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Abstract

Dissertation summary
This research dissertation focuses on the developments of tomographic PIV (tomo-PIV)
for the measurement of turbulent flows (Elsinga et al. 2006). It is based on the
tomographic reconstruction of a volumic intensity distribution of tracer particles from
projections recorded on cameras. The corresponding volumic distributions are correlated
to obtain 3D displacement fields. The present work surveys the state of advancement of
the research conducted on this technique and the main issues it has been confronted with
so far. The main research focus was on tomographic reconstruction. Indeed, its main
limitation is the appearance of ghost particles, ie reconstruction noise, which occurs
when high tracer concentrations are required for high spatial resolution measurements.

For a thorough understanding of tomographic noise, we carried out a numerical
study of experimental factors impacting the quality of tomographic reconstruction.
Geometric considerations quantified the impact of "added particles" lying in the Union
volume but not in the Intersection volume, between the camera fields of view and the
illumination area. This phenomenon was shown to create ghost particles. The decrease
in signal-to-noise ratio in the image was investigated, considering Mie scattering and
defocusing effects. Particle image defocusing mainly results in the loss of real particles
in reconstruction. Mie scattering’s main impact is also the loss of real particles due to
the polydisperse nature of the seeding.

This study of imaging conditions for tomo-PIV led us to propose an alternative
approach to classical tomographic reconstruction. It seeks to recover nearly single
voxel particles rather than blobs of extended size using a particle-based representation
of image data. We term this approach Particle Volume Reconstruction (PVR). PVR
underlies a more physical, sparse volumic representation of point particles, which lives
halfway between infinitely small particles, and voxel blobs commonly used in tomo-PIV.
From that representation, it is possible to smooth it to 2 voxel diameter blobs for
a 3D-PIV use of PVR incorporated in a SMART algorithm. Numerical simulations
showed that PVR-SMART outperforms tomo-SMART (Atkinson et al. 2009) on a
variety generating conditions and a variety of metrics on volume reconstruction and
displacement estimation, especially in the case of seeding density greater than 0.06 ppp.

We introduce a cross-correlation technique for 3D-PIV (FOLKI-3D) as an exten-
sion to 3D of the FOLKI-PIV algorithm (Champagnat et al. 2011). The displacement
is searched as the minimizer of a sum of squared differences, solved iteratively by using
volume deformation. Numerical tests confirmed that spatial frequency response is
similar to that of standard iterative deformation algorithms. Numerical simulations of
tomographic reconstruction characterized the robustness of the algorithm to specific
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tomographic noise. FOLKI-3D was found more robust to coherent ghosts than standard
deformation algorithms, while gains in accuracy of the high-order deformation scheme
were obtained for various signal noises.

The application of PVR-SMART on experimental data was performed on a tur-
bulent air jet. Several seeding density conditions were used to compare the performance
of tomo-SMART and PVR-SMART on the near field region of the jet. With the given
image pre-processing, PVR-SMART was found to yield velocity fields that are about 50

Finally, conclusions are drawn from the main results of this dissertation and lead
to potential research perspectives of our work with respect to the future of tomographic
PIV.

Résumé de thèse
Cette thèse porte sur le développement de la PIV tomographique (tomo-PIV) pour la
mesure d’écoulements turbulents. Elle se fonde sur la reconstruction tomographique
d’une distribution volumique d’intensité de particules traceuses, à partir de projections
enregistrées par des caméras. Les distributions volumiques sont corrélées, fournissant
ainsi un champ de déplacement 3D.

Les principales avancées de la recherche sur cette technique sont présentées ainsi
que les points bloquants. Les efforts ont principalement été portés sur la reconstruction
tomographique. La principale difficulté est le bruit dit tomographique (particules fan-
tômes) qui croît exponentiellement lorsqu’une forte densité de traceur est requise pour
obtenir une résolution spatiale fine de la mesure, particulièrement pour les écoulements
turbulents.

Afin de mieux appréhender ce bruit de reconstruction, nous avons étudié numériquement
les facteurs expérimentaux nuisant à la qualité de la reconstruction. Des considérations
géométriques ont permis de quantifier l’impact de « particules ajoutées », qui se trouvent
dans le volume de l’union mais pas dans le volume de l’intersection entre la zone laser et
les champs de vue des caméras. La diminution du ratio signal-à-bruit dans les images,
due à la diffusion de Mie et l’astigmatisme des optiques, a pour principal effet la perte
de vraies particules dans la reconstruction.

Etudier les conditions optiques de la tomo-PIV nous a permis de proposer une
approche alternative à la reconstruction tomographique classique, qui vise à reconstruire
une particule presque sur un unique voxel, plutôt que comme un agrégat de voxels
de taille étendue, en se fondant sur une représentation particulaire des images. Nous
nommons cette méthode Reconstruction Volumique de Particules (PVR). Après avoir
été incorporée à un algorithme de reconstruction (SMART), il est possible d’élargir la
représentation particulaire de PVR, afin d’obtenir des blobs de 2/3 voxels de diamètre
requis par les algorithmes de corrélation de 3D-PIV. Des simulations numériques sur un
large spectre de conditions génératrices, ont montré qu’utiliser PVR-SMART permettait
des gains de performance par rapport à un algorithme classique comme tomo-SMART
(Atkinson 2009).

L’aspect vélocimétrie par corrélation de la méthode a aussi été pris en compte
avec une extension sur GPU à la 3D (FOLKI-3D) de l’algorithme FOLKI-PIV (Cham-
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pagnat et al. 2011). Le déplacement y est cherché en minimisant itérativement une
fonctionnelle, du type des moindres carrés, par déformation de volume. Les tests
synthétiques confirment que la réponse fréquentielle d’espace est semblable à celle
d’autres algorithmes classiques itératifs de déformation de volume. Les simulations
numériques de reconstruction tomographique ont permis de caractériser la robustesse de
l’algorithme au bruit spécifique de la tomographie. Nous avons montré que FOLKI-3D
était plus robuste aux particules fantômes cohérentes que les algorithmes classiques de
déformation volumique. De plus, des gains de performance ont été observés en utilisant
des schémas d’ordre élevé pour différents types de bruit.

L’application de PVR-SMART sur des données expérimentales a été effectuée sur
un jet d’air turbulent. Différentes densités de particules ont été utilisées pour comparer
les performances de PVR-SMART avec tomo-SMART sur la région proche buse du jet.
Avec le pré-traitement d’image utilisé, nous avons montré que les champs de vitesse de
PVR-SMART étaient près de 50 % moins bruités que ceux de tomo-SMART. L’analyse
sur les champs de vitesse comporte l’étude de quantités statistiques, de peak-locking, de
divergence, du tenseur des gradients ainsi que de structures cohérentes.

Enfin, nous concluons avec une synthèse des résultats obtenus au cours de cette
étude, en envisageant de nouvelles perspectives de recherche dans le contexte de la PIV
tomographique.

Résumé étendu de thèse

0.1 Introduction
La Turbulence est l’un des grands problèmes non résolus de la Physique, au sens où
une théorie prédictive complète des écoulements turbulents n’a pas encore été établie.
Les écoulements turbulents sont caractérisés par des mouvements instationnaires,
irréguliers, qui semblent aléatoires et chaotiques, aussi bien dans l’espace que dans le
temps [Pope, 2000]. La turbulence est donc par essence, un phénomène tri-dimensionnel,
ce qui pose la question de notre capacité à mesurer avec précision les déplacements 3D
instationnaires d’écoulements turbulents.

Au cours du XX ime siècle, nos capacités expérimentales de mesure se sont con-
sidérablement améliorées grâce au développement des technologies optiques, digitales
et grâce à l’augmentation de nos capacités de calcul. Les premiers instruments de
mesures permettaient une mesure uni-dimensionnelle du champ de vitesse (tube de
pitot, fil chaud). Les visualisations planes d’écoulements utilisant des colorants ou de la
fumée ont permis à la recherche sur les structures cohérentes de se développer. Grâce à
l’amélioration des lasers à haute fréquence, des caméras digitales et des ordinateurs, le
développement de la Vélocimétrie par Imagerie de Particules (PIV) a permis d’accéder
à des mesures quantitatives de champs bi-dimensionnels (2D/2C). Cette mesure utilise
la corrélation entre deux images de particules ensemençant l’écoulement et qui sont
éclairées par un plan laser. De nombreuses avancées, aussi bien algorithmiques que
technologiques, ont permis d’améliorer la précision spatiale et temporelle de la mesure.
[Elsinga et al., 2005] ont introduit cette technique permettant d’étendre la PIV à la 3D,
appelée PIV tomographique ou tomo-PIV. Le dispositif expérimental est étendu à la 3D,
en utilisant plusieurs caméras (typiquement 4 [Scarano, 2013]) La PIV tomographique
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Figure 0.1.1: Principe du dispositif expérimental (haut) et des étapes algorithmiques
(bas) de la PIV tomographique .

se fonde sur la reconstruction tomographique d’une distribution volumique d’intensité
de particules traceuses, à partir de projections enregistrées par des caméras (voir
figure 1.3.1). Les distributions volumiques sont ensuite corrélées, fournissant ainsi un
champ de déplacement 3D. Cette étape de corrélation est une extension à la 3D de
l’étape déjà existante dans la PIV 2D/2C.

C’est sur le développement de la PIV tomographique (tomo-PIV) pour la mesure
d’écoulements turbulents que porte ma thèse.

La nouvelle étape de reconstruction tomographique est celle sur laquelle les ef-
forts de la recherche se sont principalement portés. Cette étape a été vue historiquement
([Elsinga et al., 2006]) comme une inversion de système linéaire d’équations du type :

I(xi, yi) =
∑
j=1:N

wi,jE(xj, yj, zj) (0.1.1)

où I est l’ensemble des données des projections, E est le champ volumique d’intensité
discrétisé que l’on essaye de reconstruire et w un modèle linéaire liant l’inconnue à la
donnée, qui historiquement a été pris comme un modèle tomgraphique géométrique
liant l’unité de discrétisation du volume (voxel) et le pixel de la donnée Elsinga et al.
[2006]. La principale difficulté est le bruit de la reconstruction (particules fantômes)
qui croît exponentiellement lorsqu’une forte densité de traceur est requise pour obtenir
une résolution spatiale fine de la mesure [Scarano, 2013], particulièrement pour les
écoulements turbulents. La plupart des efforts de la communauté scientifique se sont
donc focalisés sur l’amélioration de la qualité de la reconstruction tomographique afin
d’augmenter la densité de particules traceuses et donc la résolution spatiale de la mesure.
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Des algorithmes comme MART ([Elsinga et al., 2006]) ou SMART ([Atkinson
and Soria, 2009]) sont particulièrement bien adaptés aux caractéristiques de ce problème
qui reconstruit un volume assez creux. Des techniques d’initialisation de ces algorithmes
comme MFG [Worth and Nickels, 2008] puis plus important encore Multiplicative-line-
of-sight (MLOS) [Atkinson and Soria, 2009], permettant de réduire la taille du problème,
ont été introduites. Certaines améliorations se concentrent sur la sparsité de la solution
pour améliorer la précision et le temps de calcul comme [Petra and Schnörr, 2009] et
[Barbu et al., 2011]. Une amélioration significative a été apportée par les méthodes dites
"multi-exposure" [Scarano, 2013] qui utilisent l’information cachée ans la cohérence
temporelle de vraies particules, comme l’algorithme MTE de [Novara et al., 2010]. Cet
algorithme a été étendu à la tomo-PIV résolue en temps [Lynch and Scarano, 2015].

Cependant, même si ces méthodes sont applicables pour un large panel de con-
ditions expérimentales, elles ne prennent pas en compte la défocalisation optique,
l’astigmastime ou d’autres abbérations optiques, qui changent la forme de l’image de la
particule (Point Spread Function, PSF) et qui détériorent la qualité de la reconstruction
[Elsinga et al., 2006]. Pour surmonter ces difficultés, [Scarano, 2013] ont proposé de
prendre en compte ces variations tout en conservant la forme de la particule reconstruite
comme un blob gaussien standard qui est adapté aux algorithmes de corrélation
classiques.

Plus récemment, un ensemble de méthodes ont combiné des aspects de la 3D-
PIV avec le tracking de 3D-PTV (Particule Tracking Velocimetry). [Wieneke, 2013] a
introduit un algorithme itératif (Iterative Particle Reconstruction, IPR) qui détermine
les coordonnées 3D des particules pour une densité supérieure à celle de la 3D-PTV.
Dans le contexte de la 3D-PIV résolue en temps, où les particules peuvent être suivies sur
de multiples snapshots, [Schanz et al., 2013b] ont utilisé le principe de IPR et "tracker"
des particules sur plusieurs instants, permettant de trouver un critère clair d’élimination
des particules fantômes dans la reconstruction. [Schanz et al., 2016] montrent des gains
de performance aussi bien sur données synthétiques qu’expériemntales.

0.2 Objectifs de la thèse
C’est dans ce contexte très évolutif de la recherche que ma thèse se situe. Nous venons
de voir les nombreuses avancées effectuées pour améliorer la qualité de la reconstruction
tomographique, qui se concentrent principalement sur les méthodes algorithmique
d’inversion. Le modèle d’inversion tomographique a été relativement peu étudié dans la
littérature, surtout considérant le fait que la distribution 3D d’intensité n’est pas une
quantité physique. Est-il possible de trouver un modèle d’inversion plus physique ? Un
modèle de projection fondé sur une représentation plus physique de l’image PIV peut-il
améliorer les performances de la reconstruction ?

A l’ONERA, un algorithme rapide et précis de cross-corrélation a été développé
pour la 2D-PIV (FOLKI-PIV) et la stéréo-PIV (FOLKI-SPIV) [Champagnat et al.,
2011]. Il est naturel de penser à étendre cet algorithme à la 3D. Comment cet algorithme
résistera-t-il au bruit spécifique de la reconstruction tomographique ?

Ma thèse va tâcher de répondre à ces deux questions. Les avancées de ma thèse
ainsi que les principaux résultats répondant à ces problématiques sont ici résumés en
trois points différents : Tout d’abord un ensemble d’études numériques m’ont permis
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d’étudier les conditions optiques de la 3D-PIV et leurs influences sur la qualité de la
reconstruction tomographique. Dans un second temps, j’ai étudié les performances de
notre algorithme de cross-corrélation 3D (FOLKI-3D) et sa robustesse vis-à-vis du bruit
spécifique tomographique. Enfin, grâce à une meilleure compréhension des conditions
optiques, nous introduisons un nouveau modèle de reconstruction tomographique
utilisant une représentation particulaire de la création d’image PIV, que nous appelons
Particle Volume Reconstruction (PVR). Des tests numériques ainsi qu’une validation
expérimentale sur jet turbulent montrent des gains significatifs sur les approches
classiques de reconstruction utilisant un modèle géométrique d’inversion.

0.3 Etudes numériques des conditions expérimentales
dans la PIV-3D

Afin de mieux appréhender le bruit de reconstruction et comprendre l’impact des con-
ditions expérimentales, nous avons effectué une étude numérique sur les facteurs expéri-
mentaux nuisant à la qualité de la reconstruction. Cette étude est effectuée en simu-
lant numériquement le processus expérimentale de la PIV-3D. La simulation numérique
est particulièrement bien adaptée pour l’étude de la qualité de la reconstruction to-
mographique puisque cela requiert la connaissance de la vérité terrain, c’est-à-dire, la
localisation des particules ainsi que leur intensités. Dans nos images de synthèse, dif-
férents bruits ou détériorations d’images ont été généré pour évaluer leurs impact sur la
qualité de la reconstruction. Nous avons considéré ici les conditions d’images que l’on
trouve dans les écoulements incompressibles d’air.

Figure 0.3.1: (Gauche) Dispositif expérimental typique avec 2 caméras pour simplifier
la compréhension, montrant la difference entre le volume reconstruit (traits noirs dis-
continus), l’union et l’intersection (rouge) des champs de vue des caméras et de la zone
laser. (Droite) Influence de la densité des traceurs lorsque les particules ne sont que
dans l’intersection (vert) ou dans l’union (bleu).

La première dégradation d’images que nous avons étudiée peut être vue comme un bruit
additionnel dans les images. A partir de considérations géométriques nous avons pu
quantifier l’impact des "particules ajoutées", qui se trouvent dans la zone de l’Union
entre le champ de vue des caméras et de la zone illuminée (voir figure 2.3.1, gauche). A
partir de cela, un facteur géométrique a pu être déduit, permettant de quantifier le niveau
de bruit introduit dans la reconstruction : c’est le ratio entre l’Intersection et l’Union
défini par les champs de vue des caméras et la zone illuminée. On nomme ce facteur RI/U .
Les critères de qualité utilisés sont le critère Q classique [Elsinga et al., 2006] ainsi que
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des critères de détection, Précision et Rappel construits sur les quantités TP (lorsqu’une
détection est une vraie particule), FP (la détection est une particule fantôme, FN (pas
de détection là où une vraie particule est). On a alors Precision = TP/(TP + FP )
et Rappel = TP/(TP + FN). L’impact principal sur la reconstruction de RI/U est
l’augmentation du nombre et de l’intensité des particules fantômes figure 2.3.3. Nous
démontrons qu’effectuer des simulations numériques sans prendre en compte ces effets
revient à surestimer drastiquement la précision de l’algorithme de reconstruction (voir
figure 2.3.1, droite).

Figure 0.3.2: (Gauche) Impact de la taille de l’image sur le ratio RI/U et sur la qualité
de la reconstruction Q et influence du ratio RI/U sur la Précision et le Rappel (Droite).

L’autre aspect de détérioration des images que j’ai étudié est la diminution du ratio
signal-à-bruit dans les images, en considérant particulièrement la diffusion de Mie ainsi
que les effets de défocalisation. Les résultats (figure 2.3.6) suggèrent que l’impact princi-
pal qu’a la délocalisation des particules dans les images sur la reconstruction est la perte
des vraies particules. Cette perte est due à la baisse de l’intensité maximale de la partic-
ule dans l’image lorsque la taille de la PSF augmente (quand les particules deviennent
de plus en plus floues).

Figure 0.3.3: Rappel et Précision pour différentes densité (ppp = 0.055 and ppp = 0.098)
en fonction d’une intensité variable de défocalisation δσ.

Pour l’étude des effets de la diffusion de Mie où l’intensité d’une particule est fonc-
tion de son diamètre et de l’angle entre la direction de la lumière qui l’impacte et la
caméra figure 2.3.7, j’ai classé les effets en trois phénomènes physiques : une différence
d’intensité entre les images, la dispersion d’intensité à l’intérieur même d’une image, et
la dépendance de l’intensité d’une particule sur son diamètre. Nous avons montré que
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ne pas prendre en compte le véritable modèle de la diffusion de Mie dans une simulation
sur-estime drastiquement la qualité de la reconstruction. De plus, la source principale de
détérioration de la qualité de la reconstruction est, comme pour la délocalisation, la perte
des vraies particules, causée par la nature polydisperse de l’ensemencement dispersant
les intensités des particules de façon drastique.

Figure 0.3.4: (Gauche) Logarithme de la fonction de diffusion de Mie S11 qui dépend
de deux paramètres : le diamètre de la particule dp ainqi que l’angle de diffusion θ.
(Droite) Logarithme de la fonction de diffusion de Mie pour deux angles de diffusion
fixés.

Ces raffinements de la simulation augmentent le réalisme de la simulation et révèlent
l’importance des conditions optiques lors de la prise d’image en PIV-3D. Ces conditions
sont tout particulièrement déterminantes quand le ratio signal-à-bruit dans les images
est bas, ce qui est souvent le cas lorsque l’on effectue une expérience de PIV-3D résolue
en temps dans l’air. De plus, nous avons montré qu’une fois les caméras positionnées,
optimiser leur orientation n’avait qu’un apport peu significatif sur le ratio RI/U .

0.4 Une nouvelle méthode de correlation 3D utilisant
un paradigme de Lucas-Kanade

Nous introduisons une méthode de cross-corrélation pour la PIV-3D (FOLKI-3D)
comme une extension sur GPU à la 3D de l’algorithme FOLKI-PIV [Champagnat
et al., 2011]. Comme dans le cas plan, le déplacement y est cherché en minimisant
itérativement une fonctionnelle equation (4.2.1), du type des moindres carrés, par
déformation de volume. Cette déformation est faite soit par un schéma linéaire soit par
un schéma d’ordre plus élevé, dit B-Spline cubique.

Voici une description de la fonctionnelle que l’on minimise : Si l’on considère un
volume physique discrétisé, on appelle k l’indice du voxel de la grille. Comme dans une
approche traditionnelle de PIV utilisant la correlation d’image, notre objectif est de
déterminer le déplacement u(k) d’un motif de particules 3D contenues dans le volume
d’interrogation (IV), V (k) centré autour d’un voxel k. Cependant, l’objectif mathéma-
tique n’est pas le même et appartient à la famille algorithmique de Lucas-Kanade [Baker
and Matthews, 2004], car cela revient à minimiser une somme des différences au carré.

u(k) = arg min
∑
m

v(m− k)

[
E1

(
m− u(k)

2

)
− E2

(
m+

u(k)

2

)]2

(0.4.1)
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Les tests synthétiques confirment que la réponse fréquentielle d’espace est semblable
à celle d’autres algorithmes classiques itératifs de déformation de volume aussi bien
pour des fenêtres de poids "top-hat" ou gaussienne figure 4.3.1. De plus, des gains
de performance similaire à la littérature ont été observés en utilisant l’interpolation
B-Spline plutôt que la simple interpolation linéaire.

Figure 0.4.1: (Gauche) Réponse fréquentielle d’espace de l’algorithme pour différentes
fonctions de poids : top-hat (en noir) ou gaussien, avec différentes paramétrisations
de l’écart type de la gaussienne par rapport au rayon de la fenêtre (rouge, bleu, vert).
(Droite) Biais d’erreur de l’algorithme à un déplacement unidimensionnel pour une
interpolation linéaire (bleu) ou d’ordre plus élevé B-Spline (vert).

Des simulations numériques de reconstruction tomographique nous ont alors per-
mis de caractériser la robustesse de l’algorithme au bruit spécifique de la tomographie,
c’est-à-dire aux particules fantômes, ainsi que les gains obtenus par une interpolation
d’ordre plus élevé dans des configurations caméras plus réalistes. Nous avons montré
que FOLKI-3D était plus robuste aux particules fantômes cohérentes qu’un algorithme
classique de déformation volumique figure 4.4.3. Pour montrer cela, nous avons
comparé les performances de notre algorithme à celles du corrélateur de LaVision Davis
8.2 utilisant le mode de corrélation directe et les mêmes paramétrages de volumes
d’interrogation. Le déplacement utilisé est une déplacement de cisaillement le long des
lignes de vues des caméras, où le déplacement est de l’ordre de grandeur de la taille de
la particule. Dans ce cas [Elsinga et al., 2011] ont montré que des particules fantômes
cohérentes entre deux instants apparaissaient et détérioraient le calcul du déplacement.
De plus des gains en précision pour des schémas d’interpolation d’ordre plus élevé ont
été confirmés pour différentes quantités de particules fantômes ainsi que différentes
formes des particules reconstruites qui dépendent des configurations caméras.

0.5 Particle Volume Reconstruction

0.5.1 Principes et tests synthétiques

Les études portant sur les conditions optiques de la tomo-PIV nous a permis de proposer
une approche alternative à la reconstruction tomographique classique. Nous nommons
cette méthode Reconstruction Volumique de Particules (PVR). Le but de cette approche
est de reconstruire une particule presque sur un unique voxel, plutôt que comme un agré-
gat de voxels de taille étendue, en se fondant sur une représentation particulaire des im-
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Figure 0.4.2: (Gauche) Erreur moyenne de déplacement pour le déplacement de cisaille-
ment, en fonction de la taille du volume d’interrogation, IV radius, et (Droite) profiles
de déplacement le long de Z (profondeur du volume) moyenné sur les directions X et
Y avec la même taille de volume d’interrogation obtenus par notre algorithme FOLKI-
3D et Davis 8.2 sur des reconstructions tomographiques ainsi qu’un déplacement idéal
obtenus avec FOLKI-3D sur une reconstruction parfaite de particules. Remarque : le
déplacement "real" dans le graphique de droite correspond au profil du vrai déplacement
imposé.

ages. En effet, l’image d’une particule peut être vue comme la projection d’une particule
ponctuelle sur la caméra, qui s’étend sur les pixels par la PSF ou comme l’intégration le
long de la ligne de vue des pixels d’une intensité volumique (voir figure 0.5.1. La seconde
approche est celle qui historiquement a été choisie, préférant une vision tomographique
du volume.

Figure 0.5.1: Formation de l’image à partir de la projection d’un volume: soit un volume
particulaire (Gauche) soit un modèle de blob (Droite)

PVR suppose une représentation creuse du volume où la particule est presque vue comme
un point, à mi-chemin entre un point infinitésimalement petit (ce qu’en réalité elles sont
presque) et un blob plus large de 2 à 3 voxles de diamètre, utilisé traditionnellement en
tomo-PIV. De cette représentation, il est possible de faire deux choses : soit on raffine
la position de la particule pour privilégier une approche particulaire de la détection de
mouvement et donc faire du tracking comme en PTV-3D; soit on ré-élargit les particules
par un filtrage gaussien pour reconstruire des blobs de 2/3 voxels de diamètre requis
par les algorithmes de corrélation de 3D-PIV. Nous utiliserons ici la seconde possibilité
comme méthode de reconstruction, en incorporant PVR dans un algorithme classique de
reconstruction SMART [Atkinson and Soria, 2009].
Les performances de la méthode de reconstruction PVR-SMART ont été étudiées sur
données synthétiques, aussi bien sur la reconstruction que sur des champs de vitesses
reconstruits. Nous montrons que PVR-SMART a de meilleures performances que tomo-
SAMRT [Atkinson and Soria, 2009] sur un large spectre de conditions génératrices et pour
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Figure 0.5.2: Critère Q de qualité de reconstruction en fonction de la densité ppp dans
le cas où les particules ne sont disposées dans le volume de l’Intersection (Gauche) ou
dans le volume de l’Union (Droite)

diverses critères de qualité sur le volume reconstruit et sur des champs de déplacements,
particulièrement pour des densités supérieures à 0.06 ppp. Nous montrons également que
PVR-SMART était moins impacté par le bruit généré par "les particules ajoutées" qui
a fait l’objet d’études résumées dans la section 0.3. La chute de performance impliquée
par les particules dans le volume de l’Union est plus forte pour tomo-SMART que pour
PVR-SMART (voir figure 0.5.2). De plus, nous avons caractérisé le comportement de
PVR-SMART pour différentes tailles de PSF : PVR-SMART est particulièrement plus
performant que tomo-SMART pour des écarts types de PSF supérieurs à 0.8. Nous avons
également vérifié la robustesse de PVR-SMART à une mauvaise connaissance de la taille
de la PSF, ce qui est souvent le cas dans une expérience.

Figure 0.5.3: Critère Q de qualité de reconstruction en fonction pour différentes valeurs
de PSF dans les images à densité constante (Gauche) et dans le cas où l’on ne connait
pas la taille de la PSF, fixée ici à σPSF = 0.6 (Droite).

Les tests montrent que les gains de performance sur les champs de vitesse reconstruits
sont systématiquement obtenus avec PVR-SMART par rapport à tomo-SMART quelle
que soit la valeur de la PSF dans le cas de l’indétermination et que ces gains persistent
dans le cas d’une sur-estimation de plus de 10 % de la vraie valeur de la PSF.

0.5.2 Validation expérimentale de PVR sur Jet turbulent

Tout est maintenant prêt pour effectuer une validation expérimentale de PVR. Le but de
cette validation est de comparer différentes quantités physiques (statistiques, structures
cohérentes entre autres) issues de reconstructions PVR-SMART ou tomo-SMART
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et corrélées avec notre algorithme FOLKI-3D. L’écoulement étudié est un jet d’air
rond turbulent à un nombre de Reynolds basé sur le diamètre D de ReD ≈ 4300
et D = 12 mm. De plus, afin de disposer d’une mesure de référence, nous avons
synchronisé au système PIV-3D, un système de mesure PIV-2D classique. De plus, ce
dispositif nous permettra une estimation de la densité de particules.

Figure 0.5.4: Gauche : Photo du dispositif de PIV-3D avec a = générateur de volume
laser, b = diaphragme, c = miroir, d = générateur d’ensemencement interne, {1/2/3/4}
= numéros des caméras. Droite : Dispositif de PIV-2D avec 0 = buse du jet turbulent,
1 = laser 2D, 2 = caméra de la PIV-2D.

Le dispositif expérimental de PIV-3D est composé de 4 caméras 2048 × 2048 pixels,
disposées en croix, d’un laser de 120 mJ basse fréquence de 14.5 mm d’épaisseur, d’un
miroir permettant de minimiser les effets de la diffusion de Mie, ainsi que de deux
systèmes d’ensemencement (interne et externe au jet), voir figure 5.2.3. Le système
de PIV-2D est composé d’un laser de 200 mJ ainsi que d’une caméra 4000 × 2672.
Les deux systèmes ont été synchronisé pour acquérir alternativement une mesure 3D
et une mesure 2D, toutes les deux à la même fréquence de 2 Hz. Les procédures de
calibration sont effectuées pour la PIV-3D en utilisant un modèle explicite sténopé de
caméra avec 2 angles de Scheimpflug. Les détails peuvent être trouvés dans [Cornic
et al., 2015b]. De plus, nous utilisons une procédure de self-calibration [Wieneke, 2008]
afin de minimiser les erreurs de calibration, qui doivent être inférieurs à 0.1 pixels pour
une bonne reconstruction [Wieneke, 2008]. La procédure de calibration de la PIV-2D
est effectuée utilisant un code maison [Le Sant et al., 2007].

Figure 0.5.5: Visualisation des volumes de PIV-3D avec en bleu, le volume de
l’Intersection, en noir, le plus petit parallélépipède rectangle contenant l’Intersection,
et en rouge le plus petit parallélépipède rectangle contenant l’Union. En vert, nous
avons représenté le plan de mesure de la PIV-2C.
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Le dispositif de PIV-3D permet de reconstruire un volume de 112× 86× 14.5 mm avec
une résolution de 18. vox/mm. Pour la PIV-2D, le plan de mesure est de 128× 86 mm
dans le plan x = 0 (voir figure 5.2.4), et la résolution est de 29.7 pix/mm.

Figure 0.5.6: Gauche : Profil de vitesse axiale moyenne et de fluctuations rms à z = 0
and y = 0.46 ∗D Droite : Profils de vitesse axiale et fluctuations rms le long de l’axe
central du jet.

Une étude intensive a été effectuée afin de déterminer les meilleurs paramétrages
possibles des algorithmes de reconstruction et de corrélation. Un soin tout particulier a
été porté au choix des valeurs de seuillage utilisées dans la reconstruction PVR-SMART
et tomo-SMART pour juguler les effets néfastes du bruit de capteur. Le choix de
la taille de la PSF de reconstruction pour PVR a été effectué a-posteriori à une
valeur de σPSF = 0.2. Les tailles de la fenêtre d’interrogation en PIV-2D et du
volume d’interrogation en PIV-3D ont également été fixé a-posteriori, en fonction d’un
compromis entre le nombre de particules par fenêtre d’interrogation et le bruit de mesure.

Différentes densités de particules ont été utilisées pour comparer les performances
de PVR-SMART et de tomo-SMART sur la région proche buse du jet, de 0 à 7 diamètre
D. Nous ne montrons dans ce résumé que les résultats comportant 300 snapshots de
PIV-3D dont la densité de particules traceuses a été estimée à près de 0.15 ppp (quoique
que nous montrions dans le manuscrit complet que cette estimation est sur-évaluée).

Figure 0.5.7: Gauche : Fonction de densité de probabilité des déplacements sur Y en
voxels pour PVR-SMART et tomo-SMART Droite : Fonction de densité de probabilité
de la divergence pour PVR-SMART et tomo-SMART.
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Avec le pré-traitement des images utilisé, nous montrons que les champs de vitesse
de PVR-SMART sont près de 50 % moins bruités que ceux de tomo-SMART. Cela
est visible lorsque l’on compare le profils moyens et les fluctuations rms en sortie de
buse ainsi que le long de l’axe principal du jet figure 6.3.4. On observe que dans les
zones de faibles fluctuations physiques, les courbes de fluctuations rms de PIV-2D
et PVR-SMART se superposent, alors que tomo-SMART a de plus fortes valeurs de
fluctuations rms, ce qui implique que tomo-SMART a plus de bruit de mesure que
PVR-SMART.

Figure 0.5.8: Isovaleur de la vitesse axiale à 1.05V0 (en rouge), où V0 est la vitesse
de sortie du jet, isovaleur de la composante azimuthale de la vorticité ωθ = 2 (vert),
isovaleurs de la composante axiale de la vorticité ωz = 1.2 (cyan) et ωz = −1.2 (bleu)
pour tomo-SMART (Gauche) et pour PVR-SMART (Droite).

Cette différence de bruit de mesure peut être expliquée en partie par le fait que
PVR-SMART reconstruit mieux les particules avec moins de particules fantômes, cela
étant démontré dans nos tests synthétiques. Mais une étude statistique des valeurs de
déplacement en voxels montre aussi que tomo-SMART souffre de peak-locking, due
certainement à la petite taille de la PSF dans les images, et les pré-traitements qui
ne comportaient pas de filtrage gaussien (voir figure 6.3.5). Tomo-SMART semble
avoir plus d’erreurs de mesure que PVR-SMART. Cela est confirmé par l’analyse
statistique de la divergence. En effet, pour un écoulement incompressible, la divergence
de l’écoulement étant nulle, celle-ci peut être vue comme une estimation de l’erreur
de mesure. La figure 6.3.5 montre que PVR-SMART a une divergence plus petite que
tomo-SMART.

La PIV-3D permet de visualiser les structures cohérentes de l’écoulement puisqu’elle
donne accès au champ 3D de vitesse. La comparaison de la structure de l’écoulement
mesurée par tomo-SMART ou PVR-SMART confirme que tomo-SMART est plus
bruité que PVR-SMART. La figure 6.3.9 visualise des isovaleurs des composantes
azimuthales et axiales de vorticité du jet. Cette visualisation permet de montrer les
anneaux de vorticité issus de l’instabilité de Kelvin-Helmotz convectés le long du jet,
le développement des instabilités azimuthales sur ces anneaux ainsi que l’apparition de
paires de tourbillons axiaux. Une visualisation zoomée entre 2.5 et 4.5 diamètres permet
de voir que les structures de vorticité de tomo-SMART sont plus bruitées, moins bien
définies et moins lisses que PVR-SMART. De plus, on peut associer les patchs rouges
de sur-vitesse axiale visibles sur tomo-SMART au peak-locking, alors que PVR-SMART
n’a que très zone de sur-vitesse axiale.
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Figure 0.5.9: Isovaleur de la vitesse axiale à 1.05V0 (en rouge), où V0 est la vitesse
de sortie du jet, isovaleur de la composante azimuthale de la vorticité ωθ = 2 (vert),
isovaleurs de la composante axiale de la vorticité ωz = 1.2 (cyan) et ωz = −1.2 (bleu)
pour tomo-SMART (Gauche) et pour PVR-SMART (Droite) entre 2.5 et 4.5 diamètres
D.

0.6 Conclusions et perspectives :
Une étude initiale sur les conditions optiques présentes lors d’une expérience de
PIV-3D résolue en temps dans l’air nous a permis d’appréhender l’impact de facteurs
expérimentaux sur la qualité de reconstruction tomographique. Cela nous a mené à
proposer un nouveau modèle de reconstruction tomographique (appelé PVR) fondé
sur une vision particulaire physique des images de PIV, permettant également une
conception particulaire du volume reconstruit où une particule est reconstruite sur très
peu de voxels. Nous avons étendu à la 3D notre algorithme de cross-corrélation utilisant
le paradigme de Lucas-Kanade, et évalué ses performances face au bruit spécifique
de la reconstruction tomographique. La dernière partie de ma thèse est la validation
expérimentale de PVR sur un jet turbulent de Reynolds ReD = 4300, où nous montrons
que notre méthode de reconstruction permet de mesurer des champs de vitesses moins
bruités que les méthodes de reconstruction classiques.

La méthode de reconstruction PVR est le développement principal de ma thèse.
PVR a besoin de la connaissance de la taille de la PSF dans les images. Une des
perspectives principales est l’utilisation de méthodes de calibration de la PSF dans les
images, qui permettraient de prendre en compte une PSF variable, et ainsi améliorer
les performances de la reconstruction dans le cas de volumes de larges tailles où
la défocalisation des particules dans les images est inévitable. De plus, de part sa
représentation sparse spécifique du volume, PVR est particulièrement bien adapté à
des algorithmes de reconstructions sparses [Cornic et al., 2013], avec pour but final
d’estimer le déplacement par tracking.

Enfin, dans le contexte de la PIV résolue en temps appliquée aux jets turbulents
étudiés au DAFE (ONERA) et après les travaux de [Davoust et al., 2014] et [Courtier,
2015], je pense que les méthodes développées lors de ma thèse seront des outils puissants
d’étude des structures cohérentes et de leur développements.
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1 Introduction

"If it disagrees with experiment, it’s wrong. In that simple statement is the key to
science. It doesn’t make any difference how beautiful your guess is, it doesn’t matter
how smart you are, who made the guess, or what his name is... If it disagrees with
experiment, it’s wrong. That’s all there is to it.”

Richard Feynman, 1964

This quote from Richard Feynman’s Messenger Lectures on "The Character of
Physical Law" originally delivered at Cornell University in November 1964, underlines
the importance of experimental sciences in physics. The ability to measure physical
quantities with accuracy and precision is crucial to all areas of research in physics.
Turbulence is one of the great unsolved problems in physics in the sense that a complete
predictive theory of turbulent flow has not yet been established. Turbulent flows are
characterized by unsteady, irregular, seemingly random and chaotic motions both in
time and space [Pope, 2000]. Turbulence is inherently a three-dimensional phenomenon
raising the issue of our ability to accurately measure the unsteady three-dimensional
motions of turbulent flows.

Figure 1.0.1: Representations of turbulent flows : from a Leonardo Da Vinci sketch of a
free water jet issuing from a square hole into a pool in the 16th century (left), to the
famous Great Wave off Kanagawa of Katsushika Hokusai in 1830 (right).

During the 20th century up to today, with the development of numerous optical,
digital and computational technologies, our experimental capabilities have increased.
The perception of turbulence and its understanding evolved along these measurement
improvements as recalled in [Elsinga, 2008]. The initial perception of turbulence was
through a statistical description : turbulent flows were seen as the superimposition of
random fluctuations with a mean flow, stemming from the unsteady decomposition of
Osbourne Reynolds [Reynolds, 1895]. Turbulence was considered through fluctuation
statistical analysis, studying statistical moments and correlation functions. This
conception of turbulence was influenced and confirmed by the existing experimental
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measurement at the time, which were point-wise measurements (of one to three
velocity components), such as pressure probes, hot-wire velocimetry and laser-Doppler
anemometry.

Flow visualization has always been used in fluid mechanics since the very start of
research in this field. In 1904 Ludwig Prandtl used a suspension of mica particles
on the surface of the water to study the steady and unsteady flow structures around
two-dimensional models such as cylinders, prisms, or wings. In the 1950’s, planar flow
visualizations in turbulent flows, using dye or smoke as flow markers (figure 1.0.2),
were responsible for the rise of the concept of coherent structures [Hussain, 1986].
Thanks to those visualizations, two-dimensional flow patterns were identified as being
non-random, spatially coherent structures. However, those visualizations were only
qualitative data. Thanks to the improvements of high repetition rate lasers, digital
cameras and computational power, the development of Particle Image Velocimetry
(PIV) led to quantitative data, by measuring two components of the velocity field in
a plane (also called 2C/2D PIV). This technique strengthened research on coherent
structures in turbulent flows where they were shown to play a dominant role. PIV
became widely used in the community since it was the only measurement that offered
such a dense quantitative data while being quite accurate, thanks to the algorithmic
development of image post-processing. However, like turbulence, those structures are
inherently three-dimensional. A development towards 3D was needed.

Figure 1.0.2: Smoke wires visualization of grid turbulence [Dyke, 1982]

Historically, three-dimensional quantitative data on turbulent flows became available
with the development in the 1980’s of Direct Numerical Simulation (DNS). It aims at
solving the governing equations of the flow, ie Navier-Stokes equations, by resolving
all the scales of the flow, both in space and in time, with initial and boundary
conditions fitted to the flow under study. Though DNS full three-dimensional aspect of
physical data and precision is quite unparalleled, its major limitation resides in its very
definition, since all the scales are required to be solved. In turbulent flows, timescales
and lengthscales have a very broad range, with a Re−1/2 dependence for the Kolmogorov
timescale and a Re−3/4 dependence for the Kolmogorov lengthscale. This means that
the computational cost of DNS significantly increases with the Reynolds number.
Most turbulent flows in every day life or of practical industrial interest, have Reynolds
numbers which are still inaccessible to DNS, the only hope being that the ever-increasing
computational power catches up one day. To bypass this issue, turbulence modeling
appeared in the form of Reynolds-Averaged Navier-Stokes (RANS) simulations or
Large Eddy Simulations (LES). Both methods are based on a decomposition of the
velocity field, either using ensemble decomposition from [Reynolds, 1895] for RANS, or
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space-wise averages for LES. RANS simulations aim at solving the mean velocity field
and LES aim at solving the large scales of the motions. However, when incorporating
the decomposition in Navier-Stokes equations, both methods need a closure model to
account for an unknown term of the equations. As the introducing quote pointed out,
it is therefore crucial to compare those models to experimental results. This also drove
the existing measurement methods to expand to 3D.

In the next section, we will present the main features of PIV, as well as different
techniques that developed towards the measurement of 3D velocity fields. Finally, we
will recall the main principles of tomographic PIV whose development and improvement
is the subject of this research dissertation.
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1.1 Particle Image Velocimetry

1.1.1 PIV Principles

PIV was introduced as an almost non intrusive planar velocity measurement technique
using images of illuminated tracer particles in the flow to compute the flow displacement
field. It can be seen as the improvement of a visualization technique, based on tracer
images, towards a quantitative measurement technique. Figure 1.1.2 illustrates the basic
experimental setup used in PIV along with its main working principle. A thorough
review of this technique, working principle, limitations and evolution is explained in
[Raffel et al., 2007].

Figure 1.1.1: Representation of a classical 2D-PIV setup. This illustration comes from
[Raffel et al., 2007]

We consider a flow seeded with passive tracer particles. They are illuminated by a pulsed
laser which is mounted with an optical system resulting in a planar laser sheet. This
planar laser sheet defines the measurement plane which is viewed by a single camera,
synchronized with the laser pulses. The measurement plane is visualized on the camera
focus plane, and consecutive images of tracer particles are recorded. The consecutive
images, separated by a time interval ∆t, show tracer particles 2D fields, exhibiting a
2D displacement field between the two images. Through image cross-correlation, based
on image sub-domains pattern matching, one is able to compute an image displacement
field, which is directly linked through camera calibration to the displacement flow field
∆x. One thus computes the velocity :

V =
∆x

∆t
(1.1.1)

More precisely, the velocity field measured is an approximation of the real flow field, and
through the investigation of this statement, one will understand some of the limitations
and constraints that PIV has to face. Let us consider the Lagrangian description of
velocity. In the first image I0 taken at an time instant t, a fluid particle is ξ(x0, t). In
the next image I1, the same fluid particles traveled to ξ(x0, t + ∆t). The Lagrangian
description of the velocity (VL) states that :

VL(x0, t) =
dξ(x0, t)

dt
= lim

∆t→0

ξ(x0, t+ ∆t)− ξ(x0, t)

∆t
= VE(x, t)|x=ξ(x0,t) (1.1.2)
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with VE , the Eulerian description of the velocity flow field. PIV tries to approximate
this limit at best. For an accurate measurement, the interval time between two pulses
∆t has to be smaller than the smallest characteristic time of the flow. However, the
displacement between two pulses must be large enough so as to be reconstructed with
the cross-correlation algorithm. The image cross-correlation algorithm aims at tracking
a particle ensemble pattern from one instant to the next. This results in an averaged
estimation of the displacement field over the particle patterns, which determines the
spatial resolution of the method. The measured velocity field is both time-averaged
over the pulse time interval ∆t and space-averaged over the particle pattern ensemble
on which the cross-correlation is made.

Another issue resulting from the velocity definition is the fact that the velocity is
time dependent. To take this into account, laser double pulses have to be as close as
possible to one another. This was made possible by high repetition pulsed lasers which
allow the PIV to be time-resolved. This allowed to track the coherent structures of the
flow.

1.1.2 Tracer particles

Tracer particles are required to be small enough to follow all the scales of the flow.
Furthermore, since their density is usually greater than that of the fluid (solid particles
in water flow, or liquid particles in gas flows), inertial forces acting on the particles can
create a lag of the particle motion. To follow the flow, the particle’s lag must be smaller
than the smaller characteristic timescale of the flow. In the air, where the denstiy of the
particle is much higher than the density of the flow, the previous statement is verified
using the particle’s relaxation time τs resulting from the Stokes drag [Raffel et al., 2007]
:

τs = d2
p

ρp
18µ

(1.1.3)

where, dp is the particle diameter, ρp the particle density, µ is the fluid dynamic viscosity.
Depending on the fluid under study, a range of particle sizes and densities are possible.
For air flows, tracer particles are often oil particles of about typical 1µm diameter.

1.1.3 Imaging particles

Once we are sure that the particles faithfully follow the flow, we must obtain a
visualization of the tracer particles in the flow. This is done by illuminating the particles
with the laser sheet. The two features that define a particle’s image recorded on the
CCD sensor of the camera are its intensity and its shape.

The intensity of a particle is directly proportional to the scattered light power
[Raffel et al., 2007]. Particles scatter the incident light received from the laser, this
scattering being thus observed by the cameras. The light scattering depends on different
parameters, the refractive index of the particles to that of the surrounding medium,
the particle size, its shape and orientation, light polarization and the observation angle.
Considering spherical particles, if their diameter dp is larger than the wavelength of the
incident light λ, Mie’s scattering theory can be applied. In that case, the light scattered
depends mainly on two parameters : their diameter and the angle between the incident
light and the viewing camera. For simplified conditions [Bohren and Huffman, 1983]
computed the field of intensity resulting from the Mie regime. This particular subject
will be a discussed topic in chapter 2.
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The shape of the particle image is defined by its geometrical size on the focus
plane of the camera as well as by the response function of the lens to a point particle.
Indeed, considering the typical size of the particles, the wavelength of the illuminating
laser, diffraction of the light occurs. [Hecht and Zajac, 2001] showed that a distant
point source forms a Fraunhofer diffraction pattern through an aberration-free lens.
The obtained pattern is called an Airy disk whose diameter is [Raffel et al., 2007] :

ddiff = 2.44f#(M + 1)λ (1.1.4)

with f#, the ratio of the lens focal length f and the optics aperture diameter, andM the
magnification factor. This response function of the optical system to a light source point
is also called the optical system’s Point Spread Function (PSF). [Adrian and Yao, 1985]
showed that the particle final image shape is the combination of the particle geometric
shape and the Airy function, with a final image size such as :

di =
√

(Mdp)2 + d2
diff (1.1.5)

In classical PIV optical settings (in the air, and not in a microscopic setting where M
is large), diffraction effects are dominant with the geometric size Mdp being negligible
compared to ddiff . The size the PSF function is often approximated by a Gaussian
function defined by its standard deviation σPSF such as σPSF = f#(1 + M)λ

√
2/π,

[Raffel et al., 2007].

To avoid image blur and defocusing effects, the optics are set so that the focus
plane coincides with the measurement plane. The blur effects appear when the
geometrical size of the particles is comparable to the size of the PSF function. The
depth of focus is the distance over which the particles stay sharp in the images. It is
estimated with the following formula :

δz = 4.88λf 2
#(1 +

1

M
)2 (1.1.6)

Further details are available in chapter 5 of this dissertation especially for the estimation
of the particle size when defocusing effects are predominant.

1.1.4 Displacement estimation

Displacement estimation is a research topic that is not restricted to PIV and fluid
dynamics. This issue can be found for instance in solid mechanics where deformation
fields are measured using target markers glued on the surface of the deforming solid.
Displacement estimation in PIV is done using cross-correlation algorithms. In PIV
community, the most widely adopted approach relies on the concept of Interrogation
Window (IW).

Each consecutive image I0 and I1 is divided into sub-domains, i. e. IW. Each
interrogation window, Wk is centered around a pixel k. Usually, Wk is a square or a
rectangle. From this definition, it is possible to compute a correlation function, centered
around k between the two consecutive images :

C(k,∆x(k)) =
∑
m∈Wk

w(m− k)I0(m)I1(m−∆x(k)) (1.1.7)
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with w(m − k) a weighting function such as a Box or a Gaussian function. The idea
is to find the displacement field ∆x(k) which maximizes the correlation function. This
will determine the displacement which moves the particle pattern Wk centered around
pixel k from one image I0 to the next I1. Most classical PIV algorithms tend to

Figure 1.1.2: Zoomed representation of the correlation process : (left) : I0 with
Interrogation Window Wk centered around k, (middle) : I0 and (right) : correlation
map exhibiting a peak. This illustration comes from [Davoust, 2011].

compute the correlation function using Fast Fourier Transforms (FFT) and to find the
maximum of the correlation function through a Gaussian peak-fitting process which
yields sub-pixel accuracy. The main limitations of this method are the fact that the
searched displacement has to be small compared to the size of the interrogation window.
To improve the correlation accuracy, iterative image algorithms were developed [Scarano
and Riethmuller, 2000] which use multigrid window deformation technique. A review of
the iterative deformation technique is found in [Scarano, 2002], and the main features
are summed up in chapter 4 of this dissertation.

More recently, at ONERA, [Champagnat et al., 2011] introduced a new approach
to determine ∆x(k). Based on a Lucas-Kanade paradigm [Baker and Matthews, 2004],
it aims at minimizing a sum of squared differences :

SSD(k,∆x(k)) =
∑
m∈Wk

w(m− k) [I0(m)− I1(m−∆x(k))]2 (1.1.8)

The minimization process is done by a Gauss-Newton gradient descent algorithm,
without having to do a peak-fitting step. More details are available in chapter 4 of this
dissertation.

The accuracy of the displacement estimation step depends on different parame-
ters. The number of tracer per IW is crucial. 10 particles were shown to yield good
results [Raffel et al., 2007]. The size of the tracers in the images is also important so as
to avoid peak-locking (measurement bias towards integer values). An optimized size of
2− 3 pixels in diameter was found [Raffel et al., 2007] depending on the size of the IW.

1.2 Towards 3D
In this section, we will present a quick survey of the main measurement techniques used
to measure 3D flows.
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To overcome PIV limitations to 2D velocity fields, a technique known as Stereo-
scopic PIV (Stereo-PIV) [Willert, 1997] [Arroyo and Greated, 1991] was introduced. It
measures the 3D displacement field in the 2D plane defined by a laser light sheet using
two cameras viewing the tracer particle motions from different directions. The two
cameras see different projections from different angles : Using the camera calibration,
we are able to reconstruct the three components of the displacement field in the laser
sheet plane. It is referred to as a 2D-3C PIV method.

Another method directly issuing from 2D-PIV and Stereo-PIV is Scanning PIV
[Brucker, 1995] with a light sheet scanning through the measurement volume. The
volume is sliced by the laser sheet at different depth positions where images are
recorded. This technique yields planar velocity fields obtained at the different recorded
positions. The main benefit is that the relatively high spatial resolution from PIV
is maintained since no requirement on the seeding density is made. However, the
underlying assumption is that the scanning velocity must be very high compared to the
flow velocities in order to yield an actual volumic measurement, which means that this
technique cannot be used for high velocity flows such as commonly found in turbulent
air flows.

Holographic-PIV (HPIV) is a full 3D technique [Zhang et al., 1997],[Hinsch, 2002]. It
uses the interference pattern of a reference light beam with light scattered by a particle,
which is recorded on a on a photographic plate or, more recently, directly on CCD
camera sensors (Digital Holographic PIV, DHPIV). The interference pattern is then
used to determine the particle location in depth. The main difficulty is to extract
quantitative measurements from film photography. To bypasss this issue, DHPIV was
developed. However, this technique comes with volume limitations (and thus, is limited
to low seeding densities), which corresponds to configurations with an optimal optical
system accuracy-wise [Meng et al., 2004]. A full review of the different techniques can
be found in [Meng et al., 2004].

One of the main 3D measurement technique is Three-dimensional Particle Track-
ing Velocimetry (3D-PTV) [Maas et al., 1993]. Like Defocusing PIV [Pereira et al.,
2000], it is based on the identification of individual particles in the PIV image recordings
using several cameras. For 3D-PTV, from the different viewing directions, the particles
3D locations in space are found using epipolar geometry : the intersection of the lines of
sight corresponding to a particle image in the recordings from several viewing directions.
In Defocusing PIV, a different implementation is used to find the particle location using
the defocused blur of the seeding particles, see [Pereira et al., 2000] for more details.
Once the particles are found in space in different frames, they are tracked from one
frame to the next [Malik et al., 1993] yielding Lagrangian motion and Eulerian velocities
by interpolation of the Lagrangian velocities on a mesh. However, the main limitation
is relative low seeding density. Indeed, when the seeding density increases, the epipolar
geometry is not discriminating enough to eliminate false particle detections. [Maas
et al., 1993] suggested to use a seeding density of typically 0.005 particles per pixel for a
three cameras system. However, recent developments combining iterative reconstruction
algorithm and particle tracking (such as the Shake-The-box algorithm [Schanz et al.,
2013b]) have shown promising results in term of seeding density (see section 1.3.2.4).
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1.3 Tomographic PIV
Tomographic PIV (tomo-PIV) or 3D-PIV was introduced in 2006 [Elsinga et al., 2006]
as an extension of PIV for three-dimensional measurements. A thorough review of the
method, its principles, limitations, practice advice as well as a survey of its major ap-
plications can be found in [Scarano, 2013]. The overall idea behind tomo-PIV is that it
combines a simple optical setup with a quite robust particle volume reconstruction proce-
dure. This process does not use particle identification as does 3D-PTV which allows for
an increase in the seeding density up to around 0.05 particles per pixel. The robustness
of the velocimetry technique is further increased by applying particle pattern matching
instead of particle tracking. Furthermore, it is well suited to measure high speed flows,
which Scanning-PIV can not do. Its relatively high spatial resolution makes it an ideal
3D measurement technique for turbulent flows. This is one of the reasons why the fluid
dynamics community takes such an increasing interest in this measurement technique.

1.3.1 Principles and general remarks

1.3.1.1 Working principles

The main idea behind the method is to use the principle of PIV, i. e. image correlation
of seeded flows, and to extend it to 3D. In PIV, the displacement is found by correlating
two objects, more precisely by reconstructing the motion that transformed an object
from one recorded state to another recorded state. To obtain a 3D displacement field by a
cross-correlation method, one needs a 3D object that represents the state of the system at
a given time. In 2D-PIV, the state of the system (the flow) is represented by a 2D image
of particles. Therefore, to expand it to 3D, one needs a pseudo 3D image of the particles.

Figure 1.3.1: Simplified experimental setup (top) and main working principles of
tomographic PIV (down).
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In practice, this 3D intensity distribution is obtained by tomography. Tomogra-
phy is a well known concept in the medical imaging or in materials sciences. It consists
in reconstructing an object based on recorded projections. This is an inverse problem.
Most of the time, the number of projections is quite high, as the non-moving object
can be viewed by a recording device numerous time. 3D-PIV uses this concept of
tomography to reconstruct 3D images of the particles from recorded 2D projections. In
a fluid dynamics context (typically in the air), where the flow velocities are high, the
recorded devices are high speed cameras. Furthermore, the optical accesses in a wind or
hydrodynamic tunnel are usually scarce in number, not to mention expensive. Therefore,
the number of projection is limited from 3 to 6 in the literature. This feature is one of the
main limitations of the method, as detailed later, for it means that the reconstruction
algorithm has to be able to reconstruct the 3D intensity distribution with little in-
formation available. This means that the inverse problem in our case is underdetermined.

A seeded flow is illuminated by a light source. Thanks to the increasing power
of high frequency lasers, it is possible to expand the laser sheet to a volume, using
adapted optics without losing too much energy for the particles to be detected. A
3D region of the flow is thus lighted and viewed by several cameras. Once two
consecutive 3D intensity distributions are reconstructed from the 2D recorded images,
the corresponding volumes are correlated to obtain a 3D displacement field as depicted
in figure 1.3.1. To obtain discretized 3D images of the particles, the reconstructed
volumes are discretized into a mesh of volumic pixels (voxels).

1.3.1.2 Calibration step

For the reconstruction step, as in Stereo-PIV, camera calibration is needed : it links
the image coordinates and the physical space of the reconstruction volume. Calibration
procedures are common in stereo-PIV, and the same methods are used in tomo-PIV. The
usual procedure relies on the viewing of a calibration target at several positions in the
volume. The calibration process returns the calibration functions of the cameras. There
are two models of calibration functions : camera pinhole model or third-order polynomial
functions [Soloff et al., 1997]. Furthermore, the tomographic reconstruction is based on
the triangulation of particles from the projection. Therefore, there is a great need for
calibration accuracy. [Wieneke, 2008] showed that projection errors should be smaller
than a 1/10 of pixel. To increase the calibration accuracy, a process known as volume
self-calibration was introduced [Wieneke, 2008] using the matching of 3D particles by
triangulation. The residual triangulation error (‘disparity’) is then used to update and
correct the mapping functions of all cameras.

1.3.1.3 Remarks on tomo-PIV main limitations

From its main principles, one understands that tomo-PIV is a succession of different
steps : from the imaging of a volume of tracer particles, then to the tomographic
reconstruction on to the cross-correlation. Each step has a direct impact on the
following one, and ultimately on the displacement measured. To understand the issue
regarding the accuracy of tomo-PIV, one must understand each of the step’s main
limitations.

We introduced tomo-PIV in the practical order of the method : from the experi-
mental setup, to the displacement estimation. In order to better grasp one of tomo-PIV
main limitations, it is interesting to invert our perception of the method. We have
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shown that the spatial resolution of a cross-correlation method depends on the size
of the interrogation window (in 2D), Interrogation Volume (IV) in 3D. In turbulent
flows, the lengthscales have a very broad band. In an ideal world, the IV size has
to be smaller or comparable to the smaller lengthscale of the turbulent flow, referred
to as the Kolmogorov lengthscale η = (ν3/ε)

1/4, with ν the kinematic viscosity of
the fluid and ε the energy dissipation rate. Furthermore, there is a constraint on
the number of tracers per IV for the cross-correlation to work. Therefore, for a good
spatial resolution of the correlation, one needs an appropriate seeding density. However,
those considerations do not take into account the intrinsic limitations due to tomography.

In their seminal paper, Elsinga et al. [2006] showed that the quality of reconstruction is
highly dependent on the seeding density, more precisely on a non-dimensional number
which is a projected representation of the seeding density : the number of particles per
pixel (ppp) recorded on the camera CCD sensor. The more tracers there are, the more
noise in the reconstruction appears (ghost particles). This noise is detrimental to the
correlation. A trade-off between measurement noise due to low seeding densities and
measurement errors due to inaccurate reconstruction must be found. A seeding range
centered around 0.05 ppp was found to be optimal for tomo-PIV.

Most research efforts have focused on increasing the quality on the tomographic
reconstruction to increase the seeding density and therefore, the spatial resolution of the
measurement. Pushing the boundaries of the seeding density in the reconstruction will
also help enlarge the volume of the measurement. Indeed, increasing the laser volume
size leads to an increase in the number of particles in the images, therefore decreasing the
quality of the reconstruction. However, when large volume are considered, experimental
limitations become predominant, as the laser intensity decreases, and optical issues
arise due to defocusing effects. This statement is the starting point of our dissertation
(chapter 2) as we will investigate the impact of experimental factors when considering
increasing the size of the volume.

The next section is devoted to the tomographic reconstruction problem and algo-
rithms developed for the inversion problem.

1.3.2 On the tomographic reconstruction

In this section, we will investigate the inversion problem and the inversion model that
is commonly used in 3D-PIV as well as different inversion algorithms. We will recall
the main principles as introduced in [Elsinga et al., 2006] as well as some improvements
regarding the accuracy of tomographic reconstruction.

1.3.2.1 Inversion problem

The inversion problem has to reconstruct an intensity distribution from recorded projec-
tions. The number of projections is small (from 3 to 6) and the reconstructed volume is
relatively sparse. These features are the reasons why algebraic reconstruction technique
[Herman and Lent, 1976] are better suited for this problem than analytical reconstruc-
tion techniques which are widely used in medical imagery. Algebraic reconstruction
techniques iteratively solve a set of linear equation. The volume is discretized into a
mesh of N cubic elements called voxels E(x, y, z). The projections are also discretized
into arrays of M pixels I(x, y). A linear link (W ) is assumed between the projections
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and the volume which reads :

I(xi, yi) =
∑
j=1:N

wi,jE(xj, yj, zj) (1.3.1)

The size of the volume discretization was chosen so that the size of a voxel is the same
as the size of a projected pixel in the volume. In these conditions, using 4 classical
2048 × 2048 CCD cameras, and a volume containing 2048 × 2048 × 200 voxels, the
W matrix dimensions are about 107 × 109. The inversion problem is therefore heavily
underdetermined.

1.3.2.2 Classical tomographic model

The tomographic model is the model chosen to link the volume voxel to the pixel
projections. The model describes the weighting coefficient wi,j which is the jth voxel
contribution to the ith pixel. [Elsinga et al., 2006] used a geometrical model of varying
complexity, as the light integration is performed over a cone having the optical center
as apex and a square pixel trace on the focal plane. In this context, building the
weighting matrix W linking the voxel and pixel spaces results in computing the volume
intersecting this ‘pixel cone’ and a voxel. As reviewed by [Thomas et al., 2010], several
techniques were suggested in the literature to simplify this geometrical model. Among
them, [Elsinga et al., 2006] and later [Atkinson and Soria, 2009] proposed approximating
the cubic voxel by a sphere and the ‘pixel cone’ by a cylinder [Lamarche and Leroy, 1990].

As a consequence, the particles will be reconstructed as 3D Gaussian blobs of
voxels which are the geometrical explication of the diffracted particle image which
spread on several pixels. This reconstructed blob is well suited for cross-correlation
method used in PIV as mentioned previously in section 1.1.4.

Another consequence illustrated in figure 1.3.2 is the fact that W is a sparse ma-
trix since a line of the W matrix (a pixel line of sight) only intersects a small amount of
the total voxels. This is of particular importance considering the computational cost of
tomographic reconstruction. The tomographic problem can be simplified to :

I(xi, yi) =
∑
j=1:Ni

wi,jE(xj, yj, zj) (1.3.2)

where Ni is the number of voxel which intersect the ith pixel line-of-sight.

1.3.2.3 Inversion algorithms

Since the beginning of tomo-PIV, several reconstruction algorithms have been used
and studied in the literature. We will focus here on the main algorithms classically
used in tomo-PIV. Those algorithms belong to a family called "Row-Action Methods"
[Barbu, 2014]. They consist in iteratively projecting the current guess or estimate of the
solution onto convex subsets defining the set of feasible solutions by comparing it to the
recorded projections. Here, we will present only two of the most common reconstruction
algorithms for tomo-PIV, which were shown to provide the best results in the context
sparse reconstruction.

MART : Multiplicative Algebraic Reconstruction Technique [Herman and Lent,
1976]. This algorithm is based on a global entropy maximization [Thomas et al., 2014].
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Figure 1.3.2: 2D representation of the tomographic model : a pixel line-of-sight is
represented as a cone and the voxel element as a sphere. This illustration is taken from
[Scarano, 2013]

For each pixel i, the intensity of every voxel along its line of sight (Ni) is updated such
as :

Ek+1
j = Ek

j

(
Ii∑

Ni
wi,jEk

j

)µwi,j

(1.3.3)

where µ is a relaxation parameter. MART was shown to be perfectly suited for
reconstruction of 3D particles distribution due to its multiplicative nature and the
sparse nature of the solution [Elsinga et al., 2005] and [Elsinga et al., 2006].

SMART : Simultaneous Multiplicative Algebraic Reconstruction Technique solves
linear systems under non-negative constraints [Byrne, 2008], and is a popular choice for
tomographic PIV reconstruction following the work of [Atkinson and Soria, 2009].

Ek+1
j = Ek

j

(
Πi

(
Ii∑

Ni
wi,jEk

j

)µwi,j)1/N

(1.3.4)

1.3.2.4 On the improvement of tomographic reconstruction

When both algorithms were introduced in the tomo-PIV community, the main issue
was the computational cost of such techniques, especially considering the classical
dimension of a typical tomographic reconstruction problem. To address this issue,
initialization techniques such as multiplicative first guess (MFG) [Worth and Nickels,
2008] and more importantly Multiplicative-line-of-sight (MLOS) [Atkinson and Soria,
2009] were introduced. They select voxels on which the iterative process will occur, and
the remaining voxels have a zero intensity.

From this, many developments occurred. Some focused on the sparse nature of
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the solution to improve both accuracy and computational time such as the work by
[Petra and Schnörr, 2009] or [Barbu et al., 2011]. Others focused on increasing the
seeding density by using the information hidden in the time coherence of the real
particles, and the time incoherence of the ghost particles. Those methods are referred
to as multi-exposure methods [Scarano, 2013]. [Novara et al., 2010] introduced a novel
method that exploits the information taken at two (or more) different time instants.
Gains in accuracy were shown to be quite significative. This method was expanded to
time-resolved 3D-PIV [Lynch and Scarano, 2015].

Although such approaches have proven wide practical utility, their domain of use
is restricted to favorable viewing conditions, this point being linked to the uncertain
physical nature of the reconstruction itself. In difficult experimental conditions, for
instance when in the presence of defocusing or in the presence of compressible flows, it
is known that the shape of the PSF, ie of the particle images, can vary dramatically,
leading to accuracy losses in the estimation, since geometry cannot account for these
perturbations. In order to overcome these difficulties, [Schanz et al., 2013a] recently
proposed accommodating for variations of the PSF through the definition of an adapted
weight matrix. In their approach, this matrix is built from a dedicated processing of
PSF samples which is specifically designed to yield reconstructed volumes made of
particle blobs suited to 3D cross-correlation. Their study indeed showed increased
reconstruction quality and more accurate displacement estimations, in particular in the
case of astigmatism and defocus.

More recently, a trend known as "return to the particle" appeared which aims at
combining the iterative reconstruction process used in tomo-PIV and 3D-PTV. The
reconstructed particle is not seen as a 3D blob but as a set of 3D coordinates in
space combined with an unknonwn intensity. [Wieneke, 2013] introduced an iterative
algorithm (Iterative Particle Reconstruction, IPR) which reconstructs 3D particles
coordinates for a density higher than classical 3D-PTV. It consists in generating
particle hypothesis using PTV techniques, then in removing their predicted image
from the acquired image. From these cleaned images, one can expect to extract more
reliable predictions of particle locations. In the context of time-resolved 3D-PIV, where
particles can be tracked on multiple frames, [Schanz et al., 2013b] used the previous
IPR algorithm [Wieneke, 2013] and tracked particles in 3D space over multiple frames
providing a clear elimination criteria for the ghost particles from reconstructions.
Application on experimental data showed a great potential for measuring turbulent
flows [Schröder et al., 2015].

It is in this highly changing and evolving context that the following dissertation
takes place.

1.4 Objective and outline of the thesis
The improvement of tomographic reconstruction quality is a strong research topic
nowadays for tomographic reconstruction is the main barrier regarding the accuracy of
tomo-PIV. As mentioned in the previous section, many efforts focused on the inversion
process and algorithm, either trying other types of algorithms or using multi-exposure
methods. However, to the best of our knowledge, the study of the tomographic model did
not receive much attention especially since the reconstructed 3D intensity distribution
is not a real physical quantity. Is it possible to find a more physical inversion model ?
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Could a projection model based on a more physical understanding of the PIV image
generation process lead to increased performances ?

At ONERA, as mentioned previously, an effective and fast cross-correlation al-
gorithm was developed [Champagnat et al., 2011] for 2D-PIV (FOLKI-PIV) and
Stereo-PIV (FOLKI-SPIV). Its robustness towards PIV image noises was tested. It
seems natural to expand it to 3D for a tomo-PIV use. How will this algorithm behave in
a 3D-PIV context with specific tomographic noise which deteriorates the displacement
estimation step (Elsinga et al. [2011]) ?

To answer both questions, chapter 2 starts by investigating imaging conditions
for tomo-PIV, especially focusing on difficult experimental conditions such as time-
resolved tomo-PIV in the air evolving towards large volumes. A better understanding
of imaging conditions in tomo-PIV has led us to rethink the classical geometrical
tomographic model. In chapter 3, we introduce a new reconstruction approach using
a particle-based representation of image referred to as Particle Volume Reconstruction
(PVR). Numerical simulations show significant gains over classical reconstruction
technique. In chapter 4, we assess the performance of our 3D-cross correlation algorithm
(FOLKI-3D) towards tomographic noise through numerical simulations. An experi-
mental application of a tomo-PIV measurement combining the reconstruction approach
PVR and our cross-correlation algorithm FOLKI-3D is now possible. This experimental
validation is done on a turbulent air jet setup. This includes a tomo-PIV setup of 4
cameras as well as 2D-PIV setup synchronized with the tomo-PIV setup working as a
reference measurement. The experimental setup and the jet are described in chapter 5.
Finally, experimental results of both tomographic reconstructions and velocity fields
are investigated in chapter 6. An accuracy assessment of PVR methods for tomo-PIV
is done using a comparison with classical tomographic reconstruction algorithms and
2D-PIV measurements.





2 Experimental factors and
tomographic PIV

2.1 Introduction
In its most common form, the three-dimensional measurement of flow velocity by PIV
relies on a two-step process, in which one first seeks to reconstruct a volumic intensity
distribution from several camera images at two time instants, and then correlates
the corresponding volumic distributions [Elsinga et al., 2006]. The first step, i.e.
tomographic reconstruction, is entirely new compared to traditional plane PIV, and is
known to have a strong impact on the final measurement quality. Its optimization is
crucial to ensure the accuracy of the vector fields, and has received much attention since
the introduction of the technique. In past studies, the influence of various experimental
factors have been studied, in order to assess their effect, both on the reconstruction
quality in itself, and on the displacements. The number and position of the cameras,
their calibration, the particle image diameter in the images and the seeding density have
been recognized as the most influential ones [Elsinga et al., 2006] & [Scarano, 2013], and
corresponding ranges of operation which guarantee a good measurement quality have
been derived.

While they have managed to provide useful guidelines and directions for design-
ing more efficient reconstruction strategies, some of these studies have limitations, in
the sense that they have partly oversimplified some experimental problems. This has
recently led [De Silva et al., 2012] to propose a refined view, by considering 3D instead
of 2D synthetic experiments, and introducing a simplified model for Mie scattering,
among others. The present contribution proceeds from the same motivation, and aims
at providing further landmarks and optimization guidelines for the experimentalists, by
taking a step forward in the physical model complexity. As an expected by-product,
our characterizations should also provide foundations for further refinement of the
reconstruction algorithms, if possible. The influential parameters investigated in this
chapter are mostly of geometrical nature, in a direct or indirect way. We consider ranges
of variations for these parameters which roughly match the case of high repetition
rate measurements in air flows, raising specific constraints and challenges. We conduct
synthetic reconstruction tests using MLOS-SMART [Atkinson and Soria, 2009], which
we assess with the usual quality criterion initially proposed by [Elsinga et al., 2006],
and also introduce new performance measures adapted to detection problems. Here, we
focus on the reconstruction only.

Four parameters are varied. The first parameter is seeding density, whose impact
we will simply mention in order to provide a comparison with the following ones.
Then, we will show that when choosing the angular positions of the cameras relative
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to the illuminated volume, a new parameter should be considered, which is the ratio
between the intersection and the union volumes of the cameras’ fields of view. As
briefly mentioned in [Elsinga et al., 2006], the fact that some particles are not seen
by all cameras acts as a source of noise and degrades the reconstruction. We show
that this ratio is the adapted control parameter to quantify this phenomenon. We
thirdly investigate the impact of out-of-focus particles in the images. Here as well, we
build a tuning parameter to control the degree of defocusing. Such a test is important
in practice, as depth of field limitations are frequently encountered in tomo-PIV. In
particular, these tests will allow to quantify the amount of degradation obtained if one
tries to extend the size of the illuminated volume beyond the cameras depth of field,
but when this defocusing is not taken into account. In other words, this may help define
a boundary beyond which it is necessary to model it, such as in the approach of [Schanz
et al., 2013a], or in [Cornic et al., 2013] & [Champagnat et al., 2014]. Finally, we will
consider images synthesized using the full Mie theory, and compare the reconstruction
results with reconstructions from images built with different approximations classically
found in the literature. We will quantify the resulting differences in reconstruction
quality. This will help us determine the degree of realism of these approximations
depending on the setup geometry and nature of the seeding.

This chapter is outlined as follows: section 2.2 describes the principles of the
synthetic tests, in terms of image generation and of choice in quality criteria. The
results of the parametric studies are then exposed in section 2.3. Finally, concluding
remarks are given in section 2.4.
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2.2 Principle of the tests
In this section, we explain and describe the principles of the synthetic tests that we
performed to assess the impact of several factors on the reconstruction quality. We will
focus on the description of our image generating process, the reconstruction algorithm
used as well as the measurement quality criteria that we will consider.

2.2.1 Image generation

We here describe the setup and parameters defining the synthetic test cases that will be
used throughout the chapter.

Figure 2.2.1: Typical camera and laser setup for synthetic experiment: the setup is made
of 4 cameras, a laser sheet whose light direction is along the ~x axis.

2.2.1.1 Optical Setup

All our simulations involve four cameras, which are positioned on a single side of the laser
sheet at the vertices

(
±1/2,±1/2,±1/

√
2
)
of a square of 1 m side. They are positioned

at a distance of 1 m from the center of the reconstructed volume, the latter defining the
origin (0, 0, 0) and point at it. A pinhole model is assumed for the cameras, without
Scheimpflug adapter for simplicity, and calibration is supposed to be perfectly known and
to obey a pinhole model. The focal length is 100 mm, thus the magnification factorM is
equal to 0.1, and the pixel size is 10 µm with a fill factor of 100%. The images’ size, and
hence the field of view, depends on the test cases and will be specified for each simulation.

The laser sheet is modeled as a 20 mm thick parallelepiped. Its intensity profile
is assumed to be Gaussian in the z direction with a standard deviation σL. However,
in this study the dependence in z will be very weak as we will consider the laser
sheet as an almost perfect top hat with σ = 0.05 m. The direction of the light is
taken as the ~x = (1, 0, 0) axis. Its wavelength is λ = 532 nm. In all the tests be-
low, we will consider the horizontal and vertical extensions of the laser sheet to be infinite.

The reconstructed volume, also 20 mm thick, is always the smallest parallelepiped
including the illuminated volume seen by all the cameras. Thus it depends on the field
of view and is given for each experiment. The voxel-to-pixel ratio is set to one.
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2.2.1.2 Tracer particles

Tracer particles are uniformly distributed in the light sheet volume. The density is
controlled by the particle per voxel count (ppv). This volumic density dictates the
image density also referred to as the number of particles per pixels in the tomo-PIV
literature [Elsinga et al., 2006]. We will call this parameter as ’ppp’ for the remaining of
the thesis. Horizontal and vertical extensions of the laser sheet are larger than the field
of view covered by all the cameras. Thus, all illuminated particles cannot be seen by all
cameras, a fact that always occurs in real dataset but is nonetheless often overlooked in
synthetic experiments.

The particles are assumed to be spheres with diameters small enough (a few mi-
crons, i.e. we focus on experiments in air flows) to neglect the size of their geometric
image M.dp. Given the size of particles typically used in a real experiment, emitted
intensity is governed by Mie scattering which applies to a sphere of diameter dp ≈ λ.

Unless otherwise specified, we will consider a traditional approximation which
considers the scattered light as proportional to the square of the particle physical
diameter dp and determines the intensity of a particle by its diameter and its depth only
via:

E ∝ d2
pe
− z2

2σL
2 (2.2.1)

Here, the particles physical diameters are randomly drawn in the
[
mindp , maxdp

]
seg-

ment, according to a Gaussian distribution law with mean mdp and standard deviation
σdp , with mindp = 0.5 µm, maxdp = 2.5 µm and mdp = 1.5 µm. The distribution
is controlled by σdp , σdp = 0.15 µm yielding medium-low diameter scattering and
σdp = 0.5 µm high scattering.

As [De Silva et al., 2012] already noted, and as we will further confirm it in this
chapter, accounting more finely for Mie scattering may lead to significant changes in
algorithms performance. In another series of synthetic experiments, we will thus intro-
duce a complete model for this scattering in the generated images, contrary to [De Silva
et al., 2012] who rely on an approximation. Assuming the light to be non-polarized,
[Bohren and Huffman, 1983] show that the scattered intensity of a sphere particle is
proportional to a scattering function S11(dp, θ) which depends on dp and θ, the scattering
angle being defined as the angle between the light source direction and the detector
direction in the scattering plane of the particle. Figure 2.2.2 shows a typical scattering
function for a particle of 2 µm in diameter. The refractive index of the particles in
the air is taken as n = 1.47. An algorithm developed by [Bohren and Huffman, 1983]
was used to compute the scattering function based on dp, λ and n. Within this exact
model, the particles’ diameter are still randomly drawn in

[
mindp , maxdp

]
according

to a Gaussian distribution law with mean mdp and standard deviation σdp , this time
with physical, dimensional values of dp. In particular, one considers mindp = 0.2 µm
and maxdp = 2 µm.

In our camera setup, described in section 2.2.1.1, 2 cameras are in a forward
scatter configuration (with a 60◦ scattering angle) and 2 cameras are placed in a
backward scatter configuration (with a 120◦ scattering angle).
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Figure 2.2.2: Logarithmic representation of the scattering function (log10[S11(dp, θ)]), as
a function of the scattering angle (shown here in degrees). The function was computed
for a 2 µm diameter particle with a refractive index n = 1.47.

2.2.1.3 Final image intensities

Considering P particles with intensity Ep located at point Xp in 3D-space, the intensity
distribution in the image is given by :

I(x) =
P∑
p=1

Ep.h(x− F (Xp)) (2.2.2)

where x = (x, y) denotes any location in the image plane, F is the geometric projection
function in the image, and h the so-called Point Spread Function (PSF) which models
the aperture limited diffraction and pixel integration.

For the tests presented in this chapter, we assume an integrated Gaussian PSF
function. Apart from section 2.3.3 where we account for defocusing effects in the
reconstruction, the standard deviation σPSF is set to 0.6 pixels, averaged on the pixel
surface, with a 100% fill factor so that h is :

h(x, y) =
1

4
[erf(

x+ 1/2√
2σPSF

)−erf(
x− 1/2√

2σPSF
)]×[erf(

y + 1/2√
2σPSF

)−erf(
y − 1/2√

2σPSF
)] (2.2.3)

Unless otherwise specified, we assume an image dynamic range of 8 bit, and a Gaussian
noise with µNoise = 5 and standard deviation σNoise = 2 is added to the images. Its
amplitude is set at about 10% relative to the maximum particle intensity.

2.2.2 Reconstruction and Quality measurement

2.2.2.1 Reconstruction algorithm

To reconstruct the volume, we build a first guess using an MLOS step, and then
refine the reconstruction using a SMART algorithm [Atkinson and Soria, 2009] that we
implemented in a GPU frame. In the rest of the thesis, this algorithm (MLOS followed
by SMART iterations using a reconstruction model as described in [Atkinson and Soria,
2009]) will be referred to as tomo-SMART. In the context of our study, it is useful to
recall some fundamentals of this algorithm, and what can be expected in some of the
situations we consider. However, for more details on the algorithm, the reader is advised
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to go to chapter 3.

SMART iteratively inverts the linear system :

I = W.E (2.2.4)

which links the image and volume intensities, I and E, through the sensing matrix W.
Each iteration combines a projection from the volume, and then a back-projection from
the images. Matrix W is here built in the exact same way as initially proposed by [Elsinga
et al., 2006] and [Atkinson and Soria, 2009], as widely done in the literature. It is now
well-known that since this system is highly underdetermined, reconstruction is affected
by the presence of ghost particles which act as a source of noise during the subsequent
velocity estimation by cross-correlation. Aside from this lack of unicity, another, more
fundamental issue is the existence problem, i.e. how ill-posed the problem is. Indeed,
any linear system such as equation (2.2.4) is at least mildly ill-posed, as approximations
cannot be avoided; however, the approximation can be more or less relevant depending
on the situations. In the present formalism, W is built on the basis of geometrical
considerations, and does not include any angular variation due to Mie scattering, for
instance. Thus, in the hypothesis of significant scattering differences, the projection step
of SMART will consist in projecting a single voxel intensity with the same weight on all
images, whereas the actual images will have different intensities. In such a situation,
the problem will be all the more ill-posed than when scattering differences are neg-
ligible. In this chapter, we used 20 SMART iterations, with a relaxation parameter of 1.1.

An additional comment must be made regarding thresholds when confronted to
noisy images. As explained in section 2.2.1.3, unless otherwise specified, we used a
Gaussian noise with µNoise = 5 and standard deviation σNoise = 2 on the images. For
the MLOS step, the images were thresholded : only the pixels of intensity greater than
8 were kept. The images are thresholded at 93 % with regards to the noise distribution.
When we did not use any noise in the images, the images are not thresholded.

2.2.2.2 Reconstruction quality measurement

The quality of the reconstruction is assessed by several means, the first being the well-
known Q criterion [Elsinga et al., 2006]:

Q =

∑
x,y,z E0(x, y, z).E1(x, y, z)√∑
x,y,z E

2
0(x, y, z).E2

1(x, y, z)
(2.2.5)

where E1(x, y, z) is the reconstructed intensity field and E0(x, y, z) is an ideal recon-
struction intensity field (considered as the ground truth), in which a particle is seen
as a 3D isotropic volume of Gaussian intensity whose standard deviation is the same
as the standard deviation of the PSF in the images [Elsinga et al., 2006] & [Scarano,
2013]. This quality factor Q is very well suited for classical tomographic reconstruction
analysis where a particle is seen with the same intensity in every camera, i.e. when
the scattered light is considered to depend only on the particle diameter and depth.
However, taking Mie scattering into account means that the intensity of a particle differs
from one camera to the other. In that case, the question of building a volumic ground
truth becomes less obvious, as one cannot associate a single intensity value to a given
particle. Computing a Q criterion then necessitates a choice for this intensity (e.g., for
each particle, the highest intensity among all images), which diminishes its meaning as
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an objective quality criterion. In our study of Mie scattering, we will restrict our use of
this quantity to the most relevant cases, and indicate precisely how we approximate the
ground truth. The same remark can be made when considering defocusing effects when
the image diameter of a particle depends on a geometrical variable for every camera
(see section 2.3.3).

Another performance diagnosis is thus required, which should bring another perspective
on the quality of the reconstruction and be compatible with all the experimental
nuisance factors we consider here. We propose to introduce a metric suited to measure
the detection performance of the reconstruction. Detection performance measurements
are well known features in pattern recognition and information retrieval. This method
is based on the classification of a "detection". A "detection" is defined here as a local
maximum voxel, whose intensity is greater than a threshold level set to 8 in order to
eliminate local maxima created by noise.

A detection is declared a True Positive (TP) if it is in the neighborhood of a
true particle. Unless otherwise specified, the neighborhood is here a 3 × 3 × 3 voxels
cube centered on the voxel of the true particle. A detection is a False Positive (FP),
ie. a ghost, if it is not in the neighborhood of a true particle. A particle is recorded as
False Negative (FN) if there is no detection in its neighborhood. Precision quantifies
the fraction of true particles among all detected particles, and Recall is defined as the
number of true positive divided by the total number of true particles, ie:

Precision =
#TP

#TP + #FP
, Recall =

#TP

#TP + #FN
(2.2.6)

where # stands for “number of”. The best achievable performance is given by Recall = 1
(# FN=0, every particle is detected) and Precision=1 (# FP=0, all the detected particles
are true). Note that whatever the quality criterion considered, and in all the simulations
below, the ground truth will consist of the particles that are seen by all the cameras
exclusively, which is consistent with the fact that all reconstructions are initialized with
MLOS.
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2.3 Experimental factors

2.3.1 Seeding density

The effects of image seeding density (ppp) on the quality of the reconstruction has been
widely explored in the literature, as the concentration of participle tracers is directly
linked to the spatial resolution of the Tomographic PIV technique. [Elsinga et al., 2006]
showed that an increased particle density produces a larger amount of ghost particles,
consequently decreasing the reconstruction quality and so the velocity measurement.
Ultimately, a compromise must be reached between high spatial resolution and the
accuracy of the technique.

As this dependence is a well-known landmark to tomo-PIV users, we will here
simply mention its amplitude, as a reference enabling us to assess the relative impact
of the other experimental parameters which we will consider in the following. Figure
2.3.2 shows the decrease in quality of the tomo-SMART reconstruction with respect to
the seeding density ppp. When the density increases, as the ambiguities in the images
increase, the number of ghost particles increases, an energy transfer arises between
real particles and ghost particles, which decreases the intensity of the real particles,
altering their shape and sometimes delocalizing their center ultimately decreasing the
signal-to-noise ratio in the reconstruction.

2.3.2 Geometric considerations on the reconstructed volume

2.3.2.1 Intersection and Union volumes

In this paragraph, we focus on geometry-related considerations. In one of the conclusions
of their study, [Elsinga et al., 2006] recommended that the reconstructed volume should
include all illuminated particles, since particles which lie outside this volume but are
still visible by the cameras act as an important source of noise. Those were referred
to as "added background particles" in [Elsinga et al., 2006], arguing that this situation
occurs due to either the laser sheet Gaussian profile or uncontrolled light reflections.

Figure 2.3.1: Typical setup with two cameras for simplicity, showing the difference be-
tween reconstructed volume (dashed black rectangle), union (green) and intersection
(red) of the camera field of views and illuminated area.

However, it turns out that this situation inevitably occurs, partially due to the
reconstruction algorithms used. Indeed, common algorithms such as MART or SMART
are multiplicative in nature, so that they only reconstruct particles seen by all cameras
and automatically eliminate the others. Geometrically, actually reconstructed particles
lie in the Intersection volume between the cameras’ fields of view and the laser sheet,
as depicted in figure 2.3.1. As seen in this figure, the image recorded by each camera
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also includes particles which are not seen by the remaining cameras. These "added"
particles lie in the Union between the cameras’ fields of view and the laser volume, but
do not lie in the Intersection volume.

Figure 2.3.2 shows the influence of the seeding density ppp on two tests : in one
case, the particles were randomly spread in the Union volume, in the second case, the
particles lie in the Intersection only. The cameras sensor size was set to 800 × 800. In
order only to assess the specific noise, introduced by particles lying in union volume
and not in the intersection, we did not introduce any additional noise in the images
contrary to section 2.2.1.3. We used the Q factor [Elsinga et al., 2006] to assess the
reconstruction quality. We can observe the quality difference between the two cases
which increases along with the particle density. Because it is not possible in practice to
overcome this situation due to the extension of the laser volume, this source of noise
should be quantified.

Figure 2.3.2: Influence of the seeding density ppp for the two synthetic cases, using
800× 800 sensor size.

2.3.2.2 Ratio between Intersection and Union volumes of the camera’s fields
of view

We designed a synthetic test which accounts for the above mentioned phenomenon. A
natural choice for the associated control parameter is then the ratio between Intersection
and Union volumes equation (2.3.1). RI/U is varied without changing other experimental
parameters by varying the sensor sizes (ie varying the number of pixels while keeping the
size of each pixel constant), and thereby the solid angles of the cameras’ fields of view.
In practice, this ratio will more probably vary with the cameras’ angular positions. We
used the same synthetic setup as in section 2.2.1.1, only using camera pixel sizes ranging
from 128× 128 to 1400× 1400. The seeding density was set to ppp ≈ 0.05.

RI/U =
Vol(Intersection)

Vol(Union)
(2.3.1)

The reconstructed volume is systematically chosen as the smallest parallelepiped con-
taining the Intersection volume. Figure 2.3.3 right shows that this parameter is indeed
of utmost importance, as both RI/U and Q follow the same evolution with image size,
with a decrease in quality with decreasing RI/U . Besides, the amplitude of this decrease
within the present range of variation is comparable to the typical variation due to ppp
(figure 2.3.2). These "added" particles, lying in the Union but not in the Intersection,
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Figure 2.3.3: Influence of the image size on the RI/U ratio and on the reconstruction
quality (left) and influence of the RI/U ratio on the Precision and Recall performance
measures (right).

act as a strong source of noise in the reconstruction: indeed, the inversion algorithm will
try to explain the particle detected in the image as a particle in the Intersection volume,
where it is not. This will lead to an increase in the number of ghost particles. This
phenomenon is clearly seen in figure 2.3.3 (right) where it is shown that the Precision
increases with the RI/U ratio.

2.3.2.3 Optimizing the RI/U factor

In the two previous sections we introduced and characterized the specific noise created
by particles lying in the Union volume but not in the Intersection. This phenomenon
cannot be avoided in a real life experiment, but can anything be done to improve RI/U

within a given experiment ? What experimental parameters can be used to optimize ?

In this paragraph we will try to understand the issue at stake and give guidelines
to optimize the RI/U factor. The RI/U is directly linked to the camera setup used and
the choice of the camera setup depends on several parameters :

1. Optical access in the wind tunnel.

2. Distance between the camera and the measurement volume : the choice of this
parameter along with the choice of the optical lens of the cameras will determine
the magnification of the imaging system which is directly linked to the spatial
resolution of the measurement. This will also determine the angular field of view
of the cameras. Furthermore, this will determine the optical depth of focus which
is a crucial parameter since the particles in the illuminated region must be in
focus [Scarano, 2013] for a good reconstruction. This is further investigated in
section 2.3.3.

3. The system angular aperture [Scarano, 2013] [Thomas et al., 2014] is a well-known
parameter whose choice is critical to the quality of the reconstruction. This stems
from the fact that the projections of the volume on the images must be as little
collinear as possible to one-another to invert the linear system equation (2.2.4).

4. The Scheimpflug adapter : to ensure that the whole of the volume is in focus,
Scheimpflug adapters are mounted on the cameras. Usually the Scheimpflug
adapters are mounted so that the z = 0 plane is in focus (in the middle of the
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laser illumination volume). If the Scheimpflug adapter is a "simple Scheimpflug
adapter", i.e. there is only one angle to adjust, realizing the Scheimpflug condition
will set the camera rolling angle (the angle of the camera around its optical axis).
In that case there is no more parameter to adjust, the cameras are set and so is
the RI/U factor. If the Scheimpflug adapter has two angles to adjust, then it is
possible to adjust the rolling angle to optimize RI/U .

Figure 2.3.4: Coordinate reference system of the camera in a pinhole model, visualization
of the rolling angle of the camera. (O, ~X, ~Y , ~Z) is the world coordinate system and
(Oc, ~I, ~J, ~K) is the camera coordinate system.

The rolling angle is defined as the angle of camera around its optical axis as illustrated
in figure 2.3.4. The coordinate system of the camera was defined as following : ~K is
the direction vector of the optical axis of the camera pointing at the world origin. We
defined the ~I vector as being orthogonal to ~K in the (O, ~K, ~X) plane and ~J as being
the cross-product of ~K and ~I. The rolling angle is the angle controlling the rotation of
camera system around its ~K axis.

In the case of a two angles Scheimpflug adapter, it is possible to tune the rolling
angle of the camera in order to optimize the RI/U factor, assuming the intersection
volume is always big enough to contain the desired measurement volume. To illustrate
this idea, using our experimental setup section 2.2.1.1, with 2048× 2048 sensor size, we
performed an optimization of the 4 rolling angles called Roll = (roll1, roll2, roll3, roll4)
of the 4 cameras, using a non linear least-square optimization process of the cost
functional f(Roll) =‖ 1 − RI/U(Roll) ‖2. The idea is to find the 4 rolling angles
that optimize the RI/U in a non linear least-square paradigm. The algorithm used to
minimize the cost functional was the Levenberg-Marquardt algorithm. The initialization
we used was Roll0 = (0◦, 0◦, 0◦, 0◦). The iterative optimization process was stopped
when the relative square of the cost functional was changed by less than 10−6. The
optimal solution found is Roll1 = (9.50◦,−9.54◦,−9.54◦, 9.58◦). The RI/U factor was
increased from 0.51 to 0.53. Figure 2.3.5 shows the Union volumes and Intersection
volumes of the initialization case and the optimal case.

The gain in RI/U is small. In order to check if it also leads to small gains in
performance, we performed two 3D reconstruction synthetic tests using the two camera
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Figure 2.3.5: 3D visualization of the Union in red (up) and Intersection volumes in
cyan (down) for the Initialization case (left) and for the Optimized case (right).
The red cuboid are smallest cuboid containing the Union volume. The black cuboid is
the smallest cuboid containing the Intersection volume.

calibrations obtained from the above optimizing process. The four cameras have
2048 × 2048 pixels, we did not use any camera noise, the volumic tracer density
was set so that in both cases the image seeding density is close to ppp ≈ 0.05. The
tracer particles were randomly spread in the Union volume in both cases. The results
are summed up in table 2.3.1. We used the above mentioned quality measurements
section 2.2.2.2 as well as the normalized intensity variance σ∗E which is used in [Lynch
and Scarano, 2014] as an alternative reconstruction quality measurement.

Initialization case Optimized case
Q 0.8742 0.8762

Precision 0.435 0.440
Recall 0.998 0.998
σ∗E 12.90 12.96

Table 2.3.1: Performance measurements of the reconstruction: one case without RI/U

optimization process, (Initialization case), the other obtained after RI/U optimization
(Optimized case).

The different performance indexes shown in table 2.3.1 agree on the fact that the gains
resulting from optimization of camera orientation are negligible. Thus within a classic
tomo-PIV setup which favors isotropic resolution reconstruction within the depth of field,
there is little room to optimize RI/U .
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2.3.3 Defocusing effects

When considering larger volumes than currently obtained when restricting the camera
depth of fields, a defocusing of particle images will be observed. Some aspects of this
issue have already been tackled in a recent study by [Schanz et al., 2013a]; in particular,
these authors have considered one instance of defocusing and varying seeding densities.
[Cornic et al., 2013] & [Champagnat et al., 2014] (see chapter 3) also proposes a complete
"particle" approach, where this varying Point Spread Function can be accounted for.
As a first quantifying step, we propose a systematic point of view in which the degree of
defocusing is varied. This is equivalent to the progressive increase in the laser volume
thickness (z direction in figure 2.2.1).

In order to account for the limited depth of field, each camera is given a defo-
cusing function σPSF (z̃) where z̃ is the space variable along the camera’s optical axis.
We did not simulate a Scheimpflug adapter on the cameras. The defocusing function
was inspired from [Olsen and Adrian, 2000]. The level of defocusing is determined
by the camera aperture diameter, the laser sheet thickness remaining constant. The
only parameter that we changed is the size of the PSF. A corresponding control
parameter was built as the difference between the standard deviation σPSF of the
particle with the largest image diameter among all cameras and that of in-focus
particles, i.e. δσ = σmax − σfocus. The defocusing function was adapted so as to
have the same in-focus image diameter for all cameras. For all cameras, we have
σPSF (z̃ = 0) = σfocus = 0.6 [pixels]. An important remark is that the intensity (Ep
in equation (2.2.2)) given to each particle was kept constant in all the defocusing
tests. This means that as the σPSF increases, the image peak intensity of the particles
decreases due to the integration in the PSF function. Moreover, since each camera
has its own defocusing function, the photometric consistency between the cameras is
lost, namely a particle does not have the same peak image intensity and shape in every
camera. Simulations are run for two seeding densities, at ppp = 0.055 and at ppp = 0.098.

In his study, [Scarano, 2013] showed that the quality of the reconstruction de-
pends on the image diameter and consequently on the image source density. The Q
factor was used to show the quality dependence on the image diameter, with an optimal
image diameter found for d∗τ = 1.5 [pixels] for a given seeding density. In this study, only
the particles diameter changes, the image intensity remaining the same. This means
that for small image diameter, the quality decrease comes from discretization errors and
for big particle image diameters, the quality decrease comes from overlapping particles,
the images becoming more and more full, the reconstruction process becomes more
difficult for the algorithm. This has the same effect as an increase of seeding density :
the number of ghosts particles increases, the real particles lose their shape and intensity
to the ghosts particles.

In our simulations, we expect to witness a decrease in the reconstruction quality.
However a question remains : does this quality drop come from an increase in the
number of ghost particles, or does this come from a decrease in the number of real
reconstructed particles ?

Since every camera has its own defocusing function, it is irrelevant to construct a
Q quality factor since the particle ground truth is not the same for each camera. We
will use the detection performance measurements. Results are shown in figure 2.3.6 for
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a simple MLOS reconstruction and a tomo-SMART reconstruction. Both results exhibit
the same behavior, namely that the Precision quantity does not seem to be impacted by
the defocusing parameter, but the Recall quantity decreases with δσ. The drop is even
more significative for tomo-SMART than for MLOS. At a given δσ, the drop increases
in magnitude with the seeding density. The main effects of defocusing seems to be the
loss of real particles in the reconstruction.

Figure 2.3.6: Recall and Precision obtained at varying intensity of defocusing in the
images, for ppp = 0.055 and ppp = 0.098, 512× 512 images. MLOS (left), tomo-SMART
(right).

This can be partially explained by thresholds applied to the image during the MLOS
step. Increasing the defocusing parameter leads to a decrease in the particle image
intensity, as explained above. The threshold value applied on the images before the
MLOS step was kept constant (equal to 8). Particles whose image intensities are
lower than the threshold value, in at least one of the cameras, are eliminated from the
reconstruction. This trend increases with the SMART iterations. The number of ghost
particles remains constant compared to the number of real particles which drastically
decreases.

Therefore, the main effect of defocusing in the images is the loss of particles in
the reconstruction, due to low image intensity levels of the defocused particles. Fur-
thermore, in our simulation, only the shape (h in equation (2.2.2)) of the particle in
the image was a function of a space variable (z̃), the full model [Olsen and Adrian,
2000] states that the peak intensity (Ep in equation (2.2.2)) is also a function of a state
variable (Ep ≈ 1/z̃2). This means that the intensity loss is worsened when compared
to our simulation. This will lead to lower signal-to-noise ratio in the reconstruction
volumes. Contrary to the precedent conclusion referring to RI/U , this stems mainly
from a decrease in the number of true particles detected, the number of ghost remaining
comparable.

2.3.4 Polydisperse seeding and Mie scattering

2.3.4.1 General remarks

In this section, we analyze the influence of both the effects of Mie scattering and the
dispersion in particle physical diameter dp, which is common in practical seeding. Both
factors are indeed closely related to one another: taking Mie scattering into account
means that the intensity of a particle image depends on two parameters: θ the scattering
angle, and dp the particle diameter (the refractive index n and laser wavelength λ are
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constant throughout the whole section). Figure 2.3.7 (left) shows the scattering function
S11, as a function of both variables, while figure 2.3.7 (right) focuses on the dependence
on the particle diameter at chosen scattering angles. Both plots show log10(S11).

The scattering function has a complex behavior with respect to both dp and θ,
which raises several issues that will be addressed now. To do so, we will investigate the
effects of each scattering function variable separately. First, we will consider the effects
due to angular variations in space (θ) while having a fixed monodisperse seeding; then
we will investigate the effects due to polydisperse seeding. In the remaining chapter, the
PSF size of the particles in the images is set to σPSF = 0.6.

Figure 2.3.7: Logarithm of the scattering function S11 as a function of dp and θ (left)
and as a function of dp for given θ (right).

First, assuming a fixed diameter dp, the immediate consequence of Mie scattering regime
is expectedly that the intensity difference between backward and forward scatter may
be of several orders of magnitude, i.e. one may observe important differences in the
average intensity levels of the images. A simple way to compensate for them could be
to determine the relative values of S11, and to rescale the darkest images in order to
reach the level of the brightest images. This could be done as a pre-processing, or even
be included in the construction of matrix W, and would simply lead to images with
different signal-to-noise ratio, as one would amplify the noise in the same way as the
particles. However, this operation is only made possible if, within a given image, the
variation in scattering angle and diameter remains moderate enough to avoid strong
variations of S11 between different particles, or at different locations in the camera
sensor for a fixed value of dp.

Our second interest will be to determine, still for a given particle diameter dp,
under which conditions significant intensity variations should be expected within an
image, due to the variation of S11 with θ, i.e. due to the variations in viewing angle
from one end of the camera sensor to the other. To the best of our knowledge, this
point has not been discussed or accounted for in past studies.

Finally, in a third step, we will then consider the issue regarding a polydisperse
seeding, by assuming a dispersion in dp, which may also prevent the simple intensity
compensation mentioned above. This corresponds to a very frequent situation, since
even in well-controlled experiments, a finite degree of dispersion is inevitably present,
especially when working with seeding for airflows. In that respect, we will particularly
compare the usual approximation, where the scattered intensity is assumed to vary as d2

p
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with no dependence with θ, to the exact physical situation. Given the behavior observed
in figure 2.3.7 (right), this approximation may be a strong one, especially in air flows
where small particles are frequently used. For instance, the d2

p behavior corresponds to
the largest particles, while for the smallest a variation as d6

p is observed. The transition
occurs roughly at 0.3 microns, which is among the typical values for seeding in the air.
In this realistic situation, simple methods for compensating the illumination variations,
or models accounting for them, should be very difficult to derive. Thus our goal will
be to quantify the error which one makes when synthetic tests only consider a partial
modelling of Mie scattering and physical diameter dispersion.

2.3.4.2 Intensity difference between cameras

As mentioned above, the intensity difference between two cameras in backward and
forward scatter configuration is the most obvious setback for tomo-PIV technique
due to Mie scattering behavior. Indeed, it may lead to a practical situation where a
particle seen in the forward scatter camera is missed on the backward scatter camera
because its intensity is too low or comparable to that of the CCD noise and thus
cannot be reconstructed, ultimately leading to a decrease in reconstruction and veloc-
ity field quality. Understanding the mechanism of such a phenomenon is therefore crucial.

For the sake of simplicity, and to clarify ideas, we introduce a first experiment in
which a pure mono-disperse seeding is considered, with a simplified account of Mie
scattering and not the full model. The particle intensities are computed through
equation (2.2.1), without any angular dependence at first. Two cameras (x > 0) are
considered in forward scattering configuration and the remaining two (x < 0) in back-
ward scatter configuration. To account for this difference in scatter and corresponding
intensity loss, the particle’s intensity (E in equation (2.2.1)) in the images of the
cameras (x < 0) are multiplied by an attenuation coefficient α so that,

Ex<0 = α Ex>0 (2.3.2)

Figure 2.3.8: Influence of the attenuation parameter α between backward and forward
scatter cameras on the Q reconstruction quality and on the Recall parameter.

By doing so, we break the photometric consistency between the cameras, meaning that
the particles do not have the same intensity for every camera. The range of α values,
that we investigated, was from 1 (no Mie scattering) to 10−2. Note that in practice, such
a coefficient can be determined theoretically, by reading for instance the values of S11
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(figure 2.3.7) for both sets of cameras. The seeding density was such that ppp = 0.024
and we used 512 × 512 camera sensor size. In this experiment, the reconstruction was
done using 16 bit images for better dynamics and the signal-to-noise ratio was increased
in all four cameras compared to previous test, in order to have a better understanding
of the issue and avoiding too many particle detection losses in the backward scatter
cameras due to thresholds in the images during the MLOS step. However, once the noise
level is set in all four cameras, it remains constant while α decreases. The signal-to-noise
ratio in the back scattering cameras therefore decreases with α.

Figure 2.3.8 (left) shows the effect of this coefficient on the Q criterion. To build
the ground truth corresponding to this case, we attributed to each particle the intensity
corresponding to that observed on the brightest camera. As discussed in section 2.2.2.2,
this is a first case in which the ill-posedness of the problem is increased. The ob-
served drop in quality evidenced in figure 2.3.8 (left) is firstly due to an associated
reconstruction intensity decrease; indeed, given the different intensities on the camera
images for a same particle, the solution with minimal error consists in averaging these
intensities, which is what SMART will converge to. Figure 2.3.9 illustrates this effect:
the probability density function of the real particles shifts to the left and becomes
more peaked. By contrast, the intensities of the ghost particles are almost not altered.
A second effect explaining this quality drop is the slight increase in detection loss:
figure 2.3.8 (right) of the Recall parameter indeed shows that this inevitably occurs
when α increases. This phenomenon will amplify when considering wider ranges of
intensity differences between the cameras.

Figure 2.3.9: Intensity PDFs of real and ghost maxima in the reconstructed volume for
decreasing α.

To sum up, the intensity difference between forward and backward scatter cameras will
lead to two combined effects which decrease the reconstruction quality and may be
detrimental to the cross-correlation step. The first effect is the decrease in intensity
of the reconstructed particles which leads to a decrease in the signal-to-noise ratio in
the reconstruction. Then, depending on the signal-to-noise ratio in the images and the
values of thresholds in the reconstruction, a second effect appears : real particles whose
intensity is too weak are no longer reconstructed. This effect appeared in our simulation
for α < 0.1.

2.3.4.3 Intensity differences within an image

We still consider a mono-disperse seeding, and seek now to determine if some angular
settings may lead to significant variations of the particle image intensities within a given
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camera image. To do so, we simply need to consider a one-dimensional image whose
size allows to span the scattering angle variation of a real image. For each pixel along
the obtained line, we compute the corresponding value of S11, which yields an intensity
distribution along the image. We then compute the average µI and root mean square σI
of this distribution. This finally yields a convenient way to quantify the "intra-image"
variation, by considering the relative fluctuation σI/µI .

Results are presented in figure 2.3.10. As could be expected, the dependence in
dp and θ is rather complex. Logically, for the smallest diameters, σI/µI remains very
low, whatever the angle, due to the high regularity of S11 in that case. For larger
diameters, three zones can be distinguished. A common point to all these zones is
the high-frequency and regular alternation of peaks and valleys. Close to forward
and backward scattering (i.e., respectively, for 120◦ < θ < 180◦ and 0◦ < θ < 20◦,
approximately), high values of σI/µI can be reached with an order of magnitude of 1.
For intermediate values 20◦ < θ < 120◦, the maximum values are smaller with an order
of magnitude of 0.2.

Figure 2.3.10: Level of intensity fluctuation σI/µI observed in the camera images as a
function of the particle diameter and scattering angle. See the text for the definition of
σI/µI .

To model the impact of this phenomenon on the reconstruction, we again consider a
simplified framework which allows faster processing but contains the entire problem
complexity. As in section section 2.3.4.2, we consider a test case with pure mono-disperse
seeding whose intensities are simply computed with equation (2.2.1), i.e. still with no
exact account of Mie theory angular. For each camera and for each particle, dispersion
intensity coefficients (Ep in equation (2.2.1)) are randomly drawn from a Gaussian law,
(of mean I0 and mean root square σI0) leading to an equivalent intensity dispersion in
the image. The photometric consistency between the cameras is thus broken. Results in
term of True detection and False detection are plotted in figure 2.3.11 as a function of the
control parameter of the intensity image dispersion σI0/I0. The seeding density was such
that ppp = 0.024. One does not observe a significant decrease in missed detections, since
there is only a 0.4% decrease, but the number of ghost increases significantly up to 20 %.

The level of intensity distribution that we investigated ranges from σI0/I0 = 0 to
σI0/I0 = 0.5. This range is comparable to the range exhibited in figure 2.3.10 for
scattering angles ranging 30◦ to 130◦, which is a usual angular range used in real
tomo-PIV experiment. Considering this intensity distribution level, the results in
figure 2.3.11 show that this issue has a limited impact on the reconstruction. Only the
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Figure 2.3.11: True (left) and False (right) detected particles in the volume as a function
of the image intensity dispersion σI0/µI0 .

number of ghosts increases due to excessive image intensity levels on some particles
which transfer their intensity to the ghosts because of the ill-posed reconstruction
problem.

2.3.4.4 Polydisperse seeding

We finally turn to the most difficult case of a polydisperse seeding. To understand
the effects of a real Mie scattering function when dealing with polydisperse seeding,
we will compare it to the classical model which considers a squared dependence of the
intensity on the particle’s diameter. Therefore, we designed two test cases of increasing
complexity : the first one (Case 1 ) is the classically adopted approximation where
particle intensities vary as d2

p, following equation (1). The second one (Case 2 ) is the
exact computation of Mie scattering function S11(dp, θ = 60◦) [Bohren and Huffman,
1983].

Figure 2.3.12: Influence of the particles diameter distribution (γdp) on Recall and Pre-
cision quantities, for a simple scattering model, Case 1 (left), and for a more complex
Mie scattering model Case 2 (right).

In order to discriminate between the angular effects (which were investigated in sections
above) and particle diameter distribution effects of Mie scattering, we consider a different
camera setup than that of figure 2.2.1. We will now consider that all the cameras are in
forward scatter positions with a scattering angle fixed at 60◦. As a consequence, there
is no difference in the average intensities of the cameras, the photometric consistency
between cameras is restored. Therefore in this context the only observed effects will



36 Experimental factors and tomographic PIV

be caused by to the polydisperse character of the seeding where a particle’s intensity is
function of its diameter with the dependency shown in figure 2.3.7 (right).

Figure 2.3.13: Simple scattering model, Case 1 : for γdp = 0.01 (left) and γdp = 0.3
(right).

For both models, we consider a Gaussian distribution of dp, with variable standard
deviation σdp . The diameters are randomly drawn from the segment

[
mindp , maxdp

]
,

according to a Gaussian distribution law with mean µdp = 0.5 µm and standard
deviation σdp , with mindp = 0.1, maxdp = 1. In both cases, the control parameter
is defined as the ratio between the standard deviation and the mean diameter called
γdp = σdp/µdp . We increased the σdp from 0 to 0.5 for Case 1 and from 0 to 0.165 for
Case 2. For Case 2, we did not investigate for wider diameter distribution because of
the dramatic loss of particles due to the d−6

p regime of the Mie scattering function (see
figure 2.3.7). The seeding density was set to ppp = 0.024 in both cases.

Similar results between the two models are obtained in terms of TP and FP, and
therefore in terms of Recall and Precision, as shown by figure 2.3.12, right and left. One
notices that as γdp increases, the Precision does not vary much, and the Recall tends
to decrease. Both quality measures progressively drop. Case 2 ‘s recall parameter
drops faster than Case 1 ’s recall parameter. Indeed, taking into account the real
diameter dependency due to Mie scattering increases the intensity dispersion in the
volume compared to Case 1, thus increasing the number of missed detection due to
a very low intensity level on certain particles. This detection loss can be seen in the

Figure 2.3.14: Mie scattering model, Case 2 : for γdp = 0.01 (left) and γdp = 0.3 (right).

PDFs in figure 2.3.13 and figure 2.3.14. The PDFs show that for a same γdp = 0.3,
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the reconstructed intensities in Case 2 are widely scattered compared to Case 1.
Distinguishing between a real particle and a ghost particle becomes more difficult. The
signal-to-noise ratio in the reconstruction volume is thus lowered in Case 2.

This shows that a proper modeling of the Mie function is crucial for an accurate
prediction of accuracy loss in the reconstruction and ultimately in the velocity field.
The classical model whith a d2

p dependency of the intensity drastically underestimate
the intensity dispersion.
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2.4 Conclusions
In this chapter, our aim was to assess the influence of experimental factors on the
quality of tomographic reconstruction for 3D-PIV. By investigating experimental factors
through numerical simulations, we increased the level of complexity and physical realism
of those simulations. To do so, we degraded the quality of the images using geometrical
and optical considerations (Mie scattering and defocusing effects) and studied the effects
of those deteriorations on the reconstruction quality.

We identified a new factor built on geometric considerations. This parameter,
RI/U , is the ratio between the Intersection and union Volume determined by the camera
fields of view and the laser volume. The "added" particles, which lie in the union but
are not in the intersection, act as a strong source of noise, degrading the reconstruction
quality from a resulting increase in the number of ghost particles. However, we showed
that in a classical 3D-PIV setup, optimizing the camera angle to increase the RI/U

factor had only marginal gains in terms of reconstruction accuracy.

By analyzing the influence of limited depth of field of the cameras, we showed
that conducting an experiment with a degree of defocusing but without accounting for
it in the reconstruction, will be at the cost of signal-to-noise ratio in the volumes used
in the correlation. Contrary to the earlier conclusion referring to RI/U , this loss results
from an increase in missed detections, while the number of ghost remains comparable.

Finally, we studied the effects of Mie scattering on the reconstruction. We classi-
fied the effects of light scattering in three physical phenomena: an intensity difference
between images, intensity dispersion within an image and the dependency of intensity
on the particle diameter. We showed that all three phenomena tend to decrease the
signal-to-noise ratio in the reconstruction volume. The main concluding comment is the
fact that not taking into account for the real Mie model leads to an over-estimation
of the reconstruction quality. The main source of quality loss does not come from the
angular variation of the Mie model, but rather does come from the intensity disper-
sion due to a polydisperse seeding which leads to missed detections in the reconstruction.

The investigation of the geometry of the reconstructed volume showed us that
the RI/U has a strong impact on the reconstruction quality. For a more realistic sim-
ulation of the tomographic reconstruction, particles should be spread inside the whole
illumination volume and not only inside the intersection volume. This added source of
noise in the reconstruction helps further characterize the reconstruction algorithm and
its robustness to ghost particles. In chapter 3, we introduce a new approach for the
tomographic reconstruction based on a particle paradigm. The algorithm behavior is
characterized using numerous imaging conditions, including the image noise generated
by the RI/U factor.



3 Particle Volume Reconstruction

3.1 Introduction
As mentioned in the introduction of this dissertation, many research efforts focused on
the tomographic reconstruction to improve the overall quality of the 3D-PIV measure-
ment. To do so, different reconstruction algorithms were investigated from algebraic
reconstruction methods (ART, MART, SMART, Bi-SMART [Thomas et al., 2014]) to
multi-exposure algorithms such as MTE-MART [Novara et al., 2010]. However, all those
inversion algorithms use an inversion model which aims at reconstructing particles as
3D blobs of intensity distribution. This is far from physical reality since the particles
are even smaller than a voxel most of the time.

In chapter 2, we generated synthetic PIV images using a particle-based represen-
tation of the images where a particle is defined by a given intensity, its location in space
and its PSF function associated with a given camera.

Our idea now is to use this more physical representation as an inversion model
for the tomographic reconstruction. If one knows or even estimates the PSF function,
it is possible to use well-known algebraic reconstruction algorithms to reconstruct
"particles" in a discretized space. Such an approach requires only a few voxels to
explain the image appearance, therefore it favors much more sparsely reconstructed
volumes than classic tomo-PIV. Furthermore, this method, as [Schanz et al., 2010]
is well adapted to difficult viewing conditions where defocusing effects and astigma-
tism are present. This approach is referred to as Particle Volume Reconstruction (PVR).

In chapter 3, we now will investigate this inversion model and its implications on
the reconstruction volume. Numerical simulations of tomographic reconstruction and
displacement estimation will be used to test PVR behavior on a large variety of
generating conditions (seeding density, PSF size) and its robustness to an uncertainty
of the PSF knowledge.

3.2 PVR : working principles and numerical assess-
ment
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1. Introduction

In numerous particle image velocimetry (PIV) (Adrian and 
Westerweel 2010) and tomo-PIV (Elsinga et al 2006) experi-
ments, particles have a very small physical size, so that their 
images on the camera sensors are mostly controlled by the 
aperture diffraction, and are thus essentially a characteristic 
of the imaging system. Optimization in plane PIV develop-
ments has led to the seeking of a resulting point spread func-
tion (PSF) in the images having a 3 × 3 pixel square shape in 
order to guarantee good subpixel accuracy in the displacement 
estimation. Later pioneering works on tomo-PIV sought to 
maintain a similar rule-of-thumb by considering geometrical 
models, as those used in x-ray tomography. Conventional 
multiplicative algebraic reconstruction technique (MART)/
simultaneous multiplicative algebraic reconstruction tech-
nique (SMART)-based tomo-PIV methods (Atkinson and 
Soria 2009, Elsinga et al 2006) have indeed aimed at recon-
structing volumic ‘particle blobs’, i.e., aggregates of several 
voxels width, rather than the actual particles, which would 

lie in a single voxel (and, usually, be much smaller than the 
voxel size). This discrepancy, compared to the actual image 
formation physics, is depicted in figure 1. A particle whose 
geometrical image is much smaller than the PSF produces an 
Airy-like image, as in the left part, whereas in the above cited 
tomo-PIV methods, this image is modeled as the integration 
of a 3D bell-shaped volumic distribution of particle intensity 
(or ‘blob’) in the volume, along a thin pixel-sized pencil elon-
gated in the direction of the line of sight (right part).

Such approaches naturally rely on geometric considera-
tions of varying complexity, as the light integration is per-
formed over a cone having the optical center as apex and a 
square pixel trace on the focal plane. In this context, building 
the weighting matrix W linking the voxel and pixel spaces 
amounts to computing the volume intersecting this ‘pixel 
cone’ and a voxel. As reviewed by Thomas et al (2014), sev-
eral techniques have been proposed in the literature to simplify 
this geometrical model. Among them, Elsinga et al (2006) and 
later Atkinson and Soria (2009) have proposed approximating 
the cubic voxel by a sphere and the ‘pixel cone’ by a cylinder 
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of the same surface in the vicinity of the voxel in order to 
maintain tractable computation times.

Although such approaches have proven wide practical 
utility, their domain of use is restricted to favorable viewing 
conditions, this point being linked to the uncertain physical 
nature of the reconstruction itself. In difficult experimental 
conditions, such as when viewing through curved walls, in the 
presence of defocusing or in compressible flows, it is known 
that the shape of the PSF, i.e. of the particle images, can 
vary dramatically, leading to accuracy losses in the estima-
tion, since geometry cannot account for these perturbations. 
In order to overcome these difficulties, Schanz et al (2013) 
recently proposed accommodating for variations of the PSF 
through the definition of an adapted weight matrix. In their 
approach, this matrix is built from a dedicated processing of 
PSF samples, which is specifically designed in order to yield 
reconstructed volumes made of particle blobs suited to 3D 
cross-correlation. Their study indeed showed increased recon-
struction quality and more accurate displacement estimations, 
in particular in the case of astigmatism and defocus.

We propose here a different and novel approach called 
particle volume reconstruction (PVR), which consists of a 
direct discretization of the image formation model from optics 
depicted in figure 1, left. The two most salient new features of 
PVR, which are tightly linked to one another, are that, firstly, 
it uses a weight matrix W directly made up of PSF samples, 
i.e., the construction of W requires information from the cali-
bration of the imaging set-up only. The second specificity is 
that, consequently, it reconstructs point-like particles rather 
than blobs. As such, the PVR result can be the basis of either a 
particle tracking velocimetry (PTV) technique or a correlation 
based PIV, with post-processing adapted to each case. This is 
summarized in the flow chart of figure 2, which considers the 
three usual steps of an experiment. The first one is calibra-
tion, which provides the geometric projection functions of the 
cameras and, thanks to dedicated techniques, the PSF, which 
enables one to directly build the weight matrix. The second 
one is reconstruction, which can be based on a conventional 
MART or SMART approach, and provides a near punctual 
particle volume. The last one is velocity estimation, which 
can be done by PTV or correlation based PIV, after a post-
processing step adapted to each case. Indeed PVR underlies 
a sparse volumic representation of point particles, which lives 
halfway between infinitely small particles and larger two to 
three voxel blobs usually used in tomo-PIV. From that repre-
sentation, it is possible to go further and sharpen the particle 
to its essential features, which is the aim of performing PTV 
(intensity and 3D position, by using subvoxel refinement), or 

to smooth it to the ubiquitous two voxel diameter blob, which 
is the gold standard of correlation for PIV, thanks to Gaussian 
post-filtering.

In this paper, regarding velocity estimation, we will focus 
mostly on the use of PVR for correlation-based 3D PIV. As 
mentioned above, the second processing choice of PVR vol-
umes, 3D PTV, requires a dedicated subvoxel refinement, 
which in our opinion should be directly combined with the 
estimation of motion. This is an ongoing and separate axis of 
work in itself, and will thus not be presented here. However, 
the potential of the PVR result for 3D PTV will still be 
accounted for in this paper, first by showing that the model 
converges to the true particle position in the case of an increas-
ingly refined discretization grid and, second, by evaluating the 
reconstructed volume using detection metrics, i.e., by evalu-
ating the fraction of true detected particles and of ghosts.

As the weight matrix W is constructed by directly incorpo-
rating the calibrated PSFs, the PVR model is designed to offer 
a simple systematic approach for dealing with spatially var-
ying PSF due, for instance, to defocussing and astigmatism, 
which are commonly encountered if the illuminated volume is 
larger than the camera’s depth of field, in the presence of inter-
faces or in compressible flows. Thanks to synthetic tests we 
will show that, indeed, PVR-SMART behaves quasi-systemat-
ically better than the classical geometrical approach, hereafter 
referred to as tomo-SMART, whatever the performance metric 
considered (reconstruction or displacement estimation).

Thus, similar to Schanz et al (2013), PVR is expected to lead 
to significant gains in accuracy in the difficult experimental sit-
uations mentioned above. However, in contrast to Schanz et al 
(2013), PVR uses the calibrated PSF directly so as to obtain a 
reconstruction of point-like particles instead of blobs, and then 
applying a post-processing suited either to PTV or to PIV.

Note that our approach has similarities with the iterative 
particle reconstruction (IPR) recently introduced by Wieneke 
(2013). Indeed, IPR directly works on the same image forma-
tion as we do, but does not discretize it and directly tackles 

Figure 1. Image formation from a volumic projection: particle 
model (present approach, left) and blob model (right).

Volume Volume

Figure 2. Flow-chart of a typical experiment using the particle 
volume reconstruction (PVR) method.
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the non-linear problem of fitting the particle parameters of 
the image model to observed images. The logic of IPR is to 
remove from observed images the additive contribution of a 
tentative particle in order to enhance the detectability of parti-
cles being otherwise hidden by that particle. Implementation 
of this idea relies on a complex iterative procedure that cycli-
cally adds, refines or removes particles. In the proposed PVR 
approach, the discretization of the image formation model 
provides a linear forward model, which allows us to use clas-
sical and well-behaved algorithms such as MART or SMART 
by simply using the weight matrix derived from the PSF.

Our approach is also well suited to sparsity-based tech-
niques (Barbu et al 2011, Cornic et al 2013, Petra et al 2009). 
For instance, Cornic et al (2013) managed to obtain dramatic 
reductions of the problem size, and thus of the processing 
time, for the same set of particles compared to classical tomo-
graphic reconstruction techniques.

The outline of this paper is as follows. Section 2.1 recalls 
the basic image formation model for particle images. Then the 
main contribution of this paper is introduced in section 2.2, that 
is, a discretization of the image model that justifies the classic 
expression of image data in terms of an appropriate weight 
matrix and a voxelized intensity field. The usefulness of such a 
representation is demonstrated for tomographic reconstruction 
in section 3, then for velocity estimation in section 4.

2. Model description

In our approach, the weighting matrix W is built directly 
by following the physical model depicted in the left part of 
figure 1. This model is briefly reviewed in section 2.1, then its 
discretization is derived in section 2.2.

2.1. Imaging

Our imaging model is based on the concept of PSF. Any source 
point located at X in 3D-space has a geometrical image located 
at F(X) in the focal plane of a given camera (in practice, the 3D 
to 2D projection function F results from the camera calibration 
procedure, see for instance Wieneke (2008)), and the source 
intensity E is shared between the impacted pixel and its imme-
diate neighbors according to weights given by the so-called PSF 
hX(x). As implied by index X, the PSF is dependent on the loca-
tion of the source point X; this enables us for instance to model 
defocussing and astigmatism, which lead to distortions of the 
PSF compared to standard, in-focus imaging. Such variations of 
hX(x) can be determined by an adequate calibration procedure.

To the best of our knowledge, the only PSF calibration pub-
lished in the PIV community is that of Schanz et al (2013). This 
is based on a self-calibration step (Wieneke 2008) followed by 
a particle-by-particle least-squares fitting of a Gaussian PSF 
template. To build the so-called optical transfer function used 
for reconstruction by Schanz et al (2013), PSF parameters are 
then smoothed and resampled on a Cartesian voxel grid. In 
practice, one could also alternatively resort to simpler PSF 
calibration procedures used in computer vision, such as the 
slanted-edge method of Reichenbach et al (1991). This relies 

on the imaging of a black–white step, captured by the camera 
with a small but non-zero angle w.r.t. pixel alignment. The 
maximum slope of the transition separating the purely white 
and black zones can then be related to the σ of a Gaussian PSF 
model. During the PSF calibration process, such slanted-edge 
charts are swept in the z-dimension of the volume in order 
to capture the PSF variation with respect to depth. Recently, 
Delbracio et al (2012) have proposed a more elaborate chart 
and non-parametric PSF calibration techniques that have been 
used in the context of depth from defocus techniques (Trouvé 
et al 2013). It can thus be expected that in practice such cali-
bration techniques should allow accurate determinations of 
the PSF hX(x) in the entire experimental volume. Note that, 
whatever the calibration procedure, a fundamental property 
is that the PSF is a feature of the camera system, not of the 
source.

We consider a set of P particles, each of which is denoted by 
index p and located at Xp in 3D space. If we assume that the geo-
metrical image of these particles is much smaller than the PSF at 
Xp, then the intensity distribution in the image plane reads

x X xI E h F( ) ( ( )),X
p

P

p p

1
p∑= −

=
 (1)

where x = (x, y) denotes any location in the image plane and 
Ep is the intensity of particle p. In practice, camera sensors 
consist of an array of pixels k = (k1, k2), each gathering a single 
intensity value I (k). In order to alleviate the following deriva-
tions, we will omit the dependence in Xp of the PSF h, i.e., 
denote it by h(x).

2.2. Discretization

Based on (1), an estimation of the number of particles, their 
3D positions and intensities is a difficult non-linear problem, 
which has been tackled for instance within the IPR approach 
of Wieneke (2013). IPR fits the nonlinear model (1) for 
imaging data using a complex procedure that iteratively 
adds or removes particles, as does the CLEAN algorithm in 
astronomy (Hogbom 1974). Our approach builds on a simpler 
linear relationship between images and an intermediate rep-
resentation of particles on a regular 3D grid associated with a 
voxel space representation, encoding simultaneously the par-
ticles’ locations and intensities.

An important parameter of such a grid is its scale ∆, i.e., 
the voxel physical size. Without loss of generality, any node 
of this grid (the center of a voxel) can be indexed with a triplet 
of signed integers n = (nx, ny, nz) such that the 3D position of 
the node is n ∆.

We look for a matrix–vector counterpart of (1)

= ∼I EW , (2)

where

I is a vector that collects image pixels indexed by k,∼E  is a vector of intensities located at discrete nodes n ∆, 
encoding both location and intensity of particles,

kn.
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Discretization of (1) requires a volumic approximation of the 
projection + PSF function X↦ h (x  − F(X)) based on grid node 
values near X, i.e.,

∑ Δ β Δ− ≈ − −x X X n X nh F h F( ( ) ) ( ( ) ) ( ) .
n

 (3)

This approximation is illustrated in figure 3 for a 2D case.
β can be any interpolation kernel, but for the sake of par-

ticle reconstruction we advocate that this kernel should be as 
compact as possible; thus in this paper we will use a trilinear 
interpolation. Using (3) for each particle position Xp, and 
plugging into (1), we get

⎛
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h F E
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p
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∑ ∑

∑ ∑
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≈ − −

≈ − −

=
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(4)

where the last equality is obtained by swapping the summations. 
The last expression enables us to introduce a discrete 3D field

∑ β Δ= −∼
=

X nE E ( ) .n
p

P

p p

1

 (5)

Evaluating (4) at the pixel index k and introducing (5) we get:

k k nI h F E( ) ( ( )) .
n

n∑ Δ≈ − ∼
 (6)

This is the matrix-vector representation sought (2). The entries 
of the weight matrix W have a straightforward expression in 
terms of the PSF and the geometric projection function:

k nh FW ( ( )).kn Δ= − (7)

This remarkable property stems from the fact that we are 
considering the reconstruction of point-like particles. Indeed, 
in works which are based on blob reconstruction, such as 
(Schanz et al 2013), the components of W are derived from a 
dedicated processing of the PSF.

For all the synthetic experiments performed in this paper 
we assume an ‘optics + pixel’ PSF made of a Gaussian with 

standard deviation σpsf for optics averaged on the pixel sur-
face, assuming a 100% fill factor:
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(8)

It is important to note here that the accuracy of the approxi-
mation in (6) depends on the accuracy of the original approxi-
mation (3), which, in turn, depends on the voxel-to-pixel (v/p) 
ratio. Typically, a PSF σpsf = 1 can be accurately sampled using 
v/p = 1, but for a sharply focused particle with σpsf = 0.4 it will 
be shown to be insufficiently accurate, v/p = 0.5 being more 
appropriate in this case. Further examples of this dependence 
will be given in section 3.4.

According to equation  (5), the 3D field 
∼
En can be seen as 

a discrete approximate representation of the original Dirac-like 
particle field. Conversely, given 

∼
En, one can recover unambigu-

ously the intensity and position of particles with subvoxel accu-
racy within this 3D representation, if they do not overlap. Note 
that the occurrence of the overlapping of blobs in 3D space is 
extremely rare given the typical values of the number of particles 
per volume Nppv in 3D PIV. Thus, it is expected that the recon-
structions 

∼
En will most often represent truthfully the particle dis-

tribution. Refinements to this approach may also be found in the 
case of overlapping, should the case arise in practice.

In this paper, we will however not try to recover the orig-
inal particle field, but rather correlate 

∼
E , as we will use a 3D 

cross-correlation algorithm to estimate the displacement. As 
we will show, this correlation process will provide 3D vec-
tors with subvoxel accuracy. This is due to the fact that the 
reconstruction of a particle is not strictly contained in a single 
voxel, but has a slightly larger extent. Thus, the shape of 

∼
E  

depends on the subvoxel position of the particles, which can 
be retrieved by this correlation.

3. Single volume reconstruction using PVR

We now turn to an assessment of the efficiency of represen-
tation (6) based on synthetic image data. We first specify the 
parameters used and the quantities of interest considered for 
this evaluation. We then consider the relative performances 
of PVR-SMART and of the classical geometry-based tomo-
SMART (Atkinson and Soria 2009, Elsinga et al 2006) in sev-
eral experimental conditions, obtained by varying the number 
of particles per pixel Nppp and σpsf. In the latter case, we first 
explore the ideal case where the PSF size σpsf is known by the 
experimentalist, but allow this factor to vary. Such a situation 
mimics for instance the situation where variations of the PSF, 
for instance due to the presence of defocused particles or of 
astigmatism, have been evaluated during calibration. Then we 
test the robustness of PVR-SMART w.r.t. inaccuracy in this 
parameter, in order to quantify the robustness of the method to 
situations where the PSF calibration was difficult or impossible 
in a direct way (such as in the presence of shocks in the flow, 
for instance).

Figure 3. Approximation of the projection + PSF function, 
exemplified on 2D geometry.
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3.1. Synthetic setup

All our simulations involve four cameras, which are posi-
tioned on a single side of the laser volume at the vertices 
⎛
⎝⎜

⎞
⎠⎟

± ±1
2

,
1

2
,

1
2

 of a square of 1  m side. These are posi-

tioned 1 m from the center of the reconstructed volume, the 
latter defining the origin (0, 0, 0), and point at it. The pin-hole 
model is assumed for the cameras (without a Scheimpflug 
adapter for simplicity) and calibration is supposed to be per-
fectly known. The focal length is 100 mm, thus the magnifica-
tion factor M is equal to 0.1 and the pixel size is 10 µm with 
a 100% fill factor. Thus a voxel-to-pixel ratio v/p = 1 leads to 
voxels of 0.1 mm side. The image size is set to 512   ×  512; 
hence, the field of view is fixed for each simulation. The 
dynamic range of the images is chosen to equal 8 bits.

The laser volume is modeled as a 20  mm thick parallel-
epiped. The reconstructed volume, also 20  mm thick, is the 
portion of the illuminated volume seen by all the cameras. 
The tracer particles are uniformly distributed in the light sheet 
volume. The density is controlled by the particle per voxel 
count (ppv). Horizontal and vertical extension of the sheet are 
larger than the field of view covered by all the cameras. As 
particles are present all over the laser sheet, it is important to 
notice that this leads to the fact that all the illuminated par-
ticles cannot be seen by all cameras, which is systematically 
the case in real datasets, and is however not often taken into 
account in synthetic experiments. As shown in Cheminet et al 
(2013) and Cornic et al (2013) the parameter that measures the 
impact of neglecting this factor (i.e., considering that only the 
particles seen by all cameras are illuminated) is the ratio I/U 
of the volume formed by the intersection of the camera fields 
of view with the volume formed by the union of their fields of 
view. It turns out that a large number of studies in the literature 
consider only particles within the intersection volume, which 
amounts to considering I/U = 1. Thus, to enable easier compari-
sons and to address situations more directly relevant to experi-
ments, we will present results both for I/U = 1 and I/U < 1.

The scattered light is proportional to the square of the par-
ticle diameter dp. Note that Mie scattering is not taken into 
account in this study. Since the laser sheet profile is consid-
ered uniform, the intensity of a particle depends only on its 
diameter. This is given by I d / 4p0

2 , where I0 is a constant. The 
particle diameters are supposed to be small enough (a few 
microns) to neglect the size of their geometric image Mdp. A 
monodisperse seeding is considered with =I d / 4 170p0

2 .
The images are synthesized according to (1) with a PSF 

given by (8). Unless otherwise specified, we take σpsf = 0.6. 
With this value, a particle has a 4  ×  4 pixel image pattern.

We will consider different synthetic tests with increasing 
but uniform values of σpsf, ranging between 0.4 and 1.2. 
This will allow us to evaluate the ability of PVR to deal 
with defocussing. Indeed, processing the corresponding 
images using the exact value of σpsf will provide a first-order 
account of situations where variations of σpsf have been suc-
cessfully calibrated, whereas processing them with a dif-
ferent value will evaluate situations where these variations 
could not be quantified.

Unless otherwise specified, a zero-mean Gaussian noise 
with standard deviation 2 is added to the images, with nega-
tive image values thresholded to zero. Its amplitude is thus 
about 5% relative to the maximum particle intensity.

3.2. Reconstruction algorithm

SMART solves linear systems under non-negative constraints 
(Byrne 2008), and is a popular choice for tomographic PIV 
reconstruction following the work of Atkinson and Soria 
(2009). It is considered here because of its parallel structure 
(compared to MART, which is highly sequential). Applying 
SMART in order to solve (2) yields the following update equa-
tion (in logarithmic form in order to emphasize parallelism):

E E I Elog log W(log logW ).k k k1 μ= + −͠+ (9)

W͠ is obtained by normalizing W over the columns and μ is a 
relaxation parameter. In our simulations μ is set to 1 in order to 
guarantee convergence (Byrne 2008).

Our simulations consider a reference algorithm, referred to 
as tomo-SMART, and a new algorithm derived from the pre-
sent framework referred to as PVR-SMART. Both algorithms 
start with a multiplicative line-of-sight (MLOS) step (Atkinson 
and Soria 2009) that aims to reduce the number of voxels that 
have to be considered in the reconstruction. The MLOS volume 
is thresholded: only the voxels of intensity greater than 4 are 
retained for further refinement. Then, 25 iterations of SMART 
are performed. In both cases, the iteration is defined by (9), 
though the matrix W is different. Tomo-SMART builds W by 
computing the volume intersected by a cylinder and a sphere 
centered on the voxel as described in Elsinga et al (2006) and 
Atkinson and Soria (2009). PVR-SMART computes W using 
PSF samples and geometric projection functions with (7). As 
discussed below equation (6), the model is parameterized by 
the scale of the voxel selected in the discretization of the image 
formation model, i.e., the voxel to pixel ratio v/p. As will be 
shown in section  3.4, v/p = 0.5 constitutes a good trade-off 
between processing times and the degree of refinement neces-
sary to account for a large range of PSFs. As the optimal setting 
of v/p for tomo-SMART is known to be around 1 (Thomas et al 
2014), this value will be retained in the tests for this algorithm.

Note that in the following, in order to allow a consistent com-
parison between the methods, all lengths or diameters given in 
voxel units will refer implicitly to v/p = 1 voxels, unless other-
wise specified. This simply translates into applying a change 
of units to the results of PVR-SMART reconstructions, which 
are performed at v/p = 0.5, in order to be consistent with the 
sampling of tomo-SMART reconstructions.

The MLOS, tomo-SMART and PVR-SMART algorithms 
have been coded in CUDA in order to take advantage of their 
intrinsic parallelism and of the massively parallel capacities of 
GPUs. The matrix W is not stored, its entries being computed 
on the fly for projection and backprojection, and recomputed 
at the next SMART iteration.

In order to characterize the PVR-SMART reconstruc-
tion w.r.t. tomo-SMART we have performed 50 independent 
reconstructions of a single particle with random locations. 

Meas. Sci. Technol. 25 (2014) 084002

44 Particle Volume Reconstruction



F Champagnat et al

6

The total intensity of each particle equals 450 counts, which is 
spread on images with σpsf = 0.9. Figure 4 shows a close-up on a 
7  ×  7 slice around the maximum reconstructed intensity voxel.

We have also computed the dispersion of reconstructed 
blobs using the standard deviation in each direction, then aver-
aged this quantity on the 50 particle samples. The result is 
displayed in table 1. Figure 4 and table 1 clearly indicate more 
spiky results for PVR-SMART than tomo-SMART. Note that 
spikiness is obtained here without using sparsity-enhancing 
techniques such as Petra et al (2009), Barbu et al (2011) and 
Cornic et  al (2013). MART/SMART techniques are indeed 
already sparsity techniques in themselves and are exploited 
here by using our weight matrix W built from PSF samples.

3.3. Performance metrics for volume reconstructions

The difference between the particle approach considered here 
and the classical tomographic approach initially introduced by 
Elsinga et al (2006) raises the question of which ground truth to 
consider for building performance criteria for the algorithms. 
Indeed, for the same set of physical particles, the former will 
aim at providing essentially the list of voxels containing a par-
ticle together with its corresponding intensity, while the latter 
will reconstruct volumetric blobs of approximately the back-
projected particle image size, centered around these physical 
particles. In this tomographic framework in particular, Elsinga 
et al (2006) built the ground truth by expanding locally the 
physical particles to a 3D Gaussian blob, usually of the order 
of two to three voxels size, according to the idea of having 
volumetric distributions well adapted to the subsequent cor-
relation step that yields the 3D displacement field.

A natural quality measure is then the Q criterion, which 
indicates the degree of correlation between the reconstruc-
tion and this ground truth. In the case of PVR-SMART, the 

Q criterion cannot be applied directly, as the particle recon-
structions generated by PVR-SMART have nearly one voxel 
size. Therefore, to compute this criterion in the following, 
we expand the PVR-SMART reconstruction using the same 
method as for building the ground truth, i.e., filter the voxel 
volume using a 3D Gaussian kernel. The standard deviation 
of this Gaussian  is σpsf, which is also the standard deviation 
of the Gaussian that expands locally the physical particles to 
3D Gaussian blobs, leading to the ground truth volume. In this 
way, as usually performed in the literature (see, for instance, 
Elsinga et  al 2006), the ground truth volume accounts for 
the fact that the blobs reconstructed by tomo-SMART have 
approximately the size σpsf. An important point to mention 
here is that, whatever the v/p ratio chosen, the quality factor Q 
is computed in a v/p = 1 discretized space. In the case where 
v/p ≠  1, the reconstructed volume is considered as a set of 
particles: any voxel with non-zero intensity is considered as a 
particle with the center of the voxel as a 3D location. This set 
of particles is then converted to an intensity volume of scale 
v/p = 1 in the same way as the set of true particles is converted 
to the ground truth volume for quality factor Q.

We also introduce a metric adapted to measure the detection 
performance of the methods. A detection is here a local max-
imum in the reconstructed volume. It is termed a true positive 
(TP) if it is in the neighborhood of a true particle. The neighbor-
hood of any particle is the 2  ×  2  ×  2 voxel cube whose center 
has a chessboard distance from the particle lower than one 
voxel. A detection is a false positive (FP), i.e., a ghost, if it is 
not in the neighborhood of a true particle. A particle is recorded 
as a false negative (FN) if there is no detection in its neighbor-
hood. A first useful metric is then the Recall, i.e., the fraction 
of detected particles found, e.g., in Wieneke (2013), defined by

#
# + #

TP
TP FN

. (10)

A second metric has to be considered for a complete account of 
the detection performance. This quantity is the Precision and 
quantifies the fraction of ghosts among all detected particles. 
In order to simplify the presentation of results, we will restrict 
the set of detected particles and only retain the S brightest of 
them, with S = #TP + #FN equal to the actual number of true 
particles. Such a choice is shown in Champagnat et al (2013) 
to be a good landmark for assessing the relative performance 
of algorithms. With such a choice, one can easily check that 
Precision and Recall are equal, so that one parameter enables 
us to quantify both the fraction of detected particles and the 
fraction of ghosts among the detections. In the following, 
we will refer to this quantity as Recall in the figures. Here as 
well, even when the reconstruction has been performed using 
v/p ≠  1, the Recall metric is computed in order to correspond 
to a v/p = 1 discretized space.

3.4. Selection of v/p

As shown in section 2.2, the accuracy of the approximation in 
the PVR reconstruction model (6) depends on the accuracy of 
the original approximation of the projection + PSF function (3), 
which in turn depends on the v/p ratio: the lower, the finer the 

Table 1. Averaged σ (v/p = 1 voxel unit) in each direction extracted 
from a 7  ×  7  ×  7 voxel volume around a maximum reconstructed 
intensity.

σx σy σz

tomo-SMART 0.83 0.82 0.84
PVR-SMART 0.19 0.23 0.35

Figure 4. Zoom on a slice of reconstructed volume using tomo-
SMART (left) and PVR-SMART with v/p = 1 (right). σpsf = 0.9. 
PVR-SMART shows more spiky results than tomo-SMART; note 
also the larger dynamic of the PVR-SMART reconstruction.
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approximation. Therefore, the accuracy of PVR reconstruction 
is expected to grow for increasingly refined voxel grids.

In order to measure the gain in accuracy provided by vary ing 
v/p, we perform a Monte Carlo experiment that involves the 
reconstruction of a single particle using PVR-SMART. At 
each run a single particle is generated with random location 
within a voxel, and its image is computed according to the 
PSF model (1) with σpsf = 0.6. Then, PVR-SMART is run with 
a given v/p, the voxel of maximum intensity is extracted and 
the coordinates of its center are taken as the particle location 
estimate. The mean absolute location error is then computed.

This procedure is performed for v/p varying from 0.1 to 1 
by steps of 0.1. The resulting mean absolute location error 
averaged over 50 runs is drawn in figure 5, left. Figure 5, right, 
presents the mean relative intensity error between the true par-
ticle intensity and the sum of the reconstructed intensity.

Despite the crude estimation for particle location and 
intensity (as no subvoxel interpolation is performed), figure 5 
shows a decrease of both mean errors from v/p = 1 to v/p = 0.1, 
the slope of the error being approximately constant for the 
location estimate. These curves indicate converging behavior 
of PVR toward the true location and intensity of the particle 
as v/p decreases to zero.

An increase of detection and velocity estimation perfor-
mance can thus indeed be expected as v/p decreases to zero. 
Conversely, the computational complexity and memory 
requirement grow as (v/p) − 3: a trade-off between accuracy/
performance and computational complexity must thus be 
found. In order to help this choice, figure 6 shows the evolu-
tion of the Q-factor w.r.t. v/p for different values of Nppp.

Clearly, for Nppp ⩾ 0.07, a gain greater than 0.05 in quality 
can be expected from a decrease of v/p down to 0.5. Note 
also that the slope of the Q-factor decreases gradually as v/p 
decreases, so that the gain between v/p = 0.6 and v/p = 0.5 
is rather modest. Meanwhile, at v/p = 0.5 the computational 
complexity and memory requirement are already about 8 
times higher than that required for v/p = 1. Going even further 
down to v/p = 0.4 would require twice as much memory and 
flops with a negligible expected gain in quality. Consequently, 
v/p = 0.5 appears a reasonable trade-off and will be the recom-
mended value for PVR.

As mentioned in section 3.2, for tomo-SMART, the optimal 
value of v/p has been shown on the contrary to be slightly 
larger than 1 (as seen in figure 2 of Thomas et al (2014)). In 
particular, this study showed that refining the voxel grid, i.e., 
using a value of v/p lower than 1, is counter-productive as it 
leads to decreased quality criteria. Therefore, in order to use 
each method at its optimal performance in the comparative 
tests, we will choose v/p = 1 for tomo-SMART.

3.5. Behavior w.r.t. Nppp

The image particle density Nppp is known to be one of the 
major factors that drives the reconstruction performance in 
tomo-PIV.

Figures 7 and 8 present a comparison of a classical tomo-
graphic reconstruction (tomo-SMART) and PVR (PVR-
SMART) for σpsf = 0.6. This PSF size corresponds to a good 
balance between signal-to-noise ratio in the images and peak-
locking in the displacement estimation. Figure 7 corresponds 
to a setting where only particles in the common field of view of 
each camera are illuminated particles (case I/U = 1), whereas 
figure 8 corresponds to the more realistic setting where some 

Figure 5. Evolution as a function of v/p of PVR localization error in the case of a single particle with σpsf = 0.6 and random location. Left: 
absolute location error (v/p = 1 voxels). Right: relative intensity error (counts). Averaged on 50 samples.
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illuminated particles are seen by at least one camera but not 
by all (case I/U = 0.47).

First, one observes in both figures  7 and 8 the expected 
decrease of performance for Q and Recall as Nppp grows, 
which corresponds to the increasing ambiguity in image data. 
The comparison of figures 7 and 8 also shows the sensitivity 
of performances to the I/U factor. The level of reconstruction 
performance (Q and Recall) drops consistently with lower 
I/U. The effect of lowering I/U is most seen at the highest 
Nppp, causing tomo-SMART to cross the 0.75 Q-factor level 
at Nppp = 0.065. Overall, the performance of PVR-SMART 
is systematically higher than that of tomo-SMART, and the 
advantage of PVR-SMART over tomo-SMART grows with 
increasing Nppp and with decreasing I/U. In particular, in 
the realistic case where I/U is less than unity, the Q-factor 
obtained with PVR-SMART remains above 0.75 for all values 
of Nppp considered.

3.6. Behavior w.r.t. σpsf

PVR tends to produce spiky results whatever the size of the 
PSF, thus a better robustness than tomo-SMART to the change 

of shape and size of PSF is expected. The goal of this section is 
to investigate this prediction: image sets are synthesized for 
Nppp = 0.07 and different σpsf, then PVR-SMART is run on each 
set using the value of σpsf used during synthesis, while tomo-
SMART is run in standard conditions as described above. 
Figures 9 and 10 compare the performance of both approaches 
on these data. Note that, as explained in section 3.3, computa-
tion of the quality factor Q is done by considering a ground 
truth made of Gaussian blobs defined by σpsf. Thus in figures 9 
(left) and 10 (left), as well as in figure 11 (left), each value of 
σpsf corresponds to a different ground truth.

A quick look at figures 9 and 10 shows a global decrease 
of performance as σpsf grows. This is a global impact of 
the particle image signal-to-noise ratio: indeed, the par-
ticle intensity is kept constant while the PSF spreads over 
more pixels as σpsf grows, thus the peak intensity decreases, 
whereas noise remains constant. Another noticeable trend, 
visible in the Recall, is that the fraction of ghost particles 
also grows with σpsf, due to the increase in particle image 
area (Elsinga et al 2011). As mentioned above, the perfor-
mance indices drop significantly when one compares I/U = 1, 
figure  9, and a lower I/U = 0.47, figure  10. In particular, 

Figure 7. Comparison between conventional tomographic reconstruction and the proposed PVR approach, using the SMART algorithm, 
σpsf = 0.6, for varying Nppp. I/U = 1. Left: Q criterion. Right: fraction of detected true particles. Note that in all parts of this section, each 
method is operated at its optimal v/p value, i.e., v/p = 0.5 for PVR-SMART and v/p = 1 for tomo-SMART.
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Recall remains nearly optimal until σpsf = 0.8 at I/U = 1, but 
drops more rapidly at I/U = 0.47. Q for PVR-SMART has 
also a better robustness to the increase of σpsf at I/U = 1 than 
at I/U = 0.47.

All performance metrics are in favor of PVR-SMART 
in the whole range of variation of σpsf and the advantage of 
PVR-SMART is even larger for the more difficult configu-
ration I/U = 0.47. Thus PVR-SMART is expected to work 
consistently better in the presence of spatially varying PSF, 
for instance if the illuminated volume is larger than the focus 
zone of the cameras.

3.7. Robustness w.r.t. inaccurate PSF knowledge

In practice, in order to achieve these reconstruction estima-
tion gains in situations of defocus, PVR-SMART needs PSF 
inputs, which result from an adapted calibration procedure. 
Depending on the context, a family of models can be fitted to 
experimental data, as explained in section 2.1. This means that 
situations may occur where PVR-SMART will use an approx-
imate PSF model, for instance because of residual errors in 
the calibration process. We thus propose investigating the 

robustness of PVR-SMART to such imperfect knowledge by 
conducting experiments where the true PSF is given by (8) 
with σpsf = 0.6, while the value of σpsf used for the reconstruc-
tion varies between 0.4 and 0.9.

In figure 11, tomo-SMART has constant behavior since σpsf 
is not a parameter of the method. One observes that PVR-
SMART is fairly tolerant to inaccurate knowledge of σpsf. In 
particular, Q obtained with PVR-SMART remains above that 
of tomo-SMART for 0.40 ⩽ σpsf ⩽ 0.81, and is lower for larger 
values. When considering Recall, the domain of valid σpsf 
reconstruction parameters ranges from 0.48 to 0.85. In both 
cases, PVR-SMART remains thus robust to deviations from 
the true PSF of up to 20%.

4. PVR for PIV velocity estimation

We now turn to an assessment of the efficiency of represen-
tation (6) for 3D PIV using correlation. We first specify the 
parameters used and the quantities of interest considered for 
this evaluation. Then we compute and analyze the relative 
performances of PVR-SMART and tomo-SMART in several 

Figure 9. Comparison between conventional tomographic reconstruction and the proposed PVR approach, using the SMART algorithm, 
I/U = 1, Nppp = 0.07, for varying σpsf. Left: Q criterion. Right: fraction of detected true particles, or Recall.
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Figure 10. Comparison between conventional tomographic reconstruction and the proposed PVR approach, using the SMART algorithm, 
I/U = 0.47, Nppp = 0.07, for varying σpsf. Left: Q criterion. Right: fraction of detected true particles, or Recall.
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experimental conditions, obtained by varying the two param-
eters Nppp and σpsf as in the previous section.

4.1. Ground truth velocity field

The displacement field considered is a vortex ring, similar 
to that considered by Elsinga et al (2006), whose main sec-
tion lies in the z = 0 plane. The radius of the ring is equal to 
197 voxels and the maximum displacement is equal to 2.94 
voxels (in v/p = 1 unit). Figure  12 shows the corresponding 
vector field, together with the ω = 0.05 vox/vox vorticity con-
tour (depicted in red) of the vortex ring.

4.2. Displacement estimation

In order to maintain realistic processing times, 3D PIV 
evaluation is chosen to be performed at v/p = 1 voxel size. 
Indeed, the finer v/p = 0.5 choice would have required 8 
times more memory and flops. Correlation can thus be per-
formed directly on the output of tomo-SMART, while that 
of PVR-SMART has to be sampled from the v/p = 0.5 to 
the v/p = 1 discretization grid. This transfer must include an 
anti-aliasing filter in order to preserve the v/p = 0.5 infor-
mation of PVR. We therefore choose the post-processing 
of PVR-SMART (as outlined in the flow chart of figure 2) 
using the two following steps: first, the v/p = 0.5 voxel 
volume is filtered using a 3D Gaussian kernel with stan-
dard deviation σblob, then the result is down-sampled using 
a factor of two in each direction. In practice, it is known 
from plane PIV that a favorable PSF total width for accu-
rate processing is around 2  ×  2 to 3  ×  3 pixels. Therefore, 
in the following, we will choose σblob equal to 0.6, this 
value being expressed in v/p = 1 voxels. The sensitivity of 
measurement quality to this choice will be assessed in more 
detail at the end of this section.

Displacement estimation from both tomo-SMART and 
the post-processed PVR-SMART volumes is then performed 
with FOLKI3D, an extension to 3D PIV of the iterative 

image deformation algorithm introduced by Champagnat 
et al (2011). Cross-correlation is maximized using an itera-
tive gradient-based approach, in the spirit of Lucas–Kanade 
methods. The algorithm has a highly parallel structure and is 
implemented on a graphics processing unit (GPU). Similar to 
the 2D version, the main parameter of FOLKI3D is the size 
of the interrogation volume, which determines the spatial 
resolution of the result. This parameter has been set here to 
39   ×  39   ×  39 voxels. During the iterative process, volume 
deformation is achieved using a cubic B-spline interpolation.

Displacement fields obtained with FOLKI3D are then 
assessed using, firstly, the averaged norm of error between 
estimated and ground truth displacement, defined as

̂VE
K

v X v X
1

( ) *( ) ;gt

k

K

k k

1

∑= ‖ − ‖
=

 (11)

where ̂v X( )k  is the value of displacement estimated at grid 
node Xk, v*(Xk) is the ground truth displacement at Xk and 
the sum is performed on all the displacement vectors retained 

Figure 12. Vector field of the vortex ring used in the synthetic tests. 
The red contour corresponds to ω = 0.05 vox/vox.

Figure 11. Robustness of PVR-SMART to inaccurate knowledge of the image PSF σpsf. The different metrics are drawn as a function of the 
σpsf used in PVR-SMART, whereas the image σpsf equals 0.6. Nppp = 0.07, I/U = 0.47. The level of performance of tomo-SMART is recalled 
in the blue solid line. Left: Q criterion. Right: fraction of detected true particles, or Recall.
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after the estimation. We also found it interesting to comple-
ment this index with a metric that reflects the error w.r.t. 
an estimated displacement using a perfectly reconstructed 
volume. We denote this quantity

̂VE
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v X v X
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=

 (12)

where v° is the displacement field obtained from the ‘ground 
truth volumes’, which are built by expanding locally the 
point particles to a 3D Gaussian blob, as described in sec-
tion 3.3. This index was proposed by Schanz et al (2013), 
who considered that correlation of a perfectly reconstructed 
volume is a more realistic goal for displacement estima-
tion. We observed that this index is more discriminating 
than the previous one. However, it does not quantify the 
overall accuracy of the displacement measurement, and 
thus both metrics are informative. All displacement errors 
are expressed in v/p = 1 voxel units, as this is the discretiza-
tion choice for correlation.

As a first assessment, we proposed to investigate whether 
the choice for the value of σblob used in the post-processing 
of PVR-SMART might have an impact on the quality 
of the estimation. To do so, we performed a basic PVR-
SMART v/p = 0.5 reconstruction from images generated with 
Nppp = 0.07 and σpsf = 0.6. We then applied the scale transfer 
down to v/p = 1 using values of σblob varying between 0.4 and 
2. Finally, we processed the obtained volumes with FOLKI3D 
and computed the displacement error. Volumes obtained from 
tomo-SMART were also processed with FOLKI3D and their 
error computed, to serve as a reference. As figure 13 shows, 
the choice of σblob is indeed a very mild choice, as the dis-
placement error varies only slightly within the range consid-
ered. In particular, the value σblob = 0.6, which we decided to 
choose in practice, is close to the broad minimum observed at 
around σblob = 0.8. As in the following, the volumes obtained 
with PVR-SMART will be systematically post-processed 

with σblob = 0.6, so we will omit this precision for concise-
ness, and simply refer to them as the PVR-SMART volumes 
(or PVR-SMART).

4.3. Behavior w.r.t. Nppp

Figures 14 and 15 present a comparison of displacement 
errors obtained with tomo-SMART and PVR-SMART, using 
the processing and evaluation chain described in the previous 
section, for images generated with σpsf = 0.6. Figure 14 cor-
responds to a setting where only particles in the common field 
of view of each camera are illuminated (case I/U = 1), whereas 
figure 15 corresponds to the more realistic setting where some 
illuminated particles are seen by at least one camera but not 
by all (case I/U = 0.47).

Plots of VEgt in the left parts of figures  14 and 15 are 
a good illustration of the fundamental trade-off of tomo-
PIV: Nppv grows with Nppp, and should all the particles be 
perfectly reconstructed, one would observe a continuous 
decrease of displacement error (as in the curves of the ‘true 
particles’). In practice, though, ambiguity also grows in 
the form of ghost particles, which perturb 3D correlation 
and which take over so that the error grows. In this respect, 
PVR-SMART shows better robustness than tomo-SMART, 
with an error VEgt almost constant for Nppp > 0.07 in fig-
ures 14 and 15.

As in the case of reconstruction quality, the comparison of 
figures 14 and 15 also shows the sensitivity of performances to 
the I/U factor. Figures 14 and 15 show that PVR-SMART leads 
to significantly lower displacement errors than tomo-SMART 
for Nppp higher than 0.06. The gain brought by PVR-SMART 
increases consistently with Nppp, and is more important for the 
realistic situation of I/U = 0.47, shown in figure 15.

4.4. Behavior w.r.t. σpsf

A first account of the better behavior of PVR to the change of 
shape and size of the PSF was formerly given in section 3.6. 
This section  investigates further this observation with dis-
placement performance measures: different image sets are 
synthesized with Nppp = 0.07 and different σpsf, then both algo-
rithms are run on each set. For PVR-SMART, the value of σpsf 
chosen for image synthesis is used in the reconstruction.

Figures 16 and 17 compare tomo-SMART and PVR-
SMART on these data: all performance metrics are in favor 
of PVR-SMART in the range of variation of σpsf. In par-
ticular, the difference in displacement error VEblob stays 
approximately constant until σpsf  = 0.6, and then gradu-
ally grows, reaching a difference of 0.15–0.18 voxel at 
σpsf = 1.2, depending on the value of I/U. The left sides of 
figures 16 and 17 show a global decrease of performance as 
σpsf grows. As noted previously in section 3.6, this is a con-
sequence of the decrease of particle image signal-to-noise 
ratio and of the increase of ghosts as σpsf grows. Besides, as 
mentioned above, the performance indices again drop when 
one compares I/U = 1, figure  16, and a lower I/U = 0.47, 
figure 17.

Figure 13. Sensitivity of displacement error w.r.t. the post-
processing Gaussian filter size σblob. Images correspond to σpsf = 0.6, 
Nppp = 0.07. I/U = 0.47. The displacement error for tomo-SMART is 
drawn as a reference.
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According to these experiments, PVR-SMART is thus 
expected to work consistently better in the case of spatially 
varying PSF, for instance that due to defocussing.

4.5. Robustness w.r.t. inaccurate PSF knowledge

In the same spirit as in section  3.7, we consider the case 
where only an imperfect PSF calibration was available. We 

investigate the robustness of PVR-SMART to this imperfect 
knowledge by conducting experiments where the true PSF is 
given by (8) with σpsf = 0.6, while σpsf used for reconstruction 
varies between 0.4 and 0.9.

In figure  18, tomo-SMART has constant behavior since 
σpsf is not a parameter for the method. One observes that the 
domain of validity of PVR-SMART ranges from 0.40 to 0.70 
for VEgt and from 0.40 to 0.67 for VEblob. The latter results 

Figure 14. Comparison between conventional tomographic reconstruction and the proposed PVR approach, using the SMART algorithm, 
σpsf = 0.6, for varying Nppp. I/U = 1. Left: displacement error w.r.t. ground truth v*. Right: displacement error w.r.t. v°.
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Figure 15. Comparison between conventional tomographic reconstruction and the proposed PVR approach, using the SMART algorithm, 
σpsf = 0.6, for varying Nppp. I/U = 0.47. Left: displacement error w.r.t. ground truth v*. Right: displacement error w.r.t. v°.
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Figure 16. Comparison between conventional tomographic reconstruction and the proposed PVR approach, using the SMART algorithm, 
I/U = 1, Nppp = 0.07, for varying σpsf. Left: displacement error w.r.t. ground truth v*. Right: displacement error w.r.t. v°.
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and the quality factor of figure 11 indicate a better robustness 
to underestimation than to overestimation. Such behavior can 
be explained by the fact that it is easier to fit a large particle 
image with a smaller PSF than the converse. In the case of 
favorable SNR we are confident that a calibration procedure 
such as described in section  2.1 should meet the 10–15% 
accuracy required to achieve the expected gain. However, if 
experimental conditions during calibration cannot guarantee 
a sufficient SNR, a backup solution will then be to bias the 
estimated PSF diameter to a lower value.

5. Discussion and concluding remarks

This paper has dealt with the first step of tomo-PIV, volume 
reconstruction. We have presented an alternative approach to 
the classical tomographic reconstruction that seeks to recover 
nearly single voxel particles rather than blobs of extended size, 
an approach referred to as PVR. The baseline of our approach 
is a particle-based representation of image data. The image 
model is discretized in order to yield a rigorous representation 

of image data in terms of voxelized particle intensity and a 
weight matrix built with PSF samples. As such an approach 
requires only a few voxels to explain the image appearance, it 
favors much more sparse reconstructed volumes than classic 
tomo-PIV.

PVR underlies a sparse volumic representation of point 
particles, which lives halfway between infinitely small par-
ticles, and larger two to three voxel diameter blobs usually 
used in tomo-PIV. From that representation, it is possible to go 
further and sharpen the particle to its essential features in the 
idea of performing PTV (intensity and 3D position, by using 
subvoxel refinement) or to smooth it to the 2 voxel diameter 
blob, which is the gold standard of correlation for PIV.

The degrees of freedom of this representation were ana-
lyzed, in particular the voxel-to-pixel ratio. It has been shown 
that the model converges to true particle position as the voxel-
to-pixel ratio decreases to zero. A voxel-to-pixel ratio equal to 
0.5 has been shown to be a good trade-off between accuracy 
and numerical complexity. PVR-SMART has been shown to 
outperform tomo-SMART on a large domain of generating 
conditions and a variety of metrics on volume reconstruction 

Figure 17. Comparison between conventional tomographic reconstruction and the proposed PVR approach, using the SMART algorithm, 
I/U = 0.47, Nppp = 0.07, for varying σpsf. Left: displacement error w.r.t. ground truth v*. Right: displacement error w.r.t. v°.
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Figure 18. Robustness of PVR-SMART to inaccurate knowledge of the image PSF σpsf. The displacement error metrics are drawn as a 
function of the σpsf used in PVR-SMART, whereas the image σpsf equals 0.6. Nppp = 0.07, I/U = 0.47. The level of performance of tomo-
SMART, which does not depend on σpsf, is recalled for reference. Left: displacement error w.r.t. ground truth v*. Right: displacement 
error w.r.t. v°.
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and displacement estimation, in particular in the case of 
seeding density greater than 0.06 ppp and of PSFs character-
ized by a standard deviation larger than 0.8 pixel. Robustness 
to inaccurate knowledge of the PSF size has also been checked. 
Tests showed that displacement estimation performance gains 
with PVR are systematically obtained whatever the value of 
the PSF in the case of underestimation, and they persist in the 
case of an overestimation of up to 10% of the PSF value.

As PVR directly builds the weight matrix from sam-
ples of the PSF, PSF calibration techniques as proposed by 
Reichenbach et al (1991), or more recently by Delbracio et al 
(2012) and Schanz et al (2013), can readily be used in practice 
to benefit from the obtained improvements.

More generally, PVR provides a principled approach for 
dealing with spatially varying PSF due to defocussing and 
astigmatism. It can be easily expanded in order to deal with 
non-conventional single lenses, single cameras (Cierpka et al 
2011) and new optical devices such as plenoptic cameras 
(Thurow and Fahringer 2013).

To us, one of the most promising perspectives of this 
work is to use the proposed model with sparsity based 
reconstruction algorithms (Barbu et al 2011, Cornic et al 
2013, Petra et  al 2009), with the final aim of estimating 
the displacement by PTV. As demonstrated by Cornic et al 
(2013), in such a context, the PVR approach can lead to 
dramatic reductions of computational complexity while 
maintaining good detection rates. Since PVR is oriented 
to detection at the voxel scale, particle location refinement 
schemes will have to be developed in order to enable accu-
rate tracking of the particles with time. Work is in progress 
along these lines.
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3.3 Conclusion
This chapter has provided a numerical assessment of a novel approach to tomographic
particle image velocimetry which was shown to outperform classical reconstruction
algorithm [Atkinson and Soria, 2009] in a variety of conditions.

The next logical step is to perform an experimental validation of this method.
This is the subject of the last two chapters of this dissertation. Chapter 4 is dedicated
to the assessment of our in-house displacement code in the context of tomographic
noise. Since both reconstruction step and estimation step have been investigated, we
can perform a full experimental validation in chapter 5 and chapter 6.



4 Accuracy assessment of FOLKI-3D
for 3D-PIV

4.1 Introduction
Tomographic PIV offers a tremendous potential for the characterization of complex
flows, as it enables the instantaneous measurement of three-dimensional velocity fields.
In terms of accuracy, much effort has been devoted to characterizing the specific noise
introduced by the reconstruction step which is specific to the 3D context and may
have a significant impact on the final result. The second chapter of this dissertation
was dedicated to the impact of experimental factors on the reconstruction accuracy
and noise. The third chapter presented a new reconstruction model based on a
particular paradigm and on the modeling of the optical system in the reconstruction.
We showed through numerical analysis that this new reconstruction technique increases
the reconstruction performances with respect to several experimental parameters. The
focus of this chapter is placed on the second step of the 3D-PIV technique, namely the
displacement estimation step.

This step can be seen as a simple extension to the third dimension of classical
PIV correlation algorithms. However with this added dimension new questions and
challenges come up. Many researchers have directed their work towards reducing the
problem complexity (see, e.g., [Scarano, 2013]). Indeed, handling 3D volumes represents
a huge amount of data, and thus potentially prohibitive processing times. This may also
constrain algorithmic choices, as approaches which were proven successful and accurate
in 2D-PIV may be prohibitive in 3D with the current computational capacities.

In this chapter, we now present a new approach for 3D cross-correlation consist-
ing in a gradient-based iterative volume deformation method, in the Lucas-Kanade
framework. It is the extension to 3D of the approach proposed in [Champagnat et al.,
2011] and, due to its highly parallel structure, it is also implemented on GPU. Volume
deformation may be performed with a simple, linear interpolation as in most algorithms,
or, thanks to an efficient implementation, with a higher-order cubic B-Spline scheme,
while maintaining reasonable processing times. Our purpose in this chapter is to
characterize this algorithm with a particular emphasis on its response to specific 3D
noise sources. Focus will also be placed on the possible gains arising from high-order
interpolation in this context.

Thos chapter is structured as follows : First, we mention the principle of the dis-
placement estimation method with an emphasis on the useful parameters and their
influence. We then use synthetic tests to characterize the algorithm in terms of
spatial resolution and to assess the impact of the interpolation scheme on bias and
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rms errors in the subvoxel displacement estimation. Finally, we assess the algorithm
robustness to noise, especially tomographic PIV noise, i.e. ghost particles, by using
synthetic simulations of 3D-PIV experiments. The final assessment of this algorithm on
experimental data will be the subject of chapter 6.
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4.2 General principle
The present implementation is the extension to 3D of the FOLKI-PIV algorithm de-
scribed in [Champagnat et al., 2011]. In this section we present the main characteristics
only and refer the reader to their paper for more details.

4.2.1 Iterative scheme

Considering a discretized physical volume, let k denote the index of a voxel in the grid. As
in traditional correlation-based PIV, our objective is to determine the displacement u(k)
of a particle pattern contained in the interrogation volume (IV), V (k) centered around
voxel k. The mathematical objective differs however and belongs to the Lucas-Kanade
paradigm (see [Baker and Matthews, 2004] for a review), as it amounts to minimizing
the sum of squared differences (SSD).

u(k) = arg min
∑
m

v(m− k)

[
E1

(
m− u(k)

2

)
− E2

(
m+

u(k)

2

)]2

(4.2.1)

Here E1 and E2 respectively denote the volume intensity distributions reconstructed at
the illumination instants t and t + dt, and function v is the support of interrogation
volume V (k). Note that this criterion is symmetrical, i.e. it leads to a second order
estimate of u(k) in time, at t + dt/2. In practice, we use either a top-hat cubic IV,
parameterized by its radius R, or a Gaussian cubic IV, defined by two parameters: the
radius R and its standard deviation σ.

The minimization of equation (4.2.1) is performed using Gauss-Newton iterations. Sup-
posing that a predictor u0(k) is available, one then replaces u(k) by u(k)−u0(m)+u0(m),
so that

u(k) = arg min
∑

m v(m− k)
[
E
−u0/2
1

(
m− u(k)−u0(m)

2

)
− Eu0/2

2

(
m+ u(k)−u0(m)

2

)]2

(4.2.2)

Here, one has introduced the deformed (or warped) intensity distributions

E
−u0/2
1 = E1

(
m− u0(m)

2

)
E
u0/2
2 = E2

(
m+

u0(m)

2

)
 (4.2.3)

The following step then consists in linearizing equation (4.2.2), assuming that the dis-
placement increment to be found is weak, i.e. u(k)− u0(m) ≈ 0, so that

u(k) = arg min
∑

m v(m− k)

[
E
−u0/2
1 (m)− Eu0/2

2 (m)− ∇E
−u0/2
1 (m)+∇Eu0/22 (m)

2
(u(k)− u0(m))

]2

(4.2.4)

Finally, after some algebra, deriving the SSD in equation (4.2.3) leads to finding u(k) as
the solution of a 3× 3 linear system

H(k)u(k) = c(k) (4.2.5)

where matrix H and left-hand-side c involve the predictor u0, the deformed volumes, and
their gradients.
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4.2.2 Processing flow-chart and control parameters

Similarly to the plane approach of FOLKI-PIV, the guess-value is obtained by im-
plementing a multi-resolution Gaussian pyramid of intensity volumes. A pyramid
contains J levels, including the raw intensity volume (level 0). Level j + 1 is formed
by applying a low-pass filter on level j, and then retaining one pixel out of a cube of
2 × 2 × 2 voxels. Thus, volumes at level j + 1 are eight times smaller than at level
j, and displacements are divided by two in each direction. The number of levels J
has then to be chosen according to the maximum displacement expected. Indeed, a
condition for the Gauss-Newton iterations (equation (4.2.4)) to converge is that the
predictor be close to the exact displacement. Considering enough levels will thus allow
this convergence when choosing a zero displacement field as the predictor for level J − 1.
Gauss-Newton iterations are then run at this level until convergence. The final estimate
is interpolated at level J − 2 and serves as the first predictor for the Gauss-Newton it-
erations at this level. The process is then repeated until convergence is reached at level 0.

To ensure robustness with respect to variations in intensity in the volumes, a
mean and standard deviation normalization is applied at each pyramid level prior to
the Gauss-Newton iterations (see [Champagnat et al., 2011] for more details). Also,
similarly to FOLKI-PIV, FOLKI-3D produces a dense output (one displacement per
voxel) with no computational overload, while its resolution remains tied to the IV size
(see the tests below). To sum up, FOLKI-3D is tuned by three main parameters:

1. The number J of pyramid levels which depends on the maximum displacement
expected in the volumes.

2. The number N of Gauss-Newton iterations performed at each level. Usually, 3 to
10 iterations are enough to reach convergence, the exact number usually depending
on the signal-to-noise ratio of the volumes.

3. The size of the interrogation volume which controls the spatial resolution of the
result, as in traditional cross-correlation PIV and will be shown below.

4.2.3 Comments

One of the PIV algorithms currently acknowledged in the literature as a state-of-the
art is an iterative image or volume deformation method (IDM), whether the estimation
is done on planar or volumic data (see, for instance, [Scarano, 2002] and [Scarano,
2013]). In a 3D framework, supposing that a predictor displacement field is available,
the 3D intensity fields are first deformed with this displacement value, requiring a
subvoxel interpolation scheme. Then the subvoxel increment allowing to maximize the
cross-correlation from these deformed volumes is determined by using a three-point
Gaussian fit. This results in a new estimate of the displacement. As pointed out by
several authors in the literature, it is necessary to smooth this displacement field in
order to prevent a divergence of the iterative scheme; choosing an adapted filter kernel
may also enable to improve the algorithm transfer function, as studied in detail by
[Schrijer and Scarano, 2008]. Once this filtering is done, the data may be used again for
deformation, and so forth.

Though FOLKI-3D belongs to a Lucas-Kanade paradigm, it also belongs to the
IDM family with similarities to the above described flow-chart. Firstly, the global objec-
tive, formulated as the minimization of a Sum of Squared Differences (equation (4.2.1)),
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becomes identical to maximizing a Cross-Correlation score as soon as the mean and
standard deviation pre-processing is performed. When transposed in an iterative
context, FOLKI-3D also uses volume deformation at the subvoxel level before each
iteration, as shown by equations 4.2.2 and 4.2.3. However, the following steps differ from
traditional IDM algorithms: indeed, instead of computing the whole cross-correlation
map on a given domain by FFT or direct correlation, and then refining the maximum
by a Gaussian fit, FOLKI-3D determines the minimum of the SSD by iteratively using
a gradient method, directly at a subvoxel level. Also, as described in [Leclaire et al.,
2011], the displacement increment is defined in a slightly different way as in traditional
IDM algorithms, which guarantees stability with the number of iterations and renders
unnecessary the intermediate filtering step of the displacement before deformation.

The next section will present the response of FOLKI-3D to traditional tests used
in the literature, which will enable us to further situate it among the IDM framework.
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4.3 Spatial resolution and Interpolation schemes
In this section, we introduce a first series of synthetic tests to assess the performances
of FOLKI-3D. This is done on ideal 3D blob-like particle distributions (i.e. supposing
ideal tomographic reconstructions), in order to determine the spatial resolution of the
algorithm and the influence of the interpolator choice on the bias and random errors.

4.3.1 Spatial wavelength response

Following [Scarano and Riethmuller, 2000] the frequency response of a PIV algorithm
can be evaluated using a sinusoidal shear displacement test :

(U, V,W ) =

(
A sin(2π

Y

λ
), 0, 0

)
(4.3.1)

where X,Y and Z are the 3D coordinates and U, V,W the associated displacement com-
ponents. For this test, 3D ideal particles randomly distributed in the correlation volume
are generated by locally expanding a physical point particle to a 3D Gaussian blob with
σ = 0.6 voxel (thus a diameter of 2.4 voxel) in order to have a volumetric distribution
well adapted to the correlation algorithm. The particle density is high compared to real
tomo PIV experiments densities in order to have at least 20 to 30 particles per IV for the
smaller IV size. We then use this displacement field equation (4.3.1) with amplitude A
set to 2 voxels and the wavelength λ varied from 20 to 400 voxels. FOLKI-3D interroga-
tion volume (IV) size is varied from 11 to 63 voxels. As the displacement is rather close
to zero, we use J = 1 level and N = 3 iterations. B-Spline interpolation scheme was
used for the volume deformation step. For each volume corresponding to a given (λ,R)
couple, we compute the ratio between the estimated amplitude of the sinusoid AFOLKI-3D

and the ground truth value A = 2 voxels.

(a) Saptial wavelength response for top hat IV (b) Saptial wavelength response for Gaussian IV

Figure 4.3.1: Amplitude ratio AFOLKI-3D/A as a function of the normalized volume
interrogation size for (left) top hat IVs and (right) Gaussian IVs. The dashed line is the
response of a [−R,R] sliding average (cardinal sine function).

The evolution of this ratio as a function of the normalized IV size 2R/λ is plotted in
figure 4.3.1. In figure 4.3.1 (left), we used a cubic top-hat interrogation volume and in
figure 4.3.1 (right) we used Gaussian IVs with a given σ/R ratio. In figure 4.3.1 (left),
all values of AFOLKI-3D/A nearly collapse on a cardinal sine curve which is the frequency
response to a [−R,R] sliding average, as usual in correlation based methods [Scarano and
Riethmuller, 2000]. In particular, this means that the spatial resolution of FOLKI-3D is
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also directly linked to the size of the IV. The fact that a dense output (one vector per
voxel) is obtained is an algorithmic specificity, and retaining all voxels in the final results
corresponds to over-sampling.

4.3.2 Interpolation schemes and Peak-locking

It is known from several studies on planar PIV that the choice of the interpolation
scheme used to deform the images may have an important effect on the displacement
precision at a subpixel level. This has been studied in detail by [Astarita and Cardone,
2005], in particular. In their work, an important number of schemes is introduced, and
the accuracy is logically found to be inversely linked to the computational cost of the
interpolator, i.e. the cheaper the interpolator (e.g., linear), the less precise the result.
As the performance of the algorithms and hardware has evolved rapidly, some of the
advanced interpolation methods (such as with cubic B-Splines, or even more precise
using a cardinal sine basis) are now commonly used in planar PIV. In the 3D context
however, domain sizes are much larger so that the question of using more advanced
interpolation schemes than the linear one may come with a dramatic increase in the
computational cost. Thus, as mentioned by [Scarano, 2013], linear interpolation remains
the standard.

Building on optimizations began during works on planar PIV [Champagnat et al.,
2011]. [Champagnat and Le Sant, 2013] recently proposed an implementation for cubic
B-Spline interpolation which is particularly optimized for GPU, and may be used in
FOLKI-3D. In practice, this optimization guarantees that the increase in computational
time compared to linear interpolation remains reasonable, with a significative increase in
accuracy. As in section , we consider perfect volumic blob-like synthetic distributions. In
figure 4.3.2, we monitor the bias and rms error for increasing values of a unidimensional
displacement (U, 0, 0), with U ranging from 0 to 2 voxels, and the standard deviation
of the Gaussian blob set to σ = 0.625 (2.5 voxels wide blob). As shown in [Astarita
and Cardone, 2005], for symmetric IDM algorithms such as FOLKI-3D, this range is
sufficient to explore, as the response is periodic. Note that we chose the seeding density
so as to have the same number of tracers in an IV as the number of particles in the IWs
chosen by [Astarita and Cardone, 2005] (ie of the order of 20).

(a) Bias error (b) rms error

Figure 4.3.2: Bias (a) and rms error (b) for both linear and cubic B-Spline
interpolators, for increasing values of the unidirectional displacement (U,0,0).
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When using a cubic B-Spline interpolation, the maximum bias error for this particle size
is roughly equal to 0.017 voxel, compared to 0.064 for the linear scheme (gain of a factor
larger than three). This gain is similar in terms of maximum rms error, with respectively
0.018 and 0.064 voxel. These curves and their maxima are in excellent agreement with
the results of [Astarita and Cardone, 2005], confirming the similarity of FOLKI-3D
with standard IDM algorithms. The slight differences observed may stem from the
fact that we consider a monodisperse seeding, whereas [Astarita and Cardone, 2005]
allowed a variation of the particle diameter in their images, and also from the difference
in the final subvoxel/pixel estimation (i.e. minimization vs. Gaussian fit, see section 2.3)

(a) Bias error (b) rms error

Figure 4.3.3: Bias (a) and rms error (b) for both linear and cubic B-Spline
interpolators, as a function of the 3D particle diameter dτ , for a displacement (U,V,W)
= (1.5,0,0) voxel.

As the shape and size of the particles produced by the tomographic reconstruc-
tion depend on the size of their image on the camera sensors, but also on the geometrical
arrangement, it is even more important than in plane PIV to assess the accuracy of
the algorithm to different particle sizes. This is done in figure 4.3.3 where the plots
represent the bias and rms errors corresponding to a uniform displacement (U,V,W)
= (1.5,0,0) (for which the rms error is maximum, see figure 4.3.2), for varying values
of the particle diameter dτ = 4σ. Here again, results are in very good agreement
with those of[Astarita and Cardone, 2005], with a systematic reduction in bias and
a quasi-systematic reduction in rms error for the B-Spline scheme. The gain in rms
error increases with increasing particle diameter. However, compared to [Astarita and
Cardone, 2005], the B-Spline scheme of FOLKI-3D is slightly less efficient for very small
particles compared to the linear scheme. However, the minimum level of rms error
reached with the B-Spline scheme is smaller. As the synthetic conditions should be close
to identical between our study and that of [Astarita and Cardone, 2005] for this second
test, these differences are most likely ascribed to the subpixel estimation approach.
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4.4 Robustness versus tomographic reconstruction
noise

We now turn to more realistic conditions, using the complete 3D-PIV setup and
tomographic reconstructions. Our objective in this section is to assess the robustness
of the algorithm to specific noise sources encountered in the 3D framework, i.e. to the
influence of various effects linked to the presence of ghost particles.

Similar to traditional sources of noise in planar PIV, the ghost particles play a
key role in the accuracy of the result, and in the choice of the experimental parameters
(see for instance [Elsinga et al., 2006]). Indeed, the number of ghosts is known to
increase with seeding density, whereas the accuracy of motion estimation increases with
seeding density. Therefore, while increasing the rms error, they also play a key role
in the spatial resolution of the result, as the choice of the IV size has to result from
a trade-off between spatial resolution (small IV requiring a high seeding) and noise
(which decreases when the IV size increases). Besides, as shown by [Elsinga et al., 2011]
depending on the setup and displacement field, a proportion of ghosts may be coherent
between the two laser pulses, thereby adding a bias to the result.

In the following, we will assess the response of FOLKI-3D to these sources of
noise and bias, and, for some of them we will compare its response to state-of-the-art
LaVision Davis 8.2 software. In Addition to the bias due to coherent ghosts, we will also
consider the influence of viewing conditions, and, in that respect, assess the differences
obtained for the two interpolation schemes of FOLKI-3D. These conditions may play a
significant role; firstly, [Cheminet et al., 2013], [Cornic et al., 2013] (see chapter 2 for
more details) recently showed that the ratio between the intersection and the union of
the camera fields of view directly influences the proportion of ghosts, while it is also
known that different directions result in different shapes of the reconstructed particles,
as for instance summed up in [Scarano, 2013].

4.4.1 Tomographic synthetic setup

3D particle distributions reconstructed from PIV images are generated from a classical
3D-PIV setup. The synthetic setup is very similar to the one presented in chapter 2.
Our simulations involve four cameras which are positioned on a single side of a laser
volume. Their positions depend on the tests and will be addressed further down in this
paper. A pinhole model is assumed for the cameras, without Scheimpflug adapter for
simplicity, and calibration is supposed to be perfectly known and to obey a pinhole
model. The pixel size is 10 µm with a fill factor of 100%.

The laser sheet is modeled as a 20 mm thick parallelepiped. Its intensity profile
is assumed to be uniform. The reconstructed volume, also 20mm thick, is taken as the
smallest parallelepiped including the illuminated volume seen by all the cameras. Thus
it depends on the field of view and is given for each experiment. The voxel-to-pixel
ratio is in this paper always set to one. We use 512 × 512 pixels cameras which lead
to typical reconstruction sizes of the order of 600 × 600 × 200 voxels. Unless otherwise
specified, the cameras are positioned on a single side of the laser sheet at the vertices
(1

2
, 1

2
, 1√

2
) of a square of 1 meter side. They are positioned at 1 meter from the centre

of the reconstructed volume located at (0, 0, 0) and point at it. The focal length is
100 mm, thus the magnification factor M is equal to 0.1.
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Tracers particles are uniformly distributed in the light sheet volume. The density
is controlled by the particle per voxel count (ppv) and is set so that the particle density
image (ppp) is equal to 0.056. Horizontal and vertical extension of the laser sheet
are larger than the field of view covered by all the cameras. Thus all illuminated
particles cannot be seen by all cameras, a fact that always occurs in real datasets
and is however often overlooked in synthetic experiments ([Cheminet et al., 2013],
[Cornic et al., 2013]). Unless otherwise specified, the illuminated particles lie in the
union of the laser sheet and the cameras fields on view (Union) and the reconstruc-
tion process is done on the intersection of those volumes (Intersection). For simplicity
sake, the scattered light is taken as uniform and we will consider a monodisperse seeding.

Considering P particles with intensity Ep located at point Xp in 3D-space, the
intensity distribution in the image is given by :

I(x) =
P∑
p=1

Ep.h(x− F (Xp)) (4.4.1)

where x = (x, y) denotes any location in the image plane, F is the geometric projection
function in the image, and h the so-called Point Spread Function (PSF), which models
the aperture limited diffraction and pixel integration. For the tests presented in this
paper, we assume a Gaussian PSF with standard deviation σPSF set to 0.6, with a 100%
fill factor. We assume an image dynamic range of 8 bit, and a Gaussian noise with
mean=0 and standard deviation 2 is added to the images. Its amplitude is set at about
10% relative to the maximum particle intensity.

Tomographic reconstruction is then performed using an MLOS-SMART algorithm
similar to that of [Atkinson and Soria, 2009], with 25 iterations and the relaxation
parameter µ set to 1. This algorithm is called tomo-SMART in the rest of the thesis.

4.4.2 Robustness versus coherent ghost particles

4.4.2.1 Displacement field

[Elsinga et al., 2011] showed that under certain conditions displacement errors arise due
to the coherent motion of ghost particles. This occurs when a given ghost particle is
formed from the same set of actual particles and is found in both reconstructed volumes
used in the 3D correlation analysis. Indeed, for a given set of particles, whenever the
displacement normal to the viewing direction between two exposures is nearly equal
to the particle image diameter, ghost particles are formed in both exposures and are
coherent time-wise. Their displacement is approximately the average displacement of
the particle set responsible for the ghost particle. This results in an underestimation of
the displacement gradients. To illustrate this, [Elsinga et al., 2011] used a shear layer
type displacement field in a 2D synthetic simulation,

(U, V ) = (5 + αz, 0) (4.4.2)

where α is a linear displacement gradient. They showed that for a small α gradient, the
coherent motion of ghost particles strongly impacted the displacement field and that
this phenomenon tends to disappear when α increases.
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To determine FOLKI-3D behavior with respect to the coherent motion of ghost
particles we performed 3D synthetic simulations, reconstructing particle distribution
from 2D PIV images using a similar displacement field,

(U, V,W ) = (5 + αz, 0, 0) (4.4.3)

for α = 0.01 and α = 0.05 voxel/voxel. Estimated displacement fields can be assessed
using the averaged norm of the error between estimated and ground truth displacement
(Displacement Error), defined as

DEgt =
1

N

N∑
n=1

||v(Xn)− vGT (Xn)|| (4.4.4)

Here, v and vGT respectively denote the estimated and ground truth displacements. It is
also possible to base our quality measurement on the velocity vIdeal estimated by using
Ideal Gaussian blob reconstructions, as considered in section 4.3. The displacement
overlap is chosen to be 75%, and the averaged displacement error is computed at points
X which are included in a parallelepiped contained within the intersection volume of
both the laser sheet and the cameras fields of view (Intersection). In order to achieve
statistical convergence of this quantity, we performed the tests on typially three to five
different initial particle distributions depending on the tests, each leading to different
reconstructed volumes and displacement fields. In this section, only top hat weighted
interrogation volumes are considered. The interpolation scheme used is the cubic B-
Spline, unless otherwise specified. The number of levels is J = 3 and we used N = 7
iterations.

4.4.2.2 Results

Figure 4.4.1 shows displacement profiles along Z, averaged in the X and Y directions,
for α = 0.01 and α = 0.05. Results are plotted for both an ideal particle distribution,
and for reconstructed volumes from 2D images. We also compute the displacement of
ghost particles by removing the real particles from the SMART reconstruction. The
results show a clear underestimation of the displacement gradient for small α, similar to
[Elsinga et al., 2011], and this effect decreases as α increases. For α = 0.05 both ideal
and reconstructed mean displacement curves overlap. [Elsinga et al., 2011] showed that
this underestimation for small gradients is due to the coherent motion of ghost particles
which appear in the reconstruction process, as a result of small displacement gradients
orthogonal to the line of sight of the cameras.

Following [Elsinga et al., 2006], [Cheminet et al., 2013] and [Cornic et al., 2013],
(see chapter 2 for details) further quantified the impact of ’added particles’, i.e.
particles that lie in the Union, as a source of noise on the reconstruction quality. To
further understand the impact of this effect on the displacement measurement, we
computed PIV images with particles only in the Intersection on the one hand, and
particles in the Union on the other hand, and determined the displacements in the case
of the α = 0.01 shear displacement.

Figure 4.4.2 shows the impact on the average velocity errors of particles which lie
in the Union, but not in the Intersection, leading to a strong increase in the rms
measurement errors (left figure). Indeed, those particles are responsible for an increase
in the number of ghost particles in the reconstructed volume: the reconstruction
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(a) α = 0.01 (b) α = 0.05

Figure 4.4.1: Profiles along Z of the displacement averaged over X and Y for shear
displacements with α = 0.01 (a) and α = 0.05 (b). Results shown here are obtained
with an IV side of 41 voxels (radius of 20 voxels).

(a) Displacement error (b) Displacement for IV = 40 vox

Figure 4.4.2: Average velocity errors for α = 0.01 (a) as a function of the IVs radius R.
Velocity profiles along Z, averaged in the X and Y directions (b) for ideal
reconstruction, SMART reconstruction and ghost particles. Cases where particles lie
only in the Intersection, or in the Union. On the right subfigure, the IV side is set to 41
voxels (radius of 20 voxels).

quality Q [Elsinga et al., 2006] for the Intersection case is 0.94 and drops to 0.79 for
the Union case. Figure 4.4.2 (right) compares the average displacement profiles of
the reconstruction and of the ghost particles in both cases. It is interesting to see
that the ghost particles average velocity in the Union case is of opposite sign to the
reconstruction displacement, thus impacting strongly the overall velocity estimation
through a clear underestimation of the velocity gradient. These ghost particles lead to
an increase in the rms errors as well as an increase in bias errors. To minimize their
impact, experiments should thus be designed so as to maximize the ratio RI/U between
Intersection and Union, as long as this does not increase other noise sources.

In order to further situate FOLKI-3D among other VDM algorithms, we performed a
comparison with LaVision Davis 8.2, using the direct correlation setting, and with top
hat interrogation volumes for both algorithms. Further parameters for Davis 8.2 include
an intermediate rejection step using the universal outlier detection method [Westerweel
and Scarano, 2005], and smoothing between the iterations with a 3 × 3 × 3 Gaussian
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filter. The test case chosen for this comparison is the α = 0.01 shear displacement with
illuminated particles lying in the Union volume, which was shown to be a particularly
noisy case for the correlation. Firstly, we performed a tomographic reconstruction from
the synthetic PIV images using our implementation of MLOS-SMART. Then, the same
resulting reconstructed volumes were processed both by FOLKI-3D and Davis. This
operation was repeated with 3 different particles sets to achieve statistical convergence
of the average displacement error. Figure 4.4.3 shows this quantity as well as the
displacement profiles, for both algorithms.

(a) Averaged norm of the displacement error (b) Bias error

Figure 4.4.3: Average displacement errors for α = 0.01 (a) as a function of the IVs
radius R, and displacement profiles along Z, averaged in the X and Y directions (with
an IV side of 48 - radius of 24 voxel), obtained with FOLKI-3D and Davis 8.2 on the
same tomographic reconstructions, and with FOLKI-3D on ideal volumic distributions.

In figure 4.4.3, FOLKI-3D’s rms displacement error V Egt is compared to Davis’s for
different IVs sizes, and averaged velocity profiles are also compared for an IV side of 48
voxels. FOLKI-3D and Davis have a similar behavior, the rms error rising as the IV
size decreases. It turns out that FOLKI-3D performs equally or better than Davis while
it does not involve any data post-processing between two successive iterations. This is
especially true for small IV sizes. [Champagnat et al., 2011] showed the same results on
the 2D version of the algorithm.

4.4.3 Interpolators and shape of the reconstructed particles

As studied by [Elsinga et al., 2006] and [Scarano, 2013] among others, the reconstruction
quality is strongly dependent on the global aperture angle of the cameras. Indeed, small
values of the aperture will lead to reconstructed particles with an elongated shape in the
Z direction, whereas larger apertures will lead to more isotropic blobs. In this section,
we further consider the impact of this parameter on the corresponding velocity fields,
and also investigate the influence on the result of the interpolation scheme used during
deformation. We choose a camera arrangement in the form of a cross (or ’+’ sign),
parameterized by its aperture angle β, similar to that considered in [Scarano, 2013],
and vary β between 20 and 100◦. For each angle value, as in the previous sections,
we generate two sets of synthetic images, corresponding to particles lying either in the
Intersection only, or in the Union. Besides, since the voxel-to-pixel ratio is chosen equal
to 1 in all situations, choosing the same ppv for all angles results in images with the same
ppp. Thus, varying the angle β will amount to varying the Intersection to Union ratio
RI/U , thereby varying the proportion of ghosts as well as the shape of the reconstructed



68 Accuracy assessment of FOLKI-3D for 3D-PIV

particles.

Figure 4.4.4: Reconstruction quality as a function of the camera aperture angle β, for
synthetic images generated with particles contained only in the Intersection, or in the
Union. The value of the Intersection to Union ratio RI/U is also indicated.

Figure 4.4.4 shows the evolution of the reconstruction quality as a function of β in
the Intersection and Union cases. Similarly to [Scarano, 2013], one logically observes
an important drop in Q for decreasing β, due to the elongation of the reconstructed
particles in the Z direction. In the realistic Union case, the quality does not increase
strictly with β contrary to the Intersection case, but reaches a plateau from β ≈ 60◦,
close to a 0.75 − 0.8 level. This is due to the fact that as β increases, the RI/U ratio
increases. Therefore, even if the shape of the reconstructed particles is closer to ideal,
the corresponding gain in quality is cancelled by an increase in the number of ghosts due
to added particles.

(a) Particles in Intersection (b) Particles in Union

Figure 4.4.5: Component-wise RMS error for linear and cubic B-Spline interpolators as
a function of the camera aperture angle β, for synthetic images generated with particles
contained only in the Intersection (a), or in the Union (b). The displacement field is a
shearing motion with α = 0.01, as in section 4. The IV size in FOLKI-3D is of 41
voxels (radius of 20)

In figure 4.4.5, the corresponding displacement rms errors are represented separately
for each component, for fields obtained using either the linear or the cubic B-Spline
interpolators in FOLKI-3D. In all cases, the IV size has been set to 41 voxels. The
ground truth displacement considered here is made up of the superposition of shearing
motions along both U and W, with the same strength α = 0.01 More precisely:

(U, V,W ) = (αz, 0, αx) (4.4.5)
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The resulting velocity field is thus a hyperbolic point in the XZ plane. Starting with
the Intersection case (figure 4.4.5 left), one observes that, logically, the rms error on W
increases for the smaller value of β and becomes comparable to that on U and V for
values equal or larger to 40◦. Another important result is that fields with the B-Spline
interpolator have quasi-systematically lower rms errors than with the linear interpolator
for all components. The exception is precisely the rms error on W for the smaller values
of β. However, these angles correspond to small apertures which are rarely considered
in practice, as they have a large rms error also with the linear interpolator. Therefore,
we can conclude that in a more complex situation than the ideal distribution considered
in section 4.3.2 (that is, actual reconstructions with noise in the images), the use of a
B-Spline interpolator for deformation allows a significant increase in accuracy. Going one
step further in complexity, when particles lie in the Union field (figure 4.4.5 right), one
observes that this gain is robust with overall comparable results for both interpolators.
A slight difference is observed in the form of higher rms values for all components and
interpolators for the largest values of β (80 and 100◦). This can probably be ascribed to
the large number of ghost particles due to the low value of the RI/U ratio.
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4.5 Conclusion
In this chapter, we introduced an extension to 3D of the algorithm FOLKI-PIV
[Champagnat et al., 2011]. As in the planar context, the displacement is searched
as the minimizer of a sum of squared differences which is solved iteratively by using
volume deformation. The latter can be performed using a simple, linear scheme or a
higher-order cubic B-Spline scheme. Numerical tests performed on synthetic 3D particle
distributions have confirmed that the spatial frequency response is similar to that of
standard iterative deformation algorithms for both top-hat and Gaussian weightings,
while similar gains as reported in the literature are obtained by choosing the cubic
B-Spline interpolation rather than the linear one. Tests on volumes reconstructed from
projected images have then allowed us to characterize the robustness of the algorithm
to specific tomographic noise (i.e. ghost particles), as well as the gain brought by the
higher-order interpolation in a more realistic configuration. FOLKI-3D has been found
in particular more robust to coherent ghosts, while the gain in accuracy of the high-order
deformation has been confirmed for various quantities of ghosts in the reconstructions,
and for various shapes of the reconstructed particles.

This accuracy assessment was carried out using numerical simulations of 3D-PIV
reconstruction and synthetic flow fields. The final assessment on experimental data
will be performed on our free round jet facility, presented in chapter 5. The choice
of FOLKI-3D parameters as well as the experimental velocity results are described in
chapter 6.



5 Description of the experimental
setup and jet flow

5.1 Introduction
In the three previous chapters of this thesis, the explorations of experimental factors
impacting the quality of the 3D-PIV measurement, the investigations of a new recon-
struction algorithm (using the PVR paradigm) and the assessment of our 3D correlation
algorithm, numerical simulations of 3D-PIV experiments were used. The remaining
two chapters of this thesis are now dedicated to the experimental application of the
algorithmic developments made in earlier chapters. More precisely, our aim is to perform
an experimental validation of PVR reconstruction methods and compare it to classical
tomographic reconstruction methods. We chose to carry out the validation on a free
round air jet. At DAFE (ONERA), much research on turbulent jet has been carried
out [Davoust et al., 2012]. We believe that the development of time-resolved 3D-PIV at
ONERA will help us further understand the structure of turbulence in the mixing layer
and the organization of coherent structures in the jet flow that were investigated using
Stereo-PIV in [Davoust et al., 2014].

The focus of this chapter is twofold: first, we describe the experimental setup.
Then, we describe the jet flow on which the measurements are made.

We will describe the jet facility and the seeding particles used for the PIV mea-
surements. Two measurements systems are used for validation : a 3D-PIV setup and a
2D-PIV setup which is used as a measurement reference. For both measurement systems,
illumination and configuration of the imaging system are covered. The synchronization
between the two systems is explained as well as the calibration methods. From the
calibration step of both measurement systems, two main influential parameters in
3D-PIV can be estimated : the particle image size and the particle volume density. The
theoretical estimation of the particle image size is particularly helpful for the choice of
PSF size in the PVR-SMART algorithm. Particle density is a crucial quantity on which
the measurement quality depends. Our seeding density estimation method based on
2D-PIV images is explained.

For the physical description of the flow, we start by introducing the theoretical
background related to free round jet flows. Finally, the jet flow in our setup and its
properties are described using 2D-PIV measurements.
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5.2 Experimental setup
This section is devoted to the description of the jet facility, the experimental instrumen-
tation as well as the arrangements used for the experimental validation of PVR.

5.2.1 Jet facility

Experiments are conducted in DAFE laboratories at ONERA (Meudon). The flow
on which measurements are made is the near field region of an round turbulent air
jet, shown in figure 5.2.1. The jet consists of a cylindrical aluminum tube (120 mm
in diameter) with an entrance for pressurized air on one side and an exit nozzle with
a D = 12 mm diameter outlet on the other side, which yields a contraction ratio of
100 : 1. Inside the nozzle at z = 20 mm of the exit nozzle plane, a small step of diameter
D = 17 mm was placed to trigger turbulence. The air is supplied by the pressurized

(a) Jet nozzle (b) Air suply diagram

Figure 5.2.1: Jet nozzle (a-left). Air supply diagram (b-right) with (1) settling
chamber, (2) seeding generator, (3) Honeycomb and grids, (4) pressure tap.

air system at ONERA yielding a 30 bar pressure. A settling chamber or pressure tank
(1, in figure 5.2.1) was installed just before a seeding generator to yield a stationary
flow rate (2, in figure 5.2.1). The air flow rate is set by two valves, one controlling the
seeding density, the other controlling the non-seeded air flow. Honeycomb and grids
are fitted in the duct upstream of the nozzle contraction to reduce the flow turbulence
(3, in figure 5.2.1). Finally a pressure tap just before the final contraction was used to
monitor and control the output velocity (4, in figure 5.2.1).

Static pressure difference (∆p) between the pressure hole and the outside air was
measured through a KIMO AMI 300 multi-manometer. Using Bernoulli’s theorem and
considering that temperature variations are negligible, one can compute the output
velocity :

V0 =

√√√√√ 2∆p

ρ

[
1−

(
Dinput
Doutput

)4
] (5.2.1)

The velocities used ranged from 5 m.s−1 to 30 m.s−1 yielding a Reynolds number range
based on the nozzle diameter (ReD = V0D/ν) of ReD = [3800, 23000] considering the
kinematic viscosity of the air at 20◦ Celsius , ν = 15.6 × 10−5 m2.s−1 . Finally the jet
nozzle was mounted on a three axes traverse system that enabled accurate positioning
of the jet exit in the three space directions.
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5.2.2 Seeding particles

To ensure a good seeding homogeneity throughout the whole measurement volume, es-
pecially in the shear layer and non turbulent areas, we used two seeding generators. The
first seeding generator is the Dantec seeding generator 55L18 (see figure 5.2.1) directly
linked to the jet stream. We will call it the "internal" seeding generator. It generates
DEHS (Di-Methyl-Hexyl-Sebacate) droplets. The estimation of the diameter distribu-
tion this generator creates varies in the literature from a mean diameter of 0.65µm with
a standard deviation of 0.16µm [Albrecht et al., 2003], to a mean geometric diameter of
1.65µm with a standard deviation of 0.3µm [Borys et al., 2002]. The DEHS density is
ρ ≈ 0.9 × 103kg.m−3. Considering the mean diameter, one can compute the relaxation
time of the particle’s response to a velocity perturbation [Raffel et al., 2007].

τ ip =
d2
p

18ν
.
ρp
ρ
≈ 10−11s (5.2.2)

The second seeding generator, using DEHS particles of similar diameter as previously,
was used to seed the ambient air of the experimentation room, non-turbulent areas of the
flow, as well as the shear layer. For this generator, we did not have any means to adjust
the seeding density, we only had a on/off switch button to create smoke. Its relaxation
response time is, as previously:

τ ep =
d2
p

18ν
.
ρp
ρ
≈ 10−11s (5.2.3)

This ensures us that particles from both seeding generators follow every flow scale since
Kolmogorov time scale is given by

τK =

√
ν
D

U3
0

≈ 10−5s , for U0 = 6 m/s (5.2.4)

The external seeding seeding generator was located 5 meters back of the jet (z < 0) in
the ~z direction (see figure 5.2.3 for the definition of the axis coordinate system). For
the seeding particles to be homogeneously spread in the measurement volume, we had
to seed the whole experimental room. Once the room was filled with particles in high
density, we had to wait for the external seeding to settle down and reach the density
of the internal seeding which is set by a valve and is steady compared to the external
seeding. Thus, during any image acquisition, external seeding is always decreasing and
internal seeding is constant.

5.2.3 Measurement Setup

Our measurement setup is made of two different measurement systems . The first system
is a classical 3D-PIV system composed of 4 cameras, a pulsed laser and a mirror and the
second system is a standard 2D-PIV setup with a camera and a pulsed laser as shown
below in figure 5.2.2. The main characteristics of the two measurement systems are
summed up in table 5.2.1 below.
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3D-PIV Setup 2D-PIV setup

Figure 5.2.2: Legend description. 3D-PIV: (0 in blue) Jet facility , (1) light volume
optics and diaphragm in front of the laser which is not seen in this picture , (2) 4
cameras set in a cross-like configuration and (3) mirror to reflect the laser light.
2D-PIV : (0 in blue) Jet facility, (1) laser generator and laser optics, (2) camera.

3D-PIV 2D-PIV

laser source

model Quantel Laser
Twin Litron Laser Dual

type Nd-YAG Nd-YAG
wavelength λ = 532 nm λ = 532 nm
pulse energy ≈ 120 mJ ≈ 200 mJ
pulse length ≈ 12 ns ≈ 6− 9 ns
sheet width ≈ 15 mm ≈ 1.5 mm

cameras

model

2 Dantec HiSense
4M (Number 1 &

2) 1 Dantec HiSense 11M
2 LaVision Imager

pro X 4 M
(Number 3 & 4)

sensor CCD 2048× 2048 CCD 4000× 2672
camera lens f = 105 mm f = 200 mm
magnification M ≈ 0.12 M ≈ 0.23
camera f# f# = 8 f# = 5.6
pixel size 7.4 µm 7.4 µm

image dynamics 1/2 : 8-12 bits 8-12 bits
3/4 : 14 bits

acquisition working frequency f = 4 Hz f = 2 Hz
acquisition
frequency f = 2 Hz f = 2 Hz

Table 5.2.1: Measurement systems characteristics.
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5.2.3.1 3D-PIV setup

The design of a 3D-PIV setup is delicate for it directly impacts the quality of the
velocity measurement. Numerous compromises have to be made so as to have the best
measurement possible. We followed guidelines provided in past studies [Scarano, 2013]
to choose the optical arrangement. The optical system of the 3D-PIV setup is made
of 4 cameras in a cross-like configuration, see figure 5.2.3. The 2 vertical cameras are
Dantec HiSense 4M, and the two horizontal ones are LaVision Imager pro X 4 M. They
all have 2048× 2048 pixels CCD sensors. The pixel size is 7.4 µm.

3D-PIV setup Union and Intersection Volumes

Figure 5.2.3: Legend description : left : a = Laser Volume generator, b = diaphragm,
c = mirror, d = Inner jet stream seeding generator, {1/2/3/4} = Camera’s number.
right : 1 = Intersection polyhedron, 2 = Intersection cuboid, 3 = Union cuboid.

The cross-like configuration was chosen for two main reasons : first, this made for an
easier setting of the Scheimpflug’s angle for each camera. In this configuration, we only
had to adjust one tilt angle for each camera, so as to have the in-focus plane as the z = 0
plane. The second reason was consequential to the first one : not having to tilt the
cameras in another direction to account for the Scheimpflug condition meant that the
intersection volume of the camera field and the laser volume of view was very close to
a parallelepiped and its volume was larger. As advised in [Scarano, 2013] the aperture
angle β was set to 60◦ in order to optimize the reconstructed shape of a particle in the
depth direction.

The optical magnification for the cameras is about M ≈ 0.12. The camera’s f
number (f# = 8) is set so as to have as much energy as possible (especially for the
backward-scattering camera which is camera 3 in figure 5.2.3) without shrinking the
camera depth of field too much. A first estimation of the cameras depth of field and the
particle image diffraction spot [Raffel et al., 2007] gives :

δz = 4.88λf 2
#(1 +

1

M
)2 ≈ 14.5 mm , ddiff = 2.44f# (M + 1)λ ≈ 1.6 pix (5.2.5)

Further insight into the particle image size for the tomographic setup can be found
below, in section 5.2.5. The four cameras are synchronized with a Nd-YAG 532 nm laser
(120 mJ). Expansion from a beam to an illuminated volume is achieved by a "LaVision
Volume optics" volume generator. The resulting expanded beam passes through a
rectangular section diaphragm transforming its elliptic cross-section into a rectangular
cross-section. The diaphragm dimensions were found so as to have a 15 mm wide and 86
mm high laser cross-section at the jet nozzle. To account for Mie scattering, we installed
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a mirror which reflects part of the incoming laser beam. This enabled us to enhance the
image quality in the backward scattering cameras especially for camera number 4, but
also for camera 1 and 2 as well which are set along the vertical. To further counter the
effects of Mie scattering, and the loss of particles in the reconstruction, the laser optics
were set to obtain a relatively narrow elliptic cross-section so as to have as much energy
in the laser volume as possible. This meant that we made a choice between laser volume
(width) and laser intensity, favoring intensity so as to have the highest signal-to-noise
ratio in the images.

The laser volume (incoming from the laser and coming back from the mirror)
was set so as to skim the jet nozzle while trying to avoid reflections as much as possible.
From the cameras calibration (see 5.2.4), and the laser volume expansion estimation,
we computed the Union volume and Intersection volumes (chapter 2). Figure 5.2.3
shows different volumes : the Intersection or Union of the camera’s field of view and
the laser volume. The camera’s arrangement as well as the laser volume dictates the
reconstruction volume. We show here the intersection volume, a polyhedron in blue.
In black, we show the smallest cuboid containing the intersection volume and in red,
the smallest cuboid containing the union volume. This is the cuboid on which the
tomographic reconstruction will be performed. The ratio RI/U is about 0.75.

5.2.3.2 2D-PIV

On the same jet facility, we installed a planar PIV measurement system which is made of
one Litron Laser Dual Nd-YAG 532 nm laser and one Dantec HiSense 11M (4000×2672
pixels) camera. The laser sheet is located in the x = 0 plane, therefore orthogonal to
the main axis of the tomographic laser as seen in figure 5.2.4. The camera’s lens has
a focal length of 200 mm and is set at numerical aperture f# = 5.6. The laser source
had enough energy to allow for a relatively high f number/low aperture. The particle
diameters in the images were large so as to reduce any peak-locking effects (for a particle
density suited to 2D-PIV measurement). The objective magnification is M ≈ 0.23 with
a field of view of the camera of 128× 86 mm yielding a resolution of 29.7 pix/mm.

Figure 5.2.4: 2D-PIV measurement plane (yz plane) and tomographic volume.

5.2.3.3 2D-PIV and 3D-PIV synchronization

The 2D-PIV measurement system was installed to act as a reliable comparison point
for the 3D tomographic PIV. The 2D-PIV measurement can be done independently (to
have a precise characterization of the jet flow) or simultaneously with the 3D-PIV system



5.2 Experimental setup 77

(to have a reliable velocity measurement of the same test run for the comparison). In
the latter case, it was important to have the two measurement systems acquire velocity
snapshots "at the same time", or as close as possible to one another time-wise. However,
since the two lasers have the same wavelength, the laser pulses cannot be at the same
time, for both laser sheets would disturb the illumination areas of one another. We chose
to intertwine the measurements. Both systems have the same acquisition frequency (i.e.
the same period between two double-pulses) but we introduced a time phase-shift in one
of the systems so as to have its double pulse occur in-between the two double pulses of
the other system.

ti	  

tv	  

camera	  
exposure	  

laser	  pulses	  

t	  

on	  
off	  

(a) single PIV system

tv	  =	  0.5	  s	  
2D	  PIV	  

t	  

on	  

off	  

3D	  PIV	  

tv	  =	  0.5	  s	  
Mechanical	  laser	  shu;er	   Mechanical	  laser	  shu;er	  

(b) two PIV system

Figure 5.2.5: Timing diagrams (left : single PIV system) (right : double PIV systems
synchronization with mechanical laser shutter).

To do this, one must take several properties and characteristics into account and better
understand how a PIV systems work, especially the synchronization between the pulsed
laser and the camera. In a classical double-frame/single-exposure PIV system, the cam-
era exposure time is synchronized with the double pulsed laser as shown in figure 5.2.5.
The system has two characteristic times : ti, the separation time between two laser pulses,
and tv the measurement acquisition period, the time in between two double pulses. One
notices that the second camera exposure time is longer than the first. During this second
exposure time, aside from the laser pulse, no light or laser pulse must be triggered, this
would alter the second frame of the recording. This is why simply superimposing two
PIV systems, with the same acquisition frequency and a simple time phase shift is not
possible. The solution found (figure 5.2.5(b)) was to double the frequency of one of the
systems (in our case the 3D-PIV system) and to use a mechanical shutter on that same
system, that would obstruct one out of two double laser pulses so as not to disturb the
images of the previous system. A good time phase shift was found to avoid any distur-
bances of the 2D-PIV laser on the images of the 3D-PIV that are properly illuminated
by the 3D-PIV laser. The 2D-PIV system frequency was set to facquisition = 2 Hz. The
3D-PIV system frequency was set to 4 Hz, but since one out of two double images are
black, the resulting snapshot acquisition frequency is still 2 Hz.

5.2.4 3D and 2D Calibration

The tomographic reconstruction is based on the triangulation and intersection of line of
sight of pixels in the 3D space. It is therefore necessary to proceed to a calibration of
the cameras. Tomographic PIV requires a very accurate calibration since each voxel in
the reconstructed space has to be projected into the images with an error lower than
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0.4 pixel [Elsinga et al., 2006] and preferably less than 0.1 pixel [Wieneke, 2008].

The 3D calibration of the 4 tomographic cameras is done through an explicit
pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter. The
outline and thorough description of the method can be found in [Cornic et al., 2015b].
The aim of the calibration process is to determine all extrinsic and intrinsic parameters
of the camera model (6 extrinsic, 4 intrinsic, 2 tilt angles for the Scheimpflug adapter,
4 distortion parameters). To do this, we use snapshots of a "freely moving" calibration
plate that can be placed at arbitrary positions in space, seen in figure 5.2.6, with 11
different positions. The goal is to minimize the sum of squared projection errors for all
plate points, in all positions, for all cameras. This first optimization procedure gives us
a first calibration of the cameras.

Figure 5.2.6: 3D dual plane calibration pattern and frame of reference.

The imaging system is calibrated using the dual plane calibration pattern using dot
markers figure 5.2.6. The centers of the dot markers are detected in the images up
to 0.05 pixel accuracy using our in-house marker detector [Le Sant and Merienne,
1995]. The optimisation is done with the camera pinhole model variables and with the
observations of detected dot markers. It leads to a mean error of 0.42 pixels, a standard
deviation of 0.51 pixels with a maximum error of 2.73 pixels.

As shown in [Elsinga et al., 2006], tomographic reconstruction is very sensitive to
calibration errors. To minimize the calibration error and to ensure the intersection
of the pixel line-of-sight, [Wieneke, 2008] introduced the self-calibration procedure.
This method is based on the minimization of the system disparities. Disparity is
the discrepancy between an observed particle in the camera and the projection of its
triangulated position in 3D. [Cornic et al., 2015b] used this technique and implemented
it in a bundle adjustment framework to obtain a globally consistent pinhole model. This
technique is applied to every experimental acquisition to enhance the quality of the
calibration. It leads to a mean error of 0.08 pixel, a standard deviation of 0.05 pixels
with a maximum error of 0.42 pixels.

The calibration for the 2D-PIV system was done using the same calibration plate, whose
top plane was positioned along the 2D-PIV laser sheet. The calibration process was
done using our in-house 2D-PIV calibration code [Le Sant et al., 2007].
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5.2.5 On particle image size

From the 3D-PIV camera arrangement and from the calibration step (section 5.2.4), one
can have a theoretical estimate of the particle image size. Furthermore, when considering
defocusing effects, one can have an estimate of the particle image size variation in the
volume. Particle image size is an interesting feature for prediction of peak locking.
Moreover it is a tuning for PVR-SMART algorithm which requires the PSF standard
deviation for building the reconstruction weight matrix. These theoretical values of the
PSF give a first crude estimate and will help us choose the PVR-SMART algorithm
parameter which is the size of the reconstruction PSF (see chapter 3).

5.2.5.1 Theoretic estimation of the particle image size

When considering in-focus particles, and the physics of diffraction, the following formula
can be used for an estimate of the particle image diameter [Raffel et al., 2007]

dτ =
√

(Mdp)2 + ddiff
2 (5.2.6)

where dp is the particle diameter, M , the magnification factor and ddiff the minimum
image diameter due to diffraction which can be obtained from the following formula
([Raffel et al., 2007] and [Adrian and Yao, 1985])

ddiff = 2.44f# (M + 1)λ (5.2.7)

where f# is the f-number, defined as the ratio between the focal length f and the aperture
diameter Da and λ the laser wavelength. In practice, the point spread function is often
modeled as a normalized Gaussian function defined in 1D here by :

I(x)

Imax
= exp

(
− x2

2σ2

)
(5.2.8)

where, I(x) is the intensity in the image. In a classical PIV setup (M ≈ 0.1, f# ≈ 8 and
λ ≈ 0.5µm) in a wind tunnel using DEHS (Di-ethyl-hexyl-sebacate) particles of about
1µm diameter, diffraction effects tend to dominate over the geometric image size.

2.44f# (M + 1)λ ≈ 10−5 �Mdp ≈ 10−7. (5.2.9)

Gaussian fitting [Raffel et al., 2007] of the diffraction shape gives the following formula
linking the standard deviation of the fitting model σ to the diffraction image diameter
ddiff :

σ = f# (M + 1)λ
√

2/π ≈ 1

5.42
ddiff (5.2.10)

This link is also verified by [Adrian and Yao, 1985]. Let us apply the formula above to
evaluate the theoretical standard deviation of the PSF in our jet setup. In our setup, the
cameras had the following parameters : M ≈ 0.1, f# ≈ 8, ∆pixels = 7µm and the focal
length f = 105mm. The laser operates at λ = 532nm. Here the standard deviation is
evaluated in pixels. One thus gets

σtheo ≈ 0.30 (5.2.11)
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5.2.5.2 Estimation of defocusing effects

[Olsen and Adrian, 2000], introduced a model for defocusing effects, giving a formula
given for of out-of-focus particles. If s0 is the distance between the object plan (in-focus
plan) and the lens, if z is the distance, projected on the lens axis, between the focus plan
and the particle, Da the aperture such as f# = f

Da
, then we have,

dτ =

√
M2dp

2 + 5.95 (M + 1)2 λ2f 2
# +

M2z2Da
2

(s0 + z)2 (5.2.12)

Considering a laser volume which is 20mm thick, we can have an estimate of the range
of particle image diameter and therefore σ, see figure 5.2.7. The σ variation range in our
laser volume is from 0.3 to 0.6 pixels.

Figure 5.2.7: Theoretical image size (σ) behavior for out-of-focus particles

5.2.6 Particle density estimation

Particle density is a crucial quantity in tomographic PIV. In a classical 3D-PIV setup,
where the only measurement system is the 3D-PIV system, the image density is poorly
estimated from a simple particle count on the images due to overlapping. [Novara, 2013]
shows that above 0.04/0.05 ppp, the overlapping issues becomes predominant. One of
the possible solutions is thinning the illuminated domain. [Lynch and Scarano, 2014]
used a slit region in the laser volume allowing an estimation of the ppp at the same time
of the tomographic measurement. However, in our setup, we have synchronized the
2D-PIV setup with the 3D-PIV setup. We will use the images from 2D-PIV to estimate
the particle density.

Indeed, from the 2D-PIV images of a run, one can count particles which are in
the 2D-PIV thin layer sheet. This detection is based on maxima detection on a
sub-region of the images and is fairly accurate as respect to particle overlapping since
low densities are required for the 3D-PIV to work efficiently. Two different sub-regions
were used : one is located in the middle of the jet stream, another is located outside the
jet stream where the velocities are low. From the 2D laser sheet thickness estimation
and the 2D-PIV camera calibration, one is thus able to estimate the particle density
in the two different locations of the image sub-regions which may differ due to the two
different seeding systems used. The ppp estimation is given by :

ppp =
NbDeteced Particles 2D

NxNy

∆Z Tomo

∆Z 2D

(
dxTomo
dx2D

)2(
M2D

MTomo

)2

(5.2.13)
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where NbDeteced Particles 2D is the number of detected particles in the 2D PIV images in
a subset which size is [Nx, Ny].∆Z Tomo and ∆Z 2D are respectively the tomographic and
2D-PIV laser sheet thickness. dxTomo and dx2D are respectively the physical pixel size of
one of the tomographic cameras and of the 2D-PIV camera on which the estimation is
based. M2D corresponds to the optical magnification of the 2D-PIV camera and MTomo

refers to the optical magnification of the camera of the tomographic setup on which the
density estimation is based.

In this process, the estimation error sources are multiple : First, there is an as-
sumption of homogeneity of the particle spatial distribution inside each image subset.
Overlapping of particles in the 2D-PIV images is inevitable when the density increases
and is a strong limitation to the method, however, it is interesting to know from which
density this phenomenon occurs and compare it to the overlapping in the tomographic
images. There is an uncertainty in the particle detection due to the cameras noise.
There is also an uncertainty on the estimation of both the 2D-PIV laser layer sheet and
the 3D-PIV laser layer depth. Errors can also come from calibration errors but those
seem negligeable in comparison to the previous ones.

For a further validation of our method, we performed synthetic tests. We created
synthetic 3D-PIV images and 2D-PIV images from the same 3D particle distribution,
using the calibration data from our jet setup, using a 15 mm thick laser for the
tomographic experiment and a 1 mm thick laser for the 2D experiment. For the sake of
simplicity, there was no camera noise in the images, and the seeding was monodisperse
diameter-wise.

Figure 5.2.8: Estimation of ppp for 2D-PIV images or 3D-PIV images.

The results (figure 5.2.8) illustrate the estimated ppp when particles are counted
from 3D-PIV images (tomo) or from the 2D-PIV images as a function of the real
ppp. This shows that within the usual range of ppp from 0.01 to 0.2, the density
estimation from the 2D-PIV images is fairly accurate and does not suffer much
from errors resulting from the overlapping in the 2D-PIV images. Hence, the main
sources of errors are detection errors in noisy images (false detections due to noise
or missed detections due to threshold values too high to avoid noise) and laser sheet
depth estimation errors for both the tomographic laser sheet and the 2D-PIV laser sheet.

However, another possible error source stems from the fact that the underlying
assumption, for our particle density estimation method, is that particles detected in
the 2D-PIV images, are also "visible" in the 3D-PIV images, should the two lasers
hypothetically work exactly at the same time. This is not the case since the 2D laser is
more powerful than the 3D tomographic laser. This means that low intensity particles
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in the 2D-PIV images, which are accounted for in the ppp estimation, are not visible
thus not reconstructed in the 3D volumes. This means that the ppp estimate is certainly
over-estimated, but it is difficult to find an effective way to counter this effect.
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5.3 Free round jet : theoretical background
In this section, we introduce and define the physical terminology and concepts used for
the description of jet flows which will be used in the rest of the thesis. Jet flows are still a
very active field of research for their study encompasses a wide variety of fluid dynamics
concepts. We will only consider incompressible free round jet flows here.

5.3.1 The round jet : flow field description

Free jets belong to the family of free shear flows. The adjective "free" means that
the flow is far away from any walls and that the turbulence appears because of mean
velocity differences [Pope, 2000]. The round jet flow appears when a Newtonian fluid
of viscosity ν flows through a round nozzle of diameter D, with an exit velocity profile
close to a "top-hat" velocity profile (of bulk velocity denoted by V0). The jet flows out
of the nozzle into a fluid at rest, eventually entraining the receiving fluid and spreading
radially with respect to the downstream distance, until the initial momentum is spread
so thin that viscous effects dissipate the energy and stop the fluid motion [Ball et al.,
2012], as illustrated in figure 5.3.1.

In this description, we consider the flow to be statistically stationary and ax-
isymmetric. The adequate coordinate system to describe this flow is usually the polar
coordinate system. However, later in the thesis, we will keep a cartesian coordinate
system, since our 3D laser volume is a rectangle and the region on which we could have
done statistics in a polar coordinate system, was not big enough to cover the whole
expanding jet. In this section, we thus call V , the axial velocity of the jet on the y axis.
U and W are the velocity field components on respectively the x and w axis.

Figure 5.3.1: Sketch of the Jet flow field (bottom) with mean axial velocity profiles (top).
This illustration is extracted from [Violato, 2013].

In [Bailly and Comte-Bellot, 2015], three non-dimensional parameters are considered
to be the most influential in the development of the jet : two Reynolds numbers,
ReD = V0D/ν and Reδθ = V0δθ/ν, and the third parameter is the peak fluctuation
intensity v′/V0 at the nozzle exit. δθ is the momentum thickness of the exit boundary
layer (equation (5.4.4) in the next section). A traditional classification of the jet flow
differentiates the flow as being laminar, transitional or turbulent depending on the state
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of the nozzle boundary layer which impacts the jet development. The above parameters
are useful in describing the state of the exit boundary layer. However, a clear classifi-
cation is difficult to establish for the jet development depends on different parameters
which are ultimately all linked together. For instance, the exit velocity profile and
nature of the boundary layer inside the nozzle are known to influence the mixing in the
shear layer. In our case, considering to the Reynolds number (ReD ≈ 4500), and the
inner step in the nozzle disturbing the boundary layer, it is safe to assume that our
jet is either turbulent or perhaps transitioning into a turbulent jet. Furthermore, axial
velocity fluctuation levels, i.e. rms axial velocity close to the exit plane of the nozzle
(see next section, figure 5.4.1(a)), are close to values classically attributed to turbulent
jets with a peak rms intensity of 0.11.

In any case, there are typically three main axial regions in the flow field : the
near field, the intermediate field and the far field as depicted in figure 5.3.1.

The near field region is usually within 0 ≤ x/D ≤ 7. Its length is defined by
the length of potential core region which is flow region, where the velocity is equal to
that at the nozzle exit. The interface between the jet and the fluid at rest is called the
shear layer or mixing layer. Initial instabilities (Kelvin-Helmholtz) appearing between
the fluid at rest and the flow existing the nozzle produces Vortices ring which are
convected downstream, and will eventually pair. This leads to mass entrainment and
momentum transfer through the mixing layer. The jet spreads radially while the shear
layer spreads to the jet core center. This is the region on which 3D-PIV measurements
will be made in the next chapter of the thesis.

The far field is where the flow is fully developed, also called the self-similar re-
gion. For [Ball et al., 2012], it is located at x/D ≥ 70, and according to [Bailly and
Comte-Bellot, 2015], the jet is fully developed at approximately 15D. As for [Pope,
2000], the self similar region starts around x/D ≥ 30. One sees how the definition of the
self-similar region varies in the literature, however, the main properties of this region is
well defined. In the so-called self-similar region and with the appropriate scaling, the
radial profiles of the mean axial velocity collapse onto a single curve and an analytic
solution can be found for this profile. In this region, the turbulence is fully developed,
meaning that the fine scales of turbulence are present.

The intermediate region is in-between the near region and the self-similar region.
This region has anisotropic turbulent structures developing and interacting with one
another.

5.3.2 Coherent structures

In the previous paragraph, we described the jet flow field based on its statistical prop-
erties. Other approaches based on the concept of ’coherent structures’ were developed
and gave new perspective and understanding. Hussain, in [Hussain, 1986] defined it as
"a connected turbulent fluid mass with instantaneously phase-correlated vorticity over
its spatial extent". The idea is to describe the flow field in terms of velocity or vorticity
structures that are born, evolve and interact. The near region of the jet is particularly
well adapted to such a description. Over the years, a large amount of research has been
carried out, describing jet flows with evolving orderly structures. Such work can be seen
for instance in [Becker and Massaro, 1968], [Crow and Champagne, 1971], [Yule, 1978],
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[Hussain, 1986] and [Liepmann and Gharib, 1992].

In the near region, the shear layer develops Kelvin-Helmholtz instabilities, the
shear layer rolls up, leading to ring vortices [Becker and Massaro, 1968]. At moderate
Reynolds number, the vortices grow radially in size, maintaining their axial symmetry,
and the mutual induction [Crow and Champagne, 1971] between two consecutive
rings makes them roll around each other and pair up. Those ring vortices can also
be affected by secondary instabilities, namely azimuthal instabilities of a vortex ring,
as shown in the experimental study of [Liepmann and Gharib, 1992], figure 5.3.2(a).
Experimental studies as well as numerical ones [Martin and Meiburg, 1991] showed that
those azimuthal perturbations can also lead to the development of streamwise vortices,
organized into counter-rotating pairs in the braid region figure 5.3.2(b).

(a) jet cross-section in the middle of a
ring vortex

(b) jet cross-section in the braid region

Figure 5.3.2: Dye visualization in a jet cross-section at x/d = 3.25 for ReD = 5500
(from [Liepmann and Gharib, 1992]).

Research is still being carried out to understand how those structures interact, how they
influence the mixing process in the shear layer and how initial conditions influence such
structures, with different explaining scenarios being investigated [Davoust et al., 2012].
In that regard, 3D time-resolved PIV is well suited for such investigations of coherent
structures [Violato and Scarano, 2011]. In the next chapter, we will investigate the
near field region of our jet setup, investigating mean and rms velocity fields, as well as
coherent structures.
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5.4 Description of the jet flow
This section focuses on the description of the flow statistical properties using the 2D-PIV
measurement system. We wish to emphasize the fact that this description was done using
only the 2D-PIV setup, in optimized seeding conditions for 2D-PIV. Those conditions
are very different from the conditions used in the next chapter of the thesis. The aim
of this section is to experimentally assess the jet flow field which will be used for the
3D-PIV measurements later in the thesis so as to provide a reference.

5.4.1 2D-PIV settings

For the description of the jet flow field, we used the 2D-PIV measurement system. Flow
field measurements were computed on 3000 snapshots at 2 Hz using a high tracer density
(not fitted for 3D-PIV). The time interval between the 2 laser pulses was set to 50µs.
Image correlations were done with our FOLKI-PIV correlation code [Champagnat et al.,
2011], using J = 3 levels, N = 10 Newton-Gauss iterations. The choice for the In-
terrogation Window size (IW) stemmed from a trade-off between spatial resolution and
measurement noise. We chose a 31 pixels window size allowing for an estimated 20 tracer
particles per interrogation window (see table 5.4.1) which is a value classically admit-
ted in PIV literature to yield a good measurement quality. This leads to a normalized
window size of 0.086 when normalized by the jet nozzle exit diameter D.

IW size (pix) IW size (mm) IW size/D Ntracer per IW

21 0.7 0.058 10
31 1 0.086 20
41 1.3 0.115 40
51 1.7 0.143 51

Table 5.4.1: 2D-PIV correlation window size properties : in pixels, normalized by the
nozzle diameter D and the estimated number of tracer per IW.

5.4.2 Results

Considering the geometrical reference frame (see section 5.2.3.1) on our jet facility, the
2D-PIV systems measures the 2D velocity field in the (~z,O, ~y) plane. Each measure-
ment snapshot at a discrete time t ∈ 〈t1, t2, ..., tNs〉 corresponds to a 2D vector field
(V (x, t),W (x, t)). V is the streamwise or axial velocity of the jet, W the radial velocity.

5.4.2.1 Statistical and integral quantities definitions

For any given field α(x, t) obtained at discrete time intervals t ∈ {t1, t2, ..., tNs},(Ns =
3000 samples) we can compute statistical quantities such as mean, fluctuating and Root-
Mean Square (rms) fields, whose definitions are respectively :

〈α(x)〉 =
1

Ns

Ns∑
i=1

α(x, ti) , α′(x, t) = α(x, t)− 〈α〉 , αrms(x) =

√√√√ 1

Ns

Ns∑
i=1

α′(x, ti)
2

(5.4.1)
The velocity fields are normalized by the jet output velocity. The definition of jet output
velocity is based on the spatial integration of the mean axial velocity at y/D = 0.46.

V0 =
1

D/4

∫
L

〈V (z)〉 dz (5.4.2)
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where L is the horizontal line segment of length L = D/4, in the 2D-PIV measurement
plane centered on the ~y axis at y/D = 0.46. This space location corresponds to the
one that we will use in the next chapter for the 3D-PIV. The profile was extracted 5.5
mm downstream of the nozzle to avoid using unlit areas or data corrupted by the laser
light reflections on the nozzle. We normalized each velocity field (V,W ) with the output
velocity V0:

v = V/V0 , w = W/V0 (5.4.3)

5.4.2.2 Basic flow field description

The jet facility was operated here at an output velocity V0 = 5.8 m.s−1 which cor-
responds to a Reynolds number of ReD ≈ 4500 based on the nozzle exit diameter.
Figure figure 5.4.1(a) shows the mean axial velocity 〈v〉 exit velocity as well as the rms
streamwise velocity.

(a) Mean and rms axial velocity profiles
at y/D = 0.46.

(b) Mean axial 2D velocity field.

Figure 5.4.1: Inflow conditions (a) and mean axial velocity (b).

(a) Mean axial velocity profiles. (b) Mean and rms axial centerline
velocity.

Figure 5.4.2: Mean axial velocity profiles (a) where each profile is normalized by its
maximum value (V 0max). Centerline mean and rms velocity (b).

From this profile we can compute the momentum thickness θe ≈ 0.27 mm (5.4.4)
and the displacement thickness δe ≈ 1.2 mm, which gives θe/D ≈ 0.023 and δe/D ≈ 0.1.

θe =

∫ ∞
0

V

V0

(
1− V

V0

)∣∣∣∣
y/D=0.46

dz ; δe =

∫ ∞
0

(
1− V

V0

)∣∣∣∣
y/D=0.46

dz (5.4.4)
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(a) Axial rms velocity field (vrms). (b) Radial rms velocity field (wrms).

Figure 5.4.3: Axial (a) and radial (b) rms velocity fields.

The mean axial velocity profile is very well fitted by hyperbolic tangent profiles
[Michalke, 1984]. The level of axial velocity fluctuation vrms in the jet core is less than
0.9%. A the edge of the nozzle, the rms fluctuations are about 10% of the exit velocity
which are values classically attributed to turbulent jets.

The spatial enlargement and development of the jet is illustrated with 2D con-
tours of mean axial velocity (figure 5.4.1(b)) as well as profiles of the mean axial velocity
(figure 5.4.2(a)) at different locations. Each profile is normalized by its maximum value
vmax(y/D) = maxz(〈v(y, z)〉) and is plotted against the radial coordinate z normalized
by local jet mean velocity half-width, z1/2(y). The half-width is defined as the radial
location at which the local jet mean velocity falls to one-half its centerline value. 95%
of the exit velocity is maintained in the core of the jet till y/D = 4 and 90% till beyond
y/D = 6.

One can notice that the mean velocity field does not exhibit a perfect line sym-
metry of axis z/D = 0, especially between the y/D = 3 and y/D = 4 streamwise
locations. This phenomenon can be noticed in the axial rms velocity contour (fig-
ure 5.4.3(a)), the positive shear layer (z > 0) exhibits a higher rms intensity compared
to the negative shear layer (z < 0). This phenomenon is less visible on the rms radial
velocities (figure 5.4.3(b)). Another interesting feature of our jet flow is the behavior of
the mean axial centerline velocity, displayed in figure 5.4.2(b), where the mean velocity
does not decrease monotonically as classically expected between y/D = 3 and y/D = 4.
It first decreases from 0 y/D to 3.5 y/D, then increases from 3.5 y/D to about 4.5 y/D
before finally decreasing.

(a) Mean correlatin score (b) Streamlines for mean velocity field

Figure 5.4.4: Mean correlation score and streamlines
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One possible interpretation of this issue could be that an outside flow is present in
the flow field and jets are known to respond strongly to outside perturbations. This
perturbation can be seen in the flow streamlines (figure 5.4.4(b)) in the z > 0 region of
the jet where a left to right perturbation seems to deviate the mean flow to the right,
before finally going to the left and the shear layer as expected by the entrainement of
the ambient fluid to the jet core. This outside perturbation, combined with the initial
output conditions of the jet will influence the jet development. However, it is difficult
to know what effect is predominant and what is responsible for such and such feature
of the flow. Today, numerous experimental studies [Courtier, 2015] as well as numerical
research [Kim and Choi, 2009] still investigate the influence of initial conditions on the
development of the jet. The issue is still not fully understood in fluid dynamics.

Another remark on the results is about the 2D-PIV measurement quality. In-
deed, figure 5.4.2(b) shows that the rms centerline velocity does not seem to be fully
converged yet for y/D > 5. This can be explained by the fact that, as the streamwise
location increases, the size of the turbulent scales decreases. This means that velocity
gradient in the interrogation window increases, therefore increasing the measurement
noise. This is visible in the mean correlation score map figure 5.4.4(b) where the
correlation score decreases for increasing y/D. The correlation score can be seen as the
value of the normalized peak of the correlation map [Champagnat et al., 2011]. Values
range from 0 to 1, 0 being the worst case and 1 being the best possible correlation over
an interrogation window between the two pulses. In 2D-PIV, the correlation score is
directly linked to the overall quality of the measurement.
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5.5 Conclusion
This chapter was devoted to the description of our experimental setup which includes
2D-PIV and 3D-PIV systems synchronized together to measure the near field region of
a turbulent jet.

We first described the measurement systems with their own properties and showed the
synchronization was made. Then, we introduced the main feature of turbulent jets
with a non-exhaustive overview of the theory of turbulent jets. Finally, we showed the
2D-PIV measurement that were performed on our jet to act as a reference. Knowing
now the principle features of our jet, we will perform 3D-PIV measurements to assess the
newly introduced algorithm PVR-SMART [Champagnat et al., 2014], also using classical
tomo-SMART algorithm [Atkinson and Soria, 2009] to compare the two algorithms
performance on experimental data. The results of this experimental assessment of PVR
on our jet setup will be elaborated upon in the next chapter.



6 Experimental assessment of Particle
Volume Reconstruction for 3D-PIV

6.1 Introduction
Our aim is to further the numerical work of chapter 3 by performing an experimental
assessment of the PVR paradigm using PVR-SMART on experimental data.

The application is performed on the near field region of a turbulent round air jet
at ReD ≈ 4300 whose features and characteristics were presented in the previous
chapter. The tomographic setup was introduced in the previous chapter. To act as a
measurement reference, a 2D-PIV system was synchronized with the 3D-PIV system.
The 2D-PIV system and synchronization characteristics were also described in the
previous chapter.

The idea is to compare reconstruction results and velocity fields from PVR-SMART and
a classical reconstruction algorithm which we will refer to as tomo-SMART [Atkinson
and Soria, 2009]. The 2D-PIV measurement will shed light on this comparison with a
reference measurement while allowing for a seeding density estimation (see chapter 5).

This present chapter has two parts. In the first one, we discuss the different al-
gorithm settings used for the experimental data. This includes the setting for both
tomographic algorithms, especially thresholding methods when confronted to noisy
data. The choice of the reconstruction PSF size for PVR-SMART is made through
a-posteriori testing: different reconstruction PSF sizes are tested on a single snaphsot
and the one which yields the best results will be kept in the remaining part of the study.
Last, the choice for the correlation window volume size is explained.

In the second part of this chapter, we show the reconstruction and velocity field
results for different seeding densities from both tomo-SMART and PVR-SMART
algorithms. We first exhibit tomographic reconstruction intensity profiles linked to
the reconstruction signal-to-noise (SNRR). We then proceed to investigate statistical
properties of the measured velocity fields, comparing for instance exit nozzle velocity
conditions of the 3D-PIV and 2D-PIV measurements. The comparison of the recon-
struction algorithms is extended to the flow divergence as well as to the statistical flow
topology when investigating the statistical behavior of the velocity gradient tensor.
Last, a final comparison is achieved through the visualization of coherent structures,
using visualization of the Q criteria or iso-surfaces of vorticity components.
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6.2 3D Algorithms setup
This section is devoted to the description of the algorithms and their setting parameters
involved in the reconstruction and correlation step. First, we will describe the geometric
parameters of the reconstruction and correlation volumes. Then, we will discuss the
method used for image pre-processing and how we will use thresholds in the reconstruc-
tion algorithm when confronted with noisy images. Then, we will investigate the choice
of the particle image size, or PSF size for PVR-SMART algorithm. Last, we will dis-
cuss the choice of the main parameter for the correlation step, namely the size of the
Interrogation Volume (IV) for the 3D-PIV.

6.2.1 3D-PIV Volumes

From the calibration step, and an estimation of the laser illumination area, one can
define the geometric characteristics of the volumes for the reconstruction and correlation
step. The laser illumination area has an x = cste cross section whose dimensions (height
and depth) we estimated. The depth was estimated by reconstruction intensity profiles
and the height was estimated on the images. The laser thickness on the ~z axis was
found to be about 14.5 mm ([−8 mm , 6.5 mm]) and the height on the ~y axis is about
86 mm ([−36 mm , 50 mm]).

I III 
II 

Figure 6.2.1: Tomographic volumes visualization : Volume I cuboid containing Inter-
section volume. Volume II: working volume for reconstruction and correlation.Volume
III: volume used for the tomographic reconstruction intensity profiles

Here, we define 3 cuboids ( see table 6.2.1) that are visualized in figure 6.2.1. They
all have the same height, given by the laser height. The first volume is the smallest
cuboid containing the intersection volume of the camera’s field of view and the laser
sheet. We will call this Volume I. It is the largest useful cuboid on which we can do
a reconstruction. However, this volume contains a large volume of fluid at rest. This is
why we restricted the extension of the volumes on the x axis to several jet diameters.
The volume used for the reconstruction and correlation (Volume II) is the same for
both steps and was chosen as the cuboid of depth ∆z = [−10 mm , 7 mm] and width
∆x = [−2.D , 2.D]. For the computation of tomographic reconstruction intensity
profiles, we chose a larger x extension ∆x = [−3.D , 3.D] and larger depth. This is
referred to as Volume III. We used two depth extensions : ∆z = [−12.5 mm , 11 mm],
it corresponds to a symmetric enlargement of 30% with respect to the laser thickness
and ∆z = [−15 mm , 15 mm] for a larger enlargement extension. For high seeding
density cases, we used the smaller extension due to computation issues.
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The volumes properties are summed up in table 6.2.1. The ratio between voxel
size and pixel size sets the volume discretization size. We use for tomo-SMART a
v/p = 1 ratio and for PVR-SMART a v/p = 1/2. The correlation for tomo-SMART and
PVR-SMART is done on a v/p = 1 grid. For the v/p = 1 grid, the resolution is 18.5
voxels/mm. For the v/p = 1/2 grid, the resolution increases to 37 voxels/mm.

Volume I Volume II Volume III
∆x (mm) [−56 , 56] [−24 , 24] [−36 , 36]
∆y (mm) [−36 , 50] [−36 , 50] [−36 , 50]

∆z (mm) [−8 , 6.5] [−10 , 7]
[−12.5 , 11]
[−15 , 15]

v/p = 1 (vox) 2093× 1597× 271 893× 1597× 317
1337× 1597× 437
1337× 1597× 559

v/p = 1/2 (vox) 4185× 3195× 539 1783× 3195× 632
2675× 3195× 874
2675× 3195× 1115

Table 6.2.1: 3D Volumes properties

6.2.2 Image Pre-Processing

This section focuses on our use of image pre-processing for the 3D-PIV images. Image
pre-processing is used to enhance image contrast and consequently increase the quality
of tomographic reconstruction. In real experiments, image pre-processing was shown
to have a strong impact on the reconstructed volumes [Elsinga et al., 2005], [Scarano,
2013], [Thomas et al., 2010] and [Fukuchi, 2012]. Pre-processing can alter the size and
shape of the particles in the images and since PVR-SMART needs the size of the PSF,
it is interesting to understand which pre-processing is best suited to PVR-SMART.
We will therefore investigate here the different image pre-processing that we use for
tomo-SMART as well as for PVR-SMART.

As in [Lynch and Scarano, 2014], we chose a conservative behavior towards im-
age pre-processing, selecting the pre-processing techniques that would the least alter
the signal in the images. Indeed, since in PVR, the PSF size is needed, we chose the
pre-processing that would not alter the PSF size. Image pre-processing consists of two
steps :

1. Subtraction of historical minimum pixel-wise : the historical minimum at each
pixel over 20 images is calculated for each camera. The images are then subtracted
by the corresponding minimum. This was first used by [Fukuchi, 2012] and then
by [Lynch and Scarano, 2014].

2. Intensity normalization, also called histogram stretching : this is done by trans-
forming each recorded image I with intensity values in the range (Min,Max) into
a new image IN with the intensity values in the range (MinN ,MaxN). We chose
a linear normalization :

IN = (MaxN −MinN)
I −Min

Max−Min
+MinN (6.2.1)

We used (Max,Min) = (max(I),min(I)) and (MaxN ,MinN) = (5000, 0). This
was done to account for the Mie scattering and the intensity difference between
cameras. One may add that this will not change the signal-to-noise ratio (SNR) in
the images.
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Once those two operations are applied onto the images, residual noise still exists and
needs to be thresholded for the reconstruction step. Indeed, keeping image noise would
increase the number of ghost particles and lower the reconstruction quality. This is the
subject of section 6.2.3.2 below.

6.2.3 Data Processing

6.2.3.1 Reconstruction algorithm

The reconstructions are done using a classical tomo-SMART algorithm and our PVR-
SMART reconstruction algorithm (see chapter 3). Both methods are initialized with the
same MLOS field. Tomo-SMART and PVR-SMART use different weigthing matrices
and grid resolutions but the inversion algorithm mechanism is the same: we used a
SMART (Simultaneous Multiplicative Algebraic Reconstruction Technique) algorithm
[Atkinson and Soria, 2009]. We used 25 iterations with a relaxation parameter set to
1.0. We did not investigate the impact of the relaxation parameter combined with the
number of iterations on the quality of the reconstruction as in [Thomas et al., 2014],
however, this would be an interesting study for future work.

PVR-SMART has two tuning parameters that need to be set : the reconstruc-
tion PSF size (see ) and the size of the Gaussian filtering for the "blob reconstruction".
The Gaussian filtering is here to adapt the particular approach of PVR, yielding a
sparse volumic representation of point particles, to a classical blob correlation paradigm
used in classical 3D-PIV [Champagnat et al., 2014]. We showed in chapter 4 that our
FOLKI-3D correlator was well adapted to correlate 3D Gaussian blobs of 0.6 standard
deviation. We chose this value for the Gaussian filtering in PVR-SMART.

6.2.3.2 On the use of Thresholds in the reconstruction

In this section, we discuss and investigate our choice of threshold values for the images
during the reconstruction step (for both MLOS initialization and SMART algorithm).
For the sake of clarity, we wish to emphasize the fact that the thresholds under consid-
eration are applied onto the images, not on any of the reconstructed volumes during the
iterative steps of the reconstruction, as for instance in Fast-MART [Lynch and Scarano,
2014].

During the MLOS step : in numerous 3D-PIV reconstruction methods, the
initialization is done through the MLOS step [Atkinson and Soria, 2009]. Its purpose
can be seen as a pre-selection of non-zero voxels that will be used in the reconstruction
algorithm. This pre-selection is done thanks to the combined effects of multiplicative
lines of sight and thresholded images where the background intensity is put to zero.
For the MLOS step to be effective, one thus needs to threshold the residual noise in the
images.

The signal used in PIV can be seen as the sum of an effective signal (the parti-
cle image) and camera noise (see figure 6.2.2). A low threshold value will not eliminate
low intensity tracer particles nor will it affect the particle shape much, but this will
also keep camera noise that will generate ghost particles in the reconstructed volume,
ultimately impacting the velocity estimation step (see 1D representation figure 6.2.2,
Threshold 1). A high threshold value will eliminate camera noise and have fewer ghost
particles but will eliminate low intensity tracers. This will also reduce the size of the
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particle in the images by thresholding pixels around the particle peak which leads
to reducing the size of the reconstructed particle (see 1D representation figure 6.2.2,
Threshold 2). This is detrimental to the velocity estimation step which needs bloby
particles.

Figure 6.2.2: 1D representation of PIV images, with an ideal particle image (left),
camera noise (middle), and the sum of camera noise and particle image (right).
Threshold 1 and 2 illustrates the importance of the threshold for the MLOS step

To choose the threshold value, one technique is to compute the histogram of the residual
noise by collecting noise sample values from non-illuminated areas in the images (should
they exist) and threshold the images while knowing the noise dynamic range. This is
the technique that we will consider for the rest of the thesis for the MLOS step. The
threshold value is given as the percentage of thresholded noise.

During the SMART reconstruction : during the iterative steps of the reconstruc-
tion algorithm, the updated voxel projections are compared to the recorded images. A
question remains whether to use the thresholded images or the non-thresholded images
using the same threshold levels as in the MLOS step. To the best of our knowledge, this
question has never been investigated. This question is particularly relevant since the
use of thresholded images in the SMART algorithm can lead to peaked reconstructed
particles and/or missed particles. Indeed, during the SMART algorithm, if the influence
area of a voxel (xi = Wyi) includes a thresholded pixel, due to the multiplicative and
simultaneous nature of the algorithm, the updated voxel will be put to zero. This is
detrimental when the thresolded pixel belongs to the PSF of a particle. This issue is
particularly relevant when the influence area of a voxel in the weighting matrix spreads
over several pixels. This is the case in PVR-SMART for large PSF size. An effective
counter strategy could be to use the raw images in the SMART algorithm so as to re-
construct bigger sized particles. Non-thresholded images are hereafter call "raw" images.

We introduced the threshold issue in the MLOS step as well as the SMART al-
gorithm. This issue is summed up in figure 6.2.3.

In the following sections, a study is carried out to understand and choose the
adapted threshold levels and techniques both in the MLOS step and in the SMART
algorithm. The aim is to choose the MLOS level (MLOS threshold x%) and either or
not to use raw or thresholded images in SMART. Here is the outline of the study :
general considerations on the MLOS step and SMART regarding thresholds are given,
this leads to a one-particle test case to illustrate the issue. Last, 3D synthetic tests as
well as a test on experimental data are used to conclude the study. Both algorithms
(tomo-SMART and PVR-SMART) will be put under consideration for this study.
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Figure 6.2.3: Representation of the threshold issue in the MLOS step and SMART
algorithm

Synthetic test - One particle case : to illustrate our idea, we performed a synthetic
test that involves the reconstruction of a single particle using both tomo-SMART and
PVR-SMART reconstruction. The particle was at the center of the volume and four
cameras (32 × 32 pixels) were used to reconstruct. The particle size was σPSF = 0.4
and its peak intensity in the images was 40. The camera noise was taken as a Gaussian
distribution of mean 10 and of standard deviation σNoise = 2. See image in figure 6.2.4.

Figure 6.2.4: Image for one particle case

We used two different MLOS threshold values : 10 and 15, representing respectively 50%
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and 99% of the noise thresholded. For the sake of clarity, to refer to the MLOS threshold
level, we write : MLOS x %. We performed SMART reconstruction with thresholded
images, hereafter denoted by "thresh" and raw images. To refer to the threhold technique
in SMART, we use either "SMART raw" or "SMART thresh".

MLOS 50% MLOS 99%
tomo-SMART raw raw
tomo-SMART thresh thresh
PVR-SMART raw raw
PVR-SMART thresh thresh

Table 6.2.2: Summary of the different MLOS threshold values and threshold techniques
in SMART used for the one-particle case.

Results are shown in figure 6.2.5 where we see 2D slices of the reconstructed volume.
Focusing on the tomo-SMART algorithm, one sees that choosing high threshold values
allows to eliminate the camera noise (figure 6.2.5(b) and figure 6.2.5(d)). When also
using thresholded images in the SMART (figure 6.2.5(b)), the reconstructed particle
is made of a single voxel. Using the raw images enables to recover the reconstructed
particle as blob. PVR-SMART displays the same behavior as tomo-SMART towards the
threshold levels and the use of raw images. The difference being that the reconstructed
particles are wider than for tomo-SMART, due to the Gaussian filtering at the end of
the PVR-SMART algorithm. This illustrates the idea presented in the introduction of
this section. From this simple study, we clearly see that thresholds in MLOS step and in
the SMART algorithm have a strong impact on the reconstruction and on the spikiness
of a reconstructed particle. To understand what happens when a full set of particles is
being reconstructed and how this technique behaves in light of ghost particles, one must
do full 3D synthetic tests. This is the subject of our next section.

Synthetic tests-3D tests : in order to have a more realistic understanding of the
thresholds techniques, we performed 3D synthetic tests. The findings will guide our
decision-making process concerning the best strategy to adopt for real experiments.

We used the same setup as in our jet experimental setup. Four cameras with
calibrations taken from the experimental calibrations of the jet setup were used. The
laser vertical height (∆y = 86mm) and depth (∆z = 20mm) were matched to the ones
in our experiment. The laser intensity profile was modeled as a Gaussian profile of
maximum intensity I0 = 150 and standard deviation σlaser = 5mm. Tracer particles
are uniformly distributed in the light sheet volume. The scattered light is proportional
to the square of the particle diameter dp and a polydisperse seeding was used. The
particle’s PSF size was taken as σPSF = 0.4, which is wider than the theoretical value
σPSF =≈ 0.3 computed in chapter 5. The volumic particle density was set so as to
have a ppp = 0.05 which gives a source density equal to NS = ppp.π

4
.d2
τ ≈ 0.1. The

camera noise was taken as a Gaussian distribution of mean 10 and of standard deviation
σNoise = 3 which is close to what we observe in the experiment. We used two different
MLOS threshold values : 15 and 25, relatively (95% and 99% of the noise is being
thresholded).
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(a) tomo-SMART, MLOS 50 %, SMART
raw

(b) tomo-SMART, MLOS 99 %, SMART
raw

(c) tomo-SMART, MLOS 50 %, SMART
thresh

(d) tomo-SMART, MLOS 99 %, SMART
thresh

(e) PVR-SMART, MLOS 50 %, SMART
raw

(f) PVR-SMART, MLOS 99 %, SMART
raw

(g) PVR-SMART, MLOS 50 %, SMART
thresh

(h) PVR-SMART, MLOS 99 %, SMART
thresh

Figure 6.2.5: 2D slice in the z=0 plane of the reconstructed volume for two MLOS
threshold values and two threshold techniques in SMART. (left) : MLOS 50 %, (right)
: MLOS 99 %
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MLOS 95% MLOS 99%
tomo-SMART raw raw
tomo-SMART thresh thresh
PVR-SMART raw raw
PVR-SMART thresh thresh

Table 6.2.3: Summary of the different MLOS threshold values and threshold techniques
in SMART used for the 3D synthetic tests.

Several reconstruction quality criteria were used to characterize the reconstruction.
First, we used the classical Q quality factor using the ground truth built by expanding
locally the physical particles to a 3D Gaussian blob. We also used metrics measuring
the detection performance of the methods (TP/FP/FN) introduced in chapter 2, in
table 6.2.4. We also computed the number of detected maxima and the number of voxels
lit. Intensity profiles, reconstruction histograms and 2D slices of the reconstructed
volumes are shown respectively in figure 6.2.6 and figure 6.2.7.

Let us first focus on the results of the tomo-SMART :

For MLOS 99%: SMART threshold has a strong impact on the Q factor (from
0.55 for thresh to 0.78 for raw), however for low MLOS threshold level, the impact of the
SMART threshold is less significant (from 0.72 to 0.74 for Q factor). From the detection
performance, one can see that for high MLOS threshold levels, using raw images in the
SMART algorithm leads to increasing the number of real detected particles (from 43 649
to 65 696, an almost 50% increase) but also to increasing the number of ghost particles
(from 7 601 to 865 632). One can note that the Q factor is more sensitive to the number
of real particles and their shape than the number of ghost particles especially if those
ghost particles intensities are low.

For MLOS 50%: the same behavior happens at the low MLOS threshold level,
the only notable difference being that the number of real particles decreases slightly
(from 67 839 for raw images to 66 688 for thresh images SMART). This behavior
which contrasts with previous observation can be attributed to our maxima detection
method based on a "low hidden" threshold value. Using a low MLOS threshold and
raw images means that the reconstruction will both keep real particles and produce a
lot of ghost particles. It was shown that ghost particles get their energy and intensity
from the real particles [Lynch and Scarano, 2014], and therefore decrease the energy of
the real particles. Some real particles have lower intensities than our maxima detection
threshold, and are counted as missing. This is why we can observe a decrease in TP
when using raw images in the SMART. The number of ghost particles increases (from
112 693 to 3 185 090) which is the same behavior as in the case of a high MLOS threshold.

The increase in the number of ghost is always associated with a decrease in the
Reconstruction Signal-to-Noise Ratio (SNRR, [Lynch and Scarano, 2014]), this can
be seen in the reconstruction intensity profiles since ghost particles lower the in-
tensity of real particles (see figure 6.2.6). For the high MLOS threshold and raw
SMART threshold case, the Q factor is the highest and the SNR is high enough for
a good reconstruction quality (the empirical rule being that a reconstruction is good
enough for the velocity estimation step for SNR ≥ 2). Furthermore, when looking
at the reconstruction histograms (see figure 6.2.6), ones sees that in this case the
real particle and ghosts histogram are the furthest apart. This method will there-
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fore be the one that we use in a real 3D-PIV experiment for the tomo-SMART algorithm.

Algorithm MLOS Threshold 15 MLOS Threshold 25
95% 99%

MLOS Q = 0.3045, P = 0.009, R = 0.92 Q = 0.5542 P = 0.07, R = 0.77
TP = 79502, FP = 8 633 079 TP = 67 070, FP =836 255

FN = 6 687 FN = 19 119
tomo-SMART Q = 0.74, P = 0.02, R = 0.77 Q = 0.78, P= 0.07, R = 0.76

raw TP = 66 688, FP = 3 185 090 TP = 65 696, FP = 865 632
FN = 19 501 FN = 20 493

tomo-SMART Q = 0.7214, P = 0.37, R = 0.78 Q = 0.55, P = 0.85, R = 0.51
thresh TP = 67 839, FP = 112 693 TP = 43 649, FP = 7 601

FN = 18 350 FN = 42 540
PVR-SMART Q = 0.86, P = 0.17, R = 0.66 Q = 0.85, P = 0.11, R = 0.77

raw TP = 57 172, FP = 280 973 TP = 66 739, FP = 510 719
FN = 29 017 FN = 19 450

PVR-SMART Q = 0.8800, P= 0.71, R = 0.71 Q = 0.65, P = 0.67, R = 0.32
thresh TP = 61 721, FP = 25 390 TP = 27 809, FP = 13 513

FN = 24 468 FN = 58 380

Table 6.2.4: Synthetic Tests Results

Let us now focus on the results for the PVR-SMART algorithm :

For the MLOS 99% : the use of raw or thresh SMART has a strong impact on
the reconstruction. When using raw images, the number of TP dramatically increases
(from 27809 for thresh to 66739 for raw). The Q factor also increases (from 0.65 for
thresh to 0.86 for raw).

For the MLOS 95% : the impact of the SMART threshold is less significant
(from 0.88 to 0.86 for Q factor). Using raw images in the SMART algorithm always
leads to an increase in the number of ghost particles and therefore a decrease in SNR,
seen in both FP detections and intensity profiles figure 6.2.7. Unlike tomo-SMART
algorithm, the highest Q factors for PVR-SMART are met for the low MLOS threshold
levels. This is due to the fact that even if fewer real particles are being reconstructed
(about 60000 for PVR instead of 67000 for tomo-SMART), their reconstructed shape is
better because of the Gaussian smoothing in PVR and significantly fewer ghost particles
are being reconstructed. It is important to notice that in a real experiment, calibration
errors are unavoidable and using the thresholded images in SMART may cause real
particles not to be reconstructed.

Based on the Q factor and the number of ghost particles, it is difficult to select
a method that is the best, there is a doubt between the MLOS 50% / SMART thresh
(highest Q = 0.88, lowest FP = 25 390 number) and MLOS 90% /raw SMART (high
Q = 0.85 factor highest TP = 66 739 but also the highest number of ghost particles
FP = 510 719). Since synthetic criteria do not appear to be discriminating enough
to determine what is the best possible method for PVR-SMART between these two
cases, we will do an "a-posteriori" choice : on a real 3D-PIV experiment snapshot, both
methods will be applied to make a decision based on velocity field and reconstruction
criteria. This is the topic of the next section.
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(a) tomo-SMART, MLOS 95%,
SMART raw

(b) tomo-SMART, MLOS 99%,
SMART raw

(c) tomo-SMART, MLOS 95%,
SMART thresh

(d) tomo-SMART, MLOS 99%,
SMART thresh

(e) tomo-SMART, MLOS 95%,
SMART raw

(f) tomo-SMART, MLOS 99%, SMART
raw

(g) tomo-SMART, MLOS 95%,
SMART thresh

(h) tomo-SMART, MLOS 99%,
SMART thresh

Figure 6.2.6: 3D tests: Intensity profiles and Reconstruction histograms for
tomo-SMART.
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(a) PVR-SMART, MLOS 95%, SMART
raw

(b) PVR-SMART, MLOS 99%, SMART
raw

(c) PVR-SMART, MLOS 95%, SMART
thresh

(d) PVR-SMART, MLOS 99%, SMART
thresh

(e) PVR-SMART, MLOS 95%, SMART
raw

(f) PVR-SMART, MLOS 99%, SMART
raw

(g) PVR-SMART, MLOS 95%, SMART
thresh

(h) PVR-SMART, MLOS 99%, SMART
thresh

Figure 6.2.7: 3D tests: Intensity profiles and Reconstruction histograms for
PVR-SMART.
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Experimental Realization : in this section we put in practice image pre-processing
and thresholding methods on real 3D-PIV measurement. We must choose for PVR-
SMART between a low MLOS threshold/SMART thresh method and a high MLOS
threshold/ SMART raw method. To do so, we will perform both methods on a 3D-PIV
snapshot and look at the reconstruction and velocity fields.

Investigations are undertaken in the near field region of the jet. The exit nozzle
diameter of the jet is 12mm, and its exit velocity is 6 m.s−1 (ReD ≈ 4800). Reconstruc-
tions were done on the same image set, with an estimated particle density ppp ≈ 0.05. As
mentioned in section 6.2.2, the first step in the pre-processing process is to subtract the
historical minimum (which is computed over 20 images) and then do a re-normalization
since the 2 camera systems have different dynamical ranges. Then, in order to have a
good estimation of the noise distribution in the images, probability density functions
of the noise in unlit areas over 20 images are computed (see figure 6.2.8). The noise
distribution is computed here for camera 1 (Dantec) and camera 3 (LaVision). For
every camera and every pulse, the MLOS threshold value is computed according to the
percentage of noise that we want to threshold in the images. As previously, we chose
two types of thresholds : a "low" 95 % of noise threshold and a "high" 99 % of noise
threshold.

Figure 6.2.8: Camera noise distribution for camera 1 (left) and camera 3 (right)

Since the choice of threshold technique is clear for tomo-SMART, we only performed
reconstructions and correlations with the PVR-SMART algorithm on our jet setup.
For this reconstruction algorithm, the PSF function modeled as an integrated Gaussian
function of width σPSF is unknown to the experimentalist. One can have a theoretical
estimation of this function (see chapter 5). Also, as suggested recently by [Champagnat
et al., 2014], PSF calibration techniques can be applied to obtain the desired infor-
mation. This can lead to spatially varying PSF due to defocussing and astigmatism.
The choice of PSF size is the subject of next our section. To ensure that the choice
of the threshold method is not affected by the choice of PSF size so that settings can
be done separately, we performed PVR-SMART reconstruction with different PSF size
(σPSF = {0.2 , 0.4 , 0.6}). Regarding the other settings of the reconstruction algorithm,
the number of iterations was set to Niter = 25, relaxation parameter to µ = 1.0. For the
correlation step, we used our FOLKI-3D in-house code using a Gaussian interrogation
volume of size IVsize = 41, and standard deviation of the weighting function σIV

IVsize
= 4

, we used JLevel = 3 for the multi-grid approach and NIteration = 7 for the number of
Gauss-Newton iterations. For more on the choice of the correlation algorithm settings,
see section 6.2.4.
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(a) σPSF = 0.2 (b) σPSF = 0.2

(c) σPSF = 0.4 (d) σPSF = 0.4

(e) σPSF = 0.6 (f) σPSF = 0.6

Figure 6.2.9: PVR-SMART reconstruction intensity profiles for different reconstruction
PSF sizes (σPSF ): left MLOS 95% , SMART thresh, right MLOS 99%, SMART raw

Figure 6.2.9 shows the reconstruction intensity profiles of the PVR-SMART re-
construction for different σPSF . One sees that for the low MLOS threshold/SMART
thresh method, the SNRR is strongly impacted by the σPSF with a dramatic decrease
in quality when σPSF increases. This is expected since the bigger the σPSF is, the
more likely a thresholded pixel in the near vicinity of a particle is to appear in the
images, which leads to the elimination of the particle in the iteration process of the
SMART algorithm. The low MLOS threshold/SMART thresh method is not robust
enough to σPSF , especially when the particle PSF size is over-estimated. However, high
MLOS threshold/SMART raw method is not significantly impacted by σPSF and seems
robust to different σPSF . The intensity profiles are roughly identical compared to the
dramatic difference of the previous method. The difference between those SNRR is to
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(a) σPSF = 0.2 (b) σPSF = 0.2

(c) σPSF = 0.4 (d) σPSF = 0.4

(e) σPSF = 0.6 (f) σPSF = 0.6

Figure 6.2.10: PVR-SMART Correlation score map in z = 0 plane for different
reconstruction PSF sizes (σPSF ): left MLOS 95% , SMART thresh, right MLOS 99%,
SMART raw

be investigated in the next section on the choice of σPSF .

To get a clearer understanding of how the correlation step is impacted by the
threshold methods, we show the correlation score map in the z = 0 plane (see fig-
ure 6.2.10). As previously, the correlation score map is strongly impacted for the low
MLOS threshold/SMART thresh method. The more the PSF size increases, the more
noisy the map is, with low score appearing in the map down to 0 or 0.1 values, with
patchy windows of low score which is the proof that there are not enough particles
reconstructed for a good correlation. For the high MLOS threshold/SMART raw
method, the same trend appears but its magnitude is far less noticeable than previously,
since even for the σPSF = 0.6, the lowest score values in the jet stream are about 0.5 to
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0.6. As a conclusion, the high MLOS threshold/SMART raw method is way more robust
and gives better SNRR and correlation map than the low MLOS threshold/SMART
thresh method. Whatever the reconstruction σPSF is, we will choose from now on, and
for the rest of the study, to use the high MLOS threshold (99%)/SMART raw method
for PVR-SMART.

Preliminary conclusion : the purpose of our study in 6.2.3.2 was to choose
the method of thresholds in the MLOS step and the SMART algorithm for both
tomo-SMART and PVR-SMART algorithms.

To do so, we illustrated the issue with the reconstruction of one single particle,
we performed 3D synthetic test with a fixed image source density (ppp ≈ 0.05 and
σPSF = 0.4). From those synthetic tests, a preferred method emerged for the tomo-
SMART algorithm. We will first use a high MLOS threshold value : this eliminates
a large amount of noise in the images and avoids numerous ghost particles in the
reconstruction. For the SMART algorithm, we will use raw images : this prevents the
real reconstruction particles from shrinking in size and from reconstructing them as
blobs of the same size as their images.

The experimental validation for PVR-SMART was done on a single 3D-PIV snapshot at
a particle image density estimated at 0.05. Results showed us that the same threshold
method as for tomo-SMART was more robust and gave good results. This is why we
will use this method also.

We will now focus on two other paramters : the choice of reconstruction PSF
size for PVR-SMART and finally the choice of correlation Interrogation Volume size.

6.2.3.3 On the choice of the reconstruction PSF size for PVR-SMART

PVR-SMART reconstruction algorithm requires the user to give a PSF size (σPSF ) for
the weight matrix. The theoretical estimation of the PSF size in chapter 5 showed that
the standard deviation of the PSF in the focus plane was about 0.3, with a variation in
the laser volume which led to 0.6 σPSF on the edge of the laser volume. As mentioned
in [Champagnat et al., 2014], the algorithm provides a principled approach for dealing
with spatially varying PSF. Since PVR builds the weight matrix from samples of the
PSF, PSF calibration techniques can be used as suggested by [Reichenbach et al., 1991]
or more recently by [Delbracio et al., 2012] and [Schanz et al., 2010]. However, since it
is the first time that PVR is being tested on an experimental setup, our goal here is to
use PVR with a single fixed PSF size for each camera. The use of PSF calibration and
varying PSF and the gain obtained from a non-varying PSF reconstruction is a valuable
perspective for future work.

To estimate the PSF size as in [Schanz et al., 2013a] we choose a least-square es-
timation of the PSF size in the images. To do so, we assume an "optics+pixel" PSF
made of a Gaussian function h(x, y) with standard deviation σPSF averaged on the pixel
surface, assuming a 100 % fill factor. See chapter 3 for extensive model description. On
the pixel array of the CCD camera, noise is present and can be modeled as an added
function. Considering a particle at X in 3D space, F the geometric projection function
in the image, and h the Point Spread Function, the intensity in the pixel k is then :

I(k) = I0.h(k− F (X)) + βNoise(k) (6.2.2)
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βNoise represents the camera noise which can be seen as a random variable. Its
probability density distribution is a function of the camera’s optics and sensor. To
estimate the size of the PSF, a peak-finding algorithm tracks local maxima in the image
and collect PSF samples. A PSF sample is 5× 5 pixel array. To avoid any overlapping
in the PSF samples, we eliminated PSF samples that were adjacent to one another
and/or overlapping. Then, on each PSF sample, shape fitting was achieved through 2D
non-linear least-square fitting to find the 5 unknowns (I0, x, y, σPSF , βNoise). βNoise is
modeled as a single constant over the whole PSF sample, even if it is a function of pixel k.

The fit was done after the images were pre-processed (section 6.2.2). Results on
a 3D-PIV snapshots at an estimated ppp ≈ 0.05 are shown in figure 6.2.11. The PDFs
are not converged, this is due to the relatively low number of samples on which the fit is
done. Furthermore, in all 4 cameras the estimated distribution of σPSF are bi-modal with
two peaks : a sharp one around 0.15 and a large one around 0.3− 0.4. A further study,
that lies outside the scope of this manuscript, suggests that the bi-modality appears for
small σPSF combined with camera noise, especially when the noise standard deviation
becomes important. The mean values of the estimated σPSF distribution are 0.34,
0.30, 0.22, 0.27 for respectively camera 1, 2, 3 and 4. Those values seem physical and
agree rather well with what we can see in the recorded images and with the theoretical
estimation (see chapter 5). However, the bi-modal distribution means that our fitting
method is not reliable enough and not robust-to-noise enough for us to use the values of
estimated PSF size in PVR-SMART, let alone use this fitting method in the calibration
process of a varying PSF function. Further work should be done to understand how
such a critical situation can avoided to ensure a more reliable estimation of the PSF size.

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

Figure 6.2.11: PDF of estimated σPSF . The non-linear least-square fit was done on 1327
PSF samples for camera 1, 1138 for camera 2, 1219 for camera 3, 1133 for camera 4
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For the choice of the reconstruction σPSF we chose to do an a-posteriori choice.
On the same snapshot as 6.2.3.2, we reconstructed the particle volumes using PVR-
SMART with different σPSF . We will choose the reconstruction σPSF as the one
which overall gives the most physical results. For the sake of simplicity, the same
reconstruction σPSF was used for every camera. The reconstruction algorithm settings
were the same as in 6.2.3.2 as well as the settings of the correlation algorithm.

Figure 6.2.12: Normalized Intensity Profiles for different reconstruction σPSF =
{0.1, 0.2, 0.3, 0.4, 0.6}

The results of the tomographic reconstruction are summed up in the intensity
profiles in figure 6.2.12. The different σPSF tested were {0.1 , 0.2 , 0.3 , 0.4 , 0.6}.
Following Lynch 2014 we can compute the different SNRR. It is defined as the ratio
of reconstructed intensity inside the illuminated area (EI) and that outside (Eo). We
considered the illuminated region as the area in between −7 mm and 5 mm. EI was
defined as the mean intensity over this area. For Eo, we defined it as the mean value
of the two local minima of the profile located at the extremity of the laser sheet. The
respective SNRR are {1.88 , 1.97 , 2.02 , 2.01 , 1.82}. From the theoretical estimation
and the recorded image investigation, we are inclined to select a PSF size of 0.2/0.3
standard deviation. The computation of SNRR suggests that the reconstruction
volumes with σPSF = 0.2/0.3/0.4 are fairly similar. To further distinguish those 3
candidates, we will look at the results of the displacement estimation step using those 3
reconstruction parameters.

Using a 41 voxels IV size, we computed the displacement fields for σPSF = {0.2, 0.3, 0.4}.
Results are shown in figure 6.2.13 in the z = 0 cross-section, where we investigate the
correlation score and the displacement in the ~x direction, u. One sees that the results
are fairly similar and the differences are minimal. However, one can notice that the best
results are obtained for σPSF = 0.2 with scores closer to 1 and fewer patchy areas of
low score than the other results, which means that the correlation quality is higher for
σPSF = 0.2. Displacement-wise, this means that the displacement field should less noisy
for σPSF = 0.2 than for the other values. This is indeed noticeable in the u cross-section,
in areas of the jet where the displacement is supposed to be null. Indeed, the larger the
size of the reconstruction σPSF is, the noisier the displacement field is. This is why we
finally chose the reconstruction parameter σPSF = 0.2.
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(a) σPSF = 0.2 (b) σPSF = 0.2

(c) σPSF = 0.3 (d) σPSF = 0.3

(e) σPSF = 0.4 (f) σPSF = 0.4

Figure 6.2.13: z = 0 Cross-sections of (left) correlation score and (right) u displacement
field in voxel unity for different reconstruction PSF sizes (σPSF ) using PVR-SMART

6.2.4 Displacement Estimation : choice of 3D Interrogation Vol-
ume size

The final algorithm’s parameter that we will discuss for the 3D-PIV is the size of the
Interrogation Volume for our FOLKI-3D cross-correlation code. The choice of this
parameter in 3D tomographic PIV is always delicate and most of the following results
will depend on the choice we make. Indeed, like in a classical 2D-PIV framework, a
trade-off has to be made between measurement spatial resolution and measurement noise
levels. Knowing precisely the density of tracer is therefore of paramount importance.
In chapter 5, we showed our density estimation method. However, as shown in sec-
tion 6.3.4.4 below, this estimation method is not quite as accurate as we hoped it would
be. To have a clearer idea, we performed tests on the experimental data, investigating
correlation score map and the velocity results from an experimental snapshot at
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ppp ≈ 0.05. Results are shown in figure 6.2.14. The reconstruction algorithm used here
is tomo-SMART. We used a Gaussian Interrogation Volume which standard deviation
is σIV = IVsize/4, J = 3 levels, and N = 7 Newton-Gauss iterations.

For IV sizes of 21 and 31 voxels, the score map is very patchy and with low
score values, yielding a noisy displacement field. For 41 and 51 voxels IV sizes, the
displacement field is smoother, especially for 51 voxels where the small spatial gradients
of the flow field are filtered out by the correlation window. We chose a 41 voxels IV size
as a good compromise between spatial resolution and measurement noise.
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(a) 21 voxels IV (b) 21 voxels IV

(c) 31 voxels IV (d) 31 voxels IV

(e) 41 voxels IV (f) 41 voxels IV

(g) 51 voxels IV (h) 51 voxels IV

Figure 6.2.14: z = 0 cross-sections of (left) correlation score map and (right) u
displacement field in voxels for different IV sizes using tomo-SMART
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6.3 Reconstructions algorithms comparison on a tur-
bulent jet

This section focuses on the comparison of tomographic reconstruction algorithms on
experimental measurements. This comparison consists in a thorough investigation of 3D
measurement velocity fields in the near regions of a round free jet. 3D velocity fields
are produced from the same data set but with two different tomographic reconstruction
algorithms : 1- a classical tomo-SMART algorithm [Atkinson and Soria, 2009] which we
implemented in a GPU framework. 2- PVR-SMART, our in-house reconstruction model
(see chapter 3). Furthermore, the 2D-PIV measurement system synchronized with the
3D-PIV system will bring additional comparison points.

6.3.1 Comparison data set

The purpose of this work is to compare tomo-SMART and PVR-SMART and to see their
dependence on different experimental conditions, especially the seeding density. This is
why several image data sets were acquired with different tracer particles densities on the
near region of the jet facility. Each image data set consists of Nacquisition = 1000 double
snapshots. Figure 6.3.1 shows the estimated density from the 2D-PIV for two different
acquisitions (I and II). During every acquisition, the external seeding density decays
which enables us to have a great range of seeding density. From the two acquisitions, we
selected four subsets of N3D PIV = 300 images. Each subset can be seen as a density case.

Density Case 1 has an external seeding ranging from 0.3 to 0.15, and an inter-
nal jet seeding of ppp ≈ 0.2. Case 2 has the same internal seeding density but with
a lower external density ranging from 0.13 to 0.10. Case 3 has a lower external and
internal seeding density ranging from 0.09 to 0.04 ppp. As for Case 4, the internal
density is stable around 0.05 ppp and the external seeding density decreases to 0.03.

Case	  2	  Case	  1	  

(a) Acquisition I

Case	  4	  Case	  3	  

(b) Acquisition II

Figure 6.3.1: 3D-PIV ppp estimation for Acquisition I and II. The 2 pulses in the
figure’s legend refer to the 2 pulses of the 2D-PIV laser. The pulse 1 was more powerful
than pulse 2, hence detecting more particles

6.3.2 On the comparison between 2D-PIV and 3D-PIV

The comparison to 2D-PIV raises several issues. There is obviously a timing issue (the
two measurement systems acquiring data at separate times), and a spatial measurement
discrepancy since the 2D-PIV measures the velocity field in the (y, O, z) plane, (V and
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W velocity) and not the full 3D field. However, the main issue is the spatial resolution
of both measurement systems. The size of IV for the 3D-PIV system was chosen in
previous section 6.2.4. For the 2D-PIV measurement to be a reference measurement,
the size of its IW must be comparable or smaller than the size of IV to have the same
or a smaller spatial filtering. Additionally, the number of tracers per IW in the 2D-PIV
plane must be large enough (around 10) to avoid measurement noise.

The IV tomo size is such that IWsize/D = 0.18. We have to choose the size of
the IW for the 2D-PIV measurement. Table 6.3.1 shows the measurement characteris-
tics such as IW size and number of tracers per IW (Ntracer/IWsize) for different 3D-PIV
image density for the 3D IW size and for several 2D-PIV IW sizes.

3D-PIV 2D-PIV
IW size 41 (vox) 21 (pix) 31 (pix) 41 (pix) 51 (pix)

IW size/D 0.18 0.06 0.08 0.11 0.14

ppp Ntracer/IWsize

0.03 7 0.3 0.7 1.2 1.9
0.05 11 0.5 1.1 1.9 3
0.07 16 0.7 1.6 2.8 4.4
0.1 22 1 2.3 4 6
0.15 34 1.5 3.4 6 9
0.2 45 2 4.5 8 12

Table 6.3.1: 2D-PIV IW and 3D-PIV IV characteristics : estimation of the number of
tracers per IV or IW as a function of seeding density.

One can think of two strategies to adopt in order to choose the 2D-PIC IW size. The first
one is to choose the IW size so as to have the same number of tracers per IW as in the
tomographic case, but this would impact the high frequency scales that would be filtered
out. The 2D-PIV IW size must therefore be IW size = 97 (pix), IWsize/D = 0.27. The
second strategy is to consider same sized IW for 2D-PIV and 3D-PIV. The properties
are summed up in table 6.3.2.

2D-PIV
Same number of tracers IW size = IV size

ppp IW size (pix) IW size/D Ntracer/IW size IW size (pix) IW size/D
0.03 97 0.27 3.1 65.6 0.18
0.05 97 0.27 5 65.6 0.18
0.07 97 0.27 7 65.6 0.18
0.1 97 0.27 10 65.6 0.18
0.15 97 0.27 15 65.6 0.18
0.2 97 0.27 20 65.6 0.18

Table 6.3.2: 2D-PIV IW characteristics : estimation of the number of tracers per IV or
IW as a function of seeding density considering two options : either choosing the IW
size with the same number of tracers as in the tomo case, or choosing the same size as
in the 3D-PIV case.

A criterion that would help the choice is the average correlation score map over the
same snapshots sequence (over all acquisition I snapshots) for different IW sizes.
The results suggest that the tracer density is too small in acquisition II for a reli-
able displacement estimation, as foreseen by the tracer density estimation in table 6.3.1.
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(a) IW size 41 (b) IW size 51

(c) IW size 65 (d) IW size 97

Figure 6.3.2: Mean correlation score map for 2D-PIV, acquisition I

We show here the mean correlation score for acquisition I in figure 6.3.2. One
notices that there is a vertical discontinuity at z/D ≈ −1.25. The camera sensor noise
becomes noticeable when the tracer densities are low. The CCD camera is made of two
different sensor pixel subsets which are assembled. Each subset has its own characteristic
noise signature. This is what we see in figure 6.3.2. Furthermore, the tracer density
is not homogeneous because the source of the external seeding is located in the z > 0
side of the room. The z > 0 side of the experimental room has more particles than the
z < 0 side. For acquisition I, we will choose the IW size with 51 pixels for it seems a
good compromise between spatial resolution and measurement noise, as well as having
a smaller resolution than 3D-PIV.



6.3 Reconstructions algorithms comparison on a turbulent jet 115

6.3.3 Tomographic reconstruction analysis

The 3D-PIV method is based on two steps. Each step yields an output field on which an
accuracy analysis can be based. A-posteriori analysis of the tomographic reconstruction
can be done through several methods based on the reconstructed intensity distribution.
[Lynch and Scarano, 2014] investigated three main criteria: Reconstruction Signal-to-
Noise (SNRR), relative Quality factor (Q∗) and normalized Intensity variance (σE∗).
We will especially focus here on the SNRR.

To compare the tomographic reconstructions, we selected 4 cases from the exper-
imental data set (acquisition I & II) which represent 4 different tracer particle
densities (table 6.3.3). For each case, we computed tomographic reconstruction for five
consecutive images. We wish to emphasize the fact that we ranked the cases in an
increasing density order as shown in table 6.3.3.

Acquisition II Acquisition I
Case 4 Case 3 Case 2 Case 1

Image number 300− 304 100− 104 700− 704 400− 404

ppp inside Jet 0.05 0.06 0.20 0.22
ppp outside Jet 0.04 0.08 0.11 0.18

Table 6.3.3: Density estimation

(a) Case 4. Tomo-SMART, SNRR =
1.81, PVR-SMART, SNRR = 1.78

(b) Case 3. Tomo-SMART, SNRR =
1.32, PVR-SMART, SNRR = 1.36

(c) Case 2. Tomo-SMART, SNRR =
1.38, PVR-SMART, SNRR = 1.44

(d) Case 1. Tomo-SMART, SNRR =
1.19, PVR-SMART, SNRR = 1.23

Figure 6.3.3: Z intensity profiles of four density cases, ranked in a increasing seeding
density order
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The main quality factor assessed here is the SNRR [Scarano, 2013], [Lynch and Scarano,
2014] which represents the reconstructed intensity profiles along the volume depth
in figure 6.3.3. For each case, the intensity profile was done from an average of five
consecutive snapshots. The intensity profile was then normalized by its maximum
in the illuminated region. The laser illuminated region formed a "plateau" at the
center of the intensity profile. In this region, both ghost particles and real particles
were reconstructed. We see that at the edges of the laser volume, the reconstructed
intensity decreases abruptly. Outside of the illuminated region, only ghost particles are
reconstructed. As observed in [Thomas et al., 2014] for SMART reconstructions, the
intensity profile outside the illuminated area increases till the edges of the tomographic
volume. For the SMART algorithm, reconstruction artifacts, i.e. ghost particles tend
to agglomerate at the very edges of the volume on which the reconstruction is done.
[Thomas et al., 2014] showed that this phenomenon appears when dealing with noisy
images and affects the quality of the reconstruction if the reconstructed volume is too
small compared to the illuminated area.

Results show that as the particle tracer density increases, the intensity at the
edges of the laser volume increases. When comparing tomo-SMART and PVR-SMART,
one notices that for small tracer density (Case 4) the intensity at the edges of the laser
volume are similar for both algorithms. When the density increases, the algorithms
differences increase, PVR-SMART always having lower intensity levels outside the laser
sheet, which means that ghost particles intensity are lower for PVR-SMART than
tomo-SMART. This can be seen in SNRR. Following [Lynch and Scarano, 2014] the
SNRR was defined as the ratio of reconstructed intensity inside the illuminated area
(EI) and that outside (Eo). The illuminated region is illustrated by the red line in
every intensity profile plot. EI was defined as the mean intensity over this area. As
for Eo, we chose to define it as the mean value of the two local minima of the profile
located at the extremity of the laser sheet. The intensity profiles were computed on a
30% volume enlargement. The comparison of the SNRR is not straightforward. Results
(figure 6.3.3) show that PVR-SMART has a better SNRR than tomo-SMART for Case
1 to Case 3 which have higher densities. tomo-SMART has a better SNRR for the low
density case. One can also notice that the SNRR are significantly lower than the 2.0
reference value recommended by [Scarano, 2013] for a good quality reconstruction.
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6.3.4 Velocity field investigation

6.3.4.1 Preliminary remarks and definitions

In this section, 3D velocity fields obtained using both tomo-SMART and PVR-SMART
algorithms, are investigated. We computed 3D velocity fields for two different density
cases/image sequences : for Acquisition I, case 2, and for Acquisition II, case 4. As
mentioned above, 2D-PIV fields were only computed for Acquisition I since the low
tracer particle density in Acquisition II did not allow for a satisfying spatial resolution
without too much compromise on the measurement noise.

For each 3D-PIV case, statistical quantities of the velocity field are computed on
a set of N = 300 velocity snapshots.

On the other hand, since we use the 2D-PIV measurement as a reference point
for the comparison of the 3D-PIV algorithms, we decided to compute 2D statistical
quantities over the entire acquisition sequence, i. e. N2D−PIV = 996 snapshots, in order
to ensure a better convergence.

In the following we will consider mean and root mean square (rms) quantities,
defined for any component α as:

〈α(x)〉 =
1

N

N∑
i=1

α(x, ti) , α′(x, t) = α(x, t)−〈u〉 , αrms(x) =

√√√√ 1

N

N∑
i=1

α′(x, ti)
2

(6.3.1)
In order to use normalized physical quantities, we will normalize velocity fields by a char-
acteristic velocity of the flow (the exit nozzle velocity) and lengths will be normalized by
a characteristic length of the flow (the nozzle diameter). For the 2D-PIV measurements,
the exit velocity is computed as shown in section 5.4. For the 3D measurements, the exit
velocity is computed by integrating the mean axial velocity at y/D = 0.46 :

V0 =
1

πD2/4

∫∫
D

〈V (X,Z)〉 dXdZ (6.3.2)

where D is the disk area of diameter D = D/4, centered on the ~y axis at y/D = 0.46.

6.3.4.2 Inflow conditions

Figure 6.3.4 shows the inflow conditions of the jet, namely 〈v〉 at z = 0 and y = 0.46
for Case 2 and Case 4. Integral quantities that serve as a description of the mean
axial velocity profile at the exit of the jet nozzle, found by both 3D-PIV algorithms
and when available by 2D-PIV, are summed up in table 6.3.4. Results show that
for the quantities based on the mean profile, tomo-SMART and PVR-SMART have
relatively similar results. When comparing with the 2D-PIV for the estimation of V0,
PVR-SMART tends to over-estimate it by 0.03 m.s−1 as tomo-SMART underestimates
it by 0.04 m.s−1. The behaviors of tomo-SMART and PVR-SMART are similar for θe,
δe as well as δω (see chapter 5 for definitions) which does not seem to be impacted by
any of the measurement methods (2D-PIV or 3D-PIV). However, when focusing on rms
quantities, a strong discrepancy exists between tomo-SMART and PVR-SMART. ṽrms
in table 6.3.4 is here a spatial integral of axial rms velocity over the jet core velocity.
ṽrms =

∫ D/4
−D/4 vrmsdx. In the jet core center, tomo-SMART has a greater rms velocity
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than PVR-SMART by nearly an order of magnitude (0.1353 compared to 0.0469).

The comparison with the 2D-PIV measurement which was made over a greater
number of snapshots confirms that tomo-SMART has indeed a greater rms error than
PVR-SMART. The same behavior is visible for low velocity values, outside of the jet
where there is entrainement velocity : 2D-PIV and tomo-SMART measurement are
similar and tomo-SMART has higher values. Inside the shear layer where velocity
gradients are stronger and measurement noise error is expected to be higher, rms
behaviors of tomo-SMART and PVR-SMART are similar, both higher than 2D-PIV rms
velocity with values up to 20% of V0. This comes from the fact 2D-PIV measurement
has a smaller IW size as well as more snapshots on which the rms values can converge.

One can also notice that the 2D-PIV rms profile is not fully symmetrical. This
comes from the fact that the 2D-PIV measurement is highly sensitive to tracer density
which is not totally homogeneous at this density. Indeed, external seeding comes from
a seeding generator located 5 meters back of the jet in the z direction as explained
in chapter 5. The trends are similar with lower density Case 4, with overall higher
rms values which is synonymous with higher measurement noise due to lower seeding
density. Despite having in between 7 to 11 tracers per IV, if those tracers are partially
or badly reconstructed due to low intensity levels in the tomographic images and Mie
scattering or calibration errors, there is a lower number of reconstructed tracers in the
IV. This increases the measurement noise.

(a) Case 2 (b) Case 4

Figure 6.3.4: Axial Mean and rms velocities at z=0 and y=0.46 for the two density
cases : Case 2 and Case 4. The legend is the same as in figure 6.3.5.

Case 2 Case 4
2D-PIV tomo-SMART PVR-SMART tomo-SMART PVR-SMART

V0 m/s 5.63 5.58 5.65 5.59 5.61
ṽrms 0.0455 0.1353 0.0469 0.1634 0.0865
θe 3.4e− 04 3.9e− 04 3.38e− 04 3.71e− 04 3.63e− 04
δe 0.0012 9.3e− 04 9.42e− 04 9.38e− 04 9.43e− 04
δω 0.0015 0.0014 0.0014 0.0014 0.014

Table 6.3.4: Inflow conditions and shear layer description.
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6.3.4.3 Mean and rms centerline evolution

The mean and rms axial velocity centerline profiles (figure 6.3.5) exhibit a rather similar
behavior as shown previously. For low y, tomo-SMART, PVR-SMART and 2D-PIV
show a similar mean axial velocity evolution but for y > 3, PVR-SMART seems to
have a lower mean axial velocity centerline profile. PVR-SMART has almost constantly
lower rms values than tomo-SMART, much closer to the 2D-PIV measurement for low y
but also for higher y, which means that PVR-SMART measurement velocity is less noisy
than the tomo-SMART case. This trend is confirmed in the low density case, where both
rms and mean velocity for PVR-SMART are constantly lower than the tomo-SMART
algorithm.

(a) Case 2 (b) Case 4

Figure 6.3.5: Axial centerline mean and rms velocities.

6.3.4.4 Jet development

The evolution of mean axial velocity in the z = 0 cross-section (figure 6.3.6) shows that
PVR-SMART and tomo-SMART have relatively similar behaviors, both exhibiting a
dissymmetry of the jet with the right shear layer (x > 0) wider than the left (x < 0).
Tomo-SMART has a longer jet core with velocities of 95% V0 up to y = 5. Moreover,
when looking at the y = 2 cross-section, the spherical structure of the mean axial ve-
locity is more visible for tomo-SMART than for PVR-SMART. PVR-SMART seems to
be more affected by side effects due to ghost particles which tend to be gathered on the
sides of the reconstructed volume. However, when looking at the rms cross-sections, one
notices that PVR-SMART has significantly less noise than tomo-SMART especially in
areas with low mean velocity levels.
To illustrate this more quantitatively, we computed local means of u,v and w rms veloc-
ities in the z = 0 cross sections outside the jet where the is only entrainement velocity
(−2 < x < −1 and 0 < y < 3). The rectangle, on which the rms computation is
done, is represented by a white rectangle in the z = 0 cross-sections, displayed in v rms
cross-sections in figure 6.3.7. Results (table 6.3.5) show that for both tomo-SMART and
PVR-SMART w velocity is noisier than u and v which means that more measurement
error is done on the reconstructed w component than on the (u, v) plane. This is true
for both density cases. This is an expected result since the w component of the flow
is the one which is reconstructed, and is the one along the line-of-sight of the camera
pixels. Due to the camera setup, the particles are elongated in the ~z axis [Scarano,
2013], thus increasing the measurement noise on this component. For Case 2, compar-
ing tomo-SMART and PVR-SMART shows that noise levels have a similar ratio 1.51
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but this ratio increases for the w component 1.55. PVR-SMART is about 50% less noisy
than tomo-SMART. For the lower density Case 4, the ratio also increases for the w
component 1.55. However, one notices that the ratio of the u and v component are not
the same as previously with Case 2.

Case 2 Case 4
tomo-SMART PVR-SMART ratio tomo-SMART PVR-SMART ratio

ûrms 0.0181 0.0120 1.51 0.0220 0.0154 1.42
v̂rms 0.0128 0.0085 1.51 0.0202 0.0133 1.52
ŵrms 0.0256 0.0165 1.55 0.0360 0.0232 1.55

ûrms[vox] 0.101 0.067 1.51 0.123 0.086 1.42
v̂rms[vox] 0.071 0.047 1.51 0.113 0.074 1.52
ŵrms[vox] 0.143 0.092 1.55 0.201 0.129 1.55

Table 6.3.5: Mean rms values of a low velocity area on the outskirts of the jet at z = 0,
−2 < x < −1 and 0 < y < 3. In figure 6.3.7, the area is visualized by a white rectangle.

When comparing the two density cases, the trend previously exhibited is confirmed
: Case 4 has higher rms values than Case 2. More precisely, for tomo-SMART,
the rms values are respectively 22 %, 59 % and 40 % higher for Case 4 than Case
2, on respectively u,v and w component. For PVR-SMART, the rms values are
respectively 28 %, 57 % and 40 % higher for Case 4 than Case 2, on respectively u,v
and w component. The velocity fields from Case 4 are noisier with statistics being
less converged than Case 2. Our interpretation so far has been that the increased
measurement noise comes from a lack of tracer in the correlation window, despite the
fact that we previously estimated the number of tracers per IW to about 7 to 11 in
table 6.3.1. However, this estimation was done through the use of 2D-PIV images, with
a 200 mJ laser, much powerful than the 3D-PIV laser (120 mJ). This means that some
particles seen by the 2D-PIV setup, are not seen from the 3D-PIV setup therefore not
reconstructed, due to the lower illumination and also Mie scattering. Adding calibration
errors, discretisation errors and image pre-processing thresholds, fewer tracers are
actually reconstructed by the tomographic step than estimated by the 2D-PIV images.
It would be very interesting to have an actual estimation of the reconstructed tracer
density, based for instance on tracer tracking from a pulse to the following. This would
help choose the IW size for the 3D correlation step. This will undoubtedly be the
subject of future research.

For the sake of clarity, from now on and for the rest of the study, we will focus
on results from Case 2, since the main difference between Case 2 and Case 4 is the
measurement noise stemming from the difference in the number of tracers per IV.
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(a) tomo-SMART, Case 2, z=0 (b) PVR-SMART, Case 2, z=0

(c) tomo-SMART, Case 2, y=2 (d) PVR-SMART, Case 2, y=2

(e) tomo-SMART, Case 4, z=0 (f) PVR-SMART, Case 4, z=0

(g) tomo-SMART, Case 4, y=2 (h) PVR-SMART, Case 4, y=2

Figure 6.3.6: Mean axial velocity 〈v〉 for the two density cases, (a,b,c,d) Case 2,
(e,f,g,h): Case 4.
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(a) tomo-SMART, Case 2, z=0 (b) PVR-SMART, Case 2, z=0

(c) tomo-SMART, Case 2, y=2 (d) PVR-SMART, Case 2, y=2

(e) tomo-SMART, Case 4, z=0 (f) PVR-SMART, Case 4, z=0

(g) tomo-SMART, Case 4, y=2 (h) PVR-SMART, Case 4, y=2

Figure 6.3.7: Axial rms velocity v′rms for the two density cases, (a,b,c,d) Case 2, (e,f,g,h):
Case 4.
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6.3.4.5 Score map and peak-locking analysis

There is a discrepancy in the level of noise between PVR-SMART and tomo-SMART.
Investigating the score map could help understand this high noise levels in tomo-
SMART. The correlation score is a good indication of how good the correlation was.
In 2D-PIV, the correlation score can be directly linked to the overall quality of the
measurement. For 3D-PIV, the link is less obvious : the score still indicates how well
the matching was done, but there is no evidence that all the tracers in the Interrogation
Volume, that were ’matched’, are indeed real particles. [Elsinga et al., 2011] showed
that in some cases, ghost particles are coherent and disturb the correlation of the real
particles. Nonetheless, the correlation score gives a good insight on the correlation step.
To do so, we visualized a cross-section at z = 0 of the mean correlation score map for
Case 2 (the mean was computed over the 300 snapshots of Case 2) for PVR-SMART
and tomo-SMART. Results are shown in figure 6.3.8. The jet topology is visible in
both score maps. The score decreases in the mixing layer, where spatial gradients are
strong and with decreasing lengthscales are convected streamwise. The score is closer
to 1 in the jet potential core where velocity gradients are less strong. PVR-SMART
has an overall higher score with mean scores ranging from 0.8 to 1, and tomo-SMART
has mean scores ranging from 0.65 to 0.95. PVR-SMART intensity field yields
better 3D correlations than tomo-SMART reconstruction. Therefore, we can expect
the tomo-SMART velocity fields to be more noisy than the PVR-SMART velocity fields.

(a) tomo-SMART, z=0 (b) PVR-SMART, z=0

(c) PDF of the v component for tomo-SMART

Figure 6.3.8: Mean correlation score for tomo-SMART and PVR-SMART (up) and
(down) Velocity PDF of the v component for tomo-SMART, in x ∈ [−1.5 , 1.5],
y ∈ [3 , 6.5], z ∈ [−0.45 , 0.45], over 300 samples.
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Several explanations can account for these results. In [Champagnat et al., 2014],
PVR-SMART was shown to out-perform tomo-SMART for several reconstruction
quality criteria. This was shown for different imaging σPSF , tracer density and we also
investigated PVR-SMART robustness w.r.t. inaccurate PSF knowledge. PVR-SMART
was especially shown to have a better Recall than tomo-SMART, which means that
PVR-SMART has more tracers for the correlation step, leading to a better correlation
score. Despite the fact that, in the article we did not investigate such small σPSF imaging
conditions and how PVR-SMART compares to tomo-SMART in these conditions, the
SNRR shown in section 6.3.3 allows us to think that a better reconstruction quality is
the cause of this score difference.

Another interesting result, could partially explain the score difference. It can be
found in a PDF of the v displacement (figure 6.3.8). This clearly shows that tomo-
SMART suffers from peak-locking compared to PVR-SMART. The explanation is that
the size of the reconstructed particles by tomo-SMART is the same as the particles
in the images. Considering the type of image pre-processing used, the size of the
PSF in the images (0.3 σPSF in the theoretical estimation), the high value threshold,
discretization and calibration errors, all those properties lead to relatively small recon-
structed particles, sometimes to only a few voxels. This is why peak-locking appears for
tomo-SMART. A solution to this problem for tomo-SMART is the use in pre-processing
of Gaussian filtering which artificially increases the size of the particle in the images.
However, as mentioned in [Scarano, 2013], this can be detrimental to high density by
increasing the Image Source density. Since we wanted to compare the algorithms with
the same input, the same images, a Gaussian filtering for image pre-processing was not
done. It would be valuable to see its effects on the results of tomo-SMART.

6.3.4.6 Reynolds tensor investigation

3D-PIV gives access to the full 3D Reynolds tensor which we investigate here. We will
take a closer look at the behavior of the diagonal components of the Reynolds stress
(whose sum forms the Turbulent Kinetic Energy, TKE) along the centerline jet axis
and ~x axis as well as the shear stress component of the Reynold stress tensor which is
available for the 2D-PIV measurement. These quantities are defined as :

Ri,j(x) =
〈
u′i(x, t)u

′
j(x, t)

〉
∀ {i, j} ∈ {1, 2, 3}2 , TKE(x) =

1

2
Ri,i(x)

(6.3.3)
The evolution of TKE along the centerline of the jet is illustrated in figure 6.3.9(a).
The sudden growth of TKE takes place at y = 2, then fluctuates on a plateau for y = 4
to y = 6 before finally increasing downstream. Both tomo-SMART and PVR-SMART
follow the same trend that we just described, but PVR-SMART TKE values are always
lower than tomo-SMART, which can again be interpreted as the fact that PVR-SMART
is less noisy than tomo-SMART, therefore having a lower TKE. The TKE measurement
is a representation of the level of fluctuations in the signal, that can come from the
dynamics of the flow but also from the measurement own erroneous noise. When looking
at the radial behavior of TKE in figure 6.3.9(b), the same conclusion can be drawn
regarding the difference in the levels of noise between tomo-SMART and PVR-SMART.
The TKE reaches a local maximum in the shear layer at x = 0.5 which is expected,
reaching up to 0.05 at y = 4. We also investigated a non-diagonal component of the
Reynods Stress tensor, the shear stress. For the 3D PIV, this shear stress was computed
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(a) TKE on the centerline (b) TKE radial behavior

(c) Turbulent Shear stress radial behavior

Figure 6.3.9: Reynolds tensor investigation.

in the z = 0 plane. Assuming axisymmetry of the jet, the shear stress of the 3D-
PIV in the z = 0 plane should be comparable to the 2D-PIV shear stress, computed
in the x = 0 plane. Figure 6.3.9(c) shows the shear stress of both tomo-SMART and
PVR-SMART in the z = 0 plane and the 2D-PIV shear stress in x = 0 for different
downstream locations. The comparison of 2D-PIV and 3D-PIV is not straightforward.
Several reasons might account for such a difference between 3D-PIV and 2D-PIV. As
mentioned in chapter 5, the streamlines of the jet in the 2D-PIV plane show that the
jet is not perfectly axisymmetrical and the jet might be disturbed by an outside flow.
The rms cross-sections from 3D-PIV further confirm this trend. The shear stress and
fluctuated quantities are sensitive to such a perturbation. This may lead to such a
difference in the shear stress profiles.
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6.3.4.7 Flow Divergence

Since 3D-PIV enables us to capture the full 3D velocity field, we can investigate the
full 3D gradient of the velocity field. We started by investigating the divergence of the
flow field (which is the trace of the gradient tensor). In our case, considering the low
velocities and the low Reynolds number, compressible effects are negligible, therefore
the divergence of the flow is supposed to be null at any point and time in the flow. In
this case, flow divergence is well suited to estimate the measurement error on the spatial
derivatives of the flow [Violato and Scarano, 2011]. We investigated two quantities : the
divergence ∇.u and the normalized divergence ξ:

∇.u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
, ξ =

(∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)2

(∂u
∂x

)2 + (∂v
∂y

)2 + (∂w
∂z

)2
(6.3.4)

(a) Divergence PDF (b) Normalized divergence PDF

(c) joint PDF tomo-SMART (d) joint PDF PVR-SMART

Figure 6.3.10: Divergence investigation : PDF of the divergence (a) and the normalized
divergence (b). Joint probability between ∂u

∂x
+ ∂v

∂y
and −∂w

∂z
of respectively

tomo-SMART (c) and PVR-SMART (d). Those statistical quantities were collected
over the whole measurement domain on N = 300 samples.

To estimate the spatial derivatives of the measurement field, we used a Savitzky–Golay
2nd order filter with 5 points stencil, also known in the PIV literature as a ’least
square’ filter [Raffel et al., 2007]. One could argue that numerical truncation due to
the spatial discretisation of the velocity field could impact the numerical evaluation of
the divergence from the experimental data. However, the large overlap factor (75%)
between neighboring interrogation boxes ensures that truncation errors are negligible
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with respect to the effect of the finite size of the Interrogation Volume [Scarano and
Poelma, 2009].

Figure 6.3.10(a) illustrates the probability density of ∇.u over the entire Case 2
data set. The distribution is symmetrical around zero with a standard deviation of 0.60
and 0.66 in dimensionless quantities for PVR-SMART and tomo-SMART respectively,
which is respectively 0.0151 and 0.0166 in [vox/vox]. Figure 6.3.10(b) shows the
normalized divergence probability density function. PVR-SMART has a distribution
closer to zero than tomo-SMART. Figure 6.3.10(c) and figure 6.3.10(d) show the joint
probability between ∂u

∂x
+ ∂v

∂y
and −∂w

∂z
of respectively tomo-SMART and PVR-SMART.

Tomo-SMART’s joint PDF is more spread in the 2D plane than PVR-SMART which
distribution is closer to the origin (0, 0). One can notice that neither tomo-SMART nor
PVR-SMART distribution is aligned on the divergence free y = x line. Tomo-SMART
distribution has a square shape and PVR-SMART has an elliptical shape which seems
to indicate that even if the overall divergence tends to zero, the velocity components
do not seem constrained by the mass conservation and are rather independent. We
also computed the same results using a 2nd order central finite difference scheme for
the spatial derivatives, to see whether or not the findings concerning the divergence
depended on the derivation method. The behaviors of tomo-SMART and PVR-SMART
were found similar.

6.3.4.8 Statistical flow topology

We further investigated the 3D velocity gradient by studying the strain field and the
topology of the velocity tensor invariants. In 1990, [Chong et al., 1990] showed that one
can study the local evolution and topology of an incompressible flow field by investigating
the second and third invariant of the velocity gradient tensor. Additional details and
further understanding of the topological methodology can be found in [Chong et al.,
1990], [Soria et al., 1994], [Hugh M. Blackburn and Cantwell, 1996] among others. We
will only present here a short summary of the physical quantities on which the analysis
is based. [Chong et al., 1990] recalled that the velocity tensor Aij = ∂ui/∂xj has the
following charateristic equation :

λ3
i + PAλ

2
i +QAλi +RA = 0 (6.3.5)

where λi are the eigenvalues of Aij, with PA,QA and RA being the first, second and third
tensor invariants. For incompressible flows, one can compute the invariants such as :

PA = −Aii = 0

QA = −1

2
AijAji

RA = −1

3
AijAjkAki

(6.3.6)

For incompressible flows, the first tensor invariants is null due to the flow being
divergence-free. Therefore, the local characteristics of the flow depends on the val-
ues of QA and RA. These two quantities define the category to which the local flow
topology belongs. One can see the local topology of the flow as the local streamline
characteristics in the vicinity of the point where the velocity gradient is computed.
[Chong et al., 1990] showed that for incompressible flows, using the joint-PDF of QA
and RA one can distinguish 4 regions of different non-generate flow typologies : stable-
focus/stretching, unstable-focus/compressing, stable-node/saddle/saddle and unstable-
node/saddle/saddle. The four regions are separated by the Q axis and the tent-like curve
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(DA = 0), line representing the discriminant of Aij given by the equation :

DA =
27

4
R2
A +Q3

A (6.3.7)

Furthermore, the velocity gradient tensor Aij can be split into a symmetric part Sij (rate-
of-strain tensor) and an antisymmetric part Wij (rate-of-rotation tensor) such that,

Aij = Sij +Wij (6.3.8)

Similarly, one can define the invariants of the rate-of-strain tensor, (Rs,Qs), and the
rate-of-rotation tensor, (Rw,Qw), from by their own characteristic equation. In the
rest of the study and for the sake of simplicity, when referring to the invariants of the
velocity tensor A, we will use the notations (P,Q,R).

Numerous studies show the scatter plot of the joint-PDF of Q and R, also called
the ’Q − R’ plot. DNS studies of isotropic homogeneous turbulence of incompressible
flows have shown that the joint PDF of Q and R is skewed towards the DA line as
well as towards the second quadrant (+Q and −R), such a shape is called the teardrop
shape (e.g., [Chong et al., 1998], [Nomura and Post, 1998], [Martin et al., 1998], [Ooi
et al., 1999], Lüthi et al. [2009]). This trend also occurs in experiments [Tsinober
et al., 1992], [Gulotski et al., 2007], [Elsinga and Marusic, 2010] suggesting it is an
universal characteristic of small-scale turbulence. More details and a thorough review
of the research being carried out on this topic can be found in the work of [Meneveau,
2011]. With the rise of 3D-PIV, this kind of investigation has become popular in
PIV literature. [Khashehchi et al., 2012] studied the evolution of the invariants (Q
and R) in the developing region of a turbulent round jet (RD ≈ 5600, based on the
jet nozzle diameter). Gan et al. [2012] compared two tomographic reconstruction
algorithms by investigating velocity and velocity gradients statistics obtained from 3D
PIV measurements of locally isotropic turbulence produced in a large mixing tank at
high-Reynolds numbers.

Figure 6.3.11: 〈Q〉 and 〈R〉 centerline evolution.

Our study here is inspired by these two studies. We will compare tomo-SMART and
PVR-SMART by investigating the evolution of the two velocity gradient invariants
(Q,R) in the near region of our jet. figure 6.3.11 illustrates the evolution of the mean
profiles of the two invariants (〈Q〉 and 〈R〉) along the jet centerline. Here, Q and R are
computed from dimensionless velocity fields. The evolution of both quantities is similar
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to [Khashehchi et al., 2012]. At the exit of the nozzle, both quantities are zero. The
rate of change of Q is much greater than of R, as shown in [Khashehchi et al., 2012]
Q invariants decays from y = 1 to y = 4, then fluctuates before increasing towards
zero. R stays at zero until x = 3, then also fluctuates also. The comparison between
tomo-SMART and PVR-SMART is difficult since both 〈Q〉 and 〈R〉 plots seem quite
hectic. A possible reason is the propagation of uncertainty from the noisy velocity field
to the spatial derivatives and thus to the Q criteria. Considering the error propagation,
the plots are possibly not converged enough, since as mentioned in section 6.3.4.1,
there are only 300 samples at each measurement point. At the beginning of the jet, for
0 < y < 4, 〈Q〉 from PVR-SMART seems less noisy than tomo-SMART. However, for
the rest of the jet, the comparison does not seem to be relevant.

The evolution of the Q − R plot along the jet development axis can be seen in
figure 6.3.12 and figure 6.3.13. Each Q − R plot is a scatter of the values of Q and
R in the planes y = {0.5, 1, 2} in figure 6.3.12 and y = {3, 6} in figure 6.3.13, over
the 300 velocity fields of the data set Case 2. For every Q − R plot, Q and R values
were normalized using Qw. The same general behavior of the Q − R plot as shown
in [Khashehchi et al., 2012] is observed here. Near the nozzle exit, the Q − R plot
is a vertical ellipse, which is expected since the velocity is mostly composed of the v
component. In that case, the velocity gradient is said to be degenerate, Q and R are
close to zero, and as presented in [Khashehchi et al., 2012], Q is of the order of |A|2 and
R is of the order of |A|3. Considering noise in the results, this leads to a vertical ellipse.
After y = 3, the teardrop shape appears and is even more visible for larger y positions,
while the flow increasingly tends to be skewed along the DA line in the second quadrant
of the plot where the flow is said to be unstable-node/saddle/saddle (lower right of the
plot).

When comparing the Q − R plot of PVR-SMART and tomo-SMART algorithm,
one can notice that the plots are rather similar, and their individual behavior along the
jet centerline axis are the same. However, little differences can be noticed when paying
close attention, especially from y = 2. At y = 2, the Q − R plot is stretched along
the Q axis, and is thinned out at the center of the plot. PVR-SMART distribution
seems to be more attached to the DA discriminant curve than tomo-SMART. Such a
difference is also seen at y = 3 and further away from the exit nozzle at y = 6 where the
teardrop shape for PVR-SMART is closer attached to or hugging the discriminant line
than tomo-SMART. Those differences are admittedly small, as the Q−R plot seems to
smooth out the differences between the two algorithms.
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(a) tomo-SMART y = 0.5 (b) PVR-SMART y = 0.5

(c) tomo-SMART y = 1 (d) PVR-SMART y = 1

(e) tomo-SMART y = 2 (f) PVR-SMART y = 2

Figure 6.3.12: ’Q-R’ Joint PDF for y = {0.5, 1, 2}.
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(a) tomo-SMART y = 3 (b) PVR-SMART y = 3

(c) tomo-SMART y = 6 (d) PVR-SMART y = 6

Figure 6.3.13: ’Q-R’ Joint PDF for y = {3, 6}.
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6.3.4.9 Comparison of the jet 3D structure

In this section, we compare tomo-SMART and PVR-SMART by investigating the
instantaneous 3D flow organization, or 3D structures of the jet. [Violato and Scarano,
2011] did an extensive study of the 3D structure organization and evolution of a
turbulent jet at ReD = 5000 using 3D-PIV. The 3D flow visualizations presented in
their work are well adapted for this study.

(a) tomo-SMART (b) PVR-SMART

Figure 6.3.14: Isovalue of Q criterion, Q = 2.

The first 3D visualization is the Q criterion (see equation (6.3.6)) which is one of many
criteria to visualize vortices. figure 6.3.14 illustrates iso-surfaces of Q = 2 criterion.
One can notice that the vortices rings are not completed for the laser sheet was not
wide enough to encompass the whole 3D vortex ring. This visualization enables us to
see vortex rings being convected in the streamwise direction. They are the result of the
growth of Kelvin-Helmholtz instabilities. The vortex shedding seems to happen between
y = 1.5 and y = 2.

(a) tomo-SMART (b) PVR-SMART

Figure 6.3.15: Isovalue of axial velocity 1.05 V0 (red), Isovalue of vorticity components
ωθ = 2 (green), ωz = 1.2 (cyan) and −1.2 (blue).

In this snapshots, one can see that the vortex rings are unstable and while convected
are being torn and later destroyed once the flow has become fully three-dimensional.
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This is a well-known feature of this flow ([Yule, 1978], [Liepmann and Gharib, 1992],
Violato and Scarano [2011] among others). Indeed, vortex rings are pairing while
being convected, and during this pairing phase the flow shows a growth of azimuthal
instabilities. These lead to a further stretching of vortices. Azimuthal instabilities of
the ring vortices also lead to the growth of secondary streamwise vortices appearing in
between vortex rings. In a numerical study, [Martin and Meiburg, 1991] showed that
initial azimuthal perturbations also lead to the development of streamwise vortices,
organized into pairs in the braid region which is the region in between two subsequent
spanwise rollers. [Liepmann and Gharib, 1992], in an experimental study, confirmed
this organization in a low Reynolds number round jet.

(a) tomo-SMART (b) PVR-SMART

Figure 6.3.16: Isovalue of axial velocity 1.05 V0 (red), isovalue of vorticity components
ωθ = 2 (cyan), ωr = 1.2 (ocher) and −1.2 (purple).

For a better understanding of the flow organization, we separated the physical phenom-
ena and plotted visualizations of the azimuthal, the radial, and the axial components of
the vorticity vector as in [Violato and Scarano, 2011]. This allows an easier investigation
of the flow, especially in the three-dimensional part of the jet where streamwise vortices
are created and interact with azimuthal vortices. Figure 6.3.15 illustrates the behavior
of azimuthal and axial vorticity and figure 6.3.16 illustrates the behavior of radial and
axial vorticity.

The flow organization described previously can be seen in those visualizations,
with the shedding of vortex ring (represented by ring of azimuthal vorticity in green),
the growth of azimuthal instability combined with the appearance of streamwise vortices.
These streamwise structures are inclined at an angle of about 30◦ − 40◦ relatively to
the jet axis. This inclination is responsible for both axial and radial vorticity (seen in
figure 6.3.15 and figure 6.3.16). The visualization of axial vorticity shows that the pair
of streamwise vortices is indeed a counter rotating pair. Further downstream, the vortex
ring is now completely distorted (at y = 5), the flow becoming fully 3D and turbulent.

A zoomed visualization of Q criterion for y = [1.5 2.5] in figure 6.3.17 shows the
azimuthal instability of the vortex ring.figure 6.3.18 illustrates the growth of counter-
rotating streamwise structures, visible among features in the axial vorticity instability
in the braid region. This zoomed 3D visualization is better suited for the comparison of
the flow structures from tomo-SMART and PVR-SMART. The two algorithms display
the same features previously explained and their differences are minimal. However,
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(a) tomo-SMART (b) PVR-SMART

Figure 6.3.17: Isovalue of Q=2 criterion for y = 1.5 to y = 2.5.

(a) tomo-SMART (b) PVR-SMART

Figure 6.3.18: Isovalue of axial velocity 1.05 V0 (red), isovalue of vorticity components
ωθ = 2 (green), ωz = 1.2 (cyan) and −1.2 (blue) for y = 2.5 to y = 4.5.

upon closer look and thanks to the zoom enhancement, one notices differences. For
the comparison of the Q criterion, PVR-SMART seems to have a smoother initial
vortex ring than tomo-SMART. The distorted vortex ring looks rather similar for both
algorithms. When looking at azimuthal vorticity and axial vorticity, the differences are
more visible. PVR-SMART has rounder and smoother ring vortex - even if distorted
and twisted - than tomo-SMART (in green), the counter-rotating streamwise vortex are
longer, smoother, and bigger for PVR-SMART than for tomo-SMART.



6.4 Conclusion 135

6.4 Conclusion
The first part of this chapter was devoted to the parameter settings of the reconstruction
algorithm as well as the correlation algorithm. A full study on the use of threshold
methods in the reconstruction led to choose two parameter settings : the MLOS
threshold value (set so as to threshold 99% of the image noise) and the use of this same
threshold in the images when performing the iterative reconstruction. This issue is
critical when noise is present in the images. The method using a MLOS 99% threhold
and raw images in the SMART algorithm was shown to be the more robust and yield
more physical results than other methods, and was thus chosen. The choice of the PVR
reconstruction PSF size was made doing a-posteriori tests. The IV size for FOLKI-3D
was also chosen by a-posteriori tests.

PVR-SMART and tomo-SMART were finally compared on the near field region
of a turbulent air jet. Several seeding density conditions were used to compare the
performances of both algorithms. The analysis of the reconstruction signal-to-noise
ratio confirmed the trend obtained in the simulations regarding the comparison between
tomo-SMART and PVR-SMART. With the given image pre-processing, PVR-SMART
was found to yield velocity fields that are about 50 % less noisy than tomo-SMART.
An analysis of the mean correlation score showed that indeed, the correlation score
for tomo-SMART was significantly less than for PVR-SAMRT. This was further
investigated by a peak-locking analysis which showed that tomo-SMART does suffer
from peak-locking, due to the image pre-processing and the size of the particles in the
images. But, based on a different reconstruction paradigm, PVR-SMART does not
suffer from this phenomenon, since its very definition makes it less impacted by difficult
imaging conditions such as small particle image sizes. The velocity field comparison
includes velocity field statistical properties, flow divergence analysis, velocity gradient
tensor and coherent structures exploration. These results on experimental data confirm
the gains obtained by PVR in the numerical study.





7 Conclusion

In this final chapter, we will summarize the main results and conclusions of this thesis
before finally putting this work into perspective with regards to the future and evolution
of tomographic PIV.

7.1 On the simulation of experimental factors in 3D-
PIV

The second chapter of this thesis was dedicated to the study of experimental factors
impacting the quality of the tomographic reconstruction. This study was carried out
with numerical simulation of 3D-PIV. Numerical simulation is particularly well suited for
the study of reconstruction accuracy since it requires the knowledge of the ground truth,
i.e. the particle space location and intensity. In our synthetic images, different noises,
or imaging deterioration were generated to assess their impact on the reconstruction
quality. We focused on imaging conditions generally found in incompressible air flow
fields.

The first aspect of image degradation we focused on, can be seen as additional
noise in the images. Geometric considerations were used to quantify the impact of
"added particles" lying in the Union volume of the camera fields of view and the
illumination area. From this, a geometrical factor was deduced, quantifying the level
of noise introduced in the reconstruction, which is the ratio between the Intersection
and the Union volume defined by the cameras field of view and the illumination area,
called RI/U . The main impact on the reconstruction is the increase in the number
and intensity of ghost particles. Performing numerical simulation of tomo-PIV without
accounting for this effects was shown to drastically overestimate the reconstruction
algorithm accuracy.

The other aspect of image deterioration investigated was the decrease in signal-
to-noise ratio in the image, especially Mie scattering and defocusing effects. Results
suggest that the main impact of particle image defocusing on the reconstruction is the
loss of real particles due to the peak intensity decrease when the PSF size increases,
(when the particles increasingly become out of focus). As for Mie scattering, the main
impact is also the loss of real particles due to the polydisperse nature of the seeding,
leading to dispersion of the particle intensity.

Those simulation refinements increased simulation realism and emphasized the
importance of imaging conditions for tomo-PIV, especially when the signal-to-noise
ratio in the images is low, as it is for instance when using time-resolved 3D-PIV in
the air. We showed that in a real experiment, once the cameras positions were set,
optimizing their orientation did not have a significant impact on the RI/U factor,
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and thus on the geometrically added particles. However, this noise source has to be
accounted for in a simulation when for instance assessing the accuracy of reconstruction
algorithm.

7.2 Lucas-Kanade based correlation method for 3D-
PIV

We introduced a cross-correlation technique for 3D-PIV (FOLKI-3D) as an extension to
3D of the algorithm FOLKI-PIV [Champagnat et al., 2011]. As in the planar context,
the displacement is searched as the minimizer of a sum of squared differences, which is
solved iteratively by using volume deformation. In a GPU implementation, the latter
can be performed using a simple, linear scheme or a higher-order, cubic B-Spline scheme.

Numerical tests performed on synthetic 3D particle distributions have confirmed
that the spatial frequency response is similar to that of standard iterative deformation
algorithms, for both top-hat and Gaussian weightings, while similar gains as reported
in the literature are obtained by choosing the cubic B-Spline interpolation rather than
the linear one.

Tests on volumes reconstructed from projected images have then allowed us to
characterize the robustness of the algorithm to specific tomographic noise (i.e. ghost
particles), as well as the gain brought by the higher-order interpolation in a more
realistic configuration. FOLKI-3D has been found in particular more robust to coherent
ghosts than a standard iterative deformation algorithm, while the gain in accuracy of
the high-order deformation has been confirmed for various quantities of ghosts in the
reconstructions, and various shapes of the reconstructed particles.

7.3 Particle Volume Reconstruction
An alternative approach to the classical tomographic reconstruction was introduced. It
seeks to recover nearly single voxel particles rather than blobs of extended size using
a particle-based representation of image data. We refer to this approach as Particle
Volume Reconstruction (PVR). PVR underlies a sparse volumic representation of point
particles, which lives halfway between infinitely small particles - which they physically
are - and larger two to three voxel diameter blobs usually used in tomo-PIV. From that
representation, it is possible to use it to perform PTV or to smooth it to the 2 voxel
diameter blob, which is the gold standard of correlation for PIV. We focus here on
the 3D-PIV use of PVR, by incorporating the PVR paradigm in a SMART algorithm
(PVR-SMART).

The performances of the PVR-SMART reconstruction method was assessed by
means of 3D simulations of reconstruction and displacement estimation. PVR-SMART
has been shown to outperform tomo-SMART ([Atkinson and Soria, 2009]) on a large
domain of generating conditions and a variety of metrics on volume reconstruction and
displacement estimation, especially in the case of seeding density greater than 0.06 ppp
and of PSFs characterized by a standard deviation larger than 0.8 pixel. Robustness
to inaccurate knowledge of the PSF size has also been checked. Tests showed that
the performance gains on displacement fields with PVR are systematically obtained
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whatever the value of the PSF in the case of underestimation, and they persist in the
case of an overestimation of up to 10% of the PSF value.

The application and assessment of PVR-SMART on experimental data was per-
formed on a turbulent round air jet at ReD ≈ 4300, with D the nozzle diameter.
An extensive study was carried out to determine the proper use of thresholds in the
reconstruction algorithm in the presence noisy images. The choice of the reconstruction
PSF size for PVR was done through a-posteriori testing. Several seeding density
conditions were used to compare the performance of tomo-SMART and PVR-SMART.
Furthermore, an additional 2D-PIV system synchronized with the tomo-PIV setup was
used as a measurement reference for this comparison. The analysis of the reconstruction
signal-to-noise ratio confirmed the trend obtained in the simulations regarding the
comparison between tomo-SMART and PVR-SMART. Velocity fields of the near field
region obtained by tomo-SMART and PVR-SMART were compared. With the given
image pre-processing, PVR-SMART was found to yield velocity fields that are about 50
% less noisy than tomo-SMART. The velocity field comparison included velocity field
statistical properties, peak-locking study, flow divergence analysis, velocity gradient
tensor and coherent structures exploration. These results on experimental data confirm
the gains obtained by PVR in the numerical study.

7.4 Perspectives
The main finding in this dissertation is the introduction of PVR approach for recon-
structing particle volumes. This approach was implemented in a tomoPIV context,
and was shown to exhibit performance gains compared to a classical reconstruction
algorithm [Atkinson and Soria, 2009] on both numerical and experimental data. In this
paradigm, the PSF size is needed to reconstruct the volume. For the sake of clarity,
we used a-posteriori tests to choose the PSF size. However, a calibration process such
as [Reichenbach et al., 1991] or [Delbracio et al., 2012] could yield the knowledge of
a varying defocusing PSF function for all cameras. This implementation and use in
PVR could lead to increased performances and will be an interesting follow up of this
research. Furthermore, following the investigation of Mie scattering and its effects on
the tomographic reconstruction in chapter 2, it would be valuable to investigate the
effects of an adjusting coefficient on the back-scattering images.

Because of its specific particle representation, PVR is well adapted for sparse re-
construction algorithms such as [Barbu et al., 2011], [Cornic et al., 2013], with the
final aim of estimating the displacement by PTV tracking. [Cornic et al., 2015a]
used the PVR approach with a CoSaMP algorithm (Compressed Sampling Matching
Pursuit [Needell and Tropp, 2009]) providing an excellent initial guess for PTV,
which can be refined to subvoxel accuracy and then used for tracking for the dis-
placement estimation. Furthermore, in a time-resolved context, where a criterion can
be found to discriminate ghost particles from real particles - very much like [Schanz
et al., 2013b] - this development could show great potential for measuring turbulent flows.

[Yegavian et al., 2015] recently introduced a new method for estimating fluid tra-
jectories in a time-resolved PIV context. It also relies on a Lucas-Kanade paradigm
and consists in a simple and direct extension of a two-frame estimation proposed in the
context of FOLKI-PIV where so-called Lucas-Kanade Fluid Trajectories (LKFT) are
assumed to be polynomial in time. This method could be extended to 3D to improve
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the displacement estimation of FOLKI-3D for time-resolved 3D-PIV in air flows where
noise levels are high in the reconstruction volumes due to the relative low energy of
the high repetition rate laser and the low signal-to-noise ratio in the images. Moreover,
such techniques enable researchers to directly access velocity material derivatives.

Finally, in the context of time-resolved PIV applied on a turbulent jet at DAFE
(ONERA), and after the works [Davoust et al., 2014] and [Courtier, 2015], we believe
that our 3D measurements methods will be powerful tools to investigate coherent
structures and their developments.
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la mesure d’écoulements turbulents. Elle se 
fonde sur la reconstruction tomographique 
d’une distribution volumique d’intensité de 
particules, à partir de projections enregistrées 
par des caméras. La principale difficulté est le 
bruit dit tomographique (particules fantômes) 
qui croît exponentiellement avec la forte densité 
de traceur, requise pour obtenir une résolution 
spatiale fine de la mesure. 
Une étude sur les conditions optiques nous a 
permis de proposer une approche alternative à la 
reconstruction tomographique classique : 
Reconstruction Volumique de Particules (PVR). 
Des simulations numériques ont montré 
qu’utiliser PVR-SMART permettait des gains 
de performance par rapport à un algorithme 
classique comme tomo-SMART (Atkinson 
2009). 

L’aspect vélocimétrie par corrélation de la 
méthode a aussi été pris en compte avec une 
extension à la 3D (FOLKI-3D) de l’algorithme 
FOLKI-PIV (Champagnat et al. 2011). Des 
simulations numériques de reconstruction 
tomographique ont permis de caractériser la 
robustesse de l’algorithme au bruit spécifique 
de la tomographie. Nous avons montré que 
FOLKI-3D était plus robuste aux particules 
fantômes cohérentes que les algorithmes 
classiques de déformation volumique. 
L’application de PVR-SMART sur des données 
expérimentales a été effectuée sur un jet d’air 
turbulent. Différentes densités de particules ont 
été utilisées pour comparer les performances de 
PVR-SMART avec tomo-SMART sur la région 
proche buse du jet. Nous montrons que les 
champs de vitesse de PVR-SMART sont près de 
50 % moins bruités que ceux de tomo-SMART.  
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Abstract : This research dissertation focuses on 
the developments of tomographic PIV (tomo-
PIV) for the measurement of turbulent flows 
(Elsinga et al. 2006). It is based on the 
tomographic reconstruction of a volumic 
intensity distribution of tracer particles from 
projections recorded on cameras. Its main 
limitation is the appearance of ghost particles, 
ie reconstruction noise, which occurs when high 
tracer concentrations are required for high 
spatial resolution measurements. 
A study on the imaging conditions for tomo-
PIV led us to propose an alternative approach to 
classical tomographic reconstruction: Particle 
Volume Reconstruction (PVR). PVR underlies 
a more physical, sparse representation of point 
particles, which lives halfway between 
infinitely small particles, and voxel blobs 
commonly used in tomo-PIV, which smoothed, 
can be used in 3D-PIV. 

Numerical simulations showed that PVR-
SMART outperforms tomo-SMART (Atkinson 
et al. 2009) especially in the case of seeding 
density greater than 0.06 ppp. We introduce a 
cross-correlation technique for 3D-PIV 
(FOLKI-3D) as an extension to 3D of the 
FOLKI-PIV algorithm (Champagnat et al. 
2011). Numerical simulations of tomographic 
reconstruction characterized the robustness of 
the algorithm to specific tomographic noise. 
FOLKI-3D was found more robust to coherent 
ghosts than standard deformation algorithms. 
Experimental validation of PVR-SMART was 
performed on a turbulent air jet. Several seeding 
density conditions were used to compare the 
performance of tomo-SMART and PVR-
SMART on the near field region of the jet. With 
the given image pre-processing, PVR-SMART 
was found to yield velocity fields that are 50 % 
less noisy than tomo-SMART.  

 

 




