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 Résumé 

Cette thèse vise à étudier et à développer des outils afin d’estimer, en temps réel, des champs 

de vitesse d’écoulements turbulents à partir d’un nombre limité de mesures ponctuelles. L’estima-

tion stochastique est en particulier examinée dans ces travaux.  

Le premier chapitre consiste en une étude bibliographique de l’estimation stochastique et des 

méthodes qui lui sont dérivées. Le développement chronologique de l’estimation stochastique est 

d’abord présenté. En particulier, les différentes extensions de l’estimation stochastique sont ainsi 

décrites dans l’ordre de leur apparition. Dans un second temps, les applications de l’estimation sto-

chastique à la prédiction en temps réel d’écoulement sont passées en revue. Cette étude bibliogra-

phique a permis de mettre en avant l’étendue de l’utilisation de l’estimation stochastique afin d’étu-

dier la physique d’écoulements turbulents. L’utilisation de l’estimation stochastique en vue de four-

nir des prédictions de champs de vitesse est par contre plus récente. Les résultats obtenus sont en-

courageants mais concernent principalement des écoulements relativement simples dont la dyna-

mique peut être décrite avec un faible nombre de modes POD (Décomposition en modes propres 

orthogonaux). Cette étude bibliographique a aussi montré l’absence d’une méthodologie commune 

afin d’évaluer la précision des prédictions obtenues par estimation stochastique. 

Le deuxième chapitre fournit une description mathématique de l’estimation stochastique et 

de ses extensions. La décomposition en modes propres orthogonaux est aussi décrite. Le choix des 

écoulements tests, qui serviront à évaluer les capacités de l’estimation stochastique à fournir une 

prédiction précise des champs de vitesse d’écoulements turbulents, est aussi discuté. Les différentes 

bases de données, numériques et expérimentales, correspondantes aux différents écoulements sé-

lectionnés sont ensuite décrites. De plus, la convergence des statistiques utilisées par l’estimation 

stochastique est en particulier analysée. 

Les capacités de l’estimation stochastique (et de ses méthodes dérivées) à fournir des prédic-

tions des champs de vitesse d’écoulements turbulents sont évaluées dans le chapitre 3. L’estimation 

stochastique et ses extensions sont utilisées pour prédire les champs de vitesse de plusieurs écoule-

ments de complexité croissante. Dans tous les cas testés, les prédictions les plus précises sont obte-

nues en utilisant l’estimation stochastique à plusieurs délais temporels (avec régularisation de Tik-

honov). L’utilisation de l’estimation stochastique couplée à la POD permet avant tout de réduire la 

taille du problème à résoudre, mais n’améliore pas particulièrement la précision de la prédiction. 

Entre l’estimation stochastique linéaire et quadratique, l’estimation quadratique semble pouvoir 

mener à des prédictions plus précises, mais est aussi plus sujette au problème de sur-apprentissage. 

Enfin, cette évaluation a mis en avant de fortes limitations de l’estimation stochastique. Si les pré-

dictions obtenues dans certains cas tests sont très précises, elles le sont beaucoup moins dans 

d’autres cas tests.  

Bien que ces observations ne soient pas une entière surprise, le chapitre suivant est consacré 

à caractériser plus précisément l’estimation stochastique afin de mieux expliquer les raisons qui 

mènent à ce qu’un écoulement soit mieux reconstruit qu’un autre. Tout d’abord l’impact d’un bruit 

Gaussien est évalué. Cette évaluation a montré que les performances de l’estimation stochastique 

sont sous-estimées lorsqu’elles sont déterminées en utilisant des données expérimentales. En parti-

culier, le bruit présent dans les mesures servant à la reconstruction a un très fort impact sur la qualité 

de la prédiction. Les estimations de champs de vitesse numériques, d’un même écoulement, mais 

issus de deux méthodes de simulations différentes sont ensuite comparées. L’une des simulations 

est une Unsteady Reynolds Averaged Navier-Stokes (URANS) simulation. Dans cette simulation, 

toute la turbulence de l’écoulement est modélisée. La deuxième simulation est une Zonal Detached 

Eddy Simulation (ZDES) dans laquelle une part de la turbulence de l’écoulement est directement 



iv  Résumé 

 

 

simulée. La comparaison des estimations de ces deux simulations permet d’observer l’impact de la 

turbulence sur la qualité de l’estimation. De cette comparaison, il ressort que le contenu haute fré-

quence et de courte échelle intégrale de la turbulence est mal prédit par l’estimation stochastique. 

Suivant ces observations, la prédiction des échelles intégrales de la turbulence est analysée. Cette 

étude a montré que les grandes échelles de l’écoulement sont les mieux prédites par l’estimation 

stochastique. Cette analyse a aussi mis en avant le caractère filtrant de l’estimation stochastique. 

Suivant la position des capteurs utilisés différentes échelles peuvent être reconstruites. En particu-

lier, l’étude de l’estimation des modes POD a montré que la prédiction d’un mode est plus précise 

lorsque des capteurs sont positionnés à proximité des nœuds du mode POD. De plus, il a aussi été 

montré qu’il est possible de définir une longueur caractéristique d’un mode POD, correspondant à 

la plus petite structure contenue par ce mode POD et qu’un mode POD correspondant à une courte 

échelle caractéristique possède plus de nœuds qu’un mode de grande échelle caractéristique. Ainsi 

pour prédire correctement un mode de courte échelle caractéristique, il faut davantage de capteurs 

que pour prédire un mode POD ayant une grande échelle caractéristique. Ces observations mettent 

très clairement en avant le fort impact de la position des capteurs sur la prédiction. Le caractère 

filtrant de l’estimation stochastique concernant les échelles contenues dans l’écoulement a ensuite 

été observé en étudiant l’impact d’un pré-filtrage spatiale des champs de vitesse à estimer. L’étude 

du pré-filtrage temporel des données à estimer et servant à l’estimation a aussi permis de confirmer 

que le contenu haute fréquence d’un écoulement turbulent était prédit avec une plus faible précision 

que le contenu basse fréquence. Enfin l’impact du nombre de Reynolds sur la qualité de la prédiction 

par estimation stochastique d’un même écoulement a été évalué. L’un des effets principaux de la 

diminution du nombre de Reynolds est la concentration de l’énergie cinétique turbulente de l’écou-

lement dans un plus faible nombre de modes POD. En d’autres termes, un écoulement faiblement 

turbulent contient davantage d’énergie dans les grandes structures de l’écoulement qui sont correc-

tement reconstruites, ce qui explique qu’il soit prédit avec une meilleure précision qu’un écoule-

ment plus turbulent qui contient davantage d’énergie dans les petites structures. 

De ces caractérisations, il est apparu qu’un moyen évident d’améliorer la qualité d’une pré-

diction par estimation stochastique est d’optimiser les évènements conditionnels utilisés (i.e. la po-

sition des capteurs et leurs délais temporels si l’estimation stochastique à plusieurs délais est em-

ployée). A cette fin, un algorithme d’optimisation de la position des capteurs a été testé et sa capacité 

à choisir des positions de capteurs améliorant la précision des prédictions a été confirmée (chapitre 

5). Cet algorithme a ensuite été étendu aux choix de la position des capteurs et de délais temporels. 

Il a été montré que cet extension de l’algorithme permet de choisir un faible nombre de délais me-

nant à la même qualité de prédiction que lorsqu’un plus grand nombre de délais répartis régulière-

ment dans le temps. Néanmoins la précision de la prédiction n’a pas pu être améliorée en utilisant 

cet algorithme étendu.  

Les résultats obtenus dans les précédents chapitres ont montré que l’estimation stochastique 

ne permet pas d’obtenir des prédictions hautement précises pour certains cas tests. Il a donc été 

décidé de tester dans le chapitre 6, une autre méthode permettant de produire des prédictions de 

champs de vitesse d’écoulements turbulents à partir de mesures ponctuelles, le filtre de Kalman. Le 

filtre de Kalman permet de prendre en compte la dynamique de l’écoulement en utilisant un modèle 

dynamique. Dans ce chapitre, le filtre de Kalman a été testé sur deux cas tests (l’écoulement autour 

du profile OAT15A et autour d’un cube) en utilisant un ensemble de modes POD comme état. Les 

résultats obtenus ont montré qu’il était possible d’obtenir une amélioration substantielle de la pré-

cision de la prédiction en utilisant le filtre de Kalman étendu, avec un modèle d’observation qua-

dratique, dans le cas de l’OAT15A, comparé aux meilleures prédictions obtenues avec l’estimation 

stochastique linéaire à plusieurs délais. Les résultats obtenus avec l’écoulement autour du cube sont 

moins encourageant, et aucun des filtres de Kalman testés n’a permis d’améliorer la qualité de la 

prédiction en comparaison de l’estimation stochastique linéaire à plusieurs délais.  
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 Nomenclature 

t  Time 

f  Frequency 

u  Fluctuating velocity vector 

u  Streamwise component of the velocity 

v  Vertical component of the velocity 

w  Spanwise component of the velocity 

P  Static pressure 

ν  Kinematic viscosity 

ρ  Density 

E  Conditional event 

a  POD Coefficient 

  POD mode or RBF 

  Spatial domain 

h  Height 

c  Chord 

Re  Reynolds number 

St  Strouhal number 

R²  Determination coefficient 

δ  Boundary layer thickness 

δ*  Boundary layer displacement thickness 

  Boundary layer momentum thickness 

λ  Characteristic length scale for POD mode 

Λ  Turbulence spatial integral length scale 

Acronyms 

SE  Stochastic Estimation 

LSE  Linear Stochastic Estimation 

QSE  Quadratic Stochastic Estimation 

HOSE  Higher Order Stochastic Estimation 

MTD  Multi-Time-Delay 

POD  Proper Orthogonal Decomposition 

EPOD  Extended Proper Orthogonal Decomposition 

FFT  Fast Fourier Transform 

CFD  Computational Fluid Dynamics 

RANS  Reynolds Averaged Navier-Stokes 

URANS Unsteady Reynolds Averaged Navier-Stokes 

(Z)DES (Zonal) Detached Eddy Simulation 

BFS  Backward Facing Step 

TKE  Turbulent Kinetic Energy 

PSD  Power Spectral Density 

SNR  Signal-to-Noise Ratio 

KF   Kalman Filter 

EKF  Extended Kalman Filter 

EnKF  Ensemble Kalman Filter 

RBF  Radial Basis Function 

(LOO)CV (Leave One Out) Cross Validation 

ODE  Ordinary Differential Equation
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 Introduction 

Obtaining accurate flow field information is a critical and more and more important necessity 

in several areas. For instance, the monitoring of pollutant dispersion in urban area has become a 

major issue in the past decade. The growth of air traffic has also led the European Transport Safety 

Council to push for better security measures in European airport [1]. One of them concerns wake 

vortex constraints which govern the minimum required distance between aircraft lined up in se-

quence on the approach to the runway. The council stressed the need for research on modeling wake 

vortex and on methods to identify and locate wake vortices from ground based or airborne sensors.  

The development of shipboard helicopter operations is also strengthening the need for precise 

aerodynamic information around the flight deck. Indeed, shipboard operations are among the most 

difficult manoeuver for helicopters. The main causes that make such operations so challenging are 

the ship motion and its air wake [2]. In order to make these operations safer operational flight en-

velopes are defined for every couple of helicopter/ship, forming the Ship-Helicopter Operating 

Limits (SHOL). These flight envelopes have been an effective way to secure shipboard operations. 

However, they limit the operational conditions. An extreme example is presented by Healey [3] 

who stated that “a helicopter can operate a 125 m (400 ft.) frigate in the North Sea a mere ten percent 

of the time in winter”. Thus efforts are made to improve the security of shipboard operations without 

extending the SHOL. One approach is to decrease turbulence levels and side and down winds over 

the helipad. As a first step, it is necessary to have precise flow information around the flight deck. 

That information can then be used to apply flow control or be directly sent to the helicopter in order 

to be integrated in its control. In a general way, the control of turbulence first requires a correct 

estimation of the state of the flow. 

In this context, ONERA has launched a Research Project called HYBEXCIT in 2013. The 

project aims to develop methods for the reconstruction of 3D aerodynamic field from numerical 

and experimental data using sparse measurements. 

A class of methods that have received much attention in turbulent flow and recently been 

used to estimate aerodynamic field is the Stochastic Estimation (SE). The SE was first introduced 

by Adrian [4] [5] and Adrian et al. [6] for turbulent flows to educe coherent structures from a few 

sparse conditional events. They showed that the SE can approximate conditional averages of turbu-

lent flow quantities. They demonstrated that the SE is a simple tool to detect coherent structures 

and determine, qualitatively, their properties. Following their work, the SE has been applied to a 

large range of turbulent flows, such as: axisymmetric jet shear layer [7], cylinder wake [8], plane 

shear layer [9], flat-plate turbulent boundary layer [10], cavity flow [11], detached flow [12] [13]. 

These numerous applications of the SE proved the usefulness to get a better understanding of tur-

bulent flow dynamics. 

Since its introduction, the SE has also been developed in different ways. The Linear SE and 

Quadratic SE (QSE) (as well as more generally Higher-Order SE) have been investigated and com-

pared early on by Tung et al. [14] and Guezennec et al. [15]. Both studies concluded that differences 

between LSE and QSE were marginal. Later on, Naguib et al. investigated the use of SE to estimate 

velocity from pressure measurements and concluded that the inclusion of the quadratic term was 

necessary to obtain a representative estimation of the conditional average [16]. The SE has also 

been coupled with the Proper-Orthogonal-Decomposition (POD). Bonnet et al. first proposed to 

project the flow field, obtained by SE, onto the POD basis [17]. This method is called the comple-

mentary technique. They showed that the phase information of the POD modes could be retained 

by the complementary technique. Another coupling has been proposed by Taylor et al. [12]. In their 

coupling, the POD coefficients, of the decomposition of the flow, are directly estimated using SE. 
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This coupling is called the modified complementary technique, or simply SE-POD. The advantage 

of this coupling is that by selecting a few POD modes to estimate, the problem dimension is greatly 

reduced. The SE-POD is the more commonly used POD and SE coupling in recent works. At last, 

Multi-Time-Delay SE, in spectral and temporal domain, has been developed. Tinney et al. [18] 

described the spectral SE and showed its usefulness when the spectral features of the measured and 

estimated data are disparate and/or significant time delay exists between them. The spectral SE has 

been applied mostly for jet flows and is limited to offline applications as stated by Sinha et al. [19]. 

In the temporal domain, the MTD-SE has been precisely described by Durgesh et al. [20] who 

showed that the accuracy of the estimate was improved using MTD-SE instead of single-time SE. 

While the SE has been extensively used in order to study the physics of turbulent flows, its 

application to real time flow prediction, from a limited number of sensors, is more recent. Such 

application was clearly identified for the first time by Taylor et al. [12] in 2004. They investigated 

the ability of the LSE-POD to accurately estimate the velocity field from wall pressure measure-

ments. Their final objective was to develop an active feedback control for separated flows. Follow-

ing their work, several authors used the SE, and often the MTD-LSE-POD, to build Reduced-Order-

Model (ROM) to be used in flow control. In particular, Durgesh et al. and Tu et al. showed the 

ability of MTD-LSE-POD to estimate with high accuracy the velocity field. However, such appli-

cations of SE are limited to relatively simple turbulent flows, for which the dynamic can be de-

scribed with a few POD modes (less than 10). Results of Taylor et al. concerned a backward facing 

ramp at a Reynolds number based on the ramp height (Reh) of 2104. Rowley et al. [21] used a 

cavity flow at Red  = 395 (based on cavity depth d), Nguyen et al. a backward facing step at Reh = 

2.8103 [22], Durgesh et al. the wake downstream a bluff body at Reh = 2104 and Tu et al. a similar 

flow at Reh = 3.6103.At last only a few recent studies truly investigated and evaluated the accuracy 

of SE to predict turbulent flows [22] [23]. 

Lastly the use of Kalman Filter (KF), coupled with ROM based on POD Galerkin projection, 

has also been proposed. Mokhasi et al. [24] showed promising results of real-time prediction of the 

flow around a cube mounted in a channel (Reh = 4104) using unscented KF. Sinha et al. compared 

LSE, QSE and KF in an axisymmetric jet [19]. They observed that the KF and QSE outperform the 

LSE. 

To sum up this short literature overview, the SE has been used for several decades in turbu-

lence as an efficient and simple tool to study coherent structures. But its application to real-time 

flow prediction is much more recent. First works concerning this application have shown the attrac-

tiveness of the technique (in particular of the MTD version) and demonstrated its performance on 

simple or academic turbulent flows. Therefore, the application of SE in more challenging and real-

istic situations remains undone. As an alternative to the SE, the Kalman Filter has also been applied. 

While the Kalman Filter is a more computationally expensive method, it has been shown that its 

performance, for real-time flow prediction, was better than the one of SE. 

Hence this study which consists in investigating SE methods and developing tools in order to 

produce real-time estimation of the velocity field of highly turbulent flows from a few punctual 

measurements. 

The first chapter reviews the state of the art concerning SE methods and highlights some 

points that should be more investigated. 

The second chapter described most of the mathematical background of the methods used in 

this work. In addition, the experimental and numerical databases that are used in order to test the 

estimation methods are detailed. In particular, the choice of the test cases is justified and special 

care is given to the convergence of the statistical moments used in SE techniques. 
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Then, SE methods are applied to the several flow configurations previously selected in order 

to evaluate their ability to predict, in real-time, highly turbulent flows from a limited number of 

measurements. (Chapter III) 

Since the quality of the SE reconstruction is quite limited for some of the flow configurations 

tested, it was decided to better characterize the method. First, the impact of Gaussian noise in the 

data to estimate and in the measurements is studied. Then, estimations through SE of a same flow 

using two different numerical data sets, one from an Unsteady Reynolds Averaged Navier-Stokes 

(URANS) simulation and one from a Zonal Detached Eddy Simulation (ZDES). In URANS, the 

turbulence is entirely modeled whereas in ZDES part of the turbulence is directly resolved and not 

modeled. Therefore, the comparison of estimation from both simulations can be used to identify the 

impact of the turbulence on the SE methods accuracy. Following this characterization, the estima-

tion of the turbulent spatial integral length scales of the velocity field is then investigated. The 

filtering effect of SE is highlighted and the impact of the conditional events used is also particularly 

emphasized. The effect of prefiltering the measurements and/or the training data spatially or tem-

porarily is then studied in an attempt to better characterize the filtering effect of the SE. At last, the 

impact of an increase of Reynolds number on the SE reconstruction accuracy is investigated. (Chap-

ter IV). 

Following the study of the turbulent spatial integral length scale estimation, which demon-

strated the strong influence of the sensor locations on the estimation accuracy, the chapter V devoted 

to the development and test of an optimization algorithm for choosing the locations of the condi-

tional events. The algorithm is used to determine a strategy of utilization of the SE-POD. Then this 

optimization algorithm is extended to the choice of delays for the MTD-SE. (Chapter V) 

Finally, the Kalman Filter and several of its extensions are used to produce real-time flow 

prediction in some of the flow configurations employed to test the SE. Several strategies to obtain 

the dynamic model and measurement model required by KF are compared. In all cases, a ROM 

formed with POD is used and the predictions obtained are compared with those of the SE methods. 

(Chapter VI) 
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Chapter I. Literature review on Stochastic 

Estimation 

The aim of this part is to present a literature overview of the Stochastic Estimation (SE) which 

has led to mainly investigate the use of SE to get accurate estimate of turbulent flows. A separate 

short literature review focusing on Proper-Orthogonal-Decomposition Reduced-Order-Model 

(POD-ROM) and data assimilation is given at the beginning of Chapter VI. 

The following literature review is organized so that the chronological development of SE in 

the field of turbulence are described in a first section. The several extensions of SE are in particular 

described. Then, in a second section, the application of SE in order to produce real-time flow pre-

diction are reviewed. 

1. Developments of the Stochastic Estimation 

The Stochastic Estimation (SE) was first introduced in the field of turbulence by Adrian in 

the late 70’s [4] [5] and Adrian et al. [25] [6]. They showed that conditional averages of turbulent 

flow quantities can be approximated in terms of unconditional correlation data using SE. In the SE, 

the conditional average is approximated through a Taylor expansion around the average value of 

the conditional event E (for example punctual measurements of pressure, velocity, skin friction…). 

The SE is expressed by the following formula (where u is a zero-mean quantity, N is the number of 

yi points where E is known): 

�̃�(𝒙, 𝑡) =∑A𝒙(𝑦𝑖)

𝑁

𝑖=1

E(𝑦𝑖, 𝑡) +∑∑B𝒙

𝑁

𝑗=1

(𝑦𝑖, 𝑦𝑗)E(𝑦𝑖, 𝑡)E(𝑦𝑗, 𝑡)

𝑁

𝑖=1

+⋯ 

The coefficients A𝒙(𝑦𝑖), B𝒙(𝑦𝑖, 𝑦𝑗) are computed using a training data set in which the true 

u(𝒙, 𝑡) and the conditional events E(𝑦𝑖, 𝑡) are known. More details on the method are given in 

Chapter II.1. 

Adrian et al. applied the SE, using experimental data, in four turbulent flows: grid turbulence, 

the axisymmetric shear layer of a round jet, a plane shear layer and a pipe flow. In their application, 

the approximation, by SE, of conditional average of the velocity at a location given the uncondi-

tional velocity at another location was investigated. They concluded that SE can be used to extract, 

in turbulent flows, coherent structures characterized quantitatively by a conditional eddy. For in-

stance, Adrian deduced from the Linear Stochastic Estimation (LSE) of a shear flow the presence 

of hairpin vortex. Thus the SE was introduced, in the field of turbulence, as a tool to detect coherent 

structures and determine quantitatively their properties. The main goal was then to get a better un-

derstanding of the flow physics. A first review of several applications of the LSE to educe coherent 

structures in turbulent flows was given by Adrian in 1994 [26]. A deep presentation of the SE, 

describing its fundamental concepts and applications to the extraction of conditional eddy struc-

tures, was also given by Adrian in [27].  

1.1. Single-point SE vs. multipoints SE 

As a tool to study coherent structures in turbulent flows, SE has been developed in several 

directions. In the first applications of SE by Adrian, only one measurement (at one location) was 
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utilized. Very quickly, the use of additional events was investigated. In 1989, Guezennec [15] used 

two conditional events (two velocity measurements) to study the structures in a flat plane boundary 

layer. Experimental data were used and the Reynolds number based on the momentum thickness in 

the plane of measurements was 4900. Using the SE, he was able to observe convection and defor-

mation of structures in the flow. In 1992, Cole et al. [7] applied the SE to an experiment of a jet 

mixing layer. Quantifying the results in term of TKE captured by the SE, they found that the use of 

a single point velocity measurements leads to an inadequate representation of the instantaneous 

velocity field. On the contrary, the use of two points velocity measurements located on opposite 

sides of the shear layer yielded more realistic estimates. The addition of more velocity measure-

ments was also studied and showed little gain compared with the two points case. Giezeke et al. [8] 

then applied multi-point LSE to examine the three-dimensional structure of a turbulent wake of a 

cylinder using experimental data. In addition, they performed a pseudo-dynamic reconstruction of 

the flow field. Later, the impact of the location and number of unconditional events was also studied 

by Vincendeau [9] using an experiment of a shear layer. In his work, Vincendeau investigated three-

dimensional structures in the flow and in particular the large scale structures matching using LSE. 

He showed that different level of TKE could be recovered with the same number of velocity probes 

but at different locations. He concluded that more TKE was restored when velocity measurements 

were closer to the center of the mixing layer. However large coherent structures were better identi-

fied when the velocity measurements were located further on each side of the mixing layer. Re-

cently, Dekou [28] investigated the large scale structures developing in a wall turbulent flow. LSE 

was used to reconstruct the three component of the velocity field using a grid of 143 hot wire sen-

sors. They showed that the LSE satisfactorily retained the information on the large structures which 

study was aimed. 

1.2. Quadratic Stochastic Estimation and Higher-Order Sto-

chastic Estimation 

From the beginning Adrian et al. [14] also studied the impact of Higher Order Stochastic 

Estimation (HOSE), especially Quadratic Stochastic Estimation (QSE) in the case of isotropic tur-

bulence. The use of QSE is also investigated by Guezennec [15] in turbulent boundary layer. In 

QSE or HOSE, terms of order 2 or higher are conserved in the Taylor expansion used to approxi-

mate the conditional averages. At the time both studies concluded that improvements of accuracy 

between HOSE and LSE, in the estimation of the conditional averages, remain marginal and did not 

warrant the additional cost of computing higher-order statistical moments. However, in 1992, Brere-

ton [29] provided a framework for assessing the accuracy of SE in predicting conditional averages. 

Studying the SE applied to a turbulent boundary layer, using only one velocity measurement, he 

pointed out that the addition of the quadratic term could lead to better estimate the conditional 

average. To improve the SE, Brereton also proposed to use Laurent series expansion, which con-

tains negative power of the measurements, to approximate the conditional average.  

Later on, several researchers investigated the use of other kinds of unconditional events than 

the velocity, such as pressure or shear stress. In 1988, Adrian [25] already used the velocity as well 

as the deformation tensor at the same location as measurements. Deformation tensor was also used, 

as unconditional event, by Olsen et al. [30] who studied the large scale structures in an incompress-

ible shear layer through LSE. In particular, they calculated conditional roller and braid structures 

from typical values of the deformation tensor corresponding to these structures. Picard et al. [31] 

applied the LSE to investigate the noise emission mechanism in a subsonic round jet using pressure 

fluctuations surrounding the jet as unconditional events. They focused on vertical structures devel-

oping in the jet and that they found to be responsible for the far-field noise emission. A similar 

approach has been more recently operated by Gutmark et al. [32] for the study of coherent structures 

of a swirling jet. Oppositely, Druault et al. [33] investigated the noise production in a 2D compress-

ible plane mixing layer using QSE to estimate the far-field pressure from velocity measurements. 
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Nicoud et al. [34] studied the use of LSE to generate wall stress model for Large Eddy Simulations 

(LSE). In his work the wall stress was estimated by LSE using local velocity field as unconditional 

events. 

The use of wall measurements, especially pressure, has also been considered and stimulated 

by the necessity to simplify experiment campaign and/or the desire to use nonintrusive measure-

ments. In 2001, Naguib et al. [16] studied the ability of SE to capture the conditional streamwise 

velocity field associated with wall-pressure events in a turbulent boundary layer. They show that 

the utilization of the wall-pressure, as unconditional events, requires the inclusion of the quadratic 

term to provide an accurate representation of the conditional velocity field. More precisely, when 

the Joint Probability Density Functions (JPDF) between the estimated variables and the conditional 

events are Gaussian, then quadratic and higher-order terms in the Taylor expansion can be ne-

glected. Their results where then confirmed in other studies. For instance, Murray et al. [11] [35] 

[36] applied LSE and QSE in the case of a cavity flow using wall-pressure measurements. They 

showed that integral quantities such as the Turbulent Kinetic Energy (TKE) and root-mean-square 

(RMS) velocity were better estimated by the QSE (see Fig. I.1). Later, they exclusively used QSE 

to evaluate flow structures in their cavity flow [37] [38]. Such observations, on the performance of 

QSE, were also reached by Carabello et al. [39] and by Arunajatesan et al. [40] also for cavity flows. 

Hudy et al. [13] studied a backward facing step flow using LSE and QSE with wall pressure meas-

urements. They showed that the reconstructed structures were similar with both methods (see Fig. 

I.2). The results were somehow enhanced by the use of QSE. At last, to study differences of flow 

structures between a baseline axisymmetric jet flow and a chevron jet flow, Kastner et al. [41] used 

LSE and QSE. They also found that higher levels of TKE were recovered by the QSE. 

 

Fig. I.1: Percent of TKE deficit. a) LSE, b) QSE [11] 

1.3. Stochastic Estimation coupled with Proper-Orthogonal-De-

composition 

Another important development of SE is its coupling with the Proper-Orthogonal-Decompo-

sition (POD). The POD was proposed, in fluid mechanics, by Lumley [42] as an approach based 

only on an energetic criterion in order to detect coherent structures in turbulent flows. The goal was 

then to overcome the problems caused by conditional measurements techniques. With the POD, 

Lumley proposed to consider that the coherent structures are the ones with the largest projection, in 

the least square sense, on the velocity field. POD has been used to understand the coherent structures 

in various turbulent flows. [43] in shear layer, by Citriniti et al. [44] in axisymmetric jets, by Jo-

hansson et al. [45] in axisymmetric wake and by Cruz et al. [46] in three-dimensional wakes. In one 

of his first study on SE [5], Adrian shortly discussed the differences between the conditional aver-
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ages and the POD, stressing that they are not equivalent but may lead to similarities between ex-

tracted eddies. [47] investigated more precisely the link between POD and LSE. In particular, they 

demonstrated that, under the assumption that the coefficients in the POD are jointly Gaussian, LSE 

and POD are equivalent. Without that assumption the relationship between the two methods remains 

difficult to interpret. POD and SE have been used separately in several studies already mentioned 

above such as those of Picard et al. [31], Murray et al. [37] and Druault et al. [33]. 

 

Fig. I.2: Spanwise vorticity field the single-point SE results for a positive pressure events 

(p = 5prms) (a) LSE and (b) QSE [13] 

The idea to couple the LSE and the POD has been first proposed by Bonnet et al. [17] in 

1994. In the so-called complementary technique, the LSE of a flow field is projected onto the POD 

bases in order to obtain estimates of the POD coefficients. The estimated POD coefficients are then 

used to study the temporal evolution of the first POD mode. They showed that the phase information 

of the POD modes could therefore be obtained from measurements at a few selected locations. 

Results obtained for the axisymmetric jet are displayed in Fig. I.3. In 1998, in a joint paper, Bonnet 

et al. [43] compared several methods to identify structures in turbulent shear flows. Among the 

methods investigated are the POD, the SE and the complementary technique. Once more they high-

lighted that it may be possible to obtain time dependent information from the POD and thus the 

phase of the structures, without measuring the instantaneous velocity at all points in space used to 

compute the POD. The complementary technique was also investigated by Perret [48] as a part of 

a method to generate unsteady inlet conditions for LES. Later on, Spitler et al. [49] used the com-

plementary technique in order to estimate, from sparse set of inflow data, the entire wind inflow 

field of a wind turbine. In 2004, Taylor et al. [12] proposed to directly estimate the POD coefficients 

through LSE. The technique is called modified complementary LSE or just modified LSE (mLSE). 

Some papers also refer to this method as LSE-POD (or QSE-POD for the quadratic version). This 

version of the coupling of POD and SE is the more currently used in recent works [36] [40] [36] 

[22] [50]. An example of estimation through QSE-POD is shown in Fig. I.4. 

Another method exploiting POD and related to SE is the Extended POD (EPOD) which was 

proposed in 2003 by Borée [51] as a new technique to analyze correlated events in turbulent flows. 

The idea behind the EPOD is to project the POD coefficients of one POD basis (of a quantity A) 

onto another set of quantities (B) such as to obtain extended POD modes for B. Borée demonstrated 

that the EPOD is then the only part of B correlated with A. In addition, he showed that, if all the 

initial POD modes are used, then the EPOD is equivalent to the LSE, where B is estimated using A 

as measurements. The EPOD can therefore be used to decompose the LSE. In 2006, Hoarau et al. 

[52] studied the flow downstream a forward facing ramp. Using the EPOD they extract the part of 
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the surface pressure signal downstream the reattachment point which is correlated with the pressure 

signal under the separated region. They showed that the correlated part carries the properties of 

distorted mixing layer eddies. 

 

Fig. I.3: Comparison of instantaneous velocity vector plot of a jet seen in a frame of reference 

moving at Uc = 12 m.s-1. a) Original data, b) projection on the first POD mode, c) LSE estima-

tion using two velocity vector as unconditional events, d) complementary technique using 1 

POD mode [17] 

 

Fig. I.4: Reconstruction of a PIV Snapshot from wall pressure measurements. (a) PIV snapshot. 

(b) PIV snapshot projected on the first 8 POD modes. (c) Reconstruction by QSE-POD. The 

contours outline regions of large clockwise rotating spanwise vorticity. The vector scaling and 

contour levels are the same in each subplot. [36] 
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1.4. Multi-Time-Delay Stochastic Estimation 

Another significant extension of the SE concerns the use of delayed measurements. Early on, 

a single-time-delay SE (STD-SE) was developed by Guezennec [15]. At the time he uses the veloc-

ity measurements at an instant t to estimate the velocity field at several others instants. Thus, he 

obtained a time evolution of the conditional flow using one instantaneous measurement. Through 

this utilization of the SE, he showed that the convection and deformation of structures could be 

observed. STD-SE was also used by Naguib et al. [16] who showed its usefulness when a predeter-

mined convective delay could be considered between the conditional measurement and the estimate. 

In their work of 1999, Ewing et al. [53] applied the complementary techniques of Bonnet using 

single and multi-time information in the axisymmetric shear layer. In the multi-time configuration 

they Fourier transform the signal in time, thus using all the time samples as delays. Without calling 

it so, they therefore introduce the spectral SE. They demonstrated that the method was able, under 

some conditions on the conditional events, to correctly reproduced the topology of ring structures 

and inter-ring regions in the jet flow. The spectral SE was later described in detail by Tinney et al. 

[18] who also applied the technique to an axisymmetric jet flow. They showed the usefulness of the 

spectral SE whenever the spectral features of the measured and estimated data are disparate and/or 

significant time delay exists between them. The spectral SE has been used several times for jet flow 

studies such as those of Coiffet [54] and Hall et al. [55] [56]. The spectral SE has also been recently 

used with HOSE by Baars et al. [57] still for an axisymmetric jet flow. 

 

Fig. I.5: Quadratic stochastic estimation of the modal amplitude using zero to three time steps 

back (s=0–3), from experimental data in comparison to two standard deviation (2 stdv) of the 

modal coefficient from PIV data [39] 

Alongside the spectral SE, multi-time-delay SE (MTD-SE), in the temporal domain, has also 

been developed. Carabello et al. [39] are among the first to use MTD-SE in 2007. In their study, 

using up to three time delays, they did not observe a significant effect in the linear case. In the 

quadratic case, the effect of adding delays was, this time, not negligible (see Fig. I.5). The MTD-

SE was also used by Ukeiley et al. [58] which investigated the possibility to estimate surface pres-

sure in a cavity from strictly past surface pressure measurements. They showed that the low fre-

quency oscillations were correctly estimated. MTD-SE was then precisely detailed by Durgesh et 

al. [20] in 2010. They compared the use of MTD-LSE-POD and LSE-POD in the near wake flow 

of a bluff body and showed improvements in the accuracy of the reconstruction using the MTD-

LSE-POD method. At last, Sicot et al. [59] developed a Spatio-Temporal POD (ST-POD) to de-

compose the pressure measurements, which are then used as unconditional events for estimating 

the velocity field by LSE. They called their technique Spatio-Temporal LSE (ST-LSE) and showed 

that phased average fields were remarkably well estimated by it (see Fig. I.6). 
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Fig. I.6: Phase-averaged velocity fields (a) and phase-averaged of the ST-LSE velocity fields 

for 160°<a1 - a2<180° [59] 

2. Stochastic Estimation applications to real time prediction of 

turbulent flows 

As previously described, SE was initially introduced, in the field of turbulence, as a tool to 

study turbulent flows through the detection of coherent structures. In this area SE has proven to be 

an important tool that could be used in tandem with other methods of structure identification [26] 

[43]. The possibility to use SE in order to reconstruct or predict the time evolution of a flow was 

hinted by Cole et al. in 1992 [7], who used the SE to reconstruct the temporal organization of large 

scale structures in a jet mixing layer. They compared the LSE estimated field with original ones, 

but the quality of the estimation was only quantified in term of percent of TKE estimated. In 1999, 

Ewing et al. [53] also use Spectral LSE and POD to study their ability to estimate the dynamic of 

large structures in an axisymmetric shear layer. In particular, the accuracy of the estimation is eval-

uated using the normalized mean square error (NMSE, see definition in Chapter II.1.4) between the 

estimated variable and the true one. However, in 2004, Taylor et al. [12] are the first to clearly 

identify and harness the possibility to predict in real-time turbulent flows using SE. Applying LSE-

POD to the flow between a backward facing ramp (for Reynolds number, based on the ramp height, 

ranging from 2 × 104 to 5 × 104) and an adjustable flap experiments, they investigate the ability 

of the method to accurately estimate the time evolution of POD coefficients from wall pressure 

measurements. The final goal of their work was the development of active feedback control in sep-

arated flows. To fulfill this objective, they first generate a POD-based low dimensional description 

of the flow. They showed that in all their test cases, 4 POD modes were enough to retain more than 

98% of the TKE. Then, they investigated the use of LSE to estimate the POD coefficients associated 

to these first 4 POD modes. Velocity information was then reconstructed for the estimated POD 

coefficients. They demonstrated the potential of LSE-POD to provide velocity information from 

wall pressure measurements, which is a requirement for active feedback flow control systems. How-

ever, in their work, the quality of the estimation is only assessed qualitatively by comparing velocity 

profiles (see Fig. I.7). 
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Fig. I.7: Comparison of the wall normal velocity profiles on the ramped surface, 𝑢𝑠(𝑦𝑠/ℎ) and 

𝑣𝑠(𝑦𝑠/ℎ), at (a, d) 𝑥𝑠 ℎ⁄ = 0.34, (b, e) 𝑥𝑠 ℎ⁄ = 0.67, and (c, f) 𝑥𝑠 ℎ⁄ = 1.01 with a flap angle of 

21 deg and Reh = 2 × 104 [12] 

Following their work, SE is then seen as a possible tool to build Reduced-Order-Model 

(ROM) of the flow, or to provide real-time estimation of the flow state, in order to be used in flow 

control. In 2005, Rowley et al. [21] compared the performances of the LSE with a dynamic estima-

tor, based on POD-Galerkin model, for the control of a cavity flow. They concluded that the dy-

namic estimator was less sensitive to measurements noise and required fewer sensors (see Fig. I.8) 

than the LSE. Debiasi et al. [60] then studied the application of SE to update the POD coefficients 

used in a POD-ROM, based on POD-Galerkin projection, in order to apply closed-loop flow control 

in a cavity. They compared the LSE-POD, QSE-POD, as well as their multi-time counterpart. They 

stated that the QSE-POD and MTD-SE were preferable than the LSE-POD. In addition, they high-

lighted a strong influence of the number and placement of the pressure sensors used. In continuation 

of this work, Carabello et al. [39] utilized LSE-POD and QSE-POD to update, in real-time, the 

model variable of their POD-ROM, from wall pressure measurements. The POD-ROM served to 

implement a feedback control for a subsonic cavity flows. Murray et al. [36] applied the QSE-POD 

as a first step toward producing a time-resolved ROM for a resonating subsonic cavity flow. The 

QSE-POD is used to produce estimation of both velocity and density in the cavity from wall pres-

sure measurements. Their results demonstrated the ability of the QSE-POD to estimate the structure 

of the cavity flow field. At the same time, Pinier et al. [61] successfully implemented a proportional 

feedback loop using LSE-POD from wall pressure measurements to predict the state of the flow. 

The closed feedback loop is used to delay the separation of the flow over the NACA-4412 airfoil. 

They showed that the real-time prediction of the first POD coefficient provided the relevant ampli-

tude and frequency information for driving the actuators. Stanov et al. [62] investigated experimen-

tally the effectiveness of LSE-POD, from surface mounted hot-film sensors, to estimate a D-shaped 

cylinder wake, the final goal being the control of such a flow. In particular, they used a heuristic 
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method for placing the sensors based on the spatial content of the velocity POD modes (see Cohen 

et al. [63]). The quality of the estimation was evaluated with the root mean square error. They 

showed that this error was under 35% for the first two POD modes, which they stated as being 

acceptable for moderately robust control. In addition, they evaluated the estimation quality outside 

the training set and showed that the accuracy was deteriorated by a poor convergence of the data in 

the training set. 

 

Fig. I.8: Instantaneous contours of dilatation from the exact simulation (left), and estimate from 

dynamic observer (center) and LSE (right), using noisy pressure signals [21] 

Durgesh et al. [20] compared the use of the LSE-POD and MTD-LSE-POD to capture the 

near wake dynamics downstream of a bluff body (from experimental data). They showed that the 

inclusion of time delays was necessary to produce an accurate wake dynamic. In particular, only 

MTD-LSE-POD was able to recover the phase between the first two POD modes. Moreover, the 

choice of time delays was investigated. They observed that using delays chosen at the peaks of 

correlation between the POD coefficients and the pressure measurements lead to less accurate re-

sults than taking several delays around those peaks. The time window in which delays are chosen 

is showed to impact the estimation suggesting an optimal size of the window (see Fig. I.9). At last, 

if in their work Durgesh et al. used past and future time delays, they suggested that the MTD-LSE-

POD would be suited for real-time applications using only past events. More precisely, they con-

cluded that the technique should be able to capture the dynamics of any turbulent flows that has 

significant energy in a few POD modes. In 2010, Nguyen et al. [22] experimentally test several 

methods in order to predict the turbulent flow state from a limited number of real-time measure-

ments. In their work, LSE-POD, QSE-POD, Principal Component Regression-POD (PCR-POD) 

and Kernel Ridge Regression-POD (KRR-POD), using single-time and multi-time-delay, are ap-

plied on a backward-facing step flow using wall shear gradient. What they call the PCR-POD can 

be viewed as a LSE using POD coefficients (not all of them) of the sensors as conditional events 

and estimating the POD coefficients of the velocity field. By using not using the highest POD modes 

of the sensors, it is possible to improve the conditioning of the matrix of the conditional events. The 

KRR-POD that they described used Radial Basis Function (RBF) network to estimate the velocity 

field POD coefficients, in particular they employed multi-quadratic functions. (More details on RBF 

are given in Chapter VI.3.5). Performances of the single-time techniques are found to be nearly 

identical. The MTD version of the PCR-POD and KRR-POD were found to be more accurate than 

the MTD-LSE-POD but only in the near wall region, not in the full domain. Lately Lasagna et al. 

[64] used MTD-LSE in a cavity with curvilinear geometry. They demonstrated that the MTD-LSE 

outperforms the LSE and QSE with significant improvements in accuracy of the estimate. The im-

provements were found to be strongly dependent on the number of past events used in the MTD-

LSE. In addition, they also stressed the low computational effort and low number of sensors re-

quired by the method, making it particularly attractive for flow control system.  
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Fig. I.9: The combined error values: open square  values for the estimation in the set of data 

used to determine the MTD-LSE-POD coefficients, and open circle  values for the estimation 

in another set of data [20] 

Recently, performances of LSE, QSE to produce accurate real-time flow state predictions 

have been compared with the ones of Kalman Filter (KF), Extended KF (EKF) and Linear Time-

Invariant Filter (LTIF) by Sinha et al. [19] (details on Kalman Filter are provided in Chapter VI.2). 

In addition to serve as a direct estimator of the flow state, Sinha et al. provided another application 

of the LSE. They used LSE to form the linear observation operator necessary for the KF. In such 

application, the wall pressure measurements are reconstructed from the POD coefficients. In their 

work, the KF was found to have similar or better accuracy than the QSE. Both QSE and KF were 

shown to outperform the LSE. The EKF was however outperformed by the KF. They hinted that 

the uncertainty covariances were maybe improper due to an overfitting of the training data set. In 

2012, Tu et al. [65] proposed to use a Kalman smoother to estimate, from non-time-resolved Particle 

Image Velocimetry (PIV) measurements and time-resolved velocity point sensors, time-resolved 

velocity fields. The main goal is thus to enrich the experimental data base. The MTD-LSE-POD 

(using past and future events) is first used to provide time-resolved estimates of the flow field. These 

estimates are then used to identify a linear dynamic model which is utilized in the Kalman smoother. 

They showed that the final Kalman smother estimates are more robust to noise and more accurate 

than the initial MTD-LSE-POD estimates (see Fig. I.10 and Fig. I.11). As Durgesh et al., they high-

light the existence of an optimal window size in which delays should be chosen for the MTD-LSE-

POD. In addition, Tu et al. also studied the performance of the KF and the MTD-LSE-POD using 

only past information. Once more the KF gave more accurate estimated velocity field. 

Eventually, among the most recent works on SE applied to flow prediction are those of Clark 

et al., Hosseini et al. and Lasagna et al. In 2014, Clark et al. [23] proposed a study of SE from the 

point of view of linear least squares estimation (or ordinary least square regression). Using the linear 

least squares estimation formalism, they proposed a framework to evaluate the performance of SE 

for model construction. They applied their framework for the estimation of the wake flow behind a 

blunt trailing edge using MTD-LSE-POD with wall pressure measurements. Hosseini et al. [66] 

recently applied the Extended POD (EPOD), combined with a particular decomposition of the flow 

field, to the estimation of the wake of a low aspect pyramid. The flow is first decomposed into a 

slow-drift mode and anti-symmetric/symmetric modes. Then EPOD with multi-time is used to re-

construct the flow. The method is shown to improve the estimation. At last, Lasagna et al. [67] [68] 

developed a nonlinear MTD-SE. In their work, an Artificial Neural Network is used to determine 

the coefficients of the nonlinear MTD-SE. They compared the classical MTD-LSE with the nonlin-

ear MTD-SE on two flows: a cavity flow and a turbulent channel flow. The inclusion of nonlinear 

term is found to be unnecessary in the cavity case. On the other hand, the nonlinear MTD-SE lead 

to a better estimation in the buffer layer of the boundary layer of the turbulent channel flow. 
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Fig. I.10: Comparison of spanwise vorticity. (a) True PIV snapshots; (b) Projection onto a 

seven-mode POD basis [65] 

 

Fig. I.11: Comparison of estimated spanwise vorticity fields with and without the addition of 

Gaussian noise to the probe signal. (a) MTD-LSE-POD with  = 0; (b) MTD-LSE-POD with  

= 0.36; (c) Kalman smoother with  = 0; (d) Kalman smoother with  = 0.36 [65] 

 

 

Fig. I.12: Sectional streamlines and the vortex core regions identified as λ2 ≤ -0.05 for measured 

and estimated velocity vector fields [66] 

3.  Analysis and conclusions 

Since its introduction in the field of turbulence by Adrian, Stochastic Estimation (SE) has 

been extensively and successfully used for a large variety of turbulent flows, in order to extract 

coherent structures and better understand the dynamic of these flows. In Annex A, Table A.1, a 
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non-exhaustive summary of the studies on SE is proposed. SE has been utilized in isotropic turbu-

lence, shear layer, axisymmetric jet, pipe flow, cavity flow, backward facing step (and ramp) flow, 

wake flow, thus demonstrating its attractiveness for the study of turbulent flow physics. Most often, 

the SE has been applied to study the flow physics through structures identification. But SE has also 

been applied to generate wall stress model [34] or inlet conditions for numerical simulations [48]. 

It has also been used as a possible tool to correct PIV database [69] or to enrich PIV database [65]. 

At last, SE has been applied in closed loop flow control [12] [61].  

Furthermore, several versions of the SE have been developed and used. First, the non-linear 

SE and in particular the Quadratic SE (QSE) have been investigated. Then, two different couplings 

of the SE with Proper Orthogonal Decomposition (POD) have been proposed. These couplings al-

low forming low dimensional models of the flow dynamics. Moreover, they also reduce the com-

putational cost. At last, Multi-Time-Delays-SE (MTD-SE) and spectral SE methods have been de-

veloped and their ability to improve the accuracy of the estimate has been proven. In addition to 

these extensions, the SE has also been used with a large range of conditional events. If initially 

inflow velocity measurements where most commonly used, it rapidly became usual to use other 

quantities, such as pressure, and to use nonintrusive measurements, such as surface measurements. 

Thus this literature overview highlights the wide variety of use of the SE.  

The application of SE to the real-time prediction of turbulent flows is however more recent. 

Therefore, few studies strictly aimed at the investigation of the accuracy of instantaneous recon-

structed flow field. Most of works in this direction concern the application of such prediction in 

feedback loop for flow control. In this area, most of the recent studies favored the use of MTD-SE. 

As stated by Sinha et al. [19] the non-recursive nature and the necessity to compute the temporal 

Fourier transform restrict, however, the spectral SE to offline applications. The results found in the 

literature showed the ability of the SE, and more particularly of the MTD-LSE-POD, to provide 

accurate flow prediction that can be used in flow control. 

However, the applications of SE to real-time prediction of turbulent flows are limited to rel-

atively simple turbulent flows. Taylor et al. showed results for a backward facing ramp at a Reyn-

olds number based on the ramp height (Reh) of 2104 [12]. Rowley et al. used a cavity flow at 

Red = 395 (based on cavity depth d) [21], Nguyen et al. a backward facing step at Reh = 2.8103 

[22], Durgesh et al. the wake downstream a bluff body at Reh = 2104 [20] and Tu et al. a similar 

flow at Reh = 3.6103. Also Pinier et al. showed results for the detached flow over a NACA-4412 

airfoil at Rec = 1.35105 (based on the chord), but they stated their confidence that LSE-POD would 

be efficient at higher Reynolds number. 

Furthermore, no precise methodology arises from the literature to assess the SE accuracy. 

Stalnov et al. [62] stressed out some questions that need to be answered concerning SE or any flow 

prediction methods: 

- “How many sensors are required?” 

- “Where should the sensors be?” 

- “What are the criteria for judging an effective sensors configuration?” 

For works in which the goal is the study of the flow, the accuracy of SE to produce instanta-

neous velocity field estimate is generally not assessed and not precisely quantified. But, for instance, 

Cole et al. [7] quantified the reconstructed velocity fields in term of energy captured by the estimates 

and Bonnet et al. [17] compared the estimated RMS velocity field to the original one. The compar-

ison of TKE estimation is also used by Murray et al. [11] [36] to evaluate the accuracy of the esti-

mation. If it is interesting to look at these integral characteristics of the flow, such evaluation of the 

SE gives no information about the quality of the instantaneous estimates. 
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In their work Stalnov et al. answered some of the questions. They proposed a heuristic method 

to choose the sensor locations and they evaluate the accuracy by means of the root-mean-square 

error. Recently Nguyen et al. [22] applied a more precise evaluation method to assess the accuracy 

of the several techniques they compared. First, they clearly distinguished the reconstruction ability 

of a technique from its prediction ability. The reconstruction ability corresponds to the ability to 

estimate data that have been used to train the technique. The prediction ability corresponds to the 

ability to estimate data that were not used to train the technique. Therefore, in real-time applications 

of the SE, one is interested in its prediction ability. Consequently, Nguyen et al. separate their da-

tabase into two separate sets of data. One is used to train the estimation techniques, the other to 

assess their accuracy. At last, they proposed to use the mean-square error between the true and 

estimated POD coefficients as well as a correlation coefficient to quantify the accuracy of the esti-

mate. Using this evaluation approach, they concluded that the QSE-POD had the best reconstruction 

ability but the worse prediction ability. Thus they highlighted that the QSE-POD suffered from 

overfitting in their case. The use of two separate data sets to assess the accuracy of SE has then been 

used by Sinha et al. [19], Durgesh et al. [20] and Tu et al. [65]. Durgesh et al., as well as Tu et al., 

showed then that the reconstruction ability of the MTD-SE was always improved by the addition of 

new time delay whereas the prediction ability deteriorated when too many delays were used (see 

Fig. I.9). Because such precise evaluation was not clearly performed in other studies comparing 

LSE and QSE, it is, therefore, difficult to judge if the conclusions that were drawn concerned the 

reconstruction ability or the prediction ability of the QSE. Only in the work of Sinha is the QSE 

prediction accuracy clearly better than the LSE one. Another quantification criterion than the ones 

used by Nguyen et al., has also been proposed. Sinha et al., Durgesh et al. and Tu et al. used an 

error metric that is the ratio of combined residual variance to the total variance of the POD basis 

used. It is calculated by: 

ePOD =
〈∑ (ãi(t) − ai(t))

2NPOD
i=1 〉

〈∑ ai(t)
2NPOD

i=1
〉

 

More recently this error metric has also been utilized by Clark et al. [23] and Hosseini et al. 

[66]. A similar error metric directly applied to the velocity field has also been employed by Hosseini 

et al. and Lasagna et al. [68]. Clark et al. also proposed to use the Variance Inflation Factor as a 

criterion to evaluate the degree of collinearities between the measurements and thus the risk of 

overfitting. 

At last, from this literature overview, it appears that the SE has rarely been used in the goal 

to provide in real time precise aerodynamic information. If the use of SE in flow control is close to 

such application of the SE, it remains that the level of information required in flow control is lower. 
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Chapter II. Methods and databases 

The goal of this chapter is first to present the mathematical framework of the Stochastic 

Estimation and its extensions. LSE, QSE, LSE-POD, MTD-LSE are detailed. That way, some of 

their characteristics can be highlighted. In addition, prerequisite to use SE are explained, espe-

cially in terms of necessary data.  

From these considerations and the literature overview on SE, test cases are chosen. Indeed, 

the studies of SE are mainly based on the application of the methods on test cases that can be 

obtained experimentally or numerically. Thus the available experimental apparatuses are first 

described and the constraints they imposed are stressed out. Then the experimental databases are 

described thoroughly, especially in terms of convergence of the statistical moments. 

At last, the numerical databases are also presented in a similar manner as the experimental 

ones.  
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1. Stochastic Estimation mathematical framework 

1.1.  Single-Time Stochastic Estimation 

The SE principle is to consider that the estimation of a quantity, for instance a scalar velocity 

field 𝑢(𝒙, 𝑡), under an event E (called the unconditional event) is similar to a conditional average: 
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�̃�(𝒙, 𝑡) = ⟨𝑢(𝒙, 𝑡)|𝐄⟩ (II.1) 

ũ is the expected value of u under the condition E. If the quantity u is assumed to be continuous and 

of zero mean, then its Taylor expansion around the average value of E is: 

�̃�(𝒙, 𝑡) =∑A𝒙(𝑦𝑖)

𝑁

𝑖=1

𝐄(𝑦𝑖, 𝑡) +∑∑B𝒙

𝑁

𝑗=1

(𝑦𝑖 , 𝑦𝑗)𝐄(𝑦𝑖, 𝑡)𝐄(𝑦𝑗, 𝑡)

𝑁

𝑖=1

+⋯ (II.2) 

N is the number of yi points where E is known (for instance the number of sensors used). 

Keeping only first order terms in the Taylor expansion leads to the linear estimation of the 

expected value ũ. Thus it is called the LSE. Keeping first and second order terms leads to the QSE. 

At last, keeping higher order terms is usually referenced as HOSE. In any cases, Ax and Bx (or 

higher) coefficients are calculated through the minimization of the mean square error between the 

SE ũ and the true value u on a training set of data: 

𝑒(𝒙) = 〈(�̃�(𝒙, 𝑡) − 𝑢(𝒙, 𝑡))2〉 (II.3) 

where 〈. 〉 denotes the ensemble average. In the discrete case, the training set is a collection of sta-

tistically independent realizations of both 𝑢(𝒙, 𝑡) and E(t). Let us assume that the training set con-

tains M realizations denoted by ti for 𝑖 ∈  ⟦1,𝑀⟧, then the ensemble average is: 

〈𝑢(𝒙, 𝑡)〉 =  
1

𝑀
∑𝑢(𝒙, 𝑡𝑖)

𝑀

𝑖=1

 (II.4) 

In the linear case, the minimization problem requires to solve the N equations: 

∂𝑒(𝒙)

∂A𝒙(𝑦𝑖)
= 0, ∀𝑖 ∈ ⟦1,𝑁⟧ 

⇔
𝜕 (〈(∑ A𝒙(𝑦𝑗)𝐄(𝑦𝑗, 𝑡)

𝑁
𝑗=1 )

2
〉 − 2〈∑ A𝒙(𝑦𝑗)𝐄(𝑦𝑗, 𝑡)𝑢(𝒙, 𝑡)

𝑁
𝑗=1 〉 + 〈𝑢(𝒙, 𝑡)2〉)

𝜕A𝒙(𝑦𝑖)
= 0,  

∀𝑖 ∈ ⟦1, 𝑁⟧ 

⇔ 〈2𝐄(𝑦𝑖, 𝑡)∑A𝒙(𝑦𝑗)𝐄(𝑦𝑗, 𝑡)

𝑁

𝑗=1

〉 − 2〈𝐄(𝑦𝑖, 𝑡)𝑢(𝒙, 𝑡)〉 = 0, ∀𝑖 ∈ ⟦1,𝑁⟧ 

⇔ 〈𝑢(𝒙, 𝑡)𝐄(𝑦𝑖, 𝑡)〉 = ∑A𝒙(𝑦𝑗)〈𝐄(𝑦𝑗, 𝑡)𝐄(𝑦𝑖, 𝑡)〉

𝑁

𝑗=1

, ∀𝑖 ∈ ⟦1, 𝑁⟧ 

(II.5) 

Which leads to the resolution of the following matrix system for any x at which one wants to esti-

mate the scalar velocity field 𝑢(𝒙, 𝑡): 

(
A𝒙(𝑦1)
⋮

A𝒙(𝑦𝑁)
) = (

〈𝐄(𝑦1, 𝑡)𝐄(𝑦1, 𝑡)〉 … 〈𝐄(𝑦1, 𝑡)𝐄(𝑦𝑁 , 𝑡)〉
⋮ ⋱ ⋮

〈𝐄(𝑦𝑁, 𝑡)𝐄(𝑦1, 𝑡)〉 … 〈𝐄(𝑦𝑁, 𝑡)𝐄(𝑦𝑁, 𝑡)〉
)

−1

(
〈𝑢(𝒙, 𝑡)𝐄(𝑦1, 𝑡)〉

⋮
〈𝑢(𝒙, 𝑡)𝐄(𝑦𝑁, 𝑡)〉

) (II.6) 
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The problem of finding the coefficients A𝒙(𝑦𝑖) is, in fact, equivalent to the overdetermined 

system: 

EA = U (II.7) 

with: 

E = (
𝐄(𝑦1, 𝑡1) ⋯ 𝐄(𝑦𝑁, 𝑡1)

⋮ ⋱ ⋮
𝐄(𝑦1, 𝑡𝑀) ⋯ 𝐄(𝑦𝑁, 𝑡𝑀)

) , A = (
A𝒙(𝑦1)
⋮

A𝒙(𝑦𝑁)
)  and U = (

𝑢(𝒙, 𝑡1)
⋮

𝑢(𝒙, 𝑡𝑀)
) 

And the Ordinary Least Square solution of this system of equations is A = (EET)−1ETU wich is 

equation (II.6). 

In a completely similar manner, the overdetermined system to solve, in the quadratic case, is 

still equation (II.7) but with the following matrices: 

E ∈ ℝ
𝑀×(𝑁+

𝑁×(𝑁−1)
2

)

= (
𝐄(𝑦1, 𝑡1) ⋯ 𝐄(𝑦𝑁, 𝑡1)

⋮ ⋱ ⋮
𝐄(𝑦1, 𝑡𝑀) ⋯ 𝐄(𝑦𝑁, 𝑡𝑀)

𝐄(𝑦1, 𝑡1)𝐄(𝑦1, 𝑡1) … 𝐄(𝑦2, 𝑡1)𝐄(𝑦2, 𝑡1)
⋮ ⋱ ⋮

𝐄(𝑦1, 𝑡𝑀)𝐄(𝑦1, 𝑡𝑀) … 𝐄(𝑦2, 𝑡𝑀)𝐄(𝑦2, 𝑡𝑀)

… 𝐄(𝑦N, 𝑡1)𝐄(𝑦N, 𝑡1)
⋱ ⋮
… 𝐄(𝑦N, 𝑡𝑀)𝐄(𝑦N, 𝑡𝑀)

) 

A =

(

 
 
 

A𝒙(𝑦1)
⋮

A𝒙(𝑦𝑁)

B𝒙(𝑦1, 𝑦1)
⋮

B𝒙(𝑦𝑁, 𝑦𝑁))

 
 
 

 

U remains unchanged. A is thus solution of the matrix system: 

A = C−1B (II.8) 

With: 

A =

(

 
 
 

A𝒙(𝑦1)
⋮

A𝒙(𝑦𝑁)

B𝒙(𝑦1, 𝑦1)
⋮

B𝒙(𝑦𝑁, 𝑦𝑁))

 
 
 
, C = EET = (

C11 (C12)
T

C12 C22
) , B = ETU =

(

 
 
 

〈𝑢(𝒙, 𝑡)𝐄(𝑦1, 𝑡)〉
⋮

〈𝑢(𝒙, 𝑡)𝐄(𝑦𝑁, 𝑡)〉

〈𝑢(𝒙, 𝑡)𝐄(𝑦1, 𝑡)𝐄(𝑦1, 𝑡)〉
⋮

〈𝑢(𝒙, 𝑡)𝐄(𝑦𝑁, 𝑡)𝐄(𝑦𝑁, 𝑡)〉)

 
 
 

 

C11 = (

〈𝐄(𝑦1)𝐄(𝑦1)〉 … 〈𝐄(𝑦1)𝐄(𝑦𝑁)〉

⋮ ⋱ ⋮
〈𝐄(𝑦𝑁)𝐄(𝑦1)〉 … 〈𝐄(𝑦𝑁)𝐄(𝑦𝑁)〉

) 

C12 = (

〈𝐄(𝑦1)𝐄(𝑦1)𝐄(𝑦1)〉 … 〈𝐄(𝑦1)𝐄(𝑦1)𝐄(𝑦𝑁)〉

⋮ ⋱ ⋮
〈𝐄(𝑦𝑁)𝐄(𝑦𝑁)𝐄(𝑦1)〉 … 〈𝐄(𝑦𝑁)𝐄(𝑦𝑁)𝐄(𝑦𝑁)〉

) 

C22 = (

〈𝐄(𝑦1)𝐄(𝑦1)𝐄(𝑦1)𝐄(𝑦1)〉 ⋯ 〈𝐄(𝑦1)𝐄(𝑦1)𝐄(𝑦𝑁)𝐄(𝑦𝑁)〉

⋮ ⋱ ⋮
〈𝐄(𝑦𝑁)𝐄(𝑦𝑁)𝐄(𝑦1)𝐄(𝑦1)〉 ⋯ 〈𝐄(𝑦𝑁)𝐄(𝑦𝑁)𝐄(𝑦𝑁)𝐄(𝑦𝑁)〉

) 
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The number of Bx coefficients is equal to 
𝑁×(𝑁−1)

2
. Indeed, since 〈𝐄(𝑦𝑖)𝐄(𝑦𝑗)〉 = 〈𝐄(𝑦𝑗)𝐄(𝑦𝑖)〉, then 

one can consider only the B𝒙(𝑦𝑖, 𝑦𝑗) ∀(𝑖, 𝑗) ∈ ⟦1, 𝑁⟧
2 and 𝑖 ≤ 𝑗. 

From the way the LSE is introduced here, one can clearly see its relationship to the Ordinary 

Least Square regression. This point has been precisely discussed recently by Clark et al. [23]. The 

LSE requires the covariance matrix between the conditional events, as well as the covariance matrix 

between the conditional events and the quantity to estimate. In QSE, statistical moments up to order 

4 are required. A prerequisite for a correct and meaningful estimation outside of the training set, is 

thus to obtain converged moments from the data in the training set (see the discussion about over-

fitting in Chapter II. 1.4). The uncertainties of the statistical moments can be assessed using formula 

provided by Benedict et al. [70] (see Chapter II.3. and Chapter II.4.). 

Once the SE coefficients (Ax, Bx or higher) have been computed on a training data set, it is 

possible to estimate the quantity u even outside the training data set without any knowledge of u. 

Thus the estimation of u outside of the training set is referred as the prediction of u, whereas the 

estimation of u in the training set is referred as the reconstruction of u. 

The SE owns some properties. In the case where the quantity to estimate is a vector field u 

satisfying the continuity equation, then the SE estimated vector field also satisfies the continuity 

equation [27]. Simply put, in the LSE case, from equation (II.5): 

〈div (𝒖(𝒙, 𝑡))𝐄(𝑦𝑖, 𝑡)〉 =∑div (A𝒙(𝑦𝑗)) 〈𝐄(𝑦𝑗, 𝑡)𝐄(𝑦𝑖, 𝑡)〉

𝑁

𝑗=1

, ∀𝑖 ∈ ⟦1, 𝑁⟧ 

Thus, if the vector field satisfies the continuity equation, then the following system of equations 

stands: 

(
〈𝐄(𝑦1, 𝑡)𝐄(𝑦1, 𝑡)〉 … 〈𝐄(𝑦1, 𝑡)𝐄(𝑦𝑁, 𝑡)〉

⋮ ⋱ ⋮
〈𝐄(𝑦𝑁 , 𝑡)𝐄(𝑦1, 𝑡)〉 … 〈𝐄(𝑦𝑁, 𝑡)𝐄(𝑦𝑁, 𝑡)〉

)(

div (A𝒙(𝑦1))

⋮
div (A𝒙(𝑦𝑁))

) = (
〈div (𝒖(𝒙, 𝑡))𝐄(𝑦1, 𝑡)〉

⋮
〈div (𝒖(𝒙, 𝑡))𝐄(𝑦𝑁, 𝑡)〉

) = 0 

In addition, if the system (II.6) has a solution, then: 

det (
〈𝐄(𝑦1, 𝑡)𝐄(𝑦1, 𝑡)〉 … 〈𝐄(𝑦1, 𝑡)𝐄(𝑦𝑁 , 𝑡)〉

⋮ ⋱ ⋮
〈𝐄(𝑦𝑁, 𝑡)𝐄(𝑦1, 𝑡)〉 … 〈𝐄(𝑦𝑁, 𝑡)𝐄(𝑦𝑁, 𝑡)〉

) ≠ 0 

Therefore div (A𝒙(𝑦𝑖)) = 0, ∀𝑖 ∈ ⟦1, 𝑁⟧ and div (�̃�(𝒙, 𝑡)) = ∑ div (A𝒙(𝑦𝑖))
𝑁
𝑖=1 E(𝑦𝑖 , 𝑡) = 0. 

Another property of the SE is that, if the quantity to estimate and the conditional event E are 

of similar nature, then the estimation at a position where E is known is exact. Moreover, the SE is 

inhomogeneous in the mean that it is possible to estimate a quantity from conditional events of 

different physical nature. As one can see from equation (II.6), LSE uses the covariance between the 

quantity to estimate and the conditional event. Thus a quantity not correlated to the conditional 

event cannot be estimated. The choice of the conditional event (how many and where) is therefore 

of crucial importance. 

In 1989, Guezennec proposed a STD-SE [15]. This version of the SE consists in considering 

phase-shifted in time conditional events. The equation (II.2) becomes: 
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�̃�(𝒙, 𝑡) =∑A𝒙(𝑦𝑖)

𝑁

𝑖=1

𝐄(𝑦𝑖, 𝑡 − 𝜏) +∑∑B𝒙

𝑁

𝑗=1

(𝑦𝑖, 𝑦𝑗)𝐄(𝑦𝑖, 𝑡 − 𝜏)𝐄(𝑦𝑗, 𝑡 − 𝜏)

𝑁

𝑖=1

+⋯ (II.9) 

with  a delay. The systems (II.6) and (II.8) are modified accordingly. 

1.2.  Multi-Time-Delay Stochastic Estimation 

Extending the SE method to multi-time simply consists in using several realizations of the 

conditional event E, not only in space, but also in time. The estimation of the random quantity u(x,t) 

then becomes: 

�̃�(𝒙, 𝑡) = ∑∑A𝒙(𝑦𝑖, 𝜏𝑗)

𝑁𝑑

𝑗=1

𝐄(𝑦𝑖, 𝑡 − 𝜏𝑗)

𝑁

𝑖=1

+∑∑∑∑B𝒙

𝑁

𝑗=1

(𝑦𝑖, 𝑦𝑗, 𝜏𝑘 , 𝜏𝑙)𝐄(𝑦𝑖, 𝑡 − 𝜏𝑘)𝐄(𝑦𝑗, 𝑡 − 𝜏𝑙)

𝑁

𝑖=1

𝑁𝑑

𝑙=1

𝑁𝑑

𝑘=1

+⋯ 

(II.10) 

where Nd is the number of delays and τj the delays. 

The MTD-SE coefficients are calculated in a similar manner as in single-time SE. In the 

MTD-LSE case, the coefficients A𝒙(𝑦𝑖, 𝜏𝑗) are computed by solving the linear system: 

A = C−1B (II.8)  

with: 

A =

(

 
 
 

A𝒙(𝑦1, 𝜏1)
⋮

A𝒙(𝑦𝑁, 𝜏1)
A𝒙(𝑦1, 𝜏2)

⋮
A𝒙(𝑦𝑁, 𝜏𝑁𝑑))

 
 
 

, B =

(

 
 
 

〈𝑢(𝒙, 𝑡)𝐄(𝑦1, 𝑡 − 𝜏1)〉
⋮

〈𝑢(𝒙, 𝑡)𝐄(𝑦𝑁, 𝑡 − 𝜏1)〉

〈𝑢(𝒙, 𝑡)𝐄(𝑦1, 𝑡 − 𝜏2)〉
⋮

〈𝑢(𝒙, 𝑡)𝐄(𝑦𝑁, 𝑡 − 𝜏𝑁𝑑)〉)

 
 
 

 

C =

(

 
 
 
 

〈𝐄(𝑦1, 𝑡 − 𝜏1)𝐄(𝑦1, 𝑡 − 𝜏1)〉
⋮

〈𝐄(𝑦𝑁, 𝑡 − 𝜏1)𝐄(𝑦1, 𝑡 − 𝜏1)〉

⋯
⋱
⋯

〈𝐄(𝑦1, 𝑡 − 𝜏1)𝐄(𝑦𝑁, 𝑡 − 𝜏𝑁𝑑)〉

⋮
〈𝐄(𝑦𝑁, 𝑡 − 𝜏1)𝐄(𝑦𝑁, 𝑡 − 𝜏𝑁𝑑)〉

〈𝐄(𝑦1, 𝑡 − 𝜏2)𝐄(𝑦1, 𝑡 − 𝜏1)〉
⋮

〈𝐄(𝑦𝑁, 𝑡 − 𝜏𝑁𝑑)𝐄(𝑦1, 𝑡 − 𝜏1)〉

⋯
⋱
⋯

〈𝐄(𝑦𝑁, 𝑡 − 𝜏2)𝐄(𝑦𝑁, 𝑡 − 𝜏𝑁𝑑)〉

⋮
〈𝐄(𝑦𝑁, 𝑡 − 𝜏𝑁𝑑)𝐄(𝑦𝑁, 𝑡 − 𝜏𝑁𝑑)〉)

 
 
 
 

 

In this situation, matrix dimensions are: A ∈ 𝐑(𝑁×𝑁𝑑)×1, B ∈ 𝐑(𝑁×𝑁𝑑)×1, C ∈ 𝐑(𝑁×𝑁𝑑)×(𝑁×𝑁𝑑). 

LSE, QSE and MTD-LSE have been implemented using C++ language. Several ways of solv-

ing the matrix system (II.8) have been implemented. The routine dsysv, based on LU decomposi-

tion, of the LAPACK/CBLAS library can be used. QR decomposition (through the routines dgeqrf 

and dormqr) or SVD (through dgesvd) are also available. The resolution using SVD was found to 

hold slightly more accurate results and is therefore favored. At last, Tikhonov regularization can be 

applied with any of the three previous methods of matrix system resolution. Details on the Tikhonov 

regularization are provided in annex A. 
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1.3. Stochastic Estimation coupled with Proper Orthogonal 

Decomposition 

1.3.1.  General reminder on Proper Orthogonal Decomposition 

Proper Orthogonal decomposition is a well-known technique for flow decomposition and in 

particular for coherent structures identification. The idea proposed by Lumley is to use an energetic 

criterion, more precisely, to consider that coherent structures have the largest projection on the ve-

locity field (according to the L2-norm). This concept leads to the resolution of an eigenvalue prob-

lem which kernel is the two-point spatial correlation tensor. 

In a more general context, the POD method finds deterministic functions Φ maximizing their 

projection on a random quantity u. Be X = (x,t) such as 𝑿 ∈ 𝐷 =   × 𝐑 ( is the spatial domain) 

and let us assume that u(X) is a complex vector field with real parameters and that it is square-

integral. 𝒖 ∈  𝐿2(𝐷), then the POD problem is to find Φ maximizing: 

〈|(𝒖,𝚽)|2〉

‖𝚽‖2
 (II.11) 

where 〈. 〉 is an average operator, |. | the module, ( , ) is a dot product on L2(D) and ‖. ‖2 the associ-

ated norm. This maximization problem leads to solving an eigenvalue problem under a Fredholm 

integral equation (Nc is the number of components of u): 

∑∫ 𝑅𝑖𝑗(𝑿,𝑿
′)

𝐷

𝑁𝑐

𝑗=1

Φ𝑗(𝑿
′)d𝑿′ = 𝜆Φ𝑖(𝑿) (II.12) 

According to Hilbert-Schmidt theory, D has to be bounded and the kernel has to be part of 

the space of square-integral functions and be Hermitian. It is important to notice that, if it exists a 

homogeneous or stationary direction, then the POD cannot be used. Nevertheless, satisfying the 

previous conditions leads to a countable infinity of solutions Φ(n) for the Fredhlom equation. 

1.3.1.1. Classic method 

The approach proposed by Lumley in 1967 [42] consists in considering the average operator 
〈. 〉 to be a temporal average. The temporal average is evaluated using stationarity and ergodicity 

hypothesis through an ensemble average (as defined in equation (II.4)). The X variable is assimi-

lated to the spatial variable x and the dot product is defined by:  

(𝒖,𝚽) = ∫ 𝒖(𝒙)𝚽∗(𝒙)d𝒙


=∑∫ 𝑢𝑖(𝒙)𝚽𝑖
∗(𝒙)d𝒙



𝑁𝑐

𝑖=1

 (II.13) 

The associated norm is thus: 

‖𝒖‖2 = ∫ 𝐮(𝒙)𝒖∗(𝒙)d𝒙


 (II.14) 

(Therefore if u is the fluctuating velocity field, then ‖𝒖‖2 is the integrated kinetic energy). And the 

Fredholm equation to solve becomes: 
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∑∫ 𝑅𝑖𝑗(𝒙, 𝒙
′)



𝑁𝑐

𝑗=1

Φ𝑗(𝒙
′)d𝒙′ = 𝜆Φ𝑖(𝒙) (II.15) 

The kernel of this equation is the two-point spatial correlation tensor, which considering stationary 

conditions and ergodicity is expressed as: 

𝑅𝑖𝑗(𝒙, 𝒙
′) =

1

𝑇
∫ 𝑢𝑖(𝒙, 𝑡)𝑢𝑗(𝒙′, 𝑡)d𝑡
𝑇

, 𝑇 → ∞ (II.16) 

Assuming that the conditions of the Hilbert-Schmidt theory are satisfied, the Fredholm equa-

tion has a countable infinity of solutions (called POD modes) that can be chosen orthonormal:  

(𝚽(𝑚),𝚽(𝑛))

= δ𝑚𝑛 

And ui(x,t) can be decomposed as: 

𝑢𝑖(𝒙, 𝑡) = ∑𝑎(𝑛)(𝑡)Φ𝑖
(𝑛)(𝒙)

∞

𝑛=1

 (II.17) 

where a(n) are the projection coefficients (also called instantaneous coefficients or POD coeffi-

cients), which are defined by: 

𝑎(𝑛)(𝑡) = (𝒖,Φ(𝑛))

=∑∫ 𝑢𝑖(𝒙, 𝑡)Φ𝑖

(𝑛)
(𝒙)d𝒙



𝑁𝑐

𝑖=1

 (II.18) 

In addition, the POD coefficients are not correlated: 

〈𝑎(𝑚)𝑎(𝑛)〉 = δ𝑚𝑛√𝜆
(𝑚)𝜆(𝑛) 

The eigenvalues λ(n) are thus representative of the energy contained in each mode. Since the 

correlations tensor is positive, they are positive. At last it is common to organize the POD modes 

such as: 

𝜆(1) ≥ 𝜆(2) ≥ 𝜆(3) ≥ ⋯ ≥ 0 

The POD projection on the first NPOD modes is thus the finite sum: 

�̂�𝑖(𝒙, 𝑡) = ∑ 𝑎(𝑛)(𝑡)Φ𝑖
(𝑛)(𝒙)

𝑁𝑃𝑂𝐷

𝑛=1

 (II.19) 

1.3.1.2. Snapshots method 

The snapshots method has been proposed by Sirovich in 1987 [71]. In this approach, the 

average operator 〈. 〉 is a spatial average defined by: 

〈. 〉 = ∫ .


d𝒙 

The variable X in equation (II.12) is assimilated to t. The Fredholm equation to solve is then: 
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1

𝑇
∫ 𝐶(𝑡, 𝑡′)
𝑇

𝑎𝑗(𝑡
′)d𝑡′ = 𝜆𝑎𝑗(𝑡) (II.20) 

Where the spatial correlations tensor has been replaced by the temporal correlations tensor: 

𝐶(𝑡, 𝑡′) =∑∫ 𝑢𝑖(𝒙, 𝑡)𝑢𝑖(𝒙, 𝑡
′)



d𝒙

𝑁𝑐

𝑖=1

 (II.21) 

Once more this equation has a countable infinity of solutions a(n)(t) and the spatial modes 

Φ(n)(x) are obtained by projecting the random variable u on the coefficients a(n)(t): 

Φ𝑖
(𝑛)(𝒙) = ∫ 𝑢𝑖(𝒙, 𝑡)𝑎

(𝑛)(𝑡)d𝑡
𝑇

 (II.22) 

As in the classic method, it is possible to obtain orthonormal POD modes. Equations (II.17), (II.18) 

and (II.19) are still verified. 

While the classic POD method is well suited for data which are temporally well resolved, the 

“snapshots” method is more adapted to data spatially well resolved. In addition, in discrete cases, 

if the number of temporal realizations is smaller than the spatial dimensions, then using the “snap-

shots” method allow to decrease the dimensions of the eigenvalue problem to solve. Both methods 

lead to strictly identical POD basis. 

1.3.1.3. Practical implementation of the Proper Orthogonal Decomposition 

Let us assume that we dispose of L temporal realizations (ti) of the random variable u(x,t) in 

M discrete points of . These realizations are referred to as snapshots and are stored in matrix 

format: 

𝑈 = (𝒖(𝒙, 𝑡0) … 𝒖(𝒙, 𝑡𝐿)) ∈ 𝐑
(𝑀×𝑁𝑐)×𝐿 

 Classic implementation: 

The classic method has been implemented in the case where the random variable u is a real 

scalar only. In such a case, the spatial correlation tensor is the matrix: 

𝑅(𝒙, 𝒙′) =
1

𝑇
𝑈𝑈𝑇 ∈ 𝐑𝑀×𝑀 

This matrix is symmetric and positive. Thus it is diagonalizable in an orthonormal basis. The num-

ber of non-zero eigenvalues is equal to the matrix rank r. Therefore, there are λ1 ≥ … ≥ λr ≥ 0 

eigenvalues and vk  RM (k  ⟦1, 𝑟⟧) associated orthonormal eigenvectors of R. The diagonalization 

of R is performed using the routine dsyev of the LAPACK/BLAS library. 

The POD modes are thus the eigenvectors and the coefficients POD are obtained using equa-

tion (II.18). 

 Snapshots method implementation: 

The snapshots method has been implemented for a real vector field. The temporal correlations 

tensor is: 

𝐶(𝑡, 𝑡′) = 𝑈𝑇𝑃𝑈 ∈ 𝐑𝐿×𝐿 
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where P is a symmetric positive-definite matrix. P is the matrix of the chosen dot product (.,.). By 

default, it is a diagonal matrix. Each element of the diagonal is the volume of the corresponding 

mesh cell. C is diagonalizable in an orthonormal basis. Therefore, there are λ1 ≥ … ≥ λr ≥ 0 eigen-

values and vk  RL (k  ⟦1, 𝑟⟧) associated orthonormal eigenvectors of C. To simplify the compu-

tation and take advantage of the matrix product, we deviate from the traditional definition and the 

POD coefficients are defined by: 

𝑎(𝑛)(𝑡) = √𝑁𝑣𝑛 

And the POD modes are defined by: 

𝚽(𝒏) =
1

√𝑁
𝑈𝑣𝑛 ∈ 𝐑

(𝑀×𝑁𝑐)×1 

Thus, the POD modes are only orthogonal (and not orthonormal): 

(𝚽(𝒏), 𝚽(𝒎))

= √𝜆(𝑛)𝜆(𝑚)δ𝑛𝑚 

And: 

1

𝑁
∑𝑎(𝑛)(𝑡𝑖)𝑎

(𝑚)(𝑡𝑖)

𝑁

𝑖=1

= δ𝑛𝑚 

At last, for any ti, 𝑖 ∈ ⟦1, 𝐿⟧: 

𝒖(𝒙, 𝑡𝑖) = ∑𝑎(𝑘)(𝑡𝑖)

𝑟

𝑘=1

𝚽(𝑘)(𝒙) 

1.3.2.  Complementary technique 

In the complementary technique, first SE is executed to estimate a quantity. Then the esti-

mates are projected onto the POD basis. At last, the quantity is reconstructed from the POD projec-

tion. 

So the POD coefficients are obtained with: 

𝑎est
(𝑛)(𝑡) = (�̃�,𝚽(𝑛))


=∑∫ �̃�𝑖(𝒙, 𝑡)𝛷𝑖

(𝑛)
(𝒙)d𝒙



𝑁𝑐

𝑖=1

 (II.23) 

where �̃� is an estimation of u using any SE methods. Then the complementary technique estimation 

of u is: 

�̂̃�(𝒙, 𝑡) = ∑ 𝑎est
(𝑛)(𝑡)𝚽(𝑛)(𝒙)

𝑁POD

𝑛=1

 (II.24) 

1.3.3.  Modified Stochastic Estimation (SE-POD) 

In the SE-POD, the POD coefficients of a quantity are directly estimated by SE. Then, the 

estimated POD coefficients are used in order to obtain an estimated POD projection of the quantity. 

Let us denote �̃�(𝑛)(𝑡) the POD coefficients estimated by a SE method, then the SE-POD of the 

quantity u is: 
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�̃̂�(𝒙, 𝑡) = ∑ �̃�(𝑛)(𝑡)

𝑁POD

𝑛=1

𝚽(𝑛)(𝒙) (II.25) 

1.4. Errors and score parameters 

In the literature on SE, few discussions addressed precisely the problem of assessing the ac-

curacy of the estimation. In recent papers, using SE-POD, the ratio of combined residual variance 

to the total variance of the POD basis is more and more commonly used (see Chapter I.2). It is 

calculated by: 

𝑒POD =
〈∑ (�̃�𝑖(𝑡) − 𝑎𝑖(𝑡))

2𝑁POD
𝑖=1 〉

〈∑ 𝑎𝑖(𝑡)
2𝑁POD

𝑖=1
〉

 (II.26) 

In what follow, the determination coefficient R² will be used to assess the quality of the esti-

mation and is defined by 𝑅POD
2 = 1 − 𝑒POD. The determination coefficient is an unbiased measure 

of the unresolved fluctuations of the estimated quantity. 

In addition to this error, in the case where SE-POD is used, it is also possible to calculate a 

determination coefficient for each POD coefficient separately. This determination coefficient is de-

noted 𝑅POD single
2  and defined by: 

𝑅POD single,𝑖
2 = 1 −

〈(�̃�𝑖(𝑡) − 𝑎𝑖(𝑡))
2〉

〈𝑎𝑖(𝑡)
2〉

 (II.27) 

In a more general context, we define the determination coefficients of the estimation of a 

vector field u by [66]: 

𝑅2 = 1 −
∫ 〈∑ (�̃�𝑖(𝒙, 𝑡) − 𝑢𝑖(𝒙, 𝑡))

2𝑛𝑐
𝑖=1 〉d𝒙



∫ 〈∑ 𝑢𝑖(𝒙, 𝑡)
2𝑛𝑐

𝑖=1
〉


d𝒙

 (II.28) 

Since the LSE rests on the covariance between the conditional event and the quantity to esti-

mate, we define the average correlation module by: 

|corr(𝑢𝑖, 𝐄)|(𝒙)av =
1

𝑁
∑|corr(𝑢𝑖(𝒙, 𝑡), 𝐄(𝑦𝑖, 𝑡))|

𝑁

𝑖=1

 (II.29) 

In addition, to spatially observe the quality of the estimation the normalized mean square 

error will also be used. This error is defined by: 

𝑁𝑀𝑆𝐸(𝑢𝑖(𝒙)) =
〈(�̃�𝑖(𝒙, 𝑡) − 𝑢𝑖(𝒙, 𝑡))

2〉

〈𝑢𝑖(𝒙, 𝑡)
2〉

 (II.30) 

At last, SE, and more generally the Least Square Regression, may suffer from overfitting. As 

defined by Abu-Mostafa et al. [72], overfitting is “fitting the data more than is warranted”. In a 

simple way, a regression suffers overfitting when the fit (defined by an error criterion, R² for in-

stance) on the training set is largely lower than on a validation set (composed of data not used to 

train the regression). When overfitting occurs, regression becomes more representative of the noise 

contained in the data of the training set than of the true phenomena in the training set. Several 

situations may lead to overfitting. One situation is when the training set is not representative of the 

phenomena that one is trying to fit (the training set does not contain enough samples). Increasing 
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the complexity of the regression model may also lead to overfitting the training data. As more and 

more parameters are taken into account, the model may fit the noise of the training data set. Another 

situation is when the training set suffers from multi-collinearities between the conditional events. 

In the limiting case of perfect linear dependence between two or more conditional events, then the 

least square problem become singular. Usually the conditional events exhibit some degree of col-

linearity which may lead to an ill-conditioned matrix E in equation (II.7). In Least Square Regres-

sion, the problem of overfitting can be partly overcome using regularization techniques, for example 

the Tikhonov regularization (see annex A).  

Clark et al. [23] proposed to calculate the Variance Inflation Factor (VIF) to evaluate the level 

of multi-collinearity between the conditional events. VIF is defined for each conditional event as 

the inverse of the determination coefficient of the estimation, by LSE, of this conditional event j by 

the others: 

(VIF)𝑗 = 1 𝑅𝑗
2⁄  (II.31) 

where: 

𝑅𝑗
2 =

〈(�̃�(𝑦𝑗, 𝑡) − 〈𝐄(𝑦𝑗, 𝑡)〉)
2
〉

〈(𝐄(𝑦𝑗, 𝑡) − 〈𝐄(𝑦𝑗, 𝑡)〉)
2
〉
 

�̃�(𝑦𝑗) refers to the LSE of the conditional event 𝐄(𝑦𝑗), using the other conditional events. 

When there is no multi-collinearity between the conditional events, VIF is equal to 1 for all the 

conditional events. If there are multi-collinearities between the conditional events, the VIF will 

become larger than 1. 

2. The choice of test cases 

The initial main objective of the HYBEXCIT project is to investigate and develop methods 

for the real-time prediction of turbulent flows. Early on, from the literature overview, it was decided 

to first focus on the SE. The main application of the project was to apply the methods on a frigate 

helipad in order to help secure shipboard helicopter operations. Thus the final test case of the project 

was chosen to be the flow downstream a 3D double backward facing step similar to the one studied 

by Herry [2]. This 3D double backward facing step would be studied experimentally in the L2 wind 

tunnel. In addition, as milestones of the study, and in order to gradually test the SE, two other 

experimental test cases were selected. These test cases were chosen at the beginning of the study to 

make sure of the availability of the experimental facilities.  

Several considerations were taken into account to select the two configurations. First, the 

geometries had to be simple enough to be rapidly installed in the boundary layer wind tunnel. Then, 

they should correspond to different levels of complexity. In addition, one of the configurations 

should have been already used with SE in the literature to facilitate the comparison. At last both 

should be detached flow configurations, since the flow around the frigate helipad considered is a 

detached flow. For this reason, the first configuration chosen is a 2D backward facing step similar 

to the one studied by Hudy et al. [13]. The Reynolds number of the experiment was however chosen 

higher than the one of Hudy’s study. The second configuration selected is a 3D configuration, the 

flow downstream a wall mounted cube. A similar flow has been investigated by Mokhasi et al. [24].  

For both configurations, it was decided to run low speed PIV campaigns. The goal of these 

experimental campaigns was to obtain a large enough database. Indeed, an important number of 

statistically independent PIV snapshots are required to converge the statistical moments used by SE 

methods. In the two configurations, the conditional event was chosen to be punctual wall pressure 
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information. In addition to the low speed PIV campaign, it was decided to run high speed PIV 

measurements in order to get more insight into the flow dynamics. The high speed PIV also allows 

conducting a frequency analysis of the flow. 

In parallel to the experimental test case, the use of numerical data was also investigated. In 

order to compare the estimation using experimental or numerical data, a simulation of the 2D back-

ward facing step was conducted. This simulation had to match the experimental flow condition. 

Numerical simulation was also used in order to provide additional test cases. A very basic simula-

tion of the wake behind a blunt trailing edge was conducted and used to validate the SE implemen-

tation. At last to provide a different flow configuration, simulations of the OAT15A airfoil in tran-

sonic conditions have also been used. Such a flow, presenting a shock, has not been utilized with 

SE in the literature. 

3. Experimental databases 

In this part, the experimental databases exploited and analyzed in this work are described. 

The experiments were conducted by Jean-Claude Monnier and Jerôme Delva of the ONERA Lille 

from specifications that were given to them.  

3.1. Experimental apparatus 

3.1.1.  Wind tunnels 

In the frame of the ONERA HYBEXCIT project, the two available facilities to conduct ex-

perimental studies were the boundary layer wind tunnel and the L2 wind-tunnel of the ONERA 

Lille center.  

3.1.1.1. Boundary layer wind tunnel 

The boundary layer wind tunnel of the DAAP/ELV unit at the ONERA Lille is an Eiffel type 

wind tunnel. The wind tunnel has a square test-section that is 300 mm wide and 300 mm high and 

remains constant in size over 2.64 m (see Fig. II.1). Its collector has a contraction ratio of 20:1 and 

is followed by a honeycomb. The wind tunnel is equipped with a variable frequency driven motor 

capable of producing free-stream velocities of 10 to 40 m.s-1 for a turbulent intensity lower than 

2%. The velocity can be changed in real time. The total power installed reaches 10 kW. The wind 

tunnel possesses several optical accesses. It is also equipped with a particle generator (of Multi-

Laskins Nozzle type) and a seeding grid (see Fig. II.2). Thus, the wind tunnel is particularly well 

suited for optical measurements, such as Particle Image Velocimetry and Laser Doppler Veloci-

metry. 
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Fig. II.1: Boundary layer wind tunnel 

 

Fig. II.2: Collector and seeding grid 

3.1.1.2. L2 wind tunnel 

The L2 wind tunnel is initially an open loop wind tunnel. However, it stands within an indus-

trial hall, thus the flow ejected by the diffuser revolves and is re-injected into the collector (see Fig. 

II.3 and Fig. II.4). The wind-tunnel has a rectangular test-section that is 6 m wide and 2.5 m high 

and remains constant in size over 13 m in length. The wind tunnel collector has a contraction ratio 

of 1.83:1 and is followed by a honeycomb. Downstream of the test section, a small diffuser increases 

the test section height to 2.8 m to leave enough space to fit in 18 fans. The fans are put aside in 3 

horizontal lines of 6 fans. The total power installed reached 125 kW. They can be controlled indi-

vidually and/or in pre-defined sequence with other fans. At full power, the maximum velocity in 

the empty test section is 13.85 m.s-1. 

 

Fig. II.3: The L2 wind tunnel in its hall [2] 

 

Fig. II.4: Inside view of the L2 wind tunnel 

[2] 

3.1.2.  Particle Image Velocimetry  

Particle Image Velocimetry is a measurement method that allows accessing the velocity of a 

flow in a plane or a volume. To record a PIV snapshot, the flow has first to be seeded with particles 

small enough that they can be considered to follow the flow motion. Then, the area of interest is 

illuminated twice with a short time interval between each illumination by a double pulse laser and 

the light diffused by the particles are recorded by cameras. After that the recorded images are split 

into small interrogation windows and the average displacement of the particles in the window, be-

tween the two images, are deduced by post-processing the images through statistical method. Using 

these information, one gets a snapshot of the velocity from the two recorded images. 
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Several PIV methods have been developed. The original method is referred to as “2D-2C” 

and stands for two-dimensional (only a plane is recorded) and two components (only the two com-

ponents of the velocity in the plane are measured). To access the three components of the velocity 

it is possible to use “2D-3C” PIV which was introduced by Prasad et al. [73] in 1993. In this method, 

only a plane is illuminated and recorded but it is viewed from two different directions with separate 

cameras. It is also possible to access to the velocity in a volume using tomographic PIV (see Elsinga 

et al. [74]) 

3.1.2.1. PIV apparatus 

For the experimental campaigns, two PIV apparatus were available. The first one is a classical 

low-speed PIV system. The second one is a high-speed system. For both systems, the “raw” images 

are processed by a software developed at the ONERA called DAAPPIV [75]. The evaluation of 

these images is performed with a cross-correlation scheme using Fast-Fourier-Transform (FFT) 

with multi-pass. The interrogation window size is 3232 pixels² and a 50% overlap is used. 

3.1.2.1.1. Low speed PIV 

The low speed PIV uses a twin pulsed 120 mJ Nd:YAG lasers. The highest emission fre-

quency of these lasers is 10 Hz. The recording of the PIV snapshots is carried out by two CCD 

cameras with 20482048 pixels², when 2 components PIV is performed. At full resolution, these 

cameras can record 5 PIV snapshots per second, limiting the operating frequency of the PIV system 

to 5 Hz. For 3 components PIV, the recording is carried out by two sCMOS cameras with 

25602160 pixels². 

3.1.2.1.2. High speed PIV 

The high speed PIV uses a twin pulsed 20 mJ Nd-YLF lasers. The emission frequency of the 

lasers can be chosen between 100 Hz and 10 kHz. The PIV snapshots are recorded by two CMOS 

cameras with 10241024 pixels². At full resolution, both cameras can record up to 1 500 PIV snap-

shots per second. 

3.1.3. Wall pressure measurements apparatus 

To investigate the use of non-intrusive sensors with the SE. Wall pressure measurements, 

synchronized with the PIV snapshots, have been recorded. To obtain the wall pressure data, high-

speed pressure transducers from Kulite (Model: XCQ-80-5PSID, 5 Psi) have been used. 

3.2. 2D Backward facing step experiments 

The 2D Backward Facing Step (BFS) height (h) is 30 mm. It has been designed and manu-

factured by the unit DRIM/DMS of the ONERA (see Fig. II.5). The step is equipped with 17 holes 

for the pressure transducers (see Fig. II.6). The step occupies an entire side of the boundary layer 

wind tunnel and has required a modification of the wind tunnel collector. A bakelite plate is 

mounted in the collector to ensure the connection between the step and the collector (see Fig. II.7). 
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Fig. II.5: Backward facing step in the boundary 

layer wind tunnel 

 

Fig. II.6: Pressure transducers positions 

The BFS experiment was conducted for 3 different upstream velocities (U): 20, 25 and 

30 m.s-1. The Reynolds numbers (based on the step height) associated with these velocities are ap-

proximately Reh = 4.05104, 5.06104 and 6.08104. For this experiment, only 2 components PIV 

was carried out. Streamwise and orthogonal to the wall velocities were measured. The velocity in 

the wind tunnel is measured in real-time by a manometer FCO-150 equipped with a Pitot tube, 

located downstream of the step. Temperature and absolute pressure, in the wind tunnel, were also 

measured in real-time to check the stability of the flow condition. The boundary layer has been 

characterized for each velocity at 10 and 350 mm upstream the step, using a Pitot tube. The results 

are presented in Table II.1. 

 

Fig. II.7: Wind tunnel collector modifications 

Ab-

scissa 

x(mm) 

Upstream ve-

locity 

U (m/s) 

Boundary layer thick-

ness 

δ (mm) 

Displacement thick-

ness 

δ* (mm) 

Momentum thick-

ness 

 (mm) 

Shape fac-

tor 

H 

-10 20.02 11.50 1.65 1.25 1.32 

-10 24.90 11.50 1.60 1.22 1.31 

-10 30.10 11.50 1.65 1.26 1.31 

Table II.1: Boundary layer properties 

3.2.1. Low speed PIV campaign 

The PIV system is schematically represented in Fig. II.10. Picture of the complete set up is 

displayed in Fig. II.8. Standard optical components were used to form a light sheet approximately 

1 mm thick. This light sheet is deviated by a total reflective prism located downstream of the step. 

This configuration, combined with a common matte black paint, minimizes the reflection from the 

wall. However, in this configuration, the light sheet impacts orthogonally the step. Therefore, to 
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make for the intense reflections generated, a special Rhodamine paint was applied to the step. In 

addition, an interference filter camera lens allowed a limited refection for the camera seeing the 

step. 

The two low speed cameras were employed to form a rectangular acquisition area starting at 

1 h upstream of the step, extending about 8 h downstream of the step and 2 h from the wall (see 

Fig. II.11). The size of each PIV snapshot is 20481024 pixel² (half of the available size). The final 

resolution after post-processing is about 1.1 mm. The PIV acquisition frequency was set to 5 Hz. In 

addition to the PIV recording, the 17 wall pressure measurements were acquired at a frequency of 

20 kHz. This higher frequency is used for the pressure acquisition in order to allow the use of MTD-

SE with a large freedom for the choice of delays. It is 200 times the frequency of the main phenom-

enon (the shedding) and about 70 times the Kelvin-Helmhotz frequency (see Chapter II.4.3). The 

PIV and the pressure acquisition are synchronized thanks to a common clock, such that 4 000 pres-

sure signals are recorded between every PIV snapshot. 

In order to obtain converged statistical moments for the training of the SE, at least 10 000 

PIV snapshots were recorded for each velocity. Due to memory constraints on the pressure acqui-

sition, the entirety of the PIV snapshots could not be recorded at once. Thus the acquisition was 

split into 3 runs for each velocity. For each run, 3 400 PIV snapshots were recorded and the acqui-

sition lasted more than 10 minutes. Between each run, data have to be transferred to the backup 

device. This transfer took about 10 minutes during which the wind tunnel is kept in operation. The 

conditions in the wind tunnel were therefore checked in real-time to prevent deviation from the 

desired conditions. 

To sum up, the low speed campaign database comprised data for the 3 upstream velocities 

(20, 25 and 30 m.s-1). For each velocity, 3 separate runs of acquisition have been done. Each run 

contains 3 400 PIV snapshots and 1.36107 samples for the 17 pressure transducers.   

 

Fig. II.8: General view of the low speed PIV 

experimental apparatus 

 

Fig. II.9: General view of the high speed PIV 

experimental apparatus 

3.2.2. High speed PIV campaign 

The lighting of the high speed PIV experiment is based on the same setup as in the low speed 

PIV campaign (see Fig. II.10). In overall, the set-up is unchanged except that the cameras and lasers 

are replaced by the high speed ones (see Fig. II.9). The size of each PIV snapshot is reduced, com-

pared with the low speed PIV case, and equal to 1024512 pixels². The resolution of the PIV snap-

shots, after post-processing, is approximately 1.7 mm. The PIV acquisition frequency was set at 

2 kHz (which is higher than the shedding and Kelvin Helmothz frequencies). No synchronized pres-

sure data are available for the high speed PIV campaign. 
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Fig. II.10: Lighting schematics of the PIV for 

the backward facing step experiment 

 

Fig. II.11: PIV recording area for both the low 

and high speed set up 

Owing to the limited memory of the high speed camera, a maximum of 6 144 PIV snapshots 

could be recorded consecutively. The acquisition of 6 144 PIV snapshots took about 3 s. For each 

velocity, 4 acquisitions of 6 144 PIV snapshots were performed separately. Between each run, data 

were transferred to the backup device, which took approximately 20 minutes. During the transfer, 

the wind tunnel was kept in operation. Therefore, the conditions in the wind tunnel were checked 

in real-time to prevent deviation from the desired conditions. 

To sum up, the high speed campaign database comprised data for the 3 upstream velocities 

(20, 25 and 30 m.s-1). For each velocity, 4 separate runs of acquisition have been done. Each run 

contains 6 144 PIV snapshot. No pressure measurement is available. 

3.2.3. Experimental results 

The average fields obtained for the upstream velocity of 30 m.s-1 case using low speed PIV 

are displayed in Fig. II.12. To estimate the reattachment point, the location of the dividing stream-

line of the mean flow is used. The reattachment location xr is about 5.9 h when U = 30 m.s-1. For 

U = 25 m.s-1, the reattachment location is about 5.95 h, and for U = 20 m.s-1, 5.88 h. These values 

correspond to the ones found in the literature for comparable Reynolds number [76]. The secondary 

reattachment point is located around 0.65 h (for the 3 velocities) which is somehow lower than what 

was found Spazzini et al. (1.1 h at Reh = 16 000) [77]. Values of the same order of magnitude are 

obtained from the high speed PIV data for each velocity, and for both reattachment points. 

The spectral content of the pressure measurements has also been investigated. Power Spectral 

Densities (PSD) are computed, in this study, using Welch method and Hamming window (except 

if stated otherwise). The PSD obtained for the 3 upstream velocity cases and all of the pressure 

sensors (low speed PIV experiment) are displayed in Fig. II.14. A peak is observed for some sensors 

(mainly from the 9th sensors (x/h = 4.77)) around a Strouhal number of 0.12. This frequency is 

associated with the vortex shedding and is consistent with the theoretical value of 0.1 (Dandois et 

al. [78]). Fig. II.15 shows the frequency wavenumber spectrum obtained for the 30 m.s-1 case. A 

convective velocity is identified at 17 m.s-1, about 0.57 U.  This value corresponds to the one 

expected from the literature (for instance Lee et al. found a convective velocity of 0.6 U [79]). It 

corresponds to the passage of large scales vortices. 
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a) 

 

b) 

Fig. II.12: Average fields in the 30 m.s-1 case from the low speed PIV. a) Streamwise velocity, 

b) Vertical velocity 

 

a) 

 

b) 

Fig. II.13: PSD of the pressure sensors. a) U = 30 m.s-1, b) U = 25 m.s-1 
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Fig. II.14: PSD of the pressure sensors (U = 20 m.s-1) 

 
Fig. II.15: Frequency wavenumber spectrum of the 17 pressure sensors (U = 30 m.s-1) 

3.2.4. Convergence of the statistics 

To evaluate the convergence, and more precisely the uncertainties, of the estimate of the sta-

tistical moments used in SE, confidence intervals around the mean are utilized as described by 

Benedict et al. [70]. For a random variable x, the 95% confidence interval for its mean is defined 

by: 

�̅� ± 1.96 (
𝑠𝑥
2

𝑁
)

0.5

 (II.32) 

where N is the number of statistically independent (uncorrelated) samples of x and sx is its standard 

deviation. For a 99% confidence interval, the 1.96 factor should be replaced by 2.58. Since x can 

be any random variable, it can be the product of 2 or more random variables. Thus to evaluate the 

uncertainty of the covariance 〈𝐄(𝑦𝑖)𝐄(𝑦𝑗)〉 (or any other statistical moment), one can consider x = 

𝐄(𝑦𝑖)𝐄(𝑦𝑗) and use the previous formula (II.32). 

To determine the number of independent samples, the integral time scales of the pressure 

sensors have been computed. The integral time scale is defined by: 
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𝑇𝑖 = ∫ 𝑅𝑃(𝜏)d𝜏
∞

0

 (II.33) 

with 𝑅𝑃(𝜏) =
〈𝑃(𝑡)𝑃(𝑡+𝜏)〉

〈𝑃(𝑡)2〉
 the autocorrelation function. This function is plotted for the 17 pressure 

sensors of the U = 30 m.s-1 experiment in Fig. II.16. In practice, the integral is finite. Four strategies 

are usually found in the literature (see O’Neill et al. [80]): integrate over the entire available domain; 

if the autocorrelation function has a negative region, integrate only up to the value where the auto-

correlation function reaches a minimum; integrate only up to the first zero-crossing; or integrate 

only up to the value where the autocorrelation function falls under 1/e. Table II.2 summarizes the 

maximum and minimum values of the integral time scale, using the last strategy (data from the low 

speed PIV campaign are used, the 2nd pressure sensor is not considered). From the values obtained, 

for the 3 tested velocities, samples taken at 5 Hz are thus uncorrelated.  

 

Fig. II.16: Autocorrelation as function of the delay for the 17 pressure sensors (U = 30 m.s-1) 

 

Upstream velocity U (m.s-1) 20  25 30 

Minimum Ti 
(ms) 1.8 1.5 1.2 

*U/h 1.2 1.25 1.2 

Maximum Ti 
(ms) 4.3 4.7 4.6 

*U/h 2.9 3.9 4.6 

Table II.2: Integral time scales of the pressure sensors (BFS experiments) 

3.2.4.1. Low speed PIV experiments  

Fig. II.17 shows the values of the covariance 〈𝑃𝑖𝑃𝑗〉 (𝑖 ≤ 𝑗) for the 153 permutations (without 

order) that are used in the SE (U = 30 m.s-1 case). These values are obtained using the 6 800 sam-

ples (sampled at 5 Hz) from only 2 of the 3 runs of the U = 30 m.s-1 experiments. Indeed, in order 

to test the SE, it is necessary to have a training data set and a validation data set. Thus it was decided 

to use 2 of the 3 runs as training set and 1 as validation set. In the figure, the error bars corresponding 

to a confidence interval of 95% are also plotted. It appears that the covariance of the pressure sen-

sors is well converged using only data from 2 runs. The relative uncertainties are under 3% (based 

on 95% confidence interval) for most of the values. Higher relative uncertainties are however ob-

tained when covariance approaches 0. The same conclusion is reached for both U = 20 m.s-1 and 
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U = 25 m.s-1 cases. The evolution of some values of 〈𝑃𝑖𝑃𝑗〉 as function of the acquisition duration 

is also displayed in Fig. II.18. If somehow some values seem to be diverging, the global conver-

gence is satisfying. Indeed, the uncertainties for the 〈𝑃10𝑃11〉 value is only 3% when using the first 

6 800 samples (1 360 s) and falls under 2.4% with 10 200 samples. 

Some values of 〈𝑃𝑖𝑃𝑗𝑃𝑘〉 are displayed in Fig. II.19, as well as the 95% confidence interval 

(in the U = 30 m.s-1 case). This time, all of the 10 200 samples (sampled at 5 Hz) are used. The 

uncertainties are clearly higher than for the covariance and these statistical quantities appear to be 

badly converged. The same is also true for the U = 20 m.s-1 and U = 25 m.s-1 cases and even more 

true for the quantity 〈𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙〉 in every cases. Thus, when using QSE with these data sets, the QSE 

may not be representative of the entire phenomena and is likely to suffer from overfitting. 

  

Fig. II.17: Covariance values between the pressure sensors with error bars corresponding to a 

95% confidence interval. (i,j) with i ≤ j. 

 

Fig. II.18: Evolution of the estimated covari-

ance (for several combinations of pressure sen-

sors) as function of the acquisition duration 

(one PIV run lasts for 680 s) 

 

Fig. II.19: Example of 〈𝑃𝑖𝑃𝑗𝑃𝑘〉 values with 

their 95% confidence interval (10 200 sam-

ples are used) 

A similar study (not shown) run for 13 velocity data in the field (see location in Fig. II.20) 

leads to similar conclusions. The convergence of the covariance 〈𝑢(𝑥𝑖)𝑃𝑗〉 is good, however the 

uncertainties are higher than for the covariance 〈𝑃𝑖𝑃𝑗〉. The order of magnitude is about 10% of 
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relative uncertainty based on 95% confidence interval. The statistical moments 〈𝑢(𝑥𝑖)𝑃𝑗𝑃𝑘〉 do not 

appear to be sufficiently converged. 

Considerations about the convergence of the POD basis are given in annex C. 

 

Fig. II.20: Positions of the 13 velocity data, used to study the convergence of the data set (aver-

age streamwise velocity field is displayed in background in the 30 m.s-1 case) 

3.2.4.2. High speed PIV experiments 

In these experiments, no pressure data are available. The sampling frequency is 2 kHz, thus 

the sampling step is shorter than the order of magnitude of the integral time scale (that is about the 

shedding period). Therefore, the samples cannot be considered statistically independent for the cal-

culation of the uncertainties. In the 30 m.s-1 case, the 24 576 available samples represent approxi-

mately 1 200 independent samples. This number of independent samples is obtained considering 

only the largest Ti and thus represents the least favorable hypothesis to estimate the uncertainties. 

In the two other cases, even less independent samples are available. The covariances 〈𝑢𝑖𝑢𝑗〉 (𝑖 ≤ 𝑗) 
for the 91 combinations with the 13 streamwise velocity data (see Fig. II.20) are displayed in Fig. 

II.21 for the 30 m.s-1 case. The error bars correspond to a confidence interval of 95%. The statistics 

seem globally not converged enough. Convergence is not reached for the third and fourth order 

moments either. The same is observed in the 25 m.s-1 and 20 m.s-1 cases. 

 

Fig. II.21: Covariance values between the 13 streamwise velocity data with error bars corre-

sponding to a 95% confidence interval. (i,j) with i ≤ j. 
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3.3. 3D wall mounted cube experiments 

The wall mounted cube has a 30 mm height. The cube is made of glass and fixed to a flat 

plate. The plate downstream the cube is equipped with 23 slots for the pressure transducers (see 

Fig. II.22). Indices given to the sensors are described in Fig. II.23 and their positions are detailed in 

Table II.3. The hole positions were chosen from a pressure sensor location optimization described 

in Chapter V. Euler simulation of the flow around the cube is used to perform the optimization. The 

goal is only to get a hint to where the pressure sensors should better be placed than to get a true 

optimization of their locations. Indeed, the latter would have required running the optimization al-

gorithm on numerical data realistically fitting the experiment. 

 

Fig. II.22: Schematics of the wall mounted cube in the boundary layer wind tunnel 

As for the BFS experiments, high speed and low speed PIV measurements were conducted. 

For the low speed case, 6 upstream velocities were tested: 10, 15, 20, 25 and 30 m.s-1. The Reynolds 

numbers (based on the cube height) associated with these velocities are approximately 

Reh = 2.02104, 3.04104, 4.05104, 5.06104 and 6.08104. For the high speed case, only 3 veloc-

ities were used: 10, 20 and 30 m.s-1. For all these experiments 3 components PIV was carried out. 

During the experiments, the velocity in the wind tunnel is measured in real-time by a manometer 

FCO-150 equipped with a Pitot tube. 
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Fig. II.23: Pressure sensor positions 

 

Fig. II.24: Lighting apparatus for the low 

speed PIV 

 

Fig. II.25: Lighting apparatus for the high speed 

PIV 

For both low speed and high speed PIV campaigns, the lighting strategy was to placed lasers 

upstream the seeding grid. They were placed far enough of the collector so that they did not disturb 

the flow in the wind tunnel. Standard optical components were used to generate a light sheet, which 

entered the wind tunnel from the collector side (see Fig. II.24 and Fig. II.25). Among those compo-

nents, a converging cylindrical lens was used to change the orientation of the light sheet by rotating 

it. Two different PIV planes were recorded. One plane is orthogonal to the wall, parallel to the 

upstream flow and goes through half the cube width (see Fig. II.26). This plane is referred to as the 

vertical plane. The second plane is parallel to the wall and to the upstream flow, and goes through 

half the cube height (see Fig. II.27). This plane is referred to as the horizontal plane. Due to the 

different cameras used in the low and high speed PIV, the size of the horizontal plane recorded is 

different in each campaign. Field sizes are summarized in Table II.4. 
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Sensor number x/h y/h z/h 

1 1.9 0 1.53 

2 3.3 0 1.53 

3 4.93 0 1.53 

4 5.13 0 0.5 

5 4.1 0 0.5 

6 3.13 0 0.5 

7 2.2 0 0.5 

8 1.53 0 0.5 

9 5.13 0 -0.07 

10 4.1 0 -0.07 

11 3.13 0 -0.07 

12 2.2 0 -0.07 

13 1.53 0 -0.07 

14 5.13 0 -0.63 

15 4.1 0 -0.63 

16 3.13 0 -0.63 

17 2.2 0 -0.63 

18 1.53 0 -0.63 

19 4.93 0 -1.67 

20 3.3 0 -1.67 

21 1.9 0 -1.67 

22 0.87 0 -1.33 

23 0.87 0 1.2 

Table II.3: Coordinates of the pressure sensors 

PIV campaign Vertical plane Horizontal plane 

Low speed 
7.2 h  2.4 h 

- h < x/h < 6.2 h 

0 < y/h < 2.4 h 

6.8 h  4.4 h 

0 < x/h < 6.8 h 

- 2.2 h < z/h < 2.2 h 

High speed 
6 h  2.8 h 

- h < x/h < 5 h 

0 < y/h < 2.8 h 

4.2 h  5.4 h 

0 < x/h < 4.2 h 

- 2.6 h < z/h < 2.6 h 

Table II.4: PIV plane sizes 
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Fig. II.26: PIV vertical plane 
 

Fig. II.27: PIV horizontal plane 

3.3.1. Low speed PIV campaign 

The two low speed sCMOS camera are employed and located up and down of the wind tunnel 

(see Fig. II.28 and Fig. II.29). The final resolution of the PIV snapshots, after post-processing, for 

both the vertical and horizontal planes, is 1.4 mm. For the same reason as in the BFS experiment, 

the low speed PIV acquisition was split into runs of 3 400 snapshots recorded at 5 Hz. For each 

velocity and each plane, 3 runs were performed. Alongside the PIV acquisition, the 23 pressure 

measurements are recorded at 20 kHz. The PIV and the pressure acquisition are synchronized thanks 

to a common clock, such that 4 000 pressure signals are recorded between every PIV snapshot. 

 

Fig. II.28: Position of the cameras for the low speed 

PIV vertical plane acquisition 

 

Fig. II.29: Position of the cameras for 

the low speed PIV horizontal plane ac-

quisition 

To sum up, the low speed PIV database comprised data for the two planes and the 6 upstream 

velocities. For each velocity, 3 separate runs of acquisition have been performed. Each run contains 

3 400 PIV snapshots and 1.36107 samples for the 23 pressure transducers. 

3.3.2. High speed PIV campaign 

For this campaign the two high speed CMOS cameras are employed and positioned similarly 

to the low speed montage. The resolution of the PIV snapshots, after post-processing, is approxi-

mately 2 mm. The PIV snapshots are recorded at 1 kHz (which is at least 10 time the shedding 
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frequency). Due to the limited memory capacity of the cameras, a maximum of 3 072 PIV snapshots 

could be recorded consecutively. In an attempt to obtain enough samples to converge the statistical 

moments used in SE, more runs were performed in the high speed case. The numbers of PIV snap-

shots recorded for each velocity are related in Table II.5. Alongside the PIV acquisition, the 23 

pressure measurements are recorded at 20 kHz. The PIV and the pressure acquisition are synchro-

nized thanks to a common clock, such that 200 pressure signals are recorded between every PIV 

snapshot. 

Upstream velocity (m.s-1) Vertical plane Horizontal plane 

10  16  3 072 PIV snapshots 16  3 072 PIV snapshots 

20 12  3 072 PIV snapshots 12  3 072 PIV snapshots 

30 8  3 072 PIV snapshots 8  3 072 PIV snapshots 

Table II.5: High speed PIV database for the 3D wall mounted cube experiment 

3.3.3. Experimental results 

The average velocity fields in the vertical plane, obtained for the upstream velocity of 30 m.s-

1 using low speed PIV, are displayed in Fig. II.30 and Fig. II.31. A main recirculation bubble is 

observed downstream the cube. It is actually the footprint of an arch vortex (see Sousa et al. [81]). 

The reattachment lengths xr/h in the several situations are given in Table II.6. These values are 

consistent with those of the literature. Martinuzzi et al. [82] found xr/h ≈ 1.61 for Reh = 105, Lyn et 

al. [83] found xr/h ≈ 1.38 for Reh = 2.1104 (in a water channel). Tables of values for the reattach-

ment length can be found in Krajnovic et al. [84] and Iaccarino et al. [85]. A roof vortex is also 

observed (see Sousa et al. [81]), but the flow does not reattach on the cube roof (whatever the 

upstream velocity). Average velocity fields for the horizontal plane are displayed in Fig. II.32. The 

arch vortex can be observed. The horseshoe vortex is however under the horizontal plane and is not 

captured. 

U (m.s-1) 10 15 20 25 30 

Reh  2.02104 3.04104 4.05104 5.06104 6.08104 

Low speed 

PIV 
1.54 1.43 1.31 1.37 1.37 

High speed 

PIV 
1.65 - 1.38 - 1.37 

Table II.6: Reattachment length xr/h obtained in the several configurations 

The spectral content of the pressure measurements has been studied. As previously, PSD are 

computed using the Welch method with Hamming window. The PSD of the 23 pressure sensors are 

displayed in Fig. II.33 and Fig. II.34 for the U  = 30 m.s-1 and 10 m.s-1 cases respectively. For all 

cases a low frequency peak about St ≈ 0.1 is observed for sensors that are away from x-axis and the 

most upstream. This frequency corresponds to the vortex shedding occurring at each lateral side of 

the cube and can concur with values found in the literature (Meinders et al. [86], Yakhot et al. [87]). 

For some sensors (mainly further downstream, at the center), a second peak is observed at St ≈ 0.2. 

This frequency still corresponds to the vortex shedding, but vortices generated at both lateral sides 

are detected. In some of the PSD displayed, peaks also arise at 50 Hz (peaks at 150, 250 Hz can 

also be observed), this frequency does not correspond to any physical phenomena and is related to 

the frequency of the electrical network due to an insufficient isolation of the sensor cables. 
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Fig. II.30: Average streamwise velocity fields in the 30 m.s-1 case from the low speed PIV (verti-

cal plane) 

 

 

Fig. II.31: Average vertical velocity field in the 30 m.s-1 case from the low speed PIV (vertical 

plane) 
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a) 

 

b) 

 

c) 

Fig. II.32: Average velocity fields in the 30 m.s-1 case from the low speed PIV (horizontal plane). 

a) Streamwise velocity, b) vertical velocity, c) spanwise velocity 
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Fig. II.33: PSD of the pressure sensors (U = 30 m.s-1) 

 



3. Experimental databases 49 

 

  

 

Fig. II.34: PSD of the pressure sensors (U = 10 m.s-1) 

3.3.4. Convergence of the statistics 

The autocorrelation of the pressure sensors is first investigated and is plotted in Fig. II.35 for 

the 15 m.s-1 case. Using the same methodology as in Chapter II.3.2.4, the extremum values of the 

integral time scale of the pressure sensors are reported in Table II.7. Even in the 10 m.s-1 case, 

samples taken at 5 Hz are uncorrelated. Once more the order of magnitude of the sampling fre-

quency to obtain statistically independent samples is about the shedding frequency (St ≈ 0.1). 

Upstream velocity U 

(m.s-1) 
10 15 20 25 30 

Minimum Ti  
(ms) 1.9 3.66 3.2 2.6 2.1 

*U/h 0.63 1.83 2.13 2.17 2.1 

Maximum Ti  
(ms) 14.3 14.7 10.3 8 8.9 

*U/h 4.77 7.35 6.87 6.67 8.9 

Table II.7: Integral time scales of the pressure sensors (cube experiments) 
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Fig. II.35: Autocorrelation as function of the delay for the 23 pressure sensors (U = 15 m.s-1) 

3.3.4.1. Low speed PIV experiments 

Examples of values of the covariance 〈𝑃𝑖𝑃𝑗〉 (𝑖 ≤ 𝑗) are plotted in Fig. II.36 with the error 

bars corresponding to the 95% confidence interval for U = 10 and 30 m.s-1. These values are ob-

tained using only 6 800 samples (sampling at 5 Hz) from 2 of the 3 experimental runs available. 

Most of relative uncertainties are under 10 %, in the U = 30 m.s-1 case, and under 15 %, in the 

U = 10 m.s-1 case. The convergence is not as good as in the BFS experiments, but we consider it 

sufficient. Similar conclusions can be drawn for the other upstream velocities. 

Fig. II.37 shows some values of the statistical moment 〈𝑃𝑖𝑃𝑗𝑃𝑘〉. Error bars corresponding to 

the 95% confidence interval are also plotted (10 and 30 m.s-1 cases). From these figures it clearly 

appears that those statistics are badly converged. For most of the 〈𝑃𝑖𝑃𝑗𝑃𝑘〉 values, the relative un-

certainty is higher than 30% (U = 30 m.s-1). Similarly,  〈𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙〉 values do not seem to be suffi-

ciently converged (not shown). And the relative uncertainty is higher than 20% for most of the 

 〈𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙〉 values. The same conclusions are reached for all the upstream velocities. Thus the train-

ing of the QSE using data from 2 of the 3 runs of the low speed PIV campaign is likely to be 

unrepresentative of the entire phenomena and to suffer from overfitting. 
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a) 

 

b) 

Fig. II.36: Examples of covariance values between the pressure sensors with error bars corre-

sponding to the 95% confidence interval. (i,j) with i ≤ j. a) U = 10 m.s-1, b) U = 30 m.s-1 

 
a) 

 
b) 

Fig. II.37: Examples of 〈𝑃𝑖𝑃𝑗𝑃𝑘〉 values with their 95% confidence interval (6 800 samples). 

a) U = 10 m.s-1, b) U = 30 m.s-1 

To study the convergence of 〈𝑢(𝑥𝑖)𝑃𝑗〉 and 〈𝑢(𝑥𝑖)𝑃𝑗𝑃𝑘〉, velocities at 8 positions are extracted 

for both the vertical and horizontal PIV plane. The extracted data are used to evaluate the conver-

gence of statistical moments between the velocity field and the pressure sensors. The 8 positions 

are displayed in Fig. II.38. Values of 〈𝑢(𝑥𝑖)𝑃𝑗〉 are shown in Fig. II.39 for the vertical plane, in the 

20 m.s-1 case and for the streamwise velocity. As previously, only 6 800 samples are used to obtain 

the figure. While the relative uncertainty is higher than for the covariance between the pressure 

sensors, the convergence of 〈𝑢(𝑥𝑖)𝑃𝑗〉 is judged qualitatively satisfying. On the contrary, 

〈𝑢(𝑥𝑖)𝑃𝑗𝑃𝑘〉 are found to be badly converged (see Fig. II.40 for instance). These conclusions remain 

true for the 3 velocity components and the 6 upstream velocity cases. 
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a) 

 

b) 

Fig. II.38: Positions of the 8 velocity data points used to study the convergence of statistical 

moments between the velocity field and pressure sensors. a) Vertical plane, b) horizontal plane. 

(Average field from the 30 m.s-1 is displayed) 

 

Fig. II.39: Examples of 〈𝑢(𝑥𝑖)𝑃𝑗〉 values with 

their 95% confidence interval (vertical PIV 

plane in the 20 m.s-1 case) 

 

Fig. II.40: Examples of 〈𝑢(𝑥𝑖)𝑃𝑗𝑃𝑘〉 values 

with their 95% confidence interval (vertical 

PIV plane in the 20 m.s-1 case) 

In addition to studying the statistics uncertainties, as proposed by Benedict et al. [70], it is 

also possible, for the statistical moments between the pressure sensors only, to compare values 

obtained from each PIV plane. Indeed, measurements are done separately for each PIV plane. This 

comparison shows that the convergence of the covariance 〈𝑃𝑖𝑃𝑗〉 is reached. Indeed, an excellent 

agreement is obtained in every cases (see for instance Fig. II.41). For higher order moments, differ-

ences between the values become larger, thus confirming their poor convergence (see Fig. II.42). 
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Fig. II.41: Comparison of 〈𝑃𝑖𝑃𝑗〉 values ob-

tained from the training set of the horizontal 

and vertical PIV plane (30 m.s-1 case) 

 

Fig. II.42: Comparison of 〈𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙〉 values 

obtained from the training set of the horizontal 

and vertical PIV plane (30 m.s-1 case) 

3.3.4.2. High speed PIV experiments 

As previously explained, in an attempt to obtain relatively converged statistical moments us-

ing the high speed PIV database, more samples were recorded during these experiments (see Table 

II.5). When the upstream velocity is 30 m.s-1 the largest integral time scales is about 0.01 s. Thus, 

the high speed PIV sampling rate being 1 kHz, about 1/10 samples can be considered statistically 

independent as the most constraining assumption. For U = 30 m.s-1, it is decided to use 18 432 

samples (from 6 runs) to form a training set, the remaining 6 144 samples forming the validation 

set. Thus the training set contains approximately 1 843 uncorrelated samples (N in equation (II.32)). 

Examples of values for the covariance 〈𝑃𝑖𝑃𝑗〉 are displayed in Fig. II.43 with the 95% confidence 

interval. The covariance between the pressure sensors seems to be qualitatively well converged. 

However, quantitatively, only about one half of the data has a relative uncertainty under 10 %. 

〈𝑃𝑖𝑃𝑗𝑃𝑘〉 and  〈𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙〉 are not correctly converged (see Fig. II.44 and Fig. II.45). 

To study the convergence of 〈𝑢(𝑥𝑖)𝑃𝑗〉 and 〈𝑢(𝑥𝑖)𝑃𝑗𝑃𝑘〉, once more, velocities at 8 and 7 

locations are extracted for the vertical and horizontal PIV plane respectively (the horizontal plane 

in the high speed PIV experiment being shorter than in the low speed one, only the 7 locations the 

closest to the cube are available). Fig. II.46 shows values of 〈𝑢(𝑥𝑖)𝑃𝑗〉 when using the spanwise 

velocity data of the horizontal PIV plane. The cross-covariance is sufficiently converged, but rela-

tive uncertainties remain large with only one half of the values with a relative uncertainty lower 

than 50 %. This is due to the fact that a large amount of 〈𝑢(𝑥𝑖)𝑃𝑗〉 converged to values close toward 

0. Similar observations are obtained with the streamwise and vertical velocity in both PIV plane. 

The convergence of 〈𝑢(𝑥𝑖)𝑃𝑗𝑃𝑘〉 is however very poor. 
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Fig. II.43: Examples of covariance values be-

tween the pressure sensors with error bars cor-

responding to the 95% confidence interval (30 

m.s-1 case)  

 

Fig. II.44: Examples of 〈𝑃𝑖𝑃𝑗𝑃𝑘〉 values be-

tween the pressure sensors with error bars cor-

responding to the 95% confidence interval (30 

m.s-1 case) 

 

Fig. II.45: Examples of  〈𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙〉 values be-

tween the pressure sensors with error bars cor-

responding to the 95% confidence interval (30 

m.s-1 case) 

 

Fig. II.46: Examples of 〈𝑢(𝑥𝑖)𝑃𝑗〉 values with 

their 95% confidence interval (data from hori-

zontal PIV plane, 30 m.s-1 case) 
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Fig. II.47: Examples of covariance 〈𝑃𝑖𝑃𝑗〉 val-

ues with error bars corresponding to the 95% 

confidence interval (20 m.s-1 case) 

 

Fig. II.48: Examples of 〈𝑢𝑖𝑃𝑗〉 values with er-

ror bars corresponding to the 95% confidence 

interval (20 m.s-1 case) 

For the 20 m.s-1 upstream velocity, 10 of the 12 runs are used to form the training set. The 

remaining two give the validation set. In this situation, the training set contains 30 720 samples, 

thus about 2047 uncorrelated samples. The convergence study of this training set leads to the same 

conclusions that for the 30 m.s-1 case. Fig. II.47 and Fig. II.48 are given as illustrations. 

At last, in the 10 m.s-1, 12 of the 16 runs are used to form the training set. The training set 

therefore contains 36 864 samples, corresponding to approximately 1 230 shedding periods and un-

correlated samples. Same conclusions as previously are reached, which is illustrated in Fig. II.49 

and Fig. II.50. 

 

Fig. II.49: Examples of covariance 〈PiPj〉 val-

ues with error bars corresponding to the 95% 

confidence interval (10 m.s-1 case) 

 

Fig. II.50: Examples of 〈uiPj〉 values with er-

ror bars corresponding to the 95% confidence 

interval (10 m.s-1 case) 

As previously, it is also possible, for the statistical moments between the pressure sensors 

only, to compare values obtained for each PIV plane. This comparison confirms the previous con-

clusions. Convergence of the covariance 〈PiPj〉 is reached and an excellent agreement is obtained in 

every cases between the values obtained using data from the horizontal PIV plane experiment and 
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the ones from the vertical PIV plane experiment (see for instance Fig. II.51). For higher order mo-

ments, differences between the values become much larger, thus confirming their poor convergence 

(see Fig. II.52).  

 

Fig. II.51: Comparison of 〈PiPj〉 values ob-

tained from the training set of the horizontal 

and vertical PIV plane (30 m.s-1 case) 

 

Fig. II.52: Comparison of 〈PiPjPk〉 values ob-

tained from the training set of the horizontal 

and vertical PIV plane (30 m.s-1 case) 

4. Numerical databases 

 All simulations used in this work have been performed using the elsA software (ensemble 

de logiciels pour la simulation en Aérodynamique / set of software for aerodynamic simulation) of 

the Onera. This software is able to perform numerical simulations of external and internal flows. It 

also covers many aspects of Computational Fluid Dynamics, such as aerodynamics, aeroacoustics, 

aerothermal and aeroacoustic couplings. With this software it is possible to perform simulations 

using Euler, RANS, URANS equations and DNS, ZDES or LES methods for instance. The system 

of equations is solved by a cell centered finite-volume method. For more details about elsA, one 

can refer to Cambier et al. [88]. Except for the simulations of the flow around the OAT15A airfoil, 

that comes from the work of Brunet et al. [89] [90], these simulations have all been personally 

performed. 

4.1. Wake behind a blunt trailing edge simulation 

In order to validate the implementation of the Stochastic Estimation (and its several exten-

sions), a simple flow field was selected for which the SE was expected to well perform. As seen in 

Chapter I, SE has already been applied for the reconstruction and prediction of blunt trailing edge 

wake flows (see Tu et al. [65] and Clark et al. [23] for instance). For such flow, at the Reynolds 

number they used, most of the TKE was contained in a few POD modes (Tu et al. used 7 POD 

modes, Clark et al. used 2 POD modes). And SE from wall pressure measurements was able to 

reproduce with good fidelity the time evolution of those POD modes. Especially, the first two POD 

modes (which form the shedding) were predicted with high accuracy. R² about 85% is reached by 

Clark et al. using 3 sensors and MTD-LSE-POD.  



4. Numerical databases 57 

 

The main goal being to validate the SE implementation, it was decided to conduct a very 

simple simulation, without much regard to the physical meaning and consistency with real experi-

mental data. The aim was to quickly obtain a simple data set that could be used rapidly. Thus, a 2D 

inviscid simulation of a blunt trailing edge was performed. The blunt trailing edge height h is 12.7 

mm (which is the same height as in the experiment conducted by Tu et al.). The upstream velocity 

U = 10 m.s-1. The simulation was run using the elsA software with a structured mesh of about 

31 000 cells. The mesh is displayed in Fig. II.53 and the several blocks can be seen. The simulated 

domain is about 4 h upstream the trailing edge, 16 h downstream and 12 h vertically. All boundary 

conditions are non reflective ones, except for the flat plate which is treated as an inviscid wall. The 

time integration scheme is the Gear one, using 9 sub-iterations and a time step of 2.5 µs. The Jame-

son scheme was used for the space discretization.  

 

Fig. II.53: Mesh of the blunt trailing edge wake Euler simulation 

The shedding frequency observed from the simulation results is about 170 Hz (St ≈ 0.22). 

This frequency is consistent with the expected Strouhal number of 0.2 and the experimental values 

of Tu et al. (~0.27) and Clark et al. (~0.23). 1 860 snapshots, sampled at 80 kHz, were extracted, 

representing around 4 shedding periods. The two velocity components, as well as the static pressure, 

are extracted in the snapshots. These snapshots form the available numerical database for this case. 

The average streamwise velocity field is displayed in Fig. II.54. The streamlines show that there are 

indeed two vortex forming just downstream the trailing edge. An instantaneous streamwise velocity 

field is shown in Fig. II.55. The von Kármán vortex street is clearly observed. 

Euler simulation gives perfectly periodic and reproducible results. It is not a stochastic pro-

cess. Therefore, the knowledge of one period is enough to obtain the averages required by SE. In 

such situation, it was considered that the use of about 400 samples was enough to get a correct 

estimation of all averages. Precisely, a shedding period spans 465 samples and thus 465 snapshots 

are used as training set. The remaining 1 395 snapshots make the validation set (about 3 shedding 

periods). Since the sample frequency is not a multiple of the shedding frequency, the 465 samples 

obtained for each shedding period are slightly different. It remains a poor way to evaluate the SE 

performances, but the main goal, when using this database, is to validate the implementation more 

than anything else. 
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Fig. II.54: Average streamwise velocity field (Euler simulation of a blunt trailing edge wake) 

 

Fig. II.55: Instantaneous streamwise velocity field (Euler simulation of a blunt trailing edge 

wake) 

4.2. Flow around a supercritical airfoil in transonic conditions 

SE has been recently used to estimate the flow around an airfoil. For instance, Garcia-Sagrado 

et al. [91] studied the wake downstream a NACA0012 profile and Carabello et al. [92] the detached 

flow downstream a NACA0015 profile. SE was however never used with shocked flow (to the 

author’s knowledge). Therefore, the use of the flow around an OAT15A airfoil in transonic condi-

tions represents an interesting test case. The OAT15A is an airfoil with a chord c = 230 mm. 

Moreover, this flow had already been simulated at the Onera. Thus, it was possible to use 

previously made databases or to rapidly run again the simulations to obtain additional data. Another 

interesting point was the availability of URANS and ZDES simulations which could be used to 

investigate the impact of turbulence on the SE performances. 
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4.2.1. Unsteady Reynolds Average Navier-Stokes (URANS) simulation 

The simulation was run using the elsA software. The mesh is a 2D structured mesh of about 

3105 cells (see Fig. II.56). The space discretization is carried out using a 2nd order backward Euler 

scheme (with multigrid treatment). The Dual Time Step algorithm is used for the time integration 

with a time step of 1.710-5 s and a maximum number of sub-iteration of 100. The turbulence model 

is the k- Wilcox one. The aerodynamics conditions considered are 4.5° for the angle of attack, 

3.106 for the Reynolds number (based on the chord Rec) and 0.73 for the freestream Mach number. 

In these conditions the buffet frequency is around 75 Hz (St ≈ 0.066).  

  

Fig. II.56: Views of the mesh used for the OAT15A URANS simulation 

Fig. II.57 shows instantaneous flow fields at different time steps of the simulation. A shock 

is clearly identified on the suction side. Its oscillation is also highlighted between the 3 views. In 

addition, a separation is observed downstream the shock. The detachment occurs right downstream 

of the shock. Slight oscillations of the wake can be seen in Fig. II.57.c), but there is no clear vortex 

shedding. 

2 850 snapshots were extracted in order to use SE methods. They correspond to less than 4 

periods of the shock oscillation (one period covering about 750 time steps). The two velocity com-

ponents, the static pressure and the density were extracted in these snapshots. The first 1 350 snap-

shots are put aside in order to allow the use of MTD estimation techniques. Then the next 750 fields 

are used as a training set, and the last 750 as a validation set. Similarly to the Euler simulation, the 

URANS simulation result is not a stochastic process (the turbulence is completely modeled, not 

resolved). All buffet periods are thus identical and consequently the knowledge of one period is 

enough to compute the averages required by SE methods. It is considered that about 750 samples 

by buffet period are enough to get a good estimation of these averages. Also since the time step 

used for the simulation is not a multiple of the shock oscillation period, instantaneous fields from 

the training set and validation set are still a little bit different, allowing us to form a validation set 

different from the training set. 
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a) 

 

b) 

 

c) 

Fig. II.57: Visualizations of the Mach number field. a) Shock at its most upstream position, b) 

shock at its most downstream position, c) shock at an intermediary position (OAT15A URANS) 
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4.2.2. Zonal Detached Eddy Simulation (ZDES) 

4.2.2.1. Description of the simulation 

A ZDES (Deck [93]) was also carried out using the elsA software. The mesh is a 3D struc-

tured mesh of approximately 2106 cells. Views of the mesh are displayed in Fig. II.58. The simu-

lation is run using the URANS equations in the black part of the mesh and ZDES mode 2 in the 

green part. The Navier-Stokes equations are discretized by means of a 2nd order accurate upwind 

finite volume scheme and a cell-centered discretization. The Euler fluxes are discretized using the 

AUSMP (Advection Upstream Splitting Method Preconditioned) upwind scheme. Time integration 

is carried out with a second-order Gear scheme with a time step of 510-7 s. The aerodynamics 

conditions considered for the ZDES are an angle of attack of 3.5°, a Reynolds number (based on 

the chord Rec) of 3106 and a freestream Mach number of 0.73. 

  

Fig. II.58: Views of the OAT15A ZDES mesh. ZDES mode 2 is used in green blocks. URANS 

equations are used in the other blocks. 

 

Fig. II.59: Isosurfaces of Q-criterion colored by the vorticity magnitude, and contours of Mach 

number in a transverse plane (Toubin [94]) 

The shock oscillation frequency is found around 70 Hz (St ≈ 0.062) and covers approximately 

29 000 time steps. About 10 periods of the buffet oscillation were computed (once the transitory 
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phase was over). As in the URANS case, the first period is put aside in order to be used with MTD 

estimation techniques. The following 8 periods are used as a training set and the last period as a 

validation set. Snapshots are extracted with a sampling frequency of 40 kHz. One oscillation period 

spans about 580 snapshots. They contain the three velocity components, the density and the static 

pressure. 

 

a) 

 

b) 

Fig. II.60: Visualizations of the Mach number field in a spanwise plane. a) Shock at its most up-

stream position, b) shock at its most downstream position (OAT15A ZDES) 

Visualizations of a slice the flow are given in Fig. II.60 when the shock is most upstream a) 

and downstream b). As for the URANS case, a shock formed on the suction side of the profile and 

the flow detached just downstream of this shock. But unlike the results of the URANS simulation, 

vortices are shed from the airfoil trailing edge (especially when the shock is the most upstream). 

Isosurfaces of Q-criterion colored by the vorticity magnitude and contours of the shock wave Mach 

number are displayed in Fig. II.59 when the shock is in an upstream position. The shedding of small 

and large scale structures in the wake can be observed. 

4.2.2.2. Convergence of the statistics 

Studying the convergence of statistics in the ZDES results is a complicated matter. Indeed, 

parts of the flow are simulated using URANS equations, while some parts are simulated using DES 
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method. In URANS parts, the process is not stochastic. In DES regions, solving part of the turbu-

lence make the process stochastic. To determine the number of statistically independent samples, 

the autocorrelation of 5 pressure data and 8 velocity data are investigated. The locations of the 

several data points are shown in Fig. II.61. The autocorrelations of the pressure data are shown in 

Fig. II.62 and the autocorrelations of the streamwise velocity for the 8 selected locations in Fig. 

II.63. From these figures the five pressure data appear deterministic and some velocity data appear 

stochastic. Streamwise velocities at the first four locations are deterministic. Otherwise they appear 

to be stochastic. However, the signals at locations 6 and 7 present a strong general pattern and seem 

almost deterministic. An integral time scale is calculated only for the streamwise velocity signals 5 

and 8 for which the autocorrelation falls and remains under 1/e. Ti is found, in both cases, to be 

approximately 1.510-4 s. Based on this integral time scale, there are about 800 independent samples 

in the training set formed of 4 640 snapshots. 

 

Fig. II.61: Positions of the pressure and velocity data used for the convergence study. Blue 

squares: pressure data, black squares: velocity data 

 

Fig. II.62: Autocorrelation as function of the 

delay for 5 pressure signals at the skin of the 

OAT15A airfoil 

 

Fig. II.63: Autocorrelation as function of the 

delay for 8 streamwise velocity data 

The 15 combinations of 〈𝑃𝑖𝑃𝑗〉 (𝑖 ≤ 𝑗) for the 5 pressure data obtained from the training set 

are displayed in Fig. II.64. Once more the error bars correspond to the 95% confidence interval. 

This interval is calculated considering 800 independent samples. The maximum relative uncertainty 

reaches 56% but all the remaining values are under 18% (in particular 12 of them are under 6%). 



64  Chapter II. Methods and databases 

 

The convergence of the covariance 〈𝑃𝑖𝑃𝑗〉 seems satisfying. For the 3rd and 4th order moments, the 

relative uncertainties are much higher and these moments are badly converged. The values of 

〈𝑢(𝑥𝑖)𝑃𝑗〉 are plotted in Fig. II.65 with the errors bars corresponding to the 95% confidence interval 

(for the vertical velocity). The values of 〈𝑢(𝑥𝑖)𝑃𝑗〉 are insufficiently converged. The relative uncer-

tainties are also particularly high, with a large amount of values higher than 100%. The similar 

conclusions are reached for the  〈𝑢(𝑥𝑖)𝑃𝑗𝑃𝑘〉 moments. In overall, the statistics from the training set 

are not well converged. Nevertheless, in the following, the performances of the SE will be evaluated 

using validation set, thus it will be possible to directly evaluated if the model suffers from overfit-

ting. 

 

Fig. II.64: Covariance values between the 

pressure data. Error bars correspond to the 

95% confidence interval. 

 

Fig. II.65: 〈𝑢(𝑥𝑖)𝑃𝑗〉 values with their 95% 

confidence interval 

4.3. 2D Backward facing step flow 

4.3.1. Description of the simulation 

The goal of this simulation is to reproduce the backward facing step experiment presented in 

Chapter II.3.2. To do so, a ZDES of the same BFS was performed, only for the U = 30 m.s-1 case. 

Once more the elsA software of the Onera was used to perform the simulation. The mesh is a 3D 

structured mesh (see Fig. II.66 and Fig. II.67). It contains approximately 18 million cells. The zone 

upstream the step is simulated using URANS equations (displayed in green in Fig. II.66). The zone 

downstream the step is simulated using ZDES mode 2 (displayed in red in Fig. II.66). The compu-

tational domain dimensions are 39 h in length (about 15 h upstream of the step and 24 h down-

stream), 4 h in width, 10 h in height (downstream of the step). The mesh satisfies y+ ≤ 1 for the 

boundary layer. In addition, at the step, the following characteristics are verified: 

 ∆x = 62.5 µm ≤ δω/2 ≈ 1.25 mm 

 ∆y = 0.01 mm ≤ δω/15 ≈ 0.17 mm 

 ∆z = 0.75 mm 

Space discretization uses AUSMP (Advection Upstream Splitting Method Preconditioned) 

scheme with a 5th order MUSCL reconstruction. The time integration scheme is the Gear one with 

7 sub-iterations. The time step is 0.4 µs in order to satisfy the CFL condition CFLmax ≤ 15 in the 

mixing layer. The upper boundary condition is a non reflective condition. Lateral boundaries use 

periodicity conditions. Walls are treated as viscous walls (adiabatic conditions in elsA). A pressure 
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of 101 325 Pa is imposed on the downstream boundary condition. At last a velocity profile is im-

posed at the upstream boundary condition. Indeed, in order to match the experimental conditions, a 

velocity profile was chosen for this boundary condition, such as the boundary layer obtained in 

RANS simulation, 10 mm upstream the step, matches the experimental boundary layer at the same 

location. 

 

Fig. II.66: 3D view of BFS ZDES mesh 

(green zone is simulated using URANS equa-

tions, red zone using ZDES mode 2) 

 

Fig. II.67: Longitudinal cut of the mesh 

 

 

Fig. II.68: Isosurfaces of Q-criterion colored 

by the streamwise velocity 

 

Fig. II.69: Boundary layer profiles 10 mm up-

stream of the step. Comparison between PIV, 

RANS and ZDES results 

About 500 ms have been simulated, but the transitory phase lasts for about 240 ms, leaving 

the last 260 ms to be used. This represents about 26 shedding periods. Isosurfaces of the Q-criterion, 

coloured by the streamwise velocity, are shown in Fig. II.68. To validate the simulation, its results 

are compared with the experimental ones. First the boundary layer profiles 10 mm upstream the 

step obtained in the experiment, in the RANS initialization of ZDES and in the ZDES are compared 

in Fig. II.69. The agreement between the 3 profiles is good. The reattachment location is found 

around 6.3 h which is consistent with the experiment value (5.9 h). Time-averaged streamwise ve-

locity profiles from the experiment and the ZDES are also compared in Fig. II.70. The streamwise 
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and vertical root-mean-squared velocity profiles are compared between the experiment and the 

ZDES in Fig. II.71 and Fig. II.72. ZDES time-averaged streamwise velocity profiles exhibit an 

excellent agreement with the experimental ones. The root-mean-squared velocity quantities are also 

in very good agreement. One can clearly observe the absence of turbulence in the boundary layer 

upstream of the step in the simulated case, which is due to the RANS simulation in this zone. For 

the longitudinal quantity, simulated values are slightly underestimated whereas, for the vertical 

quantity, they are slightly overestimated. In overall, the agreement between the ZDES and the ex-

periment is completely satisfying. 

The numerical database is composed of the longitudinal plane where the density, the 3 veloc-

ity components and the static pressure are extracted. Initially, the frequency of sampling was set to 

20 kHz but was then increased at 250 kHz to obtain more samples (even if they were correlated). 

Thus the database contains 2 300 snapshots at 20 kHz and 35 900 snapshots at 250 kHz. 

 

Fig. II.70: Comparison of normalized average streamwise velocity profiles (dashed lines: PIV 

results; solid lines: ZDES results) 

 

Fig. II.71: Normalized streamwise root-mean-squared velocity profiles (dashed lines: PIV re-

sults; solid lines: ZDES results) 
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Fig. II.72: Normalized vertical root-mean-squared velocity profiles (dashed lines: PIV results; 

solid lines: ZDES results) 

In addition, unsteady features of the simulation present a good agreement with the litera-

ture. The PSD computed at point (x = 3 h, y = 1.5 h) is shown in Fig. II.73. A peak is observed 

around 300 Hz (St = 0.3 based on the step height). This frequency corresponds to the Kelvin 

Helmholtz instability as expected from the literature (Chun et al. [95]). The spectrum at (x = 7 h, 

y = 0.1 h) (near the reattachment) is displayed in Fig. II.74. The peak is about 120 Hz (St = 0.12) 

which is consistent with the expected shedding frequency. 

 

Fig. II.73: PSD of the streamwise velocity at 

(x = 3 h, y = 1.5 h) 

 

Fig. II.74: PSD of the streamwise velocity at 

(x = 7 h, y = 0.1 h) 

4.3.2. Convergence of statistics 

Once more, the integral time scales are used to get an estimate of the number of independent 

samples available. Thus, the autocorrelation functions are first calculated for the 17 pressure sensors 

at the same location as in the experiments (only data sampled at 250 kHz are used). They are plotted 

in Fig. II.75. As one can observe, the autocorrelation is not well converged. Indeed, the functions 

are far from being as smooth as in Fig. II.16. A strange behavior is obtained for the sensor upstream 

the step and is likely due to the fact that the area is simulated using URANS equations. Nevertheless, 

from the third sensor downstream the step, the behavior of the autocorrelation function is closer to 

the one observed in the corresponding experiments. The integral time scales are found between 0.5 
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ms and 2.5 ms, which is slightly lower than values obtained with the experimental data. Integral 

time scales of the 13 velocity data points (defined in Chapter II.3.2.4.1, see Fig. II.20) are of the 

same order of magnitude (the autocorrelation functions for the streamwise velocity are shown in 

Fig. II.76 for illustration). Since the experimental data are better converged, it is decided to use the 

integral time scale experimentally estimated to determine the number of independent samples. In 

addition, since the experimental values are higher, the constraint on the convergence estimation is 

thus stronger. Therefore, based on an integral time scale of 5 ms, the 2 300 snapshots sampled at 

20 kHz represents about 23 independent samples and the 35 900 snapshots taken at 250 kHz about 

29 independent samples. Thus the number of independent samples is extremely limited and the 

statistics are not converged. 

 

Fig. II.75: Autocorrelation as function of the delay for the 17 pressure sensors (extracted from 

the BFS ZDES) 

 

Fig. II.76: Autocorrelation as function of the delay for the 13 streamwise velocity data extracted 

from BFS ZDES field 
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5. Chapter summary 

The mathematical framework of the Stochastic Estimation and its extensions has been first 

detailed. In relation to the literature and SE principles, several test cases have been chosen in order 

to test the different SE methods. 

Several experimental and numerical databases are therefore at our disposal and have been 

described. A very basic simulation of the wake downstream of a blunt trailing edge can be used to 

validate the implementation of the SE methods. Then, numerical and experimental databases of a 

2D backward facing step flow have been generated. This geometry corresponds to a flow for which 

SE has already been applied in the literature, but the present databases have been obtained at a 

higher Reynolds number. As a second step toward the final goal of the HYBEXCIT project (flow 

around the helideck of a frigate), databases of the flow downstream of a wall mounted cube was 

generated experimentally. At last, in order to test the SE on an uncommon configuration, simula-

tions of the flow around an OAT15A airfoil in transonic conditions (thus a shocked flow) have been 

performed. 

For all databases, special care has been given to the convergence of the statistical moments 

used by the SE. For the experimental databases, the number of independent samples appears to be 

insufficient to converge moments of order 3 or 4 (whatever the case). For the low speed PIV cam-

paigns, order 2 moments seem converged. When using high speed PIV, only in the cube case, the 

order 2 moments seem to be sufficiently converged. For the numerical databases, one has to truly 

worry for the convergence where the turbulence is not completely modeled. For the ZDES of the 

OAT15A airfoil in transonic conditions, only the covariance between the pressure sensors can be 

considered to be correctly converged. For the ZDES of the BFS, no statistical moments are con-

verged. In the following work, the SE methods will be tested on validation sets, thus the impact of 

the convergence will be directly appreciated from the difference between the results obtained on 

the training set and on the validation set. 
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Chapter III. Performance evaluation of the 

Stochastic Estimation for the reconstruction 

and prediction of turbulent flows  

The aim of this chapter is to compare the abilities of the SE and its extensions to reconstruct 

and predict turbulent flows of different complexity. For incompressible flow, the specification of 

the three components of velocity is enough to uniquely define the flow. In this work, except for 

the OAT15A airfoil, flows can be considered as being incompressible due to the relative low 

Mach number. Therefore, the study will be limited to the reconstruction and prediction of velocity 

fields. In addition, for applications such as the landing of a helicopter on a frigate, flow velocity 

information is of prime importance.  

To evaluate the performance of the SE and its extensions, these techniques are applied to 

flows described in Chapter II. First, SE is applied to a blunt trailing edge wake, mainly to validate 

the implementation of the method. Then, it is used for the estimation of the OAT15A airfoil flow 

in transonic conditions from the ZDES simulation, of the backward facing step flow and of the 

wall mounted cube flow. In all these test cases, the quality of the reconstruction and prediction 

will be assessed using the determination coefficient as a global quality criterion but also in term 

of normalized mean square error for local evaluation. 

 

1. Application to the wake downstream of a blunt trailing edge ..................................... 72 

1.1. Single-time Stochastic Estimation ............................................................................. 72 

1.2. Multi-Time-Delay Stochastic Estimation (MTD-SE) ................................................ 78 

1.3. Summary .................................................................................................................... 78 

2. OAT15A airfoil in transonic conditions ........................................................................ 78 

2.1. Single-time Stochastic Estimation ............................................................................. 78 

2.2. Multi-time-delay Stochastic Estimation (MTD-SE) .................................................. 86 

2.3. Estimation of the shock position ................................................................................ 88 

2.4. Summary .................................................................................................................... 89 

3. Backward Facing Step flow case .................................................................................... 89 

3.1. Application to the experimental database .................................................................. 89 

3.2. Application to the numerical database ....................................................................... 98 

3.3. Summary .................................................................................................................... 99 

4. Flow around a wall mounted cube case ......................................................................... 99 

4.1. Application to the low speed PIV database ................................................................ 99 

4.2. Application to the high speed PIV database ............................................................ 117 

4.3. Summary .................................................................................................................. 120 

5. Chapter summary .......................................................................................................... 120 

 



72 Chapter III. Performance evaluation of the 

Stochastic Estimation for the reconstruction and prediction of turbulent flows 

 

1. Application to the wake downstream of a blunt trailing edge 

1.1. Single-time Stochastic Estimation 

1.1.1. Linear Stochastic Estimation (LSE) and Quadratic Stochastic Esti-

mation (QSE) 

LSE is used to estimate the velocity field in the wake downstream of a blunt trailing edge 

simulated using Euler equations. First, only two pressure data extracted from the simulation at the 

blunt trailing edge are used as conditional events (their location is shown in Fig. III.1.b) using black 

diamonds). An example of an instantaneous field (from the validation set) and its estimation is 

shown in Fig. III.1 for the streamwise velocity and in Fig. III.2 for the vertical velocity. As expected 

from results in the literature, the estimation is good. The von Kármán vortex street is well repro-

duced, with vortices at the correct position. The determination coefficient R² is about 80%. Maps 

of the normalized mean square error for the streamwise and vertical velocity prediction (validation 

set) are plotted in Fig. III.3. The error is mainly located at the center of the vortex street for the 

streamwise velocity. For the vertical velocity, the error is spread on both upper and lower side of 

the vortex street. The average correlation module (see equation (II.29)) between the two pressure 

sensors and the streamwise and vertical velocity fields is shown in Fig. III.4. The structures depicted 

by the low values of the average correlation module in both cases are very similar in shape with the 

ones from the highest values of the normalized mean square error. This observation clearly high-

lights the relationship between estimation quality and the correlation between the sensors and the 

field to estimate. It is thus possible to deduce, directly from the training set, areas where LSE will 

likely fail to predict the flow field (outside the training set) by looking at the average correlation 

module. 

The quality of integral quantities estimation has also been evaluated. The streamwise and 

vertical root-mean-squared velocities are displayed in Fig. III.5 and Fig. III.6. Levels and general 

trends of both quantities are well estimated by the LSE with only 2 pressure sensors.  

 

a) 

 

b) 

Fig. III.1: Comparison between a) an original instantaneous streamwise velocity field (from the 

validation set) and b) its reconstruction by LSE using 2 pressure sensors (black diamonds). 
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a) 

 

b) 

Fig. III.2: Comparison between a) an original instantaneous vertical velocity field (from the val-

idation set) and b) its reconstruction by LSE using 2 pressure sensors (black diamonds). 

 

a) 

 

b) 

Fig. III.3: Normalized mean square error of the validation set for the streamwise velocity (a) 

and the vertical velocity (b) 

 

 

 

a) 

 

b) 

Fig. III.4: Average correlation module between the 2 pressure sensors and the streamwise ve-

locity field (a) and vertical velocity field (b) 
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a) 

 

b) 

Fig. III.5: Original a) Streamwise and b) vertical root-mean-squared velocities 

 

a) 

 

b) 

Fig. III.6: a) Streamwise and b) vertical root-mean-square velocities estimated by LSE with 2 

pressure sensors (validation set) 

The impact of adding more information by using more sensors has also been investigated. 

Fig. III.7 shows the normalized mean square error (of the validation set) for a LSE using 4 pressure 

sensors. The error is greatly reduced and the determination coefficient reaches 92%. As expected, 

the addition of conditional events on the prediction ability of the LSE is important. By looking at 

the maps of average correlation module (see Fig. III.8), it is still possible to link the region of highest 

error with the ones of lowest correlation. The overall effect of the addition of pressure sensors is 

here to better “distribute” the correlation. Indeed, the levels of average correlation module are less 

scattered in the case using 4 sensors than in the case using 2 sensors. The addition of sensors has 

also for effect to increase the VIF which goes from 3.3 to 10.2, however no overfitting is observed. 

This is due to the fact that the VIF remains relatively low in both cases and also to the small differ-

ences between the training and validation sets. The estimation of root-mean-square velocities is also 

improved by the use of additional sensors. The predicted root-mean-square velocities are in excel-

lent agreement with the original ones (see Fig. H.1 in Annex H.1). 
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a) 

 

b) 

Fig. III.7: Normalized mean square error of the validation set for the streamwise velocity (a) 

and the vertical velocity (b) 

 

a) 

 

b) 

Fig. III.8: Average correlation module between the 4 pressure sensors and the streamwise ve-

locity field (a) or vertical velocity field (b) 

 

a) 

 

b) 

Fig. III.9: Estimation by QSE with 4 pressure sensors of an instantaneous velocity field a) 

streamwise velocity and b) vertical velocity 

The use of QSE was then investigated. Once more, 2 and 4 pressure sensors are used as con-

ditional events. The estimation of the same instantaneous velocity field as in Fig. III.1 and Fig. III.2 

using QSE and 4 sensors is displayed in Fig. III.9. The estimated flow field in this figure is almost 
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indistinguishable from the original flow field. Both reconstruction (training data set) and prediction 

(validation) are excellent. QSE clearly improves the estimation accuracy compared to LSE. In terms 

of R², it reaches 92% for the QSE with 2 pressure sensors and more than 99.5% for the QSE with 4 

pressure sensors. 

1.1.2. Modified Stochastic Estimation (SE-POD) 

The POD is computed using the 465 snapshots of the training set only. Fig. III.10 shows the 

energy spectrum of the POD decomposition. The first two POD modes contribute to more than 86% 

of the total TKE (each for approximatively the same amount). Each POD mode of higher order 

contributes to less than 4%. 7 POD modes are required to retain 99% of the TKE. 

Contours of streamwise and vertical components of the POD modes 1 and 2 are plotted in 

Fig. III.11 and Fig. III.12. The spatial structures of these two POD modes are consistent with results 

found in the literature (Durgesh et al. [20], Tu et al. [65], Clark et al. [23]). The superposition of 

these two POD modes represents the dominant features of the von Kármán vortex shedding. The 

remaining POD modes correspond to smaller spatial scales and higher frequencies (than the vortex 

shedding) dynamics. 

 

Fig. III.10: Energy spectrum of the first ten POD modes 

 

a) 

 

b) 

Fig. III.11: Contours of the streamwise (a) and vertical (b) components of the first POD mode 
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a) 

 

b) 

Fig. III.12: Contours of the streamwise (a) and vertical (b) components of the second POD 

mode 

LSE-POD using 2 and 4 sensors as previously is performed in which only the first seven POD 

modes are considered. The determination coefficient calculated with the original field (containing 

100% of the TKE) is 80% using 2 sensors and 92% using 4 sensors. In both cases, R² is not improved 

using LSE-POD instead of LSE. The problem dimensions are however smaller since only 7 POD 

modes are required to obtain the same estimation as with the LSE. Only the 7 temporal POD 

coefficients are estimated instead of the 31 000 data of the entire flow field. Determination 

coefficients calculated for each POD mode separately (R²POD Single) are displayed in Fig. III.13 for 

both situations. In the case where 2 sensors are used, only the first 2 POD modes are well predicted 

(R²POD Single > 85%). When 4 sensors are utilized, the first 2 POD modes are better predicted than in 

the 2 sensors case, but the prediction accuracy is much more improved for POD modes 3 and 4 

(R²POD Single > 85% for both). In both cases, POD modes of rank 5 of higher are not correctly 

predicted (R²POD Single < 10%). Therefore, the LSE appears to be able to predict (and reconstruct) 

only the first POD modes with high fidelity. For this flow, since most of the TKE is contained in 

the first 2 POD modes the overall estimation is excellent. However, if one is interested in the smaller 

and less energetic structures of the flow, more sensors are probably necessary. 

 

Fig. III.13: Determination coefficients calculated for each POD mode separately on the valida-

tion set (blunt trailing edge) 
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In agreement with previous observations, the QSE-POD reconstruction and prediction are 

largely improved compared to the LSE-POD. The same determination coefficients as in the case 

where no POD is used are achieved. R²POD Single obtained on the validation set with QSE-POD are 

shown in Fig. III.13. As one can observe, with only 2 sensors, the QSE is able to match the accuracy 

of the LSE with 4 sensors. Using 4 sensors, the QSE outperforms the LSE with a very accurate 

reconstruction and prediction of the first 7 POD modes (R²POD Single > 95%). 

1.2. Multi-Time-Delay Stochastic Estimation (MTD-SE) 

The use of MTD-SE was quickly investigated without any effort to optimize the number of 

delays. Indeed, the results obtained were already excellent. In this test case, the MTD-SE allows to 

reach a determination coefficient of 100% on the validation set. For instance, such performances 

are obtained with 2 sensors and 40 delays taken every 0.125 ms (thus 80 conditional events in total 

are used). In this situation, the first 7 POD modes are perfectly reconstructed and predicted. The 

MTD-SE clearly appears to improve the estimation quality. However, it is important to remind that 

in the present test case, the data to estimate present no stochastic behavior (there is no turbulence) 

and the validation set and training set are nearly identical. 

1.3. Summary 

Determination coefficients obtained on the validation set for the several situations tested are 

summarized in Table III.1. These results highlight the good performances of all techniques on a 

very simple flow, with a dynamic that is composed only of the von Kármán vortex street. The impact 

of adding sensors is also observed with an improvement in accuracy when 4 sensors are used instead 

of only 2. The use of POD does not improve the reconstruction of the initial flow field, but allows 

working on a smaller problem (the estimation of a small number of POD coefficients). QSE is 

shown to better perform than LSE (using the same amount of sensors). At last, the addition of delays 

also improves the reconstruction and prediction. 

 2 sensors 4 sensors 

LSE 80 92 

LSE-POD (99% TKE) 80 92 

QSE 92 99.5 

QSE-POD (99% TKE) 92 99.5 

MTD-LSE (40 delays) 100 100 

Table III.1: Determination coefficients (expressed in %) comparison (wake behind a blunt trailing 

edge test case) 

2. OAT15A airfoil in transonic conditions 

In this part, only ZDES results are considered. Indeed, they correspond more closely to a real 

flow. The estimation of URANS velocity fields will be used in the next chapter to highlight some 

characteristics of the SE related to turbulence. 

2.1. Single-time Stochastic Estimation 

2.1.1. Linear Stochastic Estimation (LSE) and Quadratic Stochastic Esti-

mation (QSE) 
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As previously, single-time LSE is first considered using wall pressure measurements (pres-

sure data extracted from the simulation at the wall of the airfoil). Two sets of sensors which loca-

tions are chosen intuitively, based on the flow characteristics, are used. The two main phenomena 

are the shock oscillation and the vortex shedding in the wake. Thus, it seems logical to put a sensor 

near the mean shock location to “capture” the shock oscillation and to choose a sensor at the trailing 

edge to determine the wake flow. A sensor is also picked at the leading edge since it is justified to 

think that the flow around the airfoil is impacted by the physics at this location. 

A set of 5 sensors is also formed using the 3 sensors of the previous set as well as one sensor 

on the pressure side (at about half the chord) and one sensor on the suction side between the leading 

edge and the mean shock location. The sensor locations are detailed in Table III.2. The set contain-

ing 3 sensors is referred to as “Intuitive P 3” and the set of 5 sensors as “Intuitive P 5”. Sensors are 

shown with black squares in figures. 

Intuitive P 3 Intuitive P 5 

0.45 (s) 0.45 (s) 

1 (s) 1 (s) 

0 (s) 0 (s) 

 0.21 (s) 

 0.49 (p) 

Table III.2: Pressure sensor positions (in x/c) for the two sets used for the estimation of the flow 

around the OAT15A airfoil. “s” stands for the suction side and “p” for the pressure side. 

Since it was shown that the average correlation module could hold information on where the 

LSE will badly reconstruct and predict the field, we first displayed this data in Fig. III.14. From this 

figure, the wake region appears to be weakly correlated with both sets of sensors (whatever the 

velocity component considered). Thus, the LSE estimations should be of poor accuracy on this area. 

The streamwise velocity is also weakly correlated with both sets of sensors upstream and down-

stream the mean location of the shock. Thus high errors are also expected in these regions. 

 

a) 

 

b) 

 

c) 

 

d) 

Fig. III.14: Average correlation module between the streamwise velocity (a), c)) or the vertical ve-

locity (b), d)) and the set of pressure sensors (a), b) “intuitive P 3” set; c), d) “intuitive P 5” set) 
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An example of an instantaneous field (from the validation set) and its estimation is shown in 

Fig. III.15 (streamwise and vertical components are displayed). In the original field, the shock and 

vortex shedding can be observed. Concerning the estimation of the streamwise component of the 

velocity, the shock is somehow reproduced at the correct position in both 3 and 5 sensors cases 

(even if the levels of fluctuating streamwise velocity are not correct). But vortices in the wake are 

clearly not reproduced and are mostly rubbed out. The estimated wake seems to have been 

smoothed. In addition, the levels of the estimated fluctuations are lower than the original ones. 

These levels are however higher when using 5 sensors than when using 3 sensors. Similar observa-

tions can be done concerning the estimation of the vertical velocity. The fluctuations are more at-

tenuated than for the estimation of the streamwise velocity. Indeed, it is important to notice that the 

scales of images d) and f) are different than the one in image b). For the LSE using 5 sensors, some 

structures just downstream the airfoil are predicted, but they do not match the original structures. 

At last, these observations are also true concerning fields from the training set. In overall, the shock 

location is relatively well estimated. Vortices in the wake are not reconstructed, nor predicted. 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

Fig. III.15: Instantaneous fluctuating velocity field normalized by U0. a), c), e) streamwise compo-

nent; b), d), f) vertical component. a), b) original field; c), d) LSE prediction with 3 pressure sen-

sors; e), f) LSE prediction with 5 pressure sensors. (Validation set estimation) 

In terms of R², the results are not as good as for the blunt trailing edge wake. In the 3 sensors 

case, R² is 43.6% and 53.2% is obtained for the “intuitive P 5” set. The normalized mean square 

error of validation set data estimation is plotted in Fig. III.16 for both velocity components and both 

3 and 5 sensor cases. As expected from the observations drawn from the instantaneous field esti-

mation, and from the maps of average correlation module, large errors are found in the wake (for 

both the streamwise and vertical component). As in the blunt trailing edge case, it is shown that the 
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maps of average correlation module can identify the areas where the LSE gives poorly accurate 

estimations. High error levels are also found around the mean shock location. This observation is 

not in contradiction with the fact that the shock position is well estimated. Indeed, if the shock 

position is correctly reproduced, velocity levels, upstream and downstream the shock, are not. Dif-

ferences between the 3 and 5 sensors cases are also important and the addition of the 2 sensors 

clearly decreases the error levels. However, when comparing the error from both cases, the regions 

of highest errors appear to be mostly unchanged. It is mostly where the error is about 0.5 in the 3 

sensors case, that the error is strongly reduced (below 0.1). Thus the addition of the 2 sensors is not 

sufficient to recover structures in the wake. 

 

a) 

 

b) 

 

c) 

 

d) 

Fig. III.16: Normalized mean square error of the LSE prediction (validation set). a) streamwise 

velocity component, “intuitive P 3”, b) vertical velocity component, “intuitive P 3”, c) streamwise 

velocity component, “intuitive P 5”, d) vertical velocity component, “intuitive P 5”. 

The use of QSE is now investigated using the same sets of pressure sensors. Once more in-

stantaneous fluctuating velocity fields are displayed in Fig. III.17 and can be compared with those 

in Fig. II.15. Compared to the LSE prediction, the streamwise velocity field estimated by QSE does 

not present any strong differences. Streamwise velocity levels are slightly better recovered (it is 

more visible near the shock). More differences can be observed for the vertical velocity where the 

estimated levels are less attenuated with QSE than with LSE. At last the differences between the 3 

and 5 sensors cases using QSE are not as strong as when LSE is used. The addition of 2 sensors 

does not improve the prediction as much as in the LSE case.  

It is confirmed by values of R² which is 58% with 3 sensors and 60.7% with 5. These values 

show that the QSE estimate is more accurate than the LSE one. The QSE achieves a better accuracy 

with 3 sensors than the LSE with 5. These observations are consistent with those made in the blunt 

trailing edge case. The improvement of accuracy can also be observed on maps of the normalized 

mean square error plotted in Fig. III.18. In this figure, one can see that the error is strongly reduced 

around the shock and in a smaller amount in the wake. 
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a) 

 

b) 

 

c) 

 

d) 

Fig. III.17: Instantaneous fluctuating velocity field normalized by U0. a), c) streamwise compo-

nent; b), d) vertical component. a), b) QSE prediction with “intuitive P 3” set; c), d) QSE predic-

tion with “intuitive P 5” set (Validation set estimation) 

 

a) 

 

b) 

 

c) 

 

d) 

Fig. III.18: Normalized mean square error of the QSE prediction (validation set). a) streamwise 

velocity component, “intuitive P 3”, b) vertical velocity component, “intuitive P 3”, c) streamwise 

velocity component, “intuitive P 5”, d) vertical velocity component, “intuitive P 5”. 

In the literature on LSE and QSE, the quality of the estimation is sometime assessed by look-

ing at the estimation of root-mean-square quantities (see for example [11]). It is important to remark 

that a good estimation of a root-mean-square quantity does not guarantee the correct estimation of 

the instantaneous flow. Thus, when one is interested in predicted the temporal evolution of a quan-

tity, evaluating the estimation of its root-mean-square value is clearly not enough. 

Vertical root-mean-square velocity fields (original and estimated by LSE, QSE on the vali-

dation set) are displayed in Fig. III.19, Fig. III.20 and Fig. III.21. (Streamwise root-mean-square 
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velocity fields are shown in Annex H.2 Fig. H.2). Vertical root-mean-square velocity is strongly 

underestimated in the wake (not so much around the shock) whatever the estimation technique and 

the set of sensors used. However, for the same set of sensors, root-mean-square velocity levels 

increase when QSE is used instead of LSE. Adding sensors, also leads to an improvement of both 

reconstruction and prediction of the root-mean-square velocity. These observations are consistent 

with the general improvement in accuracy observed on the determination coefficient between the 

several tested situations. The streamwise root-mean-square velocity is, for its part, better recovered 

than the vertical one (see in Fig. H.2 in Annex H.2). 

 

Fig. III.19: Vertical root-mean-square velocity 

calculated from the validation set 

 

Fig. III.20: Vertical-root-mean square velocity of 

the LSE estimation of validation set data (5 pres-

sure sensors are used) 

 

Fig. III.21: Vertical root-mean-square velocity of the QSE estimation of validation set data (5 

pressure sensors are used) 

2.1.2. Modified Stochastic Estimation (SE-POD) 

The POD is computed from the training set snapshots only (so that the POD basis contains 

no information from the validation set). Thus 4 640 snapshots are used (see Chapter II). Only the 

streamwise and vertical velocities are considered for the calculation of the POD modes. The energy 

spectrum of the first hundred POD modes is displayed in Fig. III.22. Compared to the Fig. III.10, 

the energy content is spread over more POD modes for the OAT15A airfoil flow than for the blunt 

trailing edge one. The first POD mode accounts for 48% of TKE and the first four for 79%. 
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Fig. III.22: Energy spectrum of the first hun-

dred POD modes (OAT15A ZDES) 

 

Fig. III.23: Determination coefficient calculated 

for each POD mode separately on the valida-

tion set (OAT15A ZDES) 

Four situations, corresponding to different number of POD modes to estimate, are investi-

gated. 2, 4, 25 and 80 POD modes are considered which represents 48%, 79%, 84% and 93% of 

TKE. Both 3 and 5 sets of pressure sensors are used. Values of R² are given in Table III.3 and can 

be compared with LSE and QSE ones.  

As observed in the blunt trailing edge test case, the use of POD does not improve the estima-

tion of the original flow field containing 100% of TKE. It is coherent since the estimation concerns 

only a limited number of POD modes and thus of TKE. To compute the determination coefficient, 

it is also possible to take as reference, not the original flow field (containing 100% of TKE), but its 

projection onto the POD basis that is considered. From the values in Table III.3, one can see that it 

is always higher than the one obtained from the original flow field. Thus, the estimated flow field 

is “closer” to the projected field. In addition, this determination coefficient decreases when more 

POD modes are used. This indicates that POD modes of higher rank are globally estimated with a 

decreasing accuracy, which is confirmed by the evolution of R²POD which decreases drastically. In 

the calculation of R²POD, each POD coefficient accounts for the same amount in the error since they 

are normalized. Thus, when several POD coefficients are estimated with a poor accuracy, the error 

rapidly increases. Actually, R²POD is almost divided by two when 4 POD modes are considered 

instead of 2. This seems to indicate that among the POD modes 3 and 4, at least one is not estimated 

with high fidelity. This is confirmed in Fig. III.23 where the determination coefficient of the first 

10 POD modes are plotted. POD modes 1 and 2 are well predicted, especially when 5 sensors are 

utilized. With the set of 5 pressure sensors R²POD Single > 90% is achieved. On the contrary, POD 

modes 3 and 4 are very poorly reconstructed and predicted. With both sets of sensors, R²POD Single is 

less than 3% for POD mode 3 and less than 20% for POD mode 4. For the “Intuitive P 3” set, all 

higher POD modes are estimated with R²POD Single less than 15%. For the set of 5 sensors, POD 

modes 9 and 10 are estimated with R²POD Single higher than 40% but higher order POD modes are 

also poorly estimated (R²POD Single < 10%). 
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Sensors set Intuitive P 3 Intuitive P 5 

R² from  

original fields 
Prediction 

LSE 0.436 0.532 

LSE-POD (2 modes) 0.415 0.495 

LSE-POD (4 modes) 0.416 0.508 

LSE-POD (25 modes) 0.422 0.529 

LSE-POD (80 modes) 0.422 0.529 

QSE 0.58 0.607 

QSE-POD (2 modes) 0.503 0.506 

QSE-POD (4 modes) 0.515 0.527 

QSE-POD (25 modes) 0.579 0.605 

QSE-POD (80 modes) 0.58 0.607 

R² from POD pro-

jected fields 
Prediction 

LSE-POD (2 modes) 0.799 0.952 

LSE-POD (4 modes) 0.649 0.793 

LSE-POD (25 modes) 0.513 0.644 

LSE-POD (80 modes) 0.467 0.585 

QSE-POD (2 modes) 0.968 0.991 

QSE-POD (4 modes) 0.804 0.823 

QSE-POD (25 modes) 0.704 0.736 

QSE-POD (80 modes) 0.641 0.671 

R²POD Prediction 

LSE-POD (2 modes) 0.713 0.955 

LSE-POD (4 modes) 0.354 0.525 

LSE-POD (25 modes) 0.079 0.158 

LSE-POD (80 modes) 0.025 0.046 

QSE-POD (2 modes) 0.956 0.969 

QSE-POD (4 modes) 0.52 0.578 

QSE-POD (25 modes) 0.24 0.316 

QSE-POD (80 modes) 0.076 0.104 

〈VIF〉 
LSE 94.8 1.40105 

QSE 3.65107 3.781010 

Table III.3: Determination coefficients comparison between several SE (OAT15A ZDES) (calcu-

lated for the validation set) 

When QSE-POD is used, the same conclusions can be drawn concerning the comparison 

between QSE and QSE-POD. In addition, QSE-POD leads to higher determination coefficients than 

LSE-POD in all situations. More interesting are the observations made on the estimation of POD 

mode separately when using QSE instead of LSE (see Fig. III.23). If the QSE improves, in overall 

the accuracy of the reconstruction and prediction, the improvement is very different from one POD 

mode to another. For instance, R²POD Single goes from less than 20% for POD modes 5 and 6 (what-

ever the set of sensors) to more than 75% (for both set of sensors) when using QSE instead of LSE. 

Determination coefficient also increases strongly for POD mode 9 when QSE is used. Taking into 

account the quadratic term in the Taylor expansion is therefore very important to estimate some 

POD modes. In comparison, increases of R²POD Single for POD modes 3, 4, 7 and 8 are small and they 

are all estimated with a determination coefficient lower than 30%. Therefore, for some POD modes, 

the addition of quadratic information from the sensors is not enough to get an accurate prediction. 
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Some POD modes are clearly more difficult to estimate with a limited number of pressure sensors 

using SE methods. This will be better analyzed in the next chapter (see Chapter IV.2). 

2.2. Multi-time-delay Stochastic Estimation (MTD-SE) 

As explained in the literature review (see Chapter I.2), recent developments on MTD-SE 

show the existence of an optimal time window for the choice of delays. Using delayed information 

outside this window (more in the past) only improved the reconstruction but not the prediction 

accuracy. Knowing this optimal window, one has still to choose the time step (or equivalently the 

number of delays). In the literature, to find these parameters several situations are tested and the 

best is kept. In general, the optimal window is of the order of magnitude of the main phenomena 

period (for instance, in the case of vortex shedding, it is of order of the vortex period). Then, if a 

constant time step is considered between the delays (chosen in the optimal time window), the accu-

racy of the prediction is mostly improved by shortening the time step (and thus increasing the num-

ber of delays taken in the time window). 

Using both “intuitive P 3” and “intuitive P 5” set of sensors, MTD-LSE is investigated. Sev-

eral constant time steps between delays are considered, as well as different numbers of delays. Fig. 

III.25  shows the evolution of R² (from the validation set) with the number of delays for several 

constant time steps between delays. The values are obtained using Tikhonov regularization. Without 

applying Tikhonov regularization, validation set R² mostly decreases when more delays are used 

and the prediction accuracy is never as good as when Tikhonov regularization is employed. On the 

contrary, without regularization, the reconstruction accuracy improves when more delays are used.  

In Fig. III.25, R² increases when the number of delays increases and reaches a plateau when 

the maximal time delay approaches the shock oscillation period (Tosc). In some cases, R² reaches a 

maximum when the maximal delay is between 0.6 – 0.9 Tosc. The optimal time window goes from 

0 to 0.5 – 1 Tosc, which is consistent with observations from the literature (see Tu et al. [65], Clark 

et al. [23], Hosseini et al. [66]). 

Both reconstruction and prediction of the velocity field quality can be improved using MTD-

LSE compared to LSE and QSE. R² obtained with the best MTD-LSE on the validation set are given 

in Table III.4. On the training set, R² up to 78% are obtained. On the validation set, R² reaches 70% 

using the “intuitive P 5” set and 70 delays every 8.6210-3 Tosc. In comparison, R² of the LSE pre-

diction, with the same set of sensors, is only 53% and R² of the QSE 61%. The normalized mean 

squared error of the MTD-LSE using “intuitive P 5” set and 70 delays every 8.6210-3 Tosc is shown 

in Fig. III.24. The error is decreased mainly in the wake close to the airfoil compared to LSE and 

QSE. 

 

a) 

 

b) 

Fig. III.24: Normalized mean square error of the MTD-LSE prediction using “intuitive P 5” 

(validation set). a) streamwise velocity component, b) vertical velocity component 
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 “Intuitive P 3” “Intuitive P 5” 

R² (%) 69 70.4 

Table III.4: Determination coefficients of the best MTD-LSE prediction using the two sets of 

pressure sensors 

 

a) 

 

b) 

Fig. III.25: Validation set determination coefficients as function of the number of delays for 

MTD-LSE using 3 (a) and 5 (b) pressure sensors 

 

Fig. III.26: Determination coefficient calculated for each POD mode separately on the validation 

set (blunt trailing edge). The MTD-LSE uses 70 delays every 8.6210-3 Tosc in the past and 

Tikhonov regularization. 

To better explore the impact of MTD methods, R²POD Single of the 10 first POD modes for the 

best MTD-LSE situation using the set of 3 pressure sensors is plotted in Fig. III.26. LSE and QSE 

results are also shown for comparison. MTD-LSE leads for all of the 10 first POD modes to a better 

prediction accuracy than LSE or QSE. Especially, the prediction of mode POD 3, 4, 7 and 8 is 

greatly improved, with R²POD Single higher than 40% whereas it was lower than 30% with LSE and 

QSE (using both set of sensors). Clearly, some information, that could not be predicted using only 
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single-time, is predicted using several delays in the past. This will be addressed more precisely in 

the next chapter (Chapter IV). 

2.3. Estimation of the shock position 

The possibility to predict the shock position (on the airfoil wall) is quickly investigated. In-

deed, it is possible to think of applications for which the knowledge of the entire velocity field is 

not necessary and more limited information, like the shock position, might be sufficient. That is the 

case when applying control to the buffet phenomenon. In what follows the shock position on the 

airfoil wall is defined using the pressure information at the wall. The shock position is the position 

at which the absolute value of the spatial pressure derivative, on the suction side, is maximum. To 

compute the spatial pressure derivative, a second order centered scheme is used and only the x 

coordinate is considered. The shock position evolution in time is displayed in Fig. III.27 (original 

curve). The steps that the curve presents are due to the spatial discretization of the airfoil skin. 

Two methods are studied to predict the shock position. The first one is to predict the pressure 

at the skin of the airfoil and then calculate the shock position. The second one is to predict directly 

the shock position. Only the set of 5 pressure sensors (“intuitive P 5” is considered). The results are 

displayed in Fig. III.27 and show that the shock position is qualitatively well estimated by the LSE 

in both cases. Directly estimating the shock position using LSE seems to lead to slightly better 

results and that is confirmed quantitatively by looking at the determination coefficient values. R² is 

99.8% when direct estimation is used and 90.3% when the estimation of the skin pressure is used. 

Therefore, it seems that if one wants to estimate a variable extracted from the field, it is better to 

directly estimate it, than to estimate the field and then recalculate the variable. At last, if the field is 

predicted with an average accuracy, the shock position can still be predicted by LSE, using the same 

conditional event, with a very high accuracy. 

 

a) 

 

b) 

Fig. III.27: Shock position as function of time. Comparison between the original data and the 

estimations by LSE through skin pressure estimation or by direct estimation. (b) zoom on the 

validation period. 
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2.4. Summary 

Comparing LSE, QSE and MTD-LSE leads to the same conclusions as in the blunt trailing 

edge case. MTD-LSE (with Tikhonov regularization) outperforms the LSE and QSE. QSE also 

improves the reconstruction and prediction accuracy compared to LSE. The use of LSE-POD and 

QSE-POD does not improve the estimation of the entire flow field. The addition of conditional 

events is also shown to improve the estimation accuracy. 

In overall, the estimation is not as good as for the blunt trailing edge and the highest R² ob-

tained with MTD-LSE is only 70%. Looking at the estimation of POD modes, it appears that some 

are estimated with a much higher accuracy than others. The study of the phenomenon is conducted 

in Chapter IV. 

Also the possibility to estimate the shock position was investigated. The study showed that it 

is better to directly estimate it than to estimate the field (or skin pressure in this case) and then 

calculate it. It also showed that a very high accuracy was obtained while the prediction accuracy of 

the velocity field was average. 

3. Backward Facing Step flow case 

In this section, the experimental data from the low speed PIV campaign are first used to test 

the SE. Then SE is also applied to the numerical database. Only the 30 m.s-1 case is detailed here. 

Results obtained for 20 and 25 m.s-1 of upstream velocity are however summarized in Table III.7, 

Table III.8, Table III.9 and Table III.10. Some figures are also given for illustrations in annex H.3. 

3.1. Application to the experimental database 

3.1.1. Single-time Stochastic Estimation 

In this part, SE is tested for the reconstruction and prediction of the BFS low speed PIV 

database. The 17 pressure sensors, synchronized to the snapshots, are used.  

3.1.1.1. Linear Stochastic Estimation (LSE) and Quadratic Stochastic Estima-

tion (QSE) 

As previously, a first evaluation step can be to look at maps of the average correlation module 

between the sensors and the field to estimate (see Fig. III.28). Compared to Fig. III.14 levels of 

correlations are very small in the BFS case. A region of higher correlations is nevertheless observed 

downstream the step, above the recirculation region, at about the reattachment point. Lower errors 

are therefore expected in this region, but one can expect the LSE to perform poorly in overall. 

An example of an instantaneous field (from the validation set) and its estimation is shown in 

Fig. III.29 for the streamwise velocity and in Fig. III.30 for the vertical velocity. One thing to notice 

is that in order to see the predicted structures, two different scales are used, one for the original field 

and one for the estimated one. From this fact it is obvious that predicted fluctuations are greatly 

lessened. They are almost 10 times lower than the original one. The original field is composed of 

numerous small scale structures of high levels of fluctuations. On the contrary, in the LSE predic-

tion, only large structures of lower levels of fluctuations appear. In these figures, it is very difficult 

to see a relation between the original and estimated fields. The accuracy of the LSE is very low, 

which is confirmed by the determination coefficient: 8.4% on the training set and 7.9% on the val-

idation set. The normalized mean square error (calculated on the validation set) is shown in Fig. 

III.31. The error is extremely high (higher than 0.9) in most of the field. As hinted by the study of 
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the average correlation module, lower errors are found above the recirculation region, at the reat-

tachment point. However, the lowest error there is still about 0.5 which remains high. 

The prediction by QSE of the same instantaneous flow field as in Fig. III.29 and Fig. III.30 

is plotted in Fig. III.32. As one can observe, the scales of the predicted fields are still different 

between the original and the QSE prediction. But the extrema of the QSE scales are higher than 

those of the LSE scales. The predicted structures by the QSE are recovered with higher fluctuation 

levels. However, the comparison between the LSE and QSE predicted flow field shows that the 

predicted structure shapes and positions are almost unchanged. Both predictions are in fact very 

similar. The normalized mean square error of the QSE prediction is plotted in Fig. III.33. The figure 

is completely similar to Fig. III.31. No real improvement can be observed by using the QSE. The 

QSE determination coefficient is 11.6% on the training set, but only 6.9% on the validation. This 

difference of R² between the training set and validation set, which was not observed in the blunt 

trailing edge case and OAT15A case, is symptomatic of an overfitted model. Going back to the 

equations of the Chapter II.1.1, it was shown that using single-time QSE or LSE leads to the reso-

lution of a matrix system of the same form (see equation (II.8)) for the calculation of the coeffi-

cients. From a simple mathematical point of view, it is possible to consider the QSE as being an 

LSE using more conditional events. These additional events are in fact the 
𝑁×(𝑁−1)

2
 permutations 

〈𝐄(𝑦𝑖)𝐄(𝑦𝑗)〉 (with order). With 17 sensors, the QSE holds in total 153 coefficients. Therefore, the 

QSE model is greatly larger and complex than the LSE one which makes it more susceptible to 

suffer from overfitting. Considering each permutation 〈𝐄(𝑦𝑖)𝐄(𝑦𝑗)〉 as an independent conditional 

event, it is possible to calculate a different VIF for the QSE. The QSE VIF is 4.7 instead of 2 in 

LSE. The there are more collinearities in the conditional event matrix. In addition, it was observed 

in Chapter II.3.2.4.1 that the statistical moments used to compute the QSE coefficients were not 

well converged on the training data set. This is another factor which explains that QSE suffers from 

overfitting in this test case. It is probably the main factor since the difference in VIF between LSE 

and QSE is not so important. The use of the Tikhonov regularization, to overcome this overfitting, 

shows only a very slight improvement (less than 1% on the validation set determination coefficient). 

The estimation of the Root-Mean-Square (RMS) velocity is now evaluated. Velocity RMS 

fields are displayed in Fig. III.34 and Fig. III.35. In these figures, only validation set data are used. 

The original field can be compared to the estimated field obtained by LSE and QSE with 17 pressure 

sensors. In overall the predicted RMS are lower than the original ones for both velocity components. 

It is important to notice that scales are not the same for the original RMS and the predicted ones. 

Levels are approximately divided by 2. The RMS velocity is however better predicted by QSE than 

LSE. This has been observed in several works on SE (see for example Murray et al. [11], Arana-

jatesan et al. [40]). It is interesting since it was previously shown that QSE suffers from overfitting 

and the prediction accuracy of QSE was here lower than the accuracy of LSE (in term of determi-

nation coefficient). In short, while the quality of the prediction of instantaneous velocity field is 

deteriorated when using QSE, the RMS velocity prediction quality is improved. The explanation is 

that the levels of the predicted fluctuation velocity are higher in QSE than in LSE. Since the pre-

diction is inaccurate, the increase in levels of velocity fluctuations results in a higher error between 

original instantaneous field and its prediction (in general). The prediction accuracy is deteriorated. 

However, the RMS velocity is linked to the levels of fluctuations of the velocity. Thus when they 

increase, the RMS velocity increases. Therefore, the RMS velocity is less underestimated by QSE 

than LSE. An interpretation is that, in our case, the use of QSE leads to the prediction of higher 

fluctuations of velocity than LSE, globally in the correct area, but not particularly at the correct 

time. In these conditions, comparing LSE and QSE, and evaluating their accuracy through the anal-

ysis of estimated RMS quantity is clearly not correct. 
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Fig. III.28: Average correlation module between 

the streamwise velocity (top) or the vertical ve-

locity (bottom) and the set of 17 pressure sensors 

 

Fig. III.29: Instantaneous fluctuating streamwise 

velocity field. Top: original, bottom: LSE predic-

tion.  

 

Fig. III.30: Instantaneous fluctuating vertical ve-

locity field. Top: original, bottom: LSE predic-

tion. 

 

Fig. III.31: Normalized mean square error of the 

LSE prediction for the streamwise velocity (top) 

and the vertical velocity (bottom) 

 

Fig. III.32: Instantaneous fluctuating velocity 

field predicted by QSE. Top: streamwise compo-

nent, bottom: vertical component 

 

Fig. III.33: Normalized mean square error of the 

QSE prediction for the streamwise velocity (top) 

and the vertical velocity (bottom) 
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Fig. III.34: Streamwise root-mean-square ve-

locity; top: original; middle: LSE estimation; 

bottom: QSE estimation (validation set) 

 

Fig. III.35: Vertical root-mean-square velocity, 

top: original; middle: LSE estimation; bottom: 

QSE estimation (validation set) 

3.1.1.2. Modified Stochastic Estimation (SE-POD) 

Once more the POD is computed from the training data set only. The energy spectrum of the 

POD is plotted in Fig. III.36. Compared to the spectrum obtained for the OAT15A or the blunt 

trailing edge case, the TKE is clearly spread over a larger number of POD modes. The first POD 

mode accounts only for about 11% of the total TKE. The first 20 POD modes are necessary to retain 

about 50% of the TKE and 652 POD modes to retain 90% of the TKE. In this test case, the flow 

dynamics cannot be captured and modeled with a small number of POD modes.  

The prediction of the same instantaneous fluctuating velocity field as in Fig. III.29, Fig. III.30 

and Fig. III.32, using LSE-POD is shown in Fig. III.38. 92 POD modes are used, which retain about 

70% of the TKE. The original velocity field projected on the POD basis is also displayed. Compared 

to the LSE prediction, the predicted structures remain unchanged in shape and location. The main 

difference is that the levels of predicted fluctuating velocity are decreased in the LSE-POD case. It 

seems logical since less POD modes are considered (using all the POD modes is identical to exe-

cuting a direct LSE). Indeed, the projection of the original field on the POD basis has lower levels 

of velocity fluctuations. Also, the visualization of the POD projection of the original velocity field 

visualization shows more similitudes with the predicted field. For instance, sign change of the 

streamwise fluctuating velocity at about x/h = 4 and y/h ∈ ⟦1,2⟧ is predicted. The succession of 

positive and negative u near the wall, between x/h = 5 and x/h = 8, seems also qualitatively recov-

ered. Therefore, the predicted velocity field holds some qualitative information on the original field. 

But, when this predicted information is evaluated using previously defined error criteria, it appears 

particularly poor. 

Determination coefficients of several LSE-POD estimations can be compared in Table III.5. 

For most situations, the use of LSE-POD instead of LSE does not increase R2 computed with the 

original field (100% TKE) as reference. This was observed in the two previous test cases. However, 

in the case where 652 POD modes are used, a slight increase of R² is observed. In addition, the 

increase is higher for the validation than for the training set. This evolution seems to indicate that 

the reconstruction and the prediction of POD modes of rank higher than 652 actually penalized the 

estimation. The estimation by LSE of those POD modes is so inaccurate that it deteriorates the 



3. Backward Facing Step flow case 93 

 

overall quality of the entire velocity field estimation. In this case, using the POD owns a new ad-

vantage. It allows leaving out POD modes which estimation deteriorates the estimation of the entire 

velocity field. Nevertheless, in the present case, putting aside the highest POD modes does not lead 

to a significant accuracy improvement (less than 0.1% on R²). Concerning R² calculated with the 

POD projection of the original field as reference and of R² directly calculated from the POD coef-

ficients, their evolution is in perfect agreement with observations made for the OAT15A and the 

blunt trailing edge case. As more POD modes are used, they decrease which means that POD modes 

of higher ranks are globally estimated with lower accuracy. 

R²POD Single of the prediction of the first 3000 POD modes by LSE is plotted in Fig. III.37. For 

all POD modes, R²POD Single is less than 20% which is consistent with the low value of R2 obtained 

from the comparison with the original fields. In addition, R²POD Single decreases rapidly, going from 

20% to less than 10% for POD modes of rank higher than 11, and less than 5% for POD modes of 

rank higher than 44. At last, from POD modes 500 approximately, most of R²POD Single values are 

negative. It is consistent with previous observation showing that using more than 652 POD modes 

deteriorates the prediction quality. 

 

Fig. III.36: Energy spectrum of all POD modes 

(BFS: low speed PIV database) 

 

Fig. III.37: Determination coefficient calculated 

for each POD mode separately on the validation 

set using LSE and QSE (BFS: low speed PIV) 

QSE-POD is also studied. An instantaneous fluctuating velocity field is shown in Fig. III.38. 

Compared to the LSE-POD predictions, fluctuating velocity levels are slightly higher in some areas. 

Globally, the structures are very similar. As explained previously, the increase of predicted fluctu-

ating levels of velocity results in higher error and thus lower R². Values of R² are given in Table 

III.6 and can be compared with those of LSE in Table III.5. All values calculated on the training set 

are higher when using QSE. Thus the QSE improves the reconstruction accuracy. The improvement 

is however not so significant (less than 3%). For validation set values, they are lower for QSE than 

for LSE (except in the case where the POD basis used retains only 32% of TKE). Thus the overfit-

ting is also observed when QSE is associated with POD. However, the used of POD seems to be 

able to compensate a bit for the overfitting problem. First, when only 6 POD modes are considered 

(32% of TKE), no overfitting is observed. Then, when the number of POD modes considered is 

increased, R² goes by a maximum. Such behavior seems also to induce that the first POD modes 

prediction does not suffer from overfitting (or not as much as higher POD modes). This is confirmed 

when looking at Fig. III.37. The prediction of the first 2 POD modes is more accurate with QSE 

than LSE. But from the 10th POD modes, most of POD modes are better predicted using LSE than 

QSE. The overfitting is particularly highlighted in the figure from POD modes 50 approximately, 
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with R² decreasing down to negative values. Therefore, using about 50 POD modes for the QSE-

POD should lead to the highest R² value on the validation set. It is the case, with R² = 7.65%. This 

value remains, however, lower than the LSE one. 

 

a) 

 

b) 

Fig. III.38: Instantaneous fluctuating a) streamwise, b) vertical velocity field. Top: projection of 

the original field onto the first 92 POD modes, middle: LSE-POD prediction, bottom: QSE-POD 

prediction. 

 

LSE 

LSE-POD 

(90%, 652 

modes) 

LSE-POD 

(70%, 92 

modes) 

LSE-POD 

(50%, 20 

modes) 

LSE-POD 

(32%, 6 

modes) 

R² from original 

fields 

Training 8.44 8.45 8.33 7.27 6.03 

Validation 7.91 7.96 7.91 7.61 5.86 

R² from POD 

projected fields 

Training - 9.38 11.9 15.1 18.7 

Validation - 9.24 11.7 14.9 18.7 

R²POD 
Training - 1.02 4.55 10.2 17.8 

Validation - 0.72 4.28 9.89 17.8 

Table III.5: Determination coefficients comparison between LSE and several LSE-POD (BFS: 

low speed PIV; values are expressed in %) 
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QSE 

QSE-POD 

(90%) 

QSE-POD 

(70%) 

QSE-POD 

(50%) 

QSE-POD 

(32%) 

R² from original 

fields 

Training 11.7 11.4 10.8 9.6 7.4 

Validation 6.91 7.15 7.58 7.31 6.01 

R² from POD 

projected fields 

Training - 12.7 15.5 19.1 22.9 

Validation - 8.31 11.2 15 19.1 

R²POD 
Training - 3.4 7.3 13.6 21.5 

Validation - -1.8 2.5 9.3 18.1 

Table III.6: Determination coefficients comparison between QSE and several QSE-POD (BFS: 

low speed PIV; values are expressed in %) 

3.1.2. Multi-Time-Delay Stochastic Estimation (MTD-SE) 

As for the OAT15A airfoil case, several sets of delays are used and compared to found the 

one leading to the most accurate prediction. Inside a set of delays, the time step between consecutive 

delays is constant. Training and validation sets R² evolutions with the number of delays for several 

constant time steps between delays are plotted in Fig. III.39. Training set values are obtained with-

out Tikhonov regularization, while validation set ones are obtained using regularization. As previ-

ously, if no regularization is used, lower R² are reached for the validation set. As observed in the 

literature, the accuracy of the reconstruction improves when more and more delays are used. In 

addition, the reconstruction accuracy improves when the constant time step between delays de-

creases. R² reaches more than 45% which is far higher than the 11.7% obtained with QSE. 

 On the opposite, the prediction accuracy goes by a maximum, when the number of delays 

increases, which defines an optimal time window for the choice of delays. This was already dis-

cussed in Chapter III.2.2. In the tested cases, the optimal time window ranges from 0 to 0.6 – 0.8 

Tshedding (see Fig. III.39), which is consistent with values found in the OAT15A airfoil test case and 

in the literature. In overall, higher values of R² are reached when the constant time step between the 

delays decreases. However, between the three tested situations, ∆ = 1.10-2 Tshedding and ∆ = 5.10-2 

Tshedding leads to very similar results, with slightly higher determination coefficient in the latter case. 

Therefore, it seems that at some point reducing the constant time step between the delays does not 

improve the quality of the prediction. That may be due to the fact that data at consecutive delay 

become too correlated. The conditioning of the system (II.7) may increase and counterbalance the 

improvement that the additional information gives. At last, the highest determination coefficient 

obtained with MTD-LSE, on the validation set, is only 9.3% which is less than 2% better than the 

LSE. The overall prediction accuracy of the MTD-LSE is still very poor in this test case. The pre-

diction of the same instantaneous velocity field as in Fig. III.29 and Fig. III.30, using MTD-LSE 

with 75 delays taken every 110-2 Tshedding, is shown in Fig. III.40. Compared to the LSE and QSE 

prediction, the MTD-LSE presents some differences in structures for the streamwise velocity, but 

not so much for the vertical velocity. Some similitudes are observed, mainly the succession of pos-

itive and negative streamwise velocity, but the shape of the structures is changed and the structures 

are more fragmented. Levels are not particularly higher in the MTD-LSE than in the LSE case. 

Qualitatively, it is difficult to judge if the predicted streamwise velocity field in Fig. III.40 is closer 

to the original field than the LSE or QSE prediction. The normalized mean square error is displayed 

in Fig. III.41 and can be compared with the one calculated from LSE and QSE results in Fig. III.31 

and Fig. III.33. It is easily seen that the error decreased in the area where it was already the lowest 

in LSE and QSE (above the recirculation at x/h about 4 to 8). But for the region upstream x/h ≈ 4, 

the error seems mostly increased. The impact of the MTD-LSE is not uniform. In some regions, the 

prediction accuracy is improved, in some others it is deteriorated. 
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a) 

 

b) 

Fig. III.39: Determination coefficients as function of the number of delays for MTD-LSE recon-

struction of the training set (a) and prediction of the validation set (b) 

At last, the impact of using MTD-LSE on the reconstruction and prediction of POD modes is 

investigated. The determination coefficients of the first 90 POD modes predicted by MTD-LSE-

POD (using 75 delays every 110-2 Tshedding) are plotted in Fig. III.42 and can be compared with the 

LSE and QSE prediction. For some POD modes, R²POD Single is increased by more than 5%. But for 

other POD modes, the improvement is marginal. For instance, R²POD Single increases by less than 1% 

for the POD mode 23 and by about 5% for the POD mode 24. In addition, for POD modes of rank 

higher than 50, R²POD Single is, at best, increased marginally. Thus, the MTD-LSE in the BFS case 

seems to only improve the prediction of some POD modes and the improvement is not so signifi-

cant. MTD-LSE is not enough to achieve high prediction accuracy as in the OAT15A airfoil or 

blunt trailing edge cases. 

 

Fig. III.40: Instantaneous fluctuating stream-

wise (top) and vertical (bottom) velocity 

field predicted by MTD-LSE 

 

Fig. III.41: Normalized mean square error of the 

MTD-LSE prediction for the streamwise velocity 

(top) and the vertical velocity (bottom) (75 delays 

every 110-2 Tshedding) 
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Fig. III.42: Determination coefficient calculated for the first 90 POD modes separately on the 

validation set using LSE, QSE and MTD-LSE (BFS: low speed PIV) 

3.1.3. Results from the 20 and 25 m.s-1 database 

Determination coefficients from LSE, QSE, LSE-POD and QSE-POD are summarized in Ta-

ble III.7, Table III.8 for 20 m.s-1 upstream velocity case and in Table III.9, Table III.10 for the 25 

m.s-1 case. Results are perfectly similar to what is obtained when the upstream velocity is 30 m.s-1. 

Lowering the Reynolds number does not improve the accuracy (in the present range of Reynolds 

numbers). 

 

LSE 

LSE-POD 

(626 modes, 

90% TKE) 

LSE-POD 

(91 modes, 

70% TKE) 

LSE-POD 

(21 modes, 

50% TKE) 

LSE-POD 

(6 modes, 

32% TKE) 

R² from original 

fields 

Training 8.3 8.27 8.16 7.46 5.98 

Validation 7.23 7.25 7.2 6.62 5.34 

R² from POD 

projected fields 

Training - 9.2 11.6 14.7 18.2 

Validation - 8.37 10.5 13.4 16.6 

R²POD 
Training - 1.01 4.4 9.83 17.3 

Validation - 0.69 3.94 9 16.2 

Table III.7: Determination coefficients comparison between LSE and several LSE-POD (BFS, 

U0 = 20 m.s-1, values are expressed in %) 

 
QSE 

QSE-POD 

(90%) 

QSE-POD 

(70%) 

QSE-POD 

(50%) 

QSE-POD 

(32%) 

R² from original 

fields 

Training 11.7 11.2 10.7 9.46 7.39 

Validation 6.75 6.33 6.75 6.54 5.51 

R² from POD 

projected fields 

Training - 12.5 15.2 18.7 22.5 

Validation - 7.3 9.89 13.3 17.2 

R²POD 
Training - 3.38 7.11 13.1 21.1 

Validation - -1.82 2.04 7.85 16.1 

Table III.8: Determination coefficients comparison between QSE and several QSE-POD (BFS, 

U0 = 20 m.s-1, values are expressed in %) 
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LSE 

LSE-POD 

(692 modes, 

90% TKE) 

LSE-POD 

(99 modes, 

70% TKE) 

LSE-POD 

(22 modes, 

50% TKE) 

LSE-POD 

(7 modes, 

34% TKE) 

R² from original 

fields 

Training 8.45 8.43 8.32 7.62 6.33 

Validation 8.02 8.03 8 7.43 6.17 

R² from POD 

projected fields 

Training - 9.37 11.9 15.2 18.6 

Validation - 9.26 11.6 14.8 18 

R²POD 
Training - 0.98 4.37 10.2 17.6 

Validation - 0.67 4.01 9.95 16.8 

Table III.9: Determination coefficients comparison between LSE and several LSE-POD (BFS, 

U0 = 25 m.s-1, values are expressed in %) 

 
QSE 

QSE-POD 

(90%) 

QSE-POD 

(70%) 

QSE-POD 

(50%) 

QSE-POD 

(34%) 

R² from original 

fields 

Training 11.5 11.4 10.9 9.64 7.83 

Validation 6 7 7.42 7.24 6.16 

R² from POD 

projected fields 

Training - 12.7 15.5 19.2 23 

Validation - 8.06 10.8 14.5 18 

R²POD 
Training - 3.37 7.12 13.6 21.6 

Validation - -1.88 2.1 9 16.6 

Table III.10: Determination coefficients comparison between QSE and several QSE-POD (BFS, 

U0 = 25 m.s-1, values are expressed in %) 

3.2. Application to the numerical database 

LSE was quickly applied to the numerical database. The training was formed of 4 000 snap-

shots. Among these snapshots 2 300 comes from the data sampled at 20 kHz and 1 700 comes from 

the data sampled at 250 kHz after they have been downsampled at about 19.3 kHz. The validation 

set is made of 1060 snapshots from the data at 250 kHz downsampled at 19.3 kHz. In addition, only 

a subzone of the field is estimated. The subzone goes from –1.3 h to 8.3 h in the streamwise direc-

tion and from 0 to 6.5 h in the vertical direction. 17 pressure information at the wall at approximately 

the same locations than in the experiments are used as conditional events. 

The results clearly indicate a strong overfitting due to the bad convergence of the statistical 

moments used to train the LSE. R² is about 13.4% on the training set and -127% on the validation 

set. The low value obtained in the training set is consistent with the results from the PIV database. 

Several factors explained that it is slightly higher. First, there is the bad convergence of the statistics. 

Then, there is the fact that the area estimated (and thus on which R² is computed) is different be-

tween the experiment and numerical cases. And at last, the small scales of the turbulence are not 

resolved by the RANS equations (upstream the step and on top of the DES region), thus the velocity 

field above the detachment zone is better reconstructed on the numerical data than on the PIV data 

(this will be better addressed in the Chapter IV.3). That is shown in Fig. III.43 where the normalized 

mean square error for the streamwise velocity estimated on the training set has been plotted for 

example. 



4. Flow around a wall mounted cube case 99 

 

 

Fig. III.43: Normalized mean square error of the LSE prediction for the streamwise velocity 

(training set) 

3.3. Summary 

Using the experimental database, MTD-LSE (using Tikhonov regularization) holds, once 

more, the best reconstruction and prediction. This time, QSE is shown to suffer from overfitting. If 

R² is increased in the training set, it is decreased in the validation set (even when using Tikhonov 

regularization). The origin of this overfitting is here the bad convergence of order 3 and 4 statistical 

moments used to train the QSE. Also, this overfitting is not observed if only Root-Mean-Square 

quantities are used to evaluate the QSE quality. At last, the use of QSE-POD was shown to present 

the advantage of allowing disregarding POD modes which prediction penalized the overall estima-

tion due to overfitting. Slight improvement could be achieved this way.  

Whatever the SE methods used, the reconstruction and prediction quality is very low com-

pared to what was obtained in the blunt trailing edge case or in the OAT15A airfoil case. Except in 

a small region downstream the step, above the recirculation, the normalized mean square error is 

very high (more than 0.9). The bad performances of SE are consistent with the very low levels of 

correlation between the pressure sensors and the velocity field. 

Looking at the estimation of the POD modes separately, it appears that every POD modes are 

badly estimated (R² is lower than 25% whatever the POD mode considered). In addition, the esti-

mation accuracy of the POD modes rapidly decreases when POD mode rank increases.  

4. Flow around a wall mounted cube case 

In this part, only the case where the upstream velocity is 30 m.s-1 is discussed to illustrate the 

performance of Stochastic Estimation in the situation with the highest Reynolds number. Determi-

nation coefficients for the other cases are summarized in Annex H.4. 

4.1. Application to the low speed PIV database 

As considered in Chapter II.3.3.4.1, the training set is formed of the data from 2 PIV runs. It 

contains 6 800 PIV snapshots. The validation set is made of the remaining PIV run and contains 

3 400 PIV snapshots. 

4.1.1. Single-time Stochastic Estimation 

4.1.1.1. Linear Stochastic Estimation (LSE) and Quadratic Stochastic Estima-

tion (QSE) 
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 Vertical plane: 

The average correlation module between the 23 pressure sensors and the velocity field is 

displayed in Fig. III.44. Levels of correlation are similar to the BFS case. The vertical velocity 

component appears to be less correlated with the pressure sensors than the streamwise velocity 

component, with correlation levels particularly low (under 0.06) downstream the step for y/h < 1. 

For both streamwise and vertical velocity component, the highest correlation levels are found above 

the cube and downstream of the cube for y/h > 1.5. In addition, for the streamwise velocity, the 

correlation levels are also higher downstream of the cube around the reattachment point. Concern-

ing the spanwise velocity component, the maximum of correlation level is lower than for the other 

two components. But the correlation is more uniformly spread over the entire field. The lowest 

correlation is found directly above the cube, in a similar fashion as for the other two components. 

The highest correlations are found downstream of the step, near the wall, around the reattachment 

location. These low levels of correlation show that the LSE is likely to be inaccurate as for the BFS 

case. The vertical velocity is also likely to be predicted with the lowest accuracy. 

An example of an instantaneous field (from the validation set) and its estimation is shown in 

Fig. III.45 (streamwise velocity), Fig. III.46 (vertical velocity) and Fig. III.47 (spanwise velocity). 

Similarly to the BFS case, scales of the predicted field and the original field are not the same and 

the velocity fluctuation levels predicted are lower than the original one. In addition, the predicted 

fields present only large scale structures of low fluctuation levels whereas the original field contains 

a large variety of small scale structures of high fluctuation levels. However, some qualitative simil-

itudes between the original and predicted fields can be observed. For the streamwise velocity, the 

area of positive and negative fluctuations just above the cube seems correctly predicted. The large 

negative fluctuation area predicted downstream of the cube seems to be underlying in the original 

field. For the vertical velocity, the positive fluctuation area at about x/h = 3 is predicted. At last, for 

the spanwise velocity, the negative fluctuation region spanning from x/h = 2 to 4 seems to be well 

predicted. Nevertheless, the predicted field and the original one remains quite different. The pre-

diction quality appears to be poor. It is confirmed by the determination coefficient that is about 

14.5%. The reconstruction quality is very similar with R² equals to 14.7%. 

The normalized mean square error (calculated on the validation set) is shown in Fig. III.48. 

The link between the average correlation module and the normalized mean square error can once 

more be appreciated. The regions of lowest error correspond to the ones of highest correlations. In 

overall the error remains high in the entire field with values higher than 0.5. From this figure, the 

spanwise velocity seems to be better predicted than the others and the vertical velocity the less. That 

is confirmed by calculating the determination coefficient for each velocity component separately. 

R² is 11.5% for the streamwise velocity, 4.8% for the vertical velocity and 23% for the spanwise 

velocity. 

The prediction by QSE of the same instantaneous flow field as in Fig. III.45, Fig. III.46 and 

Fig. III.47 is shown in Fig. III.49. As for the LSE prediction, the scales are different than for the 

original field. The extrema are of lower amplitudes than the original ones, but of higher amplitude 

than the LSE prediction ones. As observed in the BFS case, the structures predicted by QSE are of 

slightly higher fluctuation levels. The global shape of the predicted structures does not seem partic-

ularly changed between the LSE and QSE case, but smaller structures are predicted in QSE than in 

LSE. For instance, the negative streamwise velocity fluctuation region predicted by LSE just above 

the cube is split into two structures in the QSE prediction. Qualitatively it remains difficult to judge 

if the modifications observed in the QSE leads to a better prediction than in LSE. The normalized 

mean square error of the QSE prediction is plotted in Fig. III.50. In this figure, the error seems to 

mainly increase between the LSE and QSE case. In addition, the error from the QSE and LSE are 

also very similar (areas of lowest and highest error remain the same). Therefore, the QSE does not 
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hold any important improvement of prediction accuracy. Actually, from the determination coeffi-

cient evaluation, it appears that the prediction accuracy of the QSE is lower than the one of the LSE. 

Indeed, R² is only 13.4%. As in the BFS case, it is due to the fact that QSE suffers from overfitting 

in this case. The training set R² is 20.8% which is much higher than for the validation set. In the 

present situation, using QSE leads to a more complicated model than LSE. QSE holds 276 coeffi-

cients, instead of 23. In addition, the convergence study (see Chapter II.3.3.4.1) showed that the 

statistical moments used to determine the QSE coefficients were not well converged. Thus the QSE 

model does not represent the entire phenomena leading to a deterioration of the prediction. The VIF 

goes from 1.3 to 1.9 between the LSE and QSE thus the main problem is probably the lack of 

convergence of the data on the training set. At last, the use of Tikhonov regularization shows only 

a slight improvement (less than 0.5% on the validation set R²). 

 

Fig. III.44: Average correlation module be-

tween the streamwise velocity (top), the verti-

cal velocity (middle) or the spanwise velocity 

(bottom) and the set of 23 pressure sensors 

 

Fig. III.45: Instantaneous fluctuating stream-

wise velocity field. Top: original, bottom: LSE 

prediction. 
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Fig. III.46: Instantaneous fluctuating vertical 

velocity field. Top: original, bottom: LSE pre-

diction. 

 

Fig. III.47: Instantaneous fluctuating spanwise 

velocity field. Top: original, bottom: LSE pre-

diction. 

 

 

Fig. III.48: Normalized mean square error of 

the LSE prediction for the streamwise veloc-

ity (top), the vertical velocity (middle) and 

the spanwise velocity (bottom) 

 

Fig. III.49: Instantaneous fluctuating velocity 

field predicted by QSE. Top: streamwise com-

ponent; middle: vertical component; bottom: 

spanwise component 
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Fig. III.50: Normalized mean square error of 

the QSE prediction for the streamwise veloc-

ity (top), the vertical velocity (middle) and 

the spanwise velocity (bottom) 

 

Fig. III.51: Streamwise root-mean-square ve-

locity; top: original; middle: LSE estimation; 

bottom: QSE estimation (validation set) 

As done in the BFS case, the estimation of the velocity RMS is evaluated. Velocity RMS 

fields are displayed in Fig. III.51. Only the streamwise velocity component is shown. As expected 

from the observations made in the BFS case, RMS velocity is better predicted by QSE than by LSE 

even if the QSE suffers from overfitting. It confirms that the evaluation of RMS quantities predic-

tion gives no information about the prediction quality of instantaneous quantities. 

 Horizontal plane: 

The average correlation module between the 23 pressure sensors and the velocity field is 

displayed in Fig. III.52. From these figures, some regions appear more correlated than others. And 

the LSE is expected to be more accurate just downstream of the cube for the prediction of the 

streamwise velocity, and around x/h = 2 for the spanwise velocity. Concerning the vertical velocity, 

the correlation levels are lower than for the two other velocity components. The correlation level is 

around 0.5 for most of the field. Thus, one can expect this component to be predicted with the worst 

accuracy between the three velocity components. 
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a) 

 

b) 

 

c) 

Fig. III.52: Average correlation module between the streamwise velocity (a), the vertical veloc-

ity (b) or the spanwise velocity (c) and the set of 23 pressure sensors (black squares) 

The estimation of an instantaneous velocity field, from the validation set, by LSE is shown 

in Fig. III.53, Fig. III.54 and Fig. III.55. Once more the predicted levels of velocity fluctuations are 

lower than the original ones (scales are not the same between the original field and the predicted 

one). However, the predicted extrema are only about 2 times lower than the originals. In addition, 

the predicted field seems qualitatively closer to the original one than it is the case for the BFS or 

the vertical plane. The predicted structures are larger than the original ones but their locations and 

shapes are somehow in agreement with the original structures. For instance, the succession of neg-

ative to positive streamwise velocity fluctuations at x/h ≈ 2, when z/h increases, is correctly pre-

dicted. For the spanwise velocity, the succession, when x/h increases, is also correctly predicted. 

For the vertical velocity, the agreement is not as clear. For instance, the large area of negative ve-

locity between x/h = 2 and 4, is not present in the original field. Nevertheless, for x/h < 2, the 

negative and positive predicted structures can be linked to the main structures of the original field. 

These similitudes between the predicted and original field is not a particularity of the instantaneous 

field shown here. And the LSE prediction seems in this case to qualitatively correspond to the gen-

eral trends of the original field. 
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a) 

 

b) 

Fig. III.53: Instantaneous streamwise velocity field from the validation set. a) original field; b) 

LSE prediction. 

 

a) 

 

b) 

Fig. III.54: Instantaneous vertical velocity field from the validation set. a) original field; b) LSE 

prediction. 

 

a) 

 

b) 

Fig. III.55: Instantaneous spanwise velocity field from the validation set. a) original field; b) 

LSE prediction. 

The determination coefficient is, however, not especially higher than for the vertical plane. It 

is 16.7% on the training set and 15.7% on the validation set. The normalized mean square error is 
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plotted in Fig. III.56. The structures formed by the error are once more similar to those observed on 

the average correlation module. In overall, the error is slightly lower than for the vertical plane 

(mainly for the streamwise and spanwise velocity). That may come from the fact that in overall it 

is closer to the sensors located at the wall. However, the error remains in general quite high. In 

particular, the error on the vertical velocity prediction is very high. Indeed, the error is higher than 

0.9 for almost the entire flow field. The difference of estimation quality between the three velocity 

components is perfectly seen on the determination coefficient calculated for each component sepa-

rately: 17.5% (18.1%) for the streamwise component, 5.53% (6.1%) for the vertical component and 

19.2% (20%) for the spanwise component (values in parentheses are from the training set).  

 

a) 

 

b) 

 

c) 

Fig. III.56: Normalized mean square error of the LSE prediction for the streamwise velocity (a), 

the vertical velocity (b) and the spanwise velocity (c) 

QSE prediction of the instantaneous velocity field is shown in Fig. III.58. The levels of fluc-

tuations are very close to the original ones (especially for the spanwise velocity), but are still slightly 

lower. In overall, locations of large negative or positive velocity remain unchanged between the 

LSE prediction and the QSE prediction and the levels of fluctuations are mostly increased. The QSE 

prediction also holds smaller structures than the LSE prediction. If qualitatively the QSE prediction 

could look more accurate than the LSE, the determination coefficient shows that QSE suffers, once 

more of overfitting, and its overall prediction accuracy is lower than the LSE one. For QSE, R² is 

23.4% on the training set and 14.7% for the validation set. As for the vertical plane, the overfitting 

comes from the bad convergence of third and fourth statistical moments used to train the QSE. The 

use of Tikhonov regularization does not particularly improve the accuracy. R² increases by less than 

0.1%. The deterioration of the prediction can also be seen on the normalized mean square error (see 
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annex H.4.1, Fig. H.6). Concerning the prediction of the velocity RMS, results are shown in Fig. 

III.59 for the streamwise velocity and are consistent with previous conclusions. QSE improves the 

prediction of the velocity RMS even if it deteriorates (in average) the prediction of the instantaneous 

velocity fields of the validation set. 

 

a) 

 

b) 

Fig. III.57: Instantaneous fluctuating velocity field predicted by QSE. a) streamwise velocity, b) 

vertical velocity 

 

Fig. III.58: Instantaneous fluctuating velocity field predicted by QSE (spanwise velocity) 
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a) 

 

b) 

 

c) 

Fig. III.59: Streamwise root-mean-square velocity. a) original, b) LSE estimation, c) QSE esti-

mation 

4.1.1.2. Modified Stochastic Estimation (SE-POD) 

 Vertical plane: 

The POD basis is computed using the three velocity components and data from the training 

set only. This spectrum is similar to the one obtained in the BFS case and shown in Fig. III.60. 25 

POD modes are necessary to retain 50% of the TKE and 507 to retain 90% of the TKE. The flow 

dynamics is not captured with a few number of POD modes. However, the first three POD modes 

contain more energy and together they represent more than 23% of the TKE. 

Prediction of the spanwise velocity field using LSE-POD is plotted in Fig. III.61. The same 

instantaneous field as in Fig. III.55 is considered. The POD basis is formed of the first 94 POD 

modes which contain 70% of TKE. Once again, the predicted structures are very similar to those 

obtained with a direct LSE. In addition, the fluctuation levels are unchanged (the same is observed 

for the two other velocity components). 

The determination coefficients of 4 different LSE-POD estimations are compared with the 

LSE estimation in Table III.11. The results are in perfect agreement with the observations made in 

the BFS case. Using LSE-POD does not improve the reconstruction accuracy and most of the time 

the prediction accuracy too. However, when the POD basis retains 70% or 90% of the TKE, R² on 

the validation set slightly increases. That indicates that POD modes of highest rank suffer the most 
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from overfitting (their prediction actually deteriorate the prediction of the entire flow field). Evolu-

tions of R² calculated with the POD projection of the original field as reference and of R² directly 

calculated from the POD coefficients are in agreement with previous results. They decrease when 

more POD modes are considered. Thus, POD modes of higher ranks are estimated with a globally 

decreasing accuracy. 

 

Fig. III.60: Energy spectrum of all POD 

modes (Cube, vertical plane, low speed PIV) 

 

Fig. III.61: Instantaneous fluctuating spanwise 

velocity field. Top: POD projection; middle: 

LSE-POD prediction; bottom: QSE-POD pre-

diction 

R²POD Single of the prediction of the first 500 POD modes by LSE is plotted in Fig. III.62. The 

figure shows that the first three POD modes are far better predicted (it is also true for the recon-

struction) than any other POD modes. For each of these three POD modes R²POD Single is higher than 

48%, whereas it is lower than 12% for any other POD modes. That may explain why the prediction 

seems to be qualitatively correct while the R² remains low. Some information about the velocity 

field is predicted with a relatively high accuracy. This is a strong difference with the BFS case. The 

frequency content of these POD modes is described in Chapter IV.5.2 and gives some insight on 

the reason for this difference. 
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Fig. III.62: Determination coefficient calculated for each POD mode separately on the valida-

tion set using LSE and QSE (Cube: low speed PIV, vertical plane) 

Results obtained with QSE-POD are in agreement with observations made in the BFS case. 

The QSE-POD estimated fields are very similar to the QSE estimated ones (see Fig. III.61 and Fig. 

III.49). Determination coefficients are detailed in Table III.12. QSE clearly improves the recon-

struction accuracy, but the prediction accuracy is deteriorated. The use of POD is able to compen-

sate the overfitting from the QSE (as observed in the BFS case). Indeed, when only 25 POD modes 

(50% TKE) are used, R² reaches 15% which is of the same order of magnitude than what is obtained 

with LSE. That is coherent with what can be observed in Fig. III.62. Indeed, R²POD Single of most of 

POD modes of rank higher than 30 is lower than 0. Thus, due to the overfitting, their prediction 

deteriorates the prediction of the entire velocity field by QSE. Nevertheless, the improvement is 

still marginal (only 0.5%). Actually, the QSE improves mainly the prediction of the first two POD 

modes. 

 

LSE 

LSE-POD 

(90%, 507 

modes) 

LSE-POD 

(70%, 94 

modes) 

LSE-POD 

(50%, 25 

modes) 

LSE-POD 

(33%, 7 

modes) 

R² from original 

fields 

Training 14.7 14.7 14.6 14.2 13.2 

Validation 14.5 14.7 14.7 14.4 13.5 

R² from POD 

projected fields 

Training - 16.4 20.8 28.1 39.3 

Validation - 16.7 21.2 28.4 39.5 

R²POD 
Training - 1.2 4.49 11.9 27.3 

Validation - 0.72 4.22 11.8 27.8 

Table III.11: Determination coefficients comparison between LSE and several LSE-POD (Cube: 

low speed PIV, vertical plane; values are expressed in %) 



4. Flow around a wall mounted cube case 111 

 

 
QSE 

QSE-POD 

(90%) 

QSE-POD 

(70%) 

QSE-POD 

(50%) 

QSE-POD 

(33%) 

R² from original 

fields 

Training 20.8 20.4 19.4 17.9 15.8 

Validation 13.4 13.9 14.7 15 14.3 

R² from POD 

projected fields 

Training - 22.7 27.7 35.5 47 

Validation - 15.8 21.3 29.7 41.8 

R²POD 
Training - 5.72 10.1 19 35.1 

Validation - -3.66 1.59 11.4 28.7 

Table III.12: Determination coefficients comparison between QSE and several QSE-POD (Cube: 

low speed PIV; values are expressed in %) 

 Horizontal plane: 

The POD energy spectrum is shown in Fig. III.63. Compared to the vertical plane POD, it is 

the first two POD modes that contain really more energy than the others. They contain about 25% 

of the TKE. Nevertheless, to capture a significant amount of the TKE, a large number of POD 

modes is necessary. 27 POD modes are required to retain 50% of TKE and 660 to retain 90%. 

 Prediction of the streamwise velocity field shown in Fig. III.53 by LSE-POD is plotted in 

Fig. III.65. The POD projection is shown in Fig. III.64. The LSE-POD predicted field and the LSE 

one are very similar (it is also true for the other velocity components not shown here). As previously 

observed, the use of LSE-POD does not change the location and shape of the estimated structures.  

 

Fig. III.63: Energy spectrum of all POD 

modes (Cube, horizontal plane, low speed 

PIV) 

 

Fig. III.64: POD projection of an instantane-

ous streamwise velocity field from the valida-

tion set (POD basis contains 70% of TKE) 

R² of several LSE-POD are summarized in Table III.13 and can be compared with LSE val-

ues. Evolutions of R² with the part of TKE contained by the POD basis are in agreement with the 

observations made so far. Since the LSE does not suffer from any particular overfitting, the use of 

POD does not improve the prediction accuracy. The POD modes seem predicted (and reconstructed) 

with lower and lower accuracy when their rank increases. That is confirmed when looking at 

R²POD Single in Fig. III.66. As for the vertical plane, the first three POD modes are far better predicted 

than the others (R² > 45% instead of R² < 14%). But surprisingly, it is the third POD mode that is 

predicted with the highest accuracy. This is further investigated in Chapter IV.5. 
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Fig. III.65: LSE-POD prediction of an instan-

taneous streamwise velocity field 

 

Fig. III.66: Determination coefficient calcu-

lated for each POD mode separately on the 

validation set using LSE and QSE (Cube: low 

speed PIV, horizontal plane) 

 

 

LSE 

LSE-POD 

(90%, 660 

modes) 

LSE-POD 

(70%, 117 

modes) 

LSE-POD 

(50%, 27 

modes) 

LSE-POD 

(33%, 5 

modes) 

R² from original 

fields 

Training 16.7 16.7 16.5 16 14.8 

Validation 15.7 15.7 15.7 15.3 14.1 

R² from POD 

projected fields 

Training - 18.5 23.6 31.9 44.3 

Validation - 18 22.9 30.9 43.3 

R²POD 
Training - 1.23 4.45 11.9 35.1 

Validation - 0.72 3.94 11.5 34.2 

Table III.13: Determination coefficients comparison between LSE and several LSE-POD (Cube: 

low speed PIV, horizontal plane; values are expressed in %) 

QSE-POD results are also in agreement with observations from the BFS case. QSE-POD 

estimations are very similar to QSE estimations (see Fig. III.67 for instance). From the determina-

tion coefficients displayed in Table III.14, one can see that QSE-POD also suffers from overfitting. 

But using POD subbases can compensate the overfitting. Thus, when 27 POD modes only are con-

sidered, R² reaches 16.3% for the validation set which is slightly higher than in the LSE case. As 

for the vertical plane prediction, it appears in Fig. III.66 that POD modes of ranks higher than 30 

predictions are very inaccurate. It is then better not to predict them by QSE. In overall, the QSE 

only improves the prediction of the first two POD modes by a small percent. 
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Fig. III.67: QSE-POD prediction of an instantaneous streamwise velocity field 

 

 

QSE 

QSE-POD 

(90%, 660 

modes) 

QSE-POD 

(70%, 117 

modes) 

QSE-POD 

(50%, 27 

modes) 

QSE-POD 

(33%, 5 

modes) 

R² from original 

fields 

Training 23.4 23 21.9 20.3 17.8 

Validation 14.7 15.1 16 16.3 15.3 

R² from POD 

projected fields 

Training - 25.5 31.3 40.4 53.5 

Validation - 17.4 23.4 32.9 46.8 

R²POD 
Training - 5.93 10.3 19.3 44 

Validation - -3.87 1.08 11.1 36.9 

Table III.14: Determination coefficients comparison between QSE and several QSE-POD (Cube: 

low speed PIV, horizontal plane; values are expressed in %) 

4.1.2. Multi-Time-Delay Stochastic Estimation (MTD-SE) 

A perfectly similar study as for the backward facing step (BFS) is conducted where several 

sets of delays (with constant time step between delays) are tested. 

 Vertical plane: 

The evolution of R² (calculated on the validation set) as function of the number of delays used 

for several constant time steps between consecutive delays is plotted in Fig. III.68. These values are 

obtained using Tikhonov regularization (without Tikhonov regularization, R² decreases almost im-

mediately when the number of delays increases). The regularization parameter is obtained through 

cross-validation [72]. As expected, an optimal time window is observed for the choice of delays 

ranging from 0 to 0.7-1 Tshedding (St = 0.1 is considered as the shedding frequency). Concerning the 

reconstruction, R² increases as the number of delays increases (without Tikhonov regularization) 

and reaches 64% when 150 delays taken every 10-2 Tshedding are used.  

The highest R² (for the validation set) achieved using MTD-LSE is 23.6% which corresponds 

to an increment by about 9% compared to the LSE. Therefore, MTD-LSE also holds the best pre-

diction accuracy in this case (between LSE, QSE and MTD-LSE). However, the global accuracy 

remains low. From these curves, it appears that reducing the time step between the delays first 

improves the prediction accuracy. But the curves obtained for ∆ = 10-2 Tshedding and ∆ = 210-2 

Tshedding are very close. Thus it seems that are a limit on the time step under which no improvement 

is obtained on the prediction accuracy of the MTD-LSE. This was also observed in the BFS case. 
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The prediction by MTD-LSE of the streamwise velocity of the same instantaneous field as in Fig. 

III.45 is plotted in Fig. III.70. The predicted structures are quite similar to those obtained by LSE 

and QSE. Smaller structures are predicted by MTD-LSE than by LSE, but not particularly than 

QSE.  

 

Fig. III.68: Determination coefficient as func-

tion of the number of delays for MTD-LSE es-

timations of the validation set (Low speed PIV 

cube experiment, vertical plane) 

 

Fig. III.69: Normalized mean square error of 

the MTD-LSE prediction for the streamwise 

velocity (top), the vertical velocity (middle) 

and the spanwise velocity (bottom) (100 de-

lays every 10-2 Tshedding) 

The normalized mean square error for the three velocity components are plotted in Fig. III.69. 

The figure clearly shows that the error decreases almost everywhere in the field and for every ve-

locity component compared to LSE and QSE. Improvements seem particularly important down-

stream the reattachment location. The error is not decreased as much in the recirculation and just 

above the cube as it is in other areas. That can be particularly observed for the spanwise velocity. 

The high error regions, just above and just downstream of the step in the LSE prediction, are also 

high error regions when using MTD-LSE.  

At last, MTD-LSE-POD is investigated. Determination coefficient of the prediction of POD 

mode separately using the best MTD-LSE-POD situation is plotted in Fig. III.71 (R² from LSE and 

QSE are also shown). From this figure, the improvement of prediction accuracy of MTD-LSE-POD 

over LSE and QSE appears to mainly concern the first two POD modes. R² increases by more than 

30% and reaches values higher than 85% for both POD modes. POD modes of rank up to 70 are 

also better predicted by MTD-LSE-POD than by the other methods. But POD modes of higher rank 

are not recovered by MTD-LSE-POD. For these POD modes all the tested SE methods fails to 

correctly predict their temporal evolution. 
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Fig. III.70: Instantaneous streamwise velocity predicted by MTD-LSE (using 100 delays every  

10-2 Tshedding) 

 

Fig. III.71: Determination coefficient calculated for each POD mode separately on the valida-

tion set using LSE, QSE and MTD-LSE-POD with 100 delays taken every 10-2 Tshedding (Cube: 

low speed PIV, vertical plane) 

 Horizontal plane: 

The evolution of R² (calculated on the validation set) as function of the number of delays used 

for several constant time steps between consecutive delays is plotted in Fig. III.72. The same situ-

ations as for the vertical plane are tested. Once more these values are obtained using Tikhonov 

regularization and the regularization parameter is determined by cross-validation. The trends are 

perfectly consistent with those observed for the estimation of the vertical plane. The optimal time 

window still ranges from 0 to 0.75-1 Tshedding depending on the time step between consecutive de-

lays. The highest R² is 29.7% (13% higher than when using LSE). As in the previous test cases, 

MTD-LSE still holds the best prediction accuracy compared to single-time LSE and QSE. 

The prediction by MTD-LSE of the vertical velocity of the same instantaneous field as in Fig. 

III.54 is plotted in Fig. III.73. Compared to the LSE and QSE predictions, the MTD-LSE prediction 

seems qualitatively better. Levels are higher than for the LSE predictions but not than the QSE 

predictions. The positive fluctuation structure spanning from (x/h = 4, y/h = -0.2) to (x/h = 5, y/h = 

0.6) is better predicted by the MTD-LSE than by the other techniques. 

The normalized mean square error is displayed in Fig. III.74 and Fig. III.75 for the three 

velocity components. These error maps can be compared with those of Fig. III.56 (for the LSE) and 

Fig. H.6 in annex G (for the QSE). Similarly to the vertical plane prediction, the error is decreased 

in the entire field. Looking at the shape of areas of lowest error, they are stretched downstream. The 

error is slightly more decreased in the most downstream regions. 
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Fig. III.72: Determination coefficient as func-

tion of the number of delays for MTD-LSE es-

timations of the validation set (Low speed PIV 

cube experiment, horizontal plane) 

 

Fig. III.73: Instantaneous vertical velocity pre-

dicted by MTD-LSE (using 100 delays every 

10-2 Tshedding) 

 

a) 

 

b) 

Fig. III.74: Normalized mean square error of the MTD-LSE prediction for the streamwise ve-

locity (a) and the vertical velocity (b) 
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Fig. III.75: Normalized mean square error of the MTD-LSE prediction for the spanwise veloc-

ity 

At last, the evolution of R² (from the validation set) for each POD mode from MTD-LSE-

POD prediction is displayed in Fig. III.76. All POD modes up to rank 10 are far better predicted by 

MTD-LSE-POD than by LSE-POD or QSE-POD. Especially, the first three POD modes prediction 

are good with R² higher than 80%. As for the vertical plane, the prediction of POD modes of rank 

higher than 70 is not improved by the use of multi-time-delays. It is even deteriorated for some 

POD modes compared to the LSE-POD. 

 

Fig. III.76: Determination coefficient calculated for each POD mode separately on the valida-

tion set using LSE, QSE and MTD-LSE-POD with 100 delays taken every 10-2 Tshedding (Cube: 

low speed PIV, horizontal plane) 

4.2. Application to the high speed PIV database 

Using the high speed PIV database, the same conclusions as for the low speed PIV database 

are reached. Values of R² are summarized in Table III.15, Table III.16 (vertical plane) and Table 

III.17, Table III.18 (horizontal plane) for the LSE, LSE-POD, QSE and QSE-POD. Differences in 

R² values between the high speed PIV database results and the low speed ones come also from the 

differences that exist between the fields used in the two database (the size of the field is different 

and also the meshing). From these R² values, it is shown that the convergence of statistical moments 

necessary to the LSE and QSE is good enough. Indeed, the overfitting is not particularly stronger 

using the high speed PIV database than the low speed PIV one. That is also true when the upstream 
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velocity is 10 m.s-1 and 20 m.s-1 (see tables in annex H.4.2). However, for the horizontal plane, R² 

is higher on the validation set than on the training set in some cases. That is likely due to the limited 

size of the validation set. R² is probably not converged and one should not expect R² to be higher 

on the validation set than on the training set. 

 

LSE 

LSE-POD 

(90%, 360 

modes) 

LSE-POD 

(70%, 71 

modes) 

LSE-POD 

(50%, 20 

modes) 

LSE-POD 

(33%, 6 

modes) 

R² from original 

fields 

Training 14.7 14.7 14.6 14.1 13.1 

Validation 13.4 13.4 13.3 12.8 11.8 

R² from POD 

projected fields 

Training - 16.3 20.8 27.9 38.5 

Validation - 15 19.2 25.8 35.6 

R²POD 
Training - 1.37 5.41 13.4 30.3 

Validation - 1.16 5.12 12.6 28.2 

Table III.15: Determination coefficients comparison between LSE and several LSE-POD (Cube: 

high speed PIV, vertical plane; values are expressed in %) 

 
QSE 

QSE-POD 

(90%) 

QSE-POD 

(70%) 

QSE-POD 

(50%) 

QSE-POD 

(33%) 

R² from original 

fields 

Training 18.5 18.4 17.9 16.8 15.1 

Validation 14.6 14.8 14.9 14.4 13.2 

R² from POD 

projected fields 

Training - 20.4 25.6 33.3 44.4 

Validation - 16.5 21.5 29.1 39.8 

R²POD 
Training - 3.44 8.87 18.2 36 

Validation - 0.28 5.56 14.7 31.8 

Table III.16: Determination coefficients comparison between QSE and several QSE-POD (Cube: 

high speed PIV, vertical plane; values are expressed in %) 

 

LSE 

LSE-POD 

(90%, 304 

modes) 

LSE-POD 

(70%, 54 

modes) 

LSE-POD 

(50%, 12 

modes) 

LSE-POD 

(36%, 3 

modes) 

R² from original 

fields 

Training 21.8 21.7 21.6 20.7 19.4 

Validation 23.5 23.5 23.4 22.6 21.2 

R² from POD 

projected fields 

Training - 24.2 30.7 41.2 52.9 

Validation - 26.2 33.1 43.8 55.3 

R²POD 
Training - 1.97 7.68 20.7 55.1 

Validation - 1.91 8.11 23 58.6 

Table III.17: Determination coefficients comparison between LSE and several LSE-POD (Cube: 

high speed PIV, horizontal plane; values are expressed in %) 
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QSE 

QSE-POD 

(90%) 

QSE-POD 

(70%) 

QSE-POD 

(50%) 

QSE-POD 

(36%) 

R² from original 

fields 

Training 26.5 26.3 25.7 24 21.9 

Validation 24.2 24.3 24.4 23.6 22.1 

R² from POD 

projected fields 

Training - 29.3 36.6 47.9 59.6 

Validation - 27.2 34.6 45.8 57.4 

R²POD 
Training - 4.38 12 26.9 60.8 

Validation - 0.72 8.68 24.7 60.4 

Table III.18: Determination coefficients comparison between QSE and several QSE-POD (Cube: 

high speed PIV, horizontal plane; values are expressed in %) 

The evolution of R², calculated on the validation set, as function of the number of delays, for 

several MTD-LSE, is displayed in Fig. III.77 for the vertical plane and in Fig. III.78 for the hori-

zontal plane. Evolutions of R² are perfectly similar to the ones obtained with the low speed PIV 

data. At last, R² calculated for each POD mode separately using LSE-POD, QSE-POD and MTD-

LSE-POD are shown in Fig. III.79 for the vertical plane and in Fig. III.80 for the horizontal plane. 

Similar conclusions as when the low speed PIV data are used can be drawn.  

In overall both databases lead to the same evaluation of SE methods accuracy and can there-

fore be used to characterize it.  

 

Fig. III.77: Determination coefficient as func-

tion of the number of delays for MTD-LSE es-

timations of the validation set (High speed 

PIV cube experiment, vertical plane) 

 

Fig. III.78: Determination coefficient as func-

tion of the number of delays for MTD-LSE es-

timations of the validation set (High speed 

PIV cube experiment, horizontal plane) 
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Fig. III.79: Determination coefficient calcu-

lated for each POD mode separately on the 

validation set using LSE, QSE and MTD-

LSE-POD with 200 delays taken every 510-3 

Tshedding (Cube: high speed PIV, vertical plane) 

 

Fig. III.80: Determination coefficient calcu-

lated for each POD mode separately on the 

validation set using LSE, QSE and MTD-

LSE-POD with 200 delays taken every 510-3 

Tshedding (Cube: high speed PIV, horizontal 

plane) 

4.3. Summary 

The comparison between the LSE, QSE and MTD-LSE leads to the exact same conclusions 

as in the BFS case. The best estimations are obtained with the MTD-LSE. The accuracy of SE 

prediction is slightly better than for the BFS case but remains quite lower than what was obtained 

for the blunt trailing edge case and OAT15A airfoil case. In addition, reconstruction and prediction 

quality is very different from one velocity component to another. For instance, the spanwise veloc-

ity, in the vertical plane, prediction R² is 23% while it is only 4.8% for the vertical velocity. 

The study of the POD mode estimation shows that the first three POD modes (for the vertical 

plane or the horizontal plane) are estimated with relatively high accuracy (R² higher than 45%) 

whereas the estimation of POD modes of higher ranks is of poor quality (R² is mostly lower than 

10%). 

At last, it was observed that the high speed PIV campaign could also be used to evaluate the 

SE performances. But results on the validation sets have to be carefully discussed as the validation 

sets are not always large enough to ensure a good convergence of the error metric.  

5. Chapter summary 

Stochastic Estimation (SE) has been applied to the test cases available. For each of these 

cases, Linear SE, Quadratic SE, SE coupled with Proper-Orthogonal-Decomposition (POD) and 

also Multi-Time-Delays (MTD) SE have been used. 

It was shown that looking at maps of the average correlation module between the conditional 

events and the data to estimate directly hints at where the SE will poorly perform, or at least allow 

to identify areas where SE will perform with less accuracy than in other areas. This information can 

therefore be retrieved without performing the estimation. 
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Reconstruction and prediction were found to be very accurate (whatever the SE methods 

used) in the blunt trailing edge flow case. Determination coefficient (R²) is higher than 90% using 

only 4 pressure sensors. The good performances of SE to estimate a simple flow, with a dynamic 

that is composed only of the von Kármán vortex street, have been confirmed. Estimations are less 

accurate in the OAT15A case. R² is higher than 40% for all methods (using 3 pressure sensors). In 

particular, it has been observed that the vortex shedding developing in the wake of the airfoil was 

badly reconstructed and predicted by all SE methods. The shock oscillation is however well cap-

tured and the direct prediction of the shock prediction by LSE was found to be very accurate. For 

the estimation of the flow downstream the Backward Facing Step (BFS), it has been shown that the 

SE reconstruction and prediction accuracy was very poor. For this flow, R² remains lower than 10% 

using 17 pressure sensors and any SE methods. For the flow around a wall mounted cube test case, 

reconstruction and prediction are only slightly more accurate than in the BFS case with R² lower 

than 25% using 23 pressure sensors. 

By comparing the accuracy of the several SE methods, it has been shown that QSE always 

holds more accurate reconstruction than LSE and could hold better prediction than LSE. However, 

for the BFS case, and in some cases for the wall mounted cube case, R² was smaller using QSE than 

LSE. That is the consequence of an overfitting of the model, mainly due to the bad convergence of 

statistical moments necessary to train the QSE. The use of the Tikhonov regularization only slightly 

improves the quality of the QSE prediction in such cases. 

For all cases, it was found that MTD-LSE leads to the most accurate reconstruction and pre-

diction between all tested methods. Also it is important to notice that the use of MTD-LSE corre-

sponds to an increase in the number of conditional events. As such, in the OAT15A airfoil case 

using 3 pressure sensors, the LSE uses only 3 conditional events, the QSE can be considered to be 

using 6 conditional events, and the best MTD-LSE situations uses 210 conditional events. 

Using MTD-LSE, R² reaches almost 100% in the blunt trailing edge case, 53% in the 

OAT15A case (with 3 pressure sensors), but only 9.3% in the BFS case. In addition, the good per-

formances of the MTD-LSE require using Tikhonov regularization (with cross-validation for the 

choice of the regularization parameter). It was shown that the number of delays and the constant 

time step between them play an important role on the estimation accuracy. As such, delays have to 

be chosen inside a time window that usually goes in the past up to the main phenomenon period. 

Increasing the number of delays taken in the time window (thus decreasing the time step between 

them) increases R² on the validation set, but only if Tikhonov regularization is applied. Without 

regularization, while R² calculated on the training set keeps increasing when more and more delays 

are used, R² on the validation set goes by a maximum lower than when regularization is used (or 

decreases directly). At last, if the improvements are substantial in the blunt trailing edge case, 

OAT15A case and wall mounted cube case, they are very limited in the BFS case. 

The use of LSE-POD or QSE-POD showed that these methods do not improve in themselves 

the reconstruction or prediction accuracy of the entire initial flow field. Nevertheless, it was possible 

to slightly improve the QSE prediction using QSE-POD. Indeed, it was observed that some POD 

modes suffer more from overfitting than others. Trying to predict them actually deteriorates the 

overall estimation. In these conditions, the possibility to disregard them, using QSE-POD, leads to 

the prediction improvement. The study of these methods also allowed highlighting than some POD 

modes are greatly better estimated than others. The interpretation of these observations will be ad-

dressed in the next chapter. 

At last, the impact of the sensor locations was clearly identified in the trailing edge and the 

OAT15A test case. This subject is therefore addressed in the Chapter V. 
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Chapter IV. Characterization of Stochastic 

Estimation methods  

The aim of this chapter is to characterize SE methods in order to better understand the 

differences that rose between the estimation of the several test cases in the previous chapter. In 

addition, this characterization may serve to highlight the limitations of SE methods and in par-

ticular to determine in which conditions they will perform with high accuracy. 

First, the impact of Gaussian noise on the data is quickly evaluated and its impact on the 

evaluation of the SE method performance is demonstrated. Then the comparison, between the 

estimations of the flow around the OAT15A profile from the URANS and ZDES simulations, is 

used to point out some characteristics of SE in relation to the flow turbulence.  

Following the observations made, the estimation of the turbulent spatial integral length 

scales is studied. The temporal filtering effect of SE is also examined, as well as the spatial fil-

tering effect in term of Gaussian spatial filter.  

The impact of increasing the Reynolds number on the estimation quality of same flow ge-

ometry is then analyzed, as well as the impact of training the SE at some upstream velocity con-

ditions to reconstruct the flow at another upstream velocity condition. 

At last, following the work of Ruiz et al., the use of Spatio-Temporal POD to determine a 

phase for the velocity field is investigated using the wall mounted cube case. This phase is used 

to propose a modification of the LSE. 

 

1. Impact of Gaussian noise .............................................................................................. 124 

2. Comparison of estimations by SE of URANS and ZDES simulations of the OAT15A 

airfoil in transonic conditions ................................................................................................. 126 

2.1. Linear Stochastic Estimation (LSE) ......................................................................... 127 

2.2. Modified Linear Stochastic Estimation (LSE-POD) ................................................ 132 

2.3. Quadratic Stochastic Estimation (QSE) and modified Quadratic Stochastic Estimation 
(QSE-POD) .......................................................................................................................... 134 

2.4. Multi-Time-Delay Linear Stochastic Estimation (MTD-LSE) and MTD-LSE-
POD 135 

2.5. Summary .................................................................................................................. 137 

3. Study of length scales conservation on the Backward Facing Step case .................. 138 

3.1. Single-time Stochastic Estimation using wall pressure measurements .................... 139 

3.2. Linear Stochastic Estimation using velocity field sensors ....................................... 141 

3.3. Study through Proper-Orthogonal-Decomposition analysis .................................... 143 

3.4. Sensor locations impact............................................................................................ 146 

3.5. Impact of Multi-Time-Delay method ....................................................................... 147 

3.6. Summary .................................................................................................................. 149 



124 Chapter IV. Characterization of Stochastic 

Estimation methods 

 

4. Spatial and temporal pre-filtering impact on the Linear Stochastic Estimation 

accuracy .................................................................................................................................... 150 

4.1. Spatial filtering ......................................................................................................... 150 

4.2. Temporal filtering .................................................................................................... 152 

4.3. Summary .................................................................................................................. 159 

5. Impact of Reynolds number ......................................................................................... 160 

5.1. Determination coefficient evolution ........................................................................ 160 

5.2. Flow characterization using Proper-Orthogonal-Decomposition ............................ 161 

5.3. Generalization of the SE to several upstream velocity conditions ........................... 167 

6. Phase-averaged estimation............................................................................................ 168 

6.1. Estimation of phase-averaged fields by LSE ........................................................... 169 

6.2. Improving the LSE using phase information ........................................................... 170 

7. Chapter summary .......................................................................................................... 172 

 

1. Impact of Gaussian noise 

Data from simulation does not suffer from noise contamination as it is the case for experi-

mental data. Therefore, they can be used to analyze the impact of the noise on the SE accuracy. In 

addition, it is ordinary to train SE methods using experimental data and, more important, our goal 

is to evaluate the capacity of SE to be used in real time on a true application for which the condi-

tional events will necessarily be experimentally measured. Here, only Gaussian noise is considered. 

The presence of noise on the validation set only or on both training set and validation set is inves-

tigated. The presence of noise on the conditional events only or on both the conditional events and 

the data to estimate is considered. At last, the study is performed using the data from the OAT15A 

airfoil URANS simulation (the database is described in Chapter II.4.2.1). 

First, the case where noise is added on both data from the training and validation sets is con-

sidered. Fig. IV.1 compares the evolution of the determination coefficient (of the validation set), as 

function of the Signal-to-Noise Ratio (SNR) for the several situations using LSE with the set of 3 

pressure sensors presented in Chapter III.2.1. The green curve (circle symbol) displays the determi-

nation coefficient in the case where noise is added only to the velocity fields and the determination 

coefficient is calculated using the original fields without noise as reference. In this situation, the 

determination coefficient remains constant when the SNR decreases and is equal to the value ob-

tained without noise on any data. This result indicates that the noise introduced in the fields used 

for the training is completely filtered. This observation is consistent with the method which is based 

on the correlations between the conditional events and the data to estimate. Therefore, since the 

Gaussian noise is uncorrelated, it is filtered by the LSE. The orange curve (diamond symbol) rep-

resents the evolution of the determination coefficient in the same situation than the green curve 

except that it is calculated using the fields containing noise as reference. Since the noise is filtered 

by the LSE, the prediction diverges more and more from the noisy fields as the SNR decreases. In 

this situation, the performance of the LSE can be considered as underestimated. 

The blue curve (delta symbol) corresponds to the case where noise is added only to the sensors 

(training and validation data). This time the prediction is directly deteriorated and the lower the 

SNR is, the more deteriorated the prediction is. As the sensors are used directly to predict the ve-

locity fields, the presence of noise on these data impacts the quality of the prediction. The black 
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curve (left triangle symbol) represents the case where noise is added to both sensors and fields, and 

the determination coefficient is calculated from the fields without noise. The black and blue curves 

superposed themselves perfectly which indicates once more that the noise contained by the fields 

is filtered and only the noise added to the sensors deteriorates the prediction. 

At last, the red curve (gradient symbol) corresponds to the case where noise is added on the 

sensors and the fields and the determination coefficient is calculated using the fields with noise as 

reference. This situation is the closest to the experimental case, where the fields and sensors contain 

some noise. It is clear, from Fig. IV.1, that it is the worst situation. The prediction is deteriorated 

because the sensors used contain noise and moreover the abilities of the LSE are underestimated as 

the determination coefficient is calculated from the fields that are polluted with noise. 

Fig. IV.2 illustrates the same study run for the QSE. The exact same observations can be 

made as for the LSE. 

 

Fig. IV.1: Determination coefficient evolution 

as function of the SNR (LSE prediction with 3 

pressure sensors, noise is added on both train-

ing and validation data) 

 

Fig. IV.2: Determination coefficient evolution 

as function of the SNR (QSE prediction with 3 

pressure sensors, noise is added on both train-

ing and validation data) 

Now the case where only data out of the training set contain noise is investigated. This situ-

ation could be encountered if the SE were trained on numerical data and then used on a real appli-

cation using experimental measurements. In this situation, only noise contained by the sensors de-

teriorates the estimation. Indeed, it was shown that the noise contained by the field used to calculate 

R² leads to underestimate R² but did not lead to a true deterioration of the estimation. Therefore, 

only the addition of noise of the sensors is considered. 

The results are shown in Fig. IV.3 where the evolution of R² is plotted as function of the SNR 

of the noise added to the sensors in the validation set (TR stands for Tikhonov regularization). 

Results from two sets of pressure sensors are compared (they are defined in Chapter III.2.1, one is 

composed of 3 sensors, the other of 5 sensors). For both sets, R² increases with the SNR, thus noise 

on the pressure measurements clearly deteriorates the prediction quality. In addition, the deteriora-

tion is more important in the case where only the validation set pressure measurements contain 

noise than in the case where both training and validation set measurements contain noise. That is 

seen by comparing the red curve in Fig. IV.1 with the green curve in Fig. IV.3. Also, the deteriora-

tion is extremely strong for the set of 5 pressure sensors. This is related to the collinearities between 

the sensors and thus to the conditioning of the covariance matrix E in equation (II.7). Indeed, the 

VIF obtained for the set of 3 sensors is 10.9 and for the set of 5 sensors 82. And the conditioning of 
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E is 265 with 3 sensors and 533 with 5 sensors. When the conditioning increases, the model becomes 

more sensible to perturbations in the measurements (input). Typically, the noise that the measure-

ments contain can be amplified. It is what is observed here. As explained in Chapter II.1.4, in such 

situations, regularization can decrease the error outside the training set and thus improve the pre-

diction accuracy of the model. This was quickly investigated here. Using Tikhonov regularization 

and choosing the regularization parameter through cross-validation, R² could be increased up do 

68% instead of -104% in the case using 5 pressure sensors with SNR equals to 5. Results are plotted 

in Fig. IV.4. Using Tikhonov regularization, it can be seen that it is possible to almost match the 

performance obtained when noise measurements were used for the training. 

 

Fig. IV.3: Determination coefficient evolution 

as function of the SNR for LSE predictions us-

ing two sets of pressure sensors (noise is added 

on the pressure sensors on the validation set 

only) 

 

Fig. IV.4: Determination coefficient evolution 

as function of the SNR for LSE predictions us-

ing the set of 5 pressure sensors, with or with-

out using Tikhonov regularization. Noise is 

added on the pressure sensor on both training 

and validation sets (green curve) or on valida-

tion set only (blue and red curves) 

This study of Gaussian noise demonstrates the criticality of the noise that can be contained 

by the conditional events. Indeed, such noise directly deteriorates the prediction accuracy of the SE. 

In addition, careful attention is required when training the SE from numerical data only. Indeed, 

one will overestimate the prediction accuracy of the method (since it will be evaluated using meas-

urements that do not contain noise). But it is also possible that the SE model becomes very sensible 

to noise and thus badly performs using experimental measurements. At last, it is interesting to notice 

that, if only experimental data are used, then the performance of the SE will be underestimated since 

the reference data contain noise that is filtered. 

2. Comparison of estimations by SE of URANS and ZDES 

simulations of the OAT15A airfoil in transonic conditions 

In this section the estimation of velocity field simulated by URANS and ZDES methods are 

compared. In the URANS method, all the turbulence is modeled, whereas in ZDES part of the tur-

bulence is resolved. Therefore, the content of the ZDES simulation is closer to the reality especially 

in regards to the smallest scales of the flow. This comparison should highlight the impact of the 

turbulent content of the flow on the estimation quality. 
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2.1. Linear Stochastic Estimation (LSE) 

As in Chapter III.2, static pressure data extracted from the simulation are used as conditional 

events for the estimation of the URANS simulated velocity field. The two sets of pressure sensors 

used are identical to those utilized with the ZDES results (see Chapter III.2.1). 

Fig. IV.5 shows an example of a validation set streamwise fluctuating velocity field estima-

tion. The top left frame (a) is the original velocity field, the top right (b) the prediction using 3 

pressure sensors and the bottom one (c) the prediction using 5 pressure sensors. The first thing to 

notice is that there are no clear vortices in the profile wake, contrary to the ZDES case. That comes 

from the fact that the turbulence is completely modeled when using URANS equations. The vertical 

root-mean-square velocity is displayed in Fig. IV.6 and can be compared with Fig. III.19. The levels 

are clearly smaller in the URANS case than in the ZDES case. The RMS is actually decreased 

mainly in the wake showing that a large part of the turbulence is not simulated in this region, using 

URANS equations. The second thing to notice is that estimations from both sensor sets are qualita-

tively excellent, with some improvements when 5 sensors are used. In both prediction, the shock 

position is correctly recovered and the fluctuations levels are correct. It is clear from these figures 

that the LSE is able to correctly predict instantaneous streamwise velocity field of the URANS 

simulation from a very limited number of sensors (the same is also observed for the vertical velocity 

field). 

Looking at the normalized mean square error plotted in Fig. IV.7 and Fig. IV.8, the LSE 

appears to be less accurate around the mean shock position and in the wake, in a similar fashion as 

when ZDES fields were estimated. However, the regions of high errors are far less stretched than 

in the ZDES case. It is especially true in the wake. Also, the addition of the 2 pressure sensors 

improves the prediction accuracy, as it was observed in the ZDES case. 

 

a) 

 

b) 

 

c) 

Fig. IV.5: Instantaneous fluctuating streamwise velocity (u/U0). a) original field, b) LSE predic-

tion with 3 pressure sensors, c) LSE prediction with 5 pressure sensors. 
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Fig. IV.6: Vertical root-mean-square velocity normalized by U0 

 

a) 

 

b) 

Fig. IV.7: Normalized mean square error of the LSE prediction of the URANS velocity field us-

ing 3 pressure sensors. a) streamwise velocity component, b) vertical velocity component 

 

a) 

 

b) 

Fig. IV.8: Normalized mean square error of the LSE prediction of the URANS velocity field us-

ing 5 pressure sensors. a) streamwise velocity component, b) vertical velocity component 

The good estimation of the velocity fields from the URANS simulation is confirmed by the 

values of the determination coefficient obtained with both sets of sensors. 83.5% with 3 sensors and 

90.4% with 5 sensors. These values are much higher than those obtained for the estimation of the 

ZDES velocity fields (43.6% and 53.2%). The estimation of the URANS velocity fields is more 

accurate than the estimation of ZDES velocity fields. 

In order to better understand this observation and why some areas of the velocity field are 

estimated with less accuracy, a study of the temporal prediction of the velocity field is conducted. 

Signals of both u and v from the URANS simulation are displayed in Fig. IV.9. The positions of the 

two points, where u and v are extracted, are shown in Fig. IV.7 and Fig. IV.8 and correspond to the 

black triangles. The first point is located near the shock, in a region where u is not well predicted 

but the prediction of v is correct. The second point is located in the wake. There, u is well predicted 

but not v. That is clearly seen in the figures. Predicted signals at point (1, u) and point (2, v) do not 

match the original signals at all. For point (1, u), predictions present fast oscillations that are absent 

in the original signal. On the opposite, the fast oscillatory behavior of v at point 2 is absolutely not 

predicted by either set of pressure sensors. For v at point 1 and u at point 2, the prediction is im-

proved by using 5 sensors. The main effect of the addition of 2 sensors on the prediction, for these 

cases, is to eliminate the high frequency content of the signal.  
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a) Point (1, u) 

 

b) Point (1, v) 

 

c) Point (2, u) 

 

d) Point (2, v) 

Fig. IV.9: Streamwise and vertical fluctuating velocity signals comparison between original 

data and LSE predictions (URANS case) 

From these figures, it is obvious that the data best predicted present one main oscillation with 

a period equal to the shock oscillation period. On the other hand, when the data is badly predicted, 

it presents higher frequencies. That is confirmed by looking at the Power Spectral Density (PSD) 

of the signals in Fig. IV.10. The original signals of u at point 1 and of v at point 2 have clearly more 

energy in high frequencies than the two other signals. For point (1, u) the main frequency peak is at 

the first harmonic of the shock oscillation frequency. For point (2, v) a peak is observed around 

3 kHz which corresponds to the vortex shedding frequency in the wake of the airfoil. For point (1, 

u) even the low frequencies are not correctly predicted, whatever set of sensors is used. In addition, 

the prediction has a high frequency content (about 3 kHz) that is not in the original signal. For point 

(2, v), the low frequency content (in particular at the oscillation frequency) seems correctly pre-

dicted and the use of 5 pressure sensors improves the prediction. The high frequency content (from 

1 kHz) is, on the contrary, not predicted. This explains the bad performance of the LSE in this 

region. Fig. IV.10 shows that the LSE predicts with more accuracy the low frequency content than 

the high frequency one. It is important to notice here, that fitting of the estimated spectrum with the 
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original one, does not guarantee an accurate estimation. Indeed, no information is here given on the 

phase. 

 

a) Point (1, u) 

 

b) Point (1, v) 

 

c) Point (2, u) 

 

d) Point (2, v) 

Fig. IV.10: Power Spectral Density comparison between the original and the LSE predictions 

using the sets of sensors “Intuitive P 3” and “Intuitive P 5” (URANS case) 

The same signals are extracted from the validation set of the ZDES using LSE and the same 

sets of sensors. They are plotted in Fig. IV.11. Compared to the URANS signals, the ZDES ones 

are clearly more complex. If the signal at point 1 for v has still a clear main periodicity, it is not the 

case for point (1, u) and point (2, u). Predicted signals at point (1, v) globally follow the original 

signal and the main oscillation is recovered. However, they also contain fast oscillations that do not 

match the original signal. The same can approximately be said for point (1, u) and point (2, u), 

predicted signals seem to follow the slow evolution of the original signals but they absolutely do 

not match the original signals fast evolution. At last, the results for point (2, v) are similar to those 

obtained with URANS data. LSE predictions do not match the original data. Predictions however 

hold some fast oscillations which appear to be at the correct frequency but not particularly in phase 

with the original signal.  
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Power spectral densities (PSD) are shown in Fig. IV.12. From these spectra, it is clear that 

more energy is contained at high frequencies, especially at point 2. In addition, the low frequencies 

are better predicted than the high ones. For points (1, u), (1, v) and (2, u) the main peak at the shock 

oscillation frequency is well predicted. On the contrary, for points (1, u), (2, u) and (2, v) frequencies 

higher than 400 Hz are not correctly predicted for both sets of sensors. For these four signals, the 

prediction accuracy obtained in the ZDES case is lower than the accuracy obtained in the URANS 

case. The analysis of the spectral content of these signals suggests that the deterioration in accuracy 

comes from the fact that the high frequency content is not correctly predicted (in both URANS and 

ZDES case) and that more energy is contained in the high frequencies in the ZDES case than in the 

URANS case.  

 

a) Point (1, u) 

 

b) Point (1, v) 

 

c) Point 2, u 

 

d) Point 2, v 

Fig. IV.11: Streamwise and vertical fluctuating velocity signals comparison between LSE pre-

dictions (ZDES case) 
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a) Point (1, u) 

 

b) Point (1, v) 

 

c) Point (2, u) 

 

d) Point (2, v) 

Fig. IV.12: Power Spectral Density comparison between the original and the LSE predictions 

using the sets of sensors “Intuitive P 3” and “Intuitive P 5” (ZDES case) 

2.2. Modified Linear Stochastic Estimation (LSE-POD) 

POD is directly computed using only training data from the URANS database. Fig. IV.13 

shows the energy spectrum of the decomposition for the first hundred modes. This spectrum can be 

compared with the one from the ZDES database in Fig. III.22. The first POD mode accounts alone 

for more than 63% of the Turbulent Kinetic Energy (TKE) and the first four POD modes for almost 

93%. In the ZDES case, the first POD mode contains 48% of TKE and the first four POD modes 

79%. Thus, less POD modes are required to retain the same amount of TKE for the URANS data-

base than for the ZDES database.  

Determination coefficients of the first 10 POD modes of the URANS simulation (~ 98% 

TKE), obtained by LSE on the validation set, are plotted in Fig. IV.14 for both sets of pressure 

sensors. This figure can be compared with Fig. III.23 for the ZDES case. If the first two POD modes 
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are well predicted by both sensor sets (R² higher than 95%), from the third POD modes, the predic-

tion drastically deteriorates (R² lower than 75%). However, the POD mode 6 is better predicted by 

both set of sensors. The use of “intuitive P 5” set greatly improves the prediction accuracy of POD 

modes 3 and in a smaller amount of POD modes 4, 5 and 6. Similarly to the ZDES case, only the 

first two POD modes are excellently predicted. Thus, the fact that the overall prediction of the 

velocity field is better for the URANS database than the ZDES database comes from the fact that 

the first two POD modes do not retain the same amount of TKE in both cases. In the URANS test 

case, the first two POD modes represent more than 84% of the TKE. In the ZDES case, these POD 

modes contain only 64% of the TKE. 

 

Fig. IV.13: Energy spectrum of the first hun-

dred POD modes (OAT15A URANS) 

 

Fig. IV.14: Determination coefficient calcu-

lated for each POD mode separately on the 

validation set (OAT15A URANS) 

 

a) POD modes 1 to 4 

 

b) POD modes 5 to 8 

Fig. IV.15: Power Spectral Density of the POD modes 1 to 8 (OAT15A URANS) 

The spectral content of the first 8 POD modes are displayed in Fig. IV.15 for the URANS 

case and in Fig. IV.16 for the ZDES case. In the URANS case, the first two POD modes correspond 

to the shock oscillation, with a peak at the shock oscillation frequency. Then higher POD modes 
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have more energy at higher frequencies. POD modes 3 and 4 corresponds to the first harmonic of 

the shock oscillation and the following modes to the superposition of higher harmonics. In this 

situation, the LSE seems to be able to only predict the shock oscillation (the first two POD modes). 

But since the shock oscillation accounts for a large part of the TKE, in the URANS case, the global 

prediction accuracy evaluated by R² is very good.  

In the ZDES case, POD modes 1 and 2 still correspond to the shock oscillation, with a main 

peak at the shock oscillation frequency. POD modes 3 and 4 do not correspond to the first harmonic 

of the shock oscillation (as in the URANS case). They correspond to the vortex shedding in the 

wake of the profile, which frequency is 3 kHz. Concerning POD modes 5 to 8, POD modes 5 and 

6 have more energy in the low frequencies than POD modes 7 and 8 (blue and green curves are 

superimposed for f  > 1 kHz). It was already seen in Chapter III.2.1.2 that POD modes 1 and 2 were 

very well predicted. POD modes 5 and 6 were also slightly better predicted than POD modes 3, 4, 

7 and 8. The fact that the POD modes 3, 4, 7 and 8 are poorly estimated confirms the inability of 

the LSE, with the chosen sensors, to estimate the high frequencies content of the flow. More pre-

cisely, the LSE is able to reconstruct and predict the buffet, but not the vortex shedding. Therefore, 

low frequency, coherent phenomena, such as the buffet, are more easily estimated by LSE, with a 

limited number of sensors, than others phenomena. 

From the observations in the URANS and ZDES cases, it is possible to deduce the general 

trend that the higher in frequencies the energy content of one POD mode is, the more difficult it is 

to reconstruct (or predict) using SE. However, such deduction from the spectral analysis of the POD 

basis remains limited. Indeed, it is not possible to explain, from this information, why the POD 

mode 6 is better predicted than the others (in the URANS case) or why the POD mode 4 is better 

predicted than the third, with the “intuitive P 5” set in the ZDES case. These observations are ad-

dressed in Chapter V.1.2.1 where the impact of the sensor locations is investigated. 

 

a) POD modes 1 to 4 

 

b) POD modes 5 to 10 

Fig. IV.16: Power Spectral Density of the POD modes 1 to 10 (OAT15A ZDES) 

2.3. Quadratic Stochastic Estimation (QSE) and modified 

Quadratic Stochastic Estimation (QSE-POD) 

As in the ZDES case, the reconstruction and prediction accuracy is improved by the QSE 

compared to the LSE in the URANS case. Determination coefficient, on the validation set, reaches 

93.6% with the “Intuitive P 3” set of sensors and 97.9% with the “Intuitive P 5” set of sensors. 
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Determination coefficients of the first 10 POD modes, obtained by QSE on the validation set, are 

plotted in Fig. IV.17 for both sets of pressure sensors. LSE values are also plotted and the figure 

can be compared with the one of the ZDES case in Fig. III.23. QSE seems to improve the prediction 

of the first POD modes, especially when the “intuitive P 5” set is used. However, the prediction 

accuracy decreases for POD modes of rank higher than 7. In the ZDES case, the prediction of the 

first 10 POD modes is also improved by using QSE instead of LSE (see Fig. III.23). But, the im-

provement is much important for POD modes 5, 6, 9 and 10. It was previously shown that these 

POD modes contain more energy in the low frequencies of the flow than POD modes 3, 4, 7 and 8 

(see Fig. IV.16). Thus, the QSE is also unable to predict the vortex shedding in the ZDES case and 

similarly to LSE, low frequencies are better estimated than high frequencies. These conclusions are 

not in opposition with the URANS results. Indeed, in the URANS case, up to POD modes 8, POD 

modes contain mainly low frequencies (under 1 kHz).  

 

Fig. IV.17: Determination coefficient calcu-

lated for each POD mode separately on the 

validation set (OAT15A URANS) (in MTD-

LSE 150 delays every 6.6710-3 Tosc in the 

past are used with Tikhonov regularization) 

 

Fig. IV.18: Validation set determination coef-

ficients as function of the number of delays for 

MTD-LSE (OAT15A URANS case) 

2.4. Multi-Time-Delay Linear Stochastic Estimation (MTD-

LSE) and MTD-LSE-POD 

Using only “intuitive P 3” set of sensors, several constant time steps between delays are con-

sidered, as well as different numbers of delays. Fig. IV.18 shows the evolution of R² (from the 

validation set) with the number of delays for several constant time steps between delays. The values 

are obtained using Tikhonov regularization. Without applying Tikhonov regularization, as in the 

ZDES case, validation set R² mostly decreases when more delays are used and the prediction accu-

racy is never as good as when Tikhonov regularization is employed. On the contrary, without reg-

ularization, the reconstruction (training set estimation) accuracy improves when more delays are 

used. Once more an optimal time window is observed and spans from 0 to 1 Tosc approximately.  

R² reaches a maximum of 99.9% when 150 delays taken every 6.6710-3 Tosc in the past are 

used. As in the ZDES case, MTD-LSE is able to greatly improve the estimation of the velocity field. 

Here, MTD-LSE allows a perfect prediction of the velocity field even when only 3 pressure sensors 

are used. R² of the prediction of the first 10 POD modes using MTD-LSE with the same delays is 
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plotted in Fig. IV.17. The first 10 POD modes are all perfectly predicted. In URANS case, the high 

frequency content of the flow is well predicted using MTD-LSE. This is also illustrated in Fig. 

IV.19 where the predicted signal using MTD-LSE at point (2, v) is displayed.  

 

Fig. IV.19: Vertical fluctuating velocity signals comparison between original data and MTD-

LSE predictions using 150 delays every 6.6710-3 Tosc (URANS case, point 2) 

 

a) Point (2, u) 

 

b) Point (2, v) 

Fig. IV.20: Streamwise and vertical fluctuating velocity signals comparison between MTD-LSE 

prediction (150 delays every 6.6710-3 Tosc) and original (ZDES case) 

It was shown in the previous chapter that MTD-LSE improved the prediction in the ZDES 

case. However, even in the best situations tested, the determination coefficient remains lower than 

in the URANS case (about 78%). Looking at Fig. III.26, MTD-LSE is shown to be less accurate for 

POD modes that contain more energy in the high frequencies (3, 4, 7 and 8). Therefore, in the ZDES 

case, even with MTD-LSE it is not possible to perfectly predict the high frequency content of the 

velocity field. Predicted signals at point 2 are displayed in Fig. IV.20 and can be compared with 

Fig. IV.11. The amplitude of the predicted oscillations is clearly higher when MTD-LSE is used 

than when LSE is used. In addition, they appear to be mostly in phase with the original ones. Nev-

ertheless, predicted and original signals are far from matching each other. Looking at the spectral 



2. Comparison of estimations by SE of URANS and ZDES simulations of the OAT15A airfoil 

in transonic conditions 137 

 

content in Fig. IV.21, it is clear that low frequencies and high frequencies are better estimated with 

the MTD-LSE than with the LSE. But spectra do not match in the high frequencies domain (f > 

1 kHz) which is consistent with the lower values of R² obtained in the ZDES case compared to 

URANS case values.  

The excellent results in the URANS case may come from the fact that the turbulence is com-

pletely modeled in this case. Thus, the original data are completely deterministic while, in the ZDES 

case, the velocity evolution in the wake possesses a more random behavior (part of the turbulence 

is directly resolved). 

 

a) Point (2, u) 

 

b) Point (2, v) 

Fig. IV.21: Power Spectral Density comparison between the original and the MTD-LSE predic-

tions using 150 delays every 6.6710-3 Tosc (ZDES case) 

2.5. Summary 

Estimations, using several SE methods, of the velocity field around the OAT15A airfoil in 

transonic conditions, from URANS and ZDES simulations, have been compared. If the estimation 

performances of the SE methods in the URANS case are excellent, they deteriorate in the ZDES 

case.  

The spectral study demonstrated that SE methods have difficulty to correctly estimate the 

high frequency content of the flow. Especially, only in some cases of MTD-LSE (or MTD-LSE-

POD), was the vortex shedding partially recovered. In the URANS case, the high frequency content 

represents a small part of the energy content of the flow. Indeed, the first four POD modes, that 

accounts for more than 93% of the Turbulent Kinetic Energy (TKE), presents one frequency peak 

around 80 Hz (for POD modes 1 and 2) and 160 Hz (for POD modes 3 and 4). These four POD 

modes are correctly reconstructed and predicted using LSE (or derived methods). But, in the ZDES 

case, the high frequencies represent a greater part of the flow TKE. The POD shows that, if the first 

two POD modes, accounting for 63% of the TKE, have a main frequency peak around 80 Hz, POD 

modes 3 and 4, which accounts for about 15% of the TKE, have a main frequency peak around 

3 kHz, which is the vortex shedding frequency. The first two are well estimated but not the other 

two (even when using MTD-LSE-POD). These observations do not mean that, between two differ-

ent flows, the one having more energy in the high frequencies will be estimated with the lowest 

accuracy using SE. But that for one flow, the low frequency content will be better estimated than 
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the high frequency content. The effect of SE on the spectral content will be addressed more precisely 

in Chapter IV.4. 

Another aspect of turbulent flows concerns the turbulent spatial integral length scales which 

is linked to the two points correlation function [80] (formula are given in annex C). Thus, it can be 

of particular interest when using LSE (and its extensions) which is based on the correlations be-

tween the sensors and the flow field. Therefore, one could fairly expect that flow regions with the 

largest length scales are also the regions where the LSE performs the best. 

Fig. IV.22 compares the turbulent spatial integral length scales of the streamwise velocity, 

calculated in the streamwise direction, of the URANS simulated flow field and of the ZDES one. 

The scales are particularly small in the area of displacement of the shock. It is due to the fact that 

the shock disrupts the correlation between points upstream and downstream the shock. In overall, 

comparing the two figures shows that the scales are shorter for the ZDES field than for the URANS 

one. In the wake region, the length scales are particularly shortened between the URANS case and 

ZDES case. It is due to the turbulence that is resolved in the last case and thus generates small scale 

turbulent structures in the wake. Those structures form the high frequency content of the vortex 

shedding.  

This figure can also be compared with Fig. IV.8.a) and Fig. III.16.a) where the normalized 

mean square error of the streamwise velocity for the URANS case and ZDES case are displayed. 

Regions of short integral length scales match rather well the regions of high error. Especially the 

enlargement of the high error region in the wake, in the ZDES case compared to the URANS case, 

can be linked to the shortening of the spatial integral length scales in this area. Therefore, the LSE 

is unable to correctly estimate regions of the flow where the turbulent spatial length scales are the 

shortest and where the high frequency content is predominant. This effect is examined more closely 

in the next part. 

 

a) URANS case 

 

b) ZDES case 

Fig. IV.22: Turbulent spatial integral length scales of the streamwise velocity in the streamwise 

direction (Lx/c) 

3. Study of length scales conservation on the Backward Facing 

Step case 

The Backward Facing Step (BFS) database of the low speed PIV experiments for an upstream 

velocity of 30 m.s-1 is used to conduct the following study in the single-time case. When MTD is 

used, the high speed PIV database is employed. 
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3.1. Single-time Stochastic Estimation using wall pressure 

measurements 

Fig. IV.23 and Fig. IV.24 show the turbulent spatial integral length scales for the streamwise 

velocity u and the vertical velocity v respectively (computed in both streamwise and vertical direc-

tions). The length scales are calculated as described in annex D (thus when calculated in the stream-

wise direction upstream and downstream length scales are taken into account, when calculated in 

the vertical direction, length scales calculated for descending y and for ascending y are taken into 

account). Since the integral length scales are computed on a finite domain, with a criterion for stop-

ping the integration, they may not be perfectly converged in some points of the field. Indeed, the 

spatial domain may not always be large enough for the autocorrelation function to reach and remain 

close to 0 (in particular near the edges of the domain but the combination of Λ+ and Λ− should limit 

this problem). Also, according to Pope [96], the spatial domain should be at least six times larger 

than the maximum integral length value to accurately determine such integral length scale. How-

ever, we are interested in the comparison of original values with estimated ones, not in the integral 

length scale value in itself. Convergence issues are not expected to false the comparison.  

 

Fig. IV.23: Turbulent spatial integral length 

scale for the streamwise velocity u, computed 

in the streamwise direction (top) and vertical 

direction (bottom) 

 

Fig. IV.24: Turbulent spatial integral length 

scale for the streamwise velocity v, computed 

in the streamwise direction (top) and vertical 

direction (bottom) 

The discontinuities that can be observed around x/h = 3.5 (in Fig. IV.23 and Fig. IV.24) comes 

from overlapping flaws between the two PIV fields that form the image. The largest integral length 

scales (about one half the step height) are mainly located above the recirculation and downstream 

of the reattachment point (located at x/h = 5.6). They result from the vortex shedding downstream 

of the step and not from the freestream flow since the values upstream of the step are close to zero. 

This indicates that large coherent structures are formed downstream of the step and located in this 

area. For length scales calculated in the streamwise direction, the spatial domain seems large enough 

to evaluate the largest integral length scales. That is not the case for the scales calculated in the 

vertical direction, but the length scales calculated are consistent with the physics of the flow and in 

particular the vortex shedding phenomenon.  

Estimated length scales (calculated for the validation set only) are plotted in Fig. IV.25 and 

Fig. IV.26. Generally speaking, the integral length scales of the estimated fields are larger than the 

original ones everywhere in the flow. Patterns present in the original maps in Fig. IV.23 and Fig. 

IV.24 cannot be identified in the maps obtained from the estimated fields. The turbulent spatial 

integral length scales are not conserved by this LSE. 
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Fig. IV.25: Turbulent spatial integral length 

scale predicted by LSE, for the streamwise ve-

locity u (top: computed in streamwise direc-

tion; bottom: computed in vertical direction) 

 

Fig. IV.26: Turbulent spatial integral length 

scale predicted by LSE, for the vertical veloc-

ity v (top: computed in streamwise direction; 

bottom: computed in vertical direction) 

 

Fig. IV.27: LSE prediction to original turbu-

lent spatial integral length scale for u ratio 

(top: calculated in streamwise direction; bot-

tom: calculated in vertical direction) 

 

Fig. IV.28: LSE prediction to original turbu-

lent spatial integral length scale for v ratio 

(top: calculated in streamwise direction; bot-

tom: calculated in vertical direction) 

In order to better compare the integral length scales obtained from the predicted fields with 

the original ones, their ratio (expressed in decibel (dB)) is displayed in Fig. IV.27 and Fig. IV.28. 

In most regions (recirculation area, downstream of the reattachment point and above the recircula-

tion downstream x/h = 3), the length scales have been increased by a factor of 2 (3 dB) to 6 (7.8 

dB). In the four maps, the area of lowest increase of the integral length scales, is located above the 

recirculation, for x/h ≥ 4, and corresponds to the region of highest integral length scales in the orig-

inal data. This area is the one where the integral length scales are the best conserved and actually 

corresponds to the region where the LSE performs the best (as it was observed in Chapter III.3.1.1.1, 

see Fig. III.31). In this configuration, using wall pressure measurements, the LSE is only able to 

estimate the largest integral length scales and the smallest ones are filtered. 
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Fig. IV.29: QSE prediction to original turbu-

lent spatial integral length scale for u ratio 

(top: calculated in streamwise direction; bot-

tom: calculated in vertical direction) 

 

Fig. IV.30: QSE prediction to original turbu-

lent spatial integral length scale for v ratio 

(top: calculated in streamwise direction; bot-

tom: calculated in vertical direction) 

Maps of the ratios of scales predicted by QSE on the original ones are plotted in Fig. IV.29 

and Fig. IV.30. In overall ratios are decreased in the entire flow field. They are particularly lower 

in the boundary layer upstream of the step. That is interesting since it was shown in Chapter III that 

the QSE only improved the reconstruction accuracy and not the prediction accuracy in the BFS test 

case. In fact, maps of turbulent spatial integral length scales calculated from the training set or the 

validation set for the QSE prediction are almost identical. As for RMS quantities, the overfitting is 

not observed. A correct prediction of the turbulent spatial integral length scales is therefore not 

enough to conclude on the instantaneous prediction accuracy. At last, even if the estimated length 

scales are closer to the original ones using QSE, they are still increased. The QSE does not estimate 

accurately the turbulent spatial integral length scales either. 

3.2. Linear Stochastic Estimation using velocity field sensors 

Since the use of wall pressure sensors leads to a poor conservation of the turbulent spatial 

integral length scales, it was decided to investigate the impact of using velocity sensors in the flow 

on the conservation of these scales. For this study, eight grids of streamwise velocity sensors (ex-

tracted from the PIV measurements) are employed. The characteristics of each grid are summarized 

in Table IV.1. The initial point (the most upstream and close to the wall) location is given as well 

as the spacings in the streamwise and vertical directions (see Fig. IV.31 and Fig. IV.32 for sensors 

locations). Table IV.2 compares the determination coefficient of each configuration. It can be seen 

that determination coefficients up to 62% can be reached with the densest grid. With the coarsest 

grids, which contains 21 sensors (only 4 more sensors than there were wall pressure sensors in the 

previous case), a determination coefficient of 21% is reached, which is more than twice the one 

obtained with wall pressure measurements. The use of streamwise velocity information in the flow 

can clearly improve the estimation accuracy obtained by LSE. 

For brevity, only figures of the longitudinal integral length scale of u are displayed for each 

grid. Fig. IV.31 and Fig. IV.32 show the maps of this integral length scales for the eight different 

grids of sensors used for the LSE. From these figures, it can be observed that the coarsening of the 

sensors grid leads to a deterioration of the integral length scales prediction. For the grids of 462 and 

240 sensors, the contours present a shape similar to the one in the top image of Fig. IV.23. When 

the sensor grids are coarsened, the contours become closer to the ones from LSE using pressure 

sensors. Also, the shortest integral length scale order of magnitude increases with the sensors spac-

ing. Even with the finest grid, the integral length scales are not perfectly predicted and are increased 

in the entire domain. Therefore, they are also increased in the area of largest integral length scales 
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in the original data. These observations are also valid for the three other integral length scales Λu,y, 

Λv,x, Λv,y (displayed in annex H.5, Fig. H.7 to Fig. H.12). In overall, the turbulent spatial integral 

length scales are overestimated in the entire field and in particular between the sensors where the 

correlations between the sensors and the velocity field are the lowest. This indicates a filtering of 

the length scales, the largest being better estimated than the shortest. 

Number of sensors Initial point (x/h, y/h) Streamwise spacing (dx/h) Vertical spacing (dy/h) 

462 (0.19, 0.15) 0.19 0.19 

240 (0.19, 0.19) 0.266 0.266 

126 (0.19, 0.15) 0.38 0.38 

56 (0.19, 0.15) 0.57 0.57 

33 (Top) (0.19, 0.53) 0.76 0.76 

33 (Bottom) (0.19, 0.15) 0.76 0.76 

21 (Top) (0.19, 0.53) 1.14 0.76 

21 (Bottom) (0.19, 0.15) 1.14 0.76 

Table IV.1: Sensor grid characteristics 

Number of 

sensors 

Validation set 

R² 

Shortest Λu,x Shortest Λu,y Shortest Λv,x Shortest Λv,y 

Λu,x/h Λu,x/dx Λu,y/h Λu,y/dy Λv,x/h Λv,x/dx Λv,y/h Λv,y/dy 

462 62% 0.16 0.88 0.17 0.88 0.15 0.79 0.17 0.88 

240 56% 0.2 0.75 0.19 0.73 0.18 0.69 0.2  0.75 

126 47% 0.27 0.71 0.23 0.61 0.23 0.61 0.22 0.57 

56 35% 0.31 0.55 0.28 0.5 0.27 0.47 0.3  0.53 

33 (Top) 27% 0.36 0.47 0.33 0.44 0.28 0.37 0.35 0.46 

33 (Bottom) 28% 0.35 0.46 0.35 0.46 0.3 0.4 0.35 0.46 

21 (Top) 20% 0.4 0.35 0.35 0.46 0.3 0.26 0.37 0.48 

21 (Bottom) 21% 0.37 0.32 0.33 0.44 0.32  0.28 0.37 0.48 

Table IV.2: Determination coefficient and turbulent spatial integral length scales, for the valida-

tion set, of several LSE using different sensor grids 

The approximate orders of magnitude of the shortest integral length scales estimated (found 

downstream of the step) are summarized in Table IV.2 for each grid. To determine these values, 

data at the sensor locations are disregarded, since the estimation at this point is perfect. The data 

are normalized by the step height h or by the sensors grid spacing, dx or dy, in the direction of the 

integral length scale calculation. As previously observed, coarsening the grid leads to an increment 

of the shortest integral length scale predicted. An interesting fact appears when looking at the ratio 

between the shortest predicted integral length scale and the sensor grid spacing. This ratio ranges 

from 0.28 to 0.88 and increases when the sensor grid is refined. Thus, the shortest integral length 

scale predicted by the LSE is not proportional to the distance between the sensors. Large integral 

length scales can be recovered by LSE with sensor spacing larger than these scales. But the smallest 

integral length scales seem to require sensor spacing of the order of magnitude of the turbulent 

scales. 
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Fig. IV.31: Turbulent spatial integral length 

scales for u calculated in the streamwise direc-

tion for LSE using several grids of 462, 240, 

126 and 56 sensors (from top to bottom) 

 

Fig. IV.32: Turbulent spatial integral length 

scales for u calculated in the streamwise direc-

tion for LSE using several grids of 33 and 21 

sensors (from top to bottom) 

3.3. Study through Proper-Orthogonal-Decomposition analysis 

To complete the previous study, the estimation of the POD modes of the flow field through 

LSE is investigated. Details on the POD basis can be found in Chapter III.3.1.1.2. In addition, the 

POD convergence and its impact on the presented results are discussed in annex C. The determina-

tion coefficient R²POD Single of the first thousand POD modes is plotted in Fig. IV.33 for the grids of 

462, 240, 126 and 56 sensors. R²POD Single for the first hundred POD modes is also plotted in Fig. 

IV.34 for the grids containing 33 and 21 sensors. In the present case, the general trend is that the 

higher the POD mode rank is, the lower the determination coefficient is. It shows that the higher 

POD modes are clearly less correlated to the sensors than the low POD modes. In addition, for one 

POD mode, the coarser the sensor grid is, the lower the determination coefficient is. Therefore, it 

is more difficult to estimate a high order POD mode with LSE than a low order one. Furthermore, 

high order POD modes require more sensors to be correctly estimated. As such, only the grid with 

462, 240 and 126 sensors are able to estimate some POD modes with a determination coefficient 

higher than 80%. 

To study the link between the sensor grid used and the predicted length scales, a characteristic 

length λ is associated to each POD mode. This length λ is the length for which 95% of the TKE of 

the POD mode is conserved after having been spatially filtered by an ideal low-pass filter of cut-off 

frequency 1/λ in the spatial Fourier domain. Mathematically, the characteristic length λ of each 

POD mode i is defined by: 
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arg max
λ∈𝐑+

(
|∬𝐻(ζ, ξ)̂𝑖(ζ, ξ) 𝑑ζ𝑑ξ|

2

|∬ ̂𝑖(ζ, ξ)𝑑ζ𝑑ξ|
2 ≥ 0.95) (IV.1) 

where ̂𝑖(ζ, ξ) is the spatial Fourier transform of the POD mode i and H(ζ,ξ) is the ideal low-pass 

filter transfer function defined by: 

𝐻(ζ, ξ) = {
1 if 𝐷(ζ, ξ) < 1 λ⁄

0 if 𝐷(ζ, ξ) ≥  1 λ⁄
 (IV.2) 

with D(ζ,ξ) the distance norm in the Fourier domain. 

 

Fig. IV.33: Determination coefficient calcu-

lated for each POD mode separately on the 

validation set using LSE and several grids of 

streamwise velocity measurements 

 

Fig. IV.34: Determination coefficient calcu-

lated for each POD mode separately on the 

validation set using LSE and several grids of 

streamwise velocity measurements 

This length can be interpreted as being the shortest length of the spatial structures contained 

in the POD mode. Structures of smaller length count for less than 5% of the POD mode TKE. It is 

not a turbulent integral length scale. In the present case, this length generally decreases when the 

POD mode rank increases. Fig. IV.35 shows the streamwise velocity of the POD mode 1, 7 and 

400, for which the characteristic lengths are respectively 1.1 h, 0.56 h and 0.13 h. For the 1st POD 

mode and the 7th, the characteristic length corresponds well to the approximate height of the struc-

tures, but is clearly smaller than their length. For the POD mode 400, the turbulent structures are 

more isotropic and have, globally, the same height and length which matches λ. Therefore, λ seems 

to correctly approximate the shortest length contained in the POD mode. Concerning POD modes 

which are not perfectly converged, λ obtained for the POD basis from the training set and from the 

first 3397 PIV snapshots of the training set were compared. The order of magnitude of λ as function 

of the POD mode rank is very close for both POD bases. In particular, it is true for POD modes of 

rank 30 to 70, which can be considered as converged for the first POD basis but not for the second 

one. 

We now arbitrarily choose a threshold of 80%, for example, on the determination coefficient 

of one POD mode, above which it is considered to be satisfactorily predicted. Then, the grid 462 is 

able to correctly predict POD modes up to the mode 21, the grid 240 up to 14 and the grid 126 up 

to 6 (the other grids do not satisfy this condition). Modes 21, 14 and 6 are associated with the 

characteristic lengths 0.49 h (2.6 d), 0.55 h (2 d) and 0.73 h (1.9 d) (where d = dx = dy) respectively. 

For each grid, one has to expect not being able to predict, with high accuracy structures shorter than 
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these characteristic lengths. The same effect, as with the turbulent spatial length scales, is seen here 

where the characteristic length, of the last POD mode predicted with a R² higher than 80%, is not 

proportional to the grid spacing. When the grid is already quite dense, refining it leads to fewer 

improvements than the refinement of a coarse grid. 

Similarly, it is possible to choose a threshold on POD modes R², under which the POD mode 

can no longer be considered correctly predicted. We arbitrarily choose a 10% threshold defining a 

cut-off rank for the POD modes which are summarized in Table IV.3. The coarsest grids are unable 

to predict POD modes with characteristic length smaller than half the step height. And the finest 

grid is only able to predict POD modes with characteristic length higher than a tenth of the step 

height. It can be observed, when the characteristic length of the cut-off POD mode is normalized 

by the sensor spacing d, that the characteristic length decreases when the grid is coarsening. This 

decrement is probably not the result of the lack of convergence of the higher order POD modes 

since it is already observed between POD modes 21 and 50 which are well converged (see annex 

C). 

Furthermore, considering the convergence of the POD modes, it can be questionable to insert 

poorly converged POD modes into the model formed by the LSE. One may argue that the prediction 

of the entire flow field would be more accurate if these POD modes were disregarded. For brevity, 

let us consider only LSE using 462 streamwise velocity sensors. The determination coefficients of 

the validation set velocity field estimation is 61.9% (which corresponds to the use of all 6 793 POD 

modes). If only the first 650 POD modes (90% TKE) are used, then R² on the validation is 61.8%. 

Thus, the inclusion of the last 6 143 POD modes is unnecessary, but is also not harmful to the LSE 

model. Now, if only the first 70 POD modes, which can be considered as converged, are estimated, 

then R² falls to 56.3%. Therefore, estimating not converged POD modes, still improves the predic-

tion of the entire velocity field outside the training set. 

 

Fig. IV.35: Streamwise component of the velocity POD modes 1, 7 and 400 (from top to bottom). 

Black arrows illustrate the characteristic length of the mode. 

In Fig. IV.33 and Fig. IV.34, it can be seen that the determination coefficient rapidly de-

creases with the POD mode rank. For the grids 462 to 126, the POD mode prediction accuracy 
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quickly deteriorates for POD modes of ranks higher than 30. For the other grids, the deterioration 

starts before the rank 10. The SE, in this situation, seems to be able to predict correctly only the 

first POD modes that contain the largest scales of the flow. This fact is also seen for the estimation 

using the wall pressure measurements with LSE-POD (see Fig. III.37). But LSE-POD performs 

badly for any POD modes, with a R² lower than 25%. The cut-off rank is about 10 and the 10th POD 

mode has a characteristic length of about 0.6 h. 

Number of sensors Cut-off rank (10% threshold on R²) Associated characteristic length λ 

462 300 0.14 h 0.74 d 

240 225 0.17 h 0.64 d 

126 125 0.24 h 0.63 d 

56 50 0.32 h 0.56 d 

33 (Top) 30 0.44 h 0.58 d 

33 (Bottom) 35 0.37 h 0.49 d 

21 (Top) 14 0.55 h 0.48 dx 

21 (Bottom) 21 0.49 h 0.43 dx 

Table IV.3: Cut-off rank of predicted POD modes and characteristic length associated for LSE us-

ing several grids of streamwise velocity sensors. 

Looking more closely to Fig. IV.34, one can observe some discrepancies of the prediction 

accuracy of the first 10 POD modes for the two grids made of 33 sensors and the two grids made 

of 21 sensors. According to the location of the grid, POD modes are predicted with different level 

of R². Grids with sensors located at half of the step height (33 and 21 “top”), up to the top boundary 

of the estimated domain, perform better on the first two POD modes than grids with sensors located 

near the wall (33 and 21 “bottom”). On the contrary, the grids 33 and 21 “bottom” seem to better 

predict POD modes of rank higher than 4. The reasons for this behavior are investigated in the 

following part. 

3.4. Sensor locations impact 

Differences in the estimation accuracy of the POD modes between two grids, with the same 

number of sensors and the same spacing, induce that the sensor grid spacing is not the only param-

eter impacting on the length scales estimated by LSE. In addition, the non-proportionality of the 

smallest turbulent spatial length scales estimated with the grid spacing also indicates that refining a 

uniform grid of sensors may not be the best way to capture smaller and smaller length scale struc-

tures in the flow through SE. 

In 2006, Cohen et al. [63] proposed a heuristic method to place the sensors in order to estimate 

POD coefficients using LSE. Their method uses a POD of the possible sensors and they advocated 

locating the sensors at the extrema of the sensor POD modes. In our case, when using velocity 

measurements from the PIV data as sensors, they should therefore be located at the extrema of the 

velocity POD modes. 

The first and sixth modes are displayed in Fig. IV.36 where the sensors of grids 33 “top” and 

“bottom” are also plotted. This figure shows that sensors of the grid 33 “top” are located close to 

the maxima of the first POD mode for the streamwise velocity (it is also true for the vertical veloc-

ity). On the contrary, the grid 33 “bottom” has sensors above and under the maxima of the first 

mode and they are clearly farther to the maxima than the ones of the grid 33 “top”. It is then coherent 

to observe in Fig. IV.34 than the first POD mode is better predicted by the grid 33 “top” than by the 

grid 33 “bottom”. The opposite situation happens for the POD mode 6, which is better predicted 

when using the grid 33 “bottom”. If the two grids have around the same number of sensors close to 
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extrema of the POD mode 6 for the vertical velocity (not shown here for brevity), the grid 33 “bot-

tom” has sensors closer to the extrema of the POD mode 6 streamwise velocity component, than 

the grid 33 “top”. Extrema of the POD modes seems to be indeed a better location for the sensors. 

To correctly estimate a POD mode, it appears to be important to dispose of sensors near the extrema 

of the mode. 

 

a) Streamwise velocity component 

 

b) Vertical velocity component 

Fig. IV.36: Streamwise (a) and vertical (b) component of the velocity POD modes 1 and 6. 

Black squares corresponds to the 33 “top” sensor grid and the white circles to the 33 “bottom” 

grid. 

As Fig. IV.33 and Fig. IV.34 show, the higher the rank of a POD mode is, the more it pos-

sesses extrema. Therefore, one can expect that the number of sensors necessary to estimate a POD 

mode, with a certain level of R², increases with the POD mode rank in the present situation. Table 

IV.4 compares the determination coefficient obtained for POD mode 1, 2, 5 and 10, when using 

LSE with one sensor located at the extrema of the POD mode. It clearly appears that the determi-

nation coefficient decreases with the POD mode rank and that more sensors are necessary to esti-

mate higher POD modes with the same level of R². This confirms the difficulty which arises when 

trying to estimate small scale structures from a limited number of measurements through LSE. In 

addition, the situation is even more unfavorable when the sensors, for example unsteady pressure 

transducers, can only be placed at the wall and thus not close to the extrema of the POD modes to 

estimate. The positioning of sensors will be addressed more closely in Chapter V. 

POD mode R² using only one sensor 

1 37% 

2 30% 

5 20% 

10 17% 

Table IV.4: Determination coefficient of the prediction of several POD modes when using only 

one streamwise velocity sensors located at the extremum of the POD mode 

3.5. Impact of Multi-Time-Delay method 

3.5.1. Multi-Time-Delay Linear Stochastic Estimation using wall pressure 

measurements 

The best situation tested in Chapter III.3.1.2 is here considered. As previously shown, im-

provements in accuracy were found to be marginal (less than 1% for the determination coefficient 

calculated on the validation set). Ratio of predicted (by MTD-LSE) to original spatial integral length 
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scales are shown in Fig. IV.37 for the streamwise velocity and in Fig. IV.38 for the vertical velocity. 

These figures can be compared with Fig. IV.27 and Fig. IV.28. One can observe that, in overall, the 

ratio is only slightly decreased when MTD-LSE is used instead of LSE. 

The determination coefficient of the first 90 POD modes predicted by MTD-LSE-POD (using 

75 delays every 110-2 Tshedding) is plotted in Fig. III.42. It was shown that the MTD-LSE-POD 

prediction is slightly better than the LSE-POD. But both perform badly for any POD modes, with 

R² lower than 25%. The cut-off rank is about 10 in both situations, but the MTD-LSE-POD is able 

to recover some POD modes, of ranks between 20 and 30, with a R² higher than 10%. To give an 

order of idea, the 10th POD mode has a characteristic length of about 0.6 h. Therefore, even when 

using MTD-LSE, structures shorter than half the step are not correctly predicted. 

 

Fig. IV.37: MTD-LSE prediction to original 

turbulent spatial integral length scale for u ra-

tio (top: calculated in streamwise direction; 

bottom: calculated in vertical direction) 

 

Fig. IV.38: MTD-LSE prediction to original 

turbulent spatial integral length scale for v ra-

tio (top: calculated in streamwise direction; 

bottom: calculated in vertical direction) 

3.5.2. Multi-Time-Delay Linear Stochastic Estimation using streamwise 

velocity measurements 

To perform a MTD-LSE using streamwise velocity measurements as conditional events, it is 

necessary to dispose of measurements sampled at frequency higher than the shedding frequency 

(about 100 Hz, St = 0.1). Thus, the use of data extracted from the low speed PIV is not possible and 

results from the high speed PIV are utilized. The LSE using 20 streamwise velocity measurements 

from the high speed PIV database do not lead to any overfitting (the difference of R² between the 

validation set and the training set is less than 1%). The choice of locations for the 20 measurements 

will be addressed precisely in Chapter V. Once more the best MTD-LSE configuration among those 

tested is considered. In this configuration, 10 delays taken every 510-2 Tshedding for each sensor are 

used. The determination coefficient on the validation set is about 39% using LSE and 45% using 

MTD-LSE (with Tikhonov regularization). Thus, the improvement is more significant than when 

using the wall pressure sensors. 



3. Study of length scales conservation on the Backward Facing Step case 149 

 

 

Fig. IV.39: LSE prediction to original turbu-

lent spatial integral length scale for u ratio. 

Black dots show the position of the stream-

wise velocity sensors (top: calculated in 

streamwise direction; bottom: calculated in 

vertical direction) 

 

Fig. IV.40: MTD-LSE prediction to original 

turbulent spatial integral length scale for u ra-

tio. Black dots show the position of the 

streamwise velocity sensors (top: calculated in 

streamwise direction; bottom: calculated in 

vertical direction) 

 

Fig. IV.41: Determination coefficient calculated for each POD mode separately on the valida-

tion set using LSE and MTD-LSE with 20 streamwise velocity measurements 

Fig. IV.39 and Fig. IV.40 compare ratio of predicted to original integral length scales (for the 

streamwise velocity) obtained in LSE and MTD-LSE case. The ratio is lower in the MTD-LSE case 

and in overall MTD-LSE is able to recover smaller length scales than the LSE. R2
POD Single of the 

first 50 POD modes predicted by LSE-POD and MTD-LSE-POD are shown in Fig. IV.41. The 

prediction of each POD mode is clearly improved by MTD-LSE-POD. R2
POD Single increases up to 

20% for some POD modes. Using a cut-off at 10% as previously, LSE-POD is unable to predict 

POD modes of ranks higher than 30 (λ ≈ 0.44 h), while MTD-LSE-POD is able to predict POD 

modes up to rank 50 (λ ≈ 0.32 h). Therefore, LSE is able to estimate structures larger than about 

one half the step height and MTD-LSE larger than one third of the step height without requiring 

more sensors. 

3.6. Summary 
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The difficulty to estimate the small turbulent spatial integral length scales by Linear Stochas-

tic Estimation (LSE) using only wall pressure measurements has been demonstrated. Fields of tur-

bulent spatial integral length scales show that LSE overestimates these scales even in the areas 

where they are the largest. The comparative study of several in flow streamwise velocity sensor 

grids shows that it is possible to estimate smaller length scales by refining the sensor grids. How-

ever, if it is possible to reconstruct and predict turbulent integral length scales of half the spacing 

of coarse grids, for fine grids the smallest length scales recovered are of the order of magnitude of 

the grid spacing. In a sense, the LSE filters the spatial integral length scales shorter than half the 

sensors spacing. 

The investigation of the Proper-Orthogonal-Decomposition (POD) modes estimation shows 

that only the first POD modes are correctly estimated and they correspond to the largest scales of 

the flow, in the present case. Refining the grids allows a better estimation of higher order POD 

modes, but even with very fine grids, only a few POD modes are reconstructed and predicted with 

a high fidelity. This investigation also highlights the strong importance of the sensor location. It 

shows that a POD mode is better estimated if the sensors are located close to its extrema. Therefore, 

the possibility to predict with high accuracy a velocity POD mode, from sensors located at the wall 

only, is limited. At last, it was demonstrated that the use of Multi-Time-Delay LSE (MTD-LSE) 

could improve the estimation of the spatial integral length scales. 

4. Spatial and temporal pre-filtering impact on the Linear Sto-

chastic Estimation accuracy 

It was shown in previous parts that SE seems to filter the original velocity field both tempo-

rally and spatially. The goal of this section is then to keep studying this filtering effect but also to 

investigate the possibility to improve the estimation accuracy by filtering the data used by the SE. 

Following the study of the length scale estimation, spatial filtering is first considered. In this section, 

only the backward facing step flow is used.  

4.1. Spatial filtering  

Previously, LSE was shown to only be able to correctly estimate the first POD modes of the 

backward facing step velocity field. These POD modes were also the ones corresponding to the 

longest length scales. Therefore, it is legitimate to compare the LSE estimations with spatially fil-

tered original fields. In addition, the opportunity to spatially filter the training fields is investigated. 

The spatial filter used here is a 2D Gaussian spatial filter which is a low pass filter (thus only 

the longest lengths are conserved). The determination coefficient of the LSE estimation using the 

17 pressure sensors and unfiltered training fields is displayed in Fig. IV.42. The reference for the 

calculation is the original fields after they have been spatially filtered. Thus, the determination co-

efficient is plotted as function of the cut-off length Lc used to filter the original velocity fields. R² 

goes by a maximum when the cut-off length is increased. The estimated fields are found to be closer 

to the original fields when they have been spatially filtered with a cut-off length about 0.84 h. From 

the results of Chapter IV.3, it is logical that spatially filtered fields, where small length scale struc-

tures have been filtered out, are getting closer to the estimated fields. It was also observed that the 

first two POD modes were the best reconstructed and predicted. The structures contained in these 

two POD modes are of the size of the step which is the order of magnitude of the “optimal” cut-off 

length. Original fields filtered at higher cut-off lengths then diverge from the estimated fields and 

R² decreases. It is due to the fact that the filtered fields used for reference do not contain structures 

that have been estimated because they have been filtered out. 
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Determination coefficients calculated from spatially filtered original fields for LSE estima-

tion using 20 streamwise velocity measurements (the same that were used in Chapter IV.3.5.2) are 

plotted in Fig. IV.43. Similarly to the case where 17 pressure sensors are used, R² goes by a maxi-

mum when the cut-off length Lc increases. However, the “optimal” cut-off length is smaller. It is 

about 0.6 h instead of around 0.84 h. Therefore, from the previously given explanation, it induces 

that estimated fields, for the LSE using streamwise velocity sensors, contain structures of shorter 

length than when pressure sensors are used. That is consistent with what was shown in Chapter 

IV.3.5.2. It was found that using this set of streamwise velocity measurements, POD modes up to 

30 were predicted with R² higher than 10. The characteristic length of the 30th POD mode is about 

0.44 h which is clearly shorter than the characteristic length of the 2nd POD mode (~ 1 h). 

 

Fig. IV.42: Determination coefficient (valida-

tion set) of unfiltered LSE (with 17 pressure 

sensors) using spatially filtered original fields 

as reference. (The use of unfiltered original 

fields as reference is also plotted, red dashed 

line) 

 

Fig. IV.43: Determination coefficient (valida-

tion set) of unfiltered LSE (with 20 stream-

wise velocity sensors) using spatially filtered 

original fields as reference. (The use of unfil-

tered original fields as reference is also plot-

ted, red dashed line) 

The filtering of the training set velocity fields is now investigated. Fig. IV.44 shows the evo-

lution of R² with the cut-off length when the unfiltered and filtered validation set fields are used as 

reference (LSE using 17 pressure sensors and 20 streamwise velocity sensors are shown). It is clear 

that spatially pre-filtering the training set fields does not improve the estimation of the unfiltered 

original fields. The curves clearly highlight a cut-off length of the structure estimated. Indeed, as 

the filter cut-off length increases, first the determination coefficient remains unchanged, and then 

at some point, it quickly decreases. That means that structures of lengths lower that the cut-off 

length (determined by the point where the decreasing starts) were not in the estimated fields. There-

fore, filtering them from the training fields does not impact the estimation overall accuracy. But, if 

too large structures are filtered out of the training fields, and that these structures were estimated, 

then they are filtered out of the estimated fields. The estimated fields then become lesser representa-

tive of the original fields and R² decreases. From these figures, LSE using 17 pressure sensors seems 

unable to estimate structure of length lower than the step height, and LSE using 20 streamwise 

velocity sensors lower than 0.5 h. These values are perfectly consistent with the cut-off character-

istic length of the POD modes (when a 10% threshold was considered). The study of such curves is 

obviously another way to determine the length of the smallest structures estimated without using 

the POD decomposition and the characteristic lengths associated. 



152 Chapter IV. Characterization of Stochastic 

Estimation methods 

 

When R² is calculated using the filtered fields as reference, it first increases with the cut-off 

length, then reaches a maximum and decreases (the decreasing part of the curve is not seen for the 

20 streamwise velocities case, but the behavior displayed by the curve indicates that R² will at least 

reach a threshold). It therefore seems possible by spatially filtering the training fields to select struc-

tures (according to their length) and to slightly improve their estimation. Indeed, R² reaches higher 

values when the training fields are filtered than when they are not (and that R² is calculated from 

filtered original fields). The values obtained with the filtered fields as reference are higher in Fig. 

IV.44 (training fields are filtered) than in Fig. IV.42 and Fig. IV.43 (training fields are not filtered).  

 

a) LSE using 17 pressure sensors 

 

b) LSE using 20 streamwise velocity sensors 

Fig. IV.44: Determination coefficient as function of the cut-off frequency of the spatial low-

pass filter applied to the training fields 

 

Fig. IV.45: Power Spectral Density of the vertical velocity at the same location as in Fig. IV.47 

for several spatial filters of the velocity field 

Vertical velocity PSD, at the same locations as in Fig. IV.47, obtained after spatially filtering 

the original fields, are displayed in Fig. IV.45. As it is expected, spatially filtering the original fields 

also impact the frequency content. The low frequencies are conserved (for this location the low 

frequencies are amplified but it is not the case in most of the velocity field). On the contrary, the 
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high frequencies are cut. This is expected since high frequencies are linked to small scale structures. 

The cut-off frequency depends on the cut-off length used. The larger the cut-off length is, the lowest 

the cut-off frequency is. Also the high frequencies are more and more attenuated by increasing the 

cut-off length. Thus, the spatial filtering allows the selection of frequencies around the shedding 

which can explain the improvement of R² when using the spatially filtered fields as reference. Also 

if Lc is too high, low frequency content, that are estimated, are filtered out of the reference field, 

which decreases R². The temporal filtering of the data is now investigated. 

4.2. Temporal filtering 

4.2.1. Spectral study 

 

a) Point 1 

 

b) Point 3 

Fig. IV.46: Power spectral density of several estimations of the validation set compared to the 

original spectrum (streamwise velocity) 

It was shown in Chapter III.3 that reconstruction and prediction of the velocity field down-

stream the backward facing step using SE with 17 wall pressure sensors were poorly accurate. De-

termination coefficient R² (from the validation set) ranges from 6.9% (QSE) to 9.3% (MTD-LSE). 

As done for the OAT15A test case, the spectral content of SE prediction is quickly investigated. 

Only the LSE and MTD-LSE results (from the low speed PIV) are discussed here, and the high 

speed PIV measurements are used to compute the reference spectra. To be used as reference, the 

high speed PIV spectra are corrected to match the RMS of the low speed PIV at the considered 

point. Spectra of the prediction are obtained by estimating the velocity field at 10 kHz (using the 

pressure measurements). In the MTD-LSE case, 75 delays every 10-2 Tshedding are used, which cor-

responds to the best situation obtained while testing several MTD-LSE configurations. Power Spec-

tral Density (PSD) of the streamwise velocity at two locations (one in the recirculation bubble and 

one above the recirculation) are displayed in Fig. IV.46.a) and Fig. IV.46.b) respectively. The ex-

tracted location in the recirculation bubble is denoted as point 1 and the one above as point 3. PSD 

of the vertical velocity at one location (in the shear layer) are shown in Fig. IV.47 (the location is 

identified as point 2 in Fig. IV.49). From these PSD LSE and MTD-LSE results, one can conclude 

that both methods are unable to match the original spectrum. But, as observed in the OAT15A test 

case, low frequencies are better recovered. That is clear for point 2 and point 3. For these points, 

the spectral content predicted clearly falls from around 200 Hz to 400 Hz. For point 1 disparities 

between estimated and original spectra seems also more important for the high frequencies than for 
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the low ones. The MTD-LSE performs a little bit better for frequencies around 200 Hz to 400 Hz. 

Due to the use of the Tikhonov regularization the high frequency content is, however, even more 

attenuated than in the LSE case. 

 

Fig. IV.47: Power spectral density of several estimations of the validation set compared to the 

original spectrum (vertical velocity at point 2) 

From these observations, the opportunity to pre-filter temporally the pressure sensors and/or 

the field to estimate was investigated. First, only the filtering of the pressure sensors was studied 

because it is not possible to filter, at frequencies higher than 5 Hz, the velocity fields obtained from 

low frequency PIV. In addition, it was shown in Chapter IV.1 that the noise contained in the con-

ditional events directly deteriorates the estimation quality. As one can fairly expect the noise to be 

more prominent at high frequencies, low-pass filtering of the conditional events can delete part of 

the noise and could improve the estimation. 

4.2.2. Filtering of conditional events alone (low speed PIV database) 

The temporal filter used is a low-pass 8th-order Butterworth filter. The filter is applied forward 

and backward in time to keep the phase unchanged. Validation set R² as function of the cut-off 

frequency is displayed in Fig. IV.48. The R² corresponding to the situation where the pressure sen-

sors are unfiltered is also plotted for comparison (dashed line). From these data, one can see that 

the estimation can be slightly improved by pre-filtering the conditional events alone. The cut-off 

frequency, obviously, impacts the estimation quality. As the cut-off frequency (fc) increases, the 

determination coefficient goes by a maximum between fc = 300 and fc = 400 Hz. Cutting lower 

frequencies leads to a deterioration of the original unfiltered velocity fields estimation. It can be 

explained by the fact that a too important part of the velocity field is no more estimated and is 

filtered out. On the contrary, when cutting at higher frequencies, the additional frequencies esti-

mated act like a noise that deteriorates the estimation and R² decreases. The value of the optimal 

cut-off frequency is also coherent with what was just observed, where the LSE (and MTD-LSE) 

were shown to cut frequencies higher than 400 Hz. Also the PSD of the pressure signals showed 

that most of the energy they contained is at frequencies smaller than 400 Hz (see Fig. II.14). It is 

also important to notice the strong deterioration of the reconstruction when cutting at lower fre-

quencies than 300 Hz, compared to the weak deterioration when higher frequencies are kept. This 

fact suggests that most of the estimated content is a low frequency one which is consistent with 

observations made from PSD. 
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Three predicted fields are displayed in Fig. IV.49. They correspond to the same instant of 

time. One is obtained using LSE and the unfiltered pressure sensors, the other two using LSE and 

pressure sensors low-pass filtered at fc_=_400 Hz and fc = 200 Hz (the original field is displayed in 

Fig. III.29). The overall shape of the predicted field is not modified by the filtering at 400 Hz. 

However, the fluctuation levels are slightly changed. More particularly the range of fluctuations 

estimated increases (and it is observed generally over different instants of time). If the pressure 

sensors are filtered with a smaller fc, the structures are modified and the range of fluctuations de-

creases, which explains the decrease of R². A part of the velocity field correctly predicted has been 

filtered out. 

The PSD of the prediction when the pressure sensors have been low-pass filtered at 

fc = 300 Hz are plotted in Fig. IV.46 and Fig. IV.47. These figures show frequencies lower than 

100 Hz are better recovered using the filtered conditional events than the unfiltered one (when using 

LSE). The cut-off frequency is clearly seen with a sudden fall at 300 Hz. Thus frequencies higher 

than fc are indeed not estimated.  

 

Fig. IV.48: Determination coefficient as func-

tion of the cut-off frequency of the low-pass 

filter applied to the pressure sensors (LSE 

from low speed PIV data and pressure sen-

sors) 

 

Fig. IV.49: Predicted streamwise velocity field 

comparison between several LSE using fil-

tered and unfiltered pressure measurements 

At last the possibility to band-pass filter the pressure data is also quickly investigated. From 

the pressure signal PSD (see Fig. II.14.a)), it is seen that most of the energetic content is contained 

between 30 Hz and 400 Hz. Therefore, the pressure signal is band-pass filtered between these two 

frequencies. The determination coefficient of the prediction is then 5.73%. The prediction quality 

is lower than in the unfiltered case but also than in most of low-pass filtered cases. Therefore, even 

if the low frequency content of the pressure sensors seems to have a negligible energy compared to 

the energy contained between 30 Hz and 400 Hz, the estimation of frequencies lower than 30 Hz 

represents an important part of the overall estimation. 

4.2.3. Filtering of the conditional events and training fields (high speed 

PIV database) 

If, in our case, the SE reconstruction and prediction accuracy can indeed be improved through 

the temporal pre-filtering of the conditional events, the improvement is not significant. Thus the 

impact of filtering the fields to estimate is now investigated. For this study only high speed PIV 
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data are used, since it is necessary to dispose of velocity fields samples at high frequency. It was 

previously shown that no overfitting was observed using LSE on the high speed PIV database. So 

the evolution tendencies are expected to be still representative. Also no pressure measurements are 

available in this situation. Instead streamwise velocities, extracted in 20 locations in the flow field, 

are used (as in Chapter IV.3.5.2). 

 

Fig. IV.50: Determination coefficients as func-

tion of the cut-off frequency of the low-pass fil-

ter applied to the original fields used as refer-

ence (LSE from unfiltered data) 

 

Fig. IV.51: Determination coefficient as func-

tion of the cut-off frequency of the low-pass fil-

ter applied to the sensors and training fields 

(LSE from high speed PIV data and streamwise 

velocity measurements; original filtered field 

used as reference; Post-filtered LSE corresponds 

to LSE from unfiltered measures and training 

field which results are then filtered) 

The LSE prediction (using unfiltered sensors and training field) is first compared with low-

pass filtered original velocity fields for the calculation of R². The determination coefficient calcu-

lated using these filtered fields as reference is plotted in Fig. IV.50. Values of R² reaches a maximum 

at fc = 300 Hz. Since only the reference, used to calculate R², changed, it indicates that the estimated 

content is mainly a low frequency one, more particularly, under 300 Hz. This observation is con-

sistent with previous ones. Another interesting way to identify the quality of the estimation, accord-

ing to the spectral content, is to look at the determination coefficient obtained from the filtered part 

of the estimated fields compared to the filtered original fields. This R² is plotted in Fig. IV.51 (curve 

with square symbols). It shows a decrease of the prediction quality as more and more high frequen-

cies are taken into account. Thus, it confirms that the low frequencies are the best predicted. 

 

4.2.3.1. Filtering of the conditional events alone 

The same analysis as previously is now conducted and only the sensors data are low-pass 

filtered. The validation set determination coefficient as function of the cut-off frequency is plotted 

in Fig. IV.53. Once more the R² obtained without filtering the sensors is also plotted. The trends 

observed previously are perfectly reproduced here. While decreasing the cut-off frequency, the de-

termination coefficient first increases, goes by a maximum around 400 Hz and then decreases rap-

idly. It is interesting to note that the cut-off frequency, leading to the best R², is of the same order 

of magnitude than in the previous case whereas the conditional events have been changed in nature 
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and number (streamwise velocity are used instead of wall pressure). This observation suggests that 

this “optimal” cut-off frequency is not dependent of the conditional events used for the LSE, but 

directly linked to the flow that is estimated. The PSD of three of the twenty streamwise velocity 

data (locations shown in Fig. IV.54), used as conditional events, are displayed in Fig. IV.52. The 

Kolmogorov’s law is well observed and whatever the velocity data considered the cascade starts 

about 200 Hz. In addition, it is possible to see a plateau or rebound around 500 Hz that is sympto-

matic of noise contained in the PIV measures. This observation may explain that the “optimal” cut-

off frequency is found around 400 Hz. 

 

Fig. IV.52: Power spectral density of three 

streamwise velocity data used as conditional 

events for the LSE (Point 1: red plot, Point 2: 

black plot, Point 3: green plot) 

 

Fig. IV.53: Determination coefficient as func-

tion of the cut-off frequency of the low-pass 

filter applied to the sensors and training fields 

(LSE from high speed PIV data and stream-

wise velocity measurements; original unfil-

tered field used as reference) 

4.2.3.1. Filtering of both conditional events and training fields 

The impact of filtering the fields used to train the LSE is now studied. First, the determination 

coefficient obtained for LSE with the conditional events filtered and the training fields filtered is 

compared, in Fig. IV.53, with the case where only the conditional events have been filtered. The 

reference for the calculation of R² is of course the unfiltered velocity fields in this figure. The two 

curves match each other almost perfectly. If the conditional events are filtered, then using training 

fields filtered at the same cut-off frequency does not change the estimation by LSE. This should be 

expected and can be simply explained. 
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Fig. IV.54: Average streamwise velocity field with the locations of the 3 streamwise velocity 

measurements which PSD are displayed in Fig. IV.52 

To simplify the discussion, let us consider the case of a perfect low-pass filter. Let us suppose 

that the training fields and conditional events are both low-pass filtered. We denote fc the lowest 

cut-off frequency applied to either the training fields or the conditional events. Then the cross-

spectral density of any conditional event with any point of the field (𝐸−𝑈) verifies: 

𝐸−𝑈(𝑓) = 0 if 𝑓 > 𝑓𝑐 (IV.3) 

From the Wiener-Kinchine theorem and using the inverse Fourier transform we have: 

〈𝐸(𝑡)𝑈(𝑡)〉 = ∫ 𝐸−𝑈(𝑓)
∞

0

𝑑𝑓 (IV.4) 

Therefore, if the conditional events or the training fields are low-pass filtered with a cut-off fre-

quency fc, the previous integral range from 0 to fc and the covariance between them is equal to the 

covariance in the case where both data have been low-pass filtered at fc. Thus when only the condi-

tional events are filtered, the system of equation leading to the LSE coefficients is equivalent to the 

one obtained if the training fields are also filtered. 

In Fig. IV.51, R² calculated with the low-pass filtered original fields for reference, in the case 

where the sensors have been filtered, is displayed. The case where both the sensors and the training 

fields have been filtered is also plotted and matches the case where only the sensors are filtered, 

which is consistent with the previous discussion. In these situations, R² decreases and tends toward 

the unfiltered value. Thus, R² follows the same trend as when the LSE, obtained from unfiltered 

conditional events and training fields, is post-filtered and then compared with filtered original fields. 

The R² values are slightly better from the LSE using filtered sensors but the differences reach only 

4% for fc = 50 Hz. This is consistent with previous observations showing that filtering the condi-

tional events leads to a slight improvement of the prediction. 

4.2.3.2. Filtering of the training fields alone 

At last, the impact of filtering the training fields alone is studied. The determination coefficient 

evolutions, as function of the cut-off frequency, calculated using the unfiltered original fields for 

reference (left triangle curve) and using the filtered original fields for reference (right triangle 

curve), are displayed in Fig. IV.55. Filtering the training field does not lead to any improvement of 

the estimation of the unfiltered fields. The left triangle curve always remains under the value of R² 

where no data are filtered and tends toward this value when fc increases. Looking at the estimation 

quality of the filtered part of the original fields (right triangle curve), a best situation is found for 

fc_=_150 Hz. The interpretation of this situation is more complicated than previous cases. Indeed, 

in this case the estimation used unfiltered conditional events, thus only the matrix of the covariance 

between the conditional events and the fields to estimate is modified. Therefore, even if at the train-

ing only low frequencies of the fields are taken into account, higher frequencies can be estimated. 
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This may explain that R² goes by a maximum and does not simply increase when the cut-off fre-

quency decreases. Higher frequencies are estimated and deteriorate the estimation of the low-pass 

filtered original fields. This is confirmed by the PSD of the vertical predicted velocity signal at the 

same location as in Fig. IV.47, which are plotted in Fig. IV.56. Two cut-off frequencies are consid-

ered 50 Hz and 150 Hz. The PSD of the filtered original signal are also plotted. Both reconstructed 

signals go by a peak around 100 Hz, therefore when the original signal is cut at 50 Hz, proportion-

ally a more important part of the predicted spectrum is contained in frequencies that have been 

filtered out. In addition, the R² values, achieved by filtering the training fields and using the filtered 

original fields as reference, remain lower than those obtained in the case where the conditional 

events are filtered. 

 In overall it is possible to slightly improve the reconstruction and prediction accuracy by 

filtering the conditional events used for the LSE. However, the improvement is limited. On the 

contrary, filtering the training fields does not increase the quality of the estimation. This study also 

highlighted again that the low frequency content is the best estimated. 

 

Fig. IV.55: Determination coefficient as func-

tion of the cut-off frequency of the low-pass 

filter applied to the training fields (LSE from 

high speed PIV data and streamwise velocity 

measurements) 

 

Fig. IV.56: Power Spectral Density of the pre-

dicted vertical velocity compared to filtered 

original signal (LSE using filtered training 

fields) 

4.3. Summary 

The impact of temporally pre-filtering the conditional events used for the LSE with a low-

pass filter has been investigated. The results showed that such a pre-filtering could improve the 

reconstruction and prediction accuracy. Indeed, low-pass pre-filtering of the conditional events pre-

vents the estimation of high frequencies that act like a noise on the estimate. The improvement is 

however very limited. When the conditional events are filtered, it has been proven that pre-filtering 

the training fields, at a higher cut-off frequency than the conditional events, does not bring any 

modification. Through this study, the fact that the low-frequencies are the best estimated was also 

highlighted. Thus selecting a priori these frequencies and targeting their prediction leads to a better 

prediction quality. The impact of temporally pre-filtering the training fields alone has also been 

explored. In this situation, it is not possible to improve the estimation of the unfiltered fields.  

In a similar manner as with the temporal pre-filtering, spatial pre-filtering of the training 

fields did not lead to an improvement of the estimation of unfiltered fields. It is however possible 
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to select high scale structures that are then better reconstructed and predicted by the LSE. The study 

also highlights a clear cut-off of the LSE on the length of the estimated structures which confirms 

the observations of previous parts. 

5. Impact of Reynolds number 

The impact of varying the Reynolds number for a same flow configuration is here investi-

gated. In this part, the flow around the wall-mounted cube is used and in order to conduct spectral 

studies, the high speed PIV database is mainly employed. 

5.1. Determination coefficient evolution 

Determination coefficients obtained using LSE on the low speed PIV databases are detailed 

in Table IV.5 and Table IV.6. It is difficult to clearly establish a relation between the upstream 

velocity and the determination coefficients from these data. Globally, R² seems to increase when 

the upstream velocity decreases. Values obtained for U0 = 10 or 15 m.s-1 are higher than values at 

U0 = 30 m.s-1. But the evolution is not continuous, the lowest values (for the vertical plane) are 

those at U0 = 20 m.s-1. These discrepancies probably come from the uncertainties due to the lack of 

convergence of the data that was observed in Chapter II.3.3.4.1.  

Upstream velocity (m.s-1) 10 15 20 25 30 

Reynolds number (Reh) 2.02104 3.04104 4.05104 5.06104 6.08104 

R² from original 

fields 

Training 16.1 16.7 13.6 14.8 14.7 

Validation 15.7 15.8 12.4 13.9 14.5 

Table IV.5: Determination coefficient evolution as function of the upstream velocity (LSE, low 

speed PIV database, vertical plane) 

Upstream velocity (m.s-1) 10 15 20 25 30 

Reynolds number (Reh) 2.02104 3.04104 4.05104 5.06104 6.08104 

R² from original 

fields 

Training 21.1 21.4 18.1 16.8 16.7 

Validation 19.7 21.2 16.5 17.2 15.7 

Table IV.6: Determination coefficient evolution as function of the upstream velocity (LSE, low 

speed PIV database, horizontal plane) 

R² values obtained using LSE on the high speed PIV databases are displayed in Table IV.7 

and Table IV.8. Only three upstream velocities are tested and the results seem more consistent con-

cerning the evolution of R² with the upstream velocity. When the upstream velocity decreases, R² 

increases. Also, R² calculated on the validation set is for some cases higher than the value from the 

training set. That comes from the fact that the validation set is smaller than the training set. These 

values are probably not converged and one should not expect to obtain a better accuracy on the 

validation set than on the training set in general. Nevertheless, the global evolution of R² as function 

of U0 remains the same on both sets. At last, the discrepancies between R² values obtained from the 

low speed PIV database and the high speed PIV database also comes from the fact that the velocity 

fields estimated do not have the same size and resolution in both databases. The fact that the reso-

lution is higher with the high speed PIV leads to spatially filtering out some small scale structures 

that were contained in the low speed PIV. Thus, it is expected to increase R². In addition, high speed 

PIV snapshots are shorter in the streamwise direction and the error is globally higher far down-

stream the cube than close to it. This also should lead to obtain higher R² using the high speed PIV 
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data instead of the low speed ones. That is observed by comparing R² value between low speed PIV 

and high speed PIV cases (especially for the horizontal plane). 

Determination coefficients of the QSE are shown in Table IV.9 and Table IV.10 for the high 

speed PIV databases. As expected, training set R² is increased compared to the LSE case. Validation 

set R² is also increased but the values have to be considered with care as it was just explained. 

Nevertheless, the same evolution as for the LSE is observed. The estimation becomes more accurate 

when the Reynolds number is decreasing. These observations are expected. Indeed, the Kolmogo-

rov scales decreases when the Reynolds number increases, while the largest remains approximately 

the same (they are imposed by the cube geometry). Thus energy is shared over a larger range of 

scales when the Reynolds number increases. Since it was shown that the shortest length scales are 

estimated with a lower accuracy than the largest ones by SE methods, the R² decreases. The large 

scales that are well estimated represents a smaller part of the flow energy content. 

Upstream velocity (m.s-1) 10 20 30 

Reynolds number (Reh) 2.02104 4.05104 6.08104 

R² from original fields 
Training 17.5 16.3 14.7 

Validation 20.4 17.6 13.4 

Table IV.7: Determination coefficient evolution as function of the upstream velocity (LSE, high 

speed PIV database, vertical plane) 

Upstream velocity (m.s-1) 10 20 30 

Reynolds number (Reh) 2.02104 4.05104 6.08104 

R² from original fields 
Training 33.5 23.8 21.8 

Validation 33.4 24.3 23.5 

Table IV.8: Determination coefficient evolution as function of the upstream velocity (LSE, high 

speed PIV database, horizontal plane) 

Upstream velocity (m.s-1) 10 20 30 

Reynolds number (Reh) 2.02104 4.05104 6.08104 

R² from original fields 
Training 21.6 20 18.5 

Validation 23.3 19.5 14.6 

Table IV.9: Determination coefficient evolution as function of the upstream velocity (QSE, high 

speed PIV database, vertical plane) 

Upstream velocity (m.s-1) 10 20 30 

Reynolds number (Reh) 2.02104 4.05104 6.08104 

R² from original fields 
Training 38.7 28.5 26.5 

Validation 36.6 27.2 24.2 

Table IV.10: Determination coefficient evolution as function of the upstream velocity (QSE, high 

speed PIV database, horizontal plane) 

5.2. Flow characterization using Proper-Orthogonal-Decompo-

sition 

Estimation, using modified LSE (LSE-POD), of the velocity field around a wall mounted 

cube was already investigated in Chapter III.4.2. It was shown that for both planes the first three 

POD modes were estimated with a determination coefficient much higher than for POD modes of 
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higher ranks. The PSD of these POD modes are plotted in Fig. IV.57. The PSD of POD modes 4 to 

7 are plotted in Fig. IV.58. All the spectra are already normalized since the norm of each POD 

coefficients is one. For the vertical plane, the first three POD modes exhibit a clear peak at f = 100 

Hz (St = 0.1) which is the shedding frequency. POD modes 1 and 2 have also more energy in the 

low frequencies (about 20 Hz). PSD of POD modes 4 to 7 have no peak at the shedding frequency 

and the spectrum of these POD modes is clearly translated towards higher frequencies. A bump is 

observed around 200-400 Hz (depending on the POD modes). Therefore, as in the OAT15A airfoil 

test case, the best estimated POD modes are those containing the lowest frequencies of the flow. 

That is also observed for the estimation of the horizontal plane. Among POD modes 4 to 7, for the 

vertical plane, the POD mode 7 is predicted with the lowest accuracy. Its PSD shows that its fre-

quency content is at higher frequencies than the ones of POD modes 4, 5 or 6. In the BFS case, no 

POD modes are predicted with R² higher than 25% as it is the case for the first three POD modes in 

the cube experiments. It seems that it may be related to the frequency content of the modes. In the 

BFS case, POD modes have a quite broad spectrum (see Fig. H.5 in annex H.3) contrary to what is 

observed for the first three POD modes in the cube test case. 

Differences in the prediction accuracy between the first three POD modes of both planes are 

more difficult to explain. Indeed, for the horizontal plane, POD mode 3 is the best predicted. Its 

PSD is quite different than PSD of POD modes 1 and 2. No peak at the shedding frequency is 

observed but there is a strong bump around 20 Hz. Thus, POD mode 3 contains more low frequen-

cies (under 100 Hz) than POD modes 1 and 2. However, for the vertical plane, POD mode 2 is 

predicted with the lowest R² while it contains more low frequencies than POD modes 1 and 3. But 

this mode also has a clear peak at the shedding frequency, which is not the case for POD mode 3 of 

the horizontal plane. 

 

a) Vertical plane 

 

b) Horizontal plane 

Fig. IV.57: Power Spectral Density of POD modes 1 to 3 (High speed PIV database, U0 = 30 

m.s-1) 
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a) Vertical plane 

 

b) Horizontal plane 

Fig. IV.58: Power Spectral Density of POD modes 4 to 7 (High speed PIV database, U0 = 30 

m.s-1) 

Determination coefficients calculated for POD modes separately are plotted in Fig. IV.59. In 

this figure, results for the three upstream velocity conditions are shown. For all velocities, R² evo-

lution as function of the POD mode remains globally unchanged. The first three POD modes are 

always the best reconstructed and predicted. For POD modes of higher ranks, there is a clear dete-

rioration of the estimation accuracy. And the estimation of POD modes of ranks higher than 70 is 

completely inaccurate (R² is close to 0). Looking at the prediction accuracy of the first three POD 

modes of the horizontal plane, the order, from best predicted to worst predicted POD mode, is un-

changed between the three situations. The PSD of these POD modes are displayed in Fig. IV.60 for 

the 10 and 20 m.s-1 case. This figure shows that the PSD of these three POD modes are perfectly 

identical between the three situations (when the Strouhal number is used as abscissa). The only 

difference is that spectra are translated toward lower frequency when the upstream velocity de-

creases. On the contrary, for the vertical plane, the order, from the best predicted to the worst pre-

dicted POD mode, is changed between the three tested situations. For instance, the best predicted 

POD mode is the third one in the 30 m.s-1, case but it is the first one in the two other cases. The 

PSD of the first three POD modes of the vertical plane are plotted in Fig. IV.61 for the 10 and 20 

m.s-1 case. Those spectra show that the best predicted POD mode always corresponds to one with 

the lowest levels around St ≈ 0.02 (see Fig. IV.57 for the 30 m.s-1 case). On the contrary, the worst 

predicted mode always has the highest levels around St ≈ 0.02. These observations induce a clear 

relation between the frequency content of a POD mode and the accuracy of its prediction. Between 

these three POD modes, the best predicted is therefore not the one that contain more energy in the 

low frequency than the other two. It seems here that POD modes with broad spectra are estimated 

with lower accuracy than POD modes with narrow spectra. However, that does not contradict pre-

viously stated conclusions about the difficulty to estimate the high frequency content. Indeed, the 

first three POD modes that mainly contains frequencies lower than the main phenomenon (St ≈ 0.1) 

are clearly the best estimated. The other POD modes contains higher frequencies. 
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a) Vertical plane 

 

b) Horizontal plane 

Fig. IV.59: Determination coefficient calculated for each POD mode separately on the valida-

tion set using LSE for several upstream conditions (wall mounted cube experiment, high speed 

PIV database) 

 

a) U0 = 20 m.s-1 

 

b) U0 = 30 m.s-1 

Fig. IV.60: Power Spectral Density of POD modes 1 to 3 (High speed PIV database, horizontal 

plane) 

Some improvements, in terms of R², are also observed between the three situations, especially 

between the 10 m.s-1 case and the two others. From Fig. IV.59, it is clear that some POD modes are 

better predicted in the 10 m.s-1 case than in the 20 or 30 m.s-1 cases. That is consistent with the 

evolution of R² computed from the entire velocity field displayed in Table IV.7 and Table IV.8. 

However, improvements mainly concern POD modes of ranks lower than 10 and more particularly 

the first two POD modes. The gains are not so directly linked to the spectra of POD modes. The 

fact that when the upstream velocity decreases, the spectrum of a POD modes is generally translated 

toward the low frequency may explain for a part the increase of R². But that is not sufficient to 

completely explain some observations. For instance, while the evolutions of POD modes 4 and 5 
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spectra are similar, for the vertical plane, between the 10 m.s-1 and the 30 m.s-1 cases, only the 

reconstruction and prediction accuracy of the POD mode 5 is improved. 

 

a) U0 = 20 m.s-1 

 

b) U0 = 10 m.s-1 

Fig. IV.61: Power Spectral Density of POD modes 1 to 3 (High speed PIV database, vertical 

plane) 

 

Fig. IV.62: Power Spectral Density of POD modes 4 to 7 (High speed PIV database, vertical 

plane, U0 = 10 m.s-1) 

At last, another phenomenon acts for the improvement of accuracy of the estimation when 

the upstream velocity is decreasing. In addition to the increase of R² for the first POD modes, less 

and less POD modes are required to retain the same amount of TKE when the upstream velocity 

decreases. That is expected from the fact that the range of turbulent scales increases with the Reyn-

olds number. Percent of TKE contained in each of the first 500 POD modes for both planes and the 

three upstream velocity cases are plotted in Fig. IV.63. It is clear from this figure that the first three 

POD modes of the vertical plane contain more and more energy when U0 decreases. They contain 

23.6%, 25.4% and 29.2% of TKE in the 30, 20 and 10 m.s-1 cases respectively. The same can be 

said for the first two POD modes of the horizontal plane (31.9%, 32.7% and 38.4% of TKE in the 

30, 20 and 10 m.s-1 cases respectively). Therefore, even if the estimation accuracy of these POD 
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modes were not improved, the overall estimation will likely be more accurate when U0 is decreased. 

Indeed, a larger part of the TKE will be estimated with high R². The accuracy improvement is thus 

the results of the fact that the first POD modes, that are the best predicted, contain more and more 

energy when U0 decreases and also that they are themselves better predicted when U0 decreases. 

 

a) Vertical plane 

 

b) Horizontal plane 

Fig. IV.63: Energy spectrum of the first 500 POD modes (Cube, high speed PIV) 

 

a) Vertical plane 

 

b) Horizontal plane 

Fig. IV.64: Determination coefficient calculated for each POD mode separately on the valida-

tion set using MTD-LSE for several upstream conditions (wall mounted cube experiment, high 

speed PIV database) 

Determination coefficients of POD modes obtained using MTD-LSE-POD are plotted in Fig. 

IV.64. This figure can be compared with Fig. IV.59. From these figures, but also from Fig. III.79 

and Fig. III.80, it appears that the use of delays improves mainly the first three POD modes for the 

vertical plane and the first ten POD modes for the horizontal plane, whatever the upstream velocity. 

The impact of using delays is perfectly similar for the three upstream velocity conditions tested. 
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5.3. Generalization of the SE to several upstream velocity con-

ditions 

In the previous sections, the direct impact of the upstream velocity on the prediction quality 

has been evaluated in the case where SE was used to predict the velocity field at the upstream 

conditions used to train it. We now look at the impact of using the SE, trained for some upstream 

velocity, to predict the flow at another upstream velocity. For brevity, only the horizontal plane data 

of the low speed PIV database are used. First the LSE is trained using the training data set at one 

upstream velocity. It is important to notice that the training data are not normalized so far. Then, 

using the LSE coefficients obtained, data from validation set at the other upstream velocity are 

predicted. The results are presented in Table IV.11. As one could expect, the prediction accuracy 

of the LSE decreases when one is estimating a velocity field which upstream conditions are more 

and more different to the ones used for the training. With such training, LSE should be used to 

predict only the same flow configuration. 

           Training U 

 

Prediction U 

10 15 20 25 30 

10 19.7 16.2 14 12.2 10.7 

15 15.1 21.2 19.8 17.5 15.2 

20 0.82 14.2 16.5 15.8 14.2 

25 -14.9 -4.5 15.7 17.2 16.6 

30 -39.2 -4 9.6 14.6 15.7 

Table IV.11: Determination coefficients of several LSE trained at different upstream velocities 

using non normalized data (validation set) 

The possibility to extend the use of a same set of LSE coefficients to several upstream veloc-

ities by training the LSE with normalized data is now assessed. To do so, the training data and 

validation data are normalized. The three components velocity fluctuations are normalized using 

the freestream velocity. The pressure fluctuations of the sensors are normalized by the freestream 

dynamic pressure. The determination coefficients obtained for the prediction of the normalized val-

idation data of the several upstream velocity situations are shown in Table IV.12. The results shown 

in this table demonstrate that, when trained with normalized data, the LSE prediction accuracy out-

side the training set, for some other upstream velocity conditions, are less deteriorated than if non 

normalized data are used for the training. As such, LSE trained with the normalized 30 m.s-1 dataset 

gives results very close to those obtained when training and validation sets are at the same velocity. 

At last, LSE is trained using the ensemble of normalized training dataset at 10, 15, 20, 25 and 

30 m.s-1. The prediction accuracy of this LSE at these 5 velocities is shown in the column “LSE 

Mix” of Table VI.14. R² obtained with such a training are the same as the ones obtained when LSE 

is train for each velocity alone (except for the 10 m.s-1 case). This way of training the LSE seems 

to be the best in order to be able to use it for the larger range of upstream velocity conditions. 

However, the results obtained when the upstream velocity is 10 m.s-1 shows that LSE training for 

some conditions cannot be used for completely different conditions without deteriorating its pre-

diction performances. 
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           Training U 

 

Prediction U 

10 15 20 25 30 
“LSE 

Mix” 

“QSE 

Mix” 

10 19.7 14.9 13 13.3 14.6 14.6 18 

15 17.9 21.3 20.9 20.8 20.6 21.2 23.7 

20 12.7 16.2 16.5 16.5 16.2 16.5 18.3 

25 13.6 17 17.2 17.2 17.1 17.2 19.4 

30 12.7 15.4 15.5 15.6 15.7 15.7 18 

Table IV.12: Determination coefficients of several LSE or QSE trained at different upstream ve-

locities using normalized data (validation set) 

 QSE is now trained using the ensemble of normalized training dataset at 10, 15, 20, 25 and 

30 m.s-1. Results are displayed in the last column of Table VI.14. These results should be compared 

with those in Table III.18 and Table H.3, Table H.5, Table H.7, Table H.9 of annex H.4.1. This 

comparison shows that they are better than those obtained with a training using the data of the 

corresponding velocity only (even with Tikhonov). Therefore, this way of training the QSE allows 

to reduce the overfitting of the QSE and to obtained better results than with LSE for the 5 tested 

velocities. In this situation, it is clearly possible to use the same QSE coefficients for different ve-

locity. In addition, it actually improves the prediction accuracy of the QSE. Nevertheless, these 

results remain lower than those obtained with MTD-LSE (trained for each upstream velocity sepa-

rately). 

Concerning the case of MTD-LSE, the training is more specific to the upstream velocity be-

cause the optimal number of delays to use depends on the main phenomenon period which itself 

depends on the upstream velocity. Therefore, it does not seem possible to optimize the MTD-LSE 

(in term of number of delays, time window and Tikhonov parameters) for several upstream veloci-

ties. Using MTD-LSE optimized for a precise upstream velocity, to estimate the flow at a different 

upstream velocity, will obviously result in lower accuracy than if the optimal MTD-LSE, at this 

second upstream velocity, was used. 

6. Phase-averaged estimation 

In their work, Ruiz et al. [59] show that phase averaged fields of their flow were very well 

estimated using what they called Spatio-Temporal-LSE (ST-LSE). To determine the phase at each 

instant, they used a POD decomposition of a set of pressure sensors enriched of delays in the past 

and the future called Spatio-Temporal-POD (ST-POD). The ST-POD coefficients are also used to 

perform the LSE which forms the ST-LSE method. Details on the method are given in annex E. In 

particular, it is demonstrated that if all ST-POD modes are considered then the ST-LSE is equivalent 

to the MTD-LSE.  

In this part, the estimation of phase averaged fields by LSE is quickly investigated. In addi-

tion, we look at the opportunity to improve the LSE by using a different set of LSE coefficients for 

each phase interval. The high speed PIV database of the wall mounted cube is used. The upstream 

velocity considered is 10 m.s-1 so that the number of snapshots by period of the main phenomenon 

is the largest. The high speed PIV database is preferred to the low speed one because more snapshots 

are then available by phase interval. Only the vertical plane case is considered for brevity but the 

results are expected to be similar for the horizontal plane. 
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6.1. Estimation of phase-averaged fields by LSE 

First the ST-POD of the 23 pressure sensors is computed (on the training dataset). 31 delays 

in the past only, spaced in time every 1 × 10−3 s, are used and they span one vortex shedding 

period. As expected from the works of Perrin et al. [97] and Ruiz et al. [59], the first two ST-POD 

coefficients carry the same level of energy (approximately 12.7% and 12.2% respectively) and they 

are shifted by a quarter of period. Thus, they can be used to determine the phase of the flow using 

the following formula: 

𝜑𝑎1−𝑎2 = arctan (
𝑎2
𝑎1
) (IV.5) 

These two ST-POD coefficients are displayed in Fig. IV.65 as well as the phase between 

them. Using this phase, the PIV snapshots can then be classified according to the phase obtained 

from the synchronized pressure measurements. The same can be done for the estimated snapshots 

(even outside the training set by projecting the pressure measurements on the ST-POD modes). The 

snapshots in the same ensemble are then averaged to form the phase average fields. Six phase in-

tervals of same length are considered ([
2𝜋

6
𝑖,
2𝜋

6
(𝑖 + 1) [ , 𝑖 ∈ ⟦1,6⟧). The phase averaged field of 

the first interval is plotted in Fig. IV.66. The phase averaged of the LSE estimated fields from the 

validation set for the same phase interval is shown in Fig. IV.67. Only the vertical velocity is dis-

played. Qualitatively, the phase averaged field seems to be well predicted by the LSE. The main 

structures are predicted, the level of fluctuations of the streamwise velocity are however smaller.  

 

Fig. IV.65: Evolution of the first two ST-POD coefficients and of the phase between them 

Determination coefficients of the prediction by LSE of the phase averaged fields of the six 

intervals are given in Table IV.13. They confirm the good prediction of the phase average fields. 

These results are in agreement with the observations of Ruiz et al. and demonstrate that the phase 

information can be obtained with LSE with a good accuracy even if each instantaneous velocity 

snapshots is not well predicted. Indeed, while R² is 20.4% (see Table H.10 in annex H.4.2) for the 

instantaneous velocity field, it is around 85% for the phase averaged fields. 
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Fig. IV.66: Phase averaged field (from original training data set) for the interval [0,
2𝜋

6
[ (stream-

wise velocity component) 

 

Fig. IV.67: Phase averaged field (from LSE estimation of the validation set) for the interval 

[0,
2𝜋

6
[ (streamwise velocity component) 
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𝜋

3
[ [

𝜋

3
,
2𝜋

3
[ [

2𝜋

3
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,
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3
[ [

5𝜋

3
, 2𝜋[ 

R² (%) 84.4 88.2 88.3 86.7 87.8 88.8 

Table IV.13: Determination coefficients of the prediction by LSE of the phase averaged fields 

6.2. Improving the LSE using phase information 

In this part, a small modification of the LSE is proposed in the hope of improving the LSE 

accuracy. It has been shown that the first two coefficients of the ST-POD can be used to determine 

in real time a phase for the flow. The idea is thus to use different sets of LSE coefficients for dif-

ferent phase. To do so, a number of phase intervals is chosen. Then the data in the training set are 

split into the same number of sub training sets according to their phase. At last, the LSE is trained 

for each subset (corresponding to one phase interval) separately, thus forming the same number of 

LSE coefficient sets. To estimate a velocity field, its phase is thus first calculated using the projec-

tion onto the first two ST-POD modes of the pressure measurements, then the field is estimated by 

LSE using the set of LSE coefficients corresponding to the calculated phase. We called this method 

“phased”-LSE. Concerning the convergence of the data to train the “phased”-LSE, it should not be 

worse than for the classic LSE when only one set of LSE coefficients is considered. Indeed, there 



6. Phase-averaged estimation 171 

 

is only one over 30 samples that are statistically independent, thus as long as the number of phase 

intervals considered is less than 30, the number of statistically independent samples in each subset 

should be of the same order of magnitude than the one in the initial training set. 

Six situations are investigated in which the phase is split into 2, 6, 10, 20, 30 and 40 intervals. 

The prediction accuracy in term of determination coefficient of the velocity fields are summarized 

in Table IV.14. In the best case (10 and 20 intervals), R² is increased by about 4% compared to the 

LSE using only one set of coefficients. It is therefore possible to improve the accuracy of the LSE 

by using the “phased”-LSE. Nevertheless, in the present test case, the improvement is limited and 

it is unclear how much better the results could have been if data sampled at a higher frequency were 

available. Also, at first when increasing the number of phase interval R² increases. This shows the 

interest of using LSE coefficients that are specialized for a reduced phase interval. However, when 

the number of phase interval becomes too large (especially larger than the number of samples by 

period of the lowest frequency phenomenon), R² decreases. It is probably due to the overfitting that 

becomes more important since the number of statistically independent samples by training subsets 

decreases. The “phased”-LSE results are also more accurate than the QSE ones but not than the 

MTD-LSE ones.  

Number of phase intervals 2 6 10 20 30 40 

R² (%) 21.6 24.2 24.6 24.6 24.3 23.8 

Table IV.14: Determination coefficients of the prediction of instantaneous velocity fields by 

“phased”-LSE 

 

Fig. IV.68: Phase averaged field (from “phased”-LSE estimation of the validation set) for the 

interval [0,
2𝜋

6
[ (streamwise velocity component) 
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R² (%) 96.7 96.4 97.2 96.1 95.8 96.8 

Table IV.15: Determination coefficients of the prediction by “phased”-LSE of the phase averaged 

fields 

At last, the phase averaged fields obtained by phase averaging the “phased”-LSE estimated 

instantaneous fields are once more compared to the original phase averaged fields. The phase aver-

aged field obtained by the “phased”-LSE when using 6 intervals is plotted in Fig. IV.68 for the first 

interval and the streamwise velocity. Determination coefficients in the 6 intervals case are given in 

Table IV.15. This figure and even more the determination coefficient values show that the predic-

tion of the phase averaged fields is strongly improved using the “phased”-LSE. Moreover, it shows 
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that, while the prediction of the instantaneous velocity fields is not particularly accurate, it however 

contains a large part of the phase averaged information. 

7. Chapter summary 

The impact of the presence of a Gaussian noise on the data (both conditional events and data 

to estimate) has been investigated. The Gaussian noise contained in the data to estimate used to 

train the method is filtered out. Thus, if the noisy data are used to evaluate the performances of the 

SE then the performances will be underestimated. More importantly is the noise contained in the 

conditional events. It was shown that such noise directly penalizes the estimation accuracy. It is 

therefore important to use conditional events as clean as possible from noise. At last, one has to be 

very careful when using clean data, during the training, if the method is expected to be used in a 

noisy environment. That is typically the situation one encounters when training the SE with numer-

ical data and then uses it on an experiment or real application. In this case, the noise contained in 

the conditional events outside the training set drastically deteriorates the estimation and the method 

appears to also suffer from overfitting. In such situation, the use of regularization can decrease the 

sensibility of the method to the noise in the conditional events. 

Estimations of the flow around the OAT15A airfoil in transonic conditions obtained using 

URANS and ZDES simulations were then compared. The results showed that URANS fields were 

estimated with higher accuracy than ZDES fields. The study of the spectral content of the flow 

highlighted that the low frequency content was better reconstructed and predicted by the SE than 

the high frequency content (and its extensions). This fact explains why the URANS flow fields were 

better estimated than the ZDES ones. Indeed, ZDES simulated flow presents more energy in the 

high frequencies (particularly around the shedding frequency) than the URANS one. Also it was 

clearly observed that the resolution of part of the turbulence in the ZDES simulation leads to a 

shortening of the turbulent spatial integral length scales contained in the wake. The comparison of 

the integral length scale maps with maps of the normalized mean square error showed a relation 

between high error areas and short integral length scale areas. That indicates that short integral 

length scales are estimated with less accuracy than the long ones, and also participates to explain 

the difference in estimation quality between the URANS flow fields and the ZDES ones. 

Following these observations, the conservation of the length scales by the LSE was more 

precisely investigated. It was shown that LSE does not conserve the turbulent spatial integral length 

scales and filters, in some way, the shortest lengths. These conclusions were also supported by 

studying the estimation of POD modes. A characteristic length can be associated to each POD mode 

(in the Backward Facing Step case) and it was observed that POD modes with the highest charac-

teristic lengths were the best estimated. In addition, this study highlighted the strong impact of the 

sensor locations on the quality of the estimation using SE methods. As such, it was noticed that 

POD modes were estimated with higher accuracy when conditional events located at proximity of 

their spatial extrema were used. Therefore, it also explains the difficulty that rises when one tries to 

estimate the flow using only wall information. The optimization of the sensor locations will thus be 

addressed in the next chapter (Chapter V). At last, the study of the spatial filtering of the velocity 

fields also confirmed that the shortest structures of the flow are poorly estimated or even filtered 

out. 

The temporal filtering of both conditional events and data to estimate was also investigated. 

Through this study, the low frequency content once more appears to be the best reconstructed and 

predicted. Filtering the conditional events (with a temporal low pass filter) was shown to slightly 

increase the accuracy as part of the noise was probably filtered out. However, filtering the data to 

estimate temporally or spatially did not lead to any significant improvements.  
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The impact of the Reynolds number on the estimation quality was investigated using data 

from the cube experiment. It was shown that the estimation became more accurate when the Reyn-

olds number is decreased. When looking at the estimation of POD modes, the accuracy of their 

estimations improves with decreasing Reynolds number. In addition, the number of POD modes 

required to retain a same level of TKE decreases with Re (that is due to the fact that the flow contains 

less and less small scales). This also acts to improve the estimation accuracy as the POD modes, 

that are the best estimated, represents a larger and larger part of the flow when Re decreases. The 

possibility to use SE to estimate flow for which it does not have been trained was also studied. It 

was demonstrated that to some extent, training the LSE with normalized data allowed to predict the 

flow at different upstream conditions without a strong deterioration of the accuracy. Also, training 

the QSE using normalized data from several upstream velocity reduced the overfitting of the QSE 

model. 

At last, the use of Spatio-Temporal POD to determine the phase of the velocity field in the 

wall mounted test case was studied and used to form phase-averaged fields. It was shown that the 

predicted instantaneous fields, while not particularly informative on the true instantaneous fields, 

still contains a large part of the information of the phase averaged fields. A modification of the LSE, 

called “phased”-LSE was also proposed and its accuracy was shown to be higher than the LSE and 

QSE one. The increase in R² was however limited and the “phased”-LSE results were less accurate 

than the MTD-LSE ones. It was not attempted to use multi-time-delays with the “phased”-LSE. 

One can fairly expect that the MTD-“phased”-LSE performances will be higher than the MTD-LSE 

ones. Also, the “phased”-LSE was able to retain even more information on the phase-averaged 

fields than the LSE. 
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Chapter V. Conditional event optimization 

In chapter III and chapter IV, it was shown that the sensor locations have a strong impact 

on the reconstruction and prediction accuracy of SE methods. Therefore, in this chapter, the 

opportunity to use an optimization algorithm, based on multi-variate least square regression, to 

choose the sensor locations in LSE is investigated. An extension of the algorithm is then proposed 

to choose not only the sensor locations but also delayed information at the sensor locations.  

Discussion on the algorithm, coupled with previous study of the length scale conservation, 

serve to propose a strategy to use modified LSE with or without delays. 

 

1. Sensor location optimization......................................................................................... 175 

1.1. Sensor location optimization algorithm description................................................. 175 

1.2. Sensor location optimization algorithm applications ............................................... 177 

2. Extension of the sensor location optimization algorithm to the choice of delays ..... 185 

2.1. Description ............................................................................................................... 185 

2.2. Applications ............................................................................................................. 185 

3. Modified Stochastic Estimation flow chart ................................................................. 191 

4. Chapter summary .......................................................................................................... 191 

 

1. Sensor location optimization 

1.1. Sensor location optimization algorithm description 

The algorithm studied in this chapter has been proposed by Muradore et al. [98] in the chem-

ical field. The algorithm is a data driven one, based on least square regression. It is thus interesting 

for LSE applications since LSE can be seen as an ordinary least square regression. 

The main idea of the algorithm is that, if data from several possible sensor locations are avail-

able, the algorithm will iteratively choose locations among the possible ones which have the highest 

correlation with the remaining part (in the sense that it has not yet been estimated by the previously 

chosen sensors) of the original data to estimate. Therefore, at each iteration, all the remaining pos-

sibilities have to be tested which could be computationally expensive. 

To get a quick overview of the algorithm, let us assume that N time realizations of NS sensors 

(𝑋1) are known, as well as N time realizations of a discrete scalar field (𝑈1), of spatial dimensions 

M. This scalar field is the data that has to be estimated. These data can be stored in the following 

matrices: 

𝑋1 ∈ 𝐑
𝑁𝑆×𝑁  and 𝑈1 ∈ 𝐑

𝑀×𝑁 

In addition, it is assumed that mean has been removed to X1 and U1. Now, let us consider the 

ith iteration, the algorithm first step is to compute the correlation matrix between the two previous 

data sets: 
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𝛤𝑋𝑖𝑈𝑖 ∈ 𝐑
(𝑁𝑆−𝑖+1)×𝑀 

If the data have been scaled so that all rows have unit variance, then 𝛤𝑋𝑖𝑈𝑖 =
1

𝑁
𝑋𝑖𝑈𝑖

𝑇, if not, 

then 𝛤𝑋𝑖𝑈𝑖 = 𝛬𝑋𝑖
−1/2

(
1

𝑁
𝑋𝑖𝑈𝑖

𝑇)𝛬𝑈𝑖
−1/2

 where 𝛬𝑋𝑖 = diag(𝛴𝑋𝑖) and 𝛬𝑈𝑖 = diag(𝛴𝑈𝑖). Σ denotes the var-

iance. 

Once the correlation matrix computed, one sensor is chosen so that its correlation with the 

field is the maximum correlation. Thus the line number in Xi of the chosen sensor is: 

𝑗𝑖 = argmax
1≤𝑗≤𝑁𝑆−𝑖+1

∑|(𝛤𝑋𝑖𝑈𝑖)𝑗,𝑘
|

𝑀

𝑘=1

 (V.1) 

It is important to notice here that, if the scalar field is not spatially sampled such as all cell 

areas (or volumes) are equals, then the summation should be weighted using cell areas (or volumes). 

Once the sensor chosen, both data matrices are updated. First the scalar field data are updated 

using an Ordinary Least Square (OLS) regression: 

𝑈𝑖+1 = 𝑈𝑖 −𝑈𝑖 = 𝑈𝑖 − 𝑈𝑖𝑋𝑖
T(𝑗𝑖)(𝑋𝑖(𝑗𝑖)𝑋𝑖

T(𝑗𝑖))
−1
𝑋𝑖(𝑗𝑖) (V.2) 

where Xi(ji) is the line of Xi corresponding to the chosen sensors. 𝑈𝑖 is the OLS estimator (it is also 

the linear stochastic estimate of Ui using the sensor Xi(ji)). 

Then the sensor matrix is updated: 

𝑋𝑖+1 = 𝑋𝑖
𝐶 − 𝑋𝑖

𝐶𝑋𝑖
T(𝑗𝑖)(𝑋𝑖(𝑗𝑖)𝑋𝑖

T(𝑗𝑖))
−1
𝑋𝑖(𝑗𝑖) 

(V.3) 

where: 

𝑋𝑖
𝐶 =

(

 
 
 

𝑋𝑖(1)
⋮

𝑋𝑖(𝑗𝑖 − 1)
𝑋𝑖(𝑗𝑖 + 1)

⋮
𝑋𝑖(𝑁𝑆 − 𝑖 + 1))

 
 
 

 

Updating the sensor matrix in such a way ensures that the sensor choice will be based on the 

information contained in the remaining sensors and not already contained in the previously chosen 

ones. 

At last the algorithm is stopped if enough sensors are chosen, if the explained variance at 

iteration i is high enough, or if the explained variance variation is too weak (thus picking another 

sensor does not bring much more new information). 

 From the algorithm description, it appears that it is not directly linked to the flow physics 

and can be applied to any flow. The algorithm does not require any explicit knowledge about the 

dynamic of the flow. In addition, if the first chosen location corresponds to the most correlated 

sensor location with the data to estimate, the second choice is not the second best correlated sensor 

location. Indeed, the sensor data, as well as the data to estimate, are updated at each iteration. How-

ever, the selected sensors are each the most informative (in the least square sense) about the remain-

ing part of the data to estimate from the remaining information in the sensors.  
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An important feature to highlight is that optimality cannot be formally guaranteed (at least 

not for data sets which have not been used to run the optimization sensor locations algorithm). 

Nevertheless, Muradore et al. concluded that, in the extensive simulations he showed, the algorithm 

picked the optimal situation. 

1.2. Sensor location optimization algorithm applications 

1.2.1. OAT15A airfoil in transonic conditions 

The algorithm is applied to the choice of pressure sensors at the skin of the OAT15A airfoil. 

First, the algorithm is used on the data from the URANS simulation, then on the data from the 

ZDES. Also the algorithm is only used on the training set data. 

 URANS simulation: 

In this situation, the space of possible sensors is composed of the pressure information at the 

644 mesh nodes forming the airfoil skin. The data to estimate is the velocity field containing both 

streamwise and vertical velocities. The algorithm is used to choose 5 pressure data in order to be 

compared with estimations made in Chapter III.2. In this chapter, two sets of 3 and 5 pressure sen-

sors, which positions were chosen based on flow knowledge and intuition, were used.  

The positions of the 5 chosen sensors are plotted in Fig. V.1. (Details on the positions are 

given in Table V.1, abscissae of the sensors are given (the origin being the leading edge of the 

airfoil), “s” denotes that the sensor is on the suction side and “p” denotes that it is located on the 

pressure side). The optimized sets of sensors are denoted “optim”. The order in which the sensors 

are chosen is also explained by coloring the sensors. The first sensor chosen is located on the pres-

sure side at about half the chord. That is surprising but one has to remember that the algorithm is 

only based on the correlation. The correlation function in fact displays two peaks, one close to the 

nose of the airfoil and the other at the pressure side at half the chord. And the second one is slightly 

higher than the first one. Then, two sensors are chosen near the nose of the airfoil. At last, two 

sensors are picked downstream the shock on the suction side. 

 

Fig. V.1: Positions of the 5 sensors chosen by the sensor location optimization algorithm in the 

URANS case (an instantaneous map of the Mach number is plotted in background with the 

shock in middle position) 
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“Intuitive” P 5 “Optim” P 5 

0.45 (s) 0.49 (p) 

1 (s) 0 (s) 

0 (s) 0.03 (s) 

0.21 (s) 0.58 (s) 

0.49 (p) 0.87 (s) 

Table V.1: Sensors positions (in x/c) for the two sets of 5 pressure sensors (set of 3 pressure sen-

sors are made of the first 3 sensors) 

Determination coefficients obtained on the validation set using LSE and QSE are summarized 

in Table V.2 where the “intuitive” sets and the optimized sets of pressure sensors are used. These 

values show that LSE and QSE perform better when using the optimized sets of sensors than the 

intuitive ones. Improvements are more important for the LSE than for the QSE. Using LSE, R² is 

increased by 5% when 3 sensors are used and by 3% when 5 sensors are used. The validation set 

normalized mean square error of the LSE using the “optim” P 5 set is displayed in Fig. V.2. This 

figure should be compared with Fig. IV.8. From these two figures, it is clear that the prediction of 

the streamwise velocity is improved, especially in the wake and just downstream of the shock, when 

using the optimized set of sensors. However, improvements are mitigated for the vertical velocity. 

To complete the illustration, time evolutions of the streamwise velocity at point 1 (used in Chapter 

IV.2.1) and of the vertical velocity at point 2 using LSE and both sets of 5 pressure sensors are 

plotted in Fig. V.3. The optimized set clearly better predicts the streamwise velocity at point 1, but 

no real improvement is observed concerning the prediction of the vertical velocity at point 2. Both 

intuitive and optimized sets of sensors seem unable to predict the high frequency content of the 

flow. That can be seen on the PSD plotted in Fig. V.4. 

Sensors set “Intuitive” P 3 “Optim” P 3 “Intuitive” P 5 “Optim” P 5 

LSE 0.835 0.887 0.904 0.935 

QSE 0.936 0.961 0.979 0.981 

Table V.2: Determination coefficients R² comparison between several estimations using different 

sets of pressure sensors 

 

a) 

 

b) 

Fig. V.2: Normalized mean square error of the LSE prediction of the URANS velocity field us-

ing the “optim” P 5 set of sensors. (a) streamwise velocity component, b) vertical velocity com-

ponent) 
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a) Point (1, u) 

 

b) Point (2, v) 

Fig. V.3: Streamwise and vertical fluctuating velocity signals comparison between original 

data and LSE predictions (URANS case) 

 

a) Point (1, u) 

 

b) Point (2, v) 

Fig. V.4: Power Spectral Density comparison between the original and the LSE predictions us-

ing the sets of sensors “Intuitive P 5” and “Optim P 5” (URANS case) 

Values of R² calculated for the prediction of POD modes separately are shown in Fig. V.5. 

Using the optimized sets of pressure sensors leads to better prediction of POD modes 3 and 4 by 

LSE. Surprisingly the POD mode 6 R² is higher using the “intuitive” sets of sensors than the opti-

mized ones. This observation could be explained by looking at the POD mode 6 and the sensor 

locations in Fig. V.6. As one can see in this figure, one sensor of the “intuitive” P 3 (and P 5) set is 

located nearby an extremum on the POD mode streamwise velocity. As previously explained, POD 

modes are better estimated when sensors are located near their extrema. However, looking at the 

shape of the POD modes and the sensor locations is not enough to explain the differences observed 

in Fig. V.5. For instance, no set of sensor has sensors particularly close to the extrema of the POD 

mode 4 but LSE using optimized sets is more accurate than LSE using “intuitive” sets. 
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When using MTD-LSE with the URANS simulated data, the impact of the sensor location 

appears less important due to the strong improvements brought by the addition of delays. As such, 

R² higher than 99% are obtained using the “intuitive” P 3 set as well as the “optim” P 3 set of 

pressure sensors. 

 

Fig. V.5: Determination coefficient calculated for each POD mode separately on the validation 

set using LSE (OAT15A URANS) 

 

a) Streamwise velocity component 

 

b) Vertical velocity component 

Fig. V.6: Contours of the streamwise (a) and vertical (b) velocity components of the POD mode 

6. Pink squares correspond to “intuitive” P 5 set of sensors positions. Black squares correspond 

to “optim” P 5 set of sensors positions. 

 ZDES: 

Once more the space of possibilities for the sensors is made of the pressure data at all the 

mesh nodes of the airfoil wall. In total 411 locations are possible. The algorithm is used to optimize 

the estimation of the velocity field containing both streamwise and vertical velocities. 

The first 5 locations chosen by the algorithm are shown in Fig. V.7, where map of the Mach 

number when the shock is at its most upstream position has also been plotted. Among those sensors 

none are chosen on the suction side of the airfoil, contrary to the URANS case. Two sensors (the 

second and the third) are chosen close to the noise, similarly to the URANS case. One is chosen at 

about half the chord on the pressure side. It is the first one and its position is very close to the one 

of the first chosen sensor in the URANS case. The fact that the first three sensors are chosen at 

similar positions when using ZDES data or URANS data is reassuring. Indeed, the physical phe-

nomenon remains the same between the two simulations. The fourth and fifth sensors chosen in the 

ZDES case are not at all located around the same locations as in the URANS case. There are not on 

the same side. One thing to notice is that the two sensors chosen on the suction side in the URANS 
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case are located in the zone simulated using DES in the ZDES case (see Fig. II.58). The resolution 

of part of the turbulence by the DES may lead to a deterioration of the correlation and explain why 

sensors are chosen on the pressure side, where URANS equations are used. 

 

Fig. V.7: Positions of the 5 sensors chosen by the sensor location optimization algorithm in the 

ZDES case (an instantaneous map of the Mach number is plotted in background with the shock 

is at its most upstream position) 

Validation set R² using LSE and QSE with the several sets of sensors are displayed in Table 

V.3. The highest R² are always obtained using the optimized sets when LSE is used. However, when 

QSE is used, the “intuitive” P 3 set performs better than the “Optim” P 3 one. This is not particularly 

surprising since the algorithm does not take into account second order relationship between the 

sensors and the field. The validation set normalized mean square error of the LSE using the “optim” 

P 5 set is displayed in Fig. V.8. This figure can be compared with Fig. III.16. The comparison of 

these two figures highlights that the error is decreased in the wake when the optimized set of sensors 

is utilized. On the contrary, the error around the shock is smaller when the “intuitive” set is used. 

This explains the small differences in determination coefficient between the two sets. Also, the 

locations obtained by the optimization algorithm do not ensure the best estimation in every point of 

the velocity field. That is not particularly surprising since the algorithm used the average correlation 

with the entire velocity field.  

Sensors set “Intuitive” P 3 “Optim” P 3 “Intuitive” P 5 “Optim” P 5 

LSE 0.436 0.498 0.532 0.542 

QSE 0.58 0.556 0.607 0.626 

MTD-LSE 0.697 0.67 0.705 0.695 

Table V.3: Determination coefficients R² comparison between several estimations using different 

sets of pressure sensors 
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a) 

 

b) 

Fig. V.8: Normalized mean square error of the LSE prediction of the ZDES velocity field using 

the “optim” P 5 set of sensors. (a) streamwise velocity component, b) vertical velocity compo-

nent) 

 

Fig. V.9: Determination coefficient calculated for each POD mode separately on the validation 

set (OAT15A ZDES) 

Determination coefficients of the first 10 POD modes prediction (using LSE and QSE) are 

plotted in Fig. V.9. The use of the optimized set of sensors improves the prediction of all of the first 

10 POD modes, except the seventh. It is consistent with the higher R² obtained in this situation (see 

Table V.3). In the QSE case, the “intuitive” set of sensors performs slightly better for POD modes 

3, 7 and 8 than the “optim” P 3 set. That explains the better performances of the “intuitive” P 3 set 

in QSE. 

At last MTD-LSE is investigated. R² values (for the best MTD-LSE situations) are reported 

in Table V.3. These values show that the several sets of sensors perform similarly, with also a very 

small improvement when two pressure sensors are added. Nevertheless, “intuitive” sets lead to 

slightly better results than the optimized ones. That is somehow disappointing. But the algorithm 

does not use delayed information and thus there are no reason why the positions given by the algo-

rithm should lead to the best ones when using MTD-LSE. In addition, it is important to notice that 

the regularization parameter is chosen using cross-validation with a limited number of possible 

values for the parameter. Therefore, it may not be perfectly fitted which could participate to the 

difference observed. For instance, for the “Optim” P 3 set, the regularization parameter (for the best 

tested MTD-LSE situation) is 1106 and higher and lower tested parameter were 1108 and 1104. 

Thus, better results might have been obtained with another parameter in this range. In any cases, 

the differences remain very small less than 3% on the determination coefficient and using the opti-

mized set of sensors do not really penalize the performances. 
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1.2.2. Backward facing step  

In the previous chapter, when studying the length scale estimation by SE, it was observed that 

the sensor locations had a strong influence on the prediction accuracy of POD modes (see Chapter 

IV.3.4). In particular, it was shown that POD modes were better estimated when sensors are located 

near their extrema. This was also observed for the OAT15A airfoil in URANS when using pressure 

sensors. In Chapter IV.3.4, it was explained that Cohen et al. [99] proposed to choose the sensor at 

proximity of POD modes extrema. Such method is of course limited when several POD modes have 

to be considered simultaneously and they proposed to use a cost functional to choose the sensors in 

such case. Here, we propose to apply the sensor location optimization algorithm previously de-

scribed. 

To apply the algorithm, the sensor space is made of the streamwise velocity information at 

all mesh points of the PIV snapshots. The data to estimate is one POD coefficient or several. First, 

the algorithm is used to find positions for one POD mode alone. The first ten sensors chosen by the 

algorithm for the POD modes 1, 5 and 10 separately are plotted in Fig. V.10 (where the POD mode 

streamwise velocity component is also shown) and in Fig. V.11 (where the POD mode vertical 

velocity component is also shown). The locations displayed in these figures match quite well the 

extremum areas of each POD mode. It confirms that they are the areas of highest correlation be-

tween the streamwise velocity data and the POD mode. Also, the chosen locations clearly depend 

on which POD mode is aimed by the optimization. Therefore, the possibility to apply the algorithm 

for the estimation of several POD modes simultaneously is particularly helpful. 

The algorithm is now used to find 20 streamwise velocity sensors optimized to estimate the 

first 20 POD modes altogether. Fig. V.12 compares the determination coefficients of the first 50 

POD modes using the grids of 33 and 21 sensors (see Chapter IV.3.4), as well as the set of 20 

sensors from the optimization algorithm. The LSE using the optimized locations leads to a better 

reconstruction and prediction of the 20 first POD modes compared to the grids of 21 sensors, and 

can even compete with the grids of 33 sensors. For POD modes of higher rank, grids of 33 sensors 

seem to perform better, and the grids of 21 sensors and the set of 20 sensors perform comparably. 

With the optimized set of sensors, the cut-off rank, beyond which POD modes are predicted with 

less than 10% of R², is about 30. It is an improvement compared to the grids of 21 sensors (14 and 

21 modes for “top” and “bottom” respectively, see Table IV.3). Moreover, the first two POD modes 

are predicted with R² higher than 80%. It confirms that the location of the sensors plays an important 

role on the length scales that are predicted by the LSE. 

The determination coefficient R² of the prediction of the entire flow field, by LSE with the 

set of 20 sensors (from the algorithm), is about 35%. It is higher than the values obtained with 21 

and 33 sensor grids, and of the same order of magnitude as with the grid of 56 sensors (see Table 

IV.2). This shows the effectiveness of the sensor location optimization algorithm, which is able to 

select a limited number of locations that leads to a better LSE reconstruction and prediction than 

uniform sensor grids with more sensors. 
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Fig. V.10: Sensor locations obtained by the 

optimization algorithm for POD mode 1, 5 and 

10 separately (from top to bottom). Stream-

wise velocity of the modes is displayed. 

 

Fig. V.11: Sensor locations obtained by the 

optimization algorithm for POD mode 1, 5 and 

10 separately (from top to bottom). Vertical 

velocity of the modes is displayed. 

 

Fig. V.12: Determination coefficient calculated for the validation set as function of the POD 

mode (BFS using streamwise velocity sensors, low speed PIV database) 

At last, another interest of the optimization algorithm is that it can be used to determine the 

number of sensors necessary to achieve a chosen level of R² on the estimation of one POD mode 

(or of the entire field if the data to estimate is the velocity field and not POD modes). Since the 

number of sensors will be determined using only training data, it is not guaranteed that this number 

will indeed be enough for estimation outside the training set. But one can safely expect to obtain a 

consistent order of magnitude. The number of sensors necessary to reach 50% of R²POD Single for 

several POD modes are reported in Table V.4. The results confirm that, in the BFS case, more and 

more sensors are necessary to obtain a good estimation of POD modes when their rank increases. 

That is consistent with the fact that they possess more and more extrema. 

It is now important to notice that the use of the algorithm should be subject to caution when 

considering POD modes that are not well converged. Indeed, when optimizing the conditional event 

locations for the prediction of one POD mode only, it was shown that locations close to its extrema 
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will be chosen. If the POD mode in question is not well converged, then its spatial organization 

may not be representative of the converged POD mode of same rank. Thus, the chosen locations 

could be maladjusted for the estimation of data outside the training data set. In the present work, 

only converged POD modes were considered (the highest POD mode used for the optimization if 

the 20th POD mode). 

POD mode Number of sensors to reach 50% of R² 

1 2 

2 2 

5 4 

10 7 

Table V.4: Number of streamwise velocity sensors required to reach 50% of R² using the sensor 

location optimization algorithm 

2. Extension of the sensor location optimization algorithm to 

the choice of delays 

In previous chapters, it was shown that MTD-LSE methods held the best prediction accuracy 

between the several SE methods tested. The common way to use MTD-LSE is to test several con-

figurations using different number of delays and different time step between them and then to keep 

the best one. These tests may be time consuming and it would be interesting to dispose of an auto-

matic tool to choose the delays. This is the reason why an extension of the sensor location optimi-

zation algorithm is here investigated. 

2.1. Description 

The extension of the sensor location optimization algorithm to the choice of delays is actually 

very simple. From a mathematical point of view, one sensor with a delay can be considered as a 

different sensor and is treated as such in equation (II.10). Therefore, the extension simply consists 

in testing not only synchronized data at several locations to choose the sensor, but to extend the 

space of possible sensors to delayed data. The space of possible sensors is thus composed of the 

synchronized data at every location as well as of the delayed data that one wants to consider. Thus 

the matrix X1 becomes: 

𝑋1 =

(

 
 
 
 

𝑋1(1)(𝑡)
𝑋1(1)(𝑡 − 𝜏1)

⋮
𝑋1(1)(𝑡 − 𝜏𝑁𝑑−1)

𝑋1(2)(𝑡)
⋮

𝑋1(𝑁𝑆)(𝑡 − 𝜏𝑁𝑑−1))

 
 
 
 

∈ 𝐑((𝑁𝑑×𝑁𝑆)×𝑁) 

where Nd is the number of delays considered (synchronous time included). 

All the steps of the algorithm remain unchanged. 

2.2. Applications 

2.2.1. OAT15A airfoil in transonic conditions 

 URANS: 
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In this application, the algorithm is used to choose a set of sensors with delays (from now on, 

conditional event will be used to refer to a data information at one location with or without delay) 

optimized for each POD mode separately. In such situation, the locations (as well as the delays) of 

the chosen conditional events may differ from one POD mode to another. Thus, in the case where 

one wants to limit itself to use a limited number of locations, the matrix of possibilities X1 should 

contain only the data (with all the delays available) at this limited number of locations. For this 

reason, we limit ourselves to the case where the matrix of possibilities is composed of the pressure 

data at the 3 locations of the set of sensors “Optim” P 3 with delays, in the past, ranging from 0 to 

~1.8 Tosc with a time step of 1.710-5 s (~1.27510-5 Tosc). 

Table V.5 compares values of R² between two cases using the extended optimization algo-

rithm and one case where the set of sensors “Optim P 3” with 80 delays (spaced in time by 6.6310-

3 Tosc), which corresponds to the best prediction using MTD-LSE-POD among those tested, is used. 

In this case, denoted “MTD-LSE-POD 80”, a total of 240 conditional events is employed and the 

Tikhonov regularization is used. The two optimized situations correspond to the use of only 3 con-

ditional events (“MTD-LSE-POD Optim 3”) and 60 conditional events (“MTD-LSE-POD Optim 

60”) per POD modes. These conditional events are not necessarily the same for each POD modes. 

In all cases, only the first four POD modes are estimated. In the optimized situations, the Tikhonov 

regularization is not applied. In all cases only data from the “Optim P 3” set locations are used. 

Therefore, the estimation using the extended optimization algorithm does not require any new in-

formation than those already used for the “MTD-LSE-POD 80”. Reconstruction and prediction re-

sults are already quite good when only 3 conditional events chosen by the extended algorithm are 

used. Prediction in this situation is better than in the case of a straightforward LSE using “Optim P 

3” set. 

SE methods 

LSE-POD 

(“Optim P 

3” set) 

MTD-LSE-

POD (80 delays 

every 6.63×10-3 

Tosc) 

MTD-LSE-

POD 

(3 optimized 

conditional 

events) 

MTD-LSE-POD 

(60 optimized 

conditional 

events) 

R² from origi-

nal 

fields 

Prediction 0.498 0.929 0.925 0.929 

R² from POD 

projected fields 
Prediction 0.604 1 0.996 1 

Table V.5: Determination coefficient comparison of the MTD-LSE-POD (using four POD 

modes) in several situations (OAT15A URANS, values from the training set are identical) 

R²POD Single for the first 10 POD modes are displayed in Fig. V.13 for the training set and in 

Fig. V.14 for the validation set. The best situation is obtained with “MTD-LSE-POD 80”. In this 

case, all 10 POD modes are estimated with very high fidelity (R²POD Single > 90%). Using conditional 

events chosen by the extended optimization algorithm leads to a deterioration of the estimation of 

the POD modes when their ranks increase. In the “MTD-LSE-POD Optim 3” case, R²POD Single de-

creases for POD mode of rank higher than 4. If more conditional events are selected by the algo-

rithm, the reconstruction accuracy is improved and the “MTD-LSE-POD Optim 60” case matches 

the reconstruction accuracy of the “MTD-LSE-POD 80” case. The prediction accuracy of some 

POD modes is also improved but for other POD modes it is deteriorated. As such, validation set 

R²POD Single for POD modes 9 and 10, in the “MTD-LSE-POD Optim 60” case, are much lower than 

the training set values. Therefore, using too many conditional events picked by the extended opti-

mization algorithm leads to an overfitted model. In this situation, it is required to use a regulariza-

tion technique, in a same manner as with the MTD-LSE or MTD-LSE-POD when a lot of delays 

are used. Applying Tikhonov regularization in such cases could become more complicated than 
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when only delays at a constant time step are used, because it becomes necessary to find a regulari-

zation parameter for each POD mode to estimate. Results using 60 conditional events optimized for 

each POD mode with and without regularization are shown in Fig. V.15. As expected, prediction 

accuracy is improved using Tikhonov regularization (regularization parameters are chosen using 

cross-validation for each POD mode separately). Nevertheless, results are not as good as for the 

“MTD-LSE-POD 80” but one has to remember that with this test case 240 conditional events are 

used for each POD mode. Results close to those of the “MTD-LSE-POD 80” case are expected if 

more conditional events are selected by the extended algorithm and Tikhonov regularization is used. 

 

Fig. V.13: Determination coefficient calcu-

lated for each POD mode separately for sev-

eral reconstructions using MTD-LSE-POD 

(OAT15A URANS) 

 

Fig. V.14: Determination coefficient calcu-

lated for each POD mode separately for sev-

eral predictions using MTD-LSE-POD 

(OAT15A URANS) 

 

Fig. V.15: Determination coefficient calculated for each POD mode separately using “MTD-

LSE-POD Optim 60” with or without Tikhonov regularization (OAT15A URANS) 

This application shows that, even without using regularization, the extended algorithm re-

mains able to find a few conditional events that truly improved the reconstruction and prediction 

compared to single time LSE. In addition, it allows decreasing the size of the problem compared to 

MTD-LSE and MTD-LSE-POD using delays at constant time step. 
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 ZDES case: 

The extended algorithm is used in a similar fashion as in the URANS case. Conditional events 

are chosen for each POD mode separately. The space of possible conditional events is limited to 

the pressure data from the “optim” P 3 set of the ZDES case. Delayed information is added to the 

space of possible conditional events. Possible delays range from 0 to 1 Tosc with a constant step of 

1.2510-4 s (~8.6210-3 Tosc). Also, only 25 POD modes (about 84% of TKE) are considered. 

Determination coefficients of several MTD-LSE-POD configurations are summarized in Ta-

ble V.6. In one situation, 70 delays are used for all of the 3 sensors of the “Optim P 3” set. This case 

is denoted “MTD-LSE-POD 70”. In addition, Tikhonov regularization is applied in this case. The 

regularization parameter is chosen using cross-validation. The two other situations use conditional 

events chosen by the extended sensor location optimization algorithm. In one case, only 3 condi-

tional events are picked for each POD mode (denoted “MTD-LSE-POD Optim 3”). In the second 

case, 60 conditional events are picked (denoted “MTD-LSE-POD Optim 60”). The best prediction 

is obtained using the 70 delays for the 3 sensors of the “optim P 3” set. But, “MTD-LSE-POD 

Optim 3” and “MTD-LSE-POD Optim 60” already lead to a strong improvement of the prediction 

accuracy compared to the single-time LSE (R² is 49.6% on the validation set). R² is increased by 

10% (on the validation set) by using 3 optimized conditional events and MTD-LSE-POD. In these 

situations, the number of conditional events used for the estimation of one POD mode is the same 

as for the estimation using LSE and the “optim P 3” set. That highlights the great interest of using 

the extended sensor location optimization algorithm to pick delayed information. A great improve-

ment of the reconstruction and prediction accuracy can be obtained without increasing much the 

number of conditional events and without using regularization. 

SE methods 

MTD-LSE-POD 

(70 delays every 

8.62×10-3 Tosc) 

MTD-LSE-POD 

(3 optimized 

conditional events) 

MTD-LSE-POD (60 

optimized conditional 

events) 

R² from origi-

nal 

fields 

Prediction 0.665 0.597 0.632 

R² from POD 

projected 

fields 

Prediction 0.809 0.727 0.77 

Table V.6: Determination coefficient comparison of the MTD-LSE-POD (using 25 POD modes 

and “Optim P 3” set of sensors) in several situations (OAT15A ZDES) 

Determination coefficients for the first 10 POD modes estimated using MTD-LSE-POD with 

the three previous configurations are plotted in Fig. V.16 (training set) and in Fig. V.17 (validation 

set). These figures show a clear improvement of the reconstruction and prediction of POD modes 

containing the low frequency content of the flow by using a small number of delays. For instance, 

with only three conditional events, R²POD Single of the POD mode 6 reaches more than 60%, instead 

of less than 10% when only synchronized information was used. The prediction accuracy in the 

“MTD-LSE-POD Optim 60” case is not as good as in the “MTD-LSE-POD 70” case. Once again, 

it is the result of an overfitting of the model that appears when more and more conditional events 

are chosen by the extended algorithm. The use of Tikhonov regularization, with regularization pa-

rameter different for each POD mode and chosen using cross-validation, is investigated and the 

results are shown in Fig. V.18. The figure demonstrates again that the Tikhonov regularization is 

indeed able to improve the prediction. R² in this case goes from 63.2% to 66.8% which is equivalent 

to the best MTD-LSE-POD situations (using delays at a constant time step). 
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Fig. V.16: Determination coefficient calcu-

lated for each POD mode separately for sev-

eral reconstructions using MTD-LSE-POD 

(OAT15A ZDES) 

 

Fig. V.17: Determination coefficient calcu-

lated for each POD mode separately for sev-

eral predictions using MTD-LSE-POD 

(OAT15A ZDES) 

 

Fig. V.18: Determination coefficient calculated for each POD mode separately using “MTD-

LSE-POD Optim 60” with or without Tikhonov regularization. The case where 70 delays are 

used with the “optim P 3” set and Tikhonov regularization is also plotted. (OAT15A ZDES) 

In these examples of applications of the extended sensor location optimization algorithm, this 

algorithm has in fact been used to optimize the delays to use from an already defined set of sensor 

locations. In addition, the optimization was performed for POD modes separately. This use of the 

algorithm shows that it is possible to improve the reconstruction and prediction with a small number 

of optimized delays. In addition, it is possible to reach similar levels of accuracy than in the best 

situations using MTD-LSE-POD with constant time step between delays, if Tikhonov regularization 

is applied. In this case, the number of delays to use is reduced, but it is necessary to find a different 

regularization parameter for each POD mode. 
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2.2.2. Backward facing step 

In the previous application of the sensor location optimization algorithm in the BFS case, it 

was shown that the algorithm can be used to determine the number (and the locations) of sensors 

necessary to achieve a chosen level of accuracy (in terms of R²) on the estimation (of one or several 

POD modes or of a velocity field etc.). In the previous chapter, the possibility to improve the accu-

racy of the reconstruction and prediction using MTD-SE instead of single-time SE has been demon-

strated and can be observed in Fig. III.71 or Fig. IV.41 for instance. It is therefore justified to think 

that the utilization of delays can decrease the number of conditional events necessary to achieve a 

same level of accuracy. This possibility is now investigated using the high speed PIV database of 

the BFS test case. 

The space of possibilities, for the conditional events, is the entire velocity field (considering 

only the streamwise velocity component) with 20 delays taken every 510-4 s (510-2 Tshedding) which 

span a shedding period. The algorithm is use to choose conditional events optimized for separated 

POD modes. The numbers of conditional events necessary to reach a determination coefficient of 

50% for several POD modes are given in Table V.7 (“entire flow field available” columns). “Syn-

chronized only” means that the initial algorithm is used. “Synchronized and delayed” means that 

the extended algorithm is used. In both case, if the space of possible locations is the entire flow 

field, the same number of locations is necessary whether or not delayed are considered. Indeed, in 

this situation, the algorithm chooses mainly sensors synchronized (or with a small delay). Thus, it 

appears that it is better, in this situation, to use additional synchronized sensors than delayed ones 

(at an already chosen location). But this does not mean that using MTD-LSE with these optimized 

locations will not result in better estimation.  

In Table V.7, results obtained when the space of possibilities is reduced to a subzone of the 

initial velocity field are also provided (the subzone is displayed in Fig. V.19). In this situation, 

considering delayed data becomes interesting. Indeed, less conditional events are required to reach 

the same level of R2
POD Single when delayed data can also be chosen. By limiting the region in which 

sensors can be picked, some “optimal” locations can no longer be reached, and thus more synchro-

nized sensors are required. The delayed data comes in handy as they compensate, for some amount, 

the synchronized information that is no longer accessible. In overall, there is no downside to use 

the extended algorithm (even when the space of possible locations is already quite rich) except that 

the computation time increases with the number of delays considered. 

POD 

mode 

Number of conditional events to reach 50% of R²POD Single 

Entire flow field available Subzone available 

Synchronized only 
Synchronized and 

delayed 
Synchronized only 

Synchronized and 

delayed 

1 2 2 2 2 

2 2 2 2 2 

5 5 5 6 5 

10 10 10 18 11 

20 12 12 24 15 

Table V.7: Number of conditional events necessary to reach 50% of R²POD Single using only syn-

chronized streamwise velocity data or synchronized and delayed data 
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Fig. V.19: Average streamwise velocity field with the reduced subzone for the choice of sensor 

locations (with or without delays) 

3. Modified Stochastic Estimation flow chart 

From the previous results, it is possible to draw a flow chart to estimate turbulent flows thanks 

to SE with POD (see Fig. V.20). The first step would be to compute the POD of the flow, from 

experimental data or simulated data. Once the POD obtained and given a criterion (TKE level, 

characteristic length scales or frequencies to be estimated), the number or the group of POD modes 

to estimate is obtained. Then, a level of accuracy has to be chosen in terms of R². At last, using this 

target value of R², the sensor location optimization algorithm (or its extension) is used in order to 

estimate the minimum number of sensors (or conditional events if synchronized and delayed data 

are considered), and their locations (and potentially delays), required to match the chosen condi-

tions. 

 

Fig. V.20: Flow chart for the use of SE with POD 

4. Chapter summary 

The use of the sensor location optimization algorithm proposed by Muradore et al. [98] has 

been investigated. The locations obtained by the algorithm are close to the extrema of the POD 

mode, which is consistent with Cohen et al. [99] conclusion. The algorithm has been tested using 

both the OAT15A database and the BFS database. Its ability to find locations that lead to better 

reconstruction and prediction accuracy using LSE has been verified and confirmed. When using 

QSE, some optimized set of sensors did perform with less accuracy than the intuitively chosen ones. 

And thus, one has to be careful when using other techniques than LSE. 

Select number 
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Find number 
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of sensors re-
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 Also, the algorithm represents a convenient tool to determine the sensor locations in order to 

predict several POD modes simultaneously. It shows the possibility to improve the estimation of 

some POD modes using the same amount of sensors but with a different placement. Therefore, 

sensor location plays an important role on the estimation of POD modes and thus on the integral 

length scales estimated by the LSE (see Chapter IV.3.3 about the relation between length scales and 

POD modes). 

Since it was demonstrated that the use of Multi-Time-Delay LSE (MTD-LSE) improved the 

estimation accuracy, an extension of the sensor location optimization algorithm has been proposed 

to choose locations and delays. The goal is to take advantage of the use of delays, without having 

to try several configurations, by automatically choosing the best delays and locations. The algorithm 

was first applied to the choice of delays, from a limited number of locations chosen a priori (using 

the OAT15A databases). The results demonstrated the possibility to improve the prediction accu-

racy using a small number of delays. In particular, it is possible to obtain the same level of accuracy 

than in the best situation using constant time step delays. In such case, the use of Tikhonov regu-

larization is however necessary. In the tests performed, no important improvements were observed 

compared to the use of a large number of delays taken at constant time step. The main advantage is 

therefore to reduce the size of the problem by decreasing the number of delays used and also to 

avoid testing several configurations for the delays. 

Furthermore, the possibility to decrease the number of conditional events, required to reach 

a chosen level of accuracy on the estimation, by using synchronized and delayed information was 

investigated. The results obtained using BFS database show that if the space of possible locations 

is the entire flow field, then almost only synchronized data are chosen by the algorithm. However, 

if only a subzone of the flow field can be considered for the locations of the sensors, then consider-

ing delayed information decreases the number of conditional events necessary to achieve the same 

level of accuracy (compared to the case where only synchronized data can be chosen). 

Even if the optimization of the sensor locations and delays can improve the SE accuracy, 

using only wall pressure measurements in the BFS case, the SE prediction quality remains very 

poor. The improvements obtained with in flow velocity measurements are also limited. Therefore, 

for such a flow, it appears that other methods than SE ones should be used if one wants to predict 

the entire velocity field with a high accuracy.
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Chapter VI. Study of Kalman Filter for flow 

prediction 

The previous studies of the Stochastic Estimation (SE) have shown that its prediction per-

formances were very limited for some test cases (mainly the Backward Facing Step and the wall 

mounted cube). The use of multi-time delays methods and of optimized conditional events did not 

lead to a true breakthrough of the prediction accuracy for these test cases. Therefore, it was 

decided to investigate an alternative to the SE, the Kalman filter. 

In this chapter a short literature overview on Reduced-Order-Modelling in turbulence and 

data assimilation is first given to introduce the choice of testing the Kalman filter to produce 

accurate estimate of the velocity field of turbulent flows. Then, the basic equations of the standard 

Kalman filter but also of the Extended and Ensemble Kalman filter are described. The question 

of the generation of dynamic and measurements models for the filters is also addressed. At last, 

the standard, Extended and Ensemble Kalman filter performances are evaluated on three test 

cases: the URANS simulation of the OAT15A, the ZDES simulation of the OAT15A and the high 

speed PIV experiment of a wall mounted cube. 
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1. Short literature overview on Reduced-Order-Modelling and 

data assimilation 

The aim of this literature overview is not to give an exhaustive review on the Reduced-Order-

Modelling field or on the data assimilation domain. The goal is here to present some strategies that 

have been developed in the field of turbulence and that can present an alternative to Stochastic 

Estimation to provide real time evaluation of flow state. 

1.1. Reduced-Order-Model (ROM) 

Reduced-Order-Modelling is a very broad subject with applications in many domains. Indeed, 

Reduced-Order-Modelling has been a necessity for the study of any system which dimensions and 

complexity made it intractable with the current means of investigation. In a general sense, a ROM 

is a simplified mathematical model of a complex system that captures most of its physics (or the 

behavior of interest) while reducing the computational cost of studying the system. 

In the field of turbulence, Reduced-Order-Modelling was first considered in order to test or 

gain physical understandings of turbulent phenomena. One of the first example of ROM, in this 

field, is the three-mode model of Rayleigh-Bénard convection by Lorenz in 1963 [100]. Using 

physical approximations, he developed a model formed of three first-order differential equations 

for the temperature and velocity field dynamics. Later, Aubry et al. developed the first ROM of an 

open turbulent flow [101]. At the time, another motivation for developing these ROM was the im-

possibility to numerically simulate the system. 

Past and current improvements in computing power now allow the high fidelity simulations 

of more and more complex systems. But, despite the feasibility of these simulations, the develop-

ment of ROM remains a critical subject in turbulence. Indeed, ROM can still provide better under-

standings of the flow physics than the raw simulation results. And they can help to extract useful 

information from ever larger databases. Also, the development of ROM allows decreasing the com-

putational cost of simulating a complex system, which remains an interesting thing even with the 

constant increase in computing capacity. Currently, Direct Numerical Simulation is feasible for low 

Reynolds number and, up to now, the highest Reynolds number of a DNS is Reτ = 5200 for a wall-

bounded turbulent channel flow. DNS is out of reach for an extremely large variety of turbulent 

flows. Thus, several strategies have been developed in Computational Fluid Mechanics (CFD) to 

model the turbulence or some scales of the flow (LES, URANS, DES etc.) to realize feasible nu-

merical simulations of turbulent flows. But that is not the focus of this section that concerns the 

low-order modelization of the system dynamics. 

Another reason that makes ROM an important subject in fluid dynamics is the large effort 

toward the development of active flow control of turbulent flows. Indeed, such control requires the 

evaluation in real time of several parameters of the system. In a recent publication, Brunton et al. 

[102] detailed and classified several strategies for the closed-loop control of turbulent systems. In 

particular, they follow the Wiener classification and thus separate control according to the model 

used, differentiating ultra-white, white, gray, black box controls and model free controls. Ultra-

white box control consists in deriving the control laws analytically from the Navier-Stokes equa-

tions. White box control uses CFD (not exclusively DNS but mostly) to supply the information on 

the system. Gray box control employs ROM of the system dynamics and relates to the underlying 

physics of the system. Mainly, for turbulent flows, gray box control refers to control using ROM 

based on modal representation of the system dynamic. Black box control also rests on the utilization 

of ROM of the system. However, for black box control, ROM are built without much considerations 

for the underlying physics of the system and mainly from input-output identification. Model free 
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control does not rely on any model of the system. White box controls are currently far from being 

feasible for most of real time applications due to their high dimensionality. Model free control is 

generally limited to open-loop control. Thus, the most common strategies are gray and black box 

control. 

A successfully used black box model in turbulence is the Volterra series ROM. Such models 

have been used to generate ROM for transonic aerodynamic (see Balajewicz et al. [103]; more 

details on Volterra series ROM can also be found in Lucia et al. [104]). Recent developments in 

black box control are also oriented toward Support Vector Machine (see Brunton et al. [102]). But 

the most popular and investigated category of control for turbulent flows remains the gray box 

control. Two main methods have been used to form gray box models (see Noack et al. [105]). The 

first and oldest is the vortex model method. The second is based on Galerkin projection. Vortex 

models did lead to some successful applications (for instance in a recirculation region, Noack et al. 

[106]), but they appear to be more complicated to use for control applications compared to Galerkin 

models. More focus has therefore been given to low-dimensional Galerkin models (Noack et al. 

[107]).  

 The basic idea behind the creation of any Galerkin model for turbulent flow is to project the 

Navier-Stokes equations onto a modal basis, thus obtaining a set of low-order equations in the 

modal basis. Therefore, an important aspect of Galerkin model is the choice of the modal basis. 

Several such bases have been developed for turbulent flow. The most common is the Proper-Or-

thogonal-Decomposition basis (see Chapter II.1.3). The success of the POD in turbulence is directly 

linked to the popularity of POD Galerkin models (see Chapter I). The first POD ROM of an open 

turbulent flow was generated by Aubry et al. [101]. Another early example of the use of POD Ga-

lerkin projection is the work of Deane et al. [108]. They successfully formed POD ROM for the 

prediction of limit-cycle behavior of a grooved channel and circular cylinder flows. Since then, 

POD-Galerkin procedure has also been applied to several turbulent flow configurations such as 

mixing layer (Ukeiley et al. [109]) and cylinder wake (Noack et al. [110], Mathelin et al. [111]). 

While very attractive, the POD-Galerkin method is not without drawbacks. First, as described 

by Rempfer [112], if the classic Navier-Stokes equations are used, then the knowledge of a pressure 

term is required on the boundary of the domain investigated. The necessity of a correct evaluation 

of such term was later characterized more precisely by Noack et al. [105]. In particular, they showed 

that an appropriate representation of the pressure-term greatly improved the accuracy of POD-Ga-

lerkin models. A way to circumvent the need for a correct evaluation of the pressure-term is to use 

a vorticity formulation of the Navier-Stokes equations. Either way, as it will be recalled in Chapter 

VI.3.1, the Galerkin projection requires the computation of all inner products and spatial gradients 

of the flow. Therefore, it can only be performed on numerical data, otherwise strong closure as-

sumptions are necessary. In addition to these limitations, it has been shown that the truncation of 

the POD basis could lead to inaccurate or instable models. In particular, a stable solution of the 

Navier-Stokes equations can have an unstable Galerkin model solution (see Rempfer [113] or No-

ack et al. [114]). Noack et al. [105] also demonstrated that neglecting POD modes of small energy 

content had a strong influence on the POD-Galerkin model of a two-dimensional mixing layer. A 

second reason explaining that the POD truncation can lead to diverging models is that low order 

POD modes mainly resolve the energy production and not so much the energy dissipation in the 

flow. As a consequence, even if high order POD modes have a low energy contents, they must be 

taken into account to improve the stability and accuracy of the model. The energy transfers between 

POD modes of a LES of a backward facing step at Reh = 7432 was investigated by Couplet et al. 

[115]. They showed that the energy transfer between POD modes was local, followed a forward 

energy cascade, with some backward cascade. A solution to compensate the missing high order 

POD modes can be to add some important high order POD modes (see Noack et al. [114]) or to 

model the influence of the truncated high order POD modes. In particular, a first attempt to counter 
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the over production of TKE in the POD modes was to add eddy viscosity terms to the model (see 

Aubry et al. [101], Ukeiley et al. [109], or Couplet et al. [115] for instance). 

Another possibility, in order to overcome the necessity of using only numerical data or to 

model the influence of neglected POD modes, is to use identification methods to compute the POD 

model parameters. This strategy was proposed by Perret et al. [48]. Couplet et al. [116] also studied 

the calculation of the POD-ROM parameters through a minimization problem for two simulated 

flows (wake downstream a square cylinder at Re = 100 and a backward facing step at Reh = 7432). 

Le Maître et al. [117] also investigated an equation-free model where the temporal evolution of the 

POD modes was not obtained through the integration of an ODE. More recently, Cordier et al. [118] 

investigated a range of identification strategies to estimate the POD galerkin model parameters. In 

particular, they put in place a data assimilation method, the strong constraints 4D-Var, to improve 

the POD model parameters. 

Before going into the data assimilation subject, it is noteworthy to mention that Galerkin 

model can be obtained from other modal bases than the POD. Willcox et al. [119] and Rowley et 

al. [120] have developed an extension of POD model based on a balanced truncation that is called 

the Balanced POD (BPOD). These models are developed specifically for closed-loop control of 

turbulent flows. They exploit balanced truncation and approximations of the controllability and 

observability Grammians of the system. Stability modes of the Navier-Stokes equations can also be 

used to generate ROM (see for instance Schmid et al. [121]). Linear stability and BPOD were also 

compared by Tadmor et al. [122]. Another modal basis comes from Dynamic Mode Decomposition 

(DMD) (Schmid et al. [123]). In DMD, one mode corresponds to one temporal frequency and 

growth rate. As described by Rowley et al. [124], it is a generalization of spectral analysis to non-

linear systems and is a finite-dimensional approximation to Koopman spectral analysis. At last, 

Kaiser et al. [125] recently developed a new alternative to create ROM called Cluster-based ROM 

(CROM) and applied it to a two-dimensional incompressible mixing layer as well as to a three-

dimensional incompressible turbulent wake of an Ahmed body. 

1.2. Data assimilation 

Data assimilation refers to a large variety of methods that combine observations of a system 

with knowledge of its dynamic to provide the best estimate of the state of the system. Data assimi-

lation has been widely developed and applied in meteorological and oceanography fields. A concise 

introduction to the principle of data assimilation has been written by Talagrand [126]. Data assim-

ilation can be separated into two categories: sequential assimilation and variational assimilation. 

Sequential assimilation is based on probability considerations and on the propagation in time of the 

estimate. Sequential assimilation originates from the Bayesian formulation of the assimilation prob-

lem and relies on the sequential propagation of the statistics of the vector state. Variational assimi-

lation is based on solving an optimization problem and comes from optimal control theory. 

If data assimilation is quite common in meteorology, its use in fluid mechanics is more recent 

and less spread. Papadakis et al. [127] is among the first to introduce data assimilation in fluid 

mechanics. In his PhD work, Papadakis applied data assimilation in order to improve the estimation 

of the parameters of the POD ROM of a cylinder wake flow at Reynolds number 125. In his work, 

he applied both weak and strong constraints 4D-variational assimilation and showed that the latter 

lead to the best results. The same kind of approach is followed by Cordier et al. [118] for a mixing 

layer. Thus, a first use of data assimilation in fluid mechanics is to form more robust ROM by 

assimilating the ROM parameters. As such, Mons et al. recently applied and compared several data 

assimilation methods to set the parameters of a dynamic model for the unsteady flow around a 

cylinder at Re = 100.  
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Another use is to provide real time estimates of the flow state by combining a ROM (or dy-

namic model) with observations of the flow. For such applications, variational data assimilation 

appears to be inadequate and sequential assimilation is used, mainly the Kalman filter (KF). 

Hœpffner et al. [128] and Chevalier et al. [129]  employed KF to estimate the full state of a channel 

flow in 2005. Later, Sinha et al. [19] developed and compared several estimators for the control of 

high-speed axisymmetric jets. LSE, QSE, KF, Extended KF (EKF) and linear time-invariant filter 

(LTIF, in which the Kalman gain is supposed constant) ability to provide the real-time evolution of 

the POD ROM of the jet is studied. They showed that LTIF performances were identical to the KF 

one while being as computationally expensive as the LSE. LTIF was found as accurate as QSE and 

more accurate than LSE. At last, EKF results were not as good as the KF and LTIF ones. Mokhasi 

et al. [24] investigated the use of unscented KF in order to estimate the simulated flow of a cube 

mounted in a channel. While the quality of the numerical simulation of the flow is questionable, 

their work remains particularly interesting in their use of Radial Basis Functions to form a POD 

ROM of the flow. Ensemble KF (EnKF) was also applied for the estimation of the flow around a 

NACA0012 airfoil. The filter was combined with a POD ROM obtained for experimental data by 

Galerkin projection of the Navier-Stokes equations. 

From these few applications of KF for turbulent flows, it was decided to investigate the ability 

of KF to provide more accurate estimation of the flow from limited information than SE methods. 

2. Kalman Filter mathematical framework 

The basics of the Kalman filter, extended Kalman filter and ensemble Kalman filter are sum-

marized in this section without getting into details for the derivation of the equations. Derivation of 

the Kalman filter equations can be found in [130], [131] and [132]. 

As previously stated, Kalman filter is a data assimilation algorithm. It combines observations 

of the current state of a dynamic system with forecasted state of the system to provide the most 

accurate estimation of this system. The estimation, given by the Kalman filter, is referred as the 

analyzed state in the data assimilation community. As described by Talagrand [126], Kalman filter 

can be deduced from the Best Linear Unbiased Estimate (BLUE, or also called Gauss-Markov the-

orem) for which the measurement vector is decomposed into two components: a background/fore-

casted estimate (prior estimator) and an additional set of measurements. 

First, some basics of BLUE are recalled. Let us consider some measurements 𝒛(𝑡) ∈ ℝ𝑚 and 

a state vector 𝒙(𝑡) ∈ ℝ𝑛 (n and m ∈ ℕ). We now want to estimate the state vector using the obser-

vations. One way is to consider a linear relationship between the two: 

𝒛(𝑡) = 𝛤𝒙T(𝑡) + 𝒆(𝑡)  (VI.1) 

Γ is an 𝑚 × 𝑛 matrix that represents a linearization of the relationship between the measure-

ments and the state. e(t) is an error vector due to the linearization and is unknown. However, it is 

considered to be unbiased (E(e) = 0) and that its covariance matrix is known (E(𝒆𝒆T) = Σ and Σ is 

known). Then, the Best Linear Unbiased Estimate of x is denoted xa and is defined by (also called 

the weighted least squares): 

𝒙𝒂(𝑡) = A𝒛(𝑡) = (𝛤TΣ−1𝛤)−1𝛤TΣ−1𝒛(𝑡) (VI.2) 

Now, in the Kalman filter case, the measurement vector is decomposed as (where superscript 

b stands for background and time is omitted): 

𝒛 = (𝒙b, 𝒚), 𝒚 ∈ ℝ𝑝 and 𝑚 = 𝑛 + 𝑝 
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In addition, the background state (xb) is assumed to follow (where superscript t stands for the 

true state): 

𝒙b = 𝒙t + 𝒆b (VI.3)  

with eb is the error of the background estimate. Also the additional measurement vector is related 

to the state to estimate by: 

𝒚 = H𝒙t + 𝜺 (VI.4) 

where H is the measurement model matrix and ε the associated measurement error. 

Equations (VI.3) and (VI.4) are equivalent to (VI.1) with Γ = (𝐈𝑛, H
T)T and 𝒆 = (𝒆bT, 𝜺T)

T
. 

The covariance of the error then becomes: 

Σ = (
E(𝒆b𝒆bT) E(𝒆b𝜺T)

E(𝜺𝒆bT) E(𝜺𝜺T)
) 

At last, if background estimate error and the measurement error are uncorrelated, then 

E(𝒆b𝜺T) = E(𝜺𝒆bT) = 0. The matrix E(𝒆b𝒆bT) is denoted Pb and is called the background (or fore-

cast) error covariance matrix. E(𝜺𝜺T) is denoted R and is called the measurement model error co-

variance matrix. Using these notations and hypothesis, the equation (VI.2) can be rewritten as: 

𝒙a(𝑡) = 𝒙b(𝑡) + PbHT(HPbHT + R)
−1
(𝒚 − H𝒙b) (VI.5)  

Usually one defines the matrix K called the gain matrix by: 

K = PbHT(HPbHT + R)
−1

 (VI.6) 

And the equation becomes: 

𝒙a(𝑡) = 𝒙b(𝑡) + K(𝒚 − H𝒙b) (VI.7) 

The equation (VI.7) is the analysis step of the Kalman filter and describes the correction to 

apply to the background estimate according to the difference between the measures and the 

measures that should be obtained if the true state were the background estimate state (𝒚 − H𝒙b). 

This correction is a linear function of this difference vector that is called the residuals or the inno-

vation vector. In the Kalman filter framework, xa is called the analyzed state. All the previous equa-

tions have been derived for the same instant t and thus one can considered that the measurement 

model matrix H and the measurement model error covariance matrix R are dependent of time. How-

ever, in the applications presented in this work, they will be considered constant. 

Now let us consider ea the error between the true state and the analyzed state (called analysis 

error): 𝒆a = 𝒙a − 𝒙t, then using equation (VI.4) and (VI.7): 

𝒆a = 𝒙b + K(𝒚 − H𝒙b) − 𝒙t = 𝒙b + KH𝒙t + K𝜺 − KH𝒙b − 𝒙t 

𝒆a = 𝒆b − KH𝒆b + K𝜺 = (I − KH)𝒆b + K𝜺 

Therefore, since the background error and the measurement model error are uncorrelated, the 

covariance of the analysis error is: 

Pa = (I − KH)Pb(I − KH)𝐓 + KRKT = (I − KH)Pb − (I − KH)PbHTKT + KRKT 
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Pa = (I − KH)Pb − (PbHT − KHPbHT − KR)KT = (I − KH)Pb − (PbHT − K(HPbHT − R))KT 

Thus, using the expression of K, the analysis error covariance can be simply expressed as: 

Pa = (I − KH)Pb (VI.8) 

To complete the description of the Kalman filter, it is now necessary to take into account the 

way the background estimate is obtained and how the filter is advanced in time. 

2.1. Standard Kalman filter 

In the case of the standard Kalman filter, the dynamic system is assumed to evolve according 

to a linear equation. The true state at time tk+1 (denoted 𝒙𝑘+1
t ) is linked to the true state at time tk by 

(in what follows, subscripts are used to denote the time dependency): 

𝒙𝑘+1
t = M𝒙𝑘

t + 𝜼𝑘 (VI.9)  

where M is known and called the transition or dynamic model matrix. 𝜼𝑘 is called the model error 

and represents processes that are not correctly modelled by M. This error is considered to be an 

unbiased random vector with a known covariance matrix Q. In addition, the model error is supposed 

to be uncorrelated with previously introduced errors: E(𝜺𝑘𝜼𝑙
T) = E(𝒆a𝜼𝑙

T) = E(𝒆b𝜼𝑙
T) = 0. 

Now we assume that an analyzed state of the system is available, then the Kalman filter is 

advanced in time using the transition matrix by: 

𝒙𝑘+1
b = M𝒙𝑘

a  

The error covariance matrix of the predicted state (𝒙𝑘+1
b ) can then be expressed as function 

of the analysis error covariance matrix and of the model error covariance matrix. Indeed: 

P𝑘+1
b = E [(𝒙𝑘+1

b − 𝒙𝑘+1
t )(𝒙𝑘+1

b − 𝒙𝑘+1
t )

T
] = E[(M𝒙𝑘

a −M𝒙𝑘
t − 𝜼𝑘)(M𝒙𝑘

a −M𝒙𝑘
t − 𝜼𝑘)

T] 

P𝑘+1
b = MP𝑘

aMT + Q (VI.10) 

Here, matrices M and Q have been considered to be constant, but it is possible to consider 

time dependent transition matrix and model error without modifying equations (VI.9) and (VI.10). 

However, in the work presented in this chapter, M and Q will be supposed to be constant over time. 

Using the previously explained equations, it is possible to sum up an iteration of the standard 

Kalman filter algorithm with the following steps: 

 Prediction steps: 

 Use the dynamical model to generate a forecast state of the system: 𝒙𝑘+1
b = M𝒙𝑘

a   

 Propagate the forecast error covariance matrix: P𝑘+1
b = MP𝑘

aMT + Q 

 Analysis steps: 

 Compute the Kalman gain: K𝑘+1 = P𝑘+1
b HT(HP𝑘+1

b HT + R)
−1

 

 Generate the analyzed state: 𝒙𝑘+1
a = 𝒙𝑘+1

b + K𝑘+1(𝒚𝑘+1 − H𝒙𝑘+1
b )  

 Propagate the analysis error covariance matrix: P𝑘+1
a = (I − K𝑘+1H)P𝑘+1

b  
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To initialize the Kalman filter, one has to provide a background state 𝒙0
b and the correspond-

ing background error covariance P0
b. 

2.2. Extended Kalman filter 

In the standard Kalman filter, the dynamic model and the measurement model are supposed 

to be linear. Since most of real systems (in fluid dynamics) have a nonlinear behavior, an extension 

of the Kalman filter was derived in which the dynamic model (ℳ) and the measurement model (ℋ) 

are only assumed to be differentiable. To compute the Kalman gain and propagate the error covar-

iance matrices, the Jacobian matrices of M and H are considered: 

M𝑘 =
𝜕ℳ

𝜕𝑥
|
𝒙𝑘−1
a
, H𝑘 =

𝜕ℋ

𝜕𝑥
|
𝒙𝑘
b
 

The algorithm steps are similar to the standard Kalman filter steps: 

 Prediction steps 

 Use the dynamical model to generate a forecast state of the system: 𝒙𝑘+1
b =ℳ(𝒙𝑘

a)  

 Generate the forecast error covariance matrix: P𝑘+1
b = M𝑘+1P𝑘

aM𝑘+1
T + Q 

 Analysis steps 

 Compute the Kalman gain: K𝑘+1 = P𝑘+1
b H𝑘+1

T (H𝑘+1P𝑘+1
b H𝑘+1

T + R)
−1

 

 Generate the analyzed state: 𝒙𝑘+1
a = 𝒙𝑘+1

b + K𝑘+1(𝒚𝑘+1 −ℋ(𝒙𝑘+1
b ))  

 Generate the analysis error covariance matrix: P𝑘+1
a = (I − K𝑘+1H𝑘+1)P𝑘+1

b  

While the extended Kalman filter is a straightforward extension to nonlinear systems, it suf-

fers some limitations. It is common to observe divergence of the extended Kalman filter due to the 

linearization of the dynamic model and measurement model in the propagation of the error covari-

ance. 

To avoid such linearizations, Evensen introduced the ensemble Kalman filter [133]. 

2.3. Ensemble Kalman filter 

We here briefly present the ensemble Kalman filter (EnKF) algorithm. More details about the 

derivation of the EnKF can be found in [134], [135] and [132]. As stated in the literature review, 

EnKF is a Monte-Carlo alternative to the extended Kalman filter. The basic idea is to use an en-

semble of states, that are propagated by the filter, in order to estimate the error covariances. The 

EnKF algorithm can be described with the following steps: 

 Initialization: from an initial guess of the analyzed state (𝒙0
a̅̅ ̅), N ∈ ℕ random states 𝒙0

a,𝑖
 are 

generated following a Gaussian law (𝒙0
a,𝑖~N(𝒙0

a̅̅ ̅, P0)) 

 Prediction steps: 

 Generate N vectors corresponding to the model error: 𝜼𝑘
𝑖 ~N(0, Q) 

 Advance in time the N analyzed states: 𝒙𝑘+1
b,𝑖 =ℳ(𝒙𝑘

a,𝑖) + 𝜼𝑘
𝑖  
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 The forecast state is approximated by the ensemble mean: 𝒙𝑘+1
b̅̅ ̅̅ ̅̅ ≈

1

N
∑ 𝒙𝑘+1

b,𝑖N
𝑖=1  

 The forecast error covariance is approximated by: 

P𝑘+1
b ≈

1

N − 1
∑[(𝒙𝑘+1

b,𝑖 − 𝒙𝑘+1
b̅̅ ̅̅ ̅̅ ) (𝒙𝑘+1

b,𝑖 − 𝒙𝑘+1
b̅̅ ̅̅ ̅̅ )

T

]

N

𝑖=1

 

 Analysis steps: 

 Generate N vectors corresponding to the measurement error: 𝜺𝑘+1
𝑖 ~N(0, R) 

 Compute the approximate measurement model error covariance: 

R𝑘+1
N =

1

N − 1
∑(𝜺𝑘+1

𝑖 )

N

𝑖=1

(𝜺𝑘+1
𝑖 )

T
 

 Kalman gain is computed using the more general expression (relation between equa-

tions (VI.6) and (VI.11) is recalled in annex F.1): 

K𝑘+1 = P𝒙𝒚𝑘+1
b (P𝒚𝒚𝑘+1

b )
−1

 (VI.11) 

The matrices P𝒙𝒚𝑘+1
b  and P𝒚𝒚𝑘+1

b are then approximated using the ensemble mean: 

P𝒙𝒚𝑘+1
b ≈

1

N − 1
∑[(𝒙𝑘+1

b,𝑖 − 𝒙𝑘+1
b̅̅ ̅̅ ̅̅ ) (ℋ(𝒙𝑘+1

b,𝑖 ) −ℋ(𝒙𝑘+1
b )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

T

]

𝑁

𝑖=1

 

P𝒚𝒚𝑘+1
b ≈

1

N − 1
∑[(𝐻(𝒙𝑘+1

b,𝑖 ) − 𝐻(𝒙𝑘+1
b )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) (ℋ(𝒙𝑘+1

b,𝑖 ) −ℋ(𝒙𝑘+1
b )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

T

]

𝑁

𝑖=1

+ R𝑘+1
N  

 At last, forecasted states are analyzed using the following formula: 

𝒙𝑘+1
a,𝑖 = 𝒙𝑘+1

b,𝑖 + K𝑘+1(𝒚𝑘+1 + 𝜺𝑘+1
𝑖 −ℋ(𝒙𝑘+1

b ))  

The analyzed state is given by the ensemble mean: 𝒙𝑘+1
a̅̅ ̅̅ ̅̅ =

1

N
∑ 𝒙𝑘+1

a,𝑖N
𝑖=1  

3. Dynamic and observation models 

As explained in the previous section, Kalman filters require a dynamic model to advance in 

time the system state and also a measurement model to link the measures to the state. Several meth-

ods can be used to provide such models and we describe here those that are investigated in this 

work. From previous works conducted on ROM for fluid flows, it was decided to consider the 

system state to be an ensemble of POD coefficients only. The use of other flow decomposition 

techniques (such as Dynamic Mode Decomposition for instance) to provide a reduced representa-

tion of the flow state was not investigated. 

Let us denote the reduced system state 𝒙(𝑡) = (𝑎1(𝑡)…𝑎𝑛(𝑡))
T and the observations 𝒚(𝑡) =

(𝑦1(𝑡)…𝑦𝑝(𝑡))
T
, we now look for a dynamic model M such as: 𝒙(𝑡 + ∆𝑡) = ℳ(𝒙(𝑡)) + 𝜼(𝑡), 

and a measurement model such as: 𝒚(𝑡) = ℋ(𝒙(𝑡)) + 𝜺(𝑡). A conventional way to form the dy-
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namic model for the POD coefficients is to use the Galerkin projection of the Navier-Stokes equa-

tions onto the POD basis. Concerning the observation models, it is possible to use Gappy POD if 

the observations are of the same nature than the field used for computing the POD (and measured 

in the same domain, see Mokhasi et al. [24]). But it is possible to form ad hoc observation models 

when the observations are not included in the fields used for computing the POD. 

3.1. Galerkin model 

A Galerkin model is obtained using the standard Galerkin projection of the Navier-Stokes 

equation onto the selected POD modes forming the reduced system state. To do so, the velocity 

field in the Navier-Stokes equation (momentum equation) is substituted by its POD decomposition 

and then the equations are projected onto each POD mode using the dot product between two square 

integrable velocity fields (see equation (II.13)). Such procedure leads to the following system of 

Ordinary Differential Equations (ODE) linking the time derivative of each POD coefficient with 

the other POD coefficients, when the Navier-Stokes equation for a viscous incompressible flow are 

used: 

�̇�𝑖(𝑡) = 𝜈∑𝑙𝑖𝑗
𝜈

𝑛

𝑗=0

𝑎𝑗(𝑡) + ∑ 𝑞𝑖𝑗𝑘
𝑐

𝑛

𝑗,𝑘=0

𝑎𝑗(𝑡)𝑎𝑘(𝑡) + 𝑓𝑖
𝑝
 (VI.12) 

where: 

𝑖 ∈ ⟦0, 𝑛⟧, the first POD mode corresponds to the average field and its POD coefficient is constant 

equal to 1. 

𝑙𝑖𝑗
𝜈 = (𝚽(𝑖), ∆𝚽(𝑗))


 is the dissipation (or also called viscous) term 

𝑞𝑖𝑗𝑘
𝑐 = −(𝚽(𝑖), (𝚽(𝑗) ∙ 𝛁)𝚽(𝑘))


 is the convection term 

𝑓𝑖
𝑝
= −

1

𝜌
(𝚽(𝑖), 𝛁𝑃)


 is the pressure term 

The derivation of this equation is recalled in annex G. 

In the case where one has only access to the velocity field, the pressure term cannot be ob-

tained directly and has to be modelled. Noack et al. [105] showed that this term has to be correctly 

taken into account and that for open flows this term could be represented by a constant linear fit 

with the POD coefficients. As such the pressure term can be approximated by: 

𝑓𝑖
𝑝
≈∑𝑙𝑖𝑗

𝑝
𝑎𝑗(𝑡)

𝑛

𝑗=1

 

Another problem rising from POD-ROM using Galerkin projection is that only a limited 

number of POD modes are considered and resolved. Since the most energetic POD modes are usu-

ally conserved, they better resolve the production than the dissipation of TKE which can lead to a 

diverging model. It is therefore important to correctly model the effect of the truncation. As de-

scribed in the literature overview, one popular way of solving the problem is to add an eddy-vis-

cosity, but such models require a very careful calibration. Following these remarks, it was decided 

to circumvent those challenges by directly forming a dynamic model (of the form of equation 

(VI.12)) without directly calculating the POD Galerkin projection. 
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More generally, following equation (VI.12), it appears that the dynamic model can be written 

as, ∀𝑖 ∈ ⟦1, 𝑛⟧: 

�̇�𝑖(𝑡) = 𝑐𝑖 +∑𝑙𝑖𝑗

𝑛

𝑗=1

𝑎𝑗(𝑡) + ∑ 𝑞𝑖𝑗𝑘

𝑛

𝑗,𝑘=1

𝑎𝑗(𝑡)𝑎𝑘(𝑡) (VI.13) 

Or in a discrete form, using a first order scheme: 

𝑎𝑖(𝑡 + ∆𝑡) = 𝑎𝑖(𝑡) + �̇�𝑖(𝑡)∆𝑡  

𝑎𝑖(𝑡 + ∆𝑡) = 𝐶𝑖 +∑𝐿𝑖𝑗

𝑛

𝑗=1

𝑎𝑗(𝑡) + ∑ 𝑄𝑖𝑗𝑘

𝑛

𝑗,𝑘=1

𝑎𝑗(𝑡)𝑎𝑘(𝑡) (VI.14) 

with: 

𝐶𝑖 = 𝑐𝑖∆𝑡, 

𝐿𝑖𝑗 = {
𝑙𝑖𝑗∆𝑡 if 𝑖 ≠ 𝑗

𝑙𝑖𝑖∆𝑡 + 1 if 𝑖 = 𝑗
, 

𝑄𝑖𝑗𝑘 = 𝑞𝑖𝑗𝑘∆𝑡. 

Three methods are considered to form the dynamic model: the LSE, the QSE and a Radial 

Basis Function (RBF) model. In addition, four-dimensional data assimilation (4D-Var) is also con-

sidered to improve the model when LSE or QSE is used. LSE was already used to form a dynamic 

model of a flow by Tu et al. [65]. RBF has also been used by Mokhasi et al. [24]. For all three 

methods, it is necessary to have time-resolved information of the velocity field or at least sampled 

at a sufficiently high frequency so that for all the POD coefficients i considered in the reduced order 

model, 𝑎𝑖(𝑡 + ∆𝑡) and 𝑎𝑖(𝑡) are not completely uncorrelated. For the observation model, no attempt 

was made to physically draw such a model and LSE or QSE are also used. The derivation of models 

using LSE or QSE is identical to the method used by Perret et al. [136]. In his work however, they 

also considered cubic terms in the ODE forming the POD-ROM.  

3.2. LSE models 

3.2.1. Dynamic model 

In the case where LSE is used to form the dynamic model, then only the linear term in equa-

tion (VI.14) is considered. Quadratic and constant terms are thus set to zero. 

To form a dynamic model using LSE, the data to estimate are composed of POD coefficients 

(considered for the ROM) at time 𝑡 + ∆𝑡 and the sensors are composed of the same coefficients at 

time t. Therefore, if a succession of N temporal samples is available for the POD coefficients, then 

the LSE is trained using the following matrices for the data to estimate (D) and the sensors (S): 

D = (
𝑎1(𝑡2) ⋯ 𝑎1(𝑡𝑁)
⋮ ⋱ ⋮

𝑎𝑛(𝑡2) ⋯ 𝑎𝑛(𝑡𝑁)
) ∈ ℝ𝑛×(𝑁−1), S = (

𝑎1(𝑡1) ⋯ 𝑎1(𝑡𝑁−1)
⋮ ⋱ ⋮

𝑎𝑛(𝑡1) ⋯ 𝑎𝑛(𝑡𝑁−1)
) ∈ ℝ𝑛×(𝑁−1) 

The coefficients of the linear dynamic model are obtained using equation (II.8) where: 
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A = (
𝐿11 ⋯ 𝐿𝑛1
⋮ ⋱ ⋮
𝐿1𝑛 ⋯ 𝐿𝑛𝑛

) , C = SST, B = SDT 

At last, in order to be used with the Kalman filter, it is necessary to dispose of the model error 

covariance matrix. This matrix is estimated using a validation set of data on which the error is 

calculated between the true state and its LSE prediction (using the true state at the precedent time 

step as sensor). 

3.2.2. Observation model 

To generate the observation model by LSE, it is simply assumed that the observations are 

linearly related to the reduced order state, ∀𝑖 ∈ ⟦1, 𝑝⟧: 

𝒚𝑖(𝑡) =∑𝐿𝑖𝑗
obs𝑎𝑖(𝑡)

𝑛

𝑗=1

 

The model coefficients (𝐿𝑖𝑗
obs) are obtained by LSE considering the data matrix D and the 

sensor matrix S are: 

D = (

𝒚1(𝑡1) ⋯ 𝒚1(𝑡𝑁)
⋮ ⋱ ⋮

𝒚𝑝(𝑡1) ⋯ 𝒚𝑝(𝑡𝑁)
) ∈ ℝ𝑝×𝑁 , S = (

𝑎1(𝑡1) ⋯ 𝑎1(𝑡𝑁)
⋮ ⋱ ⋮

𝑎𝑛(𝑡1) ⋯ 𝑎𝑛(𝑡𝑁)
) ∈ ℝ𝑛×𝑁 

Similar to the dynamic model derived by LSE, the observation model error covariance matrix 

can be computed through the estimation of the error between the true observation and the observa-

tion predicted by LSE from the true state on a validation set. 

3.3. QSE models 

3.3.1. Dynamic model 

QSE dynamic model is obtained by considering the linear and quadratic terms of equation 

(VI.14), the constant coefficients are set to zero. The coefficients of the model are obtained by 

training the QSE with the same data and sensors as for the LSE dynamic model. The dynamic model 

error covariance matrix is evaluated in a similar manner on a validation set. 

3.3.2. Observation model 

QSE observation model is formed by considering the following equation relating the obser-

vations to the state: 

∀𝑖 ∈ ⟦1, 𝑝⟧, 𝒚𝑖(𝑡) =∑𝐿𝑖𝑗
obs𝑎𝑖(𝑡)

𝑛

𝑗=1

+∑∑𝑄𝑖𝑗𝑘
obs𝑎𝑖(𝑡)𝑎𝑗(𝑡)

𝑛

𝑘=1

𝑛

𝑗=1

 

The coefficients 𝐿𝑖𝑗
obs and 𝑄𝑖𝑗𝑘

obs are obtained by training the QSE with the observations as data 

to estimate and the reduced order state as sensors. The observation model error covariance matrix 

is evaluated on a validation set as explained for LSE models. 
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3.4. Four dimensional variational data assimilation 

The variational data assimilation used is based on the work of Papadakis [127], who intro-

duced data assimilation in fluid mechanics, as summarized by Cordier et al. [118]. Only the strong 

constraint four-dimensional variational data assimilation (4D-Var) is considered and used to assim-

ilate coefficients of the dynamic model. The main formulae are described here, precise derivation 

of those equations can be found in [127] (chapter 3). 

The dynamic system considered is the one described in equation (VI.13) which can be written 

as: 

𝑑𝒙(𝑡)

𝑑𝑡
+ℳ(𝒙(𝑡), 𝑪, 𝑳, 𝑸) = 0 

(VI.15) 

ℳ is the nonlinear operator relative to the dynamic model, C is the vector of constant coefficients, 

L is the matrix of linear coefficients and Q is the tensor of quadratic coefficients. In addition, a 

constant initial conditions for the system state is assumed: 𝒙(𝑡0) = 𝒙
0. 

The goal of the strong constraint assimilation is to find the solution 𝒙(𝑡) (of equation (VI.15) 

with the initial condition: 𝒙(𝑡0) = 𝒙0) that best fits some observations y(t) over a finite time interval 
⟦0, 𝑇⟧. Here, the only way to modify the solution 𝒙(𝑡) is to change the parameters ci, lij, qijk of the 

dynamic model. Thus the problem is to find the dynamic model parameters that minimize the fol-

lowing cost functional: 

ℐ(𝑪, 𝑳,𝑸) =
1

2
∫ ‖𝒚(𝑡) − 𝐻𝒙(𝑡)‖2
𝑇

0

+
𝛼

2
(‖𝑪 − 𝑪0‖2 + ‖𝑳 − 𝑳0‖𝐹

2 + ‖𝑸 − 𝑸0‖𝐹
2) 

(VI.16) 

‖. ‖𝐹 denotes the Frobenius norm. α is a regularization parameter (not considered in the work of 

Papadakis, but used by Cordier et al. [137]). In our case, the observations to assimilate will directly 

be the POD coefficients obtained by computing the POD on the training data set. Therefore, the 

cost functional becomes: 

ℐ(𝑪, 𝑳, 𝑸) =
1

2
∫ ‖𝒙obs(𝑡) − 𝒙(𝑡)‖

2
𝑇

0

+
𝛼

2
(‖𝑪 − 𝑪0‖2 + ‖𝑳 − 𝑳0‖𝐹

2 + ‖𝑸 −𝑸0‖𝐹
2) 

Superscript 0 stands for the initial guess of the dynamic model parameters. These parameters can 

be directly obtained by POD Galerkin projection, or by linear regression (such as LSE or QSE). 

Since the determination of the gradient of the cost functional is not practically feasible (using 

finite difference) for large systems, the minimization problem is solved using the adjoint formula-

tion. It is possible to show that the forward integration in time of the dynamic system (VI.15) fol-

lowed by a backward integration of an adjoint dynamical model allows to determine the cost func-

tional gradient. Demonstration is given by Papadakis in [127]. Using a Lagrangian functional, the 

adjoint dynamical model can be expressed as: 

−
𝜕𝜽

𝜕𝑡
(𝑡) + (

𝜕ℳ

𝜕𝒙
)
∗

𝜽(𝑡) = 𝒙obs(𝑡) − 𝒙(𝑡) 
(VI.17) 

𝜃(𝑡) ∈ ℝ𝑛 is a Lagrange multiplier. * stands for the adjoint operator and is here equivalent to con-

jugate transpose. 
𝜕ℳ

𝜕𝒙
 is the linear tangent of the dynamic model ℳ: 
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(
𝜕ℳ

𝜕𝒙
)
𝑖𝑗
= 𝑙𝑖𝑗 +∑(𝑞𝑖𝑘𝑗 + 𝑞𝑖𝑗𝑘)𝑎𝑘(𝑡)

𝑛

𝑘=1

 

At last the optimality conditions are: 

𝜕ℐ

𝜕𝑐𝑖
= 𝛼(𝑐𝑖 − 𝑐𝑖

0) + ∫ 𝜃𝑖(𝑡)
𝑇

0

𝑑𝑡 = 0 
 

𝜕ℐ

𝜕𝑙𝑖𝑗
= 𝛼(𝑙𝑖𝑗 − 𝑙𝑖𝑗

0 ) + ∫ 𝜃𝑖(𝑡)𝑎𝑗(𝑡)
𝑇

0

𝑑𝑡 = 0 (VI.18) 

𝜕ℐ

𝜕𝑞𝑖𝑗𝑘
= 𝛼(𝑞𝑖𝑗𝑘 − 𝑞𝑖𝑗𝑘

0 ) + ∫ 𝜃𝑖(𝑡)𝑎𝑗(𝑡)𝑎𝑘(𝑡)
𝑇

0

𝑑𝑡 = 0 
 

Equations (VI.15), (VI.17) and (VI.18) form the optimality system. To find the optimal pa-

rameters of the dynamic model, this system is solved iteratively. First, the dynamic system is inte-

grated forward in time (equation (VI.15)), then the adjoint equation is integrated backward in time 

(equation (VI.17)) and at last the dynamic model parameters are updated (equations (VI.18)). After 

that the three previous steps are repeated using the updated coefficients as initial guess. In this work, 

since a first order forward scheme is considered to form the discrete dynamic model used in the 

Kalman filter, the time integration of equations (VI.15), (VI.17) and in (VI.18) are performed using 

the same scheme. 

3.5. Radial Basis Function (RBF) models 

3.5.1. Dynamic model 

The RBF model is formed using a network of RBF to directly link the state at time 𝑡 + ∆𝑡 
with the state at time t: 

∀𝑖 ∈ ⟦1, 𝑛⟧, 𝑎𝑖(𝑡 + ∆𝑡) = RBFnetwork
𝑖 (𝒙(𝑡)) 

𝒙(𝑡) = (
RBFnetwork

1 (𝒙(𝑡))
⋮

RBFnetwork
𝑛 (𝒙(𝑡))

) (VI.19) 

An RBF network is a sum of RBF that generally takes the form: 

RBFnetwork
𝑖 (𝒙(𝑡)) =∑𝜆𝑗

𝑖𝛷𝑖(‖𝒄𝑗 − 𝒙(𝑡)‖)

𝑗

 

where: 

‖. ‖is the Euclidian norm in ℝ𝑛, 𝒄𝑗 ∈ ℝ
𝑛 are called the centers, 𝛷𝑖(𝑟) are the radial basis function 

and 𝜆𝑗
𝑖 ∈ ℝ are coefficients that need to be computed.  

Usually the radial basis functions are chosen to be positive definite functions in order to lead 

to a well-defined interpolation problem. Common functions used are the Gaussian function (𝛷(𝑟) =

e−𝜖
𝑖2‖𝑟‖2), the multi-quadratic function (𝛷(𝑟) = √1 + 𝜖𝑖

2
‖𝑟‖2) or the inverse multi-quadratic 
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function (𝛷(𝑟) =
1

√1+𝜖𝑖
2
‖𝑟‖2

). Some other functions are sometimes considered such as polyhar-

monic spline or thin plate spline. The parameter 𝜖𝑖 is called the shape parameter or scaling param-

eter and is a very important parameter to tune the RBF network. It is possible to use a single param-

eter for all the RBF in the sum, or to use a different parameter for each RBF. In this work, only the 

first option is considered. A way to determine this or these coefficients is to use Leave-One-Out 

Cross-Validation (LOOCV) (once the centers have been chosen). This method is used in this work. 

More precisions on LOOCV can be found in [138] (in particular the algorithm 1 is used). 

The first step to form the RBF model is to choose the centers 𝒄𝑗. One simple choice, when 

one is using a training set of data to form the model, is to use all the data from the training set as 

centers. In our case, we dispose of N-1 values for which the relation 𝒙(𝑡 + ∆𝑡) = 𝑀(𝒙(𝑡)) is 

known, therefore the centers are chosen to be 𝒙(𝑡𝑘), ∀𝑘 ∈ ⟦1, 𝑁 − 1⟧. This procedure was used by 

Mokhasi et al. [24]. Another possibility is to perform unsupervised learning such as k-means to 

found some centers inside the training data set [72]. 

Using all the training data as centers and after the shape parameters have been fixed, it is 

possible to easily obtain the 𝜆𝑗
𝑖 coefficients by interpolation. Indeed, for 𝑖 ∈ ⟦1, 𝑛⟧ and for 𝑗 ∈

⟦1, 𝑁 − 1⟧ we search 𝜆𝑗
𝑖 such as: 

∀𝑘 ∈ ⟦1, 𝑁 − 1⟧,∑ 𝜆𝑗
𝑖𝛷𝑖(‖𝒙(𝑡𝑗) − 𝒙(𝑡𝑘)‖)

𝑁−1

𝑗=1

= 𝑎𝑖(𝑡𝑘+1) 

Which can be rearranged as: 

(
𝑎𝑖(𝑡2)
⋮

𝑎𝑖(𝑡𝑁)
) = (

𝛷𝑖(‖𝒙(𝑡1) − 𝒙(𝑡1)‖) ⋯ 𝛷𝑖(‖𝒙(𝑡𝑁−1) − 𝒙(𝑡1)‖)
⋮ ⋱ ⋮

𝛷𝑖(‖𝒙(𝑡1) − 𝒙(𝑡𝑁−1)‖) ⋯ 𝛷𝑖(‖𝒙(𝑡𝑁−1) − 𝒙(𝑡𝑁−1)‖)
)(

𝜆1
𝑖

⋮
𝜆𝑁−1
𝑖
) 

A𝑖 = Φ𝑖𝛬𝑖 

This system has to be solved for each POD coefficients forming the state. Fortunately, with this 

choice of centers, and since the RBF are positive definite functions, the matrix Φ𝑖 is symmetric 

positive definite and thus can be inverse. 

The procedure used to form the RBF model can be summarized as follow. Gaussian functions 

are chosen as RBF. All the data from the training set are used as centers for the RBF. Then several 

shape parameters are tested consecutively for each member of the system state (each POD coeffi-

cient) in order to choose the best ones by LOOCV. At each test, all the coefficients 𝜆𝑗
𝑖 have to be 

computed. 

3.5.2. Observation model 

The observation model using RBF is obtained in the same manner than the dynamic one. 

Simply the equation (VI.19) becomes: 

𝒚(𝑡) = (
RBFnetwork

1 (𝒙(𝑡))
⋮

RBFnetwork
𝑝

(𝒙(𝑡))
) 
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4. Applications 

In this section, Kalman filter and its variants are applied to some test cases used to evaluate 

the performances of SE. First, the Kalman filter is applied to the OAT15A URANS and ZDES 

simulations. Then, it is used on the data from the high speed PIV campaign of the wall mounted 

cube. 

4.1. OAT15A URANS test case 

The estimation using SE-POD of the OAT15A URANS flow field has been conducted in 

Chapter IV.2. Ten POD modes were considered and this amount of POD modes contained about 

98% of TKE. When SE is used to estimate a POD coefficient, the number of POD coefficients 

considered does not impact the quality of the estimation of each POD mode individually. However, 

using Kalman filter, the size of the state considered (and thus the number of POD coefficients re-

tained) directly impacts the dynamic model and the Kalman filter results. Therefore, four state sizes 

are compared. 4 (93% TKE), 10 (97.6% TKE), 50 (99.93% TKE) and 100 (99.99% TKE) POD 

coefficients are used. 

As explained in Chapter II.4.2.1, the training set is formed of an oscillation period and the 

validation set of the following oscillation period. Only the set of 3 pressure sensors which locations 

have been optimized (“Optim P 3”) is used (see Chapter V.2.2.1.). Filters are initialized using the 

LSE of the state at the first time step. 

4.1.1. Standard Kalman filter 

Using the standard Kalman filter (KF), only linear dynamic model and linear observation 

model are used. Both are constructed using LSE to identify the model coefficients. The accuracy of 

both models is evaluated using the determination coefficient calculated for each estimated data sep-

arately following equation (II.27). Determination coefficients are shown in Fig. VI.1 and Fig. VI.2 

for the observation and dynamic models respectively. For the dynamic model, POD modes higher 

than 50 are not shown but their R² remains higher than 95%. In overall, all models perform very 

well. In addition, using more and more POD coefficients improves the accuracy of both observation 

and dynamic models.  

Forward in time integration of the dynamic model from the same initialization as the one of 

the Kalman filter is performed. This study allows appreciating the impact of assimilating the obser-

vations (in the KF) by comparing these results with those of the KF. It also gives some information 

on the dynamic model behavior and mainly about its stability property. The results show that the 

four dynamic models are stable. Surprisingly, adding more POD modes does not improve the qual-

ity of the prediction obtained by the straightforward integration of the model. The determination 

coefficients of the first 50 POD modes, obtained on the validation set, are plotted in Fig. VI.3. Only 

the first four POD modes are predicted with a positive R², all the other POD modes are badly pre-

dicted. In addition, it is clear that for the first four POD modes, R² decreases when more POD modes 

are considered for the dynamic model. This tendency is opposite to the one obtained when looking 

at the prediction of the state at a time step from the true state at the previous step. This indicates 

that the dynamic model becomes more sensible to noise (or more generally error) when more POD 

modes are used. Indeed, its prediction accuracy improves if the true state is used. But it decreases 

when a perturbed state is used. The initial error in the initial state used for the integration has a 

greater impact when the dynamic model is formed using POD modes. Even if the initial condition 

of the integration is the true state, the same evolution as in Fig. VI.3 is observed. Therefore, it is not 

the consequence of an increasing error in the initial condition when the state size increases. 
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Fig. VI.1: Determination coefficients of the 

estimation, using LSE, of the 3 pressure sen-

sors (from “Optim P 3” set) using 4, 10, 50 

and 100 POD modes as measures (observation 

model) 

 

Fig. VI.2: Determination coefficients of POD 

coefficients estimated by LSE using 4, 10, 50 

and 100 POD coefficients at the previous time 

step as measures (dynamic model) 

Fig. VI.4 shows the determination coefficient of the first 10 POD modes estimated using the 

standard KF in the four situations. Comparing the results with those in Fig. VI.3, it is clear that the 

assimilation of the observations as a positive impact on the prediction accuracy. R²POD Single are 

higher for the Kalman filter than for the forecast using the dynamic model only.  

 

Fig. VI.3: Determination coefficient of the 

POD mode prediction by integration of the dy-

namic model (validation set) 

 

Fig. VI.4: Determination coefficient of POD 

coefficients estimated using standard Kalman 

filter and “Optim P 3” set of pressure sensor 

(validation set) 

Fig. VI.4 can also be compared with Fig. V.5. From this comparison, it is clear that the stand-

ard KF performs better that the LSE. However, the results are changed when different numbers of 

POD modes are considered to form the system state. In this situation, the use of 100 POD modes 

leads to the best estimation using the standard KF. Results obtained for the estimation of the com-

plete flow field are compared in Table VI.1. It is clear that even using only 4 POD modes, the 



210 Chapter VI. Study of Kalman Filter for flow 

prediction 

 

standard KF leads to a better estimation than the LSE. Using 10 POD modes, the results are as good 

as the QSE and using 100 POD modes they are of the same quality (and slightly better) than the 

best MTD-LSE result. These results show that it is possible to improve the estimation using KF 

instead of SE. However, it is important to remind that KF is clearly more computationally expensive 

than SE. 

Since the standard KF is stable in the 4 tested situations, a way to decrease its computational 

cost is to consider a constant Kalman gain K. Indeed, the Kalman gain converged when the KF is 

stable. Using a constant Kalman gain obtained after a first run of the Kalman filter leads to a very 

slight worsening in the present case. Using 100 POD modes, R² (with the entire flow field as refer-

ence) goes from 99.62% to 99.56%. 

Type of estimation R² (%) 

Standard Kalman filter 

4 POD modes 92.5 

10 POD modes 96.59 

50 POD modes 99.03 

100 POD modes 99.62 

LSE 88.74 

QSE 96.18 

MTD-LSE 99.41 

Table VI.1: Determination coefficients comparison between standard Kalman filter and SE (“Op-

tim P 3” set of pressure sensors is used) 

4.1.2. Extended Kalman Filter 

The use of a quadratic dynamic model with the extended Kalman filter (EKF) is now inves-

tigated. The observation model remains however linear. EKF is known to suffer from divergence 

due to a bad propagation of the error covariance matrices. In the present case, careful tuning of the 

dynamic model (obtained by QSE) through Tikhonov regularization was required in order to obtain 

a converging EKF. Choosing the regularization parameter, using Cross Validation (CV) directly 

when forming the model by QSE proved to be ineffective and CV has to be applied to the EKF 

results instead. Thus, for several Tikhonov parameters it was necessary to form the dynamic model 

and then to run the EKF to be able to choose the best parameter. For all cases, the resulting dynamic 

model prediction abilities (by time integration) are greatly decreased compared to the LSE linear 

dynamic model. The results rapidly converged toward zero for all coefficients forming the system 

state (see Fig. VI.9 and Fig. VI.10, curve with Tikhonov parameter α equal to 5). 

Determination coefficients for the prediction of the entire flow field, using EKF, are summa-

rized in Table VI.2. These values can be compared with the ones in Table VI.1 and it is clear that 

the use of EKF with a quadratic dynamic model obtained by QSE does not lead to a better estimation 

of the flow. Even more interesting, the prediction is deteriorated when the number of POD coeffi-

cients used to form the state increases. Two factors participate to these observations. First, due to 

an incorrect propagation of the model error covariance using linear tangent, higher than optimal 

(according to CV) regularization parameters are necessary to form QSE dynamic models which 

leads to a converging EKF. Then, using these too high regularization parameters, the resulting QSE 

dynamic models are actually less accurate than the LSE ones. This is illustrated in Fig. VI.7 where 

R²POD Single of the prediction of the first 10 POD coefficients using LSE and QSE dynamic models 

(and the same coefficients at the previous time step as measurements) are shown. The QSE dynamic 

model used with the EKF is the one with α = 5. It is clear that this dynamic model is less accurate 

than the LSE one. 
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Type of estimation R² (%) 

EKF 

4 POD modes 90.5 

10 POD modes 89.7 

50 POD modes 89.3 

100 POD modes 88.7 

Table VI.2: Determination coefficients for the prediction of the entire velocity field using EKF 

with a quadratic model from QSE and the sensor set “Optim P 3” 

 

Fig. VI.5: Error between the assimilated data and the original one as function of the algorithm it-

eration (assimilation of 4 POD coefficients) 

At last, a quadratic dynamic model obtained using 4D-Var data assimilation is quickly inves-

tigated only when 4 POD coefficients are used. The model is obtained by initializing the assimila-

tion algorithm with the coefficients of the linear dynamic model obtained by LSE. And the assimi-

lation is conducted over the first period forming the training data set. The algorithm was iterated 

1 800 000 times. The evolution of the error defined by 𝐸𝑟𝑟𝑜𝑟 = ∫ ‖𝒙obs(𝑡) − 𝒙(𝑡)‖
2𝑇

0
 is plotted in 

Fig. VI.5. R² obtained for the prediction of the flow field is about 92.5% which is approximately 

the same value obtained with the standard KF. 

In the several tested situations, no improvements were obtained using EKF instead of stand-

ard Kalman filter. Therefore, the use of the Ensemble Kalman filter (EnKF) is investigated. 

4.1.3. Ensemble Kalman Filter 

The use of the Ensemble Kalman filter requires choosing a number of statistical samples 

(ensemble members) that will be randomly drawn to represent the error statistics of the system state. 

In our case, the largest state considered contained 100 POD coefficients, and thus it was decided to 

use 1 000 ensemble members. Using EnKF offer a large freedom concerning the dynamic and ob-

servation models used. First, to validate the EnKF implementation, linear dynamic and observation 

model obtained by LSE are utilized and the results compared with those of the standard Kalman 

filter. 

4.1.3.1. Linear dynamic and observation model 

Fig. VI.6 compares the determination coefficients of the prediction of the first 10 POD modes 

using KF and EnKF with linear dynamic and observation models from LSE (system state is com-

posed of the first 10 POD modes). This figure clearly shows that both filters perform the same with 

negligible difference as it was expected. 
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Fig. VI.6: Comparison of determination coef-

ficients of the first 10 POD modes prediction 

using KF and EnKF with linear dynamic and 

observation model 

 

Fig. VI.7: Determination coefficients of POD 

coefficients estimated by LSE and QSE using 

10 POD coefficients at the previous time step 

as measures 

 

Fig. VI.8: Determination coefficients of POD coefficients estimated by LSE and QSE using 10 

POD coefficients at the previous time step as measures 

4.1.3.2. Quadratic dynamic and linear observation model 

The EnKF is used with a quadratic dynamic model formed using QSE. The observation model 

is linear and formed by LSE. Compared to the EKF, the EnKF seems to be indeed more stable. As 

such, using a state composed with the first 4 POD coefficients, no Tikhonov regularization is nec-

essary when forming the dynamic model to obtain convergence of the filter. However, as the num-

ber of POD coefficients used as system state increases, regularization becomes necessary. Com-

pared to the EKF, Tikhonov parameters are lower to achieve the best prediction. Also the values 

obtained by applying CV when creating the QSE model or by applying CV on the EnKF results are 

similar. As such, with 10 POD coefficients, α is equal to 110-5 to obtain convergence and the best 

prediction using EnKF, instead of 5 with the EKF. The resulting QSE dynamic model is then more 

accurate than the LSE one (see Fig. VI.8). Looking at the forecasting ability of these models (by 
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time integration), they appear to be unstable and they rapidly diverge. Results are illustrated in Fig. 

VI.9 and Fig. VI.10. In these figures, the prediction of the first and tenth POD coefficients for the 

two oscillation periods are plotted. Linear and quadratic models are formed using 10 POD coeffi-

cients for the system state. The results displayed indicate that the linear dynamic model is the one 

producing the best forecast over time. The quadratic model used for the EKF corresponds to α = 5 

and the one used for the EnKF to α = 110-5. The first one rapidly converges to zero after 3 itera-

tions; the second one diverges after 5 iterations. 

 

Fig. VI.9: Forecast of the first POD coefficient 

using linear and quadratic dynamic models 

 

Fig. VI.10: Forecast of the tenth POD coeffi-

cient using linear and quadratic dynamic mod-

els 

 

Fig. VI.11: Comparison of determination coef-

ficients of the first 4 POD modes prediction 

using KF and EnKF with quadratic dynamic 

model and linear observation model (4 POD 

coefficients system state) 

 

Fig. VI.12: Comparison of determination coef-

ficients of the first 10 POD modes prediction 

using KF and EnKF with quadratic dynamic 

model and linear observation model (10 POD 

coefficients system state) 

Results of the EnKF are plotted in Fig. VI.11, Fig. VI.12, Fig. VI.13, Fig. VI.14 and compared 

with the standard KF ones. Except when the system state is made of the first 100 POD coefficients, 

EnKF demonstrates better prediction performances than the standard KF for all the estimated POD 
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coefficients. On the opposite, when 100 POD coefficients are used, the EnKF leads to a deteriora-

tion of the prediction quality compared to the standard KF. That is due to the overfitting of the 

model that becomes too important. As such, even with regularization, the QSE dynamic model is 

less accurate than the LSE one. In addition, the best QSE dynamic model (obtained by CV to choose 

the regularization parameter) leads to a diverging EnKF and the best EnKF results are obtained for 

a higher regularization parameter (therefore for an even less accurate quadratic dynamic model) 

which explained the deterioration compared to the use of a linear dynamic model. 

 

Fig. VI.13: Comparison of determination coef-

ficients of the first 50 POD modes prediction 

using KF and EnKF with quadratic dynamic 

model and linear observation model (50 POD 

coefficients system state) 

 

Fig. VI.14: Comparison of determination coef-

ficients of the first 100 POD modes prediction 

using KF and EnKF with quadratic dynamic 

model and linear observation model (100 POD 

coefficients system state) 

 

Fig. VI.15: Forecasted first POD coefficient in the EnKF using a state of 100 POD coefficients  

Actually, the EnKF results in this situation are very close to the one obtained with LSE-POD. 

This observation suggests that the dynamic model is, in some sense, rapidly disregarded by the 

EnKF (since it is too inaccurate compared to the observation model) and that the EnKF results come 

almost entirely from the assimilation of the pressure sensors information. That is confirmed by 
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looking at the forecasted state generated at the prediction steps of the EnKF algorithm (see Chapter 

VI.2.3). The forecast of the first POD coefficient is plotted in Fig. VI.15 as an example. It is clear 

that the forecasted state is close to zero at all time. In such conditions, the analysis step is almost 

equivalent to the LSE using the set of pressure sensors. (The relation between the analysis step and 

LSE is explored in annex F.3). As expected, the tuning of the dynamic model is obviously a critical 

parameter with a strong impact on the KF performances. 

The previous observations are confirmed by the R² values obtained for the velocity field pre-

diction that are reported in Table VI.3. R² is slightly higher using EnKF instead of KF in the 3 first 

cases and deteriorates when 100 POD coefficients is used. 

Type of estimation R² (%) 

EnKF 

4 POD modes 92.9 

10 POD modes 97.58 

50 POD modes 99.61 

100 POD modes 88.74 

Table VI.3: Determination coefficients for the prediction of the entire velocity field using EnKF 

with quadratic dynamic models from QSE and the sensor set “Optim P 3” 

In the present case, no QSE dynamic model was able to lead to a good EnKF when the system 

state is made of 100 POD coefficients. So, the possibility to obtain a better quadratic dynamic model 

using data assimilation was investigated. The assimilation algorithm was run for 200 000 iterations. 

The determination coefficient calculated with the velocity flow field as reference is about 99.44%. 

This is higher than R² obtained with the QSE dynamic model but remains lower than the standard 

KF. In the present case, it might be possible to improve this result using more iterations for the 

assimilation algorithm, but it is likely that the results would not be significantly better than in the 

standard KF. Indeed, standard KF results are already almost perfect. The main result here is to show 

that the data assimilation can serve to form quadratic dynamic models that are more robust and 

accurate than those formed by QSE with Tikhonov regularization. 

Following these results, the impact of using a quadratic observation model is studied. 

4.1.3.3. Linear dynamic model and quadratic observation model 

In the previous section, the impact of using a quadratic dynamic model instead of a linear one 

has been observed. In this section, we look at the possibility to use a quadratic observation model 

formed by QSE with a linear dynamic model from LSE in the EnKF. For the four test cases, the 

best results are obtained for observation models from QSE without regularization. 

Results are presented in Table VI.4. As in the case where quadratic dynamic model is used 

instead of linear dynamic model, improvement of prediction accuracy is obtained in the situation 

using the less POD coefficients in the system state. A slight increase of R² is obtained in the 4 and 

10 POD modes cases, on the contrary R² decreases for 50 and 100 POD modes cases. This deterio-

ration comes from the overfitting of the quadratic dynamic model and in particular from the condi-

tioning of the matrix made of the system states that are considered as sensors to form the observation 

QSE model. As the number of POD coefficients considered increases, the condition number dras-

tically increases too. If the use of Tikhonov regularization limits the effect of such bad conditioning, 

it however leads eventually to an observation model that is less accurate than the linear one obtained 

by LSE (in a similar fashion to what occurs for the QSE dynamic model in the 100 POD coefficients 

state case). Thus, the EnKF results are less accurate when a QSE observation model is used with 

system state containing 50 and 100 POD coefficients. 
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A possibility to avoid this problem is to use an “inverse” observation model. Such method 

was used by Mokhasi et al. [24]. What we call “inverse” observation model corresponds to the use 

of an estimation of the state as measurement in the analysis step of the KF algorithm. Thus instead 

of using: 𝒚 = ℋ(𝒙) + 𝜺, 𝒙 = ℋ ′(𝒚) + 𝜺 is used. The modification of the KF formula are described 

in annex F.2. The EnKF results using “inverse” QSE quadratic observation model are summarized 

in Table VI.5. In addition, the results obtained with “inverse” LSE linear observation model are 

also displayed. These results can be respectively compared with those in Table VI.4 and Table VI.1 

respectively. Using “inverse” linear observation models gives similar results than using direct linear 

observation models but there is a small discrepancy for 50 and 100 POD coefficients case. None of 

these models suffer from severe overfitting. However, there is no guarantee that both “direct” and 

“inverse” models should lead to the same EnKF results since they are different models. Concerning 

the quadratic observation model, using an “inverse” model clearly improves the results in the 50 

and 100 POD coefficients cases compared to the use of a “direct” model. This is due to the fact that 

contrary to the direct model, the “inverse” model does not suffer from overfitting. Indeed, the in-

verse model employs less conditional events than the direct model (especially when many POD 

coefficients are used for the system state). Therefore, the condition number of the conditional events 

matrix is less likely to be very high. However, the “inverse” model results remain lower than stand-

ard KF ones for 50 and 100 POD coefficients cases. 

Type of estimation R² (%) 

EnKF 

4 POD modes 92.87 

10 POD modes 97.41 

50 POD modes 89.34 

100 POD modes 88.89 

Table VI.4: Determination coefficients for the prediction of the entire velocity field using EnKF 

with linear dynamic models from LSE, quadratic observation model from QSE and the sensor set 

“Optim P 3” 

Type of estimation 
“inverse” LSE  

observation model 

“inverse” QSE 

observation model 

EnKF 

4 POD modes 92.36 92.92 

10 POD modes 96.08 97.25 

50 POD modes 98.33 98.97 

100 POD modes 98.64 99.21 

Table VI.5: Determination coefficients for the prediction of the entire velocity field using EnKF 

with linear dynamic models from LSE and “inverse” observation models 

4.1.3.4. Quadratic dynamic and observation models 

Using quadratic dynamic and observation models leads to a complicated tuning of the EnKF. 

Indeed, one has to choose regularization parameters for both models (when necessary). Once more 

CV on the EnKF results was used to set the regularization parameters of the two QSE models. The 

results are given in Table VI.6, as previously “direct” and “inverse” observation models are tested. 

For the 4 and 10 POD modes cases, both “direct” and “inverse” observation model lead to 

the same results of the EnKF prediction and none of them suffer from overfitting. For the two other 

cases, using an “inverse” observation model improves the EnKF prediction and is therefore a better 

solution than Tikhonov regularization applied to the direct model. For the 4, 10 and 50 POD modes 

cases, the EnKF results combining quadratic dynamic and observation models are the most accurate 

ones among the KF tested situations. They are also better than the LSE results. The best prediction 
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is obtained when the state is made of 50 POD modes and the EnKF prediction in this situation is 

also more accurate than the QSE and MTD-LSE prediction. 

In the case where 100 POD modes formed the system state, the EnKF results using QSE 

dynamic and observation model are deteriorated compared to the case where a LSE dynamic model 

is used. As previously explained, it is due to the fact that the QSE dynamic model is less accurate 

than the LSE one. In addition, when a “direct” QSE observation model is used, the results are very 

poor. This illustrates how a bad tuning of the EnKF can turn out to have disastrous results while the 

goal was to improve the accuracy by increasing the complexity of both dynamic and observation 

models. 

Type of estimation 
“direct” QSE  

observation model 

“inverse” QSE 

observation model 

EnKF 

4 POD modes 92.95 92.95 

10 POD modes 97.59 97.59 

50 POD modes 99.53 99.73 

100 POD modes 38.67 98.64 

Table VI.6: Determination coefficients for the prediction of the entire velocity field using EnKF 

with QSE dynamic and observation models 

4.1.3.5. Radial Basis Function dynamic model 

The use of RBF dynamic model is investigated only on the 4 and 100 POD coefficients cases 

for brevity. In both cases, the centers of the RBF functions are the 749 first system state samples of 

the training set (the training set is made of 750 and the last one is not considered as center since the 

model estimate the system state from the previous one in time). As explained in Chapter VI.3.5 

shape parameters are obtained by LOOCV. 

 

Fig. VI.16: Determination coefficients of POD 

coefficients estimated by LSE and RBF using 

4 POD coefficients at the previous time step as 

measures (validation set) 

 

Fig. VI.17: Determination coefficients of POD 

coefficients estimated by LSE and RBF using 

100 POD coefficients at the previous time step 

as measures (validation set) 

For both 4 and 100 POD coefficients case, the RBF dynamic model obtained is less accurate 

than the linear one created by LSE. Determination coefficients of the prediction of the 4 and 100 
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POD coefficients using the POD coefficients at the previous time step as measurements are dis-

played in Fig. VI.16 and Fig. VI.17 (R² is calculated for the validation set). LSE and RBF dynamic 

model are compared. The figures show that for all POD coefficients, the LSE dynamic model per-

forms better than the RBF one. Therefore, Kalman filter is expected to have better prediction results 

when LSE dynamic model is used than RBF. 

The results of the EnKF with the RBF dynamic model (and LSE observation model) are sum-

marized in Table VI.7 and compared with the results obtained from standard KF with LSE dynamic 

model. R² is clearly deteriorated by the use of the RBF dynamic model. When 100 POD coefficients 

form the system state, R² even becomes negative with the RBF model. In the present conditions, 

LSE or QSE dynamic models perform better than RBF ones. 

Type of estimation 
EnKF with  

RBF dynamic model 

Standard KF with  

LSE dynamic model 

4 POD modes 18.94 92.5 

100 POD modes -4.09 99.62 

Table VI.7: Determination coefficients (in %) for the prediction of the entire flow field using 

EnKF with RBF dynamic model and using standard KF 

4.2. OAT15A ZDES case 

It was shown in Chapter IV.2 that the number of POD modes, necessary to retain the same 

amount of TKE, was higher in the OAT15A ZDES case than in the URANS case. Therefore, the 

numbers of POD coefficients considered to form the system state are chosen higher than for the 

URANS case. 10, 52, 205 and 1000 POD coefficients states are studied. They correspond respec-

tively to 75.8%, 90.1%, 97.6% and 99.9% of TKE. Since it was previously shown that EKF does 

not hold any significant interest compared with the EnKF, only EnKF is used when dynamic or 

observation models are not linear. Two sets of pressure sensors are used. They are the sets “Optim 

P 3” and “Optim P 5” of the ZDES case (see Chapter V.2.2.1). 

4.2.1. Standard Kalman filter 

The quality of the linear dynamic models obtained by LSE in the four situations is quickly 

compared. R²POD Single is displayed for the first 205 POD modes for the LSE prediction using the 

POD coefficients at the previous time step as measurements in Fig. VI.18. Also, up to POD mode 

1000, R²POD Single higher than 50% are obtained. The accuracy of those dynamic models is satisfying 

for low rank POD modes but is clearly lower for POD modes of ranks higher than 200. In addition, 

contrary to what was observed in the OAT15A URANS case, increasing the number of POD coef-

ficients considered in the system state (and so in the model) does not constantly improve the model 

accuracy. The results show that the best model, at least the more accurate for POD modes of ranks 

1 to 150, is the model obtained with 205 POD coefficients to form the state. In these conditions, 

taking into account more and more POD coefficients in the Kalman filter, using LSE dynamic 

model, may deteriorate the prediction ability of the filter. 

R² of the “Optim P 5” pressure sensor prediction using 10, 52, 205 and 1000 POD coefficients 

and LSE is plotted in Fig. VI.19 (observation model). Except for the first sensor, for which the 

prediction accuracy of LSE observation models from 10 and 52 POD coefficients is less than 85%, 

all LSE observation models perform quite well (R² > 90%). The observation models obtained using 

205 and 1000 POD coefficients have almost the same accuracy, the second one performing slightly 

better. 
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Fig. VI.18: Determination coefficients of POD 

coefficients estimated by LSE using 10, 52, 

205 and 1000 POD coefficients at the previous 

time step as measurements (validation set, dy-

namic model) 

 

Fig. VI.19: Determination coefficients of “Op-

tim P 5” pressure data estimated by LSE using 

10, 52, 205 and 1000 POD coefficients as 

measurements (validation set, observation 

model) 

 

Fig. VI.20: Determination coefficients of POD 

coefficients estimated using standard Kalman 

filter and “Optim P 3” set of pressure sensor 

(validation set) 

 

Fig. VI.21: Determination coefficients of POD 

coefficients estimated using standard Kalman 

filter and “Optim P 5” set of pressure sensor 

(validation set) 

Standard KF results are displayed in Fig. VI.20 and Fig. VI.21. In these figures, R²POD Single of 

the POD modes estimated by standard KF using “Optim P 3” and “Optim P 5” sets of pressure 

sensors respectively are plotted. It appears from these figures that in both cases, the best prediction 

is achieved using 1000 POD coefficients to form the system state. Standard KF results are deterio-

rated when less POD coefficients are used. Using 205 POD coefficients leads to similar results as 

the 1000 POD coefficients case, but using 52 or 10 POD coefficients clearly deteriorate the KF 

performances. However, even with 205 or 1000 POD coefficients, the prediction of POD modes of 

ranks higher than 40 is poorly accurate (R²POD Single < 20%). These observations are slightly surpris-

ing, while the prediction of high rank POD modes is not accurate, it seems that it still impacts 

positively the prediction of low rank POD modes. Also, if these figures are compared with those 
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obtained by LSE (see Fig. III.23), it appears that the trends remain the same concerning which 

modes POD are the best estimated among the first 10 POD modes. Both, Kalman filter and LSE 

have here the same difficulty to predict with high accuracy the POD modes that contains the high 

frequency content of the flow. That is not so surprising since dynamic and observation models are 

formed using LSE. 

Determination coefficients calculated using the entire velocity field as reference are shown 

in Table VI.8 where standard KF and SE results are compared. The results confirm previous obser-

vation and the best results are obtained when 1000 POD coefficients are used. Values also demon-

strate that the standard KF outperforms the LSE with an increase in R² of 5 to 10% when only 10 

POD coefficients are used and almost 20% with 1000 POD coefficients. The standard KF leads to 

equivalent and better results than the QSE in the four cases. And even better results than MTD-LSE 

is obtained with 1000 POD coefficients. These results are consistent with the observations made in 

the OAT15A URANS case and show once more that more accurate prediction can be achieved with 

the standard KF than with SE. In addition, we stress that these results are obtained on the validation 

set and thus are not the results of an overfitting on the training set. 

Type of estimation “Optim P 3” “Optim P 5” 

Standard Kalman filter 

10 POD modes 59.9 61.4 

52 POD modes 60.9 65.0 

205 POD modes 64.2 69.3 

1000 POD modes 67.2 72.2 

LSE 49.8 54.2 

QSE 55.6 62.6 

MTD-LSE  67 69.5 

Table VI.8: Determination coefficients calculated with the entire velocity field as reference (in %) 

comparison between standard Kalman filter and SE 

4.2.2. Ensemble Kalman filter 

4.2.2.1. Quadratic dynamic model and linear observation model 

We now look at replacing the linear dynamic model by a quadratic one using the EnKF. It 

was observed when applying EnKF with the OAT15A URANS data that QSE dynamic models 

were not always more accurate than LSE dynamic model, especially when the number of POD 

coefficients used for the system state was big. In such situations, the EnKF with this quadratic model 

and a linear observation model lead to less accurate predictions than the standard KF. Using 

OAT15A ZDES database, more POD coefficients are considered to form the system state and thus 

the QSE model is more likely to be overfitted. That is indeed the case for all four cases. In addition, 

in the 1000 POD coefficients case, the QSE problem could not be solved since it required the in-

version of a matrix or more than 2 To. Only in the 10 POD coefficients case, a QSE dynamic model 

more accurate than the LSE one is obtained. R²POD Single of the best QSE dynamic model (Tikhonov 

regularization parameter is chosen by CV) are displayed in Fig. VI.22 and Fig. VI.23 for the 10 and 

52 POD coefficients state cases. In these figures, the results obtained with a linear dynamic model 

from LSE are also plotted. In the 10 POD coefficients case, the QSE dynamic model proves to be 

superior than the LSE model, but it is clear that, in the 52 POD coefficients case, the QSE dynamic 

model performances are much lower than the LSE dynamic model ones. The same is observed when 

205 POD coefficients are utilized (not shown here for brevity). 

The EnKF results for the prediction of the velocity field are summarized in Table VI.9 (only 

the “Optim P 3” set of sensors is considered). As expected, the results are better only in the 10 POD 
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coefficients case. R² is increased by about 5% by using the QSE dynamic model instead of the LSE 

one in this case. This is approximately the accuracy obtained with the linear dynamic model and 52 

POD coefficients. It is however less than the accuracy achieved by the standard Kalman filter with 

1000 POD coefficients. On the contrary, the EnKF precision is lower for the 52 and 205 POD 

coefficients case with QSE dynamic model. The EnKF in this two cases leads to a similar situation 

as what was observed in the OAT15A URANS with EnKF, QSE dynamic model and 100 POD 

coefficients. In order to get convergence of the EnKF, QSE dynamic model obtained with a higher 

Tikhonov regularization parameter than the one given by CV has to be used. It means that even less 

accurate models than the one shown in Fig. VI.23 have to be employed. Therefore, in the EnKF 

algorithm, the dynamic model is rapidly disregarded compared with the precision of the observation 

model and results very close to the LSE are obtained (see annex F.3). 

 

Fig. VI.22: Determination coefficients of the 

first 10 POD coefficients estimated by QSE 

and LSE using the same POD coefficients at 

the previous time step (validation set) 

 

Fig. VI.23: Determination coefficients of the 

first 52 POD coefficients estimated by QSE 

and LSE using the same POD coefficients at 

the previous time step (validation set) 

 

Type of estimation R² (%) 

EnKF 

10 POD modes 64 

52 POD modes 49.2 

205 POD modes 48.1 

1000 POD modes - 

Table VI.9: Determination coefficients for the prediction of the entire velocity field using EnKF 

with quadratic dynamic models from QSE, linear observation model and the sensor set “Optim P 

3” 

4.2.2.2. Linear dynamic model and quadratic observation model 

As in the OAT15A URANS case, the impact of using a quadratic observation model is inves-

tigated. Both “direct” and “inverse” models are studied. Especially, in the case where 1000 POD 

coefficients are used, only the “inverse” quadratic observation model is available, since the “direct” 

model requires the inversion of too large matrices. The results of the EnKF in the several tested 

situations are shown in Table VI.10. For most cases, the EnKF prediction accuracy is greater using 

the “inverse” observation model instead of the “direct” one. That is consistent with the observation 
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made in the OAT15A URANS test case. In addition, “inverse” observation models do not require 

regularization in the present case, contrary to the direct ones. However, contrary to the OAT15A 

URANS case, a decrease of R² is observed when the number of POD coefficients becomes too large. 

In particular, it was not possible to obtain a converging EnKF using 1000 POD coefficients. An 

intermediate case was therefore explored using 500 POD coefficients. The EnKF results with 500 

POD coefficients are less precise than those with 205 POD coefficients for “Optim P 3” set and not 

particularly improved for the “Optim P 5” set of sensors. This is due to the fact that the prediction 

of high rank POD coefficients is actually very inaccurate, even with QSE. Therefore, taking them 

into account eventually deteriorates the overall prediction performance of the EnKF. The new in-

formation added when using more POD coefficients can for high rank POD coefficients act like a 

parasitic information. R²POD Single for the prediction of the first 1000 POD modes using QSE with the 

“Optim P 3” set of pressure sensors are displayed in Fig. VI.24. This figure shows that POD coef-

ficients of ranks higher than 50 are not correctly predicted by the “inverse” observation model. 

Type of estimation 
“Optim P 3” “Optim P 5” 

“Direct” “Inverse” “Direct” “Inverse” 

EnKF 

10 POD modes 59.7 58.9 54.7 64.2 

52 POD modes 57.9 62.5 62.8 70.1 

205 POD modes 50.3 73.2 50.7 79.4 

500 POD modes - 69.9 - 79.9 

1000 POD modes - Diverging - Diverging 

Table VI.10: Determination coefficient (in %) of the prediction of the entire velocity field using 

EnKF with linear dynamic model and quadratic observation model 

 

Fig. VI.24: Determination coefficients of the 

first 1000 POD coefficients estimated by QSE 

with the “Optim P 3” set of sensors (validation 

set) 

 

Fig. VI.25: Determination coefficients of the 

first 500 POD coefficients estimated by MTD-

LSE-POD and EnKF (linear dynamic model 

and “inverse” quadratic observation model) 

with “Optim P 5” set of sensors (validation 

set) 

Comparing these results with those of the standard KF (in which only linear models are em-

ployed), it appears that the prediction ability of the EnKF with “inverse” quadratic observation 

model is superior to the standard KF one. R² of the standard KF prediction of the velocity field using 

500 POD coefficients are 66.5% and 72.3% for “Optim P 3” and “Optim P 5” set respectively. This 
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confirms the positive impact of using “inverse” quadratic observation model on the EnKF predic-

tion performances. But it also highlights the negative impact that using too many POD coefficients 

can have on the EnKF performances. In fact, looking at the standard KF results and considering the 

500 POD coefficients case, it is already possible to see, when “Optim P 5” set of sensors is used, 

that the EnKF performances are not really improved between the 500 and 1000 POD coefficients 

cases. 

At last R²POD Single for the first 500 POD modes predicted by the EnKF with linear dynamic 

model and “inverse” quadratic observation model (which corresponds to the best prediction ob-

tained with EnKF so far) are compared with those predicted by MTD-LSE-POD (best prediction 

obtained by SE methods) in Fig. VI.25. This figure shows that EnKF outperforms the MTD-LSE-

POD. In particular, for POD modes of ranks higher than 40, the MTD-LSE-POD prediction is very 

inaccurate (R²POD Single around 0 and negative) while the EnKF results are far better with an average 

R²POD Single about 30% up to POD mode 500. 

4.2.2.3. Quadratic dynamic and observation model 

From the previous observations made for the use of quadratic observation models, it is de-

cided to use only “inverse” quadratic observation models. As observed in the OAT15A URANS 

case, the “inverse” quadratic observation model allows a better stability of the EnKF with quadratic 

dynamic models. As such, no regularization is necessary for the dynamic model with 10 POD co-

efficients and lower Tikhonov regularization parameters are required to obtain the best results. 

Determination coefficients of the prediction of the entire velocity field are given in Table 

VI.11. Compared to R² values of the EnKF prediction using linear dynamic model and “inverse” 

quadratic model, R² is increased only in the 10 POD coefficients case. In the 52 POD coefficients 

case, the EnKF accuracy is similar to the one of the EnKF with linear dynamic model. For the 205 

POD coefficients case, the EnKF is deteriorated. That is perfectly consistent with the observations 

made when using EnKF with quadratic dynamic model and linear observation model. It was shown 

that only in the 10 POD coefficients case a QSE dynamic model more accurate than the LSE dy-

namic model was obtained. Therefore, in this situation the EnKF performs better with quadratic 

dynamic model than linear one whatever the observation model used. On the contrary, QSE dy-

namic models formed in the 52 and 205 POD coefficients case were less accurate than the LSE 

ones, even when using the best regularization parameter obtained by CV. Therefore, there is no 

reason why their use should improve the EnKF performances. That is what is observed. 

Type of estimation “Optim P 3” “Optim P 5” 

EnKF 

10 POD modes 65.2 68.4 

52 POD modes 61.6 70.1 

205 POD modes 50.9 61.8 

1000 POD modes - - 

Table VI.11: Determination coefficients for the prediction of the entire velocity field using EnKF 

with QSE dynamic and observation models 

4.2.2.4. Radial Basis Function dynamic model 

It was previously explained that quadratic dynamic model could not be formed using QSE 

and 1000 POD coefficients because it required the inversion of a too large matrix. In these circum-

stances, the use of RBF could allow to form a nonlinear model of the dynamic with so many coef-

ficients as system state. 
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a) 

 

b) 

Fig. VI.26: Determination coefficients of POD coefficients estimated by LSE and RBF network 

using 10 and 52 POD coefficients at the previous time step as measurements (validation set; a) 10 

POD coefficients, b) 52 POD coefficients) 

 

Fig. VI.27: Determination coefficients of POD 

coefficients estimated by LSE and RBF network 

using 1000 POD coefficients 

 

Fig. VI.28: Comparison of determination coeffi-

cients of POD coefficients estimated using 

standard Kalman filter and ensemble Kalm filter 

with RBF dynamic model (validation set; 1000 

POD coefficients; 3 pressure sensors) 

RBF dynamic models were formed in the 10, 52 POD and 1000 POD coefficient state cases. 

The same procedure as in the OAT15A URANS case is employed to create the RBF dynamic mod-

els. R²POD Single calculated for the estimation (by RBF and LSE dynamic models) of the system state 

POD coefficients on the validation set are plotted in Fig. VI.26 and Fig. VI.27. The figures clearly 

demonstrate that the RBF dynamic models are less accurate than the LSE ones. As demonstrated 

previously such dynamic models will not improve the EnKF performance when used instead of 

LSE dynamic models. The EnKF was nevertheless run using the RBF dynamic model with 1000 

POD coefficients and 3 pressure sensors. R²POD Single of the prediction of these POD coefficients are 

displayed in Fig. VI.28. The EnKF, with this RBF dynamic model, is less accurate than the standard 
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KF. That is confirmed by the value of R² computed for the estimation of the entire flow field which 

reaches 65.3% instead of 67.2% with the standard KF. 

4.3. Wall mounted cube 

Kalman filter is now applied to the estimation of POD coefficients of the wall mounted cube 

flow. The goal is now to verify if the previous observations still hold for an experimental case for 

which the dynamic is more complex. In addition, it was shown previously that LSE does not per-

form well in this test case. Therefore, it is interesting to assess how an improvement will the Kalman 

filter be compared to SE methods, but also to check if it is enough to generate dynamic and obser-

vation models using LSE and QSE in such a case. 

Only the data from the high speed PIV campaign are used since it is necessary to have time 

correlated information in order to form the dynamic model. For brevity, only the vertical plane, for 

the 10 and 30 m.s-1 cases, is studied. In both cases, 3 POD coefficients state are considered since it 

was shown that the first 3 POD coefficients are far better estimated than all the others (see Chapter 

III.4.2). Two other states are used for which the number of POD coefficients corresponds to 70 and 

90% of TKE (respectively 58 and 333 POD coefficients in the 10 m.s-1 case; 71 and 360 POD 

coefficients in the 30 m.s-1 case). At last a 1000 POD coefficients case is also investigated. The 

conditional events are the 23 wall pressure measurements. 

4.3.1. Standard Kalman filter 

 

Fig. VI.29: Determination coefficients of POD 

coefficients estimated by LSE using 3, 71, 360 

and 1000 POD coefficients at the previous 

time step as measurements (validation set, dy-

namic model) 

 

Fig. VI.30: Determination coefficients of the 

pressure data estimated by LSE using 3, 71, 

360 and 1000 POD coefficients as measure-

ments (validation set, observation model) 

 LSE dynamic models accuracy is once more evaluated through the calculation of R²POD Single 

for the prediction of the system state at time t+∆t by LSE using the system state at time t as meas-

urements. Values are plotted in Fig. VI.29. Contrary to OAT15A cases, only the first 6 POD modes 

are accurately predicted by the LSE dynamic model. In addition, no real improvement is observed 

on the prediction accuracy between the 71, 360 and 1000 POD modes cases. At last, from about 

POD mode 300, the LSE dynamic model is very inaccurate with values of R²POD Single going negative. 
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LSE observation models accuracy is shown in Fig. VI.30, where the R² of the prediction of 

the pressure sensors using the POD coefficients as measurements are plotted. The impact of in-

creasing the system state size is more important on the observation model performance than on the 

dynamic model one. Adding POD coefficients improves the estimation of the pressure data, how-

ever there seems to be a threshold as 360 POD coefficients and 1000 POD coefficients cases give 

very similar results. Also, all the observation models are far less accurate than those obtained in 

OAT15A cases. For all sensors R² is less than 50% and for most it is less than 30% whereas in the 

OAT15A ZDES case R² was always higher than 75%. In overall, both linear dynamic model and 

linear observation model are mildly accurate in the present test case. It is coherent with SE results 

shown in Chapter III.2. 

Type of estimation R² (%) 

Standard Kalman filter 

3 POD modes 15.3 

71 POD modes 20.2 

360 POD modes 20.6 

1000 POD modes 20.8 

LSE 13.4 

QSE 14.6 

MTD-LSE  22.4 

Table VI.12: Determination coefficients (in %) calculated with the entire velocity field as refer-

ence comparison between standard Kalman filter and SE (30 m.s-1 case) 

 

Fig. VI.31: Determination coefficient of POD coefficients estimated using standard Kalman fil-

ter with system state of 3, 71, 360 and 1000 POD coefficients (validation set). Results of the 

LSE-POD and of the best MTD-LSE-POD situation are shown for comparison. 

Standard KF results are summarized in Table VI.12 where values of R² computed for the 

prediction of the entire velocity field are reported. The results obtained with the standard KF are 

also better than the LSE and QSE ones, whatever the number of POD coefficients considered to 

form the system state. That agrees with observations made in the OAT15A cases. However, con-

trary to the results obtained in OAT15A test cases, standard KF results while close are not better 

than the MTD-LSE results. As in OAT15A cases, increasing the system state size improves the 

standard KF results. Nevertheless, differences are almost negligible between 71, 360 and 1000 POD 

coefficients cases. Looking at the prediction accuracy of each POD coefficient separately (see Fig. 

VI.31), it seems that increasing the number of POD coefficients has still a positive impact on the 
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prediction accuracy of the first 3 POD coefficients. Thus, the improvement observed on R² for the 

entire velocity field does not simply come from the fact that more POD modes are considered. 

Comparing these results with those of the MTD-LSE-POD, it is seen that MTD-LSE-POD actually 

outperforms the standard KF for all POD modes in this test case. 

Results obtained for the vertical plane at 10 m.s-1 are shown in Table VI.13 and are perfectly 

consistent with those obtained at 30 m.s-1. Observations concerning the LSE dynamic model and 

LSE observation model are also similar. Therefore, in the following only the 30 m.s-1 case will be 

presented. In addition, the 1000 POD coefficients case is disregarded. 

Type of estimation R² (%) 

Standard Kalman filter 

3 POD modes 19.3 

58 POD modes 23.5 

333 POD modes 25.2 

LSE 20.4 

QSE 23.3 

MTD-LSE  27.8 

Table VI.13: Determination coefficients (in %) calculated with the entire velocity field as refer-

ence comparison between standard Kalman filter and SE (10 m.s-1 case) 

4.3.2. Ensemble Kalman filter 

4.3.2.1. Quadratic dynamic model and linear observation model 

Tests using OAT15A URANS and ZDES database shown that, most of the time, the use of 

QSE dynamic model does not improve the KF prediction performances, especially when a large 

number of POD coefficients is used to form the system state. Indeed, due to overfitting, Tikhonov 

regularization becomes necessary and leads to a dynamic model that is eventually less accurate than 

the linear one obtained by LSE. Therefore, in the wall mounted cube case, except in the 3 POD 

coefficients case, no QSE model is more accurate than the LSE one and no improvement is ex-

pected. In addition, for the 360 POD modes case, no QSE dynamic model was generated due to 

Random Access Memory storage limitations. 

In the 3 POD coefficients case, the QSE dynamic model is slightly more accurate than the 

LSE one without requiring Tikhonov regularization. However, R²POD Single is increased by less than 

1% for each POD coefficients. Finally, this improvement does not lead to more accurate EnKF 

results compared to the standard KF (or to the EnKF using linear dynamic model for which R² is 

15%). On the contrary, a slight deterioration is observed in term of R² for the entire flow field (see 

Table VI.14). Using 71 POD coefficients, Tikhonov regularization is necessary to compensate the 

overfitting when generating the QSE dynamic model. The QSE dynamic model obtained is finally 

less accurate than the LSE dynamic model. The EnKF results using this QSE dynamic model are 

also less accurate than those of the standard KF (see Table VI.14). 

Type of estimation R² (%) 

EnKF 

3 POD modes 14.9 

71 POD modes 13 

360 POD modes - 

Table VI.14: Determination coefficients for the prediction of the entire velocity field using EnKF 

with quadratic dynamic models from QSE and linear observation model (vertical plane, 10 m.s-1) 
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4.3.2.2. Linear dynamic model and quadratic observation model 

In the OAT15A cases, the use of quadratic observation model, and especially “inverse” quad-

ratic observation model, showed, most of the time, clear improvements. In the wall mounted test 

case, “direct” quadratic observation models are employed only with 3 and 71 POD coefficients. In 

the present test case, results of using quadratic observation models are much more mitigated. The 

determination coefficient of the prediction of the velocity field by EnKF with linear dynamic model 

and quadratic observation model are given in Table VI.15. None of the tested situations result in a 

better prediction than the standard KF. On the contrary, the prediction accuracy is slightly deterio-

rated. That may come as a surprise in comparison with the results obtained in the OAT15A cases, 

but it simply comes from the fact that the “direct” quadratic observation models are actually not 

more accurate than the linear ones. Fig. VI.32 shows determination coefficients of the prediction of 

the 23 pressure sensors separately using LSE and QSE (with Tikhonov regularization, best regular-

ization parameter chosen by CV) and the 71 first POD coefficients as conditional events. This figure 

demonstrates that the “direct” QSE observation model does not yield any gain compared to the 

“direct” LSE observation model. 

Type of estimation “Direct” “Inverse” 

EnKF 

3 POD modes 15.2 14.8 

71 POD modes 19.6 18.8 

360 POD modes - 18.9 

Table VI.15: Determination coefficient (in %) of the prediction of the entire velocity field using 

EnKF with linear dynamic model and quadratic observation model 

 

Fig. VI.32: Determination coefficients of the pressure data estimated by LSE and QSE using 

71POD coefficients as measurements (validation set) 

For the “inverse” observation models, the deterioration can already be observed for an “in-

verse” linear observation model. And compared to the “inverse” linear observation model, the “in-

verse” quadratic observation model is an amelioration and lead to a more accurate EnKF. Indeed, 

R² of the EnKF using “inverse” linear observation model is about 17%. That is 3% less than if a 

“direct” LSE observation model is used and 2% less than when “inverse” QSE observation model 

is used. The fact that the “inverse” QSE observation model forms a better EnKF than the “inverse” 

LSE one is consistent with the fact that it is a more accurate observation model (which was observed 

in Chapter III.4.2 where QSE was shown to better perform than LSE). But it is unclear why the 
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“inverse” linear observation model deteriorates the EnKF results. Indeed, both “direct” and “in-

verse” models do not suffer from strong overfitting. They are nevertheless two different models, 

with different error covariance matrices and thus can lead to different results. In addition, deterio-

ration of the EnKF prediction accuracy when using “inverse” linear observation models was also 

observed in the OAT15A ZDES test case (see Table VI.10). 

4.3.2.3. Quadratic dynamic and observation model 

From the previous results using QSE dynamic model and QSE observation model separately, 

no amelioration of the EnKF accuracy should be expected by combining the two. That is quickly 

assessed using 71 POD coefficients. Using “direct” QSE observation model, a determination coef-

ficient for the prediction of the velocity of 20% is reached. This R² is of the same order of magnitude 

than the one obtained with “direct” QSE observation model and LSE dynamic model or by the 

standard KF, but not better. When using the “inverse” observation model R² goes down to 14.3% 

which represent an improvement compared to the use of a linear observation model with the “in-

verse” QSE observation model, but not compared to the use of the “direct” QSE observation model. 

The deterioration, compared to the “direct” QSE observation model is consistent with the observa-

tion made when using QSE observation model with LSE dynamic model previously. 

Those results obtained using QSE models show the limitations of generating quadratic dy-

namic or observation models by QSE. In these conditions, RBF model is once more investigated to 

see if it may provide a better alternative to form nonlinear dynamic models than SE. 

4.3.2.4. Radial Basis Function dynamic model  

 

Fig. VI.33: R²POD Single of POD coefficients es-

timated by LSE and RBF network using 3 and 

71 POD coefficients at the previous time step 

as measurements (validation set) 

 

Fig. VI.34: R²POD Single of POD coefficients es-

timated by LSE and RBF network using 360 

POD coefficients at the previous time step as 

measurements (validation set) 

RBF dynamic models are generated for the 3, 71 and 360 POD coefficients cases. 18420 time 

samples from the training are used as centers for the RBF and its prediction accuracy is evaluated 

on the remaining 6140 samples of the validation set. The results are displayed in Fig. VI.33 and 

Fig. VI.34. In all situations, RBF models lead to less accurate prediction for all POD modes com-

pared with LSE models. Especially, in the case where only 3 POD coefficients are considered, the 

deterioration is particularly strong. For the other two cases, the deterioration is smaller, and the RBF 

model results are close to the LSE model ones, but seem to be more deteriorated for high rank POD 

modes. As demonstrated earlier, such dynamic RBF models will not bring any improvement if use 
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with the EnKF instead of the LSE dynamic models. They are not a correct alternative to the QSE 

dynamic models. One thing that could be done to improve the RBF models and was not experi-

mented, is to choose different shape parameters for all the RBF in the sum for one POD coefficient 

(see Chapter VI.3.5.1). Using other functions than Gaussian one is also another possibility. 

5. Chapter summary 

The use of Kalman filter (KF) has been investigated using the OAT15A URANS and ZDES 

databases, as well as the wall mounted cube high speed PIV database, as test cases. First, the crea-

tion of the dynamic and observation models necessary for the KF was discussed. For dynamic 

model, a popular possibility is to use POD Galerkin projection of the Navier-Stokes equations. It is 

then possible to show that the time-derivative of one POD coefficient is the sum of three terms: a 

linear function of the other POD coefficients corresponding to the dissipation, a quadratic functions 

of the other POD coefficients corresponding to the convection and a constant term from the pressure 

contribution. Therefore, when generating a dynamic model for the POD coefficients, one is looking 

at a quadratic function on the POD coefficients. Computing directly the POD Galerkin model can 

be challenging. Most of the time, using experimental data, the pressure term cannot be directly 

evaluated and the resulting model needs a careful tuning. Therefore, alternative methods were in-

vestigated: the LSE, the QSE, the RBF network and 4D-variational data assimilation. The same 

methods were also employed to generate observation models. 

In the OAT15A URANS and ZDES test case, the standard KF using LSE dynamic and ob-

servation models was shown to outperform the LSE, and even the QSE and MTD-LSE when enough 

POD coefficients were taken into account in the system state. For these test cases, LSE dynamic 

and observation models were shown to be highly accurate and taking into account more POD coef-

ficients in the system state improves the prediction. Extended KF (EKF) was also studied and its 

results were not better than those of the standard KF. EKF proved to be difficult to converge and 

required a careful tuning of the QSE dynamic model. The QSE dynamic model had to be generated 

using Tikhonov regularization with too high regularization parameters resulting in a dynamic model 

that was not particularly more accurate than the LSE one. Data assimilation was explored to form 

a quadratic dynamic model from the LSE one. The EKF results using this model were similar the 

standard KF.  

The Ensemble KF (EnKF) was thus used as an alternative to the EKF in order to use quadratic 

dynamic and observation models. Using QSE dynamic model with LSE observation model, it was 

possible to improve the prediction accuracy of the EnKF compared to the standard KF, but not in 

all cases. When too many POD coefficients were taken into account in the system state, the QSE 

dynamic model became strongly overfitted and lead to a deterioration of the prediction compared 

to LSE model. The difficulty to obtain a good QSE dynamic model was especially demonstrated in 

the OAT15A ZDES case. In this case, performance amelioration was obtained only when 10 POD 

coefficients were taken into account.  

The use of QSE observation model was shown to hold some strong improvements but mostly 

if an “inverse” observation model was used. Using QSE observation models appeared to be a better 

way to improve the KF performances in the OAT15A test cases than using QSE dynamic model. 

At last, the use of both QSE dynamic and “inverse” observation models held some improvements 

if the QSE dynamic model was not strongly overfitted. In the OAT15A URANS test case, the best 

prediction was obtained with QSE dynamic model and QSE “inverse” observation model using 50 

POD coefficients. In the OAT15A ZDES case, the best prediction was made using LSE dynamic 

model and QSE “inverse” observation model with 500 POD coefficients in this case. R² of the entire 

velocity field was increased by 10% compared to the best MTD-LSE. The use of RBF network to 
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form nonlinear dynamic model was also investigated. In both URANS and ZDES case, RBF net-

work formed less accurate dynamic model than LSE. The EnKF results using the RBF models were 

not better than those obtained with LSE. 

Test of the KF on the OAT15A URANS and ZDES cases showed that its accuracy was higher 

than LSE and QSE most of the time, and that EnKF with QSE observation model could also out-

perform the MTD-LSE. Both standard KF and EnKF were thus applied to the wall mounted cube 

high speed PIV database. 

The results obtained in this last application are less encouraging than those obtained with the 

OAT15A cases. The standard KF was still more accurate than the LSE and QSE when enough POD 

modes formed the system state. But it was not more accurate than the MTD-LSE. With the EnKF, 

the use of QSE dynamic model lead to lower performances of the filter and it was not possible to 

generate by QSE a more accurate dynamic model than by LSE (except when 3 POD coefficients 

were taken into account). The same problem occurred with QSE observation models and no ame-

lioration were obtained using QSE “direct” or “inverse” observation models. RBF dynamic models 

were also shown to remain less accurate than LSE ones. In the wall mounted test case, the best KF 

results were thus obtained by the standard KF with LSE dynamic and observation models and these 

results were less accurate than those of the MTD-LSE. Also the best dynamic models were obtained 

by LSE but they actually form poorly accurate models. In the wall mounted cube test case, the flow 

dynamic is clearly 3D (which was not the case in the OAT15A case) therefore it is likely that by 

considering only one plane the dynamic could not be captured.
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 Conclusions and perspectives 

This work lies in the context of real-time flow monitoring. In particular, the main objective 

of this study was to investigate methods for the reconstruction and especially the prediction of tur-

bulent flows from a limited number of sensors. 

The literature review, focused on the Stochastic Estimation (SE), shwoed that the SE is a 

simple and very general method that leaves the user with a great degree of freedom concerning the 

data to estimate and the sensors used to make the estimation. The past applications of SE demon-

strated that it was a promising method to predict turbulent flow states. However, few studies were 

found to be devoted to the quantification of the SE accuracy to provide real-time prediction of 

turbulent flows. In addition, the few that were mainly concerned low Reynolds turbulent flows, in 

which most of the Turbulent Kinetic Energy could be retained by a few POD modes. It was therefore 

decided to first study the applications of SE on increasingly complex flows and then to better char-

acterize the methods in relation to the turbulent content of the flow. 

The theoretical background was described in Chapter II. In particular, the error criteria by 

which the estimation methods would be compared were detailed. Special attention was also given 

to the convergence of the statistical moments necessary to the training of the SE. 

In Chapter III, SE and most of its extensions (Linear Stochastic Estimation LSE, Quadratic 

SE QSE, Multi-Time-Delay Stochastic Estimation MTD-SE, SE combined with Proper-Orthogo-

nal-Decomposition POD) were applied to four flow configurations. Their performances were eval-

uated and compared. The LSE was shown to hold very accurate prediction (estimation of data out-

side the training set) of the simulated wake flow of a blunt trailing edge, as expected from the 

literature review. The accuracy of the LSE was lower when applied to the prediction of the flow 

around an OAT15A airfoil simulated by ZDES. In particular, it was observed that the SE methods 

badly predicted the vortex shedding developing in the wake of the airfoil. The shock oscillation 

was, nevertheless, well captured. The LSE predictions for the Backward Facing Step (BFS) and 

wall-mounted cube experimental test cases where, on the contrary, poorly accurate. 

LSE and QSE was compared and it was demonstrated that QSE did not systematically hold a 

more accurate prediction (estimation outside the training set). This was due to the overfitting that 

QSE is more likely to suffer than LSE and the use of Tikhonov regularization led only to slight 

improvements of the prediction quality. 

For all test cases, the MTD-LSE was found to be the most accurate method. However, these 

good results were only obtained using Tikhonov regularization. In the four test cases, it was also 

showed that delays had to be chosen inside an optimal time window. Adding delays from outside 

this window actually deteriorated the prediction accuracy. Nevertheless, for the BFS and, to a lesser 

extend, for the cube, the MTD-LSE accuracy remained poor. 

At last, the use of LSE-POD and QSE-POD did not particularly improve the reconstruction 

nor the prediction accuracy. But, it was possible to reduce the overfitting that the QSE suffered 

from by not considering the highest order POD modes. The main interest in using LSE-POD, is that 

the estimation problem can be reduced to the estimation of a smaller number of POD coefficients 

than the number of spatial points in the field to estimate. 

Following the poorly accurate results obtained in the BFS and in the wall mounted cube cases, 

it was decided to better characterized the SE methods (Chapter IV). 
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First, the impact of Gaussian noise on the data (conditional events and/or data to estimate) 

was investigated. It was demonstrated that the Gaussian noise contained in the data to estimate was 

filtered out. Therefore, if noisy data are used to calculate the error, the performance of the SE meth-

ods are underestimated. But the main results of this investigation was the emphasis of the strong 

impact of the noise contained in the conditional events. Such noise directly penalizes the estimation 

accuracy. Another important result is the demonstration that SE can present a strong overfitting if 

trained with clean data and used with noisy data. 

Then, the impact of the turbulence on the SE method performances is investigated by com-

paring estimations of the flow around the OAT15A airfoil in transonic conditions, obtained using 

URANS (turbulence modelized) and ZDES (turbulence partially resolved) simulations. The veloc-

ity fields simulated by URANS were predicted with a higher accuracy than the one from the ZDES 

simulation. The study of the spectral content of the flow highlighted that the low frequency content 

was better estimated than the high frequency one. These observations were confirmed by studying 

the impact of temporally filtering the conditional events and/or the data to estimate in the BFS test 

case. 

In addition, it was observed that the resolution of part of the turbulence in the ZDES simula-

tion led to a shortening of the turbulent spatial integral length scales in the wake. Turbulent spatial 

integral length scale maps were compared with maps of the normalized mean square error. This 

comparison showed a clear relation between the high error areas of the field and the areas of shortest 

integral length scales. That indicated that the short integral length scales were estimated with less 

accuracy than the long ones. 

From these observations, the estimation of the turbulent spatial integral length scales by LSE 

was investigated more precisely on the BFS case (U0 = 30 m.s-1). The LSE was shown to not con-

serve the turbulent spatial length scales and to filter the shortest length scales. The study of the POD 

modes estimation confirmed this conclusion. By associating a characteristic length scale to each 

POD mode, it was observed that the POD modes estimated with the highest accuracy were also 

those associated to the longest characteristic lengths. The study of the spatial filtering of the velocity 

fields was also carried out and confirmed these results. 

Using the data from the wall-mounted cube experiments, the impact of the Reynolds number 

(Re) on the estimation quality of the same flow geometry was studied. This investigation showed 

that the estimation became more accurate when the Reynolds number was decreased. Looking at 

the estimation of POD modes, it was observed that the accuracy of their estimations is improved 

with decreasing Reynolds number. In addition, the number of POD modes required to retain the 

same level of TKE decreases with the Reynolds number, and more and more energy was contained 

in the large structures. The POD modes that are the best estimated represents then a larger and larger 

part of the flow energy content when the Reynolds number decreases which improves the overall 

estimation accuracy.  

Also the possibility to use a SE model to estimate flows for which it had not been trained was 

investigated. The results highlighted that, to some extent, training the LSE with normalized data 

allowed to predict flow at different velocity upstream conditions without a strong deterioration of 

the accuracy. This preliminary study thus demonstrated the possibility to use LSE for a range of 

upstream conditions of a same flow geometry. 

At last, in the wall-mounted cube experiments, it was demonstrated that the LSE accurately 

predict phase-averaged fields, even if the prediction of instantaneous velocity fields was inaccurate. 

An extension of the LSE, called “phased”-LSE, in which several sets of LSE coefficients trained 

for different phases of the flow are used was presented. The predictions obtained were more accu-

rate than the LSE and QSE ones, but not than MTD-LSE ones. The study could not however be 

performed with many phase segments due to convergence issues. A perspective could be to try the 
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method with richer databases to better examine the possible improvements on the accuracy that it 

offers. 

The impact of the conditional event locations on the estimation accuracy was also observed 

in several test cases. In particular, the study of the turbulent integral length scales using POD shown 

that a POD mode was better estimated when conditional events were located close to its spatial 

extrema. It was therefore decided to investigate the opportunity to optimize the sensor location 

algorithm, in order to improve the accuracy of the estimation obtained by SE methods, in Chapter 

V. 

To optimize these locations, an algorithm first proposed by Muradore et al. was examined. 

The optimized locations, for the estimation of one POD mode, were found to be close to its extrema, 

which was consistent with observations in the literature and from the previous chapter. This obser-

vation explains for a part the difficulty to predict velocity field using only wall measurements and 

SE methods. The ability of the algorithm to find locations that lead to higher reconstruction and 

prediction accuracy, using LSE, was verified and confirmed using the OAT15A airfoil and BFS 

databases. However, with QSE, some optimized sets of sensors performed with less accuracy than 

intuitively chosen ones. Nevertheless, the algorithm represents a convenient tool to determine the 

number and the locations of sensors necessary to achieve a chosen level of accuracy on one or 

several POD modes. 

Since MTD-LSE was demonstrated to improve the estimation accuracy, an extension of the 

sensor location optimization algorithm was proposed to choose both locations and delays. This ex-

tended algorithm was first applied to the choice of delays from a limited number of sensor locations 

chosen a priori. The results highlighted the possibility to improve the prediction accuracy using a 

small number of delays. In particular, it was possible to reach same levels (but not higher) of deter-

mination coefficient than in the best MTD-LSE results, using constant time step delays, with less 

delays (and Tikhonov regularization). 

The possibility to decrease the number of conditional events necessary to reach a chosen level 

of accuracy on the estimation by using both synchronized and delayed information was also exam-

ined. Taking into account delayed information was particularly useful when the space of possible 

locations was restrained. At last, a flow chart for the utilization of (MTD)-LSE-POD was then pro-

posed. 

From the characterization of the SE, it appeared that even using sensors in flow with opti-

mized locations, the prediction accuracy will remain low in the BFS case and in the wall mounted 

cube case. SE methods were therefore compared with the Kalman filter. 

After a short literature review and reminder of the mathematical background, the use of the 

Kalman filter was investigated using the OAT15A URANS and ZDES databases, as well as the 

wall mounted cube high speed PIV database (Chapter VI). From the literature overview, it was 

decided to use POD coefficients to form the system state. To avoid the direct computation of the 

coefficients of the POD ROM from POD Galerkin projection of the Navier-Stokes equations, mod-

els generated by LSE, QSE (potentially corrected by 4D-Var) and Radial Basis Function (RBF) 

networks were employed.  

In the OAT15A URANS and ZDES cases, the standard KF using LSE dynamic and observa-

tion model was shown to outperform the LSE. When enough POD coefficients were taken into 

account in the system state, even the QSE and MTD-LSE were outperformed. In such situations, 

the dynamic and observation models were highly accurate and taking into account more POD co-

efficients improved the prediction accuracy. Extended KF (EKF) was also applied, but it proved to 

be difficult to converge and required a careful tuning of the dynamic model obtained by QSE. The 

Ensemble KF (EnKF) was then used as a more robust alternative in which quadratic dynamic model 
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could be employed, as well as quadratic observation models. If it was possible to get higher accu-

racy with the EnKF (and QSE dynamic model) than with standard KF in some situations, when too 

many POD coefficients were taken into account, the QSE dynamic model became overfitted and 

deteriorated the prediction accuracy, even using Tikhonov regularization. The use of QSE observa-

tion model hold strong improvements but mostly when the “inverse” observation model was uti-

lized. Using QSE observation models appeared to be a better way to improve the KF performances, 

in the OAT15A cases, than using QSE dynamic models. Eventually, the best results in the OAT15A 

URANS case were obtained by the EnKF with a QSE dynamic model and a QSE “inverse” obser-

vation model. But for the OAT15A ZDES case, the best results were from the EnKF with LSE 

dynamic model and QSE “inverse” observation model. In this second case, R² was increased by 

10% compared to the best MTD-LSE results. For both OAT15A URANS and ZDES simulations, 

RBF network formed less accurate dynamic model and did not lead to more accurate EnKF than 

LSE or QSE models. 

The results of the applications of KF on the wall-mounted cube high speed PIV database 

(U0 = 30 m.s-1) are somehow less encouraging than the results from the OAT15A test cases. Stand-

ard KF was still found more accurate than LSE and QSE, but not than MTD-LSE. Using EnKF, no 

QSE dynamic or observation models lead to an accuracy improvement compared to the standard 

KF. The study showed the importance of the dynamic and observation models quality. The poor 

performances of the EnKF (and standard KF) are thus related to the use of LSE and QSE to form 

the models. In this last test case, LSE and QSE seemed inappropriate to generate these models. In 

addition, it may be due to the fact that only one plane was considered, which is probably not enough 

to capture the dynamic of the flow that is three dimensional. 

In overall, this study has particularly highlighted the limitations of SE to predict with high 

fidelity the velocity content of highly turbulent flows. The smallest turbulent spatial integral length 

scales cannot be predicted with a limited number of sensors. When the ranges of turbulent scales 

and of frequencies increase, SE methods seem to become less accurate. As Durgesh et al. stated: 

“the multi-time-delay LSE approach should successfully capture the dynamics in any turbulent flow 

that has significant energy in a few POD modes”. The results presented in this work demonstrates 

that the MTD-LSE does not capture the dynamics of turbulent flows that require a large number of 

POD modes to capture a significant amount of energy. Nevertheless, SE methods may be enough 

for some flow control applications, even for highly turbulent flows. As proposed in the flow chart 

in Chapter V.3, if the control requires only the real-time prediction of a few identified POD modes, 

then SE may be enough to obtain such prediction with a sufficient accuracy using optimized sensor 

positions. Others flow decomposition methods could also be considered without modifiying the 

flow chart. 

In the case where such conditions could not be reached, other techniques should be preferred. 

In particular, methods exploiting the dynamic and physic knowledge of the flow can be of great 

interest. For instance, methods based on model of the flow. A downside of this kind of methods is 

that they are highly dependant of the applications and that deriving the model can be tricky and 

expensive. But such methods can clearly have better prediction performances than SE ones. This 

was demonstrated using the Kalman filter with very simple models. One can fairly expect the Kal-

man filter to perform much better with more complex models of the system. It would be interesting 

to try the Kalman filter using dynamic or observation models obtained through other means than 

linear regression. Other decomposition methods such as the DMD should also be tested. 

From a general point of view, the problem faced in this work is exactly similar to the one in 

machine learning. We dispose of databases describing the flow we would like to predict (y) and the 

information that we have to make the prediction (x), and we are therefore looking for a model f that 

best predict y from x outside these databases. Many techniques have been developed in machine 

learning to find f under some hypothesis set chosen by the user. Radial Basis Function network is 
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one of them. Even if the results obtained in this work were not especially good, only one kind of 

RBF was tested and it is also possible to further specialize the shape parameters. It would be inter-

esting to combine the physical knowledge of the flow (which will provide the hypothesis set) and 

machine learning techniques. In some sense, it is already done in this work, but only for what is 

probably the simplest machine learning method: the multivariate linear least square regression that 

we call Linear Stochastic Estimation. 

As stated by Brunton et al. [102], machine learning has recently started to be used in turbu-

lence and shown promising results. Lately, Nguyen [139] investigated the use of dictionary learning 

and Bayesian fusion for the estimation of small scales in turbulence. Bayesian fusion model were 

shown to be more accurate than LSE to enrich a database combining High-Time-Low-Space re-

solved and Low-Time-High-Space resolved data. However, in our case, only High-Time-Low-

Space information is available and the method cannot be applied. The results obtained with diction-

ary learning were promising, but the method had to be careful handled to achieve those results. It is 

clear that pursuing the study of the applications of machine learning methods in the turbulence field 

is an important perspective of the present work. 
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Giezeke et al. (1994) [8]  
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Numerical LSE, QSE Velocity Pressure Flow reconstruction 

Olsen et al. (2002) [30] 
Plane shear layer (Velocity ra-

tio: 0.575) 
Experimental LSE Velocity 

Deformation ten-

sor 

Structures identification / 

Flow dynamics study 

Murray et al. (2003) 

[35] 

Cavity flow (M = 1.5, length-to-

depth ratio: 6) 
Numerical LSE, QSE Velocity Pressure Flow reconstruction 

Borée et al. (2003) [51] - - EPOD   
Theoretical demonstration of 

EPOD  
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Druault et al. (2004) 

[69] 
Spark ignition engine flow Experimental LSE Velocity Velocity 

Correction of PIV measure-
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Perret (2004) [48] 
Plane shear layer (Velocity ra-

tio: 0.67) 
Experimental 

Complementary 

technique 
Velocity Velocity 

Generation of inlet condi-

tions for LES 

Murray et al. (2004) 

[37] 

Cavity flow (M = 0.2, length-to-

depth ratio: 5.16 and 1.49) 
Experimental QSE, POD Velocity Pressure 

Structures identification / 

Flow dynamics study 

Taylor et al. (2004) [12] 
Backward facing ramp with ad-

justable flap (Reh = 2104) 
Experimental LSE-POD Velocity Pressure Flow control 

Rowley et al. (2005) 

[21] 

2D cavity flow (M = 0.6, length-

to-depth ratio: 2) 
Numerical 

LSE 

Dynamic ob-

server 

Velocity Pressure 
Flow control / Flow recon-

struction 

Ukeiley et al. (2005) 

[38] 

Cavity flow (M = 0.2, length-to-

depth ratio: 5.16 and 1.49) 
Experimental QSE Velocity Pressure 

Structures identification / 

Flow dynamics study 

Coiffet (2006) [54] 
Subsonic and supersonic axisym-

metric jet (M = 0.3 and 1.4) 
Experimental 

Spectral LSE, 

POD 
Velocity Pressure 

Structures identification / 

Flow physics study 

Hoarau et al. (2006) 

[52] 

Forward facing ramp 

(Reh = 1105) 
Experimental EPOD Velocity Pressure 

Structures identification / 

Flow dynamics study 

Spitler et al. (2006) [49] Wind turbine inflow field Numerical LSE Velocity Velocity Flow reconstruction 

Debiasi et al. (2006) 

[60] 

Cavity flow (M = 0.3, length-to-

depth ratio: 4) 
Experimental 

(MTD)-LSE-

POD, (MTD)-

QSE-POD, 

POD-ROM 

Velocity Pressure 
Flow control / Flow recon-

struction 

Gutmark et al. (2006) 

[32] 
Swirling jet Experimental LSE Velocity Pressure 

Structures identification / 

Flow dynamics study 

Hall et al. (2006) [55] 3D wall jet (Reh = 8.96104) Experimental 
LSE and Spectral 

LSE  
Velocity 

Pressure (with 

POD) 

Structures identification / 

Flow dynamics study 

Tinney et al. (2006) 

[18] 

Axisymmetric jet shear layer 

(Red = 4105 - 8105) 
Experimental Spectral LSE Velocity Pressure 

Structures identification / 

Flow dynamics study 

Murray et al. (2007) 

[36] 

Cavity flow (M = 0.19, 0.29, 

0.39, 0.58, 0.73, length-to-depth 

ratio: 6) 

Experimental QSE-POD 
Velocity, den-

sity gradient 
Pressure Flow reconstruction 
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Hudy et al. (2007) [13] 
Backward facing step 

(Reh = 8081) 
Experimental LSE, QSE Velocity 

Pressure (with 

POD) 

Structures identification / 

Flow dynamics study 

Arunajatesan et al. 

(2007) [40] 

Cavity flow (M = 2, length-to-

depth ratio: 5) 
Numerical 

LSE-POD, QSE-

POD 
Velocity Pressure 

Structures identification / 

Flow dynamics study 

Pinier et al. (2007) [61] NACA-4412 (Rec = 1.35105) Experimental 
LSE-POD, QSE-

POD 
Velocity Pressure 

Flow control / Flow recon-

struction 

Stalnov et al. (2007) 

[62] 

D-shaped cylinder wake 

(Reh = 225) 
Experimental LSE-POD Velocity Pressure 

Flow control / Flow recon-

struction 

Ukeiley et al. (2008) 

[58] 

Cavity flow (M = 0.6, length-to-

depth ratio: 6) 
Experimental 

QSE-POD 

MTD-LSE 

Auto-Regressive 

Moving Average 

filter 

Velocity Pressure 
Flow control / Flow recon-

struction 

Tinney et al. (2008) 

[50] 

Axisymmetric jet (M = 0.85, 

d = 50.8mm) 
Experimental LSE-POD Velocity 

Pressure (with 

POD) 

Structures identification / 

Flow dynamics study 

Kastner et al. (2009) 

[41] 

Axisymmetric nozzle jet and 

chevron nozzle jet 
Experimental LSE, QSE Velocity Pressure 

Structures identification / 

Flow dynamics study 

Ruiz et al. (2010) [59] 

Wake of a disk located near a 

flat wall (Red = 1.3105 based on 

disk diameter) 

Experimental 
LSE and ST-

POD 
Velocity Pressure 

Structures identification / 

Flow dynamics study 

Nguyen et al. (2010) 

[22] 

Backward facing step 

(Reh = 8081) 
Experimental 

LSE-POD, PCR-

POD, KRR-POD 

and their MTD 

version 

Velocity Wall shear Flow reconstruction 

Baars et al. (2010) [140] Axisymmetric jet Numerical 
POD based 

Spectral HOSE 
Pressure Pressure Structures identification 

Hall et al. (2010) [56] 
3D wall jet (Reh = 8.96104 

based on jet channel) 
Experimental Spectral LSE Velocity Pressure 

Structures identification / 

Flow dynamics study 

Durgesh et al. (2010) 

[20] 

Wake downstream a bluff body 

(Reh = 2104) 
Experimental MTD-LSE-POD Velocity Pressure Flow reconstruction 

Druault et al. (2010) 

[33] 

Plane shear layer (Velocity ra-

tio: 0.5) 
Numerical QSE and POD Pressure Velocity 

Structures identification / 

Flow dynamics study 
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Sinha et al. (2011) [19] 
Axisymmetric jet 

(Red = 3.6104) 
Numerical 

LSE-POD, QSE-

POD, KF, EKF, 

LTIF 

Velocity Pressure 
Flow control / Flow recon-

struction 

Garcia-Sagrado et al. 

(2011) [91] 

Wake downstream a NACA0012 

profile (Rec = 2105) 
Experimental 

LSE and spectral 

LSE 
Velocity Pressure 

Structures identification / 

Flow dynamics study 

Kastner et al. (2011) 

[141] 

Coaxial nozzle (Center flow: 

M = 0.96, Stagnation tempera-

ture = 377°K; 

Coaxial flow: M = 0.5, Stagna-

tion temperature = 300°K) 

Experimental LSE Velocity Velocity 
Structures identification / 

Flow dynamics study 

Tu et al. (2012) [65] 
Wake downstream a bluff body 

(Reh = 3.6103) 
Experimental 

MTD-LSE-POD, 

Kalman 

smoother, KF 

Velocity Velocity Flow reconstruction 

Lasagna et al. (2013) 

[64] 

Cavity flow (with curvilinear ge-

ometry) (length-to-depth ratio: 

6.6) 

Experimental 
LSE, QSE, 

MTD-LSE 
Velocity Pressure Flow reconstruction 

Carabello et al. (2014) 

[92] 

Flow field over a NACA0015 

(Rec = 1.15106) 
Experimental MTD-LSE-POD Velocity 

Pressure/Veloc-

ity 

Structures identification / 

Flow dynamics study 

Lasagna et al. (2014) 

[67] 

- Cavity flow (with curvilinear 

geometry) (U = 5.8 m.s-1, length-

to-depth ratio: 6.6) 

- Turbulent channel flow 

(Re = 180) 

Experimental 

MTD-LSE 

Nonlinear MTD-

SE 

Velocity 
- Pressure 

- Shear stress 
Flow reconstruction 

Wilkins et al. (2014) 

[142] 

Leading edge slat flow 

(Rec = 6105) 
Experimental LSE, LSE-POD Velocity Pressure 

Structures identification / 

Flow dynamics study 

Clark et al. (2014) [23] 
Wake downstream a bluff body 

(Reh = 1.6104) 
Experimental MTD-LSE-POD Velocity Pressure Flow reconstruction 

Baars et al. (2014) [57] Axisymmetric jet Numerical 
POD based 

Spectral HOSE 
Pressure Pressure Structures identification 

Hosseini et al. (2015) 

[66] 
Wake downstream a pyramid Experimental 

MTD-EPOD 

with antisym-
Velocity Pressure Flow reconstruction 
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metric, symmet-

ric flow decom-

position 

Lasagna et al. (2015) 

[68] 

- Cavity flow (with curvilinear 

geometry) (U = 5.8 m.s-1, length-

to-depth ratio: 6.6) 

- Turbulent channel flow 

(Re = 180) 

Experimental 

MTD-LSE 

Non linear 

MTD-SE 

Velocity 
- Pressure 

- Shear stress 
Flow reconstruction 

Table A.1: Summary of Stochastic Estimation studies
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B. Tikhonov regularization 

As explained in Chapter II, finding the coefficients of the SE (linear, quadratic or multi-time-

delayed) is equivalent to solving an overdetermined system of the form: 

EA = U (VI.20) 

where E is the matrix of conditional events (or combination of conditional events for Higher-Order 

SE), A is the matrix of coefficients of the method and U is the matrix of data to estimate. This 

system is solved using Ordinary Least Square regression and the solution is: A = (EET)−1ETU. This 

solution is the one that minimizes the loss function f defined by the L2-norm of the residual EA − U: 

𝑓(A, U) = ‖EA − U‖2 (B.1) 

However, this system is ill-posed and the matrix E can be very ill-conditioned. In such situa-

tion, it may be better to compute an approximate solution using a nearby system that is less sensitive 

to perturbations than the initial one. To do so, the loss function is penalized. Using the Tikhonov 

regularization [72], the loss function is penalized using the L2-norm and becomes: 

𝑓(𝐴,𝑈) = ‖EA − U‖2 + ‖LA‖2 (B.2) 

Then the coefficients A(x) are solution of the following regularized system: 

(MTM+ LTL)A(𝒙) = MTU(𝒙) (B.3) 

where L is called the Tikhonov matrix. Most often, L is taken such as being proportional to the 

identity matrix: L = αI. Such matrix is used in this work. And the regularization parameter α is 

determined by cross-validation. 

In comparison with the OLS where A satisfies the minimization problem 

min
A(𝒙)∈𝐑𝑁.𝑁𝑑

(‖EA(𝒙) − U(𝒙)‖2), using the Tikhonov regularization A satisfies the minimization 

problem: min
A(𝒙)∈𝐑𝑁.𝑁𝑑

(‖EA − U‖2 +∝2 ‖U(𝒙)‖2). 

In our case, only one regularization parameter is used for the complete system formed with 

A the matrix containing all the columns A(x) for all x of the field to reconstruct and U all the 

columns U(x). When SE-POD is used, only one regularization parameter is also used for all the 

POD coefficients estimated. 

C. About POD basis convergence 

The convergence of the POD basis from the low speed PIV database of the flow downstream 

of the backward facing step is investigated using a methodology inspired by Hekmati et al. work 

[143]. First, the influence of the spatial discretization is assessed by comparing the POD modes 

obtained with the original PIV snapshots with the POD modes obtained with spatially downsampled 

PIV snapshots. The snapshots of the training set are spatially deteriorated so that only one every 

two mesh points in both streamwise and vertical direction is kept. Then, a new POD basis is com-

puted using those PIV snapshots (and referred to as the “modified” basis). To compare the POD 

modes of two bases, the following correlation coefficient is used: 
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𝐶𝑖 =
(𝑖,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝒙),𝑖,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑(𝒙))

Ω

√(𝑖,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝒙),𝑖,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝒙))
Ω
(𝑖,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑(𝒙),𝑖,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑(𝒙))

Ω

 (C.1) 

where i is the rank of the POD mode considered and (. , . )Ω the dot product on the spatial domain 

Ω. The correlation coefficients of the first 400 POD modes are plotted in Fig. C.1. Up to POD mode 

70, correlation coefficients higher than 0.8 are obtained. For some of the 70 first POD modes, the 

correlation coefficient drops abruptly. When such drop occurs, it actually concerns two consecutive 

POD modes. Those drops are in fact due to a misclassification of the POD mode rank. For instance, 

POD modes 32 and 33 have correlation coefficients lower than 0.4. But, if the correlation coefficient 

is computed between the POD mode 32 of the reference basis and the POD mode 33 of the modified 

basis, then the correlation coefficient goes up to 0.92. At last, the TKE content of these two modes 

are 0.442% and 0.441% for both bases which is very close. In our opinion, these inversions are not 

the symptom of a bad convergence of these modes POD which spatial content is very similar in 

both bases. In overall, from Fig. C.1, it appears that the spatial discretization is good enough to 

consider the first 70 POD modes as converged.  

 

Fig. C.1: Correlation coefficients between 

POD modes obtained using the original PIV 

snapshots and the ones obtained using spa-

tially downsampled PIV snapshots 

 

Fig. C.2: Correlation coefficients between 

POD modes obtained using the all original 

PIV snapshots and the ones obtained using 

only the training set PIV snapshots 

A similar study is performed to assess the impact of the number of snapshots used to compute 

the POD basis. The reference basis is this time the one formed using all the PIV snapshots available 

(10 200 snapshots). This basis is compared with the POD basis obtained using only the training set 

data (6 794 snapshots). Results are shown in Fig. C.2. Once more, up to POD mode 80, it is possible 

to re-associate the POD modes for which Ci has dropped and obtain correlation coefficient higher 

than 0.85. The number of PIV snapshots contained in the training set is enough to consider at least 

the first 80 POD modes as converged. From these convergence studies, we are confident that the 

first 70 POD modes obtained from the training data set hold meaningful information on the flow 

physics and can be considered as converged. 

Fig. C.3 shows the energy spectrum of the POD decomposition for the first six hundred 

modes, containing approximately 89% of the TKE. In addition, energy spectra of the two modified 

POD bases used to study the convergence of the POD are also plotted. The three spectra match well 

for these POD modes (it is also true up to the 2000th POD modes, at this point the spectrum of the 



276  Annexes  

 

POD basis obtained from the downsampled PIV snapshots diverge from the other two spectra). 

Therefore, even if the spatial content of POD modes of rank higher than 70 is not converged, their 

energy content is converged. A POD basis better converged will have the same spectrum. The first 

20 POD modes account for 50% of the TKE but, to retain 90% of the TKE, the first 650 POD modes 

have to be considered, and that is not the results of insufficient convergence of the basis. In these 

conditions, the flow does not appear to be dominated by highly energetic, large and coherent struc-

tures that can be described in a small number of POD modes and easily correlated with a limited 

number of conditional events. 

Also, the inaccuracy of the prediction of high order POD modes (higher than rank 70), and 

thus their low correlations to the sensors, do not seem to be particularly related to the fact that they 

are not converged. The prediction of the POD modes of a POD basis calculated using only 3397 

PIV snapshots was compared with the prediction of the POD modes of the training data set POD 

basis. When using only 3397 PIV snapshots, only the first 30 POD modes can be considered as 

converged. Nevertheless, similar determination coefficients are obtained between the two predic-

tions even for POD modes of rank much higher than 30. In particular, the trends are not modified. 

To illustrate this phenomenon, R²POD Single of the two predictions using the grid of 462 velocity 

sensors are shown in Fig. C.4. Up to the 20th POD modes, values obtained in both situations almost 

perfectly match each other. For POD modes of higher ranks, some discrepancies can be observed 

but the general trends and order of magnitude remain the same. 

Therefore, from this study, it seems that results and conclusions given in this work are not 

distorted even if the spatial content of high order POD modes are not converged. The main concern 

is for the optimization of the sensor locations. When optimizing the sensor locations for one or a 

set of POD modes, the sensor locations are related to the spatial content of the POD modes and thus 

one should not use unconverged POD modes for the optimization. 

 

Fig. C.3: Energy spectrum of the first six hun-

dred POD modes 

 

Fig. C.4: Determination coefficient of the esti-

mation of POD modes from the training set 

POD basis and a POD basis formed using the 

first 3397 PIV snapshots of the training set 

(determination coefficients are evaluated on 

the validation set) 

D. Turbulence integral length scales calculation 
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The turbulence spatial integral length scales of one velocity component are calculated from 

the spatial autocorrelation function according to equation [80]: 

Λ(𝒙𝟎) = ∫ 𝑅𝑖𝑖(𝒙𝟎, 𝑟)𝑑𝑟
∞

0

 
(D.1) 

where 𝒙𝟎 is the position at which the length scale is calculated and the double-i subscript indicates 

the autocorrelation function of the component i defined by: 

𝑅𝑖𝑖(𝒙𝟎, 𝑟) =
〈𝑢𝑖(𝒙𝟎, 𝑡)𝑢𝑖(𝒙𝟎 + 𝑟, 𝑡)〉

√〈𝑢𝑖
2(𝒙𝟎)〉〈𝑢𝑖

2(𝒙𝟎 + 𝑟)〉
 

(D.2) 

and r is the distance between two points in the flow. Following O’Neill et al., the integration domain 

of equation (D.1) was chosen to range from 0 to the point where the autocorrelation goes and re-

mains under 1/e, instead of ranging from 0 to +∞. 

In practice the turbulence spatial integral length scale is calculated on a Cartesian mesh, thus 

equation (D.1) becomes: 

At last, we denote the integral length scale calculated in the streamwise direction, the stream-

wise integral length scale (whatever the velocity component considered). The vertical integral 

length scale denotes the integral length scale calculated in the vertical direction. Since the integral 

length scales are computed on a finite domain, with a criterion for stopping the integration, they 

may not be perfectly converged in some points of the field. Indeed, the spatial domain may not 

always be large enough for the autocorrelation function to reach and remain close to 0 (in particular 

near the edges of the domain but the combination of Λ+ and Λ− should limit this problem). Also, 

according to Pope [96], the spatial domain should be at least six times larger than the maximum 

integral length value to accurately determine such integral length scale. However, we are interested 

in the comparison of original values with estimated ones, not in the integral length scale value in 

itself. Convergence issues are not expected to false the comparison made in Chapter IV.3. 

E. Link between Spatio-Temporal Linear Stochastic Estima-

tion and Multi-Time-Delay Linear Stochastic Estimation 

As described by Ruiz et al. [59], the Spatio-Temporal POD consists in computing the POD 

of a spatio-temporal set of data. Let us consider N time samples of some data of dimension M. The 

set of data is denoted U ∈ ℝM×N = (𝑢𝑖(𝑡𝑗)). Instead of computing the POD of the matrix U, the 

spatio-temporal POD computes the POD of an extended matrix UST which contains delayed data. 

Assuming that 10 delayed data in the past and future are used (with a step between delays of one 

sample) then the extended matrix is: 

UST =

(

 
 
 
 

𝑢1(𝑡1) … 𝑢1(𝑡N−20)

𝑢1(𝑡2) ⋱ 𝑢1(𝑡N−19)
⋮

𝑢1(𝑡21)

𝑢2(𝑡1)
⋮

𝑢M(𝑡21)

⋱
⋱
⋱
⋱
…

⋮
𝑢1(𝑡N)

𝑢2(𝑡N−20)
⋮

𝑢M(𝑡N) )

 
 
 
 

∈ ℝ(21×M)×(N−20) 

The ST-POD of U is the POD of UST. 
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The Spatio-Temporal LSE proposed by Ruiz et al. is then to compute the LSE using as con-

ditional events the ST-POD coefficients of the sensors. Thus, first a ST-POD of the sensors is com-

puted (a number of delays as to be chosen and it is possible to consider delays only in the past), 

then LSE is perform using the ST-POD coefficients as conditional events (and it is possible to select 

the number of ST-POD coefficients to use). As Borée demonstrated that Extended POD is equiva-

lent to LSE if all the extended POD modes are considered, we now demonstrate that the ST-LSE is 

equivalent to the MTD-LSE if all ST-POD coefficients are used as conditional events. The main 

advantage of the ST-LSE is then to dispose of a POD decomposition of the sensors enriched of 

delays. It is then possible to select a limited number of POD coefficients which can reduced the 

overfitting and represents an alternative to the use of Tikhonov Regularization in MTD-LSE. 

Let us considered the matrix of conditional events composed of the sensors and their delays: 

E ∈ ℝ(Nd×NS)×N, with Nd the number of delays (synchroneous time included), NS the number of 

sensors and N the number of time samples. The data to estimate are organized in the matrix U ∈
ℝN×M, where M is the dimension of the data to estimate. The matrix of MTD-LSE coefficients is 

then AMTD−LSE = (EE
T)−1EU ∈ ℝ(Nd×NS)×M and the estimation by MTD-LSE is ŨMTD−LSE =

ETAMTD−LSE. 

Now the ST-LSE uses the ST-POD coefficients of E as conditional events. Using POD, E can 

be decomposed in: 

E = 𝚽ST−PODMST−POD (E.1) 

with 𝚽ST−POD the POD modes of the decomposition of E (𝚽ST−POD ∈ ℝ
(Nd×NS)×NST−POD), 

MST−POD the POD coefficients (MST−POD ∈ ℝ
NST−POD×N). NST−POD = min(Nd × NS, N). 

Thus the ST-LSE coefficients are defined by: 

AST−LSE = (MST−PODMST−POD
T )

−1
MST−PODU ∈ ℝ

(Nd×NS)×M (E.2) 

And the estimation by ST-LSE is: 

ŨST−LSE = MST−POD
T AST−LSE (E.3) 

We now want to demonstrate that ŨMTD−LSE = ŨST−LSE.  

Using (E.1) and the fact that 𝚽ST−POD
T P𝚽ST−POD = I, 

MST−POD = 𝚽ST−POD
T PE (E.4) 

P is the dot product matrix used for computing the POD of E and is symmetric positive-definite. 

By injecting (E.5) in (E.2),  

AST−LSE = (𝚽ST−POD
T PEETP𝚽ST−POD)

−1
𝚽ST−POD
T PEU 

𝚽ST−POD
T PEETP𝚽ST−PODAST−LSE = 𝚽ST−POD

T PEU 

EETP𝚽ST−PODAST−LSE = EU 

P𝚽ST−PODAST−LSE = AMTD−LSE (E.5) 

Therefore, using (E.1), (E.5) and (E.3) respectively, 

ŨMTD−LSE = E
TAMTD−LSE = MST−POD

T 𝚽ST−POD
T AMTD−LSE = MST−POD

T 𝚽ST−POD
T P𝚽ST−PODAST−LSE 
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ŨMTD−LSE = MST−POD
T AST−LSE = ŨST−LSE 

In the demonstration, only training data were considered. The equivalence between the ST-

LSE and MTD-LSE when all POD coefficients of the ST-POD are used is also true outside the 

training set. This can be demonstrated using MST−POD
′ = 𝚽ST−POD

T PE′ where E’ are considitonal 

events outside the training set. The equation (C.1) still holds outside the training set and from these 

relation one easily gets that: 

ŨMTD−LSE = E
′TAMTD−LSE = MST−POD

′T AST−LSE = ŨST−LSE 

F. Precisions on Kalman filter 

1. General expression of Kalman filter gain 

Let us consider a linear dynamic model 𝒙𝑘+1
t = M𝒙𝑘

t + 𝜼𝑘 and a linear observation model 

𝒚𝑘 = H𝒙𝑘
𝑡 + 𝜺𝑘. 𝒙 ∈ ℝ𝑛 is the system state. 𝒚 ∈ ℝ𝑝 are some observations. M is the matrix of the 

linear dynamic model linking the state at time 𝑡𝑘+1 = 𝑡𝑘 + ∆𝑡 with the state at time 𝑡𝑘. H is the 

matrix of the observation model linking the state to the observations. To simplify the demonstration 

(but those assumptions are not restrictive), ∆𝑡, M and H are assumed to be constant over time. 𝜼𝑘 

and 𝜺 are the dynamic and observation model error respectively. They are supposed to be random 

variable following Gaussian distribution with no bias and covariance matrix Q and R respectively. 

Superscript “t” refers to the true state, subscripts refer to the time step. 

As described in Chapter VI.2, the Kalman filter gain is expressed as (with P𝑘+1
b  the error 

covariance matrix of the Kalman filter predicted state, superscript “b” refers to the predicted state):  

K𝑘+1 = P𝑘+1
b HT(HP𝑘+1

b HT + R)
−1

 

Let us now consider: 

P𝒙𝒚𝑘+1
b = E [(𝒙𝑘+1

b − 𝒙𝑘+1
t )(H𝒙𝑘+1

b − 𝒚𝑘+1
𝑡 )

T
] 

P𝒚𝒚𝑘+1
b = E [(H𝒙𝑘+1

b − 𝒚𝑘+1
𝑡 )(H𝒙𝑘+1

b − 𝒚𝑘+1
𝑡 )

T
] 

Then: 

P𝒙𝒚𝑘+1
b = E [𝒆𝑘+1

𝑏 (H𝒙𝑘+1
b − H𝒙𝑘+1

t − 𝜺𝑘+1)
T
] = E [𝒆𝑘+1

𝑏 (𝒙𝑘+1
b − 𝒙𝑘+1

t )
T
HT] − E[𝒆𝑘+1

𝑏 (𝜺𝑘+1)
T]

= E [𝒆𝑘+1
𝑏 (𝒆𝑘+1

𝑏 )
T
]HT = P𝑘+1

b HT 

And: 

P𝒚𝒚𝑘+1
b = E [(H𝒙𝑘+1

b − H𝒙𝑘+1
t − 𝜺𝑘+1)(H𝒙𝑘+1

b − H𝒙𝑘+1
t − 𝜺𝑘+1)

T
]

= H E [𝒆𝑘+1
𝑏 (𝒆𝑘+1

𝑏 )
T
]HT + E[𝜺𝑘+1(𝜺𝑘+1)

T] = HP𝑘+1
b HT + R 

Therefore, the Kalman gain can be expressed as: 

K𝑘+1 = P𝑘+1
b HT(HP𝑘+1

b HT + R)
−1
= P𝒙𝒚𝑘+1

b (P𝒚𝒚𝑘+1
b )

−1
 

In the Ensemble Kalman filter, Monte Carlo method is used to approximate the covariance 

error matrices and thus: 
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P𝑘+1
b ≈

1

N − 1
∑[(𝒙𝑘+1

b,𝑖 − 𝒙𝑘+1
b̅̅ ̅̅ ̅̅ ) (𝒙𝑘+1

b,𝑖 − 𝒙𝑘+1
b̅̅ ̅̅ ̅̅ )

T

]

N

𝑖=1

 

R𝑘+1
N =

1

N − 1
∑(𝜺𝑘+1

𝑖 )

N

𝑖=1

(𝜺𝑘+1
𝑖 )

T
 

P𝒙𝒚𝑘+1
b ≈

1

N − 1
∑[(𝒙𝑘+1

b,𝑖 − 𝒙𝑘+1
b̅̅ ̅̅ ̅̅ ) (𝐻(𝒙𝑘+1

b,𝑖 ) − 𝐻(𝒙𝑘+1
b )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

T

]

𝑁

𝑖=1

 

P𝒚𝒚𝑘+1
b ≈

1

N − 1
∑[(𝐻(𝒙𝑘+1

b,𝑖 ) − 𝐻(𝒙𝑘+1
b )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) (𝐻(𝒙𝑘+1

b,𝑖 ) − 𝐻(𝒙𝑘+1
b )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

T

]

𝑁

𝑖=1

+ R𝑘+1
N  

where superscript “i” denotes the indice of the ensemble members in the Monte Carlo method. . ̅
refers to the ensemble average. 

2. “Inverse” observation model 

“Inverse” observation model consists in considering 𝒙𝑘 = 𝐻
′(𝒚𝑘) + 𝜺

′ with 𝜺′ the “inverse” 

observation model error which is supposed to be a random variable following a Gaussian distribu-

tion with the covariance R′. In the Kalman filter equations, the equivalent observation model is 

formed with H being the identity and an observation error covariance matrix R′. The prediction 

steps remain unchanged. The analysis steps are modified as follow: 

 Compute the Kalman gain: K𝑘+1 = P𝑘+1
b (P𝑘+1

b + R′)
−1

 

 Compute the approximate observed state with the “inverse” model: 𝒙𝑘
obs = 𝐻′(𝒚𝑘) 

 Generate the analyzed state: 𝒙𝑘+1
a = 𝒙𝑘+1

b + K𝑘+1(𝒙𝑘
obs − 𝒙𝑘+1

b )  

 Generate the analysis error covariance matrix: P𝑘+1
a = (I − K𝑘+1)P𝑘+1

b  

Similarly, for the ensemble Kalman filter the analysis steps are modified and becomes: 

 Generate N vectors corresponding to the measurement error: 𝜺𝑘+1
′,𝑖 ~N(0, R’) 

 Compute the approximate measurement model error covariance: 

R𝑘+1
′,N =

1

N − 1
∑(𝜺𝑘+1

′,𝑖 )

N

𝑖=1

(𝜺𝑘+1
′,𝑖 )

T
 

 Kalman gain is computed using the general expression: 

K𝑘+1 = P𝒙𝒚𝑘+1
b (P𝒚𝒚𝑘+1

b )
−1

 (VI.21) 

The matrices P𝒙𝒚𝑘+1
b  and P𝒚𝒚𝑘+1

b are then approximated using the ensemble mean: 

P𝒙𝒚𝑘+1
b ≈

1

N − 1
∑[(𝒙𝑘+1

b,𝑖 − 𝒙𝑘+1
b̅̅ ̅̅ ̅̅ ) (𝒙𝑘+1

b,𝑖 − 𝒙𝑘+1
b̅̅ ̅̅ ̅̅ )

T

]

𝑁

𝑖=1
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P𝒚𝒚𝑘+1
b ≈

1

N − 1
∑[(𝒙𝑘+1

b,𝑖 − 𝒙𝑘+1
b̅̅ ̅̅ ̅̅ ) (𝒙𝑘+1

b,𝑖 − 𝒙𝑘+1
b̅̅ ̅̅ ̅̅ )

T

]

𝑁

𝑖=1

+ R𝑘+1
′,N

 

 At last, forecasted states are analyzed using the following formula: 

𝒙𝑘+1
a,𝑖 = 𝒙𝑘+1

b,𝑖 + K𝑘+1(𝒙𝑘
obs + 𝜺𝑘+1

′,𝑖 − 𝒙𝑘+1
b )  

The analyzed state is given by the ensemble mean: 𝒙𝑘+1
a̅̅ ̅̅ ̅̅ =

1

N
∑ 𝒙𝑘+1

a,𝑖N
𝑖=1  

3. Relation between analysis step and LSE 

We here consider that the dynamic model is failing in the sense that it gives forecast states 

that are almost null. To simplify, we assume that the forecast state is equal to the vector null. In 

addition, the observation model is a linear observation model obtained by LSE. Let us denote X ∈
ℝ𝑛×N the data used to train the models (N is the number of time samples used to train the dynamic 

and observation models), Y ∈ ℝ𝑝×N the observation used to train the models. Then the observation 

model H is given by HT = (XXT)−1XYT. In addition, since the dynamic model is assumed to give 

results close to the vector null the matrix Pb is close to XXT. For the following, we supposed that 

Pb = XXT. 

Also the LSE of X from Y is given by: X = KLSEY with KLSE
T = (YYT)−1YXT 

Then, with previous hypothesis, the Kalman analysis step is: 𝒙𝑘+1
a = K𝑘+1𝒚𝑘+1 with K𝑘+1 =

P𝑘+1
b HT(HP𝑘+1

b HT + R)
−1

. 

In addition, 

P𝑘+1
b HT = XXT(XXT)−1XYT = XYT 

HP𝑘+1
b HT = YXT(XXT)−1XYT 

R = (Y − HX)(Y − HX)T = YYT − HXYT − Y(HX)T + (HX)(HX)T

= YYT − YXT(XXT)−1XYT − YXT(XXT)−1XYT + HP𝑘+1
b HT = YYT − HP𝑘+1

b HT 

Thus, 

K𝑘+1 = XY
T(YYT)−1 = KLSE 

Therefore, in these conditions, the analysis step of the Kalman filter is equivalent to the LSE 

using the observations to estimate the state. 

G. Derivation of POD Galerkin model 

Additional information on the derivation of POD Galerkin models can be found in Noack et 

al. [107]. 

The flow is supposed to be viscous and incompressible. The incompressible Navier-Stokes 

equation for the momentum conservation is thus (gravity and external forces in general are ne-

glected): 

𝑁(𝐮) =
𝜕𝐮

𝜕𝑡
+ (𝐮 ∙ 𝛁)𝐮 +

1

𝜌
𝛁P − 𝜈∆𝐮 = 0 
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The flow velocity u is decomposed on a POD base: 𝐮(𝒙, 𝑡) = ∑ 𝑎(𝑖)(𝑡)𝚽(𝑖)(𝒙)𝑛
𝑖=0  (POD 

mode 0 corresponds to the average field). 

The Navier-Stokes equation is now projected onto each POD mode and u is substituted by its 

POD decomposition in N(u) (𝑁(𝐮),𝚽(𝑖))

= 0, thus ∀𝑖 ∈ ⟦0, 𝑛⟧: 

(
𝜕𝐮

𝜕𝑡
,𝚽(𝑖))



=
d𝑎(𝑖)(𝑡)

d𝑡
 

((𝐮 ∙ 𝛁)𝐮,𝚽(𝑖))

=∑∑((𝚽(𝑗) ∙ 𝛁)𝚽(𝑘),𝚽(𝑖))


𝑎(𝑗)𝑎(𝑘) = −∑∑𝑞𝑖𝑗𝑘

𝑐 𝑎(𝑗)𝑎(𝑘)
𝑛

𝑘=0

𝑛

𝑗=0

𝑛

𝑘=0

𝑛

𝑗=0

 

So, 𝑞𝑖𝑗𝑘
𝑐 = −((𝚽(𝑗) ∙ 𝛁)𝚽(𝑘), 𝚽(𝑖))


. 

Then, 

(
1

𝜌
𝛁P,𝚽(𝑖))



= −𝑓𝑖
𝑝
 

(−𝜈∆𝐮,𝚽(𝑖))

= −∑(𝜈∆𝚽(𝑗), 𝚽(𝑖))



𝑛

𝑗=0

𝑎(𝑗) = −𝜈∑𝑙𝑖𝑗
𝜈

𝑛

𝑗=0

𝑎(𝑗) 

So, 𝑙𝑖𝑗
𝜈 = (∆𝚽(𝑗),𝚽(𝑖))


 

Therefore, ∀𝑖 ∈ ⟦0, 𝑛⟧: 

d𝑎(𝑖)(𝑡)

d𝑡
= 𝜈∑𝑙𝑖𝑗

𝜈

𝑛

𝑗=0

𝑎(𝑗)(𝑡) + ∑ 𝑞𝑖𝑗𝑘
𝑐

𝑛

𝑗,𝑘=0

𝑎(𝑗)(𝑡)𝑎(𝑘)(𝑡) + 𝑓𝑖
𝑝
 

H. Additional results and figures 

1. Estimation of the wake downstream of a blunt trailing edge 

 

a) 

 

b) 

Fig. H.1: a) Streamwise and b) vertical root-mean-square velocities estimated by LSE with 4 

pressure sensors (validation set) 
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2. Estimation of the flow around the OAT15A airfoil (ZDES) 

 

a) 

 

b) 

 

c) 

Fig. H.2: Vertical root-mean-square velocity calculated from the validation set, a) original data, 

b) LSE estimation with “Intuitive P 5” sets of pressure measurement and c) QSE estimation 

3. Estimation of the Backward Facing Step flow (low speed PIV database) 

Upstream velocity (m.s-1) 20 25 30 

R² from original 

fields 

Training 14.5 12.5 12.5 

Validation 9.7 9.7 9.3 

Table H.1: Determination coefficients of the best MTD-LSE situation obtained in 20, 25 and 

30 m.s-1 of upstream velocity 
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a) 

 

b) 

Fig. H.3: Normalized mean square error of the LSE, QSE and best MTD-LSE predictions for 

the streamwise velocity (a) and the vertical velocity (v) (BFS low speed PIV, 25 m.s-1) 

 

a) 

 

b) 

Fig. H.4: Normalized mean square error of the LSE, QSE and best MTD-LSE predictions for 

the streamwise velocity (a) and the vertical velocity (v) (BFS low speed PIV, 20 m.s-1) 
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Fig. H.5: Power Spectral Density of POD modes 1 to 4 (a) and 5 to 8 (b) (modes from the low 

speed PIV database with U0 = 30 m.s-1) 

The Fig. H.5 displays the spectra of the first 8 POD modes of the low speed PIV database. 

These spectra are obtained by projecting the POD modes of the low speed PIV database onto the 

velocity field of the high speed PIV database in order to obtain the corresponding POD coefficients 

at 2 kHz and be able to compute their spectra. 

4. Estimation of flow around a wall mounted cube 

1. Low speed PIV database 

 LSE QSE Best MTD-LSE 

R² from original fields 
Training 16.1 22.3 32.5 

Validation 15.7 15 26.3 

Table H.2: Determination coefficients comparison between LSE, QSE and MTD-LSE (Cube: low 

speed PIV, vertical plane, 10 m.s-1; values are expressed in %) 

 LSE QSE Best MTD-LSE 

R² from original fields 
Training 21.1 27.1 42.1 

Validation 19.7 19 36.1 

Table H.3: Determination coefficients comparison between LSE, QSE and MTD-LSE (Cube: low 

speed PIV, horizontal plane, 10 m.s-1; values are expressed in %) 
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LSE 

LSE-POD 

(90%, 520 

modes) 

LSE-POD 

(70%, 94 

modes) 

LSE-POD 

(50%, 24 

modes) 

QSE 

Best 

MTD-

LSE 

R² from origi-

nal fields 

Training 16.7 16.5 16.4 16 23 29.7 

Validation 15.8 15.6 15.6 15.4 14.1 24.5 

R² from POD 

projected 

fields 

Training - 18.4 23.6 31.9 - - 

Validation 
- 17.9 22.9 31.2 - - 

R²POD 
Training - 1.2 4.8 13.4 - - 

Validation - 0.6 4 12.5 - - 

Table H.4: Determination coefficients comparison between LSE, LSE-POD, QSE and MTD-LSE 

(Cube: low speed PIV, vertical plane, 15 m.s-1; values are expressed in %) 

 

LSE 

LSE-POD 

(90%, 626 

modes) 

LSE-POD 

(70%, 104 

modes) 

LSE-POD 

(50%, 22 

modes) 

QSE 

Best 

MTD-

LSE 

R² from origi-

nal fields 

Training 21.4 21.5 21.3 20.7 28 44.7 

Validation 21.2 21.3 21.3 20.8 21.1 35.8 

R² from POD 

projected 

fields 

Training - 23.9 30.4 41.3 - - 

Validation 
- 24.4 30.9 41.7 - - 

R²POD 
Training - 1.3 5.3 15.6 - - 

Validation - 0.9 4.8 15 - - 

Table H.5: Determination coefficients comparison between LSE, LSE-POD, QSE and MTD-LSE 

(Cube: low speed PIV, horizontal plane, 15 m.s-1; values are expressed in %) 

 LSE QSE Best MTD-LSE 

R² from original fields 
Training 13.6 19.4 27.3 

Validation 12.4 10.7 20.7 

Table H.6: Determination coefficients comparison between LSE, QSE and MTD-LSE (Cube: low 

speed PIV, vertical plane, 20 m.s-1; values are expressed in %) 

 LSE QSE Best MTD-LSE 

R² from original fields 
Training 18.1 24.9 38.6 

Validation 16.5 14.8 29.7 

Table H.7: Determination coefficients comparison between LSE, QSE and MTD-LSE (Cube: low 

speed PIV, horizontal plane, 20 m.s-1; values are expressed in %) 

 LSE QSE Best MTD-LSE 

R² from original fields 
Training 14.8 20.9 28.8 

Validation 13.9 12.6 22.6 

Table H.8: Determination coefficients comparison between LSE, QSE and MTD-LSE (Cube: low 

speed PIV, vertical plane, 25 m.s-1; values are expressed in %) 
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 LSE QSE Best MTD-LSE 

R² from original fields 
Training 16.8 23.5 38.8 

Validation 17.2 16.4 31.3 

Table H.9: Determination coefficients comparison between LSE, QSE and MTD-LSE (Cube: low 

speed PIV, horizontal plane, 25 m.s-1; values are expressed in %) 

 

a) 

 

b) 

 

c) 

Fig. H.6: Normalized mean square error of the QSE prediction for the streamwise velocity (a), 

the vertical velocity (b) and the spanwise velocity (c) 

2. High speed PIV database 

 LSE QSE Best MTD-LSE 

R² from original fields 
Training 17.5 21.6 28.1 

Validation 20.4 23.3 30.1 

Table H.10: Determination coefficients comparison between LSE, QSE and MTD-LSE (Cube: 

high speed PIV, vertical plane, 10 m.s-1; values are expressed in %) 

 LSE QSE Best MTD-LSE 

R² from original fields 
Training 33.5 38.7 51.1 

Validation 33.4 36.6 46.5 

Table H.11: Determination coefficients comparison between LSE, QSE and MTD-LSE (Cube: 

high speed PIV, horizontal plane, 10 m.s-1; values are expressed in %) 
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 LSE QSE Best MTD-LSE 

R² from original fields 
Training 16.3 20 27.2 

Validation 17.6 19.5 26.9 

Table H.12: Determination coefficients comparison between LSE, QSE and MTD-LSE (Cube: 

high speed PIV, vertical plane, 20 m.s-1; values are expressed in %) 

 LSE QSE Best MTD-LSE 

R² from original fields 
Training 23.8 28.5 43 

Validation 24.3 27.2 38.9 

Table H.13: Determination coefficients comparison between LSE, QSE and MTD-LSE (Cube: 

high speed PIV, horizontal plane, 20 m.s-1; values are expressed in %) 

5. Turbulent integral length scales (Backward facing step low speed PIV) 

 

Fig. H.7: Turbulence spatial integral length 

scales for u calculated in the vertical direction 

for LSE using several grids of 462, 240, 126 

and 56 streamwise velocity sensors (from top 

to bottom) 

 

Fig. H.8: Turbulence spatial integral length 

scales for u calculated in the vertical direction 

for LSE using several grids of 33 and 21 

streamwise velocity sensors (from top to bot-

tom) 

 



H.Additional results and figures 289 

 

 

Fig. H.9: Turbulence spatial integral length 

scales for v calculated in the streamwise direc-

tion for LSE using several grids of 462, 240, 

126 and 56 streamwise velocity sensors (from 

top to bottom) 

 

Fig H.10: Turbulence spatial integral length 

scales for v calculated in the streamwise direc-

tion for LSE using several grids of 33 and 21 

streamwise velocity sensors (from top to bot-

tom) 
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Fig. H.11: Turbulence spatial integral length 

scales for v calculated in the vertical direction 

for LSE using several grids of 462, 240, 126 

and 56 streamwise velocity sensors (from top 

to bottom) 

 

Fig. H.12: Turbulence spatial integral length 

scales for v calculated in the vertical direction 

for LSE using several grids of 33 and 21 

streamwise velocity sensors (from top to bot-

tom) 





 

   

Reconstruction of turbulent velocity fields from punctual measurements 

Real time monitoring of turbulent flows is a challenging task that concerns a large range of appli-

cations. Evaluating wake vortices around the approach runway of an airport, in order to optimize the 

distance between lined-up aircraft, is an example. Another one touches to the broad subject of active 

flow control. In the aerodynamic field, control of detached flows is an essential issue. Such a control 

can serve to reduce noise produced by airplanes, or improve their aerodynamic performances. This work 

aims at investigating and developing tools to produce real time estimation of turbulent velocity fields 

from a limited number of punctual sensors. After a literature review focused on a popular reconstruction 

method in fluid mechanics, the Stochastic Estimation (SE), the first step was to evaluate its overall 

prediction performances on several turbulent flow configurations of gradual complexity. The accuracy 

of the SE being very limited in some cases, a deeper characterization of the method was performed. The 

filtering effect of the SE in terms of spatial and temporal content was particularly highlighted. This 

characterization also pointed out the strong influence of the sensor locations on the estimation quality. 

Therefore, a sensor location optimization algorithm was proposed and extended to the choice of time 

delays when using Multi-Time-Delay SE. While using optimized locations for the sensors hold some 

improvements in accuracy, they were still insufficient for some test cases. The opportunity to use a data 

assimilation method, the Kalman filter that combines a dynamic model of the flow with sensor infor-

mation, was investigated. For some cases, the results were very promising and the Kalman filter (and its 

extensions) outperforms all SE methods. 

Keywords: Stochastic Estimation, Kalman filter, regression, data reconstruction, sensor location opti-

mization. 
 

Reconstruction de champs aérodynamiques à partir de mesures ponctuelles 

Le suivi en temps réel des écoulements turbulents est une tâche difficile qui trouve des applica-

tions dans de nombreux domaines. Un exemple concerne la mesure des tourbillons de sillage au niveau 

des pistes d’aéroports afin d’optimiser la distance entre les avions en phase d’approche ou de décollage. 

Un autre exemple se rapporte au contrôle actif des écoulements, en particulier des écoulements détachés, 

qui représente encore un important défi. De tels contrôles peuvent servir à réduire le bruit des avions, 

ou bien à améliorer leurs performances aérodynamiques. Cette thèse vise à étudier et à développer des 

outils afin d’estimer en temps réel des champs de vitesse d’écoulements turbulents à partir d’un nombre 

limité de mesures ponctuelles. Après une étude bibliographique centrée sur une méthode de reconstruc-

tion populaire dans le domaine de la mécanique des fluides, l’estimation stochastique, ses performances 

sont évaluées pour la prédiction de champs de vitesse issus d’écoulements turbulents de complexité 

croissante. La précision des estimations obtenues étant très faibles dans certains cas, une analyse plus 

précise de la méthode est effectuée. Celle-ci a montré en particulier l’effet filtrant de l’estimation sto-

chastique sur le contenu spatial et temporel des champs de vitesse. De plus, le fort impact de la position 

des capteurs a été mis en avant. C’est pourquoi un algorithme d’optimisation de la position des capteurs 

est ensuite présenté et également étendu au choix des délais temporels lorsque l’estimation stochastique 

à délais multiples est utilisée. Bien que l’optimisation de la position des capteurs mène à une améliora-

tion de la précision des prédictions obtenues par estimation stochastique, elle reste néanmoins très faible 

pour certains cas tests. L’utilisation d’une technique issue du domaine de l’assimilation de données, le 

filtre de Kalman qui combine un modèle dynamique de l’écoulement avec les mesures, a donc été étu-

diée. Pour certains écoulements, le filtre de Kalman permet d’obtenir des predictions bien plus précises 

que l’estimation stochastique. 

Mots-clés : Estimation Stochastique, filtre de Kalman, régression, reconstruction de données, optimisa-

tion de la position des capteurs. 


