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Abstract

Passive vibration control methods using linear dampers have been largely
studied and investigated, and they have nowadays a broad range of appli-
cations. However, linear dampers are efficient when tuned to the specific
frequency to control but present substantial limitations when applied to pri-
mary systems with uncertainties on the modal parameters or to systems
having a natural frequency that may vary with external forcing.

In this thesis the vibration mitigation in mechanical systems by means
of a Nonlinear Energy Sink absorber is studied. The phenomenon governing
the physics of this kind of device is referred to as Targeted Energy Transfer
and it consists in an irreversible energy transfer from the primary system
to the NES where the energy is then dissipated. This energy transfer may
occur over a broad range of frequencies with no need for the NES to be
tuned to a specific one.

The dynamics of a first type of NES called Vibro-Impact Nonlinear En-
ergy Sink (VI-NES) is experimentally investigated via a harmonically forced
single-degree-of-freedom linear oscillator to which a VI-NES is attached. A
Targeted Energy Transfer from the LO towards the VI-NES is experimen-
tally observed and a significant reduction of the primary system’s resonance
peak is obtained. The system is analytically studied by means of the Mul-
tiple Scales method and the nonlinear behavior experimentally observed is
theoretically explained.

The second type of NES presented is the Magnetic-Strung NES with
energy harvesting. This study adds the energy harvesting aspect to the re-
search on nonlinear vibration absorbers. The system consists in a harmoni-
cally forced single-degree-of-freedom linear oscillator to which the MS-NES
is applied. The type of nonlinearity used can be shaped thanks to a magnetic
force aptly introduced, allowing the NES to have several possible configu-
rations. The resulting system is an electro-mechanical system in which the
vibration energy of the primary system is absorbed by the NES and subse-
quently partially dissipated by the viscous damping and partially converted
into electrical power. The numerical and experimental studies analyze the
performances of the MS-NES both as an energy absorber and as an energy
harvester.

Finally, ideas and perspectives arising from this study are discussed and
future work directions are provided.
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Résumé

Les méthodes de contrôle de vibrations passives basées sur des absorbeurs
linéaires ont été largement étudiées et ils ont aujourd’hui une vaste gamme
d’applications. Cependant, les absorbeurs linéaires n’étant efficaces que
lorsqu’ils sont accordés à la fréquence que l’on veut contrôler, ils présentent
des limites considérables quand ils sont appliqués à des systèmes possédant
des incertitudes sur les paramètres modaux ou ayant une fréquence propre
dépendante de la force extérieure.

Dans cette thèse la réduction des vibrations dans les systèmes mécaniques
à l’aide d’un absorbeur Nonlinear Energy Sink est étudiée. Le phénomène
qui gouverne la physique de ce dispositif est appelé pompage énergétique
(Targeted Energy Transfer) et il consiste en un transfert irréversible d’énergie
du système principal vers le NES, où l’énergie est dissipée. Ce transfert
d’énergie peut se produire pour une large gamme de fréquences et sans be-
soin que le NES ne soit accordé à une fréquence spécifique.

La dynamique d’un premier type de NES appelé Vibro-Impact Nonlin-
ear Energy Sink (VI-NES) est investiguée expérimentalement grâce à un
oscillateur linéaire (OL) à un degré de liberté forcé harmoniquement auquel
le VI-NES est attaché. Le pompage énergétique du OL vers le VI-NES
est observé expérimentalement, ce qui a permis d’obtenir une importante
réduction du pic de résonance du système principal. Le système est étudié
analytiquement à l’aide de la méthode Multi-Echelles et le comportement
non-linéaire observé est expliqué théoriquement.

Le deuxième type de NES présenté est le Magnetic-Strung NES avec
récupération d’énergie. Cette étude ajoute l’aspect lié à la récupération
d’énergie au domaine de recherche des absorbeurs non-linéaires. Le système
consiste en un oscillateur linéaire (OL) à un degré de liberté forcé har-
moniquement auquel le MS-NES est appliqué. Le force non-linéaire de rap-
pel peut être modulée grâce à une force magnétique introduite judicieuse-
ment, ce qui permet au NES d’avoir plusieurs configurations possibles. Le
système résultant est un système électromécanique où l’énergie vibratoire du
système principal est absorbée par le NES et est ensuite dissipée en partie
par l’amortissement visqueux et convertie en partie en puissance électrique.
Les études numérique et expérimentale analysent les performances du MS-
NES en tant qu’absorbeur d’énergie et en tant que récupérateur d’énergie.

Finalement, les idées et les perspectives issues de cette étude sont traitées
et les directions pour les travaux futurs sont fournies.
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accueilli pendant une grosse partie de ces trois dernières années. Une mention
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Tito, Presidente, Timothé, Quentin, pour toutes les conversations autour des cafés
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Chapter 1

Introduction

Abstract

In this chapter the context of the work is presented. The fundamentals of
linear structural dynamics are reminded along with the technique of vibra-
tion mitigation using Tuned Mass Damper (TMD) linear absorbers. The
limitations of this kind of devices are shown and then the interest in using
nonlinear dynamics to improve the performances. An exhaustive literature
review is presented about the concept of Targeted Energy Transfer (TET)
and Nonlinear Energy Sink (NES) with a particular attention to the exper-
imental studies. The chapter ends with presenting the motivation of this
work and the outline of the dissertation.

1



2 CHAPTER 1. INTRODUCTION

1.1 Linear Structural Dynamics

The forces that are usually involved in classical structural dynamics prob-
lems can be classified as: inertial, dissipative, restoring and any type of
external force. All these forces being in equilibrium with each other, the
balance equation can be symbolically written as:

FI + FD + FR = FE (1.1)

Figure 1.1: Schematic of the forces involved in a classical structural dynam-
ics problem.

Where FI , FD, FR and FE are respectively the inertial, dissipative,
restoring and external forces. In linear structural dynamics all these forces
can be expressed as linearly proportional to the displacement x and its
derivatives ẋ and ẍ through the structural parameters mass M , damping C
and stiffness K:

FI = M ẍ FD = Cẋ FR = Kx (1.2)

Finally the classical structural dynamics equation is obtained:

M ẍ + Cẋ +Kx = FE (1.3)

For a single degree of freedom system harmonically forced Eq.(1.3) be-
comes:

ẍ+ 2ξω0ẋ+ ω2
0x = Fe Fe = F0/M sin(Ωt) (1.4)

Where ω0 =
√
K/M is the natural frequency and ξ = C

2
√
KM

is the damping
ratio.

Eq.(1.4) represents the governing equation for a single degree of freedom
mechanical system harmonically forced by a sinusoidal force with frequency
Ω. Once the transient solution vanished, the steady-state response of the
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system is a sinus with the same frequency as the exciting force and shifted

in phase by φ = arctan
(

2ωω0ξ
ω2−ω2

0

)
:

x(t) =
F0

Mω
√

(2ω0ξ)2 + 1
ω2
0
(ω2

0 − ω2)2
sin(Ωt− φ) (1.5)

In the same way the response of a linear system can be expressed in the
frequency domain as:

X

F0
=

(1/k)

(1− ( Ω
ωn

)2 + i2ξ Ω
ωn

)
= H(iΩ) (1.6)

Where H(iω) is the transfer function of the mechanical system.
The fact that the response has the same frequency as the external force

is just an example of the many convenient properties linear systems have
which are applied in many fields as in structural dynamics.

Among all the properties of linear systems, the superposition principle
is probably the most important one and it is useful to remind it here as in
sharp contrast with the nature of nonlinear systems. In physics and systems
theory, the superposition principle, also known as superposition property,
states that, for all linear systems, the net response at a given place and
time caused by two or more stimuli is the sum of the responses which would
have been caused by each stimulus individually. In structural dynamics this
principle is widely employed through the modal decomposition theory: the
motion of a n-dof structure can be described by the linear combination of n
normal modes. Moreover when only one single mode is excited, no energy
transfer between different modes is possible and the excited mode will be
the only active mode.

It will be shown later on this chapter how nonlinear systems may ex-
hibit a completely different behavior if compared to linear ones and how
those principles which were well established and settled may not be valid
anymore. New interesting phenomena may arise even with a weak source of
nonlinearity.

1.1.1 Vibration mitigation of mechanical structures

The control of vibrations in structural dynamics is still an important area
of research as it enables resistance improvement as well as noise reduction
and comfort enhancement. Engineering structures undergo multiple sources
of vibrations throughout their life and the methods of mitigation can be
classified in:
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• active control methods have been widely developed throughout the
last fifteen years. The principle is to reduce undesirable vibrations
by generating an out-of-phase input. Active control usually gives a
good vibration reduction performance but an important shortcoming
to take into account is that they need an external energy supply.

• semi-active control methods using electro- and magneto-rheological
fluids were proposed [DSSC96,CK00]. The particularity of these fluids
lies in their varying viscosity with respect to the electric or magnetic
field in which they are plunged. Since no energy is transferred to the
controlled system, these techniques are robust and reliable while offer-
ing a vibration reduction level similar to active techniques. However,
the modeling of the fluid behaviors as well as the development of the
controller represent major challenges that still complicate the use of
the systems for real-life structures.

• passive control methods reduce vibrations by adding to the structure a
dissipative material [Nak98] or a dynamical vibration absorber (DVA)
[Fra11, DH85]. This technique is very interesting and represents an
important alternative to the previous methods as it does not require
an external energy supply.

This thesis dissertation focuses on passive control of vibrations using
nonlinear absorbers. Before getting into the core of the subject we present
first a description of linear vibration reduction methods using Tuned Mass
Dampers (TMD). The advantages as well as the limitations of this device
will be illustrated and then the interest in considering a nonlinear absorber
to overcome these limits will be explained. Then, a brief introduction to the
basic principles of nonlinear structural dynamics will precede the discussion
about the nonlinear vibration absorbers studied in this work.

1.2 Linear vibration absorber: Tuned Mass Damper

The Tuned Mass Damper (TMD) is probably the most popular device for
passive vibration mitigation of mechanical structures. It has a broad range
of applications thanks to its linear behavior and the solid theoretical and
mathematical basis which it relies on. It is commonly used for civil (e.g.,
Millenium bridge, Taipei 101 and Burj-el-Arab buildings) and electrome-
chanical engineering structures (e.g., cars and high-tension lines). Despite
the well-established theory and the linear characteristics, the design of such
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an absorber may be a challenging problem when it is coupled to more com-
plex structures.

The first studies on the TMD date back to the patent concerning the
work carried out by Frahm [Fra11] in 1911. He considered a linear attach-
ment composed of a mass and a spring coupled to a harmonically forced
conservative linear oscillator (LO) as depicted in Fig.1.2.

Figure 1.2: Tuned Mass Damper without viscous damping coupled to a
linear oscillator.

The system displayed in Fig1.2 is governed by the equations of motion:

m1ẍ1 + k1x1 + k2(x1 − x2) = F cos(ωt)

m2ẍ2 + k2(x2 − x1) = 0
(1.7)

Assuming a response x1 = X1 cos(ωt), the LO displacement can be expressed
as:

X1 =
(k2 − ω2m2)F

(k1 + k2 − ω2m1)(k2 − ω2m2)− k2
2

(1.8)

When the LO is excited at its natural frequency ω = ω1, the tuning condition
to minimize its displacement is:

ωa =

√
k2

m2
=

√
k1

m1
= ω1 (1.9)

Where ωa is the natural frequency of the absorber. Then Eq.(1.9) says that
the absorber has to be tuned on the same natural frequency as the linear
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oscillator. The resulting coupled 2 dof-system presents two resonance peaks
in the neighborhood of the previous resonance ωa as displayed in Fig.1.3.
This case may create problems for slightly varying natural frequencies.

Figure 1.3: FRF of the LO without absorber (dotted line) and with the
undamped TMD absorber (solid line).

Ormondroyd and Den Hartog [ODH28] showed that a damped TMD
(Fig.1.4) is able to overcome this limit. The coupled system presents a lower
attenuation at the resonance frequency but no neighborhood peaks anymore.
In Fig.1.5 the FRF of a LO coupled to a damped TMD and its dependence
on the damping c2 is shown. After that first proposition of damped TMD,
many studies have focused their attention on the optimization process and
several techniques and methods have been developed.

The first optimization technique presented in [ODH28] was the H∞ op-
timization, consisting in minimizing the maximum amplitude magnification
factor of the primary system x1

xst
, with xst being the static displacement

xst = F
k1

. Today one of the most common technique is the Den Hartog
method [DH85] called fixed-point theory. As illustrated in Fig.1.5, irrespec-
tive of the value of the damping c2, two invariant points exist for the FRFs.
The optimal tuning parameter ωa

ω1
is then obtained by imposing the same
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Figure 1.4: Tuned Mass Damper with viscous damping coupled to a linear
oscillator.

Figure 1.5: FRF of the LO without absorber (dotted line) and with the
damped TMD absorber (solid line). The response depends on the absorber
damping c2.
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ordinate for the two points. In [Bro46] a method to derive the optimal damp-
ing by imposing the fixed points to be the points of maximum amplitude is
proposed. In [NM97] an exact formulation of the solution of the problem is
presented.

The methods mentioned so far apply to problems where the LO is con-
servative, i.e. undamped. When the LO is damped the fixed-points theory
cannot be used as no invariant points exist. We list here just some relevant
studies dealing with the problem of a damped LO. In [Pen98] Chebyshevs
min-max criterion is applied, in [Tho80, Tho81] control theory is used. Fi-
nally, perturbation methods techniques are presented in [ANB02,FA93] and
nonlinear programming in [JC88,JC89].

1.2.1 Tuned Mass Damper performance

We discuss here the performance of a Tuned Mass Damper coupled to a single
degree of freedom primary structure. Both the absorber and the primary
system are weakly damped. The equations of motion can be written as:

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2) + k1x1 + k2(x1 − x2) = F cos(ωt)

m2ẍ2 + +c2(ẋ2 − ẋ1) + k2(x2 − x1) = 0
(1.10)

We consider here that the TMD is tuned using the basic relation given
by Eq.(1.9), so that its natural frequency matches the natural frequency of
the primary system. Using a similar approach as explained in [VGa09], the
ratio between the energy dissipated by the TMD and the input energy is
defined:

ETMD(t) =
c2

∫ t
0 (ẋ1(τ)− ẋ2(τ))2dτ

1
2m1ẋ1(0)2

; ETMD,t>>1 = ETMD(t >> 1)

(1.11)
The input energy corresponds to an impulse in the initial velocity of the
primary system X = ẋ1(t = 0).

Fig.1.6 [VGa09] displays the percentage of energy dissipated as a function
of the natural frequency of the primary system and of the initial impulse
X = ẋ1(0). The first observation is that that energy dissipated is not
dependent on the initial impulse. This is a characteristic caused by the
linearity of the system: if an input X gives rise to an output Y , an input a
times X will give rise to an output a times Y . The percentage dissipated is
then invariant regardless of the initial impulse X.

The second observation is that the energy dissipated has a strongly de-
pendence on the natural frequency of the primary system, i.e. on the tuning
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Figure 1.6: Percentage of energy dissipated by the TMD as a function of
the natural frequency of the absorber and of the initial impulse ẋ1(0).

condition. It has a maximum at the optimal tuning condition when it is able
to dissipate up to 95% of the input energy, but its performance quickly gets
worse if the tuning frequency slightly varies. This may creates robustness
problems for primary systems with uncertainties on the modal parameters or
for systems having a natural frequency that may vary with external forcing,
like for example nonlinear systems given their frequency-energy dependence.
Moreover the fact the TMD has to be tuned to one specific frequency makes
it difficult, or even impossible, to damp several modes of a multiple-degree-
of-freedom system with the same device.

1.3 Nonlinear Energy Sink

In the search of improving the performances of the TMD and overcoming
its limitations, a research field focusing on nonlinear vibration absorbers
has become more and more relevant over the last decades. The first studies
focusing on using nonlinearities in vibration mitigation date back to the
50s [Rob52,Pip53,Arn55] and it was in 1982 that a first practical nonlinear
absorber using a softening stiffness was presented [HN82]. The source of
nonlinearity involved in Nonlinear Vibration Absorbers may in principle
be of any kind. As an example, centrifugal pendulum vibration absorbers
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used in rotating systems were first studied in [DH38] and lately improved
in [Mad80,Den92,SSH06].

Nonlinear absorbers captured the attention of researchers especially be-
cause of their ability to ”adapt” themselves to the primary system they are
attached to without being tuned to a specific frequency. As they do not
have a preferential resonant frequency, they are able to interact with the
primary system over a broad range of frequency and then to be effective on
all the modes within that range.

The nonlinear Targeted Energy Transfer (TET or energy pumping) was
observed by Gendelman [Gen01] who studied a 2-DOF system composed
of a linear oscillator nonlinearly coupled to an oscillator with zero linear
stiffness. Not having a linear stiffness is a crucial point in order to not have
a preferential frequency of oscillation. In [Gen12] it was shown that when
the energy of the LO is above a certain threshold, a localized periodic motion
of the nonlinear oscillator is excited so that the energy is transferred from
the LO and finally dissipated. A nonlinear absorber showing this kind of
behavior is called Nonlinear Energy Sink (NES).

Further investigations were performed in [VGMM01a, VGMM01b] and
TET was defined as the one-way (irreversible on average) channeling of vi-
brational energy from the directly excited linear primary structure to the
attached NES. The mechanism leading to the TET was found to be a tran-
sient resonant capture (TRC) thanks to which the NES and LO get into a
1:1 resonance. A threshold criterion for the TET to be enabled was formu-
lated in [Vak01]. It was shown that a dependence of the NES efficiency on
the energy present in the system exists: the NES appears to be active be-
yond a certain threshold of primary system energy. This is a very important
difference compared to linear absorbers since as seen in the previous section
their performance does not depend on the input energy (impulse X). The
concept of Nonlinear Normal Modes was used in [GMVB03, Vak04, MR05]
to describe the 1:1 resonance motion involved in the TET mechanism. It
was shown that the phenomenon can be described as a degeneration of the
underlying Hamiltonian system and that the damping plays a key role in it.
A tool utilizing an energy-frequency plot and the wavelet transform spectra
to analyze the energy exchange during TET was present in [KVM+05]. The
effect of uncertain parameters and more analytic results on energy pumping
were shown in [GL06,GAT+07,GL05b].

Experimental works have investigated this phenomenon and are pre-
sented in [MBV05, GAT+07, KKM+07]. They have provided evidence that
the dynamics which governs the energy transfer phenomenon is a 1:1 res-
onance capture between the primary system and the NES. As mentioned
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earlier, the intrinsic nonlinear nature of the NES allows a 1:1 resonance to
occur over a broad range of frequency. TET under external forcing has been
investigated theoretically [SG08a] and experimentally [GMSB14a] showing
that in addition to the steady state constant amplitude response regime, an-
other type of response can arise referred to as Strongly Modulated Response
(SMR). NESs have also been studied when applied to passive control of insta-
bilities. In [GB10] the NES was used to control the limit cycles of a Van der
Pol oscillator. In [LVB+07, LKM+07, LVB+08, GVBM10, HMBV10] it was
used to suppress aeroelastic instabilities. The complexification-averaging
method was used and three mechanisms have been observed: the complete
suppression of the instability, the stabilization and the modulation of the
response. The aerolelastic instabilities in civil engineering were also studied
in [VML11,PLP11].

Most of the works mentioned so far have dealt with a nonlinearity rep-
resented by a cubic stiffness. The principle consists in using the geometric
nonlinearity of an elastic element to attain a restoring force proportional
to the cube of the displacement. Nevertheless the nature of the nonlin-
earity to be used may theoretically be of any kind. Later studies have ex-
plored other ideas such as non-polynomial functions [Gen08], multiple states
of equilibrium [GL05a], non-smooth functions [GVMB05b,LGSE11,SLD12]
and Vibro-Impacts [GVMB05a, KVG08, LNV+09, NLIM+08]. Many of the
first works on Vibro-Impacts were based on numerical simulations. Recently,
similarly to what was used for smooth nonlinearities, an analytical approach
adopting the Multiple Scales method has been proposed in [Gen12] for im-
pulsive forces and extended to the case of a harmonic forcing in [GA15].
In [GMSB14b] an experimental observation of the different regimes of re-
sponse has been achieved for a VI-NES applied to a harmonically forced
linear oscillator.

1.3.1 An example of Nonlinear Energy Sink attached to a
single degree of freedom primary system

Here we present an example of a 2-DOF system composed of a linear 1-DOF
primary system to which a 1-DOF nonlinear oscillator is attached. This
kind of system is displayed schematically in Fig.1.7 and can be described
mathematically by the following equations:

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2) + k1x1 + k2(x1 − x2)3 = F cos(ωt)

m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1)3 = 0
(1.12)
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Figure 1.7: A Nonlinear Energy Sink coupled to a 1-DOF linear oscillator.

The system illustrated in Fig.1.7 and governed by Eqs.(1.12) is a classic
example of NES, often referred to as cubic stiffness NES. In this system the
nonlinearity is in the restoring force between the two masses: the force is
proportional to the cube of the relative displacement Fnl = k2(x2 − x1)3.
It is important to emphasize that a system like this may present an inter-
esting and complicated behavior even when the nonlinearity is weak. This
2-DOF system has been extensively studied in the literature and the results
of some recent works [LKV+05,KMK+08,MKK+05] can be used to compare
its efficacy as a vibration absorber to the performance of the Tuned Mass
Damper.

Adopting a similar approach as in Sec.1.2.1, the energy dissipated by the
NES following an impulsive external forcing on the primary system can be
defined as:

ENES(t) =
c2

∫ t
0 (ẋ1(τ)− ẋ2(τ))2dτ

1
2m1ẋ1(0)2

; ENES,t>>1 = ENES(t >> 1) (1.13)

This quantity is displayed in Fig.1.8 as a function of the natural fre-
quency of the primary system and of the initial impulse X = ẋ1(0). The
scenario is now completely different than what we had in Fig.1.6 for the
TMD. Two important considerations have to be done:

• The energy dissipated has a strong dependence on the initial impulse
X and a threshold exists for the NES to be efficient. In other words
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Figure 1.8: Percentage of energy dissipated by the NES as a function of the
natural frequency of the absorber and of the initial impulse ẋ1(0).

the NES is able to dissipate the energy of the primary system if this
energy is higher than a certain threshold. This minimum amount of
energy is required for the energy transfer (TET) to occur.

• The NES is capable of dissipating the energy of the primary system
over a broad range of primary system’s natural frequency. This char-
acteristic of nonlinear absorbers is due to the fact that the NES does
not own a natural frequency and then it can adapt itself to the pri-
mary system’s oscillations. This is a very important feature especially
when there exists some uncertainty about the natural frequency of the
system to control.

1.3.2 Underlying Hamiltonian system

As mentioned earlier in this chapter, the mechanism which governs the dy-
namics of the NES, and its ability to absorb the energy of the primary system
it is attached to, is the so-called Targeted Energy Transfer or Energy pump-
ing. This phenomenon can be explained and described by analyzing the
corresponding system in the absence of viscous damping, i.e. by considering
the underlying conservative Hamiltonian system.

In [VGMM01b] a linear oscillator (LO) coupled to a NES is studied.
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It has been shown that the solutions (orbits) of the Hamiltonian systems
involving a 1:1 resonance between the LO and the NES are those responsible
for the TET. These solutions can be calculated analytically by means of the
Complexification-Averaging method presented in [Man01].

The 1:1 solutions exist for any level of energy in the system but they
cannot be established if the system is at rest in its initial conditions. There
exist then some connecting orbits called impulsive orbits that allow the
system to reach the 1:1 resonance. However the impulsive orbits can be
excited only if the level of energy is higher than a certain threshold; which
explains the sharp discontinuity in the energy dissipated by the NES visible
in Fig.1.8. The NES goes from a state of inactivity to a state of activity
through a non-smooth transition as soon as the energy threshold condition is
satisfied. This is a substantial difference compared to the dynamics of linear
absorbers. In [VGMM01a] the mechanism of resonance capture between
the NES and the LO is analytically analyzed. In [LKV+05] the periodic
orbits of a similar system are studied. It is shown that in addition to the
fundamental orbits 1:1, other sub-harmonic orbits exist where the LO and
the NES oscillate at different frequencies. The solutions are presented in a
frequency-energy plot (FEP) introduced in [VMGB03]. Also the impulsive
orbits for the same type of NES were calculated in [KMK+08]. An example
of frequency-energy plot is illustrated in Fig.1.9 where we report the diagram
presented in [KKM+07]. In this plot, the main branches S11+ and S11−
represent the solutions where the LO and the NES oscillate at the same
frequency. The + and − signs are used to indicate the in-phase and out-of-
phase oscillations respectively. The horizontal lines (tongues) represent the
sub-harmonic solutions as for example an oscillation 1:3 indicating the NES
is vibrating at a frequency three times higher than the LO’s. Finally the
black dots represent the impulsive orbits.

It is important to notice that for a low level of energy, the S11± solutions
are the normal modes of the linearized system. In fact, the nonlinearities
start to have a tangible role only at a certain level of energy flowing in the
system. As an extension of the linear normal modes concept, the families of
solutions S11± are referred to as Nonlinear Normal Modes (NNMs). We will
explain more in detail this concept in the next chapter. However it should
be noticed that a NNM, unlike a linear normal mode, has a variable natural
frequency which depends on the level of energy of the system. These NNMS
can be computed by a method based on continuation technique [PVR+08].

Hence, we can conclude that the Hamiltonian approach gives a significant
piece of information as it provides a comprehensive view of all the possible
solutions. However, because of the strong dependence of the NNMs on the
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FIGURE 1.15: Diagramme FEP issu de [Ker07a]

plusieurs études que pour de faibles valeurs d’amortissement, la dynamique du système
amorti peut être interprétée par l’étude des solutions périodiques du système Hamiltonien.
Un exemple de simulation numérique d’un OL avec un NES en configuration II, issu de
[Ker08], est présenté en figure 1.16. Le système est initialement au repos, et l’OL est
soumis à une impulsion. La capture de résonance 1 : 1 est clairement observée.

Pendant le régime transitoire, qui correspond à l’activation d’orbite-connecteurs, le
NES entre en capture de résonance avec l’OL, et l’énergie est rapidement dissipée dans
le NES. Ce scénario présenté en figure 1.16 est le plus efficace pour le pompage énergé-
tique. Une méthode analytique pour étudier le système en présence d’amortissement a
été introduite par Gendelman dans [Gen04]. Cette approche est basée sur la méthode des
échelles multiples sous l’hypothèse de la capture de résonance 1 : 1. Elle met en évidence
trois échelles de temps distinctes dans le processus du pompage énergétique.

1. L’échelle de temps rapide (T0) correspond aux oscillations rapides où le NES oscille
à la même fréquence que l’oscillateur linéaire.

Figure 1.9: Frequency-Energy plot of a linear oscillator coupled to a NES.
Image from [KKM+07].

level of energy, the damping plays a crucial role when it comes to studying
the dynamics of the system along the NNMs branches as it allows the system
to move through different energy levels.

1.3.3 Example of a 1:1 resonance capture in a damped NES
attached to a 1 dof linear oscillator

The presence of the damping permits the NES to dissipate the energy of the
system. As the energy decreases, the nonlinear normal modes evolve and
their frequencies vary. It has been shown that the behavior of the weakly
damped system is governed by the dynamics of the underlying Hamiltonian
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system: the periodic solutions/orbits, i.e. NNMs, are the same.18 Étude bibliographique
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FIGURE 1.16: Exemple de simulation numérique et projection du résultat sur le dia-
gramme FEP [Ker08]

2. L’échelle de temps lente (T1) correspond à l’évolution lente des amplitudes sur la
variété invariante 1 : 1.

3. L’échelle de temps très lente (T2) correspond à l’évolution de cette même variété
invariante.

Il apparaît que la variété invariante 1 : 1 peut être accompagnée de bifurcations si
l’amortissement du NES est inférieur à une valeur critique. La présence de ces bifurca-
tions est essentielle pour l’efficacité du pompage énergétique.

Un exemple d’application de cette méthode est présentée. Considérons un oscillateur
linéaire couplé à un NES type II. Pour simplifier, l’amortissement de l’OL est négligé.
Les changements de variables suivants sont introduits :

e =
m2

m1
, w2

0 =
k1

m1
, C =

k2

m2w2
0
, l =

c2

m2w0
, t = w0t (1.15)

Figure 1.10: Example of numercal simulation of 1:1 resonancne capture. In
the bottom figure the projection of the dynamics of the system on the FEP
is shown. Images from [KMK+08].

A numerical example taken from [KMK+08] is presented in Fig.1.10. The
LO initially at rest is subjected to an impulsive force. The transient response
corresponds to the activation of the connective impulse orbits which lead to
the 1:1 resonance capture. Once the 1:1 regime is established the energy of
the LO is transferred to the NES and dissipated by the viscous damping.
An analytic method to study the system taking into account the viscous
damping is presented in [Gen04]. The approach is based on the multiple
scales method and it consists in breaking down the problem in several sub-
problems, each of them at a different time scale. Typically the dynamics of
a NES attached to a 1-dof LO appears to have a fast time scale describing
the oscillations of the NES at the same frequency as the LO’s, and a slower
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time scale describing the evolution of the amplitude of the fast oscillations.

Thanks to the multiple scales method, the Slow Invariant Manifold (SIM)
of the problem can be obtained. The SIM provides a comprehensive view of
all the possible solutions of the problem, stable and unstable. The multiple
scales method and the concept of Slow Invariant Manifold are used later on
in this dissertation for the analysis of the Vibro-Impact Nonlinear Energy
Sink.

1.3.4 Further studies on Targeted Energy Transfer and NES
applications

The Targeted Energy Transfer phenomenon was studied in [JMBV03] in
the case of a NES attached to a LO subjected to a harmonically excita-
tion. The authors calculated the fixed points of the system by using the
complexification-averaging method. For the same system the fixed points
were also obtained using the harmonic balance in [MN07].

Besides the steady and quasiperiodic solutions, a NES-LO system may
exhibit other types of response that cannot be explained by the study of the
fixed points. As mentioned earlier in this chapter, such a system may show
a strongly modulated response in which the amplitude of the modulation
is comparable to the amplitude of the oscillations. This type of response
was firstly explained in [GGL06] and it has represented the object of several
further studies [GS07,SG08b]. The strongly modulated response (SMR) has
been correlated to the topology of the Slow Invariant Manifold and then to
the NES damping and to the mass ratio LO/NES [GSF08], both primarily
important parameters. In [SG10a] it was analytically shown that the SMR
disappears when the ratio between the mass of the NES and mass of primary
system reaches values close to unity. The same authors studied the energy
pumping in a system subjected to periodic and random forcing in [SG10b].

Furthermore, Targeted Energy Transfer was studied in acoustics [BCHM10,
BCCM12,MBC+11], where an equivalent system to a mechanic LO-NES was
obtained. The energy pumping was also observed for NESs applied to con-
tinuous structures. In [GV07] the behavior of a linear beam with an attached
nonlinear absorber is numerically investigated. The same system is analyti-
cally treated in [VG10]. The case of a NES applied to a compressed rod was
studied in [GVK07, PGT+07] by means of the Frequency-Energy Plot. On
the same system a configuration multi-NES is presented in [TPK+07]. An
example of TET occurring for a bi-dimensional primary system is illustrated
in [GV09] where multi-NES are used to passively control vibrations of a thin
plate.
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1.3.5 Review of experimental studies on Targeted Energy
Transfer

We report here more in detail a bibliographic review of some of the ex-
perimental works on Targeted Energy Transfer that can be found in the
literature. A big part of this dissertation has an experimental nature and
these studies have been used as basis and inspiration to the work presented
in this thesis.

An experimental realization of a NES attached to a 1 dof primary system
is presented in [MBV05]. The type of nonlinearity is a cubic stiffness and
is obtained by using the elastic force of wires (piano wires) working trans-
versely. In order to have a purely cubic force the wires must not be axially
preloaded. This appeared to be a delicate aspect to realize in experiments
and it will be taken in consideration later on in this dissertation when the
Magnetic-Strung NES is presented. The prototype and the schematic of the
NES studied in [MBV05] is illustrated in Fig.1.11.

The same system but with a grounded NES is studied in [KMK+07] and
illustrated in Fig.1.12. The TET is experimentally observed as well as the
activation threshold for the NES activation. The instantaneous frequency
is measured by means of the wavelet technique and the results projected
on the theoretical frequency-energy plot. The experimental apparatus used
in [BCHM10] is shown in Fig.1.13 where the NES is made out of a flexible
membrane.

In [KMK+08] the TET on a 2 dof primary system is investigated. The
experimental system is similar to that used in [MBV05] and the multi-modal
energy pumping is observed and validated.

Experimental studies related to civil engineering have also been carried
out. In [GLP07] a reduced model of a multi-dof building subjected to a
harmonical forcing is analyzed. In [NLIM+08] a similar system is studied
under the effect of a seismic excitation. In this case a Vibro-Impact NES
was utilized (Fig.1.14).

A significant contribution to the study of a Nonlinear Energy Sink at-
tached to a harmonically forced primary system has been made by the Ph.D.
thesis work of Etienne Gourc at the ISAE/INSA Toulouse [Gou13]. A cubic
stiffness (Fig.1.15) and a Vibro-Impact NES (Fig.1.16) were studied both
analytically and experimentally. This work has been considered as a starting
point for the study of this Ph.D dissertation.
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Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 83

Fig. 2.27 Experimental realization of Configuration II of nonlinear attachment (ungrounded at-
tachment with essential cubic stiffness nonlinearity): (a) experimental fixture, (b) schematic de-
scribing the various components of the fixture, (c) schematic indicating the NES portioned from
the linear oscillator.

pled to the linear system through an essential stiffness element. In Figure 2.27 we
depict this Configuration. The advantage of this design compared to Configuration I
is its versatility, since it can be connected to ungrounded structures (such as moving
ones); moreover, it will be shown that even lightweight ungrounded NESs can be
effective passive absorbers and local energy dissipators, making then primary candi-
dates for realizing TET in practical applications. Experimental results with fixtures
implementing Configurations I and II will be reported in Chapters 3 and 8 of this
work (for example, an experimental fixture depicting an ungrounded NES config-
uration attached to a two-DOF linear system of coupled oscillators is depicted in
Figure 3.96).

A third experimental configuration with a vibro-impact attachment will be con-
sidered in our study of passive seismic mitigation by means of TET. The vibro-
impact configuration is depicted in Figure 2.28. In this design, the essential stiffness

Figure 1.11: Experimental realization and schematic of the NES system
studied in [MBV05].

82 2 Preliminary Concepts, Methodologies and Techniques

Fig. 2.26 Experimental realization of Configuration I of nonlinear attachment (grounded attach-
ment with essential cubic stiffness nonlinearity): (a) experimental fixture, (b) schematic describing
the various components of the fixture.

In the experiments three different configurations of essentially nonlinear attach-
ments were considered. The first configuration (labeled Configuration I) consists of
a grounded, essentially nonlinear attachment (termed nonlinear energy sink – NES,
see Chapter 3), and its practical implementation is depicted in the experimental fix-
ture of Figure 2.26. The fixture consists of two single-degree-of-freedom oscillators
connected by means of a linear coupling stiffness. The left oscillator (the linear
system) is grounded by means of a linear spring, whereas the right one (the NES)
is grounded by means of a nonlinear spring with essential cubic nonlinearity (the
clamped wire design presented in Figure 2.25); an additionalviscous damper exists
in the NES.

The second configuration of essentially nonlinear attachment (NES) (labeled
Configuration II) consists of an ungrounded nonlinear attachment, which is cou-
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Fig. 2.26 Experimental realization of Configuration I of nonlinear attachment (grounded attach-
ment with essential cubic stiffness nonlinearity): (a) experimental fixture, (b) schematic describing
the various components of the fixture.

In the experiments three different configurations of essentially nonlinear attach-
ments were considered. The first configuration (labeled Configuration I) consists of
a grounded, essentially nonlinear attachment (termed nonlinear energy sink – NES,
see Chapter 3), and its practical implementation is depicted in the experimental fix-
ture of Figure 2.26. The fixture consists of two single-degree-of-freedom oscillators
connected by means of a linear coupling stiffness. The left oscillator (the linear
system) is grounded by means of a linear spring, whereas the right one (the NES)
is grounded by means of a nonlinear spring with essential cubic nonlinearity (the
clamped wire design presented in Figure 2.25); an additionalviscous damper exists
in the NES.

The second configuration of essentially nonlinear attachment (NES) (labeled
Configuration II) consists of an ungrounded nonlinear attachment, which is cou-

Figure 1.12: Experimental realization and schematic of the grounded NES
system studied in [KMK+07].
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Figure 1.13: Experimental realization of the acoustic NES system studied
in [BCHM10].

84 2 Preliminary Concepts, Methodologies and Techniques

Fig. 2.28 Experimental realization of a vibro-impact attachment: (a) experimental fixture, (b) de-
tail of VI NES.

nonlinearity of the attachment is realized by vibro-impacts, which, as argued in
Chapter 7, can be viewed as limiting cases of essentially nonlinear stiffnesses; in
that context, the vibro-impact nonlinearity can be regarded as the ‘strongest pos-
sible’ stiffness nonlinearity of this family of essentially nonlinear stiffnesses. In

84 2 Preliminary Concepts, Methodologies and Techniques

Fig. 2.28 Experimental realization of a vibro-impact attachment: (a) experimental fixture, (b) de-
tail of VI NES.

nonlinearity of the attachment is realized by vibro-impacts, which, as argued in
Chapter 7, can be viewed as limiting cases of essentially nonlinear stiffnesses; in
that context, the vibro-impact nonlinearity can be regarded as the ‘strongest pos-
sible’ stiffness nonlinearity of this family of essentially nonlinear stiffnesses. In

Figure 1.14: Experimental realization and schematic of Vibro-Impact NES
system studied in [NLIM+08].
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The diagram of the slow-flow on the SIM is presented in Fig. 7 for
the set of parameters (25). In this case, two unstable fixed points
are located on the lower branch of the SIM. The only possible
response for the system is stable SMR. This regime is observed on
the numerical integration in Fig. 8. Contrary to NES with cubic
stiffness [7,22], where, during SMR, the flow jumps between two
stable branches; in this case, it is observed that SMR acts through
successive synchronization between the LO and the VI-NES. When
the VI-NES is not synchronized, the amplitude of the LO grows,
under certain circumstance, the VI-NES enter in 1:1 resonance cap-
ture with the LO. Then, energy in the system is dissipated by suc-
cessive impacts and the amplitude of the LO decays until C¼C1

(17). Finally, the NES escapes resonance capture, and the amplitude
of the LO starts growing again. Such a behavior cannot be
explained by only studying the fixed points of the system.

4 Experimental Trials

The experimental setup is depicted in Fig. 9(a). It consists of an
LO with an embedded VI-NES. The whole system is embedded
on 10 kN electrodynamic shaker. The displacement of the LO as
well as the imposed displacement of the shaker are measured
using contactless laser displacement sensors. A detailed view of
the VI-NES is presented in Fig. 9(b). It simply consists of a closed
cavity of length dþ 2D, where d is the diameter of the ball. Each
cover is made of hardened steel. The design of the VI-NES is vol-
untary simple to check whether this kind of system can be used as
vibration mitigation device. Note that the aim of this experiment
is not to built an efficient NES, but to investigate the different
response regimes for future exploration.

The parameters of the system have been identified by perform-
ing modal analysis and are summarized in Table 1.

Experimental trials have been carried out for three different
forcing amplitudes. For each trial, displacement of the LO has
been recorded for increasing and decreasing frequency around the
natural frequency of the LO. The first results for G¼ 0.16 mm
(A¼ 0.019) are depicted in Fig. 10. Blue lines are the analytical
fixed points. Red dashed vertical lines represent the zone of SMR
found using numerical integration of Eqs. (3) and (4). Green lines
represent measured periodic response and straight vertical lines
represent the experimentally determined zone of SMR. First peri-
odic response was observed for r¼#3.2. This branch of periodic
solution has been followed until r¼ 1.1. For further increase of
the forcing frequency, periodic solution lose its stability, and
SMR takes place as illustrated in Fig. 11.

Experimentally, it has been found that stable SMR takes place
between r¼ 1.25 and r¼ 2.22 versus r¼ 1.6 and r¼ 3 numeri-
cally. Similar results are obtained for a reduced forcing amplitude
(G¼ 0.14 mm, A¼ 0.017) and are depicted in Fig. 12. In this case,
periodic motion is still observed between r¼#2.08 and r¼ 0.42.

Fig. 7 Case of SMR response. Blue and green lines corre-
spond to the SIM (16) and the curves (23). Red cross (1) corre-
sponds to unstable fixed points. Parameters are given in Eq.
(25).

Fig. 8 Numerical integration of Eqs. (4) and (5) for the set of
parameters (25)

Fig. 9 Picture of the experimental setup. (a) Global view of the
system and (b) detailed view of the NES.

Table 1 Parameters of the experiment

Physical parameters

m1 3.807 kg c1 2.53 N s/m
k1 11.68$ 103 N/m m2 32 g
D 15 mm r 0.6

Reduced parameters

e 0.84% k 1.43

Fig. 6 Numerical integration of Eqs. (4) and (5) for the set of
parameters (24) and zoom on the response
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Figure 1.15: Experimental realization of the Vibro-Impact NES system stud-
ied in [GMSB14b].

points on the upper fold are then computed using Eq. (18)
and the invariant property of the SIM (see Fig. 2 for the
corresponding notation)
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(31)

(2) Equation (22) is numerically integrated with U2u as initial
conditions, until reaching the upper fold line.

(3) The landing point U2d on the lower fold is computed in the
same way as in the first step.

(4) Equation (22) is numerically integrated again until reaching
the lower fold line.

This procedure is repeated for various starting points inside the
interval D11;D12½ %. Finally, if at the end of step 4 all the points
return inside this interval, the SMR cycle is stable. On the other
hand, if the slow flow goes through the basin of attraction of a sta-
ble fixed point, the SMR cycle is unstable.

3 Experimental Tests

In the following section, two different experiments will be pre-
sented. The main difference between these experiments is the
value of the mass ratio (e). For the first one e ¼ 12:9% and for the
second one e ¼ 1:2%. Moreover, the first experiment is subject to
harmonic forcing and the second one to an imposed displacement.
As mentioned previously, in the case of base excitation, a term
related to the damping of the LO is present (see Eq. (4)); this is
not the case for imposed force. However, this term is of Oðe2Þ and
does not have that much influence on the behavior of the whole
system. In both cases, the displacement is measured using contact-
less laser sensors. Raw signals are recorded using a digital oscillo-
scope and a bandpass filter is applied to correct biases and
suppress high frequency noise. The cubic stiffness has been imple-
mented geometrically with two linear springs that extend axially
and are free to rotate. The force-displacement relationship (given
in Eq. (32)), expanded in Taylor series, is shown to be approxi-
mately cubic in nature.

f ¼ 2kluþ
2u P! kllð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ u2
p ( 2P

l
uþ kl ! P

l3
u3 þ O u5

# $
(32)

where u is the displacement, kl is the linear spring stiffness,
l the initial length of the spring, and P is the prestress force.
Experimentally, P must be kept as small as possible. Precision rail
guides are used for all guidance. For each test, the root mean
square (rms) value of the absolute displacement of the LO (x) and

the relative displacement between the NES and the LO (w) are
plotted versus the frequency of excitation. rms values are used in
order to highlight the benefits of SMR cycles.

3.1 First Experiments With e 5 12:9%. The first experi-
mental fixture built to investigate the behavior of a single degree-
of-freedom (DOF) oscillator strongly coupled to an NES under
excitation is depicted in Fig. 4. It consists of a main mass (LO)
grounded by means of a linear spring and connected to an electro-
dynamic shaker. The nonlinear oscillator is embedded on this
main mass. Both masses are connected by means of an essential
cubic stiffness.

As shown in Fig. 4, the main system receives the electrody-
namic force directly from the modal shaker. This force is constant
whatever the response of the system. It has, therefore, been con-
sidered as the input excitation force, and the mass and stiffness of
the shaker are considered together with the LO. The exciter force
is obtained by measuring the current delivered by the power am-
plifier. The nonlinear stiffness value used in the theoretical analy-
sis has been obtained with a nonlinear least square cubic
polynomial fitting of the experimental curve.

The parameters identified on the experimental setup and used
for the calculations are given in Table 1.

The aim of the experimental tests is to obtain the nonlinear fre-
quency response function (FRF) of the system around the 1 : 1
resonance. To this end, the displacement signals of both the LO
and the NES have been recorded for increasing and decreasing
frequency varying from 5 Hz to 20 Hz.

Figure 5 shows the nonlinear response curves for the NES and the
LO, respectively, for a forcing amplitude of 2:7 N. Thin lines corre-
spond to stable periodic motion, and thick lines refer to unstable
region of periodic solutions. “SN” and “Hopf” indicate the location
of the saddle-node and Hopf bifurcation points obtained analytically
using Eq. (13). In addition to the classical resonance curve, a sec-
ondary resonance curve with a stable upper branch is observed.

Those figures also display the measured frequency response of
both oscillators, where “o” and “)” denote periodic and quasi-
periodic regimes, respectively, and arrows show the jumps and

Fig. 3 Illustration of the mapping procedure for K 5 100, r 5 1,
F 5 0:15, e 5 0:01, k1 5 0:1, k2 5 0:2

Fig. 4 First experimental setup (e 5 12:9%)

Table 1 Parameters of the first experiment

Physical parameters

m1 0:761 kg m2 0:098 kg
k1 5690 N=m k2 1:473 ) 106 N=m3

c1 2:4 Ns=m c2 0:1 Ns=m

Reduced parameters

e 12:9% k2 0:012
k1 0:28 K 2:01 ) 103

021021-4 / Vol. 136, APRIL 2014 Transactions of the ASME

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 02/10/2014 Terms of Use: http://asme.org/terms

Figure 1.16: Experimental realization of the cubic stiffness NES system
studied in [GMSB14a].
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1.4 Energy harvesting from vibrations

One of the objectives of this thesis is also to investigate the capability of us-
ing a nonlinear vibration absorber not only to dissipate the vibration energy
but also to recover it. This aspect is studied later on in this dissertation
when the Magentic-Strung NES is presented. In order to achieve this goal a
bibliographic study on energy harvesting has been conducted and it is here
briefly reported.

Energy harvesting from environment [BTW06] has recently known a
growing interest and many works have been motivated by advancements
in microelectronics industry which have enabled a reduction in the power
consumed by MEMS devices [GJTBW04,RWR03]. Solar, chemical and ther-
mal methods have been extensively investigated and recognized as potential
sources of energy. In addition, vibration is another important source and
scavenging energy from it has become a promising area of inquiry. First
works focused on inertial generators with linear behavior [WY95]. A pri-
mary limitation of linear inertial generators is their narrow-band efficacy:
their performance significantly decrease for any variation in the excitation
frequency. Tuning the device’s resonance and widening the bandwidth by
adding many oscillators are some methods that have been studied in [SBK08]
and [LW06] to overcome this limitation.

However, as for vibration absorbers, nonlinear dynamics seems to offer
a suitable alternative to improve performances in energy harvesting. One of
the first experimental investigations of an energy harvester specifically de-
signed to exhibit a nonlinear response was described in [MS09] where mag-
netic levitation was used to extend the device bandwidth. A similar study
based on piezoelectric energy conversion is presented in [SMM09]. A piezo-
electric nonlinear energy harvester is presented in [YZZ15] where high power
output and wide working bandwidth are reached. The same authors have
also investigated a new magnetoelectric generator in [ZZ12]. Many systems
demonstrate the advantages of monostable Duffing oscillators for increased
bandwidth. The bistable Duffing oscillator has also been investigated for
energy harvesting in [SMM10] and [MO10].

1.5 Motivation of this doctoral dissertation and
outline of the thesis

The literature review presented in this chapter has shown that the Targeted
Energy Transfer has been the subject of several theoretical studies and some
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experimental investigations. However, in order to fully exploit its potential
advantages, the Nonlinear Energy Sink as a vibration absorber still presents
some points that should be examined and better understood. For instance,
when it comes to vibration mitigation in a practical/industrial application,
the complexity of a NES realization often makes engineers lean towards
the use of the well-known Tuned Mass Damper. Certainly, whether using
a nonlinear or a linear absorber it depends on the single application case
and on the criteria to meet [GDK+16]. Nevertheless, we think the potential
of the NES deserves additional research in order to attain to a broader
knowledge of this device and its operating mechanisms.

Dealing with Nonlinear Structural Dynamics often means that the prin-
ciples and concepts taken as granted in classical dynamics may not be valid
anymore. Especially during experimental studies, this requires an additional
effort to understand new and unexpected behaviors that may arise.

In this study we tried to explain the physics of the phenomena we ob-
served by using the tools the mathematics provides. A bridge between math-
ematical modeling and engineering sense is sought through all the phases of
the work presented in this dissertation.

The study of Targeted Energy Transfer (TET) in strongly nonlinear
and non-conservative oscillators poses some distinct technical challenges,
and dictates the use of concepts, formulations, analytical methodologies and
computational techniques from different fields of applied mathematics and
engineering, such as dynamical systems and bifurcation theory, numerical
signal processing, and experimental dynamics. Therefore, before we initi-
ate our study of the nonlinear dynamics of TET, it is appropriate to first
provide some background information related to certain key concepts and
methodologies that will be applied in the work that follows.

In the next chapter some fundamental concepts of nonlinear dynamics,
used further in the dissertation, are introduced. The classic Duffing oscil-
lator is used as an example to introduce the concept of frequency-energy
dependency and bifurcation. The notion of nonlinear normal modes is also
introduced by providing some definitions available in the literature and an
example on a 2-dof system.

In the third chapter we enter the core of this dissertation by presenting
the first NES studied in this work: the Vibro-Impact Nonlinear Energy Sink
(VI-NES). An initial study on this kind of system was started by Gourc
in [Gou13] and interesting results proved this device as promising especially
because of its simplicity in the practical realization. The VI-NES is applied
to a single-degree-of-freedom linear oscillator harmonically forced. Depend-
ing on external force amplitude and frequency, either a Strongly Modulated
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Response (SMR) or a constant amplitude response (CAR) is observed. In
both cases an irreversible transfer of energy occurs from the LO towards the
VI-NES. The problem is analytically studied by using the multiple scales
method. The Slow Invariant Manifold (SIM) and the fixed points of the
problem are calculated. Finally a good correlation between experimental
and analytical results is shown.

The fourth chapter illustrates the theoretical design and experimental re-
alization of the second type of Nonlinear Energy Sink studied in this work.
The goal was to broad our research to the field of energy harvesting and
combine it with the nonlinear absorbers’ domain. The study was conducted
during a visiting period at the Duke University’s Mechanical Engineering
Department. This collaboration provided significant insights thanks to their
expertise in the area of nonlinear dynamics and energy harvesting. The NES
analyzed is a cubic NES coupled to an electro-magnetic energy harvester.
The mass of the Magnetic-Strung NES is a magnet which is linked to the
primary system by means of two strings working transversally. The restor-
ing elastic force of the strings is modulated thanks to the magnetic force
applied by two magnets suitably located on the primary mass. The NES’
efficiency as an absorber is studied on a harmonically forced 1 degree-of-
freedom primary system. The Target Energy Transfer (TET) from the pri-
mary system towards the NES is experimentally observed as well as different
response regimes like the Strongly Modulated Response. Moreover, the en-
ergy harvesting from the vibrating energy of the NES is investigated: the
NES mass, made up of a magnet, oscillates into a coil and subsequently cre-
ates an electric current. Thus, the vibrating energy of the primary mass is
in this way absorbed by the NES and finally converted into electric energy.

The thesis concludes with an analysis of the research conducted and its
future perspectives.



Chapter 2

Fundamentals of Nonlinear
Dynamics

Abstract

In this chapter some fundamentals of nonlinear structural dynamics are
presented. The classical example of the Duffing oscillator is used to introduce
the concept of frequency-energy dependency and bifurcation. The notion of
nonlinear normal modes is also introduced and their main features presented
by providing some examples taken from the literature.

25
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2.1 Duffing oscillator

The differential equation describing many nonlinear oscillators can be writ-
ten in the form:

d2x

dt2
+ f

(
x,
dx

dt

)
= 0 (2.1)

A convenient way to treat Eq.(2.1) is to rewrite it as a system of two
first order ordinary differential equations:

dx

dt
= y,

dy

dt
= −f(x, y) (2.2)

Which may be generalized as:

dx

dt
= F (x, y),

dy

dt
= G(x, y) (2.3)

A point which satisfies F (x, y) = 0 and G(x, y) = 0 is called an equilib-
rium point. The solution of Eq.(2.3) may be represented by a curve in the
x − y phase plane passing through the point of initial conditions (x0, y0).
Each time a motion passes through a given point (x, y), its direction is al-
ways the same. This means a given motion cannot intersect itself. A periodic
motion corresponds to a closed curve in the phase plane.

The differential equation:

ẍ+ δẋ+ βx+ αx3 = γ cos(ωt) (2.4)

is known as the Duffing oscillator’s equation and is a classical example
of nonlinear system which exhibits interesting nonlinear phenomena. We
present here a short analysis of this system to introduce some concepts of
nonlinear dynamics which will be used further in this dissertation.

It is a model of a structural system which includes a nonlinear restor-
ing force. It may be used as an approximation for the simple pendulum
illustrated in Fig.2.1 and governed by the equation of motion:

d2θ

dt2
+
g

L
sin θ = 0 (2.5)

Expanding sin θ = θ− θ3

6 +O(θ5) we obtain an undamped and unforced
Duffing’s equation:

d2θ

dt2
+
g

L

(
θ − θ3

6

)
= 0 (2.6)
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Figure 2.1: Simple pendulum.

Figure 2.2: Beam with large displacement.

Another example the Duffing equation can model is the structural beam
with a transversal load illustrated in Fig.2.2.

If we drop the hypothesis of small displacement, the behavior of the
beam is not linear anymore and the equation of motion can be written by
adding a nonlinear restoring force:

ẍ+ 2ξωnẋ+ ω2
nx+ αx3 = F sin(Ωt) (2.7)

Where ωn is the natural frequency and ξ the damping ratio.
In the case of an undamped and unforced system the equation of motion

becomes:
ẍ+ ω2

nx+ αx3 = 0 (2.8)

Which describes the free oscillations of the system.

2.1.1 Phase space and stability analysis

For β > 0 the Duffing oscillator can be interpreted as an oscillator with a
spring whose restoring force is Fel = βx + αx3. When α > 0 the spring is
called hardening, when α < 0 it is called softening.
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In the case of an undamped and unforced oscillator, if we rewrite the
Dumping’s equation as a first order system:

dx

dt
= y,

dy

dt
= −βx− αx3 (2.9)

We can describe the motion of the system in the x − y space, i.e. the
trajectory in the phase plane. The integral curve can be expressed as:

dy

dx
=

dy
dt
dx
dt

=
−βx− αx3

y
(2.10)

Eq.(2.10) can be integrated to give:

E(t) =
y2

2
+ β

x2

2
+ α

x4

4
= constant (2.11)

Eq.(2.11) corresponds to the physical principle of conservation of energy
and the Duffing oscillator is a Hamiltonian system. For α > 0 it is observed
that E(t) is a single well potential for β > 0 and it is a double well potential
for β < 0. The trajectory (y, x) moves on the surface of E(t) keeping E(t)
constant. When δ > 0, the system is damped:

dE(t)

dt
= −δẋ2 ≤ 0 (2.12)

The trajectory moves on the surface E(t) so that E(t) decreases until one
point of equilibrium is reached. For α > 0, β > 0 and δ > 0 the only
equilibrium is (x, y) = (0, 0). E(t) is a Lyapunov function1 and (x, y) =
(0, 0) is globally asymptotically stable.

When α > 0 and β < 0 there are three equilibria. This situation is
illustrated in Fig.2.3 and Fig.2.4 for the undamped case and in Fig.2.6 for
the damped one. Two equilibria are at the bottom of E(t), one is at a peak.

The equilibria of the unforced Duffing oscillator can be obtained by sub-
stituting ẍ = ẋ = 0 to Eq.(2.4):

x(β + αx2) = 0 (2.13)

The point x = 0 is always an equilibrium. Moreover, when αβ < 0, two
additional equilibrium points appear. The stability of these points can be

1A Lyapunov function is a scalar function V (y) defined on a region D that is continuous,
positive definite, V (y) > 0 for all y 6= 0, and has continuous first-order partial derivatives
at every point of D.
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Figure 2.3: Undamped Duffing oscillator’s phase space.
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Figure 2.4: Undamped Duffing oscillator’s orbits at different levels of total
energy.

studied by analyzing the Jacobian matrix of the Eq.(2.4) written as a first
order system:

d

dt

(
x
ẋ

)
=

(
ẋ

−δẋ− βx− αx3

)
(2.14)
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Figure 2.5: Damped Duffing oscillator’s phase space for two different initial
conditions (red dots).
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Figure 2.6: Evolution of two damped Duffing oscillator’s orbits as the total
energy decreases. The red dots represent the initial conditions.

The Jacobian matrix J(x) is:

J(x) =

(
0 1

−β − 3αx2 −δ

)
(2.15)
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Then, the eigenvalues of J(X) for the equilibrium x = 0:

λ =
−δ ±

√
δ2 − 4β

2
(2.16)

The equilibrium is stable for β ≥ 0 and unstable for β ≤ 0. On the other
hand, the eigenvalues of the equilibria x = ±

√
−β/α are:

λ =
−δ ±

√
δ2 + 8β

2
(2.17)

They are stable for α > 0 and β < 0 and unstable for α < 0 and β > 0.

2.1.2 A perturbation method to obtain the backbone curve

If we numerically integrated Eq.(2.4), we would see that the frequency of
the periodic motions depended on which closed curve in the phase plane
we were on. This effect is typical of nonlinear vibrations and is referred
to as the dependence of frequency on amplitude. Analytical methods exist
to derive the relationship between frequency and amplitude in Duffing’s
equations. These methods are called perturbation methods and a detailed
review about them can be found in [Nay04].

We present here a simple perturbation method called Lindstedt-Poincaré
’s method which we use to obtain the frequency-amplitude relationship in
the undamped Duffing oscillator.

We rewrite the Duffing’s equation as:

d2x

dt2
+ x+ εαx3 = 0 (2.18)

where ε is a positive small parameter.

We introduce a stretched time:

τ = ωt, ω = 1 + k1ε+ k2ε
2 + . . . (2.19)

where the coefficients ki are to be found. Substituting Eq.(2.19) into Eq.(2.18):

ω2d
2x

dτ2
+ x+ εαx3 = 0 (2.20)

Then we expand x in a power series in ε:

x(τ) = x0(τ) + εx1(τ) + ε2x2(τ) + . . . (2.21)
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It is important to highlight that the results obtained by this method are
expected only to be valid for small values of ε. Substituting Eq.(2.21) into
Eq.(2.20) and gathering terms of the same order:

d2x0

dτ2
+ x0 = 0

d2x1

dτ2
+ x1 = −2k1

d2x0

dτ2
− αx3

0

d2x2

dτ2
+ x2 = −2k1

d2x1

dτ2
− (2k2 + k2

1)
d2x0

dτ2
− 3αx2

0x1

(2.22)

The first equation of system (2.22) has the solution:

x0(τ) = A cos τ (2.23)

Here A is the amplitude of the motion and an arbitrary phase is chosen
thanks to the autonomous nature of Eq.(2.18), i.e. the absence of explicit
dependency on the variable t. After substituting the solution for x0 into the
second equation of Sys.(2.22), we get:

d2x1

dτ2
+ x1 = 2Ak1 cos τ −A3α cos3 τ (2.24)

The trigonometric term cos3 τ can be rewritten so that we obtain:

d2x1

dτ2
+ x1 =

(
2Ak1 −

3A3α

4

)
cos τ − A3α

4
cos 3τ (2.25)

In order to have a periodic solution, we require the secular terms to
vanish. The coefficient of cos τ is forced to zero:

2Ak1 −
3A3α

4
= 0 (2.26)

Which provides the value of k1:

k1 =
3

8
αA2 (2.27)

Substituting this result into the ansatz (2.19) we obtain the approximate
frequency-amplitude relation:

ω = 1 + k1ε+O(ε2) = 1 +
3

8
αA2ε+O(ε2) (2.28)
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Figure 2.7: Backbone curve and forced response of the Duffing oscillator.
Image from [WN15].

The solution for x1 becomes:

x1(τ) =
A3α

32
(cos 3τ − cos τ) (2.29)

The process may be continued indefinitely to obtain higher order approxi-
mations.

Eq.(2.28) represents the relationship between the natural frequency and
the amplitude of the motion for the Duffing oscillator and is called backbone
curve. The dependency of the natural frequency on the amplitude of the
motion, and then on the energy of the system, is a main characteristic of
nonlinear systems as well as a fundamental difference with linear systems. In
Fig.2.7, the backbone curve is plotted along with the forced response for the
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Duffing oscillator in the case of a hardening stiffness (α > 0). Furthermore,
we should notice that the property of having a phase φ = π/2 at the peak
value is preserved. This is an important feature that can be used in the
experimental analysis of nonlinear systems.

µ = Ω

ωn
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Figure 2.8: Response of the driven Duffing oscillator.

By looking more in detail at the driven response of the Duffing oscillator
as reported in Fig.2.8, we can notice that there is a range of frequencies
where more than one possible solution coexist. Actually Fig.2.8 can be
interpreted as a bifurcation diagram for the Duffing oscillator whereas the
forcing frequency is the varying parameter.

When the forcing frequency increases and the peak value is reached, the
response jumps down to a stable lower amplitude state. In the same way
when the forcing frequency decreases and the system reaches an unstable
point, the response suddenly jumps up to a stable higher amplitude state.
The jump resonance phenomenon is also an important essential character-
istic nonlinear systems may exhibit.

2.1.3 Poincaré section and Chaos

The Duffing equation is an example of a dynamical system that exhibits
a chaotic behavior for appropriate values of parameters. A useful way of
analyzing chaotic motion is to look at what is called the Poincaré section.
Rather than considering the phase space trajectory for all times, which gives
a continuous curve, the Poincaré section is just the discrete set of phase
space points of the particle at every period of the driving force, i.e. at
t = 2π/ω, 4π/ω, 6π/ω etc. Clearly for a periodic orbit the Poincareé section
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is a single point, when the period has doubled it consists of two points, and
so on. When the system exhibits a chaotic behavior the Poincareé section
shows what it is called a chaotic attractor [Mil85].

For the Duffing oscillator the Poincaré section Σ can be defined as:

Σ = {(x, ẋ, t) ∈ < × <× S|t = 2π/ω, 4π/ω, 6π/ω, . . . } = <× < (2.30)

Where S = [0, 2π + 2kπ], k = 0, 1, . . .

The Poincaré map converts the original three-dimensional flow (x, ẋ, t)
into a two-dimensional discrete mapping. The Poincaré section is coordi-
nated by the displacement x and the velocity ẋ:

P : Σ→ Σ i.e. (x0, ẋ0)→ (x, ẋ) (2.31)

It means that the P moves the point (x0, y0) in Σ into another point in Σ
via the governing equation and the impact rule. When the orbit is periodic,
then P transforms the point x0, y0 into the same point.

The diagram in Fig.2.9 is the chaotic attractor of the Duffing oscillator.
It is the limiting set of points to which the trajectory tends (after the initial
transient) every period of the driving force. Further information on chaos
in the Duffing oscillator can be found in [Hol79,MH79]. As a more complex
exemple of chaotic system, a study on the transition to chaos for plates
harmonically forced is presented in [TTA11].

Figure 2.9: Chaotic attractor of the Duffing’s equation.
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2.2 Nonlinear Normal Modes

We believe it is important to introduce the concept of Nonlinear Normal
Modes (NNMs) because closely related to the concept of Targeted Energy
Transfer. A system composed of a linear primary system and a nonlinear
attachment (NES) can be seen as a whole system which presents one (or
more) nonlinearity in it. In this perspective the activation of the NES can
be considered as a localized NNM. In this section we introduce the concept
of NNM and some important properties (like the localization) which are
tightly correlated to the TET.

The concept of normal mode is traditionally associated with linear vi-
bration theory and related to the principle of linear superposition. Indeed,
a classical result of linear vibration theory is that the normal modes of
vibration of a multi-degree-of-freedom (MDOF) discrete system can be em-
ployed to decouple the equations of motion through an appropriate coordi-
nate (modal) transformation, and to express its free or forced oscillations as
superpositions of modal responses. Another result of classical linear theory
is that the number of normal modes of vibration cannot exceed the number
of degrees of freedom of a discrete system, and that any forced resonance of
the system under external harmonic excitation always occurs in neighbor-
hoods of frequencies of normal modes. Although in nonlinear systems the
principle of linear superposition does not (generally) hold, nevertheless the
concept of the normal mode can still be employed. Furthermore, it has been
shown [TTC04] that using a single NNM can in certain cases lead to a bet-
ter prediction of the behavior of a nonlinear structure (hardening/softening)
than what a superposition of several linear normal modes can do.

2.2.1 Rosenberg’s and Shaw and Pierre’s definitions

Rosenberg [Ros66] defined a nonlinear normal mode (NNM) of an undamped
discrete MDOF system as a synchronous periodic oscillation where all mate-
rial points of the system reach their extreme values or pass through zero si-
multaneously; hence, the NNM oscillation is represented by either a straight
modal line (similar NNM) or a modal curve (non-similar NNM) in the con-
figuration space of the system. Like for the linear normal modes, all displace-
ments can be expressed in terms of a single reference coordinate. NNMs are
generically non-similar as similar modes can only be realized if special sym-
metries conditions exist [VMM+96]. We should remind that in the linear
case, normal modes are always similar.

The extension of the concept of NNM to non-conservative systems with
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Figure 2.10: Nonlinear Normal Modes according to Rosenberg’s definition
[Ros66] synchronous periodic oscillation where all material points of the
system reach their extreme values or pass through zero simultaneously.

damping was studied by Shaw and Pierre [SP91,SP93], who introduced the
concept (based on ideas developed in [Fen71]) of damped NNM invariant
manifold to account for the fact that the free oscillation of a damped non-
linear system is a non-synchronous decaying motion. This formulation com-
putes damped NNM invariant manifolds of the damped dynamical flow by
parameterizing the damped NNM response in terms of a reference displace-
ment and a reference velocity. For sufficiently weak damping, the damped
NNM invariant manifold can be viewed as a perturbation of the NNM of the
corresponding undamped Hamiltonian system. When a motion is initiated
on a damped NNM invariant manifold of a MDOF system, the response
remains on the manifold: the system behaves as a single-DOF system on
the manifold.

2.2.2 Dependence of the Nonlinear Normal Modes on the
energy of the oscillations

Similar NNMs are analogous to linear normal modes, in the sense that their
modal lines do not depend on the energy of the free oscillation and space-
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Figure 2.11: Invariant Manifolds of Nonlinear Normal Modes as defined by
Shaw and Pierre [SP91,SP93].

time separation of the governing equations of motion can still be performed.
However, this type of NNMs is realized only when special symmetries occur,
and are not typical in nonlinear systems. More generic are non-similar
NNMs, whose modal curves do depend on energy; this energy dependence
prevents the direct separation of space and time in the governing equations
of motion by means of non-similar NNMs, which complicates their analytical
computation [Man72,Vak96].

We consider the apparently simple 2-DOF described by Eq.(2.32):

ẍ1 + (0.02ẋ1 − 0.01ẋ2) + (2x1 − x2) + 0.5x3
1 = F cos(ωt)

ẍ2 + (0.02ẋ2 − 0.01ẋ1) + (2x2 − x1) = 0
(2.32)

The FRFs of the two coordinates of the system show a strong energy
dependence that is illustrated in Fig.2.12. It is important to observe that
the system behaves as its linear counterpart for low levels of energy. The
evolution of the normal modes is shown Fig.2.13.

2.2.3 Localization of Nonlinear Normal Modes

We consider another example of 2-DOF system [KPGV09] consisting of a
nonlinear oscillator linearly coupled to a linear one [KMK+08] whose equa-
tions of motion are Sys.(2.33). The system is illustrated in Fig.2.14.

ẍ1 + (2x1 − x2) + 0.5x3
1 = 0

ẍ2 + (2x2 − x1) = 0
(2.33)
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Figure 2.12: Dependence of the FRFs of Sys.(2.32) on the energy level.

Figure 2.13: Dependence of the FRFs of Sys.(2.32) on the energy level.

Figure 2.14: Example of 2-DOF system consisting of a nonlinear oscillator
linearly coupled to a linear one [KMK+08].

The Frequency-Energy Plot (FEP) of Fig.2.15 [PVR+08] depicts the
evolution of the NNMs as the energy of the oscillations varies. There exist
two main backbone branches of NNMs, an in-phase branch, S11+, origi-
nating (for low energies) from the first linearized natural frequency and an
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Figure 2.15: Frequency-energy of the NNMs of Sys(2.33). The corresponding
modal curves in the phase plane are inset, horizontal and vertical axes in
these plots depict the displacements of the nonlinear and linear oscillators
respectively. Image from [KPGV09].

out-of-phase one, S11, originating from the second linearized natural fre-
quency. The FEP of Figure 2.4 clearly shows that the nonlinear modal
parameters have a strong dependence on the (conserved) energy of the oscil-
lation. Specifically, the frequencies of the in-phase and out-of-phase NNMs
increase with energy, which reveals the hardening characteristic of the sys-
tem. Furthermore, the modal curves change with increasing energy, since
the in-phase NNM tends to localize to the linear oscillator (i.e., its modal
curve tends to become vertical in the corresponding phase plane), whereas
the out-of-phase NNM tends to localize to the nonlinear oscillator (its modal
curve tends to become horizontal with increasing energy). This tendency
of NNMs to localize with varying energy is crucial for the realization of
TET [Pil08].

2.2.4 Internal resonance

Another main feature of NNMs is that they may nonlinearly interact with-
out their linearized natural frequencies necessarily satisfying conditions of
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Figure 2.16: Example of internal resonance between the two NNMs of
Sys(2.33). Due to the energy dependence of the frequencies, at high en-
ergy level the system goes through a 3:1 resonance although the linearized
modes (low level of energy) do not have commensurate frequencies. Image
from [KPGV09].

internal resonance. This purely nonlinear phenomenon appears at high level
of energy and can be studied by analyzing the evolution of the NNMs on the
FEP. In Fig.2.16 we can see how the frequencies of the two normal modes
of Sys(2.33) evolve as the energy increases until a condition of internal res-
onance 3:1 occurs.

We note an additional branch of NNMs lying on a subharmonic tongue
emanating from the in-phase backbone branch S11+. This tongue is denoted
by S31, since it corresponds to a 3:1 internal resonance of the in-phase and
out-of-phase NNMs at those energy levels.

This result clearly demonstrates that NNMs can be internally resonant
without necessarily having commensurate linearised natural frequencies.

An practical example of nonlinear internal resonance in acoustic instru-
ments can be found in [MTT15].
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2.2.5 Bifurcations

Figure 2.17: Bifurcation diagram of the NNMs of Sys(2.34). The dashed
line represents the unstable solution.

We know that a linear discrete multi-degree of freedom (MDOF) struc-
tural system has as many normal modes as degrees of freedom. Reduced
order models (less modes than DOF) are usually used as an approximation
to describe the dynamics. However, in any case the number of normal modes
cannot exceed the number of DOF.

When it comes to Nonlinear Normal Modes, the number of modes may
be higher that the number of DOF and this is due to NNM bifurcations.

This feature can be illustrated by the following example [VR92a,VR92b]:

ẍ1 + x1 + x3
1 +K(x1 − x2)3 = 0

ẍ2 + x2 + x3
2 +K(x2 − x1)3 = 0

(2.34)

Because of its symmetry, the system possesses only similar modes:

y2 = f(y1) = cy1 (2.35)

where c is a real constant. Substituting the similarity condition (2.35) into
Sys.(2.34) we obtain an algebraic relation between the modal constant c and
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the nonlinear stiffness K:

K(1 + c)(c− 1)3 = c(1− c)2 (2.36)

In Fig.2.17 the real values of the modal constant c are plotted for varying
coupling stiffness coefficient K, from which we infer that a pitchfork bifur-
cation of NNMs occurs in the system. This type of bifurcation is realized
due to the symmetry of the system and is expected to break into saddle
node (SN) bifurcation(s) when this symmetry is perturbed. A brief discus-
sion about pitchfork and saddle-node bifurcations is provided in the next
section.

Looking at Fig.2.17, we notice that the system has only the in-phase
(c = 1) and out-f-phase (c = −1) NNMs for high values of K. These modes
can be interpreted as the generalization of the linear normal modes. When
K = 0.25 the out-of phase NNM degenerates into a pitchfork bifurcation:
the NNM c = −1 becomes unstable and two new stable modes appear. Then
for 0 < K < 0.25 the system possesses four NNMs although it only has two
degrees of freedom.

Furthermore, it can be noticed that for K → 0 the two NNMs which
bifurcate from the out-of phase mode localize to one of the two oscillators:
c→ −∞ and c = 0.

2.3 Saddle-node, Pitchfork and Hopf bifurcations

Here is a short description of the difference between a saddle-node, a pitch-
fork and a Hopf bifurcation. These are among the most common types of
bifurcations encountered in nonlinear dynamics. Indeed they will be ob-
served in the Vibro-Impact NES system presented in the next chapter.

2.3.1 Saddle-node bifurcation

In a dynamical system, a saddle-node bifurcation occurs when, as a param-
eter changes, the generation (or the destruction) of equilibrium points is
engendered.

As a very simple example, let us take the first order system:

ẋ = r + x2 (2.37)

• if r < 0, two equilibria exist: one stable in x = −
√
−r and one unstable

in x = +
√
−r.



44 CHAPTER 2. FUNDAMENTALS OF NONLINEAR DYNAMICS

Figure 2.18: Saddle-node bifurcation as the parameter r changes

• if r = 0, the two equilibrium points collide in a unique point: the
saddle-node point.

• if r > 0, no points of equilibrium exist anymore.

2.3.2 Pitchfork bifurcation

Pitchfork bifurcations are a particular type of local bifurcations. There exist
two types: supercritical and subcritical.

Supercritical pitchfork bifurcation

The normal form of the supercritical pitchfork bifurcation is:

ẋ = rx− x3 (2.38)

• if r < 0, one stable equilibrium point exists in x = 0.

• if r = 0, x = 0 becomes a pitchfork bifurcation point.

• if r > 0, x = 0 loses its stability and two new stable equilibrium points
arise in x =

√
r and x = −

√
r.
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Figure 2.19: Supercritical pitchfork bifurcation as the parameter r changes

Figure 2.20: Supercritical pitchfork: bifurcation diagram

Subcritical pitchfork bifurcation

The normal form is:
ẋ = rx+ x3 (2.39)

• if r < 0, three points of equilibrium exist: one stable in x = 0 and two
unstable in x = ±

√
r;

• if r = 0, the three points collide in x = 0: pitchfork bifurcation.

• if r > 0, only one unstable equilibrium exist.
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Figure 2.21: Subcritical pitchfork bifurcation as the parameter r changes

Figure 2.22: Subcritical pitchfork bifurcation as the parameter r changes

2.3.3 Hopf bifurcation

A Hopf bifurcation is a critical point where a system’s stability switches and
a periodic solution arises. More precisely, it is a local bifurcation in which
a fixed point of a dynamical system loses stability, as a pair of complex
conjugate eigenvalues (of the linearization around the fixed point) cross the
complex plane imaginary axis.

The normal form of a Hopf bifurcation is:

dz

dt
= z((λ+ i) + b|z|2) (2.40)

Where z, b are both complex and λ is a parameter. We write b = α+ iβ.

• if α < 0 then there is a stable limit cycle for λ > 0: z(t) = reiωt, where
r =

√
−λ/α and ω = 1 + βr2. The bifurcation is then supercritical.



2.3. SADDLE-NODE, PITCHFORK AND HOPF BIFURCATIONS 47

X1

-1.5 -1 -0.5 0 0.5 1 1.5

X
2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2.23: Phase plane displaying a limit cycle generated by a Hopf bifur-
cation.

• if α > 0 then there is an unstable limit cycle for λ < 0. The bifurcation
is then subcritical.
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Chapter 3

Vibro-Impact Nonlinear
Energy Sink

Abstract

In this chapter the dynamics of a Vibro-Impact Nonlinear Energy Sink (VI-
NES) is experimentally investigated via a harmonically forced single-degree-
of-freedom linear oscillator to which a VI-NES is attached. The mass ratio
between the VI-NES and the primary system is about 1%. Depending on ex-
ternal force amplitude and frequency, either a Strongly Modulated Response
(SMR) or a constant amplitude response (CAR) is observed. In both cases
an irreversible transfer of energy occurs from the LO towards the VI-NES:
process known as passive Targeted Energy Transfer (TET). Furthermore, the
problem is analytically studied by using the multiple scales method. The Slow
Invariant Manifold (SIM) shows the existence of a stable and an unstable
branch of solution, and of an energy threshold (a saddle-node bifurcation)
for the solutions to appear. Subsequently the fixed points of the problem are
calculated. When a stable fixed point exists, the system is naturally drawn to
it and a CAR is reached. Otherwise a SMR state occurs and no stable point
is attained. Finally a good correlation between experimental and analytical
results is shown.

49
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3.1 Introduction

In this chapter the study of a Vibro-Impact NES coupled to a LO is carried
out. In this type of system the shocks occurring between the primary mass
and the NES’ represent the nonlinearity through which the vibration energy
is dissipated.

The main purpose of this study is to bridge the theoretical and experi-
mental works in order to reach a comparison between the analytical results
and the experimental observations. Experimentally, this system has the
characteristic of being relatively simple to realize if compared to the cubic
NES, where obtaining a purely cubic force between the NES and the primary
system may represent a tricky task. On the other hand, the non-smooth na-
ture of the system due to the impacts introduces an additional complication
in the analytic and numerical modeling.

The study carried out in [GMSB14b] is used as an important starting
point to broaden the general understanding of the VI-NES. In [GMSB14b],
experimental investigations have shown how such a system may exhibit dif-
ferent types of response as the external forcing changes in amplitude and/or
frequency. It also has been shown how an analytical study based on the
multiple scales method is potentially able to describe this kind of behavior.

We decided to reformulate the analytical treatment in a different way
which could take into account the forcing term since the very first steps of
the multiple scales expansion. As for the experimental part, we used the
same VI-NES as in [GMSB14b] but applied to a different primary system
with a higher natural frequency to prove the efficacy of the absorber for
different frequencies. Moreover, we avoid using a bearing slider as it turned
out being a source of perturbation for the experiments.

We conducted an extensive investigation: four levels of force were tested
and for each level a frequency sweep was performed. This allowed us to
study the response of the VI-NES over a considerable range of cases.

Finally the analytical model is used to explain the behavior experimen-
tally observed and a comparison is presented. In addition, the influence of
the design parameters on the VI-NES behavior is discussed and explained
thanks to some analytical examples.

3.2 Preliminary investigations

Before starting with the test of the VI-NES applied to the primary system,
we want to investigate the impact kinematics of the NES itself.
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The system is composed of the primary mass on which the VI-NES is
assembled. The VI-NES is a steel cylinder inside of which a steel ball is
free to roll. The primary mass is then rigidly connected to a vibrating table
whose motion is controlled in frequency and amplitude. Then controlling
the shaker’s motion is actually equivalent to controlling the primary mass’
motion. The experimental setup and its schematic are shown in Fig.3.1.

Figure 3.1: The VI-NES and its schematic.

We are interested in exploring the behavior the system may exhibit de-
pending on the excitation it is subject to.

If the primary mass’ motion is harmonic, we consider the VI-NES as
”active” when two impacts per cycle of oscillation occur. This regime is
particularly interesting because it potentially represents a suitable condition
for energy dissipation. However, the goal of this preliminary investigation
is only to analyze the kinematics of the problem since the energy transfer
aspect will be introduced afterwards.

Each test is performed at a constant level of acceleration and for a slow
sweeping frequency in order to identify the frequency range in which the
VI-NES is active. In Tab.3.1 the results are displayed.

The VI-NES is active since the lowest frequency and it holds the 2 impact
regime up to an upper limit after which no impacts occur anymore. The
upper limit grows almost linearly with the acceleration. It is important to
highlight that if the VI-NES is active, it does not necessarily mean it will
be efficient in terms of energy dissipation. Nevertheless this preliminary
investigation gives some interesting information for the experimental study
that follows.
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Acc [g] Activation range [Hz]

1 7.48

2 12.42

2.5 14.26

3 15.2

3.5 17

4 18.3

Table 3.1: Activation range: experimental results

3.3 Numerical model

A numerical model of the VI-NES is developed in Matlab to predict the
response that might be observed during experiments. A schematic of the
model is displayed in Fig.3.2.

Figure 3.2: Schematic of the model.

Between two impacts, the equations of motion of the system are:

Mü+ Cu̇+Ku = Kxe + Cẋe

mv̈ = 0 (3.1)

∀|u− v| < L

When an impact occurs, i.e. when |u − v| = L, the velocities present
a discontinuity and the relation (Newton experimental law) which provides
the conditions after the impact is:

u̇(t+j )− v̇(t+j ) = −r(u̇(t−j )− v̇(t−j )) (3.2)

Mu̇(t+j ) +mv̇(t+j ) = Mu̇(t−j ) +mv̇(t−j ) (3.3)
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Where t+j and t−j are the time instants after and before the jth impact
respectively.

Eq.(3.1) is integrated in Matlab with an ode45 method and the impact
conditions are taken into account thanks to the event option. This consists
in defining an event function which in our case is the impact condition
fevent = |u − v| − L. The equations are integrated up until an event is
detected: the event function equals zero. Then the integration stops and new
initial conditions are defined, i.e. the velocities after the impact calculated
by Eq.3.2. Finally the integration restarts with the new initial conditions
until the next impact/event.

Two cases in which Targeted Energy Transfer is observed are shown in
the next section. For these simulations a primary system’s natural frequency
of 21.18Hz is used. In the first case the system is unforced and an initial
displacement is imposed. In the second one the system is harmonically
forced and a Strongly Modulated Response responses is observed.

3.3.1 Case 1: unforced system with initial displacement (xe =
0; u(0) 6= 0)

In this example the system is unforced and an initial displacement is im-
posed.
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Figure 3.3: Primary mass’ displacement. The red circles represent the in-
stants when impacts occur.
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In Fig.3.3 the primary system’s displacement is shown. It can be ob-
served that after a short transient the primary system and the VI-NES
establish a regime with two impacts per cycle and the vibration energy is
dissipated (Targeted Energy Transfer). When the primary system’s dis-
placement becomes too small (t ≈ 0.4 s) the TET ends and the rest of the
energy is dissipated by the structural damping (the few impacts left are
weak and energetically insignificant). In Fig.3.4 the energy dissipated by
the impacts as a percentage of the initial potential energy of the primary
system (U = 1

2Kx
2(0)) is displayed.
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Figure 3.4: Energy dissipated by the impacts as a percentage of the initial
potential energy of the primary system (U = 1

2Kx
2(0)).

3.3.2 Case 2: forced system

In this example the system is harmonically forced. A base acceleration at
constant amplitude and frequency is imposed.

Fig.3.5 shows the primary system’s displacement for a base acceleration’s
amplitude and frequency of 0.4 g and 21.3Hz respectively. It can be noticed
that the VI-NES goes through ON-OFF cycles during which TET is cycli-
cally observed. The amplitude of the response grows until the VI-NES turns
active, the energy is dissipated, the response decreases and no more impacts
occur (VI-NES inactive). Since the system is constantly forced, the whole
cycle starts over.
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Figure 3.5: Primary system’s displacement: Strongly Modulated Response.

3.4 Experimental study

The experimental study has been conducted aiming to observe the behav-
ior of the system and to explore the different existing types of response
which can arise and how they are related to the external forcing in terms of
magnitude and frequency. This phase of experimental investigation will be
subsequently exploited and the observations explained by the analytic study
of the system.

The entire experimental setup is shown in Fig.3.6 and is constituted
by a primary single-degree-of-freedom linear oscillator (LO) to which the
VI-NES is attached. The LO is harmonically forced by an electrodynamic
shaker coupled to a vibrating table the LO is mounted on.

Figure 3.7 displays the tested prototype and its schematic: the primary
mass M is linked to its base by means of two flexible blades. The base is
then screwed to the vibrating table. Upon the primary mass a cylinder is
mounted and the small VI-NES mass is free to roll inside. The cylinder is
pierced on the sides in order to make the air effect negligible and to visually
observe the ball motion which will not be measured.

Firstly a dynamic identification of the primary system is performed. The
system is forced by a swept-sine external force with constant amplitude and
the displacement of the primary mass is measured by means of a Laser
Doppler Vibrometer (LVD). The use of an LVD rather than an accelerom-
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Figure 3.6: The LO coupled to the VI-NES: the experimental setup.

Figure 3.7: The prototype of the VI-NES applied to the LO (left) and its
schematic (right).

eter has been dictated by the fact that impacts would drastically perturb
measures made with an accelerometer.

The modal parameters are shown in Tab.4.1 and the masses values and
their ratio in Tab.3.3. Several tests were performed on the primary structure
at different levels of base acceleration between 0.2− 0.5g. The spectrum of
the displacement is shown in Fig.3.8. The tests showed that the primary
system was not perfectly linear and that a slight variation in the modal
parameters, particularly the damping, occurred as the external force varied.
However this was a weakly nonlinear behavior that did not affect the purpose
of the tests as the quality response of the system was unaffected by it. It is
important to highlight the particularly small mass ratio between the VI-NES
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F [g] f0[Hz] K[N/m] C[N/ms] ξ

0.2 21.18 67421 8.566 0.008
0.3 20.92 65776 13.325 0.013
0.4 20.85 65336 17.132 0.017
0.5 20.64 64027 20.367 0.021

Table 3.2: Modal parameters of primary system
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Figure 3.8: Primary system displacement spectrum for four excitation levels.

and the primary system, that is less than 1%.

Once the primary system has been identified, we arm the VI-NES by
inserting the small mass into the cavity and we carry out some swept-sine
tests for four different levels of base acceleration: [0.2; 0.3; 0.4; 0.5]g. The
fact of using a heavy-mass shaker permits the shaker not to be perturbed
when it goes through the natural frequency of the LO during the swept-sine.
As for the tests of the primary system, the displacement is measured by the
LVD and the spectra are then obtained by signal processing.

Fig.3.9 shows the displacement spectra for the system with and without
VI-NES for four levels of external excitation: [0.2; 0.3; 0.4; 0.5]g. Fig.3.10
shows the measured displacement for two different frequencies at the same
level of external excitation.

Firstly, we can observe that a threshold in the amplitude of the primary
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M [Kg] m[Kg] ε = m/M

3.807 0.032 0.84%

Table 3.3: Mass parameters of primary system
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(d) ẍe = 0.5g

Figure 3.9: Experimental spectra of the primary mass displacement with
(red) and without (blue) the VI-NES for four different levels of base accel-
eration.

mass oscillations exists for the VI-NES to become active: we will refer to
it as activation threshold. Secondly, the system can exhibit two types of
response and depending on magnitude and frequency of external forcing
either one or another may appear.

The responses can be qualitatively classified as:

• Idle VI-NES: no impacts occur and the primary system’s dynamics
is not perturbed by the presence of the VI-NES: the LO oscillations
amplitude is lower than the activation threshold.

• Constant Amplitude Response (CAR): the VI-NES is stably active and
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(a) Time series: constant amplitude response - ẍe = 0.4g − f = 20.9Hz (left) and
strongly modulated response - ẍe = 0.4g − f = 21.5Hz (right).
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(b) Detail of the time series of above. The dashed line represents the amplitude of
the LO’s response at equal forcing without the VI-NES.

Figure 3.10: Recorded time series showing a constant amplitude response
and a strongly modulated response.

the amplitude of primary mass displacement remains constant (fig.3.10
left).

• Strongly Modulated Response (SMR): the primary system goes through
alternatively increasing and decreasing amplitude cycles and as a con-
sequence the fast oscillations appear to be modulated. This behavior is
caused by cyclical activation and deactivation of the VI-NES (fig.3.10
right).

The VI-NES seems to well accomplish its task as a vibration absorber
since the response is actually reduced nearby the resonance of the primary
system. This is the proof that a Targeted Energy Transfer occurs from the
LO towards the VI-NES and that the energy is then dissipated by the im-
pacts. It is important to highlight that this goal has been achieved although
a proper sizing process of the VI-NES has not been carried out and with
a significantly small mass ratio ε = 0.84%. This result proves that the VI-
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Figure 3.11: Experimental impacts detection: acceleration of the LO mea-
sured by an accelerometer placed on the VI-NES in order to capture the
instants of impact. The peaks represent the shocks occurring throughout
the oscillations of the LO which are highlighted by the dashed line. A de-
notes the normalized acceleration of the LO. It can be seen as two impacts
per cycle occur, i.e. a 1:1 resonance state is established.

NES is able to automatically tune itself to the primary system. This is a
relevant general feature of nonlinear absorbers due to the absence of a nat-
ural frequency for these devices. However, whereas for cubic stiffness NES
the absence of a natural stiffness is a delicate aim to reach [GMSB14a], for
VI-NES it appears to be as an evident outcome. Still, we remind that the
primary objective of this experimental study was not to seek the optimal
performance but rather to investigate the qualitative behavior of the VI-
NES. Looking at the spectra of Fig.3.9 one can draw the conclusion that
there exists a criterion on primary mass displacement in order to activate
the VI-NES. Indeed a threshold in amplitude/energy is observed beyond
which the VI-NES goes through a 1:1 resonance with respect to the LO.
The terminology 1:1 resonance is used to maintain a correlation with the
cubic stiffness NES, even though in this context it would mean that two
impacts per oscillation cycle of the primary mass occur. This can be seen
in Fig.3.11 where the signal of an accelerometer placed on the primary mass
is shown. The peaks represent the shocks occurring two times per period
throughout the oscillations of the LO.
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Figure 3.12: Zones of the experimental observed regimes with respect to
magnitude and frequency external force.

Fig. 3.12 shows a map illustrating the types of observed responses as
a function of external forcing magnitude and frequency. For low level of
external forcing only the SMR is registered through the whole range of
frequencies the VI-NES is active. As the external force increases, the CAR
appears at the lowest frequencies of the activation range and the SMR tends
to disappear. When high levels of external forcing are reached the CAR
becomes the prevalent, if not the only, type of response detected. It is
therefore clear that for a given VI-NES the kind of response which might
arise is a function of external forcing magnitude and frequency. In the
next section this behavior will be explained by an analytical analysis of the
problem.

3.5 Analytic treatment

In this section the mathematical problem associated to the VI-NES is stud-
ied. An analytical treatment is presented in which the Multiple Scales
method is used in order to obtain the Slow Invariant Manifold (SIM) and
the fixed points of the problem. The approach followed is mainly based on
the work of Gendelman [Gen12], where the analytic treatment of an un-
forced system with a VI-NES is presented. Here we extend the treatment
to a damped and forced system such as in [GMSB14b], with the difference
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that the forcing term is not hypothetically supposed to be of order 1 but
considered since order 0 in the multiple scales expansion.

The schematic of the model is presented in Fig.3.7. We define the vari-
ables u, v, and xe as the displacements of the primary mass M , of the
NES mass m and of the base respectively. Before going through the study
of the equations of motion, we model the impacts by using the Newton’s
experimental law and the momentum conservation principle. This model,
although quite simple, is able to represent the physics of the impacts by
means of only one parameter: the restitution coefficient r.

u̇(t+j )− v̇(t+j ) = −r(u̇(t−j )− v̇(t−j )) (3.4)

Mu̇(t+j ) +mv̇(t+j ) = Mu̇(t−j ) +mv̇(t−j ) (3.5)

Where t+j and t−j are the time instants after and before the jth impact
respectively. Eq.(3.4) provides a relation for the relative velocities of the
two colliding masses after and before the impact by use of the restitution
coefficient 0 < r < 1. Then, in the limit cases, impacts can be characterized
as perfectly elastic r = 1 or perfectly inelastic r = 0. Eq.(3.5) expresses the
momentum conservation throughout an impact. Each mass experiences an
instantaneous momentum variation that can be represented by a Heaviside
step function. Thanks to Eqs.(3.4) and (3.5) we can write the jump in
velocity for each of the two masses as a function of the relative velocity
before the impact ẇ− = u̇− − ˙v− as follows:

u̇+ − u̇− = −m(1 + r)

(M +m)
ẇ− (3.6)

v̇+ − v̇− =
M(1 + r)

(M +m)
ẇ− (3.7)

The derivative of momentum with respect to time is the force acting
through the impact. Then the instantaneous force caused by the impact is:

F = M
du

dt

∣∣∣∣
t=tj

= M(u̇+ − u̇−)δj = −Mm(1 + r)

(M +m)
ẇ−δj (3.8)

Where we have exploited the property of the step function according to
which its derivative is the delta function δ(t).

Thus in Eq.(3.9) we express the force each mass is subjected to as a Dirac
delta function since the Dirac delta function is the distributional derivative
of the Heaviside step function.
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Finally the equations of motion can be written as:

Mü+ λu̇+Ku+
Mm(1 + r)

M +m

∑
j

ẇ−δ−j = Kxe + λẋe

mv̈ − Mm(1 + r)

M +m

∑
j

ẇ−δ−j = 0 (3.9)

Where M , λ and K are the mass, damping and stiffness of the primary
system, m is the mass of the VI-NES and r the restitution coefficient.

Or:

ü+ 2ω0ξu̇+ ω2
0u+

m(1 + r)

M +m

∑
j

ẇ−δ−j = ω2
0xe + 2ωξẋe

εv̈ − m(1 + r)

M +m

∑
j

ẇ−δ−j = 0 (3.10)

Where ω2
0 = K/M , 2ω0ξ = λ/M and ε = m/M .

Adding up the two equations of Eq.(3.10):

ü+ εv̈ + 2ω0ξu̇+ ω2
0u = ω2

0xe + 2ω0ξẋe (3.11)

Defining the barycentric coordinates X and w1

X := u+ εv

w := u− v (3.12)

We obtain a relation between X,u, v:

X + εw = u+ εv + εu− εv = (1 + ε)u (3.13)

And then:

=⇒ u =
X + εw

1 + ε
(3.14)

Substituting Eq.(3.14) into Eq.(3.11):

Ẍ +
2ω0ξ

1 + ε
(Ẋ + εẇ) +

ω2
0

1 + ε
(X + εw) = ω2

0xe + 2ω0ξẋe (3.15)

We now define the following new variables:

τ := t
ω0√
1 + ε

γ :=
2ξ√
1 + ε

(3.16)

1The symbol := meaning equals by definition
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And substitute them into Eq.(3.15):

ω2

1 + ε
Xττ+

2ω0

1 + ε
γω0

√
1 + ε

2
√

1 + ε
(Xτ+εwτ )+

ω2
0

1 + ε
(X+εw) = ω2

0xe+2ω0γ
√

1 + ε
ω0

2
√

1 + ε
xeτ

After simplifications we obtain an equation for X:

Xττ + γXτ +X + εγwτ + εw = (1 + ε)xe + γ(1 + ε)xeτ (3.17)

Once an equation for X is found, one for w is sought.

Subtracting the second equation of Eq.(3.9) divided by m to the first of
Eq.(3.9) divided by M :

ü− v̈ + 2ω0ξu̇+ ω2
0u+ (1 + r)

∑
j

ẇ−δ−j = ω2
0xe + 2ω0ξẋe

Which, by using Eq.(3.14), leads to an equation for w:

ẅ+
2ω0ξ

1 + ε
(Ẋ+εẇ)+

ω2
0

1 + ε
(X+εw)+(1+r)

∑
j

ẇ−δ−j = ω2
0xe+2ω0ξẋe (3.18)

Operating the changing of variables defined in Eq.(3.16):

ω2
0

1 + ε
wττ +

2ω0

1 + ε
γω0

√
1 + ε

2
√

1 + ε
(Xτ + εwτ ) +

ω2
0

1 + ε
(X + εw)+

+
ω2

0

1 + ε
(1 + r)

∑
j

w−τ δ
−
j = ω2

0xe + 2ω0γ
√

1 + ε
ω0

2
√

1 + ε
xeτ

That yields the sought equation for w:

wττ+εγwτ+γXτ+εw+X+(1+r)
∑
j

w−τ δ
−
j = (1+ε)xe+(1+ε)γxeτ (3.19)

At the end, here are the two equations for X and w. These are up to
now exact equations since no approximation has been made.

Xττ + γXτ + εγwτ +X + εw = (1 + ε)xe + γ(1 + ε)xeτ

wττ + εγwτ + γXτ + εw +X + (1 + r)
∑
j

w−τ δ
−
j = (1 + ε)xe + (1 + ε)γxeτ

(3.20)
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3.5.1 Multiple Scales Method

Assuming that the mass of the VI-NES m is small with respect to the
primary mass M , ε = m/M << 1 can be used as a small parameter in
multiple scales analysis [Nay04].

τk = εkτ, k = 0, 1, . . . ;
d

dt
=

∂

∂τ0
+ ε

∂

∂τ1
+ . . . ;

X = X0(τ0, τ1, . . . ) + εX1(τ0, τ1, . . . ) + . . . ;

w = w0(τ0, τ1, . . . ) + εw1(τ0, τ1, . . . ) + . . . ;

(3.21)

The Multiple Scales Method is a perturbation method which is very
similar to the Lindstedt-Poincaré ’s method presented in Section 2.1.2 and
applied to the Duffing equation. The difference here is that instead of intro-
ducing a stretched time τ = t+k1ε+k2ε

2 + . . . , we have several independent
time scales. This is consistent with the physics of the problem in which fast
and slow oscillations occur; i.e. the system’s oscillations and their modula-
tion.

Bearing in mind that ε << 1, the parameter γ can be expressed as a
first-order Taylor polynomial:

γ =
2ξ√
1 + ε

= 2ξ(1 + ε)−1/2

' 2ξ(1− ε

2
)

(3.22)

The same is done with the external forcing term:

xe = X sin(ωt)

= X sin

(
ω

ω0
(1 + ε)1/2τ

)
xe ' X sin(

ω

ω0
τ0) +

1

2

ω

ω0
τ1X cos(

ω

ω0
τ1)ε (3.23)

Substituting (3.21), (3.22) and (3.23) into (3.20) and only keeping the
zero-order terms:

∂2X0

∂τ2
0

+ 2ξ
∂X0

∂τ0
+X0 = Xe0 + 2ξ

∂Xe0

∂τ0

∂2w0

∂τ2
0

+ 2ξ
∂X0

∂τ0
+X0 + (1 + r)

∑
j

∂w−0
∂τ0

δ−j = Xe0 + 2ξ
∂Xe0

∂τ0

(3.24)
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Where Xe0 = X sin(Ωτ0) with Ω = ω
ω0

.
By considering the experimental values we identified (ξ ≈ ε ≈ 0.8%) we

can reasonably assume that ξ = λ
2ω0M

has the same order as ε and therefore
that ξ = O(ε). Consequently terms multiplied by ξ in Eq.(3.24) can be
neglected. That yields:

∂2X0

∂τ2
0

+X0 = Xe0

∂2w0

∂τ2
0

+X0 + (1 + r)
∑
j

∂w−0
∂τ0

δ−j = Xe0

(3.25)

Alternatively, one can say that solutions of Eq.(3.25) will be very close
to solutions of Eq.(3.24) given the small influence of ξ. Then the two equa-
tions of System (3.25) can be solved for X0 and w0. Here we follow the
ansatz given by Gendelman in [Gen12] and [GA15] with the exception that
the forcing term is present even at ε0 order. That leads to the following
expression for X0:

X0 = C(X,Ω, τ1) sin(Ωτ0 + ψ(τ1)) (3.26)

C and ψ are the amplitude and the phase of X0. The amplitude C is a
function of the external forcing Xe0 and terms of order-1. The phase ψ is a
function of order-1 terms as it depends on damping ξ.

Substituting (3.26) in the second equation of (3.25) we obtain:

∂2w0

∂τ2
0

+ (1 + r)
∑
j

∂w−0
∂τ0

δ−j = A sin(Ωτ0 + θ) (3.27)

Where A sin(Ωτ0 + θ) is the sum of X0 and Xe0. These two terms are two
sinus with the same frequency Ω and shifted in phase by ψ. It can be shown
that the sum of those terms is a single sinus with a new amplitude A and
phase θ to be determined. Proof is provided in appendix A.

A solution for w0 in the following form is sought:

w0 = −A(C,X,ψ)

Ω2
sin(Ωτ0 + θ) + f(τ0, τ1) (3.28)

Inserting (3.28) into (3.27):

∂2f

∂τ2
0

+ (1 + k)
∑
j

[
∂f

∂τ0

∣∣∣∣
τ−0

− A

Ω
cos(Ωτ0 + θ)

]
δ−j = 0 (3.29)
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Assuming that TET occurs in an established state of 1:1 resonance be-
tween the VI-NES and the LO and neglecting the transient process leading
to 1:1 resonance, the particle will move symmetrically and at the same fre-
quency of LO. A form of f representing the ”free flights” interrupted by the
impacts is:

f(τ0, τ1) =
2α

π
arcsin (cos(Ω(τ0 − η))) (3.30)

Where η + πj, j = 1, 2, . . . are the unknown impact instants. A schematic
representation of f is presented in Fig.3.13.

Substituting (3.30) into (3.29) and integrating over a small interval
around time τ0 = η:

−4αΩ

π
+ (1 + r)

(
2αΩ

π
− A

Ω
cos(Ωη + θ)

)
= 0 (3.31)

And finally:

−A cos(Ωη + θ) = Ω2 2(1− r)
π(1 + r)

α = Ω2σα (3.32)

Where σ = 2(1−r)
π(1+r) . One more relation between A and α can be found by

considering the expression (3.28) evaluated when an impact occurs: τ0 = η
and w = ±L.

− A

Ω2
sin(Ωη + θ) + α = L (3.33)

Finally we have:

AΩ cos(Ωη + θ) = σα

AΩ sin(Ωη + θ) = L− α (3.34)

With AΩ = −A/Ω2.
The two equations (3.34) allows one to analytically define the Slow Invariant
Manifold of the problem:

α =
L±

√
L2 − (1 + σ2)(L2 −A2

Ω)

1 + σ2

Or:

α =
L±
√

1 + σ2
√
A2

Ω −A2
Ωmin

1 + σ2
(3.35)

Where AΩmin = σL√
1+σ2

is a minimum value of amplitude A/Ω2 for TET to

be established.
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Figure 3.13: Sketch of function f according to eq.(3.30) (blue) and its deriva-
tive (red).

Eq.(3.35) defines the Slow Invariant Manifold of the system. A first im-
portant piece of information we can draw from Eq.(3.35) is that a minimum
for AΩ exists for solutions to appear. In order to have a physical meaning
of the two variables of the SIM, AΩ and α can be thought as respectively
the LO’s and the NES’ oscillation amplitudes. Then the lower threshold is
actually a minimum amount of LO’s energy (oscillations amplitude) the VI-
NES needs to turn active. As previously mentioned this is a typical feature
of nonlinear systems [VGMM01a,VGMM01b,KLV+05]. Moreover informa-
tion about stability of solutions can be obtained from ε0-equations. Indeed
a stability analysis can be performed by means of the Poincaré Map which
reveals that the SIM is composed of two branches of solutions: one stable
and one unstable. We will not describe the analysis here but only suggest
that the reader refer to [LRM90] for a detailed mathematical description.
Indeed, to have the same formal problem as in [LRM90] we just need to
rearrange the second equation in (3.25) as:

∂2w0

∂τ2
0

= A sin(Ωτ0 + θ) |w0| < L

∂w+
0

∂τ0
= −r∂w

−
0

∂τ0
|w0| = L

(3.36)

As it will be explained more in detail in the next section, from a math-
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ematical point of view this threshold represents a saddle node bifurcation
beyond which two branches of solutions appear, one stable and one unstable.
Physically that means that a minimum amplitude of primary mass displace-
ment has to be reached in order to engage a solution (i.e. a 1:1 resonance
between the primary system and the VI-NES). This type of behavior is typ-
ical among nonlinear absorbers and has been observed and investigated for
cubic stiffness NES.

The SIM strongly depends on the design parameters length L and resti-
tution coefficient r as graphs in Fig.3.15 show. Particularly, it is interesting
to highlight how in the case of r = 1 the value for AΩmin is zero and the
corresponding value of α is equal to half the tube length, i.e. the distance
gap between the ball and the tube before impacting. This is physically ex-
plicable as r = 1 means no loss of energy during the impacts, the state with
two impacts per cycle could therefore be maintained without the primary
mass moving, i.e. with no input of energy into the system.

α
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Ω
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A
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Figure 3.14: Slow Invariant Manifold - r = 0.65, L = 15mm

Once the SIM obtained, we push further our analysis and study system
(3.20) at ε1 scale in order to study the evolution of the system on the SIM
as the amplitude and frequency of the forcing term vary.

Only keeping the ε1-order terms the first equation of (3.20) becomes:

∂2X1

∂τ2
0

+X1 = −2
∂2X0

∂τ0∂τ1
− γ ∂X0

∂τ0
− ∂

2X0

∂τ2
0

−w0 +Y cos(Ωτ0 +β(τ1)) (3.37)
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Figure 3.15: Evolution of ε0-SIM for constant L = 15mm as the restitution
coefficient varies (left) and for constant r = 0.65 as the length varies (right).

Where Y cos(Ωτ0 + β(τ1)) = X sin(Ωτ0) + γΩX cos(Ωτ0).
After substituting (3.26) into (3.37) and eliminating secular terms we

are able to find the approximate solution coming from the multiple scales
method. By equaling derivatives with respect to time to zero the fixed
points are obtained. These steps are not reported here for the sake of con-
ciseness and can be found in [GMSB14b]. Finally we obtain a fourth order
polynomial relating A and α:

a2A
4 + a1A

2 + a0 = 0 (3.38)

Where the coefficients a0, a1, a2 are functions of α:

a0 =
64

B2π4

(
σ2 + 1

)
α4 − 128

B2π4
α3 +

64

B2π4
α2 (3.39)

a1 =
32

B2π2

(µσ
2

+ δ
)
α2 − 32δ

B2π2
α− 1

a2 =
(µ2 + 4δ2)

B2

Where δ is the detuning parameter defined as Ω = 1 + εδ, B is the scaled

external amplitude term B = X
Lε and µ is the scaled damping coefficient

µ = 2ξ/ε. It can be seen that, unlike the SIM, the fixed points expression
depends on the external excitation’s amplitude X and frequency Ω through
the variables B and δ. It is also important to notice that, as it was for
the SIM, the fixed points expression is a function of the design parameters
tube’s length L and restitution coefficient r (through σ).

The solutions of the problem will satisfy both Eq.(3.35) and Eq.(3.38)
and can graphically be identified by the intersections of these two curves
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on the plane AΩ − α. Alternatively, one can say that the fixed points of
Eq.(3.38) have to respect the constraints given by the SIM of Eq.(3.35).

To summarize, through this section we mathematically described the
physical problem, the impacts were modeled and the equations of motion
obtained. The multiple scales method was applied to simplify and analyti-
cally solve the equations of motion. Under the assumption of 1:1 resonance
between the LO and the VI-NES we found an expression for the Slow In-
variant Manifold of the problem which provides some important information
about the existence and the stability of all the possible solutions. Subse-
quently, by developing the equations of motion up to ε1-order, the fixed
points were calculated, i.e. the steady-state solutions for a given external
forcing. These points should respect the conditions imposed by the SIM to
be actual physical solutions.

3.6 Stability analysis

Figure 3.16: Symmetric solution: phase portrait of w − ẇ.

As a periodic solution of order n we refer to a periodic solution which
has a period n times the forcing period T , with T integer. It is important
to notice that if p0 = p4, then the orbit/solution is periodic. The simplest
type is one in which impacts occur only once per cycle with each of the two
boundaries and that takes a time nT to complete a cycle. Within these
simple periodic solutions we can distinguish two different types of motion:
symmetric solution in which the oscillator spends the same amount of time
between any two consecutive impacts (from p1 to p2 and from p3 to p4) and
asymmetric solutions in which this condition is not verified. In the stability
analysis that follows, we will firstly consider the symmetric simple solutions
of order 1, as that one represented in Fig.3.16.
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3.6.1 Equations of motion

We rewrite the equations of motion for w0 by splitting the continuous part
and the impact rules:

∂2w0

∂τ2
0

= A sin(Ωτ0 + θ) |w0| < L (3.40a)

∂w+
0

∂τ0
= −r∂w

−
0

∂τ0
|w0| = L (3.40b)

In order to conduct the stability analysis of this system by means of
the Poincaré Map, we operate the following changes of variables, which will
provide a simpler form of equations.

x := Ωτ0 + θ (3.41a)

∂w0

∂τ0
= Ω

∂w0

∂x
= Ωw′0 (3.41b)

γ :=
A

LΩ2
(3.41c)

After these substitutions and introducing y := w′, (3.40a) can be written
as a first-order system:

w′ = y (3.42a)

y′ = γ sin(x) |w| < 1 (3.42b)

y+ = −ry− |w| = 1 (3.42c)

Where w has been written instead of w0 as a simpler notation.

3.6.2 Poincaré Map

We take the Poincaré surface of section Σ:

Σ = {(w, y, x) ∈ I ×<× S|w = +1, y > 0} = S ×<+ (3.43)

Where I = [−1,+1] and S = [0, 2π]. The Poincaré map converts the original
three-dimensional flow (w, ẇ, x) into a two-dimensional discrete mapping.
The Poincaré section is coordinated by the phase x and the velocity y:

P : Σ→ Σ i.e. (x0, y0)→ (x, y) (3.44)
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In the case a simple periodic orbit correspond to a stable fixed point
in the Poincaré map, as the parameters γ, r change there are three ways
in which this point can lose its stability. Indeed, a loss of stability occurs
when at least one of the eigenvalues of the linearised Poincaré map has an
absolute value ≥ 1, and the following kinds of bifurcations can take place:

• if one of the eigenvalues becomes +1, that corresponds to a saddle-
node bifurcation;

• if one of the eigenvalues becomes −1, that corresponds to a period-
doubling bifurcation;

• if a pair of complex conjugate eigenvalues has absolute value equal to
unity, that corresponds to a Hopf bifurcation;

In order to determine the stability of a periodic solution starting at
(x0, y0), we need to compute the Jacobian matrix of the Poincaré map P at
(x0, y0).

DP (x0, y0) =
∂(x4, y4)

∂(x0, y0)
(3.45)

Because of the discontinuity of the velocity, the process of differentiation
is divided in four parts:

DP (x0, y0) =
∂(x4, y4)

∂(x0, y0)
=
∂(x4, y4)

∂(x3, y3)

∂(x3, y3)

∂(x2, y2)

∂(x2, y2)

∂(x1, y1)

∂(x1, y1)

∂(x0, y0)
(3.46)

From the impact rule we can obtain the derivatives concerning p0 → p1

and p2 → p3:
∂(x1, y1)

∂(x0, y0)
=
∂(x3, y3)

∂(x2, y2)
=

[
1 0
0 −r

]
(3.47)

Solving (3.42) and evaluating in p2:

−1 = c1 + c2(x2 − x1)− γ sin(x2) ≡ f(y1, x1, x2) (3.48a)

y2 = c2 − γ cos(x2) ≡ g(y1, x1, x2) (3.48b)

Where c1 = 1 + γ sinx1 and c2 = y1 + γ cosx1. We can now calculate
the derivatives we need by means of f and g functions:

∂(x2, y2)

∂(x1, y1)
=

[
− ∂f
∂x1
÷ ∂f

∂x2
− ∂f
∂y1
÷ ∂f

∂x2

∂g
∂x2

∂x2
∂x1

+ ∂g
∂x1

∂g
∂x2

∂x2
∂y1 + ∂g

∂y1

]
=

=
1

y2

[
y1 + a1∆21 −∆21

a1a2∆21 + a2y1 − a1y2 y2 − a2∆21

]
(3.49)



74 CHAPTER 3. VIBRO-IMPACT NONLINEAR ENERGY SINK

Where ai = γ sin(xi), i = 1, 2, 3, 4. For p3 → p4 part, we have the
same derivatives than (3.49) but with y3 replacing y1, y4 replacing y2, ∆43

replacing ∆21, a3 replacing a1 and a4 replacing a2.

Thanks to the symmetry and the impact rule, we can express everything
as a function of the conditions in p0:

y1 = −ry0; y2 = −y0; y3 = ry0; y4 = y0

a1 = a0; a2 = −a0; a3 = −a0; a4 = a0
(3.50)

Thus, the Jacobian:

DP = − 1

y2
0

[
ry0 − a0∆21 r∆21

a0y0(1 + r)− a2
0∆21 −r(y0 − a0∆21

]
×

×
[
−(ry0 − a0∆21 r∆21

a0y0(1 + r)− a2
0∆21 r(y0 − a0∆21

]
(3.51)

The eigenvalues of (3.51) can be found from:

λ2 − trλ+ det = 0 (3.52)

Where the trace and the determinant:

tr = −2r2 + [2r − a1∆21(1 + r)/y0]2

det = r4 < 1
(3.53)

3.6.3 Bifurcations

The calculation of the eigenvalues from (3.52) will tell us more about the
nature of instabilities that can arise:

• No Hopf bifurcations can occur: Hopf bifurcations would require |λ| =
1 for a pair of λ complex. However, since det(DP ) = |λ1||λ2| < 1, that
cannot happen;

• No period-doubling bifurcations can occur: it is impossible because
(3.52) has no real solutions forλ = −1, i.e. no equilibrium points;

• For λ = 1, (3.52) becomes 1 − tr + det = 0, from which we find two
equilibrium points and the corresponding bifurcations critical values
γc.
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The two equilibria for λ = 1 are:

y01 =

[
(1− r)2

∆21(1 + r)
+

∆21(1 + r)

4

]−1

y02 =
4∆21

(1 + r)(∆2
21 − 4)

(3.54)

And the corresponding critical values γc:

γc1 =

[
1 +

∆2
21(1 + r)2

4(1− r)2

]−1/2

γc2 =
2[∆2

21(1− r)2 + 4(1 + r)2]1/2

(1 + r)(∆2
21 − 4)

(3.55)

The first value γc1 corresponds to a saddle-node bifurcation. Below this
value no equilibrium exists, for γ > γc1 two branches of solutions appear: one
stable and one unstable. Let us point out that this value is the ”threshold
value for TET” we calculated in the previous section.

The second bifurcation point is a pitchfork bifurcation. It differs from
the first one as equilibrium exists in the neighborhood of γc2 . However,
above this value an eigenvalue of the problem becomes greater than unity
and an unstable branch appears.

3.7 Experimental and analytical results compari-
son

The purpose of this section is to find an analytical description and explana-
tion to the VI-NES behavior we observed experimentally. Particular atten-
tion is paid to the type of response the VI-NES may exhibit depending on
the magnitude and frequency of the external forcing. Three levels of forcing
amplitude are considered: low, medium and high. For each level the evo-
lution of the system on the SIM as the external frequency forcing varies is
analytically analyzed and compared to the experimental observations. For
the analytic calculations a coefficient of restitution r = 0.65 is used. This
is a typical value for an impact involving two metal bodies. Each case is
presented as a graph on the AΩ−α plan where the curves (3.35) and (3.38)
have been plotted. It is important to notice that eq.(3.38) can have real or
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imaginary solutions. In the graphs that follow only the real solutions are
plotted as they represent the only physical fixed points.

3.7.1 Low level forcing

For a low level of forcing (ẍe = 0.1g) the activation threshold condition is not
respected at any frequency and the VI-NES is never active. Experimentally
the LO is not affected at all by the presence of the VI-NES. Analytically,
as shown in fig.3.17, the fixed points evaluated by solving Eq.(3.38) (green
curve) do not intersect the SIM curve and as a consequence no steady solu-
tion can be reached.
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Figure 3.17: Evolution of the fixed points for a low level of external forcing
ẍe = 0.1g and four values of Ω. The stable and unstable branches of the
SIM are the blue and red-dashed lines respectively. The green curve is the
solution of (3.38). No intersections are present at any frequencies: the VI-
NES is never active.
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3.7.2 Medium level forcing

Fig.3.18 shows the experimental spectrum of the primary mass displacement
for a base acceleration ẍe = 0.2g. The VI-NES is idle up until the primary
system’s oscillations reach the activation threshold, it is active for a range
of frequency around the natural frequency of the LO and it turns idle again
for higher frequencies of the forcing. However, the only type of response
observed is the SMR, suggesting the VI-NES is not able to establish a stable-
state solution.

Ω=0.97 Ω=1.00 Ω=1.01 Ω=1.03 

Figure 3.18: Spectra of primary mass displacement with (red) and with-
out (blue) VI-NES. The regime of constant amplitude (CAR) and strongly
modulated response (SMR) have been highlighted.

This assumption is actually confirmed by looking at the evolution of the
fixed points on the SIM in fig.3.19. Four different values of forcing frequency
Ω = 0.97; 1.00; 1.01; 1.03 are shown. For Ω = 0.97 and Ω = 1.03 the isles
(green curves) representing the fixed points do not intersect the SIM and
the VI-NES is idle. For both Ω = 1.00 and Ω = 1.03 the fixed points curves
have two intersection with the SIM, meaning steady solutions exist.

Nevertheless the points intersected are located on the unstable branch
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of the SIM: the solutions are then unstable. This is in agreement with the
experimental observations which featured a Strongly Modulated Response.
Analyzing the SMR, we can assume that the phase when the VI-NES is
active is an unstable solution and therefore cannot be held. Subsequently
the oscillations amplitude decreases until the VI-NES is not active anymore
since the activation threshold condition is not satisfied. Because of the
constant external forcing the primary mass’ oscillations get higher again
and go beyond the activation threshold and the cycle starts over. It should
be noticed that the cycles are each time different and appear to be chaotic.
Recently Gendelman et al. [GA15] referred to this phenomenon as Chaotic
Strongly Modulated Response (CSMR).
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Figure 3.19: Evolution of the SIMs for an external force of magnitude F =
0.2g and different values of Ω. The stable and unstable branches of the
ε0-order SIM are the blue and red-dashed lines respectively, the ε-order SIM
is the green curve. A SMR regime is the only type of solution that can be
reached. This is in agreement with the experimental results of Fig.3.18

.
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3.7.3 High level forcing

When the external base acceleration is ẍe = 0.4g the measured spectrum
showed in fig.3.20 presents two zones with respectively CAR and SMR. The
VI-NES exhibits a CAR for most of the frequency range of activation and a
SMR for a little portion just before turning back idle. The evolution of the
fixed points on the SIM is illustrated in fig.3.21. At Ω = 0.94 we can see
that a second fixed points-isle appears but that still there are no points of
intersection with the SIM. At Ω = 0.97 this second isle intersects twice the
SIM on the stable and on the unstable branch. It means that at least one
stable solution exists and a CAR can be established. When the frequency
goes up the stable point tends to lose its stability and eventually becomes
unstable (Ω = 1.04) as the isle of fixed points gets smaller. At Ω = 1.06
there are not intersections anymore and the VI-NES is idle again.

Ω=0.94 Ω=0.97 Ω=1.04 Ω=1.06 

Figure 3.20: Spectra of primary mass displacement with (red) and without
(blue) VI-NES for ẍe = 0.4g (right). The regimes of constant amplitude
response (CAR) and strongly modulated response (SMR) have been high-
lighted.
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(b) Ω = 0.97: CAR
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(c) Ω = 1.04: SMR
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Figure 3.21: Evolution of the SIMs for an external force of magnitude F =
0.4g and different values of Ω. The stable and unstable branches of the ε0-
order SIM are the blue and red-dashed lines respectively, the ε-order SIM is
the green curve. The system can have either stable (Ω = 0.97) or unstable
(Ω = 1.04) fixed point intersections. CAR and SMR can both be observed.

3.8 Influence of the tube’s length and the mass
ratio on the VI-NES response

In this section the influence of the mass ratio ε = m/M and the tube length
L on the response of the VI-NES is studied. The case of low level forcing
presented in the previous section is used to show how a variation in the
parameters m and L can lead to a change in the VI-NES response. This is
done by means of the analytic model and by calculating the SIM and the
fixed points of the problem.

In Sec.3.7.1 we saw how for a low level of forcing (ẍe = 0.1g) the activa-
tion threshold condition is not respected at any frequency and the VI-NES is
never active. A way to have solutions for this level of forcing would be reduc-
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ing the tube length. If this happens the SIM would move left on the AΩ−α
plan and the fixed points could intersect it. This example is illustrated in
Fig.3.22 where the tube length has been halved (L = L0/2 = 7.5mm).
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Figure 3.22: Same case as in Fig.3.17 of low level forcing but for a tube
length divided by two (L = L0/2 = 7.5mm). It can be seen that in this case
a SMR regime is possible.

The VI-NES is now capable to reach a Strongly Modulated Response
state. If we go further in this analysis and keep reducing the length, there
will be a point when the system gets to a Constant Amplitude Response.
This example is shown in Fig.3.23 where the length has been divided by
three (L = L0/3 = 5mm)
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Figure 3.23: Same case as in Fig.3.17 of low level forcing but for a tube
length divided by three (L = L0/3 = 5mm). It can be seen that in this case
a CAR regime is possible.

We can assume that the smaller the tube length is the easier it is to
reach a stable solution (CAR), i.e. even with a low level of external excita-
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tion. However, it is highly important to point out that this is a discussion
about the qualitative responses the VI-NES may exhibit and not about the
efficiency of the VI-NES as an absorber. The problem is viewed here from
a kinematic point and not from an energetic one. It means that reducing
the length and reaching a stable fixed point may potentially make the VI-
NES less efficient as an absorber. This point can be better understood by
studying the effect of a mass ratio variation.

A similar analysis is conducted in the case where the mass ratio ε = m/M
varies and the tube length is kept constant. If the VI-NES mass is decreased
to ε = 0.2%, a Strongly Modulated Response can be established, as shown in
Fig.3.24a. When the mass ratio is further decreased (ε = 0.15%) a Constant
Amplitude Response state appears (see Fig.3.24b). It should be clear that
the effect of reducing the mass ratio allows the VI-NES to reach a stable
state but at the same time reduces the level of energy dissipated by shocks
and consequently the VI-NES efficiency as an absorber. For this reason and
because of the complex dependency of the problem on the parameters, an
extensive energetic study will be carried out in future investigations.
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Figure 3.24: Same case as in Fig.3.17 of low level forcing but for a smaller
mass ratio. It can be seen that a SMR and a CAR regime are possible.

3.9 Conclusion

In this chapter the dynamical behavior of a harmonically forced 1-dof LO
coupled to a VI-NES has been explored. An experimental study has been
carried out which showed the different regimes of response that may arise
(constant amplitude and strongly modulated) and their dependence on the
external forcing in terms of magnitude and frequency. The spectra of the
primary mass displacement have shown that a Targeted Energy Transfer
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occurs and that the VI-NES may actually works as dynamic vibration ab-
sorber even with a very small mass ratio (ε = 0.84%). Then the system has
been analytically studied by using the multiple scales method and the Slow
Invariant Manifolds for the fast and the slow time scale have been obtained.
Finally an analytical explanation to the experimental observations has been
provided. It showed that a threshold in LO amplitude for TET to take place
exists. This limit mathematically represents a bifurcation point. These re-
sults will constitute the basis for further investigations which could lead to
a designing process of the VI-NES as a vibration absorber.
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Chapter 4

Magnetic-Strung Nonlinear
Energy Sink

Abstract

This chapter illustrates the theoretical design and experimental realization of
a new type of Nonlinear Energy Sink. The mass of the Magnetic-Strung NES
is a magnet which is linked to the primary system by means of two strings
working transversally whose pretensions are adjustable. The restoring elastic
force of the strings is modulated thanks to the magnetic force applied by
two magnets suitably located on the primary mass. This way, depending
on the distance of the additional magnets, either a purely cubic force or a
more complex shaped force may be reached. NES efficiency as an absorber
is studied on a harmonically forced 1 degree-of- freedom primary system.
The Target Energy Transfer (TET) from the primary system towards the
NES is experimentally observed as well as different response regimes like
the Strongly Modulated Response. Moreover, the energy harvesting from the
vibrating energy of the NES is investigated: the NES mass, made up of a
magnet, oscillates into a coil and subsequently creates an electric current.
Thus, the vibrating energy of the primary mass is in this way absorbed by
the NES and finally converted into electric energy.

85
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4.1 Introduction

In this chapter the two research fields of nonlinear vibration absorbers and
energy harvesting are combined. The study of a new concept of cubic NES
coupled to an electromagnetic harvester is presented. A review of the en-
ergy harvesting techniques from vibrations made us lean towards a magnetic
method because considered the most suitable one for the experimental re-
alization we were looking for. The system consists in a harmonically forced
single-degree-of-freedom linear oscillator to which a MS-NES is attached.

Firstly, the type of nonlinearity is illustrated: the nonlinear force between
the primary system and the NES is modeled and the equations of motion are
obtained. The mechanical system is then coupled to the magnetic harvester
and the model of the final electro-mechanical system is defined.

Thus, the use of a magnetic force to shape the relation between the
primary system and the NES is described and the cubic and the bistable
configuration are presented.

Finally a numerical and an experimental investigation of three configura-
tions of the MS-NES are carried out and the performances of the MS-NES as
an energy absorber and as an energy harvester are analyzed and discussed.

4.2 The model

In Fig.4.1 the schematic of the NES is shown. The primary system is the
linear oscillator (LO) composed by the mass M , spring K and damper C.
The primary system is harmonically forced by the base motion Xe. The
NES is composed by the little mass m which is linked to the primary system
by means of two flexible strings AB and BC. The strings act as elastic
elements and are responsible of the force exchanged between the LO and
the NES. The force acting on the mass m as a function of the displacement
y can be approximated by the expression:

Fstrings =
T0

L
y +

(
EA

2L3
− T0

2L3

)
y3 +O(y5) (4.1)

Where T0 is the pretension of the strings, i.e. for y = 0, E is the Young’s
modulus, A the section of the strings. Then the restoring force caused
by the strings deflection is composed by a term linearly proportional to
the displacement, a term proportional to the cube of the displacement and
higher order terms which will be neglected. From eq.(4.1) we can identify a
linear stiffness K1 = T0

L and cubic stiffness K3 =
(
EA
2L3 − T0

2L3

)
. Both terms
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are a function of the pretension T0 which is a parameter we can control in
experiments. This is a significant advantage the use of the strings appears
to have. Also one should notice that the linear term is a function of the only
pretension and ideally if the pretension is zero the restoring force would be
a cubic (and higher order terms) function of the displacement.

Figure 4.1: Schematic of the Strung-NES. View from the top. AB and BC
are the strings which act as elastic elements.

Defining the absolute displacement of the NES mass as z := x + y, the
equations of motion of the system can be written as:

Mẍ+ Cẋ+Kx+K1(x− z) +K3(x− z)3 + C1(ẋ− ż) = KXe + CẊe

mz̈ + C1(ż − ẋ) +K1(z − x) +K3(z − x)3 = 0
(4.2)

An important feature an NES should have is the absence of a natural
frequency. It would allow the NES to tune itself to the primary system
and to be efficient as an absorber over a broad range of frequency. This
characteristic could be reached by the absence of the linear stiffness. As
previously mentioned the linear stiffness is zero if the pretension is zero.
However, we tried to find an alternative solution in order to study the effect
of the linear term and to have a better control on the shaping of the force.

4.3 The energy harvesting

The method used for the energy harvesting is electromagnetic: the NES
mass is a magnet and it oscillates through an electric coil. As the Faraday’s
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Law says, a variation in the magnetic flux means electromotive force:

ε = −dΦB

dt
(4.3)

Where ε is the electromotive force and ΦB is the magnetic flux. The concept
combining the NES and harvester is shown schematically in Fig.4.2: the
vibration energy of the primary system flows to the NES and is finally
converted into electric energy through the harvester.

The presence of the harvester creates an electromechanical coupling be-
tween the mechanical system and the electrical circuit, schematically pre-
sented in Fig.4.3. It contains the coil’s inductance L and the internal resis-
tance Ri along with a resistive load RL.

Figure 4.2: Schematic of the energy flux from the Linear Oscillator to the
harvester.

The coupled electromechanical system becomes:

Mẍ+ Cẋ+Kx+K1(x− z) +K3(x− z)3 + C1(ẋ− ż) = KXe + CẊe

mz̈ + C1(ż − ẋ) +K1(z − x) +K3(z − x)3 − γI = 0

Lİ + (RL +Ri)I + γ(ż − ẋ) = 0
(4.4)

We can notice that compared to the initial system (4.2), in the second
equation of system (4.4) we added the coupling term γI. I is the current
flowing into the circuit and γ is a transducer constant that can be derived
from Faraday’s Law. The third equation is the electrical equation governing
the circuit in fig 4.3. Here the constant γ multiplies the relative velocity
between the NES magnet and the coil and their product is a voltage.
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Figure 4.3: Schematic of the coupled electrical circuit.

4.4 The magnetic counterbalance

As NES mass we used a magnet because of the electromagnetic harvesting
that will be explained further in the paper. This fact has been exploited
as follows for a second purpose. In order to counteract the linear term and
have a pure cubic force-displacement relation we put two magnets on each
side of the NES magnet. The aim is to obtain a magnetic force that could
counterweight the linear term of the elastic force.
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Figure 4.4: Schematic

The magnetic flux density or B-field at the location rp due to a magnet
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located at rs is defined by:

B = −µ0

4π
∇

ms · rp/s
|rp/s|3

(4.5)

Where µ0 = 4π × 10−7 H/m is the permeability of free space, rp/s is the
position vector to the point of interest rp with respect to the source magnet
position rs, ms = Msvs is the magnetic moment of the magnet located at
rs, Ms and vs are the magnetization and volume of the source magnet. The
potential energy of the magnet at rp in the field generated by the magnet
at rp/s is:

U = −mp ·B (4.6)

Then the interaction force between the two magnets can be obtained by
taking the gradient of equation (4.6).

By applying equations (4.5) and (4.6) to the model shown in Fig.4.4 we
obtain the following expression for the magnetic potential energy [MO10]:

U = −µ0Mcvc
2π

MovoN

2

(
y2

(y2 +R2
o)

5/2
− 1

(y2 +R2
o)

3/2

)
(4.7)

Then the restoring force is the derivative of (4.7) with respect of y:

Fm = −µ0Mcvc
2π

MovoN

2

(
5y

(y2 +R2
o)

5/2
− 5y3

(y2 +R2
o)

7/2

)
(4.8)

The expression (4.8) has a trend as shown in Fig.4.5. In the vicinity
of y = 0 and as long as the displacement remains small compared to the
distance Ro (y/R0 < 0.1), the magnetic force shows a linear behavior.

Thus by taking the derivative of (4.8) in y = 0 we obtain a linear ap-
proximation of the magnetic force that seems to be accurate enough for
y/Ro < 0.1:

a :=
dF

dy

∣∣∣∣
y=0

=
5C

R5
o

(4.9)

Fm ≈ ay =
5C

R5
o

y y/Ro << 1 (4.10)

Where C is a constant: C = −µ0McvcMovoN
4π depending on the magnetic

parameters.
We want the magnetic force to counterbalance the linear component of

the elastic restoring force Felastic = k1y + k3y
3. Then by equaling Eq.(4.10)
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Figure 4.5: Magnetic force as a function of the normalized displacement
y/Ro

to the linear component of the elastic force we can derive an expression for
the distance Ro so that the linear component could be canceled out by the
magnetic force.

Ro = 5

√
5|C|
k1

(4.11)

Fig.4.6 shows all the forces involved in a numeric example where the
distance Ro has been calculated by (4.11). We can see that the linear com-
ponent of the elastic force is actually counterweighted by the magnetic force
and the total resultant force is purely cubic.

Finally the governing equations for the coupled electromechanical system
with the magnetic counterbalance become:

Mẍ+ Cẋ+Kx+K1(x− z) +K3(x− z)3 + C1(ẋ− ż) = KXe + CẊe

mz̈ + C1(ż − ẋ) +K1(z − x) +K3(z − x)3 + Fm(z − x)− γI = 0

Lİ + (RL +Ri)I + γ(ż − ẋ) = 0
(4.12)

Where the magnetic force Fm = Fm(z − x) has been added to the NES
equation.
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Figure 4.6: All the forces involved in the balancing: it can be seen as the
magnetic force cancels out the linear elastic component and the total final
force is actually cubic.

4.4.1 The bi-stable configuration

Taking a look at Eq.(4.10) it can be easily observed that the derivative of the

linearized magnetic force a = dF
dy

∣∣∣
y=0

increases as the distance Ro decreases.

We showed that the exact distance for a to equal k1 and then to cancel
out the elastic linear term can be calculated by Eq.(4.11). Another way to
describe the interaction between the elastic and the magnetic forces acting
on the NES mass is by using their potential energies.

As both the elastic and the magnetic forces are conservative, they can
be obtained by taking the derivative with respect to the displacement y of
the correspondent potential function U = U(y).

Expressing the elastic potential energy as:

Uel = Uk1 + Uk3 =
1

2
k1y

2 +
1

4
k3y

4 (4.13)

and reminding the magnetic potential energy as expressed in Eq.(4.7):

Um = −µ0Mcvc
2π

MovoN

2

(
y2

(y2 +R2
o)

5/2
− 1

(y2 +R2
o)

3/2

)
(4.14)

we can write the total potential energy Utot(y) = Uel(y) + Um(y). By
studying the evolution of Utot as Ro varies the stability of each configuration
can be analyzed.
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Figure 4.7: Potential energies in the case of the cubic configuration (upper)
and the bistable configuration (lower).

When there are no outer magnets (Ro = inf) the total potential energy
is composed of only the elastic energy Utot = Uel = Uk1 + Uk2. The point

y = 0 is the only equilibrium point and it is stable as dU
dy

∣∣∣
y=0

> 0. If the

outer magnets are placed at Ro = Ro so that the magnetic force cancels
out the linear part of the elastic force, the equilibrium point y = 0 loses its

stability and becomes neutrally stable as dU
dy

∣∣∣
y=0

= 0. This configuration,

called cubic, is shown in Fig.4.7 (left).

When the magnets are placed at a distance Ro < Ro the point y = 0
becomes unstable and two new stable points appear. The potential energies
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Figure 4.8: Nonlinear force between the primary system and the NES in the
case of bistable configuration.

of this bistable configuration are illustrated in Fig.4.7 (right). Fig.4.8 shows
the resultant nonlinear force between the primary system and the NES.

4.5 Frequency Power Function

In order to estimate the efficacy of the MS-NES as an absorber and as a
harvester, we define the average electrical power delivered and the average
viscous power dissipated:

P el(t0) =
1

t0

∫ t0

0
Pel(t) P vis(t0) =

1

t0

∫ t0

0
Pvis(t) (4.15)

Where Pel(t) = RLI
2(t) is the the electrical power delivered to the resis-

tive load RL and Pvis(t) = C1(ẏ− ẋ)2 is the power dissipated by the viscous
damping C1 between the primary system and the NES.

These new quantities have a particular interest as they can be used to de-
scribe the efficacy and performance of the MS-NES when strongly nonlinear
phenomena arise in the response. For example, when in a forced regime the
response is not steady but periodically or even chaotic, these measurements
provide an accurate estimation of the energy dissipated and converted as
they reach a steady value as t→∞:

P el∞ = P el(t→∞) P vis∞ = P vis(t→∞) (4.16)
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In practice a steady value is reached even after a few cycles. At each fre-
quency and amplitude of external excitation, it is then possible to calculate
a steady value P el∞ and P vis∞ .

We present in Fig.4.9 the Frequency-Power plots for the no-magnets con-
figuration and the cubic configuration of the MS-NES. The peak of energy
dissipated and delivered is significantly higher in the case of cubic configu-
ration: 60mW and 40mW respectively for the no-magnets whereas 95W
and 65W for the cubic.
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Figure 4.9: Numerical Frequency-Power Function for the no-magnet (upper)
and the cubic (lower) configurations. It can be seen that the viscous power
dissipated and the electrical power delivered are significantly higher in the
case of cubic MS-NES.
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Figure 4.10: Average Power Delivered and Average Power Dissipated as
a function of the outer magnets distance Ro. External excitation: ẍe =
0.6m/s2 and f = 5.57Hz.
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Figure 4.11: Average Power Delivered and Average Power Dissipated as
a function of the outer magnets distance Ro. External excitation: ẍe =
1.8m/s2 and f = 5.57Hz.

Since we have identified the peak frequency at f = 5.57Hz, it is possible
to evaluate the powers (dissipated and delivered) by keeping constant the
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frequency and varying the magnets distance. Fig.4.10 shows P el∞ and P vis∞
for a level of external excitation of ẍe = 0.6m/s2. It can be seen that the
performances get better as the distance Ro deceases down to a distance
Ro ≈ 4.5 cm. This distance correspond to a cubic configuration. After that,
the powers drastically drop down. This behavior can be explained by the
fact that, since the configuration becomes bistable, the NES mass gets stuck
in a potential well and does not have enough energy to escape.

If the level of external excitation is higher (ẍe = 1.8m/s2), the perfor-
mances keep getting better even for a smaller distance Ro. Then the bistable
configuration seems to be the most efficient. This scenario is displayed in
Fig.4.11.

4.6 Experimental investigations

In this section the prototype is presented and the identification of the me-
chanical and the electrical parameters of the system is experimentally car-
ried out. Moreover the efficacy of the magnetic counterbalance is verified by
measuring the static force between the primary system and the NES.

In Fig.4.12 the prototype is shown. All the blue and the orange parts
have been 3D printed at Duke University. The lower part is a cart sliding on
an airtrack that minimizes the friction of the primary system. The two sides
are connected by two springs respectively to the ground and to the shaker.
The NES is a magnet which is placed into a hollow tube and onto a non-
magnetic low-friction slider upon the primary mass. The NES is connected
to the primary mass by means of two strings which work transversely when
the NES oscillates. On the sides of the NES the two outer magnets can be
noticed, it is important to highlight that their distance to the NES is ad-
justable in order to reach the suitable force shape. Finally the coil through
which the NES mass oscillates is placed on the primary mass.

4.6.1 Identification of the mechanical and the electrical sys-
tems

The modal parameters of the primary system were obtained from free os-
cillation measurements. We know that the solution for an underdamped
system subject to an initial displacement X(t = 0) = X0 is:

x(t) = X0e
(−ξωnt) cos(

√
1− ξ2ωnt) (4.17)

Where ωn is the natural frequency and ξ the damping ratio. Then by
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Figure 4.12: The prototype of the Magnetic-Strung NES.

calculating the envelope and the spectrum (Fig.4.13) of the measured free
oscillations we are able to estimate the modal parameters of the system.
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Figure 4.13: Identification of the modal parameters of the primary system:
envelope (left) and spectra (right) of free oscillations are used to estimate
the damping ratio and the natural frequency respectively.

In Tab.4.1 the modal parameters of the linear primary system are listed
along with the mass ratio between the NES and primary system.

fn[Hz] K[N/m] ξ ε = m/M

5.6 1223 0.036 0.04

Table 4.1: Modal parameters of primary system.

The electrical parameters have been experimentally measured and are
listed in Tab.4.2.
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L[H] RL[Ω] Ri[Ω] γ[V s/m]

100× 10−3 100 3500 −3.2572

Table 4.2: Electrical parameters.

Figure 4.14: Experimental apparatus used to evaluate the transducer con-
stant γ coupling the mechanical and the electrical system.

Where L is the coil’s inductance, Ri is the coil’s internal resistance, RL
is the resistive load and γ is a transducer constant that couples the me-
chanical and the electrical system. An extensive study on the nonlinear
electromagnetic coupling between a coil and an oscillating magnet is pre-
sented in [SM10].

In this work the term γ was experimentally evaluated as follows. Taking
the electrical equation of Sys.(4.4) governing the circuit shown in Fig.4.3 it
can be seen that, for a steady condition, if the relative velocity ẏ = ż − ẋ is
known; then by measuring the current I, the only unknown is the constant
γ which therefore can be evaluated.

Lİ + (RL +Ri)I + γ(ż − ẋ) = 0 (4.18)

The experimental apparatus shown in Fig.4.14 was used for the purpose.
The magnet was placed on the shaker and it oscillated through the coil which
was at rest (ẋ = 0), i.e. ẏ = ż. As the harmonic motion of the magnet was
known, by measuring the voltage across the coil the constant γ was finally
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estimated as γ = −3.2572V s/m.

4.6.2 Experimental verification of the cubic stiffness

The efficacy of the outer magnets was subsequently tested experimentally.
Static tests were performed in order to measure the elastic force provided
by the strings and to obtain a force-displacement graph.

The NES magnet and the two outer magnets were all the same and their
magnetization and dimensions are listed in Tab.4.3.

M [A/m] do[mm] di[mm] l[mm]

1.05× 106 12.7 7.0 25.4

Table 4.3: Magnetization and dimensions of the NES and the outer magnets.
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Figure 4.15: Experimental force-displacement relation without (blue) and
with (red) outer magnets. The experimental points have been fitted by
means of polynomial expression:

First the configuration with no outer magnets was tested. The force-
displacement measurements are shown in Fig.4.15 as blue dots. These points
have been polynomially interpolated using a linear and a cubic term: F =
k1y + k3y

3, which allows us to estimate the linear and the cubic stiffness
(4.4)
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k1[N/m] k3[N/m3]

69.4 1.38× 106

Table 4.4: Linear and cubic stiffness without outer magnets.

Knowing the linear stiffness k1, the distance Ro was calculated using
Eq.(4.19) in order to cancel out the linear term and to obtain an essentially
cubic relation.

Ro = 5

√
5|C|
k1

= 4 cm (4.19)

The measured points when the magnets were put at a distance Ro = 4cm
are shown in Fig.4.15 as red dots. They have been polynomially interpolated
using only a cubic term: F = k′3y

3, where k′3 = 1.43× 106N/m3.

Thus, as theoretically predicted, the presence of the outer magnets al-
lows us to cancel out the linear term of the elastic force and to obtain a
purely cubic relation; this is a crucial aspect to fully take advantage of the
characteristics of a nonlinear absorber.

4.7 Experimental results

The system was harmonically forced by the base motion at several ampli-
tudes and frequencies. The aim was to observe the types of response the
system could exhibit and to study its performance in terms of energy absorp-
tion and harvesting. The primary mass and the moving base were equipped
with accelerometers. The NES motion was monitored by using the signal
issued by the coil, indeed that signal can be considered as proportional to
the magnet velocity.

The results illustrated are issued from the same case of external ex-
citation (0.6m/s2 at 6.2Hz) and for three different configurations of the
MS-NES. In the first configuration the outer magnets are not used so the
relation between the absorber and the primary system is not completely
nonlinear but presents the linear term. In the second configuration, called
cubic, the outer magnets are placed at a distance which allows the magnetic
force to perfectly cancel out the linear term and then the resulting force to
be purely cubic. The third configuration is the so-called Bi-stable and the
resulting force has a shape as illustrated in the previous section.
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For each configuration a kinematic study is firstly conducted. The phase
diagram as well as the Poincaré sections of the system’s responses are ob-
tained in order to evaluate their periodicity. Subsequently the capability of
the MS-NES as a vibration absorber and as an energy harvester is analyzed.
According to theory, this specific excitation frequency is where the Strongly
Modulated Responses are expected to appear. In fact, results have shown
that depending on the distance of the magnets (i.e. on the shape of the
force between LO and MS-NES) the system can exhibit different types of
response going from periodic to chaotic.

4.7.1 No outer magnets

In this configuration the outer magnets are not used, meaning that in
Sys.(4.4) the magnetic force Fm is zero. The expression for the restor-
ing elastic force between the MS-NES and the primary system is: F =
k1(z − x) + k3(z − x)3.

Concerning the kinematic study, in Fig.4.16 and Fig.4.17 the displace-
ment and the velocity of the primary mass and the NES mass respectively
are shown. The envelope has been highlighted. The same figures show the
phase diagrams (x − ẋ and y − ẏ) of the responses. The red dots on the
phase diagrams represent the Poincaré map of the envelope.

We can observe that the solution the system reaches is steady and the
response amplitude constant. The trajectories in the phase diagrams are
ellipses and all the points in the Poincaré map are gathered in the same
area: we can state that the global behavior is totally deterministic.

After studying the kinematics of this configuration we go further by
analyzing the energetic aspects of the system. We are interested in studying
the energy flow from the primary system to the NES and in evaluating the
portion of energy which is dissipated by viscous friction and the amount
which is converted into electrical energy.

In Fig.4.18 (upper part) the instantaneous kinetic energy during the
recorded time interval of the primary system and of the NES is shown.
The lower part shows the instantaneous electrical energy delivered to the
resistive load Pel = I2RL. As concluded after the kinematic analysis the
system exhibits a steady solution: an equilibrium is reached between the
vibrating energy kept into the primary system and the portion of energy
transferred to the NES.

We can have a better understanding of how the energy is distributed
into the system by calculating the ratio between the energy located into the
NES and the total energy present in the system:
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Figure 4.16: Primary system’s displacement x and velocity ẋ in the no
magnets configuration (left) and its phase diagram (right). The envelope of
the response is highlighted in red and its Poincaré Map represented by red
dots in the x− ẋ space.

ENES
ETOT

=
TNES + UNES

TLO + ULO + TNES + UNES
(4.20)

The energy ratio over the time is illustrated in Fig.4.19: about half the
total energy of the system is located into the NES.

The energy transferred to the NES is then partially dissipated by the
viscous damping and partially converted into electrical energy.
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Figure 4.17: NES’ displacement y and velocity ẏ in the configuration without
outer magnets (left) and its phase diagram (right). The envelope of the
response is highlighted in red and its Poincaré Map represented by red dots
in the y − ẏ space. The global system behavior is totally deterministic.
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Figure 4.18: No magnets configuration: kinetic energy of the primary system
(LO) and of the NES and instantaneous electrical power delivered to the
resistive load.
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Figure 4.20: Average electrical power delivered and the average viscous
power dissipated in the configuration without outer magnets.



4.7. EXPERIMENTAL RESULTS 107

4.7.2 Cubic

We now illustrate the results obtained from the tests performed on the cubic
configuration. As explained in Sec.4.4, it is possible to calculate the distance
of the outer magnets Ro in order to obtain a purely cubic relation between
the primary system and the NES. For a linear elastic term k1 = 69.4N/m
the distance was estimated to be Ro = 4 cm.

The external forcing amplitude and frequency were the same as in the
previous section: 0.6m/s2 at 6.2Hz.
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Figure 4.21: Primary system’s displacement x and velocity ẋ in the cubic
configuration (left) and its phase diagram (right). The envelope of the re-
sponse is highlighted in red and its Poincaré Map represented by red dots
in the x− ẋ space.
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We will first focus on the kinematics of the response and lately discuss
the energetic aspects. On the left of Fig.4.21 and 4.22 the displacement and
the velocity of the primary mass and of the NES mass are shown and their
envelope has been highlighted in red. On the right of the same figures the
phase diagrams x − ẋ and y − ẏ are shown as well as the Poincaré map of
the envelope (red dots).

0 2 4 6 8 10 12 14 16 18 20

y
[m

m
]

-10

-5

0

5

10

t [s]
0 2 4 6 8 10 12 14 16 18 20

ẏ
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Figure 4.22: NES’ displacement y and velocity ẏ in the cubic configuration
(left) and its phase diagram (right). The envelope of the response is high-
lighted in red and its Poincaré Map represented by red dots in the y − ẏ
space.

We can immediately see that the response of the system has become
modulated: not steady anymore but periodic. This kind of response is
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known in literature as Strongly Modulated Response (SMR) and is typically
observed among nonlinear absorbers [VGMM01b].

The phase diagrams and the Poincaré map allow us to attest that, al-
though it appears to have a complex pattern, the response is not chaotic.
This can easily be deduced from the NES response in Fig.4.22. The primary
mass graphs in Fig.4.21 seem to be more rough but this may also be caused
by measurement noise: it is worth reminding that the primary mass accel-
eration was measured by an accelerometer placed on the structure whereas
the velocity of the NES mass was measured through the signal coming from
the coil. The NES non-intrusive method delivered a much cleaner signal
than the accelerometer did.

Fig.4.23 shows the kinetic energy of the primary system and the NES
(upper half) and the electrical power deliver to the resistence (lower half).
It can be seen that the cycles the system goes through are periodic and
repetitive. In Fig.4.24 (left) a zoom of Fig.4.23 illustrates the process of
energy transfer from the primary system (LO) to the NES: the kinetic energy
the primary system accumulates is transferred to the NES and subsequently
partially dissipated through the viscous damping and partially converted
into electrical energy.

Fig.4.24 (right) describes the energy transfer mechanism by showing the
energy ratio ENES/ETOT as defined by Eq.(4.20): it can be seen that the
total energy is cyclically entirely located into the NES.
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Figure 4.23: Cubic configuration: kinetic energy of the primary system (LO)
and of the NES and instantaneous electrical power delivered to the resistive
load.
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Figure 4.24: Kinetic energy transfer (left) between the primary system
(blue) and the NES (red) during the strongly modulated response of the
cubic configuration and NES-LO energy ratio (right) defined as: ENES

ETOT
=
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.

Comparing the electrical power delivered in the two configurations with-
out magnets (Fig.4.18) and cubic (Fig.4.23), we can see that in the latter
configuration the peaks of power reached are considerably higher than the
value held constant by the first configuration (9mW instead of 1.6mW ).

The average power delivered and the average power dissipated as defined
by Eq.(4.15) are displayed in Fig.4.25: the asymptotic values P el∞ and P vis∞
are higher than those obtained by the previous configuration: 1.6mW and
2.1mW instead of 0.7mW and 1.4mW



4.7. EXPERIMENTAL RESULTS 111

t [s]
0 2 4 6 8 10 12 14 16 18 20

P
[m

W
]

0

0.5

1

1.5

2

2.5

3

P
electric

P
viscous

Figure 4.25: Average electrical power delivered and the average viscous
power dissipated in the cubic configuration.

4.7.3 Bi-stable

The third configuration tested is the bi-stable configuration. As explained in
Sec.4.4.1 it is obtained by placing the outer magnets at a distance Ro smaller
than that canceling out the linear elastic term. The force-displacement
relation has then a shape as shown in Fig.4.8 where three equilibria exist:
one unstable (y = 0) and two stable (y = ±d).

Examining Fig.4.26 and 4.27 it can be seen that the response is still
strongly modulated but this time the cycles appears to be more chaotic as
none specific periodicity can be identified.

The lack of periodicity in the system’s response can also be observed
by looking at the kinetic energy transfer and the electrical power delivered
shown in Fig.4.28. Each cycle seems to have its own shape, different than the
other ones’. As a general observation, the peaks of kinetic energy reached
in this configuration are higher than those attained in the cubic one.

The average power dissipated and the average power delivered are shown
in Fig.4.29. If compared to the cubic configuration, we can notice a slight
improvement in the electrical power whereas the viscous power is essentially
the same as previously observed.

Thus, the bi-stable configuration generates a chaotic kinematic behavior
of the NES which may potentially be favorable in terms of energy absorption
and energy harvesting. The response is similar to what we observed for the
Vibro-Impact in the case of Chaotic Strongly Modulated Response (CSMR).
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Figure 4.26: Primary system displacement x and velocity ẋ in the bi-stable
configuration (left) and its phase diagram (right). The envelope of the re-
sponse is highlighted in red and its Poincaré Map represented by red dots
in the x− ẋ space.

Whereas for the VI-NES the chaos was introduced by the non-smooth na-
ture of the system, for the MS-NES it is the bistability that seems to lead
the system to a chaotic regime. Although the experimental results here pre-
sented do not show a significant improvement compared to those obtained
with the cubic configuration, it may be worth carrying out a more extensive
study on this configuration which would include an optimization process.
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Figure 4.27: NES displacement y and velocity ẏ in the bi-stable configura-
tion (left) and its phase diagram (right). The envelope of the response is
highlighted in red and its Poincaré Map represented by red dots in the y− ẏ
space.
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Figure 4.28: Bi-stable configuration: kinetic energy of the primary system
(LO) and of the NES and instantaneous electrical power delivered to the
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4.8 Bifurcation diagrams

The experimental observations showed that, for an identical external forc-
ing, the MS-NES may exhibit several types of response depending on the
distance of the outer magnets Ro. More specifically, we observed that the
response goes from appearing completely steady and deterministic when the
magnets are not used to being nondeterministic in the case of the bi-stable
configuration.
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Figure 4.30: Sampled envelope’s amplitude of the primary system velocity ẋ
(left) and the NES velocity ẏ (right) are plotted as function of the distance
Ro. Forcing: 0.6m/s2 - 6.2Hz.

We present in this section the numerical results illustrating the transition
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towards a chaotic behavior when the distance Ro gradually decreases. The
simulations were performed for an amplitude and a frequency of the external
forcing of 0.6m/s and 6.2Hz.

In Fig.4.30 the sampled envelope’s amplitude of the primary system ve-
locity ẋ (left) and the NES velocity ẏ (right) are plotted as functions of the
distance Ro. These plots represent two bifurcation diagrams for the system
as Ro is the varying parameter. It means that where several points exist
for the same distance Ro the envelope amplitude is not constant but varies
during the time. We can observe that for a distance Ro > 7cm the response
is steady: i.e. the envelope has a constant amplitude. Between 6 and 7 cm
there is the first bifurcation which brings to a periodic regime (6cm). When
Ro decreases further the response is more and more nondeterministic until
it appears to be steady again for Ro < 3cm. This is caused by the fact that
the two stable points in the bi-stable configuration gain stability as Ro gets
smaller: the system ends up oscillating steadily around one of these two
points.

4.9 Conclusions

In this chapter the study of a new concept of nonlinear absorber has been
introduced and its experimental realization presented. The force between
the primary system and the NES is created by the combination of the elastic
force delivered by the transverse motion of two strings and an additional
magnetic force. The energy absorbed by the NES is converted into electrical
energy by means of an electromagnetic transducer.

The results have shown that the presence of the magnetic force allows
the NES to reach a purely cubic force-displacement relation and to exhibit
the sought nonlinear behavior (SMR). This result confirms the importance
of having a purely nonlinear force between the NES and the primary sys-
tem as the presence of a linear component may radically change the global
behavior. Finally the SMR seems to be more favorable in terms of energy
absorbtion suggesting that the nonlinearities may be used to improve the
energy harvesting.

In summary this study unifies the research fields of nonlinear vibration
absorbers and energy harvesting from vibrations showing the advantages of
a combined application. An optimization process is still to be done in which
the performances of the NES and the harvester would be investigated.
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Conclusions

In this work the vibration mitigation in mechanical systems by means of a
Nonlinear Energy Sink absorber was studied. The phenomenon governing
the physics of this kind of device is referred to as Targeted Energy Transfer
and it consists in an irreversible energy transfer from the primary system
to the NES where the energy is then dissipated. This energy transfer may
occur over a broad range of frequencies with no need for the NES to be
tuned to a specific one.

An exhaustive literature review was presented which focused on the theo-
retical and experimental previous studies on the subject. The review showed
that a lot of theoretical work had been done and a few interesting experimen-
tal investigations had been carried out. Thus, this work was mainly oriented
towards an experimental approach based on the theoretical concepts existing
in the literature.

The first type of absorber studied was the Vibro-Impact NES. This kind
of absorber is characterized by a relative simplicity in the experimental re-
alization and a considerable complexity in the analytic description because
of its non-smooth nature. The main purpose of this study was to bridge
the theoretical and experimental approaches in order to reach a compari-
son between the analytical results and the experimental observations. The
system consisted in a harmonically forced single-degree-of-freedom linear
oscillator to which a VI-NES was attached. Depending on external force’s
amplitude and frequency, either a Strongly Modulated Response (SMR) or
a Constant Amplitude Response (CAR) was observed. In both cases a Tar-
geted Energy Transfer from the LO towards the VI-NES was experimentally
observed and a significant reduction of the primary system’s resonance peak
was obtained. The system was analytically studied by means of the Multiple
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Scales method. The calculation of the Slow Invariant Manifold and of the
fixed points allowed for an explanation of the experimental observations as
well as for defining the dependence of the response on the design parameters
(tube’s length and restitution coefficient).

The second type of NES studied was the Magnetic-Strung NES. The
aim of this study was to add the energy harvesting aspect to the research
on nonlinear absorbers. A review of the energy harvesting techniques from
vibrations made us lean towards a magnetic method because considered the
most suitable one for the experimental realization we were looking for. The
system consisted in a harmonically forced single-degree-of-freedom linear
oscillator to which a MS-NES was attached. The type of nonlinearity used
was basically cubic but with the ability to be shaped thanks of a magnetic
force aptly introduced. The coupling between elastic and magnetic force
permitted the NES to have several possible configurations of nonlinearity
(linear+cubic, cubic, bistable). The final system was an electro-mechanical
system in which the vibration energy of the primary system was absorbed
by the NES and subsequently partially dissipated by the viscous damping
and partially converted into electrical power. The numerical and experi-
mental studies analyzed the performances of the MS-NES both as an energy
absorber and as an energy harvester.

Perspective for future work

The results presented in this dissertation clearly show the interest in exploit-
ing nonlinear dynamics in the field of passive vibration mitigation. However,
there is still much theoretical and experimental work to be done.

Vibro-Impact NES:

• An energetic study should be done in order to identify the most fa-
vorable regimes in terms of energy dissipation. The analytical model,
able to predict the response of the system as a function of the design
parameters, could be used as a designing tool for an optimized version
of the VI-NES.

• Considering the tube’s length and the restitution coefficient as the
two most relevant parameters in the VI-NES dynamics, an adaptive
VI-NES can be thought where these parameters would vary in order
to reach the most efficient regime. A further study should investigate
whether the adaptive process would be active or completely passive.
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• The energy harvesting aspect could be added. To do that, since the
energy dissipation occurs through the impacts, a piezoelectric method
could be implemented where the piezoelectric patches would be excited
by the shocks.

• Related to the previous point, if the the impact surfaces are made up of
piezoelectric patches, a process to change their mechanical properties,
and then the restitution coefficient, could be investigated.

Magnetic-Strung NES:

• The energetic study should be pushed further so that an optimized
MS-NES can be designed. The MS-NES performances should be ana-
lyzed both as an energy absorber and as an energy harvester and the
influence of the mechanical and electric parameters should be evalu-
ated.

• The coupling between the mechanical and the electric system should
be investigated and exploited. The two systems are coupled through
the electromechanic coefficient γ which relates the electrical current
and the mechanical damping. Theoretically it might be possible to
introduce an artificial mechanical damping thanks to the electrical
properties. This aspect should be studied and might evolve in a semi-
active/adaptative control method.

• The energy converted into electrical power could be stocked in a bat-
tery and not only delivered to a resistive load. Nevertheless, one should
be aware that a study of this kind requires a deep knowledge in elec-
tronics and electrical circuits.

• The shaping of the force between the primary system and the NES via
the magnetic force should be thoroughly analyzed. Particular atten-
tion should be put to the bistable configuration which seems to be a
promising path to follow.
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Appendix A

Mathematical proofs

A.1 Sum of two sinus with the same frequency
shifted in phase

Reminding Eq.(3.27) from chapter 3:

∂2w0

∂τ2
0

+ (1 + r)
∑
j

∂w−0
∂τ0

δ−j = −C sin(Ωτ0 + ψ) +X sin(Ωτ0) (A.1)

The two forcing terms can be expressed as a single sinus term as follows:

−C sin(Ωτ0 + ψ) +X sin(Ωτ0) =

= −C[sin(Ωτ) cosψ + cos(Ωτ) sinψ] +X sin(Ωτ) =

= (−C cosψ +X) sin(Ωτ)− (C sinψ) cos(Ωτ)

(A.2)

An amplitude A and a phase θ are sought so that:

−C cosψ +X = A cos θ

−C sinψ = A sin θ
(A.3)

It yields:
A2 = (−C cosψ +X)2 + (−C sinψ)2

θ = arcsin

(
1

A
(−C sinψ)

)
(A.4)

Finally:

A cos θ sin(Ωτ) +A sin θ cos(Ωτ) = A sin(Ωτ + θ) (A.5)
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And:
∂2w0

∂τ2
0

+ (1 + r)
∑
j

∂w−0
∂τ0

δ−j = A sin(Ωτ + θ) (A.6)
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Résumé

Les méthodes de contrôle de vibrations passives basées sur des absorbeurs
linéaires ont été largement étudiées et ils ont aujourd’hui une vaste gamme
d’applications. Cependant, les absorbeurs linéaires n’étant e�caces que
lorsqu’ils sont accordés à la fréquence que l’on veut contrôler, ils présentent
des limites considérables quand ils sont appliqués à des systèmes possédant
des incertitudes sur les paramètres modaux ou ayant une fréquence propre
dépendante de la force extérieure.

Dans cette thèse la réduction des vibrations dans les systèmes mécaniques
à l’aide d’un absorbeur Nonlinear Energy Sink est étudiée. Le phénomène
qui gouverne la physique de ce dispositif est appelé pompage énergétique
(Targeted Energy Transfer) et il consiste en un transfert irréversible d’énergie
du système principal vers le NES, où l’énergie est dissipée. Ce transfert
d’énergie peut se produire pour une large gamme de fréquences et sans be-
soin que le NES ne soit accordé à une fréquence spécifique.

La dynamique d’un premier type de NES appelé Vibro-Impact Nonlin-
ear Energy Sink (VI-NES) est investiguée expérimentalement grâce à un
oscillateur linéaire (OL) à un degré de liberté forcé harmoniquement auquel
le VI-NES est attaché. Le pompage énergétique du OL vers le VI-NES
est observé expérimentalement, ce qui a permis d’obtenir une importante
réduction du pic de résonance du système principal. Le système est étudié
analytiquement à l’aide de la méthode Multi-Echelles et le comportement
non-linéaire observé est expliqué théoriquement.

Le deuxième type de NES présenté est le Magnetic-Strung NES avec
récupération d’énergie. Cette étude ajoute l’aspect lié à la récupération
d’énergie au domaine de recherche des absorbeurs non-linéaires. Le système
consiste en un OL à un degré de liberté forcé harmoniquement auquel le
MS-NES est appliqué. Le force non-linéaire de rappel peut être modulée
grâce à une force magnétique introduite judicieusement, ce qui permet au
NES d’avoir plusieurs configurations possibles. Le système résultant est
un système électromécanique où l’énergie vibratoire du système principal
est absorbée par le NES et est ensuite dissipée en partie par l’amortissement
visqueux et convertie en partie en puissance électrique. Les études numérique
et expérimentale analysent les performances du MS-NES en tant qu’absorbeur
d’énergie et en tant que récupérateur d’énergie.

Finalement, les idées et les perspectives issues de cette étude sont traitées
et les directions pour les travaux futurs sont fournies.
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Abstract

Passive vibration control methods using linear dampers have been largely
studied and investigated, and they have nowadays a broad range of appli-
cations. However, linear dampers are e�cient when tuned to the specific
frequency to control but present substantial limitations when applied to pri-
mary systems with uncertainties on the modal parameters or to systems
having a natural frequency that may vary with external forcing.

In this thesis the vibration mitigation in mechanical systems by means
of a Nonlinear Energy Sink absorber is studied. The phenomenon governing
the physics of this kind of device is referred to as Targeted Energy Transfer
and it consists in an irreversible energy transfer from the primary system
to the NES where the energy is then dissipated. This energy transfer may
occur over a broad range of frequencies with no need for the NES to be
tuned to a specific one.

The dynamics of a first type of NES called Vibro-Impact Nonlinear En-
ergy Sink (VI-NES) is experimentally investigated via a harmonically forced
single-degree-of-freedom linear oscillator to which a VI-NES is attached. A
Targeted Energy Transfer from the LO towards the VI-NES is experimen-
tally observed and a significant reduction of the primary system’s resonance
peak is obtained. The system is analytically studied by means of the Mul-
tiple Scales method and the nonlinear behavior experimentally observed is
theoretically explained.

The second type of NES presented is the Magnetic-Strung NES with
energy harvesting. This study adds the energy harvesting aspect to the re-
search on nonlinear vibration absorbers. The system consists in a harmoni-
cally forced single-degree-of-freedom linear oscillator to which the MS-NES
is applied. The type of nonlinearity used can be shaped thanks to a magnetic
force aptly introduced, allowing the NES to have several possible configu-
rations. The resulting system is an electro-mechanical system in which the
vibration energy of the primary system is absorbed by the NES and subse-
quently partially dissipated by the viscous damping and partially converted
into electrical power. The numerical and experimental studies analyze the
performances of the MS-NES both as an energy absorber and as an energy
harvester.

Finally, ideas and perspectives arising from this study are discussed and
future work directions are provided.
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Chapitre 1

Introduction

Ce document en langue française est une synthèse du manuscrit o�ciel écrit
en langue anglaise qui est à considérer comme le mémoire o�ciel. Cette
partie en français est structurée selon le même plan que la partie en anglais.
Elle comporte les passages et les illustrations principales et renvoie à la
partie en anglais pour les détails.

1.1 Réduction du niveau vibratoire des structures
mécaniques

Le contrôle des vibrations en dynamique des structures est toujours un
domaine de recherche important puisqu’il permet une amélioration de la
résistance des structures, un abaissement du niveau sonore et un confort ac-
cru. Les sources de vibrations pour les structures mécanique sont nombreuses
et les méthodes de contrôle peuvent être classifiées en trois catégories prin-
cipales :

• les méthodes de contrôle actif ont été largement développées durant les
quinze dernières années. Le principe étant de générer une excitation
hors phase, le contrôle actif fournit des bonnes performances en termes
de réduction des vibrations mais a l’inconvénient majeur de requérir
une source d’énergie externe.

• des méthodes de contrôle semi-actif qui utilisent des fluides électro- et
magnéto-rhéologiques ont été proposées en [DSSC96,CK00]. La par-
ticularité de ces fluides est de pouvoir changer leur viscosité suivant
le champ électrique ou magnétique dans lequel ils se trouvent. Ces

1
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techniques sont robustes et fiables mais leur modélisation complexe
représente un fort inconvénient pour des applications industrielles.

• les méthodes de contrôle passif réduisent le niveau vibratoire en ajou-
tant à la structure un matériau dissipatif [Nak98] ou alors un ab-
sorbeur de vibrations dynamique [Fra11, DH85]. Cette technique est
très intéressante et représente une alternative valable aux méthodes
précédentes puisqu’elle ne nécessite pas d’énergie externe.

1.2 Puits d’énergie non-linéaire (Nonlinear
Energy Sink)

Pour pouvoir dépasser les performances des absorbeurs de vibrations
linéaires, un domaine de recherche s’est focalisé durant ces dernières années
sur les absorbeurs dits non-linéaires. Les premières études portant sur l’uti-
lisation des non-linéarités dans la réduction des vibrations datent des années
50 [Rob52, Pip53, Arn55] et en 1982 la première réalisation d’un absor-
beur avec raideur assouplissante fut présentée [HN82]. La nature de la non-
linéarité peut en principe être de tout type. Par exemple, des absorbeurs
à pendule centrifuge furent étudiés en [DH38] et successivement améliorés
en [Mad80,Den92,SSH06].

Les absorbeurs non-linéaires ont capté l’attention des chercheurs grâce à
leur capacité à s’adapter au système primaire auquel ils sont attachés sans
être accordés à une fréquence spécifique. Comme ils ne possèdent pas une
fréquence de résonance préférentielle, ils sont capables d’interagir avec le
système principal sur une large gamme de fréquences et donc d’être e�caces
sur tous les modes à l’intérieur de cette gamme.

Le Targeted Energy Transfer (TET ou pompage énergétique) a été ob-
servé par Gendelman [Gen01]. Dans cet article il a étudié un système à 2
degrés de liberté composé d’un oscillateur linéaire (OL) couplé à un oscil-
lateur avec raideur linéaire nulle. Dans [Gen12] il a été montré que quand
l’énergie de l’OL est supérieure à un certain seuil, un mouvement périodique
localisé se produit pendant lequel l’énergie est transférée à l’oscillateur non-
linéaire et ensuite dissipée. Un absorbeur non-linéaire qui présente ce type
de comportement est appelé Nonlinear Energy Sink (NES).

Des études ultérieures ont été conduites [VGMM01a, VGMM01b] et le
TET a été défini comme un transfert d’énergie irréversible de la structure
directement excitée vers le NES. Le mécanisme qui conduit au TET est une
capture de résonance transitoire grâce à laquelle l’OL et le NES entrent
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dans une résonance 1 :1. Un critère de seuil d’activation a été formulé dans
[Vak01]. En fait le NES semble être e�cace quand l’énergie présente dans le
système principal est au-delà d’une certaine quantité.

Des travaux expérimentaux ont examiné le TET et sont présentés dans
[MBV05,GAT+07,KKM+07]. Ils ont prouvé que la dynamique qui gouverne
le transfert d’énergie est une résonance 1 :1 entre le système principal et
le NES. Le TET sous sollicitation harmonique a été étudié théoriquement
[SG08] et expérimentalement [GMSB14a] où il a été montré que, en plus
du régime de réponse stationnaire, un type de réponse fortement modulée
(SMR : Strongly Modulated Response) peut également se produire.

Dans la plupart des travaux cités, une nonlinéarité de type raideur
cubique a été utilisé : les nonlinéarités des éléments élastiques sont uti-
lisées pour atteindre une force de rappel proportionnelle au cube du
déplacement. Cependant la nature de la nonlinéarité peut être en théorie
de n’importe quel type. Des études récentes se sont penchées sur des fonc-
tions non-polynomiales [Gen08], des états d’équilibre multiples [GL05], des
fonctions non-continues [GVMB05b,LGSE11,SLD12] et des Vibro-Impacts
[GVMB05a,KVG08,LNV+09,NLIM+08]. Les travaux sur les Vibro-Impacts
sont généralement basés sur des simulations numériques. Une approche ana-
lytique a été proposée dans [Gen12] et [GA15]. Dans [GMSB14b] les di↵érent
régimes de réponse d’un VI-NES appliqué à un système principal forcé har-
moniquement ont été observés expérimentalement.

1.2.1 Études expérimentales sur le pompage énergétique

Ici on présente plus en détail une analyse bibliographique des travaux
expérimentaux concernant le pompage énergétique (TET) que l’on peut
trouver en littérature. Une grande partie de ce manuscrit de thèse a une
nature expérimentale et les études présentées ici ont servi de base d’inspira-
tion.

Une réalisation expérimentale d’un NES attaché à un système principal
à 1 degré-de-liberté est présenté en [MBV05]. La nonlinéarité est à raideur
cubique et elle est obtenue à l’aide de câbles élastiques travaillant trans-
versalement. Pour avoir une force purement cubique les cables ne doivent
pas être pré-chargés ; en pratique ce point est di�cile à être satisfait. Le
prototype du NES étudié dans [MBV05] est illustré à la Fig.1.1.

Le même système mais avec un NES légèrement di↵érent est étudié
dans [KMK+07] et illustré à la Fig.1.2. Le pompage énergétique est ob-
servé expérimentalement ainsi que le seuil d’activation du NES. Le proto-
type utilisé dans [BCHM10] est montré à la Fig.1.3 où le NES est formé
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d’une membrane flexible.
Dans [KMK+08] le pompage énergétique sur un système à 2 ddls est

examiné. Le système expérimental est similaire à celui utilisé dans [MBV05]
et le pompage énergétique multi-modal est observé et validé.

Dans [GLP07] un modèle de bâtiment multi-ddl excité harmoniquement
est analysé. Dans [NLIM+08] un modèle similaire soumis à une excitation
séismique est étudié. Un Vibro-Impact NES est utilisé dans ce cas (Fig.1.4).

Une contribution significative à l’étude d’un NES attaché à une structure
forcée harmoniquement a été apportée par les travaux de thèse d’Etienne
Gourc e↵ectués à l’ISAE/INSA Toulouse [Gou13]. Une raideur cubique
(Fig.1.5) et un Vibro-Impact NES (Fig.1.6) ont été étudiés analytiquement
et expérimentalement.

Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 83

Fig. 2.27 Experimental realization of Configuration II of nonlinear attachment (ungrounded at-
tachment with essential cubic stiffness nonlinearity): (a) experimental fixture, (b) schematic de-
scribing the various components of the fixture, (c) schematic indicating the NES portioned from
the linear oscillator.

pled to the linear system through an essential stiffness element. In Figure 2.27 we
depict this Configuration. The advantage of this design compared to Configuration I
is its versatility, since it can be connected to ungrounded structures (such as moving
ones); moreover, it will be shown that even lightweight ungrounded NESs can be
effective passive absorbers and local energy dissipators, making then primary candi-
dates for realizing TET in practical applications. Experimental results with fixtures
implementing Configurations I and II will be reported in Chapters 3 and 8 of this
work (for example, an experimental fixture depicting an ungrounded NES config-
uration attached to a two-DOF linear system of coupled oscillators is depicted in
Figure 3.96).

A third experimental configuration with a vibro-impact attachment will be con-
sidered in our study of passive seismic mitigation by means of TET. The vibro-
impact configuration is depicted in Figure 2.28. In this design, the essential stiffness

Figure 1.1: Réalisation expérimentale et schéma du système de NES étudié
dans [MBV05].
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Fig. 2.26 Experimental realization of Configuration I of nonlinear attachment (grounded attach-
ment with essential cubic stiffness nonlinearity): (a) experimental fixture, (b) schematic describing
the various components of the fixture.

In the experiments three different configurations of essentially nonlinear attach-
ments were considered. The first configuration (labeled Configuration I) consists of
a grounded, essentially nonlinear attachment (termed nonlinear energy sink – NES,
see Chapter 3), and its practical implementation is depicted in the experimental fix-
ture of Figure 2.26. The fixture consists of two single-degree-of-freedom oscillators
connected by means of a linear coupling stiffness. The left oscillator (the linear
system) is grounded by means of a linear spring, whereas the right one (the NES)
is grounded by means of a nonlinear spring with essential cubic nonlinearity (the
clamped wire design presented in Figure 2.25); an additionalviscous damper exists
in the NES.

The second configuration of essentially nonlinear attachment (NES) (labeled
Configuration II) consists of an ungrounded nonlinear attachment, which is cou-
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Fig. 2.26 Experimental realization of Configuration I of nonlinear attachment (grounded attach-
ment with essential cubic stiffness nonlinearity): (a) experimental fixture, (b) schematic describing
the various components of the fixture.

In the experiments three different configurations of essentially nonlinear attach-
ments were considered. The first configuration (labeled Configuration I) consists of
a grounded, essentially nonlinear attachment (termed nonlinear energy sink – NES,
see Chapter 3), and its practical implementation is depicted in the experimental fix-
ture of Figure 2.26. The fixture consists of two single-degree-of-freedom oscillators
connected by means of a linear coupling stiffness. The left oscillator (the linear
system) is grounded by means of a linear spring, whereas the right one (the NES)
is grounded by means of a nonlinear spring with essential cubic nonlinearity (the
clamped wire design presented in Figure 2.25); an additionalviscous damper exists
in the NES.

The second configuration of essentially nonlinear attachment (NES) (labeled
Configuration II) consists of an ungrounded nonlinear attachment, which is cou-

Figure 1.2: Réalisation expérimentale et schéma du système de NES étudié
dans [KMK+07].

Figure 1.3: Réalisation expérimentale du système de NES étudié dans
[BCHM10].
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Fig. 2.28 Experimental realization of a vibro-impact attachment: (a) experimental fixture, (b) de-
tail of VI NES.

nonlinearity of the attachment is realized by vibro-impacts, which, as argued in
Chapter 7, can be viewed as limiting cases of essentially nonlinear stiffnesses; in
that context, the vibro-impact nonlinearity can be regarded as the ‘strongest pos-
sible’ stiffness nonlinearity of this family of essentially nonlinear stiffnesses. In
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Fig. 2.28 Experimental realization of a vibro-impact attachment: (a) experimental fixture, (b) de-
tail of VI NES.

nonlinearity of the attachment is realized by vibro-impacts, which, as argued in
Chapter 7, can be viewed as limiting cases of essentially nonlinear stiffnesses; in
that context, the vibro-impact nonlinearity can be regarded as the ‘strongest pos-
sible’ stiffness nonlinearity of this family of essentially nonlinear stiffnesses. In

Figure 1.4: Réalisation expérimentale et schéma du système de Vibro-
Impact NES étudié dans [NLIM+08].

The diagram of the slow-flow on the SIM is presented in Fig. 7 for
the set of parameters (25). In this case, two unstable fixed points
are located on the lower branch of the SIM. The only possible
response for the system is stable SMR. This regime is observed on
the numerical integration in Fig. 8. Contrary to NES with cubic
stiffness [7,22], where, during SMR, the flow jumps between two
stable branches; in this case, it is observed that SMR acts through
successive synchronization between the LO and the VI-NES. When
the VI-NES is not synchronized, the amplitude of the LO grows,
under certain circumstance, the VI-NES enter in 1:1 resonance cap-
ture with the LO. Then, energy in the system is dissipated by suc-
cessive impacts and the amplitude of the LO decays until C¼C1

(17). Finally, the NES escapes resonance capture, and the amplitude
of the LO starts growing again. Such a behavior cannot be
explained by only studying the fixed points of the system.

4 Experimental Trials

The experimental setup is depicted in Fig. 9(a). It consists of an
LO with an embedded VI-NES. The whole system is embedded
on 10 kN electrodynamic shaker. The displacement of the LO as
well as the imposed displacement of the shaker are measured
using contactless laser displacement sensors. A detailed view of
the VI-NES is presented in Fig. 9(b). It simply consists of a closed
cavity of length dþ 2D, where d is the diameter of the ball. Each
cover is made of hardened steel. The design of the VI-NES is vol-
untary simple to check whether this kind of system can be used as
vibration mitigation device. Note that the aim of this experiment
is not to built an efficient NES, but to investigate the different
response regimes for future exploration.

The parameters of the system have been identified by perform-
ing modal analysis and are summarized in Table 1.

Experimental trials have been carried out for three different
forcing amplitudes. For each trial, displacement of the LO has
been recorded for increasing and decreasing frequency around the
natural frequency of the LO. The first results for G¼ 0.16 mm
(A¼ 0.019) are depicted in Fig. 10. Blue lines are the analytical
fixed points. Red dashed vertical lines represent the zone of SMR
found using numerical integration of Eqs. (3) and (4). Green lines
represent measured periodic response and straight vertical lines
represent the experimentally determined zone of SMR. First peri-
odic response was observed for r¼#3.2. This branch of periodic
solution has been followed until r¼ 1.1. For further increase of
the forcing frequency, periodic solution lose its stability, and
SMR takes place as illustrated in Fig. 11.

Experimentally, it has been found that stable SMR takes place
between r¼ 1.25 and r¼ 2.22 versus r¼ 1.6 and r¼ 3 numeri-
cally. Similar results are obtained for a reduced forcing amplitude
(G¼ 0.14 mm, A¼ 0.017) and are depicted in Fig. 12. In this case,
periodic motion is still observed between r¼#2.08 and r¼ 0.42.

Fig. 7 Case of SMR response. Blue and green lines corre-
spond to the SIM (16) and the curves (23). Red cross (1) corre-
sponds to unstable fixed points. Parameters are given in Eq.
(25).

Fig. 8 Numerical integration of Eqs. (4) and (5) for the set of
parameters (25)

Fig. 9 Picture of the experimental setup. (a) Global view of the
system and (b) detailed view of the NES.

Table 1 Parameters of the experiment

Physical parameters

m1 3.807 kg c1 2.53 N s/m
k1 11.68$ 103 N/m m2 32 g
D 15 mm r 0.6

Reduced parameters

e 0.84% k 1.43

Fig. 6 Numerical integration of Eqs. (4) and (5) for the set of
parameters (24) and zoom on the response
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Figure 1.5: Réalisation expérimentale du système de Vibro-Impact NES
étudié dans [GMSB14b].
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points on the upper fold are then computed using Eq. (18)
and the invariant property of the SIM (see Fig. 2 for the
corresponding notation)
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(31)

(2) Equation (22) is numerically integrated with U2u as initial
conditions, until reaching the upper fold line.

(3) The landing point U2d on the lower fold is computed in the
same way as in the first step.

(4) Equation (22) is numerically integrated again until reaching
the lower fold line.

This procedure is repeated for various starting points inside the
interval D11;D12½ %. Finally, if at the end of step 4 all the points
return inside this interval, the SMR cycle is stable. On the other
hand, if the slow flow goes through the basin of attraction of a sta-
ble fixed point, the SMR cycle is unstable.

3 Experimental Tests

In the following section, two different experiments will be pre-
sented. The main difference between these experiments is the
value of the mass ratio (e). For the first one e ¼ 12:9% and for the
second one e ¼ 1:2%. Moreover, the first experiment is subject to
harmonic forcing and the second one to an imposed displacement.
As mentioned previously, in the case of base excitation, a term
related to the damping of the LO is present (see Eq. (4)); this is
not the case for imposed force. However, this term is of Oðe2Þ and
does not have that much influence on the behavior of the whole
system. In both cases, the displacement is measured using contact-
less laser sensors. Raw signals are recorded using a digital oscillo-
scope and a bandpass filter is applied to correct biases and
suppress high frequency noise. The cubic stiffness has been imple-
mented geometrically with two linear springs that extend axially
and are free to rotate. The force-displacement relationship (given
in Eq. (32)), expanded in Taylor series, is shown to be approxi-
mately cubic in nature.

f ¼ 2kluþ
2u P! kllð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ u2
p ( 2P

l
uþ kl ! P

l3
u3 þ O u5

# $
(32)

where u is the displacement, kl is the linear spring stiffness,
l the initial length of the spring, and P is the prestress force.
Experimentally, P must be kept as small as possible. Precision rail
guides are used for all guidance. For each test, the root mean
square (rms) value of the absolute displacement of the LO (x) and

the relative displacement between the NES and the LO (w) are
plotted versus the frequency of excitation. rms values are used in
order to highlight the benefits of SMR cycles.

3.1 First Experiments With e 5 12:9%. The first experi-
mental fixture built to investigate the behavior of a single degree-
of-freedom (DOF) oscillator strongly coupled to an NES under
excitation is depicted in Fig. 4. It consists of a main mass (LO)
grounded by means of a linear spring and connected to an electro-
dynamic shaker. The nonlinear oscillator is embedded on this
main mass. Both masses are connected by means of an essential
cubic stiffness.

As shown in Fig. 4, the main system receives the electrody-
namic force directly from the modal shaker. This force is constant
whatever the response of the system. It has, therefore, been con-
sidered as the input excitation force, and the mass and stiffness of
the shaker are considered together with the LO. The exciter force
is obtained by measuring the current delivered by the power am-
plifier. The nonlinear stiffness value used in the theoretical analy-
sis has been obtained with a nonlinear least square cubic
polynomial fitting of the experimental curve.

The parameters identified on the experimental setup and used
for the calculations are given in Table 1.

The aim of the experimental tests is to obtain the nonlinear fre-
quency response function (FRF) of the system around the 1 : 1
resonance. To this end, the displacement signals of both the LO
and the NES have been recorded for increasing and decreasing
frequency varying from 5 Hz to 20 Hz.

Figure 5 shows the nonlinear response curves for the NES and the
LO, respectively, for a forcing amplitude of 2:7 N. Thin lines corre-
spond to stable periodic motion, and thick lines refer to unstable
region of periodic solutions. “SN” and “Hopf” indicate the location
of the saddle-node and Hopf bifurcation points obtained analytically
using Eq. (13). In addition to the classical resonance curve, a sec-
ondary resonance curve with a stable upper branch is observed.

Those figures also display the measured frequency response of
both oscillators, where “o” and “)” denote periodic and quasi-
periodic regimes, respectively, and arrows show the jumps and

Fig. 3 Illustration of the mapping procedure for K 5 100, r 5 1,
F 5 0:15, e 5 0:01, k1 5 0:1, k2 5 0:2

Fig. 4 First experimental setup (e 5 12:9%)

Table 1 Parameters of the first experiment

Physical parameters

m1 0:761 kg m2 0:098 kg
k1 5690 N=m k2 1:473 ) 106 N=m3

c1 2:4 Ns=m c2 0:1 Ns=m

Reduced parameters

e 12:9% k2 0:012
k1 0:28 K 2:01 ) 103
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Figure 1.6: Réalisation expérimentale du système de NES à raideur cubique
étudié dans [GMSB14a].

1.3 Récupération d’énergie vibratoire

Un des objectifs de cette thèse est d’examiner la capacité d’un absorbeur
non-linéaire à non seulement dissiper de l’énergie vibratoire, mais également
à la récupérer. Cet aspect est étudié dans le cadre du Magnetic-Strung
NES, présenté par la suite. Une analyse bibliographique sur la récupération
d’énergie vibratoire a été conduite et elle est présentée ici.

La récupération d’énergie depuis l’environnement [BTW06] a récemment
connu un intérêt croissant et beaucoup de travaux ont été motivés par
les avancements dans l’industrie micro-électronique, ce qui a permis une
réduction de la puissance consommée par les dispositifs MEMS [GJTBW04,
RWR03]. Des méthodes solaires, chimiques et thermiques ont été inves-
tiguées et ont été reconnues comme sources d’énergie potentielles. De plus,
les vibrations sont une autre source d’énergie importante et la récupération
d’énergie vibratoire est devenu un secteur de recherche prometteur. Les pre-
miers travaux se sont focalisés sur des générateurs inertiels à comportement
linéaire [WY95]. Une limitation des générateurs inertiels linéaires est leur
e�cacité concentrée sur une bande de fréquences réduite. Des méthodes ont
été étudiées pour contrecarrer cet inconvénient dans [SBK08] and [LW06].

Comme pour les absorbeurs de vibrations, la dynamique non-linéaire
semble o↵rir une alternative prometteuse pour améliorer les performances en
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récupération d’énergie. Une des premières investigations expérimentales d’un
récupérateur d’énergie non-linéaire a été décrit dans [MS09]. Une étude simi-
laire basée sur une conversion piézoélectrique est présentée dans [SMM09].
Un récupérateur piézoélectrique avec des bonnes performances en termes
de énergie et bande de fréquences est présenté dans [YZZ15]. Plusieurs
études ont démontré l’avantage d’un oscillateur de Du�ng monostable pour
élargir la bande de fonctionnement. Le Du�ng bistable a été aussi examiné
dans [SMM10] et [MO10].

1.4 Motivation de ces travaux de thèse et plan du
manuscrit

L’analyse bibliographique a montré que le pompage énergétique a été
l’objet de nombreuses études théoriques et de quelques investigations
expérimentales intéressantes. Cependant, pour bien exploiter ses avantages
potentiels, le Nonlinear Energy Sink en tant qu’absorbeur de vibrations
présente encore des points qu’il faudrait examiner et mieux comprendre. Par
exemple, lorsqu’il s’agit d’atténuer une réponse vibratoire dans un contexte
industriel, la complexité supplémentaire du NES est souvent décourageante.
Bien sûr, l’utilisation d’un absorbeur linéaire classique peut parfois être plus
avantageuse [GDK+16] et en général il dépend du cas spécifique. En tout cas
nous croyons que le potentiel du NES mérite des investigations ultérieures
afin d’aboutir à une connaissance plus approfondie de ce dispositif et de son
fonctionnement.

Avoir à faire avec la dynamique structurelle non-linéaire veut dire sou-
vent que les principes et les concepts pris comme acquis dans la dyna-
mique classique peuvent ne plus être valides, surtout pendant les études
expérimentales, ce qui exige un e↵ort supplémentaire pour comprendre
les comportements nouveaux et inattendus qui peuvent survenir. L’étude
du transfert d’énergie ciblé (TET) pose des défis techniques distincts et
nécessite l’utilisation de concepts, de formulations, de méthodes d’analyse
et de techniques de calcul de di↵érents domaines des mathématiques ap-
pliquées et de l’ingénierie, tels que les systèmes dynamiques, la théorie des
bifurcations, le traitement du signal et la dynamique expérimentale.

Dans le chapitre qui suit, des concepts fondamentaux en dynamique non-
linéaire sont rappelés. Ces concepts seront utilisés dans la suite du manuscrit
de thèse.

Le troisième chapitre est consacré à l’étude du Vibro-Impact NES. Une
étude analytique et expérimentale met en évidence les di↵érents régimes de
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réponse qu’un tel système peut avoir. Les observation expérimentales sont
expliquées par l’analyse théorique et les résultats comparés.

Le quatrième chapitre présente la conception théorique et la réalisation
expérimentale d’un deuxième dispositif de type NES : le Magnetic-Strung
NES. Cette étude a été conduite pendant une période de visite à l’univer-
sité de Duke aux USA et a permis d’ajouter l’aspect lié à la récupération
d’énergie à la recherche sur les absorbeurs non-linéaires.

Le manuscrit termine par une analyse des recherches conduites et une
proposition de perspectives futures.
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Chapitre 2

Concepts fondamentaux en
dynamique non-linéaire

Dans ce chapitre l’exemple classique de l’oscillateur de Du�ng est présenté
pour introduire des concepts fondamentaux en dynamique non-linéaire qui
seront utiles par la suite pour la compréhension des travaux présentés. Dans
cette partie en français on se limite à l’introduction de l’oscillateur de Du�ng
et de la dépendance fréquence-amplitude. Dans le mémoire en anglais on
présente aussi le concept de modes non-linéaires et leurs propriétés.

2.1 Oscillateur de Du�ng

L’équation di↵érentielle Eq.(2.4)

ẍ+ �ẋ+ �x+ ↵x3 = � cos(!t) (2.1)

est connue comme l’équation de l’oscillateur de Du�ng et représente un
exemple classique de système non-linéaire manifestant des phénomènes ty-
piquement non-linéaires.

L’oscillateur de Du�ng est un modèle de système structural qui possède
une force de rappel cubique. Il peut être utilisé pour une approximation
du pendule simple illustré à la Fig.2.1 ; son équation de mouvement est la
suivante :

d2✓

dt2
+

g

L
sin ✓ = 0 (2.2)

11
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Figure 2.1: Pendule simple.

En écrivant sin ✓ = ✓ � ✓

3

6 + O(✓5), on obtient un oscillateur de Du�ng
non-amorti et non-forcé :

d2✓

dt2
+

g

L

✓
✓ � ✓3

6

◆
= 0 (2.3)

2.1.1 Espace des phases

Dans le cas d’un oscillateur de Du�ng non-amorti et non-forcé, son équation
de mouvement devient :

ẍ+ �x+ ↵x3 = 0 (2.4)

On peut reformuler le problème comme un système du premier ordre :

dx

dt
= y,

dy

dt
= ��x� ↵x3 (2.5)

On peut alors décrire le mouvement du système dans le plan x � y,
c’est-à-dire la trajectoire dans l’espace des phases. La courbe intégrale est
alors :

dy

dx
=

dy

dt

dx

dt

=
��x� ↵x3

y
(2.6)

En intégrant l’équation 2.5, cela nous amène au principe de conservation
de l’énergie :

E(t) =
y2

2
+ �

x2

2
+ ↵

x4

4
= constant (2.7)
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Figure 2.2: Espace des phases de l’oscillateur de Du�ng non-amorti.
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Figure 2.3: Orbites de l’oscillateur de Du�ng non-amorti à di↵érents niveau
d’énergie.

Les figures 2.2 et 2.3 montrent l’espace des phases pour l’oscillateur de
Du�ng non-amorti dans le cas de � < 0 et ↵ > 0. On peut voir que deux so-
lutions d’équilibre existent à basse énergie et qu’une seule solution périodique
subsiste à haut niveau.
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2.1.2 La backbone curve

Si on intègre l’équation de Du�ng, on peut voir que la fréquence du mou-
vement périodique dépend de la courbe de l’espace des phases sur laquelle
on se trouve et donc de l’amplitude de l’oscillation. Cet e↵et est typique des
vibrations non-linéaires et est connu comme étant la dépendance fréquence-
amplitude.

Pour le Du�ng, des méthodes analytiques (méthodes de perturbation)
existent pour obtenir la relation fréquence-amplitude suivante appelée Back-
bone curve :

! = 1 + k1✏+O(✏2) = 1 +
3

8
↵A2✏+O(✏2) (2.8)

Où ↵ est la raideur non-linéaire, ✏ est un paramètre utilisé pour le
développement limité et A est l’amplitude de l’oscillation. Un exemple de
réponse forcée pour l’oscillateur de Du�ng est montré en Fig.2.4. On re-
marque que la fréquence propre augmente avec l’amplitude, ce qui dénote
une nature durcissante de la non-linéarité.

µ = Ω

ωn
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Figure 2.4: Réponse forcée de l’oscillateur de Du�ng.



Chapitre 3

Vibro-Impact Nonlinear
Energy Sink

Dans ce chapitre on présente l’étude d’un Vibro-Impact NES couplé à un
oscillateur linéaire à un degré de liberté. Une analyse complète, alliant les as-
pects numérique, analytique et expérimental, a été conduite et est présentée
en détail dans le mémoire en anglais. Ici on se limitera à la description du
système et à une présentation des résultats principaux

3.1 Description du modèle

Le système se compose d’un oscillateur linéaire (OL) forcé que l’on veut
contrôler à l’aide du VI-NES. Le VI-NES est une bille qui est libre de bou-
ger dans un cylindre. Lorsque le système principal oscille, les impacts qui se
produisent entre la bille et les parois du cylindre dissipe de l’énergie vibra-
toire de l’OL.

Un modèle numérique du VI-NES a été développé sous Matlab afin de
prédire les réponses que l’on pourrait observer pendant les expériences. Un
schéma du modèle est illustré à la Fig.3.1.

Hors des deux impacts, les équations de mouvement sont les suivantes :

Mü+ Cu̇+Ku = Kx
e

+ Cẋ
e

mv̈ = 0 (3.1)

8|u� v| < L

Quand un impact se produit, les vitesses deviennent discontinues et les
conditions après l’impact peuvent être calculées par la relation :

15
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Figure 3.1: Schéma du modèle.

u̇(t+
j

)� v̇(t+
j

) = �r(u̇(t�
j

)� v̇(t�
j

)) (3.2)

Mu̇(t+
j

) +mv̇(t+
j

) = Mu̇(t�
j

) +mv̇(t�
j

) (3.3)

3.2 Étude expérimentale

L’étude expérimentale a été conduite avec pour but d’observer le compor-
tement du système et d’explorer les di↵érents types de réponse qui peuvent
se manifester en fonction des conditions d’excitation extérieure.

Figure 3.2: Le prototype (gauche) and sa représentation schématique
(droite).

Le prototype est montré à la Fig.3.2 et ses paramètres de masses a�chés
dans le Tab.3.1.
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M [Kg] m[Kg] ✏ = m/M

3.807 0.032 0.84%

Table 3.1: Paramètres massiques du système principal.

Plusieurs essais ont été e↵ectués pour di↵érents niveaux d’accélération
extérieure et pour un balayage de fréquence autour de la fréquence propre
du système principal.

Ω=0.94 Ω=0.97 Ω=1.04 Ω=1.06 

Figure 3.3: Spectre du deplacement du système principal sans (bleu) et
avec (rouge) l’application du VI-NES. Les régime de réponse CAR et SMR
ont été identifiés.

A la Fig.3.3 on montre le spectre du déplacement du système principal
avec (rouge) et sans (bleu) l’utilisation du VI-NES. On remarque que le VI-
NES accomplit sa fonction d’absorbeur en réduisant le pic de résonance. En
plus deux zones sont identifiées car elles possèdent deux types de réponse
qualitativement di↵érente :

• Réponse à Amplitude Constante (CAR) (Fig.3.4 à gauche)
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• Réponse Fortement Modulée (SMR : Strongly Modulated Response)
(Fig.3.4 à droite)
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Figure 3.4: Réponse à Amplitude Constante (gauche) et Réponse Forte-
ment Modulée (droite).

3.3 Étude analytique

Pour pouvoir expliquer le comportement observé expérimentalement, on a
décidé de traiter le problème analytiquement. Cela a été fait en utilisant
la méthode de perturbation dite Multi-Échelles, qui consiste en diviser le
problème originaire en plusieurs sous-problèmes à des échelles de temps
di↵érentes.

Cela a permis l’identification de la variété invariante du problème (Slow
Invariant Manifold), entité mathématique qui regroupe l’ensemble de toutes
les solutions possibles du problème. Celle-ci est montrée à la Fig.3.5. Les
deux coordonnées A⌦ et ↵ sont issues du développement analytique et
peuvent être interprétées comme liées respectivement aux déplacements du
système principal et du NES.

Il est important de noter qu’il existe une limite inférieure A⌦min

à l’am-
plitude du déplacement du système principal pour qu’il y ait des solutions.
En plus, deux branches de solution existent : une stable et une instable.

Un autre important résultat de l’étude analytique est le calcul des points
fixes du problème. L’intersection des points fixes avec la variété invariante
permet d’établir si le système peut aboutir à une solution stable ou si seules
des solutions instables peuvent être atteintes.

A la Fig.3.6, on montre l’évolution des points fixes sur la variété inva-
riante correspondant au cas expérimental présenté à la Fig.3.3. On peut ob-
server que quand un point fixe stable existe, un régime à amplitude constant
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Figure 3.5: Variété Invariante (Slow Invariant Manifold)

s’établit, alors que lorsque les points fixes sont instables on observe un régime
de réponse modulée.
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(c) ⌦ = 1.04 : SMR
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Figure 3.6: Évolution des points fixes sur la variété invariante.

3.4 Conclusion

Dans ce chapitre on a étudié le comportement dynamique du VI-NES couplé
à un oscillateur linéaire à 1 degré-de-liberté. Une étude expérimentale a per-
mis d’observer les di↵érent régimes de réponse existants et leur dépendance
à l’excitation extérieure. Une réduction satisfaisante du niveau vibratoire
du pic de résonance a été obtenu. L’étude analytique a permis d’expliquer
de façon théorique les observations expérimentales et de valider l’influence
des paramètres de conception du VI-NES sur sa réponse. Cela pourra être
utilisé pour arriver à établir un processus de conception du VI-NES en tant
qu’absorbeur de vibrations.
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Magnetic-Strung Nonlinear
Energy Sink

Dans ce chapitre on présente l’étude d’un nouveau concept d’absorbeur NES
avec récupération d’énergie. Le système est appliqué à un oscillateur linéaire
à 1 ddl forcé harmoniquement. On reporte ici les points principaux de la
conception et des résultats. On renvoie au mémoire en anglais pour une
description complète et détaillée.

4.1 Description du modèle

Une représentation schématique du système est fournie à la Fig.4.1. Les
éléments élastiques entre le système principal et le NES sont des cordes
travaillant transversalement. La force résultante comporte une composante
linéaire et une composante cubique.

Afin de récupérer l’énergie vibratoire, la masse du NES est constituée
d’un aimant qui translate dans une bobine. De cette façon l’énergie vibratoire
du système principal est transférée au NES. Elle est ensuite dissipée en partie
par l’amortissement visqueux et convertie en partie en puissance électrique.
Un schéma représentant le flux énérgétique est a�ché à la Fig.4.2.

Au final on se retrouve avec un système électro-mécanique décrit par les
équations :

21
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Figure 4.1: Schéma du MS-NES.

Figure 4.2: Flux d’énergie du système principal vers le récupérateur
d’énergie.

Mẍ+ Cẋ+Kx+K1(x� z) +K3(x� z)3 + C1(ẋ� ż) = KX
e

+ CẊ
e

mz̈ + C1(ż � ẋ) +K1(z � x) +K3(z � x)3 � �I = 0

Lİ + (R
L

+R
i

)I + �(ż � ẋ) = 0
(4.1)

Où il est important de remarquer que le couplage électro-mécanique est
assuré par le coe�cient �.
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4.2 Modulation de la force de rappel par une force
magnétique

La force de rappel entre le système principal et le NES peut être modulée
grâce à la force magnétique créée par deux aimants supplémentaires et agis-
sant sur la masse (aimant) du NES. Cette opération permet notamment de
contrecarrer la composante linéaire de la force élastique due aux cordes de
façon à avoir une relation purement cubique entre le système principal et le
NES.
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Figure 4.3: Les deux aimants supplémentaires placé aux cotés de la
masse/aimant du NES.
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Figure 4.4: Relation force-déplacement : essais statiques.
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A la Fig.4.4 les résultats issus des tests statiques montrent l’e�cacité de
cette solution.

Outre la configuration cubique, l’ajout d’une force magnétique permet
également d’obtenir une configuration dite bi-stable. Dans cette configura-
tion la force de rappel prend la forme a�chée à la Fig.4.5.
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Figure 4.5: Force non-linéaire entre le système principal et le NES dans le
cas d’une configuration bi-stable.

4.3 Prototype et résultats expérimentaux

Figure 4.6: Le prototype du Magnetic-Strung NES.

Un prototype du MS-NES a été réalisé et il est présenté à la Fig.4.6.
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ẋ
[m

/s
]

-0.1

-0.05

0

0.05

0.1

Figure 4.7: Observation expérimentale de la réponse fortement modulée.
Déplacement x and vitesse ẋ du système principal dans le cas d’une confi-
guration cubique.
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Figure 4.8: Énergies cinétiques instantanées du système principal et du
NES (haut) et puissance électrique instantanée (bas).

La distance des aimants latéraux étant réglable, il a été possible de tester
plusieurs configurations.

Pour une description et une analyse complètes des essais on renvoie au
manuscrit en anglais. A titre d’exemple on reporte ici un cas d’observation
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de réponse modulée pour la configuration cubique. A la Fig.4.7 on peut
observer les mesures de déplacement et de vitesse de la masse principale et
à la Fig.4.8 les énergies cinétiques de la masse principale et du NES ainsi
que la puissance électrique instantanée délivrée.

4.4 Conclusions

Dans ce chapitre il a été présenté une étude théorique et expérimentale d’un
nouveau concept de NES intégrant l’aspect de récupération d’énergie à l’aide
d’une méthode électro-mécanique. Une force magnétique supplémentaire
agissant sur la masse du NES a été introduite afin de moduler la force
non-linéaire entre le système principal et le NES, ce qui a permis de tester
di↵érentes configurations de MS-NES. Les performances du MS-NES ont
été analysées en tant qu’absorbeur d’énergie et en tant que récupérateur
d’énergie.
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Conclusions

Ces travaux de thèse ont permis d’étudier la réduction des vibrations dans les
structures mécaniques à l’aide d’absorbeurs non-linéaires de type Nonlinear
Energy Sink. Le phénomène physique à la base du fonctionnement de ces
dispositifs est appelé pompage énergétique (Targeted Energy Transfer) et il
consiste en un transfert irréversible d’énergie du système principal vers le
NES, où l’énergie est ensuite dissipée. Ce transfert d’énergie peut se produire
sur une vaste gamme de fréquences sans que le NES ne soit nécessairement
accordé sur une fréquence spécifique.

Une étude bibliographique a permis d’identifier les principaux tra-
vaux menés sur le sujet tant d’un point théorique que d’un point de vue
expérimental. Cette thèse a été majoritairement orientée vers une approche
expérimentale en se basant sur les concepts théoriques existant dans la
littérature.

Le premier type d’absorbeur étudié fut le Vibro-Imapact NES. Cet absor-
beur a été appliqué à un oscillateur linéaire à 1 degré de liberté. Ce système
a montré une bonne e�cacité en terme de réduction du pic de résonance
du système principal. Une bonne comparaison entre les résultats théoriques
et les observations expérimentales a été obtenue. L’étude expérimentale a
permis l’identification des régimes de réponse possibles de ce système et
l’analyse analytique a permis d’en obtenir une explication théorique.

Le deuxième type de NES étudié fut le Magnetic-Strung NES. Dans
cette étude l’aspect concernant la récupération d’énergie a été abordé. Le
MS-NES a été conçu de façon qu’il puisse non seulement dissiper de l’énergie
mais aussi la récupérer en tant que puissance électrique. En outre il a été
possible de tester plusieurs configurations du MS-NES grâce à la possibilité
de moduler la force non-linéaire entre le système principal et le NES. Le MS-

27
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NES a été analysé théoriquement et expérimentalement en tant qu’absorbeur
et en tant que récupérateur d’énergie.

Perspectives pour des travaux futurs

Les résultats présentés dans cette thèse ont montré l’intérêt d’utiliser la
dynamique non-linéaire dans le domaine du contrôle des vibrations. Cepen-
dant, plusieurs travaux théoriques et expérimentaux restent encore à être
e↵ectués

Vibro-Impact NES :

• Une étude énergétique devrait être menée afin d’identifier les régimes
les plus favorables en terme de dissipation d’énergie. Le modèle ana-
lytique pourrait être utilisé pour concevoir une version optimisée du
VI-NES.

• Un VI-NES adaptatif pourrait être conçu, pour lequel les paramètres
les plus influents (longueur du tube et coe�cient de restitution) varie-
raient afin d’aboutir aux conditions optimales de fonctionnement.

• L’aspect lié à la récupération d’énergie pourrait être abordé (méthode
piézoélectrique).

• L’utilisation de pièces piézoélectriques pourrait aussi être envisagée
pour rendre le VI-NES adaptatif (variation du coe�cient de restitu-
tion).

Magnetic-Strung NES :

• Une version optimisée du MS-NES devrait être conçue.

• Le couplage entre les système électrique et mécanique devrait être exa-
miné et exploité. Théoriquement il est possible d’ajouter de l’amortis-
sement mécanique fictif grâce aux propriétés électriques.

• L’énergie convertie en puissance électrique pourrait être stockée dans
une batterie.

• L’analyse de la configuration bi-stable pourrait être étudiée davantage.
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