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Abstract

In the first part of this thesis we study the propagation of Wigner measures linked to
solutions of the Schrödinger equation with potentials presenting conical singularities and
show that they are transported by two different Hamiltonian flows, one over the bundle
cotangent to the singular set and the other elsewhere in the phase space, up to a transference
phenomenon between these two regimes that may arise whenever trajectories in the outsider
flow lead in or out the bundle. We describe in detail either the flow and the mass concentra-
tion around and on the singular set and illustrate with examples some issues raised by the
lack of unicity for the classical trajectories on the singularities despite the unicity for quan-
tum solutions, dismissing any classical selection principle, but in some cases being able to
fully solve the problem.

In the second part we present a work in collaboration with Dr. Clotilde Fermanian and
Dr. Fabricio Macià where we analyse a Schrödinger-like equation pertinent to the semiclas-
sical study of the dynamics of an electron in a crystal with impurities, showing that in the
limit where the characteristic length of the crystal’s lattice can be considered sufficiently
small with respect to the variation of the exterior potential modelling the impurities, then
this equation is approximated by an effective mass equation, or, more generally, that its so-
lution decomposes in terms of Bloch modes, all of them satisfying effective mass equations
specifically assigned to their Bloch energies.





Résumé

Dans la première partie de cette thèse nous étudions la propagation des mesures de
Wigner associées aux solutions de l’équation de Schrödinger à potentiels présentant des
singularités coniques, et nous montrons qu’elles sont transportées par deux différents flots
Hamiltoniens, l’un sur le fibré cotangent à la variété des singularités et l’autre ailleurs
dans l’espace des phases, à moins d’un phénomène d’échange entre ces deux régimes qui
peut se produire quand des trajectoires du flot extérieur atteignent le fibré cotangent. Nous
décrivons en détail et le flot et la concentration de masse autour et sur la variété singulière, et
illustrons avec des exemples quelques questions issues de la faute d’unicité des trajectoires
classiques sur les singularités en dépit de l’unicité des solutions quantiques, ce qui refute
tout principe de sélection classique, mais qui n’empêche dans certains cas de résoudre com-
plètement le problème.

Dans la deuxième partie nous présentons un travail mené en collaboration avec Dr.
Clotilde Fermanian et Dr. Fabricio Macià où nous analysons une équation de type Schrödin-
ger pertinente à l’étude semiclassique de la dynamique d’un électron dans un cristal avec
impuretés et montrons que, dans la limite où la période caractérisique du réseau cristallin
est sufisamment petite par rapport à la variation du potentiel extérieur représentant les im-
puretés, cette équation peut être approximée par une équation de masse effective, ou, plus
généralement, que sa solution se décompose en modes de Bloch et que chacun d’eux satis-
fait une équation de masse effective spécifique à son énergie de Bloch.
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Why should people use “we” instead of “I” in scientific communication is a matter that
was explaining Profa Cida, a teacher of mine back in High School, more than a decade ago.
An issue of impersonality. Not of course in the sense of denying your own participation in
the scientific progress, what would be rather a nonsense than a proper sense; not in the aim
of making things appear like no human was behind the text as in a user’s guide or so, on
the contrary as we’ll see. In fact, the actual reason is such, that only with time, work and
growth I could get to fully understand.

It’s something that another Victor glimpsed when naming neither his prisoner con-
demned to death nor the crime he was convicted of as a manner to extend his fierce campaign
against the capital penalty to the universality of men and faults. It’s an expedient which
nowhere as in the insistent anonymity throughout Les Misérables has someone driven so
deep as this Victor, who opened room in his romance to each miserable in the world by
making them recognizable under some of the many anonymous masks that his particular
characters wear, of those the protagonist’s one is simply gens1.

It’s an expression of universality through anonymity that is taken to its maximal power
in a bishop Myriel’s thought, himself nicknamed Bienvenu:

Oh you who are! The Ecclesiastes name you Almighty, the Maccabees name you Cre-
ator, the Epistle to the Ephesians call you Freedom, Baruch name you Immensity, the Psalms
name you Wisdom and Truth, John name you Light, the Kings name you Lord, the Exodus
call you Providence, Leviticus Holiness, Ezra Justice, the creation name you God, man
name you Father; [...] Solomon name you Mercy, and there is the most beautiful of all your
names.

Because It is the most universal, no precise nor unique denomination can It be given,
for a unique and precise description circumscribes. Whenever possible, whence, the third
person “one” is preferable over “we”, said my teacher.

Thus, how could I dare label with my particular identity Victor, of which “I” is only
a textual avatar, the universality of teachers, masters, colleagues, scholars, technicians and
savants that preceded me and of whose contribution consists all but an atomic portion of this
present work, not considering the errors and mistakes ahead, that I claim of my exclusive
authorship?

Each time that I chose “we” instead of “I” in this monograph, it’s a tribute that I pay
to the very concept of University, this circle encrusted in the middle of our campus in
São Paulo whose centre is everywhere, and which, by corollary, includes we all, as an
everywhere centred circle must have infinite radius. Hence my reticence in listing the names
of those that I can remember who somehow collaborated to this thesis, what wouldn’t be

1Jean Tréjean in the first manuscripts, or, spoken, gens très gens.
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the more recent authors who are listed in the bibliography and who allowed me an up-to-
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Chapter 1

General Introduction

A key problem in mathematics and in its applications is to study how solutions to par-
tial differential equations (field equations) with a given parameter (a coefficient of thermal
diffusion, the speed of wave propagation in some medium, the mass of a quantum particle,
et cætera) tend to some significant limit function or distribution as this parameter becomes
too big or too small.

Of course there are much to be made precise about the above statement: how much
regularity do we require for the solutions of the equations? how this regularity may be lost
as the parameter becomes too big or too small? in which sense the limits of these solutions
are to be understood? how will they behave as time passes?

The techniques developed in addressing these questions, as well as the many answers
they have been allowing us to get, form the corpus of Semiclassical Analysis. Although
in the present work we restricted ourselves to the study of Schrödinger-like equations with
rough potentials1, the scope of uses one can make of it in many different fields of Mathe-
matics, Physics and other so-called exact sciences is far broader.

In the next introductory sections we hope to give the reader an idea of the richness of
Semiclassical Analysis by looking at the problems that motivated some of its most important
objects, usually variants or refinements of the grounding concept of defect measure – a
measure that seeks to quantify the “lack of compacity”, the “lack of convergence” of a
sequence of functions. But previously, we will present our own personal view of this theory,
which – given my backgrounds – could not be unrelated to the matter of re-obtaining the
classical XVIIIth to XIXth century Mechanics from the quantum Mechanics developed in
the first decades of the last century and now largely accepted, if not as an ultimate theory,
surely as the suitable paradigmatic basis for our understanding of physics.

For the convenience of the non-specialist reader, the hardcore mathematics will not
start before next chapter. This one is wholeheartedly devoted to the lay public, especially
Section 1.1, that I wrote keeping my engineer friends in mind. Still, we have given a lot
of interesting bibliographical references in there, so maybe even the specialist reader might
enjoy it.

A proper introduction to the specific subjects treated in this work can be found in Chap-
ters 3 and 8.

1More precisely, at the first half of the thesis we approach potentials with a particularly impertinent kind
of anomalous derivatives, called conical potentials, and at the second one we look at periodic potentials with
impurities, a work done in collaboration with Dr. Clotilde Fermanian and Dr. Fabricio Macià.
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16 CHAPTER 1. GENERAL INTRODUCTION

1.1 The classical limit of Quantum Mechanics

Mechanics is the central theory in physics, be it classical or quantum. Its primacy comes
from the fact that its concepts are the basis over which all the others are built: time, position,
momentum and determinism in its classical version; time, position and momentum densities
and probability in its quantum one. We could vaguely say that the other theories only add to
the knowledge of the specific dynamics of their particular systems, and then their kinetics
is completely mechanical.

For instance, it is like we said that electromagnetism only gives the specific equation
electromagnetic fields obey to and the specific law of force for a particle submitted to them,
and therefore we just do Mechanics with this information, i.e., we solve the field and the
motion equations dressed in their specific electomagnetic form and obtain quantities like
momenta, positions, frequencies, forces and so on as functions of time. Let position, mo-
mentum, force, etc., make no longer sense, and classical electromagnetism becomes mean-
ingless.

This is why the way we understand the world ought to rely on the mechanical theory
we have in hand. Kinetics, or the description of motion, furnishes thus the paradigm for the
subsequent physics to be fashioned by the manner we look at and describe the phenomena
around us.

Philosophers and mathematicians in the late XVIIth century looked at nature with de-
terministic eyes, backed by rationalist (most of the time), investigative minds and deprived
of any useful tool to explore the microscopic scale.

Let us shortly list what they saw and thought and how it shaped Classical Mechanics:

1. Things move over time; this remark took them to describe the motion parametrized
exclusively and unequivocally by the time variable.

2. It is not enough to say where some thing is in order to say where it will be in the
future, we need to say in addition in which way its position is changing (momentum);
this led to the description of motion departing from two quantities, initial position and
momentum, which later developed into the notion of trajectories over a phase space.

3. There must be a natural law governing the motion; it was by Newton realized that
this law actually correlates a force acting on a particle with the rate of change of its
momentum (acceleration).

In Newton’s formulation, the motion is thus encoded by the quantity “position as func-
tion of time”, x(t), and is ruled by what in modern mathematics we call a differential equa-
tion of second order:

d2

dt2
x(t) = F (t, x(t), ξ(t)).

The forces in general may depend on time t, position x and momentum ξ, in agreement
with Item 2. However, to make things simpler, let us suppose that the force only depends
on the position2, F = F (x), in which case it is more reasonable to thing of the force as
a property of the space itself. In other words, F (x) = −∇V (x), where V is a potential
spread over the space and has nothing to do with the moving particles.

2If it depends on t, nothing especial changes, and if it depends on ξ as well, then we will have unnecessary
technical difficulties, the central ideas remaining the same.
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Then, remembering that momentum is essentially the rate of change in position, New-
ton’s equations can be written as a pair of first order equations:{

d
dtx(t) = ξ(t)
d
dtξ(t) = −∇V (x(t)),

which are the Hamilton’s equations. This is already good because solving first order equa-
tions is easier than second order, but Hamilton’s smartness eventually went further: he
realized that writing down the expression for the energy3 of a particle as a function of x and
ξ,

H(x, ξ) =
1

2
ξ2 + V (x),

the motion equations become:{
d
dtx(t) = ∂ξH(x(t), ξ(t))
d
dtξ(t) = −∂xH(x(t), ξ(t)).

Geometrically, this has an immediate interpretation: the solutions (x(t), ξ(t)) of this
system are the trajectories of the flow induced by the vector field (∂ξH(x, ξ),−∂xH(x, ξ))
over the planeOxξ, called phase space. The precise trajectory a particle will take in this flow
is decided by its initial state represented by a point (x(0), ξ(0)), when intervenes a theorem
of unicity saying that if V is not much irregular, then through any point of the phase space
there will be only one trajectory passing.

For our purposes, what is to be retained from this brief explanation is that, now, if we
are able to define any quantity we want to measure in a particle’s motion as a function over
the phase space, say Q = Q(x, ξ), then the only thing we need to do in order to know how
this quantity varies with time is to calculate the Hamiltonian trajectory for the particle and
then compose Q with it, Q(t) = Q(x(t), ξ(t)).

Now, for Quantum Mechanics, the picture is more complicated.
There has been a huge hysteria, even in serious scientific literature, about the strangeness

and the ununderstandability of Quantum Mechanics. Apparently, just because Feynman de-
clared that safely nobody understands Quantum Mechanics[48], we are destined never to
understand it, even if fortunately he also said that you know how it always is, every new
idea, it takes a generation or two until it becomes obvious that there’s no real problem[47].

We do not mean that Quantum Mechanics epistemological implications are fully under-
stood; if they are, it is not to our current knowledge. Nonetheless, if Classical Mechanics
implications were ever fully accepted, this is not to our current knowledge neither4.

3As a technical remark, the Hamiltonian function H is not always the energy as we wrote (nor is the mo-
mentum). The reader willing to go deeper into the details is referred to [72].

4Newton himself was upset that his theory relied on such absurd an assumption as a gravitational force that
instantly propagates through the space:

“Tis inconceivable that inanimate brute matter should (without the mediation of something else which is not
material) operate upon & affect other matter without mutual contact; as it must if gravitation in the sense of
Epicurus be essential & inherent in it. And this is one reason why I desired you would not ascribe innate gravity
to me. That gravity should be innate inherent & essential to matter so that one body may act upon another at a
distance through a vacuum without the mediation of any thing else by & through which their action or force may
be conveyed from one to another is to me so great an absurdity that I believe no man who has in philosophical
matters any competent faculty of thinking can ever fall into it.”[89]
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Classical Mechanics offers a weird universe of imprisonment, whereas Quantum Me-
chanics brings us something that may still appear not completely sensible (although there
has been a lot of progress since Feynman), but which is much closer to the impredictable
world that we really and freely live in. Besides, it is now known that the quantum pos-
tulates result from a set of axioms that, so as to say, correspond to the way we think the
world should be (causality, state distinguishability, etc.)[33, 62], which, in Scott Aaron-
son’s words, is by and large a generalized theory of probability allowing for non-positive
distributions[1].

Even the dynamical content of Quantum Mechanics, albeit known not to be ultimately
accurate5, can be guessed from a careful analysis of experimental data (in [95] it is discussed
how the rates of decay between different levels in the hydrogen spectrum led to a matricial
theory ruled by the Heisenberg equation), so, as we see, there is no point in stressing how
strange or elusive Quantum Mechanics is.

This said, let us present some of Quantum Mechanics without going deep into the inter-
pretative details.

Here, the state of a particle is described by a L2 function, i.e., a function Ψ of the
positions x such that |Ψ|2 is integrable and stands for the distribution of probability of
finding this particle in the different regions of the space6. Since the probability of finding
the particle somewhere is 1, then

∫
|Ψ(x)|2 dx = 1. We cannot, however, drop Ψ down and

rely only on |Ψ|2, for the distribution of probability of measuring the particle within a certain
range of momenta is given from the Fourier transform Ψ̂, through the same procedure of
taking its square module |Ψ̂|2 and integrating it with respect to the momenta ξ.

Naturally, this implies that the particle cannot be found exactly on a point (x, ξ), as
more precision in a position measurement carries a greater variance in the momenta one
and vice-versa. This is called the uncertainty principle and is completely analogous – at
least mathematically – to the statement in Signal Analysis (engineering stuff) that says that
the shorter a pulse in time, the broader the range of frequencies that must be superposed to
generate it. This fact undermines any hope to study the trajectory of a particle in the phase
space, which was the core of Classical Mechanics. Trajectory, in the quantum framework,
makes just no sense.

In spite of that, nowadays the classical theories are presented to us as the “intuitive” ones, in opposition to
the mysterious quantum world of EPR paradox (which, by the way, Information Theory makes sense of[3]).
Besides, Classical Mechanics radical determinism implied that the future must had been already written, for
the state of the universe in a precise instant would be completely defined and, as we said, from one point in the
phase space departs only a unique trajectory.

It should be highly striking that, in the rational XIXth century, clairvoyance was only forbidden by shortage
of technical resources: too much data to analyse if one wants to predict his own future. Of course we could lift
the tacit assumption that our potentials are smooth and so the trajectories are uniquely defined, but this implies
either that Classical Mechanics is not a theory, since it would give no useful answers, or that it needs some
selection principles or probabilistic add-ons so we could know how different trajectories are chosen in case of
non-unicity. Yet, is it not the probabilistic features of Quantum Mechanics and its exclusion principle two of its
aspects of more outspoken strangeness?

For more on this topic, see Chapter 3, where we analyse the possibility of inducing selection principles in
Classical Mechanics from the quantum theory.

5Hence the many field theories that have been proposed since the very beginning of Quantum Mechanics,
when Schrödinger discarded the Klein-Gordon equation he had first obtained for it described a completely
wrong fine structure for the hydrogen’s spectrum (which is understandable, since Klein-Godon only applies for
spinless particles and the hydrigen’s electron has half-integer spin)[53].

6In [28] Ψ is a state of knowledge about the particle rather than an attribute of the particle itself, in a
somewhat Bayesian approach.
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The way the theory predicts the possible outputs for measuring some physical quan-
tity of a particle is through a special class of operators, called self-adjoint, that act on the
functions Ψ. So, if to some classical quantity Q (the angular momentum for instance) we
have associated the operator Q̂, then the average 〈Q̂〉 of the values we can get in measuring
particles in the state Ψ is given by: 〈

Q̂
〉

=
〈
Q̂Ψ ,Ψ

〉
,

where the notation 〈Ψ1 ,Ψ2〉 is simply a shortcut for the inner product
∫

Ψ1(x)Ψ2(x)dx.
What about the precise values we can get? Well, this is a bit more delicate; we would

need to talk about the spectrum of Q̂ and its spectral decomposition7. It is from the average
〈Q̂〉 that we will recover the classical measurement for Q on the phase space in the semi-
classical limit, thus it is with these averages that we will work in this thesis. Note, however,
that every time that we perform an actual measurement we change radically the state of the
particle (or of our knowledge about it, as in [28]), so unlike in the classical theory, here
the interaction between the observed particle and the observer is crucial for the system’s
evolution[36, 50, 109].

Furthermore, a particle of mass m = 1 initially in a state Ψ0, if remaining not observed,
evolves under a potential V to a state Ψt which is solution to the Schrödinger equation:

i~∂tΨt(x) = −~
2

2
∆Ψt(x) + V (x)Ψt(x),

where ∆ is the Laplacian operator and ~ is the Planck’s constant. We could have written
i~∂tΨt(x) = ĤΨt(x), where the operator

Ĥ = −~
2

2
∆Ψt(x) + V (x),

called Hamiltonian, is closely related to the classical Hamiltonian function introduced above.

In short, the quantum programme is: take an initial state, evolve it inside the Schrödinger
equation, measure it using the inner product and destroying the state you are measuring. Let
us compare the quantum and the classical theories:

Classical Mechanics Quantum Mechanics

Description
phase space Hilbert space (L2)
deterministic probabilistic

Dynamics
trajectories uncertainty principle

Hamilton’s equations Schrödinger’s equation

Measurement
composition with trajectories inner product
preserves the measured state destroys the measured state

It is widely accepted that the classical should follow from the quantum in the limit where
the Planck’s constant ~ tends to zero. The uncertainty principle, for example, establishes a
relation between the variances of measurements of position and momentum which is mini-
mized by a factor ~, so, if it goes to 0, we could wishfully speak of states precisely localized
at a point (x, ξ) of the phase space.

7See [60] for an introductory course on Quantum Mechanics and [39, 100] for more complete texts. For a
mathematical formalization of the concepts treated in these references, see [88].
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There are other heuristic reasons to believe that the classical limit emerges with ~ tend-
ing to 0: in the introduction of our Master’s degree monograph[29], we repeated an argu-
ment saying that this limit would imply a recover of a classical trajectory-like theory from
a quantum undullatory one according to the scheme of the opto-mechanics approximation8,
but this reasoning could not be made rigorous since not all the possible solutions of the
Schrödinger equation can be written under the necessary Ansatz. Several other methods
for recovering the classical theory were proposed, always taking (not very careful) limits
~ −→ 0, as did Bohr9 and De Broglie10.

The first method at least teaches us something about Optics.
Anyway, the heuristics is convincing and we will consider both the Hamiltonian oper-

ator and the quantum states as parametrized by the Planck’s constant, so the Schrödinger
equation reads i~∂tΨ~t (x) = Ĥ~Ψ~t (x), i.e., a partial differential equation with a parameter
to be taken small.

Now, the first thing to do is to look for a function that could join the information about
the distributions in x and in ξ contained respectively in Ψ~ and Ψ̂~. This is the ~-Wigner
transform:

W ~Ψ~t (x, ξ) =
1

(2π~)d

∫
Rd
e
i
~ ξ�yΨ~t

(
x− y

2

)
Ψ~t

(
x+

y

2

)
dy.

This transform, although not itself a distribution of probability over the phase space (for
it is not necessarily positive), is already a function of x and ξ, so we are back from the
Hilbert to the phase space. Moreover, its marginal integrals are indeed probability distribu-
tions, those we wanted to get:

∫
W ~Ψ~t (x, ξ)dξ =

∣∣∣Ψ~t (x)
∣∣∣2 and

∫
W ~Ψ~t (x, ξ)dx =

1

εd

∣∣∣∣Ψ̂~t (ξε
)∣∣∣∣2 .

Moreover, the Wigner transforms obey to some equations that are similar up to an error
of order ε to those satisfied by the classical continuous distributions of mass, like the equa-
tion of continuity in phase and in position spaces and the Liouville equation[75] (which is
just the form that Hamilton’s equations assume for functions of x and ξ).

As a first remark, the Wigner transforms may already be used as a vehicle for mov-
ing from quantum to classical, upon to a proper definition of convergence when ~ −→
0. This could be the standard limit of some sequence extracted from integrals such as∫
W ~Ψ~t (x, ξ)Q(x, ξ)dxdξ, where Q is the ancient classical observable over the phase

space. This is a sensible notion of limit, since if W ~Ψ~t were a classical distribution of
mass, then these integrals would give the correspondent average measurements of the quan-
tity Q.

8The principle that says – and which is mathematically verified – that light waves with sufficiently small
wavelengths with respect to the distances they travel and the size of the objects they interact with (reflecting,
refracting, etc.) can be considered as light rays following the trajectories one would expect a classical particle
to do.

9The gap between two possible values for the energy of an electron in a linked state is proportional to ~,
thus as classically its energies would be expected to form a continuous range, one would need have ~ tending
to 0 in order to recover the classical theory[40].

10The matter has oscillatory properties and the wavelengths of macroscopic matter (which are proportional
to ~) are very small, since it is highly localized in space[40].
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More precisely, we will say that W ~Ψ~t converges to µt as ~ tends to 0 if there is some
sequence ~n going to zero such that for any (reasonable) Q on the phase space we have11∫

W ~nΨ~nt (x, ξ)Q(x, ξ)dxdξ −→
n→∞

∫
Q(x, ξ)dµt(x, ξ),

and this time µt is a true positive distribution of probability on Oxξ, called a Wigner mea-
sure12 for the concentration of the family

(
Ψ~t
)
ε>0

. As expected, µt satisfies the same equa-
tions as distributions of mass, like continuity in space, in phase space and Liouville[75].

A second remark is that these distributions of mass are much better understood under
the formalism of Statistical Mechanics than of mechanics of continuous media (because
it is strange to talk about different pieces of mass occupying the same place in space, the
same x, but having different momenta ξ). The limits µt offer a much richer picture than the
usual one-particle description presented in the beginning of this section, what is however a
particular case of semiclassical concentration, where the quantum states Ψ~t are such that
the corresponding µt reduces to a Dirac mass on a specific point (x, ξ).

Colloquially, to say that µt satisfies a Liouville equation means that it is transported,
carried by the classical Hamiltonian flow over the phase space, so if we have a measure µ0

initially concentrated to the point (x0, ξ0), it means that µt will be at the point (x(t), ξ(t)),
following the unique trajectory given by Hamilton’s equations that passes by (x0, ξ0) at
t = 0. This is the particular case of concentration where one can fairly think of µt as a
particle moving as it is predicted in Classical Mechanics.

In Chapter 2 we will review these facts with rigorous technical concerns. Then, in
Section 3.1 we will consider a case where the classical flow is ill-defined, this is to say,
where thanks to irregularities in the potential the trajectories may split on some points, even
though the quantum solutions to the Schrödinger equation remain unique. There, it is going
to be important to know with precision under which conditions the affirmations stated in the
paragraphs above do hold, and in which mathematical sense.

As a last comment, for the quantum operators Q̂~ whose expressions are explicitly
known, such as the Hamiltonian Ĥ~, the position x̂~ = x, the momentum ξ̂~ = −~∇
and its derivates, a short calculation shows that:〈

Q̂~Ψ~t ,Ψ
~
t

〉
=

∫
W ~Ψ~t (x, ξ)Q(x, ξ)dxdξ,

where Q is the classical quantity that corresponds to Q̂~. From this identity we can try to
define quantum operators reversely from a classical observable, which leads, after another
short calculation, to the Weyl quantization formula:

Q̂~Ψ(x) =
1

(2π~)d

∫
R2d

e
i
~ ξ�(x−y)Q

(
x+ y

2
, ξ

)
Ψ(y)dydξ,

providing us with (essentially) self-adjoint operators[38] on the L2 functions Ψ whenever
Q is a real function.

11This notion of limit, where we are rather interested in the limits ofW ~Ψ~
t integrated against some function

instead of the limits of W ~Ψ~
t itself (uniform or puntcual), is called weak convergence, and it is the more

adequate regarding probability distributions, since we are a lot more worried about the averages and variances
they give than about what happens to them alone.

12It may of course not be necessarily unique, for its derivation depends on the particular sequence ~we chose.
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The objects resulting from this procedure are called ~-pseudodifferential operators and
can be considered as a generalization of the common differential operators (which are the
same thing as defined above, but with Q constrained to be a polynomial in ξ)[29]. They
are a central tool in Semiclassical Analysis, which is why in the next section we start our
formal study by reviewing their most relevant properties.



Chapter 2

Semiclassical Analysis

2.1 Symbolic calculus

Let us consider the ε-pseudodifferential operators opε (a) ∈ L
(
L2(Rd)

)
of symbols

a ∈ C∞0
(
R2d
)

given by the formula:

(2.1.1) opε (a) Ψ (x) =
1

(2πε)
d

∫
R2d

e
i
ε ξ�(x−y)a

(
x+ y

2
, ξ

)
Ψ (y) dξdy for Ψ ∈ L2(Rd),

which provides self-adjoint operators for real-valued symbols[38]. Of central importance
is the fact that they are uniformly bounded in L

(
L2(Rd)

)
with respect to ε ([9, 38]): there

exist constants K, K̃ > 0 such that

(2.1.2) ‖opε(a)‖L(L2(Rd)) 6 K sup
α∈Nd0
|α|6d+1

sup
ξ∈Rd

∫
Rd
|∂αx a(x, ξ)| dx,

or, else,

(2.1.3) ‖opε(a)‖L(L2(Rd)) 6 K̃ sup
α∈Nd0
|α|6d+1

sup
x∈Rd

∫
Rd

∣∣∂αξ a(x, ξ)
∣∣ dξ.

Remark 2.1.1. Inequalities (2.1.2) and (2.1.3) give upper bounds for the Schur estimate for
the norm of opε(a). Besides, these formulæ remain valid when one uses different scales
of ε in different variables, like for an operator opεα,εβ (a) = op1(a(x, εαξ′, εβξ′′)), with
ξ = (ξ′, ξ′′) and α, β > 0.

Let be a, b ∈ C∞0 (R2d). From equation (2.1.1) it is clear that, for any λ ∈ C, one has

opε (a+ λb) = opε(a) + λopε(b);

besides, noting { , } the usual Poisson bracket:

(2.1.4) opε ({a , b}) =
i

ε
[ opε(a) , opε(b) ] + εRε,

with

‖Rε‖L(L2(Rd)) 6 sup
σ∈Nd0
|σ|6d+1

sup
α,β∈Nd0
|α|+|β|=2

sup
x∈Rd

∥∥∥∂αx ∂β+σ
ξ a(x, ·)

∥∥∥
L1(Rd)

∥∥∥∂βx∂α+σ
ξ b(x, ·)

∥∥∥
L1(Rd)

.

23
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Remark 2.1.2. When working with smooth and Abelian symbols, one can have a remainder
of order ε2 in (2.1.4). In this thesis, however, we will deal with potentials who fail to be
differentiable and whose second derivatives will be unbounded near some singular points,
making (2.1.4) and its corresponding error Rε a suitable formula, even if not the sharpest
one.

Nonetheless, formula (2.1.1) can be used for more general symbols, although we may
lose boundedness, good properties for symbolic calculation, and be forced to restrict their
domains. In particular, for V satisfying the Kato-Rellich conditions, the operator

(2.1.5) Ĥε = opε

(
ξ2

2
+ V (x)

)
defined with domain H2(Rd) is unbounded, although still self-adjoint.

2.2 Wigner transforms and Wigner measures

2.2.1 Establishing definitions

Now, consider a family (Ψε)ε>0 bounded in L∞
(
R, L2(Rd)

)
and define the Wigner

transform W εΨε ∈ L∞
(
R, L2(R2d)

)
associated to it:

(2.2.1) W εΨε
t (x, ξ) =

1

(2πε)d

∫
Rd
e
i
ε
y�ξ Ψε

t

(
x− y

2

)
Ψε
t

(
x+

y

2

)
dy,

which have interesting properties ([52, 75]), such as∫
Rd
W εΨε

t (x, ξ)dξ = |Ψε
t (x)|2 and

∫
Rd
W εΨε

t (x, ξ)dx =
1

εd

∣∣∣∣Ψ̂ε
t

(
ξ

ε

)∣∣∣∣2 ,
and the fact that they relate to the pseudodifferential operators by means of the formula:

(2.2.2) 〈 opε (a) Ψε
t , Ψε

t 〉L2(Rd) = 〈W εΨε
t , a 〉R2d .

When ε −→ 0, the Wigner transform converges to a finite and positive measure µ on
R× R2d ([55, 58, 75]) in the sense that, given a sequence (εn)n∈N converging to 0, we can
extract a subsequence1 (εnk)k∈N such that, for all a ∈ C∞0 (Rt × R2d

x,ξ),

(2.2.3) 〈W εnkΨεnk , a 〉R×R2d −→
k→∞

∫
R×R2d

a dµ.

This is the semiclassical or Wigner measure related to the concentration of the sequence
(Ψεnk )k∈N.

Again, more regularity implies more good properties. From its very construction, one
sees that the Wigner measure is always absolutely continuous with respect to the Lebesgue
measure dt, so dµ(t, x, ξ) = µt(x, ξ)dt, where t 7−→ µt is a L∞

(
R,D′(R2d)

)
function.

Furthermore, if for instance Ψε are solutions to an equation of the form

(2.2.4) iε∂tΨ
ε
t = opε(b)Ψ

ε
t ,

1Of course µ may depend on the subsequence, this is why we refer to it as a semiclassical limit, not neces-
sarily the classical one (examples of non-unicity in [75]).
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with b smooth, compactly supported and real, then one can show by the Ascoli-Arzelà
theorem and equation (2.2.10) ahead that in this case, given T > 0, [−T, T ] 3 t 7−→ µt ∈
D′(R2d) is continuous and there exists another subsequence

(
εnk′

)
k′∈N such that, for each

t ∈ [−T, T ] and a ∈ C∞0 (R2d),

(2.2.5)
〈
W εnk′Ψ

εnk′
t , a

〉
R2d

−→
k′→∞

∫
R2d

a dµt.

Remark 2.2.1. Clearly, for any t ∈ R one can extract a subsequence εnk(t) such that
W εnk(t)Ψ

εnk(t)

t ⇀ µt; the point here is that the continuity of t 7−→ µt implies that, staying
within a compact [−T, T ], these subsequences may be chosen independently of t.

Remark 2.2.2. If Ψε are solutions to the Schrödinger equation, i.e., (2.2.4) with Ĥε defined
in (2.1.5) instead of opε(b), then the continuity of t 7−→ µt is not assured with all generality,
for the term with the commutator in (2.2.10) ahead may not be bounded. Even though,
boundedness in there may hold under additional assumptions on V , for instance if ∇2V is
bounded. As it will be clear in next section, the central point is to have formula (2.1.4) valid
with a proper bounded rest Rε.

Remark 2.2.3. The quadratic form 〈 opε (a) Ψ , Ψ 〉L2(Rd) gives in Quantum Mechanics the
average value for the observable opε(a) in a system in the quantum state Ψ, exactly as does
the integral

∫
R2d a dρ in classical Statistical Mechanics for the observable a in a system with

mass probability density ρ over the phase space. Besides, equation (2.2.5) carries:

〈 opε (a) Ψε
t , Ψε

t 〉L2(Rd) −→ε→0

∫
R2d

a dµt,

which allows us to understand the Wigner measures as mass distributions, linking the quan-
tum evolution of Ψε given by the Schrödinger equation with that of its semiclassical limits2.

Further, if µt is the semiclassical measure of Ψε
t along some subsequence εk such that

|Ψεk
t |

2 converges weakly-? (in C∞0 (Rd) for instance) towards a measure γt on Rd, then one
has:

(2.2.6)
∫
Rd
µt(·, dξ) ≤ γt,

the equality holding if and only if the sequence Ψεk
t is ε-oscillating[56, 57, 58], which

means:

(2.2.7) lim sup
εk→0

∫
‖ξ‖> R

εk

∣∣∣Ψ̂εk
t (ξ)

∣∣∣2 dξ −→
R→∞

0.

This also implies that µt is a finite measure of total mass bounded by supk∈N ‖Ψ
εk
t ‖

2
L2(Rd).

2From a non-statistical point of view, the classical limit properly speaking would be a particular subsequence
(εnk ) that gives a Dirac mass on a certain point of the phase space, corresponding to a singular particle of mass
1 (classically localized on that point) whose quantum evolution is described by (3.1.2). Although it is always
possible to find a sequence of quantum states concentrating to a Dirac mass[55], this is not always the case, since
one may have µ continuously spread over the phase space. In any way, the quantum-classical correspondence
is better understood statistically ([75, 104]), in which frame the situation with the Dirac mass (or a sum of
punctual Dirac deltas with total mass 1) should be seen as a special case of statistical distribution.
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2.2.2 Transport phenomena

Taking test functions Ξ ∈ C∞0 (R) and a ∈ C∞0 (R2d) and supposing Ψε solution of
(2.2.4), the semiclassical measure µ linked to the family (Ψε)ε>0 may be given as

〈µ (t, x, ξ) ,Ξ(t) a (x, ξ) 〉R×R2d = sc lim

∫
R

Ξ(t) 〈opε (a) Ψε
t ,Ψ

ε
t 〉 dt(2.2.8)

(here sc lim stands for semiclassical limit, abstracting which particular subsequence (εnk)k∈N
is to be taken).

From this expression we can evaluate the distribution ∂tµ:

〈 ∂tµ (t, x, ξ) ,Ξ(t) a (x, ξ) 〉R×R2d = −
∫
R×R2d

Ξ′(t) a (x, ξ) dµ (t, x, ξ)

= sc lim

∫
R

Ξ(t)
d

dt
〈opε (a) Ψε

t ,Ψ
ε
t 〉 dt;(2.2.9)

moreover, in view of (2.2.4) and (2.1.4), we have

d

dt
〈opε (a) Ψε

t ,Ψ
ε
t 〉 =

〈
i

ε
[opε(b), opε (a)] Ψε

t ,Ψ
ε
t

〉
= opε ({b , a}) +O(ε).(2.2.10)

Then, putting together (2.2.9) and (2.2.10):

〈 ∂tµ (t, x, ξ) ,Ξ(t) a (x, ξ) 〉R×R2d = 〈µ (t, x, ξ) ,Ξ(t) {b (x, ξ) , a(x, ξ)} 〉R×R2d

for every test function Ξ a ∈ C∞0 (R×Rd), which ultimately induces a differential equation
for µ in the sense of the distributions:

(2.2.11) ∂tµ(t, x, ξ) + {b (t, x, ξ) , µ(x, ξ)} = 0 in D′(R× R2d),

or equivalently:

(2.2.12)
{
∂tµt(x, ξ) + {b (x, ξ) , µt(x, ξ)} = 0
µt=0(x, ξ) = µ0(x, ξ)

in D′(R2d),

where µ0 is the corresponding semiclassical limit of W εΨε
0.

These equations may be interpreted as a transport phenomenon that the measure µ un-
dergoes along the flow induced by the vector field (∂ξb(x, ξ),−∂xb(x, ξ)),

(2.2.13)
{
ẋ(t) = ∂ξb (x(t), ξ(t))

ξ̇(t) = −∂xb (x(t), ξ(t)) ,

in the sense to be made precise below.

Proposition 2.2.4. Let µ satisfy equation (2.2.12) with b ∈ C∞0 (R2d) real. Let be Φ the
flow with trajectories given by (2.2.13). Then Φ is unique and, for any a ∈ C∞0 (R2d), one
has

〈µ0 , a 〉R2d = 〈µt , a ◦ Φ−t 〉R2d .

Proof. We only need to verify that d
dt

∣∣
t=τ

∫
a◦Φ−t dµt = 0 for any τ . If τ = 0, this comes

straightforwardly from (2.2.12) and the vector field inducing the flow in (2.2.13). For τ 6= 0,
write a ◦ Φ−t = a ◦ Φ−τ ◦ Φ−t+τ and do the same calculations for the variable t̃ = t − τ
at 0 and the test function ã = a ◦ Φ−τ . The unicity of Φ follows from an application of the
Picard-Lindelöf theorem.
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Remark 2.2.5. Proposition 2.2.4 allows us to solve the differential system (2.2.12) with the
pull-back µt = Φ∗tµ0, where one has 〈Φ∗tγ , a〉R2d = 〈γ , a ◦ Φt〉R2d for any measure γ on
R2d, not being necessary to calculate Ψε

t using equation (2.2.4). Numerically, this can save
a tremendous amount of computation in studying the concentration of Ψε over the time.

In order to have equations (2.2.11), (2.2.12) and Proposition 2.2.4 still valid for the
Hamiltonian operator Ĥε, it is necessary to impose further conditions on the potential V so
the standard symbolic calculus holds, as we have already said in Remark 2.2.2. If this is
not the case, we can still try to re-derive “by hand” adapted formulæ for a correct symbolic
calculus with the problematic potential (which indeed we will do progressively in Sections
4.4.1, 4.4.2 and 4.4.3 in Chapter 4).

Ideally, we would have basically to analyse the commutator i
ε

[
Ĥε , opε (a)

]
and show

that it is approximatively in L2(Rd) the pseudodifferential operator

(2.2.14)
i

ε

[
Ĥε , opε (a)

]
= opε (D(x, ξ, ∂x, ∂ξ)a) +O(ε),

where D(x, ξ, ∂x, ∂ξ) would be a partial differential operator or likewise to which we could
seek an explicit form.

Having V ∈ C2(Rd) allows us to obtain D(x, ξ, ∂x, ∂x) = ξ � ∂x −∇V (x) � ∂ξ, which
gives the Liouville equation for the semiclassical measure:

(2.2.15) ∂tµ (t, x, ξ) + ξ � ∂xµ (t, x, ξ)−∇V (x) � ∂ξµ (t, x, ξ) = 0 in D′(R× R2d),

or, in other words:

(2.2.16)
{
∂tµt (x, ξ) + ξ � ∂xµt (x, ξ)−∇V (x) � ∂ξµt (x, ξ) = 0
µt=0(x, ξ) = µ0(x, ξ)

in D′(R2d).

Of course, for such a regular flow the Hamiltonian flow is well-posed, and Proposition 2.2.4
accomplishes the passage from Quantum to Classical Mechanics

2.2.3 Invariance phenomena

Let us now investigate how the invariance of a semiclassical measure through some
flows may help localizing it, which will be particularly useful in Part III.

We will say that a flow Φ over R2d is dispersive over K ⊂ R2d if it is possible to
find a sequence (sn)n∈N0 tending to ∞ with s0 = 0 such that Φsn(K) ∩ Φsm(K) = ∅
whenever n 6= m. Of course, the flow will be dispersive all over the region ΦΥ(K), with
Υ = [0,∞) ⊂ R.

Lemma 2.2.6. Let µ be a finite and positive measure on R2d that is invariant by the flow
Φ on K ⊂ R2d, i.e., such that µ (Φt(K)) = µ(K) for any t ∈ R. Suppose also that Φ is
dispersive over K. Then µ(K) = 0.

Proof. For any N ∈ N, invariance by Φ yelds:

Nµ(K) = µ

(
N⋃
n=1

Φsn(K)

)
6 µ(R2d) <∞,

which cannot hold unless µ(K) = 0.



28 CHAPTER 2. SEMICLASSICAL ANALYSIS

Proposition 2.2.7. Let be b ∈ C∞0 (R2d) real and call Φ the phase space flow associated to
it by system (2.2.13). If a measure µ on R2d satisfies

(2.2.17) {b (x, ξ) , µ(x, ξ)} = 0,

then µ is invariant by Φ.

Proof. Show that, for any test function a ∈ C∞0 (R2d), d
dt

∣∣
t=0

∫
a ◦ Φt dµ = 0 as in the

proof of Proposition 2.2.4.

Corollary 2.2.8. In the same conditions of the proposition, suppose that µ is finite and
positive, and that Φ is dispersive over some K ⊂ R2d. Then, for Υ = [0,∞), one has
µ (ΦΥ(K)) = 0.

With these results in hand, let us suppose that the family (Ψε)ε>0 solves the equation

(2.2.18) iε2∂tΨ
ε
t = opε(b)Ψ

ε
t ,

which can be interpreted as a version of (2.2.4) for times t ∼ t
ε asymptotically great. A

dynamical equation for the Wigner measures of the family Ψε can be obtained as in the
previous section, by analysing the commutator in

d

dt
〈opε (a) Ψε

t ,Ψ
ε
t 〉 =

〈
i

ε2
[opε(b), opε (a)] Ψε

t ,Ψ
ε
t

〉
=

1

ε
opε ({b , a}) +O(1),(2.2.19)

and then multiplying both sides of (2.2.10) by ε and taking the semiclassical limit as in
(2.2.9):

{b (x, ξ) , µ(t, x, ξ)} = 0 in D′(R× R2d),

or equivalently, for every t ∈ R:

{b (x, ξ) , µt(x, ξ)} = 0 in D′(R2d),

which means that the semiclassical measure of Ψε does not charge the regions in the phase
space where the flow is dispersive.

Remark 2.2.9. Observe that in this case continuity for t 7−→ µt is not assured, as the
derivative d

dt 〈opε (a) Ψε
t ,Ψ

ε
t 〉 is not necessarily bounded, contrarily to what happened in

Remark 2.2.2.

Since µ gives the mass concentration of the solutions of (2.2.18), Proposition 2.2.7 and
its corollary justify a classification of the (pseudo)-differential equations of type (2.2.18)3

as dispersive or non-dispersive in certain regions of the phase space depending on the flow’s
character thereon.

Besides, µ can be used to study the mass concentration of the solutions of the standard
equation (2.2.4) for long times at the scale 1

ε , since it can be recovered from (2.2.18) after
a change of variable of the sort. Ultimately, this says that if Ψε are solutions to (2.2.4)
with some b and µ satisfies (2.2.17) for some b̃, then for sufficient large times no mass is
expected to be left in the regions where the flow associated to b̃ is dispersive, and this should
be explicitly verified by a transport phenomenon along the flow generated by b, that should
continuously take away all the mass initially spread over these regions.

3More precisely, for equations of type iεα∂tΨε
t = opεβ (b)Ψε

t , with α > β > 0 strictly.
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2.3 Two-microlocal analysis

Now, let us define a new symbol class S(p) composed by symbols a ∈ C∞(R2d+p)
such that

• For each ρ ∈ Rp, (x, ξ) 7−→ a(x, ξ, ρ) is compactly supported on R2d
x,ξ.

• There exists some R0 > 0 and a function a∞ ∈ C∞(R2d × Sp−1) such that, for
‖ρ‖ > R0, one has a(x, ξ, ρ) = a∞

(
x, ξ, ρ

‖ρ‖

)
.

These symbols will be quantized as

op]ε(a(x, ξ, ρ)) = opε

(
a

(
x, ξ,

x′

ε

))
;

observe that the right-hand term above is just the banal quantization of a ε-dependent R2d

function as in (2.1.1).

Proposition 2.3.1. There exists a measure ν∞ on R × R2d−p × Sp−1 and a trace class
operator valued measure M on R × R2(d−p), both positive, such that, for a ∈ S(p) and
Ξ ∈ C∞0 (R),

sc lim

∫
R

Ξ(t)
〈

op]ε(a)Ψε
t , Ψε

t

〉
dt =

〈
µ(t, x, ξ)11{x′ 6=0} ,Ξ(t) a∞

(
x, ξ,

x′

‖x′‖

)〉
R×R2d

+ 〈 δ(x′)⊗ ν∞(t, x′′, ξ, ω) ,Ξ(t) a∞ (x, ξ, ω) 〉R×R2d×Sp+1

+ tr 〈M(t, x′′, ξ′′) , Ξ(t) aw (0, x′′, ∂y, ξ
′′, y) 〉R×R2(d−p) ,(2.3.1)

where aw(0, x′′, ∂y, ξ
′′, y) is the Weyl quantization of the symbol (y, ζ) 7−→ a(0, x′′, ζ, ξ′′, y)

with ε = 1 and µ is the usual Wigner measure related to Ψε.
Furthermore, for a smooth compactly supported function (x′′, ξ′′) 7−→ T(x′′, ξ′′) taking

values on the set of compact operators on Rp, one has〈
M(t, x′′, ξ′′) , Ξ(t)T(x′′, ξ′′)

〉
R×R2(d−p) = sc lim

∫
R×R2(d−p)

Ξ(t)T(x′′, ξ′′)U
ε
(t, x′′, ξ′′)dx

′′dξ′′dt,

where U ε(t, x′′, ξ′′) is the trace class operator with kernel

(2.3.2) kUε(t, x′′, ξ′′)(y
′, x′) =

∫
Rd−p

e
i
ε ξ
′′�y′′

(2πε)
d−p Ψε

t

(
εy′, x′′ − y′′

2

)
Ψε
t

(
εx′, x′′ +

y′′

2

)
dy′′.

Finally, the terms in (2.3.1) are obtained respectively from those in the decomposition

a(x, ξ, ρ) = a(x, ξ, ρ)

(
1− χ

(
x′

δ

))
+ a(x, ξ, ρ)

(
1− χ

( ρ
R

))
χ

(
x′

δ

)
+ a(x, ξ, ρ)χ

( ρ
R

)
in the limit when ε −→ 0, then R −→ ∞, and last δ −→ 0, where χ is a cut-off function

such that 0 6 χ 6 1, χ(x′) = 1 for ‖x′‖ < 1
2 and χ(x′) = 0 for ‖x′‖ > 1.

Remark 2.3.2. If p = d, then U εt =
∣∣∣Ψ̃ε

t

〉〈
Ψ̃ε
t

∣∣∣∗ is just the adjoint of the projector over

Ψ̃ε
t (x) = ε

d
2 Ψε(εx), with kernel kU εt (x, y) = Ψ̃ε

t (y)Ψ̃ε
t (x). It follows that

tr (T U εt ) =
〈
T Ψ̃ε

t , Ψ̃ε
t

〉
.

Then, because T is compact, in the limit ε −→ 0 one has that it is simply
〈
T Ψ̃t, Ψ̃t

〉
, where

Ψt is some weak limit of Ψε
t .
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A very general treatment of this result can be found in [43]. The introduction of U ε is a
trivial addition of ours in order to enlighten the calculations to come.

Remark 2.3.3. Observe that M induces a measure m on R× R2d by means of the formula〈
δ(x′)⊗m(t, x′′, ξ, ρ) , Ξ(t) a(x, ξ, ρ)

〉
R×R2d+p

= tr
〈
M(t, x′′, ξ′′) , Ξ(t) aw

(
0, x′′, ∂y, ξ

′′, y
) 〉
R×R2(d−p) .

Above, a has no need to be in S(p); it is sufficient that it be compactly supported in all
variables.

Lemma 2.3.4. M = 0 if and only if m = 0.

Proof. That M = 0 implies m = 0, it is obvious. For the converse, it is necessary to
show that m = 0 implies tr 〈M,T 〉 = 0 for all smooth compactly supported functions
(t, x′′, ξ′′) 7−→ T(t, x′′, ξ′′) taking values in the set of compact operators, since this is the set
whose dual are the trace class operators.

Observe that it is sufficient to consider T(t, x′′, ξ′′) Hilbert-Schmidt, given that these op-
erators are dense in the set of the compact ones. So, we can consider that it has a kernel
kT(t,x′′, ξ′′) ∈ L2

(
R2p
x′,y′

)
and, defining

a(t, x, ξ, ρ) = χ(x′)Fy′→ξ′
(
kT(t, x′′, ξ′′)

(
ρ+

y′

2
, ρ− y′

2

))
with some χ ∈ C∞0 (Rp), it follows that T(t, x′′, ξ′′) = aw(t, 0, x′′, ∂y, ξ

′′, y) and we are
done.

Lemma 2.3.5. The measure m is absolutely continuous with respect to dξ′dρ.

Proof. Indeed, if a(x, ξ, ρ) − b(x, ξ, ρ) = 0 unless for a set with null Lebesgue measure
dξ′dρ, then aw(0, x′′, ∂y, ξ

′′, y) = bw(0, x′′, ∂y, ξ
′′, y) and the result follows from the defi-

nition in Remark 2.3.3.

Remark 2.3.6. In Example 11.1.3 in Chapter 11, we will prove that m can actually be
singular in all other variables, aside from the time, of course.

Lemma 2.3.7. The semiclassical measure µ decomposes as

µ(t, x, ξ) = µ(t, x, ξ)11{x′ 6=0} + δ(x′)⊗
∫
Sp−1

ν∞(t, x′′, ξ, dω)

+ δ(x′)⊗
(∫

Rp
m(ξ′,ρ)(t, x

′′, ξ′′) dρ

)
dξ′,(2.3.3)

where ν∞ is as in Proposition 2.3.1 and m(ξ′,ρ)(t, x
′′, ξ′′) dρ dξ′ = m(t, x′′, ξ, ρ).

Proof. If a ∈ C∞0 , define ã(x, ξ, ρ) = a(x, ξ) for all ρ ∈ Rp. Thus, ã ∈ S(p) and
opε(a) = op]ε (ã), and we can use Proposition 2.3.1.

More generally, this kind of two-scale analysis can be used to analyse the concentration
of the Wigner measures over any submanifold Λ of the phase space such that the restriction
of the symplectic form σ = dx ∧ dξ on T ∗Λ is of constant rank[41]. In this thesis, we only
need to specialise it to spaces of the form x′ = 0 in Part II and ξ′ = 0 in Part III, whose due
modifications will be presented in Section 9.4 along with a comprehensive treatment of the
geometric properties of ν∞ and M .
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Chapter 3

Presenting the problem – potentials
with conical singularities

Part II of this thesis was published independently in [30].

3.1 Statement of the problem

Classically, a particle with massm = 1 submitted to a time- and momentum-independent
smooth potential V in Rd is constrained to move following the phase space trajectory given
by the Hamilton equations

(3.1.1)
{
ẋ (t) = ξ (t)

ξ̇ (t) = −∇V (x (t)) .

Smoothness in V guarantees that the equations above have a unique solution (x(t), ξ(t))
around all initial condition (x0, ξ0) (i.e., for t sufficiently small), thus we can define the
classical Hamiltonian flow Φ by setting Φt (x0, ξ0) = (x(t), ξ(t)). Further conditions on
the regularity and growth rate of V imply more good properties, so if∇2V is bounded, one
can extend Φt(x0, ξ0) for all t ∈ R, for any (x0, ξ0) in the phase space[97].

In Quantum Mechanics, the state evolution of a similar system is described by a function
Ψε ∈ L∞

(
R, L2(Rd)

)
obeying to the Schrödinger equation with initial data

(3.1.2)
{
iε∂tΨ

ε
t (x) = − ε2

2 ∆Ψε
t (x) + V (x)Ψε

t (x)
Ψε
t=0 (x) = Ψε

0 (x) ,

where the initial L2(Rd) data satisfy ‖Ψε
0‖L2(Rd) = 1 and ε � 1 is a parameter generally

reminiscent from some rescaling procedure, but that can also be seen as the Planck’s con-
stant in a system with mass of order m ≈ 1, in which case the Wigner measures can be
viewed as the classical limits of the system’s mass distribution, as we will explain next.

If V satisfies the Kato-Rellich conditions (V continuous and V (x) . ‖x‖2), then the
Hamiltonian operator

(3.1.3) Ĥε = −ε
2

2
∆ + V

with domain in the Sobolev space H2(Rd) is essentially self-adjoint ([67],[97]) and (3.1.2)
has a unique solution for all t ∈ R, which is given by

Ψε
t = e−

i
ε
tĤε

Ψε
0.

33
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It happens that a very large class of relevant problems do not present potentials with all
such regularity. For instance: conical potentials, which are of the form

(3.1.4) V (x) = VS(x) + ‖g(x)‖F (x),

where we make the following technical assumptions:

• V and VS satisfy each one the Rellich conditions.

• F and VS are C∞(Rd) and there is some non-decreasing positive K-sub-additive1

polynomial p that bounds them and also∇F .

• g : Rd −→ Rp with 1 6 p 6 d,∇g is full rank and Λ = {g(x) = 0} 6= ∅.

As we shall see, these potentials raise interesting mathematical questions.
Similar problems have been treated in works like [8], [17] and [18] in a probabilistic

way. In other works authors have been analysing the deterministic behaviour of the Wigner
measures under the conical potentials defined above, more noticeably in [45], where they
found a non-homogeneous version of (2.2.15) whose inhomogeneity is an unknown measure
supported on

Ω =
{

(x, ξ) ∈ R2d : g(x) = 0 and ∇g(x) ξ = 0
}
,

a set onto which it is not generally possible to extend the classical flow in a unique manner,
although it is possible everywhere else.

Remark 3.1.1. The set Ω corresponds exactly to the tangent bundle to Λ, since any curve γ
over Λ (i.e., such that g(γ(t)) = 0) passing on x at t = 0 must satisfy ∇g(x)γ̇(0) = 0. In
our work, however, we stay within a structure of phase space, so it will be natural to identify
Ω as the cotangent bundle T ∗Λ.

This suggests an intriguing possibility involving irregular potentials: what happens to
the Wigner measures in a system where the potential allows a complete quantum treatment,
but causes the classical flow to be ill-defined? Is there some selection principle from the
quantum-classical correspondence that could provide information enough for describing the
transport of the measure where the classical flow fails?

To fix some ideas, forget for a moment about the measures and think of a classical
particle submitted to conical potentials like V (x) = ± |x|. Naturally, the trajectories are
well-defined everywhere away from the line x = 0, and it turns out that they can be contin-
uously extended onto x = 0 in a unique manner provided that ξ 6= 0, as in Figure 3.1.1.

In the case V (x) = +|x|, the flow can be uniquely defined even over ξ = 0 by setting
it constant at the origin, as shown in Figure 3.1.1(a); more generally, in higher dimensional
cases, like for x ∈ Rd, x = (x′, x′′) with x′ ∈ Rp and V (x) = ‖x′‖, there is still room for
the particle to move inside the singular set Ω = {x′ = 0 and ξ′ = 0} and it must have some
non-ambiguous behaviour therein, induced by the unique quantum evolution of Ψε

t and their
well-defined concentration to µt. However, the dynamics in Ω is classically unknown, for
∇V makes no sense for x′ = 0, so we cannot rely on the sole Hamiltonian trajectories to
characterize the transport phenomenon that the semiclassical measure undergoes over the
singularities.

Furthermore, there are other kinds of difficulties. In the case V (x) = − |x|, even in
dimension 1 there is no unique extension for the flow all over the phase space. As we can

1This is: there is K > 1 such that p(x+ y) 6 K (p(x) + p(y)).
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(a) V (x) = |x|. At the origin the trajectory is constant. (b) V (x) = − |x|. At the origin the flow is not well-defined.

Figure 3.1.1: A glance on the classical flows for the potentials V (x) = ± |x| near the origin. The arrows
indicate their orientation.

see in Figure 3.1.1(b), when coming from the right-hand side below, there are different
alternative trajectories after reaching x = 0 with zero momentum: going back to the right
upwards, crossing to the left downwards, staying at (0 , 0), or staying there for a moment
and then resume moving to one or to the other side.

Let us treat this problem in three different steps.

3.2 First question: the dynamics

In [45], the authors proved that the Hamiltonian flow can always be continuously ex-
tended in a unique manner to Λ \Ω and that, whenever the Wigner measure does not charge
the singularities in the phase space, i.e., while µt(Ω) = 0, then µ follows these unique con-
tinuous extensions. This result is grounded on the facts that µt does not charge the set Λ\Ω
for more than a negligible time, more precisely that µt (Λ \ Ω) = 0 almost everywhere in R
with respect to dt (for a matter of completeness, we re-obtain this result in Lemma 4.5.1),
and that the measures obey to the standard Liouville equation with V away from Λ, where
the potential is regular.

We will obtain in Chapter 4 a complete description of the dynamics to which the semi-
classical measures ought to obey, including near and inside the singularities, by driving an
approach similar to that of [45], which makes an extensive use of symbolic calculus (Section
2.1) and two-microlocal measures (Section 2.3):

Theorem 3.2.1. Let Ψε be the solution to the system (3.1.2) with a conical potential of
the form (3.1.4), and denote Λ =

{
x ∈ Rd : g(x) = 0

}
. Then the correspondent Wigner

measures µ obey to the D′(R× R2d) equation:(
∂t + π

T∗xΛ
ξ � ∂x − πT∗xΛ

∇VS |Λ (x) � ∂ξ
)

11
T∗Λ µ (t, x, ξ)

+ (∂t + ξ � ∂x −∇V (x) � ∂ξ) 11
(T∗Λ)c

µ (t, x, ξ) = 0,(3.2.1)

where 11
T∗Λ is the indicatrix of T ∗Λ = Ω (and 11

(T∗Λ)c
of its complement inside R2d) and

for each x ∈ Λ, π
T∗xΛ

is the orthogonal projector over T ∗xΛ = ker∇g(x) inside Rd.
Furthermore, decomposing R2d in a neighbourhood of Λ as the bundle EΛ with fibres

EσΛ = T ∗σΛ ⊕ N∗σΛ ⊕ NσΛ (and elements (σ, ζ, η, ρ)), there exists a measure ν over
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R× ESΛ, where ESσΛ = T ∗σΛ⊕NσΛ�R+
∗

, satisfying the asymmetry condition

(3.2.2)
∫
NσΛ�R+

∗

(
∇ρVS(σ) + F (σ)t∇g(σ)ω

)
ν (t, σ, ζ, dω) = 0 in D′ (R× T ∗Λ)

and such that

11
T∗Λ µ (σ, ζ, η, ρ) = δ(ρ)⊗ δ(η)⊗

∫
NσΛ�R+

∗

ν (t, σ, ζ, dω) .

Remark 3.2.2. Observe that equation (3.2.1) is the sum of two Liouville terms, one for the
potential V outside Ω and another for VS |Λ over it. Usual transport under V is assured away
from Ω by [45], thus, if no trajectories outside Ω lead to or from it, these both terms are
shown to cancel on their own2 and the equation decouples into two independent transport
phenomena, one inside and the other outside Ω, the regularity of the insider flow being
guaranteed by the Picard-Lindelöf theorem, as VS |Ω is smooth in the topological space Ω.

Remark 3.2.3. The second part of the theorem, the asymmetry formula, will be discussed
ahead in Section 3.3 and turns out to indicate that any mass that stays on the singularity will
be in static equilibrium over it.

Remark 3.2.2 immediately gives:

Theorem 3.2.4. In the same conditions of Theorem 3.2.1, suppose that no Hamiltonian
trajectories lead into Ω. Call Φ the Hamiltonian flow defined by the trajectories induced by
V for (x, ξ) /∈ Ω and by VS |Λ for (x, ξ) ∈ Ω. Then, writing µ(t, x, ξ) = µt(x, ξ)dt, one
has µt = Φ∗tµ0 for all t ∈ R, where µ0 is the Wigner measure of the family (Ψε

0)ε>0.

More precisely, suppose that the Hamiltonian flow Φ can be extended in a unique way
everywhere in a region Γ ⊂ R2d. It is sufficient in Theorem 3.2.4 that we choose a time
interval I ⊂ R such that ΦI (supp(µ0)) ⊂ Γ to assure the transport for any t ∈ I; this
recovers the result in [45] for a particular choice where Γ∩Ω = ∅. In words, it is sufficient
that our measure transported by the flow does not hit any point where the trajectories split,
the fact that it may charge the singularities being irrelevant.

3.3 Second question: the regime change

Now, what happens if some trajectories hit Ω? First, realize that in this case there is
never uniqueness, since there are necessarily the outgoing trajectory (which is the reverse
of the incoming one) and the one whose projection on T ∗Λ evolves freely and, more im-
portantly, whose projection on N∗Λ remains static, what is always kinetically admissible
(with∇g(x)ξ = 0, the velocity normal to Λ is 0, for ker∇g(x) is actually T ∗xΛ, as informs
Theorem 3.2.1). The equation in Theorem 3.2.1 says that either a transfer of mass between
these two regimes, the insider and the outsider, and the continuation of the exterior transport
are possible to happen, but gives no more information.

The second part of the theorem, however, may solve the question. It has got a rich ge-
ometric interpretation, saying that the mass distribution on Ω has some asymmetry around

2To see this, just test µ against functions in C∞0
(
R2d \ Ω

)
and consider the local conservation of mass.
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Λ due to the “shape” F t∇g of the conical singularity, and that it is deformed by an exte-
rior normal force −∂ρVS , in such a manner that the portion of mass that remains over the
singularity will be in static equilibrium.

Indeed, the measure ν gives the mass distribution in a sphere bundle with fibres SσΛ =
NσΛ�R∗+ around the singularity, i.e., the directions ω in the exterior space from where the
solutions Ψε concentrate more or less intensively to the singular points.

If ν = 0, then of course the measure does not stay at the singularity, so it necessarily
continues under the exterior regime (regardless of whether it is unambiguously defined or
not) and we got all the information ν may give; let us then suppose ν 6= 0.

Loosely, let us also consider ν as a function of (σ, ζ) (as if it was absolutely contin-
uous with respect to dσdζ) and let us say that

∫
SσΛ ν(t, σ, ζ, dω) gives the total mass M

on the point (σ, ζ) (though it actually gives a mass density over the phase space) at the
instant t, supposed not to be 0. Naturally,

∫
SσΛ ω ν(t, σ, ζ, dω) gives the average vector of

concentration to this point, whose normalization byM we will call ~D(σ).

Remark 3.3.1. Realize that the speed the mass may have tangentially to the singular space
Λ, that we call ζ, plays no role in dictating how the quantum concentration will happen
thereon; with simple hypotheses on the family (Ψε

0)ε>0 (like ε-oscillation, see [55]), one
has
∫
µ(x, dξ) <∞, and the same for ν since ν � µ, so we could be working directly with∫

ESσΛ ν(t, σ, dζ, dω).

Well, the derivative of a potential is a force, so let us call ~F⊥(σ) = −∂ρVS(σ) the force
normal to the singular manifold Λ at the point σ. Consequently, the asymmetry formula in
Theorem 3.2.1 is imposing a simple condition on the mass concentration:

(3.3.1) F (σ)t∇g(σ) ~D(σ) = ~F⊥(σ),

which is to say that, in average, the mass should concentrate alongside the exterior normal
force ~F⊥. How strong the concentration will be there with respect to the other points, or
whether it is going to be attractive or repulsive, will depend on the shape of the conical
singularity at the different points of Λ, described (so as to say) by F t∇g.

An example is illustrated in Figure 3.3.1 below.

Figure 3.3.1: Above, we depict Λ encircled by its normal bundle in sphere SΛ (with fibres SσΛ =
NσΛ�R+

∗
). The mass concentration given by ν is represented by the more or less strongly shadowed regions,

and is directed by the normal force ~F⊥ which is spinning around Λ in the example. Here, we took F (σ) = 1
and∇g(σ) = 11.

The reason why we have said that equation (3.2.2) is a condition of equilibrium is that
the expression inside the integral is similar to what would be the total force normal to Λ,
i.e. −∂ρV , when calculated on Λ (where g = 0) and making sense of ω as some limit of
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1
‖∇g(σ)−1g(x)‖∇g(σ)−1g(x) (a vector in NσΛ) when x approaches the singularity from a
particular direction. So we are also tempted to interpret (3.2.2) as saying that the total force
normal to Λ on some mass staying on the singularity, to be given by the integral, is 0: this
mass is in static equilibrium.

Besides, in formula (3.3.1), we have
∥∥∥ ~D(σ)

∥∥∥ 6 1, since ~D(σ) is an average of norm 1

vectors in NσΛ. Consequently, we must have
∥∥F (σ)t∇g(σ)

∥∥ > ∥∥∥~F⊥(σ)
∥∥∥ not to be led to

an absurd. If this is not the case, then we must have ν = 0 in order to satisfy the asymmetry
condition trivially, which means that the Wigner measure will not stay on the singularity.
This reasoning will be made rigorous in Section 5.1, where we will prove:

Theorem 3.3.2. If for some σ ∈ Λ one has
∥∥F (σ)t∇g(σ)

∥∥
L(NσΛ)

< ‖∂ρVS(σ)‖NσΛ,
then there exists a neighbourhood Γ ⊂ Λ of σ such that ν = 0 over R × ESΓ, where
ESσΓ = T ∗σΓ⊕NσΓ�R+

∗
.

Once established that in some cases the mass is forbidden to stay over the singularity, it
is worth studying more deeply the ways it can get in and out Ω:

Theorem 3.3.3. Supposing
∥∥F (σ)t∇g(σ)

∥∥
L(NσΛ)

< ‖∂ρVS(σ)‖NσΛ, for any trajectory
(x(t), ξ(t)) leading out from or into Ω in σ ∈ Λ at t0 ∈ R, set the NσΛ vector ρ(t) =

2
(t−t0)2∇g(σ)−1g(x(t)); then, if limt→t±0

ρ(t)
‖ρ(t)‖ is well-defined, ρ(t) also has well-defined

lateral limits ρ±0 when t −→ t±0 , which are non-zero roots of

(3.3.2) ρ0 = −∂ρVS(σ)− F (σ)t∇g(σ)
∇g(σ)ρ0

‖∇g(σ)ρ0‖
.

Conversely, for any ρ+
0 and ρ−0 satisfying (3.3.2), there exists a unique continuous extension

of the classical flow which passes by σ at t0 without staying on σ and whose correspondent
limits limt−→t±0

ρ(t) exist and are equal to ρ±0 .
If (3.3.2) has no non-zero roots, then no trajectory leads in or out Ω in σ.

If ‖F (σ)t∇g(σ)‖L(NσΛ) > ‖∂ρVS(σ)‖NσΛ, then ρ(t) may converge laterally to 0 even
if 1
‖∇g(σ)ρ(t)‖∇g(σ)ρ(t) has a well-defined lateral limit that we denote 1

‖∇g(σ)ρ0‖∇g(σ)ρ0.
We will abusively call ρ0 “zero roots” of (3.3.2) and say that trajectories reach or leave Ω in
σ following the respective directions ρ±0 if limt→t±0

1
‖∇g(σ)ρ(t)‖∇g(σ)ρ(t) exists and is equal

to 1
‖∇g(σ)ρ±0 ‖

∇g(σ)ρ±0 . Sometimes it may be that an incoming trajectory only approaches

this limit asymptotically at t−0 =∞.

Theorem 3.3.4. If ‖F (σ)t∇g(σ)‖L(NσΛ) > ‖∂ρVS(σ)‖NσΛ, at least one of the following
affirmations holds:

• Equation (3.3.2) has non-zero roots ρ±0 and there are unique trajectories leaving and
arriving on Ω in σ through the directions ρ±0 ;

• Equation (3.3.2) has “zero roots”, in the sense that there are ρ0 6= 0 such that

(3.3.3) F (σ)t∇g(σ)
∇g(σ)ρ0

‖∇g(σ)ρ0‖
+ ∂ρVS(σ) = 0,

and either there is no trajectories reaching Ω in σ through ρ0, or they exist but do not
arrive onto Ω within any finite time;
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• The classical flow does not touch Ω in σ through any well-defined direction.

Remark 3.3.5. In any case, if equation (3.3.2) has no roots (“zero” or non-zero), then no
classical trajectory passes by Ω in σ ∈ Λ.

Remark 3.3.6. In [31], we will endeavour a more precise study of the link between ν and the
classical flow, generalizing the link between Theorem 3.3.2 and Theorems 3.3.3 and 3.3.4.

In Section 5.1 we will work out the proof of Theorems 3.3.2, 3.3.3 and 3.3.4 in coor-
dinates that are more suitable to understand ρ(t) as an approaching direction. Besides, we
will see in Section 5.3, by means of a number of examples, that these results allow a full
classification of the types of trajectories that may reach or stay on the singularities. In some
cases, like for d = 1 or V (x) = ±‖x‖ in Rd, they allow a full resolution of the problem
when the inequality in Theorem 3.3.2 holds, since by solving explicitly (3.3.2) one can ver-
ify that there is only a unique trajectory leading in and out the singularity without staying
thereon, and necessarily the measures will follow it and not charge Ω.

In short, so far we have seen that whenever we have a well-defined flow, we know what
the semiclassical measures do: they are transported thereby. If the flow presents trajectory
splits, they necessarily happen on Ω, where there is always the possibility of regime change
between outsider and insider flows. Then, thanks to the measure ν, we may be able to obtain
enough information to decide whether the measures stay or not on the singularity, and in
case they stay, we know that they will be carried by the flow generated by VS |Λ.

3.4 Third question: trajectory crossings

Finally, a last problem is: if a measure does not stay on Ω and continues in the exterior
flow, but even though there are different trajectories to take, can we derive from the well-
posed quantum evolution some general criterion for choosing the actual trajectories that the
measure will follow? Is there any selection principle for the classical movement of a particle
under such conical potentials?

As we will see in Section 6.2, the answer is negative. The path a Wigner measure (or
a particle) takes after its trajectory splits depends crucially on its quantum state concen-
tration, so any selection principle making appeal only to purely classical or semiclassical
information is to be dismissed.

This can be justified by:

Theorem 3.4.1. Let be V (x) = −|x| in R and µ1 and µ2 the Wigner measures associated
to the solutions of (3.1.2) with initial data

Ψε,1
0 (x) =

1

ε
1
4

Ψ1

(
x√
ε

)
and Ψε,2

0 (x) =
1

ε
1
4

Ψ2

(
x√
ε

)
e−iε

β−1x,

with 0 < β < 1
10 , Ψ1,Ψ2 ∈ C∞0 (R) and Ψ1 supported on x > 0. Then, for t 6 0,

µ1
t (x, ξ) = µ2

t (x, ξ) = δ

(
x− t2

2

)
⊗ δ (ξ + t) ;

nevertheless, for t > 0,

µ1
t (x, ξ) = δ

(
x− t2

2

)
⊗ δ (ξ − t)
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whereas

µ2
t (x, ξ) = δ

(
x+

t2

2

)
⊗ δ (ξ + t) .

In pictures, the particle µ1 follows the path in Figure 3.4.1(a), and the particle µ2 moves
as in Figure 3.4.1(b).

(a) Trajectory of µ1. (b) Trajectory of µ2.

Figure 3.4.1: Trajectories followed by two different particles, coinciding for t 6 0, but then diverging for
t > 0, which dismisses any selection principle based only on classical information about the problem.

This result will be obtained with the help of approximative solutions of (3.1.2) called
wave packets, which are L∞

(
R, L2(Rd)

)
functions generally of the form

ϕεt (x) =
1

ε
1
4

vt

(
x− x(t)√

ε

)
e
i
ε
[ξ(t)�(x−x(t))+S(t)]

(S is the classical action), to be properly introduced in Section 6.1. The standard methods
using wave packet presented in that section, however, only apply for smooth flows, and in
both cases the trajectories in Figure 3.4.1 have problems over the axis x = 0, not to speak
about the lack of regularity of V .

In the case of the returning particle, the problem will be solved by decomposing the
initial data into two pieces, for x > 0 and x < 0, and treating each one with a standard
wave packet set to follow a different parabola. We will see in Proposition 6.2.1 that the
Wigner measure initially set on the singularity will break out into two pieces µ+ and µ−

with weights given by the total mass of the initial data over x > 0 and x < 0 respectively,∫∞
0 |v0(x)|2dx and

∫ 0
−∞ |v0(x)|2dx, each piece gliding to a different side as in Figure 3.4.2.

Figure 3.4.2: Trajectories followed by the measures µ+ (right) and µ− (left). The full line indicates the path
for t > 0, whereas the dashed line indicates the past trajectories that the measures ought to have followed in
t < 0 to reach the singularity.



3.4. THIRD QUESTION: TRAJECTORY CROSSINGS 41

Yet, this does not give a full example of non-unicity as in Theorem 3.4.1, since, if we
evolve the pieces µ+ and µ− to the past, we realize that they do not come from the same
side, and this fact could indicate some kind of selection principle.

Constructing a quantum solution whose semiclassical measure behaves like in Figure
3.4.1(b) will be more difficult and will require us to consider a family of wave packets
following different trajectories with smaller and smaller initial momenta η, that in some
sense converge to the aimed path with η = 0, as illustrated in Figure 3.4.3. We will then
study the concentration of the wave packets with ε going to 0 at the same time as the
trajectories concentrate, by making η go to 0 with a suitable power of ε.

Figure 3.4.3: The trajectories (6.2.10)
for |η| = |η1| > |η2| > |η3|..., approaching the aimed one with η = 0.
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Chapter 4

The dynamics

In view of the developments in Section 2.1, from equation (2.2.10) we are left with the
analysis of the commutator

i

ε

[
Ĥε , opε (a)

]
=
i

ε

[
−ε

2

2
∆ , opε (a)

]
+
i

ε
[VS , opε (a)] +

i

ε
[ ‖g(x)‖F (x) , opε (a)] .

We will look separately into each of these terms. The first one is kinetic, the other two
dynamical. The first and the second are regular enough so one can use standard symbolic
calculus; this presents no difficulties and we will treat them explicitly in Sections 4.2 and
4.3 only for a matter of completeness.

The third term is complicate because of the conical singularities it presents, which will
require us to employ the two-microlocal analysis in Section 2.3. This strategy was followed
in [45], but here we will describe the two-microlocal measures in more details. Prior to
proceeding to this kind of analysis, however, we will need to restrict ourselves to the case
where g(x) = x′, with x = (x′, x′′), x′ ∈ Rp and 1 6 p 6 d, in other words, to the case
where the manifold Λ formed by the singularities is actually a subspace Rp.

It is in this context that we will be able to prove Proposition 4.5.6, which is a particular
version of Theorem 3.2.1 for Λ = Rp. Reducing the general case to this one is the subject
of next section.

4.1 Reducing Λ to a subspace Rd−p

For a general conical potential, thanks to ∇g(x) having maximal rank we can define a
local change of coordinates φ in neighbourhoods of Rd where

z = φ (x)(
z′

z′′

)
=

(
g(x)
f(x)

)
for some function f : Rd −→ Rd−p locally depending on g in such a manner that ∇f(x)
has maximal rank and, if x ∈ Λ, then ker∇f(x) is orthogonal to ker∇g(x)1.

1Such f may be constructed as follows: let be A an open neighbourhood of Λ; choose κ : A −→ Rd−p a
local diffeomorphism; take Ũ ⊂ Rd a cylindrical neighbourhood of Λ such that Ũ ∩ Λ ⊂ A. Pick up an open
U ⊂ Ũ , so x ∈ U is given in geodesic coordinates by x = (σ̃, η) for some σ ∈ A with coordinates σ̃ and
η ∈ NσΛ. Define f : U −→ Rd−p as f(x) = κ(σ). It follows that ∇f(x) is diffeomorphic over TσΛ and
null over NσΛ, but since TσΛ = ker∇g((σ̃, 0)) (see Remark 3.1.1), ker∇f((σ̃, 0)) ⊥ ker∇g((σ̃, 0)) and
we are done.

43
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Now, for the sake of clarity let us consider the coordinate change in tangent space in-
duced by φ:

ζ̃ = ∇φ (x) ξ(
ζ̃ ′

ζ̃ ′′

)
=

[
∇g(x)
∇f(x)

]
ξ.

Writing Rd = ker∇g(x)⊕ ker∇f(x), we have the decomposition

ξ = πg(x) ξ + πf (x) ξ,

where πg(x) and πf (x) are suitable projectors inside Rd over the kernels of ∇g(x) and
∇f(x); if x ∈ Λ, they are orthogonal. Realize that ∇f(x)|ker∇g(x) and ∇g(x)|ker∇f(x)

are invertible (due to the maximality of their ranks); let us denote their inverses simply by
∇g(x)−1 and ∇f(x)−1.

Thus one has:

(4.1.1)
∇g(x)−1∇g(x) = πf (x)
∇f(x)−1∇f(x) = πg(x)

and
∇g(x)∇g(x)−1 = 11p×p
∇f(x)∇f(x)−1 = 11d−p×d−p.

It follows that∇φ(x) can be inverted in terms of∇g(x)−1 and ∇f(x)−1; its inverse is

∇φ(x)−1 =
[
∇g(x)−1 ∇f(x)−1

]
.

Analogously, t∇g(x) and t∇f(x) are invertible as soon as their counter-domains are
restricted to (ker∇g(x))⊥ and (ker∇f(x))⊥ (in which case the transpose of the relations
in (4.1.1) hold), allowing us to write the coordinate transformation in cotangent space as:

ζ = t∇φ (x)−1 ξ(
ζ ′

ζ ′′

)
=

[
t∇g(x)−1 tπf (x)
t∇f(x)−1 tπg(x)

]
ξ.(4.1.2)

Geometrically, let be the manifold Λ =
{
x ∈ Rd : g(x) = 0

}
, parametrized locally by

the variable z′′ ∈ Rd−p. For a x ∈ Λ, the cotangent space can be described by T ∗xΛ =
ker∇g(x) (see Remark 3.1.1) and its elements are parametrized by ζ ′′. The variables z′

and ζ ′ in Rp will be associated with the normal and conormal spaces NxΛ = Rd�TxΛ and

N∗xΛ = Rd�T ∗xΛ. We will also be using variables ω = z′

‖z′‖ for z′ 6= 0, which will be

identified as elements of the normal space in sphere of Λ, SxΛ = NxΛ�R+
∗

.

Remark 4.1.1. Due to the fact that the coordinate z′ is defined equally in any local charts by
z′ = g(x), one can define functions on Rp, more specifically on NxΛ, simply by its explicit
formulation in z′; further, Λ not being empty allows us to always calculate a function at
z′ = 0. These facts are implicitly used in the calculations to come.

At this point we shall state a central result in semiclassical analysis (see for instance
Proposition 5.1 of [9] and its proof):

Proposition 4.1.2. Let be φ a diffeomorphism of Rd in the sense of manifolds, and φ̃ the
correspondent cotangent bundle transformation, φ̃(x, ξ) =

(
φ(x),t∇φ(x)−1ξ

)
. Let Tφ ∈
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L
(
L2(Rd)

)
be the operator such that Tφf =

(
Jφ ◦ φ−1

)− 1
2 f ◦ φ−1, where Jφ is the

Jacobian of φ. Then, T ∗φTφ = 11 and

〈 opε(a) Ψε
t ,Ψ

ε
t 〉 =

〈
opε(a ◦ φ̃−1)TφΨε

t , TφΨε
t

〉
+ ε sup

α,β∈Nd0
|α|+|β|=1

Nd+1

(
∂αx ∂

β
ξ a
)
,

where Nd+1(a) is the upper bound in (2.1.3).
Besides, denoting ψεt = TφΨε

t and Ṽ = V ◦ φ−1, the local expression for ψεt satisfies
the equation

(4.1.3) iε∂tψ
ε
t (x) = −ε

2

2
Tφ∆T ∗φ ψ

ε
t (x) + Ṽ (x)ψεt (x).

As a consequence, if µ̃ is the measure associated to the family (ψε)ε>0, for any symbol
a ∈ C∞0 (R2d) and Ξ ∈ C∞0 (R), one has

〈µ , Ξ a 〉R×R2d =
〈
µ̃ , Ξ a ◦ φ̃−1

〉
R×R2d

,

i.e, any result got for the new measure µ̃ can be immediately transferred to the original µ by
simply changing the coordinate system. Analogous arguments and some more work result
in a similar statement for the two-microlocal measures. NotingM(V ) the set of measures
over the locally convex space V , we get:

Corollary 4.1.3. Geometrically, the Wigner and the two-microlocal measures to be built
ahead will be µ ∈M

(
R× R2d

)
, m ∈M (R× EΛ) and ν∞ ∈M (R× SEΛ), where the

bundles EΛ and SEΛ have fibres

EσΛ = T ∗σΛ⊕N∗σΛ⊕NσΛ

and
SEσΛ = T ∗σΛ⊕N∗σΛ⊕ SσΛ.

Proof. See the proof of Corollary 9.4.3 in Chapter 9, Section 9.4, and Remark 9.4.4 in there,
where we will settle in a more comfortable framework.

Therefore, Theorem 3.2.1 will follow directly from Proposition 4.5.6 and a trivial ap-
plication of Corollary 4.1.3.
Remark 4.1.4. Since in the rest of this work the variables that we will write are going to be
dummy, we will not care about marking the differences between (x, ξ) and (z, ζ), nor about
keeping the notations ψ, µ̃ and Ṽ in contrast to Ψ, µ and V .

In short, now we can fairly relay on the study of the concentration of a family Ψε

satisfying equation (4.1.3) with a potential

V (x) = VS(x) + ‖x′‖F (x),

with x′ ∈ Rp, i.e., satisfying the Schrödinger equation with a modified Hamiltonian operator

Ĥε = −ε
2

2
Tφ∆T ∗φ + V,

so as that we become interested in the commutators

(4.1.4)
i

ε

[
Ĥε , opε (a)

]
=
i

ε

[
−ε

2

2
Tφ∆T ∗φ , opε (a)

]
+
i

ε
[VS , opε (a)] +

i

ε

[
‖x′‖F (x) , opε (a)

]
.

In next sections we will analyse separately each one of these pieces.
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4.2 The kinetic term
Let us start the computation of the first term in the right-hand side of (4.1.4) by the

following exact calculation, with arbitrary Ψ ∈ H2(Rd):

i

ε

[
−ε

2

2
∆ , opε(a)

]
Ψ(x)

=
iε

2(2πε)d

∫
R2d

[
e
i
ε ξ�(x−y)a

(
x+ y

2
, ξ

)
∆yΨ(y)−∆x

(
e
i
ε ξ�(x−y)a

(
x+ y

2
, ξ

))
Ψ(y)

]
dξdy

=
iε

2(2πε)d

∫
R2d

(∆y −∆x)

(
e
i
ε ξ�(x−y)a

(
x+ y

2
, ξ

))
Ψ(y) dξdy

=
1

(2πε)d

∫
R2d

e
i
ε ξ�(x−y)ξ � ∂xa

(
x+ y

2
, ξ

)
Ψ(y) dξdy

= opε (ξ � ∂xa(x, ξ)) Ψ(x).

Observe that ξ � ∂xa ∈ C∞0 (R2d), thus the pseudodifferential operator above can be ex-
tended to L2(Rd), where it will be uniformly bounded with respect to ε. Moreover, using
last identity,

i

ε

[
−ε

2

2
Tφ ∆T ∗φ , opε(a)

]
= Tφ

i

ε

[
−ε

2

2
∆ , T ∗φ opε(a)Tφ

]
T ∗φ

= Tφ
i

ε

[
−ε

2

2
∆ , opε

(
a ◦ φ̃

)]
T ∗φ +O (ε)

= Tφ opε

(
ξ � ∂x

(
a ◦ φ̃

))
T ∗φ +O (ε)

= opε

((
ξ � ∂x

(
a ◦ φ̃

))
◦ φ̃−1

)
+O (ε)

= opε (D(x)ξ � ∂xa) +O (ε) ,

where D(x) = ∇φ
(
φ−1(x)

)t∇φ (φ−1(x)
)

reads:

D(x) =

[
∇g
(
φ−1(x)

)
∇f

(
φ−1(x)

) ] [ t∇g (φ−1(x)
)

t∇f
(
φ−1(x)

) ]
.

The result is:∫
R

Ξ(t)

〈
i

ε

[
−ε

2

2
∆ , opε(a)

]
Ψε
t ,Ψ

ε
t

〉
dt

−→
ε→0

−〈D(x)ξ � ∂xµ(t, x, ξ) ,Ξ(t) a(x, ξ) 〉R×R2d .(4.2.1)

Remark 4.2.1. Observe that (D(x)ξ)′ = ∇g
(
φ−1(x)

)t∇φ (φ−1(x)
)
ξ and (D(x)ξ)′′ =

∇f
(
φ−1(x)

)t∇φ (φ−1(x)
)
ξ. Back to the original coordinates, this gives (D(z)ζ)′ =

∇g(x)ξ and (D(z)ζ)′′ = ∇f(x)ξ. Besides, from (4.1.2) we have ζ ′ = t∇g(x)−1 tπf (x)ξ
and ζ ′′ = t∇f(x)−1 tπg(x)ξ, which implies

∇g(x)t∇f(x)ζ ′′ = ∇g(x) tπg(x)ξ and ∇f(x)t∇g(x)ζ ′ = ∇f(x)tπf (x)ξ;

as we chose f so as to have πg(x) and πf (x) orthogonal when x ∈ Λ, we are left with
D(0, z′′)ζ = (Dg(0, z

′′)ζ ′ , Df (0, z′′)ζ ′′), where Dg(z) = ∇g
(
φ−1(z)

)t∇g (φ−1(z)
)

is
invertible for z = (0, z′′) and the same for Df (z) analogously defined.
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4.3 The dynamical term – smooth part
Consider the Taylor developments

VS(x) = VS

(
x+ y

2

)
+

1

2

∫ 1

0

∇VS
(
x+ y

2
+ s

x− y
2

)
� (x− y)ds

and

∇VS
(
x+ y

2
+ s

x− y
2

)
= ∇VS

(
x+ y

2

)
+

1

2

∫ 1

0

∇2VS

(
x+ y

2
+ s′s

x− y
2

)
� (x− y)ds′;

plugging the latter inside the former2 and subtracting the resulting formula from the devel-
opment one would obtain doing the same for VS(y) centred around x+y

2 , we get:

VS (x)− VS (y) = ∇VS
(
x+ y

2

)
� (x− y) +

1

4

∫ 1

0

∫ 1

0

s

(
∇2VS

(
x+ y

2
+ s′s

x− y
2

)
−∇2VS

(
x+ y

2
− s′sx− y

2

))
(x− y)

(2)
ds′ds.(4.3.1)

Now, consider also the fact that iε [VS , opε(a) ] has kernel

(4.3.2) k(x, y) =
i

εd+1
F−1
ξ a

(
x+ y

2
,
x− y
ε

)
(VS(x)− VS(y)) .

Since so far we are still dealing with smooth symbols, as in standard symbolic calculus
we use the formula xF−1

ξ a = iF−1
ξ (∂ξa) to exchange the factors (x− y) in (4.3.1) by fac-

tors ε∂ξa in (4.3.2). Because both∇VS and∇2VS do not grow faster than some polynomial
and a is compactly supported, it is a direct computation to get

i

ε
[VS , opε(a) ] = opε (−∇VS � ∂ξa) +O (ε) ,

where O(ε) tends to 0 in L
(
L2(Rd)

)
and opε(−∇VS � ∂ξa) is uniformly bounded with

respect to ε. This naturally gives∫
R

Ξ(t)

〈
i

ε
[VS , opε(a) ] Ψε

t ,Ψ
ε
t

〉
dt

−→
ε→0

〈∇VS(x) � ∂ξµ(t, x, ξ) ,Ξ(t) a(x, ξ) 〉R×R2d .(4.3.3)

4.4 The dynamical term – singular part
In order to analyse the commutator with ‖x′‖F in (4.1.4), we will introduce a cut-off

χ ∈ C∞0 (Rp), 0 6 χ 6 1 , χ(x′) = 0 for ‖x′‖ > 1 and χ(x′) = 1 for ‖x′‖ 6 1
2 . Let us cut

the symbol a into three parts using parameters R > 0 and δ > εR, as follows:

(4.4.1) a(x, ξ) = a(x, ξ)χ

(
x′

εR

)
+a(x, ξ)

(
1− χ

(
x′

εR

))
χ

(
x′

δ

)
+a(x, ξ)

(
1− χ

(
x′

δ

))
.

In the context of two-microlocal analysis, each of these pieces is related to a different
two-microlocal measure, and that is what we will be talking about in the next sections.

2This kind of procedure will be largely used in the following pages, but we will not repeat the calculations
textually everytime; exposing the kernels issued from the second order terms will be sufficient for our analyses.
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4.4.1 The inner part

Defining Ψ̃ε(x) = ε
p
2 Ψε(εx′, x′′), one calculates:〈

i

ε

[
‖x′‖F (x) , opε

(
a(x, ξ)χ

(
x′

εR

))]
Ψε
t ,Ψ

ε
t

〉
=

i

ε (2πε)
d

∫
R3d

e
i
ε ξ�(x−y) a

(
x+ y

2
, ξ

)
χ

(
x′ + y′

2εR

)
(‖x′‖F (x)− ‖y′‖F (y))

Ψε
t (y) Ψε

t (x) dxdξdy

=

∫
R3d

ieiξ
′�(x′−y′)e

i
ε ξ
′′�(x′′−y′′)

(2π)
d
εd−p

a

(
ε
x′ + y′

2
,
x′′ + y′′

2
, ξ′, ξ′′

)
χ

(
x′ + y′

2R

)
(‖x′‖F (εx′, x′′)− ‖y′‖F (εy′, y′′)) Ψ̃ε

t (y) Ψ̃ε
t (x) dxdξdy

=

∫
R3d

ieiξ
′�(x′−y′)e

i
ε ξ
′′�(x′′−y′′)

(2π)
d
εd−p

a

(
0,
x′′ + y′′

2
, ξ′, ξ′′

)
χ

(
x′ + y′

2R

)
F

(
0,
x′′ + y′′

2

)
(‖x′‖ − ‖y′‖) Ψ̃ε

t (y) Ψ̃ε
t (x) dxdξdy +Rε,(4.4.2)

with Rε an error of order ε in R whose analysis will be postponed.
Now, for each x′′, ξ′′ ∈ Rd−p, denote by

kAR(x′′,ξ′′) (x′, y′) =
i

(2π)
p

∫
Rp
eiξ
′�(x′−y′)a (0, x′′, ξ′, ξ′′) χ

(
x′ + y′

2R

)
(‖x′‖ − ‖y′‖)F (0, x′′) dξ′

the integral kernel of theL2(Rpy) operatorAR(x′′,ξ′′) = i [ ‖y‖F (0, x′′) , awR(0, x′′, ∂y, ξ
′′, y) ],

where awR(0, x′′, ∂y, ξ
′′, y) is the Weyl quantization of the symbol (y, ζ) 7−→ a(0, x′′, ζ, ξ′′)χ

( y
R

)
,

and, as in (2.3.2), by kU ε(t, x′′,ξ′′) the kernel of the correspondent bounded L2(Rp) opera-
tor U ε(t, x′′,ξ′′) (which is an operator-valued generalization of the Wigner transform W εΨε)
introduced in Proposition 2.3.1. Then, the object in the previous calculation reads∫

R2d

kAR(x′′,ξ′′)
(
x′, y′

)
kU ε(t, x′′,ξ′′)

(
y′, x′

)
dy′dx′dx′′dξ′′ +Rε,

which gives〈
i

ε

[
‖x′‖F (x) , opε

(
a(x, ξ)χ

(
x′

εR

))]
Ψε
t ,Ψ

ε
t

〉
= tr

∫
R2(d−p)

AR(x′′,ξ′′)U
ε
(t, x′′,ξ′′)dx

′′dξ′′+Rε.

Regarding the error:
Rε = iε

〈
(Bε + Cε) Ψ̃ε

t , Ψ̃
ε
t

〉
,

where Bε and Cε are the integral operators with the respective kernels:

bε (x, y) =
1

ε(d−p) b̃
ε

(
x+ y

2
, x′ − y′, x

′′ − y′′

ε

)
and

cε (x, y) =
1

ε(d−p) c̃
ε

(
x+ y

2
, x′ − y′, x

′ − y′

ε

)
,

where one has

b̃ε(x′, x′′, y′, y′′) =

∫ 1

0

∂x′F−1
ξ a

(
εsx′, x′′, y′, y′′

)
� x′ χ

(
x′

R

)
(∥∥∥∥x′ + y′

2

∥∥∥∥F (ε(x′ + y′

2

)
, x′′ +

εy′′

2

)
−
∥∥∥∥x′ − y′

2

∥∥∥∥F (ε(x′ − y′

2

)
, x′′ − εy′′

2

))
ds
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and

c̃ε
(
x′, x′′, y′.y′′

)
=

∫ 1

0

F−1
ξ a

(
0, x′′, y′, y′′

)
χ

(
x′

R

)
[∥∥∥∥x′ + y′

2

∥∥∥∥∇F (εs(x′ + y′

2

)
, x′′ + s

εy′′

2

)
�

(
x′ +

y′

2
,
y′′

2

)
+

∥∥∥∥x′ − y′

2

∥∥∥∥∇F (εs(x′ − y′

2

)
, x′′ − sεy

′′

2

)
�

(
x′ − y′

2
,
y′′

2

)]
ds.

Lemma 4.4.1. The operators Bε and Cε are uniformly bounded with respect to ε.

Proof. Let us prove the lemma for Bε by using the conventional Schur test and the fact that
F−1
ξ a is a rapidly decreasing function bounded by the polynomial p given in the beginning

of Section 3.1).
In fact, noting P = max‖x′‖6R p(x′, 0) and recalling the sub-additivity of p, we have

some K > 1 such that∣∣∣b̃ε(x, y)
∣∣∣ 6 11{‖x′‖6R}

(
R+

‖y′‖
2

)
K
(
P + p(0, x′′) + p(εy)

)
max
z∈Rp
‖z‖6R

∥∥∂x′F−1
ξ a(z, x′′, y)

∥∥
L(Rp)

,

which shows that b̃ε is also a Schwartz function, implying:

sup
x∈Rd

∫
Rd
|bε(x, y)| dy 6 sup

x∈Rd

1

ε(d−p)

∫
Rd

∣∣∣∣b̃ε(x+ y

2
, x′ − y′, x

′′ − y′′

ε

)∣∣∣∣ dy
= sup

x∈Rd

∫
Rd

∣∣∣∣b̃ε(x′ − y′

2
, x′′ − εy′′

2
, y′, y′′

)∣∣∣∣ dy
= sup

x∈Rd

∫
Rd

∣∣∣∣b̃ε(x′ − y′

2
, x′′ − εy′′

2
, y

)
〈y〉2d

∣∣∣∣ 〈y〉−2d dy

6 max
x,y∈Rd

∣∣∣b̃ε (x, y) 〈y〉2d
∣∣∣ ∫
Rd
〈y〉−2d dy

< ∞.

The estimate supy∈Rd
∫
Rd |b

ε(x, y)| <∞ is found by following the very same steps above,
so Schur’s lemma allows us to conclude that ‖Bε‖L(L2(Rd)) < ∞ uniformly with respect
to ε.

Regarding Cε, the proof is, mutatis mutandis, exactly as we have done for Bε and will
be omitted.

Now we only need to focus on the lasting term; from what we have seen in Section 2.3,
in the limit where ε −→ 0 and then R −→∞, it gives∫
R

Ξ(t)

〈
i

ε

[
‖x′‖F (x) , opε

(
a(x, ξ)χ

(
x′

εR

))]
Ψε
t ,Ψ

ε
t

〉
dt

−→ tr
〈
M
(
t, x′′, ξ′′

)
, i
[
‖y‖F

(
0, x′′

)
,Ξ(t) aw

(
0, x′′, ∂y, ξ

′′) ] 〉
R×R2(d−p) ,(4.4.3)

where M is the two-microlocal operator-valued measure in Proposition 2.3.1.
In Section 4.5, M will be shown to be zero; for now, let us prove:
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Lemma 4.4.2. One has got the estimate

tr
〈
M
(
t, x′′, ξ′′

)
, i
[
‖y‖F

(
0, x′′

)
,Ξ(t) aw

(
0, x′′, ∂y, ξ

′′) ] 〉
R×R2(d−p)

6 TK sup
α∈Nd0
|α|6d+1

sup
x′′∈Rd−p

∫
Rd

∥∥∂αξ ∂ξ′a(0, x′′, ξ)F (0, x′′)
∥∥
Rp dξ,(4.4.4)

where T,K > 0 are constants, Ξ ∈ C∞0 ([−T, T ]) and a ∈ C∞0 (R2d).

Proof. From a calculation similar to that we made in (4.4.2) and similar estimates, it follows
that 〈

i

ε

[
‖x′‖F (x) , opε

(
a(x, ξ)χ

(
x′

εR

))]
Ψε
t ,Ψ

ε
t

〉
=
〈
P ε Ψ̃ε

t , Ψ̃ε
t

〉
+O(ε),

where P ε is the operator with kernel

pε(x, y) =

∫
Rd

ieiξ�(x−y)

(2π)d
a

(
0,
x′′ + y′′

2
, ξ′, εξ′′

)
χ

(
x′ + y′

2R

)
F (0, x′′)

(
‖x′‖ − ‖y′‖

)
dξ

= −
∫
Rd

eiξ�(x−y)

(2π)d
x′ + y′

‖x′‖+ ‖y′‖ � ∂ξ
′a

(
0,
x′′ + y′′

2
, ξ′, εξ′′

)
χ

(
x′ + y′

2R

)
F (0, x′′)dξ

(recall: ‖x′‖ − ‖y′‖ = x′+y′

‖x′‖+‖y′‖ � (x
′ − y′)). Further, let be b̃ the kernel of the operator

op1,ε (b) = op1 (b(x, ξ′, εξ′′)), with

b(x, ξ) = −1p � ∂ξa(0, x′′, ξ)χ

(
x′

R

)
F (0, x′′),

where 1p = (1, ... , 1)⊕ (0, ... , 0) ∈ Rp × Rd−p.
Observe that |pε(x, y)| 6 |b̃(x, y)|, which causes the Schur estimate for the norm of

op1,ε (b) to be greater than that for P ε. Besides, the Schur estimate for op1,ε (b) is upper
bounded by an estimate of type (2.1.3) (see Remark 2.1.1), which must, consequently, be an
upper bound for the norm of P ε as well. This estimate is the one we stated in the lemma.

Remark 4.4.3. In [45], an estimate that turns up to be equivalent to last lemma was obtained
by noticing directly that iε [‖x′‖F (x), opε(a)] is bounded uniformly with respect to ε, which

was used in proving that iε
[
Ĥε, opε(a)

]
is itself bounded.

4.4.2 The outer part

We start by proving with standard symbolic calculus the technical result below:

Lemma 4.4.4. For δ > 0, δ > εR, one has the following estimation in L
(
L2(Rd)

)
:

i

ε

[
‖x′‖F (x) , opε

(
a(x, ξ)

(
1− χ

(
x′

δ

)))]
=
i

ε

[
‖x′‖F (x)

(
1− χ

(
x′

δ

))
, opε (a(x, ξ))

]
−opε

(
1

δ
‖x′‖F (x)χ′

(
x′

δ

)
� ∂ξ′a(x, ξ)

)
+O

(ε
δ

)
.

Proof. In view of the identities

opε

(
a(x, ξ)

(
1− χ

(
x′

δ

)))
=

(
1− χ

(
x′

δ

))
opε (a(x, ξ)) +Rlε,δ

= opε (a(x, ξ))

(
1− χ

(
x′

δ

))
+Rrε,δ,
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where Rlε,δ and Rrε,δ have integral kernels

rlε,δ(x, y) =
i

εd
Fξa

(
x+ y

2
,
x− y
ε

)(
χ

(
x′

δ

)
− χ

(
x′ + y′

2δ

))
and

rrε,δ(x, y) =
i

εd
Fξa

(
x+ y

2
,
x− y
ε

)(
χ

(
y′

δ

)
− χ

(
x′ + y′

2δ

))
,

we have
i

ε

[
‖x′‖F (x) , opε

(
a(x, ξ)

(
1− χ

(
x′

δ

)))]
=
i

ε

[
‖x′‖F (x)

(
1− χ

(
x′

δ

))
, opε (a(x, ξ))

]
+
i

ε

(
‖x′‖F (x)Rlε,δ −Rrε,δ‖x′‖F (x)

)
︸ ︷︷ ︸

Rε,δ

,

where Rε,δ has kernel

rε,δ(x, y) =
i

εd+1
Fξa

(x+ y

2
,
x− y
ε

)(
χ

(
x′

δ

)
‖x′‖F (x)− χ

(
y′

δ

)
‖y′‖F (y)− χ

(
x′ + y′

2δ

)
(
‖x′‖F (x)− ‖y′‖F (y)

))
.

Using Taylor developments for χ, this kernel can be written in the form

rε,δ(x, y) =
i

εd
Fξa

(x+ y

2
,
x− y
ε

)[ 1

2δ

(
‖x′‖F (x) + ‖y′‖F (y)

)
χ′
(
x′ + y′

2δ

)
�

(
x′ − y′

ε

)
+

ε

4δ2

∫ 1

0

∫ 1

0

s

(
χ′′
(
x′ + y′

2δ
+ s′s

x′ − y′

2δ

)
‖x′‖F (x)− χ′′

(
x′ + y′

2δ
− s′sx

′ − y′

2δ

)
‖y′‖F (y)

)
(
x′ − y′

ε

)(2)

ds′ds

]
,

and still, with developments for ‖ · ‖F ,

rε,δ(x, y) =
i

εd
Fξa

(x+ y

2
,
x− y
ε

)[1

δ

∥∥∥∥x′ + y′

2

∥∥∥∥F (x+ y

2

)
χ′
(
x′ + y′

2δ

)
�

(
x′ − y′

ε

)
+
ε

δ

(x− y
ε

)
tA(x, y)

(
x′ − y′

ε

)
+

ε

4δ2

∫ 1

0

∫ 1

0

s

(
B(x, y)

∥∥∥∥x′ + y′

2

∥∥∥∥F (x+ y

2

)
+ε
(x− y

ε

)
tC(x, y)

)(x′ − y′
ε

)(2)

ds′ds

]
,

where

A(x, y) =
1

2
χ′
(
x′ + y′

2δ

)
⊗
∑
j=1,2

∫ 1

0

(−1)j ∇ (‖ · ‖F )
(x+ y

2
+ (−1)j s′′

x− y
2

)
ds′′,

B(x, y) =
∑
j=1,2

(−1)j χ′′
(
x′ + y′

2δ
+ (−1)j s′s

x′ − y′

2δ

)
and

C(x, y) =
1

2

∑
j=1,2

∫ 1

0

χ′′
(
x′ + y′

2δ
+ (−1)j s′s

x′ − y′

2δ

)
⊗∇ (‖ · ‖F )

(x+ y

2
+ (−1)j s′′

x− y
2

)
ds′′.

Observe now that A, B and C are bounded and, furthermore, B is supported on
∥∥∥x′+y′2

∥∥∥ 6
δ + ε

2

∥∥∥x′−y′ε

∥∥∥ (given that χ′′(x′) is null for ‖x′‖ > δ). This, along with the identity

iF−1
ξ a(x, y) y′ = −F−1

ξ (∂ξ′a)(x, y), allows us to write Rε,δ as

Rε,δ = −opε

(
1

δ
‖x′‖F (x)χ′

(
x′

δ

)
� ∂ξ′a(x, ξ)

)
+ R̃ε,δ,
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where R̃ε,δ has an integral kernel such that

|r̃ε,δ(x, y)| 6 Q

εd

∣∣∣Fξa(x+ y

2
,
x− y
ε

)∣∣∣ ∣∣∣∣εδ ∥∥∥x− yε ∥∥∥2

+
ε

δ2

(
δ + ε

∥∥∥x− y
ε

∥∥∥)∥∥∥x− y
ε

∥∥∥2
∣∣∣∣

where Q > 0 is some constant big enough. The lemma will follow as one uses the estima-
tion above for the Schur test to show that ‖R̃ε,δ‖L(L2(Rd)) 6

ε
δ .

Remark 4.4.5. Replacing δ by εR and a(x, ξ) by a(x, ξ)χ
(
x′

δ

)
, Lemma 4.4.4 gives

i

ε

[
‖x′‖F (x) , opε

(
a(x, ξ)

(
1− χ

(
x′

εR

))
χ

(
x′

δ

))]
=
i

ε

[
‖x′‖F (x)

(
1− χ

(
x′

εR

))
, opε

(
a(x, ξ)χ

(
x′

δ

))]

−opε

(
1

εR
‖x′‖F (x)χ

′
(
x

εR

)
� ∂ξ′a(x, ξ)χ

(
x′

δ

))
+O

(
1

R

)
,

which is going to be remarkably useful in Section 4.4.3.

Lemma 4.4.6. For δ > 0, δ > εR, one has
i

ε

[
‖x′‖F (x)

(
1− χ

(
x′

δ

))
, opε(a(x, ξ))

]
= opε

(
−∇

(
‖x′‖F (x)

)
� ∂ξa(x, ξ)

(
1− χ

(
x′

δ

)))
+opε

(
1

δ
‖x′‖F (x)χ′

(
x′

δ

)
� ∂ξ′a(x, ξ)

)
+O (ε) +O

(ε
δ

)
in L

(
L2(Rd)

)
.

Proof. Because ‖x′‖F (x)
(

1− χ
(
x′

δ

))
is everywhere smooth, we can apply usual sym-

bolic calculus as in 4.3.1 and 4.3.3 to get

i

ε

[
‖x′‖F (x)

(
1− χ

(
x′

δ

))
, opε(a(x, ξ))

]
= opε

(
−∂x

(
‖x′‖F (x)

)
� ∂ξa(x, ξ)

(
1− χ

(
x′

δ

)))
+Rε,δ

where Rε,δ has kernel

rε,δ(x, y) =
iε

4εd

∫ 1

0

∫ 1

0

F−1
ξ a

(
x+ y

2
,
x− y
ε

)
B (x, y)

(
x− y
ε

)(2)

ds′ds,

with B the matrix

B(x, y) =
∑
j=1,2

(−1)
−1∇2

(
‖x′‖F (x)

(
1− χ

(
x′

δ

)))(
x+ y

2
+ (−1)js′s

x− y
2

)
.

From the growth properties of F , it is easy to see that there exists some K > 1 such that
‖B(x, y)‖L(Rd) 6 K (p(x) + p(y))

(
1 + 1

δ

)
and, therefore,

sup
x∈Rd

∫
Rd
|r(x, y)| dy 6 εK

(
1 +

1

δ

)
max
x,y∈Rd

∣∣∣(p(x) + p(y))F−1
ξ a(x, y) y2 〈y〉2d

∣∣∣ ∫
Rd
〈y〉−2d

dy;

the same estimation holding for supy∈Rd
∫
Rd |r(x, y)| dx, it follows by the Schur test that∥∥Rε,δ∥∥L(L2(Rd)) . ε+ ε

δ .
The rest of the proof consists on the basic derivation

∂x

(
‖x′‖F (x)

(
1− χ

(
x′

δ

)))
� ∂ξa(x, ξ) =

(
1− χ

(
x′

δ

))
∂x
(
‖x′‖F (x)

)
� ∂ξa(x, ξ)

−1

δ
‖x′‖F (x)χ′

(
x′

δ

)
� ∂ξ′a(x, ξ)

and on the linearity of the pseudodifferential operators with respect to their symbols.
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Remark 4.4.7. Analogously to Remark 4.4.5, in Section 4.4.3 we will use that

i

ε

[
‖x′‖F (x)

(
1− χ

(
x′

εR

))
, opε

(
a(x, ξ)χ

(
x′

δ

))]
= opε

(
−∇

(
‖x′‖F (x)

)
� ∂ξa(x, ξ)

(
1− χ

(
x′

εR

))
χ

(
x′

δ

))

+opε

(
1

εR
‖x′‖F (x)χ

′
(
x′

εR

)
� ∂ξ′a(x, ξ)χ

(
x′

δ

))
+O (ε) +O

(
1

R

)
.

There, however, there will be a tiny question about the limit in ε.
Combining Lemmata 4.4.4 and 4.4.6, we obtain

i

ε

[
‖x′‖F (x) , opε

(
a(x, ξ)

(
1− χ

(
x′

δ

)))]
= opε

(
−∇

(
‖x′‖F (x)

)
� ∂ξa(x, ξ)

(
1− χ

(
x′

δ

)))
+O(ε) +O

(ε
δ

)
,

which gives, in the limit where ε −→ 0 and then δ −→ 0,∫
R

Ξ(t)

〈
i

ε

[
‖x′‖F (x) , opε

(
a(x, ξ)

(
1− χ

(
x′

δ

)))]
Ψε
t ,Ψ

ε
t

〉
dt

−→
〈
∇
(
‖x′‖F (x)

)
� ∂ξµ(t, x, ξ)11{x′ 6=0} ,Ξ(t) a(x, ξ)

〉
R×R2d .(4.4.5)

4.4.3 The middle part
As seen in Remarks 4.4.5 and 4.4.7, the calculations in Section 4.4.1 lead to

i

ε

[
‖x′‖F (x) , opε

(
a(x, ξ)

(
1− χ

(
x′

εR

))
χ

(
x′

δ

))]
= opε

(
−∇

(
‖x′‖F (x)

)
� ∂ξa(x, ξ)

(
1− χ

(
x′

εR

))
χ

(
x′

δ

))
+O (ε) +O

(
1

R

)
,

which implies in the two-microlocal limit when ε −→ 0, then R −→ ∞ and finally
δ −→ 0:∫
R

Ξ(t)

〈
i

ε

[
‖x′‖F (x) , opε

(
a(x, ξ)

(
1− χ

(
x′

εR

))
χ

(
x′

δ

))]
Ψε
t ,Ψ

ε
t

〉
dt

−→
〈
δ(x′)⊗

∫
Sp−1

F (x)ω � ∂ξ′ν∞(t, x′′, ξ, dω) ,Ξ(t) a(x, ξ)

〉
R×R2d

,(4.4.6)

where ν∞ is the two-microlocal measure on sphere introduced in Proposition 2.3.1, and δ
is the usual counting measure (or Dirac mass).

4.5 Establishing the equation

From equations (2.2.9), (2.2.10) and (2.2.14), more the results in the last sections, equa-
tions (4.2.1), (4.3.3), (4.4.3), (4.4.5) and (4.4.6), we obtain the equation〈
∂tµ+D(x)ξ � ∂xµ−∇VS(x) � ∂ξµ−∇

(
‖x′‖F (x)

)
� ∂ξµ11{x′ 6=0} , a(t, x, ξ)

〉
R×R2d

=

〈
δ(x′)⊗

∫
Sp−1

F (x)ω � ∂ξ′ν∞(t, x′′, ξ, dω) , a(t, x, ξ)

〉
R×R2d

+tr
〈 [
‖y‖F (0, x′′) ,M(t, x′′, ξ′′)

]
, aw(t, 0, x′′, ∂y, ξ

′′)
〉
R×R2(d−p)(4.5.1)

for the full Wigner measure µ tested against a function a ∈ C∞0 (R × R2d). We will now
work out this expression until we prove Proposition4.5.6 ahead.
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Lemma 4.5.1. In the two-microlocal decomposition given in Lemma 2.3.7, the operator
valued measure M is zero and ν∞(t, x′′, ξ, ω) = δ(ξ′) ⊗ ν(t, x′′, ξ′′, ω) for some measure
ν on R× R2(d−p) × Sp−1. Consequently, equation (4.5.1) reads〈
δ(x′)⊗ δ(ξ′)⊗ ν(t, x′′, ξ′′, ω) ,

(
∂t +Df (x)ξ′′ � ∂x′′ −∇VS(x) � ∂ξ − F (x)ω � ∂ξ′

)
a
〉
R×R2d×Sp−1

+
〈
µ(t, x, ξ)11{x′ 6=0} , (∂t +D(x)ξ � ∂x −∇V (x) � ∂ξ) a

〉
R×R2d

= 0(4.5.2)

for all test functions a ∈ C∞0 (R× R2d).

Remark 4.5.2. The matrix Df above was defined in Remark 4.2.1 in analogy to Dg, also
defined there. In that remark we also depicted some characteristics of this matrices that help
understand the calculations ahead.

Proof. To begin with, re-write equation (4.5.1) as〈
µ(t, x, ξ)11{x′=0} , (∂t +D(x)ξ � ∂x −∇VS(x) � ∂ξ) a(t, x, ξ)

〉
+
〈
µ(t, x, ξ)11{x′ 6=0} , (∂t +D(x)ξ � ∂x −∇V (x) � ∂ξ) a(t, x, ξ)

〉
=

〈
δ(x′)⊗

∫
Sp−1

ω ν∞(t, x′′, ξ, dω) , F (x) ∂ξa(t, x, ξ)

〉
−tr

〈 [
‖y‖F (0, x′′) ,M(t, x′′, ξ′′)

]
, aw(t, 0, x′′, ∂y, ξ

′′)
〉
.

Now, recall that the term in the trace obeys to estimate (4.4.4) given in Lemma 4.4.2; be-
sides, since µ is a measure in D′(R× R2d), we have

(4.5.3) 〈µ(t, x, ξ) , a(t, x, ξ) 〉 6 max
(t,x,ξ)∈R×R2d

|a(t, x, ξ)|µ (supp(a)) ,

where µ (supp(a)) < ∞ since µ is finite and supp(a), the support of a, is compact.
Obviously the very same estimate (with µ (supp(a)) in the right-hand side!) is valid for
µ(t, x, ξ)11{x′ 6=0} and for δ(x′) ⊗

∫
Sp−1 ω ν∞(t, x′′, ξ, dω). So, for test functions of the

form aδ(t, x, ξ) = δ θ (t) a1

(
x′

δ

)
a2 (x′′) b (ξ), equation (4.5.1) gives (recalling also Re-

mark 4.2.1):〈
µ(t, x, ξ)11{x′= 0} , Dg(x)ξ′ � ∂x′a1

(
x′

δ

)
θ (t) a2

(
x′′
)
b (ξ)

〉
+

〈
µ(t, x, ξ)11{x′ 6=0} , (D(x)ξ)′ � ∂x′a1

(
x′

δ

)
θ (t) a2

(
x′′
)
b (ξ)

〉
+O(δ) = 0,

that at the limit where δ −→ 0 results in

∂x′a1(0) �
〈
µ(t, x, ξ)11{x′= 0} , Dg(0, x

′′)ξ′ θ(t) a2(x′′) b(ξ)
〉

= 0,

which means that µ(t, x, ξ)11{x′= 0} is supported onR×{ξ′ = 0}×R2d−p
x,ξ′′ , and, by positivity,

ν∞ is necessarily supported onR×{ξ′ = 0}×R2(d−p)
x′′,ξ′′ ×S

p−1 and the measure m introduced

in Remark 2.3.3 in R× {ξ′ = 0} × R2d−p
x′′,ξ′′,ρ .

Regarding ν∞, any measure supported on ξ′ = 0 can only be a Dirac mass thereon3,
whence there must be ν as stated in the Lemma. However, for m we already knew that it was

3More generally, a distribution supported on such a set can be developed as
∑
n∈N0

cnδ
(n)(ξ′), where

cn ∈ C and δ(n) is the n-th distribution derivative of the Dirac δ. As our distribution must be a positive
measure as well, the only allowed term in this development is the one with n = 0.
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absolutely continuous with respect to dξ′ (Lemma 2.3.5), so being zero almost everywhere
in ξ′ is, in other words, saying that m = 0. From Lemma 2.3.4, this implies that M = 0
and, finally, that so is the term in the trace in equation (4.5.1).

To conclude, just re-write (4.5.1) attaching all the information we have just got and
verify that it simplifies to (4.5.2).

Remark 4.5.3. As a scholium of the last proof, one has that µ is not supported on the
region of the ξ′ axis away from the origin,

{
(0, ξ′) ∈ R2p : ξ′ 6= 0

}
. This implies that

µ(t, x, ξ)11{x′ 6=0} = µ(t, x, ξ)11{(x′,ξ′) 6=(0,0)}, which is a result that [45] had already ob-
tained with a similar argument.

Lemma 4.5.4. One has the identity∇x′V (x) 11{x′ 6=0}11{ξ′=0}µ(t, x, ξ) = 0.

Proof. Recall estimate (4.5.3), which holds for µ(t, x, ξ)11{x′ 6=0} and for δ(x′)⊗ν∞(t, x′′, ξ, ω)

as well. Thus, for test functions of the form aδ(t, x, ξ) = δ θ (t) (x′)2 a (x) b1

(
ξ′

δ

)
b2 (ξ)

and proceeding in the same manner as in the proof of Lemma 4.5.1, equation (4.5.2) gives,
in the limit where δ −→ 0,

∂ξ′b1(0) �
〈
∇x′V (x) 11{x′ 6=0}11{ξ′=0}µ(t, x, ξ) , (x′)2 θ(t) a(x) b2(ξ)

〉
= 0,

which means that the distribution ∇x′V (x) 11{x′ 6=0}11{ξ′=0}µ(t, x, ξ) is supported on R ×
{x′ = 0} × R2d−p

x′′,ξ . But of course this carries that it is null.

Lemma 4.5.5. The measure ν introduced in Lemma 4.5.1 obeys to the following identity in
the sense of the distributions on R× R2(d−p)

x′′,ξ′′ :∫
Sp−1

(
∇x′VS(0, x′′) + F (0, x′′)ω

)
ν(t, x′′, ξ′′, dω) = 0,

where VS and F are as in (3.1.4).

Proof. For test functions of the form aδ(t, x, ξ) = δ θ (t) a (x) b1

(
ξ′

δ

)
b2 (ξ′′), using esti-

mate (4.5.3) and Lemma 4.5.4, the present lemma follows from (4.5.2) at the limit δ −→
0.

To finish establishing a Liouville equation for µ, let us put all Lemmata 4.5.1, 4.5.4,
4.5.5 and Remark 4.2.1 together and write equation (4.5.2) in a distributional and clearer
way:

δ(x′)⊗ δ(ξ′)⊗
∫
Sp−1

(∂t +Df (x)ξ′′ � ∂x′′ −∇x′′VS(0, x′′) � ∂ξ′′) ν(t, x′′, ξ′′, dω)

+ (∂t +D(x)ξ � ∂x −∇V (x) � ∂ξ)µ(t, x, ξ)11{x′ 6=0} = 0,

or, more explicitly, in view of Remark 4.5.3:

Proposition 4.5.6. Let be V (x) = VS(x) + ‖x′‖F (x) a conical potential with x′ ∈ Rp,
1 6 p 6 d, x = (x′, x′′). Let be Ψε the solution to the Schrödinger equation (3.1.2) with
potential V . Then, the Wigner measure associated to the concentration of Ψε in the limit
ε −→ 0 can be decomposed as

µ(t, x, ξ) = 11{(x′,ξ′)6=(0,0)}µ(t, x, ξ) + δ(x′)⊗ δ(ξ′)⊗
∫
Sp−1

ν(t, x′′, ξ′′, dω),
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where the measure ν satisfies the asymmetry condition∫
Sp−1

(
∇x′VS(0, x′′) + F (0, x′′)ω

)
ν(t, x′′, ξ′′, dω) = 0.

Besides, it obeys to the following distributional equation in D′(R× R2d):(
∂t + (D(x)ξ)′′ � ∂x′′ −∇x′′VS(0, x′′) � ∂ξ′′

) (
µ(t, x, ξ)11{(x′,ξ′)=(0,0)}

)
+ (∂t +D(x)ξ � ∂x −∇V (x) � ∂ξ)

(
µ(t, x, ξ)11{(x′,ξ′) 6=(0,0)}

)
= 0,

where D(x) = ∇φ
(
φ−1(x)

)t∇φ (φ−1(x)
)
.

4.6 Continuity in t and absolute continuity with respect to dt

From equation (2.2.8), it is obvious that µ is absolutely continuous with respect to the
Lebesgue measure dt, which implies the existence of a function R 3 t 7−→ µt taking values
in the set of positive measures on R2d such that µ(t, x, ξ) = µt(x, ξ)dt. The same holds for
the two-microlocal measure ν, since it is positive and absolutely continuous with respect to
µ, carrying the existence of a function t 7−→ νt such that ν(t, x′′, ξ′′, ω) = νt(x

′′, ξ′′, ω)dt.
Nevertheless, the same is not true for continuity. In fact, in [45] it was shown that

t 7−→ µt is continuous inside a compact [−T, T ] by verifying that, for a ∈ C∞0 (R2d), the

commutator i
ε

[
Ĥε, opε(a)

]
is uniformly bounded with respect to ε (what we have indi-

rectly obtained during the calculations in this section), so, from (2.2.10), one sees that the
family t 7−→

〈
opεk(a)Ψεk ,Ψεk

〉
is equicontinuous in [−T, T ] in addition to being equi-

bounded, which implies the continuity of [−T, T ] 3 t 7−→ 〈µt, a〉R2d by the Ascoli-Arzelà
theorem.

This is not true for νt in general, as the examples in Theorem 3.4.1 show. In both cases
there, we have

∫
S0 νt(dω) = 0 for any t 6= 0 and

∫
S0 ν0(dω) = 1, so νt 6= 0 if and only if

t = 0, which is a lack of continuity for νt in spite of µt.
Consequently, it makes no sense to think of ν on a t by t basis unless directly linked

to µ, as in Lemma 2.3.7. In particular, observe that there may be violations of the asym-
metry condition (3.2.2) for a particular instant t or, more generally, for time sets with null
Lebesgue measure. This is not at all a contradiction, since this condition is only valid in
average in time.

On the other hand, one could use an argument of continuity for µt to see, in the one-
dimensional case V (x) = ‖x‖, that a family (Ψε

t )ε>0 whose initial data concentrate to
µ0(x, ξ) = δ(x)⊗ δ(ξ) will remain concentrating to this same point, µt = δ(x)⊗ δ(ξ). In
this case, condition (3.2.2) allows a complete description of ν:

ν(t, ω) =
1

2
(δ(ω − 1) + δ(ω + 1))⊗ dt.

In Section 11.1, we will work out more deeply some issues related to the measures’
time continuity. There, more specifically in Examples 11.1.1 and 11.1.2, we will be in a
situation where there is no a priori results about the continuity of t 7−→ µt, but, instead, for
one of the two-microlocal measures, M . In that context, we will only be able to extrapolate
the continuity of the operator-valued measures t 7−→ Mt to µt up to a set of times with
null Lebesgue measure. As a consequence, the evolution of µt will not be given from a
hypothetical µ0, but rather be linked to the evolution of the microlocal measure Mt starting
from its initial datum M0.



Chapter 5

The classical flow and the regime
change

5.1 The concentration of ν

In last section we presented a trivial application of the asymmetry condition (3.2.2). In
this section we will apply it to obtain Theorem 3.3.2. Moreover, we will prove Theorems
3.3.3 and 3.3.4. In next section we will give examples of applications of these results.

So, to start with:

Proof of Theorem 3.3.2. Since VS and F t∇g are continuous functions all over Rd, there
exists a neighbourhood Γ of σ such that the inequality∥∥F (x)t∇g(x)

∥∥
L(NxΛ)

< ‖∂ρVS(x)‖NxΛ

holds strictly for every x ∈ Γ. Let be a ∈ C∞0 (R× T ∗Γ), and let us test expression (3.2.2)
against this function:〈

ν(t, σ, ζ, ω) , a(t, σ, ζ)
(
∂ρVS(σ) + F (σ)t∇g(σ)ω

) 〉
R×ESΛ

= 0.

Further, realize that the testing term is always non-zero within the support of a:∥∥a(t, σ, ζ)
(
∂ρVS(σ) + F (σ)t∇g(σ)ω

)∥∥
NσΛ

> |a(t, σ, ζ)|
(
‖∂ρVS(σ)‖NσΛ −

∥∥F (σ)t∇g(σ)ω
∥∥
NσΛ

)
> 0;

as a consequence, since ν is always positive, one must have ν = 0 over the support of a,
more precisely, over ESΓ.

5.2 The study of the classical flow

Now, in order to study the classical flow in more details, remark that in the transformed
coordinates introduced in Section 4.1, the equation of motion for the component of x in Λ,
x′, reads: {

ẋ′(t) = Dg(x(t))ξ′(t)

ξ̇′(t) = −∂x′VS(x(t))− ‖x′(t)‖∂x′F (x(t))− F (x(t)) x′(t)
‖x′(t)‖ .

57
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Let us suppose that (x(t), ξ(t)) is a trajectory that reaches the phase space singular set
Ω on the point σ ∈ Λ at a time t = 0, so we have x′(0) = 0 and ξ′(0) = 0. Calculate:

x′(t) = t

∫ 1

0
ẋ′(st)ds and ẋ′(st) = ẋ′(0) + t

∫ s

0
ẍ′(rt)dr,

where ẋ′(0) = Dg(x(0)) ξ′(0) = 0 and

ẍ′(t) = (∇xDg(x(t)) ξ(t)) ξ′(t) +Dg(x(t))ξ̇′(t).

Then, for t 6= 0, we can define a θ(t) = 2
t2
x′(t) that reads:

θ(t) = 2

∫ 1

0

∫ s

0

(
(∇xDg(x(rt)) ξ(rt)) ξ′(rt) +Dg(x(rt))(

−∂x′VS(x(rt))− ‖x′(rt)‖∂x′F (x(rt))− F (x(rt))
x′(rt)

‖x′(rt)‖

))
drds,(5.2.1)

where Dg was defined in Remark 4.2.1; for the reader’s convenience, recall that

Dg(x) = ∇g
(
φ−1(x)

)t∇g (φ−1(x)
)

is an invertible matrix for x = (0, x′′).
Also, let be (tn)n∈N such that tn −→ 0. Necessarily the sequence x′(tn)

‖x′(tn)‖ will have

convergent subsequences. If all possible sequences x′(tn)
‖x′(tn)‖ with tn > 0 tending to 0 con-

verge to the same limit θ+
0

‖θ+
0 ‖

, we call it the positive lateral limit of the function x′(t)
‖x′(t)‖ and

denote θ+
0

‖θ+
0 ‖

= limt→0+
x′(t)
‖x′(t)‖ ; in the same way, one can talk about negative lateral limits.

Finally, we define the lateral limits of θ(t) = 1
t2
x′(t) in an analogous manner, when they

exist.

Lemma 5.2.1. Fix a vector θ0 ∈ Rp, θ0 6= 0. If θ0 is a lateral limit of θ(t), then θ0
‖θ0‖ is a

lateral limit of x′(t)
‖x′(t)‖ , either both positive, or both negative. Conversely, if θ0

‖θ0‖ is a lateral

limit of x′(t)
‖x′(t)‖ , then there exists λ > 0 such that λθ0 is a lateral limit of θ(t).

Besides, θ0 is a solution to the equation

(5.2.2) λD−1
g (x(0))θ0 = −∂x′VS(x(0))− F (x(0))

θ0

‖θ0‖
;

geometrically, this equation reads (remembering that ∂ρ is the derivative normal to Λ):

(5.2.3) λρ0 = −∂ρVS(σ)− F (σ)t∇g(σ)
∇g(σ)ρ0

‖∇g(σ)ρ0‖
,

where ρ0 is a lateral limit of the NσΛ vector function 1
t2
∇g(x(t))−1g(x(t)).

Finally, if ‖F (σ)t∇g(σ)‖L(NσΛ) < ‖∂ρVS(σ)‖NσΛ and x′(t)
‖x′(t)‖ converges laterally, then

any lateral limit λθ0 of θ(t) is non-zero and, therefore, satisfies the above equations with
λ 6= 0.
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Proof. Observe that x′(t)
‖x′(t)‖ = θ(t)

‖θ(t)‖ for any t 6= 0, so if θ0 is non-zero and a lateral limit

of θ(t), then necessarily θ0
‖θ0‖ is a lateral limit of x′(t)

‖x′(t)‖ . The converse comes from the
definition of θ(t) in (5.2.1): since at the limit t −→ 0 one has the full limits ξ′(t) −→ 0,
x′(t) −→ 0, VS(x(t)) −→ VS(σ) and F (x(t)) −→ F (σ), then whenever x′(t)

‖x′(t)‖ converges

laterally to some limit θ0
‖θ0‖ , θ(t) also converges laterally to a well-defined vector θ̃. If it is

non-zero, by the previous identity x′(t)
‖x′(t)‖ = θ(t)

‖θ(t)‖ one must have θ̃
‖θ̃‖ = θ0

‖θ0‖ , so θ̃ = λθ0

with λ > 0; if it is zero, then θ̃ = λθ0 for λ = 0, and we get the lemma’s first paragraph
either way.

Equation (5.2.2) comes from taking lateral limits in equation (5.2.1) when θ0
‖θ0‖ is a

lateral limit of x′(t)
‖x′(t)‖ and λθ0 of θ(t). Multiplying its both sides by t∇g(σ), one gets

(5.2.4) λ∇g(σ)−1θ0 = −∂ρVS(σ)− F (σ)t∇g(σ)
θ0

‖θ0‖
.

Two things remain before completing the proof: recognizing equation (5.2.3) from
(5.2.4) and, if x′(t)

‖x′(t)‖ has lateral limits, proving that any lateral limit θ(t) is non-zero under
the additional hypothesis that

‖F (σ)t∇g(σ)‖L(NσΛ) < ‖∂ρVS(σ)‖NσΛ.

The latter is done by remarking that, if ‖F (σ)t∇g(σ)‖ < ‖∂ρVS(σ)‖, surely

λ∇g(σ)−1θ0 6= 0

by the same arguments we saw in the proof of Theorem 3.3.2), so λ 6= 0.

Finally, recall that x′ is the coordinate of the variable in the normal bundleNσΛ; calling
it ρ in the original coordinates, we have x′ = ∇g(σ)ρ, so in (5.2.4) we have just a lateral
limit of 2

t2
ρ(t) = 2

t2
∇g(σ)−1x′(t): θ0 = ∇g(σ)ρ0.

As we have seen in the lemma above, for any trajectory arriving on Ω within a well-
defined direction θ0, i.e., such that limt→0−

x′(t)
‖x′(t)‖ = θ0

‖θ0‖ , if

‖F (σ)t∇g(σ)‖L(NσΛ) < ‖∂ρVS(σ)‖NσΛ,

then this direction is submitted to satisfy equation (5.2.2) with λ 6= 0, which implies, in
particular, that if this equation has no non-zero roots, then by absurd no trajectory at all can
reach Ω.

Regarding the inverse affirmation, Lemma 5.2.1 does not say whether there are actual
trajectories approaching Ω in all possible directions satisfying (5.2.2). Below we will ver-
ify that indeed any θ0 satisfying (5.2.2) is realized as an approaching direction by some
Hamiltonian trajectory.

Lemma 5.2.2. If θ+
0 , θ

−
0 6= 0 satisfy (5.2.2), then there exists a unique trajectory (x(t), ξ(t))

reaching Ω at t = 0 in a point σ ∈ Λ such that limt→0±
x′(t)
‖x′(t)‖ =

θ±0
‖θ±0 ‖

.
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Proof. First, let us choose θ+
0 = θ−0 = θ0. For x0 and ξ0 such that x′0 = ξ′0 = 0 and so that

x0 is the coordinate of σ, take τ > 0, λ > 0 and 0 < δ < ‖θ0‖ sufficiently small so as the
set

B[−τ,τ ] =
{

(x, ξ, ϑ) ∈
(
C0 ([−τ, τ ])

)3
: (x, ξ, ϑ)(0) = (x0, ξ0, λθ0) and

sup
t∈[−τ,τ ]

(‖x(t)− x0‖+ ‖ξ(t)− ξ0‖+ ‖ϑ(t)− λθ0‖) 6 δ

}

fits in a proper definition of the application F : B[−τ,τ ] −→ B[−τ,τ ] given by:

Fx(x, ξ, ϑ)(t) = x0 +

∫ t

0

D(x(s)) ξ(s)ds,

Fξ(x, ξ, ϑ)(t) = ξ0 +

∫ t

0

(
−∇VS(x(s))− ‖x′(s)‖∇F (x(s))− F (x(s))

(ϑ(s),0Rd−p)

‖ϑ(s)‖

)
ds

and last

Fϑ(x, ξ, ϑ)(t) = 2λ

∫ 1

0

∫ s

0

((∇xDg(x(rt)) ξ(rt)) ξ′(rt) +Dg(x(rt))(
−∂x′VS(x(rt))− ‖x′(rt)‖∂x′F (x(rt))− F (x(rt))

ϑ(rt)

‖ϑ(rt)‖

))
drds.

Observe that B[−τ,τ ] is a set which is complete with respect to its natural supremum norm
employed in its definition. Observe further that, by taking λ and τ as small as necessary, F
becomes a contraction on B[−τ,τ ] equipped with its topology, i.e., there exists 0 < K < 1
such that

sup
t∈[−τ,τ ]

(‖Fx(x, ξ, ϑ)(t)− x0‖+ ‖Fξ(x, ξ, ϑ)(t)− ξ0‖+ ‖Fϑ(x, ξ, ϑ)(t)− λθ0‖)

6 K sup
t∈[−τ,τ ]

(‖x(t)− x0‖+ ‖ξ(t)− ξ0‖+ ‖ϑ(t)− λθ0‖) .

Consequently, by Banach’s fixed point theorem, there exists a unique triple (x, ξ, ϑ) ∈
B[−τ,τ ] such that (x, ξ, ϑ) = F (x, ξ, ϑ); this is equivalent to saying that the system

ẋ(t) = D(x(t))ξ(t)

ξ̇(t) = −∇VS(x(t))− ‖x′(t)‖∇F (x(t))− F (x(t))
(ϑ(t),0Rd−p )

‖ϑ(t)‖
d
dt

(
t2

2 ϑ(t)
)

= λẋ′(t)

with initial data (x0, ξ0, λθ0) admits a unique solution, which must be such that ϑ(t)
‖ϑ(t)‖ =

x′(t)
x′(t) ∀t 6= 0. Therefore, (x(t), ξ(t)) must be a trajectory of our conical problem with the
properties listed in the lemma for θ0 = θ+

0 = θ−0 .
For θ+

0 6= θ−0 , define the sets B[0,τ ] and B[−τ,0] and proceed as above in order to show the

existence for ±t ∈ [0, τ ] of trajectories (x±(t), ξ±(t)) such that limt−→0±
x′±(t)

‖x′±(t)‖ =
θ±0
‖θ±0 ‖

.

Besides, as limt−→0± x±(t) = x0 and limt−→0± ξ±(t) = ξ0, we can build a continuous path
(x(t), ξ(t)) by setting x(t) = x±(t) and ξ(t) = ξ±(t) for ±t > 0, and this new trajectory
will be Hamiltonian and the unique one to meet the properties stated in the lemma.

Bringing together Lemmata 5.2.1 and 5.2.2, one proves Theorem 3.3.3. In order to
obtain Theorem 3.3.4, we observe the following facts:
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1. The hypothesis ‖F (σ)t∇g(σ)‖ < ‖∂ρVS(σ)‖ played no role in the demonstration of
Lemma 5.2.2, nor in the proof of Lemma 5.2.1, where we could have θ0 6= 0 and
θ̃ = 0. In any case, if some trajectory is to arrive onto Ω in σ with some well-defined
direction, then either (3.3.2) or (3.3.3) must be satisfied.

2. If θ0 is a “zero root” of (5.2.2) (otherwise said, θ̃ = λθ0 with λ = 0), then we will
see in Example 5.3.3 that it may happen that no trajectory following the direction θ0

ever touches Ω in σ. On the other hand, in Example 5.3.4 we will see a case where
there is a trajectory approaching the singularity, but only asymptotically.

The proof of Theorem 3.3.4 will be complete after showing that any such trajectories
only reach Ω after an infinite time. Letting be (x(t), ξ(t)) a trajectory that is not on Ω at
t = 0, define

Υ = {t ∈ R : ∀s ∈ [0, t], (x(s), ξ(s)) /∈ Ω}

and Γ = {(x(t), ξ(t)) : t ∈ Υ}.

Lemma 5.2.3. If θ0 6= 0 obeys to (5.2.2) with λ = 0 and we suppose that there is a
trajectory (x(t), ξ(t)) such that (x(0), ξ(0)) /∈ Ω, that for any ε > 0 there is tε > 0 for
which ‖(x′(tε), ξ′(tε))‖ < ε and such that limε→0

1
‖x′(tε)‖x

′(tε) = θ0
‖θ0‖ , then sup Υ =∞.

Proof. From the hypotheses θ0 6= 0 and λ = 0 in (5.2.2), it follows that limε→0 ∂x′V (x(tε)) =
0; as a consequence, it becomes possible to find a smooth extension Ṽ of V outside the clo-
sure of Γ such that ∂x′ Ṽ (σ) = 0 and that Ṽ (x(t)) = V (x(t)) for any t ∈ Υ.

Then (x′(t), ξ′(t)) is at the same time a Hamiltonian trajectory of a conical potential
and of a standard problem with smooth potential, for which case it is widely known that no
trajectory can arrive at an extremum of Ṽ with null speed ξ′ within a finite time (since this
would break the unicity of the constant solution (x′(t), ξ′(t)) = (0, 0)).
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5.3 Examples of classification for the semiclassical transport

In this section we will give examples of how Theorems 3.3.2, 3.3.3 and 3.3.4 can be
used in order to classify the trajectories that arrive on a conical singularity and, sometimes,
to completely describe the transport phenomenon to which the semiclassical measures are
submitted. In particular, Examples 5.3.3 and 5.3.4 are part of the reasoning that led to
obtaining the second assertive in Theorem 3.3.4.

To begin with, let us consider d = 1 and g(x) = x, so ∇g(x) = 1.

Example 5.3.1 (|∇VS(σ)| < |F (σ)| with no roots). Take VS(x) = 1
2x and F (x) = 1.

V (x) = 1
2
x+ |x| Φ, example 5.3.1

Then (3.3.2) admits no non-zero solutions, which is consistent with the fact that the
classical flow Φ presents no trajectories hitting the singularity.

In this case, the asymmetry condition (3.2.2) gives that

ν(t, ω) = p

(
1

4
δ(ω − 1) +

3

4
δ(ω + 1)

)
⊗ dt,

with 0 6 p 6 1 the total mass over the singularity and does not depend on t. The semiclas-
sical transport here is thus completely solvable starting from some initial measure.

Example 5.3.2 (|∇VS(σ)| < |F (σ)| with non-zero roots). Consider VS(x) = 1
2x and take

F (x) = −1.

V (x) = 1
2
x− |x| Φ, example 5.3.2

Then (3.3.2) admits two solutions: ρ0 = 1
2 and ρ0 = −3

2 , which is consistent with
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the fact that the classical flow Φ does present trajectories hitting the singularity from both
directions x > 0 and x < 0.

In this case, we will have

ν(t, ω) = p(t)

(
3

4
δ(ω − 1) +

1

4
δ(ω + 1)

)
⊗ dt,

with 0 6 p(t) 6 1 the total mass over the singularity, which may vary with t.

Example 5.3.3 (|∇VS(σ)| = |F (σ)|, with zero-roots without trajectories). Take VS(x) = x
and F (x) = 1.

V (x) = x+ |x| Φ, example 5.3.3

Then equation (3.3.2) has no non-zero roots, but equation (3.3.3) admits any solution
ρ0 < 0. In this case, there are no trajectories hitting the singularity from x < 0. The
semiclassical measure in sphere will be

ν(t, ω) = p δ(ω + 1)⊗ dt,

where the total mass over the singularity 0 6 p 6 1 is constant. Again, this is a completely
solvable case.

Example 5.3.4 (|∇VS(σ)| = |F (σ)| with non-zero and zero roots with trajectories). Pick
up VS(x) = x and F (x) = −(1 + x).

V (x) = x− (1 + x)|x| Φ, example 5.3.4

Then equation (3.3.2) admits one solution: ρ0 = −2, and equation (3.3.3) also admits
solutions: any ρ0 > 0. This is consistent with the fact that the classical flow Φ presents
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a trajectory hitting the singularity from the direction x < 0, and in this case also from the
direction x > 0. However, the trajectory from the positive side takes an infinitely long time
to get close to the singularity.

One has:
ν(t, ω) = p(t) δ(ω + 1)⊗ dt,

the total mass on the singularity possibly changing with time.

Example 5.3.5 (|∇VS(σ)| > |F (σ)|with a unique trajectory). Take VS(x) = 2x and choose
F (x) = 1.

V (x) = 2x+ |x| Φ, example 5.3.5

Then equation(3.3.2) admits a unique solution: ρ0 = −3, which is consistent with
the fact that the classical flow Φ only presents a trajectory hitting the singularity from the
direction x < 0.

In this case, since |∇VS(0)| > |F (0)|, we will have ν = 0, so the semiclassical measure
will necessarily follow the exterior flow with the singularity being part of the parabola
passing through the origin from x < 0. The problem is hence completely solvable, even
though there are trajectories leading to the singular set.

Now let be p = d = 3 and denote x = (x1, x2, x3).

Example 5.3.6 (‖∇VS(σ)‖ > ‖F (σ)t∇g(σ)‖ with no trajectories). Choose an exterior
potential VS(x) = −2x1, F (x) = −1 and g(x) =

(
1
2x1, x2, x3

)
. Then

‖∇VS(0)‖ = 2 > 1 = ‖F (0)t∇g(0)‖

and no ρ0 satisfies equation (3.3.2). As a conclusion, no trajectory in this case can hit the
singularity at x = 0.

Example 5.3.7 (‖∇VS(σ)‖ > ‖F (σ)t∇g(σ)‖ with many trajectories). Last, we will take
the same VS(x) = −2x1, F (x) = −1, but g(x) =

(
1
3x1, x2, x3

)
. Then

‖∇VS(0)‖ = 2 > 1 = ‖F (0)t∇g(0)‖,

but now equation (3.3.2) admits any solution ρ0 =
(

9
4 , ρ2, ρ3

)
with ρ2

2 + ρ2
3 = 7

16 . This is
a case where the exterior force polarizes the flow in its direction, but leaves it free to spin
around a circle of radius

√
7

4 in the orthogonal plane.



Chapter 6

Approximative solutions

6.1 The wave packets

For aC2(Rd) potential V and one of its Hamiltonian trajectories (x (t) , ξ (t)), we define
the wave packet with initial profile v0 ∈ L2(Rd) following (x (t) , ξ (t)) as

(6.1.1) ϕεt (x) =
1

ε
d
4

vt

(
x− x (t)√

ε

)
e
i
ε
[ξ(t)�(x−x(t))+S(t)],

where S is the classical action S (t) =
∫ t

0

(
1
2ξ

2 (s)− V (x (s))
)
ds and v satisfies the ε-

independent differential system

(6.1.2)
{
i∂tvt (y) = −1

2∆vt (y) +
(

1
2∇

2V (x (t)) y � y
)
vt (y)

vt=0 (y) = v0 (y) .

Lemma 6.1.1. Any semiclassical measure associated to the family (ϕε)ε>0 is

µt (x, ξ) = ‖v0‖2L2(Rd) δ (x− x(t))⊗ δ (ξ − ξ(t)) .

Proof. A straightforward calculation. Writing down 〈opε(a)ϕεt , ϕ
ε
t 〉 for some a ∈ C∞0 (R2d),

performing some variable changes and a Taylor expansion:

〈opε(a)ϕεt , ϕ
ε
t 〉 =

1

(2π
√
ε)d

∫
R3d

eiξ�(x−y)a
(x+ y

2
+ x(t), εξ + ξ(t)

)
vt

(
y√
ε

)
vt

(
x√
ε

)
dξdydx

=
1

(2π
√
ε)d

∫
R3d

eiξ�(x−y)a
(x+ y

2
+ x(t), ξ(t)

)
vt

(
y√
ε

)
vt

(
x√
ε

)
dξdydx+Rε,

then integrating in ξ, which gives a Dirac delta, then in y and changing variables once more:

〈opε(a)ϕεt , ϕ
ε
t 〉 =

∫
Rd
a
(√
εx+ x(t), ξ(t)

)
|vt (x)|2 dx+Rε.

The result comes from letting ε go to 0, where the dominated convergence theorem inter-
venes inside the integral, and from evaluating the remainder:

Rε =
ε

(2π
√
ε)d

∫
R3d

∫ 1

0
eiξ�(x−y)ξ � ∂ξa

(
x+ y

2
+ x(t), εsξ + ξ(t)

)
vt

(
y
√
ε

)
vt

(
x
√
ε

)
dsdξdydx

=
iε

(2π
√
ε)d

∫
R3d

∫ 1

0
eiξ�(x−y) tr

(
∂x∂ξa

(
x+ y

2
+ x(t), εsξ + ξ(t)

))
vt

(
y
√
ε

)
vt

(
x
√
ε

)
dsdξdydx

∼ O(ε),

which completes the proof.

65
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Another virtue of the wave packets is that they provide approximative solutions to the
Schrödinger equation with convenient initial data, as stated in:

Proposition 6.1.2. For fixed initial (x0, ξ0) ∈ R2d, consider a Hamiltonian trajectory
(x(t), ξ(t)) for a potential V not necessarily smooth everywhere over the space trajec-
tory. Let be ]0, τ [ ⊂ R and Υ =

{
x ∈ Rd : x = x(t) for t ∈ ] 0, τ [

}
. If ∇2V exists and is

Lebesgue integrable in Υ, and if Ψε is the solution of the Schrödinger equation with po-
tential V and initial data Ψε

0(x) = 1

ε
1
4
v0

(
x−x0√

ε

)
e
i
ε
ξ0�(x−x0), then letting be ϕε the wave

packet initially centred in (x0, ξ0) with profile v0, we have

‖Ψε
τ − ϕετ‖L2(Rd) 6

∫
]0,τ [

∥∥∥∥1

ε
Rεsvs

∥∥∥∥
L2(Rd)

ds,

where

(6.1.3) Rεt (y) = V
(
x (t) +

√
εy
)
− V (x (t))−

√
ε∇V (x (t)) y − ε

2
∇2V (x (t)) y � y.

Proof. After a direct calculation, one obtains the following differential system for ϕε:

(6.1.4)

 iε∂tϕ
ε
t (x) = Ĥεϕεt (x)−Rεt

(
x−x(t)√

ε

)
ϕεt (x)

ϕεt=0 (x) = 1

ε
d
4
v0

(
x−x0√

ε

)
e
i
ε
ξ0�(x−x0),

where Hε is the Hamiltonian operator (3.1.3) with V as stated, Rε is explicitly given by
equation (6.1.3). Now, we compare Ψε and ϕε by evaluating

d

dt
‖Ψε

t − ϕεt‖
2
L2(Rd) = 2 Re 〈Ψε

t − ϕεt , ∂t (Ψε
t − ϕεt )〉L2(Rd) ,

which gives, in view of the equations for Ψε, ϕε and the self-adjointness of Hε,

d

dt
‖Ψε

t − ϕεt‖L2(Rd) 6

∥∥∥∥1

ε
Rεt vt

∥∥∥∥
L2(Rd)

,

thus, for any α, β ∈ ]0, τ [, we have

∥∥Ψε
β − ϕεβ

∥∥
L2(Rd)

− ‖Ψε
α − ϕεα‖L2(Rd) 6

∣∣∣∣∣
∫ β

α

∥∥∥∥1

ε
Rεsvs

∥∥∥∥
L2(Rd)

ds

∣∣∣∣∣ .
Naturally, the function t 7−→ ‖Ψε

t − ϕεt‖L2(Rd) is continuous and, at t = 0, Ψε
0 (x) =

ϕε0 (x) = 1

ε
d
4
v0

(
x−x0√

ε

)
e
i
ε
ξ0�x0 . Hence, by choosing sequences αn and βn in ]0, τ [ such

that αn −→ 0 and βn −→ τ , the proposition follows.

Corollary 6.1.3. Call µ the semiclassical measure linked to the exact family of solutions
(Ψε)ε>0 with initial data as in the theorem above. If∇3V exists and is Lebesgue integrable,
then

‖Ψε
t − ϕεt‖L2(Rd) . |t|

√
ε

and, consequently, given T > 0, for any t ∈ [−T, T ],

µt (x, ξ) = δ (x− x (t))⊗ δ (ξ − ξ (t)) .
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Proof. V being at least of class C3(Rd), one can verify from a Taylor formula that

Rε(y, t) =
ε
√
ε

2

∫ 1

0
∇3V

(
x (t) + s

√
εy
)

(1− s)2 ds,

and, moreover, that Rε introduces in the Schrödinger equation a L2(Rd) error of order
O (ε
√
ε). Thus, from Proposition 6.1.2, it is clear that Ψε

t = ϕεt +O (|t|
√
ε) in L2(Rd); for

any t ∈ [−T, T ], this gives, when ε −→ 0, that the Wigner measure of Ψε shall coincide
with that of the wave packets. The conclusion comes from Lemma 6.1.1.

Remark 6.1.4. Actually, the approximation in the corollary remains good for t smaller than
the Ehrenfest time tE = ln 1

ε , as
√
ε ln 1

ε −→ 0 when ε −→ 0; more details in [34].
Estimates beyond the Ehrenfest time are given in [101].

Observe that even if V is not as regular as we required, we can still writeRε as in (6.1.3)
for any t such that ∇V (x (t)) and ∇2V (x (t)) make sense, although in this case it is not
clear which is the order of the approximation the wave packet furnishes, nor even whether
it is negligible in the semiclassical limit.

Finally, observe that it is also possible to write the actual solution Ψε with initial state
Ψε

0 = 1

ε
d
4
v0

(
x−x0√

ε

)
e
i
ε
ξ0�(x−x0) under the wave packet form: one defines a uε such that

(6.1.5) Ψε (x, t) =
1

ε
d
4

uε
(
x− x (t)√

ε
, t

)
e
i
ε
[ξ(t)�(x−x(t))+S(t)],

which consequently obeys to

(6.1.6)
{
i∂tu

ε (y, t) = − 1
2∆uε (y, t) +

(
1
2∇

2V (x (t)) y � y
)
uε (y, t) + 1

εR
ε (y, t)uε (y, t)

uε (y, 0) = v0(y),

which is nothing else than the exact Schrödinger equation written in a different form.

6.2 Approaching solutions with wave packets

In the Introduction we pointed out that the non-uniqueness of the classical flow for the
present case only plays a relevant role when the initial data concentrate to a point belonging
to a trajectory that leads to the singularity. The behaviour of the measure will depend
on the concentration rate and oscillations of the quantum states Ψε as well as on other
characteristics of this family over the crossings, such as the region where these states are
supported.

Below, we will prove some results that altogether are slightly more general than Theo-
rem 3.4.1. We will present concrete cases of solutions to the Schrödinger equation with the
conical potential V (x) = −|x|, x ∈ R, that concentrate to a branch of one of the parabolæ
leading to the singularity in Figure 3.1.1(b), and thereafter either swap to the other parabola
(Section 6.2.2, Proposition 6.2.4) or keep on the same one (Sections 6.2.1, Proposition
6.2.1).

These examples refute any possibility of a classical selection principle allowing one to
predict the evolution of a particle (i.e., a Wigner measure concentrated to a single point)
after it touches the singularity, since they show two particles subjected to the same potential
and following the same path for any t < 0, but then going each to a different side for t > 0.
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6.2.1 Measures rebounding at the singularity

Let us consider the trajectories

(6.2.1)
{
ξ± (t) = ±t
x± (t) = ± t2

2

for t ∈ R.

In this section we will prove:

Proposition 6.2.1. Let be Ψε the solution to the Schrödinger equation (3.1.2) with V (x) =
−|x| in R with initial datum

Ψε
0 (x) =

1

ε
1
4

a

(
x√
ε

)
,

with a ∈ C∞0 (R).
For any t ∈ R the semiclassical measure associated to the family (Ψε)ε>0 is given by

µt (x, ξ) = p+ δ (x− x+(t))⊗ δ (ξ − ξ+(t)) + p− δ (x− x−(t))⊗ δ (ξ − ξ−(t)) ,

where the weights p± are given by

p± = ±
∫ ±∞

0
|a(x)|2 dx.

Proof. Given an arbitrary δ > 0, let us cut the evolved state Ψε
t into three parts,

Ψε
t (x) = Ψε,δ

+,t (x) + Ψε,δ
�,t (x) + Ψε,δ

−,t (x) ,

where Ψε,δ
+ , Ψε,δ

� and Ψε,δ
− solve the Schrödinger equation with initial data

Ψε,δ
+,0 (x) = 1

ε
1
4
a
(
x√
ε

)
χδ+

(
x√
ε

)
supp χδ+ ⊂ {x ∈ R : x > δ}

Ψε,δ
�,0 (x) = 1

ε
1
4
a
(
x√
ε

)
χδ�

(
x√
ε

)
with supp χδ� ⊂ {x ∈ R : −2δ 6 x 6 2δ}

Ψε,δ
−,0 (x) = 1

ε
1
4
a
(
x√
ε

)
χδ−

(
x√
ε

)
supp χδ− ⊂ {x ∈ R : x 6 −δ}

chosen in such a way that χδ+ + χδ� + χδ− = 1, all these three functions smooth and taking
values in [0, 1].

The middle term’s semiclassical measure has total mass of order δmaxx∈R |a(x)|2; as
a consequence, the full Wigner measure of Ψε will be, for any δ > 0:

(6.2.2) µ = µδ,+ + µδ,− + γδ +O(δ),

where µδ,± are the measures associated to Ψε,δ
± , O(δ) is a measure with total mass of order

δ issued from the middle term and its interferences with the other terms, and γδ is the
interference measure between Ψε,δ

− and Ψε,δ
+ , which satisfies, for any strictly positive test

function b ∈ S∞
(
R× R2

)
, the estimate

(6.2.3)
∣∣∣〈 γδ , b〉∣∣∣ 6√〈µδ,+ , b 〉 〈µδ,− , b 〉,
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as widely known in semiclassical calculus1. Remark that γδ is not necessarily positive.

For the study of µδ,±, let us introduce ϕε,δ± , the wave packets defined in (6.1.1) for t ∈ R,
having profiles vδ,± that obey to

(6.2.4)

{
i∂tv

δ,±
t (y) = −1

2∆vδ,±t (y)

vδ,±0 (y) = a (y)χδ± (y) ,

which is nothing more than the profile equation (6.1.2) with the smooth potentials Ṽ ±(x) =
∓x (which admit the trajectories (6.2.1)).

Lemma 6.2.2. For any δ > 0,

lim
ε−→0

∥∥∥Ψε,δ
± − ϕ

ε,δ
±

∥∥∥
L∞([−T,T ],L2(R))

= 0.

(The proof is postponed.)

So, the Wigner measures for the components Ψε,δ
± are the same as those for ϕε,δ± , which

one computes explicitly:

µδ,±t (x, ξ) = ±δ (x− x± (t))⊗ δ (ξ − ξ± (t))

∫ ±∞
0

∣∣∣a (y) χδ± (y)
∣∣∣2 dy;

observe that Equation (6.2.3) implies that γδ is supported on the intersection of the supports
of µδ,+ and µδ,−, but from last formula this intersection turns out to be different from the
empty set only for t = 0, or, more rigorously, it is contained within {t = 0} × R2d. It
happens that γδ is absolutely continuous with respect to µδ,±, and these are absolutely con-
tinuous with respect to the Lebesgue measure dt, as we saw in Section ??. As a conclusion,
γδ = 0.

Finally, as δ is arbitrary, we take the limit δ −→ 0 and it follows from (6.2.2) that
µ = µ+ + µ−, where:

µ± (t, x, ξ) = p± δ (x− x± (t))⊗ δ (ξ − ξ± (t)) ,

as we had in the proposition’s statement.

Proof of Lemma 6.2.2. To begin with, since for t 6= 0 we have∇jV (x±(t)) = ∇j Ṽ ±(x±(t))

for any j ∈ {0, 1, 2}, ϕε,δ± obeys to (6.1.4) with an error 1
εR

ε,± defined according to (6.1.3);

1As a short justification of this estimate, define a =
√
b, which will also be a smooth function (since b is

strictly positive), and this will give opε(b) = opε(a)2 +O(ε) in L
(
L2(Rd)

)
. Now calculate:

|〈opε(b)Ψ
ε
+ ,Ψ

ε
−〉| =

∣∣〈opε(a)2Ψε
+ ,Ψ

ε
−
〉

+O(ε)
∣∣

= |〈opε(a)Ψε
+ , opε(a)Ψε

−〉+O(ε)|
6 ‖opε(a)Ψε

+‖ ‖opε(a)Ψε
−‖+O(ε)

=
√〈

opε(a)Ψε
+ , opε(a)Ψε

+

〉 〈
opε(a)Ψε

− , opε(a)Ψε
−
〉

+O(ε)

=
√〈

opε(b)Ψ
ε
+ ,Ψ

ε
+

〉 〈
opε(b)Ψ

ε
− ,Ψ

ε
−
〉

+O(ε);

the result comes in the limit where ε goes to 0.
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let us calculate it for t 6= 0:

1

ε
Rε,±t (y) =

1

ε

(
−
∣∣∣∣± t22 +

√
εy

∣∣∣∣+
t2

2
±
√
εy

)

= − 2y√
ε

 ± t2

2 +
√
εy∣∣∣± t2

2 +
√
εy
∣∣∣+ t2

2

 11{±y6− t2

2
√
ε

},
which gives

(6.2.5)
∣∣∣∣1εRε,±t (y, t)

∣∣∣∣ 6 2
|y|√
ε

11{±y6− t2

2
√
ε

}.
Additionally, one can solve equation (6.2.4) for the profile vδ,± of ϕε,δ± explicitly; writ-

ing down its solution,
vδ,±t (y) = e

i
2
t∆
(
a (y)χδ± (y)

)
,

it remains clear that vδ,± admits a finite development like

(6.2.6) vδ,±t (y) =

(
1 +

i

2
t∆

)(
a (y)χδ± (y)

)
+ t2

∫ 1

0
(1− s) ∂2

t v
δ,±
st (y) ds︸ ︷︷ ︸

ṽδ,±t (y)

,

where the first term in the right-hand side has support on ±y > 0.

Remark 6.2.3. From (6.2.4) and the fact that its initial datum is C∞0 (R), it follows that, for
any T > 0 and j, k ∈ N, one has yj∂kt v

δ,± ∈ L∞
(
[−T, T ], L2(R)

)
, which natually implies

that yj∂kt ṽ
δ,± ∈ L∞

(
[−T, T ], L2(R)

)
.

Therefore, from expressions (6.2.5) and (6.2.6):∥∥∥∥1

ε
Rε,±t vδ,±t

∥∥∥∥
L2(R)

6
2√
ε

∥∥∥∥y vδ,±t (y) 11{±y6− t2

2
√
ε

}∥∥∥∥
L2(R)

=
2t2√
ε

∥∥∥∥y ṽδ,±t (y) 11{±y6− t2

2
√
ε

}∥∥∥∥
L2(R)

,

which results in

(6.2.7) sup
±t∈[0,T ]

∥∥∥Ψε,δ
±,t − ϕ

ε,δ
±,t

∥∥∥
L2(R)

6 ± 2√
ε

∫ ±T
0

s2

∥∥∥∥y ṽδ,±s (y) 11±y6− s2

2
√
ε

∥∥∥∥
L2(R)

ds

after applying Proposition 6.1.2. To evaluate this integral, fix α = 1
17 and denote τε =

ε
1
4
−α:

• For t ∈ (−τε, τε), (6.2.7) gives

sup
t∈(−τε,τε)

∥∥∥Ψε,δ
±,t − ϕ

ε,δ
±,t

∥∥∥
L2(R)

6
2

3

τ3
ε√
ε

∥∥∥y ṽδ,±t (y)
∥∥∥
L∞((−τε,τε),L2(R))

= ε
1
4
−3αKδ,(6.2.8)

with Kδ > 0 constant. The fact that
∥∥y ṽδ,±∥∥

L∞((−τε,τε),L2(R))
is bounded comes

from Remark 6.2.3.
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• For the estimate for t ∈ Υε = [−T,−τε]∪ [τε, T ], remark that±y 6 − t2

2
√
ε
6 − ε−2α

2

implies |y|−5 6 25ε10α, then:∥∥∥∥y vδ,±t (y) 11{±y6− t2

2
√
ε

}∥∥∥∥
L2(R)

6 25ε10α
∥∥∥y6 vδ,±t (y)

∥∥∥
L2(R)

.

Boundedness for the norm in last equation’s right-hand side comes from the previous
Remark 6.2.3.

Finally, form (6.2.7),

sup
t∈(−τε,τε)

∥∥∥Ψε,δ
±,t − ϕ

ε,δ
±,t

∥∥∥
L2(R)

6
26 T 3

3
ε10α− 1

2

∥∥∥y6 vδ,±
∥∥∥
L∞(Υε,L2(R))

= ε10α− 1
2 K̃δ(6.2.9)

for a constant K̃δ > 0.

Because of our choice of α = 1
17 , both estimates (6.2.8) and (6.2.9) go to 0 with ε −→ 0,

and we prove the proposition.

So, in this section we saw the example of a case where the initial measure splits in two
pieces, each one gliding to its side as in Figure 3.4.2, accordingly to the quantum distribution
of mass along the x-axis.

Remark that there is no crossings at all. The part µ− that goes to the left downwards did
not come from the same side as µ+, but from the very left. The portion that was in the right
for t < 0 stays in the right all the time.

6.2.2 Measures crossing the singularity

Now, consider for η 6 0 the Hamiltonian trajectories of V (x) = −|x|:

(6.2.10)
{
ξη (t) = η ± t
xη (t) = ηt± t2

2

for ± t 6 0.

In this section, we will prove:

Proposition 6.2.4. If Ψε,η is solution to the Schrödinger equation (3.1.2) with V (x) = −|x|
in R, η < 0 and initial data

Ψε,η
0 (x) =

1

ε
1
4

a

(
x√
ε

)
e
i
ε
η�x,

with a ∈ C∞0 (R), ‖a‖L2(R) = 1, then the associated semiclassical measures are

µηt (x, ξ) = δ(x− xη(t))⊗ δ(ξ − ξη(t))

for any t ∈ R.
Besides, if we take η = −εβ with 0 < β < 1

10 , then the corresponding semiclassical
measure will be, for t ∈ R,

µt(x, ξ) = δ(x− x0(t))⊗ δ(ξ − ξ0(t)).
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Proof. For the case with η < 0 constant, just apply Lemmata 6.2.7 and 6.2.9 ahead choosing
β = 0. For the case η = −εβ , same thing, but of course taking 0 < β < 1

10 .

Before we proceed to the lemmata, let us define uε,η after (6.1.5) using the trajectories
in (6.2.10), so as uε,η satisfies the following system:{

i∂tu
ε,η
t (y) = −1

2∆uε,ηt (y) + 1
εR

ε,η
t (y) uε,ηt (y)

uε,η0 (y) = a (y) .

We have:

Lemma 6.2.5. Above, for t 6= 0 we have

(6.2.11) Rε,ηt (y) = 2
(
xη(t) +

√
εy
)(

11{t<0}11
{
y<−x

η(t)√
ε

} − 11{t>0}11
{
y>−x

η(t)√
ε

})
and

(6.2.12)
∣∣∣∣1εRε,ηt (y)

∣∣∣∣ 6 2|y|√
ε

(
11{t<0}11

{
y<−x

η(t)√
ε

} + 11{t>0}11
{
y>−x

η(t)√
ε

}) .
Proof. Write down

1

ε
Rε,ηt (y) = −1

ε

(∣∣xη(t) +
√
εy
∣∣− |xη(t)| − sign (xη(t))

√
εy
)

= − y√
ε

(
2xη(t) +

√
εy

|xη(t) +
√
εy|+ |xη(t)|

− sign (xη(t))

)
and observe that sign (xη(t)) = −sign(t) for the trajectory in (6.2.10).

Now, define

(6.2.13) ṽε,ηt (y) = e−
i
ε

∫ t
0 R

ε,η
s (y)ds a (y)

and, given some small τε ∈ (0, T ), consider the following wave packet profile equation
linked to the trajectory (6.2.10):

(6.2.14)
{
i∂tv

ε,η
t (y) = −1

2∆vε,ηt (y)
vε,η±τε (y) = ṽε,η±τε (y)

for t ∈ Υε = [−T,−τε] ∪ [τε, T ] .

Definition 6.2.6. We will call ϕε,η the wave packet defined as in (6.1.1) for trajectory
(6.2.10), having profile ṽε,η for t ∈ [−τε, τε] and profile vε,η otherwise.

Lemma 6.2.7. For ηε = ηεβ with η < 0 and 0 6 β < 1
10 , one has

lim
ε−→0

‖Ψε,ηε − ϕε,ηε‖L∞([−T,T ],L2(R)) = 0.

Proof. Let us treat the problem partitioning it in zones by choosing τε = εα with α > β:

• t ∈ [−τε, τε]:
Denote2 zε = uε − ṽε; then zε0 (y) = 0,

i∂tz
ε
t (y) +

1

2
∆zεt (y)− 1

ε
Rεt (y) zεt (y) = −1

2
∆ṽεt (y)

2Since now η depends on ε, we will drop down the dependencies on η in order not to overcharge the notation.
We will also let the dependency of the trajectories on ε implicit until it be crucial to take it into account.
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and consequently

d

dt
‖ zεt ‖

2
L2(R) = −2 Im 〈 zεt , ∆ṽεt 〉L2(R)

6 2
∣∣∣〈∇uεt , ∇ṽεt 〉L2(R)

∣∣∣
6 ‖∇uεt ‖L2(R) ‖∇ṽ

ε
t ‖L2(R) .

Given that∇uε satisfies

i∂t (∇uεt (y)) +
1

2
∆ (∇uεt (y))− 1

ε
Rεt (y) (∇uεt (y)) =

1

ε
∇Rεt (y)uεt (y),

one can estimate, in the same way as in Proposition 6.1.2 (which enables us to avoid
calculating Rεt at t = 0),

‖∇uεt ‖L2(R) 6 ‖∇a ‖L2(R) + |t|
∥∥∥∥ 1

ε
∇Rε uε

∥∥∥∥
L∞( ]0,t[ ,L2(R))

6 ‖∇a ‖L2(R) +
2|t|√
ε
,

the last line coming from quantum normalization and the facts that ‖uεt‖L2(R) = 1 is
constant (‖uεt‖L2(R) = ‖Ψε

t‖L2(R)) and

1

ε
|∇Rεt (y)| = 1√

ε

∣∣∣∣ x(t) +
√
εy

|x(t) +
√
εy|
− sign (x(t))

∣∣∣∣ for t 6= 0,

so
∥∥1
εR

ε
t

∥∥
L∞(R)

6 2√
ε

for t ∈ ] 0 , t [ .

As a step aside, notice the following:

∇ṽεt (y) = −iṽεt (y)∇
(

1

ε

∫ t

0
Rεs (y) ds

)
︸ ︷︷ ︸

Iε(t,y)

+e−
i
ε

∫ t
0 R

ε
s(y)ds∇a(y).

Let us resume the main reasoning.

Taking into account the domain restrictions ofRε (see (6.2.11)), for±t < 0 one must
have satisfied the inequalities±y < 0 and t2±2 ηε t±2

√
εy < 0 in order not to have

Rε null, which means that, for fixed y, t is comprised in [−ς(y), ς(y)], where

(6.2.15) ς(y) = ηε +

√
η2
ε + 2

√
ε|y| > 0

is one of the roots of ς2 − 2 ηε ς − 2
√
εy = 0. Further, remark that Rε±ς(y) (y) = 0;

as a consequence,

(6.2.16) Iε(t, y) =

{
1
ε

∫ t
0 R

ε
s (y) ds if |t| < ς(y)

1
ε

∫ ±ς(y)
0 Rεs (y) ds if ±t > ς(y),

which implies

(6.2.17) ∂yI
ε(t, y) =


2√
ε
t if |t| < ς(y)

2√
ε
ς(y) if t > ς(y)

− 2√
ε
ς(y) if t 6 −ς(y).
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Now, considering that 2β < 1
2 , that ηε < 0 and that there is K > 0 such that |y| <

K, since within ∇ṽε we still have multiplying factors a and ∇a that are compactly
supported in y, it can be made the estimative:

ς(y) = ηε + |ηε|
(

1 +
2
√
ε|y|
η2
ε

) 1
2

6

√
ε

|ηε|
K,

which in any case gives |∂yIε(t, y)| . C1
|ηε| for some constant C1 > 0, hence

‖∇ṽεt ‖L2(R) .
C1

|ηε|
‖ a ‖L2(R) =

C1

|ηε|
.

Finally, this results is a superior bound for ‖uεt − ṽεt ‖L2(R) in [−τε, τε]; so, for a
constant C2 > 0:

(6.2.18) ‖ zε ‖2L∞([−τε,τε],L2(R)) . C2
τε
|ηε|

+ C1
τ2
ε√
ε|ηε|

As α > β by assumption, the only additional constraint we need in order to have the
bound above small when ε −→ 0 is:

(6.2.19) 2α− β − 1

2
> 0.

• t ∈ Υε = [−T,−τε] ∪ [τε, T ]:

Hereafter denote zε = uε − vε. Now zε obeys to the equation

i∂tz
ε
t (y) +

(
1

2
∆− 1

ε
Rεt (y)

)
zεt (y) =

1

ε
Rεt (y) vεt (y)

and, therefore,

‖ zεt ‖L2(R) 6
∥∥ zε±τε ∥∥L2(R)

±
∫ t

±τε

∥∥∥∥ 1

ε
Rεs v

ε
s

∥∥∥∥
L2(R)

ds

according to t being positive or negative.

Recalling the trajectory defined in (6.2.10), the estimation in (6.2.12) and the fact
that ηε < 0, one has that Rε is non-zero only in the region |y| > |ηεt|√

ε
> |ηε|τε√

ε
, so

1
|y| <

√
ε

|ηε|τε ; this gives∥∥∥∥ 1

ε
Rεt v

ε
t

∥∥∥∥
L2(R)

6
2√
ε
‖ y vεt ‖L2(R)

6
2

|ηε|τε

( √
ε

|ηε|τε

)k ∥∥∥ yk+2 vεt

∥∥∥
L2(R)

.

Lemma 6.2.8. For t ∈ Υε, n,m ∈ N0 and β < 1
4 , there exists Kn+m > 0 constant

such that ‖yn∇mvεt ‖L2(R) 6
Kn+m

|ηε|n+m .
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(The proof is postponed.)

As a conclusion, for ε small enough we have∥∥∥∥ 1

ε
Rεt v

ε
t

∥∥∥∥
L2(R)

6
2Kn

|ηε|3τε

( √
ε

|ηε|2τε

)k
,

which carries the new constraint:

(6.2.20)
k

2
− (k + 1)α− (2k + 3)β > 0

for some k ∈ N.

The proposition is proven once we remark that for any 0 6 β < 1
10 , one can find a

positive integer k such that both (6.2.19) and (6.2.20) will be satisfied for α > β.

Proof of Lemma 6.2.8. To evaluate ‖ynvεt ‖L2(R), observe that by recurrence one can show
that, for n ∈ N0,

i∂t (ynvε) +
1

2
∆ (ynvε) =

1

2
n(n− 1)yn−2 vε + n yn−1∇vε

and, since∇mvε satisfies the same equation (6.2.14) as vε,

(6.2.21) i∂t (yn∇mvε) +
1

2
∆ (yn∇mvε) =

1

2
n(n− 1)yn−2∇mvε + n yn−1∇m+1vε,

from where we have the estimation:

‖yn∇mvεt ‖L2(R) 6 ‖y
n∇mvε±τε‖L2(R)

+
1

2
n(n− 1)T

∥∥yn−2∇mvε
∥∥
L∞(Υε,L2(R))

+nT
∥∥yn−1∇m+1vε

∥∥
L∞(Υε,L2(R)) .

The trick will be to transform the L∞
(
Υε, L2(R)

)
norms of the terms with ∇mvε into

L2(R) ones, so observe that we have∥∥yn−2∇mvεt
∥∥
L2(R)

6
∥∥yn−2∇mvε±τε

∥∥
L2(R)

+
1

2
(n− 2)(n− 3)T

∥∥yn−4∇mvε
∥∥
L∞(Υε,L2(R))

+ (n− 2)T
∥∥yn−3∇m+1vε

∥∥
L∞(Υε,L2(R))(6.2.22)

and, of course, that the right-hand side above also bounds
∥∥yn−2∇mvε

∥∥
L∞(Υε,L2(R))

.

Repeating the steps above for the term
∥∥yn−4∇mvε

∥∥
L∞(Υε,L2(R))

that appears in (6.2.22),

we will obtain an expression with the L2(R) norm
∥∥yn−4∇mvε±τε

∥∥
L2(R)

(as wished) and,

additionally, the terms
∥∥yn−6∇mvε

∥∥
L∞(Υε,L2(R))

and
∥∥yn−5∇m+1vε

∥∥
L∞(Υε,L2(R))

. Well,

then we just repeat the same procedure for
∥∥yn−6∇mvε

∥∥
L∞(Υε,L2(R))

, then for the term∥∥yn−8∇mvε
∥∥
L∞(Υε,L2(R))

that will appear, etc... and what we get is essentially

(6.2.23)
∥∥yn∇mvεt ∥∥L2(R)

6

⌊
n
2

⌋∑
j=0

(
c
(1)
n,j

∥∥∥yn−2j∇mvε±τε
∥∥∥
L2(R)

+ c
(2)
n,j

∥∥∥yn−1−2j∇m+1
v
ε
∥∥∥
L∞

(
Υε,L2(R)

)) ,

with c(1)
n,j and c(2)

n,j appropriate coefficients.
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Two things are remarkable in this formula. The first one is that all terms yn−2j∇mvε±τε
have the same support (recall their definition, in (6.2.13) and (6.2.14)), which is the compact
support of a. This bounds |y| uniformly with respect to n, m, j and ε, implying that

bn2 c∑
j=0

c
(1)
n,j

∥∥yn−2j∇mvε±τε
∥∥
L2(R)

= dn,m
∥∥∇mvετε∥∥L2(R)

,

where, again, dn,m is a suitable coefficient not depending on ε.
The second remarkable thing is that among the terms within theL∞

(
Υε, L2(R)

)
norms,

the highest power of y that we find is n−1, and no more n, as in the beginning. This suggests
that we may do the very same analysis for estimating each term

∥∥yn−1−2j∇m+1
∥∥
L∞(Υε,L2(R))

in (6.2.23) and obtain estimates like∥∥∥yn−1−2j∇m+1vε
∥∥∥
L∞(Υε,L2(R))

6 dn−1−2j,m+1

∥∥∇m+1vε±τε
∥∥
L2(R)

+

b 1
2

(n−1−2j)c∑
l=0

∥∥∥yn−2−2(j+l)∇m+2vε
∥∥∥
L∞(Υε,L2(R))

;

again, the maximal power of y to appear inside the L∞
(
Υε, L2(R)

)
norms has been re-

duced by 1 with respect to the norm being estimated in the left-hand side. Whence, running
recursively until we bring the maximal exponent down to 0, we will end up with:

‖yn∇mvεt ‖L2(R) 6
n−1∑
j=0

d̃j
∥∥∇m+jvε±τε

∥∥
L2(R)

+ d̃n
∥∥∇m+nvε

∥∥
L∞(Υε,L2(R))

,

with ε-independent coefficients d̃j . Finally, from equation 6.2.21, one knows that the norm
‖∇n+mvεt ‖L2(R) is constant in time, so we can simplify even more the last estimation and
have got:

(6.2.24) ‖yn∇mvεt ‖L2(R) 6
n∑
j=0

d̃j
∥∥∇m+jvε±τε

∥∥
L2(R)

.

Making use of (6.2.13) and the initial condition (6.2.14), let us calculate the remaining
quantities:

∇mvε±τε(y) = e−
i
ε

∫±τε
0 Rεs(y)ds

m∑
l=0

(
m
l

)
∇m−la(y)

∑
σ∈Nm0∑m
s=1 sσs=l

(
cσ

m∏
j=1

(
∂jyI

ε(±τε, y)
)σj)

,

where cσ are complex coefficients.
The way for calculating the expression above is the following: if condition (6.2.20) is

fulfilled, then we have α < 1
2 − β, which causes τε to be always greater than |ς(y)| ∼

√
ε
|ηε| .

Then, using (6.2.17), we get ∂j+1
y Iε(±τε, y) = ± 2√

ε
∂jyς(y) for j ∈ N0, and, using (6.2.15)

and being α > 2β (from (6.2.19) and the fact that 0 6 β < 1
10 ):

1√
ε
∂j+1
y ς(y) ∼

(√
ε

|ηε|

)j
1

|ηε|j+1
;
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thus, if we do the brutal majoration,
√
ε
|ηε| . 1, one gets

∣∣∣∂j+2
y Iε(±τε, y)

∣∣∣ . 1
|ηε|j for all

j ∈ N0, and also Iε(±τε, y) ∼ ς(y) . 1. Additionally, we already had ∂yIε(±τε, y) ∼ 1
|ηε| ,

so even in the worst case one can always have the estimate

∂jyI(±τ ε, a) .
1

|ηε|j
,

which is, of course, far from optimal if j > 2 and just bad if j = 0, but fits in our purposes.
It follows that, for σ such that

∑m
s=1 jσj = l and conveniently chosen constants Kj ,

m∏
j=1

(
∂jyI(±τε, y)

)σj 6 1

|ηε|l
m∏
j=1

Kj ,

so
∥∥∇mvε±τε∥∥L2(R)

will be dominated by a term of order 1
|ηε|m and, finally, inequality

(6.2.24) will be bounded by a term of order 1
|ηε|n+m , what we wanted to show.

This completes the proposition’s proof.

Lemma 6.2.9. With ηε = ηεβ , η < 0, the semiclassical measure associated with the family
(ϕε,ηε)ε>0 is transported by a trajectory of shape (6.2.10):

(
x0(t), ξ0(t)

)
if 0 < β < 1

10 ,
and (xη(t), ξη(t)) if β = 0.

Proof. The fact that ϕε,ηε concentrates to a measure that follows the aimed path is not
guaranteed by Lemma 6.1.1 since the initial data we inserted in the wave packet equation
(6.2.14) is not ε-independent, as we required in Section 6.1. Let us then calculate the
concentration of ϕε,ηε indirectly.

To begin with, if conditions (6.2.19) and (6.2.20) are fulfilled, then τε > ς(y) and
consequently, from (6.2.13), (6.2.15) and (6.2.16):

ṽε,ηε±τε (y) = e−
i
ε

∫±ς(y)
0 Rεs(y)dsa(y) = e

−i
√
ε
∣∣∣ yηε ∣∣∣3e−i

((
y
ηε

)2
∓
∣∣∣ yηε ∣∣∣

)
a(y),

thus, setting v̂ε±,0(x) = 1

ε
1
4
ṽε,ηε±τε

(
x√
ε

)
, one has

v̂ε±,0(x) =
1

ε
1
4

a

(
x√
ε

)
f1

(
x

ηε
√
ε

)
f2

(
ε

1
6x

ηε
√
ε

)
,

where |f1| = |f2| = 1 and∇f1 and∇f2 exist and are locally bounded almost everywhere in
R. These facts and standard symbolic calculus allow a straightforward calculation showing
that v̂ε±,0 concentrates to the measure µ

v̂ε±
0 (x, ξ) = δ (x)⊗ δ (ξ).

Now, define v̂ε± as the functions in L∞(R, L2(R)) that satisfy the systems{
iε∂tv̂

ε
±,t(x) = − ε2

2 ∆v̂ε±,t(x)

v̂ε±,0(x) = 1

ε
1
4
ṽε,ηε±τε

(
x√
ε

)
;

it is possible to affirm that the semiclassical measures of v̂ε± will by carried by the flow
Φt (x, ξ) = (x+ t ξ, ξ), since by standard results (see the Introduction) they should obey
to the usual Liouville equation (2.2.16) with a null potential. But because initially they are
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concentrated to the point (0, 0) in the phase space, we get µ
v̂ε±
t (x, ξ) = δ(x) ⊗ δ(ξ) for all

t ∈ R.
Well, for ±t > 0, v̂ε±,t(x) = 1

ε
1
4
vε,ηεt±τε

(
x√
ε

)
, so observe that, for ±t ∈ [τε, T ],

ϕε,ηεt (x) = v̂ε±,t∓τε (x− xηε(t)) e
i
ε
[ξηε (t)�(x−xηε (t))+Sηε (t)];

consequently, by picking up a b ∈ C∞0
(
R2
)
, one gets

〈opε(b)ϕ
ε,ηε
t , ϕε,ηεt 〉L2(R) =

〈
opε (b (x+ xηε(t), ξ + ξηε(t))) v̂ε±,t∓τε , v̂

ε
±,t∓τε

〉
L2(R)

=
〈
opε (b (x+ xηε(t), ξ + ξηε(t))) v̂ε±,t, v̂

ε
±,t
〉
L2(R)

+O
(
εα−2β

)
,

with the error coming from∥∥v̂ε±,t − v̂ε±,t∓τε∥∥L2(R)
6
τε
2

∥∥∆vε±τε
∥∥
L2(R)

6 K
τε
|ηε|2

= Kεα−2β,

where K > 0 is constant and we used Lemma 6.2.8. If β = 0, then ηε = η is constant and
we get, for t ∈ [−T, T ] \ {0},

sc lim 〈opε(b)ϕ
ε,η
t , ϕε,ηt 〉L2(R) = 〈δ(x)⊗ δ(ξ), b(x+ xη(t), ξ + ξη(t))〉R2 ,

which also holds for t = 0 due to the initial condition for ϕε,η, implying that

µϕ
ε,η

t (x, ξ) = δ(x− xη(t))⊗ δ(ξ − ξη(t))

for all t ∈ [−T, T ].
If 0 < β < 1

10 , we can still have

〈opε(b)ϕ
ε
t , ϕ

ε
t 〉L2(R) =

〈
opε

(
b
(
x+ x0(t), ξ + ξ0(t)

))
v̂ε±,t, v̂

ε
±,t
〉
L2(R)

+ o (1) +O
(
εα−2β

)
,

and now the error o(1) comes from the difference between calculating bwith the trajectories
(xηε(t), ξηε(t)) or the with “limit” path (x0(t), ξ0(t)), which must be negligible in compact
times for ε small enough, given that b is smooth and the flow that defines the trajectories is
stable in the region where we are. Since it is possible to choose α > 2β within conditions
(6.2.19) and (6.2.20), an argument similar to the previous one gives

µϕ
ε,ηε

t (x, ξ) = δ(x− x0(t))⊗ δ(ξ − ξ0(t))

for all t ∈ [−T, T ] when 0 < β < 1
10 .

Remark 6.2.10. All results in this section also work taking η > 0 and swapping t negative
for positive and conversely in the definition of the trajectories (6.2.10).

Hence, we have found that it is possible that a particle arrive into the singularity from the
up left or from the down right and that it continue to the other side down or up, as partially
indicated in Figure 3.4.1(b). Moreover, we also proved that the wave packet approximation
is valid for the non-smooth trajectories indicated in Figure 3.4.3 (and for the reverse ones
not indicated in the picture).



Chapter 7

The exact solutions

Remark. Contrarily to the rest of this thesis, in this chapter we will use the Physics standard
notation

〈ψ1 , ψ2 〉L2(M) =

∫
M
ψ1(x)ψ2(x) dx

for the inner product in L2(M) or for some extension of it (in which case we will drop the
label L2(M) down).

7.1 The case V (x) = + |x|

In this section we give an exact solution to the one-dimensional Schrödinger equation
(3.1.2) with potential V (x) = |x|.

Introducing the Ansatz Ψε (t, x) = ϕ (x)T (t) in (3.1.2), we are given TE (t) = e−
i
ε
Et

and Ĥεϕ = Eϕ; more explicitly:

(7.1.1) − ε2

2
∂2
xϕ (x) + |x|ϕ (x) = Eϕ (x) ,

where E ∈ R is some constant to be fixed later that stands for the quantum state’s energy.
Replacing ϕ (x) = φ (y), with

(7.1.2)
y = 3

√
2
ε2

(x− E)

y = 3

√
2
ε2

(−x− E)
for

x > 0
x < 0,

one gets, for any x 6= 0:

(7.1.3) ∂2
yφ (y)− yφ (y) = 0,

whose solutions are superpositions of the Airy functions Ai and Bi[91]. Because we want
them to decrease to 0 at infinity so as the final solution be L2(R), we are left with only the
first kind of Airy function, Ai, so for each possible E we have:

ϕE (x) = α+
E Ai

(
3

√
2
ε2

(x− E)
)

ϕE (x) = α−E Ai
(

3

√
2
ε2

(−x− E)
) for

x > 0
x < 0,

79
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where α±E are complex coefficients. Imposing continuity for ϕE at x = 0:

α+
E = α−E 6= 0 or Eε2n+1 = −λ2n+1

3

√
ε2

2
so ϕE (0) = 0,

where λ2n+1 is the n-th zero of the Airy function. Imposing continuity for ∂xϕE at x = 0:

α+
E = −α−E 6= 0 or Eε2n = −λ2n

3

√
ε2

2
so ∂xϕE (0) = 0,

where λ2n is the n-th zero of the derivative of the first kind Airy function.
Therefore, choosing αεn > 0 in a suitable way, the normalized eigenstates for the sys-

tem’s Hamiltonian have the form:

ϕεn (x) = αεn
(
11{x>0} − 11{x<0}

)n Ai

(
3

√
2

ε2
|x|+ λn

)
∀n ∈ N0.

The self-adjointness of Ĥε with domain H2(R) assures that the general solution for this
equation is a superposition of these eigenstates:

(7.1.4) Ψε(t, x) =
∑
n∈N0

cεn ϕ
ε
n(x)e

− i
3√2ε

λnt
,

with suitable complex coefficients cεn chosen so as to satisfy the initial condition Ψε(0, x) =
Ψε

0(x), which can be obtained applying the orthogonality relations 〈ϕεn, ϕεm〉L2(R) = δn,m:

cεn =

∫
R
ϕεn(x)Ψε

0(x)dx.

To conclude the analysis, remark that λn does not depend on ε nor on any other param-
eter, so it is possible to describe the distribution of the energy levels Eεn. The first ones are
known explicitly from the computed values of λn and, for n > N with N large enough,
one can use the asymptotic formulæ for the Airy function and its derivative[91] to obtain:

Eε2n ≈
1

2
3

√
9ε2π2

(
kn +

1

4

)2

and Eε2n+1 ≈
1

2
3

√
9ε2π2

(
kn +

3

4

)2

,

where (kn)n>N is some sequence such that kn+1 = kn + 1.
Observe that they form an infinite countable set bounded from below by a ground state

Eε0, do not accumulate to any value as n −→ ∞ (so arbitrarily high energies are allowed)
and are such that Eεn < Eεm for any n < m in N0, as it is usual for linked states.

7.2 The case V (x) = − |x|

7.2.1 Confined states

Now we shall solve the Schrödinger equation for V (x) = − |x|. Before analysing our
actual case of interest, in L2(R), let us solve (3.1.2) inside the compact [−1, 1] with Cauchy
homogeneous conditions, which will enlighten some technical issues that we will face in
the free case.
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We proceed as we have already done previously, inserting Ψε (x, t) = ϕ (x)T (t) in
(3.1.2) in order to obtain TE (t) = e−

i
ε
Et and equation (7.1.1), from which we get (7.1.3)

through a variable change similar to (7.1.2), but swapping x by −x.
Nevertheless, in the present situation it is not going to be possible to discard Bi, the

second type of Airy function, based on arguments of decay. Hence, ϕ is going to be a linear
combination of these functions:

ϕE (x) = α+
E Ai

(
− 3

√
2
ε2

(x+ E)
)

+ β+
E Bi

(
− 3

√
2
ε2

(x+ E)
)

ϕE (x) = α−E Ai
(
− 3

√
2
ε2

(−x+ E)
)

+ β−E Bi
(
− 3

√
2
ε2

(−x+ E)
) for

x > 0
x < 0,

and the conditions for continuity of ϕ and ∂xϕ at x = 0 read:
(
α+
E − α

−
E

)
Ai
(
−E 3

√
2
ε2

)
+
(
β+
E − β

−
E

)
Bi
(
−E 3

√
2
ε2

)
= 0(

α+
E + α−E

)
Ai′
(
−E 3

√
2
ε2

)
+
(
β+
E + β−E

)
Bi′
(
−E 3

√
2
ε2

)
= 0,

where Ai′ and Bi′ are the derivatives of Ai and Bi and α±E , β
±
E ∈ C. We can choose two

linearly independent solutions that satisfy these equalities for any E, one even (P) and the
other odd (I):
(7.2.1)

ϕε,PE (x) = Bi′
(
−E 3

√
2
ε2

)
Ai
(
− 3
√

2
ε2

(|x|+ E)
)
− Ai′

(
−E 3

√
2
ε2

)
Bi
(
− 3
√

2
ε2

(|x|+ E)
)

ϕε,IE (x) =
(
11{x>0} − 11{x<0}

) (
Bi
(
−E 3

√
2
ε2

)
Ai
(
− 3
√

2
ε2

(|x|+ E)
)
− Ai

(
−E 3

√
2
ε2

)
Bi
(
− 3
√

2
ε2

(|x|+ E)
))

.

Finally, imposing the boundary condition ϕε,P,IE (1) = ϕε,P,IE (−1) = 0 for the even (P) and
the odd (I) solutions, we find out that the only allowed values of E are:

Eε2n = −λε2n
3

√
ε2

2

Eε2n+1 = −λε2n+1
3

√
ε2

2

for
ϕPE

ϕIE ,

where λε2n and λε2n+1 are respectively the n-th zeros of the functions:

fPε (η) = Bi′ (η) Ai
(
η − 3

√
2
ε2

)
− Ai′ (η) Bi

(
η − 3

√
2
ε2

)
f Iε (η) = Bi (η) Ai

(
η − 3

√
2
ε2

)
− Ai (η) Bi

(
η − 3

√
2
ε2

)
.

Choosing a proper αεn, the normalized eigenstates of Ĥε in this case are given by:

ϕεn (t, x) = αεn
(
11{x>0} − 11{x<0}

)n(Bi(1−n/2) (λεn) Ai

(
λεn −

3

√
2

ε2
|x|

)

−Ai(1−n/2) (λεn) Bi

(
λεn −

3

√
2

ε2
|x|

))
∀n ∈ N0,

where we defined n/2 = 1
2 [1− (−1)n], which is 0 or 1 depending on n being even or odd.

Again, Ĥε being self-adjoint on H2 ([−1, 1]) assures that the general solution will be a
superposition of these eigenstates with suitable coefficients:

(7.2.2) Ψε(t, x) =
∑
n∈N0

e
− i

3√2ε
λεntϕεn(x) 〈ϕεn,Ψε

0〉L2([−1,1]) .
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Concerning the energy levels, in practice the first values of µεn can be numerically com-
puted with a simple integration for the differential system obeyed by fPε and f Iε . Posing

ωε = 3

√
2
ε2

: {
∂2
ηf

P
ε (η) + ωεf

P
ε (η) = f Iε (η) + 2η∂ηf

I
ε (η)

∂2
ηf

I
ε (η) + ωεf

I
ε (η) = −2∂ηf

P
ε (η) .

The result is in Figure 7.2.1. For higher energies (in absolute value), we have the asymptotic
formulæ obtained from the asymptotic expansions for Ai and Bi[91]:

(7.2.3) for η −→∞ :
f Iε (η) ≈ 1

2π
√
ηe
ωε
√
η

fPε (η) ≈ 1
2πe

ωε
√
η

and

(7.2.4) for η −→ −∞ :
f Iε (η) ≈ 1

π
√
η sin (ωε

√
−η)

fPε (η) ≈ 1
π cos (ωε

√
−η) ,

They inform us that either fPε and f Iε will not be zero for η big enough, or, in other terms,
that the system has a ground energy state E0. Conversely, for η too negative, the functions
oscillate more or less like the trigonometric ones, thus for n > N sufficiently large we can
estimate:

E2n ≈
ε2π2

2

(
kn +

1

2

)2

and E2n+1 ≈
ε2π2

2
(kn + 1)2 ,

where (kn)n>N is some suitable sequence such that kn+1 = kn + 1.

(a) Exponential tendency for E � 0. (b) Oscillatory tendency for E � 0.

Figure 7.2.1: Graphics for fP (green) and fI (red) as functions of E = −η simulated for ωε = 1. The
graphic in (b) reproduces closely the asymptotes expected from (7.2.4); in (a) the functions’ growth is clearly
exponential, though the effect of the square root

√
−E in (7.2.3) is not evident due to scaling restrictions.

As before, the set of eigenvalues is countable, lower bounded, ordered like En < Em
for any n < m in N0, non-accumulating and allows arbitrarily large energies, which is
characteristic for confined states.
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7.2.2 Free states

In solving (3.1.2) in L2(R) with V (x) = −|x|, we will incur in typical difficulties for
free states, like the fact that Ĥε will not have eigenvalues nor eigenstates and its (essential)
spectrum will be continuous.

Indeed, we begin as in last section until we get, for each E ∈ R, the two indepen-
dent solutions (7.2.1). There, we could apply the Cauchy boundary conditions and obtain
a discretization of choices for E. Here, this is not possible and, worse, the solutions to
equation (7.1.1) (which was a genuine eigenvalue equation in the precedent cases) are not
even L2(R) functions, so not acceptable answers to the quantum problem.

However, from the Weyl criterion (see [105], Problem 6.18 in particular) we deduce that
the spectrum of Ĥε is essential and coincides with R; alternatively, the Shnol theorem[94]
gives that the spectrum of Ĥε is R, since for any E ∈ R the solutions ϕε,PE and ϕε,IE are
sub-exponential.

Furthermore, define ϕεE = αε,PE ϕε,PE + iαε,IE ϕε,IE , where αε,P,IE are constants to be dis-
cussed in Remark 7.2.2 ahead. These are generalized eigenfunctions of Ĥε with generalized
eigenvalue E ([23, 24, 94]), in the sense that ϕεE is in the dual H− of some Hilbert space

H+ dense in L2(R) and, for any ψ ∈ H+ ∩D
(
Ĥε
)

:

(7.2.5)
〈
ϕεE , (Ĥ

ε − E)ψ
〉

= 0.

In our case, since for any E ∈ R we have ‖ϕεE( · )‖∞ <∞, we may pick up any δ > 0

and choose H+ = F
(
H

1
2

+δ(R)
)

and H− = F
(
H−( 1

2
+δ)(R)

)
(the images through the

Fourier transform of these respective Sobolev spaces).
Besides, from the theorem of expansion in terms of generalized eigenfunctions[24, 94],

the functionH+ 3 ψ 7−→ ψ̃ ∈ L2(R) given by

(7.2.6) ψ̃(E) = 〈ϕεE , ψ〉 =

∫
R
ϕεE(x)ψ(x)dx

is well-posed and extends to a unitary operator U ∈ L
(
L2(Rd)

)
.

Remark 7.2.1. DefineH =
{
ψ ∈ H+ : ψ̃ ∈ H+

}
. Consequently, for ψ ∈ H, we have:

(7.2.7) ψ =

∫
R
ϕεE 〈ϕεE , ψ〉 dE;

observe thatH is dense in L2(R) for it contains the Schwartz space1, so although the above
formula is not strictly correct for Ψ ∈ L2(R) in general, we may still employ it to stand
for Ψ = U∗UΨ, if we bear in mind that it must be understood along a strong limiting
approximation Ψ = limψn, with ψn ∈ H for all n ∈ N.

In the same sense, the resolution of the identity

(7.2.8) 11 =

∫
R
|ϕεE〉 〈ϕεE | dE

1Indeed, if ψ ∈ S(R), it follows from (7.2.5) and (7.2.6) that E 7−→ Ekψ̃(E) = U
(

(Ĥε)kψ
)

is L2(R)

for any integer k > 0, so ψ̃ is rapidly decreasing and consequently is inH+.
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holds for L2(R), and the spectral decomposition

(7.2.9) Ĥ =

∫
R
E |ϕεE〉 〈ϕεE | dE

can be used for doing functional calculus on the whole L
(
L2(R)

)
(since any bounded

Borelian function of Ĥ is a bounded operator, which allows us to take the necessary limits).

Remark 7.2.2. From equation (7.2.7), it is clear that we must have, in the sense of distribu-
tions inH, ∫

R
ϕεE′(x)ϕεE(x)dx = δ

(
E − E′

)
,

which fixes the choices for the constants αε,PE and αε,IE . In particular, these constants must
decrease fast enough as E −→ ∞ in order to attenuate the growth of ‖ϕεE( · )‖∞, so as the
identity above can hold.

Therefore, in view of the general solution Ψε(t, · ) = e−
i
ε
tĤΨε

0, we use (7.2.9) to
calculate

e−
i
ε
tĤ =

∫
R
e−

i
ε
tE |ϕεE〉 〈ϕεE | dE,

which carries

(7.2.10) Ψε(t, x) =

∫
R
e−

i
ε
tEϕεE(x) 〈ϕεE ,Ψε

0〉 dE

in the limiting sense of Remark 7.2.1, Ψε
0 = limψn with ψn ∈ H. Otherwise, in a more

rigorous expression:
Ψε(t, · ) = U∗e−

i
ε
t( · )UΨε

0( · ),

where U is the extension to L2(R) of the functionH+ 3 ψ 7−→ ψ̃ ∈ L2(R) given in (7.2.6).

Remark 7.2.3. The calculations above are similar to what we have done in the previous
cases. From (7.2.8) we are able to decompose the L2(R) solution Ψε of (3.1.2) as

Ψε(t, x) =

∫
R
αεE(t)ϕεE(x)dE,

where αεE(t) = 〈ϕεE ,Ψε(t, · )〉. In order to satisfy the Schrödinger equation, however, one
should have, formally,

(iε∂t − E)αεE(t) = 〈ϕεE , (iε∂t − E) Ψε(t, · )〉 =
〈
ϕεE ,

(
Ĥε − E

)
Ψε(t, · )

〉
!

= 0,

which would carry

αεE(t) = e−
i
ε
EtαεE with αεE = 〈ϕεE ,Ψε

0〉 ,

and the final solution (7.2.10).
This calculation is more than merely formal, since step (!) above may be understood as

an extension of (7.2.5) to the whole L2(R), made possible by the fact that the application
ψ 7−→

〈
ϕεE ,

(
Ĥε − E

)
ψ
〉

coincides with the continuous operator 0 all over the dense
subspaceH+.
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7.3 A comment on the classical solutions for V (x) = −|x|

Now let us have a glance on the supposedly classical system with V (x) = − |x|. The
trajectories can be seen in Figure 3.1.1(b), where it becomes apparent that the flow is ill-
defined at the origin. When coming from the right-hand side below, there seems to be two
alternative trajectories after reaching x = 0 with zero momentum: going back to the right
upwards, or crossing to the left downwards. Actually there are infinitely many possibilities,
because between arriving to the origin and leaving it a particle could stay there, say, 17 min-
utes, nothing, or the eternity; not to consider the other infinitely many trajectories coming
from the left-hand side above or those standing on the origin since the beginning and later
starting to move at some moment.

Were we discussing perfectly punctual particles climbing a slope with a perfectly sharp
peak – and were we perfectly classical physicists –, we could argue that in order to preserve
determinism it would be necessary that all trajectories attaining x = 0 with ξ = 0 take to
the same way thereafter. Nevertheless, classical mechanical systems should also present
reversibility, thus a possible solution for it should work with time counted regressively as
well. For a reversible system, two trajectories on the phase space cannot be continued
by the same path, otherwise the reversed system would not be deterministic, nor can they
stop “in the middle of the way” like the branches of parabola coming from the up-left or
down-right and stopping at (0, 0). Clearly, in this situation determinism and reversibility
are incompatible2.

We could, however, consider a weakened version of determinism. Let us imagine that
it were possible to determine the future and past trajectories of a particle given not only its
position and momentum at an initial instant t0, but also these same data during all a previous
duration (t0 − ε, t0]. In this case, one could introduce a selection principle based on the
particle’s history. For example, when examining a particle at the pick: if it were climbing
from the left, let us say that it would be determined to cross the origin and continue down
to the right; the opposite if it were coming from the right; if it were already at the top, then
it would keep laying there.

Such a system is (historically) deterministic and reversible, further to time homoge-
neous. In some sense it is also space homogeneous, considering that the mirrored system
would behave under the same rules as the straight one. Other selection principles could be
thought of, but it could never happen that a moving particle stopped not to move any more.
Should this be the case, after a time t0 + 2ε we would lose the ability to reconstruct the
particle’s past, once we would not know the time it reached the peak, and for the reversed
system it would be impossible to predict its future behaviour, being impossible to say at
which moment the particle would begin its movement (though certain to begin).

If Theorem 3.4.1 dismisses the possibility to reconstruct a classical theory based on se-
lection principles that could be recovered from the quantum one, it is interesting to note that
we have not presented the case of a Wigner measure that really changes from the exterior
flow to the flow on the singular manifold, i.e., we did not present any particle moving and
then stopping at the peak, or stopped thereon and then spontaneously starting to move.

Preliminary calculations gave the impression that, at least for the case of wave packets

2And we have not even considered space and time homogeneity: the particle would need to stop at the top
not to choose one side over the other, but it would not be allowed to stop there, since for the reversed system
this would mean that a particle that lasted at rest for some while would be able to start moving at some preferred
instant even under a constant potential.
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similar to those that we analysed, this would not be possible. This is a point to be remem-
bered in the Conclusion and Perspectives in the end of this thesis.
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Chapter 8

Presenting the problem – periodic
potentials with impurities

Part III of this thesis was a joint work with Dr. Clotilde Fermanian and Dr. Fabricio
Macià, published independently in [32].

8.1 The dynamics of an electron in a crystal and effective mass
theory

The dynamics of an electron in a crystal in the presence of impurities is described by a
wave function Ψ(t, x) that solves the Schrödinger equation

(8.1.1)

{
i~∂tΨ(t, x) = − ~2

2m∆Ψ(t, x) +Qper (x) Ψ(t, x) +Qext(x)Ψ(t, x)

Ψ(0, x) = Ψ0(x).

The potential Qper is periodic with respect to some lattice in Rd and describes the inter-
actions between the electron and the crystal. The external potential Qext takes into account
the effects of impurities on the otherwise perfect crystal. Here, ~ denotes the Planck’s con-
stant and m is the electronic mass. In many cases of physical interest, the ratio between
the lattice’s characteristic length and the mean spacing scale of variation of Qext can be
considered very small, i.e., the impurities can be seen as very dispersed inside the crystal’s
structure.

Denote this ratio by ε. After performing a suitable change of units and rescaling the
external potential and the wave function (see for instance [96]), the Schrödinger equation
becomes:

(8.1.2)

{
i∂tψ

ε(t, x) = −1
2∆ψε(t, x) + 1

ε2
Vper

(
x
ε

)
ψε(t, x) + V (x)ψε(t, x)

ψε(0, x) = ψε0(x),

where the potential Vper is periodic with respect to a fixed lattice in Rd, which will be
assumed Zd for the sake of simplicity.

In this context, the theory of effective mass consists in showing that, under suitable
assumptions on the initial data ψε0, the solutions of (8.1.2) can be approximated for ε small

89
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by those of a simpler Schrödinger equation, the effective mass equation, which is of the
form:

(8.1.3) i∂tφ(t, x) = −1

2
M∂x � ∂x φ(t, x) + V (x)φ(t, x),

with some initial datum to be discussed later.
Above, M is a d× d matrix called the effective mass tensor. This quantity is obtainable

experimentally and can be used to study the effects of impurities on the electronic dynamics.
Both the questions of finding the initial conditions for which the corresponding solutions
of (8.1.2) converge in a suitable sense to solutions to the effective mass equation and that
of clarifying the dependence of M on the sequence of initial data ψε0 have been extensively
studied in the literature[6, 19, 22, 64, 96].

Besides, another scaling limit that has been widely studied in this field is the semiclas-
sical limit[5, 20, 27, 37, 56, 58, 65, 93, 96], which deals with the behaviour as ε −→ 0 of
solutions to the semiclassical Schrödinger equation

(8.1.4)

{
iε∂tv

ε(t, x) = − ε2

2 ∆vε(t, x) + Vper

(
x
ε

)
vε(t, x) + ε2V (x)vε(t, x)

vε(0, x) = ψε0(x),

whose characteristic wave lengths are comparable to ε. Again, the interested reader can
consult [96] for details on the well known derivation of (8.1.4) from (8.1.1). Anyway, it is
easy to check that the solutions to (8.1.2) and (8.1.4) are related through the identity

(8.1.5) ψε(t, x) = vε
(
t

ε
, x

)
,

so, at least formally, one should be able to recover the effective mass equation (8.1.3) by
performing the semiclassical limit ε −→ 0 in (8.1.4) simultaneously with t

ε −→ +∞.

Remark 8.1.1. When the periodic potential is absent, this type of simultaneous limit, com-
bining high frequencies ε −→ 0 and long times t ∼ tε −→ +∞ is relevant if one wants
to understand the behaviour of solutions of (8.1.4) beyond the Ehrenfest time[10, 78, 80].
Also, again when Vper = 0, the change of time scale (8.1.5) transforms the semiclassical
equation (8.1.4) into the non-semiclassical one (this is, with ε = 1), making it possible
to derive results on the long time dynamics of the ordinary Schrödinger equation via this
scaling limit[11, 12, 14, 77]. The reader can consult the survey articles [13, 79] and the
introductory lecture notes [76] for additional details and references about this approach.

Our goal in this part of the thesis is to apply the aforementioned point of view to the
effective mass theory by studying the asymptotic behaviour of position densities |ψε|2. Nev-
ertheless, unlike in Part II here the potentials also depend on the semiclassical parameter ε,
which will require us to use a technique that, so as to say, separates the effects of the peri-
odic and the non-periodic potentials, i.e., separates the normal electron’s behaviour in the
lattice from the perturbation it suffers from the impurities.

8.2 The Bloch-Floquet decomposition

This kind of analysis of Schrödinger operators with periodic potentials can be traced
back to the works by Floquet[51] on ordinary differential equations with periodic coeffi-
cients, and by Bloch[25], who developed a spectral theory of periodic Schrödinger oper-
ators in the context of solid state physics. As we will see, the Bloch-Floquet theory also
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applies to perturbed periodic Hamiltonian operators

Ĥ = −ε
2

2
∆x + Vper

(x
ε

)
+ ε2V (x),

in which we are presently interested1.
The idea is based on the assumption that the solutions of (8.1.2) depend on both the

“slow” x and the “fast” x
ε variables, leading to the following Ansatz on the form of the

solutions ψε of (8.1.2):

(8.2.1) ψε(t, x) = U ε
(
t, x,

x

ε

)
,

where U ε(t, x, y) is assumed to be Zd-periodic with respect to the variable y and, therefore,
can be identified to a function defined on R× Rd × Td, Td denoting the torus Rd/Zd. One
easily checks that U ε must solve the following equation:

(8.2.2)

{
iε2∂tU

ε(t, x, y) = − 1
2
(ε∂x + ∂y)2Uε(t, x, y) + Vper(y)Uε(t, x, y) + ε2V (x)Uε(t, x, y)

Uε(0, x, y) = ψ̃ε0(x, y),

where the initial condition is to be interpreted in terms of the natural embedding L2(Rdx) ↪→
L2(Rdx×Tdy), ψ̃ε0(x, y) = ψε0(x) ∀y ∈ Td. The fact that ψε must be given by (8.2.1) follows
from the unicity of the solutions to the initial value problem (8.1.2).

Now, concerning the Fourier transform of U ε with respect to x,

Û ε(t, ξ, y) =

∫
Rd
e−iξ�x U ε(t, x, y) dx,

the equation that it satisfies involves the following family of operators acting on Zd-periodic
functions2

(8.2.3) P (εξ) =
1

2
(εξ − i∂y)2 + Vper, ξ ∈ Rd.

As it is usual for Schrödinger-like operators on compact domains, P (ξ) is self-adjoint on
L2(Td); it has therefore a compact resolvent and a non-decreasing sequence of eigenvalues
called Bloch energies,

λ1(ξ) 6 λ2(ξ) 6 · · · 6 λn(ξ) 6 · · · −→
n→∞

+∞,

associated to an orthonormal basis of L2(Td) consisting of eigenfunctions ϕn(ξ, ·) called
Bloch waves,

P (ξ)ϕn(ξ, y) = λn(ξ)ϕn(ξ, y) for y ∈ Td.

Moreover, the Bloch energies λn(ξ) are 2πZd-periodic3, whereas the Bloch waves satisfy

ϕn(ξ + 2πk, y) = e−2πik�yϕn(ξ, y) ∀k ∈ Zd.
1See for instance [69, 70, 71, 98] and the references therein, or [59, 64, 92] for results in the semiclassical

context.
2Alternatively, one can simply check that Ĥψε = (P (ε∂x) + V )Uε|y= x

ε
.

3This follows from the fact that for every k ∈ Zd, the operator P (ξ + 2πk) is unitary equivalent to P (ξ)
since P (ξ + 2πk) = e−2πik�yP (ξ)e2πik�y .
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Remark 8.2.1. It is proved in [110] that the Bloch energies λn are continuous and piecewise
analytic functions4 of ξ ∈ Rd, and that the Bloch waves can be chosen in such a way that
there exists a subsetZ of the domain B = [−π, π)d (called Brillouin zone) of zero Lebesgue
measure such that each function ξ 7−→ ϕn(ξ, · ) is analytic in B\Z . If the multiplicity of the
family of eigenvalues (λn(ξ))ξ∈Rd is constant, then λn is globally analytic; further, it will
be possible to find an orthonormal eigenbasis consisting of functions whose dependence on
ξ is also analytic.

Naturally, the spectral structure of P (εξ) leads to the representation:

Û ε(t, ξ, y) =
∑
n∈N

ϕn(εξ, y)Û εn(t, ξ) with Û εn(t, ξ) =

∫
Td
ϕn(εξ, y) Û ε(t, ξ, y)dy

pointwisely in ξ, or, at least formally:

(8.2.4) U ε(t, x, y) =
∑
n∈N

ϕn(ε∂x, y)U εn(t, x)

with

(8.2.5) U εn(t, x) =

∫
Td
ϕn(ε∂x, y)∗ U ε(t, x, y)dy,

where, for each y ∈ Td and n ∈ N, ϕn(ε∂x, y) is the pseudodifferential operator of symbol
ξ 7−→ ϕn( ·, y) defined in (2.1.1), and ϕn(ε∂x, y)∗ is its adjoint.

Equation (8.2.4) is called the Bloch-Floquet decomposition of U ε, and its terms in
(8.2.5) are the Bloch modes ([55, 59]). It is thus clear that the aimed solution ψε can be
formally given as

(8.2.6) ψε(t, x) =
∑
n∈N

ϕn

(
ε∂x,

x

ε

)
U εn(t, x),

so the only thing that still remains to be obtained are the Bloch modes U εn. The precise sense
in which the series in (8.2.4) converges will be presented ahead in Proposition 10.2.11,
whereas the sum in (8.2.6) will be shown in equation (10.2.18) to converge in L2(Rd) for
each t ∈ R, if some requirements on U ε are fulfilled.

Well, since U ε solves (8.2.2), we will be able to prove with a calculation analogous to
that in Lemma 10.2.12:

Proposition 8.2.2. For each n ∈ N, the functions U εn satisfy:

(8.2.7) U εn(t, · ) = uεn(t, · ) +O(ε|t|) in L2(Rd),

where uεn are the solutions to:

(8.2.8)

{
iε2∂tu

ε
n(t, x) = λn(ε∂x)uεn(t, x) + ε2V (x)uεn(t, x)

uεn(0, x) =
∫
Td ϕn(ε∂x, y)∗ψ̃ε0(x, y)dy.

4In the real analytic sense that they allow an expansion in terms of power series within the compacts of Rd.
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This is an adiabatic result, in the sense that it guarantees that the time evolution of each
Bloch mode will be independent of the other modes up to a small error in L2(Rd) norm that
further disappears in the semiclassical limit.

In short, the solutions of (8.1.2) can be decomposed as a countable superposition of
waves whose dependence on the fast variable is given by the Bloch waves, while the profiles
uεn describing (approximatively) the dependence on the slow variable are given by a time
evolution (8.2.8) whose dispersion involves the corresponding Bloch energy. Consequently,
we will be supposed to analyse the concentration of quantities |uεn|

2, which will be done
in Chapter 9, and then to somehow transpose them to |ψε|2, in Chapter 10. this approach
follows the guidelines in [10, 12, 77]. Let us briefly describe them in the next sections.

8.3 Lacks of mass dispersion

As the previous discussion shows, one of the main steps in understanding the asymptotic
behaviour as ε −→ 0 of solutions to the Schrödinger equation (8.1.2) relies on the analysis
of solutions to an equation of the form:

(8.3.1)

{
iε2∂tu

ε(t, x) = λ(ε∂x)uε(t, x) + ε2V (x)uε(t, x)

uε(0, x) = uε0(x),

which ceases to be dispersive as soon as λ has non-zero critical points ∇λ(ξ) = 0. Notice
that this is always the case for Bloch energies, as they are periodic in ξ.

One of the consequences of a dispersive time evolution is regularizing the high fre-
quency effects caused by the concentration of initial data that arise when keeping εξ 6= 0
constant when ε −→ 0, what in many cases has been made precise by establishing smooth-
ing estimates5 for the family of solutions uε[21, 35, 66, 68, 102, 107].

Consequently, the equation’s lack of dispersiveness should cause a lack of regularization
for the Bloch modes. In Remark 8.3.3 below, we will give a tiny insight of how, in the
presence of critical points, some of these high frequency anomalies persist after evolving
the initial data through (8.3.1).

These results are of independent interest, so we will expose them separately in Theorems
8.3.1 and 8.3.4, where we will completely describe the asymptotic behaviour of densities
|uε|2 associated to a bounded sequence (uε)ε>0 of solutions to (8.3.1) by giving an explicit
procedure to compute all accumulation points of |uε|2 (in the weak topology) at any time,
by just starting from the sequence of initial data uε0.

Let us consider the following hypotheses:

H0 The sequence uε0 is uniformly bounded in L2(Rd) and ε-oscillating, in the sense that
its energy is concentrated on frequencies of order at most 1

ε :

(8.3.2) lim sup
ε→0

∫
‖ξ‖>R

ε

|ûε0(ξ)|2 dξ −→
R→∞

0.

This assumption is necessary if we are to obtain the limit measures of |uε|2 by pro-
jecting Wigner measures of uε over the space of positions, as explained in Chapter 2,
equations (2.2.6) and (2.2.7).

5Generally, a smoothing estimate for Ψ ∈ L∞
(
R, L2(Rd)

)
is an inequality of type ‖Ψ‖L1(Υ,Hs(Rd)) 6

CΥ ‖Ψ0‖L2(Rd) for some s > 0, where CΥ > 0 is a constant for each Υ ⊂ R compact.
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H1 V ∈ C∞(Rd) is bounded together with its derivatives, and λ ∈ C∞(Rd) grows at
most polynomially, i.e. there exist C,N > 0 such that:

|λ(ξ)| ≤ C(1 + |ξ|)N ∀ξ ∈ Rd.

These requirements settle us on a comfortable frame of Schrödinger problems and
might be weakened "on demand" depending on the concrete situations, provided that
one does not infringe basic restrictions, like having under-quadratic potentials.

w-H2 The set
Λ =

{
ξ ∈ Rd : ∇λ(ξ) = 0

}
is a submanifold ofRd of codimension 0 < p ≤ d and the Hessian∇2λ is of maximal
rank over Λ. Moreover, each connected component of Λ is compact.

Last hypothesis can be replaced by a stronger version that yields a simpler result:

s-H2 All critical points of λ are non-degenerate, i.e.,∇2λ(ξ) is a non-degenerate quadratic
form for every ξ ∈ Λ. This implies that p = d and, therefore, that Λ is a discrete set6

in Rd.

The necessity of at least w-H2 will be made clear in Section 11.2, Chapter 11, where
we will give examples of distinct behaviours that the concentrated measures can present if
the Hessian of λ is not of full rank over Λ. In short, the effective mass results are about
the operator-valued measure in the two-microlocal decomposition of the Wigner measure;
assumptions s-H2 or w-H2 assure us that the measure in sphere will be null, so we will be
left solely with this operator term obeying to effective mass equations.

Theorem 8.3.1. Suppose that the family of initial data (uε0)ε>0 verifies H0 and denote by
uε the corresponding solutions of (8.3.1). Suppose in addition that H1 is verified and that
all critical points of λ are non-degenerate (s-H2).

Then, there exists a sequence (εk)k∈N tending to 0 such that, for every φ ∈ C∞0 (R×Rd),
the following holds:

(8.3.3) lim
k−→∞

∫
R×Rd

φ(t, x)|uεk(t, x)|2dxdt =
∑
ξ0∈Λ

∫
R×Rd

φ(t, x)|uξ0(t, x)|2dxdt,

where uξ0 solves the Schrödinger equation with effective mass:

(8.3.4)

 i∂tuξ0(t, x) = −1
2∇

2λ(ξ0)∂x � ∂x uξ0(t, x) + V (x)uξ0(t, x)

uξ0 (0, · ) = w limk→∞

(
e
− i
εk
ξ0�xuεk0

)
,

this L2(Rd) weak limit being unique.
Finally, if Λ = ∅, then the right-hand side of (8.3.3) is equal to zero.

Remark 8.3.2. Since L2(Rd) is reflexive, the weak and the weak-∗ topologies thereon co-
incide, which assures the existence of weak limits for the family

(
e−

i
ε
ξ0·xuε0

)
ε>0

, given

the Banach-Alaoglou theorem. Above, the unicity comes from the fact that we choose se-
quences (εk)k∈N with the very purpose to get the particular limits uξ|t=0 this family may
give, so the concentration of uε may happen in as many different ways as there are different
weak limits. This should become clear during the theorem’s proof.

6If moreover one has that λ is 2πZd-periodic, which is the situation when λ is a Bloch energy, then this set
is finite modulo Zd.
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Remark 8.3.3. Let us now illustrate how Theorem 8.3.1 raises obstructions to the validity
of smoothing estimates in the presence of non-zero critical points (although such estimates
remain still valid away from the critical points[99]).

Assume that there exists a non-zero ξ0 ∈ Λ and take a family (uε)ε>0 of solutions to
(8.3.1) with initial data uε0 = e

i
ε
ξ0�xθ(x), where θ ∈ C∞0 (Rd) is such that ‖θ‖L2(Rd) = 1.

Assume further that, for any t ∈ R, (uεt )ε>0 tends weakly to zero in L2(Rd). Theorem 8.3.1
states that the limit of the densities |uε|2 is precisely |uξ0 |2, which is not identically zero,
since here we have uξ0(0, · ) = θ 6= 0; consequently, there exists φ ∈ C∞0 (R × Rd) such
that:

(8.3.5) lim
k−→∞

∫
R×Rd

φ(t, x)|uεk(t, x)|2dxdt 6= 0.

On the other hand, we have:∣∣∣∣∫
Rd
φ(t, x)|uε(t, x)|2dx

∣∣∣∣ =

∣∣∣∣∣
∫
‖ξ‖6R

φ̂t ∗ ûεt (ξ) ûεt (ξ)dξ +

∫
‖ξ‖>R

1

〈ξ〉s
φ̂t ∗ ûεt (ξ)〈ξ〉

s
ûεt (ξ)dξ

∣∣∣∣∣
6 |〈Kφtu

ε
t , u

ε
t 〉|+

1

Rs
‖φ‖L∞(R×Rd) ‖u

ε
0‖L2(Rd) ‖u

ε
t‖Hs(Rd) ,

where Kφt is a compact operator on L2(Rd). Since the solutions uε(t, · ) tend weakly to
0 for all t ∈ R, one knows that 〈Kφu

ε
t , u

ε
t 〉 −→ 0 as ε −→ 0; therefore, if a smoothing

estimate of the form ‖uε‖L1(Υ,Hs(Rd)) 6 CΥ‖uε0‖L2(Rd) held uniformly in ε for some
s > 0, we would have:∣∣∣∣ lim

k−→∞

∫
R×Rd

φ(t, x)|uεk(t, x)|2dxdt
∣∣∣∣ 6 O( 1

Rs

)
.

The choice of R being arbitrarily large, the left hand side above would need to be null for
every φ ∈ C∞0 (R× Rd), a contradiction with (10.2.17).

The result obtained when the non-degeneracy of the critical points is replaced by the
weaker condition w-H2 is similar, but then it comes up in a continuous version, which
will require some geometric preliminaries. For instance, the sum over the discrete critical
points will be replaced by an integral over the cotangent bundle of Λ, and (8.3.4) becomes a
Heisenberg equation for a time-dependent family of operators acting on functions over the
manifold’s conormal bundle.

So, define the cotangent bundle of Λ as:

T ∗Λ = {(x, ξ) ∈ Rd × Λ : x ∈ T ∗ξ Λ},

and the conormal bundle of Λ as the union of those linear subspaces that are normal to Λ
within Rd:

N∗Λ = {(y, ξ) ∈ Rd × Λ : y ∈ N∗ξ Λ = (T ∗ξ Λ)⊥}.

This is in nothing different from the usual definitions of T ∗Λ and of N∗Λ by quotienting its

fibres, N∗ξ = T ∗ξ Rd�T ∗ξ Λ, and the use of the cotangent and conormal bundles instead of the

tangent and the normal ones is justified by the fact that we will be working on submanifolds
of the phase space.
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Besides, every point x ∈ Rd can be uniquely written as x = z + y, where z ∈ T ∗ξ Λ

and y ∈ N∗ξ Λ. Thus, given a function φ ∈ L∞(Rd), we define the multiplication operator

mφ(z, ξ) ∈ L
(
L2
(
N∗ξ Λ

))
by:

mφ(z, ξ)ψ(y) = φ(y + z)ψ(y) ∀ψ ∈ L2
(
N∗ξ Λ

)
.

Note as well that w-H2 implies that, for every ξ ∈ Λ, the Hessian ∇2λ(ξ) is an invertible
operator on N∗ξ Λ.

Theorem 8.3.4. Let (uε0)ε>0 be a sequence of initial data satisfying H0 and denote by uε

the corresponding solutions of (8.3.1). If H1 and w-H2 hold, then there exists a sequence
(εk)k∈N tending to 0, a positive measure γ ∈ M(T ∗Λ) and a measurable family of self-
adjoint, positive, trace-class operators

M0 : T ∗Λ 3 (z, ξ) 7−→M0(z, ξ) ∈ L
(
L2(N∗ξ Λ)

)
, trL2(N∗ξΛ)M0(z, ξ) = 1,

such that, for every φ ∈ C∞0 (R× Rd), one has:

(8.3.6) lim
k−→∞

∫
R×Rd

φt(x)|uεk (t, x)|2dxdt =

∫
R×T∗Λ

tr
L2
(
N∗
ξ

Λ
) (mφt(z, ξ)M(t, z, ξ)) γ(dz, dξ)dt,

where the C
(
R,L

(
L2(N∗ξ Λ)

))
function t 7−→ M(t, z, ξ) solves the following Heisen-

berg equation with effective mass:

(8.3.7)

{
i∂tM(t, z, ξ) =

[
−1

2∇
2λ(ξ)∂ � ∂ +mV (z, ξ) , M(t, z, ξ)

]
M(0, z, ξ) = M0(z, ξ).

Here, M0 = M0γ is the operator-valued two-microlocal measure of the family (uεk0 )k∈N
over Λ.

Remark 8.3.5. As in Remark 8.3.2, the measure γ and the family of operators M0 only de-
pend on the sequence (εk)k∈N, which is actually chosen in function of the possible limiting
microlocal measures one can have. Furthermore, observe that γ and M are respectively the
scalar measure and the operator-valued function into which the operator-valued microlocal
measure decomposes according to the Radon-Nikodym theorem; see Remark 9.1.4 ahead.

Remark 8.3.6. Let us emphasise the equivalence between Theorems 8.3.1 and 8.3.4 when
Λ has dimension 0, i.e., when it is the union of some discrete points. In this case, T ∗Λ =
{0} × Λ and the measure γ (that will not be on z) turns out to be

γ(ξ) =
∑
ξ0∈Λ

αξ0δ(ξ − ξ0), with αξ0 = ‖uξ0 (0, · )‖2L2(Rd) .

In addition, N∗ξ Λ = Rd and the operator M(t, ξ) (which again does not depend on z)
becomes the orthogonal projection onto uξ(t, ·) in L2(Rd), where, we recall, uξ solves the
Schrödinger equation (8.3.4). Of course, these projections satisfy the Heisenberg equation
(8.3.7).
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8.4 The full effective mass equations

Theorems 8.3.1 and 8.3.4 fully describe the concentration of solutions to (8.3.1) – which
has an interest in itself – and give effective mass equations for electrons in a crystalline
lattice with initial states consisting of a sole Bloch mode.

It is not obvious that, for a superposition of the kind (8.2.6) that corresponds to electrons
in general initial states, the result would be a sum over the particular measures linked to each
mode, since neither the semiclassical measures nor the quadratic forms |uε|2 are linear. Yet,
under simple additional assumptions this is verified, what indicates that the interference
terms between the different modes can be neglected in the semiclassical limit.

Basically, we will only need to impose that the Bloch energies have constant multiplicity
and that the full initial state ψε is ε-oscillating in a sense strictly stronger than usual. Thus,
for every n ∈ N and Ψ ∈ L2(Rd × Td), define

(8.4.1) P εϕnΨ(x, y) = ϕn (ε∂x, y)

∫
Td
ϕn(ε∂x, z)

∗ ψ(x, z) dz

and, for every distinct Bloch eigenvalue λj , construct the Bloch spectral projector

(8.4.2) Πε
λj

=
∑

P (ξ)ϕn(ξ,· )=λj(ξ)ϕn(ξ,· )

P εϕn .

Accordingly, denote by I ⊂ N the set of indices n such that the multiplicity of the
Bloch energies λn(ξ) as eigenvalues of P (ξ) is constant for every ξ ∈ Rd, so they do not
cross; recall that this implies that λn are real analytic[110] for any n ∈ I . Hereafter, we
will relabel these indices so as to have 1, 2, ..., n, ... ∈ I and

λ1(ξ) < λ2(ξ) < · · · < λn(ξ) < · · · → ∞.

Observe that these inequalities and the fact that the Bloch energies are continuous and peri-
odic imply that they are well separate, i.e., given j, l ∈ I , j 6= l, then:

(8.4.3) inf
ξ∈Rd
|λj(ξ)− λl(ξ)| > 0.

The fundamental new hypothesis reads:

H0’ For some r > d, the family of initial data (ψε0)ε>0 is strongly ε-oscillating of order r:

∃C > 0 : ∀ε > 0, ‖ 〈ε∂x〉r ψε0 ‖L2(Rd) 6 C,

and its energy is concentrated on the well separate Bloch eigenvalues:

(8.4.4) ψε0(x) =
∑
j∈I

Πε
λj
ψ̃ε0

(
x,
x

ε

)
+ rε(x),

with ‖rε‖L2(Rd) −→ 0 as ε −→ 0.

Remark 8.4.1. See Remarks 10.2.1 and 10.2.18 for, respectively, an enlightening comment
on the definition of strong ε-oscillation and its precise need in our analysis.

In what follows, we shall denote by Λj ⊂ Rd the set of critical points of the Bloch
eigenvalue λj(ξ) for j ∈ N.
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Theorem 8.4.2. Assume H0’ and H1 and suppose that, for any j ∈ I , w-H2 holds indi-
vidually for the Bloch energies λj . Then there exists a sequence (εk)k∈N tending to 0 and,
for every j ∈ I , positive measures γj ∈M(T ∗Λj) and a measurable family of self-adjoint,
positive, trace-class operators

M0,j : T ∗Λj 3 (z, ξ) 7−→M0,j(z, ξ) ∈ L(L2(N∗ξ Λj)), trL2(N∗ξΛj)M0,j(z, ξ) = 1,

such that, for every φ ∈ C∞0 (R× Rd), one has:
(8.4.5)

lim
k→∞

∫
R×Rd

φt(x)|ψεk (t, x)|2dxdt =
∑
j∈I

∫
R×T∗Λj

tr
L2
(
N∗
ξ

Λj

) (mφt(z, ξ)Mj(t, z, ξ)) γj(dz, dξ)dt,

where the C
(
R,L

(
L2(N∗ξ Λ)

))
functions t 7−→ Mj(t, z, ξ) solve the following Heisen-

berg equation with effective mass:

(8.4.6)

{
i∂tMj(t, z, ξ) =

[
−1

2∇
2λj(ξ)∂ � ∂ +mV (z, ξ) , Mj(t, z, ξ)

]
Mj(0, z, ξ) = M0,j(z, ξ).

Here,M0,j = M0,jγj forms the operator-valued microlocal measure of the family
(
ψεk0,j

)
k∈N

over Λj , where ψε0,j(x) = Πε
λj
ψ̃ε0
(
x, xε

)
.

Re-writing Theorem 8.4.2 in the special case where the Bloch eigenvalues λj(ξ) have a
finite set of critical points:

Theorem 8.4.3. Assume H0’, H1, and that s-H2 holds for any Bloch eigenvalue λj , j ∈ I .
Then there exists a sequence (εk)k∈N tending to 0 such that, for every φ ∈ C∞0 (R × Rd),
the following holds:

(8.4.7) lim
k→∞

∫
R×Rd

φ(t, x)|ψεk(t, x)|2dxdt =
∑
j∈I

∑
ξ0∈Λj

∫
R×Rd

φ(t, x)|ψξ0(t, x)|2dxdt,

where, for any ξ0 ∈ Λj , ψξ0 solves the Schrödinger equation with effective mass:

(8.4.8)

{
i∂tψξ0(t, x) = −1

2∇
2λj(ξ0)∂x � ∂x ψξ0(t, x) + V (x)ψξ0(t, x)

ψξ0 (0, · ) = w lim
(
e
− i
εk
ξ0·xψεk0,j

)
,

this L2(Rd) weak limit being unique, with ψε0,j(x) = Πε
λj
ψ̃ε0
(
x, xε

)
.

As we can see, in Theorems 8.3.4 and 8.4.2 the time evolution of the weak limits of |ψε|2
is given by the natural Heisenberg dynamics of the microlocal measure with effective mass
given by the Bloch energy, one only needing as an input some initial value for the measure.
In the simplified cases stated in 8.3.1 and 8.4.3, the picture is even more favourable, for one
can work directly with some weak limits of ψε that obey to a Schrödinger equation with
effective mass tensor given, again, by the Bloch energy.

In Chapter 11, we will perform some explicit calculations in order to analyse the differ-
ent behaviours that can show up in cases where the Hessian ∇2λ is or is not full rank. We
hope that they will enlighten these theorems’ applications, that are not as hard as they seem
from their statements.



Chapter 9

Analysis of the Bloch modes

9.1 Localization over Λ

We will now consider Wigner distributions associated to solutions of the evolution equa-
tion:

(9.1.1) iε2∂tu
ε(t, x) = λ(ε∂x)uε(t, x) + ε2V (x)uε(t, x) + ε3gε(t, x),

where V and λ satisfy hypothesis H1 and ‖gε(t, ·)‖L2(Rd) is locally ε-uniformly bounded
in t. We shall see in Chapter 10 that the analysis of the full Bloch decomposition reduces to
analysing each of its modes satisfying an equation of the form (9.1.1).

It turns out that (9.1.1) is semiclassically very similar to equation (2.2.18) studied in
the introductory Chapter 2: the terms ε2V will produce terms of order ε3 when commuted
with pseudodifferential operators with smooth compactly supported symbols and ε3gε will
be negligible anyway, so we should expect to have the Wigner measures linked to the con-
centration of uε obeying to the same invariance properties we depicted in Section 2.2.3 for
b(x, ξ) = λ(ξ).

Indeed, the flow induced by this symbol on the phase space, Φs(x, ξ) = (x+s∇λ(ξ), ξ),
leaves the semiclassical measures invariant, so they will not charge the regions where Φ is
dispersive in the sense of Chapter 2, i.e., where ∇λ(ξ) 6= 0.

Let us re-state this fact and prove it directly:

Proposition 9.1.1. Let be µ a semiclassical measure linked to a family (uε)ε>0 of solutions
to (9.1.1) and do µ = µtdt. Then, for almost every t ∈ R, one has:

suppµt ⊂ Λ = {(x, ξ) ∈ Rd × Rd : ∇λ(ξ) = 0}.

Proof. In view of Lemma 2.2.6, it is sufficient to show that, for almost every t ∈ R, the
measure µt is invariant by Φs(x, ξ) = (x+ s∇λ(ξ), ξ). This means that, for every Borelian
function a on R2d one has, for any s ∈ R,∫

R2d

a ◦ Φs(x, ξ)µt(dx, dξ) =

∫
R2d

a(x, ξ)µt(dx, dξ).

It is enough to show that, for any a ∈ C∞0 (R2d) and Ξ ∈ C∞0 (R),

(9.1.2)
∫
R×R2d

Ξ(t)

〈
opε

(
d

ds
a ◦ Φs(x, ξ)

∣∣∣∣
s=0

)
uεt , u

ε
t

〉
dt −→

ε→0
0

99
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(the reason why we only need to prove it at s = 0 is explained in the proof of Proposition
2.2.4).

Moreover, note that

d

ds
a ◦ Φs(x, ξ)

∣∣∣∣
s=0

= ∇ξλ(ξ) �∇xa(x, ξ) = {λ(ξ) , a(x, ξ)},

thus, from (2.1.4) we get

(9.1.3) opε

(
d

ds
(a ◦ Φs)

∣∣∣∣
s=0

)
=
i

ε
[λ(ε∂x) , opε(a)] +OL(L2(Rd))(ε)

and, using the fact that uε solves (9.1.1):

i

ε

∫
R

Ξ(t) 〈[λ(ε∂x) , opε(a)]uεt , u
ε
t 〉 dt = −ε

∫
R

Ξ(t)
d

dt
〈opε(a)uεt , u

ε
t 〉 dt+O(ε)

= ε

∫
R

Ξ′(t) 〈opε(a)uεt , u
ε
t 〉 dt+O(ε)

= O(ε).(9.1.4)

This estimate and identity (9.1.3) show that (9.1.2) holds, hence the proposition.

This fact is a restriction that the dynamics of uε imposes over the measures to which
these functions may concentrate: in the region in the phase space where equation (9.1.1) is
dispersive, the energy of a family (uε)ε>0 solving (9.1.1) must vanish.

In addition, concentration on a submanifold of the phase space is a clue that one should
analyse rather the two-microlocal measures instead of the Wigner ones; in particular, Propo-
sition 9.1.1 does not explain how the measures µt depend on the sequence of initial data uε0.
Unlike in Part II, where this involved the semiclassical measures µ0 of the sequence of
initial data, that were then transported by some phase space flow, here this dependence is
bounded to the underlying two-microlocal structure of the measures – in Example 11.1.2,
Chapter 11, we will produce sequences of initial data having the same semiclassical mea-
sure, but such that their time dependent measures differ. This kind of behavior was first
remarked in the case of the Schrödinger equation on the torus[77, 78].

Similar to what we have done in Part II are the guidelines to analyse the two-microlocal
measures. Relying on Proposition 2.3.1 duly adapted, we will need to understand the geo-
metric nature of the manifold Λ and choose a suitable set of coordinates wherein it coincide
locally with a subspace of Rd.

Thus, let us work out the two-microlocalization in our specific context by re-stating,
mutatis mutandis, Proposition 2.3.1. First, redefine the symbol class S(p) as composed by
symbols a ∈ C∞(R2d+p) such that

• For each ρ ∈ Rp, (x, ξ) 7−→ a(x, ξ, ρ) is compactly supported on R2d
x,ξ.

• There exists some R0 > 0 and a function a∞ ∈ C∞(R2d × Sp−1) such that, for
‖ρ‖ > R0, one has a(x, ξ, ρ) = a∞

(
x, ξ, ρ

‖ρ‖

)
.

These symbols will be quantized as

op]ε(a(x, ξ, ρ)) = opε

(
a

(
x, ξ,

ξ′′

ε

))
;

as before, the right-hand term above is just the banal quantization of a ε-dependent R2d

function as in (2.1.1).



9.2. THE CASE DIM Λ = 0 101

Proposition 9.1.2. There exists a measure ν onR×R2d−p×Sp−1 and a trace class operator
valued measure M on R×R2(d−p), both positive, such that, for a ∈ S(p) and Ξ ∈ C∞0 (R),

sc lim

∫
R

Ξ(t)
〈

op]ε(a)Ψε
t , Ψε

t

〉
dt =

〈
µ(t, x, ξ)11{ξ′′ 6=0} ,Ξ(t) a∞

(
x, ξ,

ξ′′

‖ξ′′‖

)〉
R×R2d

+ 〈 δ(ξ′′)⊗ ν(t, x, ξ′, ω) ,Ξ(t) a∞ (x, ξ, ω) 〉R×R2d×Sp+1

+ tr 〈M(t, x′, ξ′) , Ξ(t) aw (x′, y, ξ′, 0, ∂y) 〉R×R2(d−p) ,(9.1.5)

where aw(x′, y, ξ′, 0, ∂y) is the Weyl quantization of the symbol (y, ζ) 7−→ a(x′, y, ξ′, 0, ζ)
with ε = 1 and µ is the usual Wigner measure related to Ψε.

The terms in (2.3.1) are obtained respectively from those in the decomposition

(9.1.6) a(x, ξ, ρ) = a(x, ξ, ρ)

(
1− χ

(
ξ′′

δ

))
+ a(x, ξ, ρ)

(
1− χ

( ρ
R

))
χ

(
ξ′′

δ

)
+ a(x, ξ, ρ)χ

( ρ
R

)
in the limit when ε −→ 0, then R −→ ∞, and last δ −→ 0, where χ is a cut-off function

such that 0 6 χ 6 1, χ(ξ′′) = 1 for ‖ξ′′‖ < 1
2 and χ(ξ′′) = 0 for ‖ξ′′‖ > 1.

Remark 9.1.3. A fact analogous to that exposed in Remark 2.3.2 is still valid. There, in the
case where p = d, we had that for any compact operator T , tr (TM) = 〈TΨ,Ψ〉, with Ψ
a weak limit of the family (Ψε)ε>0 linked to the measure M . Here one should replace Ψ
by its Fourier transform Ψ̂. It is this simplification that allows Theorems 8.3.4 and 8.4.2 to
have their short versions 8.3.1 and 8.4.3.

Remark 9.1.4. Since M is absolutely continuous with respect to the Lebesgue measure
dt1, one has M = Mtdt, where each Mt is an operator-valued measure. Moreover, the
Radon-Nikodym theorem allows us to decompose these Mt as an operator-valued function
M(t, · ) and scalar measures γt, whence Mt(x

′, ξ′) = M(t, x′, ξ′)γt(x
′, ξ′)dt. We will see

in Proposition 9.4.8 that the dependence on t can be conveniently stripped off from the
measure part γ. Last, remark that this decomposition is not unique, since given any C > 0,
the pair CM and 1

C γ also works.

9.2 The case dim Λ = 0

In this section we will prove Theorem 8.3.1. Even though it is a particular case of 8.3.4,
its proof is far simpler and enlightens the way one obtains discrete results in microlocal
analysis.

Supposing H1 and s-H2, Λ is a finite set of isolated critical points of λ. Letting µ be the
semiclassical measure linked to the family (uε)ε>0 through some subsequence, Proposition
9.1.1 gives

(9.2.1) µ =
∑
ξ0∈Λ

µ11{ξ=ξ0},

so we basically need to microlocalize the Wigner measure over each affine space {ξ = ξ0}
and study the corresponding measures νξ0 and Mξ0 . Strictly speaking, we should perform
a variable change that consists of a translation ξ 7−→ ζ + ξ0 so that these spaces become
vectorial, {ζ = 0}, but if we simply redefine

op]ε(a(x, ξ, ρ)) = opε

(
a

(
x, ξ,

ξ − ξ0

ε

))
,

1For so are the Wigner measures µ, what extends to the two-microlocal measures ν∞ and M by positivity.
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then the effect is exactly the same and decomposition (9.1.6) will give the microlocal mea-
sures νξ0 and Mξ0 that we want in the limits ε −→ 0, R −→∞ and δ −→ 0.

Below, we present some results about the two-microlocal measures for uε solving equa-
tion (9.1.1).

Lemma 9.2.1. Write Mξ0(t) = Mξo(t)dt. Then the function R 3 t 7−→ Mξ0(t) into the
trace class operators equipped with the weak topology is continuous.

Proof. From the Ascoli-Arzelà theorem, it is sufficient to prove that

R 3 t 7−→ Iε,R(t) =
〈

op]ε

(
a(x, ξ, ρ)χ

( ρ
R

))
uεt , u

ε
t

〉
∈ R

is equibounded and equicontinuous with respect to ε and R. Equiboundedness is obvious
from (2.1.2) and the boundedness of the family uε uniformly in ε; for equicontinuity, ob-
serve that

(9.2.2) Iε,R(t) = 〈op1 (aεR) vεt , v
ε
t 〉 ,

where

aεR(x, ξ) = a (x, ξ0 + εξ, ξ)χ

(
ξ

R

)
and vε(t, x) = e−

i
ε
ξ0�xuε(t, x);

since uε solves (9.1.1), passing to the momentum space one sees that v̂ε satisfies

iε2∂tv̂
ε(t, ξ) = λ(ξ0 + εξ)v̂ε(t, ξ) + ε2V (−∂ξ)v̂ε(t, ξ) +OL2(Rd)

(
ε3
)

= λ(ξ0)v̂ε(t, ξ) +
ε2

2
∇2λ(ξ0)ξ(2)v̂ε(t, ξ) + ε2V (−∂ξ)v̂ε(t, ξ) +OL2(Rd)

(
ε3
)
,(9.2.3)

where we used that ξ0 ∈ Λ, so ∇λ(ξ0) = 0. Thus, setting ûεξ0(t, · ) = e−
it
ε2
λ(ξ0)v̂ε(t, · )

and passing back to the position space, this newly defined function obeys to

(9.2.4) i∂tu
ε
ξ0(t, x) = −1

2
∇2λ(ξ0)∂x � ∂x u

ε
ξ0(t, x) + V (x)uεξ0(t, x) +OL2(Rd) (ε)

with initial datum uεξ0(0, x) = vε(0, x).
Of course, adding to the functions vεt a phase that is constant in x does not change in

anything the inner product in (9.2.2), so one gets:

Iε,R(t) =
〈
op1 (aεR)uεξ0,t , u

ε
ξ0,t

〉
=

〈
opε

(
a

(
x, ξ0 + ξ,

ξ

ε

)
χ

(
ξ

εR

))
uεξ0,t , u

ε
ξ0,t

〉
.(9.2.5)

Taking the derivative with respect to t, doing standard symbolic calculus and considering
that uεξ0,t are also uniformly bounded with respect to ε and R:

d

dt
Iε,R(t) =

〈
i

[
−

1

2
∇2λ(ξ0)∂x � ∂x + V (x) , opε

(
a

(
x, ξ0 + ξ,

ξ

ε

)
χ

(
ξ

εR

))]
uεξ0,t , u

ε
ξ0,t

〉
= ε

〈
opε

({
1

2
∇2λ(ξ0)ξ2 + V (x) , a

(
x, ξ0 + ξ,

ξ

ε

)
χ

(
ξ

εR

)})
uεξ0,t , u

ε
ξ0,t

〉
+O

(
1 + ε2 +

1

R2

)
= O

(
1 + ε+

1

R

)
;

equiboundedness now follows from a trivial application of the mean value theorem.
As a conclusion, given any compact K, the limits of K 3 t 7−→ Iε,R(t) ∈ R will be

continuous and so will be R 3 t 7−→Mξ0(t) into the trace class operators with weak topol-
ogy, since the trace of Mξ0 against any compact operator will be tested against functions
compactly supported in time.
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Lemma 9.2.2. Mξ0(t) = |uξ0(t, · )〉 〈uξ0(t, · )|, where uξ0 solves

(9.2.6)

 i∂tuξ0(t, x) = −1
2∇

2λ(ξ0)∂x � ∂x uξ0(t, x) + V (x)uξ0(t, x)

uξ0(0, · ) = w lim
(
e−

i
ε
ξ0·xuε0

)
.

Proof. Let us start from the first line in (9.2.5) and calculate:〈
op1 (aεR)uεξ0,t , u

ε
ξ0,t

〉
=
〈
op1

(
a0
R

)
uεξ0,t , u

ε
ξ0,t

〉
+Rε,

where op1(a0
R) is the Weyl quantization of the symbol (y, ζ) 7−→ a(y, ξ0, ζ)χ

(
ζ
R

)
, and

where

Rε = ε

∫
R3d

∫ 1

0

eiξ�(x−y)

(2π)d
∇ξa

(
x+ y

2
, ξ0 + εsξ, ξ

)
� ξ χ

(
ξ

R

)
vεt (y)vεt (x)dsdξdydx

is of course an error of order ε for each fixed R, what makes that both inner products above
coincide in the semiclassical limit.

Again, for each fixed R, a0
R is compactly supported and op1(a0

R) is a compact operator,
hence, choosing a sequence εk going to 0 in such a manner that uεkξ0,t converges weakly in
L2(Rd) to some uξ0,t for all t in a dense countable set Υ ⊂ R containing 02, we obtain:

(9.2.7)
〈

op]ε

(
a(x, ξ, ρ)χ

( ρ
R

))
uεt , u

ε
t

〉
−→

〈
op1

(
a0
R

)
uξ0,t , uξ0,t

〉
for t ∈ Υ;

From Lemma 9.2.1, given a compact K ⊂ R, we can extend (9.2.7) to the whole closure
K = K ∩Υ by continuity. As a result, for any Ξ ∈ C∞0 (R):∫

R
Ξ(t)

〈
op]ε

(
a(x, ξ, ρ)χ

( ρ
R

))
uεt , u

ε
t

〉
dt −→

∫
R

Ξ(t)
〈
op1

(
a0
R

)
uξ0,t , uξ0,t

〉
dt,

where it is clear that uξ0 satisfies the differential equation in the lemma’s statement as a
consequence of equation (9.2.4) and of ε −→ 0. Its initial datum comes from the very same
weak limit since we supposed that 0 ∈ Υ, justifying Remark 8.3.2.

Finally, remark that the inner product in the right-hand side of the expression above
reads

(9.2.8)
〈
op1

(
a0
R

)
uξ0,t , uξ0,t

〉
=

∫
R2d

kAR(x, y)kUξ0,t(y, x)dydx,

where kAR is the integral kernel of op1

(
a0
R

)
, and kUξ0,t of the operator

Uξ0,t = |uξ0(t, · )〉 〈uξ0(t, · )| .

The result then follows by letting R go to∞.

Lemma 9.2.3. Measure νξ0 is invariant by the flow

Φs : Rd × Sd−1 3 (x, ω) 7−→
(
x+ s∇2λ(ξ0)ω , ω

)
∈ Rd × Sd−1.

2Such a sequence may be obtained though a process of Cantor diagonal extraction from the countable
sequences εk(t) that make uεk(t)

ξ0,t
converge to uξ0,t for each t in Υ.
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Proof. This proof follows the lines of Proposition’s 9.1.1 one. To begin with, let us set

Φ̃s(x, ξ, ρ) =
(
x+ s∇2λj(ξ0)ρ , ξ, ρ

)
, (x, ξ, ρ) ∈ Rd × Rd × Rd,

and

aR,δ(x, ξ, ρ) = a(x, ξ, ρ)χ

(
ξ − ξ0

δ

)(
1− χ

( ρ
R

))
.

Using a Taylor expansion and the fact that ξ0 ∈ Λ, one has

∇λ(ξ) = ∇2λ(ξ0)(ξ − ξ0) + Γ(ξ)(ξ − ξ0)(2),

where Γ is a smooth bounded tensor of order 3. Consequently, noticing that

d

ds
aR,δ ◦ Φ̃s(x, ξ, ρ)

∣∣∣
s=0

= ∇x aR,δ(x, ξ, ρ) �∇2λ(ξ0)(ξ − ξ0),

it follows that

d

ds
aR,δ ◦ Φ̃s(x, ξ, ρ)

∣∣∣
s=0

= ∇ξλ(ξ) �∇x aR,δ(x, ξ, ρ) + Γ(ξ)(ξ− ξ0)(2) �∇x aR,δ(x, ξ, ρ).

By standard symbolic calculus, we have either

op]ε

(
Γ(ξ)(ξ − ξ0)(2) �∇x aR,δ

)
= O

(
ε2
)

and

op]ε (∇ξλ �∇x aR,δ) =
i

ε

[
λ(ε∂x) , op]ε (aR,δ)

]
+O(ε/δ) +O

(
1

R

)
+O(δ)

=
i

ε

[
λ(ε∂x) + ε2V (x) , op]ε (aR,δ)

]
+O (ε) +O

(ε
δ

)
+O

(
1

R

)
+O(δ),

where all the errors are meant to be in L
(
L2(Rd)

)
. Therefore,∫

R
Ξ(t)

〈
op]ε

(
d

ds
aR,δ ◦ Φ̃s

∣∣∣
s=0

)
uεt , u

ε
t

〉
dt

= ε

∫
R

Ξ(t)
d

dt

〈
op]ε (aR,δ)u

ε
t , u

ε
t

〉
dt+O (ε) +O

(ε
δ

)
+O

(
1

R

)
+O (δ)

= −ε
∫
R

Ξ′(t)
〈
op]ε (aR,δ)u

ε
t , u

ε
t

〉
dt+O (ε) +O

(ε
δ

)
+O

(
1

R

)
+O (δ)

= O (ε) +O
(ε
δ

)
+O

(
1

R

)
+O (δ) ,

thus, letting ε go to 0, then R to∞ and last δ to 0, we obtain:∫
R×Rd×Sd−1

Ξ(t)
d

ds
ã∞ ◦ Φs(x, ω)

∣∣∣∣
s=0

νξ0(dt, dx, dω) = 0,

with ã∞(x, ω) = a∞(x, ξ0, ω). Since this relation holds for any Ξ inC∞0 (R) and a ∈ S(d),
νξ0 is invariant by Φ.

Bringing together Lemmata 9.2.2, 9.2.3 and the fact Φ in this last lemma is dispersive
for∇2λ(ξ0) non-degenerate:
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Proposition 9.2.4. If H1 and s-H2 hold, then one has

µ(t, x, ξ) =
∑
ξ0∈Λ

|uξ0(t, x)|2 δ(ξ − ξ0)⊗ dx⊗ dt,

with uξ0 being given in Lemma 9.2.2.

Proof. Considering s-H2, the flow through which νξ0 is invariant in Lemma 9.2.3 is dis-
persive, thus from Lemma 2.2.6 one has νξ0 = 0 and the only term in the microlocal
decomposition of µ11{ξ=ξ0} is that with Mξ0 . This measure is explicitly given in Lemma
9.2.2, and a simple calculation shows that, when a ∈ C∞0 (R2d) (i.e., a ∈ S(d) is constant
on ρ), equation (9.2.8) gives by dominated convergence:

lim
R→∞

〈
op1

(
a0
R

)
uξ0,t , uξ0,t

〉
=

∫
R3d

eiξ�(x−y)

(2π)d
a

(
x+ y

2
, ξ0

)
uξ0(t, y)uξ0(t, x)dξdydx

=

∫
Rd
a(x, ξ0) |uξ0(t, x)|2 dx.

From equation (9.2.1), one knows that the full Wigner measure µ is just the sum of these
terms for ξ0 ∈ Λ.

This proposition gives Theorem 8.3.1 directly when integrating the Wigner measure µ
with respect to ξ under hypothesis H0 of ε-oscillation.

9.3 The geometry of Λ

Let us now switch s-H2 and w-H2, so Λ ceases to be a discrete set and becomes a
continuum. As in Part II, we need to look for a new system of coordinates wherein Λ have
so simple an algebraic expression as ξ′′ = 0, which makes the analysis of the two-microlocal
measures feasible according to Proposition 9.1.2.

In order to do so, hereafter we shall look at Λ intrinsically, separating its points from
their natural Cartesian coordinates in Rd.

9.3.1 Geodesic coordinates

In each point σ ∈ Λ, there exists an orthonormal set of vectors
{

n1
σ, ... , n

p
σ

}
⊂ Rd

forming a basis of NσΛ, and there exists a tubular neighbourhood Ω ⊂ Rd of Λ where one
can define normal geodesic coordinates: to any θ ∈ Ω, one associates unique σ(θ) ∈ Λ ⊂
Rd and ρ(θ) ∈ Rp such that

(9.3.1) θ = σ(θ) + Expσ(θ) [ρ(θ)] ,

where Expσ(ρ) denotes the point at time ‖ρ‖ in the geodesic trajectory arising from σ in
the direction

∑p
j=1

ρj
‖ρ‖n

j
σ.

Naturally, Ω has its straightforward Cartesian coordinates denoted by ξ, in which the
local expression of θ is trivially ξθ = θ. Nevertheless, given an atlas A′ for Λ with local
charts κ′,

κ′ : V ∩ Λ −→ U ′ ⊂ Rd−p,
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where V are open sets of Rd and U ′ of Rd−p, we can build more interesting local coordinate
systems in V ∩ Ω, that we denote by κ and which are given by

(9.3.2)
κ : V ∩ Ω −→ U × Rp

θ 7−→ ζθ =

(
κ′(σ(θ))
ρ(θ)

)
,

U ⊂ Rd−p open containing U ′, and result in a new atlas A for Ω.
Let us denote by ζθ the local expression for θ in this new atlas; observe that now ζθ 6= θ.

For convenience, we will write ζ = (ζ ′, ζ ′′), with ζ ′ ∈ Rd−p and ζ ′′ ∈ Rp, so as in this new
system of coordinates the sets κ(V ∩ Λ) are given just by the equation ζ ′′ = 0, regardless
the particular local charts κ chosen on Ω.

Remark 9.3.1. Being a Rd neighbourhood of Λ, Ω is itself a d-dimensional submanifold
of Rd with its natural Cartesian coordinates. Thus, equipping it with a new coordinate
system is equivalent to saying that it is diffeormorphic to another submanifold Ω0, which
is nothing else than the pair (Ω,A). This same diffeomorphism maps the submanifold
Λ = {σ ∈ Ω, ∇λ(ξσ) = 0} to Λ0 = {σ ∈ Ω0, ζ

′′
σ = 0}: if κ is a local chart of Ω, then its

projection πκ, with π = [ 11d−p×d−p 0d−p×p ], serves as a chart for Λ when restricted to it,
and we can call Λ0 the pair formed by Λ and the atlas given by the projections πκ.

It happens that πκ|Λ = κ′, so we are reduced to have Λ0 and Λ coincide even in the
sense of manifolds, i.e., they are the same sets provided with the same local charts. Nonethe-
less, we will keep the notation Λ0 for the pair (Λ,A′), while Λ will be used to denote simply
the set of singularities of λ, whose points will be expressed in the original Rd coordinates
with no risk of misunderstanding, even though those could not properly be coordinates of a
d− p dimensional manifold.

This precious way of describing the coordinate changes will turn out to be helpful in
Remarks 9.3.2 and 9.3.3.

Henceforth we will work in Ω0 and study the concentration of the Wigner measure
over Λ0, where we are allowed to use the two-microlocal measures as in Proposition 9.1.2.
Once we have the description we want, we will pull these measures back to the original
coordinates, i.e., to Λ.

Three issues arise, though. To decompose the phase space region Ω0 as the direct sum
of some tangent and normal bundles of Λ0; to describe the coordinate transformations tak-
ing place when one changes between different charts κ1, κ2 ∈ A of Ω0; and to obtain an
analogous of Corollary 4.1.3 allowing us to transpose our microlocal objects ν and M from
Λ0 onto Λ, which consists of recognising how their explicit forms in coordinates should
change.

9.3.2 Some bundles over Λ

To begin with, observe that, if κ1, κ2 ∈ A are such that V1∩V2∩Ω0 6= ∅, their transition
function ϑ = κ1 ◦ κ−1

2 will be a local diffeomorphism having the form

(9.3.3) ζ =

(
ζ ′

ζ ′′

)
7−→

(
ϑ′(ζ ′)
ζ ′′

)
= ϑ(ζ),

where ϑ′ is a local diffeomorphism of Rd−p that coincides with the transition function be-
tween κ′1 and κ′2 in Λ0, ϑ′ = κ′1 ◦ κ′

−1
2 . This means that any coordinate change in Ω0
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automatically induces one in Λ0 and conversely. Its differential is:

∇ϑ =

[
∇ζ′ϑ′ 0

0 11p×p

]
.

The cotangent transformation induced on T ∗Ω0 by the coordinate change ϑ reads

(9.3.4) ϑ̃ :
(z, ζ) 7−→

(
t∇ϑ(ζ)−1z, ϑ(ζ)

)
(z′, z′′, ζ ′, ζ ′′) 7−→

(
t∇ζ′ϑ′(ζ ′)−1z′, z′′, ϑ′(ζ ′), ζ ′′

)
and preserves the cotangent bundle T ∗Λ0, inducing there a similar change in local coordi-
nates,

(9.3.5) ϑT ∗ : (z′, ζ ′) 7−→
(
t∇ζ′ϑ′(ζ ′)−1z′, ϑ′(ζ ′)

)
,

and allowing us to consider T ∗σΛ0 as an invariant subspace of T ∗σΩ0, T ∗σΛ0 = π (T ∗σΩ0),
with π the projection on the first d− p components, as in Remark 9.3.1.

Defining the conormal bundle N∗Λ0 as having fibres

N∗σΛ0 = T ∗σΩ0�T ∗σΛ0
,

one sees that each fibre is also invariant by ϑ̃: denoting π⊥ = [ 0p×d−p 11p×p ], one has
N∗σΛ0 = π⊥ (T ∗σΩ0), and the coordinate change induced by ϑ is simply the identity in z′′:

(9.3.6) ϑN∗ : (z′′, ζ ′) 7−→ (z′′, ϑ′(ζ ′)).

Remark 9.3.2. For what concerns Λ, we still have T ∗σΛ ⊂ T ∗σΩ, and the elements of T ∗σΩ
can be fairly given their original Cartesian coordinates as the Rd vectors they are; so, in
the spirit of Remark 9.3.1, we shall denote the elements of T ∗σΛ by these same coordinates,
even though they will not be proper coordinates in the sense of manifolds, as we have seen.
Moreover, one may not have T ∗σΛ = π(T ∗σΩ) for π independent of σ like above, which
means that we cannot just pick up the first d − p coordinates of the elements of T ∗σΩ and
pretend that they mean something for the elements of T ∗σΛ.

Yet, an element vσ of T ∗σΛ is an element of Rd and, as such, it has Cartesian coordinates
xvσ . As for θ ∈ Ω we had ξθ = θ, here vσ also coincides with its “coordinates”, so we
trivially have xvσ = vσ. From the geometric relations between T ∗σΩ0 and T ∗σΩ, it is clear
that

(9.3.7) (z′vσ , 0) = t∇κ(ξσ)−1xvσ ,

which gives a one-to-one correspondence between the new (and genuine) coordinates z′vσ
and the old xvσ .

The same considerations hold for the conormal space. Besides, now we also have
N∗σΛ = span

{
n1
σ, ... , n

p
σ

}
, thus, taking an element wσ ∈ N∗σΛ with Rd coordinates

xwσ =
(
x1
wσ , ... , x

d
wσ

)
, we have xwσ =

∑p
j=1 x

j
wσnjσ and, further,

(9.3.8) (0, z′′wσ) = t∇κ(ξσ)−1xwσ ,

which gives a one-to-one correspondence between z′′wσ and xwσ .
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Remark 9.3.3. Therefore, considering the decomposition

T ∗σΩ = T ∗σΛ⊕N∗σΛ,

we can take any $ ∈ T ∗σΩ0 and write $ = vσ + wσ, where vσ ∈ T ∗σΛ0 has coordinates
z′ and wσ ∈ N∗σΛ0 has z′′; the local coordinates of $ will be z = (z′, z′′). Consequently,
going to T ∗σΩ, one can decompose any element x of Rd (at least in the neighbourhood Ω of
Λ where x =t ∇κ ◦ κ−1(ζ)z) as

x = xT
∗

+ xN
∗
,

where, in view of Remark 9.3.2, xT depends bijectively on z′, and xN on z′′; additionally
xN ∈ span

{
n1
σ, ... , n

p
σ

}
and xT ⊥ xN .

Resuming the analysis of the bundles over Λ0, we associate to N∗σΛ0 its dual space
NσΛ0 = (N∗σΛ0)∗, defining then the standard normal bundle NΛ0 above Λ0. For the sake
of notation, we will denote its elements by ζ ′′. Finally, taking the quotient of NσΛ0 by
dilatations:

SσΛ0 = NσΛ0�R∗+,

we define the normal bundle in sphere, SΛ0. Similarly to N∗Λ0, the local expressions for
these bundles’ elements are transformed in a simple way:

(9.3.9)
ϑN : (ζ ′, ζ ′′) 7−→ (ϑ′(ζ ′), ζ ′′),

ϑS : (ζ ′, ω) 7−→ (ϑ′(ζ ′), ω).

Putting this all together, we define an extended bundle EΛ0 with fibres

(9.3.10) EσΛ0 = T ∗σΛ0 ⊕N∗σΛ0 ⊕NσΛ0.

EΛ0 transforms exactly like T ∗Ω0 in equation (9.3.4), so it is roughly a reconstruction of
the phase space around the singularities, T ∗Λ0

Ω0, based exclusively on the structure of the
submanifold Λ0.

Another definition that we will need is the extended bundle in sphere SEΛ0, with fibres

(9.3.11) SEσΛ0 = T ∗σΛ0 ⊕N∗σΛ0 ⊕ SσΛ0.

Both bundles transform using in each fibre the functions ϑT ∗ , ϑN∗ and ϑN or ϑS presented
in (9.3.5), (9.3.6) and (9.3.9) respectively. Let us call their transformations κE and κSE .

In Part II, we saw in Corollary 4.1.3 that ν∞ and m were measures on R × SEΛ and
R× EΛ respectively. Here we will also need to use the operator-valued measure M , so let
us define a new functional bundleHΛ, having fibres:

(9.3.12) HσΛ = L
(
L2(N∗σΛ)

)
.

Observe that saying that m is a measure on R × EΛ is equivalent to defining M as a
measure on R × T ∗Λ and taking values in HΛ rigidly, i.e., in such a manner that, for
(t, σ, vσ) ∈ R× T ∗Λ, one have M(t, σ, vσ) ∈ HσΛ (see Remark 2.3.3).
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9.4 The two-microlocal Wigner measures

9.4.1 The measures’ geometric character

In this section we will describe the transformations that the semiclassical measures and
the pseudodifferential operators undergo by passing from Λ to Λ0 through the diffeomor-
phism κ between Ω and Ω0 and the corresponding change κ̃ between T ∗Ω and T ∗Ω0:

(9.4.1) κ̃(x, ξ) =
(
t∇κ(ξ)−1x, κ(ξ)

)
,

which will further be justified in the proof of Proposition 9.4.1 ahead; we also study the
change between different charts of Ω0, which is rather similar.

Below we will use the unitary ε-Fourier transform defined as:

(9.4.2) FεΨ(ξ) =
1

(2πε)d/2

∫
e−

i
ε
x·ξΨ(x) dx ∀Ψ ∈ L2(Rd),

and we will extend κ diffeomorphically to the whole Rd.

Proposition 9.4.1. Let be κ a diffeomorphism of Rd in the sense of manifolds, and κ̃ as
defined in (9.4.1). Then, for a ∈ C∞0

(
R2d
)
, one has

〈opε(a)uεt , u
ε
t 〉 =

〈
opε

(
a ◦ κ̃−1

)
T εκ̃u

ε
t , T

ε
κ̃u

ε
t

〉
+ εNd+1(a),

where Nd(a) is a seminorm for a like those in (2.1.2) and (2.1.3), and T εκ̃ = F∗ε TκFε is an
unitary operator on L2(Rd), with Tκ given as in formula 9.4.4.

Proof. Let us recall that the phase spaceR2d has the structure of the cotangent bundle T ∗Rd
at the same time as a symplectic structure induced by the canonical form dx ∧ dξ. Posing
the symplectic change of variables ω(x, ξ) = (ξ,−x), for any symbol a ∈ C∞0 (R2d) one
has, after a short calculation:

opε(a ◦ ω) = F∗ε opε(a)Fε.

According to Proposition 4.1.2 in Part II of this thesis, for a cotangent coordinate change
φ̃(x, ξ) =

(
φ(x),t∇φ(x)−1ξ

)
, with φ a global diffeomorphism, one has:

(9.4.3)
∥∥∥ opε(a)− T ∗φ opε(a ◦ φ̃−1)Tφ

∥∥∥
L(L2(Rd))

6 εC sup
α,β∈Nd0
|α|+|β|61

Nd

(
∂αx ∂

β
ξ a
)
,

where the constant C is independent of a and where Tφ is the unitary operator defined as

(9.4.4) TφΨ =
(
Jφ ◦ φ−1

)− 1
2 Ψ ◦ φ−1 for Ψ ∈ L2(Rd),

Jφ is the Jacobian of φ. For subsequent coordinate changes φ1◦φ2◦ ...◦φj , with j ∈ N, one
has Tφ1φ2...φj = Tφ1Tφ2 ...Tφj and Tφ−1 = T−1

φ ; writing Tω = Fε, then ω can be included
in this group.

Furthermore, we can canonically extend κ to the phase space over A by doing:

κ̃ : (x, ξ) 7−→
ω

(ξ,−x) 7−→
κ

(
κ(ξ),−t∇κ(ξ)−1x

)
7−→
ω−1

(
t∇κ(ξ)−1x, κ(ξ)

)
.

It follows that

(9.4.5) T εκ̃ = F∗ε TκFε,

which is also an unitary operator.
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From the proof above, in particular from estimate (9.4.3) and identity (9.4.5), we get:

Scholium 9.4.2. Let be ϑ be a diffeomorphism of Rd in the sense of manifolds, and ϑ̃ its
extension to the cotangent bundle as in (9.3.4). Then, there exists a constant C > 0 such
that, for any a ∈ S(p), we have:∥∥∥ op]ε(a)− T ε

ϑ̃
∗ opε

(
a]ε ◦ ϑ̃−1

)
T ε
ϑ̃

∥∥∥
L(L2(Rd))

6 εC sup
α,β∈Nd−p0
|α|+|β|61

Nd

(
∂αx′∂

β
ξ′a
)
,

where T ε
ϑ̃

= F∗ε TϑFε with Tϑ defined as in (9.4.4), a]ε is such that op]ε(a) = opε

(
a]ε
)

,
and Nd is the seminorm in (2.1.2).

This result is kind of a specialization of Proposition 9.4.1 for a “pure” change of co-
ordinates between charts κ1, κ2 ∈ A with (the extension to the whole Rd of) a transition
function ϑ = κ1 ◦ κ−1

2 , which is a local diffeomorphism with domain on some V ⊂ Rd and
extends to the phase space around V as the cotangent variable change ϑ̃ in (9.3.4).

Let us now use this fact to prove that the two-microlocal measures are geometric objects
defined on some bundles of Λ:

Corollary 9.4.3. Let be A′ is an atlas for Λ and (uε)ε>0 ⊂ L2(Rd) uniformly bounded.
Then, the families (νκ)κ′∈A′ and (Mκ)κ′∈A′ , obtained from the two-microlocalization of
(T εκ̃u

ε)ε>0 as in Proposition 9.1.2, define a measure ν on R × SEΛ and a measure M
on R × T ∗Λ taking values in the trace class operators of HΛ in such a manner that, for
(t, σ, vσ) ∈ R× T ∗Λ, M(t, σ, vσ) ∈ HσΛ.

Proof. Let be κ1, κ2 ∈ A with Λ∩V1∩V2 6= ∅; as we saw in section 9.3, passing from Λ to
Λ0 in chart κ induces a phase space transformation κ̃ in (9.3.4) and, in other bundles of Λ0,
other transformations, in particular κE and κSE respectively for the bundles in (9.3.10) and
(9.3.11). Define the transition function ϑ = κ1 ◦ κ−1

2 , extend everything diffeomorphically
to the whole Rd, and notice that T ε

ϑ̃
= T εκ̃1

T εκ̃2

−1.

Moreover, for any a ∈ S(p) define a]ε so as op]ε(a) = opε

(
a]ε
)

; from Scholium 9.4.2
we get:〈

opε
(
a]ε ◦ κ̃−1

2

)
T εκ̃2

uεt , T
ε
κ̃2
uεt
〉

=
〈

opε

(
a]ε ◦ κ̃−1

2 ◦ ϑ̃−1
)
T ε
ϑ̃
T εκ̃2

uεt , T
ε
ϑ̃
T εκ̃2

uεt

〉
+O(ε)

=
〈
opε

(
a]ε ◦ κ̃−1

1

)
T εκ̃1

uεt , T
ε
κ̃1
uεt
〉

+O(ε),

which already hints the chart independence of the two-microlocal measures to come, hence
their geometric nature. Finally, pick up Ξ ∈ C∞0 (R) and observe:

• taking first a compactly supported in all variables and denoting ã(z, ζ ′, ρ) = a(z, ζ ′, 0, ρ),
we deduce:

tr

∫
R×R2(d−p)

Ξ(t)
(
ã ◦ κ−1

E,2

)W
(z′, y, ζ ′, ∂y)Mκ2

(dt, dz′, dζ ′) =

tr

∫
R×R2(d−p)

Ξ(t)
(
ã ◦ κ−1

E,1

)W
(z′, y, ζ ′, ∂y) Mκ1

(dt, dz′, dζ ′)

(y is a dummy variable to represent that this operator acts on L2(N∗σΛ0)), which
gives a measure

(9.4.6) tr
〈
M̃(t, σ, vσ) , Ξ(t)

(
ã ◦ κ−1

E

)W
(σ, vσ)

〉
R×T ∗Λ0

,(
ã ◦ κ−1

E

)W being the Weyl quantization of (z′′, ζ ′′) −→ ã ◦ κ−1
E (vσ, z

′′, σ, ζ ′′);
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• taking now any a ∈ S(p) homogeneous of order 0 in the last variable and denoting
ã∞(z, ζ ′, ω) = a∞(z, ζ ′, 0, ω), we get:∫

R×R2d−p×Sp−1

Ξ(t) ã∞ ◦ κ−1
SE,2(z, ζ ′, ω) νκ2(dt, dz, dζ ′, dω) =∫

R×R2d−p×Sp−1

Ξ(t) ã∞ ◦ κ−1
SE,1 (z, ζ ′, ω) νκ1(dt, dz, dζ ′, dω),

giving

(9.4.7)
〈
ν̃ (t, vσ, wσ, σ, ωσ) , Ξ(t) ã∞ ◦ κ−1

SE (vσ, wσ, σ, ωσ)
〉
R×SEΛ0

.

Pulling back M̃ and ν̃ from Λ0 to Λ through diffemorphism (9.3.2), we obtain measures M
and ν as stated, where (9.4.6) and (9.4.7) become

(9.4.8) tr
〈
M(t, σ, vσ) , Ξ(t) ãW (σ, vσ)

〉
R×T ∗Λ

and

(9.4.9) 〈 ν (t, vσ, wσ, σ, ωσ) , Ξ(t) ã∞ (vσ, wσ, σ, ωσ) 〉R×SEΛ .

Nonetheless, we still need to show that M and ν are effectively the two-microlocal
measures linked to the concentration of (uε)ε>0, i.e., that the Wigner measure µ of uε

admits a decomposition of the kind (2.3.3) in Lemma 2.3.7 in terms of these M and ν.
This should be obvious by now, not only because M̃ and ν̃ decompose µ̃, the semi-

classical measure of (T εκ̃u
ε)ε>0 (which is, by Proposition 9.4.1, a push-forward of µ), but

also because, speaking more directly, Scholium 9.4.2 remains valid for arbitrary diffeomor-
phisms when restricted to the special symbols of S(p) that are constant in the third variable,
which actually turn out to be C∞0 (R2d). For them, we have the identity op]ε(a) = opε(a)

and, therefore (recalling the definition of opε(a
]
ε) = op]ε(a)):

〈opε(a)uεt , u
ε
t 〉 =

〈
opε

(
a]ε ◦ κ̃−1

)
T εκ̃u

ε
t , T

ε
κ̃u

ε
t

〉
+O(ε),

which is nothing else than the result we wanted.

Remark 9.4.4. This last proof also works for Corollary 4.1.3 in Chapter 4, Section 4.1, since
the geodesic coordinates presented in (9.3.1) also apply to that case (and, in fact, to many
other submanifolds). This particular construction does not imply any loss of generality,
since what is needed in order to understand the geometric behaviour of mathematical objects
over the bundles of Λ is actually generality in the choice of the atlas A′, which we indeed
have got, and not in the choice of an A for Ω, which was only an accessory to ease the
description of Λ within Ω.

Before we can proceed to the actual analysis of ũε = T εκ̃u
ε, one more result is to be

stated:

Proposition 9.4.5. Suppose that uε satisfies equation (9.1.1) and T εκ̃ is the operator given
in Proposition 9.4.1. Then, setting |t| 6 T and ũεt = T εκ̃u

ε
t , ũ

ε obeys to the equation

(9.4.10) iε2∂tũ
ε(t, z) = λ̃(ε∂z)ũ

ε(t, z) + ε2opε (b) ũε(t, z) +OL2(Rd)(ε
3),

where λ̃(ζ) = λ ◦ κ−1(ζ) and b(z, ζ) = V
(
t∇κ ◦ κ−1(ζ) z

)
.
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Proof. Remark that Fεũε = TκFεuε; denoting ûε = Fεũε, passing (8.3.1) to the Fourier
space with Fε, multiplying both sides by Tκ and staying within compact times |t| 6 T :

iε2ûε(t, ζ) = λ ◦ κ−1(ζ)ûε(t, ζ) + ε2 Tκ V (−ε∂ξ) T ∗κ ûε(t, ζ) +OL2(Rd)(ε
3),

where V (−ε∂ξ) is the Weyl quantization of the symbol (ξ, x) 7−→ V (−x). By Proposition
9.4.1, it follows that

Tκ V (−ε∂ξ) T ∗κ = opε (b(ζ,−z)) +OL2(Rd)(ε),

with b(ζ, z) = V ◦ κ̃−1(z, ζ). The conclusion comes from passing back to the position
space with F∗ε .

This section has enabled us to study the two-microlocal concentration of a family (ũε)ε>0

satisfying (9.4.10) over the vector space {ζ ′′ = 0}, and then to transpose the results to
(uε)ε>0 over Λ.

9.4.2 Properties of the measure at infinity ν

Denote by B(σ) the bilinear form on NσΛ induced by the projection of ∇2λ(σ); in a
chart κ where the coordinates of ησ are ρ and those of σ are ζ ′, one has κN (B(σ)ησ) =
∇2
ζ′′ λ̃(ζ ′, 0)ρ. Additionally, B(σ)ησ is a linear form on NσΛ and consequently an element

of N∗σΛ, so the flow in next lemma is well-defined.

Lemma 9.4.6. For σ ∈ Λ, vσ ∈ T ∗σΛ, wσ ∈ N∗σΛ and ησ ∈ NσΛ, define the following flow
in SEΛ:

Φs :

(
vσ, wσ, σ,

ησ
‖ησ‖

)
7−→

(
vσ, wσ + sB(σ)ησ, σ,

ησ
‖ησ‖

)
.

Measure ν is invariant by this flow Φs.

Proposition 9.4.7. If the Hessian of λ is of maximal rank on the critical set Λ, then ν = 0.

The proof of Proposition 9.4.7 follows the lines of Proposition 9.1.1, since the maximal
rank condition implies that the map NσΛ 3 η 7−→ B(σ)η ∈ N∗σΛ is injective, then Φ is
dispersive. Let us now prove the lemma.

Proof. Set the flow Φ̃ on the bundle of fibres VσΛ0 = EσΛ0 ⊕ NσΛ0, defined in a chart
κ ∈ A by:

κV ◦ Φ̃s ◦ κ−1
V :

(
z′, z′′, ζ ′, ζ ′′, ρ

)
7−→

(
z′, z′′ + s∇2

ζ′′λ(ζ ′, 0) ζ ′′, ζ ′, ζ ′′, ρ
)
.

Consider an observable a ∈ S(p) and let be

aR,δ ◦ κ−1
V (z, ζ, ρ) = a ◦ κ−1

V (z, ζ, ρ)
(

1− χ
( ρ
R

))
χ

(
ζ ′′

δ

)
,

with χ a cut-off as usual.
It follows that

d

ds

(
(aR,δ ◦ Φ̃s) ◦ κ−1

V

)∣∣∣
s=0

= ∇z
(
aR,δ ◦ κ−1

V

)
�∇2

ζ λ̃(ζ ′, 0)

(
0
ζ ′′

)
.
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Using a Taylor expansion and remembering that∇λ̃(ζ ′, 0) = 0, we can write

∇λ̃(ζ) = ∇2
ζ λ̃(ζ ′, 0)

(
0
ζ ′′

)
+ Γ(ζ)

(
ζ ′′
)(2)

,

where Γ is a smooth tensor of order 3 such that

op]ε

(
∇z
(
aR,δ ◦ κ−1

V

)
� Γ(ζ)

(
ζ ′′
)(2)
)

= O
(
ε2
)
.

Thus, considering (9.4.10), we get

op]ε

(
d

ds

(
(aR,δ ◦ Φ̃s) ◦ κ−1

V

)∣∣∣
s=0

)
= op]ε

(
∇z
(
aR,δ ◦ κ−1

V

)
�∇ζ λ̃(ζ)

)
+O

(ε
δ

)
+O

(
1

R

)
+O (δ)

=
i

ε

[
λ̃(ε∂z) , op]ε

(
aR,δ ◦ κ−1

V

)]
+O

(ε
δ

)
+O

(
1

R

)
+O (δ)

=
i

ε

[
λ̃(ε∂z) + ε2opε(b) , op]ε

(
aR,δ ◦ κ−1

V

)]
+O (ε) +O

(ε
δ

)
+O

(
1

R

)
+O (δ)

As a result, for any Ξ ∈ C∞0 (R),∫
R

Ξ(t)

〈
op]ε

(
d

ds

(
(aR,δ ◦ Φ̃s) ◦ κ−1

V

)∣∣∣
s=0

)
ũεt , ũ

ε
t

〉
dt

= ε

∫
R

Ξ(t)
d

dt

〈
op]ε

(
(aR,δ ◦ Φ̃s) ◦ κ−1

V

)
ũεt , ũ

ε
t

〉
dt+O (ε) +O

(ε
δ

)
+O

(
1

R

)
+O (δ)

= −ε
∫
R

Ξ′(t)
〈

op]ε

(
(aR,δ ◦ Φ̃s) ◦ κ−1

V

)
ũεt , ũ

ε
t

〉
dt+O (ε) +O

(ε
δ

)
+O

(
1

R

)
+O (δ)

= O (ε) +O
(ε
δ

)
+O

(
1

R

)
+O (δ) .

Finally, taking the limits ε→ 0, then R→∞ and last δ → 0, we conclude that∫
R×R2d−p×Sp−1

Ξ(t)

(
d

ds
(ã∞ ◦ Φs)

∣∣∣∣
s=0

)
◦ κ−1

SE(z, ζ ′, ω) νκ(dt, dz, dζ ′, dω) = 0

for all charts κ ∈ A, with ã∞(z, ζ ′, ω) = a∞(z, ζ ′, 0, ω). Finally, back to ν on SEΛ:∫
R×SEΛ

Ξ(t)
d

ds
(a∞ ◦ Φs)

∣∣∣∣
s=0

dν = 0.

This proves the lemma.

9.4.3 Properties of the operator-valued measure M

Let us now consider the operator-valued measure M .

Proposition 9.4.8. One has the decomposition M(t, σ, vσ) = M(t, σ, vσ)γ(σ, vσ)dt as in
Remark 9.1.4, with γ not depending on t. Furthermore, the function R 3 t 7−→ M(t, · ) ∈
L∞ (T ∗Λ,HΛ) is continuous and obeys to:{

i∂tM(t, σ, vσ) =
[
−1

2B(σ)∂wσ � ∂wσ + V (vσ + wσ) , M(t, σ, vσ)
]

M(0, σ, vσ) = M0(σ, vσ),
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where σ ∈ Λ, vσ ∈ T ∗σΛ, wσ ∈ N∗σΛ, and M0 is the operator-valued part of the microlocal
measure associated to the concentration of (uε0)ε>0 chosen in order to satisfy

trL2(N∗σΛ)M0(σ, vσ) = 1.

Proof. Let us work on a chart κ of Λ0. Consider a symbol a ∈ C∞0
(
R2d+p

)
, write a]ε as

usual and calculate from (9.4.10):

d

dt

〈
opε

(
a]ε ◦ κ−1

)
ũεt , ũ

ε
t

〉
=

〈
i

ε2

[
λ̃(ε∂z) + ε2opε(b) , opε

(
a]ε ◦ κ−1

)]
ũεt , ũ

ε
t

〉
+O(ε).

Using a Taylor expansion, we have:

λ̃(ζ ′, ζ ′′) = λ̃(ζ ′, 0) +∇ζ′′ λ̃(ζ ′, 0)ζ ′′ +
1

2
∇2
ζ′′ λ̃(ζ ′, 0)ζ ′′ � ζ ′′ +O

(
ζ ′′

(3)
)
,

and recalling that, since ∇λ is null over Λ, ∇λ̃(ζ ′, 0) = 0 for any ζ ′ and, as a consequnce,
λ̃(ζ ′, 0) = λ̃(ζ ′0, 0) for ζ ′0 = κ(σ0) with some σ0 ∈ Λ, which implies that opε(λ̃(ζ ′, 0)) is
just λ(σ0)11; it follows that:

d

dt

〈
opε

(
a]ε ◦ κ−1

)
ũεt , ũ

ε
t

〉
=〈

i

[
opε

(
1

2
∇2
ζ′′ λ̃(ζ ′, 0)

ζ ′′

ε
�
ζ ′′

ε
+ b(z, ζ)

)
, opε

(
a]ε ◦ κ−1

)]
ũεt , ũ

ε
t

〉
+O(ε),

which implies the time continuity of the measure M in the same way as it happened in
Lemma 9.2.1. Finally, choosing Ξ ∈ C∞0 (R), writing ã(z, ζ ′, ρ) = a(z, ζ ′, 0, ρ) and taking
the limit ε −→ 0:

tr

∫
R×R2(d−p)

Ξ(t)
(
ã ◦ κ−1

E

)W
(z′, y, ζ ′, ∂y) ∂tMκ(dt, dz′, dζ ′) =

tr

∫
R×R2(d−p)

Ξ(t)i

[
−1

2
∇2
ζ′′ λ̃(ζ ′, 0)∂y � ∂y + b(z′, y, ζ ′, 0) ,(

ã ◦ κ−1
E

)W
(z′, y, ζ ′, ∂y)

]
Mκ(dt, dz′, dζ ′),

implying the equation

i∂tMκ(t, z′, ζ ′) =

[
−1

2
∇2
ζ′′ λ̃(ζ ′, 0)∂y � ∂y + b(z′, y, ζ ′, 0) , Mκ(t, z′, ζ ′)

]
,

which admits the solutionM(t, z′, ζ ′) = M(t, z′, ζ ′)γ(z′, ζ ′)dt, where γ is time-independent
and M is a solution to

i∂tMκ(t, z′, ζ ′) =

[
−1

2
∇2
ζ′′ λ̃(ζ ′, 0)∂y � ∂y + b(z′, y, ζ ′, 0) , Mκ(t, z′, ζ ′)

]
inside the local chart.

Now, we recognize z′ as the coordinate of vσ ∈ T ∗σΛ0, ζ ′ as that of σ ∈ Λ0, and y as
that of the dummy wσ ∈ N∗σΛ; recalling (9.3.7) and (9.3.8), we have

b(z, ζ) = V
(
t∇κ ◦ κ−1(ζ) z

)
= V (vσ + wσ),

and the proposition follows from recognizing ∇2
ζ′′ λ̃(ζ ′, 0) as the bilinear form B(σ) on

N∗σΛ in the chart κ.
Last, remember that the decomposition M = Mγ is not unique, as we explained in

Remark 9.1.4. The condition trL2(N∗σΛ)M0(σ, vσ) = 1 in the proposition’s statement allows
us to fix the constant C in that remark and to be unambiguous with respect to M0 and its
evolution over the time.
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Remark 9.4.9. Since ‖uεt‖L2(Rd) = 1 uniformly in ε, it is easy to show that∫
T ∗Λ

trN∗σΛ M(t, σ, vσ) γ(dσ, dvσ) = 1

for every t ∈ R. Since we chose trN∗σΛ M0(σ, vσ) = 1, it follows that
∫
T ∗Λ γ(dσ, dvσ) = 1,

which is a good normalization for γ, that will describe the problem’s mass distribution over
the phase space.

9.5 Collating results

At this proint, proving Theorem 8.3.4 is very easy. Proposition 9.4.7 holds under hy-
pothesis w-H2, besides, if we are to study the limits of an expression like∫

R×Rd
φ(t, x) |uε(t, x)|2 dx dt,

with φ ∈ C∞0 (R× Rd), H0 permits that we do so with the Wigner measures by projecting
them in the position space. Since in this case we are left solely with M , we will have

tr

∫
R×T ∗Λ

φW (t, σ, vσ)M(t, σ, vσ)γ(dσ, dvσ)dt,

where φW (t, σ, vσ) ∈ L
(
L2(N∗σΛ)

)
is the Weyl quantization of the symbol (σ, vσ) 7−→

φ(t, vσ, wσ), wσ ∈ N∗σΛ being a dummy variable, which after a short calculation we find
out to be just the multiplication by φ (t,$), with $ = vσ + wσ ∈ Rd as in Remark 9.3.3.

This is precisely what is said in the theorem. The other properties of M are listed in
Proposition 9.4.8.
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Chapter 10

The equations of effective mass

10.1 Time localized analysis

Here we are going to need semiclassical measures for families (Ψε)ε>0 (of solutions to
a certain evolution equation) which are bounded in L∞

(
R, L2(Rd)

)
and, therefore, only

locally integrable with respect to the first variable t. It will thus be convenient to introduce
a localized-in-time Wigner transform:

(10.1.1) W̃ εΨε(t, τ, x, ξ) =
1

(2πε)d+1

∫
Rd+1

e
i
ε

(ξ�y−τ ·s)Ψε
(
t− s

2
, x− y

2

)
Ψε
(
t+

s

2
, x+

y

2

)
ds dy

acting on test functions a ∈ C∞0 (R2
t,τ × R2d

x,ξ) through identity

(10.1.2)
〈
W̃ ε
φΨε , a

〉
R2(d+1)

= 〈 õpε(a
ε)φΨε , φΨε 〉L2(Rd+1) ,

where φ ∈ C∞0 (R), aε stands for aε(t, τ, x, ξ) = a(t, ετ, x, ξ) and, naturally, we define the
time localized pseudodifferential operator of symbol a as:

(10.1.3) õpε(a)fε(t, x) =

∫
R2(d+1)

e
i
ε

(ξ�(x−y)−τ ·(t−s))a

(
t+ s

2
, τ,

x+ y

2
, ξ

)
Ψε(s, y)

dτ dξ ds dy

(2πε)d+1
.

Remark 10.1.1. With these new tools, one can re-write the usual Schrödinger equation as
õpε(a)Ψε = 0, with a(t, τ, x, ξ) = τ − ξ2

2 − V (x), and the study of its solutions reduces
to the analysis of the kernel of õpε(a). Here, with our special scaling, an equation like
õpε(a

ε)Ψε = 0 with a(t, τ, x, ξ) = τ − λ(ξ)− ε2V (x) gives equation (8.3.1).

The interest of localizing the symbols in τ and t at once will become evident in the
proof of Lemmata 10.2.13 and 10.2.14; it is roughly to assure that one has no interference
terms between measures of distinct Bloch modes.

Proposition 10.1.2. Let the family (Ψε)ε>0 be bounded inL∞
(
R, L2(Rd)

)
. Then

(
W̃ ε
φΨε

)
ε>0

in C∞0 (R2(d+1)) is uniformly bounded with respect to ε and φ ∈ C∞0 (R). Moreover, it is

possible to extract weakly converging subsequences
(
W̃ εk
φ Ψεk

)
k∈N

such that, for every

φ ∈ C∞0 (Rd) and every a ∈ C∞0 (R2(d+1)), one has:

lim
k→∞

〈
W̃ εk
φ Ψεk , a

〉
R2(d+1)

=

∫
R2(d+1)

a(t, τ, x, ξ)|φ(t)|2 µ̃(dt, dτ, dx, dξ),

117
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where the accumulation points µ̃ are always positive measures on R2(d+1). If in addition
(|f εk |2)k∈N converges in D′(R2(d+1)) to some measure γ̃, then:∫

Rd+1

µ̃(· , dτ, · , dξ) 6 γ̃,

equality taking place if and only if for every φ ∈ C∞0 (R) the sequence (φΨεk)k∈N satisfies:

(10.1.4) lim
k→∞

∫
|ε2kτ |+‖εkξ‖>R

∣∣∣φ̂Ψεk(τ, ξ)
∣∣∣2 dτdξ −→

R→∞
0.

This result’s proof can be obtained by following the lines of the proofs of analogous
theorems in [55, 56, 58]. Let us now link µ̃ with the standard semiclassical measures µ that
we have been working with throughout this thesis:

Proposition 10.1.3. Let (uε)ε>0 be a family of solutions to (9.1.1) issued from a sequence
of initial data bounded in L2(Rd). Suppose µ̃ obtained from Proposition 10.1.2 along some
subsequence (εk)k∈N. First, one has

µ̃(t, τ, x, ξ) = δ (τ − λ(ξ))⊗ ν̃(t, x, ξ)

for some positive measure ν̃ on R2d+1; second, supposing further that µ is the standard
semiclassical measure for uε through this same sequence εk, then, for every a ∈ C∞0 (R2(d+1)):∫

R2(d+1)

a(t, τ, x, ξ)µ̃(dt, dτ, dx, dξ) =

∫
R×R2d

a(t, λ(ξ), x, ξ)µ(dt, dx, dξ).

The reader can consult [55] or [78] for a proof of this fact.

10.2 Semiclassical measures for the Bloch decomposition

In this section we will prove Theorem 8.4.2. This will combine three ingredients:

1. We first analyse the high-frequency behaviour of the spectral projectors associated to
the Bloch decomposition and of the operator of restriction to the diagonal1. Recall
that, given any Bloch wave ϕn, we defined in (8.4.1) the operator

P εϕnΨ(x, y) = ϕn (ε∂x, y)

∫
Td
ϕn (ε∂x, z)

∗Ψ(x, z) dz

and, according to (8.4.2), for every Bloch eigenvalue λj we associated a Bloch spec-
tral projector given by:

Πε
λj

=
∑

P (ξ)ϕn(ξ,· )=λj(ξ)ϕn(ξ,· )

P εϕn .

This step will be the object of Section 10.2.1, where, recalling that Ψ̃(x, y) = Ψ(x)
for any y ∈ Td, we will prove Proposition 10.2.7 saying that the restriction to the
diagonal of terms Πε

λj
Ψ̃ε are bounded and ε-oscillating whenever Ψε satisfy these

same conditions.
1This restriction to the diagonal will take us back from the torus variable y to the fast oscillating x

ε
.
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2. Secondly, we present the necessary a priori estimates that allow us to use a converging
Bloch decomposition, in Proposition 10.2.11, and write every solution ψε as:

ψε =
∑
j∈N

ψεj ,

where ψεj = Πε
λj
U ε|y=x

ε
will be shown in Lemma 10.2.12 to obey to equation

(10.2.19), U ε being a solution to (8.2.2) with initial datum ψ̃ε0(x, y) = ψε0(x). These
are the subjects of Section 10.2.2.

3. Finally, the last step consists in computing the semiclassical measures of ψε as the
sum of the Wigner measures of solutions to the dispersive equation (9.1.1) (which
were the object of our analysis in the previous chapter) with initial data

ψε0,j(x) = Πε
λj
ψ̃ε0

(
x,
x

ε

)
.

This will be done in Section 10.2.3, where we will prove Proposition 10.2.17, the key
result in Part III of this thesis.

10.2.1 Bloch projectors’ high-frequency behaviour

Here we will gather some results describing how the ε-oscillation property behaves
under the action of the operators P εϕn and the restriction to the diagonal y = x

ε that are used
to recover our solutions ψε on Rd from the series of Bloch modes on Rd × Td.

It is going to be useful to introduce a notion which is slightly stronger than ε-oscillation.
So, let us say that a family (Ψε)ε>0 in L2(Rd) is strongly ε-oscillating of order r > 0 if
there exists a constant C > 0 independent of ε such that:

(10.2.1) ∀ε > 0, ‖〈ε∂x〉r Ψε‖L2(Rd) 6 C,

where 〈ξ〉 =
(
1 + |ξ|2

) 1
2 as usual.

Remark 10.2.1. If (Ψε)ε>0 is strongly ε-oscillating of order r > 0, then it is easy to see by
absurd that, for any 0 6 s < r, we must have

lim sup
ε→0

∫
‖ξ‖>R

ε

∣∣∣〈εξ〉s Ψ̂ε(ξ)
∣∣∣2 dξ −→

R→∞
0.

From this limit it is clear that strong ε-oscillation relates to the simple ε-oscillation by, so as
to say, changing the L2(Rd) norm by that in Hs

ε (Rd) with which we estimate the remainder
of mass for high frequencies of order 1

ε . In particular, if Ψε is strongly ε-oscillating of
any strictly positive order, then it is ε-oscillating in the standard sense. For the sake of
completeness, let us call it strong ε-oscillation of order 0.

Furthermore, write ‖Ψε‖Hr
ε (Rd) = ‖〈ε∂x〉r Ψε‖L2(Rd); for a function Q defined on the

Cartesian product Rd × Td, we will denote:

‖Q‖Hr
ε(Rd,Hs(Td)) = ‖〈ε∂x〉rQ‖L2(Rd,Hs(Td)) .
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Remark 10.2.2. Note that for every s > 0, the norm Hs
ε

(
Rd, Hs(Td)

)
above defined is

equivalent to the norm: ∥∥∥P (ε∂x)
s
2Q
∥∥∥
L2(Rd×Td)

uniformly with respect to ε and s, since P is a polynomial of order 2 in ξ and in ∂y (recall
the explicit form of P in (8.2.3)).

These notations established, we begin the analysis by proving some boundedness prop-
erties for the spectral projectors.

Lemma 10.2.3. For all r > 0 and s > 0, the operator

P εϕn : Hr
ε

(
Rd, Hs(Td)

)
−→ Hr

ε

(
Rd, Hs(Td)

)
is uniformly bounded with respect to ε > 0.

Proof. Recall that if ϕ is a Bloch wave, then it satisfies the periodicity condition

(10.2.2) ϕ(ξ + 2πk, y) = e−2πik�yϕ(ξ, y) for k ∈ Zd.

Writing

(10.2.3) c(ξ) =

∫
Td
ϕ(ξ, y)dy

and integrating (10.2.2) with respect to y on Td, one gets the Fourier coefficients of ϕ(ξ, · ),
hence:

(10.2.4) ϕ(ξ, y) =
∑
k∈Zd

c(ξ + 2πk)e2πik�y.

Since ϕ(ξ, · ) is smooth function on Td, its Fourier coefficients must decay faster than any
polynomial in k, as we can see from a simple estimation for the norm L2(Td) of ϕ(ξ, · )
that gives

(10.2.5) |c(ξ + 2πk)| 6 sup
y∈Td

|∂αy ϕ(ξ, y)|
|(2πk)α|

, ∀α ∈ Nd0, ∀k ∈ Zd∗;

more generally, differentiating identity (10.2.2) gives

(−i∂y)αϕ(ξ − 2πj, y) = e2πij�y(2πj − i∂y)αϕ(ξ, y), ∀α ∈ Nd0, ∀j ∈ Zd,

which, doing the same L2(Td) norm estimation that we did to obtain (10.2.5) for the func-
tion ϕ(ξ − 2πj, · ) with its coefficients c(ξ + 2π(k − j)), results in the estimate:

(10.2.6) |c(ξ + 2π(k − j))| 6 sup
y∈Td

|(2πj − i∂y)αϕ(ξ, y)|
|(2πk)α|

, ∀α ∈ Nd0, ∀k, j ∈ Zd∗.

Finally, identity (10.2.4) implies that:

∥∥P εϕΨε
∥∥2

Hrε (Rd,Hs(Td))
=

∫
Rd

∑
k∈Zd

∣∣∣∣∣∣c(εξ + 2πk)〈2πk〉s
∑
j∈Zd

c(εξ + 2πj) 〈εξ〉r Ψ̂ε
j(ξ)

∣∣∣∣∣∣
2

dξ

6
∫
Rd

∑
k,j∈Zd

∣∣∣c(εξ + 2πk) c(εξ + 2πj)〈2πk〉s〈2πj〉s 〈εξ〉r Ψ̂ε
j(ξ)

∣∣∣2 dξ,
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therefore, it suffices to show that

(10.2.7) sup
ξ∈Rd

∑
k∈Zd

|c(ξ + 2πk) c(ξ + 2πj)〈2πk〉s|2 < ∞,

where we have no dependence on ε. This is made by fixing a multi-index α ∈ Nd0 with
|α| > d+ 2s and, given any ξ ∈ Rd, choosing2 η ∈ B = [−2π, 2π]d and p ∈ Zd∗ such that
ξ = η − 2πp. Then, by estimates (10.2.5) and (10.2.6), if follows that, for k 6= 0:

|c(η + 2π(k − p)) c(η + 2π(j − p))|2 ∼ 1

〈2πk〉|α|
∥∥∂αy ϕ∥∥2

L∞(B×Td)

∑
β∈Nd0
|β|6|α|

∥∥∂βyϕ∥∥2

L∞(B×Td)
,

which carries (10.2.7) and, consequently, completes the proof.

Corollary 10.2.4. Define P̃ εϕn : Hr
ε (Rd) −→ Hr

ε

(
Rd, Hs(Td)

)
by making P̃ εϕnΨ = P εϕnΨ̃,

where Ψ̃(x, y) = Ψ(x). Then, for all r > 0 and s > 0, the operator P̃ εϕn is uniformly
bounded with respect to ε > 0.

Proof. Observe that, if Ψε ∈ Hr
ε (Rd), then for any s > 0 one has Ψ̃ε ∈ Hr

ε

(
Rd, Hs(Td)

)
,

and use Lemma 10.2.3.

At this point, we should control how the ε-oscillation property behaves with respect to
the restriction to the diagonal y = x

ε . To work properly, let us define the operator Lε that
maps a function Q defined on Rd × Td to LεQ on Rd:

LεQ(x) = Q
(
x,
x

ε

)
.

Lemma 10.2.5. Suppose s > d and r > 0. Then the operator

Lε : Hr
ε

(
Rd, Hs(Td)

)
−→ L2(Rd)

is uniformly bounded with respect to ε and, if (Qε)ε>0 in Hr
ε

(
Rd, Hs(Td)

)
is bounded and

satisfies the estimate

(10.2.8) lim sup
ε→0

∥∥ 11{‖ξ‖>R}(ε∂x)Qε
∥∥
Hr
ε(Rd,Hs(Td)) −→R→∞ 0,

then the family (LεQε)ε>0 will also be bounded in L2(Rd) and ε-oscillating.

Proof. Let be Qε ∈ L2
(
Rd, Hs(Td)

)
and calculate, for every x ∈ Rd fixed, the Fourier

coefficients of Qε(x, · ):

(10.2.9) Qεk(x) =

∫
Td
Qε(x, y)e−2πik�ydy and Qε(x, y) =

∑
k∈Zd

Qεk(x)e2πik�y.

Of course, the fact that Q(x, · ) belongs to Hs(Td) implies, after a norm estimation, that

|〈ε∂x〉rQεk(x)|2 6
‖〈ε∂x〉rQε(x, · )‖2Hs(Td)

〈2πk〉2s
,

2Using η ∈ B = [−π, π)d and p ∈ Zd, it is already possible to decompose ξ = η + 2πp, in a unique
manner, by the way. Here, we used B = [−2π, 2π]d for two reasons: to be able to take p 6= 0 for any ξ ∈ Rd,
and to have B compact.
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which integrated in x gives

(10.2.10) ‖Qεk ‖Hr
ε (Rd) 6

1

〈2πk〉s
‖Qε ‖Hr

ε(Rd,Hs(Td)) .

As a consequence, since s > d and the norm L2(Rd) is thinner than Hr
ε (Rd) for any r > 0

and ε > 0, there exists a constant Cs > 0 such that

‖LεQε‖L2(Rd) 6
∑
k∈Zd
‖Qεk‖L2(Rd) 6 Cs ‖Q

ε‖Hr
ε(Rd,Hs(Td)) ,

where we have used (10.2.9) in the first and (10.2.10) in the second inequality, proving
uniform boundedness for Lε.

Let us now show that, under condition (10.2.8), qε = LεQε defines an ε-oscillating
family. Start by taking δ > 0; since s > d, there exists a Nδ > 0 such that∑

‖k‖>Nδ

1

〈2πk〉s
< δ;

define:
qεδ(x) =

∑
‖k‖6Nδ

Qεk(x)e2πik�x
ε .

Clearly, from (10.2.10) we have got

(10.2.11) ‖qε − qεδ‖L2(Rd) 6 δ ‖Qε ‖Hr
ε(Rd,Hs(Td)) ,

therefore, it is enough to show that, for any δ > 0, the collection (qεδ)ε>0 is ε-oscillating.
Calculating the Fourier transform of qεδ ,

q̂εδ(ξ) =
∑
‖k‖6Nδ

Q̂εk

(
ξ − 2πk

ε

)
,

we find out that

(10.2.12)
∥∥ 11{‖ξ‖>R}(ε∂x) qεδ

∥∥
L2(Rd)

6
∑
‖k‖6Nδ

∥∥ 11{‖ξ‖>R}(ε∂x + 2πk)Qεk
∥∥
L2(Rd)

.

If R� Nδ is large enough, denote R̃ = R
2 and we will have

(10.2.13) 11{‖ξ‖>R}( · + 2πk) 6 11{‖ξ‖>R̃}( · ) ∀ ‖k‖ 6 Nδ,

then, putting together (10.2.12), (10.2.13) and (10.2.10) consecutively and recalling that the
constant Cs =

∑
k∈Zd

1
〈2πk〉s is finite, we obtain

∥∥ 11{‖ξ‖>R}(ε∂ε) q
ε
δ

∥∥
L2(Rd)

6
∑
‖k‖6Nδ

∥∥∥ 11{‖ξ‖>R̃}(ε∂x)Qεk

∥∥∥
L2(Rd)

6 Cs

∥∥∥ 11{‖ξ‖>R̃}(ε∂x)Qε
∥∥∥
Hr
ε(Rd,Hs(Td))

,
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which carries under (10.2.8) and (10.2.11) that

lim sup
ε→0

∥∥ 11{‖ξ‖>R}(ε∂x) qε
∥∥
L2(Rd)

−→
R→∞

O(δ).

Since we can choose δ arbitrarily small and remembering that qε = LεQε, one con-
cludes that the family (LεQε)ε>0 is ε-oscillating; its boundedness in L2(Rd) is now ob-
vious, since Lε was proven to be uniformly bounded, and by hypothesis (Qε)ε>0 was a
bounded family in L2

(
Rd, Hs(Td)

)
.

Now, let us prepare the main result for the first ingredient of this chapter’s analysis:

Lemma 10.2.6. If (Ψε)ε>0 is ε-oscillating and uniformly bounded in L2(Rd) with respect
to ε, then, for every n ∈ N, so is the family (LεP εϕnΨ̃ε)ε>0.

Proof. Fix r = 0 and s > d, recall that P̃ εϕnΨε = P εϕnΨ̃ε and that Ψ̃ε ∈ L2(Rd, Hs(Td))
for any s that we want; uniform boundedness with respect to ε comes from the fact that
P̃ εϕn : L2(Rd) −→ L2

(
Rd, Hs(Td)

)
is uniformly bounded in ε (Corollary 10.2.4), and the

same for Lε : L2
(
Rd, Hs(Td)

)
−→ L2(Rd) (Lemma 10.2.5).

For ε-oscillation, we will use Lemma 10.2.5 again, but in order to do so one needs to
show that P εϕnΨ̃ε satisfies (10.2.8). Let us pass into the frequency space in Rd and in the
torus and obtain∥∥∥∥11{‖ξ‖>R}(εξ) P̂ εϕnΨ̃ε(ξ, · )

∥∥∥∥2

Hs(Td)

=
∑
k∈Zd

∣∣∣∣〈k〉s cn(εξ + 2πk)

∫
Td
ϕn(εξ, z)dz 11{‖ξ‖>R}(εξ)Ψ̂

ε(ξ)

∣∣∣∣2 ,
where cn is given in (10.2.3) for its corresponding ϕn and satisfies (10.2.5) with a multi-

index α ∈ Nd
0 such that |α| > s + d

2 , so as one can find a constant Cα,s > 0 such that,
noting B = [−π, π]d and recalling the periodicity condition (10.2.2):∥∥∥∥11{‖ξ‖>R}(εξ) P̂ εϕnΨ̃ε(ξ, · )

∥∥∥∥2

Hs(Td)

6 Cα,s
∥∥ϕn ∂αy ϕn∥∥2

L∞(B×Td)

∣∣∣11{‖ξ‖>R}(εξ)Ψ̂ε(ξ)
∣∣∣2 ,

which, after integrating in ξ, implies (10.2.8) for P εϕnΨ̃ε given that Ψε is ε-oscillating.

Proposition 10.2.7. If (Ψε)ε>0 is ε-oscillating and uniformly bounded in L2(Rd) with re-
spect to ε, then, for every j ∈ N, so is the family

(
LεΠε

λj
Ψ̃ε
)
ε>0

.

Proof. Obvious, for Πε
λj

is the finite sum of P εϕn where P (ξ)ϕn(ξ, · ) = λj(ξ)ϕn(ξ, · ).

10.2.2 Some a priori estimates

We now present some a priori estimates for the solutions of equation (8.2.2) that will
be useful in the proof of Theorem 8.4.2.

Lemma 10.2.8. Given s > 0, any solutionU ε to (8.2.2) with initial datumU ε0 ∈ L2
(
Rd, Hs(Td)

)
must satisfy

(10.2.14) ‖U εt ‖Hs
ε(Rd,Hs(Td)) . ‖U

ε
0‖Hs

ε(Rd,Hs(Td)) +O (ε|t|)

for every t ∈ R.
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Remark 10.2.9. The lemma is not supposing U ε0 bounded in Hs
ε

(
Rd, Hs(Td)

)
; this may

not hold, and then we will have no estimation for U εt with this norm. The point is that, if U ε0
is Hs

ε

(
Rd, Hs(Td)

)
bounded (which will be the case here for 0 6 s 6 r for some r > d

(as we had assumed in H0’)), then the same for U εt .

Proof. The spectrum of P (ε∂x) is lower bounded uniformly with respect to ε by the finite
constant M = infξ∈[−π,π]d⊂Rd λ1(ξ), hence P (ε∂x) + |M | + 1 > 0 uniformly in ε > 0
and, consequently,

P̃ (ε∂x) = (P (ε∂x) + |M |+ 1)
s
2

will be a fair pseudodifferential operator on the functions of x ∈ Rd with smooth, though
unbounded symbol. Therefore, it is sufficient to prove that U ε,st = P̃ (ε∂x)U εt verifies an
estimate of the form

(10.2.15) ‖U ε,st ‖L2(Rd×Td) 6 ‖U
ε,s
0 ‖L2(Rd×Td) +O (ε|t|)

and then use Remark 10.2.2 to recover the equivalent norms Hs
ε

(
Rd, Hs(Td)

)
.

In order to obtain (10.2.15), apply P̃ (ε∂x) to both sides of (8.2.2),

iε2∂tU
ε,s
t = P (ε∂x)U ε,st + ε2V U ε,st + ε2

[
P̃ (ε∂x) , V

]
U εt ,

and now use a standard energy estimation as we did long ago in Proposition 6.1.2 to get

‖U ε,st ‖L2(Rd×Td) 6 ‖U
ε,s
0 ‖L2(Rd×Td) +

∫ t

0

∥∥∥ [P̃ (ε∂x) , V
]
U εt

∥∥∥
L2(Rd×Td)

ds.

It happens that the operator[
P̃ (ε∂x) , V

]
: L2

(
Rd, Hs(Td)

)
−→ L2(Rd × Td)

is bounded with norm of order ε, since the commutator with V gives, from (2.1.4), a
bounded pseudodifferential operator of order ε on the part depending on x, and it has norm
of order 1 onto the part in y, since it corresponds to derivatives of order s thereon. Conse-
quently:∥∥∥ [P̃ (ε∂x) , V

]
Uεt

∥∥∥
L2(Rd×Td)

6
∥∥∥[P̃ (ε∂x) , V

]∥∥∥
B(L2(Rd,Hs(Td)),L2(Rd×Td))

‖Uεt ‖L2(Rd,Hs(Td))

. ε ‖Uε0‖L2(Rd,Hs(Td)) ,

where the identity ‖U εt ‖L2(Rd,Hs(Td)) = ‖U ε0‖L2(Rd,Hs(Td)) comes from multiplying (8.2.2)

by 〈∂y〉s and doing the very same estimate as above.
Hence, if ‖U ε,s0 ‖L2(Rd×Td) is finite, then so is ‖U ε0‖Hs

ε(Rd,Hs(Td)) and the lemma is
proven. If not, then ‖U ε0‖Hs

ε(Rd,Hs(Td)) is infinite and (10.2.14) is trivially satisfied.

Finally, we are able to understand how strongly ε-oscillating sequences entails good
convergence properties concerning the Bloch decomposition. Next step is to understand
how strongly the Bloch series converges, and to reduce its analysis to that of a finite super-
position of Bloch waves. The content of the following lemma will be useful for these two
aims.
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Lemma 10.2.10. Let be s > 0 and suppose that the family (Ψε)ε>0 is uniformly bounded
in Hs

ε

(
Rd, Hs(Td)

)
. It follows that:

lim sup
ε→0

∑
n>N

∥∥P εϕnΨε
∥∥2

Hs
ε(Rd,Hs(Td))

−→
N→∞

0.

Proof. To begin with, the norms in the equation above are well-defined, for as we have seen
in Lemma 10.2.3, P εϕn is bounded onto Hs

ε

(
Rd, Hs(T d)

)
. This enables us to use Remark

10.2.2 and state:∥∥P εϕnΨε
∥∥
Hs
ε(Rd,Hs(Td))

∼
∥∥∥P (ε∂x)

s
2P εϕnΨε

∥∥∥
L2(Rd×Td)

.

Now, recall that

P̂ εϕnΨε(ξ, y) = ϕn(εξ, y)

∫
Td
ϕn(εξ, z) Ψ̂ε(ξ, y) dz,

and that, for k = s
2 ,

P (εξ)k P̂ εϕnΨε(ξ, y) = λkn(εξ)ϕn(εξ, y)

∫
Td
ϕn(εξ, z) Ψ̂ε(ξ, z) dz.

Observe further that one has∑
n∈N

∣∣∣∣λkn(εξ)

∫
Td
ϕn(εξ, z) Ψ̂ε(ξ, z)dz

∣∣∣∣2 =
∥∥∥P (εξ)k Ψ̂ε(ξ, · )

∥∥∥2

L2(Td)

6 p4k(εξ)
∥∥∥Ψ̂ε(ξ, · )

∥∥∥2

H2k(Td)
,

where p4k(ξ) =
∥∥P k(ξ)∥∥2

B(H2k(Td),L2(Td))
is a non-negative polynomial of degree at most

4k, since, for each ξ, P (ξ) consists of derivatives in y of order at most 2k, and, therefore, its
norm on H2k(Td) into L2(Td) is of order 1. Consequently, there exists C > 0 independent
of ε such that:∑

n∈N

∥∥P εϕnΨε
∥∥2

Hs
ε(Rd,Hs(Td))

.
∑
n∈N

∫
Rd

∣∣∣∣λkn(εξ)

∫
Td
ϕn(εξ, z) Ψ̂ε(ξ, z)dz

∣∣∣∣2
6

∫
Rd

p4k(εξ)
∥∥∥Ψ̂ε(ξ, · )

∥∥∥2

H2k(Td)

. ‖Ψε‖2
Hs
ε(Rd,Hs(Td))

6 C.

In other words, we have an absolutely convergent series
∑

j∈N |cεj |2 6 C < ∞ uni-
formly bounded with respect to ε. Let us show that

(10.2.16) lim
N→∞

lim sup
ε→0

∑
j>N

|cεj |2 = 0.

Supposing that (10.2.16) is false, then there exists δ > 0 for which one can find an in-
creasing sequence of N > 0 and sequences (εk(N))k∈N converging to 0 such that, for any
k ∈ N,

(10.2.17)
∑
j>N

∣∣∣cεk(N)
j

∣∣∣2 > δ.
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Now, define a new sequence (ε̃k)k∈N as:

ε̃1 = ε1(1)
ε̃k = εk∗(k), with k∗ = min {j ∈ N : εj(k) < ε̃k−1} ,

which is of course converging to 0, and define sk =
∑

j6k

∣∣∣cε̃kj ∣∣∣2, which is a bounded

sequence, for sk 6 supε>0

∑
j∈N |cεj |2 6 C. Therefore,

lim sup
N→∞

∑
j6N

∣∣∣cε̃Nj ∣∣∣2 6 C,
which in any case implies ∑

j>N

∣∣∣cε̃Nj ∣∣∣2 −→
R→∞

0,

allowing us to find N0 > 0 and k0 ∈ N such that∑
j>N0

∣∣∣cεk0
(N0)

j

∣∣∣2 < δ

will be in contradiction with (10.2.17)!
This proves (10.2.16); now just take cεn =

∥∥P εϕnΨε
∥∥
Hs
ε(Rd,Hs(Td))

.

Let us now resume the analysis of our concrete initial data (ψε0)ε>0, which are supposed
strongly ε-oscillating of order at least r for some r > d, as required Theorem 8.4.2 (and
therefore ε-oscillating of order 0 and uniformly bounded in L2(Rd)). Denote by U ε the
solutions of (8.2.2) whose initial data are U ε0 = ψ̃ε0, with ψ̃ε0(x, y) = ψε0(x). Clearly, for
every 0 6 s 6 r, U ε0 are uniformly bounded in Hs

ε

(
Rd, Hs(Td)

)
and, from Lemma 10.2.8,

so are U εt , t ∈ R.
In equation (8.2.4) in the introduction in Chapter 8, we wrote U ε as a formal series with

terms given in (8.2.5), which we called the Bloch decomposition. Let us now make this
statement concrete and specify in which sense this series’ convergence is to be understood.

Proposition 10.2.11. For every s > 0 and t ∈ R, the Bloch decomposition series

U εt =
∑
j∈N

Πε
λj
U εt

converges in the norm Hs
ε

(
Rd, Hs(Td)

)
.

Proof. Recalling that Πε
λj

is a finite sum of P εϕn for which ϕn have eigenvalue λj , check
with Lemma 10.2.8 that U εt are uniformly bounded in Hs

ε (Rd, Hs(Td)) and just apply
Lemma 10.2.10.

By unicity, the solution ψε of (8.1.2) whose initial datum is ψε0 must satisfy, for any
t ∈ R,

ψεt = LεU εt ;

therefore, given that Lε : Hs
ε

(
Rd, Hs(Td)

)
−→ L2(Rd) is bounded for s > d (Lemma

10.2.5), for each t ∈ R

(10.2.18) ψεt =
∑
j∈N

ψεj,t,
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converges in L2(Rd), where
ψεj,t = LεΠε

λj
U εt .

From Propositon 10.2.7, the family (ψεj,0)ε>0 is ε-oscillating and bounded in L2(R). Con-
cerning its evolution:

Lemma 10.2.12. For every j ∈ N, ψεj solves an equation of the form:

(10.2.19)

{
iε2∂tψ

ε
j (t, x) = λj(ε∂x)ψεj (t, x) + ε2V (x)ψεj (t, x) + ε3gεj (t, x)

ψεj (0, · ) = LεΠε
λj
ψ̃ε0,

where there exists C > 0 such that
∥∥∥gεj (t, · )∥∥∥

L2(Rd)
6 C locally uniformly in t. Besides,

(ψεj,t)ε>0 is ε-oscillating and uniformly bounded with respect to ε.

Proof. In order to simplify the notation, we shall assume that the Bloch eigenvalues λn are
simple. The proof in the general case is a straightforward modification of the one we present
below. Define

uεn(t, x) =

∫
Td
ϕn(ε∂x, y)U ε(t, x, y)dy and ψεn(t, · ) = Lεϕn (ε∂x, y)uεn(t, · ).

We start by applying ϕn(ε∂x, y) to both sides of (8.2.2) and integrating in the torus, which
gives

iε2∂tu
ε
n(t, x) = λn(ε∂x)uεn(t, x) + ε2V (x)uεn(t, x) + ε3f εn(t, x),

where
f εn(t, x) =

1

ε

∫
Td

[
ϕn(ε∂x, y) , V (x)

]
U ε(t, x, y)dy,

and now we apply Lεϕ (ε∂x, y):

iε2∂tψ
ε
n(t, x) = λn(ε∂x)ψεn(t, x) + ε2V (x)ψεn(t, x) + ε3gεn(t, x) + hεn(t, x),

with
gεn(t, x) =

1

ε

∫
Td

[
ϕn

(
ε∂x,

x

ε

)
ϕn(ε∂x, y) , V (x)

]
U ε(t, x, y)dy

and
hεn(t, x) = [Lεϕn (ε∂x, y) , λn(ε∂x)]uεn(t, x).

Since λn is 2πZd-periodic, it is easy to show that hεn = 0:

Lεϕn(ε∂x, y)λn(ε∂x) =
∑

k,k′∈Zd
e2πik�x

ε ckn(ε∂x)e−ik
′�(i∂x)dk

′
n

=
∑

k,k′∈Zd
e−ik

′�(2πk+i∂x)dk
′
n e

2πik�x
ε ckn(ε∂x)

= λn(ε∂x)Lεϕn(ε∂x, y),

where ckn and dk
′
n are suitable Fourier coefficients; moreover, symbolic calculus for semi-

classical pseudodifferential operators together with the uniform boundedness ofU εt for com-
pact times, estimated in Lemma 10.2.8, implies that there exists C > 0 such that:

‖f εn(t, ·)|L2(Rd) 6 C and ‖gεn(t, ·)|L2(Rd) 6 C
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locally uniformly in t ∈ R, which proves either Proposition 8.2.2 in Chapter 8 and equation
(10.2.19) above.

Uniform boundedness in ε for ψεj,t comes from either the equation or, alternatively, from
Proposition 10.2.7 and the uniform boundedness of U εt ; however, this proposition does not
automatically gives ε-oscillation for ψεj,t for t 6= 0, so we need to show it directly from
(10.2.19) by taking an appropriate cut-off χ ∈ C∞0 (Rd) such that χ(ξ) = 0 for ‖ξ‖ > 1,
χ 6 1, and applying

(
1− χ

(
ε∂x
R

))
to this equation in order to obtain, after an energy

estimation:

lim sup
ε→0

∥∥∥∥(1− χ
(
ε∂x
R

))
ψεj,t

∥∥∥∥
L2(R)

6 lim sup
ε→0

∥∥∥∥(1− χ
(
ε∂x
R

))
ψεj,0

∥∥∥∥
L2(R)

,

which eventually gives the aimed result letting R −→ ∞ and taking into account that the
initial data ψεj,0 are ε-oscillating.

10.2.3 Wigner measures of ψε and the adherence of |ψε|2

The first result below describes the Wigner measure of a family of solutions to (8.1.2)
by means of the semiclassical measures linked to the terms in the Bloch decomposition.

Lemma 10.2.13. Let (ψε)ε>0 be a sequence of solutions to (8.1.2) issued from ε-oscillating
initial data satisfying (8.4.4) in H0’. Then there exists (εk)k∈N such that, for every φ ∈
C∞0 (R) and a ∈ C∞0 (R2(d+1)):

lim
k→∞

〈
opεk(aεk)φψεk , φψεk

〉
L2(Rd+1)

=
∑
j∈I

∫
R×R2d

a(t, λj(ξ), x, ξ)|φ(t)|2µj(dt, dx, dξ),

where, for each j ∈ I , the measures µj on R× R2d are supported on

Λj =
{

(t, x, ξ) ∈ R× R2d : ∇λj(ξ) = 0
}

and, for every b ∈ C∞0 (R× R2d):

lim
k→∞

∫
R

〈
opεk(b)ψεkj , ψ

εk
j

〉
dt =

∫
R×R2d

b(t, x, ξ)µj(dt, dx, dξ),

as usual in standard semiclassical analysis.

Proof. We apply Proposition 10.1.2 to obtain (εk)k∈N such that, for every φ ∈ C∞0 (R) and
a ∈ C∞0 (R2(d+1)):

lim
k→∞

〈
opεk(aεk)φψεk , φψεk

〉
L2(Rd+1)

=

∫
R2(d+1)

a(t, τ, x, ξ)|φ(t)|2µ̃(dt, dτ, dx, dξ)

for some positive measure µ̃ on R2(d+1). From (8.4.4) one also has:

(10.2.20)
〈
opεk(aεk)φψεk , φψεk

〉
L2(Rd+1)

=
∑
j,l∈I

〈
opεk(aεk)φψεkj , φψ

εk
l

〉
L2(Rd+1)

+ o(ε).

Lemma 10.2.14. The following holds:

1. if j 6= l, then for all a ∈ C∞0 (R2(d+1)),

lim
k→∞

〈
opεk(aεk)φψεkj , φψ

εk
l

〉
L2(Rd+1)

= 0;



10.2. SEMICLASSICAL MEASURES FOR THE BLOCH DECOMPOSITION 129

2. if a ∈ C∞0 (R2(d+1)) is such that a(t, τ, x, ξ) = 0 in a neighbourhood of {τ = λj(ξ)},
then

lim
k→∞

〈
opεk(aεk)φψεkj , φψ

εk
j

〉
L2(Rd+1)

= 0.

Before proving Lemma 10.2.14, we will show how the result follows from it. Let us
denote

Dj =
{

(τ, ξ) ∈ Rd+1 : τ = λj(ξ)
}
.

Remark 10.2.15. Notice that if τ is restricted to a compact of R, then there exists a finite
number of eigenvalues λj(ξ) such that τ = λj(ξ), since the Bloch energies are supposed
well separate in H0’ (in the sense of (8.4.3)).

So, let be j ∈ N; the separation between the eigenvalues λj allows one to find an
open neighbourhood Uj of Dj such that Uj ∩ Dl = ∅ for every l ∈ N with j 6= l. Take
a ∈ C∞0 (R2(d+1)) such that a(t, τ, x, ξ) = 0 if (τ, ξ) /∈ Uj ; (10.2.20) together with the
lemma implies:

lim
k→∞

〈
opεk(aεk)φψεk , φψεk

〉
L2(Rd+1)

= lim
k→∞

〈
opεk(aεk)φψεkj , φψ

εk
j

〉
L2(Rd+1)

.

Thus, Propositions 10.1.2 and 10.1.3 combined give, after a diagonal extraction for
obtaining a suitable subsequence (εkk′ )k′∈N and taking the semiclassical limit:∫

R2(d+1)

a(t, τ, x, ξ)|φ(t)|2µ̃(dt, dτ, dx, dξ) =

∫
R×R2d

a(t, λn(ξ), x, ξ)|φ(t)|2µj(dt, dx, dξ),

where µj is a Wigner measure for ψεj , which is moreover supported over the set of critical
points of λj . This affirmation comes from the fact that the functions ψεj obey to equation
(10.2.19) in Lemma 10.2.12, so as Proposition 9.1.1 applies.

If a ∈ C∞0 (R2(d+1)) is arbitrary, one covers its support with a finite (Remark 10.2.15)
union of open neighbourhoods Uj ofDj such that Uj∩Dl = ∅ for all l 6= j and decomposes
a as a sum of functions supported on each Uj . The result then follows from the previous
computation.

Proof of Lemma 10.2.14. Claim 2 follows directly from Proposition 10.1.3. So does claim
1, but with some more work. Indeed, consider the distribution〈

W̃ ε
j,l, a

〉
R2(d+1)

=
〈
opεk(aε)φψεj , φψ

ε
l

〉
L2(Rd+1)

,

where j 6= n. Analogously to what we have done in equation (6.2.3), Chapter 6, Section
6.2, with some symbolic calculus one sees that it converges to an interference term between
the measures of ψεj and ψεl and, therefore, its support is included in the intersection of the
supports of µ̃j and µ̃l, which the proposition shows to be disjoint.

It is important to observe that, although I ⊂ N is in general infinite, the sum in
Lemma 10.2.13 is in practice always over a finite subset of I , since there we are tak-
ing time-localized test functions that are compactly supported in the variable τ and, as
we have discussed in Remark 10.2.15, there may only be a finite number of λj such that
a(t, λj(ξ), x, ξ) 6= 0, which carries that for all but a finite number of indices j ∈ I we are
summing zeros.

If we are to extend analysis to the current test functions in C∞0 (Rt × R2d
x,ξ), that neces-

sarily do not have compact support in τ , or even more, to symbols not depending on ξ (as it
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is the case in Theorems 8.4.2 and 8.4.3), we need to project µ̃ integrating it with respect to
τ and, eventually, to ξ as well, and here is where ε-oscillation (of order 0) will be required.

Lemma 10.2.16. If ψεj solves (10.2.19) and, for every t ∈ R, (ψεj,t)ε>0 is ε-oscillating, then
(10.1.4) holds for (φψεj )ε>0 with any φ ∈ C∞0 (R).

Proof. Let be φ ∈ C∞0 (R) and choose a cut-off χ ∈ C∞0 (R) with χ(τ) = 1 for |τ | 6 1 and
χ(τ) = 0 for |τ | > 2. Let be B ∈ C∞(R) such that 1− χ(τ) = τB(τ); we have:

(1− χ)
(
ε2∂t − λj(ε∂x)

)
(φuε) = ε2B

(
ε2∂t − λj(ε∂x)

)
(V (x)φuε + g̃ε) ,

with g̃ε uniformly bounded in L2(Rt × Rdx). As a consequence,

(10.2.21) φuε = χ
(
ε2∂t − λj(ε∂x)

)
(φuε) + ε2rε,

with opε(a)rε uniformly bounded in L2(Rt × Rdx) for any a ∈ C∞0 (R2d
x,ξ). Besides, using

that uεt is ε-oscillating for all t ∈ R, we can write, for R, c > 0,

(1−χ)

(
1

R

(
|ε2∂t|+ ‖ε∂x‖

))
(φuε) = (1−χ)

(
1

R

(
|ε2∂t|+ ‖ε∂x‖

))
χ

(
ε‖∂x‖
cR

)
(φuε)+θε,R,

where
lim sup
ε→0

‖θε,R‖L2(Rt×Rdx) −→
R→∞

0.

Therefore, using (10.2.21), we obtain in L2(Rt × Rdx),

(1− χ)

(
1

R

(
|ε2∂t|+ ‖εDx‖

))
(φuε)

= (1− χ)

(
1

R

(
|ε2∂t|+ ‖ε∂x‖

))
χ

(
ε‖∂x‖
cR

)
χ
(
ε2∂t − λj(ε∂x)

)
(φuε) + θε,R +O(ε2).

Let M > 0 such that for all ξ ∈ Rd,

|λj(ξ)| ≤M(1 + |ξ|).

To conclude the proof, observe that choosing R > 2(2 + M) and c(M + 1) < 1/4, then
the support of

(τ, ξ) 7−→ (1− χ)

(
|τ |+ |ξ|
R

)
χ

(
|ξ|
cR

)
χ (τ − λj(ξ))

is empty.

The next result shows how Wigner measures can be used to obtain the limit of the
position densities |ψε|2.

Proposition 10.2.17. Let (ψε)ε>0 be a family of solutions to (8.1.2) issued from strongly
ε-oscillating initial data of order r > d. Let (εk)k∈N and µj be as in Lemma (10.2.13),
and suppose that (|ψεk |2)k∈N converges to a measure γ on R × Rd. Then, for any φ ∈
C∞0 (R× Rd), one has:∫

R×Rd
φ(t, x)γ(dt, dx) =

∑
j∈I

∫
R×R2d

φ(t, x)µj(dt, dx, dξ).



10.3. THE MAIN RESULT 131

Proof. Set U ε0 = ψ̃ε0 and U ε the corresponding solution to (8.2.2). Decompose:

U ε = U εN +RεN with U εN =
N∑
j=1

Πε
λj
U ε.

Write:

ψε = gεN + rεN with
gεN = LεU εN =

∑N
n=1 ψ

ε
n

rεN = LεRεN .

Lemmata 10.2.10 and 10.2.8 implied that, for each t ∈ R and some r > d,

lim sup
ε→0

‖RεN (t, ·)‖Hr
ε (Rd,Hr(Td)) −→

N→∞
0,

and, for by Lemma 10.2.5 Lε is continuous from Hr
ε

(
Rd, Hr(Td)

)
into L2(Rd), we had

got:
lim sup
ε→0

‖rεN (t, ·)‖L2(Rd) −→
N→∞

0

locally uniformly in t, which for compact times lefts us with the analysis of gεN , a finite
sum.

Thus, since for each t ∈ R ψεj,t are ε-oscillating (Lemma 10.2.12), Lemma 10.2.16
allows us to apply Proposition 10.1.2 and, therefore, from Lemma 10.2.13 one gets

lim
k→∞

∫
R×Rd

φ(t, x)|gεkN (t, x)|2dxdt =
∑
j∈I
j6N

∫
R×R2d

φ(t, x)µj(dtdx, dξ),

which implies:

lim
k→∞

∫
R×Rd

φ(t, x)|ψεk(t, x)|2dxdt = lim
N→∞

∑
j∈I
j6N

∫
R×R2d

φ(t, x)µj(dt, dx, dξ).

This is what says the proposition.

Remark 10.2.18. At the end, strong ε-oscillation on Ψε was needed only to reduce the
analysis of a infinite series of Bloch waves to a finite superposition of them, by showing
above that its remainder with respect to the whole series does not add much mass to the
total sum. In particular, in Proposition 10.2.7 we needed solely normal ε-oscillation on Ψε

to make sure this property is transmitted to the terms P εϕnΨ̃ε, so we could drop hypothesis
H0’ and keep solely H0 in Theorems 8.4.2 and 8.4.3 provided that the initial data ψε0 consist
of a finite superposition of Bloch waves with constant multiplicity.

10.3 The main result

At this point, Theorems 8.4.2 and 8.4.3 are basically proven, we just need to bring
together the different elements that we have been developing in the two previous chapters.

Assuming H0’, Proposition 10.2.17 gives a sequence (εk)k∈N (occasionally extracted
from a preceding sequence of ε) such that, for any φ ∈ C∞0 (R× Rd),

lim
k→∞

∫
R×Rd

φ(x)|ψεk(t, x)|2dxdt =
∑
j∈I

∫
R×R2d

φ(x)µj(dt, dx, dξ),
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where µj is a Wigner measure for the concentration of the sequence (ψεkj )k∈N whose struc-
ture was deeply analysed in Chapter 9.

If w-H2 holds, then there exist positive measures γj on ×T ∗Λj and measurable func-
tions of self-adjoint, positive, trace-class operators

Mj : R× T ∗Λj 3 (t, z, ξ) 7−→Mj(t, z, ξ) ∈ L
(
L2(N∗ξ Λj)

)
satisfying the Heisenberg equation 8.4.6 for initial data M0,j such that

trL2(N∗ξΛj)M0,j(z, ξ) = 1,

with M0,j = M0,jγj being the two-microlocal operator-valued measure associated to the
concentration of ψεk0,j over Λj . With these measures one can calculate, for any φ ∈ C∞0 (R×
Rd):∫
R×Rd

φ(t, x)µj(dt, dx, dξ) =

∫
R×T ∗Λj

trL2(N∗ξΛj) (mφt(z, ξ)Mj(t, z, ξ)) γj(dz, dξ)dt,

with mφt as defined in Chapter 8. This proves Theorem 8.4.2.
Finally, for Theorem 8.4.3, just switch w-H2 by s-H2, and everything comes from the

same reasoning.



Chapter 11

Examples

11.1 Continuities and absolute continuities

Let us start our list of examples of applications of the effective mass theory developed
insofar by studying some non-intuitive facts about the Wigner measures and by showing
how they can be interpreted in conformity with the general theory of Semiclassical Analysis.

To begin with, we introduced the Wigner measures µ in Chapter 2 as elements inD′(R×
Rd) related to a family of functions (Ψε)ε>0 in L∞

(
R, L2(Rd)

)
. Later in Section 2.2, we

saw that they are always absolutely continuous with respect to the R Lebesgue measure
in the variable t, which gives L∞

(
R,D′(Rd)

)
functions t 7−→ µt, and that sometimes

these function may even be continuous. More precisely, in Remark 2.2.1 we explained that,
under some conditions on Ψε, this continuity is assured and, further, µt results from the
concentration of Ψε

t .
Well, Proposition 9.2.4 seems to show that, in our analysis of the Bloch modes, t 7−→ µt

can be taken continuous, since so is R 3 t 7−→ uξ0,t ∈ L2(Rd). This is not false, but it turns
out that, here, µt has nothing to do with the concentration of uεt , as we will see for t = 0.

Example 11.1.1. In the context of Proposition 9.2.4, suppose that Λ = {ξ0}, where ξ0 6= 0.
Take

uε0 = e
i
ε
(1+εα)ξ0�xθ(x)

with θ ∈ C∞0 (Rd), ‖θ‖L2(Rd) = 1 and α ∈ (0, 1). We have uξ0,0 = 0, which carries
that uξ0,t = 0 for any t ∈ R and, consequently, µ = 0, allowing us to choose µt = 0 for
all t. However, denoting by µ̃ the Wigner measure associated to the family uε0, we obtain
µ̃(x, ξ) = |θ(x)|2dx⊗ δ(ξ − ξ0).

What would be wrong in our analysis?
The answer is that, unlike in Remark 2.2.1, we did not have any property on uε nor on

equation (8.3.1) that allowed one to obtain time continuity for the semiclassical limits of
uεt (nor even to assure us that they could be taken with the same sequence of ε for every
t) and to show that these limits could be used to decompose the previously defined Wigner
measure as µ = µt dt. What we did was the opposite: first we got an explicit expression for
µ, and then we just observed that, among all the possible choices of t 7−→ µt it admitted
(all of them different from one another for up to a zero Lebesgue measure set in R), one
happened to be continuous.

Furthermore, this ambiguity within null measure sets implies that, even if we had some
link between µt and the concentration of the families uεt through some sequence of ε, which

133
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we did not, still it would be useless for particular times, as we showed above for t = 0, and
thus useless for understanding µt as an evolution of the semiclassical measure of the initial
data uε0, in spite of the fact that these µt do evolve according to a well known rule given by
our results in Chapter 9.

Example 11.1.2. Keeping the same notations as in Example 11.1.1, take

uε,10 = e
i
ε
ξ0�xθ(x) and uε,20 = e

i
ε
(1+εα)ξ0�xθ(x).

One shows that µ1 6= µ2, since µ1 6= 0, for u1
ξ0,0

= θ 6= 0, and µ2 = 0, as we have
seen. Moreover, we can choose µ1

t (x, ξ) = |u1
ξ0

(t, x)|2dx ⊗ δ(ξ − ξ0) and µ2
t = 0 for

all t ∈ R, which shows that µ1
t and µ2

t evolve differently even though µ̃1 = µ̃2. Finally,
observe that for the first family of data we have µ1

0 = µ̃1, but, for the second one, µ2
0 6= µ̃2,

which illustrates that coincidences between µ̃ and µ0 are fortuitous unless we have some
stronger hypotheses on the concentrating functions that guarantee time continuity for their
semiclassical limits along the same sequence of ε.

The persistence of this evolutionary character of the Wigner measure µ and its associates
µt comes from the fact that the only term that is left in the two-microlocal decomposition
of µ is the operator-valued measure M , whose Mt are indeed related to the functions uεt

1

and obtainable through the same sequence of ε for compact times. Yet, the two-microlocal
decomposition too is only valid for almost all t, which is clear from the fact that it is obtained
under an integral in t and was already stressed in Section 4.6 regarding the measure in sphere
ν, so we remain without a perfect link between µt and uεt .

In our interpretation, we think of µt extracted from µ by imposing continuity on t 7−→
µt as a “mean” value for the measure to which uεt would concentrate, “averaging” the con-
centration of uε

t̃
over t̃ around t, in smaller and smaller neighbourhoods. This intuition is

straightforward when one can take the semiclassical limits of uε
t̃

along the same sequence
of ε for almost all t̃ near t.

Let us now look closer at the operator-valued measures. As stated in Remark 2.3.3, we
know that they induce scalar measures m on R×EΛ, which were shown in Lemma 2.3.5 to
be always absolutely continuous with respect to the Lebesgue measure on the normal and
conormal spaces (and with respect to the time, of course). Here we will see that they may
be singular in all other variables by analysing Example 11.1.3 below.

In order to obtain a non-trivial result, it is necessary to suppose dim Λ > 0, for, in the
case where Λ is just a union of discrete points, it is obvious that m cannot be absolutely
continuous on the manifold or its cotangent spaces unless it be zero (a fact that, by the
way, we used as an argument in Part II to discard the operator-valued measure of the two-
microlocal decomposition over the conical singularities).

Example 11.1.3. Assume Λ = {ξ′′ = 0}, where ξ = (ξ′, ξ′′) ∈ Rd−p × Rp with p > 0, fix
(x′0, ξ

′
0) ∈ R2(d−p) and define

uε0(x) =
1

ε
α
2

(d−p) θ
(
x′′
)
ϕ

(
x′ − x′0
εα

)
e
i
ε
ξ′0�x

′
,

1Mt is the operator-valued measure issued from the concentration of uεξ0,t, which are unitary transforma-

tions of uεt , uεξ0,t(x) = e
− it
ε2
λ(ξ0)

e−
i
ε
ξ0�xuεt (x).
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where ϕ ∈ C∞0 (Rd−p) and θ ∈ C∞0 (Rp) with ‖ϕ‖L2(Rd−p) = ‖θ‖L2(Rp) = 1. Then,
representing T ∗Λ as the set of points (x′, ξ′) ∈ R2(d−p), the measure M0 of Theorem 8.3.4
reads:

M0(x′, ξ′) = |θ〉〈θ| δ
(
x′ − x′0

)
⊗ δ

(
ξ′ − ξ′0

)
,

or, using the Radon-Nikodym representation M0 = M0γ:

γ(x′, ξ′) = δ(x′ − x′0)⊗ δ(ξ′ − ξ′0) and M0(x′, ξ′) = |θ〉〈θ| .

More generally, we could replace ϕ and θ so that θ = θ(x′, x′′) in such a manner that
‖θ(x′, · )‖L2(Rp) = 1 for any x′ ∈ Rd−p and ‖uε0‖L2(Rd) = 1, and then we would have
M0 = M0γ with:

γ(x′, ξ′) = δ(x′ − x′0)⊗ δ(ξ′ − ξ′0) and M0(x′, ξ′) =
∣∣θ(x′, · )〉〈θ(x′, · )∣∣ .

Finally, since γ is time independent, we will have

Mt(x
′, ξ′) = M(t, x′, ξ′)δ(x′ − x′0)⊗ δ(ξ′ − ξ′0)

for any t.

Above, the conormal space is N∗ξ′Λ = Rpx′′ , and we will denote by Nξ′Λ = Rpρ the
normal one. It follows that

m(t, x, ξ′, ρ) = δ(x′ − x′0)⊗ δ(ξ′ − ξ′0)⊗ m̃(t, x′′, ρ),

giving, for any a ∈ S(p) and Ξ ∈ C∞0 (R):

tr
〈
M(t, x′, ξ′) , Ξ(t) aw

(
x′, y, ξ′, 0, ∂y

) 〉
R×T ∗Λ =〈

δ(ξ′′)⊗ δ(x′ − x′0)⊗ δ(ξ′ − ξ′0)⊗ m̃(t, x′′, ρ) , Ξ(t) a(x, ξ, ρ)
〉
R×ẼΛ

,

with, naturally, m̃(t, x′′, ρ) = m(t, x′′, ρ)dx′′dρ dt for some appropriate function m (and
ẼΛ being basically EΛ with an additional fibre Nξ′Λ to seize ξ′′, that is going to be 0
anyway).

Another interesting feature that we want to explore in Example 11.1.3 is that Theorem
8.3.4 gives:

M(t, x′, ξ′) =
∣∣∣e−itĤ(x′,ξ′)θ(x′, · )

〉〈
e−itĤ(x′,ξ′)θ(x′, · )

∣∣∣ δ(x′ − x′0)⊗ δ(ξ′ − ξ′0)⊗ dt,

where
Ĥ(x′, ξ′) = −1

2
∇2
ξ′′λ(ξ)∂x′′ � ∂x′′ + V (x)

are operators acting on L2(N∗ξ′Λ) = L2(Rpx′′). In other words, the evolution of the semi-
classical measures depends only on the profile θ that the initial data have over the conormal
space, the rest constituting a family of coherent states concentrating onto the point (x′0, ξ

′
0)

of T ∗Λ and thus giving the singular scalar measure γ.

In a final example with coherent states, we go back to the case dim Λ = 0 and notice
that uξ0 may be identically equal to zero even if the family (uε0)ε>0 oscillates along the
vector ξ0:
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Example 11.1.4. Define as initial data the family of coherent states centred in (x0, ξ0) in the
phase space,

uε0(x) =
1

ε
d
4

θ

(
x− x0√

ε

)
e
i
ε
ξ0�x,

with θ ∈ C∞0 (Rd), ‖θ‖L2(Rd) = 1. Then uξ0(t, · ) = 0 for every ξ0 ∈ Rd and Theorem
8.3.1 allows us to conclude that the corresponding densities |uε|2 of solutions to (8.3.1)
converge weakly to zero in L2

loc(R× Rd).

11.2 Hypothesis failure

In this section we shall see what may happen when the assumptions s-H2 and w-H2 of
Theorems 8.3.1 and 8.3.4 fail, and we will discover that, when the Hessian of λ is allowed
to be degenerate, then these results become false. We will focus on the case with V = 0
where exact computations may be performed, helping us to depict the mechanisms involved
in the process.

11.2.1 The discrete case

Let us suppose that dim Λ = 0 and that there is some ξ0 ∈ Λ for which ∇2λ(ξ0) is
degenerate, i.e., for which one can find ω0 ∈ Sd−1 such that∇2λ(ξ0)ω0 = 0.

Example 11.2.1. Suppose Λ = {ξ0} and let be α ∈ [0, 1) and β ∈
(

2
3 , 1
)

such that they
satisfy α + β < 1. Choose ω0 ∈ ker∇2λ(ξ0) with ‖ω0‖ = 1 and consider the family of
initial data

uε0(x) =
1

ε
αd
2

θ
( x
εα

)
e
i
ε
(ξ0+εβω0)�x,

where θ ∈ C∞0 (Rd), ‖θ‖L2(Rd) = 1. We have w lim
(
e−iξ0�xuε0

)
= 0, so uξ0,t = 0 for any

t and Theorem 8.3.1 would imply µ = 0. However:

• if α 6= 0, then
µ(t, x, ξ) = δ(x)⊗ δ(ξ − ξ0)⊗ dt;

• if α = 0, then

µ(t, x, ξ) =
∣∣∣e−it∇2λ(ξ0)∂x�∂xθ(x)

∣∣∣2 dx⊗ δ(ξ − ξ0)⊗ dt.

In both cases, we have provided examples that hypothesis s-H2 is necessary in the theorem
(and in Proposition 9.2.4).

Proof. The proof of these facts relies on the analysis of the product

Lεt =

〈
opε

(
a

(
x, ξ,

ξ − ξ0

ε

))
uεt , u

ε
t

〉
,

where a ∈ S(d) and uε is a solution to iε2∂tu
ε
t (x) = λ(ε∂x)uεt (x), which is equation

(8.3.1) with V = 0. Since

uεt (x) =
1

(2πε)d

∫
Rd
e
i
ε
ξ�(x−y)e−

it
ε2
λ(ξ)uε0(y)dydξ,
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Lεt reads:

Lεt =
1

(2πε)3dεdα

∫
R7d

a

(
x+ y

2
, ξ,

ξ − ξ0

ε

)
θ
( z
εα

)
θ
( w
εα

)
e
it
ε2

(λ(η)−λ(ζ))

e
i
ε(ξ�(x−y)+(ξ0+εβω0)�(z−w)+ζ�(y−z)−η�(x−w))dz dw dζ dη dξ dy dx.

We perform the variable changes

x = εαx̃
y = εαỹ
z = εαz̃
w = εαw̃

and
ξ = ξ0 + εβω0 + ε1−αξ̃

ζ = ξ0 + εβω0 + ε1−αζ̃
η = ξ0 + εβω0 + ε1−αη̃

in order to obtain (dropping the tildes):

Lεt =
1

(2π)3d

∫
R7d

a

(
εα
x+ y

2
, ξ0 + εβω0 + ε1−αξ,

ω0 + ε1−α−βξ

εβ−1

)
θ (z) θ (w)

ei(ξ�(x−y)+ζ�(y−z)−η�(x−w))e
it
ε2

Γε(η,ζ)dz dw dζ dη dξ dy dx,

with

Γε(η, ζ) = λ
(
ξ0 + εβω0 + ε1−αη

)
− λ

(
ξ0 + εβω0 + ε1−αζ

)
= ε2(1−α)

(
∇2λ(ξ0)η � η −∇2λ(ξ0)ζ � ζ

)
+O

(
ε3β
)
,

where we have used∇2λ(ξ0)ω0 = 0 and β < 1−α. Since 3β > 2, the term inO(ε3β) will
be negligible in the phase e

it
ε2
O(ε3β) for compact times.

The situation now depends on whether α = 0 or not.

• If α 6= 0, making use of a Taylor expansion and by the definition of a, one easily
convinces oneself that we have approximatively, for ε small:

Lεt ≈
1

(2π)3d
a∞ (0, ξ0, ω0)

∫
R7d

θ (z) θ (w)ei(ξ�(x−y)+ζ�(y−z)−η�(x−w))

e
it
ε2α

(∇2λ(ξ0)η�η−∇2λ(ξ0)ζ�ζ)dz dw dζ dη dξ dy dx;

integration in ξ generates a Dirac mass (2π)dδ(x − y), then integration in y and x
generates a Dirac mass (2π)dδ(ζ−η), integration in η and ζ results in (2π)dδ(w−z)
and a final integration in z gives:

Lεt ≈ a∞ (0, ξ0, ω0) ‖θ‖L2(Rd),

whence µ(t, x, ξ) = δ(x)⊗ δ(ξ − ξ0)⊗ dt.

• If α = 0, similar arguments give, when ε is taken negligible:

Lεt ≈
1

(2π)3d

∫
R7d

a∞

(
x+ y

2
, ξ0, ω0

)
ei(ξ�(x−y)+ζ�(y−z)−η�(x−w))

eit(∇
2λ(ξ0)η�η−∇2λ(ξ0)ζ�ζ)θ (z) θ (w)dz dw dζ dη dξ dy dx;
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integration in ξ generates a Dirac mass (2π)dδ(x− y) and integrations in y, z and w
give:

Lεt ≈
1

(2π)d

∫
R3d

a∞

(
x, ξ0,

ω0

‖ω0‖

)
eix�(ζ−η)eit(∇

2λ(ξ0)η�η−∇2λ(ξ0)ζ�ζ)θ̂ (ζ) θ̂ (η)

dζ dη dx;

finally, integrating in ζ and η:

Lεt ≈
∫
Rd
a∞ (x, ξ0, ω0)

∣∣∣e−it∇2λ(ξ0)∂x�∂xθ(x)
∣∣∣2 dx,

implying µ(t, x, ξ) =
∣∣∣e−it∇2λ(ξ0)∂x�∂xθ(x)

∣∣∣2 dx⊗ δ(ξ − ξ0)⊗ dt as stated.

Of course, in both cases above we took symbols a ∈ C∞0 (R2d) and integratedLεt against
Ξ ∈ C∞0 (R) in order to obtain the semiclassical measures.

It is important to notice that Theorem 8.3.1 becomes rather incomplete than wrong with-
out s-H2: one sees from the proof above that µ is given by a two-microlocal decomposition
where the only term left is the projection of the measure in sphere:

ν(t, x, ω) = δ (ω − ω0)⊗ δ(x)⊗ dt
ν(t, x, ω) =

∣∣∣e−it∇2λ(ξ0)∂x�∂xθ(x)
∣∣∣2 δ (ω − ω0)⊗ dx⊗ dt

if
α 6= 0
α = 0,

which eventually corroborates the fact that M = 0, as the theorem affirmed, since uξ0,t = 0
for any t. What is failing here is the dispersivity of the flow in Lemma 9.2.3, which had
led us to ignore the contribution of ν to the full Wigner measure, whereas this and the other
lemmata in which consisted the proof of Theorem 8.3.1 keep holding.

11.2.2 The continuous case

As usual, we will denote ξ = (ξ′, ξ′′) with ξ′ ∈ Rd−p and ξ′′ ∈ Rp, and suppose that
Λ =

{
ξ ∈ Rd : ξ′′ = 0

}
, which means that∇λ(ξ′, 0) = 0 for all ξ′ ∈ Rd−p. For simplicity,

we will take V = 0 in equation (8.3.1).

Example 11.2.2. Suppose that there is ξ′0 ∈ Λ for which the Hessian of λ is not of full rank,
so one can choose ω0 ∈ Sp−1 such that ∇2

ξ′′λ(ξ′0, 0)ω0 = 0. Consider initial data of the
form

uε0(x) =
1

ε
αp
2

ϕ(x′) θ

(
x′′

εα

)
e
i
ε(ξ
′
0�x
′+εβω0�x′′),

where α ∈ [0, 1) and β ∈
(

2
3 , 1
)

are such that α + β < 1, and θ ∈ C∞0 (Rp), ϕ ∈
C∞0 (Rd−p), with ‖θ‖L2(Rp) = ‖ϕ‖L2(Rd−p) = 1. In this case we have:

• if α 6= 0, then

µ(t, x, ξ) =
∣∣ϕ (x′)∣∣2 dx′ ⊗ δ(x′′)⊗ δ(ξ′ − ξ′0)⊗ δ(ξ′′)⊗ dt;

• if α = 0, then

µ(t, x, ξ) =
∣∣∣ϕ(x′) e

−it∇2
ξ′′λ(ξ′0,0)∂x′′ �∂x′′θ

(
x′′
)∣∣∣2 dx⊗ δ(ξ′ − ξ′0)⊗ δ(ξ′′)⊗ dt;
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whilst in both cases one has M0 = 0, so Theorem 8.3.4 would give µ = 0, a contradiction.

Proof. Again, denoting uε the solution to iε2∂tu
ε
t (x) = λ(ε∂x)uεt (x) with initial data uε0,

the proof relies on the analysis of the integral

Lεt =

〈
opε

(
a

(
x, ξ,

ξ′′

ε

))
uεt , u

ε
t

〉
,

which reads

Lεt =
1

(2πε)3dεpα

∫
R7d

a

(
x+ y

2
, ξ,

ξ′′

ε

)
e
it
ε2

(λ(η)−λ(ζ))ϕ(z′)ϕ(w′) θ

(
z′′

εα

)
θ

(
w′′

εα

)
e
i
ε (ξ�(x−y)+ζ�(y−z)−η�(x−w)+ξ′0�(z

′−w′)+εβω0�(z
′′−w′′))dz dw dζ dη dξ dy dx,

We perform the change of variables

x′′ = εαx̃′′

y′′ = εαỹ′′

z′′ = εαz̃′′

w′′ = εαw̃′′

and
ξ′′ = εβω0 + ε1−αξ̃′′

ζ ′′ = εβω0 + ε1−αζ̃ ′′

η′′ = εβω0 + ε1−αη̃′′
and

ξ′ = ξ′0 + εξ̃′

ζ ′ = ξ′0 + εζ̃ ′

η′ = ξ′0 + εη̃′

and obtain (letting the tildas down):

Lεt =
1

(2π)3d

∫
R7d

a

(
x′ + y′

2
, εα

x′′ + y′′

2
, ξ′0 + εξ′, εβω0 + ε1−αξ′′,

ω0 + ε1−α−βξ′′

ε1−β

)
ei(ξ�(x−y)+ζ�(y−z)−η�(x−w))e

it
ε2

Γε(η,ζ)ϕ(z′)ϕ(w′) θ (z′′) θ (w′′)dz dw dζ dη dξ dy dx,

where, using the assumptions on ξ′0 and ω0,

Γε(η, ζ) = λ(ξ′0 + εη′, εβω0 + ε1−αη′′)− λ(ξ′0 + εζ ′, εβω0 + ε1−αζ ′′)

= ε2(1−α)
(
∇2
ξ′′λ(ξ′0, 0)η′′ � η′′ −∇2

ξ′′λ(ξ′0, 0)ζ ′′ � ζ ′′
)

+O(ε3β),

the term O(ε3β) generating a negligible phase in e
it
ε2
O(ε3β) for compact times, as β > 2

3 .
Again, the analysis continues differently depending on α being 0 or not.

• If α 6= 0, one shows that, when ε is small:

Lεt ≈
1

(2π)3d

∫
R7d

a∞

(
x′ + y′

2
, 0, ξ′0, 0, ω0

)
ei(ξ�(x−y)+ζ�(y−z)−η�(x−w))ϕ(z′)ϕ(w′)

e
it
ε2α

(∇2
ξ′′λ(ξ′0,0)η′′�η′′−∇2

ξ′′λ(ξ′0,0)ζ′′�ζ′′)θ (z′′) θ (w′′)dz dw dζ dη dξ dy dx.

Integration in ξ generates a Dirac mass (2π)dδ(x− y), then integrations in y and x′′

generate a Dirac mass (2π)pδ(ζ ′′ − η′′) and we obtain, integrating in η′′,

Lεt ≈
1

(2π)2d−p

∫
R5d−2p

a∞
(
x′, 0, ξ′0, 0, ω0

)
ei(ζ

′�(x′−z′)−η′�(x′−w′)−ζ′′�(z′′−w′′))

ϕ(z′)ϕ(w′) θ
(
z′′
)
θ (w′′)dz dw dζ dη′ dx′,

and proceeding like that for all the other variables:

Lεt ≈
∫
Rd−p

a∞
(
x′, 0, ξ′0, 0, ω0

)
|ϕ(x′)|2dx′.
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• If α = 0, similarly we have:

Lεt ≈
1

(2π)3d

∫
R7d

a∞

(
x+ y

2
, ξ′0, 0, ω0

)
ei(ξ�(x−y)+ζ�(y−z)−η�(x−w))ϕ(z′)ϕ(w′)

e
it
(
∇2
ξ′′λ(ξ′0,0)η′′�η′′−∇2

ξ′′λ(ξ′0,0)ζ′′�ζ′′
)
θ
(
z′′
)
θ (w′′)dz dw dζ dη dξ dy dx.

Integration in ξ generates a Dirac mass (2π)dδ(x− y), whence

Lε ≈ 1

(2π)2d

∫
R5d

a∞
(
x, ξ′0, 0, ω0

)
ei(ζ�(x−z)−η�(x−w))ϕ(z′)ϕ(w′)

e
it
(
∇2
ξ′′λ(ξ′0,0)η′′�η′′−∇2

ξ′′λ(ξ′0,0)ζ′′�ζ′′
)
θ
(
z′′
)
θ (w′′)dz dw dζ dη dx,

from where one recognizes that

Lεt ≈
∫
Rd
a∞
(
x, ξ′0, 0, ω0

) ∣∣∣ϕ(x′) e
−it∇2

ξ′′λ(ξ′0,0)∂x′′ �∂x′′θ
(
x′′
)∣∣∣2 dx.

The last step to obtain the Wigner measures is to restrict the calculations to a ∈ C∞0 (R2d)
and integrate Lεt in time against some Ξ ∈ C∞0 (R).

In order to show that M0 = 0, it suffices to observe that, either for α 6= 0 or α = 0, Lε0
comprehends only the term of the measure on sphere, and not the operator-valued one.

In the spirit of the comments made in the end of the previous section for the discrete
case, here too one notices that Theorem 8.3.4 is rather incomplete than merely invalid with-
out w-H2. In this case, the microlocal measures in sphere are:

ν(t, x, ξ′, ω) = |ϕ(x′)|2dx′ ⊗ δ(x′′)⊗ δ(ξ′ − ξ′0)⊗ δ (ω − ω0)⊗ dt

ν(t, x, ξ′, ω) =
∣∣∣ϕ(x′) e−it∇

2
ξ′′λ(ξ′0,0)∂x′′ �∂x′′ θ (x′′)

∣∣∣2 dx⊗ δ(ξ′ − ξ′0)⊗ δ (ω − ω0)⊗ dt
,
α 6= 0
α = 0.

What fails now is the same dispersivity of the flow in Lemma 9.4.6, more explicitly in
Proposition 9.4.7; all the other accessory results in which consisted the proof of the theorem
keep holding.

In this sense, we can still think of Theorems 8.3.1 and 8.3.4 as genuine, though partial
results, i.e., we do have part of the energy of the concentrated uε obeying to effective mass
equations, but also other terms of a more difficult description. Remark, finally, that both in
the discrete and in the continuous cases we could find situations, namely α 6= 0, where the
measures were singular with respect to the conormal variable x or x′′, respectively. As we
discussed in Example 11.1.3, singularity in these variables is forbidden by Lemma 2.3.5,
so we could in these cases at least identify parts of the full measure that are not due to the
operator-valued measures submitted to the effective mass equations.



Conclusion and Perspectives

In the first part of this thesis we completed the dynamical study – previously undertook
in [45] – of Wigner measure propagation for solutions of the Schrödinger equation with
conical potentials, and showed in Theorems 3.2.1 and 3.2.4 that these measures are trans-
ported by two different Hamiltonian flows, one over the bundle cotangent to the singular
set and the other elsewhere in the phase space, up to a transference phenomenon between
these two regimes that may arise whenever trajectories in the outsider flow lead in or out
the bundle.

We exhausted the question concerning the trajectory splitting by giving a complete
scheme for classifying the possible flow behaviours at the singularities, based on Theorems
3.3.3 and 3.3.4, and by furnishing in Theorem 3.4.1 examples where semiclassical measures
linked to particular families of initial data take distinct paths after a common trajectory they
were following splits.

There remains, however, a point to be enlightened, which is to know whether and under
which conditions it is possible for a measure being propagated by the exterior flow to be
retained over the singular cotangent bundle or conversely. This problem was partially solved
with Theorem 3.3.2, where we saw that in some cases the measures are not allowed to stay
on the singularities, illustrated in Example 5.3.5. We also have cases, like in Examples 5.3.1
and 5.3.3, where a measure initially over the singularity is not allowed to leave it due to the
restrictive nature of the Hamiltonian flow it is submitted to.

Yet some situations, like those in Examples 5.3.2 and 5.3.4, cannot be treated neither
with the theorem nor with the classical flow’s constraints. It is thus convenient for a subse-
quent work either to seek examples where the Wigner measures swap from one regime to
the other, or to prove that it is not possible – which we consider to be more likely, seeing the
dispersive character of both the Schrödinger equation in general and the Hamiltonian flow
in any neighbourhood of the cotangent bundle in these cases, which makes the situation of
staying over the singularity “too unstable” to be durable.

Besides, in the process of describing in detail the Wigner measures over the singulari-
ties, we interpreted the two-microlocal measure in sphere ν as a density around the analysed
set, as if it gave the directions from which the mass is concentrating onto it. Insofar, this
interpretation is purely formal, since there has been no concrete results grounding quan-
titatively the link between these directions and the distribution of ν around the singular
manifold’s normal bundle in sphere; not that we know, at least. In [31] we will aim to
address this matter in a clearer way.

In the second part, we presented a work in collaboration with Dr. Clotilde Ferma-
nian and Dr. Fabricio Macià where we analysed a Schrödinger-like equation pertinent to
the semiclassical study of the dynamics of an electron in a crystal with impurities. It was
shown that in the limit where the characteristic length of the crystal’s lattice can be con-
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sidered sufficiently small with respect to the variation of the exterior potential modelling
the impurities, then this equation is approximated by an effective mass equation, or, more
generally, that its solution decomposes in terms of Bloch modes, each of them satisfying an
effective mass equation specifically assigned to its Bloch energy.

In order of increasing complexity, Theorem 8.3.1 contains the result for an electron in
a band with only one isolated Bloch energy level with isolated critical points; in Theorem
8.3.4 we are still in a band with one single level, but now the critical points form a manifold
with strictly positive dimension. Theorem 8.4.2 is a generalization of this fact for an isolated
band with many (possibly infinitely many) isolated energy levels. As before, if the energy
levels’ critical points are isolated, then one can state this result in a simpler way, as in
Theorem 8.4.3.

A more general result extending these theorems for isolated bands that allow their en-
ergy levels to cross is postponed to a future publication.

Further, of independent interest is the fact that our results can quantify the lack of regu-
larization of high frequency features under critical points that affect the solutions’ concen-
tration. Smoothing effects usually come along with dispersive equations, but as we saw in
Remark 8.3.3, they fail over points where a flow through which the Wigner measures are
invariant is non-dispersive. In Chapter 11 we illustrated the applications of our results with
concrete examples and showed how the existence of points over which the Hessian of the
Bloch energy is not of full rank allows part of the concentrated mass not to obey to the
effective mass equations.

Finally, we would like to point out that writing this thesis was intensively satisfying
from an intellectual point of view, in the sense that it provided us with a genuine under-
standing of Classical Mechanics as one of many possible clear and rigorously defined limits
of Quantum Mechanics. Far more than justifying the classical theory, whose attested accu-
racy in so broad situations allows it to stand up by itself and must be emphasised, it gave
us new insights into the way we should look at Quantum Mechanics, a machinery behind a
macroscopic, yet intrinsically statistical description of nature.
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