53 Gsyn(:,:,1) = ss(M,-P*L*Dw,eye(nx),zeros(nx,nw));
54

55 % Ed dynamics
56 Gsyn(:,:,2) = ss(M,0.5*P*L*Dw,eye(nx),zeros(nx,nw));
57

58 % PL non-negativity condition
59 kk = 3;
60 for ii = 1:nx
61 for jj = 1:ny
62 Gsyn(:,:,kk) = ss(-PL(ii,jj),zeros(1,nw),zeros(nx,1),zeros(nx,nw));
63 kk = kk + 1;
64 end
65 end
66

67 % Metzler condition
68 for ii = 1:nx
69 for jj = 1:nx
70 if ii ~= jj
71 Gsyn(:,:,kk) = ss(-M(ii,jj),zeros(1,nw),zeros(nx,1),zeros(nx,nw));
72 kk = kk + 1;
73 end
74

75 % M_ij maximum value condition
76 if mvmax > 0
77 Gsyn(:,:,kk) = ss(M(ii,jj)-mvmax,zeros(1,nw),zeros(nx,1),zeros(nx,nw

));
78 kk = kk + 1;
79 end
80

81 % T_ij maximum value condition
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82 if PTmax > 0
83 Gsyn(:,:,kk) = ss(-T(ii,jj)-PTmax,zeros(1,nw),zeros(nx,1),zeros(nx,

nw));
84 Gsyn(:,:,kk+1) = ss( T(ii,jj)-PTmax,zeros(1,nw),zeros(nx,1),zeros(nx

,nw));
85 kk = kk + 2;
86 end
87 end
88 end
89

90 % Renaming I/Os for clarity
91 Gsyn.InputName = {w };
92 Gsyn.OutputName = {Ed};
93

94 %% Requirements
95 % Metzler condition
96 reqMetzlerEtAl = TuningGoal.Poles();
97 reqMetzlerEtAl.Models = 3:kk-1;
98

99 % Disturbance rejection (Ed dynamics)
100 reqRejEd = TuningGoal.Variance(w, Ed ,0.7);
101 reqRejEd.Models = 2;
102

103 % Observation error dynamics stability
104 reqStab = TuningGoal.Poles();
105 reqStab.MinDecay = 0.5;
106 reqStab.MaxFrequency = 1e2;
107 reqStab.Models = 1;
108

109 % Stacking requirements
110 Soft = [reqRejEd];
111 Hard = [reqMetzlerEtAl reqStab];
112

113 %% Synthesis
114 options = systuneOptions(MaxIter,500,RandomStart,5,UseParallel,true);
115 [CL,fSoft,gHard] = systune(Gsyn,Soft,Hard,options);
116 fSoft, gHard,
117

118 %% Results
119 P = getValue(P,CL);
120 L = getValue(L,CL);
121

122 M = P*(A-L*C)/P,
123 T = eye(nx)/P,

C.2.2 Example 7.4.3 SCorpIO Matlab code
This code illustrates the application of the SCorpIO approach to the simultaneous design of
a stabilizing controller and an interval observer of the closed-loop for the example introduced
in 7.4.3.

1 %% Model
2 A = [1 -1;2 -3]; eig(A),
3 B = [0 0;1 1];
4 Bu = B(:,2); Bw = B(:,1);
5 C = [1 0];
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6 D = [0 0];
7

8 % State-space representation
9 G = ss(A,B,C,D,InputName,{w , u }, OutputName, y );

10

11 % Dimensions
12 nx = length(A);
13 ny = size(C,1);
14 nu = size(Bu,2);
15 nw = size(Bw,2);
16

17 % Controller dimension configuration
18 nk = 1;
19

20 % M_ij maximum value
21 mvmax = 5e1;
22

23 %% First synthesis to initialize stabilizing controller
24 K0 = ltiblock.ss(K0,nk,nu,ny);
25 CL0 = lft(G,K0);
26

27 % Stability requirement
28 reqStab = TuningGoal.Poles();
29 reqStab.MinDecay = 1e-3;
30 reqStab.MaxFrequency = 1e1;
31

32 % Synthesis
33 CL = systune(CL0,reqStab);
34 K0 = getValue(K0,CL);
35

36 %% Tunable elements
37 % Controller state-space matrices
38 Ak = realp(Ak ,K0.a);
39 Bk = realp(Bk ,K0.b);
40 Ck = realp(Ck ,K0.c);
41 Dk = realp(Dk ,K0.d);
42 K = ss(Ak,Bk,Ck,Dk);
43

44 % SCT matrix
45 P = realp(P ,eye(nx+nk));
46

47 % Constraint such that P*BXw is positive
48 P.Minimum([4 5 6]) = 0;
49

50 % Closed-loop matrices
51 AX = [A+Bu*Dk*C Bu*Ck;Bk*C Ak];
52 BXv = [Bu;zeros(nk,nu)];
53 BXw = [Bw;zeros(nk,nw)];
54

55 % Expected Hurwitz Metzler matrix
56 MX = P*AX/P;
57

58 %% Synthesis models
59 % Original closed-loop
60 Gsyn(:,:,1) = ss(AX,[BXv BXw],eye(nx+nk),zeros(nx+nk,nu+nw),...
61 InputName,{ v , w },...
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62 OutputName, X );
63

64 % Ed dynamics
65 Gsyn(:,:,2) = ss(MX,[zeros(nx+nk,nu) 0.5*P*BXw],eye(nx+nk),zeros(nx+nk,nu+nw));
66

67 % Metzler condition models
68 kk = 3;
69 for ii = 1:nx+nk
70 for jj = 1:nx+nk
71 if ii ~= jj
72 Gsyn(:,:,kk) = ss(-MX(ii,jj),zeros(1,nu+nw),zeros(nx+nk,1),zeros(nx+

nk,nu+nw));
73 kk = kk+1;
74 end
75

76 % M_ij maximum value condition
77 if mvmax > 0
78 Gsyn(:,:,kk) = ss(MX(ii,jj)-mvmax,zeros(1,nu+nw),zeros(nx+nk,1),

zeros(nx+nk,nu+nw));
79 kk = kk+1;
80 end
81 end
82 end
83

84 %% Requirements
85 % Metzler condition
86 reqMetzler = TuningGoal.Poles();
87 reqMetzler.Models = 3:kk-1;
88

89 % Disturbance rejection (Ed dynamics)
90 reqRejEd = TuningGoal.Variance(w,X,1);
91 reqRejEd.Models = 2;
92

93 % Closed-loop stability
94 reqStab = TuningGoal.Poles();
95 reqStab.MinDecay = 1e-2;
96 reqStab.MaxFrequency = 5e1;
97 reqStab.Models = 1;
98

99 % Stacking requirements
100 Soft = [reqRejEd];
101 Hard = [reqMetzler reqStab];
102

103 %% Synthesis
104 options = systuneOptions(MaxIter,500,RandomStart,2,UseParallel,true);
105 [CL,fSoft,gHard] = systune(Gsyn,Soft,Hard,options);
106

107 %% Results
108 Ak = getValue(Ak,CL);
109 Bk = getValue(Bk,CL);
110 Ck = getValue(Ck,CL);
111 Dk = getValue(Dk,CL);
112 P = getValue(P,CL);
113 K = ss(Ak,Bk,Ck,Dk);
114

115 AX = [A+Bu*Dk*C Bu*Ck;Bk*C Ak];
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116 MX = P*AX/P, eig(MX),
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Appendix D

Commande de systèmes linéaires sous contraintes
fréquentielles et temporelles
Application au lanceur flexible

La synthèse de loi de commande sous contraintes fréquentielles et temporelles en
présence de perturbations extérieures inconnues est un problème complexe. Par
exemple, les techniques de synthèse H∞ de contrôleur structuré ne permettent pas de
formuler directement les contraintes temporelles dans le problème de minimisation.
Il en résulte la nécessité de modifier les réglages des contraintes fréquentielles par
essais-erreurs pour espérer les satisfaire et ce, sans garantie théorique. Dans cette
thèse, nous explorons et enrichissons l’application d’une méthode de commande sous
contraintes dite évolutionnaire utilisée en complément de la synthèse H∞ dans le but de
satisfaire une collection de contraintes fréquentielles et temporelles de manière garantie.

Ce chapitre reprend de manière fidèle l’organisation du manuscrit écrit en langue
anglaise à l’exception des chapitres de pré-requis et annexes qui ne rentrent pas dans
les contributions de la thèse. Des références aux chapitres de la Partie II peuvent
donc apparaître par la suite. Le problème du contrôle sous contraintes temporelles et
fréquentielles est introduit dans la section D.1. L’approche dite évolutionnaire choisie
pour résoudre ce problème est ensuite présentée dans les sections D.2 et D.3. Elle
est appliquée à un ensemble de modèles plus ou moins simplifiés du lanceur dans la
section D.4. Une contribution annexe requise à terme pour l’extension OISTeR est
présentée à la section D.5. Les conclusions de l’étude sont exposées dans la section D.6.
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D.1 Introduction
La complexité croissante des systèmes industriels a conduit à la nécessité de développer des al-
gorithmes de contrôle fiables et efficaces tout au long des phases de vie de ces systèmes. Dans
le cas des lanceurs de véhicules spatiaux, la phase atmosphérique du vol est particulièrement
critique. En raison des vitesses atteintes par le lanceur, dans le but d’atteindre la vitesse orbitale
nécessaire à la satellisation et accessoirement de s’extraire rapidement des couches denses de
l’atmosphère, les structures de celui-ci sont soumises à des forces aérodynamiques très impor-
tantes et potentiellement destructives si la loi de commande n’en tient pas compte.

La mise en place d’une stratégie de commande efficace repose sur une modélisation fidèle
des phénomènes physiques à l’œuvre ainsi que sur la formulation d’un cahier des charges précis
de contraintes à satisfaire. En pratique, dans le cas des problèmes de contrôle, ces contraintes
sont de deux ordres : soit il s’agit de contraintes fréquentielles de sorte que le comportement
fréquentiel du système en boucle fermée est adapté ; soit il s’agit de contraintes temporelles qui
concernent les signaux temporels du système au cours de son évolution dynamique. Dans le cas
du lanceur, une contrainte temporelle est ainsi spécifiée sur l’angle d’incidence α. En minimisant
cet angle, les forces aérodynamiques sont minimisées et la destruction du lanceur où sa sortie de
trajectoire optimale (dans le meilleur des cas) est évitée. Quant aux contraintes fréquentielles,
elles concernent principalement la stabilité en boucle fermée mais également l’atténuation des
modes souples présents à basse fréquence et qui ne doivent pas être excités par la loi de commande
obtenue.

Dans cette thèse, nous considérons le problème de synthèse d’une loi de commande pour un
système linéaire en présence de contraintes fréquentielles et temporelles. Certains paramètres
du modèle linéaire considéré peuvent également être considérés comme incertains. Du fait de
la nature différentes des contraintes considérées, une stratégie appropriée est développée dans
ce travail. Dans un premier temps, une loi de commande, dite nominale, est synthétisée dans
le but de satisfaire les contraintes fréquentielles. Dans notre cas, nous utilisons la synthèse
H∞. Dans un second temps, la loi de commande obtenue est modifiée de manière appropriée
afin de satisfaire la contrainte temporelle sur la sortie considérée. En conclusion, la loi de
commande nominale est active tant que la contrainte temporelle est satisfaite. Dès que cette
contrainte est violée, la sortie du contrôleur est saturée de manière appropriée afin de restreindre
l’ensemble admissible d’évolution de la sortie contrainte. Une telle stratégie de commande est
appelée stratégie évolutionnaire dans la littérature associée au contrôle sous contraintes sur les
sorties [Goodwin 01].

En ce qui concerne l’état de l’art des différentes notions évoquées et utilisées dans ce manuscrit
de thèse, nous référons le lecteur intéressé à l’état de l’art de la version complète du manuscrit
(en anglais), disponible dans la section 1.2.

En terme de contributions, ce travail de thèse a proposé des améliorations de la stratégie
évolutionnaire considérée, à savoir l’approche OIST, introduite dans [Burlion 12] et rappelée en
détails dans le Chapitre 3. Ces contributions sont les suivantes :

• formulation de l’approche OIST dans le cas des systèmes linéaires (voir section D.2). Une
solution au problème de chevauchement des saturations ainsi qu’une preuve de stabilité
asymptotique globale dans le cas des transferts à minimum de phase sont proposées, pour
la première fois ;

• Extension OISTeR de l’approche OIST à la classe des systèmes incertains et/ou avec
mesures partielles de l’état. Cette contribution repose sur l’utilisation d’observateurs par
intervalles. La solution d’évitement de chevauchement des saturations est étendue à ce cas
plus complexe ;

• Application des approches OIST et OISTeR à des modèles plus ou moins simplifiés (no-
tamment : avec ou sans modes flexibles) de lanceur ;

• Proposition d’une nouvelle méthode de construction d’un observateur par intervalles avec
changement de coordonnées à temps invariant. Cette méthode repose sur la formulation
du problème mathématique d’origine en problème de stabilisation d’un système linéaire dit
fictif (puisque ne modélisant pas la dynamique d’un système réel).
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Figure D.1: Illustration de l’approche OIST. Gauche : contrôleur nominal (avant application des
saturations OIST); Droite : après application de l’approche OIST, la contrainte est vérifiée (en
orange).

Ces contributions sont présentées en détails dans la partie anglaise du manuscrit, à savoir la
Partie III. Dans ce résumé en langue française, ces contributions sont présentées rapidement, sans
rentrer dans les détails. Le résumé est organisé comme suit. La formulation de l’approche OIST
dans le cas des systèmes linéaires est présentée dans la section D.2 ainsi que les contributions
concernant l’évitement de chevauchement des saturations obtenues. L’extension OISTeR de
cette approche au cas des systèmes incertains et à mesures d’état partielles est présentée dans la
section D.3. Ces contributions sont appliquées au contrôle d’un lanceur sous contrainte temporelle
sur l’angle d’incidence dans la section D.4. L’approche OISTeR faisant appel à un observateur
par intervalles, une nouvelle méthode de construction de tels observateurs, intitulée SCorpIO,
est proposée et détaillée dans la section D.5 avant de conclure dans la section D.6.

D.2 Formulation dans le cadre linéaire de l’approche OIST
Un certain nombre de techniques de synthèse de loi de commande existe afin de satisfaire aux
exigences d’un cahier des charges. Par exemple, dans le cas où des contraintes fréquentielles sont
formulées au sein du problème de commande et que le contrôleur est structuré afin de restreindre
son nombre d’états ou d’utiliser une structure éprouvée, la technique de synthèse H∞ telle que
présentée dans le Chapitre 2 de pré-requis peut être utilisée. Avec ce type de technique, la prise en
compte de contraintes temporelles sur l’état ou les sorties est plus complexe à gérer et nécessite
une approche par essais-erreurs pour les satisfaire. Un exemple de contrainte temporelle qui
peut être considérée est la contrainte d’appartenance à un intervalle : étant donnée une variable
d’état ou de sortie α ∈ R, celle-ci doit satisfaire α ∈ Ωα(t) où Ωα(t) = [α(t), α(t)] est un intervalle
pré-défini.

L’approche OIST (Output to Input Saturation Transformation) introduite dans [Burlion 12] et
rappelée dans le Chapitre 3 consiste à transformer cette contrainte sur une sortie α en saturations
sur l’entrée de commande u dans le but de restreindre la trajectoire du système et donc l’ensemble
d’évolution de α. La loi de commande, dite nominale, reste inchangée tant que la contrainte est
satisfaite. Dans le cas contraire, la sortie du contrôleur est saturée de manière adéquate, les
bornes de la saturation étant fournies par OIST. Ceci est illustré dans la Fig. D.1.

Comme présenté dans la section D.2.1, OIST se classe dans la famille des méthodes de contrôle
sous contraintes dites évolutionnaires. Cela signifie qu’elle repose sur une loi de commande
nominale (le contrôleur synthétisé en utilisant des techniques H∞ par exemple) qui est modifiée
(dans notre cas, elle est saturée) par une structure additionnelle dès que la contrainte temporelle
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sur la variable α n’est plus vérifiée. L’approche OIST a été initialement introduite dans le cadre
des systèmes non-linéaires. Dans ce manuscrit, nous considérons sa formulation dans le cadre des
systèmes linéaires. Cette formulation nous permet également d’obtenir des solutions théoriques
intéressantes aux problèmes de chevauchement des saturations1 et d’analyse de stabilité2. Cette
section repose sur les résultats présentés dans les articles [Chambon 15c] et [Chambon b].

Cette section est organisée comme suit : dans un premier temps, un état de l’art succinct
des techniques de commande sous contraintes est présenté dans la section D.2.1. L’approche
OIST telle qu’introduite dans [Burlion 12] est rappelée dans la section D.2.2 en l’appliquant à
un système linéaire. Des limites aux résultats actuels sont alors identifiées. Ces limites sont
levées dans le cadre des systèmes linéaires sous le forme de contributions présentées dans la
section D.2.3. L’application au contrôle d’une bille sous contrainte temporelle sur sa position sur
un rail inclinable est considérée avant de conclure dans la section D.2.4.

D.2.1 État de l’art succinct de la commande sous contraintes
Un état de l’art de la commande sous contraintes temporelles sur les sorties est présenté dans la
section 3.2.2 du Chapitre 3. Il est brièvement rappelé dans cette section.

Les techniques de contrôle sous contraintes temporelles sur les sorties sont nombreuses et
variées de part l’importance de ces contraintes destinées à assurer la bonne marche des systèmes
en définissant les zones de fonctionnements nominal et dégradé. Dans les ressources documen-
taires [Goodwin 01, Rojas 02] et [De Dona 02], ces stratégies de commande sont divisées en trois
familles :

• les méthodes dites prudentes qui consistent à faire en sorte que les signaux de sortie
n’atteignent jamais les contraintes (et donc ne les violent pas). Ces méthodes sont souvent
considérées comme peu performantes car les signaux de sortie sont forcés de ne jamais
stationner sur les contraintes, ce qui est obtenu en utilisant une commande conservatrice
qui sous-estime le domaine admissible ;

• Les approches dites évolutionnaires3 qui reposent sur une loi de commande nominale ex-
istante qui est modifiée par un signal supplémentaire seulement lorsque les contraintes
temporelles sont violées. Un exemple d’approche évolutionnaire est l’utilisation d’un com-
pensateur anti-windup qui ne modifie la dynamique de la boucle fermée que lorsqu’une
saturation s’active sur la commande ;

• Les méthodes dites tactiques qui prennent en compte les contraintes temporelles au sein
d’un problème de contrôle optimal. La commande prédictive est un exemple bien connu
d’approche tactique pour la commande.

Dans chaque famille, des exemples documentés d’approches sont renseignés dans la sec-
tion 3.2.2. Veuillez vous y référer pour plus de détails.

D.2.2 Présentation de l’approche OIST
Dans cette section, les notions développées dans [Burlion 12] et décrites dans le Chapitre 3 sont
brièvement rappelées dans le cas d’un système linéaire. L’approche OIST est utilisée afin de
satisfaire une contrainte sur une sortie α du système considéré lorsque le contrôleur nominal
existant ne le permet pas. Cela est formellement présenté dans le Problème 4.11. Des limites à
l’approche actuelle sont identifiées sur un exemple déjà introduit dans le Chapitre 4.

D.2.2 (a) Principe

Une réalisation possible du système linéaire considéré dans cette section est donnée par :
1Pour la première fois, les coefficients de la méthode sont choisis variants avec le temps.
2Un compensateur anti-windup est considéré afin d’obtenir un certificat sur la stabilité asymptotique de la

boucle fermée avec saturations.
3A ne pas confondre avec les algorithmes évolutionnaires en optimisation.
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(G)
{
ẋ = Ax + Buu + Bdd

y = x + Ddd
(D.1)

où x ∈ Rn est le vecteur d’état, u ∈ R est l’entrée de commande, d ∈ Rm−1 est une entrée de
perturbation inconnue et y ∈ Rn est la sortie de mesure qui est équivalente au vecteur d’état
bruité par les perturbations de sortie présentes au sein du vecteur d. Un contrôleur nominal (K)
de réalisation :

(K)
{
ẋK = AKxK + BKuK

yK = CKxK + DKuK
(D.2)

est supposé connu et assure que la boucle fermée (u = yK ,uK = y) satisfait aux contraintes
fréquentielles du cahier des charges.

Contrainte temporelle sur une sortie Considérons le signal de sortie α = Cαy ∈ R.
Imaginons que nous souhaitions que cette sortie satisfasse la contrainte temporelle suivante :

K (Ωα) = {α ∈ Ωα(t) = [α(t), α(t)] , ∀t} (D.3)

où α(t) et α(t) sont des paramètres connus dépendants du temps. Il est également supposé que
le contrôleur (D.2) ne permette pas de satisfaire la contrainte K (Ωα). L’approche OIST propose
de saturer la sortie du contrôleur nominal (K) afin de satisfaire la contrainte de sortie K (Ωα).
La manière dont sont déterminées les bornes de la saturation est exposée dans la suite et repose
sur la notion de degré relatif de la sortie par rapport à l’entrée de commande u. Une définition
plus formelle de la contrainte de sortie est proposée dans la Définition 3.9.

Notons que la fonction de transfert entre la sortie α et l’entrée de commande u est supposée
être à minimum de phase à partir de maintenant. Les raisons de ce choix sont expliquées plus
tard conjointement à l’analyse de stabilité du système avec saturation.

Degré relatif La notion de degré relatif de la sortie α par rapport à l’entrée de commande
u est introduite, en anglais, dans la Définition 3.4. Le degré relatif est un entier désigné par k
dans cet exposé. Il quantifie l’ordre de la dérivée de α qui dépend de l’entrée de commande u.
Par exemple, en supposant que Dd = 0 et que α soit de degré relatif k par rapport à u, alors
les dérivées de α d’ordre j tel que j < k ne dépendent pas de l’entrée de commande u et, pour
j = k, on a :

α(k)(t) = CαAkx(t) + CαAk−1Buu(t) (D.4)

En d’autres termes, CαAjBu = 0, ∀j s.t j < k − 1 et CαAk−1 6= 0. Dans le cas où Dd 6= 0
et en supposant que l’Hypothèse 4.5 soit satisfaite, une expression plus complexe de la dérivée
k-ième de α est obtenue (4.23).

L’hypothèse du degré relatif de α par rapport à u est utilisée dans la suite pour obtenir les
saturations à appliquer à u de sorte à ce que α satisfasse la contrainte temporelle K (Ωα). Ceci
est possible notamment en introduisant la notion de bornes propagées grâce auxquelles le lemme
central de l’approche OIST peut être énoncé.

Bornes propagées et lemme La notion de bornes propagées est détaillée, en anglais, dans
la Définition 3.14. Elle repose sur l’introduction de paramètres de réglage κ choisis constants
dans un premier temps et est utilisée au sein du lemme suivant :

Lemma D.1 (Lemme des bornes propagées).
Supposons que les Hypothèses 3.13 et 3.15 soient satisfaites. En définissant les bornes
propagées comme dans la Définition 3.14 pour i ∈ N tel que i ≤ k, alors :
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α(k)(t) ∈ [αk(t), αk(t)] = Ωkα(t), ∀t ∈ R+ ⇒ α(t) ∈ [α(t), α(t)] = Ωα(t), ∀t ∈ R+ (D.5)

Ce lemme, dont la preuve est donnée dans la section 3.3.3, montre qu’en satisfaisant une con-
trainte temporelle (donnée par les bornes propagées) sur la dérivée k-ième de la sortie contrainte
α alors la contrainte temporelle sur α est satisfaite. Comme la dérivée k-ième de α dépend de u
par définition du degré relatif, la contrainte temporelle correspondante est facile à satisfaire en
choisissant l’entrée de commande u de façon appropriée. En particulier, cela est possible si cette
entrée est saturée par des signaux bien définis.

Saturations Toujours en supposant que Dd = 0 et en utilisant le Lemme D.1, la contrainte
temporelle sur α(k) est satisfaite si le signal de commande u est choisi égal à u = satuu (yK) où
u(t) et u(t) sont donnés par :

u(t) = αk(t)−CαAkx(t)
CαAk−1Bu

, u(t) = αk(t)−CαAkx(t)
CαAk−1Bu

(D.6)

où on notera que CαAk−1Bu 6= 0 par définition du degré relatif. Des expressions plus complexes
de ces signaux sont obtenues dans le cas Dd 6= 0, voir les sections 4.4.3 (c) et 4.4.3 (d). Dans
la section 4.4.3 (d), il est également expliqué que la définition des bornes propagées doit être
adaptée en présence de perturbations à bornes connues. En effet, pour garantir la différentiabilité
des bornes propagées, les valeurs absolues et fonctions max doivent être remplacées par des
fonctions approchantes différentiables. Il en résulte des expressions plus conservatrices des bornes
propagées (4.41) et des saturations (4.43).

D.2.2 (b) Limites

L’approche OIST telle que présentée ici est appliquée à un modèle linéaire de bille en déplacement
sur un rail tel que présenté en introduction de la section 4.3 et illustré dans la Fig. 4.2. Une
perturbation d peut affecter la dynamique de la position de la bille. En simulation, le signal
illustré sur la Fig. 4.3(a) est utilisée. L’objectif est de garantir que la bille ne tombe pas du rail
ce qui est formalisé par une contrainte sur la sortie α = r où r est la position de la bille sur le
rail. Un contrôle par retour d’état avec action intégrale est implémenté. On observe en pointillés
rouge sur la Fig. D.2(a) que cette loi de commande ne permet pas seule de satisfaire la contrainte
temporelle telle qu’illustrée sur le même graphique.

L’approche évolutionnaire OIST est donc utilisée afin de saturer la sortie du contrôleur de
manière appropriée afin de contraindre l’ensemble d’évolution acceptable de la position r de la
balle. Dans un premier temps, les paramètres κ des bornes propagées sont choisis constants
comme le propose la méthode initialement présentée dans [Burlion 12]. Le résultat, en trait plein
rouge sur la Fig. D.2(a) semble acceptable à première vue mais un grossissement aux instants
proches de t = 75s montre que la contrainte temporelle est violée. Ce phénomène s’explique par ce
que nous appelons le chevauchement des saturations u et u, notion définie dans la Définition 3.19.
En d’autres termes, il est visible sur la Fig. D.2(b) que les saturations se croisent aux alentours de
t = 75s. Ce croisement est dû à une mauvaise définition des paramètres κ de la méthode OIST
qui autorise les bornes propagées et donc les saturations à se croiser : ∃t t.q. αk(t) < αk(t).
En pratique, cela signifie que la satisfaction de la contrainte temporelle n’est pas garantie pour
toutes les valeurs des paramètres κ.

Pour éviter ce chevauchement, deux approches sont possibles : soit les paramètres restent
constants mais sont choisis plus grands (voir Fig. 4.5), ce qui peut conduire à l’apparition de pics
dans le signal de commande dus à une saturation plus brutale de celui-ci, soit les paramètres
sont choisis variants avec le temps et cela de manière appropriée. Cette dernière solution est
sélectionnée. La méthode de construction des paramètres variants est une contribution de ce
travail.

D’autre part, l’introduction de saturations au sein de la boucle de contrôle peut être problé-
matique en ce qui concerne la stabilité de la boucle fermée résultante. Une analyse de stabilité
est nécessaire. Elle constitue une autre contribution de ce travail de thèse.
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(a) Résultats de simulation de la sortie contrainte α
(en rouge) et, en noir, contrainte temporelle consid-
érée. Sans utiliser OIST, la courbe en trait pointillé
rouge est obtenue (le contrôleur nominal ne satisfait
pas la contrainte) tandis que la courbe en trait plein
rouge est obtenue en utilisant OIST avec κ constant,
tel que proposé dans [Burlion 12] et le Chapitre 3.
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(b) Résultats de simulation du signal de commande
(en rouge) et saturations obtenues en utilisant la méth-
ode OIST telle que présentée dans [Burlion 12] et le
Chapitre 3. Le chevauchement des saturations débute
aux alentours de t1 = 73s.

Figure D.2: Illustration du chevauchement: résultats de simulation avec (trait plein rouge) ou
sans (trait pointillé rouge) les saturations issues de OIST, pour κ1 = 1 and κ2 = 0.6.

D.2.3 Contributions à OIST dans le cadre des systèmes linéaires
Dans cette section, les contributions de la thèse à l’amélioration de l’approche OIST sont présen-
tées. Il est notamment question du problème de chevauchement des bornes propagées et des
saturations ainsi que de l’analyse de stabilité de la boucle fermée en présence des saturations
OIST.

D.2.3 (a) Solution au problème du chevauchement des bornes propagées et des
saturations

Comme expliqué ci-dessus, le chevauchement des saturations illustré dans l’étude de cas de la
section 4.3 est dû à une mauvaise définition des coefficients κ. Si ces coefficients sont choisis trop
petits, il peut en résulter un croisement des bornes propagées et des saturations notamment à
cause du conservatisme des bornes d et d supposées encadrer la perturbation d. Afin de remédier
à ce problème, une étude des quantités ∆j(t) = αj(t) − αj(t) pour 0 ≤ j ≤ k − 1 et u − u est
nécessaire. En particulier, ces quantités doivent être strictement positives comme souligné dans
le Lemme 4.23. En remarquant que κj(t) peut être factorisé dans l’expression de ∆j(t), on
aboutit au théorème suivant pour la sélection de coefficients κ(t) dépendant du temps :

Theorem D.2 (Sélection de paramètres OIST dépendant du temps afin d’éviter le chevauche-
ment des signaux u(t) et u(t)).
Soit κ̆ =

[
κ̆1 . . . κ̆k

]> ∈ R?k+ un vecteur de constantes strictement positives. Le chevauche-
ment des bornes propagées et des saturations est évité si :

• α < α, ∀t (comme supposé dans le Problème 4.11) et λd1 6= 0, ∀t ;

• ∀j ∈ N? tel que j ≤ k − 1, la condition ∆̂j > 0 est satisfaite en choisissant, ∀t :

κj =
κ̆j − λnj
λdj

(D.7)

où κ̆j est tel que κ1 >
1
2 , ∀j > 1 : κj > 1 et λdj+1 6= 0, ∀t ;

216



Appendix D. Résumé de thèse en français

• Pour j = k, l’inéquation u− u > 0 est garantie en choisissant, ∀t :

κk = 1
λdk

κ̆k − λnk + 2
q∑

i=1,li=0
|Dαi|max

(∣∣∣d(k)
i

∣∣∣ , ∣∣∣d(k)
i

∣∣∣)

+2
q∑

i=1,li 6=0

k∑
j=li

∣∣CαAj−1Bdi
∣∣max

(∣∣∣di(k−j)(t)∣∣∣ , ∣∣∣di(k−j)(t)∣∣∣)
 (D.8)

où κ̆k est sélectionné tel que κk > 1
2 , ∀t.

Les quantités λdj et λnj utilisées dans ce théorème sont définies dans (4.47) et sont donc dif-
férentiables. En pratique, on observe que la valeur numérique des coefficients augmente dès qu’un
chevauchement des bornes propagées ou des saturations est imminent. Le choix de coefficients
variant avec le temps permet de formuler une solution garantie au Problème 4.11 :

Theorem D.3 (Solution garantie au Problème 4.11 par la méthode OIST).
Soit le système (G) tel que donné dans (D.1) en boucle fermée avec le contrôleur (K)
dans (D.2). Soit α la sortie contrainte considérée et K (Ωα) la contrainte temporelle sur
cette sortie. Supposons que les hypothèses 4.4 à 4.10 sont satisfaites.

Si la loi de commande u est sélectionnée telle que

u = satuu (yK) , ∀t (D.9)

où

• u et u sont données dans (4.43);

• Les bornes propagées sont choisies égales à (4.41);

• Les paramètres κ de la méthode sont choisis en fonction du Théorème D.2,

alors α ∈ Ωα, ∀t.

Ce théorème garantit la satisfaction de la contrainte temporelle formulée sur la sortie α. En
revanche, rien ne garantit que l’état interne du système en boucle fermée converge. Une analyse
de stabilité est donc nécessaire. Dans le cas d’un transfert Tu→α(s) à minimum de phase, la
stabilité asymptotique peut être démontrée en considérant un compensateur anti-windup.

D.2.3 (b) Analyse de stabilité pour un transfert Tu→α(s) à minimum de phase

L’étude de la boucle fermée en présence de la saturation obtenue par l’application de l’approche
OIST repose sur la transformation suivante, qui consiste à remarquer que les signaux de satura-
tion u et u dépendent de la même manière de l’état x du système :

u = satuu (yK) = satu+Koisty
u+Koisty

(yK +Koisty)−Koisty (D.10)

où Koist est défini dans (4.54). En notant v = satvv (yK +Koisty) où v = u + Koisty et v =
u+Koisty, une réalisation de la boucle fermée en présence des saturations OIST est donnée par :
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

ẋ(t) = [A−BuKoist(t)]x(t) + Buv(t) + (Bd −BuKoist(t)Dd)d(t)
y(t) = x(t) + Ddd(t)
ẋK(t) = AKxK(t) + BKy(t)
yK(t) = CKxK(t) + DKy(t)

v(t) = satv(t)
v(t) (yK(t) +Koist(t)y(t))

α(t) = Cαx(t) + Dαd(t)

(D.11)

L’objectif est de montrer que l’origine de cette boucle fermée (que l’on suppose atteignable,
voir 4.4.4 (a)) est asymptotiquement stable dans le cas où le transfert Tv→α(s) est à minimum
de phase. Cette analyse de stabilité est inspirée par les travaux présentés dans [Herrmann 10].
Dans un premier temps, l’hypothèse d’un transfert à minimum de phase permet de démontrer la
proposition suivante.

Proposition D.4 (Stabilité “boucle ouverte” (v = 0, d = 0)).
Le système boucle ouverte suivant

ẋ = [A−BuKoist(t)]x (D.12)

est GES (Globalement Exponentiellement Stable).

A noter que cette proposition n’est pas satisfaite dans le cas d’un transfert à non-minimum
de phase puisque dans ce cas, il peut être montrer que la matrice A − BuKoist(t) n’est pas
Hurwitz ∀t (voir A.1). Sur le modèle de l’article [Herrmann 10], un compensateur anti-windup
est introduit :

(Ga)



ẋa(t) = Axa(t) + Buua(t)
ya(t) = xa(t)

ua(t) = −Koist(t)ya(t)−Dzv(t)
v(t) (yK(t) +Koist(t)y(t))

ẋ1
K(t) = AKx

1
K(t) + BKya(t)

v1(t) = −CKx
1
K(t)− [DK +Koist(t)]ya(t)

(D.13)

On modifie alors l’entrée de commande v de la manière suivante :

v(t) = satv(t)
v(t) (u(t) +Koist(t)y(t) + v1(t))

= satv(t)
v(t)
(
CKx

2
K(t) + DK (y(t)− ya(t)) +Koist(t) (y(t)− ya(t))

) (D.14)

Le théorème suivant peut ainsi être formulé :

Theorem D.5 (Analyse de stabilité en boucle fermée, Problème 4.13).
Si les Hypothèses 4.4 à 4.10 sont satisfaitesa (ce qui assure la validité du Théorème D.2 et
de la Proposition D.4), l’origine du système boucle fermé composé du système suivant :

ẋ = [A−BuKoist]x+ Buv + [Bd −BuKoistDd]d (D.15)

(où les signaux v et v sont donnés dans (4.55)), de la loi de commande v définie dans (D.14)
et du compensateur anti-windup donné par (D.13) est GAS (Globalement Asymptotiquement
Stable).

aEn excluant le cas pathologique où le signal d est une distribution non convergente d’énergie finie.

La démonstration de ce théorème est rapportée dans A.2. La boucle fermée obtenue est
illustrée dans la Fig. 4.6.
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Figure D.3: Comparaison des résultats de simulation avec (en bleu, trait plein) ou sans (en bleu,
trait pointillé) compensateur anti-windup.

D.2.4 Remarques et conclusion
L’approche OIST telle que présentée ainsi que les contributions initiées dans ce travail sont ap-
pliquées au modèle de la bille sur le rail déjà utilisé pour identifier les limites de la méthode
OIST initiale. Les détails de l’implémentation sont disponibles dans la section 4.5. Les résultats
de simulation sont illustrés dans les Figs. 4.7 et 4.8 et sont très satisfaisants. Dans cet exemple,
l’utilisation d’un compensateur anti-windup n’est pas nécessaire pour obtenir la stabilité asymp-
totique de l’origine. En revanche, on observe que l’utilisation d’un tel compensateur améliore la
performance de la boucle fermée. Ceci est illustré dans la Fig. D.3.

On constate qu’en présence du compensateur anti-windup, la variable de sortie est “autorisée”
à stationner sur la contrainte. L’écart entre la valeur nominale de la sortie (sans OIST, en
rouge) et la valeur contrainte (en trait plein bleu) est minimisé dans ce cas et l’ensemble du
domaine admissible du signal de sortie est utilisé. La performance est ainsi améliorée. Grâce
aux contributions proposées dans cette thèse, on constate bien entendu que la contrainte n’est
plus violée à t = 75s de part l’utilisation de coefficients κ variants avec le temps.

Des remarques concernant l’optimisation des coefficients κ de la méthode OIST ainsi que la
considération de transferts Tu→α(s) à non-minimum de phase sont détaillées dans la section 4.6.
Nous invitons le lecteur désireux d’en apprendre plus sur ces sujets à consulter cette section.

Dans cette section, les contributions du Chapitre 4 ont été évoquées. Elles concernent
l’amélioration de la méthode OIST ainsi que sa formulation dans le cadre des systèmes linéaires.
Grâce à une définition appropriée des coefficients κ de la méthode, les bornes u et u de la sat-
uration sont assurées de ne plus se chevaucher ce qui donne une garantie à la satisfaction de
la contrainte temporelle sur la sortie α. Par ailleurs, grâce à l’introduction d’un compensateur
anti-windup, la stabilité asymptotique de l’origine a été démontrée.

Malgré des résultats très satisfaisants sur des exemples académiques, OIST reste complexe a
mettre en œuvre. A court terme, des perspectives d’amélioration concernent une automatisation
de la méthode, éventuellement accompagnée d’une étape d’optimisation des coefficients κ̆ par
rapport à un critère de coût à définir. Une étude plus détaillée du cas d’un transfert à non-
minimum de phase est également planifiée. Le cas des systèmes linéaires incertains avec mesures
d’état partielles est considéré dans la section suivante, qui fait écho au Chapitre 5.

D.3 Extension de OIST au cas incertain et en présence de
variables d’état non mesurées

La méthode OIST a été présentée dans la section D.2 pour un système linéaire sans incertitude
et avec connaissance complète de son vecteur d’état x. Il s’agit d’une classe plutôt limitée
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de systèmes linéaires. Dans cette section, l’approche OIST, dédiée à la prise en compte d’une
contrainte temporelle sur une sortie, est étendue aux systèmes linéaires incertains et dont l’état
n’est pas entièrement mesuré : y 6= x.

L’extension de la méthode OIST à cette classe plus large de systèmes est appelée OISTeR. Elle
est présentée de manière non exhaustive dans cette section. Pour des détails supplémentaires,
veuillez vous reporter au Chapitre 5, en anglais. Les résultats présentés dans cette section sont
basés sur les résultats préliminaires présentés dans [Chambon 15d].

D.3.1 Classe de systèmes et problème considérés
Classe de systèmes Dans cette section, nous considérons les systèmes linéaires ayant pour
réalisation possible :

(G)


ẋ = A (θ)x + Buu + Bd (θ)d
y = C (θ)x + Du (θ)u + Dd (θ)d

x(0) = x0

(D.16)

où x ∈ Rn, y ∈ Rl (y 6= x), u ∈ R est l’entrée de commande et d ∈ Rm−1 est une entrée
inconnue servant à injecter les perturbations dans le système. Le vecteur θ ∈ Rq est le vecteur
d’incertitudes où on suppose que celles-ci sont bornées : θ ∈ Θ où Θ est un sous-ensemble de Rq.
Les bornes du vecteur d’incertitudes sont supposées connues et sont dénotées θ et θ telles que
θ ≤ θ ≤ θ (voir Hypothèse 5.1). La condition initiale, potentiellement inconnue, est également
supposée appartenir à un intervalle connu

[
x0,x0

]
.

En utilisant les bornes sur le vecteur d’incertitudes, il est possible de définir des matrices qui
bornent les matrices inconnues dans la réalisation du système (G) :

A ≤ A (θ) ≤ A

Bd ≤ Bd (θ) ≤ Bd

C ≤ C (θ) ≤ C

Du ≤ Du (θ) ≤ Du

Dd ≤ Dd (θ) ≤ Dd

, ∀θ ∈
[
θ,θ

]
(D.17)

Comme le système (G) peut être potentiellement instable, on suppose qu’un contrôleur (K)
de réalisation (AK,BK,CK,DK) a été synthétisé de sorte à stabiliser (G) pour toute valeur θ
de Θ. En pratique, un tel contrôleur robuste peut être synthétisé sur un ensemble de modèles
critiques, voir l’Appendice 2. La boucle fermée, supposée bien posée, est obtenue en reliant le
système et le contrôleur (d’entrée uK et de sortie yK) de la manière suivante :{

uK = y

u = yK + v
(D.18)

Le signal v est utilisé dans l’approche OISTeR pour modifier le signal d’entrée dans le cas où
la contrainte temporelle sur la sortie considérée est violée. Une réalisation de la boucle fermée
est donnée par :

Ẋ =
[

A (θ) + Bu∆u (θ) DKC (θ) Bu∆u (θ) CK
BKC (θ) + BKDu (θ) ∆u (θ) DKC (θ) AK + BKDu (θ) ∆u (θ) CK

]
X

+
[
Bu Bd (θ) + Bu∆u (θ) DKDd (θ)
0 BKDd (θ) + BKDu (θ) ∆u (θ) DKDd (θ)

] [
v
d

]
= AX (θ)X + BX,vv + BX,d (θ)d

(D.19)

où X =
[
x
xK

]
et ∆u (θ) = [1−DKDu (θ)]−1. En utilisant l’approche SCorpIO, il est possible

de synthétiser un observateur par intervalles de l’état X de la boucle fermée.
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Problème considéré De manière totalement similaire à OIST, l’objectif ici est de satisfaire
une contrainte temporelle K (Ωα) sur une sortie α = CXαX de sorte que α(t) ∈ Ωα(t) =
[α(t), α(t)]. Dans le cas où le contrôleur (K) ne permet pas de satisfaire cette contrainte, la
méthode OISTeR peut être utilisée en modifiant la commande (via le signal v) de sorte que la
sortie contrainte reste dans le domaine admissible Ωα. De manière formelle, la méthode OISTeR
permet d’obtenir une solution au problème suivant :

Problem D.6 (Contrôle du système (D.16) sous contrainte temporelle de sortie).
Trouver deux signaux [v(t), v(t)] et un domaine C0 tels que pour deux signaux α(t) et α(t)
avec α(t) ≤ α(t), ∀t ∈ R+ alors la sortie α satisfait la contrainte K (Ωα):

α(t) ∈ Ωα(t) = [α(t), α(t)] , ∀t ∈ R+ (D.20)

dans le cas d’un système (G) (D.16) en boucle fermée bien posée avec un contrôleur dy-
namique (K) saturé :

ẋ(t) = A (θ)x(t) + Buu(t) + Bd (θ)d(t)
y(t) = C (θ)x(t) + Du (θ)u(t) + Dd (θ)d(t)
α(t) = Cαx(t)
ẋK(t) = AKxK(t) + BKy(t)
yK(t) = CKxK(t) + DKy(t)
u(t) = yK(t) + v(t)

v(t) = satv(t)
v(t) (0)

x0 ∈ C0

(D.21)

où l’on suppose que les Hypothèses 4.4 à 4.10 et dans la section 5.2.1 sont satisfaites.

L’approche utilisée pour construire les signaux v(t) et v(t) est décrite dans la suite. A noter
que la stabilité de la boucle fermée n’est pas garantie par l’approche OISTeR, comme cela a
également été constaté pour OIST. Dans l’état actuel de ce travail novateur, la stabilité de la
boucle fermée n’est pas considérée. L’analyse de stabilité est laissée en perspective de ce travail.
Dans le cas d’un modèle linéaire sans incertitude mais avec mesures incomplètes du vecteur
d’état, cette analyse ainsi que sa preuve ne devraient cependant pas trop différer des résultats
obtenus pour OIST dans le cas des systèmes à minimum de phase. La méthode de construction
de v(t) et v(t) est maintenant présentée.

D.3.2 Présentation de l’extension : OISTeR
Dans cette section, l’approche OISTeR est décrite afin d’obtenir les signaux saturants v(t) et
v(t) permettant de satisfaire la contrainte temporelle sur la sortie α = CXαX. Une version plus
détaillée de cette description est disponible dans la section 5.3 du Chapitre 5.

Contrainte temporelle généralisée La contrainte temporelle considérée concerne la sortie
α = CXαX. Comme mentionné précédemment, l’état X du système en boucle fermée n’est pas
supposé connu. L’approche proposée est de considérer des bornes connues et garanties du signal
de sortie α et de garantir la contrainte temporelle sur ces bornes. En utilisant par exemple un
observateur par intervalles bien construit de l’étatX, il est possible de borner α par les quantités
suivantes :

CXα
+X −CXα

−X ≤ CXαX ≤ CXα
+X −CXα

−X (D.22)

La contrainte temporelle est alors spécifiée sur les bornes du signal α plutôt que sur le signal
lui-même. Ceci conduit à introduire la notion de contrainte de sortie généralisée, dans le sens où
elle concerne les bornes plutôt que le signal lui-même.
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Definition D.7 (Contrainte de sortie généralisée K (Ωα)).
Soit α = CXαX la sortie à contraindre du système (D.16). Soit Ωα(t) = [α(t), α(t)] où α(t)
et α(t) sont des signaux unidimensionnels suffisamment différentiables tels que

α(t) ≤ α(t), ∀t ∈ R+ (D.23)

Supposons que des bornes sur l’état du système soient connues telles que X ∈
[
X,X

]
.

La sortie α = CXαX satisfait la contrainte K (Ωα) si{
CXα

+X −CXα
−X ≥ α

CXα
+X −CXα

−X ≤ α
, ∀t ∈ R+ (D.24)

Grâce à cette réécriture de la contrainte sur des bornes garanties du signal de sortie α, les
quantités en jeu sont désormais connues. Toutefois, il peut être constaté que cette réécriture est
conservatrice puisqu’on doit satisfaire l’inégalité suivante :

α− α ≤
(
CXα

+ + CXα
−) (X −X) (D.25)

Un observateur par intervalles de bonne qualité ou l’utilisation d’un observateur par intervalles
d’ordre réduit(voir Chapitre 6) permet toutefois d’assurer un conservatisme minimal. Dans la
section suivante, la façon de déterminer les bornes de l’état X est discutée.

Observateur par intervalles de l’état de la boucle fermée La théorie des observateurs par
intervalles a été étudiée de manière extensive ces dernières années. Un observateur par intervalles
permet de fournir des bornes sur l’état d’un système, dans notre cas, nous sommes intéressés
par des bornes sur l’état X de la boucle fermée, notamment lorsque le système considéré est
perturbé par un signal d’entrée d inconnu mais à bornes d(t) et d(t) connues. Des extensions
ont notamment été proposées dans le cas des systèmes incertains en utilisant des bornes sur les
matrices d’état telles que définies dans D.17.

L’observateur par intervalles considéré au sein de l’approche OISTeR est décrit en détails dans
la section 5.3.1. Sa construction repose sur la réécriture du système incertain d’origine (D.16)
sous la forme suivante :

Ẋ = AX,nX + ∆AX (θ)X + BX,vv + BX,d (θ)d
= AX,nX + BX,vv + f (X,d, θ)

(D.26)

qui utilise le vecteur nominal θn = θ−θ
2 pour définir la matrice AX,n = AX (θn) et où ∆AX (θ) =

AX (θ)−AX,n. On définit également f (X,d, θ) = ∆AX (θ)X + BX,d (θ)d, quantité qui peut
être bornée de la manière suivante en utilisant le Lemme 1 dans [Efimov 13e] :

f
(
X,X,d,d

)
≤ f (X,d, θ) ≤ f

(
X,X,d,d

)
(D.27)

La dynamique du système (D.26) n’étant pas coopérative, on considère un changement de
coordonnées Z = PX de sorte que la matrice PAX,nP−1 soit (Hurwitz) Metzler dans les
nouvelles coordonnées. A noter que la synthèse simultanée du contrôleur et de ce changement
de coordonnées peut être effectuée en utilisant l’approche SCorpIO présentée dans la section D.5
et, de manière plus complète, dans le Chapitre 7. Moyennant quelques hypothèses rappelées
dans la section 5.3.1, le système suivant est un observateur par intervalles candidat de la boucle
fermée (D.16) :
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Ż = MZZ + PBX,vv + g
(
Z,Z,d,d

)
Ż = MZZ + PBX,vv + g

(
Z,Z,d,d

)
Z0 = P+X0 −P−X0

Z0 = P+X0 −P−X0

X = T+Z −T−Z

X = T+Z −T−Z

(D.28)

où T = P−1, X0 =
[
x0
0

]
, X0 =

[
x0
0

]
et les bornes g

(
Z,Z,d,d

)
et g

(
Z,Z,d,d

)
sont définies

dans (5.18). Le principal problème de cette formulation est que les bornes g et g ne sont pas
différentiables. Or, dans l’application de OISTeR, celles-ci devront potentiellement être dérivées.
L’approche choisie est d’approcher ces quantités par des quantités différentiables bien que plus
conservatrices. Ceci est détaillé dans la Proposition 5.11 et appliqué aux bornes g et g. Il en
résulte la Proposition 5.12 où un observateur par intervalles candidat de l’état X de la boucle
fermée est proposé, avec une dynamique différentiable.

Bornes propagées généralisées et lemme La considération de bornes sur la sortie α conduit
à redéfinir les bornes propagées, de manière asymétrique. Ainsi, on définit :

βm = CXα
+X −CXα

−X

βp = CXα
+X −CXα

−X
(D.29)

Dans le cas où l’observateur par intervalles a été construit de sorte à ce que sa dynamique
soit différentiable, ces quantités sont différentiables. D’autre part, il est possible de définir un
degré relatif de ces quantités par rapport à l’entrée de commande v, tel que cela est fait dans
l’Hypothèse 5.17. On les utilise pour introduire la notion de bornes propagées généralisées qui
sont utiles pour redéfinir le Lemme D.1.

Definition D.8 (Bornes propagées généralisées).
Soit un vecteur de signaux temporels positifs suffisamment dérivables

κ(t) =
[
κ1(t) . . . κk(t)

]
∈ Rk+

et supposons que les bornes (α(t), α(t)) de la contrainte temporelle sont de classe Ck (R+,R).
Soit β0(t) = α(t), β0(t) = α(t) et, ∀i ∈ N? s.t. i ≤ k:

β
i
(t) = κi(t)

(
β
i−1(t)− β(i−1)

m (t)
)

+
˙︷ ︷

β
i−1(t)

βi(t) = κi(t)
(
βi−1(t)− β(i−1)

p (t)
)

+
˙︷ ︷

βi−1(t)
(D.30)

où βm et βp sont définis dans (D.29). On appelle ces quantités des bornes propagées général-
isées dans le sens où elles généralisent la Définition D.8 au cas d’un vecteur d’étatX inconnu
à bornes connues.

La notion de bornes propagées généralisées est utilisée dans le lemme suivant, qui est lui-même
une généralisation du Lemme D.1 :

Lemma D.9 (Lemme des bornes propagées généralisées).
Considérons la Définition D.8 des bornes propagées généralisées. Supposons que l’Hypothèse
5.17 est satisfaite et que ∀i ∈ N tel que i ≤ k, β(i)

m (0) ≥ β
i
(0) et β(i)

p (0) ≤ βi(0). Alors,
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 β
(k)
m ≥ β

k

β
(k)
p ≤ βk

, ∀t ∈ R+ ⇒
{

βm ≥ β0 = α

βp ≤ β0 = α
, ∀t ∈ R+

⇒ α ≤ CXαX ≤ α, ∀t ∈ R+ ⇒ α(t) ∈ Ωα(t), ∀t ∈ R+ (D.31)

Pour référence, les expressions de β(k)
m et β(k)

p sont détaillées dans (5.45). Une preuve de ce
lemme est décrite dans le Chapitre 5. Le cheminement est clairement identique a ce qui a été
proposé dans OIST mais appliqué aux bornes propagées généralisées, à savoir le degré relatif k
des quantités βm et βp est utilisé pour en déduire les expressions des bornes v et v de la saturation
permettant de satisfaire la contrainte. En effet, par l’Hypothèse 5.17, les quantités β(k)

m et β(k)
p

dépendent de v. De la même manière que précédemment, il faut alors éviter tout chevauchement
de ces saturations afin d’obtenir des garanties sur la satisfaction de la contrainte temporelle sur
α.

Saturations et évitement de chevauchement En utilisant le Lemme D.9 et les expressions
des dérivées k-ième de βm et βp, nous pouvons en déduire les bornes v et v de la saturation
OISTeR :

v = 1
LBz,vL

k−1
h1

σm(ζ)

[
β
k
− Lkh1

σm (ζ)−∑k−1
j=0

dj

dtj

(
LILk−1−j

h1
σm (ζ)h2 (D)

)]
v = 1

LBz,vL
k−1
h1

σp(ζ)

[
βk − Lkh1

σp (ζ)−∑k−1
j=0

dj

dtj

(
LILk−1−j

h1
σp (ζ)h2 (D)

)] (D.32)

Comme signalé dans 5.3.3 (c), ces expressions sont valides seulement si les quantités

LBz,vLk−1
h1

σm (ζ) et LBz,vLk−1
h1

σp (ζ)

sont positives. Dans le cas contraire, le plus simple est de redéfinir la sortie contrainte en α̃ = −α
ainsi que la contrainte de manière appropriée. Ceci est illustré dans l’application au lanceur de
la section 6.3.2. Les quantités v et v sont utilisées afin de modifier la sortie du contrôleur (donc
l’entrée du système) dès que la contrainte temporelle sur α est violée, en choisissant v = satvv (0).

De la même manière que dans l’approche OIST, le problème du chevauchement des saturations
se pose. Il est appréhendé identiquement en considérant les quantités ∆j = β

(j)
p − β(j)

m pour j
tel que 1 ≤ j ≤ k et en définissant le coefficient κj(t) correspondant de manière appropriée de
sorte que cette quantité soit positive strictement. Les résultats concernant cette condition sont
reportés dans le Lemme 5.21 et le Théorème 5.22.

Conclusion Dans cette section, nous avons présenté les différentes étapes de l’application de
l’approche OISTeR afin de satisfaire une contrainte temporelle sur une sortie α du système
considéré. Moyennant l’utilisation de bornes sur l’état X de la boucle fermée, fournies par un
observateur par intervalles, la contrainte temporelle peut être satisfaite en corrigeant la sortie du
contrôleur par un signal v défini de manière appropriée, dès que cette contrainte est violée. Le
problème de chevauchement des saturations, déjà rencontré pour l’approche OIST, a été résolu
de manière similaire en définissant les coefficients κ(t) de manière appropriée.

Du fait de la nouveauté des résultats, l’analyse de stabilité de la boucle fermée en présence
du signal de correction v déterminé à partir d’un observateur par intervalles n’a pu être menée.
Il s’agit d’une perspective d’amélioration à court terme de l’approche OISTeR.

D.3.3 Exemples
L’approche OISTeR est appliquée à deux exemples dans la section 5.4. Le premier exemple
considéré est un système linéaire du second ordre avec une seule composante de l’état mesurée.
Dans le second exemple, un système linéaire coopératif incertain du second ordre est considéré.
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Dans les deux cas, on constate que l’approche OISTeR permet de satisfaire la contrainte
temporelle spécifiée sur la sortie contrainte α. En revanche, ceci est obtenu au prix d’une con-
naissance précise des bornes sur la perturbation d et sur le vecteur d’incertitudes θ dans le cas
incertain. OISTeR est une approche conservatrice qui repose sur la nécessité d’utiliser un obser-
vateur par intervalles qui renvoie un intervalle plutôt précis autour de la valeur exacte du vecteur
d’état X. Ceci laisse présager de perspectives d’amélioration de l’approche. Dans l’application
au lanceur flexible (voir section D.4), des approches pratiques sont utilisées afin de réduire ce
conservatisme.

D.3.4 Conclusions et perspectives
Dans cette section, nous avons présenté l’extension de OIST aux classes de systèmes linéaires
incertains et avec mesures incomplètes de l’état. Cette extension repose sur l’utilisation d’un
observateur par intervalles sur l’état du système en boucle fermée avec un correcteur dynamique
(K). Cet observateur permet ainsi d’obtenir des bornes garanties sur la valeur de la variable
de sortie α. La contrainte temporelle initiale est alors formulée sur ces bornes plutôt que sur la
variable α et, moyennant l’utilisation du Lemme D.9, les bornes v et v de la saturation définissant
le signal v = satvv (0) peuvent être déterminées. Ces bornes permettent de modifier la valeur du
signal de contrôle dès que la contrainte temporelle sur α n’est plus satisfaite.

En terme de perspectives, une preuve de la stabilité asymptotique de la boucle fermée corrigée
par le signal v dans le cas des systèmes à minimum de phase est une priorité. A plus long terme, il
serait intéressant de réduire le conservatisme de la méthode, notamment en formalisant l’approche
pratique utilisée dans la section 6.3.2, à savoir l’utilisation d’un observateur par intervalles d’ordre
réduit. Une telle approche permet d’utiliser la connaissance de certaines variables d’état dans la
phase d’application de OISTeR. D’autres approches pourraient également être imaginées comme
l’utilisation de techniques stochastiques dans l’estimation de l’intervalle de définition de X.
A plus long terme encore, la considération de systèmes LTV et LPV serait une amélioration
intéressante de la méthode.

D.4 Application des contributions au contrôle atmosphéri-
que d’un lanceur flexible

Dans cette section, les différentes contributions proposées dans ce travail de thèse sont appliquées
au contrôle atmosphérique d’un modèle linéaire de lanceur flexible sous contraintes fréquentielles
et temporelles. Les résultats présentés dans cette section sont inspirés du Chapitre 6 et des
articles [Chambon 15a] et [Chambon 15d] (en anglais) et y font fréquemment référence.

D.4.1 Modèle linéaire de la dynamique longitudinale du lanceur
Dans cette section, nous considérons la dynamique longitudinale du lanceur. Les notations
utilisées sont identiques à celles de la Fig. 6.1 du Chapitre 6. En particulier, on note α l’angle
d’incidence qui est la variable critique dans ce problème. La dynamique rigide du lanceur est
décrite par l’angle d’attitude ψ, sa dérivée ψ̇ ainsi que la vitesse de dérive ż sur l’axe (G,Z).
L’entrée de commande du système est l’angle de braquage β de la tuyère. Seule l’attitude ψ et
sa dérivée ψ̇ sont mesurées. On verra ci-dessous que ces mesures sont perturbées par la présence
de modes souples. La norme de la vitesse relative du lanceur par rapport au flux d’air est notée
V . Le vent, de vitesse de norme d, agit comme une perturbation sur le système. La dynamique
du lanceur peut être découpée en deux parties : la dynamique rigide qui décrit l’évolution du
corps du lanceur au cours du temps, et la dynamique flexible qui décrit l’évolution des modes
souples. L’évolution temporelle de la dynamique rigide est décrite par les équations suivantes :

ψ̈ = K1β +A6α

z̈ = a1ψ + a2 (ż − d) + a3β
(D.33)

où K1 et A6 sont des paramètres incertains évaluant respectivement l’efficacité de propulsion et
l’efficacité aérodynamique. L’angle d’incidence est défini par la relation suivante :
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α = ψ + ż − d
V

(D.34)

On constate qu’il dépend directement de l’entrée de perturbation d. Ainsi, l’angle d’incidence
est particulièrement sensible à la présence de vent et une bourrasque brutale peut faire évoluer
cet angle de manière inappropriée. Afin de minimiser la force aérodynamique sur les structures,
cet angle d’incidence doit être conservé minimal tout au long du vol atmosphérique du lanceur.
En pratique, une contrainte temporelle est considérée :

K (Ωα) = {α(t) ∈ Ωα(t) = [−α(t), α(t)] , ∀t} (D.35)

En raison des matériaux utilisés et des dimensions du lanceur, des modes flexibles sont
présents à basse fréquence. Dans le cas du lanceur, la dynamique flexible n’impacte pas la
dynamique rigide et agit plutôt comme une dynamique perturbant les sorties. Ainsi, en présence
de ces modes, l’attitude mesurée ainsi que sa dérivée ψf et ψ̇f sont des versions bruitées de ψ
et ψ̇. Dans le modèle utilisé, cinq modes flexibles sont considérés à cause des pics de magni-
tude qu’ils causent à relativement basse fréquence comme montré sur le diagramme de Bode du
transfert de β à ψf dans la Fig. 6.2. Une loi de commande mal dimensionnée qui n’atténuerait
pas ces modes souples pourrait provoquer leur excitation et mener à terme à la destruction du
lanceur. La dynamique du mode souple j pour j ≤ 5 est décrite par l’équation suivante :

q̈j + 2φjωj q̇j + ω2
j qj = −ω2

jPchT (j)β (D.36)

où qj est la j-ième coordonnée modale, ωj est la fréquence du mode considérée comme incertaine,
φj est un coefficient d’amortissement, Pc est une constante et hT (j) est un paramètre incertain.
Les dynamiques flexibles impactent les mesures de la manière suivante :

ψf = ψ −∑5
j=1 hcl (j) qj

ψ̇f = ψ̇ −∑5
j=1 hGy (j) q̇j

(D.37)

où ψ et ψ̇ sont des composantes de la dynamique rigide et hcl et hGy sont des paramètres
incertains. En résumé, la dynamique rigide comporte 2 paramètres incertains tandis que chaque
dynamique flexible comporte 5 paramètres incertains, ce qui donne un total de 27 paramètres
incertains pour le modèle considéré.

En raison de la présence de paramètres incertains, nous utilisons l’approche habituelle pour
générer l’ensemble des modèles possibles qui consiste à écrire la dynamique du lanceur sous forme
LFR obtenue à partir de la dynamique nominale4 et en externalisant les incertitudes :

(M)


ẋ =

[
A1

n 0
0 A2

n

]
x + Bn,ββ + Bn,ww

z = Czx + Dz,ββ + Dz,ww

y = Cyx + Dy,ββ + Dy,ww

(D.38)

où, dans le cas où on considère 5 modes flexibles, x ∈ R13, w =
[
w∆
d

]
∈ R28 et z =

z∆
α
ż

 ∈
R29. On note que la matrice d’état est diagonale par blocs par conséquence du découplage des
dynamiques rigide et flexible. La LFR peut être obtenue en pratique en utilisant les travaux
et outils présents dans [Magni 06, Onera 16]. Pour une valeur fixée θ ∈ R27 des paramètres
incertains, le modèle correspondant est obtenu à partir de la LFR (D.38) par LFT avec une
matrice diagonale ∆θ définie de manière appropriée :

G (θ, s) = Fu (M(s),∆θ) (D.39)
4La dynamique nominale est obtenue en choisissant une valeur nominale pour les paramètres incertains. Par

exemple si un tel paramètre θ est supposé borné par θ et θ, une valeur nominale possible est θ+θ
2 .
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Ceci permet d’obtenir les modèles critiques du lanceur pour les valeurs critiques des paramètres
incertains θ, lesquelles sont déterminées par exemple par µ-analyse [Roos 10]. En fonction des
objectifs de contrôle, les signaux w et z peuvent être enrichis afin de formuler des contraintes de
contrôle additionnelles au sein du problème de synthèse.

D.4.2 Synthèse d’un contrôleur robuste nominal
La synthèse d’un contrôleur robuste nominal conformément à un cahier des charges fréquentiel
est considérée. Un ensemble de modèles critiques est déterminé et utilisé lors de la synthèse
afin de satisfaire plusieurs contraintes fréquentielles. Cette synthèse est réalisée en utilisant
l’approche développée dans [Apkarian 07, Apkarian 14]. La satisfaction de la contrainte tem-
porelle sur l’incidence α est assurée du mieux possible par essais-erreurs sur les réglages des
critères fréquentiels. Cette section n’apportant pas de contribution théorique majeure, il est
recommandé au lecteur intéressé de se reporter au Chapitre 2 et à la section 6.2.

Il apparaît que l’approche par réglage des critères fréquentiels n’est pas infaillible et demande
un investissement important dans le temps de réglage. Une approche évolutionnaire est envis-
agée afin de satisfaire la contrainte temporelle sur l’angle d’incidence. La méthode OIST est
sélectionnée.

D.4.3 Application de OIST pour le contrôle sous contrainte temporelle
Dans cette section, la méthode OIST (ainsi que son extension OISTeR) est utilisée afin de
satisfaire la contrainte temporelle sur l’angle d’incidence du lanceur. En raison des hypothèses
nécessaires à l’application de cette méthode, des modèles simplifiées par rapport à celui détaillé
dans la section D.4.1 sont utilisés. En outre, il est constaté que le transfert Tβ→α(s) est à
non-minimum de phase. Une approche pratique est utilisée et détaillée dans ce résumé.

D.4.3 (a) Application de OIST au modèle de lanceur flexible

Dans le cadre de l’application de la méthode OIST, le modèle nominal (sans incertitudes) du
lanceur flexible est considéré. Il est en effet nécessaire de connaître l’état exact du lanceur pour
pouvoir utiliser cette approche :

(G2)


ẋ =

[
A1

n 0
0 A2

n

]
x+ Bn,ββ + Bn,dd

= Anx+ Bn,ββ + Bn,dd

y = x

(D.40)

où x ∈ R13 et la matrice Bn,d est définie de manière appropriée à partir de la matrice Bn,w. Un
contrôleur dynamique structuré avec nK = 5 est synthétisé (voir 6.3.1 (b) pour plus de détails).
Dans la suite, nous ne détaillons pas l’application de OIST, qui est disponible dans le Chapitre 6
mais nous insistons sur les détails pratiques de son application.

Changement de sortie contrainte En considérant l’expression initiale de l’angle d’incidence :

α = ψ + ż − d
V

= C1
αx+ D1

αd (D.41)

il est constaté qu’une telle définition conduit à C1
αBn,β < 0 ce qui rend complexe l’application de

l’approche combinée OIST/OISTeR utilisée par la suite. Il est donc choisi de modifier légèrement
la sortie contrainte considérée :

α̃ = Cαx+ Dαd (D.42)

où Cα = −C1
α et Dα = −D1

α. La contrainte temporelle devient alors α̃ ∈ [−α,−α].
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Approche combinée OIST/OISTeR pour la réduction du conservatisme Dès les pre-
mières étapes de l’approche OIST, on constate que la condition suivante doit être vérifiée :

α− α > 2Dαmax
(
|d| ,

∣∣d∣∣) (D.43)
Il s’agit d’une condition très conservatrice. Afin d’améliorer l’applicabilité de la méthode, il

est décidé d’utiliser des éléments de l’approche OISTeR. Notamment, nous pouvons utiliser la
notion de borne propagée généralisée en considérant les bornes garanties suivantes sur la sortie
contrainte α :

Cαx+ Dαd ≤ α̃ ≤ Cαx+ Dαd (D.44)
On définit alors :

βm = Cαx+ Dαd

βp = Cαx+ Dαd
(D.45)

et on poursuit avec l’application de la méthode OISTeR. Les détails sont donnés dans la sec-
tion 6.3.1 (c).

Construction de l’anti-windup Comme déjà signalé, le transfert Tβ→α̃(s) est à non-minimum
de phase. Cela signifie que si l’approche OIST avec compensateur anti-windup est appliquée sans
modifications alors la matrice An − Bn,βKoist(t) n’est pas Hurwitz (cf. preuve de la Proposi-
tion D.4) et la boucle fermée avec compensateur ne sera pas stable.

Afin de remédier à ce problème, une solution pratique est de modifier légèrement le transfert
Tβ→α̃(s) afin qu’il soit à minimum de phase et de concevoir le compensateur sur le transfert
modifié. Une diminution de performance sera constatée mais la stabilité de la boucle fermée
pourra être obtenue.

La transformation du transfert consiste à changer le signe du zéro positif et à utiliser ce nou-
veau transfert dans la construction du compensateur. Les transformations successives utilisées
sont détaillées dans la section 6.3.1 (c).

Simulation et conclusions Le modèle nominal du lanceur flexible est simulé en boucle fermée
avec le contrôleur considéré et le bloc de saturation de la sortie du contrôleur avec les bornes
fournies par la méthode OIST. Le signal de perturbation d utilisé est représenté avec ses bornes
dans la Fig. 6.7. Dans un premier temps, l’anti-windup n’est pas implémenté dans la boucle puis
il est rajouté dans un second temps afin de pouvoir comparer les résultats. Ces derniers sont
représentés dans les Figs. 6.8 et 6.9.

Malgré le fait que le transfert Tβ→α̃(s) est à non-minimum de phase, on constate que les
résultats obtenus sont très satisfaisants. En l’absence actuelle de preuve de convergence, cette
observation est justifiée de manière informelle par le fait que le zéro instable de la fonction
de transfert est lent, voir les explications de la section 4.6.2. L’ajout d’un compensateur anti-
windup basé sur un transfert modifié dans la boucle fermée améliore légèrement les performances.
L’utilisation du transfert Tβ→α̃(s) non modifié dans la construction de ce compensateur aurait
conduit à la non satisfaction de la Proposition D.4 et à l’instabilité de la boucle fermée.

D.4.3 (b) Application de OISTeR au modèle de lanceur rigide

Dans cet exemple, nous considérons le modèle rigide nominal du lanceur mais avec des mesures

incomplètes de l’état : y =
[
ψ

ψ̇

]
. Le modèle considéré est le suivant :

(G3)
{
ẋ = Ax+ Bββ + Bdd

y = Cx
(D.46)

où x =

ψψ̇
ż

 ∈ R3. En l’absence d’une connaissance complète de l’état, l’approche OIST ne peut

être appliquée et nous considérons donc la méthode OISTeR. Le système (G) étant stabilisable
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par retour de sortie, nous considérons un retour de sortie statique K ∈ R1×2 de sorte que la
matrice A − BβKC soit Hurwitz. En boucle fermée, on obtient donc la dynamique suivante,
où v est un signal qui va être utilisé par OISTeR pour moduler l’entrée de commande dès que la
contrainte temporelle K (Ωα) est violée :

ẋ = (A−BuKC)x + Bβv + Bdd

= Mx + Bβv + Bdd

y = Cx
(D.47)

L’approche OISTeR repose sur la construction d’un observateur par intervalles de l’état du
système. Afin de réduire le conservatisme de l’approche et d’améliorer les résultats, il est décidé
dans cet exemple d’utiliser un observateur par intervalles réduit sur la variable x3 = ż qui est la
seule variable d’état non mesurée. De par les propriétés de la matrice M, la construction d’un
tel observateur par intervalles est aisée. Écrivons :

M = A−BβKC =
[
M11 M12
M21 M22

]
(D.48)

où on constate que M22 < 0 ∈ R est Hurwitz et Metzler puisqu’un simple réel est une forme
triviale de matrice Hurwitz. Le système (G3) dans (D.46) peut s’écrire sous la forme suivante :

(G3)
{
ẏ = M11y + M12x3 + Bβ,1v + Bd,1d

ẋ3 = M22x3 + M21y + Bβ,2v + Bd,2d
(D.49)

où x3 désigne la variable d’état ż non mesurée et les matrices d’entrées sont définies de manière
appropriée. Un observateur par intervalles de cette variable d’état x3 est donné par la dynamique
suivante :

ẋ3 = M22x3 + M21y + Bβ,2v + Bd,2d

ẋ3 = M22x3 + M21y + Bβ,2v + Bd,2d
(D.50)

où on a utilisé le fait que la matrice Bd,2 est un réel positif. La manière d’implémenter un tel
observateur par intervalles réduit est illustrée dans la Fig. 6.6. La méthode OISTeR est alors
appliquée en utilisant la mesure y et les bornes x3 et x3 sur la variable d’état non mesurée. Plus
particulièrement, on considère les deux quantités suivantes :

βm = Cα,1y + Cα,2x3 + Dαd

βp = Cα,1y + Cα,2x3 + Dαd
(D.51)

qui sont utilisées dans le lemme de propagation des bornes de l’approche OISTeR. Plus de détails
sur la suite de l’implémentation sont exposés dans la section 6.3.2 où sont notamment rapportées
les expressions des bornes de la saturation fournies par OISTeR.

Le système en boucle fermée avec le contrôleur statiqueK et la saturation fournie par OISTeR
est alors simulé. Les résultats sont rapportés dans les Figs. 6.11 et 6.12. Ceux-ci sont très
satisfaisants. On constate que la contrainte temporelle est satisfaite sur les bornes de la sortie
contrainte α̃ lesquelles sont fournies par les mesures ainsi que par l’observateur par intervalles
sur la variable d’état x3 non mesurée. Une formalisation théorique précise de l’approche par
observateur par intervalles réduit peut être considérée comme perspective de ce travail.

D.4.4 Conclusions
Les approches OIST et OISTeR pour la commande sous contrainte temporelle sur les sorties ont
été appliquées dans cette section à des modèles simplifiés de lanceur. Les résultats obtenus en
simulation sont encourageants. Des approches pratiques permettant de réduire le conservatisme
de ces méthodes et de considérer le cas d’un transfert à non-minimum de phase ont été présentées.
Une formalisation théorique de ces approches est planifiée en perspective de ces travaux ainsi
que la considération de modèles plus fidèles de lanceurs (avec paramètres incertains, LPV, LTC,
etc.).
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D.5 SCorpIO : synthèse d’observateurs par intervalles par
une approche basée contrôle

La théorie des observateurs par intervalles a fait l’objet de nombreuses études récemment. Cette
théorie est présentée de manière exhaustive dans le Chapitre B. De nombreuses ressources doc-
umentaires y sont répertoriées pour le lecteur intéressé.

Dans la majorité de ces ressources, l’approche choisie pour la construction d’observateurs par
intervalles répond à la nécessité de satisfaire aux 3 conditions de la Définition B.11 proposée
dans [Cacace 15]. Par ailleurs, cette approche doit pouvoir s’appliquer à n’importe quel système
linéaire détectable, y compris les systèmes instables. Elle consiste donc à suivre les étapes
suivantes :

• stabilisation de la dynamique du système par considération d’un observateur classique avec
gain L ;

• Expression de la dynamique de l’erreur d’observation e = x− x̂ ;

• Changement de coordonnées ez = Pe de sorte que M = P (A− LC) P1 soit Metzler (cette
matrice est Hurwitz par définition de L) ;

• Déduction de la dynamique de l’observateur par intervalles qui produit des bornes ez et ez
sur ez desquelles sont déduites des bornes e et e par changement de coordonnées inverse ;

• Déduction de bornes sur x : x = x̂+ e et x = x̂+ e.

D’autres approches sont recensées dans la littérature, comme par exemple celle basée sur les
IPR [Cacace 15], mais ne sont pas considérées dans ce travail. Poursuivre sur les méthodes de
détermination de P et L.

D.5.1 Méthodes existantes de construction d’observateurs par inter-
valles

Au vu de ces remarques, le problème le plus difficile dans la construction d’un observateur par
intervalles est le suivant :

Problem D.10 (Détermination d’un changement de coordonnées invariant).
Soi (G) un système de réalisation (7.1). Supposons que la paire de matrices (A,C) est
détectable. Trouver P ∈ Rn×n et L ∈ Rn×m telles que

M = P (A− LC) P−1 (D.52)

est Hurwitz Metzler.

Un ensemble de techniques existe afin de déterminer ces matrices. Celles-ci sont présentées
en détail dans la section 7.1.2 du Chapitre 7. Elles sont brièvement rappelées ici.

Placement de pôles réels (solution triviale) Cette approche consiste à constater que les
matrices diagonales sont trivialement des matrices Metzler. Ainsi, en plaçant les pôles de la
matrice A− LC de sorte qu’ils soient réels négatifs alors on obtient P (A− LC) P−1 diagonale
(donc Metzler) par diagonalisation.

Lemma D.11 (Approche par placement de pôles réels).
Soit une matrice L ∈ Rn×m telle que A−LC est Hurwitz et eig (A− LC) ∈ Rn. Soit P la
matrice des vecteurs propres à droite de A− LC. Alors

M = P (A− LC) P−1 (D.53)
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est Hurwitz diagonale donc Metzler (trivialement).

La procédure de construction est rappelée dans la Fig. 7.1. De par le placement de pôle
exigeant, cette approche peut conduire à un gain d’observation L inapproprié.

Résolution d’une équation de Sylvester En réécrivant l’égalité M = P (A− LC) P−1

sous la forme d’une équation de Sylvester :

−MP + PA = PLC = QC (D.54)

il est possible d’obtenir P et L pour des matrices M et Q fixées par résolution de cette équa-
tion [Golub 79, Bartels 72].

Lemma D.12 (Approche par résolution d’une équation de Sylvester).
Soit M ∈ Rn×n une matrice Hurwitz Metzler telle qu’elle n’a aucune valeur propre commune
avec A. Soit Q ∈ Rn×m une matrice quelconque. Alors l’équation de Sylvester suivante

−MP + PA = QC (D.55)

a une unique solution P ∈ Rn×n. En choisissant L = P−1Q, la matrice M = P (A− LC) P−1

est Hurwitz Metzler par construction.

La procédure de construction est rappelée dans la Fig. 7.2. Cette approche requiert que les
matrices M et L soient choisies préalablement à la résolution de l’équation. Il apparaît qu’il
peut être complexe de construire une matrice M qui soit Hurwitz Metzler pour un vecteur de
valeurs propres donné. Il apparaît également lors de l’application de la méthode que le choix de
la matrice Q est déterminant dans les performances de l’observateur par intervalles. En résumé,
les paramètres de la méthode sont difficiles à régler et la solution (P,L) dépend beaucoup de
ceux-ci.

Lemme constructif ([Raïssi 12]) Un lemme constructif a été proposé dans [Raïssi 12] afin
de trouver une solution à l’équation de Sylvester sans la résoudre. Ce lemme est rappelé ici.

Lemma D.13 (Méthode constructive de résolution d’une équation de Sylvester [Raïssi 12]).
Sot une matrice Hurwitz Metzler M ∈ Rn×n et une matrice L ∈ Rn×m telle que A − LC
et M ont les mêmes valeurs propres. S’il existe deux vecteurs e1 et e2 telles que les paires
(A− LC, e1) et (M, e2) soient observables alors les matrices

P = O2
−1O1 and Q = PL (D.56)

satisfont l’équation de Sylvester (D.55) où

O1 =

 e1
...

e1 (A− LC)n−1

 , O2 =

 e2
...

e2Mn−1

 (D.57)

La procédure de construction est rappelée dans la Fig. 7.3. De même que dans l’approche
précédente, cette méthode nécessite la construction de la matrice M ce qui est peut être difficile
dans le cas où des valeurs propres complexes sont recherchées.

D.5.2 Introduction à SCorpIO
Les méthodes existantes pour la détermination de deux matrices P et L telles que la matrice
M = P (A− LC) P−1 est Hurwitz Metzler reposent toutes sur la sélection a priori de paramètres
dont la sélection est difficile. Par exemple, la construction d’une matrice M Hurwitz Metzler
avec des valeurs propres complexes pré-définies n’est pas aisée. En outre, les résultats fournis
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par ces méthode n’intègrent pas directement d’approche de contrôle pour la détermination de
la matrice L dont la valeur conditionne quand même la dynamique de l’observateur classique et
donc de l’observateur par intervalles.

Dans cette section, une approche basée contrôle à la détermination de P et L est proposée.
Elle repose sur la formulation du Problème D.10 comme un problème de stabilisation et à la
résolution de ce problème par l’utilisation de technique de synthèse de contrôleur structuré basée
H∞ [Apkarian 07, Apkarian 14]. Dans un premier temps, le Problème D.10 est traduit en un
problème impliquant une collection de contraintes inégalités.

Problem D.14 (Formulation basée coefficients du Problème D.10).
Soit le système (G) avec pour réalisation (7.1), supposons que la paire de matrices (A,C)
est détectable. Trouver deux matrices P ∈ Rn×n et L ∈ Rn×m telles que

−Mij = −
[
P (A− LC) P−1]

ij
≤ 0, ∀ (i, j) s.t. 1 ≤ i 6= j ≤ n (D.58)

et A− LC est Hurwitz.

Ces n(n−1) inégalités à satisfaire afin d’obtenir une matrice M Metzler peuvent faire penser
à un problème de stabilisation de n(n− 1) modèles dynamiques unidimensionnels. Ceci est mis
en exergue dans la proposition suivante :

Proposition D.15 (Problème de synthèse de loi de commande équivalent).
Soit le système (G) ayant pour réalisation (7.1), supposons que la paire de matrices (A,C)
est détectable. Soit ∀ (i, j) ∈ (N?)2, ∀P ∈ Rn×n et ∀L ∈ Rn×m

Mij (P,L) =
[
P (A− LC) P−1]

ij
(D.59)

Si le système ayant pour réalisation

(Gm)
{
ẋl = (A− LC)xl
ẋij = −Mij (P,L)xij ∀i 6= j

(D.60)

est (Hurwitz) stable pour une paire de matrices (Ps,Ls) alors M = Ps (A− LsC) Ps
−1 est

Hurwitz Metzler.

Une preuve est disponible dans la section 7.2.2. Le cas des systèmes linéaires à temps discret
est également traité dans la même section. Le problème de contrôle équivalent est donc dévoilé.
Sous couvert d’un choix approprié de P et L, le système (Gm) (qui est un système dit “fictif”
puisque n’ayant aucune signification physique à proprement parler) peut être stabilisé et donc la
matrice M est Hurwitz Metzler. Afin de déterminer ces matrices, des algorithmes habituellement
réservés à la synthèse de loi de commande structurée sont utilisés.

Le problème de détermination de matrices P et L telles que M soit Hurwitz Metzler a été
reformulé dans le Problème D.15 comme un problème de stabilisation d’un système linéaire “fic-
tif”. En utilisant une approche multi-modèles multi-objectifs de synthèse de contrôleur structuré,
il est également possible de formuler des contraintes de contrôle additionnelles. Par exemple, il
peut être envisagé de minimiser la norme H2 des transferts Td→e(s,L) et T

d−d→Ed
(s,P,L) afin

d’améliorer la qualité de l’observateur classique et de l’observateur par intervalles. Un prob-
lème de synthèse “SCorpIO” ressemble donc typiquement au problème suivant, sachant que des
contraintes de contrôle additionnelles peuvent bien entendu être considérées.

Problem D.16 (Problème de synthèse SCorpIO classique).
Résoudre le problème d’optimisation suivant :
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min maxP,L

{
‖We(s)Td→e (s,L)‖2 ,

∥∥∥WEd
(s)T

d−d→Ed
(s,P,L)

∥∥∥
2

}
tel que

{
(Gm) dans (D.60) est Hurwitz-stable

P (Bd − LDd) ∈ Rn×k+

(D.61)

où We(s) et WEd
(s) sont des filtres fréquentiels définis de manière appropriée.

Une formulation du même problème pour les systèmes à temps discret est également possible
(voir section 7.2.3). Une solution locale au Problème D.16 peut être obtenue en utilisant des
algorithmes d’optimisation non lisse. De tels algorithmes sont utilisés au sein de méthodes de
synthèse de contrôleurs structurés telles que [Apkarian 07]. Dans notre cas, la fonction systune
de la Robust Control Toolbox [MATLAB 14, Gahinet 12, Apkarian 14] est utilisée. Ceci est
illustré dans les exemples.

D.5.3 Exemples et comparaison
L’approche proposée de formulation du problème original comme un problème de synthèse de loi
de commande permet d’utiliser un algorithme de synthèse habituellement réservé à la synthèse
“pure” de contrôleur structuré. Cette approche est appliquée à 3 exemples dont un exemple de
système à temps discret dans la section 7.3. La méthode proposée est comparée aux autres ap-
proches existantes de détermination d’une transformation à temps invariant (telles que présentées
au début de cette section) mais également à l’approche basée sur une transformation à temps
variant proposée dans [Mazenc 11].

On constate sur ces exemples que l’approche SCorpIO proposée ici permet d’obtenir des
résultats comparables, sinon meilleurs, que ceux obtenus en utilisant les méthodes existantes
permettant de déterminer P et L constantes. En revanche, l’approche par changement de co-
ordonnées à temps variant semble fournir un intervalle plus réduit dans la plupart des cas. Par
ailleurs, malgré les avantages en terme de réglage simultané de P et L et la possibilité de formuler
des contraintes de contrôle, ces contraintes restent complexes à régler et nécessitent des phases de
réglage avant de fournir un résultat satisfaisant. Ces limites soulignent les marges d’amélioration
actuelles pour la méthode SCorpIO.

D.5.4 Synthèse simultanée contrôleur structuré/observateur par inter-
valle

Dans cette section, la synthèse simultanée d’un contrôleur dynamique et d’un changement de co-
ordonnées constant de sorte à obtenir une dynamique de boucle fermée coopérative est étudiée.
Cette approche est utilisée dans la méthode OISTeR (voir section D.3) afin d’obtenir un observa-
teur par intervalles de l’état de la boucle fermée qui ne dépendent pas des mesures y du système
boucle ouverte original. Lors des dérivations successives nécessaires à l’application de OISTeR,
ceci permet de ne pas dériver le vecteur de mesures mais bien l’état d’une dynamique connue.

Considérons donc la dynamique boucle fermée suivante, supposée bien posée :

Ẋ =
[

A + Bu (Il −DKDu)−1 DKC Bu (Il −DKDu)−1 CK
BKC + BKDu (Il −DKDu)−1 DKC AK + BKDu (Il −DKDu)−1 CK

]
X

+
[
Bu Bd + Bu (Il −DKDu)−1 DKDd
0 BKDd + BKDu (Il −DKDu)−1 DKDd

]
W

= AXX + BX,vv + BX,dd
(D.62)

où X =
[
x
xK

]
est le vecteur d’état de la boucle fermée et W =

[
v
d

]
est le vecteur d’entrée de

la boucle fermée (où on a utilisé u = yK + v en fermant la boucle). Les matrices AK, BK, K
et DK sont les matrices de réalisation du contrôleur à déterminer. Par ailleurs, on cherche une
matrice P telle que la dynamique de la boucle fermée exprimée dans les nouvelles coordonnées
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XZ = PX soit coopérative, donc que la matrice PAXP−1 soit Metzler. Dans le cas où une telle
matrice de transformation est obtenue, un observateur par intervalles de l’état XZ est donné
par :

ẊZ = PAXP−1XZ + (PBX,d)+
d− (PBX,d)− d+ PBX,vv

ẊZ = PAXP−1XZ + (PBX,d)+
d− (PBX,d)− d+ PBX,vv

XZ(0) = P+X0 −P−X0

XZ(0) = P+X0 −P−X0

(D.63)

où les bornes sur l’état initial de la boucle fermée sont définies de manière appropriée. Le
problème est donc le suivant :

Problem D.17 (Problème de stabilisation et de détermination d’un changement de coor-
données invariant).
Soit le système (GX) dans (D.62) où on a supposé que la boucle fermée est bien posée.
Trouver P ∈ R(n+nK)×(n+nK) et une réalisation (AK,BK,CK,DK) d’un contrôleur (K)
tels que :

MX = PAXP−1 (D.64)

est Hurwitz Metzler, où

AX =
[

A + Bu (Il −DKDu)−1 DKC Bu (Il −DKDu)−1 CK
BKC + BK (Il −DKDu)−1 DKC AK + BKDu (Il −DKDu)−1 CK

]
(D.65)

De manière similaire à la Proposition D.15, ce problème peut être formulé comme un problème
de stabilisation du système suivant :

(Gm)
{
ẋl = AXxl

ẋij = −MXij (P,AK,BK,CK,DK)xij ∀i 6= j
(D.66)

où MXij (P,AK,BK,CK,DK) =
[
PAXP−1]

ij
avec AX défini dans (D.65) et 1 ≤ i 6= j ≤ n+

nK . Comme précédemment, des contraintes de contrôle additionnelles peuvent être considérées
sur des modèles supplémentaires afin de contraindre leurs dynamiques. L’approche est illustrée
sur un exemple dans la section 7.4.3.

D.5.5 Conclusion
L’approche SCorpIO a été introduite afin de fournir une alternative aux méthodes existantes de
détermination d’un changement de coordonnées à temps invariant permet de rendre un système
coopératif dans les nouvelles coordonnées. Cela permet ainsi de synthétiser un observateur par
intervalles que ce soit sur le système boucle ouverte ou sur une boucle fermée, le contrôleur étant
déterminé simultanément au changement de coordonnées. L’approche repose sur la formulation
du problème d’origine en problème de stabilisation d’un système fictif. Elle a été illustrée sur
des exemples qui ont permis d’illustrer ses performances comparables aux approches existantes.

Une perspective à court terme d’amélioration de SCorpIO est de développer un algorithme
dédié qui permettrait notamment de formaliser les contraintes de signe sur les éléments de M
sans passer par une traduction en contraintes sur les pôles d’un système fictif. Ceci permettrait
également de simplifier l’application de la méthode qui dépend encore de multiples paramètres
de réglage des contraintes de contrôle afin d’obtenir un résultat satisfaisant.

D.6 Conclusions et perspectives
Nous avons présenté dans ce résumé, en français et en esquivant les détails, les contributions de ce
travail de thèse. Une approche dite évolutionnaire a été utilisée afin de proposer une stratégie de
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commande en présence d’un cahier des charges spécifiant simultanément des contraintes fréquen-
tielles et temporelles. En raison des natures différentes de ces contraintes, une loi de commande
nominale est d’abord construite pour satisfaire les contraintes fréquentielles lorsque la contrainte
temporelle sur la sortie considérée est satisfaite. La commande nominale est modifiée de manière
appropriée dès que la contrainte temporelle est violée.

Un certain nombre de contributions ont été présentées dans ce mémoire de thèse. Elles sont
rappelées ici avec les perspectives majeures d’amélioration.

• L’approche évolutionnaire OIST pour la commande de systèmes sous contrainte temporelle
sur une sorte a été appliquée au cas d’un système linéaire. Les deux contributions majeures
liées à cette application ont été, dans un premier temps, de proposer une définition appro-
priée des coefficients κ de la méthode afin d’éviter tout chevauchement des bornes u et u de
la saturation du signal de commande nominale et, dans un second, de proposer une analyse
de stabilité de la boucle fermée saturée résultante. Dans le cas des transferts Tu→α(s) à min-
imum de phase, il a été prouvé que l’origine du système est globalement asymptotiquement
stable. Les perspectives d’amélioration liées à ces contributions concernent l’optimisation
des coefficients κ en vu de satisfaire des objectifs de commande additionnels. Dans cette
optique, le formalisme AMPL/IPOPT a été testé sur un système simplifié afin de montrer
que les outils de commande optimale peuvent servir un tel but. D’autre part, une analyse
plus précise de la stabilité en présence de transferts à non-minimum de phase est requise.
L’implémentation d’outils permettant d’appliquer la méthode OIST de manière automa-
tisée à n’importe quel système satisfaisant les hypothèses considérées pourrait également
améliorer l’applicabilité de la méthode, qui reste complexe à l’heure actuelle ;

• L’approche OIST a ensuite été étendue à la classe des systèmes linéaires incertains et/ou
avec mesures partielles de l’état. Moyennant l’utilisation d’un observateur par intervalles
et de la généralisation des concepts utilisés au sein de l’approche OIST, une solution a
été proposée au problème de commande d’un système sous contrainte temporelle sur une
sortie. L’évitement de chevauchement des saturations, proposé dans la section consacrée à
OIST, a été étendu à ce problème. Les perspectives majeures d’amélioration de la méthode
concernent la réduction de son conservatisme. En particulier, il serait utile de formaliser
l’utilisation des mesures sur les variables d’état, comme illustré dans la section D.4. D’autre
part, une analyse de stabilité doit être menée sur le modèle de celle proposée pour OIST,
compte tenu du fait qu’une nouvelle structure dynamique est utilisée, à savoir l’observateur
par intervalles ;

• L’application des méthodes OIST et OISTeR à des modèles plus ou moins simplifiés du
lanceur a été menée dans la section D.4. Des résultats satisfaisants ont été obtenus notam-
ment en utilisant des astuces pratiques pour réduire le conservatisme des méthodes utilisées.
Les perspectives d’amélioration concernent la considération de modèles plus complexes,
notamment dans le cas de l’application de OISTeR pour laquelle seul le modèle rigide du
lanceur a été considéré ;

• L’approche basée contrôle proposée pour la construction d’observateurs par intervalles a
été détaillée. Elle permet de déterminer les paramètres du changement de coordonnées à
temps invariant en utilisant une approche habituellement réservée à la synthèse de con-
trôleur structuré. L’avantage de considérer une telle méthode est de pouvoir spécifier des
contraintes de commande additionnelles lors de la construction de l’observateur. Notre
méthode permet d’obtenir des résultats similaires à ceux obtenus en utilisant les méthodes
existantes de détermination d’un changement de coordonnées à temps invariant. Des per-
spectives d’amélioration de cette méthode incluent le développement d’un algorithme dédié
afin de réduire sa complexité d’utilisation. Des améliorations liées à la manipulation des
variables à optimiser dans l’algorithme utilisé pourraient également être proposées.

A plus long terme, l’approche évolutionnaire considérée pourrait être étendue au cas des
systèmes à temps variant (LTV) ou à paramètres variants (LPV). Si une approche similaire à
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l’approche OISTeR est choisie, la difficulté principale sera de construire l’observateur par inter-
valles adapté permettant d’encadrer l’état de tels systèmes de manière suffisamment peu conser-
vatrice. Dans un tel but, les observateurs par intervalles construits à partir d’un changement de
coordonnées à temps variant pourraient être utiles.
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Frequency– and time–domain constrained control of linear systems – Application to a flexible launch vehicle

Abstract In modern control design problems, both frequency- and time-domain requirements are usually considered
such that the resulting control law satisfies the specifications. Novel non-smooth optimisation techniques can be used to
achieve multiple frequency-domain specifications over a family of linear models. Examples of applications include robust
control design where multiple critical models for different values of the uncertain parameters are considered. This is
illustrated in this thesis manuscript for a specific observer-based controller structure. However, enforcing time-domain
constraints on a given output or state is more challenging since translating them into frequency-domain requirements
may be unclear and inaccurate in real-world applications. This motivates the study of a new approach to the aforemen-
tioned H∞ control design techniques. When time-domain constraints are satisfied, the nominal control law reduces to the
structured controller synthesized against frequency-domain constraints. Upon violation of the time-domain constraint,
an additional tool named OIST is used to appropriately saturate the controller output so as to restrict the reachable
set of the constrained system output. Satisfying results as well as stability guarantees are obtained for minimum phase
systems. Further developments proposed in this thesis allow the consideration of uncertain systems with incomplete
state measurements. This is the novel OISTeR approach. The method requires the knowledge of certified bounds on
the considered system state. Such information is accessible through using interval observers. The theory of interval
observers is well-established. In the case of linear systems, the most common approach is to consider an intermediate
cooperative system on which the interval observer can be built. For a given linear system, a cooperative representation
can be obtained in new coordinates using a time-invariant state-coordinate transformation. The transformation deter-
mination methods are easy to use but lack versatility especially when performance guarantees on the interval tightness
are required. This motivates the novel SCorpIO design method proposed in this work which relies on the reformulation
of the original mathematical problem into a structured control-design problem. In this thesis, the considered application
is the atmospheric control of a flexible launch vehicle in the presence of wind gusts. It is critical that the angle of attack
of the vehicle should remain bounded to limit the aerodynamic load on the structure. Using the techniques developed in
this thesis, solutions are proposed for a simplified launch vehicle model. Perspectives are drawn for future developments
on more complex problems.

Keywords: output-constrained control, linear systems, uncertain systems, interval observer, structured controller
design

Commande de systèmes linéaires sous contraintes fréquentielles et temporelles – Application au lanceur flexible

Résumé Dans la plupart des problèmes de synthèse actuels, la loi de commande obtenue doit répondre simultanément
à des critères fréquentiels et temporels en vue de satisfaire un cahier des charges précis. Les derniers développements des
techniques de synthèse H∞ de contrôleurs structurés permettent d’obtenir des lois de commande satisfaisant des critères
fréquentiels multiples appliqués à plusieurs modèles de synthèse. Dans ce mémoire, cette approche est appliquée à la
synthèse de loi de commande robuste en utilisant une structure de contrôleur basé observateur. En revanche, la synthèse
de loi de commande satisfaisant une contrainte temporelle sur une sortie ou un état du système considéré est plus complexe
car la formulation d’un équivalent fréquentiel est illusoire dans la plupart des cas. Dans ce travail de thèse, la technique
additionnelle OIST est considérée pour ce type de contraintes. Elle consiste à saturer la sortie du contrôleur dès que la
contrainte n’est plus vérifiée afin de restreindre l’ensemble des sorties admissibles. Des résultats satisfaisants sont obtenus
dans le cas des systèmes à minimum de phase. Initialement formulée pour les systèmes linéaires connus dont l’état est
mesuré, la technique OIST peut être généralisée pour permettre de considérer des systèmes incertains dont seulement
une partie de l’état est connue. C’est l’extension OISTeR qui est proposée dans ce travail. Elle utilise les données d’un
observateur par intervalles pour borner de manière garantie le vecteur d’état. La théorie des observateurs par intervalles
a récemment fait l’objet de nombreux travaux. La méthode la plus rapide pour obtenir un observateur par intervalles
d’un système donné est de considérer un système intermédiaire coopératif dans de nouvelles coordonnées. Le passage
dans ces nouvelles coordonnées s’effectue au moyen d’une matrice de transformation. Les méthodes de détermination
actuelles de cette transformation sont faciles à mettre en œuvre mais sont assez peu polyvalentes notamment dans le cas
où des contraintes de précision sont spécifiées sur l’observateur par intervalles. Une nouvelle technique de détermination
de la transformation, intitulée SCorpIO est proposée dans ce mémoire. Elle repose sur la reformulation du problème
mathématique sous-jacent en problème de synthèse de loi de commande structurée. L’ensemble des techniques présentées
est appliqué au contrôle d’un lanceur flexible durant son vol atmosphérique, en présence de rafales de vent. La difficulté
de ce problème repose sur le critère temporel spécifié sur l’angle d’incidence qui doit rester borné afin de minimiser la
charge aérodynamique sur les structures. Dans ce mémoire, des solutions sont proposées et illustrées sur un modèle
simplifié du lanceur. Des pistes pour la prise en compte de modèles plus complexes sont données.

Mots-clés: contrôle sous contraintes de sortie, systèmes linéaires, systèmes incertains, observateur par intervalles,
synthèse de contrôleur structuré
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