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Résumé

Le monde de l’énergie est en pleine mutation. La production centralisée d’énergie

électrique laisse place à une gestion décentralisée, faisant ainsi apparaître de nou-

veaux acteurs et défis technologiques dans le monde de l’énergie. La principale cause

de cette évolution est le taux croissant des sources d’énergies renouvelables porté par

la volonté de décarbonisation du système de production pour contribuer à des enjeux

environnementaux majeurs. Le développement rapide des systèmes d’information

est perçu comme un accélérateur qui rend possible le déploiement à grande échelle

de stratégies de contrôle avancées.

Cette thèse est dédiée au développement et à la validation de stratégies de contrôle

avancées pour la gestion de systèmes énergétiques présents dans un réseau de distri-

bution. Dans l’objectif d’une coordination optimale d’un grand nombre d’acteurs,

associé au partage des ressources de chacun, émerge un des principaux défis qui est

la gestion à grande échelle de ces systèmes. Pour répondre à ce défi, deux méthodes

de commande prédictive distribuées (DMPC) sont proposées et comparées. Les deux

méthodes misent sur la division d’un problème d’optimisation de grande échelle en

plusieurs contrôleurs MPC locaux et un contrôleur de coordination. Les deux méth-

odes sont basées sur une décomposition primale et sur une décomposition duale re-

spectivement. L’efficacité en termes de temps de calcul des deux méthodes est démon-

trée, ceci en vue de la grande échelle des systèmes étudiés. De plus, la modularité,

la robustesse et la protection des données sont des avantages qu’offrent ces stratégies

de MPC distribuées par rapport à un contrôleur MPC centralisé.

Un autre défi important dans la gestion des réseaux électriques est la maitrise des

incertitudes croissantes dans les réseaux d’énergie. Ces incertitudes sont principale-

ment dues à l’intermittence des sources d’énergies renouvelables et à l’apparition des

véhicules électriques avec leur besoin d’énergie fluctuant. Pour gérer ces incertitudes,

des solutions techniques innovantes seront requises pour maintenir la stabilité et la

qualité de service des réseaux électriques. Pour répondre à ce défi, deux systèmes de

gestion d’énergie prenant en compte l’incertitude explicitement sont proposés dans

cette thèse. Le premier est dédié à la gestion et au dimensionnement d’une centrale

de production photovoltaïque, et le deuxième à la gestion de stations de recharge de

v



voitures électriques. Dans les deux cas, l’incertitude est prise en compte explicite-

ment dans la stratégie de contrôle en appliquant des algorithmes randomisés. Un

comportement plus robuste et prédictible est obtenu par rapport à des approches

purement déterministes.

Cette thèse a été réalisée au sein de Schneider Electric en partenariat avec le Gipsa-

Lab.
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Abstract

Electricity grids are currently undergoing a profound transformation away from

a centralized towards a decentralized power management paradigm. The two main

drivers are the emergence of renewable energy sources and the rapid development of

information systems. The latter enables the deployment of advanced control strate-

gies, able to respond to the numerous challenges which arise for the reliable oper-

ation of the evolving electricity grids. This thesis is dedicated to the development

and assessment of such advanced control strategies at distribution grid level. More

precisely, energy management systems using Distributed Model Predictive Control

(DMPC) and Stochastic Optimization are proposed.

In order to optimally coordinate the operation of a large number of assets in a

distribution grid, one challenge is to deal with the large-scale nature of the system.

For this purpose, two hierarchical DMPC frameworks for resource sharing problems

are proposed and compared with each other. Both of them rely on dividing a large-

scale MPC problem into several local MPC problems and one coordinator problem.

The two frameworks which are based on a primal- and on a dual decomposition of the

initial centralized optimization problem are shown to be computationally tractable

despite the large-scale nature of the system. Moreover they come along with a better

modularity, safety and data privacy compared to a centralized MPC solution.

Another important challenge stems from the increasing amount of uncertainties

in the electricity grid. This is mainly due to the high intermittency of renewable en-

ergy sources and due to the foreseeable vehicle electrification which comes along with

highly fluctuating charging needs. Dealing with those uncertainties requires innova-

tive technical solutions in order to maintain the balance of power production and

consumption at all times. In order to address this issue, two energy management

systems, one for PV power plants and another one for electric vehicle charging sta-

tions, are proposed in this thesis. They explicitly take into account the uncertainties

in the control strategy, using randomized algorithms. This way a robust and more

predictable behavior of the systems is achieved.

This Ph.D. thesis was prepared within the Gipsa-lab in partnership with Schneider-

Electric in the scope of the AMBASSADOR project (www.ambassador-fp7.eu).
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Chapter 1

General Introduction

1.1 The energetic context

Overview

Energy obtained from fossil fuels enabled the industrial revolution and led to
tremendous changes in the way we are living today. It has probably been the most
radical transformation of society in human history.

To the present day, fossil fuels have the biggest share (≈ 80%) in the continuously
increasing world energy consumption (figure 1.1). The improved standard of life
however does not come for free. Since the beginning of the 20th century, several sci-
entists, amongst whom the physicist Svante Arrhenius [Arrhenius 1896], suggest that
human made CO2 emissions may lead to a global warming effect. It took about half
a century until this theory became widely accepted and it was only at the beginning
of the 1970s that the topic appeared on political agendas. Since then, several global
initiatives aiming to reduce the global greenhouse gas emissions were launched, cul-
minating in the declaration to limit global warming to no more than 1.5°C at the UN
Climate Change Conference (COP21) in Paris.

Considering the fact that the tendency of an increasing energy consumption per-
sists (figure 1.2), considerable efforts will be necessary to be able to achieve this am-
bitious objective.

Electricity grid transformation

One key measure to respond to the challenge of reducing CO2 emissions signifi-
cantly, is to introduce more renewable energy sources into the existing electricity grid.
Especially wind- and solar power have become competitive energy sources thanks to
important technological advances during the last decades [Hoffmann 2014]. Already

1



Chapter 1. General Introduction
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Figure 1.2 Predicted world energy consumption for three different policy
scenarios. The "New Policies Scenario" takes into account both existing and
planned policies (source [IEA 2014]).
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1.2. Aims of the thesis

today, several countries have a significant share of renewable energy sources in their
energy mix. For instance in Germany in 2015, photovoltaics contributed with 6.4%
and wind power with 14.7% to the annual electricity consumption (source [BMWi
(Bundes Ministerium für Wirtschaft und Energie) 2015]).

This evolution from traditional large and centralized production means towards
a high number of spatially distributed smaller renewable production means comes
along with great challenges for the electricity grid, putting into question the way it
is currently operated. One major change is that the renewable production facilities
are often connected directly to the distribution grid. Due to their intermittent nature,
local power quality perturbations such as over-voltages or harmonic distortion are
becoming more and more frequent.

The emerging number of electric vehicles (EVs) and the resulting charging pro-
cesses are additional challenges for the electricity grid. In many regions, the distri-
bution grid is not designed to deliver the relatively high amounts of energy which
is required by the EVs. For instance, capacity limits of transformers connecting the
distribution grid with the medium voltage grid may not be sufficiently high. This is
particularly a problem encountered in the United States.

An additional challenge resulting from the introduction of renewable energy
sources and EVs is the fact that the level of uncertainties increases. While traditional
production facilities based on fossil energy carriers or on nuclear energy can be con-
trolled in a very predictable manner, renewable energy sources are highly fluctuating.
Similarly, the behavior of EVs can be very uncertain and hard to predict, which may
result in high fluctuations in the load profiles at distribution grid level.

In order to successfully reduce the fossil fuel contribution in the electric power mix
and to deal with the arising new challenges, new ways of controlling the electric grid
are required. One major trend is to move away from a central control mechanism at
the transmission grid level towards a more decentralized control at distribution grid
level. Moreover, political incentives are required to guide the grid transformation in
a smooth way. Incentives for investing into renewable energies on the one hand, and
an adequate compensation for grid-stabilizing measures should be two continuously
adapted pillars on this long journey.

1.2 Aims of the thesis

In this thesis, Distributed Model Predictive Control (DMPC) strategies are developed
and assessed for smart grid energy management systems. Furthermore, Stochastic
Optimization strategies are proposed to deal with the uncertainty encountered at
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Electric Vehicle Charging stations (EVCS) and Photovoltaic (PV) power plants.

Currently, energy management strategies in smart grids are mostly limited to the
sub-system level. Typically each actor is managed autonomously without considering
the fact that it is embedded in a surrounding electricity grid. For instance, a building
energy management system aims at providing the desired level of service to the oc-
cupants and does not care about its impact on the grid. Due to the increasing amount
of renewable energy sources at distribution level, this situation is becoming a seri-
ous threat for the existing electricity grid. For instance in Germany with its relatively
high share of renewables, the PV production regularly has to be curtailed in order to
guarantee the balance of produced and consumed power.

To respond to these challenges, the concept of smart grids has emerged during
the last decade. It relies on the capabilities of modern communication systems which
enable the continuous data flow between the actors in a smart grid and on the evolv-
ing computational capacities allowing to implement advanced energy management
strategies at large scales.

MPC stands out amongst advanced smart grid control strategies for several rea-
sons. Firstly, it allows to easily deal with multi-variable systems which are subject to
multiple constraints. And secondly, it is capable to anticipate future events by taking
into account forecasts (e.g. weather forecasts, forecasts of building occupancy, electric
vehicle charging needs,...). In order to deal with the large-scale nature of smart grids,
distributed control approaches are considered to be most suited.

For these reasons, the first part of this thesis is dedicated to DMPC algorithms that
aim to optimally coordinate large numbers of actors in a smart grid (e.g. buildings,
batteries, PV installations,...). The idea is to have a local MPC controller for each sub-
system and one coordinator system which influences the local controllers in such a
way that global optimality is recovered. Coordination between the different actors is
necessary, because an upper bound on the globally consumed power in the smart grid
has to be respected. This may for instance be due to a limited transformer capacity or
because of contractual agreements with the grid utility. Moreover the coupling objec-
tive of maximizing the local consumption of locally produced energy is considered.
This objective is a step towards energy independence of local sub-grids from the ex-
ternal grid and clearly requires coordination mechanisms. In this context, two DMPC
frameworks are proposed. The first one is based on a primal decomposition of the
initial centralized MPC problem and the second one on a dual decomposition. The
pros and cons of both methods are discussed and demonstrated through simulations.
Moreover the methods were implemented on test sites in the scope of the European
project AMBASSADOR.

Although MPC has a natural ability to compensate prediction errors by continu-
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ously updating its control strategy, the performance may degrade quite importantly
if the forecast uncertainties are too high. For this reason, the second part of this thesis
is concerned with the development of stochastic optimization algorithms, allowing
to deal explicitly with uncertainties. More precisely, a scenario-based optimization
method called randomized algorithms is applied in two different contexts. In the first
one, it is applied to design a robust energy management system for EVCSs. In the
second one, a randomized algorithm is used to design a MPC controller for PV power
plants which are subject to regulative constraints. Furthermore, this MPC controller
has also been implemented on two recently commissioned PV farms, operated by
Schneider-Electric.

www.ambassador-fp7.eu

This Ph.D. thesis was prepared within the Gipsa-lab and Schneider-Electric in the
scope of the European project AMBASSADOR (www.ambassador-fp7.eu). This col-
laborative project, led by Schneider-Electric, targets the development of energy man-
agement systems for the different actors in a smart grid as well as coordination mech-
anisms amongst them.

1.3 Outline of the thesis

The manuscript is organized as follows:

Part I Distributed MPC for resource sharing problems

In this part, two distributed MPC frameworks for smart grid energy management
systems are proposed and compared with each other. The first one relies on a dual-,
and the second one on a primal decomposition of the initial centralized optimization
problem.

5



Chapter 1. General Introduction

Chapter 2 Primal & dual decomposition

In this chapter, primal and dual decomposition are applied to divide a centralized
resource sharing problem into several sub-problems and one coordinator problem.
Besides the characteristic coupling constraint on the shared resource, the considered
problem is particular due to an additional coupling in its objective term. Moreover
the bundle method which is used to solve the coordinator problem is introduced in
this chapter.

Chapter 3 Resource sharing problem in the smart grid context

The previously developed frameworks for solving resource sharing problems in a
distributed manner are applied in the context of smart grids. More precisely, a sys-
tem composed of buildings, batteries, renewable energy sources and electric vehicle
charging stations is considered.

Chapter 4 Numerical & real-life validation

In this chapter the primal- and dual decomposition frameworks are validated through
simulations. The equivalence of the solutions of the primal and dual decomposition
frameworks is assessed and the most efficient configuration of the bundle method is
determined for both frameworks. Furthermore, the experimental implementation of
the algorithms on two test sites is presented.

Part II Explicit handling of uncertainties in energy man-
agement systems

In this part, methods to explicitly deal with the uncertainty induced by electric vehicle
charging stations and photo-voltaic power plants are proposed. The main objective
for both cases is to provide better predictions of their power consumption/produc-
tion, enabling a better integration into the power grid.

Chapter 5 Randomized algorithm approach

The stochastic optimization method, namely randomized algorithms, which is going
to be applied in the following two chapters is introduced. Moreover, the problems
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which will be addressed in the following are briefly introduced.

Chapter 6 Energy management under uncertainty for EV charging
stations

In this chapter an energy management system for electric vehicle charging stations
based on randomized algorithms is proposed. The method allows to determine a
day-ahead upper bound profile on the power consumption of an EVCS while guar-
anteeing the customer satisfaction at a desired probability.

Chapter 7 PV power plants under regulatory constraints and uncer-
tainties

This chapter proposes an energy management system for photo-voltaic power plants
with an associated battery storage system and which are subject to regulatory con-
straints. The method allows to determine the optimal battery size that maximizes
the to-be-expected revenue of the installation while taking into account the weather
forecast uncertainty.

General conclusion

The general conclusion gathers the most pertinent results and the main contribution
of the thesis.

1.4 List of publications

Patents

1. P. Pflaum and M. Alamir. Procédé de gestion en énergie d’une station de
recharge de véhicules électriques, 2015.

2. P. Pflaum and M. Alamir. Procédé de contrôle d’une centrale de production
électrique, 2016.
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Distributed MPC for resource sharing
problems
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Chapter 2

Primal & dual decomposition

Nomenclature

H number of time intervals of length τ in the prediction horizon

NS number of sub-systems

S set of sub-systems 1, ..., NS

xl,k state of the l-th sub-system at time instant k

ul,k input of the l-th sub-system at time instant k

rl,k consumed resource of the l-th sub-system at time instant k

Ll objective function of the l-th sub-system

Rlim,k global resource limit profile

Γk price profile

Γ+
k ,Γ−k buying- and selling price profiles

R global resource profile

Rcons profile of globally consumed resource

Rprod profile of globally produced resource

Jl,k optimal cost value of the l-th sub-system at time instant k

gl,k (sub-)gradient of Jl,k with respect to rl,k
L (·) Lagrangian

λ, µ dual variables

B(s) stored bundle at the s-th iteration

J̌ (s) cutting plane model of objective function J at the s-th iteration

nB number of cuts in one cutting plane model

Dγ(s) stabilizing term in the master problem
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x· concatenation of several profiles defined as x· :=
[
xT1 , ...,xTNS

]T

r·(s) current best point

NC number of cutting plane models

NB number of sub-systems approximated by one cutting plane model

x? optimal solution of an optimization problem

2.1 Motivation for distributed MPC

The principle of distributed model predictive control (DMPC) [Camponogara et al.
2002, Diehl 2009, Scheu et al. 2009] is to divide an initial centralized controller
into several sub-controllers which solve their local optimization problems separately.
Through an iterative communication scheme the local controllers are able to recover
the optimal solution of the initial centralized problem or at least to find a relevant
sub-optimal solution.

The reason why an iterative communication scheme is required stems from the
fact that the sub-problems are usually coupled with each other. This coupling can
for instance be a common goal and/or shared resources and/or coupled dynamics.
Depending on the nature of the coupling, different kinds of decomposition schemes
can be applied as described by [Christofides et al. 2013].

Choosing a distributed MPC approach instead of a centralized one can have dif-
ferent motivations. The most important one is that large-scale problems, that would
otherwise become computationally intractable, can be solved in reasonable time. An-
other important motivation is the enhanced robustness of a distributed approach,
since a fault on one of the sub-controllers does not affect the entire system. Fur-
thermore a distributed system is more modular, meaning that it can be extended or
modified more easily. Finally an issue which is specifically important in the context
of smart grids is privacy. In fact a distributed MPC approach allows every actor in a
smart grid to keep the control of his local equipments while exchanging only limited
information with his environment.

In this work the focus is on large-scale systems which are composed of several
dynamically uncoupled sub-systems that share a common resource. The work is very
much inspired by the DMPC framework for resource sharing problems proposed by
[Lamoudi 2012]. The main difference is that not only consumers of the shared re-
source are considered as sub-systems, but also producers and storage devices.

In the literature several distributed optimization methods have been proposed.
Most of them are based on a primal or a dual decomposition of the initial centralized
optimization problem. [Boyd et al. 2007] provides a very good introduction to these
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two concepts while [Bertsekas 1999, Boyd & Vandenberghe 2004] provide exhaustive
explanations of the underlying theory.

In this work we propose two DMPC frameworks and compare them with each
other from a theoretic and a practical point of view. The first one is based on a primal-
and the second one on a dual decomposition of the initial centralized problem.

The limiting characteristic of distributed optimization schemes is their relative
high number of required iterations to converge to a globally optimal and feasible so-
lution as pointed out by [Diehl 2009]. This can be problematic in real-time implemen-
tations where only a limited computation- and communication capacity is available
at each decision instant. In order to deal with this topic, an efficient implementation
of the bundle method is presented where the precision of the cutting plane approxi-
mations is chosen in an optimal way.

The chapter is organized as follows: Section 2.2 introduces the class of resource
sharing problems addressed in this work. In section 2.3, primal and dual decomposi-
tion are applied to distribute the previously introduced centralized problem into one
master problem and several sub-problems. The mechanism allowing to efficiently
solve the distributed problems – namely the bundle method – is described in section
2.4, before concluding the chapter with a discussion of the advantages and drawbacks
of the primal and dual decomposition methods in section 2.5.

2.2 Resource sharing problems

In this section the class of problems targeted by the proposed primal- and dual DMPC
frameworks is described.

2.2.1 The sub-systems

Consider a set of NS dynamically uncoupled sub-systems where each sub-system l ∈
S := {1, ..., NS} obeys the general dynamic equation:

xl,k+1 = f(xl,k, ul,k) (2.2.1)

where xl,k and ul,k are the state and input vector of the sub-system l at instant k.

In the sequel, given a vector quantity vl ∈ Rnv related to sub-system l, the bold-
faced vector vl,k represents the future profile of vl over the prediction horizon of length

H beginning at instant k, namely vl,k :=
[
vTl,k, ..., v

T
l,k+H−1

]T
. Note that when no ambi-

guity occurs the time index k is dropped.
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For each sub-system l ∈ S the vector rl,k ∈ Rnr represents the vector of consumed
resources where nr stands for the number of different resources.

Each sub-system l ∈ S is controlled by a local model predictive controller which
is denoted hereafter by MPCl:

MPCl : Minimize
xl,k∈Xl,k,ul,k∈Ul,k,rl,k

Ll(xl,k,ul,k, rl,k) (2.2.2a)

Subject to: rl,k = hl(xl,k,ul,k) (2.2.2b)

where Ll(xl,k,ul,k, rl,k) is the objective function of sub-system l and Xl,k,Ul,k de-
note respectively the domains of the state and input constraints which are possibly
time-varying. The equality constraint (2.2.2b) expresses the relation between the dy-
namics of system l and its consumed resources rl over the prediction horizon. Typi-
cally the objective of the predictive controller is to provide some service (comfort in
a building, charging of electric vehicles,...) at a minimal cost for the consumed re-
sources. However, the objective function can also comprise other terms such as the
optimization of the CO2 footprint or of the system aging.

Remark: Note that the sub-systems’ objective functions Ll are assumed to be convex.
This is in fact the technical key condition which allows to reliably and efficiently solve
the optimization problems addressed throughout this whole work.

2.2.2 Centralized optimization problem

Consider now a system composed of several predictive controllers as described by
problem (2.2.2). Moreover, consider a global limitation on the shared resource that is
expressed through the following inequality:

H(r1,k, ..., rNS ,k) ≤ Rlim,k (2.2.3)

where Rlim,k ∈ Rnr·H is the vector of the global resource limit over the prediction
horizon and H(r1,k, ..., rNS ,k) being linear in order to be decomposable as shown in
the next sections. In the sequel, we will assume

H(r1,k, ..., rNS ,k) :=
NS∑

l=1
rl,k (2.2.4)

The centralized MPC problem becomes then:
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Minimize
{xl,k∈Xl,k,ul,k∈Ul,k,rl,k}l∈S

∑

l∈S

αl · Ll(xl,k,ul,k, rl,k) (2.2.5a)

Subject to: rl,k = hl(xl,k,ul,k) ∀l ∈ S (2.2.5b)
∑

l∈S

rl,k ≤ Rlim,k (2.2.5c)

with αl being a weighting coefficient between the different sub-systems’ objec-
tive terms. Note that this problem is precisely the one which was addressed by
[Lamoudi 2012] and solved using an efficient DMPC framework which was based
on a primal decomposition. Moreover the assumption was made that the resource
vectors rl,k of the sub-systems are strictly positive, meaning that the sub-systems are
pure consumers of the shared resource.

In the present work the centralized problem (2.2.5) is extended such that some
of the sub-systems can also be producers of the shared resource. Furthermore the
assumption is made that the globally consumed resource by the sub-systems needs
to be purchased from an external source at a common tariff. For this reason, the term
representing the cost of the consumed resource of the l-th sub-system is now written
outside the local objective terms Ll. Moreover the fact that the consumed resource
needs to be purchased at a certain price Γ+ and that it can be sold at another price Γ−
is taken into account. With these modifications problem (2.2.5) becomes

Minimize
{xl,k∈Xl,k,ul,k∈Ul,k,rl,k}l∈S

∑

l∈S

Ll(xl,k,ul,k) +

∑

l∈S

rl,k



T

· Γk (2.2.6a)

Subject to: rl,k = hl(xl,k,ul,k) ∀l ∈ S (2.2.6b)
∑

l∈S

rl,k ≤ Rlim,k (2.2.6c)

Γk =





Γ+
k if

∑
l∈S

rl,k ≥ 0

Γ−k otherwise
(2.2.6d)

This extension is introduced, because the proposed framework was developed in the
context of a smart grid system where an economic objective has to be optimized that
takes into account different prices for buying and selling energy from the grid. In
chapter 3 this smart grid application is described in greater detail.

In the sequel, problem (2.2.6) is referred to as the centralized problem. In the
following section a primal- and a dual decomposition are applied to the centralized
problem.

Remark: In this work the assumption is made that the selling tariff Γ−k may not be
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greater than the buying tariff Γ+
k , namely

Γ−k ≤ Γ+
k (2.2.7)

This makes sense from an economic point of view, because otherwise it would be
beneficial to buy energy from the grid and to instantaneously sell it back at the higher
selling price. Provided that this assumption is fulfilled, the centralized problem can
be formulated as a linear or quadratic programming problem which can be solved
efficiently (cf. chapter 4 where simulation results are presented).

2.3 Decomposing the centralized problem

When the number of sub-systems in problem (2.2.6) becomes large, the computation
time to solve the problem can become very important. For this reason, but also for the
others mentioned in section 2.1, we aim to solve the problem in a distributed manner.
However, since the sub-problems are coupled through the shared resources, this is
not a trivial task. We apply two different decomposition methods to deal with this
difficulty, namely a primal and a dual decomposition of the centralized problem. Both
methods are hierarchical decomposition methods where a problem is decomposed
into several sub-problems and one master/coordinator problem. In the following
the primal and the dual decomposition of the initial centralized problem (2.2.6) are
formulated.

2.3.1 Primal decomposition

In order to apply primal decomposition, the sub-problem (2.2.2) is modified by
adding an additional constraint which imposes a resource profile rl,k to the sub-
system. The sub-problem becomes then

MPCl(rl,k) : Minimize
xl,k∈Xl,k,ul,k∈Ul,k

Ll(xl,k,ul,k) (2.3.1a)

Subject to: rl,k = hl(xl,k,ul,k) (2.3.1b)

Let Jl,k(rl,k) denote the optimal value achieved by sub-problem l for a given re-
source allocation rl,k:

Jl,k(rl,k) := Ll(x?l,k,u?l,k) (2.3.2)

A (sub)gradient gl,k(rl,k) of Jl,k is assumed to be available:

gl,k(rl,k) ∈ ∂Jl,k(rl,k) (2.3.3)
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where ∂Jl,k(rl,k) is the sub-differential set of Jl,k at rl,k.

Reminder: The sub-gradient is a generalization of the derivative to functions
which are not differentiable. As an example, consider the convex function f = |x|.
Its sub-differential ∂f(x0) at x0 = 0 is the interval [−1, 1]. Each value within this
interval represents a valid sub-gradient of f at x0. For further information on sub-
gradients and non-smooth optimization in general, the interested reader is referred to
[Clarke 1983].

Based on these definitions the centralized problem (2.2.6) can be rewritten as

Minimize
{rl,k}l∈S

∑

l∈S

Jl,k(rl,k) +

∑

l∈S

rl,k



T

· Γk (2.3.4a)

Subject to:
∑

l∈S

rl,k ≤ Rlim,k (2.3.4b)

Γk =





Γ+
k if

∑
l∈S

rl,k ≥ 0

Γ−k otherwise
(2.3.4c)

Note that in problem (2.3.4) the local control variables xl,k and ul,k do not appear
anymore. Only the resource profiles rl,k to be allocated to the sub-problems remain as
decision variables. Finally, in order to get rid of the conditional definition (2.3.4c), the
problem can be re-written as follows:

Minimize
{rl,k}l∈S

∑

l∈S

Jl,k(rl,k) + RT
cons,k · Γ+

k −RT
prod,k · Γ−k (2.3.5a)

Subject to: Rk ≤ Rlim,k (2.3.5b)

Rk =
∑

l∈S

rl,k (2.3.5c)

Rk = Rcons,k −Rprod,k (2.3.5d)

Rcons,k,Rprod,k ≥ 0 (2.3.5e)

Rcons,k ·Rprod,k = 0 (2.3.5f)

where Rk is the globally consumed resource. Since the sub-systems are allowed to
be producers, Rk can also take negative values in the case where more resources are
produced than consumed. The variables Rcons,k and Rprod,k contain respectively the
consumed and produced part of the global resource profile Rk. This way different
tariffs for purchasing and selling the resource can be applied.

Remark: The non-linear constraint (2.3.5f) is only required in the case where the
previously stated assumption (2.2.7) is not respected. In this case the constraint avoids
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that the problem becomes unbounded. Throughout this whole work we assume that
(2.2.7) holds and constraint (2.3.5f) can be dropped. Problem (2.3.5) becomes then

Minimize
{rl,k}l∈S

∑

l∈S

Jl,k(rl,k) + RT
cons,k · Γ+

k −RT
prod,k · Γ−k (2.3.6a)

Subject to: Rk ≤ Rlim,k (2.3.6b)

Rk =
∑

l∈S

rl,k (2.3.6c)

Rk = Rcons,k −Rprod,k (2.3.6d)

Rcons,k,Rprod,k ≥ 0 (2.3.6e)

In the sequel the optimization problem (2.3.6) is referred to as the primal master
problem. Note that solving the primal master problem is not a trivial task, since the
functions Jl,k(·) are not known at the master level. In fact they can only be evaluated
point-wise for a given resource allocation profile rl,k and at the cost of solving all sub-
problems and communicating their results to the master. In section 2.4 the method
used to solve this problem in a distributed way will be described, namely the bundle
method.

2.3.2 Dual decomposition

The idea of dual decomposition is to introduce dual variables which allow to move
the coupling constraints of the centralized problem into the objective term, such that
the problem becomes separable.

In a first step, the Lagrangian is developed by transferring the coupling constraint
(2.2.6c) into the objective term and by introducing the dual variables λk.

L (xl,k,ul,k,λk) =
∑

l∈S

Ll(xl,k,ul,k) + λTk


∑

l∈S

rl,k −Rlim,k


+


∑

l∈S

rl,k



T

Γk (2.3.7)

Looking at the resulting dual problem (2.3.8) however reveals that it is not separa-
ble yet, due to constraint (2.3.8c) which represents the fact that the buying- and selling
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price for the globally consumed resource in the system are not the same.

Maximize
λk


 inf
{xl,k∈Xl,k,ul,k∈Ul,k}l∈S

∑

l∈S

Ll(xl,k,ul,k)+

+λTk


∑

l∈S

rl,k −Rlim,k


+


∑

l∈S

rl,k



T

Γk


 (2.3.8a)

Subject to: rl,k = hl(xl,k,ul,k) ∀l ∈ S (2.3.8b)

Γk =





Γ+
k if

∑
l∈S

rl,k ≥ 0

Γ−k otherwise
(2.3.8c)

λk ≥ 0 (2.3.8d)

In fact, this coupling constraint (2.3.8c) is special, because it is a conditional constraint
that depends on whether the system as a whole is consuming more resources than
what it is producing or whether it is the other way round. In order to make the prob-
lem decomposable, it is not possible to build the Lagrangian of this special constraint
in the classic way.

However, by introducing an upper-bounded variable µk in problem (2.3.8), the
decomposable problem (2.3.9) which we are actually interested in, is obtained.

Maximize
λk,µk


 inf
{xl,k∈Xl,k,ul,k∈Ul,k}l∈S

∑

l∈S

Ll(xl,k,ul,k) + λTk


∑

l∈S

rl,k −Rlim,k




+

∑

l∈S

rl,k



T (

Γ+
k − µk

)

 (2.3.9a)

Subject to: rl,k = hl(xl,k,ul,k) ∀l ∈ S (2.3.9b)

λk ≥ 0 (2.3.9c)

0 ≤ µk ≤ Γ+
k − Γ−k (2.3.9d)

Clearly, the step from problem (2.3.8) to (2.3.9) is not intuitive. In order to prove
that the two problems are indeed equivalent, one can proceed as follows:

• In the objective function of problem (2.3.8), the term
(
∑
l∈S

rl,k
)T
· Γk is rewritten

as follows, such that the conditional constraint (2.3.8c) becomes obsolete:

∑

l∈S

rl,k



T

· Γk = max


0,

∑

l∈S

rl,k



T

· Γ+
k −max


0,−

∑

l∈S

rl,k



T

· Γ−k (2.3.10)
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The operator max(a,b) replaces each element in vector b which is smaller than
the scalar a, by a.

• The aim is now to show that this term is equivalent to the term(
∑
l∈S

rl,k
)T (

Γ+
k − µk

)
in (2.3.9a), constrained by (2.3.9d). To get there, the term

(2.3.10) is set to be equal to
(
∑
l∈S

rl,k
)T (

Γ+
k − µk

)
from problem (2.3.9a) and the

equation is solved for µk:


∑

l∈S

rl,k



T (

Γ+
k − µk

)
= max


0,

∑

l∈S

rl,k



T

· Γ+
k −max


0,−

∑

l∈S

rl,k



T

· Γ−k

µk =




[1 1 · · · 1]− max (0,∑l∈S rl,k)T(
∑
l∈S

rl,k
)T



· Γ+

k +




max (0,−∑l∈S rl,k)T(
∑
l∈S

rl,k
)T



· Γ−k

Note that the division operator in the above equation represents an element-
wise division of the vectors.

• Then, the obtained term for µk is inserted into the constraint (2.3.9d).

0 ≤ µk =




1T − max (0,∑l∈S rl,k)T(
∑
l∈S

rl,k
)T



·Γ+

k +




max (0,−∑l∈S rl,k)T(
∑
l∈S

rl,k
)T



·Γ−k ≤ Γ+

k−Γ−k

• Finally, one can easily verify that for the two cases
∑
l∈S

rl,k > 0 and
∑
l∈S

rl,k < 0,

the term in the middle of the inequality either takes the value of the lower bound
(µk = 0) or the value of the upper bound (µk = Γ+

k − Γ−k ). This confirms that
the problems (2.3.8) and (2.3.9) are equivalent and consequently that problem
(2.3.9) is equivalent to the initial centralized problem (2.2.6).

Recall that the crucial point is that in contrast to problem (2.3.8), the dual problem
(2.3.9) can now be decomposed into NS sub-problems and one master problem. The
sub-problems become
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2.4. Bundle method to solve the master problem

MPCl(λk,µk) : Minimize
xl,k∈Xl,k,ul,k∈Ul,k

Ll(xl,k,ul,k) + (λk − µk)T · rl,k (2.3.11a)

Subject to: rl,k = hl(xl,k,ul,k) (2.3.11b)

Let Jl,k(λk,µk) denote the optimal value achieved by sub-problem l for given dual
variables λk,µk:

Jl,k(λk,µk) := Ll(x?l,k,u?l,k) + (λk − µk)T · r?l,k (2.3.12)

Based on this definition the dual master problem becomes

Maximize
λk,µk

∑

l∈S

Jl,k(λk,µk)− λTk ·Rlim,k (2.3.13a)

Subject to: λk ≥ 0 (2.3.13b)

0 ≤ µk ≤ Γ+
k − Γ−k (2.3.13c)

2.4 Bundle method to solve the master problem

In this section the bundle method which is used to solve the primal (2.3.6) and the dual
(2.3.13) master problems is presented. Bundle methods are well-known for efficiently
solving non-smooth optimization problems.

For decomposable problems like the ones studied in this work, bundle meth-
ods have shown to require particularly few iterations to find the optimum. In
[Lamoudi 2012] for instance it is shown that a bundle method performs very well
in a DMPC application for smart buildings. [Briant et al. 2006] mentions that while
bundle methods require very few iterations, this comes at the cost of a non-negligible
master solving time. Moreover [Briant et al. 2006] states that different implementa-
tions and versions of bundle methods exist, namely aggregated and disaggregated
versions, which allow to potentially reduce the overall computational burden of the
method when applied appropriately. These promising characteristics motivated our
choice to use bundle methods to solve the resource sharing problems stated in the pre-
vious section. Special attention is drawn to the computational efficiency of the bundle
implementation and to whether the approach is suitable for large-scale problems.

In the following a detailed explanation of the disaggregated version of the bundle
method is provided, before briefly stating the difference from an aggregated and a
semi-aggregated one. Note that although the bundle method is explained in the con-
text of a primal decomposition problem, it applies in exactly the same way to the dual
problem. For more detailed technical information about bundle methods, the reader
is referred to [Frangioni 2002].

21



Chapter 2. Primal & dual decomposition

rℓ

Jℓ

J̌ℓ

Jℓ, J̌ℓ

r
(1)
ℓ

r
(2)
ℓ

r
(3)
ℓ
r
(0)
ℓ

epi(Jℓ)

Figure 2.1 Objective function Jl and its piece-wise linear approximation
J̌l(rl) after 4 iterations.

2.4.1 Disaggregated bundle method

To solve problem (2.3.6), at each decision instant the master needs to approximate the
function J = ∑

l∈S Jl,k as a function of the allocated resource profiles rl,k.

The master is able to affect any resource profile rl,k to the sub-problems l ∈ S and
to obtain in return their objective values Jl,k(rl,k) and their corresponding subgradi-
ents gl,k(rl,k) (see 2.3.3). Recall that the sub-problems can be solved in parallel. Bundle
methods rely on iteratively approximating the objective function (here J = ∑

l∈S Jl,k)
by a so-called cutting plane model. In the special case where the objective function
is separable, a disaggregated approximation can be built, where each sub-problem’s
objective function Jl,k is approximated by an individual cutting plane model J̌l (see
figure 2.1).

In the sequel the time index k is dropped, since k does not change during the
described procedure (e.g. Jl ≡ Jl,k).

The bundles

Since the sub-problems’ cost functions Jl(rl) are all convex, every sub-gradient
gl(rl) allows to define a half space which is a supporting hyperplane of the epigraph
epi(Jl) of the function Jl as illustrated by figure 2.1.

The cutting plane approximation J̌ (s)
l (·) of the sub-problems Jl at the s-th iterate is

22



2.4. Bundle method to solve the master problem

then defined as follows:

J̌
(s)
l (rl) = Max

i=1,...,nB

〈s(i)
l , rl〉+ ε

(i)
l (2.4.1)

where nB is the number of linear supporting hyperplanes 〈s(i)
l , ·〉 + ε

(i)
l which were

obtained during the previous iterations and kept in the memory. At each iterate s, the
cutting plane model is updated by adding a new hyper plane as follows:

s(1)
l ← g(s)

l (2.4.2a)

ε
(1)
l ← Jl(r(s)

l )− 〈g(s)
l , r(s)

l 〉 (2.4.2b)

where s(1)
l is the new stored sub-gradient and ε

(1)
l is its corresponding linear offset. In

order to keep a constant number nB of supporting hyperplanes in the memory, the
oldest one, i.e. the nB-th one, is dropped. This way, for each sub-system a cutting
plane approximation of its objective function {Jl}l∈S is stored in a FIFO-register-like
memory B

(s)
l :

B
(s)
l := {s(i)

l , ε
(i)
l }i=1,...,nB

(2.4.3)

Replacing the objective function terms of the sub-systems Jl(rl) by their approxi-
mations J̌ (s)

l (rl) and adding a regularization term to problem (2.3.6), the master prob-
lem that has to be solved at each iteration s finally becomes:

r(s+1)
· := Minimize

{rl}l∈S

∑

l∈S

J̌
(s)
l (rl) + RT

cons · Γ+ −RT
prod · Γ− +Dγ(s)(r· − r·(s)) (2.4.4a)

Subject to: R ≤ Rlim (2.4.4b)

R =
∑

l∈S

rl (2.4.4c)

R = Rcons −Rprod (2.4.4d)

Rcons,Rprod ≥ 0 (2.4.4e)

where r· =
[
rT1 , ..., rTNS

]T
is the concatenation of the NS sub-systems’ resource profiles.

The stabilizing term Dγ(s)(r· − r·(s)) is introduced in order to avoid drastic changes in
the solution from one iteration to another. r·(s) is the current best candidate point, also
called the stability center or the central point. If the stabilizing term was dropped, the
method would actually be the Kelley cutting plane algorithm [J. E. Kelley 1960] which
is known to have some stability problems [Bacaud et al. 2001, Briant et al. 2006] when
only few cuts are available.

As shown in [Frangioni 2002], quite weak assumptions on the properties of Dγ(s)

are necessary to ensure the convergence of the algorithm. The most common choice
is a quadratic measure:

Dγ(s)(r· − r·(s)) := γ(s)‖r· − r·(s)‖2
2 (2.4.5)
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Chapter 2. Primal & dual decomposition

However also other measures and trust regions around the central point are possible.
The interested reader is referred to [Frangioni 2002, Lamoudi 2012] for more informa-
tion about the different stabilizing terms and the updating rules of γ(s).

While disaggregated bundle methods require a relative small number of iterations
to converge, the time to solve the master problem can become a limiting factor for the
scheme’s efficiency when the number of sub-systems is large. In fact, in order to solve
the master problem (2.3.6) with the piece-wise linear approximations J̌ (s)

l (rl) of the
NS sub-problems’ objective functions, a linear programming implementation is gen-
erally used. To illustrate this, we consider a system composed of NS = 2 sub-systems.
For the disaggregated bundle method, the corresponding master problem would be
Minimize

r1,r2
J̌

(s)
1 (r1) + J̌

(s)
2 (r2), which can be implemented as a linear program as fol-

lows:
Minimize

r1,r2
η1 + η2

Subject to:





s(1)
1 · r1 +ε(1)

1 ≤η1

...
...

s(nB)
1 · r1 +ε(nB)

1 ≤η1

s(1)
2 · r2 +ε(1)

2 ≤η2

...
...

s(nB)
2 · r2 +ε(nB)

2 ≤η2

(2.4.6)

It becomes obvious, that the number of decision variables r1, ..., rNS and the number
of inequality constraints increase linearly with the number of sub-systems. When the
number of sub-systems NS becomes high, this may result in important computation
times to solve the master problem.

In the following section aggregated and semi-aggregated bundle methods are intro-
duced. They usually result in lower computation times for the master, but come at
the cost of an increased number of required iterations.

2.4.2 Aggregated & semi-aggregated bundle methods

Aggregated and semi-aggregated bundle methods allow to reduce the computation
time by reducing the number of constraints in the master problem. While in disag-
gregated bundle methods every sub-problem Jl(rl) is approximated by an individ-
ual cutting plane model, an aggregated bundle method builds a single cutting plane
model for the sum of all sub-problems’ objective functions J = ∑

l∈S Jl(rl). Semi-
aggregated bundle methods can be seen as a trade-off between disaggregated and

24



2.4. Bundle method to solve the master problem

aggregated ones. The idea is to build groups of several sub-systems whose objective
functions are then approximated by a common cutting plane model.

The fully aggregated cutting plane model is defined as

B(s) :=








s(i)
1
...

s(i)
NS



,
∑

`∈S
ε

(i)
`




i=1,...,nB

(2.4.7)

The number of constraints is reduced by factor NS compared to a disaggregated bun-
dle method. Note however that the number of variables for this aggregated cutting
plane model has increased by factor NS .

For defining the cutting plane model of the semi-aggregated bundle method, let
NB denote the number of sub-problems cost functions Jl(rl) which are approximated
by a common cutting plane model. The number NC of cutting plane models becomes
then NC = dNS/NBe. Note that in case the division NS/NB does not result in an
integer value, the last cutting plane model will consist of less than NB sub-problems
grouped together. Each of the NC cutting plane models is then defined as

B
(s)
k :=












s(i)
1+(k−1)·NB

...

s(i)
NB+(k−1)·NB



,
NB+(k−1)·NB∑

l=1+(k−1)·NB
ε

(i)
`




i=1,...,nB




k=1,...,NC

(2.4.8)

2.4.3 Computational efficiency

DMPC approaches require an important number of iterations compared to a central-
ized solution as discussed in [Diehl 2009]. Obviously the necessary number of iter-
ations is one important factor to evaluate the efficiency of an algorithm. However
when aiming to assess the real-time implementability of a DMPC framework the fo-
cus should not only be on the necessary number of iterations but also on computation
time savings and on the impact of the communication infrastructure. Indeed in some
situations it may be more advantageous to accept a higher number of iterations if the
computational time per iteration can be reduced in return. The following equation
provides a way to estimate the total time a DMPC framework requires to converge:

ttotal = niter · (tMaster + tComm + tSubsys) (2.4.9)

where niter is the necessary number of iterations to converge to the global optimum,
tMaster is the time to solve the master problem at each iteration, tSubsys is the time to
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solve the sub-problems (note that they can be solved in parallel and that tSubsys is
assumed to be equal for all sub-systems) and tComm is the delay occurring at each
iteration due to the communication time between the master- and the sub-problems.

As a first order approximation it can be assumed that in equation (2.4.9) tComm and
tSubsys are constant parameters. niter and tMaster however depend both on the two pa-
rameters nB and NC of the bundle method, which makes it not obvious to determine
the optimal trade-off for the bundle parametrization such that the total convergence
time ttotal of the scheme is minimal. However the qualitative impact of nB and NC on
the number of iterations niter and on the time to solve the master problem tMaster can
be summarized as follows:

• niter decreases when the approximation of the sub-systems’ objective functions
in the master problem are sufficiently detailed. More precisely, a sufficient num-
ber of cuts nB memorized in each bundle and a high numberNC of cutting plane
models (i.e. only few sub-problems approximated by a common bundle) result
in a small niter.

• High values of nB andNC however result in an important number of constraints
according to Nctr = nB · NC in the master problem and consequently in a high
tMaster (cf. figure 2.2 which shows measures of tMaster for the dual decomposition
case). This means, there is a trade-off to be made between reducing niter and
increasing tMaster.

Figure 2.3 qualitatively illustrates how the approximations’ precision, i.e. the
number of constraintsNctr, affects the whole scheme’s computational efficiency. How-
ever, finding the optimal trade-off between nB and NC is problem-dependent and
needs to be done through offline-evaluations.

2.5 Discussion: primal vs. dual decomposition

Both, primal and dual decomposition provide a way to solve a larges-scale optimiza-
tion problem in a distributed manner. The common basic idea is to divide the cen-
tralized optimization problem into one master- and several sub-problems and then to
recover the optimal solution of the centralized problem through an iterative negotia-
tion process. The crucial advantage is that at each iterations the sub-problems can be
solved in parallel, which makes distributed optimization schemes very competitive
from a computational point of view.

However the two proposed decomposition schemes for resource sharing problem
described in the previous sections have different advantages and drawbacks which
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Figure 2.2 This figure shows that the time tMaster to solve the master problem
increases quasi exponentially with the number of constraints. The compu-
tation time measures are obtained in the context of a dual decomposition
framework where the sub-systems are buildings of different size and iner-
tia.

Nctr

t

t2 = niter × tMaster

t1 = niter × (tSubsys + tComm)

ttotal = t1 + t2

Nctr,opt

Figure 2.3 Qualitative impact of the number of constraints Nctr = nB ·NC on
the total efficiency, i.e. on the total computation time of the DMPC frame-
work. When Nctr increases, the precision of the cutting plane approxima-
tions increases as well. As a consequence, for an increasing Nctr, the re-
quired number of iterations niter decreases, but the time to solve the master
problem tMaster increases. The trade-off between theses two effects can be
tuned through the two parameters nB and NC .
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are discussed in the following.

Convex vs. strictly convex:

In order to guarantee that the solutions which are found by primal- and dual de-
composition schemes are equivalent to the one of the initial centralized problem, the
two approaches require different convexity properties for the centralized problem.

When applying the primal decomposition scheme, it is sufficient that the initial
problem is convex [Bertsekas & Tsitsiklis 1989]. With dual decomposition, it is re-
quired that the problem is strictly convex [Boyd et al. 2007], since otherwise there is
no guarantee that a feasible primal solution can be determined. For more information
on finding the primal solution from the dual, the interested reader is referred to [Boyd
& Vandenberghe 2004].

The strict convexity requirement can be quite a strong limitation in many applica-
tions. In chapter 3 those limitations are discussed in greater detail in the context of
our proposed smart grid energy management algorithms.

Number of decision variables at the master level:

Comparing the primal master problem (2.3.6) and its dual equivalent (2.3.13), one
can see that the number of dual decision variables is independent of the number of
sub-problems, while in the primal master problem the number of variables increases
linearly with the number of sub-problems.

This increasing number of decision variables results in higher computation times
for the primal master problem compared to its dual. Especially with very high num-
bers of sub-systems (several thousands or more), the primal decomposition approach
can become computationally very inefficient.

Information exchange between the master and the sub-problems

The information which is exchanged at each iteration between the master problem
and the sub-problems is different in the primal and the dual decomposition approach.

In dual decomposition, each sub-problem receives a price profile γ ′ := (λk−µk) for
the consumed resource. Based on this price profile, the sub-problems are solved and
their resulting optimal resource consumption profile rl,k(γ ′) and the corresponding
optimal cost value Jl,k(γ ′) are sent to the master.

With the primal decomposition approach, the sub-problems receive a resource
profile rl,k which is allocated by the master. For this imposed resource consump-
tion profile the sub-problems solve their local problem and return their optimal cost
value Jl,k(rl,k) and their sub-gradient w.r.t. the allocated resource vector gl,k(rl,k) to
the master.
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From the sub-problem’s point of view, the dual decomposition case is more sim-
ple to be implemented, since the only modification is to take into account a modified
price profile for the consumed resource, which is likely to be part of an economic op-
timization anyway. Moreover the consumed optimal resource which is returned to
the master problem is simply the optimal resource consumption which is a primal
variable of the sub-problem. In the primal case, the sub-gradient information which
is required by the master is not as obvious to obtain, unless the sub-problems are lin-
ear or quadratic programming problems where the solver provides this information
directly through the dual information.

Economic interpretation of the dual variables

From a technical point of view primal decomposition may seem to be more
adapted for resource allocation problems, especially due to the weaker convexity re-
quirements [Palomar & Chiang 2006]. However, we want to emphasize that in the
smart grid context, the dual decomposition approach has the very nice feature that
the Lagrangian multipliers can be interpreted not only as virtual prices, but as real
monetary prices. As such they could be used by a local energy retailer to dynamically
determine the price at which the affected sub-systems have to pay their resource con-
sumption.
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Chapter 3

Resource sharing problem in the smart
grid context

Nomenclature

ϑ building indoor temperature

ϑ0 initial building indoor temperature

ϑ, ϑ lower- and upper thermal comfort bounds

ϑext external temperataure

σ ambient conductivity coefficient

c building heat capacity

η efficiency

τ sampling period

E stored energy in a battery

E0 initial stored energy in a battery

PBat battery charging power

η+, η− battery charging- and discharging efficiencies

tarr,v, tdep,v arrival- and departure time of the v-th vehicle

Ereq,v required energy of the v-th vehicle

NEV number of vehicles connecting to the EVCS

PBat,v battery charging power of the v-th vehicle

Ev charged energy in the battery of the v-th vehicle

PEVCS power consumption of the EVCS

Pmax,Ev maximal charging power which can be absorbed by a vehicle’s battery
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Pmax,v upper limit profile on the power supplied to the v-th vehicle

Bv, Bv lower/upper limit profile on the energy supplied to the v-th vehicle

P̂ forecasted renewable power production profile

PG power exchanged with the grid

PG upper limit on the consumed power from the grid

Jl objective function of the l-th sub-problem

Pl consumed/produced power of the l-th sub-system

P consumed/produced power of a sub-system

P , P lower- and upper power limits

Φ lower triangular matrix with all values equal to 1
P+,P− profiles with respectively the positive and negative elements of P
PG,cons profile of consumed energy from the grid

PG,prod profile of power injected into the grid

m linear weight vector for the implementation of soft constraints

z1, ..., z4 slack variables for the implementation of soft constraints

ρ1, ρ2 weights in quadratic cost function terms

dP profile of rate variations of the profile P
Pi i-th element of profile P
dPBat,v profile of rate variations of the profile PBat,v

3.1 Context and motivations

Traditionally the electricity grid was managed in a top-down manner where large
production facilities were managed in a centralized way in order to meet an inflexible
demand which could be predicted with a satisfying precision.

With the increasing amount of renewable energy sources and the foreseeable EV
penetration in the electricity grid, the situation has become more complex. Firstly the
new generation facilities are of smaller scale, much more numerous and spatially dis-
tributed. Very often they are directly connected to the distribution grid which gives
rise to numerous new challenges for the reliable and safe operation of the grid. Typ-
ical problems are locally occurring voltage fluctuations and transformer- and cable
capacity violations. Secondly, most of the renewable energy sources such as wind-
and solar power are highly uncertain energy sources. Similarly, EVs represent highly
uncertain electrical loads.
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For the aforementioned reasons, the traditional way of managing the electricity
grid is not feasible anymore and the concept of smart grids has emerged over the past
10 years. The idea in smart grids is to consider not only the production means as
flexible and controllable systems, but also the consumers. Moreover not only large
systems connected at high- and medium voltage level are part of the control mech-
anisms as it was the case in the past. In fact, any actor down to the end-user can
become a flexible and controllable system which contributes to the reliable and safe
grid operation. This way renewable energies can be exploited in a more efficient way
by optimally matching supply and demand at all times. Moreover, since the systems
are controlled at all levels, power quality issues can be mitigated by acting on the
systems which are physically close to the point where the problem is encountered.

In this context, model predictive control (MPC) is considered as a powerful tool
for energy management applications [Vardakas et al. 2015]. This stems from its ability
to handle constrained MIMO (Multiple-input-multiple-output) systems and to antic-
ipate future events by taking into account weather forecasts, occupancy schedules of
buildings, varying energy tariffs etc.

In this chapter the distributed MPC frameworks for resource sharing problems
introduced in the previous chapter will be applied to the smart grid context. The ob-
jective of the approach is to coordinate a large number of smart grid actors (producer-,
consumer- and storage systems) in a globally optimal way withoug having the vision
of the whole system in a single controller. This is not a trivial task, since the following
two coupling mechanisms link the behavior of the different actors with each other.

• An upper bound on the globally consumed power from the external grid may
not be exceeded. This is a typical situation for a low-voltage smart grid which
is connected with the medium-voltage grid through a transformer that has a
limited capacity.

• In order to minimize the energy bill of the smart grid, it is desirable to consume
the locally produced renewable energy locally within the smart grid, rather than
selling it to the external grid. Different reasons may motivate this objective. In
the case where the remuneration for selling energy to the grid is lower than the
price for buying the same amount of energy, it is economically more beneficial to
consume it locally. Other non-monetary reasons are an increased independence
from the external grid, an improved resilience and reliability of the power sup-
ply and the mitigation of power outages.

The chapter is organized as follows: In section 3.2 the model of the addressed
smart grid will be presented. Section 3.3 provides the centralized MPC controller
problem which is based on the previously described model. In the following two sec-
tions 3.4 and 3.5, the primal and dual decomposition frameworks which were devel-
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Figure 3.1 Smart grid overview.

oped in chapter 2 will be applied to the centralized smart grid MPC problem. Finally,
section 3.6 concludes the chapter.

3.2 Model description

In this section the smart grid system considered in this work is described in detail.
The system is composed of several buildings, batteries, renewable energy sources
and electric vehicle charging stations. Moreover a single connection with the external
electricity grid is assumed as illustrated in figure 3.1.

While in the traditional grid, all these sub-systems would have been operated in-
dependently from each other, the objective in this work is to control them in a coor-
dinated manner such that a globally better behavior is achieved. More precisely, the
following objectives will be addressed by the MPC scheme described in section 3.3:

• Respect an upper bound on the globally consumed energy/power from the ex-
ternal grid.

• Reduce the overall electricity bill by increasing the consumption of locally pro-
duced renewable energy within the scope of the smart grid and by optimally
exploiting variable energy tariffs.

In the following the models of the different sub-systems are introduced.

3.2.1 Building model

Buildings represent an important part of the electric energy consumption. According
to [IEA 2011b], households and tertiary buildings together account for 40% of the
world-wide primary energy consumption.

34



3.2. Model description

During the last decade many innovative MPC-based control strategies have been
proposed for buildings. In [Lamoudi 2012] a DMPC controller is proposed where each
zone of a building is controlled by an individual zone controller, exchanging some in-
formation with a coordinator layer which is in charge of the overall optimization at
building level. Through simulations the authors show that the energy consumption
can be reduced by 15% compared to a standard controller. [Oldewurtel et al. 2012]
investigates how MPC and weather forecasts can increase the energy efficiency for
several representative European buildings, while respecting the occupant comfort.
Moreover they propose a Stochastic MPC formulation allowing to further reduce the
risk of comfort related constraints violations. For further references regarding MPC
for buildings, the reader is referred to the review paper [Afram & Janabi-Sharifi 2014]
which classifies the most common building control strategies in a comprehensive
manner.

While building modeling is a crucial aspect for the good performance of building
MPC schemes, the focus in this work is more on how the building MPC controller
integrates into the smart grid. For this reason the following simple discrete linear
model is assumed to represent the thermal dynamics of a building:

ϑ+ = ϑ+ σ

c
(ϑext − ϑ) + η

c
P (3.2.1)

where ϑ is the indoor temperature, ϑ+ is the indoor temperature at the next time sam-
ple, ϑext is the outdoor temperature and P is the controllable thermal heating/cooling
power. The coefficients σ, η, c are the ambient conductivity coefficient, the heating/-
cooling efficiency and the heat capacity respectively.

Please note that this simple building model can be replaced by a more realistic
one without putting the performance of the two distributed MPC frameworks which
were proposed in the previous chapter into question. Indeed, the simulation results
provided in our paper [Pflaum et al. 2014], are based on the more complex building
models and their corresponding MPC controllers developed in [Lamoudi 2012].

3.2.2 Battery model

Battery storage systems can be represented by the following discrete switched system
equation:

E+ = E + τ · η(PBat) · PBat with η(PBat) =





η+ if PBat ≥ 0

1/η− otherwise
(3.2.2)
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where E is the stored energy in the battery, PBat is the battery charging power and
τ is the sampling period. η(PBat) represents the efficiency of the charging- and dis-
charging process with constants η+, η− ∈ ]0, 1]. Note that although no other effects
such as self-discharging or battery aging are included in the model, this kind of ex-
tension could be added if desired. The only restriction however is that the additional
terms must be linear or at least such that the model can be implemented in a convex
optimization problem formulation. [Desdouits et al. 2015] for instance models the
battery aging through a linear term which is proportional to the absolute value of the
charging/discharging power. A good review of the most common battery technolo-
gies and their applications in the context of power systems is provided by [Divya &
Østergaard 2009]. For more detailed information on battery modeling, the reader is
referred to [Castano et al. 2015] where a model of a Li-Ion battery pack is presented
and experimentally validated.

3.2.3 EV charging station model

Electric vehicle charging stations (EVCS) are considered to have an important im-
pact on the electric grid of the future. They require a high amount of energy to
recharge their batteries, but the moment when they actually connect to the grid for
being recharged is highly uncertain. For this reason, integrating EVs into the electric
grid is a challenging task. In chapter 6 we propose a stochastic energy management
strategy which is specifically dedicated to dealing with the uncertainty in the EV be-
havior, even if only little online information is available. In contrast, in this part an
EVCS will be considered as a sub-system of a smart grid where at each decision in-
stant a forecast of the occupancy schedules of all charging points of the station is
available. This energy management system has recently been deployed on the "Euref
Campus" [Euref Campus 2016] in Berlin as part of a centralized MPC controller. Apart
from an EVCS of 10 charging points, this MPC controller is also in charge of managing
a battery and a PV installation.

For the EVCS, the forecasted occupancy schedules can be described as follows:

S := {tarr,v, tdep,v, Ereq,v}v∈V (3.2.3)

where V := {1, ..., NEV} is the set of NEV vehicles connecting to the charging station
during the considered prediction horizon. tarr,v, tdep,v are the arrival- and departure
times of the v-th vehicle and Ereq,v is the required energy which should be supplied to
the v-th vehicle’s battery during its connection period [tarr,v, tdep,v].

For each vehicle v ∈ {1, ..., NEV} connecting to the charging station, one battery
model is associated as follows:
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E+
v = Ev + η · τ · PBat,v with PBat,v ≥ 0 (3.2.4)

and the global power consumption of the charging station is

PEVCS =
NEV∑

v=1
PBat,v (3.2.5)

Note that the model of the EVs’ batteries is similar to the one for the battery de-
scribed in the previous section (see eq. (3.2.2)). However the EV batteries cannot be
discharged, meaning that we do not consider V2G (vehicle-to-grid) technology in this
work.

3.2.4 Renewable energy sources

Renewable energy sources such as photovoltaic panels and wind turbines are as-
sumed to be non-controllable, meaning that they are taken into account in the control
scheme through their power production forecasts P̂ only.

The quality of prediction models for renewables plays a crucial role for the good
performance of MPC control solutions in the context of smart grids. However, this
forecast modeling aspect is not further investigated in this work, since previous stud-
ies amongst which [Lamoudi 2012] demonstrated the robustness of similar MPC so-
lutions w.r.t. forecast uncertainties. In the sequel, the assumption is made that fore-
casting modules providing satisfying results are available.

The interested reader is referred to [Foley et al. 2012, Inman et al. 2013] where state-
of-the-art techniques in solar and wind power forecasting are reviewed and classified.

3.3 Centralized MPC controller

In this section the optimization problem of the centralized MPC controller for the
smart grid is presented. As already mentioned, the objective of the controller is to
supply the required energy to the sub-systems at a minimal cost, while delivering
the required service (thermal comfort in buildings, charging of electric vehicles,...).
Moreover we aim to guarantee that a limit on the globally consumed electric power
from the grid is not exceeded. The optimization problem (3.3.1) of the centralized
MPC controller implements these objectives. Recall that in this section, boldfaced
symbols represent profiles of the corresponding variable over the prediction horizon
sampled at τ (typically τ = 15 minutes and a horizon length of 24 hours, resulting in
H = 96 discrete time samples).
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Minimize ΓT ·PG (3.3.1a)

Γ =





Γ+ if PG ≥ 0

Γ− otherwise
(3.3.1b)

PG =
∑

l∈S

Pl (3.3.1c)

PG ≤ PG (3.3.1d)

hl(xl,ul,Pl) ≤ 0 ∀l = {1, ..., NS} (3.3.1e)

where PG is the power profile from/to the external grid and Pl is the consumed/pro-
duced power profile of the l-th sub-system. PG is the upper limit on the globally
consumed power from the grid PG. The generic constraint (3.3.1e) represents the lo-
cal constraints of each of the NS sub-systems. These local constraints will be detailed
in the following sections for the different types of sub-systems.

Remark: While the generic centralized problem (2.2.5) provided in section 2.2.2
contained cost function terms of the different sub-systems, these terms don’t appear
in the centralized MPC problem 3.3.1 of the smart grid system which we address in
this section. This is due to the fact that the considered objective is the cost of the
globally consumed energy from the grid which is expressed in the global objective
term (3.3.1a). Note however that any additional local objective term could be added
without a problem.

In the following sections 3.3.1 - 3.3.4, the local constraints hl(xl,ul,Pl) ≤ 0 of the
different types of sub-systems will be described in detail.

3.3.1 Building constraints

Each building is represented by a set of constraints (3.3.2) which have to be added to
the centralized MPC controller (3.3.1) if the l-th sub-system is a building:

ϑ = Z(ϑ0,P,ϑext) (3.3.2a)

ϑ ≤ ϑ ≤ ϑ (3.3.2b)

P ≤ P ≤ P (3.3.2c)

where Z is the building simulator that implements equation (3.2.1) over the prediction
horizon. Note that it can easily be implemented through linear equality constraints.
ϑ0 is the currently measured indoor temperature or in other words the initial state
of the system). The constraints (3.3.2b) represent the thermal comfort constraints in
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Figure 3.2 Upper- and lower bounds defining the occupant comfort in a
building. One can see how that it is linked with the predicted occupancy
schedules for the building.

the building. More precisely, thermal comfort is achieved if the indoor temperature
profile ϑ lies within the predefined lower- and a upper bound temperature profiles ϑ
and ϑ. This is further illustrated in figure 3.2. Finally the constraints (3.3.2c) represent
the lower- and upper bounds on the control variable which is the thermal power
profile P.

In building MPC controllers it is common practice to implement the comfort
bounds (3.3.2b) as soft constraints as it is discussed in [Radecki & Hencey 2015,
Lamoudi 2012]. In this case, additional terms which represent the penalty for vio-
lating the corresponding constraints have to be added to the cost function (3.3.1a). In
the case of the distributed MPC frameworks, these terms appear in the sub-systems’
cost functions. The reason for this kind of implementation is to guarantee feasibility
for any initial system state. This practice is also followed in our implementation. Fig-
ure 3.3 illustrates how this is realized (note that the figures 3.2 and 3.3 are extracted
from [Lamoudi 2012] which strongly influenced the building MPC implementation in
this work).

3.3.2 Battery constraints

Each battery sub-system is represented by the following set of constraints:
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Figure 3.3 Implementation of the soft constraint applied by the building
MPC controller developed by [Lamoudi 2012]. It shows how the cost func-
tion increases linearly if the comfort variable lies outside the predefined
upper- and lower bounds.

E = E0 + τ · η+ ·Φ ·P+ − τ · (1/η−) ·Φ ·P− (3.3.3a)

E ≤ E ≤ E (3.3.3b)

P ≤ P ≤ P (3.3.3c)

P = P+ −P− (3.3.3d)

P+,P− ≥ 0 (3.3.3e)

where E is the charged energy profile, E0 is the current measured charged energy, i.e.
the initial system state. P+ and P− are profiles which contain respectively the positive
and the negative elements of P. Thanks to these additional variables, the switching
characteristic of the battery model can be expressed through linear constraints. Φ ∈
RH×H is a lower triangular matrix which represents the discrete time integration of
the charged/discharged power over the prediction horizon, resulting in the charged
energy profile E. It is defined as follows:

Φ :=




1 0 0 . . . 0
1 1 0 . . . 0
... . . . . . . . . . . . .

1 1 1 . . . 1




(3.3.4)
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Figure 3.4 Illustration of feasible charging profiles for an EV which is con-
nected to the charging station from 9am to 17pm. Any profile Ev of sup-
plied energy to the battery (red) that lies in between the profiles Bv, Bv

satisfies the vehicle’s charging needs.

3.3.3 EVCS constraints

Based on the EVCS model described in section 3.2.3, the following profiles over the
prediction horizon can be defined for each vehicle v ∈ {1, ..., NEV}:

Pmax,v :=



Pmax, Ev if tarr,v ≤ t < tdep,v

0 otherwise
(3.3.5)

Bv :=




0 if 0 ≤ t ≤ tarr,v

Ereq,v if t > tarr,v

(3.3.6)

Bv :=




0 if 0 ≤ t < tdep,v

Ereq,v if t ≥ tdep,v

(3.3.7)

where Pmax, Ev is the maximal battery charging power. Forecasts of Ereq,v, tarr,v and
tdep,v are supposed to be available. Figure 3.4 illustrates the profiles Bv and Bv. It
also shows several feasible profiles of the supplied energy to the EV’s battery (in red),
which illustrate the EVs’ high potential as flexible loads.

Given these definitions, the local constraints of the EVCS become

PEVCS =
NEV∑

v=1
PBat,v (3.3.8a)

Ev = η · τ ·Φ ·PBat,v ∀v = {1, ..., NEV} (3.3.8b)

0 ≤ PBat,v ≤ Pmax,v ∀v = {1, ..., NEV} (3.3.8c)

Bv ≤ Ev ≤ Bv ∀v = {1, ..., NEV} (3.3.8d)

where Ev is the profile of energy charged into the battery of the v-th vehicle and PBat,v

is the charging power profile of the v-th vehicle. PEVCS is the total power consumption
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profile of the charging station. Constraint (3.3.8b) implements the battery model with
the constant charging efficiency η, the sampling time step τ and Φ being a lower
triangular matrix with all elements equal to 1 as defined by (3.3.4) in the previous
section. The constraints (3.3.8c) and (3.3.8d) represent respectively the lower- and
upper limits on the charging power profiles and on the profiles of the charged energy
into the EVs’ batteries.

3.3.4 Renewable energy source constraints

Renewable energy sources such as wind turbines or photovoltaic panels are consid-
ered to be non-controllable, meaning that they are only taken into account through
their power production forecast. Nevertheless the corresponding trivial constraint
for such renewable energy source sub-systems are provided by (3.3.9). The reason for
explicitly stating this constraint is that in the sections 3.4, 3.5, modifications of this
constraint in order to be compliant with the dual- and primal decomposition frame-
works will be presented.

P = P̂ (3.3.9)

where P is the power production profile and P̂ is the forecasted power production
profile. Note that for some renewable energy plants it is required to reduce the actu-
ally injected power P from time to time in order to avoid grid instabilities. This kind
of control could easily be taken into account in the above formulation by replacing
the equality constraint (3.3.9) by an inequality.

3.4 Primal decomposition

In this section the primal decomposition approach introduced in chapter 2 is applied
to the centralized MPC controller (3.3.1). Recall that the principal motivation for de-
composing the problem is the large size of the centralized problem in the case where
many sub-systems are present.

The centralized controller (3.3.1) is divided into one master problem and several
sub-problems (one for each sub-system). In the following, the master- and the sub-
problems are provided with a special emphasis on how the sub-problems must be
formulated to guarantee feasibility for whatever power profile Pl is allocated to them
by the master.

Recall that in the primal decomposition framework the master problem consists in
determining the optimal feasible resource allocation for each of the sub-systems with-
out any knowledge of the nature of the different sub-systems. Based on the master
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problem (2.3.6) from the generic primal decomposition framework, the master prob-
lem corresponding to the smart grid MPC controller (3.3.1) is as follows:

Minimize
{Pl}l∈S

∑

l∈S

Jl(Pl) + (Γ+)T ·PG,cons − (Γ−)T ·PG,prod (3.4.1a)

Subject to: PG ≤ PG (3.4.1b)

PG =
∑

l∈S

Pl (3.4.1c)

PG = PG,cons −PG,prod (3.4.1d)

PG,cons,PG,prod ≥ 0 (3.4.1e)

At each iteration of the solution method, namely the bundle method described
in section 2.4, the sub-system controllers receive a power profile Pl from the mas-
ter, solve their local sub-problem MPCl(Pl) and return their resulting objective value
Jl(Pl) and a sub-gradient gl(Pl) ∈ ∂Jl(Pl) to the master.

Since the principle of the DMPC scheme is that the master is not aware of the
physical constraints of the sub-systems, the sub-problems must be formulated in such
a way that they are feasible for any power profile Pl which is allocated to them by the
master. In the following sections, the sub-problem formulations of the local MPC
controllers fulfilling this requirement are provided.

3.4.1 Building sub-problem (primal)

In order to guarantee the feasibility of the building sub-problem for whatever Pl is
imposed by the master, the upper- and lower bounds on the building’s consumed
power profile (3.3.2c) and on its indoor temperature profile (3.3.2b) must be imple-
mented as soft constraints. This is achieved by introducing additional slack variables.
The resulting sub-problem becomes then:

MPC(P) := Minimize
ϑ,z1,z2,z3,z4

mT (z1 + z2 + z3 + z4) (3.4.2a)

Subject to: ϑ = Z(ϑ0,P,ϑext) (3.4.2b)

ϑ+ z1 ≥ ϑ , ϑ− z2 ≤ ϑ (3.4.2c)

P + z3 ≥ P , P− z4 ≤ P (3.4.2d)

z1, z2, z3, z4 ≥ 0 (3.4.2e)

where z1, z2, z3, z4 are the slack variables and m ∈ RH is a vector of high linear
weights, leading to a high cost value if one of the constraints is not respected for
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an imposed power profile P.

Remark: In a concrete implementation it may be desirable to apply different weights
m1,m2,m3,m4 to the violation of comfort constraints (z1, z2) and power limit viola-
tions (z3, z4). This is due to the fact that it may be acceptable to have an indoor tem-
perature which is slightly outside the comfort bounds, while the limit on the HVAC
power consumption is a physical constraint without any margin.

3.4.2 Battery sub-problem (primal)

In the same way as for the building sub-problem, the battery sub-problem is realized
by introducing slack variables in order to guarantee its feasibility for any allocated
power profile P:

MPC(P) := Minimize
P+,P−,E,z1,z2,z3,z4

mT (z1 + z2 + z3 + z4) (3.4.3a)

Subject to: E = E0 + τ · η+ ·Φ ·P+ − τ · (1/η−) ·Φ ·P− (3.4.3b)

E + z1 ≥ E , E− z2 ≤ E (3.4.3c)

P + z3 ≥ P , P− z4 ≤ P (3.4.3d)

P = P+ −P− (3.4.3e)

P+,P− ≥ 0 (3.4.3f)

z1, z2, z3, z4 ≥ 0 (3.4.3g)

3.4.3 EVCS sub-problem (primal)

For the EV charging station, instead of introducing slack variables to soften all hard
constraints, a slightly different approach is chosen to guarantee feasibility for any
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allocated power profile P. The resulting sub-problem is as follows:

MPC(P) := Minimize
PEV CS ,z1,z2,{PBat,v ,Ev}v∈V

mT (z1 + z2) (3.4.4a)

Subject to: PEVCS =
NEV∑

v=1
PBat,v (3.4.4b)

Ev = η · τ ·Φ ·PBat,v ∀v ∈ V (3.4.4c)

0 ≤ PBat,v ≤ Pmax,v ∀v ∈ V (3.4.4d)

Bv ≤ Ev ≤ Bv ∀v ∈ V (3.4.4e)

PEV CS + z1 ≥ P , PEV CS − z2 ≤ P (3.4.4f)

z1, z2 ≥ 0 (3.4.4g)

where the slack variables z1, z2 are the distance of the feasible power consumption
profile PEV CS from the power profile P that was allocated by the master. In the case
where the allocated power profile P does not allow to satisfy all EVs’ energy de-
mands, then z1 takes positive values and results in a high local cost value due to the
strong linear weight m. On the other hand, if the master allocates too much power P
to the EVCS which cannot be charged into the EVs’ batteries at certain time samples,
then z2 takes positive values which results in an increased local cost function.

3.4.4 Renewable energy source sub-problem (primal)

The sub-problems of the renewable energy resource sub-systems are obtained by in-
troducing slack variables which represent the distance of the allocated power profile
P from the forecasted power production profile P̂. The resulting local optimization
problem for renewable energy source sub-system becomes then:

MPC(P) := Minimize
z1,z2

mT (z1 + z2) (3.4.5a)

Subject to: P + z1 ≥ P̂ , P− z2 ≤ P̂ (3.4.5b)

z1, z2 ≥ 0 (3.4.5c)

As mentioned before, the controller of the renewable energy source does not have
any degree of freedom and can be considered to be trivial. Alternatively, one could
have gathered the predictions of all renewable energy source sub-systems at the mas-
ter level and integrated them directly into the master problem constraints. Neverthe-
less, we implement each renewable energy source sub-system as an individual MPC
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controller to demonstrate that any sub-system (controllable or not) can be integrated
into the distributed framework without any knowledge of the sub-system’s nature at
coordinator level. Moreover we mentioned in section 3.3.4 that the produced power
of the renewable energy source could be curtailed at certain time instants by its local
MPC controller. In this case, the renewable source sub-system become controllable
just like the others.

3.5 Dual decomposition

In this section the dual decomposition framework described in section 2.3.2 is ap-
plied to the centralized controller problem (3.3.1). As mentioned before, applying
dual decomposition to solve a centralized optimization problem requires that the
problem is strictly convex. This is quite a strong assumption which is not fulfilled
by the centralized controller problem (3.3.1) which we aim to solve. In fact, if the
dual decomposition was applied directly to the centralized problem which is only
convex but not strictly convex, then there would be no guarantee that the duality gap
becomes zero after convergence. Therefore it would not be guaranteed that the cou-
pling constraints (3.3.1d), i.e. the upper bound profile on the global power consump-
tion, was respected. This has been demonstrated in [Pflaum et al. 2014] where we
applied the dual decomposition approach to the convex building MPC problem pro-
posed by [Lamoudi, Alamir & Béguery 2012, Lamoudi, Alamir, Béguery et al. 2012].
We showed that the duality gap between the primal and the dual solution does not
reduce to zero and that the global power limitation is not strictly respected after con-
vergence.

In further investigations it turned out that it is possible to overcome this prob-
lem by slightly modifying the sub-problems to enhance strict convexity of the sub-
problems. It is important to note however that this comes at the price of slightly
modifying and degrading the solution of the optimization problem. In the following,
the master- and the sub-problems with their modifications to become strictly convex
are described. The crucial point with the introduced modifications is that they have to
be chosen and tuned in such a way that they degrade the resulting controller’s perfor-
mance as little as possible compared to the solution of the initial centralized controller
(3.3.1). In chapter 4 we show that this is actually the case for the smart grid problem
addressed in this work.

The dual master problem corresponding to the centralized MPC controller (3.3.1)
is provided in the following. It is the direct transcription from the general case (2.3.13)
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which was developed in the previous chapter.

Maximize
λ,µ

∑

l∈S

Jl(λ,µ)− λT ·PG (3.5.1a)

Subject to: λ ≥ 0 (3.5.1b)

0 ≤ µ ≤ Γ+ − Γ− (3.5.1c)

While in the centralized optimization problem and in the primal master problem
the energy purchasing tariff Γ+ appeared at the master level, it is transferred into
the sub-problems’ cost function terms Jl(λ,µ) in the dual decomposition framework.
This will become clear in the following, where the local MPC controllers for the dif-
ferent sub-systems are described. To clearly understand why Γ+ ends up in the sub-
problems, the reader is also invited to re-read section 2.3.2 where the dual decompo-
sition framework is developed and to specifically focus on this point.

3.5.1 Building sub-problem (dual)

The building MPC controller in the dual decomposition framework is as follows:

MPC(λ,µ) := Minimize
P,ϑ,dP,z1,z2

(Γ+ + λ− µ)T ·P + ρ1zT1 z1 + ρ1zT2 z2 + ρ2dPTdP (3.5.2a)

Subject to: ϑ = Z(ϑ0,P,ϑext) (3.5.2b)

ϑ+ z2 ≥ ϑ ϑ− z1 ≤ ϑ (3.5.2c)

P ≤ P ≤ P (3.5.2d)

dP = Pi −Pi−1 ∀ i = {2, ..., H} (3.5.2e)

z1, z2 ≥ 0 (3.5.2f)

where z1 and z2 are slack variables which become positive in case the indoor temper-
ature profile ϑ takes values beyond its lower- and upper bounds ϑ and ϑ. If this is
the case, a quadratic penalty which is weighted with the scalar parameter ρ1 applies.
Moreover a quadratic penalty on the rate of variations dP of the consumed power
profile P is added.

The quadratic terms in the objective function (3.5.2a) were introduced with the
purpose of making the problem strictly convex. While the quadratic penalty on the
comfort violations do not have a negative effect on the performance of the controller
in comparison with the initial centralized controller (3.3.1), the penalty term ρ2dPTdP
on the rate variations does, if the parameter ρ2 is not tuned properly. In fact, the objec-
tive of this term is to make the solution of the problem unique by privileging profiles
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with less strong variations from one time step to another. If ρ2 was chosen too high
however, this quadratic term would predominate the linear energy cost term and the
resulting solution would be degraded compared to the initial centralized controller.
On the other hand, if it was chosen too small, the desired effect of enhancing the con-
vergence of the dual decomposition framework to a feasible globally optimal solution
might not be achieved.

3.5.2 Battery sub-problem (dual)

Similarly as for the building, the battery MPC controller for the dual decomposition
framework contains a quadratic penalty on rate variations dP of its power profile P
in order to enhance strict convexity of the sub-problem. Moreover, the energy tariff
profile Γ+ and the dual variables λ and µ appear in the objective function as a linear
weight on the consumed power of the charging station in a similar way as for the
building sub-problem.

MPC(λ,µ) := Minimize
P,P+,P−,E,dP

(Γ+ + λ− µ)T ·P + ρ dPTdP (3.5.3a)

Subject to: E = E0 + τ · η+ ·Φ ·P+ − τ · (1/η−) ·Φ ·P− (3.5.3b)

E ≤ E ≤ E (3.5.3c)

P ≤ P ≤ P (3.5.3d)

P = P+ −P− (3.5.3e)

dP = Pi −Pi−1 ∀ i = {2, ..., H} (3.5.3f)

P+,P− ≥ 0 (3.5.3g)

3.5.3 EVCS sub-problem (dual)

The EVCS sub-problem’s strict convexity is enhanced by adding a quadratic penalty
on rate variations of each EV’s charging profile PBat,v.
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MPC(λ,µ) := Minimize
PEVCS,PBat,·,dPBat,·,E·

(Γ+ + λ− µ)T ·PEVCS +
NEV∑

v=1
ρ dPT

Bat,vdPBat,v (3.5.4a)

Subject to: PEVCS =
NEV∑

v=1
PBat,v (3.5.4b)

Ev = η · τ ·Φ ·PBat,v ∀v = {1, ..., NEV} (3.5.4c)

0 ≤ PBat,v ≤ Pmax,v ∀v = {1, ..., NEV} (3.5.4d)

Bv ≤ Ev ≤ Bv ∀v = {1, ..., NEV} (3.5.4e)

dPBat,v = Pi
Bat,v −Pi−1

Bat,v ∀ i = {2, ..., H}, ∀ v = {1, ..., NEV} (3.5.4f)

3.5.4 Renewable energy source sub-problem (dual)

Remind that the idea of the distributed framework is to avoid any visibility of a sub-
system’s nature at the master level. For this reason, even though the renewable energy
source sub-system does not have any degree of freedom, a local MPC controller is
created which interacts in exactly the same way with the coordinator as the ones from
the building, the battery and the EVCS:

MPC(λ,µ) := Minimize
P

(Γ+ + λ− µ)T ·P (3.5.5a)

Subject to: P = P̂ (3.5.5b)

Note that at each negotiation iteration between the master and the sub-problem, the
local MPC controller (3.5.5) returns the same power consumption profile P = P̂ to
the master, but the returned objective value changes with the dual variables λ and µ
obtained from the master.

3.6 Conclusion

In this chapter we described the smart grid problem which is addressed in this work
in detail. It is to control a number of sub-systems in a smart grid with decoupled dy-
namics, but with a coupling constraint and with a coupling objective. More precisely,
the coupling constraint is a limitation on the global electric power consumption in the
smart grid and the coupling objective is to reduce the cost of the pursued energy from
the external grid.

The proposed centralized MPC controller requires solving a large-scale optimiza-
tion problem which can be difficult to be achieved in reasonable time, especially when
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the number of sub-systems is high. Moreover other reasons such as privacy consid-
erations, robustness and modularity of the controller motivate the development of
distributed methods to solve the initial centralized optimization problem.

Having defined the centralized MPC controller, the two distributed MPC frame-
works which have been proposed in chapter 2 are applied. The first one is based on
a primal decomposition, and the second one on a dual decomposition of the initial
centralized optimization problem. Both frameworks have in common that the prob-
lem is divided into one master problem and many sub-problems which correspond
to the local controllers of the sub-systems. For both distributed frameworks, the sub-
system controllers had to be built in such a way that they guarantee the convergence
and the feasibility of the overall framework. For the dual decomposition framework,
this needs some additional terms to be introduced at the sub-system level in order to
enhance strict convexity which is required to guarantee the convergence of the frame-
work. It is important to note that if these additional terms are not tuned properly,
then a non-negligible degradation of the controller performance can be encountered.
In the primal framework, it is important that in the local MPC controllers some ini-
tially hard constraints are transformed into soft ones in order to guarantee feasibility
during the iterative solution process. This however does not have a degrading effect
on the controller’s performance.

Finally, before moving on to the next chapter, where the performance of the pro-
posed distributed MPC frameworks is assessed through simulations, some comments
regarding the chosen decomposition methods are made:

• In both, the primal- and the dual decomposition framework, no knowledge of
the underlying sub-systems’ nature is included at the master level. In other
words, the master is not aware whether a certain sub-system is a building or a
wind turbine. This was one of the initial requirements for the developed decom-
position frameworks and it could be entirely achieved.

• Both the primal and the dual decomposition frameworks rely on a hierarchi-
cal decomposition of the centralized problem. This is a suitable approach for
the addressed smart grid problem, where the only coupling between the sub-
systems is through the sum of their power consumption/production profiles. If
one aimed at including network capacity constraints of the distribution grid or
any other coupling between certain groups of sub-systems, the scalability of the
provided frameworks would be more limited. This is due to the fact that ad-
ditional coupling between sub-systems results in additional variables and con-
straints in the master problem, whose complexity would eventually become un-
manageable. To overcome these limitations, one way is to group several coupled
sub-system in a common MPC controller, such that the coupling would not be
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visible at the master level. If this is not possible, for instance because of data
privacy issues, other distributed optimization methods may be suitable. For in-
stance ADMM (Alternating Direction Method of Multipliers) has been success-
fully applied to smart grid energy management problems such as in [Kraning
et al. 2014, Ma et al. 2014]. Compared to dual decomposition, ADMM has the
advantage that it only requires the centralized problem to be convex. A poten-
tial drawback of the method is its convergence speed which can be slow if one
is looking for a precise solution [Boyd et al. 2011]. Moreover our applied bundle
method with its possibility to memorize the cutting plane models of the sub-
problems from one time step to another is not possible with the ADMM method.
For this reason, our proposed primal and dual decomposition frameworks are
likely to require significantly less iterations in closed-loop than it would be the
case with ADMM.

• As already mentioned in the previous chapter, the appealing feature of the dual
decomposition framework lies in the exchanged price information between the
master and the sub-systems, which naturally provides an interesting economic
interpretation. This very nice feature however comes at the cost of the techni-
cal requirement that all sub-problems must be strictly convex which cannot be
achieved without a certain controller performance degradation. The provided
primal decomposition framework allows to overcome this technical limitation,
but in this case the information exchange between the master- and the local con-
trollers is of a more technical nature and is difficult to be interpreted from an
economical perspective. Finally, another advantage of the dual decomposition
framework over the primal one is that the dimension of the variables in the
master problem is independent of the number of sub-systems. In primal de-
composition the dimension increases linearly with the number of sub-systems
which can result in quite costly computations for the master problem when the
number of sub-systems becomes high.
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Chapter 4

Numerical & real-life validation

In this chapter the proposed primal and dual DMPC strategies described in the previ-
ous 2 chapters are validated through simulations. More precisely, the implementation
in the smart grid energy management context which was described in detail in chap-
ter 3 is assessed through simulations.

While the main focus in this chapter is on validating the proposed algorithms
through simulations, several real-life implementations have been realized in the scope
of the European project "Ambassador" lead by Schneider Electric. The reason for fo-
cusing more on the validation through simulations is due to the fact that the key
characteristic of the proposed approach which is its scalability, cannot be assessed on
the available test sites which are of rather small dimension. Nevertheless a discussion
of the real-life implementations is provided at the end of this chapter.

The chapter is organized as follows: In section 4.1 the performance of the proposed
DMPC controllers in closed loop is demonstrated. Moreover, the fact that the primal
and the dual decomposition approaches lead to equivalently good results as the cen-
tralized controller is shown. In section 4.2 the scalability of the proposed DMPC ap-
proach is demonstrated. Section 4.3 provides a convergence analysis with a focus on
the impact of the aggregation level in the bundle method. In section 4.4 two real-life
implementations of the proposed algorithms are provided. Finally section 4.5 con-
cludes the chapter.
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Global Limited transformer capacity PG = 75 kW

Buildings
10 residential buildings of different sizes and inertia.
Typical power consumption lies in the range of 0-15kW

Batteries
Bat1 capacity: 50 kWh efficiencies η+ = η− = 0.85
Bat2 capacity: 50 kWh efficiencies η+ = η− = 0.95
Bat3 capacity: 25 kWh efficiencies η+ = η− = 0.95

PV panels
PV1 nominal power Pnom = 60 kW
PV2 nominal power Pnom = 100 kW

EVCS
EVCS1 consisting of 20 charging points

nominal charging power Pnom = 3.3 kW

Table 4.1 District configuration
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Figure 4.1 Energy tariff profile Γ+ for buying energy from the external grid.

4.1 Validation of the distributed MPC approaches

4.1.1 Validation through closed-loop simulations

In this section the performance of the proposed distributed control schemes is demon-
strated through closed-loop simulations. For this purpose a smart district composed
of 10 buildings, 3 batteries, 1 EVCS with 20 charging points and 2 PV installations is
considered. Table 4.1 provides the detailed district configuration. It is assumed that
selling energy to the grid is not possible, meaning that Γ− = [0, 0, ..., 0]T . The energy
tariff profile Γ+ for purchasing energy from the grid is depicted in figure 4.1. It is a
typical peak-/off-peak tariff policy which can be found in France for instance. More-
over an upper bound on the global power consumption due to a limited transformer
capacity is assumed to be PG = 75 kW.

Since the primal and dual decomposition approaches lead to equivalently good
performances (which will be confirmed experimentally in section 4.1.2), detailed
closed-loop simulation results are presented only for the dual decomposition scheme.
This choice has been made, because it allows to illustrate very nicely how the dual
variables λ and µ acting as a "virtual price", intervene in order to modify the sub-
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systems’ behavior, such that global optimality is recovered.

Throughout the whole chapter, the MPC controllers use a prediction horizon of
24 hours, sampled at a 15 minutes time-step. This leads to a relatively high number
of variables and constraints in the MPC controllers, since all profiles consist of 96
discrete time samples. For instance, the local sub-problem (3.5.3) of the battery MPC
controller has 480 variables and 287 linear constraints. The centralized MPC controller
of the considered smart grid has around 20000 variables and 12000 constraints. Note
however, that despite this high number of variables and constraints, a modern solver
like gurobi [Gurobi Optimization 2014] is able to solve this kind of problem in about
1.5 seconds on an up-to-date laptop.

Figure 4.2 shows the closed-loop simulation results of the dual decomposition
scheme which was proposed in section 3.5. The simulated time interval is of two
and a half days, i.e. 60 hours. The first plot shows the overall power consumption PG

(red) in the smart district and the power consumption/production of all sub-systems.
One can see that the transformer capacity limit PG (green) is respected almost all the
time. The reason why one can observe slight violations of this upper bound in the
period from 30h to 40h, is that the iterative process had not fully converged yet. This
illustrates one major drawback of the dual decomposition approach which guaran-
tees constraint satisfaction only after full convergence. In the second plot, the tem-
perature evolution of 2 exemplary buildings and their comfort bounds are depicted.
Note that for instance between 26h and 30h, building 1 uses its relatively high ther-
mal inertia (compared to the inertia of building 2) to shift its energy consumption to
an earlier instant. This way it contributes to respecting the power limit PG on the
globally consumed power from the external electricity grid. The third plot shows
the state-of-charge (SoC) evolution of the 3 batteries. A first observation is that the
behavior of battery 1 differs from the other two batteries. The reason lies in its rel-
atively bad efficiency (see table 4.1) which means that the battery is only activated
if the economic benefit is significant enough. A second observation is that the bat-
teries are typically charged during the off-peak hours from 23h - 6h or when the PV
panels produce more energy than what is consumed by the buildings and the EVCS
(e.g. from 11h-14h). However, if it is necessary to anticipate a severe power short-
age, the batteries are sometimes also charged during the on-peak period. This behav-
ior can for instance be observed in the period from 32h-37h where the batteries are
charged in order to be able to provide energy to the EVCS and the buildings from
38h-42h. This situation illustrates in a very obvious way why MPC controllers with
their ability to anticipate future events are very well suited for energy management
applications. The behavior of the EVCS is illustrated in the fourth and fifth plots
where respectively the power PCP,· and the charged energy ECP,· of three randomly
chosen charging points are shown. Typically the EVs are charged during the off-peak
hours and – if possible – while the PV panels are producing energy. Moreover one
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can see that in order to respect the global power limitation PG in the district, the EVs’
batteries are charged during the less congested periods. For instance from 22h-26h,
at charging point 1, an EV becomes fully charged although it remains connected until
31h. Thanks to this anticipation, the upper bound on the global power consumption
can be respected during the period from 26h-31h where the buildings require all the
available power to maintain their quality of service. Finally, in the last plot, the tar-
iff profile and the dual variables λ and µ are depicted. The blue line represents the
sum Γ+ +λ−µ which is the modified energy tariff applying in the sub-systems’ MPC
controllers in the dual decomposition approach. Recall that this information is the
same for all sub-system controllers, independently of their total number, and that this
information alone makes the sub-systems converge to the globally optimal behavior.
This is one great advantage of the dual decomposition framework over the primal
one where the number of decision variables in the master problem increases linearly
with the number of sub-systems.

4.1.2 Performance equivalence of the primal and dual decomposi-
tion schemes

In the previous section the closed-loop performance of the dual decomposition
scheme was presented for an exemplary district composed of 16 sub-systems. In
the following we aim at demonstrating that the dual and the primal decomposition
schemes result in equally good performances and that both of them recover the glob-
ally optimal behavior of the corresponding centralized MPC controller.

For this purpose the same closed-loop simulation which was provided in the pre-
vious section for the dual decomposition approach, is also performed with the DMPC
approach based on the primal decomposition and with the centralized MPC con-
troller. Figure 4.3 shows the evolution of the objective values of the three control
schemes over time. More precisely, at each time-step, the optimal objective values of
the open-loop controllers are plotted. One can see very nicely that the cost value of the
primal decomposition scheme constitutes an upper bound on the optimal cost value
of the centralized MPC controller, while the dual decomposition scheme approaches
the optimal cost value from below.

4.1.3 Financial savings

It is a very difficult task to estimate the potential financial savings which can be
achieved thanks to the proposed DMPC frameworks, since it is very context depen-
dent. In fact, for a given smart grid configuration, two different energy tariff contracts
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Figure 4.2 Closed-loop simulation results of a district composed of 10 build-
ings, 3 batteries, 1 EVCS and 2 PV systems simulated for a period of 60
hours. The underlying DMPC scheme is the dual decomposition approach
provided in section 3.5.
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Figure 4.3 Evolution of the objective value of the open-loop control schemes
(centralized, primal and dual) over time for the same simulated scenario
presented in figure 4.2. The primal and dual decomposition schemes both
recover the optimal solution of the centralized controller.
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for buying and selling energy from/to the grid may result in completely different
quantities. Moreover, the configuration of the smart grid (types and sizes of the sub-
systems) has an important impact on whether considerable financial savings can be
achieved or not.

One extensive case study which nevertheless provides a partial answer to this
question is [Bourry et al. 2015] where the proposed dual decomposition framework
was connected to a district simulation platform in order to evaluate the potentials of
the proposed approach for an existing smart grid (located in Lavrion, Greece). An an-
nual simulation of this system revealed an energy cost reduction of 17% when apply-
ing the proposed DMPC framework compared to a state-of-the-art controller based
on expert rules. A similar energy cost reduction was also obtained in [Lamoudi 2012]
for a building equipped with a battery and PV panels on its roof. Recall that in addi-
tion to energy cost reductions, the proposed DMPC frameworks also allow to respect
global constraints on the power consumed from the external grid. Integrating this
type of constraints in a rule-based controller would be very complicated.

4.2 Scalability

One important motivation for deploying distributed MPC approaches lies in their
scalability. In smart grid energy management applications this is an important fea-
ture, since the more actors are being coordinated by a common master, the better
becomes the to-be-expected performance of the system.

In order to demonstrate the scalability of our proposed approach, a smart grid
composed of 1000 buildings is considered. Note that the corresponding centralized
MPC controller comprises about 800 000 variables and it took 10 minutes to solve
the centralized MPC problem. Figure 4.4 shows the open-loop result which was ob-
tained with the dual decomposition approach. One can see that the upper bound
on the global power consumption is perfectly respected. Moreover the optimal cost
value is the same as the one obtained with the corresponding centralized MPC con-
troller. Note also that solving the centralized optimization problem took around 10
minutes, while solving the distributed MPC problem can be achieved in about 5 sec-
onds (in both cases Gurobi was used as solver). This very low computation time
can be achieved, because it is possible to solve the 1000 building MPC problems in
parallel. Recall equation (2.4.9) which serves to estimate the total time to solve the
distributed optimization problem. Solving the master problem takes around tMaster =
30ms and solving the building MPC problems in parallel takes around tSubsys = 80ms.
If one assumes that the communication time between the master and the sub-systems
can be neglected and that in average it takes around 50 iterations to converge to the
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optimal solution, then the following estimated time to solve the problem with the
dual decomposition approach is obtained:

ttotal = niter · (tMaster + tComm + tSubsys) = 50 · (30ms+ 0 + 80ms) = 5.5s

4.3 Convergence analysis

In this section the two DMPC schemes are analyzed more in detail with a focus on
the convergence speed and the computational effort. Moreover, the impact of the
aggregation level in the bundle method (see section 2.4) is assessed. Remind that the
bundle method is used to efficiently solve the master problem in both schemes.

4.3.1 Impact of the bundle aggregation level

In section 2.4 we stated that with the disaggregated bundle method the computation
time to solve the master problem can become very high. This results from the fact
that each sub-system’s objective function is approximated by an individual cutting
plane approximation. We also mentioned that aggregated and semi-aggregated bun-
dle methods are a way to overcome this issue. Recall section 2.4.2 for the detailed
description. However, in general, these aggregated bundle methods require a higher
number of iterations to converge to the optimal solution. In the following the impact
of the aggregation level in the bundle method on the necessary number of iterations
will be assessed for the primal and for the dual decomposition frameworks.

Dual decomposition framework

In the dual decomposition framework it turned out that the disaggregated and the
aggregated bundle methods require the same number of iterations to converge to the
optimal solution. Convergence was considered to be achieved when the difference
of the cost value from the optimal value obtained with the centralized controller was
less than 1% of the optimal value. For this reason, the best choice is to use the ag-
gregated bundle method, because of its lower computation time to solve the master
problem, as shown in table 4.2. The provided computation time measures are from
the 1000 building example which was introduced in the previous section. The num-
ber of cuts nB per cutting plane model are fixed to nB = 6. The table shows how the
computation time tMaster increases quite importantly with the number NC of cutting
plane approximations. Recall that NC = 1 means that all sub-problem cost functions
are approximated by a single cutting plane model in the master problem.
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Figure 4.4 Resulting optimal solution of a district composed of 1000 build-
ings. The optimal power and temperature profiles of 10 randomly cho-
sen buildings are provided in the second and third sub-figures. The first
sub-figure shows the global power consumption of the district and that the
global power limit is respected. Finally in the fourth sub-figure the dual
variable λ is plotted.
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number of cutting
plane models NC tMaster

1 0.003
2 0.004
5 0.005

10 0.009
20 0.019
40 0.037

100 0.250
200 1.164

Table 4.2 Computation time tMaster to solve the master problem for an in-
creasing number of cutting plane approximations NC .

Primal decomposition framework

In contrast to the dual decomposition framework, the required number of itera-
tions to converge does increase in the primal decomposition framework when mov-
ing from a disaggregated towards a semi-aggregated or even fully-aggregated bundle
method. Consequently, a more detailed analysis is necessary in this case, in order to
determine the optimal aggregation level that results in the lowest total computation
time of the scheme (recall section 2.4.3 where this principle is discussed in detail).

In the following a smart grid consisting of NS = 500 sub-systems (350 buildings,
70 batteries, 50 PV installations and 30 EVCS) is considered. Figure 4.5 shows the
iterative convergence process in the primal decomposition framework for different
aggregation levels of the cutting plane model. Recall thatNC represents the number of
cutting plane models in the master problem. If for instanceNC = 10, then each cutting
plane model represents an approximation of the sum of NB = NS/NC = 500/10 = 50
sub-system cost functions.

The figure shows that the disaggregated bundle method, where each sub-system’s
cost function is approximated by an individual cutting plane model in the master
problem, converges fastest. The more sub-system cost functions are aggregated in one
cutting plane model, the more iterations are required as one would expect. Moreover
one can see that with the fully aggregated and with semi-aggregated methods with a
high aggregation level, the algorithm does not converge to the global optimum at all.

Recall section 2.4.3 where we discussed the fact that a trade-off between the pre-
cision of the cutting plane approximations and the computation time of the master
problem has to be made. Figure 2.3 illustrated that there is an optimal bundle aggre-
gation level that minimizes the total computation time of the scheme.
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Figure 4.5 Iterative convergence process in the primal decomposition frame-
work for a smart grid composed of 500 sub-systems. It shows that the
more sub-system cost functions are aggregated in a common cutting plane
model, the higher is the necessary number of iterations to converge to the
global optimum.

While for the dual decomposition framework it turned out that the optimal bundle
aggregation level is to simply use the fully aggregated bundle method, this is not the
case for the primal decomposition framework where the number of iterations does
increase for higher aggregation levels. Table 4.3 provides the estimated total com-
putation time as a function of the number NC of cutting plane models in the master
problem. It was again estimated using eq. (2.4.9). The necessary numbers of itera-
tions niter to converge to the optimum was obtained by fixing a threshold in figure 4.5
which is slightly above the global optimum and then to count the number of iterations
it took until the objective value got below this threshold. The table shows that the ag-
gregation level that results in the lowest total computation time ttotal is the one where
NC = 25 cutting plane models are used in the master problem, each representing the
linear approximation of the sum of NB = 20 sub-system cost functions.

Remark 1: Note that the reason why the number of iterations is quite high in this
convergence study (niter ≥ 150) is that the process was cold-started, meaning that the
initial central point was very far from the final optimal point. This number reduces
considerably when applying the scheme in closed-loop, since the optimal solution
typically does not change a lot from one control instant to another and a warm-start
can be performed by simply shifting the previous optimal profiles by one time-step.

Remark 2: The computation time of the master problem is much smaller in the
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number of cutting
plane models NC tMaster [sec] niter ttotal [sec]

1 0.56 ∞ ∞
2 0.71 ∞ ∞
5 0.91 793 801

10 1.18 607 777
25 1.77 285 533
50 2.60 241 651

100 3.05 202 636
250 5.11 152 790
500 8.47 157 1346

Table 4.3 Total computation time of the primal decomposition scheme esti-
mated by the equation ttotal = niter ·(tMaster +tComm +tSubsys). The time to solve
the sub-system optimization problems in parallel is about tSubsys = 0.1sec
and the communication time tComm is assumed to be negligible. Note that
the time to solve the master problem in the dual decomposition framework
is much lower (see table 4.2), because the number of variables in the dual
master problem is independent from the number of sub-systems.

dual decomposition framework than in the primal decomposition framework. This is
due to the fact that the number of variables in the master problem is independent
of the number of sub-systems. For this reason, when the number of sub-systems
becomes very high, the dual decomposition framework has a better computational
efficiency.

4.4 Test-site implementation

In the scope of the European FP7 project "Ambassador" which is lead by Schneider
Electric, the proposed dual and primal decomposition approaches for energy man-
agement in smart grids were implemented on two test-sites.

Figure 4.6 shows the two test sites which are situated at the INES1 institute in
Chambéry, France and in Lavrion, Greece. The INES test site consists of 4 buildings,
2 batteries, 1 EVCS and a PV system. On the Lavrion test site 2 office buildings, 1
battery, 1 PV system, 1 hydrogen storage system, 1 data center, 1 cafeteria and 1 small
factory can be found.

On the Lavrion test site which is situated in Greece, the dual decomposition ap-

1Institut National de l’Energie Solaire
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(a) INES test site (b) Lavrion test site

Figure 4.6 View on the two test-sites in Chambéry, France and in Lavrion,
Greece.

proach has been implemented, while on the INES test site in Chambéry, France, the
primal decomposition approach was chosen. For time reasons and due to other com-
plexity factors of the real-life implementation we have not been able to test both de-
composition frameworks on both sites. The architecture to deploy the algorithms is
depicted in figure 4.7. The architecture scheme shows that the local MPC controllers
and the coordinator are running on a same server in a same MATLAB instance. This
architecture has been developed and implemented by Laurent Battini within the Am-
bassador project and I would like to stress the fact that this step from simulation to
real-life has been a great technical challenge. While the distributed nature of the pro-
posed DMPC frameworks would also allow to physically distribute the local MPC
controllers, the choice to implement the entire DMPC algorithm framework on a sin-
gle server situated in the Schneider Electric Cloud was made to avoid additional tech-
nological complexity. The scheme shows that the MATLAB instance running the algo-
rithms is hosted by a platform called Rapid Analytics which is able to communicate
with the exterior world through web-services. For each sub-system (building, battery,
EVCS,...) one Automation server is installed physically on the test sites. It serves as
a gateway to gather local information from the sub-system and to transfer it to the
server in a regular manner. In the same way, control set-points computed by the al-
gorithms in the cloud are returned to the automation server and transformed into the
sub-system specific format. Moreover, additional web services such as local weather
forecast services are accessed by the cloud-based algorithm execution platform.

Figure 4.8 shows a screenshot from the SCADA (Supervisory control and data ac-
quisition) system of the INES test site. It shows the predicted optimal power profiles
of the different sub-systems, as well as the global predicted power consumption pro-
file "power" in blue. Moreover the state-of-charge evolution of the battery is plotted
in red. One can see that from the current time 13:00 until 18:00 the battery is being
charged, absorbing the PVs produced power which is not required by the consumers
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Figure 4.7 Architecture of the system to deploy the proposed DMPC algo-
rithms on the test sites of the "Ambassador" project.

(4 buildings, a load bank and an EVCS) during this period. After that, during the
evening hours the battery supplies this energy to the consumers such that less energy
needs to be pursued from the external grid.

During the implementation phase of the DMPC framework on the test sites, sev-
eral challenges were encountered and partially mastered. In the following the main
challenges which may be a threat for the successful deployment of MPC-based energy
management systems in the future are discussed.

• A reliable data acquisition process is an essential prerequisite for deploying ef-
ficient energy management systems. Missing or faulty data are a common and
inevitable issue in SCADA implementations and can result in very inefficient
control decisions. For this reason, a lot of effort is necessary to pre-process the
acquired data before transmitting it to the MPC algorithms, such that an overall
satisfying performance may be expected.

• Several sub-systems are more complicated to manage in reality than others. Es-
pecially MPC controllers for buildings require a deep understanding of the par-
ticularities of the to-be-controlled building. In many cases it may be a more
robust alternative to assume a building to be non-controllable and to consider
it only through a forecasting model which provides the building’s forecasted
power consumption to the DMPC scheme.
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Figure 4.8 Screenshot from the SCADA system of the INES test site. The
power profiles of the different sub-systems are visualized as well as the
state-of-charge of the battery. The global power exchanged with the ex-
ternal grid is shown in blue. One can see that during certain periods the
smart grid is consuming energy from the external grid and during others it
is re-injecting energy into the grid.

• The obtained performance of MPC-based energy management systems depends
a lot on the quality of forecasts. Forecasts intervene in nearly all sub-system
controllers (buildings, renewable energy sources, EVCS,...). Although MPC con-
trollers are able to recover prediction errors from one time-step to another, if a
sub-systems forecast is constantly biased with some error, the overall behavior
may become quite unsatisfactory. This effect has clearly been put into evidence
on the INES test site. For instance, for the EVCS sub-system, the EV users were
required to declare their EV to the station after their arrival and to indicate the
current state-of-charge and the planned departure time. Often, the users forgot
to do so and – considering the fact that the EVCS represents an important share
of the load on the test site – the overall system behavior was very unsatisfactory.

4.5 Conclusion

In this chapter the DMPC frameworks described in the previous two chapters were
validated through simulations. Furthermore experimental results from a test-site sit-
uated in Chambéry, France and practical issues encountered during the implementa-
tion phase were discussed.

The provided simulation results showed that the primal- and dual decomposi-
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tion frameworks lead to equally good results as the corresponding centralized MPC
controller. Moreover the scalability of the proposed frameworks which cannot be
achieved with the centralized controller, was demonstrated. In the dual decomposi-
tion framework, the scale of the system does not affect the time to solve the master
problem at all. For this reason there is essentially no limit on the number of sub-
systems in the smart grid. In the primal decomposition framework however, the
number of variables in the master problem increases linearly with the number of sub-
systems, which induces a limit to the scalability of the approach.

Concerning the bundle method which is used to efficiently solve the master prob-
lem, the effect of the aggregation level of the cutting plane models was explored. It
turned out that in the dual decomposition framework it does not have any effect on
the number of iterations and that consequently the aggregated bundle method which
requires the smallest computation time, is the most efficient and should be chosen.
For the primal decomposition framework however, an increasing number of iterations
was observed when the number of sub-system cost functions which are aggregated in
a common cutting plane model increases. For an exemplary smart grid composed of
500 sub-systems, the optimal aggregation level that minimizes the total computation
time of the primal decomposition scheme was determined.

From a computational point of view, the dual decomposition framework should be
chosen preferably, provided that it is acceptable to convexify the local MPC problems
by adding a view quadratic terms in their objective functions. This is particularly
the case when the number of sub-systems is very large, because the time to solve the
primal master problem increases strongly with the number of sub-systems.

In future investigations we aim to assess the impact of the memory size of the
bundles, that is, the number of hyperplanes per cutting plane model, on the total
computation time.
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Chapter 5

Randomized algorithm approach

Nomenclature

w uncertainty realization

W uncertainty set

PrW probability measure overW
θ design parameter vector

Θ set of design parameter vectors

nC cardinality of the set Θ
θfeas feasible solution of the randomized algorithm

θopt optimal solution of the randomized algorithm

J(θ) cost function/performance measure

E(θ) probability of violation

Ê(θ,w) empirical mean approximating E(θ)
w set containing N uncertainty realizations w(1), ..., w(N)

g(θ, w) binary constraint satisfaction function

η probabilistic accuracy

δ probabilistic confidence

m number of infeasible constraints

Plim(θ) day-ahead upper limit profile on the EVCS’s power consumption
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5.1 Problem statement

Uncertainties have an important impact on the performance of energy management
systems in the context of smart grids. Nevertheless, also in the traditional grid, uncer-
tainties and the necessity to deal with them were a major topic. But they were much
less complex and pronounced in traditional grids and thus easier to deal with.

In fact, before the emergence of large amounts of renewable energy resources (es-
pecially wind power and photovoltaics) and the foreseeable deployment of electric
vehicles at a large scale, uncertainties were mainly present in the load forecasts of
consumers. The difficulty faced by the grid operators was to anticipate the uncertain
consumption forecasts by optimally managing the production assets with the princi-
pal objective to assure the balance between power production and consumption.

The strong uncertainties which are inherent to intermittent renewable energy re-
sources as well as to the behavior of electric vehicles represent a serious threat for the
grid stability. In the following two chapters, two energy management systems are
proposed which deal with this issue. The first one addresses uncertainties inherent to
electric vehicle charging stations and the second one deals with uncertainties at pho-
tovoltaic power plants. Both methods rely on a stochastic optimization method called
randomized algorithms. In this chapter the principle of this method is explained,
before applying it in the following two chapters.

5.1.1 Robust design problem

Randomized algorithms provide a way to solve the following robust design problem:

min
θ∈Θ

J(θ) subject to g(θ, w) = 0 for all w ∈ W (5.1.1)

where θ ∈ Θ is a design parameter vector of dimension θ ∈ Rnθ , J(θ) represents
a cost to be minimized, W represents the uncertainty set, w is a realization of the
uncertainty and the binary constraint satisfaction function g(θ, w) is defined by:

g(θ, w) :=




0 if θ meets control specifications for w

1 otherwise
(5.1.2)

The objective of problem (5.1.1) is thus to determine a θ ∈ Θ which minimizes a
certain performance measure J(θ) and which is feasible for all possible realizations of
the uncertainty set w ∈ W . g(θ, w) is simply a measure whether for a chosen design
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parameter vector θ and a given realization of the uncertainty w, the desired control
specifications are met.

Note that problem (5.1.1) is NP-hard, because there exists a potentially infinite
number of uncertainty realizations w, and thus an infinite number of constraints.
However, in order to deal with this issue, the problem can be recast as a probabilistic
problem which can finally be solved by randomized algorithms in reasonable time.
The principle of randomized algorithms is explained in detail in section 5.2.

The following two sub-sections describe how the EVCS- and the PV power plant
problem which are addressed in the following chapters can be formulated as robust
design problems.

5.1.2 Electric vehicle charging station problem

From the grid point of view, an EVCS can be considered like an electric load. In
order to integrate such an EVCS into the grid, the DSO or any other entity which is in
charge of managing the distribution grid requires a prediction of the EVCS’s power
consumption profile. Furthermore, if the EVCS was able to declare a day-ahead upper
limit profile on its power consumption, this may be very valuable since it potentially
enables the DSO to avoid power congestion problems in the distribution grid.

In chapter 6 an energy management system for an EVCS is proposed which has
the following features:

• Provide a day-ahead upper limit profile on the EVCS’s power consumption to
the DSO.

• Strictly respect the declared upper limit profile on the EVCS’s power consump-
tion in real time.

• Despite the uncertain EV behavior, guarantee the EV customer satisfaction, i.e.
charge the EVs’ batteries with their required energy.

Clearly, if one declares a very conservative day-ahead upper limit profile on the
EVCS’s power consumption to the DSO, meaning that much more energy than ac-
tually required by the EV customers is reserved for the charging station, the customer
satisfaction is always guaranteed. However, the realized power consumption profile
of the EVCS will be very far from the one that was declared and the DSO may have
trouble to maintain the balance between production and consumption.

This is where the robust design problem (5.1.1) comes into play. In fact, the prob-
lem of determining a day-ahead upper limit profile on the power consumption of the
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charging station that minimizes the reserved energy for the day while guaranteeing
the customer satisfaction can be expressed under this form. More precisely,

• J(θ) represents the total reserved energy for the day. It is a function of the design
parameter vector θ which allows to vary the shape of the day-ahead upper limit
profile on the EVCS power consumption Plim(θ).

J(θ) =
∫ 24

t=0
Plim(θ) dt (5.1.3)

• w ∈ W represents a realization of the uncertain 24h EVCS occupancy, denoted
as a scenario in the sequel.

• g(θ, w) represents the indicator function that evaluates whether for a given de-
sign parameter vector θ and scenario w, the customer satisfaction is guaranteed.
As it will become clear in chapter 6, in order to evaluate g(θ, w), a real-time con-
troller affecting Plim(θ) to the connected EVs is simulated and based on some
metric, the resulting EV customer satisfaction is evaluated.

5.1.3 Photovoltaic power plant problem

The power production profiles of photovoltaic power plants are very difficult to fore-
cast, since they strongly depend on the uncertain weather conditions. This makes it
very difficult for grid operators to assure the equilibrium between production and
consumption at all times. As a measure to overcome these issues, Energy Regula-
tory Boards of different countries have imposed regulations which force the plant
operators to declare their day-ahead power production profiles to the DSO. If these
previously declared power profiles cannot be realized, financial penalties are applied.

In this context we propose an energy management system for PV power plants
with an associated battery storage, described in detail in chapter 7. The main idea
is to determine the optimal parametrization of the PV plant’s control strategy, taking
into account the uncertainty due to the weather forecast as well as the regulations.
The objective is to maximize a guaranteed lower limit on the to-be-expected revenue
of the power plant.

Again, this problem can be expressed as a robust design problem (see pb. (5.1.1)):

• J(θ) represents the guaranteed lower limit on the to-be-expected revenue which
we aim to maximize.

• w ∈ W represents one realization of the uncertain power production profile of
the PV power plant.
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• g(θ, w) represents the indicator function that evaluates whether for a given real-
ization w of the uncertain PV power production profile and for a given control
strategy parametrization θ, the realized revenue is above a certain threshold.

5.2 Randomized algorithms

In the previous section we mentioned that the robust design problem 5.1.1 is diffi-
cult to solve, since it is NP-hard. As stated in [Alamo et al. 2015], there exist two
approaches to overcome this difficulty. The first approach is to use deterministic re-
laxations of the original problem, which are usually polynomial time solvable, but
which may lead to overly conservative solutions [Scherer 2006]. The second one
is to assume that a probabilistic description of the uncertainty is available. In that
case stochastic programming techniques [Prékopa 2013] and randomized algorithms
[Tempo et al. 2012] can be used to solve the problem in polynomial time. The idea
underlying stochastic optimization is to compute a solution which is feasible for al-
most all possible realizations of the uncertainty and which maximizes the expectation
of some function of the decision variables. The main idea of randomized algorithms
is to determine a solution with probabilistic guarantees on their feasibility.

In the following two chapters, a version of randomized algorithms is applied
which allows to solve problem 5.1.1 in the special case where the set of design param-
eter vectors Θ is of finite cardinality nC . In the following, the principle of randomized
algorithms is explained for this special case.

5.2.1 Randomized algorithm for design sets of finite cardinality

Recall the robust design problem 5.1.1 which we aim to solve:

min
θ∈Θ

J(θ) subject to g(θ, w) = 0 for all w ∈ W

with

g(θ, w) :=




0 if θ meets control specifications for w

1 otherwise

Assume that the set of design parameter vectors Θ = {θ(1), ..., θ(nC)} is finite. The
notion probability of violation formalizes the concept that, given a θ ∈ Θ, the constraint
g(θ, w) = 0 is satisfied for a subset ofW . The probability of violation is defined as

E(θ) := PrW { g(θ, w) = 1 } (5.2.1)
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Using this notion, randomized algorithms focus on solving the robust problem

min
θ∈Θ

J(θ) subject to E(θ) ≤ η (5.2.2)

where J : Θ → (−∞,∞) is a measurable function which represents the controller
performance and η ∈ (0, 1) is a probabilistic accuracy. Given the confidence δ ∈ (0, 1),
the main point of the randomized algorithm is to determine probabilistic solutions
θfeas satisfying E(θfeas) ≤ η with probability no smaller than 1− δ.

Usually, computing the exact value of the probability of violationE(θ) for a given θ
is difficult, because this requires solving a multiple integral with a usually non-convex
domain of integration. However, its value can be approximated by the empirical
mean Ê(θ,w) which is defined as

Ê(θ,w) = 1
N

N∑

i=1
g(θ, w(i)) (5.2.3)

with w = {w(1), ..., w(N)}. The empirical mean Ê(θ,w) is a random variable which is
always within the closed interval [0, 1]. Moreover, in order to minimize the perfor-
mance index J(θ), one idea underlying randomized algorithms is to allow for some
violations of the constraints. This is expressed by the m-level randomized strategy
which is defined as

min
θ∈Θ

J(θ) subject to
N∑

i=1
g(θ, w(i)) ≤ m (5.2.4)

Note that this is equal to minimizing J(θ) subject to the constraint that the empirical
mean is not larger than m

N
.

The main result of randomized algorithms for finite sets of the design parameter
vector is that if one fixes η, δ and m ≥ 0 and then draws N i.i.d. samples of the
uncertainty w(1), ..., w(N), with

N ≥ 1
η

( e

e− 1)(lnnC
δ

+m) (5.2.5)

and then solves the m-level randomized strategy (5.2.4), then with probability no
smaller than 1− δ, the probability of violation E(θfeas) is no larger than η, i.e.

Pr
(
w ∈ W : E

(
θfeas

)
≤ η

)
≥ 1− δ (5.2.6)

Note that the lower bound on the required number of samples N which is deter-
mined by inequality (5.2.5) strongly depends on the choice of the parameters η, δ, m
and the cardinality nC of the design parameter vector set Θ. They should be chosen
in such a way that the sample size N does not become unnecessarily large.

76



5.2. Randomized algorithms

The power of randomized algorithms stems from the fact that the lower bound
on the sample size (5.2.5) is relatively low and makes the solution of problem (5.2.4)
computationally tractable. The mathematical derivation of this inequality is based on
the binomial distribution. Further details are avoided in this thesis, but the interested
reader can find it in [Alamo et al. 2015].
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Chapter 6

Energy management under uncertainty
for EV charging stations

Nomenclature

Echarged energy supplied to a vehicle

Ereq required energy of a vehicle’s battery to become fully charged

τconst time constant

csatis satisfaction threshold (in %)

tconnected time a vehicle remains connected at the charging station

narr number of vehicles arriving during one time interval

tarr arrival time of a vehicle

tdep departure time of a vehicle

τ sampling period

H number of time intervals of length τ in the prediction horizon

nCP number of charging points at a charging station

nEV number of electric vehicles in a scenario

nocc number of occupied charging points.

Pmax, CP maximal charging power which can be supplied by a charging point

Pmax,v upper limit profile on the power supplied to the v-th vehicle

Bv, Bv lower/upper limit profile on the energy supplied to the v-th vehicle

bv profile of supplied energy to the v-th vehicle

Γ energy tariff profile

P(S)
max maximal power consumption profile of the EVCS in scenario S
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B(S), B(S) lower/upper limit profiles on the consumed energy in scenario S

Popt,(S) optimal power consumption profile of the EVCS in scenario S

P̂max(θ) parametrized maximal power profile of the EVCS

B̂(θ), B̂(θ) parametrized lower/upper limit profiles on the consumed energy of

the EVCS

6.1 Introduction

The foreseeable deployment of electric vehicles will have an important impact on the
existing power grid. The high amounts of energy required to charge the EVs’ batteries
coupled with the uncertainty in their driving patterns may result in severe grid insta-
bilities. Mainly voltage fluctuations due to temporal imbalances between production
and consumption as well as cable- and transformer overloading in the low-voltage
grid have been addressed in many recent studies concerning the integration of EVs
into the existing power grid. The survey provided in [Green et al. 2011] suggests
that the impacts of EVs can be determined by the following aspects: driving patterns,
charging characteristics, charge timing and vehicle penetration. [Galus et al. 2010]
discusses chances and challenges arising with the integration of EVs into the power
grid with an emphasis on potential impacts on the activities of current actors in the
electricity systems. In [Clement-Nyns et al. 2010] the impact of EVs on the Belgium
distribution grid is assessed using a dynamic programming model.

While to this day few real-life experiences regarding the EV integration at consid-
erable scales have been conducted, many numerical studies have addressed this issue
and the general conclusion seems to be that the existing electricity grid is able to ac-
commodate high amounts of EVs without having to reinforce its physical infrastruc-
ture, provided that intelligent charging strategies are applied. [Richardson et al. 2012]
for instance shows that managing the charging process in a residential low-voltage
network consisting of 134 residential customers in a central manner allows to replace
50% of the existing vehicles by electrical ones without violating network constraints.
Similar findings are reported by [Lopes et al. 2011] where a centralized controller us-
ing simple rules allows an EV share of 52% while with a dumb charging strategy (each
EV is charged at nominal power as soon as it is connected) no more than 10% can be
achieved. [Quiros-Tortos et al. 2015] even achieves an EV share of 100% for two sim-
ulated low-voltage networks in U.K. using a centralized controller based on simple
proportional control.

Unlike the above mentioned papers, this work does not focus on network-related
aspects, but on the predictability of charging stations’ power consumption profiles
and the impact of the uncertain EV behavior. In this context, several authors pro-
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pose control strategies where optimization problems over a certain prediction horizon
are formulated, allowing to anticipate future events and to provide load predictions
which are very valuable for DSOs. [de Hoog et al. 2015] proposes a linear optimization
problem formulation where an unbalanced distribution system is taken into account
through a DC-equivalent model. [Li et al. 2014] demonstrates the good performance
of a receding-horizon controller aiming to optimally fill the over-night demand val-
ley which does not only take into account currently connected EVs but also forecasts
of EVs which are expected to arrive in the coming hours. In [Jin et al. 2013] a cen-
tralized controller for an EV aggregator is proposed which computes charging sched-
ules for the EVs such that the EV owners’ charging costs are minimized while at the
same time the aggregator maximizes its revenue by selling regulation capacities to
the DSO. Other related works where forecasts of the uncertain EV behavior are taken
into account are for instance [Bessa & Matos 2013c, Bessa & Matos 2013a, Bessa &
Matos 2013b], where optimization problems for an aggregator agent acting as a com-
mercial middle-man between the electricity market and the EV owners are proposed
and validated through extensive simulations.

While in most works – amongst which the above cited ones – the robustness of the
control strategies against uncertainties is validated through simulations, quite few
works can be found where the uncertainty is explicitly considered in the computation
of the control strategy. In [Vayá & Andersson 2012] for instance a chance-constrained
optimization problem is formulated which minimizes the charging costs while pro-
viding probabilistic guarantees of network loading limits and constraints related to
the batteries. The work differs from the ones cited before in that it addresses the
problem on the national scale of Switzerland and does not consider individual EVs,
but an aggregated battery model. An interesting control approach is proposed in
[Iversen et al. 2014] where a stochastic dynamic programming model is used to opti-
mally charge an electric vehicle and where the user’s individual risk-aversion is taken
into account. In [Pantos 2012] a stochastic linear optimization algorithm considering
several uncertainties related to the participation in the day-ahead energy and regula-
tion reserve market is described.

Although a vast literature concerning electric vehicle charging exists, quite few
contributions address the special case of EVCS situated on parking-lots close to com-
mercial centers or company sites where one has to deal with a specifically significant
stochastic behavior in the EV arrival and departure times. In fact, the majority of
recent works are focused on over-night charging in residential areas. This may be
explained by the fact that the majority of the time EVs are connected to the grid is
during the night in residential areas as reported in [Vayá & Andersson 2012]. Never-
theless two examples of contributions addressing EV charging at parking lots are the
following: [Zhang & Li 2015] for instance proposes a two-stage approximate dynamic
programming framework to deal with the high uncertainty while aiming to reduce
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the energy cost of the charging station. In [Kuran et al. 2015] a centralized recharge
scheduling system for parking-lots is proposed. The authors distinguish between reg-
ular EVs whose behavior is repetitive and can be predicted and irregular ones whose
individual behavior is unpredictable.

We present a centralized charging strategy for an EVCS located at places such as
commercial centers or company sites with relatively high uncertainties in the EVs’
behavior. The motivation for the proposed strategy comes from the fact that reliable
load forecasts of large consumers such as EVCSs are of great value for DSOs and
other entities who are in charge of managing the grid in a reliable and economically
profitable way. For instance in distributed optimization frameworks such as the ones
presented in the chapters 2 and 3, a reliable load forecast of an EVCS is crucial to be
able to coordinate the different grid actors (produces, consumers, storage systems) in
a globally optimal way. Moreover, from an economical point of view, a more efficient
grid operation may result in financial benefits for all actors who are involved, the
DSO, the EVCS operator and the EV customers.

The main characteristics of our proposed EVCS management strategy are the fol-
lowing:

• A day-ahead profile of the upper limit on the EVCS’s power consumption is
provided to the DSO which is then strictly respected in real-time.

• At the same time the EV customer satisfaction is guaranteed at a configurable
probability despite the potentially high uncertainties in the EV behavior. Note
that a high probability for the guaranteed customer satisfaction leads to a higher
over-estimation of the required energy which is reserved through the upper
limit power profile.

• In real-time the control strategy does not require any forecasted information
from the EV customers such as arrival- and departure times.

The underlying technique used in the proposed EVCS management strategy are
randomized algorithms whose theoretic foundations are discussed in the previous
chapter.

6.2 Outline of the proposed approach

Before providing the details of our proposed approach in the following sections, a
brief overview is provided with the objective to facilitate the readability of the follow-
ing. The aim of our proposed control strategy is to determine an allowed day-ahead
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power consumption profile for an EVCS such that – despite the uncertain EV behavior
– the customer satisfaction is guaranteed with a pre-configured probability. Moreover,
an allowed upper limit power profile is considered optimal in the sense of the under-
lying randomized algorithm problem, if it minimizes the total predicted energy for
the day. The key steps of the proposed control strategy are as follows:

• Define a design parameter vector θ ∈ Rnθ allowing to modulate the shape of the
allowed day-ahead power profile Plim(θ) for the EVCS. This design parameter
vector θ is the variable which is manipulated by the randomized algorithm and
will be explained in detail in section 6.4.

• Define a real-time controller which distributes an allowed power profile Plim(θ)
to the connected EVs.

• Define a discrete set of design parameter vectors Θ = {θ(1), ..., θ(nC)}.

• Generate a number N of occupancy scenarios S(1), ..., S(N) for the EVCS based
on the probabilistic laws described in section 6.3.1.

• For all elements θ(i) ∈ Θ compute the candidate Plim(θ(i)) and simulate the real-
time controller for the N scenarios, distributing Plim(θ(i)) to the EVs. In total the
real-time controller is simulated nC ×N times.

• For each θ(i), determine the number of successful and unsuccessful scenarios
(out of N ) according to the definition provided in section 6.3.2.

• Based on the randomized algorithm principle, determine which of the Plim(θ(i))
are feasible, meaning that no more than m scenarios are unsuccessful.

• Amongst the feasible θ(i), determine the θopt which is the one that results in the
smallest over-estimation of the required energy for the whole day.

Having provided an overview of the approach, the different components which are
assembled to our proposed energy management strategy are explained in detail in the
following section.

6.3 Components of the approach

The different components which are part of the proposed control strategy and which
are described in detail in the following sub-sections are the following:

• A stochastic occupancy model of the charging station, allowing to generate 24h
scenarios of EV arrival- departure times and their initial state-of-charge.
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• A customer satisfaction metric allowing to distinguish whether an EV customer
is satisfied with the amount of energy supplied to his vehicle.

• A predictive scheduler consisting of a method to generate candidate profiles
Plim(θ) of the allowed day-ahead upper limit on the EVCS power consumption
based on an aggregated model of the EVCS.

• A real-time controller heuristic which distributes the available power Plim(θ) to
the connected EVs.

6.3.1 Stochastic occupancy model

In our proposed control strategy the uncertain EV behavior is explicitly taken into
account through a certain number N of EVCS occupancy scenarios. In the sequel
the term scenario describes a realization of 24h-occupancy schedules for all nCP charg-
ing points of the EVCS. A scenario realization is obtained from a scenario-generator-
function which implements the stochastic laws describing the uncertain EV arrival-
and departure times as well as the EVs’ state-of-charge (SoC) at arrival.

Remark: It is not in the scope of this contribution to provide advanced and val-
idated stochastic models of the EVCS occupancy. In fact, the very nice feature of
the randomized algorithm approach applied in this control strategy, is its indepen-
dence from the type of underlying statistic occupancy model. The only requirement
is that the stochastic model allows to generate i.i.d. (independent and identically dis-
tributed) scenario realizations.

In the literature numerous suitable statistic models of the uncertain EV behavior
can be found. In [Vayá & Andersson 2012] for instance a traffic model is proposed
where different states (driving, parked at work, at home, for leisure or at a shopping
location) are defined and driving patterns are modeled using a continuous time non-
Markov chain. In [Bessa & Matos 2013a] a linear model with lagged variables and
covariates is chosen and fitted from historical data, aiming to forecast the arrival- and
departure times of EVs at residential charging points. When historic data is available
or when our proposed control strategy is applied on a real system, this kind of gray-
box model could be a well-adapted choice.

The uncertainty model which is used to generate scenario realizations of the EVCS
occupancy in our proposed control strategy is described in the following. A scenario
S is represented as follows:

S := {tarr,v, tdep,v, Ereq,v} with v = 1, ..., nEV

where tarr,v and tdep,v are the arrival- and departure time of the v-th EV and Ereq,v

is its required energy to become fully charged. nEV is the number of vehicles which
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are charged in scenario S. In order to generate a scenario realization as described
in algorithm 1, the following stochastic parameters have to be determined (e.g. by
identification from historic data):

P (narr|i) probability that narr EVs arrive during the i-th time interval with i =
1, ..., H . Note that the 24h-horizon is discretized into H time intervals of

equal length τ (e.g. τ = 15 minutes).

E(tdep|i) expected value of an EV’s departure time which arrived during the i-th

time interval.

σ(tdep|i) standard deviation of the EV’s departure time.

E(Ereq|i) expected value of an EV’s required energy to become fully charged.

σ(Ereq|i) standard deviation of the EV’s required energy to become fully charged.

Algorithm 1: Scenario generator function.

1 Inputs: P (narr|i), E(tdep|i), σ(tdep|i), E(Ereq|i), σ(Ereq|i), H , τ , nCP ;
2 Init: nocc = 0 ;
3 for i← 1 to H do
4 Count nb. nocc of occupied charging points ;
5 Generate a sample narr from P (narr|i) ;
6 for l← 1 to narr do
7 Compute tarr = i · τ ;
8 if nocc < nCP then
9 Generate tdep from E(tdep|i), σ(tdep|i) ;

10 Generate Ereq from E(Ereq|i), σ(Ereq|i) ;
11 nocc = nocc + 1 ;
12 Add EV {tarr, tdep, Ereq} to scenario S ;
13 else
14 Reject the vehicle, because all charging points are already occupied;

15 Update nocc (subtract the no. of vehicles that leave the station in interval i );

16 Outputs: S ;

Figure 6.1 shows the occupancy profiles of three different charging points (CP)
chosen randomly from one scenario of the case study provided in section 6.5. In this
case study, an EVCS located at a company site is considered. Note however that due
to the lack of real data, the stochastic parameters used to generate the scenarios for
this case study are purely made up based on common sense.
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Figure 6.1 Three random schedules for an EV charging point created from
the scenario generator function described by algorithm 1. The black curve
represents the availability of an EV at the charging point and the magenta
one shows its initial state of charge at arrival.

6.3.2 Customer satisfaction metric

Since the proposed control strategy aims at providing probabilistic guarantees for the
customer satisfaction, it is crucial to define what the term customer satisfaction actually
means for an EV owner. In [Quiros-Tortos et al. 2015] a metric to quantify customer
satisfaction is proposed which is based on the ratio between the time it took to fully
charge the battery and the time it would have taken if the battery had been charged
constantly at nominal power. However, for the purpose of our proposed approach,
this kind of measure is not appropriate for the following reasons: Firstly, not every EV
remains connected long enough to become fully charged, but the customer may still
be satisfied with a partial charge. Secondly, a binary satisfaction indicator is required
for our proposed strategy. For these reasons we propose a new metric to evaluate cus-
tomer satisfaction. However, any other metric providing a binary indicator whether
a customer is satisfied or not with the obtained amount of charged energy could be
applied.

The basic idea of the proposed metric is that a customer is considered to be satis-
fied if he has obtained more than a certain percentage of the energy he would have
required to become fully charged. Moreover, this percentage depends on the connec-
tion time of the EV, since a customer who remains connected for a short time interval
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only will not expect his battery to be fully charged at his departure. The metric is
implemented by inequality (6.3.1). If it is true, then the customer is considered to be
satisfied.

Echarged

Ereq
≥ csatis ×min

(
1, tconnected

τconst

)
(6.3.1)

where Echarged is the charged amount of energy, Ereq is the amount of energy which
would have been required to become fully charged, tconnected is the time the EV was
connected and τconst is a time constant (e.g. τconst = 3h). The right-hand side of equa-
tion (6.3.1) represents the satisfaction threshold (in %) which decreases linearly if an
EV is connected less than τconst. csatis is the percentage from which on a battery is
considered to be "fully charged" (e.g. csatis := 90%).

Définition 6.3.1. A proposed 24h-charging strategy for an EVCS scenario is considered to be
successful if 95% of all EVs that connected to the charging station are satisfied in the sense of
equation (6.3.1).

6.3.3 Predictive scheduler

In this section the predictive scheduler used to compute the allowed upper limit
power profile Plim(θ) for the EVCS is presented. The predictive scheduler consists
of an optimization problem which is based on an aggregated model of the EVCS. The
optimization problem solves for the upper limit power profile Plim(θ) over a certain
prediction horizon (typically 24 hours). Note that the predictive scheduler is not the
crucial part of the proposed energy management strategy and other potentially sim-
pler methods to determine Plim(θ) might lead to results of similar quality.

The main motivation for using such an aggregated EVCS model – as for instance
done in [Bessa et al. 2012] – is that for large charging stations, a detailed model taking
into account each charging point is very likely to become intractable for optimization
purposes. Another motivation is that the objective function based on which the al-
lowed power profile is determined allows to take into account varying energy tariffs.

As already mentioned in section 6.3.1, each scenario can be described by the fol-
lowing set where v ∈ V is the index of the EVs in the scenario:

S := {tarr,v, tdep,v, Ereq,v}v∈V (6.3.2)

The maximal charging power Pmax, CP is assumed to be the same for all EVs (typi-
cally 3.3kW or 7.4kW with single phase charging points). From this information the
profiles Pmax,v, Bv and Bv are defined as follows:

Pmax,v :=



Pmax, CP if tarr,v ≤ t < tdep,v

0 otherwise
(6.3.3)
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Bv :=




0 if 0 ≤ t ≤ tarr,v

Ereq,v if t > tarr,v

(6.3.4)

Bv :=




0 if 0 ≤ t < tdep,v

Ereq,v if t ≥ tdep,v

(6.3.5)

The profiles Bv and Bv account for two purposes: First, through Bv, it is guaranteed
that at the departure of the v-th EV its required energy has been allocated by the EVCS.
Second, profile Bv assures that no more energy is allocated than the battery of the v-
th vehicle can absorb. In other words, any profile bv of supplied energy to the v-th
vehicle that fulfills Bv ≤ bv ≤ Bv is feasible in the sense that it supplies the required
energy Ereq,v without violating the constraints on the battery’s state-of-charge.

Furthermore the aggregated profiles P(S)
max, B(S) and B(S) are defined as:

P(S)
max =

∑

v∈V
Pmax,v (6.3.6)

B(S) =
∑

v∈V
Bv (6.3.7)

B(S) =
∑

v∈V
Bv (6.3.8)

Figure 6.2 illustrates how the aggregated EVCS model would be built for the avail-
ability schedules of the three exemplary charging points shown in figure 6.1.

Based on the previous definitions the aggregated EVCS optimization problem for
a given scenario S is defined in problem (6.3.9). It computes the optimal power con-
sumption profile Popt,(S) for the charging station. It is important to keep in mind that
this problem is valid only in the ideal situation where the uncertain EV behavior was
known in advance.

Popt,(S) := Minimize
p

ΓT · p (6.3.9a)

Subject to: 0 ≤ p ≤ P(S)
max (6.3.9b)

b = τ · η ·Φ · p (6.3.9c)

B(S) ≤ b ≤ B(S) (6.3.9d)

where Γ is the energy tariff profile and p is the decision variable of the problem repre-
senting the total power consumption profile of the EVCS. b is the profile of allocated
energy for the EVCS, η the charging efficiency and Φ is a lower triangular matrix
where all values are equal to 1. Φ accounts for the integration of the consumed power
profile over the prediction horizon, resulting in the consumed energy profile b. The

88



6.3. Components of the approach

objective function (6.3.9a) represents the energy cost to be minimized over the 24h-
prediction horizon. Constraint (6.3.9b) states that the power limits of the EVs’ batter-
ies are respected and constraint (6.3.9c) is the aggregated dynamic model of the EVs’
batteries. Finally constraint (6.3.9d) assures that the batteries’ capacities are respected
and that the required energy is delivered at the EVs’ departure.

In our proposed approach the EVs’ schedules as defined in (6.3.2) are supposed
to be known only through their statistic model which is detailed in section 6.3.1.
In real-time, the only information provided by the EVs is their required energy to
become fully charged once they are connected. For this reason the "exact", but un-
known profiles P(S)

max, B(S) and B(S) are replaced in problem (6.3.9) by approximations
P̂max(θ), B̂(θ) and B̂(θ) with θ being the so-called design parameter vector. θ provides
some flexibility to vary the shape of the aforementioned approximated profiles. The
parametrized aggregated EVCS problem becomes then:

Plim(θ) := Minimize
p

ΓT · p (6.3.10a)

Subject to: 0 ≤ p ≤ P̂max(θ) (6.3.10b)

b = τ · η ·Φ · p (6.3.10c)

B̂(θ) ≤ b ≤ B̂(θ) (6.3.10d)

Instead of allocating the optimal power consumption profile popt,(S) for a known sce-
nario as it is the case in problem (6.3.9), the resulting profile Plim(θ) serves as an upper
limit profile on the EVCS’s power consumption. For this reason, the parametrization
must be chosen conservatively in the sense that for almost all potential scenarios, the
power limit profiles Plim(θ) are sufficient to satisfy the customers’ energy requirement.

The precise purpose of θ as well as the definition of the approximated profiles
P̂max(θ), B̂(θ) and B̂(θ) (see figure 6.3) will become clear in the following section.

6.3.4 Real-time controller

Once a scenario-independent upper limit profile on the EVCS’s power consumption
Plim(θ) has been obtained from solving problem (6.3.10), the real-time controller is
simulated for the N scenarios. Its objective is to charge the connected EVs as fast as
possible, while respecting the upper limit profile on the EVCS’s power consumption
Plim(θ). Moreover it is desirable that the real-time controller be computationally light
for the following two reasons. Firstly, excessive simulation times are avoided and
secondly, it is easier to be implemented on a real-time machine.

The simple heuristic implemented in the real-time controller is as follows:
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Figure 6.2 Figure showing how the aggregated model would be built from
five EVs which are charged at three different charging points during one
exemplary day.
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• At each sampling instant of the 24h-horizon (e.g. every minute), check the num-
ber of connected EVs and try to equally distribute the available total power
Plim(θ) to the EVs.

• If there is still some power left, because one or more vehicles were already fully
charged in the previous step, revisit each car starting from the one with the
lowest SOC and affect the remaining power to them.

Note that the main objective of the real-time controller is to charge the connected
EVs as fast as possible, while respecting the upper limit profile on the EVCS’s power
consumption Plim(θ).

6.4 Randomized algorithm implementation

In this section we explain the implementation of the randomized algorithm method
in the context of the EVCS energy management strategy.

Let us recall the main objective of the approach. It is to determine a day-ahead
upper limit profile on the EVCS’s power consumption, which reserves a sufficient
amount of energy such that – despite the uncertainty in the EV behavior – almost all
customers can be satisfied. Moreover, we would like the total reserved energy for the
day to be as close as possible to the actually required one. In other words, we are
looking for an optimal trade-off between reserving no more energy than required and
guaranteeing the customer satisfaction despite the uncertainty.

As already defined in section 5.1.2, the total amount of energy reserved for the
charging station can be expressed as the integration of the upper limit profile Plim(θ).

J(θ) =
∫ 24

t=0
Plim(θ) dt

A crucial point in our proposed approach lies in the choice of the design parame-
ter vector θ which allows us to modify the upper limit power profile Plim(θ) through
the predictive scheduler problem 6.3.10. It is important that θ contains as few compo-
nents as possible while allowing to parametrize the profiles P̂max(θ), B̂(θ) and B̂(θ)
with sufficient degrees of freedom. The reason why a small dimension of the design
parameter vector θ is desirable is that the cardinality nC of the set Θ and with it the
computational burden, would become very high otherwise. It is important to note
that this choice depends a lot on the context of the considered charging station, more
precisely on its stochastic occupancy model.

Our provided definition of θ is dedicated to charging stations which are located
at company- or commercial sites, where EV customers usually arrive in the morning
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and where several leave for lunch and return in the afternoon. For this case we chose
θ = [θ1, ..., θ4]T of dimension 4 (see illustration in figure 6.3). The parameters θ1, ..., θ4
are explained in the following:

• The base profile for P̂max(θ) consists of two superposed normal distributions
which approximate the averaged profile Pmax resulting from 100 scenarios (the
black one in figure 6.3) as closely as possible. The parameters for the base profile
could be obtained by some curve fitting technique. Given this approximation,
θ1 allows to vary the amplitude of P̂max(θ):

P̂max(θ) = θ1 ·Pmax (6.4.1)

• The base profiles for B̂(θ) and B̂(θ) are directly the averaged profiles B and B
over 100 scenarios (the black ones in figure 6.3). θ2 allows to shift the two profiles
horizontally towards each other, θ3 allows to scale their amplitude and θ4 allows
to vary the saturation on their amplitude:

B̂(θ) = Sat [(Bt−θ2 · θ3), (‖B‖∞ · θ4)] (6.4.2)

B̂(θ) = Sat
[
(Bt+θ2 · θ3), (‖B‖∞ · θ4)

]
(6.4.3)

where the operator Sat [s, a] saturates each element of the vector s by the scalar
a.

6.5 Simulation results

In this section simulation results are which demonstrate the feasibility and the rele-
vance of the proposed approach. Moreover a comparison with a simple non-robust
charging strategy where each EV is directly charged at its nominal power once it is
connected to the EVCS is performed and finally the impact of certain key parameters
of the approach is analyzed.

As mentioned before, the EVCS considered in this case study is assumed to be
located at a company site. The reader is reminded again that the underlying statistic
laws in this case study are made up based on the authors common sense and do not
rely on real data. This is mainly due to the lack of sufficient data.

6.5.1 Demonstration of the feasibility of the approach

An EVCS consisting of nCP = 20 charging points is considered. The sampling period
τ is 15 minutes. The uncertain occupancy at each day follows the statistic laws de-
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Figure 6.3 Figure illustrating the design parameter vector θ = [θ1, ..., θ4]T for
the EVCS located at a company site.

scribed in section 6.3.1. The set Θ of design parameters θ(1), ..., θ(nC) is chosen in a
conservative way such that the existence of feasible solutions is enhanced:

θ1 ∈ {0.7, 0.9, 1.1}

θ2 ∈ {1.25, 1.5, 1.75}

θ3 ∈ {1.15, 1.25, 1.35}

θ4 ∈ {1.05, 1.15, 1.25}

The number of possible combinations of θ1, ..., θ4 is actually the cardinality nC of
the set Θ. It is at the same time the number of iterations of the randomized algorithm:
nC = niter = 34 = 81. The parameters to configure the randomized algorithm are
chosen as η = 0.05, δ = 0.05 and m = 7. The necessary number of scenarios computed
according to equation (5.2.5) is then N = 456.

Solving the problem for a flat energy tariff profile Γ results in an optimal feasible
solution θopt = {0.7, 1.75, 1.35, 1.05}. The result is illustrated in figure 6.4 where the
black curves are the predicted upper limit profiles of the power- and energy con-
sumption, resulting from the aggregated EVCS problem (pb. (6.3.10)) configured
with P̂max(θopt), B̂(θopt) and B̂(θopt). The colored lines represent three 24h-scenarios
to whom this predicted power consumption has been affected following the real-time
controller heuristic described in section 6.3.4. Note that in the three scenarios - though
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Figure 6.4 Robust upper limit prediction profile of the EVCS’s power con-
sumption (black) and the actual power consumption after affecting the up-
per limit profile to 3 different 24h-scenarios. Note that all 3 scenarios are
feasible in the sense of the customer satisfaction definition from section
6.3.2.

quite different from each other - all customers are satisfied according to the satisfac-
tion metric defined by inequality (6.3.1). Moreover the upper limit power profile is
respected in all three scenarios and the actually realized power consumption profiles
are very close to this upper limit profile. This is the reason making our robust strategy
very valuable from a DSO’s point of view. In order to emphasize this point a compar-
ison with a non-robust charging heuristic is performed in the following sub-section,
where high fluctuations between the realized power consumption profiles of the same
three scenarios can be observed.

Customer satisfaction: In order to provide a more precise idea of the client sat-
isfaction at EV level, the scatter plot in figure 6.5 relates the charging time of all EVs
from 100 different scenarios with their charged energy, represented as the percentage
of their initially demanded energy at arrival. It shows that most EVs actually leave
the station being fully charged. Among those which stay connected for less than 5
hours some leave the station partially charged, but still almost all of them are above
the customer satisfaction threshold which is visualized by the blue dashed line.

Validation of the robustness on a large set of scenarios: In order to verify whether
the desired robustness configured by the probabilities η and δ is actually achieved,
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Figure 6.5 Relation of each EV’s charging time with its actually charged en-
ergy being expressed as the percentage of its initially demanded energy at
arrival. Points which lie left of the blue dashed line represent EVs which
are unsatisfied in the sense of equation (6.3.1).

the result is applied to a large number of 24h-scenarios (� N ). Having done so for
5000 scenarios, the percentage of unsuccessful scenarios was found to be 1.1%. This
result clearly satisfies the desired limit on the probability of violation η = 5% and
confirms that the desired robustness is achieved. For the 5000 scenarios, the mean
overestimation of the total energy consumption of one day was in average 13% with
a standard deviation of 6%.

Computational considerations: The computations were performed on an Intel(R)
Core(TM) i7-3540M @ 3.00GHz machine. For a given θ, i.e. for one iteration, the
required computation time is composed of two principal operations:

tcomp,iter = toptim + tdist

= 80ms+ 540ms = 620ms
(6.5.1)

where toptim is the time to solve the aggregated EVCS optimization problem (6.3.10)
and tdist is the required time to distribute the obtained power limit profile to the
N = 456 scenarios. Multiplied with all possible combinations of θ1, ..., θ4, the to-
tal time to solve the robust optimization problem is tcomp,total = niter × tcomp,iter =
81× 0.62sec = 50.2sec. From this consideration it becomes obvious why it is desirable
to restrict the design parameter θ to a small dimension, and with it the cardinality nC
of the set Θ. Note however that these computations are performed off-line. Therefor
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more complex parameterizations θ or a set Θ of higher cardinality could be handled
if necessary.

6.5.2 Comparison with a direct charging strategy

From the results presented in figure 6.4, one might conclude that the three scenarios
are so similar to each other that the EVCS’s power consumption profiles for differ-
ent scenarios would be very similar anyway, even with a less sophisticated and non-
robust charging strategy. In order to disprove this claim, our robust charging strategy
is compared to a simple direct charging strategy in the following.

The principle of this direct charging strategy is to charge each car at its maximal
power as soon as it is connected to the EVCS. This is the strategy which guarantees
the best possible customer satisfaction. However it does not provide any prediction
of the charging station’s day-ahead power consumption profile and it is not possible
to impose an upper limit on the EVCS’s power consumption.

Figure 6.6 shows the power consumption of the EVCS with the direct charging
strategy for the same 3 scenarios considered in the previous subsection. One can eas-
ily see that the power consumption differs importantly from one scenario to another
making it basically impossible to provide a meaningful day-ahead prediction.

It is important to note that while in the robust charging strategy (see figure 6.4)
the realized power consumption profiles of the EVCS are forced to stay below the
predicted power limit, the customer satisfaction is guaranteed nearly as well as with
the direct charging strategy. With a non-robust charging strategy however, there is no
means to respect such an upper limit on the charging station’s power consumption
profile while guaranteeing the customer satisfaction. The fact that the actually real-
ized power profiles of the EVCS are very close to the robust upper limit profile makes
the strategy very valuable for a reliable integration of electric vehicles into the power
grid.

6.5.3 Sensitivity analysis to key parameters

In order to provide a quantitative idea of how certain parameters of the approach
influence its performance, the sensitivity to these parameters is analyzed in this sec-
tion. The studied parameters are the number of charging points nCP, the probabilistic
accuracy η and finally the client satisfaction threshold csatis.

Impact of nCP and η: Figure 6.7 shows how the objective value J(θopt), i.e. the
mean over-estimation of the total energy consumption of N scenarios, depends on
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Figure 6.6 Direct charging strategy applied to the same 3 scenarios as with
the robust charging strategy shown in figure 6.4. It becomes obvious that
with the direct charging strategy the power consumption can differ impor-
tantly from one day to another due to the uncertainty. Moreover it is impos-
sible to respect a pre-defined upper limit profile on the power consumption
with such a non-robust strategy.

the number of charging points nCP, i.e. on the size of the charging station. Addition-
ally the graph shows the dependency on the accuracy η which is the probability that
a scenario is not successful, meaning that the customers are not satisfied according to
our definition in section 6.3.2. The first conclusion that can be drawn from the figure is
that the larger the charging station is, the smaller is the mean over-prediction. This re-
sult confirms that the approach is specifically well-suited for charging stations of large
size. The second conclusion is that for better robustness guarantees, i.e. for smaller
values of η, the predicted mean over-consumption increases as it would be expected.
However this effect is less pronounced than the impact of nCP in the performed case
study.

Impact of csatis: In figure 6.8 the influence of the parameter csatis on the objective
value J(θopt), i.e. on the predicted mean over-consumption, is visualized. csatis is the
threshold defining the individual client satisfaction (see eq. (6.3.1)). The remaining
parameters are fixed to nCP = 20, η = 0.05, δ = 0.05 and m = 20. The figure shows
that the tighter this limit is chosen, the higher becomes the predicted mean over-
consumption.
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Figure 6.7 Predicted mean over-consumption as a function of the number
of charging points nCP and the robustness parameter η. It shows that the
approach is particularly well-suited for large charging stations.
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Figure 6.8 Predicted mean over-consumption as a function of the parame-
ter csatis which is the threshold defining the customer satisfaction (see eq.
6.3.1)).
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6.6 Conclusion

In this work a robust energy management strategy for electrical vehicle charging sta-
tions is proposed. The strategy is based on randomized algorithms and determines
a day-ahead upper limit profile on the EVCS’s power consumption which is then
strictly respected in real-time. This upper limit profile on the EVCS’s power con-
sumption is of great value for DSOs and other entities who are in charge of managing
the distribution grid. The method stands out because it guarantees the customer satis-
faction with a pre-configured probability. Moreover, it can be easily implemented in a
real system, since the real-time controller is based on a computationally light heuristic
which does not require any online forecasts of the EV customer behavior.

Simulations suggest that the pre-determined upper limit profile for the EVCS’s
power consumption is close to the actually realized power consumption in the differ-
ent scenarios, despite the highly uncertain EV behavior. This makes the approach
very valuable from a DSO’s perspective, since it permits to better anticipate the
EVCS’s power consumption and thus guarantee the grid stability in a more efficient
and less costly manner. This fact is underlined by the comparison with a basic charg-
ing strategy where each EV is charged at its nominal power once it is connected and
where highly fluctuating power consumption profiles are obtained for different occu-
pancy scenarios.

In future investigations the proposed method can be extended with the following
features:

• The possibility to re-compute an updated power allocation profile during the
day itself, taking into consideration the previously realized charging tasks. This
way an even more precise upper limit profile on the power consumption could
be achieved.

• Application of the strategy in a real-life scenario with a focus on how the statistic
model of the EV behavior is fitted to the historic measured EV data.

• Embedding the strategy into a dynamic demand-response framework where the
day-ahead power allocation for the EVCS would be determined dynamically
through interactions with an aggregator agent.
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Chapter 7

PV power plants under regulatory
constraints and uncertainties

Nomenclature

X bold-faced variables represent profiles of X .

X̂ forecasted profile of X.

X,X lower- and upper bound on X .

Xt0→t1 profiles of X over specified interval [t0, t1].
Xi i-th element of profile X.

X(i) i-th realization of X.

X(t=hh:mm) element of profile X at time hh : mm.

Xopt optimal solution of an optimization problem.

Xhist profile of historic measured data.

X+ variable X at the next sampling instant.

DnS(X) mean derivative profile over nS consecutive samples of X.

τr sampling period of the real-time controller and of measured data

τp sampling period of the predictive controller

P power produced by the PV panels

PG declared power injection into the grid

PBat battery power (positive values = charging)

PG,r realized power injection into the grid
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Pnom nominal (maximal) power of the PV panels

B bound on the forecasted PV power profile

dPG variation in the power-to-grid profile PG
SoC state-of-charge of the battery

SoCd desired state-of-charge

E battery efficiency

Γ energy tariff

Jr(θ, w) realized revenue for one realization of the uncertainty w

PCk predictive controller for control period k

RTC real-time controller

PrW(Phist) Probability measure allowing to generate uncertainty realizations

w := {P̂0→24, P̂6→24, P̂12→24, P̂16→24,P} based on historic measured PV

power profiles

7.1 Introduction

Photo-voltaic (PV) power plants are considered to become one of the main compo-
nents in the energy mix of tomorrow. However, already today where the percentage
of PVs is still relatively low (e.g. 6.9 % in Germany, 1.1 % in France according to [Wirth
& Schneider 2015], [RTE 2014]), instabilities in the power grid resulting from the inter-
mittent nature of PV energy have become a serious challenge. In order to counteract
these instabilities the Energy Regulatory Boards of different countries impose regula-
tions on the operation of PV power plants. More precisely, day-ahead predictions of
the injected power are requested and penalties are introduced in case the previously
declared power cannot be delivered. In [CRE 2015] an example of such regulations
which were announced by the French Energy Regulatory Board is depicted.

In order to respond to these regulations the plant operators are obliged to invest
into expensive storage equipment and to deploy advanced energy management sys-
tems (EMS) to avoid high penalties which would reduce the to-be-expected revenue
otherwise. The major challenge in this context lies in dealing with the uncertainty of
the PV power production in the operational control method as well as in the system
design phase where the optimal battery size needs to be chosen.

In the literature several studies can be found which discuss the impact of regu-
latory rules on PV power plants from an economic and technical point of view. For
instance in [Cervone et al. 2015], costs of penalty and value of energy are compared to
evaluate the economic efficiency of such a plant. Additionally it investigates on the in-
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stallation of auxiliary storage devices. [Hoppmann et al. 2014] discusses the economic
viability of battery storage for residential solar photovoltaic systems without any pol-
icy support. Moreover it provides a techno-economic simulation model allowing to
evaluate the profitability of battery storage for different future market scenarios. The
high costs of battery storage systems motivated several contributions addressing the
battery sizing problem for PV power plants such as [Semaoui et al. 2013], [Castañeda
et al. 2013], [Cabral et al. 2010], [Arun et al. 2009] and [Cervone et al. 2016] where for
instance a Markov chain approach is used to optimize the battery size.

The above cited methods for the optimal battery sizing have in common that the
economic performance indicator based on which the battery size is determined, is the
mean revenue which can be expected with respect to the uncertain PV power predic-
tions. Contrary to this, our contribution stands out by providing probabilistic guar-
antees on the to-be-expected revenue. More precisely our proposed method includes
the following components:

• A randomized algorithm formulation allowing to maximize the guaranteed
lower bound on the to-be-expected revenue for different battery sizes and at
configurable probabilities, taking the uncertain PV power production explicitly
into account. Moreover the formulation achieves an optimal tuning of the un-
derlying control strategy.

• An advanced control strategy composed of a high-level predictive controller
and a low-level real-time controller which are working at different time scales.

• An uncertainty model allowing to generate i.i.d. (independent and identically
distributed) realizations of the uncertain PV power production.

The provided framework directly addresses the regulations stated in the call for pro-
posals [CRE 2015]. They are described in detail in the following section. However,
due to the similarity of different regulatory frameworks for PV plants, it is easily
adaptable to meet other regulations. In fact, the trigger for the present work is an
MPC-based energy management system which has been developed within this work
for a similar case and which manages two 1MW PV power plants situated in Cor-
sica. The system has been put into place and is operated by the Solar business unit
of Schneider Electric and for the energy management system I developed the MPC
controller. Figure 7.1 shows a screen-shot from the supervision system of one of the
two PV power plants. It shows the result from the control strategy which will become
more clear in section 7.4.
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Figure 7.1 Screenshot from the supervision system of a 1MW PV power
plant with an associated 1MWh battery, located in Corsica. It shows the
operation of the energy management system for a complete day. The black
curve is the power profile which was actually injected into the grid and
which respects the regulatory constraints imposed on its shape. In orange,
the power production of the PV panels is plotted and in green, one can see
the previously available forecast of the latter. Finally, in blue, the state-of-
charge of the 1MWh battery is shown. Note that it is thanks to the battery
that the regulatory constraints can be respected.
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7.2 Regulatory framework

The regulatory framework being addressed in this work is imposed by the Energy
Regulatory Board of France for PV installations with a nominal power Pnom greater
than 100kW. The principle of the regulatory framework is that PV plant operators
have to declare their day-ahead predicted power injection profile PG (sampled at
τr = 1min) to the grid operator. The declared profile additionally has to respect the
following ramping constraints:

dPG < Pi+1
G −Pi

G < dPG (7.2.1)

If the actually realized power injection into the grid does not follow the previously
declared one within some tolerance margin, financial penalties do apply. During the
day J itself the PV plant operator may re-declare the predicted profile three times
which allows him to react to changes in the weather forecast as described in the fol-
lowing.

Steps to (re-)declare the predicted power injection PG:

• J-1, before 16:00 : Declare profile PG,0→24.
• J, before 04:00 : Declare profile PG,6→24.
• J, before 10:00 : Declare profile PG,12→24.
• J, before 14:00 : Declare profile PG,16→24.

An additional requirement on the re-declared profiles is that the first point in the
re-declared profiles has to be the same value as the one in the previously declared one
as illustrated by the following equations:

P(t=06:00)
G,6→24 := P(t=06:00)

G,0→24 (7.2.2a)

P(t=12:00)
G,12→24 := P(t=12:00)

G,6→24 (7.2.2b)

P(t=16:00)
G,16→24 := P(t=16:00)

G,12→24 (7.2.2c)

Remuneration scheme:
The plant operator is paid for his injected energy according to the formulas provided
in table 7.1 which incorporate the penalties for not respecting the previously declared
power profile. Figure 7.2 illustrates this remuneration scheme.

Remark: In most PV plant installation Maximum Power Point Tracker (MPPT)
converters are used to convert the direct current (DC) delivered by the PV panels
into alternating current (AC). These converters have the possibility to arbitrarily limit
the amount of power converted to AC. For this reason it is assumed that the case
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|PG,r − PG| ≤ 5% · Pnom J = PG,r
Γ
60

PG,r − PG > 5% · Pnom J = 0

PG,r − PG < −5% · Pnom
J = PG,r

Γ
60 −

[
P 2

G,r
Pnom
− (0.1 + 2 PG

Pnom
) · PG,r + (PG −

0.05 · Pnom) · (0.15 + PG
Pnom

)
]
· Γ

60

Table 7.1 Calculation of the remuneration.
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Figure 7.2 Visualization of the remuneration which is a function of the in-

advance declared power injection into the grid PG and the actually realized
power injection PG,r. This remuneration scheme is imposed by the regula-
tions [CRE 2015] and the underlying equations are provided in table 7.1.

where a higher power than previously declared is injected into the grid, can always
be avoided. For further information on MPPTs the interested reader is referred to
[Faranda & Leva 2008] where a comparative study of MPPT algorithms is conducted.

Peak power option:
In the sequel, the regulations described so far will be called the basic option. Addition-
ally the regulatory framework provides the possibility to choose an option called peak
power option. The peak power option aims at encouraging PV plant operators to invest
into larger battery capacities in order to be able to store energy during the day and to
deliver it to the grid during the evening peak between 19:00 - 21:00. When choosing
this option, the PV plant operator is obliged to declare a power PG,19→21 ≥ 20% · Pnom

between 19:00 - 21:00. In return the tariff Γ during this peak period is significantly
higher than during the rest of the day.

Note that in all explanations and formulations provided throughout this paper
the basic option is addressed. Only in section 7.6.3 where a comparison of the op-
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timal battery size for both, the basic and the peak power option, is conducted, the
peak power option will be re-considered. To do so, the only modification which is
required lies in the predictive controller described in section 7.4.1. More details on
the regulatory framework being addressed in this work can be found in [CRE 2015].

7.3 Randomized algorithm implementation

In this section the main idea of our proposed framework is described. The objective
is to provide guaranteed lower bounds on the to-be-expected annual revenue of a
PV plant under the regulations described in section 7.2, taking explicitly into account
the uncertainties of the weather forecast. Moreover, we aim to optimally tune the
underlying control strategy for this context and to choose the optimal battery size
that results in the best ROI (return on investment). While focusing only on the main
idea in this section, the details of the different components of the framework will be
explained in the following sections.

7.3.1 Problem statement

As already shown in section A.3.2, the addressed problem can be formulated as a
robust design problem of the form

max
θ∈Θ

J(θ) subject to g(θ, w) = 0 for all w ∈ W (7.3.1)

The only difference from problem (5.1.1) is that problem (7.3.1) is a maximization
problem.

The objective term J(θ) is the guaranteed lower bound on the to-be-expected
revenue of the PV plant which we aim to maximize. The design parameter vector
θ = (θ1, θ2)T consists of the following two elements (note that the battery size is fixed
at this stage):

• θ1 : the lower bound on the to-be-expected revenue. In fact, a specificity of this
implementation is that J(θ) = θ1.

• θ2 : a scaling factor allowing to vary the amplitude of the forecasted PV power
production profile P̂ in the predictive controller described in section 7.4.1.

W is the set of unknown profiles (forecasted and realized PV power production dur-
ing the life-time of the process). It is described in greater detail in section 7.5. Finally,
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the binary constraint satisfaction function g(θ, w) is defined as

g(θ, w) :=




0 if Jr(θ, w) ≥ J(θ) for w

1 otherwise
(7.3.2)

with Jr(θ, w) being the realized revenue for one realization of the uncertainty w. In
other words, g(θ, w) is a measure whether for a given θ and w, the realized revenue is
greater than J(θ) = θ1.

The considered uncertainty w represents the fact that the actually realized PV
power production differs from the one that was previously forecasted and used to
compute the declared power-to-grid profile PG. For generating one realization of the
uncertainty w the following two principle steps are performed:

• Generate a realization of the forecast of the PV power P̂ (sampled at τp) based
on historic measured data.

• Generate N realizations P of the actually produced PV power (sampled at τr)
based on the previously generated P̂.

In order to solve the problem described in this section, we apply the randomized
algorithm method for finite sets of the design parameter vector described in chapter
5. More precisely, it consists in solving the m-level randomized problem (5.2.4) which
is described in detail in the following.

7.3.2 Solving the robust design problem

For a given battery size, the m-level randomized strategy (5.2.4) corresponding to
problem (7.3.1) is solved in the following way:

1. Fix the finite set Θ = {θ(1), ..., θ(nC)} of design parameter vectors of cardinality
nC as well as the randomized algorithm parameters η, δ and m.

2. Generate N realizations of the uncertainty w(1), ..., w(N) with N obeying inequal-
ity (5.2.5 ).

3. Compute the failure indicator
For each simulation corresponding to (θ(k), w(i)), the resulting failure indicator:

g(k,i) := g(θ(k), w(i)) (7.3.3)

is computed where g(·, ·) is defined by (7.3.2). Similarly for any candidate pa-
rameter θ(k) (revenue bound, forecast scaling factor), the corresponding cost ma-
trix J (k) can be computed.

108



7.4. Control scheme

4. Admissible set of design parameters
Having computed g(k,i), the constraints in the m-level randomized problem
(5.2.4) can be evaluated for each candidate parameter θ(k) by summing the
columns of the k-th row of the matrix g(k,i), namely:

N∑

i=1
g(θ(k), w(i)) =

N∑

i=1
g(k,i) (7.3.4)

If the result is lower than m, then the candidate design parameter θ(k) is con-
sidered to be admissible. Therefore the admissible set of design parameters is
defined as:

A :=
{
k ∈ {1, ..., nC} |

N∑

i=1
g(k,i) ≤ m

}
(7.3.5)

5. Compute the optimal guaranteed lower bound on the to-be-expected revenue
The optimal lower bound on the to-be-expected revenue is defined by θ(kopt)

where kopt is the index of the admissible lower bound that maximizes the cost
function, namely:

kopt = argmax
k∈A

[
J (k)

]
(7.3.6)

Note that the computationally heavy part in the algorithm lies in computing the
failure indicator g(θ(k), w(i)), since it implies simulating the control scheme in closed-
loop over several days in order to obtain representative annual figures. The way this
is done is described in detail in the following sections. More precisely, the following
section describes the control scheme consisting of a high-level predictive controller
and a low-level real-time controller, before providing the stochastic model of the PV
forecast uncertainty in section 7.5.

7.4 Control scheme

In the following the control scheme consisting of a high-level predictive controller
and a low-level real-time controller is introduced. The proposed control scheme im-
plements the following features:

• Compute the to-be-declared grid power injection profiles PG,·→24 which have to
be declared to the grid operator and which additionally respect the constraints
imposed by the regulatory framework (see equations (7.2.1), (7.2.2)).

• Maximize the revenue by solving an open-loop optimization problem taking
into account the forecasted PV power production P̂.
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• Counteract as far as possible potential penalties due to the uncertain PV power
production by adjusting the battery’s control in closed-loop. This is the task of
the real-time controller which is working at a lower sampling period than the
predictive controller.

7.4.1 Predictive controller PC

The objective of the predictive controller is to compute the optimal grid power in-
jection profiles PG,·→24 to be declared to the grid operator that maximizes the rev-
enue over the prediction horizon. Moreover, as a consequence from the regula-
tory framework described in section 7.2, the predictive controller has 4 instances,
namely PC1, ..., PC4 which correspond to the time instants where the predicted pro-
files PG,·→24 have to be declared (before the times { J-1 at 16:00, 04:00, 10:00, 14:00 }).
The 4 instances of the predictive controller mainly differ in the shrinking horizon due
to the increasing start times t0 = { 00:00, 06:00, 12:00, 16:00 }. The sampling period of
the predictive controller is τp = 15min.

PCk : Maximize
PBat,PG

24∑

t=t0
Γ ·PG − ρ · ‖SoC− SoCd‖2

2 (7.4.1a)

Subj. to: PG ≤ θ2 · P̂t0→24 −PBat (7.4.1b)

P(t=t0)
G = P(t=t0)

G (PCk−1) for k = 2, 3, 4 (7.4.1c)

0.05 · Cbat ≤ SoC ≤ 0.95 · Cbat (7.4.1d)

PBat ≤ PBat ≤ PBat (7.4.1e)

SoC(t) = SoC0 + E
t∑

τ=t0
P(τ)

Bat (7.4.1f)

dPG ≤ Pt+1
G −Pt

G ≤ dPG (7.4.1g)

SoC(t=24) = SoCd (7.4.1h)

Constraint (7.4.1b) accounts for the fact that no more than a possibly over-optimisitic
correction of the forecasted PV power minus the power consumed by the battery can
be supplied to the grid. θ2 is a scaling factor allowing to vary the amplitude of the fore-
casted PV power profile P̂t0→24. It serves as a tuning parameter for the predictive con-
troller and is adjusted by the randomized algorithm implementation described in the
previous section. Constraint (7.4.1c) implements equation (7.2.2) which is imposed by
the regulatory framework and constraint (7.4.1d) being the lower- and upper bound
on the state-of-charge of the battery. The remaining constraints in problem (7.4.1) are
straight forward and are not described in further detail. In the sequel the resulting
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optimal battery power- and state-of-charge profiles are denoted Popt
Bat and SoCopt and

the optimal grid power injection profile Popt
G . Note that the grid power injection pro-

file which is declared to the grid operator is obtained by simply interpolating the Popt
G

at sampling period τr.

Remark 1: The bound constraints on the state-of-charge (7.4.1d) and on the battery
power (7.4.1e) are implemented as soft constraints in order to guarantee feasibility of
the problem. This is required because of the problems PCk∈{2,3,4} where the constraint
(7.4.1c) being a hard constraint by specification can - in some rare cases - be in conflict
with the battery’s technical constraints.

Remark 2: The constraint (7.4.1h) on the final state-of-charge is realized as a soft
constraint in exactly the same way as the penalization on the distance from the SoCd,
but with a penalizing parameter ρ(t=24) which is much more important (several orders
of magnitude).

7.4.2 Real-time controller

The real-time controller operates in closed-loop and at a smaller sampling period of
τr = 1min. Its objective is to maintain the realized injected power into the grid PG,r in
the tolerance margin of ±5% · Pnom around the previously declared profile Popt

G in or-
der to avoid the penalties described in table 7.1. Additionally the real-time controller
aims at driving the battery’s state-of-charge SoC towards the optimal profile SoCopt

which was previously computed by the predictive controller. This is achieved by ex-
ploiting the fact that the tolerance bound of ±5% of the nominal PV plant power Pnom

is pretty large, providing some flexibility to the controller. The real-time controller
is based on a few simple if/else-rules which are applied at each sampling instant in
order to determine the battery power PBat. The precise controller logic is described by
algorithm 2.

Figure 7.3 shows the result obtained when applying the control scheme consisting
of the predictive controllers PC1, ..., PC4 and the real-time controller RTC for one
realization of the uncertain PV power production.

The first plot shows the tolerance envelop Popt
G ± 5% · Pnom (red) around the de-

clared power injection profile Popt
G , the realized grid injection power profile PG,r (blue)

and the previously declared grid injection profiles PG,old (grey) before re-declaration
through the predictive controllers PC2, PC3 and PC4. The second plot shows the
realized grid injection power PG,r (blue), the power produced by the PV panels P
(magenta) and the battery power PBat (black). Finally the third plot shows the state-
of-charge of the battery. One can see that around 12:00 the real-time controller is not
able to maintain the injected power in the declared bounds, because the SoC of the
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Algorithm 2: Real-time controller RTC.

1 Inputs: SoC, P opt
Bat , SoCopt, P opt

G , P ;
2 Init: P candidate

Bat = P
opt
Bat ;

3 Compute Perr = P − P opt
Bat − P

opt
G (power error which occurs due to the uncertain

PV power prediction) ;
4 if |Perr| ≤ 4% · Pnom then
5 if Perr ≥ 0 AND SoC < SoCopt then
6 P candidate

Bat = P
opt
Bat + Perr ;

7 else if Perr < 0 AND SoC > SoCopt then
8 P candidate

Bat = P
opt
Bat + Perr ;

9 else if Perr < −4% · Pnom then
10 P candidate

Bat = P
opt
Bat + (Perr + 4% · Pnom);

11 else if Perr > 4% · Pnom then
12 P candidate

Bat = P
opt
Bat + (Perr − 4% · Pnom) ;

13 Compute PBat by saturating P candidate
Bat and use the resulting PBat to compute PG,r

and SoC+ ;
14 Compute the remuneration J according to table 7.1 ;
15 Outputs: J , SoC+ ;

battery is already at its lower limit at this moment. Also it is interesting to see how
the originally declared profiles PG,old differ from the finally declared Popt

G due to the
updated PV power forecasts.

As mentioned in section 7.3.2, the computationally time-consuming part of the
whole framework lies in simulating the control scheme in closed-loop in order to
compute the realized revenue Jr(θ(k), w(i)). In algorithm 3 the steps involved in the
computation of Jr(θ(k), w(i)) are illustrated in detail.

In the following section the uncertainty model allowing to generate i.i.d. uncer-
tainty realizations of the PV power production w := {P̂0→24, P̂6→24, P̂12→24, P̂16→24,P}
is introduced.

7.5 PV power uncertainty generator

When applying the control strategy described in the previous section in
real-time, at every day J the 4 forecasted PV power production profiles
P̂0→24, P̂6→24, P̂12→24, P̂16→24 are provided based on a weather forecast service at the
times t0 = {J-1 at 16:00, 04:00, 10:00, 14:00}. Since our proposed framework serves as
an a priori battery sizing tool these information have to be created artificially. More-
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Figure 7.3 Results obtained when applying the control strategy composed
of the predictive controller and the real-time controller in closed-loop. One
can see that around 12:00 the injected power into the grid (blue) cannot be
maintained in the tolerance bounds (red) around the previously declared
power profile, because the battery’s state-of-charge is at its lower limit at
this moment.

over, since for each day the control strategy is applied to many realizations of the
uncertainty, a way to generate not only the four PV power forecasts P̂.→24 but also
the N corresponding i.i.d. realizations of the actually produced PV power profile P is
required.

The probability measure which is implemented by the uncertainty generator is
defined as follows:

w = PrW(Phist) (7.5.1)

with the resulting uncertainty realization w consisting of the following elements

w := {P̂0→24, P̂6→24, P̂12→24, P̂16→24,P}
where the four profiles P̂.→24 are the forecasted PV power profiles and P is the actually
realized PV power production.

In order to be able to take into account realistic seasonal variations of the fore-
casted and realized PV power, profiles are created based on historic measured data.
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Algorithm 3: Computation of Jr(θ, w).

1 Inputs: w, Ndays, SoC0, Cbat, θ2 ;
(Recall w := {P̂0→24, P̂6→24, P̂12→24, P̂16→24,P})

2 Init: SoC = SoC0 , Jr(θ, w) = 0,
interval1 = {00 : 00} : {06 : 00},
interval2 = {00 : 60} : {12 : 00},
interval3 = {12 : 00} : {16 : 00},
interval4 = {16 : 00} : {24 : 00};

3 for idxDay = 1 : Ndays do
4 for k = 1 : 4 do
5 [Popt

G ,Popt
Bat,SoCopt] = PCk(Cbat, θ2, P̂.→24, SoC);

6 for t ∈ intervalk do
7 [J, SoC] = RTC(SoC,Poptt

bat ,SoCoptt,Poptt
G ,P(t));

8 Jr(θ, w(i)) = Jr(θ, w(i)) + J ;

9 Outputs: Jr(θ, w) ;

The principle steps of the method are as follows:

• Based on Phist the 4 forecasts P̂.→24 are generated.

• Once the 4 forecasts P̂.→24 are created, N realizations of the actually produced
PV power P are generated based on these forecasts.

The method used to create both, the forecasts and the realized power profiles, is the
same. It will be introduced in detail for the case of the forecasts P̂.→24(Phist), but works
similarly for the realized PV power P(P̂.→24).
Note that for notational conciseness P̂.→24 will be replaced by P̂ if no ambiguity oc-
curs. The PV power uncertainty generation method is based on the following as-
sumptions:

• The uncertainty in the forecasted PV power profiles increases the further a pre-
dicted instant lies in the future. This is realized through a bounding envelop of
increasing width for instants lying further in the future.

• The dependency of a sample P̂t on the previous samples P̂1, ..., P̂t−1 is taken into
account through bounds on the mean derivative over several sampling instants.

Bounding envelop on the profile P̂ :
As mentioned above a bounding envelop on the PV power prediction profile P̂ of
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Figure 7.4 Shape of profile Cenvelop which is used to compute the bounding
envelop on the predicted power profile P̂ in equation (7.5.2). Both, the one
used to create P̂(Phist) and P(P̂) are plotted.

increasing width represents the fact that predicted samples lying further in the future
are more uncertain. The upper and lower bounds B, B on the predicted profile P̂ are
defined as follows:

B = Phist + Cenvelop �Phist (7.5.2a)

B = Phist −Cenvelop �Phist (7.5.2b)

where the �-operator is the element-wise product of two vectors of same length and
with Cenvelop being parameterizable through a0, a1, a2, a3 as follows:

Ct
envelop = min

[
a3, a0 + a1 · (t− t0) + a2 · (t− t0)2

]
(7.5.3)

where t0 is the current time. Figure 7.4 illustrates the resulting shape of vector Cenvelop.
Additionally also the envelop chosen for generating P(P̂) is plotted. Note that the
latter has an uncertainty equal 0 at the current time t0 which accounts for the fact
that the forecasted value for time t0 is the actually measured one. In figure 7.5 the
resulting envelop bounds B, B, as well as the profile Phist (sampled at τr = 1min and
re-sampled at τp = 15min) are illustrated exemplarily.

Bounded mean derivatives on the profile P̂:
In order to implement the assumption that the predicted power P̂t at instant t is not
independent of the previous samples (P̂1, ..., P̂t−1), the mean derivatives over several
sampling periods of the profile P̂ are bounded.

Définition 7.5.1. The mean derivative vector DnS(X) ∈ RN for vector X ∈ RN over nS
consecutive time steps is defined as follows:

Dt
nS

(X) = 1
nS

t∑

i=t−nS+1
(Xi −Xi−1) for t = {1, ..., N} (7.5.4)

Note that in the case-study provided in section 7.6 the values chosen for nS are
nS = {1, 2, 4, 10} which correspond to the intervals of 15 minutes, 30 minutes, 1 hour
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Figure 7.5 Example of a bounding envelop on the predicted PV power pro-
file. The figure additionally shows the underlying historical measured
power..... Phist sampled at τr = 1min and its re-sampled version at sampling
period τp = 15min. Note that in order to create the uncertainty bounds
B,B, the profile Phist is additionally filtered in order to eliminate the day-
specific variations of the historic data profile in the uncertainty bounds.
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and 2.5 hours. Finally the bounds applied to the predicted profiles P̂ are:

DnS(P̂) ≤ max
(
DnS

(
Phist

))
(7.5.5a)

DnS(P̂) ≥ min
(
DnS

(
Phist

))
(7.5.5b)

with the max()- and min() operators selecting respectively the maximum and the min-
imum value of a profile. The way the constraints (7.5.5) are implemented is by con-
structing the profile P̂ sample by sample. More precisely, for each sample t a candi-
date point P̂t

candidate is created using a uniformly distributed random variable in a first
step. Then, the mean derivatives Dt

nS
(P̂) (for nS = {1, 2, 4, 10}) are computed taking

into account the candidate point and the previously generated samples P̂1, ..., P̂t−1 of
the profile P̂ and – in case the constraints (7.5.5) are not respected – P̂t is obtained by
projecting P̂t

candidate on the feasible set accordingly.

As described in section 7.4, the predictive controller is executed 4 times for one
day in order to (re-)declare the predicted grid power injection profile Popt

G to the grid
operator. Each time the predictive controller is executed (more precisely at times t0
= { J-1 at 16:00, 04:00, 10:00, 14:00 }), it requires the PV power forecast P̂.→24 created
at the corresponding time t0 as an input. In figure 7.6 the generated PV power fore-
casts P̂.→24 related to the 4 prediction instants t0 are illustrated. One can see very
nicely how the updated predictions differ from the previous ones. This underlines
the importance of being able to re-adjust the initially declared power injection profile
Popt

G,0→24 by the predictive controllers PC2, PC3 and PC4.

Remark: The sampling period for the generated forecasts P̂ is τp = 15min while
the one for the generated realized power profile P is τr = 1min.

Figure 7.7 shows one realization of the uncertainty w consisting of the 4 forecasts
P̂0→24, P̂6→24, P̂12→24 and P̂16→24 and of one associated realized power profile P.

7.6 Simulation results

In this section a case study is provided based on historic measured data of an existing
PV power plant. The nominal power of the plant, i.e. the maximal power which can
be produced by the PV panels is Pnom = 5MW . Under the regulatory framework
described in section 7.2, a newly installed PV farm of this size requires the installation
of a battery. The results obtained by applying the method described in the previous
sections provides valuable information for choosing the appropriate battery size and
for estimating the profitability of the investment.
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Figure 7.6 Realization of the uncertain PV power predictions P̂(Phist), the
lower- and upper bounds B and B as well as the historic measured PV
power Phist.
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Figure 7.7 Realization of the uncertainty w consisting of the PV power pre-
dictions P̂0→24, P̂6→24, P̂12→24 and P̂16→24 and the actually realized power
profile P.
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7.6.1 Algorithm set-up:

In order to keep the computation time of algorithm (3), i.e. the computation of the
realized revenue for all scenarios, in a reasonable range (around 6− 10 hours), the al-
gorithm is only applied to every 15-th day of the year (1 Jan, 15 Jan, 1 Feb, ...,15 Dec),
meaning that Ndays = 24 in algorithm 3. This way the results cover the seasonal varia-
tions of the year and can be considered to provide representative annual figures. Note
that in order to obtain annual figures on the to-be-expected revenue, the direct results
of the algorithm are scaled by the factor 365/24 = 15.2. Based on some preliminary
tests the finite set of the design parameter vector θ is chosen as follows:

θ1 = {4 · 105, 4.005 · 105, ..., 4.6 · 105} (revenue limit)

θ2 = {0.90, 0.95, ..., 1.20} (PV power scaling factor)

Moreover the algorithm is applied for the following battery sizes:

Cbat = {1, 500, 1000, 1500, 2000, 5000, 10000} [kWh]

The choice for the randomized algorithm parameters is: accuracy η = 10%, confidence
δ = 5% and the allowed number of failures m = 5. The resulting sample complexity
N becomes then

N ≥ 1
η

( e

e− 1)(lnnC
δ

+m) ≥ 234 (7.6.1)

with cardinality nC = nθ1 ·nθ2 = 840. Note also that in this case study a constant energy
tariff of 0.10 e/kWh is applied. Nevertheless variable energy tariffs are possible as
well.

Computation time considerations: The computations were performed on an In-
tel(R) Core(TM) i7-3540M @ 3.00GHz machine. It takes around tday = 90 ms to ex-
ecute the control scheme consisting of the 4 predictive controllers PC1, ..., PC4 and
the real-time controller RTC in closed-loop for one day. Due to the specificity that
the paramter θ1 does not appear in the time-consuming computations of the realized
revenue, the computation time can be estimated by the following formula:

tC = nCbat · nθ2 · ndays ·N · tday = 7 · 7 · 24 · 234 · 90 ms = 7 hours (7.6.2)

7.6.2 Obtained results for a 5MW PV plant

In figure 7.8 the obtained guaranteed lower bounds Jopt(θ) on the to-be-expected rev-
enue for different battery sizes are depicted. The results state that with probability
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Figure 7.8 Guaranteed lower bound on the to-be-expected revenue Jopt(θ)
at a probability of 1 − η = 90% and with confidence 1 − δ = 95% and the
mean revenue 1

N

∑N
i=1 Jr(θ, w(i)) over N = 234 realizations of the PV power

uncertainty.

greater than 1 − η = 90% and confidence 1 − δ = 95% the annual revenue of the in-
stallation is greater than the obtained values of Jopt(θ). One can see very nicely how
for increasing battery sizes the obtained guarantees on the to-be-expected revenue in-
crease as well. Moreover the corresponding mean revenues 1

N

∑N
i=1 Jr(θ, w(i)) over the

N realizations of the uncertainty are plotted. They are around 1− 2 % higher than the
guaranteed ones for the different battery sizes.

In figure 7.9 the mean annual revenue over the N = 234 realizations of the uncer-
tain PV power production is provided as a function of the design parameter θ2 and
for different battery sizes. Recall that θ2 is a tuning parameter in the predictive con-
troller allowing to scale the forecasted PV power production. Two observations can
be made: Firstly a higher battery size generally results in a higher mean revenue as
already visualized in figure 7.8. However this mean revenue is upper-bounded and
from a certain battery size on, the mean revenue does not increase significantly any-
more. Secondly the figure shows that the maximal mean revenue is achieved if the
forecasted PV power production profiles are assumed to be slightly higher (θ2 > 1) in
case the battery capacity is rather small. In case the battery is large however, θ2 < 1
results in the maximal mean revenue. This result underlines the importance of opti-
mally tuning the control scheme by taking into account the uncertainty, in order to
maximize the revenue of such an installation.
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Figure 7.9 Mean revenue of the N = 234 uncertainty realizations as a func-
tion of the battery size and the scaling factor θ2 of the amplitude of the PV
power forecasts P̂.→24 in the planning problem.
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7.6.3 ROI (return-on-investment) study

In the following we provide a sensitivity study which aims to help answer the follow-
ing questions:

• What is the optimal battery size for a given PV plant subject to the regulations
[CRE 2015]?

• Under which conditions is it cost-effective to install batteries associated to PV
plants?

Note that all the results are obtained under the assumption that the regulatory frame-
work described in section 7.2 applies. Additionally the assumptions are made that no
specific battery technologies are considered and that the battery life-time is fixed to
10 years. The impact of the following parameters is investigated:

• investment cost of the battery (in e/kWh).

• basic vs. peak power option of the regulatory framework.

Impact of the battery investement cost:
The cost of storage capacity depends a lot on the battery technology which is used.
In [Divya & Østergaard 2009] capacity costs in the range of 150− 1000USD/kWh are
reported, depending on the technology. Moreover it is likely that the battery capacity
cost is going to decrease during the coming years due to the rapid advances in the
battery storage technology.

In the following the optimal battery size for a 5MW PV plant is investigated for
battery capacity costs in the range of 0 − 1000 e/kWh. After applying our proposed
method, the obtained guaranteed lower limits on the to-be-expected revenues are
scaled to 10 years (which corresponds to the assumed battery life-time) and the bat-
tery investment costs are subtracted. Figure 7.10 shows the so obtained guaranteed
profit for a 10 year period for different battery sizes and for different battery capacity
costs. From the figure one can determine that the optimal battery size that maximizes
the profit of the installation is 200kWh if the capacity cost is 100 e/kWh. At higher
capacity costs however it is not profitable to install a battery at all with the basic op-
tion of the regulatory framework and the assumed flat energy tariff of 0.10 e/kWh.
In the following the same study is applied for the peak hour option of the regulatory
framework which was briefly introduced in section 7.2.

Impact of the battery investement cost with the peak power option and a vari-
able energy price:
In the peak power option a variable tariff is proposed where the PV plant operator
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Figure 7.10 Guaranteed profit over 10 years as a function of the battery size
and for different battery capacity costs in the range 0-1000 e/kWh. One
can see that at a capacity cost of 100 e/kWh the optimal battery size is 200
kWh, while at higher battery capacity costs it is basically not profitable to
install a battery.

is remunerated 0.50 e/kWh during the peak hours between 19:00-21:00. Figure 7.11
shows the applied price profile. Additionally the PV plant operator is obliged to de-
clare a grid power injection profile ≥ 20% · Pnom during the peak hours. In figure 7.12
an exemplary result of the control scheme applied to one day and for one realization
of the uncertainty is provided. The battery capacity in the example is 4000kWh. One
can see how the battery stores a part of the energy produced by the PV panels dur-
ing the day in order to be able to supply it to the grid during the peak hours where
the energy price is higher. Figure 7.13 shows the guaranteed profit of the installa-
tion over 10 years with the peak power option. The same configuration is used as in
the previously presented results for the basic option of the regulatory framework, i.e.
Pnom = 5MW and the same battery capacity costs between 0− 1000 e/kWh. One can
see that the optimal battery sizes that maximize the ROI are much higher (between
1500kWh and 2500kWh depending on the battery capacity cost) than in the results for
the basic option. This is due to the fact that with the peak option the declared power
profile Popt

G has to be at least 20% of the PV plant’s nominal power during the peak
period. In case the battery is too small this required energy cannot be delivered and
the resulting penalties reduce the to-be-expected profit significantly. An additional
conclusion one can draw from the comparison with the basic option is that the to-be-
expected profit is generally higher with the peak option which can be explained with
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Figure 7.11 Variable tariff profile Γ which is applied if the PV operator
chooses the peak hour option. During the peak period lasting from 19:00 to
21:00 the remuneration is five times higher than during the rest of the day
and the PV plant operator is obliged to declare a power PG ≥ 20% · Pnom.
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Figure 7.12 Exemplary results of the control scheme with the peak hour op-
tion. The battery capacity is 4000kWh. The battery stores the energy pro-
duced by the PV panels during the day in order to sell it to the grid during
the peak hours where the energy price is higher.
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Figure 7.13 Guaranteed profit over 10 years for the case where the peak
power option is applied. The optimal battery size is between 1500 and
2500kWh depending on the battery capacity cost.

the higher energy price during the peak hours. For instance at a battery storage cost
of 300 e/kWh the guaranteed profit with the peak option is around 5000000e while
with the basic option it is only 4300000e.

7.7 Conclusion

In this chapter a stochastic optimization framework for PV power plants with associ-
ated battery storage has been proposed. More precisely, PV plants which are subject
to regulations are addressed.

The framework allows to compute guaranteed lower bounds on the to-be-
expected revenue of the installation for different sizes of the associated battery storage
and at a configurable probability. The particular strength of the proposed method is
that the uncertainty in the PV power predictions are explicitly taken into account.
The complete method consists of a randomized algorithm formulation, an advanced
control scheme and a method to generate realizations of the uncertain PV power pro-
duction. Putting these three elements together, the framework is a valuable tool to
estimate the optimal battery size that maximizes the to-be-expected profit for a PV
plant under regulations.

From the results obtained in the case study one can see that the optimal battery size
can vary quite importantly with the nature of the underlying regulatory framework.
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Moreover the importance of optimally tuning the control scheme in order to maximize
the to-be-expected revenue has been demonstrated.
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This work was dedicated to the design of energy management algorithms for smart
grids. The contributions can be divided into two parts: Distributed Model Predictive
Control algorithms for a class of resource sharing problems and stochastic optimiza-
tion methods for explicitly dealing with uncertainty.

In part I two hierarchical MPC frameworks are proposed, the first one being based
on primal and the second one on dual decomposition. The underlying large-scale
MPC problem includes coupling constraints between the subsystems’ consumed re-
sources as well as a coupling term in the objective function. As it has been shown,
both frameworks are able to solve the initial large-scale problem to optimality. This
is achieved by using an efficient implementation of the bundle method that relies
on determining the optimal aggregation level of the underlying cutting plane model.
Moreover, the advantages and drawbacks of both frameworks were discussed in de-
tail: While the appealing interpretation of dual variables as shadow prices makes dual
decomposition very attractive for smart grid applications, the technical limitation to
strictly convex problems may be a relevant reason to opt for a primal decomposition
approach in order to avoid convergence issues. However, when the system becomes
very large-scale, then the dual decomposition approach is computationally more ef-
ficient, and the primal decomposition framework may even become computationally
intractable. In an extensive case study for an existing smart grid, potential financial
savings of 17% could be achieved thanks to the proposed DMPC approaches. Finally,
a cloud-based implementation on two test sites has been conducted which demon-
strated the feasibility of the proposed DMPC solutions in a real-life context.

In part II energy management systems dealing explicitly with uncertainty have
been proposed for electric vehicle charging stations and for photovoltaic power
plants. In both cases, the underlying stochastic optimization method is a random-
ized algorithm. In the case of the charging station, an upper bound profile on its
day-ahead power consumption is computed, taking into account a statistic model of
the uncertain electric vehicle behavior, that guarantees the customer satisfaction at
the same time. It has been shown that the obtained upper bound is very close to the
actually consumed power in real-time, which is of great value for distribution grid
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operators. For the photovoltaic power plant an economic optimization in the context
of regulatory constraints is proposed. The method allows to optimally choose the size
of an associated battery storage device, taking into account an uncertainty model of
the photovoltaic power forecast. Moreover, the approach comprises an efficient real-
time MPC controller which is optimally parametrized with respect to the uncertainty.
A very similar MPC controller has been developed within this work and successfully
implemented for two 1MW photovoltaic power plants, each equipped with a 1MWh
Li-ion battery.

Perspectives

The work presented in this manuscript opens a great number of perspectives both on
research and application levels.

Research

In this work DMPC algorithms for resource sharing problems were developed and ef-
ficiently solved using bundle methods. In order to further reduce the computational
burden, parametrization techniques might be an interesting approach. Parametriza-
tion is a well-known method in MPC applications, allowing to reduce the number of
degrees of freedom in the optimization problem without reducing the prediction hori-
zon length as discussed in [Qin & Badgwell 2003]. The impact of such parametrization
techniques on the closed-loop performance would have to be investigated in detail. In
[Lamoudi 2012] this method has been successfully applied in a building MPC appli-
cation, which suggests that similar results may be expected for the smart grid DMPC
algorithms proposed in this work.

To the present day it remains an open question how the realized economic sav-
ings/benefits which were obtained thanks to the proposed DMPC controllers, can be
fairly distributed amongst the actors according to their respective contributions. Dif-
ferent ways can be imagined: One way is to estimate each actor’s contribution based
on the measured historic consumption/production profiles which might serve as a
base-line. Another possibility is to additionally constrain the sub-system’s optimiza-
tion problems in such a way that they are guaranteed to have at least the same gain
as if they were operated independently from the other actors. In [Vinot et al. 2016]
the second method is applied in the context of a similar distributed optimizations
framework which is based on the ADMM method.

A further perspective, which would be an extension of the proposed DMPC frame-
works scope is to take the network topology through transmission losses and line
capacity limitations into account. This becomes particularly important when the net-
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work load at distribution level changes. This is typically the case when high amounts
of PV panels are introduced at household level or when the number of EVs increases.
The second case is addressed by [Richardson et al. 2012] where a linear programming
formulation is proposed that optimally coordinates the EV charging process of a large
number of vehicles while respecting the network capacity constraints limits. Clearly,
this would result in a much more complicated centralized MPC controller due to ad-
ditional coupling constraints. The scalability of the approach would be challenged in
this case and evolutions of the proposed DMPC frameworks would probably become
necessary in order to maintain the computational efficiency and the scalability of the
approach.

In this work, the proposed DMPC frameworks for resource sharing problems have
been applied to smart grid systems composed of buildings, EV charging stations, re-
newable energy sources and battery storage systems. For further increasing the en-
ergy efficiency in smart grids, district heating networks and their coupling with the
electricity grid through CHP (combined heat and power) plants should be incorpo-
rated into the approach. Furthermore, industrial sites represent an important load in
many smart grids and could be integrated into the proposed DMPC frameworks as
local MPC controllers. Especially their manufacturing processes often provide a large
inherent flexibility which may be exploited by intelligent management systems (see
[German et al. 2015] for instance), allowing to importantly contribute to the overall
energy efficiency in a smart grid.

Application

Several perspectives are open in terms of application both for the DMPC frameworks
and the two energy management systems based on randomized algorithms.

In the scope of the Ambassador project the two DMPC frameworks were tested on
real test sites and the practicability of this type of solutions has been demonstrated.
In order to obtain meaningful experimental results in terms of energetic performance,
several technical issues which are not directly related to the concepts provided in this
thesis need to be resolved. For instance, more reliable data flow between the MPC
algorithms which are running on a server in the cloud and the different sub-systems
is necessary. Moreover, the quality of weather forecasts and the forecasting models of
certain uncontrollable loads should be improved.

Although the DMPC algorithms allow to distribute the execution of the different
local MPC controllers on different machines, they were all hosted on the same server
when applying the algorithms on the test sites in order to avoid communication issues
during the iterative convergence process. In the future, the physical separation of the
algorithms should be experimented and the necessary routines to deal with potential
information losses should be developed.
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For the energy management systems presented in part II, the statistic models for
the uncertain EV behavior and the PV power forecasts were assumed to be available.
In order to confirm the actual performance of the proposed methods, these statistic
models should be calibrated based on real data.
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Appendix A

Résumé en français

Résumé
Cette partie est un résumé en français du manuscrit de thèse. Le résumé ne prétendant pas être
exhaustif, le lecteur est prié de se reporter à la version anglaise pour plus de détails techniques.

A.1 Introduction

Défi énergétique

Les sources d’énergie fossiles ont donné lieu à la révolution industrielle qui a in-
fluencé de manière forte la façon dont nous vivons aujourd’hui. Elle a probablement
été la transformation de société la plus profonde dans l’histoire de l’homme.

Le prix que nous sommes en train de payer pour l’amélioration de la qualité de
vie obtenue, est le réchauffement climatique dû aux émissions CO2. Pour limiter ce
réchauffement à 1.5°C, une forte diminution des émissions CO2 a été décidé lors de la
conférence COP21 à Paris. En considérant le fait que la consommation énergétique ne
cesse pas d’augmenter (figure A.1), des efforts considérables seront nécessaires pour
réaliser cet objectif ambitieux.

Transformation des réseaux électriques

Une mesure clé pour répondre à ce défi énergétique est l’introduction forte de
sources d’énergie renouvelables dans le réseaux électrique existant. Cette évolution
de moyens de production grands et centralisés vers un grand nombre de moyens de
production renouvelables et décentralisés met en question la façon dont le réseau est
opéré actuellement. Surtout la nature intermittente des renouvelables peut perturber
la qualité et la stabilité du réseau électrique.
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Figure A.1 Prédiction de la consommation d’énergie mondiale pour trois
scénarios de politiques différentes (source [IEA 2014]).

Un autre aspect qui posera de nombreux défis à la gestion de l’énergie est
l’émergence des véhicules électriques. Ces charges supplémentaires et souvent dif-
ficiles à prédire peuvent poser un problème au niveau du réseau de distribution,
surtout dans des régions où le réseau n’a pas été conçu pour accueillir des grandes
charges supplémentaires.

Pour une intégration efficace de ces nouveaux acteurs qui permettra d’assurer la
qualité de service dans les réseaux énergétiques, des méthodes de gestion d’énergie
distribuées et avancées seront nécessaires.

Objectif de la thèse

Cette thèse a pour objectif de proposer des stratégies de gestion d’énergie avancés,
capables d’améliorer l’efficacité de ces systèmes, d’améliorer la robustesse malgré les
fortes incertitudes introduites par les nouveaux acteurs et de proposer des solutions
génériques, modulaires et qui permettent le passage à l’échelle.

Dans ces travaux de thèse deux types de solutions ont sont proposés et validés
à travers des simulations et partiellement à travers d’expérimentations. Le premier
type de solution est l’application de la commande prédictive distribuée pour la ges-
tion d’énergie au niveau d’un quartier intelligent. Le principe de la commande
prédictive étant l’anticipation d’événements futurs fait que cette approche est par-
ticulièrement bien adaptée pour améliorer l’opération efficace des systèmes énergé-
tiques. Le choix d’une approche distribuée finalement permet le passage à l’échelle et
assure la modularité de la méthode.

Malgré le fait que la commande prédictive permet de compenser un certain niveau
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d’incertitude en régulièrement mettant à jour la stratégie de contrôle, on peut ren-
contrer une mauvaise performance lors que les incertitudes deviennent trop impor-
tantes. Pour répondre à cette difficulté, le deuxième type de solutions développé
dans cette thèse est l’application d’algorithmes randomisés qui permettent de pren-
dre en compte explicitement l’incertitude dans le contrôle. Deux stratégies de gestion
d’énergie pour deux systèmes distincts sont proposés dans ce contexte, le premier
s’adressant à une des stations de recharge de véhicules et le deuxième à des fermes
de production photovoltaïque disposant d’un moyen de stockage.

A.2 Commande prédictive distribuée

Le principe de la commande prédictive distribuée (DMPC) [Camponogara et al. 2002,
Diehl 2009, Scheu et al. 2009] consiste à diviser un contrôleur centralisé en plusieurs
contrôleurs locaux qui résolvent leurs problèmes d’optimisation locaux séparément.
Pour trouver l’optimum global un échange d’information itératif avec un contrôleur
coordinateur est mis en place. Celui-ci est nécessaire pour prendre en compte le cou-
plage entre les différents sous-systèmes qui peut être dû à un objectif commun et/ou
à une ressource partagée et/ou à des dynamiques couplées.

Les raisons principales pour un contrôle distribué dans le contexte des smart grids
sont les suivants: Le passage à l’échelle du contrôleur, la modularité de la solution, la
robustesse face à des fautes du contrôleur et la protection de vie privée des différents
sous-systèmes.

Dans ce travail des systèmes de grande échelle composés de plusieurs sous-
systèmes avec des dynamiques découplées et une ressource partagée sont con-
sidérées. Le travail est beaucoup inspiré par le contrôleur DMPC proposé par
[Lamoudi 2012]. La différence principale est le fait que non seulement des consom-
mateurs de la ressource partagée sont pris en compte, mais aussi des producteurs de
des moyens de stockage.

Dans la littérature de nombreux méthodes d’optimisation distribuées ont été pro-
posées. [Boyd et al. 2007] propose une bonne introduction à ces concepts et des
explications exhaustives de la théorie sont proposées par [Bertsekas 1999, Boyd &
Vandenberghe 2004].

Dans cette thèse deux méthodes de DMPC sont développées et comparées d’un
point de vue théorique et pratique. La première approche est basée sur une décom-
position primale et la deuxième sur une décomposition duale du problème initial
centralisé. Le grand inconvénient des approches d’optimisation distribuées est le
nombre d’itérations relativement élevé qui est nécessaire pour converger vers la so-
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lution globalement optimale et réalisable [Diehl 2009]. Ceci peut être problématique
pour des applications temps-réel où la capacité de calcul et de communication qui
est disponible à chaque instant de contrôle est limitée. Pour gérer cette difficulté nous
utilisons une implémentation efficace de la méthode des faisceau dans laquelle la pré-
cision de l’approximation en coupes linéaires est choisie de manière optimale.

A.3 Stratégies de contrôle basés sur des algorithmes ran-
domisés

Incertitudes ont un impact important sur la performance des systèmes de gestion
d’énergie dans le contexte des smart grids. Les incertitudes fortes qui sont inhérentes
aux sources d’énergie renouvelables ainsi qu’au comportement des véhicules élec-
triques constituent une menace pour la stabilité des réseaux électriques.

Dans la deuxième partie de cette thèse, deux systèmes de gestion d’énergie
prenant en compte l’incertitude de manière explicite, sont proposés. Le premier
s’adresse aux incertitudes liés aux stations de recharge de véhicules électriques, et
le deuxième s’adresse aux incertitudes rencontrés aux centrales photovoltaïques. Les
deux stratégies de contrôle reposent sur une méthode d’algorithme randomisé dont
l’idée est de relâcher une contrainte robuste et de trouver une solution réalisable qui
garantit la satisfaction de cette contrainte avec une forte probabilité.

Avant d’expliquer les objectifs des deux stratégies de contrôle, l’approche de
l’algorithme randomisé est brièvement introduite. Le problème initial est le problème
robuste suivant:

min
θ∈Θ

J(θ) subject to g(θ, w) = 0 for all w ∈ W (A.1)

avec le vecteur de conception θ ∈ Θ qui est de dimension θ ∈ Rnθ , J(θ) représente
la fonction coût à minimiser, W représente l’ensemble d’incertitude, w est une réal-
isation de l’incertitude et la fonction binaire de satisfaction de contrainte g(θ, w) est
définie par:

g(θ, w) :=




0 si θ satisfait les spécifications de contrôle pour w

1 sinon
(A.2)

Le problème robuste est très difficile à résoudre à cause du nombre infini de scé-
narios potentiels w. En relâchant la contrainte robuste, les algorithmes randomisés
proposés par [Alamo et al. 2015] permettent de résoudre le problème en donnant des
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garanties probabilistes de satisfaction de contrainte. Plus précisément la relaxation
suivante est appliquée:

min
θ∈Θ

J(θ) subject to Pr [Pr (g(θ, w) = 0) ≥ 1− η] ≥ 1− δ for all w ∈ W (A.3)

η et δ représentent des probabilités de relaxation dénommés précision et confiance.
Problème (A.3) peut finalement être résolu de manière efficace par le problème suiv-
ant, dans lequel le nombre de scénarios est fini:

min
θ∈Θ

J(θ) subject to
N∑

i=1
g(θ, w(i)) ≤ m (A.4)

Le nombre N de scénarios nécessaires est défini par la borne inférieure suivante:

N ≥ 1
η

( e

e− 1)(lnnC
δ

+m) (A.5)

dans laquelle on retrouve les deux probabilités de relaxation η et δ et un nombre entier
et positif m qui doit être fixé à l’avance. nC est la cardinalité de l’ensemble fini Θ.

A.3.1 Station de recharge de véhicules électriques

Vu par le réseau, une station de recharge de véhicules électriques (EVCS) peut être
considérée comme une charge électrique. Pour son intégration dans le réseau, le DSO
ou n’importe quelle autre entité qui est responsable du réseau de distribution, a be-
soin d’une prédiction du profil de charge.

Le système de gestion d’énergie pour des EVCS proposé dans cette thèse part
de l’hypothèse qu’il est impossible d’obtenir des prédictions du comportement in-
dividuel des véhicules, mais qu’un modèle statistique de l’occupation de la EVCS est
disponible. Dans ce contexte la méthode de contrôle proposée permet de:

• Calculer un profil de limitation en puissance supérieure pour la EVCS qui peut
être communiqué la veille pour le lendemain au DSO.

• Respecter en temps-réel ce profil de limitation en puissance à travers un con-
trôleur basé sur des règles simples qui contrôle le processus de recharge pour
toutes les bornes de la EVCS.

• Garantir à une probabilité configurable 1 − η la qualité de service (i.e. la satis-
faction des clients de la EVCS).

L’idée principale derrière l’approche proposée est de trouver le compromis optimal
entre la sur-estimation du besoin d’énergie de la EVCS et la garantie de la qualité
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de service. En effet, si on cherchait à garantir pour tous les scénarios, même pour
les moins probables, la qualité de service, alors le profil de borne supérieure sur la
consommation de la station serait très conservateur dans le sens qu’il allouerait une
grande quantité d’énergie à tout moment, même si ce ne serait quasi jamais utilisé.

En termes du problème robuste (A.1), ce problème s’exprime de la façon suivante:

• J(θ) représente l’énergie pré-alloué pour la journée. Cette fonction dépend du
vecteur de conception θ qui permet de varier l’allure du profil de limitation
supérieure en puissance Plim(θ) pour la EVCS.

J(θ) =
∫ 24

t=0
Plim(θ) dt (A.6)

• w ∈ W représente une réalisation de l’occupation incertaine de la EVCS pour
les 24h de la journée.

• g(θ, w) représente la fonction d’indicateur qui permet d’évaluer si pour un
vecteur de conception donné θ et pour un scénario w, la qualité de service
est garantit. Pour évaluer g(θ, w), le contrôleur temps-réel de la EVCS est
simulé dont la logique est de distribuer à chaque pas de temps la puissance
disponible Plim(θ) aux véhicules connectés. Ensuite, la qualité de service est
évalué (g(θ, w) = 0 si la qualité de service est atteinte).

A.3.2 Photovoltaic power plant problem

Les profils de production de centrales photovoltaïques sont difficilement prévisibles,
car ils dépendent fortement des conditions météorologiques. Pour cela il est devenu
difficile pour les gestionnaires de réseau d’assurer l’équilibre entre production et con-
sommation et d’assurer la qualité et la stabilité du réseau électrique. Une mesure
prise par les commissions de régulation de l’énergie de différents pays est d’imposer
des régulations aux opérateurs des centrales qui les forcent à déclarer en avance leur
profil d’injection de puissance journalière. En cas où ces profils déclarés ne peuvent
pas être réalisés, des amandes financières appliquent.

Dans ce contexte nous proposons un système de gestion d’énergie pour des cen-
trales photovoltaïques disposant d’une batterie. L’idée principale est de déterminer
la paramétrisation optimale d’une stratégie de contrôle de la batterie afin de max-
imiser une borne inférieure sur le revenu auquel on peut s’attendre. Dans l’approche
proposée, l’incertitude des prévisions de la production photovoltaïque ainsi que les
régulations sont prises en compte explicitement dans le contrôle.

En termes du problème robuste (A.1), ce problème s’exprime de la façon suivante:
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• J(θ) représente la borne inférieure sur le revenu attendu qu’on cherche à max-
imiser et qu’on voudrait garantir à une probabilité configurable.

• w ∈ W représente une réalisation du profil de production de puissance incertain
de la centrale photovoltaique.

• g(θ, w) représente la fonction d’indicateur qui évalue si, pour une réalisation
donnée w du profil de production photovoltaïque et pour une paramétrisation
de la stratégie de contrôle donnée θ, le revenu réalisé est au-dessus d’un certain
seuil.

A.4 Conclusion générale

Les travaux présentés dans ce manuscrit sont dédiés au développement de stratégies
de contrôle pour les smart grids. Les contributions peuvent être divisées en deux
parties: La première partie propose l’application des méthodes de MPC distribué
pour une classe de problèmes de partage de ressource. La deuxième partie propose
l’application d’algorithmes randomisés permettant de prendre en compte explicite-
ment des incertitudes dans le contrôle.

Dans la première partie une décomposition primale et une décomposition duale
sont appliqués pour diviser un contrôleur centralisé en un coordinateur et plusieurs
contrôleurs locaux. Il a été montré que les deux approches permettent de résoudre
un problème de grande échelle à optimalité. Les avantages et inconvénients des deux
approches ont été discutés en détail: Tandis que l’interprétation intéressante des vari-
ables duales en tant que prix d’énergie virtuels fait que la décomposition duale est
très attirant pour des applications smart grid, sa limitation technique à des problèmes
strictement convexes peut être une raison importante d’opter pour une décomposi-
tion primale afin d’éviter des problèmes de convergence. D’autre part, si le système
est de très grande échelle, la décomposition duale est plus efficace d’un point de vue
de temps de calcul et la décomposition primale pourrait même dépasser les capacités
de calcul.

Lors d’une étude de cas extensive dans le cadre du projet Ambassador, des
économies de coûts de 17% ont été réalisés grâce aux approches DMPC proposées
dans ce manuscrit. Dans ce même projet européen, une implémentation basé sur le
calcul à distance des approches proposés a été réalisée sur deux sites de test démon-
trant la faisabilité de ces approches en conditions réels.

Dans la deuxième partie de ce manuscrit deux systèmes de gestion d’énergie
prenant en compte explicitement l’incertitude ont été proposés pour une station de
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recharge de véhicules électriques et pour des centrales photovoltaïques. Les deux
approches sont basés sur un algorithme randomisé.

Dans le cas de la station de recharge, un profil de limitation sur la consomma-
tion en puissance de la station de recharge est calculé, prenant en compte un modèle
statistique du comportement incertain des véhicules électriques, qui garantit à une
probabilité configurable la satisfaction des clients. Il a été montré que ce profil de
limitation peut être assez proche du profil réellement réalisé, ce qui représente une
grande valeur pour les gestionnaires de réseau de distribution.

Pour les centrales photovoltaïques une optimisation économique a été proposée
dans le contexte de contraintes régulatrices. La méthode permet de choisir la taille
optimale d’une batterie associée à la centrale en prenant en compte un modèle de
l’incertitude des prévisions de production photovoltaïque. Par ailleurs l’approche
comprend un contrôleur de commande prédictive efficace qui est paramétré de
manière optimale en vue de l’incertitude.

152



"Energy management strategies for smart grids"
Ph.D. thesis - Grenoble University
Peter Pflaum

The increasing level of renewable energies in the electric grids and the foreseeable
deployment of electric vehicles challenge the traditional ways of managing energy
in those grids. While traditionally a centralized energy management paradigm has
been applied, a tendency towards more decentralized control mechanisms, aiming to
better exploit flexibilities at a local scale, can be observed.

In this thesis, two issues concerning the energy management in smart grids are
addressed. In the first part of this thesis, two Distributed Model Predictive Control
(DMPC) methods are proposed which allow a more efficient coordination of a group
of actors in a smart grid. The focus in this first part is on the qualitative comparison
and on the comparison in terms of computational efficiency of the two methods. The
second part of this thesis deals with energy management systems that explicitly take
into account uncertainties. For two systems, photovoltaic power plants and electric
vehicle charging stations, energy management systems relying on randomized algo-
rithms are proposed and their performances compared to deterministic strategies.

"Stratégies de gestion d’énergie pour les smart grids"
Thèse de Doctorat - Université de Grenoble
Peter Pflaum

Le taux croissant de sources d’énergies renouvelables dans les réseaux électriques
et l’apparition prévisible de voitures électriques remettent en cause les mécanismes
traditionnels de gestion de ces réseaux. Alors que les réseaux électriques ont été tra-
ditionnellement gérés de manière centralisée, on s’oriente de plus en plus vers une
gestion décentralisée avec l’objectif d’exploiter au mieux les flexibilités à un niveau
local.

Dans cette thèse, deux problématiques concernant la gestion de l’énergie au
niveau des smart grids sont adressées : La première partie de cette thèse propose
deux algorithmes de commande prédictive distribués pour coordonner de manière
plus efficace un ensemble d’acteurs dans un smart grid. Le focus est sur la com-
paraison qualitative de ces deux méthodes ainsi que sur leurs performances en ter-
mes de temps de calcul. Dans la deuxième partie de cette thèse, des méthodes de
gestion d’énergie prenant en compte explicitement l’incertitude sont proposées pour
une centrale photovoltaïque et pour une station de recharge de véhicules électriques.
Les méthodes reposent sur des algorithmes randomisés qui permettent d’obtenir des
garanties probabilistes de performance.
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