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want to forget the Multimat team with Jean-Philippe Braeunig, Stéphane Delpino, Philippe
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Résumé

Méthodes numériques pour l’hydrodynamique Lagrangienne et
leurs contributions à la simulation de la physique des hautes
densités d’énergie

Ce document présente une partie des travaux effectués au laboratoire CELIA (CEA, CNRS,
Université de Bordeaux) dans le domaine de la physique des hautes densités d’énergie (HDE).
Le groupe de plasma chaud du CELIA est particulièrement impliqué dans la HDE, la fusion par
confinement inertiel (ICF) et l’astrophysique de laboratoire. Les écoulements rencontrés en HDE
sont souvent multi-matériaux et caractérisé par la présence de choc et de grande déformation
du domaine de calcul. Les schémas numériques basés sur le formalisme Lagrangien sont bien
adaptés à la modélisation de ce type d’écoulement car le maillage suit le fluide en mouvement.
Ceci permet d’obtenir des résultats précis autour des chocs, ainsi qu’un suivi naturel des inter-
faces multi-matériaux. Le document est structuré comme suit. Tout d’abord, nous rappelons
les principales caractéristiques de notre schéma Lagrangien centré. la stratégie ALE et Reale
sont présentés en décrivant les différentes phases de notre algorithme ALE multi-matériaux. Le
schéma de diffusion utilisé pour coupler les différents modèles physiques est présenté dans sa
dernière extension le schéma CCLADNS pour les maillages non-conformes et non-orthogonaux
en 2D et 3D. Enfin, le code CHIC est introduit et des études théoriques ainsi que des simulations
d’expériences sont présentés.

Mots clés : Hydrodynamique Lagrangienne, Méthode ALE, Méthode de reconstruction d’interface,
Méthodes Volumes Finis, Maillages Non-Structurés, Thermique Anisotrope, HDE
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Abstract

Numerical methods for Lagrangian and Arbitrary-Lagrangian-
Eulerian Hydrodynamic and their contribution to the simulation
of High-Energy-Density-Physics Problems

This document presents a part of the works done at CELIA Laboratory (CEA, CNRS, Univer-
sité Bordeaux) in the field of High Energy Density Physics (HEDP). The CELIA plasma physics
group is particularly involved in HEDP, Inertial Confinement Fusion (ICF) and Laboratory as-
trophysics. Flows encountered in HEDP are multi-material and characterized by strong shock
waves and large changes in the domain shape due to rarefaction waves. Numerical schemes
based on the Lagrangian formalism are good candidates to model this kind of flows since the
computational grid follows the fluid motion. This provides accurate results around the shocks as
well as a natural tracking of multi-material interfaces. The document is structured as follows.
First, we recall the main features of the compatible cell-centered Lagrangian discretization.
ALE and ReALE strategy are presented by describing the different phases of our multi-material
ALE algorithm. Diffusion scheme used to couple all the physical models is presented with the
last extension of the CCLADNS scheme for non-conformal and non-orthogonal meshes in 2D
and 3D. Finally CHIC code is introduced and some theoretical studies and experiments are
presented.

Keywords : Lagrangian Hydrodynamic, ALE, Interface Reconstruction, Finite Volume Meth-
ods, Unstructured Grids, Anisotropic Heat Transfer, HEDP
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Introduction

After COP211, held in Paris in 2015, the necessity to strongly reduce the emission of green-
house gases requires increased effort if we want to keep open the possibility of limiting the rise in
global mean temperature to 2◦C. On the other hand, according to the BP’s Energy Outlook2,
the world primary energy consumption is projected to grow from 2011 to 2030, adding 36%
to the global consumption by 2030. The crucial question of availability of energy in the next
decades requires several strong issues to be addressed among which the foreseen retirement of
a large part of the power plant fleet and the lack of availability of fossil fuel. The safety issues
in the nuclear industry which reduce the public acceptance need also to be addressed. The
conjunction of these effects will cause a large gap between demand and supply of energy to
be bridged in the 2040-2050 decade. The development of novel energy sources and associated
power plants offers new perspectives for harmonious economic growth worldwide and large
markets for our industries. Among the solutions proposed for carbon free energy production,
fusion of light isotopes of hydrogen is appealing from the points of view of safety, abundance of
primary resource (deuterium and lithium for the on-line production of tritium) and amenability
to large scale, cost-effective, industrial production. Magnetic fusion, where the thermonuclear
plasma is confined by means of magnetic fields in a toroidal geometry, benefits from a wide
international collaboration and is expected to succeed in demonstrating plasma self heating on
the ITER facility, now under construction in Cadarache (France). The other approach is Inertial
Confinement Fusion (ICF) where small amounts of DT fuel are ignited in a vacuum chamber
several times (> 10) per second. Laser beams provide the energy required for compression
and ignition of the target. Up to now, the main scheme chosen for ICF is the indirect drive.
This scheme, which rely on the conversion of laser energy into thermal radiation by the walls
of a high-Z hohlraum, has been mainly developed in defence laboratories both in the United
States and Europe, and the corresponding models, numerical codes, and material data remain
largely classified. The indirect drive approach of Inertial Fusion has motivated the construction
of two large-scale laser facilities: NIF3 , in the U.S., which has been commissioned in 2009,
and LMJ4, under construction in France. The direct drive approach is much more suitable to
energy production, from its relative simplicity and the higher target gains it provides. This
approach is studied in academic institutions in Europe, United States, and Asia. According to
numerical modeling and recent experiments, robust direct drive ignition can be obtained using
one of the advanced schemes recently proposed and now under development: Fast Ignition and
Shock Ignition.
From the facility conception, its construction and up to its scientific exploitation which will last
for tens of years, numerical simulation using dedicated codes is present at each level. Massively
parallel machines are generally built in continuity and interaction with such facilities (the TERA
100 machine and future EXA machine TERA 1000 at CEA being built in association with the

1www.cap-cop21.com
2www.bp.com
3https://lasers.llnl.gov/
4www-lmj.cea.fr
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LMJ as example). These machines are used to run simulation codes solving the most up-to-date
physical models on a huge mass of data on millions of cells or particles in the computational
domain. Such machines are usually some of the most efficient computers on the planet.

In Europe the HiPER5 (High Power Energy Research) project aims at demonstrating the fea-
sibility of Inertial Fusion for Energy (IFE). The long-term goal is the construction of an exper-
imental facility including all of the relevant technology. Intermediate phases will develop and
down select technical solutions on the basis of a cost-risk analysis. This project could take ben-
efit of the recent record yield shot of NIF where the scientific break-even has been achieved [84].
Within this project, the laser plasma physics group from CELIA works on dedicated physical
experiments which require simulation for all the different phase of the experimental campaign.
Before the submission of the proposal to scientific committee some crude simulations usually
using 1D code or simplified 2D model are performed. Then, after acceptation more precise sim-
ulations are performed to help the experimentalist to design their experiment. On big facilities
the number of experiments are usually restricted and simulation codes are the best tool to op-
timize this preparation phase. Finally, after the experimental campaign additional simulations
are usually necessary for the interpretation of the experimental results.

This workflow performed for IFE is the same for other applications in the High Energy Density
Physics (HEDP) domain like material science, Laboratory astrophysics ...

This document aims at presenting a part of the works done in the Arbitrary-Lagrangian-Eulerian
(ALE) code : the CHIC (Code d’Hydrodynamique d’Implosion du CELIA) code which has been
designed to simulate multi-material compressible hydrodynamics in an ICF context. Generally,
ALE code is the computational engine onto which many physics modules are plugged-in. These
are: laser propagation, energy diffusion, radiation transfer, plasma effects, etc. Although these
modulus are important to produce physical relevant simulations, the ALE engine remains the
fundamental brick that needs special care to begin with. The second one is the diffusion scheme
where all the physics is connected. This platform was used for developing and implementing
new ideas in numerical schemes and physical models for the academics.

A generic ALE code for hydrodynamics can be decomposed into three successive phases:

1. Lagrangian phase. For this first phase the numerical scheme computes the evolution in
time and space of materials described in a Lagrangian formalism (Simulation on moving
mesh). As the mesh deforms with the materials, it can be arbitrarily stretched, compressed
and consequently of very bad geometrical quality; non-convex, tangled or high aspect ratio
cells may appear.

2. Mesh regularization or smoothing phase. Given the Lagrangian mesh a regularization
technique provides a new regularized mesh that one chooses to proceed which.

3. Conservative remapping phase. The remapping phase transfers the physical variables from
the Lagrangian mesh onto the regularized grid. This remapping must be conservative in
mass, momentum and total energy and the remapping must be at least as accurate as the
numerical scheme is.

In the Lagrangian phase, a computational cell moves with the flow velocity. This ensures that
there is no mass flux crossing the boundary of the Lagrangian moving cell. Thus, Lagrangian
methods can capture contact discontinuity sharply in multi-material fluid flows. However they
are also known to suffer from a lack of robustness correlated with the mesh motion driven by
the materials. In order to gain some robustness, one generally adds phases 2 and 3. Phase 2
provides a better shaped mesh, it is only a geometrical operation, whereas phase 3 is a pure

5www.hiper-laser.org

2



conservative interpolation operation: The physical data are transferred on this new mesh to pre-
pare next Lagrangian time step. Remark that if the remapping is systematically made onto the
initial mesh the numerical method is by construction an Eulerian one (as Lagrange+Remap).
In other words phases 1+3 provides an Eulerian code. If the regularized phase does generate
neither the initial mesh, nor the Lagrangian one then the overall code is of ALE nature. Finally
implementing these three phases leads to having three codes into one platform: Lagrangian,
Eulerian and ALE. In the following we detail these three phases.

Lagrangian phase.

In the Lagrangian framework, one has to discretize not only the gas dynamics equations but also
the vertex motion in order to move the mesh. Moreover, the numerical fluxes of the physical
conservation laws must be determined in a compatible way with the vertex velocity so that
the Geometric Conservation Law (GCL) is satisfied, namely the rate of change of a Lagrangian
volume has to be computed coherently with the node motion. This critical requirement is
the cornerstone of any Lagrangian multidimensional scheme. The most natural way to solve
this problem employs a staggered discretization in which position, velocity and kinetic energy
are centered at points, while density, pressure and internal energy are within cells. Since the
seminal works of Von Neumann and Richtmyer [160], and Wilkins [163], many developments
have been made in order to improve the accuracy and the robustness of staggered hydrodynamics
[44, 47, 40]. More specifically, the construction of a compatible staggered discretization leads
to a scheme that conserves total energy in a rigorous manner [45, 41].

The use of staggered schemes in ALE formalism generates several problematic situations due
to the staggered placement of variables. That is why the desire to possess a cell-centered La-
grangian scheme was tempting. The first try is due to J. Dukowicz around 1985 [56]. He
developed a Godunov like Lagrangian scheme that however suffered from internal inconsistency
between flux computation and vertex displacement. Another alternative to the staggered dis-
cretization is to derive a Lagrangian scheme based on the Godunov method [70]. In comparison
to staggered discretization, Godunov-type methods exhibit the good property of being naturally
conservative, they do not need artificial viscosity and they allow a straightforward implementa-
tion of conservative remapping methods when they are used in the context of the ALE strategy.
In the Godunov-type method approach, all conserved quantities, including momentum, and
hence cell velocity are cell-centered. The main issue associated with the Godunov-type schemes
is to define a flux discretization that is compatible with the node displacement so that the GCL
is satisfied at the discrete level. Recently, such compatible discretizations have been provided
[113, 114]. These works are based on schemes, in which interface fluxes and nodal velocities are
computed coherently thanks to an approximate Riemann solver located at the nodes. This cell-
centered Lagrangian scheme seems to be one of the best Lagrangian scheme available nowadays
[99].

ALE code: mesh regularization, reconnection and remapping.

The ALE description has been initially introduced in the seminal paper of Hirt [76] to solve
in a certain extent the shortcomings of purely Lagrangian and purely Eulerian descriptions by
combining the best features of both aforementioned approaches. The main feature of the ALE
methodology is to move the computational grid with a prescribed velocity field to improve the
accuracy and the robustness of the simulation. ALE methods have been used for several decades
to face successfully the difficulties inherent to the simulation of multi-material fluid flows with
large distortions [7, 15, 78, 22, 58, 117, 54]. Usually, ALE methods can be implemented in
two manners. The first one, which is termed direct ALE, consists in an unsplit moving mesh
discretization of the gas dynamics equations wherein the grid velocity is typically deduced from
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boundaries motion [127, 107]. In this approach convective terms are solved directly. The second
one, is named indirect ALE. In an indirect ALE approach after an explicit Lagrangian phase
a rezoning phase, in which nodes of the Lagrangian grid are moved to improve the geometric
quality of the grid, and a remapping phase, wherein the physical variables are conservatively
interpolated from the Lagrangian grid onto the new rezoned one [120] are applied. Again , when
the rezoned mesh coincides with the initial mesh, indirect ALE algorithm corresponds to an
Eulerian algorithm wherein advection terms are solved through the use of the remapping phase.

As already noticed the regularization phase consists in improving the geometrical quality of the
Lagrangian mesh by some motion of vertexes. Classical techniques use the regularization effect
of an elliptic operator [89] as in so-called Winslow method. Such techniques do not modify the
mesh connectivity. Moreover an edge in its virtual displacement from its Lagrangian location
to its regularized location can not move away from the convex hull defined by the neighbor
Lagrangian cells. If so then a simple swept region based remapping technique can be employed
[89]. This remapping technique computes the flux crossing an edge during its virtual motion.
This flux is further associated to one of the two neighbor cells sharing this particular edge.
Several mesh regularization techniques modify the mesh connectivity. The regularized mesh is
consequently not anymore related to the Lagrangian one. Usually, in this case the remapping
method must compute the exact intersection between the two arbitrarily different meshes [64, 65]
but recent development allow a swept remapping method [75]. The exact intersection technique
does not assume any special property shared by the meshes. It geometrically intersects one
regularized cell and the Lagrangian mesh. Using such remapping method we can construct an
ALE code with polygonal mesh reconnection, see as instance [103, 35, 75]. Such a code uses the
Voronoi mesh machinery to allow mesh reconnection during the simulation. This, according to
us, opens new perspectives to ALE codes.

Furthermore, in the context of multi-material computations using ALE method, grid and fluid
move separately. The material interface which is naturally described in the Lagrangian frame-
work may have moved and cells containing two or more materials could appear. These cells
contain material interfaces which need special numerical treatment. Originally the Volume Of
Fluid (VOF) method introduced in [77], track materials using volume fractions which is the
ratio between the volume of the material in the cell and the volume of the cell. A number of
numerical methods exist for solving the interface using piecewise linear interface reconstruction
as the Piecewise Linear Interface Calculation (VOF PLIC) [165, 32] and the Moment Of Fluid
(MOF) [5, 61] which is used in this work.

In Europe, very few codes exist to simulate ICF experiments. In particular we can cite the
MULTI code [135] and the DUED code [13]. At CELIA the 2D ALE code named CHIC has
been developed ([33] see also Appendix D) in a relatively short time and it possesses some of
the most recent techniques for Lagrangian schemes, regularization, remapping, interface recon-
struction, diffusion scheme etc... The CELIA group, in few years, has provided to the physics
community a versatile simulation tool dedicated to laser-plasma interaction. The physics sim-
ulated using these up-to-date numerical bricks has been published in many journal articles
[11, 74, 137, 126, 34] and created several collaborations with the scientific ALE community
[103]. A version of the cell-centered code with mesh reconnection has been also realized in
[103, 35, 75]. The diffusion scheme which is used in the CHIC code is also a cell-centered
diffusion scheme [36, 116, 37] which enables a natural link to the cell-centered Lagrangian hy-
drodynamics scheme. Let us mention that such cell-centered Lagrangian schemes and associated
ALE codes are not yet implemented in industrial codes. Nevertheless most of groups and re-
search entities, especially in Europe and in the US are nowadays interested in this new field of
cell centered Lagrangian scheme [16, 142].
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The document is structured as follows. First, we recall the main features of the compatible cell-
centered Lagrangian discretization in Chapter 1. ALE and ReALE strategy are presented in
Chapter 2 by describing the different phases of our multi-material ALE algorithm. In Chapter 3
diffusion scheme used to couple all the physical models is presented with the last extension of the
CCLADNS scheme for non-conformal and non-orthogonal meshes in 2D and 3D. Chapter 4 is
devoted to the CHIC code where some theoretical studies and experiments are presented. Each
chapter has is own Section for numerical results which are used to demonstrate the accuracy
and the robustness of the methodology presented. Finally concluding remarks and perspectives
about future works are given.
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Chapter 1

A multi-dimensional cell-centered
finite volume scheme for solving
Lagrangian hydrodynamic on
unstructured grids

The implosion of an ICF target generates very complex physical and hydrodynamical problems,
see e.g. [97] and [140]. This is an unsteady, multi-material flow, where very strong shock waves
occurring inside a geometry that is characterized by very large aspect ratio. Because of this
thermodynamical and geometrical constraints, it is generally accepted that the simulation of
these phenomena consists in solving numerically the equation of fluid dynamics in Lagrangian
coordinates. The Lagrangian formalism uses a mesh that moves with the flow, but the partial
derivative operators are written in Eulerian coordinates. This form of the equation is well suited
to this type of problems because the problem of numerical diffusion linked to the transport
operator is elegantly avoided. This is of fundamental importance for interface simulation.
Our aim is to propose a Lagrangian cell-centered scheme for multi-dimensional gas dynamics
equations. Before describing our method, let us briefly give an historical overview on the
Lagrangian schemes.
Lagrangian schemes are characterized by a mesh that follows the fluid flow. By this mean,
these methods deal with interfaces in a natural manner. The main numerical difficulty lies in
the node motion discretization, especially for multi-dimensional situations. The most natural
way to overcome this difficulty is to use a staggered discretization, where the momentum is
defined at the nodes and the other variables (density, pressure and specific internal energy) are
cell-centered. This type of scheme was first introduced by Von Neumann and Richtmyer in [160]
for one-dimensional flows. The bidimensional extension was proposed by Wilkins in [163]. It
is based on an internal energy formulation. The entropy production inherent to shock waves is
ensured by an artificial viscosity. In its initial version, this scheme was not conservative and it
admitted numerical spurious modes. However, in spite of these drawbacks, this scheme has been
widely used in the domain of multi-material flow simulations during last forty years. Moreover,
since a decade, many improvements have been done in order to solve the previous problems. In
their paper [44], Caramana and Shashkov show that with an appropriate discretization of the
subzonal forces resulting from subzonal pressures, hourglass motion and spurious vorticity can
be eliminated. By using the method of support operators proposed in [47], they constructed a
staggered scheme which ensures the conservation of total energy. Moreover, the discretization
of artificial viscosity has been considerably improved. First, by introducing formulations for
multi-dimensional shock wave computations in [47] and then by using a discretization based
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on a mimetic finite difference scheme in [40]. With all these improvements, the staggered
Lagrangian scheme is an accurate and robust method, which can produce impressive results,
even on unstructured polygonal grids, see for instance [105].

An alternative to the staggered discretization is to use a conservative cell-centered discretization.
This method for Lagrangian gas dynamics in one dimension, has been introduced by Godunov,
see [70] and [139]. The multi-dimensional extension of this method has been performed during
the eighties, [22] and [58]. This multi-dimensional scheme is a cell-centered finite volume scheme
on moving structured or unstructured meshes. It is constructed by integrating directly the
system of conservation laws on each moving cell. The primary variables, density, momentum
and total energy are defined in the cells. The flux across the boundary of the cell is computed by
solving exactly or approximately a one-dimensional Riemann problem in the direction normal
to the boundary. The main problem with this type of method lies in the fact that the node
velocity needed to move the mesh cannot be directly calculated. In [22], the node velocity is
computed via a special least squares procedure. It consists in minimizing the error between
the normal velocity coming from the Riemann solver and the normal projection of the vertex
velocity. It turns out that it leads to an artificial grid motion, which requires a very expensive
treatment [59]. Moreover, with this approach the flux calculation is not consistent with the
node motion.

In the cell-centered methods that have been proposed in [83] and [4] the gradient and divergence
operators are expressed in the Lagrangian coordinates. This type of discretization needs to
compute the Jacobian matrix associated to the map between Lagrangian and Eulerian spaces.
However, these methods are purely Lagrangian and cannot be interpreted as moving mesh
methods. This drawback has motivated an other approach proposed by Després and Mazeran.
In [53], they made a theoretical analysis of the Lagrangian gas dynamics equations written
in a fully Lagrangian form and they derived a new conservative and entropy consistent two-
dimensional Lagrangian scheme of the finite volume type. It is a moving grid scheme based
on a nodal solver. The node velocity is computed in a coherent manner with the face fluxes.
The numerical results shown in [53] are quite impressive, in particular, those related to the
difficult Saltzmann’s test case. However, it appears that in the case of one-dimensional flows,
this scheme leads a to nodal velocity, which depends on the cell aspect ratio. This drawback
has motivated our study to develop a new cell-centered scheme that retains the good feature of
Després-Mazeran scheme but resolves the aspect ratio problem using the EUCCLHYD (Explicit
Unstructured Cell-Centered Lagrangian HYDrodynamics) scheme developed by Maire, Abgrall,
Breil and Ovadia [113, 114, 110]. This scheme has been extended to cylindrical geometry
[109, 27] and for three dimensional geometry in [118, 66].

The spatial second-order extension is obtained by a piecewise linear monotonic reconstruction
of the pressure and velocity, given by their mean values over mesh cells. This reconstruction
utilizes a least-squares procedure, see [111, 66, 114]. We define slope limiters in such a way
that the values of the linear function at the cell vertices are within the bounds defined by the
maximum and the minimum of the mean values over the set consisting of cell c and its nearest
neighbors. Finally, instead of using the mean values of the pressure and the velocity in our
nodal solver, we use their nodal extrapolated values deduced from the linear reconstruction.
The time discretization is explicit and is based on a classical two-step Runge-Kutta procedure.

Here, we first present in Section 1.1 the Lagrangian scheme based on the Godunov solver in 1D.
Then, the scheme in 2D is briefly introduced in Section 1.2. We derive space approximations
based on face and node fluxes. The cylindrical extension from [27] is presented in Section 1.3.
This extension is a modified version of the area weighted finite volume scheme of [109] and
can recover the 2D scheme of Section 1.2 for planar geometry. To build this scheme, an area-
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weighted formulation of the Lagrangian system of equations is proposed. Then, this system
of equations is discretized using a cell-centered finite volume (FV) scheme. Contrary to [109]
in which fluxes are directly deduced from the GCL constraint, here a simpler formulation that
gives similar results is retained. These two main choices lead to a robust first-order scheme
conservative for the total energy that has the great advantage to preserve spherical symmetry
for one-dimensional flow on uniform angular polar grids. In Section 1.4 the 3D scheme is
presented and is shown to be consistent with the Geometric Conservation Law (GCL). Second
order in space using piecewise linear monotonic reconstruction and time through a Runge-Kutta
procedure is introduced in Section 1.5. Finally, we validate our schemes with several test cases
in Section 1.6. They are representative test cases for compressible fluid flows and demonstrate
the robustness and the accuracy of the different Lagrangian schemes.

1.1 Lagrangian scheme in 1D

In Lagrangian hydrodynamic methods, a computational cell moves with the flow velocity its
mass being time-invariant. Thus, Lagrangian methods can capture contact discontinuity sharply
in multi-material fluid flows. Here the Lagrangian scheme is based on a cell-centered discretiza-
tion of Lagrangian hydrodynamics equations. This scheme is written in total energy form. Here
is the gas dynamics equation written in 1D,

ρdtτ − ∂xu = 0,
ρdtu+ ∂xp = 0,
ρdte+ ∂xpu = 0,

(1.1)

where ρ, u, p and e are respectively the density, velocity, pressure and the total energy. τ = 1/ρ
is the specific volume. From total energy we can get internal energy from ε = e− 1

2u
2. As the

mesh is moving we have to add the local kinetic equation : dtx = u.

1.1.1 Riemann solver

t

x

pL,uL

−aL

p∗, u∗

aR

pR, uR

Figure 1.1: Structure of the Riemann problem for the Godunov solver.

In order to find an approximation of the flux of (1.1) we use the Godunov Riemann solver (see
Fig. 1.1). The Riemann invariants lead to the following system:{

zl(u
∗ − ul) + p∗ − pl = 0,

zr(u
∗ − ur)− p∗ + pr = 0,

(1.2)
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where z = ρa is the acoustic impedance and a the isentropic sound speed. Finally (u∗, p∗) are
such that 

u∗ =
pl − pr + zrur + zlul

zr + zl
,

p∗ =
zrpl + zlpr + zlzr(ul − ur)

zr + zl
.

(1.3)

1.1.2 First order numerical scheme

The problem is solved on the interval [0;L] which is discretized in N elements C1, . . . , CN .
Furthermore, we can define the jth cell center as xj = 1

2(xj+ 1
2

+ xj− 1
2
).

We perform first the integration in space on ∆xj = [xj−1/2, xj+1/2] :

ρ
d

dt

∫ x
j+ 1

2

x
j− 1

2

τ(x, t) dx−
[
u(xj+ 1

2
, t)− u(xj− 1

2
, t)
]

= 0,

ρ
d

dt

∫ x
j+ 1

2

x
j− 1

2

u(x, t) dx+
[
p(xj+ 1

2
, t)− p(xj− 1

2
, t)
]

= 0,

ρ
d

dt

∫ x
j+ 1

2

x
j− 1

2

e(x, t) dx+
[
pu(xj+ 1

2
, t)− pu(xj− 1

2
, t)
]

= 0.

(1.4)

Let be ϕj =
1

∆xj

∫ x
j+ 1

2

x
j− 1

2

ϕ(x, t) dx, now we integrate in time :



ρ∆xj

∫ tn+1

tn

dτj
dt

dt−
∫ tn+1

tn

[
u(xj+ 1

2
, t)− u(xj− 1

2
, t)
]

dt = 0,

ρ∆xj

∫ tn+1

tn

duj
dt

dt+

∫ tn+1

tn

[
p(xj+ 1

2
, t)− p(xj− 1

2
, t)
]

dt = 0,

ρ∆xj

∫ tn+1

tn

dej
dt

dt+

∫ tn+1

tn

[
pu(xj+ 1

2
, t)− pu(xj− 1

2
, t)
]

dt = 0.

(1.5)

Now with ϕn = ϕ(tn) and ϕ∗
j+ 1

2

=
1

∆t

∫ tn+1

tn

ϕ(xj+ 1
2
, t) dt, the system becomes :


mj(τ

n+1
j − τnj )−∆t(u∗

j+ 1
2

− u∗
j− 1

2

) = 0,

mj(u
n+1
j − unj ) + ∆t(p∗

j+ 1
2

− p∗
j− 1

2

) = 0,

mj(e
n+1
j − enj ) + ∆t(p∗

j+ 1
2

u∗
j+ 1

2

− p∗
j− 1

2

u∗
j− 1

2

) = 0,

(1.6)

with mj = ρj∆xj , (pu)∗ = p∗u∗ and where (p∗, u∗) are the solution of the Riemann solver (1.3).

1.1.3 Discrete form for entropy

In this section, we show that the scheme (1.6) is entropic. Here, we consider a macroscopic
expression of the entropy (see [69]). In this case, the second law of thermodynamics writes

T
ds

dt
=
dε

dt
+ p

dτ

dt
.

Thanks to (1.6) we can compute a discrete form for internal energy using the difference between
the total energy and the kinetic energy.
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Proposition 1: The numerical scheme defined by (1.6) is entropic. More precisely, it satisfies
the following inequality

mjTj
dsj
dt

= ρjcj

(
u∗
j+ 1

2

− uj
)2

+ ρj+1cj+1

(
u∗
j− 1

2

− uj
)2
≥ 0. (1.7)

Proof.

mj
dεj
dt

= mj

d
(
ej −

1

2
u2
j

)
dt

= p∗
j− 1

2

u∗
j− 1

2

− p∗
j+ 1

2

u∗
j+ 1

2

− p∗
j− 1

2

uj + p∗
j+ 1

2

uj .

Therefore we obtain for the internal energy

mj(ε
n+1
j − εnj ) + ∆t

(
p∗
j+ 1

2

(u∗
j+ 1

2

− uj)− p∗j− 1
2

(u∗
j− 1

2

− uj)
)

= 0.

We obtain the entropy variation

mjTj
dsj
dt

= mj

(dεj
dt

+ pj
dτj
dt

)
= pj(u

∗
j+ 1

2

− u∗
j− 1

2

) + p∗
j+ 1

2

(uj − u∗j+ 1
2

) + p∗
j− 1

2

(u∗
j− 1

2

− uj)

which is equivalent to

mjTj
dsj
dt

= pj(u
∗
j+ 1

2

− uj + uj − u∗j− 1
2

) + p∗
j+ 1

2

(uj − u∗j+ 1
2

) + p∗
j− 1

2

(u∗
j− 1

2

− uj),

So

mjTj
dsj
dt

= (pj − p∗j+ 1
2

)(u∗
j+ 1

2

− u∗j ) + (p∗
j− 1

2

− pj)(u∗j− 1
2

− uj).
From relation (1.2), it comes that

ρjcj(u
∗
j+ 1

2

− uj) + p∗
j+ 1

2

− pj = 0.

Finally, Proposition 1 is shown.

1.2 Lagrangian scheme in 2D

Let us introduce the notation employed for the 2D scheme, which are similar to those employed
in [110, 111]. Considering a set {Ωc}c∈N of non-overlapping polygonal cells that approximates
the volume V (t), each cell noted Ωc is assigned a single index c. Each vertex of the cell c is
labeled with the index p and localized thanks to its coordinates Xp = (Xp, Yp)

t. We introduce
P(c) the list of the vertices belonging to the cell Ωc and C(p) the list of the cells sharing the
vertex p. These two sets are counter-clock-wise ordered. We introduce p− and p+ which denote
the previous and the next nodes with respect to p in P(c), L−pc and L+

pc are the half length of
the edges [pp−] and [pp+], N−pc and N+

pc are the unit outward normals to those edges. Finally,
LpcNpc is the corner normal which is given by LpcNpc = L−pcN

−
pc+L

+
pcN

+
pc. All these geometrical

quantities are displayed in Fig. 1.2.
We present here the Explicit Unstructured Cell-Centered Lagrangian HYDrodynamics (EUC-
CLHYD) scheme [114, 113] based on a node-centered approximate Riemann solver. Let us recall
briefly the main features of the first-order scheme. The gas dynamics equations written under
integral form reads:

m
d

dt

〈
1

ρ

〉
−
∫
L

N ·UdL = 0, (1.8)

m
d

dt
〈U〉+

∫
L
PNdL = 0, (1.9)

m
d

dt
〈E〉+

∫
L
PN ·UdL = 0, (1.10)
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+
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−
pc

Figure 1.2: Notations for the cell-centered scheme.

where m =
∫
V ρdV represents the mass of the volume V .

d

dt
is the material derivative and

ρ,U, P, E are respectively the density, velocity, pressure and total energy. Each physical variable
per unit of mass (E,U) is noted as φ, and has its mass averaged value defined by 〈φ〉 =
1
m

∫
V ρφdV .

The first-order spatial approximation of (1.8)-(1.10) is obtained considering local integrals on
each cell Ωc. Then, we have

mc
d

dt
Uc +

∑
p∈P(c)

Fpc = 0, (1.11)

mc
d

dt
Ec +

∑
p∈P(c)

Fpc ·Up = 0. (1.12)

In addition, the mesh is moved through the local kinematic equation given at each node by

dXp

dt
= Up for t > 0 and Xp(0) = X0

p, (1.13)

with Up and X0
p respectively the velocity and the position of a node p at initial time. In the

previous equations (1.11)-(1.12), Fpc is the numerical flux at each node p of each cell c defined
by

Fpc = LpcPcNpc − Mpc(Up −Uc), (1.14)

with Up the velocity at the point p and Pc the mean value of the pressure in the cell c. The
2× 2 matrices Mpc and Mp are defined as

Mpc = Zc
(
L−pcN

−
pc ⊗N−pc + L+

pcN
+
pc ⊗N+

pc

)
, and Mp =

∑
c∈C(p)

Mpc. (1.15)

Here, Zc denotes the “swept mass flux” associated to the isentropic sound speed ac that is

Zc = ρcac. (1.16)
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In fact, Zc corresponds to the acoustic impedance. As it has been demonstrated in [111] the
total energy and momentum conservation is equivalent to∑

c∈C(p)

Fpc = 0. (1.17)

Finally using (1.14), the nodal velocity Up is deduced from (1.17) by solving the linear system

MpUp =
∑
c∈C(p)

(LpcPcNpc + MpcUc). (1.18)

In [110], the numerical fluxes used in the discretization of (1.8) and (1.10) are chosen for
satisfying the local geometric conservation law (GCL) constraint (1.32). Since (1.32) is explicitly
solved, there is no need to solve (1.8). Thus, each cell volume Vc is directly deduced from (1.32)
using the conservation of the local GCL constraint.

1.3 Lagrangian scheme in axisymmetric geometry

In this part, an extension of the cell-centered Lagrangian scheme EUCCLHYD [110, 113] is
presented for the numerical simulation of compressible flows in pseudo-Cartesian geometries for
unstructured meshes as in [109]. This choice has the great advantage to treat both axisymmetric
and Cartesian geometries [27]. In this section, a simpler formulation of the scheme introduced
in [109] for first-order approximation is proposed. To this end, an area weighted formulation of
classical Lagrangian equations is first introduced. Then these equations are discretized with a
node-centered approximate Riemann solver.

1.3.1 Governing equations

During the Lagrangian phase, the rates of change of volume, mass, momentum and total energy
are computed assuming that discretized volumes move following the flow. Thus, each arbitrary
volume V (t) depending on the time t > 0 moves satisfying the following system of equations

d

dt

∫
V
ρdV = 0, (1.19)

d

dt

∫
V
dV −

∫
V
∇ ·UdV = 0, (1.20)

d

dt

∫
V
ρUdV +

∫
V
∇PdV = 0, (1.21)

d

dt

∫
V
ρEdV +

∫
V
∇ · (PU)dV = 0, (1.22)

where
d

dt
is the Lagrangian derivative and ρ,U, P, E are respectively the density, velocity,

pressure and total energy. In addition, this system is closed thanks to an equation of state
(EOS) as

P = P (ρ, ε), (1.23)

with the internal energy ε defined as ε = E− |U|2/2. At last, we have local kinematic equation

dX

dt
= U, X(0) = X0, (1.24)
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with X the location of a point of the control volume surface S(t), at time t > 0 and X0 its ini-
tial value. This equation is equivalent to (1.20) also known as geometric conservation law (GCL).

1.3.2 Area-weighted formulation

eY

eX0

Y

X

A(t)

L(t)

R(Y )

N V (t) =

∫
A(t)
RdA

S(t) =

∫
L(t)
RdL

Figure 1.3: Notations related to the pseudo-cartesian grid.

For defining the differential operators used in the system of Lagrangian equation (1.19)-(1.22)
a pseudo-Cartesian reference frame {0, X, Y } for the orthonormal basis (eX , eY ) is used (see
Fig. 1.3). Thus each point is localized by means of its positions X and R(Y ) = 1−α+αY the
pseudo-radius. When α = 0, the Lagrangian equations for Cartesian geometry are recovered,
otherwise for α = 1 this corresponds to axisymmetric equations. In this way, axisymmetric ge-
ometry is obtained from Cartesian one through a rotational symmetry about the X-axis. This
implies that the volume V (t) is generated by the rotation of the area A(t) about the X-axis. In
consequence, the element volume dV writes as dV = RdA with dA = dXdY the element area
in the pseudo-Cartesian frame. In the same manner, the control surface S(t) delimiting V (t)
is obtained through the rotation of L(t) the boundary of A(t) and the surface element is given
by dS = RdL. Note that we have omitted the 2π factor in the evaluation of the element volume.

In a such framework, the velocity divergence and the pressure gradient read as follows

∇ ·U =
1

R

[
∂(Ru)

∂X
+
∂(Rv)

∂Y

]
, where Ut = (u, v) (1.25)

and

∇P =

(
∂P

∂X
eX +

∂P

∂Y
eY

)
. (1.26)

Using the previous definitions and after some calculations using the Green’s formula, it is
possible to rewrite (1.19)-(1.22) at least in two different ways. The first one, obtained without
any approximation is the control volume formulation. When discretized this formulation leads
to a conservative scheme for both equations of energy and momentum, and satisfies the local
semi-discrete entropy inequality. However, as shown in [109] it does not preserve symmetries.
Consequently, an area-weighted formulation is adopted here leading to a conservative scheme
for energy equation that respect spherical geometries. This formulation is deduced from the
control volume one assuming that momentum equation (1.21) is written in Cartesian geometry.
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Like this, the area-weighted formulation for the Lagrangian equations reads

m
d

dt

〈
1

ρ

〉
−
∫
L

N · RUdL = 0, (1.27)

m
d

dt
〈U〉+R

∫
L
PNdL = 0, (1.28)

m
d

dt
〈E〉+

∫
L
PN · RUdL = 0, (1.29)

where m =
∫
V ρdV represents the mass of the volume V . Each physical variable per unit of

mass (E,U) is noted as φ, and has its mass density mean value defined by 〈φ〉 = 1
m

∫
V ρφdV .

The average R corresponds to ratio R = V
A . In such case, as m = ρV , the momentum equation

is solved in Cartesian geometry. For Cartesian case V = A, we recover R = 1. Further details
on the derivation of this system are available in [109].

1.3.3 Numerical scheme

Thereafter, we present briefly the first order cell-centered Lagrangian scheme. To this goal,
similar notations as [64, 109, 111] are employed in the sequel. Let us consider a set {Ωc}c∈N

of non-overlapping polygonal cells that approximates A(t). Each cell noted Ωc is assigned a
single index c. Each vertex of the cell c is labeled with the index p and is localized thanks to
its coordinates Xp = (Xp, Yp)

t in the pseudo-Cartesian frame. In addition, we introduce P(c)
the list of the vertices belonging to the cell Ωc and C(p) the list of the cells sharing the vertex
p. These two sets are counterclockwise ordered. Let us introduce p− and p+ the previous and
the next nodes with respect to p in P(c). We denote by L−pc, L

+
pc the half length of the edges

[pp−], [pp+]. Similar notations are used for the outward normals N+
pc and N−pc. Finally, the

corner normal LpcNpc is given by LpcNpc = L+
pcN

+
pc + L−pcN

−
pc. All these notations have been

displayed in Fig. 1.4.

eY

eX0

Y

X

Ωc•

•

•

• p

p+

p−
××
N+
pc

N−pc

Npc

L+
pcL−pc

LpcNpc = L+
pcN

+
pc + L−pcN

−
pc

Rc = VC/AC

Rp = Yp

Rp

Figure 1.4: Notations for the cell-centered scheme.

The first order spatial approximation of (1.27)-(1.29) is obtained considering local integrals on
each cell Ωc rotated about the X-axis. The mass mc of the cell Ωc is mc =

∫
Ωc
ρdV and each
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flow variable φ (as total energy, velocity) is averaged over each cell through the formula

φc =
1

mc

∫
Ωc

ρφdV,

named cell-centered value. Then, we have

mc
d

dt
Uc +Rc

∑
p∈P(c)

Fpc = 0, (1.30)

mc
d

dt
Ec +

∑
p∈P(c)

Fpc · RpUp = 0. (1.31)

In addition, the mesh is moved through the local kinematic equation given at each node by

dXp

dt
= Up for t > 0 and Xp(0) = X0

p, (1.32)

with Up and X0
p respectively the velocity and the position of a node p at initial time. In the

previous equations, Fpc is the numerical flux at each node p of each cell c defined by

Fpc = LpcPcNpc − Mpc(Up −Uc), (1.33)

with Up the velocity at the point p and Pc the mean value of the pressure in the cell c. The
2× 2 matrix Mpc is defined as

Mpc = Zc
(
L−pcN

−
pc ⊗N−pc + L+

pcN
+
pc ⊗N+

pc

)
. (1.34)

Where, we introduce the “swept mass flux” [57] associated to the isentropic sound speed ac that
is

Zc = ρcac. (1.35)

This is nothing but the acoustic impedance. As it has been demonstrated in [111] the total
energy and momentum conservation is equivalent to∑

c∈C(p)

Fpc = 0. (1.36)

Finally using (1.33), the nodal velocity Up is deduced from (1.36) by solving the linear system

MpUp =
∑
c∈C(p)

(LpcPcNpc + MpcUc), (1.37)

where
Mp =

∑
c∈C(p)

Mpc.

In [109], the numerical fluxes used in the discretization of (1.27) and (1.29) are chosen for
satisfying the local GCL constraint (1.32). Here, we rather adopt a simpler approach. Since
(1.32) is explicitly solved for moving the mesh in time, there is no need to solve (1.27). Thus,
each cell volume Vc is directly deduced from (1.32). Thereby, it is possible to choose for the
numerical flux in (1.29) a simple form as in (1.31) with Rp = 1 − α + αYp. Concerning the

momentum equation, the mean value of Rc in cell c is equal to the discrete ratio Rc =
Vc
Ac

.

Let us note that this new formulation of the area-weighted discretization for α = 0 recover
exactly the same as the one developed in Section 1.2 for two-dimensional Cartesian geometry.
However, the present spatial discretization does not satisfy rigorously the GCL compatibility
requirement for the numerical fluxes as in [109]. Nevertheless, this area-weighted discretization
satisfies rigorously the GCL compatibility requirement for one-dimensional spherical flows on
equiangular polar grids [27].
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1.4 Lagrangian scheme in 3D

The 3D extension of Finite Volume Lagrangian schemes were recently proposed in [118, 48,
104, 46, 162, 29] leading to two main difficulties: the GCL compatibility and the limiting of a
reconstructed field in the 3D space.
The GCL compatibility is crucial and imposes the cell volume computed geometrically to coin-
cide with the volume evaluated by the discretization of the volume conservation equation. The
difficulty comes from the polyhedral cell and its non-planar faces. The two main solutions are
to parametrize the cell [48], which means that a mapping is defined between the cell and a refer-
ence element, or to decompose the cell into tetrahedrons [118, 38]. However, the decomposition
of a polyhedral cell is not unique in 3D and more complex than in the 2D framework.
We propose here, a systematic and symmetric decomposition of polyhedral cells. It relies on the
decomposition of a non planar face into planar triangular faces by adding a supplementary point
on the face which is the barycenter of the face vertices. The kinematics of this supplementary
point is solved by prescribing its velocity as being the barycenter of the vertices velocity. This
amounts to assume a linear representation of the velocity field over the faces with respect to the
space variable. Moreover, this decomposition enables to define a discrete divergence operator
leading to the respect of the GCL.

The spatial domain ω(t) is paved with a set of non-overlapping polyhedrons denoted ωc such
that ω(t) =

⋃
c ωc. A polyhedron is a volume delimited by polygonal faces. These faces can be

non-planar in the 3D space and a special treatment is required in order to define their outward
normal and area. A first method is to parametrize the cell, which means that a mapping is
defined between the cell and a reference element. In [48] for example, an isoparametric trans-
formation is adopted for representing the hexahedrons. The problem of the parametrization is
that the reference element is restricted to be a hexahedron or a tetrahedron. A second method
to handle polyhedral cells is to split them into tetrahedrons by splitting the cell faces into tri-
angles [38, 118]. In [118] for example, the quadrangular faces of a hexahedron are split by using
one of their diagonals. This is easy to implement but introduces a loss of symmetry due to the
choice of the diagonal. The splitting introduced by Burton [38] adapts to any polyhedral cell
and preserves symmetries. However, it is computationally expensive since it needs to determine
the faces barycenter as well as the edges midpoints. In this work, we propose to split the cells
by adding only one point p∗f for each of its faces as shown in Fig. 1.5. This splitting is midway
between [38] and [118], it works for any polyhedral cell and preserves symmetry. This splitting
enables to define unique area Str and outward normal ntr for the triangular partition tr. More-
over, using this geometric splitting the solution is asked to respect the GCL.

The following topological sets are defined :

- T (c) is the set of triangles tr on the cell c,

- T (p) is the set of triangles tr sharing the point p,

- T (f) is the set of triangles tr partitioning the face f ,

- Tf (p) is the set of triangles tr of face f sharing point p,

- Pb(tr) is the set of points p constituting the triangle tr, including the face barycenter pb,

- P(f) is the set of points p constituting the face f , without the face barycenter pb,

- P(tr) is the set of points p constituting the triangle tr, without the face barycenter pb,
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•
p3

•
p2

•pb

Figure 1.5: Geometric splitting of a quadrangular face f based on the barycenter pb and creating
the triangles tr.

and the cell boundary is discretized as follows

Σc =
⋃

tr∈T (c)

tr. (1.38)

1.4.1 GCL discretization

Starting now from the GCL written for a cell Ωc of boundary Σc the GCL writes

d

dt

∫
Ωc

dω −
∫

Σc

U · ndσ = 0. (1.39)

The left-hand side integral is the cell volume Vc and Σc is discretized following (1.38), thus the
previous equation becomes

dVc
dt
−

∑
tr∈T (c)

(∫
tr

U dσ

)
· ntr = 0, (1.40)

where ntr is constant over the triangle tr. Then considering a linear velocity field on each
triangle tr, the mean velocity U∗tr on the triangle is defined such that

U∗tr =
1

Str

∫
tr

U dσ =
1

Str

1

3

∑
p∈Pb(tr)

Up

 . (1.41)

Finally the GCL writes

dVc
dt
−

∑
tr∈T (c)

Strntr ·

1

3

∑
p∈Pb(tr)

Up

 = 0. (1.42)

Denoting by p, p+ and p++ the three points of the triangle tr, such that the triangle tr has the
same orientation than the face f it is related to as shown in Fig. 1.6. This supplementary node
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Figure 1.6: Face splitting for the simple case of an hexahedral cell with square faces (left).
Orientation of the triangle tr delimited by the nodes p, p+ and p++ (right).

denomination is introduced in order to highlight cyclic simplifications but one has to keep in
mind that one of these node is p∗f . As tr is a triangle, the following relation can be written

Strntr =
1

2

∑
p∈Pb(tr)

(
X+
p ×X++

p

)
. (1.43)

In this relation, Xp denotes the coordinates of node p. It enables to write the GCL as

dVc
dt

=
1

6

∑
tr∈T (c)

 ∑
p∈Pb(tr)

Up

 ·
 ∑
p∈Pb(tr)

(
X+
p ×X++

p

) ,
=

1

6

∑
tr∈T (c)

 ∑
p∈Pb(tr)

Up ·
(
X+
p ×X++

p

)
+

∑
p∈Pb(tr)

Up ·
(
Xp ×

(
X+
p −X++

p

)) .
(1.44)

1.4.2 Comparison between geometrical volume variation and GCL

Using the previous face splitting, a polyhedral cell can be decomposed into tetrahedrons. Let
Ttr be the tetrahedron such that its basis is the triangle tr and its remaining vertex is the space
origin (refer to Fig. 1.7). The cell volume vc is then computed as

vc =
∑

tr∈T (c)

vTtr , (1.45)

where vTtr is the signed volume of the tetrahedron Ttr . Using O the space origin, all the tetrahe-
drons can be represented by Ttr = {O, p, p+, p++}. Moreover, this denomination is chosen such
that the triangle tr has the same orientation than the face f it is related to as shown in Fig. 1.7.

The signed volume of the tetrahedron VTtr is such as

VTtr =
1

6
Xp ·

(
X+
p ×X++

p

)
. (1.46)
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t1r

Tt1rt2r

Tt2r ×
O

Figure 1.7: Splitting of the cell into tetrahedrons Ttr . The basis of Tt1r
in blue (respectively

Tt2r
in red) is the triangle t1r (respectively t2r) and its remaining vertex is the space origin. Tt1r

has a negative volume and Tt2r
has a positive one.

Time derivating this tetrahedron volume gives

dVTtr

dt
=

∑
p∈Pb(tr)

dXp

dt
· ∇XpVtr =

1

6

∑
p∈Pb(tr)

Up ·
(
X+
p ×X++

p

)
, (1.47)

and summing this result for each tetrahedron composing the cell c leads to the geometric
formulation of the volume variation relation

dVc
dt

=
1

6

∑
Ttr∈T (c)

∑
p∈Pb(tr)

Up ·
(
X+
p ×X++

p

)
. (1.48)

This last relation is the semi-discrete form of the time rate of change of the cell volume. The
term between brackets is similar to the corner area vector related to node p defined by Després
et al. [48].

The equality between (1.44) and (1.48) is respected provided that∑
tr∈T (c)

∑
p∈Pb(tr)

Up ·
(
Xp ×

(
X+
p −X++

p

))
= 0. (1.49)

Since only the numbering p+, p++ depends on the triangle tr one can permute the two sums

∑
p∈Pb(c)

Up ·

Xp ×
∑

tr∈T (p)

(
X+
p −X++

p

) = 0, (1.50)

and this final relation is always respected since
∑

tr∈T (p)

(
X+
p −X++

p

)
is a closed contour.

As a conclusion, the cell volume obtained from the discrete GCL (1.42) is equivalent to the
volume calculated geometrically provided that the velocity field is linear on each triangle.
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1.4.3 Definition of the discrete divergence operator

To achieve the discretization of (1.48), it remains to define the kinematics of the supplementary
node p∗f by determining its velocity Up∗f

. This velocity could be computed if a solver was defined
at node p∗f . However, in order to avoid the addition of supplementary degrees of freedom, the
node p∗f is defined as the face barycenter. Using the assumption of a linear velocity field with
respect to x over the face leads to define Up∗f

as the barycenter of the face vertices velocity

Up∗f
=

1

Np,f

∑
q∈P(f)

Uq,

where Np,f is the number of nodes on the face f (without p∗f ).

This assumption of a linear velocity on the face f enables to eliminate the node p∗f from the
summations of (1.48). Let us start from the following semi-discrete form of the GCL

dvc
dt

=
∑

tr∈T (c)

∑
p∈P∗(tr)

Up ·
(

1

3
Strntr

)
,

Since the node p∗f belongs to the set P∗(tr), the previous relation can be written as

dvc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

Up ·
1

3

 ∑
tr∈T (c,f,p)

Strntr +
1

Npf

∑
tr∈T (c,f)

Strntr

 ,

This last relation can finally be written under the form

dvc
dt

=
∑
p∈P(c)

Up ·

 ∑
f∈F(c,p)

Spfnpf

 , (1.51)

by introducing the face area vector Spfnpf such that

Spfnpf =
1

3

 ∑
tr∈T (c,f,p)

Strntr +
∑

tr∈T (c,f)

1

Np,f
Strntr

 . (1.52)

The Spfnpf is named face area vector as the contribution of face f to the corner area vector
[53]. In the present work, this corner area vector writes np =

∑
f∈F(c,p) Spfnpf . The numerical

fluxes will be applied on these face area vectors which will ensure that the scheme satisfies the
GCL.
The discrete divergence operator is defined as

(∇ ·ψ)ωc =
1

vc

∫
ωc

∇ ·ψ dv =
1

vc

∫
∂ωc

ψ · nds.

Using the definition of the GCL (1.39) and the semi-discrete equation (1.51), this operator thus
writes

(∇ ·ψ)ωc =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

ψp · Spfnpf , (1.53)

for a vector ψ in the cell ωc, if ψp is the value of this vector at the node p. In the same manner,
the discrete gradient operator is defined as

(∇ϕ)ωc =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

ϕpSpfnpf , (1.54)

for any scalar ϕ in ωc where ϕp is the value of ϕ at node p.
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1.4.4 Discretization of the Euler equations

In a Lagrangian scheme, the mass conservation equation is easily respected since it imposes the
cell mass mc to be constant. Now, applying the previous discrete operators (1.53) and (1.54)
to the semi-discrete momentum and total energy conservation equations writes

mc
dUc

dt
+
∑
p∈P(c)

∑
f∈F(c,p)

SpfPcfpnpf = 0,

mc
dEc
dt

+
∑
p∈P(c)

∑
f∈F(c,p)

SpfPcfpUp · npf = 0,

(1.55)

where the subscript c indicates that the quantity has been mass averaged on the cell. For
example, if ϕ is a physical variable

ϕc =
1

mc

∫
ωc

ρϕdv,

denotes its mass averaged value over the cell ωc. Let us remark that this semi-discrete scheme,
in the same form as [118], requires as many pressure flux Pcfp than the number of faces f
impinging on node p whereas in [48] the pressure flux Pcp depends only on the node.

The semi-discrete trajectory equation is written as

dXp

dt
= Up. (1.56)

Finally, the nodal fluxes Pcfp and Up are the last unknowns to be determined in order to
complete this scheme and move the grid.
Let us denote the entropy and the temperature in the cell by ηc and θc respectively. The Gibbs
relation writes

mcθc
dηc
dt

= mc
dεc
dt

+ Pc
dvc
dt

= mc

[
dEc
dt
−Uc ·

dUc

dt

]
+ Pc

dvc
dt

Substituting (1.55) in the above equation and following the same steps as in [118] enables to
write the semi-discrete entropy equation as

mcθc
dηc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

Spf (Pcfp − Pc) (Uc −Up) · npf .

To ensure a positive entropy production, the pressure jump is expressed in terms of the velocity
jump as follows

Pcfp − Pc = Zc (Uc −Up) · npf , (1.57)

where Zc = (ρa)c is the acoustic impedance of the cell and a =
√

(dP/dρ)η the isentropic speed
of sound [113]. This last relation is nothing but the Riemann invariant along direction npf as
used in Section 1.1 for 1D. It remains to compute the nodal velocity by means of a nodal solver.
Invoking the total momentum conservation and following the work [118], the nodal velocity Up

is computed by imposing a momentum balance around the node p. This condition corresponds
to balance the pressure fluxes in competition around the node p and writes∑

c∈C(p)

∑
f∈F(c,p)

SpfPcfpnpf = 0.
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Then, using the relation (1.57), it becomes

MpUp = B, (1.58)

where

Mp =
∑
c∈C(p)

∑
f∈F(c,p)

SpfZc (npf ⊗ npf ) ,

B =
∑
c∈C(p)

∑
f∈F(c,p)

Spf

[
Pcnpf + Zc (npf ⊗ npf ) Uc

]
.

The matrix Mp is positive definite thus invertible and the nodal velocity is given by Up = M−1
p B.

Contrary to the formulation derived in [48], one can check that the present nodal solver degener-
ates exactly onto the acoustic Godunov solver in the case of a 1D flow aligned with a Cartesian
grid.

1.5 Second order extension

1.5.1 Second order in space

The second order extension in space of this Godunov-type scheme is performed using a MUSCL
method and a piecewise linear representation of the pressure and velocity fields. Let us denote
ϕ a scalar, the linear reconstruction of ϕ in cell ωc writes

ϕ̃c(X) = ϕ̄c +∇ϕc.(X −Xc), X ∈ ωc,

where ϕ̃c(X), ϕ̄c and ∇ϕc are respectively the extrapolated value at point X, the mean value
and the gradient of variable ϕ in cell c. Moreover, the cell centroid Xc is defined as

Xc =
1

vc

∫
ωc

X dv,

and numerically evaluated using the method proposed in [122]. These extrapolated values will
replace the cell pressure and velocity in the relation (1.57) in order to improve the accuracy of
the scheme.

For an arbitrary field, the local extrema around the cell c are defined as

ϕ̄maxc = max

{
max
c′∈Cp(c)

(ϕ̄c′), ϕ̄c

}
and ϕ̄minc = min

{
min

c′∈Cp(c)
(ϕ̄c′), ϕ̄c

}
,

where Cp(c) is the set of cells c′ sharing at least one node with cell c. The monotonicity criterion
is then defined as

ϕ̄minc ≤ ϕ̃(X) ≤ ϕ̄maxc , X ∈ ωc.
Now, since ϕ̃ is a linear field, the monotonicity criterion can be reduced to

ϕ̄minc ≤ ϕ̃(Xp) ≤ ϕ̄maxc , p ∈ P(c). (1.59)

To respect this criterion, the gradient of ϕ has to be limited. Several slope limiters have been
developed in this way [17, 23, 159]. Most of them were developed in the 1D case and are now
the subject of major modifications for their extension to the 3D framework [108, 82, 141, 131].
In particular, in the Lagrangian framework, one has to take care that the limiting procedure
preserves the symmetries of the flow.
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1.5.2 Classic limiters - Barth-Jespersen and Venkatakrishnan

The easiest way to limit a reconstructed field is to apply a scalar αc ∈ [0, 1] to the cell gradient in
order to respect the monotonicity condition (1.59). The limited extrapolated value thus writes

ϕ̃limc (X) = ϕ̄c + αc∇ϕc · (X −Xc), ∀X ∈ ωc.

Different limiters can then be constructed depending on the choice made for this scalar αc. The
Barth-Jespersen limiter [17], for example, supposes αc to be of the form

αc = min
p∈P(c)

(1, αc,p),

whereas the Venkatakrishnan limiter [159], used in the work [118], supposes

αc = min
p∈P(c)

(
α2
c,p + 2αc,p

α2
c,p + αc,p + 2

),

where

αc,p =



ϕ̄maxc − ϕ̄c
ϕ̃c(Xp)− ϕ̄c

if ϕ̃c(Xp) > ϕ̄c,

ϕ̄minc − ϕ̄c
ϕ̃c(Xp)− ϕ̄c

if ϕ̃c(Xp) < ϕ̄c,

1 if ϕ̃c(Xp) = ϕ̄c.

This last nodal value αc,p is evaluated from scalar values. The velocity norm is used for the
velocity limiting in order to deal with a frame independent scalar quantity.

Remark: One can prove that the Barth-Jespersen limiter will replace an overestimated (re-
spectively underestimated) reconstructed value by the local maximum (respectively minimum),
and a reconstructed value lying in the monotonicity range will not be modified. However, the
Venkatakrishnan limiter will limit the extrapolated value in any case. Indeed, one can easily
show that the maximum value of αc will be 3/4 for this limiter.

1.5.3 The multi-dimensional minmod limiter for 3D

A classic MUSCL approach consists in computing the cell gradient using a least squares method
based on the cells sharing a face with cell ωc. It is rarely computed on the cells sharing a node
with cell ωc because of symmetrization difficulties at the boundaries. In practice, the limiting
is improved by adding an extra limiting factor β ∈ [0, 1] to the limited gradient. The drawback
of such a factor is that it is user-defined and problem-dependent.
To prevent overshoots and oscillations around strong shocks without resorting to a user-defined
limiting factor, it is proposed to build a multi-dimensional extension of the minmod limiter
based on nodal gradients and the minmod function. Let us point out that this multi-dimensional
limiter degenerates onto the classical minmod limiter in the 1D framework. The interesting be-
havior of nodal gradients has also been highlighted in [39].

The minmod function is defined as

minmod{α1, ..., αp} =

{
0 if it exists i and j such that sign(αi) 6= sign(αj),

sign(αi) min
i=1...p

|αi| otherwise,
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where {α1, ..., αp} is a set of scalar values. In the multi-dimensional frame, the minmod function
will be applied to the components of a set of gradients.

Let us consider nodal gradients computed using a least squares method based on the cells
c′ ∈ C(p). The multi-dimensional minmod limiter constructs the cell gradient component by
component in an orthonormal reference basis (ξc1, ξ

c
2, ξ

c
3) as detailed in the sequel. This basis

is of major importance for preserving the flow symmetries and will represent the pressure and
velocity variations as in [111, 104]. In particular:

• For the pressure gradient limiting, ξc1 is defined as ξ
c
1 =

∇Pc
‖∇Pc‖

, if ‖∇Pc‖ 6= 0,

ξc1 = ex, otherwise,

where the pressure cell gradient ∇Pc is obtained using a least squares method on the cells c′

sharing a face with cell c.

• For the velocity gradient limiting, ξc1 is defined as ξ
c
1 =

Uc
‖Uc‖

, if ‖Uc‖ 6= 0,

ξc1 = ex, otherwise.

The remaining basis vectors ξc2 and ξc3 are then computed arbitrarily in the orthogonal plane.

Let Mξ be the matrix associated to the change of basis defined as Mξ = [ξc1, ξ
c
2, ξ

c
3]. Let ϕ be a

scalar field and ψ a vectorial field. The nodal gradients of ϕ and ψ at node p are expressed in
the basis (ξc1, ξ

c
2, ξ

c
3) such as

(∇ϕp)ξ = Mt
ξ∇ϕp,

(∇ψp)ξ = Mt
ξ∇ψpMξ.

The cell gradient is then constructed component by component as follows(
(∇ϕc)ξ

)
i

= minmod
p∈P(c)

[(
(∇ϕp)ξ

)
i

]
, i ∈ [1, 2, 3](

(∇ψc)ξ
)
i,j

= minmod
p∈P(c)

[(
(∇ψp)ξ

)
i,j

]
, i, j ∈ [1, 2, 3]

where i and j are the index of the gradient component. Finally, the cell gradient is expressed
in the Cartesian basis as

∇ϕc = Mξ (∇ϕc)ξ ,
∇ψc = Mξ (∇ψc)ξ Mt

ξ.

The monotonicity criterion is then applied to this cell gradient using a Barth-Jespersen limiter
which ends the multi-dimensional minmod limiter algorithm.

As a summary, this multi-dimensional minmod limiter constructs a cell gradient by selecting the
lowest contributions of nodal gradients, in the sens of the minmod function, in a reference basis
(ξc1, ξ

c
2, ξ

c
3). The monotonicity criterion is then ensured by using the Barth-Jespersen limiter.
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1.5.4 Second order in time

For the second order extension in time, a Predictor-Corrector scheme is applied [118]. For a
numerical scheme written under the general semi-discrete form

dU
dt

= F(t,U),

this time scheme writes
U (1)
i = Uni + ∆tF (tn,Un) ,

Un+1
i = U (1)

i +
1

2
∆t
[
F (tn,Un) + F

(
tn+1,U (1)

)]
,

tn+1 = tn + ∆t.

1.6 Numerical test cases

All the test cases presented in this section are characterized by the gamma gas law which
considers a perfect gas ruled by the thermodynamics law

P = (γ − 1)ρε,

where γ is the polytropic index of the gas. One has γ = 5
3 if the gas is monoatomic and γ = 7

5
if the gas is diatomic. The isentropic sound speed in the cell ωc is defined as

ac =

√
γcPc
ρc

.

The test cases chosen present strong shock waves which lead to important mesh deformations
and enable to prove the scheme robustness.

1.6.1 Sod test case

The Sod test case [150] considers the computational domain x ∈ [0; 1]. This domain is filled
with a diatomic gas such that{

(ρl, Pl,Vl) = (1.0, 1.0,0), for x ≤ 0.5,

(ρr, Pr,Vr) = (0.125, 0.1,0), for x ≥ 0.5.

This test case highlights the scheme ability to capture shock and rarefaction waves without
oscillating. In particular, the second order results with minmod limiter are compared to the
Venkatakrishnan limiter used (refer to Fig. 1.8). One can observe that the Venkatakrishnan
limiter leads to spurious oscillations around the shock and rarefaction zones. On the contrary,
the minmod limiter enables to delete these oscillations without loosing accuracy elsewhere.

1.6.2 Noh test case in 2D and 3D

The Noh problem [128] models the implosion of a monoatomic gas such that (ρ0, P 0,V 0) =
(1, 10−6,−er) where er is the radial vector. Symmetry conditions are applied on the bound-
aries holding the origin O whereas the other boundaries are pressure boundary conditions with
P b = 1.10−6. This test case can also be found in [114] for 2D results and in [104] for 3D results.
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(a)

(b) (c)

Figure 1.8: Sod test case - Comparison between the Venkatakrishnan (blue) and the minmod
limiter (green). Second-order density at time t = 0.2 along the x axis on a 200 cells mesh (1.8a)
- Zoom on the beginning of the rarefaction zone (1.8b) - Zoom around the shock zone (1.8c).
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(a) (b)

Figure 1.9: 2D planar Noh problem - Barth-Jespersen limiter - Scatter plot of the density in
terms of the cell radius (1.9a) and 2D density field (1.9b) at time t = 0.6 on a mesh with 50×50
cells.

(a) (b)

Figure 1.10: 2D axisymmetric Noh problem - Barth-Jespersen limiter - Scatter plot of the
density in terms of the cell radius (1.10a) and 2D density field (1.10b) at time t = 0.6 on a mesh
with 50× 50 cells.
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This case, defined by Noh in [128], admits a self-similar solution: a shock wave moves inwards at
a constant speed. D = 1/3. The symmetry of the problem enables to limit the computational
domain to an angular sector.

The 2D computation consist in 50× 50 quadrangular cells of a square box (x, y) ∈ [0; 1]3 which
enables to test the robustness of the Lagrangian scheme. On Fig. 1.9 and Fig. 1.10 we have
respectively represented the results at time t = 0.6 for planar and axisymmetric geometry.
The timing, the density levels and pressure levels after the shock wave are correct. For planar
configuration the maximum density is 16 and it represent a cylindrical implosion whereas for the
axisymmetric computation the maximum density is 64 and it represent a spherical implosion.
We notice an undershoot for the density that is characteristic of the wall heating phenomena,
see [128]. For this computation we use the Barth-Jespersen limiter with an additional limiter
coefficient of 0.5 which avoid the overshoot. The use of this coefficient is detailed in [110].

(a) (b)

Figure 1.11: 3D Noh problem - Venkatakrishnan limiter - Scatter plot of the density in terms of
the cell radius (1.11a) and 3D density field (1.11b) at time t = 0.6 on a mesh with 20× 20× 20
cells.

We now present the 3D Noh problem on a cube (x, y, z) ∈ [0; 1]3. This test case is very sensitive
to the limiting procedure. If the shock limiting is not efficient enough, a strong overshoot
can be observed as shown in Fig. 1.11 for a second-order solution with the Venkatakrishnan
limiter. The minmod limiter enables to remove this overshoot for the same problem (refer to
Fig. 1.12a). Moreover, the minmod limited solution presents a good convergence towards the
analytical solution with a maximum density of 63.8 (the expected analytical value is 64) for the
mesh 80× 80× 80 cells (refer to Fig. 1.12).

1.6.3 Saltzman test case in 2D

We consider now the movement of a planar shock wave on a Cartesian grid that has been
stretched [59]. This is a well known difficult test case that enables to validate the robustness
of our scheme when the mesh is not aligned with the fluid flow. The computational domain
is the rectangle (x, y) ∈ [0, 1] × [0, 0.1]. The initial mesh (shown on Fig. 1.13) is obtained by
transforming a uniform 100× 10 cells with the mapping

xstr = x+ (0.1− y) sin(xπ),
ystr = y.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.12: Noh problem - Minmod limiter - Scatter plot of the density in terms of the cell
radius (1.12a, 1.12c, 1.12e) and 3D density field (1.12b, 1.12d, 1.12f) at time t = 0.6 on meshes
with 20 × 20 × 20 cells (1.12a, 1.12b), 40 × 40 × 40 cells (1.12c, 1.12d) and 80 × 80 × 80 cells
(1.12e, 1.12f).
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Figure 1.13: Saltzman test case: initial mesh

This domain is filled with a monoatomic gas such that (ρ0, P 0,U0) = (1, 10−6,0). The com-
pression is computed by applying the velocity condition U b = 1ex on the plane initially at the
position x = 0. All the other boundaries planes are symmetry boundary conditions.

The exact solution is a planar shock wave that moves at speed D = 4/3 from left to right. The
propagation of the shock wave at t = 0.6 is displayed in Fig. 1.14. The important result is that
our 2D scheme preserves one-dimensional solution very well. The Fig. 1.14 shows the mesh at
t = 0.75 when the shock wave hits the right boundary (x = 1).

Behind the shock wave, the initial mesh is distorted, all the horizontal line stays almost parallel
with respect to the other ones. The density profile at t = 0.6 is displayed on Fig. 1.15a. The
shock level is not uniform, but it oscillates around the exact value ρ = 4.

The robustness of our scheme is clearly demonstrated by this test case: we are able to reach
time t = 0.96 which corresponds to two successive rebounds of the shock wave on the vertical
boundaries of the domain, see Fig. 1.15b. After this time, the computation stops because the
mesh become tangled.

Figure 1.14: Saltzman’s test: mesh at t = 0.6

1.6.4 Saltzmann test case in 3D

We present here the 3D extension of the Saltzmann test case [46] which simulates the propaga-
tion of a piston driven shock wave in the computational domain (x, y, z) ∈ [0; 1]×[0; 0.1]×[0; 0.1].
The propagation of the planar shock wave is studied on a distorted mesh such as proposed in
[46] 

x̃ = x+ (0.1− z)(1− 20y) sin(xπ), if 0 ≤ y ≤ 0.05,

x̃ = x+ z(20y − 1) sin(xπ), if 0.05 ≤ y ≤ 0.1,

ỹ = y,

z̃ = z.
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(a) (b)

Figure 1.15: 2D Saltzmann problem - Barth-Jespersen limiter - density profile at t = 0.6 (1.15a)
and mesh at t = 0.96 (1.15b).

The numerical solution obtained at time t = 0.7 shows a good accordance with the analytical
solution (refer to Fig. 1.16). The density overshoot behind the shock has been reduced with a
maximum density of only 4.6 against 5.2 in [118] and 6.2 in [48]. In particular, it is possible to
continue the simulation after the shock reaches the wall at time t = 0.75. The solution at time
t = 0.9 is shown in Fig. 1.17. The mesh is still acceptable despite the flattened cells at one
corner of the domain. However, these cells prevent to go further in the simulation.

1.6.5 Sedov test case on a cubic grid

The Sedov test case [147] simulates the propagation of a spherical shock wave within the com-
putational domain (x, y, z) ∈ [0; 1.2]3 filled with diatomic gas such that

(ρ0, P 0,U0) = (1, 10−6,0).

The shock wave is initialized at the space origin by imposing the pressure Po = (γ − 1)ε0/v0

in the cells containing the space origin, where v0 is the cell volume and ε0 = 0.106384 is the
initial specific internal energy. Symmetry conditions are applied on all boundaries. With this
initialization, the diverging spherical shock is characterized by a shock radius R = 1 at time
t = 1 and a maximum density of ρshock = 6 as in [118].

This test case shows the scheme ability to preserve the flow symmetries which is highlighted by
the scatter plot of the cell density (refer to Fig. 1.12a, 1.12c, 1.12e). Indeed, one can observe
the cell values are close to each other leading to a numerical solution less spread around the
analytical solution than in [118]. Moreover, the numerical solution presents a good convergence
towards the analytical solution as the mesh is refined.
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(a)

(b)

(c)

Figure 1.16: Saltzmann problem - Minmod limiter - Scatter plot of the x-density (1.16a) and
3D density field in the (O,x,y) (1.16b) and the (O,x,z) planes (1.16c) at time t = 0.7 on a mesh
100× 10× 10.

(a)

(b)

(c)

Figure 1.17: Saltzmann problem - Minmod limiter - Scatter plot of the x-density (1.17a) and
3D density field in the (O,x,y) (1.17b) and the (O,x,z) planes (1.17c) at time t = 0.9 on a mesh
100× 10× 10.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.18: Sedov problem - Minmod limiter - Scatter plot of the density in terms of the cell
radius (1.12a, 1.12c, 1.12e) and 3D mesh (1.12b, 1.12d, 1.12f) at time t = 1 on meshes with
20× 20× 20 cells (1.12a, 1.12b), 40× 40× 40 cells (1.12c, 1.12d) and 80× 80× 80 cells (1.12e,
1.12f).
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Chapter 2

Arbitrary-Lagrangian-Eulerian
methods for Lagrangian
hydrodynamic on unstructured grids

In numerical simulations of multi-material fluid flow, the motion of the fluid can be associated
or not to the motion of the grid. One can use a Lagrangian framework or an Eulerian one. The
former assumes that the grid moves with the local fluid velocity, the latter deals with a fixed
grid. The major advantage of the Lagrangian framework over the Eulerian one is the possibility
to track interfaces between different fluid phases. The downside of the Lagrangian framework is
that the geometrical quality of the grid elements may degrade significantly. Moreover, the grid
can eventually become tangled, causing the simulation to halt. Thus, arbitrary Lagrangian-
Eulerian (ALE) methods were introduced in [76] to exploit the advantages of the two previous
frameworks, and to optimize accuracy, robustness, and computational efficiency.
In this work, we consider the simulation of multi-material compressible flows on unstructured
meshes in planar and cylindrical geometry. For this, we adopt an Arbitrary Lagrangian-Eulerian
(ALE) description that has the great advantage to combine the best features of both Eulerian
and Lagrangian approaches. Indeed, this choice is not only well adapted to naturally track free
surfaces and interfaces between different fluids as purely Lagrangian methods, but also to han-
dle flow distortion as Eulerian methods [15, 22]. Here, a Cell-Centered Arbitrary Lagrangian
Eulerian (CCALE) [65, 64] approach is particularly considered.

As depicted on Fig. 2.1, the first step of the algorithm relies on an explicit Lagrangian phase in
which the physical variables and grid are updated thanks to the EUCCLHYD scheme described
in Chapter 1.
Then, in the context of multi-material computations using ALE method, as grid and fluid
move separately, cells containing two or more materials could appear. Multi-material flows
treatment is done thanks to specific interface capturing method. This choice allows to track
the volume fraction of each material used for the thermodynamical closure relying on the equal
strain rates assumption. This approach is quite simple to implement and remains sufficient in
most of the cases [65, 148]. This, leads to constant evolution of the volume fraction during the
Lagrangian phase. Such an approach allows to reconstruct with accuracy the interface between
each material. In this context, many developments have been done for 2D Cartesian geometries.
First, a previous version of the CCALE algorithm solving two-material compressible flows using
a Volume Of Fluid (VOF) method [165] have been proposed in [32, 65]. To treat interface
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Initialization

tn+1 = tn + ∆t
Lagrangian phase

Thermodynamical closure
for multi-material flows

Interface reconstruction Rezoning phase

Remapping phase

Figure 2.1: Multi-material CCALE-MOF strategy flowchart

flows, Moment Of Fluid (MOF) interface reconstruction method is retained in the sequel. This
approach has been considered to enhance multi-material (more than two components) flows as
in [5, 61, 64]. Once again, the difficulty here is to propose a natural and consistent adaptation of
this approach able to treat axisymmetric and planar interface flows. To this end, formulations
of the moments needed to track interface are presented for cylindrical and planar coordinates as
in [7]. This leads to an accurate and second order interface reconstruction method that allows
to treat multi-material (more than two) interfaces in the lines of [61]. The work introduced
here is the result of a fruitful collaboration with M. Shashkov from the Los Alamos National
Laboratory (LANL) and it presents the first result coupling of MOF method with ALE and
ReALE code to simulate multi-material flows [27, 35].
Subsequently, a rezoning algorithm is used to improve the mesh quality during computation. In
standard ALE methods the new mesh from the rezone phase is obtained by moving grid nodes
without changing connectivity of the mesh. We are especially interested here in the case of polar
meshes. As it is done in [65, 64], mesh rezoning is based on the Condition Number Smoothing
(CNS) [90] algorithm on unstructured meshes. Moreover, when used for polar meshes, it is well
known that CNS algorithm pushes the nodes toward the origin deteriorating the mesh quality.
To avoid this drawback, the main idea developed in this paper is to adapt CNS algorithm to
polar grids. Then, extension to unstructured grids (Cartesian-polar) is explored as in [27].
Such rezone strategy has its limitation due to the fixed topology of the mesh especially when
strong vorticity appear. An other possible option is called Reconnection Arbitrary Lagrangian
Eulerian (ReALE) [103, 102]. This method can be applied to multi-material (more than two)
flow problems with material interfaces (immiscible fluids) [35]. In ReALE the main advantage
is that the connectivity of the mesh is allowed to change during the rezone phase. As for a
standard ALE strategy, the main idea of the rezoning phase is to define a new grid. Here, it is
done using specific movement of generators and formalism of Voronoi diagrams [103, 31]. This
work has been initiated thanks to a collaboration with M. Shashkov and R. Loubère from CNRS
Toulouse. I also had the opportunity to visit M. Owen from the Lawrence Livermore National
Laboratory (LLNL) to work on the generation of polygonal grids using the Polytope library
developed by LLNL [55].
Finally, the physical variables are conservatively interpolated from the Lagrangian grid onto
the new rezoned one during the remapping phase. Here an extension of the hybrid remapping
[24] to cylindrical geometries is presented. We want to notice that in ALE framework using
cell-centered formulation, this phase is straightforward. In the lines of these works, the CCALE-
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MOF algorithm presented here can treat both Cartesian and cylindrical geometry [27]. The
main idea is to use an hybrid remapping that combine the main advantages of the swept-
face and multi-material cell-intersection remapping as in [24, 65]. The remapping method
is also presented for the ReALE method in the case of swept-face and multi-material cell-
intersection based method. The last remapping method presented here is a combination of
a piecewise quadratic reconstruction and a Flux Corrected Remapping (FCR). This approach
provides a bounds preserving method and guarantee the positivity of density and specific internal
energy [157].

This chapter, will follow the flowchart presented in Fig. 2.1. First, in Section 2.1 the closure
model used to deal with multi-material flow is developed. Then, the MOF method for interface
reconstruction method is presented for treating multi-material flows in Section 2.2. In Sec-
tion 2.3 and 2.4, we introduce two different strategies for the mesh smoothing : rezoning based
on mesh regularization and a Voronoi remeshing strategy. Different methods for remapping are
given from Section 2.5. Extensive numerical experiments are reported in Section 2.8. They
demonstrate not only the robustness and the accuracy of the present methodology but also its
ability to handle successfully complex two-dimensional multi-material fluid flows computed on
unstructured grids.

2.1 Thermodynamical closure for the multi-material cells

A closure model is required to define how the thermodynamic states of the multi-material
cells evolve during the Lagrangian and the Remapping steps. The model we use is based on
the reconstruction of the material interface inside a mixed cell, in which, each material evolve
separately [65]. The goal here is to compute using the partial quantities the mean pressure and
sound speed but also after the Lagrangian step, using mean quantities to update the partial
internal energy. Let φk be the volume fraction defined for the fluid k in the cell c by:

φk =
Vk
V
, 0 < φk < 1.

where Vk is the volume of the cell’s part occupied by the fluid k and V the volume of the cell,
such that

V =
∑
k

Vk,

and let mk be the mass of the fluid k and m the mass of a cell c, such that

dmk

dt
= 0, and m =

∑
k

mk.

The previous requirements on volume and Mass leads to∑
k

φk = 1, and
∑
k

φkρk = ρ.

Where ρk and ρ are respectively the partial and mean density. Furthermore, a common ve-
locity field U is used to characterize each material in the mixed cell such that the geometric
conservation law equation of each material can be wrote as:

d(φkρk)

dt
= φkρk∇ ·U . (2.1)
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The volume fraction evolution is based on an equal strain assumption:

1

ρk

dρk
dt

=
1

ρ

dρ

dt
= −∇ ·U . (2.2)

Thus, using Eqs. (2.1) and (2.2), the evolution of volume fraction is modeled by

dφk
dt

= 0. (2.3)

Thermodynamic assumptions are necessary to link effective and partial values of pressure and
speed sound. Gibbs relation applied for each material can be written as:

mk

(
dεk
dt
− Tk

dSk
dt

)
= −PkVkρk

d

dt
(

1

ρk
).

Where Pk, Tk and sk denote the pressure, temperature and the specific entropy for material k.
By summing on all materials, and using equal-strain assumption Eq. (2.1), it leads to

m

(
dε

dt
− T dS

dt

)
= −

∑
k

PkVkρ
d

dt
(
1

ρ
).

Finally, comparing with the Gibbs relation applied to the mean fluid, for pressure we obtain

P =
∑
k

φkPk. (2.4)

Concerning the sound speed, its definition allows to write:

dPk
dt

= c2
k

dρk
dt

.

Multiplying by φk, summing on all materials, and using equal strain assumption Eq. (2.1),
leads to

dP

dt
=
∑
k

c2
kφk

ρk
ρ

dρ

dt
.

Finally, comparing with the previous sound speed definition applied to the mean fluid, we obtain

c2 =
∑
k

mk

m
c2
k. (2.5)

Contrary to a staggered discretization, in our cell-centered scheme, total energy conservation
equation is computed in place of internal energy. It means that, because the pressure is a
function of internal energy (Pn+1

k = f(ρn+1
k , εn+1

k )), this quantity must be updated to close
the thermodynamic state of each material. This is done, assuming the massic distribution of
entropy variation:

mk
dεk
dt

+ Pk
dVk
dt

= φk

(
m
dε

dt
+ P

dV

dt

)
. (2.6)

2.2 Moment of fluid method for interface reconstruction

The method used in this work to reconstruct interfaces, is the MOF approach well adapted for
treating multi-material interface problems [5, 61]. Indeed, such a method enables to capture
more accurately interfaces than the classical VOF strategy and allows the treatment of general
multi-material flows (more than two materials) [64, 93]. This method has been recently extended
in cylindrical geometries, for a single interface problem [7]. We start this section with the planar
version of the MOF method and then present the MOF method for cylindrical geometry.
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2.2.1 MOF for planar geometry

The main idea of MOF is to track each fluid using its volume fraction and centroid deduced
from the zeroth and first moments [61]. Given these two moments, interface is linearly recon-
structed insuring volume conservation. To this end, interface update is done minimizing the
discrepancy between the given moments and the reconstructed moments of the polygon behind
the interface. One should note that no information from neighboring cells is required. This
method is exact for linear interfaces and is second order accurate for smoothly curved ones. In
the context of multi-material configurations, one has to face to material ordering when recon-
structing interface. The method presented here, allows to automatically determine the order of
materials by constructing all the possible combination and choosing the sequence that leads to
the configuration where the reconstructed moments are the closest to the given ones.

Under volume conservation assumption, the zeroth moment M0
k,c of the k-th fluid in each cell c

is given by:

M0
k,c =

∫
Ωk,c

dV, (2.7)

from this moment we can deduce the volume fraction which depends on the cell volume Vc

αk,c =
M0
k,c

Vc
, (2.8)

The first moment can be defined with:

M1
k,c =

∫
Ωk,c

XdV, (2.9)

From this, we deduce the centroid

Xk,c =
M1
k,c

Vk,c
, with Vk,c = Vcαk,c. (2.10)

In the context of multi-material configurations, one has to face to material ordering when
reconstructing interface. The method used here, allows to automatically determine the order of
materials by constructing all the possible combination and choosing the sequence that leads to
the configuration where the reconstructed moments are the closest to the given ones. The two
input data (volume fraction and centroid) are supplied by the Lagrangian phase and leads to
the definition of the new centroid position which is obtain from a barycentric combination of
new positions of grid nodes as done in [64].

2.2.2 Numerical validation

To illustrate multi-material reconstruction, we consider three different cell layouts that are
filament (without junction), T-junction and Y-junction on a regular octagon. We can see on
Fig. 2.2 that the results reveal the capability of MOF to treat accurately multi-material problem
on polygonal cells. More details about implementation considerations can be found in [5, 61].

2.2.3 MOF in axisymmetric geometry

Here, extension to multi-material interface reconstruction phase to cylindrical coordinates is
considered.
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Figure 2.2: MOF interface reconstruction test for three materials. From the top to bottom:
true partitions and their MOF reconstructions. From the left to the right: filament, T-junction
and Y-junction configurations.

The main difference between cylindrical and planar geometry relies in the definition of the differ-
ent moments. Since the interface reconstruction is done under volume conservative assumption,
the zeroth moment M0

k,c of the k-th fluid in each cell c is obviously given by

M0
k,c =

∫
Ωk,c

RdA, (2.11)

from this moment we can deduce the volume fraction

αk,c =
M0
k,c

Vc
, (2.12)

with the cell volume Vc =
∫

Ωc
RdA.

Contrary to the zeroth moment, the first moment can be defined without any specific require-
ment. Thus, it is possible to compute them in the two following different manners. In the one
hand we can use the natural extension to axisymmetric geometries

M1
k,c =

∫
Ωk,c

RXdA, (2.13)

and from this moment we deduce the pseudo-centroid

Xk,c =
M1
k,c

Vk,c
, with Vk,c = Vcαk,c. (2.14)

This pseudo-centroid for a matter of simplicity will be called here the axisymmetric centroid.
On the other hand it can also be done with a planar definition as follows

M1,pl
k,c =

∫
Ωk,c

XdA, (2.15)
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and thus planar centroid will be obtain from

Xpl
k,c =

M1,pl
k,c

Ak,c
, (2.16)

where Ak,c is the area of the k-th fluid in the cell c.
Since this interface reconstruction method is coupled to our Lagrangian hydrodynamics scheme
it requires to update the volume fraction and material centroid. Using the equal strain as-
sumption, the volume fraction do not evolve during the Lagrangian step (see [65] for more
details). As for planar geometry, the centroid locations are given from the Lagrangian step
using a barycentric combination of the new positions of the mesh nodes as done in [64].

2.2.4 Numerical validation

The main goal of this section is to compare, like in Section2.2.2 the results given by both ax-
isymmetric and planar formulations of the centroid on several static test cases in one cell. As
in [61], we consider three different mixed-cell layouts that are filament (without junction), T-
junction and Y-junction. The first two configurations correspond to C2-serial partitions whereas
the third is not. In the considered test cases, the parameter χ corresponds to the radius of the
circles defining the interfaces. Two values are considered with χ = 1 and χ = 64. In addition,
the computation domain is reduce to the cell [0; 1]× [0; 1] (see Fig. 2.3 and Fig. 2.4).

In the first case, with χ = 1, we notice small differences for the filament case, no notable dif-
ference on the T-Junction but the Y-junction results for axisymmetric and planar formulations
present distinct interface positions due to a different ordering of the materials. For a large
radius χ = 64, the curves are reduced to piecewise linear interfaces. Then, the result using both
formulations are very close to each other. For the two first cases filament and T-junction, the
results are exact. Regarding the Y-junction, it remains a good approximation. These results il-
lustrate the capability of both planar and axisymmetric centroid formulation for MOF to treat
accurately multi-material problem. Nevertheless, for consistency with the global cylindrical
coordinate formulation, the axisymmetric formulation for the centroid is retained in the sequel.

2.3 Rezoning phase improvement for polar meshes

The rezoning phase introduced in [65, 64] consists in moving the Lagrangian grid to improve
its geometric quality. The objective of this part is to extend this approach to polar meshes.
To this end, the proposed procedure relies on two main steps. The first phase is dedicated to
compute the smoothed grid from the Lagrangian one through CNS method. Then the final
mesh is deduced from the smoothed one by a relaxation procedure to keep the rezoned grid
as close as possible to the Lagrangian grid in order to insure computation accuracy and avoid
unphysical mesh rezoning. In the sequel one should note that rezoning is formulated only for
planar geometry in the frame {0, X, Y }.

For the sake of readability, in the rest of the paper the quantities without any accent φ are
associated to Lagrangian mesh. After the rezoning step we use φrez, and finally after relaxation
the quantities related to the rezoned mesh are noted with the tilde accent φ̃.

2.3.1 General condition number smoothing (GCNS)

As it is pointed out in the introduction, CNS approach is well adapted to rezone Cartesian
meshes but it still suffers from drawbacks for polar ones. Indeed, in this case the mesh seems
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Figure 2.3: MOF interface reconstruction test for three materials. From the top to the bottom:
the true partitions for χ = 1 and their MOF reconstructions obtained with planar and axisym-
metric centroid. From the left to the right: filament, T-junction and Y-junction configurations.
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Figure 2.4: MOF interface reconstruction test for three materials. From the top to the bottom:
the true partitions for χ = 64 and their MOF reconstructions obtained with planar and axisym-
metric centroid. From the left to the right: filament, T-junction and Y-junction configurations.
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to collapse (like an implosion) to the origin. To circumvent this difficulty, it has been proposed
to modify the CNS algorithm using specific weight associated to the mesh geometry [156] that
controls mesh rezoning with regards to the radius for example. Nevertheless, this approach is
not completely satisfactory. First, it strongly depends on the choice of the weight, that may
affect the quality of the mesh which can be shifted in the opposite direction to the origin for
example. Furthermore, there is still a residual compression near the origin due to singularity at
this point. In conclusion, it does not preserve a uniform polar mesh. For this reason, a different
strategy is presented here. The main idea developed here is to apply the CNS rezoning algorithm
in (r, θ)-coordinate system to polar block. In fact, a polar block mesh initially expressed using a
Cartesian coordinates (X,Y ) leads to a structured Cartesian mesh in (r, θ)-coordinates. Here,
a general presentation of the algorithm is made for a classical type of unstructured meshes that
are made of different blocks which can be either Cartesian or polar.

(Xlag, Xlag)

T

(rlag, θlag)

CNS

rezoning

(rrez, θrez)

T−1

(Xrez, Y rez)

Figure 2.5: Rule representation for GCNS algorithm for a polar mesh.

Assuming that the resulting mesh from the Lagrangian phase is unfolded (otherwise untangling
procedure is used to correct invalid cells [154]) . Thus, the proposed algorithm consists for polar
meshes in three different steps as depicted on Fig. 2.5. For the sake of simplicity, we consider
in the sequel only the case of Cartesian and polar structured meshes.

Ωc

Xp = (X,Y )

•
•

•

•

•

•

•
p

p+

p−

T = Rθ

Ω̂c

•

•

◦

◦

•

•

•

•

•

p

p+

p−

X̂p = (r, θ)

• mapped nodes, ◦ extrapolated nodes

Figure 2.6: Notations and mapping between cartesian and polar coordinates.

The first step, is dedicated to the mapping between Cartesian and polar coordinates. To this
end, consider c a given cell of the Lagrangian grid for (X,Y )-coordinates, p ∈ P(c) a node of
this cell. Notation used in the sequel are depicted on Fig. 2.6. The mapping between a point
p ∈ c of Cartesian coordinates Xp = (X,Y )t to X̂p = (rp, θp)

t in polar ones is done using the

definition θp = arctan

(
Yp
Xp

)
and rp =

√
X2
p + Y 2

p . When mapping (X,Y ) to (r, θ), the origin

node has to be specifically treated. Indeed the transformation is not defined for this point.
Then as it is needed in the rezoning algorithm in the (r, θ) frame, the origin node is defined by
a mapping of the first row on r = 0 axis (see Fig. 2.6). Note that these nodes are not used for
the final backward mapping.
The second step is the GCNS algorithm. It is based on a minimization problem of a local
functional that controls the quality of the mesh. As done in [65, 64], one has to distinguish
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boundary nodes and internal node for which the smoothing procedure is different.
For internal nodes, let us introduce as in [90] the condition number for (r, θ)-coordinates that
writes

κ(Ĵcp) =
||X̂pp+ ||2 + ||X̂pp− ||2

Âcp
, (2.17)

where X̂pp± = X̂p− X̂p± , and Âcp = det(Ĵcp) is the area of the triangle delimited by {p, p+, p−}
in the rezoned grid and Ĵcp = [X̂pp+ ,−X̂pp− ] the 2×2 Jacobian matrix associated to each corner
at vertex p of cell c. Thanks to this condition number we define the local function associated
to the node p

Fp(X̂p) =
∑
c∈C(p)

κ(Ĵcp), (2.18)

Finally, the new position X̂rez
p is obtained by the minimization of the local function Fp using

the first step of a Newton algorithm. This leads to the formula

X̂rez
p = X̂p − H−1

cp (X̂p)∇Fp(X̂p), (2.19)

where H−1
cp and ∇Fp are respectively the Cartesian 2 × 2 Hessian matrix and gradient related

to the local functional Fp.

For boundary nodes, the rezoned position X̂rez
p of p is computed in consistent way with the

GCNS algorithm. To this end, X̂rez
p is given thanks to a second-order interpolation Bézier

curve [65] leading to

X̂rez
p = X̂p(srez) = (1− (srez)2)X̂p− + 2(1− srez)srezX̂i + (srez)2X̂p+ , (2.20)

where srez ∈ [0, 1] and X̂i such that X̂p(1/2) = X̂p. Furthermore, the parameter srez is com-

puted to minimize Fp(X̂p(s)) (for more details on this procedure see [65]).

Finally, the third step consists in backward mapping between X̂rez
p and Xrez

p using Xp =
rpcos(θp) and Yp = rpsin(θp).

2.3.2 Relaxation algorithm

The relaxation algorithm consists in making a convex combination between rezoned grid ob-
tained from GCNS step and its location after Lagrangian step. This reads for each mesh node
p by:

X̃p = Xp + ωp(X
rez
p −Xp), with ωp ∈ [0, 1],

where X̃p is the new mesh node position after the complete rezoning phase. The coefficient ωp
is computed as a function of the right Cauchy-Green tensor associated to the Lagrange grid
deformation over a time step (for details see [65, 103]).

2.3.3 Numerical validation

In this section, we compare results obtained by the GCNS algorithm to those obtained for
classical CNS for the rezoning of uniform polar and unstructured meshes.
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Uniform mesh First, we consider an uniform polar mesh made of 20 × 10 elements see
Fig. 2.7-(a). Results obtained after 100 iterations for the classical and general smoothing are
presented on Fig. 2.7. For each method the relaxation coefficient ωp is taken equal to 1. As
already mentioned, the classical smoothing does not converge on polar mesh and implies the
collapse of cell layers to the origins (see Fig. 2.7-(b)). However, for the GCNS, the result
obtained (see Fig. 2.7-(c)) is converged. The mesh initially uniform, is not modified at the end
of the computation. This clearly illustrates the good behavior of our smoothing algorithm.

(a) (b) (c)

Figure 2.7: Smoothing of a static polar grid 16× 10: (a) initial grid; Smoothed grids after 100
iterations: (b) CNS, (c) GCNS.

Unstructured mesh Now, rezoning for an unstructured mesh is studied. Let us consider
a mesh made of 175 quadrangular cells as depicted on Fig. 2.8-(a). When applying the full
Cartesian rezoning to the mesh, similar observations as previously can be made. It suffers from
an implosion of central cells to the origin and does not converge (see Fig.2.8-(b)). For the
full GCNS algorithm, one can see after convergence, the formation of mesh distortion on the
square region and a polar mesh far from the center (see Fig.2.8-(c)). Nevertheless, it is possible

(a) (b) (c)

Figure 2.8: Smoothing of a static unstructured grid: (a) initial grid; Smoothed grids after 100
iterations: (b) CNS, (c) GCNS.

to improve this rezoning. Thus, the main idea developed in the sequel is to apply the GCNS
rezoning algorithm differently for a node belonging initially to a Cartesian or polar region of
the mesh. These regions are represented thanks to red and blue color (see Fig. 2.9-(a)) for
the considered mesh. Nodes localized at the frontier between the polar and Cartesian meshes
(black nodes on Fig. 2.9-(a)) can be considered either polar, or Cartesian. As represented on
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Fig. 2.9-(b,c), both possibilities are tested. The obtained results illustrate that the Cartesian
choice remains better contrary to the polar one that introduce mesh distortion.

(a) (b) (c)

Figure 2.9: Smoothing of a static unstructured grid: (a) initial grid with Cartesian (blue) and
polar (red) rezoning regions; Smoothed grids after 100 iterations (b) GCNS with interfacial
polar rezoning, (c) GCNS with interfacial Cartesian rezoning.

2.4 Rezoning phase with reconnection

We consider now the simulation of multi-material compressible flows on unstructured meshes.
The ReALE strategy used is an adaption of the ALE description. ReALE differs from ALE as
connectivity between cells of the mesh can change during the reconnection phase in order to
create a polygonal mesh which is able to follow material evolution efficiently.

2.4.1 Reconnection algorithm

Initialization

tn+1 = tn + ∆t
Lagrangian phase

Thermodynamical closure
for multi-material flows

Interface reconstruction Reconnection phase

Remapping phase

Figure 2.10: Multi-material ReALE strategy flowchart

The ReALE-MOF strategy, described in the flowchart on Fig. 2.10, is used to relax the con-
straints on mesh topology and allow change in connection between cells.

In this work, we keep the number of cells unchanged, but the number of vertices of each cell can
change due to the connectivity evolution. The reconnection phase of ReALE includes both mesh
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movement and reconnection procedure using a Voronoi tessellation based on a set of discrete
mesh-generating points also called generators Gc (Fig. 2.11).
The rezoning step of classical ALE method correspond to the reconnection step of ReALE.
Rezoning is usually based on geometric consideration and the aim of this step is to improve the
quality of the mesh. In ALE the main drawback is due to the fixed topology whereas in ReALE
method we allow change in the topology. This leads for ReALE to a polygonal mesh which
follow more efficiently the flow and recover the Lagrangian features which is lost using ALE
with fixed topology. The reconnection capability allows to deal with complex geometries and
high vorticity problems contrary to ALE method. Here, the number of cells remains constant
whereas number of vertices of each cell can be modified during the computation. A complete
description of ReALE method is available in [103].
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Ωc
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Figure 2.11: Voronoi Tesselation configuration

2.4.2 Generator displacement

In order to obtain regular polygons like with the Lloyd’s algorithm, we move the generators
thanks to centroids motion. An example of Lloyd’s smoothing is presented in Fig. 2.12.

(a) Mesh before Lloyd’s smoothing (b) Mesh after Lloyd’s smoothing

Figure 2.12: Mesh smoothing using Lloyd’s algorithm

In the method [103] we use a convex combination between the Lagrangian displacement and
motion of centroids.
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Gn+1
c = Gn+1,lag

c + ωc(X
n+1
c −Gn+1,lag

c ),

where Xc = 1
Vc

∫
cXdX denotes the centroid of the cell c, ωc ∈ [0, 1] is constructed using

invariants of the right Cauchy Green strain tensor associated to the Lagrangian cell c between
times tn ant tn+1. For this work, we still use also the Lagrangian displacement :

Gn+1,lag
c −Gn

c = αlagc Nlag
c ,

where Nlag
c is the unit vector in the direction of (Gn+1,lag

c −Gn
c ) and αlagc is the norm of this

vector. We define Tlag
c as the perpendicular at the displacement.

We use the motion of centroids like Lloyd’s algorithm to regularize the polygons

(Xn+1
c −Gn

c ) = αregNreg
c ,

where Nreg
c is the unit vector and αreg is the norm of ( Xn+1

c − Gn
c ). In order to have the

same order of magnitude as in the Lagrangian displacement, we limit this regularization by
αlimit = min(αlag, αreg). This limitation avoid the too large change into the mesh that caused
the loss the Lagrangian features.

To preserve the Lagrangian displacement, we allow only a tangential regularization :

αproj = (Xn+1
c −Gn

c ).Tlag
c .

We obtain the new displacement for the generators thanks to

Gn+1
c = Gn

c + αlagc Nlag
c + αprojTlag

c .

This method presented in [31] leads to a regular polygonal mesh and allows to keep Lagrangian
features better than for the convex combination methods used in [103].

2.5 Hybrid remapping

During the remapping phase, the physical unknowns (density, velocity, total energy) computed
thanks to the Lagrangian step are conservatively remapped from the Lagrangian mesh to the
rezoned one. To this end, an extension of the Hybrid Remapping Algorithm for multi-material
flows [64, 92, 24] to cylindrical geometry is presented here as in [27]. This strategy consists in
the following two steps. First a swept-faced remapping is used to treat cells and nodes localized
far from the interface. Then, a cell-intersection-based method [65] is applied to the cells and
nodes in the neighborhood of the interface. In this way, this approach combines the ability of
the cell-intersection method to remap the interface and the efficiency of the swept flux approach
for the other cells that significantly reduce the global computing cost of the method. As done
previously, in the perspective of general use of the method, a global formulation including both
Cartesian and axisymmetric framework is presented.

We assume in the sequel, that there is no topology change of the mesh, the cells of the Lagrangian
and rezoned grids are respectively designed by Ωc and Ω̃c.
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Figure 2.13: Notations for MCIB method.

2.5.1 Multi-material cell-intersection-based (MCIB) remapping

The main goal of remapping is to compute the exact intersection between the Lagrangian grid
and the rezoned one in order to remap the Lagrangian physical quantities onto the rezoned mesh
as shown in Fig. 2.13. Given the piecewise constant representation of the physical variables
per unit of volume (ρ, ρU, ρE) noted ψc = ρcφc in each cell of the Lagrangian grid, we want to
compute its equivalent ψ̃c in each cell of the rezoned grid given as

ψ̃c =
1

Ṽc

∫
Ω̃c

ρ̃φRdA, (2.21)

with Ṽc the volume of the cell Ω̃c. Contrary to single fluid approach, here the rezoned values ψ̃c
cannot be computed directly in each cell c. In fact, one has to take into account multi-material
aspects.

First of all, let us introduce some notations. Each material of the flow noted k occupies the

polygon Ωk,c ⊂ Ωc, within the MOF framework, such that Ωc =
⋃
k

Ωk,c and is characterized

by its partial mass, density, pressure, internal energy and variables per unit of volume (total
energy, momentum) whose averaged values in each sub-cell are respectively mk,c, ρk,c, Pk,c, εk,c
and ψk,c = ρk,cφk,c with φk,c the partial velocity or energy per unit of mass.

Thus, for multi-material flow, the main idea of remapping is not to directly compute the global
rezoned quantities ψ̃c but the partial rezoned ones noted ψ̃k,c. This is particularly true for the
MCIB method that is dedicated to treat cell in the interface neighborhood. To this end, we
first propose a second order reconstruction Ψk,c(X) of ψk,c over each Lagrangian cell c through
the piecewise linear function

Ψk,c(X) = ψk,c + (∇Ψk)c(X−Xk,c), (2.22)

where (∇Ψk)c denotes the constant gradient of Ψk,c within cell c computed thanks to a least-
squares approach. A Barth-Jespersen limiter is used to ensure monotonicity [17]. Finally Xk,c

is the centroid related to the k-th fluid in the cell c given by

Xk,c =
1

Vk,c

∫
Ωk,c

RXdA. (2.23)
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Thanks to these notations, the remapped value for MCIB is given by

ψ̃k,c =
1

Ṽk,c

∑
d∈C(c)

∫
Ωk,d∩Ω̃c

RΨk,c(X)dA, (2.24)

where the intersection polygons Ωk,d ∩ Ω̃c are computed thanks to a specific triangulation of
the mesh. The procedure is detailed in [65]. The set C(c) contains the cells including c that
share at least one node with the cell c. At last, the partial volume defined on the rezoned cell

is Ṽk,c =
∑
d∈C(c)

∫
Ωk,d∩Ω̃c

RdA.

In the context of MOF reconstruction, one has to define additional quantities as the partial
remapped mass corresponding to material k. It is computed as m̃k,c = ρ̃k,cα̃k,cṼk,c with the
volume fraction

α̃k,c =
1

Ṽc

∑
d∈C(c)

∫
Ωk,d∩Ω̃c

RdA, (2.25)

thus the partial volume can be also expressed as Ṽk,c = Ṽcα̃k,c. In addition, each material
centroid position is defined thanks to

X̃k,c =
1

Ṽk,c

∑
d∈C(c)

∫
Ωk,d∩Ω̃c

RXdA. (2.26)

2.5.2 Pure cell swept-face (PCSF) remapping
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Ωc

Ω̃c
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Ωc = Ωk,c

Ωc+ = Ωk,c+

Figure 2.14: Notations for swept face-based method.

As explained before, the PCSF remapping is used only to treat single fluid cells. In this context,
one should remark that Ωc = Ωk,c, thus the mean value ψ̃c,k is given through

ψ̃k,c = ψk,c +
∑

f∈F(c)

∫
Af

RΨk,fdA, (2.27)

with Af the quadrangular signed area swept by the face f of a cell c between the Lagrangian grid
and the rezoned grid delimited by the ordered nodes {Xp,Xp̃,Xp̃+ ,Xp+} (refer to Fig. 2.14).
We note F(c) the set of the faces f of a cell c. In addition, Ψk,f is the upwind value given by

Ψk,f =

{
Ψk,c+(X) if Af > 0
Ψk,c(X) otherwise.

(2.28)

51



with c+ the neighbor cell of c through the face f . During this step the volume fractions
α̃k,c = αk,c do not change as we consider single fluid cells and the material centroid can be

updated directly from the geometry X̃k,c = X̃c where X̃c is the centroid of the cell Ω̃c.

2.5.3 Integration strategy

For both PCSF and MCIB remapping, one has to compute several surface integrals, on polygons
where the integrand is a polynomial function of (X,Y ). This can be done using a triangulation
of these areas. Nevertheless, this is expensive. Here, we rather adopt a more efficient method as
in [121]. In this context, integrals are simplified using Taylor decomposition of the polynomial
integrand and Green’s formula [122] leading to compute circular integrals over the edges of the
polygons defining the integration areas. For further details on integral computations see [121].

2.5.4 Hybrid remapping algorithm
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◦: lagrangian mixed nodes
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: swept region : exact intersection region : interface

pure cells mixed cells pure cells

Figure 2.15: Hybrid remapping principle in one-dimension case.

In this part, we detail the hybrid remapping algorithm that is summarized on Fig. 2.15. To this
end, let us introduce NP and NM the sets of nodes and in the same manner CP and CM the
sets of cells respectively used for PCSF and MCIB remapping. Here NM collects mixed nodes
belonging to cells that contain the interface or are on this interface (white nodes on Fig. 2.15)
despite NP contains the pure ones (black nodes on Fig. 2.15). In addition, CM is the set of
mixed cell that include cells intersected by the interfaces and their neighbors by nodes. Finally,
CP contains the cells that have at least one node in NP .
The hybrid remapping procedure consists in performing the following steps.

1. PCSF step. In this step we first move the pure nodes included in NP and we remap
the quantities in cell c belonging to CP . Thus, we have ψ̃k,c = (ρ̃k,c, ρ̃Ek,c, ρ̃Uk,c) using

relation (2.27) and m̃k,c, α̃k,c, X̃k,c for each cell c ∈ Cp .

2. MCIB step. Now, the mixed nodes in NM are moved and the ψ̃k,c = (ρ̃k,c, ρ̃Ek,c, ρ̃Uk,c)

are remapped thanks to (2.24) and m̃k,c, α̃k,c, X̃k,c are computed for cells c ∈ CM .
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Since CM ∩ CP 6= {∅}, one should note that cells included in this intersection are remapped at
each step of the algorithm.

At the end of remapping, only the partial values of the physical variables per unit of volume
are known. At this step, a first point is to compute the physical variables per unit of mass.

The remapped partial total energy is given using Ẽk,c = (̃ρE)k,c/ρ̃k,c. However, this is different

for the remapped partial velocity Ũk,c. Indeed, as explained in the second part of this paper,
the Lagrangian computation of the velocity is done in Cartesian geometry. For this reason, the

remapped velocity is deduced from the (̃ρU)k,c through Ũk,c = (̃ρU)
pl

k,c/ρ̃
pl
k,c using the planar

remapped density and momentum given through (2.24) and (2.27) with R = 1. The second
point is dedicated to the reconstruction of the global values required for the next Lagrangian
step. To this end, a classical procedure is to use specific averages

φ̃c =
1

m̃c

∑
k

m̃k,cφ̃k,c, (2.29)

with the global mass and density deduced from

m̃c =
∑
k

m̃k,cα̃k,c and ρ̃c =
∑
k

ρ̃k,cα̃k,c. (2.30)

At last, thermodynamical variables as pressure P and internal energy ε are obtained thanks to
specific thermodynamical closures as done in [65].

2.6 Remapping for ReALE

2.6.1 PCSF remapping for ReALE

In this step we remap the physical variables from the Lagrangian grid onto the reconnected grid.
Both grid have the same number of cells but they may have a different number of vertices due
to reconnection. To perform the remapping step one can perform an exact intersection between
the grids [103, 65]. The main drawback of such method is the computational time. A new
method has been developed in [75] based on a swept-intersection as in [31]. We present here the
axisymmetric extension of this method. The physical variables that we want to remap are ρ, ρU ,
and ρE. In the sequel Ψc represent the mean value on the cell c of one of these physical variable.
The goal of the remapping step is to compute the new value of Ψ over the new reconnected
mesh. We use a MUSCL approach to represent the variable Ψ on the Lagrangian grid which
correspond to the piecewise linear function Ψc(X) as in (2.22). During the reconnection process
three types of configurations (Fig. 2.16) allow us to use the classical flux swept approach [121]
for the remapping.

The goal of the flux swept approach is to compute the mean value of Ψ over the cell c̃ using

Ψc̃ =
1

Vc̃

∫
c
RΨdX +

∑
f,p

∫
Qs
RΨdX

 (2.31)

where Vc̃ = Vc +
∑
f,p

∫
Qs
RdX is the volume of the new cell c̃ and Qs is one of the swept region

{Qs
ff̃
, Qsfp̃, Q

s
pf̃
} of the Fig. 2.16. The sign of

∫
Qs RdX depends on the counter-clockwise

orientation according to the cell c considered.
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Figure 2.16: three types of configurations using flux swept approach for the projection in ReALE

The integral of
∫
Qs RΨdX is computed using an upwind approximation

∫
Qs
RΨdX =

{∫
Qs RΨc+(X)dX if Qs ≥ 0∫
Qs RΨc(X)dX otherwise

(2.32)

where Ψc(X) and Ψc+(X) are the piecewise linear reconstruction of the function Ψ over the
Lagrangian cells c and c+. Here, for Qs

ff̃
and , Qsfp̃ the cell c+ is the neighbor of the cell c

through the face f . In the case of Qs
pf̃

the cell c+ is the neighbor of the cell c through the face

f̃ . At the end we need to compute surface integrals of polynomial function on polygons. The
method used a Taylor decomposition and Green’s formula. For further details see [121].

Figure 2.17: Example of Voronoi-like reconnection

During the ReALE computation drastic change in the connectivity between the cell may occur.
In the voronoi-like reconnection (Fig. 2.17) cell neighborhood changes on both side of a face
need to be treated. In this case, c1 is neighbor of c3 on the Lagrangian mesh but during the
reconnection their common face is removed and a new face has appeared between c̃2 and c̃4.

To deal with such reconnection we use a reference cell cref on the Lagrangian mesh to perform
the reconstruction. This cell can be one of the two neighbors cells of the Lagrangian face f ,
that is cref = c1 or cref = c3 (Fig. 2.18). The choice of the reference cell is based on the volume
of the swept region Qsfp̃1

and Qsfp̃2
. If

∫
Qs
fp̃1

RdX >
∫
Qs
fp̃2

RdX then cref = c1, else cref = c3.

Using the previous method we can now compute the new mean value of the reconnected cells
using:
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Figure 2.18: Reconnection zone used for swept-intersection-based method

Ψc̃1 =
1

Vc̃1

∫
c1

RΨc1dX +

∫
Qs
fp̃1

RΨcref (X)dX +
∑
f,p

∫
Qs
RΨdX

 (2.33)

Ψc̃2 =
1

Vc̃2

∫
c2

RΨc2dX−
∫
Qs
p1f̃

RΨcref (X)dX +
∑
f,p

∫
Qs
RΨdX

 (2.34)

Ψc̃3 =
1

Vc̃3

∫
c 3

RΨc 3dX−
∫
Qs
fp̃2

RΨcref (X)dX +
∑
f,p

∫
Qs
RΨdX

 (2.35)

Ψc̃4 =
1

Vc̃4

∫
c4

RΨc4dX +

∫
Qs
p2f̃

RΨcref (X)dX +
∑
f,p

∫
Qs
RΨdX

 (2.36)

If during the computation more than two Voronoi-like reconnection appear at the same face,
then the time step is reduced such that only one reconnection of this type occur.

2.6.2 MCIB Remapping for ReALE

As shown in Fig. 2.10, the Lagrangian mesh, which also include the reconstructed interface,
is remapped onto the new mesh. In the case of ReALE, the new mesh is the Voronoi mesh
corresponding to the positions of generator created by the reconnection phase. As the old
(Lagrangian) and new polygonal meshes may not have the same connectivity, the remapping
phase in the case of ReALE computation for several materials is based on a multi-material
cell-intersection-based (MCIB) exact intersection as depicted in Fig. 2.19.

Each material of the flow noted k occupies the polygon Ωk,c ⊂ Ωc, within the MOF framework,

such that Ωc =
⋃
k

Ωk,c and is characterized by its partial mass, density, pressure, internal en-

ergy and variables per unit of volume (total energy, momentum) whose averaged values in each
sub-cell are respectively mk,c, ρk,c, Pk,c, εk,c and ψk,c = ρk,cφk,c with φk,c the partial velocity or
energy per unit of mass.

Here, the main idea of remapping is not to directly compute the global rezoned quantities ψ̃c
but the partial rezoned ones noted ψ̃k,c. This is particularly true for the MCIB method that
is dedicated to treat cell in the interface neighborhood. To this end, we use the second order
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Figure 2.19: Notations for MCIB method used for multi-material ReALE.

reconstruction Ψk,c(X) of ψk,c over each Lagrangian cell c through the piecewise linear function
Ψc(X) as in (2.22). The main difference with the MCIB method presented in section 2.5.1 is
the topology change that may occur during the reconnection phase.

2.7 Flux Corrected Remapping

Here we present the Flux Corrected Remapping (FCR) [101] to avoid non-physical oscillations.
The core of the method is the convex combination of a low-order bound-preserving numerical
fluxes of the conservative quantities with high-order fluxes. Using this method, the remapped
quantities preserve local bounds directly by construction. As in the MOOD method [49], a
variety of the constraints can be selected, e.g. here we employ the bounds on density, velocity
and specific internal energy. Here, FCR is a priori method while MOOD is an iterative a
posteriori method. The preservation of the bounds is not affected by the choice of a swept flux-
based integration [94]. We avoid also the non-physical repair techniques [149, 106] and construct
a simple bounds-preserving remapping method. When the Lagrangian method preserves positive
specific internal energy, then its lower bound guarantees its positivity after the remap.

The core feature of the interpolation of the fluid quantities from the Lagrangian grid to the re-
zoned one is the conservation of appropriate quantities. For the Euler hydrodynamic equations,
these quantities are total mass

∑
iMi, total momentum components

∑
i Pxi ,

∑
i P

y
i and total

energy
∑

i Ei. The summation goes over all cells i of the computational grid. For the considered
case where the old and new cells are close to each other (for details of this analog of the CFL
condition see [158]), the conservation is achieved by the flux form of remapped values

Ũi = U i +
∑
k∈Ci

FUik . (2.37)

Here U i ∈ {Mi,Pxi ,Pyi , Ei} stands for the old mean cell conservative quantity and FUik for its
numerical flux through the face (i,k). The set of all edge-neighboring cells to the cell i is
denoted by Ci. The other remapped variables (lower-case) are then defined as a combination of
the conservative ones, that is mean cell density ρ̃i, velocity Ũi, momentum µ̃i, total energy ẽi

56



and specific internal energy ε̃i

ρ̃i = M̃i/Ṽi (2.38)

Ũi = µ̃i/ρ̃i = P̃ i/M̃i (2.39)

ε̃i = ẽi/ρ̃i − Ũ2
i /2 = Ẽi/M̃i − P̃2

i /2M̃2
i . (2.40)

To be conservative, the reconstruction inside each cell is performed for the conservative quanti-
ties ui ∈ {ρi,µi, ei}. The employed FCR method is however able to preserve bounds on different
quantities.

The application of the Flux Corrected Transport method during the remapping step of the ALE
algorithm is reviewed in [100]. The basic idea of the method is to provide a convex combination
of the bound-preserving low-order numerical flux and the precise high-order one, which satisfy
the given bounds. The remapped conservative quantity in the cell i has the form

Ũi = Viui +
∑
k∈Ci

Fik = U i +
∑
k∈Ci

[
FLik + Cik (FHik − FLik)︸ ︷︷ ︸

dFik

]
= ŨLi +

∑
k∈Ci

CikdFik . (2.41)

The summation goes over the set of all edge neighbors Ci, Vi represents the old cell volume, ŨLi
the quantity remapped by the low-order method and dFik the difference between the high- and
low-order numerical fluxes, i.e. so called anti-diffusive flux. The task is how to compute the
edge-based correction factors Cik ∈< 0, 1 > for the mass, momentum and total energy remap.

In the 1D sequential FCR idea [155], the correction factor for the momentum remap Cµik is
expressed as Cµik = CmikCik < Cmik (where Cmik is the correction factor for the mass remap) and
similarly CEik = CµikC

m
ikCik for the energy remap. More recently, Synchronized FCR (SFCR) [101]

method uses a local optimization procedure with one constrained minimization problem for each
interface (i, k) to get the optimal values of the independent correction factors (Cmik , C

µ
ik, C

E
ik) for

mass, momentum and energy.

On the contrary, the same value of the correction factors Cmik = Cµik = CEik = Cik is assumed
in the presented method. This allows to resolve all constraints in a simple and more efficient
way. Expected increase of numerical diffusion near shocks caused by the same correction factors
for all conservative quantities is compensated by the use of the described third-order piecewise
quadratic (instead of the standard piecewise linear) reconstruction for the high-order fluxes (see
Appendix A). All conservative quantities are discontinuous on the shock and thus all these
quantities need to be limited. Our choice of the same value of the correction factors means that
we limit all the quantities in the same manner.

The method is constructed to preserve the bounds on the remapped density, the components of
velocity projected in the local flow direction (ξ, η) and the specific internal energy

ρmin
i ≤ ρ̃i ≤ ρmax

i , ρ
min /max
i = min/max

k∈{i,Ci}
(ρk) (2.42)

wξ,min
i ≤ Ũ ξ

i ≤ w
ξ,max
i , w

ξ,min /max
i = min/max

k∈{i,Ci}

((
RiUk

)ξ )
(2.43)

wη,min
i ≤ Ũη

i ≤ w
η,max
i , w

η,min /max
i = min/max

k∈{i,Ci}

(
(RiUk)

η ) (2.44)

εmin
i ≤ ε̃i ≤ εmax ∗

i , εmin
i = min

k∈{i,Ci}
(εk) (2.45)

Ri =
1

|Ui|

(
(Ui)

x (Ui)
y

− (Ui)
y (Ui)

x

)
, εmax ∗

i = max

(
ε̃Li , max

k∈{i,Ci}
(εk)

)
. (2.46)
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The classical velocity bounds in the Cartesian x and y directions do not preserve symmetry for
remap of a polar velocity field from one polar mesh to another[158]. To achieve the symmetry,
we apply the bounds in the direction of the local velocity and the direction orthogonal to it
by multiplying the velocity by the rotation matrix Ri, see [158] inspired by [112]. Because of
the form (2.40), even the remapped internal energy ε̃Li by the low-order method can exceed its
maximum bound. Therefore, the maximum of this remapped value ε̃Li and the maximum over
the neighboring cells is included in (2.46). We know all the low-order remapped values of mass

M̃L
i , local flow direction momentum components P̃ξ,Li , P̃η,Li (radial and polar for radial flow)

and total energy ẼLi ; as well as corresponding anti-diffusive fluxes dFMik , dFP
ξ

ik , dFP
η

ik , dF Eik. The
standard FCR machinery substitutes (2.41) into both sides of inequalities (2.42,2.43,2.44,2.45)
and with respect to (2.38,2.39,2.40) provides a set of cell-based constraints

Cik ≤ D1
i =

ρmin
i Ṽi − M̃L

i∑
k∈Ci

min
(
0, dFMik

) (2.47)

Cik ≤ D2
i =

ρmax
i Ṽi − M̃L

i∑
k∈Ci

max
(
0, dFMik

) (2.48)

Cik ≤ D3
i =

wξ,min
i M̃L

i − P̃ξ,Li∑
k∈Ci

min
(

0, dFP
ξ

ik − w
ξ,min
i dFMik

) (2.49)

Cik ≤ D4
i =

wξ,max
i M̃L

i − P̃ξ,Li∑
k∈Ci

max
(

0, dFP
ξ

ik − w
ξ,max
i dFMik

) (2.50)

Cik ≤ D5
i =

wη,min
i M̃L

i − P̃η,Li∑
k∈Ci

min
(

0, dFP
η

ik − w
η,min
i dFMik

) (2.51)

Cik ≤ D6
i =

wη,max
i M̃L

i − P̃η,Li∑
k∈Ci

max
(
0, dFP

η

ik − w
η,max
i dFMik

) (2.52)

Cik ≤ D7
i =

εmin
i (M̃L

i )2 − ẼLi M̃L
i + 1

2

[(
P̃ξ,Li

)2
+
(
P̃η,Li

)2
]

∑
k∈Ci

min

(
0, dF de,min

ik +
∑
l∈Ci

min
(

0, dF ds,min
ikl

)) (2.53)

Cik ≤ D8
i =

εmax ∗
i (M̃L

i )2 − ẼLi M̃L
i + 1

2

[(
P̃ξ,Li

)2
+
(
P̃η,Li

)2
]

∑
k∈Ci

max

(
0, dF de,max

ik +
∑
l∈Ci

max
(

0, dF ds,max
ikl

)) . (2.54)

The demonstrative derivation of one inequality and the definition of dF
de,min /max
ik , dF

ds,min /max
ikl

is provided in the Appendix. Note that all quantities on the right-hand side are known, so the
computation of the cell-based Di’s consists only from summation of known quantities according
to their signs. For the edge (i, k) between cells i and k, the final correction factor is

Cik = min
j∈{1,...,8}

(Dj
i , D

j
k) . (2.55)
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(a) (b)

Figure 2.20: 1D Sod shock tube at time t = 0.2, Eulerian mode, 3 × 100 cells. Density (a) and
specific internal energy (b).

2.8 Numerical results

We present in this section several numerical test cases performed using the various development
proposed in this chapter. In the sequel, all the materials are governed by perfect gas equation
of state p = ρε(γ − 1), where ε stands for the internal energy and γ for the polytropic index of
gas.

2.8.1 Eulerian Sod shock tube and Noh problem

To demonstrate the bounds preservation using FCR method presented in Section 2.7, we start
with the standard Sod shock tube test [150]. The Eulerian mode, i.e. remapping in every
time step to the initial grid, was used to emphasize the properties of the remap. Final density
Fig. 2.20(a) and internal energy Fig. 2.20(b) are shown in Fig. 2.20. For the piecewise linear
reconstruction, the FCR method is more diffusive on the contact discontinuity than the BJ-
limited method. This is probably due to the application of the same correction factors to
the numerical fluxes of all conservative quantities. The piecewise quadratic reconstruction
compensates this penalty. Both piecewise linear and piecewise quadratic FCR methods preserve
the bounds on density, velocity and specific internal energy during the remapping stage of the
calculation, whereas the standard BJ limiter does not remove all numerical oscillations in the
internal energy.

The same can be observed from the results of the Noh implosion test case [128] in Fig. 2.21 at
the final time 0.6 of the Eulerian computation with the constant initial density 1 and the radial
velocity -1 on the square grid with 100 × 100 cells. The initial and boundary pressure was set
to 1E-6. We want to notice that the BJ-limited remapping method fails to pass these complex
tests with negative internal energy.

2.8.2 Axisymmetric Sedov problem using ALE

We present now the Sedov problem for a point blast in a uniform medium with spherical
symmetry [147, 88]. We use this test case to compare our new formulation with the original
EUCCLHYD scheme in pure Lagrangian and coupled to the CCALE-MOF procedure. Both
formulation are based on the high-order extension of the Lagrangian scheme as it is presented
in [109]. The initial conditions are given by (ρ0, P 0,U0) = (1, 10−6,0) in a spherical domain of
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(a) (b) (c)

Figure 2.21: Density for the Noh test case at time t = 0.6, FCR with a piecewise constant- (a),
linear- (b), resp. parabolic (c) high-order reconstruction. Eulerian mode.
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Figure 2.22: Initial grid and material positions for the Sedov problem.
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radius 1.2 except in the cell at the origin (0, 0) where an initial delta-function energy source is
set through the pressure

Por = (γ − 1)ρor
E0

Vor
,

with Vor the volume of the origin cell and E0 = 0.851072 is the total amount of released energy.

The fluid has its polytropic index γ equal to
7

5
. Contrary to the original single material test

case, we add here three artificial interfaces, to test our multi-material CCALE-MOF algorithm.
These interfaces are initially located for a radius equal to 0.1, 0.2 and 0.3 (see Fig. 2.22).
Here we consider both Lagrangian and ALE computations for an initial unstructured mesh
depicted on Fig. 2.22. This grid is obtained after one rezoning step, with ωp = 1 of an
unstructured mesh initially paved with 500 quadrangular cells. Numerical results are depicted
on Fig. 2.23 for a final time of tend = 1 and compared to the analytical solution computed
using self-similar arguments as done in [27]. It consists of a diverging shock wave whose front
is exactly localized at radius R = 1. As it is illustrated on Fig. 2.23, the pure Lagrangian
solutions are in good agreement with the analytical one. Indeed for the Lagrangian method as
for the CCALE-MOF one the shock location is well resolved without any spurious oscillation
(Fig. 2.23). In addition, this simple problem underlines the robustness (better mesh quality
near the origin) and accuracy (shock location) of the axisymmetric CCALE-MOF approach
especially when considering multi-material flows whose interfaces are well captured thanks to
the MOF reconstruction (see Fig. 2.25).
We point out that during the Lagrangian computation, non-convex cells appeared. This may
lead to interface reconstruction failure when considering multi-material flows. As illustrated by
the previous numerical results, the proposed CCALE-MOF algorithm remains adapted to treat
such configuration without any difficulty demonstrating once again its robustness.

2.8.3 Planar Sedov problem using ReALE

The initial conditions are given by (ρ0, P 0,U0) = (1, 10−6,0) in a square domain [0, 1.2]×[0, 1.2]
except in the cell at the origin (0, 0) where an initial delta-function energy source is set through
the pressure

Por = (γ − 1)ρor
E0

Vor
,

with Vor the volume of the origin cell and E0 = 0.244816 is the total amount of released energy.

The fluid has its polytropic index γ equal to
7

5
. The solution to this problem consists of a

diverging shock whose front is located at radius R = 1 at the final time t = 1 and peak
density reaches the value 6. Contrary to the original single material test case, we add here
three artificial interfaces, to test our multi-material ReALE-MOF algorithm. These interfaces
are initially located for a radius equal to 0.1, 0.2 and 0.3 (see Fig. 2.24).
Here we consider both Lagrangian and ReALE computations for an initial unstructured mesh
paved with 625 cells depicted on Fig. 2.24. This mesh has initially mainly quadrangular cells.
The generators used to create this mesh are in the center of the cells except for generators at
the corners. As shown in Fig. 2.25, this problem does not require the ReALE technique as it
runs pure Lagrangian up to final time.
This problem is presented here as a sanity check test case to assess the ability of our Lagrangian
phase and ReALE scheme to handle multi-interface problems. Numerical results are depicted
in Fig. 2.25 for a final time of tend = 1 and compared to the analytical solution computed using
self-similar arguments as done in [65]. It consists of a diverging shock wave whose front is exactly
localized at radius R = 1 at the final time. As illustrated in Fig. 2.25, the computed solutions
are in good agreement with the analytical one for both approaches. As a matter of fact, shock
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Figure 2.23: Sedov problem. From the top to the bottom: Interface positions, density maps,
density profiles defined as a function of the cell center radius compared to the analytical solution
at final time step for the pure Lagrangian computation AW scheme (left) and the CCALE-MOF
procedure (right).
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Figure 2.24: Initial grid and material positions for the Sedov problem.

and interface locations are well resolved for the Lagrangian method. For the ReALE-MOF
method we have some diffusion due to the reconnection-remap algorithm but we have a good
symmetry preservation on the density profiles. This simple problem underlines the robustness
and accuracy of the ReALE-MOF approach especially when considering multi-material flows
whose interfaces are well captured thanks to the MOF interface reconstruction (see Fig. 2.25).

2.8.4 Axisymmetric triple point problem using ALE

We consider in this part a three-material problem that corresponds to a three-state Riemann
problem in an axisymmetric geometry also called the triple point problem. This problem has
been wisely studied in Cartesian geometry [65, 93] and here we propose new results for cylindri-
cal geometry. The computational domain is rectangular and composed of three regions (blue,
green, red) whose dimensions are depicted on Fig.2.26. The top, left and right boundaries are
closed thanks to walls. A symmetry condition is applied to the bottom boundary corresponding
to the X-axis. Initially, the blue region contains a fluid with high pressure and density taken
equal to (ρ1, p1) = (1, 1). The green region contains a low density and pressure fluid whose ini-
tial state is (ρ2, p2) = (0.125, 0.1). The third fluid in the red region, initially has a low pressure
and an high density equal to (ρ3, p3) = (1, 0.1). At the beginning of the computation, all fluids
are supposed to be at rest then U1 = U2 = U3 = 0. The blue and green material have the
same polytropic index γ1 = γ2 = 1.5, despite the red one has γ3 = 1.4.

The computation using the presented axisymmetric extension of the CCALE-MOF algorithm
is made on a grid initially paved with 140 × 60 square cells until a final time tf = 5. For
this simulation, comparison with a full Lagrangian computation can not be performed since its
suffers from important mesh tangling as shown in [103]. However comparison to full Eulerian
simulations is done. In this case, nodes are moved to their initial positions during the rezoning
step. Numerical results for both ALE and Eulerian methods representing interfaces and meshes
are depicted on Fig.2.27-2.28. As expected, since there is a shock wave with high speed that
propagates from the heavy material (blue) to the light one (red), the interface is sheared at
the triple point producing a Kelvin-Helmholtz like instability. Here, comparison to planar
2D computations [65] demonstrates that axisymmetric geometry particularly affects the vortex
shape that is 3D. Although the global behavior of the solutions is very similar comparing ALE
approach to the Eulerian one.
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Figure 2.25: Sedov problem. From the top to the bottom: Interface positions, density maps,
density profiles defined as a function of the cell center radius compared to the analytical solution
at final time for the pure Lagrangian procedure (left) and the ReALE-MOF procedure (right).
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Figure 2.26: Axi-symmetric triple point problem : geometry and initial data.
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Figure 2.27: Axisymmetric triple point problem. Mesh and material positions at t = 5 for
Eulerian computation.
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Figure 2.28: Axisymmetric triple point problem. Mesh and material positions at t = 5 for ALE
computation.

2.8.5 Planar triple point problem using ReALE

We consider now the triple point problem in planar geometry with ReALE strategy as in [93,
134]. The computational domain is rectangular and composed of three regions (blue, green,
red) whose dimensions are depicted on Fig. 2.29. All the boundary conditions are set to wall.

The computation using the ReALE-MOF algorithm is made on a grid initially paved with
8400 cells until a final time tend = 5. For this simulation, comparison with a full Lagrangian
computation can not be performed since its suffers from severe mesh tangling as shown in [103].
However comparison to ALE simulations is done using CCALE-MOF method on a 140×60 grid.
Numerical results for both CCALE-MOF and ReALE-MOF methods representing interfaces
and meshes are depicted on top of Fig. 2.30-2.31. Additionally, we present at the bottom the
material initially present in that cell. As expected, since there is a shock wave with high speed
that propagates from the heavy material (blue) to the light one (red), the interface is sheared
at the triple point producing a Kelvin-Helmholtz like-instability. Here, comparison between
CCALE-MOF and ReALE-MOF shows that the ReALE formulation keeps the Lagrangian
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property of the mesh to follow the material whereas the ALE computation clearly shows a
mesh stagnation. One should note a notable difference in the shape vortex. Indeed, like in the
previous test case, the vortex produced using ReALE is more rolled up than with ALE. In both
ALE and ReALE computations MOF interface reconstruction succeed to track a filament of
green fluid of a cell size in the vortex.
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Figure 2.29: Triple point problem : geometry and initial data.

2.8.6 Rayleigh-Taylor instability using ReALE

This test case deals with the well-known Rayleigh-Taylor instability.

The computational domain is the rectangular box [0, 1
3 ] × [0, 1]. The initial set up consists

of two immiscible fluids which are separated by a perturbed interface, whose equation writes
yi(x) = 1

2 + a0 cos(6πx). The interface amplitude a0 is set to the value a0 = 10−2. The heavy
fluid is located above the light one. The densities of the two fluids are ρh = 2 and ρl = 1.
The same polytropic index γh = γl = 1.4 is shared by the two fluids. A downward gravity field
is applied, g = (gx, gy)

t = (0,−0.1)t. Initially both fluids are at rest and the initial pressure
distribution is deduced by setting hydrostatic equilibrium as

Ph(x, y) = 1 + ρhgy(y − 1), if y > yi(x),

Pl(x, y) = 1 + ρhgy[yi(x)− 1] + ρlgy[y − yi(x)], if y ≤ yi(x).

In this problem a heavy fluid drop while a light fluid rise. Due to a sinusoidal initialization of
the interface and to gravity, vortices develop in the vicinity of the interface and lead at later
time to an interface which has a mushroom-like shape. Although this problem is incompressible
and does not involve any shock wave, we run it using our multi-material CCALE-MOF [64] and
ReALE-MOF algorithms. The computation is run until the final time tend = 9 first using the
CCALE-MOF algorithm on a polygonal grid of 1717 cells. Then, we use a grid made of 1818
generators to run it using ReALE-MOF method.

In Fig. 2.32(a)-(b) we present the material interface on the left and the material initially in this
cell on the right respectively for CCALE-MOF and ReALE-MOF computations. We clearly see
that the generators in the ReALE computation follow material interface whereas the rezoned
mesh in the ALE simulation stagnates. At that point the ALE computation is mostly Eulerian.
We have also superimposed the interface obtained using the front tracking code FronTier [68, 67].
The results of this code are used by the courtesy of J.W. Grove of the Los Alamos National
Laboratory. We point out that FronTier is run with a very fine resolution characterized by
106×320 cells. We note that we have a rather good agreement between our ReALE results and
Frontier interface compare to the ALE results which present a more stretched mesh. This test
case clearly illustrate the limitation of the fixed topology of the ALE computation.
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Figure 2.30: Triple point problem. Material positions (top) and initial material in a cell (bottom)
at t = 5 for ALE computation.

Figure 2.31: Triple point problem. Material positions (top) and initial material in a cell (bottom)
at t = 5 for ReALE computation.

2.8.7 Kelvin-Helmholtz instability

This test case deals with another instability, the Kelvin-Helmholtz one [151]. The initial do-
main is a rectangular domain displayed in Fig. 2.33. All quantities are initialized as shown
in Fig. 2.33, and we set for all zones the same adiabatic constant γ = 5/3. A single mode is
excited with a wave-length equal to half the box size by perturbing the velocity field U = (u, v),
according to:

v(x, y) = ω0 sin(4πx)

(
exp

(
(y − 0.25)2

2σ2

)
+ exp

(
(y − 0.75)2

2σ2

))
,

where ω0 = 0.1 and σ = 0.05/
√

2.
The computational domain is a square box [0, 1]× [0, 1] with periodic boundary conditions. The
computation is run until the final time tend = 2. First, an Eulerian computation is performed
on a grid paved with 100×100 square cells. Eulerian computation is performed using ’Lagrange
plus remap’ technique. For this case, periodic boundary conditions are computed by adding
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(a) (b)

Figure 2.32: Incompressible Rayleigh-Taylor instability. Comparison versus FronTier interface
(green curve). (a) CCALE-MOF snapshots of the grid and interface at final time (left) and
cells initially filled of heavy fluid (right). (b) ReALE-MOF snapshots of the grid and interface
at final time (left) and cells initially filled of heavy fluid (right).
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Figure 2.33: Initial conditions of the Kelvin-Helmholtz instability.

ghost cells on the left and right sides of the domain. In these ghost cells we impose the value
of the corresponding cells from the computational domain. Then, a ReALE computation is
performed using the same initial grid. In that case, periodic boundary conditions are computed
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by moving generators that go out of the domain on the opposite side. As shown in Fig. 2.34
ReALE produce a stronger roll up than the Eulerian computation.

Figure 2.34: Kelvin-Helmholtz instability. Eulerian (left) and ReALE (right) computation.

2.8.8 Spherical implosion

Figure 2.35: Multi-mode implosion in spherical geometry. Initial geometry and data.

The last test-case of this chapter deals with the numerical computation of a spherical implosion
as initially treated in [166]. The interest of this simulation is twofold. First, this is a realistic
problem quite close to those encountered in Ignition Confinement Fusion (ICF) simulation.
Then, it allows to test the capability of the multi-material CCALE-MOF algorithm with hybrid
rezoning.
Here we focus on the treatment of perturbed interfaces where compressible Rayleigh-Taylor
instabilities occur.
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Let us consider a spherical ball of light fluid (r ∈ [0, 10]) initially surrounded by a shell of heavy
fluid (R ∈ [10, 12]) as depicted on Fig. 2.35. For both fluid the polytropic index is the same

γl = γh =
5

3
. The initial pressures and densities are (ρl, pl) = (0.05, 0.1) and (ρh, ph) = (1, 0.1).

The implosion is driven by imposing the following pressure law on the dense shell boundary

p∗(t) =

{
10 if t ∈ [0, 0.5],

12− 4t if t ∈ [0.5, 3].

Finally, the interface between the light and the heavy fluids is initially perturbed according to
the law

rperp = rp(1 + a0D(rp)Pl(cos(θp))

with the damping factor

D(rp) =


1− rp − ri

re − ri
if rp ∈ [ri, re],

1− ri − rp
ri

if rp ∈ [0, ri].

where rperi denotes the perturbed radius and a0 is the amplitude of the perturbation. Finally,
Pl is the lth Legendre polynomial. In the sequel l = 10 and several values of a0 are considered
from the non-perturbed case a0 = 0, to weakly and strongly perturbed one with respectively
a0 = 2× 10−4 and a0 = 1× 10−3.
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Figure 2.36: Spherical implosion. Initial polar (left) and unstructured (right) grids.

Computations are made for two different meshes until the final time tf = 3. The first one is
a polar grid displayed on Fig. 2.36-(left) composed of 90 × 40 cells. Size of cells in the radial
direction have been chosen respecting a mass radial spacing deduced from the equivalent one-
dimensional test case. The other grid, is obtained after an hybrid regularization for ωp = 1 of
an unstructured mesh initially paved with 3200 quadrangular cells respecting the mass radial
spacing (see Fig. 2.36-(right)).

Non-perturbed case with a0 = 0. As a first study, we test the behavior of our algorithm
in axisymmetric geometries in pure Lagrange computation for both meshes. One advantage of
the unstructured mesh is to not impose a drastic time step for computation due to triangular
cells with high aspect ratio in the polar mesh as shown in Fig. 2.37-(right).
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Figure 2.37: Spherical implosion without deformation. t − R diagram constructed using polar
grid (left). Time step history using two-dimensional grids (right).

The t−R diagram is plotted in Fig. 2.37-(left) and represents the radius of each point on the
symmetry axis Y = 0 of the polar grid as function of time. The red thick curves outline the
inner and outer radii. This diagram allows to follow the waves that propagate in the shell. After
time t = 1.5, the shock waves bounce between the center and the inner interface of the shell and
decelerate the implosion of the shell. This phase is called the stagnation phase and finish when
the inner interface radius reaches its minimum value. After this phase the light fluid present in
the center of the shell is pushing the heavy fluid that surround it. This type of flow is unstable
in the sense of the Rayleigh-Taylor instability. It leads to a phase wherein perturbation at the
inner interface grow exponentially as a function of time.

Figure 2.38: Spherical implosion without deformation. L1, L2 and L∞ norms for symmetry
preservation on polar grid (left) and unstructured grid (right).
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To study the symmetry preservation of the non-perturbed case we define the following norms

L∞(t) = max
i=1,...,Np

| ri(t)− r̄(t) |
r̄(t)

,

L1(t) =
1

Np

Np∑
i=1

| ri(t)− r̄(t) |
r̄(t)

,

L2(t) =

√
1
Np

∑Np
i=1[ri(t)− r̄(t)]2

r̄(t)
.

Where ri(t) is the radius of a vertex at the inner interface and r̄(t) is the mean radius computed
as

r̄(t) =
1

Np

Np∑
i=1

ri(t),

with Np = 41. Those norms are displayed for both grids in Fig. 2.38. The polar grid leads
to the best symmetry preservation as the maximum deviation is around 3 × 10−7 whereas the
unstructured grid deviation reaches 4.5 × 10−3. This is due to the triple point present in the
unstructured grid at the intersection of the different blocks of mesh. The unstructured grid is
less stable than the polar mesh but as we can see on Fig. 2.39 the growth of the perturbations
during the Rayleigh-Taylor phase is still not visible.
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Figure 2.39: Spherical implosion without deformation. Mesh and density for polar (left) and
unstructured (right) grids at final time tf = 3.

Weakly perturbed case with a0 = 2 × 10−4. Now, we investigate the capability of our
CCALE-MOF algorithm to treat perturbed interfaces on both non-structured and polar meshes.
To this end, comparisons with pure Lagrangian results are first achieved for weakly perturbed
interfaces imposing a0 = 2× 10−4. Here for both polar and hybrid meshes, the GCNS is used.
As demonstrated on Fig. 2.40, for the polar mesh as well as for the non-structured mesh, ALE
results, especially concerning the interface deformation, are in very good agreement to those
obtained thanks to pure Lagrangian computations. Furthermore, one should note that for the
ALE computation on polar grid the quality of the mesh is improved near the origin. Indeed,
the central cells are not systematically shifted to the origin contrary to computations achieved
using CNS rezoning.
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Figure 2.40: Spherical implosion with small deformation. Mesh and density for Lagrangian (top)
and ALE (bottom) computations at final time tf = 3 for both polar (left) and unstructured
(right) grids.

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9

10

11

12

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2.41: Spherical implosion with important deformation. Mesh and density for ALE
computation for both polar (left) and unstructured (right) grids at final time tf = 3.
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Strongly perturbed case with a0 = 1 × 10−3. Finally, we perform a computation of this
implosion for a more pertubated interface choosing a0 five times greater than previously with
a0 = 1 × 10−3. Due to mesh tangling, this is not possible to purchase such a test case us-
ing only Lagrangian method whose computation fails for t > tfail = 2.6. Here, only results
obtained thanks to our axisymmetric multi-material CCALE-MOF are presented. Contrary,
to Lagrangian computations, the multi-material ALE simulations run without any difficulties
thanks to specific rezoning. For both grids, final results (see Fig. 2.41) are very close. In
particular we note the Rayleigh-Taylor instability has grown in a same way leading to similar
interface shape deformation at final time.
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Chapter 3

A multi-dimensional cell-centered
finite volume scheme for solving
anisotropic diffusion on unstructured
grids

In this chapter we are interested in the resolution of anisotropic diffusion on non-conformal
non-orthogonal 2D and 3D meshes. Simulation in the context of High Energy Density Physics
(HEDP) and more precisely in the field of laser plasma interaction requires usually Lagrangian
schemes for the hydrodynamics part. Therefore, the modelization of electron transport, which
requires the resolution of anisotropic diffusion equation in the presence of magnetic field, should
be done on distorted grids with a strong coupling between gas dynamics and diffusion [33].
Moreover, the lack of robustness of Lagrangian methods due to strong grid deformations requires
usually to regularize the mesh through the use of Arbitrary Lagrangian Eulerian (ALE) methods
[65]. Theses methods usually add some diffusion and a loss of precision is observed. In this
paper we propose to use Adaptive Mesh Refinement (AMR) techniques to reduce this loss of
accuracy. This work focus on the resolution of the anisotropic diffusion operator on ALE-AMR
grids. AMR approach is a good candidate to capture fine physical details without using too
many degrees of freedom, especially for 3D. AMR grids are usually based on quadrangular
cells in 2D and hexahedral cells in 3D but they will present hanging-node between two level of
refinement when two cells share a face with one cell. While classical AMR schemes deal with
orthogonal meshes [81, 133, 167] we will use non-orthogonal grids as we want to couple our
diffusion scheme with a Lagrangian or ALE hydrodynamics code in which the grid is moving
and is thus deformed [9].
The Support Operator Method (SOM) also called Mimetic Finite Difference (MFD) method
has been already used to solve diffusion equation on AMR like grids [98]. MFD method used
in [98] is characterized by unknowns located at both cell-centers and face centers.
The resolution of anisotropic diffusion problems on unstructured distorted grids has motivated
the development of the multi-point flux approximations (MPFA) scheme [1, 2, 62]. In this
method, a multi-point expression is used to approximate the flux through transmissibility co-
efficients. These coefficients are computed using the point-wise continuity of the normal flux
and the temperature across cell interfaces. There are many variants of the MPFA methods
and the most popular for heterogeneous anisotropic diffusion problems is the MPFA O-scheme
which is based on cell-centered unknowns and a local stencil. The global matrix obtained from
this type of scheme is generally non-symmetric. However, the resolution of anisotropic diffusion
problems on AMR grid with cellwise discontinuous diffusion coefficients can not be handled by
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the O-scheme. A more recent MPFA method, the L-scheme, based on a more compact stencil
is able to solve this drawback [3].

The numerical scheme we present here is an extension of the Cell-Centered Lagrangian Diffusion
(CCLAD or CCLADS) scheme first presented in [36] in 2D and then extended in 3D in [86].
We will focus here on the Non-Symmetric version of this scheme (CCLADNS) described in
[115]. This scheme has similarity with the MPFA scheme as it is based on piecewise linear
reconstruction and continuity conditions on mesh edges. This scheme is a cell-centered finite
volume scheme that solves the anisotropic heat conduction equation and we will extend it here
for d-dimensional AMR grids.

Let us first introduce the governing equations for the present work. The domain Ω(t) ∈ Rd is an
open set of the d-dimensional space and Σ(t) its boundary. The position vector of an arbitrary
point inside the domain is denoted by x. The goal is to construct a numerical scheme which
solves the following initial-boundary-value problem for the temperature T = T (x, t)

ρCv
∂T

∂t
+∇ · q = ρr, (x, t) ∈ Ω(t) (3.1a)

T (x, 0) = T 0(x), x ∈ Ω(t) (3.1b)

T (x, t) = T ∗(x, t), x ∈ Σ(t)D (3.1c)

q(x, t) · n = q∗N (x, t), x ∈ Σ(t)N (3.1d)

Here, ρ, Cv and r denote respectively the density of the material, the heat capacity at constant
volume and a source term. The initial condition is given by the initial temperature field T 0. Two
types of boundary conditions are considered here: Dirichlet and Neumann boundary conditions.
They consist in specifying respectively the temperature and the flux. We introduce the partition
Σ(t) = Σ(t)D ∪ Σ(t)N of the boundary domain. Here, T ∗ and q∗N denote respectively the
prescribed temperature and flux for the Dirichlet and Neumann boundary conditions. The
vector q denotes the heat flux and n is the outward unit normal to the boundary of the domain
Ω(t).
Equation (3.1a) is a parabolic partial differential equation for the temperature T , where the
conductive flux, q, is defined according to the Fourier law

q = −K∇T. (3.2)

Where the second-order tensor K, is the conductivity tensor which is an intrinsic property of the
material under consideration. In the next section we present the three-dimensional extension
of the CCLADNS scheme, originally described in 2D by Maire and Breil in [115], following
the approach presented in 3D in [86]. Then we will discuss the two-dimensional extension to
AMR meshes before introducing the three-dimensional extension of the 3D AMR version of
the CCLADNS scheme. Finally, we will present some numerical results which illustrate the
accuracy of the CCLADNS scheme.

3.1 Space discretization of the CCLADNS scheme in three di-
mensions

We now present the space discretization of the CCLADNS scheme in three-dimensional geome-
tries. We first recall the notations needed to describe the three-dimensional scheme [86] and we
use them along with the CCLADNS approach described in [115].
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Figure 3.1: Representation of the iota Ipfec and the outward normal vector trpfec related to
point p, face f and edge e in the hexahedral cell c (left). Quadrilateral face, f , related to the

hexahedral cell ωc. The sub-face, Sfp , related to point p and face f is obtained by gathering the
triangular faces corresponding to the triangles trpfe (right).

3.1.1 Geometrical notations

Let us dicretize the spatial domain Ω(t) in Nc non-overlapping polyhedrons denoted ωc such
that Ω(t) =

⋃
c ωc. The list of vertices (points) of cell c is denoted by P(c). In addition, p

being a generic point, we denote by xp its position vector and by C(p) the set of all the cells
surrounding point p. To complete the cell geometry description, we introduce the set F(c) as

being the list of the faces of cell c. A face can be denoted either by the index f or by ∂ωfc .
Here, the mesh is composed of polyhedral cells, which is a volume enclosed by an arbitrary
number of faces. Each face is determined by an arbitrary number (3 or more) of vertices. In
3D, a face which have four or more vertices, can be non-coplanar, thus the face is not a plane
and it is difficult to define its unit outward normal. To overcome this problem, we use the
decomposition of a polyhedral cell into elementary tetrahedrons, as introduced by Burton in
[38]. Using the same terminology, these elementary tetrahedrons are called iotas, since ι is the
smallest letter in the Greek alphabet. Being given the polyhedral cell c, we consider the vertex
p ∈ P(c) which belongs to the face f ∈ F(c) and the edge e. The iota, denoted Ipfec, related
to point p, face f and edge e of cell c, is constructed by connecting point p, the centroid of cell
c, the centroid of face f and the midpoint of edge e as displayed in Fig. 3.1. Furthermore, we
denote by trpfec, the outward normal vector of the triangular face obtained by connecting the
point p to the midpoint of edge e and the centroid of face f related to cell c. Let us point out
that trpfe =| trpfec | is the area of the triangular face (Fig. 3.1).

The set of sub-faces, {∂ωfpc, p ∈ P(c, f)}, where P(c, f) is the set of points of cell c lying
on face f , is a partition of the face f . From this decomposition we can define the set F(p, c),
which is the list of sub-faces related to the faces f of cell c impinging at point p. We observe
that the former set is linked to the latter by F(c) = ∪p∈P(c)F(p, c). We can also define the
decomposition of the polyhedral cell ωc into sub-cells ωpc as shown in Fig. 3.2. The sub-cell
ωpc related to point p is obtained by gathering the iotas attached to point p as follows

ωpc =
⋃

f∈F(p,c)

⋃
e∈E(p,f)

Ipfec,

where E(p, f) is the set of the edges of face f holding point p. For the hexahedral cell displayed
in Fig. 3.2, the sub-cell ωpc is made of 6 iotas since there are 3 faces impinging at point p and
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Figure 3.2: Representation of the sub-cell ωpc, the sub-face Sfp (left) and the dual-cell ωp (right)
in the simple case of hexahedral cells with square faces.

two edges connected to point p (cf. Fig. 3.1). The volume of the sub-cell ωpc is then given by

| ωpc |=
∑

f∈F(p,c)

∑
e∈E(p,f)

| Ipfec | .

The polyhedral cell c can be reconstructed using the set of sub-cells, {ωpc, p ∈ P(c)}, and thus
the cell volume is defined by

| ωc |=
∑
p∈P(c)

| ωpc | .

We can finally define the dual cell ωp related to node p, by gathering all the sub-cells ωpc around
this node as

ωp =
⋃

c∈C(p)

ωpc,

where C(p) is the set of all the cells sharing node p. The dual cell ωp is displayed in Fig. 3.2 in
the simple case of an hexahedral cell.

The sub-face related to point p and face f is denoted by ∂ωfpc and defined as ∂ωfpc = ωpc ∩ ∂ωfc .
It consists of the union of the two outer triangular faces attached to the two iotas related to
point p and face f , refer to Fig. 3.2. The area and the unit outward normal of the sub-face
∂ωfpc are respectively given by

Sfp =
∑

e∈E(p,f)

trpfe and nfpc =
1

Sfp

∑
e∈E(p,f)

trpfec.

3.1.2 Scheme construction

To proceed with the construction of the numerical scheme, let us integrate (3.1) over ωc and
make use of the divergence formula

mcCvc
d

dt
Tc +

∫
∂ωc

q · n ds = mcrc, (3.3)
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Here, mc denotes the mass of the cell such that, mc = ρc | ωc | where n denotes the unit
outward normal of the cell boundary ∂ωc. Let us point out that Tc = Tc(t) is nothing but the
mean value of the temperature over ωc such that

Tc(t) =
1

| ωc |

∫
ωc

T (x, t) dv.

To finish the space discretization of (3.3), it remains to discretize the surface integral of the

heat flux. Knowing that ∂ωc = ∪f∈F(c)∂ω
f
c the surface integral of the heat flux reads∫

∂ωc

q · n ds =
∑

f∈F(c)

∫
∂ωfc

q · n ds.

Now, recalling the partition of face f into sub-faces, i.e., ∂ωfc = ∪p∈P(c,f)∂ω
f
pc, leads to∫

∂ωc

q · n ds =
∑

f∈F(c)

∑
p∈P(c,f)

∫
∂ωfpc

q · n ds

=
∑
p∈P(c)

∑
f∈F(p,c)

∫
∂ωfpc

q · n ds.

Let us denote by qfpc the piecewise constant representation of the normal component of the heat

flux over sub-face ∂ωfpc such that

qfpc =
1

Sfp

∫
∂ωfpc

q · n ds. (3.4)

Gathering the above results, Equation (3.3) turns into

mcCvc
d

dt
Tc +

∑
p∈P(c)

∑
f∈F(p,c)

Sfp q
f
pc = mcrc. (3.5)

Moreover, we introduce the sub-face temperature T fpc, which is useful in the description of our
scheme as an auxiliary unknown and is defined as

T fpc =
1

Sfp

∫
∂ωfpc

T (x, t) ds. (3.6)

Writing this equation, we also assumed a piecewise constant approximation of the temperature
field over each sub-face.

Let consider two neighboring cells denoted by c and c′ sharing a face and a point. The sub-cells
ωpc and ωpc′ are sharing the sub-face ∂ωfpc ≡ ∂ωfpc′ , as displayed in Fig. 3.2. We can now use the
continuity conditions, in terms of sub-face fluxes and sub-face temperatures. From the sub-cell
ωpc the sub-face temperature and the sub-face flux are denoted by T fpc and qfpc, whereas from

the sub-cell ωpc′ they are denoted respectively by T fpc′ and qfpc′ . As the unit outward normal

satisfy nfpc = −nfpc′ leads to write the continuity conditions for the temperatures and the heat
flux as

Sfp q
f
pc + Sfp q

f
pc′ = 0, (3.7a)

T fpc = T fpc′ = T fp . (3.7b)
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Using these continuity conditions we can define T fp as the sub-face temperature. To achieve the
space discretization of (3.5), it remains to construct an approximation of the sub-face normal

flux, that is to say to define a numeric sub-face flux function hfpc such that:

qfpc = hfpc(T
1
p − Tc, . . . , T kp − Tc, . . . , T

Fpc
p − Tc), ∀f ∈ F(p, c), (3.8)

where Fpc denotes the number of faces of cell c impinging at point p, and is defined as Fpc =
|F(p, c)|.

To write the scheme we are going to define an approximation of the sub-face numerical fluxes
in terms of sub-face temperatures and cell-centered temperatures. We shall then eliminate the
sub-face temperatures using the continuity conditions (3.7) across the sub-faces interfaces.

3.1.3 Expression of a vector in terms of its normal components

Here, we describe the methodology to reconstruct a three-dimensional vector at a vertex of
a polyhedron from the normal components related to the sub-faces impinging at this vertex.
Let φ be an arbitrary vector of the three-dimensional space R3 and φpc its piecewise constant

approximation over the sub-cell ωpc. Let φfpc be the sub-face normal component of φpc defined
by

φpc · nfpc = φfpc, ∀f ∈ F(p, c),

This relation leads to a 3× 3 linear system, where the unknowns are the Cartesian components
of the vector φpc. This system is properly defined provided that Fpc = 3 which implies that
the number of faces of cell c impinging at point p must be strictly equal to 3. We assume here
that the polyhedral cells we are using are characterized by Fpc = 3. Let us remark that this
restriction allows us to cope with tetrahedrons, hexahedrons and prisms. The extension to the
case Fpc > 3 will be investigated in the case of AMR cells.

Introducing the corner matrix Jpc = [n1
pc,n

2
pc,n

3
pc] enables to rewrite the above linear system

as

Jtpcφpc =

φ1
pc

φ2
pc

φ3
pc

 ,

where the superscript t denotes the transpose matrix. Granted that the vectors nfpc, for f =
1 . . . 3, are not colinear, the above linear system has always a unique solution which reads

φpc = J−tpc

φ1
pc

φ2
pc

φ3
pc

 . (3.9)

3.1.4 Sub-cell linear approximation

In this section we want to find a way to express the numerical flux qfpc. Different methods
can be used. For instance we can build a sub-cell-based variational formulation of the Fourier
Law which lead us to the construction the CCLADS scheme described in its three-dimensional
version in [86]. In this paper, we extend the CCLADNS [115] scheme which rely on a piecewise
linear approximation of the temperatures in the sub-cell.

Let us write Th the piecewise linear approximation of the temperature over the cell ωc as

Th(x) = Tc − K−1
c qc · (x− xc), (3.10)
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where xc is the centroid of the cell, defined as xc = 1
|ωc|
∫
ωc
x dv and qc = −Kc(∇T )c is the

piecewise approximation of the heat flux. We want to compute the temperatures in the sub-cell
ωpc at the sub-faces Sfp , so we can write

T
f
p − Tc = −K−1

c qc · (xfp − xc). (3.11)

The bar notation help us to make the difference between the cell centered unknown and the
sub-face unknown. Let us note xfpc = xfp − xc. Where xfp denote the vector position of the
sub-face centroid. This sub-face centroid can be obtain from the centroid of the two triangles
of the sub-face Sfp .
Using the normal vector decomposition and introducing qpc as the heat flux in the sub-cell ωpc
we obtain

T
f
p − Tc = −K−1

c qpc · xfpc. (3.12)

Using the normal vector decomposition methodology (3.9)

T
f
p − Tc = −K−1

c J−tpc

q1
pc

q2
pc

q3
pc

 · xfpc. (3.13)

Now, noticing that

xfpc = J−tpc Jtpcx
f
pc = J−tpc

x
f
pc · n1

pc

xfpc · n2
pc

xfpc · n3
pc

 , (3.14)

and introducing the matrix Xi,jpc = xipc · nj enables to write

T
f
p − Tc = −J−1

pc K−1
c J−tpc

q1
pc

q2
pc

q3
pc

 ·
xf,1pc

xf,2pc
xf,3pc

 . (3.15)

We introduce the sub-cell conductivity tensor

Kpc = JtpcKcJpc. (3.16)

Using the previous relations we can write for the three sub-faces impinging at node pT
1
p − Tc

T
2
p − Tc

T
3
p − Tc

 = −XpcK
−1
pc

q1
pc

q2
pc

q3
pc

 , (3.17)

which rewrites q1
pc

q2
pc

q3
pc

 = −KpcX
−1
pc

T
1
p − Tc

T
2
p − Tc

T
3
p − Tc

 . (3.18)

Since the sub-face normal fluxes are deduce from a piecewise linear approximation of the tem-
perature field, Equation (3.18) can be seen as a finite difference approximation of qfpc. The main
drawback of this procedure is that the matrix defined by the normal components of Xpc is not
a symmetric positive definite in general. However, we will show that using this approximation
of the flux qfpc enables to preserves linear solution regardless the shape of the cells.
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3.1.5 Elimination of the sub-face temperatures

Having defined the flux approximation in the sub-cell ωpc in term of the difference between the
sub-face and the cell temperatures, we shall express the sub-face temperatures in terms of the
cell temperatures which are surrounding a specific point p of the dual cell ωp (see Fig. 3.2). In
order to have a simpler expression of the equations we are going to introduce some new local
notations. First of all, in this section we are dealing with quantities located around a point p, so
in all the notations we will omit to specify the subscript p. With this notation a sub-face tem-

perature T
f
p is denoted by T̄ f . For each face f in the list F(p) of the faces impinging at the node

p we associate two tuples (c, i) and (c′, j) which identify the neighboring cells c and c′ of the face
f and their local numbering i (resp. j) in the subset F(p, c) (resp. F(p, c′)) of F(p). With this

notation a sub-face temperature T
i
pc is denoted by T̄ ic and using the continuity condition on the

temperature is equal to T
j
pc′ which is denoted T̄ jc′ and can also be simply denoted by T̄ f . The

bar notation help us to make the difference between the cell centered unknown and the sub-face
unknown. Similarly the area of the sub-face f can be indifferently noted Sic, S

j
c′ or Sf . We also

introduce Lpc = KpcX−1
pc which will be denoted by Lc so its components (Lpc)ij can be written Lcij .

Using this notation Equation (3.18), which defines the heat flux approximation, rewrites

qic = −
3∑

k=1

Lcik(T̄
k
c − Tc). (3.19)

The continuity condition (3.7a) of the sub-face fluxes across the face f ≡ (c, i) ≡ (c′, j) reads

Sicq
i
c + Sjc′q

j
c′ = 0.

Replacing the sub-face fluxes by their approximation (3.19) into the above equation yields to

−Sic
3∑

k=1

Lcik(T̄
k
c − Tc)− Sjc′

3∑
k=1

Lc
′
jk(T̄

k
c′ − Tc′) = 0.

Let us point out that this equation holds for all the faces f impinging at node p, i.e. for all
f ∈ F(p). Denoting by Fp = |F(p)| the number of faces impinging at node p, the set of all the
above equations forms a Fp × Fp linear system, which can be written under the compact form

MT̄ = NT . (3.20)

Here, the matrix M is a Fp×Fp square matrix and T̄ ∈ RFp is the vector of sub-face temperatures.
Denoting by Cp = |C(p)| the number of cells surrounding node p, the matrix N is a Fp × Cp
rectangular matrix and T ∈ RCp is the vector of cell temperatures. The matrix M has five
non-zero terms on each lines, its diagonal element writes

Mff = SicL
c
ii + Sjc′L

c′
jj .

Regarding its extra-diagonal parts, two terms come from the contribution of the sub-cell ωpc.
Let g be a generic face of cell c impinging at point p characterized by the index k in the local
numbering , i.e., g ≡ (c, k), then the extra-diagonal entries related to cell c and faces i and k
write

Mfg = SicL
c
ik, for k ∈ [1, 3] and k 6= i.
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The two remaining terms come from the sub-cell ωpc′ . Let g be a generic face of cell c′ impinging
at point p characterized by the index k in the local numbering , i.e., g ≡ (c′, k), then the extra-
diagonal entries related to cell c′ and faces j and k write

Mfg = Sjc′L
c′
jk, for k ∈ [1, 3] and k 6= j

Let us remark that in general the matrix M is not symmetric positive definite as it has been
noticed for the 2D version of the CCLADNS scheme [115] and it will lead to a non-symmetric
diffusion matrix.

Finally, the matrix N has two non-zero terms on each row, one term for each neighboring
cell c and c′ of the face f

Nfc =
3∑

k=1

SicL
c
ik and Nfc′ =

3∑
k=1

Sjc′L
c′
jk.

3.1.6 Construction of the global diffusion matrix

In this section, we gather the results obtained in the previous sections to achieve the space
discretization of the diffusion Equation (3.5).

mcCvc
d

dt
Tc +

∑
p∈P(c)

∑
f∈F(p,c)

Sfp q
f
pc = mcrc.

We define the contribution of the sub-cell ωpc to the diffusion flux as

Qpc =
∑

f∈F(p,c)

Sfp q
f
pc.

Using the local numbering of the sub-faces surrounding point p yields to rewrite the above
expression as

Qpc =
3∑

k=1

Skc q
k
c .

Now, we replace the normal flux by its corresponding expression (3.19) leading to

Qpc = −
3∑

k=1

Skc

3∑
i=1

Lcki(T̄
i
c − Tc)

, Then switching the order of the summations yields to

Qpc = −
3∑
i=1

3∑
k=1

(Skc Lcki)(T̄
i
c − Tc).

To obtain a more compact form of Qpc, we define the matrix Ñ whose elements write

Ñfc =
3∑

k=1

(Skc Lcki), (3.21)

where f ≡ (c, i). Employing this notation, the sub-cell contribution to the diffusion flux reads

Qpc = −
∑

f∈F(p)

Ñt
cf (T̄ f − Tc).
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Eliminating the sub-face temperatures by means of (3.20) leads to

Qpc = −
∑
d∈C(p)

Gpcc′(Tc′ − Tc), (3.22)

where Gp is a Cp × Cp matrix defined at point p by Gp = ÑtM−1N. Let us point out that the
entries of Gp have the physical dimension of a conductivity. Thus, it can be viewed as the
effective conductivity tensor at point p in the dual cell ωp. More precisely, it follows from (3.22)
that the entry Gpcc′ stands for the effective conductivity between cells c and c′ through the point
p. This node-based effective conductivity tensor will be the cornerstone to assemble the global
diffusion matrix over the computational grid. We can now write the semi-discrete scheme as

mcCvc
d

dt
Tc −

∑
p∈P(c)

∑
c′∈C(p)

Gpcc′(T
′
c − Tc) = mcrc, (3.23)

This equation allows to construct the generic entries of the global diffusion matrix D as follows

Dcc =
∑
p∈P(c)

∑
c′∈C(p)

Gpcc′ and Dcc′ = −
∑
p∈P(c)

Gpcc′ , c 6= c′.

If CD denotes the total number of cells composing the computational grid, then matrix D is a
CD × CD square matrix. The vector of cell-centered temperatures T ∈ RCD is the solution of
the system of differential equations

WCv
d

dt
T + DT = WR. (3.24)

Here, R ∈ RCD is the source term vector, W is the weight matrix and Cv the heat capacity
matrix. Those matrices are diagonal and their entries are respectively the cell mass mc and the
cell heat capacity Cvc. Time discretization can be performed using a first-order implicit discrete
scheme as in [86].

3.2 CCLADNS for Adaptive Mesh Refinement

As it has been already shown in [115] the CCLADNS scheme can achieve second order conver-
gence rate on different mesh types, even on polygonal cells. We will see here that while an AMR
cell can be viewed as a polygonal cell, the CCLADNS scheme exhibits a singularity around the
AMR nodes (also called hanging nodes). Before describing this issue, we recall the CCLADNS
scheme on two dimensional geometries.

3.2.1 CCLADNS scheme in the case of non-conformal cell in two-dimensional
geometries

Let us first introduce some notations needed to develop the discretization scheme in two dimen-
sions of space. Being given p ∈ P(c), a node belonging to cell c, we note p− and p+ the previous
and the following points with respect to p in the ordered list of vertices of cell c. Let ωc be a
generic polygonal cell, for each vertex p ∈ P(c), we define the sub-cell ωpc which connects the
centroid of ωc to the midpoints of edges e− = [p−, p] and e+ = [p, p+] impinging at node p, refer
to Fig. 3.3. In two dimensions, the sub-cell we defined, is always a quadrilateral. We can see
in Fig. 3.3 that in the case of an AMR cell, the sub-cell ωpc degenerates into a triangle.
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Figure 3.3: Notation related to polygonal cell ωc with a sub-cell ωpc in the case of a non-
conformal cell.

The main matter of the CCLADNS scheme is to define an approximation of the fluxes over each
half-edges of the mesh. To do so, we define a finite difference approximation of the temperature
in each cells, which writes over ωc as

Th(x) = Tc − K−1
c qc · (x− xc), ∀x ∈ ωc. (3.25)

Here xc is the centroid of the cell and Tc is the cell averaged temperature. Using x±p as the
position vector of the midpoint segment e± and defining the half-edge temperature T̄±p given
by T̄±p = Th(x±p ) we have

T̄−p − Tc = −K−1
c qpc · (x−p − xc),

T̄+
p − Tc = −K−1

c qpc · (x+
p − xc).

(3.26)

Defining x±pc as x±pc = x±p − xc, we transform (3.26) by expressing the vectors qpc and x±pc in
terms of their normal components

T̄−p − Tc = −K−1
c J−tpc

(
q−pc
q+
pc

)
· J−tpc

(
x−pc · n−pc
x−pc · n+

pc

)
,

T̄+
p − Tc = −K−1

c J−tpc

(
q−pc
q+
pc

)
· J−tpc

(
x+
pc · n−pc
x+
pc · n+

pc

)
.

Introducing the sub-cell conductivity tensor Kpc defined by (3.16) in the sub-cell ωpc and after
some manipulations, the above equations rewrite as(

T̄−p − Tc
T̄+
p − Tc

)
= −

(
x−pc · n−pc x−pc · n+

pc

x+
pc · n−pc x+

pc · n+
pc

)
K−1
pc

(
q−pc
q+
pc

)
.

which rewrites using the previous notations as(
T̄−p − Tc
T̄+
p − Tc

)
= −XpcK

−1
pc

(
q−pc
q+
pc

)
. (3.27)

Assuming we can compute the inverse matrix of Xpc and solving the above linear system leads
to the final expression of the half-edge normal fluxes(

q−pc
q+
pc

)
= −KpcX

−1
pc

(
T̄−p − Tc
T̄+
p − Tc

)
. (3.28)
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We can actually compute it under the form(
q−pc
q+
pc

)
= − 1

∆pc
Kpc

(
x+
pc · n+

pc −x−pc · n+
pc

−x+
pc · n−pc x−pc · n−pc

)(
T̄−p − Tc
T̄+
p − Tc

)
, (3.29)

where ∆pc = (x−pc · n−pc)(x+
pc · n+

pc)− (x−pc · n+
pc)(x

+
pc · n−pc) is the determinant of the matrix Xpc.

In the special case of the AMR cell, as shown in Fig. 3.3, we have n−pc = n+
pc so ∆pc = 0. This

means that we can not write (3.29) in an AMR cell. The CCLADNS scheme can not be used
on this kind of grids. We will present in the next section an extension of the scheme that allows
us to write the CCLADNS scheme on this kind of non-conformal cell.

3.2.2 CCLADNS for AMR in two-dimensional geometries

We use here the fact that we can detect a non-conformal cell by computing the scalar product
of n−pc and n+

pc which will be equal to zero when these two vectors are colinear. In this case
we use a partition of the sub-cell as presented in Fig. 3.3. We introduce now two sub-cell
ωpc± which are respectively the two triangles based on the node (xc,xp,x

±
p ). Using x̃±p as the

position vector of the midpoint segment ẽ respectively for the two sub-cells ωpc± and defining

the half-edge temperature T̃±p given by T̃±p = Th(x̃±p ) we have in the sub-cell ωpc−

T̄−p − Tc = −K−1
c qc · (x−p − xc),

T̃−p − Tc = −K−1
c qc · (x̃−p − xc).

(3.30)

and in the sub-cell ωpc+

T̃+
p − Tc = −K−1

c qc · (x̃+
p − xc),

T̄+
p − Tc = −K−1

c qc · (x+
p − xc).

(3.31)

we can then define the matrix X−pc for the sub-cell ωpc−

X−pc =

(
x−pc · n−pc x−pc · ñ−
x̃pc · n−pc x̃pc · ñ−

)
, (3.32)

where ñ− is the normal to the edge ẽ from ωpc− . In the same way, we have for the sub-cell ωpc+

X+
pc =

(
x̃pc · ñ+ x̃pc · n+

pc

x+
pc · ñ+ x+

pc · n+
pc

)
, (3.33)

where ñ+ is the normal to the edge ẽ from ωpc+ and ñ− = −ñ+. Using these matrices we can
define, as in section 3.1.5 two matrices L±pc = Kpc(X±pc)

−1 such that for ωpc−(
q−pc
q̃pc
−

)
= L−pc

(
T̄−p − Tc
T̃−p − Tc

)
, (3.34)

and for ωpc+ (
q̃pc

+

q+
pc

)
= L+

pc

(
T̃+
p − Tc
T̄+
p − Tc

)
, (3.35)

using the fact that q̃pc
+ + q̃pc

− = 0 and since T̃−p = T̃+
p = T̃p, we can demonstrate that

(
q−pc
qpc

+

)
=

(L−pc)11 − (L−pc)12(L−pc)21

(L+
pc)11+(L−pc)22

− (L−pc)12(L+
pc)12

(L+
pc)11+(L−pc)22

− (L−pc)21(L+
pc)21

(L+
pc)11+(L−pc)22

(L+
pc)22 − (L+

pc)12(L+
pc)21

(L+
pc)11+(L−pc)22

(T̄−p − Tc
T̄+
p − Tc

)
. (3.36)
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We have now an expression of the fluxes in term of difference of temperature and introducing
the matrix L̃pc we can write (

q−pc
qpc

+

)
= L̃pc

(
T̄−p − Tc
T̄+
p − Tc

)
. (3.37)

This matrix L̃pc is then used instead of the matrix Lpc in the computation of the heat fluxes
in Equation (3.19). The construction of the nodal matrices M and N (see Section 3.1.5) is
straightforward. Using this modification of the CCLADNS scheme the size of the nodal system
is not modified and leads to an invertible matrix M, which allows us to build the global system.
We could have added in the system (3.20) the additional temperature T̃p but this would have
changed the size of the nodal system. We now present the space discretization on AMR meshes
in a three dimensional space.

3.2.3 CCLADNS for AMR in three-dimensional geometries

The method presented in the previous section is easy and straightforward to implement in two
dimensional geometries. Moreover there exists only one type of AMR node in two-dimensional
geometries, so we only had to compute one specific modified matrix L̃pc. However three dimen-
sional geometries are much more complex, and there appears to be a lot of different kind of
AMR nodes. We would need to compute a specific matrix for each one of these different kinds
of node. Of course this is not practical, so we need to find a generic way to compute these
matrices.
Around an AMR node the two normal vectors are colinear, we overcome that problem in Sec-
tion 3.2 by dividing this peculiar sub-cell in two fictitious sub-cells. In each sub-cell we can
then define a basis and write the scheme. In 3D, The sub-cell decomposition is done by intro-
ducing fictitious sub-cells made of a iota. As we will show later in this section, this elemental
subdivision, allows us to avoid the non-invertibility problem, because the iotas always allow us
to define a local basis based on their normals. We will show that the CCLADNS scheme can
be written on these iotas sub-cells. Of course, one of the drawbacks of the method is that the
size of these new local matrices increases compared to the classical scheme. This method is a
generalization of the method presented in [86] for the CCLAD schemes with hybrid 3D meshes
and pyramid elements.

Remark 1: For the sake of simplicity we do not try to compute the optimal decomposition
in terms of fictitious sub-cells. By optimal we mean here the smallest subset that allow us to
compute the local fluxes. We compute the simplest valid subset, which is also the largest in
terms of fictitious sub-cells. Some of these fictitious or iota sub-cells could be merged and still
lead to valid invertible matrices. The determination of the smallest subset of fictitious sub-cells
should be performed in order to improve the computational cost of the scheme on AMR grids
but it is out of the scope of this article.

In the following we consider that p is what we call an AMR node. Those nodes are detected
while reading the initial mesh, or after a refinement step. For instance, an AMR node can be
located in the middle of an edge or in the middle of a face as presented in Fig. 3.4. When we
encounter such a node we know we might have some issues with the decomposition in terms
of normal components. To overcome this difficulty, we subdivide all the surrounding sub-cells
ωpc into 2× Fpc iota sub-cells Ipfec. We observe that there is always two iota sub-cell per face
impinging at vertex p. Each iota sub-cell Ipfec has 3 faces impinging at node p: one is part of
the outer sub-face ∂ωfpc and two inner sub-faces which result from the subdivision. Bearing this
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Figure 3.4: A iota sub-cell Ipfec in a 3D AMR cell.

in mind, we can use (3.19) to write the flux approximation within each iota sub-cell Ipfec. It
writes

qiI = −
3∑

k=1

Lcik(T̄
k
I − T I), (3.38)

here the index I represents one of the iota sub-cell Ipfec and T I is the cell-centered temperature
of this iota sub-cell, T̄ kI represents the iota sub-face temperatures. We write the continuity
conditions on the iota sub-faces and obtain a modified version of the system (3.20), namely it
now writes

MIT̄ I = NIT I ,

where T̄ I is the vector of iota sub-face temperatures around node p, and T I is the vector of
iota sub-cell temperatures. The vector T̄ I is of size FIp , the number of iota sub-faces and the

vector T I , is of size CIp the number of iota sub-cells around node p. The matrices MI and

NI are respectively of size FIp × FIp and FIp × CIp and are constructed in the same way than in

Section 3.1.5. The matrix MI is invertible, and the solution of the above linear system writes

T̄ I =
(
MI
)−1

NIT I .

This formula allows to express the iota sub-face temperatures around node p in terms of the
iota sub-cell temperatures surrounding vertex p. Finally, using the procedure described in
Section 3.1.6, the contribution of a iota sub-cell I to the diffusion flux at vertex p writes

QpI = −
∑
I′∈CIp

Gp,III′(T
I′ − T I), (3.39)

where CIp is the set of the iota sub-cells I surrounding vertex p.

The CIp × CIp matrix Gp,I is given by

Gp,I =
(

ÑI
)t (

MI
)−1

NI , (3.40)

where NI is defined by Eq (3.21) using the iota sub-cells notations. We point out that the cell
index, I ′, employed in (3.39), refer to a iota sub-cell. More precisely, QpI contains contributions
coming from temperatures attached to the iota sub-cells. These additional degrees of freedom
can be eliminated by equating them to the cell temperature Tc. This is equivalent to express
the vector of iota sub-cell temperatures, T I ∈ RCIp , in terms of the vector of the cell-centered
temperatures T ∈ RCp as follows

T I = PT . (3.41)
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Here, P is a rectangular matrix of size CIp×Cp. Let i (resp. j) be the generic index of a cell in the

local numbering of the cells belonging to CIp (resp. Cp), then according to (3.41), temperature

T
I
i writes

T
I
i =

Cp∑
j=1

PijTj .

For i = 1 . . .CIp and j = 1 . . .Cp, the generic entry of P writes

Pij =

{
1 if i corresponds to a fictive sub-cell included inside c and j corresponds to cell c,

0 elsewhere.

Finally, substituting (3.41) into (3.39) leads to the expression of Qpc in terms of cell-centered
temperatures

Qpc = −
∑

c′∈C(p)

Gpcc′(Tc′ − Tc), (3.42)

where Gpcc′ = PtGp,IP. This means that we have a definition of the fluxes (3.42) that writes
under the form of (3.22). The construction of the global diffusion matrix remains unchanged.

3.3 Numerical results

Let us recall that we are solving the generic diffusion equation

ρCv
∂T

∂t
−∇ · (K∇T ) = ρr, (x, t) ∈ D × [0, T ], (3.43a)

T (x, 0) = T 0(x), x ∈ D, (3.43b)

where r = r(x) is a source term. The density and the specific heat capacity are fixed at the
values ρ = 1 and Cv = 1. The boundary conditions, the source term and the heat conductivity
tensor K will be specified for each test case.
The analytical solutions of all the problems studied are stationary, thus, we start the compu-
tations with the initial condition T 0(x) = 0 and run the simulation until the steady state is
reached. For all the test cases, the numerical solutions are obtained by solving linear systems
using the localized ILU(0) Preconditioned BiCGStab algorithm [161, 125]. The relative error
tolerance to achieve the convergence is set to 10−16. The procedure employed to perform the
convergence analysis is the same as in [86]. We will deduce an estimation of the order of the
truncation error qα, where α = 2, ∞, is based on the discrete L2 and L∞ norms respectively.

3.3.1 Numerical results of the 3D extension of CCLADNS on isotropic dif-
fusion problem

The aim of this section is to assess the robustness and the accuracy of the CCLADNS scheme
against analytical test cases using various types of grids. This problem consists in finding the
steady solution of (3.43) with r = 0 and an isotropic conductivity tensor defined by K = κI,
where I is the unit tensor of R3 and the scalar conductivity is given by κ = 1. The computational
domain is D = [0, 1]3 and we apply the following boundary conditions on the boundaries of D

• Dirichlet boundary conditions such that T (x) = 0, for x = 0 and T (x) = 1, for x = 1.
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Figure 3.5: Linear solution using CCLADNS on a 3D hybrid mesh made of 21 806 tetrahedrons,
4 000 hexahedrons and 400 pyramids.

Table 3.1: Isotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corre-
sponding truncation errors using the CCLADS scheme on a series of hybrid 3D grids.

# Cells h Eh∞ Lh∞ Eh2 Lh2
3 615 6.52D-02 1.28D-02 1.05 4.48D-03 1.04

26 206 3.36D-02 6.40D-03 0.99 2.26D-03 0.98

195 836 1.72D-02 3.32D-03 0.96 1.16D-03 1.01

1 473 418 8.79D-03 1.74D-03 1.06 5.88D-04 1.00

11 735 235 4.40D-03 8.41D-04 - 2.93D-04 -

• Neumann boundary conditions such that q(x) · n = 0, for all the other boundaries of the
domain.

The steady analytical solution is T̂ (x) = x. The aim of this simple test case is to assess the abil-
ity of the CCLADNS scheme to preserve linear fields on various meshes. We have computed the
steady numerical solution on different kinds of grids, including Cartesian hexahedron, randomly
perturbed hexahedron, Kershaw-like and tetrahedral grids. The corresponding asymptotic er-
rors are equal to zero up to machine precision. As expected, our finite volume scheme preserves
linear solutions on theses meshes. Let us point that this result confirms the conclusion already
drawn for this type of numerical methods, in the context of two-dimensional geometries, refer
to [115].

We also performed a convergence analysis for the hybrid grids using the 3D CCLADS scheme of
[86], refer to Fig. 3.5. For this kind of grids we use the special subcell decomposition using iota
as presented in the section 3.2.3, in order to cope with the number of faces impinging on the
head of pyramids. In Table 3.1 we present the truncation errors obtained with the CCLADS
scheme on these grids. This shows that the CCLADS scheme exhibits a rate of convergence
of first-order only. Let us point out that the maximal error is always located at the layer of
pyramids which allows to link the tetrahedral and the hexahedral regions of the grid. Using the
same subcell decomposition on the pyramids with the CCLADNS scheme we are now able to
reach asymptotic errors equal to zero up to machine precision.
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3.3.2 Isotropic diffusion problem on AMR meshes

Here, we run the same test case as in section 3.3.1 but now using AMR meshes. The aim of this
simple test case is to assess the ability of our scheme to preserve linear fields on AMR meshes.

An example of the solution obtained on a randomly perturbed AMR mesh is pictured in
Fig. 3.6(a) in 2D and Fig. 3.6(b) in 3D. As already shown in [115] for the CCLADNS scheme
in 2D, the modified AMR version of CCLADNS still captures linear solutions up to machine
precision. This result is also confirmed in 3D.

Figure 3.6: Solution of linear diffusion problem on AMR meshes

(a) Isotropic linear solution on a randomly
perturbed 2D AMR grid. Machine precision
reached with CCLADNS scheme.

(b) Isotropic linear solution on a randomly
perturbed 3D AMR grid. Machine precision
reached with CCLADNS scheme.

3.3.3 Anisotropic non-linear 2D problem with a non-symmetric conductivity
tensor

This test case is taken from [98]. In this test case we compute a source term such that the
solution is defined as

T (x, y) = 1− tanh

(
(x− 0.5)2 + (y − 0.5)2

0.01

)
. (3.44)

This solution is defined on [0, 1]2, where we impose Dirichlet conditions using the analytic
solution on the boundaries and we use an anisotropic tensor defined as

K =

(
4 2
−1 3

)
As we can see in Fig. 3.7, the solution present a strong peak in the middle of the domain while
it quickly reaches values near zero when going away from the middle. Therefore we need a lot of
precision in the middle of the domain while the boundaries can remains coarsely meshed. This
kind of test case is interesting to assess the precision of an AMR capable scheme.

We ran this test on non-conformal Cartesian meshes as pictured in Fig. 3.7(a) and randomly
perturbed non-conformal meshes as shown in Fig. 3.7(b). Because of the nature of the AMR
meshes we cannot compute the order of the method. Indeed, the mesh size is not uniform so we
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Table 3.2: Anisotropic non-linear problem, asymptotic errors in both L∞ and L2 norms and
corresponding truncation errors using the CCLADNS scheme on a series of uniform and AMR
Cartesian 2D grids.

Uniform mesh AMR mesh
# Cells h Eh

∞ Lh
∞ Eh

2 Lh
2 # Cells ratio Eh

∞ Eh
2

256 6.52D-02 1.10D-01 2.17 2.98D-02 3.28 256 1.00 1.10D-01 2.98D-02
1 024 3.12D-02 2.44D-02 2.00 3.05D-03 2.04 556 1.84 2.44D-02 3.05D-03
4 096 1.56D-02 6.09D-03 2.00 7.43D-04 2.01 988 4.14 7.50D-03 1.02D-03

16 384 7.81D-03 1.52D-03 1.99 1.84D-04 2.00 3 952 4.14 1.90D-03 2.64D-04
65 536 3.90D-03 3.81D-04 - 4.60D-05 - 15 808 4.14 4.79D-04 6.65D-05

Table 3.3: Anisotropic non-linear problem, asymptotic errors in both L∞ and L2 norms and
corresponding truncation errors using the CCLADNS scheme on a series of uniform and AMR
randomly deformed 2D grids.

Uniform mesh AMR mesh
# Cells h Eh

∞ Lh
∞ Eh

2 Lh
2 # Cells ratio Eh

∞ Eh
2

256 6.52D-02 1.16D-01 2.03 3.67D-02 3.11 256 1.00 1.16D-01 3.67D-02
1 024 3.12D-02 3.93D-02 1.85 4.25D-03 1.99 556 1.84 2.42D-02 3.26D-03
4 096 1.56D-02 1.08D-02 1.99 1.06D-03 2.37 988 4.14 9.94D-03 1.05D-03

16 384 7.81D-03 2.72D-03 1.92 2.06D-04 2.00 3 952 4.14 3.50D-03 2.80D-04
65 536 3.90D-03 7.14D-04 - 5.13D-05 - 15 808 4.14 8.25D-04 7.18D-05

cannot compute a meaningfull cell size. However, we can compute the order of the method on
uniform grids and then compare the error level obtained on an equivalently refined AMR grid.
On a well adapted AMR grid we expect to obtain a similar precision while using less cells than
an uniform grid.
We can see in Table 3.2 and Table 3.3 that we reach second order accuracy on Cartesian and
randomly perturbed grids. We also obtain the same level of precision on the AMR grids while
using 4.14 time less cells.

Figure 3.7: Solution of an anisotropic non-linear solution in 2D on a Cartesian AMR mesh

(a) Anisotropic non-linear solution in 2D on a Carte-
sian AMR mesh made of 988 cells.

(b) Anisotropic non-linear solution in 2D and ran-
domly deformed AMR mesh made of 3 952 cells.
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Figure 3.8: Anisotropic non-linear solution in 3D on 30 304 cells.

3.3.4 Anisotropic non-linear 3D problem with a non-symmetric conductivity
tensor

This test case is the 3D extension of the previous test case. In this test case we compute a
source term such that the solution is defined as

T (x, y, z) = 1− tanh

(
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

0.01

)
. (3.45)

This solution is defined on the domain [0, 1]3, where we impose Dirichlet conditions on the
boundaries and we use an anisotropic tensor defined as

K =

 5 2 −1
3 4 2
−3 0.5 6


We run the calculations on different grids that are refined in order to compute the order of
our method. We first run the computations on uniform grids. Then we run the computations
on Cartesian AMR grids. The procedure used to obtain the AMR meshes starts from an
uniform grid and we proceed in two steps. For each cell c of the mesh we compute the radius
rc = max(|xc − 1

2 |, |yc − 1
2 |, |zc − 1

2 |) where (xc, yc, zc) are the coordinates of the centroid of cell
c. On the first step if rc <

5
16 we refine cell c by dividing it in 8 subcells. Cell c is replaced

in the new mesh by these 8 subcells. If this criteria is not fullfilled, cell c is kept in the mesh
without any modifications. On the second pass the refinement criterion is set to rc < 5

32 , and we
compute this refinement process on the mesh obtained after the first pass. The mesh obtained
after this refinement process is shown in Fig. 3.8. The results are given in Table 3.4. On the
uniform meshes we observe a second order convergence rate of the CCLADNS scheme for the
Cartesian grids. Once again we cannot compute an order of convergence on the AMR meshes
due to non-uniform grid sizes, but we observe that the errors obtained on the AMR grids are
really close to the one obtained on the uniform grids. We are able, on this specific test case, to
obtain the same error using 8.65 times less computational power.
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Table 3.4: Anisotropic non-linear problem, asymptotic errors in both L∞ and L2 norms and
corresponding truncation errors using the CCLADNS scheme on a series of uniform and AMR
Cartesian 3D grids.

Uniform mesh AMR mesh
# Cells h Eh

∞ Lh
∞ Eh

2 Lh
2 # Cells ratio Eh

∞ Eh
2

4 096 6.25D-2 1.03D-01 1.82 6.68D-03 2.54 4 096 1.00 1.03D-01 6.68D-03
32 768 3.12D-2 2.91D-02 1.99 1.14D-03 2.04 11 096 2.95 2.91D-02 1.14D-03

262 144 1.56D-2 7.32D-03 1.99 2.78D-04 2.00 30 304 8.65 7.33D-03 2.78D-04
2 097 152 7.81D-3 1.83D-03 1.99 6.91D-05 2.00 242 432 8.65 1.83D-03 6.91D-05

16 777 216 3.90D-3 4.56D-04 - 1.72D-05 - 1 939 456 8.65 4.57D-04 1.72D-05
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Chapter 4

Multi-material ALE computation
using the radiation hydrodynamic
code CHIC

In ICF a high power laser compress a spherical capsule to a high density and temperature
hot spot in order to ignite a thermonuclear burn. During this compression process we have
to deal with large displacements and strong shocks. Spherical capsule used in ICF are usually
the assembly of multi-material layers. For numerical purpose and with regards to the large
volume change, Lagrange formulation is well adapted to compute such problems. As the mesh
moves with the fluid it handles naturally the interface between different materials and the large
displacement during the compression of the target. One of the critical issue in direct drive
ICF is the sensibility to hydrodynamics instabilities especially to Rayleigh-Taylor instability at
the interface between the different materials during stagnation phase [97]. To deal with such
problems pure Lagrange frame suffers from a lack of robustness. When such instabilities occur
large distortions of the mesh can lead to tangled cells. A commonly used alternative is to
consider an Arbitrary Lagrangian Eulerian (ALE) formulation [76]. A pure Lagrangian phase
is followed by a two-step process: the rezoning of the Lagrangian mesh followed by a remapping
step.
In this context of multi-material computation using the Full-ALE method as interface is modified
by the rezoning, mixed cells containing several materials may appear. These mixed cells contain
material interfaces, which need special treatment to be taken into account. In our strategy, this
is done using the MOF method presented in section 2.2. Furthermore, a closure model is applied
in the way to determinate the evolution of the volume fraction and the thermodynamic state
of each material using real equations of state (EOS) during the Lagrangian steps. We have
developed such a strategy in the 2D CHIC (Code d’Hydrodynamique d’Implosion du CELIA)
code [33] which is based on a cell-centered discretization of Lagrangian hydrodynamic to simulate
ICF and plasma physics experiment created by laser interaction with target.
This Chapter is organized as follows. We first briefly describe the coupling of the numerical
methods. Then, theoretical and experimental studies from [37, 115, 74, 129, 19] are given to
highlight the robustness and accuracy of the CHIC code.

4.1 Physical model of CHIC code

CHIC is a 2D ALE integrated ICF code developed at CELIA. This code is currently used to
simulate ICF studies [146, 136, 74, 129, 126]. The code includes two-dimensional Lagrangian
hydrodynamics in planar and cylindrical geometry, ion and classical or non-local electron heat
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Two Temperature Model (Te, Ti)
Cell Centered Lagrangian Scheme

Arbitrary Lagrangian Eulerian (ALE)
2D planar and axisymmetric

Electronic Transport
- Spitzër-Härm with Flux limitation
- Braginskii (B)
- Non local (NL) or B+NL

Cell centered diffusion scheme
for isotropic or anisotropic media

Thermonuclear combustion
in diffusion approximation

Resistive MHD
Nernst transport

3D laser ray tracing
refraction and collisional absorption

2D radiative transport
steady state multi-group

LTE or NLT opacities

Opacities
Screened hydrogenic AA

EOS
Electrons: TF, Ions: Cowan

QEOS, More, SESAME Tables

Figure 4.1: CHIC main packages

conduction, thermal coupling of electrons and ions and a detailed radiation transport. The ALE
method is implemented to improve the geometrical quality of the grid elements and to optimize
accuracy, robustness and computational efficiency [32, 65]. The ionization and the opacity data
are tabulated, assuming a local thermodynamic equilibrium (LTE) or a non-LTE depending
on the plasma parameters. The radiative transport is computed assuming that the radiation
field is quasistationary and weakly anisotropic with regards to angular dependency (multigroup
diffusion). The equations of state implemented in the code are QEOS and SESAME. The laser
propagation, refraction and collisional absorption are treated by a ray tracing algorithm. A
resistive Magnetohydrodynamics (MHD) package accounting for the azimuthal magnetic fields
generated by the thermal sources (crossed gradients of the density and the electron temperature)
is also included. As we can see on Fig. 4.1 all the different physical model are strongly coupled
to the hydrodynamics model. The plasma fluid model in Lagrangian formalism writes as

ρ
dτ

dt
−∇ ·U = 0,

ρ
dU

dt
+ ∇(Pi + Pe) = 0,

ρ

(
dεe

dt
+ Pe

dτ

dt

)
−∇ · (λe∇Te) = Ωei(Ti − Te) +Wlas +Wrad +Wfus,

ρ

(
dεi

dt
+ Pi

dτ

dt

)
= Ωei(Te − Ti).

Here ρ denotes the density, τ = 1
ρ , U the velocity, Pi and Pe are the ion and electron pressures,

εi and εe are the specific internal energies for ion and electron and Ti and Te are the ion and
electron temperatures. We introduce Ωei which is an exchange energy term between ion and
electron and λe is the conductivity coefficient for electron transport. Wlas, Wrad and Wfus are
respectively the source term for laser, radiative transport and nuclear fusion.

The thermodynamic closure of this system is given by the equation of state (EOS), Pe ≡
Pe(ρ, Te), Pi ≡ Pi(ρ, Ti), εe ≡ εe(ρ, Te) and εi ≡ εi(ρ, Ti).
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4.1.1 Numerical methods

In the context of multi-material ALE computation, as grid and fluid move separately mixed
cells containing material interface appear. A number of numerical methods exist for taking into
account such interface. Here we use the MOF method presented in section 2.2. A closure model
is also required to define how the thermodynamic states of the multi-material cells evolve during
the Lagrangian and the remapping phases [22]. In this work, we will use an homogeneous model
for the temperature and we will set only one temperature for the ion and electron such that
each material will have the same ion and electron temperature in a mixed cell. Finally, we will
need closure model for all the different physical quantities that are usually material dependent.

4.1.2 Lagrangian phase

In Lagrangian hydrodynamics methods, a computational cell moves with the flow velocity its
mass being time-invariant. Thus, Lagrangian methods can capture contact discontinuity sharply
in multi-material fluid flows. Here the Lagrangian scheme is based on a cell-centered discretiza-
tion of Lagrangian hydrodynamics equations [113]. This scheme is written in total energy form.

ρ
dτ

dt
−∇ ·U = 0,

ρ
dU

dt
+ ∇P = 0,

ρ
dE

dt
+∇ · P U = 0.

Where P = Pi + Pe is the total pressure and E the total energy. The accuracy in space is
improved thanks to a second-order extension which uses the piecewise linear monotone recon-
struction of the pressure and velocity. The piecewise linear monotone reconstruction is achieved
using a least squares procedure followed by a slope limitation procedure. The time discretization
is a one step high order extension based on the acoustic generalized Riemann problem. This
high-order Lagrangian scheme is precisely described in [114].

4.1.3 Two-temperature model

Based on total energy conservation, the Lagrangian scheme must deal with the exchange between
the kinetic energy and the internal energy of ion and electron. The system we want to solve for
the internal energy of ion and electron is

ρ

(
dεe

dt
+ Pe

dτ

dt

)
−∇ · (λe∇Te) = Ωei(Ti − Te),

ρ

(
dεi

dt
+ Pi

dτ

dt

)
= Ωei(Te − Ti).

We will compute the new ion and electron internal energy in two steps. First, after the La-
grangian step we have a new internal energy which is the sum of ion and electron internal energy.
To compute the electron internal energy we make the assumption that the entropy deposition
is done on the ion internal energy [168]. Thus, electrons follow the isentropic evolution

m
d εe

dt
+ Pe

d V

dt
= 0.

Where m = ρ V is the mass and V the volume. We can deduce ion internal energy from

εi = ε− εe
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Where ε = E − 1
2U

2 is the mean internal energy. Then, to solve the non linear conduction and
the energy transfer between ion and electron we use a Newton algorithm. The system we solve
in this step is equivalent to

ρ
dεe

dt
−∇ · (λe∇Te) = Ωei(Ti − Te),

ρ
dεi

dt
= Ωei(Te − Ti).

Here λe is the Spitzer-Härm thermal conductivity which is proportional to ≈ T
5
2

e . The diffusion
operator is discretized using a numerical scheme [36, 115] which is a second order cell centered
finite volume scheme that can be applied to unstructured mesh. It is a robust and accurate
scheme well adapted to distorted mesh.

At that time we need to update pressure using EOS as temperature field has been modified.
Due to the electron transport modelized by the diffusion term we also need to update the mean
internal energy and total energy

ε = εi + εe,

E = ε+
1

2
U2.

4.1.4 Thermodynamical closure for the multi-material cells

A closure model is required to define how the thermodynamic states of the multi-material cells
evolve during the Lagrangian and the remapping steps. The model we use is based on the
reconstruction of the material interface inside a mixed cell, in which, each material evolves
separately. The goal here is to compute, using the partial quantities, the mean pressure and
sound speed using the quantities of every material. Let φk be the volume fraction defined for
the fluid k in a cell by φk = Vk

V , where Vk is the volume of the cell’s part occupied by the fluid
k and V the volume of the cell. Using Gibbs relation applied to the mean fluid, the pressure of
the mean fluid is obtained

P =
∑
k

φkPk.

Concerning the sound speed, we obtain

c2 =
∑
k

mk

m
c2
k.

We make now the assumption that we have only one electron and one ion temperature for each
material per mixed cells. We define the mean conductivity, using harmonic mean

λe =

∑
k

φk∑
k

φk
λe,k

.

Harmonic mean is usually used when a mean conductivity is required for example at the interface
between two materials. For the exchange energy term between ion and electron we use arithmetic
mean

Ωei =
∑
k

φkΩei,k.
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4.2 Modelling of the magnetic field effects using tensorial dif-
fusion

This work is part of a collaboration we had with the Institute of Laser Engineering (ILE) at
Osaka University where I was invited to work on the coupling of such magnetic field with the
plasma [124]. In laser generated plasmas, magnetic fields are created whenever density and
temperature gradients are not colinear. Dedicated experiments and numerical computations
evidenced fields in the 100 kG-1MG range in plasmas typical of laser driven ICF [146, 126, 6].
As the corresponding magnetic pressure stays far below the kinetic pressure, the hydrodynamic
flow is not directly altered by such fields. Conversely, the electron gyrofrequency is comparable
to the electron-ion collision frequency in the vicinity of the critical density region, which may
affect dramatically the electron heat flow. Key issues of ICF are laser matter coupling, mass
ablation, hydrodynamic instabilities and hot spot dynamics. Because all of these phenomena
are highly sensitive to electron heat transport, accurate modelling of the electron conduction
is an essential ingredient of numerical simulations. However, the electron conduction model
implemented in the majority of hydrodynamic codes is based upon the flux limited Spitzer-Härm
theory and does not account for magnetic fields. The classical formulas by Braginskii predict
that magnetic fields provide a reduction of the magnitude of the heat flux and its rotation
through the Righi-Leduc effect. Splitting the Righi-Leduc term or approximating it as an
advection term or an effective conductivity often leads to mathematical and physical anomalies.
Alternatively, a direct space differencing of the full conduction operator raises accuracy and
consistency issues. We developed in CELIA a new, fully tensorial approach which overcomes
these difficulties. We propose a new second order tensorial diffusion method which is based on a
cell-centered diffusion scheme [115]. We present the main idea of the space differencing scheme
and some numerical results that illustrate the efficiency of the method compared to standard
approaches. The packages describing the magnetic field generation and the anisotropic electron
heat transport have been incorporated in the hydrodynamic code CHIC.

4.2.1 Underlying physical models

In deriving a numerical method to solve the heat conduction equation (3.1), we aim at developing
numerical modeling of physical phenomena encountered in plasma physics. More precisely, we
are concerned by heat transfer within laser-heated plasma flows such as those obtained in the
domain of direct drive Inertial Confinement Fusion, refer to [13]. In this context, the energy
released by the laser is transferred throughout the plasma flows by means of electron heat
conduction. Omitting the pressure work term, which results from coupling to hydrodynamics,
the electron temperature, Te, is governed by a heat conduction equation similar to (3.1). In
the classical regime, the electron heat flux, qe is given by the Spitzer-Härm law: qe = −κe∇Te,
where the electron thermal conductivity, κe, depends on the electron temperature as a power

law, i.e., κe(Te) ∼ T
5
2
e , refer to [51, 168]. This corresponds to an isotropic nonlinear heat

conduction equation. However, in presence of magnetic fields, this isotropic model for heat
conduction is not valid anymore. Such a situation occurs frequently for laser driven plasma
wherein the density and pressure gradients are not colinear. In this particular case, a self-
generated magnetic field, B, is created by the rotational component of the ambipolar electric
field, E = − 1

eNe
∇Pe, where e is the electron charge, Ne is the electron density per unit volume

and Pe is the electron pressure, refer to [51]. Knowing that the magnetic field is governed by
the Faraday law, i.e., ∂B∂t +∇×E = 0, we deduce that the time evolution of the magnetic field
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is governed by the following equation

∂B

∂t
=

1

e
∇(

1

Ne
)×∇Pe. (4.1)

The magnetic field dramatically modifies electron heat transport leading to a anisotropic elec-
tron conductivity. It implies not only a reduction of the magnitude of the heat flux but also its
rotation. Using plasma kinetic theory, Braginskii [30] has obtained the following expression of
the electron heat flux with magnetic field

qe = −κ‖(∇Te · b)b− κ⊥[∇Te − (∇Te · b)b]− κ∧b×∇Te, (4.2)

where b = B
|B| is unit vector corresponding to the direction of the magnetic field and κ‖, κ⊥

and κ∧ are scalar conductivities given in [30]. Let us consider a two-dimensional plasma flow
in planar geometry. Let (ex, ey, ez) be the orthonormal basis of R3 and suppose that the two-
dimensional flow is contained in the frame (x, y) equipped with the orthonormal basis (ex, ey).
By virtue of (4.1), it is obvious that the self-generated magnetic field is transverse to the two-
dimensional flow, that is, B = Bez. Setting b = B

|B| , we have b = bez, where b2 = 1. Bearing

this in mind, the electron heat flux expression (4.2) collapses to

qe = −κ⊥∇Te − κ∧b×∇Te. (4.3)

Developing the above equation over the Cartesian frame (x, y) allows to write the electronic
heat flux

qe = −Ke∇Te, (4.4)

where the second-order tensor Ke corresponds to the electronic conductivity defined by

Ke =

(
κ⊥ −bκ∧
bκ∧ κ⊥

)
. (4.5)

The Braginskii transport coefficients κ‖, κ⊥ and κ∧ can be expressed in terms of the Spitzer-
Härm conductivity, κe, as

κ‖ = κe, κ⊥ = κef⊥(Ωeτei), κ∧ = κef∧(Ωeτei),

where f⊥, f∧ are the functions describing the magnetization of the heat flux. In addition,
Ωe ∼| B |, is the electron cyclotron frequency and τei the electron-ion collision frequency. Note
that Ωe has the dimension of the reciprocal of time, thus parameter Ωeτei is dimensionless; it
describes the effect of the magnetic field on the electron heat conductivity as a ratio between
the electron gyration time in the magnetic field and the electron collision time. Bearing this
in mind we have displayed in Fig. 4.2 the normalized Braginskii transport coefficients with
respect to the normalized parameter Ωeτei knowing that f⊥(x) = 1

1+x2 , f∧(x) = x
1+x2 . For a

weak magnetic field, that is, Ωeτei ∈ [0, 1], we have κ⊥ > κ∧, whereas for a strong magnetic
filed κ⊥ < κ∧. In the limit | B |→ 0, the normalized parameter Ωeτei also tends to zero and the
Braginskii coefficients behave as follows: κ⊥ → κe and κ∧ → 0. In this regime, the anisotropic
conductivity tensor Ke recovers the isotropic Spitzer-Härm conductivity, i.e., Ke → κeI2.
We conclude this section by remarking that Ke is not symmetric and transforms as Ke(−b) =
Kte(b). This non-symmetry of the conductivity tensor is a consequence of the presence of the
magnetic field, this behavior is known as the Righi-Leduc effect, refer to [71] chapter XI. It
rotates the heat flux vector without changing its absolute value. This property corresponds to
the following result: for all arbitrary vector φ

Keφ · φ = κ⊥ | φ |2 .
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Figure 4.2: Normalized Braginskii transport coefficients κ⊥ and κ∧ versus normalized parameter
Ωeτei.

Since κ⊥ is positive, the above result shows that Ke is a positive definite tensor which satisfies
the thermodynamic requirement. It is interesting to note that for an arbitrary vector φ, Keφ
can be decomposed as follows

Keφ = κ⊥φ+ bκ∧Rπ
2
φ, (4.6)

whereRπ
2

denotes the counterclockwise rotation through the angle π
2 . The above equation states

that the anisotropic conductivity tensor acts as an isotropic conductivity tensor supplemented
by a rotation tensor which follows directly from the magnetic field. Finally, computing the
divergence of the anisotropic heat flux (4.3) yields

∇ · qe = −∇ · (κ⊥∇Te) +A ·∇Te, (4.7)

where A = [− ∂
∂y (bκ∧), ∂∂x(bκ∧)]t. Under this form the anisotropic diffusion operator appears

as the sum of an isotropic diffusion operator plus an advection operator characterized by the
velocity-like vector A. This decomposition suggests to solve the anisotropic heat conduction
equation discretizing separately the isotropic diffusion operator and the advection operator.
However, such a splitting strategy may suffer from a lack of robustness in case of strong magnetic
fields. That is why, the numerical scheme used in the sequel is based on an anisotropic heat
conduction [115].

4.2.2 Magnetic field effects in a 2D configuration

We first test our method on a 2D problem without hydro and a constant and imposed magnetic
field :

B(x, y) = B0 exp
−
(√

(x−x0/2)2+(y−(1+x0/2))2

x0/4

)4

with x0 = 20.10−4 and B0 = −1.107G.

Our domain is a square of 20 × 20µm with a mesh of 50 × 50 cells. It is field of Hydrogen
Z = 1 with a constant initial density of 0.025g/cm3. Initial temperature is T1 = 1.103K
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for 0. < x < 18.µm and T1 = 3.107K for 18.µm < x < 20.µm. We run three different
types of computation first is Braginskii without Righi-Leduc effect then we have an effective
conductivity which is used usually in 2D code then our tensorial formulation (see Fig. 4.3).
On the 2D isoline of temperature we can observe a limitation of the heat flux on all the results
due to the magnetic field. Then if we take into account of the Righi-Leduc effect with tensorial
formulation the rotation of the heat flux is enhanced and no oscillation is observed (Fig. 4.4).

Figure 4.3: Braginskii without Righi-Leduc effect (left), effective conductivity treatment (cen-
ter), tensorial formulation (right) at t = 25ps.

Figure 4.4: Temperature profile at x = 10µm and t = 25ps.

4.2.3 Plastic target irradiated with a Laser

In this case we study a plastic target (CH) of 100 µm thickness and 1000 µm height irradiated
by a laser beam : λ = 0.35 µm, maximal intensity 1. 1015W cm−2.
This tensorial method leads to a better computation of the Braginskii fluxes. Contrary to the
effective method in which the Righi-Leduc effect is partially truncated this tensorial scheme
correctly rotates heat fluxes. Comparison between Spitzer and Braginskii show that magnetic
field play an important role in the case of laser ablation physics. We can see that magnetic field
appear in the zone where density and temperature gradients are not colinear. The magnitude of

102



the self-generated magnetic field is also more intense using the tensorial method (see Fig. 4.5).
The effect of self-generated magnetic field in the case of a laser ablation case totally changes the
heat transport process. The tensorial method in this case also presents result free of numerical
oscillation.

Figure 4.5: temperature and log(Ne) Spitzer (left), temperature and magnetic field effective
conductivity (center), temperature and magnetic field tensorial conductivity (right) at t =
1.25ns.

4.3 Hydrodynamic implosion symmetry of HiPER’s targets

In ICF, within the Fast-Ignition strategy (FI), the use of Petawatt class lasers allows to directly
deliver ignition energy to the target. A much less energy is then required by the main laser
pulse; ignition being achieved by ultra-fast and ultra-intense ignition laser. First designs show
that corresponding implosion velocity is reduced, suggesting that hydrodynamic instabilities
could be reduced. Three targets are studied and compared with help of 2D hydrodynamic
simulations and instability modeling. First we recall the main features of the laser nonunifor-
mities optimization, within HiPER constraints. Then 2D perturbed simulations as well as a
hydrodynamic perturbation modeling sequence are presented.

4.3.1 Irradiation nonuniformities study

Irradiation nonuniformities are directly connected to the laser device. Such nonuniformities
produce low mode perturbation which needs to be accurately known in order to investigate
the consequence on hydrodynamic target stability. For this purpose a specific illumination 3D
code, the CECLAD code, has been developed [63]. It calculates target irradiation by multi-
laser beams and enables to optimize illumination of complex geometries in terms of energy
distribution in the focal spot or beams number. To improve confidence in CECLAD, the code
has been validated against published results [42], with analytical solutions [164] giving perfect
uniform irradiation and with existing results of known facilities (Omega). Published results
are reproduced. The CECLAD code has been used to define the baseline specifications of the
HiPER project (see Appendix C and [60]).

Optimization procedure

Several configurations of laser beams (size, energy balance, pointing, centering) and target
(shape, position, size) can be tested with this tool (see Appendix C). The irradiation uniformity
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Figure 4.6: The polar (a) and azimuth angles of the 48 illumination scheme.

Figure 4.7: Nominal irradiation of the 48 illumination scheme.

can be optimized through various criteria. The first one is the quadratic mean of deviation of
the intensity (σrms) which is a function of parameters featuring beams and targets. The second
one is the energy balance ηB which is the ratio between the energy on the target and the laser
beam energy. A Legendre polynomial expansion of the illumination gives amplitudes of the
main modes. These criteria determine a robustness analysis by varying control parameters
of the beams. Statistical variations according to a normal distribution around the nominal
configuration can be performed to test the robustness of the chosen pattern.

A 48 beams HiPER illumination scheme

Initial HiPER specifications are 50 beams with 15 kJ per beams at 1 ω (6 kJ at 3 ω) [60].
From these technical constraints one can carry out a σrms and an energy balance ηB analysis.
Obviously the σrms decreases with the number of laser beams. Meantime the energy balance
reaches a value close to 97 % for a 60 laser beams configuration (OMEGA). If one describes the
energy distribution in the focal spot by two parameters a, where a is radius at 1/e intensity,
and by m, the order of the supergaussian,

I(r) = exp

[
−
(r
a

)2m
]
,

a 48 laser beams scheme described in Fig. 4.6 gives σrms=0.15 % and ηB = 94% for parameters
a = 0.61 and m = 1.02. On Fig. 4.7 we show a 3D representation of the target with all the
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Figure 4.8: On the left σrms contours in a a, m diagram for the 48 beams HiPER illumination
scheme, on the right calculated illumination spectrum (relative amplitude on mode number) for
the 48 beams HiPER illumination scheme.

beams impinging on it. The field represented on the target is the intensity. This 48 beams
illumination scheme yields small σrms during the whole target implosion (i.e., a increasing) as
it can be seen in Fig. 4.8 which shows σrms contours in a a, m diagram.

The robustness of this scheme has been tested over 100 000 realizations. A normal repartition
of the beam to beam imbalance (10%), of the beam pointing (5%), and of the beam centering
2% have confirmed previous values and given a validity σrms range. Within the frame of the
FI, cone presence can strongly damage illumination uniformities. This 48 beams pattern yields
also a low intensity on cone surface and reduces undesired effects like preheating of the cone
surface. A Legendre polynomial expansion has been carried out which shows modes related to
main illumination nonuniformities are l=12, 8 and 10, with a maximum relative nonuniformity
of 0.5 % for mode l=12 (Fig. 4.8 on the right).

4.3.2 Perturbed hydrodynamics simulations and modelings

We want here to show the validity of a linear approximation in the hydrodynamic perturbation
growth, and to justify a monomode, half a wavelength, perturbation on a sector type mesh.
Two sets of simulations have been carried out on the Atzeni’s design [11] which is considered
here as the reference test case for the hydrodynamic perturbation modeling sequence.

The full spectrum of the laser irradiation has been introduced in the 2D CHIC [33] simulations
on a 90 degrees mesh grid. Strictly speaking only even modes can be dealed with because of the
mesh symmetry. The mesh includes 256 grid points in the radial direction, with a refinement
in the absorption region, and 56 grid points, regularly spaced, in the transverse direction. The
mode number l=20 will be described by 6 grid points for half a wavelength which limits our
multimode analysis to mode numbers lower than 20. For simplicity reasons, laser power has
been calculated from 1D total absorption at the critical density and modulated by a Legendre
expansion, constant in time, taken from Fig. 4.8 (on the left). The resulting illumination versus
angle is presented in Fig. 4.9.

Multimode CHIC (Fig. 4.10) simulation indicates that the mode number l=12 remains dom-
inant up to the time of maximum areal density, i.e., the stagnation time. The maximum de-
formation achieved at internal interface is about 10 µm from peak to valley. This deformation
is the consequence of the illumination nonuniformities which have seeded perturbations at the
ablation surface. Then these perturbations have been transmitted to internal interface during
shock wave transit and amplified by Bell-Plesset mechanism. Fourier analysis, i.e., modal anal-
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Figure 4.9: Illumination spectrum versus angle applied in 2D multimode CHIC simulations.
The mode number l=12 is the dominant mode number.

Figure 4.10: Multimode, 90 degrees, CHIC simulation of Atzeni’s reference design. Four density
contours at time t=10.4 ns, t=10.6 ns, t=10.8 ns and t=11 ns are presented on the left panel.
A magnified view of density contours is presented on the right panel at time t=11 ns, i.e., just
before time of maximum areal density (≈ 11.17 ns).

ysis, of the internal interface deformation at stagnation is presented in Fig. 4.11. It confirms
that dominant mode number is the l=12 and it shows that lower mode numbers have consid-
erably decreased. Nonlinear mode coupling does not really take place, although contribution
of l=16 mode number slightly increases. This result is confirmed by an evaluation of the ra-
tio perturbation amplitude on inflight radius (a/∆R) which is lower than 1 (not shown here).
These results show that deformation of the internal interface can be obtained with monomode
simulations, the whole spectrum being obtained by reconstruction of each modal contribution.
Moreover, previous studies [80] have shown that monomode simulations by using sector grid
meshes covering half a wavelength gave results similar to that obtained on a 90 degrees mesh.

4.4 Non-linear amplification of high mode perturbations at ab-
lation front in HiPER targets

A safety factor discussion for low modes perturbations (l ≤ 50), related to laser irradiation
non uniformities, is addressed in Ref. [74]. It is shown that a self-consistent numerical method
provides accurate estimates for the perturbation growth at the ablation front and at Deuterium
Tritium (DT) interfaces. Also some analytical estimates could be obtained by coupling the
perturbed shock waves with the ablation front in a high aspect ratio target. Thus, the per-
turbation growth can be understood by combining direct numerical simulations with a model
post-treatment for low mode numbers corresponding to large wavelength perturbations. These
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Figure 4.11: Fourier analysis, i.e., modal analysis, of the internal interface deformation at
stagnation. The mode number l=12 remains the dominant mode number which justifies linear
monomode simulations in order to study the deformations up to the stagnation phase.

perturbations can be initiated, for example, by laser irradiation non uniformities. A tolerance
guideline on the laser irradiation was suggested and dominant mode numbers were identified.

Pursuing hydrodynamic stability studies for the HiPER baseline target, we address here the
problem of high mode perturbations (l ≥ 20) induced by shell roughness.

Here, contrary to the low wave numbers case, non-linear behaviour has to be accounted for
during the shell acceleration. Finally, it is shown that, for high modes, the ablative Rayleigh-
Taylor (ART) instability behaves apart from the spatial perturbation seeded during the shock
transit time. It depends only on the amplitude achieved at the beginning of the acceleration.
Numerical simulations with 2D code CHIC [33] provide an accurate estimate of the linear
perturbation growth and give an assessment of the non linear stage. It is also shown that
stabilizing schemes based on adiabat shaping [8] reduce the perturbation growth and delay
the beginning of the non-linear phase. This allows to discuss the problem of determining the
admissible initial roughness spectrum for the baseline HiPER target. A good agreement is found
between simulations and self-consistent theories up to the end of the weakly non-linear phase.

4.4.1 Non-linear ART simulation with the ALE CHIC code

To study the perturbation evolution at the ablation front we impose a Legendre single-mode
perturbation at the external surface. This perturbation is radial and, because of the relatively
small range of the spatial perturbation dependency, a linear decay inside the shell is used.
This approximation preserves the ART seeding and growth. A purely Lagrangian computation
may stop before end of acceleration, during the non-linear stage due to tangled mesh. The ALE
method allows to improve the geometrical quality of the grid elements and to optimize accuracy,
robustness, and computational efficiency. A special rezoning procedure is implemented in the
ablation zone. A traditional mesh smoothing is not sufficient in our case as it could decrease the
accuracy of the Lagrangian computation with the consequence to loose the spatial resolution.
It is necessary to preserve the Lagrangian displacement at the ablation front. In the rezoning
procedure implemented in CHIC, the Lagrangian characteristic of the mainstream flow and
especially the perturbation at the ablation front are preserved using an orthoradial projection.
In this rezoning procedure we keep the radial Lagrangian displacement of the nodes during all
the computation and we orthogonally project the orthoradial displacement onto this radius.
The rezoning phase is followed by a second order remapping phase where all the conservative
quantities are conservatively remapped from the Lagrangian mesh onto this rezoned mesh.
Once the non-linear perturbation growth has started, we add to this rezoning an additional
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Figure 4.12: Linear growth rate at short times (7.5 - 8 ns) versus mode number obtained from
the CHIC simulations (dots) compared to theoretical model (solid line) [25].

mesh smoothing to avoid mesh tangling. By using such rezoning, a non-linear evolution of
mode numbers up to l = 800 can be studied by using 35 grid points per wavelength.

4.4.2 2D high mode simulations of perturbed flow

Fig. 4.12 presents a cross-check validation of high mode instantaneous linear growth rates
obtained in CHIC simulations and from theory [25]. This comparison is made for short times
up to 8 ns, because of the early non-linear stage, which occurs for modes higher than l=100
including small initial perturbation amplitudes. Indeed for l = 100 and a 0.1 cm radius, the
non-linear threshold ak ∼ 0.1 [96] is expected to be reached, for amplitudes larger than 1 µm,
in the nanosecond time scale. Note that at the beginning of acceleration, most unstable modes
are in the range [500-600] as the maximum growth factor are obtained for modes in the range
[200-300]. It shows an important time dependency in the perturbations development for the
linear and non-linear regimes, including the contribution of at least the second harmonic.

In Fig. 4.13(a) we show the perturbation amplitude at ablation front versus time for different
initial amplitudes with initial single-mode perturbation l = 200. The transition to the non-
linear stage is indicated by the slope modification in the amplitude evolution. The perturbation
evolves in the linear regime (see Fig. 4.13(b)) and then reaches the weakly non-linear regime
(Fig. 4.13(c)). At that moment, the particular shape of density contours are characteristic
of the ART instability behaviour. Here at least a double frequency structure is present. The
effect of ablation on the perturbation shape during the weakly non-linear regime is clearly seen.
This shape is described and explained in [144, 143]. The spikes may flatten and enlarge due
to the dynamical ablation overpressure. In this regime, the perturbation shape is the result of
early seeding of harmonics and their feedback to the fundamental mode. These harmonics can
appear with the same or opposite phase relatively to the fundamental mode [144]. Fig. 4.14 (a)
shows the amplitudes (absolute values) of the first and second harmonics as a function of time.
Fig. 4.14 (b) shows a Fourier analysis of the modal spectrum during the main acceleration,
at time t=9.2 ns, up to fifth harmonic. The density contours shape (wide and flattened) in
Fig. 4.13(c) is due to the phase inversion of the second harmonic (Fig. 4.14 (b)).

The different shapes of the density contours for l = 200 are shown at different times in Fig. 4.15
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Figure 4.13: a) Ablation front perturbation versus time for l = 200 mode with three different
initial amplitudes and density contour shapes (g/cm3) of curve (2) at times b) 8.7 ns and c) 9.2
ns. On density contours, the blue zone on the top is the external vacuum, the red zone is the
compressed DT and the blue zone on the bottom is the vapor-pressure DT gas in the center.

excited by the initial roughness of about 1 nm (Fig. 4.15a-b-c). A peak-and-valley shape can
be seen up to the fully non-linear regime at the time t > 9 ns. The non-linear shape consists in
spikes and bubbles structures. At the end of the simulation, multi-frequency structures appear.
For a few nm initial amplitude, the non-linear evolution lasts most of the acceleration phase
and non-linear couplings may be very strong. For a higher initial amplitude around 10 nm and
more, characteristic structures appears with very singular shape (see Fig. 4.15 (e)), previously
observed in planar simulations in [144]. At large time, an asymptotic case is achieved, where
the shell is completely decompressed (Fig. 4.15 (f)). These initial conditions lead to exhibit
very complex multimode structures of the non-linear regime, where ablation plays an important
role. Namely the shape of the perturbation differs from the classical case where thin spikes and
thick bubbles are expected [144]. This new repartition is clearly observed for higher modes in
our simulations. In Fig. 4.16, for mode l = 300, one can see the clear inversion of the shape
perturbation (thin bubbles, thick spikes) from the weakly non-linear stage (Fig. 4.16(a)). This
behaviour has been observed for all higher modes. Theory exhibits a threshold wave number
for this feedback. Our simulations, initiated by a single-mode perturbation (l = 300, 500, 800),
reproduce the inversion of spikes and bubbles thickness, contrary to a classical Rayleigh-Taylor
(RT) weakly non-linear perturbation shape, i.e., without ablation. Simulations results are con-
sistent with the existence of this threshold and all unsteady effects. For example, the dominant
mode in the linear regime differs at the beginning of the main acceleration and subsequent
times. For this reason, the non-steady effects act on the growth of both fundamental and har-
monics of the initial perturbation. The initial amplitude may also change the contribution of the
behaviour corresponding to each mode perturbation. At later times, the perturbation evolves
in the non-linear regime with a multimode bubble-spike structure (Fig. 4.16(b)). Non-linear
effects at the ablation front produce very elongated bubbles which extend from the ablation
front into the expanding low density plasma (Fig. 4.16(c)).

Figure 4.17 shows the temporal evolution of the perturbation amplitude at the ablation front
for the mode l = 300 and for three initial amplitudes. The behaviour is the same before the
main acceleration phase as long as the perturbation remains in the linear stage. The slope
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(a) (b)

Figure 4.14: For mode l = 200: a) Amplitude of the first and second harmonics versus the time
during the acceleration phase; b) Fourier analysis of ablation front perturbation at time 9.2 ns
acceleration, up to fifth harmonic. The second harmonic appears with opposite phase.

variation indicating the non-linear perturbation behaviour occurs for the same amplitudes. The
Y curves indicate fraction levels of the perturbation wavelength λ. In particular, Y = 0.1λ
corresponds to the classical weakly non-linear saturation criteria [96]. For the mode l = 300,
we checked that the radiation transport has weak influence on the instability growth. At the
end of acceleration, the radiation changes the amplitude less than 10%. For modes greater than
300, the shape inversion was observed, with thicker spikes. Additionally, for these modes, the
perturbation may reverse phase during the weakly non-linear stage. A multimode computation
has been also performed Fig. 4.18 based on a initial l = 300 and with 10% of l = 100. It exhibit
bubble competition and indicate that a study should be performed using real initial spectrum
for the baseline HiPER target, has performed in the work of [130]. Experimental study has also
been realized to study the ART instability growth [52], on the OMEGA laser facility and the
radiation hydrodynamic CHIC code has been used for the design and the interpretation of the
results.

4.5 Study on shock propagation in the context of polar direct
drive shock ignition

In the Direct-Drive Inertial Confinement Fusion (ICF) scheme, the classical process leading to
DT ignition is the conversion of the shell kinetic energy into internal energy of a central hot
spot, which further acts as an ignition spark [13]. To achieve central ignition, the shock ignition
(SI) scheme has been extensively studied theoretically and experimentally [97, 26, 43, 138].
Shock ignition was first proposed by Betti et al. [10], it consist to ignite the target by means
of a strong convergent shock launched in the target at the end of the compression phase and
prior to the final stagnation of fuel at target center. This new concept has been experimentally
studied in planar [138, 20, 10] or in spherical geometry [18, 137, 153]. It was demonstrated that
a properly timed final shock significantly enhances the neutron yield [12] and that the coupling
of high-intensity spike beam energy into the imploding capsule was studied, which suggests
that the yield increase was partially due to hot electrons coupled into the compressing target.
[79]. Recently, encouraged results obtained from strong spherical shock [152] demonstrate the
capability to generate high shock pressure 300 Mbar at laser intensities in the range of 1015 to
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(a) (b) (c)

(d) (e) (f)

Figure 4.15: Evolution of the perturbation shape on density contours for l = 200 mode: with
initial amplitude a0 ∼ 1 nm at times a) 8 ns, b) 8.7 ns, c) 9.2 ns; with initial amplitude a0 ∼ 10
nm at times d) 7.3 ns, e) 8 ns, f) 8.7 ns. On density contours, the blue zone on the top is the
external vacuum, the red zone is the compressed DT and the blue zone on the bottom is the
vapor-pressure DT gas in the center.

(a) (b) (c)

Figure 4.16: Evolution of the density contours of mode l = 300 at times a) 8.7 ns, b) 9.2 ns, c)
9.7 ns. An inversion of the bubble-spike symmetry is observed.
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Figure 4.17: Ablation front perturbation amplitude versus time for l = 300 mode, with standard
pulse and three different initial amplitudes.

(a) (b)

Figure 4.18: a) Monomode calculation l = 300; b) multimode for l = 300 and 10% of l = 100
both at time t=10.2 ns.
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1016 W/cm2. This physical issue is crucial for the credibility of SI [152].
In this section, we study the possibility to ignite the hot spot with a strong no-uniform irradia-
tion for the ignitor shock. The shock ignition is a two step process, first a uniform illumination
compressed the target at low velocity, then a strong shock converge to ignite the hot spot. Al-
though the compression require a uniform irradiation, for the ignitor shock it is not mandatory
require. This possibility studied in [153] shows that because the critical radius target is reduced
at the shock launching time, the focal spot needed for the ignitor could be smaller than the
compression beam. This allow a better absorption and demonstrated the high flexibility and
robustness of this concept [153], i.e. even in bipolar irradiation the ignition occurs. In this
configuration the hydrodynamic simulations show that two planar shocks propagate inside the
hot spot and collide to ignite the target. To study the bipolar ignition scheme, an experiment on
the LIL facility was proposed to experimentally reproduce the formation of a convergent planar
shock by a spike laser pulse in presence of a SI relevant plasma. In this experiment, the LIL
quad Gaussian beam is focused on hemispherical target and compare to the planar one. In the
two configurations VISAR an SOP diagnostics allowed to give to the inferred shock pressures
and shapes.
Here we report the results obtained on the hemispherical target. Due to the complex geometry
this experiment was the first which use the multi-material Eulerian version of CHIC at CELIA.
This version uses the last development of the CHIC code for the multi-material treatment
based on the MOF method for the interface reconstruction. As it is shown in Fig. 4.19 and
Fig. 4.20 the CHIC code enables to recover all the shock timing at ±100 ps visible on the
VISAR diagnostic.

Figure 4.19: VISAR experimental results compared to the simulated VISAR using the CHIC
code (red and green curve).

The initial configuration is shown in Fig. 4.20(a) on the left and right very light density material
also called pseudo material are initialized. Then from the left to the right we have a thick slice
of quartz of 250µm, then 30µm of Molybdenum (Mo) and finally the CH part of the target
which include the hemisphere. At t = 2.4ns, Fig. 4.20(b), the shock as penetrated the Mo and
it is the first signal visible on the VISAR Fig. 4.19. At this time the pseudo material on the
right has been totally replaced by the CH plasma due to the ablation of the CH target. At
t = 3.7ns, Fig. 4.20(c), a planar shock reach the left interface of the Mo and it corresponds to
the plateau of Fig. 4.19. At that time we can see the thin Mo slice has been compressed by
the shock. At t = 7.1ns, Fig. 4.20(d), a shock reach the left interface of the quartz which is
visible on Fig. 4.19. Here the Mo is much deformed by the shock interaction. At t = 12.25ns,
Fig. 4.20(e), two shock converge on the left interface of the quartz and change the slope of
the VISAR results, green curve on Fig. 4.19. As the laser has been turned off at t = 4ns the
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Mo expand and some droplet of material are visible on Fig. 4.20(e) and Fig. 4.20(f). The
quartz penetrate the pseudo vacuum on the left. Due to the very strong deformation of the Mo
material on Fig. 4.20(f) we can see that some cells contain three different materials quartz-Mo-
CH which is one of capability of the MOF method to track multi-material cell with more than
two materials.
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Figure 4.20: Density fields (left) and material interface (right) at different time.
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Conclusion and perspectives

In this document a part of the works done for the last ten years has been presented. This
work has initiated numerous international collaborations with American national Laboratories
(LANL, LLNL) for the numerical part and with ILE in Japan for MHD applications. I person-
ally had the opportunity to be invited at LLNL in US and ILE in Japan to work closely with
local teams. This work also gave me the opportunity to mentor a number of internships student,
thesis and postdoc. This research work has been presented in numerous seminar, workshop and
international conference, some as invited speaker. Most of the numerical schemes presented
here, have been published in original research peer-reviewed articles. The CCALE-MOF strat-
egy based on the EUCCLHYD Lagrangian scheme coupled to the CCLADNS scheme which
solve anisotropic diffusion equation has been presented here. These numerical schemes are the
numerical bricks of the CHIC code that has been developed at CELIA. Some applications us-
ing the CHIC code have been also presented to highlight the capability concerning the HEDP
domain and more precisely ICF for FI and SI.

In this document, extension of the scheme to the case of hypo-elastic constitutive laws material
has not been presented [119] but it is now being implemented in the CHIC code. Concern-
ing the EUCCLHYD scheme we have proposed a 3D extension which is based on a symmetric
and systematic geometric decomposition of the polyhedral cells using the faces barycenter [66].
Using the assumption of a linear velocity field on the cell faces, this decomposition enables to
define a discrete divergence operator and to respect the GCL on any unstructured polyhedral
mesh. Moreover, a new multi-dimensional minmod limiter is constructed from nodal gradients
and the minmod function. This method enables to drastically reduce overshoots around strong
shocks while preserving the flow symmetries. These two methods are applied to a second-order
cell-centered Lagrangian scheme based on the work [118]. This scheme satisfies an entropy in-
equality and conserves globally the momentum and total energy.

For the ALE formulation, we have introduced a simple and unified formulation of the Lagrangian
scheme relying on an area-weighted formulation, a multi-material MOF interface reconstruction,
a new formulation of rezoning for polar, Cartesian and unstructured grids and finally a general
hybrid remap procedure for both axisymmetric and Cartesian geometry. As demonstrated on
several academical as well as ICF-like test cases, the proposed method remains accurate and
robust. Additional validation results can be found in Appendix B where we propose comparisons
with experimental results. A possible extension for the ALE method could be an ALE-AMR
method which could couple the ALE strategy to an Adaptive Mesh Refinement (AMR) method
[123]. This could improve the interface tracking in the ALE framework.
As a future work, the implementation of an Arbitrary Lagrangian-Eulerian (ALE) method in
3D could improve the scheme ability to treat flows with strong vorticity and shearing in 3D. In
particular, such a method coupled to a 3D interface reconstruction, would enable the modeling
of multi-material compressible flows with propagation of a perturbation such as the Kelvin-
Helmholtz instability or the triple point problem [32].
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We have shown that our cell-centered ALE with MOF interface reconstruction algorithm gives
accurate and efficient results on problems that use real EOS. Furthermore, our method improves
the robustness of ALE calculations on ICF implosion problems. Pressure relaxation closure
model should be implemented [14, 148] to overcome the problem of overshoot in Lagrangian
computation with mixed cells.

Comparison between ALE and ReALE has shown that the ReALE formulation succeeds in keep-
ing the Lagrangian property whereas the ALE computation presents some limitation. Indeed,
using this multi-material ReALE strategy coupled to the Moment of Fluid (MOF) interface
reconstruction method we recover the Lagrangian features of following material interface that
we lose using standard ALE methods with fixed connectivity. In all computations, MOF inter-
face reconstruction demonstrate its ability to follow the material interface and even succeeds
in tracking thin filaments of material. As future work, we could improve the remapping phase
as exact intersection is quite expensive and apply the hybrid remapping method [24] to multi-
material ReALE. We also plan to study adaptation using the possibility to add and remove
generator dynamically during the ReALE simulation as in [28]. As future work, we would like
to incorporate the ReALE method in the multi-physics code CHIC dedicated to the simulation
of ICF experiment. The main goal is to treat eventually more general configurations notably
coupling realistic EOS, laser energy deposition, with multi-material hydrodynamics in the lines
of [33].

Finally, we have described the cell-centered finite volume CCLADNS scheme which aims at solv-
ing anisotropic diffusion problems on two and three-dimensional unstructured ALE-AMR grids.
This scheme is characterized by cell-centered unknowns and a local stencil like the CCLAD
scheme [36] which is also used in the CHIC code. The partition of grid cells (resp. faces)
into sub-cells (resp. sub-faces) allows to construct a sub-face flux approximation by means of
a sub-cell-based variational formulation. The sub-face fluxes are expressed locally to the node
in terms of the surrounding cell-centered temperatures invoking continuity conditions of the
temperature and normal heat flux at the cell interface.
We have described a modification of the scheme, which enables to compute solutions on 2D and
3D AMR grids. For these specific grids we have introduced a modification of the underlying sub-
cell decomposition in order to obtain, in each sub-cells, a basis constructed upon their normal
vectors. With this modification, only local linear systems are modified, and the construction of
the global system remains unchanged.
Regarding its accuracy, the CCLADNS scheme preserves linear fields with respect to the space
variable over polygonal and polyhedral grids and exhibits a second-order rate of convergence
on these grids for analytic solutions.

In a future work we plan to investigate the mathematical properties of the CCLADNS scheme.
For now, we successfully validated the scheme on numerous test cases, but we are still missing
the mathematical evidence of its properties. Moreover, we ran tests on static AMR grids
only. In the future we plan to develop a dynamic AMR method, using a posteriory error
estimates to dynamically refine or coarsen the mesh. This is a really challenging problem from
a mathematical point of view and from a computer science point of view. From a mathematical
point of view we need to find estimators that are well suited to handle the different physics at
hand. All the details of the different physics need to be taken into account. From a computer
science point of view, this is also a really challenging task. When we refine the mesh, we need to
keep a balanced load between the parallel processes in order to keep also a good computational
efficiency. For this specific task we plan to use the Scotch library [132] that allows efficient
repartitioning techniques. In future, we would like also to study the coupling between diffusion
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and 3D Lagrangian hydrodynamics [66] on AMR grid, like in [50], which is based on orthogonal
grid in presence of multi-material interfaces. The treatment of such multi-material flows on
distorted grid should be done in the same manner as in [35].
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Appendix A

Piecewise quadratic reconstruction
for FCR remap

To get the high-order numerical fluxes for the FCR method, the piecewise quadratic recon-
struction [49] is used. In this section, we repeat the procedure to provide necessary formulas to
compute the quadratic reconstruction in the selected cell (we omit here the index i of the cell
for simplicity). The quadratic reconstruction of an unknown function in one cell has the form

uH(x, y) = u− λ0 + λ1(x− xc) + λ2(y − yc) + λ3(x− xc)2 + λ4(x− xc)(y − yc) + λ5(y − yc)2 ,

where u represents the cell mean value of the conservative quantity (density, momentum or
total energy); xc, respectively yc the coordinates of the cell centroid and {λ0, . . . , λ5} a set of
the unknown coefficients of the reconstruction. To preserve a mean value of the conservative
quantity, the first coefficient has the form (the meaning of ”generalized centroids” xs, ys, zc is
described later)

λ0 = λ3(xs − x2
c) + λ4(zc − xcyc) + λ5(ys − y2

c ) . (A.1)

The remaining coefficients Λ = (λ1, . . . , λ5)T are calculated by the minimization of the recon-
struction error in the neighboring cells

∑
k∈N

uk − 1

Vk

∫
Ωk

uH(x, y) dV


2

. (A.2)

Here Ωk stands for the area of the cell with the volume Vk and N represents the set of n
neighboring cells to the given cell. To get a unique solution for Λ, at least 5 neighboring cells
are required. We choose the corner neighbors for the quadrilateral mesh and the edge neighbors
for the other polygonal meshes. Ghost cells are attached to the boundary with conservative
quantities filled by given boundary conditions, so that each internal cell has the full stencil N .
The minimization is equivalent to the solution of the following over determined linear system
in the least square sense

AΛ = B B = (β1, . . . , βn)T A =

α1,1 · · · α1,5
...

. . .

αn,1 αn,k

 (A.3)
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with

βk = uk − u
αk,1 = xck − xc
αk,2 = yck − yc
αk,3 = xsk − xs + 2(x2

c − xcxck)

αk,4 = zck − zc + 2xcyc − xckyc − yckxc
αk,5 = ysk − ys + 2(y2

c − ycyck) .

The centroid coordinates xc, yc of the cell and xck , yck of the adjacent cell k and similar quantities
xs, ys, zc are defined as

xc =
1

V

∫
Ω

x dV =
1

6V

∑
q∈P

(x2
q + xqxq−1 + x2

q−1)(yq − yq−1)

yc =
1

V

∫
Ω

y dV = − 1

6V

∑
q∈P

(y2
q + yqyq−1 + y2

q−1)(xq − xq−1)

xs =
1

V

∫
Ω

x2 dV =
1

12V

∑
q∈P

(xq + xq−1)(x2
q + x2

q−1)(yq − yq−1)

ys =
1

V

∫
Ω

y2 dV = − 1

12V

∑
q∈P

(yq + yq−1)(y2
q + y2

q−1)(xq − xq−1)

zc =
1

V

∫
Ω

xy dV =
1

24V

∑
q∈P

[
x2
q−1(3yq−1 + yq) + 2xq−1xq(yq−1 + yq−1)+

+x2
q(yq−1 + 3yq)

]
(yq − yq−1)

V =

∫
Ω

dV =
1

2

∑
q∈P

(xq + xq−1)(yq − yq−1) .

Here P is a set of all nodes of the selected cell and we assume (without the loss of generality)
an ordering which allows us to select the previous (q − 1) and the next (q + 1) point in this set
in the counter-clockwise order.

Neglecting the parabolic terms (the last three columns of the matrix A (A.3)) in (A.2) leads
to the standard piecewise linear reconstruction. In the piecewise linear case, the minimization
problem has an easy solution given by a system of two linear algebraic equations. In the
piecewise quadratic case, we use the singular value decomposition method to solve the least-
square system (A.3).

This reconstruction is used to compute the high-order numerical fluxes through the mesh edges.
For the piecewise linear reconstruction, the integration over swept regions is described in [95].
This method does not require the costly computation of the cells intersections. In the numerical
results section, we show that accuracy of this method, for the considered problems, is comparable
to the intersection based method. Here we present the final formula for one particular numerical
flux

FHS =

∫
S

uH dV =
[
(u− λ0) + λ1(xSc − xc) + λ2(ySc − yc)+

+ λ3(xSs − 2xSc xc + x2
c) + λ4(zSc − ySc xc − xSc yc + xcyc) + λ5(ySs − 2ySc yc + y2

c )
]
V S ,
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where the xc, yc are coordinates of the cell centroid and all other terms are given by the integral
formulas above over the swept region S, e.g. xSs = 1

V S

∫
S x

2 dV . The low-order piecewise

constant reconstruction is simply given by the mean value in the cell uL(x, y) = u and therefore
FLS =

∫
S u

L dV = uV S .
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Appendix B

Validation of ALE and ReALE based
on experimental results

Validation presented in the document for the ALE and ReALE methods are mainly based on
analytical solutions we propose here some comparisons with experimental results.

B.1 ALE simulation of a spherical Air-Helium shock/bubble
interaction test

0 0.32

0.0445

0
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0.
02

25
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Piston

(ρ1, P1, γ1) = (0.182, 105, 1.4)

(ρ2, P2, γ2) = (1, 105, 1.648)

eY

eX

Figure B.1: Spherical Air-Helium shock/bubble interaction. Initial geometry and data.

We deal in this part with the numerical simulation of the experiment presented in [72]. We study
here, the interaction of a Mach 1.25 shock travelling through the air with a spherical bubble of
Helium. To this goal, let us consider a rectangular domain of dimensions [0, 0.65] × [0, 0.0445]
initially full of Air characterized by (ρ1, P1, γ1) = (0.182, 105, 1.4). This domain contains a
spherical bubble of Helium (ρ2, P2, γ2) = (1, 105, 1.648) in an half disc centered in (0, 0.32) of
radius 0.0225 as depicted on Fig. B.1. Here, spherical geometry of the bubble is obtained thanks
to axisymmetric geometry. Wall boundary and symmetry conditions are respectively chosen for
the left and top boundaries. Despite, a piston-like condition is imposed to the right one for an
incoming velocity equal to U∗ = (u∗, 0). Here, the horizontal velocity u∗ is computed thanks
to Rankine-Hugoniot conditions and is given by u∗ = −140.312 corresponding to an incident
shock moving at the velocity Dc = −467.707.

The domain is initially paved with a structured Cartesian grid composed of 520 × 72 cells.
Here, the bubble is directly initialized through the volume fraction on this mesh. Computations
are done for the multi-material axisymmetric CCALE-MOF for a final time chosen equal to
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tf = ti + 600 × 10−6 where ti = 657.463 × 10−6 corresponds to the time of the shock/bubble
interaction. Here once again, simulations can not be achieved using pure Lagrangian framework
due to the apparition of important mesh distortion. Numerical results associated to the Schlieren
density profiles [73] are depicted on Fig. B.2.

t = ti + 20× 10−6

t = ti + 145× 10−6

t = ti + 223× 10−6

t = ti + 350× 10−6

t = ti + 600× 10−6

Figure B.2: Spherical Air-Helium shock/bubble interaction. Schlieren diagram of density. Ax-
isymmetric CCALE-MOF results (on the left) compared to experimental results (on the right)
[72] after the shock hits the bubble at time ti = 657.463× 10−6.

Let us note that each pictures are obtained thanks to an axial symmetry with respect to the
X-axis. Comparisons between the Schlieren density profiles and the shadow-graphs of the ex-
periment show a good agreement, especially when observing the bubble shape deformations.
Moreover, waves generated by the initial shock are well localized and illustrate multiple reflec-
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tions and refractions especially on the bubble and the domain boundaries. These main points
clearly demonstrate the accuracy and the robustness of the method and validate the axisym-
metric CCALE-MOF approach when computing spherical test-cases coming from experiment.

Figure B.3: Zoom on Interface and mesh for the Cylindrical Air-Helium bubble test at time
tf = 674× 10−6 after shock/bubble interaction.

B.2 ReALE simulation of a cylindrical Air-Helium shock/bubble
interaction test
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Figure B.4: Air-Helium shock/bubble interaction. Initial geometry and data.

In this part, we focus on the numerical simulation of the experiment of [72] concerning the
impact of a Mach 1.22 shock traveling through the air onto a cylindrical bubble of Helium. Let
us consider a rectangular domain of dimensions [0, 0.65]× [−0.0445, 0.0445] initially full of Air
of data (ρ1, P1, γ1) = (0.182, 105, 1.4) except in a disc centered in (0, 0.32) of radius 0.025 that
contains Helium characterized by (ρ2, P2, γ2) = (1, 105, 1.648) as depicted on Fig. B.4. Wall
boundary conditions are respectively chosen for the left, bottom and top boundaries. Whereas,
a piston-like condition is imposed to the right one for an incoming velocity equal to U∗ = (u∗, 0).
Here, the horizontal velocity u∗ is computed thanks to Rankine-Hugoniot conditions and is given
by u∗ = −124.824. The domain is initially paved with a grid composed of 38033 cells. Here,
the bubble is directly initialized through the volume fraction on the mesh.

Computation is done using the multi-material ReALE-MOF for a final time chosen equal to
tf = ti + 674 × 10−6 where ti = 668.153 × 10−6 corresponds to the time of the shock/bubble
interaction. Numerical results associated to the Schlieren density profiles [73] are depicted on
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t = ti + 32× 10−6

t = ti + 102× 10−6

t = ti + 245× 10−6

t = ti + 427× 10−6

t = ti + 674× 10−6

Figure B.5: Cylindrical Air-Helium shock/bubble interaction. Schlieren diagram of density.
ReALE results (on the left) compared to experimental results [72] (on the right).
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Fig. B.5. Comparisons between the Schlieren density profiles and the shadow-graphs of the
experiment show a good agreement, especially when observing the bubble shape deformations.
Moreover, waves generated by the initial shock present multiple reflections and refractions
especially on the bubble and the domain boundaries. In These main points clearly demonstrate
the accuracy and the robustness of the method and validate the ReALE-MOF approach when
computing test-case coming from experiment. In Fig. B.3 we show the material interface on
the polygonal grid for a coarse mesh.

B.3 Schardin’s problem

This test case, also known as Schardin’s problem [145], concerns shock wave diffraction on a
triangular body. In this problem, a planar shock impinges on a finite-length wedge and generates
curved reflected and diffracted waves. In agreement with experimental data, we use an isosceles
triangle that has a front vertex angle of θ = 55◦ and a base length of 20 mm (Fig. B.6). The
Mach number of the incident shock wave is Ms = 1.3 which is the same value as the experiments
of Schardin [145]. We initialize the pressure in the shock tube with P0 = 0.05 MPa and we use
ρ0 = 1.2 kg.m−3 as initial density.
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Figure B.6: Schardin’s problem configuration with xp,0 = −0.059 the initial lagrangian position
of the piston, xp,f = 0.01 the final position of the piston and xs,i = 0.49 the position of the
incident shock at the beginning of the interaction time.

For this configuration, a piston-like condition is imposed to the left boundary condition with a
prescribed velocity equal to U∗ = (u∗, 0). Here, the horizontal velocity u∗ is computed thanks
to Rankine-Hugoniot conditions and is given by u∗ = −106.83 m.s−1. This corresponds to an
incident shock moving at the velocity Dc = 314 m.s−1. Computation is done using ReALE and
the final time is equal to tf = ti + ts where ti = 342.98× 10−6 s corresponds to the time of the
displacement of the shock wave to the position xs,i, and ts = 307 × 10−6 s is the time of the
shock/triangle interaction. The domain is initially paved with a grid composed of 23892 square
cells. During calculation, ReALE strategy leads progressively to a polygonal mesh as depicted
on Fig. B.7.
In Fig. B.8, we compare experimental shadowgraphs extracted from [145] to computed isopycnic
at different times. We choose to represent 50 isopycnic from the lowest to the highest density
value for each representation. We observe that the flow structure includes Mach reflections and
several interactions between the diffracted waves. Further, the flow separates on the wedge
trailing edge, and the developing slip line rolls up into a spiral vortex. The Kelvin-Helmholtz
instability of the slip lines leads to the emergence of small secondary vortices. The investigation
of Schardin’s problem based on visualizations comparison reveals that the numerical ReALE
simulation faithfully reproduces the main flow structure.
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Figure B.7: Density field in kg.m−3 and mesh topology at t = 115µs for Shardin’s problem
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Figure B.8: Density fields for the Schardin’s problem

B.4 Shock wave propagation in a square cavity

We focus now on the interaction between a planar shock wave and a square cavity. This test
case was first introduced by Igra and Falcovitz in [85] which led experimental investigations on
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the shock tube of the Ernst mach Institute in Freiburgn Germany. Here, we use the shadow-
graphs they have obtained in order to evaluate the computed results. The numerical experience
is characterized by (Ms, P0, ρ0) =

(
1.3, 98285 Pa, 1.2 kg.m−3

)
where Ms is the Mach number

of the incident shock wave, P0 the initial pressure and ρ0 the initial density.

Here again, we use a piston-like condition to generate the shock wave. We impose an incoming
velocity to the left side equal to U∗ = (u∗, 0) where u∗ still computed thanks to Rankine-
Hugoniot conditions with u∗ = −149.77 m.s−1, corresponding to an incident shock moving at
the velocity Dc = 440, 2 m.s−1. The domain, schematized on Fig. B.9, is initially paved with
a grid composed of 15748 square cells.
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Figure B.9: Square cavity configuration with xp,0 = −0.2443 the initial lagrangian position of
the piston, xp,f = −0.1 the final position of the piston and xs,0 = −0.0055 the position of the
incident shock.

Similarly to the Schardin’s problem, we represent on Fig. B.10 the fact that ReALE strategy
allows connectivity changes as square cells turn into polygonal cells all along the simulation.

Figure B.10: Visualization of the reconnected mesh and the density field (kg.m−3) at t = 70µs

The Fig. B.11 shows the evolution of the various waves resulted from the interaction of the
incident shock wave S1 with the square cavity. Computed isopycnic are represented using lines
of constant density separated from each other by a ratio ∆ρ/ρ0 equal to 0.054. This value
is chosen to compare our results with [85]. In the shadowgraph at t = 40 µs, the incident
shock is shown a short time after it has reached the left-upper corner of the cavity. S1 starts
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diffracting around this point and gives birth to a vortex. The propagation of S1 continues until
S1 hits the upper-right corner of the cavity. At t = 140µs, the mean shock wave has split into a
transmitted S1 and a reflected Sr1 shock waves. During the propagation of S1, we observe that
the size of the vortex has increased while its center has slowly moved to the right of the cavity.
At t = 280 µs, the reflected shock wave Sr′1 has appeared at the right-bottom of the cavity
because of the coalescence of Sr1 and the reflection of S1 in the left-bottom corner of the cavity.
At the end of the simulation, it becomes complicated to interpret wave patterns efficiently as
multiple interactions have occurred among the waves and between the waves and the geometry.
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Figure B.11: Wave pattern during the interaction of a planar shock wave with a square cavity.
Shadowgraphs extracted from [85] (on the left) are compared to computational results (on the
right)

Finally, the simulations performed using ReALE strategy show a good agreement between
shadowgraphs and numerical results. This numerical experiment constitutes a validation of the
ReALE strategy by demonstrating its capabilities of producing physically accurate simulations
of complex shock wave structures.
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B.5 Reflexion of a shock wave on a double wedge

Here we consider the reflection of a shock wave from a double wedge [21]. The surface of the
second wedge is parallel to the incident shock front as depicted on Fig. B.12. This case deals
with an incident shock propagating into air at a Mach number Ms = 1.488 considering a wedge
angle equal to θ = 55◦. The computational domain is composed by 29355 generators and initial
conditions for the fluid are (Ms, ρ0, P0) =

(
1.488, 1.2 kg.m−3, 98500 Pa

)
. Here again, we use a

piston-like condition to generate the shock wave. We impose an incoming velocity to the left
side equal to U∗ = (u∗, 0) with u∗ = −230.5 m.s−1 which corresponds to an incident shock
moving at the velocity Dc = 504.4 m.s−1. The initial position of the shock is x = 0.0536 m.

0.

0.141

0.105

Results area

xs,i

0.0546

xp,f
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xp,0

θ

Figure B.12: Schardin’s problem configuration with xp,0,lag = −0.475 the initial lagrangian
position of the piston, xp,f = 0. the final position of the piston and xs,0 = 0.0536 the position
of the incident shock.

Considering the experimental and computed isopycnic depicted on Fig. B.13, it appears that
three types of reflected shock coexist at t = 206 µs. Here again, we represent 50 isopycnic from
the lowest to the highest value of the density. First, the incident shock is reflected on the first
wedge and create a regularly-reflected curved shock. Then, the incident shock is reflected on
the shock tube end wall which engenders a planar shock segment parallel to the end wall. These
two fronts are linked by a short oblique shock segment whose endpoints can be considered as
’triple points’ in a Mach reflection. In other terms, each one of these points characterize the
intersection of three shocks and a slip surface, as it is clearly visible on both experimental and
computational maps. Those observations make sure that there is a close agreement between
the experimental and the computed isopycnic lines.

(a) (b) (c)

Figure B.13: Results obtained for the double wedge configuration at t = 206 µs. (a) Experi-
mental shadowgraph [21], (b) computed isopycnic and (c) density (kg.m−3) and mesh
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B.6 Transient shock wave in tubes
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Figure B.14: Transient shock wave in tubes configuration with xp,0 = −0.166 m the initial
Lagrangian position of the piston, xp,f = −0.05 m the final position of the piston and xs,i =
0.0 m the position of the incident shock at the beginning of the interaction time. r = 0.0125m
is the radius of the tube where the shock is generated and R = 0.0250m is the radius of the
tube of interaction cavity.

Here we consider the interaction of a shock generated in a tube with sudden area change in
cross-section. This test case is based on an experiment presented in [87]. The fluid considered
here is characterized by (ρ0, P0, γ) =

(
1.2 kg.m−3, 98285 Pa, 1.4

)
where ρ0 is the initial density,

P0 the initial pressure and γ is the polytropic index of a diatomic gas.
For the first computation, we focus on the interaction of the cylindrical cavity with an incident
shock wave of Mach number Ms = 1.3. The shock is generated by a piston-like condition
imposed to the left boundary with an imposed velocity equal to U∗ = (u∗, 0). The horizontal
velocity u∗ = −149.77 m.s−1 is obtained thanks to Rankine-Hugoniot conditions, corresponding
to an incident shock moving at the velocity Dc = 440, 2 m.s−1. The final time is given by
tf = ti + ts where ti = 341µs is the time required by the shock to reach the position xs,i and
ts = 341µs correspond to the interaction time of the shock with the cylindrical cavity. The
domain represented on Fig. B.14 is initially paved with a grid composed of 24264 square cells.
The ALE method is not suitable for this test case because of the complex geometry. Indeed,
the fixed topology that characterized the ALE method can not deal with such configuration
whereas the ReALE strategy will leads progressively to a polygonal mesh which can handle the
sudden change in cross section.
The Fig. B.16 shows the evolution of the incident shock with the larger cylindrical tube. We
observe that the incident shock diffracts into spherical shape (Fig. B.16(a)). The shock is
reflected on the inside wall (Fig. B.16(b)), interact with the vortex ring and finally converge
in the center of the tube (Fig. B.16(c)). This lead the Mach disc to move faster downstream
(Fig. B.16(d)-(e)) and reach the first incident shock. During all the computation the vortex
ring initially created by the incident shock move inside the cavity (Fig. B.16(f)). We compare
our ReALE method with experimental results from [87] where the Mach number Ms = 1.3
and the ratio of cross section is R/r = 2. The comparison are presented in Fig. B.15 and the
computation faithfully reproduces the main flow structure.
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Figure B.15: Transient shock wave in tubes. Comparison between experimental interferogram
and isopycnic computed from density at t = 120µs and t = 220µs.
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Figure B.16: Transient shock wave in tubes. Density plot (kg.m−3) for the Mach number
Ms = 1.3 and the ratio of cross section is R/r = 2.
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Appendix C

Irradiation study for HiPER project

C.1 Introduction

Irradiation nonuniformities are directly connected to the laser device. Such nonuniformities
produce low mode perturbation which needs to be accurately known in order to investigate the
consequences on hydrodynamic target stability. The specific illumination 3D code, CECLAD,
developed and validated in CELIA calculates target irradiation by multi-laser beams to optimize
illumination on complex geometries. We use this tool to define the baseline specifications of the
HIPER project.Several configurations of laser beams (size, energy balance, pointing, centering)
and target (shape, position, size) has been tested. The irradiation uniformity has been optimized
(σrms and the energy balance ηB). A Legendre polynomial expansion of the illumination has
been performed to compute the amplitudes of the main modes. The robustness of the solution
is then studied.

C.2 The CECLAD irradiation code

C.2.1 model presentation

In order to evaluate the irradiation of the target with complex geometry (spherical target with
petawatt cone for example) we discretize the target using a surface mesh based on quad or
triangle cells. On this mesh we have for each cell (i = 1, . . . , I) the local normal Ni and the
local surface dSi. thus S =

∑
i=1, I

dSi is the total surface of the target.

The intensity envelope of the beams is a super-Gaussian of order m :

f(x, y) = exp(−
(
x2+y2

a2

)m
) where x and y are the coordinates in the focal plane, a is the half

width at 1/ exp and m is the order of the super-Gaussian. This envelope can be reduce or
increase on each beam j using the balance bj . The beam direction is given by the normal Sj .

We compute the intensity on the cell target i due to the irradiation of the beam j using the
formula (see Fig. C.1) :

Ii, j = Ni · Sjf(x, y)bj
The total incident intensity on a cell i is the sum of all the beam contributions Ii. The root
mean square deviation or σrms is then defined by :

σrms =

√√√√√ 1

S

∑
i=1,I

(
Ii
Ī
− 1

)2

dSi


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Figure C.1: Beam intensity on the target.

where Ī is the average intensity on the target Ī = 1
S

∑
i=1, I

IidSi.

As we deal here with geometries where we have axisymmetric symmetry we integrate the flux
on the latitude ϕ and we get an intensity depending on θ :

I(θ) =
1∫ π

−π r dϕ

∫ π

−π
I(θ, ϕ) r dϕ

This can be expanded in Legendre polynomials :

Ĩ(θ) = Ī(1 +

∞∑
k=1

akPk(cos θ))

where k is the Legendre mode and ak is calculated using

ak =
2k + 1

2

∫ 1

−1

I(θ)

Ī
Pk(cos(θ)) d(cos(θ))

ak is here the normalized Legendre mode coefficient.
From this we can characterize the laser facility and get some information on the low mode that
will be generated in the target (see [42]).

C.2.2 Validation

We compare here our code with some analytical solution for configurations of perfectly uniform
irradiation of spherical laser fusion targets (see [164]).
For this case we use a special beam profile that provide an intensity on the spherical target of

Ij(γj) =

M∑
m=0

I0 cos2m γk

where cos γk = Ni · Sj
M is provided for each case such that σrms = 0 can be obtained for any configuration of even
number of beams Nb.
We test here only a few configurations Nb = 42, 46, 48 and 60 on a mesh of 180× 180.
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Nb L Ni θi (deg) φi (deg) M σrms
42 5 5 10 12 25.14 57.33 90. 2 2.46 10−2 %
46 4 8 15 30.55 70.12 3 1.5 10−4 %
48 12 4 21.23 0. 3 1.77 10−5 %

8(4+4) 47.03 ±23.36
12(4+4+4) 74.95 0. ±29.83

60 12 5 21.44 0. 3 2.88 10−5 %
5 41.98 0.

10(5+5) 58.84 ±23.97
10(5+5) 81.27 ±12.55

Table C.1: Description of the 42, 46, 48 and 60 beams configurations.

In Tab. C.1 Nb is the number of beams, L is the total number of rings and Ni is the number of
beams on each rings. θi are the angle of each rings and φi are the angle on the ring when they
are not aligned.

Figure C.2: Intensity and beams positions for the perfect configuration 42 (Top left), 46 (top
right), 48 (bottom left) and 60 (bottom right).
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C.3 Compression beams configurations

The nominal specification for the fuel assembly is given by a wavelength of 0.35 microns, an
energy of 250 kJ during 10 ns (0.6 TW foot, 50 TW max) with or without picket. The foot-to-
main contrast aspect ratio required is about 80% and the pulse shaping accuracy about 100 ps.
HiPER specifications are ≈ 50 beams with 15 kJ per beams at 1 ω (6 kJ at 3 ω) [60].

Several symmetric configurations are considered and a procedure of optimization on the param-
eters (a,m) of the beams has led to illegible configurations of illumination.

We present in the Tab. C.2 all the configurations we have studied. From the requirement of
HIPER and regarding the different configurations studied we will focus on the 32, 42, 46 and
48 configurations.

Beams m a σrms Energy budget Legendre Modes

6 1.63 1.02 1.73% 78% 8,10,14

8 1.66 1.01 0.96% 79% 10,16,20

12 1.415 0.76 0.37% 93% 12,16,10

20 1.39 0.79 0.17% 91% 16,18,10

32 1.33 0.83 0.21% 87% 12,18,10

42 1.9 0.79 0.18% 94% 10,12,2

46 1.11 0.63 0.11% 95% 8,10,12

48 1.02 0.61 0.15% 94% 16,18,12

60 1.067 0.567 0.05% 97% 16,12,10

60 (Ω) 1.08 0.63 0.08% 94% 16,18,12

Table C.2: σrms, Energy budget and principal Legendre Modes for the different configurations
studied

We now give the details of the 32, 42, 46 and 48 beams pattern. In Fig. C.3 the angle θof the
cone and the number of beams on each cone are given. In Fig. C.5 we give the angles of the
different cone. On Fig. C.4 and Fig. C.6 we show a 3D representation of the target with all
the beams impinging on it. The field represented on the target is the intensity.

Figure C.3: The polar angle of 32 (a) 42 (b) 46 (c) patterns.

On Fig.C.7 and Fig.C.8 we represent the optimization of the σrms as a function of (a,m) for
the 32, 42, 46 and 48 beams configurations.

Fig. C.9 and Fig. C.10 represent the Legendre mode for the 32, 42, 46 and 48 beams configu-
rations.
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Figure C.4: Nominal irradiation of 32 (left) 42 (middle) and 46 (right) patterns.

Figure C.5: The polar (a) and azimuth angles (b) of the 48 pattern.

Figure C.6: Nominal irradiation of the 48 pattern.
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Figure C.7: σrms optimization as a function of (a,m) for the 32 (left) and 42 (right) beams
configurations.

Figure C.8: σrms optimization as a function of (a,m) for the 46 (left) and 48 (right) beams
configurations.

Figure C.9: Legendre analysis of the 32 (left) and 42 (right) beams configuration.
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Figure C.10: Legendre analysis of the 46 (left) and 48 (right) beams configuration.

C.4 Inserting a cone

In the fast ignition schemes for inertial confinement fusion one of the solution is to insert a cone
in the spherical target. On this scheme nanosecond beans are used to compress the spherical
target which should slide on the cone. At the end of the compression phase a petawatt laser is
shot inside the cone to ignite the hot spot at the tip of the cone. To achieve all this different
step the initial conditions should be suitable for ignition. In this study an angle of 30 degree has
been used. This angle is imposed by the petawatt laser ([91]). The intensity on the spherical
target should be uniform and intensity on the cone must be kept as low as possible. The beams
should not enter inside the cone to avoid the ablation and formation of plasma inside the cone.
Different configurations has been tested 42, 46 and 48 (see Fig. C.12, Fig. C.13 and Fig. C.14).
The advantage of the 46 is that no beams should be turn off instead of 4 and 8 for the 48
and 42 configurations. The intensity on the target is uniform in comparison with 42 and 48
configurations. In all the case intensity on the external cone is the almost the same. About the
energy inside (Fig. C.15) the cone, the configuration with 46 beams seems to be very bad but
in fact if we add a cylinder on the base of the cone we can protect and avoid beams to enter
inside the cone.

Figure C.11: Irradiation of fast ignition target with cone for the 32 beams configuration.
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Figure C.12: Irradiation of fast ignition target with cone for the 42 beams configuration.

Figure C.13: Irradiation of fast ignition target with cone for the 46 beams configuration.

Figure C.14: Irradiation of fast ignition target with cone for the 48 beams configuration.

Figure C.15: Energy inside the cone for the 32,42, 46, and 48 configurations
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C.5 Intrinsic symmetry and robustness for different beam ar-
rangements

The requirement of irradiation symmetry is given by σrms < 1%. This may be different accord-
ing to the ignition scheme. This is probably more stringent during the foot (i.e. the drive of
the first shock) than during the main drive (acceleration). The effect on fuel assembly strongly
depends on spectrum. To achieve this requirement, the beam geometry, the focal spots and the
random deviations have to be controlled.
Those parameters will define the figure of merit of the chosen irradiation pattern.
The trade off is given by the following alternative. If many beams pattern are chosen, the
configuration will be robust and less energy will be required per beam. Contrariwise, a few
beams pattern will be simplest but will generate lower Legendre modes.
To study the robustness of configurations, different control parameters has been tuned Fig. C.16
for the 48 beams configurations. Laser imperfections can induce power imbalance, pointing
and centering errors. Random deviations following normal distribution around the nominal
configuration are led. We examine their consequences on the mode spectrum.

Figure C.16: Beam to beam imbalance (a), Beams pointing (b), Beams centring (c).

The imperfection of the laser system generates a distribution of beam following a Gaussian
law centered on the nominal value. Each parameter induces a mean value for the σrms and
the generation of new low modes. 100000 realizations are led. A normal repartition of the
beam to beam imbalance (10%), of the beam pointing (5%), and of the beam centering 2%
have been used separately and have been also combine all together to study the stability off
the configurations. In the table we compare the case where we study the variation of all the
parameters with the quadratic mean or L2 norm:

σL2norm =
√
σ2
balance + σ2

centering + σ2
pointing (C.1)

In Fig. C.17 results for the σrms robustness and Legendre mode study for the beams balance
are presented for the 48 beams configurations. In Fig. C.18 results for the σrms robustness and
Legendre mode study for the beams pointing are presented for the 48 beams configurations. In
Fig. C.19 results for the σrms robustness and Legendre mode study for the beams centering
are presented for the 48 beams configurations. In Fig. C.20 results for the σrms robustness
and Legendre mode study for all the parameters are presented for the 48 beams configura-
tions. The results of the different studies are respectively resume in Tab. C.3 for the 48 beams
configurations.

145



Figure C.17: σrms robustness and Legendre mode study for variation of the 48 beams configu-
rations balance.

Figure C.18: σrms robustness and Legendre mode study for variation of the 48 beams configu-
rations pointing.

Figure C.19: σrms robustness and Legendre mode study for variation of the 48 beams configu-
rations Centering.
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Figure C.20: σrms robustness and Legendre mode study for variation of all the parameter for
the 48 beams configurations.

Variation on σrms σrmsmin σrmsmax
Balance 1.05 0.41 2.38

Centering 0.59 0.27 1.11

Pointing 1.77 0.66 3.16

all parameters 2.13 0.96 4.04

L2 norm 2.14 0.82 4.1

Table C.3: converge σrms, σrmsmin and σrmsmax comparison with L2 norm when all parameters
vary for the 48 beams configurations.

C.6 Nominal irradiation configuration

The irradiation pattern for HiPER has been defined by using the geometrical optics code CE-
CLAD. HiPER specifications are 50 beams with 15 kJ per beams at 1 ω (6 kJ at 3 ω) [60]. The
chosen 48 laser beams configuration [164] is made of 3 rings on each side of the target hemi-
spheres. This configuration seems to be a good trad off compared to the others configurations.
We choose a 48 beams configuration pattern [164] made of 3 rings on each side of the target
hemispheres (21.23◦, 47.03◦, 74.95◦). The rings have, respectively, 4, 8 and 12 beams. The
offsets are 0◦ for the 4 beams on the first ring, ±23.4◦ for the 8 (4 + 4) beams of the second
ring and 0◦ and ±29.8◦ for the 12 (4 + 4 + 4) beams of the last ring (see Fig. C.5). Each
beam has a super Gaussian distribution of intensity in the focal spot, in the form I(r) =
exp(−r/a)2m. Parameters m and a are chosen such as to minimize the irradiation non-uniformity
σrms. According to our computations a minimum σrms = 0.15% is obtained for m = 1.02 and
a = 0.61Ra, where Ra is the initial outer radius. The implosion dynamics causes the critical
radius to decrease in time; however, the symmetry indicator σrms remains stable during this
whole process. The robustness of this pattern with respect to random deviations from nominal
was evaluated: the symmetry indicator σrms remains close to 1% under a normal repartition
of the beam to beam imbalance (10%), of the beam pointing (5%), and of the beam centering
(2% of initial target radius). In order to give input to low-mode asymmetry studies, a Legendre
polynomial expansion has also been carried out. It shows that the main modes of illumination
non-uniformity are l = 12, 8 and 10, with a maximum relative non-uniformity of 0.5% for mode
l = 12.
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Appendix D

Personal record

Work Experience

• From 2003 to 2015 : Researcher in CELIA laboratory, University of Bordeaux, France.
Development and validation of numerical method for a multi-material 2D Lagrangian
hydrodynamics code CHIC to simulate ICF (Inertial Confinement Fusion) and plasma
physics experiments. Interpretation of plasma physics experiments using simulation tools.

• From 2001 to 2003 : Post doc in National Aerospace Laboratory (JAXA), Tokyo, Japan.
Development of a parallel solver for Navier-Stokes equations using specific numerical
method (additive Schwartz domain decomposition) on a Linux Cluster with MPI Library.

• From 1997 to 2001 : Phd, TREFLE Laboratory, University of Bordeaux, France.
Modelisation of viscous fluid using interface reconstruction method in 2D and 3D. Appli-
cation to mould filling of Ariane V rocket booster.

Education and Qualifications

• June 2016 : Habilitation à Diriger des Recherches (HDR) in applied Mathematics and
computation.

• 2005 : HEDP Summer school at Berkeley University, USA.

• From 2001 to 2003 : Post doc at National Aerospace Laboratory of Japan in Tokyo.

• From 1997 to 2001 : Phd at University of Bordeaux.
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Laser produced nanocavities in silica and sapphire: a parametric study, Journal of Physics:
Conference Series, 112, 2008.
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Loumé, J.L. Feugeas, X. Ribeyre, A. Schiavi, G. Schurtz, J. Breil, Ph. Nicoläı,
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[48] G. Carré, S. Del Pino, B. Després, and E. Labourasse. A cell-centered Lagrangian hy-
drodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput.
Phys., 228:5160–5183, 2009.

[49] S. Clain, S. Diot, and R. Loubère. A high-order finite volume method for systems of
conservation laws - Multi-dimensional Optimal Order Detection (MOOD). J. Comput.
Phys., 230:4028–4050, 2011.

[50] W. Dai and A. Scannapieco. Second order accurate interface and discontinuity aware
diffusion solvers in 2D and 3D. J. Comput. Phys., 281:982–1002, 2015.

[51] R. Dautray and J.-P. Watteau. La fusion thermonucléaire par laser, volume II. Eyrolles,
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