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Introduction

Dans cette these, on étudie les isotopies de contact et legendriennes positives sur une variété de contact
(M, &) coorientée.

Une variété de contact (M?" 1 £) est une variété lisse M de dimension 2n + 1 munie d’un champ
d’hyperplans £ non-intégrable qui s’appelle une structure de contact. Lorsque le champ ¢ est coorienté,
il est donné par le noyau d’une forme différentielle o de degré 1 appelée forme de contact. Par exemple,
dans R* muni des coordonnées usuelles (x1, x2,91,%2), la sphere S* admet une forme de contact gy =
(y1dzy — z1dyy + Yodxe — xadys)|ss. On note £y la structure de contact décrite par agq. Celle-ci passe au
quotient sur RP? pour donner une structure de contact également notée ;.

Les sous-variétés de (M>"T! &) exhibant un comportement intéressant sont les sous-variétés legen-
driennes L. C M*"*! qui ont dimension n et satisfont «|;, = 0. Un contactomorphisme de (M, ¢) est un
difféomorphisme de M qui préserve £ et une isotopie de contact ¢, est un chemin de contactomorphismes
issu de ¢g = id. On dit qu’une isotopie ¢; est positive si a(Jy¢;) > 0, c’est-a-dire si le générateur infinitési-
mal de I’isotopie est partout positivement transversal au champ d’hyperplans £. Une isotopie legendrienne
¢ basée sur une sous-variété legendrienne L est contrainte par le fait que ¢;(L) est une sous-variété legen-
drienne pour tout ¢. Similairement, on dit ; est positive si a(9yp;) > 0.

Avec le concept d’isotopie de contact positive, Eliashberg et Polterovich définissent un ordre partiel sur
le revétement universel (%O(M , &) de la composante neutre du groupe des contactomorphismes de la va-
riété (M, £) (i.e. des contactomorphismes isotopes a I’identité). Une classe d’isotopie de contact [(1):co,1]]
est supérieure a une autre [(¢;):c(o,1)] si il existe une isotopie positive de ¢, vers ¢, homotope a la concaté-

nation de I’opposé de [(¢)ico,1]] avec [(¥r)iejo,1]-

Proposition 0.1. [[EP99] Soit (M, &) une variété de contact. Les conditions suivantes sont équivalentes :
(i). (M, &) est non-ordonnable ;
(ii). 1l existe un lacet positif contractile de contactomorphismes pour (M, §).

Cet ordre aide a étudier la géométrie de (M, &). 1 est également associé aux propriétés de squeezing

en géométrie de contact [EP99]| ainsi qu’a I’existence de métriques bi-invariantes sur C%O(M ,€) ou sur
I’espace des sous-variétés legendriennes [[CS12]].

Depuis le début des années 80, on sait que le monde des structures de contact en dimension trois se
scinde en deux classes aux comportements opposés. Suivant Eliashberg, on dit qu’une structure de contact
€ sur M? est vrillée si elle contient un disque vrillé Doy C M, c’est-a-dire un disque plongé dans M qui
est tangent a la structure de contact le long de son bord. Celles-ci sont flexibles et se laissent classifier par
un h-principe adéquat [EIi89]]. On note cvor une forme de contact pour la structure vrillée modele £ définie
au voisinage d’un disque vrillé. Plus récemment, les travaux de Niederkriiger [NieO6] et Murphy[Mur12]]
notamment ont permis d’étendre cette dichotomie a la dimension supérieure. Ainsi, de facon similaire,
en dimension plus grande que trois et en suivant une suggestion de Niederkriiger, on dit £ est vrillée si
(M2 @) contient D? x T* D™ (r) avec «| ps s pn-1() = aor— (ydz—2xdy) pour une certaine constante
r > ( assez grande [[CMP15]] dépendant de la dimension.

A nouveau, les structures vrillées sont des objets purement topologiques et flexibles d’apres [BEMI.

Au contraire, on dit que £ est une structure de contact tendue si elle n’est pas vrillée. Par exemple,
les variétés (S3, Eyq) et (RP3,&,q) sont tendues d’apres le résultat fondateur de Bennequin [Ben83]. Les
structures tendues posseédent de nombreuses propriétés rigides qui les apparentent a la géométrie complexe.

La propriété d’ordonnabilité n’est pas possédée par toutes les variétés de contact :
Théoréme 0.2. (i). (RP3 &) est ordonnable, mais pas (S?, €4q). [EKPOG]

(ii). 1l existe des variétés de contact vrillées qui sont non-ordonnables.[CPS14)]
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On peut trouver beaucoup d’autres exemples des variétés de contact ordonnables dans les travaux de
Albers, Frauenfelder, Fuchs et Merry [AF12,|AM13, AFM15].

Il intéressant de voir que les variétés de contact tendues peuvent étre ordonnables ou pas, malgré leur ca-
ractere rigide. En méme temps, on imagine que toutes les variétés de contact vrillées sont non-ordonnables.

Question 0.3. Est-que toutes les variétés de contact vrillées sont non-ordonnables ?

Pour étudier la question précédente, on transfere 1’étude des isotopies de contact positives vers 1’étude
des isotopies legendriennes positives en prenant leur graphe dans le produit de contact. En effet, une iso-
topie de contact positive de (M, «v) se transforme en une isotopie legendrienne négative de la diagonale
Apnrxar X {0} dans le produit de contact (M x M x R, a; — e®ay). L’avantage est que 1’étude des isotopies
legendriennes positives ou négatives devrait étre plus facile que celle des contactomorphismes.

Dans ce contexte, on pose une question naturelle sur les isotopies legendriennes positives :

Question 0.4. Soit (M, &) une variété de contact, Ly et Ly deux sous-variétés legendriennes dans (M, &)
qui sont isotopes par une isotopie legendrienne. Est-ce qu’il existe une isotopie legendrienne positive entre
les deux ?

Exemple 0.5. Soit (S?, g) la 2-sphére avec la métrique ronde g et soit ST*S? 'espace des éléments de
contact sur S*. Notons S et N les poles de S?. Alors le flot géodésique de g induit une isotopie legendrienne
positive L, connectant les deux fibres legendriennes ST%S? et STS>.

Pourtant, en général, la réponse a la question [0.4] est négative.
Théoreme 0.6. Soit M™, n > 1 une variété dont le revétement universel est ouvert. Alors

(i). les fibres de ST M ne sont pas dans des lacets positifs de plongements legendriens [[CFP10,|CN10,
GKS12|];

(ii). la section nulle de (T*M x R, dz — ydzx) n’est pas dans un lacet positif de plongements legendriens
[CEP10].

On note F' I'application (T*M x R,dz — ydz) — M x R : (z,y,z) — (z,z2), qui est appelée la
projection frontale. Pour une sous-variété legendrienne L. C (T*M x R,dz — ydz), le sous-ensemble
L := F(L) C M x R est appelé le front de L. On identifie souvent le front Ly avec L, car la coordonnée
manquante est donnée par la pente de son espace tangent. Quand la dimension de M est 1, on peut remplacer
un segment lisse de Ly par un zig-zag. La sous-variété obtenue par cette opération est notée S(L) et est
appelée une stabilisation de L. Alors on a :

Théoréme 0.7. [[CEPI0] Soient L la section nulle de T*S" x R et S(L) une stabilisation de L. Alors il
existe un lacet positif de plongements legendriens basé en S(L).

Pour une variété de contact (M, &) de dimension strictement plus grande que trois, Murphy [Mur12]
introduit une classe de sous-variétés legendriennes appelées sous-variétés legendriennes laches. Les sous-
variétés laches sont une généralisation en dimension supérieure des sous-variétés stabilisées S(L) en dimen-
sion trois. Elles satisfont un h-principe découvert par Murphy qui les rend flexibles. Le résultat principal de
ce travail de these renforce encore cette flexibilité.

Théoréme 0.8. Soient (M**1. &), n > 1 une variété de contact et L C (M, &) une sous-variété legen-
drienne. Si L est ldche, alors il existe un lacet positif de plongements legendriens basé en L.

On prouve le Théoreme[0.§|de la maniere suivante :

Dans les cas des spheres en dimension 1 et 2, on donne des démonstration a la main pour illustrer
les idées géométriques. Pour une 1-sphere legendrienne avec des zigzags sur le front un lacet positif est
obtenu explicitement comme une rotation du front dans une direction transversale (c’est une observation
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de [CFP10]). Pour une 2-sphere legendrienne L lache, on construit deux lacets ¢} et ¢?. L'isotopie ¢} est
un lacet de plongements legendriens basé en L qui est positif sur un voisinage des podles. Une observation
de base est en effet que chaque pdle peut étre placé sur un nceud positivement transversal a la structure
de contact par non-intégrabilité du plan de contact; ceci donne une fagon d’incorporer les poles dans un
lacet positif. L'isotopie ¢7 est un lacet de contactomorphismes qui est non négatif sur L et assez grand en
dehors d’un autre voisinage plus petit des pdles. Elle est obtenue en faisant tourner tres rapidement, sur le
front, une ride (généralisation du zig-zag) autour de 1I’équateur. Une image concrete est celle d’une vague
s’étendant entre les deux pdles le long d’une longitude, dont la coupe est un zig-zag. Elle est d’amplitude
nulle aux pdles et positive en dehors des pdles, et tourne tres rapidement autour de la terre. On montre que
la composition ¢? o ¢} est un lacet de plongements (aprés désingularisation de la vague prés des poles)
legendriens positif basé en L.

Le cas général est obtenu par des techniques de h-principe, qui résument le fait de recouvrir le front par
des rides (ou vagues) se propageant rapidement pour incorporer tous les points dans un lacet positif. On
utilise I’approximation holonome ridée et I’intégration convexe pour relations différentielles non-amples.
En bref, lorsque la sous-variété L est fermée, I’approximation holonome classique ne marche pas. On doit
considérer des singularités et puis essayer de les résoudre. Par I’approximation holonome ridée, on ob-
tient un lacet positif pour L sauf sur un ensemble fini de disques. Il reste a prouver que si une isotopie
legendrienne de disques est positive au bord, alors on peut la rendre positive. Notons que 1’approximation
holonome ne marche toujours pas, donc on besoin d’une sorte d’intégration convexe pour obtenir la posi-
tivité. Mais I’intégration convexe classique est seulement valable pour les relations différentielles amples.
Dans notre cas la condition de positivité n’est pas ample, donc on a besoin d’une nouvelle technique. Heu-
reusement, inspiré par les cas de basse dimension, on peut encore utiliser la technique de wrinkling. On
utilise de facon intensive le résultat de Murphy [Murl2] qui permet d’ajouter des rides a une Legendrienne
lache sans changer sa classe d’isotopie legendrienne.

Comme application du Théoreme on obtient une preuve de I’existence des variétés de contact
tendues (i.e. non vrillée au sens de Borman-Eliashberg-Murphy [BEM]) en toute dimension sans utilisation
des courbes holomorphes. La partie “dure” utilise le Théoreme dont la preuve repose sur I’existence
d’une fonction génératrice pour une classe de sous-variétés legendriennes spécifiques (dans ce cas les fibres
legendriennes de la fibration (R™ x S"71 £,4)).

Corollaire 0.9. [MNPSI3|] La variété de contact (R™ x S" 1, £,4) est tendue.

Le corollaire précédent est prouvé dans la sous-section

Dans la derniere section, on définit un nouvel ordre partiel sur certains groupes C%O(M ,€), appelé
ordonnabilité forte, basé sur le transfert d’une isotopie de contactomorphismes en une isotopie legendrienne
de leurs graphes dans le produit de contact. On relache la condition de graphe pour s’en tenir a des isotopies
legendriennes et on obtient une notion d’ordre fort (peut-étre) différent que celui d’Eliashberg-Polterovich
[EP99].

Proposition 0.10. Soir (M, §) une variété de contact. Alors (M, &) est fortement ordonnable si et seulement
si il n’existe pas de lacet positif contractile de plongements legendriens basé sur la diagonale du produit de

contact de (M, §).

En exemple, on montre que la variété de contact (S', df) est fortement ordonnable.

Dans ce contexte, on prouve dans la Proposition [5.6|que si (M?"*1 £) est une variété de contact vrillée,
alors le produit de contact (M x M x R, a; — e®ay) est aussi vrillé. De plus, la diagonale est lache. En
particulier, par le Théoreme [0.8] la diagonale est le point base d’un lacet positif. Que ce lacet (ou un autre)
soit contractile déterminerait la non ordonnabilité faible de la variété vrillée originale (M, §).

Organisation du manuscrit. Cette thése comprend trois parties. La premiere partie est principalement
consacrée a des rappels de géométrie de contact et au h-principe. Le chapitre 1 rappelle les notion de base de
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géométrie de contact : isotopies positives de contact/legendriennes et sous-variétés legendriennes laches et
ridées. Le chapitre 3 présente le h-principe. On rappelle I’approximation holonome classique et la technique
d’intégration convexe. On présente également 1’approximation holonome ridée et la méthode de résolution
des rides.

La deuxieme partie est consacrée a la preuve du Théoréme Le chapitre 2 traite les cas de la sphere
lache en dimension 1 et 2 a la main. Le chapitre 4 traite le cas général par h-principe. D’abord, on rappelle
les idées de Murphy sur le h-principe pour les plongements de legendriennes laches, puis on donne une
démonstration détaillée du Théoreme

Enfin, la troisieme partie présente des applications et des développements. D’abord, on prouve le Corol-
laire Apres on traite le cas du produit de contact et prouve la Proposition [5.6] Puis on définit un nouvel

ordre partiel sur les groupes Cf’g/nto(M ,€) que I’on illustre par I’exemple de (S*, df).
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Introduction

In this thesis, we focus on the study of positive contact and Legendrian isotopies in a co-oriented contact
manifold (M, §).

A contact manifold (M?"*! €) is a 2n + 1 dimensional smooth manifold M with a non-integrable
hyperplane field £ which is called a contact structure. When £ is co-oriented, it is given by the kernel
of a differential 1-form o which is called a contact form. For example, in R* with the usual coordinates
(w1, T1,91,92), the sphere S? carries a contact form ag = (y1dxry — 21dy; + yodws — Todys)|ss. We denote
&.ta the contact structure defined by 4. It passes to a contact structure on the quotient RP3 which is also
denoted by 4.

One class of submanifolds of (M?"*! &) with an interesting behavior is that of Legendrian submani-
folds. A n-dimensional submanifold L C M is called a Legendrian submanifold if «|;, = 0. A contacto-
morphsim of (M, ) is a diffeomorphism which preserves £ and a contact isotopy ¢, is a path of contac-
tomorphisms with ¢y = id. We say a contact isotopy ¢, is positive if a(0d;¢;) > 0. That is to say, the
infinitesimal generator of the isotopy is positively transverse to £ everywhere. An isotopy ¢; based in a
Legendrian submanifold L is said to be a Legendrian isotopy if ¢,(L) is a Legendrian submanifold for all
t. Similarly, We say ¢; is positive if a/(0yp;) > 0.

With the concept of positive contact isotopy, Eliashberg and Polterovich defined a partial order on
the universal cover C%O(M ,&) of the identity component of the contactomorphisms group of (M, &)
which helps to investigate its geometry. A class of contact isotopy [(t;)¢c[o,1)] is greater than another class
[(¢+)ecpo,17] if there exists a positive contact isotopy from ¢; to 1/ which is homotopic to the concatenation
of the opposite of ¢; and ;.

Proposition 0.1. [[EP99] If (M, &) is a contact manifold, the following conditions are equivalent :

(i). (M,&) is non-orderable ;

(ii). There exists a contractible positive loop of contactomorphisms for (M, ).

This order helps us to study the geometry of (M, &). It is also closely related to squeezing properties in

contact geometry [[EP99] as well as to the existence of bi-invariant metrics on C'onty(M, &) or on the space
of Legendrian submanifolds [CS12]].

From the beginning of the eighties, it is known that the world of contact structures splits into two
classes with opposite behaviors. Following Bennequin and Eliashberg, we say that a contact structure £ on
M3 is overtwisted if there exists an overtwisted disk Do C M, that is to say a embedded disk which
is tangent to ¢ along its boundary. The overtwisted contact structures are flexible and classified by an
adequate h-principle [Eli89]. We denote apr a contact form for an overtwisted contact structure £ defined
on a neighborhood of an overtwisted disk. More recently, the work of Niederkiiger [N1e06l] and Murphy
[Murl2] permit us to reach that dichotomy in the higher dimensional case. That is, similarly, in dimension
greater than three, following a suggestion of Niederkiiger, we say ¢ is overtwisted if (M?*"* «) contains
D3 x T*D" Y (r) with a|psxp+pr-1(y = aor — (ydz — xdy) for some constant r > 0 large enough
depending on the dimension of M [CMP135].

Again, the overtwisted structures are purely topological objects and are flexible following from [BEM].

On the contrary, we say £ is a tight contact structure if it is not overtwisted. For examples, the contact
manifolds (S?,&,4) and (RP3,&,,4) are tight according to the fundamental result of Bennequin.[Ben83]]
Tight contact structures possess many rigidity properties similar to complex geometry.

The orderability property is not shared by all contact manifolds :

Theorem 0.2.  (i). (S3, &q) is non-orderable while (RP3,&,q) is orderable [EKPOG] ;

(ii). There are some overtwisted contact manifolds which are non-orderable [CPS14)].
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There are many more examples of orderable contact manifolds from the work of Albers, Frauenfelder,
Fuchs and Merry [AF12, [AM13| [AFM15]].

It is interesting to see that tight contact manifolds can be orderable or not despite their rigid nature. At
the same time we guess overtwisted contact manifolds are non-orderable.

Question 0.3. Are all overtwisted contact manifolds non-orderable ?

In order to answer the above question, we transfer the study of positive contact isotopies to that of
positive Legendrian isotopies by the trick of contact product. Indeed, a positive contact isotopy of (M, &)
can be lifted to a negative Legendrian isotopy of the diagonal A, x {0} in the contact product (M x
M x R, a; — e’as). The advantage is that the study of positive Legendrian isotopies should be easier than
that of contact isotopies.

In that context, we have a natural question concerning positive Legendrian isotopies :

Question 0.4. Let (M, &) be a contact manifold and let Ly and Ly be Legendrian submanifolds in (M, &)
which are Legendrian isotopic. Does there exist a positive Legendrian isotopy connecting them ?

Example 0.5. Let (S?, g) be the 2-sphere with the round metric g, and let ST*S? be the space of contact

elements on S®. Denoting S, N the poles, then the geodesic flow of g induces a positive Legendrian isotopy
L; connecting the Legendrian fibers ST3S* and ST§S>.

Generally, the answer to Question [0.4|is negative.
Theorem 0.6. Let M™, n > 1 be a manifold with open universal cover. Then
(i). the fibers of ST M are not in a positive loop of Legendrian embeddings [[CFP10,|CN10,|GKS12];
(ii). the zero-section of (T*M xR, dz—ydx) is not in a positive loop of Legendrian embeddings [[CFP10].

We denote F' the map (T*M x R,dz — ydx) — M xR : (z,y,2) — (z, z), which is called the front
projection. For a Legendrian submanifold L C (T*M x R,dz — ydx), the subset Ly := F(L) C M x R
is the front of L. We usually identify L to L, since the y coordinates are given by the slopes of the front.
We can replace a smooth segment of Lr by a zigzag with two cusps. The submanifold obtained by this
operation is denoted by S(L) and is called a stabilization of L. We have :

Theorem 0.7. [[CEPI0] Let L be the zero-section of T*S' x R and S(L) a stabilization of L. Then there
exists a loop of positive Legendrian embeddings based in S(L).

For a contact manifold (M, £) of dimension strictly higher than three, Murphy [Murl2] introduced the
class of loose Legendrian submanifolds. This is a higher dimensional generalization of the stabilized S(L)
in dimension three. Loose Legendrian submanifolds satisfy a h-principle discovered by Murphy which make
them flexible. The main result of the work of this thesis extends this flexibility.

Theorem 0.8. Let (M, &) be a contact manifold and L C (M, §) be a Legendrian submanifold. If L is loose
then there exists a positive loop of Legendrian embeddings based in L.

We prove Theorem [0.8]in the following way :

In the cases of the one and two dimensional spheres, we give a proof by hand to illustrate the geometric
ideas. For a one dimension Legendrian sphere with zigzags shape on the front, a positive loop is obtained
explicitly as a rotation of the front in a transverse direction (it’s an observation of [CEP10]). For a two
dimensional loose sphere L, we construct two loops ¢; and ¢?. The isotopy ¢; is a loop of Legendrian
embeddings which is positive on a neighborhood of the poles. In fact, it is a basic observation that each
pole can be placed in a knot which is positively transverse to £ since the field £ is non-integrable. This gives
a way to incorporate the poles into a positive loop. We extend ¢; smoothly to a contact loop which is also
denoted by ¢.. The isotopy ¢? is a loop of contactomorphisms which is non negative on L and large enough
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outside another smaller neighborhood of the poles. It is obtained by turning very fast, on the front, a wrinkle
(a generalization of zigzag) around the equator. A concrete image is that of a wave expanding between the
two poles along a longitude whose sections are zigzags with amplitudes zero at the poles and positive away
from the poles. The wave is turning very fast around the earth. We prove that the composition (¢} o ¢?))|.
is a positive loop of (after resolving the singularities) Legendrian embeddings based in L.

The general case is obtained via h-principle techniques. Roughly, we cover the front by wrinkles (waves)
which propagate fast to incorporate all the points into a positive loop. We use the wrinkled holonomic
approximation and the convex integration for non-ample differential relations. Briefly, since L is closed,
classical holonomic approximation doesn’t work. We have to consider singularities and then try to resolve
them. By the wrinkled holonomic approximation, we obtain a loop which is positive outside a finite number
of disks. This way it remains to prove that if a Legendrian isotopy of a disk is positive near the boundary,
then we can make it positive everywhere. Notice that holonomic approximation does no longer work and we
expect some kind of convex integration lemma to reach positivity. However the classical convex integration
is only true for ample relations. In our case the positivity condition is not ample, thus we need another
technique for this problem. Luckily, inspired by the lower dimensional cases, we can apply the wrinkling
technique again. We apply the result of Murphy [Murl2]] intensively which permits us to add wrinkles to a
loose Legendrian without changing the Legendrian isotopy class.

As an application of Theorem|[0.8] we obtain a holomorphic curve free proof of the existence of tight (i.e.
non overtwisted in the Borman-Eliashberg-Murphy sense[BEM]]) contact structures in every dimensions.
The “hard part” of the argument uses Theorem whose proof relies on the existence of a generating
function for a specific class of Legendrians (in that case the Legendrian fibers of the Legendrian fibration
in (R™ x S, £,4)). This contact structure is the natrual one on ST™*(R™).

Corollary 0.9. [MNPS13|] The contact manifold (R™ x S~ 1, £.4) is tight.

This corollary is proved in Subsection 5.1}

Moreover, in the last section, we define a new partial order on certain groups Cf’grﬁg(M ,€), called
strong orderability, based on the transfer of an isotopy of contactomorphisms to a Legendrian isotopy of
their graphs in the contact product. We then drop the graph condition to stick to Legendrian isotopies and
get a (possibly) different notion than Eliashberg-Polterovich’s [EP99].

Proposition 0.10. Ler (M, &) be a contact manifold. Then (M, &) is strongly orderable if and only if there
does not exist a contractible positive loop of Legendrian embeddings based in the diagonal of the contact

product of (M, €).

For example, we prove the contact manifold (S', df) is strongly orderable.

In that context, we prove in Proposition [5.6|that if (M?" ™!, £) is an overtwisted contact manifold, then
the contact product (M x M x R, oy — e®a) is also overtwisted and its diagonal is loose. In particular, by
Theorem|[0.8] it is contained in a positive loop. Whether this loop (or another !) is contractible or not would
determine the strong orderability of the original (M, §).

Organisation of the manuscript. This thesis includes three parts. The first part is mainly devoted to
recall contact geometry and the h-principle. In chapter 1, we recall the basic notions of contact geome-
try : positive contact/Legendrian isotopies, loose and wrinkled Legendrian submanifolds. In chapter 3, we
present the h-principle. We recall the classical holonomic approximation and convex integration techniques.
We also present the wrinkled holonomic approximation and the technique for resolving wrinkles.

The second part is devoted to prove Theorem [0.8] In chapter 2, we handle the cases of loose spheres of
dimension one and two by hand. In chapter 4, we deal with the general case via h-principle. First of all, we
recall Murphy’s ideas on h-principle for loose Legendrian embeddings. Then we give a detailed proof of
Theorem [0.8]
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Finally, in the third part, we present some applications and developments. First of all, we prove Corollary
0.9 After that, we work on the contact product and prove Proposition[5.6] In the end, we define a new partial

order on the group (%O(M ,€) which is illustrated by the example of (S!, d6).



Contact Geometry

In this chapter we recall the basic notions and results we need in the thesis. For more in-depth treatment we
refer to [|Ge108]].

1.1 Contact structures

Let M be a differential manifold, 7'M its tangent bundle, and £ C T'M a co-oriented field of hyperplanes
on M. It is useful to represent £ as the kernel of a differential 1-form, that is to say ¢ = kera for some
differential 1-form .

We say a hyperplane ¢ is integrable when it has the property that at each point p € M there is a
codimensional 1 submanifold /N passing through p with T, N = &,. It turns out that { = kerca is integrable
precisely if « satisfies the Frobenius integrability condition

aNda=0.
In terms of Lie brackets of vector fields, the integrability condition is equivalent to

(X, Y] e forall X|Y € &.
Contact structures are in some sense the exact opposite of integrable hyperplane fields.

Definition 1.1. Let M be a differential manifold of odd dimension 2n + 1. A contact structure is a maxi-

mally non-integrable hyperplane field £ = kera: C T'M, that is, the differential 1-form is required to satisfy

a A (da)" #0.

9
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Such a 1-form « is called a contact form. The pair (), ) is called a contact manifold.

Example 1.2. On R*"*! with Cartesian coordinates

('rlayla s 7$nayn7z)7

the 1-form

a=dz — Z yidx;
j=1

is a contact form. The contact structure defined by this « is called the standard contact structure on R*" 1,

Locally, every contact structure looks like the standard one, more precisely,

Theorem 1.3 (Darboux’s theorem). Let a be a contact form on the (2n + 1)-dimensional manifold M and
p a point on M. Then there are coordinates (1, Y1, . . ., Tpn, Yn, 2) on a neighborhood U C M of p such that
p=1(0,...,0) and
aly =dz — Zyjdxj.
j=1
Example 1.4. Let B be a n-dimensional smooth manifold, T™ B its cotangent bundle with standard coor-
dinates (q1, ..., qn, D1, - - -, Pn), and let M = ST* B be the radius one sphere bundle for some Riemannian

metric on B. Then
n
o= ijdqu
i=1
is a contact form on M. The pair (M, «) is called the space of contact elements of B.

Example 1.5. Let L be a n-dimensional smooth manifold, T* L its cotangent bundle, and let M = T*L x R

with coordinates (1, ..., Tn, Y1, Yn, 2). Then
a=dz — Zyjd'rj

J=1

is a contact form on M. This contact manifold is denoted by J'(L,R) and called the 1-jet space of smooth

functions on L.

1.2 Legendrian submanifolds

Given a contact manifold (M, ), we want to understand the global features of the contact structure. A
natural idea is to consider some class of submanifolds and to see how the contact structure changes along
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such a submanifold. A fundamental class is the one of submanifolds tangent to &.

1.2.1 Basic facts about Legendrian submanifolds

In this section, we summarize basic definitions, neighborhood theorems and give several examples.

Definition 1.6. Let (1, &) be a contact manifold. A submanifold L of M is called an isotropic submanifold

if T,,L. C &, for all points p € L.
In fact, if L C (M, €) is isotropic, and if the dimension of M is 2n + 1, then dimL < n.

Definition 1.7. An isotropic submanifold L C (M?"! £) of maximal possible dimension 7 is called a

Legendrian submanifold.

Example 1.8. Consider the 1-jet space J*(L, R) with the standard contact structure. Then for every smooth

function f : L — R, the subset

Lf = {(l‘,df(l‘),f(l’)), VIS L}

is a Legendrian submanifold. More generally, for some N > 0, consider the product L x RN with coordinate
2z = (z,y). Let f : L x RN — R be a function such that the image of df in T*(L x RY) intersects

T*L x RN x {0} transversely. Then the subset

Ly = {(x. df(2), (=) %(z) —0)

is an immersed Legendrian of J'(L,R) and this function f is called a generating function for L;.

Example 1.9. Consider the space of contact elements ST B with its standard contact structure.

i) For all submanifold X C B the spherical conormal bundle SN* X consisting of all 1-forms on Ty B

vanishing on T1 L is a Legendrian submanifold. Especially, for a point p € B we have SN*{p} =
STy B, which is the fiber of ST* B through p.

ii) Consider the product B x RY and take a function f : B x RY — R such that 0 is not a critical value

and the two subsets { f = 0} and {df |gx = 0} intersect transversely. Let

L =A{f =0} {df|a~ = 0},
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then the subset

) | *
o= { iy 12 € 1) 5T

is a Legendrian submanifold and { f = 0} is called a generating hypersurface for L.

Given a Legendrian submanifold L C (M, ¢), it is reasonable to ask how should the contact structure
look like along L. As the following neighborhood theorem indicates, ¢ is standard.

Theorem 1.10 (Weinstein neighborhood theorem). Ler (M,§ = kera) be a contact manifold and let
L C M be a Legendrian submanifold. Then there is a neighborhood U of L, such that (U, «|y) is contac-
tomorphic to a neighborhood of Or.r, x {0} in (J*(L,R), aga).-

Remark 1.11. Beware that a priori we do not have a lower bound of the size of U.

It is good to understand a Legendrian submanifold by drawing pictures, especially when the Legendrian
submanifold is a curve.

Definition 1.12. Let M be a n-dimensional manifold with coordinates (z1, . .., x,), and T*M x R the 1-jet
space with coordinates (z1, ..., T, Y1, .- ., Yn, 2) and the standard contact form oy = dz — Z?Zl yjdx; .

Then the map

($17"'7xn7y17"'7yn72) L — (xla"wmrwz)

is called the front projection, and the image of a Legendrian submanifold in M X R is called its front. The
map

(T1y e Ty Y1y e Uny 2) > (T4 oo Ty YLy e e 5 Uny )

is called the Lagrangian projection.

Remark 1.13. Since a Legendrian submanifold L C (T*M x R, ay) satisfies the equation

dz — Z yjdx; =0,
j=1

L can be easily recovered from its front by setting y; = %. Therefore, when talking about a Legendrian
J
submanifold L C (T*M x R, agq), we usually regard the front as L itself, which is much simpler.
When M is R, then T* M x R equals to R3. Therefore, the front of a Legendrian curve is just a curve in

R? with well-defined tangents (including cusp points) which are never vertical.
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1.2.2 Positive contact/Legendrian isotopy

Let (M, €) be a contact manifold and L. C M a Legendrian submanifold. It is natural to investigate the
group of contactomorphisms of (M, ) and the set of of Legendrian embeddings of L. A class of special
paths in these sets is the one of positive isotopies.

Definition 1.14. [EP99](Positive contact isotopy) Let (M, ¢ = kera) be a contact manifold, ¢ : M X
[0,1] — M be a contact isotopy and let X; = %‘*te where ¢ € [0, 1]. We say ¢ is positive if X, is transverse
to & positively, that is to say,

a(X;) > 0.

Moreover, ¢ is said to be a positive loop if in addition ¢y = ¢;.

Similarly, we can talk about positive Legendrian isotopies.

Definition 1.15. [CFP10,(CN10](Positive Legendrian isotopy) Let (), £ = kera) be a contact manifold,
L C M a Legendrian submanifold, ¢ : L x [0,1] — M a Legendrian isotopy and let X; = ‘Z—‘f where

t € [0, 1]. We say ¢ is positive if X, is transverse to & positively, i.e.
O[(Xt) > 0.

Moreover, ¢ is said to be a positive loop if in addition ¢y = ¢;.

Positive contact/Legendrian isotopies sometimes have rigid behaviours, since it is not quite possible
to make a general isotopy positive. When do they exist ? What are the consequences of the existence of a
positive loop ?

If there is no contractible positive loop in C'onto(M, £), there is a well defined partial order on Cf'o\/nto (M,§)
the universal cover of Conty(M, ), according to Proposition

Definition 1.16. [EP99] Let (1M, ¢) be a closed contact manifold. For f,g € Conto(M,£), write f = g if
fg~! can be represented by a positive path ¢; € Conto(M,&). (M, &) is said to be orderable if = defines

a partial order on Cont, (M,E).

From [EKPO6], the existence of positive contractible loops is a manifestation of symplectic flexibility.
In some cases any homotopy of a positive contractible loop to the constant loop can serve as a squeezing
tool of some subset.

There does not always exist a positive Legendrian isotopy connecting two Legendrians which are legen-
drian isotopic.

Theorem 1.17. [CFPI0,|CN10,\GKSI12|] Let M be a manifold, ST* M with the standard contact structure,

then there is no positive Legendrian isotopy connecting any two fibers.
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If we consider the weaker notion of Positive Legendrian regular homotopy, then the rigidity properties
disappear and we have the following existence theorem.
Theorem 1.18. [LauO7] Let (M, &) be contact manifold and L C M be a Legendrian submanifold. Then

there always exist positive loops of Legendrian immersions based in L.

1.2.3 Loose Legendrian submanifolds

When we want to construct or to prove the existence of positive loops of Legendrian embeddings, it is
not possible to do it for all classes of Legendrian submanifolds due to Theorem Therefore it is more
reasonable to consider some flexible class. Luckily, there is a good candidate, the loose one, discovered by
Emmy Murphy [Murl?2], which is somehow a generalization of the notion of a stabilized Legendrian curve.

In the 1-jet space T*S' x R, from Example there are graphic-like Legendrian submaifolds, that
is, those with generating functions. There exists an other class that turns around the zero-section, more
precisely,

Definition 1.19. Consider T*S! x R with the standard contact structure. Let L C T*S! x R be a Legendrian
curve, and denote its front in S' x R by Lp. The stabilization is an operation that replaces a portion of Lp

by a zigzag. Denote the resulting Legendrian by S(L). It is called a stabilization of L (there are two such

stabilizations going upward or downward).

=

/
\

FIGURE 1.1 — Stabilization in the front.

In the Lagrangian projection, a stabilization corresponds to adding a small loop, and thus introducing
a double point that corresponds to a Reeb chord. The action of this Reeb chord (the difference of altitude
between the two branches) is also equal to the area of the loop and is called the action of the stabilization.

Proposition 1.20. [[FRI1| [ELi87] If L C (T*S' X R, £4q) is a closed Legendrian curve, then a stabilization
S(L) of L does not admit a generating function.

Non-existence of generating function suggests flexibility of S(L). This is confirmed by the following :
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Theorem 1.21. [[Che03, p. 10] Let L C (T*S! X R, £,1q) be a closed Legendrian curve, then the Legendrian

contact homology of S(L) is zero.

It is interesting to generalize the notion of Zigzag and Stabilization to higher dimensional situations.
There is one such generalization discovered by Emmy Murphy [Murl2] when she proved some Legendrian
embeddings satisfy h-principle. She gives it the name Loose to emphasize its flexible nature.

Definition 1.22. [Murl2] Suppose n > 1. Let B C (R?,£,,4) be an open ball containing S(L), a stabili-
zation of action a, and let V, = {|z| < p, |ly| < p} € T*R"!. Note that B x V,, is an open convex set in
(R?"F1 £.,4). Let A be the cartesian product of the stabilization and the zero section of T*R"~1, which is
a Legendrian in B x V,,. We call the pair (B x V,, A) a Legendrian twist. A Legendrian twist satisfying
a < p? is called a loose chart. Finally, let L be a Legendrian submanifold in (M, €). If there is a Darboux

chart U C M such that (U, U N L) is a loose chart then L is called loose.

For our purpose, we give the following equivalent definition of loose.

Definition 1.23. Let L : Y < (J'(Y™),{4q) be a Legendrian embedding. Let A be a one dimensional
zigzag and N a n — 1 dimensional manifold. We say L is loose if its front contains contact image of A x N,

which is called a Zigzag.

Proposition 1.24. The above two definitions are equivalent.

Proof: First of all, given a Legendrian with a Zigzag A x N C B x N, we fix a Riemannian metric on NV
and a disk D(r) C N for some r. Next, we can shrink A x N to A’ x N such that the action a’* < r. Then,
we get a loose chart B x D(r). Conversely, given a loose Legendrian L, its front F'(L) contains A x D",
and we can take a submanifold N C F(L) with trivial normal bundle such that 9N = 9D"~'. Then we
replace a normal neighborhood of N by A x N. After this operation, we get another Legendrian L’ which
is formally isotopic to L. Thus, by Murphy’s h-principle[Mur12] L’ and L are in the same isotopy class of
Legendrian embeddings. O]

In the higher dimensional situation, loose Legendrian submanifolds have the following flexible pro-

perty :

Theorem 1.25. [MurI2)] If (M>"*1 £),n > 2 is a contact manifold, then any loose Legendrian embedding

satisfies a parametric h-principle. This means that

(i) for every formal Legendrian embedding [ : L — M, there exists a loose Legendrian embedding '

close to it ,

(ii) for any two loose Legendrian embeddings fo and f,, if there is a formal Legendrian isotopy connec-

ting them, eventually fo and f, are Legendrian isotopic.
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Remark 1.26. We can refer the definition of formal isotopies in Chapter 3. Notice that we assume n > 2
here, otherwise, the theorem is no longer true. However, the same technique still works and produces the fol-
lowing folklore result : if two Legendrian knots are formally Legendrian isotopic, they become Legendrian

isotopic after sufficiently many stabilizations.

One of the main ideas for proving the above theorem is to consider wrinkled Legendrian embeddings.
Roughly, we could say that loose Legendrians come from wrinkled Legendrians by resolving wrinkles.
Definition 1.27. [EM11](Wrinkled embeddings) Let 1V : R® — R"*! be a smooth, proper map, which
is a topological embedding. Suppose W is a smooth embedding away from a finite collection of spheres

{S}l’l}. Suppose, in some coordinates near these spheres, that 11" can be parametrized by

1 2
Wu,0) = (0,0 = u(l = [o), 20 = Zub(1 = o) + u(l = [oP)?,

where our domain coordinates lies in a small neighborhood of the sphere {|v|? + u?> = 1} C R™. Then W

is called a wrinkled embedding, and the spheres Sj’f"1 are called the wrinkles.

Definition 1.28. [Murl2](Wrinkled Legendrians) Let Y™ be a closed and connected manifold and (M?"+1 ¢)
be a contact manifold. A wrinkled Legendrian is a smooth map L : Y — M, which is a topological em-
bedding, satisfying the following properties : The image of dL is contained in ¢ everywhere and dL is full
rank outside a subset of codimension 2. This singular set is required to be diffeomorphic to a disjoint union
of (n — 2)-spheres {57}, whose images are called Legendrian wrinkles. We assume the image of each
S;?_2 is contained in a Darboux chart U, so that the front projection of L(Y') N U, is a wrinkled embed-
ding, smooth outside of a compact set. (In particular, the front projection of each Legendrian wrinkle is the

unfurled swallowtail singularities of a single wrinkle in the front.)

Definition 1.29. [Murl2](twist marking) Let L : Y — (M, ) be a wrinkled Legendrian embedding, and
{S]’-‘_Q} be the set of singular spheres. Let N C Y be a submanifold with ON = U; SJ’-L_Q. Denote ¢ := L|y.

Then (®, N) is called a twist marking.

Remark 1.30. We will put the C'*°-topology on the space of wrinkled Legendrian embeddings. Thus we can

talk about a smooth family of wrinkled embeddings (L;, ®;, N;).

We can resolve wrinkles along twist markings as in [Murl2].

Theorem 1.31. Let L}’ be a smooth family of wrinkled Legendrian embeddings, let (®;, Ny) be the twist

markings. Then there is a smooth family of Legendrian embeddings L, such that L, is identical to L}’
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FIGURE 1.2 — Local resolution of a wrinkle.

outside of any small neighborhood of N, for all t. Also, the resolution L, can be taken to be as C° close as

we want from L.






Elementary constructions in lower dimensions

In this chapter we construct positive loops of Legendrian embeddings for loose Legendrian surfaces in an
elementary way. There are at least two advantages : firstly, we can get a simple explanation why we need
the looseness assumption ; secondly, it will inspire us to find the idea for solving the general problem.

2.1 Positive Legendrian isotopy in dimension one

We start with the elementary case of dimension 1 Legendrian knots in 3-dimensional contact manifolds
that are stabilizations. A positive loop is found in a semi-local neighborhood of the knot L, i.e. a Weinstein
neighborhood of the destabilization of L.

First recall that there is no local positive loop :

Proposition 2.1. [[CEPI0] Let L be the zero section of J*(S'), £siq). Then there does not exist a positive

loop of Legendrian embeddings based in L.

It is a critical observation in that the slopes of a Legendrian knot can all be made to be positive
(or negative) when it contains a Zigzag. With some preparations we can construct positive loop for stabilized
Legendrian knots.

Definition 2.2. A Legendrian embedding L : S! < (J1(S!), £,4) is said to be loose if it is one stabilization

of the zero-section.

Proposition 2.3. Let L : St — (JY(SY), £41q) be a loose Legendrian embedding whose front have positive

slopes everywhere. Then there exists a positive Legendrian loop based in L.

19
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Kt:&:%

FIGURE 2.1 — Rotation

Proof: Regard S! as R/Z with coordinate x. Let Ly : S! < S! xR be the front of L. Denote Z = Lp(S').
On Z, the slopes dz/dz > 0 are positive. Consider the vector field v := —3,, on J'(S!) and its flow ¢;.
Because a(v) > 0 on ¢y(Z) forevery ¢ € [0, 1], then ¢, is a positive Legendrian isotopy. Since ¢ = Id,
then we have a positive loop.
O

Remark 2.4. If the front of L has negative slopes everywhere, we can choose v = 0, so that its flow is a

positive loop.

Notation conventions : Let L : Y — (J!(Y), a) be a smooth Legendrian embedding. We denote its
frontmapby Lr : Y — YV xR . If ¢, : Y — Y x R is an isotopy with ¢,(Y") transverse to the R factor,
we denote th its Legendrian lift and write vy, and v3 the corresponding generating time dependent vector
fields.

Given a loose Legendrian curve, we can change the front projection such that there is only one zigzag
on the front. However, we present Lemma [2.5/to warm up.

Lemma 2.5. Let L : S' < (J(S'),&qa) be a smooth loose Legendrian embedding. Then there is an

isotopy oy of Lp(S') such that the slopes of v, (Lr(S')) are positive or negative everywhere.

Proof: Let Z = Lp(S') in the (z, z)-plane. Without loss of generality, we may assume there is at least
one positive zigzag and, to symplify the presentation, we also assume there is only one negativeﬂ zigzag
that we denote A.

Then we construct ¢, in the following steps.

Step 1. Stretch the zigzags by ¢! to make the positive zigzags large and the negative one small. That is
¢1(x,z) = (cz, cz) restricted to the positive stabilization and ¢}(z, z)|x = (1z, 1z) for a given a constant
c> 1.

lit means the slopes are negative.
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0

Step 2. Rotate the zigzag A by ¢? to make the slopes positive. For example, take ¢} (w) = e™w, with

w = x + 12. Clearly A will not be vertical if 6 is not too large.

FIGURE 2.2 — Adjust other parts of Z.

Step 3. Adjust other parts of Z by (2, which is just a translation. See figure
Then ¢; = ¢? o p? o ¢} makes the slopes of Z positive.

Immediately we have the main result of this section.

Proposition 2.6. Let L : S* — (J'(S'), &4a) be a smooth loose Legendrian embedding. Then there exists

a positive loop of Legendrian embeddings based in L.

Remark 2.7. Proposition [2.6] follows directly from Proposition [2.3] We give a more involved proof which

will be helpful to understand the dimension two case.

Proof: Let Z = Lp(S') in the (, 2)-plane. Then we construct an isotopy for Z in the following steps.

Step 1. Make the slopes of Z positive by 1)} according to Lemma Denote Z; = 1} (Z).

Step 2. Move Z; up by +? such that ¥? o 1] lifts to a positive Legendrian isotopy. Take a number
ky > max (Jap(vg)|). then set vy = k1 0., s0 ¢ o ¢} is a desired isotopy. Denote Z, = ¢7(Zy).

Step 3. Move Z, down positively by ¢} to Zs. Precisely take Vys = —k90, —no,, with 0 < n € N and
0 < ko < nmin(slope(Zs)). Here slope(Zs) denote the slopes of Z,. We can see that Z3 is a copy of Z
lying below Z in z coordinate for a large ks.

Step 4. Change the slopes of Z3 by 1} such that the shape of Z, = 1}(Z3) is the same as Z, that is
slope(Zy) = slope(Z). By Lemma2.5|such a ¢} exists.

Step 5. Move Z, up back to Z by 1} such that 7 o ¢ corresponds to a positive Legendrian isotopy as
Step 2.

Thus, (Yy)teo.1) = (7 © @Z)tl)te[o,u * (17 )repo) * (V7 o %4)756[0,1] corresponds to a positive loop of Legen-
drian embeddings based in L. Here o means composition and * means concatenation of paths in the space
of embeddings. [

We can see that if L(S') stays in a small neighborhood of the zero section of J*(S'). Then the isotopy
may be supported in that neighborhood.
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2.2 Positive Legendrian isotopy in dimension two

We generalize the strategy for knots to the case of surfaces. We start with the simplest but non trivial case.

2.2.1 Construction for S? case

We endow the 2-sphere S? with the usual spherical coordinates (6, 3). According to Definition [1.23] given
a smooth Legendrian sphere in (J'(S?), ,4), we say it is loose if the front contains Z x S!. See figure

FIGURE 2.3 — The front of a loose Legendrian sphere.

It is convenient for us to represent a Zigzag in coordinates, that is on the cylinder U = {(0,5)| — d <
0 < 6} C S? the image Lp(U) = Z x S' where Z is contained in (6, z)-plane. Then on each circle
Sk = {(0,5)|8 # 0,7}, there are two zigzags with opposite slopes, where § = 0 and 3 = 7 correspond
to the north and south pole respectively. Here slopes means 0z/06. We will put Sk in (0, z)-plane. where
S! = R/Z by rescaling. See ﬁgure

S T s

FIGURE 2.4 — See S}; in (0, z) plane.

Notation conventions : We denote D; (J'(S?)) C (J'(S?), &sq) a disk bundle with D? fiber where § is
the radius of the disk. For some ¢’ < 4, we denote LY : S* — Ds(J'(S?) a wrinkled Legendrian embedding
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with one wrinkle S' = {(6, 3) | 0 € [—1, 1]} such that 0 < Slope(Ly/ (S})) < ¢’ and be zero exactly when
B = 0and 8 = 7. We will write L}, as L when there is no confusion.

Take the twist marking N = {(m, 3)}. According to Theorem for any 1 > 0, let "' be the
operation of resolving the wrinkle along N such that || W, (L") — L* [[co< 7.

Now we state the main result in this section.

Theorem 2.8. Given § > 0, let L : S* < Ds(J*(S?) be a loose Legendrian embedding. Then there exists

a positive loop of Legendrian embeddings based in L.

Remark 2.9. Roughly speaking, let us regard L as W, L(L™). Then the above Theorem can be proved in

two steps :

(i). Construct a loop of contact isotopy o} which is non-negative on L™ and as positive as we want outside

a small neighborhood D of the poles.

(ii). Construct a contact isotopy ¢? which is supported in a neighborhood of the poles and positive in a
smaller neighborhood D’ O D. Thus, if ! is positive enough, the composition ¢? o o} is a positive

isotopy of wrinkled Legendrians based in L.

Then, for i small enough, the composition IV, - Lo @2 0} is a positive loop based in L.

We explain how to obtain a loop which is positive near the poles in Lemma First of all, we study
the dimension one case in Lemma 2.10l

Lemma 2.10. Given constants 6 > 0 and a € (0,1), let L : D' < Ds(J'(D?") be the zero-section. Then,

forany 0 < € < 9, there exist a loop of Legendrian embeddings 5,5 : DY — Ds(JY(D?") such that :
(i)- Gilopr = Llgpr and | ¢ — L [|eo< e,

(ii). O‘(U&%)’D(a) > 0.
We define a box B(a,b) := [—a,a] x [-b,].

Proof: Let 7 be the coordinate for D' and (z, y, 2) the coordinates for Ds(J'(D')), thus, Lr(7) = (7,0).
Let’s construct ¢, for L such that its lift satisfies the above conditions.

Given a family of parametric curves 7 +— (x(7), 2:(7), define the slopes by A;(7) = Z((:));
Z = Lp([-1,1]) and A = Lg([—a,a]). Now we will move Z in the following steps and fix our attention
on By = B(a,da).

Step 1. Rotate A counterclockwise to A; by ¢! such that Slope(A;) < e. More precisely, denote
(20, 20) the center of By, define r = sign(z — x0)\/(x — x9)% + (2 — 20)2, where sign(z) is the the sign
function. Let 6 € (0, arc(e)), in the box By, thus

Denote

Re %" (an(ot), — 0.)
tan?(0t) + 1
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is the rotation of angle 6, we have to extend R to the rest of Z. Denote Z; be this isotopy. We can choose it
to be graphical with small slopes, since

2(a) = /1 " A7) < ea,

we can just take such Z;[a, 1] that —;*- < Ay(7) < 0. Note that R is not positive. However, we have

R' = R + €0, positive on A1, because

rftan

A(R)=€— —
(£) Vtan? + 1

>e(l—a) >0,

where R’ is the lift of R’. Then we take vgr = R'. We can see that the norm || o — L ||co< e, since
|Ai(T)| < eand || ¢} — L ||co< €.
Let Z' = ¢1(Z), By = ¢1(By), see figure 2.5 for Z'.

B

FIGURE 2.5 — A; lives in a small box B;.
Step 2. Move A, down to the left positively by ¢? near Z'. Given a constant 0 < k < Slope(A;), let

Z? = ¢2(Z") such that
Zi1) = (w4(7), (7))
= (x(r) —eo(T)t, 2(1) — e€ko(T)t)

with o(7) being a C°-close smoothing of the following function

(tr+1) , 7€[-1,—q]
, T€E(—a,a)
(r—=1) , 7€]a,l]

1—a
o(t)=<¢ 1

1—a

such that o(+1) = 0 and |o’(7)| < .
Let Ay = ¢2(A1), By = ¢2(B1), Z° = ¢3(Z"). See figure2.6|
Let us check that the lift 53 satisfies all the conditions.
Firstly, note that

"(1) — ekto’ (1)

Ar) = (1) —eto’ (1)

z
T
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By

FIGURE 2.6 — Move By down to the left.

Thus, for |7| < a, we have |A;(7)| = tanf < ¢; for a < |7| < 1, we have

|Ao(T)| + €)e
1—2¢

2
A < [ Ao(r)] + 2 < (dac tdeta) <c

Secondly,
a(vgg) =eo(7)(A; — k),

thus, we have a(vg,) > 0 for 7 € [—a, d].

Step 3. Move A, down to the right positively by ¢3. First of all, we repeat Step 1, that is to say, rotate
A? to A\’ with opposite slopes and compose it with a upward move, denote it by ¢;. Besides, similar to
step 2, let us take ¢,> such that Vyrs = e(—A(7)0, + pu(7)0,) with Ugis = €(—k0, + 20,) on A’. Then take
¢ = ¢ * ¢ Let Ay = ¢3(A3), By = ¢}

Step 4. Move B; back to B, positively by ¢}. Firstly, rotate A3 clockwise to A4 by X’ such that the
shape of A, is the same as A, then move the whole curve back to 7.

Summary. Define ¢; := ¢} * ¢? * 3 * ¢?. It is a loop supported in a small Weinstein neighborhood. For
a suitable choice of vy,, we have ap(vg,) > 0 on A while ap(vy,) > —co on the other part of Z for some
constant ¢y > 0, since our isotopies are compactly supported. Figure [2.7|indicate the isotopy ¢.

[
Now, we are ready to present the main two-dimensional lemma.

Lemma 2.11. Given constants 6 > 0 and a € (0,1), let L : D* < Dys(J'(D?) be the zero-section. Then,
for any 0 < € < 0, there exist and a compactly supported loop of contactomorphisms @ : Ds(JH(D?)) —

Ds(JY(D?)) such that :

(i). Oz(vat)h(p(a)) > 0,
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FIGURE 2.7 — Schematic diagram for ¢,

(ii). (¢ 0 L)|op2 = Llppz and || ¢y 0 L — L ||co< e.

Note that for every singular Legendrian L' close to L, the properties (i) and (ii) still hold if L is replaced
by L.

Proof: Regard D? as a disk with radius /2 in R x R with coordinates (7, ), let (x, u,y, w, z) be the coor-
dinates for Ds(J'(D?), write o = dz — ydz — wdu. We will construct a loop @ of Legendrian embeddings.
This can be extended to a loop of contactomorphisms.

Step 1. Let Z = Lp(7,0), we have aloop Z;(7) = (2+(7), 2:(7)) based in Z satisfying the conditions of
lemma

Step 2. Take a cut-off function f(u) such that f(u) = 1 on [—a,a] and maz|f'(u)| < % Then define
Zi(1,u) = (f(w)w(7), u, f(u)z(7)).

Step 3. Extend Z;(7, u) to a loop of diffeomorphisms in the front, then lift it to a loop of contactomor-
phisms @. We can see at satisfies all the conditions.

O

Let Dy (r) and Dg(r) be disks of radius r around the pole NV and S respectively. Now, we are ready to

prove Theorem [2.§]

Proof: We assume there is only one Zigzag for L. Let us regard L as W, Lo LY for some constant §’ < 4.
Then, we will proof the theorem in the following steps.

Step 1. Take a constant 6" € (¢’,6). For any K > 0, let {th be the compactly supported contact isotopy
such that ¢, (0, 3, z) = (8 — 27 Kt, 3, z) on Dyr (J*(S2)). Note that a(dy1) = K Slope(L*(Sz)). Thus, v,
can be arbitrary positive (depending on K') away from the poles.

_ Step 2. Given a constant 0 < a < 1, according to Lemma [2.11] there exists a loop of contactomorphism
¢, compactly supported in Ds(.J'(Dy(+/2)UDg(v/2))) such that a(vg,)|Lw(Dy(a)ups(a)) > 0,if L* is close
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FIGURE 2.8 — Change of coordinates near the north pole.

to the zero-section. Note that there exist some k;, ko > 0 independent of K such that a(v(;t) > —k; and
qz;*a > koo since 5,5 is compactly supported.

Step 3. We make sure that ¢; o v is a positive loop based in L. Since

U%o%(x) - U&s({ﬁvt(x)) + dgt(vﬂt (ZL‘)),

we have
a(vg,,5, (%) = (v, (Vi(2))) + dja(vg, (x))

for x € Ds(J'(S?)). We can see that O‘(”{gtoit)|Lw(DN(a)UDs(a)) > (0, since @Zt o L" stays in a small neighbo-
rhood of the zero-section. Besides, away from Dy (a) U Dg(a) we have a(vg, 5 )| > —k1 + k2 K. Thus,

for K large enough E;Et o Jt is a positive loop based in L™ (see figure [2.9|for the composition near V).

Step 4. Note that TV, (% o i/;t(Lw)> is a loop based in L. It is C” close to ¢ o ¢,(L™) with respect
to 7. Thus it is also positive for 77 small enough, because positivity is an open condition with respect to the
CP-topology. O
Remark 2.12. For any n € N7, let L be a loose sphere such that L contains n Zigzags for some front

projection F'. Then, there exists another front projection F” such that Lz contains only one Zigzag. Thus,

it is enough to prove the case of one Zigzag.

We have another way to make a neighborhood of the poles in a positive loop : Take another D' xSt C §?
which contains a small neighborhood of the poles. Then we add a wrinkle on the front {/; #(S?) along the
image of D! x {0} for all t. We rotate the wrinkles fast in a small neighborhood of 5 (S?) for every ¢

such that the poles are in a positive loop. After resolving wrinkles, we get a positive loop of Legendrian
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a(v)
—~J 0/

FIGURE 2.9 — Composition of isotopies

embeddings. Note that the new Legendrians are in the same Legendrian isotopy class of L.



Basic h-principle

In the case of surfaces, we can construct positive loops by hand. It is not so easy to repeat the same strategy
in the higher dimensional situation. Luckily, positive Legendrian isotopy can be regarded as a differential
relation, therefore we could hope to solve the problem by h-principle techniques.

A least, there are two facts that advocate in favor of those techniques :

(i) Looseness implies a flexible nature of the Legendrian.

(i) Finding a positive loop of Legendrian embedding is a global problem, it can be localized near a
formal solution.

In this chapter, we will recall the basic definitions and techniques in h-principle. The reference are
[Gro86, EMO02, |Spr9s, Bor].

3.1 Differential relations

Given a differentiable map f : M — N, informally a differential relation on f are conditions on f and its
differentials d” f.

Example 3.1. (i) differential equations,
(ii) immersion(smooth, Legendrian),

(iii) curvature restrictions on Riemannian metrics.

For precise definition of differential relations, we need jet-space formalization.

29
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Definition 3.2. Let M and N be manifolds, the 1-jet space J'(M, N) is defined to be the space

{(z, f(x), F(x))},

where f : M — N is a C'-function and F' : T, M — T}, N is a linear map.

Example 3.3. J'(R™ R") = R™ X R" x M,,x,(R).

With the language of jet-spaces, we can formulate the definition of a differential relation.

Definition 3.4. Let /M and /N be manifolds. A first-order differential relation R on the first-order diffe-
rentiable functions C''(M, N) is defined to be a subset of J'(M, N). The relation R is called open if it is
an open subset of J*(M, N).

A formal solution of the differential relation R is a point (f, F') € R. Such a point (f, F') is called a

solution if ' = df.
We will only consider first-order differential relations.

It is interesting to interpret a formal solution in a geometric way, which will help us to find a real
solution. For example,

Example 3.5. Let R be the relation of immersion of R into R?, figure represents a formal solution.

fx

FIGURE 3.1 — Formal solution : geometric interpretation.

3.1.1 Idea of h-principle

When a problem is formulated in term of a differential relation R, solving the problem means to find a real
solution. A way to do it is to start from a formal solution and try to deform it into a real one (see figure[3.2).
Luckily, in some good situations that is possible.
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o

/
\Q\H

o \
| (g dg) / \
/ IJJ

— R

(£ F)

FIGURE 3.2 — homotopy to a solution.
We have the following formal definition of h-principle.

Definition 3.6. Let R be a differential relation, S C ‘R the subset of real solutions, then we say R satisfies

h-principle if S and R are homotopy equivalent. For example

(i) every formal solution (f, F') € R is homotopic to a solution (g, dg) € S,

(i1) any two solutions homotopic as formal solutions can be connected by a homotopy of solutions.

Up to now, there are at least two general ways to do h-principle : holonomic approximation and convex
integration. We will present the basic ideas and results in the following sections.

3.2 Holonomic approximation

Let R be a differential relation, we want to know whether there is a real solution. A natural idea is a priori
to take a formal solution and then to find a solution which is close to it. A simple example (see picture [3.1])
shows this is not quite possible. However, this idea is still interesting and useful.

3.2.1 Holonomic approximation without singularities

Although, given a general formal solution (f, F') for a differential relation R there is no hope to have a
global solution almost tangent to F'. It is sometime possible to find one near a codimension one skeleton,
that is Y.Eliashberg and M.Mishachev’s Holonomic Approximation Theorem.

Theorem 3.7 (Holonomic Approximation Theorem). [EMO02| |Gro86|] Let R be an open differential rela-
tion in j1(M™, N"™), let (f,F) € R be a formal solution. Then there exists a formal solution (f', F') € R

and a triangulation A of M, such that
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(i) F'is C° close to F,
(ii) (f', F") is a solution near (m — 1)-skeleton of A.

Remark 3.8. It is easy to image the above theorem like the following way : Think about a road winding up
to a mountain, the horizontal planes to the boundary surface of the mountain can be regarded as a formal
solution. The road going up to the mountain can be chosen to be arbitrarily close to the horizontal planes.
The above theorem says that given a differential relation R, we always have a solution outside some
balls of M, if we consider natural relations, i.e. invariant by diffeomorphisms. . It also means that for an
open manifold M, basically, a solution always exists .
The relation R being open is a technical condition, otherwise we have to take a limiting process.

When (f’, F’) approximates ( f, F'), it does not mean f and f’ are C°-close, usually they are not.

3.2.2 Holonomic approximation with wrinkles

Usually, the source manifold M is closed and there is no trick to make an open extension for M. If we still
want to do holonomic approximation then we have to allow singularities (see figure[3.3]).

FIGURE 3.3 — Approximation with singularities.

In that case, it is possible to introduce only simple singularities, that is to say folds and cusps. We have
the following generalized Holonomic Approximation Theorem of Y.Eliashberg and M.Mishachev.
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Theorem 3.9. [[EM11](Wrinkled Holonomic Approximation Theorem ) Let R be an open differential
relation in j1(M™, N™) with n > m, and (f, F) € R a formal solution. Then there exists a wrinkled

solution (f', F') € R[l|such that F and F' are C°-close.

Remark 3.10. We can see the above theorem more closely in the figure [3.4] All singularities are on the
boundary sphere of a highest dimensional disk and the cusps are on a codimension two sphere.

The above theorem is crucial for us to construct positive Legendrian isotopy.

FIGURE 3.4 — A wrinkle.

3.3 Convex integration

Holonomic approximation is not sufficient to treat our problem. We need another technique, called convex
integration.

It is another natural way to do h-principle : given a differential relation R C J'(M, N) and a formal
solution (f, F'), instead of finding a real solution (g, dg) with dg close to F', we can try to find a map g such

! f" is a wrinkled embedding
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that f and g are C°-close and (g, dg) € R. Notice that g and f are usually not C''-close, otherwise, (f, F)
itself a solution when R is open. The author benefited a lot from Vincent Borrelli [Bor] when learning
convex integration and the presentation here is mainly from his online lecture notes.

Intuitively, g should oscillate around f . Let’s see the following example.

Example 3.11. Let R C JY(R,R?) be a differential relation whose fiber is
3 T
R, ={veR’||L(v,0,)] > Z}

Let f(z) = (0,0, x), then the map g(x) = (ksin(2Nwx), k cos(2Nnz), z) satisfies R for large N and k.

The relation R should be some special subset of J'(M, N) so that solutions exist. A special case is
when R is ample.

3.3.1 H-principle for ample relations

We recall the following definitions before stating the h-principle for ample differential relations.

Definition 3.12. Let A be a subset of R”, and a € A . The convex hull Conv(A,a) C A containing
a is defined to be the union of all simplexes in R™ with vertex in the component of A containing a. We
denote IntConv(A, a) the interior of Conv(A, a). A is said to be ample if for every point a € A we have
IntConv(A,a) = R™

We talk about ample relations in J* (M, N). Locally, we can identify J' (M, N) with

J(UV)=UxVx ][R,
=1

where U and V are charts of M and N. Denote JY(U,V) = {(z,y,v1,v2,--+ ,vm)}. Let JHU, V)T =
{(z,y,v1,v9, ++ ,Vm_1)}, thus JHY(U, V) = JYU, V)+ x R™. Therefore we have the following diagram

Roy —— JHU,V)

=

JHU, V)

where P+ is the obvious projection.

Definition 3.13. Let R be a differential relation in J* (M, N). We say R is ample if for every local identi-
fication J' (U, V) and every z € J'(U, V)%, the subset P+~1(2) N Ry is ample in R™.

Example 3.14. The differential relation of immersion from M™ to N" is ample if m < n.

Let’s state the h-principle for ample differential relations.
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Theorem 3.15. [[Gro86)] Let R C JY(M, N) be an open and ample differential relation, then it satisfies a

parametric h-principle.

In practice, our differential relations are usually not ample, because the ample condition is too strong,
for example, the conditions for PDEs are hardly ample. Besides, given a formal solution (f, F') € R, our
aim is to construct a solution ¢ such that g and f are C°-close. Essentially, the existence of such g depends
on the shape of R and the position of (f, f') with respect to R. A concrete situation is when (f, f') is
surrounded by R. We will explain this in detail in the following subsection.

3.3.2 Fundamental lemma

First of all, we give an example to see the importance of being surrounded.

Example 3.16. Let | be the map as in example We have a constant family of loops
h:[0,1] xR/Z — R
(z,s) —> (2n Nk cos(2ms), —2m Nksin(27s), 1) .
We can see that the loop h, surrounds the point (f(z), f'(z)) € R. We also have the important integral

representation

/ ha(s)ds = f'(x).

Then we can define

F(z) = f(0) + /0z hy(Nu)du,

and check that F(x) = g(x) where g(x) is the same one in example
Generally, if the family of surrounding loops %, (s) exists for (f, f’), and

/ als)ds = J'(x),

then we can define

where s(u) is a suitable parametrization of s, such that g is a solution C°-close to f.
Therefore, it is time to talk about the existence of surrounding loops &, (s) with an integral representation

property.
Definition 3.17. Let / : [0, 1] — R" be a loop, and z € R" be a point. If

z € IntConv(h|0,1]),

we say z is strictly surrounded by h.
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We now present the fundamental lemma of convex integration.

Lemma 3.18 (integral representation lemma). Let R" C R" be an open subset, zy € R and z € IntConv(R, 2).

Then there exists a continuous loop h : [0, 1] — R with base point z, that strictly surrounds z and

- /0 h(s)ds.

The figure[3.5]shows a surrounding loop.

a

FIGURE 3.5 — A surrounding loop for z.

When the dimension of our source manifold is greater than 1, we need a parametric version of the
fundamental lemma to do convex integration.

Lemma 3.19 (Parametric integral representation lemma). Let B be a compact manifold, E = B x R = B

a trivial bundle, and R C E be a set such that
Vb € B, the set Ry, := 7 'b N R is open in R".
Let zy € T(R)fand » € T(E) such that

Vb e B, z(p) € IntConv (R, z0(b)) .

2I'(—) means a section of a fibration
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Then there exist loops h : B x [0, 1] — R such that

Vb e B, z(p) = /1 hy(s)ds.

Remark 3.20. In the fundamental lemma the the reversed path h i.e. h(s) = h(1 — s) can also be regarded
as a loop.

A C*° parametric version of fundamental lemma also holds.

With the help of the parametric version of the fundamental lemma, we can work in the higher dimen-
sional case R C J'([0, 1]™, R"™) with m > 1. Given f : [0,1]™ — R", where (21, Zo, - ,2,,) € [0, 1]™, if
there are parametric surrounding loops A such that

1
8£Bmf:/ h(%l,xz,"' 7Im78)d57
0

Then we can easily define
g($17$27 e 7'Tm) = f(xla T2y 3 Tm—1, 0) + / h(xla L2y, Tm—1,9S, NS)dS,
0

which satisfies the properties stated in the following proposition.
Given f : [0,1]™ — R™, where (z1,xa, -+ ,2,,) € [0,1]™, let

H f HCl’m: max{f, 8x1f7 to 7a:vm_1f}

™

Proposition 3.21. Let E = [0, 1] x R™ — [0, 1|™ be the trivial bundle over [0, 1]™, let R C E be an open

set and zy € T'(R). Let f : [0,1]™ — R" be a C* map such that
Vo = (z1,29, + , Tm) € [0, 1], Opxpm f(2) € IntConv (R4, zo(x))

where R, = 7 '(z) N'R. Then there exists g : [0,1]™ — R" such that
(D) |l g = [ llern=O()

Remark 3.22. We can apply this result to prove the h-principle for ample relations and to do convex inte-

gration for more general situations.






Positive Legendrian isotopies via h-principle

With the preparations of h-principle from chapter 3, we can demonstrate the existence of positive loops of
Legendrian embeddings in the general case.

The proof essentially consists of two parts : a wrinkled holonomic approximation and a convex integra-
tion for non-ample differential relations.

When we try to apply the wrinkled holonomic approximation we are confronted with the same difficulty
as Emmy Murphy had been faced of when she worked on Legendrian embeddings. Fortunately, she has
already paved the road for us [Murl2].

4.1 E.Murphy’s loose Legendrian embeddings

Since the first part of the proof almost repeats Murphy’s ideas, it is better to summarize them before going
ahead.
Now let us enjoy the journey of constructing Legendrian embeddings via h-principle.

Problem 4.1. Let (M*"! €) be a (2n+1)-dimensional contact manifold, and L be a n-dimensional closed

manifold. Then does h-principle hold for Legendrian embeddings of L ?

Solution : Let’s summarize the solution of the above problem by h-principle to see how Murphy’s ideas
work.

Obviously, Legendrian embeddings satisfy a differential relation R which consists of pairs (f, F’) such
that f : L — M is a smooth embedding and F' : T'L. — T'M is injective with image in £. A formal
Legendrian embedding is a pair (f, Fs) such that for every s € [0, 1], f; is an embedding, Fj is injective
and (f1, F1) € R.

To do holonomic approximation, we want to start from a formal solution that is not far from being a
real one, so that the technique is simpler. At the same time, the relation R is not open. Therefore, we take
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an open extension R¢ which consists of points {(f, ')} such that the image of I is e-close to a Legendrian
subspace of £. Eventually, the extension R is ample and thus it satisfies a h-principle. That means every
formal solution of R can be homotoped to a solution in R°.

Basically, we can solve the relation R near a n — 1-skeleton of L by the classical holonomic approxi-
mation. Therefore, we can get a formal Legendrian L’ which is Legendrian near the n — 1-skeleton, the
problem left is to make L’ to be a real one at the level of n-skeleton. We have better to allow singularities,
that is to say after perturbation we get L” which is Legendrian with singularities.

If the singularities are good enough, we can resolve them to turn L” into a smooth Legendrian L".
The good singularities Murphy has considered are the so called wrinkles we have mentioned before. The
Legendrian L" is loose.

It is more difficult to reach parametric h-principle, that is to ask whether two formal isotopic loose
Legendrians Ly and L; could be isotopic through Legendrians. Of course, we can add wrinkles and resolve
them parametrically. The problem is that, for example, when we do this for L, to get L;, we do not know
whether the two Legendrians Ly and Lj, are in the same formal class or not.

Murphy has solved this problem successfully. First of all, she defines loose Legendrians as those obtai-
ned by resolving inside-out wrinkles. Besides, If L is a wrinkled Legendrian with one inside-out wrinkle,
she proved that the Legendrian L’ obtained by resolving all wrinkles is formally Legendrian isotopic to the
one obtained by only resolving the inside-out wrinkle.

If we consider a path of wrinkled Legendrians L; connecting two loose Legendrians Ly and L; which
are obtained from L{ and L/ with inside-out wrinkles, there is a path L between L{ and L/. Then resolving
the wrinkles on L] parametrically, we get a path of smooth Legendrians [Z’t between Ly and L; which is
in the same formal isotopy class of L, . Finally, we have the parametric h-principle for loose Legendrian
embeddings.

4.2 The existence of positive loops

4.2.1 Basic definitions and results

Notation convention : Given a map f(x,t), we will write it f; or f, just to regard ¢ or x as parameters.

Definition 4.2 (formal positive Legendrian isotopy). Let (M?*"*1 ¢ = kera),n > 1 be a contact manifold,

consider a map

(f,F*):T(Lx[0,1]) - TM,
where s € [0, 1] is regarded as a parameter. We say ( f, ['®) is a formal positive Legendrian isotopy if
i). f(z,t): L x[0,1] — M is an isotopy ;

ii). F* = (P7,v;) where P} is a homotopy from T'f; to a Legendrian plane through n-planes and v; is a

homotopy from 0, f; to a vector field positively transverse to the contact plane .

In addition, (f, F'®) is called a formal positive loop if t € R/Z.
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Now, we will define the differential relation R for positive Legendrian isotopy
Firstly, we want to fix some kind of decomposition of L" x R/Z to project an isotopy to the Front.

Definition 4.3. (Good decomposition) Let f : L™ x R/Z — (M*' «) be an isotopy. We decompose
L" x R/Zinto A = {A} x I;} such that

a). R/Z = U,I; where I; = [t;_1,t;] are small intervals ;
b). {A} } is a triangulation of L.
Then A is said to be Good if f(A} x I;) is contained in a Darboux ball.

Definition 4.4 (Differential relation for positive Legendrian isotopy). Let f(z,t) : L™ x R/Z — M***! be
an isotopy, and {A;C x I;} be a good decomposition of L™ x R/Z. Denote fr the composition of f and the

Front projection. At every point (z,1), let R, be the set
{(P,v) € Gr,(R™") x Gri(R™") | P th 0z, v and Oz define the same co-orientation}
where Gr,,(R™*1) is the bundle of n-planes in R"!. We say
R ={(z,t, fr(z,t)) X Ry} C J'(AY x [;, R™)

is the differential relation for positive Legendrian isotopy near (zx,t).

Let f : L — J'(L) be a Legendrian isotopy and f its front. Let v be orthonormal to T, fr. Then
(0 f) = (v, 0 fr) = |0, fr| cos B, where 6 = Z(v, 0, fr). Thus positivity means |0] < 7.

Lemma 4.5. The relation R is open and not empty.

Proof: We can check it point-wise, say that R, C Gr,(R"™) x Gr{(R"!) is open and not empty.
For every point (P,v) € Ry, let (P',v’) be a point near (P,v) then P’ M 0z and v’ is in the same
co-orientation class as 0z, that means (P’ v') € R (2,t)» 80 R(z,1) is open. Non-emptyness is obvious.
O
When we try to construct a positive Legendrian isotopy from a formal Legendrian isotopy by h-principle,
we have to make sure that the formal one really exists.

Lemma 4.6. There exist formal positive Legendrian isotopies.

Proof: The existence of a formal positive Legendrian isotopy is totally a homotopy problem. We want
to prove that the formal solutions (f, F'*) exist. Note that it is enough to consider M = (R*"*1 £,,). Let
f(x,t) : L x[0,1] — (R** £.4) be an isotopy connecting two Legendrian embeddings f(z,0) and

f(z,1).
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First of all, we explain the existence of a formal Legendrian isotopy for some f, which has been proven
by Murphy[Murl?2]]. Let’s repeat her idea. Denote U,, C Va,41, the subset of Legendrian frames. Then
d.f € Map(L,Vapi1,) defines an element in 7y (Map(L, Vapi1,), Map(L,U,,)), say 3. The existence
of such (f, P*) is equivalent to § = 0. A priori, given a path ~; in Map(L, Va,11,) with endpoints in
Map(L,U,) we don’t know whether [v;] € m (Map(L, Vani1,), Map(L,U,)) is trivial or not. We have
to assume that f(z,0) and f(x, 1) are in the same rotation class that we get a lift 5 of /3, by connecting the
endpoints of d,. f. Let (A, B) = (Map(L, Vant1.n), Map(L, U,)), we have the exact sequence of homotopy
groups () N 71 (A) J_> 71 (A, B) . Murphy has proved that ¢, = 0, therefore for every loop o, €
B there exists a loop 6; € A(d; ¢ B) such that 6; ~ o, in A and [6;] = 0 in 7, (A). Besides she has also
proved that every element of 7;(A) can be represented by some d, f. Thus we can choose such isotopy f
with d, f ~ o,. Then the corresponding # is zero, and thus 3 = Jx 3 = 0. We obtain a formal Legendrian
isotopy for a carefully chosen f.

Moreover, we prove there is no obstruction for the existence of formal positive isotopy. Note that
V# is independent of the choice of P°. Let V' C V5,1 be the subset of positive normal vectors at a
point. So d,f defines an element o € m (Map(L, Vapi11), Map(L,V)). We always have o = 0 since
m1 (Map(L, Vapir1), Map(L, V) = mpi1(Vang11, V) and (Vapyq 1, V) > (27, D3).

[

We now define an extension R° of the relation R, consisting of e-positive e-Legendrian isotopies. In
particular, a solution for R® is not far from being positive Legendrian isotopy.

Definition 4.7 (The c-extension R¢ of R). Let R® be the extension of R such that the fibers are

Rz = {(P.v) € Gry(R™) x Gri(R™) | 3(P',v)) € R,|(Pv) — (P, v')] < e}
Thus a Legendrian isotopy f is e-positive if |0] < 4+ €.
Lemma 4.8. The relation R® as above satisfies the h-principle.

Proof: Let (f, F'*) be a formal positive Legendrian isotopy, and write the relation R¢ as R x R where
‘Rj is the e-Legendrian relation and Rj is the e-positive relation. First of all, the relation R is ample, so
(f, F’®) is homotopic to (f1, F}) which satisfies R$ by convex integration for ample relations. Besides, the
relation R§ is also ample(see figure .1, then we can get (fy, F5) satisfying R with || fo — fil|oe() < €
by convex integration, that is to say (f2, F5) also satisfy RS. Therefore our (f2, F5) is a solution for R*.
The parametric version of h-principle is similar.

O]

FIGURE 4.1 — the relation R°.
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4.2.2 The proof the main theorem

In this subsection we prove the main theorem :

Theorem 4.9. Let (M, &) be a contact manifold and fo : L — (M, &) be a Legendrian embedding. If fo is
loose then there exists a positive loop of Legendrian embeddings based in f.

Theorem [4.9] follows from Proposition 4.12]

Before proving Proposition d.12] we present Lemma [4.10] Roughly speaking, after applying wrinkled
holonomic approximation, we obtain a positive loop of winkled Legendrian away from a collection of cubes
{A? x I;} C L xR/Z.

Given non-negative constants k, K and 6 € (0, §). For any non-negative ¢, we denote (fx, F; x5.) a
formal solution of R such that |0, f| < k and |Z(v!,v)| < §. For a subset A C L x R/Z, denote 6] (A)
non specific open neighborhood of A. Then we have the following main lemma :

Lemma 4.10. Let (fy, F}} i 5.) * L X R/Z — (M, ) be a formal positive loop of Legendrian embeddings

for some k, K, § and c. Then there exists an e-positive loop of wrinkled Legendrian embeddings f*, a finite

family of cubes { A} x I,}m, and D(a;) C A} such that
(i). f* is positive outside { A} X L, }1 m,
(ii). a(0:f*) > K on {(A}\ D(@)) X Im}im,
(iii). a(0f") > —k on {A} X Ly }im.
Proof: We construct f* in the followmg steps.

Step 1. Construct a solution ( fo Bk 5.c) for the relation R® satisfying a/(9; f ) > —k. We apply
the convex integration as in Lemma Choosmg surrounding loops h,; € Rj5 for 8t fr with |hx | < ==

sing?

(éﬁ@) > -Ecos(Z +¢) = —k. We can assign a [ ;. for

we get f ke satisfying | f
f k.

Step 2. Given a decomposition A of L x R/Z, deform (f & _, ﬁ,f Kk.5.c) near the n-skeleton A™ of A
by holonomic approximation. Let ¢; be a C°-small diffeomofphism of L x R/Z supported in O,(A").

According to holonomic approximation, for any o, we can deform f . on O,(p1(A™)) to f° such that
|df° — F e 5.] < e. We can extend f° to O,(A™)\ O,(p1(A™)) matching to f & near O,(9A™) such that
the extended (f°, df°) satisfies the relation R°. Thus, pasting f© and f _«_ along the boundary, and denoting

sine

the new map by f, we have a(0;f) > —k and (9, f) > K on O,(¢;(A™)). We can also assign a F}, k5.
for f such that (f, F}, x5.) satisfies the relation R°. Note that there are finitely many cubes {A? x I, }1.,
where (f, df) is not a real solution for R and for every [ there exists D(a;) C Al such that (ii) is satisfied.

Step 3. Apply holonomic approximation with wrinkles for these cubes. We regard /; as parameters for
every j. Then, we add wrinkles parametrically such that the C*-norm || f* — f||c1) < €' < ¢ for some
small &’. Therefore, " satisfies all the above conditions. ]

As Murhpy [Murl2]], we are going to resolve the wrinkles along a family of twist markings. Let S; C
f1*(L) be a family of twist markings. Then we replace a small neighborhood of S; by Z x S;, where Z is a
zigzag, such that the new manifold is also a Legendrian for all ¢. Recall that we regard this operation as a
smooth map Wn_ 1. M — M. When f, is loose, we require Wn_ Lo fo¢ = fo (see [Murl2][Proposition 7.1]).
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Lemma 4.11. Let f* : L x [0,1] — M be a positive wrinkled Legendrian isotopy. Then W, Lo f¥isa

positive Legendrian isotopy for n small enough.

Proof: Since the C* norm || W, ||c1< 7 and the positivity condition is open, we have that W, o f* is
positive for  small enough.

[
Therefore, combining Lemma.10]and Lemma{.TT], we have the following result :
Proposition 4.12. Let (fy, Fj i 5.) - L X R/Z — M be a formal positive loop of Legendrian embeddings
with fy being loose for some k, K, § and €. Then there exists a loop of e-positive Legendrian embeddings
£, a finite family of cubes {A} X Iy }im and D(a;) C A} such that :

(i). fis positive outside { A} X I, }im,

(ii). a(0f) > K on {(A}\ D(ai)) X Ln}im

(iii). a(0,f) > —k on {AF X L, }ims

(iv). fo= fo

Now we are ready to prove the main result (Theorem [4.9). The idea is to add wrinkles again on the the

highest skeletons parametrically.

T

FIGURE 4.2 — [} is smooth.

Proof: (The first version) According to Proposition assume we have a loop of e-positive loose Le-
gendrian embeddings f; which is not positive on a finite family of cubes {D(a;) x I,,}. Take D; D D(a;)
for every [. We construct a wrinkled Legendrian loop f;* with wrinkles on the image of D; in the following
way. If Z(0,fr,vy.) > —(5 +¢) on D(ay) X I, for some I, = (ty—1,tm), we add wrinkles to fx such that
(v, z/f;u) > 2¢ and f;" stays in the Weinstein neighborhood of f;. The wrinkles is added parametrically
such that |0, f2 — 0, fr| < . Thus we have Z(0, f§, vfw) > —7. That means f;" is positive (see figure .
There exists some § > 0 such that Z(0fp,vys,) < 0fort € (t,,,t, + J]. We add wrinkles parametrically
such that Z(vy,, vyw) decreases when t grows and the wrinkle dies away at ¢t = t,, + d. Note that f* . ;
is a Legendrian embryo. Similarly, if Z(0, fr,vy,) < (5 + ¢€) on D(a;) X I,, we add wrinkles to fr such
that Z(vy,, vpw) > —2¢. After these operations for all [, we get a positive loop f*. Then we resolve the
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wrinkles (include Legendrian embryos) such that W~ ! fw is a positive loop for 7 small enough. Note that
we do not change the formal isotopy class with a suitable choice of twist marking. ]
We give another proof which was suggested by V.Colin.

FIGURE 4.3 — The wrinkled D" ! x S*.

Proof: (The second version) Assume we have a loop of e-positive loose Legendrian embeddings f; which
is not positive on a finite family of cubes {D(a;) x I,,}. For a disk D(q;), take a D"~! x S! C L such
that D(a;) C D" ' x S'. Then we add wrinkles to f; along the image of D"~! x {0} for all ¢ € [0, 1]
(see figure . Denote f* the wrinkled loop. We assume that f* is C°-close to f. Then we can turn
the wrinkles arbitrary fast in a small neighborhood of fr(D"! x S') to incorporate D(a;) into a positive
loop. More explicitly, take some t, € [0, 1], there exists some 0 > 0 such that (f;*(L)):c[tg—s,t0+0) are
contained in a Weinstein neighborhood Uy, of fi,(L). Take the front projection and regard fr, (L) as the
zero-section L x {0}. Note that there exists some ¢’ such that D"~ x S! x (—¢',§’) is contained in the
front of U;,. Now we construct a compactly supported loop of diffeomorphisms ¢, in the front such that
éi(x,0,2) = (2,0 — 2K;t, z) on D" ! x St x (=4, ") for some K; > 0. Like the case of the 2-sphere,
we take K large enough, then the composition ¢; o f3, defines a loop which is positive on D(q;) for all
t € [to—d,to+0]. As o varies, we can incorporate D(q;) into a positive loop. Then we resolve the wrinkles
without changing the Legendrian isotopy class. We do the same operation for all the disks {D(a;)} one by
one and turn the wrinkles faster and faster. Finally, we get a positive loop of Legendrian embeddings which
is in the same Legendrian isotopy class of f.

]






Applications

In this chapter, we give some applications of our main theorem. Firstly, we reprove the tightness of (S"~! x

R™, &£4). Secondly, we define a partial order on the universal cover Conto(M, &) of the identity component
of the group of contactomorphisms of a contact manifold (M, &).

5.1 Tightness of (S"! x R" £,)

In this section we prove Corollary (0.9l A similar proof for S* x R? was given in [CFP10)].

Proof: Assume (S"1 x R" £,4) is overtwisted, and Dor C (S"! x R", ,44) is an overtwisted disk.
Denote 7 : S"~! x R" — R™ the projection. There exists some point z € R™ such that the fiber 7! (x) N
Dor = 0. According to [CMP13], the fiber 7~!(z) is loose. Thus, there exists a positive loop based in it by
Theorem That contradicts to Theorem Therefore, the manifold (S”‘l X R™ £q) is tight. O]

5.2 Positive loops and orderings

Definition 5.1. Given (M, «) a contact manifold, The manifold (I'y;, &) = (M x M x R,aq — €°ay) is
called a contact product. Here o; = 7] o where 7; projet I'), to the ¢-th factor. The Legendrian submanifold

of (I'ys, @) defined by A = {(z,2,0)} is called the diagonal.

The contact product I'j; is a special case of contact fibration where we can talk about contact connection,
let’s recall the definition from [Pre0Q7]).

47
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Definition 5.2. Let (£, = kera) be a contact manifold, and £ — B is a fibration with fiber F. Then
(E,& = kera) — B is called a contact fibration if (F, a|r) is a contact manifold. Let (£, { = kera) —
B be contact fibration we say that the horizontal distribution H = (T'F N £)+9¢ is the contact connection

associated to the fibration.

Remark 5.3. The horizontal distribution is dependent on the contact form .

The connection defined above has the following properties :

Proposition 5.4. [[Pre07] For a path vy : [0,1] — B, the monodromy m., : F(v(0)) = F(v(1)) induced by

v is a contactomorphism.

Corollary 5.5. Let ¢ € Dif fo(B). Then it lifts to a contactomorphism 5

") is a contact fibration with F' = (M, «) and B = M x R. In this case Rgz = (R4, 0,0), and
€ =kerag @ keras® < 0 > ® < e’R,, + Ra, >,

and
da = doy — €°(dag + ds A ),

such that
H =keras® < 0s > @ < e’Ry, + Roy, > .

We now explain the following result which was first suggested by Klaus Niederkriiger and also observed
by Casals and Presas.

Proposition 5.6. Let (M?" ' «) be a compact overtwisted contact manifold and let (T yr, &) be the asso-

ciated contact product. Then (I'yr, &) is also overtwisted and the diagonal A C T’y is loose.

Proof: We apply the overtwisted criterion from [CMP13]. If A = ydx — xdy, it is enough to construct
a higher dimensional overtwisted ball D = (B2 x D*2(r), apr — A) C (L', &) for some r large
enough, such that D does not intersect A.

Let S**1 = {(x,y) | #* + y*> = 1} with its standard contact form a4, and let ¢y : S** x R —
R*+2 (x,y,s) — (e*z,e’y). Note that o5\ = aq. We take a Darboux ball B C (M, a) and we regard
it as a subset of (S*"*! ). Then we can construct a contact embedding ¢ : (M x B x R,a) <
(M x R?*"*2 o, — \) by the following series of contact embeddings

(M x B xR,&) <5 (M x S x R, ay — e*agea) =8 (M x Ry — A).

Let B2 C M be a overtwisted ball, then Dy = (B35 x D*"2(r), a; — A) is the overwisted ball in
(M x R*™2 oy — \). We can move D, away from ¢(A) by Corollary More precisely, we take the
vector field V' = 2rd, + 2rd, on R**2 then lift it to a contact vector field V! = V + 2r(y — x)R,
on M x R?*"*2 where R, is the Reeb vector field of (M, ). Let ¢; be the contact isotopy of V’. Denote
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C = {rx | z € B,r > 0} the cone defined by B. Then Dy = ¢,(Dy) C M x (C'\ {0}) = o(M x B) does
not intersect ¢(A). Therefore D = ¢~1(D,) is an overtwisted ball we want.
[]

Corollary 5.7. Let (M, «) be a compact overtwisted contact manifold and (I'y;, &) the contact product.

Then there exists a positive loop of Legendrian embeddings based in A.

Let Leg(M,T')s) be the set of Legendrian embeddings M < (I");, &). Given ¢ € Conty(M, & = kera)
with ¢*a = e9®)q, it induces a contactomorphism

¢(I,y,8) = ($,¢($),S - g(y))

on (I'yr, @). We denote gr(¢) = ¢|a which is in Leg(M,T'5;). In fact, given a positive contact isotopy ¢,
we can see that gr(¢;) is a negative Legendrian isotopy. Therefore, we would like to transfer the study of
positive contact isotopies to that of negative Legendrian isotopies.

Definition 5.8. Let f = [f;] and ¢ = [g,] be two elements in C%O(M ,€). We say f = g if there exists a
non-positive path L, € Leg(M,T'y;) from gr(gy) to gr(f1) and gr(g,)* L, is homotopic to gr( f;). The space
C%O(M ,€) and (M, &) are said to be strongly orderable if > defines a partial order|'| on it. Otherwise,

they are said to be non strongly orderable.

Remark 5.9. Let C be the set generated by all the homotopy classes of non-positive paths in Leg(M, T"y).
Then f = g equals to gr(g~'f) € C. Given [L;] € C and ¢ € Conto(M,§), then we have [¢L;] € C.
Therefore, the order > is left invariant, that is to say, given f and g in C/’B_n/tg(M J€),if f = g, then hf > hg
forall h € C%O(M ,€). Because if L, is a non-positive path from g; to f1, then h; L, is a non-positive path

from hlgl to hlfl-

Proposition 5.10. Let (M, &) be a contact manifold. Then (M, &) is strongly orderable if and only if there

does not exist a contractible negative loop of Legendrian embeddings based in A.

Proof: Let f = [f;], g = [¢:] and h = [h] be elements in C%O(M ,€). Firstly, the order > is reflective,
since we have f = f by the definition of . If there are two non-positive paths L; from gr(g;) to gr(f1)
and L? from gr(hy) to gr(g:), then L? x L} is a non-positive path from gr(h;) to gr(f;). Thus, the order is
transitive. Secondly, we check the antisymmetry of >. According to [[CN13][Propostion 4.5], the existence
of contractible non-positive non-trivial loop of Legendrian embeddings is equivalent to the existence of
contractible negative loop of Legendrian embeddings. Thus, for any f # 1, on one hand, if there does not
exist any negative loop based in A, we can not find a non-negative path L] and a non-positive path L} in
the homotopy class of gr(f;) at the same times. Otherwise, L; * L? is a contractible non-negative loop. On
the other hand, if there exists a non-positive loop f; based in A, then fio = 1 and 1 = f;/,. That means
(M, €) is not strongly orderable. O
__ Our definition is stronger than that of [EP99], since we do not require the path of Legendrian embeddings
¢; to be graphical for all £.

lin the sense of a partial order on sets
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Corollary 5.11. Let (M, &) be a contact manifold. If (M, ) is strongly orderable, then it is orderable.

We have the following example of strong orderability.

Proposition 5.12. (S!, &) is strongly orderable.

Proof: Denote df the standard contact form for S'. We have a contactomorphism ¢ : (T's1, df; —e®dfy) —
(S x T*S, dz — ydz), (01,05, 8) — (2 = 0 — Oy, = s,y = €® — 1) such that ¢(A) is the zero-section.
Assume there exists a contractible positive loop based in the zero-section of (S! x T*S! dz — ydz) , then
it lifts to a positive loop based in the zero-section of (R! x T*S!, dz — ydz). However, such loop does not
exist according to [CFPI10]. Thus (S', &4) is strongly orderable. O

Question 5.13. Is (RP3, £,4) strongly orderable ?
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Sur les lacets positifs des plongements legendriens laches

On positive loops of loose Legendrian embeddings

Résumé

Dan la thése, on a étudié le probléme des isotopies
legendriennes positif. C’est-a-dire que les isotopies
presérvent le structure de contact et les fonctions
Hamiltoniennes associés sont positif. On a montré que
si une sou-variété legendrienne est lache, il existe un
lacet positif des plongements legendriennes basé sur
lui. On a le trait en deux cas, le cas en dimension un
et deux, l'autre en grandes dimensions. Dans les cas
en bases dimensions, on a construit des lacets
positive par la main. Dans les autres cas, on a utilisé
les techniques de h-principe advancé, c’est-a-dire, la
approximation holonome ridé et la intégration convexe
pour les relations «non-ample». Avec la approximation
holonome ridé, on a obtenue un lacet de plongements
Legendriennes qui est positive sauf que en un
ensemble fini des discs. Puis, on a le deformé a un
lacet positif par I'idée de la intégration convexe. Ce
resulat a deux applications immédiates. On donne une
simple démonstraion san les techniques de courbes
holomorphes pour le Théoréme : les espaces des
elements de contact, muni de la structure standard
sont tendues. On a aussi montré le produit contact de
une variété de contact vrillées est vrillées et la
diagonale est lache, de puis la diagonal est dans un
lacet positif. Isotopies positif legendriennes relient aux
ordres de le revétement universel de la groupe de
contactomorphisme. On a définit un ordre par
isotopies positif legendriennes dan le produit contact.
Il nous aide de étudié les propriétés de
contactomorphisme en maniére de isotopies positif
legendriennes.

Mots clés

géométrie de contct, variété de contact,
sou-variété legendrienne, isotopie positif
legendrienne, lacet positif de legendrienne,
h-principe, sou-variété legendrienne lache, ordre
partiel.

Abstract

In the thesis, we have studied the problem of positive
Lengendrian isotopies. That is to say, the isotopies
preservepo the contact structure and the hamiltonnian
functions of the isotopies are positive. We have proved
that for a loose Legendrian there exists a positive loop
of Legendrian embeddings based in it. We treated this
result in two cases. In lower dimensions cases, we
constructed positive loops by hand. In higher
dimensions cases, we applied the advanced
h-principle techniques. Given a loose Legendrian
embedding, firstly, by the holonomic approximation,
we constructed a loop of Legendrian embeddings
based in it which is positive away from a finite number
of disks. Secondly, we deformed it to a positive loop
by the idea of convex integration. The result has two
immediate applications. Firstly, we reprove the
theorem that the spaces of contact elements are tight
without holomorphic curves techniques. Secondly, we
proved the contact product of an overtwisted contact
manifold is overtwisted and the diagonal is loose,
furthermore, the diagonal is in positive loop. In the
end, we have defined a partial order on the universal
cover of the contactomorphism group by positive
Legendrian isotopies in the contact product. It will help
us to study the properties of contactomorphism via
positive Legendrian isotopies.

Key Words

contact geometry, contact manifold, Legendrian
submanifold, positive Legendrian isotopy, loop of
positive Legendrian isotopy, h-principle, loose
Legendrian embedding, partial order.
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