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Abstract

Statistical relational learning formalisms combine first-order logic with proba-
bility theory in order to obtain expressive models that capture both complex
relational structure and uncertainty. Despite the significant progress made in
this field, several important challenges remain open. First, the expressivity
of statistical relational learning comes at the cost of inefficient learning and
inference in large-scale problems that containmany objects. Second, while many
real-world relational domains are hybrid in that they contain objects that are
described by both continuous and discrete properties, little attention has been
paid to learning from such data. Third, most formalisms ignore the dynamic
nature of real-world problems by considering only the static aspects captured
by a single snapshot of time in the dynamic process.

This thesis tries to tackle these shortcomings and makes the following
four contributions. First, we propose a graph-sampling based approach that
approximately counts the number of pattern occurrences in the data, which
enables scaling up parameter learning of statistical relational models. Second,
we propose a novel statistical relational learning formalism that models hybrid
relational domains. Third, we designed the first structure learning algorithm
that is able to learn hybrid relational models. Fourth, we adapted our algorithm
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ii ABSTRACT

to learn temporal dependencies present in the data. We demonstrate the utility
of our approaches on several challenging applications, such as planning in a
real-world robotics setup, and learning from financial and citation data.



Beknopte samenvatting

Statistisch relationeel leren combineert eerst-orde logica en kansrekening met
als doel om expressieve modellen te bekomen die zowel complexe relationele
structuur als onzekerheid kunnen voorstellen. Ondanks de gestage vooruitgang
in dit onderzoeksdomein zijn er nog belangrijke onopgeloste problemen. Ten
eerste heeft de expressiviteit van statistische relationele modellen ook een kost:
inferentie- en leeralgoritmes zijn inefficiënt op grootschalige problemen die
een groot aantal objecten omvatten. Ten tweede zijn relationele domeinen in de
echte wereld vaak hybride: ze bevatten objecten met zowel continue als discrete
eigenschappen. Automatisch leren uit zulke data is nogmaarweinig onderzocht.
Ten derde negeren de meeste formalismen de dynamisch aard van problemen
in de echte wereld en beschouwen ze enkel een statische momentopname van
het dynamisch verloop.

Dit zijn de beperkingen die we in deze thesis proberen op te lossen. We leveren
daartoe de volgende vier bijdragen. Eerst stellen we een aanpak voor die
gebaseerd is op het bemonsteren van grafen. Deze aanpak telt benaderend hoe
vaak een bepaald patroon voorkomt in de data omzo het leren van parameters in
een statistisch relationeel model op te schalen. Vervolgens stellen we een nieuw
formalisme voor in statistisch relationeel leren dat dient om hybride relationele
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domeinen te modelleren. Hierna ontwerpen we het eerste algoritme om de
structuur van hybride relationele modellen te leren. Tenslotte passen we ons
algoritme aan om te lerenwelke temporele afhankelijkheden zich voordoen in de
data. We tonen het nut van onze aanpak in meerdere uitdagende toepassingen,
zoals het plannen in een echte robotica omgeving en het leren uit financiële en
bibliografische referentie data.
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Introduction

1

"To start, press any key...
Where’s the "Any" key?"
Homer Simpson

Real-world applications such as robotics, medicine, molecular biology, and
social networks, amongst others, exhibit complex relational structure comprising
of generic entities. Each entity is described by a number of attributes, and is related
to a number of other entities of the same or different type. These relationships
are general patterns or templates thatmatch specific instantiations of objects (e.g.,
all humans are mortal, so is Socrates), and can be represented with first-order
logic. Moreover, the world in which objects interact might be uncertain, which
necessitates the tools of probability. For example, in Goodreads, a social network
for book lovers, people are entities that have discrete attributes (e.g., favorite
book type) and numeric attributes (e.g., the average number of books they read
per year), and are connected through friendship relations. There also exists
uncertainty about the existence and nature of these relations (e.g., there is a 20%
chance that people lie about having read a classic or a book thatwas read bymost
of their friends). Additionally, the environment where objects reside can exhibit
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2 INTRODUCTION

sequential changes or dynamics: the number of objects changes, relationships
between objects appear and disappear, and the properties of objects evolve
as they interact. For example, a user of Goodreads can be influenced by the
aggregated opinion of some friends about a book, causing her to change her
rating for the book.

Statistical relational learning (SRL) (Getoor and Taskar 2007; De Raedt, Frasconi,
et al. 2008; De Raedt 2008; De Raedt and Kersting 2011), a subfield of machine
learning, is concerned with developing formalisms that deal with structured
and uncertain domains. The SRL formalisms compactly represent the structure
of a domain in the form of regularities or patterns that are quantified by a set of
parameters. The parameters of a pattern in SRL are shared or tied across different
instantiations of the pattern, which enables compact representation.

There are several tasks in SRL. The most general and complex task is to learn
the structure that captures the regularities in the domain. The task of parameter
estimation is used to extract the parameters that quantify the regularities. This
two tasks are coupled in that that we want learn the parametrized regularities
that best explain the data. Given or learned parametrized models can be used to
perform inference or answer queries about specific entity instantiations, possibly
given some observation or evidence. The approaches in SRL mostly focus on
modelling the static aspect of the relational data meaning that the data is seen
as a snapshot consisting of all the objects and relationships between them at a
specific point in time. However, many domains such as robotics have a temporal
or dynamic aspect. Planning approaches for dynamic relational domains devise
a sequence of actions based on the state transition model that quantitatively
regulates how the attributes and relationships between objects transition from
one state to another.

Despite its progress, many challenges exist in statistical relational learning. One
important challenge is to design scalable and efficient learning algorithms. The
inefficiency is related to the choice of the representation and time-consuming
structure learning subroutines such as parameter estimation and inference.
For example, if one does not care about strictly accurate representations, the
structure learning could be made efficient by decomposing the process into
learning smaller models independently. Also, subroutines such as parameter
estimation can be performed faster by resorting to approximations.

A second challenge lies in the fact that besides exhibiting complex structure,
uncertainty and dynamics, real-world domains are also hybrid, meaning that
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they contain both discrete and continuous variables. The usual approach is to
discretize continuous variables prior to modelling, learning or inference, which
imposes limits on the representation power and leads to a loss of information.
This problem raises an interesting question on how to upgrade existing SRL
formalisms to hybrid domains, and how to learn and query the hybrid models.

A third challenge is to model and learn dynamics in hybrid domains. The challenge
lies in learning expressive models that can capture how complex relationships
between objects change over time. The learned model can be further used to
perform planning. Moreover, the algorithms designed to model and plan in
dynamic relational domains are usually evaluated on simulated data. Thus, the
challenge would be to perform structure learning and planning with real robots
acting in dynamic relational environments.

1.1 Thesis Statement

The goal of this thesis is to push the boundaries of SRL across three dimensions:
scalability, expressivity and dynamics. Accordingly, we test the following claims.
First, we hypothesize that adapting techniques for approximately counting the
number of pattern embeddings in a graph can be adapted to perform scalable
and accurate parameter estimation in SRL. Second, the increased expressivity of
hybrid SRL formalisms can providemore accurate and scalable structure learning
performance than when discretizing the domain prior to learning. And finally,
learning dynamic relational models in hybrid domains described with relational
features and features expressing the arithmetics between low-level attributes,
can result in expressive models that contribute to good planning performance.

1.2 Contributions

This dissertation addresses the thesis statement by:

1. developing an approximate graph pattern counting approach by extend-
ing the algorithm of Fürer and Kasiviswanathan (2008),

2. proposing the hybrid relational dependency networks (HRDNs) as a
formalism to model both continuous and discrete variables in relational
domains,
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3. designing a learner of localmodels (LLM) to learn the structure ofHRDNs,

4. extending LLM to work in dynamic environments.

Several common ideas are interwoven through these topics: extracting and
modelling knowledge from rich relational domains, addressing some of
the current open questions in SRL, and fusion of different formalisms and
applications (e.g., combining graph-based representations with parameter
estimation in SRL, using SRL for real-world robotics applications). Next, we
present in more detail the contributions for each of the topics addressed in this
thesis.

1. Our first contribution is to propose a new approach for approximately
counting how many times a pattern occurs in a graph. This approach
is based on a fully polynomial randomized approximation scheme
suggested by Fürer and Kasiviswanathan (2008) for larger unlabeled
undirected graphs. As relations of objects and their properties can be
represented with graphs, we evaluate this approach on the task of
parameter estimation for SRL. This contribution also comprises:

• Two algorithms for efficiently obtaining an ordered bipartite decomposi-
tion (OBD) for an input pattern, which is necessary for the theoretical
guarantees of the proposed approach to hold.

• A demonstration of how the count of pattern occurences in a graph
can be used to collect the sufficient statistics needed for parameter
estimation in SRL.

• An extensive experimental comparison of the proposed algorithm
and two baseline algorithms on the application of parameter
estimation in logical Bayesian networks (LBNs) (Fierens, Blockeel,
Bruynooghe, et al. 2005), an SRL formalism also used in (Ravkic et al.
2012).

• An experimental assessment of the approach on power law graphs, as
opposed to the original theoretical work that only considered random
graphs.

• An analysis of the influence of the input pattern and data graph prop-
erties on the performance of the proposed and baseline approaches.

• Two empirical demonstrations showing that the proposed approach:
a) converges fast even for large patterns for which exact search fails to
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finish in a given time, b) exhibits good performance even for patterns
not covered by the theoretical guarantees of the approach.

Using LBNs as an SRL formalism to perform parameter estimation via
graph sampling is just an arbitrary choice and other SRL formalisms can
be used as well. In essence, the idea behind this approach is simple:
the relationships between objects can be represented as graphs and
approximately counting graph embeddings in larger datasets can be used
to efficiently collect the sufficient statistics.

2. Our second main contribution are hybrid relational dependency net-
works (HRDNs), a formalism that upgrades relational dependency net-
works (RDNs) (Neville and D. Jensen 2007), to hybrid domains. Relational
dependency networks are a template language for creating propositional
dependency networks (Heckerman et al. 2001) that approximate a joint
probability distribution over a set of variables. This contribution includes:

• The syntax and semantics of hybrid relational dependency networks.
• A demonstration of local models that can be used for representing

the conditional probability distributions that parametrize hybrid
dependencies.

• A discussion of approximate inference for HRDNs.

3. Our third contribution is to propose the novel learner of local models
(LLM) structure learning algorithm for hybrid relational dependency
networks. Since we upgrade relational dependency networks, we inherit
their efficient structure learning method that optimizes the conditional
probability distribution for each variable independently. This contribution
also includes:

• A discussion on parameter estimation and scoring strategies.
• An experimental comparison of our approach applied to both hybrid

and discretized domains to Markov logic networks (Domingos and
Richardson 2004), an SRL approach for modelling discrete data.

• An empirical demonstration that learning directly in hybrid domains
instead of discretizing them prior to learning results in better models.

4. The fourth and final main contribution presented in this dissertation
is the algorithm to learn the structure and the parameters of dynamic
distributional clause (DDC) program representing a hybrid relationalMarkov
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decision process. In order to realize this, we learn HRDNs (Ravkic et al.
2015) as a proxy to obtain DDCs. Even though this contribution relies
on the formalism of HRDNs, in order to meet the needs for handling
dynamic hybrid relational models we perform the following upgrades:

• The models are parametrized with relational regression trees. In
the initial representation of HRDNs, the models were parametrized
with conditional probability tables.

• We introduce relational features that are able to represent arithmetic
operations between low-level features. We refer to them as equational
features.

We then provide the following principal components of this contribution:

• The DDC Tree Learner, an algorithm for learning DDCs in hybrid
domains.

• A real-world robotics experiment with a robot arm executing differ-
ent tasks on a number of objects, which represents an interesting
application for SRL.

• A real-world evaluation of the learned state transition model by
using HYPE (Nitti, Belle, et al. 2015), an existing planning algorithm
for hybrid dynamic relational domains.

• A demonstration that the models learned with our approach
generalize to unseen cases and that they can grasp interesting
relations between objects, which are crucial for accurate prediction
and planning.

1.3 Thesis Structure

This work is positioned in the field of statistical relational learning, which
is concerned with relational, uncertain and, possibly, dynamic and hybrid
domains. In Chapter 2we provide necessary background for the components
of SRL: probability distributions, modelling propositional data, modelling of relational
data,modelling of statistical relationalmodels, andfinallymodelling dynamic relational
data. For illustrating the attribute-value data format, often used in machine
learning, we used the real-world data and models obtained in the kinesiology
study we did in:
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Irma Ravkic, Benjamin Wittevrongel, Wannes Meert, Jesse Davis, Tim Aderik
Gerbrands, Benedicte Vanwanseele “Predicting gait retraining strategies for knee
osteoarthritis”. Workshop paper at ECML-PKDD conference, September 2015,
Porto, Portugal

The next four chapters represent the technical core of this thesis and embody our
fourmain contributions. InChapter 3we introduce and experimentally evaluate
the proposed algorithm for approximately counting pattern embeddings in
graphs, based on the theoretical work of Fürer and Kasiwiswanathan, which
is then showcased on the task of parameter estimation for SRL. This chapter
draws upon the following submission, which is under revision:

Irma Ravkic, Martin Znidarsic, Jan Ramon, Jesse Davis (2016) “Graph sampling
for efficient parameter estimation in statistical relational learning”. ( under the
revision at ECML-PKDD Data mining and Knowledge discovery journal)

Chapter 4 introduces hybrid relational dependency networks (HRDNs), our
proposed upgrade of relational dependency networks to hybrid domains.

In Chapter 5 we introduce the learner of local models (LLM), algorithm for
learning the structure of HRDNs. Chapters 4 and 5 are based on the following
published work:

Irma Ravkic, Jan Ramon, Jesse Davis (2015) “Learning relational dependency
networks in hybrid domains”. In: Machine Learning Journal 2015, volume 100,
pp. 217 - 254

In Chapter 6 we introduce an approach for learning dynamic hybrid relational
models and then using the learned models for planning in a real-world robotics
application. The work in this chapter is published as:

Davide Nitti*, Irma Ravkic*, Jesse Davis, Luc De Raedt (2016) “Learning the
structure of dynamic hybrid relational models”. In Proceedings of the 22nd
European Conference on Artificial Intelligence (ECAI) 2016, Volume 285,
pp.1283-1290

(* The contributions of this work are equally shared by the authors.)

Finally, in Chapter 7 we summarize our work, provide the main conclusions
and give possible directions for future work.





Background

2

"I don’t tell you how to tell me what to do, so
don’t tell me how to do what you tell me to do."
Bender (Futurama)

The previous chapter positioned ourworkwithin the field of statistical relational
learning and gave a detailed introduction to our contributions. This chapter
lays the foundations needed to present these contributions.

SRL combines two components to model complex domains. One component
is the probability distribution for which we give the foundations in Section 2.1.
The second component upgrades the propositional representations, which we
discuss in Section 2.2, with the notion of related object classes. This upgrade to
relational domains can be accomplished by using relational databases or first-order
logic presented in Section 2.3. After introducing these two components of SRL,
we combine them together in Section 2.4 by presenting how to model statistical
relational models. For the purpose of this dissertation we focus on how to model
and upgrade dependency networks, a propositional graphical model, to relational
dependency networks by using a (restricted) first-order logic. We finalize this
chapter by providing the background on dynamic relational hybrid models and

9
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planning in Section 2.5. This involves a brief introduction to Markov decision
processes (MDPs) and distributional clauses (DCs).

2.1 Probability Distributions

In this section we provide a short introduction to the probability theory notions
used throughout this dissertation. A more in depth introduction can be found
in Neapolitan (2003).

A random variable is a variable that can take on a set of possible values, each of
which is associated with a specific probability or density. For example, when
throwing a die, each of the six values of the die occurs with the probability of
1/6. We denote random variables with capital letter (e.g., X). The value or state
of a random variable is denoted with a lower case letters (e.g., x). Each random
variable has an associated range of values it can take denoted with range(X).
The probability that a variable X takes a value x ∈ range(X) is denoted with
P(X = x). We denote sets of random variables by boldface capital letters (e.g.,
X). The Cartesian product of the ranges of all variables in X represents a sample
space denoted as Ω and represents joint assignments to the variables in X. A
particular instance of Ω is denoted by boldface lower case letters (e.g., x).

Depending on the range, random variables can be discrete or continuous. A
discrete random variable takes values in a countable set. For example, a die
represents a discrete random variable which when tossed can show one of its
six possible values. In contrast, a continuous random variable has an infinite
number of possible values. For example, room temperature can be a continuous
variable taking on real values (e.g., 37.1◦).

The probability that a random variable X will take a value xi and that another
random variable Y will take a value yi is called the joint probability of X = xi
andY = yi and is denoted as P(X = xi, Y = yi). Nextwe define a joint probability
distribution over a set of discrete variables, and joint probability density over a set
of continuous variables.

Definition 1. (Joint probability distribution) Given a set of discrete random
variables X, and the set of all assignments Ω to the variables in X, a joint probability
distribution P(x) is a function that maps each assignment x ∈ Ω to a real number
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such that:

∀x ∈ Ω : 0 ≤ P(x) ≤ 1

and

∑
x∈Ω

P(x) = 1

Definition 2. (Joint probability density) Given a set of continuous random
variables X, and the set of all the assignments Ω to the variables in X, a joint probability
density p(x) is a function that maps each assignment x ∈ Ω to a real number such
that:

∀x ∈ Ω : p(x) ≥ 0

and ∫ +∞

−∞
p(x)dx = 1

If two random variables X and Y are independent their joint probability
distribution is expressed as P(X, Y) = P(X) · P(Y).

Definition 3. (Conditional probability distribution) Given a joint probability
distribution P(X, Y), the conditional probability distribution of X given Y is defined as

P(X|Y) = P(X, Y)
P(Y)

and is undefined if P(Y) = 0.

A similar definition holds for a conditional density function. The difference is
that P(X, Y) and P(Y) are replaced with densities denoted p(X, Y) and p(Y),
respectively.

Conditional dependencies play a crucial role in probabilistic reasoning systems.
First, instead of being interested in the joint probability of events, in real life we
are mostly interested in obtaining the probability of an event conditioned on
some other event serving as evidence. Second, as we will see in the following
section when we introduce probabilistic graphical models, the conditional
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probabilities are used to factor joint probability distributions leading to efficient
representations.

2.2 Modelling Propositional Data

Since its beginning, machine learning approaches have focused on so-called
propositional or attribute-value representations (Mitchell 1997). There are many
approaches in machine learning that operate on this format of data, such as
decision tree induction (Quinlan 1986), rule induction (Clark and Boswell 1991),
and artificial neural networks, amongst others. In this section we illustrate these
representations, and we introduce probabilistic graphical models (PGMs) (Koller
and Friedman 2009) as powerful tools for representing propositional data. In
this dissertation we rely on dependency networks (DNs) (Heckerman et al. 2001),
a PGM that offers an efficient learning strategy.

2.2.1 Single-Table Representation

In many machine learning applications it is natural to assume that data comes
in a single table with the attribute-value format where each row represents an
example or an instance and columns represent attributes of those instances.

Example 1. Consider a kinesiology scenario (Ravkic, Wittevrongel, et al. 2015) of
tracking a number of healthy patients running with a number of sensors positioned on
their body for the purpose of recording the data characterizing their habitual gait. Each
patient is then labeled by an expert with a gait retraining strategy that best reduced knee
osteoarthritis. The instructions for the patients are to either lean right with the torso
(Trunk Lean) or to move the right knee inwards/medial (Medial Thrust). The natural
choice for representing this data is the single-table format where each row represents
one patient and each column represents attributes describing the patients’ habitual gait.
A small example of this data is provided in Table 2.1. The task would be to predict the
best retraining strategy for a patient given her gait attributes.

The attribute-value data format is also called propositional because each row
or example in the single-table format can be described with a fixed-size set
of Boolean attributes or propositions. Propositions are atomic formulas of
propositional logic and can be true or false. An interpretation is a function that
assigns truth values to the propositions, and each example is one interpretation.
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Patient name Tibia angle Trunk angle Knee abduction ... Best strategy
Pete 5.5 3.9 7.0 ... Medial Thrust
Ann 6.3 -1.6 1.5 ... Trunk Lean
Mary 6.7 5.6 -2.4 ... Trunk Lean

. . .

Table 2.1: An illustration of an attribute-value format that in a single table
captures a scenario from kinesiology experiment to predict the best gait
retraining strategy (Best strategy) given a number of attributes of patients’ casual
gait.

Usually a closed-world assumption (CWA) is made meaning that the values of the
attributes that are not specified in the data are considered to be false.

Example 2. The first instance or row in Table 2.1 can be represented as an ordered
set of the following propositions {Patient name=Pete, Tibia angle = 5.5,
Trunk angle = 3.9, Knee abduction = 7.0, . . . , Best Strategy=Medial
Thrust}. Under CWA all other propositions for this example, such as Tibia angle=2.5,
are false.

Decision Trees

One can apply a number of predictive or descriptive propositional machine
learning approaches to the single-table attribute-value format of the data. The
predictive approaches aim at learning the model that is good at predicting
a target attribute on unseen data. Descriptive approaches on the other hand
do not consider any attribute to be the target but they aim at describing the
data or finding general regularities in the data. In this dissertation we use a
mixed approach: we aim at extracting general regularities from the data, but
underneath we use predictive models to accomplish this.

A widely used predictive model in machine learning are decision trees (Quinlan
1986) consisting of internal nodes which represent tests performed on attributes,
and leaf-nodes which decide the label of an instance. Decision trees classify
instances by sorting them from the root of the tree to a leaf-node reached by
following the path established by successful internal node tests. A decision tree
that was learned on the full kinesiology data is shown in Figure 2.1. It can be
seen that two attributes are selected by the decision tree learning algorithm to
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be the internal tests. As these are numeric attributes, they are discretized and
each branch leads to a specific prediction for the best gait retraining strategy.

There are different tasks in predictive learning depending on whether the target
attribute is discrete or continuous. For predicting discrete target attributes one
uses classification, and for predicting a continuous target attribute one uses
regression. Consequently, in case the class attribute is continuous the tree is a
regression tree such that the leaves contain numbers. In other cases we wish to
build a decision tree that would be used to estimate the probability distribution
over the target attribute given other attributes. The leaves of this kind of
regression tree would contain probability distributions which makes them
probability trees. For example, in the tree in Figure 2.1 the leaves would contain
a probability distribution over Best strategy values. One branch might state that
the probability distribution is [0.2, 0.8] for values [Medial Thrust, Trunk Lean]
given that −11.5 < Knee abduction < −6.0.

Figure 2.1: A decision tree learned from the dataset in Table 2.1.

Popular descriptive approaches in machine learning are probabilistic graphical
models, and we introduce them in more detail in the following section.

2.2.2 Probabilistic Graphical Models

Probabilistic graphicalmodels (PGM) (Koller and Friedman 2009) are amarriage
between probability theory and graph theory. They represent a neat framework
for compactly representing joint probability distributions with simpler factors
obtained by exploiting the conditional independencies between random
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variables. The need for this modularity comes from the fact that the number of
parameters needed to encode a joint probability distribution is exponential in
the number of random variables. For example, for n binary random variables we
would need 2n − 1 independent parameters to parametrize the joint probability
distribution (the nth is determined from others since probabilities need to sum
to one). The most popular PGMs are Bayesian (Pearl 1988) and Markov (Bishop
2006) networks. We will provide a very short introduction to them, because
they are not the main focus of this dissertation. However, we will examine
dependency networks(DNs) (Heckerman et al. 2001) in more detail, which is a
PGM that serves as one of the foundations for this dissertation.

Bayesian Networks

Given a set of random variables, a Bayesian network (Pearl 1988) is a directed
acyclic graph G = (V, E) where the nodes V represent a set of random
variables X and the edges represent direct dependencies between the random
variables. A Bayesian network graph is parameterized with a set of conditional
probability distributions (CPDs) for each Xi ∈ X given its parents in the graph,
P(Xi | Parents(Xi)). A probability of a specific value assignments to Xi and
Parents(Xi) is denoted P(Xi = xi | parents(Xi)).

(a) (b) (c) (d)

Figure 2.2: Examples of simple dependency graphs that represent a) the
Bayesian network encoding P(X, Y) = P(X)P(Y|X), b) the Bayesian network
encoding P(X, Y) = P(Y)P(X|Y), c) the undirected graph representing the
Markov network, d) the bidirectional dependency graph with P(X|Y) and
P(Y|X) conditional distributions.

The structure of a Bayesian network entails some conditional independencies: each
variable is conditionally independent of all its non-descendants in the graph
given the value of all its parents. This property enables a factorization of the
joint probability distribution over X in the following way. Given G together with



16 BACKGROUND

CPDs for each random variable, the joint probability for a set of assignments x
for X is calculated as:

P(x) =
N

∏
i=1

P(Xi = xi|parents(Xi)) (2.1)

Examples of the simplest Bayesian networks are graphs in Figure 2.2a and
Figure 2.2b and the joint probability distribution encoded by these graphs are
P(X, Y) = P(X)P(Y|X) and P(X, Y) = P(Y)P(X|Y), respectively.

Example 3. Consider the Bayesian network in Figure 2.2a and the following parameters
if we assume that X and Y are Boolean variables: P(X = True) = 0.2, P(Y =

True|X = True) = 0.5, and P(Y = True|X = False) = 0.2. Note that we can
extract the parameters of other assignments by using the rule of probability theory
stating that given a specific condition the probabilities of an event and its negation
should sum up to 1. Hence, it holds that P(X = False) = 1− P(X = True), and
P(Y = False|X = True) = 1− P(Y = True|X = True), etc. The joint probability
distribution of this network is shown in Table 2.2 and it can be seen that the joint
probabilities over all the assignments (the joint probability distribution) sum to 1. That
is, we say that the Bayesian network encodes the proper joint probability distribution
over its variables.

X Y P(X, Y) = P(X) · P(Y|X)

True True 0.2 · 0.5 = 0.10
True False 0.2 · 0.5 = 0.10
False True 0.8 · 0.2 = 0.16
False False 0.8 · 0.8 = 0.64

Table 2.2: The joint probability distribution for the Bayesian network in
Figure 2.2a and parameters given in Example 3.

Markov Networks

AMarkov network (Bishop 2006) uses an undirected graph G = (V, E) where
the nodes in V represent a set of random variables X and the edges in E
correspond to probabilistic interaction or correlation between neighboring
random variables. The Markov network is parametrized by a set of potential
functions Φ. These potential functions are defined over cliques which represent
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complete subgraphs of G. Let C be a set of cliques of a Markov network G. Each
clique c ∈ C consists of a set of nodes Xc and is associatedwith a clique potential
φc(xc) which is a non-negative function over the possible assignments to xc.
Given a Markov network graph G and a set of potential functions Φ, the joint
probability over random variables of G is expressed as:

P(x) =
1
Z ∏

c∈C
φc(xc) (2.2)

where Z = ∑X ∏c∈C φc(xc) is the normalizing constant, which ensures that P(X)
is a proper joint probability distribution. Note that for the joint probability
distribution of Bayesian networks in Equation 2.1 it holds that Z = 1 since the
acyclicity property ensures the proper joint probability distribution.

Example 4. A simple example of a Markov network with one clique over X and Y
variable is shown in Figure 2.2c. Let the factors of this network be: φc(X = True, Y =

True) = φc(X = False, Y = False) = 0.6 and φc(X = True, Y = False) =

φc(X = False, Y = True) = 0.4. It holds for this example that Z = 2. To obtain the
joint probability, each factor needs to be normalized. For example, P(X = True, Y =

True) = 0.6/2 = 0.3. This indeed ensures that the probability distribution sums to
one: ∑x P(x) = 0.6/2 + 0.3/2 + 0.4/2 + 0.4/2 = 1.

Next we introduce dependency networks in more detail because they will serve
as the basis for the work we do in this dissertation.

Dependency Networks

Unlike Bayesian networks and Markov networks, dependency networks
(DNs) (Heckerman et al. 2001) approximate a joint probability distribution over
a set of random variables with a set of conditional probability distributions
(CPDs) learned independently. A DN can be represented visually as a directed
graph G = (V, E), containing one vertex VX for each randvar X ∈ X and a
directed arc from vertex VX to vertex VY iff X ∈ Parents(Y). Each randvar
X ∈ X has an associated conditional probability distribution P(X | Parents(X)),
where Parents(X) ⊆ X \ {X}.

Example 5. A simple example of a dependency network is shown in Figure 2.2d. Note
that the edge between X and Y is bidirectional. There are two CPDs quantifying the
dependencies in this example: P(X|Y) and P(Y|X).
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A dependency network is said to be consistent if there exists a probability
distribution P that is consistent with the conditional distributions of the DN.
This means that each of the CPDs can be extracted from the joint distribution
by applying the rules of probability. If there is no such probability distribution,
the DN is called a general dependency network and in the remainder of the
text we will use the term dependency networks when we think of general DNs.
Moreover, the product of CPDs in a general dependency network does not give
the joint probability of variables, but their pseudo-likelihood (Besag 1974):

PL(x) =
N

∏
i=1

P(Xi = xi|parents(Xi)). (2.3)

This means that dependency networks do not impose that CPDs factor the
joint probability distributions and calculating the normalization constant in
Equation 2.2 is avoided. The reader interested in literature on compatible
conditionals and consistent distributions should read the work of Arnold
and Press (1989). Next, we illustrate the consistent and inconsistent DNs in
Example 6.

Example 6. Consider the following CPTs (Lowd 2012) for the dependency network in
Figure 2.2d:

P(X = True|Y = True) = 4/5 P(X = True|Y = False) = 2/5
P(Y = True|X = True) = 2/3 P(Y = True|X = False) = 1/4

There exists a joint probability distribution

P(X = True, Y = True) = 0.4 P(X = True, Y = False) = 0.2
P(Y = True, X = True) = 0.1 P(Y = True, X = False) = 0.3

consistent with the CPDs above. The reader can check that for each assignment to values
of X and Y it holds that P(X|Y) = P(X, Y)/P(Y) and P(Y|X) = P(X, Y)/P(X).

Now consider the following DN:

P(X = True|Y = True) = 4/5 P(X = True|Y = False) = 1/5
P(Y = True|X = True) = 1/5 P(Y = True|X = False) = 4/5
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The CPD for P(X|Y) encourages X and Y to be equal, while the CPD for P(Y|X)

encourages X to be Y different. Hence, this DN is inconsistent and there does not exist
a joint distribution from which these CPDs can be extracted.

Parameter Learning. For a given dependency Xi | Parents(Xi) the CPD can
be any probabilistic regression or classification model and its parameters are
estimated by performing parameter estimation. Parameter estimation is based on
themaximum likelihoodmethod which finds the set of parameters that maximize
the likelihood, i.e., probability of data given the model. The standard choices
for modelling the CPDs are the following:

• Conditional probability table (CPT) for a dependency Xi | Parents(Xi)

provides the probability distributions over values of Xi given the
instantiations to the variables in the parent set Parents(Xi). The max-
imum likelihood estimation of the CPT parameters from data is quite
straightforward. For each possible joint instantiation parents(Xi) to the
variables in Parents(Xi) we provide probabilities for each value xi of Xi
by counting in the following way:

Pest(Xi = xi | parents(Xi)) =
Nxi ,parents(Xi)

Nparents(Xi)
(2.4)

where Nxi ,parents(Xi)
represents the number of data instances inwhich Xi =

xi and Parents(Xi) = parents(xi). In order to avoid potential problems of
extreme probability values of 0 one can use the Laplace correction:

Pest(Xi = xi | parents(Xi)) =
Nxi ,parents(Xi)

+ 1

Nparents(Xi)
+ |range(Xi)|

(2.5)

where range(Xi) represents a set of values that variable Xi may attain,
and |range(Xi)| represents its cardinality.

• Logistic regression gives the probability of a discrete random variable
conditioned on a number of discrete or numeric predictors.More generally,
if Xi can take on any of the discrete values {x1, . . . , xK}, then the
probability for Xi = x1, Xi = x2, . . . , Xi = xK−1 given the instantiation of
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the parents, parents(Xi), is:

P(Xi = xk | parents(Xi)) =
exp(ωk0 + ∑yi∈parents(Xi)

ωkyi
yi)

1 + ∑K−1
j=1 exp(ωj0 + ∑yi∈parents(Xi)

ωjyi yi)

(2.6)

When Xi = xK, it is:

P(Xi = xk | parents(Xi)) =
1

1 + ∑K−1
j=1 exp(ωj0 + ∑yi∈parents(Xi)

ωjyi yi)

(2.7)

To avoid overfitting when training logistic regression the solution is to
introduce regularization term which penalizes large values of the weights
W that parametrize the logistic regression. The regularized approach to
learning a logistic regression function is to choose the weights such that
the conditional data likelihood is maximized:

W ← arg max
W

∑
l

lnP(xl
i |parents(Xi)

l , W)− λ‖W‖ (2.8)

which adds the penalty proportional to the squared magnitude of W
and where xl

i and parents(Xi)
l represented the values of the respective

variables in the lth training example, and λ represents a constant that
gives strength to the term.

• Probability trees consist of the internal nodes representing the binary
tests, and leaves containing probability distributions for the target variable
Xi. The probability in a leaf K is calculated as

Kxi ,parents(Xi)
Kparents(Xi)

, where
Kxi ,parents(Xi)

represents the number of data instances in the leaf K. The
Laplace correction can also be applied in the same way as for CPTs.

A problem with using CPTs as the representation for conditional probability
distributions is their inefficiency for a larger number of parents: the number
of independent parameters needed to encode a CPT grows exponentially with
the number of parents. Probability trees offer a sparser representation of CPDs
by capturing context-specific independence (Boutilier et al. 1996).

Structure Learning. There are three aspects that need to be addressed when
performing structure learning. First, one must determine the space of candidate
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structures. Second one needs to evaluate the “goodness” of different candidate
structures. And finally, one needs to define an effective search procedure that
finds a good structure. In this thesis we consider a fully observable case and
we make a closed world assumption. When learning DNs one optimizes the
logarithm of Equation 2.3 or the pseudo-loglikelihood (PLL). The PLL of an
assignment x to randvars X of a DN is calculated as:

PLL(x) =
N

∑
i=1

log [P(Xi = xi|parents(Xi))]. (2.9)

Optimizing the PLL has the advantages that it can be decomposed into
maximizing the loglikelihood for each variable independently and calculating
it does not require computing the partition function (that is, summing over
all possible configurations of the randvars). This has a significant impact on
the computational efficiency of the search algorithm. Note that this learning
procedure is not possible for Bayesian networks since it could lead to a cyclic
structure which is not allowed. In other words, learning the structure of a DN
fromdata requires determining Parents(X) for each X ∈ X (i.e., the dependency
structure) and the parameters of the CPD for X that maximize PLL. For example,
one can consider algorithms based on greedy hill-climbing search driven by
the score metric: a current candidate structure is maintained and iteratively
improved until the score does not increase (Getoor, Friedman, et al. 2001).

One issue with structure learning of probabilistic graphical models is overfitting:
if we perform likelihoodmaximization, themost complex structures will always
be favored. There are ways to avoid this problem. First, using the Bayesian
approach (Heckerman 1999) that uses a prior distribution over the parameters
can smooth the irregularities in the training data. Second, one can add hard
constraints by selecting a less expressive hypothesis class (e.g., limit the number
of parents in the parent set). Third, a simpler model can be preferred which
corresponds to the principle of Occam’s razor: introduce a penalty term that
penalizes complex structures. One such adaptation of the scoring function
is the minimum description length (MDL) principle (Schwarz 1978), based on
ideas from information theory, which leads to the best compression of the data.
Finally, the objective function can be augmented with a regularization term.

Inference. Learning each CPD independently could result in an inconsistent
model. That is, there may be no joint probability distribution such that it is
possible to apply the rules of probability to the joint distribution in order to
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derive each learned CPD. Regardless of whether a DN is consistent, applying
an ordered Gibbs sampler to the DN’s CPDs results in a unique distribution,
given that each variable in the DN is discrete and each CPD in the DN is
positive (Heckerman et al. 2001). If the DN is consistent, then its conditional
distributions must be consistent with a Markov network, and Gibbs sampling
converges to the same distribution as that of the Markov network. In case of
an inconsistent DN, the stationary distribution may depend on the order in
which variables are sampled, and the joint distribution determined by the Gibbs
samples may be inconsistent with the CPDs.

Ordered Gibbs sampling randomly selects the initial value for each random
variable, and then in each Gibbs sweep iterates over the variables in a
fixed order and resamples the value of each Xi from its local distribution
P(Xi|Parents(Xi). If the DN is consistent, it generates the joint probability
distribution. If the DN is inconsistent, this procedure is called an ordered pseudo-
Gibbs sampler (Heckerman et al. 2001).

2.3 Modelling Relational Data

A disadvantage of the attribute-value representation is that many real-world
problems, such as ones in chemoinformatics (King et al. 2001), are relational
and it is often hard, too lossy and incomprehensible to force the data about a
particular example into a single row. This approach is usable for simple domains
such as presented in Table 2.1. However, a more complex problem (e.g., the
patients are related, a single patient has multiple observation sessions under
different conditions and labs) cannot be represented by a single table. In this
case one would need to use representations adequate for modelling relational
domains.

2.3.1 Relational Data and Databases

A relational database is a database that consists of multiple related tables. Each
table represents a relationship between classes of objects or their attributes.
Each entry in a table is characterized with a unique identifier called the primary
key. The connection between tables is accomplished by means of foreign keys:
one or more columns in a table that are primary keys in some other table.
The relationships between tables can be of several types. If one row in a
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table corresponds to exactly one row in another table, we call it a one-to-one
relationship. In case one row in a table corresponds to multiple rows in another
table we call it a one-to-many relationship. Finally, the connection when multiple
rows in one table correspond to multiple rows in another table is called a
many-to-many relationship.

We will now introduce a toy example of a slightly modified university domain
introduced by Getoor, Friedman, et al. (2001) that will be used as an example
throughout the thesis.

Example 7. Consider a university consisting of students, professors and courses.
Students have an intelligence and can be friends with other students. A student can take
a number of courses and express her satisfaction with each course she took and for which
she got a grade. A course has a specific difficulty and a designated number of hours a
student should spend on preparing it. Each course is taught by a professor who has a
specific ability. A relational schema and a small number of examples is presented in
Table 2.3. The underlined columns represent primary keys, and bold column names
denote foreign keys. Note that the foreign key in the RECORD table is a combination
of the student and the course names. We can notice a couple of relationships between
the tables. These relationships are accomplished through foreign keys. For example, the
student column is the primary key in the STUDENT table, but a foreign key in the
FRIENDS and the RECORD tables. TEACHES and RECORD are an example of a
many-to-many connection: each professor can teach multiple courses, and a course can
be taught by multiple professors; also each student can take multiple courses, and a
course can be taken by multiple students.

Relational data can be processed in three different ways.

1. The first way is to flatten or propositionalize (Kramer et al. 2000) the
relational data prior to its usage, and thus obtain the attribute-value
format we illustrated in Section 2.2.1. Advantages of this approach are
its simplicity and the fact that there exists an abundance of propositional
learning approaches. However, one disadvantage of this approach is that
it produces propositional data with many attributes. This occurs due to
the complicated relationships that might exist between objects, such as
one-to-many and many-to-many relationships.

2. Instead of propositionalizing data prior to learning, features can be
constructed while learning and constructed in such a way that they
represent attributes of general object classes and relations between them.
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STUDENT
student intelligence
bob 105.0
ann 115.0
mary 107.0
jerry 112.0

PROFESSOR
professor ability
john high
susan medium

TEACHES
professor course
john biology
john chemistry
susan math

COURSE
course difficulty numHours
biology medium 90.0
math high 140.0
chemistry high 100.0

FRIENDS
student student
bob ann
bob mary
ann jerry

RECORD
recordID student course grade satisfaction
rec1 bob biology low medium
rec2 bob math medium high
rec3 ann biology high high
rec4 ann math high medium

Table 2.3: A simplified example of a relational database inspired by the
university example described in Example 7.

A tool that would enable this kind of modelling is first-order or predicate
logic. A natural way to solve these tasks is the by using the inductive
logic programming (ILP) approaches (Muggleton and De Raedt 1994).
ILP is a subfield of machine learning that addresses relational learning.
In principle, ILP allows induction over relational structures which can
make the learning intractable. Thus, different heuristics are used in ILP
methods (Muggleton and De Raedt 1994) to control the search, and
learn the concept efficiently. While there are a number of approaches
for learning ILP programs, unless restrictions on the hypothesis space are
made, the learning might be intractable, inflexible and inefficient in large
scale domains.

3. Another option is the combination of relational learning with proposi-
tional approaches (Roth and Yih 2001; Davis, Burnside, Castro Dutra, et al.
2005; Landwehr, Kersting, and De Raedt 2005; Landwehr, Kersting, and
Raedt 2007), which is the strategy we adopt in this thesis as well. The
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general idea behind this approach is to encode relational structures as
propositional representations in order to support flexible and efficient
learning and evaluation, but to express the learned concepts in relational
representations. While in ILP relational features are generated as a part of
the structure search, in this method, the relational features are calculated
up front.

2.3.2 Representations Based on First-Order Logic

Unlike propositional logic where we only have propositions that can be true
or false, in first-order logic the notion of an object class is introduced, which
together with quantification (existential and universal) represents an adequate
tool (Lloyd 2012) to compactly represent complex relational domains.

In this dissertation we use a variation of datalog, a type of restricted first-order
logic. The alphabet of our language consists of three types of symbols: constants,
logical variables, and predicates. A constant represents a specific object and
is denoted with a lower-case letter (e.g., pete). A logical variable (logvar) X is a
variable ranging over the objects in the domain. Logical variables may be typed
in which case they represent placeholders for a specific subset of objects in
the domain. Predicate symbols P/n, where n ≥ 0 is the arity of the predicate,
represent properties of objects or relations among objects. Each predicate P has
a finite range, denoted range(P). In traditional logic, the range of a predicate is
{ f alse, true}. However, in this thesis we allow a predicate to have a categorical
or numeric range. For example, the range of a student’s intelligence could be
{low, med, high} or a range that is the interval of [0, 180]. An atom is of the form
P(t1, . . . , tn) where P/n is a predicate and each ti is a constant or a logvar. In a
typed language every argument position of an atom has a type. For example, in
atom grade(S, C) we can constraint that logvar S ranges only over students and
C only over the courses. The range of an atom is the range of its predicate. A literal
is an atom or its negation. An atom is ground if all its arguments are constants.
A substitution, denoted {X1/t1, . . . , Xn/tn}, maps each logvar Xi to ti, where ti
is a logvar or a constant. A grounding substitution θ for an expression (e.g., an
atom or a set of logvars) maps each logvar occurring in that expression to a
constant. The set of all grounding substitutions for an expression E is denoted
grsub(E). The result of applying a substitution to an atom a is denoted aθ.

Given a relational database, we can built a number of rules that define its
content, but were not explicitly represented in the database. The rules in logic
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programming can be expressed as normal clauses of the form H← L1, L2, . . . , Ln
where H is an atom and L1, L2, . . . , Ln are literals. The rules can also be expressed
with definite clauses, which are normal clauses containing no negated literals.

Example 8. Based on the relations STUDENT and RECORD in Table 2.3 we can
build the following rule

grade(S,C,low)← difficulty(C,medium)

which states that the grade of a student for a course is “low” if the difficulty of the course
is “medium”.

Clause H← has an empty body. It represents an assertion or a fact and is used
to specify the tuples of the relational database. The clause ← L1, L2, . . . , Ln
represents a goal or a query. In the following example we illustrate how we can
represent a relational database with a set of facts.

Example 9. Relational database in Table 2.3 has three possible entities: students,
courses and professors. Tables containing a list of instances of these entities are contained
in tables STUDENT, COURSE and PROFESSOR, respectively. We can start the
conversion by first listing the domain with the following facts:

student(bob). course(math).
student(ann). course(bio).
student(mary). course(chemistry).
student(jerry). professor(john).

professor(susan).

Next, we represent the attributes of entities. For each entity attribute we create a
predicate. Then for our relational data we would have:

intelligence(bob,105.0). difficulty(chemistry,high).
intelligence(ann,115.0). numHours(math,140.0).
intelligence(mary,107.0). numHours(biology,90.0).
intelligence(jerry,112.0). numHours(chemistry,100.0).
difficulty(math,high). ability(john,high).
difficulty(biology,medium). ability(susan,medium).

Finally, we convert relationships presented in tables TEACHES, RECORD and
FRIENDS. Note that we can split the RECORD table in two relationships, one for



MODELLING RELATIONAL DATA 27

grade and one for satisfaction. However, the question is what to do with the primary
key of the RECORD table because it only appears in this particular table and it is not a
foreign key anywhere else. The question is whether we really need to model recordID for
this particular problem. If we assume that there is at most one record a student has for a
course, we can then combine student and course to a unique ID for this table. Note that
we denote whether a student has a record for a course with predicate takes/2. Hence,
we will have the following facts:

teaches(john,biology). grade(ann,biology,high).
teaches(john,chemistry). grade(ann,math,high).
teaches(susan,math). satisfaction(bob,biology,medium).
takes(bob,biology)). satisfaction(bob,math,high).
takes(bob,math). satisfaction(ann,biology,high).
takes(ann,biology). satisfaction(ann,math,medium).
takes(ann,math). friends(bob,ann).
grade(bob,biology,low). friends(bob,mary).
grade(bob,math,medium). friends(ann,jerry).

Note that not all the facts are listed. For example, takes(bob,chemistry) is not listed
because it has value false. By making the closed-world assumption we assume that
everything that was not listed in the database is false or non-existing. For example, if a
student does not take a course, then she does not have a grade for it.

2.3.3 Relational Queries or Patterns

A query represents a method for extracting relevant information from the
database. To put it differently, a query is a pattern, and one might be interested
in finding whether or how many times the pattern occurs in the database. For
example, one can count the instantiations of a graph pattern in graph data
and thus obtain the sufficient statistics for performing parameter estimation
(see Chapter 3). When doing structure learning, the focus is more on how to
construct the space of queries in order to extract the patterns of interest. In this
section we will give different representations of patterns and how these queries
are answered in order to obtain the satisfying instances.

In database systems, queries are answered by using a special data manipulation
languages such as the structured query language (SQL) (Date and Darwen 1997).
Query in SQL makes use of the declarative SELECT statement which retrieves
data from one or more tables, or expressions. Relational features can thus be
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represented as SQL queries (Popescul and Ungar 2003). In logic programming
the queries are answered by building chains of deductions that combine rules
and factual information, in order to prove or refute the validity of the initial
query. In this dissertation we use Prolog (Bratko 2001), a logic programming
language for representing relational data and expressing relational queries.
Logically, the Prolog engine tries to find a resolution refutation of the negated
query with the mechanism called SLD resolution. If the negated query can be
refuted, it follows that the query, with the appropriate substitution, is a logical
consequence of the program. In that case, all generated variable bindings are
reported to the user, and the query is said to have succeeded.

Example 10. For example consider the simple database in the Example 9 and a query
expressed in Prolog:

: − grade(bob,C,Value), satisfaction(bob,C,high)

With this query we ask for all the grade and course tuples of bob for which he has high sat-
isfaction. The substitutions that satisfy this query are θ = {C/math, Value/medium}.
In case we are interested in only the values of the grades in this query we can use a
special-purpose predicate in Prolog: findall(Template, Condition, Bag) in the following
way:

findall(Value,(grade(bob,C,Value),satisfaction(bob,C,high)),Bag)

with which we collect all Value to the Bag for which the Condition holds.

We would obtain the result to this query from the table RECORD with the following
SQL-based query:

SELECT grade FROM RECORDWHERE student=bob, satisfaction=high

2.4 Modelling Probabilistic Relational Data

In Section 2.2 we discussed probabilistic graphical models, the graph-based
propositional representations that encode probability distributions over vari-
ables, but are not able to capture the relational patterns that hold between them.
Consequently, in the previous section we discussed representations based on
first-order logic that are able to represent relations, but not probabilities. In
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this section we discuss statistical relational learning (SRL), which combines
notions from relational representations and uncertainty. We present relational
dependency networks in more detail, which is the SRL formalism we will use
as the basis for work in this dissertation.

2.4.1 Statistical Relational Learning

Statistical relational learning (Getoor and Taskar 2007; De Raedt and Kersting
2011; De Raedt, Kersting, et al. 2016) or probabilistic logic programming is a
subfield ofmachine learning and datamining that dealswith relational domains
where observations may be missing or noisy.

There exist two streams of research in SRL. One is to extend logic program-
ming with probabilities and thus staying as close as possible to the logic
formalisms (De Raedt, Kimmig, et al. 2007; Sato and Kameya 1997). The other
one is to “upgrade” the existing probabilistic models with relational and logic-
based elements (Kersting, De Raedt, and Kramer 2000; Neville and D. Jensen
2007; Fierens, Blockeel, Bruynooghe, et al. 2005; Richardson and Domingos
2006). In this dissertation we rely on an SRL formalism that represents the latter
approach, and we introduce it in the next section.

2.4.2 Relational Dependency Networks

Relational dependency networks (RDNs) (Neville and D. Jensen 2007) are an
SRL formalism that upgrades dependency networks, which we introduced in
Section 2.2.2, to relational domains.

Representation

There are several ways to define RDNs, but we use a definition that uses first-
order logic as a template language for constructing propositional dependency
networks. In Section 2.3.2 we briefly reviewed the relevant concepts from a
datalog subset of first-order logic that will be used in this section to define the
syntax of RDNs.
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Similar to LBNs (Fierens, Blockeel, Bruynooghe, et al. 2005), we use a set of
statements or random variable declarations to define the random variables in a
domain:

random(H)← L1, . . . , Ln

where H is an atom, and L1, . . . , Ln is a conjunction of literals. Given a set of
random variable declarations RVD, the set of random variables Φ is the set of all
ground atoms Hθ for which there is a random variable declaration random(H)←
L1 . . . Ln in RVD and a substitution θ such that L1θ, . . . , Lnθ is true given the
background knowledge (amongst others specifying which ground atoms of the
predicates in the body of the random variable declaration rules are true).

Example 11. The random variable declaration for the atom takes(S,C)

random(takes(S,C))← student(S), course(C) (2.10)

creates one randvar for each student S and course C in the domain.

It must always be possible to evaluate the conjunction in the right-hand side
of a random variable declaration, and we will use a closed-world assumption
to guarantee this. As is common practice in many other probabilistic logical
model frameworks (Fierens, Blockeel, Bruynooghe, et al. 2005; Richardson and
Domingos 2006; Getoor, Friedman, et al. 2001), our randomvariable declarations
specify all random variables that are potentially of interest. We ensure this with
relevancy conditions H = not_relevant⇔ ξ, which are a part of the background
knowledge. More precisely, a special value not_relevant is assigned to the atom
H if the constraint ξ is satisfied. We illustrate this in the following example.

Example 12. The random variable declaration

random(grade(S,C))← student(S), course(C) (2.11)

specifies that every student gets a grade for every course, even though a precondition for
obtaining a grade is that student S must take course C. In this case, grade(S,C) would
have a special value not_relevant in its domain, and we would have the background
knowledge

grade(S,C) = not_relevant⇔ takes(S,C) = f alse (2.12)
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Later, when learning the conditional dependency for grade(S,C) on takes(S,C) and
other random variables, we can easily use such hard background knowledge and reduce
the learning problem to the subspace of the values of the parent random variables for
which the dependent random variable is relevant.

Let Hθ be a random variable. Given background knowledge, an interpretation I
assigns a value to Hθ from its range or it assigns the special value not_relevant
iff there exists a relevancy condition H⇔ ξ in the background knowledge and
ξθ is true in I. The set of all groundings of a predicate P that have an assigned
value v 6= not_relevant in interpretation I is denoted as gr(P)I . We refer to the
randvars in gr(P)I as P’s relevant randvars.

Now, we will introduce relational features. For this, we first need to define
aggregation functions.

Definition 4. (Aggregation Function) An aggregation function for a domain D is
a function that maps every finite multiset of elements from D to a single value from a
range R.

For example, mode is an aggregation function that maps a multiset of values
from D to the most frequently occurring value in the multiset.

Definition 5. (Discrete Relational Feature) Let L be a set of logvars, C be a
conjunction of randvar-value tests of the form G = v where G is an atom and
v ∈ range(G), A be an atom, and agg be an aggregation function taking as input
multisets of elements of range(A). Assume the ranges of A, all atoms in both C and
agg are discrete. Then, a discrete relational feature aggL(A, C)(θ,I) is a function that
given any θ ∈ grsub(L) and interpretation I maps A and C to

aggL(A, C)(θ,I) = agg
(
{I(Aθθ′) | θ′ ∈ grsub(Aθ, Cθ) and Cθθ′ holds in I }

)
where we say Cθθ′ holds in I iff ∀(G = v) ∈ C, I(Gθθ′) = v.

A feature’s range is the range of its aggregation function agg. The length of a
feature is equal to the number of randvar-value tests in C plus one (for A). We
will often omit the specification of the substitution θ and the interpretation I.
Also, for brevity we will in some situations denote relational features as f , and
its calculation for a specific substitution and interpretation as f (θ). We will now
illustrate how a relational feature is calculated on an a small interpretation.
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Example 13. Consider the following interpretation representing a subset of the
University example in which we for brevity assume that a grade exist for a student if he
or she takes the course. Hence, we do not include assignments for the takes predicate.

student(pete). difficulty(bio,low).
student(mary). difficulty(physics,high).
grade(pete,bio,low). difficulty(math,high).
grade(pete,math,low). difficulty(chem,med).
grade(pete,chem,high).

Next, consider the following relational feature:

agg{S}(difficulty(C), grade(S,C)=low)

The following components of this relational feature can be recognized from Definition 5:
a) a set of logvars L is {S} ranging over students, b) the conjunction C consists
of grade(S,C)=low and tests if a grade of a student in a course is low, c) A is
difficulty(C).

Now assume we want to calculate this feature for the substitution θ = {S/pete} ∈
{S/pete, S/mary}, and mode aggregation. This means that for student pete we will
calculate the mode of the course difficulties in which he got a low grade:

mode(difficulty(C), grade(S,C)=low) =

= mode{I(difficulty(bio)), I(difficulty(math))}

= mode{low, high}

Note that the set of logvars L serves to denote what to aggregate over and can
introduce different semantics of relational features. We will illustrate this in the
following example.

Example 14. Consider a simple relational feature:

aggL(∅, grade(S,C)=low)(θ,I)

where ∅ denotes the non existence of an element (in this case an atom). Hence this feature
only has one logical condition. Let agg be a counting function count which simply
returns the cardinality of a set. There are the two following cases when calculating the
feature w.r.t. a given logvar set L:
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1. When L = {S} and θ = {S/some_student} this feature represents how many
low grades some_student has in interpretation I.

2. When L = {C} and θ = {C/some_course} this feature represents how many
students have low grades in some_course in interpretation I.

There are also some extreme cases that can occur when calculating relational
features. The following two cases for grounding a relational feature warrant
mention:

1. |{I(Aθθ′) | θ′ ∈ grsub(Aθ, Cθ) and Cθθ′ holds in I }| = 1, for all θ ∈
grsub(L)

2. |{I(Aθθ′) | θ′ ∈ grsub(Aθ, Cθ) and Cθθ′ holds in I }| = 0, for all θ ∈
grsub(L)

The first case uses value (for brevity also denoted with ' in Chapter 6)
for the identity function which returns I(Aθθ′). For example, if each stu-
dent S has exactly one value for intelligence, then the relational feature
value{S}(intelligence(S), ∅) simply returns the value taken by the randvar
intelligence(S), which represents the intelligence of a student S, in inter-
pretation I. The second case requires applying an aggregation function to the
empty set. Some aggregation functions (e.g., mode) are not defined on the
empty set, and in this case aggL(A, C) returns the value unde f ined.

Definition 6. (Discrete Dependency Statement) A discrete dependency
statement is of the form G | Parents(G). G is the target atom that has a discrete range
and whose arguments are all logvars. Parents(G) is a set of discrete relational features,
where for each agg(A, C) ∈ Parents(G), L is a subset of the logvars in G, where L is the
union of logvars in A and C. Each dependency statement has an associated conditional
probability distribution (CPD) which quantifies how the target atom depends on its
parent set.

Example 15. An example of a discrete dependency statement is:

intelligence(S) | mode{S}(grade(S,C), takes(S,C)=true)

which states that a student’s intelligence depends on the mode of grades received across
all courses the student has taken. As each student can take a varying number of courses,
an aggregation function, such asmode in this example, is needed to combine the values
from the varying number of parents into a single value.
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We are now ready to formally define an RDN:

Definition 7. (RDN) An RDN is a tuple (P , RVD, dep), where P is a set of
predicates, each with a discrete range, RVD is a set of randvar declarations, and dep is
a function that maps each P ∈ P to a discrete dependency statement.

An RDN (P , RVD, dep) is a template for constructing propositional DNs. Given
the background knowledge and a set of randvar declarations RVD, an induced
DN has a node for each randvar Gθ ∈ Φ.

The parent set of a ground atom Gθ in a dependency network is defined as

Parents(Gθ) = ParentsA(Gθ) ∪ ParentsC(Gθ)

where

ParentsA(Gθ) =
{

Aθθ′ | ∃ aggL(A, C) ∈ Parents(G) : θ′ ∈ grsub((Cθ, Aθ))
}

ParentsC(Gθ) = ∪
{

Cθθ′ | ∃ aggL(A, C) ∈ Parents(G) : θ′ ∈ grsub((Cθ, Aθ))
}

(2.13)

There is an arc between two ground atoms Gθ and G′θ, if G′θ ∈ Parents(Gθ). The
CPDs are shared across all randvars that originate from the same predicate.

The pseudo-loglikelihood of an RDN M for an interpretation I involves only
the relevant randvars and it is calculated as:

PLL(M; I) = ∑
P∈P

∑
g∈gr(P)I

log [p(I(g) | I(Parents(g))]. (2.14)

Example 16. Consider the following simple RDN for a domain with the following
randvar declarations:

random(intelligence(S))← student(S)

random(takes(S, C))← student(S), course(C)

random(grade(S, C))← student(S), course(C)

random(difficulty(C))← course(C)

where each predicate has a discrete range and the following dependency statement:
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grade(S,C)
value(intelligence(S), ∅),
value(difficulty(C), ∅)

The dependency states that a student’s grade in a course depends on the student’s
intelligence and the difficulty of the course. Note that this statement says that all ways
of instantiating the logvars S and C have an identical probabilistic relationship with S’s
intelligence and C’s difficulty. Figure 2.3 shows an induced propositional DN for this
RDN given the relevancy condition on grade/2 specified in (2.12), and the domain
introduced in Example 9 with two students bob and ann, and two courses math and
bio. The dashed arrows denote the relevancy conditions for the grade/2 randvars.

Figure 2.3: The DN induced by grounding the RDN specified in Example 16.
The dashed arrows specify the relevancy condition on grade/2.

Inference

Given that RDNs are templates for constructing DNs, they inherent the
semantics of DNs (Neville and D. Jensen 2007). Namely, a consistent RDN
specifies a joint probability distribution over the randvars of a relational data set.
Similarly, a unique joint probability distribution for an RDN can be obtained by
grounding out the model to obtain a DN and then running an ordered pseudo-
Gibbs sampler on the DN. Again, this can be done regardless of whether the
model is consistent. The distribution of an inconsistent RDN is the stationary
distribution of an ordered pseudo-Gibbs sampler (if it exists) applied to the
model.
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Learning

Learning the structure of an RDN follows the same paradigm as in the
propositional case we described in Section 2.2.2: the CPD for each predicate is
learned in turn. Even though it is possible to model the CPDs as a some form
of a CPT, this is normally done by learning a relational probability tree (Neville
and D. Jensen 2007) or relational regression tree for each predicate. Next we
briefly introduce these models.

2.4.3 Relational Conditional Probability Models

The CPDs of relational probabilistic models can be modelled in several ways.
One simple approach is to use a relational version of conditional probability
tables. We already discussed in the propositional case in Section 2.2.2 why this
is an inefficient representation. The same applies to relational domains. Next,
we present relational decision trees as an elegant way of modelling conditional
probabilities.

Relational Decision Trees

Relational decision trees or first-order logical decision trees (Blockeel and De
Raedt 1998) are binary decision trees where (1) the nodes of the tree contain
a conjunction of literals, and (2) different nodes may share variables, under
the following restriction: a variable that is introduced in a node (which means
that it does not occur in higher nodes) must not occur in the right branch of
that node. They are essentially an upgrade of decision trees, which we briefly
mentioned in Section 2.2, to relational domains. Unlike propositional decision
trees, relational decision trees envision the main principles of relational data
modelling such as non-i.i.d. entities and heterogeneity.

Learning relational decision trees is in a sense similar to learning decision trees.
The point where relational decision trees differ significantly from propositional
trees is in the format of the tests that can serve as internal nodes: for the former
the test are propositions, while for the latter the tests are relational features.
When learning first-order logic decision trees the feature space is obtained with
a refinement operator under θ-subsumption (Muggleton and De Raedt 1994;
Plotkin 1970). Such an operator ρ maps clauses onto sets of clauses, such that for
any clause c and ∀c′ ∈ ρ(c), c θ-subsumes c′. A clause c1 θ-subsumes another
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clause c2 if and only if there is a variable substitution θ such that c1θ ⊆ c2. The
tree is learned recursively in the following way. In order to refine a node with
another relational feature f the data is split into two sets: where f is true and
where f is false. The feature f is chosen as a refinement if it improves some
scoring function, such as likelihood, that indicates how good the tree is. If the
feature f is chosen, the algorithm adds it as an internal test and the procedure
continues by refining the feature f . The heterogeneous aspect of relational
domains is usually handled with aggregation (Van Assche et al. 2006).

Depending on whether the range of the target attribute is discrete or numeric,
we have classification or regression trees. In order tomodel conditional probability
distributions we naturally use regression trees and there are several existing
representations for this:

• Relational probability trees (RPTs) (Neville, D. Jensen, et al. 2003) are
used when the target attribute is discrete and we are interested in
modelling a probability mass function for that attribute. Sorting down an
example in a relational probability tree gives the probability distribution
for the target attribute for that branch.

• Relational model trees (Vens et al. 2006) are regression trees used to
model non-trivial functions such as linear and logistic regression between
the target attribute and internal attributes. This tree can be used to model
probability distributions (densities) for discrete (numeric) attributes. For
example, while logistic regression gives the probability of a discrete
variable, linear regression can provide a probability density for a numeric
attribute.

2.5 Dynamic Relational Models

In the previous sections we discussed possible ways of modelling propositional
and relational data. The environment of the agent typically contains varying
numbers of objects with evolving relations among them, and one needs
relational representations to generalize over specific types of objects in order
to make the modelling and learning feasible (Lang, Toussaint, and Kersting
2012). Representations that we covered in the previous sections were all static
which means that they do not take into account the changing nature of the
underlying processes. In this section, we will discuss how to represent dynamic
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relational domains. For that discussion we will briefly discuss Markov decision
processes (MDP) and discuss their upgrade to relational domains by means of
distributional clauses (DCs). Naturally, dynamic models are very important in
robotic applications where one is interested into performing control and action
model learning under uncertainty.

2.5.1 Markov Decision Processes

The problem of planning under uncertainty can be modeled as a Markov
decision process (MDP). In an MDP, an agent interacts with its environment,
described using a set of states S, a set of actions A that the agent can perform, a
transition function p : S ×A× S → [0, 1], and a reward function R : S ×A → R.
That is, when in state st and performing action at, the probability of reaching st+1
is given by p(st+1|st, at), for which the agent receives the reward R(st, at). It is
assumed that the agent operates over a finite number of time steps t = 0, 1, . . . , T,
with the goal of maximizing the expected reward: E[∑T

t=0 γtR(st, at)], where
s0 is the start state, a0 the first action, and γ ∈ [0, 1] is a discount factor. In this
thesis we consider only goal-oriented MDPs where there is a goal g ⊂ S to
reach, and the reward is high if we reach the goal, and low otherwise.

2.5.2 Distributional Clauses

Distributional clauses (Gutmann, Thon, et al. 2011) are a formalism that
upgrades MDPs to relational domains by representing each state of the world
as a set of related objects and properties. Thus, to specify them we rely on the
methods for modelling relational data, such as the variation to first-order logic,
we introduced in Section 2.3.2, and elements of statistical relational learning
we introduced in Section 2.4.

Formally, a distributional clause is a formula of the form H ∼ D ← L1, . . . , Ln,
where the Li are literals and ∼ is a binary predicate written in infix notation.
The intended meaning of a distributional clause is that each ground instance
of the clause (H ∼ D ← L1, . . . , Ln)θ defines the random variable Hθ with
distribution Dθ whenever all the Liθ are true, where θ is a substitution. In
distributional clauses (DCs) (Gutmann, Thon, et al. 2011; Nitti, De Laet, et
al. 2013), an interpretation I assigns a value I(Gθ) to each ground atom Gθ.
While in logic programming that value will be true or false, in DCs the
values can also be discrete or numeric as ground atoms represent random
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variables. Adistributional clause is a template to define conditional probabilities:
p(Hθ|(L1, . . . , Ln)θ) = Dθ. The term D can be nonground, i.e., values,
probabilities, or distribution parameters can be related to conditions in the
body. Furthermore, given a random variable r, the term '(r) constructed from
the reserved functor '/1 represents the value of r. A distributional program
is a set of distributional clauses (some of which may be deterministic) that
defines a distribution over possible worlds, which in turn defines the underlying
semantics.

Dynamic distributional clauses (DDC) (Nitti, Belle, et al. 2015) associate a time
index to each randomvariable to capture temporal information and also support
continuous distributions. It is straightforward to specify an MDP using DDC
and we will illustrate that with the following example.

Example 17. Let us consider a scenario of an object manipulation. There is an object
on the table and the robot has to move it to a given region. This scenario is modeled
with the following DDC representing the MDP:

pos(ID)t+1∼ gaussian('(pos(ID)t)+(DX, DY), Σ)←

push(ID, (DX, DY)). (2.15)

stopt← dist('(pos(ID)t), (0.6, 1.0))<0.1. (2.16)

reward(100)t← stopt. (2.17)

reward(−1)t← not(stopt). (2.18)

The DDC clause (2.15) defines the state transition model, i.e. the next position
pos(ID)t+1 of an object ID after a push action with displacement (DX, DY). The
deterministic clause (2.16) defines when the goal is reached (e.g., an object is close
to point (0.6, 1.0)) and the remaining clauses define the reward function. Note that
pos(1)t+1 represents a random variable, i.e., the position of object 1 at time t + 1,
with predicate-like notation. But unlike standard relational representations, a random
variable can have a continuous (or categorical) range. Thus, in DC and DDC an
interpretation assigns each random variable a value in its range.

Static inference in DC is performed using importance sampling, while filtering
in dynamic models is performed using particle filtering methods (Nitti, De Laet,
et al. 2013).



Graph Sampling for Efficient
Parameter Estimation in SRL

3

3.1 Introduction

Recall from Section 2.4 that estimating the parameters of a model often involves
counting the number of times a configuration of a subset of the variables
occurs in the data. Furthermore, in computationally demanding tasks such
as structure learning in SRL, statistics for many different patterns must be
repeatedly collected during the learning process. The task of counting how
many times a pattern is embedded into a graph has been extensively explored in
the graphmining community, which often focuses on large patterns and graphs.
Because relational data and patterns can be represented as graphs, we could
translate some of the efficient approaches from the graph mining community
to SRL.

Unfortunately, in general, counting the number of occurrences of a graph pattern
in a network is #P-complete (Valiant 1979). To address this shortcoming, we
introduce in this chapter a new approach to count the number of embeddings
of a pattern in a graph based on a fully polynomial randomized approximation
scheme suggested by Fürer and Kasiviswanathan (2008). For practical use in a
data mining context, this theoretical approach has several drawbacks as well as
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several crucial open questions. First, it assumes that an input pattern has an
ordered bipartite decomposition (OBD) and that this decomposition is given. This
assumption decompositions a large pattern in smaller feasible graphs such that
embeddings can be found in a stage-wise manner, i.e., for each decomposition
independently. However, some interesting patterns might not have an OBD,
and it would be interesting to examine how the algorithm performs when this
condition is violated. Second, it assumes that all graphs are unlabeled and
undirected, which limits the applicability of the approach. Finally, only the
number of pattern embeddings is estimated, whereas in order to show that the
approach is beneficial for a wider range of pattern mining tasks, it would be
interesting to assess the accuracy of the statistics derived from the estimated
counts.

3.1.1 Contributions and Bibliographical Note

The main contributions in this chapter are the following. First, we propose
an algorithm, based on the theoretical work of Fürer and Kasiviswanathan
(2008), for approximately counting embeddings into randomgraphs. Second,we
propose a heuristic approach to find the OBD of a pattern, which is assumed to
be given in the original work. Third, we use our approach to perform parameter
estimation for logical Bayesian networks (Fierens, Blockeel, Bruynooghe, et
al. 2005), an SRL formalism that serves as a first-order logic based template
for constructing Bayesian networks, and we compare our proposed approach
with two baseline approaches. Fourth, while Fürer and Kasiviswanathan (2008)
provide only an error bound, we also estimate the accuracy of the computed
statistics from the sample. Finally, whereas the original work assumes random
domain graphs,we experimentally assess the algorithmalso on power law graphs
to verify whether the guarantees of the algorithm will hold.

This work is under the revision as:

Irma Ravkic, Martin Znidarsic, Jan Ramon, Jesse Davis (2016) “Graph sampling
for efficient parameter estimation in statistical relational learning” (under revision
for DataMining and Knowledge Discovery Journal via the ECML PKDD journal
track)

The contributions of this work are divided across the first two authors of the
paper mentioned above, in the following way:
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• Martin Znidarsic implemented the three tested algorithms for counting
pattern embeddings: our proposed approach, an exact approach, and
a random sampling approach. He also proposed and evaluated two
algorithms for obtaining the ordered bipartite decomposition.

• The author of this dissertation built upon the implementation of Martin
Znidarsic by adding a number of modifications and improvements in
order to allow parallelization and cyclic graphs. She also developed an
extensive experimental evaluation which involved generating a large
space of pattern graphs, and sampling from this space a subset of
interesting graphs for which a number of statistics is collected in order to
evaluate the tested approaches.

3.1.2 Chapter Structure

The remainder of this chapter is structured as follows. First, we provide a
short background on graph theory and we introduce and illustrate the ordered
bipartite decomposition. Second, we define the problem of counting the number
of embeddings in graphs and introduce two baseline approaches we will
use in our experimental setup. Then we introduce the proposed sampling
approach of Fürer and Kasiviswanathan. Next we present two algorithms for
obtaining an ordered bipartite decomposition (OBD) of a pattern needed for
the theoretical guarantees of the proposed approach to hold. This is followed
by a brief overview of possible statistics that can be extracted from the collected
embeddings. Then we present our experimental methodology and results,
provide a discussion, and conclude the chapter.

3.2 Graphs

A labeled graph is a tuple G = (V, E, Σ, λ), where V is a set of vertices (also
called nodes), E ⊆

{
{u, v} | u, v ∈ V

}
is a set of edges, Σ is a set of labels and

λ : (V ∪ E)→ Σ is a function that assigns labels to nodes and edges. For a graph
G, we refer to its set of vertices with V(G), to its set of edges with E(G), to its
alphabetwith ΣG and to its labeling functionwith λG. For a graph G and a vertex
v ∈ V(G) the set of neighbors of v in G is NG(v) = {u ∈ V(G) | {u, v} ∈ E(G)}.
A graph H is a subgraph of a graph G if V(H) ⊆ V(G), E(H) ⊆ E(G) and
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∀x ∈ V(H) ∪ E(H) : λH(x) = λG(x). The label set Σ can contain attribute-
value pairs as well. More precisely, for a node v with label attribute = value we
denote the value of v with value(v). We also allow for wildcards # to be used
as value. This means that the node can take on values, but we do not care in
this particular case which value it is. We will often omit # in attribute = #, and
denote the label of the node with attribute.

Example 18. Consider the labeled graph in Figure 3.1. The nodes in the graph denote
persons (men or women) together with their friendship or marriage relations to other
people and with their satisfaction with their salary. Note that labels for persons, salary
and satisfaction are attribute-value pairs (e.g., satisfaction=high for mike).

Figure 3.1: An example of a labeled domain graph depicting a number of persons
(men or women) together with their friendship ormarriage relations to other people
and with their satisfactionwith their salary.

3.3 Subgraph Matching

A relational query can be represented as a pattern graph such that attributes and
variables of interest are nodes, and the edges represent the relations between the
nodes (e.g., in (Neville and D. Jensen 2007; Das et al. 2016)). We first introduce
some necessary definitions and notations.
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A pattern or a query graph over a set of labels Σ is a graph P with ΣP ∈ Σ (i.e.,
the labels on vertices and edges of P are subsets of Σ). Given a pattern P and
a domain graph D, we call an injection ϕ between nodes of P and nodes of D
an embedding of P onto D if ϕ maps vertices (edges) x ∈ P to vertices (edges)
ϕ(x) ∈ D such that λD(ϕ(x)) ∈ λP(x). We will often use the term image for
ϕ(x) as in the standard mathematical sense: the subset of a function’s codomain
which is the output of the function from a subset of its domain. Note again that
the labels of P which contain more than one element are wild cards allowing to
match to several vertex/edge image labels. If G is a graph and S ⊆ V(G), then
G[S] is the subgraph of G induced by S, i.e. V(G[S]) = S, E(G[S]) = {{u, v} ∈
E(G)|u, v ∈ S}, ΣG[S] = ΣG and λG[S] = λG|V(G[S])∪E(G[S]).

There are multiple ways of performing the matching between two graphs.
A homomorphism from a graph P to a graph D is a mapping ϕ : V(P) →
V(D) such that (i) ∀v ∈ V(P), λP(v) = λD(ϕ(v)), and (ii) ∀{u, v} ∈ E(P),
{ϕ(u), ϕ(v)} ∈ E(D)∧λP

(
{u, v}

)
= λD

(
{ϕ(u), ϕ(v)}

)
. Example 19 illustrates

graph homomorphism for a simple pattern graph.

Example 19. Consider a pattern graph P to be mapped by means of homomorphism
to another graph D illustrated. These graphs are illustrated in Figure 3.2. The nodes
of graph P and graph D are labeled with three kind of labels expressed as shapes of the
nodes: {triangle, circle and square}. The homomorphism from graph P to graph D is:
ϕ(a) = 0, ϕ(b) = 1, ϕ(c) = 2, ϕ(d) = 0, ϕ(e) = 1. Note that a non-edge in pattern
P between nodes e and c is mapped to an edge in pattern D going from node 1 to node
2.

Figure 3.2: An example of a homomorphism between two graphs in which
nodes are labeled with the shapes of the nodes: {triangle, circle, square}. The ϕ
function represents the mapping under the homomorphism.
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A subgraph isomorphism from P to D is a homomorphism ϕ from P to D such that
∀u, v ∈ V(P), ϕ(u) 6= ϕ(v). Graph isomorphism is illustrated in Example 20.

Example 20. Consider a pattern graph P to be mapped by means of isomorphism
operator to another graph D shown in Figure 3.3. The nodes of graph P and graph D
are labeled with three kind of labels expressed as shapes of the nodes: {triangle, circle and
square}. The isomorphism from graph P to graph D is: ϕ(a) = 1, ϕ(b) = 3, ϕ(c) =
4, ϕ(d) = 2, ϕ(e) = 5. Note that each edge in pattern P is mapped to an edge in pattern
D (e.g., edge between b and c is mapped to the edge between 3 and 4), and each non-edge
is mapped to a non-edge (e.g., for a non-edge between b and e there is no edge between
nodes 3 and 5 in D).

Figure 3.3: An example of an isomorphism between two graphs in which nodes
are labeledwith the shapes of the nodes: {triangle, circle, square}. The ϕ function
represents the mapping under the isomorphism.

Whether homomorphism or subgraph isomorphism is more appropriate to
use as a matching operator depends on the application. Our results are generic
and apply to both cases. We use emb(P, D) to refer to embx(P, D) for any
x ∈ {hom, iso} and refer to its elements as embeddings. For a domain graph
D and a pattern P, a partial embedding of P in D is an element of emb(P[S], D)

where S ⊆ V(P).

Given an embedding ϕ of P in D and a set S ⊆ V(P), we denote with valS:D(ϕ)

the labels of the embedding for a subset of nodes. More formally, valS:D(ϕ) =

{(u, λD(v)) | u ∈ S∧ (u, v) ∈ ϕ}. We define themultiset of values for S ⊆ V(P)
in graph D by Val(S : P, D) = {valS:D(ϕ))}ϕ∈emb(P,D). When S = V(P), we
define valD(ϕ) = valV(P):D(ϕ), and Val(P, D) = Val(V(P) : P, D).
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We also denote the range of values for S of P in D by Range(S : P, D)) and
define it as Range(S : P, D)) = {valS:D(ϕ) | ϕ ∈ emb(P, D)}. The essential
difference between Range(S : P, D) and Val(S : P, D) is that the first is a
normal set (containing each value once) while the second is a multiset possibly
containing the same value several times. When S = V(P) thenRange(P, D) =

Range(V(P) : P, D).

We illustrate the introduced notations and definitions in Example 21.

Example 21. Consider the domain graph in Figure 3.1. We will denote this graph
with D. Also consider a simple pattern in Figure 3.4 we denote with P. There are two

Figure 3.4: A pattern graph with satisfaction and salary attributes for two
persons that are friends.

possible embeddings of this pattern in the data graph D:

ϕ1 = {(p1, u4), (p2, u5), (p3, u6), (p4, u11), (p5, u9)}

ϕ2 = {(p1, u13), (p2, u11), (p3, u6), (p4, u5), (p5, u4)}

Let S = {p1, p5} ⊆ V(P) and let us consider embedding ϕ1. Then valS:D(ϕ1) =

{(p1, λD(u4)), (p5, λD(u9)} = {(p1, satis f action = high), (p5, salary = low)}.
The multiset of values for S is Val(S : P, D) = {{(p1, satis f action =

high), (p5, salary = low)}, {(p1, satis f action = low), (p5, salary = med)}}.
Range(P, D) is in this case equivalent to Val(S : P, D).

3.4 Ordered Bipartite Decomposition of Graphs

Decomposing graphs allows for a divide-and-conquer strategy to be applied
for complex problems and it represents a preprocessing step for many graph
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theory techniques. In this thesis we use this strategy for obtaining the count of a
pattern’s embeddings in a graph. The general idea is to decompose the vertices
involved in a complex pattern into multiple partitions, where each partition
contains as few vertices as possible. The matching task then becomes simpler as
only the vertices in a single partition need to be matched simultaneously, with
the current partition’s matching being conditioned on the assignment given to
the vertices in previous partitions. Ordered bipartite decomposition (OBD) was
introduced by Fürer and Kasiviswanathan (2008) and it is a crucial component
of our approach. In this section we define bipartite graphs and OBD.

An independent set is a set of vertices in a graph, no two of which are adjacent.
Graph partition is a problem of dividing vertices and edges of a graph into smaller
components with specific properties. A bipartite graph G = (U, V, E, Σ, λ) is a
graph whose vertices can be divided into two disjoint independent sets U and
V such that every edge in e ∈ E connects a vertex in U to one in V. A bipartite
graph can be seen as colouring the nodes in U to one colour, and nodes in V
to another, and each edge has endpoints of different colours. An example of a
bipartite graph is modelling of the relationship of football players with their
clubs: each player is associated with a club. An example of a non-bipartite graph
is a triangle: if we colour one node into red, another one in blue, the third node
cannot be assigned neither red nor blue colour, as it will be connected to a node
of the same colour as itself.

Definition 8 (Ordered bipartite decomposition (Fürer and Kasiviswanathan
2008)). An ordered bipartite decomposition of a graph P = (VP, EP) is a sequence
V1, ..., Vl of subsets of VP such that:

1. V1, ..., Vl form a partition of VP

2. Each of the Vi (for i ∈ [l] = 1, ..., l) is an independent set in P

3. ∀v∃j such that v ∈ Vi implies NP(v) ⊆ (
⋃

k<i Vk) ∪Vj

Informally, an ordered bipartite decomposition is a labeling of vertices ensuring
that every edge is between vertices having different labels and for every vertex
all neighbors with a higher label in the order have identical labels. Fürer
and Kasiviswanathan (2008) showed that many graph classes have such a
decomposition, while at the same time many simple small graphs (e.g., a
triangle) may not possess such a decomposition. The size of an OBD is the
number of partition classes in it and the size of the largest partition class defines
its width. We illustrate an OBD in Example 22.
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Example 22. Consider the two graphs in Figure 3.5. Graph (a) is a triangle graph.
There exists a trivial decomposition {v1}, {v2}, {v3} satisfying Properties 1 and 2 of
Definition 8. However, it is not possible to satisfy Property 3 for this graph, hence, there
is no OBD for it. The OBD for graph (b) is {v1}, {v2}, {v3, v4} where each partition
is labeled with, for example, I, I I, and I I I. The reader can check that indeed all three
properties hold. For example, for the vertex v2 labeled as I I, all the neighbours (v3 and
v4) are labelled identically with a higher label I I I.

(a) (b)

Figure 3.5: An example of a) a non-bipartite triangle graph for which there does
not exist an OBD, b) a graph with {v1}{v2}{v3, v4} OBD.

3.5 Counting the Number of Embeddings in Graphs

Section 3.3 discussed representing relational queries as graphs and we
illustrated two matching operators most frequently used in graph mining:
graph isomorphism and graph homomorphism. The problem of collecting
statistics about the occurrences of a graph pattern in a network, irrespective of
the matching operator, can be formalized as:

• Given: a domain graph D, a pattern P, and a statistic of interest f

• Find: f (P, D)

The basic procedure that is used in all the approaches in this chapter is to find
all extensions to a partial embedding ϕ. For that purpose we use the procedure
in Algorithm 1. The function receives a domain graph D, a pattern graph P,
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a partial embedding ϕ and a set of vertices S ⊆ P for which we want to find
the images. The function loops through all the vertices in v ∈ S and tries to
find images of v which are then stored in the Cv variable. It then constructs the
set of all possible embeddings such that each embedding is the concatenation
of the partial embedding ϕ and one of the combination of images found for
vertices in S. The test ϕ′ ∈ Emb(P[ϕ′−1(D)], D) checks if the edges and labels
are preserved by ϕ′. If subgraph isomorphism is used as the matching operator
(rather than homomorphism), one must additionally check that no two vertices
receive the same image.

Algorithm 1 Extend partial embeddings.
1: function PartialExt(D,P,ϕ,S)
2: for all v ∈ S do . Loop through vertices in the partition
3: if ∃(x, y) ∈ ϕ : x ∈ NP(v) then
4: Cv ← {u ∈ ND(y) | λ(u) ∈ λ(v)}
5: else
6: Cv ← {u ∈ V(D) | λ(u) ∈ λ(v)}
7: return {ϕ′ | ϕ′ = ϕ ∪ {(v, uv)}v∈S ∧ ∀v ∈ S : uv ∈ Cv ∧ ϕ′ ∈

Emb(P[ϕ′−1(D)], D)}

Next, we introduce an exhaustive approach and a sampling approach for finding
the number of embeddings of a pattern in a domain graph.

3.5.1 Exhaustive Approach

As the name suggests, this approach, outlined in Algorithm 2 finds all possible
embeddings of a pattern. The algorithm receives a domain graph D, a pattern
graph P, and a fixed ordering O on the pattern vertices as input. We use Oi to
denote the i-th vertex in the ordering O, that is, the i-th vertex that is assigned
an image. Starting from an empty embedding, the algorithm works as follows.
The PartialExt function defined in Algorithm 1 finds all extensions to a partial
embedding ϕ by assigning an image to the O|ϕ|+1th vertex.

When choosing an ordering O, a typical heuristic is to first select images for
vertices that have a small number of possible images. We require that every
vertex, except the first one, is adjacent to at least one other vertexwhich precedes
it in the ordering. A large literature exists on heuristics and various forms of
lookahead (Ullmann 1976), which is outside the scope of this thesis.
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Algorithm 2 Exhaustive approach.
1: function AllEmb(graph D, pattern P, ordering O)
2: return AllEmb(D, P, O, {}) . Return a set of embeddings
3: function AllEmb(D,P,O,ϕ)
4: if |ϕ| = |V(P)| then . If the pattern is fully embedded
5: return {ϕ}
6: else . Repeat the procedure for each found extension
7: return ∪ϕ′∈PartialExt(D,P,ϕ,{O|ϕ|+1})AllEmb(D, P,O, ϕ′)

3.5.2 Random Vertex Sampling

Algorithm 3 presents an approximate algorithm for computing all embeddings
of a pattern based on sampling. It receives the same input as the exhaustive
approach (i.e., function AllEmb in Algorithm 2). At a high level, this algorithm
samples the first part of the embedding randomly and then exhaustively
computes all of its completions. This algorithm differs from the exhaustive
algorithm in that it first finds an image for the first vertex O1 by randomly
sampling, with replacement, from the set of vertices with a matching label
instead of exhaustively iterating over all of them.

One can observe that every embedding has the same probability of being
encountered by this algorithm. However, several embeddings may be included
in the sample in the same iteration, and hence these may not be independent.
Therefore, in line 7 we form a sample by a set of sets of embeddings (indicating
these dependencies explicitly) rather than just merging all sets M into one
large unstructured sampleM. This algorithm is simple but has the potential
disadvantage that, for large patterns, it may spend all its resources finding all
the embeddings for the first sampled vertex.

Similar strategies have previously been proposed, such as in thework on triangle
counting (e.g., Jowhari and Ghodsi 2005).

3.6 The Fürer-Kasiwiswanathan Approach

The algorithms we introduced in the previous section represent the baseline
algorithms for finding the pattern embeddings. However, they can be very
costly for larger patterns and domain graphs. Next, we propose an extension of
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Algorithm 3 Random vertex sampling approach.

1: function RndV1Emb(graph D, pattern P, ordering O)
2: M← {}
3: R← {u ∈ V(D) | λ(u) = λ(O1)} . Find images for the first vertex of P
4: while not timeout do
5: Select a random u ∈ R
6: M← RndV1Emb(D, P, O, {(O1, u)})
7: M←M∪{M}
8: returnM

9: function RndV1Emb(D,P,O,ϕ) . Find extensions for the partial embedding
10: if timeout then
11: return {}
12: else if |ϕ| = |V(P)| then
13: return {ϕ}
14: else
15: M← {}
16: for all ϕ′ ∈ PartialExt(D, P, ϕ, {O|ϕ|+1}) do
17: M′ ← RndV1Emb(D, P,O, ϕ′)
18: M = M ∪M′

19: return M

a theoretical sampling idea suggested by Fürer and Kasiviswanathan (2008) for
unlabeled undirected graphs.

Figure 3.6 depicts one iteration of the the Fürer and Kasiviswanathan algorithm.
Each iteration of the algorithm returns a single embedding and an estimate for
the pattern’s total number of embeddings. In a single iteration, it sequentially
goes through all of the OBD’s partitions. For each partition, it finds all possible
extensions of the current partial embedding by matching the vertices in the
partition. It then randomly samples one of these extensions and multiplies its
estimate of the pattern’s number of embeddings by the number of possible
extensions found for the current partition.

The crucial part when constructing an OBD is to ensure that each partition is
small. Since all vertices in a partition must be simultaneously matched, it is
easier to a find a legal extensions when fewer vertices much be matched. If the
decomposition provided as input is not an ordered bipartite decomposition,
the sampling algorithm still converges to the correct value, but the convergence
speed guaranteed by Fürer and Kasiviswanathan (2008) does not hold anymore.
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Figure 3.6: An illustration of one iteration of the Fürer and Kasiviswanathan
approach.

Algorithm 4 Fürer and Kasiviswanathan approach.
1: function FK-V(domain graph D, pattern subgraph P, decomposition V)
2: M← {}
3: while not timeout do
4: M← FK-V(1, D, P,V , 1, {})
5: if M 6= ∅ then
6: M←M∪{M}
7: returnM
8:
9: function FK-V(W, D,P,V ,i,ϕ)
10: if i > |V| then
11: return ({(ϕ, W)}) . If all partitions embedded
12: else if timeout then
13: return {}
14: C ← PartialExt(D, P, ϕ,Vi) . Find all extensions for the partition
15: if C = {} then
16: return {}
17: Select ϕ′ randomly from C . Randomly select one extensions
18: return FK-V(W|C|, D, P, V , i + 1, ϕ′)

Algorithm 4 shows our extension of the Fürer and Kasiviswanathan approach to
labeled graphs. The algorithm consists of two parts: the control loop (lines 2-7),
and the single attempt procedure (lines 9-18). It receives the same parameters as
Algorithm 3, except that it receives a decomposition V instead of an orderingO.
While the time limit is not exceeded, the control loop randomly samples, with
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replacement, a path in the search space that possibly leads to an embedding.
The function FK-V returns a set of pairs (ϕ, W)where ϕ is the embedding found
and W is a positive number equal to the inverse probability that an attempt
will find that particular embedding. The expected value of this W (assuming
implicitly 0 for the unsuccessful attempts) is the total number of embeddings.

A recursion step samples a set of images for a partition Vi, extends the partial
embedding accordingly, and calls the next recursion level. While doing so, it
also computes the size |C| of the set of options of which it has sampled only
one. The product of these values |C| is passed in the parameter W to the next
recursion (becoming 0 when the attempt fails).

Example 23. For example, if Vi = {w1, w2, w3}, each vertex w ∈ Vi has a set of
candidate matches Cw in D. Suppose these are Cw1 = {a1, a2}, Cw2 = {a3} and
Cw3 = {a1, a4, a5}. Then each element of the Cartesian product Cw1×Cw2×Cw3 is a
valid match for the vertices in Vi if the matching operator is homomorphism. In this case,
|C| would equal 6. In the case of subgraph isomorphism, embeddings mapping several
vertices to the same image (here {(w1, a1), (w2, a3), (w3, a1)}) must be eliminated,
so |C| would equal 5.

3.7 Finding Ordered Bipartite Decompositions

Recall that Algorithm 4 relies on having an ordered bipartite decomposition
(OBD) of the pattern P for which it is estimating the number of embeddings. For
efficiency, the size of each partition class in an OBD is important. Having more
vertices in a single partition requires matching multiple vertices simultaneously,
which is more computationally expensive. In particular, the size of set C in
line 14 of Algorithm 4 may be exponential in Vi. This implies that we want
to minimize the number of vertices in each partition class. This also suggests
that we prefer having OBDs that are as large as possible (i.e., have as many
partition classes). Fürer and Kasiviswanathan (2008) assume that a pattern’s
OBD is given and do not address the problem of automatically finding an
OBD for a given pattern. Thus, we propose two different search strategies for
automatically finding an OBD.
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3.7.1 Exact Search

Algorithm 5 presents a level-wise search for finding the largest possible OBD.
First, it checks if P contains a triangle, because then no OBD exists. The maximal
OBD size for pattern P is |V(P)|, which is the number of vertices in P. Starting
with the largest possible size s = |V(P)|, the algorithm performs a search
through the space of possible OBDs. In each iteration, it checks whether an
OBD of size s exists by generating all possible candidate OBDs of size s. This
entails enumerating all ways of dividing V(P) into s partition classes, and then
building one candidate for each possible ordering of the partition classes. It
then applies the Valid_OBD function to check whether each candidate is a valid
OBD (i.e., it satisfies the requirements of Definition 8). As soon as it finds a
valid OBD, it is returned and the search terminates. If no OBD of size s is found,
then s is decremented, and the search proceeds. If an OBD is found, its size is
maximized because all larger decompositions were evaluated and none were
valid OBDs.

Algorithm 5 Level-wise exact OBD search
1: function FindLargestOBD(graph P)

return Largest ODB for P or ∅ if no OBD exists
2: if contains_triangle(P) then
3: return ∅
4: s← |V(P)|
5: while s > 0 do
6: for all ordered partitions V of V(P) of size s do
7: if Valid_OBD(V) then
8: return V
9: s← s− 1
10: return ∅

3.7.2 Greedy Search

Algorithm 6 presents a depth-first search for finding an ODB for a pattern P.
It greedily searches the most promising path and returns the first OBD found.
Because it performs backtracking, it is guaranteed to find an OBD if one exists.
However, its greedy nature means that it is not guaranteed to find the largest
valid OBD.
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The main algorithm loops through each node v in P, and builds a partial OBD
V = ({v}) consisting of a single partition class containing v (if there exists an
OBD, then there exists one with a singleton as first partition class). Next, it calls
GreedyOBD which recursively extends the partial OBD by adding one partition
class at a time.

If GreedyOBD receives a valid and complete OBD (i.e., it contains all the nodes
in P), it terminates and returns the current OBD. Otherwise, it generates a
set of candidate extensions of V . To do so, it first builds a graph G′ = (R, L),
which has one node for each vertex in P that has not been assigned a partition
class in the partial OBD V . It has one edge {x, y} ∈ L for each x, y ∈ R such
that x and y share a neighbor in P that already appears in V , which implies
that x and y must be in the same partition class. Because a node x ∈ R may
neighbor multiple nodes in V , the set of candidate extensions C consists of each
connected components in G′. Next, line 15 checks if any candidate partition
requires assigning the same label to neighboring vertices in P, which violates
the definition of an OBD, meaning no complete OBD can be constructed by
extending this partial ODB. In this case, the algorithm backtracks. Otherwise,
it creates a set of candidates extensions by concatenating each element (i.e., set
of vertices) in C as a partition class to the end of V . It sorts the set of candidates
from smallest to largest on the basis of the size of the newest partition class.
This heuristic is an attempt to favor OBDs with small partition classes. It then
recursively calls GreedyOBD on each candidate in this order.

3.7.3 Empirical Evaluation of OBD Search

We empirically compare the run time performance of the two OBD search
algorithms. We generate all simple connected graphs with between five and
eight vertices and use both Algorithm 5 and 6 to find anOBD for each generated
pattern. Table 3.1 reports the mean, median and maximum run time in seconds
of both algorithms on each pattern size. While the greedy approach does
not guarantee finding an optimal solution, on average it is several orders of
magnitude faster than the level-wise approach. As it scales better than the exact
approach, our empirical evaluation in Section 3.9 employs the greedy approach
to find an OBD for each evaluated pattern.
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Algorithm 6 Depth-first greedy OBD search.
1: function GreedyFindOBD(graph P) . return OBD for P or ∅ if no OBD

exists

2: for all vertices v ∈ V(P) do
3: result = greedyOBD(({v}), P)
4: if result 6= ∅ then
5: return result
6: return ∅

7: function greedyOBD(partial OBD V , graph P)
8: . V contains all nodes of P and is a valid OBD
9: if Complete(V) && Valid_OBD(V) then
10: return V
11: else
12: R← V(P) \ ∪S∈VS . Vertices not yet in partition class
13: L← {{x, y} ∈ R | ∃V ∈ V : NP(x) ∩V 6= ∅ ∧ NP(y) ∩V 6= ∅}
14: C ← ConnectedCompents((R, L)))
15: if ∃C ∈ C, ∃x, y ∈ V(C) : {x, y} ∈ E(P) then

. x and y must be apart⇒ no OBD possible
16: return ∅
17: for all C ∈ C do
18: result← greedyOBD(V ·V(C), P) . Concatenate C to V
19: if result 6= ∅ then
20: return result
21: return ∅

Exact Greedy
|V| Mean Median Max Mean Median Max
5 0.0014 <0.0001 0.0096 0.0002 0.0003 0.0004
6 0.0106 <0.0001 0.1611 0.0004 0.0004 0.0010
7 0.0618 <0.0001 2.8392 0.0005 0.0005 0.0025
8 0.3894 <0.0001 54.9054 0.0008 0.0007 0.0084

Table 3.1: This table reports the mean, median and maximum run times in
seconds for the exact and depth-first search algorithms for finding an OBD on
all simple connected graphs with between five and eight vertices.

3.8 Computing Statistics

The algorithms described in the previous sections all generate a sample of
embeddings. In this section we will discuss how we can compute a number of
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statistics from such samples, and we will study their accuracy.

3.8.1 Common Statistics

Let P be a pattern and D a domain graph. We first define the statistics we will
consider.

Count. The count statistic just returns |Val(P, D)|, the number of embeddings
of P in D.

Mean and variance Let t : Range(P, D) → R be a function mapping values
of embeddings on real numbers. Then, µt(X) = ∑x∈X t(x)/|X| and vart(X) =

∑x∈X(t(x)− µt(X))2/|X|.

Confusion matrix. Some vertices of the pattern could be labeled by finite sets.
In that case, it may be interesting to compare the relative frequencies with which
these vertices map on vertices with certain labels.

More formally, let S ⊆ V(P) be a set of vertices of P. For x ∈ Range(S : P, D),
a set of possible values of the vertices in S, and y ∈ Val(P, D), the value of
a particular embedding, we define IS→x(y) = 1 if y|S = x and IS→x(y) =

0 if y|S 6= x. Next, for a set of values Val(P, D), f reqS→x(Val(P, D)) =

µIS→x and hence f reqS→x(Val(P, D)) is the fraction of embeddings of P in D
for which the vertices in S get the value x. We define f reqS(Val(P, D)) =

{(x, f reqS→x(Val(P, D)) | x ∈ Range(S : P, D)}. Note that, f reqS(Val(P, D))

is a confusion matrix (or tensor), as for each possible combination of values for
the vertices in S it gives the observed (relative) frequency.

3.8.2 Estimators

We now discuss how to compute statistics from samples. In the above, we
defined the elements of the confusion matrix statistic using a mean statistic, so
we can limit our discussion to count, µ and var here. In the empirical evaluation
section, we will focus more on the confusion matrix statistic.

Let us first consider the random sampling. It returns a setM = {Mi}n
i=1 of

groups of embeddings with n the number of main loop iterations of the algo-
rithm. Each group Mi = {ϕi,j}

ni
j=1 of embeddings is generated together during

one iteration of the random approach and shares the same image for the first pat-
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tern vertex. We can estimate count(P, D) by countrnd(P, D) = |V(P)|∑n
i=1 ni/n.

We can estimate µt(P, D) by µ̂rnd
t = ∑n

i=1 ∑ni
j=1 t(valD(ϕi,j))/ ∑n

i=1 ni. This is a
consistent estimator (it converges to µt(P, D)when n gets large) but even though
countrnd and ∑n

i=1 ∑ni
j=1 t(valD(ϕi,j)) are unbiased estimators of the count and

the sum, µ̂rnd
t is not an unbiased estimator itself. For instance, suppose that the

first vertex has two possible images u1 and u2, u1 is in three embeddings with
t-values 1, 2 and 3 and u2 is in one embedding with t-value 6. Then, a single
iteration of the sampling algorithmwill either produce values 1, 2 and 3 leading
to an estimation (1 + 2 + 3)/3 = 2 or a single value 6, leading to an estimate of
6. On average, we expect an estimation of 4, while the average of all values is 3.

Next, we consider the FK-V algorithm. It returns a setM = {(ϕi, wi)}n
i=1 of

independently sampled weighted embeddings. Fürer and Kasiviswanathan
(2008) showed that count f k(P, D) = ∑n

i=1 wi/n is an unbiased estimator. For µt
we can derive an unbiased estimator too (but omit details due to lack of space).
Let W = ∑n

i=1 wi and W2 = ∑n
i=1 w2

i . Then, µ̂
f k
t (P, D) = ∑n

i=1 wit(valD(ϕi))/W
is an unbiased estimator of µt(P, D). Moreover, we can estimate the square
error from the sample with E[µ̂

f k
t (P, D)− µt(P, D) = (W2/W.(W2 −W2))

∑n
i=1 wi(t(valD(ϕi))− µ̂

f k
t )2. It is straightforward to show that these estimators

remain unbiased even if Fürer-Kasiwiswanathan is run with a decomposition
which is not an OBD. The main difference is that in that case the error converges
more slowly to zero as the sample size increases.

3.9 Experiments

We empirically compare the performance of the following four approaches:

Exhaustive: This is the approach of Algorithm 2.

Random: This is the approach of Algorithm 3 that randomly samples an
initial vertex in the domain graph from which to start the search for
the embeddings of a pattern.

FK-OBD: The extended Fürer and Kasiviswanathan approach outlined in
Algorithm 4 that uses greedy search to find an OBD for a pattern. It
only applies to generated patterns that have an OBD.

FK-AD: The extended Fürer and Kasiviswanathan approach outlined in
Algorithm 4 that works with an arbitrary decomposition (AD) of a pattern.
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To construct an arbitrary decomposition,we simply flatten theOBD,which
means that each partition contains exactly one node.

The goal of the evaluation is to address these three questions:

1. How well do the sampling algorithms approximate the true embedding
statistics obtained using the exhaustive approach?

2. What is the relative runtime of the algorithms?

3. How does having an OBD vs. an arbitrary decomposition (AD) affect the
performance of the Fürer-Kasiwiswanathan algorithm?

Next, we describe our datasets, the experimental methodology, and then we
present and discuss the results.

3.9.1 Datasets

We evaluate the algorithms using 12 synthetic datasets and two real-world
datasets. Our real-world datasets are initially stored in a relational format. We
use a standard transformation (e.g., (Richards and Mooney 1992)) to convert
these datasets into a graph form. The general idea is that graphs consist of
constants connected through their relations.

Synthetic Datasets

We created a series of synthetic datasets that contain the following node types:
person, salary, satisfaction, man, woman, married and friends. We create two types
of graphs by varying the way friend nodes are connected within the graph. The
first employs the Erdős-Rény random graph model, and adds them randomly.
The second adds the nodes according to the power law distribution of the
Barabási-Albert algorithm (Barabasi and Albert 1999). Finally, each person
receives a salary and a satisfaction, 40% of the people are male, the rest are
female, and 70% of the people are married. Table 3.2 shows the synthetic graphs
and their characteristics.
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Power Law Random
#Nodes #Edges #Friends Name MaxDeg Name MaxDeg

9335 13670 4985 S1 131 R1 24
93485 136970 49985 S2 383 R2 32
14295 23590 9945 S3 174 R3 36
143445 236890 99945 S4 593 R4 44
24140 43280 19790 S5 225 R5 60
243290 436580 199790 S6 736 R6 69

Table 3.2: Characteristics of the synthetic graphs.MaxDegdenotes themaximum
degree of a data graph.

Real-world Datasets

For both real-world datasets we transformed directed or labeled edges into
2-paths with an intermediate labeled vertex such that our graphs only have
vertex labels. Next, we describe the datasets in more detail.

DBLP dataset We use the DBLP1 bibliography database from the ArnetMiner
repository (Tang et al. 2008). We only consider data from 2001 and 2002, to
ensure that the exhaustive approach is computationally feasible. The DBLP
domain graph consists of paper, coauthored, reference and citations nodes. One
paper node is added for each paper in the database. For each pair of papers that
share an author, a coauthored node is added to the graph and connected to those
papers. For each pair of papers where one paper refers to the other, a reference
node is added to the graph (using an intermediate vertex dir to designate the
direction) and connected to those two papers. Finally, each paper is connected
to a citations node, which was discretized into three categories: high, med and
low. The graph contains 393,230 vertices, 447,650 edges, and has a maximum
degree of 1,036.

YEAST dataset The Yeast Protein data comes from the MIPS (Munich
Information Center for Protein Sequence) Comprehensive Yeast Genome
Database (Mewes et al. 2000). We use the version of the dataset (Davis and
Domingos 2009) from the Alchemy repository, with the modification that we
removed all self-referential links.2 The graph has the following node types:
protein, location, function, phenotype, class, enzymes, and interaction. A node is

1http://www.informatik.uni-trier.de/∼ley/db/index.html
2http://alchemy.cs.washington.edu
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Figure 3.7: Pattern graph Psat−sal for our example. Shaded nodes are the target
nodes of the pattern.

added to the graph for each protein. For each pair of proteins that interact, an
interaction node is added to the graph and connected to those proteins. For
each protein, a node is added for all of its locations, functions, phenotypes,
classes and enzymes. The graph contains 16,233 vertices, 18,355 edges, and has
a maximum degree of 124.

3.9.2 Experimental Setup

Next, we introduce our experimental methodology which for the real-world
datasets consists of pattern generation, sampling of interesting patterns based
on a criterion and evaluation of the approaches.

Generating Pattern Graphs

We now describe our method for generating pattern graphs for the synthetic
and the real-world data.

Synthetic pattern graph For the synthetic datasetwe only consider one pattern
graph, which is depicted in Figure 3.7. This pattern is a slight modification
of a phenomena described in (Ariely 2008).

Generating pattern graphs for real-world data We want to evaluate our ap-
proach on a variety of patterns. However, even with a restriction on the
pattern size, it is computationally too demanding to evaluate all possible
candidate patterns. Hence, we generate patterns of increasing size in a
level-wise manner, and evaluate a subset of patterns of each size.
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Each pattern is an undirected graph. We vary the pattern size from 4 to
15 nodes. Given a set CL of patterns of size L, we generate a candidate
set CL+1 of patterns of size L + 1 by enumerating all valid extensions of
each pattern in CL. Each pattern is extended by first adding a new node to
it. We consider adding all node types. Then, new candidates are created
for all ways of adding up to m = n · (n− 1)/2 edges between the new
node and n existing nodes in the pattern. We remove duplicates from the
candidate set by checking for isomorphism between pairs of candidate
patterns.
We focus our evaluation on a sample of patterns where each selected
pattern is neither too frequent nor too infrequent as these tend to be more
interesting patterns for analysis. Thus, we randomly sample patterns from
CL+1 and run FK-OBD or FK-AD for one hour. The former is used if a
pattern has an OBD, and the latter if it does not. We continue sampling
until we find 100 patterns that meet the following criterion:√

|V(D)| − 3 · Nstd ≤ Navg ≤ |V(D)|+ 3 · Nstd,

where |V(D)| denotes the number of nodes in the data graph D, Navg
denotes the average and Nstd the standard deviation of the estimated
number of embeddings after the one-hour run.

Pattern Evaluation

We evaluate all algorithms on the selected patterns for each size. We run each
algorithm for a maximum of K time units and record intermediate results after
each T time units. For DBLP, we set K to ten hours and T to five minutes. For
YEAST and the synthetic datasets, K is ten minutes and T is five seconds. This
means that we record 120 intermediate results for each pattern, regardless of
the dataset or method.

3.9.3 Evaluation Tasks and Metrics

We consider two different evaluation tasks.

Frequency estimation This corresponds to the standard pattern mining task,
where the support of a pattern in the data is calculated. For frequency
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estimation of a pattern, we report the relative error of a pattern’s estimated
frequency (using a sampling algorithm) up until time t, denoted as

ˆ#embi(t), versus its true frequency as computed by the exact approach.
The relative error is given by the following formula:

RelErrori(t) =
|#embi − ˆ#embi(t)|

#embi
(3.1)

Parameter estimation for LBNs In the introduction to this thesis and this
chapter we mentioned that estimating pattern frequency is also a subtask
in parameter learning for statistical relational learning formalisms such
as Markov logic networks (MLNs) (Richardson and Domingos 2006),
Bayesian logic programs (BLPs) (Kersting, De Raedt, and Kramer 2000),
and logical Bayesian networks (LBNs) (Fierens, Blockeel, Ramon, et al.
2004), amongst others. We will focus on parameter estimation for LBNs.
Section 3.3 explained how the dependencies in relational formalisms
can be expressed as pattern graphs. We now briefly describe how
these dependencies are represented in LBNs. For a more detailed
discussion on LBNs please consult (Fierens, Blockeel, Ramon, et al. 2004).
Parameter estimation in LBNs requires estimated conditional probability
distributions (CPD) of the form P(X | Y ← Context). In these CPDs,
X is a single random variable that can take on multiple values, Y is
a set of random variables and Context defines a set of conditions that
specifies when the CPD is valid (e.g., there only exists a random variable
for a student’s grade in a course C if she has taken course C.).3 The CPD
captures the conditional probability of X for each joint assignment of
values to Y, when Context holds in the data. Thus, in a constructed
pattern we must specify which nodes represent each of X, Y, and Context.
For example, in Figure 3.7 shaded nodes represent X, Y (target) nodes,
while other nodes represent Context. When creating the patterns for the
DBLP dataset, X, Y are nodes labeled with citations. Nodes labeled as
re f erences, dir, coauthored, citations = low, citations = med, citations =

high represent Context. For YEAST based patterns X, Y can be nodes
labeled with f unction, location, protein_class, enzyme, phenotype. Each
of these has a range of values. Nodes labeled with interaction and
predicate = value where predicate ∈ { f unction, location, protein_class,
enzyme, phenotype} and value ∈ range(predicate) make Context.

3Note that this is a slight simplification as LBN uses first-order logic to perform parameter tying
across multiple random variables.
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To make the results less susceptible to fluctuations arising from infrequently
occurring combinations, we employ the standard Laplace smoothing of our
estimates. Furthermore, we aggregate each value combination that has a relative
frequency of < 1% in the exhaustive approach into a single “default” row. In
probabilistic models, this is known as using a default table representation for
the local probability distributions (Friedman and Goldszmidt 1996).

In order to compare the quality of the estimated and the true distribution for a
pattern we calculate the Kullback-Leibler divergence (KLD).

KLD(P||Q) = ∑
i

p(i)× log2

(
p(i)
q(i)

)
(3.2)

The estimated distribution (P) is obtained by one of the sampling algorithms,
and the true distribution (Q) is obtained by the exhaustive algorithm. In order
to summarize results over a large number of patterns of a specific size, we report
the average KLD (Avg_KLD).

3.9.4 Results

Next, we present the results on the synthetic and the real-world datasets.

Synthetic datasets

The goal of the synthetic experiments is to compare the algorithm’s performance
on random and non-random graphs. In these experiments, the exhaustive
approach always finished within the time limit. Figure 3.8 and Figure 3.9 show
the performance of each algorithm on average KLD and average relative error,
respectively. On average, FK-OBD has a better KLD and smaller relative errors
than Random and FK-AD. Finally, the performance of FK-OBD and FK-AD tends
to be better than random sampling for power law graphs. This provides some
evidence that FK-OBD and FK-AD will still perform well even on non-random
graphs where the theoretical analysis does not hold.

DBLP and YEAST

Table 3.3 presents the runtime of the exhaustive approach and the percentage of
exhaustive runs that failed to finish within our time limit. On the DBLP dataset,
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Figure 3.8: KLD averaged over all
sampling iterations as a function of
the synthetic datasets. Datasets are
sorted by the increasing number of true
embeddings from left to right. Error
bars represent the standard deviations.

Figure 3.9: Relative error averaged over
all iterations of the sampling algorithms
as a function of the synthetic datasets
that are sorted by the increasing num-
ber of true embeddings. Error bars
represent the standard deviations.

the exhaustive algorithm starts to exceed the time limit for patterns of size
≥ 8 whereas on YEAST this happens for patterns of size ≥ 10. This is because
patterns that increase the runtime (e.g., those that contain cycles) require more
nodes due to the more sparsely connected graph. As expected, the runtime of
the exhaustive approach tends to increase as the pattern size increases. The
trend of increasing variance with the increase of the pattern size indicates that
the selected patterns fail on two extremes, with exhaustive finishing rather fast
or needing most of the time limit to finish.

We analyzed what is the percentage of sampled patterns having an OBD. For
DBLP related patterns 38.2% of patterns we sampled had no OBD, but only
0.5% out of these were selected based on our criterion. For the YEAST dataset,
all the patterns we sampled had an OBD. Actually, for YEAST we did not expect
any triangles in the pattern that would cause an OBD to not exist. The only way
a triangle could appear in patterns made for YEAST is to have a direct protein
to protein connection. However, protein nodes can only be connected through
an intermediate interaction node. In Figure 3.10 we show the relative error as
a function of time for applying FK-V on patterns that do not have an OBD
(FK-No-OBD) opposed to patterns that had an OBD (FK-OBD). It is evident
that the performance of FK-OBD converges even when it receives a pattern that
does not have an OBD.
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DBLP YEAST
Runtime(min.) Runtime(min.)

Pattern size
%exh.
time-
out

Mean Stdev
%exh.
time-
out

Mean Stdev

4 0.0 0.66 0.95 0.0 0.06 0.05
5 0.0 14.44 52.57 0.0 0.08 0.06
6 0.0 33.23 95.15 0.0 0.17 0.09
7 0.0 37.04 111.26 0.0 0.09 0.09
8 3.0 63.44 149.91 0.0 0.17 0.13
9 1.0 56.15 127.01 0.0 0.36 0.85
10 10.0 100.65 190.31 0.0 0.42 0.57
11 12.0 128.21 204.52 3.0 1.36 2.45
12 13.0 128.64 204.87 1.0 0.89 1.60
13 20.0 167.17 233.30 3.0 2.04 2.51
14 19.0 154.41 229.63 12.0 3.23 3.52
15 8.6 117.59 191.51 27.0 4.45 3.85

Table 3.3: Runtime of exhaustive approach (in minutes) and percentage of
timeout exhaustive runs per pattern size for the DBLP and YEAST dataset.

Figure 3.10: DBLP: Relative error as a function of time averaged over patterns
that do not have an OBD. Error bars represent standard deviations.

Avg_KLDandAvg_RelErr In the following plots, we omit those patternswhere
exhaustive failed to finish within the time limit as we lack the ground truth
answers for them. Figure 3.11 presents results on the average KLD for both
datasets. Figure 3.12 presents results on the average relative error for both
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Figure 3.11: Average KLD represented in logarithmic scale as a function of
the pattern size. The average is taken over all the patterns per pattern size
and the error bars represent standard deviations. Results are shown only for
those patterns for which exhaustive finished within 10 hours for DBLP, and 10
minutes for YEAST.

datasets. The results show that the YEAST dataset is slightly more problematic
for the random vertex approach than DBLP. We can say that FK-OBD and FK-
AD have similar performance trends and are on average better than the random
vertex approach on both metrics.

Runtime performance Ultimately, one goal of sampling is to achieve similar
performance but at a fraction of the runtime of the exhaustive approach. We
illustrate this by allowing each sampling approach to run for a percentage of
the total runtime of the exhaustive approach. For example, if the exhaustive
approach finished in 5 hours, then 10% represents FK-OBD and FK-AD
estimated results after 30 minutes. Moreover, we focus on more challenging
patterns by omitting any pattern where FK-AD had less than 10% relative error
on the estimated number of embeddings in the first interval (5 minutes for
DBLP and 5 seconds for YEAST). The results for the DBLP dataset are shown
in Figure 3.13, and for YEAST in Figure 3.14. As we can see the performance of
FK-OBD and FK-AD is rather similar. The fact that for smaller pattern sizes the
error bars do not decrease (or stay almost constant) is caused by the fact that
for these levels exhaustive on average finished its execution rather early. This
means that sampling algorithms are given less time for sampling.

Exhaustive runs with timeout To show the performance on the patterns where
exhaustive exceeded the time limit, we show how each approach converges to
its final estimate by assuming these estimates are the ground truth. The results
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Figure 3.12: Average relative error represented in logarithmic scale as a function
of the pattern size. The average is taken over all the patterns per pattern size
and the error bars represent standard deviations. Results are shown only for
those patterns for which exhaustive finished within 10 hours for DBLP, and 10
minutes for YEAST.

Figure 3.13: DBLP: Average relative error plots for a subset of results: pattern
size 8, 10, 12 and 15. The patterns used are those for which exhaustive finished
in the given time frame and those for which FK-AD had a relative error on the
number of embeddings larger than 10% in the first interval of sampling (i.e.,
5 minutes for DBLP and 5 seconds for YEAST). Error bars represent standard
deviations after each 10% execution.
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Figure 3.14: YEAST: Average relative error plots for each pattern size. The
patterns used are those for which exhaustive finished in the given time frame
and those for which FK-AD had relative error on number of embeddings larger
than 10% in the first interval of sampling (i.e., 5 minutes for DBLP and 5 seconds
for YEAST). We only show results for pattern sizes 10, 12, 14 and 15. Error bars
represent standard deviations after each 10% of the execution.

for DBLP and YEAST are shown in Figure 3.15. The best convergence for all the
approaches occurs when FK-OBD and FK-AD are taken as the ground truth.
This is especially the case for theDBLPdataset forwhich randomapproach has a
bad convergence trend in the beginning of the sampling. This happened because
the random approach had to visit many vertices to start finding embeddings
for some specific patterns. Given that we already witnessed the convergence
of FK-OBD and FK-AD in the results presented before, we can say that these
patterns are the ones that would make exhaustive run for quite a long time.

3.9.5 Discussion

Finally, we address the experimental questions posed at the beginning of this
section in light of the presented results. The results on the real-world datasets
show that both FK-OBD and FK-AD converge rather early in the sampling. The
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Figure 3.15: Average relative error for incomplete runs of the exhaustive
approach for the DBLP and YEAST datasets demonstrating how each approach
converges to its final estimate by assuming these estimates are the ground truth.

experiments also show that the sampling algorithms on average converge very
fast to the estimates with a low error. Furthermore, these results highlight that
the FK is a viable strategy for non-random graphs. The random vertex approach
performed worse than the two FK approaches.

FK-OBD and FK-AD seem to perform similarly, thus even when the decomposi-
tion is not an OBD the approach seems to converge in practice. One possible
reason is that because the size of AD is larger, it is faster to match. Hence, it
makes more observations than FK-OBD which needs to calculate all possible
combinations of values for nodes in each partition of an OBD. The larger the
partition, the longer it takes to finish one iteration of sampling.

Finally, we examined the results for which the exhaustive approach failed to
finish in a given time. We notice fast convergence trends of the approaches
when we use FK-OBD and FK-AD as the ground truth.

3.10 Related Work

Data in domains, such as the Semantic Web, social networks, citation networks,
biology, relational learning and geography among others, are often naturally
represented as a graph. Therefore, analyzing large graphs or networks is
a very active research field. Furthermore, problems related to the analysis
(searching, counting, etc.) of subgraphs in large network graphs attracts
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significant attention. Next, we present some of the more prominent lines of
research concerned with subgraph analysis and their relation to this paper.

Many of the following approaches employ subgraph identification, either by
subgraph isomorphism or subgraph homomorphism as a subtask. Typically,
they employ existing state-of-the-art algorithms for this task (e.g., Cordella et al.
(2004) and Ullmann (1976)).

One line of work looks at defining features of graphs. Graph particles are
a promising approach for graph characterization and comparison (Pržulj 2007;
Shervashidze et al. 2009; Bordino et al. 2008). Graph particles are usually small
subgraphs that contain up to five nodes, and are sometimes called graphlets.
The distribution of graph particles can be used as a “fingerprint”, a characteristic
invariant, of a graph. Then, the similarity between pairs of graphs can be
measured by comparing their distributions of graph particles. Graph querying
(Di Natale et al. 2010; Giugno and Shasha 2002) focuses on searching for a
graph in a database of graphs. Here, most research focuses on identifying graph
features (e.g., paths, walks, subtrees, small subgraphs, etc.) for filtering and
indexing in order to enable faster searching and querying of graphs.

Frequent patternmining in graph databases is another active topic of research (Yan
and Han 2002; Inokuchi et al. 2003). This usually entails finding frequent
subgraphs, which are also called motifs in biological networks (Kashtan et
al. 2004; Wernicke 2005). Motifs are subgraphs that appear more often than
expected according to a null model. Although subgraph isomorphism is an
integral sub-task in this problem, the main research focus is determining
the significance of subgraphs, which is measured by their support in the
data. Usually, these approaches only consider small subgraphs since the goal
is to find all subgraphs that meet the support threshold. Some approaches
(e.g., Baskerville et al. (2007)) use approximate methods to scale to larger
subgraphs.

Finally, general graph sampling approaches explore how to obtain a represen-
tative sample of a graph for a specific purpose (Leskovec and Faloutsos 2006).
Some approaches, like the work of Zou and Holder (2010), rely on sampling
for performing subgraph analysis by first sampling from a single large graph
and then mining the sample for frequent subgraphs. They empirically assess
the viability of various graph sampling approaches for the frequent subgraph
mining.
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The two key differentiating factors of our work are that we focus on approxi-
mating the frequency of a subgraph in larger graph (i.e., the inverse task of Zou
and Holder (2010)), and we consider relatively large subgraphs (up to 15 nodes).
Perhaps the most closely related work is that of Bordino et al. (2008) who
approximately count the subgraphs for graph characterization. But again, they
only consider small subgraphs.

Within SRL, the earlywork of Kok andDomingos (2005) recognized the potential
of sampling to improve scalability. They explored both sampling the facts
that appear in the data and the number of true groundings of a clause. More
recently, Venugopal et al. (2015) proposed an approach specific to Markov
logic that improves efficiency by counting only satisfied groundings, which is
equivalent to counting paths in a graph. Our work is similar to the use of graph
databases to scale lifted inference and learning by performing approximate
counting (Das et al. 2016).

3.11 Conclusions and Future Work

In this chapter we studied sampling properties of graph pattern embeddings.
This task is important in many areas of graph data mining, including
(approximate) pattern mining and statistical relational learning. We tested
several different sampling algorithms, studied how to obtain statistics from the
embeddings they generate, and performed an extensive empirical comparison.

We observed that a strategy based on the theoretical algorithm by Fürer and
Kasiviswanathan (2008) performed well in complex cases and the convergence
is observed in all the experiments. Moreover, the convergence seems to have
happened early in the stages of sampling. In the theoretical work of Fürer-
Kasiwiswanathan an ordered bipartite decomposition (OBD) of a pattern was
assumed to be given as an input. In this work we presented a heuristic approach
of calculating the OBD of reasonably large patterns. We showed that even for
patterns that do not have anOBD, the Fürer-Kasiwiswanathan algorithm turned
out to be rather robust to the use of non-ODB decompositions.

There are several possible directions for future work. First, statistical relational
learning has more complex inference tasks and statistics-collection challenges
next to the one presented here. Second, while related work focuses on rather
simple patterns, we have presented an algorithm allowing for sampling the
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embeddings of reasonably complex patterns. This is a crucial step towards
developing better pattern mining algorithms for large networks.



Hybrid Relational Dependency
Networks

4

“Open communication channels, Lister. Broadcast on all known
frequencies and in all known languages, including Welsh.”
Rimmer, Red Dwarf

4.1 Introduction

This chapter tackles another challenge posed by real-world relational data: the
attributes of objects can take on discrete or continuous values. Consequently,
one needs a representation for which inference and structure learning can be
performed in these hybrid domains.

To address the problem, this chapter presents hybrid relational dependency
networks (HRDNs) which upgrade an existing SRL formalism, relational
dependency networks (RDNs), to hybrid domains. Even though semantically
RDNs represent an approximation to the joint probability distribution, we chose
it for several reasons. First, there exists a rather simple and computationally
efficient method for learning the structure and parameters of an RDN from data.

74
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Second, unlike relational formalisms based on Bayesian networks, RDNs allow
cyclic dependencies that are ubiquitous in relational domains (e.g., grades of
students who are friends are correlated), and are exploited for performing
collective inference. Third, RDNs are expressive in that they represent a
collection of any regression or classification techniques that can be combined
using the Gibbs sampling procedure to obtain an approximate joint distribution.

4.1.1 Contributions and Bibliographical Note

The main contributions of this chapter are two-fold. First, we describe the
semantics of hybrid relational dependency networks (HRDNs). This formalism
will pave the way for developing the challenging tasks in hybrid SRL such
as structure learning. The second contribution is proposing a number of
conditional probability models to use for quantifying the hybrid dependencies
in HRDNs.

This chapter is based on the following published paper:

Irma Ravkic, Jan Ramon, Jesse Davis (2015) “Learning relational dependency
networks in hybrid domains”. In: Machine Learning Journal 2015, volume 100,
pp. 217 - 254

The author of the dissertation contributed to defining the representation and
semantics of HRDNs based on first-order logic, and proposing a number of
hybrid local distributions that are adequate for modelling hybrid domains.

4.1.2 Chapter Structure

The remainder of this chapter is structured as follows. We first introduce hybrid
relational dependency networks with an example, and its formal syntax and
semantics. Then we discuss several hybrid conditional probability models. We
end the introduction to HRDNs by discussing inference. This is followed by
related work and short overture to the task of learning the structure of HRDNs,
which will be covered in Chapter 5. We end this chapter by providing the
conclusions.
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4.2 Hybrid Relational Dependency Networks

We now describe hybrid relational dependency networks (HRDNs), our
proposed extension to RDNs for hybrid domains. First, we describe how to
incorporate continuous variables. Second, we describe how to represent the
CPDs. Third, we briefly describe how to perform inference in HRDNs.

4.2.1 Hybrid Relational Dependency Networks by Example

We will now discuss the Example 2.3 by focusing on its hybrid aspect.

Example 24. There are six relational tables representing properties and relationships
of students, courses and professors. Attributes such as intelligence and numHours
have numeric ranges. For example, the maximum value for IQ can be 228, and the
number of hours needed to prepare for a course might be at most 180. An interesting
relational feature to query is the aggregate intelligence quotients of one’s friends who
take the same course. As this aggregation is done for a numeric attribute, an appropriate
aggregation, such as averaging, needs to be performed. Also both of these variables can
be Gaussian distributed. For example, IQ is roughly normally distributed and IQ tests
are constructed to have a mean of 100 and a standard deviation of 15.

In Section 2.4.2 we introduced relational dependency networks, an SRL
formalism we will upgrade to hybrid domains in this dissertation. In order to
accomplish that we need to modify the components and definitions of RDNs.
These components are : a) random variable declarations, b) relational features,
and c) local distributions.

4.2.2 Syntax of HRDNs

First, to introduce continuous variables, it suffices to declare the range of
a predicate to be an interval of the real numbers. Each continuous randvar
associated with such a predicate can then take on any value from this interval.

Example 25. We could define a predicate numHours/1 with the following random
variable declaration:

random(numHours(C))← course(C)



HYBRID RELATIONAL DEPENDENCY NETWORKS 77

that represents the number of hours needed to study for a course C. The range of this
predicate can be the following interval:

range(numHours(C)) = [20.0, 180.0]

Second, we need to modify the definition of a relational feature to account for
the fact that both atoms and aggregation functions can have continuous ranges.

Definition 9. (Numeric Relational Feature) A numeric relational feature has
the same form as a discrete relational feature, aggL(A, C)(θ,I). In contrast to a discrete
relational feature, one or both of A and agg in a numeric relational feature must have a
continuous range.

There are a number of aggregation functions one can define and use, but the
standard ones used in SRL and in this dissertation are: maximum, minimum,
average, and proportion.

Example 26. Consider the following numeric relational feature:

average{S}(numHours(C), takes(S, C) = true)

This feature computes the average number of hours a student spends studying
for all taken classes.

Third, the definition of a dependency statement needs to be extended in order
to incorporate numeric relational features.

Definition 10. (Hybrid Dependency Statement) A hybrid dependency state-
ment is of the form G | Parents(G) where G’s range may be discrete or continuous and
Parents(G) is a set of discrete and/or numeric relational features. Each hybrid dependency
statement has an associated CPD.

Note that the type of aCPD for each hybrid dependency is determined according
to G’s range: for a discrete range it is a probability mass function, and for a
continuous range it is a density function.

Now we are ready to formally define an HRDN:

Definition 11. (HRDN) An HRDN is a tuple (P , RVD, dep), where P is a set
of predicates, whose ranges may be discrete or continuous, RVD is a set of randvar
declarations and dep is a function mapping each P ∈ P to a hybrid dependency
statement.
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4.2.3 Semantics of HRDNs

The semantics of the random variable declarations and dependency statements
in anHRDN is equivalent to that of RDNs. Given a domain, the random variable
declarations determine the set of random variables that satisfy the relevancy
conditions. The dependency statements define for each random variable which
other random variables it depends on.

Analogous to an RDN, an HRDN can be viewed as a template for constructing
a hybrid dependency network in the following way. The set of predicates P
in an HRDN is split into the set of predicates with discrete range PD and the
set of predicates with continuous range PC. Given a set of random variable
declarationsRVD for all predicates inP and a set of constants, the set of randvars
is Φ = ΦD

⋃
ΦC where ΦD denotes all randvars with discrete ranges and ΦC

denotes all randvars with continuous ranges. The induced hybrid DN will have
a node for each randvar in Φ and the parent set of a node is determined in
the same manner as described in Section 2.4.2 for discrete DNs. Each discrete
randvar of a predicate Pd ∈ PD will obtain its own copy of the discrete CPD
associated with Pd and each continuous randvar of a predicate Pc ∈ PC will
obtain its own copy of the continuous CPD associated with Pc.

A consistent HRDN specifies the joint distribution over the randvars in
its corresponding hybrid dependency network. In parallel with the claims
of Neville and D. Jensen 2007, there is a direct correspondence between
consistent HRDNs and hybrid Markov logic networks (HMLN) in that the
set of distributions that can be encoded by a consistent HRDN is equal to
the set of positive distributions that can be encoded with an HMLN with the
same adjacencies provided they use the same aggregate functions. If an HRDN
induces a hybridDN that does not contain cycles, then its semantics corresponds
to those of a hybrid Bayesian network. In this dissertation we primarily consider
inconsistent HRDNs. In this case, if there is a stationary distribution of an
ordered pseudo-Gibbs sampler applied to an HRDN model, we refer to this
distribution as the one represented by the model.

The pseudo-loglikelihood of an HRDN is computed as follows:
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PLL(M; I)= ∑
Pd∈PD

∑
g∈gr(Pd)I

log[p(I(g) | I(Parents(g)))] +

∑
Pc∈PC

∑
g∈gr(Pc)I

log[p(I(g) | I(Parents(g)))].
(4.1)

where the first summation goes over the predicates with a discrete range, and
the second goes over the predicates with a continuous range.

Example 27. To illustrate an HRDN, we could extend Example 16 with the
numHours/1 predicate and obtain the following domain:

random(intelligence(S))← student(S)

random(takes(S, C))← student(S), course(C)

random(grade(S, C))← student(S), course(C)

random(difficulty(C))← course(C)

random(numHours(C))← course(C)

To the discrete dependency

grade(S,C)
value(intelligence(S), ∅),
value(difficulty(C), ∅)

we can add the following hybrid dependency statement:

numHours(C) | value(difficulty(C), ∅)

which states that the number of hours spent studying for a class depends on its difficulty.
Figure 4.1 shows the ground hybrid DN for this example. Squares denote randvars with
a discrete range and ovals denote randvars with a continuous range.

4.2.4 Local Distributions for HRDNs

Each dependency statement G | Parents(G) has an associated CPD. The type
of model used for a CPD depends on both the range of the target atom G and
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Figure 4.1: The ground HRDN specified in Example 27. Squares represent
randvars with a discrete range, and ovals represent randvars with a continuous
range. The dashed arrows specify the relevancy condition on grade/2.

whether Parents(G) contains discrete or numeric features.

In this work, we use a parametric approach to density estimation and focus only
on variants of Gaussian distributions tomodel continuous variables. Specifically,
we use the following models:

Multinomial If G has a discrete range and its parent set is empty, the CPD is
modeled by a multinomial distribution.

Gaussian If G has a continuous range and its parent set is empty, the CPD is
modeled by a Gaussian distribution.

Logistic Regression (LR) This CPD is used when the target atom has a
discrete range as it facilitates incorporating both discrete and continuous
parents Bishop 2006. Note that this CPD was introduced in Section 2.2.2.
However, the difference lies in the fact that the predictors in HRDNs are
hybrid relational features. Hence, for the sake of clarity and completeness
we give a detailed representation of this CPD.
Given range(G) = {y1, y2, ..., ym}, the conditional distribution for the first
(m− 1) values for a specific grounding Gθ is:

p(Gθ = yk | Parents(Gθ)) =
exp

(
wk,0 + ∑ f∈Parents(G) wk, f · f (θ)

)
1 + ∑m−1

j=1 exp
(

wj,0 + ∑ f∈Parents(G) wj, f · f (θ)
)

The distribution for the mth value is:

p(Gθ = ym | Parents(Gθ)) =
1

1 + ∑m−1
j=1 exp

(
wj,0 + ∑ f∈Parents(G) wj, f · f (θ)

)
(4.2)
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In both equations, f is a relational feature, f (θ) denotes the value of the
feature f calculated for the substitution θ, wj, f are the weights associated
with f for value yj, and wj,0 is yj’s bias term.

Linear Gaussian (LG) A linear Gaussian CPD is used when G’s range is
continuous and all the features in the parent set are numeric (S. L.
Lauritzen 1992; Koller, Lerner, et al. 1999). An LG is a Gaussian
distribution that models µ as a linear combination of the values of the
features in the parent set, but assumes a fixed variance σ2. The distribution
is given as:

p(Gθ | Parents(Gθ)) = N

w0 + ∑
f∈Parents(G)

w f · f (θ), σ2
G

 (4.3)

where f is a numeric feature and w f is the weight associated with f .

Conditional Linear Gaussian (CLG) A conditional linear Gaussian (CLG) is
used if G’s range is continuous and its parent set contains a mix of discrete
and numeric features. There is a separate linear Gaussian model for every
instantiation of the discrete parents. More formally, consider partitioning
the parent set of a predicate into the discrete features, fdiscrete, and the
numeric features, fcontinuous and let D be the Cartesian product of ranges
of all features in fdiscrete. Then, the CPD consists of one LG model for each
d ∈ D:

p(Gθ | fcontinuous, d) = N

(
w0d + ∑

F∈ fcontinuous

w fd
· f (θ), σ2

d

)
(4.4)

Note that because there is a separate LG for each d, each one has an
associated variance σ2

d . A conditional Gaussian is a special case of a CLG
where the parent set only contains discrete features. Here, a separate
Gaussian (mean and variance) is learned for each possible configuration
of the parents.

As in the discrete case, it is possible that a feature does not have any groundings.
If this occurs and the aggregation function of the feature is not defined on the
empty set, then we return the value undefined.
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4.2.5 Probabilistic Inference for HRDNs

Similar to RDNs, inference in HRDNs can be performed by using an ordered
pseudo-Gibbs sampler. The difference lies in the fact that HRDNs contain both
conditional density functions and probability distributions. Given an HRDN,
a set of constants for each type, and possibly a set of relevance conditions,
inference is performed as follows.

First, the model is grounded to create the corresponding propositional hybrid
dependency network. Second, each randvar gets its own copy of a CPD
associated to its predicate. Third, an ordering over the atoms is determined
based on the relevance conditions, if specified. This ordering has to ensure
that when performing sampling for an atom H we first sample the values of the
atoms in ξ of the relevance condition H⇔ ξ.

Example 28. For example, consider the relevance condition:

grade(S,C) = not_relevant⇔ takes(S,C) = f alse (4.5)

In each Gibbs sweep, before we sample values for grade/2 we make sure that the values
for takes/2 are sampled.

Finally, in each Gibbs sweep we visit each ground atom in order and resample
its value according to its probability distribution or density function. A randvar
is assigned a value from its range or obtains the value not_relevant if there
exists a relevance condition that is satisfied in the sweep. Each sweep results in
an interpretation I and a sample corresponds to only the relevant randvars in I.

4.3 Related Work

There are a number of probabilistic formalisms such as hybrid Bayesian
networks (Murphy 1998) and hybrid dependency networks (Dobra 2009) that
model uncertainty for both continuous and discrete variables but not relations.
A commonly used type of hybrid BNs are conditional linear Gaussian (CLG)
networks (S. Lauritzen and Wermuth 1989), where the conditional distribution
of the continuous variables given an assignment to the discrete variables is
a multivariate Gaussian. However, CLG networks do not allow for discrete
variables to depend on continuous ones. This shortcoming is overcome in



RELATED WORK 83

augmented CLGs (Lerner et al. 2001) that use softmax CPDs to represent the
dependency of a discrete variable on continuous variables together with
numerical integration used within the inference algorithm.

On the one hand, there exist a number of SRL approaches such as logi-
cal Bayesian networks (LBNs) (Fierens, Blockeel, Bruynooghe, et al. 2005),
probabilistic relational models (Getoor, Friedman, et al. 2001), and relational
dependency networks (Neville and D. Jensen 2007) that capture both structure
and uncertainty in problems but are generally restricted to discrete data. On
the other hand, there are several SRL formalisms that can represent hybrid
relational domains including hybrid Markov logic networks (HMLNs) (J. Wang
andDomingos 2008), hybrid ProbLog (HProbLog) (Gutmann, Jaeger, et al. 2011),
continuous Bayesian logic programs (CBLPs) (Kersting and De Raedt 2001),
learning modulo theories (LMT) (Teso et al. 2013) and hybrid probabilistic
relational models (HPRMs) (Narman et al. 2010). Additionally, formalisms
such as relational continuous models (RCMs) (Choi et al. 2010), Gaussian
logic (Kuželka et al. 2011), Poisson dependency networks (Hadiji et al. 2015) can
model domains that exclusively contain continuous variables. Next, in terms of
representation, we provide a more detailed comparison between our approach
and HMLNs, HProblog and CBLPs.

HMLNs, CBLPs and HRDNs all serve as template languages for constructing
a different type of propositional graphical model: hybrid Markov networks
by HLMNs, hybrid Bayesian networks by CBLPs, and hybrid dependency
networks by HRDNs. Hence, each formalism inherits the strengths and
weaknesses of the underlying formalism. In contrast, HProblog is a probabilistic
extension of Prolog containing also continuous probabilistic facts. There are
differences in how each formalism models continuous variables. HRDNs,
HProblog and CBLPs explicitly state the form of the distribution (e.g., a
Gaussian) and its parameters (e.g., the mean and variance). For example, in
HProbLog the fact (X, gaussian(2, 8)) :: temp(D, X) declares the temperature
for day D to be Gaussian distributed with mean 2 and standard deviation
8. A similar representation of continuous variables is done in CBLPs. In
contrast, HMLNs express numeric variables through a set of soft constraints
with a Gaussian penalty for diverging values. For example, numeric terms
SegType(s, Door) · (Length(s) = DoorLength) have value 0 if the segment is
not a door and−(Length(s)−DoorLength)2 otherwise. One notable difference
between HRDNs and CBLPs is that CBLPs do not permit a discrete variable to
have a continuous parent, whereas this is possible in HRDNs.
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None of the mentioned approaches above support structure learning. In
Chapter 5 we propose an algorithm for learning the structure of HRDNs. In
the following section we briefly provide a scheme for learning HRDNs.

4.4 Towards Learning Hybrid Relational Depen-
dency Networks

We will now provide an overview on learning the structure of HRDNs from
data. We will start by introducing the learning task and the format of the data
we learn from, and then we give a short overview of our learning strategy.

When performing the learning task we assume that the random variable
declarations are given. The goal is to learn the hybrid dependency statements
and their associated CPDs that maximize a specific scoring criterion. We
optimize pseudo-loglikelihood in Equation 4.1 when learning HRDNs. This
score has already been used for learning other SRL approaches such as
MLNs (Richardson and Domingos 2006). This score is decomposable meaning
that the contribution for each variable is conditioned on all other attribute
values in the data, which allows maximizing the pseudo-loglikelihood for each
variable independently. To avoid overfitting each CPD can be penalized with a
factor that takes into account that the number of parameters needed to encode
the CPD is not large.

The data we use for learning is in the format of mega examples (De Raedt
and Kersting 2008; Fierens, Blockeel, Bruynooghe, et al. 2005). We refer to
these mega examples as interpretations or the sets of true ground facts that
describe possible states of theworld. For example, in the university domain each
interpretation would be one particular collection of students, professors, and
courses together with their properties and relations. The facts of probabilistic
predicates with Boolean range are specifiedwith predicate_name(t1,t2), where
t1 and t2 are constants. We make a closed-world assumption (Genesereth and
Nilsson 1987), that is, the groundings of predicate_name not specified explicitly
in the interpretation are considered false. The facts of probabilistic predicates
with a non-Boolean range are specified with predicate_name(t1,t2,Val), where
t1 and t2 are constants and Val is a value assigned to the fact. We consider each
of the interpretations to be mutually independent. We also assume complete
data, which means that we observe a value for each random variable. We leave
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learning HRDNs from incomplete data as the future work and we discuss it in
more detail in Section 7.2.

Example 29. Consider the university domain consisting of students, courses, professors
and random variable declarations introduced in Example 27. For the following domain

student(bob). course(bio).
student(ann). course(math).

one possible interpretation for the random variables could be:

intelligence(bob,105.0). takes(bob,bio).
intelligence(ann,120.0). takes(bob,math).

grade(bob,bio,low). takes(ann,math).
grade(bob,math,high). takes(ann,bio).

grade(ann,bio,med). difficulty(bio,med).
grade(ann,math,high). difficulty(math,high).
numHours(math,100.0). numHours(bio,80.0).

The learning strategy is quite straightforward: for each predicate learn a
CPD that maximizes the pseudo-loglikelihood. The CPDs represent a set of
regression of classification models depending on whether we learn a CPD
for a predicate with a discrete or a numeric range. Each hybrid dependency is
learned byperforming a heuristic search and each iteration of the search involves
learning and scoring its associated CPD. When the score does not improve, the
search stops. We give a more detailed structure learning procedure in the next
chapter. A CPD can be represented in different forms, and two most common
forms in SRL are CPTs and relational probability trees. In Chapter 6 we give
a more detailed description on how to learn relational probability trees for
learning the structure of dynamic HRDNs.

4.5 Conclusions

In this chapter we introduced the formalism of hybrid dependency networks
(HRDNs), an upgrade of relational dependency networks to hybrid domains.
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We demonstrated how to extend the syntax and semantics of RDNs to hybrid
domains by proposing a number of conditional probability models applicable
to hybrid relational domains.



Structure Learning of Hybrid
Relational Dependency

Networks

5

"This time next year we’ll be millionaires"
Del Boy, Only Fools and Horses

5.1 Introduction

In this chapter we present our algorithm for learning the structure of hybrid
relational dependency networks (HRDNs), which were introduced in Chapter 4.
Recall that relational dependency networks enable a structure learning
approach that is efficient and easy to parallelize. Because RDNs represent
an approximate model this means that the CPDs need not to factor the joint
probability distribution. This property permits using a decomposable score
function, such as pseudo-loglikelihood to evaluate candidate structures. Thus the
problem can be tackled by independently learning a locally optimal CPD for
each predicate. Therefore, we refer to our approach as the learner of local models
(LLM).

87
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All the components needed for accomplishing structure learning in hybrid SRL
are included in this chapter. We discuss how we create the candidate feature space
consisting of hybrid relational features. This space is traversed by performing a
search strategy through the space of candidate HRDNs. Each proposed structure
needs to be quantified by means of parameter estimation and then scored to
estimate how well it fits the data. We evaluate our approach on one synthetic
and one real-world dataset to evaluate if it is more beneficial to learn in hybrid
domains directly instead of discretizing them prior to learning.

5.1.1 Contributions and Bibliographical Note

The first contribution of this chapter is the learner of local models (LLM)
algorithm for structure learning of HRDNs. To the best of our knowledge, this is
the first attempt to perform structure learning in relational hybrid domains. The
second contributions is an experimental evaluation of the proposed approach
on two hybrid relational domains. We compare LLM to a learner of Markov
logic networks, a version of LLM applied to discretized domains, and to two
propositional learners.

This chapter is follow up on the previous chapter and is also based on the
following published work:

Irma Ravkic, Jan Ramon, Jesse Davis (2015) “Learning relational dependency
networks in hybrid domains”. In: Machine Learning Journal 2015, volume 100,
pp. 217 - 254

This work was also submitted as a student poster to Intelligent Data Analysis
(IDA) 2014, which won the best video prize.

The author contributed with the algorithm for learning the structure of RDNs
in hybrid domains and an experimental evaluation that shows the benefit of
learning in hybrid domains compared to learning in discretized domains.

5.1.2 Chapter Structure

This chapter is structured in the following way. In Section 5.2 we give a high-
level control structure for the proposed LLM algorithm. We then demonstrate
the experimental methodology and results in Section 5.3.
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5.2 The Learner of Local Models (LLM)

Algorithm 7 outlines LLM and it receives as input a set of predicates P , a set
of training interpretations D, and a set of validation interpretations V. LLM
assumes fully-observed data. At a high level, the algorithm is quite simple.
For each predicate P ∈ P , it invokes the LearnOneModel function to learn
a local distribution that models P using P . By using a decomposable score
function, such as pseudo-loglikelihood, the global score can be optimized by
independently finding the best local distribution for each predicate.1 The final
model M is obtained by conjoining all learned local distributions.

Note that this algorithm has the same high-level control structure as existing
approaches for learning RDNs. There are two important differences with
existing approaches. The first is that the data may contain continuous variables.
The second is that, in order to accommodate dependencies on continuous
variables, the local distributions are represented via a logistic regression or a
(conditional) linear Gaussian as opposed to a relational probability tree.

Next, we describe in detail how to learn and evaluate local distributions.

Algorithm 7 LLM(Predicates P , Training data D, Validation data V)
M = {}
for all P ∈ P do

CPDP = LearnOneModel(P,P , D, V)
M = M ∪ {(P, CPDP)}

return: (P , M)

5.2.1 Learning Local Distributions

Each learned CPD, regardless of its form, in an HRDN is parameterized by a
set of features. Learning the structure of the CPD requires determining which
features should appear in the parent set. This can be posed as the problem of
searching through the space of candidate features. We adopt a greedy approach
that selects one feature at a time to add to the parent set until no inclusion

1Note that because we use greedy search the learned structure is a local and not a global
maximum.
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improves the score. Thus, in each iteration, the central procedure is finding the
single best feature and adding it to the parent set.

We construct candidate features in the following way. First, let H = P(V1, . . . , Vn),
where each Vi is a unique logvar, and let L = {V1, . . . , Vn}. Next, we construct
all atoms A such that A is different from H. Then, given a user-defined parameter
N, for each A all conjunctions of k ≤ N randvar-value tests C = {(G1 =

v1), . . . , (Gk = vk)} are exhaustively enumerated such that (i) all atoms Gi
have a discrete range, (ii) no atom Gi is identical to H or A, (iii) the set Q =

{H, G1, . . . , Gk, A} is connected.2 These restrictions ensure that the set of candidate
features is finite. For each constructed C and A one candidate feature aggL(A, C)
for each aggregation function agg applicable to range(A) is generated. We
consider the following aggregation functions:

• If no aggregation is needed, we use value,

• If range(A) is discrete and not {true, f alse}, we use mode,

• If range(A) is discrete and {true, f alse}, we use proportion and exist,

• If range(A) is continuous, we use average, maximum, and minimum.

The aggregation function proportion computes the proportion of a feature’s
possible groundings that are true. The other functions take on their traditional
meanings.

Algorithm 8 outlines our procedure for learning the dependency for a predicate
P. As input, it receives the target predicate P, the full set of predicates P for the
domain, a training set D, and a validation set V. First, the algorithm starts by
constructing the set of candidate features for P. Second, it repeatedly iterates
through the set of candidate features and evaluates the utility of adding each
feature to the parent set. Each feature addition is followed by learning the CPD
on the training data D and then scoring it on the validation data V. In each
iteration, the single best feature is added to the parent set. If no feature improves
the score, the procedure terminates. Note that the form of the CPD depends on
both P and the features in the parent set. If P’s range is discrete, then the CPD
is represented via logistic regression. If P’s range is continuous, we use linear
Gaussians if the parents only contain numeric features and conditional linear
Gaussians when the parent set contains both numeric and discrete features.

2Here, we mean connected in the sense that the graph (Q, E) is connected with E = {{u, v} |
u, v ∈ Q ∧ u and v share variables}.
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The two following subsections explain how we estimate the parameters of the
CPDs using the training data and how we evaluate the local models.

Algorithm 8 LearnOneModel(Target Predicate P, All Predicates P , Training
Data D, Validation Data V)

Parents(P) = ∅
CPDP = learnCPD(Parents(P), D)
FS = GenerateCandidateFeatures(P, P)
repeat

Fbest = null
CPDbest = CPDP

for F in FS do
CPDtemp =learnCPD(Parents(P) ∪ {F}, D)
if score(CPDtemp, V) > score(CPDbest, V) then

CPDbest = CPDtemp
Fbest = F

if Fbest 6= null then
Parents(P) = Parents(P) ∪ {Fbest}
CPDP = CPDbest
FS = FS \ {Fbest}

until Fbest = null
return: CPDP

5.2.2 Parameter Estimation for Candidate CPDs

Next, we briefly describe how to estimate the parameters for the CPDs for the
different types of dependency statements that may appear in a learned HRDN.

Multinomial The maximum likelihood parameters of the multinomial are
learned from the data. For amore detailed description refer to dependency
networks in Section 2.2.2.

Gaussian The maximum likelihood estimates θ̂ = (µ̂, σ̂) of the Gaussian’s
parameters θ = (µ, σ) are obtained from the data in the following way:

µ̂ =
1
n

n

∑
i=1

xi σ̂ =
1

n− 1

n

∑
i=1

(xi − µ̂)2 (5.1)
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Logistic regression Parameter estimation requires learning the weight vectors
for the logistic regression model. We follow the standard approach and
take the (partial) derivative of the conditional loglikelihood of the data
and perform gradient ascent to estimate the weights (Mitchell 1997). For
a more detailed description see Section 2.2.2.

Linear Gaussian Parameter learning requires estimating the weight vector for
the linear regression model. This can be done via standard techniques
for training a linear regressor. We use ridge regression (Bishop 2006). We
estimate the variance by computing the expected value of the squared
difference between the actual value and the model’s predicted value.

Conditional linear Gaussian In CLGs, each configuration of the discrete
parents has an associated LG model. The parameters for each LG model
are learned as described above.

5.2.3 Evaluating Candidate Models

Traditionally, a candidate model is evaluated using a score function that trades
off the model’s fit to the data versus some penalty term based on the model’s
complexity to avoid overfitting. Recall that when learning HRDNs the score
of each local structure contributes independently to the score of the global
structure. For a candidate global model M and validation data V, we use the
following score function, which is based on the minimum description length
(MDL) (Schwarz 1978):

MDL(M, V) =PLL(M, V)− Penalty(M, V) = (5.2)

= ∑
P∈M

LL(mp, V)− Penalty(mp, V) (5.3)

(5.4)

where LL(mp, V) is the score that indicates how well the proposed local
structure for predicate P explains the data and Penalty(mp, V) is the term for
penalizing complex structures. Each LL(mp, V) is optimized independently.
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Score

The LL(mp, V) represents the score for a local structure learned for a specific
predicate. More precisely, given a proposed CPD m = p(P|Parent(P)) and the
data V, the score is:

LL(mp, V) = ∑
I∈V

∑
g∈gr(P)I

log[p(I(g) | I(Parents(g)))] (5.5)

where I is an interpretation assigning values to the random variables, gr(P)I

represents all the random variables in interpretation I, and I(g) represents
the value of the random variable g in interpretation I. The probability
p(I(g) | I(Parents(g)))] is simply read from theCPDestimated from the training
data D. For discrete distributions this is done by reading the probability
of I(g) for a given assignment of the parents I(Parents(g)). For continuous
distributions the density for a ground atom g is calculated with:

p(g|µ, σ2) =
1√

2σ2π
e−

(I(g)−µ)2

2σ2 (5.6)

where µ and σ2 parameters are obtained as explained in Section 4.2.4. In short,
if p(I(g) | I(Parents(g))) represents the linear Gaussian, we calculate the µ as
the linear combination of the parent values I(Parents(g))). If it represents the
conditional linear Gaussian, we do the same as for the linear Gaussian, but for
a particular assignment of the discrete parents I(Parentsd) ∈ I(Parents(g)).

Penalty

The penalty term Penalty(mp, V) for a proposed local structure mp of predicate
P in Equation 5.2 is calculated in the following way:

Penalty(mp, V) =
1
2 ∑

I∈D
∑
P∈P

log2(|gr(P)|I) · BP · K

where |gr(P)|I is the number of relevant randvars of predicate P in interpretation
I, BP is the number of free parameters in P’s CPD and K is the size of P’s CPD.3
Next, we will explain in more detail how BP and K are calculated.

3Because we assume that all variables are observed, we do not need to run Gibbs sampling to
compute the PLL.



94 STRUCTURE LEARNING OF HYBRID RELATIONAL DEPENDENCY NETWORKS

When the CPD for P is represented by a logistic regression model (see
Equation 4.2), the number of free parameters is:

BP = (|range(P)| − 1) · (1 + |Parents(P)|)

where (1 + |Parents(P)|) is the number of weights that must be learned to
parameterize the model (i.e., one for each feature plus the intercept). For
continuous CPDs, this is slightly more involved to compute. For a linear
Gaussian, the number of free parameters is:

BP = 1 + (1 + |Parents(P)|)

where the first 1 is for the variance σ2 and (1 + |Parents(P)|) is the number
of weights that must be learned to parameterize the model (i.e., one for each
feature in the parent set plus the intercept). Recall that in a conditional linear
Gaussian, one linear Gaussian model is learned for each possible instantiation
of the discrete parents. Thus the number of free parameters for a CLG is:

BP = d · (1 + (1 + |ParentsC(P)|))

where d is the number of elements in the Cartesian product of the ranges of the
discrete parents, ParentsC(P) denotes only numeric features in the parent set of
P and (1 + (1 + |ParentsC(P)|)) is the number of parameters needed to model
each LG.

The size K of P’s CPD is the sum of the feature lengths in the parent set:

K = ∑
f∈Parents(P)

| f | (5.7)

where | f | = |aggL(A, C)| = |C|+ 1 is the length of a feature.

5.3 Experiments

This section empirically evaluates our HRDN structure learning algorithm LLM.
Specifically, we want to answer the following questions:

1. How does varying the amount of training data affect the quality of the
learned model and the run time of the learning algorithm?
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2. Do we learn more accurate models by learning a hybrid model (i.e.,
explicitlymodeling continuous variables) or by discretizing all continuous
variables prior to learning?

3. How does our approach compare to MLN (Richardson and Domingos
2006) structure learning?

All our code, data and models are publicly available.4 We first describe the data
sets we will use and then explain the experimental setup. Finally, we present
and discuss the results.

5.3.1 Datasets

We use one synthetic and one real-world data set to answer these questions.

Synthetic University Data

We used a modified version of the well-known university model (Getoor,
Friedman, et al. 2001) to generate synthetic data described in Example 7. In
comparison to the originally proposedmodel,wemade the following alterations.
First, we switched the range of intelligence/1 from discrete to continuous.
Second, we added two predicates with continuous ranges: numHours/1, which
is the estimated number of hours a student needs to study for a course, and
ability/1, which is the ability of a professor. Finally, we added a Boolean
predicate friend/2, which denotes whether two students are friends. Appendix
A contains a complete description of the model.

We generate synthetic data in two ways. First, we fix the domain size of each
type within an interpretation and vary the number of training interpretations.
We learn models by using one, two, four, eight and 16 interpretations. We
use one validation and one test interpretation. Second, we fix the number of
training and validation interpretations to one and vary the domain size of each
object. The learned models in this setup are evaluated on a test interpretation
consisting of 800 students, 125 courses and 125 professors. Tables 5.1 and 5.2
show the characteristics of the domains for the first and second synthetic setup,
respectively.

4http://dtai.cs.kuleuven.be/ml/systems/llm
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For each experimental condition, we repeat the following process ten times. We
generate the appropriate number of interpretations, where each interpretation
is constructed by performing 2000 iterations of the ordered pseudo-Gibbs
sampling (see Section 6.3) using the handcrafted model and the specified
number of constants.

For each generated data set, we also create a corresponding discretized version
by binning each continuous randvar into a number of equal-size intervals. We
used 2, 4, 6 and 8 bins.

Real-world PKDD’99 Financial Data Set

Our real-world domain is the financial data set from the PKDD’99 Discovery
Challenge (Berka 1999). It consists of services one bank offers its clients such
as loans, accounts, and credit cards among others. In the original data, the
transaction table contains more than one million transactions. Therefore, we
introduced several predicates (e.g., average of monthly withdrawals for an
account) to summarize the information contained in this table. This results in
16 predicates5 about four types of objects: clients, accounts, loans and districts.
Ten predicates have a continuous range and six have a discrete range.

We consider account to be the central object type in the PKDD’99 financial data
set. The original data set consists of 4500 accounts, but we omit ten accounts
that have missing data. We then split the data associated with these accounts
into ten folds. To avoid leakage of information, all information about clients,
loans and districts related to one account appear in the same fold. We used
six folds for training, three folds for validation and one for testing. Table 5.3
reports the characteristics of this data set.

Again, we create a discretized version of the data by binning each continuous
randvar into a number of equal-size intervals and used 2, 4, 6 and 8 bins.

5.3.2 Experimental Methodology

We compare the following four learners on all experiments:
5Table A.2.1 in Appendix A.2 describes the predicates.
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#Interpretations Average Sum of #Randvars

1 19,627
2 39,308
4 79,027
8 157,959
16 315,334

Table 5.1: Data set characteristics for the synthetic datawhen varying the number
of interpretations used for learning. #Interpretations is the number of training
interpretations. Average Sum #Randvars is the number of randvars summed
across all training interpretations averaged over the ten generated data sets.
Each interpretation has 100 students, 50 courses and 50 professors objects.

LLM-H This corresponds to learning a model using our LLM algorithm on the
data containing both continuous and discrete variables.

LLM-D This corresponds to learning a model using our LLM algorithm on the
discretized data. Thus each learned local distribution is modeled using a
logistic regression CPD.

LSM This corresponds to learning a model using the publicly available
implementation of LSM (Kok and Domingos 2010) on the discretized
data. LSM is the state-of-the-art Markov logic network structure learning
algorithm.

Independent This learner constructs a model on the hybrid data such that all
randvars are independent. That is, it models the joint distribution as a
product of marginal distributions.

On the experiments involving the PKDD’99 financial data set, we include an
additional baseline: a handcrafted model. We built a local model to predict each
predicate by a set of handcrafted non-relational features. These features are
used to predict a property of an object bymeans of some other properties of that
object. The features can be found inAppendix A.4. For predicates with a discrete
range, we used logistic regression. For predicates with a continuous range, we
used both linear regression and MP5 (a regression tree) as implemented in
Weka (Hall et al. 2009).
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#Students #Courses #Pro f essors Average #Randvars

100 50 50 19,548
200 75 75 66,577
400 100 100 226,679
800 125 125 796,328

Table 5.2: Data set characteristics for the synthetic datawhen varying the domain
size of each object type in the training interpretation. #Students, #Courses, and
#Pro f essors report the number of each type of object. Average #Randvars is the
number of randvars averaged over the ten data sets generated for each domain
size.

Experimental Details

LLM is implemented as a combination of Java and Prolog. Java is used for
performing the learning and Prolog is used to compute the value of a feature.
When generating features, we set the length of the features to be at most N = 3.
Usually, in relational domains, only a small fraction of the Boolean atoms is
true (e.g., the number of people who are friends is quite sparse compared
to the number of possible friendships). Therefore, for efficiency reasons, we
subsample the false Boolean atoms during learning (Natarajan, Khot, et al. 2012)
to achieve a 1:1 ratio of true to false groundings in all experiments.

For LSM, we contacted the authors in order to know what the most important
parameters were to tune. Then, we tried several parameter combinations, and
used the validation data to select appropriate ones for each data set.

Evaluation Metrics

We evaluate the quality of the learned models using several metrics. First,
to measure the quality of the probability estimates, we report the weighted
pseudo-loglikelihood (WPLL) (Kok and Domingos 2005). This corresponds to
calculating the PLL of an interpretation as the sum of PLLs for each predicate
divided by the number of groundings of that predicate in the interpretation.

Second, to measure the predictive performance, we report the area under
the ROC curve (AUC-ROC) for discrete predicates and the normalized root-
mean-square error (NRMSE) for continuous predicates. Because we have multi-
class categorical variables in our domains, we calculate the multi-class AUC-



EXPERIMENTS 99

#Account #Loan #Client #District #Randvars

4,490 680 5,358 77 3,157,657

Table 5.3: Characteristics of the PKDD’99 financial data set. #Account, #Loan,
#Client, and #District report the number of objects of each type and #Randvars
is the number of randvars in the data set.

ROC (Provost and Domingos 2000), which we denote as AUCtotal . The NRMSE
for a predicate ranges from zero to one and is calculated by dividing RMSE by
the predicate’s range.

Additionally, since we know the model structure for the synthetic data, we
compare how closely the learnedmodel reflects the handcrafted structure using
the following edit distance. For each predicate, we compare the true parent set to
the learned parent set. For each feature in the true parent set, we find its closest
feature in the learned parent set according to the following distance metric. The
distance ∆ between two features, f1 = agg1L1

(A1, C1) and f2 = agg2L2
(A2, C2),

is calculated as:

∆( f1, f2) = |C1\C2|+ |C2\C1|+ δA1,A2 + δagg1,agg2

where δA1,A2 equals zero if the two atoms A1 and A2 originate from the same
predicate and their logvars are equivalent, otherwise it equals one. Similarly,
δagg1,agg2 equals zero if agg1 and agg2 represent the same aggregation function,
otherwise it equals one. When the best match is found, both the true and the
learned feature are excluded from further comparisons, and the edit distance is
incremented by the distance between them. Furthermore, the final distance is
incremented by the length of each feature that must be added or removed from
the learned dependency parent set.

We use a one-tailed paired t-test to assess the significance of the results obtained
through ten independent runs for the synthetic experimental setup and ten folds
for the real-world data set. The null hypothesis states that there is no difference
between two approaches and we reject it when p<0.01. For all metrics, we
report the metric itself along with its standard deviation.
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Nr. training interpretations
1 2 4 8 16

LLM-H -18.22± 0.5 -18.16± 0.5 -17.89± 0.2 -17.87± 0.2 -17.83± 0.3
LLM-D(#bins=2) −21.33± 0.3∗ −21.10± 0.3∗ −21.06± 0.3∗ −21.06± 0.3∗ −21.05± 0.2∗

LLM-D(#bins=4) −19.53± 0.6∗ −19.27± 0.3∗ −19.20± 0.3∗ −19.12± 0.3∗ −19.04± 0.3∗

LLM-D(#bins=6) −19.34± 0.9 −18.77± 0.4∗ −18.56± 0.3∗ −18.55± 0.3∗ −18.52± 0.3∗

LLM-D(#bins=8) −20.03± 1.0∗ −19.11± 0.8∗ −18.64± 0.5∗ −18.62± 0.5∗ −18.30± 0.3∗

LSM(#bins=2) −23.33± 0.2∗† −23.28± 0.2∗† −22.86± 0.8∗† OoM OoM
LSM(#bins=4) −23.00± 0.3∗† −22.86± 0.4∗† −21.65± 1.3∗† OoM OoM
LSM(#bins=6) −22.79± 0.4∗† −22.67± 0.4∗† −22.00± 1.3∗† OoM OoM
LSM(#bins=8) −22.62± 0.3∗† −22.62± 0.9∗† −21.27± 1.4∗† OoM OoM
Independent −23.68± 0.4∗ −23.63± 0.4∗ −23.53± 0.4∗ −23.54± 0.4∗ −23.52± 0.4∗

Table 5.4: TheWPLL on the synthetic data as a function of the number of training
interpretations. The best WPLLs are in bold, an asterisk (*) denotes significantly
worse results for p<0.01 compared to LLM-H. A dagger (†) denotes when LSM
performs significantly worse than LLM-D for p<0.01 on the data discretized
with the same number of bins. OoM denotes out of memory.

5.3.3 Results and Discussion

We now present experimental results for the synthetic and real-world data sets.

Results on Synthetic Data

Table 5.4 shows how the WPLL of each approach varies as a function of the
number of training interpretations. Learning from the hybrid data results in a
significantly more accurate learned model than learning from the discretized
data in all cases except for one in which we have one training interpretation and
six discretizing bins. When using the same number of bins for discretization,
LLM-D learns more accurate models than LSM on all settings. Note that LSM
ran out of memory on all runs when training on eight and 16 interpretations.
Finally, all learning approaches always outperform the no-learning baseline.

Table 5.5 presents the run times for all algorithms as a function of increasing the
number of training interpretations. LSM is the fastest learner, but it produces
lower-quality models. For all approaches, the run time scales linearly with the
number of interpretations. Learning an HRDN is always faster than learning
an RDN. When discretizing the data, the run time is influenced by the number
of bins used: the more bins there are, the slower the discrete learner is. This
occurs because adding more bins increases the size of the search space.
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Nr. training interpretations
1 2 4 8 16

LLM-H 15.58± 1.8 18.72± 2.3 28.53± 2.7 48.16± 3.2 76.51± 3.51
LLM-D(#bins=2) 21.82± 4.3 30.48± 5.5 53.03± 13.7 85.74± 10.5 140.62± 19.2
LLM-D(#bins=4) 28.71± 5.7 40.24± 7.3 70.54± 17.5 109.80± 21.0 162.13± 41.0
LLM-D(#bins=6) 35.69± 7.1 49.84± 9.6 83.34± 24.0 135.73± 13.1 201.40± 139.2
LLM-D(#bins=8) 42.70± 8.5 57.63± 14.4 98.33± 29.1 166.11± 38.4 255.90± 46.7
LSM(#bins=2) 3.73± 0.1 6.70± 0.0 7.48± 0.1 OoM OoM
LSM(#bins=4) 3.44± 0.1 6.22± 0.1 8.49± 0.0 OoM OoM
LSM(#bins=6) 3.22± 0.0 6.23± 0.0 12.65± 0.0 OoM OoM
LSM(#bins=8) 4.34± 0.1 6.27± 0.1 13.33± 0.1 OoM OoM

Table 5.5: The run times in minutes on the synthetic data as a function of the
number of training interpretations. The best run times are in bold and OoM
denotes out of memory.
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Figure 5.1: The effect of the number of
training interpretations on the average
edit distance between the handcrafted
HRDN model and the hybrid model
learned with LLM-H.
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Figure 5.2: The effect of increasing
the domain size of each object type
on the average edit distance between
the handcrafted HRDN model and the
hybrid model learned with LLM-H. We
summarize the effect of changing the
domain sizes by showing the number of
randvars in the training interpretation.

Finally, Figure 5.1 shows how the edit distance varies as a function of the number
of training interpretations. As expected, the edit distance decreases as more
training data are used.

Table 5.6 shows theWPLLs of all learners as a function of increasing the domain
size for each object. To encapsulate the effect of domain size changes in a single
number, we use the number of randvars in an interpretation. Again, we see
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that all the learners outperform the independent model. LLM-H always learns
significantly more accurate models than LSM. LLM-H learns a significantly
more accurate model than LLM-D except when discretizing the data into 6 or 8
bins on the data sets with 200, 400 and 800 students.

Table 5.7 shows the run time of all approaches as a function of increasing
domain size. Similar to the previous setup, LSM exhibits better run times than
either LLM-H or LLM-D, but it produces lower-quality models. As expected,
both LLM-H and LLM-D run time varies quadratically with the increase in
domain size. LSM’s run time seems to vary linearly, which probably occurs
due to its random-walk style search for patterns, which does not necessarily
examine all the variables in the training database. When learning (H)RDNs,
LLM-H is faster than LLM-D. Again, in general, increasing the number of bins
increases the training time.

Figure 5.2 shows that the edit distance between LLM-H’s learned model and
the handcrafted model decreases as the number of randvars in the training
interpretation increases. More (observed) random variables equates to more
training data, and, as expected, more data allows us to learn more accurate
models.

In both synthetic setups, we noticed that in the learned model difficulty(C)
depends on nrhours(C). This dependency is not encoded explicitly in the
handcrafted model. However, nrhours(C) does depend on difficulty(C) in
the original model. In both cases, this contributes to the edit distance.

More detailed results for both synthetic setups can be found in Appendix A.3.1.

Results on the PKDD’99 Financial Data Set

Figure 5.3 shows theWPLL for all approaches on the PKDD’99 financial data set
as a function of the number of bins used for discretization. For the handcrafted
models, we denote the combination of logistic regression and linear regression
as LR+LinR, and the combination of logistic regression and MP5 regression
trees with LR+MP5. In the figure, the lines for LLM-H, LR+LinR, LR+MP5 and
the independent model are straight because these approaches operate directly
on the hybrid data and hence do not perform discretization. We see a clear
ranking between the approaches: LLM-H > LR+LinR > LR+MP5 > LLM-D >

LSM > independent.
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Table 5.6: The WPLL on the synthetic data as a function of the domain size.
The best WPLLs are in bold, an asterisk (*) denotes significantly worse results
for p<0.01 compared to LLM-H. A dagger (†) denotes when LSM performs
significantly worse than LLM-D for p<0.01 on the data discretized with the
same number of bins.



104 STRUCTURE LEARNING OF HYBRID RELATIONAL DEPENDENCY NETWORKS

Domain size (#students × #courses × #professors)
100×50×50 200×75×75 400×100×100 800×125×125

LLM-H 15.58± 1.8 54.61± 3.2 171.82± 21.5 2171.05± 306.3
LLM-D(#bins=2) 21.82± 4.3 98.68± 5.0 270.81± 38.7 2164.11± 154.6
LLM-D(#bins=4) 28.71± 5.7 128.51± 8.6 341.76± 40.7 3026.22± 317.4
LLM-D(#bins=6) 35.69± 7.1 156.98± 8.1 476.16± 50.8 2923.45± 150.7
LLM-D(#bins=8) 42.71± 8.5 182.18± 5.8 700.07± 80.8 4119.31± 387.3
LSM(#bins=2) 3.73± 0.1 6.13± 0.1 11.85± 0.1 18.34± 0.3
LSM(#bins=4) 3.44± 0.1 5.18± 0.1 10.32± 0.1 19.72± 0.2
LSM(#bins=6) 3.22± 0.0 5.74± 0.1 11.80± 0.1 19.68± 0.2
LSM(#bins=8) 4.34± 0.0 5.71± 0.1 11.33± 0.1 20.68± 0.2

Table 5.7: The run times in minutes on the synthetic data as a function of the
domain size for all the learners. The best run times are in bold.

Table 5.8 shows the (multi-class) AUCs and NRMSE for LLM-H and the hand-
crafted models. All three approaches tend to have similar results on most
predicates. Note that the handcrafted features used to propositionalize the data
are all features that LLM-H is able to learn automatically.

Table 5.9 reports the AUCtotal for LLM-H, LLM-D and LSM. Out of the six
discrete predicates, LLM-H has a higher AUCtotal on one predicate, the same
on two and worse on three compared to LLM-D. Compared to LSM, it wins on
three predicates, loses on two and draws on one.

Figure 5.4 shows the run times for this data set as a function of the number of
bins used for discretization. LLM-H exhibits better run times than both LLM-D
and LSM. LSM is faster than LLM-D except when discretizing the data into two
bins.

When we inspected the models learned on the PKDD’99 financial data set,
we found a considerable number of bi-directional dependencies. This means
that our algorithm succeeded in learning a model that is mostly structurally
consistent. For example, it learned that the monthly payment amount for a loan
depends on the loan amount, and vice versa. The same holds for the average
salary and the ratio of urban inhabitants in a district, the average amount
withdrawn from an account and the average amount credited to an account,
the average amount withdrawn from an account and the average number of
withdrawals for an account, among others.
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Evaluation Predicate LR+LinR LR+MP5 LLM-H

AUCtotal

clientDistrict/2 0.59± 0.02∗ 0.59± 0.02∗ 0.64± 0.02
gender/1 0.50± 0.01 0.50± 0.01 0.50± 0.01
hasAccount/2 0.50± 0.01∗ 0.50± 0.01∗ 0.56± 0.01
freq/1 0.86± 0.01 0.86± 0.01 0.82± 0.01∗

hasLoan/2 0.76± 0.01∗ 0.76± 0.01∗ 1.00± 0.01
loanStatus/1 0.79± 0.03 0.79± 0.03 0.66± 0.04∗

NRMSE

clientAge/2 0.28± 0.03 0.28± 0.01 0.28± 0.02
avgSalary/1 0.13± 0.01∗ 0.11± 0.01 0.13± 0.02∗

ratUrbInhab/1 0.20± 0.01∗ 0.15± 0.00 0.20± 0.00∗

avgSumOfW/1 0.02± 0.00 0.03± 0.00∗ 0.02± 0.00
avgSumOfCred/1 0.02± 0.01 0.03± 0.00∗ 0.02± 0.00
stdOfW/1 0.05± 0.01 0.05± 0.00 0.05± 0.01
stdOfCred/1 0.05± 0.01 0.04± 0.01 0.05± 0.01
avgNrWith/1 0.12± 0.02∗ 0.10± 0.00 0.15± 0.01∗

loanAmount/1 0.15± 0.02 0.15± 0.01 0.16± 0.02
monthlyPayments/1 0.17± 0.02 0.17± 0.01 0.18± 0.02

Table 5.8: The performance of the two variants of the handcrafted models,
LR+LinR andLR+MP5, compared to LLM-Hon the hybrid data for the PKDD’99
financial data set. LR+LinR uses logistic regression for discrete predicates
and linear regression for continuous predicates, and LR+MP5 uses logistic
regression for discrete predicates and regression trees for continuous predicates.
The best results are in bold and an asterisk (*) denotes the result that is
significantly worse (p<0.01) than the best result.

More detailed results for the PKDD’99 financial data set can be found in
Appendix A.3.2.

Discussion. Now we can revisit and answer the three experimental questions
posed at the beginning of this section. To address the first question, we used
the synthetic data to explore the scaling behavior of our algorithm. We found
that as the amount of training data increases both the accuracy of the learned
models and their faithfulness to the ground truth model slightly improve.

The second question revolves around whether it is better to learn from hybrid
data or discretized data. On all experiments, we have seen that learning from the
hybrid data directly consistently results in significantly more accurate learned
models (according toWPLL) than discretizing the data prior to learning. Finally,
we wanted to compare our proposed learning algorithm to the state-of-the-art
MLN learner. The results show that on both hybrid and discrete data LLM
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Table 5.9: AUCtotal results for LLM-H, LLM-D and LSM on the six discrete
predicates in the PKDD’99 financial data set. The best results are in bold.
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learns more accurate models than LSM.

5.4 Related Work

On the propositional level, researchers have considered extending formalisms
such as Bayesian networks and dependency networks to model both discrete
and continuous distributions. In terms of hybrid Bayesian networks, most of the
work has focused on inference (Koller, Lerner, et al. 1999; Yuan and Druzdzel
2007; Murphy 1998; Moral et al. 2001; S. L. Lauritzen and F. Jensen 2001). There
have also been some initial attempts for parameter learning (Murphy 1998)
and structure learning (Romero et al. 2006). Cobb et al. (2007) provide a more
detailed overview of work on hybrid Bayesian networks.

There has been some work on structure learning for hybrid dependency
networks. Dobra (2009) has proposed bounded stohastic search for variable
selection (structure learning) for sparse genetic dependency networks that
contain both discrete and continuous variables. Meinshausen and Bühlmann
(2006) use neighbourhood selection with the Lasso for structure learning as a
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computationally attractive alternative to standard covariance selection methods
for multivariate normal distributions. Guo and Gu (2011) use dependency
networks formulti-label classificationwhere eachCPD represents a probabilistic
or non-probabilistic binary classifier that can have both discrete and continuous
predictors.

Ourwork represents a relational approach and builds off of two lines of research:
structure learning for RDNs and hybrid relational probabilistic models. There
are two existing structure learning approaches for RDNs (Neville and D. Jensen
2007; Natarajan, Khot, et al. 2012). Both approaches perform structure learning
by finding the best conditional distribution independently for each predicate.
They slightly differ in how they represent the CPDs. Neville and D. Jensen
(2007) learn a single relational probability tree (Neville, D. Jensen, et al. 2003)
for each predicate. Natarajan, Khot, et al. (2012) represent individual conditional
distributions as a weighted sum of relational regression trees (Blockeel and
De Raedt 1998), which are learned by a stage-wise optimization procedure.
However, these approaches do not explicitly model continuous distributions
and instead require them to be discretized. In contrast, our approach is able
to directly encode dependencies between discrete and continuous random
variables without discretization. Doing so necessitates representing the CPDs
with logistic regression or conditional (linear) Gaussian model as opposed to a
relational probability tree.

There are several formalisms that focus mostly on representation and reasoning
issues in hybrid relational domains including hybrid probabilistic relational
models (HPRMs) (Narman et al. 2010) and hybrid problog (HProblog) (Gut-
mann, Jaeger, et al. 2011). On the other hand, there are several SRL hybrid
approach such as hybrid Markov logic networks (HMLNs) (J. Wang and
Domingos 2008), continuous Bayesian logic programs (CBLPs) (Kersting and
De Raedt 2001) and learning modulo theories (LMT) (Teso et al. 2013) that
also support for learning the parameters of a given model from data. Next,
we provide a more detailed comparison between our approach and HMLNs,
HProblog and CBLPs.

In terms of reasoning, HMLNs and HRDNs use approximate inference.
Currently, HProblog only supports an exact inference procedure which involves
partitioning the continuous probabilistic facts into admissible intervals. Scaling
HProblog to large domains would require the development of a suitable
approximate inference algorithm. Inference in CBLPs can be split in two parts:
logical inference and probabilistic inference. The former computes the support
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network for a query (i.e., a Bayesian network containing all relevant variables for
the query). The latter applies off-the-shelf Bayesian network inference methods
to the resulting support network.

There are significant differences in the level of support for learning in each
formalism. Out of the four formalisms, HRDNs are the only one that support
structure learning in hybrid domains. Like HRDNs, HMLNs and CBLPs have
algorithms for parameter learning. Currently, HProblog does not support
parameter learning.

5.5 Conclusions and Future Work

This chapter addressed the problem of learning models from structured,
relational data that contain both discrete and continuous variables. To the best of
our knowledge, this is the first attempt to perform structure learning in a hybrid
SRL setting. We introduced hybrid relational dependency networks (HRDNs),
a novel extension of relational dependency networks that accommodate
continuous variables and proposed an algorithm that automatically learns
the structure of an HRDN from data. Empirically, we evaluated the benefit of
incorporating continuous variables in a learned model on one synthetic and
one real-world data set by considering two versions of each data set: one that
contains both continuous and discrete variables, and onewhere each continuous
variable is discretized prior to learning. We compared our proposed algorithm
to two learners that work only on discrete data: a variant of our algorithm and
LSM, the state-of-the-art MLN structure learner.We found that learning directly
from the hybrid data resulted in more accurate learned models than learning
from the discretized data.

One interesting direction for futurework is to explore the suitability ofmodeling
other continuous conditional distributions, next to the Gaussians considered in
this paper. In principle, other density functions can be used given that we can
calculate the value of the function at a point and that we can sample a value for
a variable given the assignment to its parents. However, it is unclear how easy
this is in practice for complex distributions, and whether issues could arise with
sampling inconsistent HRDNs containing relational conditional dependencies.
We would also like to extend our learning algorithm such that it could cope
with missing data and model latent variables. Additionally, we would like to
explore other penalty terms in the objective function such as a L1 penalty that
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has been used for learning propositional DNs (Dobra 2009; Meinshausen and
Bühlmann 2006). Finally, we would like to evaluate our approach on more
real-world domains.



Learning the Structure of
Dynamic Hybrid Relational

Models

6

“These aren’t the droids you’re looking for.”
Obi-Wan, Star Wars

6.1 Introduction

The previous chapter introduced a method for learning the structure of hybrid
relational models. However, this approach was designed only for static relational
data meaning that the training data is a snapshot of the states and relationships
between objects at a specific point in time. However, most domains are dynamic
and evolve over time. For example, a university is a constantly changing
environment, but static models would model only the end of the last semester
as the most informative and complete state. On the other hand, dynamicmodels
probabilistically quantify the regularities that define how the transition is made
from one state to another. Moreover, it is beneficial for these regularities to
capture the relations between entities, because objects often interact in dynamic
environments. Naturally, planning can be performed when such models are
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specified: a sequence of actions are chosen based on the dynamic model that
will most probably reinforce a specific behaviour or task.

Relational Markov decision processes (RMDPs) are a formalism that elegantly
combines the principles of SRL with the aspects of probabilistic planning and
reinforcement learning in dynamic environments. While RMDPs are popular
with planning and learning, their application to domains such as robotics
is still severely limited. First, methods for learning the structure of RMDPs
are developed on purely discrete domains and numeric information is often
discretized prior to learning. Second, RMDPs are often evaluated on simulated
data instead on real-world robotics scenarios, which can limit their contribution
and applicability.

Thus we adapt the learning approach from the previous chapter to learn a
transition model for an RMDP.

6.1.1 Contributions and Bibliographical Note

The contributions of this chapter are the following. First, we propose DDC-TL, a
method to learn the structure and the parameters of a hybrid RMDP represented
with dynamic distributional clauses (DDCs), which have already been used in a
robotics context and for which a planner, called HYPE, exists. We learn DDCs by
using LLM, the learner of HRDNs that was introduced in the previous chapter,
but upgraded with regression trees for representing the CPDs. Second, we
propose using equational features defined as mathematical equations applied to
the continuous variables in order to model numeric relations between objects.
Finally, we demonstrate the utility of our DDC-TL algorithm by applying the
learned model to perform planning with HYPE in a simple real-world robotics
scenario, and by comparing it to several propositional approaches.

The work in this thesis is based on the following published paper:

Davide Nitti, Irma Ravkic, Jesse Davis, Luc de Raedt (2016) “Learning the
Structure of Dynamic Hybrid Relational Models” In: 22nd European Conference
on Artificial Intelligence (ECAI), (2016), The Hague, the Netherlands

The contributions of this work are equally shared by the first two authors of
the paper mentioned above, in the following way:
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• DavideNitti performed data collection for the robotics scenariowith a real
robot arm, and did the experiments with the planner and propositional
approaches.

• The author of this dissertation mostly focused on the learning part of the
contribution by upgrading the LLM to learn with regression trees and
equational features, implementing an automated conversion from the
learned HRDNs to DDCs, and evaluating the learning performance of
DDC-TL.

6.1.2 Chapter Structure

This chapter is structured in the following way. First we introduce our method
on how to learn RMDPs in hybrid domains. We then focus on the algorithm for
learning relational regression trees with equational features, and we introduce
continuous probabilistic models used in the leaves. We continue by presenting
our experimental setup, results and discussion. We finalize the chapter by
providing conclusions.

6.2 State Transition Models in Relational Hybrid
Domains

In this dissertation we propose an algorithm (DDC-TL) for learning a state-
transition model expressed as a DDC introduced in Section 2.5.2. This model is
learned from data described by continuous variables, discrete variables, and
relations (e.g., nextTo).

Concretely, given a set of discrete-time trajectories E = (s0, a0, s1, a1, ..., sT−1, aT−1,
sT), where st is the state (i.e., an interpretation that could describe object
properties and relations such as position, orientation, type, and color) and
at is an action at time t, the goal is to learn DDCs that define a state transition
model of the following form:

Qt+1 ∼ D( f (st))← at, bodyt (6.1)
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Each such clause defines the distribution D( fc(st)) of a relational random
variable Qt+1 ∈ st+1 in terms of a set of continuous relational features
fc(st) whenever bodyt holds, where bodyt is a conjunction of literals discrete
conditions that refer to the current state st and action at. The relational features
are essentially the random variables defined in the DDC. Note that DDCs
defined in this manner result in a stratification where predicates at time t + 1
only depend on predicates from the previous time step t. Stratification is
required for DDCs to be well-defined (Gutmann, Thon, et al. 2011).

In this dissertation we restrict ourselves to the following choices for specifying
the state transition models. The actions for moving objects are grasping followed
by a vertical or horizontal movement, pushing or tapping. The features we will
be using represent the positions of objects and the derived relations between
them. However, unlike related work, concepts like rightOf , closeTo or aboveOf
are not manually defined, but are indirectly learned with equational features,
which we will describe later. For the actions we assume inverse kinematics and
a motion planner available to execute them.

6.2.1 Relational Hybrid Models

The key insight for developing an algorithm for learning DDCs is that we can
leverage ideas from the learner of local models (LLM), introduced in Chapter 5,
for learning hybrid relational dependency networks (HRDNs) (Ravkic et al.
2015) introduced in Chapter 4.

HRDNs are able to model dependencies in relational domains that have both
continuous and discrete variables. Like DDCs, HRDNs use first-order logic
as template language for defining conditional probability distributions, and
use a set of local distributions to approximate a joint distribution over a set
of random variables defined by grounding atoms constructed over a set of
predicates P and constants C. In this paper, we are interested in learning
the dependencies that represent Formula (6.1). Hence, Qt+1 denote the set
of predicates for which we learn dependencies. We use Pt to denote the set
of predicates describing the previous time step, which are used to construct
the features that appear in Parents(Qt+1). Each local distribution is quantified
by a dependency Qt+1 | Parents(Qt+1), where Qt+1 ∈ Qt+1 is a predicate and
Parents(Qt+1) is a set of relational features that describe how Qt+1 depends on
the other predicates in the domain. Such local distributions can be learned
using relational regression trees (Blockeel and De Raedt 1998), but unlike
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standard (relational) regression trees, each leaf does not contain a constant
but instead has a linear or logistic regression model. The key observation is
that the distribution modeled by a relational regression tree can be represented
with DDCs. Therefore, techniques for learning relational regression trees can
be adapted for learning (certain classes of) distributional clauses.

Each root-to-leaf path of a relational regression tree can be mapped onto one
DDC, where each internal node defines a condition Li that appears in the body
of the rule or a numerical feature f ∈ fc, and the leaf contains the probability
distribution (density) D( fc) that defines the random variable Qt+1 in terms of
the features f along the path. We illustrate this in the following example based
on a simplified example of a relational regression tree in Figure 6.1, which is
learned by DDC-TL.

Example 30. The example tree in Figure 6.1 corresponds to the following set of DDCs:

L1 : posx(ID)t+1∼ gaussian(P+ DX, .02)← (6.2)

F1 : P is '(posx(ID)t),

F2-Tap : action(ID, tap, DX, DY)t.

L2 : posx(ID)t+1∼ gaussian(P, .004)← (6.3)

F1 : P is '(posx(ID)t),

F2-None : not(action(ID, Action, DX, DY)t),

F3-False : not(min{('(posy(ID)t)− '(posy(ID2)t)),

ID 6= ID2} < 0.07).
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L3 : posx(ID)t+1∼ gaussian(P+ DX, .003)← (6.4)

F1 : P is '(posx(ID)t),

F2-None : not(action(ID, Action, DX, DY)t),

F3-True : min{('(posy(ID)t)− '(posy(ID2)t)),

ID 6= ID2} < 0.07,

F4-True : min{('(posy(ID)t)− '(posy(ID2)t)),

ID 6= ID2} > −0.07,

F5-Tap : action(ID2, tap, DX, DY)t.

L4 : posx(ID)t+1∼ gaussian(P, .004)← (6.5)

F1 : P is '(posx(ID)t),

F2-None : not(action(ID, Action, DX, DY)t),

F3-True : min{('(posy(ID)t)− '(posy(ID2)t)),

ID 6= ID2} < 0.07,

F4-False : not(min{('(posy(ID)t)− '(posy(ID2)t)),

ID 6= ID2} > −0.07).

The aggregation function min{U, C}, where U is a mathematical equation, returns
the minimum of the U’s values obtained by ranging over possible groundings for the
unbound logical variables in U (i.e., logvars not in the target) such that the condition C
holds.

In a nutshell, the next position (axis x) is the current position plus the action
displacement in case of a tap action (6.2). If there is no tap action on the object than
if its y position is higher (or lower) of 7cm than any other object then the object will
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basically not move (clauses (6.3) and (6.4)). If the object is close to another object that
is tapped, than its position will be affected as well (clause (6.5)).

Figure 6.1: A simplified snapshot of relational regression tree for predicting
pos(ID)t+1. Ellipses represent internal nodes corresponding to learned
relational features, and rectangles represent density functions for pos(ID)t+1
as presented in Example 30.

One advantage of using relational regression trees to learn DDCs is that they
satisfy the mutual exclusiveness property required by DCs, which states that if
there are two distributional clauses defining the same continuous random
variable, their bodies must be mutually exclusive. This is guaranteed by
relational regression trees.

We shall now first introduce the type of features and distributions used by our
learning algorithm, and then provide a description of the relational regression
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tree learning algorithm.

6.2.2 Representing Relational Regression Trees

Each learned DDC will have the form shown in Eq. 6.1 and will correspond to a
root-to-leaf path in a relational regression tree. There are two types of internal
nodes in such a tree:

• logical conditions which are tests that evaluate to true or false as in
standard decision trees. These nodes contribute a condition to bodyt; and

• continuous features which specify a parameter that appears in the
conditional distribution D( fc(st)) contained in all leaf nodes below this
node.

In contrast to standard decision and regression trees, nodes containing a
continuous feature do not specify a test. Hence, they do not split the data
and only have one child in the tree.

We now define the distributions and features used in our DDC-TL algorithm.

Local Distributions

Leaf nodes, and hence D( fc(st)) in Eq. 6.1, contain one of the following
distributions:

• A linear Gaussian distribution defining D( fc(st)) = N (µ, σ) where
µ = α + ∑ f∈ fc(st) f · β f if Qt+1’s range is continuous

• A softmax or normalized exponential model defining D( fc(st)) as a
softmax(α(j) + ∑ f∈ fc(st) f · β

(j)
f ) if Qt+1 ranges over discrete values j,

where the β
(j)
f are the weights for the features f ∈ fc(st) and value j

in Qt+1’s range.

The set fc(st) contains the numeric (continuous) features encountered on the
root-to-leaf path. Notice that these distributions degenerate into a N (α, σ) and
a probability mass function when there are no numeric features, that is, when
fc(st) = ∅.
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Relational Features

Given the (target) random variable Qt+1(V0, ..., Vn) with logical variables V =

{V0, ..., Vn}, any term A representing a random variable with logical variables
∀Bi ∈ V can be used as a feature in a distributional clause. For the target
random variable posx(ID)t+1, any random variable with logical variable ID
is an admissible feature in fc (if continuous) or in bodyt (if discrete), e.g.,
posx(ID)t, posy(ID)t, color(ID). Continuous features can be discretized and
added as conditions in bodyt, e.g., posx(ID)t > 2.

If the atom A has some logical variable Bi that does not appear in V , we allow
aggregations of the form that was already described in Chapter 4:

aggL(A, C)(θ,I)

where agg is an aggregation function, L is a set of logvars, A is a term
representing a random variable, and C is a conjunction of atoms that evaluates to
true or false (i.e., a condition). The feature computes the specified aggregate agg
over values returned as the result of aggregation over all possible groundings
of Aθ that satisfy Cθ in interpretation I. Sometimes the aggregation might not
be defined. For example, if there are no objects satisfying a specific condition C,
then aggregation is over an empty set. In case the node represents discretization
of an aggregation feature applied to an empty set, the discretized feature is
assumed to be false as, for example, F3-False in Example 30. If at some node
a continuous feature evaluates to unde f ined during learning, that feature is
discarded from the set of candidate features for that node and all its children.

Constructing high-level concepts from low-level numeric sensor data often
requires performing mathematical operations (e.g., addition, multiplication,
etc.) on the raw data. As our goal is to enable automated discovery of these
types of concepts, we introduce equational features involving two atoms A1 and
A2 that both have numeric ranges. These features have the following form:

aggL{(A1 op A2), C)}(θ,I)

where op is a mathematical operator (+,−, ∗, /), and agg, L, and C are defined
as before.

Note that an admissible aggregation over A needs at least one logical variable
Bi bound with a logical variable in the target Qt+1(V0, ..., Vn), i.e. ∃i, j : Bi ∈ Vj.
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Example 31. An example of feature that includes an equation is:

min{(posy(ID)t − posy(ID2)t), ID 6= ID2}

For a specific grounding of ID bound with the target, this feature calculates the minimum
distance in the y-plane between the ID object and other objects around it. By placing a
threshold on this feature, we could distinguish when two objects are close. Thus, these
features can represent important concepts that are not explicitly encoded in the raw
data.

The condition C can also be a conjunction, such as in the following feature:

min{(posy(ID)t − posy(ID2)t), ID 6= (ID2, action(ID2, push, DX, DY)t)},
(6.6)

which calculates the minimum distance between two distinctive objects if the pushing
action is performed on the object ID2. In case this condition is not satisfied the feature
value is f alse.

Logical Conditions

Features can easily be turned into logical conditions. If a feature f is discrete,
the condition f = v (with a value v in the range of f ) can serve as an atom in
the body atoms of a distributional clause. When a discrete feature is included
in a node, there will be one subtree for each possible value v of that node in the
decision tree, as usual. If f is continuous, we can discretize it by picking some
threshold v in the range of f and building a feature such as f > v or f ≤ v.

6.3 Learning Dynamic Distributional Clauses

In this section we give the algorithm for DDC-TL, our proposed approach for
learning state transition models in hybrid relational domains. The algorithm
consists of learning a set of relational regression trees for each predicate
independently.
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Algorithm 9 DDC-TL
1: function FeatureSpace(Qt+1, data, P , op, aggrs)
2: FQt+1 ← construct(Qt+1, data,P , op, aggrs)
3: function growtree(tree,Qt+1, data, score, FQt+1 )
4: f , score f ← findbestfeature(Qt+1, data, FQt+1 )
5: if stopcond(score f ) then
6: addleaf(tree)
7: if is_continuous( f ) then . Continuous range
8: tree← addnode( f , tree)
9: growtree(tree, Qt+1, data, score, FQt+1\ f )
10: else
11: tree← addnode( f , tree) . Discrete range
12: for each a in domain( f ) do
13: f iltered←filter(data, f , a) . data such that f = a
14: growtree(tree[a], Qt+1, f iltered,score,FQt+1\ f )

Learning Relational Regression Trees

For each predicate Qt+1 occurring in a state, we learn a relational regression
tree that defines the distribution according to a set of clauses of the form Eq.
6.1. The algorithm follows a top-down procedure for learning the tree. The
outline of the algorithm is provided in Algorithm 9. First, with the function
featurespace it constructs a candidate set of relational features that can appear
in the internal nodes when learning the tree for a target predicate Qt+1 (how to
define legal features will be discussed in detail later). Starting from the empty
tree, it adds internal nodes as follows. With findbestfeature it iterates through
the set of candidate features and tries using each feature as the current internal
node. It calculates the difference in score between the new tree and the old tree
using five fold internal cross validation on the training data (the score function
is discussed in detail later). If no feature improves the score (stopcond(scoref) is
true), then a leaf node is added. Otherwise, the algorithm greedily selects the
highest scoring feature f to include as the internal node. The selected feature
is removed from the set of candidate features. If the selected feature has a
continuous range and no undefined values in the current branch, the procedure
recurses and passes all data to the next node. If the selected feature has a discrete
range, one branch is constructed for each value a ∈ domain( f ) of the discrete
feature (yielding a logical condition). The data is divided over the branches
according to the feature’s value, and the procedure recurses along each branch
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tree[a]. When no feature improves the score, the recursion stops, a leaf node
is added, and the parameters of the leaf’s probability distribution or density
function are estimated.

Score Function

In Algorithm 9 we use the loglikelihood as the scoring function scoref . Basically,
the data consists of a set of traces of the form (s0, a0, s1, a1, ..., sT−1, aT−1, sT).
Since we are interested in learning the state transition model p(st+1|st, at) with
the Markov assumption, we split the traces into triples of the form (st, at, st+1).

Each triple can be viewed as an interpretation I that assigns values to each of
the logical atoms and random variables at time t + 1 and t appearing in the
triplet. The loglikelihood of a triple I = (st, at, st+1) for a set DC of DDC is

score(DC, I) = logpDC(st+1|st, at) =

∑
(Ht+1∼D←bodyt)∈DC

∑
θ:bodytθ∪Ht+1θ⊆I

logpD(I(Ht+1θ)|I(bodytθ))

where I(q) denotes the value assignment of random variable q in the
interpretation I. In this definition we assume that the transition probability
factorizes as follows: p(st+1|st, at) = ∏qi∈st+1

p(qi|st, at), i.e. every variable in
the next state qi ∈ st+1 depends only on the previous state and action.

Scoring a DDC program first requires estimating the parameters for the
CPDs D( fc(st)). For linear Gaussian distributions, parameter learning requires
estimating the weight vector for the linear regression model. This can be done
via standard maximum likelihood techniques (e.g., ridge regression (Bishop
2006)). Similarly, softmax parameter estimation requires learning the weight
vectors for the logistic regression model. We follow standard gradient ascent
approaches to maximize the loglikelihood (Bishop 2006).

Defining Legal Features

We construct candidate features in the similar way as described in Section 5.2,
but since we extended the feature space with equational features, we will
provide a short description of the full method here.
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Feature space in in Algorithm 9 is obtained with the function CONSTRUCT,
which receives as input a target predicate Qt+1, a set of aggregation functions
(aggrs), mathematical operators op, and data fromwhich the ranges of predicates
are extracted. The features of the form aggL(A, C) are constructed by exhaustively
enumerating all combinations of agg ∈ aggrs, A, and C that meet the following
constraints. The atom A does not appear in C, and C is a conjunction with fewer
than k ≤ N conjuncts. Each conjunct in C is either a randvar-value test or an
(in)equality constraint between two logvars. Each condition in C is “linked” to A

via a path of shared logvars, that may pass also through other conditions. As
aggregation functions, we consider min, max, avg, and ' . Recall, that '(A)
simply returns the value of A in the data and that it is only applicable if there is
exactly one grounding substitution of A for each grounding substitution θ of C
for which Cθ is true in the data.

We construct candidate features of the form agg{(U1 op U2), C} in an analogous
manner. Both U1 and U2 must have continuous ranges. We consider op ∈
{+,−, ∗, /} and the aforementioned aggregation functions.

For all features that return a real value, we construct two variants: 1) the feature
itself to be used as a parameter of the distribution, and 2) discretized version that
can be used as a logical condition in the body of a rule. The second alternative
is implemented by discretizing the feature into a number of different bins
extracted from the training data (in the experiments we used 5 such bins).

Example 32. To illustrate how to threshold a continuous value to create a discrete
feature, consider again the following feature

min{(posy(ID)t − posy(ID2)t), ID 6= ID2} (6.7)

which calculates the minimum distance in the y-plane between two distinctive objects.
In addition to this feature, we also add to the feature space the features with the following
template:

min{(posy(ID)t − posy(ID2)t), ID 6= ID2} ./ Thresh (6.8)

where ./ ∈ {<,>}, and Thresh is a threshold determined from the training data. If
./ is < and Thresh = 0.07, we get Feature F3 from Example 30.
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6.4 Experiments

This section empirically evaluates our approach of learning dynamic hybrid
transition model. Specifically we want to answer the following questions:

Q1) How accurate are our learned state transition models for prediction tasks?

Q2) How does DDC-TL compare to the propositional hybrid learners?

Q3) What is the performance of the planner that executes our learned models?

To evaluate these questions, we consider a robotics scenario that consists of a
table with cubes and a Kinova MICO robot arm that can manipulate the cubes
as shown in Figure 6.2. The learner will only have access to the x, y position of
each object. Hence, the learned model must automatically discover important
intermediate concepts like closeTo by constructing features that build upon
the low-level positional data. The learned model is then used for planning.

The learning was performed on Intel(R) Xeon(R) CPU 2.40GHz machines with
128 Gb memory. The planning was performed on a laptop Intel(R) i7 CPU
2.40GHz with 4 Gb memory.

6.4.1 Experimental Setup and Data Generation

To generate data, a sequence of actions is randomly generated and executed on
the objects and their effects (positions) are stored, that is, (st, at, st+1) triples.
The state is the x, y position of each object. The number of objects used in
the experiments are two, three and four. The actions considered are grasping
followed by moving horizontally, grasping followed by moving vertically,
pushing and tapping. Each action refers to an object and is parameterized
by the displacement, a continuous value. The action might fail, e.g., when the
object is out of the range of the robot, or the object is too close to other objects.
In such cases, the objects will not move or move differently than expected from
a successful action execution. The concept of failure is not explicitly encoded
and the learner must learn how to distinguish the different effects according to
the state and the action.
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Figure 6.2: MICO arm performing a left tap action on the object on the right.
This action moves the other object.

6.4.2 Methodology

We perform the experiments with the following learners:

• Basic Propositionalization.We propositionalize the state by constructing
one feature for each fact. We denote these with B.

• Advanced Propositionalization.We propositionalize the state by using
exactly the candidate features considered by DDC-TL. We denote these
with A.

• DDC-TL. Our approach for learning hybrid dynamic state transition
models as introduced in Section 6.2.

• DDC-TL-50. A version of DDC-TL using feature selection when learning
the tree. This means that when deciding on the split the learner uses only
the top 50 selected features.

In Basic Propositionalization, each interpretation with n objects is converted in
n training examples, where the target is the next position of an object pos(x)t+1,
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and the features are the positions of all objects at time t. In this case we need to
make sure that for each training example with target pos(x)t+1, the features
corresponding to object x are in the same position.

Example 33. Given the triplet interpretation {pos(1)t+1, pos(2)t+1, pos(3)t+1,
pos(1)t, pos(2)t, pos(3)t} (the values and the actions are omitted for compactness),
the Basic Propositionalization extracts three training examples:

pos(1)t+1 | pos(1)t, pos(2)t, pos(3)t

pos(2)t+1 | pos(2)t, pos(1)t, pos(3)t

pos(3)t+1 | pos(3)t, pos(2)t, pos(1)t

Note that the feature pos(x)t of the target object x is always the first. The non-target
object features do not have a fixed order.

In DDC-TLwe use all the available features for learning. In contrast, DDC-TL-50
uses feature selection in each node to overcome some of the known issues of
greedy search and to provide control against overfitting. To select a subset of
the features, we use Lasso regression, ARD linear regression, and Random
Forests for regression. We pick the top 50 features according to the absolute
value of the weights in the linear models, and the feature importance metric of
Random Forests.

We use the following propositional learners for our experiments: Lasso,
regression trees, and gradient boosted regression trees. We consider three
different setups: the data only contains two objects, the data only contains
three objects, and the data containing two or three objects. We also evaluate
the models learned on two and three objects by applying them to test data that
contain four objects. In each case, the goal of the model is to predict the x and y
positions of each object in the next time step.

Evaluation

We consider two different evaluation setups. First, we perform 10-fold-cross-
validation, and report the average root-mean-squared-error (RMSE) over all
held-out folds and learning time. For propositional learners hyper-parameter
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optimization is performed with internal cross-validated grid search in each of
the training folds.

Second, we use the DDC-TL models with the best performance on 10-fold-cross-
validation to perform planning using HYPE. We use a reward of 100 if the goal
is achieved and −1 otherwise, and consider the following goals:

Region This requires moving any object in a specific region (distant around
20 cm from the closest object).

Swap This entails moving an object to the right (or left) side of another object.

The presence of additional objects can make actions fail. Moreover, if an object
is out of reach it can be moved only indirectly by acting first on the other
objects that can influence its position. For this reason, it is important that the
action effects and the interactions between objects are captured in the learned
model. For each goal a set of 15 experiments is performed from different starting
positions and the average number of steps is provided.

We assume that every action is applicable (i.e., executable), even when the
action does not provide an effect. Obviously, the planner will need to select the
actions that are useful to reach the goal. Actions that do not produce movement
(i.e., fail) will probably not be selected to reach the goal.

Videos of action executed by the robot are available at https://dtai.cs.

kuleuven.be/ml/systems/DC/

6.4.3 Results and Discussion

Table 6.1 presents the RMSE of the x and y positions for all approaches, and
Table 6.2 summarizes the learning time. Note that the basic propositionalization
approach is not applicable when combining the two and three objects data as
this approach only works for a fixed number of input variables and hence a
fixed number of objects. DDC-TL learns a model that has an error smaller than
most of propositional models tested (Q1). In the two objects case, DDC-TL-50
beats all the propositional models (Q2). On the three objects setting, DDC-TL
has the best result. On the dataset combining the data of both two and three
objects, DDC-TL and Gradient Boosting have the same performance. Note that
Gradient Boosting has access to the same features as DDC-TL and is an ensemble
approach which provides it with an advantage.

https://dtai.cs.kuleuven.be/ml/systems/DC/
https://dtai.cs.kuleuven.be/ml/systems/DC/
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RMSE
Num. of objects

Learners 2 3 2 + 3 2 + 3→ 4
DDC-TL 0.029 0.022 0.024 0.023
DDC-TL-50 0.027 0.026 0.026 0.019
Lasso-B 0.030 0.026 NA NA
Regression Tree-B 0.037 0.030 NA NA
Gradient Boosting-B 0.029 0.025 NA NA
Lasso-A 0.031 0.026 0.027 0.023
Regression Tree-A 0.037 0.029 0.032 0.030
Gradient Boosting-A 0.029 0.024 0.024 0.023

Table 6.1: The RMSEs of predicting the next x and y positions, based on the
learned models, averaged over 10 folds.

Runtime (seconds)
Num. of objects

Learners 2 3 2 + 3
Feature computation 1072.5 2099.5 3186
DDC-TL 3501.5 58322.0 100159.0
DDC-TL-50 1436.0 14846.5 25646.0
Lasso-B 1.8 2.7 NA
Regression Tree-B 0.2 0.7 NA
Gradient Boosting-B 19.9 75.2 NA
Lasso-A 33.7 98.1 160.6
Regression Tree-A 7.2 19.6 26.6
Gradient Boosting-A 636.5 1824.5 2490.5

Table 6.2: The learning time measured in seconds for learning the models
for predicting the next x and y positions averaged over 10 folds. Feature
computation is the time DDC-TL needs to calculate the values of all the features
in the feature space. These calculated feature values are also used for learning
propositional models.
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Moreover, for the propositional models learned with the advanced feature set
and DDC-TL, we used the models learned on data about two and three objects
data and evaluated them on test data containing a number of objects (four) that
was never seen in the training data. The result for this setting is shown in the
last column of Table 6.1. The superior performance in this setting shows an
important advantage of our approach, which is that it is able to generalize to
new scenarios involving a different number of objects.

Table 6.2 shows the learning time. We report the time needed to calculate the
values of all the features in the feature space and the time to actually learn
the model. The calculated features are also used when learning propositional
approaches. The proposed DDC-TL is more complex, thus generally slower
than propositional learning methods. However, our approach has not been
optimized and there are number of ways to improve performance (e.g., use
feature selection, use a beam search, etc.).

The models have been also qualitatively tested on some actions. For example,
Figure 6.3 shows the predicted positions of two objects (based on sampling)
after a tap action. The visual inspection confirms that the model captures the
interactions between objects. In particular, the model contains relevant features
such as the closeness of an object to the object being moved (as shown in Figure
6.1) and the concept ‘not reachable’, that is, the object is far away from the arm.

Figure 6.3: Prediction of tap action with two objects. 1000 samples are shown
with the mean in dark color.

Table 6.3 presents results about using the learnedmodel with the HYPE planner.
For the experiments we use the model learned by DDC-TL with the full feature
set. For the Region task it has an average success rate of 61% and needs 3.4
steps on average (when it succeeds); whereas for the Swap task, it has an
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Avg. # steps (max 5) Avg. Reward Success Rate
Region 3.9 56.8 61%
Swap 4.2 57.3 62%

Table 6.3: Planning results using planner HYPE with the model learned by
DDC-TL.

average success rate of 62% and needs 3.8 steps on average (Q3). These results
confirm that DDC-TL is able to learn a model that is sufficiently accurate for
performing simple planning tasks. However, the plans do not always succeed
for two reasons. First, there are some scenarios where the objects interactions
are not properly modeled. This is expected given that we have a limited amount
of training data (196 interpretations for the setup with two objects, and 376
interpretations for the setup with three objects). Second, to keep the planning
time reasonable, we limited the number of samples used by the planner to 250.
Using more samples could improve the planner’s performance.

6.5 Conclusions

To the best of our knowledge, this work represents the first approach that can
learn a dynamic statistical relational state transition model in a hybrid domain
and then apply an MDP planner to the learned model. The papers central
contributions are: adapting HRDN learning for learning dynamic distributional
clauses, extending the rich relational feature space to include mathematical
equations involving the continuous variables, planning with the learned hybrid
models, and identifying a potential robotics application for SRL. Empirically,
we demonstrated the merits of our approach using scenario involving a real
robotic arm. One of the future directions is to perform learning with partial
observability or an unknown number of objects. Another future direction is
to explore whether the features that we select in one scenario and that are
deemed as interesting can be re-used in future scenarios. This might speed up
the learning and increase the expressivity and compression of the models as
the number of scenarios grows.
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6.6 Related Work

In the literature there are several relational approaches that try to learn a model
and use it for planning. However, most approaches only support relational
(binary) random variables. For example, Pasula, L. Zettlemoyer, et al. (2007)
and Pasula, L. S. Zettlemoyer, et al. (2004) learn noisy indeterministic deictic
(NID) rules that define the state in terms of facts (true or false statements). Such
representation has been used with the planner PRADA (Lang and Toussaint
2010). Similarly, Moldovan, Moreno, et al. (2012) learn relational affordance
models in multi-object manipulation tasks. In such works, the training data
is discretized and the model is relational, without the possibility to include
continuous variables. This makes the model abstract but useful low level
information is lost. Moreover, in robotics applications the discretization is
generally handcrafted. In contrast, our approach tries to learn the best features
for the prediction task.

Other approaches, based on RL, try to directly learn the Q-function or
the policy without learning the state transition model. Among the works
with a relational representation there is an approach for performing policy
gradient boosting (Kersting and Driessens 2008), and approach for imitation
learning (Natarajan, Joshi, et al. 2011). Both methods require a regression tree
learner, thus our approach can be easily used in such settings.

Fewworks consider learning hybrid relational domains. One simplified attempt
is the one of Moldovan and De Raedt (2014), that learns the structure of a
Bayesian network to model two object effects and convert it into DDC clauses.
However, this fixed conversion might not generalize well on more than two
objects. In contrast, our approach directly learns a hybrid relational model, this
allows to combine data collected with a different number of objects, which
provides a better generalization. Moreover, their work considers only simple
conditional linear Gaussian models without aggregation or equational features
and they evaluate only plans of horizon one.

The work in this chapter is based on the learner of local models (LLM), an
approach for learning the structure ofHRDNs (Ravkic et al. 2015). Our approach
differs from the LLM algorithm used for HRDNs in several crucial ways. Most
importantly, we provide support for automatically learning relationships that
involve equational features. This is a key capability in terms of being able to
model spatial relationships based on low-level continuous data. Additional
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differences include that we take into account time (and dynamics) and use
a tree-based representation for the distributions/densities. Furthermore, the
trees are represented using a set of DDCs, enabling their direct use for planning
with HYPE.

Beyond incorporating mathematical equations, our tree representation also
differs from existing relational regression trees such as TILDE (Blockeel and
De Raedt 1998) and its extension towards learning aggregate functions by Van
Assche et al. (2006). One difference is that in DDC-TL there is no explicit tying
of logvars between different nodes in the tree. We circumvent this by using
more complex features that internally support the tying of logvars, e.g., such as
Feature 6.6 in Example 31. Another difference is that we use distributions in
the leaves. Finally, there may be features on a path that are not used to "split"
the data but will be used as features in the distributions.



Conclusions

7

"Live long and prosper"
Spock (Leonard Nimoy)

In this chapter we summarize our main contributions and conclusions. We also
provide possible directions for future work.

7.1 Thesis summary

The objective of this thesis was to address several open questions and challenges
in statistical relational learning. First, we proposed a scalable parameter
estimation method that collects the sufficient statistics by approximately
counting the number of embeddings of a pattern in a graph that represents
relational data. Second, we proposed an expressive hybrid SRL formalism for
which we also developed a scalable structure learning algorithm. And finally, we
modelled and learned expressive dynamic models in relational hybrid domains,
which were then utilized for a real-world robotics planning application.

133



134 CONCLUSIONS

Contributions

Next, we provide a more detailed description of our contributions:

• Counting the number of occurrences of a graph pattern in a network is
in general #P-complete. In this dissertation we described a practical algo-
rithm to approximately count the number of embeddings of a pattern
in graphs based on the theoretical work of Fürer and Kasiviswanathan
(2008). For the theoretical bounds of Fürer and Kasiviswanathan (2008)
to hold, the input pattern needs to have an ordered bipartite decomposition
(OBD). We also provide two algorithms for obtaining an OBD of a pattern,
which was assumed to be given in the theoretical approach. Naturally,
we recognized the potential of applying this approach to parameter
estimation in statistical relationalmodels: counting pattern embeddings
is a subroutine for parameter estimation. We performed an extensive
experimental evaluation on a wide range of patterns of increasing size
and complexity. The experiments showed that even for large patterns the
approach always converged and often performed better than the baseline
algorithms. Moreover, even for patterns that do not have an OBD the
Fürer-Kasiwiswanathan algorithm turned out to perform well.

• Few formalisms in SRL can cope with structured and uncertain data
that contain both continuous and discrete variables. For that reason we
introduced hybrid relational dependency networks (HRDNs), which
upgrade relational dependency networks to hybrid domains. Even
though they represent an approximation of the joint probability distribu-
tion, we advocate using RDNs due to their decomposability property: it
is not necessary for the CPDs of an RDN to factor a joint probability
distribution, and hence, the CPD for each variable can be learned
independently. Hence, each CPD can be optimized independently by
means of some regression or classification technique. In this dissertation
we proposed to use of several existing CPDmodels that can accommodate
both discrete and continuous variables.

• We proposed the structure learning algorithm, learner of local models
(LLM), for hybrid relational dependency networks (HRDNs). We
showed the benefit of learning directly in hybrid domains, instead of doing
discretization prior to learning. We did our analysis on one synthetic and
one real-world data set by considering two versions of each data set: one
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that contains both continuous and discrete variables, and one where each
continuous variable is discretized prior to learning. We compared our
proposed algorithm to two learners that work only on discrete data: a
variant of our algorithm and LSM, the state-of-the-art MLN structure
learner. We found that learning directly from the hybrid data instead of
discretizing data prior to learning resulted in a faster structure learning
algorithm due to the reduced search space, and more accurate learned
models.

• We developed, to the best of our knowledge, the first approach that
can learn a dynamic statistical relational state transition model in
a hybrid domain and then applied an MDP planner to the learned
model. We accomplished this strategy by adapting HRDN learning
to dynamic domains in order to learn dynamic distributional clauses
(DDCs) representing relational hybrid MDPs. Moreover we introduced
equational features that represent relations between objects defined as
arithmetic operators between their low-level attributes. Empirically, we
demonstrated the merits of our approach using a scenario involving a
real robotic arm. In addition to the novelty of this approach, we showed
that the learned models could capture the relationships between objects
and the robot arm in such a way that the robot could use the model to
perform given tasks by means of planning. We also demonstrated that
our approach is able to learn more general models than the propositional
approaches we compared to. This means that we were better at predicting
the next state of the objects on the data that contains more objects than
the data used for learning.

7.2 Future Work

There are still many open questions and challenges in the field of statistical
relational learning. In general there is the need for more expressive formalims
for which structure learning and inference is still efficient and scalable when
applied to large scale real-world domains.

The expressivity can be achieved by choosing richer representation for the
models. One approach is performing gradient-based boosting when learning
relational dependency networks (Natarajan, Khot, et al. 2012) and Markov logic
networks (Khot et al. 2015). The general idea behind this is that each local
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probabilistic model represents a weighted sum of regression models grown
in a stage-wise optimization. The scalability of learning and inference can be
achieved with “lifting” (Poole and Zhang 2003) the relational domains: the
symmetries present in the domain enable reasoning about groups of objects.
There has been some research on lifted inference and parameter learning (Ahmadi
et al. 2012; Van den Broeck et al. 2013) and lifted structure learning (Van Haaren
et al. 2015).

Another direction is to do a comparative study of the plethora of formalisms
in SRL and to find, combine and exploit their weak and strong points. This
would allow one to use efficient methods in one approach and by means
of translation obtain another, more adequate or researched formalism. For
example, examining the relationships that hold between dependency networks
and Markov networks enables the approach of exploiting the efficient but
approximate structure learning method of dependency networks and then
transforming the learned DNs to Markov networks (Lowd 2012) or Bayesian
networks (Hulten et al. 2003). Thismethod should also be upgraded to relational
domains.

The general problem in SRL is the lack of the "killer applications" that come
in form of large rich real-world relational datasets containing diverse variable
types (i.e., discrete and continuous variables) and dynamics. In this dissertation
we recognized robotics and its applications as one potential SRL application.
However, the trend in performing experiments in robotics, and other similar
fields, is usually limited to small-scale simulations or with some simplifications
on the expressivity that limit the learning and hence interpretability.

The possible directions for future work we mentioned previously are some
general directions in SRL. We next present future work specific to the
contributions we presented in this dissertation.

Handling missing data

The algorithms we introduced in this thesis rely on complete data. This means
that we do not allow for a random variable to have a missing value. The future
work of this dissertation is to investigate how each of the methods presented
can be extended to deal with incomplete data.

• Learning HRDNs with incomplete data would rely on the approach of
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structural expectation-maximization (SEM) (Friedman 1997) that combines
the standard expectation maximization (EM) algorithm, which optimizes
parameters, with structure search for model selection. The structural EM
has been already applied to some SRL formalisms such as RDNs and
MLNs (Khot et al. 2012).
Incorporating continuous representations into structural EM is straightfor-
ward, but there are a couple of potential problems with the process. First,
there are indications that the EM approach does not behave well with the
Gaussian distributions: the likelihood of the data can be arbitrarily large,
if the variance of the estimated Gaussians is allowed to go to zero, and
extra care needs to bemade in this case (Koller, Lerner, et al. 1999). Second,
structural EM might not be scalable for HRDNs because completing the
data in each iteration of EM requires running a Gibbs sampler. This may
be slow and may produce different results depending on the order in
which variables are sampled. Alternative approximate approaches such
as mean field inference (Lowd and Shamaei 2011) are shown to typically
converge much faster than Gibbs sampling and offer similar accuracy.

• Performing subgraph matching with hidden nodes is another problem
when dealing with missing data. The nodes in a graph can have missing
labels, missing values, or both. The missing label problem is more
problematic in terms of collecting the expected sufficient statistics than
the missing value problem since for the latter we can again use EM
for parameter estimation once the embeddings are collected (Luo and
Hancock 2001). One possible direction for inferring the expected label
while performingmatching is to use a so-called node attendance (Depiero et
al. 1996) by means of relaxation labeling techniques. In this way the label
of the data graph is determined based on the consistency of neighboring
labels.

• Anunknownnumber of objects is a hidden variable that naturally occurs
when planning in relational dynamic domains, but is often ignored and
a fixed number of objects is assumed. There are a number of challenges
when performing learning in this setup. First, if we want to learn the next
position of a generic object X given the current state, or more formally
p(post+1(X)|st, at), the next position can depend on the current position
post(X) and other features. However, when the object X is created at time
t + 1 and has not existed in previous time steps, post(X) and any relation
involving X do not exist. For this reason there is no possible binding
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between logical variables in the body of the rule and X in the head. Second,
the issue of data association can occur in robotics applications such as
object tracking. This entails the uncertainty about the identity of the
object when it appears in the scenario: is it the new object rediscovered
or a created object that has never been there before (Vien and Toussaint
2013)? These two options have different representations. Finally, for large
robotics domains the learning and planning might not be feasible. One
can use the strategy of partitioning the state space into equivalence classes
to speed up the learning (Gardiol and Kaelbling 2007).

Re-using and constructing more complex features for hybrid relational
MDPs

One interesting direction for learning dynamic hybrid relational models is
to extend the learner to compose features out of simpler features that were
considered to be important in the past tasks. This resembles predicate or view
invention (Davis, Burnside, Page, et al. 2006) in that robots through tasks
build a knowledge base with increasing complexity and abstraction levels.
A feature can be considered useful if it appears several times as a predictor
in the model according to some defined metric. The motivation behind this
is to possibly speed up and enrich the learning process as the robot could re-
use the knowledge obtained from past scenarios. This aligns in a sense with
how humans learn throughout their life and how they acquire and re-use
abstractions.

For example, we can learn that the next position of an object depends on the
distance between the gripper and the object during pushing actions. Note that
this feature is not provided to the learner, but is constructed from primitive
spatial features and denotes the aspect we know as the "closeness". From the
training data we can learn the following feature for the notion of closeness:
close(Obj,Arm) ← posx(Obj) − posx(Arm) < Thr1, where posx denotes the
x position of an object or the robot arm, and Thr1 denotes some specific
threshold value estimated from the data. Once this feature has been added to
the background knowledge, it can be used to build more complex features. For
example, the object position depends onwhether the object has been grasped, i.e.
whether close(Obj,Arm) and gripper(Arm)< Thr2 hold. This pair of features
will probably appear in the learned tree, and the learner can combine them in
a new feature. When new features are added, they do not need to be learned
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again, but can be re-used in similar scenarios.





Appendix

A

A.1 Handcrafted and learned HRDNs for the syn-
thetic data

In this “Appendix” we compare the handcrafted and learned hybrid models
for the synthetic data set. We present the learned dependencies for both setups:
fixed domain size and increasing domain size. For the former we show the
learned dependencies when training on 16 interpretations, and for the latter
we present the learned dependencies for the largest domain size (800 students,
125 courses and 125 professors).
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Predicate declarations

range(difficulty(C)) = {easy, med, hard}

range(satisfaction(S,C)) = {low, med, high}

range(grade(S,C)) = {low, med, high}

range(takes(S,C)) = {true, f alse}

range(teaches(P,C)) = {true, f alse}

range(friend(S,S1)) = {true, f alse}

range(nrhours(C)) = [20.0, 180.0]

range(intelligence(S)) = [50.0, 180.0]

range(ability(P)) = [20.0, 100.0]

Handcrafted model

Below is the model we used to generate the synthetic data.

difficulty(C)

satisfaction(S,C)
value{S,C}(grade(S,C), ∅),
valueC(ability(P), teaches(P,C))

grade(S,C)
value{S}(intelligence(S), ∅),
value{C}(difficulty(C), ∅)

takes(S,C)
value{S}(intelligence(S), ∅),
value{C}(difficulty(C), ∅)
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teaches(P,C)
value{P}(ability(P), ∅),
value{C}(difficulty(C), ∅)

friend(S,S1) proportion{S,S1}(∅, {takes(S, C), takes(S1, C)})

nrhours(C) value{C}(difficulty(C), ∅)

intelligence(S) mode{S}(grade(S,C), ∅)

ability(P)

For reasons of reproducibility, we also provide the parameters for the
dependencies for our handcrafted model. We will not do this for the learned
models as there the parameters are of less interest. The parameters for the
dependencies are given in Table A.1.1. The probabilities of multinomial values
are to be read in the order given in the predicate declaration. For the logistic
regression of a dependency P Parents(P), we use the notation P = k →
(wk,0, wk, f1 , ..., wk, fn) where wk,0 represents the bias term, and wk, fi

represents
the ith feature’s weight. The order of the feature parameters follows the order
of the features in the dependencies. The parameters of conditional Gaussians
are of the form d→ N(µd, σd), where d represents an instantiation of discrete
parents, and N(µd, σd) gives the Gaussian distribution for that instantiation.
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Predicate Local Distribution Parameters

difficulty/1 Multinomial (0.2, 0.4, 0.4)

satisfaction/2 Logistic Regression satisfaction(S,C)=low→(-1.28,-0.07,0.028)
satisfaction(S,C)=med→(0.5,-0.4,0.009)

grade/2 Logistic Regression grade(S,C)=low→(-1.77,-0.04,1.75)
grade(S,C)=med→(-2.18,0.003,0.75)

takes/2 Logistic Regression takes(S,C)=true→(0.4,0.009,-0.607)

teaches/2 Logistic Regression teaches(P,C)=true→(-0.089,-0.012,0.305)

friend/2 Logistic Regression friend(S,S1)=true→(-0.08,1.5)

nrhours/1 Conditional Gaussian
difficulty(C)=easy→ N(20,6)
difficulty(C)=med→ N(50,5)
difficulty(C)=hard→ N(80,6)

intelligence/1 Conditional Gaussian
grade(S,C)=low→ N(60,5)
grade(S,C)=med→ N(90,7)
grade(S,C)=high→ N(110,5)

ability/1 Gaussian N(70,10)

Table A.1.1: Local distributions used for the handcrafted model.

Learned model for a fixed domain size (16 training interpretations)

difficulty(C) value{C}(nrhours(C), ∅)

satisfaction(S,C)

grade(S,C)
value{S}(intelligence(S), ∅),
value{C}(difficulty(C), ∅)

takes(S,C)
proportion{S,C}(∅, satisfaction(S,C)=low),
value{S,C}(satisfaction(S,C), ∅)

teaches(P,C)

friend(S,S1) proportion{S}(∅, takes(S,C))
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nrhours(C) value{C}(difficulty(C), ∅)

intelligence(S) mode{S}(grade(S,C), ∅)

ability(P)

Learned model for a domain size of 800 students, 125 courses and 125
professors

difficulty(C) proportion{C}(∅, takes(S,C))

satisfaction(S,C)
value{S,C}(grade(S,C), ∅),
value{C}(ability(P), teaches(P,C))

grade(S,C)

value{S}(intelligence(S), ∅),
value{C}(difficulty(C), ∅),
value{S,C}(satisfaction(S,C), ∅)

takes(S,C) proportion{S,C}(∅, {satisfaction(S,C)=mid,friend(S,S1),takes(S1,C)})

teaches(P,C) value{P}(ability(P), ∅)

friend(S,S1) proportion{S}(∅, {satisfaction(S,C)=low,grade(S,C)=high, takes(S,C)})

nrhours(C) value{C}(difficulty(C), ∅)

intelligence(S) mode{S}(grade(S,C), ∅)
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ability(P)

A.2 PKDD’99 real-world financial data set

Predicate Name Description Range

clientAge(C,L) the age of client C at the moment of loan
L origination

R

clientDistrict(C,D) client C lives in district D Boolean
gender(C) the gender of client C {m,f}
hasAccount(C,A) client C has an account A Boolean
avgSalary(D) the average salary in district D R

ratUrbInhab(D) the ratio of urban inhabitants in district
D

R

avgSumofW(A) the average sum of monthly with-
drawals for account A

R

avgSumofCred(A) the average sum of monthly credits for
account A

R

stdOfW(A) the standard deviation of monthly
withdrawals for account A

R

stdOfCred(A) the standard deviation of monthly
credits for account A

R

freq(A) the frequency of statement issuance for
account A

{i,d,m}

avgNrW(A) the average number of withdrawals per
a month for account A

R

hasLoan(A,L) account A has loan L Boolean
loanAmount(L) the amount of loan L R

loanStatus(L) the status of loan L {a,b,c,d}
monthlyPayments(L) the monthly payment amount for loan

L
R

Table A.2.1: Description of the predicates in the PKDD’99 financial data set.
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A.3 Detailed results of LLM applied to all domains

In this “Appendix” we present detailed results on per predicate WPLLs for all
domains used in our experiments.

A.3.1 Results on synthetic data

Tables [A.3.1-A.3.5] show the test set per randvar WPLLs for each predicate
when varying the number of training interpretations. Tables [A.3.6-A.3.9] show
the test set per randvar WPLLs for each predicate when varying the domain
size of the training interpretations. In both cases, the WPLLs are averaged over
all ten runs.

A.3.2 Results on the PKDD’99 financial data set

Tables A.3.10 and A.3.11 contain per randvar WPLLs for all learners applied on
the PKDD’99 financial data set. All the WPLLs represent an average value over
ten-fold cross-validation.

Hybrid Discretized
into 2
bins

Discretized
into 4
bins

Discretized
into 6
bins

Discretized
into 8
bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 -4.57 −5.46 −6.30 −4.90 −6.25 −4.81 −6.11 −5.41 −6.05
difficulty/1 -0.06 −0.83 −1.59 −0.27 −1.59 −0.28 −1.59 −0.17 −1.59
ability/1 -5.34 −5.95 −5.95 −5.70 −5.70 −5.71 −5.72 −5.72 −5.67
intelligence/1 -4.89 −5.71 −7.24 −5.34 −6.09 −5.21 −6.01 −5.39 −5.94
grade/2 −1.49 −1.51 −1.53 -1.48 −1.53 -1.48 −1.53 1.48 −1.53
satisfaction/2 −1.55 −1.55 -1.54 −1.56 -1.54 −1.56 -1.54 −1.55 -1.54
takes/2 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
friend/2 -0.14 -0.14 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15
teaches/2 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14
Total WPLL -18.22 −21.33 −24.45 −19.53 −23.00 −19.34 −22.79 −20.03 −22.62

Table A.3.1: The per randvar WPLL for each predicate on the synthetic data
when training on one interpretation. The best results are in bold.
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Hybrid Discretized
into 2
bins

Discretized
into 4
bins

Discretized
into 6
bins

Discretized
into 8
bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 -4.43 −5.41 −6.27 −4.82 −6.20 −4.61 −6.09 −5.01 −6.14
difficulty/1 −0.18 −0.69 −1.56 −0.28 −1.56 −0.08 −1.56 -0.10 −1.44
ability/1 -5.33 −5.93 −5.96 −5.66 −5.66 −5.67 −5.67 −5.66 −5.72
intelligence/1 -4.87 −5.71 −7.18 −5.21 −6.08 −5.09 −5.99 −5.01 −5.96
grade/2 −1.50 −1.51 −1.53 -1.46 −1.53 −1.48 −1.53 −1.47 −1.53
satisfaction/2 −1.55 −1.55 -1.54 −1.55 -1.54 −1.55 -1.54 −1.55 -1.54
takes/2 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
friend/2 -0.15 −0.16 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15
teaches/2 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14
Total WPLL -18.16 −21.10 −24.34 −19.27 −22.86 −18.77 −22.67 −19.11 −22.62

Table A.3.2: The per randvar WPLL for each predicate on the synthetic data
when training on two interpretations. The best results are in bold.

Hybrid Discretized
into 2
bins

Discretized
into 4
bins

Discretized
into 6
bins

Discretized
into 8
bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 -4.37 −5.41 −6.07 −4.82 −5.62 −4.58 −6.07 −4.73 −5.44
difficulty/1 -0.01 −0.66 −1.31 −0.26 −0.95 −0.06 −0.90 −0.08 −0.85
ability/1 -5.31 −5.92 −5.92 −5.64 −5.64 −5.65 −5.68 −5.64 −5.68
intelligence/1 -4.85 −5.71 −6.12 −5.19 −6.08 −4.98 −5.98 −4.89 −5.94
grade/2 −1.50 −1.51 −1.53 -1.45 −1.53 -1.45 −1.53 −1.46 −1.53
satisfaction/2 −1.55 −1.55 -1.54 −1.55 -1.54 −1.55 -1.54 −1.55 -1.54
takes/2 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
friend/2 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15
teaches/2 -0.10 -0.14 -0.14 -0.14 -0.10 -0.14 -0.14 -0.14 -0.14
Total WPLL -17.89 −21.06 −20.52 −19.20 −21.65 −18.56 −22.00 −18.64 −21.27

Table A.3.3: The per randvar WPLL for each predicate on the synthetic data
when training on four interpretations. The best results are in bold.
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Hybrid Discretized
into 2
bins

Discretized
into 4
bins

Discretized
into 6
bins

Discretized
into 8
bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 -4.35 −5.41 OoM −4.82 OoM −4.58 OoM −4.73 OoM
difficulty/1 -0.02 −0.67 OoM −0.18 OoM −0.06 OoM −0.09 OoM
ability/1 -5.31 −5.92 OoM −5.63 OoM −5.65 OoM −5.63 OoM
intelligence/1 -4.86 −5.71 OoM −5.18 OoM −4.97 OoM −4.88 OoM
grade/2 −1.49 −1.51 OoM −1.46 OoM −1.46 OoM -1.45 OoM
satisfaction/2 -1.55 -1.55 OoM -1.55 OoM -1.55 OoM -1.55 OoM
takes/2 -0.00 -0.00 OoM -0.00 OoM -0.00 OoM -0.00 OoM
friend/2 -0.15 -0.15 OoM -0.15 OoM -0.15 OoM -0.15 OoM
teaches/2 −0.14 -0.14 OoM -0.14 OoM -0.14 OoM -0.14 OoM
Total WPLL -17.87 −21.06 OoM −19.12 OoM −18.55 OoM −18.46 OoM

Table A.3.4: The per randvar WPLL for each predicate on the synthetic data
when training on eight interpretations. The best results are in bold, and OoM
denotes out of memory.

Hybrid Discretized
into 2
bins

Discretized
into 4
bins

Discretized
into 6
bins

Discretized
into 8
bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 -4.35 −5.41 OoM −4.79 OoM −4.57 OoM −4.50 OoM
difficulty/1 -0.02 −0.66 OoM −0.15 OoM −0.05 OoM −0.04 OoM
ability/1 -5.31 −5.91 OoM −5.63 OoM −5.64 OoM −5.61 OoM
intelligence/1 -4.83 −5.71 OoM −5.18 OoM −4.96 OoM −4.87 OoM
grade/2 −1.49 −1.51 OoM −1.46 OoM −1.46 OoM -1.45 OoM
satisfaction/2 -1.55 -1.55 OoM -1.55 OoM -1.55 OoM -1.55 OoM
takes/2 -0.00 -0.00 OoM -0.00 OoM -0.00 OoM -0.00 OoM
friend/2 -0.15 -0.15 OoM -0.15 OoM -0.15 OoM -0.15 OoM
teaches/2 -0.14 -0.14 OoM -0.14 OoM -0.14 OoM -0.14 OoM
Total WPLL -17.85 −21.05 OoM −19.04 OoM −18.52 OoM −18.30 OoM

Table A.3.5: The per randvar WPLL for each predicate on the synthetic data
when training on 16 interpretations. The best results are in bold, and OoM
denotes out of memory.
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Hybrid Discretized
into 2
bins

Discretized
into 4
bins

Discretized
into 6
bins

Discretized
into 8
bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 -4.66 −5.35 −6.30 −4.94 −6.25 −5.04 −6.11 −5.63 −6.05
difficulty/1 -0.07 −0.91 −1.59 −0.45 −1.59 −0.28 −1.59 −0.34 −1.59
ability/1 −5.35 −5.46 −5.95 −5.21 −5.70 -5.15 −5.72 −5.18 −5.67
intelligence/1 -4.73 −5.54 −7.24 −5.06 −6.09 −4.86 −6.01 −4.93 −5.94
grade/2 -1.51 -1.51 −1.53 -1.51 −1.53 -1.51 −1.53 −1.52 −1.53
satisfaction/2 −1.55 −1.55 -1.54 −1.55 -1.54 −1.55 -1.54 −1.55 -1.54
takes/2 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
friend/2 −0.16 −0.16 -0.15 −0.16 -0.15 −0.16 -0.15 −0.16 -0.15
teaches/2 -0.07 -0.07 −0.14 -0.07 −0.14 -0.07 −0.14 -0.07 −0.14
Total WPLL -18.11 −20.56 −24.45 −18.95 −23.00 −18.62 −22.79 −19.39 −22.62

Table A.3.6: The per randvar WPLL for each predicate on the synthetic data
consisting of 100 students, 50 courses and 50 professors. The best results are in
bold.

Hybrid Discretized
into 2
bins

Discretized
into 4
bins

Discretized
into 6
bins

Discretized
into 8
bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 -4.50 −5.28 −6.11 −4.69 −6.08 −4.70 −6.11 −4.76 −6.13
difficulty/1 -0.05 −0.71 −1.57 −0.18 −1.57 −0.24 −1.59 −0.14 −1.59
ability/1 −5.34 −5.60 −5.60 −5.29 −5.29 -5.26 −5.58 -5.26 −5.62
intelligence/1 -4.70 −5.61 −6.00 −5.11 −5.99 −4.77 −6.11 −4.77 −6.14
grade/2 −1.48 −1.50 −1.54 -1.46 −1.54 −1.47 −1.58 −1.47 −1.59
satisfaction/2 −1.55 −1.55 -1.54 −1.55 -1.54 −1.55 −1.59 −1.55 −1.59
takes/2 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 −1.00 -0.00 −1.00
friend/2 -0.16 -0.16 -0.16 -0.16 −0.24 -0.16 −1.00 -0.16 −1.00
teaches/2 -0.07 -0.07 -0.07 -0.07 −0.91 −0.08 −1.00 -0.07 −1.00
Total WPLL -17.84 −20.47 −22.25 −18.50 −23.15 −18.22 −25.55 −18.17 −25.64

Table A.3.7: The per randvar WPLL for each predicate on the synthetic data
consisting of 200 students, 75 courses and 75 professors. The best results are in
bold.
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Hybrid Discretized
into 2
bins

Discretized
into 4
bins

Discretized
into 6
bins

Discretized
into 8
bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 -4.52 −5.32 −6.14 −4.72 −6.09 −4.51 −5.96 −4.76 −5.89
difficulty/1 -0.02 −0.70 −1.55 −0.17 −1.55 −0.12 −1.55 −0.10 −1.55
ability/1 −5.33 −5.53 −5.53 −5.28 −5.28 −5.21 -5.18 −5.22 −5.19
intelligence/1 -4.67 −5.62 −6.01 −5.10 −5.98 −4.79 −5.84 −4.74 −5.78
grade/2 −1.46 −1.48 −1.53 -1.45 −1.54 -1.45 −1.54 −1.46 −1.53
satisfaction/2 -1.54 -1.54 -1.54 -1.54 -1.54 -1.54 -1.54 -1.54 -1.54
takes/2 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
friend/2 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16
teaches/2 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07
Total WPLL -17.78 −20.42 −22.53 −18.48 −22.20 −17.86 −21.83 −18.05 −21.71

Table A.3.8: The per randvar WPLL for each predicate on the synthetic data
consisting of 400 students, 100 courses and 100 professors. The best results are
in bold.

Hybrid Discretized
into 2
bins

Discretized
into 4
bins

Discretized
into 6
bins

Discretized
into 8
bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
nrhours/1 -4.48 −5.33 −6.18 −4.78 −5.96 −4.54 −5.99 −4.58 −5.92
difficulty/1 -0.02 −0.66 −1.53 −0.17 −1.55 −0.09 −1.53 −0.12 −1.53
ability/1 -5.34 −5.67 −5.67 −5.31 −5.18 −5.26 −5.26 −5.24 −5.24
intelligence/1 -4.66 −5.65 −6.04 −5.13 −5.84 −4.79 −5.84 −4.73 −5.79
grade/2 −1.45 −1.47 −1.54 -1.44 −1.54 -1.44 −1.53 -1.44 −1.53
satisfaction/2 −1.54 −1.54 −1.54 −1.54 −1.54 -1.53 −1.54 -1.53 −1.54
takes/2 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
friend/2 -0.15 -0.15 -0.15 −0.15 −0.16 -0.15 -0.15 −0.16 -0.15
teaches/2 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07
Total WPLL -17.72 −20.54 −22.72 −18.60 −21.83 −17.87 −21.92 −17.86 −21.79

Table A.3.9: The per randvar WPLL for each predicate on the synthetic data
consisting of 800 students, 125 courses and 125 professors. The best results are
in bold.



152 APPENDIX

Hybrid Discretized
into 2
bins

Discretized
into 4
bins

Discretized
into 6
bins

Discretized
into 8
bins

Predicate HRDN HRDN LSM HRDN LSM HRDN LSM HRDN LSM
avgNrWith/1 −4.60 −4.81 −4.83 −4.61 −4.75 -4.56 −4.85 −4.60 −5.05
avgSalary/1 −11.24 −11.35 −11.44 −10.96 −11.25 −10.82 −11.39 -10.68 −11.65
avgSumofCred/1 -14.54 −17.31 −17.58 −16.44 −17.11 −16.01 −16.34 −15.70 −16.88
avgSumOfW/1 -14.39 −17.22 −17.43 −16.34 −17.00 −15.85 −16.26 −15.54 −16.81
clientAge/2 −5.77 −5.72 −5.71 −5.67 −5.70 −5.60 −5.74 -5.59 −5.73
clientDistrict/2 -0.09 -0.09 −0.11 -0.09 -0.09 -0.09 −0.12 -0.09 −0.15
freq/1 -0.38 −0.41 −0.45 −0.39 −0.42 -0.38 −0.50 −0.39 −0.45
gender/1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
hasAccount/2 -0.02 -0.02 −0.03 -0.02 -0.02 -0.02 −0.03 -0.02 −0.03
hasLoan/2 -0.01 -0.01 −0.03 −0.07 −0.04 −0.06 −0.03 −0.13 −0.03
loanAmount/1 −18.26 −18.48 −18.54 -18.17 −18.40 −18.19 −18.62 −18.35 −18.80
loanStatus/1 -1.32 −1.42 −1.48 −1.40 −1.43 −1.40 −1.45 −1.50 −1.48
monthlyPayments/1 −12.70 −12.96 −13.02 -12.69 −12.89 −12.91 −13.09 −12.80 −13.15
ratUrbInhab/1 −5.74 −5.83 −5.93 −5.56 −5.77 −5.40 −5.86 -5.29 −5.91
stdOfCred/1 -14.05 −15.65 −15.90 −14.98 −15.51 −14.67 −15.51 −14.34 −16.10
stdOfW/1 -13.81 −15.36 −15.56 −14.62 −15.18 −14.32 −15.06 −14.16 −15.66
Total WPLL -117.93 −127.64 −129.02 −122.99 −126.55 −121.27 −125.83 −120.17 −128.89

TableA.3.10: The per randvarWPLL for each predicate on the PKDD’99 financial
data set. The best results are in bold.
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Predicate LR+LinR LR+MP5 LLM-H
avgNrWith/1 −0.96 −0.96 -0.09
avgSalary/1 -1.00 -1.00 -1.00
avgSumofCred/1 −1.00 −1.00 -0.02
avgSumOfW/1 -0.36 -0.36 −0.38
clientAge/2 −0.89 −0.89 -0.01
clientDistrict/2 -1.17 -1.17 −1.32
freq/1 −5.78 -5.77 -5.77
gender/1 −11.18 -10.98 −11.24
hasAccount/2 -5.74 -5.74 -5.74
hasLoan/2 -14.35 −14.98 −14.39
loanAmount/1 -14.51 −15.08 −14.54
loanStatus/1 -13.81 −13.82 -13.81
monthlyPayments/1 -14.05 −13.89 -14.05
ratUrbInhab/1 −4.31 -4.10 −4.60
stdOfCred/1 -18.14 −18.15 −18.26
stdOfW/1 -12.54 −12.61 −12.70
Total WPLL −119.79 −120.22 -117.93

Table A.3.11: The per randvar WPLL of the two variants of the handcrafted
models, LR+LinR and LR+MP5, compared to LLM-H on the hybrid data for
the PKDD’99 financial data set. LR+LinR uses logistic regression for discrete
predicates and linear regression for continuous predicates, and LR+MP5 uses
logistic regression for discrete predicates and regression trees for continuous
predicates. The best results are in bold.
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A.4 Features used for propositional learners

In order to compare our structure learning algorithm to propositional learners
on the PKDD’99 financial data set, we handcrafted a number of features for
each of the 16 predicates. Each feature predicts a property of an object by using
some other properties of that object.

A.4.1 Predicates with discrete range

clientDistrict(C,D)
value{C}(gender(C), ∅)
value{C}(avgSalary(D), ∅)
value{C}(ratUrbInhab(D), ∅)

gender(C) exists{C}(hasAccount(A,C), ∅)

hasAccount(C,A)

value{C}(gender(C), ∅)
exists{A}(∅, hasLoan(A,L))
value{A}(freq(A), ∅)
value{A}(avgNrWith(A, ∅)
value{A}(avgSumOfW(A), ∅)
value{A}(avgSumOfCred(A), ∅)
value{A}(stdOfW(A), ∅)
value{A}(stdOfCred(A), ∅)

freq(A)

value{A}(avgNrWith(A), ∅)
value{A}(avgSumOfW(A), ∅)
value{A}(avgSumOfCred(A), ∅)
value{A}(stdOfW(A), ∅)
value{A}(stdOfCred(A), ∅)



FEATURES USED FOR PROPOSITIONAL LEARNERS 155

hasLoan(A,L)

value{L}(loanAmount(L), ∅)
value{L}(loanStatus(L), ∅)
value{L}(monthlyPayments(L), ∅)
value{A}(freq(A), ∅)
value{A}(avgNrWith(A), ∅)
value{A}(avgSumOfW(A), ∅)
value{A}(avgSumOfCred(A), ∅)
value{A}(stdOfW(A), ∅)
value{A}(stdOfCred(A), ∅)

loanStatus(L)
value{L}(loanAmount(L), ∅)
value{L}(loanStatus(L), ∅)
value{L}(monthlyPayments(L), ∅)

A.4.2 Predicates with continuous range

The following are the features we used for predicates with a continuous
range. Note that the predicates avgSumOfW/1, avgSumOfCred/1, stdOfW/1 and
stdOfCred/1 have similar structure as the features for avgNrWith(A). To save
space we will only show the features we used for avgNrWith(A). The full feature
set is in the online appendix on http://dtai.cs.kuleuven.be/ml/systems/llm.

avgSalary(D)
proportion{D}(clientDistrict(C,D), ∅)
value{D}(ratUrbInhab(D), ∅)
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loanAmount(L)
value{L}(loanStatus(L), ∅)
value{L}(monthlyPayments(L), ∅)

monthlyPayments(L)
value{L}(loanStatus(L), ∅)
value{L}(loanAmount(L), ∅)

avgNrWith(A)

value{A}(freq(A), ∅)
value{A}(avgSumOfW(A), ∅)
value{A}(avgSumOfCred(A), ∅)
value{A}(stdOfW(A), ∅)
value{A}(stdOfCred(A), ∅)

ratUrbInhab(D)
value{D}(avgSalary(D), ∅)
proportion{D}(clientDistrict(C,D), ∅)

clientAge(C,L)

value{C}(gender(C), ∅)
value{L}(loanAmount(L), ∅)
value{L}(loanStatus(L), ∅)
value{L}(monthlyPayments(L), ∅)
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