Keywords: speech, vocal tract, acoustic, three-dimensional acoustic eld, multimodal method, directivity

nis réalisé par Marc présentés ci-après attestent de la qualité et du bénéce de cet échange scientique. Je tiens également à remercier Alexander et Stefan de la FAU à Erlangen qui m'ont permis de collaborer avec eux de façon enrichissante. Je souhaite également remercier tous les autres membres du projet EUNISON, Saeed qui a extrait les geometries de conduit vocal des données IRM, Sten et Oriol qui ont géré ce projet et tous les autres qui ont apporté leurs contributions. Une grande partie des résultats expérimentaux présentés ci-après n'aurait pu être obtenue sans le travail de Xavier Laval (X ou Javier pour les intimes) qui a monté de nombreux setups, créé de nombreux programmes d'acquisition Labview et a toujours été très disponible pour aider à résoudre les problèmes expérimentaux. Je tiens à remercier également tous les stagiaires avec qui j'ai pu travailler et qui ont apporté leurs contributions plus ou moins importantes à ce travail, Martin, Florian, Guillaume, Marguerite, Michael, Stephane, Romain, Benoît, Clément, Elisa et William. Je voudrais aussi remercier ceux qui ont fait que cette expérience à également été agréable et enrichissante sur le plan humain. Merci aux diérentes personnes qui ont partagé mon bureau, Serap pour les nombreuses sorties ski et les cookies, Jessy qui m'a accompagné à travers bois et avec qui on a transporté des machines à laver et Andrew pour ses discussions intéressantes et le partage de ses grandes connaissances sur de nombreux sujets. Je tiens à remercier aussi les autres personnes qui ont fréquenté le DPC. Javier avec qui je suis allé aux quatre coins de l'Europe (Turquie, Italie, Allemagne, Croatie, Espagne) et dont la bonne humeur et l'optimisme sont toujours appréciés. Diandra pour son sens de la repartie et qui sait mettre la bonne ambiance dans la cafet (même si elle ne boit pas de thé). Angélique pour son sens de l'écoute, les randos, les sorties ski et les échanges de yaourts. Gustavo pour les soirées passées à "travailler" au Loco Mosquito, son habileté à prélever la nourriture directement dans la nature en Corse et son amour pour les "gatos". Monalisa pour sa merveilleuse cuisine et son enthousiasme pour les randos. Jean Francois pour sa bonne humeur, son sans de l'humour omniprésent et ses blagues racontées à l'envers.

Antje pour les sorties vélos et les soirées gastronomiques dans son grand appart. Sanjeev et Bharat pour la bonne cuisine indienne, les heures passées à jouer au ping pong et les glissades dans la neige. Cecilia, Elsa, Laure, Sonia, Fanny, Martine, Marion, Sandra et tous les autres membres de l'administration avec qui il a toujours été agréable d'interagir. Tous les autres qui ont participé à la bonne ambiance au DPC, Yo, Louis, Nicolas, Paul, Marie Lou, Jonathan, Alexandre, Tiphaine, Thibault, Clémence, Sari, Eric, Melaine, Li, Guillaume, Maël, Adela, et tous ceux que j'oublie. Je tiens aussi à remercier ma famille et mes amis qui ont été avec moi tout au long de cette expérience et qui ont préparé un merveilleux pot de soutenance. Et enn, merci à toi Elena de m'avoir accompagné à la n de ma thèse. First diagonal terms of the normalized radiation impedance matrix Z R of a circular opening of 29.5 mm in diameter computed with the expression provided by Zorumski [START_REF] Zorumski | Generalized radiation impedances and reection coecients of circular and annular ducts[END_REF] (Z Ra ) and numerically (Z Rn , Eq. (2.31)), (a) average value given by both methods, (b) dierence between both methods. . . . . . . . . . 17

2.7

First coupling terms of the normalized radiation impedance matrix Z R of a circular opening of 29.5 mm in diameter computed with the expression provided by Zorumski [START_REF] Zorumski | Generalized radiation impedances and reection coecients of circular and annular ducts[END_REF] (Z Ra ) and numerically (Z Rn , Eq. (2.31)), (a) average value given by both methods, (b) dierence between both methods. . . . . . . . . . 18

2.8

First diagonal terms of the normalized radiation impedance matrix Z R of a square opening having a width of 29.5 mm computed with the expression provided by Kemp [START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF] (Z Ra ) and numerically (Z Rn , Eq. (2.31)), (a) average value given by both methods, (b) dierence between both methods. . . . . . . . [START_REF] Motoki | Measurement of sound-pressure distribution in replicas of the oral cavity[END_REF] 2.9

First coupling terms of the normalized radiation impedance matrix Z R of a square opening having a width of 29.5 mm computed with the expression provided by Kemp [START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF] (Z Ra ) and numerically (Z Rn , Eq. (2. 

2.13

Coupling terms of the projection matrix F of Eq. (2.36) between the plane mode ψ 00 and the HOM whose cut-on frequency is below 20 kHz (ψ 01 , ψ 02 , ψ 10 , ψ 03 , ψ 04 and ψ 11 ) for a junction between two cylindrical sections of diameter 14.5 mm and 29.5 mm with a distance between their centers varying from 0 to 7 mm. The amplitude of the terms F 00,01 , F 00,02 , F 00,03 , F 00,04 and F 00,11 , correspond to the combination of the amplitude of both degenerated HOM ψ mn1 and ψ mn2 : F 00,mn = F 2 00,mn1 + F 2 00,mn2 . . . . . . . . . . . . . . . . . . . . . . 2.14 Path followed by a reected sound wave emitted by a baed vocal tract replica.

(a) Reection on a plane perpendicular to the bae (b) Reection on a plane parallel to the bae located behind the reception point . . . . . . . . . . . . . .

3.1

Vocal tract replicas. The sound source is connected at the left end of the replicas and at the bottom for the MRI based ones. A bae is attached to the other end.

3.2

Area functions corresponding to the vowels [A], [i] and [u] provided by [START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF] for the two tubes approximation and by [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] for the 44 tube ones. The abscissa

x 3 = 0 corresponds to the position of the sound source. . . . . . . . . . . . . . .

3.3

Vocal tract geometries used for the simulations (a) vowel [A] 

4.1

Amplitude of the input impedance |Z| and of the transfer function |H| between the input volume velocity and the acoustic pressure radiated at 60 cm in front of the exit of two vocal tract approximations for the vowel [A] based on [START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF] with a concentric and an eccentric junction between both sections. . . . . . . . . . .

4.2

Bandwidths (at -3 dB) of the formants as a function of the corresponding frequencies of two approximations of the vocal tract shape for the vowel [A] constituted of two cylindrical tubes with either concentric (2CC [A]) or eccentric junctions (2CE [A]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3

Examples of pressure-pressure transfer functions between two points inside two vowel [A] vocal tract replicas made of two cylindrical tubes with (top) concentric (2CC [A]) and (bottom) eccentric junctions (2CE [A]). The Exp and FEM data has respectively been increased and decreased by 10 dB and -10 dB with respect to the MM for visualization purposes. Examples of pressure amplitude maps inside and outside of two vowel [A] vocal tract replicas made of two cylindrical tubes with a concentric (2CC [A] top) and an eccentric (2CE [A] bottom) junction for high frequencies (Exp: experimental data, MM: multimodal method, FEM: nite element method, here the origin of the coordinate system is located in the center of the exit plane). . . . . . . . 60

4.5

Cuts of the pressure maps in Fig. 4.4 along the central axis x 3 (left column) and a perpendicular x 2 axis located just in front of the open end (right column) measured and simulated on two vowel [A] vocal tract replicas made of two cylindrical tubes with either concentric or eccentric junctions (2CC [A] and 2CE [A]).

A 10 dB shift has been applied between the maxima of the three curves for visualization purposes. (Exp: experimental data, MM: multimodal method, FEM: nite element method). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6

Real part and phase of the acoustic pressure measured in the plane (x 1 ,x 2 )

perpendicularly to the propagation axis x 3 , 4.5 cm after the junction inside larger part of the two tube replicas of the vowel [A] having either a concentric (2CC [A]) or an eccentric (2CE [A]) junction. The real part is proportional to Pa to the sensitivity of the microphone and the phase is computed as the dierence between the phase of the microphone and the phase of the sound source input Modale amplitudes |P n | of the pressure measured and simulated on a plane perpendicular to the propagation axis of two tube approximations of the vowel [A] with either concentric (2CC [A]) or eccentric (2CE [A]) junctions. . . . . . . . 64

4.8

Amplitude of the simulated (with MM) input impedance |Z| and of the transfer function |H| between the input volume velocity and the acoustic pressure radiated at 60 cm in front of the exit of three vocal tract approximations for the vowel [A] based on ( [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF]) with concentric junction and circular cross-section, eccentric junctions and circular cross-sections and eccentric junctions in the plane (x 2 ,x 3 ) and elliptical junctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.9 Bandwidths as a function of the corresponding formants frequencies of three approximations of the vocal tract shape for the vowel [A] constituted of 44 tubes with circular cross-section and concentric junctions (44CC [A]), circular cross-section and eccentric junctions (44CE [A]) and elliptical cross-sections and eccentric junctions in the plane (x 2 ,x 3 ) (2ET [A]).

. . . . . . . . . . . . . . . . 69 4.10 Examples of pressure-pressure transfer functions (PPTF) between two points inside three simplied vowel [A] vocal tract replicas with (top) concentric junctions and circular cross-sections (44CC [A]), (middle) eccentric junctions and circular cross-sections (44CE [A]) and (bottom) eccentric junctions and elliptical cross-sections (44EE [A]). 4.13 Grid of points where the acoustic pressure is measured and simulated inside a vowel [A] geometry extracted from MRI provided in the Aalto database ( [START_REF] Aalto | Large scale data acquisition of simultaneous MRI and speech[END_REF]). . 77 4.14 Pressure-pressure transfer function (PPTF) H 12 (f ) = P 2 (f )/P 1 (f ) for vowel [A] (a) with lips and (b) without lips obtained by nite element simulations (FEM) and experiments (Exp). P 1 (f ) and P 2 (f ) stand for the Fourier transform of the acoustic pressure collected at point 1 and point 3, which are, respectively, located within the oral cavity and at the mouth exit. . . . . . . . . . . . . . . . 77 4.15 Pressure amplitude maps for the third formant of vowel [A] obtained by nite element simulations (FEM) and experiments (Exp) with lips (top) and without lips (bottom). The acoustic pressure distribution within the oral cavity and at an area close to the vocal tract exit (mouth) is presented. Moreover, cuts of the pressure amplitude maps in a front-plane located 1 cm in front of the mouth exit and in the midsagittal plane are also presented. . . . . . . . . . . . . . . . 80 4.16 Pressure amplitude maps obtained for the last formant before 10 kHz of vowel [A] by nite element simulations (FEM) and experiments (Exp) with lips (top)

and without lips (bottom). The acoustic pressure distribution within the oral cavity and at an area close to the vocal tract exit (mouth) is presented. Moreover, cuts of the pressure amplitude maps in a front-plane located 1 cm in front of the mouth exit and in the midsagittal plane are also presented. . . . . . . . . 81

x List of Figures

5.1

Normalized amplitude (dB) and maximal sound pressure level dierence MSPLD with respect to the angular position of the pressure radiated from two tubes vowel [A] replicas with concentric (2CC [A]) and eccentric (2CE [A])

junction measured and simulated at 48 cm from the exit between 2 kHz and 10 kHz every 15 • and 3 • for respectively the experiments and the simulations.

To avoid perturbations linked to experimental artifacts present on the extremal positions, the maximal sound pressure level dierence has been computed with and without the edge positions (-90 • and 90 • ).
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4.5

Frequencies of the formants selected using the procedure depicted in part 3.3.6 in order to compare the pressure eld measured and simulated inside vowel [A] geometries created from MRI with and without lips. A speaker or a singer can vary the shape of his vocal tract by moving his jaw, tongue and lips in order to change the acoustic properties of the vocal tract. This allows one to produce dierent phonemes. Some of them are mainly characterized by the resonances, denoted as formants in speech study, of the vocal tract. This is the case of the vowels which are identied and classied using the two rst formants of the vocal tract. The vowels [A], [i] and [u] constitute the extremes in term of variation of the formants, [A] having the highest rst fomant, [i] the highest second formant and [u] the lowest second formant. Thus, the acoustic properties of the vocal tract appear as critical for the dierentiation of some phonemes and for the quality and the timbre of the speech and singing production.

In the case of the voiced sounds (the sound for which the sound source is created by the oscillations of the vocal folds), it is particularly interesting to characterize the contribution of the vocal tract with a transfer function which relates the particle velocity generated by the sound source at the entrance of the vocal tract to the acoustic pressure radiated outside of the vocal tract. In order to study the acoustic properties of the vocal tract, it is useful to perform acoustic modelling. In most of the physical models used in speech and singing study, the frequency range is limited from 0 kHz to about 5 kHz. This limited frequency range which does not cover the entire range of perception of the human ear is often used because it is sucient to ensure speech recognition and it allows one to use very simple acoustic models. In particular, one can assume that plane waves are travelling inside the vocal tract, which means that the acoustic pressure varies only along the propagation direction and depends only on the area of the cross-sections of the vocal tract [1][4]. Thus, in this case a one-dimensional description with an area function of the vocal tract shape is sucient. This allows one to perform simulations at a very low computational cost: it is possible to perform real time simulations [START_REF] Smith | Waveguide lter tutorial[END_REF]. However, given the limited frequency range used, the quality of the simulations and synthesis is not optimal.

Speech directivity

Another aspect of the transfer function between the sound source and the radiated sound is the directivity eect. It consists in the variation of the amplitude and the phase of the sound radiated by a speaker with the direction. The directivity is studied for various purposes, including microphone placement optimisation [START_REF] Dunn | Exploration of pressure eld around the human head during speech[END_REF], telephony [START_REF] Halkosaari | Directivity of articial and human speech[END_REF], vocal performance practice [START_REF] Cabrera | Long-term horizontal vocal directivity of opera singers: eects of singing projection and acoustic environment[END_REF] [10], experimental validation of acoustic theories [START_REF] Flanagan | Analog measurements of sound radiation from the mouth[END_REF], architectural acoustics [START_REF] Mckendree | Directivity indices of human talkers in English speech[END_REF], auralization and three-dimensional (3D) sound synthesis [START_REF] Peng | Investigation on the eects of source directivity of chinese speech intelligibility in real and virtual rooms[END_REF], [START_REF] Savioja | Creating interactive virtual acoustic environments[END_REF]. The observation of the directivity on real speakers or singers has shown that the directivity patterns become more complex and pronounced at high frequency [START_REF] Dunn | Exploration of pressure eld around the human head during speech[END_REF], [8][10]. At low frequency (from 0 kHz to about 5 kHz), this phenomenon is modeled by accounting for the diraction of the acoustic waves by the head and by taking into account the reections on the shoulder and the torso. The pressure eld at the mouth exit is modeled as a pulsating sphere.

Available supporting data

The limits of the simple modeling of the vocal tract acoustics and the necessity to have more accurate modeling have been highlighted in the literature.

Limits of the plane wave model

Recent ndings in speech perception emphasized the importance of frequencies beyond 5 kHz [START_REF] Monson | The perceptual signicance of highfrequency energy in the human voice[END_REF]. On the other hand, new technologies and applications (such as wideband telephony, augmentative hearing or 3D sound synthesis) use frequencies beyond 5 kHz in order to improve the sound quality and the communication comfort. At frequencies higher than 5 kHz, the wavelength of the acoustic waves can become of the same order of size as the transverse 1.2. Formulation of the problem 3 dimension of the vocal tract. In this case, the plane wave assumption does not hold because variations of the acoustic eld in the plane perpendicular to the propagation direction can be present. This has been observed both by simulations accounting for the 3D aspect of the pressure eld [16][18] and by measurements of the pressure eld performed in vocal tract replicas [START_REF] Motoki | Measurement of sound-pressure distribution in replicas of the oral cavity[END_REF], [START_REF] Blandin | Eects of higher order propagation modes in vocal tract like geometries[END_REF]. As a consequence of these 3D variations of the acoustic eld inside the replicas, departures from the plane wave theory have been observed from around 5 kHz [START_REF] El-Masri | Development of the transmission line matrix method in acoustics applications to higher modes in the vocal tract and other complex ducts[END_REF] [18], [START_REF] Dang | Acoustic characteristics of the piriform fossa in models and humans[END_REF], [START_REF] Takemoto | Acoustic analysis of the vocal tract during vowel production by nite-dierence time-domain method[END_REF]. Thus, the plane wave assumption appears as too limited to be used beyond about 5 kHz and other acoustical models accounting for the 3D aspects of the pressure eld are needed for this frequency range.

High frequencies in speech directivity

In what concerns the directivity of the radiated sound, for frequencies higher than about 5 kHz, the wavelength of the acoustic waves can be of the same order of length as the mouth aperture. As a consequence, the diraction of the acoustic waves present at the mouth exit becomes non negligible. On the other hand, variations of the acoustic eld over the plane of the mouth aperture can occur. Thus, the pulsating sphere model is no more accurate to predict the directivity of the radiated sound, and the acoustic eld inside the vocal tract is likely to inuence the directivity of the radiated sound. As a consequence, the directivity is expected to vary for dierent phonemes. Unfortunately, these variations are masked in most of the directivity measurements performed on real speakers or singers, because the directivity patterns are obtained from averaged spoken or sung sentences. However, it is shown in a study of Monson [10] that there are substantial dierences between the directivity patterns of dierent fricatives. On the other hand, it has been reported in the same study that there is a dierence of directivity pattern in high frequency which is related to gender, which may be explained by a dierence of vocal tract size and shape.

Formulation of the problem

There are very few studies reporting experimental measurements of the pressure eld inside vocal tract replicas. The progress of medical imagery [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF][26] and of 3D printing allows one to build more accurate replicas than the one used in the study of Motoki [START_REF] Motoki | Measurement of sound-pressure distribution in replicas of the oral cavity[END_REF]. So more accurate observations and measurements can be performed. On the other hand, the eects of some geometrical features of the vocal tract, such as the eccentricity, the cross-sectional shape or the mouth aperture, at high frequency are not clearly understood. The geometrical details necessary to take into account in order to obtain a qualitatively realistic behavior of simplied vocal tract geometries have not been identied. The 3D acoustic simulation methods, such as nite elements (FEM), nite dierences (FD) and multimodal method (MM) needs to be compared and validated with experimental measurements. The inuence of the internal acoustic eld and of its 3D aspect has not been investigated and is usually not taken into account in the modelling of the speech directivity. In addition, no study has brought any explanation of the physical origin of the directivity dierences related to the phonemes. On Introduction the other hand, the directivity measurements have been all performed in octave bands or in third of octave bands and with a minimal angular resolution of 15 • . This may mask some phenomena which have important variations within small frequency intervals and small angular regions.

Aim and outline of the thesis

The objectives of the work presented in this document are:

• To investigate how the 3D aspects of the acoustic eld inside the vocal tract can aect the transfer function of the vocal tract and the directivity of the radiated sound, focusing on the inuence of geometrical features of the vocal tract shape including the eccentricity, the cross-sectional shape, the size of the mouth aperture and the lips.

• To measure accurately acoustic pressure elds, transfer functions and directivity patterns with a thinner frequency, angular resolution (5Hz and 3 • ) than the one already performed on real speakers and singers (third of octave bands and15 • ) and to validate experimentally 3D acoustic simulation methods with it.

• To investigate how simplied vocal tract geometries can reproduce qualitatively the properties of realistic ones.

• To compare the acoustic properties of the vocal tract shape corresponding to three vowels which correspond to the extremes possible values of the formants ([A], [i] and [u]).

In order to account for the 3D aspects of the acoustic eld, one can use any simulation method which allows to take it into account. However, one has chosen for this work to apply the multimodal method [27][30] to the case of the vocal tract. Indeed, besides having a lower computational cost than the other simulation methods, it has the advantage to provide all the information related to the propagation modes (eigen functions, cut-on 1 frequencies, modal amplitudes and projection matrices). This is a valuable aid to understand the relationship between the geometrical features of the vocal tract shapes and the properties of the acoustic eld. However, the implementation proposed here for this method is limited to straight waveguides 2 constituted of a concatenation of sections with arbitrary cross-section. Thus, this implementation is particularly interesting for the simplied geometries based on area function as an example. On the other hand FEM simulations have been used for more complex geometries.

Several vocal tract geometries with dierent degree of complexity have been used. Realistic replica based on magnetic resonance images (MRI) [START_REF] Aalto | Large scale data acquisition of simultaneous MRI and speech[END_REF] have been used to investigate the 1 The term cut-on frequency refers to the fact that a propagation mode begins to propagate above its cuton frequency, it is the same as the cuto frequency which refers to the fact that a propagation mode stops propagating under its cuto frequency. 2 Bent waveguides can however be described with this method [START_REF] Félix | Eects of bending portions of the air column on the acoustical resonances of a wind instrument[END_REF].

1.3. Aim and outline of the thesis 5 acoustic properties, the directivity of realistic geometries and the inuence of the lips. However, this type of geometry is subject to inter-and intra-speaker variations and their shape is complex, which makes the understanding of the ongoing phenomena more dicult. That is why, simplied geometries based on two [START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF] and 44 [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] tubes concatenations have been extensively studied. These geometries are fully described by a given area function, which allows one to create several versions with dierent geometrical details, such as the eccentricity of the junctions and the cross-sectional shape, and to study their inuence.

In order to perform measurements of the acoustic pressure, mechanical replicas of some of these geometries have been built either with plexiglass tubes or using a 3D printer. An experimental setup allowing to measure the acoustic pressure has been designed. This allowed one to acquire experimental pressure elds, transfer functions and directivity patterns which have been compared to simulations performed with MM and FEM.

This document is organized as follows:

• In chapter 2 the MM implemented for this work is detailed.

• In chapter 3 the vocal tract geometries, the experimental setup, the data analysis methods and FEM are presented.

• In chapter 4 the simulated and measured transfer functions and pressure elds are presented and discussed.

• In chapter 5 the simulated and measured directivity patterns are presented and discussed.

Chapter 2

The multimodal approach applied to vocal tract In this chapter the multimodal theory used to compute the acoustic pressure and velocity in a variable cross-section waveguide is detailed. This theory has been developed by several authors including Roure [START_REF] Roure | Propagation guidée. etude des discontinuités ( Guided propagation. Study of discontinuities)[END_REF], Kergomard [START_REF] Kergomard | Analysis of higher order mode eects in an expansion chamber using modal theory and equivalent electrical circuits[END_REF], Pagneux [START_REF] Pagneux | A study of wave propagation in varying crosssection waveguides by modal decomposition. Part I. Theory and validation[END_REF] and Kemp [START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF]. It has already been applied to the vocal tract case with rectangular cross-sections by Motoki [START_REF] Motoki | A modal parametric method for computing acoustic characteristics of three-dimensional vocal tract models[END_REF]. The aforementioned works are extended to consider straight vocal tract geometries with arbitrary cross-sections and eccentric junctions. In order to solve the Helmholtz equation

∆p + k 2 p = 0 , (2.1) 
where ∆ is the Laplacian operator, k is the wavenumber and p is the pressure, the strategy is to divide the waveguide in a succession of constant cross-section waveguides in which a simple solution can be derived. By applying the continuity equations of the pressure and the 

Constant cross-section waveguide

In this section the multimodal theory is detailed in the case of a constant cross-section waveguide (see Fig. 2.1). Throughout this document, a generalized coordinate system (x 1 , x 2 , x 3 ) is used, x 3 being the propagation direction. The pressure p and the volume velocity u x 3 in the propagation direction x 3 inside a waveguide with arbitrary constant cross-sectional shape can be expressed as the summation of the contribution of an innity of propagation modes ψ n [START_REF] Morse | Theoretical acoustics[END_REF] weighted by a propagation factor A n e -jknx 3 ± B n e jknx 3 and a time evolution factor e jωt ,

       p(x 1 , x 2 , x 3 , t) = ∞ n=0 ψ n (x 1 , x 2 ) A n e -jknx 3 + B n e jknx 3 e jωt , u x 3 (x 1 , x 2 , x 3 , t) = S ρc ∞ n=0 ψ n (x 1 , x 2 ) A n e -jknx 3 -B n e jknx 3 e jωt , (2.2) 
where S is the surface of the cross-section, ρ is the constant air density, c is the speed of sound at rest, A n and B n are the amplitude of the waves propagating forward and backward respectively and ω is the angular frequency. To each propagation mode ψ n corresponds a modal wavenumber k n in the propagation direction x 3 which satises the dispersion relationship

k 2 = k 2 x 1 + k 2 x 2 + k 2 n , (2.3) 
where k = ω/c is the free eld wavenumber. When no particular cross-sectional shape is implied a single subscript n is used to identify the dierent propagation modes ψ n . In the particular cases described in sections 2. To avoid heavy expressions it is more convenient to use a vector notation (throughout this document vectors and matrix are in bold) and to omit the e jωt factor:

p(x 1 , x 2 , x 3 ) = ψ t P u x 3 (x 1 , x 2 , x 3 ) = ψ t U , (2.4)
where the superscript t represent the transpose operator, ψ = [ψ 1 (x 1 , x 2 ), ψ 2 (x 1 , x 2 ), ..., ψ n (x 1 , x 2 )] t is a vector containing the magnitude of the propagation modes ψ n at the location (x 1 ,x 2 ,x 3 ) and the time instant t, P = [ A 1 e -jk 1 x 3 + B 1 e jk 1 x 3 , A 2 e -jk 2 x 3 + B 2 e jk 2 x 3 , ..., A n e -jknx 3 + B n e jknx 3 ] t is a vector containing the amplitude of the propagation modes ψ n for the acoutic pressure, U = S ρc [ A 1 e -jk 1 x 3 -B 1 e jk 1 x 3 , A 2 e -jk 2 x 3 -B 2 e jk 2 x 3 , ..., A n e -jknx 3 -B n e jknx 3 ] t is a vector containing the amplitude of the propagation mode ψ n for the volume velocity. where S is the cross-section surface.

Each propagation mode can propagate above its cut-on frequency f c . The mode of order n = 0, ψ 0 , is the plane mode, the only one typically considered in vocal tract acoustics. Its cut-on frequency being 0 Hz, it can propagate at any frequency. The other modes are denoted as Higher Order Modes (HOM) in this document. Their cut-on frequency is higher than 0 Hz, and below this frequency they are exponentially damped along the propagation axis from the excitation point. In this case they are denoted as evanescent.

For the practical implementation of the MM approach, the innite summation of Eq. (2.2) needs to be truncated to N + 1 modes. In the implementation used for this work, it has been chosen to use only the modes whose cut-on frequency lies under an arbitrary frequency limit (typically 20 kHz). As a consequence, the number of HOM used depends on the cross-sectional shape. Thus, in the case of a complex geometry with multiple sections, it varies according to the considered section, more propagation modes being considered in a section having a large cross-section than in one with a small cross-section.

Chapter 2. The multimodal approach applied to vocal tract

Circular cross-sections

In the case of a circular cross-section of radius R, the propagation modes can be expressed using polar coordinates (r, θ) in the plane (x 1 , x 2 ) as a product of Bessel, sine and cosine functions ψ mn (r, θ) = J n (rγ mn /R) N mn sin(nθ) cos(nθ) ,

where

N mn = J n (γ mn ) 2 -J n-1 (γ mn )J n+1 (γ mn ) : n = 0, 1 2 J n (γ mn ) 2 -J n-1 (γ mn )J n+1 (γ mn ) : n > 0, (2.7) 
is a normalization constant (for the computation of N mn see appendix B), γ mn is the order m zero of the rst derivative of the Bessel function J n . The cut-on frequency f c of each mode ψ mn is given by f cmn = cγ mn 2πR .

(2.8)

The mode-shapes and the cut-on frequencies of a circular cross-section corresponding to some geometries studied later are presented for f c < 20 kHz in Fig. 2.2. They correspond to a diameter of 29.5 mm and the cut-on frequencies have been computed for a temperature of 26.5

• C which corresponds to an experiment whose results are presented later (see section 4.1).

The modes ψ 01 , ψ 02 , ψ 03 , ψ 04 and ψ 11 are degenerated: they have two mode-shapes similar by rotation of a certain angle having the same cut-on frequency. One can see that the rst subscript index corresponds to the radial dimension and the second to the angular dimension.

Rectangular cross-sections

In the case of a rectangular cross-section of dimensions a in x 1 and b in x 2 , the functions ψ mn can be expressed as

ψ mn (x 1 , x 2 ) = M m cos mπx 1 a N n cos nπx 2 b (2.9) with M m = 1 : m = 0, M m = √ 2 : m > 0, N n = 1 : n = 0, N n = √ 2 : n > 0.
Their cut-on frequencies are given by

f cmn = mc 2a 2 + nc 2b 2 .
(2.10)

The mode-shapes and the cut-on frequencies of a square cross-section corresponding to some geometries studied later are presented for f c < 20 kHz in Fig. 

Elliptical cross-sections

The case of an elliptical cross-section can be solved analytically using elliptical coordinates (ξ,η). For a full devellopement of this solution see [START_REF] Lowson | Propagation of sound in elliptic ducts[END_REF] and [START_REF] Hong | Natural mode analysis of hollow and annular elliptical cylindrical cavities[END_REF]. The elliptical coordinates can be related to the coordinates (x 1 ,x 2 ) with the relations

x 1 = h cosh ξ cos η , (2.11) 
x 2 = h sinh ξ sin η , (2.12) where h is the semi inter-focal distance of the ellipse. The boundary of the elliptical crosssection is dened by ξ = ξ max , with x 1max = 2h cosh(ξ max ) and x 2max = 2h sinh(ξ max ) the half lengths of the major and minor axis respectively. The resolution of the Helmholtz equation (Eq. (2.1)) on the cross-section leads to the Mathieu equation

d 2 V dη 2 + (σ -K 2 cos 2 η)V = 0 , (2.13) 
and the modied Mathieu equation

d 2 U dξ 2 -(σ -K 2 cosh 2 ξ)U = 0 , (2.14) 
with ψ(ξ, η) = U (ξ)V (η), σ the eigenvalue of the Mathieu function and

K 2 = h 2 [(ω/c) 2 -k 2 n ],
where k n is the wavenumber in the propagation direction x 3 . Two kinds of functions, denoted as even and odd, are derived from Eqs. (2.13) and (2.14) [START_REF] Mclachlan | Theory and application of Mathieu functions[END_REF], [START_REF] Morse | Methods of theoretical physics (Parts 1 and 2)[END_REF]: where the ubscript e stands for even, N emn is a normalization constant computed so that Eq. (2.5) is satised, S em is the even Mathieu function of the rst kind of order m [START_REF] Abramowitz | Handbook of mathematical functions[END_REF], J em is the even modied Mathieu function of the rst kind of order m, m ∈ N, m ≥ 0, n ∈ N, n > 0, K emn is determined so that J em (K emn , ξ max ) = 0,

ψ emn (ξ, η) = 1 N emn S em (K emn , cos(η))J em (K emn , cosh(ξ)) , (2.15) 
ψ omn (ξ, η) = 1 N omn S om (K omn , cos(η))J om (K omn , cosh(ξ)) , (2.16) 
where the ubscript o stands for odd, N omn is a normalization constant computed so that Eq. (2.5) is satised, S om is the odd Mathieu function of the rst kind of order m [START_REF] Abramowitz | Handbook of mathematical functions[END_REF], J om is the odd modied Mathieu function of the rst kind of order m, m ∈ N, m > 0, n ∈ N, n > 0, K omn is determined so that J om (K omn , ξ max ) = 0.

The cut-on frequencies are given by the relations:

f emn = c π K emn h 2 , f omn = c π K omn h 2 .
(2.17)

The mode-shapes and the cut-on frequencies of an elliptical cross-section 6.2 cm wide in

x 1 and 1.9 cm thick in x 2 are presented for f c < 20 kHz in Fig. 2.4. One can see that with this cross-sectional shape, there are no degenerated modes. The rst subscript index corresponds to the number of vertical nodal lines and the second subscript index corresponds to the number of elliptical nodal lines. The odd function features a horizontal straight nodal line.

Arbitrary cross-sections

In order to handle geometries with arbitrary cross-sectional shapes, nite dierences (FD) are used to solve the Helmholtz equation Eq. (2.1) [START_REF] Singer | High-order nite dierence methods for the Helmholtz equation[END_REF], [START_REF] Mcclure | Images of a vibrating Koch drum[END_REF]. • C for a spacing of the points of the grid used for FD of 1 mm and 0.5 mm.

A grid of points is generated on the cross-section surface. The spacing between the points of the grid used for the simulations was of 0.5 mm. This has been chosen as a compromise between accuracy and computation time by performing convergence tests and comparing with experimental results and analytical expressions (see section 4.1.2).

In order to test the validity of this approach, it has been applied to circular cross-sections with a diameter of 29.5 mm and compared with the analytical expression of Eq. (2.6). The same mode-shapes as the one presented in Fig. 2.2 are obtained with the FD.

The relative error between the cut-on frequencies computed with FD and analytically with Eq. (2.8) is presented in Fig. 2.5 for a spacing of the points of the grid used for FD of 1 mm and 0.5 mm. For a spacing of 1 mm, the relative error is smaller than 2% and for a spacing of 0.5 mm it is smaller than 1%. Thus, as expected, the accuracy of the computation of the cut-on frequency increases with the resolution. It is interesting to note that the error can be dierent for two degenerated modes for which the cut-on frequency given analytically is the same. This can be explained by the fact that, due to the angular rotation of these mode-shapes, the distribution of the points of the grid on them is dierent. The relative error does not necessarily increase with the frequency: the error corresponding to f c11 , which is the highest cut-on frequency computed can be smaller than the one of f c04 .

Propagation matrices

Once the modal basis corresponding to the cross-section of a waveguide portion has been computed up to a given frequency, it is necessary to compute the variation of the modal amplitudes P and U along the axis x 3 .

Solving the Helmholtz equation Eq. (2.1) with the expressions of Eq. (2.4) for the pressure and the velocity allows one to write two relationships between the pressure and velocity modal Chapter 2. The multimodal approach applied to vocal tract amplitudes P and U at two dierent locations. Consider two points located within the waveguide at the abscissas x (0)

3 and x

(1)

3 . P (0) and U (0) at x (0)

3 can be known from P (1) and U (1) at x (1) 3 with

P (0) = D 1 P (1) + D 2 Z c U (1) , (2.18) U (0) = D 2 Z -1 c P (1) + D 1 U (1) , (2.19) 
where D 1 = diag(cos(k n d)) is a diagonal matrix whose terms are cos(k n d) with d = x

(1)

3 -x (0) 3 , D 2 = diag(j sin(k n d))
and Z c is the characteristic impedance matrix obtained as Z c = diag kρc knS .

Using P (i) = Z (i) U (i) , with i = 0 or i = 1, allows one to write a relationship between the impedance matrices Z (0) and Z (1) at x (0) 3 and x

(1) 3

Z (0) = D 1 Z (1) + D 2 Z c D 2 Z -1 c Z (1) + D 1 -1
.

(2.20)

Following the same procedure and using the equation U (i) = Y (i) P (i) allows one to write three other relationships between the impedance and the admittance matrices at x (0)

3 and x

(1) 3

Z (0) = D 1 + D 2 Z c Y (1) D 2 Z -1 c + D 1 Y (1) -1 , (2.21) 
Y (0) = D 1 Y (1) + D 2 Z -1 c D 2 Z c Y (1) + D 1 -1 , (2.22) 
Y (0) = D 1 + D 2 Z -1 c Z (1) D 2 Z c + D 1 Z (1) -1 .
( 

Z (0) = (jD 3 ) -1 Z c -D -1 2 Z c [Z (1) + (jD 3 ) -1 Z c ]D -1 2 Z c , (2.24) 
Z (0) = (jD 3 ) -1 Z c -D -1 2 Z c [I + (jD 3 ) -1 Y (1) Z c ]D -1 2 Z c , (2.25) 
Y (0) = (jD 3 ) -1 Z -1 c -D -1 2 Z -1 c [Y (1) + (jD 3 ) -1 ]D -1 2 Z -1 c , (2.26) 
Y (0) = (jD 3 ) -1 Z -1 c -D -1 2 Z -1 c [I + (jD 3 ) -1 Z -1 c Z (1) ]D -1 2 Z -1 c , (2.27) 
I being the identity matrix. For a detailed computation of these four equations, see appendix C.

Radiation impedance

Once relations between the modal amplitudes, impedance and admittance matrices at two dierent abscissas of a constant cross-section waveguide have been derived, it is necessary to have a boundary condition in order to compute a solution for Eq. (2.1). At the open end of a waveguide, the boundary condition can be described with a radiation impedance matrix. It can be obtained analytically in the case of circular [START_REF] Zorumski | Generalized radiation impedances and reection coecients of circular and annular ducts[END_REF] or rectangular [START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF], [START_REF] Kemp | Multimodal radiation impedance of a rectangular duct terminated in an innite bae[END_REF] cross-section.

For the intermediate cross-sections, the boundary condition is the modal amplitudes, the impedance or the admittance matrix at the ends of the neighboring sections.

Numerical computation of the radiation impedance matrix

In the case of an arbitrary cross-section, no simple analytical expression of the radiation impedance matrix can be derived. However it can be obtained by numerically integrating the expression

Z mn = jωρ 2πS 2 S S ψ m (x 1 , x 2 )ψ n (x 1 , x 2 ) e -jkh h dSdS , (2.28 
) 

with h = (x 1 -x 1 ) 2 + (x 2 -x 2 )
Z mn = jωρ 2πN 2 N a=1 N b=1 ψ m (x 1a , x 2a )ψ n (x 1b , x 2b ) e -jkh ab h ab , (2.29) 
with h ab = (x 1b -x 1a ) 2 + (x 2b -x 2a ) 2 . Note that one does not divide by the area S 2 , since the area elements dS have not been taken into account in the summation above. On the other hand, one must divide by the number of points N 2 .

A particular case appears when h = 0: innite values are generated and one must avoid this case if Eq. (2.29) is used, and the accuracy of the computation is aected. In order to work around this limitation, the position of the points on which the amplitude of one of the eigen-modes is computed is expressed in polar coordinates (r, θ). The origin of the polar landmark is set on the point whose position is dened in Cartesian coordinates so that the radial coordinate is equal to h. Thus, the origin is moved for each point expressed in Cartesian coordinates. In this case, the innitesimal area element is expressed as dS = hdrdθ in the polar landmark, and Eq. (2.28) can be rewritten

Z mn = jωρ 2πS 2 S S ψ m (r, θ)ψ n (x 1 , x 2 )e -jkh drdθdx 1 dx 2 , (2.30) 
and the division by h which induces the singularity in Eq. (2.29) is removed. Because a regular discretization over x 1 and x 2 induces an irregular discretization over r and θ, it is necessary to generate a second grid of N p points regularly spaced over r and θ. This insures that the area element hdrdθ remains similar for each point (r b ,θ b ) and that the simplication introduced is valid. As a consequence, a new grid is generated for each point (x 1a ,x 2a ). Eq. (2.30) can then be discretized the following way: In order to validate the numerical method described earlier, its outcomes have been compared

Z m,n = jωρ 2πN N a=1
to the values obtained with the analytical expressions given by [START_REF] Zorumski | Generalized radiation impedances and reection coecients of circular and annular ducts[END_REF] and [START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF] which have been implemented in Matlab/Octave. Note that when implementing Eqs. (3.40) and (3.35) of [START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF], one must be careful that the sine cardinal function is dened as sinc(x) = sin(x)

x in this document, whereas it is dened as sinc(x) = sin(πx) πx in Matlab and Octave.

The radiation impedance matrix Z R has been computed for a circular and a square opening measuring 29.5 mm in the diameter and the width respectively. The data computed with the numerical method and the expression given by [START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF] have been normalized by ρc S , S being the surface of the exit. This normalization is already applied in the expression given by [START_REF] Zorumski | Generalized radiation impedances and reection coecients of circular and annular ducts[END_REF]. In order to avoid any disturbance due to the fact that the mode-shapes obtained with FD can potentially be slightly dierent from the analytical ones, Eqs. (2.6) and (2.9) have been used

to compute the mode-shapes for the numerical approach. A resolution of 0.5 mm has been used. This corresponds to a ratio of resolution over largest dimension of about 1/60.

The real and imaginary parts of the rst terms of the circular cross-section are presented in Figs. 2.6a and 2.7a for the diagonal and coupling terms respectively. For the square crosssection, the rst terms of Z R are presented in Figs. 2.8a and 2.9a for the diagonal and the coupling terms respectively. Note that Eq. 3.41 of [START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF] gives radiation impedance matrix terms only for the modes without nodal lines in the diameter (which pass by the center of the cross-section, see the modes ψ 00 , ψ 02 , ψ 20 and ψ 22 in Fig. 2.3). Thus, it is only possible to compare the numerical and analytical method for modes with even indices: the indices of Eq.

(2.31) are two times greater than the one of Eq. 3.41 of [START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF].

The real part of the radiation impedance terms characterizes the losses by radiation at the open end of the waveguide. The greater it is, the greater are the losses. The imaginary part part characterizes the inertia introduced by the opening which varies the phase shift introduced to the wave reected back to the waveguide. The greater it is, the greater is the phase shift increase. In the plane wave theory, it can be accounted for with a length correction.

The same curves as the one reported in the literature [START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF], [START_REF] Zorumski | Generalized radiation impedances and reection coecients of circular and annular ducts[END_REF] are observed in Figs. 2.6a, 2.7a, 2.8a and 2.9a. Close to kR = 0, the radiation impedance tends to 0 for all terms of the matrix, which corresponds to the perfect open end boundary condition.

In the case of the diagonal terms (see Figs. 2.6a and 2.8a), the real part increases and then tends to one and the imaginary part increases and then decreases again to tend to zero. Thus, it tends to the free eld plane wave impedance. It corresponds to the fact that at high enough (Z Ra ) and numerically (Z Rn , Eq. (2.31)), (a) average value given by both methods, (b) dierence between both methods. (Z Ra ) and numerically (Z Rn , Eq. (2.31)), (a) average value given by both methods, (b) dierence between both methods. (Z Ra ) and numerically (Z Rn , Eq. (2.31)), (a) average value given by both methods, (b) dierence between both methods. (Z Ra ) and numerically (Z Rn , Eq. (2.31)), (a) average value given by both methods, (b) dierence between both methods.
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frequencies the free eld assumption holds and there is no more the eect of the boundary condition.

The coupling terms quantify how the dierent propagation modes are coupled at the open end of the waveguide (see Figs. 2.7a and 2.9a). Thus, even if not excited at the entrance, a HOM coupled with another one which is excited can be excited by coupling and propagate if the frequency is greater than its cut-on frequency. Their real and imaginary parts tends to zero close to kR = 0, then increases and oscillates between negative and positive values, and decreases to tend to zero at high frequency. This corresponds to the fact that at a high enough frequency the free eld assumption holds and no coupling can be possible. In the case of a circular opening of 29.5 mm and considering only the modes propagating under 20 kHz only the coupling terms Z 00,10 , Z 01,11 , Z 10,00 and Z 11,01 are non zero.

The radiation impedance matrix obtained with the numerical approach Z Rn has been compared with the one obtained with the analytical method Z Ra . The absolute dierence between the real part and the imaginary part |Z Rn -Z Ra | is presented for the circular opening in Figs. 2.6b and 2.7b for the diagonal and the coupling terms respectively. For the square opening, |Z Rn -Z Ra | is presented in Figs. 2.8b and 2.9b for the diagonal and the coupling terms respectively. In this case the relative error is not meaningful to compute everywhere because when the curves cross zero, unrealistically large terms are computed. The accuracy of the numerical computation is quite good: the absolute dierence between both methods is smaller than 7.10 -3 , which is three orders of magnitude smaller than the real and the imaginary parts of the impedance. For the maxima of diagonal terms, this yields a relative error smaller than 1% . The error tends to be smaller for the coupling terms. For a given term, it varies with maxima and minima, but globally it tend to increase with kR.

Junction between waveguide portions

Once a solution of the Helmholtz equation (Eq. 2.1) can be derived for each section of the waveguide, it is necessary to join the dierent sections in order have a solution for the whole waveguide.

Projection matrix

At a junction between two ducts with dierent cross-sections it is necessary to nd a relationship between the modal basis of each section. Let us consider two ducts a and b whose cross-sectional surfaces are S a and S b respectively (see Fig. 2.10). Applying the continuity of both the pressure p and the volume velocity u x 3 on each side of the junction yields

ψ t a P a = ψ t b P b , (2.32) 1 S a ψ t a U a = 1 S b ψ t b U b .
(2.33)

Figure 2.10: Junction between two ducts of arbitrary cross-section shape.

Hereafter the subscript b always refers to the duct with the largest cross-section and the subscript a to the smallest one. If one assumes that S a < S b and S a lies inside S b , multiplying both sides of Eq. (2.32) with ψ * a /S a and integrating over S a leads to

P a = 1 S a Sa ψ * a ψ t b dS a P b .
(2.34)

In the same way multiplying Eq. (2.33) with ψ * b and integrating over S b yields

U b = 1 S a S b ψ * b ψ t a dS b U a . (2.35) 
Yet we have ψ a = 0 on S b -S a so

S b ψ * b ψ t a dS b = Sa ψ * b ψ t a dS a = Sa ψ * a ψ t b dS a † ,
where the symbol † means transpose conjugate. Thus, dening the projection matrix F as

F = 1 S a Sa ψ * a ψ t b dS, (2.36) 
equations (2.34) and (2.35) can be rewriten as

P a = F P b , (2.37) 
U b = F † U a .
(2.38)

Given that P = ZU and U = Y P , Eq. (2.37) and (2.38) can be expressed as

Z a = F Z b F † , (2.39) Y b = F † Y a F . (2.40)
An analytic expression of F mn can be found in the particular case of two circular crosssections sharing the same central axis (see [START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF]):

F m0a,m0b = 2βγ m0b J 1 (βγ m0b ) (β 2 γ 2 m0b -γ 2 m0a )J 0 (γ m0b ) , (2.41) 
where β = R a /R b is the ratio of the radii of both cross-sections and γ m0 is the order m zero of the derivative of the Bessel function of rst kind of order zero J 0 . Note that, in this case, only the mode-shapes without radial nodal lines can generate non-zero values of the F matrix.

It is also possible to nd analytic expressions for other particular cases such as junctions between rectangular cross-sections or axisymmetric elliptical cross-sections. However, it is dicult to nd an analytic expression for the case of an eccentric junction between circular and elliptical cross-sections, and it is not possible to solve analytically the cases with arbitrary cross-sections. Thus, numerical integration has been used to solve these problems. On the other hand, this allows one to handle the case of the junction between two waveguide portions having dierent cross-sectional shape.

The value of ψ a and ψ b are evaluated at each point of the grid used for the FD computation of the propagation modes. The coupling coecient can then be evaluated by computing the sum

F a,b = 1 N Np i=1 ψ * a (x 1i , x 2i )ψ b (x 1i , x 2i ).
(2.42)

Note that the case of a junction whose cross-sections are not enclosed in each other can be solved by inserting an intermediate zero-length waveguide portion whose cross-section is the intersection of the original two neighboring cross-sections.

Validation against analytical case

In order to test the validity and the accuracy of this approach, it has been compared with the values given by Eq. (2.41). The case of a junction with radii equal to 14.5 mm and 29.5 mm (this corresponds to a geometry used in what is presented later, see section 3.1) have been solved with both methods. The values of the rst non-zeros terms of the matrix F are presented in Fig. 2.11. Note that the comparison is made on the amplitude of the terms.

Sign dierence can occur between analytic and numeric computations. However, this does not aect the overall outcome of the simulation.

As expected the agreement improves when the resolution is increased. The maximal amplitude dierence is of 0.037 with 1 mm, 0.011 with 0.5 mm and 0.005 with 0.3 mm. The relative amplitude dierence can reach 29% with 1 mm, 8% with 0.5 mm and 4% with 0.3 mm. The error in not the same for the dierent terms of matrix F . The numerical solution is exact for F 00,00 and thus there is no amplitude dierence with the analytical solution. The amplitude dierence is maximal for F 20,00 (0.0365) and minimal for F 20,10 (0.0007). The maximum of relative amplitude dierence is reached with F 20,20 (28.6 %) and the minimum with F 20,10 (0.05%). Computing relative amplitude dierence for F 00,10 and F 00,20 is not meaningful because the analytical value is zero for those terms.

The maximal relative amplitude dierence obtained with the resolution used for the simulations, 0.5 mm, can appear as high (8%). However, it has been chosen as a compromise between accuracy and computation time, and the global convergence tests showed that the overall convergence is satisfying (see section 4.1.2).

The four types of possible junctions

The impedance matrix can be back propagated towards the entrance of the waveguide. To do so, Eqs. (2.39) and (2.40) allow one to propagate the impedance and admittance matrices through a junction. However these matrices can be ill conditioned and inversion must be avoided. Thus the impedance matrix must be used for expansions and the admittance matrix for contractions. This constraint introduces four dierent cases for the projection of the impedance or admittance matrices from a junction to another which are described in Fig. 2.12.

For case a) both junctions are expanding so the impedance matrices can be propagated through the junctions with Eq. (2.39) and Z (0) can be computed from Z (1) with Eq. (2.24).

On the contrary in case c) both junctions are contracting so the admittance matrices can be propagated through the junctions with Eq. (2.40) and Y (0) can be computed from Y (1) with Eq. (2.26). The case b) is expanding and then contracting so the admittance matrix can be propagated through the junction of the right and the impedance matrix can be propagated through the junction of the left. The impedance Z (0) can be computed from the admittance Y (1) with Eq. (2.25). On the opposite the case d) is contracting and then expanding so the impedance matrix can be propagated through the junction of the right and the admittance matrix can be propagated through the junction of the left. The admittance Y (0) can be computed from the impedance Z (1) with Eq. (2.27).

The problem of a junction whose cross-sections are not enclosed in each other can be solved by inserting an intermediate zero-length waveguide portion whose cross-section is the intersection of the original two neighboring cross-sections. between their centers varying from 0 to 7 mm. The amplitude of the terms F 00,01 , F 00,02 , F 00,03 , F 00,04 and F 00,11 , correspond to the combination of the amplitude of both degenerated HOM ψ mn1 and ψ mn2 : F 00,mn = F 2 00,mn1 + F 2 00,mn2 .

Eect of eccentricity on coupling terms

In order to investigate the eect of the degree of eccentricity of a junction between two cylindrical waveguide portions on the excitation of HOM, the projection matrix F has been computed by varying the distance between the centers of two circular cross-sections of diameter 14.5 mm and 29.5 mm from 0 mm to 7 mm by step of 0.5 mm. This corresponds to the progressive transition from a concentric conguration to a fully eccentric one.

The coupling terms of the projection matrix F between the plane mode ψ 00 and the HOM whose cut-on frequency is below 20 kHz (see Fig. 2.2) are presented in Fig. 2.13. The amplitude of the terms F 00,01 , F 00,02 , F 00,03 , F 00,04 and F 00,11 , corresponds to the combination of the amplitude of both degenerated HOM ψ mn1 and ψ mn2 : F 00,mn = F 2 00,mn1 + F 2 00,mn2 .

The coupling terms between the plane mode ψ 00 and the modes with nodal lines on the diameter (ψ 01 , ψ 02 , ψ 03 , ψ 04 and ψ 11 , see Fig. 2.6) are 0 when there is no shifting between the centers of the sections (which corresponds to the concentric conguration). Indeed, theoretically in Eq. (2.36) the contributions of the plane mode ψ 00 on either side of the nodal lines of these modes compensate each other exactly.

When the eccentricity (the distance between the centers) is increased, the excitation of the modes featuring nodal lines on the diameter is increased. On the contrary the excitation of the axisymmetric mode ψ 10 is decreased when the junction becomes more eccentric. This is due to the fact that the circular nodal line of this mode gets closer to the middle of the smallest cross-section. Thus the contributions of the plane mode ψ 00 to excite ψ 10 tend to annihilate.

Computation of pressure and volume velocity

Internal eld

Once the impedance and or the admittance matrices Z and Y have been computed for each section of the waveguide, it is possible to compute the modal amplitudes of the pressure and the volume velocity P and U at the entrance and to propagate it up to the exit.

The pressure or the volume velocity of the source can be projected on the modal basis which describes the pressure and velocity eld at the source location. For a source delivering a velocity v s on a surface S s the modal amplitude U s corresponding to the source can be known with

U s = Ss ψ * v s dS s . (2.43)
The pressure and the velocity modal amplitudes can then be propagated from the entrance to the open end. Introducing Y (1) and Z (1) 

P (1) = D 1 + D 2 Z c Y (1) -1 P (0) , (2.44) 
U (1) = D 2 Z -1 c Z (1) + D 1 -1 U (0) , (2.45) 
which allows one to propagate P or U (depending if the impedance or the admittance is known) through a constant cross-section waveguide portion. The vectors P and U can then be propagated through the junctions using Eqs. (2.37) and (2.38). Equations (2.18) and (2.19) allow one to compute P and U at any abscissa x 3 and the pressure p and the axial velocity u x 3 can be computed with Eq. ( 2.2) at any point inside the waveguide.

Radiated acoustic pressure 2.3.2.1 Free eld

The pressure eld radiated by the waveguide can be computed using the Rayleigh-Sommereld

integral p(x 1 , x 2 , x 3 ) = ∞ n=0 jωρ 2πS S U n ψ n (x 1 , x 2 ) e jkh h dS, (2.46) 
with U n the modal amplitude of the particle velocity,

h = (x 1 -x 1 ) 2 + (x 2 -x 2 ) 2 + (x 3 -x 3 ) 2 , S
being the surface at the open end of the waveguide and (x 1 , x 2 , x 3 ) the coordinates of the points on S.

Chapter 2. The multimodal approach applied to vocal tract This integral can be approximated considering a nite summation over N + 1 modes and replacing the integral by a nite summation evaluated on a grid of N p points

P (x 1 , x 2 , x 3 , k) = N n=0 jωρ 2πN p Np i=1 U n ψ n (x 1i , x 2i ) e jkh i h i , (2.47) 
with

h i = (x 1 -x 1i ) 2 + (x 2 -x 2i ) 2 + (x 3 -x 3i ) 2 , (x 1i , x 2i , x 3i
) being the coordinates of the points of the grid. Note that one does not divide by the area S, since the area elements dS

have not been taken into account in the summation above. On the other hand, one must divide by the number of points N p .

Taking into account reections

The free eld radiation assumption corresponds to a theoretical case and, in practice, reections can be expected. Hence, a very simple model of specular reection has been used.

The interference of the sound wave directly radiated by the open end of waveguide geometry with a wave reected on a plane perpendicular or parallel to the bae plane has been implemented. To do so, the expression of the radiated pressure has been modied to add the contribution of N r reected waves.

The distance traveled by the reected wave is represented in Figs. 2.14 for a reection on a plane respectively perpendicular (Fig. 2.14a) and parallel (Fig. 2.14b) to the bae. The distance d r corresponding to the projection of the incident path h i on the reection plane can be computed by stating that the incident angle is equal to the reection angle:

d r = h s d 2h s -(x 2r -x 2s ) , (2.48) 
with (x 1s , x 2s , x 3s ) the coordinates of the source point, (x 1r , x 2r , x 3r ) the coordinates of the reception point and h s the distance between the source point and the reection plane. In the case of a reection plane perpendicular, the distance d corresponding to the projection of the incident and reected paths h i and h r on the reection plane is (x 1r -x 1s ) 2 + (x 3r -x 3s ) 2 .

For a reection plane parallel, this distance is

(x 1r -x 1s ) 2 + (x 2r -x 2s ) 2 .
The incident and reected distances h i and h r can then be computed,

h i = h 2 s + d 2 r , (2.49) 
in the case of a perpendicular reection plane,

h r = (h s -(x 2r -x 2s )) 2 + (d -d r ) 2 , (2.50)
and in the case of a parallel reection plane,

h r = (h s -(x 3r -x 3s )) 2 + (d -d r ) 2 .
(2.51)

The total path is thus

h t = h i + h r . (2.52) 
The contribution of N r reected waves can be added to the computation of the radiated pressure at the reception point,

p(x 1r , x 2r , x 3r , k) = ∞ n=0 jωρ 2πS S U n ψ n (x 1s , x 2s ) e jkh h + Nr r=0 R r e jkhtr h tr dS, (2.53) 
where ω is the angular frequency, ρ is the air density, S is the surface of the open end of the waveguide, (x 1s , x 2s , x 3s ) are the coordinates of the points on S, U n is the modal amplitude of the volume velocity corresponding to the mode ψ n , h = (x 1r -x 1s ) 2 + (x 2r -x 2s ) 2 + (x 3r -x 3s ) 2 is the distance traveled by the direct wave, h tr are the distances traveled by the reected waves computed with Eq. 2.52 and R r are the reection coecients.

This integral can be approximated considering a nite summation over M × N modes and replacing the integral by a nite summation evaluated on a grid of N p points belonging to the surface S,

p(x 1r , x 2r , x 3r , k) = N n=0 jωρ 2πS Np g=1 U n ψ n (x 1sg , x 2sg ) e jkhg h g + Nr r=0
R r e jkhtrg h trg dS,

(2.54)

with h g = (x 1r -x 1sg ) 2 + (x 2r -x 2sg ) 2 + (x 3r -x 3sg
) 2 the distance traveled by the direct wave between the point g of the grid and the reception point, h trg the path corresponding to the reection r of the sound generated by the point g of the grid, (x 1sg , x 2sg , x 3sg ) being the coordinates of the points of the grid.
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Application to vocal tract

The implementation performed allows one to simulate the acoustic properties of the vocal tract. Straight vocal tract geometries discretized in a concatenation of constant cross-section sections can be simulated from very simple vocal tract models [START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF], or from area functions [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] extracted from medical imaging procedures.

For every simulation, the impedance or the admittance matrices, the modal amplitude vectors for the pressure and the volume velocity, and the projection matrix are computed at the entrance and the exit of each section. Then, the pressure can be computed at any desired location inside or outside of the vocal tract geometry. This allows one to compute transfer functions and pressure elds. This has been applied in chapters 4 and 5 for the comparison with the experimental data. In this chapter, the vocal tract replicas and the experimental setup used to perform experimental measurements of the pressure eld and the transfer functions are presented. The signal processing of the experimental data is detailed, and the inuence of some experimental artefact is evaluated. Eventually, the FEM simulations also used to compare with the experimental data and the MM simulation data are presented. The data acquired with the experiments and the FEM simulations are compared with data obtained by MM simulations in the chapters 4 and 5.

Vocal tract geometries.

In order to perform the measurements presented in this document, mechanical vocal tract replicas with increasing complexity have been built. Pictures of these replicas are presented in Fig. provided by [START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF] for the two tubes approximation and by [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] for the 44 tube ones. The abscissa x 3 = 0 corresponds to the position of the sound source. In order to study the eect of the eccentricity of a junction between two waveguide sections, two geometries have been used.

1. One with two cylindrical tubes sharing the same central axis (see Fig. 3.1b, referred hereafter as the two circular concentric [A], 2CC [A]).

2. One with two cylindrical tubes sharing a common line on the edge (see Fig. 3.1c, referred hereafter as the two circular eccentric [A], 2CE [A]).

The two tubes of both geometries are 85 mm long and have an internal diameter of 14.5 mm and 29.5 mm. The corresponding area function is represented in Fig. 3.2. Although these geometries are a very rough two tube approximation of the vocal tract, they can be seen as a vowel [A] reproduction [START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF]. The common edge of the second geometry can be seen as a reproduction of the palate. Two replicas of these geometries have been built with Plexiglas tubes in order to perform measurements.

More realistic vocal tract geometries have been designed using the area functions provided by Story [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] for the vowels [A], [i] and [u] (see Fig. 3.2).

Four geometries of increasing complexity have been designed with the area function corresponding to the vowel [A].

1. One has circular cross-sections sharing the same central axis (see Fig. 3.1d, referred hereafter as the 44 cicular concentric [A], 44CC [A]).

2. One has circular cross-sections sharing a common line on the edge (see Fig. 3.1e, referred hereafter as the 44 circular eccentric [A], 44CE [A]).

3. One has elliptical cross-sections sharing a common line on the edge in the plane (x 2 ,x 3 ) (see Fig. 3.1f, referred hereafter as the 44 elliptical eccentric [A], 44EE [A]).

4. One has elliptical cross-sections sharing a common line on the edge in the plane (x 2 ,x 3 ).

The centers of the consecutive cross-sections are shifted by 25% of the maximal possible shift in the plane (x 1 ,x 3 ), the edges of the smaller ones being contained inside the larger ones (see Fig. 3.3a). This geometry is referred hereafter as the 44 elliptical fully eccentric [A], 44EFE [A]).

In the case of the 44CE [A], the 44EE [A] and the 44EFE [A], the length of each section has been adjusted so that the total length of the line that connects the centers of each cross-section (referred as the midline hereafter) is the same as for 44CC [A]. Otherwise, numerical tests have shown that a non-expected shift down of the formant positions can be produced (up to about 2%). Thus the length of each section is 3.88 mm, 3.82 mm, 3.86 mm and 3.85 mm for the Table 3.1: Width (along x 2 ), height (along x 1 ) and ratio of width over height of the elliptical shapes provided by [START_REF] Fromkin | Lip positions in American English vowels[END_REF] for three vowels.

44CC [A], the 44CE [A], the 44EE [A] and the 44EFE [A], respectively. On the other hand, the eccentricity of the mouth aperture, obtained from [START_REF] Fromkin | Lip positions in American English vowels[END_REF] for the vowel [A] (see Tab. 3.1), has been applied to all cross-sections to generate the 44EE [A] and 44EFE [A], as done in [START_REF] Arnela | Finite element computation of elliptical vocal tract impedances using the two-microphone transfer function method[END_REF].

Mechanical replicas of the three rst geometries corresponding to vowel [A] have been built

with a 3D printer (ProJet 3510 SD, with accuracy 0.025 mm to 0.05 mm per 25.4 mm) using a UV curable plastic visijet M3X material (see Figs. 3.1d, 3.1e and 3.1f ).

Geometries with elliptical cross-sections sharing a common line in the plane (x 2 ,x 3 ) and with 25% of eccentricity in the plane (x 1 ,x 3 ) have been created from the vowels [i] and [u] area functions (see Figs. [START_REF] Shaughnessy | Speech communication: human and machine, ser. Addison-Wesley series in electrical engineering: digital signal processing[END_REF].3b and 3.3c). As for the vowel [A], the ratio of the major axis over the minor axis of the elliptical cross-sections have been determined after the work of Fromkin [START_REF] Fromkin | Lip positions in American English vowels[END_REF] (see Tab. 3.1). The midline of these geometries has also been adjusted so that it is similar to the midline of a geometry without eccentricity. The corrected length of the section is thus 3.81 mm for the 44EFE[i] and 4.34 mm for the 44EFE[u].

In order to have more realistic vocal tract geometries, the MRI-based 3D vocal tract generated by [START_REF] Aalto | Large scale data acquisition of simultaneous MRI and speech[END_REF] for vowel [A] was adapted for the current work. Some additional elements not necessary for this study were removed, such as the subglottal tube and part of the face.

The resulting vocal tract geometries were then set in a rigid at bae located at the mouth termination plane, which is dened as the last front-plane that produces a closed outline when it intersects with the vocal tract (see [START_REF] Dabbaghchian | Simplication of vocal tract shapes with dierent levels of detail[END_REF]). In order to study the inuence of the lips, a geometry without lips has been created. Note that in these geometries the teeth are not present because they were not visible on the MRI.

Mechanical replicas of these geometries were 3-D-printed using the same method as for 

Experimental setups

An experimental setup inspired from the work of [START_REF] Motoki | Measurement of sound-pressure distribution in replicas of the oral cavity[END_REF] has been developed to measure the acoustic pressure inside and outside of the vocal tract replicas. Schematic diagrams of this setup are presented in Figs. [START_REF] Shaughnessy | Speech communication: human and machine, ser. Addison-Wesley series in electrical engineering: digital signal processing[END_REF].4a and 3.4c for the planes (x 2 , x 3 ) and (x 1 , x 3 ) respectively. A simplied version dedicated to directivity measurements is presented in Fig. 3.5.

In order to be able to generate sound over the frequency range 100 Hz to 15000 Hz, two dierent acoustic sources were needed. Because a loudspeaker would not provide enough acoustic energy, compression chambers have become necessary. Two chambers have been used, a Monacor KU-916T and an Eminence PSD:2002S-8 (see Fig. In order to measure the acoustic pressure at greater distances, the positioning system and the probe microphone have been replaced by a microphone (B&K 4192 with a preamplier B&K 2669 L) placed on a mobile support (see Fig. Hz. This card can record signals with dierent ranges of amplitude. The ranges used for the experiments were -5 V to +5 V and -10 V to +10 V, depending on the amplitude of the acoustic pressure and the settings of the other devices. The signals having an amplitude higher than these ranges were saturated. This card is also used to generate the excitation signal which is transmitted to an amplier (Onkyo a-807) and then to the compression chamber. The input voltage V s of the sound source is also measured in order to get a phase reference. The whole process is controlled by a Labview program. Acoustic foam is placed on the table on which the positioner is located and on the positioner to minimise reections. The acoustic source is placed outside of the insulated room to avoid the interference between the sound directly radiated by the compression chamber and the sound radiated by the replica. A rigid rectangular plane screen made of plexiglass is set on the exit of the replica to get large dimensions (365x360 mm) compared to the wavelengths of interest. It corresponds to the anged boundary condition of the theory.

Data analysis

In order to measure transfer functions and pressure eld maps, sines and linear sweeps have been used as excitation signals. The expression of the signal s(t) corresponding to the linear sweeps is:

s(t) = sin 2π f min t + ∆f 2∆t t 2 , (3.1)
where f min is the minimal frequency of the sweep signal, ∆f is the frequency range swept and ∆t is the duration of the signal. Such kind of measurement is performed either at a Chapter 3. Experimental and numerical methods limited number of locations and with a broad frequency range for the transfer function measurements or at various locations distributed on a plane with a limited frequency range, or a single frequency, for the pressure eld maps measurements. Sinus is also used to measure transfer functions by changing the frequency step by step (typically 10 Hz, each frequency being generated during 1 s). Since these measurements have been used to validate simulation methods, their accuracy and repeatability have been carefully investigated. On the other hand, the reliability of the analysis method and its sensitivity to nonlinear phenomena has been carefully investigated.

Amplitude and phase estimation

The use of sinusoidal signals allows one to concentrate the acoustic energy in one frequency and to perform a measurement as long as desired at this frequency. As a consequence a good signal to noise ratio can be achieved. The use of linear sweep signal with low slope (typically 500 Hz/s) can also ensure a good signal to noise ratio.

However, despite all the care used during the measurements, some phenomena can aect the quality of the recorded signals. One cannot exclude the presence of noise and the harmonic distortion of the sound source cannot be avoided. On the other hand, the signals can feature continuous components and transients can be present when the sound source starts to generate sound and after the frequency changes when the frequency is varied step by step for the sines.

Eventually, the physical phenomenon of acoustic streaming [START_REF] Rayleigh | Theory of sound[END_REF][49], which can be present at the communication hole of the adaptation part or in narrow parts of the replicas, can induce a nonlinear behavior. In order to isolate the eects of these phenomena from the useful part of the signal, a careful signal processing method is used.

The parts of the signals aected by transients are removed. In the case of sines whose frequency is changing step by step, the rst 200 ms of each new frequency generation are removed. The biginning and the ending of the linear sweeps are also reduced.

In the case of the linear sweeps, the recorded signal is sliced in small windows (typically 2048 samples) overlapping each other by an overlap rate α determined so that the desired frequency resolution df is achieved:

α = 1 - df × s r × ∆t N s × ∆f ,
where s r is the sample rate, ∆t is the duration of the sweep signal, N s is the number of samples of the window used and ∆f the dierence between the minimal and the maximal frequency of the signal. A Hann window is applied in order to limit the artefacts due to the small duration of the window [START_REF] Harris | On the use of windows for harmonic analysis with the discrete Fourier transform[END_REF]. In the case of the sines, the signal is also sliced in windows corresponding to the changes of frequency or position.

The Fourier transform is applied to each window so that one obtains the spectrum of the acquired signal. Zero-padding is used to increase the frequency resolution. The amplitude of the spectrum is normalized multiplying it by 2/N , N being the number of samples of the signal. In order to reduce the inuence of the background noise and to remove the eventual continuous component and the harmonics generated by the nonlinearities, the maximum of amplitude of the spectrogram is searched inside a reduced frequency interval (100 Hz) centered on the presumed frequency of the signal. Because the point with maximal amplitude does not necessarily corresponds to the maximum, a parabolic interpolation is performed on the three points closest to the maximum in order to estimate the actual maximum and the corresponding frequency. Indeed, small deviations between the desired frequency and the actual one can happen if the sampling frequency of the material is slightly dierent from its setpoint. A similar interpolation is used to estimate the phase corresponding to the frequency of the maximum. This signal processing method has been validated with synthetic signals.

In order to simplify the computations and the storage of the data, a complex notation Ae jφ is used for the signals, A being the amplitude and φ the phase. The acoustic pressure is estimated from the microphone output signal V m (f ) = |V m |e jφm and the input voltage of the sound source V s (f ) = |V s |e jφs as -φs) .

P (f ) = |V m | |V s | e j(φm
Given that the sensitivity of the microphone is unknown, and that due to the probe it varies with the frequency, the amplitude of the microphone signal is not converted to Pa. Thus, when it is necessary, the amplitude is normalized by the maximal value, and when it is not possible, the unit is noted ∝ P a. This is not disturbing as long as no quantitative evaluation of the data is needed. An additional phase corresponding to the e jωt factor can be added to P (f ) and thus one as -φs+ωt) .

P (f, t) = |V m | |V s | e j(φm
Adding this factor allows one to compute the acoustic pressure at any time t instant of the periodic oscillation at the frequency f . This allows one to create animations showing the variations over time of the acoustic pressure at this frequency.

Inuence of nonlinearities

In order to evaluate the inuence of the nonlinearity of the sound source, induced by the electrodynamic system and or the acoustic streaming, a measurement has been performed This can be explained by the fact that the nonlinearity of the sound source induces harmonic distortion of the signal. When the amplitude is increased the energy of the higher order For the input voltage range used (0 -10 V), the maximal amplitude deviation induced by the nonlinear behavior of the sound source is estimated to be about 1.5 dB. The maximal phase deviation is of the order of 0.4 rad.

The mean value of the input voltage used for the experiments is 3.5 V. This has been determined in order to get a compromise between a sucient amplitude of the acoustic pressure and a minimal disturbance due to nonlinearities. According to the measurements presented in Figs. 3.6 and 3.7, the maximal disturbance expected from nonlinearities with an input voltage of 3.5 V is about 0.5 dB and 0.4 rad.

The signal processing method (see section 3.3.1) which isolates the rst harmonic from the others, allows one to limit the disturbances due to the nonlinearities on the analysis of the data. If, in addition, the amplitude of the input signal of the sound source is kept constant during the measurement, one can use a linear system analysis for the computation of the transfer functions without major disturbance.

Repeatability of measurements

In order to test the repeatability of the measurements performed with both the sines and the linear sweep signals, a measurement has been repeated ten times. The frequency has been varied from 1 kHz to 15 kHz and the acoustic pressure has been recorded at a xed position at the exit of a one tube replica. The duration of the sweep was 50 s, and for the sines the frequency was increased by steps of 20 Hz.

The ratio |Vm| |Vs| averaged on the ten measurements is presented in Figs. 3.8a and 3.9a for the sines and the sweeps respectively. The maximal dierence between these ratios is presented in Figs. [START_REF] Shaughnessy | Speech communication: human and machine, ser. Addison-Wesley series in electrical engineering: digital signal processing[END_REF].8b and 3.9b. Likewise, the phase dierence φ m -φ s averaged on the ten measurements is presented in Figs. [START_REF] Shaughnessy | Speech communication: human and machine, ser. Addison-Wesley series in electrical engineering: digital signal processing[END_REF].8c and 3.9c for the sines and the sweeps respectively, and the maximal dierence between the dierent phase measurements is presented in Figs. [START_REF] Shaughnessy | Speech communication: human and machine, ser. Addison-Wesley series in electrical engineering: digital signal processing[END_REF].8d and 3.9d.

The variations of the amplitude ratio with the frequency can be attributed to the combi- Chapter 3. Experimental and numerical methods nation of the eect of the acoustic resonances of the tube and the frequency dependence of the sound source amplitude. For the sines, the maximal amplitude dierence is smaller than 0.9 dB in the range 1.2 kHz to 14.5 kHz. Outside this range it can reach up to 3 dB. The maximal phase dierence is smaller than 0.2 rad in the range 1 kHz to 14.5 kHz, and beyond 14.5 kHz it goes up to 0.39 rad. For the sweeps, the maximal amplitude dierence is smaller than 0.26 dB in the range 1.2 kHz to 13 kHz, and it can reach 1 dB out of this range. The maximal phase dierence is smaller than 0.06 rad in the range 1 kHz to 13 kHz, and beyond 13 kHz it can reach 0.2 rad.

The phase variations of the sines and the amplitude and phase variations of the sweeps globally increases with the frequency. This can be understood as the consequence of the global decrease of the amplitude of the measured acoustic pressure when the frequency is increased. Indeed, the sound source becomes less ecient at high frequency, and the probe of the microphone by damping the high frequencies acts as a low pass lter. The lower signal to noise ratio at high frequency induces more variations between the dierent measurements.

However, the amplitude variations of the sines remain globally constant in the frequency range 1.2 kHz to 14.5 kHz.

The greater variations observed between 1 kHz and 1.2 kHz can be related to the fact that the optimal frequency range recommended by the constructor of the sound source Eminence PSD:2002S-8 is 1.2 kHz to 20 kHz. Thus, the sound source may not provide enough acoustic energy between 1 kHz and 1.2 kHz to achieve a signal to noise ratio as high as between 1.2 kHz and 13 kHz.

The fact that greater variations (0.9 dB and 0.2 rad) are observed with the sines than with the sweeps (0.26 dB and 0.06 rad) can appear as unexpected. Indeed, the fact that more acoustic energy is provided at a xed frequency during a longer time than with the sweep signal is expected to ensure a better signal to noise ratio. However, this can be explained by the fact that the duration of the measurement with the sines is longer than the one with sweeps: the rst one lasts about two hours and the second one about 10 minutes. It is hypothesized that the experimental conditions, and more particularly the temperature, can more signicantly change during the experiment of two hours than during the one of ten minutes. As a consequence the frequency and the amplitude of the peaks of the measured acoustic pressure can have more variations. Thus, in the case of the sines, the variations of the measured acoustic pressure would not only be due to measurement noise but also to actual variation of the measured quantity. This hypothesis is reinforced by the fact that variations of the maximal dierence with the frequency show smooth increases and decreases which could be attributed to frequency shifts of the peaks of the curve rather than to measurement noise.

On the opposite, in the case of the sweeps, the variations of the maximal dierence with the frequency is more noisy and could be attributed to the measurement noise mainly. If the formulated hypothesis is correct, this show that the duration of a measurement process can impacts its accuracy.

In addition, the amplitude of the maxima of the sines continuously changes along the experiment, and the frequency continuously increases which is consistant with an increase of temperature. It would be possible to extract the temperature curve from the experiment. A similar experiment performed on the frequency range 2 kHz to 10 kHz, which conrms these results, is presented in appendix A.

In summary: The variations of amplitude and phase are frequency dependent and they are lower than 0.9 dB and 0.2 rad for the frequency range 1.2 kHz to 14.5 kHz. Thus, the repeatability of the measurements performed with sinusoidal and sweep signals can be considered as good.

Measurements close to discontinuities

The rst attempts to measure transfer functions were performed using two points, one located near the exit of the replicas and one near the communication hole of the adaptation part.

Even though this was performed under the rst cut-on frequency of the replica, discrepancies between the plane wave theory and the experiments were observed. Dierences in the frequency of the maxima greater than 100 Hz were observed. In order to understand better the origin of these deviations, the acoustic eld has been measured near the communication hole.

The Fig. 3.10 shows the normalized amplitude of the acoustic pressure measured on a 20 mm × 10 mm rectangular surface in the plane (x 1 ,x 3 ) just in front of the communication hole inside the one tube replica at a frequency of 2550 Hz. One can see a peak of amplitude close to the exit of the communication hole (at x 1 = -1 mm and x 3 = 0 mm) surrounded by a minimum. In this small area, variations up to 10 dB within a distance of 1 mm are observed.

Close to the communication hole, the plane wave assumption does not hold: variations of amplitude of the order of 15 dB are observed on x 1 perpendicularly to the propagation axis x 3 . However, these variations along x 1 decreases when the distance from the communication hole is increased. At x 3 = 10 mm, the variations along x 1 are lower than 1 dB and it is possible to consider that the plane wave assumption is valid.

The communication hole being small (2 mm in diameter) compared to the diameter of the replica (29.5 mm), the observed pressure eld can be interpreted as the radiation from the communication hole inside the replica. At the frequency of the experiment, 2550 Hz, no HOM can propagate inside the replica (the rst cut-on frequency is 6.8 kHz at 26.5 • C). Thus, the observed pressure eld results from the excitation of evanescent HOM at the discontinuity. This is in agreement with the fact that the variation along x 1 are almost not noticeable after x 3 = 10 mm.

One can notice that the maximum of the radiation pattern is shifted by -1 mm on x 1 from the center of the landmark. Thus, the actual position of the communication hole is at x 1 = -1 mm on this landmark. This can be attributed to an error in the positioning of the probe, and it shows that the positioning error can be of the order of 1 mm.

In summary: the pressure eld can have important transverse variations (up to 15 dB) near discontinuities, even at low frequency and the plane wave assumption does not hold inside a small region around the discontinuity. The important variations within a small space interval (up to 10 dB within 1 mm) can increase the eect of the positioning error. The discrepancies observed between the measured and simulated transfer functions came from the fact that the plane wave assumption does not hold at one of the measurement points and that the measurement error is increased when the pressure eld has great variations within short space intervals. Measurements close to strong discontinuities, such as the transition from the adaptation part to the replica, should be avoided in order to limit the measurement errors. In contrast, the PPTF rely only on direct measurement of the acoustic pressure with a microphone which is reliable and provides a good accuracy. In addition, as one does not focus on coupling between vocal folds and vocal tract, measuring pressure at the entrance of the vocal tract is not meaningful and one can measure it avoiding strong discontinuities.

In order to measure a PPTF between two points a and b inside or outside a vocal tract replica, the acoustic pressure is measured either using sinusoidal signals varying the frequency step by step or using sweep signals. A schematic diagram of the transfer functions involved in the measurement is presented in Fig. 3.11.

Both pressure measurements are performed with the same probe microphone at two dierent stages separated in time. This allows one to avoid the calibration of the probe microphone which can induce additional uncertainties. The microphone output signal V a is rst measured on the whole frequency range studied at the rst point of coordinate (x 1a , x 2a , x 3a ), then V b is measured at the second point of coordinate (x 1b , x 2b , x 3b ). During each measurement the supply voltage V s is measured simultaneously at the input of the sound source in order to have a phase and amplitude reference. The acquired signals can be written in complex notation:

   V s = A s e jφs V a = A a e jφa V b = A b e jφ b . (3.2)
Both transfer functions H sa and H sb between the supply voltage V s and the probe micro- 

H sa = |Va| |Vs| e j(φa-φs) H sb = |V b | |Vs| e j(φ b -φs) (3.3)
The transfer function H ab between the measurement points a and b is obtained as the ratio H sb /H sa . The transfer function H sa corresponds to the product of the transfer functions of the sound source, the propagation of sound from the sound source to the point (x 1a , x 2a , x 3a ), the probe microphone and the microphone conditioner (see Fig. 3.11). Likewise, H sb corresponds to the product of the transfer functions of the sound source, the propagation of sound from the sound source to the point (x 1b , x 2b , x 3b ), the probe microphone and the microphone conditioner. If the experimental conditions are exactly the same (constant temperature) for the measurement of transfer function H sa and H sb , the transfer function H sb is the product of transfer function H sa by the transfer function H ab which ones wants to estimate. Thus we have:

H ab =
H sb H sa .

(3.4)

The transfer functions corresponding to the sound source, the acoustic propagation from the source to the point a, the probe microphone and the microphone conditioner being present in both H sb and H sa , they are eliminated in Eq. (3.4) and their inuence on the estimation of H ab is thus limited. This method relies on the hypothesis that the whole measurement system is linear. As mentioned in part 3.3.2, this is not the case for the sound source. However using the signal processing method detailed in 3.3.1 and keeping constant the amplitude of the input voltage of the sound source during the whole process allows one to limit the disturbances due to nonlinearities.

It is to be noted that the peaks that could appear in a PPTF do not correspond to the vocal tract resonances or formants typically observed in vocal tract transfer functions (see, e.g., [START_REF] Guasch | The global transfer direct transfer method applied to a nite simply supported elastic beam[END_REF], for an explanation of mechanical transmissibility functions). For instance, if P a and P b are, respectively, obtained at the mouth exit and within the vocal tract, P a will contain all the formants that appear in a vocal tract transfer function, while some of them will also be present in P b , depending on their pressure distribution. Therefore, note that shared resonances will be canceled once H ab is computed. Thus, the PPTF presented hereafter are discussed in term of peaks and dips and not formants. However, this magnitude is of special interest for the comparison between simulations and experiments, since the microphone and source calibration can be avoided, a single microphone can be used for the measurements and the inuence of the experimental setup (amplier, wires, and microphone conditioner) on them can be neglected.

Pressure eld maps

It is interesting to compare the acoustic pressure measured and simulated on a grid of points distributed on a plane (typically the points of the grid were spaced by 2.5 mm). Even though it is possible to generate an animation of the evolution of the pressure eld with the frequency, one can create an image of the pressure eld maps only at a xed frequency. Moreover, similar pressure eld patterns are obtained for similar particular phenomenon occurring inside the vocal tract geometries (resonance or anti-resonance) which do not necessarily occur at exactly the same frequency in the simulation and the experiment. It is thus more meaningful to select one of these particular phenomena, which can appear as a peak or a dip of pressure amplitude at a given frequency and to compare the pressure maps at the frequency corresponding to this phenomenon in the experiment and the simulation respectively. That is why dierent frequencies are used for the experiments and the dierent simulation methods in the comparisons provided in part 4. More practically, the procedure used for these comparison was to select a peak on the acoustic pressure recorded at one point inside or outside the replica and to extract the pressure eld map at the corresponding frequency. The acoustic pressure was then simulated at the same location and the pressure eld map was extracted at the frequency corresponding to the same peak of acoustic pressure. These frequencies are thus dierent from the PPTF peak frequencies. When one considers a peak of amplitude, the perturbations due to the frequency dependence of the sound source amplitude and the various phenomena which can perturb the measurement do not aect the frequency because enough acoustic energy is provided at this frequency.

Modal projection

In order to extract the modal amplitude P from the experimental data, a modal projection has been applied. Multiplying both sides of Eq. (2.4) with ψ † and integrating over the surface allows one to get

S ψ † p dS = S ψ † ψ t P dS . (3.5)
The modal amplitude of the pressure P is independent of the position on the cross-section surface and can be removed from the integral. The normalisation condition (2.5) can then be applied and the relation

P = S ψ * p dS (3.6)
can be derived. The modal amplitudes P can thus be extracted from the pressure eld p.

In practice, the pressure eld p i is measured on a distribution of N discrete points with coordinates (x 1i , x 2i , x 3 ) on the cross-section surface. The measurement plane being perpendicular to the axis of the replica, x 3 remains constant. Eq. (3.6) is approximated by a nite 50 Chapter 3. Experimental and numerical methods summation

P n (x 3 ) = N i=1 ψ n (x 1i , x 2i )p(x 1i , x 2i , x 3 ) (3.7)
It is assumed that the propagation inside the replicas with circular cross-sections can be described with Eq. (2.6). In this case, Eq. (3.7) can be expressed as

P n (x 3 ) = N i=1 J n (r i γ mn /R)e jnθ i p(r i , θ i , x 3 ) , (3.8)
with r i and θ i the polar coordinates of the points. This method is applied in section 4.1.4.

Directivity analysis

Directivity measurements are performed by measuring the acoustic pressure at various locations distributed on an half circle whose center is located at the exit of the studied replica.

This has been done rstly with the experimental setup of Fig. 3.5 in order to be able to measure at greater distances. Afterwards, the setup of Fig. 3.4 has also been used in order to increase the angular resolution because some observed phenomenon showed signicant variations within small angular regions. Directivity maps can be created from these measurements by representing the amplitude of the acoustic pressure as a function of the frequency and the angular position in color scale.

In order to enhance the change of pressure amplitude with respect to the angular position, unless stated dierently, the amplitude at the dierent positions has been normalized by the amplitude at the central positions (which corresponds to the point located in front of the replica at an angle of 0 • ). The fact that the sound source amplitude depends on the frequency could disturb the interpretation of the measurements and their comparison with the simulations. However, its amplitude being the same for all the positions, dividing by the amplitude at one position cancels its inuence, and the results can be compared with the simulations. Thus, one obtains a normalized directivity map.

To get a more general view of the directivity eects, the maximal sound pressure level dierence (MSPLD) between the dierent positions has been computed for all the frequencies.

To do so, for each frequency, the minimum of the sound pressure level (in dB SPL) has been subtracted from the maximum with respect to the angular position.

On the experimental data measured with the setup presented in Fig. 3.5 the amplitude at -90

• and 90 • is lower for every measured frequency. Since it is not the case for the simulated data and that this happens even at low frequencies, this can be attributed to a measurement artifact probably related to the fact that the microphone was close to the wall of the insulated room at these positions. To avoid the perturbations of this artifact in the analysis, the MSPLD has been plotted with and without the measurements of the edges (at -90

• and 90 • ). However the observed overall tendency remains similar. The nite element method (FEM) was used to solve the time domain wave equation for the acoustic pressure,

(∂ 2 tt -c 2 ∇ 2 )p = 0 , (3.9) 
where p(x, t) stands for the acoustic pressure, c for the speed of sound, and ∂ tt for the second order time derivative [START_REF] Arnela | Finite element computation of elliptical vocal tract impedances using the two-microphone transfer function method[END_REF]. First, each one of the vocal tract geometries were set in a rigid bae with dimensions 0.3 m × 0.3 m. This bae constitutes one side of a rectangular volume of 0.3 m × 0.3 m × 0.2 m in size which allowed sound waves to radiate out from the vocal tract. Free-eld radiation conditions were then emulated by means of a perfectly matched layer (PML) of width 0.1 m that surrounded this radiation space and absorbed the outgoing sound waves. The PML was congured to get a reection coecient of r ∞ = 10 -4 at its outer boundary. The resulting computational domains were then meshed using linear tetrahedral elements with a size that ranged from 0.002 mor 0.001 m within the vocal tract and immediate outer space, to 0.0025 m or 0.005 m in the radiation space and 0.0075 m in the PML region.

As far as boundary conditions are concerned, a Gaussian pulse of the type [START_REF] Arnela | Finite element computation of elliptical vocal tract impedances using the two-microphone transfer function method[END_REF] GP

(n) = e [(∆t n-T GP )0.29T GP ] 2 [m 3 /s] , (3.10) 
with T GP = 0.646/f 0 and f 0 = 10 kHz, was imposed at the vocal tract entrance to compute transfer functions, while a sinusoidal signal, i.e., sin(2πf t), with f corresponding to the frequency of interest was used for obtaining pressure maps (see sections 4.1.4 and 4.2.4). To avoid numerical errors beyond the maximum frequency of interest (f max = 10 kHz), the Gaussian pulse was ltered using a low-pass lter with cuto frequency 10 kHz. At the vocal tract walls, a constant frequency boundary admittance coecient of µ = 0.0025 or µ = 0.005 was imposed to introduce losses. The rst value was deemed appropriate after a tuning process, where the resonance bandwidths obtained from simulations were adjusted to t those from experiments.

The second value corresponds to the impedance of the vocal tract tissue Z w = 83 666 kg/m 2 s (see [START_REF] Horá£ek | Numerical modelling of eect of tonsillectomy on production of Czech vowels[END_REF]). The bae where the vocal tracts were set was considered rigid, i.e., µ = 0 on its surface. A nite element simulation lasting 20 ms or 25 ms for each case was then performed with a sampling rate of f s = 1/∆t = 2000 kHz or f s = 1/∆t = 8000 kHz. Such a high frequency rate is needed to fulll within the meshed computational domains, a restrictive stability condition of the CourantFriedrichLevy type. The value of the sound speed was chosen accordingly to the temperatures of the experiments. It was ranged between 340 m/s and 350 m/s. Simulation times ranged between 24 and 80 hours in a serial computing system with processor Intel R Core TM i5 2.8 GHz. Details on the nite element formulation and on the derivation of the boundary conditions can be found in [START_REF] Arnela | Finite element computation of elliptical vocal tract impedances using the two-microphone transfer function method[END_REF] and [START_REF] Arnela | Eects of head geometry simplications on acoustic radiation of vowel sounds based on time-domain nite-element simulations[END_REF], respectively.

Chapter 4

Inuence of HOM on pressure eld and transfer functions

In this chapter, the inuence of HOM on the vocal tract acoustics is investigated through PPTF and pressure maps measurements as well as simulated VPTF and input impedance.

Using the MM presented in chapter 2 and the experimental and numerical methods detailed in chapter 3, dierent geometrical approximations of the vocal tract shape corresponding to the vowel [A] presented in section 3.1 are studied and compared. The results presented in this chapter are partly published in [START_REF] Blandin | Eects of higher order propagation modes in vocal tract like geometries[END_REF] and [START_REF] Arnela | Inuence of lips on the production of vowels based on nite element simulations and experiments[END_REF].

Two cylindrical tubes approximation

The two tubes geometries (2CC [A] and 2CE [A]) are very simple approximations of the vowel [A] proposed by Fant [START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF] in which the excitation and propagation of HOM can easily be understood. That is why it has been extensively studied with both experiments, MM and FEM simulations.

Propagation modes inside the geometries

Inside the small tube of the two tubes geometries the cut-on frequency of the rst HOM (the only one propagating under 20 kHz) is 14.5 kHz. The discontinuity corresponding to the transition from the communication hole to the replica is likely to generate evanescent HOM at the entrance of this tube. However, its length being more than ve times larger than its diameter, the inuence of evanescent HOM can be neglected at the junction between the small tube and the larger one. Thus, between 0 kHz and 10 kHz, only plane waves (mode ψ 00 ) arrive at this junction. Inside the larger tube, ψ 01 (see Fig. 2.2) which has a cut-on frequency of 6.8 kHz, is the only HOM which can propagate under 10 kHz. Thus, the only modes propagating inside these geometries under 10 kHz are ψ 00 and ψ 01 .

The exit of the geometries being perfectly axisymmetric, the HOM ψ 01 can be excited only if the junction is asymmetric. Indeed, in Eq. (2.36) the contributions of ψ 00 on either side of the nodal line of ψ 01 compensate each other exactly if the junction is perfectly axisymmetric. In this case, the coupling term F 00,01 between ψ 00 and ψ 01 is zero and ψ 01 cannot be excited. [A] based on [START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF] with a concentric and an eccentric junction between both sections.

If an asymmetry is introduced, as shown in section 2.2.4, F 00,01 becomes non zero and ψ 01 can be excited. When the eccentricity is increased F 00,01 increases. Thus ψ 01 is not expected to be present in the axisymmetric conguration (2CC [A]).

Simulated velocity-pressure transfer functions and input impedance

In order to characterize the two tube geometries with quantities relevant for speech studies, the input impedance Z and the transfer function H between the volume velocity imposed at the entrance and the pressure radiated at a distance of 60 cm in front of the geometry (angle of 0 • ), which is relevant in the context of a conversation, have been computed with the MM. The input impedance Z has been computed as the ratio of the acoustic pressure over the particle velocity at the center of the communication hole. This quantity can be useful to characterize the interaction between the vocal folds and the vocal tract while the transfer function helps understanding what a listener can hear with a particular vocal tract geometry.

The amplitudes of H and Z are presented for the two types of junctions in Fig. 4.1.

First, dierent resolutions of the grid used for the MM simulations have been tested by computing the transfer function of the 2CE [A]. The averaged amplitude and phase dier- with dierent grid resolutions on a two tube geometrical approximation of the vowel [A] with eccentric junction and circular cross-sections (2CE [A]).

ences between the transfer functions computed with the dierent resolutions are presented in Tab. 4.1. One can see that the averaged dierence reduces when the resolution is increased.

Thus, the transfer function obtained with the MM implementation converges. However, it is to be noted that when more resolution steps are tested, the transfer function does not monotonically converge. This can be explained by the fact that the accuracy of the description of the contour of the cross-section does not increase monotonically when the resolution is increased.

The resolution 0.5 mm has been chosen for the simulations as a compromise between accuracy and computation time.

The peaks of H and Z corresponds to resonances inside the vocal tract, usually referred to as formant in speech study. As expected, the frequencies of the peaks of Z corresponds to the peaks of H. However, there is a dierence of almost 50 Hz (1.2%) for the fth peak for the 2CC [A], and of almost 80 Hz (1.4%) for the last peak of 2CE [A]. The averaged dierence between the frequencies of the peaks of Z and H is 12 Hz for 2CC [A] and of 16 Hz for the 2CE [A]. The anti-resonances observed for the 2CE [A] correspond to dips of Z. The two rst formants, which characterize the vowel, have a frequency of 670 Hz and 1200 Hz. These values do not vary on the junction type.

Except for the two last formants of 2CC [A], the frequencies of the formants are lower for the 2CE [A] for both Z and H (down to 1.7% for the sixth formant). This shift down in the formant frequencies could be explained by the fact that the 2CE [A] behaves as if it is extended by the eccentricity of the junction. Indeed the midline is longer for the 2CE [A]. The fact that the two last formants of the 2CC [A] have lower frequencies than the corresponding ones in the 2CE [A] (up to 1.69 % for the seventh formant) can be related to the fact that their frequency is above the cut-on frequency of ψ 01 (6.897 kHz at 26.5 • C) which is expected to be excited in the 2CE [A]. Up to 6.5 kHz the input impedance curves of the concentric and eccentric congurations are almost exactly similar. Above this frequency, the variations of Z are more complex for the eccentric congurations. On the contrary, the transfer function of 2CC [A] has globally an higher amplitude than the one of 2CE [A]: the averaged dierence between both transfer functions in the frequency range 0-10 kHz is 9 dB. This could be due to dierences in the interaction between the plane wave coming from the small tube and the evanescent HOM excited at the junction. Indeed, in the case of the 2CC [A], ψ 10 is very strongly excited (F 00,10 > 1.5) while the other HOM are not excited, and in the case of the 2CE [A], the other HOM are excited and F 00,10 is close to 0.5 (see Fig. In the case of the 2CE [A], there are two anti-resonances (at 7 kHz and 7.49 kHz) and four formants (at 6.62 kHz, 7.63 kHz, 8.34 kHz and 9.85 kHz) which are not present in the case of the 2CC [A]. Since, except for the formant at 6.6 kHz, they are above the cut-on frequency of ψ 01 , they can be understood as the consequence of the excitation and the propagation of this HOM. The fact that there is an additional formant below the cut-on frequency of ψ 01 , but close to this frequency could mean that the inuence of this HOM begins slightly under its cut-on frequency. Indeed, when one gets closer to the cut-on frequency of an HOM, its exponential damping becomes less important and a signicant amplitude can be expected at the exit of the geometry.

When it was possible, The -3 dB bandwidths of the formants of H and Z have been extracted. They are presented in Fig. 4.2. Up to the 5 kHz they are almost exactly similar for both H and Z. There are more dierences above this frequency, but the same tendency is observed.

The bandwidths of the four rst formants are almost similar for both the 2CC[A] and the 2CE [A], and there are more dierences above 5 kHz. This can be understood as the consequence of the excitation of ψ 01 in the case of the 2CE [A].

Except for the fourth formant, the bandwidths of the 2CC [A] increase with the frequency.

It is also the case for the formants of the 2CE[A] up to 7 kHz, but there is a sudden decrease above this frequency and it increases again.

This can be explained by the dierences in radiation eciency of ψ 00 and ψ 01 . Since the only loss mechanism implemented for these simulations is the radiation outside the geometries, it is hypothesised that the variations of bandwidth can be related to the radiation eciency, which is quantied by the real part of the radiation impedance. A great value indicates that the losses by radiation are important. In the case of the two tube geometries, (Z 00,00 ) is superior to (Z 01,01 ) as it can be seen in Fig. 2.6a (the frequency range 0 kHz to 10 kHz corresponds to the range kR = 0 to kR = 2.5). In the case of the 2CC [A] the sound is radiated by ψ 00 only and since (Z 00,00 ) increases with the frequency, the radiation losses increases [A] vocal tract replicas made of two cylindrical tubes with (top) concentric (2CC [A]) and (bottom) eccentric junctions (2CE [A]). The Exp and FEM data has respectively been increased and decreased by 10 dB and -10 dB with respect to the MM for visualization purposes. (Exp: experimental data, MM: multimodal method, FEM: nite element method). which induces wider bandwidths of the formants. Up to the cut-on frequency of ψ 01 the same reasoning holds for the 2CE [A]. Above this frequency the sound is also radiated by ψ 01 which has a smaller radiation eciency. As a consequence, the bandwidths of the formants are reduced and increase again because (Z 01,01 ) also increases.

In summary: Below the cut-on frequency of ψ 01 the acoustical characteristics of 2CC [A] and 2CE [A] are very close. On the contrary, above this frequency signicant dierences are observed: additional resonances and anti-resonances are observed when ψ 01 can propagate. The bandwidth of the resonances is also reduced when ψ 01 is involved in the radiation of the sound, because this HOM has a lower radiation eciency than ψ 00 .

Pressure-pressure transfer functions

In order to validate both the MM and FEM simulations, PPTF have been compared. [A] vocal tract replicas made of two cylindrical tubes with concentric (2CC [A]) and eccentric junctions (2CE [A]). (Exp: experimental data, MM: multimodal method, FEM: nite element method *: not measurable).

frequencies and their -3 dB bandwidths are listed in Tab. 4.2.

As expected, above the cut-on frequency of ψ 01 (6897 kHz at 26.5 • C), peaks and dips which are absent in the concentric case, appear for the eccentric one. In experiments, these dips are located at 7030 Hz and 7380 Hz while additional peaks are found at 7530 Hz, 8230

Hz and 9720 Hz (see Tab. 4.2). The peak frequencies of the 2CE [A] slightly dier from the 2CC [A] (up to 3.4 % lower for P5 of the experimental data). Their bandwidths are smaller, up to 30.2 % smaller for P5 of the experimental data. As for the formants of H and Z, the peak above the cut-on frequency of ψ 01 has a higher frequency in the case of the 2CE [A], and its bandwidth is smaller. The MM and FEM simulations follow the same trend.

Some small dierences can also be observed below 5 kHz. As for the formants of H and Z, the peaks mainly occur at a lower frequency for the 2CE [A] compared to the 2CC [A] (up to 1.6 % lower for P3 of the experimental data), except for P1 and P4 which have similar values. This shift down in the peak frequencies could be explained by the fact that the replica behaves as if it is extended by the eccentricity of the junction. Indeed the midline is longer for the eccentric case.

Both MM and FEM peak frequencies are close to the experiments, within less than 2 %.

In general, the bandwidths of the simulations are smaller than those obtained experimentally. This can be understood as an eect of visco-thermal losses. Indeed, accounting for viscothermal losses would reduce the resonance frequencies and increase their bandwidths ( [START_REF] Morse | Theoretical acoustics[END_REF]), 4.1. Two cylindrical tubes approximation 59 and the eect is expected to be similar on the peaks of the PPTF. The MM neglects all viscothermal losses while FEM account partially for them (see Section 3.4) and are thus closer to the experimental values.

In summary: A good agreement between the experimental data and the MM and FEM simulations has been found. Observations similar to the one performed on H and Z have been performed on the PPTF: the same shift down of the peak frequencies at low frequency has been observed and above the cut-on frequency of ψ 01 , a HOM, higher peak frequencies with lower bandwidths have been observed.

Pressure eld maps

In order to investigate the eect of HOM on the internal and the external acoustic eld, and to validate both MM and FEM simulation methods, pressure eld maps have been measured and simulated.

Longitudinal plane pressure eld measurement

In Fig. 4.4 is shown as an example the pressure maps for the concentric (top) and eccentric conguration (bottom) when the 7th formant is excited, for both experiments and simulations. Some cuts of these pressure maps are also shown in Fig. 4.5 to compare more easily the measurements and the results obtained with each method.

In agreement with the results observed on the transfer functions, no propagation of the HOM can be appreciated on the pressure eld in the concentric case (see top of Fig. 4.4).

However, the experimental data exhibit some non planar waveforms (see Fig. 4.4a), in contrast to simulations (see Fig. 4.4b and Fig. 4.4c). Although the greatest care was taken when building the replica, it appears that it is not perfectly symmetrical. As a consequence the rst HOM, ψ 01 , is slightly excited and propagates. The inuence of degree of eccentricity of a junction is further investigated in section 5.2.1. However, the longitudinal pressure prole along x 3 is located on the nodal line of ψ 01 and allows one to observe the eect of the plane mode alone. The measured prole appears to be similar to the one obtained in simulations (see Fig. 4.5a). Secondly, the transverse prole along x 2 presented in Fig. 4.5b shows that this eect has a limited impact on the radiated pressure. On the other hand, the iso-amplitude lines are almost circular outside of the replica (see top of investigated in further detail in section 5.1.

Finally, the dierent curves shown in Fig. 4.5 have been quantitatively compared. The mean dierence between the experiment and the simulations is less than 1 dB for the concentric case and less than 2 dB for the eccentric case.

In summary: As for the PPTF, a good agreement has been found between the experimental data and the MM and FEM simulations. The observation of the pressure eld showed that, as expected, the plane wave assumption is not valid above the cut-on frequency of ψ 01 when ψ 01 is excited, and that the radiation of the sound is aected by the propagation of ψ 01 .

On the other hand it has been observed that the excitation of ψ 01 is very sensitive to small asymmetries.

4.1.4.2 Transverse plane (x 1 ,x 2 ) pressure eld measurement

In the purpose of identifying the propagation modes involved and to quantify their contribution, pressure eld measurements have been performed in the plane (x 1 ,x 2 ) perpendicular to the propagation axis x 3 . In order to have a distribution of the measurement points as homogeneous as possible, it has been chosen to place them on the nodes of a triangular mesh instead of a square one. Indeed, the edges of a circular shape are more evenly covered using this type of distribution. The real part and the phase of the measured pressure eld are presented in Fig. 4.6. The real part of acoustic pressure corresponds to the magnitude of the pressure at the time instant corresponding to φ m -φ s + ωt = nπ, n being a relative integer, which yields t = (nπ -φ m + φ s )/ω. The magnitude of the real part is thus not the amplitude, and can be smaller. However, this quantity is interesting to study in this context because, unlike the amplitude, it allows one to see the sign change of the acoustic pressure.

It has been chosen to investigate the pressure eld at a frequency above the cut-on frequency of ψ 01 at 7.4 kHz inside the 2CC [A] at 1 cm after the junction inside the larger tube.

Indeed, close to the junction the amplitude of the evanescent modes is non-negligible and investigating their amplitude can help to conrm the hypothesis formulated earlier in section 4.1.2. A similar measurement has been performed in the 2CE [A] at the frequency corresponding to the rst anti-resonance, 7.06 kHz. Indeed, at this frequency the amplitude of ψ 01 is expected to be particularly high.

In the case of the 2CC [A], one can see in Figs. [START_REF] Stevens | Acoustic phonetics[END_REF].6a and 4.6c that the variations of the real part and the phase of the acoustic pressure are small. On the other hand, the real part and the phase have the same sign everywhere on the surface. Thus, as expected, one can see that even above the cut-on frequency of the rst HOM, ψ 01 , the plane mode ψ 00 is predominant.

However, the amplitude of the variations of the real part and the phase over the surface is not negligible: 0.0008 ∝ P a and 0.7 rad. One can also see that the pressure eld is divided into two regions: the left hand side has a higher real part and a lower phase than the right hand side. This can be explained by the fact that the HOM amplitude is small, but not zero. It is hypothesised that this comes from the fact that the replica is not perfectly axisymmetric and that ψ 01 is slightly excited.

Unlike the 2CC [A], the acoustic pressure has consequent variations over the surface in the case of the 2CE [A]. The pressure eld is clearly divided into two regions with opposite sign separated by a line which coincides with the axis x 2 . The amplitude of the variation of the real part and the phase is larger than for the 2CC[A]: 0.0023 ∝ P a and 3.1 rad. Moreover, the phase dierence between the two regions is almost π, so one can consider that these two regions have opposite phase. The mode-shape of ψ 01 (see Fig. 2.2) can be clearly recognized. Thus, one can conclude that, as expected, above its cut-on frequency, ψ 01 can be predominant in the 2CE [A] geometry.

However, the averaged values of the real part and the phase are not zero: 0.00022 ∝ P a and -0.25 rad. On the other hand the real part values are higher on the right hand side. This can be understood as the eect of the plane mode, which is still present though its amplitude is small.

In order to investigate more precisely and more quantitatively the contributions of the dierent propagation modes to the acoustic eld, the measured pressure elds have been projected on the basis of the propagation modes corresponding to a circular shape (see section 2.1.1.1) using the method detailed in section 3.3.7. This allowed one to compute their amplitudes P n which are presented in Fig. 4.7. These amplitudes have been compared with the one theoretically computed with the MM. In order to make this comparison possible, they have been normalized by the sum of the square of the amplitudes P 2 n of each mode, P † P . Thus, they are necessarily smaller than one.

As expected from the theory and the observation of the Figs. 4.6a and 4.6c, one can see on Fig. 4.7a that in the case of the 2CC [A] the plane mode ψ 00 has the highest amplitude.

The assumption that ψ 01 is slightly excited in the experiment is also conrmed: unlike the MM, the experiment shows a non zero amplitude for ψ 01 . On the other hand, the amplitude of ψ 00 is smaller for the experiment, which is consistent with the fact that a part of the energy is carried by ψ 01 in this case. It is hypothesised that this dierence comes from the fact that, even though it was carefully built, the replica is not perfectly axisymmetric. One can also 4.2. 44 tubes approximations 65 notice that the rst axisymmetric HOM ψ 10 has a non zero amplitude for both the experiment and the MM. Since its cut-on frequency (14354 Hz at 26.5

• C) is higher than the frequency of these experiments and simulations, one can conclude that it is an evanescent mode generated by the discontinuity corresponding to the junction between the two tubes. This observation is consistent with the hypothesis formulated in section 4.1.2 from the projection matrix F that ψ 10 is more strongly excited in the 2CC [A]. The fact that its amplitude is almost two times higher in the experiment, could mean that its exponential decay is overestimated in the MM, but maybe the small imperfections could also play a role in this dierence. The agreement between MM and experiment is not so good: the relative dierence

|P M M -P Exp | P Exp is of 7.5%
for ψ 00 and 47% for ψ 10 .

The assumptions formulated for the pressure eld observed in the 2CE [A] are also conrmed. Indeed, one can see in Fig. 4.7b that the mode ψ 01 has the highest amplitude and predominates. On the other hand, the plane mode amplitude is non-zero. The amplitude obtained for ψ 00 and ψ 01 with the MM simulation and the experiment is closer than for the 2CC [A]: the relative dierence is of 1.9% for ψ 00 and 0.26% for ψ 01 . This better agreement can be explained by the fact that there is no ambiguity concerning the axisymmetry and the excitation of ψ 00 and ψ 01 . The axisymmetric case would thus be a theoretical case dicult to reproduce accurately experimentally. The amplitude of the HOM ψ 02 , ψ 10 and ψ 03 is small but non zero in the case of the experiment, as for the 2CC [A], the origin of this small discrepancy can be attributed to inaccuracies of the replica.

In summary: The measurements and the simulations in the plane (x 1 ,x 2 ) perpendicular to the propagation axis x 3 allowed one to conrm more directly the hypothesis formulated concerning the excitation of ψ 01 and of the evanescent HOM. The modal projection have proved to be an ecient tool for estimating the modal amplitude P n of the propagation modes. With the exception of the discrepancies generated by the small imperfections of the 2CC [A], a good agreement has been found between the theoretical modal amplitudes and the one provided by the MM.

Conclusions concerning the two tube geometries:

The two tubes replicas point out the evidence for HOM in a simplied two tubes vocal geometries. The importance of the connection of the junctions appears to be critical. When present, these HOM strongly aect both the internal and the radiated sound eld. In the next section is evaluated if these ndings still hold for more complex vocal tract approximations.

44 tubes approximations

In order to study the eect of HOM on more realistic geometries, 44 tubes approximations of the vocal tract geometry for vowel [A] have been built from the area function provided by Story [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF]. These approximations correspond to the state of the art of the geometrical vocal Chapter 4. Inuence of HOM on pressure eld and transfer functions tract approximation used in speech studies. Their description with an area function gives a lot of freedom for the precise realisation of the geometries. Indeed, the cross-sectional shape and the eccentricity of the junction can be varied and compared while the area function used to design it remains similar. This allows one to test a variety of parameters and to evaluate their inuence on the vocal tract transfer function and the directivity of the radiated sound.

In order to perform measurements on these geometries, the three vowel [A] vocal tract replicas presented in Figs. 3.1d, 3.1e and 3.1f of Section 3.1 have been used. In this case the measurements have been limited to the frequency range (2kHz -10kHz), of more interest for the purposes of this work. Only one sound source was required for this frequency range, and the measurement procedure was thus more simple.

Propagation modes inside the geometries

Though more complex, the 44 tube geometries have the same kind of shape as the two tubes ones: a narrow part (from x3 = 0 mm to x3 = 80 mm, see Fig. 3.2) is followed by a wider one (from x3 = 80 mm to x3 = 167 mm). Thus, for the same reason as for the two tube geometries, only the plane mode ψ 00 is expected to propagate inside the 44CC [A], and only ψ 00 and ψ 01 are expected to propagate inside the 44CE [A].

In the case of the 44EE [A], because of the elliptical cross-sectional shape, the propagation modes involved have dierent mode-shapes (see Fig. 2.4). However, the area function remains similar, and a narrow part in which only plane waves can propagate is connected to a wider part in which HOM can propagate. Thus, as for the 44CE [A], the HOM are excited at the entrance of this wider part by the coupling with the plane mode ψ e01 . Because their contributions compensate each other in Eq. (2.36), all the HOM featuring a vertical nodal line on the vertical symmetry axis x 2 are not expected to propagate. So the only HOM expected to propagate between 0 kHz and 10 kHz are ψ e21 and ψ o11 . However, ψ o11 is expected to have a very limited inuence on this frequency range since its cut-on frequency, 9860 Hz at 22.65

• C in the widest part, is very close to 10 kHz. Unlike the eccentric congurations with circular cross-sections (2CE [A] and 44CE [A]), the eccentricity does not play an important role in the excitation of ψ e21 . Indeed, this HOM is excited because a larger area in the center is covered by the intersection with a smaller cross-section than the areas with opposite phase on the edges. As a consequence, this HOM can be excited with an axisymmetric conguration.

Simulated velocity-pressure transfer functions and input impedance

As for the two tube geometries, the input impedance Z and the transfer function H have been computed with the MM. The correspondence between the peaks of Z and H, with a dierence smaller than 0.7%, is better than for the two tube geometries. It is interesting to notice that, unlike for the 2CE [A], the anti-resonances do not necessarily correspond to a dip of input impedance. The frequencies of the two rst formants are 660 Hz and 930 Hz, which is similar to the values given in [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF]. As for the two tube geometries, these values do not depend on the junction type. If there is a dierence of only 10 Hz with the frequency of the rst formant of the two tube geometries (670 Hz), the dierence with the second formant is much larger (1200 Hz for the 2CC [A] and the 2CE [A]). This can be explained by the fact that the two tube shape has been designed so that the frequencies of the two rst formants corresponds to the averaged values observed for the vowel [A] [1], whereas the area function of the 44 tube geometries has been determined from MRI measurements [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF]. In this case, the perturbations related to the measurement process (supine position in a noisy environment, see [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] for a detailed discussion) can induce formant frequencies dierent from the averaged value, but which still corresponds to a vowel [A].

The frequencies of the formants of 44CC [A] are globally higher than the one of 44CE [A] up to 1% higher for the sixth formant. However, the rst, second and seventh formant are lower, down to 0.9% for the second. The same tendency is observed between the 44CC[A] and the 44EE [A]: with the exception of the second and the seventh formants, their frequency is higher for the 44CC This can be understood as the consequence of the correction of the length of the midline (see section 3.1) which has been successful in limiting the variations of the formants.

Up to 6 kHz the input impedance curves of the three congurations are almost exactly similar, and dierences are observed above this frequency. However, unlike the two tube geometries, the dierences are limited to three frequency intervals: 6.2 kHz to 7 kHz, 7.9 kHz to 8.6 kHz and 9.3 kHz to 9.8 kHz. In addition, no signicant change of the global amplitude of H is observed. This could be interpreted as the fact that the variations of cross-sectional area are more progressive in this case. As for the two tube geometries, additional formants and anti-resonances are observed when eccentric junctions are used and when the cross-section shape is changed. An additional formant (at 6.51 kHz) and three anti-resonances (at 6.6 kHz, 8.41 kHz and 9.67 kHz) can be seen in the transfer function of the 44CE [A]. In the case of the 44EE [A], there is also an additional formant (at 6.59 kHz) and three anti-resonances (at 6.78 kHz, 8.61 kHz and 9.95 kHz).

The frequencies of the formants of the 44CE [A] and the 44EE [A] are quite close: the maximal dierence is of 1.3% for the seventh formant which is higher in the case of the 44EE [A].

There are more dierences in the frequency of the anti-resonances, up to 2.9% higher for the second anti-resonance of the 44EE [A]. This can be explained by the fact that the formants which are in common with the 44CC [A] are mainly due to the propagation of the plane mode and that the anti-resonances and the additional formant are due to the propagation of HOM which are dierent in the case of the 44CE [A] and of the 44EE [A]. This hypothesis is reinforced by the fact that the dierence between the frequency of the formants of the 44CE [A] and the 44EE [A] is maximal for the additional formant. The fact that the additional formant and the anti-resonances are higher for the 44EE [A] can be related to the fact that the HOM ψ e21 ), circular cross-section and eccentric junctions (44CE [A]) and elliptical cross-sections and eccentric junctions in the plane (x 2 ,x 3 ) (2ET [A]).

involved in this geometry has a cut-on frequency (6084 Hz) higher than the one of ψ 01 (5885 Hz) which is involved in the 44CE [A].

The -3 dB bandwidths of the formants of H and Z have been extracted and are presented in Fig. 4.9 as a function of the formant frequency. Since the only loss mechanism implemented for these simulations is the radiation outside the geometries, it is hypothesised that the variations of bandwidth can be related to the radiation eciency which is quantied by the real part of the radiation impedance. The same evolution is observed for H and Z. For all the geometries it increases with the frequency up to 6 kHz, above which it varies and more dierences can be seen between the geometries. This global increase can be explained by the fact that the losses by radiation increases with the frequency. Indeed, the real part of the radiation impedance of the plane mode ψ 00 increases in the frequency range 0 kHz to 10 kHz.

The bandwidths of the 44CE [A] are globally wider than the one of the 44EE [A] between 0 kHz and 5 kHz, up to 84 Hz wider for the fth formant. The opposite is observed above this frequency: the bandwidths of the 44CE [A] are smaller than the ones of the 44EE [A],

down to 200 Hz for the ninth formant. This can be explained by the fact that up to the fth formant ψ 00 is predominant. The real part of its radiation impedance is smaller with an elliptical cross-section than a circular one (considering the same cross-sectional area). Thus, the radiation losses are less important with elliptical cross-section and the bandwidth of the formants tends to be smaller in this frequency range. Above 5 kHz the inuence of the HOM is more important. In the case of the 44CE [A], for all the junctions, the coupling term between ψ 00 and ψ 01 is higher than the coupling term between ψ e01 and ψ e21 in the case of the 44EE [A]. Indeed, as an example, F 00,01 = 0.52 at the junction between the section 22 and 23, which corresponds to the beginning of the wide part, and F e01,e21 = 0.4. The mode ψ e21 is thus less strongly excited and its contribution to the radiation is less important than ψ 01 in the case of the 44CE [A]. Given that the real part of the radiation impedance of ψ 01 and ψ e21 are smaller than the one of ψ 00 and ψ e01 , the radiation eciency of the 44CE [A] is reduced compared to the 44EE [A] and its bandwidths are smaller.

Chapter 4. Inuence of HOM on pressure eld and transfer functions and (bottom) eccentric junctions and elliptical cross-sections (44EE [A]). (Exp: experimental data, MM: multimodal method, FEM: nite element method).

Pressure-pressure transfer functions

In order to validate the MM and FEM simulation methods for the 44 tube geometries in the frequency domain, PPTF have been simulated and measured. PPTF between two points inside the replicas located at 80 mm and 130 mm from the source on x 3 are presented in Fig. 4.10.

The peaks and dips frequencies and -3 dB bandwidths of the peaks of these transfer functions have been listed in Tab. 4.3.

As expected from Section 4.1, one can observe peaks (P3 and P4) and dips (D1 and D2)

for the geometries which feature eccentric junctions and elliptical cross-sections (44CE [A] and 44EE [A]) which are not observed for the concentric conguration (44CC [A]).

In the mid-frequency range (2 kHz -5.5 kHz) the peaks occur at lower frequencies for the 4.10) between two points inside of three vowel [A] vocal tract replicas with concentric junctions and circular cross-sections (44CC [A]), eccentric junctions and circular cross-sections (44CE [A]) and eccentric junctions and elliptical cross-sections (44EE [A]). The Exp and FEM data have, respectively, been increased and decreased by 10 dB and -10 dB with respect to the MM for visualization purposes. (Exp: experimental data, MM: multimodal method, FEM: nite element method).

H and Z, the bandwiths of the 44CE [A] are wider than the ones of the 44EE [A] below the cut-on frequency of the rst propagating HOM, up to 56 Hz higher for P1. And, likewise, the opposite is observed above this frequency: the bandwidths of the 44CE [A] are smaller than the ones of the 44EE [A], down to 99 Hz smaller for P4.

Both MM and FEM simulations are in good agreement with the experiments. The maximal dierence between peaks and dips frequencies is less than 5 %. The bandwidths of the simulations are smaller than in the experiments. The dierence is more pronounced for the MM. As for the two tubes replicas this can be attributed to the visco-thermal losses which are partially taken into account by the FEM (see Section 3.4) but neglected by the MM. On the other hand, on the experimental data of Fig. 4.10 one can notice an additional peak above P4 for the 44CE [A] and the 44EE [A] which does not appear in the simulations. The presence of this peak may be due to experimental issues such as positioning error or small imperfections in the replica.

In summary: Similar dierences as the one observed between the 2CC [A] and the 2CE [A] are observed between the 44CC [A] and the 44CE [A]. Likewise, additional peaks and dips are observed in the case of the 44CE [A] and the 44EE [A]. The dierence of cross-sectional shape has been observed to inuence the frequency and the bandwidth of the peaks and dips of the PPTF. As for the PPTF of the two tube geometries, similar characteristics have been found

between the PPTF and H and Z. Thus, higher peak and dip frequencies and bandwidths are observed above the cut-on frequency of the rst propagating HOM for the 44EE [A] than for the 44CE [A]. Eventually, a good agreement has been found between the simulations and the experiment.

Pressure eld maps

In order observe the eect of HOM on the pressure eld and to validate the MM and FEM simulation methods for the 44 tube geometries, pressure maps have been simulated and measured. In For the 44CC [A] one can observe the eect of the HOM inside the replica for the experimental data (see Fig. 4.11a) for which signicant variations of the amplitude along x 2 can be seen. This is not the case for the simulated data for which the iso-amplitude lines are perpendicular to x 3 inside the replicas (see Fig. 4.11b and Fig. 4.11c). As for the two tube geometries, it is hypothesised that this is due to small imperfections of the replica. The pressure prole along the central axis x 3 provided in Fig. 4.12a allows one to observe the eect of the plane mode alone. It appears to be similar to the simulation proles. On the other hand, the transverse pressure prole along x 2 presented in Fig. 4.12b shows that the eect on the radiated pressure is limited. As a matter of fact, the iso-amplitude lines of the radiated pressure are almost circular.

As expected, this is not the case for the 44CE [A] and the 44EE [A]. The eect of the HOM inside these replicas can be clearly observed (see middle and bottom of Fig. artifact due either to some imperfections of the replicas or to reections on the table which has been insuciently damped by the acoustic foam.

To compare more directly the cuts of Fig. 4.12 the same procedure as for the two tubes replicas has been followed. The maximal mean dierence between the simulations and the experiments is 2.8 dB for the FEM and 2.2 dB for the MM.

|P| (dB) x2 (m) a) x 3 cut concentric [A] b) x 2 cut concentric [A] -50 -40 -30 -20 -10 0 10 -0.1 -0.05 0 0.04 |P| (dB) x3 (m) -25 -20 -15 -10 - 
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In summary: The three congurations tested highlight the importance of taking HOM into account for high frequency simulations of the vocal tract acoustics. The eect of HOM on transfer functions and radiation patterns is emphasized by the 44CE [A] and the 44EE [A] congurations. The measurements and the simulations have also shown that the HOM can aect the mid-frequency behavior of vocal tract like geometries. [A] geometries: inuence of lips

MRI based vowel

The work presented here is a part of a study published in [START_REF] Arnela | Inuence of lips on the production of vowels based on nite element simulations and experiments[END_REF]. Measurements and FEM simulations (performed at the university La Salle of Barcelona) have been performed with two vocal tract replicas (see Figs. 3.1g and 3.1h) created from a geometry provided for the vowel [A] in the Aalto database [START_REF] Aalto | Large scale data acquisition of simultaneous MRI and speech[END_REF]. This type of geometries is among the more realistic which are used to study speech. Due to the complexity of their shape it is dicult to understand exactly how the HOM are involved in their acoustic properties. Nevertheless, they are very useful to investigate the acoustic properties of the vocal tract and to compare with the simplied geometries.

This vowel has been chosen because its large mouth aperture and its wide oral cavity allowed one to measure the pressure on a large plane inside the replicas (see Fig. 4.13). On the other hand, these geometrical features are likely to induce strong directivity eects. In order to study the inuence of the lips, one replica is built without lips (see Fig. 3.1h) and the measurement and simulations obtained with both geometries are compared. A bae of dimensions 365×360 mm was attached to the end of the replicas to mimic the face. Linear sweep signals have been used to measure the acoustic pressure at each point of a grid located in the plane (x 1 , x 3 ) (spaced by 2.5 mm, see Fig. 4.13) from 2 kHz to 10 kHz.

Pressure-pressure transfer functions

In order to compare the FEM simulations with the experiments in the frequency domain, PPTF (see part 3.3.5) have been computed between several couples of points of the grid. An example of these comparisons is presented in Fig. 4.14 and Tab. 4.4. These data corresponds to the PPTF computed between a point P 1 (-0.0325, 0, 0) located within the oral cavity and a point P 2 (0, 0, 0) located at the center of the last closed cross-section which has been chosen

as the origin of the coordinates. As one can see in Fig 4.4: Amplitude and frequencies of the three more pronounced peaks and dips of pressurepressure transfer functions measured and simulated on two vowel [A] vocal tract geometries created from MRI with and without lips between two points located respectively within the oral cavity and at the mouth exit. The -3 DB bandwidth of the peaks is also provided. in order to compare the pressure eld measured and simulated inside vowel [A] geometries created from MRI with and without lips.

MRI based vowel

respectively,

|f F EM -f Exp | f Exp
, is smaller than 2%. The amplitude of the peaks tends to be higher for the experimental values (up to 7.53 dB higher for the second peak in the case without lips) and their -3 dB bandwidth tends to be smaller (down to 190 Hz smaller for the rst peak of the case without lips). This could be due to the fact that the wall losses implemented in the FEM simulations are slightly over-estimated and considered as constant with the frequency. A few additional peaks and dips can be seen in the experimental data, in particular at 6640 Hz and 6975 Hz for the case with lips and 3990 Hz, 6925 Hz and 7075

Hz for the case without lips. This could be attributed to geometrical dierences between the replicas and the mesh used for the FEM simulations. Indeed, though the 3D printer used is very accurate (0.025 mm to 0.05 mm per 25.4 mm), the geometry can be slightly distorted during the 3D printing process and some small amount of the wax used during the 3D printing process can remain attached to the walls of the replicas.

Except for the second dip, the frequencies of the peaks and dips are higher in the case without lips (up to 295 Hz higher for the rst peak). This can be understood as the eect of the additional length introduced by the lips, which tends to lower the resonance frequencies. The dips being related to HOM propagation, the fact that the second one has a higher frequency in the case without lips could mean that the change of boundary condition induced by the presence of the lips can aect dierently the HOM propagation. For the FEM simulations, the amplitudes of the peaks and dips is higher in the case with lips. With the exception of the second peak and the second dip, this is conrmed by the experiment. This can be explained by the fact that the additional length introduced by the lips induces a higher amplitude of the acoustic pressure at the mouth exit.

Pressure eld maps

In order to compare spatially the FEM simulations with the experiments, pressure maps were extracted and compared. The procedure presented in part 3.3.6 has been used to choose the frequency of the comparisons. Thus, the third formant and the last formant of the frequency range have been selected (see Tab. 4.5). The corresponding pressure maps and cuts along x 2 and x 3 (in the midsagittal plane) are presented for the third formant and the last formant in Figs. [START_REF] Stevens | Acoustic phonetics[END_REF].15 and 4.16 respectively. The cuts along x 2 were performed 1 cm in front of the mouth exit and the cuts along x 3 have been performed in the middle of the measurement surface. Iso-amplitude lines have been added to the pressure maps in order to enhance the The acoustic pressure distribution within the oral cavity and at an area close to the vocal tract exit (mouth) is presented. Moreover, cuts of the pressure amplitude maps in a front-plane located 1 cm in front of the mouth exit and in the midsagittal plane are also presented. visualisation of the amplitude variations.

In the case of the third formant, which can be considered as low frequency, we can see that the acoustic pressure is almost uniform in the plane (x 1 ,x 2 ). Moreover, the iso-amplitude lines are perpendicular to x 3 inside the geometries. The sound is almost uniformly radiated:

the iso-amplitude lines are almost like circles outside of the replica. So it can be concluded that the plane wave assumption and the baed plane piston ( [START_REF] Pierce | Acoustics: an introduction to its physical principles and applications[END_REF] p226-227) are satisfying to describe the internal acoustic eld and sound radiation at this frequency. There is no noticeable dierence between the case with lips and the case without lips. The patterns obtained experimentally and with FEM simulations are very similar: the averaged dierence between the pressure maps is of the order of 0.2 dB.

In the case of the last formant, which can be considered as high frequency, there are signicant variations of the acoustic pressure in the plane (x 1 ,x 2 ). The iso-amplitude lines are no more perpendicular to the axis x 3 inside the geometries. The radiation of the sound is no more uniform: outside the geometry the iso-amplitude lines are asymmetrical with a low amplitude direction. So it can be concluded that the plane wave assumption and the baed at piston radiation model do not give a satisfying description of the acoustic eld in this case: HOM are needed to be taken into account. In contrast to the low frequency pressure maps, signicant dierences of the patterns can be seen: the low amplitude direction of both congurations is located at opposite sides of the mouth exit. The radiation of these geometries is further investigated in section 5.4. Besides, there is a good agreement between the experiments and the FEM simulations: the averaged dierence between the pressure maps is of the order of 1 dB.

In summary: The inuence of HOM inside realistic geometries has been conrmed. The presence of the lips have been observed to lower the frequency of the peaks and dips of the PPTF, to reduce their bandwidth and to modify the radiation patterns. Eventually, the FEM successfully predicts the acoustic eld inside and outside these realistic geometries.

Chapter 5

Inuence of HOM on directivity

In the previous chapter the eects of the HOM have been investigated mainly inside the vocal tract. In this chapter the sound radiation outside of the vocal tract is studied. The question of how the transfer function of the vocal tract varies with the orientation of the vocal tract with respect to the position of a reception point is addressed. To do so, the radiated acoustic pressure has been measured and simulated at various angles from the exit of the vocal tract geometries with dierent complexity. The results presented in this chapter are partly published in [START_REF] Blandin | Inuence of higher order acoustical propagation modes on variable section waveguide directivity: application to vowel [a[END_REF].

Directivity of two tubes and 44 tubes geometries with circular cross-sections

The acoustic pressure radiated by the 2CC [A], 2CE [A], 44CC [A] and the 44CE [A] has been measured at 48 cm from the exit of the replicas varying the angular position by steps of 15 • using the experimental setup represented in Fig. 3.5. The distance of 48 cm was the larger distance reachable with the experimental setup and has been used as the closest to a relevant distance in the context of a conversation. All measurements have been performed in the plane (x 1 ,x 3 ), and the common edge of the 2CE[A] and the 44CE [A] has been placed on the 90 • side (as represented on Fig. 3.5a).

volume velocity distribution at the exit

In the case of the concentric congurations, the only propagation modes expected at the exit of the geometries are ψ 00 and evanescent HOM which are generated by the discontinuity corresponding to the transition from the geometries to the exterior space. In the case of the eccentric congurations, ψ 01 can be present and introduces the appearance of two areas with opposite phase on the exit surface.

The evanescent HOM can change the volume velocity distribution on the exit surface, and one could expect an inuence on the directivity of the radiated sound. However, in the concentric congurations, a simulation performed with all modes whose cut-on frequency lies below 20 kHz and a simulation with plane mode only gives exactly the same directivity patterns at 0.48 m from the exit. Thus, the inuence of these modes can be neglected at this extracted from the simulations of the eccentric geometries (2CE [A] and 44CE [A]). The angles corresponding to the pressure 6 dB higher than the minimum are presented in dashed lines.

5.1. Directivity of two tubes and 44 tubes geometries with circular cross-sections 87 distance and the volume velocity distribution can be considered as uniform if ψ 00 is the only mode propagating.

5.1.2 Directivity of concentric congurations (2CC [A] and 44CC [A])

The measured and simulated normalized pressures and the MSPLD are presented in Figs. 5.1 and 5.2 for respectively the two and 44 tube geometries. Directivity patterns obtained for selected frequencies are presented in Fig. 5.3, and the angle corresponding to the minimal amplitude is presented for the simulations performed on the 2CE [A] and the 44CE [A] in Fig.

5.4.

The concentric congurations generate a one lobe symmetric directivity pattern with a maximum in the center (at 0

• , see Figs. 5.1a, 5.1c, 5.2a and 5.2c). The amplitude of this lobe increases in the center and decreases towards the edges (-90

• and 90 • ) when the frequency is increased. The MSPLD increases progressively and reaches 10 dB and 7 dB at 10 kHz for the 2CC [A] and 44CC [A] respectively. In the experimental data, this pattern is perturbed by measurement noise which can be due to insuciently damped reections on the walls of the insulated room, or external noise.

In addition to this noise, one can see more important localized discrepancies between the experiments and the simulations. For the 2CC [A], a peak of MSPLD of 10 dB can be seen at 7.52 kHz. The corresponding directivity pattern presented in Fig. 5.3a is asymmetric with a lower amplitude between 0

• and 90 For the concentric congurations, the only propagation mode involved in the radiation is ψ 00 . Thus, the only directivity eect which can be expected is the well known radiation from a baed circular piston ( [START_REF] Pierce | Acoustics: an introduction to its physical principles and applications[END_REF] p226-227). Indeed, except for some localized discrepancies in the experimental data, the directivity pattern of these congurations is one symmetric lobe with higher amplitude in the center (at 0

• ) whose MSPLD increases progressively with the frequency. This pattern is only due to the dierence in the distances traveled by the waves coming from the dierent parts of the radiating surface to the reception point which induces a phase dierence.

Directivity of eccentric congurations (2CE[A] and 44CE[A])

For the eccentric geometries, a one lobe pattern which becomes more pronounced for increased frequency can be seen up to 6.5 kHz. Above this limit, more complex asymmetric patterns with one or two lobes are visible (see Figs. 5.1b, 5.1d, 5.2b, 5.2d, 5.3b and 5.3d). The variations of the directivity are important within short frequency intervals: the MSPLD can vary up to 50 dB within 100 Hz intervals.

In order to see better the appearance and the evolution of the two lobe pattern, the angle corresponding to the minimum between the lobes has been plotted in Fig. 5.4. This minimum is typically of the order of 30 dB lower than the maximum and is limited to a narrow angular region of about 30 • . Its direction can vary a lot (up to 60 • ) within a short frequency interval (of the order of 100 Hz). For both 2CE [A] and 44CE [A], the minimum of amplitudes tends to be located between -90

• and 0 • , which corresponds to the side opposite to the common edge.

In the case of the 2CE [A], the patterns obtained by simulation can be recognized in the experimental data. For both experiment and simulation, peaks of MSPLD can be seen at 7 kHz, 7.5 kHz, 8.5 kHz, 8.8 kHz and 9.6 kHz. Except between 7.9 kHz and 8.1 kHz, two lobes can be seen at all the frequencies from 6.94 kHz (see Figs. 5.3b and 5.4a).

In the case of the 44CE [A], similar patterns can be recognized in the experiment and the simulation, but there are more dierences above 9 kHz. Peaks of MSPLD can be seen at 6.6 kHz, 8.5 kHz and 9.7 kHz (see Fig. 5.3d) for both experiment and simulation. A two lobes pattern appears inside more reduced and isolated frequency intervals: 6.63 kHz to 6.65 kHz, 8.38 kHz to 8.53 kHz and 9.58 kHz to 9.89 kHz (see Fig. 5.4b). Between 6.6 kHz and 8.5 kHz a one lobe symmetric pattern can be seen and between 8.5 kHz and 9.7 kHz, there is a one lobe asymmetric pattern with lower amplitude between 0

• and 90 • .

In the case of the eccentric congurations, the baed circular piston pattern can be seen under the cut-on frequency of ψ 01 because up to this frequency ψ 00 is the only mode propagating. Above this cut-on frequency the particle velocity distribution on the exit surface is no more uniform. The phase dierence between the waves coming from the dierent parts of the radiating surface is not only due to the dierences in traveled distance but also to the amplitude and phase variations on the radiating surface. As a consequence, more complex directivity patterns are observed.

Two lobes pattern

The presence of ψ 01 at the exit of the geometries can induce the appearance of two areas with opposite phase. In this case, the radiating surface acts as an acoustic dipole and a directivity pattern with two lobes separated by a low amplitude direction is generated.

The interference of the acoustic pressure radiated by ψ 00 and ψ 01 can reinforce the radiated acoustic pressure on one side and decreases it on the other. Asymmetric directivity patterns are thus obtained. The low amplitude direction is no more oriented to the center (0 • ), but is 5.1. Directivity of two tubes and 44 tubes geometries with circular cross-sections 89 shifted to the side having the lowest amplitude. The variations of the amplitudes and phase of ψ 00 and ψ 01 with the frequency changes the direction of the minimum of amplitude.

The propagation of another HOM than ψ 01 can generate dierent directivity patterns.

This is what can be seen in section 5.3 in which one can see that an elliptical cross-section can generate a three lobe pattern.

Comparison between HOM and plane piston

At some frequencies the combination of ψ 00 and ψ 01 can result in a volume velocity distribution which compensates partially the phase dierence due to the dierences in traveled distances between the dierent part of the radiating surface and the reception point. This generates a reduced directivity compared to the baed circular piston at the same frequency. This can be seen between the second and the third peaks of MSPLD and above the fth peak of MSPLD for the 2CE [A] (see Figs. 5.1b and 5.1d). For the 44CE [A] it can be seen before or after the MSPLD peaks (see Figs. 5.2b and 5.2d). The eect of HOM is slightly noticeable below the cut-on frequency, from about 6.4 kHz, whereas the cut-on frequency of ψ 01 is 6.8 kHz for the two tubes geometries. This can be explained by the fact that close to the cut-on frequency the reduction of amplitude of the evanescent modes generated at the junction becomes less important and they can have a signicant amplitude at the exit.

Relation between input impedance and directivity

The peaks of MSPLD appear close to input impedance minima. For the 2CE [A] the peaks of MSPLD at 7 kHz, 7.5 kHz, 8.5 kHz and 9.6 kHz can be related to minima of impedance located at 7 kHz, 7.4 kHz, 8.6 kHz and 9.5 kHz. Likewise for the 44CE [A] the peaks of MSPLD at 6.6 kHz and 9.7 kHz can be related to minima of input impedance located at close frequencies. However, the frequencies are not exactly the same and some peaks of MSPLD cannot be related to maxima or minima of input impedance. As an example, for the 2CE [A],

the peak of MSPLD at 8.8 kHz does not correspond to a maximum or minimum of input impedance. Likewise, for the 44CE [A], the peak of MSPLD at 8.5 kHz can not be related to a maximum or minimum of input impedance. One can also notice that for the 2CE [A], the peak of MSPLD located at 7.5 kHz is between a minimum (at 7.4 kHz) and a maximum (at 7.6 kHz) of input impedance. Thus, it is not possible to nd a simple relation between the input impedance curve and the directivity phenomenon.

Spectrum of the sound radiated by the 2CE [A] In order to get an idea of how the HOM eect can be perceived, the 2CE [A] replica has been excited using a broadband noise. This can be considered as an imitation of whispered voice. The spectrum of the radiated sound is presented for each measurement position in Fig. where the amplitude is globally lower than at the other positions (this has the same origin as the artifact mentioned in section 3.3.8). Above 6.5 kHz there is noticeable dierences between the positions. As an example, at -75 • , -60 • and -45 • the amplitude is lower than at the other positions between 8.5 kHz and 9.5 kHz. The pattern observed on the directivity maps of Figs.

5.1b and 5.1d can be recognized in the variations of the spectrum with the position. The authors perceived an audible dierence between the positions when listening to the recorded sounds.

Conclusions concerning the directivity of the 2CC[A], 2CE[A],

44CC [A] and 44CE [A] The measurements and the simulations performed on the 2CC [A], 2CE [A], 44CC [A] and the 44CE [A] showed that the propagation of the HOM ψ 01 inside vocal tract approximations of the vowel [A] induces great variations (up to 50 dB of MSPLD) of the directivity patterns within small frequency intervals (of the order of 100 Hz) above 6.5 kHz.

A particular eect related to the mode-shape of ψ 01 has been highlighted. The division of the exit surface into two areas with opposite phase generates a directivity pattern composed of two lobes separated by a low amplitude direction (of the order of 30 dB lower than the maximum). The variations of amplitude and phase of ψ 00 and ψ 01 with the frequency induce variations of the size of the lobes and the direction of the minimal amplitude (up to 60 • within 100 Hz). Another eect of the propagation of ψ 01 is the reduction of the directivity in comparison with the baed circular piston directivity in some frequency intervals. Since the vocal tract geometry is subject to inter-and intra-speaker dierences even for a single phoneme as considered in this study, care is needed when extrapolating these conclusions to human speech. The two vocal tract approximations studied generate very dierent directivity patterns above the rst cut-on frequency.

Because the directivity patterns become dierent from the baed circular piston above the rst cut-on frequency in the eccentric congurations, one can expect that the directivity is perceived dierently above this frequency. This assumption is reinforced by the fact that dierences related to the position are visible in the spectrogram of the sound emitted by the replicas excited with a broadband noise above 6.5 kHz. However, one can question how the great variations (up to 50 dB of MSPLD within 100 Hz) of the eects of the HOM on the directivity with the frequency are perceived or if they can be noticed by a listener. Thus, it would be interesting to carry out perceptual tests to further investigate this question. For the same reasons, classical spectral measures such as the octave/third-octave frequency band might mask the localized aspect of this eect. On the other hand, given the limited angular region of some phenomena, it would be interesting to increase the angular resolution in the future. Because of the high frequency energy present in fricative and plosive sounds, this eect is expected to have more perceptual impact. Thus, it would be interesting to investigate its consequences with vocal tract geometries corresponding to these phonemes.

5.2 Inuence of eccentricity degree and convergent shape

Inuence of the degree of eccentricity

In order to investigate the inuence of the degree of eccentricity of a junction on the directivity, simulations have been performed varying the distance between the centers of the two crosssections of the 2 tubes geometry from 0 mm to 7 mm by steps of 0.5 mm. This corresponds to the progressive transition from the 2CC [A] (Fig. The simulations performed varying the eccentricity showed that even a very small eccentricity (0.5 mm) can induce signicant changes of the directivity patterns with respect to the axisymmetric conguration (up to 15 dB of dierence). Thus, it is not required to have a large eccentricity so that ψ 01 is excited and propagate. This is in agreement with the assumption that the localized discrepancies between simulations and experiments can be explained by small asymmetries in the replicas. The fact that the frequencies of the discrepancies observed for the 2CC [A] corresponds to peaks of MSPLD of the 2CE [A] reinforces this hypothesis. However, the matching between the frequency of the discrepancies and the peaks of MSPLD of the eccentric conguration is less good for the 44 tubes geometries. The perfectly axisymmetric cases thus appear as theoretical cases dicult to reproduce accurately experimentally. The human vocal tract cannot be considered as axisymmetric and from these observations, one can conclude that axisymmetric geometrical approximations of it are not likely to reproduce a realistic directivity above their rst cut-on frequency. Introducing asymmetries in such kind of approximations would allow one to simulate a qualitatively more realistic directivity above the rst cut-on frequency.

In summary: The excitation of HOM being very sensitive to small asymmetries, the relevance of axisymmetric vocal tract approximation for the simulation of the speech directivity above the rst cut-on frequency of the vocal tract can be questioned. Introducing asymmetries in these approximations would allow one to simulate qualitatively more realistic directivity patterns. When the diameter of the third section is reduced, the MSPLD is globally decreasing.

Convergent exit

With a diameter of 10 mm it is almost zero up to 6.5 kHz. However, above 6.5 kHz the MSPLD still has locally important values (up to about 35 dB at 7 kHz, 7.3 kHz, 8.1 kHz and 9.3 kHz for an exit diameter of 10 mm), but between these peaks the MSPLD is reduced. The frequency of the peaks is decreased and one peak disappears at 10 mm. The peaks of input impedance have a larger amplitude and a reduced bandwidth and the minima have a reduced amplitude. The frequency of the peaks and minima of input impedance is also reduced.

In the case of a convergent exit, the radiation losses are reduced in comparison with a non-convergent exit. As it can be observed on the input impedance curves, this induces a higher amplitude and a reduced bandwidth of the resonances inside the vocal tract. This can be related to the fact that the eects of the HOM are more localized around the peaks of MSPLD for reduced exit diameters (see Fig. 5.7). When the diameter of the exit is reduced, one gets closer to a closed end boundary condition and the resonance frequencies are reduced. This can be related to the decrease of the frequency of the peaks of MSPLD and input impedance for reduced exit diameters. Thus, the fact that the 44CE [A] has a convergent exit and not the 2CE [A] can explain why the eects of HOM are more localized in frequency for the 44 eccentric tubes geometry.

The inuence of HOM can be seen even with a diameter of 10 mm which is almost three times smaller than the diameter of the large tube. Thus, more generally, it can be expected to be signicant even if the mouth aperture is small compared to the preceding cavity. One can expect that the inuence of HOM on the directivity varies qualitatively with the phonemes. A wide mouth aperture would induce an eect visible at all the frequencies above the rst cut-on frequency of the vocal tract and a narrow mouth aperture would induce an eect limited to localized narrow frequency intervals. This is further investigated in section 5.5.

In summary: The eects of HOM can be seen even if the radiating surface is small compared to the largest dimension of the vocal tract. However, in this case, they tend to be localized in particular frequency bands.

Directivity of a conguration with elliptical cross-section (44EE[A])

Directivity measurements have also been performed on the 44EE [A], however, in this case, in order to better observe the phenomena depicted in section 5.1, the angular resolution has been increased to 3 • . To do so, the experimental setup using the positioner has been used (Fig. 3.4) instead of the one using a manually moved microphone. The motion of the probemicrophone being automated, the measurement of the acoustic pressure at more locations was less tedious and more accurate than by moving the microphone manually. However, in this case, the maximal achievable distance from the exit is limited to 10 cm. As a consequence, the directivity can be measured only in relatively close eld. In order to investigate the inuence of the HOM on directivity at higher frequencies than 10 kHz, the frequency range has been increased to 15 kHz.

Comparison with experiment

The directivity maps measured and simulated with MM in the horizontal plane (x 1 ,x 3 ) on the 44EE[A] at 4 cm from the exit as well as the averaged dierence between the experiment and the simulation are presented in Fig. 5.8. Below 6.7 kHz, the eect of the diraction of the plane waves can be seen as a one symmetric lobe pattern which becomes more pronounced when the frequency is increased.

Above the cut-on frequency of ψ e21 (6084 Hz at 22.65 • C, see Fig. 2.4), the directivity patterns become more complex. As for the 2CE [A] and the 44CE [A], they show important change within small frequency intervals (of the order of 100 Hz) and small angular regions (of the order of 30 • ). In particular, transitions from almost omnidirectional to very directional patterns within less than 100 Hz are observed at 6.72 kHz, 8.49 kHz, 10.61 kHz, 12.31 kHz and 13.92 kHz for the experiment and at 6.72 kHz, 8.52 kHz, 10.52 kHz, 12.29 kHz, 13.9 kHz and 14.41 kHz for the simulation. However, unlike the geometries with circular cross-sections, three lobe patterns are observed instead of two lobe ones.

Unlike the geometries with circular cross-section, the three lobe pattern can be obtained with the plane mode only from 9.4 kHz. Indeed, the wavelength (3.67 cm at 9.4 kHz) is smaller than the width of the exit of the geometry (4.42 cm) in this frequency range. And the phase variations along the width of the exit are larger than 2π. However, this three lobe pattern is perturbed by the propagation HOM. The position of the amplitude minima is modied, and the amplitude of the lobes can be amplied or reduced depending on the frequency. The one lobe pattern is similarly perturbed by the propagation of HOM between 6.7 kHz and 9.4 kHz.

Globally, the directivity maps obtained by experiment and simulations show very similar patterns which are perfectly symmetric with respect to the 0

• position for the simulations and with small asymmetries for the experiment. The amplitude maxima and minima have similar angular position and occur at similar frequencies. This good agreement, is conrmed
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)95 measured and simulated at 4 cm from the exit of a vowel [A] vocal tract replica created from an area function from [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] constituted of 44 tubes with elliptical cross-sections with junction eccentric in the vertical plane (x 2 ,x 3 ) and symmetric in the horizontal plane (x 1 ,x 3 ) (44EE [A].

The dierence between the experiment and the simulation averaged on the angular positions is also presented as a function of the frequency. measured and simulated at 10 cm from the exit of a vowel [A] vocal tract replica created from an area function from [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] constituted of 44 tubes with elliptical cross-sections with junction eccentric in the vertical plane (x 2 ,x 3 ) and symmetric in the horizontal plane (x 1 ,x 3 ) (44EE [A]). The simulation takes into account a reection on a plane located 37.6 cm behind the microphone. by the fact that the dierence between the experiment and the simulation averaged on the angular position (see Fig. 5.8c) is globally smaller than 5 dB. There are however some peaks of averaged dierence with higher amplitude (at 6.72 kHz, 8.28 kHz, 8.52 kHz, 10.52 kHz and 12.28 kHz). But they are due to small dierences in the frequency at which abrupt changes in directivity pattern occur. The averaged dierence globally increases with the frequency. This can be related to the fact that the more complex patterns do not match exactly: there are small dierences in the angular position of the minima of the three lobe pattern (of the order of 5

• ).

The small asymmetries observed in the experiments can be attributed to small imperfections of the replica, insuciently damped reections or background noise. The dierence in the frequency at which the abrupt changes of directivity pattern occur can be explained by a dierence between the cut-on frequency of the HOM used for the simulations and the experimental one. This can come from inaccuracies in the measurement of the temperature, variations of the temperature during the experiment (the cut-on frequency of the HOM is very sensitive to temperature change 1 ), dierence between the experimental boundary condi- tion and the one implemented in MM (the 3D printed material can be slightly porous) and from numerical errors. These small frequency dierences explain the presence of peaks in the averaged dierence curve at the same frequencies.
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Eect of rst reection outside the replica

The acoustic pressure has been measured and simulated in the horizontal plane (x 1 ,x 2 ) on the 44EE [A] at a larger distance from the exit of 10 cm. The corresponding directivity map is presented in Fig. 5.9.

Directivity patterns globally similar to the ones of Fig. 5.8 are observed: abrupt transitions within small frequency intervals (order of 100 Hz) and three lobe patterns. However, in this case a periodic pattern, shaped like parabolic arcs is visible on the measured directivity maps on all the frequency range (see Fig. 5.9a).

It has been hypothesised that this is the result of the interference with reected waves. Thus, a reection have been introduced in the simulation following the method described in section 2.3.2.2 in order to reproduce this phenomenon. Since the arm of the positioner has been estimated as the object which most likely causes reections, the reection plane of the simulation has been placed at its location which is 37.6 cm behind the end of the probe-microphone. Note that the displacement of the reection plane with the motion of the positioner is taken into account in the simulation.

On the simulated directivity map (see Fig. 5.9b) one can see the directivity patterns with a periodic interference pattern shaped like parabolic arcs superimposed. Thus, even though the interference patterns obtain by simulation are not exactly similar to the one observed on the experimental data, one can conclude that the phenomenon is qualitatively reproduced and that the hypothesis of the interference with a reected wave is consistent.

The dierences between the interference patterns of the experiment and the simulations can be attributed to the limitation of the simple specular model used for this modelization, to the fact that the reection coecient of the surface is not one, the surface of the positioner harm is not rigorously at and that other reections not taken into account also inteferes with the direct eld. Indeed, a more careful observation of Fig. 5.9a reveals that a second periodic parabolic pattern is superimposed to the more important one. The arcs of this second pattern are narrower and closer to each other. Since it has been observed with MM simulations that the parabolic patterns becomes narrower and closer to each other when the reection plane is farther from the microphone, it can be hypothesised that this pattern is due to a reection on the wall located in front of the replica.

The inuence of the reections is more important and more visible at 10 cm from the exit than at 4 cm because the direct eld has a lower amplitude at this distance, whereas the reected waves can have, on the contrary, a higher amplitude. However, a more careful observation of Fig. 5.8a reveals that an interference pattern is also visible between 5 kHz and 8 kHz. The variations of amplitude of the interference pattern related to the reections can reach 25 dB at 10 cm, whereas it is limited to 5 dB at 4 cm. However, this eect remains lower in amplitude than the diraction of the plane waves and 1 A variation of temperature of 1 • C induces a variation of about 10 Hz of the frequency of ψ01 in the case of a circular cross-section of diameter 29.5 mm. the inuence of HOM. Indeed, without reections the MM simulations can have a maximal dierence up to 50 dB. On the other hand, the measurements performed at 48 cm (see section 5.1) show that even though there are non negligible reection at this distance, the same patterns are observed on the directivity maps measured and simulated. The fact that no interference patterns are visible on the directivity maps of Figs. 5.1 and 5.2 can be explained by the lower angular resolution, which does not allows one to observe it. However, there are some small periodic amplitude variations for each position which may be explained by reections.

The fact that even in an environment designed so that the reections are as limited as possible interference patterns due to reection signicantly inuence the observed directivity maps shows that this phenomenon cannot be neglected when considering a more realistic context in which nothing is done to damp the reections. Eventually, this raises the question of how to account for the room acoustics with the radiation model used.

Directivity of the MRI based vocal tract geometries

In order to investigate how the sound is radiated from the vocal tract with geometries as realistic as possible, directivity measurements have been performed on the geometries created from MRI (see Figs. 3.1g and 3.1h). As for the 44EE [A], the setup using a positioner has been used in order to insure a good angular resolution (3 • ) and the measurements have been performed in the frequency range from 2 kHz up to 15 kHz.

Directivity measurements performed with realistic replicas

The amplitude of the sound radiated by both MRI based geometries is presented as directivity maps in Fig. 5.10.

Except in the case of the vertical plane (x 2 ,x 3 ), the directivity patterns are almost om- nidirectional up to 3.5 kHz. The rst eect which can be attributed to HOM propagation is visible in the horizontal plane at 3.56 kHz for the case with lips and 3.58 kHz for the case without lips. It appears as an abrupt change (within less than 20 Hz) from a one lobe pattern with lower amplitude on the -90 • side to a lower amplitude on the 90 • side. The eects of HOM can then be seen at all the frequencies from about 4 kHz for the case with lips and about 5 kHz for the case without lips. As observed in sections 5.1 and 5.3, it appears as signicant variations of the directivity pattern within short frequency intervals (of the order of 100 Hz) and small angular regions (of the order of 30

• ). However, in this case, it can be seen in larger proportion and complexity than with the 2CE [A], the 44CE [A] and the 44EE [A]. Indeed, more than ten abrupt transitions of directivity pattern can be seen for both geometries in both planes, in particular at 5.96 kHz, 11.49 kHz and 13.37 kHz for the lips case and at 6.63 kHz, 10.89 kHz and 12.8 kHz for the no lips case. Directivity patterns with one, two or three lobes are observed. They are asymmetric at most of the frequencies. The greater complexity of the measured directivity patterns compared to the ones observed with the 2CE [A], the 44CE [A] and the 44EE [A] can be explained by the greater complexity of the MRI geometries. The fact that almost no symmetric patterns are observed shows that the symmetric geometries are particular cases which does not match the behaviour of a realistic vocal tract shape. The lower frequency limit at which the HOM eect starts compared to the previously studied replicas can be explained by the wider dimensions and the overall asymmetry and eccentricity of the shape which allows every propagation mode, even the ones with the lowest cut-on frequency, to be excited and to propagate.

Eect of the lips on the directivity

Signicant dierences can be observed between the case with lips and the case without lips.

The number and the frequency of the abrupt change of directivity pattern are dierent. However, some similar patterns can be found at close frequencies, as an example in the horizontal plane (x 1 ,x 3 ) at 3.56 kHz for the case with lips and at 3.58 kHz for the case without lips. A similar global tendency can be observed in the horizontal plane. See as an example the area with no abrupt change of directivity pattern between 9 kHz and 10 kHz. However, in this case the minimum is not located on the same side (90 • in the case with lips and -90 • in the case without lips).

There are more dierences in the vertical plane (x 2 ,x 3 ). In the case with lips two directions with globally lower amplitude (at about -70

• and 70 • ) which are not present in the case without lips are observed. The amplitude also tends to be globally higher in the center. This can be understood as the eect of the lips, which is more important in the vertical plane (x 2 ,x 3 ) because it is in this plane that the presence of the lips induces the more important geometrical change. One can also notice that, in the case with lips, the 90 • side has globally lower amplitude at all the frequencies. This can be explained by the fact that the upper lip, which is located at the 90 • side, is larger than the lower lip in this geometry. The fact that the lower amplitude induced by the presence of the upper lip can be seen even at the lowest frequency shows that the diraction by the upper lip aects the directivity even if the only propagation mode present is the plane mode.

In summary: The lips appear as a key element in the radiation of the sound, especially in the vertical plane (x 2 ,x 3 ). The combination with the eect of the HOM coming from inside change signicantly the radiation patterns. However, this also introduces some global changes which can be seen at all the frequencies.

Comparison of the vowels [A], [i] and [u]

After having investigated the eect of the HOM on various degrees of simplication of the vowel [A] [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF]. The conclusions drawn from the preceding results lead one to create it with elliptical cross-sections and fully eccentric junctions in the plane (x 2 ,x 3 ) and 25 % eccentric junctions in the plane (x 1 ,x 3 ) (see Fig. 3.3). The 25 % eccentricity in the plane (x 1 ,x 3 ) has been added in order to break any symmetry in the geometries.

Simulation of the directivity patterns of the vowels [A], [i] and [u]

The acoustic pressure has been simulated with the MM at 60 cm from the exit of the geometries up to 15 kHz for a temperature of 20 • C. The corresponding directivity maps are presented in Their eect tends to be localized in narrow frequency intervals in the case of the 44EFE[i] and the 44EFE[u]. In the case of the 44EFE [A], the eects of HOM are present at all the frequencies from 6.7 kHz and inside two narrow intervals (of the order of 500 Hz) located around 3.8 kHz and 5.7 kHz. In the case of the 44EFE[i], the eect is present inside two very small frequency intervals (about 50 Hz) above 9.1 kHz, and inside wider intervals above 10 kHz. There is a strong minimum located around 10.3 kHz in the direction -26 • . In the case of the 44EFE[u], the eect is limited to 20 narrow bands (smaller than 300 Hz). [A] and the measurements performed on the realistic replicas of the vowel [A] The directivity map simulated with the 44EFE [A] is qualitatively closer to the directivity maps measured on the MRI based replicas than the other vowel [A] approximations. Indeed, in the case of the 44EE [A] the directivity patterns show complex variations with abrupt changes, but it is perfectly symmetric with respect to the central position 0

Comparison between the approximations of the vowel

• (see Figs. 5.8a and 5.8b). On the opposite, the directivity map of Fig. 5.11a shows asymmetric directivity patterns for all the frequency ranges in which the eect of HOM is observed. Another similarity between the 44EFE [A] and the realistic geometries is the fact that the rst eect of HOM is observed at 3.8 kHz and 3.5 kHz and that it is observed at all the frequencies from 6.7 kHz and 5 kHz.

On the opposite, the rst observed eect of HOM for the 44EE [A] is at 6.7 kHz and the eect is visible at all the frequencies from 8.5 kHz.

The same qualitative behavior is observed for the 44EFE [A] and the MRI based replicas with more complexity for second one. Thus, one can conclude that the use of elliptical crosssections with eccentricity in both planes allows one to simulate acoustic properties qualitatively close to the one of realistic geometries using a very simple description of the vocal tract shape based on an area function. This can be of particular interest if one desire to perform simulations with a lower computational cost than with numerical methods such as FEM or FD. The simple description of the geometry is also an advantage: an area function is a very small amount of data compared to a 3D geometry based on MRI and it can be interpolated.

Simple articulatory models could also be used for this purpose.

Comparison between the vowels [A], [i] and [u]

The 44EFE [A] has a mouth opening wider (4.42 cm) than the one of the 44EFE[i] and the 44EFE[u] (2.51 cm and 2.4 cm respectively), which is preceded by a large oral cavity (6.2 cm in the widest part, see Figs. 3.2 and 3.3a). Thus, HOM are expected to propagate at relatively low frequency (below 4 kHz) and they can inuence directly the volume velocity distribution at the exit of the geometry. As a consequence, more complex radiation patterns with a more pronounced directivity are generated. In addition, the larger distance between the dierent radiating points of the surface induces a more pronounced directivity due to the diraction of the plane waves, which increases the overall directivity. ) created from area functions provided by [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF].

Comparison of the vowels

In the case of the 44EFE[u], there is a large cavity (5.67 cm in the widest part) preceding a small mouth opening (2.4 cm) (see Figs. 3.2 and 3.3c). This allows the HOM to propagate at relatively low frequency (4.4 kHz), but their inuence on the radiation is limited to small frequency intervals (of the order of 500 Hz) because of the small opening. The eect of a convergent exit investigated in section 5.2.2 is thus observed and conrmed here.

In the case of the 44EFE[i], there is a cavity with large dimensions (6 cm in the widest part) near the entrance of the geometry (between x 3 = 2 cm and x 3 = 10 cm) which is connected to the mouth by a narrow channel. The HOM which can propagate at relatively low frequency in the large cavity can inuence the acoustic eld at the entrance of the channel and excite evanescent HOM, but they are exponentially damped along this channel and until a relatively high frequency (9.1 kHz) only plane waves arrive at the opening. The eect of HOM begins to be visible only for the frequencies at which the wavelength is of the same order of size as the width of the channel (of the order of 2 cm). The eect of the HOM propagating inside the wider part can then be transmitted to the opening. The volume velocity distribution at the exit is thus inuenced by both the HOM of the widest part which induces abrupt changes in narrow frequency intervals and the HOM propagating in the channel which induce eects more spread in the frequencies.

In summary: The eect of a convergent exit investigated in section 5.2.2 is conrmed here.

One can see that it is possible to predict qualitatively the eect of HOM on the directivity of radiated sound from the shape of the vocal tract geometry.

Transfer function variations

In order to investigate the eect of HOM on the transfer functions of the three vowels, the transfer functions between the input volume velocity and the acoustic pressure radiated at 60 cm in front of the geometries (at 0 • ) have been computed. They are presented in Fig. 5.12. Chapter 6

Conclusions and perspectives

Conclusions

With respect to the objectives outlined in the introduction, the following conclusions are made. The bandwidth of the resonances has been observed to be aected by the dierence in radiation eciency of the HOM involved. Small changes (about 2%) of the resonance frequencies below the cut-on frequency of the rst HOM due to the excitation of evanescent HOM have also been observed.

As expected, the propagation of HOM has been observed to inuence consequently the directivity of the radiated sound. Thus, the transfer function has important variations (up to 50 dB) within small frequency intervals (of the order of 100 Hz) and within small angular regions (about 30 • ). In the case of circular cross-sections, the propagation of the rst HOM ψ 01 generates a two lobes directivity pattern which cannot be predicted by the plane piston model. The lobes of the patterns generated by the HOM can have signicant variation of direction (up to 60

• ) within small frequency intervals (of the order of 100 Hz). It has been observed that the directivity can be locally reduced by the propagation of HOM in comparison with the directivity predicted with the plane mode only.

The comparison of three vocal tract geometrical approximations for the vowels [A], [i] and [u] showed that the eects of HOM vary a lot with the vocal tract geometry. Even though the eects of HOM have been observed in narrow frequency intervals from 3.5 kHz, the expected limit of about 4-5 kHz for the appearance of this phenomenon has been conrmed. 106 Conclusion

Accurate measurements

The design of an experimental setup, especially dedicated to measure pressure elds and transfer functions inside waveguides, allowed one to perform accurate measurements (with a maximal variability of the order of 1 dB). Directivity measurements with increased frequency and angular resolution (5 Hz and 3

• ) compared to the previous measurements performed with speakers and singers (third of octave bands and 15

• ) allowed one to make more accurate observations of the directivity patterns and of their variation with the frequency.

Validation of the 3D acoustic simulation methods

The comparison of the experimental measurements of pressure elds and PPTF with the MM and FEM simulations showed that the acoustic eld is successfully predicted by both methods.

The frequency of the peaks of the PPTF is predicted with a typical accuracy of 5%. However, the -3 dB bandwidth of the peaks is underestimated by the MM because visco-thermal losses are not taken into account in this implementation. The bandwidths obtained with FEM are closer to the experimental ones but still have signicant dierences because the losses are considered constant for all the frequencies. Average dierences between the pressure elds are of the order of 1dB. On the other hand, even though the resonances and anti-resonances cannot be directly observed with PPTF, their characteristics can be deduced from the observation of the peaks and dips of the PPTF. The projection of the pressure eld measured in the plane perpendicular to the propagation axis x 3 showed that there is a good agreement between the modal amplitudes predicted by the MM simulation and the experimental ones. The directivity patterns are successfully predicted by the radiation model implemented, and the eect of a reection on an object is qualitatively reproduced by a simple model of specular reection.

Comparison of the MM and the FEM

The FEM can be applied to any geometry, but require long simulation durations (typically of the order of 24h on serial computing system with processor Intel R Core TM i5 2.8 GHz for the geometries studied in this document) and needs to mesh outer space. The MM has a shorter simulation duration (typically of the order of 1 h with processor Intel R Core TM Vpro TM 3.0 GHz for the geometries studied in this document) and does not require any other discretization than the vocal tract, but is limited to unbended straight geometries in the current implementation used.

Eect of geometrical features

The eccentricity appears to be a key factor for the excitation and the propagation of the HOM featuring nodal lines located on a symmetry axis. It has been shown that a very small asymmetry is sucient to allow these HOM to contribute to the acoustic eld, indeed 6.1. Conclusions 107 MM simulations have shown that a shift of 0.5 mm of the centers of the sections of the two tube geometry is sucient to generate signicant eects of the HOM. This is the origin of larger discrepancies between simulation and experiment for the axisymmetric geometries:

the replicas used for the experiment being not perfectly axisymmetric, HOM can be slightly excited. At high frequency (above about 5 kHz), the axisymmetric geometries appear as particular theoretical cases dicult to reproduce experimentally which does not correspond to the features of a realistic vocal tract. Thus, the eccentricity is important to take into account for reproducing qualitatively the acoustical properties of the vocal tract when the 3D aspects of the acoustic eld need to be taken into account.

The cross-section shape appears as a very important factor which determines the HOM (mode-shapes and cut-on frequencies) potentially present in the geometries. The frequency of the resonances, the coupling between the propagation modes at the change of cross-section and the directivity patterns are determined by the cross-sectional shape.

The size of the mouth aperture inuences the directivity and the bandwidth of the resonances. A large mouth aperture is likely to induce larger bandwidths, and directivity eect of the HOM spreads on large frequency intervals. A small mouth aperture is likely to induce small bandwidths and directivity eects limited to small frequency intervals (of the order of 500 Hz) but still present.

The presence of the lips lowers the resonance frequencies and reduces their bandwidth.

They appear as a key element in the radiation of the sound by creating low amplitude directions in the vertical plane (x 1 ,x 2 ) present at all the frequencies.

Comparison of simplied vocal tract replicas with realistic ones

Building a vocal tract geometry from an area function using elliptical cross-sections and junctions eccentric in both vertical and horizontal planes allows one to get acoustical properties qualitatively close to the ones of a realistic geometry. The use of such kind of geometry would allow one to perform, as an example, sound synthesis based on a physical model with less complexity for the description of the vocal tract geometry and at a lower computational cost.

Comparison of the vowels [A], [i] and [u]

It has been observed with MM simulation that, as expected, the directivity patterns can vary a lot with the considered phoneme, and a physical explanation has been proposed for the dierence observed. Indeed, the dierent directivity properties of the vowels [A], [i] and [u] can be related to the shape of the corresponding geometries. In particular, the eect of the mouth aperture investigated with a two tubes vocal tract approximation is conrmed. A large cavity located close to the mouth induces the appearance of the eect of the HOM at relatively low frequency (about 4 kHz) and if this same cavity is placed closer to the glottis the eect of the HOM appear at higher frequency because the 3D aspects of the acoustic eld cannot 108 Conclusion be transmitted through the narrower part which connects it to the mouth.

Perspectives

Based on these conclusions, the following perspectives are proposed.

The eects of the HOM at high frequency (above 5 kHz) need to be taken into account in any physical modeling of vocal tract acoustics and more generally in high frequency studies related to speech and singing. In particular, some eects not present at low frequency such as the presence of anti-resonances and, overall the variation of the transfer function with the position of the reception point need to be considered. Given the signicant variations of the HOM within small frequency intervals, one can question how their eect is perceived by a listener. Thus, the perceptual consequences of the HOM need to be further investigated. On the other hand, it would be interesting to pursue this work with geometries corresponding to other phonemes. In particular, the fricatives and the plosives, which have more energy in the high frequencies, and which have been observed to have a pronounced directivity would be very interesting to study. It would be also very interesting to study these eects on real speakers by performing more accurate directivity measurements with a higher frequency and angular resolution and focusing on single phonemes. One can see that the variations of amplitude over the three experiments remains lower than 0.4 dB. These variations change with the frequency. They can be very low at some frequencies (0.0013 dB at 8.3 kHz), and reach maxima at others (0.038 dB at 9.7 kHz). Globally the variations tend to increase with the frequency. This can be understood as the consequence of the global decrease of the amplitude of the measured acoustic pressure when the frequency is increased. Indeed, the sound source becomes less ecient at high frequency, and the probe of the microphone by damping the high frequencies acts as a low pass lter. As a consequence, 
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1. 1

 1 State of the art 1.1.1 Vocal tract acoustics 1.1.1.1 The vocal tract The vocal tract corresponds to the cavity located between the vocal folds and the lips. Its length and its width are of the order of 17 cm and 5 cm respectively for an adult. It is an important part of the vocal apparatus which act as an acoustic resonator and allows the speaker to create sound sources. It acoustically interacts with the dierent sound sources which generates speech and singing sounds: the air jet pulsed by the vocal fold oscillation and the turbulent sound sources generated by the constrictions present in the vocal apparatus.
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 8221 Figure 2.1: Constant cross-section waveguide.

Figure 2 . 2 :

 22 Figure 2.2: Mode-shapes and cut-on frequencies f c (computed with Eq. (2.8)) of the propagation modes of a circular cross-section whose cut-on frequency is below 20 kHz for a diameter of 29.5 mm and a temperature of 26.5 • C. The lines are zero amplitude nodal lines and the color indicates the phase change.
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 11 Propagation modesThe functions ψ n are the solutions of the two dimensional Helmholtz equation. They are part of an orthogonal modal basis and they satisfy a normalisation condition S ψ * m ψ n dS = Sδ mn ,(2.5) 
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 5 3. They correspond to a width of 29.5 mm and the cut-on frequencies have been computed for a temperature of 26.C. The modes ψ 01 , ψ 10 , ψ 02 , ψ 20 , ψ 12 , ψ 21 , ψ 03 , ψ 30 , ψ 13 and ψ 31 are degenerated: their mode-shapes are similar by a rotation of 90• and they have the same cut-on frequency. One can see that the rst subscript index corresponds to the number of nodal lines along the axis x 1 and the second to the number of nodal lines along the axis x 2 .
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 223 Figure 2.3: Mode-shapes and cut-on frequencies f c (computed with Eq. (2.10)) of the propagation modes of a square cross-section whose cut-on frequency is below 20 kHz for a width of 29.5 mm and a temperature of 26.5 • C. The lines are zero amplitude nodal lines and the color indicates the phase change.
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 24 Figure 2.4: Propagation modes whose cut-on frequency f c lies under 20 kHz for the dimensions corresponding to the widest part of a vocal tract geometry with elliptical cross-sections (6.2 cm wide and 1.9 cm thick) and a temperature of 22.65 • C. The lines are zero amplitude nodal lines and the color indicates the phase change.
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 25 Figure 2.5: Relative error between the cut-on frequencies computed with FD and analytically with Eq. (2.8) for a circular cross-section of diameter 29.5 mm and a temperature of 26.5

Figure 2 . 6 :

 26 Figure 2.6: First diagonal terms of the normalized radiation impedance matrix Z R of a circular opening of 29.5 mm in diameter computed with the expression provided by Zorumski[START_REF] Zorumski | Generalized radiation impedances and reection coecients of circular and annular ducts[END_REF] 
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 27 Figure 2.7: First coupling terms of the normalized radiation impedance matrix Z R of a circular opening of 29.5 mm in diameter computed with the expression provided by Zorumski[START_REF] Zorumski | Generalized radiation impedances and reection coecients of circular and annular ducts[END_REF] 
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 28 Figure 2.8: First diagonal terms of the normalized radiation impedance matrix Z R of a squareopening having a width of 29.5 mm computed with the expression provided by Kemp[START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF] 
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 29 Figure2.9: First coupling terms of the normalized radiation impedance matrix Z R of a square opening having a width of 29.5 mm computed with the expression provided by Kemp[START_REF] Kemp | Theoretical and experimental study of wave propagation in brass musical instruments[END_REF] 
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 220211 Figure 2.11: Amplitude of some terms of the projection matrix F computed analytically (with Eq. (2.41)) and numerically (with Eq. (2.42)) with dierent resolutions for the case of a junction between two concentric cross-sections of radii 14.5 mm and 29.5 mm and dierences between the analytical and the numerical computations.
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 212 Figure 2.12: The four dierent congurations for backward propagation of the impedance and admittance mattrices.

Figure 2 . 13 :

 213 Figure 2.13: Coupling terms of the projection matrix F of Eq. (2.36) between the plane mode ψ 00 and the HOM whose cut-on frequency is below 20 kHz (ψ 01 , ψ 02 , ψ 10 , ψ 03 , ψ 04 and ψ 11 ) for a junction between two cylindrical sections of diameter 14.5 mm and 29.5 mm with a distance

Figure 2 . 14 :

 214 Figure 2.14: Path followed by a reected sound wave emitted by a baed vocal tract replica. (a) Reection on a plane perpendicular to the bae (b) Reection on a plane parallel to the bae located behind the reception point

3 . 1 .

 31 Figure 3.1: Vocal tract replicas. The sound source is connected at the left end of the replicas and at the bottom for the MRI based ones. A bae is attached to the other end.

Figure 3 . 2 :

 32 Figure 3.2: Area functions corresponding to the vowels [A], [i] and[u] provided by[START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF] for the two tubes approximation and by[START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] for the 44 tube ones. The abscissa x 3 = 0 corresponds

Figure 3 . 3 :

 33 Figure 3.3: Vocal tract geometries used for the simulations (a) vowel [A] (b) vowel [i] (c) vowel [u]

  3.4b) to generate sound in the frequency ranges 100 Hz up to 2000 Hz and 2000 Hz up to 15000 Hz, respectively. The source is connected to the replica with an adaptation part which features a 2 mm diameter centered communication hole from which the sound radiates inside the vocal tract replica (see Fig.

  3.4b). Used signals are sines with xed frequency, linear sweeps, broadband noise and glottal ow simulated with a two mass model[START_REF] Ruty | An in vitro setup to test the relevance and the accuracy of low-order vocal folds models[END_REF].The acoustic pressure is then measured with a B&K 4182 probe microphone equiped with a 1 mm in diameter and either 200 mm or 25 mm long probe. A 3D positioning system (OWIS PS35, see Fig.3.4d) allows one to move the probe microphone in all directions with an accuracy of ±1.10 -4 m and an amplitude of motion of 250 mm in x 1 , 250 mm in x 2 and 400 mm in x 3 (see Fig.3.4d). However this accuracy can be reduced by the initial positioning which is less accurate (±1 mm) and can induce a systematic error.

  3.5b). This allows one to measure the acoustic pressure at 48 cm from the exit of the replica at dierent angles from the axis of the replica (every 15 • from -90 • up to 90 • as indicated in Fig.3.5a). The angle 0 • corresponds to the center of the exit of the replicas following x 3 . For the eccentric geometries the common edge corresponds to the angle 90 • . The microphone signal V m is next transmitted by means of a microphone conditioner (B&K 5935 L) to a data acquisition card (NI PCI-MIO 16 XE) at a sampling frequency of 44150
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 343735 Figure 3.4: Experimental setup (a) schematic diagram in the plane (x 2 ,x 3 ) (b) sound source (Eminence PSD:2002S-8 in this case) (c) schematic diagram in the plane (x 1 ,x 3 ) (d) positioning system inside the insulated room

  varying the amplitude of a sinusoidal excitation signal for a xed position of the microphone inside the 44CT (at the center of the exit surface). The ratio of the amplitude |V m | of the microphone output voltage over the amplitude |V s | of the sound source input voltage is presented as a function of |V s | in the Fig. 3.6 for two frequencies. The maximal value has been normalized to 0 dB in each case. One can see that the ratio |Vm| |Vs| decreases when the input voltage |V s | increases. It is reduced by 1.5 dB for |V s | = 10V .
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 36 Figure 3.6: Ratio of the amplitude |V m | of the microphone output voltage over the amplitude |V s | of the sound source input voltage as a function of |V s | obtained with two sinusoidal input signals of frequency 2380 Hz and 7350 Hz. The data have been normalized by the maximum.
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 37 Figure 3.7: Dierence between the phase φ m of the microphone output voltage and the phase φ s of the source input voltage as a function of the amplitude |V s | of the sound source input voltage obtained with two sinusoidal input signals of frequency 2380 Hz and 7350 Hz. The phase corresponding to the lowest |V s | has been removed to all the data.
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 38 Figure 3.8: (a) Ratio of the amplitude of the microphone signal |V m | over the sound source input voltage |V s | averaged on 10 measurements performed at the same location with a sines signal whose frequency is varying by steps 20 Hz from 1 kHz to 15 kHz (b) maximal ratio dierence between the 10 measurements (c) phase dierence φ m -φ s between the microphone signal and the sound source input signal averaged on the 10 measurements (d) maximal variation of the phase dierence between the 10 measurements.
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 39 Figure 3.9: (a) Ratio of the amplitude of the microphone signal |V m | over the sound source input voltage |V s | averaged on 10 measurements performed at the same location with a sweep signal whose frequency varies from 1 kHz to 15 kHz in 50 s (b) maximal ratio dierence between the 10 measurements (c) phase dierence φ m -φ s between the microphone signal and the sound source input signal averaged on the 10 measurements (d) maximal variation of the phase dierence between the 10 measurements.

3. 3 . Data analysis 45 Figure 3 . 10 :

 345310 Figure 3.10: Normalized amplitude of the pressure eld measured with a spacing of 1 mm on a 20 mm × 10 mm surface perpendicular to the tube axis just in front of the communication hole inside the one tube replica at a frequency of 2550 Hz.
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 35 Figure 3.11: Schematic diagram of the transfer function measurement method.
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 483 Experimental and numerical methods phone output signals V a and V b corresponding to both measurement points are then estimated. To achieve this the amplitudes |V a | and |V b | of the signals measured by the probe microphone is divided by the supply voltage amplitude |V s | to compute the modulus. The phase is obtained by computing the phase shifts φ a -φ s and φ b -φ s between the signals measured by the probe microphone and the supply voltage. So the transfer functions H sa and H sb can be expressed in the following way:

4 FEM

 4 In the framework of the EUNISON project, the measurements and MM simulations performed have been compared with nite element (FEM) simulations performed at the university La Salle of Barcelona.
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 544 Inuence of HOM on pressure eld and transfer functions

Figure 4 . 1 :

 41 Figure 4.1: Amplitude of the input impedance |Z| and of the transfer function |H| between the input volume velocity and the acoustic pressure radiated at 60 cm in front of the exit of two vocal tract approximations for the vowel[A] based on[START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF] with a concentric and an

Figure 4 . 2 :

 42 Figure 4.2: Bandwidths (at -3 dB) of the formants as a function of the corresponding fre-quencies of two approximations of the vocal tract shape for the vowel[A] constituted of two cylindrical tubes with either concentric (2CC[A]) or eccentric junctions (2CE[A]).
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 43 Figure 4.3: Examples of pressure-pressure transfer functions between two points inside two vowel [A] vocal tract replicas made of two cylindrical tubes with (top) concentric (2CC[A]) and

Fig. 4 . 3 presents

 43 examples of PPTF measured and simulated between two points on the propagation axis x 3 (see Fig.2.1 for x 3 denition). One point is located inside the replica at 30 mm from the source and the other one is outside at 10 mm from the open end. The resonance

Fig. 4 .Figure 4 . 4 :a) x 3 c) x 3 Figure 4 . 5 :

 4443345 Figure 4.4: Examples of pressure amplitude maps inside and outside of two vowel [A] vocal tract replicas made of two cylindrical tubes with a concentric (2CC[A] top) and an eccentric (2CE[A] bottom) junction for high frequencies (Exp: experimental data, MM: multimodal method, FEM: nite element method, here the origin of the coordinate system is located in the center of the exit plane).

4. 1 .Figure 4 . 6 :Figure 4 . 7 :

 14647 Figure 4.6: Real part and phase of the acoustic pressure measured in the plane (x 1 ,x 2 ) per-pendicularly to the propagation axis x 3 , 4.5 cm after the junction inside larger part of the two tube replicas of the vowel[A] having either a concentric (2CC[A]) or an eccentric (2CE[A]) junction. The real part is proportional to Pa to the sensitivity of the microphone and the phase is computed as the dierence between the phase of the microphone and the phase of the sound source input signal.

4. 2 . 44 TUBES APPROXIMATIONS 67 Figure 4 . 8 :Chapter 4 .

 24467484 Figure 4.8: Amplitude of the simulated (with MM) input impedance |Z| and of the transfer function |H| between the input volume velocity and the acoustic pressure radiated at 60 cm in front of the exit of three vocal tract approximations for the vowel[A] based on ([START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF]) with concentric junction and circular cross-section, eccentric junctions and circular cross-sections and eccentric junctions in the plane (x 2 ,x 3 ) and elliptical junctions.

  [A] (up to 0.9% for the eighth). So the reduction of the frequency of the formants under the cut-on frequency of the rst propagating HOM (5885 Hz for ψ 01 for the 44CE[A] at 23.2 • C and 6084 Hz for ψ e21 for the 44EE[A] at 22.65 • C) when eccentric junctions are introduced is not as clearly observed for the 44 tube geometries as for two tube ones.
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 249 Figure 4.9: Bandwidths as a function of the corresponding formants frequencies of three approximations of the vocal tract shape for the vowel [A] constituted of 44 tubes with circular cross-section and concentric junctions (44CC[A]), circular cross-section and eccentric junctions

Figure 4 . 10 :

 410 Figure 4.10: Examples of pressure-pressure transfer functions (PPTF) between two points inside three simplied vowel [A] vocal tract replicas with (top) concentric junctions and circular cross-sections (44CC[A]), (middle) eccentric junctions and circular cross-sections (44CE[A])

Fig. 4 .

 4 11 examples of pressure maps are presented for the 44CC[A] (top), the 44CE[A] (middle) and the 44EE[A] (bottom) at high frequency values for both experiments and simulations. Longitudinal and transversal cuts of these maps along x 3 and x 2 at 2.5 mm from the open end outside of the replicas are provided in Fig. 4.12.
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 44 Fig. 4.12). This can be related to the observations made on the PPTF: the peaks of the simulations have higher amplitudes and narrower bandwidths. The origin of this dierence is probably also the poor representation of visco-thermal losses in the simulations.
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 4411 Figure 4.11: Examples of pressure amplitude maps for high frequencies inside and outside of three simplied vowel [A] vocal tract replicas with (top) concentric junctions and circular cross-sections, (middle) eccentric junctions and circular cross-sections and (bottom) eccentric junctions and elliptical cross-sections. (Exp: experimental data, MM: multimodal method,FEM: nite element method, here the origin of the coordinate system is located in the center of the exit plane).

c) x 3

 3 cut eccentric[A] d) x 2 cut eccentric[A] 

Figure 4 . 12 :

 412 Figure 4.12: Cuts of the pressure maps in Fig. 4.11 along the propagation axis x 3 (left column) and the axis x 2 just in front of the open end ( right column) measured and simulated on three simplied vowel [A] vocal tract replicas with (top) concentric junctions and circular cross-sections, (middle) eccentric junctions and circular cross-sections and (bottom) eccentric junctions and elliptical cross-sections. A 10 dB shift has been applied between the maxima of the three curves for visualization purposes. (Exp: experimental data, MM: multimodal method, FEM: nite element method).

x2Figure 4 . 13 :

 413 Figure 4.13: Grid of points where the acoustic pressure is measured and simulated inside a vowel [A] geometry extracted from MRI provided in the Aalto database ([26]).

Figure 4 . 14 :

 414 Figure 4.14: Pressure-pressure transfer function (PPTF) H 12 (f ) = P 2 (f )/P 1 (f ) for vowel [A] (a) with lips and (b) without lips obtained by nite element simulations (FEM) and experiments (Exp). P 1 (f ) and P 2 (f ) stand for the Fourier transform of the acoustic pressure collected at point 1 and point 3, which are, respectively, located within the oral cavity and at the mouth exit.
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 4415 Figure 4.15: Pressure amplitude maps for the third formant of vowel [A] obtained by nite element simulations (FEM) and experiments (Exp) with lips (top) and without lips (bottom).

4. 3 .Figure 4 . 16 :

 3416 Figure 4.16: Pressure amplitude maps obtained for the last formant before 10 kHz of vowel [A] by nite element simulations (FEM) and experiments (Exp) with lips (top) and without lips (bottom). The acoustic pressure distribution within the oral cavity and at an area close to the vocal tract exit (mouth) is presented. Moreover, cuts of the pressure amplitude maps in a front-plane located 1 cm in front of the mouth exit and in the midsagittal plane are also presented.

84CHAPTER 5 .Figure 5 . 1 :

 551 Figure 5.1: Normalized amplitude (dB) and maximal sound pressure level dierence MSPLD with respect to the angular position of the pressure radiated from two tubes vowel [A] replicas with concentric (2CC[A]) and eccentric (2CE[A]) junction measured and simulated at 48 cm from the exit between 2 kHz and 10 kHz every 15 • and 3 • for respectively the experiments and the simulations. To avoid perturbations linked to experimental artifacts present on the extremal positions, the maximal sound pressure level dierence has been computed with and without the edge positions (-90 • and 90 • ).
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 1525354 Figure 5.2: Normalized amplitude (dB) and maximal sound pressure level dierence MSPLD with respect to the angular position of the pressure radiated from 44 tubes vowel [A] replicas with concentric (44CC[A]) and eccentric (44CE[A]) junction measured and simulated at 48 cm from the exit between 2 kHz and 10 kHz every 15 • and 3 • for respectively the experiments and the simulations. To avoid perturbations linked to experimental artifacts present on the extremal positions, the maximal sound pressure level dierence has been computed with and without the edge positions (-90 • and 90 • ).
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 5 Up to 6.5 kHz it is very similar for each position, except at the edges (-90 • and 90 • )

Figure 5 . 5 :

 55 Figure 5.5: Spectrogram of the sound radiated by a vocal tract replica consisting in a two tube approximation with an eccentric junction (2CE[A]) recorded at a distance of 48 cm from the exit every 15 • . The excitation signal used is a broadband noise. Hann windows of 46.4 ms (2048 samples) have been used with an overlap rate of 0.9.
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 256 Figure 5.6: Maximal sound pressure level dierence MSPLD as a function of the frequency computed for dierent spacing of the centers of both cross-sections of the two tubes geometries.
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 5 3.1a) to the 2CE[A] (Fig.3.1b). The radiated pressure has been computed for each distance between the centers. The MSPLD corresponding to four distances between the centers is presented in Fig.5.6. These distances, 0 mm, 0.5 mm, 3.5 mm and 7 mm, corresponds respectively to the concentric conguration, the lo-92 Inuence of HOM on directivity west possible eccentricity with the discretization of the cross-sectional surface used (0.5 mm), the intermediate conguration and the fully eccentric conguration. At 0.5 mm of distance, peaks of MSPLD up to 20 dB can be seen above 6.5 kHz and the MSPLD curve is completely separated from the 0 mm curve above 8 kHz. With a distance of 3.5 mm the MSPLD curve is very similar to the 7 mm curve.
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 57 Figure 5.7: Maximal sound pressure level dierence MSPLD and input impedance as a function of the frequency computed for dierent diameters of the exit of the two eccentric tubes geometry.
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 58 Figure 5.8: Normalized amplitude as a function of the frequency and the angular position
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 59 Figure 5.9: Normalized amplitude as a function of the frequency and the angular position
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 45105 Figure 5.10: Normalized amplitude (dB) as a function of the frequency and the angular position of the acoustic pressure radiated at 4cm from the exit of two replicas built from an MRI database ([26]) with and without lips (see Figs. 3.1g and 3.1h). These measurements have been performed in the horizontal (x 1 ,x 3 ) and the vertical (x 2 ,x 3 ) planes.

Figure 5 . 11 :

 511 Figure 5.11: Normalized amplitude (dB) as a function of the frequency and the angular position simulated at 60 cm from the exit of three vocal tract approximations for the vowels [A], [i] and [u] (44EFE[A], 44EFE[i] and 44EFE[u]) created from area functions provided by Story [23].
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 5115 Fig. 5.11.

Figure 5 . 12 :

 512 Figure 5.12: Transfer functions between the input volume velocity and the acoustic pressure radiated at 60 cm in front of the exit of three vocal tract geometries corresponding to the vowels [A], [i] and [u] (44EFE[A], 44EFE[i] and 44EFE[u]) created from area functions provided by
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 5 Inuence of HOM on directivityOne can notice the presence of anti-resonances due to HOM propagation at relatively low frequency for the three geometries. In the case of the 44EFE[A] and the 44EFE[i], the rst anti-resonances occur at 3.85 kHz and in the case of the 44EFE[u] it occurs at 4.4 kHz.Other anti-resonances and resonances due to HOM propagation can be found above these frequencies. Thus, even if the propagation of HOM does not necessarily impact the directivity of the radiated sound, eects on the transfer functions are present in all the cases. However, one can not consider a unique vocal tract transfer function when the directivity eects are signicant. When the directivity is only produced by the diraction of the plane waves, the one lobe pattern generated does not induce signicant variations of the transfer function. The eect produced can be modeled by a low pass lter whose cut-o frequency reduces towards the edges (-90 • and 90 • ). When HOM can aect the directivity, the eect produced on the variations of the transfer function with respect to the location of the reception point are more complex. At a given frequency, the transfer function can have a minimum at one angular position and a maximum at the other. It is no more possible to dene a unique transfer function which can be modied to account for plane wave diraction. There are as many vocal tract transfer functions as reception points.In summary: Depending on the shape of the vocal tract, its transfer function can have more or less important variations with respect to the position of the reception point. A large mouth opening and a large cavity close to the mouth will favor eects of HOM on directivity at relatively low frequency (about 4 kHz). A small mouth opening and a large cavity distant from the mouth exit will induce a reduced inuence of the HOM on the directivity. However, in any case, the HOM will inuence the transfer function at relatively low frequency (about 4 kHz) by inducing anti-resonances and additional resonances.
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 11 Inuence of the appearance of 3D acoustic eld in the vocal tract The work presented in this document allowed one to improve the understanding of the inuence of the 3D aspects of the acoustic eld on the transfer function of the vocal tract and on the directivity of the radiated sound. It has been observed that the propagation of HOM, which induce 3D variations of the acoustic eld, generate anti-resonances and additional resonances.
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 2 Figure A.2: (a) Phase averaged on three measurements performed at the same location (b) maximal phase dierence between the three measurements

  Résumé L'acoustique du conduit vocal est souvent décrite avec de simples modèles ondes planes à une dimension. Cependant, cela n'est pas satisfaisant quand, à haute fréquence (à partir d'environ 5 kHz), des variations tridimensionnelles du champ acoustique sont présentes. La théorie acoustique multimodale a été implémentée pour prendre en compte les aspects tridimensionnels de l'acoustique du conduit vocal. Un système expérimental a été conçu pour mesurer avec précision des fonctions de transfert, des champs de pression et des diagrammes de directivité sur des maquettes de conduits vocaux. Les données expérimentales obtenues ont été comparées avec les simulations réalisées avec la théorie implémentée et avec la méthode des éléments nis. Le champ acoustique tridimensionnel et les diagrammes de directivité ont été prédis avec succès par les deux méthodes de simulation. Il a été observé que la propagation de mode acoustique d'ordre supérieur induit des variations tridimensionnelles du champ acoustique, génère des antirésonances et des résonances additionnelles, et aecte la directivité du son rayonné de façon signicative. L'excentricité de la forme du conduit vocal apparaît comme critique pour l'excitation et la propagation des modes d'ordre supérieur. Il est conclu qu'à haute fréquence (au-delà de 5 kHz), la fonction de transfert du conduit vocal peut avoir des variations signicatives dans de petits intervalles de fréquences (de l'ordre de 100 Hz) et dans des régions angulaires restreintes (de l'ordre de 30 • ). Ces variations nécessitent d'être prises en compte dans les études de la parole qui se focalisent sur les hautes fréquences. Mots clés : parole, conduit vocal, acoustique, champ acoustique tridimensionnel, méthode multimodale, directivité Abstract The vocal tract acoustics is often described with a simple one dimensional plane wave approach. However, this is not satisfying when at high frequency (from about 5 kHz) three dimensional variations of the acoustic eld are present. The multimodal acoustic theory has been implemented in order to account for the three dimensional aspects of the vocal tract acoustics. An experimental setup has been designed to measure accurately transfer functions, pressure eld maps and directivity patterns of vocal tract replicas. The experimental data obtained have been compared with simulations performed with the implemented theory and with a nite element method. The three dimensional acoustic elds and the directivity patterns were successfully predicted by both simulation methods. It has been observed that the propagation of higher order acoustical modes, induces three dimensional variations of the acoustic eld, generates anti-resonances and additional resonances, and signicantly aects the directivity of the radiated sound. The eccentricity of the vocal tract shape appears as critical for the excitation and the propagation of the higher order acoustical modes. It is concluded that at high frequency (above 5 kHz), the transfer function of the vocal tract can have signicant variations within short frequency intervals (of the order of 100 Hz) and within small angular regions (of the order of 30 • ) which need to be taken into account in the studies of speech which focus on high frequencies.

  

  2 and S being the cross-section surface at the open end of the waveguide. This can be achieved by computing the values of ψ m and ψ n on each point of the grid used for the FD and approximating the integrals of Eq. (2.28) by nite summations

  (r b , θ b )ψ n (x 1a , x 2a )e -jkh ab .As for Eq. (2.29), one does not divide by the square of the area, since the area elements dS are not taken into account. However, one must divide the polar coordinate summation by Np b=1 h ab for each value of a because it is the equivalent of S rdrdθ. The overall result needs also to be divided by N .
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  3.1. Vocal tract geometries. 33 considered as very simple modelisation of the vowel [@] [1]. A replica of it has been made with a Plexiglass tube (see Fig. 3.1a). It has been used mainly for preliminary tests, see sections 3.3.2, 3.3.3 and 3.3.4.

Table 4 .

 4 1: Averaged amplitude and phase dierences between the transfer functions computed

	4.1. Two cylindrical tubes approximation			55
	Compared resolutions (mm)	2 -1	1 -0.5	0.5 -0.3
	Averaged amplitude dierence (dB)	3.6	1.9	0.7
	Averaged phase dierence (rad)	0.8	0.4	0.2

Table 4 .

 4 

				Peak frequencies (Hz)				
					plane mode			higher order
										modes	
			P1	P2	P3	P4	P5	P6	P7	P8	P9
		Exp	970	2490	3160	4620	5840	8930	-	-	-
	concentric	MM	970	2520	3190	4630	5910	9030	-	-	-
		FEM	980	2530	3210	4640	5920	9040	-	-	-
		Exp	970	2480	3110	4630	5640	8990	7530	8230	9720
	eccentric	MM	970	2500	3150	4630	5730	9070	7540	8280	9790
		FEM	980	2510	3160	4650	5740	9040	7480	8240	9720
				Peak bandwidths (Hz)				
		Exp	40	157	159	542	228	422	-	-	-
	concentric	MM	31	142	114	482	177	304	-	-	-
		FEM	34	173	153	547	230	386	-	-	-
		Exp	45	149	156	*	159	316	*	195	*
	eccentric	MM	32	132	122	505	117	290	65	169	*
		FEM	37	166	160	612	158	353	107	211	*

2: Peak frequencies and -3 dB bandwidths of the pressure-pressure transfer functions (PPTF) presented in Fig. 4.3 obtained for two vowel

Table 4 . 3

 43 

	4.2. 44 TUBES APPROXIMATIONS

: Peaks and dips frequencies and bandwidths of examples of transfer functions (presented in Fig.

  4. INFLUENCE OF HOM ON PRESSURE FIELD AND TRANSFER FUNCTIONS

				With lips		
		Peaks frequencies (Hz)	Dips frequencies (Hz)
	FEM	3270	4895	8535	5335	7720	8880
	Exp	3255	4865	8615	5430	7790	8980
		Peaks amplitude (dB)	Dips amplitude (dB)
	FEM	23.3	24.7	-3.5	-17.1	-30.9	-15.3
	Exp	24.2	27.1	-1.9	-14.9	-43.5	-14.8
				Without lips		
		Peaks frequencies (Hz)	Dips frequencies (Hz)
	FEM	3565	4915	8575	5495	7705	8935
	Exp	3550	4870	8645	5505	7760	9010
		Peaks amplitude (dB)	Dips amplitude (dB)
	FEM	17.5	20.8	-3.9	-18.6	-47	-19.4
	Exp	22.6	28.3	-2.4	-28.9	-23.4	-22.5
			Peaks -3 dB bandwidth (Hz)	
			With lips		Without lips
	FEM	215	20	210	220	70	175
	Exp	190 50	105	30	30	30	95
	Table						

Table 4 .

 4 5: Frequencies of the formants selected using the procedure depicted in part 3.3.6

	[A] geometries: inuence of lips	79
		with lips	without lips
		FEM	Exp	FEM	Exp
	3rd formant (Hz)	2205	2235	2270	2275
	last formant (Hz)	9670	9755	9710	9775

  It can be hypothesized that they are generated by small asymmetries of the replicas, this is further investigated in section 5.2.1. Apart in these particular narrow frequency bands, the same patterns are observed for the experimental and the simulated data.

	• . Other less pronounced discrepancies can be
	found at 7 kHz and 9.3 kHz. On the experimental data obtained with the 44CC[A], peaks of
	MSPLD can be seen at 8.1 kHz (36 dB), 8.3 kHz (34 dB), 8.8 kHz (14 dB) and 9.1 kHz (57
	dB). Inside a narrow frequency band centered on these frequencies, the directivity patterns is
	constituted of two asymmetric lobes separated by a low amplitude direction (see Fig. 5.3c).
	These discrepancies can be related to the dierences observed between the measured and
	simulated internal pressure elds observed in sections 4.1.4 and 4.2.4 in Figs. 4.4, 4.6, 4.7 and
	4.11.
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Repeatability test 2-10 kHz

In this appendix an experiment complementary to the one detailed in section 3.3.3 is presented. In conclusion, the variations of amplitude and phase are respectively lower than 0.4 dB and 0.08 rad for this experiment. This having been carried out within less time (40 minutes) than the experiment with the sinus presented in section 3.3.3 (two hours), the variations due to the change of experimental conditions are less important, and indeed the observed variations are smaller for this experiment (0.9 dB and 0.2 rad for the other experiment). However, there are less repetitions and it is still possible that the eect of the measurement noise on the variations of the measured quantities is less visible. Nevertheless, the smooth variations of the maximal dierence can still be interpreted as the eect of the variation of the experimental conditions during the measurement process.

Appendix B Normalization constants of the propagation modes in circular cross-sections

In order to compute the normalization constant N mn present in the expression of the propagation modes of a circular cross-section (Eq. (2.6)), one applies the normalisation condition of Eq. (2.5):

If n = 0, cos(nθ) = 1 and Eq. (B.1) can be integrated in the following way:

which results in N 2 mn = J n (γ mn ) 2 -J n-1 (γ mn )J n+1 (γ mn ) .

If n > 0, Eq. (B.1) can be integrated in the following way:

which results in

Note that if a sinus is used in Eq. (2.6), the case n = 0 can not be treated because ψ m0 = 0 and the case n > 0 can be integrated and also leads one to the Eq. (B.5).

Appendix C Detailed computation of the four junction types

One has (jD

C.1 Two consecutives expansions

One introduces the factor D -1 2 Z c everywhere 1) [(jD 3 ) -1 Z -1 c Z (1) + I] -1 D -1 2 Z -1