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Résumé

Dans cette thèse, nous avons abordé deux problèmes de modélisation mathématique pour
la propagation des signaux électriques cardiaques : la propagation à l’échelle tissulaire
en présence d’hétérogénéités et la propagation à l’échelle cellulaire avec des jonctions
communicantes non linéaires.

Inclusions diffusives. Le modèle standard utilisé en électrocardiologie est le modèle
bidomaine. Il est déduit par homogénéisation des propriétés microscopiques du tissu. Pour
cela, on suppose que les myocytes électriquement actifs sont uniformément répartis dans
le cœur. Bien que ce soit une hypothèse raisonnable pour des cœurs sains, ce n’est plus
vrai dans certains cas pathologiques où des changements importants dans la structure
tissulaire se produisent. C’est le cas, par exemple des maladies cardiaques ischémiques,
rhumatismales et inflammatoires, de l’hypertrophie ou de l’infarctus. Ces hétérogénéités
tissulaires sont souvent prises en compte à l’aide d’un ajustement ad hoc des paramètres du
modèle. Le premier objectif de cette thèse consistait à généraliser les équations du modèle
bidomaine au cas des pathologies cardiaques structurelles.

Nous avons supposé une alternance périodique d’éléments de tissus sains (modèle
bidomaine) et modifiées (inclusions diffusives). La simulation numérique directe d’un tel
modèle nécessite une discrétisation très fine, et entraîne un coût de calcul élevé. Pour
éviter cela, nous avons construit un modèle homogénéisé à l’échelle macroscopique en
utilisant une analyse à deux échelles. Nous avons retrouvé un modèle de type bidomaine
avec des coefficients de conductivité modifiés, dits effectifs. En complément, nous avons
effectué une vérification numérique de la convergence du modèle microscopique vers celui
homogénéisé, dans une situation bidimensionnelle.

Dans la deuxième partie, nous avons quantifié les effets de différentes formes
d’inclusions diffusives sur les coefficients de conductivité effectifs et leur anisotropie
en 2D et 3D. De plus, nous avons effectué des simulations sur des domaines représentant
des morceaux de tissu 2D avec ces coefficients de conductivité modifiés. Nous avons
observé des changements de la vitesse de propagation et de la forme du front de l’onde de
dépolarisation.
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Dans la troisième partie, nous avons simulé le modèle homogénéisé en 3D, à partir
d’images par résonnance magnétique (IRM) à haute résolution d’un cœur de rat. Nous
avons évalué les propriétés structurelles du tissu en utilisant des outils d’analyse d’image.
Nous avons ensuite utilisés ces évaluations pour consturire les paramètres dans le modèle
homogénéisé.

Jonctions communicantes non linéaires. Dans la dernière partie de cette thèse, nous
avons étudié les effets du comportement non linéaires des jonctions communicantes sur
la propagation du signal à l’échelle cellulaire. Dans les modèles existants, les jonctions
communicantes sont supposées avoir un comportement linéaire, lorsqu’elles sont mod-
élisées. Cependant les données provenant des expériences montrent que ceux-ci ont un
comportement non linéaire dépendant du temps et de la différence de potentiel entre
cellules voisines. D’abord, nous avons présenté un modèle non linéaire 0D du courant dans
les jonctions communicantes. Ensuite, nous avons recalé le modèle sur les données expéri-
mentales. Enfin, nous avons proposé un modèle mathématique 2D qui décrit l’interaction
électrique des myocytes cardiaques à l’échelle cellulaire. Ce modèle utilise le courant dans
les jonctions communicantes comme une liaison directe entre des cellules adjacentes.

Mots clés: électrophysiologie cardiaque, modèle bidomaine, modélisation multi-échelle,
analyse asymptotique, homogénéisation, convergence à deux échelles, modélisation basée
sur des images, jonctions communicantes, simulations numériques.



Abstract

In this thesis we addressed two problems in mathematical modelling of propagation of elec-
trical signals in the heart: tissue scale propagation with presence of tissue heterogeneities
and cell scale propagation with non-linear gap junctions.

Diffusive inclusions. The standard model used in cardiac electrophysiology is the bido-
main model. It is an averaged model derived from the microscopic properties of the tissue.
The bidomain model assumes that the electrically active myocytes are present uniformly
everywhere in the heart. While this is a reasonable assumption for healthy hearts, it fails in
some pathological cases where significant changes in the tissue structure occur, for example
in ischaemic and rheumatic heart disease, inflammation, hypertrophy, or infarction. These
tissue heterogeneities are often taken into account through an ad-hoc tuning of model
parameters. The first aim of this thesis consisted in generalizing the bidomain equations to
the case of structural heart diseases.

We assumed a periodic alternation of healthy (bidomain model) and altered (diffusive
inclusion) tissue patches. Such a model may be simulated directly, at the high computa-
tional cost of a very fine discretisation. Instead we derived a homogenized model at the
macroscopic scale, using a rigorous two-scale analysis. We recovered a bidomain-type
model with modified conductivity coefficients, and performed a 2D numerical verification
of the convergence of the microscopic model towards the homogenized one.

In the second part we quantified the effects of different shapes and sizes of diffusive
inclusions on the effective conductivity coefficients and their anisotropy ratios in 2D and
3D. Additionally, we ran simulations on 2D patches of tissue with modified conductivity
coefficients. We observed changes in the propagation velocity as well as in the shape of
the depolarization wave-front.

In the third part, based on high-resolution MR images of a rat heart we simulated
3D propagations with the homogenized model. Using image analysis software tools we
assessed the structural properties of the tissue, that we used afterwards as parameters in
the homogenized model.

Non-linear gap junctions. In the last part of this thesis, we studied the effects of non-
linear gap junction channels on the signal propagation at the cell scale. In existing models,
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the gap junction channels, if modelled, are assumed to have a linear behaviour, while
from experimental data we know that they have a time- and voltage-dependent non-linear
behaviour. Firstly, we stated a non-linear 0D model for the gap junctional current, and
secondly fitted the model to available experimental data. Finally, we proposed a 2D
mathematical model that describes the electrical interaction of cardiac myocytes on the cell
scale. It accounts for the gap junctional current as "the direct link" between the adjacent
cells.

Keywords: cardiac electrophysiology, bidomain model, multi-scale modelling, asymptotic
analysis, homogenization, two-scale convergence, image-based modelling, gap junctions,
numerical simulations.
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1Introduction to Modelling in Cardiac
Electrophysiology

„"Mathematicians are a sort of Frenchmen. If you
talk to them, they translate it into their own
language, and then it is immediately something
quite different."

— Johann Wolfgang von Goethe
(Writer)
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1.1 Heart

This study started since more than two millennia back. In the time of Aristotle (350
B.C.) the heart was considered to be the most important organ in the body, while other
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organs like the brain and lungs, were thought to exist to cool the blood. Until this day the
heart keeps the position of one of the most important and the most studied organs in the
human body.

1.1.1 Physiology and function

The heart is located in the lungs, it has a size of the fist and weights 200-300 g. The
heart is composed of two separate pumps, see Figure 1.1. The right heart pumps the

Fig. 1.1: Heart blood circulation system. Created by Eric Pierce, CC BY-SA 3.0,
commons.wikimedia.org/w/index.php?curid=830253.

blood through the lungs and the left heart through the rest of the body. The blood low in
oxygen flows from the body, trough the inferior and superior vena cava, into the right atria
and then to the right ventricle. At the same time the oxygenated blood flows from the
lungs through the pulmonary vein into the left atrium and then to the left ventricle. The
ventricles are the main pumping force. They contracts simultaneously to push the blood
from the right ventricle through the pulmonary artery into the lungs, and from the left
ventricle through the aorta to the whole body. The heart pumps in average 70 ml of blood
with each beat, and about 6000-7500 litres of blood daily. The pumping function of the
heart relies on a collective, systematic contraction of billions of muscle cells. It is achieved
thanks to the complex electrical conduction system, that enables the communication and
synchronisation between the cells.

2 Chapter 1 Introduction to Modelling in Cardiac Electrophysiology



1.1.2 Electrophysiology

The most important property of cardiac cells in this sense is that they are excitable,
i.e. they have the ability to respond actively to electrical stimulus. In fact, the electrical
activity is a consequence of the chemical processes and exchange of electrically charged
ions between the interior of the cells and it’s surrounding.

In the resting state the cell maintains internal ionic concentrations different from
those outside of the cell. Hence, there is the difference of electrical potential across the cell
membrane, which is called the transmembrane voltage. When an electrical stimulus is
applied to a cell there is a change in the transmembrane voltage. If the magnitude of this
change is above a certain threshold value, the conductive properties of the cell membrane
change and there is a rapid flux of ions through the cell membrane. This in turn causes a
rapid change in the transmembrane voltage, from the −85 mV in the resting state to about
+20 mV. This process is called depolarisation, and happens in about 0.2 s in the human
heart, while in the other animals it can happen in less than 10 ms. After depolarisation,
the cardiac cell goes through a "long" plateau phase and then it returns to the resting state,
i.e. it repolarises. The complete cycle of depolarisation, plateau phase and repolarisation is
called the action potential (AP).

The cardiac cells are connected by gap junctions, intercellular pathways made of
proteins, that are permeable to ions and small molecules. They provide a direct electrical
connection between the neighbouring cells. When one cell is depolarised this connection
will affect the potential in the neighbouring cells, and if the change is above a threshold
value it will trigger the neighbouring cell to go through it’s own AP. In other words, gap
junctions enable the action potential propagation though the heart.

A propagation of the AP in the whole heart generates the rhythmical heart beat called
the sinus rhythm. The main elements of the cardiac electrical conduction system are shown
on the Figure 1.2. The electrical signal in the heart starts in the sinoatrial node (SA node)
which is located above the right atrium. The cells of the SA node are self-oscillatory cells,
called pacemaker cells. They spontaneously produce the action potential and do not need
external stimuli.

The activation of a small region in the atria by pacemaker cells, results in a wavefront
of depolarisation, which activates the complete atria and causes them to contract. The
atria are separated from the ventricles by a non-conducting tissue called septum. Hence,
the only way to pass the electrical signal to the ventricles is through the atrioventricular
node (AV node), found at the bottom of the right atrium. Due to the small conduction
velocity in the AV node there is a small delay between the activation of atria and ventricles,
which enables a better filling of the ventricles and improves the pumping function of the
heart.

The signal passes from the AV node to the bundle of His, that branches out into
the left and right bundle. In the ventricles the signal is carried by a specialized tree-like
structure, called the Purkinje fibers, which provide a rapid conduction of the electrical
signal. The ventricular muscle cells are stimulated at the ends of Purkinje network, which
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Fig. 1.2: Electrical conduction system of the heart: 1-Sinoatrial node, 2-Atrioventricular
node, 3-Bundle of His, 4-Left bundle branch, 5-Left posterior fascicle, 6-Left-
anterior fascicle, 7-Left ventricle, 8-Ventricular septum, 9-Right ventricle, 10-
Right bundle branch. By J. Heuser and Patrick J. Lynch, CC BY 2.5,com-
mons.wikimedia.org/w/index.php?curid=1734607.

are located near the inner surface of the ventricles, called endocardium. This results again
in a wavefront of depolarisation that activates both ventricles and makes them contract.
To find out more details on the heart physiology one can look into [47].

The electrical activity is an essential function of the heart, and many heart diseases
are closely linked to disturbances in the electrical activity: heart failure, cardiomyopathy,
heart murmurs, etc. Even though it is a well studied problem and there is already a vast
literature on the topic, there are still many mechanisms that are not fully understood. For
example, one of the biggest mysteries is the ventricular fibrillation. It is the state in which
cells contract in a seemingly random manner, so the heart is unable to pump the blood.

The problem in understanding all the mechanisms in the heart come from the
complexity of combining all the processes on several scales. The organ-level electrical
activity is the result of the billions of small scale processes occurring in the cells, and
understanding of how all these processes interact is a very difficult task. Mathematical
modelling and computer simulation are the new techniques that help us improve our
understanding of the large scale processes, but also they save us the cost and time of
conducting real-life experiments, see the flowchart in the Figure 1.8.
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Fig. 1.3: Flowchart on the role of Mathematical Modelling in the scientific studies.

Further in this chapter we give a short overview of the mathematical models com-
monly used to describe the electrical activity of the heart, from a cell scale to the organ
and body scale, and point out some limitations of these models that will be addressed in
this thesis.

1.1.3 Pathology statistics

Before we dive into details about the mathematical modelling of the cardiac electro-
physiology, let us give a motivation to study the heart into details.

Cardiovascular diseases (CVD) are a major health problem in Europe and in the
industrialised world. According to the 2012 European Cardiovascular Disease Statistics
[83], published on http://www.escardio.org/, each year CVD causes over 4 million
deaths in Europe and 1.9 million deaths in the European Union (EU). That makes 47%
of all deaths in Europe and 40% in the EU. CVD are the main cause of death in women
in all countries of Europe and the main cause of death in men in all but 6 countries. See
Figure 1.4. Overall CVD are estimated to cost the EU economy almost C196 billion a
year. Additionally, CVD are the main cause of death before the age of 75, and the second
cause of death (after cancer) before the age of 65. While the medical practitioners are
looking into the causes and correlations between CVD and diet, physical activity and a
lifestyle, we are on the quest to understand the underlying biophysical mechanisms in
cardiac physiology and pathology. An improved understanding of how the heart works
might lead to new techniques for the diagnosis and treatment of heart problems.
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Fig. 1.4: Deaths by cause in women (top) and in men (bottom) in Europe. The latest available
year, 2012. From [83].

1.2 Cell scale modelling

The cell is enclosed by a membrane whose thickness is about 7.5 - 10.0 nm. The
membrane consists of two layers of phosphoglycerides molecules. These molecules have
hydrophilic heads and hydrophobic tails, which means that the molecule heads interact
with the outside and the inside of the cell, and the tails are pointing inside of the membrane,
see Figure 1.5.

All over the membrane, embedded in the lipid bilayer we can find the ionic channels.
They are macromolecular pores through which sodium, potassium, chloride flow inside and
outside of the cell. The flow of these ions forms the basis for the bioelectric phenomena,
[73]. The ionic channels are made of large proteins, that are usually very specific and
permeable only to a one kind of substance. In mathematical models, it is necessary to
include the flow of all the ions through these channels, hence many variables need to be
used to characterize the dynamics of the channels as they open and close.

The story of the ionic models and bioelectrical modelling can not pass without
mentioning a great breakthrough of Alan L. Hodgkin and Andrew F. Huxley in the 1950s.
They have worked on the giant axon of the squid (a part of the nerve cell) and created a
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Fig. 1.5: Membrane: the impermeable lipid bilayer is an insulator element that separate two
different ionic solutions. However, it is permeated by the presence of ionic channels,
producing a potential difference. From [94]

model for the signal propagation that was based on the detailed models for several ionic
currents in the cell. For their work they obtained the Nobel Prize in Physiology or Medicine
in 1963, together with Sir John Carew Eccles.

"By measuring small variations in electrical charges at contact surfaces between nerve
cells, or synapses, in the early 1950s John Eccles showed how nerve impulses are
conveyed from one cell to another. The synapses are of different types, which has either
a stimulating or inhibiting effect. A nerve cell receives signals from many different
synapses, and the effect is determined by which type prevails." (www.nobelprize.org)

"By measuring changes in electrical charges in a very large nerve fiber from a species of
octopus, Alan Hodgkin and Andrew Huxley were able to show how nerve impulses are
exchanged between cells. In 1952 they could demonstrate that a fundamental mechanism
involves the passage of sodium and potassium ions in opposite directions in and out
through the cell wall, which gives rise to electrical charges." (www.nobelprize.org)

Their work was possible thanks to the development of the technique called the voltage
clamp, capable of holding the transmembrane voltage at any prescribed value. It was devel-
oped by K. S. Cole and G. Marmont, separately, in 1949. Another important improvement
of this technique, called the patch clamp, comes in 1976 by E. Neher and B. Sakmann.
The patch clamp technique allows the researcher to investigate the operation of single ion
channels and receptors. [73].

1.2.1 Cell membrane

Electrophysiologists model the effects of ionic concentration differences, ion channels,
and membrane capacitance in terms of an equivalent electrical circuit. Ludvig Hermann
(1905) was the first to suggest that under subthreshold conditions the cell membrane can
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be described by a uniformly distributed leakage resistance and parallel capacitance. The
differential equation for this simple circuits reads,

Cm
dv

dt
= −Iion, (1.1)

where Cm is the capacitance of the membrane per unit area, Iion is the ionic current per
unit area, and v is the transmembrane voltage. The capacitance is determined by the
properties of the lipid bilayer, and is taken to be fixed.

In a simplified version Iion = Gv, where G is a fixed conductance of ionic channels.
The solution of this equation for v is the exponential decay in time. Such a model is very
simple to understand and solve but it gives only the starting point for real-life modelling.
In real life the conductance of most of the ionic channels are not constant in time and are
environment dependent. Changes in the conductance can happen in less than 1 ms, which
depend primarily on the voltage. Hence, they are called time and voltage dependent chan-
nels. However, the differential equation used to model a membrane patch is commonly a
modified version of a resistor-capacitor circuit equation.

A typical action potential for a ventricular muscle cell is given in the Figure 1.6. The
value of the transmembrane potential in the resting state is around −85 mV in the human
heart, while it can range from −70 mV to −100 mV in other species, [103].

Fig. 1.6: Action potential of a ventricular muscle cell. From [29].

Such a complicated AP is a consequence of many different kinds of ionic channels in
the cell. In cardiac muscle, the action potential is caused by opening of two main types
of channels: (1) the fast sodium channels and (2) another entirely different population
of slow calcium channels, which are also called calcium-sodium channels. This second
population of channels differs from the fast sodium channels in that they are slower to
open and, even more important, remain open for several tenths of a second. During this
time, a large quantity of both calcium and sodium ions flow through these channels to the
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interior of the cardiac muscle fiber, and this maintains a prolonged period of depolarization,
causing the plateau in the action potential. The calcium ions that enter during this plateau
phase activate the muscle contractile process, [47].

Commonly, each ionic channel is described separately, with the equivalence circuit
given in the Figure 1.7.

Fig. 1.7: The equivalent electrical circuit for a membrane with three types of ionic channels and a
leakage current. Created by Nrets, CC BY-SA 3.0, https://commons.wikimedia.org/w/
index.php?curid=17095070.

The differential equation for this circuits is,

Cm
dv

dt
= −INa − IK − ICl − ILeak, (1.2)

Each of the ionic channels has different time and voltage dependent behaviour as will be
explained in the following text.

1.2.2 Ion flux

The ionic channels can be passive, when the ionic concentration follows the elec-
trochemical gradient. This is the case, for example, of the fast Na channel. Other ionic
channels behave as pumps or exchangers, which are important for maintaining the correct
ionic concentration in the cell. These are able to transport ions in the direction opposite to
the electrochemical gradient. This process is accomplished either by using the concentra-
tion gradient of different ion or by consuming chemically stored energy in the form of ATP.
This is the case, for example, of Na−K exchanger, [103].

It is not easy to assess the exact behaviour of the channel in the course of time.
The first step in deriving a model for the ionic channel is observing the properties of the
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membrane in the equilibrium state. Considering only one type of ion one can derive the
equilibrium equation, where the diffusive flux and the electrically driven flux are equal.

Iion = ID + IE = 0. (1.3)

The diffusive flux is given with the Fick’s law:

ID = −D∇c, (1.4)

where D is the diffusion coefficient and c is the concentration of the ion. The electrically
driven flux is given by Planck’s equation:

ID = −m z

|z|
c∇φ, (1.5)

where z is the charge, φ the scalar electrical potential, and m is a mobility which is related
to the diffusion coefficient as

m = D
|z|F
RT

, (1.6)

where R is the ideal gas constant, T is the temperature, and F is Faraday’s constant.
Finally, the total flux of the ion gives the Nernst-Planck equation for one ion,

Iion = −D
(
∇c+ zF

RT
c∇φ

)
. (1.7)

In the equilibrium state of the cell, i.e. when the total ionic current is zero, there will be a
potential difference across the membrane, which we refer to as a transmembrane voltage,
v = φi − φe, where φi and φe are the intracellular and extracellular potentials. When we
solve the equation (1.7) for the equilibrium state we find that the transmembrane potential
that gives zero flux is given as

veq = RT

zF
log

(
ce
ci

)
, (1.8)

where ci and ce are the intracellular and extracellular ion concentrations. The voltage veq
is called Nernst equilibrium potential.

In the non-equilibrium the derivation of the actual flux is more complicated. We
know that in any case, the flux must satisfy the condition to be zero when the transmem-
brane potential is v = veq. The simplest model for the flux of a given ion following the
electrochemical gradient is the linear model,

Iion = G(v − veq), (1.9)

where G is the electrical conductance for this ion. Depending on the ion of interest, G
might be a constant, or a function of time, membrane potential or ionic concentration.
There are other models for the ionic flux that satisfy Nernst equilibrium potential. The
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most commonly known is the Goldman-Hodgkin-Katz formulation. For further reading on
these models one can look at [73, 103].

The next step is to understand what happens if the membrane is permeable to more
than one ion. We can find the Nernst equilibrium potentials for each ion separately from
(1.8),

v1
eq = RT

zF
log

(
c1
e

c1
i

)
, v2

eq = RT

zF
log

(
c2
e

c2
i

)
, · · · (1.10)

In general the equilibrium transmembrane potentials are not the same, hence it is not
possible to achieve the equilibrium for all ions simultaneously. What we can expect to have
is that the total current is zero,

Iion = I1 + I2 + · · · , (1.11)

and find the equilibrium transmembrane potential in this case. For example, if we deal
with only two types of ions and use the linear model for each ionic flux, we have

G1(v − v1
eq) +G2(v − v2

eq) = 0. (1.12)

From here easily follows,

veq =
G1v

1
eq +G2v

2
eq

G1 +G2
. (1.13)

1.2.3 Gating

Ionic channels are described as series of gates, that open or close in response to
an electrical stimulus. The mathematical description of the ionic channels considers the
channels to be composed of several sub-units. Every sub-unit may be either open or closed,
and ions can pass only when all units are open. If we consider a channel that contains only
one sub-unit, the change between open and closed state may be written as

C
α
�
β
O, (1.14)

where C stands for closed, O for open, and α, β stand for the rates of opening and closing,
respectively. These rates are normally voltage dependent. Let say that the probability
for the channel to be in the open state is g, then the dynamics of opening and closing is
described as

dg

dt
= α(v)(1− g) + β(v)g. (1.15)
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The solution to this equation in general is,

g(t) =
[
g0 +

∫ t

0
α(v)e

∫ s
0 (α(v)+β(v))drds

]
e−
∫ t

0 (α(v)+β(v))ds. (1.16)

If we assume that α and β are constant the equation can be rewritten as

dg

dt
= g∞ − g

τg
, (1.17)

where

g∞ = α

α+ β
, and τg = 1

α+ β
. (1.18)

Then the solution is

g(t) = g∞ + (g0 − g∞)e−t/τg , (1.19)

where g0 is the initial value for g, and g∞ is the steady state value that g approaches as t
increases. The rate at which g approaches g∞ is determined by the time constant τg. In
reality α and β are voltage dependent and one should use the solution (1.16). On the
other hand, if τg is small enough, one can assume that g reaches the steady state value
almost immediately, and g∞ can be used as a reasonable approximation for g(t).

When the channel consists of more sub-units the probability that the whole channel is
open depends on the probability of each sub-unit to be open. Assuming that the sub-units
are an independent gates, i.e. they open and close independently one from another, then
the probability that the whole channel is open is the product of each subunit being open.
So if the channel consists of n identical sub-units, then the probability that the whole
channel is open is given as

O = gn. (1.20)

If the channel consists of m units of type g, and n units of type h, then the probability will
be

O = gmhn, (1.21)

where the dynamics of the channels g and h is given in the form of the equation (1.15),
with respective rates αg, βg and αh, βh.

Finally, the total current through the ionic channels of the same kind can be described
as a product of the maximum current possible, when all channels are open, and the
proportion of all open channels. If we use the linear model as in (1.9), the ionic current is
given as

I = GmaxO(v − veq), (1.22)
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whereGmax is the maximum conductance if all channels are open and veq is the equilibrium
potential for the specific ion.

1.2.4 Ionic models

The ionic models are used to describe the dynamics in excitation of the cardiac cells,
i.e. the cardiac action potential (AP). There are numerous ionic models developed to match
different kinds of cardiac cells depending on the species, age, or even the position of the
cells in the heart. There is a large database of different ionic models published to date on
the website www.cellml.org. Ionic models are commonly grouped in three cathegories:

• the physiological cell ionic models (e.g. Luo-Rudy, Beeler-Reuter, Hodgkin-Huxley)

• the reduced ionic models (e.g. the 3-variables Fenton-Karma model is a reduction of
the Luo-Rudy 1 model),

• the phenomenological models (e.g. FitzHugh-Nagumo, Aliev-Panfilov, Mitchell-Schaeffer).

The Hodgkin-Huxley model

The Hodgkin-Huxley model is historically the most important breakthrough in modelling
the activity of excitable cells. They worked on the giant axon of the squid (not the giant
squid), [60]. Their model was originally used to explain the AP in the long giant axon of a
squid nerve cell, but the idea was since used to describe the AP of many other excitable
cells. For the historical importance we give the explanation of their model here.

As we said earlier, the cell membrane can be modelled as a capacitor in parallel with
several ionic currents. In the squid’s giant axon the principal ionic currents are the Na+

current and the K+ current. In the Hodgkin-Huxley model all other currents are combined
together into one current called the leakage current.

Cm
dv

dt
= −INa − IK − IL + Iapp, (1.23)

where Cm is the membrane conductance, and Iapp is the initial current applied in order
to trigger the action potential. The instantaneous I − V curves for open Na+ and K+

channels are approximately linear, so the model reads,

Cm
dv

dt
= −gNa(v − vNa)− gK(v − vK)− gL(v − vL) + Iapp, (1.24)

where gNa, gK , gL are the respective conductances. These dependences are voltage depen-
dent and the main challenge for Hodgkin and Huxley and their collaborators at Cambridge
was to estimate the conductances of each channel separately. Thanks to the voltage clamp
technique they were able to keep the transmembrane voltage on a constant, known level
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and observe the ionic currents, i.e. the conductance in time. Furthermore, they were able
to separate the total ionic current into its constituent parts. They have made an important
observation that when the voltages are fixed, the conductances are time dependent. The
rest was the mathematical modelling by fitting the experimental data, without the physio-
logical meaning. They came up with the following expressions for the conductivities that
gave acceptable agreement with experimental data.

gNa = GNam
3h, (1.25)

gK = GKn
4, (1.26)

gL = GL, (1.27)

where GNa, GK , GL are constants that represent the maximum conductance for the corre-
sponding channels, and m,h, n are voltage dependent variables that obey simple differen-
tial equations, such as (1.15). We call them the gating variables.

To sum up, the Hodgkin-Huxley model is given with the differential equation,

Cm
dv

dt
= −GNam3h(v − vNa)−GKn4(v − vK)−GL(v − vL) + Iapp, (1.28)

with the gating variables given by equations of the form,

dg

dt
= αg(v)(1− g)− βg(v)g, (1.29)

for g = m,h, n, and αg, βg area the rate functions that depend on v. The rate functions are
determined from the experimental data. For more details about this model one may look
into [60, 89, 103].

The FitzHugh-Nagumo model

The FitzHugh-Nagumo (FHN) model was suggested about 10 years after the Hodgkin-
Huxley model. The idea is to extract the essential behaviour of the Hodgkin-Huxley phase
plane and represent it in a simplified form. This was achieved elegantly, with only two
variables: the fast one (v) and the slow one (w), also called the recovery variable. The
FHN model formulation is given by

dv

dt
= c1v(v − a)(1− v)− c2w + Iapp, (1.30)

dw

dt
= b(v − c3w). (1.31)

Here a, b, c1, c2, c3 are given parameters that can be adjusted to simulate different cell
types. In the original model these values were set to approximate the Hodgkin-Huxley
model for the AP of the giant axon.

This model is able to reproduce the most important characteristics of the AP. Such
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simplified models are useful in simulations as they have a small number of variables and
are easier to solve, but they are limited when one needs to study how the changes in
physiology on a cellular level affects the function of tissues and complete organs.

The Noble model

The first model to describe the AP of the cardiac cell was proposed by D. Noble in 1962,
and it was a model for the Purkinje cells. It was based on the Hodgkin-Huxley model
with the parameters changed to fit the AP of the Purkinje cells. The main difference
between the AP of the squid giant axon and the those of Purkinje cells is the duration of
the plateau phase, that is 300-400 ms in cardiac cells compared to 3 ms in axon. Still, the
model describes two ionic currents: potassium and sodium, with leakage current assumed
to be zero. Additionally, Noble assumed two separate potassium currents IK1 and IK2.
The model is given as,

Cm
dv

dt
= −gNa(v − vNa)− (gK1 + gK2)(v − vK) + Iapp, (1.32)

where,

gNa = GNam
3h+Gi, (1.33)

gK1 = GK1n
4, (1.34)

gK2 = gK2(v). (1.35)

As we can see the expressions for the Na current and K1 current are similar to those of
the Hodgkin-Huxley model, and they have time dependent conductances, while gK2 is
time independent. The Gi conductance, represents a leakage current of sodium that serves
to prolong the AP.

At the time when the model was first written there were no detailed data on the ionic
currents in the cardiac cells. However, the model was a successful attempt to reproduce
the AP of Purkinje cells. It was finally adjusted in 1975 to include more ionic currents and
to give more accuracy on the underlying physiology.

The Beeler-Reuter model

Another important model for simulating AP in cardiac ventricular cells came in 1975, and
it was proposed by Beeler and Reuter. The important addition in this model is the role of
calcium, which is essential for the contraction of the muscle cells.

This model describes four ionic currents: the fast inward sodium current, a slow
inward calcium current, and two outward potassium currents. These four currents are
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controlled with six gating variables. Additionally, the model describes the intracellular
calcium concentration. The model reads,

Cm
dv

dt
= −INa(m,h, j, v)− IK(v)− Ix(x, v)− Is(f, d, v) + Iapp, (1.36)

dc

dt
= 0.07(1− c)− Is, (1.37)

where c represents the calcium concentration. The gating variables: m,h, j, x, f, d satisfy
differential equations

dg

dt
= αg(v)(1− g)− βg(v)g, (1.38)

where g = m,h, j, x, d, f , and as before αg, βg represent the respective rate functions.
The Beeler-Reuter model is still widely used in the computations. The reason for this

is the fact that it has only eight state variables, while the more recent models are more and
more complex and stiffer, including more ionic channels and many state variables, and are
computationally much more challenging. This is an important factor in simulations of the
tissue patches or the whole heart, which are computationally very demanding.

1.2.5 The Mitchell-Schaeffer model

The model that we mostly use in our current work is the Mitchell-Schaeffer (MS)
model proposed in 2003, [76]. It is a model for electrical activity of cardiac membrane
which incorporates only an inward and an outward current. It is obtained as a special case
of the Fenton-Karma model (1994), with a proper rescaling.

The voltage is dimensionless and rescaled so it ranges between zero and one, and is
governed by the ODE

dv

dt
= Iin(v, h) + Iout(v) + Iapp, (1.39)

where the three currents are given as follows: Iin is a combination of all currents which
rise the voltage across the membrane (primarily sodium and calcium) and is given as.

Iin(v, h) = 1
τin

hv2(1− v), (1.40)

where h is the gating variable. This current mimics the behaviour of the fast gates, and is
specified by the time constant τin. The outward current is a combination of all currents
that decrease the transmembrane voltage (mainly potassium), and is given as

Iout(v) = − v

τout
, (1.41)
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with the time constant τout. So the full model can be written as,

dv

dt
= 1

τin
hv2(1− v)− v

τout
+ Iapp, (1.42)

dh

dt
= g(v, h). (1.43)

The dimensionless gating variable h, varies between 0 (closed) and 1 (fully open), and
satisfies the following ODE,

dh

dt
=


1−h
τopen

if v ≤ vgate,
−h
τclose

if v > vgate,
(1.44)

where τclose and τopen are the time constants with which the gate closes and opens, and
vgate is the threshold value of the transmembrane potential that indicates the change in
the dynamics of the gate. The parameters for the ventricular cells proposed in the original
paper are: τin = 0.3 ms, τout = 6 ms, τopen = 120 ms, τclose = 160 ms, and vgate = 0.13.

This model is useful for its simplicity, it is comparable to the FitzHugh–Nagumo
model, which makes it useful for numerical simulations, especially in two or three spatial
dimensions where numerical efficiency is important. Several modified versions of the MS
model may be found in the literature. We will make use of the one proposed by Boulakia
et al. 2008, [13]. The model is a regularised version of the MS model, and it reads

Iion = 1
τin

hv2(1− v)− v

τout
, (1.45)

g(v, h) =
(

1
τclose

+ τclose − τopen
τcloseτopen

h∞(v)
)

(h− h∞(v)), (1.46)

where,

h∞(v) = 1
2

[
1− tanh

(
v − vgate
µgate

)]
, (1.47)

and µgate > 0. This regularised version of the MS model comes in handy in the mathemati-
cal manipulations, as we get rid of the jump in the function g(v, h).

1.3 Tissue scale modelling

The cardiac tissue consists of the network of cardiac cells, each surrounded with the
extracellular matrix and connected to the adjacent cells through the gap junctions. If one
applies the electrical stimulus in one cell, it will go through the AP, and the electrical signal
will get propagated to the neighbouring cells. This process is complicated to model even
if we deal with a few cells. Knowing that the cardiac tissue contains millions of cardiac
cells, such discrete modelling would be mathematically very challenging and numerically
extremely expensive.
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Extensive studies on the electrical properties of the biological tissues and especially
on the cardiac tissue, were conducted in the 70’s and 80’s, [26, 43, 75, 77, 78, 79, 86,
87, 104]. What has been understood from the experiments is that the intracellular space
behaves as if interconnected, but with higher conductivity along the fiber than transverse
to it. The same holds for the extracellular, or interstitial space. Schmitt (1969) proposed
the macroscopic model of the two domains that are considered to be continuous and
interpenetrating. As we will explain later, the simple Ohm’s law can be used to describe
the electrical current in these two regions and the transmembrane current flowing from
one to another region, to obtain what is commonly known as the bidomain model.

Neu and Krassowska (1992, 1994) [80, 65], suggested the first mathematical ap-
proach in understanding the derivation of bidomain model from the microscopic descrip-
tion of the tissue. The derivation is based on an idealized representation of the syncytium
as a network of interconnected cells arranged periodically in space.

Fig. 1.8: Microscopic structure used to derive the macroscopic, bidomain model.

From this microscopic model, a homogenization process derives a macroscopic
volume-averaged model for intracellular, extracellular and transmembrane voltage and its
boundary conditions. This model corresponds to the already used bidomain model, with
deeper understanding of the parameters and their connection to the cell scale processes.

The bidomain model is a system of degenerate reaction-diffusion equations, coupled
with a system of ODEs, i.e. with the ionic model of the cell membrane. The derivation of
Neu-Krassowska was an important step in understanding the exact influence of the cell
scale parameters on the macroscale behaviour, but it was only a formal one. They did
not provide a rigorous mathematical proof either for the convergence in their asymptotic
analysis, nor for the well-posedness of the bidomain model.

In 2005, Pennacchio, Savare and Colli Franzone [85], using the framework of the Γ-
convergence theory and the same assumptions on the microstructure of the cardiac tissue,
presented the rigorous mathematical derivation of the bidomain model, as a limit problem
of the microscopic (cell scale) model. As for the well-posedness of the bidomain model
there are two main challenges: the degeneracy of the reaction-diffusion equations and the
non-linearity of the coupled ionic models. The first proof of existence was given in 2002
by Colli Franzone and Savare [40], for the FitzHugh Nagumo ionic model. The following
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was the work of Bourgault, Coudière and Pierre in 2009 [14], where the compactness
technique is used and the proof of the existence was extended to the more complex ionic
models, namely Aliev-Panfilov and MacCulloch models. The same year Veneroni proved
the existence and uniqueness for Luo-Rudy ionic model, [105]. In 2008, Boulakia et al.
[13], gave a proof for a coupled heart-torso problem, and extended the proof to include
the Mitchell-Schaeffer ionic model.

1.3.1 Bidomain model

Here, we present the intuitive understanding of the bidomain model as it has been
described in the 70’s. In the microstructure the intracellular and the extracellular spaces
exist as separate domains, that interact through the cell membrane. On the macroscale in
the averaged model, the tissue is seen as a two-phase medium, as if in every point in space
there exist both the intracellular and the extracellular spaces. Hence, for each point in
space we can define the intracellular and extracellular potentials, ui and ue, as well as the
two currents Ii and Ie, and finally one can define the transmembrane potential in each
point in space, v = ui − ue.

Ohm’s law states that the current flux in the conducting body is given with

J = σE, (1.48)

where σ is the conductivity tensor of the medium, and E is the electric field. Under the
quasi-static assumption, the electric field E is defined as the gradient of a scalar potential
u, i.e. E = −∇u, giving

J = −σ∇u. (1.49)

It holds for both, intracellular and extracellular spaces, respectively,

Ji = −σi∇ui, (1.50)

Je = −σe∇ue, (1.51)

where σi and σe are intracellular and extracellular conductivity tensors. The principal
axes of the conductivity tensors are the same, but the conductivities in these directions are
possibly different. At any point in space the total current flux is Jt = Ji + Je, and there is
no accumulation of charge anywhere, and therefore

∇ · Jt = 0, (1.52)

that gives,

∇ · (σi∇ui) +∇ · (σe∇ue) = 0. (1.53)
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The transmembrane current IT , is the current that leaves the intracellular space to enter
the extracellular space, so

IT = ∇ · (σi∇ui) = −∇ · (σe∇ue). (1.54)

For the biological membrane the total transmembrane current, as we mentioned before, is
the sum of ionic and capacitive currents,

IT = χ

(
Cm

∂v

∂t
+ Iion

)
, (1.55)

where Cm is the specific capacitance per unit area of the cell membrane. Here, χ the
surface-to-volume ratio, needed to convert the transmembrane current per unit area into
the transmembrane current per unit volume. Boundary conditions for this model usually
assume that there is no current across the boundary, i.e. it assumes that the tissue is
electrically isolated.

The full bidomain model is given as follows: let Ω be a heart tissue (full heart or
piece of the tissue) and we want to model the activity in this domain for the time [0, T ],
then the bidomain model reads,

∂h

∂t
+ g(v, h) = 0, in (0, T )× Ω,

χ

(
Cm

∂v

∂t
+ Iion(v, h)

)
= ∇ · (σi∇ui), in (0, T )× Ω,

χ

(
Cm

∂v

∂t
+ Iion(v, h)

)
= −∇ · (σe∇ue), in (0, T )× Ω,

(σi∇ui) · n = (σe∇ue) · n = 0, on [0, T ]× ∂Ω,

v(0, x) = v0(x), in Ω,

h(0, x) = h0(x), in Ω,

(1.56)

with h the vector of variables for the ionic model. This is the parabolic-parabolic form.
The alternative form of the bidomain model, that is often used in the literature is the
parabolic-elliptic form,

∂h

∂t
+ g(v, h) = 0, in (0, T )× Ω,

χ

(
Cm

∂v

∂t
+ Iion(v, h)

)
= ∇ · (σi∇(ue + v)), in (0, T )× Ω,

∇ · ((σi + σe)∇ue) +∇ · (σi∇v) = 0, in (0, T )× Ω,

(σi∇(ue + v)) · n = (σe∇ue) · n = 0, on [0, T ]× ∂Ω,

v(0, x) = v0(x), in Ω,

h(0, x) = h0(x), in Ω,

(1.57)
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1.3.2 Fibers and anisotropy

The conductive properties of the heart muscle are strongly anisotropic. The anisotropy
results from the fact that the heart muscle consists of fibers, and the conductivity is higher
in the direction of fibers than in the cross-fiber direction. Furthermore, the fibers are
organised in sheets, which gives three characteristic directions for the conductive values of
the tissue: parallel to the fibers, perpendicular to the fibers and parallel to the sheets, and
perpendicular to the sheets. The fiber directions vary through the heart muscle. At a given
point we may define a set of unit vectors: al, at, and an, where al is directed parallel to
the fibers, at is perpendicular to the fibers in the sheet plane, and an is perpendicular to
the sheet plane. The conductivity values in the bidomain model are represented at each
point in space by a tensor σ. The local conductivity tensor σ expressed in the eigenbasis of
unit vectors al , at and an, is diagonal:

σ =


σl 0 0
0 σt 0
0 0 σn

 . (1.58)

Let A(x) be a local orthogonal matrix having the vectors al, at and an as columns. Then,
the conductivity tensor in the global coordinate system is given as

σ(x) = A(x)σA(x)T = σlala
T
l + σtata

T
t + σnana

T
n . (1.59)

Values of the conductivities eigenvalues σl, σt and σn for different media (intracellular,
extracellular media, and any other extracardiac media) can be found in the literature
(e.g. see Table 3.1). Knowing these values and the proper orientation of the fibers, the
conductivity tensor in the global coordinate system is easy to compute. Namely, an entry
σkj in (1.59) is given by:

σkj(x) = akl a
j
lσl + akt a

j
tσt + akna

j
nσn, (1.60)

for k, j = 1, 2, 3. Often there is an assumption of the axially symmetric anisotropy, where
diffusion in all directions orthogonal to the fibre direction is assumed to be the same, i.e.
σt = σn. This can be due to the lack of information on the difference in values of σt and
σn, or because the sheet structure is not visible in the images, or for simplicity of the
computations. Using the fact that

ala
T
l + ata

T
t + ana

T
n = 1, (1.61)

and rewriting the equation (1.59) as,

σ = σnI + (σl − σn)alaTl + (σt − σn)ataTt , (1.62)
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the global conductivity tensor is simplified to,

σ = σnI + (σl − σn)alaTl , (1.63)

or differently,

σkj = σnδkj + (σl − σn)akl a
j
l , (1.64)

for k, j = 1, 2, 3, where δkj = 1 if k = j, otherwise δkj = 0.
When the conductivity tensors are expressed in their diagonal form, we define the

intracellular and the extracellular anisotropy ratios as:

ARint = σil
σin
, ARext = σel

σen
. (1.65)

We will use this definition later in the Chapter 3.
In the ventricles, the fiber orientation has been shown to smoothly rotate from the

endocardium to the epicardium, while in other regions the fiber orientation is much more
variable. Various techniques can be used to obtain the fiber direction such as histology,
optical techniques and diffusion tensor MRI (DT-MRI).

Fig. 1.9: Reconstruction of the fiber orientation in the rabbit heart using DT-MRI. (A) Lon-axis
cross section showing fiber helix angle. (B) Transmural fiber helix angles extracted from
a sector of the left ventricular wall. Taken from [23].

An important experimental study on the fiber and sheet structure in ventricular tissue
was done by Hooks et al. in 2007, [55], where they demonstrate that the conductivities in
the cardiac tissue in fiber direction, parallel, and normal to sheets have the ratio 4:2:1,
respectively, which means that the cardiac tissue should be considered as an orthotropic
medium. Prior to this study it was widely believed that the the cardiac anisotropy is such
that the conductivity is greatest in the fiber direction, and that that it is isotropic in the
transverse direction.

Other relevant works in this domain include those of Gilbert et al. [45], and Benson
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et al. [11]. In their studies they use the fiber orientation obtained with DT-MRI of the rat
heart, and applied it in the computational model to recover the pattern and velocity of the
signal propagation, where they once more confirm the importance of the anisotropic, i.e.
orthotropic structure of the tissue.

1.3.3 Asymptotic ionic model

In this subsection we refer to work of M. Rioux and Y. Bourgault, [90, 91]. The
problem at hand is applying the ionic model in the model of the propagation, i.e. in
our case into the bidomain model. One needs to match the time and space scales and
tune several parameters properly. The idea behind their work is that one can perform
the non dimensionalisation and reduce the number of parameters that have to be set to
a single nondimensional number. Secondly, using an asymptotic analysis one is able to
reproduce the overall AP dynamics using only Mitchell-Schaeffer ionic model with adjusted
parameters, based on a knowledge of the resulting solution. Here we give a sketch of their
work.

We start from the bidomain model given in (1.57), where we assume it to be coupled
with any ionic model of the form,

Iion = h p(v, ue)
τ

(1.66)

where h is a gating variable, p(v, ue) is any type of function of the transmembrane po-
tential and τ is the time scale of this charge flow, in seconds. The first step in the
non-dimensionalisation process is to define non-dimensional variables and parameters,
denoted by ·̃. The intracellular, extracellular and transmembrane potential are rescaled
as: ui = Vmũ

i + 2Vrest, ue = Vmũ
e + Vrest and v = Vmṽ + Vrest, where Vm = Vmax − Vrest,

and Vmax and Vrest are maximal and resting transmembrane potentials, respectively. Vm

is called a characteristic transmembrane potential amplitude. The eigenvalues of the
conductivity tensors are rescaled as σil,t,n = ςσ̃il,t,n, and σel,t,n = ςσ̃el,t,n. The independent
variables, time and space, are rescaled as t = Tt̃ and x = Lx̃. The gating variables h are
assumed to be already non-dimensional as for the most of ionic models in the literature.
The non-dimensional version of the bidomain model then reads,

∂h

∂t
+ g̃(ṽ, h) = 0, in (0, T )× Ω,

∂ṽ

∂t̃
+ Ĩion(ṽ, h) = N∇̃ · (σ̃i∇̃(ṽ + ũe)), in (0, T )× Ω,

∇̃ · (σ̃i∇̃ṽ) + ∇̃ · ((σ̃i + σ̃e)∇̃ũe) = 0, in (0, T )× Ω,

(σ̃i∇̃(ũe + ṽ)) · n = (σ̃e∇̃ũe) · n = 0, on [0, T ]× ∂Ω,

(1.67)

where,

N = Tς
χCmL2 . (1.68)
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The parameters χ,Cm, Vm, Vmax, Vrest and ς are fixed. The parameters T and L have to be
chosen based on the best suitable time and space scale for the given model and the phase
of AP. In the work of Rioux and Bourgault, the suggested parameters are set for the healthy
human heart for the MS model, and they are given in the Table 1.1.

Tab. 1.1: Parameters of the bidomain model for a human heart. Three different dimensional
scalings are proposed. Adim1: based on the transmembrane potential upstroke. Adim2:
based on the action potential duration and width. Adim3: based on convenient units.
The table is taken from [90].

Parameter Adim1 Adim2 Adim3 units
Vmax 0.04 V
Vrest −0.085 V

Vm 0.125 V
χ 2 · 105 m−1

Cm 0.01 F m−2

ς 0.1 S m−1

σ̃il 1.741 -
σ̃it,n 0.1934 -
σ̃el 3.906 -
σ̃et,n 1.970 -
T 1 · 10−3 0.2 1 · 10−3 s
L 5 · 10−5 0.1 1 · 10−3 m
N 0.2 0.001 0.05 -

In the second part of their work they describe the asymptotic analysis performed in
order to justify the possibility to use the modified MS model instead of any other ionic
model, if we know the time scales of the four phases of the AP signal of interest. More
precisely, the parameters that need to be recalculated, for the fixed non-dimensionalisation,
i.e. for the fixed N, T and L, are the time constants of the MS model: τin, τout, τopen and
τclose.

A detailed analysis of the phase plane for the MS model is performed. The phase
plane is split into four phases that correspond to depolarisation, AP duration, repolarisation
and recovery period. For each phase it is possible to perform the asymptotic analysis and
obtain the simplified version of the model.

First, one needs to express the rescaled model in terms of the short and long time
scales, i.e. Tf and Tg, respectively.

∂h

∂t
+ T

Tg
g̃(ṽ, h) = 0, in (0, T )× Ω,

∂ṽ

∂t̃
+ T

Tf
Ĩion(ṽ, h) = N∇̃ · (σ̃i∇̃(ṽ + ũe)), in (0, T )× Ω.

(1.69)

Then, for each phase the rescaling is done again with the time scale and space scale
corresponding to the given phase. The time scales are denoted with T̂up, T̂AP , T̂down and
T̂rec. In such settings, some of the terms become negligible and the previous equations are
simplified. From these simplified equations and from the properties of the phase plane,
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one is able to express given time scales with respect to τ ’s. The dependencies are the
following

T̂up = T̂up(τin, τout),

T̂AP = T̂AP (τclose, τin, τout),

T̂down = T̂down(τout),

T̂rec = T̂rec(τopen, τin, τout).

(1.70)

Each of the above expressions assume fixed vgate, that represents the cell’s excitable
threshold. Now, since we do have an information on the duration of each phase, we are
able to obtain the values for τ ’s from the previous dependences in the following order:
from T̂down we obtain τout, then from T̂up we obtain τin. Finally, from T̂AP and T̂rec we
obtain τclose and τopen, respectively. For all the details on the asymptotic analysis we refer
the reader to the papers of Rioux and Bourgault.

With this approach one can replace any ionic model of the type (1.66) with the
modified MS model, as far as only the AP overall shape and the time scale are of interest.
As said before, the exact ionic models can have dozens of the equations that are hard to
solve. This approach in modelling the ionic dynamics can save us a precious computing
time. This asymptotic analysis will be of a great use for us in 3D simulations of the rat
heart in the Chapter 4.

1.3.4 Limitations of the bidomain model and structural heterogeneities

While the bidomain model is widely accepted as a standard model for the cardiac
electrophysiology, it has several limitations, that come from the assumptions in it’s deriva-
tion. As pointed out in [25], some of the assumptions can have the important implications,
such as: the heart is treated as a static continuum, where parameter values are either
uniformly distributed or vary smoothly in space, the cardiac tissue is comprised of myocytes
and extracellular space only, while other types of cells and compartments are neglected.
Similarly, assumptions on modelling parameter values can have important consequences
for the accuracy and validity of models, yet many parameter values are difficult to obtain
and verify.

The cardiac tissue is composed of many cell types, supported by the extracellular
matrix and permeated by fluids. Myocytes are the most studied cells, they occupy the
largest volume of the cardiac tissue, they are electrically active and contractile cells.

On the other hand, the most numerous cells in the heart are fibroblasts. They are
much smaller cells than myocytes, and they play an important role in maintenance of the
extracellular matrix of the cardiac tissue as they produce interstitial collagen. They are
involved in the development of fibrosis in the injured or aged heart. Pathological states
are frequently associated with myocardial remodelling involving fibrosis. This is observed
in ischemic and rheumatic heart disease, inflammation, hypertrophy, and infarction, [18].
The structural arrangement of the fibroblasts is still not well understood. Some work has
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been done to understand the role of the fibroblasts in electrophysiology [18, 63, 64, 70,
95], but it still remains to be studied.

The extracellular matrix is a complex network of fibrous proteins, mainly collagen
and elastin. The arrangement of collagen differs throughout the heart. Collagen surrounds
each myocyte cell, and it envelops groups of adjacent myocytes and provide the laminar
structure of the myocardium. The thickness of collagen fibrils can increase in pathological
cases from 40 nm to up to 300 nm, [25].

There are several open questions in modelling cardiac electrophysiology. They in-
clude the choice of the parameters, such as the tissue conductivities, finding a method to
represent the detailed and heterogeneous tissue microstructure and the representation of
pathological structure and function, [25].

1.4 The gap junctions

The excitation in the working myocardium spreads from the initiating sites to all
other cells, providing the synchronisation of all cells. In this sense the heart is said to be a
functional syncytium. We know that each cell is surrounded by a plasma membrane, that
behaves as a good electrical insulator. One would expect that the electrical current would
not be possible to pass from the interior of one cell to the next cell. The solution lies in
gap junctions, the structure that allow the diffusion of ions and metabolites by crating a
direct pathway between adjacent cells. One of the main reasons for the slow conduction
in the AV bundle fibers is caused mainly by diminished numbers of gap junctions between
successive cells in the conducting pathways, so that there is great resistance to conduction
of excitatory ions from one conducting fiber to the next. Likewise, the rapid transmission
of action potentials by Purkinje fibers is believed to be caused by a very high level of
permeability of the gap junctions between the successive cells that make up the Purkinje
fibers, [47].

1.4.1 Gap junctional structure

The cardiac cells are arranged in a brick-like structure. Each cell has a rectangular
shape and it is about 100 µm long and 20 µm wide. As we already said, the cells are
enclosed in the lipid bilayer - cell membrane, that is about 7 - 10 nm wide. The cells are
normally at a distance of about 20 nm. Cardiac myocytes are mechanically connected by
junctions anchored to the cytoskeleton, known as intercalated disks, and are electrically
connected by electrical synapses, known as gap junctions, connecting myocytes mostly
end-to-end (longitudinal gap junctions) but also laterally (transverse gap junctions). On
the intercalated discs the gap between cells reduces to about 3 nm.

Gap junctions (GJ) are clusters of gap junctional channels (GJCs) that connect the
interior of one cell directly to the interior of the neighbouring cells. Gap junction channels
are ionic channels with low, mostly size driven selectivity, with a diameter of about 2 nm
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and length of about 3-15 nm, see Figure 1.10.

Fig. 1.10: Details of the gap junction: each channel is made of two hemichannels or connexons.
Each connexon is running transverse to the opposing membrane. Connexons of the
adjacent cells align themselves to form the structural continuity. Edited image taken
from [71].

Each GJC is formed by two end-to-end hexameric structures called hemichannels or
connexons, each of which is inserted in the membrane of adjacent cells. The hemichannels
are composed of connexins, a protein family of 20 isoforms, [51]. The cells can express
more than one type of connexin, which provides the possibility of forming homomeric
and heteromeric connexons, which in turn can give homotypic or heterotypic gap junction
channel, shown in the Figure 1.11. Each type of channel exhibit its own set of properties,
[31]. Primarily three different connexins: Cx43, Cx40, and Cx45, are expressed in the
heart. Cx40 is mainly found in atria and Cx45 in the conduction system. In adult human
ventricles, GJCs contain primarily Cx43 [57], and are located mainly on the longitudinal
ends of the cells (Figure 1.12), yielding a macroscopic electrical coupling that is anisotropic
[41].
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Fig. 1.11: Configurations of connexons and gap junction channels for two different connexins (Cx).
Fourteen different connexons can be formed when two connexins are co-expressed in a
cell: 2 homomeric connexons, consisting of one type of connexin, and 12 heteromeric
connexons consisting of two types of connexins. Gap junction channels formed after
docking of two connexons can be homotypic when the connexons are identical (com-
posed of one or two types of connexins) or heterotypic when the connexons are different
(composed of one or two types of connexins). Taken from [31].

Fig. 1.12: Left: Confoncal microscopic projection image of an optical section series through a
single isolated ventriculat myocyte labeled for Cx43, showing the positions of clusters of
transversely oriented GJCs (arrows). Scale bar = 20 µm. Taken from [88].
Right: Lattice of regular hexagons, representing the transverse-section of GJ used in
the model in [108]. The diameter of a gap junction is d, the diameter of a gap junction
channel is dc ≈ 2 nm, and the lattice constant is dhex ≈ 9 nm.

The anisotropic conductive properties of cardiac tissue are dependent on the geometry
of the interconnected cells and the number, size, and location of the gap junction plaques
between them, [57].

Normal adult human ventricular myocardium has a gap junctional surface area of
0.0051 µm2/µm3 myocyte volume, which is comparable to the surfaces in other species
rabbit ventricle 0.017 µm2/µm3, rat ventricle 0.005 - 0.015 µm2/µm3, canine ventricle
0.0085 µm2/µm3, [88]. There is a correlation between the reduction in this surface area
and the conditions of chronic hypertrophy and ischemia, [88].

Ventricular myocytes are connected by gap junctions to about 10 neighbouring cells.
GJs are arranged in hexagonal arrays with lattice constants of around 8.0-9.5 nm [108], see
Figure 1.12. Conduction velocity is determined by GJ plaque area. Mean gap junctional
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Fig. 1.13: Left: DIC image (Differential Interference Contrast) of a pair of cells imaged during dual
whole cell patch clamp experiment. Taken from [30].
Right: The equivalent electrical circuit of the dual whole cell patch clamp experiment.

plaque area ranges from 0.21 µm2 in the human ventricle, to about 0.45 µm2 in the rat
ventricle, and to 4 µm2 in the canine ventricle [57].

1.4.2 Electrical function

In the usual continuous models for the electrical propagation, the GJCs connect cells
which interior domains extend the intra-cellular domain [80], e.g. simple linear electrical
conductors.

However, the dual patch clamp experiments, e.g. [50, 30, 31], have shown that
GJCs exhibit a non-linear voltage and time dependence on the difference of membrane
potential between adjacent cells. A dual whole cell patch clamp experiment is devised to
measure directly the junctional current. Each cell of a coupled pair is impaled with one
patch pipette, see Figure 1.13. The voltage steps are delivered to one cell (e.g. cell B),
while the other ( e.g. cell A), is held at the constant potential. In such situation the current
flowing from the cell B to the cell A, junctional current Ij , is equal to the current of the
opposite polarity that needs to be injected into cell A to keep it at the constant potential.
From here one is able to derive the conductance of the gap junction.

More precisely, let us denote VA and VB the holding potentials for the cells A and B,
respectively, IA and IB the currents supplied by voltage clamps, and GA and GB are the
conductances of the nonjunctional membrane. Then, the current flowing from the cell A
to cell B is Ij = GjVj , where Vj = VA − VB. Then the currents are given as

IA = GAVA +Gj(VA − VB),

and
IB = GBVB +Gj(VB − VA).
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When VA is kept at zero and VB is stepped, then IA = −GjVB and Vj = −VB, hence the
measured current IA = Ij , and

Gj = IA
Vj
.

Such experiments show that the junctional conductance is time and voltage depen-
dent. For small voltage steps applied, the junctional current and conductance remain
almost constant. For the larger steps the junctional current is high in the beginning and
decays exponentially over time to the steady state level. It has been observed that the
junctional current never reaches zero, meaning there is a residual conductance of gap
junctions, Gj,min. The initial current and conductance are referred to as instantaneous,
and denoted as Ij,0 and Gj,0, respectively. The "final" current and conductance are referred
to as steady state, and denoted as Ij,∞ and Gj,∞. Both, instantaneous and steady state
current depend on the voltage step applied.

The dual patch clamp experiment has to be used with care. An interesting study by
Wilders and Jongsma (1992) [108], gives us a deeper insight into this technique and its
limitations. They have shown that the actual voltage across each channel of gap junction,
in percent of the applied voltage, decreases with the gap junction size. This in return
implies that the gap junctional current is not simply proportional to the number of channels
in the gap junctions. Hence, the instantaneous gap junctional conductance also, will not be
linearly dependent on the number of gap junctional channels, and could be underestimated
in such experiments. Additionally, the steady state conductance, Gj,∞, depends on the
number of channels in the gap junction. This dependence is much more emphasised if the
pipette resistance is high.

Another important observation of this study is that one can not observe the voltage
dependence of Ij in certain experimental settings. According to this model, there are
three parameters that can mask the voltage dependence of the GJCs: the instantaneous
conductance might be too large (> 8-10 nS), clamp pulses might be too small (<50 mV) or
too short(<1 s), and pipette resistances might be too large (> 10MΩ). This may lead to
the wrong conclusion that the gap junction conductance is constant. Finally, this model
also gives an explanation for the residual conductance Gj,min, as a direct consequence of
the non-zero single channel open probability.
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2Structural heterogeneities

„ "If you want to tell someone that you will love them
forever you can give them a diamond. But if you
want to tell them that you’ll love them forever and
ever, give them a theorem! But hang on a minute!
You’ll have to prove it, so your love doesn’t remain a
conjecture."

— Eduardo Saenz de Cabezon
(Math educator)„ "Mathematicians can prove only trivial theorems,

because every theorem that’s proved is trivial."

— Richard Feynman
(Physicist)
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2.1 Introduction

The standard macroscopic model for the electrophysiology of the heart is the bido-
main model. It is the anisotropic three-dimensional cable equation, that represents the
averaged electric behaviour of the heart tissue. In the bidomain model we have different
electrical conductivities for the intracellular and the extracellular spaces, and both of them
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are anisotropic, meaning that there is a different conductivity in the longitudinal and
transversal direction with respect to fiber direction.

Even if it is widely accepted, this model still has several modelling limitations. It
assumes that active myocytes are present everywhere, organised into a dense network.
It is a reasonable assumption for describing the propagation of the action potential in
healthy tissues. As we have discussed in the Section 1.3.4, in pathological cases this
assumption does not hold, and there are regions with larger patches of collagen or fibrosis.
This is observed in ischemic and rheumatic heart disease, inflammation, hypertrophy, and
infarction [18].

In the current modelling of such defects, usually the standard models for the healthy
tissues are used, with the model parameters tuned ad hoc. We propose an explanatory
model for more rigorous tuning of the parameters in such situations.

In the proposed model of the electrical activity of the heart tissue we will assume the
periodic alternations of the healthy tissue, modelled with the standard bidomain model,
and the non-active regions, modelled with the simple diffusion equation. Further, we will
use the homogenisation technique to derive the macroscale model that can be used in
numerical simulations on the whole heart.

2.2 Microscopic problem statement

2.2.1 Settings

We consider the bounded open set Ω ∈ RN (N = 2 or 3), with the Lipschitz boundary
∂Ω, such that Ω = ΩB

ε ∪ ΩD
ε ∪ Σε. Here ΩB

ε represents the healthy heart tissue which can
be modelled with standard bidomain equations, ΩD

ε represents the collection of periodical
diffusive inclusions and Σε is the common boundary of these two subdomains. The domain
Ω is a periodic medium, i.e. it is divided into the small cells identical to each other. This
small cells are identical up to a translation and rescaling by ε to the unit cell Y = [0, 1]N .
Furthermore, the unit cell is decomposed in two parts: YB represents the tissue that
can be modelled by the standard bidomain model, YD is the diffusive inclusion, hence
Y = YB ∪ YD ∪ Γ where Γ is the interface. Let ε be a sequence of a strictly positive real
numbers which tend to zero. We can write

ΩB
ε =

⋃
z∈ZN

ε(z + YB) ∩ Ω, ΩD
ε =

⋃
z∈ZN

ε(z + YD) ∩ Ω, Σε =
⋃

z∈ZN
ε(z + Γ) ∩ Ω,

as on the Figure 2.1.
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Fig. 2.1: On the left: the idealised full 2D domain, Ω. On the right: the periodic cell, Y .

2.2.2 The system of equations for the microscopic problem

The idea is to extend the standard bidomain model on ΩB
ε with the periodic diffusive

inclusions on ΩD
ε and to study their effect on the macroscopic level. Standard bidomain

model involves the intracellular electric potential uiε(t, x) and the extracellular one ueε(t, x).
While the transmembrane potential is denoted as

vε = uiε − ueε.

The bidomain model assumes that the change in the transmembrane voltage results from
the ionic activity and the diffusion of the electric potential.

In (0, T )× ΩB
ε , holds

∂thε(t, x) + g(vε(t, x), hε(t, x)) = 0, (2.1)

∂tvε(t, x) + Iion(vε(t, x), hε(t, x))−∇ ·
(
σi∇uiε(t, x)

)
= 0, (2.2)

∂tvε(t, x) + Iion(vε(t, x), hε(t, x)) +∇ · (σe∇ueε(t, x)) = 0, (2.3)

where σi and σe are the time-independent intracellular and extracellular conductivity
tensors. They are assumed to be symmetric and positive definite matrices. Their coefficients
are assumed to be the periodic functions of the period Y . The ODE in (2.1) with the
function Iion represents the ionic model related to the behaviour of the myocardium cells
membrane. In our new model we couple this standard bidomain model with the simple
diffusion equation in the periodic inclusions:

∇ ·
(
σd∇udε(t, x)

)
= 0, in (0, T )× ΩD

ε . (2.4)
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The standard transmission conditions for the bidomain model with the diffusive domain
are given on the interface. On [0, T ]× Σε, holds(

σi∇uiε(t, x)
)
· nΩBε = 0, (2.5)

(σe∇ueε(t, x)) · nΩBε =
(
σd∇udε(t, x)

)
· nΩBε , (2.6)

ueε(t, x) = udε(t, x), (2.7)

where nΩBε is the unit normal vector from ΩB
ε to ΩD

ε . On the outer boundary we have
homogeneous Neumann conditions on ∂Ω

(σi∇uiε(t, x)) · n = −(σe∇ueε(t, x)) · n = 0, on [0, T ]× ∂Ω. (2.8)

One can notice that the problem is defined up to the same constant for uiε, u
e
ε and udε . This

can be fixed by enforcing the Gauge condition on ueε,

∀t ∈ [0, T ],
∫

Ω
ueε(t, x)dx = 0. (2.9)

We assume the initial conditions on vε and hε to be

vε(0, x) = v0
ε(x) in ΩB

ε , hε(0, x) = h0
ε(x) in ΩB

ε , (2.10)

where v0
ε , h

0
ε ∈ H1(ΩB

ε ). The similar set of equations have been studied previously in [13]
on the heart - torso problem, where the torso was represented by the diffusive part and
the heart, i.e. the bidomain equations were embedded inside of the diffusive domain.

The transmission conditions (2.6) and (2.7) provide the continuity of the potential
and the flux of extracellular potential in ΩB

ε and the potential in ΩD
ε . We can define a new

function uε on the whole domain Ω such that

uε(t, x) =
{
ueε(t, x), in ΩB

ε ,

udε(t, x), in ΩD
ε .

(2.11)

Note that if ueε ∈ H1(ΩB
ε ) and udε ∈ H1(ΩD

ε ) then uε ∈ H1(Ω). We also define the
conductivity tensor σ as

σ(y) =
{
σe, in YB,
σd, in YD.

(2.12)
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In this way we can write the equations (2.3) and (2.4) as one, defined on the whole
domain Ω and drop the transmission condition (2.7). Redefine vε = uiε − uε|ΩBε and finally,
we can summarise the problem to be solved

∂thε + g(vε, hε) = 0, in (0, T )× ΩB
ε ,

∂tvε + Iion(vε, hε)−∇ ·
(
σi∇uiε

)
= 0, in (0, T )× ΩB

ε ,

1YB (x/ε) (∂tvε + Iion(vε, hε)) +∇ · (σ (x/ε)∇uε) = 0, in (0, T )× Ω,(
σi∇uiε

)
· nΩBε = 0, on [0, T ]× Σε,((

σe − σd
)
∇uε

)
· nΩBε = 0, on [0, T ]× Σε,(

σi∇uiε
)
· n = 0, on [0, T ]× ∂Ω,

(σe∇uε) · n = 0, on [0, T ]× ∂Ω,∫
Ω
uε = 0, in [0, T ],

vε(0, x) = v0
ε(x) in ΩB

ε ,

hε(0, x) = h0
ε(x) in ΩB

ε ,

(2.13)

where the function 1YB (y) is the characteristic function of the domain YB. We have
presented several ionic models used to present the electrical activity of one cell in the
introduction. For our study we will concentrate on the regularised version of the Mitchell-
Schaeffer (MS) model, which is given by the following formulas:

Iion(v, h) = 1
τin

hv2(v − 1)− 1
τout

v, (2.14)

g(v, h) =
(

1
τcl

+ τcl − τop
τclτop

h∞(v)
)

(h− h∞(v)). (2.15)

The function h∞ is given by

h∞(v) = 1
2

[
1− tanh

(
v − vgate
ηgate

)]
, (2.16)

and all the parameters are positive constants. MS model has four time constants that
correspond to the four phases of the action potential in the cardiac cells.

2.3 Formal derivation of the macroscopic problem

As mentioned earlier, the simulation of the microscopic problem (2.13) is very
demanding, since we would have to do the space discretisation that is smaller than size of
the periodic cell, i.e. ε. For this reason we are rather interested in finding the averaged
macroscopic model over the whole domain Ω. This is done by use of the homogenisation
technique, [36, 12].

From a mathematical point of view, we have a family of partial differential operators
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Lε (with coefficients oscillating with period ε), and a family of solutions uε which, for a
given domain Ω and source term f , satisfy,

Lε(uε) = f, in Ω (2.17)

complemented by appropriate boundary conditions. Assuming that the sequence uε

converges, in some sense, to a limit u, we look for a so-called homogenized operator L such
that u is a solution of

L(u) = f, in Ω (2.18)

Passing from (2.17) to (2.18) is the homogenization process [3]. To find a form for the
limit problem, we use ansatz on uε

uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · · , (2.19)

where each term uk(x, y) is periodic in y. After the substitution, we will be able to identify
the cascade problems

L0(u0) = f, (2.20)

L1(u1, u0) = 0. (2.21)

In principle, the precise parameters in L0 can be computed with the use of the second
problem, that enables us to express u1 in the terms of u0, and to formulate so called
cell problems in the unit cell. In principle, averaging (2.20) with respect to y gives the
homogenised problem (2.18). This two-scale asymptotic expansion method is used only to
guess the form of the homogenized operator L, as we need a further arguments to prove
that the ansatz (2.19) holds. For further details see [12, 36].

In this section the method of formal two-scale asymptotic expansions is performed in
order to find the macroscopic homogenized problem for (2.13). This formal derivation is
interesting from the modelling point of view, as it makes it possible to intuitively obtain the
homogenized problem. Assume that the solution (uiε, uε, hε) can be written as a series

uiε(t, x) =
∞∑
k=0

εkuik(t, x, x/ε),

uε(t, x) =
∞∑
k=0

εkuk(t, x, x/ε),

hε(t, x) =
∞∑
k=0

εkhk(t, x, x/ε),

(2.22)

with uik(t, x, y), uk(t, x, y), and hk(t, x, y), Y−periodic functions with respect to the vari-
able y ∈ Y . Using this ansatz, and plugging it into the system of equations (2.13) we obtain
the cascade systems of equations with respect to the exponent of ε. We are interested in
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the first three terms, for k = 0, 1 and 2, that we will use to obtain the macroscopic problem.
This is summed up in the following lemma.

Formal lemma 1. Under assumption (2.22), the zero order term in the expansion is the
solution of the homogenised problem

∇x ·
(
σi∗∇xui0

)
= (∂tv0 + Iion(v0, h0))|YB|, in [0, T ]× Ω,

∇x · (σ∗∇xu0) = −(∂tv0 + Iion(v0, h0))|YB|, in [0, T ]× Ω,

∂th0 + g(v0, h0) = 0, in [0, T ]× Ω,

∇ui0 · n = ∇u0 · n = 0, on [0, T ]× ∂Ω,

v0(0, x) = v0
0(x), in Ω,

h0(0, x) = h0
0(x), in Ω,

(2.23)

and the homogenised (the effective) conductivity tensors are given by its entries, for k, j =
1..N,

σi∗
kj = σi

kj |YB |+
(
σi

k1

∫
YB

∂y1w
i
jdy + σi

k2

∫
YB

∂y2w
i
jdy + σi

k3

∫
YB

∂y3w
i
jdy

)
,

σ∗kj =
∫

Y

σkjdy +
(∫

Y

σk1∂y1wjdy +
∫

Y

σk2∂y2wjdy +
∫

Y

σk3∂y3wjdy

)
,

(2.24)

and for j = 1..N, wij , wj are the solutions of the two cell problems, for the intracellular space

∇ · (σi∇wij) = 0, in YB,

σi(∇wij + ej) · n = 0, on Γ,

wij is Y periodic,

(2.25)

and for the extracellular space

∇ · (σ∇wj) = 0, in Y,

(σe − σd)(∇wj + ej) · n = 0, on Γ,

wj is Y periodic.

(2.26)

Furthermore, ui1 and u1 are given as

ui1(t, x, y) =
N∑
j=1

wij(y)∂u
i
0

∂xj
(t, x),

u1(t, x, y) =
N∑
j=1

wj(y)∂u0
∂xj

(t, x).
(2.27)

Proof. The series (2.22) are plugged into the problem (2.13), and the following derivation
rule is used:

∇uk
(
x,
x

ε

)
=
[1
ε
∇yuk +∇xuk

](
x,
x

ε

)
, (2.28)
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where ∇x and ∇y denote the partial derivative with respect to the first and the second
variable of uk(x, y). The same rule holds for uik and hk. Then the system of equations
become a series in ε. On Ω× YB we have

∂th0 + g(v0, h0) +O(ε) = 0,

and

∂tv0 + Iion(v0, h0)

−
[
ε−2∇y · (σi∇yui0) + ε−1

(
∇x · (σi∇yui0) +∇y · (σi∇xui0) +∇y · (σi∇yui1)

)
+∇x · (σi∇xui0) +∇x · (σi∇yui1) +∇y · (σi∇xui1) +∇y · (σi∇yui2)

]
+O(ε) = 0,

and on Ω× Y

1YB (y)(∂tv0 + Iion(v0, h0))

−
[
ε−2∇y · (σ∇yu0) + ε−1 (∇x · (σ∇yu0) +∇y · (σ∇xu0) +∇y · (σ∇yu1))

+∇x · (σ∇xu0) +∇x · (σ∇yu1) +∇y · (σ∇xu1) +∇y · (σ∇yu2)] +O(ε) = 0,

The boundary conditions similarly become series in ε. On Σε × Γ, we have(
σi[ε−1∇yui0 +∇xui0 +∇yui1 + ε(∇xui1 +∇yui2)]

)
· nΓ +O(ε2) = 0,(

(σe − σd)[ε−1∇yu0 +∇xu0 +∇yu1 + ε(∇xu1 +∇yu2)]
)
· nΓ +O(ε2) = 0,

with the periodic boundary conditions on ∂Y . Identifying each coefficient of ε as an
individual equation yields a cascade of systems of equations. The ε−2 system of equations
gives, for ui0,

∇y ·
(
σi∇yui0

)
= 0, in Ω× YB,(

σi∇yui0
)
· nΓ = 0, on Σε × Γ,

+ periodic boundary conditions on ∂Y.

(2.29)

If we multiply (2.29) with ui0 and integrate over y, we obtain

0 =
∫
YB

ui0∇y ·
(
σi∇yui0

)
dy = −

∫
YB

(
σi∇yui0

)
· ∇yui0dy +

∫
Γ
ui0

(
σi∇yui0

)
· nΓdy.︸ ︷︷ ︸

=0

(2.30)

Hence, ∫
YB

|∇yui0|2dy = 0 =⇒ ∇yui0 = 0 =⇒ ui0 = ui0(t, x). (2.31)
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And for u0 we get,

∇y · (σ∇yu0) = 0, in Ω× Y,(
(σe − σd)∇yu0

)
· nΓ = 0, on Σε × Γ,

+ periodic boundary condition on ∂Y.

(2.32)

Similarly, if we multiply (2.32) with u0 and integrate over y, we have

0 =
∫
Y
u0∇y · (σ∇yu0)dy (2.33)

= −
∫
Y

(σ∇yu0) · ∇yu0dy +
∫

Γ
u0((σe − σd)∇yu0) · nΓdy.︸ ︷︷ ︸

=0

(2.34)

Hence, ∫
Y
|∇yu0|2dy = 0 =⇒ ∇yu0 = 0 =⇒ u0 = u0(t, x). (2.35)

Meaning, the terms ui0 and u0 do not depend on a small scale y. These terms represent the
limit values of uiε and uε, i.e. the averaged intra and extracellular potentials.

The ε−1 system of equation then gives,

∇y · (σi∇yui1) = 0, in Ω× YB,(
σi∇yui1

)
· nΓ = −

(
σi∇xui0

)
· nΓ, on Σε × Γ,

+ periodic boundary condition on ∂Y,

(2.36)

and,

∇y · (σ∇yu1) = 0, in Ω× Y,(
(σe − σd)∇yu1

)
· nΓ = −

(
(σe − σd)∇xu0

)
· nΓ, on Σε × Γ,

+ periodic boundary condition on ∂Y.

(2.37)

From (2.36) and (2.37) we see that the terms ui1 and u1 can be expressed as functions of
ui0 and u0.

Finally, the ε0 system of equation gives the equation for the term ui2 in Ω× YB,

−∇y · (σi∇yui2) =∇y · (σi∇xui1)

+∇x · (σi∇xui0) +∇x · (σi∇yui1)− ∂tv0 + Iion(v0, h0),
(2.38)

with the boundary condition,(
σi∇yui2

)
· nΓ =

(
σi∇xui1

)
· nΓ, on Σε × Γ (2.39)

+ periodic boundary condition on ∂Y. (2.40)
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Integrating the left hand side of (2.38) over YB , and using the periodic boundary condition
on ui2, we obtain

−
∫
YB

∇y · (σi∇yui2)dy =
∫

Γ
(σi∇yui2) · nΓds (2.41)

=
∫

Γ
(σi∇xui1) · nΓds (2.42)

= −
∫
YB

∇y · (σi∇xui1)dy, (2.43)

which implies that the right hand side of (2.38), when integrated over YB, gives∫
YB

(
∇x · (σi∇xui0) +∇x · (σi∇yui1)

)
dy −

∫
YB

(∂tv0 + Iion(v0, h0)) dy = 0, (2.44)

and thus

|YB| (∂tv0 + Iion(v0, h0)) = |YB|∇x · (σi∇xui0) +
∫
YB

∇x · (σi∇yui1)dy. (2.45)

And for the term u2 in Ω× Y , the system of equation gives

−∇y · (σ∇yu2) =∇y · (σ∇xu1)

+∇x · (σ∇xu0) +∇x · (σ∇yu1)− 1YB (y) (∂tv0 + Iion(v0, h0)) ,
(2.46)

with the boundary conditions(
(σe − σd)∇yu2

)
· nΓ =

(
(σe − σd)∇xu1

)
· nΓ, on Σε × Γ (2.47)

+ periodic boundary conditions on ∂Y. (2.48)

Integrating the left hand side of (2.46) over Y , and using the periodic boundary condition
on u2, we obtain

−
∫
Y
∇y · (σ∇yu2)dy = −

∫
YB

∇y · (σe∇yu2)dy −
∫
YD

∇y · (σd∇yu2)dy (2.49)

=
∫

Γ
((σe − σd)∇yu2) · nΓds (2.50)

=
∫

Γ
((σe − σd)∇xu1) · nΓds (2.51)

= −
∫
Y
∇y · (σ∇xu1)dy. (2.52)

Therefore the right hand side of (2.46), when integrated over YB, gives∫
Y

(∇x · (σ∇xu0) +∇x · (σ∇yu1)) dy −
∫
Y
1YB (y) (∂tv0 + Iion(v0, h0)) dy = 0, (2.53)

which simplifies into

|YB| (∂tv0 + Iion(v0, h0)) =
∫
Y
∇x · (σ∇xu0) +

∫
Y
∇x · (σ∇yu1)dy. (2.54)
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Equations (2.45) and (2.54), together with

∂th0 + g(v0, h0) = 0,

represent the homogenised macroscopic problem, whose solution (h0, u
i
0, u0) is the limit

of (hε, uiε, uε). The small scale effects are accounted for through the terms ui1 and u1, that
can be expressed in terms of ui0 and u0, from (2.36) and (2.37). In fact, these terms are
defined up to addition of functions that depend only on x, but this does not matter since
we only use their gradients ∇yui1 and ∇yu1 to obtain the homogenised equations for ui0
and u0.

In order to compute ui1 and u1 and to simplify the homogenised problem, we introduce
the so-called cell problems. We express ui1(t, x, y) and u1(t, x, y) as in (2.27), and use the
equations (2.36) and (2.37) to define the cell problems for functions wij(y) and wj(y).
The simple calculation leads us to the problems in the periodic unit cell given in (2.25)
and (2.26). The functions wij(y) and wj(y) are the local variations of the intacellular an
extracellular potentials, created by an averaged gradient ej .

Finally to simplify the homogenised problem, we substitute the expressions (2.27),
into (2.45) and (2.54). The resulting homogenised problem is given in (2.23), with the
homogenised conductivities given in (2.24). The constant tensors σi∗ and σ∗ describe the
effective or homogenised properties of the heterogeneous tissue. They do depend neither
on time, nor on the choice of Ω. They depend on the initial conductivity tensors and on
the shape and size of the diffusive inclusions.

Remark 2. The method of the two scale convergence, and hence our derivation of the
homogenised problem is not a rigorous from a mathematical point of view. In other words,
it leads heuristically the homogenised system of equations, but it is not a correct and
sufficient proof of the homogenised process. First issue is that we still did not prove the
existence of the solution to the original ε-dependent microscopic problem. Secondly, we
do not know if such microscopic problem has in fact a limit. And even if we assume it has,
the ansatz (2.27) is not yet justified. Hence, we can not claim that (h0, u

i
0, u0) is actually a

limit to (hε, uiε, uε) when ε→ 0. And the last, but not least issue is that we have to deal
with the non-linearity and actually justify the assumption that g(vε, hε)→ g(v0, h0), and
Iion(vε, hε)→ Iion(v0, h0). The details on the rigorous proof are laid out in the Section 2.4.

2.3.1 Numerical convergence study

We want to numerically confirm the convergence of the microscopic problem to the
derived homogenised equations, and to observe the rate of the convergence. In order to do
this we run simulations of the microscopic problem (2.13), with reducing size of ε, and for
the homogenised problem (2.23). To be sure that we observe the change with respect to ε,
we run all simulations with the same mesh step, time step, initial conductivities and the
Mitchell-Schaeffer mode parameters. To compute the rate of the convergence, we obtain
the numerical solutions of the microscopic problems for the time T = 3.0, and compute
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the L2-errors of the microscopic solutions with respect to the solution of the homogenised
problem at the same time.

Microscale problem

To run the simulation for the microscopic problem, we create a mesh of the domain with
diffusive inclusions, as in 2.1. The uiε, vε and hε are defined on ΩB

ε , while uε is defined
everywhere on Ω. For the convergence study we will use only the values of vε and hε.

Algorithm 1 Microscale problem

1: Define meshes on Ω and ΩB
ε .

2: Define T and N = T
∆t .

3: Define var. form. spaces H1(Ω), H1(ΩB
ε ) with P1 elements.

4: Declare uiεn, vεn, hεn, φi, φ ∈ H1(ΩB
ε ) and ueεn, φe ∈ H1(Ω), for n = 0, .., N.

5: Define vε0 := v0, hε0 := h0.
6: Solve the coupled system with EE to obtain uiε1, u

e
ε1:

∫
ΩBε

(uiε1 − u
e
ε1)(φi − φe) + ∆t

[∫
ΩBε

(
σi∇uiε1

)
∇φi +

∫
Ω

(σ∇ueε1)∇φe

]
+
∫

Ω
ηueε1φe =

∫
ΩBε

(vε0 −∆tIion(vε0, hε0)) (φi − φe).

7: Solve the ODE to obtain hε1:∫
Ω
hε1φ =

∫
Ω

(hε0 + ∆tg(vε0, hε0))φ.

8: Define vε1 := uiε1 − ueε1|ΩBε .
9: for n = 1 to N do

10: Solve the coupled system with SBDF2 to obtain uiεn+1, u
e
εn+1:

∫
ΩBε

3
2
(
uiεn+1 − u

e
εn+1

)
(φi−φe)+∆t

[∫
ΩBε

(
σi∇uiεn+1

)
∇φi +

∫
Ω

(
σ∇ueεn+1

)
∇φe

]
+
∫

Ω
ηueεn+1φe =

[∫
ΩBε

(
(2vεn −

1
2vεn−1) + ∆t (2Iion(vεn, hεn)− Iion(vεn−1, hεn−1))

)
(φi − φe)

]
.

11: Solve the ODE to obtain hεn+1:∫
ΩBε

3
2hεn+1φ =

∫
Ω

(
2hεn −

1
2hεn−1 + ∆t (2g(vεn, hεn)− g(vεn−1, hεn−1))

)
φ.

12: Define vεn+1 := uiεn+1 − ueεn+1|ΩBε .

Note that here σ is defined as in (2.12), i.e. it takes value σe on ΩB
ε , and σd on ΩD

ε .
The term 0 < η � 1 is used to impose the Gauge condition on ueε, given in (2.9).
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Homogenised problem

To run the simulation for the macroscopic problem, we need to solve the cells problems
first, on the unit cell Y = YB ∪ YD, and to compute the modified conductivities. Then
we use these to solve the modified bidomain model on the whole domain Ω, without
distinguishing ΩB

ε and ΩD
ε , i.e. without including the boundary Γε.

The cell problems are static problems, that we solve only once on the beginning of
the simulation to obtain the modified conductivities σi∗ and σ∗.

Algorithm 2 Static cell problems

1: Define meshes on Y , and YB.
2: Define var. form. spaces H1(Y ), H1(YB) with P1 elements, both periodic on the outer

boundary ∂Y .
3: Declare wik, φi ∈ H1(YB) and wek, φi ∈ H1(Y ), for k = 1, 2, or k = 1, 2, 3.
4: Solve for wik: ∫

YB

(σi∇wik) · ∇φi +
∫

Γ
(σiek) · nΓφi = 0

5: Solve for wk: ∫
YB

(σ∇wk) · ∇φ+
∫

Γ
((σe − σd)ek) · nΓφ = 0

6: Compute derivatives: ∂wik and ∂wk.
7: Compute the modfied conductivities σi∗ and σ∗ using (2.24).

Now when we have computed the modified conductivities, we can run the simulation
for the homogenised problem, (2.23). For simplicity, we omit the subscript 0.
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Algorithm 3 Homogenised problem

1: Define mesh on Ω.
2: Define T and N = T

∆t .
3: Define var. form. space H1(Ω) with P1 elements.
4: Declare uin, un, vn, hn, φi, φe, φ ∈ H1(Ω), for n = 0, .., N.
5: Define v0 := v0, h0 := h0.
6: Solve the coupled system with EE to obtain uiε1, u

e
ε1:

|YB|
∫

Ω
(ui1 − u1)(φi − φe) + ∆t

[∫
Ω

(
σi
∗∇ui1

)
∇φi +

∫
Ω

(σ∗∇u1)∇φe
]

+
∫

Ω
ηu1φe =

|YB|
∫

Ω
(v0 −∆tIion(v0, h0)) (φi − φe).

7: Solve the ODE to obtain h1:∫
Ω
h1φ =

∫
Ω

(h0 + ∆tg(v0, v0))φ.

8: Define v1 := ui1 − u1.
9: for n = 1 to N do

10: Solve the coupled system with SBDF2 to obtain uin+1, un+1:

|YB|
∫

Ω

3
2
(
uin+1 − un+1

)
(φi−φe)+∆t

[∫
Ω

(
σi
∗∇uin+1

)
∇φi +

∫
Ω

(σ∗∇un+1)∇φe
]
+
∫

Ω
ηun+1φe =

|YB|
[∫

Ω

(
(2vn −

1
2vn−1) + ∆t (2Iion(vn, hn)− Iion(vn−1, hn−1))

)
(φi − φe)

]
.

11: Solve the ODE to obtain hεn+1:∫
Ω

3
2hn+1φ =

∫
Ω

(
2hn −

1
2hn−1 + ∆t (2g(vn, hn)− g(vn−1, hn−1))

)
φ.

12: Define vn+1 := uin+1 − un+1.

Convergence

To test the convergence numerically, we run both, microscale and macroscale simulation
in 2D. We use the Michel Schaeffer ionic model, with the parameters given in the Table
1.1. We choose the domain Ω in the shape of square with the non-dimensional size 60. All
simulations are ran on the same mesh steps, dx = 0.3. The final time is T = 3 and the time
step dt = 0.5. Further, we assume that the diffusive inclusions are of the circular shape
and that they occupy 20% of the total volume, i.e. |YB| = 0.8.

Microscopic problem we run for several sizes of periodic cell, ε ∈ {1/10, 1/15,
1/20, 1/25, 1/30, 1/35, 1/40} . In order to observe numerically the theoretical convergence,
with respect to ε, we run each simulation with the same mesh step. We save vε and hε,
defined on ΩB

ε , at the final time T = 10.0.
Macroscopic problem is computed using the algorithms 2 and 3. We use the same

mesh step as for the microscopic problems, and save the v and h, defined on Ω at the final
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time T = 10.0.
Figure 2.3 shows the results for vε, for each value of ε, and for the homogenised v.

ε = 1
10 ε = 1

15 ε = 1
20 ε = 1

25

ε = 1
30 ε = 1

35 ε = 1
40 ε = 1

∞

Fig. 2.2: Plots for vε, for different size of ε, and for the homogenised v. We can observe the
convergence of the solutions.

To find the rate of convergence, for each ε we compute the L2 norm of the differences
‖vε − v‖L2 and ‖hε − h‖L2 , then we compute the norm of ‖v‖L2 and ‖h‖L2 , and compute
so called L2-errors

L2err(vε) = ‖vε − v‖L2

‖v‖L2
,

and
L2err(hε) = ‖hε − h‖L2

‖h‖L2
.

We use the log-log scale to fit the results with the linear functions. We have obtained
approximately linear rates of the convergence. More precisely, we have the rate of
convergence 1.39 for vε, and 0.63 for hε, as shown in the Figure 2.3.

Fig. 2.3: Convergence study for vε and hε. Observed convergence rate for the given time: 1.39 for
V , and 0.63 for h.
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2.4 The rigorous mathematical proofs: existence and
convergence

As we have mentioned earlier, we did the model setting and the convergence study
without the rigorous mathematical justification. Here will give all the necessary details on
this part.

2.4.1 Existence of the weak solution for the microscopic problem

We go back to our microscopic problem, and we want to prove the existence of the
solution for (2.13), by use of the semigroup theory approach [19]. In this part we will use
the parabolic-elliptic form of the problem.

∂thε + g(vε, hε) = 0, in ΩB
ε , (2.55a)

∂tvε + Iion(vε, hε(t, vε))−∇ · (σi∇vε) = ∇ · (σi∇uε), in ΩB
ε , (2.55b)

−∇ · ((σi + σe)∇uε) = ∇ · (σi∇vε), in ΩB
ε , (2.55c)

−∇ · (σd∇uε) = 0, in ΩD
ε , (2.55d)

where uε is continuous. The boundary and transmission conditions are given as

(σi∇vε) · nΩBε = −(σi∇uε) · nΩBε , on Σε, (2.55e)

(σe∇uε) · nΩBε = −(σd∇uε) · nΩDε , on Σε, (2.55f)

(σi∇vε) · n = 0, on ∂Ω, (2.55g)(
(σi + σe)∇uε

)
· n = 0, on ∂Ω, (2.55h)

(σd∇uε) · n = 0, on ∂Ω, (2.55i)

the initial conditions are

hε(0, x) = h0
ε(x), in ΩB

ε , (2.55j)

vε(0, x) = v0
ε(x), in ΩB

ε , (2.55k)

and the Gauge condition is

∫
Ω
uεdx = 0, (2.55l)

where nΩBε is the normal on the Σε outwards from ΩB
ε , nΩDε is the normal on the Σε

outwards from ΩD
ε , and n is the outwards normal on the ∂Ω.
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Remark 3. Given the initial conditions for hε and vε, and assuming that there exists a
unique solution to the above problem (2.55), continuous in time, then u0

ε(x) := uε(0, x) is
the solution to∫

ΩBε
(σi + σe)∇u0

ε∇φdx+
∫

ΩDε
σd∇u0

ε∇φdx = −
∫

ΩBε
σi∇v0

ε∇φdx, (2.56)

for all φ ∈ H1(Ω), with the Gauge condition
∫

Ω u
0
ε dx = 0.

Normally we work with the constant conductivity tensors σi, σe and σd. But our proof
will work in the more general case, under the following assumptions on the conductivi-
ties.

Assumption 4. We suppose that the conductivity tensors σe(x), σi(x) and σd(x) are
symmetric definite positive matrix-functions, such that

σ|ξ|2 ≤ ξTσe,i(x)ξ ≤ σ|ξ|2, ∀x ∈ ΩB
ε ,

and
σ|ξ|2 ≤ ξTσd(x)ξ ≤ σ|ξ|2, ∀x ∈ ΩD

ε .

We denote by
√
σi,
√
σe, and

√
σd their respective symmetric definite positive square roots.

Assumption 5. We assume that the ionic function Iion(v, h) is globally Lipschitz with
respect to v, in a sense that there exist a K > 0, such that,

|Iion(v1, h(t, v1))− Iion(v2, h(t, v2))| ≤ K|v1 − v2|, ∀t ∈ [0,∞), ∀v1, v2 ∈ R2.

Lemma 6 (A priori estimates on hε.). Let h0
ε ∈ L∞(ΩB

ε ), with 0 < h0
ε ≤ 1, then we have

hε(t, ·) ∈ L∞(ΩB
ε ) and ∂thε(t, ·) ∈ L∞(ΩB

ε ). Moreover 0 < hε(t, x) ≤ 1.

Proof. From the model (2.55) we have

∂thε = −g(vε, hε),

where the function g(v, h) is given in (2.15), so

−g(vε, hε) = (h∞(vε)− hε)
(

1
τcl

+ τcl − τop
τclτop

h∞(vε)
)

︸ ︷︷ ︸
(∗)

. (2.57)

The term (∗) is positive, because 0 < τop < τcl. From (2.16) we have that

0 ≤ h∞(v) ≤ 1, ∀v ∈ R. (2.58)
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Hence,

∂thε(t, x) ≥ −hε(t, x)
(

1
τcl

+ τcl − τop
τclτop

h∞(vε)
)
, (2.59)

∂thε(t, x) ≤ (1− hε(t, x))
(

1
τcl

+ τcl − τop
τclτop

h∞(vε)
)
. (2.60)

Then, applying the Gromwall lemma, we have the upper and lower bound on hε

hε(t, x) ≥ h0
ε(x)e

−
∫ T

0

(
1
τcl

+ τcl−τop
τclτop

h∞(vε)
)
ds
, (2.61)

hε(t, x) ≤ 1− (1− h0
ε(x))e

−
∫ T

0

(
1
τcl

+ τcl−τop
τclτop

h∞(vε)
)
ds
. (2.62)

Now, using (2.58), the exponential part is bounded with,

e
−
∫ T

0

(
1
τcl

+ τcl−τop
τclτop

h∞(vε)
)
ds
≥ e
−
∫ T

0

(
1
τcl

+ τcl−τop
τclτop

)
ds

= e
−
∫ T

0
1
τop

ds = e
− T
τop , (2.63)

i.e. we have,

e
− T
τop ≤ e

−
∫ T

0

(
1
τcl

+ τcl−τop
τclτop

h∞(vε)
)
ds
≤ 1. (2.64)

Finally, combining (2.61),(2.62) and (2.64), and using the assumption that the initial
condition h0

ε(x) is bounded, we obtain

hmin ≤ hε(t, x) ≤ 1, in ΩB
ε , (2.65)

where hmin := min{h0
ε(x)}e−

T
τop . Finally, from (2.59) - (2.60), we have

|∂thε(t, x)| ≤ 1
τop

, in ΩB
ε . (2.66)

In this section, the parameter ε is fixed, so we will omit it as a subscript in the equa-
tions in the rest of the section. To build the proof we will use the semigroup approach.

Definition 7. We define the operator B is the operator from H1(ΩB
ε ) to H1(Ω), such that

B(v) := u,

and u is the solution of the equation∫
ΩBε

(σi + σe)∇u∇φdx+
∫

ΩDε
σd∇u∇φdx = −

∫
ΩBε

σi∇v∇φdx,

∀φ ∈
{
H1(Ω),

∫
Ω
φ = 0

}
.

(2.67)
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Additionally, we denote as BΩBε the restriction of the operator B to ΩB
ε :

BΩBε (v) := u|ΩBε .

Lemma 8. For a constant β > 0, the following inequality holds

‖∇B(v)‖L2(ΩBε ) ≤ β‖∇v‖L2(ΩBε ). (2.68)

Proof. Taking φ = u in (2.67), we have∫
ΩBε
|
√
σi∇u|2dx+

∫
ΩBε
|
√
σe∇u|2dx+

∫
ΩDε
|
√
σd∇u|2dx = −

∫
ΩBε

σi∇v∇udx.

From the Assumption 4, we have

σ ‖∇u‖2L2(ΩBε ) ≤ σ ‖∇v‖L2(ΩBε ) ‖∇u‖L2(ΩBε ) .

Taking β = σ/σ, we obtain the inequality (2.68).

Definition 9. Let A be the operator from H1(ΩB
ε ) to H1(ΩB

ε ) defined as

A(v) := −∇ ·
(
σi∇v

)
−∇ ·

(
σi∇BΩBε (v)

)
, (2.69)

with the domain D(A),

D(A) :=
{
v ∈ H1(ΩB

ε ) : BΩBε (v) ∈ L2(ΩB
ε ),

(
σi∇v + σi∇BΩBε (v)

)
· nΩBε = 0

}
. (2.70)

Definition 10. (m-dissipative operator.) The operator (A,D(A)) is m-dissipative in the
Banach space X if

(i) ‖u− λAu‖ ≥ ‖u‖, for all λ > 0 and u ∈ D(A),
(ii) for all λ > 0, and all f ∈ X, there exists u ∈ D(A) such that u− λAu = f .

Theorem 11. (Hille-Yosida-Phillips Theorem.) A linear operator A is the generator of a
contraction semigroup in X if and only if A is m-dissipative with dense domain.

Proof. See Theorem 3.4.4. in [19].

Lemma 12. The operator (A, D(A)), is m-dissipative with dense domain in L2(ΩB
ε ). There-

fore the operator A generates a contraction semi-group, whose generator is denoted by
e−tA.

Proof. To prove that the operator A is m-dissipative, we need to prove that for any λ > 0,
and any f ∈ L2(ΩB

ε ), there exists a unique solution v ∈ D(A) to the equation

v − λA(v) = f,

or expanded,
v + λ

(
∇ ·

(
σi∇v

)
+∇ ·

(
σi∇BΩBε (v)

))
= f.
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The variational formulation for this problem reads, for any φB ∈ H1(ΩB
ε ),

∫
ΩBε

vφB dx+ λ

(∫
ΩBε

σi∇v∇φB dx+
∫

ΩBε
σi∇BΩBε (v)∇φB dx

)
︸ ︷︷ ︸

=a(v,φB)

=
∫

ΩBε
fφB dx,

(2.71)

The boundedness of the bilinear form a(v, φB) is shown by using (2.68),

|a(v, φB)| ≤ ‖v‖L2(ΩBε ) ‖φB‖L2(ΩBε ) + λσ(1 + β) ‖∇v‖L2(ΩBε ) ‖∇φB‖L2(ΩBε )

≤ ‖v‖H1(ΩBε ) ‖φB‖H1(ΩBε ) .
(2.72)

To prove coerciveness we use the definition of the operator B(v) (2.67), and express the
bilinear form as follows,

a(v, φB) =
∫

ΩBε
vφB dx+ λ

(∫
ΩBε

σi∇v∇φB dx+
∫

ΩBε
σi∇u∇φB dx

+
∫

ΩBε
(σi + σe)∇u∇φdx+

∫
ΩBε

σi∇v∇φdx+
∫

ΩDε
σd∇u∇φdx

)
.

Then, for φB = v, and φ = u,

a(v, v) =
∫

ΩBε
v2 dx+ λ

(∫
ΩBε

σi∇v∇v dx+
∫

ΩBε
σi∇u∇v dx

+
∫

ΩBε
(σi + σe)∇u∇u dx+

∫
ΩBε

σi∇v∇u dx+
∫

ΩDε
σd∇u∇u dx

)

then using the inequality: 0 ≤ |a+ δb|2,∀a, b, we have

≥
∫

ΩBε
v2dx+ λ

(∫
ΩBε

∣∣∣√σi∇v∣∣∣2 dx− δ ∫
ΩBε

∣∣∣√σi∇v∣∣∣2 dx− 1
δ

∫
ΩBε

∣∣∣√σi∇u∣∣∣2 dx
+
∫

ΩBε

∣∣∣√σi∇u∣∣∣2 dx+
∫

ΩBε

∣∣∣√σe∇u∣∣∣2 dx+
∫

ΩDε

∣∣∣√σd∇u∣∣∣2 dx)

then using the Assumption 4, and choosing 1
1+σ/σ < δ < 1 we have

≥
∫

ΩBε
v2dx+ λ

(∫
ΩBε

(1− δ)σ |∇v|2 dx

+
∫

ΩBε

(
1− 1

δ

)
σ |∇u|2 +

∫
ΩBε

σ |∇u|2 dx+
∫

ΩDε
σ |∇u|2 dx

)

≥
∫

ΩBε
v2dx+ λσ

(∫
ΩBε

(1− δ) |∇v|2 dx

+
∫

ΩBε

(
1 +

(
1− 1

δ

)
σ

σ

)
|∇u|2 +

∫
ΩDε
|∇u|2 dx

)
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Now, thanks to the choice of δ we have that every term above is positive. Hence,

a(v, v) ≥ c ‖v‖H1(ΩBε ) . (2.74)

From Lax-Milgram theorem, the problem (2.71) has a unique solution and both conditions
in the Definition 10 are satisfied. Hence, the operator A(v) is m-dissipative, and generates
the semigroup denoted by e−tA.

Lemma 13. The evolution problem (2.55) is equivalent to the problem

∂thε + g(vε, hε) = 0, in ΩB
ε , ∀t ∈ [0, T ], (2.75a)

∂tvε +A(vε) + Iion(vε, hε(t, vε)) = 0, in ΩB
ε , ∀t ∈ [0, T ], (2.75b)

with the initial conditions

hε(0, x) = h0
ε(x), vε(0, x) = v0

ε(x). (2.75c)

Moreover, vε is also the solution of the following problem:

vε(t, x) = e−tAv0
ε −

∫ t

0
e−(t−s)AIion(s, hε(s, vε(s, x))) ds, ∀t ∈ [0, T ]. (2.76)

Proof. The equivalence of the two problems comes from the definition of the operators A
and B. The formula (2.76) is a straightforward use of the standard Duhamel’s formula,
see Lemma 4.1.1 in [19].

Theorem 14 (Well-posedness of the model). Let ε > 0 be given. Let h0
ε ∈ L∞(ΩB

ε ), with
0 < h0

ε(x) ≤ 1 and let v0
ε ∈ L2(ΩB

ε ). Then the problem 2.55 has a unique solution (vε, uε, hε),
such that

vε ∈ C([0,+∞);H1(ΩB
ε )) ∩ C1([0,+∞);L2(ΩB

ε )),

uε ∈ C([0,+∞);H1(Ω)),

hε ∈ C([0,+∞);L∞(ΩB
ε )) ∩ C1([0,+∞);L∞(ΩB

ε )).

Proof. The proof that vε exists and is unique in C([0,+∞);H1(ΩB
ε ))∩C1([0,+∞);L2(ΩB

ε ))
is a straightforward consequence of the Hille-Yosida theorem, since (A, D(A)) is a m-
dissipative operator with dense domain, and the Lipschitz assumption 5 on the ionic
function. See the Section 4.3. in [19]. The regularity on hε comes directly from the
assumption on the initial conditions and Lemma 6, and the regularity on uε from the
Definition 7 and the Poincare’s inequality.

Remark 15. For the function uiε := vε + uε1ΩBε , we have uiε ∈ C([0,+∞);H1(ΩB
ε )).
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Remark 16 (On the Lipschitz property of the ionic function). The standard Mitchell-
Schaeffer model [76], which is commonly used for the applications, reads as follows:

∂h

∂t
= g(v, h) :=


1−h
τopen

if v ≤ vgate
−h
τclose

if v > vgate
, Iion(v, h(t, v)) = 1

τin
h(t, v)v2(v − 1) + v

τout
.

Thus model has been derived to account for the 4 dynamics of the transmembrane voltage
evolution, thus for physiological values of v. Similarly to Boulakia et al. in [13] we propose
here a regularised version of such current, by regularizing the function h. The regularised
ionic model Boulakia et al. is given in (2.14) - (2.15), with the regularisation on the step
function introduced through h∞(v). However, the current remains unbounded, since it
grows cubically with respect to v.

One can notice that in the MS model, the quantity

S(v, h(t, v)) = 1
τin

hv(v − 1) + 1
τout

,

is homogeneous to the ratio of the surface conductance of membrane divided by its
capacitance. It is well-known that far from the physiological values of the transmembrane
voltage electroporation of cell membranes occurs [59, 67], which consists of a high increase
of membrane conductance. Moreover the membrane conductance cannot be infinite since
it is bounded by the medium conductivity. We thus propose this modified version of the
MS model, to account for this phenomenon:

h∞(v) = 1− e−(vgate/v)2
,

1
τ(v) = 1

τcl
+ τcl − τop

τclτop
h∞(v), (2.77a)

∂th = g(v, h) = h∞ − h(v)
τ(v) , (2.77b)

Iion(v, h(t, v)) = 1
τin

h(t, v)v2(v − 1)e−(v/vth)2 + v

τout

(
1 + rmaxe

−(vth/v)2)
, (2.77c)

where g is similar regularisation as to the one given in (2.15), vth � vgate is the membrane
voltage above which electroporation occurs, and rmax � 1 stands for the maximal ratio of
membrane conductance with membrane capacitance in a fully electroporated membrane.
We refer to [59] for more details.

In the physiological range of membrane voltage, the current behaves similarly to
the standard MS model, while for non physiological values of v, the current behaves
as a passive conducting pore: Iion ∼ smaxv/τout. The above model is interesting for
two reasons. On one side, it provides a simple model for cardiac tissues submitted to
electroporation, and on the other side it has a nice mathematical properties and justifies
the Lipschitz assumption made earlier on the ionic function, as we will see in the following
proposition.

Proposition 17 (Lipschitz property of the modified MS). Let T > 0, and let h0 be a smooth
function such that

∀v ∈ R, h0(v) ∈ (0, 1), |∂vh0| ≤ A.
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Then for any v ∈ R, for any t ∈ R+, one has 0 ≤ h(t, v) ≤ 1. Moreover the current Iion of
the modified version of Mitchell-Schaeffer model (2.77) is globally Lipschitz with respect
to v. That is there exists K such that for any λ1, λ2, for any t ∈ R+:

|Iion(λ1, h(t, λ1))− Iion(λ2, h(t, λ2))| ≤ K|λ1 − λ2|, ∀t ∈ R+, ∀(λ1λ2) ∈ R2.

Proof. By hypothesis on h0, as in Lemma 6, the function h stays between 0 and 1 for all
t > 0. Then since g is a smooth fonction of v, h is globally Lipschitz with respect to v.
Moreover one has the following ODE on H := ∂vh:

∂H

∂t
= 1
τ(v)

((
h′∞(v)− τ ′(v)

τ(v) (h∞(v)− h(v))
)
−H

)
, (2.78)

H|t=0 = ∂vh0. (2.79)

Let
Ã = max

v∈R

(
h′∞(v)− τ ′(v)

τ(v) (h∞(v)− h(v))
)
,

then H is uniformly bounded on R+ by max(A, Ã) and there exists S∞ such that the
function

|∂vIion(t, v)| ≤ S∞, ∀t ≥ 0. (2.80)

Therefore by definition of Iion one has the global Lipschitz property for any t > 0 and
(v1, v2) ∈ R2:

|Iion(v2, h(t, v2))− Iion(v1, h(t, v1))| ≤
∣∣∣∣∫ v2

v1
∂vIion(λ, h(t, v2))dλ

∣∣∣∣+
∣∣∣∣∣
∫ h(t,v2)

h(t,v1)
∂hIion(v2, µ)dµ

∣∣∣∣∣
≤ K|v2 − v1|.

2.4.2 Two-scale convergence

In this section we provide the rigorous justification for the formal derivation given in
the Section 2.3. We will follow the idea of two-scale convergence, given in Allaire (1992),
[3]. Here we give an overview of a few results we will use in our work.

Definition 18. A sequence of functions uε(x) ∈ L2(Ω) is said to two-scale converge to a
limit u0(x, y) ∈ L2(Ω× Y ) if , for any function ψ(x, y) ∈ D[Ω;C∞# (Y )], we have

lim
ε→0

∫
Ω
uε(x)ψ(x, x

ε
) dx =

∫
Ω

∫
Y
u0(x, y)ψ(x, y) dx dy. (2.81)

Theorem 19. From each bounded sequence uε ∈ L2(Ω), we can extract a subsequence that
two-scale converges to a limit u0(x, y) ∈ L2(Ω × Y ). Furthermore, uε weakly converges in
L2(Ω) to u(x) =

∫
Y u0(x, y)dy.
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Corollary 20. Let uε be a bounded sequence in Lp(Ω), with 1 < p ≤ ∞. There exists a
function u0(x, y) ∈ Lp(Ω× Y ) such that, up to a subsequence, uε two scale converges to u0.

Proposition 21. Let uε be a bounded sequence in H1(Ω) that converges weakly to a limit
u in H1(Ω). Then, uε two-scale converges to u(x), and there exists a function u1(x, y) in
L2(Ω;H1

#(Y )/R) such that, up to a subsequence, ∇uε, two-scale converges to ∇xu(x) +
∇yu1(x, y).

To apply the two-scale convergence to our problem we need to address two problems:
first to find the uniform bounds, independent on ε, on functions vε, uε, hε,∇vε, and ∇uε,
and secondly to show the convergence of the non-linear part of the problem. In the rest of
the chapter we assume that both sub domains, ΩB

ε and ΩD
ε , are connected.

Hypotheses on the initial conditions

By Corollary 20 and Proposition 21, we infer that

• If for any ε > 0 the initial function v0
ε(x) satisfies:

‖v0
ε‖L2(ΩBε ) ≤ C, ‖∇v0

ε‖L2(ΩBε ) ≤ C,

then

v0
ε(x) 2−scale, L2

−−−−−−−→ χYB (y)v0
0(x), ∇v0

ε(x) 2−scale, L2
−−−−−−−→ χYB (y)

(
∇xv0

0(x) +∇yv0
1(x, y)

)
.

• If for any ε > 0 the initial value h0
ε(x) takes values in (0, 1), then we have

h0
ε(x) 2−scale, L∞−−−−−−−−→ χYB (y)h0

0(x).

From (2.56) taking φ = u0
ε, and Poincaré’s inequality, we have that the initial condition

u0
ε(x) satisfies

‖u0
ε‖L2(Ω) ≤ C, ‖∇u0

ε‖L2(Ω) ≤ C,

and then

u0
ε(x) 2−scale, L2

−−−−−−−→ u0
0(x), ∇u0

ε(x) 2−scale, L2
−−−−−−−→ ∇xu0

0(x) +∇yu0
1(x, y).

The homogenised problem for (u0
0, u

0
1) can be then derived, using the test function φ(x) +

εφ1(x, x/ε), such that φ(x) ∈ D(Ω) and φ1 ∈ D(Ω, C∞# ). We have,

∫
ΩBε

(σi + σe)∇u0
ε(∇xφ+∇yφ1 + ε∇xφ1)dx+

∫
ΩDε

σd∇u0
ε(∇xφ+∇yφ1 + ε∇xφ1)dx =

−
∫

ΩBε
σi∇v0

ε(∇xφ+∇yφ1 + ε∇xφ1)dx.
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Passing to the two-scale limit, and after the partial integration, we have the homogenised
problem:

−∇x ·
∫
YB

(σi + σe)(∇xu0
0 +∇yu0

1)dy −∇x ·
∫
YD

σd(∇xu0
0 +∇yu0

1)dy =

∇x ·
∫
YB

σi(∇xv0
0 +∇yv0

1)dy, in Ω,

with the Gauge condition
∫

Ω u
0
0dx = 0, and the correction term:

−∇y ·
(
(1YB (σi + σe) + 1YDσ

d)(∇xu0
0 +∇yu0

1)
)

= ∇y ·
(
1YBσ

i(∇xv0
0 +∇yv0

1)
)
, in Ω× Y,

with the periodic boundary conditions for y → u0
1(x, y) in Y , and the boundary condition:(

(σi + σe − σd)(∇xu0
0 +∇yu0

1)
)
· nYB = −

(
σi(∇xv0

0 +∇yv0
1)
)
· nYB , on Ω× Γ.

This problem has a unique solution (u0
0, u

0
1) ∈ L2(Ω)× L2(Ω;H1(Y )|R).

Uniform bounds

In order to find the uniform bound, we will introduce the energy functional Eλ,κ. This is
the key idea that is adapted from the work of Allaire [3], and it is suggested in a different
context in [28]. We thank S. Impériale from M3DISIM Inria team for fruitful discussions.
Firstly, we multiply by hε, vε, uε the first, second and third and fourth equations respectively
and integrate by parts, thanks to the transmission conditions. We obtain:

1
2
d

dt
‖hε‖2L2(ΩBε ) +

∫
ΩBε

g(vε, hε)hεdx = 0, and (2.82)

1
2
d

dt
‖vε‖2L2(ΩBε ) +

∫
ΩBε

Iion(vε, hε)vεdx+
∥∥∥√σi∇(vε + uε)

∥∥∥2

L2(ΩBε )
+
∥∥√σ∇uε∥∥2

L2(Ω) = 0.

(2.83)

with σ as before,

σ =
{
σe, in ΩB

ε ,

σd, in ΩD
ε .

Then we infer the following proposition.

Proposition 22. For any λ, κ chosen later on let define the energy functional

Eλ,κ(t, v,u, h) := 1
2e
−λt

(
‖v‖2L2(ΩBε ) + κ ‖h‖2L2(ΩBε )

)
+
∫ t

0
e−λs

(
λ

2
(
‖v‖2L2(ΩBε ) + κ ‖h‖2L2(ΩBε )

)
+
∥∥∥√σi∇(v + u)

∥∥∥2

L2(ΩBε )
+
∥∥√σ∇u∥∥2

L2(Ω)

)
ds.
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Let (vε, uε, hε) be the solution to problem (2.55). The energy functional Eλ,κ satisfies the
following equality

Eλ,κ(t, vε, uε, hε) +
∫ t

0
e−λs

∫
ΩBε

(
Iion(vε, hε)vε + κg(vε, hε)hε

)
dx ds

= 1
2‖v

0
ε‖2L2(ΩBε ) + κ

2‖h
0
ε‖2L2(ΩBε ) = Eλ,κ(0, v0

ε , u
0
ε, h

0
ε).

(2.84)

Proof. By definition of Eλ,κ(t, v, u, h), using (2.82) (multiplied by κe−λt) and (2.83) (mul-
tiplied by e−λt) one has

∂tEλ,κ(t, vε, uε, hε) + e−λt
∫

ΩBε
(Iion(vε, hε)vε + κg(vε, hε)hε) dx = 0.

Proposition 23. The following inequalities hold:∣∣∣∣∣
∫ t

0
e−λs

∫
ΩBε

Iion(vε, hε)vε dx ds
∣∣∣∣∣ ≤ C

∫ t

0
e−λs ‖vε‖2L2(ΩBε ) ds, (2.85)

‖Iion(vε, hε)‖L2(ΩBε ) ≤ C ‖vε‖2L2(ΩBε ) . (2.86)

Proof. From the definition of the ionic function 2.14, we see that Iion(0, h(0)) = 0. Then,
using the assumption 5 that the ionic function is Lipschitz, one can easily to see that
|Iion(v, h)| ≤ |v|, for any v ∈ R. Both inequalities fall directly from this.

Proposition 24. If the initial function v0
ε(x) satisfies uniform bounds

∥∥v0
ε

∥∥
L2(ΩBε ) ≤ C, and∥∥∇v0

ε

∥∥
L2(ΩBε ) ≤ C, and if the initial function h0

ε(x) takes values in (0, 1) for all x ∈ ΩB
ε ,

then we have the uniform bounds:

0 ≤ hε(t, x) ≤ 1, |g(vε, hε)| ≤ C, ∀t ∈ [0, T ],

‖vε(t)‖L2(ΩBε ) ≤ C, ‖Iion(vε, hε)‖L2(×ΩBε ) ≤ C, ∀t ∈ [0, T ],

and

‖∇vε(t)‖L2([0,T ]×ΩBε ) ≤ C, ‖uε(t)‖L2([0,T ]×Ω) ≤ C, ‖∇uε(t)‖L2([0,T ]×Ω) ≤ C.

Proof. The estimates on hε(t, x) and g(vε, hε) come directly from the assumption on the
initial condition and Lemma 6.

Then from the propositions 22 and 23, we have that

Eλ,κ(t, vε, uε, hε) = 1
2

∥∥∥v0
ε

∥∥∥2

L2(ΩBε )
+ κ

2

∥∥∥h0
ε

∥∥∥2

L2(ΩBε )
−
∫ t

0
e−λs

∫
ΩBε

(Iion(vε, hε)vε + κg(vε, hε)) dx ds

≤ 1
2

∥∥∥v0
ε

∥∥∥2

L2(ΩBε )
+ κ

2

∥∥∥h0
ε

∥∥∥2

L2(ΩBε )
+
∫ t

0
e−λs

(
c1 ‖vε‖2L2(ΩBε ) + κc2|ΩB

ε |
)
ds.

Note that the volume |ΩB
ε | < |Ω| < c3. Taking λ such that λ

2 > c1, and going back
to the definition of Eλ,κ, we obtain the uniform bound on ‖vε(t)‖L2(ΩBε ), and hence on
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‖Iion(vε, hε)‖L2(ΩBε ).
Now, going back to (2.83), and integrating over time, we obtain∫ t

0

∥∥∥√σi∇(vε + uε)
∥∥∥2

L2(ΩBε )
+
∫ t

0

∥∥√σ∇uε∥∥2
L2(Ω) ≤

∥∥∥v0
ε

∥∥∥
L2(ΩBε )

≤ C,

which, together with the assumption 4, provides the uniform bounds on the derivatives.
From

∫
Ω uε(t, x)dx = 0 and the Poincare’s inequality, we have the bound on ‖uε‖L2([0,T ]×Ω).

Remark 25 (Two-scale limits). Denote with ·̃ the extension by zero in the domain ΩD
ε .

Note that for any function fε(x) defined on ΩB
ε , for which we have a uniform bound

‖fε‖Lp(ΩBε ) < C, it holds that
∥∥∥f̃ε∥∥∥

Lp(Ω)
< C. Denote the sequence of solutions (vε, uε, hε)

of the problem (2.55). From the uniform bounds we obtained, by direct application of the
theory developed in [3], we have the following convergences

• h̃ε(t, x) 2−scale, L∞−−−−−−−−→ χYB (y)h0(t, x), a.e. t ∈ [0, T ],

• ṽε(t, x) 2−scale, L2
−−−−−−−→ χYB (y)v0(t, x), a.e. t ∈ [0, T ],

• ∇ṽε(t, x) 2−scale, L2
−−−−−−−→ χYB (y)(∇xv0(t, x) +∇yv1(t, x, y)),

• ũε(t, x) 2−scale, L2
−−−−−−−→ u0(t, x),

• ∇ũε(t, x) 2−scale, L2
−−−−−−−→ ∇xu0(t, x) +∇yu1(t, x, y),

• Iion(vε, hε)
2−scale, L2
−−−−−−−→ χYB (y)I0(t, x), a.e. t ∈ [0, T ],

• g(vε, hε)
2−scale, L∞−−−−−−−−→ χYB (y)g0(t, x), a.e. t ∈ [0, T ],

for some functions h0(t, ·), I0(t, ·), g0(t, ·) ∈ L2(Ω), v0(t, ·) ∈ H1(Ω), v1(t, ·, ·) ∈ L2(Ω;H1(YB)/R),
u0 ∈ L2([0, T ];H1(Ω)), and u1 ∈ L2([0, T ] × Ω;H1(Y )/R). These limit functions satisfy
the homogenised problem given in formal lemma 1, except the nonlinear functions from
the ionic model which are still not identified.

Non-linear convergence

We are now ready to prove that I0 = Iion(v0, h0), and g0 = g(v0, h0). From the given
two-scale limits on the functions we have that the equality (2.84) holds for a limit case in
the form,

E0
λ,κ(t, (v0, v1), (u0, u1), h0) :=

1
2e
−λt

(
‖v0‖2L2(Ω×YB) + κ ‖h0‖2L2(Ω×YB)

)
+
∫ t

0
e−λs

(λ
2
(
‖v0‖2L2(Ω×YB) + κ ‖h0‖2L2(Ω×YB)

)
+
∥∥∥√σi(∇(v0 + u0) +∇y(v1 + u1))

∥∥∥2

L2(Ω×YB)
+
∥∥√σ(∇xu0 +∇yu1)

∥∥2
L2(Ω×Y )

)
ds.
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and

E0
λ,κ(t, (v0, v1), (u0, u1), h0) +

∫ t

0
e−λs

∫
Ω

∫
YB

(
I0v0 + κg0h0

)
dy dx ds

= 1
2‖v

0
0‖2L2(Ω×YB) + κ

2‖h
0
0‖2L2(Ω×YB).

(2.87)

Using the above properties of the non-linear terms, for appropriate choice of λ and κ, we
get

Eλ,κ(t, vε − µε, uε − ρε, hε − ηε) +
∫ t

0
e−λs

∫
ΩBε

(
(Iion(vε, hε)− Iion(µε, ηε))(vε − µε)

+κ(g(vε, hε)− g(µε, ηε))(hε − ηε)
)
ds ≥ 0.

We develop the above expression, as follows

Eλ,κ(t, vε − µε, uε − ρε, hε − ηε)

+
∫ t

0
e−λs

∫
ΩBε

(
Iion(vε, hε)vε − Iion(vε, hε)µε − Iion(µε, ηε)vε + Iion(µε, ηε)µε

+κ(g(vε, hε)hε − g(vε, hε)ηε − g(µε, ηε)hε + g(µε, ηε)ηε)
)
ds ≥ 0.

(2.88)

Furthermore, for the energy functional we have,

Eλ,κ(t, vε − µε, uε − ρε, hε − ηε) = 1
2e
−λt

(
‖vε − µε‖2L2(ΩBε ) + κ ‖hε − ηε‖2L2(ΩBε )

)
+
∫ t

0
e−λs

(λ
2
(
‖vε − µε‖2L2(ΩBε ) + κ ‖hε − ηε‖2L2(ΩBε )

)
+
∥∥∥√σi∇(vε − µε + uε − ρε)

∥∥∥2

L2(ΩBε )
+
∥∥√σ∇(uε − ρε)

∥∥2
L2(Ω)

)
ds.

Hence,

Eλ,κ(t,vε − µε, uε − ρε, hε − ηε) = Eλ,κ(t, vε, uε, hε)
1
2e
−λt

∫
ΩBε

(µε(−2vε + µε) + κηε(−2hε + ηε)) dx

+
∫ t

0
e−λs

(λ
2

∫
ΩBε

(µε(−2vε + µε) + κηε(−2hε + ηε)) dx

+
∫

ΩBε
σi∇(µε + ρε)(−2∇(vε + uε) +∇(µε + ρε)) +

∫
Ω
σ∇ρε(−2∇uε +∇ρε)

)
ds.
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Now, we use the fact that (vε, uε, hε) is solution to the problem (2.55), so equality (2.84)
holds. Hence, (2.88) becomes,

1
2‖v

0
ε‖2L2(ΩBε ) + κ

2‖h
0
ε‖2L2(ΩBε ) + 1

2e
−λt

∫
ΩBε

(µε(−2vε + µε) + κηε(−2hε + ηε)) dx

+
∫ t

0
e−λs

(λ
2

∫
ΩBε

(µε(−2vε + µε) + κηε(−2hε + ηε)) dx

+
∫

ΩBε
σi∇(µε + ρε)(−2∇(vε + uε) +∇(µε + ρε)) +

∫
Ω
σ∇ρε(−2∇uε +∇ρε)

)
ds

+
∫ t

0
e−λs

∫
ΩBε

(
−Iion(vε, hε)µε − Iion(µε, ηε)vε + Iion(µε, ηε)µε

+κ(−g(vε, hε)ηε − g(µε, ηε)hε + g(µε, ηε)ηε)
)
ds ≥ 0,

Now let us choose, µε, ρε and ηε as follows

µε(x) = v0(x) + αφ(x) + εφ1(x, x/ε),

ρε(x) = u0(x) + εψ1(x, x/ε),

ηε(x) = h0(x) + αθ(x),

where φ1(x, y) and ψ1(x, y) are smooth functions that we can choose as close as we need
to v1(x, y) and u1(x, y), respectively. From the construction we have a strong convergences
for µε,∇µε, ρε,∇ρε and ηε. Now, passing to the two-scale limit in the above inequality, we
have,

1
2‖v

0
0‖2L2(Ω×YB) + κ

2‖h
0
0‖2L2(Ω×YB) + 1

2e
−λt

∫
Ω

∫
YB

(
(αφ)2 − v2

0) + κ((αθ)2 − h2
0)
)
dydx

+
∫ t

0
e−λs

(λ
2

∫
Ω

∫
YB

(
(αφ)2 − v2

0) + κ((αθ)2 − h2
0)
)
dydx

+
∫

Ω

∫
YB

σi
(
(α∇φ)2 − (∇xv0 +∇yv1 +∇xu0 +∇yu1)2

)
dydx

−
∫

Ω

∫
Y
σ∇(∇xu0 +∇yu1)dydx

)
ds

+
∫ t

0
e−λs

∫
Ω

∫
YB

(
−I0(v0 + αφ) + Iion(v0 + αφ, h0 + αθ)αφ

+κ(−g0(h0 + αθ) + g(v0 + αφ, h0 + αθ)αθ
)
ds ≥ 0,

Finally, we use the equality (2.87), and divide every term by α 6= 0, to obtain

α

∫
Ω

[1
2e
−λt

(
φ2 + κθ2

)
+
∫ t

0
e−λs

(λ
2
(
φ2 + κθ2

)
+ σi(∇φ)2

]
dx

+
∫ t

0
e−λs

∫
Ω

(
(Iion(v0 + αφ, h0 + αθ)− I0)φ+ κ(g(v0 + αφ, h0 + αθ)− g0)θ

)
dx ds ≥ 0,

Then letting α go to zero, we obtain for any functions θ(x), φ(x)
∫ t

0
e−λs

∫
Ω

(
(Iion(v0, h0)− I0)φ+ κ(g(v0, h0)− g0)θ

)
dx ds ≥ 0.
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Thus, we conclude I0 = Iion(v0, h0) and g0 = g(v0, h0).

Main theorem

Theorem 26. Denote with ·̃ the extension by zero in the domain ΩD
ε . For any time t ∈ [0, T ]

denote the sequence of solutions (vε, uε, hε) of the problem (2.55). Having the two-scale
convergences given in remark 25, then (v0, u0, h0, v1, u1) is the unique solution of the following
two-scale homogenised system:

∂th0(t, x) + g(v0, h0) = 0, in (0, T )× Ω,

|YB| (∂tv0(t, x) + Iion(v0, h0))−∇x ·
[∫
YB

σi(∇v0(t, x) +∇yv1(t, x, y))dy
]

−∇x ·
[∫
YB

σi(∇u0(t, x) +∇yu1(t, x, y))dy
]

= 0, in (0, T )× Ω,

−∇x ·
[∫
YB

(σi + σe)(∇u0(t, x) +∇yu1(t, x, y))dy
]
−∇x ·

[∫
YD

σd(∇u0(t, x) +∇yu1(t, x, y))dy
]

−∇x ·
[∫
YB

σi(∇v0(t, x) +∇yv1(t, x, y))dy
]

= 0, in (0, T )× Ω,

with the correction equations

−∇y ·
[
σi(∇v0(t, x) +∇yv1(t, x, y)) + σi(∇u0(t, x) +∇yu1(t, x, y))

]
= 0, in (0, T )× Ω× YB,

−∇y · [σe(∇u0(t, x) +∇yu1(t, x, y))] = 0, in (0, T )× Ω× YB,

−∇y ·
[
σd(∇u0(t, x) +∇yu1(t, x, y))

]
= 0, in (0, T )× Ω× YD,

and the boundary and transmition conditions

(
σi(∇v0(t, x) +∇yv1(t, x, y)) + σi(∇u0(t, x) +∇yu1(t, x, y))

)
· nYB = 0, on [0, T ]× Ω× Γ,(

(σe − σd)(∇u0(t, x) +∇yu1(t, x, y))
)
· nYB = 0, on [0, T ]× Γ,

and

h0(t, x) = h0
0(x), v0(t, x) = v0

0(x), in Ω,

y → u1(t, x, y) and y → v1(t, x, y) are Y -periodic,

Furthermore, we can recover the classical homogenized and cell equations if we use the relation

v1(t, x, y) =
N∑
k=1

∂v0(t, x)
∂xk

wvk(y),

u1(x, y) =
N∑
k=1

∂u0(t, x)
∂xk

wk(y).
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Proof. To find the homogenised equations we choose the test function φ(t, x)+εφ1(x, x/ε),
with φ(t, x) ∈ D((0, T )× Ω) and φ1(x, y) ∈ D(Ω;C∞# (Y )). Then by the partial integration
and passing to the two-scale limits, using the assumptions on the non-linear parts, we
derive the homogenised system of equations.

Remark 27. The homogenised problem given in the main theorem is the parabolic-elliptic
version of the homogenised problem we have derived formally in the section 2.3, for
uiε := vε + uε|ΩBε , and then ui0 = v0 + u0, and ui1 = v1 + u1.

Remark 28. The existence and uniqueness of the solution of the homogenised (bidomain)
model has been proved in [14]. It is not necessary from conductivity tensors to be
symmetric definite positive, although in practice it is assumed.

2.5 Discussion

We have proposed a way to model the electrophysiology of the cardiac tissue, that
extends the standard bidomain model with the periodic diffusive inclusions. We have a
rigorous and practical way to link structural disease in the tissue to macroscopic electrical
conductivity in a bidomain model. It can be used in many contexts, including simulation
of fibrotic tissue in general and border zones of scars.

From the more practical side, in the following chapters we are going to use high
resolution imaging to experimentally obtain insight into the typical geometry/volume
fractions in fibrosis.

There are several limitations of the proposed model. The inclusions that we address
are purely diffusive, while we can expect to have different kind of cells in these non-
excitable regions. Hence, we neglected the effect we might have from the ionic activity,
due to the cells’ membrane. Another difficulty that we need to address are transmission
conditions given on the interface of the inclusions. We have used standard conditions,
usually used in coupling torso and the heart, which might not be appropriate here.
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3Quantitative effects of diffusive
inclusions

„ "One accurate measurement is worth a thousand
expert opinions."

— Grace Hopper
(Programmer, Mathematician and Admiral)
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3.1 Introduction

We have shown that the micro structure of the cardiac tissue plays a role in AP
propagation by affecting the conductivity tensors for the bidomain model. In this chapter
we perform a quantitative analysis of these effects. We test different shapes of inclusions
in order to build the intuition and learn what kind of changes to expect in the "diseased"
tissue. In the next chapter, we perform the simulation on the "real-life" scenario, where we
model the AP propagation in the rat heart based on MRI images. We will be able to choose
the suitable shape of the inclusions and use the obtained values for the conductivities,
from this chapter, without recomputing them. Hence, the results of this chapter can serve
as a database for the future experiments on a tissue or organ level. In this way, except for
the initial computations that need to be performed on the unit cell, we do not add any
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computational cost to the simulation of the bidomain model.
For sake of computational simplicity we perform the tests in 2D at first, before

going to 3D case. Hence, we solve the cell problems (2.25) - (2.26) and compute the
homogenised (effective) conductivities using (2.24). We solve our problems using the
standard finite element approach. The variational formulations for the problems (2.25)
are given as ∫

YB

(σi∇wij)∇φi +
∫

Γ
φi(σiej) · n = 0,

wij , φ
i ∈Wi :=

{
w ∈ H1(YB), w is Y − periodic

}
,

(3.1)

where i stands for intracellular, and j ∈ {1, 2} i.e. j ∈ {1, 2, 3}, and ej stands for the j−th
unit vectors. The variational formulations for the problems (2.26) are given as∫

Y
(σ∇wej )∇φe +

∫
Γ
φe((σe − σd)ej) · n = 0,

wej , φ
e ∈W :=

{
w ∈ H1(Y ), w is Y − periodic

}
.

(3.2)

For both, 2D and 3D case we need to set the initial values for the intracellular and extra-
cellular conductivity tensors, σi and σe. In the literature there are several proposed values
for the conductivities for ventricular tissue. We list some of them in the Table 3.1. While
the proposed values are quite different from study to study, we can notice that they are all
of the same order of magnitude and that in each case the intracellular and extracellular
anisotropy ratios differ significantly one from each other, i.e. the intracellular anisotropy
ratio is about σil/σ

i
n ≈ 10, and the extracellular σel /σ

e
n ≈ 2. We perform the simulations

with the values given in Rioux (2013), [90].

Tab. 3.1: The bidomain conductivities for ventricular tissue, values in [S m−1]. The first 5 columns
of the table taken from [103], and the last column from [90].

Roth (1988) Clerc (1976) Roberts (1979) Roberts (1982) Rioux (2013)
σil 0.35 0.17 0.28 0.34 0.1742
σin 0.03 0.019 0.026 0.06 0.01934
σel 0.3 0.62 0.22 0.12 0.3906
σen 0.18 0.24 0.13 0.08 0.197

To observe only the effects on the diffusive inclusions on the conductivities we do
not vary the directions of the fibers in YB, and we assume that fibers are aligned with
the x-axis. We assume that the conductivity tensor inside of the inclusive diffusion, σd,
isotropic and of the same order as intracellular and extracellular conductivities of the
standard bidomain model. Let us note that this is not a necessary assumption from a
theoretical point of view, but merely a computational convenience. The non-excitable
tissue can be present in the heart in different forms, as explained in the Chapter 1. The
electrical properties and structural arrangements in these regions are not well known,
hence we have no reason to make an anisotropy assumption. If in the future an anisotropy
is observed, our model can easily incorporate this effect as well.
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For the numerical simulations we use the software FreeFem++ [52]. For the visuali-
sation we use gnuplot [109], scilab [97] and paraview [1] software.

3.2 Effective conductivities

3.2.1 Settings for 2D cell problems

We deal with the non-dimensional conductivity tensors, with fibers aligned with the
x-axis,

σi =
[

1.741 0
0 0.1934

]
and σe =

[
3.904 0

0 1.970

]
, (3.3)

that are scaled with ς = 0.1S m−1. The reason for this choice of scaling is given in the
Section 1.3.3. We test the following scaled values for σd = {0.2, 1.5, 3.0, 6.0}. We have to
solve four cell problems. The first two on YB,∫

YB

(σi∇wi1)∇φi +
∫

Γ
φiσ

i
11n1 = 0,∫

YB

(σi∇wi2)∇φi +
∫

Γ
φiσ

i
22n2 = 0,

wi1, w
i
2, φi ∈Wi :=

{
w ∈ H1(YB), w is Y − periodic

}
.

(3.4)

The other two on Y ,∫
Y

(σ∇w1)∇φ+
∫

Γ
φ(σe11 − σd11)n1 = 0,∫

Y
(σ∇w2)∇φ+

∫
Γ
φ(σe22 − σd22)n2 = 0,

w1, w2, φ ∈W :=
{
w ∈ H1(Y ), w is Y − periodic

}
.

(3.5)

We compute the new conductivity tensors with the formulas, for j, k = 1, 2,

σi∗
kj = σi

kj |YB |+
(
σi

k1

∫
YB

∂y1w
i
jdy + σi

k2

∫
YB

∂y2w
i
jdy

)
,

σe∗
kj =

∫
Y

σkjdy +
(∫

Y

σk1∂y1wjdy +
∫

Y

σk2∂y2wjdy

)
,

(3.6)

where j ∈ {1, 2} and σ(y) is defined as in (2.12). We perform simulations with simple
shapes of diffusive inclusions such as circles, ellipses, and superellipses, ranging the volume
fractions of the inclusions from 0.1% to 98%, if possible. More precisely, the unit cell is
[−0.5, 0.5]× [−0.5, 0.5] square, with the inclusion generated with the curve

∣∣∣∣ xrx
∣∣∣∣n +

∣∣∣∣∣ yry
∣∣∣∣∣
n

= 1. (3.7)
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We use the parametric form of this equation, given with

x = rxsgn(cos(t))| cos(t)|e, (3.8)

y = rysgn(sin(t))| sin(t)|e, (3.9)

where e = 2
n , and 0 ≤ t ≤ 2π, and the function sgn is a standard sign function,

sgn(t) =


1, t > 0
0, t = 0
−1, t < 0.

(3.10)

We choose to test six types of the inclusions given in the Table 3.2.

Tab. 3.2: The test cases for geometries of inclusions in 2D.

e rx : ry max |YD| σd11,22 [S m−1]

Case I 1.0 1 : 1 0.76 0.02, 0.15, 0.3, 0.6
Case II 1.0 1 : 0.5 0.39 0.02, 0.3
Case III 1.0 1 : 2 0.39 0.02, 0.3
Case IV 0.2 1 : 1 0.98 0.02, 0.3
Case V 0.2 1 : 0.5 0.49 0.02, 0.3
Case VI 0.2 1 : 2 0.49 0.02, 0.3

As one can notice, in these first six cases we assume the inclusions to be symmetrical
with respect to x and y-axes. See Figure 3.1. The difference between the Cases II and III,
i.e. between V and VI, is due to the assumption that the fibers are aligned with x-axis.
Hence, the elongated inclusions in the Cases II and V are aligned with fibers, and in the
Cases III and VI are perpendicular to the fibers.

In the last case, we assume that inclusions are not symmetric with respect to the
x- and y-axes. See Figure 3.2. For this case we use e = 1.0, rx = 2ry, and rotate the
parametrisation (3.8) for the angle θ = π/4, hence,

x =
√

2
2 (rx cos(θ)− ry sin(θ)), (3.11)

y =
√

2
2 (rx cos(θ) + ry sin(θ)). (3.12)

In this case, Case VII, the volume of the inclusions can be at most 63%, i.e. max |YD| = 0.63.
We are interested to observe the possible changes in: the speed of propagation, the principal
direction of the propagation and in the anisotropy ratios for the intra- and extracellular
conductivities.
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Case I. Case IV.

Case II. Case V.

Case III. Case VI.

Fig. 3.1: Unit cell geometries, symmetric w.r.t. x- and y-axis, used to test the effects of the diffusive
inclusions on the conductivity tensors in 2D. Case I: the shape of the inclusion is a circle.
The volume of the inclusion can go from 0% to 76% of the unit cell. Case II and III: the
shape of the inclusion is an ellipse with rx : ry = 2 : 1 and 1 : 2, resp. The volume of
the inclusion can take up to 39% of the unit cell. Case IV: the shape of the inclusion is a
superellipse with e = 0.2 and rx : ry = 1 : 1 . The volume of the inclusion can take up
to 98% of the unit cell. Case V and VI: the shape of the inclusion is a superellipse with
e = 0.2, and rx : ry = 2 : 1 and 1 : 2, resp . The volume of the inclusion can take up to
49% of the unit cell.

Case VII.

Fig. 3.2: Unit cell with the nonsymmetric inclusion. The volume of the inclusion can take up to
63% of the unit cell.
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3.2.2 Results in 2D

The results obtained for the cases I to VII are given in the Figures 3.3 - 3.18. We
show changes of σi∗ and σe∗ for each case, depending on the volume fraction of YB and
for different σd. The tested values for σd are σd11 = σd22 = 0.02, 0.15, 0.3 and 0.6 S m−1, for
the Case I. For the other cases we have performed the computations only for 0.02 S m−1

and 0.3 S m−1. Note that in the computations we scale all conductivities with ς =0.1 S m−1.
The volume fraction for YD is varied over a range of values depending on the case. In the
Table 3.2 we give the maximum possible value of |YD| for each case.

As mentioned earlier, we are interested in the changes of the anisotropy ratios. In a
healthy cardiac tissue, the anisotropy ratios of the intracellular and the extracellular space
are

ARint := σil
∗

σin
∗ , ARext := σel

∗

σen
∗ , (3.13)

where σi,el
∗

and σi,en
∗ are the eigenvalues of the conductivity tensors σi,e∗. For the standard

bidomain model, these are conductivities along the fibers and perpendicular to them, i.e.
in our case these would be in the directions of x-axis and y-axis. For the modified bidomain
model, these directions may change, and we need to diagonalise the conductivity tensors,
i.e to find their eigenvalues σi,el

∗
and σi,en

∗, and the corresponding eigenvectors as principal
directions of the propagation.

For all of the first six cases we observe that for the small volume fractions YD, σi∗

and σe∗ approach the initial values for σi and σe, respectively. It means that when there
is no diffusive inclusion, i.e. when there is no inclusions the modified bidomain model
is nothing else but the standard bidomain model, with the initial conductivities. On the
other hand, for the large volume fractions YD, we have that σi∗ is approaching 0−tensor,
and σe∗ is approaching σd. It means that when the inclusion takes up all of the unit cell
the tissue is fully non-excitable, and the modified model reduces to the simple diffusive
equation with the diffusion tensor of the inclusion. This can be observed in all cases, but it
is the most obvious in the Case IV as we are able to test very large volume fractions for YD.
Obviously, the limit is not attainable because the model would not be well posed. Another
important observation is that in these six cases we obtain zero values for the off-diagonal
terms for new conductivities. As we will see later on, this is due to the symmetry in the
shape of inclusions.

While the limit cases and overall behaviour seem to be similar, there are some obvious
differences. The dependence on the volume fraction is not linear, and the non-linearity is
different for each case. This can also be observed and emphasised when we compute the
anisotropy ratios.

In the Case I the extracellular AR changes from 1.98 for |YD| = 0, to ≈ 1.0 when
|YD| = 0.76. The intracellular AR goes from 9.0 for |YD| = 0, reaches minimum ≈ 7.0
at |YD| = 0.5, and then again grows for the larger values of volume fraction |YD|. See
Figures 3.3-3.6. We can note that even though the relationship between the old and new
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conductivity tensors is not a straightforward and obvious, the principal direction of the
propagation stays the same. The off-diagonal terms are almost zero, hence we would
expect that this shape of inclusions does not have an important effect on the shape of
propagation wave, but only on the speed. Similar results are observed in the Case IV. See
Figures 3.11 -3.12. Anisotropy ratios do not stay constant and their change resembles the
change in the Case I.

Similarities in the way the conductivities and the anisotropy ratios change are ob-
served also among cases II and V, and cases III and VI.

For the Case II and the Case V one can observe that as the volume of the inclusion
reaches its maximum, the anisotropy ratios reach their peak. See Figures 3.7-3.8 and
Figures 3.13-3.14. This means that the propagation in the fiber direction becomes much
more important than in the perpendicular direction, i.e. the difference becomes much
more significant than in the standard model.

For Case III and Case VI we have the opposite situation. See Figures 3.9-3.10 and
Figures 3.15-3.16. There is a switch in the principal direction of the propagation that
happens when the inclusion is taking more than ≈ 40% , i.e.more than ≈ 50% in the
volume. Consequently, we observe a drastic decrease in the intracellular AR from 10 : 1 to
1 : 10.

Finally, the Case VII is somewhat different due to the non-symmetric shape of the
inclusion. In this case we observe non-zero non diagonal values for the tensors σi∗ and
σe∗. To find the principal direction of the propagation in this case we computed the
eigenvectors and respective eigenvalues for the tensors σi∗ and σe∗, and then we computed
the intra- and extracellular anisotropy ratios with the new eigenvalues. The changes in the
anisotropy ratios here do not match with any of the previous cases. The results are shown
in the Figures 3.17-3.18 and Figures 3.19-3.20.

As we expected, the changes that occur in the conductivity tensors are not simple,
and we could not obtain these effects by simply changing the surface to volume ratio in
the standard bidomain model. One interesting case that we still did not discuss is the case
where we set σd = σe. This would mean that the whole inclusion behaves exactly as the
extracellular space around the cells in the healthy tissue. In this case σe∗ = σe for all |YD|,
but σi∗ would still change depending on the volume fraction and the shape of inclusions.
This shows that our problem is indeed a multiscale problem and needs to be treated with
care.
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Fig. 3.3: Case I, σd = 0.2[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.76.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.4: Case I, σd = 1.5[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.76.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.5: Case I, σd = 3.0[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.76.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.6: Case I, σd = 6[0.1S/m]. Plots on the left give the values for effective intra- and extracellu-
lar conductivities with respect to volume ratio of YD, ranging from 0.0− 0.76. Plots on
the right give the change in anisotropy ratios.
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Fig. 3.7: Case II, σd = 0.2[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.39.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.8: Case II, σd = 3.0[0.1S/m]. ThPlots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.39.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.9: Case III, σd = 0.2[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.39.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.10: Case III, σd = 3.0[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.39.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.11: Case IV, σd = 0.2[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.98.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.12: Case IV, σd = 3.0[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.98.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.13: Case V, σd = 0.2[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.49.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.14: Case V, σd = 3.0[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.49.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.15: Case VI, σd = 0.2[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.49.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.16: Case VI, σd = 3.0[0.1S/m]. Plots on the left give the values for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.49.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.17: Case VII, σd = 0.2[0.1S/m]. Plots on the left give the eigenvalues for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.63.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.18: Case VII, σd = 3.0[0.1S/m]. Plots on the left give the eigenvalues for effective intra- and
extracellular conductivities with respect to volume ratio of YD, ranging from 0.0− 0.63.
Plots on the right give the change in anisotropy ratios.
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Fig. 3.19: Case VII results: the eigenvectors of the conductivity tensors, for σd = 0.2[0.1S/m].
Black arrows correspond to the eigenvectors for intracellular conductivity tensors, and
blue for the extracellular.

Fig. 3.20: Case VII results: the eigenvectors of the conductivity tensors, for σd = 3.0[0.1S/m].
Black arrows correspond to the eigenvectors for intracellular conductivity tensors, and
blue for the extracellular.
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3.2.3 Settings for 3D cell problems

The conductivity tensors

σi =


1.741 0 0

0 0.1934 0
0 0 0.1934

 and σe =


3.904 0 0

0 1.970 0
0 0 1.970

 , (3.14)

are scaled like before with ς = 0.1 S m−1. We assume that the fibers are always aligned
with x-axis. We have to solve six cell problems. The first three on YB,∫

YB

(σi∇wi1) · ∇φi +
∫

Γ
φiσ

i
11n1 = 0,∫

YB

(σi∇wi2) · ∇φi +
∫

Γ
φiσ

i
22n2 = 0,∫

YB

(σi∇wi3) · ∇φi +
∫

Γ
φiσ

i
33n3 = 0,

wi1, w
i
2, w

i
3, φi ∈Wi :=

{
w ∈ H1(YB), w is Y − periodic

}
.

(3.15)

The other three on Y ,∫
Y

(σ∇w1) · ∇φ+
∫

Γ
φ(σe11 − σd11)n1 = 0,∫

Y
(σ∇w2) · ∇φ+

∫
Γ
φ(σe22 − σd22)n2 = 0,∫

Y
(σ∇w3) · ∇φ+

∫
Γ
φ(σe33 − σd33)n3 = 0,

w1, w2, w3, φ ∈W :=
{
w ∈ H1(Y ), w is Y − periodic

}
.

(3.16)

We compute the new conductivity tensors with the formulas, for j, k = 1, 2, 3,

σi∗
kj = σi

kj |YB |+
(
σi

k1

∫
YB

∂y1w
i
jdy + σi

k2

∫
YB

∂y2w
i
jdy + σi

k3

∫
YB

∂y3w
i
jdy

)
,

σe∗
kj =

∫
Y

σkjdy +
(∫

Y

σk1∂y1wjdy +
∫

Y

σk2∂y2wjdy +
∫

Y

σk3∂y3wjdy

)
,

(3.17)

where σ(y) is defined as in (2.12). We perform simulations with the diffusive inclusions
in the shape of superellipsoids. More precisely, the unit cell is [−0.5, 0.5] × [−0.5, 0.5] ×
[−0.5, 0.5] cube, with the inclusion generated with the surface

∣∣∣∣ xrx
∣∣∣∣n +

∣∣∣∣∣ yry
∣∣∣∣∣
n

+
∣∣∣∣ zrz
∣∣∣∣n = 1. (3.18)

See Figure 3.21.

We choose to test four types of the inclusions given in the Table 3.3. In the Case
I inclusions take the shape of the smoothed box, and their volume takes up to 98% of
the unit cell. In the Case II, we keep the rx = 0.49 fixed, meaning that it almost touches
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the walls of the unit cell, and we vary ry = rz over the range (0, 0.49). In this way the
inclusions are elongated, and aligned with fibers. In the last two cases the inclusions have
a shape of sheets. In the Case III they are perpendicular to the z-axis, and in the Case IV
they are perpendicular to the x-axis.

Tab. 3.3: The test cases for the geometries of the inclusions in 3D.

n rx ry rz |YB|
Case I 20 rx ∈ (0, 0.5) ry = rx rz = rx (0.02, 1.0)
Case II 20 rx = 0.49 ry ∈ (0, 0.5) rz = ry (0.02, 1.0)
Case III 20 rx = 0.49 ry = 0.49 rz ∈ (0, 0.5) (0.02, 1.0)
Case IV 20 rx ∈ (0, 0.5) ry = 0.49 rz = 0.49 (0.02, 1.0)

Case I. Case II.

Case III. Case IV.

Fig. 3.21: Unit cell geometries used to test the effects of the diffusive inclusions on the conductivity
tensors in 3D, corresponding to the cases in the Table 3.3.

3.2.4 Results in 3D

The results are shown in the Figures ?? - 3.27. Like before we plot σi∗ and σe∗

depending on the volume fraction |YD|. In all of the tested cases the volume fraction can
range from 0.02 to 1. For the first case we assume the values for σdkk = 0.2, 1.5 and 3.0,
also scaled with ς = 0.1S/m, and for the other tree cases we choose only σdkk = 3.0.

The results in 3D show the similar behaviour as the ones in 2D. The limit cases are
the same as before: when the inclusions are small, i.e. when their volume is close to
zero, the effective conductivities are almost the same as the conductivities in the standard
bidomain model; on the contrary side when the inclusions are big, i.e when their volume is
almost one, the effective conductivities are like in 2D case σi∗ is approaching the 0-tensor
and σe∗ is approaching σd. This is observed for the Case I, where we have assumed that
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the radius of inclusion is the same in each direction, and for the Case II, where we have
fixed rx = 0.49 and vary ry = rz over the range (0.01, 0.49).

In the other two cases, Case III and IV, we assumed that the inclusions are in the
shape of plate that varies it’s thickness. What we can notice for both of them is that the
conductivity in the direction perpendicular to the plate of inclusion drops to the values
close to zero even for a small volume of inclusions. This in effect has that the anisotropy
ratio σi11

∗
/σi
∗
22, in the Case IV, drops from 9.0 to less than 1.0. In this case we see clearly

the importance of the geometry of inclusions.
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Fig. 3.22: 3D-results for the effective conductivities and anisotropy ratios. Case I: the diffusive
inclusions are superellipsoids with n = 20, rx = ry = rz. And the conductivity σd

kk = 0.2.
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Fig. 3.23: 3D-results for the effective conductivities and anisotropy ratios. Case I: the diffusive
inclusions are superellipsoids with n = 20, rx = ry = rz. And the conductivity σd

kk = 1.5.
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Fig. 3.24: 3D-results for the effective conductivities and anisotropy ratios. Case I: the diffusive
inclusions are superellipsoids with n = 20, rx = ry = rz. And the conductivity σd

kk = 3.0.
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Fig. 3.25: 3D-results for the effective conductivities and anisotropy ratios. The diffusive inclusions
are superellipsoids with n = 20, and Case II: rx = 0.498, ry = rz, the conductivity
σd

kk = 3.0.
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Fig. 3.26: 3D-results for the effective conductivities and anisotropy ratios. The diffusive inclusions
are superellipsoids with n = 20, and Case III: rx = ry = 0.498, the conductivity
σd

kk = 3.0.
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Fig. 3.27: 3D-results for the effective conductivities and anisotropy ratios. The diffusive inclusions
are superellipsoids with n = 20, and Case IV: ry = rz = 0.498, the conductivity
σd

kk = 3.0.
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3.2.5 Discussion

Finally, we can conclude that quantitatively both volume and geometry can play
a role in the effective conductivities. Going from 2 to 3 dimensions obviously adds to
the complexity of possible shapes of inclusions one could test. We have tested only few
possible shapes. The differences between different cases are more obvious when we
observe the changes in the anisotropy ratios. The interesting thing is that for a given
shapes and volumes of inclusions the principal direction of the propagation changes.
Hence, the knowledge of the fiber direction might not be anymore the sufficient parameter
to determine the main direction of the AP propagation.

3.3 Wave propagation in 2D tissue patch

The next step is to test how these changes in conductivities affect the AP propagation
in the tissue. We will perform two kinds of tests: the wave propagation with the simple
circular initial condition in the tissue patch, and the spiral wave dynamics. All the tests
will be performed on 2D tissue patches.

3.3.1 Settings for homogenised problem

We perform simulations of the standard and modified bidomain model, i.e. we solve
the homogenised model given in (2.23). As explained in the Chapter 2, our equations do
not depend directly on the small scale, and all of the inclusions effects are included in the
conductivity tensors and on the predefined parameter |YB|. The modified bidomain model
reduces to the standard bidomain model in the case |YB| = 1.0, σi∗ = σi and σe∗ = σe.
For the other cases when |YB| < 1, we directly implement the conductivity tensors we
have computed in the previous section, based on the case we want to test. For ionic
model we use the standard Mitchell Schaeffer model, see Section 1.2.5. We implement
the non-dimensional version of the bidomain model, using the non-dimensionalisation
performed in [90], see Section 1.3.3. The non-dimensional version of the model is

∂th+ g(v, h) = 0, in [0, T ]× Ω,

N∇ ·
(
σi
∗∇ui

)
= (∂tv + Iion(v, h))|YB|, in [0, T ]× Ω,

N∇ · (σe∗∇u) = −(∂tv + Iion(v, h))|YB|, in [0, T ]× Ω,

∇ui · n = ∇u · n = 0, on [0, T ]× ∂Ω,

v(0, x) = v0(x), in Ω,

h(0, x) = h0(x), in Ω,

(3.19)
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where the scaling parameters are: Vm = 0.125V for potentials ui and ue, and transmem-
brane voltage, v = ui − ue, that is additionally scaled between 0 and 1; ς = 0.1S/m for
conductivities σi∗ and σe∗; T = 10−3s for time; L = 5× 10−4m for space; and finally as a
consequence we have the non-dimensional parameter N = 0.2.

We use the finite element method for the space discretisation with SBDF2 time
scheme [35], as in the Algorithm 3. We are solving the equations on the square of a size
[−30, 30]× [−30, 30], or 30mm×30mm. The mesh step is ∆x = 0.16667mm, i.e. 180×180
nodes, and the time step ∆t = 0.1ms.

3.3.2 Circular wave propagation

In the first set of tests, we explore the effects of the new conductivities on the
propagation of a wavefront in a homogeneous tissue. In other words we assume that the
whole patch of tissue has the same properties, i.e. the constant volume fraction of the
inclusions and constant conductivities. The initial condition for this set of simulations is
given in the Figure 3.28.

Fig. 3.28: Circular waves. Initial condition on the transmembrane voltage, v. Gating variable set
on h0 = 0.9.

We assume that the gating variable is h0 = 0.9 in the whole domain, and the
transmembrane voltage is zero everywhere except in the central circle of radius 5mm,
where it is v = 0.5.

We run simulations for the standard bidomain model, and plot the snapshots of the
transmembrane voltage for the times 20ms, 50ms and 100ms, in the Figure 3.29.

With the same initial condition we perform the simulations for our seven cases
given in the Section 3.3.1. All seven cases we test with the volume fraction |YB| = 0.61
and σdl,n = 0.2. Additionally, for the Case I we run the simulations for σdl,n = 3.0 and
|YB| = 0.23 and 0.61, and in the cases IV, VI and VII, we run simulations for σdl,n = 0.2 and
|YB| = 0.02, 0.51, and 0.37, respectively (these are the minimum values for |YB| that are
possible to obtain with respective shapes of the inclusions).

One can notice that in the cases I and IV, (Figures 3.30 - 3.32), the volume fraction
affects mostly the speed of propagation while the shape of the wavefront stays similar to
the one in the standard case. Interestingly, in these two cases σd does not seem to play an
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important role (Figure 3.36). It seems that the wavefront for the case I and the volume
fraction |YB| = 0.23, is almost the same as for the case IV and the much smaller volume
fraction |YB| = 0.02.

As we predicted in the cases II and V, (Figures 3.33 and 3.34), we observe emphasised
propagation in x-direction or along the fibers, while the propagation in y-direction is faster
for the case V than in the case II. This is due to the fact that for |YB| = 0.61 the inclusion
of the shape II almost touches the walls of the periodic cell.

For the cases III and IV, (Figure 3.35 and 3.36), one can observe the switch in the
principal direction of the propagation. While in the case III we observe it for |YB| = 0.61,
for the case VI we need to reduce |YB| to 0.51.

Finally for the case VII, (Figure 3.37), we observe a more complex change in the
principal direction and the angle of change depends on the volume fraction, as we have
already showed in the section 3.2.2.

For all tested cases we can see that the speed of propagation is reduced, although in
some cases it is not significant. We can see that when the inclusion is such that it touches
the walls of the periodic cell, the principal direction of the propagation moves towards the
longitudinal axes of the inclusion.

Fig. 3.29: Central stimulus. Standard bidomain model. Observing transmembrane voltage, v at
times: 20ms, 50ms and 100ms (left to right).

Fig. 3.30: Central stimulus. Case I. σd
l,n = 3.0. |YB | = 0.23(up) and 0, 61(down). Observing

transmembrane voltage, v at times: 20ms, 50ms and 100ms.
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Fig. 3.31: Central stimulus. Case I. σd
l,n = 0.2. |YB | = 0.61. Observing transmembrane voltage, v

at times: 20ms, 50ms and 100ms.

Fig. 3.32: Central stimulus. Case IV. σd
l,n = 0.2. |YB | = 0.02(up) and 0.61(down). Observing

transmembrane voltage, v at times: 20ms, 50ms and 100ms.

Fig. 3.33: Central stimulus. Case II. σd
l,n = 0.2. |YB | = 0.61. Observing transmembrane voltage, v

at times: 20ms, 50ms, 100ms, 150ms and 200ms.

Fig. 3.34: Central stimulus. Case V. σd
l,n = 0.2. |YB | = 0.61. Observing transmembrane voltage, v

at times: 20ms, 50ms, 100ms, 150ms and 200ms.

Fig. 3.35: Central stimulus. Case III. σd
l,n = 0.2. |YB | = 0.61. Observing transmembrane voltage, v

at times: 20ms, 50ms and 100ms.
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Fig. 3.36: Central stimulus. Case VI. σd
l,n = 0.2. |YB | = 0.51(up) and |YB | = 0.61(down).

Observing transmembrane voltage, v at times: 20ms, 50ms and 100ms.

Fig. 3.37: Central stimulus. Case VII. σd
l,n = 0.2. |YB | = 0.37(up) and 0, 6(down). Observing

transmembrane voltage, v at times: 20ms, 50ms and 100ms.

3.3.3 Spiral wave dynamics

Here we test a more complex AP propagation. The size of the tissue patch that we
use it the same as before [−30, 30]× [−30, 30], or 30mm× 30mm, with mesh of 180× 180
nodes. The time step is dt = 0.1ms. The initial conditions are given as follows: the
transmembrane voltage is everywhere zero, except in a small region, −30 < x < −17 and
−3 < y < 3, where v0 = 0.99; the gating variable is zero for y < 0 and h0 = 0.5 for y > 0.
See Figure 3.38.

Firstly, we simulate the standard bidomain model. The results are shown in the
Figure 3.39. As one can notice the spiral wave starts to form at the time 80ms, but very
soon it disappears as the tissue does not have time to go trough the refractory period.

Let us see what happens when we have the same size of the tissue patch and the
same initial conditions, but heterogeneous structure. Part of the tissue is assumed to be
healthy where we use the same parameters as for the standard bidomain model. The rest
we call the scar and apply different |YB| and conductivities. We will test three kinds of
scars, that we call SCAR L, M and S.

In the first test, we assume that the scar has a circular shape of radius r2 = 22, in
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Fig. 3.38: Initial condition for the simulation where we try to obtain the spiral. The domain size is
[−30, 30]× [−30, 30]. On the left is the scaled transmembrane voltage v0, which is zero
everywhere except in the small region −30 < x < −17 and −3 < y < 3. On the right is
the gating variable h0 that takes a constant value 0 under x-axis, and the value h0 = 0.5
above x-axis.

Fig. 3.39: Simulation of the standard bidomain model. The tissue is assumed to be homogeneous,
with constant conductivities. We observe the beginning of the spiral, but it quickly
disappears. Plots to be read row by row from left to right. Observing transmembrane
voltage, v at times: 40ms, 80ms, 120ms, ... , 480ms.

the center of the patch. We assume that the center of the scar is "dead" with the volume
fraction |YB| = 0.0 inside of the circle of radius r1 = 16 (SCAR L). The ring of the radius
16 < r ≤ 22 we call the scar border zone. Inside of the border zone we assume the
linear change of the volume fraction |YB| from 0.0 to 1.0. See Figure 3.40, left. For the
first simulation we assume that the diffusive inclusions in the scar are of the shape as in
the Case IV. Now we are able to assign the values for the effective conductivities for the
scar border zone. In order to be sure that the model is well posed, for the center of the
scar where |YB| = 0.0, we use the effective conductivities as computed for the smallest
|YB| = 0.02. See Figure 3.41, top left.

The result of this simulation is shown in the Figure 3.42. We can observe that the AP
propagation gets blocked by the scar. In the center of the scar the wavefront gets diffused
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over, and hence the change in the transmembrane voltage v, is not enough to activate
the tissue. Hence, the wavefront needs to get around the scar which provides enough
time for the tissue that was initially activated to go trough the recovery period and get
reactivated once the wavefront reaches it again. We run simulation for the time T = 1.3s
and observed the steady spiral around the scar.

Fig. 3.40: SCARS: The heterogeneous structure of the tissue. We plot the volume fraction |YB |
that ranges from 0.0 for the "dead" center of the scar, to 1.0 for the healthy tissue. The
rings where the value ranges 0 < |YB | < 1, we call the border zone. On the left (SCAR
L) the center of the scar has radius r1 = 16, in the middle (SCAR M) r1 = 9, on the right
(SCAR S) r1 = 4. For all tree cases the whole scar has the radius r2 = 22.

Fig. 3.41: Conductivities over the x-axis for the given scars. Top left: conductivities for the SCAR L
and the inclusions of type IV. Top right: conductivities for the SCAR M and the inclusions
of type IV. Bottom left: conductivities for the SCAR S and the inclusions of type IV.
Bottom right: conductivities for the SCAR M and the inclusions of type VI.
Legend: purple - σe

l
∗, orange - σe

n
∗, blue - σi

l
∗, green - σi

n
∗

.
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Fig. 3.42: SCAR L. Case IV. Simulation of the modified bidomain model, with the inclusions
assumed to be of the type IV. The tissue is assumed to be heterogeneous as in SCAR
L. The scar slows down the propagation of AP in the center of the tissue, and forces
the wavefront to go around the scar. This provides enough time for the tissue to go
through the recovery period, and to be reactivated. Hence, we observe the spiral that is
guided by the shape of the scar. Plots to be read row by row from left to right. Observing
transmembrane voltage, v at times: 40ms, 80ms, 120ms, ... , 1120ms.
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In the next simulation we use the same shape and radius of the whole scar, but we
use a larger border zone, i.e. we reduce the center of the scar to be r1 = 9 (SCAR M).
See Figure 3.40, center. We use the same principle as before of assigning the effective
conductivities for our modified bidomain model. See Figure 3.41, top right. The results of
this simulation are shown in the Figure 3.43. We run simulation for the final time T = 2s.
Like before we observe the steady spiral around the scar. One can notice that the spiral is
not going around the whole scar. It means that the volume fraction |YB| has to be small
enough for the AP propagation to be slowed down to obtain the spiral in these settings.

In the third simulation we reduce further the center of the scar to r1 = 4 (SCAR S).
See Figure 3.40, right. The conductivities in this case are shown in the Figure 3.41, bottom
left. And the results are shown in the figure 3.44. Here we loose the spiral. The center of
the scar is not large enough to slow down the AP propagation in the center of the tissue.
We can see though that the shape of the wavefront is changed with respect to the standard
bidomain model simulation.

In the last test we go back to the SCAR M, and we change the assumption on the
shape of inclusions in the scar. This time we choose the Case VI. See Figure 3.41, bottom
right. The results are shown in the Figure 3.45. Interestingly, this time we do not have a
spiral. The shape of the wavefront is very distorted. In the center of the scar the AP gets
propagated in y-direction faster than in the x-directon, i.e. it gets propagated faster in the
direction perpendicular to the assumed fiber direction. This provides the activation of the
tissue on the left side of the patch quicker than in the standard case.

3.3.4 Discussion

This section concludes the argument that the shape of non-excitable regions can affect
significantly the AP propagation. Of course, our simulations have limitations. We have
tested very limited number of shapes for the inclusions, and just a few examples of tissue
structure and scar shapes. Already, we can observe the complex changes in the wavefront.
Adding more complexity in the shapes of both - inclusions and scars, would give even
more complex patterns. The next step in this work can be looking into histological images
of the fibrotic hearts, and finding a way to give a better statistical estimation of the tissue
heterogeneities.
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Fig. 3.43: SCAR M. Case IV. Simulation of the modified bidomain model, with the inclusions
assumed to be of the type IV. The tissue is assumed to be heterogeneous as in SCAR M.
Like before, the scar is big enough to stop the propagation of AP in the center of the
tissue, and forces the wavefront to go around the scar. Hence, we observe again the
spiral that is guided by the center of the scar. Plots to be read row by row from left to
right. Observing transmembrane voltage, v at times: 60ms, 120ms, 180ms, ... , 1680ms.
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Fig. 3.44: SCAR S. Case IV. Simulation of the modified bidomain model, with the inclusions
assumed to be of the type IV. The tissue is assumed to be heterogeneous as in SCAR S.
In this case the center of the scar is small, and not enough to stop or slow down the
propagation of AP trough the center. Although, we do observe a change in the shape
of the wavefront, we lose the spiral. Plots to be read row by row from left to right.
Observing transmembrane voltage, v at times: 40ms, 80ms, 120ms, ... , 480ms.

Fig. 3.45: SCAR M. Case VI. Simulation of the modified bidomain model, with the inclusions
assumed to be of the type VI. The tissue is assumed to be heterogeneous as in SCAR M.
There is a change of the direction of the propagation of AP in the scar, which alternates
the shape of the wavefront significantly. This kind of activation does not provide the
spiral in the tissue in contrast to the same setting with the inclusions of the type IV. Plots
to be read row by row from left to right. Observing transmembrane voltage, v at times:
40ms, 80ms, 120ms, ... , 480ms.
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4Application to the rat heart

„"Knowing is not enough, we must apply. Willing is
not enough, we must do."

— Johann Wolfgang von Goethe
(Writer)
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4.1 Introduction

In this chapter we present the results of the numerical simulations of the bidomain
model and the modified bidomain model on slab of tissue, using the HD-MR Images of
the rat heart. The numerical part of this work has been done in collaboration with Yves
Bourgault from University of Ottawa, Canada. The HD-MR Images are done by Stephen
Gilbert, with whom we also had an important discussions on the topic.
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The rat heart ionic model has a much shorter AP duration than a human heart, and
the ionic model of AP dynamics is given as a complex physiological model. We use the
asymptotic analysis described in the Section 1.3.3, to be able to use Mitchell-Schaeffer
model instead and reduce the computational time.

The main part of this chapter is a description of the full process needed to obtain
the simulation on the real heart. We start from the HD-MRI of the heart and perform an
image analysis to segment the heart, detect fibrotic tissue, estimate its volume fraction,
build the mesh for the numerical computations and obtain all the parameters needed to
finally perform the 3D simulation.

4.2 Modified bidomain model adapted for the rat heart

4.2.1 Equations and dimensions

The problem we solve here is the homogenised bidomain model with modified
conductivities, that account for the extracellular space detected on the MR Images. The
non-dimensional version is given as follows,

∂th+ g(v, h) = 0, in [0, T ]× Ω,

N∇ ·
(
σi
∗∇ui

)
= |YB|(∂tv + I(v, h)), in [0, T ]× Ω,

N∇ · (σe∗∇u) = −|YB|(∂tv + I(v, h)), in [0, T ]× Ω,

∇ui · n = ∇u · n = 0, on [0, T ]× ∂Ω,

v(0, x) = v0(x), in Ω,

h(0, x) = h0(x), in Ω.

(4.1)

Here Ω denotes the rat heart. We have to be careful with the parameters scales. To have a
correct non-dimensionalisation we need to set the following parameters: Vm = Vmax − Vrest,
χ, Cm, ς, T and L. As it is explained in the Section 1.3.3, from here we will have the
non-dimensional number,

N = Tς
χCmL2 . (4.2)

First of all let us note that the rat heart has a much smaller size than a human heart. While
the human heart is of a size of a fist, measured in centimetres, the rat heart is of a size of
the tip of the finger, given in millimetres. Additionally the data that we are working on are
given in millimetres, hence we choose L = 0.001m.

The surface to volume ratio, χ, also needs to be adjusted. In the study by Satoh et
al, ([96]), they performed the morphological studies on the cardiac myocytes in several
species. In the Table 4.1 we show their data obtained in rats.
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Tab. 4.1: Morphometric data in rat ventricular myocytes

Cells (n) Length (µm) Width (µm) Depth (µm) V (pl) Cm (pF ) Cm/V
21 141.9± 14.9 32.0± 4.8 13.3± 1.6 34.4± 7.0 289.2± 68.8 8.44± 1.35

The specific capacitance of cell membranes is approximately Cm = 1µF/cm2 =
0.01F/m2, and is fairly constant among different cell types and species ([96]). From here
we can recompute the surface to volume ratio as,

χ = Cm
CmV = 8.44F/l

0.01F/m2 = 8.44× 105m−1 = 8.44× 103cm−1, (4.3)

which is four times larger than in the human heart. The characteristic conductivity, ς, is
kept the same as in the human heart. The conductivities of the healthy tissue, σi and σe,
are kept the same as in the model for the human heart. Based on the literature we have
similar conductivities for all mammalian hearts, no significantly different values are given
for different species [92]. The time scale is free to be fixed and we use T = 0.001s. Now
we are able to obtain the non-dimensional number, N = 0.0125.

4.2.2 The rat AP Mitchell-Schaeffer Model

The next step is setting the parameters of the MS model to correspond to the ionic
model of the rat heart. The ionic model that corresponds to the AP of the rat heart is given
in [84]. As it is explained in the Section 1.3.3, we are not interested in the full expression
of the ionic model. We are interested in the duration of each phase of the action potential.
The relevant parameters are given in the Table 4.2. We have different values for epicardial
and endocardial cells. In order to perform the asymptotic analysis we will use only the
values for the epicardial cells.

Tab. 4.2: Action potential characteristics in epicardial and endocardial models, from [84].

Parameter Vrest(mV ) dV/dtmax(V/s) PO (mV ) APD50 (ms) APD90 (ms)
Epicardial −80.44 145.41 35.75 12.99 39.68

Endocardial −80.37 181.41 47.08 37.83 76.43
Vrest - resting membrane potential, dV/dtmax - maximum upstroke velocity, PO - peak
overshoot, APD50 - action potential duration (50% repolarisation), APD90 - action potential
duration (90% repolarisation).

We have used the algorithm written by Ngoma, Bourgault and Nkounkou [81], that
enables us to automatically determine new parameters of the MS model.

Iion(v, h) = 1
τin

hv2(v − 1) + 1
τout

v,

g(v, h) =


1

τopen
(1− v), for v < vgate,

− 1
τclose

v, for v ≥ vgate.

(4.4)
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We have used the original code, provided by Yves Bourgault, and the details on the
algorithm can be found in [81].

Due to the very sharp depolarisation front, and a much shorter AP duration compared
to the human heart, some tuning had to be done to avoid the self-excitation in the MS
model. The vgate is set to be 0.02, and the time scales for the AP duration and refractory
period are adjusted, but the depolarisation time and the total duration of AP signal are
preserved to be as in the original model. The resulting parameters for the MS model are

τin = 0.073, τout = 8.369,

τopen = 25.743, τclose = 15.438,

vgate = 0.02.

(4.5)

The parameters for the bidomain model for the rat heart are summarised in the Table
4.3.

Tab. 4.3: Parameters of the bidomain model for a rat heart.

Parameter Value units
Vmax 0.035 V
Vrest −0.08 V

Vm 0.125 V
χ 8× 105 m−1

Cm 0.01 F/m2

ς 0.1 S/m
σ̃il 1.741 -
σ̃it,n 0.1934 -
σ̃el 3.906 -
σ̃et,n 1.970 -
T 1 · 10−3 s
L 1 · 10−3 m

N 0.0125 -

4.2.3 Main Contribution: image-based computation of the modified
conductivities

Finally, the parameters of interest in our study are the modified conductivities, σi∗ and
σe∗. They are computed from σ̃i and σ̃e, given in the Table 4.2, and from the knowledge
on the shape and volume of diffusive inclusions, as we have described in the previous
two chapters. Also, they depend on the fiber orientation in the tissue. Our goal is to
run the simulation of the homogenised model in the real rat heart, based on the HD-MR
images, hence we will need to perform some image analysis to precisely define the domain,
to obtain the mesh that will be used in numerical simulations and to define modified
conductivities.
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4.3 Image analysis

In what follows we give a detailed explanation on each step of the image processing
we need to perform to be able to run the simulation on the real rat heart. The flowchart
on the process of the obtaining parameters from the images is given in the Figure 4.1.

One of the difficulties of this work is dealing with many software and different kinds
of files that these software support. In particular, we use the open source software Seg3D
[21], and SCIRun [56], developed at the SCI Institute at the University of Utah, to perform
most of the analysis. We also use Matlab [74]. Finally, we perform simulations with
Freefem++ [52], and use Paraview [1], to visualise our results. As these software do not
all support the same type of files, to perform conversions we use few scripts written in the
programming language Perl [107].

Fig. 4.1: Flowchart of image analysis.

4.3.1 HD-MRI Data

The starting point for us here are the data of the real rat heart. Data provided by
IHU-Liryc, Bordeaux1. The HD-MR Imaging has been performed by Stephen Gilbert, to
whom we want to thank for his very insightful comments on the cardiac histology, effects
of fiber orientation and fibrotic tissue and detailed explanations of the provided data.

The detailed description of the images can be found in the paper of Gilbert et al
2012, [46]. The MR Imaging have been performed on the heart of male Wistar rat. After

1https://www.ihu-liryc.fr/en/
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Fig. 4.2: HD-MR Images of the rat heart. From Giblert et al. (2012), provided by IHU-Liryc,
Bordeaux. The size of the image 256 × 256 × 512. Screenshot of the data imported
in Seg3D. Left – volume view; Right – sagital, coronal and axial view of the selected
cross-sections.

the proper preparation of the heart, the heart was perfused with MRI contrast agent and
fixative, and then stored in contrast/fixative solution until imaging. The heart was imaged
using a T1 weighted FLASH (Fast Low Angle SHot) MRI sequence in a Bruker (Ettlingen,
Germany) 9.4T spectroscope with 20 averages and echo time (TE) = 7.9ms, repetition
time (TR) = 50ms, and flip angle 40◦, at a resolution of 50× 50× 50µm, a matrix size of
256× 256× 512 for a field of view of 12.8× 12.8× 25.6mm. The data are imported into
Seg3D as visualised in the Figure 4.2.

4.3.2 Segmentation

First of all, we need to have a defined domain of simulation. For this we use the
segmentation techniques to extract the region of interest from the MR Images. We use
Seg3D software to mark the slab of tissue we are interested in. We use several filters
to mark the region of interest. When performing segmentation many things have to be
corrected manually. One should be careful that the region of interest is connected, that the
filters did not produce an accidental holes in the tissue. Additionally one should be careful
with the boundaries and make sure that there are not too small or too sharp corners, which
could affect the mesh generator to produce "bad" triangles in the mesh. We have used
several filters and tools available in the Seg3D software:

• Median filter - it is a non-linear filter that reduces noise and preserves or enhances
sharp boundaries. For every pixel (except the edges), this filter finds the median
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(a) Segmentation of the slab of the tissue, position in the heart.

(b) Segmentation of the slab of the tissue, volume view.

Fig. 4.3: Segmentation of the tissue slab using Seg3D.

value of the grey scale of the neighbouring pixels and uses this value to replace the
original pixel. The neighbourhood is controlled by the distance parameter. We use
the distance parameter that equals 3.

• Threshold - the tool that is always applied on the data layer, and creates the mask.
The mask is the image of the same size where each voxel has assigned values 0 or 1,
based on some criteria. When we use the tool threshold, it is based on the range of
the grey scale values that we want to segment. In other words, this tool is used to
split roughly voxels into those who belong to the heart tissue (that get value 1) and
those that belong to the void (that get value 0).

• Paint brush - the tool used to fix the noise. After the threshold is applied on a data
layer, there are some voxels that get assigned wrong values. This creates unrealistic
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holes in the heart tissue, as well as some artificial "heart" voxels around the heart
borders or in the void. Hence, we use the paint brush manually, layer by layer, to fix
"bad" voxels.

• Crop - the tool for assigning values 0 or 1 based on the position of the voxel in the
image. We use this tool to determine the part of the heart that we want to run our
simulation on. We crop out the part of the wall of the left ventricle.

• Arithmetic filter - runs basic arithmetic and boolean operations on both image and
mask data on a voxel by voxel basis. We use the boolean AND to combine the mask
crated by the tool crop and the mask that represents the heart tissue, to obtain the
correct domain for our simulation.

The result of our segmentation is shown on the Figure 4.3. One should notice that
even though the Seg3D software works with the image layers and voxels, the output files
preserve the information on the space scaling, so we are able to pass them to some other
software and work with metric dimensions.

4.3.3 Defining diffusive inclusions

The images that we use have been done by Stephen Gilbert and collaborators in
order to study the laminar structure of the heart tissue. In our case we use these images to
simulate the AP propagation in the fibrotic tissue. There is an obvious disadvantage, as the
presented heart is healthy in a real-life. The gaps between layers are enlarged with the
perfusion for the imaging purposes, to emphasize the myofiber and myolaminar structure
in the healthy heart. In reality these gaps are much smaller. With this in mind, we are
making a modelling assumption: that these gaps represent the fibrotic or fatty tissue that
we interpret as diffusive inclusions. Our goal is to demonstrate that based on HD-MRI we
are able to reconstruct and implement the modified bidomain model with a reasonable
approximation. Once we have the relevant MRI we would be able to obtain more accurate
modelling of the inclusions in a heart.

The next step is to decide what is considered to be the diffusive inclusion. We need
to go back to the original HD-MRI to get into the smaller scale image analysis. On the
MRI the tissue is represented with white and the extracellular space with black voxels.
The simplest way to decide if the voxel belongs to the "normal" cardiac tissue or to the
inclusion is by using the threshold on grey scale in MRI. Since we work on a small scale,
we do not perform any additional fixing of the shapes of the inclusions, as it would be
daunting work and we have no information based on which we would improve the results
manually. Hence, we are satisfied with a simple threshold approach. After this we use
the Arithmetic filter to extract the inclusions only on the segmentation, and not on the
complete image. See Figure 4.4.
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Fig. 4.4: Defining inclusions. Pink - the segmented computational domain, purple - inclusions.

Fig. 4.5: Defining inclusions using different threshold values on the segmentation. Pink - the
segmented computational domain. Green - the volume representation of the inclusions.

Fig. 4.6: Inclusions with the MR Images. Green - the volume representation of the inclusions.
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We compare different thresholds in one layer of the segmentation in the Figure 4.5.
And the closer look for the first threshold value is shown in the Figure 4.6.

4.3.4 Computing volume ratio: |YB| = 1− |YD|

In the modified bidomain model we proposed there is an effect of diffusive inclusions
on the conductivities, while both volume ratio and the geometry of inclusion play a role.
Here on the other hand, we assume that inclusions are all of the same shape, the shape of
super-ellipsoid whose surface is given with the equation

∣∣∣∣ xrx
∣∣∣∣n +

∣∣∣∣∣ yry
∣∣∣∣∣
n

+
∣∣∣∣ zrz
∣∣∣∣n = 1.

This approach allow us to be able to use the results from the Section 3.2.4, where we take
the results for the case I, i.e. when rx = ry = rz. In reality the inclusions are not all of
the same shape, and we should perform some additional image analysis to assess the best
approximate shapes. While this would be a better approximation, we keep things simple
and use only this type of inclusions throughout the tissue.

Now if we have the geometry of the inclusions, we focus on analysing their local
volume ratios. For this purpose we use Matlab software. The input file is the matlab file
(exported from Seg3D), that contains image of the size 256× 256× 512, where voxels have
value 1 if they belong to the inclusion on the segmentation, and all others are zero. We
apply the following algorithm:

1. Around each voxel of the image use the window of a given size, we work with the
window size W := [5× 5× 5];

2. Count the number, num, of the voxels inside of the window that belong to inclusions,
here 0 < num < 125.

3. Devide num with the total number of voxels in the window, here with 125.
4. Assign to each voxel of the image this local volume ratio, |YD| := num

125 .

As one can notice, the local volume ratio will depend on two parameters: 1) the threshold
for the inclusion detection, and 2) the window size.

What we perform with Matlab is similar to the Seg3D mean data filter. We could
not use Seg3D in this case, because we had to work with the values on the voxels in the
mask, and not on the data layer, which in our version of the software is not supported.
For the full list of the available filters in Seg3D and the detailed explanations we refer
the reader to the wikipage: http://scirundocwiki.sci.utah.edu/SCIRunDocs/index.
php5/CIBC:Seg3D2:Reference .

In the case of lower pixel density of the image, for example in the case of bigger
hearts or for the lower resolution of the MRI, one could directly use the relative value of
the grey scale intensity to decide the volume fraction. Say, maximum value of the grey
scale in the image is M , and minimal is m. If the grey scale of the given voxel is x, the
volume fraction for this voxel would be: x−m

M−m .
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4.3.5 Mesh

The next step is to obtain the mesh of the segmented domain. The SCIRun software
is organised in modules, where each module performs one task. The modules can be
connected to each others, so that the output of one module is used as an input of the
other. The programs are essentially schemes, visual and intuitive. The available modules
go from those for importing files, via those for performing many functions from simple
arithmetic to solving partial differential equations, to those for the visualisation. We will
make use of this software for two main things: generating the mesh and mapping the
relevant parameters on the mesh. For the mesh generation the main modules that we use
are:

• Read Field - module that, as the name says, reads the input file. In this case the
segmentation file, generated with Seg3D.

• ExtractIsosurface and FairMesh - modules for setting the parameters for mesh
generation. In particular, ExtractIsosurface extracts an isopotential surface from
a scalar field. And the FairMesh smooths surface meshes without shrinking them.
These two are used for defining the surface that will be filled with tetrahedra with
the following module.

• InterfaceWithTetgen - module for calling the TetGen software for meshing, where
we can set additional options. Among others we can set the mesh quality by setting
the minimum radius-edge ratio, and impose the maximum volume constraint on all
tetrahedra.

The generated mesh can be exported with different file extensions, we chose .VTK. The
result is a fine mesh, that has: 351706 nodes and 1924747 elements, i.e. tetrahedra. See
Figure 4.7.

4.3.6 Mapping volume fraction on mesh

For the numerical simulation, every parameter of the simulation has to be defined
on the mesh. At the moment we have the volume fraction defined on each voxel of the
image, and this parameter needs to be mapped on the mesh. For this purpose we use again
SCIRun software. The modules used here are the following:

• Two different Read Field modules, one reads the mesh file and the other the file
with the information about the volume fraction.

• MapFieldDataOntoNodes - Interpolation of data from one mesh or point cloud to
another mesh or point cloud. The output mesh will have the data located at the
nodes. We use it for mapping the volume fractions defined on the voxels of the
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image, onto nodes of the mesh. Let us note that both files contain the information on
the physical size and coordinates of the voxels, that is used for the correct mapping
of the information.

The volume fraction mapped on the mesh is shown in the Figure 4.8.

Fig. 4.7: Mesh of the computational domain. Generated with SCIRun. Size: 351706 nodes and
1924747 elements.

Fig. 4.8: Volume ratio of the inclusions, |YD|, on the mesh nodes.
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4.3.7 Fibers directions on mesh

As we have described in the introduction, section 1.3.2, the fiber structure in the
cardiac tissue leads to anisotropy in the bidomain model. Hence, for the simulation of the
bidomain model it is important to assess the fiber orientation in the tissue.

Various techniques can be used to obtain the fiber direction such as histology, optical
techniques and diffusion tensor MRI (DT-MRI). One way to impose the fiber directions in
the ventricles is rule-based fiber orientation, where the direction changes smoothly from
endocardium to epicardium [62]. This is a reasonable approximation in a case where we
do not have any access to the realistic fiber orientation.

The more precise technique is use of the DT-MRI. It is a non-invasive imaging method
that uses the diffusion of molecules to generate a contrast on MR images. This technique
exploits the fact that the diffusion of molecules is not free, but it is constrained with
obstacles such as cell membranes. For our study, we will use the data from DT-MRI.

The provided data from DT-MRI are given on the four times coarser image than the
original HD-MRI data, i.e. 64 × 64 × 128, but for the same view field, i.e. the spacing
between voxels is four times bigger, and it is 0.2× 0.2× 0.2mm. The file is given in .VTK

format, and it contains vectors of the fiber orientations. To be able to use these data in our
simulation, we have to map it on the mesh nodes. For this purpose, we use again SCIRun
software. Our version of the software does not support the import of the vector files in .VTK

format, so we had to split the given file into three files that contain separately information
for x-, y- and z- coordinates of the vectors. Then we use the scheme in SCIRun to combine
them back into one file of the .NRRD format2, and to visualise them as in the Figure 4.9,
left. As one can notice, we have fiber orientation provided on the full heart. To map fibers
on the segmentation and on the mesh, like before, we use MapFieldDataOntoNodes. The
results are presented in the Figures 4.9, right, and 4.10. The software gives the continuous
bidirectional vector field throughout the domain.

Fig. 4.9: The bidirectional vector field of the fiber orientations. Data obtained from Giblert et al.
2012 [46], the original data on the full heart (left) and the projection of the fibers on the
segmentation (right). Visualised with SCIRun.

2http://teem.sourceforge.net/nrrd/index.html
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Fig. 4.10: The bidirectional vector field of the fiber orientations projected on the mesh nodes,
visualised with SCIRun. This field is much finer than the one in the Figure 4.9, due to
the much higher number of nodes in the mesh, compared to the number of voxels in
DT-MR image.

4.4 Simulation in FreeFem++

At this moment we have obtained all required data from the images. We have
segmented and meshed the domain of interest, obtained the volume fraction of the
inclusions throughout the domain, and finally we mapped the fiber orientations and
volume fraction on the mesh nodes. All these informations are saved in the .VTK files, that
are the input files to our FreeFem++ code for running the simulation. Now we focus on the
numerical scheme and the additional processing that needs to be done in the FreeFem++
program.

4.4.1 Effective conductivities based on the HD-MRI

Before proceeding to the final stage of the simulation, where we can apply the numer-
ical scheme and solve the system of PDEs, we need to make sure that the conductivities
are properly set on each node of the mesh. Perl is used to convert .VTK3 files into .MSH4

file for the mesh, and simple text files for the volume fractions and fiber directions. This
part of the work is performed in Freefem++.

3http://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf
4http://gmsh.info/doc/texinfo/gmsh.html#MSH-ASCII-file-format
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The intracellular and extracellular conductivity tensors for the standard bidomain
model are constant throughout the heart tissue and their scaled eigenvalues, σ̃il,n and σ̃el,n,
are given in the table 4.3. We made an assumption that all diffusive inclusions are of the
same shape, a shape of superellipsoid as in the Case I, described in the section 3.2.3. In
the section 3.2.4, we calculated the effective conductivities σi∗l,n and σe∗l,n with respect to
the volume fraction, |YB|, and for given σ̃d. Here we will use σ̃d = 0.2 and 3.0.

We already have assigned the local volume fraction, |YD| = 1− |YB|, to each node
in the mesh. The plot of |YB| is shown in the Figure 4.11. Now, we are going to use the
results from the section 3.2.4 as a "look-up table" to assign the modified conductivities to
each node in the mesh, based on this local volume fraction. Obviously, in the "look-up
table" we have the exact results for certain values of |YB| < 1. For those values of |YB| for
which we do not have the exact results on σi∗l,n and σe∗l,n, we use the linear approximation
between two closest known values. Also, for the nodes in which |YB| = 1, we do not
change the conductivity values, i.e. σi∗l,n = σ̃il,n and σe∗l,n = σ̃el,n.

Resulting modified conductivities are assigned on each node of the mesh, and the
results are presented in the the Figures 4.12 and 4.13.

Fig. 4.11: Volume fraction |YB | on the mesh from two sides of the tissue slab.

Fig. 4.12: Conductivities eigenvalues after applying the volume fraction |YB | for σd = 0.2, without
effect of fibers.
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Fig. 4.13: Conductivities eigenvalues after applying the volume fraction |YB | for σd = 3.0, without
effect of fibers.

Note that these conductivities still do not include the information on the fiber direc-
tions, i.e. they are given as if all the fibers were aligned with the x-axis. So, additional
processing needs to be done to obtain the conductivities that we will use directly in the
simulation. For each node of the mesh we have stored the direction of the fiber, as a vector
al = (fx, fy, fz). Then, based on section 1.3.2 and equation (1.63), we compute the final
conductivities as

σi
∗ =


σi∗n + (σi∗l − σi∗n )fxfx (σi∗l − σi∗n )fxfy (σi∗l − σi∗n )fxfz

(σi∗l − σi∗n )fxfy σi∗n + (σi∗l − σi∗n )fyfy (σi∗l − σi∗n )fyfz
(σi∗l − σi∗n )fxfz (σi∗l − σi∗n )fyfz σi∗n + (σi∗l − σi∗n )fzfz

 ,
and the same for the extracellular conductivity. Note that for the standard bidomain model,
when computing the conductivities, the starting point are the values given in the table 4.3.
And we only need to apply the effect of the fibers, since the volume fraction is everywhere
|YB| = 1.

4.4.2 Space and time discretisation

Now we have all the required parameters for the computation. To run the simulation
we need a time-space numerical scheme for solving the modified bidomain model 4.1. The
modifications are accounted in the conductivities, σi∗ and σe∗, and the parameter |YB|,
otherwise the homogenised model is exactly the standard bidomain model. The proof for
existence and uniqueness for the bidomain model, for the isolated heart (without torso),
can be found in [14, 105, 40]. We are free to proceed directly to the numerical solutions
of our problem.

For the space discretisation we use the finite element approach. We need the appropri-
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ate variational formulation of the problem. We use the one of the parabolic-elliptic problem,
as follows: for all t > 0, find the solution (v(t, ·), ue(t, ·), h(t, ·)) ∈ H1(Ω)×H1(Ω)×L∞(Ω),
such that

∫
Ω u

e = 0, and

|YB|
∫

Ω
(∂tv + Iion(v, h))φ+ N

[∫
Ω

(
σi
∗∇v

)
∇φ+

∫
Ω

(
σi
∗∇ue

)
∇φ
]

= 0,∫
Ω

((
σi
∗ + σe∗

)
∇ue

)
· ∇ψ +

∫
Ω

(
σi
∗∇v

)
· ∇ψ = 0,

∂th+ g(v, h) = 0,

(4.6)

where φ(t), ψ(t) ∈ H1(Ω) and
∫

Ω ψ(t) = 0. The initialisation of the AP propagation is
achieved by setting the proper initial conditions v0 and h0.

For the time discretisation for the bidomain model we use the second order semi-
explicit backward differential formulae (SBDF2), [35]. Let N be a given integer and
take the uniform partition of the interval [0, T ] into intervals of the size ∆t = T/N . We
look for the numerical solutions of our problem at the times tn = nT/N = n∆t, where
n ∈ 0, 1, .., N . Denote by (vn, uen, hn) the approximation of (v, ue, h) obtained at the time
tn. For the first step we need to apply the Explicit Euler scheme, to obtain the solution at
the time t1, and to be able to apply SBDF2 for tn, n ≥ 2. See the algorithm 4.

4.4.3 Results

For our simulations we use the FreeFem++ software. We run one test case with
several implemented solvers such as conjugate gradient (CG), MUMPS, sparse solver, etc.
Finally we use CG solver as it has the most suitable performance from the memory and
speed point of view.

We perform the first simulation on the standard bidomain model, including the
information on fiber orientation and with the following parameters:

• time step, ∆t = 0.05,

• final time, T = 500,

• initial data: v0 = 0.9e−2((x−9.5)2+(y−8)2+(z−6)2), and h0 = 0.9.

We use Paraview([1]) to visualise the results of the simulation, Figure 4.14. Then we run
two simulations with the modified conductivities, the first one corresponding to σ̃d = 3.0,
and the other corresponding to σ̃d = 0.2. The results are shown in the Figures 4.15 and
4.16, respectively.

As we have expected we have the reduction in the velocity of the propagation, but not
on the shape of the wavefront. This change in the velocity does not seem to be significant.
One should keep in mind that data from HR MRI are on the healthy heart, hence we could
not observe significant fibrosis in the tissue. Note also that we used the values of σd that
are of the same scale as the intracellular and extracellular conductivities. Hence, one
might expect different results if the value of σd is much smaller than that.
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Fig. 4.14: Simulation of the bidomain model on the slab of tissue. Times: 5, 10, 15, 20, 25, 30, 35,
40, 60 and 80 ms.
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Fig. 4.15: Simulation of the modified bidomain model on the slab of tissue, corresponding to
σ̃d = 3.0. Times: 5, 10, 15, 20, 25, 30, 35, 40, 60 and 80 ms.
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Fig. 4.16: Simulation of the modified bidomain model on the slab of tissue, corresponding to
σ̃d = 0.2. Times: 5, 10, 15, 20, 25, 30, 35, 40, 60 and 80 ms.
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Algorithm 4 Discretisation scheme for modified bidomain model

1: Define ∆t, T and N := T
∆t .

2: Define var. form. space H1(Ω) with P1 elements.
3: Declare uin, un, vn, hn, φ, ψ ∈ H1(Ω), for n = 0, .., N.
4: Define v0 := v0, h0 := h0.
5: Solve the coupled system with EE to obtain v1, u1:

|YB|
∫

Ω
v1φ− |YB|

∫
Ω

(v0φ+ ∆tIion(v0, h0)φ)

+∆tN
[∫

Ω

(
σi
∗∇v1

)
∇φ+

∫
Ω

(σ∗∇u1)∇φ+
∫

Ω

(
σi
∗∇v1

)
∇ψ +

∫
Ω

(
(σi∗ + σ∗)∇u1

)
∇ψ

]
= 0

6: Solve the ODE to obtain h1:∫
Ω
h1φ =

∫
Ω

(h0 + ∆tg(v0, v0))φ.

7: for n = 1 to N do
8: Solve the coupled system with SBDF2 to obtain vn+1, un+1:

|YB|
∫

Ω

3
2vn+1φ−|YB|

[∫
Ω

(
(2vn −

1
2vn−1) + ∆t (2Iion(vn, hn)− Iion(vn−1, hn−1))

)
φ

]

+∆tN
[∫

Ω

(
σi
∗∇v1

)
∇φ+

∫
Ω

(σ∗∇u1)∇φ+
∫

Ω

(
σi
∗∇v1

)
∇ψ +

∫
Ω

(
(σi∗ + σ∗)∇u1

)
∇ψ

]
= 0

9: Solve the ODE to obtain hn+1:∫
Ω

3
2hn+1φ =

∫
Ω

(
2hn −

1
2hn−1 + ∆t (2g(vn, hn)− g(vn−1, hn−1))

)
φ.

10: Define vn+1 := uin+1 − un+1.

4.5 Discussion

What we demonstrated in this chapter is that our model is applicable in real-life
settings, i.e. for the heart for which enough imaging data are available. We have used
the HR MRI data for the rat heart. Since this heart is very small the images contained a
detailed structure of the ventricular myocardium, so we were able to define the fibrotic
inclusions. We have segmented a part of the left ventricle of the heart, and analysed images
to obtain the local volume fractions of the fibrotic tissue. With this, we run the simulation
of the modified bidomain model, without additional computational cost compared to the
standard bidomain model. We conclude that we have a rigorous and practical way to link
the effects of the structural changes in the tissue, as observed in HR MRI, to the changes
in the macroscopic electrical behaviour. In the future work we would like to use our model
to asses the modified conductivities in diseased tissues, especially in such settings where
the effects would be more visible (e.g in scars).
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„If we knew what we were doing, we wouldn’t need
research.

— unknown author
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5.1 Introduction

Here we deal with the propagation of the signal on the scale of a few cardiac cells.
Such models are numerically very challenging, and they should not be used for the
simulations on the larger scales. But they provide closer insight into the contributions of
different parameters of the models. More specifically, we are interested in understanding
the non-static electrical properties of gap junctions.

The cardiac cells are surrounded by an extracellular matrix and neighbouring cells
are electrically connected via gap junctions (GJ). Gap junctions are clusters of gap junction
channels (GJCs) that are mainly localised on the longitudinal ends of the cells, where
they compose the intercalated disks. These channels play a role of resistance pathways for
the direct cell to cell propagation by providing the direct passage of molecules and ions
between adjacent cells. See Section 1.4.

In the usual continuous models for the electrical propagation, the GJCs are tiny
channels between cells which interior domains extend the intra-cellular domain, e.g.
simple linear electrical conductors. However, the voltage clamp experiments (e.g. [50,
30, 31]) have shown that GJCs exhibit a non-linear voltage and time dependence on the
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difference of membrane potential between adjacent cells.
We propose a 2D/3D microscopic mathematical model that takes into account the

non-linear behaviour of GJCs. We use non-standard geometrical setting for the tissue
micro structure, where we abandon the physical connection between adjacent cells. We
keep the functional relation between the intracellular potentials between the adjacent cells
via boundary conditions.

There has been some interesting work done on the microscopic modelling of the
tissue, on a scale of several tenths to a couple of hundreds cells [100, 102, 101]. The
model proposed in these works is very interesting, as their simulation is given in 3D,
assumes a complex shapes of myocytes which are more realistic than a simple rectangles,
and provide a good insight on the effects of the parameters. In their study they show that
different conductance of the gap junctions leads to quite different electrical behaviour
of the tissue, including the effect on the average conductivity and anisotropy ratio. On
the other hand, they model gap junctions as a simple resistors, and do not incorporate
dynamical behaviour of the GJCs that we are interested in.

5.2 Experimental Data on Cx43 and Cx45 in rat

The technique used to perform the dual voltage clamp experiment is described in
details in del Corso et al. (2006). This technique was first proposed by Harris et al. (1981).
It is used to assess the behaviour of GJCs between a single pair of adjacent cells. The
patch clamp electrodes are inserted in each cell and a constant transjunctional voltage Vj
is applied, which provides the insight into the time evolution of the transjunctional current
Ij , and junctional conductance Gj = Vj/Ij . See Section 1.4.

The behaviour of GJCs is described with the following parameters: Gj,max and
Gj,min represent the maximal and minimal junctional conductances, respectively, and
Gj,0 and Gj,∞ represent instantaneous and steady state junctional conductances. Due
to limitations of the experimental setup, Gj,max and Gj,0 are not necessarily the same.
The dynamics is described by τj,∞ that describes the time rate at which the GJCs transit
from the instantaneous to the steady state. The conductivities Gj,0 and Gj,∞, and τj,∞ are
measured with respect to transjunctional voltage, Vj . We use Gj,0, as a reference value for
the maximal conductance that can be achieved in alive tissue. See the section below for
details.

All parameters depend on the type of connexins that form GJCs. In healthy ventricular
myocytes the most expressed connexin is Cx43, and in much smaller amount Cx45. Hence
we focus on GJCs formed by these two connexins. The experimental data (Desplantez et
al. 2004, 2007, 2011), shown in Figure 5.1, suggest that the conductance of homomeric
homotypic Cx43 and Cx45 GJCs is symmetric with respect to Vj = 0 mV. While we know
that GJCs can express significantly different behaviour in case of heteromeric or heterotypic
GJCs, for the modelling purposes we will focus only on these two types of the GJCs.
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5.3 Non-linear gating model

Even though the behaviour of GJCs has been for a long time observed and described
as non-linear (Harris 1981), currently the common way to model GJCs in the tissue is to
assume passive behaviour. This means that the electrical current for a given transjunctional
voltage Vj ,

Ij = GjVj , (5.1)

is assumed to be linear, i.e the junctional conductance Gj is assumed to be constant. This
simplification is useful and in the healthy tissue it is a good approximation, due to the very
different time scales for GJCs (order 3s) compared to ionic channels (order 20-300ms).
Here we want to observe the importance of the dynamical behaviour of GJCs. Hence, we
use non-linear functions to fit the experimental data presented above.

We assume that GJCs behave as gates and the data are used to specify the nature and
behaviour of the gating variables. The rates at which the gates open or close depend on
the transjunctional voltage. We write the conductance as follows

Gj(t, Vj) = Gj,maxgj(t, Vj), (5.2)

where Gj,max is the above mentioned maximal junctional coupling, and gj represents the
non-linear gating variable, that takes values between 0 and 1.

We use the work of Harris et al. (1981) [98, 50], to describe the model for the gating
variable. The reasoning is similar to this described in Section 1.2.3. The channels can be
in one of two states: open or close,

C
α
�
β
O, (5.3)

and α and β are rate constants that are voltage dependent. The difference with the
standard ionic channels, is that we assume that the closed state is not completely closed,
and we can refer also to these two states as high- and low-conductance states. When the
voltage is kept on the constant value, α and β are also constant. Then, if n is the fraction
of open channels, the dynamics of n at the given constant voltage is given as

dn

dt
= −βn+ α(1− n). (5.4)

The solution is,

n = n∞ + (n0 − n∞)e−
t

τj,∞ , (5.5)

where n0 and n∞ are the initial and the steady state values of n, respectively, and τj,∞ is
the time constant, such that

n∞ = α

α+ β
, and, τj,∞ = 1

α+ β
. (5.6)
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The equivalent ODE to (5.4), now can be written as

dn

dt
= n∞ − n

τj,∞
. (5.7)

From the kinetic theory and Boltzmann relation, we know that the opening and closing
rates, α and β are exponentially related to the energy difference between these two states,
i.e. to the voltage field across the junction, and can be expressed as

α = λe−Aα(Vj−Vj,0),

β = λe−Aβ(Vj−Vj,0),
(5.8)

where Vj is the transjunctional voltage, and Vj,0 is the transjunctional voltage at which
the conductance is half minimal (n = 1/2), and Aα and Aβ are constants expressing the
voltage sensitivity. From here and from (5.6), we express n∞, as

n∞ = 1
1 + eA(Vj−Vj,0) , (5.9)

where A = Aα +Aβ.
Now, if γo and γc are the conductivities of a single open and closed channel, and if

N is the total number of channels, then the maximal conductance is Gj,max = γoN , the
minimal conductance is Gj,min = γcN , and total conductance of the gap junction is given
as

Gj = γonN + γc(1− n)N (5.10)

= n(Gj,max −Gj,min) +Gj,min. (5.11)

To obtain the expression for the gating variable we need to scale the total conductance
with its maximal value, gj = Gj/Gj,max. So, the gating variable is given as,

gj = n(1− gj,min) + gj,min. (5.12)

The steady state value of the gating variable is

gj,∞ = nj,∞(1− gj,min) + gj,min, (5.13)

and using (5.9), we have,

gj,∞(Vj) = 1− gj,min
1 + eA(Vj−Vj,0) + gj,min. (5.14)

From (5.6),(5.8) and , we can see that the time constant also has an exponential depen-
dence on Vj , that we simplify into

τj,∞(Vj) = ae−bVj . (5.15)

120 Chapter 5 Functional heterogeneities



As we will see further, the parameters gj,∞ and τj,∞, can be fitted from the experimental
data. Finally, using (5.7) the gating variable dynamics is expressed as

dgj
dt

= gj,∞(Vj)− gj
τj,∞(Vj)

, (5.16)

with the solution for a constant Vj ,

gj = gj,∞ + (gj,0 − gj,∞)e−
t

τj,∞ . (5.17)

5.4 Data fitting

The dynamics of the gating variable is described by a simple ODE (5.16), where gj,∞
and τj,∞ are fitted to the experimental data (Figures 5.1 and 5.2). The data are obtained
from the work of Desplantez et al 2004, 2007 and 2011.

We fit the relationship between gj,∞ and Vj to a Bolzmann equation 5.14 where Vj,0
is the voltage at which the conductance is half-minimal, gj,min is a normalised voltage-
insensitive residual conductance and A is a parameter defining the steepness of voltage
sensitivity. We fit the relationship between τj,∞ and Vj in an exponential way, as in (5.15).

Fig. 5.1: Dependence of the normalised gap junction conductance gj,∞ (lower curves) and
gj,0(upper curves) on junctional potential Vj for homotypic Cx43 and Cx45 channels.

The parameters obtained from the data fitting in the case of homotypic Cx43 and
Cx45 GJCs are presented in Table 5.1.
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Fig. 5.2: Kinetics of inactivation, τj,∞ as a function of Vj for homotypic Cx43 and Cx45 channels.

Tab. 5.1: Parameters obtained from the experiments and the data fitting. The units in the table are
the following: Gj,max in nS, Vj,0 in mV , A and b in mV −1 and a in ms.

Gj,max gj,min Vj,0 A a b

Cx43 68.3 0.27 60.5 0.098 33880 -0.06
Cx45 2.0 0.16 38.6 0.1 132330 -0.07

5.5 0D simulation

We perform 0D simulation for the gap junction current with the non-linear model for
the GJ conductance, i.e.

Ij = Gj,maxgj(t, Vj)Vj , (5.18)

gj(t, Vj) = gj,∞(Vj) + (gj,0 − gj,∞(Vj))e
− t
τj,∞(Vj) , (5.19)

gj,∞(Vj) = 1− gj,min
1 + eA(Vj−Vj,0) + gj,min, (5.20)

τj,∞(Vj) = ae−bVj , (5.21)

where the parameters Gj,max, gj,min, A, Vj,0, a, and b, are obtained from the data fitting,
and are given in the Table 5.1. Initially all the channels are assumed to be open, hence
gj,0 = 1. Note that we do not use the fit function for the instantaneous conductance.

In the Figure 5.3 we show the results obtained in the study of Desplantez et al, 2004,
from which we obtained the data for the fitting of the gj,∞ and τj,∞. In the Figure 5.4,
we plot the currents for fixed Vj = ±10,±40,±70,±100, and ±130 mV. The numerical
results for Cx45 correspond to the experimental observations, i.e. are of the same order.
As for the results for Cx43 we can observe that the model gives the currents that are
almost ten times higher than those in the experiment. This can be explained in the fact
that Gj,max = 68.3 nS. This value is obtained from another experiment, and as we already
discussed in the introduction (Section 1.4.2), the limitation of the patch clamp experiment
leads to underestimation of the gap junction current when the maximal conductance is
larger than ≈ 10 nS.
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In order to recover the experimental results, we reduce the maximal conductance

Fig. 5.3: Experimental results
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Fig. 5.4: Transjunctional current simulated with the parameters obtained from the experiments
and the data fitting.

to Gj,max = 5.45 nS, and show the corrected result in the Figure 5.5. Now the results
of the corrected model match with the experiment. However, since we are aware of the
limitations of the experiment, in our further simulations, we will keep the actual value for
Gj,max = 68.2 nS.
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Fig. 5.5: Transjunctional current for Cx43 simulated with the parameters obtained from the
experiments and the data fitting + corrected Gj,max.
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5.6 Thoughts on the tissue model with non-linear GJCs

5.6.1 Motivation

The main reference in this section is the work of Beauchamp et a.l 2012, [8]. In this
study they quantify the relation between the degree of heterogeneity in Cx43 expression
and disturbances in electric propagation. The full details of the experiment can be found
in [8]. They engineered patterns of murine strands (4-5 mm in length and 50, 100 or 200
µm in width) from various mixtures of wild-type Cx43 that co-express Cx43 and low levels
of Cx45, and Cx43KO cells (knockout of Cx43, i.e. cells that do not express Cx43).

The propagation velocity was measured from the time difference in average activation
and the distance between 2 regions of interest in the various cell mixtures. The original
velocity of 30.5 cm/s in the strands with only wild-type Cx43 cells, dropped to 76%, 55%
and 19% of the original velocity when the ratios of Cx43 and Cx43KO cells were 80%:20%,
50%:50% and 20%:80% respectively. Finally the velocity drops to 2.1 cm/s for the strands
with only Cx43KO cells.

We would like to develop a model that replicates such behaviour. We would like to
study if this change in dynamics could be seen as the direct consequence of the change
in the gap junction type. For the modelling purposes we assume that the Cx43KO cells
behave as the homotypic Cx45 channels.

5.6.2 Model for a strand of cells

We propose a microscopic mathematical model for the signal propagation in the tissue.
We use a non-standard geometrical setting for the tissue micro structure. Namely, we
represent each myocyte as a separate rectangular domain, where the boundary represents
the cell membrane, see Figure 5.6. Furthermore, we split the boundary into "ionic" and
"junctional" boundaries and we apply the ionic model on the former and the previous non-
linear GJ model on the latter. In this way, even if we do not have the physical connection,
as is the case in the standard settings, we keep the functional relation between adjacent
cells via boundary conditions. The governing equations for the potentials in both intra and
extracellular spaces are Laplace equations.

−σi∆ui =0, in Ωi,

−σe∆ue =0, in Ωe,
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Fig. 5.6: Geometric settings for 2D mathematical model. Ωi, Ωe - intra and extracellular domains,
Γion - "ionic" boundary, Γj - "junctional" boundary.

The ionic properties of the membrane are taken into account as the boundary conditions
on the "ionic boundary".

∂tVm + Iion(Vm,h) = −σi∇ui · n,
∂tVm + Iion(Vm,h) = −σe∇ue · n,

∂th = fion(Vm,h),

 on Γion.

Here, Vm = ui − ue is transmembrane potential, σi and σe are intra and extracellular
conductivities and h is a vector of variables in the ionic model. For this study we choose
Beeler Reuter ionic model, [10].

The non-linear gap junctions are taken into account as a boundary condition on the
"junctional boundary".

Gj,max gj Vj = −σi∇ui · n,
∂tgj = (gj,∞(Vj)− gj)/τj,∞(Vj).

}
on Γj . (5.22)

Here, Vj represents the transjunctional jump of potential in the adjacent cells, gj,∞ is given
as (5.14) and τj,∞ as (5.15). We assume that the system is isolated, i.e. we have the
homogeneous Neumann boundary conditions on the external boundary, and on Γj ,

σe∇ue · n = 0, on ∂Ωe \ Γion and Γj . (5.23)

We set the initial conditions such that the system is in the steady state. In order to observe
the signal propagation we need to provide a stimulus. This is done as follows: on one side
we keep the "ground" and on the other we apply the difference of potential, Vstim, that
can trigger AP in the first cells that are affected. In other words, during the stimulation
time t ∈ [t0, t0 + tstim], where t0 is the beginning of stimulation, we solve the system with
Dirichlet boundary conditions

ue = 0, on Γgr, (5.24)

ue = Vapp, on Γapp, (5.25)
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and we keep the homogeneous Neumann boundary conditions on the rest of the external
boundary. We use the following variational formulation of the problem:∫

Ωi
σi∇ui∇φi +

∫
Ωe
σe∇ue∇φe −

∫
Γion

(∂tVm − Iion(Vm,h))(φi − φe)−
∫

Γj
Gmaxgj(Vj)Vjφi = 0.

Here we do not deal with the well-posedness of the problem. This is in fact the modified
microscopic problem from [40, 106]. In their work they prove the existence and uniqueness
of the microscopic problem for some membrane ionic model. The difference is in the
setting of the geometry, as they assume intracellular space to be be connected. And they
do not consider gap junctions as the boundary condition, but rather as physical pathways
between adjacent cells. In such settings it is not obvious that the non-linear dynamics of
gap junctions can be considered.

5.6.3 Preliminary numerical analysis

To perform the numerical simulations we use the finite element approach with semi-
implicit time discretisation scheme. We split intracellular and extracellular problems and
use the iterative scheme for each time step.

In this 2D setting, for each cell we discriminate between left and right gap-junctional
boundary that we denote Γj,l and Γj,r, respectively. We have defined the transjunctional
potential as Vj(x) := ui(x−G)−ui(x) on Γj,l, or Vj(x) := ui(x)−ui(x+G) on Γj,r. Then
we split the intracellular and extracellular problems, to solve with the iterative scheme.
The two problems are the following:∫

Ωe
∆tσe∇ue∇ve +

∫
Γion

ueve −
∫

Γion
(ui − Vm + ∆tIion(Vm),h)ve = 0,

∫
Ωe

∆tσi∇ui∇vi+
∫

Γion
uivi−

∫
Γion

(ue+Vm−∆tIion(Vm),h)vi−
∫

Γj,l
∆tIjvi+

∫
Γj,r

∆tIjvi = 0.

We have tried this approach with 4 and 10 myocytes, for which the CPU time to simulate
10 − 20ms is of order of 10hrs. The result on 4 myocytes is shown in the Figure 5.7.
We have also tried to change the boundary conditions on the outside domain to be fully
Neumann, and to apply external stimulus as the source term in the extracellular space. The
results were similar. At the moment we did not make any conclusion on the observations.

The next thing we did is to investigate the behaviour of our model by assuming that
there are no gap junctions, i.e. we would apply the ionic model on both Γion and Γj . The
iteratvie semi-implicit scheme we used is described in the algorithm 5. The size of the
myocytes used in simulations are 100µm× 20µm. This correspond to the average length
and width of human ventricular myocytes. The space between adjacent cells is set to 1µm.
The mesh step is 1µm and the time step in the simulation is 0.02ms.

In the first numerical experiments we used only one myocyte embedded in the
extracellular space. By stimulating extracellular space we were able to trigger the AP in
the cell and observe its propagation as expected. We observed all of the four phases of the
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Algorithm 5 Iterative scheme for microscopic model without GJ

1: Define ∆t, T .
2: Define threshold.
3: Define space V hi on Ωi with P1 elements, and declare ui, u1

i , vi ∈ V hi.
4: Define space V he on Ωe with P1 elements, and Dirichlet boundary conditions on Γgr

and Γapp, and declare ui, u1
i , vi ∈ V hi

5: Define space V h on Ω with P1 elements, and declare Vm and all the state variables of
BR model, h, to be in V h. They take 0 values everywhere except on the boundary Γion.

6: Define Vm, h on Γion, and Vj on Γj .
7: Define:

A(ue, ve) :=
∫

Ωe
∆tσe∇ue∇ve +

∫
Γion

ueve −
∫

Γion
(ui − Vm + ∆tIion(Vm),h)ve.

A(ui, vi) :=
∫

Ωe
∆tσi∇ui∇vi +

∫
Γion

uivi −
∫

Γion
(ue + Vm −∆tIion(Vm),h)vi.

8: for t = 0 to T , t+ = ∆t do
9: Solve A(ue, ve) = 0

10: Solve A(ui, vi) = 0
11: u1

e = ue and u1
i = ui

12: Solve A(ue, ve) = 0
13: Solve A(ui, vi) = 0
14: Compute: Di = max |ui − u1

i | and De = max |ue − u1
e|

15: while Di > threshold or De > threshold do
16: u1

e = ue and u1
i = ui

17: Solve A(ue, ve) = 0
18: Solve A(ui, vi) = 0
19: Compute: Di = max |ui − u1

i | and De = max |ue − u1
e|

20: At this moment ui(t) and ue(t) converged to certain values and we compute:
21: Vm(t) = ui(t)− ue(t) on Γion
22: Define all the variables of BR model on Γion accordingly.
23: Compute: Iion = Iion(Vm(t),h).

AP in a single cell simulation. On the other hand in two-cell experiments we were not able
to observe the propagation of AP from one cell to another using this setting. We have tried
to reduce the space between the cells by half, but the result was the same. The cell close
to the current source would get triggered, but there was no activation of the second cell.
See Figure 5.8.

Due to the time limitations, we had to stop here with our tests. Although, our
current numerical experiments are very limited, GJ coupling seems necessary for the AP
propagation. There are some possible explanations that we still would need to test, i.e.
smaller mesh step or the distance between the cells. We should note that we have used
large distance between cells. We have done this to reduce the computational and time
cost of the simulation. But, considering that the GJCs are actually of the size of few nano
meters, this means that the distance between the adjacent cells is rather of the size of the
cell membrane.
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(a) time: 0.0ms (b) time: 15.0ms (c) time: 30.0ms

(d) time: 60.0ms (e) time: 120.0ms (f) time: 150.0ms

Fig. 5.7: Preliminary numerical results on 4 myocytes.

(a) time: 0.0ms (b) time: 5.0ms (c) time: 15.0ms

(d) time: 23.0ms (e) time: 27.0ms (f) time: 35.0ms

Fig. 5.8: Preliminary numerical results for the microscopic model without gap junctions. We do
not observe propagation of AP from one cell to the other.
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5.7 Discussion

Gap junctions play an important role for signal propagation in cardiac tissue. They
have a non-linear dynamics that is neglected in the current mathematical models. There
are experimental evidences that alternations in the expressions of their connexins affect
the propagation velocity. In this project we use the experimental data to fit the non-linear
0D model for homotypic Cx43 and Cx45 GJCs. We propose a discrete spatial model for
studying effects of non-linear GJCs in the tissue, but we do not obtain any conclusive
results.

Gap junctions are channels of a very small size, and cells almost touch each others in
the regions of gap junctions. This implies that our model with the physical spacing might
not be appropriate. One idea to modify a model would be to let cells share the boundary,
and impose the dynamics of GJCs as a boundary conditions between cells in a same way
the ionic models are imposed between the intra- and extracellular space. In any case,
there is still a lot of thinking and work to be done on this topic before we can make any
conclusion.
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6Conclusions

„"One never notices what has been done, one can only
see what remains to be done."

— Marie Currie
(Physicist and Chemist)
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6.1 Thesis overview

6.1.1 ... on tissue modelling

One of the open questions in the cardiac electrophysiology consists in understanding
the effects of the microscopic heterogeneities of the tissue on the action potential propaga-
tion. Standard way to model these is to use the bidomain model and tune the intracellular
and extracellular conductivities, based on the intuition.

In this thesis we have proposed a model that extends the standard bidomain model
with the periodic diffusive inclusions. These diffusive inclusions represent non-excitable
regions in the cardiac tissue, such as fibrotic or fatty tissue. The scale of such diffusive
inclusions is significantly larger than the scale of the extracellular space between the
neighbouring cells, but much smaller compared to the scale of the tissue.

From a computational point of view this microscopic model is very costly, as we
need to crate very detailed meshes of the tissue with the diffusive sub-domains, and the
mesh step would depend directly on the size of the diffusive subdomains and the periodic
cell. To avoid this problem, we use the technique of multiscale mathematical analysis,
the homogenisation theory, to derive an averaged macroscopic model. The homogenised
model is in fact the bidomain model, where the effects of the microstructure are observed
within the modified intracellular and extracellular conductivity tensors. In the derivation
of the modified conductivity tensors we see that both volume and shape of the diffusive
inclusions play a role.
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To quantify these effects, we have performed 2D and 3D numerical tests. We ob-
served that the modified conductivity tensors, for different shapes, will express different
dependence on the volume fractions. Additionally, we observed changes in the anisotropy
ratios for both intracellular and extracellular conductivities. Tests on the wave propagation
have shown that the inclusions modify the velocity as well as the shape of the wavefront.
An interesting result is that for some shapes and volume fractions, the principal direction
of the propagation changes. When the inclusions have a shape that is symmetric w.r.t. the
fiber direction, the principal directions either stay the same, or change to the perpendicular
one. On the other hand, when the inclusions are not aligned with the fiber directions,
the principal direction might be under different angle to the fiber direction. Hence, the
knowledge of the fiber direction might not be sufficient parameter to determine the main
direction of the AP propagation. We conclude that also quantitatively both, volume and
geometry of inclusions can play a role in the AP propagation.

To demonstrate that our model is applicable in real-life settings, we simulated the AP
propagation in a rat heart, for which enough imaging data were available. As a starting
point we used data from HR-MRI of the rat heart, together with data from DT MRI on the
fiber directions of the heart. We have segmented a part of the left ventricle of the heart, as
the computational domain. We analysed the images to obtain an insight into the fibrotic
tissue patches in the heart, and to compute the volume fraction as a smoothly changing
parameter throughout the tissue. We have created the mesh of the domain. We used the
informations on fiber directions and volume fraction of the fibrotic tissue to compute and
map the effective conductivities on the mesh. With this information, we run the simulation
of the bidomain model, without additional computational cost, compared to the standard
bidomain model.

Finally, we conclude that we have a rigorous and practical way to link the effects
of the structural changes in the tissue, as observed in HR MRI, to the changes in the
macroscopic electrical behaviour.

6.1.2 ... on gap junctional modelling

Gap junctions play an important role for signal propagation in cardiac tissue. They
have a non-linear dynamical behaviour that is neglected in the current mathematical
models. There are experimental evidences that alternations in the expressions of their
connexins affect the propagation velocity. In this project we use experimental data to
fit a non-linear 0D model for homotypic Cx43 and Cx45 GJCs, and propose a discrete
spatial model for studying effects of non-linear GJCs in the cells strand. The numerical
computations of such model are very challenging and could not be completed in a given
time.
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6.2 Outlook

From the modelling point of view there are several limitations of the proposed model.
The first one is that the inclusions that we address are purely diffusive. This is a good
approximation for tissue patches that are fully made of collagen or fat. For some of the
non-excitable regions one can still expect to have different kind of cells inside. In that case,
one needs to take into account the cells membranes and different kinds of ionic activity.

Another modelling assumption we used are standard boundary conditions on the
boundary between the diffusive inclusions and the bidomain model. These are used in
coupling torso and the heart, when the torso is considered to be a diffusive domain. It is
not clear that these boundary conditions are appropriate for our case, and different kinds
might be discussed.

Additionally, for the sake of mathematical ’simplicity’ we have assumed the periodic
structure of the tissue. This is not very realistic, and one might explore the non-periodic
structures and non-periodic homogenisation techniques.

Of course, also our simulations have limitations. We have tested limited number
of shapes for the inclusions, and just a few examples of tissue structure and scar shapes.
Already, these were enough to observe complex changes in the wavefront. Obviously,
adding more complexity in the shapes of inclusions, or in the regions of the tissue where
we apply the modified instead of the standard conductivities, would give more complex
patterns.

Some of the first things that can be done is to perform more testing where one might
vary: shapes of the inclusions, conductivity in the inclusions, or shapes of the scar-like
regions.

What we have done in our simulations on the rat heart is to assume the shape of the
inclusions to be everywhere the same. This is a significant simplification in the process.
One might perform a detailed image analysis, using HR MRI with a high resolution, to
asses the actual or approximate shapes of the inclusions. Such approach would be more
accurate, but it would certainly add a lot to the complexity to the pre-processing work.
However, once this work would be done, the simulation of the homogenised model would
be of the same cost as the one for the standard bidomain model.

Finally, the part that is missing in our work is the validation of the model. To perform
this we would need to have data not only from HR MRI and DT MRI of the given heart,
but also data on the electrical activity in a controlled environment of the same heart.

More advanced modelling of the fibrotic, fatty or scared tissue could be done with
our approach if we had a more precise answers on the following questions:

• What are the typical shapes and sizes of the non-excitable regions?
• Do they usually align with fibers and sheets, or not? Can we have an estimate on the

distribution of these parameters?
• What is an estimate on the conductivity tensor in these regions?
• How does the tissue structure changes from the center of the scar to the border end?

Can we obtain more quantitative details from histology?
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